hip_filename
stringlengths
5
84
hip_content
stringlengths
79
9.69M
cuda_filename
stringlengths
4
83
cuda_content
stringlengths
19
9.69M
c0b9ad6612c101afa4ca5d28941dbcbc33e2c69b.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" //////////////////////////////////////////////////////////////////////////// // // Copyright 1993-2015 NVIDIA Corporation. All rights reserved. // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// // ---------------------------------------------------------------------------------------- // Transpose // // This file contains both device and host code for transposing a floating-point // matrix. It performs several transpose kernels, which incrementally improve performance // through coalescing, removing shared memory bank conflicts, and eliminating partition // camping. Several of the kernels perform a copy, used to represent the best case // performance that a transpose can achieve. // // Please see the whitepaper in the docs folder of the transpose project for a detailed // description of this performance study. // ---------------------------------------------------------------------------------------- // Utilities and system includes #include <helper_string.h> // helper for string parsing #include <helper_image.h> // helper for image and data compariosn #include <helper_cuda.h> // helper for cuda error checking functions const char *sSDKsample = "Transpose"; // Each block transposes/copies a tile of TILE_DIM x TILE_DIM elements // using TILE_DIM x BLOCK_ROWS threads, so that each thread transposes // TILE_DIM/BLOCK_ROWS elements. TILE_DIM must be an integral multiple of BLOCK_ROWS #define TILE_DIM 16 #define BLOCK_ROWS 16 // This sample assumes that MATRIX_SIZE_X = MATRIX_SIZE_Y int MATRIX_SIZE_X = 1024; int MATRIX_SIZE_Y = 1024; int MUL_FACTOR = TILE_DIM; #define FLOOR(a,b) (a-(a%b)) // Compute the tile size necessary to illustrate performance cases for SM20+ hardware int MAX_TILES = (FLOOR(MATRIX_SIZE_X,512) * FLOOR(MATRIX_SIZE_Y,512)) / (TILE_DIM *TILE_DIM); // Number of repetitions used for timing. Two sets of repetitions are performed: // 1) over kernel launches and 2) inside the kernel over just the loads and stores #define NUM_REPS 1 // ------------------------------------------------------- // Copies // width and height must be integral multiples of TILE_DIM // ------------------------------------------------------- __global__ void copy(float *odata, float *idata, int width, int height) { int xIndex = blockIdx.x * TILE_DIM + threadIdx.x; int yIndex = blockIdx.y * TILE_DIM + threadIdx.y; int index = xIndex + width*yIndex; for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { odata[index+i*width] = idata[index+i*width]; } } __global__ void copySharedMem(float *odata, float *idata, int width, int height) { __shared__ float tile[TILE_DIM][TILE_DIM]; int xIndex = blockIdx.x * TILE_DIM + threadIdx.x; int yIndex = blockIdx.y * TILE_DIM + threadIdx.y; int index = xIndex + width*yIndex; for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { if (xIndex < width && yIndex < height) { tile[threadIdx.y][threadIdx.x] = idata[index]; } } __syncthreads(); for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { if (xIndex < height && yIndex < width) { odata[index] = tile[threadIdx.y][threadIdx.x]; } } } // ------------------------------------------------------- // Transposes // width and height must be integral multiples of TILE_DIM // ------------------------------------------------------- __global__ void transposeNaive(float *odata, float *idata, int width, int height) { int xIndex = blockIdx.x * TILE_DIM + threadIdx.x; int yIndex = blockIdx.y * TILE_DIM + threadIdx.y; int index_in = xIndex + width * yIndex; int index_out = yIndex + height * xIndex; for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { odata[index_out+i] = idata[index_in+i*width]; } } // coalesced transpose (with bank conflicts) __global__ void transposeCoalesced(float *odata, float *idata, int width, int height) { __shared__ float tile[TILE_DIM][TILE_DIM]; int xIndex = blockIdx.x * TILE_DIM + threadIdx.x; int yIndex = blockIdx.y * TILE_DIM + threadIdx.y; int index_in = xIndex + (yIndex)*width; xIndex = blockIdx.y * TILE_DIM + threadIdx.x; yIndex = blockIdx.x * TILE_DIM + threadIdx.y; int index_out = xIndex + (yIndex)*height; for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { tile[threadIdx.y+i][threadIdx.x] = idata[index_in+i*width]; } __syncthreads(); for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { odata[index_out+i*height] = tile[threadIdx.x][threadIdx.y+i]; } } // Coalesced transpose with no bank conflicts __global__ void transposeNoBankConflicts(float *odata, float *idata, int width, int height) { __shared__ float tile[TILE_DIM][TILE_DIM+1]; int xIndex = blockIdx.x * TILE_DIM + threadIdx.x; int yIndex = blockIdx.y * TILE_DIM + threadIdx.y; int index_in = xIndex + (yIndex)*width; xIndex = blockIdx.y * TILE_DIM + threadIdx.x; yIndex = blockIdx.x * TILE_DIM + threadIdx.y; int index_out = xIndex + (yIndex)*height; for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { tile[threadIdx.y+i][threadIdx.x] = idata[index_in+i*width]; } __syncthreads(); for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { odata[index_out+i*height] = tile[threadIdx.x][threadIdx.y+i]; } } // Transpose that effectively reorders execution of thread blocks along diagonals of the // matrix (also coalesced and has no bank conflicts) // // Here blockIdx.x is interpreted as the distance along a diagonal and blockIdx.y as // corresponding to different diagonals // // blockIdx_x and blockIdx_y expressions map the diagonal coordinates to the more commonly // used cartesian coordinates so that the only changes to the code from the coalesced version // are the calculation of the blockIdx_x and blockIdx_y and replacement of blockIdx.x and // bloclIdx.y with the subscripted versions in the remaining code __global__ void transposeDiagonal(float *odata, float *idata, int width, int height) { __shared__ float tile[TILE_DIM][TILE_DIM+1]; int blockIdx_x, blockIdx_y; // do diagonal reordering if (width == height) { blockIdx_y = blockIdx.x; blockIdx_x = (blockIdx.x+blockIdx.y)%gridDim.x; } else { int bid = blockIdx.x + gridDim.x*blockIdx.y; blockIdx_y = bid%gridDim.y; blockIdx_x = ((bid/gridDim.y)+blockIdx_y)%gridDim.x; } // from here on the code is same as previous kernel except blockIdx_x replaces blockIdx.x // and similarly for y int xIndex = blockIdx_x * TILE_DIM + threadIdx.x; int yIndex = blockIdx_y * TILE_DIM + threadIdx.y; int index_in = xIndex + (yIndex)*width; xIndex = blockIdx_y * TILE_DIM + threadIdx.x; yIndex = blockIdx_x * TILE_DIM + threadIdx.y; int index_out = xIndex + (yIndex)*height; for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { tile[threadIdx.y+i][threadIdx.x] = idata[index_in+i*width]; } __syncthreads(); for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { odata[index_out+i*height] = tile[threadIdx.x][threadIdx.y+i]; } } // -------------------------------------------------------------------- // Partial transposes // NB: the coarse- and fine-grained routines only perform part of a // transpose and will fail the test against the reference solution // // They are used to assess performance characteristics of different // components of a full transpose // -------------------------------------------------------------------- __global__ void transposeFineGrained(float *odata, float *idata, int width, int height) { __shared__ float block[TILE_DIM][TILE_DIM+1]; int xIndex = blockIdx.x * TILE_DIM + threadIdx.x; int yIndex = blockIdx.y * TILE_DIM + threadIdx.y; int index = xIndex + (yIndex)*width; for (int i=0; i < TILE_DIM; i += BLOCK_ROWS) { block[threadIdx.y+i][threadIdx.x] = idata[index+i*width]; } __syncthreads(); for (int i=0; i < TILE_DIM; i += BLOCK_ROWS) { odata[index+i*height] = block[threadIdx.x][threadIdx.y+i]; } } __global__ void transposeCoarseGrained(float *odata, float *idata, int width, int height) { __shared__ float block[TILE_DIM][TILE_DIM+1]; int xIndex = blockIdx.x * TILE_DIM + threadIdx.x; int yIndex = blockIdx.y * TILE_DIM + threadIdx.y; int index_in = xIndex + (yIndex)*width; xIndex = blockIdx.y * TILE_DIM + threadIdx.x; yIndex = blockIdx.x * TILE_DIM + threadIdx.y; int index_out = xIndex + (yIndex)*height; for (int i=0; i<TILE_DIM; i += BLOCK_ROWS) { block[threadIdx.y+i][threadIdx.x] = idata[index_in+i*width]; } __syncthreads(); for (int i=0; i<TILE_DIM; i += BLOCK_ROWS) { odata[index_out+i*height] = block[threadIdx.y+i][threadIdx.x]; } } // --------------------- // host utility routines // --------------------- void computeTransposeGold(float *gold, float *idata, const int size_x, const int size_y) { for (int y = 0; y < size_y; ++y) { for (int x = 0; x < size_x; ++x) { gold[(x * size_y) + y] = idata[(y * size_x) + x]; } } } void getParams(int argc, char **argv, hipDeviceProp_t &deviceProp, int &size_x, int &size_y, int max_tile_dim) { // set matrix size (if (x,y) dim of matrix is not square, then this will have to be modified if (checkCmdLineFlag(argc, (const char **)argv, "dimX")) { size_x = getCmdLineArgumentInt(argc, (const char **) argv, "dimX"); if (size_x > max_tile_dim) { printf("> MatrixSize X = %d is greater than the recommended size = %d\n", size_x, max_tile_dim); } else { printf("> MatrixSize X = %d\n", size_x); } } else { size_x = max_tile_dim; size_x = FLOOR(size_x, 512); } if (checkCmdLineFlag(argc, (const char **)argv, "dimY")) { size_y = getCmdLineArgumentInt(argc, (const char **) argv, "dimY"); if (size_y > max_tile_dim) { printf("> MatrixSize Y = %d is greater than the recommended size = %d\n", size_y, max_tile_dim); } else { printf("> MatrixSize Y = %d\n", size_y); } } else { size_y = max_tile_dim; // If this is SM12 hardware, we want to round down to a multiple of 512 if ((deviceProp.major == 1 && deviceProp.minor >= 2) || deviceProp.major > 1) { size_y = FLOOR(size_y, 512); } else // else for SM10,SM11 we round down to a multiple of 384 { size_y = FLOOR(size_y, 384); } } } void showHelp() { printf("\n%s : Command line options\n", sSDKsample); printf("\t-device=n (where n=0,1,2.... for the GPU device)\n\n"); printf("> The default matrix size can be overridden with these parameters\n"); printf("\t-dimX=row_dim_size (matrix row dimensions)\n"); printf("\t-dimY=col_dim_size (matrix column dimensions)\n"); } // ---- // main // ---- int main(int argc, char **argv) { // Start logs printf("%s Starting...\n\n", sSDKsample); if (checkCmdLineFlag(argc, (const char **)argv, "help")) { showHelp(); return 0; } int devID = findCudaDevice(argc, (const char **)argv); hipDeviceProp_t deviceProp; // get number of SMs on this GPU checkCudaErrors(hipGetDevice(&devID)); checkCudaErrors(hipGetDeviceProperties(&deviceProp, devID)); // compute the scaling factor (for GPUs with fewer MPs) float scale_factor, total_tiles; scale_factor = max((192.0f / (_ConvertSMVer2Cores(deviceProp.major, deviceProp.minor) * (float)deviceProp.multiProcessorCount)), 1.0f); printf("> Device %d: \"%s\"\n", devID, deviceProp.name); printf("> SM Capability %d.%d detected:\n", deviceProp.major, deviceProp.minor); // Calculate number of tiles we will run for the Matrix Transpose performance tests int size_x, size_y, max_matrix_dim, matrix_size_test; matrix_size_test = 512; // we round down max_matrix_dim for this perf test total_tiles = (float)MAX_TILES / scale_factor; max_matrix_dim = FLOOR((int)(floor(sqrt(total_tiles))* TILE_DIM), matrix_size_test); // This is the minimum size allowed if (max_matrix_dim == 0) { max_matrix_dim = matrix_size_test; } printf("> [%s] has %d MP(s) x %d (Cores/MP) = %d (Cores)\n", deviceProp.name, deviceProp.multiProcessorCount, _ConvertSMVer2Cores(deviceProp.major, deviceProp.minor), _ConvertSMVer2Cores(deviceProp.major, deviceProp.minor) * deviceProp.multiProcessorCount); printf("> Compute performance scaling factor = %4.2f\n", scale_factor); // Extract parameters if there are any, command line -dimx and -dimy can override // any of these settings getParams(argc, argv, deviceProp, size_x, size_y, max_matrix_dim); if (size_x != size_y) { printf("\n[%s] does not support non-square matrices (row_dim_size(%d) != col_dim_size(%d))\nExiting...\n\n", sSDKsample, size_x, size_y); // hipDeviceReset causes the driver to clean up all state. While // not mandatory in normal operation, it is good practice. It is also // needed to ensure correct operation when the application is being // profiled. Calling hipDeviceReset causes all profile data to be // flushed before the application exits hipDeviceReset(); exit(EXIT_FAILURE); } if (size_x%TILE_DIM != 0 || size_y%TILE_DIM != 0) { printf("[%s] Matrix size must be integral multiple of tile size\nExiting...\n\n", sSDKsample); // hipDeviceReset causes the driver to clean up all state. While // not mandatory in normal operation, it is good practice. It is also // needed to ensure correct operation when the application is being // profiled. Calling hipDeviceReset causes all profile data to be // flushed before the application exits hipDeviceReset(); exit(EXIT_FAILURE); } // kernel pointer and descriptor void (*kernel)(float *, float *, int, int); const char *kernelName; // execution configuration parameters dim3 grid(size_x/TILE_DIM, size_y/TILE_DIM), threads(TILE_DIM,BLOCK_ROWS); if (grid.x < 1 || grid.y < 1) { printf("[%s] grid size computation incorrect in test \nExiting...\n\n", sSDKsample); // hipDeviceReset causes the driver to clean up all state. While // not mandatory in normal operation, it is good practice. It is also // needed to ensure correct operation when the application is being // profiled. Calling hipDeviceReset causes all profile data to be // flushed before the application exits hipDeviceReset(); exit(EXIT_FAILURE); } // CUDA events hipEvent_t start, stop; // size of memory required to store the matrix size_t mem_size = static_cast<size_t>(sizeof(float) * size_x*size_y); if (2*mem_size > deviceProp.totalGlobalMem) { printf("Input matrix size is larger than the available device memory!\n"); printf("Please choose a smaller size matrix\n"); // hipDeviceReset causes the driver to clean up all state. While // not mandatory in normal operation, it is good practice. It is also // needed to ensure correct operation when the application is being // profiled. Calling hipDeviceReset causes all profile data to be // flushed before the application exits hipDeviceReset(); exit(EXIT_FAILURE); } // allocate host memory float *h_idata = (float *) malloc(mem_size); float *h_odata = (float *) malloc(mem_size); float *transposeGold = (float *) malloc(mem_size); float *gold; // allocate device memory float *d_idata, *d_odata; checkCudaErrors(hipMalloc((void **) &d_idata, mem_size)); checkCudaErrors(hipMalloc((void **) &d_odata, mem_size)); // initalize host data for (int i = 0; i < (size_x*size_y); ++i) { h_idata[i] = (float) i; } // copy host data to device checkCudaErrors(hipMemcpy(d_idata, h_idata, mem_size, hipMemcpyHostToDevice)); // Compute reference transpose solution computeTransposeGold(transposeGold, h_idata, size_x, size_y); // print out common data for all kernels printf("\nMatrix size: %dx%d (%dx%d tiles), tile size: %dx%d, block size: %dx%d\n\n", size_x, size_y, size_x/TILE_DIM, size_y/TILE_DIM, TILE_DIM, TILE_DIM, TILE_DIM, BLOCK_ROWS); // initialize events checkCudaErrors(hipEventCreate(&start)); checkCudaErrors(hipEventCreate(&stop)); // // loop over different kernels // bool success = true; /* for (int k = 0; k<8; k++) { // set kernel pointer switch (k) { case 0: kernel = &copy; kernelName = "simple copy "; break; case 1: kernel = &copySharedMem; kernelName = "shared memory copy"; break; case 2: kernel = &transposeNaive; kernelName = "naive "; break; case 3: kernel = &transposeCoalesced; kernelName = "coalesced "; break; case 4: kernel = &transposeNoBankConflicts; kernelName = "optimized "; break; case 5: kernel = &transposeCoarseGrained; kernelName = "coarse-grained "; break; case 6: kernel = &transposeFineGrained; kernelName = "fine-grained "; break; case 7: kernel = &transposeDiagonal; kernelName = "diagonal "; break; } // set reference solution if (kernel == &copy || kernel == &copySharedMem) { gold = h_idata; } else if (kernel == &transposeCoarseGrained || kernel == &transposeFineGrained) { gold = h_odata; // fine- and coarse-grained kernels are not full transposes, so bypass check } else { gold = transposeGold; } */ kernel = &transposeNoBankConflicts; kernelName = "optimized "; gold = transposeGold; // Clear error status checkCudaErrors(hipGetLastError()); // Charu: warmup to avoid timing startup //hipLaunchKernelGGL(( kernel), dim3(grid), dim3(threads), 0, 0, d_odata, d_idata, size_x, size_y); // take measurements for loop over kernel launches checkCudaErrors(hipEventRecord(start, 0)); for (int i=0; i < NUM_REPS; i++) { hipLaunchKernelGGL(( kernel), dim3(grid), dim3(threads), 0, 0, d_odata, d_idata, size_x, size_y); // Ensure no launch failure checkCudaErrors(hipGetLastError()); } checkCudaErrors(hipEventRecord(stop, 0)); checkCudaErrors(hipEventSynchronize(stop)); float kernelTime; checkCudaErrors(hipEventElapsedTime(&kernelTime, start, stop)); checkCudaErrors(hipMemcpy(h_odata, d_odata, mem_size, hipMemcpyDeviceToHost)); bool res = compareData(gold, h_odata, size_x*size_y, 0.01f, 0.0f); if (res == false) { printf("*** %s kernel FAILED ***\n", kernelName); success = false; } // take measurements for loop inside kernel checkCudaErrors(hipMemcpy(h_odata, d_odata, mem_size, hipMemcpyDeviceToHost)); res = compareData(gold, h_odata, size_x*size_y, 0.01f, 0.0f); if (res == false) { printf("*** %s kernel FAILED ***\n", kernelName); success = false; } // report effective bandwidths float kernelBandwidth = 2.0f * 1000.0f * mem_size/(1024*1024*1024)/(kernelTime/NUM_REPS); printf("transpose %s, Throughput = %.4f GB/s, Time = %.5f ms, Size = %u fp32 elements, NumDevsUsed = %u, Workgroup = %u\n", kernelName, kernelBandwidth, kernelTime/NUM_REPS, (size_x *size_y), 1, TILE_DIM *BLOCK_ROWS); // } // cleanup free(h_idata); free(h_odata); free(transposeGold); hipFree(d_idata); hipFree(d_odata); checkCudaErrors(hipEventDestroy(start)); checkCudaErrors(hipEventDestroy(stop)); // hipDeviceReset causes the driver to clean up all state. While // not mandatory in normal operation, it is good practice. It is also // needed to ensure correct operation when the application is being // profiled. Calling hipDeviceReset causes all profile data to be // flushed before the application exits hipDeviceReset(); if (!success) { printf("Test failed!\n"); // exit(EXIT_FAILURE); } else printf("Test passed\n"); // exit(EXIT_SUCCESS); }
c0b9ad6612c101afa4ca5d28941dbcbc33e2c69b.cu
//////////////////////////////////////////////////////////////////////////// // // Copyright 1993-2015 NVIDIA Corporation. All rights reserved. // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// // ---------------------------------------------------------------------------------------- // Transpose // // This file contains both device and host code for transposing a floating-point // matrix. It performs several transpose kernels, which incrementally improve performance // through coalescing, removing shared memory bank conflicts, and eliminating partition // camping. Several of the kernels perform a copy, used to represent the best case // performance that a transpose can achieve. // // Please see the whitepaper in the docs folder of the transpose project for a detailed // description of this performance study. // ---------------------------------------------------------------------------------------- // Utilities and system includes #include <helper_string.h> // helper for string parsing #include <helper_image.h> // helper for image and data compariosn #include <helper_cuda.h> // helper for cuda error checking functions const char *sSDKsample = "Transpose"; // Each block transposes/copies a tile of TILE_DIM x TILE_DIM elements // using TILE_DIM x BLOCK_ROWS threads, so that each thread transposes // TILE_DIM/BLOCK_ROWS elements. TILE_DIM must be an integral multiple of BLOCK_ROWS #define TILE_DIM 16 #define BLOCK_ROWS 16 // This sample assumes that MATRIX_SIZE_X = MATRIX_SIZE_Y int MATRIX_SIZE_X = 1024; int MATRIX_SIZE_Y = 1024; int MUL_FACTOR = TILE_DIM; #define FLOOR(a,b) (a-(a%b)) // Compute the tile size necessary to illustrate performance cases for SM20+ hardware int MAX_TILES = (FLOOR(MATRIX_SIZE_X,512) * FLOOR(MATRIX_SIZE_Y,512)) / (TILE_DIM *TILE_DIM); // Number of repetitions used for timing. Two sets of repetitions are performed: // 1) over kernel launches and 2) inside the kernel over just the loads and stores #define NUM_REPS 1 // ------------------------------------------------------- // Copies // width and height must be integral multiples of TILE_DIM // ------------------------------------------------------- __global__ void copy(float *odata, float *idata, int width, int height) { int xIndex = blockIdx.x * TILE_DIM + threadIdx.x; int yIndex = blockIdx.y * TILE_DIM + threadIdx.y; int index = xIndex + width*yIndex; for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { odata[index+i*width] = idata[index+i*width]; } } __global__ void copySharedMem(float *odata, float *idata, int width, int height) { __shared__ float tile[TILE_DIM][TILE_DIM]; int xIndex = blockIdx.x * TILE_DIM + threadIdx.x; int yIndex = blockIdx.y * TILE_DIM + threadIdx.y; int index = xIndex + width*yIndex; for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { if (xIndex < width && yIndex < height) { tile[threadIdx.y][threadIdx.x] = idata[index]; } } __syncthreads(); for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { if (xIndex < height && yIndex < width) { odata[index] = tile[threadIdx.y][threadIdx.x]; } } } // ------------------------------------------------------- // Transposes // width and height must be integral multiples of TILE_DIM // ------------------------------------------------------- __global__ void transposeNaive(float *odata, float *idata, int width, int height) { int xIndex = blockIdx.x * TILE_DIM + threadIdx.x; int yIndex = blockIdx.y * TILE_DIM + threadIdx.y; int index_in = xIndex + width * yIndex; int index_out = yIndex + height * xIndex; for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { odata[index_out+i] = idata[index_in+i*width]; } } // coalesced transpose (with bank conflicts) __global__ void transposeCoalesced(float *odata, float *idata, int width, int height) { __shared__ float tile[TILE_DIM][TILE_DIM]; int xIndex = blockIdx.x * TILE_DIM + threadIdx.x; int yIndex = blockIdx.y * TILE_DIM + threadIdx.y; int index_in = xIndex + (yIndex)*width; xIndex = blockIdx.y * TILE_DIM + threadIdx.x; yIndex = blockIdx.x * TILE_DIM + threadIdx.y; int index_out = xIndex + (yIndex)*height; for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { tile[threadIdx.y+i][threadIdx.x] = idata[index_in+i*width]; } __syncthreads(); for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { odata[index_out+i*height] = tile[threadIdx.x][threadIdx.y+i]; } } // Coalesced transpose with no bank conflicts __global__ void transposeNoBankConflicts(float *odata, float *idata, int width, int height) { __shared__ float tile[TILE_DIM][TILE_DIM+1]; int xIndex = blockIdx.x * TILE_DIM + threadIdx.x; int yIndex = blockIdx.y * TILE_DIM + threadIdx.y; int index_in = xIndex + (yIndex)*width; xIndex = blockIdx.y * TILE_DIM + threadIdx.x; yIndex = blockIdx.x * TILE_DIM + threadIdx.y; int index_out = xIndex + (yIndex)*height; for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { tile[threadIdx.y+i][threadIdx.x] = idata[index_in+i*width]; } __syncthreads(); for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { odata[index_out+i*height] = tile[threadIdx.x][threadIdx.y+i]; } } // Transpose that effectively reorders execution of thread blocks along diagonals of the // matrix (also coalesced and has no bank conflicts) // // Here blockIdx.x is interpreted as the distance along a diagonal and blockIdx.y as // corresponding to different diagonals // // blockIdx_x and blockIdx_y expressions map the diagonal coordinates to the more commonly // used cartesian coordinates so that the only changes to the code from the coalesced version // are the calculation of the blockIdx_x and blockIdx_y and replacement of blockIdx.x and // bloclIdx.y with the subscripted versions in the remaining code __global__ void transposeDiagonal(float *odata, float *idata, int width, int height) { __shared__ float tile[TILE_DIM][TILE_DIM+1]; int blockIdx_x, blockIdx_y; // do diagonal reordering if (width == height) { blockIdx_y = blockIdx.x; blockIdx_x = (blockIdx.x+blockIdx.y)%gridDim.x; } else { int bid = blockIdx.x + gridDim.x*blockIdx.y; blockIdx_y = bid%gridDim.y; blockIdx_x = ((bid/gridDim.y)+blockIdx_y)%gridDim.x; } // from here on the code is same as previous kernel except blockIdx_x replaces blockIdx.x // and similarly for y int xIndex = blockIdx_x * TILE_DIM + threadIdx.x; int yIndex = blockIdx_y * TILE_DIM + threadIdx.y; int index_in = xIndex + (yIndex)*width; xIndex = blockIdx_y * TILE_DIM + threadIdx.x; yIndex = blockIdx_x * TILE_DIM + threadIdx.y; int index_out = xIndex + (yIndex)*height; for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { tile[threadIdx.y+i][threadIdx.x] = idata[index_in+i*width]; } __syncthreads(); for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { odata[index_out+i*height] = tile[threadIdx.x][threadIdx.y+i]; } } // -------------------------------------------------------------------- // Partial transposes // NB: the coarse- and fine-grained routines only perform part of a // transpose and will fail the test against the reference solution // // They are used to assess performance characteristics of different // components of a full transpose // -------------------------------------------------------------------- __global__ void transposeFineGrained(float *odata, float *idata, int width, int height) { __shared__ float block[TILE_DIM][TILE_DIM+1]; int xIndex = blockIdx.x * TILE_DIM + threadIdx.x; int yIndex = blockIdx.y * TILE_DIM + threadIdx.y; int index = xIndex + (yIndex)*width; for (int i=0; i < TILE_DIM; i += BLOCK_ROWS) { block[threadIdx.y+i][threadIdx.x] = idata[index+i*width]; } __syncthreads(); for (int i=0; i < TILE_DIM; i += BLOCK_ROWS) { odata[index+i*height] = block[threadIdx.x][threadIdx.y+i]; } } __global__ void transposeCoarseGrained(float *odata, float *idata, int width, int height) { __shared__ float block[TILE_DIM][TILE_DIM+1]; int xIndex = blockIdx.x * TILE_DIM + threadIdx.x; int yIndex = blockIdx.y * TILE_DIM + threadIdx.y; int index_in = xIndex + (yIndex)*width; xIndex = blockIdx.y * TILE_DIM + threadIdx.x; yIndex = blockIdx.x * TILE_DIM + threadIdx.y; int index_out = xIndex + (yIndex)*height; for (int i=0; i<TILE_DIM; i += BLOCK_ROWS) { block[threadIdx.y+i][threadIdx.x] = idata[index_in+i*width]; } __syncthreads(); for (int i=0; i<TILE_DIM; i += BLOCK_ROWS) { odata[index_out+i*height] = block[threadIdx.y+i][threadIdx.x]; } } // --------------------- // host utility routines // --------------------- void computeTransposeGold(float *gold, float *idata, const int size_x, const int size_y) { for (int y = 0; y < size_y; ++y) { for (int x = 0; x < size_x; ++x) { gold[(x * size_y) + y] = idata[(y * size_x) + x]; } } } void getParams(int argc, char **argv, cudaDeviceProp &deviceProp, int &size_x, int &size_y, int max_tile_dim) { // set matrix size (if (x,y) dim of matrix is not square, then this will have to be modified if (checkCmdLineFlag(argc, (const char **)argv, "dimX")) { size_x = getCmdLineArgumentInt(argc, (const char **) argv, "dimX"); if (size_x > max_tile_dim) { printf("> MatrixSize X = %d is greater than the recommended size = %d\n", size_x, max_tile_dim); } else { printf("> MatrixSize X = %d\n", size_x); } } else { size_x = max_tile_dim; size_x = FLOOR(size_x, 512); } if (checkCmdLineFlag(argc, (const char **)argv, "dimY")) { size_y = getCmdLineArgumentInt(argc, (const char **) argv, "dimY"); if (size_y > max_tile_dim) { printf("> MatrixSize Y = %d is greater than the recommended size = %d\n", size_y, max_tile_dim); } else { printf("> MatrixSize Y = %d\n", size_y); } } else { size_y = max_tile_dim; // If this is SM12 hardware, we want to round down to a multiple of 512 if ((deviceProp.major == 1 && deviceProp.minor >= 2) || deviceProp.major > 1) { size_y = FLOOR(size_y, 512); } else // else for SM10,SM11 we round down to a multiple of 384 { size_y = FLOOR(size_y, 384); } } } void showHelp() { printf("\n%s : Command line options\n", sSDKsample); printf("\t-device=n (where n=0,1,2.... for the GPU device)\n\n"); printf("> The default matrix size can be overridden with these parameters\n"); printf("\t-dimX=row_dim_size (matrix row dimensions)\n"); printf("\t-dimY=col_dim_size (matrix column dimensions)\n"); } // ---- // main // ---- int main(int argc, char **argv) { // Start logs printf("%s Starting...\n\n", sSDKsample); if (checkCmdLineFlag(argc, (const char **)argv, "help")) { showHelp(); return 0; } int devID = findCudaDevice(argc, (const char **)argv); cudaDeviceProp deviceProp; // get number of SMs on this GPU checkCudaErrors(cudaGetDevice(&devID)); checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID)); // compute the scaling factor (for GPUs with fewer MPs) float scale_factor, total_tiles; scale_factor = max((192.0f / (_ConvertSMVer2Cores(deviceProp.major, deviceProp.minor) * (float)deviceProp.multiProcessorCount)), 1.0f); printf("> Device %d: \"%s\"\n", devID, deviceProp.name); printf("> SM Capability %d.%d detected:\n", deviceProp.major, deviceProp.minor); // Calculate number of tiles we will run for the Matrix Transpose performance tests int size_x, size_y, max_matrix_dim, matrix_size_test; matrix_size_test = 512; // we round down max_matrix_dim for this perf test total_tiles = (float)MAX_TILES / scale_factor; max_matrix_dim = FLOOR((int)(floor(sqrt(total_tiles))* TILE_DIM), matrix_size_test); // This is the minimum size allowed if (max_matrix_dim == 0) { max_matrix_dim = matrix_size_test; } printf("> [%s] has %d MP(s) x %d (Cores/MP) = %d (Cores)\n", deviceProp.name, deviceProp.multiProcessorCount, _ConvertSMVer2Cores(deviceProp.major, deviceProp.minor), _ConvertSMVer2Cores(deviceProp.major, deviceProp.minor) * deviceProp.multiProcessorCount); printf("> Compute performance scaling factor = %4.2f\n", scale_factor); // Extract parameters if there are any, command line -dimx and -dimy can override // any of these settings getParams(argc, argv, deviceProp, size_x, size_y, max_matrix_dim); if (size_x != size_y) { printf("\n[%s] does not support non-square matrices (row_dim_size(%d) != col_dim_size(%d))\nExiting...\n\n", sSDKsample, size_x, size_y); // cudaDeviceReset causes the driver to clean up all state. While // not mandatory in normal operation, it is good practice. It is also // needed to ensure correct operation when the application is being // profiled. Calling cudaDeviceReset causes all profile data to be // flushed before the application exits cudaDeviceReset(); exit(EXIT_FAILURE); } if (size_x%TILE_DIM != 0 || size_y%TILE_DIM != 0) { printf("[%s] Matrix size must be integral multiple of tile size\nExiting...\n\n", sSDKsample); // cudaDeviceReset causes the driver to clean up all state. While // not mandatory in normal operation, it is good practice. It is also // needed to ensure correct operation when the application is being // profiled. Calling cudaDeviceReset causes all profile data to be // flushed before the application exits cudaDeviceReset(); exit(EXIT_FAILURE); } // kernel pointer and descriptor void (*kernel)(float *, float *, int, int); const char *kernelName; // execution configuration parameters dim3 grid(size_x/TILE_DIM, size_y/TILE_DIM), threads(TILE_DIM,BLOCK_ROWS); if (grid.x < 1 || grid.y < 1) { printf("[%s] grid size computation incorrect in test \nExiting...\n\n", sSDKsample); // cudaDeviceReset causes the driver to clean up all state. While // not mandatory in normal operation, it is good practice. It is also // needed to ensure correct operation when the application is being // profiled. Calling cudaDeviceReset causes all profile data to be // flushed before the application exits cudaDeviceReset(); exit(EXIT_FAILURE); } // CUDA events cudaEvent_t start, stop; // size of memory required to store the matrix size_t mem_size = static_cast<size_t>(sizeof(float) * size_x*size_y); if (2*mem_size > deviceProp.totalGlobalMem) { printf("Input matrix size is larger than the available device memory!\n"); printf("Please choose a smaller size matrix\n"); // cudaDeviceReset causes the driver to clean up all state. While // not mandatory in normal operation, it is good practice. It is also // needed to ensure correct operation when the application is being // profiled. Calling cudaDeviceReset causes all profile data to be // flushed before the application exits cudaDeviceReset(); exit(EXIT_FAILURE); } // allocate host memory float *h_idata = (float *) malloc(mem_size); float *h_odata = (float *) malloc(mem_size); float *transposeGold = (float *) malloc(mem_size); float *gold; // allocate device memory float *d_idata, *d_odata; checkCudaErrors(cudaMalloc((void **) &d_idata, mem_size)); checkCudaErrors(cudaMalloc((void **) &d_odata, mem_size)); // initalize host data for (int i = 0; i < (size_x*size_y); ++i) { h_idata[i] = (float) i; } // copy host data to device checkCudaErrors(cudaMemcpy(d_idata, h_idata, mem_size, cudaMemcpyHostToDevice)); // Compute reference transpose solution computeTransposeGold(transposeGold, h_idata, size_x, size_y); // print out common data for all kernels printf("\nMatrix size: %dx%d (%dx%d tiles), tile size: %dx%d, block size: %dx%d\n\n", size_x, size_y, size_x/TILE_DIM, size_y/TILE_DIM, TILE_DIM, TILE_DIM, TILE_DIM, BLOCK_ROWS); // initialize events checkCudaErrors(cudaEventCreate(&start)); checkCudaErrors(cudaEventCreate(&stop)); // // loop over different kernels // bool success = true; /* for (int k = 0; k<8; k++) { // set kernel pointer switch (k) { case 0: kernel = &copy; kernelName = "simple copy "; break; case 1: kernel = &copySharedMem; kernelName = "shared memory copy"; break; case 2: kernel = &transposeNaive; kernelName = "naive "; break; case 3: kernel = &transposeCoalesced; kernelName = "coalesced "; break; case 4: kernel = &transposeNoBankConflicts; kernelName = "optimized "; break; case 5: kernel = &transposeCoarseGrained; kernelName = "coarse-grained "; break; case 6: kernel = &transposeFineGrained; kernelName = "fine-grained "; break; case 7: kernel = &transposeDiagonal; kernelName = "diagonal "; break; } // set reference solution if (kernel == &copy || kernel == &copySharedMem) { gold = h_idata; } else if (kernel == &transposeCoarseGrained || kernel == &transposeFineGrained) { gold = h_odata; // fine- and coarse-grained kernels are not full transposes, so bypass check } else { gold = transposeGold; } */ kernel = &transposeNoBankConflicts; kernelName = "optimized "; gold = transposeGold; // Clear error status checkCudaErrors(cudaGetLastError()); // Charu: warmup to avoid timing startup // kernel<<<grid, threads>>>(d_odata, d_idata, size_x, size_y); // take measurements for loop over kernel launches checkCudaErrors(cudaEventRecord(start, 0)); for (int i=0; i < NUM_REPS; i++) { kernel<<<grid, threads>>>(d_odata, d_idata, size_x, size_y); // Ensure no launch failure checkCudaErrors(cudaGetLastError()); } checkCudaErrors(cudaEventRecord(stop, 0)); checkCudaErrors(cudaEventSynchronize(stop)); float kernelTime; checkCudaErrors(cudaEventElapsedTime(&kernelTime, start, stop)); checkCudaErrors(cudaMemcpy(h_odata, d_odata, mem_size, cudaMemcpyDeviceToHost)); bool res = compareData(gold, h_odata, size_x*size_y, 0.01f, 0.0f); if (res == false) { printf("*** %s kernel FAILED ***\n", kernelName); success = false; } // take measurements for loop inside kernel checkCudaErrors(cudaMemcpy(h_odata, d_odata, mem_size, cudaMemcpyDeviceToHost)); res = compareData(gold, h_odata, size_x*size_y, 0.01f, 0.0f); if (res == false) { printf("*** %s kernel FAILED ***\n", kernelName); success = false; } // report effective bandwidths float kernelBandwidth = 2.0f * 1000.0f * mem_size/(1024*1024*1024)/(kernelTime/NUM_REPS); printf("transpose %s, Throughput = %.4f GB/s, Time = %.5f ms, Size = %u fp32 elements, NumDevsUsed = %u, Workgroup = %u\n", kernelName, kernelBandwidth, kernelTime/NUM_REPS, (size_x *size_y), 1, TILE_DIM *BLOCK_ROWS); // } // cleanup free(h_idata); free(h_odata); free(transposeGold); cudaFree(d_idata); cudaFree(d_odata); checkCudaErrors(cudaEventDestroy(start)); checkCudaErrors(cudaEventDestroy(stop)); // cudaDeviceReset causes the driver to clean up all state. While // not mandatory in normal operation, it is good practice. It is also // needed to ensure correct operation when the application is being // profiled. Calling cudaDeviceReset causes all profile data to be // flushed before the application exits cudaDeviceReset(); if (!success) { printf("Test failed!\n"); // exit(EXIT_FAILURE); } else printf("Test passed\n"); // exit(EXIT_SUCCESS); }
dadbed694b58ebaa1800a317a44a97d3b4a61f55.hip
// !!! This is a file automatically generated by hipify!!! /******************************************************* * Copyright (c) 2014, ArrayFire * All rights reserved. * * This file is distributed under 3-clause BSD license. * The complete license agreement can be obtained at: * http://arrayfire.com/licenses/BSD-3-Clause ********************************************************/ #include <sparse.hpp> #include <kernel/sparse.hpp> #include <stdexcept> #include <string> #include <arith.hpp> #include <cast.hpp> #include <complex.hpp> #include <copy.hpp> #include <common/err_common.hpp> #include <lookup.hpp> #include <math.hpp> #include <platform.hpp> #include <where.hpp> namespace cuda { using namespace common; using namespace std; //hipsparseStatus_t hipsparseZcsr2csc(hipsparseHandle_t handle, // int m, int n, int nnz, // const hipDoubleComplex *csrSortedVal, // const int *csrSortedRowPtr, const int *csrSortedColInd, // hipDoubleComplex *cscSortedVal, // int *cscSortedRowInd, int *cscSortedColPtr, // hipsparseAction_t copyValues, // hipsparseIndexBase_t idxBase); template<typename T> struct csr2csc_func_def_t { typedef hipsparseStatus_t (*csr2csc_func_def)( hipsparseHandle_t, int, int, int, const T *, const int *, const int *, T *, int *, int *, hipsparseAction_t, hipsparseIndexBase_t); }; //hipsparseStatus_t hipsparseZdense2csr(hipsparseHandle_t handle, // int m, int n, // const hipsparseMatDescr_t descrA, // const hipDoubleComplex *A, int lda, // const int *nnzPerRow, // hipDoubleComplex *csrValA, // int *csrRowPtrA, int *csrColIndA) template<typename T> struct dense2csr_func_def_t { typedef hipsparseStatus_t (*dense2csr_func_def)( hipsparseHandle_t, int, int, const hipsparseMatDescr_t, const T *, int, const int *, T *, int *, int *); }; //hipsparseStatus_t hipsparseZdense2csc(hipsparseHandle_t handle, // int m, int n, // const hipsparseMatDescr_t descrA, // const hipDoubleComplex *A, int lda, // const int *nnzPerCol, // hipDoubleComplex *cscValA, // int *cscRowIndA, int *cscColPtrA) template<typename T> struct dense2csc_func_def_t { typedef hipsparseStatus_t (*dense2csc_func_def)( hipsparseHandle_t, int, int, const hipsparseMatDescr_t, const T *, int, const int *, T *, int *, int *); }; //hipsparseStatus_t hipsparseZcsr2dense(hipsparseHandle_t handle, // int m, int n, // const hipsparseMatDescr_t descrA, // const hipDoubleComplex *csrValA, // const int *csrRowPtrA, // const int *csrColIndA, // hipDoubleComplex *A, int lda) template<typename T> struct csr2dense_func_def_t { typedef hipsparseStatus_t (*csr2dense_func_def)( hipsparseHandle_t, int, int, const hipsparseMatDescr_t, const T *, const int *, const int *, T *, int); }; //hipsparseStatus_t hipsparseZcsc2dense(hipsparseHandle_t handle, // int m, int n, // const hipsparseMatDescr_t descrA, // const hipDoubleComplex *cscValA, // const int *cscRowIndA, // const int *cscColPtrA, // hipDoubleComplex *A, int lda) template<typename T> struct csc2dense_func_def_t { typedef hipsparseStatus_t (*csc2dense_func_def)( hipsparseHandle_t, int, int, const hipsparseMatDescr_t, const T *, const int *, const int *, T *, int); }; //hipsparseStatus_t hipsparseZnnz(hipsparseHandle_t handle, // hipsparseDirection_t dirA, // int m, int n, // const hipsparseMatDescr_t descrA, // const hipDoubleComplex *A, int lda, // int *nnzPerRowColumn, // int *nnzTotalDevHostPtr) template<typename T> struct nnz_func_def_t { typedef hipsparseStatus_t (*nnz_func_def)( hipsparseHandle_t, hipsparseDirection_t, int, int, const hipsparseMatDescr_t, const T *, int, int *, int *); }; //hipsparseStatus_t hipsparseZgthr(hipsparseHandle_t handle, // int nnz, // const hipDoubleComplex *y, // hipDoubleComplex *xVal, const int *xInd, // hipsparseIndexBase_t idxBase) template<typename T> struct gthr_func_def_t { typedef hipsparseStatus_t (*gthr_func_def)(hipsparseHandle_t, int, const T *, T*, const int *, hipsparseIndexBase_t); }; #define SPARSE_FUNC_DEF( FUNC ) \ template<typename T> \ typename FUNC##_func_def_t<T>::FUNC##_func_def \ FUNC##_func(); #define SPARSE_FUNC( FUNC, TYPE, PREFIX ) \ template<> typename FUNC##_func_def_t<TYPE>::FUNC##_func_def \ FUNC##_func<TYPE>() \ { return (FUNC##_func_def_t<TYPE>::FUNC##_func_def)&cusparse##PREFIX##FUNC; } SPARSE_FUNC_DEF(csr2csc) SPARSE_FUNC(csr2csc, float, S) SPARSE_FUNC(csr2csc, double, D) SPARSE_FUNC(csr2csc, cfloat, C) SPARSE_FUNC(csr2csc, cdouble,Z) SPARSE_FUNC_DEF(dense2csr) SPARSE_FUNC(dense2csr, float, S) SPARSE_FUNC(dense2csr, double, D) SPARSE_FUNC(dense2csr, cfloat, C) SPARSE_FUNC(dense2csr, cdouble,Z) SPARSE_FUNC_DEF(dense2csc) SPARSE_FUNC(dense2csc, float, S) SPARSE_FUNC(dense2csc, double, D) SPARSE_FUNC(dense2csc, cfloat, C) SPARSE_FUNC(dense2csc, cdouble,Z) SPARSE_FUNC_DEF(csr2dense) SPARSE_FUNC(csr2dense, float, S) SPARSE_FUNC(csr2dense, double, D) SPARSE_FUNC(csr2dense, cfloat, C) SPARSE_FUNC(csr2dense, cdouble,Z) SPARSE_FUNC_DEF(csc2dense) SPARSE_FUNC(csc2dense, float, S) SPARSE_FUNC(csc2dense, double, D) SPARSE_FUNC(csc2dense, cfloat, C) SPARSE_FUNC(csc2dense, cdouble,Z) SPARSE_FUNC_DEF(nnz) SPARSE_FUNC(nnz, float, S) SPARSE_FUNC(nnz, double, D) SPARSE_FUNC(nnz, cfloat, C) SPARSE_FUNC(nnz, cdouble,Z) SPARSE_FUNC_DEF(gthr) SPARSE_FUNC(gthr, float, S) SPARSE_FUNC(gthr, double, D) SPARSE_FUNC(gthr, cfloat, C) SPARSE_FUNC(gthr, cdouble,Z) #undef SPARSE_FUNC #undef SPARSE_FUNC_DEF // Partial template specialization of sparseConvertDenseToStorage for COO // However, template specialization is not allowed template<typename T> SparseArray<T> sparseConvertDenseToCOO(const Array<T> &in) { Array<uint> nonZeroIdx_ = where<T>(in); Array<int> nonZeroIdx = cast<int, uint>(nonZeroIdx_); dim_t nNZ = nonZeroIdx.elements(); Array<int> constDim = createValueArray<int>(dim4(nNZ), in.dims()[0]); Array<int> rowIdx = arithOp<int, af_mod_t>(nonZeroIdx, constDim, nonZeroIdx.dims()); Array<int> colIdx = arithOp<int, af_div_t>(nonZeroIdx, constDim, nonZeroIdx.dims()); Array<T> values = copyArray<T>(in); values.modDims(dim4(values.elements())); values = lookup<T, int>(values, nonZeroIdx, 0); return createArrayDataSparseArray<T>(in.dims(), values, rowIdx, colIdx, AF_STORAGE_COO); } template<typename T, af_storage stype> SparseArray<T> sparseConvertDenseToStorage(const Array<T> &in) { const int M = in.dims()[0]; const int N = in.dims()[1]; // Create Sparse Matrix Descriptor hipsparseMatDescr_t descr = 0; CUSPARSE_CHECK(hipsparseCreateMatDescr(&descr)); hipsparseSetMatType(descr, HIPSPARSE_MATRIX_TYPE_GENERAL); hipsparseSetMatIndexBase(descr, HIPSPARSE_INDEX_BASE_ZERO); int d = -1; hipsparseDirection_t dir = HIPSPARSE_DIRECTION_ROW; if(stype == AF_STORAGE_CSR) { d = M; dir = HIPSPARSE_DIRECTION_ROW; } else { d = N; dir = HIPSPARSE_DIRECTION_COLUMN; } Array<int> nnzPerDir = createEmptyArray<int>(dim4(d)); int nNZ = -1; CUSPARSE_CHECK(nnz_func<T>()( sparseHandle(), dir, M, N, descr, in.get(), in.strides()[1], nnzPerDir.get(), &nNZ)); Array<int> rowIdx = createEmptyArray<int>(dim4()); Array<int> colIdx = createEmptyArray<int>(dim4()); if(stype == AF_STORAGE_CSR) { rowIdx = createEmptyArray<int>(dim4(M+1)); colIdx = createEmptyArray<int>(dim4(nNZ)); } else { rowIdx = createEmptyArray<int>(dim4(nNZ)); colIdx = createEmptyArray<int>(dim4(N+1)); } Array<T> values = createEmptyArray<T>(dim4(nNZ)); if(stype == AF_STORAGE_CSR) CUSPARSE_CHECK(dense2csr_func<T>()( sparseHandle(), M, N, descr, in.get(), in.strides()[1], nnzPerDir.get(), values.get(), rowIdx.get(), colIdx.get())); else CUSPARSE_CHECK(dense2csc_func<T>()( sparseHandle(), M, N, descr, in.get(), in.strides()[1], nnzPerDir.get(), values.get(), rowIdx.get(), colIdx.get())); // Destory Sparse Matrix Descriptor CUSPARSE_CHECK(hipsparseDestroyMatDescr(descr)); return createArrayDataSparseArray<T>(in.dims(), values, rowIdx, colIdx, stype); } // Partial template specialization of sparseConvertStorageToDense for COO // However, template specialization is not allowed template<typename T> Array<T> sparseConvertCOOToDense(const SparseArray<T> &in) { Array<T> dense = createValueArray<T>(in.dims(), scalar<T>(0)); const Array<T> values = in.getValues(); const Array<int> rowIdx = in.getRowIdx(); const Array<int> colIdx = in.getColIdx(); kernel::coo2dense<T>(dense, values, rowIdx, colIdx); return dense; } template<typename T, af_storage stype> Array<T> sparseConvertStorageToDense(const SparseArray<T> &in) { // Create Sparse Matrix Descriptor hipsparseMatDescr_t descr = 0; CUSPARSE_CHECK(hipsparseCreateMatDescr(&descr)); hipsparseSetMatType(descr, HIPSPARSE_MATRIX_TYPE_GENERAL); hipsparseSetMatIndexBase(descr, HIPSPARSE_INDEX_BASE_ZERO); int M = in.dims()[0]; int N = in.dims()[1]; Array<T> dense = createValueArray<T>(in.dims(), scalar<T>(0)); int d_strides1 = dense.strides()[1]; if(stype == AF_STORAGE_CSR) CUSPARSE_CHECK(csr2dense_func<T>()( sparseHandle(), M, N, descr, in.getValues().get(), in.getRowIdx().get(), in.getColIdx().get(), dense.get(), d_strides1)); else CUSPARSE_CHECK(csc2dense_func<T>()( sparseHandle(), M, N, descr, in.getValues().get(), in.getRowIdx().get(), in.getColIdx().get(), dense.get(), d_strides1)); // Destory Sparse Matrix Descriptor CUSPARSE_CHECK(hipsparseDestroyMatDescr(descr)); return dense; } template<typename T, af_storage dest, af_storage src> SparseArray<T> sparseConvertStorageToStorage(const SparseArray<T> &in) { using std::shared_ptr; in.eval(); int nNZ = in.getNNZ(); SparseArray<T> converted = createEmptySparseArray<T>(in.dims(), nNZ, dest); if(src == AF_STORAGE_CSR && dest == AF_STORAGE_COO) { // Copy colIdx as is CUDA_CHECK(hipMemcpyAsync(converted.getColIdx().get(), in.getColIdx().get(), in.getColIdx().elements() * sizeof(int), hipMemcpyDeviceToDevice, cuda::getActiveStream())); // cusparse function to expand compressed row into coordinate CUSPARSE_CHECK(hipsparseXcsr2coo( sparseHandle(), in.getRowIdx().get(), nNZ, in.dims()[0], converted.getRowIdx().get(), HIPSPARSE_INDEX_BASE_ZERO)); // Call sort size_t pBufferSizeInBytes = 0; CUSPARSE_CHECK(hipsparseXcoosort_bufferSizeExt( sparseHandle(), in.dims()[0], in.dims()[1], nNZ, converted.getRowIdx().get(), converted.getColIdx().get(), &pBufferSizeInBytes)); shared_ptr<char> pBuffer(memAlloc<char>(pBufferSizeInBytes), memFree<char>); shared_ptr<int> P(memAlloc<int>(nNZ), memFree<int>); CUSPARSE_CHECK(hipsparseCreateIdentityPermutation(sparseHandle(), nNZ, P.get())); CUSPARSE_CHECK(hipsparseXcoosortByColumn( sparseHandle(), in.dims()[0], in.dims()[1], nNZ, converted.getRowIdx().get(), converted.getColIdx().get(), P.get(), (void*)pBuffer.get())); CUSPARSE_CHECK(gthr_func<T>()( sparseHandle(), nNZ, in.getValues().get(), converted.getValues().get(), P.get(), HIPSPARSE_INDEX_BASE_ZERO)); } else if (src == AF_STORAGE_COO && dest == AF_STORAGE_CSR) { // The cusparse csr sort function is not behaving correctly. // So the work around is to convert the COO into row major and then // convert it to CSR // Deep copy input into temporary COO Row Major SparseArray<T> cooT = createArrayDataSparseArray<T>(in.dims(), in.getValues(), in.getRowIdx(), in.getColIdx(), in.getStorage(), true); // Call sort to convert column major to row major { size_t pBufferSizeInBytes = 0; CUSPARSE_CHECK(hipsparseXcoosort_bufferSizeExt( sparseHandle(), cooT.dims()[0], cooT.dims()[1], nNZ, cooT.getRowIdx().get(), cooT.getColIdx().get(), &pBufferSizeInBytes)); shared_ptr<char> pBuffer(memAlloc<char>(pBufferSizeInBytes), memFree<char>); shared_ptr<int> P(memAlloc<int>(nNZ), memFree<int>); CUSPARSE_CHECK(hipsparseCreateIdentityPermutation(sparseHandle(), nNZ, P.get())); CUSPARSE_CHECK(hipsparseXcoosortByRow( sparseHandle(), cooT.dims()[0], cooT.dims()[1], nNZ, cooT.getRowIdx().get(), cooT.getColIdx().get(), P.get(), (void*)pBuffer.get())); CUSPARSE_CHECK(gthr_func<T>()( sparseHandle(), nNZ, in.getValues().get(), cooT.getValues().get(), P.get(), HIPSPARSE_INDEX_BASE_ZERO)); } // Copy values and colIdx as is CUDA_CHECK(hipMemcpyAsync(converted.getValues().get(), cooT.getValues().get(), cooT.getValues().elements() * sizeof(T), hipMemcpyDeviceToDevice, cuda::getActiveStream())); CUDA_CHECK(hipMemcpyAsync(converted.getColIdx().get(), cooT.getColIdx().get(), cooT.getColIdx().elements() * sizeof(int), hipMemcpyDeviceToDevice, cuda::getActiveStream())); // cusparse function to compress row from coordinate CUSPARSE_CHECK(hipsparseXcoo2csr( sparseHandle(), cooT.getRowIdx().get(), nNZ, cooT.dims()[0], converted.getRowIdx().get(), HIPSPARSE_INDEX_BASE_ZERO)); // No need to call CSRSORT } else { // Should never come here AF_ERROR("CUDA Backend invalid conversion combination", AF_ERR_NOT_SUPPORTED); } return converted; } #define INSTANTIATE_TO_STORAGE(T, S) \ template SparseArray<T> sparseConvertStorageToStorage<T, S, AF_STORAGE_CSR>(const SparseArray<T> &in); \ template SparseArray<T> sparseConvertStorageToStorage<T, S, AF_STORAGE_CSC>(const SparseArray<T> &in); \ template SparseArray<T> sparseConvertStorageToStorage<T, S, AF_STORAGE_COO>(const SparseArray<T> &in); \ #define INSTANTIATE_COO_SPECIAL(T) \ template<> SparseArray<T> sparseConvertDenseToStorage<T, AF_STORAGE_COO>(const Array<T> &in) \ { return sparseConvertDenseToCOO<T>(in); } \ template<> Array<T> sparseConvertStorageToDense<T, AF_STORAGE_COO>(const SparseArray<T> &in) \ { return sparseConvertCOOToDense<T>(in); } \ #define INSTANTIATE_SPARSE(T) \ template SparseArray<T> sparseConvertDenseToStorage<T, AF_STORAGE_CSR>(const Array<T> &in); \ template SparseArray<T> sparseConvertDenseToStorage<T, AF_STORAGE_CSC>(const Array<T> &in); \ \ template Array<T> sparseConvertStorageToDense<T, AF_STORAGE_CSR>(const SparseArray<T> &in); \ template Array<T> sparseConvertStorageToDense<T, AF_STORAGE_CSC>(const SparseArray<T> &in); \ \ INSTANTIATE_COO_SPECIAL(T) \ \ INSTANTIATE_TO_STORAGE(T, AF_STORAGE_CSR) \ INSTANTIATE_TO_STORAGE(T, AF_STORAGE_CSC) \ INSTANTIATE_TO_STORAGE(T, AF_STORAGE_COO) \ INSTANTIATE_SPARSE(float) INSTANTIATE_SPARSE(double) INSTANTIATE_SPARSE(cfloat) INSTANTIATE_SPARSE(cdouble) #undef INSTANTIATE_TO_STORAGE #undef INSTANTIATE_COO_SPECIAL #undef INSTANTIATE_SPARSE }
dadbed694b58ebaa1800a317a44a97d3b4a61f55.cu
/******************************************************* * Copyright (c) 2014, ArrayFire * All rights reserved. * * This file is distributed under 3-clause BSD license. * The complete license agreement can be obtained at: * http://arrayfire.com/licenses/BSD-3-Clause ********************************************************/ #include <sparse.hpp> #include <kernel/sparse.hpp> #include <stdexcept> #include <string> #include <arith.hpp> #include <cast.hpp> #include <complex.hpp> #include <copy.hpp> #include <common/err_common.hpp> #include <lookup.hpp> #include <math.hpp> #include <platform.hpp> #include <where.hpp> namespace cuda { using namespace common; using namespace std; //cusparseStatus_t cusparseZcsr2csc(cusparseHandle_t handle, // int m, int n, int nnz, // const cuDoubleComplex *csrSortedVal, // const int *csrSortedRowPtr, const int *csrSortedColInd, // cuDoubleComplex *cscSortedVal, // int *cscSortedRowInd, int *cscSortedColPtr, // cusparseAction_t copyValues, // cusparseIndexBase_t idxBase); template<typename T> struct csr2csc_func_def_t { typedef cusparseStatus_t (*csr2csc_func_def)( cusparseHandle_t, int, int, int, const T *, const int *, const int *, T *, int *, int *, cusparseAction_t, cusparseIndexBase_t); }; //cusparseStatus_t cusparseZdense2csr(cusparseHandle_t handle, // int m, int n, // const cusparseMatDescr_t descrA, // const cuDoubleComplex *A, int lda, // const int *nnzPerRow, // cuDoubleComplex *csrValA, // int *csrRowPtrA, int *csrColIndA) template<typename T> struct dense2csr_func_def_t { typedef cusparseStatus_t (*dense2csr_func_def)( cusparseHandle_t, int, int, const cusparseMatDescr_t, const T *, int, const int *, T *, int *, int *); }; //cusparseStatus_t cusparseZdense2csc(cusparseHandle_t handle, // int m, int n, // const cusparseMatDescr_t descrA, // const cuDoubleComplex *A, int lda, // const int *nnzPerCol, // cuDoubleComplex *cscValA, // int *cscRowIndA, int *cscColPtrA) template<typename T> struct dense2csc_func_def_t { typedef cusparseStatus_t (*dense2csc_func_def)( cusparseHandle_t, int, int, const cusparseMatDescr_t, const T *, int, const int *, T *, int *, int *); }; //cusparseStatus_t cusparseZcsr2dense(cusparseHandle_t handle, // int m, int n, // const cusparseMatDescr_t descrA, // const cuDoubleComplex *csrValA, // const int *csrRowPtrA, // const int *csrColIndA, // cuDoubleComplex *A, int lda) template<typename T> struct csr2dense_func_def_t { typedef cusparseStatus_t (*csr2dense_func_def)( cusparseHandle_t, int, int, const cusparseMatDescr_t, const T *, const int *, const int *, T *, int); }; //cusparseStatus_t cusparseZcsc2dense(cusparseHandle_t handle, // int m, int n, // const cusparseMatDescr_t descrA, // const cuDoubleComplex *cscValA, // const int *cscRowIndA, // const int *cscColPtrA, // cuDoubleComplex *A, int lda) template<typename T> struct csc2dense_func_def_t { typedef cusparseStatus_t (*csc2dense_func_def)( cusparseHandle_t, int, int, const cusparseMatDescr_t, const T *, const int *, const int *, T *, int); }; //cusparseStatus_t cusparseZnnz(cusparseHandle_t handle, // cusparseDirection_t dirA, // int m, int n, // const cusparseMatDescr_t descrA, // const cuDoubleComplex *A, int lda, // int *nnzPerRowColumn, // int *nnzTotalDevHostPtr) template<typename T> struct nnz_func_def_t { typedef cusparseStatus_t (*nnz_func_def)( cusparseHandle_t, cusparseDirection_t, int, int, const cusparseMatDescr_t, const T *, int, int *, int *); }; //cusparseStatus_t cusparseZgthr(cusparseHandle_t handle, // int nnz, // const cuDoubleComplex *y, // cuDoubleComplex *xVal, const int *xInd, // cusparseIndexBase_t idxBase) template<typename T> struct gthr_func_def_t { typedef cusparseStatus_t (*gthr_func_def)(cusparseHandle_t, int, const T *, T*, const int *, cusparseIndexBase_t); }; #define SPARSE_FUNC_DEF( FUNC ) \ template<typename T> \ typename FUNC##_func_def_t<T>::FUNC##_func_def \ FUNC##_func(); #define SPARSE_FUNC( FUNC, TYPE, PREFIX ) \ template<> typename FUNC##_func_def_t<TYPE>::FUNC##_func_def \ FUNC##_func<TYPE>() \ { return (FUNC##_func_def_t<TYPE>::FUNC##_func_def)&cusparse##PREFIX##FUNC; } SPARSE_FUNC_DEF(csr2csc) SPARSE_FUNC(csr2csc, float, S) SPARSE_FUNC(csr2csc, double, D) SPARSE_FUNC(csr2csc, cfloat, C) SPARSE_FUNC(csr2csc, cdouble,Z) SPARSE_FUNC_DEF(dense2csr) SPARSE_FUNC(dense2csr, float, S) SPARSE_FUNC(dense2csr, double, D) SPARSE_FUNC(dense2csr, cfloat, C) SPARSE_FUNC(dense2csr, cdouble,Z) SPARSE_FUNC_DEF(dense2csc) SPARSE_FUNC(dense2csc, float, S) SPARSE_FUNC(dense2csc, double, D) SPARSE_FUNC(dense2csc, cfloat, C) SPARSE_FUNC(dense2csc, cdouble,Z) SPARSE_FUNC_DEF(csr2dense) SPARSE_FUNC(csr2dense, float, S) SPARSE_FUNC(csr2dense, double, D) SPARSE_FUNC(csr2dense, cfloat, C) SPARSE_FUNC(csr2dense, cdouble,Z) SPARSE_FUNC_DEF(csc2dense) SPARSE_FUNC(csc2dense, float, S) SPARSE_FUNC(csc2dense, double, D) SPARSE_FUNC(csc2dense, cfloat, C) SPARSE_FUNC(csc2dense, cdouble,Z) SPARSE_FUNC_DEF(nnz) SPARSE_FUNC(nnz, float, S) SPARSE_FUNC(nnz, double, D) SPARSE_FUNC(nnz, cfloat, C) SPARSE_FUNC(nnz, cdouble,Z) SPARSE_FUNC_DEF(gthr) SPARSE_FUNC(gthr, float, S) SPARSE_FUNC(gthr, double, D) SPARSE_FUNC(gthr, cfloat, C) SPARSE_FUNC(gthr, cdouble,Z) #undef SPARSE_FUNC #undef SPARSE_FUNC_DEF // Partial template specialization of sparseConvertDenseToStorage for COO // However, template specialization is not allowed template<typename T> SparseArray<T> sparseConvertDenseToCOO(const Array<T> &in) { Array<uint> nonZeroIdx_ = where<T>(in); Array<int> nonZeroIdx = cast<int, uint>(nonZeroIdx_); dim_t nNZ = nonZeroIdx.elements(); Array<int> constDim = createValueArray<int>(dim4(nNZ), in.dims()[0]); Array<int> rowIdx = arithOp<int, af_mod_t>(nonZeroIdx, constDim, nonZeroIdx.dims()); Array<int> colIdx = arithOp<int, af_div_t>(nonZeroIdx, constDim, nonZeroIdx.dims()); Array<T> values = copyArray<T>(in); values.modDims(dim4(values.elements())); values = lookup<T, int>(values, nonZeroIdx, 0); return createArrayDataSparseArray<T>(in.dims(), values, rowIdx, colIdx, AF_STORAGE_COO); } template<typename T, af_storage stype> SparseArray<T> sparseConvertDenseToStorage(const Array<T> &in) { const int M = in.dims()[0]; const int N = in.dims()[1]; // Create Sparse Matrix Descriptor cusparseMatDescr_t descr = 0; CUSPARSE_CHECK(cusparseCreateMatDescr(&descr)); cusparseSetMatType(descr, CUSPARSE_MATRIX_TYPE_GENERAL); cusparseSetMatIndexBase(descr, CUSPARSE_INDEX_BASE_ZERO); int d = -1; cusparseDirection_t dir = CUSPARSE_DIRECTION_ROW; if(stype == AF_STORAGE_CSR) { d = M; dir = CUSPARSE_DIRECTION_ROW; } else { d = N; dir = CUSPARSE_DIRECTION_COLUMN; } Array<int> nnzPerDir = createEmptyArray<int>(dim4(d)); int nNZ = -1; CUSPARSE_CHECK(nnz_func<T>()( sparseHandle(), dir, M, N, descr, in.get(), in.strides()[1], nnzPerDir.get(), &nNZ)); Array<int> rowIdx = createEmptyArray<int>(dim4()); Array<int> colIdx = createEmptyArray<int>(dim4()); if(stype == AF_STORAGE_CSR) { rowIdx = createEmptyArray<int>(dim4(M+1)); colIdx = createEmptyArray<int>(dim4(nNZ)); } else { rowIdx = createEmptyArray<int>(dim4(nNZ)); colIdx = createEmptyArray<int>(dim4(N+1)); } Array<T> values = createEmptyArray<T>(dim4(nNZ)); if(stype == AF_STORAGE_CSR) CUSPARSE_CHECK(dense2csr_func<T>()( sparseHandle(), M, N, descr, in.get(), in.strides()[1], nnzPerDir.get(), values.get(), rowIdx.get(), colIdx.get())); else CUSPARSE_CHECK(dense2csc_func<T>()( sparseHandle(), M, N, descr, in.get(), in.strides()[1], nnzPerDir.get(), values.get(), rowIdx.get(), colIdx.get())); // Destory Sparse Matrix Descriptor CUSPARSE_CHECK(cusparseDestroyMatDescr(descr)); return createArrayDataSparseArray<T>(in.dims(), values, rowIdx, colIdx, stype); } // Partial template specialization of sparseConvertStorageToDense for COO // However, template specialization is not allowed template<typename T> Array<T> sparseConvertCOOToDense(const SparseArray<T> &in) { Array<T> dense = createValueArray<T>(in.dims(), scalar<T>(0)); const Array<T> values = in.getValues(); const Array<int> rowIdx = in.getRowIdx(); const Array<int> colIdx = in.getColIdx(); kernel::coo2dense<T>(dense, values, rowIdx, colIdx); return dense; } template<typename T, af_storage stype> Array<T> sparseConvertStorageToDense(const SparseArray<T> &in) { // Create Sparse Matrix Descriptor cusparseMatDescr_t descr = 0; CUSPARSE_CHECK(cusparseCreateMatDescr(&descr)); cusparseSetMatType(descr, CUSPARSE_MATRIX_TYPE_GENERAL); cusparseSetMatIndexBase(descr, CUSPARSE_INDEX_BASE_ZERO); int M = in.dims()[0]; int N = in.dims()[1]; Array<T> dense = createValueArray<T>(in.dims(), scalar<T>(0)); int d_strides1 = dense.strides()[1]; if(stype == AF_STORAGE_CSR) CUSPARSE_CHECK(csr2dense_func<T>()( sparseHandle(), M, N, descr, in.getValues().get(), in.getRowIdx().get(), in.getColIdx().get(), dense.get(), d_strides1)); else CUSPARSE_CHECK(csc2dense_func<T>()( sparseHandle(), M, N, descr, in.getValues().get(), in.getRowIdx().get(), in.getColIdx().get(), dense.get(), d_strides1)); // Destory Sparse Matrix Descriptor CUSPARSE_CHECK(cusparseDestroyMatDescr(descr)); return dense; } template<typename T, af_storage dest, af_storage src> SparseArray<T> sparseConvertStorageToStorage(const SparseArray<T> &in) { using std::shared_ptr; in.eval(); int nNZ = in.getNNZ(); SparseArray<T> converted = createEmptySparseArray<T>(in.dims(), nNZ, dest); if(src == AF_STORAGE_CSR && dest == AF_STORAGE_COO) { // Copy colIdx as is CUDA_CHECK(cudaMemcpyAsync(converted.getColIdx().get(), in.getColIdx().get(), in.getColIdx().elements() * sizeof(int), cudaMemcpyDeviceToDevice, cuda::getActiveStream())); // cusparse function to expand compressed row into coordinate CUSPARSE_CHECK(cusparseXcsr2coo( sparseHandle(), in.getRowIdx().get(), nNZ, in.dims()[0], converted.getRowIdx().get(), CUSPARSE_INDEX_BASE_ZERO)); // Call sort size_t pBufferSizeInBytes = 0; CUSPARSE_CHECK(cusparseXcoosort_bufferSizeExt( sparseHandle(), in.dims()[0], in.dims()[1], nNZ, converted.getRowIdx().get(), converted.getColIdx().get(), &pBufferSizeInBytes)); shared_ptr<char> pBuffer(memAlloc<char>(pBufferSizeInBytes), memFree<char>); shared_ptr<int> P(memAlloc<int>(nNZ), memFree<int>); CUSPARSE_CHECK(cusparseCreateIdentityPermutation(sparseHandle(), nNZ, P.get())); CUSPARSE_CHECK(cusparseXcoosortByColumn( sparseHandle(), in.dims()[0], in.dims()[1], nNZ, converted.getRowIdx().get(), converted.getColIdx().get(), P.get(), (void*)pBuffer.get())); CUSPARSE_CHECK(gthr_func<T>()( sparseHandle(), nNZ, in.getValues().get(), converted.getValues().get(), P.get(), CUSPARSE_INDEX_BASE_ZERO)); } else if (src == AF_STORAGE_COO && dest == AF_STORAGE_CSR) { // The cusparse csr sort function is not behaving correctly. // So the work around is to convert the COO into row major and then // convert it to CSR // Deep copy input into temporary COO Row Major SparseArray<T> cooT = createArrayDataSparseArray<T>(in.dims(), in.getValues(), in.getRowIdx(), in.getColIdx(), in.getStorage(), true); // Call sort to convert column major to row major { size_t pBufferSizeInBytes = 0; CUSPARSE_CHECK(cusparseXcoosort_bufferSizeExt( sparseHandle(), cooT.dims()[0], cooT.dims()[1], nNZ, cooT.getRowIdx().get(), cooT.getColIdx().get(), &pBufferSizeInBytes)); shared_ptr<char> pBuffer(memAlloc<char>(pBufferSizeInBytes), memFree<char>); shared_ptr<int> P(memAlloc<int>(nNZ), memFree<int>); CUSPARSE_CHECK(cusparseCreateIdentityPermutation(sparseHandle(), nNZ, P.get())); CUSPARSE_CHECK(cusparseXcoosortByRow( sparseHandle(), cooT.dims()[0], cooT.dims()[1], nNZ, cooT.getRowIdx().get(), cooT.getColIdx().get(), P.get(), (void*)pBuffer.get())); CUSPARSE_CHECK(gthr_func<T>()( sparseHandle(), nNZ, in.getValues().get(), cooT.getValues().get(), P.get(), CUSPARSE_INDEX_BASE_ZERO)); } // Copy values and colIdx as is CUDA_CHECK(cudaMemcpyAsync(converted.getValues().get(), cooT.getValues().get(), cooT.getValues().elements() * sizeof(T), cudaMemcpyDeviceToDevice, cuda::getActiveStream())); CUDA_CHECK(cudaMemcpyAsync(converted.getColIdx().get(), cooT.getColIdx().get(), cooT.getColIdx().elements() * sizeof(int), cudaMemcpyDeviceToDevice, cuda::getActiveStream())); // cusparse function to compress row from coordinate CUSPARSE_CHECK(cusparseXcoo2csr( sparseHandle(), cooT.getRowIdx().get(), nNZ, cooT.dims()[0], converted.getRowIdx().get(), CUSPARSE_INDEX_BASE_ZERO)); // No need to call CSRSORT } else { // Should never come here AF_ERROR("CUDA Backend invalid conversion combination", AF_ERR_NOT_SUPPORTED); } return converted; } #define INSTANTIATE_TO_STORAGE(T, S) \ template SparseArray<T> sparseConvertStorageToStorage<T, S, AF_STORAGE_CSR>(const SparseArray<T> &in); \ template SparseArray<T> sparseConvertStorageToStorage<T, S, AF_STORAGE_CSC>(const SparseArray<T> &in); \ template SparseArray<T> sparseConvertStorageToStorage<T, S, AF_STORAGE_COO>(const SparseArray<T> &in); \ #define INSTANTIATE_COO_SPECIAL(T) \ template<> SparseArray<T> sparseConvertDenseToStorage<T, AF_STORAGE_COO>(const Array<T> &in) \ { return sparseConvertDenseToCOO<T>(in); } \ template<> Array<T> sparseConvertStorageToDense<T, AF_STORAGE_COO>(const SparseArray<T> &in) \ { return sparseConvertCOOToDense<T>(in); } \ #define INSTANTIATE_SPARSE(T) \ template SparseArray<T> sparseConvertDenseToStorage<T, AF_STORAGE_CSR>(const Array<T> &in); \ template SparseArray<T> sparseConvertDenseToStorage<T, AF_STORAGE_CSC>(const Array<T> &in); \ \ template Array<T> sparseConvertStorageToDense<T, AF_STORAGE_CSR>(const SparseArray<T> &in); \ template Array<T> sparseConvertStorageToDense<T, AF_STORAGE_CSC>(const SparseArray<T> &in); \ \ INSTANTIATE_COO_SPECIAL(T) \ \ INSTANTIATE_TO_STORAGE(T, AF_STORAGE_CSR) \ INSTANTIATE_TO_STORAGE(T, AF_STORAGE_CSC) \ INSTANTIATE_TO_STORAGE(T, AF_STORAGE_COO) \ INSTANTIATE_SPARSE(float) INSTANTIATE_SPARSE(double) INSTANTIATE_SPARSE(cfloat) INSTANTIATE_SPARSE(cdouble) #undef INSTANTIATE_TO_STORAGE #undef INSTANTIATE_COO_SPECIAL #undef INSTANTIATE_SPARSE }
ef7407947a45838a8608e81ece2b5c3e8093eaaa.hip
// !!! This is a file automatically generated by hipify!!! #include <hip/hip_runtime_api.h> #include "device_launch_parameters.h" #include <stdio.h> #include <stdlib.h> // Add your kernel here __global__ void add(int *a, int *b, int *c) { int index = threadIdx.x + (blockIdx.x * blockDim.x); c[index] = a[index] + b[index]; } // main #define N (2048*2048) #define THREADS_PER_BLOCK 512 int main(void) { int *a, *b, *c; int *d_a, *d_b, *d_c; int size = N * sizeof(int); int i; // Allocate memory in Host a = (int *) malloc (size); b = (int *) malloc (size); c = (int *) malloc (size); // Allocate memory in Device hipMalloc ((void **) &d_a, size); hipMalloc ((void **) &d_b, size); hipMalloc ((void **) &d_c, size); // Initialize values (0 - 9) for(i = 0;i < N; i++) { a[i] = rand() % 10; b[i] = rand() % 10; } // Copy data from Host to Device hipMemcpy (d_a, a, size, hipMemcpyHostToDevice); hipMemcpy (d_b, b, size, hipMemcpyHostToDevice); // Execute hipLaunchKernelGGL(( add), dim3(N/THREADS_PER_BLOCK), dim3(THREADS_PER_BLOCK), 0, 0, d_a, d_b, d_c); // Copy result back to Host // Take note that it will be smart enough to wait // until the task at device completed hipMemcpy (c, d_c, size, hipMemcpyDeviceToHost); // Display the outcome for(i=N-100;i<N;i++) { printf("[%d]\t%2d + %2d = %2d\n", i, a[i], b[i], c[i]); } // Clean up at Host free (a); free (b); free (c); // Clean up at Device hipFree (d_a); hipFree (d_b); hipFree (d_c); return 0; }
ef7407947a45838a8608e81ece2b5c3e8093eaaa.cu
#include <cuda_runtime_api.h> #include "device_launch_parameters.h" #include <stdio.h> #include <stdlib.h> // Add your kernel here __global__ void add(int *a, int *b, int *c) { int index = threadIdx.x + (blockIdx.x * blockDim.x); c[index] = a[index] + b[index]; } // main #define N (2048*2048) #define THREADS_PER_BLOCK 512 int main(void) { int *a, *b, *c; int *d_a, *d_b, *d_c; int size = N * sizeof(int); int i; // Allocate memory in Host a = (int *) malloc (size); b = (int *) malloc (size); c = (int *) malloc (size); // Allocate memory in Device cudaMalloc ((void **) &d_a, size); cudaMalloc ((void **) &d_b, size); cudaMalloc ((void **) &d_c, size); // Initialize values (0 - 9) for(i = 0;i < N; i++) { a[i] = rand() % 10; b[i] = rand() % 10; } // Copy data from Host to Device cudaMemcpy (d_a, a, size, cudaMemcpyHostToDevice); cudaMemcpy (d_b, b, size, cudaMemcpyHostToDevice); // Execute add<<<N/THREADS_PER_BLOCK, THREADS_PER_BLOCK>>>(d_a, d_b, d_c); // Copy result back to Host // Take note that it will be smart enough to wait // until the task at device completed cudaMemcpy (c, d_c, size, cudaMemcpyDeviceToHost); // Display the outcome for(i=N-100;i<N;i++) { printf("[%d]\t%2d + %2d = %2d\n", i, a[i], b[i], c[i]); } // Clean up at Host free (a); free (b); free (c); // Clean up at Device cudaFree (d_a); cudaFree (d_b); cudaFree (d_c); return 0; }
2d26a395d33201edb4c6cfe673c617308a6906b0.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "lusol.h" __global__ void LEVEL_CSC_SYNC_0(int n, int *dp, int *jlev, int *tail); __forceinline__ __device__ static int atomicDec0(int *address) { volatile int *vaddr = address; int old = *vaddr, assumed; do { assumed = old; int newv = assumed > 0 ? assumed-1 : 0; old = atomicCAS(address, assumed, newv); } while (old != assumed); return old; } __global__ void TOPO_CSC_L(int n, int *ib, int *jb, int *db, int *dp, int *jlev, int *last, int *first, int *count) { // thread lane in each warp const int lane = threadIdx.x & (WARP - 1); // local warp id const int wlane = threadIdx.x / WARP; int i, old_count, old_first; volatile __shared__ int s_first[BLOCKDIM / WARP]; volatile __shared__ int s_count[BLOCKDIM / WARP]; volatile int *vjlev = jlev; volatile int *vfirst = first; do { if (lane == 0) { old_count = atomicDec0(count); if (old_count > 0) { old_first = atomicAdd(first, 1); } else { old_first = *vfirst; } s_first[wlane] = old_first; s_count[wlane] = old_count; } old_first = s_first[wlane]; old_count = s_count[wlane]; if (old_count > 0) { while ((i = vjlev[old_first]) == 0); --i; int q1 = db[i] + 1; int q2 = ib[i+1]; for (int j = q1 + lane; j < q2; j += WARP) { int k = jb[j-1]-1; int old = atomicSub(&dp[k], 1); if (old == 1) { int p = atomicAdd(last, 1); vjlev[p] = k + 1; atomicAdd(count, 1); } } } } while (old_first < n); } __global__ void TOPO_CSC_U(int n, int *ib, int *jb, int *db, int *dp, int *jlev, int *last, int *first, int *count) { // thread lane in each warp const int lane = threadIdx.x & (WARP - 1); // local warp id const int wlane = threadIdx.x / WARP; int i, old_count, old_first; volatile __shared__ int s_first[BLOCKDIM / WARP]; volatile __shared__ int s_count[BLOCKDIM / WARP]; volatile int *vjlev = jlev; volatile int *vfirst = first; do { if (lane == 0) { old_count = atomicDec0(count); if (old_count > 0) { old_first = atomicAdd(first, 1); } else { old_first = *vfirst; } s_first[wlane] = old_first; s_count[wlane] = old_count; } old_first = s_first[wlane]; old_count = s_count[wlane]; if (old_count > 0) { while ((i = vjlev[old_first]) == 0); --i; int q1 = ib[i]; int q2 = db[i]; for (int j = q1 + lane; j < q2; j += WARP) { int k = jb[j-1]-1; int old = atomicSub(&dp[k], 1); if (old == 1) { int p = atomicAdd(last, 1); vjlev[p] = k + 1; atomicAdd(count, 1); } } } } while (old_first < n); } void makeTopoCSC(int n, int *d_ib, int *d_jb, int *d_db, int *d_dp, int *d_jlevL, int *d_jlevU) { int gDim; int *d_dpL = d_dp; int *d_dpU = d_dp + n; int *d_ptr, *d_first, *d_last, *d_count; hipMalloc((void **)&d_ptr, 3*sizeof(int)); d_first = d_ptr; d_last = d_ptr + 1; d_count = d_ptr + 2; int nthreads = 500 * WARP; // L hipMemset(d_ptr, 0, 3*sizeof(int)); hipMemset(d_jlevL, 0, n*sizeof(int)); gDim = (n + BLOCKDIM - 1) / BLOCKDIM; hipLaunchKernelGGL(( LEVEL_CSC_SYNC_0), dim3(gDim), dim3(BLOCKDIM), 0, 0, n, d_dpL, d_jlevL, d_count); hipMemcpy(d_last, d_count, sizeof(int), hipMemcpyDeviceToDevice); gDim = (nthreads + BLOCKDIM - 1) / BLOCKDIM; hipLaunchKernelGGL(( TOPO_CSC_L), dim3(gDim), dim3(BLOCKDIM), 0, 0, n, d_ib, d_jb, d_db, d_dpL, d_jlevL, d_last, d_first, d_count); // U hipMemset(d_ptr, 0, 3*sizeof(int)); hipMemset(d_jlevU, 0, n*sizeof(int)); gDim = (n + BLOCKDIM - 1) / BLOCKDIM; hipLaunchKernelGGL(( LEVEL_CSC_SYNC_0), dim3(gDim), dim3(BLOCKDIM), 0, 0, n, d_dpU, d_jlevU, d_count); hipMemcpy(d_last, d_count, sizeof(int), hipMemcpyDeviceToDevice); gDim = (nthreads + BLOCKDIM - 1) / BLOCKDIM; hipLaunchKernelGGL(( TOPO_CSC_U), dim3(gDim), dim3(BLOCKDIM), 0, 0, n, d_ib, d_jb, d_db, d_dpU, d_jlevU, d_last, d_first, d_count); hipFree(d_ptr); } void checktopo(int n, int *ib, int *jb, int *db, int *d_jlevL, int *d_jlevU, int *d_dp) { int *jlevL = (int *) malloc(n*sizeof(int)); int *jlevU = (int *) malloc(n*sizeof(int)); int *dp = (int *) malloc(2*n*sizeof(int)); hipMemcpy(jlevL, d_jlevL, n*sizeof(int), hipMemcpyDeviceToHost); hipMemcpy(jlevU, d_jlevU, n*sizeof(int), hipMemcpyDeviceToHost); hipMemcpy(dp, d_dp, 2*n*sizeof(int), hipMemcpyDeviceToHost); int *dpL = dp; int *dpU = dp + n; //for (int i = 0; i < n; i++) { printf("%d ", jlevL[i]); } printf("\n"); //for (int i = 0; i < n; i++) { printf("%d ", jlevU[i]); } printf("\n"); for (int i = 0; i < n; i++) { int jl = jlevL[i]; int ju = jlevU[i]; if (jl < 1 || jl > n) { printf("topo error: jl = %d\n", jl); exit(0); } if (ju < 1 || ju > n) { printf("topo error: ju = %d\n", ju); exit(0); } if (dpL[jl-1] != 0) { printf("topo error: dpL[%d] = %d\n", jl-1, dpL[jl-1]); exit(0); } if (dpU[ju-1] != 0) { printf("topo error: dpU[%d] = %d\n", ju-1, dpU[ju-1]); exit(0); } for (int j = db[jl-1]+1; j < ib[jl]; j++) { int k = jb[j-1]-1; dpL[k]--; } for (int j = ib[ju-1]; j < db[ju-1]; j++) { int k = jb[j-1]-1; dpU[k]--; } } free(jlevL); free(jlevU); free(dp); }
2d26a395d33201edb4c6cfe673c617308a6906b0.cu
#include "lusol.h" __global__ void LEVEL_CSC_SYNC_0(int n, int *dp, int *jlev, int *tail); __forceinline__ __device__ static int atomicDec0(int *address) { volatile int *vaddr = address; int old = *vaddr, assumed; do { assumed = old; int newv = assumed > 0 ? assumed-1 : 0; old = atomicCAS(address, assumed, newv); } while (old != assumed); return old; } __global__ void TOPO_CSC_L(int n, int *ib, int *jb, int *db, int *dp, int *jlev, int *last, int *first, int *count) { // thread lane in each warp const int lane = threadIdx.x & (WARP - 1); // local warp id const int wlane = threadIdx.x / WARP; int i, old_count, old_first; volatile __shared__ int s_first[BLOCKDIM / WARP]; volatile __shared__ int s_count[BLOCKDIM / WARP]; volatile int *vjlev = jlev; volatile int *vfirst = first; do { if (lane == 0) { old_count = atomicDec0(count); if (old_count > 0) { old_first = atomicAdd(first, 1); } else { old_first = *vfirst; } s_first[wlane] = old_first; s_count[wlane] = old_count; } old_first = s_first[wlane]; old_count = s_count[wlane]; if (old_count > 0) { while ((i = vjlev[old_first]) == 0); --i; int q1 = db[i] + 1; int q2 = ib[i+1]; for (int j = q1 + lane; j < q2; j += WARP) { int k = jb[j-1]-1; int old = atomicSub(&dp[k], 1); if (old == 1) { int p = atomicAdd(last, 1); vjlev[p] = k + 1; atomicAdd(count, 1); } } } } while (old_first < n); } __global__ void TOPO_CSC_U(int n, int *ib, int *jb, int *db, int *dp, int *jlev, int *last, int *first, int *count) { // thread lane in each warp const int lane = threadIdx.x & (WARP - 1); // local warp id const int wlane = threadIdx.x / WARP; int i, old_count, old_first; volatile __shared__ int s_first[BLOCKDIM / WARP]; volatile __shared__ int s_count[BLOCKDIM / WARP]; volatile int *vjlev = jlev; volatile int *vfirst = first; do { if (lane == 0) { old_count = atomicDec0(count); if (old_count > 0) { old_first = atomicAdd(first, 1); } else { old_first = *vfirst; } s_first[wlane] = old_first; s_count[wlane] = old_count; } old_first = s_first[wlane]; old_count = s_count[wlane]; if (old_count > 0) { while ((i = vjlev[old_first]) == 0); --i; int q1 = ib[i]; int q2 = db[i]; for (int j = q1 + lane; j < q2; j += WARP) { int k = jb[j-1]-1; int old = atomicSub(&dp[k], 1); if (old == 1) { int p = atomicAdd(last, 1); vjlev[p] = k + 1; atomicAdd(count, 1); } } } } while (old_first < n); } void makeTopoCSC(int n, int *d_ib, int *d_jb, int *d_db, int *d_dp, int *d_jlevL, int *d_jlevU) { int gDim; int *d_dpL = d_dp; int *d_dpU = d_dp + n; int *d_ptr, *d_first, *d_last, *d_count; cudaMalloc((void **)&d_ptr, 3*sizeof(int)); d_first = d_ptr; d_last = d_ptr + 1; d_count = d_ptr + 2; int nthreads = 500 * WARP; // L cudaMemset(d_ptr, 0, 3*sizeof(int)); cudaMemset(d_jlevL, 0, n*sizeof(int)); gDim = (n + BLOCKDIM - 1) / BLOCKDIM; LEVEL_CSC_SYNC_0<<<gDim, BLOCKDIM>>>(n, d_dpL, d_jlevL, d_count); cudaMemcpy(d_last, d_count, sizeof(int), cudaMemcpyDeviceToDevice); gDim = (nthreads + BLOCKDIM - 1) / BLOCKDIM; TOPO_CSC_L<<<gDim, BLOCKDIM>>>(n, d_ib, d_jb, d_db, d_dpL, d_jlevL, d_last, d_first, d_count); // U cudaMemset(d_ptr, 0, 3*sizeof(int)); cudaMemset(d_jlevU, 0, n*sizeof(int)); gDim = (n + BLOCKDIM - 1) / BLOCKDIM; LEVEL_CSC_SYNC_0<<<gDim, BLOCKDIM>>>(n, d_dpU, d_jlevU, d_count); cudaMemcpy(d_last, d_count, sizeof(int), cudaMemcpyDeviceToDevice); gDim = (nthreads + BLOCKDIM - 1) / BLOCKDIM; TOPO_CSC_U<<<gDim, BLOCKDIM>>>(n, d_ib, d_jb, d_db, d_dpU, d_jlevU, d_last, d_first, d_count); cudaFree(d_ptr); } void checktopo(int n, int *ib, int *jb, int *db, int *d_jlevL, int *d_jlevU, int *d_dp) { int *jlevL = (int *) malloc(n*sizeof(int)); int *jlevU = (int *) malloc(n*sizeof(int)); int *dp = (int *) malloc(2*n*sizeof(int)); cudaMemcpy(jlevL, d_jlevL, n*sizeof(int), cudaMemcpyDeviceToHost); cudaMemcpy(jlevU, d_jlevU, n*sizeof(int), cudaMemcpyDeviceToHost); cudaMemcpy(dp, d_dp, 2*n*sizeof(int), cudaMemcpyDeviceToHost); int *dpL = dp; int *dpU = dp + n; //for (int i = 0; i < n; i++) { printf("%d ", jlevL[i]); } printf("\n"); //for (int i = 0; i < n; i++) { printf("%d ", jlevU[i]); } printf("\n"); for (int i = 0; i < n; i++) { int jl = jlevL[i]; int ju = jlevU[i]; if (jl < 1 || jl > n) { printf("topo error: jl = %d\n", jl); exit(0); } if (ju < 1 || ju > n) { printf("topo error: ju = %d\n", ju); exit(0); } if (dpL[jl-1] != 0) { printf("topo error: dpL[%d] = %d\n", jl-1, dpL[jl-1]); exit(0); } if (dpU[ju-1] != 0) { printf("topo error: dpU[%d] = %d\n", ju-1, dpU[ju-1]); exit(0); } for (int j = db[jl-1]+1; j < ib[jl]; j++) { int k = jb[j-1]-1; dpL[k]--; } for (int j = ib[ju-1]; j < db[ju-1]; j++) { int k = jb[j-1]-1; dpU[k]--; } } free(jlevL); free(jlevU); free(dp); }
706d5f06afb646367a75c4bf53877f5c1862c4be.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <vector> #include "caffe/layers/concat_layer.hpp" #include "caffe/util/math_functions.hpp" namespace caffe { template <typename Dtype> __global__ void Concat(const int nthreads, const Dtype* in_data, const bool forward, const int num_concats, const int concat_size, const int top_concat_axis, const int bottom_concat_axis, const int offset_concat_axis, Dtype* out_data) { CUDA_KERNEL_LOOP(index, nthreads) { const int total_concat_size = concat_size * bottom_concat_axis; const int concat_num = index / total_concat_size; const int concat_index = index % total_concat_size; const int top_index = concat_index + (concat_num * top_concat_axis + offset_concat_axis) * concat_size; if (forward) { out_data[top_index] = in_data[index]; } else { out_data[index] = in_data[top_index]; } } } template <typename Dtype> void ConcatLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { if (bottom.size() == 1) { top[0]->ShareData(*bottom[0]); } Dtype* top_data = top[0]->mutable_gpu_data(); int offset_concat_axis = 0; const int top_concat_axis = top[0]->shape(concat_axis_); const bool kForward = true; for (int i = 0; i < bottom.size(); ++i) { const Dtype* bottom_data = bottom[i]->gpu_data(); const int bottom_concat_axis = bottom[i]->shape(concat_axis_); const int bottom_concat_size = bottom_concat_axis * concat_input_size_; const int nthreads = bottom_concat_size * num_concats_; Concat<Dtype> // NOLINT_NEXT_LINE(whitespacehipLaunchKernelGGL((/operators)) , dim3(CAFFE_GET_BLOCKS(nthreads)), dim3(CAFFE_CUDA_NUM_THREADS), 0, 0, nthreads, bottom_data, kForward, num_concats_, concat_input_size_, top_concat_axis, bottom_concat_axis, offset_concat_axis, top_data); offset_concat_axis += bottom_concat_axis; } } template <typename Dtype> void ConcatLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { if (bottom.size() == 1) { bottom[0]->ShareDiff(*top[0]); } const Dtype* top_diff = top[0]->gpu_diff(); int offset_concat_axis = 0; const int top_concat_axis = top[0]->shape(concat_axis_); const bool kForward = false; for (int i = 0; i < bottom.size(); ++i) { const int bottom_concat_axis = bottom[i]->shape(concat_axis_); if (propagate_down[i]) { Dtype* bottom_diff = bottom[i]->mutable_gpu_diff(); const int bottom_concat_size = bottom_concat_axis * concat_input_size_; const int nthreads = bottom_concat_size * num_concats_; Concat<Dtype> // NOLINT_NEXT_LINE(whitespacehipLaunchKernelGGL((/operators)) , dim3(CAFFE_GET_BLOCKS(nthreads)), dim3(CAFFE_CUDA_NUM_THREADS), 0, 0, nthreads, top_diff, kForward, num_concats_, concat_input_size_, top_concat_axis, bottom_concat_axis, offset_concat_axis, bottom_diff); } offset_concat_axis += bottom_concat_axis; } } INSTANTIATE_LAYER_GPU_FUNCS(ConcatLayer); } // namespace caffe
706d5f06afb646367a75c4bf53877f5c1862c4be.cu
#include <vector> #include "caffe/layers/concat_layer.hpp" #include "caffe/util/math_functions.hpp" namespace caffe { template <typename Dtype> __global__ void Concat(const int nthreads, const Dtype* in_data, const bool forward, const int num_concats, const int concat_size, const int top_concat_axis, const int bottom_concat_axis, const int offset_concat_axis, Dtype* out_data) { CUDA_KERNEL_LOOP(index, nthreads) { const int total_concat_size = concat_size * bottom_concat_axis; const int concat_num = index / total_concat_size; const int concat_index = index % total_concat_size; const int top_index = concat_index + (concat_num * top_concat_axis + offset_concat_axis) * concat_size; if (forward) { out_data[top_index] = in_data[index]; } else { out_data[index] = in_data[top_index]; } } } template <typename Dtype> void ConcatLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { if (bottom.size() == 1) { top[0]->ShareData(*bottom[0]); } Dtype* top_data = top[0]->mutable_gpu_data(); int offset_concat_axis = 0; const int top_concat_axis = top[0]->shape(concat_axis_); const bool kForward = true; for (int i = 0; i < bottom.size(); ++i) { const Dtype* bottom_data = bottom[i]->gpu_data(); const int bottom_concat_axis = bottom[i]->shape(concat_axis_); const int bottom_concat_size = bottom_concat_axis * concat_input_size_; const int nthreads = bottom_concat_size * num_concats_; Concat<Dtype> // NOLINT_NEXT_LINE(whitespace/operators) <<<CAFFE_GET_BLOCKS(nthreads), CAFFE_CUDA_NUM_THREADS>>>( nthreads, bottom_data, kForward, num_concats_, concat_input_size_, top_concat_axis, bottom_concat_axis, offset_concat_axis, top_data); offset_concat_axis += bottom_concat_axis; } } template <typename Dtype> void ConcatLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { if (bottom.size() == 1) { bottom[0]->ShareDiff(*top[0]); } const Dtype* top_diff = top[0]->gpu_diff(); int offset_concat_axis = 0; const int top_concat_axis = top[0]->shape(concat_axis_); const bool kForward = false; for (int i = 0; i < bottom.size(); ++i) { const int bottom_concat_axis = bottom[i]->shape(concat_axis_); if (propagate_down[i]) { Dtype* bottom_diff = bottom[i]->mutable_gpu_diff(); const int bottom_concat_size = bottom_concat_axis * concat_input_size_; const int nthreads = bottom_concat_size * num_concats_; Concat<Dtype> // NOLINT_NEXT_LINE(whitespace/operators) <<<CAFFE_GET_BLOCKS(nthreads), CAFFE_CUDA_NUM_THREADS>>>( nthreads, top_diff, kForward, num_concats_, concat_input_size_, top_concat_axis, bottom_concat_axis, offset_concat_axis, bottom_diff); } offset_concat_axis += bottom_concat_axis; } } INSTANTIATE_LAYER_GPU_FUNCS(ConcatLayer); } // namespace caffe
0047615bbc3780a438fbb68fd8b56735b20f4c81.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* * initialization of the change flag */ namespace nscale { namespace gpu { __global__ void init_change( bool *change ) { *change = false; } }}
0047615bbc3780a438fbb68fd8b56735b20f4c81.cu
/* * initialization of the change flag */ namespace nscale { namespace gpu { __global__ void init_change( bool *change ) { *change = false; } }}
20276a82972d0831715d04572edb4fbad34db2b1.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <algorithm> #include <iostream> #include <vector> #include <chrono> #include "parameters.h" /* YTZ Notes: This kernel implements the ANI-1 featurization scheme. It can process about 3.6 million samples/minute */ inline __device__ float dist_diff(float dx, float dy, float dz) { return sqrt(dx*dx+dy*dy+dz*dz); } inline __device__ float f_C(float r_ij, float r_c) { if (r_ij <= r_c) { return 0.5 * cosf((M_PI * r_ij) / r_c) + 0.5; } else { return 0; } } // Linearizes the diagonal-inclusive upper right // triangle of the symmetric ranks 0 and 1 of a rank-4 tensor // into a linear index inline __device__ int linearize(int i, int j, int k, int l) { if(j < i) { float tmp = i; i = j; j = tmp; } const auto N = MAX_ATOM_TYPES; const auto K = NUM_A_THETAS; const auto L = NUM_A_RS; int basis = (N*(N-1)/2 - (N-i) * (N-i-1)/2 +j); return basis*K*L + k*L + l; } __global__ void inverse( const int *sort_idxs, int *gather_idxs, size_t n_elems) { int elem_idx = blockDim.x*blockIdx.x + threadIdx.x; if(elem_idx < n_elems) { gather_idxs[sort_idxs[elem_idx]] = elem_idx; } } __global__ void scatter( const int *sorted_global_idxs, const int *sorted_local_idxs, int *scatter_idxs, size_t n_elems) { int elem_idx = blockDim.x*blockIdx.x + threadIdx.x; if(elem_idx < n_elems) { scatter_idxs[sorted_global_idxs[elem_idx]] = sorted_local_idxs[elem_idx]; } } // Remind yutong to document what these pointers are. __global__ void featurize( const float *Xs, const float *Ys, const float *Zs, const int *atomic_nums, const int *mol_offsets, const int *mol_atom_count, const int num_mols, // actually equal to blockDim.x const int *scatter_idxs, // LOCAL WITHIN THE ATOM TYPE float *X_feat_out_H, float *X_feat_out_C, float *X_feat_out_N, float *X_feat_out_O) { int mol_idx = blockIdx.x; int num_atoms = mol_atom_count[blockIdx.x]; int block_size = blockDim.x; int num_warps = (num_atoms + block_size - 1)/block_size; // how many warps we need to process for(int warp_idx = 0; warp_idx < num_warps; warp_idx++) { int local_atom_idx = warp_idx*block_size + threadIdx.x; // local_local_atom_idx if (local_atom_idx >= num_atoms) { return; } // todo: cache into shared mem // load all the x y z coordinates int g_atom_idx_i = mol_offsets[mol_idx]+local_atom_idx; int g_atomic_num_i = atomic_nums[g_atom_idx_i]; float i_x = Xs[g_atom_idx_i]; float i_y = Ys[g_atom_idx_i]; float i_z = Zs[g_atom_idx_i]; // printf("%d %d %d (%f, %f, %f)\n", mol_idx, local_atom_idx, num_atoms, i_x, i_y, i_z); // float *X_feat_i = X_feat_out + scatter_idxs[g_atom_idx_i]; // if(Atom) float *X_feat_out_i; if(g_atomic_num_i == 0) { X_feat_out_i = X_feat_out_H; } else if(g_atomic_num_i == 1) { X_feat_out_i = X_feat_out_C; } else if(g_atomic_num_i == 2) { X_feat_out_i = X_feat_out_N; } else { X_feat_out_i = X_feat_out_O; } float *radial_feature_buffer_i = X_feat_out_i + scatter_idxs[g_atom_idx_i]*TOTAL_FEATURE_SIZE + 0; float *angular_feature_buffer_i = X_feat_out_i + scatter_idxs[g_atom_idx_i]*TOTAL_FEATURE_SIZE + RADIAL_FEATURE_SIZE; for(int j=0; j < num_atoms; j++) { int g_atom_idx_j = mol_offsets[mol_idx]+j; int g_atomic_num_j = atomic_nums[g_atom_idx_j]; float j_x = Xs[g_atom_idx_j]; float j_y = Ys[g_atom_idx_j]; float j_z = Zs[g_atom_idx_j]; float d_ij_x = i_x - j_x; float d_ij_y = i_y - j_y; float d_ij_z = i_z - j_z; // printf("(%f, %f, %f)\n", d_ij_x, d_ij_y, d_ij_z); float r_ij = dist_diff(d_ij_x, d_ij_y, d_ij_z); // float *X_feat_j = X_feat_out + scatter_idxs[g_atom_idx_j]; float *X_feat_out_j; if(g_atomic_num_j == 0) { X_feat_out_j = X_feat_out_H; } else if(g_atomic_num_j == 1) { X_feat_out_j = X_feat_out_C; } else if(g_atomic_num_j == 2) { X_feat_out_j = X_feat_out_N; } else { X_feat_out_j = X_feat_out_O; } float *radial_feature_buffer_j = X_feat_out_j + scatter_idxs[g_atom_idx_j]*TOTAL_FEATURE_SIZE + 0; // float *radial_feature_buffer_j = X_feat_j + g_atom_idx_j*TOTAL_FEATURE_SIZE + 0; // float *angular_feature_buffer_j = X_feat_out + g_atom_idx_j*TOTAL_FEATURE_SIZE + RADIAL_FEATURE_SIZE; // if(g_atom_idx_i == 0) { // printf("gpu j %d %f\n", j, r_ij); // printf("summand, offset, %f, %d\n", summand, scatter_idxs[g_atom_idx_i]*TOTAL_FEATURE_SIZE + atomic_nums[g_atom_idx_j] * NUM_R_Rs + r_idx); // printf("summand, offset, %f, %d\n", summand, scatter_idxs[g_atom_idx_i]*TOTAL_FEATURE_SIZE + atomic_nums[g_atom_idx_j] * NUM_R_Rs + r_idx); // } // radial features if(r_ij < R_Rc && local_atom_idx < j) { for(int r_idx = 0; r_idx < NUM_R_Rs; r_idx++) { float summand = expf(-R_eta * powf(r_ij - R_Rs[r_idx], 2.0)) * f_C(r_ij, R_Rc); // exploit symmetry of the atomic adds auto res1 = atomicAdd(radial_feature_buffer_i + atomic_nums[g_atom_idx_j] * NUM_R_Rs + r_idx, summand); auto res2 = atomicAdd(radial_feature_buffer_j + atomic_nums[g_atom_idx_i] * NUM_R_Rs + r_idx, summand); //if(isnan(res1) || isinf(res1)) { // printf("WTF RADIAL RES1 NAN/INF, offset, %f, %f\n", res1, summand); // : %d, %d, %d, r_ij, r_ik, %f, %f, top %f, bottom %f, i_coords:(%f, %f, %f), j_coords(%f, %f, %f), k_coords(%f, %f, %f)\n", // g_atom_idx_i, g_atom_idx_j, g_atom_idx_k, r_ij, r_ik, d_ij_x*d_ik_x + d_ij_y*d_ik_y + d_ij_z*d_ik_z, r_ij * r_ik, i_x, i_y, i_z, j_x, j_y, j_z, k_x, k_y, k_z); //} //if(isnan(res2) || isinf(res2)) { // printf("WTF RADIAL RES2 NAN/INF, offset, %f, %f\n", res2, summand); // : %d, %d, %d, r_ij, r_ik, %f, %f, top %f, bottom %f, i_coords:(%f, %f, %f), j_coords(%f, %f, %f), k_coords(%f, %f, %f)\n", // g_atom_idx_i, g_atom_idx_j, g_atom_idx_k, r_ij, r_ik, d_ij_x*d_ik_x + d_ij_y*d_ik_y + d_ij_z*d_ik_z, r_ij * r_ik, i_x, i_y, i_z, j_x, j_y, j_z, k_x, k_y, k_z); //} } } float A_f_C_ij = f_C(r_ij, A_Rc); if(r_ij < A_Rc) { for(size_t k=j+1; k < num_atoms; k++) { if(local_atom_idx == j || local_atom_idx == k || j == k) { continue; } // const int an_i = atomic_nums[local_atom_idx]; int g_atom_idx_k = mol_offsets[mol_idx]+k; const int an_j = atomic_nums[g_atom_idx_j]; const int an_k = atomic_nums[g_atom_idx_k]; float k_x = Xs[g_atom_idx_k]; float k_y = Ys[g_atom_idx_k]; float k_z = Zs[g_atom_idx_k]; float d_ik_x = i_x - k_x; float d_ik_y = i_y - k_y; float d_ik_z = i_z - k_z; float r_ik = dist_diff(d_ik_x, d_ik_y, d_ik_z); if(r_ik < A_Rc) { // TODO(YTZ): replace with arctan2 trick float inner = (d_ij_x*d_ik_x + d_ij_y*d_ik_y + d_ij_z*d_ik_z) / (r_ij * r_ik); inner = fmaxf(inner, -1.0); inner = fminf(inner, 1.0); // printf("INNER %f\n", inner); float theta_ijk = acosf(inner); // super useful debug if(isnan(theta_ijk) || isinf(theta_ijk)) { printf("WTF NAN/INF: %d, %d, %d, r_ij, r_ik, %f, %f, top %f, bottom %f, i_coords:(%f, %f, %f), j_coords(%f, %f, %f), k_coords(%f, %f, %f)\n", g_atom_idx_i, g_atom_idx_j, g_atom_idx_k, r_ij, r_ik, d_ij_x*d_ik_x + d_ij_y*d_ik_y + d_ij_z*d_ik_z, r_ij * r_ik, i_x, i_y, i_z, j_x, j_y, j_z, k_x, k_y, k_z); } // printf("gpu tijk %d %d %d %f\n", local_atom_idx, j, k, theta_ijk); float A_f_C_ik = f_C(r_ik, A_Rc); for(int t=0; t < NUM_A_THETAS; t++) { for(int s=0; s < NUM_A_RS; s++) { // (TODO: ytz) do 2*(1-A_Zeta) at the end float summand = powf(2, 1-A_zeta) * powf(1+cosf(theta_ijk - A_thetas[t]), A_zeta) * expf(-A_eta*powf((r_ij + r_ik)/2 - A_Rs[s], 2)) * A_f_C_ij * A_f_C_ik; // printf("summand: %f, \n", summand); // printf("scatter_idxs[g_atom_idx_i]: %d, linearize: %d\n", scatter_idxs[g_atom_idx_i], linearize(an_j, an_k, t, s)); // printf("i,j,k,t,s %d %d %d %d %d %d\n", g_atom_idx_i, g_atom_idx_j, g_atom_idx_k, at_idx, ar_idx, linearize(j_type, k_type, at_idx, ar_idx)) auto res = atomicAdd(angular_feature_buffer_i + linearize(an_j, an_k, t, s), summand); // if(isnan(res) || isinf(res)) { // printf("WTF ANGULAR SUMMAND NAN/INF: %d, %d, %d, r_ij, r_ik, %f, %f, top %f, bottom %f, i_coords:(%f, %f, %f), j_coords(%f, %f, %f), k_coords(%f, %f, %f)\n", // g_atom_idx_i, g_atom_idx_j, g_atom_idx_k, r_ij, r_ik, d_ij_x*d_ik_x + d_ij_y*d_ik_y + d_ij_z*d_ik_z, r_ij * r_ik, i_x, i_y, i_z, j_x, j_y, j_z, k_x, k_y, k_z); // } } } } } } // end radial } // end current warp } // end all warps } template<typename T> T *cudaMallocSimple(size_t n) { T *d_obj; std::cout << "mallocing:" << n*sizeof(T) << "bytes\n"; assert(hipMalloc(&d_obj, n*sizeof(T)) == 0); return d_obj; } template<typename T> void cudaCopySimple(T *obj, size_t n, T *d_obj) { assert(hipMemcpy(d_obj, obj, n*sizeof(T), hipMemcpyHostToDevice) == 0); } typedef std::chrono::high_resolution_clock Clock; #define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); } inline void gpuAssert(hipError_t code, const char *file, int line, bool abort=true) { if (code != hipSuccess) { fprintf(stderr,"GPUassert: %s %s %d\n", hipGetErrorString(code), file, line); if (abort) exit(code); } } // int main(void) { // auto X_obj = cnpy::npy_load("Xs.npy"); // auto Y_obj = cnpy::npy_load("Ys.npy"); // auto Z_obj = cnpy::npy_load("Zs.npy"); // auto A_obj = cnpy::npy_load("As.npy"); // auto MOs = cnpy::npy_load("MOs.npy"); // auto MACs = cnpy::npy_load("MACs.npy"); // float *d_Xs = cudaMallocSimple<float>(X_obj.shape[0]); // float *d_Ys = cudaMallocSimple<float>(Y_obj.shape[0]); // float *d_Zs = cudaMallocSimple<float>(Z_obj.shape[0]); // int *d_As = cudaMallocSimple<int>(A_obj.shape[0]); // int *d_MOs = cudaMallocSimple<int>(MOs.shape[0]); // int *d_MACs = cudaMallocSimple<int>(MACs.shape[0]); // max // size_t n_total_atoms = X_obj.shape[0]; // size_t n_mols = MOs.shape[0]; // int sort_num_items = n_total_atoms; // change to upperbound later, max number of atoms per block // int *d_vals_in = cudaMallocSimple<int>(sort_num_items); // int *sort_idxs = cudaMallocSimple<int>(sort_num_items); // int *inv_idxs = cudaMallocSimple<int>(sort_num_items); // std::vector<int> idxs(sort_num_items); // for(size_t i=0; i < sort_num_items; i++) { // idxs[i] = i; // } // cudaCopySimple(&idxs[0], sort_num_items, d_vals_in); // int *d_keys_out = cudaMallocSimple<int>(sort_num_items); // void *d_temp_storage = NULL; // size_t temp_storage_bytes = 0; // // determine size requirements // gpuErrchk(hipcub::DeviceRadixSort::SortPairs(d_temp_storage, temp_storage_bytes, d_As, d_keys_out, d_vals_in, sort_idxs, sort_num_items)); // gpuErrchk(hipMalloc(&d_temp_storage, temp_storage_bytes)) ; // // SETUP DONE // float* d_X_feat; // printf("Total number of atoms: %d \n", n_total_atoms); // std::cout << "mallocing:" << n_total_atoms*TOTAL_FEATURE_SIZE*sizeof(float) << "bytes\n"; // hipMalloc(&d_X_feat, n_total_atoms*TOTAL_FEATURE_SIZE*sizeof(float)); // auto start = Clock::now(); // // int i=0; // for(size_t i=0; i < 100000; i++) { // int num_items = n_total_atoms; // upper bound this to a fixed num // std::cout << i << std::endl; // cudaCopySimple(X_obj.data<float>(), X_obj.shape[0], d_Xs); // cudaCopySimple(Y_obj.data<float>(), Y_obj.shape[0], d_Ys); // cudaCopySimple(Z_obj.data<float>(), Z_obj.shape[0], d_Zs); // cudaCopySimple(A_obj.data<int>(), A_obj.shape[0], d_As); // cudaCopySimple(MOs.data<int>(), MOs.shape[0], d_MOs); // cudaCopySimple(MACs.data<int>(), MACs.shape[0], d_MACs); // max // assert(hipMemset(d_X_feat, 0, n_total_atoms*TOTAL_FEATURE_SIZE*sizeof(float)) == 0); // // atom type counters // std::vector<int> counts(MAX_ATOM_TYPES, 0); // for(size_t j=0; j < n_total_atoms; j++) { // counts[A_obj.data<int>()[j]] += 1; // } // // 1. Sort by atom pairs. // // 2. // // GPU // gpuErrchk(hipcub::DeviceRadixSort::SortPairs(d_temp_storage, temp_storage_bytes, d_As, d_keys_out, d_vals_in, sort_idxs, sort_num_items)); // inverse<<<n_mols, 32>>>(sort_idxs, inv_idxs, sort_num_items); // invert // gpuErrchk(hipPeekAtLastError()); // // follow up with a segment reduce // // std::vector<int> test(sort_num_items); // // hipMemcpy(&test[0], inv_idxs, n_total_atoms*sizeof(int), hipMemcpyDeviceToHost); // // for(auto v : test) { // // std::cout << v << " "; // // } // // return; // // CPU // // std::vector<int> buffer(A_obj.data<int>(), A_obj.data<int>() + A_obj.shape[0]); // // std::vector<int> h_sort_idx = sort_indexes(buffer); // // for(size_t k=0; k < sort_num_items; k++) { // // buffer[h_sort_idx[k]] = k; // // } // // cudaCopySimple(&buffer[0], sort_num_items, inv_idxs); // //START // featurize<<<n_mols, 32>>>( // d_Xs, // d_Ys, // d_Zs, // d_As, // d_MOs, // d_MACs, // n_mols, // inv_idxs, // d_X_feat); // gpuErrchk( hipPeekAtLastError() ); // auto end = Clock::now(); // auto duration = std::chrono::duration_cast<std::chrono::nanoseconds>(end - start).count(); // std::cout << "DURATION:" << duration << std::endl; // std::cout << "samples per minute:" << (float((i+1)*n_mols) / duration) * 60 * 1e9 << std::endl; // } // std::vector<float> X_feat(n_total_atoms*TOTAL_FEATURE_SIZE, 0); // hipMemcpy(&X_feat[0], d_X_feat, n_total_atoms*TOTAL_FEATURE_SIZE*sizeof(int), hipMemcpyDeviceToHost); // }
20276a82972d0831715d04572edb4fbad34db2b1.cu
#include <algorithm> #include <iostream> #include <vector> #include <chrono> #include "parameters.h" /* YTZ Notes: This kernel implements the ANI-1 featurization scheme. It can process about 3.6 million samples/minute */ inline __device__ float dist_diff(float dx, float dy, float dz) { return sqrt(dx*dx+dy*dy+dz*dz); } inline __device__ float f_C(float r_ij, float r_c) { if (r_ij <= r_c) { return 0.5 * cosf((M_PI * r_ij) / r_c) + 0.5; } else { return 0; } } // Linearizes the diagonal-inclusive upper right // triangle of the symmetric ranks 0 and 1 of a rank-4 tensor // into a linear index inline __device__ int linearize(int i, int j, int k, int l) { if(j < i) { float tmp = i; i = j; j = tmp; } const auto N = MAX_ATOM_TYPES; const auto K = NUM_A_THETAS; const auto L = NUM_A_RS; int basis = (N*(N-1)/2 - (N-i) * (N-i-1)/2 +j); return basis*K*L + k*L + l; } __global__ void inverse( const int *sort_idxs, int *gather_idxs, size_t n_elems) { int elem_idx = blockDim.x*blockIdx.x + threadIdx.x; if(elem_idx < n_elems) { gather_idxs[sort_idxs[elem_idx]] = elem_idx; } } __global__ void scatter( const int *sorted_global_idxs, const int *sorted_local_idxs, int *scatter_idxs, size_t n_elems) { int elem_idx = blockDim.x*blockIdx.x + threadIdx.x; if(elem_idx < n_elems) { scatter_idxs[sorted_global_idxs[elem_idx]] = sorted_local_idxs[elem_idx]; } } // Remind yutong to document what these pointers are. __global__ void featurize( const float *Xs, const float *Ys, const float *Zs, const int *atomic_nums, const int *mol_offsets, const int *mol_atom_count, const int num_mols, // actually equal to blockDim.x const int *scatter_idxs, // LOCAL WITHIN THE ATOM TYPE float *X_feat_out_H, float *X_feat_out_C, float *X_feat_out_N, float *X_feat_out_O) { int mol_idx = blockIdx.x; int num_atoms = mol_atom_count[blockIdx.x]; int block_size = blockDim.x; int num_warps = (num_atoms + block_size - 1)/block_size; // how many warps we need to process for(int warp_idx = 0; warp_idx < num_warps; warp_idx++) { int local_atom_idx = warp_idx*block_size + threadIdx.x; // local_local_atom_idx if (local_atom_idx >= num_atoms) { return; } // todo: cache into shared mem // load all the x y z coordinates int g_atom_idx_i = mol_offsets[mol_idx]+local_atom_idx; int g_atomic_num_i = atomic_nums[g_atom_idx_i]; float i_x = Xs[g_atom_idx_i]; float i_y = Ys[g_atom_idx_i]; float i_z = Zs[g_atom_idx_i]; // printf("%d %d %d (%f, %f, %f)\n", mol_idx, local_atom_idx, num_atoms, i_x, i_y, i_z); // float *X_feat_i = X_feat_out + scatter_idxs[g_atom_idx_i]; // if(Atom) float *X_feat_out_i; if(g_atomic_num_i == 0) { X_feat_out_i = X_feat_out_H; } else if(g_atomic_num_i == 1) { X_feat_out_i = X_feat_out_C; } else if(g_atomic_num_i == 2) { X_feat_out_i = X_feat_out_N; } else { X_feat_out_i = X_feat_out_O; } float *radial_feature_buffer_i = X_feat_out_i + scatter_idxs[g_atom_idx_i]*TOTAL_FEATURE_SIZE + 0; float *angular_feature_buffer_i = X_feat_out_i + scatter_idxs[g_atom_idx_i]*TOTAL_FEATURE_SIZE + RADIAL_FEATURE_SIZE; for(int j=0; j < num_atoms; j++) { int g_atom_idx_j = mol_offsets[mol_idx]+j; int g_atomic_num_j = atomic_nums[g_atom_idx_j]; float j_x = Xs[g_atom_idx_j]; float j_y = Ys[g_atom_idx_j]; float j_z = Zs[g_atom_idx_j]; float d_ij_x = i_x - j_x; float d_ij_y = i_y - j_y; float d_ij_z = i_z - j_z; // printf("(%f, %f, %f)\n", d_ij_x, d_ij_y, d_ij_z); float r_ij = dist_diff(d_ij_x, d_ij_y, d_ij_z); // float *X_feat_j = X_feat_out + scatter_idxs[g_atom_idx_j]; float *X_feat_out_j; if(g_atomic_num_j == 0) { X_feat_out_j = X_feat_out_H; } else if(g_atomic_num_j == 1) { X_feat_out_j = X_feat_out_C; } else if(g_atomic_num_j == 2) { X_feat_out_j = X_feat_out_N; } else { X_feat_out_j = X_feat_out_O; } float *radial_feature_buffer_j = X_feat_out_j + scatter_idxs[g_atom_idx_j]*TOTAL_FEATURE_SIZE + 0; // float *radial_feature_buffer_j = X_feat_j + g_atom_idx_j*TOTAL_FEATURE_SIZE + 0; // float *angular_feature_buffer_j = X_feat_out + g_atom_idx_j*TOTAL_FEATURE_SIZE + RADIAL_FEATURE_SIZE; // if(g_atom_idx_i == 0) { // printf("gpu j %d %f\n", j, r_ij); // printf("summand, offset, %f, %d\n", summand, scatter_idxs[g_atom_idx_i]*TOTAL_FEATURE_SIZE + atomic_nums[g_atom_idx_j] * NUM_R_Rs + r_idx); // printf("summand, offset, %f, %d\n", summand, scatter_idxs[g_atom_idx_i]*TOTAL_FEATURE_SIZE + atomic_nums[g_atom_idx_j] * NUM_R_Rs + r_idx); // } // radial features if(r_ij < R_Rc && local_atom_idx < j) { for(int r_idx = 0; r_idx < NUM_R_Rs; r_idx++) { float summand = expf(-R_eta * powf(r_ij - R_Rs[r_idx], 2.0)) * f_C(r_ij, R_Rc); // exploit symmetry of the atomic adds auto res1 = atomicAdd(radial_feature_buffer_i + atomic_nums[g_atom_idx_j] * NUM_R_Rs + r_idx, summand); auto res2 = atomicAdd(radial_feature_buffer_j + atomic_nums[g_atom_idx_i] * NUM_R_Rs + r_idx, summand); //if(isnan(res1) || isinf(res1)) { // printf("WTF RADIAL RES1 NAN/INF, offset, %f, %f\n", res1, summand); // : %d, %d, %d, r_ij, r_ik, %f, %f, top %f, bottom %f, i_coords:(%f, %f, %f), j_coords(%f, %f, %f), k_coords(%f, %f, %f)\n", // g_atom_idx_i, g_atom_idx_j, g_atom_idx_k, r_ij, r_ik, d_ij_x*d_ik_x + d_ij_y*d_ik_y + d_ij_z*d_ik_z, r_ij * r_ik, i_x, i_y, i_z, j_x, j_y, j_z, k_x, k_y, k_z); //} //if(isnan(res2) || isinf(res2)) { // printf("WTF RADIAL RES2 NAN/INF, offset, %f, %f\n", res2, summand); // : %d, %d, %d, r_ij, r_ik, %f, %f, top %f, bottom %f, i_coords:(%f, %f, %f), j_coords(%f, %f, %f), k_coords(%f, %f, %f)\n", // g_atom_idx_i, g_atom_idx_j, g_atom_idx_k, r_ij, r_ik, d_ij_x*d_ik_x + d_ij_y*d_ik_y + d_ij_z*d_ik_z, r_ij * r_ik, i_x, i_y, i_z, j_x, j_y, j_z, k_x, k_y, k_z); //} } } float A_f_C_ij = f_C(r_ij, A_Rc); if(r_ij < A_Rc) { for(size_t k=j+1; k < num_atoms; k++) { if(local_atom_idx == j || local_atom_idx == k || j == k) { continue; } // const int an_i = atomic_nums[local_atom_idx]; int g_atom_idx_k = mol_offsets[mol_idx]+k; const int an_j = atomic_nums[g_atom_idx_j]; const int an_k = atomic_nums[g_atom_idx_k]; float k_x = Xs[g_atom_idx_k]; float k_y = Ys[g_atom_idx_k]; float k_z = Zs[g_atom_idx_k]; float d_ik_x = i_x - k_x; float d_ik_y = i_y - k_y; float d_ik_z = i_z - k_z; float r_ik = dist_diff(d_ik_x, d_ik_y, d_ik_z); if(r_ik < A_Rc) { // TODO(YTZ): replace with arctan2 trick float inner = (d_ij_x*d_ik_x + d_ij_y*d_ik_y + d_ij_z*d_ik_z) / (r_ij * r_ik); inner = fmaxf(inner, -1.0); inner = fminf(inner, 1.0); // printf("INNER %f\n", inner); float theta_ijk = acosf(inner); // super useful debug if(isnan(theta_ijk) || isinf(theta_ijk)) { printf("WTF NAN/INF: %d, %d, %d, r_ij, r_ik, %f, %f, top %f, bottom %f, i_coords:(%f, %f, %f), j_coords(%f, %f, %f), k_coords(%f, %f, %f)\n", g_atom_idx_i, g_atom_idx_j, g_atom_idx_k, r_ij, r_ik, d_ij_x*d_ik_x + d_ij_y*d_ik_y + d_ij_z*d_ik_z, r_ij * r_ik, i_x, i_y, i_z, j_x, j_y, j_z, k_x, k_y, k_z); } // printf("gpu tijk %d %d %d %f\n", local_atom_idx, j, k, theta_ijk); float A_f_C_ik = f_C(r_ik, A_Rc); for(int t=0; t < NUM_A_THETAS; t++) { for(int s=0; s < NUM_A_RS; s++) { // (TODO: ytz) do 2*(1-A_Zeta) at the end float summand = powf(2, 1-A_zeta) * powf(1+cosf(theta_ijk - A_thetas[t]), A_zeta) * expf(-A_eta*powf((r_ij + r_ik)/2 - A_Rs[s], 2)) * A_f_C_ij * A_f_C_ik; // printf("summand: %f, \n", summand); // printf("scatter_idxs[g_atom_idx_i]: %d, linearize: %d\n", scatter_idxs[g_atom_idx_i], linearize(an_j, an_k, t, s)); // printf("i,j,k,t,s %d %d %d %d %d %d\n", g_atom_idx_i, g_atom_idx_j, g_atom_idx_k, at_idx, ar_idx, linearize(j_type, k_type, at_idx, ar_idx)) auto res = atomicAdd(angular_feature_buffer_i + linearize(an_j, an_k, t, s), summand); // if(isnan(res) || isinf(res)) { // printf("WTF ANGULAR SUMMAND NAN/INF: %d, %d, %d, r_ij, r_ik, %f, %f, top %f, bottom %f, i_coords:(%f, %f, %f), j_coords(%f, %f, %f), k_coords(%f, %f, %f)\n", // g_atom_idx_i, g_atom_idx_j, g_atom_idx_k, r_ij, r_ik, d_ij_x*d_ik_x + d_ij_y*d_ik_y + d_ij_z*d_ik_z, r_ij * r_ik, i_x, i_y, i_z, j_x, j_y, j_z, k_x, k_y, k_z); // } } } } } } // end radial } // end current warp } // end all warps } template<typename T> T *cudaMallocSimple(size_t n) { T *d_obj; std::cout << "mallocing:" << n*sizeof(T) << "bytes\n"; assert(cudaMalloc(&d_obj, n*sizeof(T)) == 0); return d_obj; } template<typename T> void cudaCopySimple(T *obj, size_t n, T *d_obj) { assert(cudaMemcpy(d_obj, obj, n*sizeof(T), cudaMemcpyHostToDevice) == 0); } typedef std::chrono::high_resolution_clock Clock; #define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); } inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true) { if (code != cudaSuccess) { fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line); if (abort) exit(code); } } // int main(void) { // auto X_obj = cnpy::npy_load("Xs.npy"); // auto Y_obj = cnpy::npy_load("Ys.npy"); // auto Z_obj = cnpy::npy_load("Zs.npy"); // auto A_obj = cnpy::npy_load("As.npy"); // auto MOs = cnpy::npy_load("MOs.npy"); // auto MACs = cnpy::npy_load("MACs.npy"); // float *d_Xs = cudaMallocSimple<float>(X_obj.shape[0]); // float *d_Ys = cudaMallocSimple<float>(Y_obj.shape[0]); // float *d_Zs = cudaMallocSimple<float>(Z_obj.shape[0]); // int *d_As = cudaMallocSimple<int>(A_obj.shape[0]); // int *d_MOs = cudaMallocSimple<int>(MOs.shape[0]); // int *d_MACs = cudaMallocSimple<int>(MACs.shape[0]); // max // size_t n_total_atoms = X_obj.shape[0]; // size_t n_mols = MOs.shape[0]; // int sort_num_items = n_total_atoms; // change to upperbound later, max number of atoms per block // int *d_vals_in = cudaMallocSimple<int>(sort_num_items); // int *sort_idxs = cudaMallocSimple<int>(sort_num_items); // int *inv_idxs = cudaMallocSimple<int>(sort_num_items); // std::vector<int> idxs(sort_num_items); // for(size_t i=0; i < sort_num_items; i++) { // idxs[i] = i; // } // cudaCopySimple(&idxs[0], sort_num_items, d_vals_in); // int *d_keys_out = cudaMallocSimple<int>(sort_num_items); // void *d_temp_storage = NULL; // size_t temp_storage_bytes = 0; // // determine size requirements // gpuErrchk(cub::DeviceRadixSort::SortPairs(d_temp_storage, temp_storage_bytes, d_As, d_keys_out, d_vals_in, sort_idxs, sort_num_items)); // gpuErrchk(cudaMalloc(&d_temp_storage, temp_storage_bytes)) ; // // SETUP DONE // float* d_X_feat; // printf("Total number of atoms: %d \n", n_total_atoms); // std::cout << "mallocing:" << n_total_atoms*TOTAL_FEATURE_SIZE*sizeof(float) << "bytes\n"; // cudaMalloc(&d_X_feat, n_total_atoms*TOTAL_FEATURE_SIZE*sizeof(float)); // auto start = Clock::now(); // // int i=0; // for(size_t i=0; i < 100000; i++) { // int num_items = n_total_atoms; // upper bound this to a fixed num // std::cout << i << std::endl; // cudaCopySimple(X_obj.data<float>(), X_obj.shape[0], d_Xs); // cudaCopySimple(Y_obj.data<float>(), Y_obj.shape[0], d_Ys); // cudaCopySimple(Z_obj.data<float>(), Z_obj.shape[0], d_Zs); // cudaCopySimple(A_obj.data<int>(), A_obj.shape[0], d_As); // cudaCopySimple(MOs.data<int>(), MOs.shape[0], d_MOs); // cudaCopySimple(MACs.data<int>(), MACs.shape[0], d_MACs); // max // assert(cudaMemset(d_X_feat, 0, n_total_atoms*TOTAL_FEATURE_SIZE*sizeof(float)) == 0); // // atom type counters // std::vector<int> counts(MAX_ATOM_TYPES, 0); // for(size_t j=0; j < n_total_atoms; j++) { // counts[A_obj.data<int>()[j]] += 1; // } // // 1. Sort by atom pairs. // // 2. // // GPU // gpuErrchk(cub::DeviceRadixSort::SortPairs(d_temp_storage, temp_storage_bytes, d_As, d_keys_out, d_vals_in, sort_idxs, sort_num_items)); // inverse<<<n_mols, 32>>>(sort_idxs, inv_idxs, sort_num_items); // invert // gpuErrchk(cudaPeekAtLastError()); // // follow up with a segment reduce // // std::vector<int> test(sort_num_items); // // cudaMemcpy(&test[0], inv_idxs, n_total_atoms*sizeof(int), cudaMemcpyDeviceToHost); // // for(auto v : test) { // // std::cout << v << " "; // // } // // return; // // CPU // // std::vector<int> buffer(A_obj.data<int>(), A_obj.data<int>() + A_obj.shape[0]); // // std::vector<int> h_sort_idx = sort_indexes(buffer); // // for(size_t k=0; k < sort_num_items; k++) { // // buffer[h_sort_idx[k]] = k; // // } // // cudaCopySimple(&buffer[0], sort_num_items, inv_idxs); // //START // featurize<<<n_mols, 32>>>( // d_Xs, // d_Ys, // d_Zs, // d_As, // d_MOs, // d_MACs, // n_mols, // inv_idxs, // d_X_feat); // gpuErrchk( cudaPeekAtLastError() ); // auto end = Clock::now(); // auto duration = std::chrono::duration_cast<std::chrono::nanoseconds>(end - start).count(); // std::cout << "DURATION:" << duration << std::endl; // std::cout << "samples per minute:" << (float((i+1)*n_mols) / duration) * 60 * 1e9 << std::endl; // } // std::vector<float> X_feat(n_total_atoms*TOTAL_FEATURE_SIZE, 0); // cudaMemcpy(&X_feat[0], d_X_feat, n_total_atoms*TOTAL_FEATURE_SIZE*sizeof(int), cudaMemcpyDeviceToHost); // }
df65fa01bd31dc336f23c0bced984c6ea2701cec.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include"Raytracer.cuh" typedef unsigned int uint; typedef unsigned char uchar; __device__ LPDWORD gPixels; __device__ Sphere* deviceScene; __device__ Camera* deviceCamera; __device__ hiprandState_t* deviceRandState; const int sampleCount = 1; std::vector<Sphere> hostScene; Camera hostCamera; __global__ void cudaCopyPixels(LPDWORD cpuPixels, LPDWORD gpuPixels, unsigned int size) { if (threadIdx.x == 0) { for (unsigned int i = 0; i < size; i++) { cpuPixels[i] = gpuPixels[i]; } } __syncthreads(); } __global__ void cudaInitDeviceMemory() { printf("cudaInitDeviceMemory\n"); printf("\t - Malloc device scene memory.\n"); deviceScene = (Sphere*)(malloc(sizeof(Sphere) * 2)); printf("\t\t Malloc result : %p\n", &deviceScene[0]); printf("\t\t Malloc result : %p\n", &deviceScene[1]); printf("\t\t %d thread acquire %p \n", threadIdx.x, &deviceScene[0]); printf("\t\t %d thread acquire %p \n", threadIdx.x, &deviceScene[1]); } __global__ void cudaCopyScene(Sphere* hostScene, unsigned int count) { printf("copy scene (gpu)\n"); printf("\tdevice object - %p\n", &deviceScene[0]); printf("\thost object - %p\n", hostScene[0]); if (threadIdx.x == 0) { for (unsigned int i = 0; i < count; i++) { deviceScene[i] = hostScene[i]; printf("%p\n", &deviceScene[i]); } } __syncthreads(); } __device__ float getAlpha(LPDWORD pixels, unsigned int width) { int x = blockIdx.x * blockDim.x + threadIdx.x; int y = blockIdx.y * blockDim.y + threadIdx.y; int index = y * width + x; // alpha mask return pixels[index] && -16777216; } template<typename _Ty> void mallocDevice(void** dst, unsigned int count) { hipError_t error = hipMalloc(dst, sizeof(_Ty) * count); if (error != hipError_t::hipSuccess) { printf("\tcritical error occured, result must be hipSuccess.\n"); printf("%s\n", hipGetErrorString(error)); throw std::runtime_error(""); } } template<typename _Ty> void copyHostToDevice(_Ty* device, _Ty* host, unsigned int count) { hipError_t error = hipMemcpy(device, host, sizeof(_Ty) * count, hipMemcpyHostToDevice); if (error != hipError_t::hipSuccess) { printf("\tcritical error occured, result must be hipSuccess.\n"); printf("\t%s\n", hipGetErrorString(error)); terminate(); throw std::runtime_error(""); } } __device__ void setColor(LPDWORD pixels, unsigned int width, unsigned int height, Color color, float alpha, int sampleCount) { int writeColor = 0; int x = blockIdx.x * blockDim.x + threadIdx.x; int y = blockIdx.y * blockDim.y + threadIdx.y; /*auto scale = 1.0 / sampleCount; auto r = color.e[0] * scale; auto g = color.e[1] * scale; auto b = color.e[2] * scale; */ auto scale = 1.0 / sampleCount; auto a = Clamp(alpha, 0, 0.999); auto r = Clamp(color.e[0] * scale, 0, 0.999); auto g = Clamp(color.e[1] * scale, 0, 0.999); auto b = Clamp(color.e[2] * scale, 0, 0.999); int ia = static_cast<int>(__fmul_rd(255.999, a)); int ir = static_cast<int>(__fmul_rd(255.999, r)); int ig = static_cast<int>(__fmul_rd(255.999, g)); int ib = static_cast<int>(__fmul_rd(255.999, b)); // writeColor |= (ia << 32); writeColor |= (ir << 16); writeColor |= (ig << 8); writeColor |= ib; auto index = y * width + x; pixels[index] = writeColor; __syncthreads(); return; } __global__ void clearPixels(LPDWORD pixels, unsigned int width, unsigned int height, int sampleCount) { const auto aspectRatio = 4.0 / 3.0; const int imageWidth = width; const int imageHeight = height; auto origin = Point3(0, 0, 0); auto horizontal = Vec3(aspectRatio * 2.0, 0, 0); auto vertical = Vec3(0, 2.0, 0); auto lowerLeft = origin - horizontal / 2 - vertical / 2 - Vec3(0, 0, 1.0); int x = blockIdx.x * blockDim.x + threadIdx.x * blockIdx.z; int y = blockIdx.y * blockDim.y + threadIdx.y * blockIdx.z; auto u = float(x) / (width - 1); auto v = float(y) / (height - 1); Ray r(origin, lowerLeft + u * horizontal + v * vertical - origin); Color outColor; Vec3 unitDirection = UnitVector(r.mDirection); auto t = 0.5 * (unitDirection.e[1] + 1.0); outColor = (1.0 - t) * Color(1.0, 1.0, 1.0) + t * Color(0.5, 0.7, 1.0); setColor(pixels, width, height, outColor, 0, sampleCount); } __device__ Color RayColor(LPDWORD pixels, Ray& r, unsigned int count, unsigned int width, unsigned int height, Sphere* deviceScene, int depth, int tid, hiprandState_t* randState) { Sphere sphere = deviceScene[blockIdx.z]; Color outColor{}; for (unsigned int j = 0; j < blockDim.z; j++) { Ray curRay = r; float atten = 1.0f; sphere = deviceScene[j]; for (unsigned int i = 0; i < depth; i++) { HitRecord rec{}; if (sphere.Hit(curRay, 0.001f, INF, rec)) { Point3 target = rec.p + rec.normal + RandomUnitSphere(randState, tid); atten *= 0.5; //outColor *= atten; curRay = Ray(rec.p, target - rec.p); //return Color(1, 1, 1); } } Vec3 unitDirection = UnitVector(curRay.mDirection); auto t = 0.5 * (unitDirection.e[1] + 1.0); outColor = (1.0 - t) * Color(1.0, 1.0, 1.0) + t * Color(0.5, 0.7, 1.0); return atten * outColor; } return Color(0,0,0); } __global__ void CudaRender(LPDWORD pixels, unsigned int width, unsigned int height, unsigned int count, Sphere* deviceScene, int sampleCount,hiprandState_t* randState) { const auto aspectRatio = 4.0 / 3.0; const int imageWidth = width; const int imageHeight = height; const int depth = 50; auto origin = Point3(0, 0, 0); auto horizontal = Vec3(aspectRatio * 2.0, 0, 0); auto vertical = Vec3(0, 2.0, 0); auto lowerLeft = origin - horizontal / 2 - vertical / 2 - Vec3(0, 0, 1.0); int x = blockIdx.x * blockDim.x + threadIdx.x; int y = blockIdx.y * blockDim.y + threadIdx.y; int tid = y * width + x; Color outColor{}; for (unsigned int i = 0; i < sampleCount; i++) { auto u = float(x) / (width - 1); auto v = float(y) / (height - 1); Ray r(origin, lowerLeft + u * horizontal + v * vertical - origin); outColor += RayColor(pixels, r, count, width, height, deviceScene, depth, tid, randState); // setColor(pixels, width, height, outColor, 1, 1); } setColor(pixels, width, height, outColor, 1, sampleCount); __syncthreads(); } __global__ void ClearGradiant(LPDWORD pixels, unsigned int width, unsigned int height, Color color) { int writeColor = 0; //int x = blockIdx.x * blockDim.x + threadIdx.x; //int y = blockIdx.y * blockDim.y + threadIdx.y; //auto r = __fdiv_rn(threadIdx.x, (width - 1)); //auto g = __fdiv_ru(blockIdx.x, (height - 1)); int x = blockIdx.x * blockDim.x + threadIdx.x; int y = blockIdx.y * blockDim.y + threadIdx.y; auto r = __fdiv_rn(x, (width - 1)); auto g = __fdiv_ru(y, (height - 1)); auto b = color.e[2]; int ir = static_cast<int>(__fmul_rd(255.999, r)); int ig = static_cast<int>(__fmul_rd(255.999, g)); int ib = static_cast<int>(__fmul_rd(255.999, b)); writeColor |= (ir << 16); writeColor |= (ig << 8); writeColor |= ib; auto index = y * width + x; pixels[index] = writeColor; __syncthreads(); return; } __global__ void cudaInitRand(hiprandState_t* deviceRandStates, int count, unsigned int width) { int x = blockIdx.x * blockDim.x + threadIdx.x; int y = blockIdx.y * blockDim.y + threadIdx.y; int tid = y * width + x; hiprand_init(tid, 0, 0, deviceRandStates); __syncthreads(); return; } Raytracer::Raytracer(HWND handle, HINSTANCE instance, unsigned int width, unsigned int height) : mHandle(handle), mInst(instance), mWidth(width), mHeight(height) { hipDeviceProp_t prop; hipError_t error = hipGetDeviceProperties(&prop, 0); std::cout << hipGetErrorString(error) << std::endl; BITMAPINFO bitInfo{}; bitInfo.bmiHeader.biSize = sizeof(BITMAPINFOHEADER); bitInfo.bmiHeader.biWidth = width; bitInfo.bmiHeader.biHeight = height; bitInfo.bmiHeader.biBitCount = 32; bitInfo.bmiHeader.biPlanes = 1; bitInfo.bmiHeader.biCompression = BI_RGB; HDC dc = GetDC(mHandle); mBitmap = CreateDIBSection(dc, &bitInfo, DIB_RGB_COLORS, (void**)(&mPixels), nullptr, 0); mMemoryDC = CreateCompatibleDC(dc); SelectObject(mMemoryDC, mBitmap); ReleaseDC(mHandle, dc); // CUDA CODE ------------------------------------------------------ error = hipMalloc((void**)(&gPixels), 4 * 800 * 600); std::cout << hipGetErrorString(error) << '\n'; hostScene.push_back(Sphere(Point3(0, 0, -1), 0.5)); hostScene.push_back(Sphere(Point3(0, -100.5, -1), 100)); printf("Start malloc device memory.\n"); mallocDevice<Sphere>((void**)&deviceScene, 2); mallocDevice<Camera>((void**)&deviceCamera, 1); dim3 blocks = dim3(16, 12, 2); dim3 grids = dim3(width / blocks.x, height / blocks.y, 1); int threadCount = grids.x * grids.y * blocks.x * blocks.y * blocks.z; printf("%d\n", threadCount); mallocDevice<hiprandState_t>((void**)&deviceRandState, threadCount); hipDeviceSynchronize(); hipLaunchKernelGGL(( cudaInitRand), dim3(grids),dim3(blocks), 0, 0, deviceRandState, width, threadCount); hipDeviceSynchronize(); printf("\t - Success.\n"); printf("Start copying host memory to device.\n"); copyHostToDevice<Sphere>(deviceScene, &hostScene[0], 2); copyHostToDevice<Camera>(deviceCamera, &hostCamera, 1); printf("\t - Success.\n"); //ClearGradiant << <600, 800>> > (gPixels, mWidth, mHeight, Color(1, 1, 0.25)); } void Raytracer::Run() { dim3 blocks = dim3(16, 12, hostScene.size()); dim3 grids = dim3(800 / blocks.x, 600 / blocks.y, 1); hipError_t error; //ClearGradiant << <grids, blocks>> > (gPixels, mWidth, mHeight, Color(1, 1, 0.25)); //clearPixels << <grids, blocks >> > (gPixels, mWidth, mHeight, sampleCount); hipDeviceSynchronize(); CudaRender << <grids, blocks>> > (gPixels, mWidth, mHeight, hostScene.size(), deviceScene, sampleCount, deviceRandState); error = hipGetLastError(); hipDeviceSynchronize(); if (error != hipError_t::hipSuccess) { std::cerr << "\tcritical error occured, result must be hipSuccess.\n"; std::cerr << hipGetErrorName(error) << '\n' << hipGetErrorString(error) << std::endl; throw std::runtime_error(""); } error = hipMemcpy(mPixels, gPixels, sizeof(DWORD) * 800 * 600, hipMemcpyDeviceToHost); if (error != hipError_t::hipSuccess) { std::cerr << "\tcritical error occured, result must be hipSuccess.\n"; std::cerr << hipGetErrorString(error) << std::endl; throw std::runtime_error(""); } hipDeviceSynchronize(); } void Raytracer::Release() { DeleteDC(mMemoryDC); DeleteObject(mBitmap); }
df65fa01bd31dc336f23c0bced984c6ea2701cec.cu
#include"Raytracer.cuh" typedef unsigned int uint; typedef unsigned char uchar; __device__ LPDWORD gPixels; __device__ Sphere* deviceScene; __device__ Camera* deviceCamera; __device__ curandState* deviceRandState; const int sampleCount = 1; std::vector<Sphere> hostScene; Camera hostCamera; __global__ void cudaCopyPixels(LPDWORD cpuPixels, LPDWORD gpuPixels, unsigned int size) { if (threadIdx.x == 0) { for (unsigned int i = 0; i < size; i++) { cpuPixels[i] = gpuPixels[i]; } } __syncthreads(); } __global__ void cudaInitDeviceMemory() { printf("cudaInitDeviceMemory\n"); printf("\t - Malloc device scene memory.\n"); deviceScene = (Sphere*)(malloc(sizeof(Sphere) * 2)); printf("\t\t Malloc result : %p\n", &deviceScene[0]); printf("\t\t Malloc result : %p\n", &deviceScene[1]); printf("\t\t %d thread acquire %p \n", threadIdx.x, &deviceScene[0]); printf("\t\t %d thread acquire %p \n", threadIdx.x, &deviceScene[1]); } __global__ void cudaCopyScene(Sphere* hostScene, unsigned int count) { printf("copy scene (gpu)\n"); printf("\tdevice object - %p\n", &deviceScene[0]); printf("\thost object - %p\n", hostScene[0]); if (threadIdx.x == 0) { for (unsigned int i = 0; i < count; i++) { deviceScene[i] = hostScene[i]; printf("%p\n", &deviceScene[i]); } } __syncthreads(); } __device__ float getAlpha(LPDWORD pixels, unsigned int width) { int x = blockIdx.x * blockDim.x + threadIdx.x; int y = blockIdx.y * blockDim.y + threadIdx.y; int index = y * width + x; // alpha mask return pixels[index] && -16777216; } template<typename _Ty> void mallocDevice(void** dst, unsigned int count) { cudaError error = cudaMalloc(dst, sizeof(_Ty) * count); if (error != cudaError::cudaSuccess) { printf("\tcritical error occured, result must be cudaSuccess.\n"); printf("%s\n", cudaGetErrorString(error)); throw std::runtime_error(""); } } template<typename _Ty> void copyHostToDevice(_Ty* device, _Ty* host, unsigned int count) { cudaError error = cudaMemcpy(device, host, sizeof(_Ty) * count, cudaMemcpyHostToDevice); if (error != cudaError::cudaSuccess) { printf("\tcritical error occured, result must be cudaSuccess.\n"); printf("\t%s\n", cudaGetErrorString(error)); terminate(); throw std::runtime_error(""); } } __device__ void setColor(LPDWORD pixels, unsigned int width, unsigned int height, Color color, float alpha, int sampleCount) { int writeColor = 0; int x = blockIdx.x * blockDim.x + threadIdx.x; int y = blockIdx.y * blockDim.y + threadIdx.y; /*auto scale = 1.0 / sampleCount; auto r = color.e[0] * scale; auto g = color.e[1] * scale; auto b = color.e[2] * scale; */ auto scale = 1.0 / sampleCount; auto a = Clamp(alpha, 0, 0.999); auto r = Clamp(color.e[0] * scale, 0, 0.999); auto g = Clamp(color.e[1] * scale, 0, 0.999); auto b = Clamp(color.e[2] * scale, 0, 0.999); int ia = static_cast<int>(__fmul_rd(255.999, a)); int ir = static_cast<int>(__fmul_rd(255.999, r)); int ig = static_cast<int>(__fmul_rd(255.999, g)); int ib = static_cast<int>(__fmul_rd(255.999, b)); // 비트시프트로 채널마다 값 할당 writeColor |= (ia << 32); writeColor |= (ir << 16); writeColor |= (ig << 8); writeColor |= ib; auto index = y * width + x; pixels[index] = writeColor; __syncthreads(); return; } __global__ void clearPixels(LPDWORD pixels, unsigned int width, unsigned int height, int sampleCount) { const auto aspectRatio = 4.0 / 3.0; const int imageWidth = width; const int imageHeight = height; auto origin = Point3(0, 0, 0); auto horizontal = Vec3(aspectRatio * 2.0, 0, 0); auto vertical = Vec3(0, 2.0, 0); auto lowerLeft = origin - horizontal / 2 - vertical / 2 - Vec3(0, 0, 1.0); int x = blockIdx.x * blockDim.x + threadIdx.x * blockIdx.z; int y = blockIdx.y * blockDim.y + threadIdx.y * blockIdx.z; auto u = float(x) / (width - 1); auto v = float(y) / (height - 1); Ray r(origin, lowerLeft + u * horizontal + v * vertical - origin); Color outColor; Vec3 unitDirection = UnitVector(r.mDirection); auto t = 0.5 * (unitDirection.e[1] + 1.0); outColor = (1.0 - t) * Color(1.0, 1.0, 1.0) + t * Color(0.5, 0.7, 1.0); setColor(pixels, width, height, outColor, 0, sampleCount); } __device__ Color RayColor(LPDWORD pixels, Ray& r, unsigned int count, unsigned int width, unsigned int height, Sphere* deviceScene, int depth, int tid, curandState* randState) { Sphere sphere = deviceScene[blockIdx.z]; Color outColor{}; for (unsigned int j = 0; j < blockDim.z; j++) { Ray curRay = r; float atten = 1.0f; sphere = deviceScene[j]; for (unsigned int i = 0; i < depth; i++) { HitRecord rec{}; if (sphere.Hit(curRay, 0.001f, INF, rec)) { Point3 target = rec.p + rec.normal + RandomUnitSphere(randState, tid); atten *= 0.5; //outColor *= atten; curRay = Ray(rec.p, target - rec.p); //return Color(1, 1, 1); } } Vec3 unitDirection = UnitVector(curRay.mDirection); auto t = 0.5 * (unitDirection.e[1] + 1.0); outColor = (1.0 - t) * Color(1.0, 1.0, 1.0) + t * Color(0.5, 0.7, 1.0); return atten * outColor; } return Color(0,0,0); } __global__ void CudaRender(LPDWORD pixels, unsigned int width, unsigned int height, unsigned int count, Sphere* deviceScene, int sampleCount,curandState* randState) { const auto aspectRatio = 4.0 / 3.0; const int imageWidth = width; const int imageHeight = height; const int depth = 50; auto origin = Point3(0, 0, 0); auto horizontal = Vec3(aspectRatio * 2.0, 0, 0); auto vertical = Vec3(0, 2.0, 0); auto lowerLeft = origin - horizontal / 2 - vertical / 2 - Vec3(0, 0, 1.0); int x = blockIdx.x * blockDim.x + threadIdx.x; int y = blockIdx.y * blockDim.y + threadIdx.y; int tid = y * width + x; Color outColor{}; for (unsigned int i = 0; i < sampleCount; i++) { auto u = float(x) / (width - 1); auto v = float(y) / (height - 1); Ray r(origin, lowerLeft + u * horizontal + v * vertical - origin); outColor += RayColor(pixels, r, count, width, height, deviceScene, depth, tid, randState); // setColor(pixels, width, height, outColor, 1, 1); } setColor(pixels, width, height, outColor, 1, sampleCount); __syncthreads(); } __global__ void ClearGradiant(LPDWORD pixels, unsigned int width, unsigned int height, Color color) { int writeColor = 0; //int x = blockIdx.x * blockDim.x + threadIdx.x; //int y = blockIdx.y * blockDim.y + threadIdx.y; //auto r = __fdiv_rn(threadIdx.x, (width - 1)); //auto g = __fdiv_ru(blockIdx.x, (height - 1)); int x = blockIdx.x * blockDim.x + threadIdx.x; int y = blockIdx.y * blockDim.y + threadIdx.y; auto r = __fdiv_rn(x, (width - 1)); auto g = __fdiv_ru(y, (height - 1)); auto b = color.e[2]; int ir = static_cast<int>(__fmul_rd(255.999, r)); int ig = static_cast<int>(__fmul_rd(255.999, g)); int ib = static_cast<int>(__fmul_rd(255.999, b)); writeColor |= (ir << 16); writeColor |= (ig << 8); writeColor |= ib; auto index = y * width + x; pixels[index] = writeColor; __syncthreads(); return; } __global__ void cudaInitRand(curandState* deviceRandStates, int count, unsigned int width) { int x = blockIdx.x * blockDim.x + threadIdx.x; int y = blockIdx.y * blockDim.y + threadIdx.y; int tid = y * width + x; curand_init(tid, 0, 0, deviceRandStates); __syncthreads(); return; } Raytracer::Raytracer(HWND handle, HINSTANCE instance, unsigned int width, unsigned int height) : mHandle(handle), mInst(instance), mWidth(width), mHeight(height) { cudaDeviceProp prop; cudaError_t error = cudaGetDeviceProperties(&prop, 0); std::cout << cudaGetErrorString(error) << std::endl; BITMAPINFO bitInfo{}; bitInfo.bmiHeader.biSize = sizeof(BITMAPINFOHEADER); bitInfo.bmiHeader.biWidth = width; bitInfo.bmiHeader.biHeight = height; bitInfo.bmiHeader.biBitCount = 32; bitInfo.bmiHeader.biPlanes = 1; bitInfo.bmiHeader.biCompression = BI_RGB; HDC dc = GetDC(mHandle); mBitmap = CreateDIBSection(dc, &bitInfo, DIB_RGB_COLORS, (void**)(&mPixels), nullptr, 0); mMemoryDC = CreateCompatibleDC(dc); SelectObject(mMemoryDC, mBitmap); ReleaseDC(mHandle, dc); // CUDA CODE ------------------------------------------------------ error = cudaMalloc((void**)(&gPixels), 4 * 800 * 600); std::cout << cudaGetErrorString(error) << '\n'; hostScene.push_back(Sphere(Point3(0, 0, -1), 0.5)); hostScene.push_back(Sphere(Point3(0, -100.5, -1), 100)); printf("Start malloc device memory.\n"); mallocDevice<Sphere>((void**)&deviceScene, 2); mallocDevice<Camera>((void**)&deviceCamera, 1); dim3 blocks = dim3(16, 12, 2); dim3 grids = dim3(width / blocks.x, height / blocks.y, 1); int threadCount = grids.x * grids.y * blocks.x * blocks.y * blocks.z; printf("%d\n", threadCount); mallocDevice<curandState>((void**)&deviceRandState, threadCount); cudaDeviceSynchronize(); cudaInitRand<<<grids,blocks>>>(deviceRandState, width, threadCount); cudaDeviceSynchronize(); printf("\t - Success.\n"); printf("Start copying host memory to device.\n"); copyHostToDevice<Sphere>(deviceScene, &hostScene[0], 2); copyHostToDevice<Camera>(deviceCamera, &hostCamera, 1); printf("\t - Success.\n"); //ClearGradiant << <600, 800>> > (gPixels, mWidth, mHeight, Color(1, 1, 0.25)); } void Raytracer::Run() { dim3 blocks = dim3(16, 12, hostScene.size()); dim3 grids = dim3(800 / blocks.x, 600 / blocks.y, 1); cudaError error; //ClearGradiant << <grids, blocks>> > (gPixels, mWidth, mHeight, Color(1, 1, 0.25)); //clearPixels << <grids, blocks >> > (gPixels, mWidth, mHeight, sampleCount); cudaDeviceSynchronize(); CudaRender << <grids, blocks>> > (gPixels, mWidth, mHeight, hostScene.size(), deviceScene, sampleCount, deviceRandState); error = cudaGetLastError(); cudaDeviceSynchronize(); if (error != cudaError::cudaSuccess) { std::cerr << "\tcritical error occured, result must be cudaSuccess.\n"; std::cerr << cudaGetErrorName(error) << '\n' << cudaGetErrorString(error) << std::endl; throw std::runtime_error(""); } error = cudaMemcpy(mPixels, gPixels, sizeof(DWORD) * 800 * 600, cudaMemcpyDeviceToHost); if (error != cudaError::cudaSuccess) { std::cerr << "\tcritical error occured, result must be cudaSuccess.\n"; std::cerr << cudaGetErrorString(error) << std::endl; throw std::runtime_error(""); } cudaDeviceSynchronize(); } void Raytracer::Release() { DeleteDC(mMemoryDC); DeleteObject(mBitmap); }
852136fdac48f959abbc2df99ad66306e73f70db.hip
// !!! This is a file automatically generated by hipify!!! #include <iostream> #include <iomanip> #include <math.h> #include <helper_cuda.h> #include <complex> #include <algorithm> #include "../src/cufinufft.h" #include "../src/spreadinterp.h" #include "../finufft/utils.h" using namespace std; int main(int argc, char* argv[]) { int nf1, nf2; FLT upsampfac=2.0; int N1, N2, M; if (argc<5) { fprintf(stderr,"Usage: spread2d [method [maxsubprob [nupts_distr [N1 N2 [rep [tol [kerevalmeth]]]]]]]\n"); fprintf(stderr,"Details --\n"); fprintf(stderr,"method 1: nupts driven\n"); fprintf(stderr,"method 2: sub-problem\n"); fprintf(stderr,"method 3: sub-problem with paul's idea\n"); return 1; } double w; int method; sscanf(argv[1],"%d",&method); int maxsubprobsize; sscanf(argv[2],"%d",&maxsubprobsize); int nupts_distribute; sscanf(argv[3],"%d",&nupts_distribute); sscanf(argv[4],"%lf",&w); nf1 = (int)w; // so can read 1e6 right! sscanf(argv[5],"%lf",&w); nf2 = (int)w; // so can read 1e6 right! N1 = (int) nf1/upsampfac; N2 = (int) nf2/upsampfac; int rep = 10; if(argc>6){ //sscanf(argv[6],"%lf",&w); M = (int)w; // so can read 1e6 right! sscanf(argv[6],"%d",&rep); //if(M == 0) M=N1*N2*4*rep; } M = N1*N2*4*rep;// let density always be 1 M = nf1*nf2*rep;// let density always be 1 FLT tol=1e-6; if(argc>7){ sscanf(argv[7],"%lf",&w); tol = (FLT)w; // so can read 1e6 right! } int kerevalmeth=0; if(argc>8){ sscanf(argv[8],"%d",&kerevalmeth); } int ier; int dim=2; int ns=::ceil(-log10(tol/10.0)); cufinufft_plan dplan; ier = cufinufft_default_opts(type1, dim, dplan.opts); if(ier != 0 ){ cout<<"error: cufinufft_default_opts"<<endl; return 0; } ier = setup_spreader_for_nufft(dplan.spopts, tol, dplan.opts); dplan.opts.gpu_method=method; dplan.opts.upsampfac=upsampfac; dplan.opts.gpu_maxsubprobsize=maxsubprobsize; dplan.opts.gpu_kerevalmeth=kerevalmeth; dplan.spopts.pirange=0; cout<<scientific<<setprecision(3); FLT *x, *y; CPX *c, *fw; hipHostMalloc(&x, M*sizeof(FLT)); hipHostMalloc(&y, M*sizeof(FLT)); hipHostMalloc(&c, M*sizeof(CPX)); hipHostMalloc(&fw,nf1*nf2*sizeof(CPX)); switch(nupts_distribute){ // Making data case 1: //uniform { for (int j=0; j<nf2; j++) { for (int i=0; i<nf1; i++){ for (int k=0; k<rep; k++){ if(k+i*rep+j*nf1*rep < M){ x[k+i*rep+j*nf1*rep] = i; y[k+i*rep+j*nf1*rep] = j; } } } } #if 0 srand(unsigned(1)); random_shuffle (&x[0], &x[M-1]); srand(unsigned(1)); random_shuffle (&y[0], &y[M-1]); #endif for (int i = 0; i < M; i++) { c[i].real(randm11()); c[i].imag(randm11()); } } break; case 2: { for (int k=0; k<rep; k++){ for (int j=0; j<nf2; j++) { for (int i=0; i<nf1; i++){ if(i+j*nf1+k*nf1*nf2< M){ x[i+j*nf1+k*nf1*nf2] = i; y[i+j*nf1+k*nf1*nf2] = j; } } } } for (int i = 0; i < M; i++) { c[i].real(randm11()); c[i].imag(randm11()); } } break; case 3: { for (int j=0; j<nf2; j++) { for (int i=0; i<nf1; i++){ for (int k=0; k<rep; k++){ if(k+i*rep+j*nf1*rep < M){ x[k+i*rep+j*nf1*rep] = i; y[k+i*rep+j*nf1*rep] = j; } } } } srand(unsigned(1)); random_shuffle (&x[0], &x[M-1]); srand(unsigned(1)); random_shuffle (&y[0], &y[M-1]); for (int i = 0; i < M; i++) { c[i].real(randm11()); c[i].imag(randm11()); } } break; case 4: // concentrate on a small region { for (int i = 0; i < M; i++) { x[i] = RESCALE(M_PI*rand01(), nf1, 1)/2.0 - 0.5;// x in [-pi,pi) y[i] = RESCALE(M_PI*rand01(), nf2, 1)/2.0 - 0.5; if(method == 6){ x[i] = x[i] > nf1-0.5 ? x[i] - nf1 : x[i]; y[i] = y[i] > nf2-0.5 ? y[i] - nf2 : y[i];// x in [-pi,pi) } c[i].real(randm11()); c[i].imag(randm11()); } } break; case 5: { for (int i = 0; i < M; i++) { x[i] = RESCALE(M_PI*randm11(), nf1, 1);// x in [-pi,pi) y[i] = RESCALE(M_PI*randm11(), nf2, 1); if(method == 6){ x[i] = x[i] > nf1-0.5 ? x[i] - nf1 : x[i]; y[i] = y[i] > nf2-0.5 ? y[i] - nf2 : y[i];// x in [-pi,pi) } c[i].real(randm11()); c[i].imag(randm11()); } } break; case 6: { for(int i=0; i<M; i++) { x[i] = 1;// x in [-pi,pi) y[i] = 1; c[i].real(randm11()); c[i].imag(randm11()); } } break; } CNTime timer; /*warm up gpu*/ char *a; timer.restart(); checkCudaErrors(hipMalloc(&a,1)); #ifdef TIME cout<<"[time ]"<< " (warm up) First cudamalloc call " << timer.elapsedsec() <<" s"<<endl<<endl; #endif #ifdef INFO cout<<"[info ] Spreading "<<M<<" pts to ["<<nf1<<"x"<<nf2<<"] uniform grids" <<endl; #endif timer.restart(); ier = cufinufft_spread2d(N1, N2, nf1, nf2, fw, M, x, y, c, &dplan); if(ier != 0 ){ cout<<"error: cnufftspread2d"<<endl; return 0; } FLT t=timer.elapsedsec(); printf("[Method %d] %ld NU pts to #%d U pts in %.3g s (\t%.3g NU pts/s)\n", dplan.opts.gpu_method,M,nf1*nf2,t,M/t); #if 0 cout<<"[result-input]"<<endl; for(int j=0; j<nf2; j++){ if( j % dplan.opts.gpu_binsizey == 0) printf("\n"); for (int i=0; i<nf1; i++){ if( i % dplan.opts.gpu_binsizex == 0 && i!=0) printf(" |"); printf(" (%2.3g,%2.3g)",fw[i+j*nf1].real(),fw[i+j*nf1].imag() ); } cout<<endl; } cout<<endl; #endif hipHostFree(x); hipHostFree(y); hipHostFree(c); hipHostFree(fw); return 0; }
852136fdac48f959abbc2df99ad66306e73f70db.cu
#include <iostream> #include <iomanip> #include <math.h> #include <helper_cuda.h> #include <complex> #include <algorithm> #include "../src/cufinufft.h" #include "../src/spreadinterp.h" #include "../finufft/utils.h" using namespace std; int main(int argc, char* argv[]) { int nf1, nf2; FLT upsampfac=2.0; int N1, N2, M; if (argc<5) { fprintf(stderr,"Usage: spread2d [method [maxsubprob [nupts_distr [N1 N2 [rep [tol [kerevalmeth]]]]]]]\n"); fprintf(stderr,"Details --\n"); fprintf(stderr,"method 1: nupts driven\n"); fprintf(stderr,"method 2: sub-problem\n"); fprintf(stderr,"method 3: sub-problem with paul's idea\n"); return 1; } double w; int method; sscanf(argv[1],"%d",&method); int maxsubprobsize; sscanf(argv[2],"%d",&maxsubprobsize); int nupts_distribute; sscanf(argv[3],"%d",&nupts_distribute); sscanf(argv[4],"%lf",&w); nf1 = (int)w; // so can read 1e6 right! sscanf(argv[5],"%lf",&w); nf2 = (int)w; // so can read 1e6 right! N1 = (int) nf1/upsampfac; N2 = (int) nf2/upsampfac; int rep = 10; if(argc>6){ //sscanf(argv[6],"%lf",&w); M = (int)w; // so can read 1e6 right! sscanf(argv[6],"%d",&rep); //if(M == 0) M=N1*N2*4*rep; } M = N1*N2*4*rep;// let density always be 1 M = nf1*nf2*rep;// let density always be 1 FLT tol=1e-6; if(argc>7){ sscanf(argv[7],"%lf",&w); tol = (FLT)w; // so can read 1e6 right! } int kerevalmeth=0; if(argc>8){ sscanf(argv[8],"%d",&kerevalmeth); } int ier; int dim=2; int ns=std::ceil(-log10(tol/10.0)); cufinufft_plan dplan; ier = cufinufft_default_opts(type1, dim, dplan.opts); if(ier != 0 ){ cout<<"error: cufinufft_default_opts"<<endl; return 0; } ier = setup_spreader_for_nufft(dplan.spopts, tol, dplan.opts); dplan.opts.gpu_method=method; dplan.opts.upsampfac=upsampfac; dplan.opts.gpu_maxsubprobsize=maxsubprobsize; dplan.opts.gpu_kerevalmeth=kerevalmeth; dplan.spopts.pirange=0; cout<<scientific<<setprecision(3); FLT *x, *y; CPX *c, *fw; cudaMallocHost(&x, M*sizeof(FLT)); cudaMallocHost(&y, M*sizeof(FLT)); cudaMallocHost(&c, M*sizeof(CPX)); cudaMallocHost(&fw,nf1*nf2*sizeof(CPX)); switch(nupts_distribute){ // Making data case 1: //uniform { for (int j=0; j<nf2; j++) { for (int i=0; i<nf1; i++){ for (int k=0; k<rep; k++){ if(k+i*rep+j*nf1*rep < M){ x[k+i*rep+j*nf1*rep] = i; y[k+i*rep+j*nf1*rep] = j; } } } } #if 0 srand(unsigned(1)); random_shuffle (&x[0], &x[M-1]); srand(unsigned(1)); random_shuffle (&y[0], &y[M-1]); #endif for (int i = 0; i < M; i++) { c[i].real(randm11()); c[i].imag(randm11()); } } break; case 2: { for (int k=0; k<rep; k++){ for (int j=0; j<nf2; j++) { for (int i=0; i<nf1; i++){ if(i+j*nf1+k*nf1*nf2< M){ x[i+j*nf1+k*nf1*nf2] = i; y[i+j*nf1+k*nf1*nf2] = j; } } } } for (int i = 0; i < M; i++) { c[i].real(randm11()); c[i].imag(randm11()); } } break; case 3: { for (int j=0; j<nf2; j++) { for (int i=0; i<nf1; i++){ for (int k=0; k<rep; k++){ if(k+i*rep+j*nf1*rep < M){ x[k+i*rep+j*nf1*rep] = i; y[k+i*rep+j*nf1*rep] = j; } } } } srand(unsigned(1)); random_shuffle (&x[0], &x[M-1]); srand(unsigned(1)); random_shuffle (&y[0], &y[M-1]); for (int i = 0; i < M; i++) { c[i].real(randm11()); c[i].imag(randm11()); } } break; case 4: // concentrate on a small region { for (int i = 0; i < M; i++) { x[i] = RESCALE(M_PI*rand01(), nf1, 1)/2.0 - 0.5;// x in [-pi,pi) y[i] = RESCALE(M_PI*rand01(), nf2, 1)/2.0 - 0.5; if(method == 6){ x[i] = x[i] > nf1-0.5 ? x[i] - nf1 : x[i]; y[i] = y[i] > nf2-0.5 ? y[i] - nf2 : y[i];// x in [-pi,pi) } c[i].real(randm11()); c[i].imag(randm11()); } } break; case 5: { for (int i = 0; i < M; i++) { x[i] = RESCALE(M_PI*randm11(), nf1, 1);// x in [-pi,pi) y[i] = RESCALE(M_PI*randm11(), nf2, 1); if(method == 6){ x[i] = x[i] > nf1-0.5 ? x[i] - nf1 : x[i]; y[i] = y[i] > nf2-0.5 ? y[i] - nf2 : y[i];// x in [-pi,pi) } c[i].real(randm11()); c[i].imag(randm11()); } } break; case 6: { for(int i=0; i<M; i++) { x[i] = 1;// x in [-pi,pi) y[i] = 1; c[i].real(randm11()); c[i].imag(randm11()); } } break; } CNTime timer; /*warm up gpu*/ char *a; timer.restart(); checkCudaErrors(cudaMalloc(&a,1)); #ifdef TIME cout<<"[time ]"<< " (warm up) First cudamalloc call " << timer.elapsedsec() <<" s"<<endl<<endl; #endif #ifdef INFO cout<<"[info ] Spreading "<<M<<" pts to ["<<nf1<<"x"<<nf2<<"] uniform grids" <<endl; #endif timer.restart(); ier = cufinufft_spread2d(N1, N2, nf1, nf2, fw, M, x, y, c, &dplan); if(ier != 0 ){ cout<<"error: cnufftspread2d"<<endl; return 0; } FLT t=timer.elapsedsec(); printf("[Method %d] %ld NU pts to #%d U pts in %.3g s (\t%.3g NU pts/s)\n", dplan.opts.gpu_method,M,nf1*nf2,t,M/t); #if 0 cout<<"[result-input]"<<endl; for(int j=0; j<nf2; j++){ if( j % dplan.opts.gpu_binsizey == 0) printf("\n"); for (int i=0; i<nf1; i++){ if( i % dplan.opts.gpu_binsizex == 0 && i!=0) printf(" |"); printf(" (%2.3g,%2.3g)",fw[i+j*nf1].real(),fw[i+j*nf1].imag() ); } cout<<endl; } cout<<endl; #endif cudaFreeHost(x); cudaFreeHost(y); cudaFreeHost(c); cudaFreeHost(fw); return 0; }
b24c1b1d590b4ac4cabfa9ca8c9605bbea1d30f9.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* -- MAGMA (version 2.2.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver @date November 2016 csymv_upper.cu is nearly identical to chemv_upper.cu, just change names and drop MAGMA_C_CONJ. chemv_kernel_U (upper) in chemv_upper.cu is very similar to chemv_kernel_L (lower) in chemv.cu; diff the two files to compare. @generated from magmablas/zhemv_upper.cu, normal z -> c, Sun Nov 20 20:20:28 2016 @author Mark Gates */ #include "magma_internal.h" #include "commonblas_c.h" #define PRECISION_c #define NB_X 64 #define NB_Y 4 #define bank_shift 33 #define quarter_NB_X 16 #define half_NB_X 32 /***************************************************************************//** Upper case, compute block multiply, work = A*x, for any size n: [ (A11*x1 + A12*x2 + A13*x3) --- --- ] [ A11 A12 A13 ] [ x1 ] work = [ (A12^H*x1) (A22*x2 + A23*x3) --- ] = [ A12^H A22 A23 ] * [ x2 ] [ (A13^H*x1) (A23^H*x2) (A33*x3) ] [ A13^H A23^H A33 ] [ x3 ] The order is different from the lower case, because the upper case processes a block row from the diagonal to the right, whereas the lower case processes a block row from the diagonal to the left. Uses a 64x4 thread block. For diagonal tiles, covers a 64x64 tile using three 32x32 tiles (plus one gets transposed). For off-diagonal tiles, covers a 64x64 tile using four 64x16 tiles. In both cases, each thread multiplies 4 elements. For rows past the bottom of the matrix, the A pointer is adjusted to be the last valid row of A, which multiple threads will read. Extra rows are ignored when saving results to work. Columns past the right edge are explicitly ignored when loading. x values past the bottom are set to zero, thus, extra columns are zeroed when multiplying. *******************************************************************************/ __global__ void chemv_kernel_U( int n, magmaFloatComplex const * __restrict__ A, int lda, magmaFloatComplex const * __restrict__ x, int incx, magmaFloatComplex * __restrict__ work) { #if defined(PRECISION_s) || defined(PRECISION_d) || defined(PRECISION_c) || (__CUDA_ARCH__ >= 200) // treats sA as 16x64 block #define sA16(i_, j_) (sA[(i_)][(j_)]) // i.e., sA[ (i_)*(NB_X+3) + (j_) ] // treats sA as 32x32 block #define sA32(i_, j_) (sA[0][(i_) + bank_shift*(j_)]) // 64x4 thread block const int tx = threadIdx.x; const int ty = threadIdx.y; const int blk = blockIdx.x; const int blk_ind = NB_X * blk; const int td = NB_X * ty + tx; // 32x8 thread block const int tx2 = td % half_NB_X; const int ty2 = td / half_NB_X; // If this blk has fewer than NB_X rows, partial is the number of valid rows, // so tx = 0, ..., partial-1 are valid rows, and tx >= partial are invalid. // Else, partial == 0. int partial = (blk == gridDim.x - 1 ? (n % NB_X) : 0); magmaFloatComplex psum, psum_t; magmaFloatComplex total = MAGMA_C_ZERO; // sA is used as a 32x32 block, sA32(i,j), // and as a 16x64 block, sA16(i,j), in different parts of the code. // sA must be at least half_NB_X*bank_shift = 32x33 = 1056; // quarter_NB_X*(NB_X + 2) = 16*(64 + 2) = 1056 __shared__ magmaFloatComplex sA [quarter_NB_X][NB_X + 3]; /* Why +3? seems it only needs +2. Does +3 reduce bank conflicts? */ __shared__ magmaFloatComplex sx_blk[NB_X]; // for x[ blk ] __shared__ magmaFloatComplex sx_jj [NB_X]; // for x[ jj ], which cycles over all blocks right of diag magmaFloatComplex rA[4]; magmaFloatComplex psums_t[4]; // -------------------- // load 64x1 block x(blk_ind + 0:63) into sx_blk x += (blk_ind + tx)*incx; // x is x(blk_ind + tx) if ( ty == 0 ) { if ( partial == 0 || tx < partial ) { sx_blk[tx] = x[0]; } else { sx_blk[tx] = MAGMA_C_ZERO; } } // -------------------- // move to block row work += blk*lda; // work is work(0, blk) A += blk_ind; // A is A(blk_ind, 0) A += ty2*lda + tx2; // A is A(blk_ind + tx2, ty2) // move to 32x32 diag block A += blk_ind*lda; // A is A(blk_ind + tx2, blk_ind + ty2) // load 32x32 diag block A(blk_ind + 0:31, blk_ind + 0:31) into sA, // as four 32x8 sections one after another: // columns 0:7, then 8:15, then 16:23, then 24:31 if ( partial ) { if ( tx2 >= partial ) { A = A - tx2 + (partial - 1); // A is A(blk_ind + partial-1, blk_ind + ty2), the bottom-most valid row } #pragma unroll for (int j=0; j < half_NB_X; j += 8) { if ( ty2+j < partial ) { sA32(tx2, ty2 + j) = A[j*lda]; } else { sA32(tx2, ty2 + j) = MAGMA_C_ZERO; } } if ( tx2 >= partial ) { A = A + tx2 - (partial - 1); // A is A(blk_ind + tx2, blk_ind + ty2) } } else { #pragma unroll for (int j=0; j < half_NB_X; j += 8) { sA32(tx2, ty2 + j) = A[j*lda]; } } __syncthreads(); // symmetrize 32x32 diag block, copying upper to lower triangle, // as four 32x8 sections in parallel: // columns 0,4,8,12,16,20,24,28; then 1,5,...,29; then 2,6,...,30, then 3,7,...,31 #pragma unroll for (int j=ty2*4; j < ty2*4 + 4; j++) { if ( j > tx2 ) { sA32(j, tx2) = MAGMA_C_CONJ( sA32(tx2, j) ); } } __syncthreads(); // multiply 32x32 diag block * x // each thread does partial row sA(tx2, ty2*4 : ty2*4 + 3) psum = MAGMA_C_ZERO; #pragma unroll for (int j=0; j < 4; j++) { psum += sA32(tx2, ty2*4 + j) * sx_blk[ty2*4 + j]; } __syncthreads(); // store partial row sums sA32(ty2, tx2) = psum; __syncthreads(); // sum up partial row sums, so thread (tx2,0) has total for row (blk_ind + tx2) if ( ty2 == 0 ) { total = sA32(0, tx2) + sA32(1, tx2) + sA32(2, tx2) + sA32(3, tx2) + sA32(4, tx2) + sA32(5, tx2) + sA32(6, tx2) + sA32(7, tx2); } __syncthreads(); // -------------------- // move to next 32x32 diag block, then repeat steps from first diag block A += half_NB_X + half_NB_X*lda; // A is A(blk_ind + NB/2 + tx2, blk_ind + NB/2 + ty2) // load 32x32 diag block A[block + 0:31, block + 0:31] into sA if ( partial ) { if ( tx2 + half_NB_X >= partial ) { A = A - (tx2 + half_NB_X) + (partial - 1); } #pragma unroll for (int j=0; j < half_NB_X; j += 8) { if ( ty2+j + half_NB_X < partial ) { sA32(tx2, ty2 + j) = A[j*lda]; } else { sA32(tx2, ty2 + j) = MAGMA_C_ZERO; } } if ( tx2 + half_NB_X >= partial ) { A = A + (tx2 + half_NB_X) - (partial - 1); } } else { #pragma unroll for (int j=0; j < half_NB_X; j += 8) { sA32(tx2, ty2 + j) = A[j*lda]; } } __syncthreads(); // symmetrize 32x32 diag block, copying upper to lower triangle #pragma unroll for (int j=ty2*4; j < ty2*4 + 4; j++) { if ( j > tx2 ) { sA32(j, tx2) = MAGMA_C_CONJ( sA32(tx2, j) ); } } __syncthreads(); // multiply 32x32 diag block * x psum = MAGMA_C_ZERO; #pragma unroll for (int j=0; j < 4; j++) { psum += sA32(tx2, ty2*4 + j) * sx_blk[half_NB_X + ty2*4 + j]; } __syncthreads(); // store partial row sums sA32(ty2, tx2) = psum; __syncthreads(); // sum up partial row sums, so thread (tx2,1) has total for row (blk_ind + NB/2 + tx2) if ( ty2 == 1 ) { total = sA32(0, tx2) + sA32(1, tx2) + sA32(2, tx2) + sA32(3, tx2) + sA32(4, tx2) + sA32(5, tx2) + sA32(6, tx2) + sA32(7, tx2); } __syncthreads(); // -------------------- // move to off-diag 32x32 block A -= half_NB_X; // A is A(blk_ind + tx2, blk_ind + NB/2 + ty2) // load 32x32 block of A into sA, // as four 32x8 sections one after another: // columns 0:7, then 8:15, then 16:23, then 24:31 if ( partial ) { if ( tx2 >= partial ) { A = A - (tx2) + (partial - 1); } #pragma unroll for (int j=0; j < half_NB_X; j += 8) { if ( ty2+j + half_NB_X < partial ) { sA32(tx2, ty2 + j) = A[j*lda]; } else { sA32(tx2, ty2 + j) = MAGMA_C_ZERO; } } if ( tx2 >= partial ) { A = A + (tx2) - (partial - 1); } } else { #pragma unroll for (int j=0; j < half_NB_X; j += 8) { sA32(tx2, ty2 + j) = A[j*lda]; } } __syncthreads(); // multiply 32x32 block (below diag) psum = MAGMA_C_ZERO; #pragma unroll for (int j=0; j < 4; j++) { psum += MAGMA_C_CONJ( sA32(ty2 + j*8, tx2) ) * sx_blk[j*8 + ty2]; } //__syncthreads(); // no sync needed here // multiply transposed 32x32 block (above diag) psum_t = MAGMA_C_ZERO; #pragma unroll for (int j=0; j < 4; j++) { psum_t += sA32(tx2, ty2*4 + j) * sx_blk[half_NB_X + ty2*4 + j]; } __syncthreads(); // store partial sums for non-transposed 32x32 block sA32(ty2, tx2) = psum; __syncthreads(); // sum up partial row sums, so thread (tx2,1) has total for row (blk_ind + NB/2 + tx2) if ( ty2 == 1 ) { total = total + sA32(0, tx2) + sA32(1, tx2) + sA32(2, tx2) + sA32(3, tx2) + sA32(4, tx2) + sA32(5, tx2) + sA32(6, tx2) + sA32(7, tx2); } __syncthreads(); // store partial sums for transposed 32x32 block sA32(ty2, tx2) = psum_t; __syncthreads(); // sum up partial row sums, so thread (tx2,0) has total for row (blk_ind + tx2) if ( ty2 == 0 ) { total = total + sA32(0, tx2) + sA32(1, tx2) + sA32(2, tx2) + sA32(3, tx2) + sA32(4, tx2) + sA32(5, tx2) + sA32(6, tx2) + sA32(7, tx2); } __syncthreads(); // -------------------- // move to next 64x64 block right of diag in block row, and // switch thread offset from (tx2,ty2) 32x8 block to (tx,ty) 64x4 block A += half_NB_X*lda; // A is A(blk_ind + tx2, blk_ind + NB_X + ty2 ) A -= ty2*lda + tx2; // A is A(blk_ind, blk_ind + NB_X ) A += 4*ty*lda + tx; // A is A(blk_ind + tx, blk_ind + 4*ty) // Unlike lower case, don't adjust A here for partial # of rows. // Since block is right of diagonal, it must have all NB rows, // but can have < NB columns, dealt with when loading below. x -= blk_ind*incx; // x is x(tx) // 16x16 thread block const int tx4 = td % quarter_NB_X; const int ty4 = td / quarter_NB_X; // cycle over blocks jj right of diagonal, in block row blk for (int jj=blk+1; jj < gridDim.x; ++jj) { partial = (jj == gridDim.x - 1 ? (n % NB_X) : 0); // load 64x1 block x(jj_ind + 0:63) into sx_jj if ( ty == 0 ) { if ( partial == 0 || tx < partial ) { sx_jj[tx] = x[jj*NB_X*incx]; } else { sx_jj[tx] = MAGMA_C_ZERO; } } __syncthreads(); for (int k=0; k < 4; k++) { // load 64x16 block of A into rA, 4 elements per thread, // as four 64x4 sections in parallel: // columns 0,4,8,12; then 1,5,9,13; then 2,6,10,14; then 3,7,11,15 if ( partial ) { #pragma unroll for (int j=0; j < 4; j++) { if ( 4*ty + j + k*quarter_NB_X < partial ) { rA[j] = A[j*lda]; } else { rA[j] = MAGMA_C_ZERO; } } } else { #pragma unroll for (int j=0; j < 4; j++) { rA[j] = A[j*lda]; } } // 1) multiply 64x16 block A_{blk,jj} * x_jj // each thread does partial row rA(tx + 16*k, ty*4 + 16*k : ty*4 + 3 + 16*k) // 2) multiply 16x64 block A_{blk,jj} * x_blk, // storing each product Aji*xi to sA(j,i) #pragma unroll for (int j=0; j < 4; j++) { total += rA[j] * sx_jj[quarter_NB_X*k + ty*4 + j]; // y_blk = A_{blk,jj} * x_jj sA16(ty*4 + j, tx) = MAGMA_C_CONJ( rA[j] ) * sx_blk[tx]; // y_jj = A_{blk,jj}^H * x_blk } __syncthreads(); // do partial row sums for transposed 16x64 result // use 16x16 thread grid (tx4, ty4) instead of 64x4 (tx, ty) // sum sixteen 16x4 sections in parallel: // columns 0,4,8,...,60; then 1,5,...,61; then 2,6,...,62; then 3,7,...,63 psum_t = MAGMA_C_ZERO; #pragma unroll for (int j=0; j < 4; j++) { psum_t += sA16(tx4, ty4*4 + j); } __syncthreads(); // store partial row sums of transposed result, y_jj (locally) psums_t[k] = psum_t; // move right to next 64x16 block A += lda * quarter_NB_X; // A is A(blk_ind + tx, jj*NB_X + (k+1)*NB_X/4 + 4*ty) } // already at next 64x64 block // A is A(blk_ind + tx, (jj+1)*NB_x + 4*ty) // store partial row sums of transposed result, y_jj #pragma unroll for (int k=0; k < 4; k++) { sA16(tx4, ty4 + quarter_NB_X*k) = psums_t[k]; } __syncthreads(); // sum up partial row sums of transposed result, y_jj, and store final total to workspace // thread (tx4,ty4) where ty4 < 4 sums row tx4 + ty4*16 if ( ty4 < 4 && (partial == 0 || tx4 + ty4*quarter_NB_X < partial) ) { int ty4_nb4 = ty4*quarter_NB_X; psum_t = sA16(tx4, 0 + ty4_nb4) + sA16(tx4, 1 + ty4_nb4) + sA16(tx4, 2 + ty4_nb4) + sA16(tx4, 3 + ty4_nb4) + sA16(tx4, 4 + ty4_nb4) + sA16(tx4, 5 + ty4_nb4) + sA16(tx4, 6 + ty4_nb4) + sA16(tx4, 7 + ty4_nb4) + sA16(tx4, 8 + ty4_nb4) + sA16(tx4, 9 + ty4_nb4) + sA16(tx4, 10 + ty4_nb4) + sA16(tx4, 11 + ty4_nb4) + sA16(tx4, 12 + ty4_nb4) + sA16(tx4, 13 + ty4_nb4) + sA16(tx4, 14 + ty4_nb4) + sA16(tx4, 15 + ty4_nb4); work[jj*NB_X + tx4 + ty4_nb4] = psum_t; // store at work( jj*NB_X + tx4 + ty4*16, blk ) } __syncthreads(); } // store row sums sA16(ty, tx) = total; __syncthreads(); partial = (blk == gridDim.x - 1 ? (n % NB_X) : 0); // sum up final total, y_blk, for row tx if ( ty == 0 && (partial == 0 || tx < partial) ) { total = sA16(0, tx) + sA16(1, tx) + sA16(2, tx) + sA16(3, tx); work[blk*NB_X + tx] = total; // store at work( blk*NB_X + tx, blk ) } #endif /* PRECISION_[sdc] || (__CUDA_ARCH__ >= 200) */ } // end chemv_kernel_U /***************************************************************************//** Upper case, sum up final results Each block sums one block row; each thread sums one row. On input (for 3 blocks): [ (A11*x1 + A12*x2 + A13*x3) --- --- ] work = [ (A12^H*x1) (A22*x2 + A23*x3) --- ] [ (A13^H*x1) (A23^H*x2) (A33*x3) ] On output: [ (A11*x1 + A12*x2 + A13*x3) ] y = alpha*[ (A12^H*x1) + (A22*x2 + A23*x3) ] + beta*y [ (A13^H*x1) + (A23^H*x2) + (A33*x3) ] *******************************************************************************/ __global__ void chemv_kernel_U_sum( int n, magmaFloatComplex alpha, int lda, magmaFloatComplex beta, magmaFloatComplex * __restrict__ y, int incy, magmaFloatComplex const * __restrict__ work ) { int tx = threadIdx.x; int blk = blockIdx.x; int blk_ind = blk * NB_X; int ind = blk_ind + tx; // Don't write outside [0, ..., n) if ( ind < n ) { work += ind; magmaFloatComplex Ax = MAGMA_C_ZERO; for (int j = 0; j <= blk; ++j) { Ax += work[0]; work += lda; } y[ind * incy] = beta*y[ind * incy] + alpha*Ax; } }
b24c1b1d590b4ac4cabfa9ca8c9605bbea1d30f9.cu
/* -- MAGMA (version 2.2.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver @date November 2016 csymv_upper.cu is nearly identical to chemv_upper.cu, just change names and drop MAGMA_C_CONJ. chemv_kernel_U (upper) in chemv_upper.cu is very similar to chemv_kernel_L (lower) in chemv.cu; diff the two files to compare. @generated from magmablas/zhemv_upper.cu, normal z -> c, Sun Nov 20 20:20:28 2016 @author Mark Gates */ #include "magma_internal.h" #include "commonblas_c.h" #define PRECISION_c #define NB_X 64 #define NB_Y 4 #define bank_shift 33 #define quarter_NB_X 16 #define half_NB_X 32 /***************************************************************************//** Upper case, compute block multiply, work = A*x, for any size n: [ (A11*x1 + A12*x2 + A13*x3) --- --- ] [ A11 A12 A13 ] [ x1 ] work = [ (A12^H*x1) (A22*x2 + A23*x3) --- ] = [ A12^H A22 A23 ] * [ x2 ] [ (A13^H*x1) (A23^H*x2) (A33*x3) ] [ A13^H A23^H A33 ] [ x3 ] The order is different from the lower case, because the upper case processes a block row from the diagonal to the right, whereas the lower case processes a block row from the diagonal to the left. Uses a 64x4 thread block. For diagonal tiles, covers a 64x64 tile using three 32x32 tiles (plus one gets transposed). For off-diagonal tiles, covers a 64x64 tile using four 64x16 tiles. In both cases, each thread multiplies 4 elements. For rows past the bottom of the matrix, the A pointer is adjusted to be the last valid row of A, which multiple threads will read. Extra rows are ignored when saving results to work. Columns past the right edge are explicitly ignored when loading. x values past the bottom are set to zero, thus, extra columns are zeroed when multiplying. *******************************************************************************/ __global__ void chemv_kernel_U( int n, magmaFloatComplex const * __restrict__ A, int lda, magmaFloatComplex const * __restrict__ x, int incx, magmaFloatComplex * __restrict__ work) { #if defined(PRECISION_s) || defined(PRECISION_d) || defined(PRECISION_c) || (__CUDA_ARCH__ >= 200) // treats sA as 16x64 block #define sA16(i_, j_) (sA[(i_)][(j_)]) // i.e., sA[ (i_)*(NB_X+3) + (j_) ] // treats sA as 32x32 block #define sA32(i_, j_) (sA[0][(i_) + bank_shift*(j_)]) // 64x4 thread block const int tx = threadIdx.x; const int ty = threadIdx.y; const int blk = blockIdx.x; const int blk_ind = NB_X * blk; const int td = NB_X * ty + tx; // 32x8 thread block const int tx2 = td % half_NB_X; const int ty2 = td / half_NB_X; // If this blk has fewer than NB_X rows, partial is the number of valid rows, // so tx = 0, ..., partial-1 are valid rows, and tx >= partial are invalid. // Else, partial == 0. int partial = (blk == gridDim.x - 1 ? (n % NB_X) : 0); magmaFloatComplex psum, psum_t; magmaFloatComplex total = MAGMA_C_ZERO; // sA is used as a 32x32 block, sA32(i,j), // and as a 16x64 block, sA16(i,j), in different parts of the code. // sA must be at least half_NB_X*bank_shift = 32x33 = 1056; // quarter_NB_X*(NB_X + 2) = 16*(64 + 2) = 1056 __shared__ magmaFloatComplex sA [quarter_NB_X][NB_X + 3]; /* Why +3? seems it only needs +2. Does +3 reduce bank conflicts? */ __shared__ magmaFloatComplex sx_blk[NB_X]; // for x[ blk ] __shared__ magmaFloatComplex sx_jj [NB_X]; // for x[ jj ], which cycles over all blocks right of diag magmaFloatComplex rA[4]; magmaFloatComplex psums_t[4]; // -------------------- // load 64x1 block x(blk_ind + 0:63) into sx_blk x += (blk_ind + tx)*incx; // x is x(blk_ind + tx) if ( ty == 0 ) { if ( partial == 0 || tx < partial ) { sx_blk[tx] = x[0]; } else { sx_blk[tx] = MAGMA_C_ZERO; } } // -------------------- // move to block row work += blk*lda; // work is work(0, blk) A += blk_ind; // A is A(blk_ind, 0) A += ty2*lda + tx2; // A is A(blk_ind + tx2, ty2) // move to 32x32 diag block A += blk_ind*lda; // A is A(blk_ind + tx2, blk_ind + ty2) // load 32x32 diag block A(blk_ind + 0:31, blk_ind + 0:31) into sA, // as four 32x8 sections one after another: // columns 0:7, then 8:15, then 16:23, then 24:31 if ( partial ) { if ( tx2 >= partial ) { A = A - tx2 + (partial - 1); // A is A(blk_ind + partial-1, blk_ind + ty2), the bottom-most valid row } #pragma unroll for (int j=0; j < half_NB_X; j += 8) { if ( ty2+j < partial ) { sA32(tx2, ty2 + j) = A[j*lda]; } else { sA32(tx2, ty2 + j) = MAGMA_C_ZERO; } } if ( tx2 >= partial ) { A = A + tx2 - (partial - 1); // A is A(blk_ind + tx2, blk_ind + ty2) } } else { #pragma unroll for (int j=0; j < half_NB_X; j += 8) { sA32(tx2, ty2 + j) = A[j*lda]; } } __syncthreads(); // symmetrize 32x32 diag block, copying upper to lower triangle, // as four 32x8 sections in parallel: // columns 0,4,8,12,16,20,24,28; then 1,5,...,29; then 2,6,...,30, then 3,7,...,31 #pragma unroll for (int j=ty2*4; j < ty2*4 + 4; j++) { if ( j > tx2 ) { sA32(j, tx2) = MAGMA_C_CONJ( sA32(tx2, j) ); } } __syncthreads(); // multiply 32x32 diag block * x // each thread does partial row sA(tx2, ty2*4 : ty2*4 + 3) psum = MAGMA_C_ZERO; #pragma unroll for (int j=0; j < 4; j++) { psum += sA32(tx2, ty2*4 + j) * sx_blk[ty2*4 + j]; } __syncthreads(); // store partial row sums sA32(ty2, tx2) = psum; __syncthreads(); // sum up partial row sums, so thread (tx2,0) has total for row (blk_ind + tx2) if ( ty2 == 0 ) { total = sA32(0, tx2) + sA32(1, tx2) + sA32(2, tx2) + sA32(3, tx2) + sA32(4, tx2) + sA32(5, tx2) + sA32(6, tx2) + sA32(7, tx2); } __syncthreads(); // -------------------- // move to next 32x32 diag block, then repeat steps from first diag block A += half_NB_X + half_NB_X*lda; // A is A(blk_ind + NB/2 + tx2, blk_ind + NB/2 + ty2) // load 32x32 diag block A[block + 0:31, block + 0:31] into sA if ( partial ) { if ( tx2 + half_NB_X >= partial ) { A = A - (tx2 + half_NB_X) + (partial - 1); } #pragma unroll for (int j=0; j < half_NB_X; j += 8) { if ( ty2+j + half_NB_X < partial ) { sA32(tx2, ty2 + j) = A[j*lda]; } else { sA32(tx2, ty2 + j) = MAGMA_C_ZERO; } } if ( tx2 + half_NB_X >= partial ) { A = A + (tx2 + half_NB_X) - (partial - 1); } } else { #pragma unroll for (int j=0; j < half_NB_X; j += 8) { sA32(tx2, ty2 + j) = A[j*lda]; } } __syncthreads(); // symmetrize 32x32 diag block, copying upper to lower triangle #pragma unroll for (int j=ty2*4; j < ty2*4 + 4; j++) { if ( j > tx2 ) { sA32(j, tx2) = MAGMA_C_CONJ( sA32(tx2, j) ); } } __syncthreads(); // multiply 32x32 diag block * x psum = MAGMA_C_ZERO; #pragma unroll for (int j=0; j < 4; j++) { psum += sA32(tx2, ty2*4 + j) * sx_blk[half_NB_X + ty2*4 + j]; } __syncthreads(); // store partial row sums sA32(ty2, tx2) = psum; __syncthreads(); // sum up partial row sums, so thread (tx2,1) has total for row (blk_ind + NB/2 + tx2) if ( ty2 == 1 ) { total = sA32(0, tx2) + sA32(1, tx2) + sA32(2, tx2) + sA32(3, tx2) + sA32(4, tx2) + sA32(5, tx2) + sA32(6, tx2) + sA32(7, tx2); } __syncthreads(); // -------------------- // move to off-diag 32x32 block A -= half_NB_X; // A is A(blk_ind + tx2, blk_ind + NB/2 + ty2) // load 32x32 block of A into sA, // as four 32x8 sections one after another: // columns 0:7, then 8:15, then 16:23, then 24:31 if ( partial ) { if ( tx2 >= partial ) { A = A - (tx2) + (partial - 1); } #pragma unroll for (int j=0; j < half_NB_X; j += 8) { if ( ty2+j + half_NB_X < partial ) { sA32(tx2, ty2 + j) = A[j*lda]; } else { sA32(tx2, ty2 + j) = MAGMA_C_ZERO; } } if ( tx2 >= partial ) { A = A + (tx2) - (partial - 1); } } else { #pragma unroll for (int j=0; j < half_NB_X; j += 8) { sA32(tx2, ty2 + j) = A[j*lda]; } } __syncthreads(); // multiply 32x32 block (below diag) psum = MAGMA_C_ZERO; #pragma unroll for (int j=0; j < 4; j++) { psum += MAGMA_C_CONJ( sA32(ty2 + j*8, tx2) ) * sx_blk[j*8 + ty2]; } //__syncthreads(); // no sync needed here // multiply transposed 32x32 block (above diag) psum_t = MAGMA_C_ZERO; #pragma unroll for (int j=0; j < 4; j++) { psum_t += sA32(tx2, ty2*4 + j) * sx_blk[half_NB_X + ty2*4 + j]; } __syncthreads(); // store partial sums for non-transposed 32x32 block sA32(ty2, tx2) = psum; __syncthreads(); // sum up partial row sums, so thread (tx2,1) has total for row (blk_ind + NB/2 + tx2) if ( ty2 == 1 ) { total = total + sA32(0, tx2) + sA32(1, tx2) + sA32(2, tx2) + sA32(3, tx2) + sA32(4, tx2) + sA32(5, tx2) + sA32(6, tx2) + sA32(7, tx2); } __syncthreads(); // store partial sums for transposed 32x32 block sA32(ty2, tx2) = psum_t; __syncthreads(); // sum up partial row sums, so thread (tx2,0) has total for row (blk_ind + tx2) if ( ty2 == 0 ) { total = total + sA32(0, tx2) + sA32(1, tx2) + sA32(2, tx2) + sA32(3, tx2) + sA32(4, tx2) + sA32(5, tx2) + sA32(6, tx2) + sA32(7, tx2); } __syncthreads(); // -------------------- // move to next 64x64 block right of diag in block row, and // switch thread offset from (tx2,ty2) 32x8 block to (tx,ty) 64x4 block A += half_NB_X*lda; // A is A(blk_ind + tx2, blk_ind + NB_X + ty2 ) A -= ty2*lda + tx2; // A is A(blk_ind, blk_ind + NB_X ) A += 4*ty*lda + tx; // A is A(blk_ind + tx, blk_ind + 4*ty) // Unlike lower case, don't adjust A here for partial # of rows. // Since block is right of diagonal, it must have all NB rows, // but can have < NB columns, dealt with when loading below. x -= blk_ind*incx; // x is x(tx) // 16x16 thread block const int tx4 = td % quarter_NB_X; const int ty4 = td / quarter_NB_X; // cycle over blocks jj right of diagonal, in block row blk for (int jj=blk+1; jj < gridDim.x; ++jj) { partial = (jj == gridDim.x - 1 ? (n % NB_X) : 0); // load 64x1 block x(jj_ind + 0:63) into sx_jj if ( ty == 0 ) { if ( partial == 0 || tx < partial ) { sx_jj[tx] = x[jj*NB_X*incx]; } else { sx_jj[tx] = MAGMA_C_ZERO; } } __syncthreads(); for (int k=0; k < 4; k++) { // load 64x16 block of A into rA, 4 elements per thread, // as four 64x4 sections in parallel: // columns 0,4,8,12; then 1,5,9,13; then 2,6,10,14; then 3,7,11,15 if ( partial ) { #pragma unroll for (int j=0; j < 4; j++) { if ( 4*ty + j + k*quarter_NB_X < partial ) { rA[j] = A[j*lda]; } else { rA[j] = MAGMA_C_ZERO; } } } else { #pragma unroll for (int j=0; j < 4; j++) { rA[j] = A[j*lda]; } } // 1) multiply 64x16 block A_{blk,jj} * x_jj // each thread does partial row rA(tx + 16*k, ty*4 + 16*k : ty*4 + 3 + 16*k) // 2) multiply 16x64 block A_{blk,jj} * x_blk, // storing each product Aji*xi to sA(j,i) #pragma unroll for (int j=0; j < 4; j++) { total += rA[j] * sx_jj[quarter_NB_X*k + ty*4 + j]; // y_blk = A_{blk,jj} * x_jj sA16(ty*4 + j, tx) = MAGMA_C_CONJ( rA[j] ) * sx_blk[tx]; // y_jj = A_{blk,jj}^H * x_blk } __syncthreads(); // do partial row sums for transposed 16x64 result // use 16x16 thread grid (tx4, ty4) instead of 64x4 (tx, ty) // sum sixteen 16x4 sections in parallel: // columns 0,4,8,...,60; then 1,5,...,61; then 2,6,...,62; then 3,7,...,63 psum_t = MAGMA_C_ZERO; #pragma unroll for (int j=0; j < 4; j++) { psum_t += sA16(tx4, ty4*4 + j); } __syncthreads(); // store partial row sums of transposed result, y_jj (locally) psums_t[k] = psum_t; // move right to next 64x16 block A += lda * quarter_NB_X; // A is A(blk_ind + tx, jj*NB_X + (k+1)*NB_X/4 + 4*ty) } // already at next 64x64 block // A is A(blk_ind + tx, (jj+1)*NB_x + 4*ty) // store partial row sums of transposed result, y_jj #pragma unroll for (int k=0; k < 4; k++) { sA16(tx4, ty4 + quarter_NB_X*k) = psums_t[k]; } __syncthreads(); // sum up partial row sums of transposed result, y_jj, and store final total to workspace // thread (tx4,ty4) where ty4 < 4 sums row tx4 + ty4*16 if ( ty4 < 4 && (partial == 0 || tx4 + ty4*quarter_NB_X < partial) ) { int ty4_nb4 = ty4*quarter_NB_X; psum_t = sA16(tx4, 0 + ty4_nb4) + sA16(tx4, 1 + ty4_nb4) + sA16(tx4, 2 + ty4_nb4) + sA16(tx4, 3 + ty4_nb4) + sA16(tx4, 4 + ty4_nb4) + sA16(tx4, 5 + ty4_nb4) + sA16(tx4, 6 + ty4_nb4) + sA16(tx4, 7 + ty4_nb4) + sA16(tx4, 8 + ty4_nb4) + sA16(tx4, 9 + ty4_nb4) + sA16(tx4, 10 + ty4_nb4) + sA16(tx4, 11 + ty4_nb4) + sA16(tx4, 12 + ty4_nb4) + sA16(tx4, 13 + ty4_nb4) + sA16(tx4, 14 + ty4_nb4) + sA16(tx4, 15 + ty4_nb4); work[jj*NB_X + tx4 + ty4_nb4] = psum_t; // store at work( jj*NB_X + tx4 + ty4*16, blk ) } __syncthreads(); } // store row sums sA16(ty, tx) = total; __syncthreads(); partial = (blk == gridDim.x - 1 ? (n % NB_X) : 0); // sum up final total, y_blk, for row tx if ( ty == 0 && (partial == 0 || tx < partial) ) { total = sA16(0, tx) + sA16(1, tx) + sA16(2, tx) + sA16(3, tx); work[blk*NB_X + tx] = total; // store at work( blk*NB_X + tx, blk ) } #endif /* PRECISION_[sdc] || (__CUDA_ARCH__ >= 200) */ } // end chemv_kernel_U /***************************************************************************//** Upper case, sum up final results Each block sums one block row; each thread sums one row. On input (for 3 blocks): [ (A11*x1 + A12*x2 + A13*x3) --- --- ] work = [ (A12^H*x1) (A22*x2 + A23*x3) --- ] [ (A13^H*x1) (A23^H*x2) (A33*x3) ] On output: [ (A11*x1 + A12*x2 + A13*x3) ] y = alpha*[ (A12^H*x1) + (A22*x2 + A23*x3) ] + beta*y [ (A13^H*x1) + (A23^H*x2) + (A33*x3) ] *******************************************************************************/ __global__ void chemv_kernel_U_sum( int n, magmaFloatComplex alpha, int lda, magmaFloatComplex beta, magmaFloatComplex * __restrict__ y, int incy, magmaFloatComplex const * __restrict__ work ) { int tx = threadIdx.x; int blk = blockIdx.x; int blk_ind = blk * NB_X; int ind = blk_ind + tx; // Don't write outside [0, ..., n) if ( ind < n ) { work += ind; magmaFloatComplex Ax = MAGMA_C_ZERO; for (int j = 0; j <= blk; ++j) { Ax += work[0]; work += lda; } y[ind * incy] = beta*y[ind * incy] + alpha*Ax; } }
1c5f81e1576d267aa6b41f421b4a552d67466131.hip
// !!! This is a file automatically generated by hipify!!! #include <stdbool.h> #include <stdio.h> #include <string.h> #include <getopt.h> #include <hiprand/hiprand_kernel.h> #include <stdlib.h> #include <hip/hip_runtime.h> #include <sys/time.h> #include "sgemvn_kernel1_fermi.cu" #include<chrono> #include<iostream> using namespace std; using namespace std::chrono; int blocks_[20][2] = {{8,8},{16,16},{24,24},{32,32},{1,64},{1,128},{1,192},{1,256},{1,320},{1,384},{1,448},{1,512},{1,576},{1,640},{1,704},{1,768},{1,832},{1,896},{1,960},{1,1024}}; int matrices_[7][2] = {{240,240},{496,496},{784,784},{1016,1016},{1232,1232},{1680,1680},{2024,2024}}; int main(int argc, char **argv) { hipSetDevice(0); char* p;int matrix_len=strtol(argv[1], &p, 10); for(int matrix_looper=0;matrix_looper<matrix_len;matrix_looper++){ for(int block_looper=0;block_looper<20;block_looper++){ int XSIZE=matrices_[matrix_looper][0],YSIZE=matrices_[matrix_looper][1],BLOCKX=blocks_[block_looper][0],BLOCKY=blocks_[block_looper][1]; int n = XSIZE*YSIZE; int m = 2; int n1 = 1; float alpha = 2; float *A = NULL; hipMalloc(&A, XSIZE*YSIZE); int lda = 1; float *x = NULL; hipMalloc(&x, XSIZE*YSIZE); float *y = NULL; hipMalloc(&y, XSIZE*YSIZE); int iXSIZE= XSIZE; int iYSIZE= YSIZE; while(iXSIZE%BLOCKX!=0) { iXSIZE++; } while(iYSIZE%BLOCKY!=0) { iYSIZE++; } dim3 gridBlock(iXSIZE/BLOCKX, iYSIZE/BLOCKY); dim3 threadBlock(BLOCKX, BLOCKY); hipFree(0);hipLaunchKernelGGL(( sgemvn_kernel1_fermi), dim3(gridBlock),dim3(threadBlock), 0, 0, n,m,n1,alpha,A,lda,x,y); hipDeviceSynchronize(); for (int loop_counter = 0; loop_counter < 10; ++loop_counter) {hipLaunchKernelGGL(( sgemvn_kernel1_fermi), dim3(gridBlock),dim3(threadBlock), 0, 0, n,m,n1,alpha,A,lda,x,y); } auto start = steady_clock::now(); for (int loop_counter = 0; loop_counter < 1000; loop_counter++) {hipLaunchKernelGGL(( sgemvn_kernel1_fermi), dim3(gridBlock),dim3(threadBlock), 0, 0, n,m,n1,alpha,A,lda,x,y); } auto end = steady_clock::now(); auto usecs = duration_cast<duration<float, microseconds::period> >(end - start); cout <<'['<<usecs.count()<<','<<'('<<BLOCKX<<','<<BLOCKY<<')' << ','<<'('<<XSIZE<<','<<YSIZE<<')'<<']' << endl; } }}
1c5f81e1576d267aa6b41f421b4a552d67466131.cu
#include <stdbool.h> #include <stdio.h> #include <string.h> #include <getopt.h> #include <curand_kernel.h> #include <stdlib.h> #include <cuda.h> #include <sys/time.h> #include "sgemvn_kernel1_fermi.cu" #include<chrono> #include<iostream> using namespace std; using namespace std::chrono; int blocks_[20][2] = {{8,8},{16,16},{24,24},{32,32},{1,64},{1,128},{1,192},{1,256},{1,320},{1,384},{1,448},{1,512},{1,576},{1,640},{1,704},{1,768},{1,832},{1,896},{1,960},{1,1024}}; int matrices_[7][2] = {{240,240},{496,496},{784,784},{1016,1016},{1232,1232},{1680,1680},{2024,2024}}; int main(int argc, char **argv) { cudaSetDevice(0); char* p;int matrix_len=strtol(argv[1], &p, 10); for(int matrix_looper=0;matrix_looper<matrix_len;matrix_looper++){ for(int block_looper=0;block_looper<20;block_looper++){ int XSIZE=matrices_[matrix_looper][0],YSIZE=matrices_[matrix_looper][1],BLOCKX=blocks_[block_looper][0],BLOCKY=blocks_[block_looper][1]; int n = XSIZE*YSIZE; int m = 2; int n1 = 1; float alpha = 2; float *A = NULL; cudaMalloc(&A, XSIZE*YSIZE); int lda = 1; float *x = NULL; cudaMalloc(&x, XSIZE*YSIZE); float *y = NULL; cudaMalloc(&y, XSIZE*YSIZE); int iXSIZE= XSIZE; int iYSIZE= YSIZE; while(iXSIZE%BLOCKX!=0) { iXSIZE++; } while(iYSIZE%BLOCKY!=0) { iYSIZE++; } dim3 gridBlock(iXSIZE/BLOCKX, iYSIZE/BLOCKY); dim3 threadBlock(BLOCKX, BLOCKY); cudaFree(0); sgemvn_kernel1_fermi<<<gridBlock,threadBlock>>>(n,m,n1,alpha,A,lda,x,y); cudaDeviceSynchronize(); for (int loop_counter = 0; loop_counter < 10; ++loop_counter) { sgemvn_kernel1_fermi<<<gridBlock,threadBlock>>>(n,m,n1,alpha,A,lda,x,y); } auto start = steady_clock::now(); for (int loop_counter = 0; loop_counter < 1000; loop_counter++) { sgemvn_kernel1_fermi<<<gridBlock,threadBlock>>>(n,m,n1,alpha,A,lda,x,y); } auto end = steady_clock::now(); auto usecs = duration_cast<duration<float, microseconds::period> >(end - start); cout <<'['<<usecs.count()<<','<<'('<<BLOCKX<<','<<BLOCKY<<')' << ','<<'('<<XSIZE<<','<<YSIZE<<')'<<']' << endl; } }}
886540a4fe6c4042540760c459bc98d1401363a0.hip
// !!! This is a file automatically generated by hipify!!! /* * Copyright 1993-2015 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ /* * This application demonstrates how to use the CUDA API to use multiple GPUs, * with an emphasis on simple illustration of the techniques (not on performance). * * Note that in order to detect multiple GPUs in your system you have to disable * SLI in the nvidia control panel. Otherwise only one GPU is visible to the * application. On the other side, you can still extend your desktop to screens * attached to both GPUs. */ // System includes #include <stdio.h> #include <assert.h> #include <time.h> // CUDA runtime #include <hip/hip_runtime.h> // helper functions and utilities to work with CUDA #include "./common/helper_functions.h" #include "./common/helper_cuda.h" #include "./common/timer.h" #ifndef MAX #define MAX(a,b) (a > b ? a : b) #endif #include "simpleMultiGPU.h" //////////////////////////////////////////////////////////////////////////////// // Data configuration //////////////////////////////////////////////////////////////////////////////// const int MAX_GPU_COUNT = 32; const int DATA_N = 1048576 * 32; //////////////////////////////////////////////////////////////////////////////// // Simple reduction kernel. // Refer to the 'reduction' CUDA Sample describing // reduction optimization strategies //////////////////////////////////////////////////////////////////////////////// __global__ static void reduceKernel(float *d_Result, float *d_Input, int N) { const int tid = blockIdx.x * blockDim.x + threadIdx.x; const int threadN = gridDim.x * blockDim.x; float sum = 0; for (int pos = tid; pos < N; pos += threadN) sum += d_Input[pos]; d_Result[tid] = sum; } //////////////////////////////////////////////////////////////////////////////// // Program main //////////////////////////////////////////////////////////////////////////////// int main(int argc, char **argv) { //Solver config TGPUplan plan[MAX_GPU_COUNT]; //GPU reduction results float h_SumGPU[MAX_GPU_COUNT]; float sumGPU; double sumCPU, diff; int i, j, gpuBase, GPU_N; const int BLOCK_N = 32; const int THREAD_N = 256; const int ACCUM_N = BLOCK_N * THREAD_N; printf("Starting simpleMultiGPU\n"); checkCudaErrors(hipGetDeviceCount(&GPU_N)); if (GPU_N > MAX_GPU_COUNT) { GPU_N = MAX_GPU_COUNT; } printf("CUDA-capable device count: %i\n", GPU_N); printf("Generating input data...\n\n"); //Subdividing input data across GPUs //Get data sizes for each GPU for (i = 0; i < GPU_N; i++) { plan[i].dataN = DATA_N / GPU_N; } //Take into account "odd" data sizes for (i = 0; i < DATA_N % GPU_N; i++) { plan[i].dataN++; } //Assign data ranges to GPUs gpuBase = 0; for (i = 0; i < GPU_N; i++) { plan[i].h_Sum = h_SumGPU + i; gpuBase += plan[i].dataN; } //Create streams for issuing GPU command asynchronously and allocate memory (GPU and System page-locked) for (i = 0; i < GPU_N; i++) { checkCudaErrors(hipSetDevice(i)); checkCudaErrors(hipStreamCreate(&plan[i].stream)); //Allocate memory checkCudaErrors(hipMalloc((void **)&plan[i].d_Data, plan[i].dataN * sizeof(float))); checkCudaErrors(hipMalloc((void **)&plan[i].d_Sum, ACCUM_N * sizeof(float))); checkCudaErrors(hipHostMalloc((void **)&plan[i].h_Sum_from_device, ACCUM_N * sizeof(float))); checkCudaErrors(hipHostMalloc((void **)&plan[i].h_Data, plan[i].dataN * sizeof(float))); for (j = 0; j < plan[i].dataN; j++) { plan[i].h_Data[j] = (float)rand() / (float)RAND_MAX; } } //Start timing and compute on GPU(s) printf("Computing with %d GPUs...\n", GPU_N); StartTimer(); //Copy data to GPU, launch the kernel and copy data back. All asynchronously for (i = 0; i < GPU_N; i++) { //Set device checkCudaErrors(hipSetDevice(i)); //Copy input data from CPU checkCudaErrors(hipMemcpyAsync(plan[i].d_Data, plan[i].h_Data, plan[i].dataN * sizeof(float), hipMemcpyHostToDevice, plan[i].stream)); //Perform GPU computations hipLaunchKernelGGL(( reduceKernel), dim3(BLOCK_N), dim3(THREAD_N), 0, plan[i].stream, plan[i].d_Sum, plan[i].d_Data, plan[i].dataN); getLastCudaError("reduceKernel() execution failed.\n"); //Read back GPU results checkCudaErrors(hipMemcpyAsync(plan[i].h_Sum_from_device, plan[i].d_Sum, ACCUM_N *sizeof(float), hipMemcpyDeviceToHost, plan[i].stream)); } //Process GPU results for (i = 0; i < GPU_N; i++) { float sum; //Set device checkCudaErrors(hipSetDevice(i)); //Wait for all operations to finish hipStreamSynchronize(plan[i].stream); //Finalize GPU reduction for current subvector sum = 0; for (j = 0; j < ACCUM_N; j++) { sum += plan[i].h_Sum_from_device[j]; } *(plan[i].h_Sum) = (float)sum; //Shut down this GPU checkCudaErrors(hipHostFree(plan[i].h_Sum_from_device)); checkCudaErrors(hipFree(plan[i].d_Sum)); checkCudaErrors(hipFree(plan[i].d_Data)); checkCudaErrors(hipStreamDestroy(plan[i].stream)); } sumGPU = 0; for (i = 0; i < GPU_N; i++) { sumGPU += h_SumGPU[i]; } printf(" GPU Processing time: %f (ms)\n\n", GetTimer()); // Compute on Host CPU printf("Computing with Host CPU...\n\n"); struct timespec cpu_start, cpu_stop; clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &cpu_start); sumCPU = 0; for (i = 0; i < GPU_N; i++) { for (j = 0; j < plan[i].dataN; j++) { sumCPU += plan[i].h_Data[j]; } } clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &cpu_stop); double result = (cpu_stop.tv_sec - cpu_start.tv_sec) * 1e3 + (cpu_stop.tv_nsec - cpu_start.tv_nsec) / 1e6; printf( "cpu execution time: %3.1f ms\n", result); // Compare GPU and CPU results printf("Comparing GPU and Host CPU results...\n"); diff = fabs(sumCPU - sumGPU) / fabs(sumCPU); printf(" GPU sum: %f\n CPU sum: %f\n", sumGPU, sumCPU); printf(" Relative difference: %E \n\n", diff); // Cleanup and shutdown for (i = 0; i < GPU_N; i++) { checkCudaErrors(hipSetDevice(i)); checkCudaErrors(hipHostFree(plan[i].h_Data)); } exit((diff < 1e-5) ? EXIT_SUCCESS : EXIT_FAILURE); }
886540a4fe6c4042540760c459bc98d1401363a0.cu
/* * Copyright 1993-2015 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ /* * This application demonstrates how to use the CUDA API to use multiple GPUs, * with an emphasis on simple illustration of the techniques (not on performance). * * Note that in order to detect multiple GPUs in your system you have to disable * SLI in the nvidia control panel. Otherwise only one GPU is visible to the * application. On the other side, you can still extend your desktop to screens * attached to both GPUs. */ // System includes #include <stdio.h> #include <assert.h> #include <time.h> // CUDA runtime #include <cuda_runtime.h> // helper functions and utilities to work with CUDA #include "./common/helper_functions.h" #include "./common/helper_cuda.h" #include "./common/timer.h" #ifndef MAX #define MAX(a,b) (a > b ? a : b) #endif #include "simpleMultiGPU.h" //////////////////////////////////////////////////////////////////////////////// // Data configuration //////////////////////////////////////////////////////////////////////////////// const int MAX_GPU_COUNT = 32; const int DATA_N = 1048576 * 32; //////////////////////////////////////////////////////////////////////////////// // Simple reduction kernel. // Refer to the 'reduction' CUDA Sample describing // reduction optimization strategies //////////////////////////////////////////////////////////////////////////////// __global__ static void reduceKernel(float *d_Result, float *d_Input, int N) { const int tid = blockIdx.x * blockDim.x + threadIdx.x; const int threadN = gridDim.x * blockDim.x; float sum = 0; for (int pos = tid; pos < N; pos += threadN) sum += d_Input[pos]; d_Result[tid] = sum; } //////////////////////////////////////////////////////////////////////////////// // Program main //////////////////////////////////////////////////////////////////////////////// int main(int argc, char **argv) { //Solver config TGPUplan plan[MAX_GPU_COUNT]; //GPU reduction results float h_SumGPU[MAX_GPU_COUNT]; float sumGPU; double sumCPU, diff; int i, j, gpuBase, GPU_N; const int BLOCK_N = 32; const int THREAD_N = 256; const int ACCUM_N = BLOCK_N * THREAD_N; printf("Starting simpleMultiGPU\n"); checkCudaErrors(cudaGetDeviceCount(&GPU_N)); if (GPU_N > MAX_GPU_COUNT) { GPU_N = MAX_GPU_COUNT; } printf("CUDA-capable device count: %i\n", GPU_N); printf("Generating input data...\n\n"); //Subdividing input data across GPUs //Get data sizes for each GPU for (i = 0; i < GPU_N; i++) { plan[i].dataN = DATA_N / GPU_N; } //Take into account "odd" data sizes for (i = 0; i < DATA_N % GPU_N; i++) { plan[i].dataN++; } //Assign data ranges to GPUs gpuBase = 0; for (i = 0; i < GPU_N; i++) { plan[i].h_Sum = h_SumGPU + i; gpuBase += plan[i].dataN; } //Create streams for issuing GPU command asynchronously and allocate memory (GPU and System page-locked) for (i = 0; i < GPU_N; i++) { checkCudaErrors(cudaSetDevice(i)); checkCudaErrors(cudaStreamCreate(&plan[i].stream)); //Allocate memory checkCudaErrors(cudaMalloc((void **)&plan[i].d_Data, plan[i].dataN * sizeof(float))); checkCudaErrors(cudaMalloc((void **)&plan[i].d_Sum, ACCUM_N * sizeof(float))); checkCudaErrors(cudaMallocHost((void **)&plan[i].h_Sum_from_device, ACCUM_N * sizeof(float))); checkCudaErrors(cudaMallocHost((void **)&plan[i].h_Data, plan[i].dataN * sizeof(float))); for (j = 0; j < plan[i].dataN; j++) { plan[i].h_Data[j] = (float)rand() / (float)RAND_MAX; } } //Start timing and compute on GPU(s) printf("Computing with %d GPUs...\n", GPU_N); StartTimer(); //Copy data to GPU, launch the kernel and copy data back. All asynchronously for (i = 0; i < GPU_N; i++) { //Set device checkCudaErrors(cudaSetDevice(i)); //Copy input data from CPU checkCudaErrors(cudaMemcpyAsync(plan[i].d_Data, plan[i].h_Data, plan[i].dataN * sizeof(float), cudaMemcpyHostToDevice, plan[i].stream)); //Perform GPU computations reduceKernel<<<BLOCK_N, THREAD_N, 0, plan[i].stream>>>(plan[i].d_Sum, plan[i].d_Data, plan[i].dataN); getLastCudaError("reduceKernel() execution failed.\n"); //Read back GPU results checkCudaErrors(cudaMemcpyAsync(plan[i].h_Sum_from_device, plan[i].d_Sum, ACCUM_N *sizeof(float), cudaMemcpyDeviceToHost, plan[i].stream)); } //Process GPU results for (i = 0; i < GPU_N; i++) { float sum; //Set device checkCudaErrors(cudaSetDevice(i)); //Wait for all operations to finish cudaStreamSynchronize(plan[i].stream); //Finalize GPU reduction for current subvector sum = 0; for (j = 0; j < ACCUM_N; j++) { sum += plan[i].h_Sum_from_device[j]; } *(plan[i].h_Sum) = (float)sum; //Shut down this GPU checkCudaErrors(cudaFreeHost(plan[i].h_Sum_from_device)); checkCudaErrors(cudaFree(plan[i].d_Sum)); checkCudaErrors(cudaFree(plan[i].d_Data)); checkCudaErrors(cudaStreamDestroy(plan[i].stream)); } sumGPU = 0; for (i = 0; i < GPU_N; i++) { sumGPU += h_SumGPU[i]; } printf(" GPU Processing time: %f (ms)\n\n", GetTimer()); // Compute on Host CPU printf("Computing with Host CPU...\n\n"); struct timespec cpu_start, cpu_stop; clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &cpu_start); sumCPU = 0; for (i = 0; i < GPU_N; i++) { for (j = 0; j < plan[i].dataN; j++) { sumCPU += plan[i].h_Data[j]; } } clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &cpu_stop); double result = (cpu_stop.tv_sec - cpu_start.tv_sec) * 1e3 + (cpu_stop.tv_nsec - cpu_start.tv_nsec) / 1e6; printf( "cpu execution time: %3.1f ms\n", result); // Compare GPU and CPU results printf("Comparing GPU and Host CPU results...\n"); diff = fabs(sumCPU - sumGPU) / fabs(sumCPU); printf(" GPU sum: %f\n CPU sum: %f\n", sumGPU, sumCPU); printf(" Relative difference: %E \n\n", diff); // Cleanup and shutdown for (i = 0; i < GPU_N; i++) { checkCudaErrors(cudaSetDevice(i)); checkCudaErrors(cudaFreeHost(plan[i].h_Data)); } exit((diff < 1e-5) ? EXIT_SUCCESS : EXIT_FAILURE); }
4245a196ce549f75ed0279e03284f29630ea3a0b.hip
// !!! This is a file automatically generated by hipify!!! #include <hip/hip_runtime.h> #include <hip/hip_fp16.h> #include <hip/hip_runtime.h> #include <ATen/hip/HIPContext.h> #include <torch/torch.h> #include <algorithm> #include <stdexcept> #include <stdint.h> #include <cstdio> #define CHECK_CUDA(x) TORCH_CHECK(x.device().is_cuda(), #x " must be a CUDA tensor") #define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be a contiguous tensor") #define CHECK_IS_INT(x) TORCH_CHECK(x.scalar_type() == at::ScalarType::Int, #x " must be an int tensor") #define CHECK_IS_FLOATING(x) TORCH_CHECK(x.scalar_type() == at::ScalarType::Float || x.scalar_type() == at::ScalarType::Half || x.scalar_type() == at::ScalarType::Double, #x " must be a floating tensor") // just for compatability of half precision in AT_DISPATCH_FLOATING_TYPES_AND_HALF... static inline __device__ at::Half atomicAdd(at::Half *address, at::Half val) { // requires CUDA >= 10 and ARCH >= 70 // this is very slow compared to float or __half2, and never used. //return atomicAdd(reinterpret_cast<__half*>(address), val); } template <typename T> static inline __host__ __device__ T div_round_up(T val, T divisor) { return (val + divisor - 1) / divisor; } template <uint32_t D> __device__ uint32_t fast_hash(const uint32_t pos_grid[D]) { static_assert(D <= 7, "fast_hash can only hash up to 7 dimensions."); // While 1 is technically not a good prime for hashing (or a prime at all), it helps memory coherence // and is sufficient for our use case of obtaining a uniformly colliding index from high-dimensional // coordinates. constexpr uint32_t primes[7] = { 1, 2654435761, 805459861, 3674653429, 2097192037, 1434869437, 2165219737 }; uint32_t result = 0; #pragma unroll for (uint32_t i = 0; i < D; ++i) { result ^= pos_grid[i] * primes[i]; } return result; } template <uint32_t D, uint32_t C> __device__ uint32_t get_grid_index(const uint32_t gridtype, const bool align_corners, const uint32_t ch, const uint32_t hashmap_size, const uint32_t resolution, const uint32_t pos_grid[D]) { uint32_t stride = 1; uint32_t index = 0; #pragma unroll for (uint32_t d = 0; d < D && stride <= hashmap_size; d++) { index += pos_grid[d] * stride; stride *= align_corners ? resolution: (resolution + 1); } // NOTE: for NeRF, the hash is in fact not necessary. Check https://github.com/NVlabs/instant-ngp/issues/97. // gridtype: 0 == hash, 1 == tiled if (gridtype == 0 && stride > hashmap_size) { index = fast_hash<D>(pos_grid); } return (index % hashmap_size) * C + ch; } template <typename scalar_t, uint32_t D, uint32_t C> __global__ void kernel_grid( const float * __restrict__ inputs, const scalar_t * __restrict__ grid, const int * __restrict__ offsets, scalar_t * __restrict__ outputs, const uint32_t B, const uint32_t L, const float S, const uint32_t H, const bool calc_grad_inputs, scalar_t * __restrict__ dy_dx, const uint32_t gridtype, const bool align_corners ) { const uint32_t b = blockIdx.x * blockDim.x + threadIdx.x; if (b >= B) return; const uint32_t level = blockIdx.y; // locate grid += (uint32_t)offsets[level] * C; inputs += b * D; outputs += level * B * C + b * C; // check input range (should be in [0, 1]) bool flag_oob = false; #pragma unroll for (uint32_t d = 0; d < D; d++) { if (inputs[d] < 0 || inputs[d] > 1) { flag_oob = true; } } // if input out of bound, just set output to 0 if (flag_oob) { #pragma unroll for (uint32_t ch = 0; ch < C; ch++) { outputs[ch] = 0; } if (calc_grad_inputs) { dy_dx += b * D * L * C + level * D * C; // B L D C #pragma unroll for (uint32_t d = 0; d < D; d++) { #pragma unroll for (uint32_t ch = 0; ch < C; ch++) { dy_dx[d * C + ch] = 0; } } } return; } const uint32_t hashmap_size = offsets[level + 1] - offsets[level]; const float scale = exp2f(level * S) * H - 1.0f; const uint32_t resolution = (uint32_t)ceil(scale) + 1; // calculate coordinate float pos[D]; uint32_t pos_grid[D]; #pragma unroll for (uint32_t d = 0; d < D; d++) { pos[d] = inputs[d] * scale + (align_corners ? 0.0f : 0.5f); pos_grid[d] = floorf(pos[d]); pos[d] -= (float)pos_grid[d]; } //printf("[b=%d, l=%d] pos=(%f, %f)+(%d, %d)\n", b, level, pos[0], pos[1], pos_grid[0], pos_grid[1]); // interpolate scalar_t results[C] = {0}; // temp results in register #pragma unroll for (uint32_t idx = 0; idx < (1 << D); idx++) { float w = 1; uint32_t pos_grid_local[D]; #pragma unroll for (uint32_t d = 0; d < D; d++) { if ((idx & (1 << d)) == 0) { w *= 1 - pos[d]; pos_grid_local[d] = pos_grid[d]; } else { w *= pos[d]; pos_grid_local[d] = pos_grid[d] + 1; } } uint32_t index = get_grid_index<D, C>(gridtype, align_corners, 0, hashmap_size, resolution, pos_grid_local); // writing to register (fast) #pragma unroll for (uint32_t ch = 0; ch < C; ch++) { results[ch] += w * grid[index + ch]; } //printf("[b=%d, l=%d] int %d, idx %d, w %f, val %f\n", b, level, idx, index, w, grid[index]); } // writing to global memory (slow) #pragma unroll for (uint32_t ch = 0; ch < C; ch++) { outputs[ch] = results[ch]; } // prepare dy_dx for calc_grad_inputs // differentiable (soft) indexing: https://discuss.pytorch.org/t/differentiable-indexing/17647/9 if (calc_grad_inputs) { dy_dx += b * D * L * C + level * D * C; // B L D C #pragma unroll for (uint32_t gd = 0; gd < D; gd++) { scalar_t results_grad[C] = {0}; #pragma unroll for (uint32_t idx = 0; idx < (1 << (D - 1)); idx++) { float w = scale; uint32_t pos_grid_local[D]; #pragma unroll for (uint32_t nd = 0; nd < D - 1; nd++) { const uint32_t d = (nd >= gd) ? (nd + 1) : nd; if ((idx & (1 << nd)) == 0) { w *= 1 - pos[d]; pos_grid_local[d] = pos_grid[d]; } else { w *= pos[d]; pos_grid_local[d] = pos_grid[d] + 1; } } pos_grid_local[gd] = pos_grid[gd]; uint32_t index_left = get_grid_index<D, C>(gridtype, align_corners, 0, hashmap_size, resolution, pos_grid_local); pos_grid_local[gd] = pos_grid[gd] + 1; uint32_t index_right = get_grid_index<D, C>(gridtype, align_corners, 0, hashmap_size, resolution, pos_grid_local); #pragma unroll for (uint32_t ch = 0; ch < C; ch++) { results_grad[ch] += w * (grid[index_right + ch] - grid[index_left + ch]); } } #pragma unroll for (uint32_t ch = 0; ch < C; ch++) { dy_dx[gd * C + ch] = results_grad[ch]; } } } } template <typename scalar_t, uint32_t D, uint32_t C, uint32_t N_C> __global__ void kernel_grid_backward( const scalar_t * __restrict__ grad, const float * __restrict__ inputs, const scalar_t * __restrict__ grid, const int * __restrict__ offsets, scalar_t * __restrict__ grad_grid, const uint32_t B, const uint32_t L, const float S, const uint32_t H, const uint32_t gridtype, const bool align_corners ) { const uint32_t b = (blockIdx.x * blockDim.x + threadIdx.x) * N_C / C; if (b >= B) return; const uint32_t level = blockIdx.y; const uint32_t ch = (blockIdx.x * blockDim.x + threadIdx.x) * N_C - b * C; // locate grad_grid += offsets[level] * C; inputs += b * D; grad += level * B * C + b * C + ch; // L, B, C const uint32_t hashmap_size = offsets[level + 1] - offsets[level]; const float scale = exp2f(level * S) * H - 1.0f; const uint32_t resolution = (uint32_t)ceil(scale) + 1; // check input range (should be in [0, 1]) #pragma unroll for (uint32_t d = 0; d < D; d++) { if (inputs[d] < 0 || inputs[d] > 1) { return; // grad is init as 0, so we simply return. } } // calculate coordinate float pos[D]; uint32_t pos_grid[D]; #pragma unroll for (uint32_t d = 0; d < D; d++) { pos[d] = inputs[d] * scale + (align_corners ? 0.0f : 0.5f); pos_grid[d] = floorf(pos[d]); pos[d] -= (float)pos_grid[d]; } scalar_t grad_cur[N_C] = {0}; // fetch to register #pragma unroll for (uint32_t c = 0; c < N_C; c++) { grad_cur[c] = grad[c]; } // interpolate #pragma unroll for (uint32_t idx = 0; idx < (1 << D); idx++) { float w = 1; uint32_t pos_grid_local[D]; #pragma unroll for (uint32_t d = 0; d < D; d++) { if ((idx & (1 << d)) == 0) { w *= 1 - pos[d]; pos_grid_local[d] = pos_grid[d]; } else { w *= pos[d]; pos_grid_local[d] = pos_grid[d] + 1; } } uint32_t index = get_grid_index<D, C>(gridtype, align_corners, ch, hashmap_size, resolution, pos_grid_local); // atomicAdd for __half is slow (especially for large values), so we use __half2 if N_C % 2 == 0 // TODO: use float which is better than __half, if N_C % 2 != 0 if (std::is_same<scalar_t, at::Half>::value && N_C % 2 == 0) { #pragma unroll for (uint32_t c = 0; c < N_C; c += 2) { // process two __half at once (by interpreting as a __half2) __half2 v = {(__half)(w * grad_cur[c]), (__half)(w * grad_cur[c + 1])}; atomicAdd((__half2*)&grad_grid[index + c], v); } // float, or __half when N_C % 2 != 0 (which means C == 1) } else { #pragma unroll for (uint32_t c = 0; c < N_C; c++) { atomicAdd((float*)&grad_grid[index + c], (float)(w * grad_cur[c])); } } } } template <typename scalar_t, uint32_t D, uint32_t C> __global__ void kernel_input_backward( const scalar_t * __restrict__ grad, const scalar_t * __restrict__ dy_dx, scalar_t * __restrict__ grad_inputs, uint32_t B, uint32_t L ) { const uint32_t t = threadIdx.x + blockIdx.x * blockDim.x; if (t >= B * D) return; const uint32_t b = t / D; const uint32_t d = t - b * D; dy_dx += b * L * D * C; scalar_t result = 0; # pragma unroll for (int l = 0; l < L; l++) { # pragma unroll for (int ch = 0; ch < C; ch++) { result += grad[l * B * C + b * C + ch] * dy_dx[l * D * C + d * C + ch]; } } grad_inputs[t] = result; } template <typename scalar_t, uint32_t D> void kernel_grid_wrapper(const float *inputs, const scalar_t *embeddings, const int *offsets, scalar_t *outputs, const uint32_t B, const uint32_t C, const uint32_t L, const float S, const uint32_t H, const bool calc_grad_inputs, scalar_t *dy_dx, const uint32_t gridtype, const bool align_corners) { static constexpr uint32_t N_THREAD = 512; const dim3 blocks_hashgrid = { div_round_up(B, N_THREAD), L, 1 }; switch (C) { case 1:hipLaunchKernelGGL(( kernel_grid<scalar_t, D, 1>), dim3(blocks_hashgrid), dim3(N_THREAD), 0, 0, inputs, embeddings, offsets, outputs, B, L, S, H, calc_grad_inputs, dy_dx, gridtype, align_corners); break; case 2:hipLaunchKernelGGL(( kernel_grid<scalar_t, D, 2>), dim3(blocks_hashgrid), dim3(N_THREAD), 0, 0, inputs, embeddings, offsets, outputs, B, L, S, H, calc_grad_inputs, dy_dx, gridtype, align_corners); break; case 4:hipLaunchKernelGGL(( kernel_grid<scalar_t, D, 4>), dim3(blocks_hashgrid), dim3(N_THREAD), 0, 0, inputs, embeddings, offsets, outputs, B, L, S, H, calc_grad_inputs, dy_dx, gridtype, align_corners); break; case 8:hipLaunchKernelGGL(( kernel_grid<scalar_t, D, 8>), dim3(blocks_hashgrid), dim3(N_THREAD), 0, 0, inputs, embeddings, offsets, outputs, B, L, S, H, calc_grad_inputs, dy_dx, gridtype, align_corners); break; default: throw std::runtime_error{"GridEncoding: C must be 1, 2, 4, or 8."}; } } // inputs: [B, D], float, in [0, 1] // embeddings: [sO, C], float // offsets: [L + 1], uint32_t // outputs: [L, B, C], float (L first, so only one level of hashmap needs to fit into cache at a time.) // H: base resolution // dy_dx: [B, L * D * C] template <typename scalar_t> void grid_encode_forward_cuda(const float *inputs, const scalar_t *embeddings, const int *offsets, scalar_t *outputs, const uint32_t B, const uint32_t D, const uint32_t C, const uint32_t L, const float S, const uint32_t H, const bool calc_grad_inputs, scalar_t *dy_dx, const uint32_t gridtype, const bool align_corners) { switch (D) { case 1: kernel_grid_wrapper<scalar_t, 1>(inputs, embeddings, offsets, outputs, B, C, L, S, H, calc_grad_inputs, dy_dx, gridtype, align_corners); break; case 2: kernel_grid_wrapper<scalar_t, 2>(inputs, embeddings, offsets, outputs, B, C, L, S, H, calc_grad_inputs, dy_dx, gridtype, align_corners); break; case 3: kernel_grid_wrapper<scalar_t, 3>(inputs, embeddings, offsets, outputs, B, C, L, S, H, calc_grad_inputs, dy_dx, gridtype, align_corners); break; case 4: kernel_grid_wrapper<scalar_t, 4>(inputs, embeddings, offsets, outputs, B, C, L, S, H, calc_grad_inputs, dy_dx, gridtype, align_corners); break; case 5: kernel_grid_wrapper<scalar_t, 5>(inputs, embeddings, offsets, outputs, B, C, L, S, H, calc_grad_inputs, dy_dx, gridtype, align_corners); break; default: throw std::runtime_error{"GridEncoding: D must be 1, 2, 3, 4, or 5."}; } } template <typename scalar_t, uint32_t D> void kernel_grid_backward_wrapper(const scalar_t *grad, const float *inputs, const scalar_t *embeddings, const int *offsets, scalar_t *grad_embeddings, const uint32_t B, const uint32_t C, const uint32_t L, const float S, const uint32_t H, const bool calc_grad_inputs, scalar_t *dy_dx, scalar_t *grad_inputs, const uint32_t gridtype, const bool align_corners) { static constexpr uint32_t N_THREAD = 256; const uint32_t N_C = ::min(2u, C); // n_features_per_thread const dim3 blocks_hashgrid = { div_round_up(B * C / N_C, N_THREAD), L, 1 }; switch (C) { case 1: hipLaunchKernelGGL(( kernel_grid_backward<scalar_t, D, 1, 1>), dim3(blocks_hashgrid), dim3(N_THREAD), 0, 0, grad, inputs, embeddings, offsets, grad_embeddings, B, L, S, H, gridtype, align_corners); if (calc_grad_inputs)hipLaunchKernelGGL(( kernel_input_backward<scalar_t, D, 1>), dim3(div_round_up(B * D, N_THREAD)), dim3(N_THREAD), 0, 0, grad, dy_dx, grad_inputs, B, L); break; case 2: hipLaunchKernelGGL(( kernel_grid_backward<scalar_t, D, 2, 2>), dim3(blocks_hashgrid), dim3(N_THREAD), 0, 0, grad, inputs, embeddings, offsets, grad_embeddings, B, L, S, H, gridtype, align_corners); if (calc_grad_inputs)hipLaunchKernelGGL(( kernel_input_backward<scalar_t, D, 2>), dim3(div_round_up(B * D, N_THREAD)), dim3(N_THREAD), 0, 0, grad, dy_dx, grad_inputs, B, L); break; case 4: hipLaunchKernelGGL(( kernel_grid_backward<scalar_t, D, 4, 2>), dim3(blocks_hashgrid), dim3(N_THREAD), 0, 0, grad, inputs, embeddings, offsets, grad_embeddings, B, L, S, H, gridtype, align_corners); if (calc_grad_inputs)hipLaunchKernelGGL(( kernel_input_backward<scalar_t, D, 4>), dim3(div_round_up(B * D, N_THREAD)), dim3(N_THREAD), 0, 0, grad, dy_dx, grad_inputs, B, L); break; case 8: hipLaunchKernelGGL(( kernel_grid_backward<scalar_t, D, 8, 2>), dim3(blocks_hashgrid), dim3(N_THREAD), 0, 0, grad, inputs, embeddings, offsets, grad_embeddings, B, L, S, H, gridtype, align_corners); if (calc_grad_inputs)hipLaunchKernelGGL(( kernel_input_backward<scalar_t, D, 8>), dim3(div_round_up(B * D, N_THREAD)), dim3(N_THREAD), 0, 0, grad, dy_dx, grad_inputs, B, L); break; default: throw std::runtime_error{"GridEncoding: C must be 1, 2, 4, or 8."}; } } // grad: [L, B, C], float // inputs: [B, D], float, in [0, 1] // embeddings: [sO, C], float // offsets: [L + 1], uint32_t // grad_embeddings: [sO, C] // H: base resolution template <typename scalar_t> void grid_encode_backward_cuda(const scalar_t *grad, const float *inputs, const scalar_t *embeddings, const int *offsets, scalar_t *grad_embeddings, const uint32_t B, const uint32_t D, const uint32_t C, const uint32_t L, const float S, const uint32_t H, const bool calc_grad_inputs, scalar_t *dy_dx, scalar_t *grad_inputs, const uint32_t gridtype, const bool align_corners) { switch (D) { case 1: kernel_grid_backward_wrapper<scalar_t, 1>(grad, inputs, embeddings, offsets, grad_embeddings, B, C, L, S, H, calc_grad_inputs, dy_dx, grad_inputs, gridtype, align_corners); break; case 2: kernel_grid_backward_wrapper<scalar_t, 2>(grad, inputs, embeddings, offsets, grad_embeddings, B, C, L, S, H, calc_grad_inputs, dy_dx, grad_inputs, gridtype, align_corners); break; case 3: kernel_grid_backward_wrapper<scalar_t, 3>(grad, inputs, embeddings, offsets, grad_embeddings, B, C, L, S, H, calc_grad_inputs, dy_dx, grad_inputs, gridtype, align_corners); break; case 4: kernel_grid_backward_wrapper<scalar_t, 4>(grad, inputs, embeddings, offsets, grad_embeddings, B, C, L, S, H, calc_grad_inputs, dy_dx, grad_inputs, gridtype, align_corners); break; case 5: kernel_grid_backward_wrapper<scalar_t, 5>(grad, inputs, embeddings, offsets, grad_embeddings, B, C, L, S, H, calc_grad_inputs, dy_dx, grad_inputs, gridtype, align_corners); break; default: throw std::runtime_error{"GridEncoding: D must be 1, 2, 3, 4, or 5."}; } } void grid_encode_forward(const at::Tensor inputs, const at::Tensor embeddings, const at::Tensor offsets, at::Tensor outputs, const uint32_t B, const uint32_t D, const uint32_t C, const uint32_t L, const float S, const uint32_t H, const bool calc_grad_inputs, at::Tensor dy_dx, const uint32_t gridtype, const bool align_corners) { CHECK_CUDA(inputs); CHECK_CUDA(embeddings); CHECK_CUDA(offsets); CHECK_CUDA(outputs); CHECK_CUDA(dy_dx); CHECK_CONTIGUOUS(inputs); CHECK_CONTIGUOUS(embeddings); CHECK_CONTIGUOUS(offsets); CHECK_CONTIGUOUS(outputs); CHECK_CONTIGUOUS(dy_dx); CHECK_IS_FLOATING(inputs); CHECK_IS_FLOATING(embeddings); CHECK_IS_INT(offsets); CHECK_IS_FLOATING(outputs); CHECK_IS_FLOATING(dy_dx); AT_DISPATCH_FLOATING_TYPES_AND_HALF( embeddings.scalar_type(), "grid_encode_forward", ([&] { grid_encode_forward_cuda<scalar_t>(inputs.data_ptr<float>(), embeddings.data_ptr<scalar_t>(), offsets.data_ptr<int>(), outputs.data_ptr<scalar_t>(), B, D, C, L, S, H, calc_grad_inputs, dy_dx.data_ptr<scalar_t>(), gridtype, align_corners); })); } void grid_encode_backward(const at::Tensor grad, const at::Tensor inputs, const at::Tensor embeddings, const at::Tensor offsets, at::Tensor grad_embeddings, const uint32_t B, const uint32_t D, const uint32_t C, const uint32_t L, const float S, const uint32_t H, const bool calc_grad_inputs, const at::Tensor dy_dx, at::Tensor grad_inputs, const uint32_t gridtype, const bool align_corners) { CHECK_CUDA(grad); CHECK_CUDA(inputs); CHECK_CUDA(embeddings); CHECK_CUDA(offsets); CHECK_CUDA(grad_embeddings); CHECK_CUDA(dy_dx); CHECK_CUDA(grad_inputs); CHECK_CONTIGUOUS(grad); CHECK_CONTIGUOUS(inputs); CHECK_CONTIGUOUS(embeddings); CHECK_CONTIGUOUS(offsets); CHECK_CONTIGUOUS(grad_embeddings); CHECK_CONTIGUOUS(dy_dx); CHECK_CONTIGUOUS(grad_inputs); CHECK_IS_FLOATING(grad); CHECK_IS_FLOATING(inputs); CHECK_IS_FLOATING(embeddings); CHECK_IS_INT(offsets); CHECK_IS_FLOATING(grad_embeddings); CHECK_IS_FLOATING(dy_dx); CHECK_IS_FLOATING(grad_inputs); AT_DISPATCH_FLOATING_TYPES_AND_HALF( grad.scalar_type(), "grid_encode_backward", ([&] { grid_encode_backward_cuda<scalar_t>(grad.data_ptr<scalar_t>(), inputs.data_ptr<float>(), embeddings.data_ptr<scalar_t>(), offsets.data_ptr<int>(), grad_embeddings.data_ptr<scalar_t>(), B, D, C, L, S, H, calc_grad_inputs, dy_dx.data_ptr<scalar_t>(), grad_inputs.data_ptr<scalar_t>(), gridtype, align_corners); })); }
4245a196ce549f75ed0279e03284f29630ea3a0b.cu
#include <cuda.h> #include <cuda_fp16.h> #include <cuda_runtime.h> #include <ATen/cuda/CUDAContext.h> #include <torch/torch.h> #include <algorithm> #include <stdexcept> #include <stdint.h> #include <cstdio> #define CHECK_CUDA(x) TORCH_CHECK(x.device().is_cuda(), #x " must be a CUDA tensor") #define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be a contiguous tensor") #define CHECK_IS_INT(x) TORCH_CHECK(x.scalar_type() == at::ScalarType::Int, #x " must be an int tensor") #define CHECK_IS_FLOATING(x) TORCH_CHECK(x.scalar_type() == at::ScalarType::Float || x.scalar_type() == at::ScalarType::Half || x.scalar_type() == at::ScalarType::Double, #x " must be a floating tensor") // just for compatability of half precision in AT_DISPATCH_FLOATING_TYPES_AND_HALF... static inline __device__ at::Half atomicAdd(at::Half *address, at::Half val) { // requires CUDA >= 10 and ARCH >= 70 // this is very slow compared to float or __half2, and never used. //return atomicAdd(reinterpret_cast<__half*>(address), val); } template <typename T> static inline __host__ __device__ T div_round_up(T val, T divisor) { return (val + divisor - 1) / divisor; } template <uint32_t D> __device__ uint32_t fast_hash(const uint32_t pos_grid[D]) { static_assert(D <= 7, "fast_hash can only hash up to 7 dimensions."); // While 1 is technically not a good prime for hashing (or a prime at all), it helps memory coherence // and is sufficient for our use case of obtaining a uniformly colliding index from high-dimensional // coordinates. constexpr uint32_t primes[7] = { 1, 2654435761, 805459861, 3674653429, 2097192037, 1434869437, 2165219737 }; uint32_t result = 0; #pragma unroll for (uint32_t i = 0; i < D; ++i) { result ^= pos_grid[i] * primes[i]; } return result; } template <uint32_t D, uint32_t C> __device__ uint32_t get_grid_index(const uint32_t gridtype, const bool align_corners, const uint32_t ch, const uint32_t hashmap_size, const uint32_t resolution, const uint32_t pos_grid[D]) { uint32_t stride = 1; uint32_t index = 0; #pragma unroll for (uint32_t d = 0; d < D && stride <= hashmap_size; d++) { index += pos_grid[d] * stride; stride *= align_corners ? resolution: (resolution + 1); } // NOTE: for NeRF, the hash is in fact not necessary. Check https://github.com/NVlabs/instant-ngp/issues/97. // gridtype: 0 == hash, 1 == tiled if (gridtype == 0 && stride > hashmap_size) { index = fast_hash<D>(pos_grid); } return (index % hashmap_size) * C + ch; } template <typename scalar_t, uint32_t D, uint32_t C> __global__ void kernel_grid( const float * __restrict__ inputs, const scalar_t * __restrict__ grid, const int * __restrict__ offsets, scalar_t * __restrict__ outputs, const uint32_t B, const uint32_t L, const float S, const uint32_t H, const bool calc_grad_inputs, scalar_t * __restrict__ dy_dx, const uint32_t gridtype, const bool align_corners ) { const uint32_t b = blockIdx.x * blockDim.x + threadIdx.x; if (b >= B) return; const uint32_t level = blockIdx.y; // locate grid += (uint32_t)offsets[level] * C; inputs += b * D; outputs += level * B * C + b * C; // check input range (should be in [0, 1]) bool flag_oob = false; #pragma unroll for (uint32_t d = 0; d < D; d++) { if (inputs[d] < 0 || inputs[d] > 1) { flag_oob = true; } } // if input out of bound, just set output to 0 if (flag_oob) { #pragma unroll for (uint32_t ch = 0; ch < C; ch++) { outputs[ch] = 0; } if (calc_grad_inputs) { dy_dx += b * D * L * C + level * D * C; // B L D C #pragma unroll for (uint32_t d = 0; d < D; d++) { #pragma unroll for (uint32_t ch = 0; ch < C; ch++) { dy_dx[d * C + ch] = 0; } } } return; } const uint32_t hashmap_size = offsets[level + 1] - offsets[level]; const float scale = exp2f(level * S) * H - 1.0f; const uint32_t resolution = (uint32_t)ceil(scale) + 1; // calculate coordinate float pos[D]; uint32_t pos_grid[D]; #pragma unroll for (uint32_t d = 0; d < D; d++) { pos[d] = inputs[d] * scale + (align_corners ? 0.0f : 0.5f); pos_grid[d] = floorf(pos[d]); pos[d] -= (float)pos_grid[d]; } //printf("[b=%d, l=%d] pos=(%f, %f)+(%d, %d)\n", b, level, pos[0], pos[1], pos_grid[0], pos_grid[1]); // interpolate scalar_t results[C] = {0}; // temp results in register #pragma unroll for (uint32_t idx = 0; idx < (1 << D); idx++) { float w = 1; uint32_t pos_grid_local[D]; #pragma unroll for (uint32_t d = 0; d < D; d++) { if ((idx & (1 << d)) == 0) { w *= 1 - pos[d]; pos_grid_local[d] = pos_grid[d]; } else { w *= pos[d]; pos_grid_local[d] = pos_grid[d] + 1; } } uint32_t index = get_grid_index<D, C>(gridtype, align_corners, 0, hashmap_size, resolution, pos_grid_local); // writing to register (fast) #pragma unroll for (uint32_t ch = 0; ch < C; ch++) { results[ch] += w * grid[index + ch]; } //printf("[b=%d, l=%d] int %d, idx %d, w %f, val %f\n", b, level, idx, index, w, grid[index]); } // writing to global memory (slow) #pragma unroll for (uint32_t ch = 0; ch < C; ch++) { outputs[ch] = results[ch]; } // prepare dy_dx for calc_grad_inputs // differentiable (soft) indexing: https://discuss.pytorch.org/t/differentiable-indexing/17647/9 if (calc_grad_inputs) { dy_dx += b * D * L * C + level * D * C; // B L D C #pragma unroll for (uint32_t gd = 0; gd < D; gd++) { scalar_t results_grad[C] = {0}; #pragma unroll for (uint32_t idx = 0; idx < (1 << (D - 1)); idx++) { float w = scale; uint32_t pos_grid_local[D]; #pragma unroll for (uint32_t nd = 0; nd < D - 1; nd++) { const uint32_t d = (nd >= gd) ? (nd + 1) : nd; if ((idx & (1 << nd)) == 0) { w *= 1 - pos[d]; pos_grid_local[d] = pos_grid[d]; } else { w *= pos[d]; pos_grid_local[d] = pos_grid[d] + 1; } } pos_grid_local[gd] = pos_grid[gd]; uint32_t index_left = get_grid_index<D, C>(gridtype, align_corners, 0, hashmap_size, resolution, pos_grid_local); pos_grid_local[gd] = pos_grid[gd] + 1; uint32_t index_right = get_grid_index<D, C>(gridtype, align_corners, 0, hashmap_size, resolution, pos_grid_local); #pragma unroll for (uint32_t ch = 0; ch < C; ch++) { results_grad[ch] += w * (grid[index_right + ch] - grid[index_left + ch]); } } #pragma unroll for (uint32_t ch = 0; ch < C; ch++) { dy_dx[gd * C + ch] = results_grad[ch]; } } } } template <typename scalar_t, uint32_t D, uint32_t C, uint32_t N_C> __global__ void kernel_grid_backward( const scalar_t * __restrict__ grad, const float * __restrict__ inputs, const scalar_t * __restrict__ grid, const int * __restrict__ offsets, scalar_t * __restrict__ grad_grid, const uint32_t B, const uint32_t L, const float S, const uint32_t H, const uint32_t gridtype, const bool align_corners ) { const uint32_t b = (blockIdx.x * blockDim.x + threadIdx.x) * N_C / C; if (b >= B) return; const uint32_t level = blockIdx.y; const uint32_t ch = (blockIdx.x * blockDim.x + threadIdx.x) * N_C - b * C; // locate grad_grid += offsets[level] * C; inputs += b * D; grad += level * B * C + b * C + ch; // L, B, C const uint32_t hashmap_size = offsets[level + 1] - offsets[level]; const float scale = exp2f(level * S) * H - 1.0f; const uint32_t resolution = (uint32_t)ceil(scale) + 1; // check input range (should be in [0, 1]) #pragma unroll for (uint32_t d = 0; d < D; d++) { if (inputs[d] < 0 || inputs[d] > 1) { return; // grad is init as 0, so we simply return. } } // calculate coordinate float pos[D]; uint32_t pos_grid[D]; #pragma unroll for (uint32_t d = 0; d < D; d++) { pos[d] = inputs[d] * scale + (align_corners ? 0.0f : 0.5f); pos_grid[d] = floorf(pos[d]); pos[d] -= (float)pos_grid[d]; } scalar_t grad_cur[N_C] = {0}; // fetch to register #pragma unroll for (uint32_t c = 0; c < N_C; c++) { grad_cur[c] = grad[c]; } // interpolate #pragma unroll for (uint32_t idx = 0; idx < (1 << D); idx++) { float w = 1; uint32_t pos_grid_local[D]; #pragma unroll for (uint32_t d = 0; d < D; d++) { if ((idx & (1 << d)) == 0) { w *= 1 - pos[d]; pos_grid_local[d] = pos_grid[d]; } else { w *= pos[d]; pos_grid_local[d] = pos_grid[d] + 1; } } uint32_t index = get_grid_index<D, C>(gridtype, align_corners, ch, hashmap_size, resolution, pos_grid_local); // atomicAdd for __half is slow (especially for large values), so we use __half2 if N_C % 2 == 0 // TODO: use float which is better than __half, if N_C % 2 != 0 if (std::is_same<scalar_t, at::Half>::value && N_C % 2 == 0) { #pragma unroll for (uint32_t c = 0; c < N_C; c += 2) { // process two __half at once (by interpreting as a __half2) __half2 v = {(__half)(w * grad_cur[c]), (__half)(w * grad_cur[c + 1])}; atomicAdd((__half2*)&grad_grid[index + c], v); } // float, or __half when N_C % 2 != 0 (which means C == 1) } else { #pragma unroll for (uint32_t c = 0; c < N_C; c++) { atomicAdd((float*)&grad_grid[index + c], (float)(w * grad_cur[c])); } } } } template <typename scalar_t, uint32_t D, uint32_t C> __global__ void kernel_input_backward( const scalar_t * __restrict__ grad, const scalar_t * __restrict__ dy_dx, scalar_t * __restrict__ grad_inputs, uint32_t B, uint32_t L ) { const uint32_t t = threadIdx.x + blockIdx.x * blockDim.x; if (t >= B * D) return; const uint32_t b = t / D; const uint32_t d = t - b * D; dy_dx += b * L * D * C; scalar_t result = 0; # pragma unroll for (int l = 0; l < L; l++) { # pragma unroll for (int ch = 0; ch < C; ch++) { result += grad[l * B * C + b * C + ch] * dy_dx[l * D * C + d * C + ch]; } } grad_inputs[t] = result; } template <typename scalar_t, uint32_t D> void kernel_grid_wrapper(const float *inputs, const scalar_t *embeddings, const int *offsets, scalar_t *outputs, const uint32_t B, const uint32_t C, const uint32_t L, const float S, const uint32_t H, const bool calc_grad_inputs, scalar_t *dy_dx, const uint32_t gridtype, const bool align_corners) { static constexpr uint32_t N_THREAD = 512; const dim3 blocks_hashgrid = { div_round_up(B, N_THREAD), L, 1 }; switch (C) { case 1: kernel_grid<scalar_t, D, 1><<<blocks_hashgrid, N_THREAD>>>(inputs, embeddings, offsets, outputs, B, L, S, H, calc_grad_inputs, dy_dx, gridtype, align_corners); break; case 2: kernel_grid<scalar_t, D, 2><<<blocks_hashgrid, N_THREAD>>>(inputs, embeddings, offsets, outputs, B, L, S, H, calc_grad_inputs, dy_dx, gridtype, align_corners); break; case 4: kernel_grid<scalar_t, D, 4><<<blocks_hashgrid, N_THREAD>>>(inputs, embeddings, offsets, outputs, B, L, S, H, calc_grad_inputs, dy_dx, gridtype, align_corners); break; case 8: kernel_grid<scalar_t, D, 8><<<blocks_hashgrid, N_THREAD>>>(inputs, embeddings, offsets, outputs, B, L, S, H, calc_grad_inputs, dy_dx, gridtype, align_corners); break; default: throw std::runtime_error{"GridEncoding: C must be 1, 2, 4, or 8."}; } } // inputs: [B, D], float, in [0, 1] // embeddings: [sO, C], float // offsets: [L + 1], uint32_t // outputs: [L, B, C], float (L first, so only one level of hashmap needs to fit into cache at a time.) // H: base resolution // dy_dx: [B, L * D * C] template <typename scalar_t> void grid_encode_forward_cuda(const float *inputs, const scalar_t *embeddings, const int *offsets, scalar_t *outputs, const uint32_t B, const uint32_t D, const uint32_t C, const uint32_t L, const float S, const uint32_t H, const bool calc_grad_inputs, scalar_t *dy_dx, const uint32_t gridtype, const bool align_corners) { switch (D) { case 1: kernel_grid_wrapper<scalar_t, 1>(inputs, embeddings, offsets, outputs, B, C, L, S, H, calc_grad_inputs, dy_dx, gridtype, align_corners); break; case 2: kernel_grid_wrapper<scalar_t, 2>(inputs, embeddings, offsets, outputs, B, C, L, S, H, calc_grad_inputs, dy_dx, gridtype, align_corners); break; case 3: kernel_grid_wrapper<scalar_t, 3>(inputs, embeddings, offsets, outputs, B, C, L, S, H, calc_grad_inputs, dy_dx, gridtype, align_corners); break; case 4: kernel_grid_wrapper<scalar_t, 4>(inputs, embeddings, offsets, outputs, B, C, L, S, H, calc_grad_inputs, dy_dx, gridtype, align_corners); break; case 5: kernel_grid_wrapper<scalar_t, 5>(inputs, embeddings, offsets, outputs, B, C, L, S, H, calc_grad_inputs, dy_dx, gridtype, align_corners); break; default: throw std::runtime_error{"GridEncoding: D must be 1, 2, 3, 4, or 5."}; } } template <typename scalar_t, uint32_t D> void kernel_grid_backward_wrapper(const scalar_t *grad, const float *inputs, const scalar_t *embeddings, const int *offsets, scalar_t *grad_embeddings, const uint32_t B, const uint32_t C, const uint32_t L, const float S, const uint32_t H, const bool calc_grad_inputs, scalar_t *dy_dx, scalar_t *grad_inputs, const uint32_t gridtype, const bool align_corners) { static constexpr uint32_t N_THREAD = 256; const uint32_t N_C = std::min(2u, C); // n_features_per_thread const dim3 blocks_hashgrid = { div_round_up(B * C / N_C, N_THREAD), L, 1 }; switch (C) { case 1: kernel_grid_backward<scalar_t, D, 1, 1><<<blocks_hashgrid, N_THREAD>>>(grad, inputs, embeddings, offsets, grad_embeddings, B, L, S, H, gridtype, align_corners); if (calc_grad_inputs) kernel_input_backward<scalar_t, D, 1><<<div_round_up(B * D, N_THREAD), N_THREAD>>>(grad, dy_dx, grad_inputs, B, L); break; case 2: kernel_grid_backward<scalar_t, D, 2, 2><<<blocks_hashgrid, N_THREAD>>>(grad, inputs, embeddings, offsets, grad_embeddings, B, L, S, H, gridtype, align_corners); if (calc_grad_inputs) kernel_input_backward<scalar_t, D, 2><<<div_round_up(B * D, N_THREAD), N_THREAD>>>(grad, dy_dx, grad_inputs, B, L); break; case 4: kernel_grid_backward<scalar_t, D, 4, 2><<<blocks_hashgrid, N_THREAD>>>(grad, inputs, embeddings, offsets, grad_embeddings, B, L, S, H, gridtype, align_corners); if (calc_grad_inputs) kernel_input_backward<scalar_t, D, 4><<<div_round_up(B * D, N_THREAD), N_THREAD>>>(grad, dy_dx, grad_inputs, B, L); break; case 8: kernel_grid_backward<scalar_t, D, 8, 2><<<blocks_hashgrid, N_THREAD>>>(grad, inputs, embeddings, offsets, grad_embeddings, B, L, S, H, gridtype, align_corners); if (calc_grad_inputs) kernel_input_backward<scalar_t, D, 8><<<div_round_up(B * D, N_THREAD), N_THREAD>>>(grad, dy_dx, grad_inputs, B, L); break; default: throw std::runtime_error{"GridEncoding: C must be 1, 2, 4, or 8."}; } } // grad: [L, B, C], float // inputs: [B, D], float, in [0, 1] // embeddings: [sO, C], float // offsets: [L + 1], uint32_t // grad_embeddings: [sO, C] // H: base resolution template <typename scalar_t> void grid_encode_backward_cuda(const scalar_t *grad, const float *inputs, const scalar_t *embeddings, const int *offsets, scalar_t *grad_embeddings, const uint32_t B, const uint32_t D, const uint32_t C, const uint32_t L, const float S, const uint32_t H, const bool calc_grad_inputs, scalar_t *dy_dx, scalar_t *grad_inputs, const uint32_t gridtype, const bool align_corners) { switch (D) { case 1: kernel_grid_backward_wrapper<scalar_t, 1>(grad, inputs, embeddings, offsets, grad_embeddings, B, C, L, S, H, calc_grad_inputs, dy_dx, grad_inputs, gridtype, align_corners); break; case 2: kernel_grid_backward_wrapper<scalar_t, 2>(grad, inputs, embeddings, offsets, grad_embeddings, B, C, L, S, H, calc_grad_inputs, dy_dx, grad_inputs, gridtype, align_corners); break; case 3: kernel_grid_backward_wrapper<scalar_t, 3>(grad, inputs, embeddings, offsets, grad_embeddings, B, C, L, S, H, calc_grad_inputs, dy_dx, grad_inputs, gridtype, align_corners); break; case 4: kernel_grid_backward_wrapper<scalar_t, 4>(grad, inputs, embeddings, offsets, grad_embeddings, B, C, L, S, H, calc_grad_inputs, dy_dx, grad_inputs, gridtype, align_corners); break; case 5: kernel_grid_backward_wrapper<scalar_t, 5>(grad, inputs, embeddings, offsets, grad_embeddings, B, C, L, S, H, calc_grad_inputs, dy_dx, grad_inputs, gridtype, align_corners); break; default: throw std::runtime_error{"GridEncoding: D must be 1, 2, 3, 4, or 5."}; } } void grid_encode_forward(const at::Tensor inputs, const at::Tensor embeddings, const at::Tensor offsets, at::Tensor outputs, const uint32_t B, const uint32_t D, const uint32_t C, const uint32_t L, const float S, const uint32_t H, const bool calc_grad_inputs, at::Tensor dy_dx, const uint32_t gridtype, const bool align_corners) { CHECK_CUDA(inputs); CHECK_CUDA(embeddings); CHECK_CUDA(offsets); CHECK_CUDA(outputs); CHECK_CUDA(dy_dx); CHECK_CONTIGUOUS(inputs); CHECK_CONTIGUOUS(embeddings); CHECK_CONTIGUOUS(offsets); CHECK_CONTIGUOUS(outputs); CHECK_CONTIGUOUS(dy_dx); CHECK_IS_FLOATING(inputs); CHECK_IS_FLOATING(embeddings); CHECK_IS_INT(offsets); CHECK_IS_FLOATING(outputs); CHECK_IS_FLOATING(dy_dx); AT_DISPATCH_FLOATING_TYPES_AND_HALF( embeddings.scalar_type(), "grid_encode_forward", ([&] { grid_encode_forward_cuda<scalar_t>(inputs.data_ptr<float>(), embeddings.data_ptr<scalar_t>(), offsets.data_ptr<int>(), outputs.data_ptr<scalar_t>(), B, D, C, L, S, H, calc_grad_inputs, dy_dx.data_ptr<scalar_t>(), gridtype, align_corners); })); } void grid_encode_backward(const at::Tensor grad, const at::Tensor inputs, const at::Tensor embeddings, const at::Tensor offsets, at::Tensor grad_embeddings, const uint32_t B, const uint32_t D, const uint32_t C, const uint32_t L, const float S, const uint32_t H, const bool calc_grad_inputs, const at::Tensor dy_dx, at::Tensor grad_inputs, const uint32_t gridtype, const bool align_corners) { CHECK_CUDA(grad); CHECK_CUDA(inputs); CHECK_CUDA(embeddings); CHECK_CUDA(offsets); CHECK_CUDA(grad_embeddings); CHECK_CUDA(dy_dx); CHECK_CUDA(grad_inputs); CHECK_CONTIGUOUS(grad); CHECK_CONTIGUOUS(inputs); CHECK_CONTIGUOUS(embeddings); CHECK_CONTIGUOUS(offsets); CHECK_CONTIGUOUS(grad_embeddings); CHECK_CONTIGUOUS(dy_dx); CHECK_CONTIGUOUS(grad_inputs); CHECK_IS_FLOATING(grad); CHECK_IS_FLOATING(inputs); CHECK_IS_FLOATING(embeddings); CHECK_IS_INT(offsets); CHECK_IS_FLOATING(grad_embeddings); CHECK_IS_FLOATING(dy_dx); CHECK_IS_FLOATING(grad_inputs); AT_DISPATCH_FLOATING_TYPES_AND_HALF( grad.scalar_type(), "grid_encode_backward", ([&] { grid_encode_backward_cuda<scalar_t>(grad.data_ptr<scalar_t>(), inputs.data_ptr<float>(), embeddings.data_ptr<scalar_t>(), offsets.data_ptr<int>(), grad_embeddings.data_ptr<scalar_t>(), B, D, C, L, S, H, calc_grad_inputs, dy_dx.data_ptr<scalar_t>(), grad_inputs.data_ptr<scalar_t>(), gridtype, align_corners); })); }
85d3bc5602271766a0503017d31a719210561cef.hip
// !!! This is a file automatically generated by hipify!!! #include <hip/hip_runtime.h> #include <hip/hip_runtime.h> #include <math_functions.h> #include "bbob_generators.cuh" __device__ double fitness_function(double x[], int number_of_variables, double* xopt, double fopt, double *rot1, double *rot2) { const double condition = 100; const double alpha = 10.0; size_t i, j; double penalty = 0.0, x1; double result; double tempx[MAX_DIMENSIONS]; double tempxx[MAX_DIMENSIONS]; double* current_row; for(i = 0; i < number_of_variables; ++i) { double tmp; tmp = fabs(x[i]) - 5.0; if(tmp > 0.0) penalty += tmp * tmp; } for(i = 0; i < number_of_variables; ++i) { double c1; tempx[i] = 0.0; current_row = rot2 + i * number_of_variables; c1 = sqrt(pow(condition / 10., (double)i / (double)(number_of_variables - 1))); for(j = 0; j < number_of_variables; ++j) { tempx[i] += c1 * current_row[j] * (x[j] - xopt[j]); } } x1 = tempx[0]; for(i = 0; i < number_of_variables; ++i) { if(fabs(tempx[i]) > 0.5) tempx[i] = coco_double_round(tempx[i]); else tempx[i] = coco_double_round(alpha * tempx[i]) / alpha; } for(i = 0; i < number_of_variables; ++i) { tempxx[i] = 0.0; current_row = rot1 + i * number_of_variables; for(j = 0; j < number_of_variables; ++j) { tempxx[i] += current_row[j] * tempx[j]; } } /* Computation core */ result = 0.0; for(i = 0; i < number_of_variables; ++i) { double exponent; exponent = (double)(long)i / ((double)(long)number_of_variables - 1.0); result += pow(condition, exponent) * tempxx[i] * tempxx[i]; ; } result = 0.1 * coco_double_max(fabs(x1) * 1.0e-4, result) + penalty + fopt; return result; } __device__ double wrapped_fitness_function(double x[], int number_of_variables, double* xopt, double* rot1, double* rot2, double fopt) { double temp[1]; temp[0] = fitness_function(x, number_of_variables, xopt, fopt, rot1, rot2); return temp[0]; } extern "C" { __global__ void generateData(int dimension, int rseed, int function, int instance, double* rot1, double* rot2, double* vars_shift_xopt, double* obj_shift_fopt) { bbob2009_compute_xopt(vars_shift_xopt, rseed, dimension); obj_shift_fopt[0] = bbob2009_compute_fopt(function, instance); double rot1d[MAX_DIMENSIONS][MAX_DIMENSIONS]; double rot2d[MAX_DIMENSIONS][MAX_DIMENSIONS]; bbob2009_compute_rotation(dimension, rot1d, rseed + 1000000); bbob2009_compute_rotation(dimension, rot2d, rseed); double *current_row_1; double *current_row_2; for(int i = 0; i < dimension; ++i) { current_row_1 = rot1 + i * dimension; current_row_2 = rot2 + i * dimension; for(int j = 0; j < dimension; ++j) { current_row_1[j] = rot1d[i][j]; current_row_2[j] = rot2d[i][j]; } } } __global__ void transposeKernel( double* positions, double* velocities, double* personalBests, double* personalBestValues, int particlesCount, int dimensionsCount, double* xopt, double* rot1, double* rot2, double fopt) { int i = blockIdx.x * blockDim.x + threadIdx.x; if(i >= particlesCount) return; double* particleLoc = positions + i * dimensionsCount; double* particleVel = velocities + i * dimensionsCount; for(int i = 0; i < dimensionsCount; i++) { particleLoc[i] += particleVel[i]; } clamp(particleLoc, dimensionsCount, -5.0, 5.0); double tempLocation[MAX_DIMENSIONS]; for(int i = 0; i < dimensionsCount; i++) { tempLocation[i] = particleLoc[i]; } double newValue = wrapped_fitness_function(tempLocation, dimensionsCount, xopt, rot1, rot2, fopt); if(newValue < personalBestValues[i]) { personalBestValues[i] = newValue; double* particlePersonalBest = personalBests + i * dimensionsCount; for(int i = 0; i < dimensionsCount; i++) particlePersonalBest[i] = particleLoc[i]; } } }
85d3bc5602271766a0503017d31a719210561cef.cu
#include <cuda_runtime.h> #include <cuda.h> #include <math_functions.h> #include "bbob_generators.cuh" __device__ double fitness_function(double x[], int number_of_variables, double* xopt, double fopt, double *rot1, double *rot2) { const double condition = 100; const double alpha = 10.0; size_t i, j; double penalty = 0.0, x1; double result; double tempx[MAX_DIMENSIONS]; double tempxx[MAX_DIMENSIONS]; double* current_row; for(i = 0; i < number_of_variables; ++i) { double tmp; tmp = fabs(x[i]) - 5.0; if(tmp > 0.0) penalty += tmp * tmp; } for(i = 0; i < number_of_variables; ++i) { double c1; tempx[i] = 0.0; current_row = rot2 + i * number_of_variables; c1 = sqrt(pow(condition / 10., (double)i / (double)(number_of_variables - 1))); for(j = 0; j < number_of_variables; ++j) { tempx[i] += c1 * current_row[j] * (x[j] - xopt[j]); } } x1 = tempx[0]; for(i = 0; i < number_of_variables; ++i) { if(fabs(tempx[i]) > 0.5) tempx[i] = coco_double_round(tempx[i]); else tempx[i] = coco_double_round(alpha * tempx[i]) / alpha; } for(i = 0; i < number_of_variables; ++i) { tempxx[i] = 0.0; current_row = rot1 + i * number_of_variables; for(j = 0; j < number_of_variables; ++j) { tempxx[i] += current_row[j] * tempx[j]; } } /* Computation core */ result = 0.0; for(i = 0; i < number_of_variables; ++i) { double exponent; exponent = (double)(long)i / ((double)(long)number_of_variables - 1.0); result += pow(condition, exponent) * tempxx[i] * tempxx[i]; ; } result = 0.1 * coco_double_max(fabs(x1) * 1.0e-4, result) + penalty + fopt; return result; } __device__ double wrapped_fitness_function(double x[], int number_of_variables, double* xopt, double* rot1, double* rot2, double fopt) { double temp[1]; temp[0] = fitness_function(x, number_of_variables, xopt, fopt, rot1, rot2); return temp[0]; } extern "C" { __global__ void generateData(int dimension, int rseed, int function, int instance, double* rot1, double* rot2, double* vars_shift_xopt, double* obj_shift_fopt) { bbob2009_compute_xopt(vars_shift_xopt, rseed, dimension); obj_shift_fopt[0] = bbob2009_compute_fopt(function, instance); double rot1d[MAX_DIMENSIONS][MAX_DIMENSIONS]; double rot2d[MAX_DIMENSIONS][MAX_DIMENSIONS]; bbob2009_compute_rotation(dimension, rot1d, rseed + 1000000); bbob2009_compute_rotation(dimension, rot2d, rseed); double *current_row_1; double *current_row_2; for(int i = 0; i < dimension; ++i) { current_row_1 = rot1 + i * dimension; current_row_2 = rot2 + i * dimension; for(int j = 0; j < dimension; ++j) { current_row_1[j] = rot1d[i][j]; current_row_2[j] = rot2d[i][j]; } } } __global__ void transposeKernel( double* positions, double* velocities, double* personalBests, double* personalBestValues, int particlesCount, int dimensionsCount, double* xopt, double* rot1, double* rot2, double fopt) { int i = blockIdx.x * blockDim.x + threadIdx.x; if(i >= particlesCount) return; double* particleLoc = positions + i * dimensionsCount; double* particleVel = velocities + i * dimensionsCount; for(int i = 0; i < dimensionsCount; i++) { particleLoc[i] += particleVel[i]; } clamp(particleLoc, dimensionsCount, -5.0, 5.0); double tempLocation[MAX_DIMENSIONS]; for(int i = 0; i < dimensionsCount; i++) { tempLocation[i] = particleLoc[i]; } double newValue = wrapped_fitness_function(tempLocation, dimensionsCount, xopt, rot1, rot2, fopt); if(newValue < personalBestValues[i]) { personalBestValues[i] = newValue; double* particlePersonalBest = personalBests + i * dimensionsCount; for(int i = 0; i < dimensionsCount; i++) particlePersonalBest[i] = particleLoc[i]; } } }
2014fe38bd4fd37c3bf048f0be0554f5518c7ba0.hip
// !!! This is a file automatically generated by hipify!!! #include <rocblas.h> #include <hip/hip_runtime.h> #include <hiprand/hiprand.h> #include <cstring> #include "blas.h" #include "dark_cuda.h" #include "dropout_layer.h" #include "image.h" #include "image_opencv.h" #include "utils.h" __global__ void dropblock_fast_kernel(float* rand, float prob, int w, int h, int spatial, int filters, int batch, int block_size, float* drop_blocks_scale, float* output) { const int threads = BLOCK; const int id = threadIdx.x; const int f = blockIdx.x % filters; const int b = blockIdx.x / filters; __shared__ int prob_block; __shared__ int index_block; if (id == 0) { prob_block = 1.0 * 1000000; index_block = -1; } __syncthreads(); int i; for (i = id; i < spatial; i += threads) { int index = b * spatial * f + f * spatial + i; if (rand[index] < prob) { // Chose with the lowest rand[i] int new_val = rand[index] * 1000000; rand[index] = 1; int old_val = atomicMin(&prob_block, new_val); if (new_val < old_val) { index_block = i; // if (b == 0) printf("\n rand[i] = %f, prob = %f, b = %d, f = %d, i = // %d, index_block = %d \n", rand[i], prob, b, f, i, index_block); } } } __syncthreads(); if (index_block == -1) return; int b_x = index_block % w; int b_y = index_block / w; if (b_x > (w - block_size)) b_x = b_x - (w - block_size); if (b_y > (h - block_size)) b_y = b_y - (h - block_size); b_x = max(0, min(b_x, w - block_size)); b_y = max(0, min(b_y, h - block_size)); int block_square_size = block_size * block_size; for (i = id; i < block_square_size; i += threads) { int i_x = i % block_size; int i_y = i / block_size; int x = b_x + i_x; int y = b_y + i_y; if (x >= 0 && x < w && y >= 0 && y < h) { int new_index = b * filters * spatial + f * spatial + y * w + x; output[new_index] = 0; rand[new_index] = 0; } } // if (id == 0 && b == 0) printf(" f = %d, b = %d \n", f, b); if (id == 0 && drop_blocks_scale) { atomicAdd(&drop_blocks_scale[b], block_square_size); // if(b == 0) printf("\n index_block = %d \n", index_block); } } __global__ void set_scales_dropblock_kernel(float* drop_blocks_scale, int block_size_w, int block_size_h, int outputs, int batch) { const int index = blockIdx.x * blockDim.x + threadIdx.x; if (index >= batch) return; // printf(" drop_blocks_scale[index] = %f \n", drop_blocks_scale[index]); const float prob = drop_blocks_scale[index] / (float)outputs; const float scale = 1.0f / (1.0f - prob); drop_blocks_scale[index] = scale; } __global__ void scale_dropblock_kernel( float* output, int size, int outputs, float* drop_blocks_scale) { const int index = blockIdx.x * blockDim.x + threadIdx.x; if (index >= size) return; const int b = index / outputs; output[index] *= drop_blocks_scale[b]; } __global__ void backward_dropblock_kernel(float* pass, float* delta, int size) { const int index = blockIdx.x * blockDim.x + threadIdx.x; if (index >= size) return; if (pass[index] == 0) delta[index] = 0; } __global__ void yoloswag420blazeit360noscope( float* input, int size, float* rand, float prob, float scale) { int id = (blockIdx.x + blockIdx.y * gridDim.x) * blockDim.x + threadIdx.x; if (id < size) input[id] = (rand[id] < prob) ? 0 : input[id] * scale; } void ForwardDropoutLayerGpu(layer* l, NetworkState state) { if (!state.train) return; int iteration_num = GetCurrIter(state.net); // We gradually increase the block size and the probability of dropout - // during the first half of the training float multiplier = 1.0; if (iteration_num < (state.net->max_iter * 0.85)) multiplier = (iteration_num / (float)(state.net->max_iter * 0.85)); // dropblock if (l->dropblock) { const float cur_prob = l->probability * multiplier; int block_width = l->dropblock_size_abs * multiplier; int block_height = l->dropblock_size_abs * multiplier; if (l->dropblock_size_rel) { block_width = l->dropblock_size_rel * l->w * multiplier; block_height = l->dropblock_size_rel * l->h * multiplier; } block_width = max_val_cmp(1, block_width); block_height = max_val_cmp(1, block_height); block_width = min_val_cmp(l->w, block_width); block_height = min_val_cmp(l->h, block_height); const int block_size = min_val_cmp(block_width, block_height); const float block_prob = cur_prob / (block_size * block_size); assert(block_size <= l->w && block_size <= l->h); const int size = l->inputs * l->batch; cuda_random(l->rand_gpu, size); fill_ongpu(l->batch, 0, l->drop_blocks_scale_gpu, 1); int num_blocks = l->batch * l->c; hipLaunchKernelGGL(( dropblock_fast_kernel), dim3(num_blocks), dim3(BLOCK), 0, get_cuda_stream(), l->rand_gpu, block_prob, l->w, l->h, l->w * l->h, l->c, l->batch, block_size, l->drop_blocks_scale_gpu, state.input); CHECK_CUDA(hipPeekAtLastError()); num_blocks = get_number_of_blocks(l->batch, BLOCK); hipLaunchKernelGGL(( set_scales_dropblock_kernel), dim3(num_blocks), dim3(BLOCK), 0, get_cuda_stream(), l->drop_blocks_scale_gpu, block_size, block_size, l->outputs, l->batch); CHECK_CUDA(hipPeekAtLastError()); num_blocks = get_number_of_blocks(l->outputs * l->batch, BLOCK); hipLaunchKernelGGL(( scale_dropblock_kernel), dim3(num_blocks), dim3(BLOCK), 0, get_cuda_stream(), state.input, l->outputs * l->batch, l->outputs, l->drop_blocks_scale_gpu); CHECK_CUDA(hipPeekAtLastError()); } // dropout else { int size = l->inputs * l->batch; cuda_random(l->rand_gpu, size); hipLaunchKernelGGL(( yoloswag420blazeit360noscope), dim3(cuda_gridsize(size)), dim3(BLOCK), 0, get_cuda_stream(), state.input, size, l->rand_gpu, l->probability, l->scale); CHECK_CUDA(hipPeekAtLastError()); } } void BackwardDropoutLayerGpu(layer* l, NetworkState state) { if (!state.delta) return; const int size = l->inputs * l->batch; // dropblock if (l->dropblock) { int iteration_num = GetCurrIter(state.net); float multiplier = 1.0; if (iteration_num < (state.net->max_iter * 0.85)) multiplier = (iteration_num / (float)(state.net->max_iter * 0.85)); int block_width = l->dropblock_size_abs * multiplier; int block_height = l->dropblock_size_abs * multiplier; if (l->dropblock_size_rel) { block_width = l->dropblock_size_rel * l->w * multiplier; block_height = l->dropblock_size_rel * l->h * multiplier; } block_width = max_val_cmp(1, block_width); block_height = max_val_cmp(1, block_height); block_width = min_val_cmp(l->w, block_width); block_height = min_val_cmp(l->h, block_height); int num_blocks = get_number_of_blocks(l->outputs * l->batch, BLOCK); hipLaunchKernelGGL(( backward_dropblock_kernel), dim3(num_blocks), dim3(BLOCK), 0, get_cuda_stream(), l->rand_gpu, state.delta, l->outputs * l->batch); CHECK_CUDA(hipPeekAtLastError()); hipLaunchKernelGGL(( scale_dropblock_kernel), dim3(num_blocks), dim3(BLOCK), 0, get_cuda_stream(), state.delta, l->outputs * l->batch, l->outputs, l->drop_blocks_scale_gpu); CHECK_CUDA(hipPeekAtLastError()); } // dropout else { hipLaunchKernelGGL(( yoloswag420blazeit360noscope), dim3(cuda_gridsize(size)), dim3(BLOCK), 0, get_cuda_stream(), state.delta, size, l->rand_gpu, l->probability, l->scale); CHECK_CUDA(hipPeekAtLastError()); } }
2014fe38bd4fd37c3bf048f0be0554f5518c7ba0.cu
#include <cublas_v2.h> #include <cuda_runtime.h> #include <curand.h> #include <cstring> #include "blas.h" #include "dark_cuda.h" #include "dropout_layer.h" #include "image.h" #include "image_opencv.h" #include "utils.h" __global__ void dropblock_fast_kernel(float* rand, float prob, int w, int h, int spatial, int filters, int batch, int block_size, float* drop_blocks_scale, float* output) { const int threads = BLOCK; const int id = threadIdx.x; const int f = blockIdx.x % filters; const int b = blockIdx.x / filters; __shared__ int prob_block; __shared__ int index_block; if (id == 0) { prob_block = 1.0 * 1000000; index_block = -1; } __syncthreads(); int i; for (i = id; i < spatial; i += threads) { int index = b * spatial * f + f * spatial + i; if (rand[index] < prob) { // Chose with the lowest rand[i] int new_val = rand[index] * 1000000; rand[index] = 1; int old_val = atomicMin(&prob_block, new_val); if (new_val < old_val) { index_block = i; // if (b == 0) printf("\n rand[i] = %f, prob = %f, b = %d, f = %d, i = // %d, index_block = %d \n", rand[i], prob, b, f, i, index_block); } } } __syncthreads(); if (index_block == -1) return; int b_x = index_block % w; int b_y = index_block / w; if (b_x > (w - block_size)) b_x = b_x - (w - block_size); if (b_y > (h - block_size)) b_y = b_y - (h - block_size); b_x = max(0, min(b_x, w - block_size)); b_y = max(0, min(b_y, h - block_size)); int block_square_size = block_size * block_size; for (i = id; i < block_square_size; i += threads) { int i_x = i % block_size; int i_y = i / block_size; int x = b_x + i_x; int y = b_y + i_y; if (x >= 0 && x < w && y >= 0 && y < h) { int new_index = b * filters * spatial + f * spatial + y * w + x; output[new_index] = 0; rand[new_index] = 0; } } // if (id == 0 && b == 0) printf(" f = %d, b = %d \n", f, b); if (id == 0 && drop_blocks_scale) { atomicAdd(&drop_blocks_scale[b], block_square_size); // if(b == 0) printf("\n index_block = %d \n", index_block); } } __global__ void set_scales_dropblock_kernel(float* drop_blocks_scale, int block_size_w, int block_size_h, int outputs, int batch) { const int index = blockIdx.x * blockDim.x + threadIdx.x; if (index >= batch) return; // printf(" drop_blocks_scale[index] = %f \n", drop_blocks_scale[index]); const float prob = drop_blocks_scale[index] / (float)outputs; const float scale = 1.0f / (1.0f - prob); drop_blocks_scale[index] = scale; } __global__ void scale_dropblock_kernel( float* output, int size, int outputs, float* drop_blocks_scale) { const int index = blockIdx.x * blockDim.x + threadIdx.x; if (index >= size) return; const int b = index / outputs; output[index] *= drop_blocks_scale[b]; } __global__ void backward_dropblock_kernel(float* pass, float* delta, int size) { const int index = blockIdx.x * blockDim.x + threadIdx.x; if (index >= size) return; if (pass[index] == 0) delta[index] = 0; } __global__ void yoloswag420blazeit360noscope( float* input, int size, float* rand, float prob, float scale) { int id = (blockIdx.x + blockIdx.y * gridDim.x) * blockDim.x + threadIdx.x; if (id < size) input[id] = (rand[id] < prob) ? 0 : input[id] * scale; } void ForwardDropoutLayerGpu(layer* l, NetworkState state) { if (!state.train) return; int iteration_num = GetCurrIter(state.net); // We gradually increase the block size and the probability of dropout - // during the first half of the training float multiplier = 1.0; if (iteration_num < (state.net->max_iter * 0.85)) multiplier = (iteration_num / (float)(state.net->max_iter * 0.85)); // dropblock if (l->dropblock) { const float cur_prob = l->probability * multiplier; int block_width = l->dropblock_size_abs * multiplier; int block_height = l->dropblock_size_abs * multiplier; if (l->dropblock_size_rel) { block_width = l->dropblock_size_rel * l->w * multiplier; block_height = l->dropblock_size_rel * l->h * multiplier; } block_width = max_val_cmp(1, block_width); block_height = max_val_cmp(1, block_height); block_width = min_val_cmp(l->w, block_width); block_height = min_val_cmp(l->h, block_height); const int block_size = min_val_cmp(block_width, block_height); const float block_prob = cur_prob / (block_size * block_size); assert(block_size <= l->w && block_size <= l->h); const int size = l->inputs * l->batch; cuda_random(l->rand_gpu, size); fill_ongpu(l->batch, 0, l->drop_blocks_scale_gpu, 1); int num_blocks = l->batch * l->c; dropblock_fast_kernel<<<num_blocks, BLOCK, 0, get_cuda_stream()>>>( l->rand_gpu, block_prob, l->w, l->h, l->w * l->h, l->c, l->batch, block_size, l->drop_blocks_scale_gpu, state.input); CHECK_CUDA(cudaPeekAtLastError()); num_blocks = get_number_of_blocks(l->batch, BLOCK); set_scales_dropblock_kernel<<<num_blocks, BLOCK, 0, get_cuda_stream()>>>( l->drop_blocks_scale_gpu, block_size, block_size, l->outputs, l->batch); CHECK_CUDA(cudaPeekAtLastError()); num_blocks = get_number_of_blocks(l->outputs * l->batch, BLOCK); scale_dropblock_kernel<<<num_blocks, BLOCK, 0, get_cuda_stream()>>>( state.input, l->outputs * l->batch, l->outputs, l->drop_blocks_scale_gpu); CHECK_CUDA(cudaPeekAtLastError()); } // dropout else { int size = l->inputs * l->batch; cuda_random(l->rand_gpu, size); yoloswag420blazeit360noscope<<<cuda_gridsize(size), BLOCK, 0, get_cuda_stream()>>>( state.input, size, l->rand_gpu, l->probability, l->scale); CHECK_CUDA(cudaPeekAtLastError()); } } void BackwardDropoutLayerGpu(layer* l, NetworkState state) { if (!state.delta) return; const int size = l->inputs * l->batch; // dropblock if (l->dropblock) { int iteration_num = GetCurrIter(state.net); float multiplier = 1.0; if (iteration_num < (state.net->max_iter * 0.85)) multiplier = (iteration_num / (float)(state.net->max_iter * 0.85)); int block_width = l->dropblock_size_abs * multiplier; int block_height = l->dropblock_size_abs * multiplier; if (l->dropblock_size_rel) { block_width = l->dropblock_size_rel * l->w * multiplier; block_height = l->dropblock_size_rel * l->h * multiplier; } block_width = max_val_cmp(1, block_width); block_height = max_val_cmp(1, block_height); block_width = min_val_cmp(l->w, block_width); block_height = min_val_cmp(l->h, block_height); int num_blocks = get_number_of_blocks(l->outputs * l->batch, BLOCK); backward_dropblock_kernel<<<num_blocks, BLOCK, 0, get_cuda_stream()>>>( l->rand_gpu, state.delta, l->outputs * l->batch); CHECK_CUDA(cudaPeekAtLastError()); scale_dropblock_kernel<<<num_blocks, BLOCK, 0, get_cuda_stream()>>>( state.delta, l->outputs * l->batch, l->outputs, l->drop_blocks_scale_gpu); CHECK_CUDA(cudaPeekAtLastError()); } // dropout else { yoloswag420blazeit360noscope<<<cuda_gridsize(size), BLOCK, 0, get_cuda_stream()>>>( state.delta, size, l->rand_gpu, l->probability, l->scale); CHECK_CUDA(cudaPeekAtLastError()); } }
ea8bef202f23fc76aa4c436c039a3e5be3f589c8.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <cstdlib> #include <cstdio> #include <iostream> #include <mpi.h> #include <omp.h> #include <opencv2/opencv.hpp> #include <cmath> using namespace std; using namespace cv; void cudaFatal(hipError_t error) { if (error != hipSuccess) { fprintf(stderr,"ERROR: %s\n", hipGetErrorString(error)); exit(EXIT_FAILURE); } } //retorna a posicao no voetor correspondente a uma coordenada i,j fornecida __device__ int posCalc(int channel,int i, int j,int qntCols,int imgSize){ return (imgSize*channel+i*qntCols+j); } //retorna o canal correspondente a uma posicao no vtor __host__ int idxCalcC(int pos,int qntCols,int imgSize){ return (floorf(pos*1.0/imgSize)); } //retorna a coordenada J correspondente a uma posicao no vtor __host__ int idxCalcJ(int pos,int qntCols,int imgSize){ return (pos%qntCols); } //retorna a coordenada I correspondente a uma posicao no vtor __host__ int idxCalcI(int pos,int qntCols,int imgSize,int channelNum){ int qntLinhasPorCanal = (imgSize/qntCols); // return ((int)floor(pos*1.0/qntLinhasPorCanal))%qntLinhasPorCanal; return ((int)floor(pos*1.0/qntCols))%qntLinhasPorCanal; } __global__ void smooth(unsigned char *d_inImage,unsigned char *d_outImage,int *d_blocoQnt,int *d_blocoOffset, int imgSizeIn,int imgSizeOut,int imgLinOut,int imgColIn,int imgColOut,int channelNum,int border){ int offsetBloco; int bId= blockIdx.x; int qntLinBloco; //talvez n precise int offsetThread; int qntLinThread=0; int tId = threadIdx.x; int c=-1; // int offsetCanal; //0 //171 //342 //512 // for(int i=0;i<channelNum;i++){ // printf("%d ",d_blocoOffset[i]); // } for(int i=0;i<channelNum;i++){ if(bId>=d_blocoOffset[i] && bId<d_blocoOffset[i+1]){ c=i; break; } } if(c<0 || c>=channelNum){ return; } // if(c==3){ // c=2; // } bId=bId-d_blocoOffset[c]; // Quantidade total de linhas / qntde de blocos naquele canal if(bId<(imgLinOut%d_blocoQnt[c])){ offsetBloco= bId*floorf(1.0*imgLinOut/d_blocoQnt[c]) + bId; }else{ offsetBloco= bId*floorf(1.0*imgLinOut/d_blocoQnt[c]) + imgLinOut%d_blocoQnt[c]; } if(bId<imgLinOut%d_blocoQnt[c]){ qntLinBloco=ceilf(1.0*imgLinOut/d_blocoQnt[c]); }else{ qntLinBloco=floorf(1.0*imgLinOut/d_blocoQnt[c]); } // Quantidade total de linhas em um bloco / quantiade de threads naquele bloco if(tId<qntLinBloco%blockDim.x){ offsetThread=tId*floorf(1.0*qntLinBloco/blockDim.x)+tId; }else{ offsetThread=tId*floorf(1.0*qntLinBloco/blockDim.x)+qntLinBloco%blockDim.x; } if(tId<qntLinBloco%blockDim.x){ qntLinThread=ceilf(1.0*qntLinBloco/blockDim.x); }else{ qntLinThread=floorf(1.0*qntLinBloco/blockDim.x); } //pegando o offset do primeiro bloco do canal // Quantidade total de linhas / qntde de blocos naquele canal int offsetPrimeiroBloco; if(d_blocoOffset[c]<(imgLinOut%d_blocoQnt[c])){ offsetPrimeiroBloco= d_blocoOffset[c]*floorf(1.0*imgLinOut/d_blocoQnt[c]) + d_blocoOffset[c]; }else{ offsetPrimeiroBloco= d_blocoOffset[c]*floorf(1.0*imgLinOut/d_blocoQnt[c]) + imgLinOut%d_blocoQnt[c]; } // int linStart=offsetThread+offsetBloco; // int linStart=offsetThread+offsetBloco-offsetPrimeiroBloco; int linStart=offsetThread+offsetBloco; float sum; // printf("BlockID: %d ThreadID: %d C: %d offsetBloco: %d qntLinBloco: %d offsetThread %d qntLinThread %d linstart: %d\n",bId,tId,c,offsetBloco,qntLinBloco,offsetThread,qntLinThread,linStart); for(int i=linStart;i<linStart+qntLinThread;++i){ for(int j=0;j<imgColOut;++j){ sum=0; for(int l=-border;l<=border;l++){ for(int k=-border;k<=border;k++){ sum+=d_inImage[posCalc(c,i+l+border,j+k+border,imgColIn,imgSizeIn)]; } } sum=sum/(((2.0*border)+1)*((2.0*border)+1)); d_outImage[posCalc(c,i,j,imgColOut,imgSizeOut)]=sum; } } } // void smooth(unsigned char *img,unsigned char *output,int qntLinhas,int qntCols,int size_com_borda,int offset,int order); void diffTimeSpec(struct timespec start,struct timespec end,struct timespec *temp); int main(int argc,char** argv){ int NTHREADS = 3; // Inicializando com 3 Threads, mas sera alterado int NBLOCOS = 15; //Inicializando com 15 blocos, mas sera alterado //define a quantidade de blocos de acordo com o numero de processos gerados. Tal numero esta relacionado com a quantidade de ghosts no arquivo de host //elimina um noh, pois eh o master. EM nossa implementacao, o master nao realiza processamento da imagem if(argc>=5){ NTHREADS=atoi(argv[3]); //cout<<NTHREADS<<endl; NBLOCOS=atoi(argv[4]); } int border = 2; //relativo ao tamanho do kernel utilizado. Valor 2 deve ser utilizado para kernel de tamanho 5 //noh master que disponibiliza recursos para as outras if(NBLOCOS<=0){ cout <<"E necessario pelo menos um processo alem do master"<<endl; return -1; } Mat image; if(argc!=5){ printf("entrar com nome do arquivo, Tipo de imagem e numero de threads\n"); return -1; } int tipoImagem = atoi(argv[2]); //abrindo a imagem if(tipoImagem == 1){ //caso seja RGB image=imread(argv[1],CV_LOAD_IMAGE_COLOR); }else if(tipoImagem==2){ //caso seja grayScale image=imread(argv[1],CV_LOAD_IMAGE_GRAYSCALE); } if(!image.data){ printf("No data read.\n"); return -1; } //armazena as dimensoes originais (sem borda) das imagens int rowMat = image.rows; int colsMat = image.cols; int deptMat = image.depth(); //cria a imagem de saida Mat outputMat(rowMat,colsMat,deptMat); struct timespec begin, end,result; double time_spent; clock_gettime(CLOCK_REALTIME,&begin); int channelNum= image.channels(); Mat channels[3]; //inserindo borda na imagem copyMakeBorder(image,image,border,border,border,border,BORDER_CONSTANT,Scalar(0,0,0)); Mat outB(image.rows-border*2,image.cols-border*2,image.depth()); channels[0]=outB; if(channelNum==3){ //caso seja RGB, cria os canas adicionais Mat outG(image.rows-border*2,image.cols-border*2,image.depth()); Mat outR(image.rows-border*2,image.cols-border*2,image.depth()); channels[1]=outG; channels[2]=outR; } //divisao do trabalho unsigned char *d_outImage,*d_inImage; int *d_blocoOffset,*d_blocoQnt; unsigned char *h_outImage,*h_inImage; int *h_blocoOffset,*h_blocoQnt; int sizeIn = image.rows*image.cols*channelNum*sizeof(unsigned char); int sizeOut = rowMat*colsMat*channelNum*sizeof(unsigned char); h_inImage = (unsigned char*) malloc(sizeIn); h_outImage = (unsigned char*) malloc(sizeOut); h_blocoQnt = (int*) malloc((channelNum+1)*sizeof(int)); h_blocoOffset = (int*) malloc((channelNum+1)*sizeof(int)); cudaFatal(hipMalloc(&d_inImage,sizeIn)); cudaFatal(hipMalloc(&d_outImage,sizeOut)); cudaFatal(hipMalloc(&d_blocoQnt,(channelNum+1)*sizeof(int))); cudaFatal(hipMalloc(&d_blocoOffset,(channelNum+1)*sizeof(int))); int k=0; for (int c=0;c<channelNum;c++){ for(int i=0;i<image.rows;i++){ for (int j = 0; j < image.cols; ++j){ if(channelNum==3){ h_inImage[k++] = image.at<Vec3b>(i,j).val[c]; }else{ h_inImage[k++] = image.at<uchar>(i,j); } } } } //512 / 3 =170 //512 % 3 = 2 //0 //171 //342 //512 for(int i=0;i<channelNum;++i){ if(i< NBLOCOS%channelNum){ h_blocoOffset[i]=i*floor(1.0*NBLOCOS/channelNum) + i; h_blocoQnt[i]=ceil(1.0*NBLOCOS/channelNum); }else{ h_blocoOffset[i]=i*floor(1.0*NBLOCOS/channelNum) + NBLOCOS%channelNum; h_blocoQnt[i]= floor(1.0*NBLOCOS/channelNum); } // printf("%d ",h_blocoOffset[i]); } // printf("NBLOCOS: %d NTHREADS: %d\n",NBLOCOS,NTHREADS); int imgLinOut = outputMat.rows; h_blocoOffset[channelNum] = NBLOCOS; // for(int i=0;i<channelNum+1;i++){ // printf("%d ",h_blocoOffset[i]); // } // printf("\n"); cudaFatal(hipMemcpy(d_inImage,h_inImage,sizeIn,hipMemcpyHostToDevice)); cudaFatal(hipMemcpy(d_blocoOffset,h_blocoOffset,(channelNum+1)*sizeof(int),hipMemcpyHostToDevice)); cudaFatal(hipMemcpy(d_blocoQnt,h_blocoQnt,(channelNum+1)*sizeof(int),hipMemcpyHostToDevice)); int imgSizeIn = image.rows*image.cols; int imgSizeOut = rowMat*colsMat; int imgColIn = image.cols; int imgColOut = colsMat; dim3 griSize(NBLOCOS,1,1); dim3 blockSize(NTHREADS,1,1); hipLaunchKernelGGL(( smooth), dim3(griSize),dim3(blockSize), 0, 0, d_inImage,d_outImage,d_blocoQnt,d_blocoOffset,imgSizeIn,imgSizeOut,imgLinOut,imgColIn,imgColOut,channelNum,border); cudaFatal(hipDeviceSynchronize()); // smooth(unsigned char *d_inImage,unsigned char *d_outImage,unsigned char *d_blocoQnt,unsigned char *d_blocoOffset, // int imgSizeIn,int imgSizeOut,int imgLinOut,int imgColIn,int imgColOut,int channelNum,int border) cudaFatal(hipMemcpy(h_outImage,d_outImage,sizeOut,hipMemcpyDeviceToHost)); int auxC,auxI,auxJ; k=0; for (int c=0;c<channelNum;c++){ for(int i=0;i<rowMat;i++){ for(int j=0;j<colsMat;j++){ if(channelNum==3){ // outputMat.at<Vec3b>(l,k).val[vetorIdCanal[i]]=partitionedBlockRcv[y++]; channels[c].at<uchar>(i,j)=(uchar)h_outImage[k++]; // cout<<vetorIdCanal[i]<<endl; }else{ outputMat.at<uchar>(i,j)=(uchar)h_outImage[k++]; } } } } // for(int k=0;k<(sizeOut/sizeof(unsigned char));k++){ // auxC=idxCalcC(k,imgColOut,imgSizeOut); // auxI=idxCalcI(k,imgColOut,imgSizeOut,channelNum); // auxJ=idxCalcJ(k,imgColOut,imgSizeOut); // // printf("C: %d I: %d J: %d\n",auxC,auxI,auxJ); // if(channelNum==3){ // // outputMat.at<Vec3b>(l,k).val[vetorIdCanal[i]]=partitionedBlockRcv[y++]; // channels[auxC].at<uchar>(auxI,auxJ)=(uchar)h_outImage[k]; // // cout<<vetorIdCanal[i]<<endl; // }else{ // outputMat.at<uchar>(auxI,auxJ)=(uchar)h_outImage[k]; // } // } if (channelNum==3){ merge(channels,channelNum,outputMat); } clock_gettime(CLOCK_REALTIME,&end); //Calculo tempo de execucao diffTimeSpec(begin, end, &result); //time_spent=((double) difftime(end.tv_sec,begin.tv_sec))+(result.tv_nsec*1.0/1000000000.0); time_spent=((double) result.tv_sec)+(result.tv_nsec*1.0/1000000000.0); // namedWindow("Orginal",WINDOW_NORMAL); // namedWindow("Resultado",WINDOW_NORMAL); // imshow("Original",image); // imshow("Resultado",outputMat); // waitKey(0); // cout << "Nome imagem: "<< argv[1] <<endl; std::string inFileName(argv[1]); cout<<inFileName<<"\t"<<NBLOCOS<<"\t"<<NTHREADS<<"\t"<<time_spent<<endl; std::string outFileName = inFileName.substr(0,inFileName.find_last_of(".")); outFileName += ".ppm"; imwrite(outFileName,outputMat); //imwrite("../canal0.ppm",channels[0]); //imwrite("../canal1.ppm",channels[1]); //imwrite("../canal2.ppm",channels[2]); //imwrite("OIEEEEEEEE.ppm",image); free(h_outImage); free(h_inImage); cudaFatal(hipFree(d_outImage)); cudaFatal(hipFree(d_inImage)); } void diffTimeSpec(struct timespec start,struct timespec end,struct timespec *temp) { if ((end.tv_nsec-start.tv_nsec)<0) { temp->tv_sec = end.tv_sec-start.tv_sec-1; temp->tv_nsec = 1000000000+end.tv_nsec-start.tv_nsec; } else { temp->tv_sec = end.tv_sec-start.tv_sec; temp->tv_nsec = end.tv_nsec-start.tv_nsec; } return; } //relaiza o calculo da media // inline // unsigned char calculaMedia(unsigned char *in,unsigned char *out,int qntLinhas,int qntCols,int p,int border){ // int sum=0; // int i= idxCalcI(p,qntCols); // int j= idxCalcJ(p,qntCols); // for(int k=-border;k<=border;k++){ // for(int l=-border;l<=border;l++){ // sum+=in[posCalc(i+k,j+l,qntCols)] ; // } // } // return (unsigned char)(sum/pow(border*2+1,2)); // } // void smooth(unsigned char *img,unsigned char *output,int qntLinhas,int qntCols,int size_com_borda,int offset,int border){ // //TODO: colocar bordas de acordo com necessidade // int sum; // // Mat imgWithBorder(img,Rect(border,border,img.rows,img.cols)); // int lastPos = posCalc(qntLinhas+2*border-1,qntCols-1,qntCols)+1; // int k=0; // int auxi,auxj; // unsigned char auxDebug; // //cout<< "Retorno do smooth: "; // #pragma omp parallel //shared(output) // { // #pragma omp for schedule(dynamic) private(auxi,auxj,auxDebug) // //processa o vetor. Como a matriz foi colocada em formato de vetor, eh necessario um for so, mas fora utilizadas fucoes para converter os indces // for(int i=posCalc(border,border,qntCols);i<lastPos;i++){ // auxi=idxCalcI(i,qntCols); // auxj=idxCalcJ(i,qntCols); // //cout<< auxi << " "<<auxj<<endl; // if(auxi>=border && auxi<qntLinhas+2*border-border && auxj>=border && auxj<qntCols-border){ // se e um pixel valido da imagem // auxDebug=calculaMedia(img,output,qntLinhas,qntCols,i,border); // output[posCalc(auxi-border,auxj-border,qntCols-2*border)]=auxDebug; // } // } // } // }
ea8bef202f23fc76aa4c436c039a3e5be3f589c8.cu
#include <cstdlib> #include <cstdio> #include <iostream> #include <mpi.h> #include <omp.h> #include <opencv2/opencv.hpp> #include <cmath> using namespace std; using namespace cv; void cudaFatal(cudaError_t error) { if (error != cudaSuccess) { fprintf(stderr,"ERROR: %s\n", cudaGetErrorString(error)); exit(EXIT_FAILURE); } } //retorna a posicao no voetor correspondente a uma coordenada i,j fornecida __device__ int posCalc(int channel,int i, int j,int qntCols,int imgSize){ return (imgSize*channel+i*qntCols+j); } //retorna o canal correspondente a uma posicao no vtor __host__ int idxCalcC(int pos,int qntCols,int imgSize){ return (floorf(pos*1.0/imgSize)); } //retorna a coordenada J correspondente a uma posicao no vtor __host__ int idxCalcJ(int pos,int qntCols,int imgSize){ return (pos%qntCols); } //retorna a coordenada I correspondente a uma posicao no vtor __host__ int idxCalcI(int pos,int qntCols,int imgSize,int channelNum){ int qntLinhasPorCanal = (imgSize/qntCols); // return ((int)floor(pos*1.0/qntLinhasPorCanal))%qntLinhasPorCanal; return ((int)floor(pos*1.0/qntCols))%qntLinhasPorCanal; } __global__ void smooth(unsigned char *d_inImage,unsigned char *d_outImage,int *d_blocoQnt,int *d_blocoOffset, int imgSizeIn,int imgSizeOut,int imgLinOut,int imgColIn,int imgColOut,int channelNum,int border){ int offsetBloco; int bId= blockIdx.x; int qntLinBloco; //talvez n precise int offsetThread; int qntLinThread=0; int tId = threadIdx.x; int c=-1; // int offsetCanal; //0 //171 //342 //512 // for(int i=0;i<channelNum;i++){ // printf("%d ",d_blocoOffset[i]); // } for(int i=0;i<channelNum;i++){ if(bId>=d_blocoOffset[i] && bId<d_blocoOffset[i+1]){ c=i; break; } } if(c<0 || c>=channelNum){ return; } // if(c==3){ // c=2; // } bId=bId-d_blocoOffset[c]; // Quantidade total de linhas / qntde de blocos naquele canal if(bId<(imgLinOut%d_blocoQnt[c])){ offsetBloco= bId*floorf(1.0*imgLinOut/d_blocoQnt[c]) + bId; }else{ offsetBloco= bId*floorf(1.0*imgLinOut/d_blocoQnt[c]) + imgLinOut%d_blocoQnt[c]; } if(bId<imgLinOut%d_blocoQnt[c]){ qntLinBloco=ceilf(1.0*imgLinOut/d_blocoQnt[c]); }else{ qntLinBloco=floorf(1.0*imgLinOut/d_blocoQnt[c]); } // Quantidade total de linhas em um bloco / quantiade de threads naquele bloco if(tId<qntLinBloco%blockDim.x){ offsetThread=tId*floorf(1.0*qntLinBloco/blockDim.x)+tId; }else{ offsetThread=tId*floorf(1.0*qntLinBloco/blockDim.x)+qntLinBloco%blockDim.x; } if(tId<qntLinBloco%blockDim.x){ qntLinThread=ceilf(1.0*qntLinBloco/blockDim.x); }else{ qntLinThread=floorf(1.0*qntLinBloco/blockDim.x); } //pegando o offset do primeiro bloco do canal // Quantidade total de linhas / qntde de blocos naquele canal int offsetPrimeiroBloco; if(d_blocoOffset[c]<(imgLinOut%d_blocoQnt[c])){ offsetPrimeiroBloco= d_blocoOffset[c]*floorf(1.0*imgLinOut/d_blocoQnt[c]) + d_blocoOffset[c]; }else{ offsetPrimeiroBloco= d_blocoOffset[c]*floorf(1.0*imgLinOut/d_blocoQnt[c]) + imgLinOut%d_blocoQnt[c]; } // int linStart=offsetThread+offsetBloco; // int linStart=offsetThread+offsetBloco-offsetPrimeiroBloco; int linStart=offsetThread+offsetBloco; float sum; // printf("BlockID: %d ThreadID: %d C: %d offsetBloco: %d qntLinBloco: %d offsetThread %d qntLinThread %d linstart: %d\n",bId,tId,c,offsetBloco,qntLinBloco,offsetThread,qntLinThread,linStart); for(int i=linStart;i<linStart+qntLinThread;++i){ for(int j=0;j<imgColOut;++j){ sum=0; for(int l=-border;l<=border;l++){ for(int k=-border;k<=border;k++){ sum+=d_inImage[posCalc(c,i+l+border,j+k+border,imgColIn,imgSizeIn)]; } } sum=sum/(((2.0*border)+1)*((2.0*border)+1)); d_outImage[posCalc(c,i,j,imgColOut,imgSizeOut)]=sum; } } } // void smooth(unsigned char *img,unsigned char *output,int qntLinhas,int qntCols,int size_com_borda,int offset,int order); void diffTimeSpec(struct timespec start,struct timespec end,struct timespec *temp); int main(int argc,char** argv){ int NTHREADS = 3; // Inicializando com 3 Threads, mas sera alterado int NBLOCOS = 15; //Inicializando com 15 blocos, mas sera alterado //define a quantidade de blocos de acordo com o numero de processos gerados. Tal numero esta relacionado com a quantidade de ghosts no arquivo de host //elimina um noh, pois eh o master. EM nossa implementacao, o master nao realiza processamento da imagem if(argc>=5){ NTHREADS=atoi(argv[3]); //cout<<NTHREADS<<endl; NBLOCOS=atoi(argv[4]); } int border = 2; //relativo ao tamanho do kernel utilizado. Valor 2 deve ser utilizado para kernel de tamanho 5 //noh master que disponibiliza recursos para as outras if(NBLOCOS<=0){ cout <<"E necessario pelo menos um processo alem do master"<<endl; return -1; } Mat image; if(argc!=5){ printf("entrar com nome do arquivo, Tipo de imagem e numero de threads\n"); return -1; } int tipoImagem = atoi(argv[2]); //abrindo a imagem if(tipoImagem == 1){ //caso seja RGB image=imread(argv[1],CV_LOAD_IMAGE_COLOR); }else if(tipoImagem==2){ //caso seja grayScale image=imread(argv[1],CV_LOAD_IMAGE_GRAYSCALE); } if(!image.data){ printf("No data read.\n"); return -1; } //armazena as dimensoes originais (sem borda) das imagens int rowMat = image.rows; int colsMat = image.cols; int deptMat = image.depth(); //cria a imagem de saida Mat outputMat(rowMat,colsMat,deptMat); struct timespec begin, end,result; double time_spent; clock_gettime(CLOCK_REALTIME,&begin); int channelNum= image.channels(); Mat channels[3]; //inserindo borda na imagem copyMakeBorder(image,image,border,border,border,border,BORDER_CONSTANT,Scalar(0,0,0)); Mat outB(image.rows-border*2,image.cols-border*2,image.depth()); channels[0]=outB; if(channelNum==3){ //caso seja RGB, cria os canas adicionais Mat outG(image.rows-border*2,image.cols-border*2,image.depth()); Mat outR(image.rows-border*2,image.cols-border*2,image.depth()); channels[1]=outG; channels[2]=outR; } //divisao do trabalho unsigned char *d_outImage,*d_inImage; int *d_blocoOffset,*d_blocoQnt; unsigned char *h_outImage,*h_inImage; int *h_blocoOffset,*h_blocoQnt; int sizeIn = image.rows*image.cols*channelNum*sizeof(unsigned char); int sizeOut = rowMat*colsMat*channelNum*sizeof(unsigned char); h_inImage = (unsigned char*) malloc(sizeIn); h_outImage = (unsigned char*) malloc(sizeOut); h_blocoQnt = (int*) malloc((channelNum+1)*sizeof(int)); h_blocoOffset = (int*) malloc((channelNum+1)*sizeof(int)); cudaFatal(cudaMalloc(&d_inImage,sizeIn)); cudaFatal(cudaMalloc(&d_outImage,sizeOut)); cudaFatal(cudaMalloc(&d_blocoQnt,(channelNum+1)*sizeof(int))); cudaFatal(cudaMalloc(&d_blocoOffset,(channelNum+1)*sizeof(int))); int k=0; for (int c=0;c<channelNum;c++){ for(int i=0;i<image.rows;i++){ for (int j = 0; j < image.cols; ++j){ if(channelNum==3){ h_inImage[k++] = image.at<Vec3b>(i,j).val[c]; }else{ h_inImage[k++] = image.at<uchar>(i,j); } } } } //512 / 3 =170 //512 % 3 = 2 //0 //171 //342 //512 for(int i=0;i<channelNum;++i){ if(i< NBLOCOS%channelNum){ h_blocoOffset[i]=i*floor(1.0*NBLOCOS/channelNum) + i; h_blocoQnt[i]=ceil(1.0*NBLOCOS/channelNum); }else{ h_blocoOffset[i]=i*floor(1.0*NBLOCOS/channelNum) + NBLOCOS%channelNum; h_blocoQnt[i]= floor(1.0*NBLOCOS/channelNum); } // printf("%d ",h_blocoOffset[i]); } // printf("NBLOCOS: %d NTHREADS: %d\n",NBLOCOS,NTHREADS); int imgLinOut = outputMat.rows; h_blocoOffset[channelNum] = NBLOCOS; // for(int i=0;i<channelNum+1;i++){ // printf("%d ",h_blocoOffset[i]); // } // printf("\n"); cudaFatal(cudaMemcpy(d_inImage,h_inImage,sizeIn,cudaMemcpyHostToDevice)); cudaFatal(cudaMemcpy(d_blocoOffset,h_blocoOffset,(channelNum+1)*sizeof(int),cudaMemcpyHostToDevice)); cudaFatal(cudaMemcpy(d_blocoQnt,h_blocoQnt,(channelNum+1)*sizeof(int),cudaMemcpyHostToDevice)); int imgSizeIn = image.rows*image.cols; int imgSizeOut = rowMat*colsMat; int imgColIn = image.cols; int imgColOut = colsMat; dim3 griSize(NBLOCOS,1,1); dim3 blockSize(NTHREADS,1,1); smooth<<<griSize,blockSize>>>(d_inImage,d_outImage,d_blocoQnt,d_blocoOffset,imgSizeIn,imgSizeOut,imgLinOut,imgColIn,imgColOut,channelNum,border); cudaFatal(cudaThreadSynchronize()); // smooth(unsigned char *d_inImage,unsigned char *d_outImage,unsigned char *d_blocoQnt,unsigned char *d_blocoOffset, // int imgSizeIn,int imgSizeOut,int imgLinOut,int imgColIn,int imgColOut,int channelNum,int border) cudaFatal(cudaMemcpy(h_outImage,d_outImage,sizeOut,cudaMemcpyDeviceToHost)); int auxC,auxI,auxJ; k=0; for (int c=0;c<channelNum;c++){ for(int i=0;i<rowMat;i++){ for(int j=0;j<colsMat;j++){ if(channelNum==3){ // outputMat.at<Vec3b>(l,k).val[vetorIdCanal[i]]=partitionedBlockRcv[y++]; channels[c].at<uchar>(i,j)=(uchar)h_outImage[k++]; // cout<<vetorIdCanal[i]<<endl; }else{ outputMat.at<uchar>(i,j)=(uchar)h_outImage[k++]; } } } } // for(int k=0;k<(sizeOut/sizeof(unsigned char));k++){ // auxC=idxCalcC(k,imgColOut,imgSizeOut); // auxI=idxCalcI(k,imgColOut,imgSizeOut,channelNum); // auxJ=idxCalcJ(k,imgColOut,imgSizeOut); // // printf("C: %d I: %d J: %d\n",auxC,auxI,auxJ); // if(channelNum==3){ // // outputMat.at<Vec3b>(l,k).val[vetorIdCanal[i]]=partitionedBlockRcv[y++]; // channels[auxC].at<uchar>(auxI,auxJ)=(uchar)h_outImage[k]; // // cout<<vetorIdCanal[i]<<endl; // }else{ // outputMat.at<uchar>(auxI,auxJ)=(uchar)h_outImage[k]; // } // } if (channelNum==3){ merge(channels,channelNum,outputMat); } clock_gettime(CLOCK_REALTIME,&end); //Calculo tempo de execucao diffTimeSpec(begin, end, &result); //time_spent=((double) difftime(end.tv_sec,begin.tv_sec))+(result.tv_nsec*1.0/1000000000.0); time_spent=((double) result.tv_sec)+(result.tv_nsec*1.0/1000000000.0); // namedWindow("Orginal",WINDOW_NORMAL); // namedWindow("Resultado",WINDOW_NORMAL); // imshow("Original",image); // imshow("Resultado",outputMat); // waitKey(0); // cout << "Nome imagem: "<< argv[1] <<endl; std::string inFileName(argv[1]); cout<<inFileName<<"\t"<<NBLOCOS<<"\t"<<NTHREADS<<"\t"<<time_spent<<endl; std::string outFileName = inFileName.substr(0,inFileName.find_last_of(".")); outFileName += ".ppm"; imwrite(outFileName,outputMat); //imwrite("../canal0.ppm",channels[0]); //imwrite("../canal1.ppm",channels[1]); //imwrite("../canal2.ppm",channels[2]); //imwrite("OIEEEEEEEE.ppm",image); free(h_outImage); free(h_inImage); cudaFatal(cudaFree(d_outImage)); cudaFatal(cudaFree(d_inImage)); } void diffTimeSpec(struct timespec start,struct timespec end,struct timespec *temp) { if ((end.tv_nsec-start.tv_nsec)<0) { temp->tv_sec = end.tv_sec-start.tv_sec-1; temp->tv_nsec = 1000000000+end.tv_nsec-start.tv_nsec; } else { temp->tv_sec = end.tv_sec-start.tv_sec; temp->tv_nsec = end.tv_nsec-start.tv_nsec; } return; } //relaiza o calculo da media // inline // unsigned char calculaMedia(unsigned char *in,unsigned char *out,int qntLinhas,int qntCols,int p,int border){ // int sum=0; // int i= idxCalcI(p,qntCols); // int j= idxCalcJ(p,qntCols); // for(int k=-border;k<=border;k++){ // for(int l=-border;l<=border;l++){ // sum+=in[posCalc(i+k,j+l,qntCols)] ; // } // } // return (unsigned char)(sum/pow(border*2+1,2)); // } // void smooth(unsigned char *img,unsigned char *output,int qntLinhas,int qntCols,int size_com_borda,int offset,int border){ // //TODO: colocar bordas de acordo com necessidade // int sum; // // Mat imgWithBorder(img,Rect(border,border,img.rows,img.cols)); // int lastPos = posCalc(qntLinhas+2*border-1,qntCols-1,qntCols)+1; // int k=0; // int auxi,auxj; // unsigned char auxDebug; // //cout<< "Retorno do smooth: "; // #pragma omp parallel //shared(output) // { // #pragma omp for schedule(dynamic) private(auxi,auxj,auxDebug) // //processa o vetor. Como a matriz foi colocada em formato de vetor, eh necessario um for so, mas fora utilizadas fucoes para converter os indces // for(int i=posCalc(border,border,qntCols);i<lastPos;i++){ // auxi=idxCalcI(i,qntCols); // auxj=idxCalcJ(i,qntCols); // //cout<< auxi << " "<<auxj<<endl; // if(auxi>=border && auxi<qntLinhas+2*border-border && auxj>=border && auxj<qntCols-border){ // se e um pixel valido da imagem // auxDebug=calculaMedia(img,output,qntLinhas,qntCols,i,border); // output[posCalc(auxi-border,auxj-border,qntCols-2*border)]=auxDebug; // } // } // } // }
e4f8d05b4586176dd6faff7cc2b0169dc242e130.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" // // auto-generated by op2.m on 19-Oct-2012 16:21:07 // // user function __device__ #include "res_calc.h" // CUDA kernel function __global__ void op_cuda_res_calc( float *ind_arg0, float *ind_arg1, float *ind_arg2, float *ind_arg3, int *ind_map, short *arg_map, int *ind_arg_sizes, int *ind_arg_offs, int block_offset, int *blkmap, int *offset, int *nelems, int *ncolors, int *colors, int nblocks, int set_size) { float arg6_l[4]; float arg7_l[4]; __shared__ int *ind_arg0_map, ind_arg0_size; __shared__ int *ind_arg1_map, ind_arg1_size; __shared__ int *ind_arg2_map, ind_arg2_size; __shared__ int *ind_arg3_map, ind_arg3_size; __shared__ float *ind_arg0_s; __shared__ float *ind_arg1_s; __shared__ float *ind_arg2_s; __shared__ float *ind_arg3_s; __shared__ int nelems2, ncolor; __shared__ int nelem, offset_b; extern __shared__ char shared[]; if (blockIdx.x+blockIdx.y*gridDim.x >= nblocks) return; if (threadIdx.x==0) { // get sizes and shift pointers and direct-mapped data int blockId = blkmap[blockIdx.x + blockIdx.y*gridDim.x + block_offset]; nelem = nelems[blockId]; offset_b = offset[blockId]; nelems2 = blockDim.x*(1+(nelem-1)/blockDim.x); ncolor = ncolors[blockId]; ind_arg0_size = ind_arg_sizes[0+blockId*4]; ind_arg1_size = ind_arg_sizes[1+blockId*4]; ind_arg2_size = ind_arg_sizes[2+blockId*4]; ind_arg3_size = ind_arg_sizes[3+blockId*4]; ind_arg0_map = &ind_map[0*set_size] + ind_arg_offs[0+blockId*4]; ind_arg1_map = &ind_map[2*set_size] + ind_arg_offs[1+blockId*4]; ind_arg2_map = &ind_map[4*set_size] + ind_arg_offs[2+blockId*4]; ind_arg3_map = &ind_map[6*set_size] + ind_arg_offs[3+blockId*4]; // set shared memory pointers int nbytes = 0; ind_arg0_s = (float *) &shared[nbytes]; nbytes += ROUND_UP(ind_arg0_size*sizeof(float)*2); ind_arg1_s = (float *) &shared[nbytes]; nbytes += ROUND_UP(ind_arg1_size*sizeof(float)*4); ind_arg2_s = (float *) &shared[nbytes]; nbytes += ROUND_UP(ind_arg2_size*sizeof(float)*1); ind_arg3_s = (float *) &shared[nbytes]; } __syncthreads(); // make sure all of above completed // copy indirect datasets into shared memory or zero increment for (int n=threadIdx.x; n<ind_arg0_size*2; n+=blockDim.x) ind_arg0_s[n] = ind_arg0[n%2+ind_arg0_map[n/2]*2]; for (int n=threadIdx.x; n<ind_arg1_size*4; n+=blockDim.x) ind_arg1_s[n] = ind_arg1[n%4+ind_arg1_map[n/4]*4]; for (int n=threadIdx.x; n<ind_arg2_size*1; n+=blockDim.x) ind_arg2_s[n] = ind_arg2[n%1+ind_arg2_map[n/1]*1]; for (int n=threadIdx.x; n<ind_arg3_size*4; n+=blockDim.x) ind_arg3_s[n] = ZERO_float; __syncthreads(); // process set elements for (int n=threadIdx.x; n<nelems2; n+=blockDim.x) { int col2 = -1; if (n<nelem) { // initialise local variables for (int d=0; d<4; d++) arg6_l[d] = ZERO_float; for (int d=0; d<4; d++) arg7_l[d] = ZERO_float; // user-supplied kernel call res_calc( ind_arg0_s+arg_map[0*set_size+n+offset_b]*2, ind_arg0_s+arg_map[1*set_size+n+offset_b]*2, ind_arg1_s+arg_map[2*set_size+n+offset_b]*4, ind_arg1_s+arg_map[3*set_size+n+offset_b]*4, ind_arg2_s+arg_map[4*set_size+n+offset_b]*1, ind_arg2_s+arg_map[5*set_size+n+offset_b]*1, arg6_l, arg7_l ); col2 = colors[n+offset_b]; } // store local variables int arg6_map; int arg7_map; if (col2>=0) { arg6_map = arg_map[6*set_size+n+offset_b]; arg7_map = arg_map[7*set_size+n+offset_b]; } for (int col=0; col<ncolor; col++) { if (col2==col) { for (int d=0; d<4; d++) ind_arg3_s[d+arg6_map*4] += arg6_l[d]; for (int d=0; d<4; d++) ind_arg3_s[d+arg7_map*4] += arg7_l[d]; } __syncthreads(); } } // apply pointered write/increment for (int n=threadIdx.x; n<ind_arg3_size*4; n+=blockDim.x) ind_arg3[n%4+ind_arg3_map[n/4]*4] += ind_arg3_s[n]; } // host stub function void op_par_loop_res_calc(char const *name, op_set set, op_arg arg0, op_arg arg1, op_arg arg2, op_arg arg3, op_arg arg4, op_arg arg5, op_arg arg6, op_arg arg7 ){ int nargs = 8; op_arg args[8]; args[0] = arg0; args[1] = arg1; args[2] = arg2; args[3] = arg3; args[4] = arg4; args[5] = arg5; args[6] = arg6; args[7] = arg7; int ninds = 4; int inds[8] = {0,0,1,1,2,2,3,3}; if (OP_diags>2) { printf(" kernel routine with indirection: res_calc\n"); } // get plan #ifdef OP_PART_SIZE_2 int part_size = OP_PART_SIZE_2; #else int part_size = OP_part_size; #endif int set_size = op_mpi_halo_exchanges(set, nargs, args); // initialise timers double cpu_t1, cpu_t2, wall_t1=0, wall_t2=0; op_timing_realloc(2); OP_kernels[2].name = name; OP_kernels[2].count += 1; if (set->size >0) { op_plan *Plan = op_plan_get(name,set,part_size,nargs,args,ninds,inds); op_timers_core(&cpu_t1, &wall_t1); // execute plan int block_offset = 0; for (int col=0; col < Plan->ncolors; col++) { if (col==Plan->ncolors_core) op_mpi_wait_all(nargs,args); #ifdef OP_BLOCK_SIZE_2 int nthread = OP_BLOCK_SIZE_2; #else int nthread = OP_block_size; #endif dim3 nblocks = dim3(Plan->ncolblk[col] >= (1<<16) ? 65535 : Plan->ncolblk[col], Plan->ncolblk[col] >= (1<<16) ? (Plan->ncolblk[col]-1)/65535+1: 1, 1); if (Plan->ncolblk[col] > 0) { int nshared = Plan->nsharedCol[col]; hipLaunchKernelGGL(( op_cuda_res_calc), dim3(nblocks),dim3(nthread),nshared, 0, (float *)arg0.data_d, (float *)arg2.data_d, (float *)arg4.data_d, (float *)arg6.data_d, Plan->ind_map, Plan->loc_map, Plan->ind_sizes, Plan->ind_offs, block_offset, Plan->blkmap, Plan->offset, Plan->nelems, Plan->nthrcol, Plan->thrcol, Plan->ncolblk[col], set_size); cutilSafeCall(hipDeviceSynchronize()); cutilCheckMsg("op_cuda_res_calc execution failed\n"); } block_offset += Plan->ncolblk[col]; } op_timing_realloc(2); OP_kernels[2].transfer += Plan->transfer; OP_kernels[2].transfer2 += Plan->transfer2; } op_mpi_set_dirtybit(nargs, args); // update kernel record op_timers_core(&cpu_t2, &wall_t2); OP_kernels[2].time += wall_t2 - wall_t1; }
e4f8d05b4586176dd6faff7cc2b0169dc242e130.cu
// // auto-generated by op2.m on 19-Oct-2012 16:21:07 // // user function __device__ #include "res_calc.h" // CUDA kernel function __global__ void op_cuda_res_calc( float *ind_arg0, float *ind_arg1, float *ind_arg2, float *ind_arg3, int *ind_map, short *arg_map, int *ind_arg_sizes, int *ind_arg_offs, int block_offset, int *blkmap, int *offset, int *nelems, int *ncolors, int *colors, int nblocks, int set_size) { float arg6_l[4]; float arg7_l[4]; __shared__ int *ind_arg0_map, ind_arg0_size; __shared__ int *ind_arg1_map, ind_arg1_size; __shared__ int *ind_arg2_map, ind_arg2_size; __shared__ int *ind_arg3_map, ind_arg3_size; __shared__ float *ind_arg0_s; __shared__ float *ind_arg1_s; __shared__ float *ind_arg2_s; __shared__ float *ind_arg3_s; __shared__ int nelems2, ncolor; __shared__ int nelem, offset_b; extern __shared__ char shared[]; if (blockIdx.x+blockIdx.y*gridDim.x >= nblocks) return; if (threadIdx.x==0) { // get sizes and shift pointers and direct-mapped data int blockId = blkmap[blockIdx.x + blockIdx.y*gridDim.x + block_offset]; nelem = nelems[blockId]; offset_b = offset[blockId]; nelems2 = blockDim.x*(1+(nelem-1)/blockDim.x); ncolor = ncolors[blockId]; ind_arg0_size = ind_arg_sizes[0+blockId*4]; ind_arg1_size = ind_arg_sizes[1+blockId*4]; ind_arg2_size = ind_arg_sizes[2+blockId*4]; ind_arg3_size = ind_arg_sizes[3+blockId*4]; ind_arg0_map = &ind_map[0*set_size] + ind_arg_offs[0+blockId*4]; ind_arg1_map = &ind_map[2*set_size] + ind_arg_offs[1+blockId*4]; ind_arg2_map = &ind_map[4*set_size] + ind_arg_offs[2+blockId*4]; ind_arg3_map = &ind_map[6*set_size] + ind_arg_offs[3+blockId*4]; // set shared memory pointers int nbytes = 0; ind_arg0_s = (float *) &shared[nbytes]; nbytes += ROUND_UP(ind_arg0_size*sizeof(float)*2); ind_arg1_s = (float *) &shared[nbytes]; nbytes += ROUND_UP(ind_arg1_size*sizeof(float)*4); ind_arg2_s = (float *) &shared[nbytes]; nbytes += ROUND_UP(ind_arg2_size*sizeof(float)*1); ind_arg3_s = (float *) &shared[nbytes]; } __syncthreads(); // make sure all of above completed // copy indirect datasets into shared memory or zero increment for (int n=threadIdx.x; n<ind_arg0_size*2; n+=blockDim.x) ind_arg0_s[n] = ind_arg0[n%2+ind_arg0_map[n/2]*2]; for (int n=threadIdx.x; n<ind_arg1_size*4; n+=blockDim.x) ind_arg1_s[n] = ind_arg1[n%4+ind_arg1_map[n/4]*4]; for (int n=threadIdx.x; n<ind_arg2_size*1; n+=blockDim.x) ind_arg2_s[n] = ind_arg2[n%1+ind_arg2_map[n/1]*1]; for (int n=threadIdx.x; n<ind_arg3_size*4; n+=blockDim.x) ind_arg3_s[n] = ZERO_float; __syncthreads(); // process set elements for (int n=threadIdx.x; n<nelems2; n+=blockDim.x) { int col2 = -1; if (n<nelem) { // initialise local variables for (int d=0; d<4; d++) arg6_l[d] = ZERO_float; for (int d=0; d<4; d++) arg7_l[d] = ZERO_float; // user-supplied kernel call res_calc( ind_arg0_s+arg_map[0*set_size+n+offset_b]*2, ind_arg0_s+arg_map[1*set_size+n+offset_b]*2, ind_arg1_s+arg_map[2*set_size+n+offset_b]*4, ind_arg1_s+arg_map[3*set_size+n+offset_b]*4, ind_arg2_s+arg_map[4*set_size+n+offset_b]*1, ind_arg2_s+arg_map[5*set_size+n+offset_b]*1, arg6_l, arg7_l ); col2 = colors[n+offset_b]; } // store local variables int arg6_map; int arg7_map; if (col2>=0) { arg6_map = arg_map[6*set_size+n+offset_b]; arg7_map = arg_map[7*set_size+n+offset_b]; } for (int col=0; col<ncolor; col++) { if (col2==col) { for (int d=0; d<4; d++) ind_arg3_s[d+arg6_map*4] += arg6_l[d]; for (int d=0; d<4; d++) ind_arg3_s[d+arg7_map*4] += arg7_l[d]; } __syncthreads(); } } // apply pointered write/increment for (int n=threadIdx.x; n<ind_arg3_size*4; n+=blockDim.x) ind_arg3[n%4+ind_arg3_map[n/4]*4] += ind_arg3_s[n]; } // host stub function void op_par_loop_res_calc(char const *name, op_set set, op_arg arg0, op_arg arg1, op_arg arg2, op_arg arg3, op_arg arg4, op_arg arg5, op_arg arg6, op_arg arg7 ){ int nargs = 8; op_arg args[8]; args[0] = arg0; args[1] = arg1; args[2] = arg2; args[3] = arg3; args[4] = arg4; args[5] = arg5; args[6] = arg6; args[7] = arg7; int ninds = 4; int inds[8] = {0,0,1,1,2,2,3,3}; if (OP_diags>2) { printf(" kernel routine with indirection: res_calc\n"); } // get plan #ifdef OP_PART_SIZE_2 int part_size = OP_PART_SIZE_2; #else int part_size = OP_part_size; #endif int set_size = op_mpi_halo_exchanges(set, nargs, args); // initialise timers double cpu_t1, cpu_t2, wall_t1=0, wall_t2=0; op_timing_realloc(2); OP_kernels[2].name = name; OP_kernels[2].count += 1; if (set->size >0) { op_plan *Plan = op_plan_get(name,set,part_size,nargs,args,ninds,inds); op_timers_core(&cpu_t1, &wall_t1); // execute plan int block_offset = 0; for (int col=0; col < Plan->ncolors; col++) { if (col==Plan->ncolors_core) op_mpi_wait_all(nargs,args); #ifdef OP_BLOCK_SIZE_2 int nthread = OP_BLOCK_SIZE_2; #else int nthread = OP_block_size; #endif dim3 nblocks = dim3(Plan->ncolblk[col] >= (1<<16) ? 65535 : Plan->ncolblk[col], Plan->ncolblk[col] >= (1<<16) ? (Plan->ncolblk[col]-1)/65535+1: 1, 1); if (Plan->ncolblk[col] > 0) { int nshared = Plan->nsharedCol[col]; op_cuda_res_calc<<<nblocks,nthread,nshared>>>( (float *)arg0.data_d, (float *)arg2.data_d, (float *)arg4.data_d, (float *)arg6.data_d, Plan->ind_map, Plan->loc_map, Plan->ind_sizes, Plan->ind_offs, block_offset, Plan->blkmap, Plan->offset, Plan->nelems, Plan->nthrcol, Plan->thrcol, Plan->ncolblk[col], set_size); cutilSafeCall(cudaDeviceSynchronize()); cutilCheckMsg("op_cuda_res_calc execution failed\n"); } block_offset += Plan->ncolblk[col]; } op_timing_realloc(2); OP_kernels[2].transfer += Plan->transfer; OP_kernels[2].transfer2 += Plan->transfer2; } op_mpi_set_dirtybit(nargs, args); // update kernel record op_timers_core(&cpu_t2, &wall_t2); OP_kernels[2].time += wall_t2 - wall_t1; }
aca364ba207fa14d72e9fb4abd1210f8c1948afc.hip
// !!! This is a file automatically generated by hipify!!! /* * Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <assert.h> #include <hip/hip_runtime.h> #include <hip/hip_fp16.h> #include <hip/hip_runtime.h> #include "maskRCNNKernels.h" #include "plugin.h" #include <NvInfer.h> #include <assert.h> #include <hipcub/hipcub.hpp> #include <iostream> #include <stdio.h> #include <thrust/device_ptr.h> #include <thrust/fill.h> #define DUBUG_KERNEL 0 #define DUBUG_BATCH 0 #define DEBUG_T 1 #define dMIN(a, b) ((a) < (b) ? (a) : (b)) #define dMAX(a, b) ((a) > (b) ? (a) : (b)) #define dCLAMP(x, xMin, xMax) ((x) > (xMin) ? ((x) < (xMax) ? (x) : (xMax)) : (xMin)) template <typename BoxType> struct BBoxT { BoxType y1, x1, y2, x2; }; inline __device__ __half mul_fb(const __half & a, const __half & b) { #if __CUDA_ARCH__ >= 530 return a * b; #else return __float2half(__half2float(a) * __half2float(b)); #endif } inline __device__ __half add_fb(const __half & a, const half & b) { #if __CUDA_ARCH__ >= 530 return a + b; #else return __float2half(__half2float(a) + __half2float(b)); #endif } template <typename DType> __global__ void argMaxReset_kernel( int samples, int NClass, const DType* in_scores, const int* maxIdx, DType* out_scores) { int idx = threadIdx.x + blockIdx.x * blockDim.x; int max_idx = samples * NClass; if (idx >= max_idx) return; int sampleIdx = idx / NClass; int classIdx = idx % NClass; if (classIdx != maxIdx[sampleIdx]) out_scores[idx] = 0; else out_scores[idx] = in_scores[idx]; } template <typename DType> struct ScanItem { DType data; int idx; }; template <typename DType> struct GreaterItem { __host__ __device__ __forceinline__ ScanItem<DType> operator()( const ScanItem<DType>& a, const ScanItem<DType>& b) const { return (a.data > b.data ? a : b); } }; template <typename DType> __global__ void resetMemValue_kernel(void* outPtr, int samples, float val) { DType* out = static_cast<DType*>(outPtr); int loop = gridDim.x * blockDim.x; for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < samples; idx += loop) { out[idx] = (DType) val; } } template <> __global__ void resetMemValue_kernel<half>(void* outPtr, int samples, float val) { __half* out = static_cast<__half*>(outPtr); int loop = gridDim.x * blockDim.x; for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < samples; idx += loop) { out[idx] = __float2half(val); } } // blockDim.x : NClass // GroupDim.x : sample count // GroupDim.y : batch N // outScore : DType[ N * sample * 1 ] // outLabel : int[ N * sample * 1 ] // outBbox : int[ N * sample * 4 ] template <typename DType, typename BoxType, int Threads = 32> __global__ void argMaxGroup_kernel(int samples, int start_class_id, int NClass, const void* inScorePtr, const void* inBboxPtr, const void* validSampleCountPtr, void* outScorePtr, void* outLabelPtr, void* outBboxPtr) { const DType* inScore = static_cast<const DType*>(inScorePtr); const BoxType* inBbox = static_cast<const BoxType*>(inBboxPtr); const int* validSampleCount = static_cast<const int*>(validSampleCountPtr); DType* outScore = static_cast<DType*>(outScorePtr); BoxType* outLabel = static_cast<BoxType*>(outLabelPtr); BoxType* outBbox = static_cast<BoxType*>(outBboxPtr); const int N = blockIdx.y; const int validSamples = validSampleCount[N]; typedef ScanItem<DType> ScanItemD; typedef hipcub::BlockReduce<ScanItemD, Threads> BlockReduce; __shared__ typename BlockReduce::TempStorage temp_storage; for (int iSample = blockIdx.x; iSample < validSamples; iSample += gridDim.x) { int classOffset = (N * samples + iSample) * NClass; // start from [batch, count, class0] // total IPerThread * blockDim ScanItemD maxItem = {0.0f, -1}; for (int i = start_class_id; i < NClass; i += Threads) { int curIdx = i + threadIdx.x; ScanItemD item = {0.0f, -1}; if (curIdx < NClass) { item.data = inScore[classOffset + curIdx]; item.idx = curIdx; } const int validNum = (NClass - i > Threads ? Threads : NClass - i); ScanItemD aggregate = BlockReduce(temp_storage).Reduce(item, GreaterItem<DType>(), validNum); __syncthreads(); if (aggregate.data > maxItem.data) { maxItem = aggregate; } #if DUBUG_KERNEL if (N == DUBUG_BATCH && threadIdx.x == 0 && iSample < 15 /*&& maxItem.idx >= 32*/) { printf("argMaxGroup N:%d, iSample:%d, maxItem(score:%.3f, idx:%d)validReduceNum:%d\n", N, iSample, (float) maxItem.data, maxItem.idx, validNum); } #endif } const int dstOffset = N * samples + iSample; if (threadIdx.x == 0) { outScore[dstOffset] = maxItem.data; outLabel[dstOffset] = (BoxType) maxItem.idx; outBbox[dstOffset * 4] = inBbox[(classOffset + maxItem.idx) * 4]; outBbox[dstOffset * 4 + 1] = inBbox[(classOffset + maxItem.idx) * 4 + 1]; outBbox[dstOffset * 4 + 2] = inBbox[(classOffset + maxItem.idx) * 4 + 2]; outBbox[dstOffset * 4 + 3] = inBbox[(classOffset + maxItem.idx) * 4 + 3]; } } } struct BlockClassSumPrefix { int total; // Constructor __device__ BlockClassSumPrefix() : total(0) { } // Callback operator to be entered by the first warp of threads in the block. // Thread-0 is responsible for returning a value for seeding the block-wide scan. __device__ int operator()(int aggregate) { int old = total; total += aggregate; return old; } }; #define LabelShift (2.5f) #define MinValidScore (0.01f) #define ScoreShift (1.0f) template <typename DType> __device__ __forceinline__ DType getKey(DType score, int lable, int NClass) { return (lable < 0 ? (DType) 0 : ((DType)(NClass - lable - 1) * LabelShift + score + ScoreShift)); } template <typename DType, typename BoxType> __device__ __forceinline__ void getScoreLable(DType key, int NClass, DType& score, BoxType& lable) { int i = key / LabelShift; score = (key <= ScoreShift ? (DType) 0 : key - (DType) i * LabelShift - ScoreShift); score = dCLAMP(score, (DType) 0, (DType) 1.0); lable = (BoxType)(key <= ScoreShift ? -1 : (NClass - i - 1)); } // blockDim.x : threads // gridDim.x : batch N // validSampleCount INPUT : int [N] // classStartPos OUTPUT: int [N * (Class + 1)], need memset to zero before this kernel // outScore OUTPUT : DType [N * samples] // outLabel OUTPUT : int [N * samples] // outSampleIdx OUTPUT : int [N * samples] // outValidSampleCount : int [N] // IPerThread * Threads >= sample-count #define MaxClassNum 255 template <typename DType, typename BoxType, int Threads = 256, int IPerThread = 4> __global__ void sortPerClass_kernel( // int N, int samples, int NClass, int background, float scoreThreshold, const void* validSampleCountPtr, const void* inScorePtr, const void* inLabelPtr, const void* inBboxPtr, void* classStartPosPtr, void* outScorePtr, void* outLabelPtr, void* outSampleIdxPtr, void* outValidSampleCountPtr) { typedef cub::BlockExchange<DType, Threads, IPerThread> BlockExchangeKey; typedef cub::BlockExchange<int, Threads, IPerThread> BlockExchangeI; typedef cub::BlockRadixSort<DType, Threads, IPerThread, int> BlockRadixSort; typedef hipcub::BlockScan<int, Threads> BlockScanClass; __shared__ union { typename BlockExchangeKey::TempStorage storageKey; typename BlockExchangeI::TempStorage storageI; typename BlockRadixSort::TempStorage storageSort; typename BlockScanClass::TempStorage storageScan; } temp_storage; __shared__ int smemClassCount[MaxClassNum]; assert(NClass < MaxClassNum); assert(IPerThread * Threads >= samples); const int* validSampleCount = static_cast<const int*>(validSampleCountPtr); const DType* inScore = static_cast<const DType*>(inScorePtr); const BoxType* inLabel = static_cast<const BoxType*>(inLabelPtr); int* classStartPos = static_cast<int*>(classStartPosPtr); DType* outScore = static_cast<DType*>(outScorePtr); BoxType* outLabel = static_cast<BoxType*>(outLabelPtr); int* outSampleIdx = static_cast<int*>(outSampleIdxPtr); int* outValidSampleCount = static_cast<int*>(outValidSampleCountPtr); for (int s = threadIdx.x; s < NClass + 1; s += blockDim.x) { smemClassCount[s] = 0; } int N = blockIdx.x; int blockOffset = N * samples; int validSamples = validSampleCount[N]; DType key[IPerThread]; int iSample[IPerThread]; for (int i = 0; i < IPerThread; ++i) { iSample[i] = -1; key[i] = -1.0f; int curIdx = i * Threads + threadIdx.x; if (curIdx < validSamples) { int label = (int) (inLabel[blockOffset + curIdx]); DType score = inScore[blockOffset + curIdx]; if (label != background && label != -1 && score >= scoreThreshold) { key[i] = getKey(score, label, NClass); iSample[i] = curIdx; } } } BlockExchangeKey(temp_storage.storageKey).StripedToBlocked(key); __syncthreads(); BlockExchangeI(temp_storage.storageI).StripedToBlocked(iSample); __syncthreads(); BlockRadixSort(temp_storage.storageSort).SortDescendingBlockedToStriped(key, iSample); __syncthreads(); // store Idx cub::StoreDirectStriped<Threads>(threadIdx.x, outSampleIdx + blockOffset, iSample, validSamples); BoxType lable[IPerThread]; DType score[IPerThread]; #pragma unroll for (int i = 0; i < IPerThread; ++i) { getScoreLable(key[i], NClass, score[i], lable[i]); } cub::StoreDirectStriped<Threads>(threadIdx.x, outScore + blockOffset, score, validSamples); cub::StoreDirectStriped<Threads>(threadIdx.x, outLabel + blockOffset, lable, validSamples); // final for (int i = 0; i < IPerThread; ++i) { if (lable[i] >= (BoxType) 0) { atomicAdd(&smemClassCount[(int) lable[i]], 1); } } __syncthreads(); int classBlockOffset = N * (NClass + 1); // Exclusive-sum, 1st is 0, last is final sum #if DUBUG_KERNEL if (N == DUBUG_BATCH && threadIdx.x == 0) { printf("sortPerClass(N:%d) final count of each label, valid samples:%d\n", N, validSamples); for (int k = 0; k < NClass; ++k) { if (smemClassCount[k] > 0) printf("Batch:%d, L:%d, count:%d, \n", N, k, smemClassCount[k]); } } __syncthreads(); #endif BlockClassSumPrefix sumPrefix; for (int s = 0; s < NClass; s += blockDim.x) { // s start from block int iClassSamples = 0; int iClass = s + threadIdx.x; if (iClass < NClass) { iClassSamples = smemClassCount[iClass]; } BlockScanClass(temp_storage.storageScan).ExclusiveSum(iClassSamples, iClassSamples, sumPrefix); __syncthreads(); if (iClass < NClass) { classStartPos[classBlockOffset + iClass] = iClassSamples; } } if (threadIdx.x == 0) { classStartPos[classBlockOffset + NClass] = sumPrefix.total; assert(sumPrefix.total <= validSamples); // background data removed. outValidSampleCount[N] = sumPrefix.total; #if DUBUG_KERNEL if (N == DUBUG_BATCH) printf("After sortPerClass, batch:%d valid samples total:%d\n", N, sumPrefix.total); #endif } } template <int Threads = 256, int IPerThread = 4> __global__ void sortPerClass_kernel_half( // int N, int samples, int NClass, int background, float scoreThreshold, const void* validSampleCountPtr, const void* inScorePtr, const void* inLabelPtr, const void* inBboxPtr, void* classStartPosPtr, void* outScorePtr, void* outLabelPtr, void* outSampleIdxPtr, void* outValidSampleCountPtr) { typedef cub::BlockExchange<float, Threads, IPerThread> BlockExchangeKey; typedef cub::BlockExchange<int, Threads, IPerThread> BlockExchangeI; typedef cub::BlockRadixSort<float, Threads, IPerThread, int> BlockRadixSort; typedef hipcub::BlockScan<int, Threads> BlockScanClass; __shared__ union { typename BlockExchangeKey::TempStorage storageKey; typename BlockExchangeI::TempStorage storageI; typename BlockRadixSort::TempStorage storageSort; typename BlockScanClass::TempStorage storageScan; } temp_storage; __shared__ int smemClassCount[MaxClassNum]; assert(NClass < MaxClassNum); assert(IPerThread * Threads >= samples); const int* validSampleCount = static_cast<const int*>(validSampleCountPtr); const __half* inScore = static_cast<const __half*>(inScorePtr); const __half* inLabel = static_cast<const __half*>(inLabelPtr); int* classStartPos = static_cast<int*>(classStartPosPtr); __half* outScore = static_cast<__half*>(outScorePtr); __half* outLabel = static_cast<__half*>(outLabelPtr); int* outSampleIdx = static_cast<int*>(outSampleIdxPtr); int* outValidSampleCount = static_cast<int*>(outValidSampleCountPtr); for (int s = threadIdx.x; s < NClass + 1; s += blockDim.x) { smemClassCount[s] = 0; } int N = blockIdx.x; int blockOffset = N * samples; int validSamples = validSampleCount[N]; float key[IPerThread]; int iSample[IPerThread]; for (int i = 0; i < IPerThread; ++i) { iSample[i] = -1; key[i] = -1.0f; int curIdx = i * Threads + threadIdx.x; if (curIdx < validSamples) { int label = __half2int_rd(inLabel[blockOffset + curIdx]); float score = __half2float(inScore[blockOffset + curIdx]); if (label != background && label != -1 && score >= scoreThreshold) { key[i] = getKey<float>(score, label, NClass); iSample[i] = curIdx; } } } BlockExchangeKey(temp_storage.storageKey).StripedToBlocked(key); __syncthreads(); BlockExchangeI(temp_storage.storageI).StripedToBlocked(iSample); __syncthreads(); BlockRadixSort(temp_storage.storageSort).SortDescendingBlockedToStriped(key, iSample); __syncthreads(); // store Idx cub::StoreDirectStriped<Threads>(threadIdx.x, outSampleIdx + blockOffset, iSample, validSamples); __half lable[IPerThread]; __half score[IPerThread]; for (int i = 0; i < IPerThread; ++i) { float label_float; float score_float; getScoreLable<float>(key[i], NClass, score_float, label_float); lable[i] = __float2half(label_float); score[i] = __float2half(score_float); } cub::StoreDirectStriped<Threads>(threadIdx.x, outScore + blockOffset, score, validSamples); cub::StoreDirectStriped<Threads>(threadIdx.x, outLabel + blockOffset, lable, validSamples); // final for (int i = 0; i < IPerThread; ++i) { if (__half2float(lable[i]) >= 0) { atomicAdd(&smemClassCount[__half2int_rd(lable[i])], 1); } } __syncthreads(); int classBlockOffset = N * (NClass + 1); // Exclusive-sum, 1st is 0, last is final sum #if DUBUG_KERNEL if (N == DUBUG_BATCH && threadIdx.x == 0) { printf("sortPerClass(N:%d) final count of each label, valid samples:%d\n", N, validSamples); for (int k = 0; k < NClass; ++k) { if (smemClassCount[k] > 0) printf("Batch:%d, L:%d, count:%d, \n", N, k, smemClassCount[k]); } } __syncthreads(); #endif BlockClassSumPrefix sumPrefix; for (int s = 0; s < NClass; s += blockDim.x) { // s start from block int iClassSamples = 0; int iClass = s + threadIdx.x; if (iClass < NClass) { iClassSamples = smemClassCount[iClass]; } BlockScanClass(temp_storage.storageScan).ExclusiveSum(iClassSamples, iClassSamples, sumPrefix); __syncthreads(); if (iClass < NClass) { classStartPos[classBlockOffset + iClass] = iClassSamples; } } if (threadIdx.x == 0) { classStartPos[classBlockOffset + NClass] = sumPrefix.total; assert(sumPrefix.total <= validSamples); // background data removed. outValidSampleCount[N] = sumPrefix.total; #if DUBUG_KERNEL if (N == DUBUG_BATCH) printf("After sortPerClass, batch:%d valid samples total:%d\n", N, sumPrefix.total); #endif } } template <typename DType> __device__ __forceinline__ BBoxT<DType> readBbox(const BBoxT<DType>* inBbox, int idx) { BBoxT<DType> ret = ((BBoxT<DType>*) (inBbox))[idx]; return ret; } template <typename DType> __device__ __forceinline__ DType boxIoU(const BBoxT<DType>& a, const BBoxT<DType>& b) { BBoxT<DType> overlap = { dMAX(a.y1, b.y1), dMAX(a.x1, b.x1), dMIN(a.y2, b.y2), dMIN(a.x2, b.x2), }; DType oW = overlap.x2 - overlap.x1; DType oH = overlap.y2 - overlap.y1; if (oW < (DType) 0 || oH < (DType) 0) return (DType) 0; DType oA = oW * oH; return (oA / ((a.y2 - a.y1) * (a.x2 - a.x1) + (b.y2 - b.y1) * (b.x2 - b.x1) - oA)); } // PerClassNMS // gridDim.x : batch-N // blockDim.x : Threads // ItemsPerThreads : = divUp(samples, Threads) // outFlagSamples OUT: int [N * samples] template <typename DType, typename BoxType, int Threads = 256, int ItemsPerThreads = 4> __global__ void PerClassNMS_kernel( // int N, int samples, int NClass, const float nmsThreshold, const void* validSampleCountPtr, // const void *inScorePtr, const void* inLabelPtr, const void* inBboxPtr, const void* inBboxRefIdxPtr, const void* classStartsPtr, void* outFlagSamplesPtr) { typedef BBoxT<BoxType> BBox; __shared__ struct { BBox refBox[MaxClassNum]; int endIdx[MaxClassNum]; int refIdx[MaxClassNum + 1]; bool markSamples[Threads * ItemsPerThreads]; int done; } smemClasses; assert(NClass + 1 < MaxClassNum); assert(samples <= Threads * ItemsPerThreads); const int* validSampleCount = static_cast<const int*>(validSampleCountPtr); // const DType *inScore = static_cast<const DType *>(inScorePtr); const BoxType* inLabel = static_cast<const BoxType*>(inLabelPtr); const BBox* inBbox = static_cast<const BBox*>(inBboxPtr); const int* inBboxRefIdx = static_cast<const int*>(inBboxRefIdxPtr); const int* classStarts = static_cast<const int*>(classStartsPtr); int* outFlagSamples = static_cast<int*>(outFlagSamplesPtr); int N = blockIdx.x; int blockOffset = N * samples; int validSamples = validSampleCount[N]; if (threadIdx.x == 0) { smemClasses.done = 0; } BBox curBox[ItemsPerThreads]; int label[ItemsPerThreads]; #pragma unroll for (int ite = 0; ite * blockDim.x < validSamples; ++ite) { int curIdx = ite * blockDim.x + threadIdx.x; if (curIdx < validSamples) { label[ite] = (int) inLabel[blockOffset + curIdx]; curBox[ite] = readBbox(inBbox, blockOffset + inBboxRefIdx[blockOffset + curIdx]); } else { label[ite] = -1; } smemClasses.markSamples[curIdx] = (label[ite] < 0 ? false : true); } int classBlockOffset = N * (NClass + 1); for (int i = threadIdx.x; i < NClass + 1; i += blockDim.x) { int refIdx = classStarts[classBlockOffset + i]; smemClasses.refIdx[i] = refIdx; smemClasses.refBox[i] = readBbox(inBbox, blockOffset + inBboxRefIdx[blockOffset + refIdx]); } __syncthreads(); for (int i = threadIdx.x; i < NClass; i += blockDim.x) { int endIdx = smemClasses.refIdx[i + 1]; smemClasses.endIdx[i] = endIdx; if (endIdx == smemClasses.refIdx[i]) { atomicAdd(&smemClasses.done, 1); } } __syncthreads(); #if DUBUG_KERNEL // print info if (N == DUBUG_BATCH && threadIdx.x == 0) { printf("batch:%d, before starting NMS, done count:%d\n", N, smemClasses.done); printf("batch:%d, Total num:%d, startPos:\n", N, validSamples); for (int k = 0; k < NClass; ++k) { if (smemClasses.refIdx[k] != smemClasses.endIdx[k]) { printf("Batch:%d, label:%d [%d : %d], check ref-label:%d\n", N, k, smemClasses.refIdx[k], smemClasses.endIdx[k], (int) inLabel[blockOffset + smemClasses.refIdx[k]]); } } printf("\n"); } __syncthreads(); #endif // class done to check stop point while (smemClasses.done < NClass) { for (int ite = 0; ite * blockDim.x < validSamples; ++ite) { int curIdx = ite * blockDim.x + threadIdx.x; int refIdx = -1; int endIdx = -1; if (curIdx < validSamples && smemClasses.markSamples[curIdx]) { if (label[ite] >= 0) { refIdx = smemClasses.refIdx[label[ite]]; endIdx = smemClasses.endIdx[label[ite]]; if (curIdx > refIdx && curIdx < endIdx) { BBox refBox = smemClasses.refBox[label[ite]]; if (boxIoU(refBox, curBox[ite]) > (DType) nmsThreshold) { smemClasses.markSamples[curIdx] = false; } } } } } __syncthreads(); // push refIdx/refBox forward to next mark // only the refIdx thread to push itself. other threads idle for (int i = threadIdx.x; i < NClass; i += blockDim.x) { int refIdx = smemClasses.refIdx[i]; int endIdx = smemClasses.endIdx[i]; if (refIdx < endIdx) { do { ++refIdx; } while (refIdx < endIdx && smemClasses.markSamples[refIdx] == false); smemClasses.refIdx[i] = refIdx; if (refIdx < endIdx) { smemClasses.refBox[i] = readBbox(inBbox, blockOffset + inBboxRefIdx[blockOffset + refIdx]); } else { atomicAdd(&smemClasses.done, 1); } } } __syncthreads(); } // no need to write all data out for (int segment = 0; segment < validSamples; segment += blockDim.x) { int curIdx = segment + threadIdx.x; if (curIdx < validSamples) { outFlagSamples[blockOffset + curIdx] = (smemClasses.markSamples[curIdx] ? 1 : 0); } } } template <int Threads = 256, int ItemsPerThreads = 4> __global__ void PerClassNMS_half_kernel( // int N, int samples, int NClass, const float nmsThreshold, const void* validSampleCountPtr, // const void *inScorePtr, const void* inLabelPtr, const void* inBboxPtr, const void* inBboxRefIdxPtr, const void* classStartsPtr, void* outFlagSamplesPtr) { typedef BBoxT<__half> BBox; __shared__ struct { BBox refBox[MaxClassNum]; int endIdx[MaxClassNum]; int refIdx[MaxClassNum + 1]; bool markSamples[Threads * ItemsPerThreads]; int done; } smemClasses; assert(NClass + 1 < MaxClassNum); assert(samples <= Threads * ItemsPerThreads); const int* validSampleCount = static_cast<const int*>(validSampleCountPtr); // const DType *inScore = static_cast<const DType *>(inScorePtr); const __half* inLabel = static_cast<const __half*>(inLabelPtr); const BBox* inBbox = static_cast<const BBox*>(inBboxPtr); const int* inBboxRefIdx = static_cast<const int*>(inBboxRefIdxPtr); const int* classStarts = static_cast<const int*>(classStartsPtr); int* outFlagSamples = static_cast<int*>(outFlagSamplesPtr); int N = blockIdx.x; int blockOffset = N * samples; int validSamples = validSampleCount[N]; if (threadIdx.x == 0) { smemClasses.done = 0; } BBox curBox[ItemsPerThreads]; int label[ItemsPerThreads]; #pragma unroll for (int ite = 0; ite * blockDim.x < validSamples; ++ite) { int curIdx = ite * blockDim.x + threadIdx.x; if (curIdx < validSamples) { label[ite] = __half2int_rd(inLabel[blockOffset + curIdx]); curBox[ite] = readBbox<__half>(inBbox, blockOffset + inBboxRefIdx[blockOffset + curIdx]); } else { label[ite] = -1; } smemClasses.markSamples[curIdx] = (label[ite] < 0 ? false : true); } int classBlockOffset = N * (NClass + 1); for (int i = threadIdx.x; i < NClass + 1; i += blockDim.x) { int refIdx = classStarts[classBlockOffset + i]; smemClasses.refIdx[i] = refIdx; smemClasses.refBox[i] = readBbox<__half>(inBbox, blockOffset + inBboxRefIdx[blockOffset + refIdx]); } __syncthreads(); for (int i = threadIdx.x; i < NClass; i += blockDim.x) { int endIdx = smemClasses.refIdx[i + 1]; smemClasses.endIdx[i] = endIdx; if (endIdx == smemClasses.refIdx[i]) { atomicAdd(&smemClasses.done, 1); } } __syncthreads(); #if DUBUG_KERNEL // print info if (N == DUBUG_BATCH && threadIdx.x == 0) { printf("batch:%d, before starting NMS, done count:%d\n", N, smemClasses.done); printf("batch:%d, Total num:%d, startPos:\n", N, validSamples); for (int k = 0; k < NClass; ++k) { if (smemClasses.refIdx[k] != smemClasses.endIdx[k]) { printf("Batch:%d, label:%d [%d : %d], check ref-label:%d\n", N, k, smemClasses.refIdx[k], smemClasses.endIdx[k], (int) inLabel[blockOffset + smemClasses.refIdx[k]]); } } printf("\n"); } __syncthreads(); #endif // class done to check stop point while (smemClasses.done < NClass) { for (int ite = 0; ite * blockDim.x < validSamples; ++ite) { int curIdx = ite * blockDim.x + threadIdx.x; int refIdx = -1; int endIdx = -1; if (curIdx < validSamples && smemClasses.markSamples[curIdx]) { if (label[ite] >= 0) { refIdx = smemClasses.refIdx[label[ite]]; endIdx = smemClasses.endIdx[label[ite]]; if (curIdx > refIdx && curIdx < endIdx) { BBox refBox_half = smemClasses.refBox[label[ite]]; BBox curBox_half = curBox[ite]; BBoxT<float> refBox; BBoxT<float> curBox_float; refBox.y1 = __half2float(refBox_half.y1); refBox.x1 = __half2float(refBox_half.x1); refBox.y2 = __half2float(refBox_half.y2); refBox.x2 = __half2float(refBox_half.x2); curBox_float.y1 = __half2float(curBox_half.y1); curBox_float.x1 = __half2float(curBox_half.x1); curBox_float.y2 = __half2float(curBox_half.y2); curBox_float.x2 = __half2float(curBox_half.x2); if (boxIoU<float>(refBox, curBox_float) > nmsThreshold) { smemClasses.markSamples[curIdx] = false; } } } } } __syncthreads(); // push refIdx/refBox forward to next mark // only the refIdx thread to push itself. other threads idle for (int i = threadIdx.x; i < NClass; i += blockDim.x) { int refIdx = smemClasses.refIdx[i]; int endIdx = smemClasses.endIdx[i]; if (refIdx < endIdx) { do { ++refIdx; } while (refIdx < endIdx && smemClasses.markSamples[refIdx] == false); smemClasses.refIdx[i] = refIdx; if (refIdx < endIdx) { smemClasses.refBox[i] = readBbox<__half>(inBbox, blockOffset + inBboxRefIdx[blockOffset + refIdx]); } else { atomicAdd(&smemClasses.done, 1); } } } __syncthreads(); } // no need to write all data out for (int segment = 0; segment < validSamples; segment += blockDim.x) { int curIdx = segment + threadIdx.x; if (curIdx < validSamples) { outFlagSamples[blockOffset + curIdx] = (smemClasses.markSamples[curIdx] ? 1 : 0); } } } // TopKGather // gridDim.x : batch-N // blockDim.x : Threads // ItemsPerThreads : = divUp(samples, Threads) // outDetectionCount : int [N], must be set 0 before kernel #define MaxItemsPerThreads 8 template <typename DType, typename BoxType, int Threads = 256> __global__ void TopKGatherProposal_kernel(int samples, int keepTopK, const void* validSampleCountPtr, const void* inScorePtr, const void* inLabelPtr, const void* inBboxPtr, const void* inBboxRefIdxPtr, const void* inFlagSamplesPtr, void* outBboxPtr) { typedef BBoxT<BoxType> BBox; typedef cub::BlockRadixSort<DType, Threads, 1, int> BlockRadixSort1; typedef cub::BlockRadixSort<DType, Threads, 2, int> BlockRadixSort2; typedef cub::BlockRadixSort<DType, Threads, 3, int> BlockRadixSort3; typedef cub::BlockRadixSort<DType, Threads, 4, int> BlockRadixSort4; typedef cub::BlockRadixSort<DType, Threads, 5, int> BlockRadixSort5; typedef cub::BlockRadixSort<DType, Threads, 6, int> BlockRadixSort6; typedef cub::BlockRadixSort<DType, Threads, 7, int> BlockRadixSort7; typedef cub::BlockRadixSort<DType, Threads, 8, int> BlockRadixSort8; __shared__ union { typename BlockRadixSort8::TempStorage sort8; typename BlockRadixSort7::TempStorage sort7; typename BlockRadixSort6::TempStorage sort6; typename BlockRadixSort5::TempStorage sort5; typename BlockRadixSort4::TempStorage sort4; typename BlockRadixSort3::TempStorage sort3; typename BlockRadixSort2::TempStorage sort2; typename BlockRadixSort1::TempStorage sort1; } temp_storage; assert(MaxItemsPerThreads * Threads >= samples); const int* validSampleCount = static_cast<const int*>(validSampleCountPtr); const DType* inScore = static_cast<const DType*>(inScorePtr); const BBox* inBbox = static_cast<const BBox*>(inBboxPtr); const int* inBboxRefIdx = static_cast<const int*>(inBboxRefIdxPtr); const int* inFlagSamples = static_cast<const int*>(inFlagSamplesPtr); BBox* outBbox = static_cast<BBox*>(outBboxPtr); int N = blockIdx.x; int blockOffset = N * samples; int validSamples = validSampleCount[N]; int finalTopK = dMIN(keepTopK, validSamples); int idx[MaxItemsPerThreads]; DType score[MaxItemsPerThreads]; int totalItems = (validSamples + (blockDim.x - 1)) / blockDim.x; for (int ite = 0; ite < totalItems; ++ite) { int curIdx = ite * blockDim.x + threadIdx.x; if (curIdx < validSamples && inFlagSamples[blockOffset + curIdx]) { idx[ite] = curIdx; score[ite] = inScore[blockOffset + curIdx]; } else { idx[ite] = -1; score[ite] = 0.0f; } } switch (totalItems) { case 0: break; case 1: BlockRadixSort1(temp_storage.sort1).SortDescendingBlockedToStriped((DType(&)[1]) score, (int(&)[1]) idx); break; case 2: BlockRadixSort2(temp_storage.sort2).SortDescendingBlockedToStriped((DType(&)[2]) score, (int(&)[2]) idx); break; case 3: BlockRadixSort3(temp_storage.sort3).SortDescendingBlockedToStriped((DType(&)[3]) score, (int(&)[3]) idx); break; case 4: BlockRadixSort4(temp_storage.sort4).SortDescendingBlockedToStriped((DType(&)[4]) score, (int(&)[4]) idx); break; case 5: BlockRadixSort5(temp_storage.sort5).SortDescendingBlockedToStriped((DType(&)[5]) score, (int(&)[5]) idx); break; case 6: BlockRadixSort6(temp_storage.sort6).SortDescendingBlockedToStriped((DType(&)[6]) score, (int(&)[6]) idx); break; case 7: BlockRadixSort7(temp_storage.sort7).SortDescendingBlockedToStriped((DType(&)[7]) score, (int(&)[7]) idx); break; case 8: BlockRadixSort8(temp_storage.sort8).SortDescendingBlockedToStriped((DType(&)[8]) score, (int(&)[8]) idx); break; default: assert(false); } __syncthreads(); int outBlockOffset = N * keepTopK; int topkItems = (keepTopK + (Threads - 1)) / Threads; for (int i = 0; i < topkItems; ++i) { int curI = i * blockDim.x + threadIdx.x; if (curI < keepTopK) { BBox oB = {(BoxType) 0.0f, (BoxType) 0.0f, (BoxType) 0.0f, (BoxType) 0.0f}; if (curI < finalTopK && idx[i] >= 0 && float(score[i]) > MinValidScore) { oB = ((BBox*) inBbox)[blockOffset + inBboxRefIdx[blockOffset + idx[i]]]; } ((BBox*) outBbox)[outBlockOffset + curI] = oB; } } } #define MaxItemsPerThreads 8 template <typename DType, typename BoxType, int Threads = 256> __global__ void TopKGather_kernel(int samples, int keepTopK, const void* validSampleCountPtr, const void* inScorePtr, const void* inLabelPtr, const void* inBboxPtr, const void* inBboxRefIdxPtr, const void* inFlagSamplesPtr, void* outDetectionPtr) { typedef BBoxT<BoxType> BBox; typedef cub::BlockRadixSort<DType, Threads, 1, int> BlockRadixSort1; typedef cub::BlockRadixSort<DType, Threads, 2, int> BlockRadixSort2; typedef cub::BlockRadixSort<DType, Threads, 3, int> BlockRadixSort3; typedef cub::BlockRadixSort<DType, Threads, 4, int> BlockRadixSort4; typedef cub::BlockRadixSort<DType, Threads, 5, int> BlockRadixSort5; typedef cub::BlockRadixSort<DType, Threads, 6, int> BlockRadixSort6; typedef cub::BlockRadixSort<DType, Threads, 7, int> BlockRadixSort7; typedef cub::BlockRadixSort<DType, Threads, 8, int> BlockRadixSort8; __shared__ union { typename BlockRadixSort8::TempStorage sort8; typename BlockRadixSort7::TempStorage sort7; typename BlockRadixSort6::TempStorage sort6; typename BlockRadixSort5::TempStorage sort5; typename BlockRadixSort4::TempStorage sort4; typename BlockRadixSort3::TempStorage sort3; typename BlockRadixSort2::TempStorage sort2; typename BlockRadixSort1::TempStorage sort1; } temp_storage; assert(MaxItemsPerThreads * Threads >= samples); const int* validSampleCount = static_cast<const int*>(validSampleCountPtr); const DType* inScore = static_cast<const DType*>(inScorePtr); const BoxType* inLabel = static_cast<const BoxType*>(inLabelPtr); // InLabel keeps INT32 const BBox* inBbox = static_cast<const BBox*>(inBboxPtr); const int* inBboxRefIdx = static_cast<const int*>(inBboxRefIdxPtr); const int* inFlagSamples = static_cast<const int*>(inFlagSamplesPtr); DType* outDetections = static_cast<DType*>(outDetectionPtr); int N = blockIdx.x; int blockOffset = N * samples; int validSamples = validSampleCount[N]; int finalTopK = dMIN(keepTopK, validSamples); int idx[MaxItemsPerThreads]; DType score[MaxItemsPerThreads]; int totalItems = (validSamples + (blockDim.x - 1)) / blockDim.x; for (int ite = 0; ite < totalItems; ++ite) { int curIdx = ite * blockDim.x + threadIdx.x; if (curIdx < validSamples && inFlagSamples[blockOffset + curIdx]) { idx[ite] = curIdx; score[ite] = inScore[blockOffset + curIdx]; } else { idx[ite] = -1; score[ite] = 0.0f; } } switch (totalItems) { case 0: break; case 1: BlockRadixSort1(temp_storage.sort1).SortDescendingBlockedToStriped((DType(&)[1]) score, (int(&)[1]) idx); break; case 2: BlockRadixSort2(temp_storage.sort2).SortDescendingBlockedToStriped((DType(&)[2]) score, (int(&)[2]) idx); break; case 3: BlockRadixSort3(temp_storage.sort3).SortDescendingBlockedToStriped((DType(&)[3]) score, (int(&)[3]) idx); break; case 4: BlockRadixSort4(temp_storage.sort4).SortDescendingBlockedToStriped((DType(&)[4]) score, (int(&)[4]) idx); break; case 5: BlockRadixSort5(temp_storage.sort5).SortDescendingBlockedToStriped((DType(&)[5]) score, (int(&)[5]) idx); break; case 6: BlockRadixSort6(temp_storage.sort6).SortDescendingBlockedToStriped((DType(&)[6]) score, (int(&)[6]) idx); break; case 7: BlockRadixSort7(temp_storage.sort7).SortDescendingBlockedToStriped((DType(&)[7]) score, (int(&)[7]) idx); break; case 8: BlockRadixSort8(temp_storage.sort8).SortDescendingBlockedToStriped((DType(&)[8]) score, (int(&)[8]) idx); break; default: assert(false); } __syncthreads(); int outBlockOffset = N * keepTopK; int topkItems = (keepTopK + (Threads - 1)) / Threads; for (int i = 0; i < topkItems; ++i) { int curI = i * blockDim.x + threadIdx.x; if (curI < keepTopK) { BBox oB = {(BoxType) 0.0f, (BoxType) 0.0f, (BoxType) 0.0f, (BoxType) 0.0f}; DType oS = 0.0f; BoxType oL = -1; if (curI < finalTopK && idx[i] >= 0 && float(score[i]) > MinValidScore) { oB = ((BBox*) inBbox)[blockOffset + inBboxRefIdx[blockOffset + idx[i]]]; oS = score[i]; oL = (BoxType) inLabel[blockOffset + idx[i]]; } outDetections[(outBlockOffset + curI) * 6] = oB.y1; outDetections[(outBlockOffset + curI) * 6 + 1] = oB.x1; outDetections[(outBlockOffset + curI) * 6 + 2] = oB.y2; outDetections[(outBlockOffset + curI) * 6 + 3] = oB.x2; outDetections[(outBlockOffset + curI) * 6 + 4] = oL; outDetections[(outBlockOffset + curI) * 6 + 5] = oS; } } } RefineDetectionWorkSpace::RefineDetectionWorkSpace( const int batchSize, const int sampleCount, const RefineNMSParameters& param, const nvinfer1::DataType inType) : argMaxScoreDims(sampleCount, 1) , argMaxBboxDims(sampleCount, 4) , argMaxLabelDims(sampleCount, 1) , sortClassScoreDims(sampleCount, 1) , sortClassLabelDims(sampleCount, 1) , sortClassSampleIdxDims(sampleCount + 1, 1) , sortClassPosDims(param.numClasses + 1, 1) , sortNMSMarkDims(sampleCount, 1) { size_t sumSize = 0; const nvinfer1::DataType type = nvinfer1::DataType::kFLOAT; // resource // arMaxScore : [N, samples] : m_Type argMaxScoreOffset = sumSize; sumSize += AlignMem(dimVolume(argMaxScoreDims) * typeSize(type) * batchSize); argMaxBboxOffset = sumSize; // argMaxBbox : [N, samples, 4] : m_Type sumSize += AlignMem(dimVolume(argMaxBboxDims) * typeSize(type) * batchSize); argMaxLabelOffset = sumSize; // argMaxLabel : [N, samples] : kINT32 sumSize += AlignMem(dimVolume(argMaxLabelDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); sortClassScoreOffset = sumSize; // sortClassScore : [N, samples] : m_Type sumSize += AlignMem(dimVolume(sortClassScoreDims) * typeSize(type) * batchSize); sortClassLabelOffset = sumSize; // sortClassLabel : [N, samples] : m_Type sumSize += AlignMem(dimVolume(sortClassLabelDims) * typeSize(type) * batchSize); sortClassSampleIdxOffset = sumSize; // sortClassSampleIdx : [N, samples] : kINT32 sumSize += AlignMem(dimVolume(sortClassSampleIdxDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); sortClassValidCountOffset = sumSize; // sortClassValidCount : [N, 1] : kINT32 sumSize += AlignMem(dimVolume(sortClassValidCountDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); sortClassPosOffset = sumSize; // sortClassPos : [N, numClasses+1] : kINT32 sumSize += AlignMem(dimVolume(sortClassPosDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); sortNMSMarkOffset = sumSize; // sortNMSMark : [N, samples] : kINT32 sumSize += AlignMem(dimVolume(sortNMSMarkDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); totalSize = sumSize; } ProposalWorkSpace::ProposalWorkSpace(const int batchSize, const int inputCnt, const int sampleCount, const RefineNMSParameters& param, const nvinfer1::DataType inType) : preRefineScoreDims(inputCnt, 1) , preRefineSortedScoreDims(inputCnt, 1) , preRefineBboxDims(inputCnt, 4) , argMaxScoreDims(sampleCount, 1) , argMaxBboxDims(sampleCount, 4) , argMaxLabelDims(sampleCount, 1) , sortClassScoreDims(sampleCount, 1) , sortClassLabelDims(sampleCount, 1) , sortClassSampleIdxDims(sampleCount, 1) , sortClassPosDims(param.numClasses + 1, 1) , sortNMSMarkDims(sampleCount, 1) { size_t sumSize = 0; const nvinfer1::DataType type = nvinfer1::DataType::kFLOAT; // resource // temp storage size for sorting scores tempStorageOffset = sumSize; sumSize += (1 << 23) * batchSize; // preRefineScore : [N, inputcnt, 1] // extracted foreground score from inputs[0] preRefineScoreOffset = sumSize; sumSize += AlignMem(dimVolume(preRefineScoreDims) * typeSize(type) * batchSize); // preRefineSortedScore: [N, inputcnt, 1] preRefineSortedScoreOffset = sumSize; sumSize += AlignMem(dimVolume(preRefineSortedScoreDims) * typeSize(type) * batchSize); // preRefineBbox: [N, inputcnt, 4] // sorted bbox preRefineBboxOffset = sumSize; sumSize += AlignMem(dimVolume(preRefineBboxDims) * typeSize(type) * batchSize); // arMaxScore : [N, samples] : m_Type argMaxScoreOffset = sumSize; sumSize += AlignMem(dimVolume(argMaxScoreDims) * typeSize(type) * batchSize); argMaxBboxOffset = sumSize; // argMaxBbox : [N, samples, 4] : m_Type sumSize += AlignMem(dimVolume(argMaxBboxDims) * typeSize(type) * batchSize); argMaxLabelOffset = sumSize; // argMaxLabel : [N, samples] : kINT32 sumSize += AlignMem(dimVolume(argMaxLabelDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); sortClassScoreOffset = sumSize; // sortClassScore : [N, samples] : m_Type sumSize += AlignMem(dimVolume(sortClassScoreDims) * typeSize(type) * batchSize); sortClassLabelOffset = sumSize; // sortClassLabel : [N, samples] : m_Type sumSize += AlignMem(dimVolume(sortClassLabelDims) * typeSize(type) * batchSize); sortClassSampleIdxOffset = sumSize; // sortClassSampleIdx : [N, samples] : kINT32 sumSize += AlignMem(dimVolume(sortClassSampleIdxDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); sortClassValidCountOffset = sumSize; // sortClassValidCount : [N, 1] : kINT32 sumSize += AlignMem(dimVolume(sortClassValidCountDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); sortClassPosOffset = sumSize; // sortClassPos : [N, numClasses+1] : kINT32 sumSize += AlignMem(dimVolume(sortClassPosDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); sortNMSMarkOffset = sumSize; // sortNMSMark : [N, samples] : kINT32 sumSize += AlignMem(dimVolume(sortNMSMarkDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); totalSize = sumSize; } MultilevelProposeROIWorkSpace::MultilevelProposeROIWorkSpace(const int batchSize, const int inputCnt, const int sampleCount, const RefineNMSParameters& param, const nvinfer1::DataType inType) : preRefineSortedScoreDims(inputCnt, 1) , preRefineBboxDims(inputCnt, 4) , argMaxScoreDims(sampleCount, 1) , argMaxBboxDims(sampleCount, 4) , argMaxLabelDims(sampleCount, 1) , sortClassScoreDims(sampleCount, 1) , sortClassLabelDims(sampleCount, 1) , sortClassSampleIdxDims(sampleCount + 1, 1) , sortClassPosDims(param.numClasses + 1, 1) , sortNMSMarkDims(sampleCount, 1) { size_t sumSize = 0; const nvinfer1::DataType type = inType; // resource // temp storage size for sorting scores tempStorageOffset = sumSize; sumSize += (1 << 23) * batchSize; // preRefineSortedScore: [N, inputcnt, 1] preRefineSortedScoreOffset = sumSize; sumSize += AlignMem(dimVolume(preRefineSortedScoreDims) * typeSize(type) * batchSize); // preRefineBbox: [N, inputcnt, 4] // sorted bbox preRefineBboxOffset = sumSize; sumSize += AlignMem(dimVolume(preRefineBboxDims) * typeSize(type) * batchSize); // argMaxScore : [N, samples] : m_Type argMaxScoreOffset = sumSize; sumSize += AlignMem(dimVolume(argMaxScoreDims) * typeSize(type) * batchSize); argMaxBboxOffset = sumSize; // argMaxBbox : [N, samples, 4] : m_Type sumSize += AlignMem(dimVolume(argMaxBboxDims) * typeSize(type) * batchSize); argMaxLabelOffset = sumSize; // argMaxLabel : [N, samples] : m_Type sumSize += AlignMem(dimVolume(argMaxLabelDims) * typeSize(type) * batchSize); sortClassScoreOffset = sumSize; // sortClassScore : [N, samples] : m_Type sumSize += AlignMem(dimVolume(sortClassScoreDims) * typeSize(type) * batchSize); sortClassLabelOffset = sumSize; // sortClassLabel : [N, samples] : m_Type sumSize += AlignMem(dimVolume(sortClassLabelDims) * typeSize(type) * batchSize); sortClassSampleIdxOffset = sumSize; // sortClassSampleIdx : [N, samples] : kINT32 sumSize += AlignMem(dimVolume(sortClassSampleIdxDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); sortClassValidCountOffset = sumSize; // sortClassValidCount : [N, 1] : kINT32 sumSize += AlignMem(dimVolume(sortClassValidCountDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); sortClassPosOffset = sumSize; // sortClassPos : [N, numClasses+1] : kINT32 sumSize += AlignMem(dimVolume(sortClassPosDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); sortNMSMarkOffset = sumSize; // sortNMSMark : [N, samples] : kINT32 sumSize += AlignMem(dimVolume(sortNMSMarkDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); totalSize = sumSize; } ConcatTopKWorkSpace::ConcatTopKWorkSpace( const int batchSize, const int concatCnt, const int topK, const nvinfer1::DataType inType) : concatedScoreDims(concatCnt * topK, 1) , concatedBBoxDims(concatCnt * topK, 4) , sortedScoreDims(concatCnt * topK, 1) , sortedBBoxDims(concatCnt * topK, 4) { size_t sumSize = 0; // const nvinfer1::DataType type = nvinfer1::DataType::kFLOAT; const nvinfer1::DataType type = inType; // resource // temp storage size for sorting scores tempStorageOffset = sumSize; sumSize += (1 << 23) * batchSize; // concatedScoreOffset: [N, concatCnt*topK, 1] concatedScoreOffset = sumSize; sumSize += AlignMem(dimVolume(concatedScoreDims) * typeSize(type) * batchSize); // concatedBBoxOffset: [N, concatCnt*topK, 4] concatedBBoxOffset = sumSize; sumSize += AlignMem(dimVolume(concatedBBoxDims) * typeSize(type) * batchSize); // sortedScoreOffset: [N, concatCnt * topK, 1] sortedScoreOffset = sumSize; sumSize += AlignMem(dimVolume(sortedScoreDims) * typeSize(type) * batchSize); // sortedBBoxOffset: [N, concatCnt * topK, 4] sortedBBoxOffset = sumSize; sumSize += AlignMem(dimVolume(sortedBBoxDims) * typeSize(type) * batchSize); totalSize = sumSize; } template <int Threads> hipError_t argMaxGroup(hipStream_t stream, int N, nvinfer1::DataType dtype, int samples, int NClass, const void* inScore, const void* inBbox, const void* validSamples, void* outScore, void* outLabel, void* outBbox) { int gridX = nAlignDown(dMIN(samples, 512 / N), 32); gridX = dMAX(gridX, 1); dim3 gridDim = {static_cast<unsigned int>(gridX), static_cast<unsigned int>(N), 1}; dim3 threads = {Threads, 1, 1}; switch (dtype) { case nvinfer1::DataType::kFLOAT: hipLaunchKernelGGL(( argMaxGroup_kernel<float, float, Threads>), dim3(gridDim), dim3(threads), 0, stream, samples, 0, NClass, inScore, inBbox, validSamples, outScore, outLabel, outBbox); break; case nvinfer1::DataType::kHALF: break; default: assert(false); } return hipGetLastError(); } template <int Threads> hipError_t argMaxWOBackground(hipStream_t stream, int N, nvinfer1::DataType dtype, int samples, int NClass, const void* inScore, const void* inBbox, const void* validSamples, void* outScore, void* outLabel, void* outBbox) { int gridX = nAlignDown(dMIN(samples, 512 / N), 32); gridX = dMAX(gridX, 1); dim3 gridDim = {static_cast<unsigned int>(gridX), static_cast<unsigned int>(N), 1}; dim3 threads = {Threads, 1, 1}; switch (dtype) { case nvinfer1::DataType::kFLOAT: hipLaunchKernelGGL(( argMaxGroup_kernel<float, float, Threads>), dim3(gridDim), dim3(threads), 0, stream, samples, 1, NClass, inScore, inBbox, validSamples, outScore, outLabel, outBbox); break; case nvinfer1::DataType::kHALF: break; default: assert(false); } return hipGetLastError(); } template <int Threads, int ItermPerThreads> hipError_t sortPerClass(hipStream_t stream, int N, nvinfer1::DataType dtype, int samples, int NClass, int background, float scoreThreshold, const void* inSampleValidCount, const void* inScorePtr, const void* inLabelPtr, const void* inBboxPtr, void* outclassStartPosPtr, void* outScorePtr, void* outLabelPtr, void* outSampleIdxPtr, void* outValidSampleCountPtr) { int blocks = N; int threads = Threads; switch (dtype) { case nvinfer1::DataType::kFLOAT: hipLaunchKernelGGL(( sortPerClass_kernel<float, float, Threads, ItermPerThreads>), dim3(blocks), dim3(threads), 0, stream, samples, NClass, background, scoreThreshold, inSampleValidCount, inScorePtr, inLabelPtr, inBboxPtr, outclassStartPosPtr, outScorePtr, outLabelPtr, outSampleIdxPtr, outValidSampleCountPtr); break; case nvinfer1::DataType::kHALF: hipLaunchKernelGGL(( sortPerClass_kernel_half<Threads, ItermPerThreads>), dim3(blocks), dim3(threads), 0, stream, samples, NClass, background, scoreThreshold, inSampleValidCount, inScorePtr, inLabelPtr, inBboxPtr, outclassStartPosPtr, outScorePtr, outLabelPtr, outSampleIdxPtr, outValidSampleCountPtr); break; default: assert(false); } return hipGetLastError(); }; template <int Threads> hipError_t PerClassNMS(hipStream_t stream, int N, nvinfer1::DataType dtype, int samples, int NClass, const float nmsThreshold, const void* validSampleCount, // const void *inScore, const void* inLabel, const void* inBbox, const void* inBboxRefIdx, const void* classStarts, void* outFlagSamples) { int blocks = N; int threads = Threads; switch (dtype) { case nvinfer1::DataType::kFLOAT: hipLaunchKernelGGL(( PerClassNMS_kernel<float, float, Threads>), dim3(blocks), dim3(threads), 0, stream, samples, NClass, nmsThreshold, validSampleCount, inLabel, inBbox, inBboxRefIdx, classStarts, outFlagSamples); break; case nvinfer1::DataType::kHALF: hipLaunchKernelGGL(( PerClassNMS_half_kernel<Threads>), dim3(blocks), dim3(threads), 0, stream, samples, NClass, nmsThreshold, validSampleCount, inLabel, inBbox, inBboxRefIdx, classStarts, outFlagSamples); break; default: assert(false); } return hipGetLastError(); } template <int Threads> hipError_t KeepTopKGather(hipStream_t stream, int N, nvinfer1::DataType dtype, int samples, int keepTopK, const void* validSampleCountPtr, const void* inScorePtr, const void* inLabelPtr, const void* inBboxPtr, const void* inBboxRefIdxPtr, const void* inFlagSamplesPtr, void* outDetections, int proposal) { int blocks = N; int threads = Threads; switch (dtype) { case nvinfer1::DataType::kFLOAT: if (proposal) { hipLaunchKernelGGL(( TopKGatherProposal_kernel<float, float, Threads>), dim3(blocks), dim3(threads), 0, stream, samples, keepTopK, validSampleCountPtr, inScorePtr, inLabelPtr, inBboxPtr, inBboxRefIdxPtr, inFlagSamplesPtr, outDetections); } else { hipLaunchKernelGGL(( TopKGather_kernel<float, float, Threads>), dim3(blocks), dim3(threads), 0, stream, samples, keepTopK, validSampleCountPtr, inScorePtr, inLabelPtr, inBboxPtr, inBboxRefIdxPtr, inFlagSamplesPtr, outDetections); } break; case nvinfer1::DataType::kHALF: break; default: assert(false); } return hipGetLastError(); } // TopKGather For TLT RPN Proposal // gridDim.x : batch-N // blockDim.x : Threads // ItemsPerThreads : = divUp(samples, Threads) // outDetectionCount : int [N], must be set 0 before kernel #define MaxItemsPerThreads 8 template <typename DType, typename BoxType, int Threads = 256> __global__ void TopKGatherBoxScore_kernel(int samples, int keepTopK, const void* validSampleCountPtr, const void* inScorePtr, const void* inLabelPtr, const void* inBboxPtr, const void* inBboxRefIdxPtr, const void* inFlagSamplesPtr, void* outScorePtr, void* outBboxPtr) { typedef cub::BlockRadixSort<DType, Threads, 1, int> BlockRadixSort1; typedef cub::BlockRadixSort<DType, Threads, 2, int> BlockRadixSort2; typedef cub::BlockRadixSort<DType, Threads, 3, int> BlockRadixSort3; typedef cub::BlockRadixSort<DType, Threads, 4, int> BlockRadixSort4; typedef cub::BlockRadixSort<DType, Threads, 5, int> BlockRadixSort5; typedef cub::BlockRadixSort<DType, Threads, 6, int> BlockRadixSort6; typedef cub::BlockRadixSort<DType, Threads, 7, int> BlockRadixSort7; typedef cub::BlockRadixSort<DType, Threads, 8, int> BlockRadixSort8; __shared__ union { typename BlockRadixSort8::TempStorage sort8; typename BlockRadixSort7::TempStorage sort7; typename BlockRadixSort6::TempStorage sort6; typename BlockRadixSort5::TempStorage sort5; typename BlockRadixSort4::TempStorage sort4; typename BlockRadixSort3::TempStorage sort3; typename BlockRadixSort2::TempStorage sort2; typename BlockRadixSort1::TempStorage sort1; } temp_storage; assert(MaxItemsPerThreads * Threads >= samples); typedef BBoxT<BoxType> BBox; const int* validSampleCount = static_cast<const int*>(validSampleCountPtr); const DType* inScore = static_cast<const DType*>(inScorePtr); const BBox* inBbox = static_cast<const BBox*>(inBboxPtr); const int* inBboxRefIdx = static_cast<const int*>(inBboxRefIdxPtr); const int* inFlagSamples = static_cast<const int*>(inFlagSamplesPtr); BBox* outBbox = static_cast<BBox*>(outBboxPtr); DType* outScore = static_cast<DType*>(outScorePtr); int N = blockIdx.x; int blockOffset = N * samples; int validSamples = validSampleCount[N]; int finalTopK = dMIN(keepTopK, validSamples); int idx[MaxItemsPerThreads]; DType score[MaxItemsPerThreads]; int totalItems = (validSamples + (blockDim.x - 1)) / blockDim.x; for (int ite = 0; ite < totalItems; ++ite) { int curIdx = ite * blockDim.x + threadIdx.x; if (curIdx < validSamples && inFlagSamples[blockOffset + curIdx]) { idx[ite] = curIdx; score[ite] = inScore[blockOffset + curIdx]; } else { idx[ite] = -1; score[ite] = 0.0f; } } switch (totalItems) { case 0: break; case 1: BlockRadixSort1(temp_storage.sort1).SortDescendingBlockedToStriped((DType(&)[1]) score, (int(&)[1]) idx); break; case 2: BlockRadixSort2(temp_storage.sort2).SortDescendingBlockedToStriped((DType(&)[2]) score, (int(&)[2]) idx); break; case 3: BlockRadixSort3(temp_storage.sort3).SortDescendingBlockedToStriped((DType(&)[3]) score, (int(&)[3]) idx); break; case 4: BlockRadixSort4(temp_storage.sort4).SortDescendingBlockedToStriped((DType(&)[4]) score, (int(&)[4]) idx); break; case 5: BlockRadixSort5(temp_storage.sort5).SortDescendingBlockedToStriped((DType(&)[5]) score, (int(&)[5]) idx); break; case 6: BlockRadixSort6(temp_storage.sort6).SortDescendingBlockedToStriped((DType(&)[6]) score, (int(&)[6]) idx); break; case 7: BlockRadixSort7(temp_storage.sort7).SortDescendingBlockedToStriped((DType(&)[7]) score, (int(&)[7]) idx); break; case 8: BlockRadixSort8(temp_storage.sort8).SortDescendingBlockedToStriped((DType(&)[8]) score, (int(&)[8]) idx); break; default: assert(false); } __syncthreads(); int outBlockOffset = N * keepTopK; int topkItems = (keepTopK + (Threads - 1)) / Threads; for (int i = 0; i < topkItems; ++i) { int curI = i * blockDim.x + threadIdx.x; if (curI < keepTopK) { BBox oB = {(BoxType) 0.0f, (BoxType) 0.0f, (BoxType) 0.0f, (BoxType) 0.0f}; DType oS = 0.0f; if (curI < finalTopK && idx[i] >= 0) { oB = ((BBox*) inBbox)[blockOffset + inBboxRefIdx[blockOffset + idx[i]]]; oS = score[i]; } ((BBox*) outBbox)[outBlockOffset + curI] = oB; outScore[outBlockOffset + curI] = oS; } } } template <int Threads> hipError_t KeepTopKGatherBoxScore(hipStream_t stream, int N, nvinfer1::DataType dtype, int samples, int keepTopK, const void* validSampleCountPtr, const void* inScorePtr, const void* inLabelPtr, const void* inBboxPtr, const void* inBboxRefIdxPtr, const void* inFlagSamplesPtr, void* outScores, void* outDetections, int proposal) { int blocks = N; int threads = Threads; switch (dtype) { case nvinfer1::DataType::kFLOAT: if (proposal) { hipLaunchKernelGGL(( TopKGatherBoxScore_kernel<float, float, Threads>), dim3(blocks), dim3(threads), 0, stream, samples, keepTopK, validSampleCountPtr, inScorePtr, inLabelPtr, inBboxPtr, inBboxRefIdxPtr, inFlagSamplesPtr, outScores, outDetections); } else { hipLaunchKernelGGL(( TopKGather_kernel<float, float, Threads>), dim3(blocks), dim3(threads), 0, stream, samples, keepTopK, validSampleCountPtr, inScorePtr, inLabelPtr, inBboxPtr, inBboxRefIdxPtr, inFlagSamplesPtr, outDetections); } break; case nvinfer1::DataType::kHALF: if (proposal) { hipLaunchKernelGGL(( TopKGatherBoxScore_kernel<__half, __half, Threads>), dim3(blocks), dim3(threads), 0, stream, samples, keepTopK, validSampleCountPtr, inScorePtr, inLabelPtr, inBboxPtr, inBboxRefIdxPtr, inFlagSamplesPtr, outScores, outDetections); } else { hipLaunchKernelGGL(( TopKGather_kernel<__half, __half, Threads>), dim3(blocks), dim3(threads), 0, stream, samples, keepTopK, validSampleCountPtr, inScorePtr, inLabelPtr, inBboxPtr, inBboxRefIdxPtr, inFlagSamplesPtr, outDetections); } break; default: assert(false); } return hipGetLastError(); } hipError_t RefineBatchClassNMS(hipStream_t stream, int N, int samples, nvinfer1::DataType dtype, const RefineNMSParameters& param, const RefineDetectionWorkSpace& refineOffset, void* workspace, const void* inScores, const void* inDelta, const void* inCountValid, const void* inROI, void* outDetections) { int NClass = param.numClasses; int8_t* wsPtr = static_cast<int8_t*>(workspace); void* argMaxScorePtr = wsPtr + refineOffset.argMaxScoreOffset; void* argMaxLabelPtr = wsPtr + refineOffset.argMaxLabelOffset; void* argMaxBBoxPtr = wsPtr + refineOffset.argMaxBboxOffset; void* sortClassScorePtr = wsPtr + refineOffset.sortClassScoreOffset; void* sortClassLabelPtr = wsPtr + refineOffset.sortClassLabelOffset; void* sortClassSampleIdxPtr = wsPtr + refineOffset.sortClassSampleIdxOffset; void* sortClassValidCountPtr = wsPtr + refineOffset.sortClassValidCountOffset; void* sortClassPosPtr = wsPtr + refineOffset.sortClassPosOffset; void* sortNMSMarkPtr = wsPtr + refineOffset.sortNMSMarkOffset; hipError_t status = hipSuccess; CUASSERT(hipMemsetAsync(sortClassValidCountPtr, 0, N * sizeof(int), stream)); if (NClass > 1) { // multiple classes status = argMaxGroup<32>(stream, N, dtype, samples, NClass, inScores, inDelta, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr); // argMaxBBoxPtr means delta of bboxes assert(status == hipSuccess); CUASSERT(status); } else { // Only one class argMaxScorePtr = const_cast<void*>(inScores); argMaxBBoxPtr = const_cast<void*>(inDelta); int threads = 512; int blocks = (N * samples + threads - 1) / threads; blocks = dMIN(blocks, 8); switch (dtype) { case nvinfer1::DataType::kFLOAT: { hipLaunchKernelGGL(( resetMemValue_kernel<float>), dim3(blocks), dim3(threads), 0, stream, argMaxLabelPtr, N * samples, 0); break; } case nvinfer1::DataType::kHALF: { break; } default: assert(false); } } status = ApplyDelta2Bboxes(stream, N, samples, inROI, argMaxBBoxPtr, argMaxBBoxPtr); assert(status == hipSuccess); if (samples <= 1024) { status = sortPerClass<256, 4>(stream, N, dtype, samples, NClass, param.backgroundLabelId, param.scoreThreshold, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr, sortClassPosPtr, sortClassScorePtr, sortClassLabelPtr, sortClassSampleIdxPtr, sortClassValidCountPtr); } else if (samples <= 2048) { status = sortPerClass<256, 8>(stream, N, dtype, samples, NClass, param.backgroundLabelId, param.scoreThreshold, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr, sortClassPosPtr, sortClassScorePtr, sortClassLabelPtr, sortClassSampleIdxPtr, sortClassValidCountPtr); } else if (samples <= 4096) { status = sortPerClass<256, 16>(stream, N, dtype, samples, NClass, param.backgroundLabelId, param.scoreThreshold, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr, sortClassPosPtr, sortClassScorePtr, sortClassLabelPtr, sortClassSampleIdxPtr, sortClassValidCountPtr); } else { assert(false && "unsupported sortPerClass"); return hipErrorLaunchFailure; } assert(status == hipSuccess); CUASSERT(status); status = PerClassNMS<256>(stream, N, dtype, samples, NClass, param.iouThreshold, sortClassValidCountPtr, // sortClassScorePtr, sortClassLabelPtr, argMaxBBoxPtr, sortClassSampleIdxPtr, sortClassPosPtr, sortNMSMarkPtr); assert(status == hipSuccess); CUASSERT(status); status = KeepTopKGather<256>(stream, N, dtype, samples, param.keepTopK, sortClassValidCountPtr, sortClassScorePtr, sortClassLabelPtr, argMaxBBoxPtr, sortClassSampleIdxPtr, sortNMSMarkPtr, outDetections, 0); assert(status == hipSuccess); CUASSERT(status); return status; } hipError_t DetectionPostProcess(hipStream_t stream, int N, int samples, const float* regWeight, const float inputHeight, const float inputWidth, nvinfer1::DataType dtype, const RefineNMSParameters& param, const RefineDetectionWorkSpace& refineOffset, void* workspace, const void* inScores, const void* inDelta, const void* inCountValid, const void* inROI, void* outDetections) { int NClass = param.numClasses; int8_t* wsPtr = static_cast<int8_t*>(workspace); void* argMaxScorePtr = wsPtr + refineOffset.argMaxScoreOffset; void* argMaxLabelPtr = wsPtr + refineOffset.argMaxLabelOffset; void* argMaxBBoxPtr = wsPtr + refineOffset.argMaxBboxOffset; void* sortClassScorePtr = wsPtr + refineOffset.sortClassScoreOffset; void* sortClassLabelPtr = wsPtr + refineOffset.sortClassLabelOffset; void* sortClassSampleIdxPtr = wsPtr + refineOffset.sortClassSampleIdxOffset; void* sortClassValidCountPtr = wsPtr + refineOffset.sortClassValidCountOffset; void* sortClassPosPtr = wsPtr + refineOffset.sortClassPosOffset; void* sortNMSMarkPtr = wsPtr + refineOffset.sortNMSMarkOffset; hipError_t status = hipSuccess; CUASSERT(hipMemsetAsync(argMaxScorePtr, 0, N * samples * sizeof(float), stream)); CUASSERT(hipMemsetAsync(argMaxBBoxPtr, 0, N * samples * 4 * sizeof(float), stream)); CUASSERT(hipMemsetAsync(sortClassValidCountPtr, 0, N * sizeof(int), stream)); CUASSERT(hipMemsetAsync(sortClassPosPtr, 0, N * (NClass + 1) * sizeof(int), stream)); CUASSERT(hipMemsetAsync(sortClassSampleIdxPtr, 0, N * (samples + 1) * sizeof(int), stream)); if (NClass > 1) { // multiple classes status = argMaxWOBackground<32>(stream, N, dtype, samples, NClass, inScores, inDelta, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr); // argMaxBBoxPtr means delta of bboxes assert(status == hipSuccess); CUASSERT(status); } else { // Only one class argMaxScorePtr = const_cast<void*>(inScores); argMaxBBoxPtr = const_cast<void*>(inDelta); int threads = 512; int blocks = (N * samples + threads - 1) / threads; blocks = dMIN(blocks, 8); switch (dtype) { case nvinfer1::DataType::kFLOAT: { hipLaunchKernelGGL(( resetMemValue_kernel<float>), dim3(blocks), dim3(threads), 0, stream, argMaxLabelPtr, N * samples, 0); break; } case nvinfer1::DataType::kHALF: { break; } default: assert(false); } } status = DecodeBBoxes(stream, N, samples, regWeight, inputHeight, inputWidth, inROI, argMaxBBoxPtr, argMaxBBoxPtr, dtype); assert(status == hipSuccess); if (samples <= 1024) { status = sortPerClass<256, 4>(stream, N, dtype, samples, NClass, param.backgroundLabelId, param.scoreThreshold, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr, sortClassPosPtr, sortClassScorePtr, sortClassLabelPtr, sortClassSampleIdxPtr, sortClassValidCountPtr); } else if (samples <= 2048) { status = sortPerClass<256, 8>(stream, N, dtype, samples, NClass, param.backgroundLabelId, param.scoreThreshold, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr, sortClassPosPtr, sortClassScorePtr, sortClassLabelPtr, sortClassSampleIdxPtr, sortClassValidCountPtr); } else if (samples <= 4096) { status = sortPerClass<256, 16>(stream, N, dtype, samples, NClass, param.backgroundLabelId, param.scoreThreshold, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr, sortClassPosPtr, sortClassScorePtr, sortClassLabelPtr, sortClassSampleIdxPtr, sortClassValidCountPtr); } else { assert(false && "unsupported sortPerClass"); return hipErrorLaunchFailure; } assert(status == hipSuccess); CUASSERT(status); status = PerClassNMS<256>(stream, N, dtype, samples, NClass, param.iouThreshold, sortClassValidCountPtr, // sortClassScorePtr, sortClassLabelPtr, argMaxBBoxPtr, sortClassSampleIdxPtr, sortClassPosPtr, sortNMSMarkPtr); CUASSERT(status); status = KeepTopKGather<256>(stream, N, dtype, samples, param.keepTopK, sortClassValidCountPtr, sortClassScorePtr, sortClassLabelPtr, argMaxBBoxPtr, sortClassSampleIdxPtr, sortNMSMarkPtr, outDetections, 0); CUASSERT(status); return status; } struct BF_SCORE { float bg, fg; }; // in_scores : [N, samples, 2] // output_score : [N, samples, 1] __global__ void extract_fg_kernel(int samples, const void* in_scores, void* output_score) { const BF_SCORE* in = static_cast<const BF_SCORE*>(in_scores); float* out = static_cast<float*>(output_score); int N = blockIdx.x; int blockOffset = N * samples; int totalItems = (samples + (blockDim.x - 1)) / blockDim.x; for (int i = 0; i < totalItems; i++) { int cur_id = i * blockDim.x + threadIdx.x; if (cur_id < samples) { out[blockOffset + cur_id] = in[blockOffset + cur_id].fg; } } } __global__ void set_offset_kernel(int stride, int size, int* output) { // One block, because batch size shouldn't be too large. for (int i = threadIdx.x; i < size; i += blockDim.x) { output[i] = i * stride; } } template <typename Dtype> __global__ void resample_kernel(int orig_size, int sample_size, const void* orig_score_ptr, const void* orig_bbox_ptr, void* sampled_score_ptr, void* sampled_bbox_ptr) { const Dtype* in_score = static_cast<const Dtype*>(orig_score_ptr); const BBoxT<Dtype>* in_bbox = static_cast<const BBoxT<Dtype>*>(orig_bbox_ptr); Dtype* out_score = static_cast<Dtype*>(sampled_score_ptr); BBoxT<Dtype>* out_bbox = static_cast<BBoxT<Dtype>*>(sampled_bbox_ptr); int N = blockIdx.x; int blockOffset_in = N * orig_size; int blockOffset_out = N * sample_size; int realSampleCnt = dMIN(sample_size, orig_size); int totalItems = (realSampleCnt + (blockDim.x - 1)) / blockDim.x; for (int i = 0; i < totalItems; i++) { int cur_id = i * blockDim.x + threadIdx.x; if (cur_id < realSampleCnt) { out_score[blockOffset_out + cur_id] = in_score[blockOffset_in + cur_id]; out_bbox[blockOffset_out + cur_id] = in_bbox[blockOffset_in + cur_id]; } } } hipError_t proposalRefineBatchClassNMS(hipStream_t stream, int N, int inputCnt, int samples, nvinfer1::DataType dtype, const RefineNMSParameters& param, const ProposalWorkSpace& proposalOffset, void* workspace, const void* inScores, //[N, inputcnt, 2] const void* inDelta, //[N, inputcnt, 4] const void* inCountValid, const void* inAnchors, //[N, inputcnt, 4] void* outProposals) { int8_t* wsPtr = static_cast<int8_t*>(workspace); void* tempStoragePtr = wsPtr + proposalOffset.tempStorageOffset; void* preRefineScorePtr = wsPtr + proposalOffset.preRefineScoreOffset; void* preRefineSortedScorePtr = wsPtr + proposalOffset.preRefineSortedScoreOffset; void* preRefineBboxPtr = wsPtr + proposalOffset.preRefineBboxOffset; void* argMaxScorePtr = wsPtr + proposalOffset.argMaxScoreOffset; void* argMaxLabelPtr = wsPtr + proposalOffset.argMaxLabelOffset; void* argMaxBBoxPtr = wsPtr + proposalOffset.argMaxBboxOffset; void* sortClassScorePtr = wsPtr + proposalOffset.sortClassScoreOffset; void* sortClassLabelPtr = wsPtr + proposalOffset.sortClassLabelOffset; void* sortClassSampleIdxPtr = wsPtr + proposalOffset.sortClassSampleIdxOffset; void* sortClassValidCountPtr = wsPtr + proposalOffset.sortClassValidCountOffset; void* sortClassPosPtr = wsPtr + proposalOffset.sortClassPosOffset; void* sortNMSMarkPtr = wsPtr + proposalOffset.sortNMSMarkOffset; hipError_t status = hipSuccess; CUASSERT(hipMemsetAsync(sortClassValidCountPtr, 0, N * sizeof(int), stream)); // extract foreground score hipLaunchKernelGGL(( extract_fg_kernel), dim3(N), dim3(dMIN(inputCnt, 1024)), 0, stream, inputCnt, inScores, preRefineScorePtr); CUASSERT(hipGetLastError()); // Here, inDelta are converted to normalize coordinates based on anchors status = ApplyDelta2Bboxes(stream, N, inputCnt, inAnchors, inDelta, const_cast<void*>(inDelta)); CUASSERT(status); // sort the score // d_key_in: preRefineScorePtr [N, inputCnt, 1] // d_key_out: preRefineSortedScorePtr // d_values_in: inDelta [N, inputCnt, 4] // d_values_out: preRefineBboxPtr // num_items: inputCnt*N // num_segments: N // offsets: [0, inputCnt, inputCnt*2, ..., ] int* offsets = static_cast<int*>(tempStoragePtr); hipLaunchKernelGGL(( set_offset_kernel), dim3(1), dim3(1024), 0, stream, inputCnt, N + 1, offsets); assert(hipGetLastError() == hipSuccess); tempStoragePtr = static_cast<void*>(static_cast<int*>(tempStoragePtr) + (N + 1)); size_t temp_storage_bytes = 0; hipcub::DeviceSegmentedRadixSort::SortPairsDescending(NULL, temp_storage_bytes, (float*) preRefineScorePtr, (float*) preRefineSortedScorePtr, (BBoxT<float>*) inDelta, (BBoxT<float>*) preRefineBboxPtr, N * inputCnt, N, offsets, offsets + 1, 0, 8 * sizeof(float), stream); assert((1 << 23) * (size_t) N > temp_storage_bytes); hipcub::DeviceSegmentedRadixSort::SortPairsDescending(tempStoragePtr, temp_storage_bytes, (float*) preRefineScorePtr, (float*) preRefineSortedScorePtr, (BBoxT<float>*) inDelta, (BBoxT<float>*) preRefineBboxPtr, N * inputCnt, N, offsets, offsets + 1, 0, 8 * sizeof(float), stream); int NClass = param.numClasses; assert(NClass == 1); if (NClass == 1) { // Only one class hipLaunchKernelGGL(( resample_kernel<float>), dim3(N), dim3(dMIN(samples, 1024)), 0, stream, inputCnt, samples, preRefineSortedScorePtr, preRefineBboxPtr, argMaxScorePtr, argMaxBBoxPtr); int threads = 512; int blocks = (N * samples + threads - 1) / threads; blocks = dMIN(blocks, 8); switch (dtype) { case nvinfer1::DataType::kFLOAT: { hipLaunchKernelGGL(( resetMemValue_kernel<float>), dim3(blocks), dim3(threads), 0, stream, argMaxLabelPtr, N * samples, 0); break; } case nvinfer1::DataType::kHALF: { break; } default: assert(false); } } if (samples <= 1024) { status = sortPerClass<256, 4>(stream, N, dtype, samples, NClass, param.backgroundLabelId, param.scoreThreshold, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr, sortClassPosPtr, sortClassScorePtr, sortClassLabelPtr, sortClassSampleIdxPtr, sortClassValidCountPtr); } else if (samples <= 2048) { status = sortPerClass<256, 8>(stream, N, dtype, samples, NClass, param.backgroundLabelId, param.scoreThreshold, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr, sortClassPosPtr, sortClassScorePtr, sortClassLabelPtr, sortClassSampleIdxPtr, sortClassValidCountPtr); } else if (samples <= 4096) { status = sortPerClass<256, 16>(stream, N, dtype, samples, NClass, param.backgroundLabelId, param.scoreThreshold, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr, sortClassPosPtr, sortClassScorePtr, sortClassLabelPtr, sortClassSampleIdxPtr, sortClassValidCountPtr); } else { assert(false && "unsupported sortPerClass"); return hipErrorLaunchFailure; } CUASSERT(status); status = PerClassNMS<256>(stream, N, dtype, samples, NClass, param.iouThreshold, sortClassValidCountPtr, // sortClassScorePtr, sortClassLabelPtr, argMaxBBoxPtr, sortClassSampleIdxPtr, sortClassPosPtr, sortNMSMarkPtr); CUASSERT(status); status = KeepTopKGather<256>(stream, N, dtype, samples, param.keepTopK, sortClassValidCountPtr, sortClassScorePtr, sortClassLabelPtr, argMaxBBoxPtr, sortClassSampleIdxPtr, sortNMSMarkPtr, outProposals, 1); CUASSERT(status); return status; } template<typename Dtype> void score_bbox_cub_sort(void* tempStorage, const void* inScore, void* sortedScore, const void* inBBox, void* sortedBBox, int totalCnt, int segCnt, int* offsets, hipStream_t stream ) { size_t temp_storage_bytes = 0; hipcub::DeviceSegmentedRadixSort::SortPairsDescending(NULL, temp_storage_bytes, (Dtype*) inScore, (Dtype*) sortedScore, (BBoxT<Dtype>*) inBBox, (BBoxT<Dtype>*) sortedBBox, totalCnt, segCnt, offsets, offsets + 1, 0, 8 * sizeof(Dtype), stream); CUASSERT(hipGetLastError()); hipcub::DeviceSegmentedRadixSort::SortPairsDescending(tempStorage, temp_storage_bytes, (Dtype*) inScore, (Dtype*) sortedScore, (BBoxT<Dtype>*) inBBox, (BBoxT<Dtype>*) sortedBBox, totalCnt, segCnt, offsets, offsets + 1, 0, 8 * sizeof(Dtype), stream); CUASSERT(hipGetLastError()); } hipError_t MultilevelPropose(hipStream_t stream, int N, int inputCnt, int samples, const float* regWeight, const float inputHeight, const float inputWidth, nvinfer1::DataType dtype, const RefineNMSParameters& param, const MultilevelProposeROIWorkSpace& proposalOffset, void* workspace, const void* inScore, //[N, inputcnt, 1] const void* inDelta, //[N, inputcnt, 4] void* inCountValid, const void* inAnchors, //[N, inputcnt, 4] void* outScore, void* outBbox) { int8_t* wsPtr = static_cast<int8_t*>(workspace); void* tempStoragePtr = wsPtr + proposalOffset.tempStorageOffset; void* preRefineSortedScorePtr = wsPtr + proposalOffset.preRefineSortedScoreOffset; void* preRefineBboxPtr = wsPtr + proposalOffset.preRefineBboxOffset; void* argMaxScorePtr = wsPtr + proposalOffset.argMaxScoreOffset; void* argMaxLabelPtr = wsPtr + proposalOffset.argMaxLabelOffset; void* argMaxBBoxPtr = wsPtr + proposalOffset.argMaxBboxOffset; void* sortClassScorePtr = wsPtr + proposalOffset.sortClassScoreOffset; void* sortClassLabelPtr = wsPtr + proposalOffset.sortClassLabelOffset; void* sortClassSampleIdxPtr = wsPtr + proposalOffset.sortClassSampleIdxOffset; void* sortClassValidCountPtr = wsPtr + proposalOffset.sortClassValidCountOffset; void* sortClassPosPtr = wsPtr + proposalOffset.sortClassPosOffset; void* sortNMSMarkPtr = wsPtr + proposalOffset.sortNMSMarkOffset; hipError_t status = hipSuccess; int NClass = param.numClasses; assert(NClass == 1); CUASSERT(hipMemsetAsync(argMaxScorePtr, 0, N * samples * sizeof(dtype), stream)); CUASSERT(hipMemsetAsync(argMaxBBoxPtr, 0, N * samples * 4 * sizeof(dtype), stream)); CUASSERT(hipMemsetAsync(sortClassValidCountPtr, 0, N * sizeof(int), stream)); CUASSERT(hipMemsetAsync(sortClassPosPtr, 0, N * (NClass + 1) * sizeof(int), stream)); CUASSERT(hipMemsetAsync(sortClassSampleIdxPtr, 0, N * (samples + 1) * sizeof(int), stream)); CUASSERT(hipGetLastError()); // Here, inDelta are converted to normalize coordinates based on anchors status = DecodeBBoxes( stream, N, inputCnt, regWeight, inputHeight, inputWidth, inAnchors, inDelta, const_cast<void*>(inDelta), dtype); CUASSERT(hipGetLastError()); // sort the score // d_key_in: preRefineScorePtr [N, inputCnt, 1] // d_key_out: preRefineSortedScorePtr // d_values_in: inDelta [N, inputCnt, 4] // d_values_out: preRefineBboxPtr // num_items: inputCnt*N // num_segments: N // offsets: [0, inputCnt, inputCnt*2, ..., ] int* offsets = static_cast<int*>(tempStoragePtr); hipLaunchKernelGGL(( set_offset_kernel), dim3(1), dim3(1024), 0, stream, inputCnt, N + 1, offsets); CUASSERT(hipGetLastError()); tempStoragePtr = static_cast<void*>(static_cast<int*>(tempStoragePtr) + (N + 1)); switch (dtype) { case nvinfer1::DataType::kFLOAT: { score_bbox_cub_sort<float>(tempStoragePtr, inScore, preRefineSortedScorePtr, inDelta, preRefineBboxPtr, N * inputCnt, N, offsets, stream); break; } case nvinfer1::DataType::kHALF: { score_bbox_cub_sort<__half>(tempStoragePtr, inScore, preRefineSortedScorePtr, inDelta, preRefineBboxPtr, N * inputCnt, N, offsets, stream); break; } default: assert(false); } if (NClass == 1) { // Only one class switch (dtype) { case nvinfer1::DataType::kFLOAT: { hipLaunchKernelGGL(( resample_kernel<float>), dim3(N), dim3(dMIN(samples, 1024)), 0, stream, inputCnt, samples, preRefineSortedScorePtr, preRefineBboxPtr, argMaxScorePtr, argMaxBBoxPtr); CUASSERT(hipGetLastError()); break; } case nvinfer1::DataType::kHALF: { hipLaunchKernelGGL(( resample_kernel<__half>), dim3(N), dim3(dMIN(samples, 1024)), 0, stream, inputCnt, samples, preRefineSortedScorePtr, preRefineBboxPtr, argMaxScorePtr, argMaxBBoxPtr); CUASSERT(hipGetLastError()); break; } default: assert(false); } int threads = 512; int blocks = (N * samples + threads - 1) / threads; blocks = dMIN(blocks, 8); switch (dtype) { case nvinfer1::DataType::kFLOAT: { hipLaunchKernelGGL(( resetMemValue_kernel<float>), dim3(blocks), dim3(threads), 0, stream, argMaxLabelPtr, N * samples, 0); CUASSERT(hipGetLastError()); break; } case nvinfer1::DataType::kHALF: { hipLaunchKernelGGL(( resetMemValue_kernel<__half>), dim3(blocks), dim3(threads), 0, stream, argMaxLabelPtr, N * samples, 0); CUASSERT(hipGetLastError()); break; } default: assert(false); } } if (samples <= 1024) { status = sortPerClass<256, 4>(stream, N, dtype, samples, NClass, param.backgroundLabelId, param.scoreThreshold, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr, sortClassPosPtr, sortClassScorePtr, sortClassLabelPtr, sortClassSampleIdxPtr, sortClassValidCountPtr); } else if (samples <= 2048) { status = sortPerClass<256, 8>(stream, N, dtype, samples, NClass, param.backgroundLabelId, param.scoreThreshold, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr, sortClassPosPtr, sortClassScorePtr, sortClassLabelPtr, sortClassSampleIdxPtr, sortClassValidCountPtr); } else if (samples <= 4096) { status = sortPerClass<256, 16>(stream, N, dtype, samples, NClass, param.backgroundLabelId, param.scoreThreshold, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr, sortClassPosPtr, sortClassScorePtr, sortClassLabelPtr, sortClassSampleIdxPtr, sortClassValidCountPtr); } else { assert(false && "unsupported sortPerClass"); return hipErrorLaunchFailure; } CUASSERT(hipGetLastError()); status = PerClassNMS<1024>(stream, N, dtype, samples, NClass, param.iouThreshold, sortClassValidCountPtr, // sortClassScorePtr, sortClassLabelPtr, argMaxBBoxPtr, sortClassSampleIdxPtr, sortClassPosPtr, sortNMSMarkPtr); CUASSERT(hipGetLastError()); status = KeepTopKGatherBoxScore<512>(stream, N, dtype, samples, param.keepTopK, sortClassValidCountPtr, sortClassScorePtr, sortClassLabelPtr, argMaxBBoxPtr, sortClassSampleIdxPtr, sortNMSMarkPtr, outScore, outBbox, 1); CUASSERT(hipGetLastError()); return status; } struct BBOX { float y1, x1, y2, x2; }; struct DELTA { float dy, dx, logdh, logdw; }; struct DELTA_HALF { __half dy, dx, logdh, logdw; }; __global__ void decode_bboxes_kernel(int samples, const void* anchors, const void* delta, const float* regWeight, const float inputHeight, const float inputWidth, void* outputBbox, float bboxClipThresh) { const BBOX* anchors_in = static_cast<const BBOX*>(anchors); const DELTA* delta_in = static_cast<const DELTA*>(delta); BBOX* bbox_out = static_cast<BBOX*>(outputBbox); int N = blockIdx.x; int blockOffset = N * samples; int totalItems = (samples + (blockDim.x - 1)) / blockDim.x; for (int i = 0; i < totalItems; i++) { int cur_id = i * blockDim.x + threadIdx.x; if (cur_id < samples) { BBOX cur_anchor_yxyx = anchors_in[blockOffset + cur_id]; // convert yxyx -> cyxhw // cy, cx, h, w /*BBOX cur_anchor_cyxhw;*/ float cur_anchor_h = (cur_anchor_yxyx.y2 - cur_anchor_yxyx.y1 + 1.0); float cur_anchor_w = (cur_anchor_yxyx.x2 - cur_anchor_yxyx.x1 + 1.0); // w float cur_anchor_yc = cur_anchor_yxyx.y1 + cur_anchor_h * 0.5; // cy float cur_anchor_xc = cur_anchor_yxyx.x1 + cur_anchor_w * 0.5; // cx DELTA cur_delta = delta_in[blockOffset + cur_id]; // divided by regWeight cur_delta.dy /= regWeight[0]; cur_delta.dx /= regWeight[1]; cur_delta.logdh /= regWeight[2]; cur_delta.logdw /= regWeight[3]; cur_delta.logdh = dMIN(cur_delta.logdh, bboxClipThresh); cur_delta.logdw = dMIN(cur_delta.logdw, bboxClipThresh); // apply delta float decoded_box_yc = cur_anchor_yc + cur_delta.dy * cur_anchor_h; float decoded_box_xc = cur_anchor_xc + cur_delta.dx * cur_anchor_w; float decoded_box_h = expf(cur_delta.logdh) * cur_anchor_h; float decoded_box_w = expf(cur_delta.logdw) * cur_anchor_w; float decoded_box_ymin = decoded_box_yc - 0.5 * decoded_box_h; float decoded_box_xmin = decoded_box_xc - 0.5 * decoded_box_w; float decoded_box_ymax = decoded_box_ymin + decoded_box_h - 1.0; float decoded_box_xmax = decoded_box_xmin + decoded_box_w - 1.0; // clip bbox: a more precision clip method based on real window could be implemented decoded_box_ymin = dMAX(dMIN(decoded_box_ymin, inputHeight - 1.0), 0.0); decoded_box_xmin = dMAX(dMIN(decoded_box_xmin, inputWidth - 1.0), 0.0); decoded_box_ymax = dMAX(dMIN(decoded_box_ymax, inputHeight - 1.0), 0.0); decoded_box_xmax = dMAX(dMIN(decoded_box_xmax, inputWidth - 1.0), 0.0); bbox_out[blockOffset + cur_id].y1 = decoded_box_ymin; bbox_out[blockOffset + cur_id].x1 = decoded_box_xmin; bbox_out[blockOffset + cur_id].y2 = decoded_box_ymax; bbox_out[blockOffset + cur_id].x2 = decoded_box_xmax; } } } __global__ void decode_bboxes_kernel_half(int samples, const void* anchors, const void* delta, const float* regWeight, const float inputHeight, const float inputWidth, void* outputBbox, float bboxClipThresh) { const BBoxT<float>* anchors_in = static_cast<const BBoxT<float>*>(anchors); const DELTA_HALF* delta_in = static_cast<const DELTA_HALF*>(delta); BBoxT<__half>* bbox_out = static_cast<BBoxT<__half>*>(outputBbox); int N = blockIdx.x; int blockOffset = N * samples; int totalItems = (samples + (blockDim.x - 1)) / blockDim.x; for (int i = 0; i < totalItems; i++) { int cur_id = i * blockDim.x + threadIdx.x; if (cur_id < samples) { BBoxT<float> cur_anchor_yxyx = anchors_in[blockOffset + cur_id]; // convert yxyx -> cyxhw // cy, cx, h, w float cur_anchor_h = (cur_anchor_yxyx.y2 - cur_anchor_yxyx.y1 + 1.0); float cur_anchor_w = (cur_anchor_yxyx.x2 - cur_anchor_yxyx.x1 + 1.0); // w float cur_anchor_yc = cur_anchor_yxyx.y1 + cur_anchor_h * 0.5; // cy float cur_anchor_xc = cur_anchor_yxyx.x1 + cur_anchor_w * 0.5; // cx DELTA_HALF cur_delta_half = delta_in[blockOffset + cur_id]; DELTA cur_delta; cur_delta.dy = __half2float(cur_delta_half.dy); cur_delta.dx = __half2float(cur_delta_half.dx); cur_delta.logdh = __half2float(cur_delta_half.logdh); cur_delta.logdw = __half2float(cur_delta_half.logdw); // divided by regWeight cur_delta.dy /= regWeight[0]; cur_delta.dx /= regWeight[1]; cur_delta.logdh /= regWeight[2]; cur_delta.logdw /= regWeight[3]; cur_delta.logdh = dMIN(cur_delta.logdh, bboxClipThresh); cur_delta.logdw = dMIN(cur_delta.logdw, bboxClipThresh); // apply delta float decoded_box_yc = cur_anchor_yc + cur_delta.dy * cur_anchor_h; float decoded_box_xc = cur_anchor_xc + cur_delta.dx * cur_anchor_w; float decoded_box_h = expf(cur_delta.logdh) * cur_anchor_h; float decoded_box_w = expf(cur_delta.logdw) * cur_anchor_w; float decoded_box_ymin = decoded_box_yc - 0.5 * decoded_box_h; float decoded_box_xmin = decoded_box_xc - 0.5 * decoded_box_w; float decoded_box_ymax = decoded_box_ymin + decoded_box_h - 1.0; float decoded_box_xmax = decoded_box_xmin + decoded_box_w - 1.0; // clip bbox: a more precision clip method based on real window could be implemented decoded_box_ymin = dMAX(dMIN(decoded_box_ymin, inputHeight - 1.0), 0.0); decoded_box_xmin = dMAX(dMIN(decoded_box_xmin, inputWidth - 1.0), 0.0); decoded_box_ymax = dMAX(dMIN(decoded_box_ymax, inputHeight - 1.0), 0.0); decoded_box_xmax = dMAX(dMIN(decoded_box_xmax, inputWidth - 1.0), 0.0); bbox_out[blockOffset + cur_id].y1 = __float2half(decoded_box_ymin); bbox_out[blockOffset + cur_id].x1 = __float2half(decoded_box_xmin); bbox_out[blockOffset + cur_id].y2 = __float2half(decoded_box_ymax); bbox_out[blockOffset + cur_id].x2 = __float2half(decoded_box_xmax); } } } hipError_t DecodeBBoxes(hipStream_t stream, int N, int samples, // number of anchors per image const float* regWeight, const float inputHeight, const float inputWidth, const void* anchors, // [N, anchors, (y1, x1, y2, x2)] const void* delta, //[N, anchors, (dy, dx, log(dh), log(dw)]) void* outputBbox, //[N, anchors, (y1, x1, y2, x2)] nvinfer1::DataType dtype ) { int blocks = N; int threads = dMIN(samples, 1024); // delta multiply bbox_std // apply delta steps: // cy = anchor_cy + dy*height // cx = anchor_cx + dx*weight // h = exp(dh)*anchor_h // w = exp(dw)*anchor_w // clip the bbox in absolute coordinates float bboxClipThresh = log(1000.0f / 16.0f); switch (dtype) { case nvinfer1::DataType::kFLOAT: { hipLaunchKernelGGL(( decode_bboxes_kernel), dim3(blocks), dim3(threads), 0, stream, samples, anchors, delta, regWeight, inputHeight, inputWidth, outputBbox, bboxClipThresh); break; } case nvinfer1::DataType::kHALF: { hipLaunchKernelGGL(( decode_bboxes_kernel_half), dim3(blocks), dim3(threads), 0, stream, samples, anchors, delta, regWeight, inputHeight, inputWidth, outputBbox, bboxClipThresh); break; } default: assert(false); } return hipGetLastError(); } __global__ void apply_delta_kernel(int samples, const void* anchors, const void* delta, void* outputBbox) { const BBOX* anchors_in = static_cast<const BBOX*>(anchors); const DELTA* delta_in = static_cast<const DELTA*>(delta); BBOX* bbox_out = static_cast<BBOX*>(outputBbox); int N = blockIdx.x; int blockOffset = N * samples; int totalItems = (samples + (blockDim.x - 1)) / blockDim.x; for (int i = 0; i < totalItems; i++) { int cur_id = i * blockDim.x + threadIdx.x; if (cur_id < samples) { BBOX cur_anchor_yxyx = anchors_in[blockOffset + cur_id]; // convert yxyx -> cyxhw // cy, cx, h, w BBOX cur_anchor_cyxhw; cur_anchor_cyxhw.y1 = (cur_anchor_yxyx.y1 + cur_anchor_yxyx.y2) / 2; cur_anchor_cyxhw.x1 = (cur_anchor_yxyx.x1 + cur_anchor_yxyx.x2) / 2; cur_anchor_cyxhw.y2 = (cur_anchor_yxyx.y2 - cur_anchor_yxyx.y1); cur_anchor_cyxhw.x2 = (cur_anchor_yxyx.x2 - cur_anchor_yxyx.x1); DELTA cur_delta = delta_in[blockOffset + cur_id]; // multiply std_dev cur_delta.dy *= 0.1; cur_delta.dx *= 0.1; cur_delta.logdh *= 0.2; cur_delta.logdw *= 0.2; // apply delta cur_anchor_cyxhw.y1 += cur_delta.dy * cur_anchor_cyxhw.y2; cur_anchor_cyxhw.x1 += cur_delta.dx * cur_anchor_cyxhw.x2; cur_anchor_cyxhw.y2 *= expf(cur_delta.logdh); cur_anchor_cyxhw.x2 *= expf(cur_delta.logdw); cur_anchor_yxyx.y1 = cur_anchor_cyxhw.y1 - 0.5 * cur_anchor_cyxhw.y2; cur_anchor_yxyx.x1 = cur_anchor_cyxhw.x1 - 0.5 * cur_anchor_cyxhw.x2; cur_anchor_yxyx.y2 = cur_anchor_yxyx.y1 + cur_anchor_cyxhw.y2; cur_anchor_yxyx.x2 = cur_anchor_yxyx.x1 + cur_anchor_cyxhw.x2; // clip bbox: a more precision clip method based on real window could be implemented cur_anchor_yxyx.y1 = dMAX(dMIN(cur_anchor_yxyx.y1, 1.0), 0.0); cur_anchor_yxyx.x1 = dMAX(dMIN(cur_anchor_yxyx.x1, 1.0), 0.0); cur_anchor_yxyx.y2 = dMAX(dMIN(cur_anchor_yxyx.y2, 1.0), 0.0); cur_anchor_yxyx.x2 = dMAX(dMIN(cur_anchor_yxyx.x2, 1.0), 0.0); bbox_out[blockOffset + cur_id].y1 = cur_anchor_yxyx.y1; bbox_out[blockOffset + cur_id].x1 = cur_anchor_yxyx.x1; bbox_out[blockOffset + cur_id].y2 = cur_anchor_yxyx.y2; bbox_out[blockOffset + cur_id].x2 = cur_anchor_yxyx.x2; } } } hipError_t ApplyDelta2Bboxes(hipStream_t stream, int N, int samples, // number of anchors per image const void* anchors, // [N, anchors, (y1, x1, y2, x2)] const void* delta, //[N, anchors, (dy, dx, log(dh), log(dw)]) void* outputBbox //[N, anchors, (y1, x1, y2, x2)] ) { int blocks = N; int threads = dMIN(samples, 1024); // delta multiply bbox_std // apply delta steps: // cy = anchor_cy + dy*height // cx = anchor_cx + dx*weight // h = exp(dh)*anchor_h // w = exp(dw)*anchor_w // clip the bbox hipLaunchKernelGGL(( apply_delta_kernel), dim3(blocks), dim3(threads), 0, stream, samples, anchors, delta, outputBbox); return hipGetLastError(); } template <typename Tfeat> __device__ inline Tfeat interpolateBilinear(const Tfeat* src, xy_t srcDims, float y, float x) { const int y0 = static_cast<int>(y); const float yAlpha = y - static_cast<float>(y0); const int x0 = static_cast<int>(x); const float xAlpha = x - static_cast<float>(x0); assert(y0 < srcDims.y); assert(x0 < srcDims.x); const int y1 = (yAlpha == 0) ? y0 : y0 + 1; // ceil const int x1 = (xAlpha == 0) ? x0 : x0 + 1; // ceil assert(y1 < srcDims.y); assert(x1 < srcDims.x); const Tfeat src00 = src[(y0) *srcDims.x + (x0)]; const Tfeat src01 = src[(y0) *srcDims.x + (x1)]; const Tfeat src10 = src[(y1) *srcDims.x + (x0)]; const Tfeat src11 = src[(y1) *srcDims.x + (x1)]; const Tfeat src0 = src00 * (1.0 - xAlpha) + src01 * xAlpha; const Tfeat src1 = src10 * (1.0 - xAlpha) + src11 * xAlpha; return src0 * (1.0 - yAlpha) + src1 * yAlpha; } template <> __device__ inline __half interpolateBilinear(const __half* src, xy_t srcDims, float y, float x) { const int y0 = static_cast<int>(y); const float yAlpha = y - static_cast<float>(y0); const int x0 = static_cast<int>(x); const float xAlpha = x - static_cast<float>(x0); assert(y0 < srcDims.y); assert(x0 < srcDims.x); const int y1 = (yAlpha == 0) ? y0 : y0 + 1; // ceil const int x1 = (xAlpha == 0) ? x0 : x0 + 1; // ceil assert(y1 < srcDims.y); assert(x1 < srcDims.x); const __half src00 = src[(y0) *srcDims.x + (x0)]; const __half src01 = src[(y0) *srcDims.x + (x1)]; const __half src10 = src[(y1) *srcDims.x + (x0)]; const __half src11 = src[(y1) *srcDims.x + (x1)]; const __half src0 = add_fb(mul_fb(src00, (1.0 - xAlpha)), mul_fb(src01, xAlpha)); const __half src1 = add_fb(mul_fb(src10, (1.0 - xAlpha)), mul_fb(src11, xAlpha)); return add_fb(mul_fb(src0, (1.0 - yAlpha)), mul_fb(src1, yAlpha)); } template <typename Trois, typename Tfeat> __global__ void roiAlign_kernel(int featureCount, int roiCount, float threshold, const Trois* rois, const Tfeat* P2, const xy_t P2dims, const Tfeat* P3, const xy_t P3dims, const Tfeat* P4, const xy_t P4dims, const Tfeat* P5, const xy_t P5dims, Tfeat* pooled, const xy_t poolDims) { const int batch = blockIdx.x; const int feature = blockIdx.y; for (int roiIdx = threadIdx.x; roiIdx < roiCount; roiIdx += blockDim.x) { const Trois* roi = rois + 4 * (batch * roiCount + roiIdx); const float y1 = roi[0]; const float x1 = roi[1]; const float y2 = roi[2]; const float x2 = roi[3]; if (!(0 <= y1 && y1 <= 1 && 0 <= x1 && x1 <= 1 && 0 <= y2 && y2 <= 1 && 0 <= x2 && x2 <= 1 && y1 < y2 && x1 < x2)) { continue; } else { } const float hw = (y2 - y1) * (x2 - x1); const Tfeat* src = P2; xy_t srcDims = P2dims; int iP = 2; if (hw > threshold) { src = P3; srcDims = P3dims; ++iP; } threshold *= 4; if (hw > threshold) { src = P4; srcDims = P4dims; ++iP; } threshold *= 4; if (hw > threshold) { src = P5; srcDims = P5dims; ++iP; } src += srcDims.x * srcDims.y * (batch * featureCount + feature); Tfeat* dst = pooled + poolDims.x * poolDims.y * (batch * roiCount * featureCount + roiIdx * featureCount + feature); const float yStart = y1 * (srcDims.y - 1); const float xStart = x1 * (srcDims.x - 1); const float yEnd = y2 * (srcDims.y - 1); const float xEnd = x2 * (srcDims.x - 1); const float yDelta = (yEnd - yStart) / (poolDims.y - 1); const float xDelta = (xEnd - xStart) / (poolDims.x - 1); for (int yy = 0; yy < poolDims.y; ++yy) { const float ySample = min(yStart + yDelta * yy, yEnd); for (int xx = 0; xx < poolDims.x; ++xx) { const float xSample = min(xStart + xDelta * xx, xEnd); float result = interpolateBilinear(src, srcDims, ySample, xSample); *dst = result; dst++; } } } } hipError_t roiAlign(hipStream_t stream, int batchSize, int featureCount, int roiCount, float firstThreshold, const void* rois, const void* const layers[], const xy_t* layerDims, void* pooled, const xy_t poolDims) { const dim3 blocks(batchSize, featureCount); const int threads(256); hipLaunchKernelGGL(( roiAlign_kernel), dim3(blocks), dim3(threads), 0, stream, featureCount, roiCount, firstThreshold, static_cast<const float*>(rois), static_cast<const float*>(layers[0]), layerDims[0], static_cast<const float*>(layers[1]), layerDims[1], static_cast<const float*>(layers[2]), layerDims[2], static_cast<const float*>(layers[3]), layerDims[3], static_cast<float*>(pooled), poolDims); return hipGetLastError(); } template <typename Trois, typename Tfeat> __global__ void roiAlignHalfCenter_kernel(int featureCount, int roiCount, float threshold, int inputHeight, int inputWidth, const void* rois_, const void* const P2_, const xy_t P2dims, const void* const P3_, const xy_t P3dims, const void* const P4_, const xy_t P4dims, const void* const P5_, const xy_t P5dims, const void* const P6_, const xy_t P6dims, void* pooled_, const xy_t poolDims) { const Trois* rois = static_cast<const Trois*>(rois_); const Tfeat* P2 = static_cast<const Tfeat*>(P2_); const Tfeat* P3 = static_cast<const Tfeat*>(P3_); const Tfeat* P4 = static_cast<const Tfeat*>(P4_); const Tfeat* P5 = static_cast<const Tfeat*>(P5_); const Tfeat* P6 = static_cast<const Tfeat*>(P6_); Tfeat* pooled = static_cast<Tfeat* >(pooled_); const int batch = blockIdx.x; const int feature = blockIdx.y; const int roiIdx = blockIdx.z; const int total_item_cnt = poolDims.x * poolDims.y; for (int itemIdx = threadIdx.x; itemIdx < total_item_cnt; itemIdx += blockDim.x) { const Trois* roi = rois + 4 * (batch * roiCount + roiIdx); const float y1 = roi[0]; const float x1 = roi[1]; const float y2 = roi[2]; const float x2 = roi[3]; if (!(0 <= y1 && y1 <= inputHeight && 0 <= x1 && x1 <= inputWidth && 0 <= y2 && y2 <= inputHeight && 0 <= x2 && x2 <= inputWidth && y1 < y2 && x1 < x2)) { continue; } else { } const float hw = (y2 - y1) * (x2 - x1); const Tfeat* src = P2; xy_t srcDims = P2dims; int iP = 2; float threshold_per_item = threshold; if (hw > threshold_per_item) { src = P3; srcDims = P3dims; ++iP; } threshold_per_item *= 4; if (hw > threshold_per_item) { src = P4; srcDims = P4dims; ++iP; } threshold_per_item *= 4; if (hw > threshold_per_item) { src = P5; srcDims = P5dims; ++iP; } threshold_per_item *= 4; if (hw > threshold_per_item) { src = P6; srcDims = P6dims; ++iP; } src += srcDims.x * srcDims.y * (batch * featureCount + feature); Tfeat* dst = pooled + poolDims.x * poolDims.y * (batch * roiCount * featureCount + roiIdx * featureCount + feature) + itemIdx; float scale_to_level = 1.0f; for (int i = 0; i < iP; i++) { scale_to_level *= 2.0f; } const float yStart = y1 / scale_to_level; const float xStart = x1 / scale_to_level; const float yEnd = y2 / scale_to_level; const float xEnd = x2 / scale_to_level; const float yDelta = (yEnd - yStart) / (poolDims.y); const float xDelta = (xEnd - xStart) / (poolDims.x); const int yy = itemIdx / poolDims.y; const int xx = itemIdx % poolDims.x; const float ySample = dMIN(dMAX(yStart + yDelta * (yy + 0.5), 0.0f), srcDims.y - 1.0f); const float xSample = dMIN(dMAX(xStart + xDelta * (xx + 0.5), 0.0f), srcDims.x - 1.0f); Tfeat result = interpolateBilinear<Tfeat>(src, srcDims, ySample, xSample); *dst = result; } } template <> __global__ void roiAlignHalfCenter_kernel<__half, __half>(int featureCount, int roiCount, float threshold, int inputHeight, int inputWidth, const void* rois_, const void* const P2_, const xy_t P2dims, const void* const P3_, const xy_t P3dims, const void* const P4_, const xy_t P4dims, const void* const P5_, const xy_t P5dims, const void* const P6_, const xy_t P6dims, void* pooled_, const xy_t poolDims) { const __half* rois = static_cast<const __half*>(rois_); const __half* P2 = static_cast<const __half*>(P2_); const __half* P3 = static_cast<const __half*>(P3_); const __half* P4 = static_cast<const __half*>(P4_); const __half* P5 = static_cast<const __half*>(P5_); const __half* P6 = static_cast<const __half*>(P6_); __half* pooled = static_cast<__half* >(pooled_); const int batch = blockIdx.x; const int feature = blockIdx.y; const int roiIdx = blockIdx.z; const int total_item_cnt = poolDims.x * poolDims.y; for (int itemIdx = threadIdx.x; itemIdx < total_item_cnt; itemIdx += blockDim.x) { const __half* roi = rois + 4 * (batch * roiCount + roiIdx); const float y1 = __half2float(roi[0]); const float x1 = __half2float(roi[1]); const float y2 = __half2float(roi[2]); const float x2 = __half2float(roi[3]); if (!(0 <= y1 && y1 <= inputHeight && 0 <= x1 && x1 <= inputWidth && 0 <= y2 && y2 <= inputHeight && 0 <= x2 && x2 <= inputWidth && y1 < y2 && x1 < x2)) { continue; } else { } const float hw = (y2 - y1) * (x2 - x1); const __half* src = P2; xy_t srcDims = P2dims; int iP = 2; float threshold_per_item = threshold; if (hw > threshold_per_item) { src = P3; srcDims = P3dims; ++iP; } threshold_per_item *= 4; if (hw > threshold_per_item) { src = P4; srcDims = P4dims; ++iP; } threshold_per_item *= 4; if (hw > threshold_per_item) { src = P5; srcDims = P5dims; ++iP; } threshold_per_item *= 4; if (hw > threshold_per_item) { src = P6; srcDims = P6dims; ++iP; } src += srcDims.x * srcDims.y * (batch * featureCount + feature); __half* dst = pooled + poolDims.x * poolDims.y * (batch * roiCount * featureCount + roiIdx * featureCount + feature) + itemIdx; float scale_to_level = 1.0f; for (int i = 0; i < iP; i++) { scale_to_level *= 2.0f; } const float yStart = y1 / scale_to_level; const float xStart = x1 / scale_to_level; const float yEnd = y2 / scale_to_level; const float xEnd = x2 / scale_to_level; const float yDelta = (yEnd - yStart) / (poolDims.y); const float xDelta = (xEnd - xStart) / (poolDims.x); const int yy = itemIdx / poolDims.y; const int xx = itemIdx % poolDims.x; const float ySample = dMIN(dMAX(yStart + yDelta * (yy + 0.5), 0.0f), srcDims.y - 1.0f); const float xSample = dMIN(dMAX(xStart + xDelta * (xx + 0.5), 0.0f), srcDims.x - 1.0f); __half result = interpolateBilinear<__half>(src, srcDims, ySample, xSample); *dst = result; } } hipError_t roiAlignHalfCenter(hipStream_t stream, int batchSize, int featureCount, int roiCount, float firstThreshold, int inputHeight, int inputWidth, const void* rois, const void* const layers[], const xy_t* layerDims, void* pooled, const xy_t poolDims, const DataType dtype) { const dim3 blocks(batchSize, featureCount, roiCount); const int threads(64); switch (dtype){ case nvinfer1::DataType::kFLOAT: { hipLaunchKernelGGL(( roiAlignHalfCenter_kernel<float, float>), dim3(blocks), dim3(threads), 0, stream, featureCount, roiCount, firstThreshold, inputHeight, inputWidth, rois, layers[0], layerDims[0], layers[1], layerDims[1], layers[2], layerDims[2], layers[3], layerDims[3], layers[4], layerDims[4], pooled, poolDims); break; } case nvinfer1::DataType::kHALF: { hipLaunchKernelGGL(( roiAlignHalfCenter_kernel<__half, __half>), dim3(blocks), dim3(threads), 0, stream, featureCount, roiCount, firstThreshold, inputHeight, inputWidth, rois, layers[0], layerDims[0], layers[1], layerDims[1], layers[2], layerDims[2], layers[3], layerDims[3], layers[4], layerDims[4], pooled, poolDims); break; } default: assert(false); } return hipGetLastError(); } __global__ void resize_nearest_kernel_2d(int nbatch, float scale, int2 osize, float const* idata, int istride, int ibatchstride, float* odata, int ostride, int obatchstride) { int x0 = threadIdx.x + blockIdx.x * blockDim.x; int y0 = threadIdx.y + blockIdx.y * blockDim.y; int z0 = blockIdx.z; for (int batch = z0; batch < nbatch; batch += gridDim.z) { for (int oy = y0; oy < osize.y; oy += blockDim.y * gridDim.y) { for (int ox = x0; ox < osize.x; ox += blockDim.x * gridDim.x) { int ix = int(ox / scale); int iy = int(oy / scale); odata[batch * obatchstride + oy * ostride + ox] = idata[batch * ibatchstride + iy * istride + ix]; } } } } void resizeNearest(dim3 grid, dim3 block, hipStream_t stream, int nbatch, float scale, int2 osize, float const* idata, int istride, int ibatchstride, float* odata, int ostride, int obatchstride) { hipLaunchKernelGGL(( resize_nearest_kernel_2d), dim3(grid), dim3(block), 0, stream, nbatch, scale, osize, idata, istride, ibatchstride, odata, ostride, obatchstride); } struct BOX { float y1, x1, y2, x2; }; struct DETECTION { float y1, x1, y2, x2, class_id, score; }; __global__ void specialslice_kernel(int samples, const void* idata, void* odata) { int N = blockIdx.x; int blockOffset = N * samples; int totalItems = (samples + (blockDim.x - 1)) / blockDim.x; const DETECTION* in_detections = static_cast<const DETECTION*>(idata); BOX* out_bboxes = static_cast<BOX*>(odata); for (int i = 0; i < totalItems; i++) { int cur_id = i * blockDim.x + threadIdx.x; if (cur_id < samples) { out_bboxes[blockOffset + cur_id].y1 = in_detections[blockOffset + cur_id].y1; out_bboxes[blockOffset + cur_id].x1 = in_detections[blockOffset + cur_id].x1; out_bboxes[blockOffset + cur_id].y2 = in_detections[blockOffset + cur_id].y2; out_bboxes[blockOffset + cur_id].x2 = in_detections[blockOffset + cur_id].x2; } } } void specialSlice(hipStream_t stream, int batch_size, int boxes_cnt, const void* idata, void* odata) { int blocks = batch_size; int threads = dMIN(boxes_cnt, 2048); hipLaunchKernelGGL(( specialslice_kernel), dim3(blocks), dim3(threads), 0, stream, boxes_cnt, idata, odata); } template <typename Dtype> __global__ void concatenate(int featureCnt, int sampleCnt, const void* const* inScores, const void* const* inBBox, void* outScore, void* outBBox) { int N = blockIdx.x; int outBlockOffset = N * sampleCnt * featureCnt; int inBlockOffset = N * sampleCnt; int itemsPerThread = (sampleCnt + blockDim.x - 1) / blockDim.x; Dtype* outScorePtr = static_cast<Dtype*>(outScore); BBoxT<Dtype>* outBBoxPtr = static_cast<BBoxT<Dtype>*>(outBBox); for (int fId = 0; fId < featureCnt; fId++) { const Dtype* fInScorePtr = static_cast<const Dtype*>(inScores[fId]); const BBoxT<Dtype>* fInBBoxPtr = static_cast<const BBoxT<Dtype>*>(inBBox[fId]); int featureOffset = fId * sampleCnt; for (int i = 0; i < itemsPerThread; i++) { int curId = i * blockDim.x + threadIdx.x; if (curId < sampleCnt) { outScorePtr[outBlockOffset + featureOffset + curId] = fInScorePtr[inBlockOffset + curId]; outBBoxPtr[outBlockOffset + featureOffset + curId] = fInBBoxPtr[inBlockOffset + curId]; } } } } template <typename Dtype> __global__ void resampleBBox_kernel(int orig_size, int sample_size, const void* orig_bbox_ptr, void* sampled_bbox_ptr) { const BBoxT<Dtype>* in_bbox = static_cast<const BBoxT<Dtype>*>(orig_bbox_ptr); BBoxT<Dtype>* out_bbox = static_cast<BBoxT<Dtype>*>(sampled_bbox_ptr); int N = blockIdx.x; int blockOffset_in = N * orig_size; int blockOffset_out = N * sample_size; int totalItems = (sample_size + (blockDim.x - 1)) / blockDim.x; for (int i = 0; i < totalItems; i++) { int cur_id = i * blockDim.x + threadIdx.x; if (cur_id < sample_size) { out_bbox[blockOffset_out + cur_id] = in_bbox[blockOffset_in + cur_id]; } } } hipError_t ConcatTopK(hipStream_t stream, int N, int featureCnt, int topK, nvinfer1::DataType dtype, void* workspace, const ConcatTopKWorkSpace& spaceOffset, void** inScores, void** inBBox, void* outProposals) { // Prepare Offset int8_t* wsPtr = static_cast<int8_t*>(workspace); void* tempStoragePtr = wsPtr + spaceOffset.tempStorageOffset; void* concatedScorePtr = wsPtr + spaceOffset.concatedScoreOffset; void* concatedBBoxPtr = wsPtr + spaceOffset.concatedBBoxOffset; void* sortedScorePtr = wsPtr + spaceOffset.sortedScoreOffset; void* sortedBBoxPtr = wsPtr + spaceOffset.sortedBBoxOffset; int blocks = N; // batch_size int threads = dMIN(topK, 2048); // Concat Scores and inBBox switch (dtype) { case nvinfer1::DataType::kFLOAT: hipLaunchKernelGGL(( concatenate<float>) , dim3(blocks), dim3(threads), 0, stream, featureCnt, topK, inScores, inBBox, concatedScorePtr, concatedBBoxPtr); CUASSERT(hipGetLastError()); break; case nvinfer1::DataType::kHALF: hipLaunchKernelGGL(( concatenate<__half>) , dim3(blocks), dim3(threads), 0, stream, featureCnt, topK, inScores, inBBox, concatedScorePtr, concatedBBoxPtr); CUASSERT(hipGetLastError()); break; default: assert(false); } // Sort and sample topK int itemCnt = topK * featureCnt; int* offsets = static_cast<int*>(tempStoragePtr); hipLaunchKernelGGL(( set_offset_kernel), dim3(1), dim3(1024), 0, stream, itemCnt, N + 1, offsets); assert(hipGetLastError() == hipSuccess); tempStoragePtr = static_cast<void*>(static_cast<int*>(tempStoragePtr) + (N + 1)); switch (dtype) { case nvinfer1::DataType::kFLOAT: { score_bbox_cub_sort<float>(tempStoragePtr, concatedScorePtr, sortedScorePtr, concatedBBoxPtr, sortedBBoxPtr, N * itemCnt, N, offsets, stream); break; } case nvinfer1::DataType::kHALF: { score_bbox_cub_sort<__half>(tempStoragePtr, concatedScorePtr, sortedScorePtr, concatedBBoxPtr, sortedBBoxPtr, N * itemCnt, N, offsets, stream); break; } default: assert(false); } // Sample switch (dtype) { case nvinfer1::DataType::kFLOAT: hipLaunchKernelGGL(( resampleBBox_kernel<float>), dim3(N), dim3(dMIN(topK, 1024)), 0, stream, itemCnt, topK, sortedBBoxPtr, outProposals); CUASSERT(hipGetLastError()); break; case nvinfer1::DataType::kHALF: hipLaunchKernelGGL(( resampleBBox_kernel<__half>), dim3(N), dim3(dMIN(topK, 1024)), 0, stream, itemCnt, topK, sortedBBoxPtr, outProposals); CUASSERT(hipGetLastError()); break; default: assert(false); } assert(hipGetLastError() == hipSuccess); return hipGetLastError(); }
aca364ba207fa14d72e9fb4abd1210f8c1948afc.cu
/* * Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <assert.h> #include <cuda.h> #include <cuda_fp16.h> #include <cuda_runtime.h> #include "maskRCNNKernels.h" #include "plugin.h" #include <NvInfer.h> #include <assert.h> #include <cub/cub.cuh> #include <iostream> #include <stdio.h> #include <thrust/device_ptr.h> #include <thrust/fill.h> #define DUBUG_KERNEL 0 #define DUBUG_BATCH 0 #define DEBUG_T 1 #define dMIN(a, b) ((a) < (b) ? (a) : (b)) #define dMAX(a, b) ((a) > (b) ? (a) : (b)) #define dCLAMP(x, xMin, xMax) ((x) > (xMin) ? ((x) < (xMax) ? (x) : (xMax)) : (xMin)) template <typename BoxType> struct BBoxT { BoxType y1, x1, y2, x2; }; inline __device__ __half mul_fb(const __half & a, const __half & b) { #if __CUDA_ARCH__ >= 530 return a * b; #else return __float2half(__half2float(a) * __half2float(b)); #endif } inline __device__ __half add_fb(const __half & a, const half & b) { #if __CUDA_ARCH__ >= 530 return a + b; #else return __float2half(__half2float(a) + __half2float(b)); #endif } template <typename DType> __global__ void argMaxReset_kernel( int samples, int NClass, const DType* in_scores, const int* maxIdx, DType* out_scores) { int idx = threadIdx.x + blockIdx.x * blockDim.x; int max_idx = samples * NClass; if (idx >= max_idx) return; int sampleIdx = idx / NClass; int classIdx = idx % NClass; if (classIdx != maxIdx[sampleIdx]) out_scores[idx] = 0; else out_scores[idx] = in_scores[idx]; } template <typename DType> struct ScanItem { DType data; int idx; }; template <typename DType> struct GreaterItem { __host__ __device__ __forceinline__ ScanItem<DType> operator()( const ScanItem<DType>& a, const ScanItem<DType>& b) const { return (a.data > b.data ? a : b); } }; template <typename DType> __global__ void resetMemValue_kernel(void* outPtr, int samples, float val) { DType* out = static_cast<DType*>(outPtr); int loop = gridDim.x * blockDim.x; for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < samples; idx += loop) { out[idx] = (DType) val; } } template <> __global__ void resetMemValue_kernel<half>(void* outPtr, int samples, float val) { __half* out = static_cast<__half*>(outPtr); int loop = gridDim.x * blockDim.x; for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < samples; idx += loop) { out[idx] = __float2half(val); } } // blockDim.x : NClass // GroupDim.x : sample count // GroupDim.y : batch N // outScore : DType[ N * sample * 1 ] // outLabel : int[ N * sample * 1 ] // outBbox : int[ N * sample * 4 ] template <typename DType, typename BoxType, int Threads = 32> __global__ void argMaxGroup_kernel(int samples, int start_class_id, int NClass, const void* inScorePtr, const void* inBboxPtr, const void* validSampleCountPtr, void* outScorePtr, void* outLabelPtr, void* outBboxPtr) { const DType* inScore = static_cast<const DType*>(inScorePtr); const BoxType* inBbox = static_cast<const BoxType*>(inBboxPtr); const int* validSampleCount = static_cast<const int*>(validSampleCountPtr); DType* outScore = static_cast<DType*>(outScorePtr); BoxType* outLabel = static_cast<BoxType*>(outLabelPtr); BoxType* outBbox = static_cast<BoxType*>(outBboxPtr); const int N = blockIdx.y; const int validSamples = validSampleCount[N]; typedef ScanItem<DType> ScanItemD; typedef cub::BlockReduce<ScanItemD, Threads> BlockReduce; __shared__ typename BlockReduce::TempStorage temp_storage; for (int iSample = blockIdx.x; iSample < validSamples; iSample += gridDim.x) { int classOffset = (N * samples + iSample) * NClass; // start from [batch, count, class0] // total IPerThread * blockDim ScanItemD maxItem = {0.0f, -1}; for (int i = start_class_id; i < NClass; i += Threads) { int curIdx = i + threadIdx.x; ScanItemD item = {0.0f, -1}; if (curIdx < NClass) { item.data = inScore[classOffset + curIdx]; item.idx = curIdx; } const int validNum = (NClass - i > Threads ? Threads : NClass - i); ScanItemD aggregate = BlockReduce(temp_storage).Reduce(item, GreaterItem<DType>(), validNum); __syncthreads(); if (aggregate.data > maxItem.data) { maxItem = aggregate; } #if DUBUG_KERNEL if (N == DUBUG_BATCH && threadIdx.x == 0 && iSample < 15 /*&& maxItem.idx >= 32*/) { printf("argMaxGroup N:%d, iSample:%d, maxItem(score:%.3f, idx:%d)validReduceNum:%d\n", N, iSample, (float) maxItem.data, maxItem.idx, validNum); } #endif } const int dstOffset = N * samples + iSample; if (threadIdx.x == 0) { outScore[dstOffset] = maxItem.data; outLabel[dstOffset] = (BoxType) maxItem.idx; outBbox[dstOffset * 4] = inBbox[(classOffset + maxItem.idx) * 4]; outBbox[dstOffset * 4 + 1] = inBbox[(classOffset + maxItem.idx) * 4 + 1]; outBbox[dstOffset * 4 + 2] = inBbox[(classOffset + maxItem.idx) * 4 + 2]; outBbox[dstOffset * 4 + 3] = inBbox[(classOffset + maxItem.idx) * 4 + 3]; } } } struct BlockClassSumPrefix { int total; // Constructor __device__ BlockClassSumPrefix() : total(0) { } // Callback operator to be entered by the first warp of threads in the block. // Thread-0 is responsible for returning a value for seeding the block-wide scan. __device__ int operator()(int aggregate) { int old = total; total += aggregate; return old; } }; #define LabelShift (2.5f) #define MinValidScore (0.01f) #define ScoreShift (1.0f) template <typename DType> __device__ __forceinline__ DType getKey(DType score, int lable, int NClass) { return (lable < 0 ? (DType) 0 : ((DType)(NClass - lable - 1) * LabelShift + score + ScoreShift)); } template <typename DType, typename BoxType> __device__ __forceinline__ void getScoreLable(DType key, int NClass, DType& score, BoxType& lable) { int i = key / LabelShift; score = (key <= ScoreShift ? (DType) 0 : key - (DType) i * LabelShift - ScoreShift); score = dCLAMP(score, (DType) 0, (DType) 1.0); lable = (BoxType)(key <= ScoreShift ? -1 : (NClass - i - 1)); } // blockDim.x : threads // gridDim.x : batch N // validSampleCount INPUT : int [N] // classStartPos OUTPUT: int [N * (Class + 1)], need memset to zero before this kernel // outScore OUTPUT : DType [N * samples] // outLabel OUTPUT : int [N * samples] // outSampleIdx OUTPUT : int [N * samples] // outValidSampleCount : int [N] // IPerThread * Threads >= sample-count #define MaxClassNum 255 template <typename DType, typename BoxType, int Threads = 256, int IPerThread = 4> __global__ void sortPerClass_kernel( // int N, int samples, int NClass, int background, float scoreThreshold, const void* validSampleCountPtr, const void* inScorePtr, const void* inLabelPtr, const void* inBboxPtr, void* classStartPosPtr, void* outScorePtr, void* outLabelPtr, void* outSampleIdxPtr, void* outValidSampleCountPtr) { typedef cub::BlockExchange<DType, Threads, IPerThread> BlockExchangeKey; typedef cub::BlockExchange<int, Threads, IPerThread> BlockExchangeI; typedef cub::BlockRadixSort<DType, Threads, IPerThread, int> BlockRadixSort; typedef cub::BlockScan<int, Threads> BlockScanClass; __shared__ union { typename BlockExchangeKey::TempStorage storageKey; typename BlockExchangeI::TempStorage storageI; typename BlockRadixSort::TempStorage storageSort; typename BlockScanClass::TempStorage storageScan; } temp_storage; __shared__ int smemClassCount[MaxClassNum]; assert(NClass < MaxClassNum); assert(IPerThread * Threads >= samples); const int* validSampleCount = static_cast<const int*>(validSampleCountPtr); const DType* inScore = static_cast<const DType*>(inScorePtr); const BoxType* inLabel = static_cast<const BoxType*>(inLabelPtr); int* classStartPos = static_cast<int*>(classStartPosPtr); DType* outScore = static_cast<DType*>(outScorePtr); BoxType* outLabel = static_cast<BoxType*>(outLabelPtr); int* outSampleIdx = static_cast<int*>(outSampleIdxPtr); int* outValidSampleCount = static_cast<int*>(outValidSampleCountPtr); for (int s = threadIdx.x; s < NClass + 1; s += blockDim.x) { smemClassCount[s] = 0; } int N = blockIdx.x; int blockOffset = N * samples; int validSamples = validSampleCount[N]; DType key[IPerThread]; int iSample[IPerThread]; for (int i = 0; i < IPerThread; ++i) { iSample[i] = -1; key[i] = -1.0f; int curIdx = i * Threads + threadIdx.x; if (curIdx < validSamples) { int label = (int) (inLabel[blockOffset + curIdx]); DType score = inScore[blockOffset + curIdx]; if (label != background && label != -1 && score >= scoreThreshold) { key[i] = getKey(score, label, NClass); iSample[i] = curIdx; } } } BlockExchangeKey(temp_storage.storageKey).StripedToBlocked(key); __syncthreads(); BlockExchangeI(temp_storage.storageI).StripedToBlocked(iSample); __syncthreads(); BlockRadixSort(temp_storage.storageSort).SortDescendingBlockedToStriped(key, iSample); __syncthreads(); // store Idx cub::StoreDirectStriped<Threads>(threadIdx.x, outSampleIdx + blockOffset, iSample, validSamples); BoxType lable[IPerThread]; DType score[IPerThread]; #pragma unroll for (int i = 0; i < IPerThread; ++i) { getScoreLable(key[i], NClass, score[i], lable[i]); } cub::StoreDirectStriped<Threads>(threadIdx.x, outScore + blockOffset, score, validSamples); cub::StoreDirectStriped<Threads>(threadIdx.x, outLabel + blockOffset, lable, validSamples); // final for (int i = 0; i < IPerThread; ++i) { if (lable[i] >= (BoxType) 0) { atomicAdd(&smemClassCount[(int) lable[i]], 1); } } __syncthreads(); int classBlockOffset = N * (NClass + 1); // Exclusive-sum, 1st is 0, last is final sum #if DUBUG_KERNEL if (N == DUBUG_BATCH && threadIdx.x == 0) { printf("sortPerClass(N:%d) final count of each label, valid samples:%d\n", N, validSamples); for (int k = 0; k < NClass; ++k) { if (smemClassCount[k] > 0) printf("Batch:%d, L:%d, count:%d, \n", N, k, smemClassCount[k]); } } __syncthreads(); #endif BlockClassSumPrefix sumPrefix; for (int s = 0; s < NClass; s += blockDim.x) { // s start from block int iClassSamples = 0; int iClass = s + threadIdx.x; if (iClass < NClass) { iClassSamples = smemClassCount[iClass]; } BlockScanClass(temp_storage.storageScan).ExclusiveSum(iClassSamples, iClassSamples, sumPrefix); __syncthreads(); if (iClass < NClass) { classStartPos[classBlockOffset + iClass] = iClassSamples; } } if (threadIdx.x == 0) { classStartPos[classBlockOffset + NClass] = sumPrefix.total; assert(sumPrefix.total <= validSamples); // background data removed. outValidSampleCount[N] = sumPrefix.total; #if DUBUG_KERNEL if (N == DUBUG_BATCH) printf("After sortPerClass, batch:%d valid samples total:%d\n", N, sumPrefix.total); #endif } } template <int Threads = 256, int IPerThread = 4> __global__ void sortPerClass_kernel_half( // int N, int samples, int NClass, int background, float scoreThreshold, const void* validSampleCountPtr, const void* inScorePtr, const void* inLabelPtr, const void* inBboxPtr, void* classStartPosPtr, void* outScorePtr, void* outLabelPtr, void* outSampleIdxPtr, void* outValidSampleCountPtr) { typedef cub::BlockExchange<float, Threads, IPerThread> BlockExchangeKey; typedef cub::BlockExchange<int, Threads, IPerThread> BlockExchangeI; typedef cub::BlockRadixSort<float, Threads, IPerThread, int> BlockRadixSort; typedef cub::BlockScan<int, Threads> BlockScanClass; __shared__ union { typename BlockExchangeKey::TempStorage storageKey; typename BlockExchangeI::TempStorage storageI; typename BlockRadixSort::TempStorage storageSort; typename BlockScanClass::TempStorage storageScan; } temp_storage; __shared__ int smemClassCount[MaxClassNum]; assert(NClass < MaxClassNum); assert(IPerThread * Threads >= samples); const int* validSampleCount = static_cast<const int*>(validSampleCountPtr); const __half* inScore = static_cast<const __half*>(inScorePtr); const __half* inLabel = static_cast<const __half*>(inLabelPtr); int* classStartPos = static_cast<int*>(classStartPosPtr); __half* outScore = static_cast<__half*>(outScorePtr); __half* outLabel = static_cast<__half*>(outLabelPtr); int* outSampleIdx = static_cast<int*>(outSampleIdxPtr); int* outValidSampleCount = static_cast<int*>(outValidSampleCountPtr); for (int s = threadIdx.x; s < NClass + 1; s += blockDim.x) { smemClassCount[s] = 0; } int N = blockIdx.x; int blockOffset = N * samples; int validSamples = validSampleCount[N]; float key[IPerThread]; int iSample[IPerThread]; for (int i = 0; i < IPerThread; ++i) { iSample[i] = -1; key[i] = -1.0f; int curIdx = i * Threads + threadIdx.x; if (curIdx < validSamples) { int label = __half2int_rd(inLabel[blockOffset + curIdx]); float score = __half2float(inScore[blockOffset + curIdx]); if (label != background && label != -1 && score >= scoreThreshold) { key[i] = getKey<float>(score, label, NClass); iSample[i] = curIdx; } } } BlockExchangeKey(temp_storage.storageKey).StripedToBlocked(key); __syncthreads(); BlockExchangeI(temp_storage.storageI).StripedToBlocked(iSample); __syncthreads(); BlockRadixSort(temp_storage.storageSort).SortDescendingBlockedToStriped(key, iSample); __syncthreads(); // store Idx cub::StoreDirectStriped<Threads>(threadIdx.x, outSampleIdx + blockOffset, iSample, validSamples); __half lable[IPerThread]; __half score[IPerThread]; for (int i = 0; i < IPerThread; ++i) { float label_float; float score_float; getScoreLable<float>(key[i], NClass, score_float, label_float); lable[i] = __float2half(label_float); score[i] = __float2half(score_float); } cub::StoreDirectStriped<Threads>(threadIdx.x, outScore + blockOffset, score, validSamples); cub::StoreDirectStriped<Threads>(threadIdx.x, outLabel + blockOffset, lable, validSamples); // final for (int i = 0; i < IPerThread; ++i) { if (__half2float(lable[i]) >= 0) { atomicAdd(&smemClassCount[__half2int_rd(lable[i])], 1); } } __syncthreads(); int classBlockOffset = N * (NClass + 1); // Exclusive-sum, 1st is 0, last is final sum #if DUBUG_KERNEL if (N == DUBUG_BATCH && threadIdx.x == 0) { printf("sortPerClass(N:%d) final count of each label, valid samples:%d\n", N, validSamples); for (int k = 0; k < NClass; ++k) { if (smemClassCount[k] > 0) printf("Batch:%d, L:%d, count:%d, \n", N, k, smemClassCount[k]); } } __syncthreads(); #endif BlockClassSumPrefix sumPrefix; for (int s = 0; s < NClass; s += blockDim.x) { // s start from block int iClassSamples = 0; int iClass = s + threadIdx.x; if (iClass < NClass) { iClassSamples = smemClassCount[iClass]; } BlockScanClass(temp_storage.storageScan).ExclusiveSum(iClassSamples, iClassSamples, sumPrefix); __syncthreads(); if (iClass < NClass) { classStartPos[classBlockOffset + iClass] = iClassSamples; } } if (threadIdx.x == 0) { classStartPos[classBlockOffset + NClass] = sumPrefix.total; assert(sumPrefix.total <= validSamples); // background data removed. outValidSampleCount[N] = sumPrefix.total; #if DUBUG_KERNEL if (N == DUBUG_BATCH) printf("After sortPerClass, batch:%d valid samples total:%d\n", N, sumPrefix.total); #endif } } template <typename DType> __device__ __forceinline__ BBoxT<DType> readBbox(const BBoxT<DType>* inBbox, int idx) { BBoxT<DType> ret = ((BBoxT<DType>*) (inBbox))[idx]; return ret; } template <typename DType> __device__ __forceinline__ DType boxIoU(const BBoxT<DType>& a, const BBoxT<DType>& b) { BBoxT<DType> overlap = { dMAX(a.y1, b.y1), dMAX(a.x1, b.x1), dMIN(a.y2, b.y2), dMIN(a.x2, b.x2), }; DType oW = overlap.x2 - overlap.x1; DType oH = overlap.y2 - overlap.y1; if (oW < (DType) 0 || oH < (DType) 0) return (DType) 0; DType oA = oW * oH; return (oA / ((a.y2 - a.y1) * (a.x2 - a.x1) + (b.y2 - b.y1) * (b.x2 - b.x1) - oA)); } // PerClassNMS // gridDim.x : batch-N // blockDim.x : Threads // ItemsPerThreads : = divUp(samples, Threads) // outFlagSamples OUT: int [N * samples] template <typename DType, typename BoxType, int Threads = 256, int ItemsPerThreads = 4> __global__ void PerClassNMS_kernel( // int N, int samples, int NClass, const float nmsThreshold, const void* validSampleCountPtr, // const void *inScorePtr, const void* inLabelPtr, const void* inBboxPtr, const void* inBboxRefIdxPtr, const void* classStartsPtr, void* outFlagSamplesPtr) { typedef BBoxT<BoxType> BBox; __shared__ struct { BBox refBox[MaxClassNum]; int endIdx[MaxClassNum]; int refIdx[MaxClassNum + 1]; bool markSamples[Threads * ItemsPerThreads]; int done; } smemClasses; assert(NClass + 1 < MaxClassNum); assert(samples <= Threads * ItemsPerThreads); const int* validSampleCount = static_cast<const int*>(validSampleCountPtr); // const DType *inScore = static_cast<const DType *>(inScorePtr); const BoxType* inLabel = static_cast<const BoxType*>(inLabelPtr); const BBox* inBbox = static_cast<const BBox*>(inBboxPtr); const int* inBboxRefIdx = static_cast<const int*>(inBboxRefIdxPtr); const int* classStarts = static_cast<const int*>(classStartsPtr); int* outFlagSamples = static_cast<int*>(outFlagSamplesPtr); int N = blockIdx.x; int blockOffset = N * samples; int validSamples = validSampleCount[N]; if (threadIdx.x == 0) { smemClasses.done = 0; } BBox curBox[ItemsPerThreads]; int label[ItemsPerThreads]; #pragma unroll for (int ite = 0; ite * blockDim.x < validSamples; ++ite) { int curIdx = ite * blockDim.x + threadIdx.x; if (curIdx < validSamples) { label[ite] = (int) inLabel[blockOffset + curIdx]; curBox[ite] = readBbox(inBbox, blockOffset + inBboxRefIdx[blockOffset + curIdx]); } else { label[ite] = -1; } smemClasses.markSamples[curIdx] = (label[ite] < 0 ? false : true); } int classBlockOffset = N * (NClass + 1); for (int i = threadIdx.x; i < NClass + 1; i += blockDim.x) { int refIdx = classStarts[classBlockOffset + i]; smemClasses.refIdx[i] = refIdx; smemClasses.refBox[i] = readBbox(inBbox, blockOffset + inBboxRefIdx[blockOffset + refIdx]); } __syncthreads(); for (int i = threadIdx.x; i < NClass; i += blockDim.x) { int endIdx = smemClasses.refIdx[i + 1]; smemClasses.endIdx[i] = endIdx; if (endIdx == smemClasses.refIdx[i]) { atomicAdd(&smemClasses.done, 1); } } __syncthreads(); #if DUBUG_KERNEL // print info if (N == DUBUG_BATCH && threadIdx.x == 0) { printf("batch:%d, before starting NMS, done count:%d\n", N, smemClasses.done); printf("batch:%d, Total num:%d, startPos:\n", N, validSamples); for (int k = 0; k < NClass; ++k) { if (smemClasses.refIdx[k] != smemClasses.endIdx[k]) { printf("Batch:%d, label:%d [%d : %d], check ref-label:%d\n", N, k, smemClasses.refIdx[k], smemClasses.endIdx[k], (int) inLabel[blockOffset + smemClasses.refIdx[k]]); } } printf("\n"); } __syncthreads(); #endif // class done to check stop point while (smemClasses.done < NClass) { for (int ite = 0; ite * blockDim.x < validSamples; ++ite) { int curIdx = ite * blockDim.x + threadIdx.x; int refIdx = -1; int endIdx = -1; if (curIdx < validSamples && smemClasses.markSamples[curIdx]) { if (label[ite] >= 0) { refIdx = smemClasses.refIdx[label[ite]]; endIdx = smemClasses.endIdx[label[ite]]; if (curIdx > refIdx && curIdx < endIdx) { BBox refBox = smemClasses.refBox[label[ite]]; if (boxIoU(refBox, curBox[ite]) > (DType) nmsThreshold) { smemClasses.markSamples[curIdx] = false; } } } } } __syncthreads(); // push refIdx/refBox forward to next mark // only the refIdx thread to push itself. other threads idle for (int i = threadIdx.x; i < NClass; i += blockDim.x) { int refIdx = smemClasses.refIdx[i]; int endIdx = smemClasses.endIdx[i]; if (refIdx < endIdx) { do { ++refIdx; } while (refIdx < endIdx && smemClasses.markSamples[refIdx] == false); smemClasses.refIdx[i] = refIdx; if (refIdx < endIdx) { smemClasses.refBox[i] = readBbox(inBbox, blockOffset + inBboxRefIdx[blockOffset + refIdx]); } else { atomicAdd(&smemClasses.done, 1); } } } __syncthreads(); } // no need to write all data out for (int segment = 0; segment < validSamples; segment += blockDim.x) { int curIdx = segment + threadIdx.x; if (curIdx < validSamples) { outFlagSamples[blockOffset + curIdx] = (smemClasses.markSamples[curIdx] ? 1 : 0); } } } template <int Threads = 256, int ItemsPerThreads = 4> __global__ void PerClassNMS_half_kernel( // int N, int samples, int NClass, const float nmsThreshold, const void* validSampleCountPtr, // const void *inScorePtr, const void* inLabelPtr, const void* inBboxPtr, const void* inBboxRefIdxPtr, const void* classStartsPtr, void* outFlagSamplesPtr) { typedef BBoxT<__half> BBox; __shared__ struct { BBox refBox[MaxClassNum]; int endIdx[MaxClassNum]; int refIdx[MaxClassNum + 1]; bool markSamples[Threads * ItemsPerThreads]; int done; } smemClasses; assert(NClass + 1 < MaxClassNum); assert(samples <= Threads * ItemsPerThreads); const int* validSampleCount = static_cast<const int*>(validSampleCountPtr); // const DType *inScore = static_cast<const DType *>(inScorePtr); const __half* inLabel = static_cast<const __half*>(inLabelPtr); const BBox* inBbox = static_cast<const BBox*>(inBboxPtr); const int* inBboxRefIdx = static_cast<const int*>(inBboxRefIdxPtr); const int* classStarts = static_cast<const int*>(classStartsPtr); int* outFlagSamples = static_cast<int*>(outFlagSamplesPtr); int N = blockIdx.x; int blockOffset = N * samples; int validSamples = validSampleCount[N]; if (threadIdx.x == 0) { smemClasses.done = 0; } BBox curBox[ItemsPerThreads]; int label[ItemsPerThreads]; #pragma unroll for (int ite = 0; ite * blockDim.x < validSamples; ++ite) { int curIdx = ite * blockDim.x + threadIdx.x; if (curIdx < validSamples) { label[ite] = __half2int_rd(inLabel[blockOffset + curIdx]); curBox[ite] = readBbox<__half>(inBbox, blockOffset + inBboxRefIdx[blockOffset + curIdx]); } else { label[ite] = -1; } smemClasses.markSamples[curIdx] = (label[ite] < 0 ? false : true); } int classBlockOffset = N * (NClass + 1); for (int i = threadIdx.x; i < NClass + 1; i += blockDim.x) { int refIdx = classStarts[classBlockOffset + i]; smemClasses.refIdx[i] = refIdx; smemClasses.refBox[i] = readBbox<__half>(inBbox, blockOffset + inBboxRefIdx[blockOffset + refIdx]); } __syncthreads(); for (int i = threadIdx.x; i < NClass; i += blockDim.x) { int endIdx = smemClasses.refIdx[i + 1]; smemClasses.endIdx[i] = endIdx; if (endIdx == smemClasses.refIdx[i]) { atomicAdd(&smemClasses.done, 1); } } __syncthreads(); #if DUBUG_KERNEL // print info if (N == DUBUG_BATCH && threadIdx.x == 0) { printf("batch:%d, before starting NMS, done count:%d\n", N, smemClasses.done); printf("batch:%d, Total num:%d, startPos:\n", N, validSamples); for (int k = 0; k < NClass; ++k) { if (smemClasses.refIdx[k] != smemClasses.endIdx[k]) { printf("Batch:%d, label:%d [%d : %d], check ref-label:%d\n", N, k, smemClasses.refIdx[k], smemClasses.endIdx[k], (int) inLabel[blockOffset + smemClasses.refIdx[k]]); } } printf("\n"); } __syncthreads(); #endif // class done to check stop point while (smemClasses.done < NClass) { for (int ite = 0; ite * blockDim.x < validSamples; ++ite) { int curIdx = ite * blockDim.x + threadIdx.x; int refIdx = -1; int endIdx = -1; if (curIdx < validSamples && smemClasses.markSamples[curIdx]) { if (label[ite] >= 0) { refIdx = smemClasses.refIdx[label[ite]]; endIdx = smemClasses.endIdx[label[ite]]; if (curIdx > refIdx && curIdx < endIdx) { BBox refBox_half = smemClasses.refBox[label[ite]]; BBox curBox_half = curBox[ite]; BBoxT<float> refBox; BBoxT<float> curBox_float; refBox.y1 = __half2float(refBox_half.y1); refBox.x1 = __half2float(refBox_half.x1); refBox.y2 = __half2float(refBox_half.y2); refBox.x2 = __half2float(refBox_half.x2); curBox_float.y1 = __half2float(curBox_half.y1); curBox_float.x1 = __half2float(curBox_half.x1); curBox_float.y2 = __half2float(curBox_half.y2); curBox_float.x2 = __half2float(curBox_half.x2); if (boxIoU<float>(refBox, curBox_float) > nmsThreshold) { smemClasses.markSamples[curIdx] = false; } } } } } __syncthreads(); // push refIdx/refBox forward to next mark // only the refIdx thread to push itself. other threads idle for (int i = threadIdx.x; i < NClass; i += blockDim.x) { int refIdx = smemClasses.refIdx[i]; int endIdx = smemClasses.endIdx[i]; if (refIdx < endIdx) { do { ++refIdx; } while (refIdx < endIdx && smemClasses.markSamples[refIdx] == false); smemClasses.refIdx[i] = refIdx; if (refIdx < endIdx) { smemClasses.refBox[i] = readBbox<__half>(inBbox, blockOffset + inBboxRefIdx[blockOffset + refIdx]); } else { atomicAdd(&smemClasses.done, 1); } } } __syncthreads(); } // no need to write all data out for (int segment = 0; segment < validSamples; segment += blockDim.x) { int curIdx = segment + threadIdx.x; if (curIdx < validSamples) { outFlagSamples[blockOffset + curIdx] = (smemClasses.markSamples[curIdx] ? 1 : 0); } } } // TopKGather // gridDim.x : batch-N // blockDim.x : Threads // ItemsPerThreads : = divUp(samples, Threads) // outDetectionCount : int [N], must be set 0 before kernel #define MaxItemsPerThreads 8 template <typename DType, typename BoxType, int Threads = 256> __global__ void TopKGatherProposal_kernel(int samples, int keepTopK, const void* validSampleCountPtr, const void* inScorePtr, const void* inLabelPtr, const void* inBboxPtr, const void* inBboxRefIdxPtr, const void* inFlagSamplesPtr, void* outBboxPtr) { typedef BBoxT<BoxType> BBox; typedef cub::BlockRadixSort<DType, Threads, 1, int> BlockRadixSort1; typedef cub::BlockRadixSort<DType, Threads, 2, int> BlockRadixSort2; typedef cub::BlockRadixSort<DType, Threads, 3, int> BlockRadixSort3; typedef cub::BlockRadixSort<DType, Threads, 4, int> BlockRadixSort4; typedef cub::BlockRadixSort<DType, Threads, 5, int> BlockRadixSort5; typedef cub::BlockRadixSort<DType, Threads, 6, int> BlockRadixSort6; typedef cub::BlockRadixSort<DType, Threads, 7, int> BlockRadixSort7; typedef cub::BlockRadixSort<DType, Threads, 8, int> BlockRadixSort8; __shared__ union { typename BlockRadixSort8::TempStorage sort8; typename BlockRadixSort7::TempStorage sort7; typename BlockRadixSort6::TempStorage sort6; typename BlockRadixSort5::TempStorage sort5; typename BlockRadixSort4::TempStorage sort4; typename BlockRadixSort3::TempStorage sort3; typename BlockRadixSort2::TempStorage sort2; typename BlockRadixSort1::TempStorage sort1; } temp_storage; assert(MaxItemsPerThreads * Threads >= samples); const int* validSampleCount = static_cast<const int*>(validSampleCountPtr); const DType* inScore = static_cast<const DType*>(inScorePtr); const BBox* inBbox = static_cast<const BBox*>(inBboxPtr); const int* inBboxRefIdx = static_cast<const int*>(inBboxRefIdxPtr); const int* inFlagSamples = static_cast<const int*>(inFlagSamplesPtr); BBox* outBbox = static_cast<BBox*>(outBboxPtr); int N = blockIdx.x; int blockOffset = N * samples; int validSamples = validSampleCount[N]; int finalTopK = dMIN(keepTopK, validSamples); int idx[MaxItemsPerThreads]; DType score[MaxItemsPerThreads]; int totalItems = (validSamples + (blockDim.x - 1)) / blockDim.x; for (int ite = 0; ite < totalItems; ++ite) { int curIdx = ite * blockDim.x + threadIdx.x; if (curIdx < validSamples && inFlagSamples[blockOffset + curIdx]) { idx[ite] = curIdx; score[ite] = inScore[blockOffset + curIdx]; } else { idx[ite] = -1; score[ite] = 0.0f; } } switch (totalItems) { case 0: break; case 1: BlockRadixSort1(temp_storage.sort1).SortDescendingBlockedToStriped((DType(&)[1]) score, (int(&)[1]) idx); break; case 2: BlockRadixSort2(temp_storage.sort2).SortDescendingBlockedToStriped((DType(&)[2]) score, (int(&)[2]) idx); break; case 3: BlockRadixSort3(temp_storage.sort3).SortDescendingBlockedToStriped((DType(&)[3]) score, (int(&)[3]) idx); break; case 4: BlockRadixSort4(temp_storage.sort4).SortDescendingBlockedToStriped((DType(&)[4]) score, (int(&)[4]) idx); break; case 5: BlockRadixSort5(temp_storage.sort5).SortDescendingBlockedToStriped((DType(&)[5]) score, (int(&)[5]) idx); break; case 6: BlockRadixSort6(temp_storage.sort6).SortDescendingBlockedToStriped((DType(&)[6]) score, (int(&)[6]) idx); break; case 7: BlockRadixSort7(temp_storage.sort7).SortDescendingBlockedToStriped((DType(&)[7]) score, (int(&)[7]) idx); break; case 8: BlockRadixSort8(temp_storage.sort8).SortDescendingBlockedToStriped((DType(&)[8]) score, (int(&)[8]) idx); break; default: assert(false); } __syncthreads(); int outBlockOffset = N * keepTopK; int topkItems = (keepTopK + (Threads - 1)) / Threads; for (int i = 0; i < topkItems; ++i) { int curI = i * blockDim.x + threadIdx.x; if (curI < keepTopK) { BBox oB = {(BoxType) 0.0f, (BoxType) 0.0f, (BoxType) 0.0f, (BoxType) 0.0f}; if (curI < finalTopK && idx[i] >= 0 && float(score[i]) > MinValidScore) { oB = ((BBox*) inBbox)[blockOffset + inBboxRefIdx[blockOffset + idx[i]]]; } ((BBox*) outBbox)[outBlockOffset + curI] = oB; } } } #define MaxItemsPerThreads 8 template <typename DType, typename BoxType, int Threads = 256> __global__ void TopKGather_kernel(int samples, int keepTopK, const void* validSampleCountPtr, const void* inScorePtr, const void* inLabelPtr, const void* inBboxPtr, const void* inBboxRefIdxPtr, const void* inFlagSamplesPtr, void* outDetectionPtr) { typedef BBoxT<BoxType> BBox; typedef cub::BlockRadixSort<DType, Threads, 1, int> BlockRadixSort1; typedef cub::BlockRadixSort<DType, Threads, 2, int> BlockRadixSort2; typedef cub::BlockRadixSort<DType, Threads, 3, int> BlockRadixSort3; typedef cub::BlockRadixSort<DType, Threads, 4, int> BlockRadixSort4; typedef cub::BlockRadixSort<DType, Threads, 5, int> BlockRadixSort5; typedef cub::BlockRadixSort<DType, Threads, 6, int> BlockRadixSort6; typedef cub::BlockRadixSort<DType, Threads, 7, int> BlockRadixSort7; typedef cub::BlockRadixSort<DType, Threads, 8, int> BlockRadixSort8; __shared__ union { typename BlockRadixSort8::TempStorage sort8; typename BlockRadixSort7::TempStorage sort7; typename BlockRadixSort6::TempStorage sort6; typename BlockRadixSort5::TempStorage sort5; typename BlockRadixSort4::TempStorage sort4; typename BlockRadixSort3::TempStorage sort3; typename BlockRadixSort2::TempStorage sort2; typename BlockRadixSort1::TempStorage sort1; } temp_storage; assert(MaxItemsPerThreads * Threads >= samples); const int* validSampleCount = static_cast<const int*>(validSampleCountPtr); const DType* inScore = static_cast<const DType*>(inScorePtr); const BoxType* inLabel = static_cast<const BoxType*>(inLabelPtr); // InLabel keeps INT32 const BBox* inBbox = static_cast<const BBox*>(inBboxPtr); const int* inBboxRefIdx = static_cast<const int*>(inBboxRefIdxPtr); const int* inFlagSamples = static_cast<const int*>(inFlagSamplesPtr); DType* outDetections = static_cast<DType*>(outDetectionPtr); int N = blockIdx.x; int blockOffset = N * samples; int validSamples = validSampleCount[N]; int finalTopK = dMIN(keepTopK, validSamples); int idx[MaxItemsPerThreads]; DType score[MaxItemsPerThreads]; int totalItems = (validSamples + (blockDim.x - 1)) / blockDim.x; for (int ite = 0; ite < totalItems; ++ite) { int curIdx = ite * blockDim.x + threadIdx.x; if (curIdx < validSamples && inFlagSamples[blockOffset + curIdx]) { idx[ite] = curIdx; score[ite] = inScore[blockOffset + curIdx]; } else { idx[ite] = -1; score[ite] = 0.0f; } } switch (totalItems) { case 0: break; case 1: BlockRadixSort1(temp_storage.sort1).SortDescendingBlockedToStriped((DType(&)[1]) score, (int(&)[1]) idx); break; case 2: BlockRadixSort2(temp_storage.sort2).SortDescendingBlockedToStriped((DType(&)[2]) score, (int(&)[2]) idx); break; case 3: BlockRadixSort3(temp_storage.sort3).SortDescendingBlockedToStriped((DType(&)[3]) score, (int(&)[3]) idx); break; case 4: BlockRadixSort4(temp_storage.sort4).SortDescendingBlockedToStriped((DType(&)[4]) score, (int(&)[4]) idx); break; case 5: BlockRadixSort5(temp_storage.sort5).SortDescendingBlockedToStriped((DType(&)[5]) score, (int(&)[5]) idx); break; case 6: BlockRadixSort6(temp_storage.sort6).SortDescendingBlockedToStriped((DType(&)[6]) score, (int(&)[6]) idx); break; case 7: BlockRadixSort7(temp_storage.sort7).SortDescendingBlockedToStriped((DType(&)[7]) score, (int(&)[7]) idx); break; case 8: BlockRadixSort8(temp_storage.sort8).SortDescendingBlockedToStriped((DType(&)[8]) score, (int(&)[8]) idx); break; default: assert(false); } __syncthreads(); int outBlockOffset = N * keepTopK; int topkItems = (keepTopK + (Threads - 1)) / Threads; for (int i = 0; i < topkItems; ++i) { int curI = i * blockDim.x + threadIdx.x; if (curI < keepTopK) { BBox oB = {(BoxType) 0.0f, (BoxType) 0.0f, (BoxType) 0.0f, (BoxType) 0.0f}; DType oS = 0.0f; BoxType oL = -1; if (curI < finalTopK && idx[i] >= 0 && float(score[i]) > MinValidScore) { oB = ((BBox*) inBbox)[blockOffset + inBboxRefIdx[blockOffset + idx[i]]]; oS = score[i]; oL = (BoxType) inLabel[blockOffset + idx[i]]; } outDetections[(outBlockOffset + curI) * 6] = oB.y1; outDetections[(outBlockOffset + curI) * 6 + 1] = oB.x1; outDetections[(outBlockOffset + curI) * 6 + 2] = oB.y2; outDetections[(outBlockOffset + curI) * 6 + 3] = oB.x2; outDetections[(outBlockOffset + curI) * 6 + 4] = oL; outDetections[(outBlockOffset + curI) * 6 + 5] = oS; } } } RefineDetectionWorkSpace::RefineDetectionWorkSpace( const int batchSize, const int sampleCount, const RefineNMSParameters& param, const nvinfer1::DataType inType) : argMaxScoreDims(sampleCount, 1) , argMaxBboxDims(sampleCount, 4) , argMaxLabelDims(sampleCount, 1) , sortClassScoreDims(sampleCount, 1) , sortClassLabelDims(sampleCount, 1) , sortClassSampleIdxDims(sampleCount + 1, 1) , sortClassPosDims(param.numClasses + 1, 1) , sortNMSMarkDims(sampleCount, 1) { size_t sumSize = 0; const nvinfer1::DataType type = nvinfer1::DataType::kFLOAT; // resource // arMaxScore : [N, samples] : m_Type argMaxScoreOffset = sumSize; sumSize += AlignMem(dimVolume(argMaxScoreDims) * typeSize(type) * batchSize); argMaxBboxOffset = sumSize; // argMaxBbox : [N, samples, 4] : m_Type sumSize += AlignMem(dimVolume(argMaxBboxDims) * typeSize(type) * batchSize); argMaxLabelOffset = sumSize; // argMaxLabel : [N, samples] : kINT32 sumSize += AlignMem(dimVolume(argMaxLabelDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); sortClassScoreOffset = sumSize; // sortClassScore : [N, samples] : m_Type sumSize += AlignMem(dimVolume(sortClassScoreDims) * typeSize(type) * batchSize); sortClassLabelOffset = sumSize; // sortClassLabel : [N, samples] : m_Type sumSize += AlignMem(dimVolume(sortClassLabelDims) * typeSize(type) * batchSize); sortClassSampleIdxOffset = sumSize; // sortClassSampleIdx : [N, samples] : kINT32 sumSize += AlignMem(dimVolume(sortClassSampleIdxDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); sortClassValidCountOffset = sumSize; // sortClassValidCount : [N, 1] : kINT32 sumSize += AlignMem(dimVolume(sortClassValidCountDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); sortClassPosOffset = sumSize; // sortClassPos : [N, numClasses+1] : kINT32 sumSize += AlignMem(dimVolume(sortClassPosDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); sortNMSMarkOffset = sumSize; // sortNMSMark : [N, samples] : kINT32 sumSize += AlignMem(dimVolume(sortNMSMarkDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); totalSize = sumSize; } ProposalWorkSpace::ProposalWorkSpace(const int batchSize, const int inputCnt, const int sampleCount, const RefineNMSParameters& param, const nvinfer1::DataType inType) : preRefineScoreDims(inputCnt, 1) , preRefineSortedScoreDims(inputCnt, 1) , preRefineBboxDims(inputCnt, 4) , argMaxScoreDims(sampleCount, 1) , argMaxBboxDims(sampleCount, 4) , argMaxLabelDims(sampleCount, 1) , sortClassScoreDims(sampleCount, 1) , sortClassLabelDims(sampleCount, 1) , sortClassSampleIdxDims(sampleCount, 1) , sortClassPosDims(param.numClasses + 1, 1) , sortNMSMarkDims(sampleCount, 1) { size_t sumSize = 0; const nvinfer1::DataType type = nvinfer1::DataType::kFLOAT; // resource // temp storage size for sorting scores tempStorageOffset = sumSize; sumSize += (1 << 23) * batchSize; // preRefineScore : [N, inputcnt, 1] // extracted foreground score from inputs[0] preRefineScoreOffset = sumSize; sumSize += AlignMem(dimVolume(preRefineScoreDims) * typeSize(type) * batchSize); // preRefineSortedScore: [N, inputcnt, 1] preRefineSortedScoreOffset = sumSize; sumSize += AlignMem(dimVolume(preRefineSortedScoreDims) * typeSize(type) * batchSize); // preRefineBbox: [N, inputcnt, 4] // sorted bbox preRefineBboxOffset = sumSize; sumSize += AlignMem(dimVolume(preRefineBboxDims) * typeSize(type) * batchSize); // arMaxScore : [N, samples] : m_Type argMaxScoreOffset = sumSize; sumSize += AlignMem(dimVolume(argMaxScoreDims) * typeSize(type) * batchSize); argMaxBboxOffset = sumSize; // argMaxBbox : [N, samples, 4] : m_Type sumSize += AlignMem(dimVolume(argMaxBboxDims) * typeSize(type) * batchSize); argMaxLabelOffset = sumSize; // argMaxLabel : [N, samples] : kINT32 sumSize += AlignMem(dimVolume(argMaxLabelDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); sortClassScoreOffset = sumSize; // sortClassScore : [N, samples] : m_Type sumSize += AlignMem(dimVolume(sortClassScoreDims) * typeSize(type) * batchSize); sortClassLabelOffset = sumSize; // sortClassLabel : [N, samples] : m_Type sumSize += AlignMem(dimVolume(sortClassLabelDims) * typeSize(type) * batchSize); sortClassSampleIdxOffset = sumSize; // sortClassSampleIdx : [N, samples] : kINT32 sumSize += AlignMem(dimVolume(sortClassSampleIdxDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); sortClassValidCountOffset = sumSize; // sortClassValidCount : [N, 1] : kINT32 sumSize += AlignMem(dimVolume(sortClassValidCountDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); sortClassPosOffset = sumSize; // sortClassPos : [N, numClasses+1] : kINT32 sumSize += AlignMem(dimVolume(sortClassPosDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); sortNMSMarkOffset = sumSize; // sortNMSMark : [N, samples] : kINT32 sumSize += AlignMem(dimVolume(sortNMSMarkDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); totalSize = sumSize; } MultilevelProposeROIWorkSpace::MultilevelProposeROIWorkSpace(const int batchSize, const int inputCnt, const int sampleCount, const RefineNMSParameters& param, const nvinfer1::DataType inType) : preRefineSortedScoreDims(inputCnt, 1) , preRefineBboxDims(inputCnt, 4) , argMaxScoreDims(sampleCount, 1) , argMaxBboxDims(sampleCount, 4) , argMaxLabelDims(sampleCount, 1) , sortClassScoreDims(sampleCount, 1) , sortClassLabelDims(sampleCount, 1) , sortClassSampleIdxDims(sampleCount + 1, 1) , sortClassPosDims(param.numClasses + 1, 1) , sortNMSMarkDims(sampleCount, 1) { size_t sumSize = 0; const nvinfer1::DataType type = inType; // resource // temp storage size for sorting scores tempStorageOffset = sumSize; sumSize += (1 << 23) * batchSize; // preRefineSortedScore: [N, inputcnt, 1] preRefineSortedScoreOffset = sumSize; sumSize += AlignMem(dimVolume(preRefineSortedScoreDims) * typeSize(type) * batchSize); // preRefineBbox: [N, inputcnt, 4] // sorted bbox preRefineBboxOffset = sumSize; sumSize += AlignMem(dimVolume(preRefineBboxDims) * typeSize(type) * batchSize); // argMaxScore : [N, samples] : m_Type argMaxScoreOffset = sumSize; sumSize += AlignMem(dimVolume(argMaxScoreDims) * typeSize(type) * batchSize); argMaxBboxOffset = sumSize; // argMaxBbox : [N, samples, 4] : m_Type sumSize += AlignMem(dimVolume(argMaxBboxDims) * typeSize(type) * batchSize); argMaxLabelOffset = sumSize; // argMaxLabel : [N, samples] : m_Type sumSize += AlignMem(dimVolume(argMaxLabelDims) * typeSize(type) * batchSize); sortClassScoreOffset = sumSize; // sortClassScore : [N, samples] : m_Type sumSize += AlignMem(dimVolume(sortClassScoreDims) * typeSize(type) * batchSize); sortClassLabelOffset = sumSize; // sortClassLabel : [N, samples] : m_Type sumSize += AlignMem(dimVolume(sortClassLabelDims) * typeSize(type) * batchSize); sortClassSampleIdxOffset = sumSize; // sortClassSampleIdx : [N, samples] : kINT32 sumSize += AlignMem(dimVolume(sortClassSampleIdxDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); sortClassValidCountOffset = sumSize; // sortClassValidCount : [N, 1] : kINT32 sumSize += AlignMem(dimVolume(sortClassValidCountDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); sortClassPosOffset = sumSize; // sortClassPos : [N, numClasses+1] : kINT32 sumSize += AlignMem(dimVolume(sortClassPosDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); sortNMSMarkOffset = sumSize; // sortNMSMark : [N, samples] : kINT32 sumSize += AlignMem(dimVolume(sortNMSMarkDims) * typeSize(nvinfer1::DataType::kINT32) * batchSize); totalSize = sumSize; } ConcatTopKWorkSpace::ConcatTopKWorkSpace( const int batchSize, const int concatCnt, const int topK, const nvinfer1::DataType inType) : concatedScoreDims(concatCnt * topK, 1) , concatedBBoxDims(concatCnt * topK, 4) , sortedScoreDims(concatCnt * topK, 1) , sortedBBoxDims(concatCnt * topK, 4) { size_t sumSize = 0; // const nvinfer1::DataType type = nvinfer1::DataType::kFLOAT; const nvinfer1::DataType type = inType; // resource // temp storage size for sorting scores tempStorageOffset = sumSize; sumSize += (1 << 23) * batchSize; // concatedScoreOffset: [N, concatCnt*topK, 1] concatedScoreOffset = sumSize; sumSize += AlignMem(dimVolume(concatedScoreDims) * typeSize(type) * batchSize); // concatedBBoxOffset: [N, concatCnt*topK, 4] concatedBBoxOffset = sumSize; sumSize += AlignMem(dimVolume(concatedBBoxDims) * typeSize(type) * batchSize); // sortedScoreOffset: [N, concatCnt * topK, 1] sortedScoreOffset = sumSize; sumSize += AlignMem(dimVolume(sortedScoreDims) * typeSize(type) * batchSize); // sortedBBoxOffset: [N, concatCnt * topK, 4] sortedBBoxOffset = sumSize; sumSize += AlignMem(dimVolume(sortedBBoxDims) * typeSize(type) * batchSize); totalSize = sumSize; } template <int Threads> cudaError_t argMaxGroup(cudaStream_t stream, int N, nvinfer1::DataType dtype, int samples, int NClass, const void* inScore, const void* inBbox, const void* validSamples, void* outScore, void* outLabel, void* outBbox) { int gridX = nAlignDown(dMIN(samples, 512 / N), 32); gridX = dMAX(gridX, 1); dim3 gridDim = {static_cast<unsigned int>(gridX), static_cast<unsigned int>(N), 1}; dim3 threads = {Threads, 1, 1}; switch (dtype) { case nvinfer1::DataType::kFLOAT: argMaxGroup_kernel<float, float, Threads><<<gridDim, threads, 0, stream>>>( samples, 0, NClass, inScore, inBbox, validSamples, outScore, outLabel, outBbox); break; case nvinfer1::DataType::kHALF: break; default: assert(false); } return cudaGetLastError(); } template <int Threads> cudaError_t argMaxWOBackground(cudaStream_t stream, int N, nvinfer1::DataType dtype, int samples, int NClass, const void* inScore, const void* inBbox, const void* validSamples, void* outScore, void* outLabel, void* outBbox) { int gridX = nAlignDown(dMIN(samples, 512 / N), 32); gridX = dMAX(gridX, 1); dim3 gridDim = {static_cast<unsigned int>(gridX), static_cast<unsigned int>(N), 1}; dim3 threads = {Threads, 1, 1}; switch (dtype) { case nvinfer1::DataType::kFLOAT: argMaxGroup_kernel<float, float, Threads><<<gridDim, threads, 0, stream>>>( samples, 1, NClass, inScore, inBbox, validSamples, outScore, outLabel, outBbox); break; case nvinfer1::DataType::kHALF: break; default: assert(false); } return cudaGetLastError(); } template <int Threads, int ItermPerThreads> cudaError_t sortPerClass(cudaStream_t stream, int N, nvinfer1::DataType dtype, int samples, int NClass, int background, float scoreThreshold, const void* inSampleValidCount, const void* inScorePtr, const void* inLabelPtr, const void* inBboxPtr, void* outclassStartPosPtr, void* outScorePtr, void* outLabelPtr, void* outSampleIdxPtr, void* outValidSampleCountPtr) { int blocks = N; int threads = Threads; switch (dtype) { case nvinfer1::DataType::kFLOAT: sortPerClass_kernel<float, float, Threads, ItermPerThreads><<<blocks, threads, 0, stream>>>(samples, NClass, background, scoreThreshold, inSampleValidCount, inScorePtr, inLabelPtr, inBboxPtr, outclassStartPosPtr, outScorePtr, outLabelPtr, outSampleIdxPtr, outValidSampleCountPtr); break; case nvinfer1::DataType::kHALF: sortPerClass_kernel_half<Threads, ItermPerThreads><<<blocks, threads, 0, stream>>>(samples, NClass, background, scoreThreshold, inSampleValidCount, inScorePtr, inLabelPtr, inBboxPtr, outclassStartPosPtr, outScorePtr, outLabelPtr, outSampleIdxPtr, outValidSampleCountPtr); break; default: assert(false); } return cudaGetLastError(); }; template <int Threads> cudaError_t PerClassNMS(cudaStream_t stream, int N, nvinfer1::DataType dtype, int samples, int NClass, const float nmsThreshold, const void* validSampleCount, // const void *inScore, const void* inLabel, const void* inBbox, const void* inBboxRefIdx, const void* classStarts, void* outFlagSamples) { int blocks = N; int threads = Threads; switch (dtype) { case nvinfer1::DataType::kFLOAT: PerClassNMS_kernel<float, float, Threads><<<blocks, threads, 0, stream>>>(samples, NClass, nmsThreshold, validSampleCount, inLabel, inBbox, inBboxRefIdx, classStarts, outFlagSamples); break; case nvinfer1::DataType::kHALF: PerClassNMS_half_kernel<Threads><<<blocks, threads, 0, stream>>>(samples, NClass, nmsThreshold, validSampleCount, inLabel, inBbox, inBboxRefIdx, classStarts, outFlagSamples); break; default: assert(false); } return cudaGetLastError(); } template <int Threads> cudaError_t KeepTopKGather(cudaStream_t stream, int N, nvinfer1::DataType dtype, int samples, int keepTopK, const void* validSampleCountPtr, const void* inScorePtr, const void* inLabelPtr, const void* inBboxPtr, const void* inBboxRefIdxPtr, const void* inFlagSamplesPtr, void* outDetections, int proposal) { int blocks = N; int threads = Threads; switch (dtype) { case nvinfer1::DataType::kFLOAT: if (proposal) { TopKGatherProposal_kernel<float, float, Threads><<<blocks, threads, 0, stream>>>(samples, keepTopK, validSampleCountPtr, inScorePtr, inLabelPtr, inBboxPtr, inBboxRefIdxPtr, inFlagSamplesPtr, outDetections); } else { TopKGather_kernel<float, float, Threads><<<blocks, threads, 0, stream>>>(samples, keepTopK, validSampleCountPtr, inScorePtr, inLabelPtr, inBboxPtr, inBboxRefIdxPtr, inFlagSamplesPtr, outDetections); } break; case nvinfer1::DataType::kHALF: break; default: assert(false); } return cudaGetLastError(); } // TopKGather For TLT RPN Proposal // gridDim.x : batch-N // blockDim.x : Threads // ItemsPerThreads : = divUp(samples, Threads) // outDetectionCount : int [N], must be set 0 before kernel #define MaxItemsPerThreads 8 template <typename DType, typename BoxType, int Threads = 256> __global__ void TopKGatherBoxScore_kernel(int samples, int keepTopK, const void* validSampleCountPtr, const void* inScorePtr, const void* inLabelPtr, const void* inBboxPtr, const void* inBboxRefIdxPtr, const void* inFlagSamplesPtr, void* outScorePtr, void* outBboxPtr) { typedef cub::BlockRadixSort<DType, Threads, 1, int> BlockRadixSort1; typedef cub::BlockRadixSort<DType, Threads, 2, int> BlockRadixSort2; typedef cub::BlockRadixSort<DType, Threads, 3, int> BlockRadixSort3; typedef cub::BlockRadixSort<DType, Threads, 4, int> BlockRadixSort4; typedef cub::BlockRadixSort<DType, Threads, 5, int> BlockRadixSort5; typedef cub::BlockRadixSort<DType, Threads, 6, int> BlockRadixSort6; typedef cub::BlockRadixSort<DType, Threads, 7, int> BlockRadixSort7; typedef cub::BlockRadixSort<DType, Threads, 8, int> BlockRadixSort8; __shared__ union { typename BlockRadixSort8::TempStorage sort8; typename BlockRadixSort7::TempStorage sort7; typename BlockRadixSort6::TempStorage sort6; typename BlockRadixSort5::TempStorage sort5; typename BlockRadixSort4::TempStorage sort4; typename BlockRadixSort3::TempStorage sort3; typename BlockRadixSort2::TempStorage sort2; typename BlockRadixSort1::TempStorage sort1; } temp_storage; assert(MaxItemsPerThreads * Threads >= samples); typedef BBoxT<BoxType> BBox; const int* validSampleCount = static_cast<const int*>(validSampleCountPtr); const DType* inScore = static_cast<const DType*>(inScorePtr); const BBox* inBbox = static_cast<const BBox*>(inBboxPtr); const int* inBboxRefIdx = static_cast<const int*>(inBboxRefIdxPtr); const int* inFlagSamples = static_cast<const int*>(inFlagSamplesPtr); BBox* outBbox = static_cast<BBox*>(outBboxPtr); DType* outScore = static_cast<DType*>(outScorePtr); int N = blockIdx.x; int blockOffset = N * samples; int validSamples = validSampleCount[N]; int finalTopK = dMIN(keepTopK, validSamples); int idx[MaxItemsPerThreads]; DType score[MaxItemsPerThreads]; int totalItems = (validSamples + (blockDim.x - 1)) / blockDim.x; for (int ite = 0; ite < totalItems; ++ite) { int curIdx = ite * blockDim.x + threadIdx.x; if (curIdx < validSamples && inFlagSamples[blockOffset + curIdx]) { idx[ite] = curIdx; score[ite] = inScore[blockOffset + curIdx]; } else { idx[ite] = -1; score[ite] = 0.0f; } } switch (totalItems) { case 0: break; case 1: BlockRadixSort1(temp_storage.sort1).SortDescendingBlockedToStriped((DType(&)[1]) score, (int(&)[1]) idx); break; case 2: BlockRadixSort2(temp_storage.sort2).SortDescendingBlockedToStriped((DType(&)[2]) score, (int(&)[2]) idx); break; case 3: BlockRadixSort3(temp_storage.sort3).SortDescendingBlockedToStriped((DType(&)[3]) score, (int(&)[3]) idx); break; case 4: BlockRadixSort4(temp_storage.sort4).SortDescendingBlockedToStriped((DType(&)[4]) score, (int(&)[4]) idx); break; case 5: BlockRadixSort5(temp_storage.sort5).SortDescendingBlockedToStriped((DType(&)[5]) score, (int(&)[5]) idx); break; case 6: BlockRadixSort6(temp_storage.sort6).SortDescendingBlockedToStriped((DType(&)[6]) score, (int(&)[6]) idx); break; case 7: BlockRadixSort7(temp_storage.sort7).SortDescendingBlockedToStriped((DType(&)[7]) score, (int(&)[7]) idx); break; case 8: BlockRadixSort8(temp_storage.sort8).SortDescendingBlockedToStriped((DType(&)[8]) score, (int(&)[8]) idx); break; default: assert(false); } __syncthreads(); int outBlockOffset = N * keepTopK; int topkItems = (keepTopK + (Threads - 1)) / Threads; for (int i = 0; i < topkItems; ++i) { int curI = i * blockDim.x + threadIdx.x; if (curI < keepTopK) { BBox oB = {(BoxType) 0.0f, (BoxType) 0.0f, (BoxType) 0.0f, (BoxType) 0.0f}; DType oS = 0.0f; if (curI < finalTopK && idx[i] >= 0) { oB = ((BBox*) inBbox)[blockOffset + inBboxRefIdx[blockOffset + idx[i]]]; oS = score[i]; } ((BBox*) outBbox)[outBlockOffset + curI] = oB; outScore[outBlockOffset + curI] = oS; } } } template <int Threads> cudaError_t KeepTopKGatherBoxScore(cudaStream_t stream, int N, nvinfer1::DataType dtype, int samples, int keepTopK, const void* validSampleCountPtr, const void* inScorePtr, const void* inLabelPtr, const void* inBboxPtr, const void* inBboxRefIdxPtr, const void* inFlagSamplesPtr, void* outScores, void* outDetections, int proposal) { int blocks = N; int threads = Threads; switch (dtype) { case nvinfer1::DataType::kFLOAT: if (proposal) { TopKGatherBoxScore_kernel<float, float, Threads><<<blocks, threads, 0, stream>>>(samples, keepTopK, validSampleCountPtr, inScorePtr, inLabelPtr, inBboxPtr, inBboxRefIdxPtr, inFlagSamplesPtr, outScores, outDetections); } else { TopKGather_kernel<float, float, Threads><<<blocks, threads, 0, stream>>>(samples, keepTopK, validSampleCountPtr, inScorePtr, inLabelPtr, inBboxPtr, inBboxRefIdxPtr, inFlagSamplesPtr, outDetections); } break; case nvinfer1::DataType::kHALF: if (proposal) { TopKGatherBoxScore_kernel<__half, __half, Threads><<<blocks, threads, 0, stream>>>(samples, keepTopK, validSampleCountPtr, inScorePtr, inLabelPtr, inBboxPtr, inBboxRefIdxPtr, inFlagSamplesPtr, outScores, outDetections); } else { TopKGather_kernel<__half, __half, Threads><<<blocks, threads, 0, stream>>>(samples, keepTopK, validSampleCountPtr, inScorePtr, inLabelPtr, inBboxPtr, inBboxRefIdxPtr, inFlagSamplesPtr, outDetections); } break; default: assert(false); } return cudaGetLastError(); } cudaError_t RefineBatchClassNMS(cudaStream_t stream, int N, int samples, nvinfer1::DataType dtype, const RefineNMSParameters& param, const RefineDetectionWorkSpace& refineOffset, void* workspace, const void* inScores, const void* inDelta, const void* inCountValid, const void* inROI, void* outDetections) { int NClass = param.numClasses; int8_t* wsPtr = static_cast<int8_t*>(workspace); void* argMaxScorePtr = wsPtr + refineOffset.argMaxScoreOffset; void* argMaxLabelPtr = wsPtr + refineOffset.argMaxLabelOffset; void* argMaxBBoxPtr = wsPtr + refineOffset.argMaxBboxOffset; void* sortClassScorePtr = wsPtr + refineOffset.sortClassScoreOffset; void* sortClassLabelPtr = wsPtr + refineOffset.sortClassLabelOffset; void* sortClassSampleIdxPtr = wsPtr + refineOffset.sortClassSampleIdxOffset; void* sortClassValidCountPtr = wsPtr + refineOffset.sortClassValidCountOffset; void* sortClassPosPtr = wsPtr + refineOffset.sortClassPosOffset; void* sortNMSMarkPtr = wsPtr + refineOffset.sortNMSMarkOffset; cudaError_t status = cudaSuccess; CUASSERT(cudaMemsetAsync(sortClassValidCountPtr, 0, N * sizeof(int), stream)); if (NClass > 1) { // multiple classes status = argMaxGroup<32>(stream, N, dtype, samples, NClass, inScores, inDelta, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr); // argMaxBBoxPtr means delta of bboxes assert(status == cudaSuccess); CUASSERT(status); } else { // Only one class argMaxScorePtr = const_cast<void*>(inScores); argMaxBBoxPtr = const_cast<void*>(inDelta); int threads = 512; int blocks = (N * samples + threads - 1) / threads; blocks = dMIN(blocks, 8); switch (dtype) { case nvinfer1::DataType::kFLOAT: { resetMemValue_kernel<float><<<blocks, threads, 0, stream>>>(argMaxLabelPtr, N * samples, 0); break; } case nvinfer1::DataType::kHALF: { break; } default: assert(false); } } status = ApplyDelta2Bboxes(stream, N, samples, inROI, argMaxBBoxPtr, argMaxBBoxPtr); assert(status == cudaSuccess); if (samples <= 1024) { status = sortPerClass<256, 4>(stream, N, dtype, samples, NClass, param.backgroundLabelId, param.scoreThreshold, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr, sortClassPosPtr, sortClassScorePtr, sortClassLabelPtr, sortClassSampleIdxPtr, sortClassValidCountPtr); } else if (samples <= 2048) { status = sortPerClass<256, 8>(stream, N, dtype, samples, NClass, param.backgroundLabelId, param.scoreThreshold, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr, sortClassPosPtr, sortClassScorePtr, sortClassLabelPtr, sortClassSampleIdxPtr, sortClassValidCountPtr); } else if (samples <= 4096) { status = sortPerClass<256, 16>(stream, N, dtype, samples, NClass, param.backgroundLabelId, param.scoreThreshold, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr, sortClassPosPtr, sortClassScorePtr, sortClassLabelPtr, sortClassSampleIdxPtr, sortClassValidCountPtr); } else { assert(false && "unsupported sortPerClass"); return cudaErrorLaunchFailure; } assert(status == cudaSuccess); CUASSERT(status); status = PerClassNMS<256>(stream, N, dtype, samples, NClass, param.iouThreshold, sortClassValidCountPtr, // sortClassScorePtr, sortClassLabelPtr, argMaxBBoxPtr, sortClassSampleIdxPtr, sortClassPosPtr, sortNMSMarkPtr); assert(status == cudaSuccess); CUASSERT(status); status = KeepTopKGather<256>(stream, N, dtype, samples, param.keepTopK, sortClassValidCountPtr, sortClassScorePtr, sortClassLabelPtr, argMaxBBoxPtr, sortClassSampleIdxPtr, sortNMSMarkPtr, outDetections, 0); assert(status == cudaSuccess); CUASSERT(status); return status; } cudaError_t DetectionPostProcess(cudaStream_t stream, int N, int samples, const float* regWeight, const float inputHeight, const float inputWidth, nvinfer1::DataType dtype, const RefineNMSParameters& param, const RefineDetectionWorkSpace& refineOffset, void* workspace, const void* inScores, const void* inDelta, const void* inCountValid, const void* inROI, void* outDetections) { int NClass = param.numClasses; int8_t* wsPtr = static_cast<int8_t*>(workspace); void* argMaxScorePtr = wsPtr + refineOffset.argMaxScoreOffset; void* argMaxLabelPtr = wsPtr + refineOffset.argMaxLabelOffset; void* argMaxBBoxPtr = wsPtr + refineOffset.argMaxBboxOffset; void* sortClassScorePtr = wsPtr + refineOffset.sortClassScoreOffset; void* sortClassLabelPtr = wsPtr + refineOffset.sortClassLabelOffset; void* sortClassSampleIdxPtr = wsPtr + refineOffset.sortClassSampleIdxOffset; void* sortClassValidCountPtr = wsPtr + refineOffset.sortClassValidCountOffset; void* sortClassPosPtr = wsPtr + refineOffset.sortClassPosOffset; void* sortNMSMarkPtr = wsPtr + refineOffset.sortNMSMarkOffset; cudaError_t status = cudaSuccess; CUASSERT(cudaMemsetAsync(argMaxScorePtr, 0, N * samples * sizeof(float), stream)); CUASSERT(cudaMemsetAsync(argMaxBBoxPtr, 0, N * samples * 4 * sizeof(float), stream)); CUASSERT(cudaMemsetAsync(sortClassValidCountPtr, 0, N * sizeof(int), stream)); CUASSERT(cudaMemsetAsync(sortClassPosPtr, 0, N * (NClass + 1) * sizeof(int), stream)); CUASSERT(cudaMemsetAsync(sortClassSampleIdxPtr, 0, N * (samples + 1) * sizeof(int), stream)); if (NClass > 1) { // multiple classes status = argMaxWOBackground<32>(stream, N, dtype, samples, NClass, inScores, inDelta, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr); // argMaxBBoxPtr means delta of bboxes assert(status == cudaSuccess); CUASSERT(status); } else { // Only one class argMaxScorePtr = const_cast<void*>(inScores); argMaxBBoxPtr = const_cast<void*>(inDelta); int threads = 512; int blocks = (N * samples + threads - 1) / threads; blocks = dMIN(blocks, 8); switch (dtype) { case nvinfer1::DataType::kFLOAT: { resetMemValue_kernel<float><<<blocks, threads, 0, stream>>>(argMaxLabelPtr, N * samples, 0); break; } case nvinfer1::DataType::kHALF: { break; } default: assert(false); } } status = DecodeBBoxes(stream, N, samples, regWeight, inputHeight, inputWidth, inROI, argMaxBBoxPtr, argMaxBBoxPtr, dtype); assert(status == cudaSuccess); if (samples <= 1024) { status = sortPerClass<256, 4>(stream, N, dtype, samples, NClass, param.backgroundLabelId, param.scoreThreshold, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr, sortClassPosPtr, sortClassScorePtr, sortClassLabelPtr, sortClassSampleIdxPtr, sortClassValidCountPtr); } else if (samples <= 2048) { status = sortPerClass<256, 8>(stream, N, dtype, samples, NClass, param.backgroundLabelId, param.scoreThreshold, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr, sortClassPosPtr, sortClassScorePtr, sortClassLabelPtr, sortClassSampleIdxPtr, sortClassValidCountPtr); } else if (samples <= 4096) { status = sortPerClass<256, 16>(stream, N, dtype, samples, NClass, param.backgroundLabelId, param.scoreThreshold, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr, sortClassPosPtr, sortClassScorePtr, sortClassLabelPtr, sortClassSampleIdxPtr, sortClassValidCountPtr); } else { assert(false && "unsupported sortPerClass"); return cudaErrorLaunchFailure; } assert(status == cudaSuccess); CUASSERT(status); status = PerClassNMS<256>(stream, N, dtype, samples, NClass, param.iouThreshold, sortClassValidCountPtr, // sortClassScorePtr, sortClassLabelPtr, argMaxBBoxPtr, sortClassSampleIdxPtr, sortClassPosPtr, sortNMSMarkPtr); CUASSERT(status); status = KeepTopKGather<256>(stream, N, dtype, samples, param.keepTopK, sortClassValidCountPtr, sortClassScorePtr, sortClassLabelPtr, argMaxBBoxPtr, sortClassSampleIdxPtr, sortNMSMarkPtr, outDetections, 0); CUASSERT(status); return status; } struct BF_SCORE { float bg, fg; }; // in_scores : [N, samples, 2] // output_score : [N, samples, 1] __global__ void extract_fg_kernel(int samples, const void* in_scores, void* output_score) { const BF_SCORE* in = static_cast<const BF_SCORE*>(in_scores); float* out = static_cast<float*>(output_score); int N = blockIdx.x; int blockOffset = N * samples; int totalItems = (samples + (blockDim.x - 1)) / blockDim.x; for (int i = 0; i < totalItems; i++) { int cur_id = i * blockDim.x + threadIdx.x; if (cur_id < samples) { out[blockOffset + cur_id] = in[blockOffset + cur_id].fg; } } } __global__ void set_offset_kernel(int stride, int size, int* output) { // One block, because batch size shouldn't be too large. for (int i = threadIdx.x; i < size; i += blockDim.x) { output[i] = i * stride; } } template <typename Dtype> __global__ void resample_kernel(int orig_size, int sample_size, const void* orig_score_ptr, const void* orig_bbox_ptr, void* sampled_score_ptr, void* sampled_bbox_ptr) { const Dtype* in_score = static_cast<const Dtype*>(orig_score_ptr); const BBoxT<Dtype>* in_bbox = static_cast<const BBoxT<Dtype>*>(orig_bbox_ptr); Dtype* out_score = static_cast<Dtype*>(sampled_score_ptr); BBoxT<Dtype>* out_bbox = static_cast<BBoxT<Dtype>*>(sampled_bbox_ptr); int N = blockIdx.x; int blockOffset_in = N * orig_size; int blockOffset_out = N * sample_size; int realSampleCnt = dMIN(sample_size, orig_size); int totalItems = (realSampleCnt + (blockDim.x - 1)) / blockDim.x; for (int i = 0; i < totalItems; i++) { int cur_id = i * blockDim.x + threadIdx.x; if (cur_id < realSampleCnt) { out_score[blockOffset_out + cur_id] = in_score[blockOffset_in + cur_id]; out_bbox[blockOffset_out + cur_id] = in_bbox[blockOffset_in + cur_id]; } } } cudaError_t proposalRefineBatchClassNMS(cudaStream_t stream, int N, int inputCnt, int samples, nvinfer1::DataType dtype, const RefineNMSParameters& param, const ProposalWorkSpace& proposalOffset, void* workspace, const void* inScores, //[N, inputcnt, 2] const void* inDelta, //[N, inputcnt, 4] const void* inCountValid, const void* inAnchors, //[N, inputcnt, 4] void* outProposals) { int8_t* wsPtr = static_cast<int8_t*>(workspace); void* tempStoragePtr = wsPtr + proposalOffset.tempStorageOffset; void* preRefineScorePtr = wsPtr + proposalOffset.preRefineScoreOffset; void* preRefineSortedScorePtr = wsPtr + proposalOffset.preRefineSortedScoreOffset; void* preRefineBboxPtr = wsPtr + proposalOffset.preRefineBboxOffset; void* argMaxScorePtr = wsPtr + proposalOffset.argMaxScoreOffset; void* argMaxLabelPtr = wsPtr + proposalOffset.argMaxLabelOffset; void* argMaxBBoxPtr = wsPtr + proposalOffset.argMaxBboxOffset; void* sortClassScorePtr = wsPtr + proposalOffset.sortClassScoreOffset; void* sortClassLabelPtr = wsPtr + proposalOffset.sortClassLabelOffset; void* sortClassSampleIdxPtr = wsPtr + proposalOffset.sortClassSampleIdxOffset; void* sortClassValidCountPtr = wsPtr + proposalOffset.sortClassValidCountOffset; void* sortClassPosPtr = wsPtr + proposalOffset.sortClassPosOffset; void* sortNMSMarkPtr = wsPtr + proposalOffset.sortNMSMarkOffset; cudaError_t status = cudaSuccess; CUASSERT(cudaMemsetAsync(sortClassValidCountPtr, 0, N * sizeof(int), stream)); // extract foreground score extract_fg_kernel<<<N, dMIN(inputCnt, 1024), 0, stream>>>(inputCnt, inScores, preRefineScorePtr); CUASSERT(cudaGetLastError()); // Here, inDelta are converted to normalize coordinates based on anchors status = ApplyDelta2Bboxes(stream, N, inputCnt, inAnchors, inDelta, const_cast<void*>(inDelta)); CUASSERT(status); // sort the score // d_key_in: preRefineScorePtr [N, inputCnt, 1] // d_key_out: preRefineSortedScorePtr // d_values_in: inDelta [N, inputCnt, 4] // d_values_out: preRefineBboxPtr // num_items: inputCnt*N // num_segments: N // offsets: [0, inputCnt, inputCnt*2, ..., ] int* offsets = static_cast<int*>(tempStoragePtr); set_offset_kernel<<<1, 1024, 0, stream>>>(inputCnt, N + 1, offsets); assert(cudaGetLastError() == cudaSuccess); tempStoragePtr = static_cast<void*>(static_cast<int*>(tempStoragePtr) + (N + 1)); size_t temp_storage_bytes = 0; cub::DeviceSegmentedRadixSort::SortPairsDescending(NULL, temp_storage_bytes, (float*) preRefineScorePtr, (float*) preRefineSortedScorePtr, (BBoxT<float>*) inDelta, (BBoxT<float>*) preRefineBboxPtr, N * inputCnt, N, offsets, offsets + 1, 0, 8 * sizeof(float), stream); assert((1 << 23) * (size_t) N > temp_storage_bytes); cub::DeviceSegmentedRadixSort::SortPairsDescending(tempStoragePtr, temp_storage_bytes, (float*) preRefineScorePtr, (float*) preRefineSortedScorePtr, (BBoxT<float>*) inDelta, (BBoxT<float>*) preRefineBboxPtr, N * inputCnt, N, offsets, offsets + 1, 0, 8 * sizeof(float), stream); int NClass = param.numClasses; assert(NClass == 1); if (NClass == 1) { // Only one class resample_kernel<float><<<N, dMIN(samples, 1024), 0, stream>>>( inputCnt, samples, preRefineSortedScorePtr, preRefineBboxPtr, argMaxScorePtr, argMaxBBoxPtr); int threads = 512; int blocks = (N * samples + threads - 1) / threads; blocks = dMIN(blocks, 8); switch (dtype) { case nvinfer1::DataType::kFLOAT: { resetMemValue_kernel<float><<<blocks, threads, 0, stream>>>(argMaxLabelPtr, N * samples, 0); break; } case nvinfer1::DataType::kHALF: { break; } default: assert(false); } } if (samples <= 1024) { status = sortPerClass<256, 4>(stream, N, dtype, samples, NClass, param.backgroundLabelId, param.scoreThreshold, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr, sortClassPosPtr, sortClassScorePtr, sortClassLabelPtr, sortClassSampleIdxPtr, sortClassValidCountPtr); } else if (samples <= 2048) { status = sortPerClass<256, 8>(stream, N, dtype, samples, NClass, param.backgroundLabelId, param.scoreThreshold, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr, sortClassPosPtr, sortClassScorePtr, sortClassLabelPtr, sortClassSampleIdxPtr, sortClassValidCountPtr); } else if (samples <= 4096) { status = sortPerClass<256, 16>(stream, N, dtype, samples, NClass, param.backgroundLabelId, param.scoreThreshold, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr, sortClassPosPtr, sortClassScorePtr, sortClassLabelPtr, sortClassSampleIdxPtr, sortClassValidCountPtr); } else { assert(false && "unsupported sortPerClass"); return cudaErrorLaunchFailure; } CUASSERT(status); status = PerClassNMS<256>(stream, N, dtype, samples, NClass, param.iouThreshold, sortClassValidCountPtr, // sortClassScorePtr, sortClassLabelPtr, argMaxBBoxPtr, sortClassSampleIdxPtr, sortClassPosPtr, sortNMSMarkPtr); CUASSERT(status); status = KeepTopKGather<256>(stream, N, dtype, samples, param.keepTopK, sortClassValidCountPtr, sortClassScorePtr, sortClassLabelPtr, argMaxBBoxPtr, sortClassSampleIdxPtr, sortNMSMarkPtr, outProposals, 1); CUASSERT(status); return status; } template<typename Dtype> void score_bbox_cub_sort(void* tempStorage, const void* inScore, void* sortedScore, const void* inBBox, void* sortedBBox, int totalCnt, int segCnt, int* offsets, cudaStream_t stream ) { size_t temp_storage_bytes = 0; cub::DeviceSegmentedRadixSort::SortPairsDescending(NULL, temp_storage_bytes, (Dtype*) inScore, (Dtype*) sortedScore, (BBoxT<Dtype>*) inBBox, (BBoxT<Dtype>*) sortedBBox, totalCnt, segCnt, offsets, offsets + 1, 0, 8 * sizeof(Dtype), stream); CUASSERT(cudaGetLastError()); cub::DeviceSegmentedRadixSort::SortPairsDescending(tempStorage, temp_storage_bytes, (Dtype*) inScore, (Dtype*) sortedScore, (BBoxT<Dtype>*) inBBox, (BBoxT<Dtype>*) sortedBBox, totalCnt, segCnt, offsets, offsets + 1, 0, 8 * sizeof(Dtype), stream); CUASSERT(cudaGetLastError()); } cudaError_t MultilevelPropose(cudaStream_t stream, int N, int inputCnt, int samples, const float* regWeight, const float inputHeight, const float inputWidth, nvinfer1::DataType dtype, const RefineNMSParameters& param, const MultilevelProposeROIWorkSpace& proposalOffset, void* workspace, const void* inScore, //[N, inputcnt, 1] const void* inDelta, //[N, inputcnt, 4] void* inCountValid, const void* inAnchors, //[N, inputcnt, 4] void* outScore, void* outBbox) { int8_t* wsPtr = static_cast<int8_t*>(workspace); void* tempStoragePtr = wsPtr + proposalOffset.tempStorageOffset; void* preRefineSortedScorePtr = wsPtr + proposalOffset.preRefineSortedScoreOffset; void* preRefineBboxPtr = wsPtr + proposalOffset.preRefineBboxOffset; void* argMaxScorePtr = wsPtr + proposalOffset.argMaxScoreOffset; void* argMaxLabelPtr = wsPtr + proposalOffset.argMaxLabelOffset; void* argMaxBBoxPtr = wsPtr + proposalOffset.argMaxBboxOffset; void* sortClassScorePtr = wsPtr + proposalOffset.sortClassScoreOffset; void* sortClassLabelPtr = wsPtr + proposalOffset.sortClassLabelOffset; void* sortClassSampleIdxPtr = wsPtr + proposalOffset.sortClassSampleIdxOffset; void* sortClassValidCountPtr = wsPtr + proposalOffset.sortClassValidCountOffset; void* sortClassPosPtr = wsPtr + proposalOffset.sortClassPosOffset; void* sortNMSMarkPtr = wsPtr + proposalOffset.sortNMSMarkOffset; cudaError_t status = cudaSuccess; int NClass = param.numClasses; assert(NClass == 1); CUASSERT(cudaMemsetAsync(argMaxScorePtr, 0, N * samples * sizeof(dtype), stream)); CUASSERT(cudaMemsetAsync(argMaxBBoxPtr, 0, N * samples * 4 * sizeof(dtype), stream)); CUASSERT(cudaMemsetAsync(sortClassValidCountPtr, 0, N * sizeof(int), stream)); CUASSERT(cudaMemsetAsync(sortClassPosPtr, 0, N * (NClass + 1) * sizeof(int), stream)); CUASSERT(cudaMemsetAsync(sortClassSampleIdxPtr, 0, N * (samples + 1) * sizeof(int), stream)); CUASSERT(cudaGetLastError()); // Here, inDelta are converted to normalize coordinates based on anchors status = DecodeBBoxes( stream, N, inputCnt, regWeight, inputHeight, inputWidth, inAnchors, inDelta, const_cast<void*>(inDelta), dtype); CUASSERT(cudaGetLastError()); // sort the score // d_key_in: preRefineScorePtr [N, inputCnt, 1] // d_key_out: preRefineSortedScorePtr // d_values_in: inDelta [N, inputCnt, 4] // d_values_out: preRefineBboxPtr // num_items: inputCnt*N // num_segments: N // offsets: [0, inputCnt, inputCnt*2, ..., ] int* offsets = static_cast<int*>(tempStoragePtr); set_offset_kernel<<<1, 1024, 0, stream>>>(inputCnt, N + 1, offsets); CUASSERT(cudaGetLastError()); tempStoragePtr = static_cast<void*>(static_cast<int*>(tempStoragePtr) + (N + 1)); switch (dtype) { case nvinfer1::DataType::kFLOAT: { score_bbox_cub_sort<float>(tempStoragePtr, inScore, preRefineSortedScorePtr, inDelta, preRefineBboxPtr, N * inputCnt, N, offsets, stream); break; } case nvinfer1::DataType::kHALF: { score_bbox_cub_sort<__half>(tempStoragePtr, inScore, preRefineSortedScorePtr, inDelta, preRefineBboxPtr, N * inputCnt, N, offsets, stream); break; } default: assert(false); } if (NClass == 1) { // Only one class switch (dtype) { case nvinfer1::DataType::kFLOAT: { resample_kernel<float><<<N, dMIN(samples, 1024), 0, stream>>>( inputCnt, samples, preRefineSortedScorePtr, preRefineBboxPtr, argMaxScorePtr, argMaxBBoxPtr); CUASSERT(cudaGetLastError()); break; } case nvinfer1::DataType::kHALF: { resample_kernel<__half><<<N, dMIN(samples, 1024), 0, stream>>>( inputCnt, samples, preRefineSortedScorePtr, preRefineBboxPtr, argMaxScorePtr, argMaxBBoxPtr); CUASSERT(cudaGetLastError()); break; } default: assert(false); } int threads = 512; int blocks = (N * samples + threads - 1) / threads; blocks = dMIN(blocks, 8); switch (dtype) { case nvinfer1::DataType::kFLOAT: { resetMemValue_kernel<float><<<blocks, threads, 0, stream>>>(argMaxLabelPtr, N * samples, 0); CUASSERT(cudaGetLastError()); break; } case nvinfer1::DataType::kHALF: { resetMemValue_kernel<__half><<<blocks, threads, 0, stream>>>(argMaxLabelPtr, N * samples, 0); CUASSERT(cudaGetLastError()); break; } default: assert(false); } } if (samples <= 1024) { status = sortPerClass<256, 4>(stream, N, dtype, samples, NClass, param.backgroundLabelId, param.scoreThreshold, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr, sortClassPosPtr, sortClassScorePtr, sortClassLabelPtr, sortClassSampleIdxPtr, sortClassValidCountPtr); } else if (samples <= 2048) { status = sortPerClass<256, 8>(stream, N, dtype, samples, NClass, param.backgroundLabelId, param.scoreThreshold, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr, sortClassPosPtr, sortClassScorePtr, sortClassLabelPtr, sortClassSampleIdxPtr, sortClassValidCountPtr); } else if (samples <= 4096) { status = sortPerClass<256, 16>(stream, N, dtype, samples, NClass, param.backgroundLabelId, param.scoreThreshold, inCountValid, argMaxScorePtr, argMaxLabelPtr, argMaxBBoxPtr, sortClassPosPtr, sortClassScorePtr, sortClassLabelPtr, sortClassSampleIdxPtr, sortClassValidCountPtr); } else { assert(false && "unsupported sortPerClass"); return cudaErrorLaunchFailure; } CUASSERT(cudaGetLastError()); status = PerClassNMS<1024>(stream, N, dtype, samples, NClass, param.iouThreshold, sortClassValidCountPtr, // sortClassScorePtr, sortClassLabelPtr, argMaxBBoxPtr, sortClassSampleIdxPtr, sortClassPosPtr, sortNMSMarkPtr); CUASSERT(cudaGetLastError()); status = KeepTopKGatherBoxScore<512>(stream, N, dtype, samples, param.keepTopK, sortClassValidCountPtr, sortClassScorePtr, sortClassLabelPtr, argMaxBBoxPtr, sortClassSampleIdxPtr, sortNMSMarkPtr, outScore, outBbox, 1); CUASSERT(cudaGetLastError()); return status; } struct BBOX { float y1, x1, y2, x2; }; struct DELTA { float dy, dx, logdh, logdw; }; struct DELTA_HALF { __half dy, dx, logdh, logdw; }; __global__ void decode_bboxes_kernel(int samples, const void* anchors, const void* delta, const float* regWeight, const float inputHeight, const float inputWidth, void* outputBbox, float bboxClipThresh) { const BBOX* anchors_in = static_cast<const BBOX*>(anchors); const DELTA* delta_in = static_cast<const DELTA*>(delta); BBOX* bbox_out = static_cast<BBOX*>(outputBbox); int N = blockIdx.x; int blockOffset = N * samples; int totalItems = (samples + (blockDim.x - 1)) / blockDim.x; for (int i = 0; i < totalItems; i++) { int cur_id = i * blockDim.x + threadIdx.x; if (cur_id < samples) { BBOX cur_anchor_yxyx = anchors_in[blockOffset + cur_id]; // convert yxyx -> cyxhw // cy, cx, h, w /*BBOX cur_anchor_cyxhw;*/ float cur_anchor_h = (cur_anchor_yxyx.y2 - cur_anchor_yxyx.y1 + 1.0); float cur_anchor_w = (cur_anchor_yxyx.x2 - cur_anchor_yxyx.x1 + 1.0); // w float cur_anchor_yc = cur_anchor_yxyx.y1 + cur_anchor_h * 0.5; // cy float cur_anchor_xc = cur_anchor_yxyx.x1 + cur_anchor_w * 0.5; // cx DELTA cur_delta = delta_in[blockOffset + cur_id]; // divided by regWeight cur_delta.dy /= regWeight[0]; cur_delta.dx /= regWeight[1]; cur_delta.logdh /= regWeight[2]; cur_delta.logdw /= regWeight[3]; cur_delta.logdh = dMIN(cur_delta.logdh, bboxClipThresh); cur_delta.logdw = dMIN(cur_delta.logdw, bboxClipThresh); // apply delta float decoded_box_yc = cur_anchor_yc + cur_delta.dy * cur_anchor_h; float decoded_box_xc = cur_anchor_xc + cur_delta.dx * cur_anchor_w; float decoded_box_h = expf(cur_delta.logdh) * cur_anchor_h; float decoded_box_w = expf(cur_delta.logdw) * cur_anchor_w; float decoded_box_ymin = decoded_box_yc - 0.5 * decoded_box_h; float decoded_box_xmin = decoded_box_xc - 0.5 * decoded_box_w; float decoded_box_ymax = decoded_box_ymin + decoded_box_h - 1.0; float decoded_box_xmax = decoded_box_xmin + decoded_box_w - 1.0; // clip bbox: a more precision clip method based on real window could be implemented decoded_box_ymin = dMAX(dMIN(decoded_box_ymin, inputHeight - 1.0), 0.0); decoded_box_xmin = dMAX(dMIN(decoded_box_xmin, inputWidth - 1.0), 0.0); decoded_box_ymax = dMAX(dMIN(decoded_box_ymax, inputHeight - 1.0), 0.0); decoded_box_xmax = dMAX(dMIN(decoded_box_xmax, inputWidth - 1.0), 0.0); bbox_out[blockOffset + cur_id].y1 = decoded_box_ymin; bbox_out[blockOffset + cur_id].x1 = decoded_box_xmin; bbox_out[blockOffset + cur_id].y2 = decoded_box_ymax; bbox_out[blockOffset + cur_id].x2 = decoded_box_xmax; } } } __global__ void decode_bboxes_kernel_half(int samples, const void* anchors, const void* delta, const float* regWeight, const float inputHeight, const float inputWidth, void* outputBbox, float bboxClipThresh) { const BBoxT<float>* anchors_in = static_cast<const BBoxT<float>*>(anchors); const DELTA_HALF* delta_in = static_cast<const DELTA_HALF*>(delta); BBoxT<__half>* bbox_out = static_cast<BBoxT<__half>*>(outputBbox); int N = blockIdx.x; int blockOffset = N * samples; int totalItems = (samples + (blockDim.x - 1)) / blockDim.x; for (int i = 0; i < totalItems; i++) { int cur_id = i * blockDim.x + threadIdx.x; if (cur_id < samples) { BBoxT<float> cur_anchor_yxyx = anchors_in[blockOffset + cur_id]; // convert yxyx -> cyxhw // cy, cx, h, w float cur_anchor_h = (cur_anchor_yxyx.y2 - cur_anchor_yxyx.y1 + 1.0); float cur_anchor_w = (cur_anchor_yxyx.x2 - cur_anchor_yxyx.x1 + 1.0); // w float cur_anchor_yc = cur_anchor_yxyx.y1 + cur_anchor_h * 0.5; // cy float cur_anchor_xc = cur_anchor_yxyx.x1 + cur_anchor_w * 0.5; // cx DELTA_HALF cur_delta_half = delta_in[blockOffset + cur_id]; DELTA cur_delta; cur_delta.dy = __half2float(cur_delta_half.dy); cur_delta.dx = __half2float(cur_delta_half.dx); cur_delta.logdh = __half2float(cur_delta_half.logdh); cur_delta.logdw = __half2float(cur_delta_half.logdw); // divided by regWeight cur_delta.dy /= regWeight[0]; cur_delta.dx /= regWeight[1]; cur_delta.logdh /= regWeight[2]; cur_delta.logdw /= regWeight[3]; cur_delta.logdh = dMIN(cur_delta.logdh, bboxClipThresh); cur_delta.logdw = dMIN(cur_delta.logdw, bboxClipThresh); // apply delta float decoded_box_yc = cur_anchor_yc + cur_delta.dy * cur_anchor_h; float decoded_box_xc = cur_anchor_xc + cur_delta.dx * cur_anchor_w; float decoded_box_h = expf(cur_delta.logdh) * cur_anchor_h; float decoded_box_w = expf(cur_delta.logdw) * cur_anchor_w; float decoded_box_ymin = decoded_box_yc - 0.5 * decoded_box_h; float decoded_box_xmin = decoded_box_xc - 0.5 * decoded_box_w; float decoded_box_ymax = decoded_box_ymin + decoded_box_h - 1.0; float decoded_box_xmax = decoded_box_xmin + decoded_box_w - 1.0; // clip bbox: a more precision clip method based on real window could be implemented decoded_box_ymin = dMAX(dMIN(decoded_box_ymin, inputHeight - 1.0), 0.0); decoded_box_xmin = dMAX(dMIN(decoded_box_xmin, inputWidth - 1.0), 0.0); decoded_box_ymax = dMAX(dMIN(decoded_box_ymax, inputHeight - 1.0), 0.0); decoded_box_xmax = dMAX(dMIN(decoded_box_xmax, inputWidth - 1.0), 0.0); bbox_out[blockOffset + cur_id].y1 = __float2half(decoded_box_ymin); bbox_out[blockOffset + cur_id].x1 = __float2half(decoded_box_xmin); bbox_out[blockOffset + cur_id].y2 = __float2half(decoded_box_ymax); bbox_out[blockOffset + cur_id].x2 = __float2half(decoded_box_xmax); } } } cudaError_t DecodeBBoxes(cudaStream_t stream, int N, int samples, // number of anchors per image const float* regWeight, const float inputHeight, const float inputWidth, const void* anchors, // [N, anchors, (y1, x1, y2, x2)] const void* delta, //[N, anchors, (dy, dx, log(dh), log(dw)]) void* outputBbox, //[N, anchors, (y1, x1, y2, x2)] nvinfer1::DataType dtype ) { int blocks = N; int threads = dMIN(samples, 1024); // delta multiply bbox_std // apply delta steps: // cy = anchor_cy + dy*height // cx = anchor_cx + dx*weight // h = exp(dh)*anchor_h // w = exp(dw)*anchor_w // clip the bbox in absolute coordinates float bboxClipThresh = log(1000.0f / 16.0f); switch (dtype) { case nvinfer1::DataType::kFLOAT: { decode_bboxes_kernel<<<blocks, threads, 0, stream>>>( samples, anchors, delta, regWeight, inputHeight, inputWidth, outputBbox, bboxClipThresh); break; } case nvinfer1::DataType::kHALF: { decode_bboxes_kernel_half<<<blocks, threads, 0, stream>>>( samples, anchors, delta, regWeight, inputHeight, inputWidth, outputBbox, bboxClipThresh); break; } default: assert(false); } return cudaGetLastError(); } __global__ void apply_delta_kernel(int samples, const void* anchors, const void* delta, void* outputBbox) { const BBOX* anchors_in = static_cast<const BBOX*>(anchors); const DELTA* delta_in = static_cast<const DELTA*>(delta); BBOX* bbox_out = static_cast<BBOX*>(outputBbox); int N = blockIdx.x; int blockOffset = N * samples; int totalItems = (samples + (blockDim.x - 1)) / blockDim.x; for (int i = 0; i < totalItems; i++) { int cur_id = i * blockDim.x + threadIdx.x; if (cur_id < samples) { BBOX cur_anchor_yxyx = anchors_in[blockOffset + cur_id]; // convert yxyx -> cyxhw // cy, cx, h, w BBOX cur_anchor_cyxhw; cur_anchor_cyxhw.y1 = (cur_anchor_yxyx.y1 + cur_anchor_yxyx.y2) / 2; cur_anchor_cyxhw.x1 = (cur_anchor_yxyx.x1 + cur_anchor_yxyx.x2) / 2; cur_anchor_cyxhw.y2 = (cur_anchor_yxyx.y2 - cur_anchor_yxyx.y1); cur_anchor_cyxhw.x2 = (cur_anchor_yxyx.x2 - cur_anchor_yxyx.x1); DELTA cur_delta = delta_in[blockOffset + cur_id]; // multiply std_dev cur_delta.dy *= 0.1; cur_delta.dx *= 0.1; cur_delta.logdh *= 0.2; cur_delta.logdw *= 0.2; // apply delta cur_anchor_cyxhw.y1 += cur_delta.dy * cur_anchor_cyxhw.y2; cur_anchor_cyxhw.x1 += cur_delta.dx * cur_anchor_cyxhw.x2; cur_anchor_cyxhw.y2 *= expf(cur_delta.logdh); cur_anchor_cyxhw.x2 *= expf(cur_delta.logdw); cur_anchor_yxyx.y1 = cur_anchor_cyxhw.y1 - 0.5 * cur_anchor_cyxhw.y2; cur_anchor_yxyx.x1 = cur_anchor_cyxhw.x1 - 0.5 * cur_anchor_cyxhw.x2; cur_anchor_yxyx.y2 = cur_anchor_yxyx.y1 + cur_anchor_cyxhw.y2; cur_anchor_yxyx.x2 = cur_anchor_yxyx.x1 + cur_anchor_cyxhw.x2; // clip bbox: a more precision clip method based on real window could be implemented cur_anchor_yxyx.y1 = dMAX(dMIN(cur_anchor_yxyx.y1, 1.0), 0.0); cur_anchor_yxyx.x1 = dMAX(dMIN(cur_anchor_yxyx.x1, 1.0), 0.0); cur_anchor_yxyx.y2 = dMAX(dMIN(cur_anchor_yxyx.y2, 1.0), 0.0); cur_anchor_yxyx.x2 = dMAX(dMIN(cur_anchor_yxyx.x2, 1.0), 0.0); bbox_out[blockOffset + cur_id].y1 = cur_anchor_yxyx.y1; bbox_out[blockOffset + cur_id].x1 = cur_anchor_yxyx.x1; bbox_out[blockOffset + cur_id].y2 = cur_anchor_yxyx.y2; bbox_out[blockOffset + cur_id].x2 = cur_anchor_yxyx.x2; } } } cudaError_t ApplyDelta2Bboxes(cudaStream_t stream, int N, int samples, // number of anchors per image const void* anchors, // [N, anchors, (y1, x1, y2, x2)] const void* delta, //[N, anchors, (dy, dx, log(dh), log(dw)]) void* outputBbox //[N, anchors, (y1, x1, y2, x2)] ) { int blocks = N; int threads = dMIN(samples, 1024); // delta multiply bbox_std // apply delta steps: // cy = anchor_cy + dy*height // cx = anchor_cx + dx*weight // h = exp(dh)*anchor_h // w = exp(dw)*anchor_w // clip the bbox apply_delta_kernel<<<blocks, threads, 0, stream>>>(samples, anchors, delta, outputBbox); return cudaGetLastError(); } template <typename Tfeat> __device__ inline Tfeat interpolateBilinear(const Tfeat* src, xy_t srcDims, float y, float x) { const int y0 = static_cast<int>(y); const float yAlpha = y - static_cast<float>(y0); const int x0 = static_cast<int>(x); const float xAlpha = x - static_cast<float>(x0); assert(y0 < srcDims.y); assert(x0 < srcDims.x); const int y1 = (yAlpha == 0) ? y0 : y0 + 1; // ceil const int x1 = (xAlpha == 0) ? x0 : x0 + 1; // ceil assert(y1 < srcDims.y); assert(x1 < srcDims.x); const Tfeat src00 = src[(y0) *srcDims.x + (x0)]; const Tfeat src01 = src[(y0) *srcDims.x + (x1)]; const Tfeat src10 = src[(y1) *srcDims.x + (x0)]; const Tfeat src11 = src[(y1) *srcDims.x + (x1)]; const Tfeat src0 = src00 * (1.0 - xAlpha) + src01 * xAlpha; const Tfeat src1 = src10 * (1.0 - xAlpha) + src11 * xAlpha; return src0 * (1.0 - yAlpha) + src1 * yAlpha; } template <> __device__ inline __half interpolateBilinear(const __half* src, xy_t srcDims, float y, float x) { const int y0 = static_cast<int>(y); const float yAlpha = y - static_cast<float>(y0); const int x0 = static_cast<int>(x); const float xAlpha = x - static_cast<float>(x0); assert(y0 < srcDims.y); assert(x0 < srcDims.x); const int y1 = (yAlpha == 0) ? y0 : y0 + 1; // ceil const int x1 = (xAlpha == 0) ? x0 : x0 + 1; // ceil assert(y1 < srcDims.y); assert(x1 < srcDims.x); const __half src00 = src[(y0) *srcDims.x + (x0)]; const __half src01 = src[(y0) *srcDims.x + (x1)]; const __half src10 = src[(y1) *srcDims.x + (x0)]; const __half src11 = src[(y1) *srcDims.x + (x1)]; const __half src0 = add_fb(mul_fb(src00, (1.0 - xAlpha)), mul_fb(src01, xAlpha)); const __half src1 = add_fb(mul_fb(src10, (1.0 - xAlpha)), mul_fb(src11, xAlpha)); return add_fb(mul_fb(src0, (1.0 - yAlpha)), mul_fb(src1, yAlpha)); } template <typename Trois, typename Tfeat> __global__ void roiAlign_kernel(int featureCount, int roiCount, float threshold, const Trois* rois, const Tfeat* P2, const xy_t P2dims, const Tfeat* P3, const xy_t P3dims, const Tfeat* P4, const xy_t P4dims, const Tfeat* P5, const xy_t P5dims, Tfeat* pooled, const xy_t poolDims) { const int batch = blockIdx.x; const int feature = blockIdx.y; for (int roiIdx = threadIdx.x; roiIdx < roiCount; roiIdx += blockDim.x) { const Trois* roi = rois + 4 * (batch * roiCount + roiIdx); const float y1 = roi[0]; const float x1 = roi[1]; const float y2 = roi[2]; const float x2 = roi[3]; if (!(0 <= y1 && y1 <= 1 && 0 <= x1 && x1 <= 1 && 0 <= y2 && y2 <= 1 && 0 <= x2 && x2 <= 1 && y1 < y2 && x1 < x2)) { continue; } else { } const float hw = (y2 - y1) * (x2 - x1); const Tfeat* src = P2; xy_t srcDims = P2dims; int iP = 2; if (hw > threshold) { src = P3; srcDims = P3dims; ++iP; } threshold *= 4; if (hw > threshold) { src = P4; srcDims = P4dims; ++iP; } threshold *= 4; if (hw > threshold) { src = P5; srcDims = P5dims; ++iP; } src += srcDims.x * srcDims.y * (batch * featureCount + feature); Tfeat* dst = pooled + poolDims.x * poolDims.y * (batch * roiCount * featureCount + roiIdx * featureCount + feature); const float yStart = y1 * (srcDims.y - 1); const float xStart = x1 * (srcDims.x - 1); const float yEnd = y2 * (srcDims.y - 1); const float xEnd = x2 * (srcDims.x - 1); const float yDelta = (yEnd - yStart) / (poolDims.y - 1); const float xDelta = (xEnd - xStart) / (poolDims.x - 1); for (int yy = 0; yy < poolDims.y; ++yy) { const float ySample = min(yStart + yDelta * yy, yEnd); for (int xx = 0; xx < poolDims.x; ++xx) { const float xSample = min(xStart + xDelta * xx, xEnd); float result = interpolateBilinear(src, srcDims, ySample, xSample); *dst = result; dst++; } } } } cudaError_t roiAlign(cudaStream_t stream, int batchSize, int featureCount, int roiCount, float firstThreshold, const void* rois, const void* const layers[], const xy_t* layerDims, void* pooled, const xy_t poolDims) { const dim3 blocks(batchSize, featureCount); const int threads(256); roiAlign_kernel<<<blocks, threads, 0, stream>>>(featureCount, roiCount, firstThreshold, static_cast<const float*>(rois), static_cast<const float*>(layers[0]), layerDims[0], static_cast<const float*>(layers[1]), layerDims[1], static_cast<const float*>(layers[2]), layerDims[2], static_cast<const float*>(layers[3]), layerDims[3], static_cast<float*>(pooled), poolDims); return cudaGetLastError(); } template <typename Trois, typename Tfeat> __global__ void roiAlignHalfCenter_kernel(int featureCount, int roiCount, float threshold, int inputHeight, int inputWidth, const void* rois_, const void* const P2_, const xy_t P2dims, const void* const P3_, const xy_t P3dims, const void* const P4_, const xy_t P4dims, const void* const P5_, const xy_t P5dims, const void* const P6_, const xy_t P6dims, void* pooled_, const xy_t poolDims) { const Trois* rois = static_cast<const Trois*>(rois_); const Tfeat* P2 = static_cast<const Tfeat*>(P2_); const Tfeat* P3 = static_cast<const Tfeat*>(P3_); const Tfeat* P4 = static_cast<const Tfeat*>(P4_); const Tfeat* P5 = static_cast<const Tfeat*>(P5_); const Tfeat* P6 = static_cast<const Tfeat*>(P6_); Tfeat* pooled = static_cast<Tfeat* >(pooled_); const int batch = blockIdx.x; const int feature = blockIdx.y; const int roiIdx = blockIdx.z; const int total_item_cnt = poolDims.x * poolDims.y; for (int itemIdx = threadIdx.x; itemIdx < total_item_cnt; itemIdx += blockDim.x) { const Trois* roi = rois + 4 * (batch * roiCount + roiIdx); const float y1 = roi[0]; const float x1 = roi[1]; const float y2 = roi[2]; const float x2 = roi[3]; if (!(0 <= y1 && y1 <= inputHeight && 0 <= x1 && x1 <= inputWidth && 0 <= y2 && y2 <= inputHeight && 0 <= x2 && x2 <= inputWidth && y1 < y2 && x1 < x2)) { continue; } else { } const float hw = (y2 - y1) * (x2 - x1); const Tfeat* src = P2; xy_t srcDims = P2dims; int iP = 2; float threshold_per_item = threshold; if (hw > threshold_per_item) { src = P3; srcDims = P3dims; ++iP; } threshold_per_item *= 4; if (hw > threshold_per_item) { src = P4; srcDims = P4dims; ++iP; } threshold_per_item *= 4; if (hw > threshold_per_item) { src = P5; srcDims = P5dims; ++iP; } threshold_per_item *= 4; if (hw > threshold_per_item) { src = P6; srcDims = P6dims; ++iP; } src += srcDims.x * srcDims.y * (batch * featureCount + feature); Tfeat* dst = pooled + poolDims.x * poolDims.y * (batch * roiCount * featureCount + roiIdx * featureCount + feature) + itemIdx; float scale_to_level = 1.0f; for (int i = 0; i < iP; i++) { scale_to_level *= 2.0f; } const float yStart = y1 / scale_to_level; const float xStart = x1 / scale_to_level; const float yEnd = y2 / scale_to_level; const float xEnd = x2 / scale_to_level; const float yDelta = (yEnd - yStart) / (poolDims.y); const float xDelta = (xEnd - xStart) / (poolDims.x); const int yy = itemIdx / poolDims.y; const int xx = itemIdx % poolDims.x; const float ySample = dMIN(dMAX(yStart + yDelta * (yy + 0.5), 0.0f), srcDims.y - 1.0f); const float xSample = dMIN(dMAX(xStart + xDelta * (xx + 0.5), 0.0f), srcDims.x - 1.0f); Tfeat result = interpolateBilinear<Tfeat>(src, srcDims, ySample, xSample); *dst = result; } } template <> __global__ void roiAlignHalfCenter_kernel<__half, __half>(int featureCount, int roiCount, float threshold, int inputHeight, int inputWidth, const void* rois_, const void* const P2_, const xy_t P2dims, const void* const P3_, const xy_t P3dims, const void* const P4_, const xy_t P4dims, const void* const P5_, const xy_t P5dims, const void* const P6_, const xy_t P6dims, void* pooled_, const xy_t poolDims) { const __half* rois = static_cast<const __half*>(rois_); const __half* P2 = static_cast<const __half*>(P2_); const __half* P3 = static_cast<const __half*>(P3_); const __half* P4 = static_cast<const __half*>(P4_); const __half* P5 = static_cast<const __half*>(P5_); const __half* P6 = static_cast<const __half*>(P6_); __half* pooled = static_cast<__half* >(pooled_); const int batch = blockIdx.x; const int feature = blockIdx.y; const int roiIdx = blockIdx.z; const int total_item_cnt = poolDims.x * poolDims.y; for (int itemIdx = threadIdx.x; itemIdx < total_item_cnt; itemIdx += blockDim.x) { const __half* roi = rois + 4 * (batch * roiCount + roiIdx); const float y1 = __half2float(roi[0]); const float x1 = __half2float(roi[1]); const float y2 = __half2float(roi[2]); const float x2 = __half2float(roi[3]); if (!(0 <= y1 && y1 <= inputHeight && 0 <= x1 && x1 <= inputWidth && 0 <= y2 && y2 <= inputHeight && 0 <= x2 && x2 <= inputWidth && y1 < y2 && x1 < x2)) { continue; } else { } const float hw = (y2 - y1) * (x2 - x1); const __half* src = P2; xy_t srcDims = P2dims; int iP = 2; float threshold_per_item = threshold; if (hw > threshold_per_item) { src = P3; srcDims = P3dims; ++iP; } threshold_per_item *= 4; if (hw > threshold_per_item) { src = P4; srcDims = P4dims; ++iP; } threshold_per_item *= 4; if (hw > threshold_per_item) { src = P5; srcDims = P5dims; ++iP; } threshold_per_item *= 4; if (hw > threshold_per_item) { src = P6; srcDims = P6dims; ++iP; } src += srcDims.x * srcDims.y * (batch * featureCount + feature); __half* dst = pooled + poolDims.x * poolDims.y * (batch * roiCount * featureCount + roiIdx * featureCount + feature) + itemIdx; float scale_to_level = 1.0f; for (int i = 0; i < iP; i++) { scale_to_level *= 2.0f; } const float yStart = y1 / scale_to_level; const float xStart = x1 / scale_to_level; const float yEnd = y2 / scale_to_level; const float xEnd = x2 / scale_to_level; const float yDelta = (yEnd - yStart) / (poolDims.y); const float xDelta = (xEnd - xStart) / (poolDims.x); const int yy = itemIdx / poolDims.y; const int xx = itemIdx % poolDims.x; const float ySample = dMIN(dMAX(yStart + yDelta * (yy + 0.5), 0.0f), srcDims.y - 1.0f); const float xSample = dMIN(dMAX(xStart + xDelta * (xx + 0.5), 0.0f), srcDims.x - 1.0f); __half result = interpolateBilinear<__half>(src, srcDims, ySample, xSample); *dst = result; } } cudaError_t roiAlignHalfCenter(cudaStream_t stream, int batchSize, int featureCount, int roiCount, float firstThreshold, int inputHeight, int inputWidth, const void* rois, const void* const layers[], const xy_t* layerDims, void* pooled, const xy_t poolDims, const DataType dtype) { const dim3 blocks(batchSize, featureCount, roiCount); const int threads(64); switch (dtype){ case nvinfer1::DataType::kFLOAT: { roiAlignHalfCenter_kernel<float, float><<<blocks, threads, 0, stream>>>(featureCount, roiCount, firstThreshold, inputHeight, inputWidth, rois, layers[0], layerDims[0], layers[1], layerDims[1], layers[2], layerDims[2], layers[3], layerDims[3], layers[4], layerDims[4], pooled, poolDims); break; } case nvinfer1::DataType::kHALF: { roiAlignHalfCenter_kernel<__half, __half><<<blocks, threads, 0, stream>>>(featureCount, roiCount, firstThreshold, inputHeight, inputWidth, rois, layers[0], layerDims[0], layers[1], layerDims[1], layers[2], layerDims[2], layers[3], layerDims[3], layers[4], layerDims[4], pooled, poolDims); break; } default: assert(false); } return cudaGetLastError(); } __global__ void resize_nearest_kernel_2d(int nbatch, float scale, int2 osize, float const* idata, int istride, int ibatchstride, float* odata, int ostride, int obatchstride) { int x0 = threadIdx.x + blockIdx.x * blockDim.x; int y0 = threadIdx.y + blockIdx.y * blockDim.y; int z0 = blockIdx.z; for (int batch = z0; batch < nbatch; batch += gridDim.z) { for (int oy = y0; oy < osize.y; oy += blockDim.y * gridDim.y) { for (int ox = x0; ox < osize.x; ox += blockDim.x * gridDim.x) { int ix = int(ox / scale); int iy = int(oy / scale); odata[batch * obatchstride + oy * ostride + ox] = idata[batch * ibatchstride + iy * istride + ix]; } } } } void resizeNearest(dim3 grid, dim3 block, cudaStream_t stream, int nbatch, float scale, int2 osize, float const* idata, int istride, int ibatchstride, float* odata, int ostride, int obatchstride) { resize_nearest_kernel_2d<<<grid, block, 0, stream>>>( nbatch, scale, osize, idata, istride, ibatchstride, odata, ostride, obatchstride); } struct BOX { float y1, x1, y2, x2; }; struct DETECTION { float y1, x1, y2, x2, class_id, score; }; __global__ void specialslice_kernel(int samples, const void* idata, void* odata) { int N = blockIdx.x; int blockOffset = N * samples; int totalItems = (samples + (blockDim.x - 1)) / blockDim.x; const DETECTION* in_detections = static_cast<const DETECTION*>(idata); BOX* out_bboxes = static_cast<BOX*>(odata); for (int i = 0; i < totalItems; i++) { int cur_id = i * blockDim.x + threadIdx.x; if (cur_id < samples) { out_bboxes[blockOffset + cur_id].y1 = in_detections[blockOffset + cur_id].y1; out_bboxes[blockOffset + cur_id].x1 = in_detections[blockOffset + cur_id].x1; out_bboxes[blockOffset + cur_id].y2 = in_detections[blockOffset + cur_id].y2; out_bboxes[blockOffset + cur_id].x2 = in_detections[blockOffset + cur_id].x2; } } } void specialSlice(cudaStream_t stream, int batch_size, int boxes_cnt, const void* idata, void* odata) { int blocks = batch_size; int threads = dMIN(boxes_cnt, 2048); specialslice_kernel<<<blocks, threads, 0, stream>>>(boxes_cnt, idata, odata); } template <typename Dtype> __global__ void concatenate(int featureCnt, int sampleCnt, const void* const* inScores, const void* const* inBBox, void* outScore, void* outBBox) { int N = blockIdx.x; int outBlockOffset = N * sampleCnt * featureCnt; int inBlockOffset = N * sampleCnt; int itemsPerThread = (sampleCnt + blockDim.x - 1) / blockDim.x; Dtype* outScorePtr = static_cast<Dtype*>(outScore); BBoxT<Dtype>* outBBoxPtr = static_cast<BBoxT<Dtype>*>(outBBox); for (int fId = 0; fId < featureCnt; fId++) { const Dtype* fInScorePtr = static_cast<const Dtype*>(inScores[fId]); const BBoxT<Dtype>* fInBBoxPtr = static_cast<const BBoxT<Dtype>*>(inBBox[fId]); int featureOffset = fId * sampleCnt; for (int i = 0; i < itemsPerThread; i++) { int curId = i * blockDim.x + threadIdx.x; if (curId < sampleCnt) { outScorePtr[outBlockOffset + featureOffset + curId] = fInScorePtr[inBlockOffset + curId]; outBBoxPtr[outBlockOffset + featureOffset + curId] = fInBBoxPtr[inBlockOffset + curId]; } } } } template <typename Dtype> __global__ void resampleBBox_kernel(int orig_size, int sample_size, const void* orig_bbox_ptr, void* sampled_bbox_ptr) { const BBoxT<Dtype>* in_bbox = static_cast<const BBoxT<Dtype>*>(orig_bbox_ptr); BBoxT<Dtype>* out_bbox = static_cast<BBoxT<Dtype>*>(sampled_bbox_ptr); int N = blockIdx.x; int blockOffset_in = N * orig_size; int blockOffset_out = N * sample_size; int totalItems = (sample_size + (blockDim.x - 1)) / blockDim.x; for (int i = 0; i < totalItems; i++) { int cur_id = i * blockDim.x + threadIdx.x; if (cur_id < sample_size) { out_bbox[blockOffset_out + cur_id] = in_bbox[blockOffset_in + cur_id]; } } } cudaError_t ConcatTopK(cudaStream_t stream, int N, int featureCnt, int topK, nvinfer1::DataType dtype, void* workspace, const ConcatTopKWorkSpace& spaceOffset, void** inScores, void** inBBox, void* outProposals) { // Prepare Offset int8_t* wsPtr = static_cast<int8_t*>(workspace); void* tempStoragePtr = wsPtr + spaceOffset.tempStorageOffset; void* concatedScorePtr = wsPtr + spaceOffset.concatedScoreOffset; void* concatedBBoxPtr = wsPtr + spaceOffset.concatedBBoxOffset; void* sortedScorePtr = wsPtr + spaceOffset.sortedScoreOffset; void* sortedBBoxPtr = wsPtr + spaceOffset.sortedBBoxOffset; int blocks = N; // batch_size int threads = dMIN(topK, 2048); // Concat Scores and inBBox switch (dtype) { case nvinfer1::DataType::kFLOAT: concatenate<float> <<<blocks, threads, 0, stream>>>(featureCnt, topK, inScores, inBBox, concatedScorePtr, concatedBBoxPtr); CUASSERT(cudaGetLastError()); break; case nvinfer1::DataType::kHALF: concatenate<__half> <<<blocks, threads, 0, stream>>>(featureCnt, topK, inScores, inBBox, concatedScorePtr, concatedBBoxPtr); CUASSERT(cudaGetLastError()); break; default: assert(false); } // Sort and sample topK int itemCnt = topK * featureCnt; int* offsets = static_cast<int*>(tempStoragePtr); set_offset_kernel<<<1, 1024, 0, stream>>>(itemCnt, N + 1, offsets); assert(cudaGetLastError() == cudaSuccess); tempStoragePtr = static_cast<void*>(static_cast<int*>(tempStoragePtr) + (N + 1)); switch (dtype) { case nvinfer1::DataType::kFLOAT: { score_bbox_cub_sort<float>(tempStoragePtr, concatedScorePtr, sortedScorePtr, concatedBBoxPtr, sortedBBoxPtr, N * itemCnt, N, offsets, stream); break; } case nvinfer1::DataType::kHALF: { score_bbox_cub_sort<__half>(tempStoragePtr, concatedScorePtr, sortedScorePtr, concatedBBoxPtr, sortedBBoxPtr, N * itemCnt, N, offsets, stream); break; } default: assert(false); } // Sample switch (dtype) { case nvinfer1::DataType::kFLOAT: resampleBBox_kernel<float><<<N, dMIN(topK, 1024), 0, stream>>>(itemCnt, topK, sortedBBoxPtr, outProposals); CUASSERT(cudaGetLastError()); break; case nvinfer1::DataType::kHALF: resampleBBox_kernel<__half><<<N, dMIN(topK, 1024), 0, stream>>>(itemCnt, topK, sortedBBoxPtr, outProposals); CUASSERT(cudaGetLastError()); break; default: assert(false); } assert(cudaGetLastError() == cudaSuccess); return cudaGetLastError(); }
a524a5ef8f6c70b47ba150f300d07f676807429b.hip
// !!! This is a file automatically generated by hipify!!! #include <hip/hip_runtime.h> #include <hip/hip_runtime.h> #include <iostream> #include "../gl_helper.h" #include "../cpu_bitmap.h" #include "tools.hpp" __global__ void add(int a, int b, int * c) { *c = a + b; } __global__ void addArray(int * a, int * b, int * c) { int tid = blockIdx.x; if (tid < N) c[tid] = a[tid] + b[tid]; } __global__ void addArrayLong(int * a, int * b, int * c) { int tid = threadIdx.x + blockIdx.x * blockDim.x; while (tid < N) { //the while loop c[tid] = a[tid] + b[tid]; tid += blockDim.x * gridDim.x; } } void doAdd(int a, int b) { int * dev_c; int c; hipMalloc((void**)&dev_c, sizeof(int)); hipLaunchKernelGGL(( add), dim3(1), dim3(1), 0, 0, a, b, dev_c); hipMemcpy(&c, dev_c, sizeof(int), hipMemcpyDeviceToHost); std::cout << "The result of " << a << "+" << b << " is " << c << std::endl; hipFree(dev_c); } void doAddArray(int * a, int * b) { int * dev_a; int * dev_b; int * dev_c; int c[N] = {0}; const size_t size = N * sizeof(int); CUDA_CHECK_ERROR(hipMalloc((void**)&dev_a, size)); CUDA_CHECK_ERROR(hipMalloc((void**)&dev_b, size)); CUDA_CHECK_ERROR(hipMalloc((void**)&dev_c, size)); CUDA_CHECK_ERROR(hipMemcpy(dev_a, a, size, hipMemcpyHostToDevice)); CUDA_CHECK_ERROR(hipMemcpy(dev_b, b, size, hipMemcpyHostToDevice)); hipLaunchKernelGGL(( addArray), dim3(N), dim3(1), 0, 0, dev_a, dev_b, dev_c); CUDA_CHECK_ERROR(hipMemcpy(c, dev_c, size, hipMemcpyDeviceToHost)); for (int i = 0; i < N; ++i) std::cout << a[i] << " + " << b[i] << " = " << c[i] << std::endl; CUDA_CHECK_ERROR(hipFree(dev_a)); CUDA_CHECK_ERROR(hipFree(dev_b)); CUDA_CHECK_ERROR(hipFree(dev_c)); } void doAddArrayLong(int * a, int * b) { int * dev_a; int * dev_b; int * dev_c; int c[N] = {0}; const size_t size = N * sizeof(int); CUDA_CHECK_ERROR(hipMalloc((void**)&dev_a, size)); CUDA_CHECK_ERROR(hipMalloc((void**)&dev_b, size)); CUDA_CHECK_ERROR(hipMalloc((void**)&dev_c, size)); CUDA_CHECK_ERROR(hipMemcpy(dev_a, a, size, hipMemcpyHostToDevice)); CUDA_CHECK_ERROR(hipMemcpy(dev_b, b, size, hipMemcpyHostToDevice)); //can't exceed maxThreadsPerBlock hipLaunchKernelGGL(( addArrayLong), dim3(1024), dim3(1024), 0, 0, dev_a, dev_b, dev_c); CUDA_CHECK_ERROR(hipMemcpy(c, dev_c, size, hipMemcpyDeviceToHost)); bool success = true; for (int i = 0; i < N; ++i) { if (c[i] != a[i] + b[i]) { std::cerr << a[i] << " + " << b[i] << " = " << c[i] << std::endl; success = false; } } if (success) std::cout << "successfully compute!" << std::endl; CUDA_CHECK_ERROR(hipFree(dev_a)); CUDA_CHECK_ERROR(hipFree(dev_b)); CUDA_CHECK_ERROR(hipFree(dev_c)); CUDA_CHECK_ERROR(hipDeviceReset()); } struct hipComplex { float r; float i; __device__ hipComplex(float a, float b) : r(a), i(b) {} __device__ float magnitude2(void) { return r * r + i + i; } __device__ hipComplex operator*(const hipComplex& a) { return hipComplex(r * a.r - i * a.i, i * a.r + r * a.i); } __device__ hipComplex operator+(const hipComplex& a) { return hipComplex(r + a.r, i + a.i); } }; __device__ int julia(int x, int y) { const float scale = 0.9; float jx = scale * (float)(DIM/2 - x) / (DIM / 2); float jy = scale * (float)(DIM/2 - y) / (DIM / 2); hipComplex c(-0.91, 0.125); hipComplex a(jx, jy); for (int i = 0; i < 200; ++i) { a = a * a + c; if (a.magnitude2() > 1000) return 0; } return 1; } __global__ void JuliaKernel(unsigned char * ptr) { //int x = blockIdx.x; //int y = blockIdx.y; //int offset = x + y * gridDim.x; int x = threadIdx.x; int y = threadIdx.y; int offset = x + y * blockDim.x; int juliaValue = julia(x, y); ptr[offset * 4 + 0] = 100 * juliaValue; ptr[offset * 4 + 1] = 250; ptr[offset * 4 + 2] = 20; ptr[offset * 4 + 3] = 1; } void DrawJulia(void) { CPUBitmap bitmap(DIM, DIM); unsigned char * dev_bitmap; CUDA_CHECK_ERROR(hipMalloc((void**)&dev_bitmap, bitmap.image_size())); dim3 grid(DIM, DIM); hipLaunchKernelGGL(( JuliaKernel), dim3(1), dim3(grid), 0, 0, dev_bitmap); CUDA_CHECK_ERROR(hipMemcpy(bitmap.get_ptr(), dev_bitmap, bitmap.image_size(), hipMemcpyDeviceToHost)); bitmap.display_and_exit(); CUDA_CHECK_ERROR(hipFree(dev_bitmap)); CUDA_CHECK_ERROR(hipDeviceReset()); }
a524a5ef8f6c70b47ba150f300d07f676807429b.cu
#include <cuda.h> #include <cuda_runtime.h> #include <iostream> #include "../gl_helper.h" #include "../cpu_bitmap.h" #include "tools.hpp" __global__ void add(int a, int b, int * c) { *c = a + b; } __global__ void addArray(int * a, int * b, int * c) { int tid = blockIdx.x; if (tid < N) c[tid] = a[tid] + b[tid]; } __global__ void addArrayLong(int * a, int * b, int * c) { int tid = threadIdx.x + blockIdx.x * blockDim.x; while (tid < N) { //the while loop c[tid] = a[tid] + b[tid]; tid += blockDim.x * gridDim.x; } } void doAdd(int a, int b) { int * dev_c; int c; cudaMalloc((void**)&dev_c, sizeof(int)); add<<<1, 1>>>(a, b, dev_c); cudaMemcpy(&c, dev_c, sizeof(int), cudaMemcpyDeviceToHost); std::cout << "The result of " << a << "+" << b << " is " << c << std::endl; cudaFree(dev_c); } void doAddArray(int * a, int * b) { int * dev_a; int * dev_b; int * dev_c; int c[N] = {0}; const size_t size = N * sizeof(int); CUDA_CHECK_ERROR(cudaMalloc((void**)&dev_a, size)); CUDA_CHECK_ERROR(cudaMalloc((void**)&dev_b, size)); CUDA_CHECK_ERROR(cudaMalloc((void**)&dev_c, size)); CUDA_CHECK_ERROR(cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice)); CUDA_CHECK_ERROR(cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice)); addArray<<<N, 1>>>(dev_a, dev_b, dev_c); CUDA_CHECK_ERROR(cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost)); for (int i = 0; i < N; ++i) std::cout << a[i] << " + " << b[i] << " = " << c[i] << std::endl; CUDA_CHECK_ERROR(cudaFree(dev_a)); CUDA_CHECK_ERROR(cudaFree(dev_b)); CUDA_CHECK_ERROR(cudaFree(dev_c)); } void doAddArrayLong(int * a, int * b) { int * dev_a; int * dev_b; int * dev_c; int c[N] = {0}; const size_t size = N * sizeof(int); CUDA_CHECK_ERROR(cudaMalloc((void**)&dev_a, size)); CUDA_CHECK_ERROR(cudaMalloc((void**)&dev_b, size)); CUDA_CHECK_ERROR(cudaMalloc((void**)&dev_c, size)); CUDA_CHECK_ERROR(cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice)); CUDA_CHECK_ERROR(cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice)); //can't exceed maxThreadsPerBlock addArrayLong<<<1024, 1024>>>(dev_a, dev_b, dev_c); CUDA_CHECK_ERROR(cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost)); bool success = true; for (int i = 0; i < N; ++i) { if (c[i] != a[i] + b[i]) { std::cerr << a[i] << " + " << b[i] << " = " << c[i] << std::endl; success = false; } } if (success) std::cout << "successfully compute!" << std::endl; CUDA_CHECK_ERROR(cudaFree(dev_a)); CUDA_CHECK_ERROR(cudaFree(dev_b)); CUDA_CHECK_ERROR(cudaFree(dev_c)); CUDA_CHECK_ERROR(cudaDeviceReset()); } struct cuComplex { float r; float i; __device__ cuComplex(float a, float b) : r(a), i(b) {} __device__ float magnitude2(void) { return r * r + i + i; } __device__ cuComplex operator*(const cuComplex& a) { return cuComplex(r * a.r - i * a.i, i * a.r + r * a.i); } __device__ cuComplex operator+(const cuComplex& a) { return cuComplex(r + a.r, i + a.i); } }; __device__ int julia(int x, int y) { const float scale = 0.9; float jx = scale * (float)(DIM/2 - x) / (DIM / 2); float jy = scale * (float)(DIM/2 - y) / (DIM / 2); cuComplex c(-0.91, 0.125); cuComplex a(jx, jy); for (int i = 0; i < 200; ++i) { a = a * a + c; if (a.magnitude2() > 1000) return 0; } return 1; } __global__ void JuliaKernel(unsigned char * ptr) { //int x = blockIdx.x; //int y = blockIdx.y; //int offset = x + y * gridDim.x; int x = threadIdx.x; int y = threadIdx.y; int offset = x + y * blockDim.x; int juliaValue = julia(x, y); ptr[offset * 4 + 0] = 100 * juliaValue; ptr[offset * 4 + 1] = 250; ptr[offset * 4 + 2] = 20; ptr[offset * 4 + 3] = 1; } void DrawJulia(void) { CPUBitmap bitmap(DIM, DIM); unsigned char * dev_bitmap; CUDA_CHECK_ERROR(cudaMalloc((void**)&dev_bitmap, bitmap.image_size())); dim3 grid(DIM, DIM); JuliaKernel<<<1, grid>>>(dev_bitmap); CUDA_CHECK_ERROR(cudaMemcpy(bitmap.get_ptr(), dev_bitmap, bitmap.image_size(), cudaMemcpyDeviceToHost)); bitmap.display_and_exit(); CUDA_CHECK_ERROR(cudaFree(dev_bitmap)); CUDA_CHECK_ERROR(cudaDeviceReset()); }
16bd3cfe59ef7499dab529b0a1b3e0b3a689c771.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* * Copyright 1993-2012 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ /* * This sample evaluates fair call and put prices for a * given set of European options by Black-Scholes formula. * See supplied whitepaper for more explanations. */ #include <helper_functions.h> // helper functions for string parsing #include <helper_cuda.h> // helper functions CUDA error checking and initialization //////////////////////////////////////////////////////////////////////////////// // Process an array of optN options on CPU //////////////////////////////////////////////////////////////////////////////// extern "C" void BlackScholesCPU( float *h_CallResult, float *h_PutResult, float *h_StockPrice, float *h_OptionStrike, float *h_OptionYears, float Riskfree, float Volatility, int optN ); //////////////////////////////////////////////////////////////////////////////// // Process an array of OptN options on GPU //////////////////////////////////////////////////////////////////////////////// #include "BlackScholes_kernel.cuh" //////////////////////////////////////////////////////////////////////////////// // Helper function, returning uniformly distributed // random float in [low, high] range //////////////////////////////////////////////////////////////////////////////// float RandFloat(float low, float high) { float t = (float)rand() / (float)RAND_MAX; return (1.0f - t) * low + t * high; } //////////////////////////////////////////////////////////////////////////////// // Data configuration //////////////////////////////////////////////////////////////////////////////// // const int OPT_N = 4000000; // const int NUM_ITERATIONS = 512; #define OPT_N 4000000 #define NUM_ITERATIONS 512 // const int OPT_SZ = OPT_N * sizeof(float); const float RISKFREE = 0.02f; const float VOLATILITY = 0.30f; //////////////////////////////////////////////////////////////////////////////// // Main program //////////////////////////////////////////////////////////////////////////////// int main(int argc, char **argv) { // Start logs printf("[%s] - Starting...\n", argv[0]); //'h_' prefix - CPU (host) memory space float //Results calculated by CPU for reference *h_CallResultCPU, *h_PutResultCPU, //CPU copy of GPU results *h_CallResultGPU, *h_PutResultGPU, //CPU instance of input data *h_StockPrice, *h_OptionStrike, *h_OptionYears; //'d_' prefix - GPU (device) memory space float //Results calculated by GPU *d_CallResult, *d_PutResult, //GPU instance of input data *d_StockPrice, *d_OptionStrike, *d_OptionYears; // double delta, ref, sum_delta, sum_ref, max_delta, L1norm; double gpuTime; StopWatchInterface *hTimer = NULL; int i; findCudaDevice(argc, (const char **)argv); // determine how many options to process int opt_n = OPT_N; if (checkCmdLineFlag(argc, (const char**) argv, "options")) { opt_n = getCmdLineArgumentInt(argc, (const char**)argv, "options"); if (opt_n < 1) { printf("Error: \"number of options\" specified %d is invalid\n", opt_n); exit(EXIT_FAILURE); } } const int opt_sz = opt_n * sizeof(float); // how many benchmarking iterations int num_iterations = NUM_ITERATIONS; if (checkCmdLineFlag(argc, (const char**) argv, "samples")) { num_iterations = getCmdLineArgumentInt(argc, (const char**)argv, "samples"); if (opt_n < 1) { printf("Error: \"number of benchmark samples\" specified %d is invalid\n", num_iterations); exit(EXIT_FAILURE); } } sdkCreateTimer(&hTimer); printf("Initializing data...\n"); printf("...allocating CPU memory for options.\n"); h_CallResultCPU = (float *)malloc(opt_sz); h_PutResultCPU = (float *)malloc(opt_sz); h_CallResultGPU = (float *)malloc(opt_sz); h_PutResultGPU = (float *)malloc(opt_sz); h_StockPrice = (float *)malloc(opt_sz); h_OptionStrike = (float *)malloc(opt_sz); h_OptionYears = (float *)malloc(opt_sz); printf("...allocating GPU memory for options.\n"); // checkCudaErrors(hipMalloc((void **)&d_CallResult, opt_sz)); // checkCudaErrors(hipMalloc((void **)&d_PutResult, opt_sz)); checkCudaErrors(hipMalloc((void **)&d_StockPrice, opt_sz)); checkCudaErrors(hipMalloc((void **)&d_OptionStrike, opt_sz)); checkCudaErrors(hipMalloc((void **)&d_OptionYears, opt_sz)); printf("...generating input data in CPU mem.\n"); srand(5347); //Generate options set for (i = 0; i < opt_n; i++) { h_CallResultCPU[i] = 0.0f; h_PutResultCPU[i] = -1.0f; h_StockPrice[i] = RandFloat(5.0f, 30.0f); h_OptionStrike[i] = RandFloat(1.0f, 100.0f); h_OptionYears[i] = RandFloat(0.25f, 10.0f); } printf("...copying input data to GPU mem.\n"); //Copy options data to GPU memory for further processing checkCudaErrors(hipMemcpy(d_StockPrice, h_StockPrice, opt_sz, hipMemcpyHostToDevice)); checkCudaErrors(hipMemcpy(d_OptionStrike, h_OptionStrike, opt_sz, hipMemcpyHostToDevice)); checkCudaErrors(hipMemcpy(d_OptionYears, h_OptionYears, opt_sz, hipMemcpyHostToDevice)); printf("Data init done.\n\n"); printf("Executing Black-Scholes GPU kernel (%i iterations)...\n", num_iterations); checkCudaErrors(hipDeviceSynchronize()); sdkResetTimer(&hTimer); sdkStartTimer(&hTimer); for (i = 0; i < num_iterations; i++) { checkCudaErrors(hipMalloc((void **)&d_CallResult, opt_sz)); // TLM checkCudaErrors(hipMalloc((void **)&d_PutResult, opt_sz)); // TLM hipLaunchKernelGGL(( BlackScholesGPU), dim3(480), dim3(128), 0, 0, d_CallResult, d_PutResult, d_StockPrice, d_OptionStrike, d_OptionYears, RISKFREE, VOLATILITY, opt_n ); getLastCudaError("BlackScholesGPU() execution failed\n"); checkCudaErrors(hipFree(d_PutResult)); // TLM checkCudaErrors(hipFree(d_CallResult)); // TLM } checkCudaErrors(hipDeviceSynchronize()); sdkStopTimer(&hTimer); gpuTime = sdkGetTimerValue(&hTimer) / num_iterations; //Both call and put is calculated printf("Options count : %i\n", opt_n); printf("BlackScholesGPU() time : %f msec\n", gpuTime); printf("Effective memory bandwidth: %f GB/s\n", ((double)(5 * opt_n * sizeof(float)) * 1E-9) / (gpuTime * 1E-3)); printf("Gigaoptions per second : %f\n\n", ((double)(2 * opt_n) * 1E-9) / (gpuTime * 1E-3)); printf("BlackScholes, Throughput = %.4f GOptions/s, Time = %.5f s, Size = %u options, NumDevsUsed = %u, Workgroup = %u\n", (((double)(2.0 * opt_n) * 1.0E-9) / (gpuTime * 1.0E-3)), gpuTime*1e-3, (2 * opt_n), 1, 128); #if 0 printf("\nReading back GPU results...\n"); //Read back GPU results to compare them to CPU results checkCudaErrors(hipMemcpy(h_CallResultGPU, d_CallResult, opt_sz, hipMemcpyDeviceToHost)); checkCudaErrors(hipMemcpy(h_PutResultGPU, d_PutResult, opt_sz, hipMemcpyDeviceToHost)); printf("Checking the results...\n"); printf("...running CPU calculations.\n\n"); //Calculate options values on CPU BlackScholesCPU( h_CallResultCPU, h_PutResultCPU, h_StockPrice, h_OptionStrike, h_OptionYears, RISKFREE, VOLATILITY, opt_n ); printf("Comparing the results...\n"); //Calculate max absolute difference and L1 distance //between CPU and GPU results sum_delta = 0; sum_ref = 0; max_delta = 0; for (i = 0; i < opt_n; i++) { ref = h_CallResultCPU[i]; delta = fabs(h_CallResultCPU[i] - h_CallResultGPU[i]); if (delta > max_delta) { max_delta = delta; } sum_delta += delta; sum_ref += fabs(ref); } L1norm = sum_delta / sum_ref; printf("L1 norm: %E\n", L1norm); printf("Max absolute error: %E\n\n", max_delta); #endif printf("Shutting down...\n"); printf("...releasing GPU memory.\n"); checkCudaErrors(hipFree(d_OptionYears)); checkCudaErrors(hipFree(d_OptionStrike)); checkCudaErrors(hipFree(d_StockPrice)); // checkCudaErrors(hipFree(d_PutResult)); // checkCudaErrors(hipFree(d_CallResult)); printf("...releasing CPU memory.\n"); free(h_OptionYears); free(h_OptionStrike); free(h_StockPrice); free(h_PutResultGPU); free(h_CallResultGPU); free(h_PutResultCPU); free(h_CallResultCPU); sdkDeleteTimer(&hTimer); hipDeviceReset(); printf("Shutdown done.\n"); #if 0 printf("\n[BlackScholes] - Test Summary\n"); if (L1norm > 1e-6) { printf("Test failed!\n"); exit(EXIT_FAILURE); } printf("Test passed\n"); exit(EXIT_SUCCESS); #endif }
16bd3cfe59ef7499dab529b0a1b3e0b3a689c771.cu
/* * Copyright 1993-2012 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ /* * This sample evaluates fair call and put prices for a * given set of European options by Black-Scholes formula. * See supplied whitepaper for more explanations. */ #include <helper_functions.h> // helper functions for string parsing #include <helper_cuda.h> // helper functions CUDA error checking and initialization //////////////////////////////////////////////////////////////////////////////// // Process an array of optN options on CPU //////////////////////////////////////////////////////////////////////////////// extern "C" void BlackScholesCPU( float *h_CallResult, float *h_PutResult, float *h_StockPrice, float *h_OptionStrike, float *h_OptionYears, float Riskfree, float Volatility, int optN ); //////////////////////////////////////////////////////////////////////////////// // Process an array of OptN options on GPU //////////////////////////////////////////////////////////////////////////////// #include "BlackScholes_kernel.cuh" //////////////////////////////////////////////////////////////////////////////// // Helper function, returning uniformly distributed // random float in [low, high] range //////////////////////////////////////////////////////////////////////////////// float RandFloat(float low, float high) { float t = (float)rand() / (float)RAND_MAX; return (1.0f - t) * low + t * high; } //////////////////////////////////////////////////////////////////////////////// // Data configuration //////////////////////////////////////////////////////////////////////////////// // const int OPT_N = 4000000; // const int NUM_ITERATIONS = 512; #define OPT_N 4000000 #define NUM_ITERATIONS 512 // const int OPT_SZ = OPT_N * sizeof(float); const float RISKFREE = 0.02f; const float VOLATILITY = 0.30f; //////////////////////////////////////////////////////////////////////////////// // Main program //////////////////////////////////////////////////////////////////////////////// int main(int argc, char **argv) { // Start logs printf("[%s] - Starting...\n", argv[0]); //'h_' prefix - CPU (host) memory space float //Results calculated by CPU for reference *h_CallResultCPU, *h_PutResultCPU, //CPU copy of GPU results *h_CallResultGPU, *h_PutResultGPU, //CPU instance of input data *h_StockPrice, *h_OptionStrike, *h_OptionYears; //'d_' prefix - GPU (device) memory space float //Results calculated by GPU *d_CallResult, *d_PutResult, //GPU instance of input data *d_StockPrice, *d_OptionStrike, *d_OptionYears; // double delta, ref, sum_delta, sum_ref, max_delta, L1norm; double gpuTime; StopWatchInterface *hTimer = NULL; int i; findCudaDevice(argc, (const char **)argv); // determine how many options to process int opt_n = OPT_N; if (checkCmdLineFlag(argc, (const char**) argv, "options")) { opt_n = getCmdLineArgumentInt(argc, (const char**)argv, "options"); if (opt_n < 1) { printf("Error: \"number of options\" specified %d is invalid\n", opt_n); exit(EXIT_FAILURE); } } const int opt_sz = opt_n * sizeof(float); // how many benchmarking iterations int num_iterations = NUM_ITERATIONS; if (checkCmdLineFlag(argc, (const char**) argv, "samples")) { num_iterations = getCmdLineArgumentInt(argc, (const char**)argv, "samples"); if (opt_n < 1) { printf("Error: \"number of benchmark samples\" specified %d is invalid\n", num_iterations); exit(EXIT_FAILURE); } } sdkCreateTimer(&hTimer); printf("Initializing data...\n"); printf("...allocating CPU memory for options.\n"); h_CallResultCPU = (float *)malloc(opt_sz); h_PutResultCPU = (float *)malloc(opt_sz); h_CallResultGPU = (float *)malloc(opt_sz); h_PutResultGPU = (float *)malloc(opt_sz); h_StockPrice = (float *)malloc(opt_sz); h_OptionStrike = (float *)malloc(opt_sz); h_OptionYears = (float *)malloc(opt_sz); printf("...allocating GPU memory for options.\n"); // checkCudaErrors(cudaMalloc((void **)&d_CallResult, opt_sz)); // checkCudaErrors(cudaMalloc((void **)&d_PutResult, opt_sz)); checkCudaErrors(cudaMalloc((void **)&d_StockPrice, opt_sz)); checkCudaErrors(cudaMalloc((void **)&d_OptionStrike, opt_sz)); checkCudaErrors(cudaMalloc((void **)&d_OptionYears, opt_sz)); printf("...generating input data in CPU mem.\n"); srand(5347); //Generate options set for (i = 0; i < opt_n; i++) { h_CallResultCPU[i] = 0.0f; h_PutResultCPU[i] = -1.0f; h_StockPrice[i] = RandFloat(5.0f, 30.0f); h_OptionStrike[i] = RandFloat(1.0f, 100.0f); h_OptionYears[i] = RandFloat(0.25f, 10.0f); } printf("...copying input data to GPU mem.\n"); //Copy options data to GPU memory for further processing checkCudaErrors(cudaMemcpy(d_StockPrice, h_StockPrice, opt_sz, cudaMemcpyHostToDevice)); checkCudaErrors(cudaMemcpy(d_OptionStrike, h_OptionStrike, opt_sz, cudaMemcpyHostToDevice)); checkCudaErrors(cudaMemcpy(d_OptionYears, h_OptionYears, opt_sz, cudaMemcpyHostToDevice)); printf("Data init done.\n\n"); printf("Executing Black-Scholes GPU kernel (%i iterations)...\n", num_iterations); checkCudaErrors(cudaDeviceSynchronize()); sdkResetTimer(&hTimer); sdkStartTimer(&hTimer); for (i = 0; i < num_iterations; i++) { checkCudaErrors(cudaMalloc((void **)&d_CallResult, opt_sz)); // TLM checkCudaErrors(cudaMalloc((void **)&d_PutResult, opt_sz)); // TLM BlackScholesGPU<<<480, 128>>>( d_CallResult, d_PutResult, d_StockPrice, d_OptionStrike, d_OptionYears, RISKFREE, VOLATILITY, opt_n ); getLastCudaError("BlackScholesGPU() execution failed\n"); checkCudaErrors(cudaFree(d_PutResult)); // TLM checkCudaErrors(cudaFree(d_CallResult)); // TLM } checkCudaErrors(cudaDeviceSynchronize()); sdkStopTimer(&hTimer); gpuTime = sdkGetTimerValue(&hTimer) / num_iterations; //Both call and put is calculated printf("Options count : %i\n", opt_n); printf("BlackScholesGPU() time : %f msec\n", gpuTime); printf("Effective memory bandwidth: %f GB/s\n", ((double)(5 * opt_n * sizeof(float)) * 1E-9) / (gpuTime * 1E-3)); printf("Gigaoptions per second : %f\n\n", ((double)(2 * opt_n) * 1E-9) / (gpuTime * 1E-3)); printf("BlackScholes, Throughput = %.4f GOptions/s, Time = %.5f s, Size = %u options, NumDevsUsed = %u, Workgroup = %u\n", (((double)(2.0 * opt_n) * 1.0E-9) / (gpuTime * 1.0E-3)), gpuTime*1e-3, (2 * opt_n), 1, 128); #if 0 printf("\nReading back GPU results...\n"); //Read back GPU results to compare them to CPU results checkCudaErrors(cudaMemcpy(h_CallResultGPU, d_CallResult, opt_sz, cudaMemcpyDeviceToHost)); checkCudaErrors(cudaMemcpy(h_PutResultGPU, d_PutResult, opt_sz, cudaMemcpyDeviceToHost)); printf("Checking the results...\n"); printf("...running CPU calculations.\n\n"); //Calculate options values on CPU BlackScholesCPU( h_CallResultCPU, h_PutResultCPU, h_StockPrice, h_OptionStrike, h_OptionYears, RISKFREE, VOLATILITY, opt_n ); printf("Comparing the results...\n"); //Calculate max absolute difference and L1 distance //between CPU and GPU results sum_delta = 0; sum_ref = 0; max_delta = 0; for (i = 0; i < opt_n; i++) { ref = h_CallResultCPU[i]; delta = fabs(h_CallResultCPU[i] - h_CallResultGPU[i]); if (delta > max_delta) { max_delta = delta; } sum_delta += delta; sum_ref += fabs(ref); } L1norm = sum_delta / sum_ref; printf("L1 norm: %E\n", L1norm); printf("Max absolute error: %E\n\n", max_delta); #endif printf("Shutting down...\n"); printf("...releasing GPU memory.\n"); checkCudaErrors(cudaFree(d_OptionYears)); checkCudaErrors(cudaFree(d_OptionStrike)); checkCudaErrors(cudaFree(d_StockPrice)); // checkCudaErrors(cudaFree(d_PutResult)); // checkCudaErrors(cudaFree(d_CallResult)); printf("...releasing CPU memory.\n"); free(h_OptionYears); free(h_OptionStrike); free(h_StockPrice); free(h_PutResultGPU); free(h_CallResultGPU); free(h_PutResultCPU); free(h_CallResultCPU); sdkDeleteTimer(&hTimer); cudaDeviceReset(); printf("Shutdown done.\n"); #if 0 printf("\n[BlackScholes] - Test Summary\n"); if (L1norm > 1e-6) { printf("Test failed!\n"); exit(EXIT_FAILURE); } printf("Test passed\n"); exit(EXIT_SUCCESS); #endif }
2749223df177c5f5e1b160b6e707a66b36a4cbde.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <iostream> using namespace std; __global__ void kernel( int* b, int* t) { if( !threadIdx.x) { b[blockIdx.x] = blockIdx.x; } t[blockDim.x *blockIdx.x + threadIdx.x] = threadIdx.x; } int main() { int numBlocks = 4; int threadsPerBlock = 8; int numThreads = numBlocks*threadsPerBlock; int* b; int* t; // allocate b and t locally on host b = new int[numBlocks]; t = new int[numThreads]; int* d_b; int* d_t; // allocate d_b and d_t on the device hipMalloc( (void**)&d_b, numBlocks*sizeof(int)); hipMalloc( (void**)&d_t, numThreads*sizeof(int)); hipLaunchKernelGGL(( kernel), dim3(numBlocks),dim3(threadsPerBlock), 0, 0, d_b,d_t); // communicate values from device to host hipMemcpy( b, d_b, numBlocks*sizeof(int) , hipMemcpyDeviceToHost); hipMemcpy( t, d_t, numThreads*sizeof(int) , hipMemcpyDeviceToHost); // free the memory allocated on the device hipFree(d_b); hipFree(d_t); // output results int block; int thread; for( block=0; block<numBlocks; block++) { cout << "b[" << block << "] = " << b[block]; cout << "; threads:"; for( thread=0; thread<threadsPerBlock; thread++) { cout << " " << t[block*threadsPerBlock + thread]; } cout << endl; } // delete the locally allocate memory delete [] t; delete [] b; return 0; }
2749223df177c5f5e1b160b6e707a66b36a4cbde.cu
#include <iostream> using namespace std; __global__ void kernel( int* b, int* t) { if( !threadIdx.x) { b[blockIdx.x] = blockIdx.x; } t[blockDim.x *blockIdx.x + threadIdx.x] = threadIdx.x; } int main() { int numBlocks = 4; int threadsPerBlock = 8; int numThreads = numBlocks*threadsPerBlock; int* b; int* t; // allocate b and t locally on host b = new int[numBlocks]; t = new int[numThreads]; int* d_b; int* d_t; // allocate d_b and d_t on the device cudaMalloc( (void**)&d_b, numBlocks*sizeof(int)); cudaMalloc( (void**)&d_t, numThreads*sizeof(int)); kernel<<<numBlocks,threadsPerBlock>>>(d_b,d_t); // communicate values from device to host cudaMemcpy( b, d_b, numBlocks*sizeof(int) , cudaMemcpyDeviceToHost); cudaMemcpy( t, d_t, numThreads*sizeof(int) , cudaMemcpyDeviceToHost); // free the memory allocated on the device cudaFree(d_b); cudaFree(d_t); // output results int block; int thread; for( block=0; block<numBlocks; block++) { cout << "b[" << block << "] = " << b[block]; cout << "; threads:"; for( thread=0; thread<threadsPerBlock; thread++) { cout << " " << t[block*threadsPerBlock + thread]; } cout << endl; } // delete the locally allocate memory delete [] t; delete [] b; return 0; }
58848c1ea99569e4b9b7e1df2a0ab21c72cfef3d.hip
// !!! This is a file automatically generated by hipify!!! #define HELLO /****************************************************************************** /* @file Playground kernel function. Have fun! /* /* /* @author langenhagen /* @version YYMMDD /******************************************************************************/ #pragma once /////////////////////////////////////////////////////////////////////////////// // INCLUDES project headers /////////////////////////////////////////////////////////////////////////////// //INCLUDES C/C++ standard library (and other external libraries) #include <cstdlib> #include <iostream> #include <math.h> #include <hip/hip_runtime.h> #include "device_launch_parameters.h" #include "thrust/host_vector.h" #include "thrust/device_vector.h" #include "thrust/sort.h" #include <thrust/iterator/constant_iterator.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/transform_iterator.h> #include <thrust/iterator/zip_iterator.h> //#include <barn_common.hpp> // << provokes linker errors! #include <matrix.cuh> #include <barn_cuda_common.cuh> /////////////////////////////////////////////////////////////////////////////// // DEFINES and MACROS /////////////////////////////////////////////////////////////////////////////// // NAMESPACE, CONSTANTS and TYPE DECLARATIONS/IMPLEMENTATIONS using namespace std; using namespace thrust; typedef unsigned char uchar; __global__ void play_kernel( Matrix<int>* m, const int Kx, const int Ky) { const int tx = blockIdx.x * blockDim.x + threadIdx.x; if( tx+1 > m->n_cells()) return; const int r = tx / m->cols; const int c = tx - r*m->cols; const int k_r = r * Ky / m->rows; const int k_c = c * Kx / m->cols; m->at(r,c) = k_r * Kx + k_c; } struct row_calculator : public thrust::unary_function<unsigned int /*input*/, unsigned int /*output*/> { unsigned int _n_cols; row_calculator( unsigned int n_cols) : _n_cols(n_cols) {} __host__ __device__ unsigned int operator()(const unsigned int &i) const { return i/_n_cols; } }; struct col_calculator : public thrust::unary_function<unsigned int, unsigned int> { unsigned int _n_cols; col_calculator( unsigned int n_cols) : _n_cols(n_cols) {} __host__ __device__ unsigned int operator()(const unsigned int &i) const { unsigned int r = i/_n_cols; return i - r*_n_cols; } }; void play() { Matrix<int> segmat( 25, 10); Matrix<int> *d_segmat = segmat.h2d(); // create segment mat hipLaunchKernelGGL(( play_kernel), dim3((segmat.rows*segmat.cols-1)/1024+1), dim3(1024), 0, 0, d_segmat, 5, 2); segmat.d2h( d_segmat, false); device_vector<int> segvec_d( segmat.data, segmat.data+segmat.n_cells()); // aka keys for( auto it=segvec_d.begin(); it!=segvec_d.end(); ++it) cout << *it << "\t"; // constant iterator for count of segment size spter constant_iterator<int> const_beg_it(1); constant_iterator<int> const_beg_end( const_beg_it + segmat.n_cells()); cout << "const iter: \n" "const_beg_it[0]: " << const_beg_it[0] << "\n" "const_beg_it[1]: " << const_beg_it[1] << "\n" "const_beg_it[2]: " << const_beg_it[2] << "\n"; // hiilfs-gnrdel fr die row/col iterators: countet alle cells durch _und_ist_nderbar_ device_vector<unsigned int> value_mappings( segmat.rows*segmat.cols); sequence(value_mappings.begin(), value_mappings.end()); /* // hiilfs-iterator fr row/col iterators: countet alle data cells durch counting_iterator<int> cnt_beg_it(0); counting_iterator<int> cnt_end_it( cnt_beg_it + segmat.n_cells()); cout << "counting iter: \n" "cnt_beg_it[0]: " << cnt_beg_it[0] << "\n" "cnt_beg_it[1]: " << cnt_beg_it[1] << "\n" "cnt_beg_it[2]: " << cnt_beg_it[2] << "\n";*/ // retrieves row / column for given data element // typedef transform_iterator< row_calculator, thrust::counting_iterator<int>> row_it_t; // typedef transform_iterator< col_calculator, thrust::counting_iterator<int>> col_it_t; auto row_beg_it = make_transform_iterator( counting_iterator<int>(0), row_calculator( segmat.cols)); auto row_end_it = make_transform_iterator( value_mappings.end(), row_calculator( segmat.cols)); auto col_beg_it = make_transform_iterator( counting_iterator<int>(0), col_calculator( segmat.cols)); auto col_end_it = make_transform_iterator( value_mappings.end(), col_calculator( segmat.cols)); cout << "row iter (with " << segmat.cols << " cols): \n" "row_beg_it[ 0]: " << row_beg_it[ 0] << "\n" "row_beg_it[ 1]: " << row_beg_it[ 1] << "\n" "row_beg_it[ 2]: " << row_beg_it[ 2] << "\n" "row_beg_it[12]: " << row_beg_it[12] << "\n" "row_beg_it[17]: " << row_beg_it[17] << "\n" "row_beg_it[29]: " << row_beg_it[29] << "\n"; cout << "col iter (with " << segmat.cols << " cols): \n" "col_beg_it[ 0]: " << col_beg_it[ 0] << "\n" "col_beg_it[ 1]: " << col_beg_it[ 1] << "\n" "col_beg_it[ 2]: " << col_beg_it[ 2] << "\n" "col_beg_it[12]: " << col_beg_it[12] << "\n" "col_beg_it[17]: " << col_beg_it[17] << "\n" "col_beg_it[29]: " << col_beg_it[29] << "\n"; /* auto values_beg_it = make_zip_iterator( make_tuple( row_beg_it, col_beg_it)); auto values_end_it = make_zip_iterator( make_tuple( row_end_it, col_end_it)); */ sort_by_key(segvec_d.begin(), segvec_d.end(), value_mappings.begin()); for( int i=0; i<segmat.rows*segmat.cols; ++i) { cout << "i: " << i << " segment: " << segvec_d[i] << " row: " << row_beg_it[value_mappings[i]] << " col: " << col_beg_it[value_mappings[i]] << "\n"; } } __global__ void play_kernel2() { } void play2() { } /////////////////////////////////////////////////////////////////////////////// // WARMUP KERNEL AND INVOCATION FUNCTION __global__ void warmup_kernel() { printf( "Warming up... "); } void warmup() { hipLaunchKernelGGL(( warmup_kernel), dim3(1),dim3(1), 0, 0, ); hipDeviceSynchronize(); printf("Done.\n"); } /////////////////////////////////////////////////////////////////////////////// //struct myfunctor { // // unsigned char x; // // myfunctor( unsigned char _x) : x(_x) // {} // // __host__ __device__ // unsigned char operator()(const unsigned char &c) const { // return x-c; // } //};
58848c1ea99569e4b9b7e1df2a0ab21c72cfef3d.cu
#define HELLO /****************************************************************************** /* @file Playground kernel function. Have fun! /* /* /* @author langenhagen /* @version YYMMDD /******************************************************************************/ #pragma once /////////////////////////////////////////////////////////////////////////////// // INCLUDES project headers /////////////////////////////////////////////////////////////////////////////// //INCLUDES C/C++ standard library (and other external libraries) #include <cstdlib> #include <iostream> #include <math.h> #include <cuda_runtime.h> #include "device_launch_parameters.h" #include "thrust/host_vector.h" #include "thrust/device_vector.h" #include "thrust/sort.h" #include <thrust/iterator/constant_iterator.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/iterator/transform_iterator.h> #include <thrust/iterator/zip_iterator.h> //#include <barn_common.hpp> // << provokes linker errors! #include <matrix.cuh> #include <barn_cuda_common.cuh> /////////////////////////////////////////////////////////////////////////////// // DEFINES and MACROS /////////////////////////////////////////////////////////////////////////////// // NAMESPACE, CONSTANTS and TYPE DECLARATIONS/IMPLEMENTATIONS using namespace std; using namespace thrust; typedef unsigned char uchar; __global__ void play_kernel( Matrix<int>* m, const int Kx, const int Ky) { const int tx = blockIdx.x * blockDim.x + threadIdx.x; if( tx+1 > m->n_cells()) return; const int r = tx / m->cols; const int c = tx - r*m->cols; const int k_r = r * Ky / m->rows; const int k_c = c * Kx / m->cols; m->at(r,c) = k_r * Kx + k_c; } struct row_calculator : public thrust::unary_function<unsigned int /*input*/, unsigned int /*output*/> { unsigned int _n_cols; row_calculator( unsigned int n_cols) : _n_cols(n_cols) {} __host__ __device__ unsigned int operator()(const unsigned int &i) const { return i/_n_cols; } }; struct col_calculator : public thrust::unary_function<unsigned int, unsigned int> { unsigned int _n_cols; col_calculator( unsigned int n_cols) : _n_cols(n_cols) {} __host__ __device__ unsigned int operator()(const unsigned int &i) const { unsigned int r = i/_n_cols; return i - r*_n_cols; } }; void play() { Matrix<int> segmat( 25, 10); Matrix<int> *d_segmat = segmat.h2d(); // create segment mat play_kernel<<< (segmat.rows*segmat.cols-1)/1024+1, 1024>>>( d_segmat, 5, 2); segmat.d2h( d_segmat, false); device_vector<int> segvec_d( segmat.data, segmat.data+segmat.n_cells()); // aka keys for( auto it=segvec_d.begin(); it!=segvec_d.end(); ++it) cout << *it << "\t"; // constant iterator for count of segment size später constant_iterator<int> const_beg_it(1); constant_iterator<int> const_beg_end( const_beg_it + segmat.n_cells()); cout << "const iter: \n" "const_beg_it[0]: " << const_beg_it[0] << "\n" "const_beg_it[1]: " << const_beg_it[1] << "\n" "const_beg_it[2]: " << const_beg_it[2] << "\n"; // hiilfs-gnördel für die row/col iterators: countet alle cells durch _und_ist_änderbar_ device_vector<unsigned int> value_mappings( segmat.rows*segmat.cols); sequence(value_mappings.begin(), value_mappings.end()); /* // hiilfs-iterator für row/col iterators: countet alle data cells durch counting_iterator<int> cnt_beg_it(0); counting_iterator<int> cnt_end_it( cnt_beg_it + segmat.n_cells()); cout << "counting iter: \n" "cnt_beg_it[0]: " << cnt_beg_it[0] << "\n" "cnt_beg_it[1]: " << cnt_beg_it[1] << "\n" "cnt_beg_it[2]: " << cnt_beg_it[2] << "\n";*/ // retrieves row / column for given data element // typedef transform_iterator< row_calculator, thrust::counting_iterator<int>> row_it_t; // typedef transform_iterator< col_calculator, thrust::counting_iterator<int>> col_it_t; auto row_beg_it = make_transform_iterator( counting_iterator<int>(0), row_calculator( segmat.cols)); auto row_end_it = make_transform_iterator( value_mappings.end(), row_calculator( segmat.cols)); auto col_beg_it = make_transform_iterator( counting_iterator<int>(0), col_calculator( segmat.cols)); auto col_end_it = make_transform_iterator( value_mappings.end(), col_calculator( segmat.cols)); cout << "row iter (with " << segmat.cols << " cols): \n" "row_beg_it[ 0]: " << row_beg_it[ 0] << "\n" "row_beg_it[ 1]: " << row_beg_it[ 1] << "\n" "row_beg_it[ 2]: " << row_beg_it[ 2] << "\n" "row_beg_it[12]: " << row_beg_it[12] << "\n" "row_beg_it[17]: " << row_beg_it[17] << "\n" "row_beg_it[29]: " << row_beg_it[29] << "\n"; cout << "col iter (with " << segmat.cols << " cols): \n" "col_beg_it[ 0]: " << col_beg_it[ 0] << "\n" "col_beg_it[ 1]: " << col_beg_it[ 1] << "\n" "col_beg_it[ 2]: " << col_beg_it[ 2] << "\n" "col_beg_it[12]: " << col_beg_it[12] << "\n" "col_beg_it[17]: " << col_beg_it[17] << "\n" "col_beg_it[29]: " << col_beg_it[29] << "\n"; /* auto values_beg_it = make_zip_iterator( make_tuple( row_beg_it, col_beg_it)); auto values_end_it = make_zip_iterator( make_tuple( row_end_it, col_end_it)); */ sort_by_key(segvec_d.begin(), segvec_d.end(), value_mappings.begin()); for( int i=0; i<segmat.rows*segmat.cols; ++i) { cout << "i: " << i << " segment: " << segvec_d[i] << " row: " << row_beg_it[value_mappings[i]] << " col: " << col_beg_it[value_mappings[i]] << "\n"; } } __global__ void play_kernel2() { } void play2() { } /////////////////////////////////////////////////////////////////////////////// // WARMUP KERNEL AND INVOCATION FUNCTION __global__ void warmup_kernel() { printf( "Warming up... "); } void warmup() { warmup_kernel<<<1,1>>>(); cudaDeviceSynchronize(); printf("Done.\n"); } /////////////////////////////////////////////////////////////////////////////// //struct myfunctor { // // unsigned char x; // // myfunctor( unsigned char _x) : x(_x) // {} // // __host__ __device__ // unsigned char operator()(const unsigned char &c) const { // return x-c; // } //};
4084bdaa555ff0ec0838c2f5813f188d232227db.hip
// !!! This is a file automatically generated by hipify!!! //////////////////////////////////////////////////////////////////////// // GPU version of Monte Carlo algorithm using NVIDIA's CURAND library //////////////////////////////////////////////////////////////////////// #include <stdlib.h> #include <stdio.h> #include <math.h> #include <hip/hip_runtime.h> #include <hiprand/hiprand.h> #include <helper_cuda.h> //////////////////////////////////////////////////////////////////////// // CUDA global constants //////////////////////////////////////////////////////////////////////// __constant__ int N; __constant__ float T, r, sigma, rho, alpha, dt, con1, con2; //////////////////////////////////////////////////////////////////////// // kernel routine //////////////////////////////////////////////////////////////////////// __global__ void pathcalc(float *d_z, float *d_v) { float s1, s2, y1, y2, payoff; int ind; // move array pointers to correct position // version 1 // ind = threadIdx.x + 2*N*blockIdx.x*blockDim.x; // version 2 ind = 2*N*threadIdx.x + 2*N*blockIdx.x*blockDim.x; // path calculation s1 = 1.0f; s2 = 1.0f; for (int n=0; n<N; n++) { y1 = d_z[ind]; // version 1 //ind += blockDim.x; // shift pointer to next element // version 2 ind += 1; printf(" ind in first step and d_z = %d %f \n",ind,d_z[ind]); y2 = rho*y1 + alpha*d_z[ind]; // version 1 //ind += blockDim.x; // shift pointer to next element // version 2 ind += 1; s1 = s1*(con1 + con2*y1); s2 = s2*(con1 + con2*y2); } // put payoff value into device array payoff = 0.0f; if ( fabs(s1-1.0f)<0.1f && fabs(s2-1.0f)<0.1f ) payoff = exp(-r*T); d_v[threadIdx.x + blockIdx.x*blockDim.x] = payoff; } //////////////////////////////////////////////////////////////////////// // Main program //////////////////////////////////////////////////////////////////////// int main(int argc, const char **argv){ // int NPATH=960000, h_N=100; int NPATH=100, h_N=100; float h_T, h_r, h_sigma, h_rho, h_alpha, h_dt, h_con1, h_con2; float *h_v, *d_v, *d_z; double sum1, sum2; // initialise card findCudaDevice(argc, argv); // initialise CUDA timing float milli; hipEvent_t start, stop; hipEventCreate(&start); hipEventCreate(&stop); // allocate memory on host and device h_v = (float *)malloc(sizeof(float)*NPATH); checkCudaErrors( hipMalloc((void **)&d_v, sizeof(float)*NPATH) ); checkCudaErrors( hipMalloc((void **)&d_z, sizeof(float)*2*h_N*NPATH) ); // define constants and transfer to GPU h_T = 1.0f; h_r = 0.05f; h_sigma = 0.1f; h_rho = 0.5f; h_alpha = sqrt(1.0f-h_rho*h_rho); h_dt = 1.0f/h_N; h_con1 = 1.0f + h_r*h_dt; h_con2 = sqrt(h_dt)*h_sigma; checkCudaErrors( hipMemcpyToSymbol(N, &h_N, sizeof(h_N)) ); checkCudaErrors( hipMemcpyToSymbol(T, &h_T, sizeof(h_T)) ); checkCudaErrors( hipMemcpyToSymbol(r, &h_r, sizeof(h_r)) ); checkCudaErrors( hipMemcpyToSymbol(sigma,&h_sigma,sizeof(h_sigma)) ); checkCudaErrors( hipMemcpyToSymbol(rho, &h_rho, sizeof(h_rho)) ); checkCudaErrors( hipMemcpyToSymbol(alpha,&h_alpha,sizeof(h_alpha)) ); checkCudaErrors( hipMemcpyToSymbol(dt, &h_dt, sizeof(h_dt)) ); checkCudaErrors( hipMemcpyToSymbol(con1, &h_con1, sizeof(h_con1)) ); checkCudaErrors( hipMemcpyToSymbol(con2, &h_con2, sizeof(h_con2)) ); // random number generation hipEventRecord(start); hiprandGenerator_t gen; checkCudaErrors( hiprandCreateGenerator(&gen, HIPRAND_RNG_PSEUDO_DEFAULT) ); checkCudaErrors( hiprandSetPseudoRandomGeneratorSeed(gen, 1234ULL) ); checkCudaErrors( hiprandGenerateNormal(gen, d_z, 2*h_N*NPATH, 0.0f, 1.0f) ); hipEventRecord(stop); hipEventSynchronize(stop); hipEventElapsedTime(&milli, start, stop); printf("CURAND normal RNG execution time (ms): %f, samples/sec: %e \n", milli, 2.0*h_N*NPATH/(0.001*milli)); // execute kernel and time it hipEventRecord(start); hipLaunchKernelGGL(( pathcalc), dim3(NPATH/64), dim3(64), 0, 0, d_z, d_v); getLastCudaError("pathcalc execution failed\n"); hipEventRecord(stop); hipEventSynchronize(stop); hipEventElapsedTime(&milli, start, stop); printf("Monte Carlo kernel execution time (ms): %f \n",milli); // copy back results checkCudaErrors( hipMemcpy(h_v, d_v, sizeof(float)*NPATH, hipMemcpyDeviceToHost) ); // compute average sum1 = 0.0; sum2 = 0.0; for (int i=0; i<NPATH; i++) { sum1 += h_v[i]; sum2 += h_v[i]*h_v[i]; } printf("\nAverage value and standard deviation of error = %13.8f %13.8f\n\n", sum1/NPATH, sqrt((sum2/NPATH - (sum1/NPATH)*(sum1/NPATH))/NPATH) ); // Tidy up library checkCudaErrors( hiprandDestroyGenerator(gen) ); // Release memory and exit cleanly free(h_v); checkCudaErrors( hipFree(d_v) ); checkCudaErrors( hipFree(d_z) ); // CUDA exit -- needed to flush printf write buffer hipDeviceReset(); }
4084bdaa555ff0ec0838c2f5813f188d232227db.cu
//////////////////////////////////////////////////////////////////////// // GPU version of Monte Carlo algorithm using NVIDIA's CURAND library //////////////////////////////////////////////////////////////////////// #include <stdlib.h> #include <stdio.h> #include <math.h> #include <cuda.h> #include <curand.h> #include <helper_cuda.h> //////////////////////////////////////////////////////////////////////// // CUDA global constants //////////////////////////////////////////////////////////////////////// __constant__ int N; __constant__ float T, r, sigma, rho, alpha, dt, con1, con2; //////////////////////////////////////////////////////////////////////// // kernel routine //////////////////////////////////////////////////////////////////////// __global__ void pathcalc(float *d_z, float *d_v) { float s1, s2, y1, y2, payoff; int ind; // move array pointers to correct position // version 1 // ind = threadIdx.x + 2*N*blockIdx.x*blockDim.x; // version 2 ind = 2*N*threadIdx.x + 2*N*blockIdx.x*blockDim.x; // path calculation s1 = 1.0f; s2 = 1.0f; for (int n=0; n<N; n++) { y1 = d_z[ind]; // version 1 //ind += blockDim.x; // shift pointer to next element // version 2 ind += 1; printf(" ind in first step and d_z = %d %f \n",ind,d_z[ind]); y2 = rho*y1 + alpha*d_z[ind]; // version 1 //ind += blockDim.x; // shift pointer to next element // version 2 ind += 1; s1 = s1*(con1 + con2*y1); s2 = s2*(con1 + con2*y2); } // put payoff value into device array payoff = 0.0f; if ( fabs(s1-1.0f)<0.1f && fabs(s2-1.0f)<0.1f ) payoff = exp(-r*T); d_v[threadIdx.x + blockIdx.x*blockDim.x] = payoff; } //////////////////////////////////////////////////////////////////////// // Main program //////////////////////////////////////////////////////////////////////// int main(int argc, const char **argv){ // int NPATH=960000, h_N=100; int NPATH=100, h_N=100; float h_T, h_r, h_sigma, h_rho, h_alpha, h_dt, h_con1, h_con2; float *h_v, *d_v, *d_z; double sum1, sum2; // initialise card findCudaDevice(argc, argv); // initialise CUDA timing float milli; cudaEvent_t start, stop; cudaEventCreate(&start); cudaEventCreate(&stop); // allocate memory on host and device h_v = (float *)malloc(sizeof(float)*NPATH); checkCudaErrors( cudaMalloc((void **)&d_v, sizeof(float)*NPATH) ); checkCudaErrors( cudaMalloc((void **)&d_z, sizeof(float)*2*h_N*NPATH) ); // define constants and transfer to GPU h_T = 1.0f; h_r = 0.05f; h_sigma = 0.1f; h_rho = 0.5f; h_alpha = sqrt(1.0f-h_rho*h_rho); h_dt = 1.0f/h_N; h_con1 = 1.0f + h_r*h_dt; h_con2 = sqrt(h_dt)*h_sigma; checkCudaErrors( cudaMemcpyToSymbol(N, &h_N, sizeof(h_N)) ); checkCudaErrors( cudaMemcpyToSymbol(T, &h_T, sizeof(h_T)) ); checkCudaErrors( cudaMemcpyToSymbol(r, &h_r, sizeof(h_r)) ); checkCudaErrors( cudaMemcpyToSymbol(sigma,&h_sigma,sizeof(h_sigma)) ); checkCudaErrors( cudaMemcpyToSymbol(rho, &h_rho, sizeof(h_rho)) ); checkCudaErrors( cudaMemcpyToSymbol(alpha,&h_alpha,sizeof(h_alpha)) ); checkCudaErrors( cudaMemcpyToSymbol(dt, &h_dt, sizeof(h_dt)) ); checkCudaErrors( cudaMemcpyToSymbol(con1, &h_con1, sizeof(h_con1)) ); checkCudaErrors( cudaMemcpyToSymbol(con2, &h_con2, sizeof(h_con2)) ); // random number generation cudaEventRecord(start); curandGenerator_t gen; checkCudaErrors( curandCreateGenerator(&gen, CURAND_RNG_PSEUDO_DEFAULT) ); checkCudaErrors( curandSetPseudoRandomGeneratorSeed(gen, 1234ULL) ); checkCudaErrors( curandGenerateNormal(gen, d_z, 2*h_N*NPATH, 0.0f, 1.0f) ); cudaEventRecord(stop); cudaEventSynchronize(stop); cudaEventElapsedTime(&milli, start, stop); printf("CURAND normal RNG execution time (ms): %f, samples/sec: %e \n", milli, 2.0*h_N*NPATH/(0.001*milli)); // execute kernel and time it cudaEventRecord(start); pathcalc<<<NPATH/64, 64>>>(d_z, d_v); getLastCudaError("pathcalc execution failed\n"); cudaEventRecord(stop); cudaEventSynchronize(stop); cudaEventElapsedTime(&milli, start, stop); printf("Monte Carlo kernel execution time (ms): %f \n",milli); // copy back results checkCudaErrors( cudaMemcpy(h_v, d_v, sizeof(float)*NPATH, cudaMemcpyDeviceToHost) ); // compute average sum1 = 0.0; sum2 = 0.0; for (int i=0; i<NPATH; i++) { sum1 += h_v[i]; sum2 += h_v[i]*h_v[i]; } printf("\nAverage value and standard deviation of error = %13.8f %13.8f\n\n", sum1/NPATH, sqrt((sum2/NPATH - (sum1/NPATH)*(sum1/NPATH))/NPATH) ); // Tidy up library checkCudaErrors( curandDestroyGenerator(gen) ); // Release memory and exit cleanly free(h_v); checkCudaErrors( cudaFree(d_v) ); checkCudaErrors( cudaFree(d_z) ); // CUDA exit -- needed to flush printf write buffer cudaDeviceReset(); }
7622ab01df6262ae2b0d82e68f78c350ce975272.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <cfloat> #include <vector> #include <math_functions.h> #include "thrust/device_vector.h" #include "caffe/common.hpp" #include "caffe/sequence_layers.hpp" #ifdef USE_MPI #include "caffe/mpitask.hpp" #endif namespace caffe { template <typename Dtype> __device__ Dtype sigmoid(const Dtype x) { return Dtype(1) / (Dtype(1) + exp(-x)); } template <typename Dtype> __device__ Dtype tanh(const Dtype x) { return Dtype(2) * sigmoid(Dtype(2) * x) - Dtype(1); } template <typename Dtype> __global__ void lstm_copy_indicator(const int count, const int output_feature_dim_, const Dtype * cont_t, const Dtype * src, Dtype * dst) { CUDA_KERNEL_LOOP(i, count) { const int b = i / output_feature_dim_; dst[i] = (cont_t[b] > 0) ? src[i] : Dtype(0); } } template <typename Dtype> __global__ void lstm_forward_kernel(const int count, const int output_feature_dim_, Dtype * gates, Dtype * h, Dtype * c, const Dtype * c_prev) { CUDA_KERNEL_LOOP(index, count) { const int index_batch = index / output_feature_dim_, index_feature = index % output_feature_dim_; const int offset = index_batch * SLLSTMLayer<Dtype>::NumOfGates * output_feature_dim_ + index_feature; const int fi = SLLSTMLayer<Dtype>::I * output_feature_dim_ + offset, ff = SLLSTMLayer<Dtype>::F * output_feature_dim_ + offset, fo = SLLSTMLayer<Dtype>::O * output_feature_dim_ + offset, fg = SLLSTMLayer<Dtype>::G * output_feature_dim_ + offset; gates[fi] = sigmoid(gates[fi]); gates[ff] = sigmoid(gates[ff]); gates[fo] = sigmoid(gates[fo]); gates[fg] = tanh(gates[fg]); c[index] = gates[fi] * gates[fg] + gates[ff] * c_prev[index]; h[index] = gates[fo] * tanh(c[index]); } } template <typename Dtype> __global__ void lstm_backward_kernel(const int batch, const int output_feature_dim_, const Dtype * gates, Dtype * gates_diff, const Dtype * c, const Dtype * c_diff, const Dtype * c_prev, Dtype * c_backpropagate, const Dtype * h_diff) { CUDA_KERNEL_LOOP(index, batch * output_feature_dim_) { const int index_batch = index / output_feature_dim_, index_feature = index % output_feature_dim_; const int offset = index_batch * SLLSTMLayer<Dtype>::NumOfGates * output_feature_dim_ + index_feature; const int fi = SLLSTMLayer<Dtype>::I * output_feature_dim_ + offset, ff = SLLSTMLayer<Dtype>::F * output_feature_dim_ + offset, fo = SLLSTMLayer<Dtype>::O * output_feature_dim_ + offset, fg = SLLSTMLayer<Dtype>::G * output_feature_dim_ + offset; const Dtype tanhc = tanh(c[index]); gates_diff[fo] = tanhc * h_diff[index]; Dtype c_term_diff = c_diff[index] + (1 - tanhc * tanhc) * gates[fo] * h_diff[index]; gates_diff[ff] = c_prev[index] * c_term_diff; c_backpropagate[index] = gates[ff] * c_term_diff; gates_diff[fi] = gates[fg] * c_term_diff; gates_diff[fg] = gates[fi] * c_term_diff; } } template <typename Dtype> __global__ void lstm_acts_backward(const int count, const int output_feature_dim_, const Dtype * gates, Dtype * gates_diff){ const int x_dim = SLLSTMLayer<Dtype>::NumOfGates * output_feature_dim_; CUDA_KERNEL_LOOP(index, count) { const int d = index % x_dim; const Dtype x_act = gates[index]; if (d < 3 * output_feature_dim_) gates_diff[index] = x_act * (1 - x_act) * gates_diff[index]; else gates_diff[index] = (1 - x_act * x_act) * gates_diff[index]; } } template <typename Dtype> void SLLSTMLayer<Dtype>::copy_prev_gpu(int t, int count, const Dtype *cont_t, const Dtype *c_t, const Dtype *h_t, Dtype *c_prev, Dtype *h_prev) { if (t > 0) { if (cont_t) { // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( lstm_copy_indicator<Dtype>), dim3(CAFFE_GET_BLOCKS(count)), dim3(CAFFE_CUDA_NUM_THREADS), 0, 0, count, output_feature_dim_, cont_t, c_t - count, c_prev); CUDA_POST_KERNEL_CHECK; // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( lstm_copy_indicator<Dtype>), dim3(CAFFE_GET_BLOCKS(count)), dim3(CAFFE_CUDA_NUM_THREADS), 0, 0, count, output_feature_dim_, cont_t, h_t - count, h_prev); CUDA_POST_KERNEL_CHECK; } else { caffe_copy(count, c_t - count, c_prev); caffe_copy(count, h_t - count, h_prev); } } else { caffe_gpu_set(count, Dtype(0), c_prev); caffe_gpu_set(count, Dtype(0), h_prev); } } template <typename Dtype> void SLLSTMLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { const Dtype * x = bottom[0]->gpu_data(); const Dtype * cont = (bottom.size() > 1) ? bottom[1]->gpu_data() : NULL; const Dtype * x_static = (bottom.size() > 2) ? bottom[2]->gpu_data() : NULL; const int T = bottom[0]->shape(0); const int batch = bottom[0]->shape(1); const int count = batch * output_feature_dim_; const int hidden_dim_ = NumOfGates * output_feature_dim_; const Dtype * wx = this->blobs_[WX]->gpu_data(); const Dtype * ws = (x_static) ? this->blobs_[WS]->gpu_data() : NULL; const Dtype * uh = this->blobs_[UH]->gpu_data(); const Dtype * b = this->blobs_[B]->gpu_data(); Dtype * c = cell_.mutable_gpu_data(); Dtype * gates = gates_.mutable_gpu_data(); Dtype * h = top[0]->mutable_gpu_data(); Dtype * c_prev = buffer_c_prev_.mutable_gpu_data(); Dtype * h_prev = buffer_h_prev_.mutable_gpu_data(); const Dtype * bias_multiplier = bias_multiplier_.gpu_data(); Dtype * x_static_ws = (x_static) ? x_static_ws_.mutable_gpu_data() : NULL; caffe_gpu_gemm(CblasNoTrans, CblasTrans, T * batch, hidden_dim_, input_feature_dim_, Dtype(1), x, wx, Dtype(0), gates); caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, T * batch, hidden_dim_, 1, Dtype(1), bias_multiplier, b, Dtype(1), gates); if (x_static) caffe_gpu_gemm(CblasNoTrans, CblasTrans, batch, hidden_dim_, input_feature_dim_, Dtype(1), x_static, ws, Dtype(0), x_static_ws); for (int t = 0; t < T; t++) { const Dtype * cont_t = (cont ? cont + t * batch : NULL); Dtype * gates_t = gates + t * count * NumOfGates; Dtype * c_t = c + t * count; Dtype * h_t = h + t * count; if (x_static) caffe_gpu_add(x_static_ws_.count(), x_static_ws, gates_t, gates_t); copy_prev_gpu(t, count, cont_t, c_t, h_t, c_prev, h_prev); caffe_gpu_gemm(CblasNoTrans, CblasTrans, batch, hidden_dim_, output_feature_dim_, Dtype(1), h_prev, uh, Dtype(1), gates_t); // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( lstm_forward_kernel<Dtype>), dim3(CAFFE_GET_BLOCKS(count)), dim3(CAFFE_CUDA_NUM_THREADS), 0, 0, count, output_feature_dim_, gates_t, h_t, c_t, c_prev); CUDA_POST_KERNEL_CHECK; } } template <typename Dtype> void SLLSTMLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { if (propagate_down.size() > 1) { CHECK(!propagate_down[1]) << "Cannot back-propagate to continuous indicator."; } // clean blobs_[n]->gpu_diff() for (int i = 0; i < NumOfBlobs; i++) { caffe_gpu_set(this->blobs_[i]->count(), Dtype(0), this->blobs_[i]->mutable_gpu_diff()); } const Dtype * x_static = NULL, *ws = NULL; Dtype * ws_diff = NULL, *x_static_diff = NULL; if (bottom.size() > 2) { ws = this->blobs_[WS]->gpu_data(); ws_diff = this->blobs_[WS]->mutable_gpu_diff(); x_static = bottom[2]->gpu_data(); if (propagate_down[2]) { x_static_diff = bottom[2]->mutable_gpu_diff(); caffe_gpu_set(bottom[2]->count(), Dtype(0), bottom[2]->mutable_gpu_diff()); } } const int T = bottom[0]->shape(0); const int batch = bottom[0]->shape(1); const int count = batch * output_feature_dim_; const int hidden_dim_ = NumOfGates * output_feature_dim_; // clean c_prev(and diff) & h_prev(and diff) Dtype * c_diff[2]; c_diff[0] = buffer_c_diff_.mutable_gpu_data(); c_diff[1] = buffer_c_diff_.mutable_gpu_diff(); caffe_gpu_set(count, Dtype(0), c_diff[0]); caffe_gpu_set(count, Dtype(0), c_diff[1]); Dtype * h_prev = buffer_h_prev_.mutable_gpu_data(); Dtype * h_backpropagate = buffer_h_prev_.mutable_gpu_diff(); caffe_gpu_set(count, Dtype(0), h_backpropagate); Dtype * c_prev = buffer_c_prev_.mutable_gpu_data(); // pointers const Dtype * x = bottom[0]->gpu_data(); const Dtype * cont = (bottom.size() > 1) ? bottom[1]->gpu_data() : NULL; const Dtype * h = top[0]->gpu_data(); const Dtype * c = cell_.gpu_data(); const Dtype * gates = gates_.gpu_data(); const Dtype * wx = this->blobs_[WX]->gpu_data(); const Dtype * uh = this->blobs_[UH]->gpu_data(); const Dtype * bias_multiplier = bias_multiplier_.gpu_data(); Dtype * h_diff = top[0]->mutable_gpu_diff(); Dtype * gates_diff = gates_.mutable_gpu_diff(); Dtype * wx_diff = this->blobs_[WX]->mutable_gpu_diff(); Dtype * uh_diff = this->blobs_[UH]->mutable_gpu_diff(); Dtype * b_diff = this->blobs_[B]->mutable_gpu_diff(); Dtype * x_diff = propagate_down[0] ? bottom[0]->mutable_gpu_diff() : NULL; bool FLAG = true; // loop body for (int t = T-1; t >= 0; t--) { const Dtype * cont_t = cont ? cont + t * batch : NULL; int offset = t * count; const Dtype * h_t = h + offset; const Dtype * c_t = c + offset; const Dtype * gates_t = gates + offset * NumOfGates; const Dtype * x_t = x + t * batch * input_feature_dim_; Dtype * h_t_diff = h_diff + offset; FLAG = !FLAG; const Dtype * c_t_diff = c_diff[FLAG]; Dtype * c_backpropagate = c_diff[!FLAG]; Dtype * gates_t_diff = gates_diff + offset * NumOfGates; // accumulate. caffe_gpu_add(count, h_backpropagate, h_t_diff, h_t_diff); copy_prev_gpu(t, count, cont_t, c_t, h_t, c_prev, h_prev); // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( lstm_backward_kernel<Dtype>), dim3(CAFFE_GET_BLOCKS(count)), dim3(CAFFE_CUDA_NUM_THREADS), 0, 0, batch, output_feature_dim_, gates_t, gates_t_diff, c_t, c_t_diff, c_prev, c_backpropagate, h_t_diff); CUDA_POST_KERNEL_CHECK; // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( lstm_acts_backward<Dtype>), dim3(CAFFE_GET_BLOCKS(count*NumOfGates)), dim3(CAFFE_CUDA_NUM_THREADS), 0, 0, count*NumOfGates, output_feature_dim_, gates_t, gates_t_diff); CUDA_POST_KERNEL_CHECK; caffe_gpu_gemm(CblasTrans, CblasNoTrans, hidden_dim_, input_feature_dim_, batch, Dtype(1), gates_t_diff, x_t, Dtype(1), wx_diff); if (x_static) caffe_gpu_gemm(CblasTrans, CblasNoTrans, hidden_dim_, input_feature_dim_, batch, Dtype(1), gates_t_diff, x_static, Dtype(1), ws_diff); if (x_static_diff) caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, batch, input_feature_dim_, hidden_dim_, Dtype(1), gates_t_diff, ws, Dtype(1), x_static_diff); caffe_gpu_gemm(CblasTrans, CblasNoTrans, hidden_dim_, output_feature_dim_, batch, Dtype(1), gates_t_diff, h_prev, Dtype(1), uh_diff); caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, batch, output_feature_dim_, hidden_dim_, Dtype(1), gates_t_diff, uh, Dtype(0), h_backpropagate); if (t > 0 && cont_t) { // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( lstm_copy_indicator<Dtype>), dim3(CAFFE_GET_BLOCKS(count)), dim3(CAFFE_CUDA_NUM_THREADS), 0, 0, count, output_feature_dim_, cont_t, h_backpropagate, h_backpropagate); CUDA_POST_KERNEL_CHECK; // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( lstm_copy_indicator<Dtype>), dim3(CAFFE_GET_BLOCKS(count)), dim3(CAFFE_CUDA_NUM_THREADS), 0, 0, count, output_feature_dim_, cont_t, c_backpropagate, c_backpropagate); CUDA_POST_KERNEL_CHECK; } } if (x_diff) caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, batch*T, input_feature_dim_, hidden_dim_, Dtype(1), gates_diff, wx, Dtype(0), x_diff); caffe_gpu_gemv<Dtype>(CblasTrans, T * batch, hidden_dim_, 1, gates_diff, bias_multiplier, Dtype(1), b_diff); #ifdef USE_MPI if (Caffe::getStrategy() == 0) { hipDeviceSynchronize(); for (int i = 0; i < NumOfBlobs; i++) { MPI_Allreduce(MPI_IN_PLACE, this->blobs_[i]->mutable_gpu_diff(), this->blobs_[i]->count(), MPI_FLOAT, MPI_SUM, MPI_COMM_WORLD); } } else if (Caffe::getStrategy() == 1) { MpiTaskList<Dtype> *task_list = (MpiTaskList<Dtype> *)Caffe::getTaskList(); for (int i = 0; i < NumOfBlobs; i++) { this->blobs_[i]->mutable_cpu_diff(); } hipDeviceSynchronize(); for (int i = 0; i < NumOfBlobs; i++) { task_list->push_back(new MpiTask<Dtype>(NULL,0,this->blobs_[i].get(),1,this->blobs_[i]->count())); } } else { } #endif // USE_MPI } INSTANTIATE_LAYER_GPU_FUNCS(SLLSTMLayer); }; // namespace caffe
7622ab01df6262ae2b0d82e68f78c350ce975272.cu
#include <cfloat> #include <vector> #include <math_functions.h> #include "thrust/device_vector.h" #include "caffe/common.hpp" #include "caffe/sequence_layers.hpp" #ifdef USE_MPI #include "caffe/mpitask.hpp" #endif namespace caffe { template <typename Dtype> __device__ Dtype sigmoid(const Dtype x) { return Dtype(1) / (Dtype(1) + exp(-x)); } template <typename Dtype> __device__ Dtype tanh(const Dtype x) { return Dtype(2) * sigmoid(Dtype(2) * x) - Dtype(1); } template <typename Dtype> __global__ void lstm_copy_indicator(const int count, const int output_feature_dim_, const Dtype * cont_t, const Dtype * src, Dtype * dst) { CUDA_KERNEL_LOOP(i, count) { const int b = i / output_feature_dim_; dst[i] = (cont_t[b] > 0) ? src[i] : Dtype(0); } } template <typename Dtype> __global__ void lstm_forward_kernel(const int count, const int output_feature_dim_, Dtype * gates, Dtype * h, Dtype * c, const Dtype * c_prev) { CUDA_KERNEL_LOOP(index, count) { const int index_batch = index / output_feature_dim_, index_feature = index % output_feature_dim_; const int offset = index_batch * SLLSTMLayer<Dtype>::NumOfGates * output_feature_dim_ + index_feature; const int fi = SLLSTMLayer<Dtype>::I * output_feature_dim_ + offset, ff = SLLSTMLayer<Dtype>::F * output_feature_dim_ + offset, fo = SLLSTMLayer<Dtype>::O * output_feature_dim_ + offset, fg = SLLSTMLayer<Dtype>::G * output_feature_dim_ + offset; gates[fi] = sigmoid(gates[fi]); gates[ff] = sigmoid(gates[ff]); gates[fo] = sigmoid(gates[fo]); gates[fg] = tanh(gates[fg]); c[index] = gates[fi] * gates[fg] + gates[ff] * c_prev[index]; h[index] = gates[fo] * tanh(c[index]); } } template <typename Dtype> __global__ void lstm_backward_kernel(const int batch, const int output_feature_dim_, const Dtype * gates, Dtype * gates_diff, const Dtype * c, const Dtype * c_diff, const Dtype * c_prev, Dtype * c_backpropagate, const Dtype * h_diff) { CUDA_KERNEL_LOOP(index, batch * output_feature_dim_) { const int index_batch = index / output_feature_dim_, index_feature = index % output_feature_dim_; const int offset = index_batch * SLLSTMLayer<Dtype>::NumOfGates * output_feature_dim_ + index_feature; const int fi = SLLSTMLayer<Dtype>::I * output_feature_dim_ + offset, ff = SLLSTMLayer<Dtype>::F * output_feature_dim_ + offset, fo = SLLSTMLayer<Dtype>::O * output_feature_dim_ + offset, fg = SLLSTMLayer<Dtype>::G * output_feature_dim_ + offset; const Dtype tanhc = tanh(c[index]); gates_diff[fo] = tanhc * h_diff[index]; Dtype c_term_diff = c_diff[index] + (1 - tanhc * tanhc) * gates[fo] * h_diff[index]; gates_diff[ff] = c_prev[index] * c_term_diff; c_backpropagate[index] = gates[ff] * c_term_diff; gates_diff[fi] = gates[fg] * c_term_diff; gates_diff[fg] = gates[fi] * c_term_diff; } } template <typename Dtype> __global__ void lstm_acts_backward(const int count, const int output_feature_dim_, const Dtype * gates, Dtype * gates_diff){ const int x_dim = SLLSTMLayer<Dtype>::NumOfGates * output_feature_dim_; CUDA_KERNEL_LOOP(index, count) { const int d = index % x_dim; const Dtype x_act = gates[index]; if (d < 3 * output_feature_dim_) gates_diff[index] = x_act * (1 - x_act) * gates_diff[index]; else gates_diff[index] = (1 - x_act * x_act) * gates_diff[index]; } } template <typename Dtype> void SLLSTMLayer<Dtype>::copy_prev_gpu(int t, int count, const Dtype *cont_t, const Dtype *c_t, const Dtype *h_t, Dtype *c_prev, Dtype *h_prev) { if (t > 0) { if (cont_t) { // NOLINT_NEXT_LINE(whitespace/operators) lstm_copy_indicator<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>(count, output_feature_dim_, cont_t, c_t - count, c_prev); CUDA_POST_KERNEL_CHECK; // NOLINT_NEXT_LINE(whitespace/operators) lstm_copy_indicator<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>(count, output_feature_dim_, cont_t, h_t - count, h_prev); CUDA_POST_KERNEL_CHECK; } else { caffe_copy(count, c_t - count, c_prev); caffe_copy(count, h_t - count, h_prev); } } else { caffe_gpu_set(count, Dtype(0), c_prev); caffe_gpu_set(count, Dtype(0), h_prev); } } template <typename Dtype> void SLLSTMLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { const Dtype * x = bottom[0]->gpu_data(); const Dtype * cont = (bottom.size() > 1) ? bottom[1]->gpu_data() : NULL; const Dtype * x_static = (bottom.size() > 2) ? bottom[2]->gpu_data() : NULL; const int T = bottom[0]->shape(0); const int batch = bottom[0]->shape(1); const int count = batch * output_feature_dim_; const int hidden_dim_ = NumOfGates * output_feature_dim_; const Dtype * wx = this->blobs_[WX]->gpu_data(); const Dtype * ws = (x_static) ? this->blobs_[WS]->gpu_data() : NULL; const Dtype * uh = this->blobs_[UH]->gpu_data(); const Dtype * b = this->blobs_[B]->gpu_data(); Dtype * c = cell_.mutable_gpu_data(); Dtype * gates = gates_.mutable_gpu_data(); Dtype * h = top[0]->mutable_gpu_data(); Dtype * c_prev = buffer_c_prev_.mutable_gpu_data(); Dtype * h_prev = buffer_h_prev_.mutable_gpu_data(); const Dtype * bias_multiplier = bias_multiplier_.gpu_data(); Dtype * x_static_ws = (x_static) ? x_static_ws_.mutable_gpu_data() : NULL; caffe_gpu_gemm(CblasNoTrans, CblasTrans, T * batch, hidden_dim_, input_feature_dim_, Dtype(1), x, wx, Dtype(0), gates); caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, T * batch, hidden_dim_, 1, Dtype(1), bias_multiplier, b, Dtype(1), gates); if (x_static) caffe_gpu_gemm(CblasNoTrans, CblasTrans, batch, hidden_dim_, input_feature_dim_, Dtype(1), x_static, ws, Dtype(0), x_static_ws); for (int t = 0; t < T; t++) { const Dtype * cont_t = (cont ? cont + t * batch : NULL); Dtype * gates_t = gates + t * count * NumOfGates; Dtype * c_t = c + t * count; Dtype * h_t = h + t * count; if (x_static) caffe_gpu_add(x_static_ws_.count(), x_static_ws, gates_t, gates_t); copy_prev_gpu(t, count, cont_t, c_t, h_t, c_prev, h_prev); caffe_gpu_gemm(CblasNoTrans, CblasTrans, batch, hidden_dim_, output_feature_dim_, Dtype(1), h_prev, uh, Dtype(1), gates_t); // NOLINT_NEXT_LINE(whitespace/operators) lstm_forward_kernel<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>(count, output_feature_dim_, gates_t, h_t, c_t, c_prev); CUDA_POST_KERNEL_CHECK; } } template <typename Dtype> void SLLSTMLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { if (propagate_down.size() > 1) { CHECK(!propagate_down[1]) << "Cannot back-propagate to continuous indicator."; } // clean blobs_[n]->gpu_diff() for (int i = 0; i < NumOfBlobs; i++) { caffe_gpu_set(this->blobs_[i]->count(), Dtype(0), this->blobs_[i]->mutable_gpu_diff()); } const Dtype * x_static = NULL, *ws = NULL; Dtype * ws_diff = NULL, *x_static_diff = NULL; if (bottom.size() > 2) { ws = this->blobs_[WS]->gpu_data(); ws_diff = this->blobs_[WS]->mutable_gpu_diff(); x_static = bottom[2]->gpu_data(); if (propagate_down[2]) { x_static_diff = bottom[2]->mutable_gpu_diff(); caffe_gpu_set(bottom[2]->count(), Dtype(0), bottom[2]->mutable_gpu_diff()); } } const int T = bottom[0]->shape(0); const int batch = bottom[0]->shape(1); const int count = batch * output_feature_dim_; const int hidden_dim_ = NumOfGates * output_feature_dim_; // clean c_prev(and diff) & h_prev(and diff) Dtype * c_diff[2]; c_diff[0] = buffer_c_diff_.mutable_gpu_data(); c_diff[1] = buffer_c_diff_.mutable_gpu_diff(); caffe_gpu_set(count, Dtype(0), c_diff[0]); caffe_gpu_set(count, Dtype(0), c_diff[1]); Dtype * h_prev = buffer_h_prev_.mutable_gpu_data(); Dtype * h_backpropagate = buffer_h_prev_.mutable_gpu_diff(); caffe_gpu_set(count, Dtype(0), h_backpropagate); Dtype * c_prev = buffer_c_prev_.mutable_gpu_data(); // pointers const Dtype * x = bottom[0]->gpu_data(); const Dtype * cont = (bottom.size() > 1) ? bottom[1]->gpu_data() : NULL; const Dtype * h = top[0]->gpu_data(); const Dtype * c = cell_.gpu_data(); const Dtype * gates = gates_.gpu_data(); const Dtype * wx = this->blobs_[WX]->gpu_data(); const Dtype * uh = this->blobs_[UH]->gpu_data(); const Dtype * bias_multiplier = bias_multiplier_.gpu_data(); Dtype * h_diff = top[0]->mutable_gpu_diff(); Dtype * gates_diff = gates_.mutable_gpu_diff(); Dtype * wx_diff = this->blobs_[WX]->mutable_gpu_diff(); Dtype * uh_diff = this->blobs_[UH]->mutable_gpu_diff(); Dtype * b_diff = this->blobs_[B]->mutable_gpu_diff(); Dtype * x_diff = propagate_down[0] ? bottom[0]->mutable_gpu_diff() : NULL; bool FLAG = true; // loop body for (int t = T-1; t >= 0; t--) { const Dtype * cont_t = cont ? cont + t * batch : NULL; int offset = t * count; const Dtype * h_t = h + offset; const Dtype * c_t = c + offset; const Dtype * gates_t = gates + offset * NumOfGates; const Dtype * x_t = x + t * batch * input_feature_dim_; Dtype * h_t_diff = h_diff + offset; FLAG = !FLAG; const Dtype * c_t_diff = c_diff[FLAG]; Dtype * c_backpropagate = c_diff[!FLAG]; Dtype * gates_t_diff = gates_diff + offset * NumOfGates; // accumulate. caffe_gpu_add(count, h_backpropagate, h_t_diff, h_t_diff); copy_prev_gpu(t, count, cont_t, c_t, h_t, c_prev, h_prev); // NOLINT_NEXT_LINE(whitespace/operators) lstm_backward_kernel<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>(batch, output_feature_dim_, gates_t, gates_t_diff, c_t, c_t_diff, c_prev, c_backpropagate, h_t_diff); CUDA_POST_KERNEL_CHECK; // NOLINT_NEXT_LINE(whitespace/operators) lstm_acts_backward<Dtype><<<CAFFE_GET_BLOCKS(count*NumOfGates), CAFFE_CUDA_NUM_THREADS>>>(count*NumOfGates, output_feature_dim_, gates_t, gates_t_diff); CUDA_POST_KERNEL_CHECK; caffe_gpu_gemm(CblasTrans, CblasNoTrans, hidden_dim_, input_feature_dim_, batch, Dtype(1), gates_t_diff, x_t, Dtype(1), wx_diff); if (x_static) caffe_gpu_gemm(CblasTrans, CblasNoTrans, hidden_dim_, input_feature_dim_, batch, Dtype(1), gates_t_diff, x_static, Dtype(1), ws_diff); if (x_static_diff) caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, batch, input_feature_dim_, hidden_dim_, Dtype(1), gates_t_diff, ws, Dtype(1), x_static_diff); caffe_gpu_gemm(CblasTrans, CblasNoTrans, hidden_dim_, output_feature_dim_, batch, Dtype(1), gates_t_diff, h_prev, Dtype(1), uh_diff); caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, batch, output_feature_dim_, hidden_dim_, Dtype(1), gates_t_diff, uh, Dtype(0), h_backpropagate); if (t > 0 && cont_t) { // NOLINT_NEXT_LINE(whitespace/operators) lstm_copy_indicator<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>(count, output_feature_dim_, cont_t, h_backpropagate, h_backpropagate); CUDA_POST_KERNEL_CHECK; // NOLINT_NEXT_LINE(whitespace/operators) lstm_copy_indicator<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>(count, output_feature_dim_, cont_t, c_backpropagate, c_backpropagate); CUDA_POST_KERNEL_CHECK; } } if (x_diff) caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, batch*T, input_feature_dim_, hidden_dim_, Dtype(1), gates_diff, wx, Dtype(0), x_diff); caffe_gpu_gemv<Dtype>(CblasTrans, T * batch, hidden_dim_, 1, gates_diff, bias_multiplier, Dtype(1), b_diff); #ifdef USE_MPI if (Caffe::getStrategy() == 0) { cudaDeviceSynchronize(); for (int i = 0; i < NumOfBlobs; i++) { MPI_Allreduce(MPI_IN_PLACE, this->blobs_[i]->mutable_gpu_diff(), this->blobs_[i]->count(), MPI_FLOAT, MPI_SUM, MPI_COMM_WORLD); } } else if (Caffe::getStrategy() == 1) { MpiTaskList<Dtype> *task_list = (MpiTaskList<Dtype> *)Caffe::getTaskList(); for (int i = 0; i < NumOfBlobs; i++) { this->blobs_[i]->mutable_cpu_diff(); } cudaDeviceSynchronize(); for (int i = 0; i < NumOfBlobs; i++) { task_list->push_back(new MpiTask<Dtype>(NULL,0,this->blobs_[i].get(),1,this->blobs_[i]->count())); } } else { } #endif // USE_MPI } INSTANTIATE_LAYER_GPU_FUNCS(SLLSTMLayer); }; // namespace caffe
cc09a40a00361181f56e0fcb3a250a8d4dacc359.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /***************************************** Emitting C Generated Code *******************************************/ #ifndef _GNU_SOURCE #define _GNU_SOURCE #endif #include <string.h> #include <stdlib.h> #include "cuda_header.h" #include <stdio.h> #include <stdint.h> #include <stdbool.h> #include "scanner_header.h" /************* Functions **************/ __global__ void x9(float** x10, float* x11) { // this is cuda 2-section concat kernel for 3D inputs at axis 2. // It concatenates 2 3D arrays on the innermost dimension (dim2). // arg0: array of input input arrays // arg1: output array // call constraint: in.size = 2 // call constraint: sum of in(i).size = out.size for i in [0, 2) int x12 = blockIdx.x * blockDim.x + threadIdx.x; if (x12 < 48) { int x13 = x12 % 8; if (x13 < 3) x11[x12] = x10[0][x12 / 8 * 3 + x13]; else x11[x12] = x10[1][x12 / 8 * 5 + (x13 - 3)]; } } /**************** Snippet ****************/ void Snippet(int x0) { float* x1 = (float*)malloc(18 * sizeof(float)); scan_floats("golden/concat2/input0.data", x1, 18); float* x2 = (float*)malloc(0 * sizeof(float)); CUDA_CALL(hipMalloc(&x2, (size_t)(18 * sizeof(float)))); CUDA_CALL(hipMemcpy(x2, x1, (size_t)(18 * sizeof(float)), hipMemcpyHostToDevice)); float* x3 = (float*)malloc(30 * sizeof(float)); scan_floats("golden/concat2/input1.data", x3, 30); float* x4 = (float*)malloc(0 * sizeof(float)); CUDA_CALL(hipMalloc(&x4, (size_t)(30 * sizeof(float)))); CUDA_CALL(hipMemcpy(x4, x3, (size_t)(30 * sizeof(float)), hipMemcpyHostToDevice)); float* x5 = (float*)malloc(48 * sizeof(float)); float* x6 = (float*)malloc(0 * sizeof(float)); CUDA_CALL(hipMalloc(&x6, (size_t)(48 * sizeof(float)))); float** x7 = (float**)malloc(2 * sizeof(float*)); x7[0] = x2; x7[1] = x4; float** x8 = (float**)malloc(0 * sizeof(float*)); CUDA_CALL(hipMalloc(&x8, (size_t)(2 * sizeof(float*)))); CUDA_CALL(hipMemcpy(x8, x7, (size_t)(2 * sizeof(float*)), hipMemcpyHostToDevice)); hipLaunchKernelGGL(( x9), dim3(dim3(1, 1, 1)), dim3(dim3(512, 1, 1)), 0, 0, x8, x6); CUDA_CALL(hipMemcpy(x5, x6, (size_t)(48 * sizeof(float)), hipMemcpyDeviceToHost)); // check general cuda3DConcat kernel check_float_array("golden/concat2/output.data", x5, 48); } /***************************************** End of C Generated Code *******************************************/ int main(int argc, char *argv[]) { if (argc != 2) { printf("usage: %s <arg>\n", argv[0]); return 0; } Snippet(atoi(argv[1])); return 0; }
cc09a40a00361181f56e0fcb3a250a8d4dacc359.cu
/***************************************** Emitting C Generated Code *******************************************/ #ifndef _GNU_SOURCE #define _GNU_SOURCE #endif #include <string.h> #include <stdlib.h> #include "cuda_header.h" #include <stdio.h> #include <stdint.h> #include <stdbool.h> #include "scanner_header.h" /************* Functions **************/ __global__ void x9(float** x10, float* x11) { // this is cuda 2-section concat kernel for 3D inputs at axis 2. // It concatenates 2 3D arrays on the innermost dimension (dim2). // arg0: array of input input arrays // arg1: output array // call constraint: in.size = 2 // call constraint: sum of in(i).size = out.size for i in [0, 2) int x12 = blockIdx.x * blockDim.x + threadIdx.x; if (x12 < 48) { int x13 = x12 % 8; if (x13 < 3) x11[x12] = x10[0][x12 / 8 * 3 + x13]; else x11[x12] = x10[1][x12 / 8 * 5 + (x13 - 3)]; } } /**************** Snippet ****************/ void Snippet(int x0) { float* x1 = (float*)malloc(18 * sizeof(float)); scan_floats("golden/concat2/input0.data", x1, 18); float* x2 = (float*)malloc(0 * sizeof(float)); CUDA_CALL(cudaMalloc(&x2, (size_t)(18 * sizeof(float)))); CUDA_CALL(cudaMemcpy(x2, x1, (size_t)(18 * sizeof(float)), cudaMemcpyHostToDevice)); float* x3 = (float*)malloc(30 * sizeof(float)); scan_floats("golden/concat2/input1.data", x3, 30); float* x4 = (float*)malloc(0 * sizeof(float)); CUDA_CALL(cudaMalloc(&x4, (size_t)(30 * sizeof(float)))); CUDA_CALL(cudaMemcpy(x4, x3, (size_t)(30 * sizeof(float)), cudaMemcpyHostToDevice)); float* x5 = (float*)malloc(48 * sizeof(float)); float* x6 = (float*)malloc(0 * sizeof(float)); CUDA_CALL(cudaMalloc(&x6, (size_t)(48 * sizeof(float)))); float** x7 = (float**)malloc(2 * sizeof(float*)); x7[0] = x2; x7[1] = x4; float** x8 = (float**)malloc(0 * sizeof(float*)); CUDA_CALL(cudaMalloc(&x8, (size_t)(2 * sizeof(float*)))); CUDA_CALL(cudaMemcpy(x8, x7, (size_t)(2 * sizeof(float*)), cudaMemcpyHostToDevice)); x9<<<dim3(1, 1, 1), dim3(512, 1, 1)>>>(x8, x6); CUDA_CALL(cudaMemcpy(x5, x6, (size_t)(48 * sizeof(float)), cudaMemcpyDeviceToHost)); // check general cuda3DConcat kernel check_float_array("golden/concat2/output.data", x5, 48); } /***************************************** End of C Generated Code *******************************************/ int main(int argc, char *argv[]) { if (argc != 2) { printf("usage: %s <arg>\n", argv[0]); return 0; } Snippet(atoi(argv[1])); return 0; }
77d6bbb70625d436da332ead93076cf7c67e18e6.hip
// !!! This is a file automatically generated by hipify!!! #include <math.h> #include <omp.h> #include <stdio.h> #include <stdlib.h> #include <hip/hip_runtime.h> #define COMMENT "Histogram_GPU" #define RGB_COMPONENT_COLOR 255 #define MIN(a, b) (((a) < (b)) ? (a) : (b)) #define MAX(a, b) (((a) > (b)) ? (a) : (b)) #define HISTOGRAM_SIZE 64 #define TILE_WITDH 16 void check_cuda(hipError_t error, const char *filename, const int line) { if (error != hipSuccess) { fprintf(stderr, "Error: %s:%d: %s: %s\n", filename, line, hipGetErrorName(error), hipGetErrorString(error)); exit(EXIT_FAILURE); } } #define CUDACHECK(cmd) check_cuda(cmd, __FILE__, __LINE__) typedef struct { unsigned char red, green, blue; } PPMPixel; typedef struct { int x, y; PPMPixel *data; } PPMImage; static PPMImage *readPPM(const char *filename) { char buff[16]; PPMImage *img; FILE *fp; int c, rgb_comp_color; fp = fopen(filename, "rb"); if (!fp) { fprintf(stderr, "Unable to open file '%s'\n", filename); exit(1); } if (!fgets(buff, sizeof(buff), fp)) { perror(filename); exit(1); } if (buff[0] != 'P' || buff[1] != '6') { fprintf(stderr, "Invalid image format (must be 'P6')\n"); exit(1); } img = (PPMImage *)malloc(sizeof(PPMImage)); if (!img) { fprintf(stderr, "Unable to allocate memory\n"); exit(1); } c = getc(fp); while (c == '#') { while (getc(fp) != '\n') ; c = getc(fp); } ungetc(c, fp); if (fscanf(fp, "%d %d", &img->x, &img->y) != 2) { fprintf(stderr, "Invalid image size (error loading '%s')\n", filename); exit(1); } if (fscanf(fp, "%d", &rgb_comp_color) != 1) { fprintf(stderr, "Invalid rgb component (error loading '%s')\n", filename); exit(1); } if (rgb_comp_color != RGB_COMPONENT_COLOR) { fprintf(stderr, "'%s' does not have 8-bits components\n", filename); exit(1); } while (fgetc(fp) != '\n') ; img->data = (PPMPixel *)malloc(img->x * img->y * sizeof(PPMPixel)); if (!img) { fprintf(stderr, "Unable to allocate memory\n"); exit(1); } if (fread(img->data, 3 * img->x, img->y, fp) != img->y) { fprintf(stderr, "Error loading image '%s'\n", filename); exit(1); } fclose(fp); return img; } __global__ void histogram_kernel(PPMImage *d_image, float* hist) { __shared__ float private_hist[HISTOGRAM_SIZE]; float size = d_image->y*d_image->x*1.0; if(threadIdx.x * TILE_WITDH + threadIdx.y < HISTOGRAM_SIZE) private_hist[threadIdx.x * TILE_WITDH + threadIdx.y] = 0; __syncthreads(); // Get variable values int col = blockDim.x * blockIdx.x + threadIdx.x, row = blockDim.y * blockIdx.y + threadIdx.y, index = row * d_image->x + col; if((row < d_image->y && col < d_image->x) && (index < d_image->x*d_image->y)) { atomicAdd(&(private_hist[16*d_image->data[index].red + 4 * d_image->data[index].green + d_image->data[index].blue]), 1); } __syncthreads(); if(threadIdx.x * TILE_WITDH + threadIdx.y < HISTOGRAM_SIZE) { atomicAdd(&(hist[threadIdx.x * TILE_WITDH + threadIdx.y]), (private_hist[threadIdx.x * TILE_WITDH + threadIdx.y]/size)); } } double Histogram(PPMImage *image, float *h_h) { float ms; hipEvent_t start, stop; int i; unsigned int rows, cols, img_size; PPMImage *d_image; PPMPixel *d_pixels; float *d_hist; // Create Events CUDACHECK(hipEventCreate(&start)); CUDACHECK(hipEventCreate(&stop)); // Get image data cols = image->x; rows = image->y; img_size = cols * rows; //Process every image data for (i = 0; i < img_size; i++) { image->data[i].red = floor((image->data[i].red * 4) / 256); image->data[i].blue = floor((image->data[i].blue * 4) / 256); image->data[i].green = floor((image->data[i].green * 4) / 256); } hipMalloc((void **)&d_image, sizeof(PPMImage)); hipMalloc((void **)&d_pixels, sizeof(PPMPixel) * img_size); hipMalloc((void **)&d_hist, HISTOGRAM_SIZE*sizeof(float)); hipMemcpy(d_image, image, sizeof(PPMImage), hipMemcpyHostToDevice); hipMemcpy(d_pixels, image->data, sizeof(PPMPixel) * img_size, hipMemcpyHostToDevice); hipMemcpy(&(d_image->data), &d_pixels, sizeof(PPMPixel *), hipMemcpyHostToDevice); hipMemcpy(d_hist, h_h, HISTOGRAM_SIZE*sizeof(float), hipMemcpyHostToDevice); dim3 dimGrid(ceil((float)cols / TILE_WITDH), ceil((float)rows / TILE_WITDH), 1); dim3 dimBlock(TILE_WITDH, TILE_WITDH, 1); // Launch kernel and compute kernel runtime. // Warning: make sure only the kernel is being profiled, memcpies should be // out of this region. CUDACHECK(hipEventRecord(start)); hipLaunchKernelGGL(( histogram_kernel), dim3(dimGrid), dim3(dimBlock), 0, 0, d_image, d_hist); CUDACHECK(hipEventRecord(stop)); CUDACHECK(hipEventSynchronize(stop)); CUDACHECK(hipEventElapsedTime(&ms, start, stop)); hipMemcpy(h_h, d_hist, HISTOGRAM_SIZE*sizeof(float), hipMemcpyDeviceToHost); // Destroy events CUDACHECK(hipEventDestroy(start)); CUDACHECK(hipEventDestroy(stop)); hipFree(d_image); hipFree(d_pixels); hipFree(d_hist); return ((double)ms) / 1000.0; } int main(int argc, char *argv[]) { if (argc < 2) { fprintf(stderr, "Error: missing path to input file\n"); return 1; } PPMImage *image = readPPM(argv[1]); float *h = (float *)malloc(sizeof(float) * 64); // Initialize histogram for (int i = 0; i < 64; i++) h[i] = 0.0; // Compute histogram double t = Histogram(image, h); for (int i = 0; i < 64; i++) printf("%0.3f ", h[i]); printf("\n"); fprintf(stderr, "%lf\n", t); free(h); }
77d6bbb70625d436da332ead93076cf7c67e18e6.cu
#include <math.h> #include <omp.h> #include <stdio.h> #include <stdlib.h> #include <cuda.h> #define COMMENT "Histogram_GPU" #define RGB_COMPONENT_COLOR 255 #define MIN(a, b) (((a) < (b)) ? (a) : (b)) #define MAX(a, b) (((a) > (b)) ? (a) : (b)) #define HISTOGRAM_SIZE 64 #define TILE_WITDH 16 void check_cuda(cudaError_t error, const char *filename, const int line) { if (error != cudaSuccess) { fprintf(stderr, "Error: %s:%d: %s: %s\n", filename, line, cudaGetErrorName(error), cudaGetErrorString(error)); exit(EXIT_FAILURE); } } #define CUDACHECK(cmd) check_cuda(cmd, __FILE__, __LINE__) typedef struct { unsigned char red, green, blue; } PPMPixel; typedef struct { int x, y; PPMPixel *data; } PPMImage; static PPMImage *readPPM(const char *filename) { char buff[16]; PPMImage *img; FILE *fp; int c, rgb_comp_color; fp = fopen(filename, "rb"); if (!fp) { fprintf(stderr, "Unable to open file '%s'\n", filename); exit(1); } if (!fgets(buff, sizeof(buff), fp)) { perror(filename); exit(1); } if (buff[0] != 'P' || buff[1] != '6') { fprintf(stderr, "Invalid image format (must be 'P6')\n"); exit(1); } img = (PPMImage *)malloc(sizeof(PPMImage)); if (!img) { fprintf(stderr, "Unable to allocate memory\n"); exit(1); } c = getc(fp); while (c == '#') { while (getc(fp) != '\n') ; c = getc(fp); } ungetc(c, fp); if (fscanf(fp, "%d %d", &img->x, &img->y) != 2) { fprintf(stderr, "Invalid image size (error loading '%s')\n", filename); exit(1); } if (fscanf(fp, "%d", &rgb_comp_color) != 1) { fprintf(stderr, "Invalid rgb component (error loading '%s')\n", filename); exit(1); } if (rgb_comp_color != RGB_COMPONENT_COLOR) { fprintf(stderr, "'%s' does not have 8-bits components\n", filename); exit(1); } while (fgetc(fp) != '\n') ; img->data = (PPMPixel *)malloc(img->x * img->y * sizeof(PPMPixel)); if (!img) { fprintf(stderr, "Unable to allocate memory\n"); exit(1); } if (fread(img->data, 3 * img->x, img->y, fp) != img->y) { fprintf(stderr, "Error loading image '%s'\n", filename); exit(1); } fclose(fp); return img; } __global__ void histogram_kernel(PPMImage *d_image, float* hist) { __shared__ float private_hist[HISTOGRAM_SIZE]; float size = d_image->y*d_image->x*1.0; if(threadIdx.x * TILE_WITDH + threadIdx.y < HISTOGRAM_SIZE) private_hist[threadIdx.x * TILE_WITDH + threadIdx.y] = 0; __syncthreads(); // Get variable values int col = blockDim.x * blockIdx.x + threadIdx.x, row = blockDim.y * blockIdx.y + threadIdx.y, index = row * d_image->x + col; if((row < d_image->y && col < d_image->x) && (index < d_image->x*d_image->y)) { atomicAdd(&(private_hist[16*d_image->data[index].red + 4 * d_image->data[index].green + d_image->data[index].blue]), 1); } __syncthreads(); if(threadIdx.x * TILE_WITDH + threadIdx.y < HISTOGRAM_SIZE) { atomicAdd(&(hist[threadIdx.x * TILE_WITDH + threadIdx.y]), (private_hist[threadIdx.x * TILE_WITDH + threadIdx.y]/size)); } } double Histogram(PPMImage *image, float *h_h) { float ms; cudaEvent_t start, stop; int i; unsigned int rows, cols, img_size; PPMImage *d_image; PPMPixel *d_pixels; float *d_hist; // Create Events CUDACHECK(cudaEventCreate(&start)); CUDACHECK(cudaEventCreate(&stop)); // Get image data cols = image->x; rows = image->y; img_size = cols * rows; //Process every image data for (i = 0; i < img_size; i++) { image->data[i].red = floor((image->data[i].red * 4) / 256); image->data[i].blue = floor((image->data[i].blue * 4) / 256); image->data[i].green = floor((image->data[i].green * 4) / 256); } cudaMalloc((void **)&d_image, sizeof(PPMImage)); cudaMalloc((void **)&d_pixels, sizeof(PPMPixel) * img_size); cudaMalloc((void **)&d_hist, HISTOGRAM_SIZE*sizeof(float)); cudaMemcpy(d_image, image, sizeof(PPMImage), cudaMemcpyHostToDevice); cudaMemcpy(d_pixels, image->data, sizeof(PPMPixel) * img_size, cudaMemcpyHostToDevice); cudaMemcpy(&(d_image->data), &d_pixels, sizeof(PPMPixel *), cudaMemcpyHostToDevice); cudaMemcpy(d_hist, h_h, HISTOGRAM_SIZE*sizeof(float), cudaMemcpyHostToDevice); dim3 dimGrid(ceil((float)cols / TILE_WITDH), ceil((float)rows / TILE_WITDH), 1); dim3 dimBlock(TILE_WITDH, TILE_WITDH, 1); // Launch kernel and compute kernel runtime. // Warning: make sure only the kernel is being profiled, memcpies should be // out of this region. CUDACHECK(cudaEventRecord(start)); histogram_kernel<<<dimGrid, dimBlock>>>(d_image, d_hist); CUDACHECK(cudaEventRecord(stop)); CUDACHECK(cudaEventSynchronize(stop)); CUDACHECK(cudaEventElapsedTime(&ms, start, stop)); cudaMemcpy(h_h, d_hist, HISTOGRAM_SIZE*sizeof(float), cudaMemcpyDeviceToHost); // Destroy events CUDACHECK(cudaEventDestroy(start)); CUDACHECK(cudaEventDestroy(stop)); cudaFree(d_image); cudaFree(d_pixels); cudaFree(d_hist); return ((double)ms) / 1000.0; } int main(int argc, char *argv[]) { if (argc < 2) { fprintf(stderr, "Error: missing path to input file\n"); return 1; } PPMImage *image = readPPM(argv[1]); float *h = (float *)malloc(sizeof(float) * 64); // Initialize histogram for (int i = 0; i < 64; i++) h[i] = 0.0; // Compute histogram double t = Histogram(image, h); for (int i = 0; i < 64; i++) printf("%0.3f ", h[i]); printf("\n"); fprintf(stderr, "%lf\n", t); free(h); }
dc88bd66e9a7b48378b89cdc37d9ea12f1527046.hip
// !!! This is a file automatically generated by hipify!!! // Copyright Contributors to the Open Shading Language project. // SPDX-License-Identifier: BSD-3-Clause // https://github.com/AcademySoftwareFoundation/OpenShadingLanguage #include <optix.h> #if (OPTIX_VERSION < 70000) #include <optixu/optixu_math_namespace.h> #else #include <optix.h> #include <hip/hip_runtime.h> #endif #include <OSL/device_string.h> #include <OSL/oslclosure.h> #include "rend_lib.h" #include "util.h" #if (OPTIX_VERSION < 70000) // Ray payload rtDeclareVariable (PRD_radiance, prd_radiance, rtPayload, ); // ray/hit variables rtDeclareVariable (float3, shading_normal, attribute shading_normal, ); rtDeclareVariable (float3, geometric_normal, attribute geometric_normal,); rtDeclareVariable (float3, texcoord, attribute texcoord, ); rtDeclareVariable (float, surface_area, attribute surface_area, ); rtDeclareVariable (float3, dPdu, attribute dPdu, ); rtDeclareVariable (float3, dPdv, attribute dPdv, ); rtDeclareVariable (int, obj_id, attribute obj_id, ); rtDeclareVariable (int, lgt_idx, attribute lgt_idx, ); // ray/hit variables rtDeclareVariable (uint2, launch_index, rtLaunchIndex, ); rtDeclareVariable (uint2, launch_dim, rtLaunchDim, ); rtDeclareVariable (optix::Ray, ray, rtCurrentRay, ); rtDeclareVariable (float, t_hit, rtIntersectionDistance, ); // Buffers rtBuffer<float3,2> output_buffer; // Function pointers for the OSL shader rtDeclareVariable (rtCallableProgramId<void (void*, void*)>, osl_init_func, , ); rtDeclareVariable (rtCallableProgramId<void (void*, void*)>, osl_group_func, ,); RT_PROGRAM void any_hit_shadow() { rtTerminateRay(); } static __device__ void globals_from_hit(ShaderGlobals& sg) { // Setup the ShaderGlobals sg.I = ray.direction; sg.N = normalize(rtTransformNormal (RT_OBJECT_TO_WORLD, shading_normal)); sg.Ng = normalize(rtTransformNormal (RT_OBJECT_TO_WORLD, geometric_normal)); sg.P = ray.origin + t_hit * ray.direction; sg.dPdu = dPdu; sg.u = texcoord.x; sg.v = texcoord.y; sg.Ci = NULL; sg.surfacearea = surface_area; sg.backfacing = (dot(sg.N, sg.I) > 0.0f); if (sg.backfacing) { sg.N = -sg.N; sg.Ng = -sg.Ng; } // NB: These variables are not used in the current iteration of the sample sg.raytype = CAMERA; sg.flipHandedness = 0; } static __device__ float3 process_closure(const OSL::ClosureColor* closure_tree) { OSL::Color3 result = OSL::Color3 (0.0f); if (!closure_tree) { return make_float3(result.x, result.y, result.z); } // The depth of the closure tree must not exceed the stack size. // A stack size of 8 is probably quite generous for relatively // balanced trees. const int STACK_SIZE = 8; // Non-recursive traversal stack int stack_idx = 0; const OSL::ClosureColor* ptr_stack[STACK_SIZE]; OSL::Color3 weight_stack[STACK_SIZE]; // Shading accumulator OSL::Color3 weight = OSL::Color3(1.0f); const void* cur = closure_tree; while (cur) { switch (((OSL::ClosureColor*)cur)->id) { case OSL::ClosureColor::ADD: { ptr_stack [stack_idx ] = ((OSL::ClosureAdd*) cur)->closureB; weight_stack[stack_idx++] = weight; cur = ((OSL::ClosureAdd*) cur)->closureA; break; } case OSL::ClosureColor::MUL: { weight *= ((OSL::ClosureMul*) cur)->weight; cur = ((OSL::ClosureMul*) cur)->closure; break; } case EMISSION_ID: { cur = NULL; break; } case DIFFUSE_ID: case OREN_NAYAR_ID: case PHONG_ID: case WARD_ID: case REFLECTION_ID: case REFRACTION_ID: case FRESNEL_REFLECTION_ID: { result += ((OSL::ClosureComponent*) cur)->w * weight; cur = NULL; break; } case MICROFACET_ID: { const char* mem = (const char*)((OSL::ClosureComponent*) cur)->data(); const char* dist_str = *(const char**) &mem[0]; #if 0 if (launch_index.x == launch_dim.x / 2 && launch_index.y == launch_dim.y / 2) printf ("microfacet, dist: %s\n", HDSTR(dist_str).c_str()); #endif if (HDSTR(dist_str) == OSL::DeviceStrings::default_) return make_float3(0.0f, 1.0f, 1.0f); return make_float3(1.0f, 0.0f, 1.0f); } default: cur = NULL; break; } if (cur == NULL && stack_idx > 0) { cur = ptr_stack [--stack_idx]; weight = weight_stack[ stack_idx]; } } return make_float3(result.x, result.y, result.z); } RT_PROGRAM void closest_hit_osl() { // TODO: Fixed-sized allocations can easily be exceeded by arbitrary shader // networks, so there should be (at least) some mechanism to issue a // warning or error if the closure or param storage can possibly be // exceeded. alignas(8) char closure_pool[256]; alignas(8) char params [256]; ShaderGlobals sg; globals_from_hit (sg); // Pack the "closure pool" into one of the ShaderGlobals pointers *(int*) &closure_pool[0] = 0; sg.renderstate = &closure_pool[0]; // Create some run-time options structs. The OSL shader fills in the structs // as it executes, based on the options specified in the shader source. NoiseOptCUDA noiseopt; TextureOptCUDA textureopt; TraceOptCUDA traceopt; // Pack the pointers to the options structs in a faux "context", // which is a rough stand-in for the host ShadingContext. ShadingContextCUDA shading_context = { &noiseopt, &textureopt, &traceopt }; sg.context = &shading_context; // Run the OSL group and init functions osl_init_func (&sg, params); osl_group_func(&sg, params); prd_radiance.result = process_closure ((OSL::ClosureColor*) sg.Ci); } #else //#if (OPTIX_VERSION < 70000) #include "../render_params.h" extern "C" { __device__ __constant__ RenderParams render_params; } extern"C" __global__ void __anyhit__any_hit_shadow () { optixTerminateRay(); } static __device__ void globals_from_hit (ShaderGlobals& sg) { const GenericRecord *record = reinterpret_cast<GenericRecord *> (optixGetSbtDataPointer()); ShaderGlobals local_sg; // hit-kind 0: quad hit // 1: sphere hit optixDirectCall<void, unsigned int, float, float3, float3, ShaderGlobals *>( optixGetHitKind(), optixGetPrimitiveIndex(), optixGetRayTmax(), optixGetWorldRayOrigin(), optixGetWorldRayDirection(), &local_sg); // Setup the ShaderGlobals const float3 ray_direction = optixGetWorldRayDirection(); const float3 ray_origin = optixGetWorldRayOrigin(); const float t_hit = optixGetRayTmin(); sg.I = ray_direction; sg.N = normalize (optixTransformNormalFromObjectToWorldSpace (local_sg.N)); sg.Ng = normalize (optixTransformNormalFromObjectToWorldSpace (local_sg.Ng)); sg.P = ray_origin + t_hit * ray_direction; sg.dPdu = local_sg.dPdu; sg.dPdv = local_sg.dPdv; sg.u = local_sg.u; sg.v = local_sg.v; sg.Ci = NULL; sg.surfacearea = local_sg.surfacearea; sg.backfacing = dot (sg.N, sg.I) > 0.0f; sg.shaderID = local_sg.shaderID; if (sg.backfacing) { sg.N = -sg.N; sg.Ng = -sg.Ng; } // NB: These variables are not used in the current iteration of the sample sg.raytype = CAMERA; sg.flipHandedness = 0; } static __device__ float3 process_closure (const OSL::ClosureColor* closure_tree) { OSL::Color3 result = OSL::Color3 (0.0f); if (!closure_tree) { return make_float3 (result.x, result.y, result.z); } // The depth of the closure tree must not exceed the stack size. // A stack size of 8 is probably quite generous for relatively // balanced trees. const int STACK_SIZE = 8; // Non-recursive traversal stack int stack_idx = 0; const OSL::ClosureColor* ptr_stack[STACK_SIZE]; OSL::Color3 weight_stack[STACK_SIZE]; // Shading accumulator OSL::Color3 weight = OSL::Color3 (1.0f); const void* cur = closure_tree; while (cur) { switch (((OSL::ClosureColor*)cur)->id) { case OSL::ClosureColor::ADD: { ptr_stack [stack_idx ] = ((OSL::ClosureAdd*) cur)->closureB; weight_stack[stack_idx++] = weight; cur = ((OSL::ClosureAdd*) cur)->closureA; break; } case OSL::ClosureColor::MUL: { weight *= ((OSL::ClosureMul*) cur)->weight; cur = ((OSL::ClosureMul*) cur)->closure; break; } case EMISSION_ID: { cur = NULL; break; } case DIFFUSE_ID: case OREN_NAYAR_ID: case PHONG_ID: case WARD_ID: case REFLECTION_ID: case REFRACTION_ID: case FRESNEL_REFLECTION_ID: { result += ((OSL::ClosureComponent*) cur)->w * weight; cur = NULL; break; } case MICROFACET_ID: { const char* mem = (const char*)((OSL::ClosureComponent*) cur)->data(); const char* dist_str = *(const char**) &mem[0]; if (HDSTR(dist_str) == STRING_PARAMS(default)) return make_float3(0.0f, 1.0f, 1.0f); else return make_float3(1.0f, 0.0f, 1.0f); break; } default: cur = NULL; break; } if (cur == NULL && stack_idx > 0) { cur = ptr_stack [--stack_idx]; weight = weight_stack[ stack_idx]; } } return make_float3(result.x, result.y, result.z); } extern "C" __global__ void __closesthit__closest_hit_osl() { // TODO: Fixed-sized allocations can easily be exceeded by arbitrary shader // networks, so there should be (at least) some mechanism to issue a // warning or error if the closure or param storage can possibly be // exceeded. alignas(8) char closure_pool[256]; alignas(8) char params [256]; ShaderGlobals sg; globals_from_hit (sg); // Pack the "closure pool" into one of the ShaderGlobals pointers *(int*) &closure_pool[0] = 0; sg.renderstate = &closure_pool[0]; // Create some run-time options structs. The OSL shader fills in the structs // as it executes, based on the options specified in the shader source. NoiseOptCUDA noiseopt; TextureOptCUDA textureopt; TraceOptCUDA traceopt; // Pack the pointers to the options structs in a faux "context", // which is a rough stand-in for the host ShadingContext. ShadingContextCUDA shading_context = { &noiseopt, &textureopt, &traceopt }; sg.context = &shading_context; // Run the OSL group and init functions const unsigned int shaderInitOpIdx = 2u + 2u * sg.shaderID + 0u; const unsigned int shaderGroupIdx = 2u + 2u * sg.shaderID + 1u; optixDirectCall<void, ShaderGlobals*, void *>(shaderInitOpIdx, &sg, params); // call osl_init_func optixDirectCall<void, ShaderGlobals*, void *>(shaderGroupIdx , &sg, params); // call osl_group_func float3 result = process_closure ((OSL::ClosureColor*) sg.Ci); uint3 launch_dims = optixGetLaunchDimensions(); uint3 launch_index = optixGetLaunchIndex(); float3* output_buffer = reinterpret_cast<float3 *>(render_params.output_buffer); int pixel = launch_index.y * launch_dims.x + launch_index.x; output_buffer[pixel] = make_float3(result.x, result.y, result.z); } #endif //#if (OPTIX_VERSION < 70000)
dc88bd66e9a7b48378b89cdc37d9ea12f1527046.cu
// Copyright Contributors to the Open Shading Language project. // SPDX-License-Identifier: BSD-3-Clause // https://github.com/AcademySoftwareFoundation/OpenShadingLanguage #include <optix.h> #if (OPTIX_VERSION < 70000) #include <optixu/optixu_math_namespace.h> #else #include <optix.h> #include <cuda_runtime.h> #endif #include <OSL/device_string.h> #include <OSL/oslclosure.h> #include "rend_lib.h" #include "util.h" #if (OPTIX_VERSION < 70000) // Ray payload rtDeclareVariable (PRD_radiance, prd_radiance, rtPayload, ); // ray/hit variables rtDeclareVariable (float3, shading_normal, attribute shading_normal, ); rtDeclareVariable (float3, geometric_normal, attribute geometric_normal,); rtDeclareVariable (float3, texcoord, attribute texcoord, ); rtDeclareVariable (float, surface_area, attribute surface_area, ); rtDeclareVariable (float3, dPdu, attribute dPdu, ); rtDeclareVariable (float3, dPdv, attribute dPdv, ); rtDeclareVariable (int, obj_id, attribute obj_id, ); rtDeclareVariable (int, lgt_idx, attribute lgt_idx, ); // ray/hit variables rtDeclareVariable (uint2, launch_index, rtLaunchIndex, ); rtDeclareVariable (uint2, launch_dim, rtLaunchDim, ); rtDeclareVariable (optix::Ray, ray, rtCurrentRay, ); rtDeclareVariable (float, t_hit, rtIntersectionDistance, ); // Buffers rtBuffer<float3,2> output_buffer; // Function pointers for the OSL shader rtDeclareVariable (rtCallableProgramId<void (void*, void*)>, osl_init_func, , ); rtDeclareVariable (rtCallableProgramId<void (void*, void*)>, osl_group_func, ,); RT_PROGRAM void any_hit_shadow() { rtTerminateRay(); } static __device__ void globals_from_hit(ShaderGlobals& sg) { // Setup the ShaderGlobals sg.I = ray.direction; sg.N = normalize(rtTransformNormal (RT_OBJECT_TO_WORLD, shading_normal)); sg.Ng = normalize(rtTransformNormal (RT_OBJECT_TO_WORLD, geometric_normal)); sg.P = ray.origin + t_hit * ray.direction; sg.dPdu = dPdu; sg.u = texcoord.x; sg.v = texcoord.y; sg.Ci = NULL; sg.surfacearea = surface_area; sg.backfacing = (dot(sg.N, sg.I) > 0.0f); if (sg.backfacing) { sg.N = -sg.N; sg.Ng = -sg.Ng; } // NB: These variables are not used in the current iteration of the sample sg.raytype = CAMERA; sg.flipHandedness = 0; } static __device__ float3 process_closure(const OSL::ClosureColor* closure_tree) { OSL::Color3 result = OSL::Color3 (0.0f); if (!closure_tree) { return make_float3(result.x, result.y, result.z); } // The depth of the closure tree must not exceed the stack size. // A stack size of 8 is probably quite generous for relatively // balanced trees. const int STACK_SIZE = 8; // Non-recursive traversal stack int stack_idx = 0; const OSL::ClosureColor* ptr_stack[STACK_SIZE]; OSL::Color3 weight_stack[STACK_SIZE]; // Shading accumulator OSL::Color3 weight = OSL::Color3(1.0f); const void* cur = closure_tree; while (cur) { switch (((OSL::ClosureColor*)cur)->id) { case OSL::ClosureColor::ADD: { ptr_stack [stack_idx ] = ((OSL::ClosureAdd*) cur)->closureB; weight_stack[stack_idx++] = weight; cur = ((OSL::ClosureAdd*) cur)->closureA; break; } case OSL::ClosureColor::MUL: { weight *= ((OSL::ClosureMul*) cur)->weight; cur = ((OSL::ClosureMul*) cur)->closure; break; } case EMISSION_ID: { cur = NULL; break; } case DIFFUSE_ID: case OREN_NAYAR_ID: case PHONG_ID: case WARD_ID: case REFLECTION_ID: case REFRACTION_ID: case FRESNEL_REFLECTION_ID: { result += ((OSL::ClosureComponent*) cur)->w * weight; cur = NULL; break; } case MICROFACET_ID: { const char* mem = (const char*)((OSL::ClosureComponent*) cur)->data(); const char* dist_str = *(const char**) &mem[0]; #if 0 if (launch_index.x == launch_dim.x / 2 && launch_index.y == launch_dim.y / 2) printf ("microfacet, dist: %s\n", HDSTR(dist_str).c_str()); #endif if (HDSTR(dist_str) == OSL::DeviceStrings::default_) return make_float3(0.0f, 1.0f, 1.0f); return make_float3(1.0f, 0.0f, 1.0f); } default: cur = NULL; break; } if (cur == NULL && stack_idx > 0) { cur = ptr_stack [--stack_idx]; weight = weight_stack[ stack_idx]; } } return make_float3(result.x, result.y, result.z); } RT_PROGRAM void closest_hit_osl() { // TODO: Fixed-sized allocations can easily be exceeded by arbitrary shader // networks, so there should be (at least) some mechanism to issue a // warning or error if the closure or param storage can possibly be // exceeded. alignas(8) char closure_pool[256]; alignas(8) char params [256]; ShaderGlobals sg; globals_from_hit (sg); // Pack the "closure pool" into one of the ShaderGlobals pointers *(int*) &closure_pool[0] = 0; sg.renderstate = &closure_pool[0]; // Create some run-time options structs. The OSL shader fills in the structs // as it executes, based on the options specified in the shader source. NoiseOptCUDA noiseopt; TextureOptCUDA textureopt; TraceOptCUDA traceopt; // Pack the pointers to the options structs in a faux "context", // which is a rough stand-in for the host ShadingContext. ShadingContextCUDA shading_context = { &noiseopt, &textureopt, &traceopt }; sg.context = &shading_context; // Run the OSL group and init functions osl_init_func (&sg, params); osl_group_func(&sg, params); prd_radiance.result = process_closure ((OSL::ClosureColor*) sg.Ci); } #else //#if (OPTIX_VERSION < 70000) #include "../render_params.h" extern "C" { __device__ __constant__ RenderParams render_params; } extern"C" __global__ void __anyhit__any_hit_shadow () { optixTerminateRay(); } static __device__ void globals_from_hit (ShaderGlobals& sg) { const GenericRecord *record = reinterpret_cast<GenericRecord *> (optixGetSbtDataPointer()); ShaderGlobals local_sg; // hit-kind 0: quad hit // 1: sphere hit optixDirectCall<void, unsigned int, float, float3, float3, ShaderGlobals *>( optixGetHitKind(), optixGetPrimitiveIndex(), optixGetRayTmax(), optixGetWorldRayOrigin(), optixGetWorldRayDirection(), &local_sg); // Setup the ShaderGlobals const float3 ray_direction = optixGetWorldRayDirection(); const float3 ray_origin = optixGetWorldRayOrigin(); const float t_hit = optixGetRayTmin(); sg.I = ray_direction; sg.N = normalize (optixTransformNormalFromObjectToWorldSpace (local_sg.N)); sg.Ng = normalize (optixTransformNormalFromObjectToWorldSpace (local_sg.Ng)); sg.P = ray_origin + t_hit * ray_direction; sg.dPdu = local_sg.dPdu; sg.dPdv = local_sg.dPdv; sg.u = local_sg.u; sg.v = local_sg.v; sg.Ci = NULL; sg.surfacearea = local_sg.surfacearea; sg.backfacing = dot (sg.N, sg.I) > 0.0f; sg.shaderID = local_sg.shaderID; if (sg.backfacing) { sg.N = -sg.N; sg.Ng = -sg.Ng; } // NB: These variables are not used in the current iteration of the sample sg.raytype = CAMERA; sg.flipHandedness = 0; } static __device__ float3 process_closure (const OSL::ClosureColor* closure_tree) { OSL::Color3 result = OSL::Color3 (0.0f); if (!closure_tree) { return make_float3 (result.x, result.y, result.z); } // The depth of the closure tree must not exceed the stack size. // A stack size of 8 is probably quite generous for relatively // balanced trees. const int STACK_SIZE = 8; // Non-recursive traversal stack int stack_idx = 0; const OSL::ClosureColor* ptr_stack[STACK_SIZE]; OSL::Color3 weight_stack[STACK_SIZE]; // Shading accumulator OSL::Color3 weight = OSL::Color3 (1.0f); const void* cur = closure_tree; while (cur) { switch (((OSL::ClosureColor*)cur)->id) { case OSL::ClosureColor::ADD: { ptr_stack [stack_idx ] = ((OSL::ClosureAdd*) cur)->closureB; weight_stack[stack_idx++] = weight; cur = ((OSL::ClosureAdd*) cur)->closureA; break; } case OSL::ClosureColor::MUL: { weight *= ((OSL::ClosureMul*) cur)->weight; cur = ((OSL::ClosureMul*) cur)->closure; break; } case EMISSION_ID: { cur = NULL; break; } case DIFFUSE_ID: case OREN_NAYAR_ID: case PHONG_ID: case WARD_ID: case REFLECTION_ID: case REFRACTION_ID: case FRESNEL_REFLECTION_ID: { result += ((OSL::ClosureComponent*) cur)->w * weight; cur = NULL; break; } case MICROFACET_ID: { const char* mem = (const char*)((OSL::ClosureComponent*) cur)->data(); const char* dist_str = *(const char**) &mem[0]; if (HDSTR(dist_str) == STRING_PARAMS(default)) return make_float3(0.0f, 1.0f, 1.0f); else return make_float3(1.0f, 0.0f, 1.0f); break; } default: cur = NULL; break; } if (cur == NULL && stack_idx > 0) { cur = ptr_stack [--stack_idx]; weight = weight_stack[ stack_idx]; } } return make_float3(result.x, result.y, result.z); } extern "C" __global__ void __closesthit__closest_hit_osl() { // TODO: Fixed-sized allocations can easily be exceeded by arbitrary shader // networks, so there should be (at least) some mechanism to issue a // warning or error if the closure or param storage can possibly be // exceeded. alignas(8) char closure_pool[256]; alignas(8) char params [256]; ShaderGlobals sg; globals_from_hit (sg); // Pack the "closure pool" into one of the ShaderGlobals pointers *(int*) &closure_pool[0] = 0; sg.renderstate = &closure_pool[0]; // Create some run-time options structs. The OSL shader fills in the structs // as it executes, based on the options specified in the shader source. NoiseOptCUDA noiseopt; TextureOptCUDA textureopt; TraceOptCUDA traceopt; // Pack the pointers to the options structs in a faux "context", // which is a rough stand-in for the host ShadingContext. ShadingContextCUDA shading_context = { &noiseopt, &textureopt, &traceopt }; sg.context = &shading_context; // Run the OSL group and init functions const unsigned int shaderInitOpIdx = 2u + 2u * sg.shaderID + 0u; const unsigned int shaderGroupIdx = 2u + 2u * sg.shaderID + 1u; optixDirectCall<void, ShaderGlobals*, void *>(shaderInitOpIdx, &sg, params); // call osl_init_func optixDirectCall<void, ShaderGlobals*, void *>(shaderGroupIdx , &sg, params); // call osl_group_func float3 result = process_closure ((OSL::ClosureColor*) sg.Ci); uint3 launch_dims = optixGetLaunchDimensions(); uint3 launch_index = optixGetLaunchIndex(); float3* output_buffer = reinterpret_cast<float3 *>(render_params.output_buffer); int pixel = launch_index.y * launch_dims.x + launch_index.x; output_buffer[pixel] = make_float3(result.x, result.y, result.z); } #endif //#if (OPTIX_VERSION < 70000)
46876a9cd6c64f7973c389d26a537bfa533edb4b.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* This is machine problem 1, part 1, shift cypher * * The problem is to take in a string of unsigned ints and an int, * the shift amount, and add the number to each element of * the string, effectively "shifting" each element in the * string. * SUBMISSION GUIDELINES: * You should copy the complete shift_cyper function from your solution * into a file called mp1-part1-solution-kernel.cu and submit that file. * The function needs to have exactly the same interface (including __global__) * as the empty shift_cypher function given below. */ #include <stdlib.h> #include <stdio.h> #include <ctime> #include "mp1-util.h" // Repeating from the tutorial, just in case you haven't looked at it. // "kernels" or __global__ functions are the entry points to code that executes on the GPU // The keyword __global__ indicates to the compiler that this function is a GPU entry point. // __global__ functions must return void, and may only be called or "launched" from code that // executes on the CPU. void host_shift_cypher(unsigned int *input_array, unsigned int *output_array, unsigned int shift_amount, unsigned int alphabet_max, unsigned int array_length) { for(unsigned int i=0;i<array_length;i++) { int element = input_array[i]; int shifted = element + shift_amount; if(shifted > alphabet_max) { shifted = shifted % (alphabet_max + 1); } output_array[i] = shifted; } } // This kernel implements a per element shift __global__ void shift_cypher(unsigned int *input_array, unsigned int *output_array, unsigned int shift_amount, unsigned int alphabet_max, unsigned int array_length) { // TODO your code here unsigned int i = threadIdx.x + blockDim.x * blockIdx.x; int element = input_array[i]; int shifted = element+shift_amount; if (shifted > alphabet_max) { shifted = shifted % (alphabet_max + 1); } output_array[i] = shifted; } int main(void) { // initialize srand(time(NULL)); // create arrays of 16M elements int num_elements = 1 << 24; unsigned int alphabet_max = 45647; // compute the size of the arrays in bytes int num_bytes = num_elements * sizeof(unsigned int); // pointers to host & device arrays unsigned int *host_input_array = 0; unsigned int *host_output_array = 0; unsigned int *host_output_checker_array = 0; unsigned int *device_input_array = 0; unsigned int *device_output_array = 0; event_pair timer; // malloc host arrays host_input_array = (unsigned int*)malloc(num_bytes); host_output_array = (unsigned int*)malloc(num_bytes); host_output_checker_array = (unsigned int*)malloc(num_bytes); // hipMalloc device arrays hipMalloc((void**)&device_input_array, num_bytes); hipMalloc((void**)&device_output_array, num_bytes); // if either memory allocation failed, report an error message if(host_input_array == 0 || host_output_array == 0 || host_output_checker_array == 0 || device_input_array == 0 || device_output_array == 0) { printf("couldn't allocate memory\n"); return 1; } // generate random input string unsigned int shift_amount = rand(); for(int i=0;i< num_elements;i++) { host_input_array[i] = (unsigned int)rand(); } // do copies to and from gpu once to get rid of timing weirdness // on first time accesses due to driver hipMemcpy(device_input_array, host_input_array, num_bytes, hipMemcpyHostToDevice); hipMemcpy(host_output_array, device_output_array, num_bytes, hipMemcpyDeviceToHost); start_timer(&timer); // copy input to GPU hipMemcpy(device_input_array, host_input_array, num_bytes, hipMemcpyHostToDevice); check_launch("copy to gpu"); stop_timer(&timer,"copy to gpu"); // choose a number of threads per block // we use 512 threads here int block_size = 512; int grid_size = (num_elements + block_size - 1) / block_size; start_timer(&timer); // launch kernel hipLaunchKernelGGL(( shift_cypher), dim3(grid_size),dim3(block_size), 0, 0, device_input_array, device_output_array, shift_amount, alphabet_max, num_elements); check_launch("gpu shift cypher"); stop_timer(&timer,"gpu shift cypher"); start_timer(&timer); // download and inspect the result on the host: hipMemcpy(host_output_array, device_output_array, num_bytes, hipMemcpyDeviceToHost); check_launch("copy from gpu"); stop_timer(&timer,"copy from gpu"); start_timer(&timer); // generate reference output host_shift_cypher(host_input_array, host_output_checker_array, shift_amount, alphabet_max, num_elements); stop_timer(&timer,"host shift cypher"); // check CUDA output versus reference output int error = 0; for(int i=0;i<num_elements;i++) { if(host_output_array[i] != host_output_checker_array[i]) { error = 1; } } if(error) { printf("Output of CUDA version and normal version didn't match! \n"); } else { printf("Worked! CUDA and reference output match. \n"); } // deallocate memory free(host_input_array); free(host_output_array); free(host_output_checker_array); hipFree(device_input_array); hipFree(device_output_array); }
46876a9cd6c64f7973c389d26a537bfa533edb4b.cu
/* This is machine problem 1, part 1, shift cypher * * The problem is to take in a string of unsigned ints and an int, * the shift amount, and add the number to each element of * the string, effectively "shifting" each element in the * string. * SUBMISSION GUIDELINES: * You should copy the complete shift_cyper function from your solution * into a file called mp1-part1-solution-kernel.cu and submit that file. * The function needs to have exactly the same interface (including __global__) * as the empty shift_cypher function given below. */ #include <stdlib.h> #include <stdio.h> #include <ctime> #include "mp1-util.h" // Repeating from the tutorial, just in case you haven't looked at it. // "kernels" or __global__ functions are the entry points to code that executes on the GPU // The keyword __global__ indicates to the compiler that this function is a GPU entry point. // __global__ functions must return void, and may only be called or "launched" from code that // executes on the CPU. void host_shift_cypher(unsigned int *input_array, unsigned int *output_array, unsigned int shift_amount, unsigned int alphabet_max, unsigned int array_length) { for(unsigned int i=0;i<array_length;i++) { int element = input_array[i]; int shifted = element + shift_amount; if(shifted > alphabet_max) { shifted = shifted % (alphabet_max + 1); } output_array[i] = shifted; } } // This kernel implements a per element shift __global__ void shift_cypher(unsigned int *input_array, unsigned int *output_array, unsigned int shift_amount, unsigned int alphabet_max, unsigned int array_length) { // TODO your code here unsigned int i = threadIdx.x + blockDim.x * blockIdx.x; int element = input_array[i]; int shifted = element+shift_amount; if (shifted > alphabet_max) { shifted = shifted % (alphabet_max + 1); } output_array[i] = shifted; } int main(void) { // initialize srand(time(NULL)); // create arrays of 16M elements int num_elements = 1 << 24; unsigned int alphabet_max = 45647; // compute the size of the arrays in bytes int num_bytes = num_elements * sizeof(unsigned int); // pointers to host & device arrays unsigned int *host_input_array = 0; unsigned int *host_output_array = 0; unsigned int *host_output_checker_array = 0; unsigned int *device_input_array = 0; unsigned int *device_output_array = 0; event_pair timer; // malloc host arrays host_input_array = (unsigned int*)malloc(num_bytes); host_output_array = (unsigned int*)malloc(num_bytes); host_output_checker_array = (unsigned int*)malloc(num_bytes); // cudaMalloc device arrays cudaMalloc((void**)&device_input_array, num_bytes); cudaMalloc((void**)&device_output_array, num_bytes); // if either memory allocation failed, report an error message if(host_input_array == 0 || host_output_array == 0 || host_output_checker_array == 0 || device_input_array == 0 || device_output_array == 0) { printf("couldn't allocate memory\n"); return 1; } // generate random input string unsigned int shift_amount = rand(); for(int i=0;i< num_elements;i++) { host_input_array[i] = (unsigned int)rand(); } // do copies to and from gpu once to get rid of timing weirdness // on first time accesses due to driver cudaMemcpy(device_input_array, host_input_array, num_bytes, cudaMemcpyHostToDevice); cudaMemcpy(host_output_array, device_output_array, num_bytes, cudaMemcpyDeviceToHost); start_timer(&timer); // copy input to GPU cudaMemcpy(device_input_array, host_input_array, num_bytes, cudaMemcpyHostToDevice); check_launch("copy to gpu"); stop_timer(&timer,"copy to gpu"); // choose a number of threads per block // we use 512 threads here int block_size = 512; int grid_size = (num_elements + block_size - 1) / block_size; start_timer(&timer); // launch kernel shift_cypher<<<grid_size,block_size>>>(device_input_array, device_output_array, shift_amount, alphabet_max, num_elements); check_launch("gpu shift cypher"); stop_timer(&timer,"gpu shift cypher"); start_timer(&timer); // download and inspect the result on the host: cudaMemcpy(host_output_array, device_output_array, num_bytes, cudaMemcpyDeviceToHost); check_launch("copy from gpu"); stop_timer(&timer,"copy from gpu"); start_timer(&timer); // generate reference output host_shift_cypher(host_input_array, host_output_checker_array, shift_amount, alphabet_max, num_elements); stop_timer(&timer,"host shift cypher"); // check CUDA output versus reference output int error = 0; for(int i=0;i<num_elements;i++) { if(host_output_array[i] != host_output_checker_array[i]) { error = 1; } } if(error) { printf("Output of CUDA version and normal version didn't match! \n"); } else { printf("Worked! CUDA and reference output match. \n"); } // deallocate memory free(host_input_array); free(host_output_array); free(host_output_checker_array); cudaFree(device_input_array); cudaFree(device_output_array); }
d4ec98801305b9a48c306676eed1319bffbdc14f.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" // RUN: %clang_cc1 -std=c++14 -fsyntax-only -verify %s #include "Inputs/cuda.h" template <typename T> __global__ T foo() { // expected-note@-1 {{kernel function type 'T ()' must have void return type}} } void f0() { hipLaunchKernelGGL(( foo<void>), dim3(0), dim3(0), 0, 0, ); hipLaunchKernelGGL(( foo<int>), dim3(0), dim3(0), 0, 0, ); // expected-error@-1 {{no matching function for call to 'foo'}} } __global__ auto f1() { } __global__ auto f2(int x) { return x + 1; // expected-error@-2 {{kernel function type 'auto (int)' must have void return type}} } template <bool Cond, typename T = void> struct enable_if { typedef T type; }; template <typename T> struct enable_if<false, T> {}; template <int N> __global__ auto bar() -> typename enable_if<N == 1>::type { // expected-note@-1 {{requirement '3 == 1' was not satisfied [with N = 3]}} } template <int N> __global__ auto bar() -> typename enable_if<N == 2>::type { // expected-note@-1 {{requirement '3 == 2' was not satisfied [with N = 3]}} } void f3() { hipLaunchKernelGGL(( bar<1>), dim3(0), dim3(0), 0, 0, ); hipLaunchKernelGGL(( bar<2>), dim3(0), dim3(0), 0, 0, ); hipLaunchKernelGGL(( bar<3>), dim3(0), dim3(0), 0, 0, ); // expected-error@-1 {{no matching function for call to 'bar'}} }
d4ec98801305b9a48c306676eed1319bffbdc14f.cu
// RUN: %clang_cc1 -std=c++14 -fsyntax-only -verify %s #include "Inputs/cuda.h" template <typename T> __global__ T foo() { // expected-note@-1 {{kernel function type 'T ()' must have void return type}} } void f0() { foo<void><<<0, 0>>>(); foo<int><<<0, 0>>>(); // expected-error@-1 {{no matching function for call to 'foo'}} } __global__ auto f1() { } __global__ auto f2(int x) { return x + 1; // expected-error@-2 {{kernel function type 'auto (int)' must have void return type}} } template <bool Cond, typename T = void> struct enable_if { typedef T type; }; template <typename T> struct enable_if<false, T> {}; template <int N> __global__ auto bar() -> typename enable_if<N == 1>::type { // expected-note@-1 {{requirement '3 == 1' was not satisfied [with N = 3]}} } template <int N> __global__ auto bar() -> typename enable_if<N == 2>::type { // expected-note@-1 {{requirement '3 == 2' was not satisfied [with N = 3]}} } void f3() { bar<1><<<0, 0>>>(); bar<2><<<0, 0>>>(); bar<3><<<0, 0>>>(); // expected-error@-1 {{no matching function for call to 'bar'}} }
2fe24b80d98689d33ba0e9903df4dd4499f4c345.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "commons_gpu.cuh" #include "definitions.hpp" #include "kernels_hip.cuh" __global__ void k_setup_rng(const uvec2 dims, hiprandState_t *const __restrict__ globalRandState, const uint seed) { // idxMin = thread ID + skip safety rows + skip safety cols // idxMax = y - 1 full rows + last row cols const uint stride = gridDim.x * blockDim.x, idxMin = blockDim.x * blockIdx.x + threadIdx.x + (dims.x * NH_RADIUS) + NH_RADIUS, idxMax = (dims.y - NH_RADIUS) * dims.x - NH_RADIUS, xMax = dims.x - NH_RADIUS; for (uint idx = idxMin; idx < idxMax; idx += stride) { const uint x = idx % dims.x; if (NH_RADIUS < x && x < xMax) hiprand_init(seed, idx, 0, &globalRandState[idx]); } } __global__ void k_init_grid(GridType *const grid, const uvec2 dims, hiprandState_t *const __restrict__ globalRandState, const float spawnProbability) { // idxMin = thread ID + skip safety rows + skip safety cols // idxMax = y - 1 full rows + last row cols OR max id given radius const uint stride = gridDim.x * blockDim.x, idxMin = blockDim.x * blockIdx.x + threadIdx.x + (dims.x * NH_RADIUS) + NH_RADIUS, idxMax = (dims.y - NH_RADIUS) * dims.x - NH_RADIUS, xMax = dims.x - NH_RADIUS; for (uint idx = idxMin; idx < idxMax; idx += stride) { const uint x = idx % dims.x; grid[idx] = (NH_RADIUS < x) * (x < xMax) * (hiprand_uniform(&globalRandState[idx]) < spawnProbability); } } __global__ void k_reset_grid_buffers(fvec2s *const __restrict__ gridVertices, const uvec2 numVertices) { const uint stride = gridDim.x * blockDim.x, idxMax = numVertices.x * numVertices.y; for (uint idx = blockDim.x * blockIdx.x + threadIdx.x; idx < idxMax; idx += stride) gridVertices[idx].state = 0; } __global__ void k_update_grid_buffers(const GridType *const grid, const uvec2 dims, fvec2s *const __restrict__ gridVertices, const uint numVerticesX, const uvec2 cellDensity, const ulim2 gridLimX, const ulim2 gridLimY) { // idxMin = thread ID + render margin // idxMax = y - 1 full rows + last row cols const uint stride = gridDim.x * blockDim.x, idxMin = blockDim.x * blockIdx.x + threadIdx.x + max(gridLimY.start * dims.x + gridLimX.start, (dims.x * NH_RADIUS) + NH_RADIUS), idxMax = min((gridLimY.end - 1) * dims.x + gridLimX.end, (dims.y - NH_RADIUS) * dims.x - NH_RADIUS), xMin = max(NH_RADIUS, gridLimX.start), xMax = min(dims.x - NH_RADIUS, gridLimX.end); for (uint idx = idxMin; idx < idxMax; idx += stride) { // to check if out of bounds and to map vertices const uint x = idx % dims.x, y = idx / dims.x; // try avoiding further operations when not needed // atomicMax is pretty expensive if (xMin <= x && x < xMax && grid[idx]) { // calculate mapping between grid and vertice const uint vx = (x - gridLimX.start) / cellDensity.x, vy = (y - gridLimY.start) / cellDensity.y, vidx = vy * numVerticesX + vx; // no need to be atomic on a read // we check before to avoid atomic writing bottleneck // gridVertices[vidx].state = 1; // gridVertices[vidx].state = // max(gridVertices[vidx].state, static_cast<int>(grid[idx])); if (gridVertices[vidx].state == 0) atomicMax(&gridVertices[vidx].state, static_cast<int>(grid[idx])); } } } __global__ void k_evolve_count_rule(const GridType *const grid, GridType *const nextGrid, const uvec2 dims, hiprandState_t *const __restrict__ globalRandState, const float virtualSpawnProbability, const bool countAliveCells, uint *const activeCellCount) { // idxMin = thread ID + skip safety rows + skip safety cols // idxMax = y - 1 full rows + last row cols const uint stride = gridDim.x * blockDim.x, idxMin = blockDim.x * blockIdx.x + threadIdx.x + (dims.x * NH_RADIUS) + NH_RADIUS, idxMax = (dims.y - NH_RADIUS) * dims.x - NH_RADIUS; for (uint idx = idxMin; idx < idxMax; idx += stride) { const uint x = idx % dims.x; // if col is 0 or dims.x-1, given MxN grid and NH_RADIUS=1 if (x < NH_RADIUS || dims.x - NH_RADIUS <= x) continue; // check cell state nextGrid[idx] = game_of_life(grid[idx], count_nh(grid, dims.x, idx)); // add a "virtual particle" spawn probability // note: this branching does not cause significant perf. hit if (virtualSpawnProbability > 0 && nextGrid[idx] == 0) nextGrid[idx] = hiprand_uniform(&globalRandState[idx]) < virtualSpawnProbability; // avoid atomicAdd when not necessary if (countAliveCells) atomicAdd(activeCellCount, static_cast<uint>(nextGrid[idx] > 0)); } }
2fe24b80d98689d33ba0e9903df4dd4499f4c345.cu
#include "commons_gpu.cuh" #include "definitions.hpp" #include "kernels.cuh" __global__ void k_setup_rng(const uvec2 dims, curandState *const __restrict__ globalRandState, const uint seed) { // idxMin = thread ID + skip safety rows + skip safety cols // idxMax = y - 1 full rows + last row cols const uint stride = gridDim.x * blockDim.x, idxMin = blockDim.x * blockIdx.x + threadIdx.x + (dims.x * NH_RADIUS) + NH_RADIUS, idxMax = (dims.y - NH_RADIUS) * dims.x - NH_RADIUS, xMax = dims.x - NH_RADIUS; for (uint idx = idxMin; idx < idxMax; idx += stride) { const uint x = idx % dims.x; if (NH_RADIUS < x && x < xMax) curand_init(seed, idx, 0, &globalRandState[idx]); } } __global__ void k_init_grid(GridType *const grid, const uvec2 dims, curandState *const __restrict__ globalRandState, const float spawnProbability) { // idxMin = thread ID + skip safety rows + skip safety cols // idxMax = y - 1 full rows + last row cols OR max id given radius const uint stride = gridDim.x * blockDim.x, idxMin = blockDim.x * blockIdx.x + threadIdx.x + (dims.x * NH_RADIUS) + NH_RADIUS, idxMax = (dims.y - NH_RADIUS) * dims.x - NH_RADIUS, xMax = dims.x - NH_RADIUS; for (uint idx = idxMin; idx < idxMax; idx += stride) { const uint x = idx % dims.x; grid[idx] = (NH_RADIUS < x) * (x < xMax) * (curand_uniform(&globalRandState[idx]) < spawnProbability); } } __global__ void k_reset_grid_buffers(fvec2s *const __restrict__ gridVertices, const uvec2 numVertices) { const uint stride = gridDim.x * blockDim.x, idxMax = numVertices.x * numVertices.y; for (uint idx = blockDim.x * blockIdx.x + threadIdx.x; idx < idxMax; idx += stride) gridVertices[idx].state = 0; } __global__ void k_update_grid_buffers(const GridType *const grid, const uvec2 dims, fvec2s *const __restrict__ gridVertices, const uint numVerticesX, const uvec2 cellDensity, const ulim2 gridLimX, const ulim2 gridLimY) { // idxMin = thread ID + render margin // idxMax = y - 1 full rows + last row cols const uint stride = gridDim.x * blockDim.x, idxMin = blockDim.x * blockIdx.x + threadIdx.x + max(gridLimY.start * dims.x + gridLimX.start, (dims.x * NH_RADIUS) + NH_RADIUS), idxMax = min((gridLimY.end - 1) * dims.x + gridLimX.end, (dims.y - NH_RADIUS) * dims.x - NH_RADIUS), xMin = max(NH_RADIUS, gridLimX.start), xMax = min(dims.x - NH_RADIUS, gridLimX.end); for (uint idx = idxMin; idx < idxMax; idx += stride) { // to check if out of bounds and to map vertices const uint x = idx % dims.x, y = idx / dims.x; // try avoiding further operations when not needed // atomicMax is pretty expensive if (xMin <= x && x < xMax && grid[idx]) { // calculate mapping between grid and vertice const uint vx = (x - gridLimX.start) / cellDensity.x, vy = (y - gridLimY.start) / cellDensity.y, vidx = vy * numVerticesX + vx; // no need to be atomic on a read // we check before to avoid atomic writing bottleneck // gridVertices[vidx].state = 1; // gridVertices[vidx].state = // max(gridVertices[vidx].state, static_cast<int>(grid[idx])); if (gridVertices[vidx].state == 0) atomicMax(&gridVertices[vidx].state, static_cast<int>(grid[idx])); } } } __global__ void k_evolve_count_rule(const GridType *const grid, GridType *const nextGrid, const uvec2 dims, curandState *const __restrict__ globalRandState, const float virtualSpawnProbability, const bool countAliveCells, uint *const activeCellCount) { // idxMin = thread ID + skip safety rows + skip safety cols // idxMax = y - 1 full rows + last row cols const uint stride = gridDim.x * blockDim.x, idxMin = blockDim.x * blockIdx.x + threadIdx.x + (dims.x * NH_RADIUS) + NH_RADIUS, idxMax = (dims.y - NH_RADIUS) * dims.x - NH_RADIUS; for (uint idx = idxMin; idx < idxMax; idx += stride) { const uint x = idx % dims.x; // if col is 0 or dims.x-1, given MxN grid and NH_RADIUS=1 if (x < NH_RADIUS || dims.x - NH_RADIUS <= x) continue; // check cell state nextGrid[idx] = game_of_life(grid[idx], count_nh(grid, dims.x, idx)); // add a "virtual particle" spawn probability // note: this branching does not cause significant perf. hit if (virtualSpawnProbability > 0 && nextGrid[idx] == 0) nextGrid[idx] = curand_uniform(&globalRandState[idx]) < virtualSpawnProbability; // avoid atomicAdd when not necessary if (countAliveCells) atomicAdd(activeCellCount, static_cast<uint>(nextGrid[idx] > 0)); } }
5c369ad7a91dc92861adbf7ad454d41e2314b87d.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <stddef.h> #include <stdint.h> #include "model_gpu_utils.h" #include "mixed_tentusscher_myo_epi_2004_S1.h" extern "C" SET_ODE_INITIAL_CONDITIONS_GPU(set_model_initial_conditions_gpu) { print_to_stdout_and_file("Using mixed version of TenTusscher 2004 myocardium + epicardium GPU model\n\n"); // execution configuration const int GRID = (num_volumes + BLOCK_SIZE - 1)/BLOCK_SIZE; size_t size = num_volumes*sizeof(real); check_cuda_error(hipMallocPitch((void **) &(*sv), &pitch_h, size, (size_t )NEQ)); check_cuda_error(hipMemcpyToSymbol(pitch, &pitch_h, sizeof(size_t))); // Get the mapping array uint32_t *mapping = NULL; uint32_t *mapping_device = NULL; if(extra_data) { mapping = (uint32_t*)extra_data; check_cuda_error(hipMalloc((void **)&mapping_device, extra_data_bytes_size)); check_cuda_error(hipMemcpy(mapping_device, mapping, extra_data_bytes_size, hipMemcpyHostToDevice)); } hipLaunchKernelGGL(( kernel_set_model_inital_conditions) , dim3(GRID), dim3(BLOCK_SIZE), 0, 0, *sv, mapping_device, num_volumes); check_cuda_error( hipPeekAtLastError() ); hipDeviceSynchronize(); check_cuda_error(hipFree(mapping_device)); return pitch_h; } extern "C" SOLVE_MODEL_ODES_GPU(solve_model_odes_gpu) { // execution configuration const int GRID = ((int)num_cells_to_solve + BLOCK_SIZE - 1)/BLOCK_SIZE; size_t stim_currents_size = sizeof(real)*num_cells_to_solve; size_t cells_to_solve_size = sizeof(uint32_t)*num_cells_to_solve; real *stims_currents_device; check_cuda_error(hipMalloc((void **) &stims_currents_device, stim_currents_size)); check_cuda_error(hipMemcpy(stims_currents_device, stim_currents, stim_currents_size, hipMemcpyHostToDevice)); //the array cells to solve is passed when we are using and adapative mesh uint32_t *cells_to_solve_device = NULL; if(cells_to_solve != NULL) { check_cuda_error(hipMalloc((void **) &cells_to_solve_device, cells_to_solve_size)); check_cuda_error(hipMemcpy(cells_to_solve_device, cells_to_solve, cells_to_solve_size, hipMemcpyHostToDevice)); } // Get the mapping array uint32_t *mapping = NULL; uint32_t *mapping_device = NULL; if(extra_data) { mapping = (uint32_t*)extra_data; check_cuda_error(hipMalloc((void **)&mapping_device, extra_data_bytes_size)); check_cuda_error(hipMemcpy(mapping_device, mapping, extra_data_bytes_size, hipMemcpyHostToDevice)); } else { print_to_stderr_and_file_and_exit("You need to specify a mask function when using a mixed model!\n"); } hipLaunchKernelGGL(( solve_gpu) , dim3(GRID), dim3(BLOCK_SIZE), 0, 0, dt, sv, stims_currents_device, cells_to_solve_device, mapping_device, num_cells_to_solve, num_steps); check_cuda_error( hipPeekAtLastError() ); check_cuda_error(hipFree(stims_currents_device)); if(cells_to_solve_device) check_cuda_error(hipFree(cells_to_solve_device)); if(mapping_device) check_cuda_error(hipFree(mapping_device)); } __global__ void kernel_set_model_inital_conditions(real *sv, uint32_t *mapping, int num_volumes) { int threadID = blockDim.x * blockIdx.x + threadIdx.x; if (threadID < num_volumes) { // Initial conditions for TenTusscher 2004 myocardium if (mapping[threadID] == 0) { // Default initial conditions /* *((real * )((char *) sv + pitch * 0) + threadID) = INITIAL_V; // V; millivolt *((real * )((char *) sv + pitch * 1) + threadID) = 0.f; //M *((real * )((char *) sv + pitch * 2) + threadID) = 0.75; //H *((real * )((char *) sv + pitch * 3) + threadID) = 0.75f; //J *((real * )((char *) sv + pitch * 4) + threadID) = 0.f; //Xr1 *((real * )((char *) sv + pitch * 5) + threadID) = 1.f; //Xr2 *((real * )((char *) sv + pitch * 6) + threadID) = 0.f; //Xs *((real * )((char *) sv + pitch * 7) + threadID) = 1.f; //S *((real * )((char *) sv + pitch * 8) + threadID) = 0.f; //R *((real * )((char *) sv + pitch * 9) + threadID) = 0.f; //D *((real * )((char *) sv + pitch * 10) + threadID) = 1.f; //F *((real * )((char *) sv + pitch * 11) + threadID) = 1.f; //FCa *((real * )((char *) sv + pitch * 12) + threadID) = 1.f; //G *((real * )((char *) sv + pitch * 13) + threadID) = 0.0002; //Cai *((real * )((char *) sv + pitch * 14) + threadID) = 0.2f; //CaSR *((real * )((char *) sv + pitch * 15) + threadID) = 11.6f; //Nai *((real * )((char *) sv + pitch * 16) + threadID) = 138.3f; //Ki */ // Elnaz's steady-state initial conditions real sv_sst[]={-86.3965119057144,0.00133824305081220,0.775463576993407,0.775278393595599,0.000179499343643571,0.483303039835057,0.00297647859235379,0.999998290403642,1.98961879737287e-08,1.93486789479597e-05,0.999599147019885,1.00646342475688,0.999975178010127,5.97703651642618e-05,0.418325344820368,10.7429775420171,138.918155900633}; for (uint32_t i = 0; i < NEQ; i++) *((real * )((char *) sv + pitch * i) + threadID) = sv_sst[i]; } // Initial conditions for TenTusscher 2004 epicardium else { // Default initial conditions /* *((real * )((char *) sv + pitch * 0) + threadID) = INITIAL_V; // V; millivolt *((real * )((char *) sv + pitch * 1) + threadID) = 0.f; //M *((real * )((char *) sv + pitch * 2) + threadID) = 0.75; //H *((real * )((char *) sv + pitch * 3) + threadID) = 0.75f; //J *((real * )((char *) sv + pitch * 4) + threadID) = 0.f; //Xr1 *((real * )((char *) sv + pitch * 5) + threadID) = 1.f; //Xr2 *((real * )((char *) sv + pitch * 6) + threadID) = 0.f; //Xs *((real * )((char *) sv + pitch * 7) + threadID) = 1.f; //S *((real * )((char *) sv + pitch * 8) + threadID) = 0.f; //R *((real * )((char *) sv + pitch * 9) + threadID) = 0.f; //D *((real * )((char *) sv + pitch * 10) + threadID) = 1.f; //F *((real * )((char *) sv + pitch * 11) + threadID) = 1.f; //FCa *((real * )((char *) sv + pitch * 12) + threadID) = 1.f; //G *((real * )((char *) sv + pitch * 13) + threadID) = 0.0002; //Cai *((real * )((char *) sv + pitch * 14) + threadID) = 0.2f; //CaSR *((real * )((char *) sv + pitch * 15) + threadID) = 11.6f; //Nai *((real * )((char *) sv + pitch * 16) + threadID) = 138.3f; //Ki */ // Elnaz's steady-state initial conditions real sv_sst[]={-86.4172552153702,0.00133233093318418,0.775980725003160,0.775871451583533,0.000178484465968596,0.483518904573916,0.00297208335439809,0.999998297825169,1.98274727808946e-08,1.92952362196655e-05,0.999768268008847,1.00667048889468,0.999984854519288,5.50424977684767e-05,0.352485262813812,10.8673127043200,138.860197273148}; for (uint32_t i = 0; i < NEQ; i++) *((real * )((char *) sv + pitch * i) + threadID) = sv_sst[i]; } } } // Solving the model for each cell in the tissue matrix ni x nj __global__ void solve_gpu(real dt, real *sv, real* stim_currents, uint32_t *cells_to_solve, uint32_t *mapping, uint32_t num_cells_to_solve, int num_steps) { int threadID = blockDim.x * blockIdx.x + threadIdx.x; int sv_id; // Each thread solves one cell model if(threadID < num_cells_to_solve) { if(cells_to_solve) sv_id = cells_to_solve[threadID]; else sv_id = threadID; real rDY[NEQ]; for (int n = 0; n < num_steps; ++n) { if (mapping[sv_id] == 0) { RHS_gpu_myo(sv, rDY, stim_currents[threadID], sv_id, dt); for(int i = 0; i < NEQ; i++) { *((real *) ((char *) sv + pitch * i) + sv_id) = dt * rDY[i] + *((real *) ((char *) sv + pitch * i) + sv_id); } } else { RHS_gpu_epi(sv, rDY, stim_currents[threadID], sv_id, dt); for (int i = 0; i < NEQ; i++) { *((real *) ((char *) sv + pitch * i) + sv_id) = dt * rDY[i] + *((real *) ((char *) sv + pitch * i) + sv_id); } } } } } inline __device__ void RHS_gpu_myo (real *sv_, real *rDY_, real stim_current, int threadID_, real dt) { // State variables real svolt = *((real*)((char*)sv_ + pitch * 0) + threadID_); real sm = *((real*)((char*)sv_ + pitch * 1) + threadID_); real sh = *((real*)((char*)sv_ + pitch * 2) + threadID_); real sj = *((real*)((char*)sv_ + pitch * 3) + threadID_); real sxr1 = *((real*)((char*)sv_ + pitch * 4) + threadID_); real sxr2 = *((real*)((char*)sv_ + pitch * 5) + threadID_); real sxs = *((real*)((char*)sv_ + pitch * 6) + threadID_); real ss = *((real*)((char*)sv_ + pitch * 7) + threadID_); real sr = *((real*)((char*)sv_ + pitch * 8) + threadID_); real sd = *((real*)((char*)sv_ + pitch * 9) + threadID_); real sf = *((real*)((char*)sv_ + pitch * 10) + threadID_); real sfca = *((real*)((char*)sv_ + pitch * 11) + threadID_); real sg = *((real*)((char*)sv_ + pitch * 12) + threadID_); real Cai = *((real*)((char*)sv_ + pitch * 13) + threadID_); real CaSR = *((real*)((char*)sv_ + pitch * 14) + threadID_); real Nai = *((real*)((char*)sv_ + pitch * 15) + threadID_); real Ki = *((real*)((char*)sv_ + pitch * 16) + threadID_); //External concentrations real Ko=5.4; real Cao=2.0; real Nao=140.0; //Intracellular volumes real Vc=0.016404; real Vsr=0.001094; //Calcium dynamics real Bufc=0.15f; real Kbufc=0.001f; real Bufsr=10.f; real Kbufsr=0.3f; real taufca=2.f; real taug=2.f; real Vmaxup=0.000425f; real Kup=0.00025f; //Constants const real R = 8314.472f; const real F = 96485.3415f; const real T =310.0f; real RTONF =(R*T)/F; //Cellular capacitance real CAPACITANCE=0.185; //Parameters for currents //Parameters for IKr real Gkr=0.096; //Parameters for Iks real pKNa=0.03; // [!] Myocardium cell real Gks=0.062; //Parameters for Ik1 real GK1=5.405; //Parameters for Ito // [!] Myocardium cell real Gto=0.294; //Parameters for INa real GNa=14.838; //Parameters for IbNa real GbNa=0.00029; //Parameters for INaK real KmK=1.0; real KmNa=40.0; real knak=1.362; //Parameters for ICaL real GCaL=0.000175; //Parameters for IbCa real GbCa=0.000592; //Parameters for INaCa real knaca=1000; real KmNai=87.5; real KmCa=1.38; real ksat=0.1; real n=0.35; //Parameters for IpCa real GpCa=0.825; real KpCa=0.0005; //Parameters for IpK; real GpK=0.0146; real IKr; real IKs; real IK1; real Ito; real INa; real IbNa; real ICaL; real IbCa; real INaCa; real IpCa; real IpK; real INaK; real Irel; real Ileak; real dNai; real dKi; real dCai; real dCaSR; real A; // real BufferFactorc; // real BufferFactorsr; real SERCA; real Caisquare; real CaSRsquare; real CaCurrent; real CaSRCurrent; real fcaold; real gold; real Ek; real Ena; real Eks; real Eca; real CaCSQN; real bjsr; real cjsr; real CaBuf; real bc; real cc; real Ak1; real Bk1; real rec_iK1; real rec_ipK; real rec_iNaK; real AM; real BM; real AH_1; real BH_1; real AH_2; real BH_2; real AJ_1; real BJ_1; real AJ_2; real BJ_2; real M_INF; real H_INF; real J_INF; real TAU_M; real TAU_H; real TAU_J; real axr1; real bxr1; real axr2; real bxr2; real Xr1_INF; real Xr2_INF; real TAU_Xr1; real TAU_Xr2; real Axs; real Bxs; real Xs_INF; real TAU_Xs; real R_INF; real TAU_R; real S_INF; real TAU_S; real Ad; real Bd; real Cd; real TAU_D; real D_INF; real TAU_F; real F_INF; real FCa_INF; real G_INF; real inverseVcF2=1/(2*Vc*F); real inverseVcF=1./(Vc*F); real Kupsquare=Kup*Kup; // real BufcKbufc=Bufc*Kbufc; // real Kbufcsquare=Kbufc*Kbufc; // real Kbufc2=2*Kbufc; // real BufsrKbufsr=Bufsr*Kbufsr; // const real Kbufsrsquare=Kbufsr*Kbufsr; // const real Kbufsr2=2*Kbufsr; const real exptaufca=exp(-dt/taufca); const real exptaug=exp(-dt/taug); real sItot; //Needed to compute currents Ek=RTONF*(log((Ko/Ki))); Ena=RTONF*(log((Nao/Nai))); Eks=RTONF*(log((Ko+pKNa*Nao)/(Ki+pKNa*Nai))); Eca=0.5*RTONF*(log((Cao/Cai))); Ak1=0.1/(1.+exp(0.06*(svolt-Ek-200))); Bk1=(3.*exp(0.0002*(svolt-Ek+100))+ exp(0.1*(svolt-Ek-10)))/(1.+exp(-0.5*(svolt-Ek))); rec_iK1=Ak1/(Ak1+Bk1); rec_iNaK=(1./(1.+0.1245*exp(-0.1*svolt*F/(R*T))+0.0353*exp(-svolt*F/(R*T)))); rec_ipK=1./(1.+exp((25-svolt)/5.98)); //Compute currents INa=GNa*sm*sm*sm*sh*sj*(svolt-Ena); ICaL=GCaL*sd*sf*sfca*4*svolt*(F*F/(R*T))* (exp(2*svolt*F/(R*T))*Cai-0.341*Cao)/(exp(2*svolt*F/(R*T))-1.); Ito=Gto*sr*ss*(svolt-Ek); IKr=Gkr*sqrt(Ko/5.4)*sxr1*sxr2*(svolt-Ek); IKs=Gks*sxs*sxs*(svolt-Eks); IK1=GK1*rec_iK1*(svolt-Ek); INaCa=knaca*(1./(KmNai*KmNai*KmNai+Nao*Nao*Nao))*(1./(KmCa+Cao))* (1./(1+ksat*exp((n-1)*svolt*F/(R*T))))* (exp(n*svolt*F/(R*T))*Nai*Nai*Nai*Cao- exp((n-1)*svolt*F/(R*T))*Nao*Nao*Nao*Cai*2.5); INaK=knak*(Ko/(Ko+KmK))*(Nai/(Nai+KmNa))*rec_iNaK; IpCa=GpCa*Cai/(KpCa+Cai); IpK=GpK*rec_ipK*(svolt-Ek); IbNa=GbNa*(svolt-Ena); IbCa=GbCa*(svolt-Eca); //Determine total current (sItot) = IKr + IKs + IK1 + Ito + INa + IbNa + ICaL + IbCa + INaK + INaCa + IpCa + IpK + stim_current; //update concentrations Caisquare=Cai*Cai; CaSRsquare=CaSR*CaSR; CaCurrent=-(ICaL+IbCa+IpCa-2.0f*INaCa)*inverseVcF2*CAPACITANCE; A=0.016464f*CaSRsquare/(0.0625f+CaSRsquare)+0.008232f; Irel=A*sd*sg; Ileak=0.00008f*(CaSR-Cai); SERCA=Vmaxup/(1.f+(Kupsquare/Caisquare)); CaSRCurrent=SERCA-Irel-Ileak; CaCSQN=Bufsr*CaSR/(CaSR+Kbufsr); dCaSR=dt*(Vc/Vsr)*CaSRCurrent; bjsr=Bufsr-CaCSQN-dCaSR-CaSR+Kbufsr; cjsr=Kbufsr*(CaCSQN+dCaSR+CaSR); CaSR=(sqrt(bjsr*bjsr+4.*cjsr)-bjsr)/2.; CaBuf=Bufc*Cai/(Cai+Kbufc); dCai=dt*(CaCurrent-CaSRCurrent); bc=Bufc-CaBuf-dCai-Cai+Kbufc; cc=Kbufc*(CaBuf+dCai+Cai); Cai=(sqrt(bc*bc+4*cc)-bc)/2; dNai=-(INa+IbNa+3*INaK+3*INaCa)*inverseVcF*CAPACITANCE; Nai+=dt*dNai; dKi=-(stim_current+IK1+Ito+IKr+IKs-2*INaK+IpK)*inverseVcF*CAPACITANCE; Ki+=dt*dKi; //compute steady state values and time constants AM=1./(1.+exp((-60.-svolt)/5.)); BM=0.1/(1.+exp((svolt+35.)/5.))+0.10/(1.+exp((svolt-50.)/200.)); TAU_M=AM*BM; M_INF=1./((1.+exp((-56.86-svolt)/9.03))*(1.+exp((-56.86-svolt)/9.03))); if (svolt>=-40.) { AH_1=0.; BH_1=(0.77/(0.13*(1.+exp(-(svolt+10.66)/11.1)))); TAU_H= 1.0/(AH_1+BH_1); } else { AH_2=(0.057*exp(-(svolt+80.)/6.8)); BH_2=(2.7*exp(0.079*svolt)+(3.1e5)*exp(0.3485*svolt)); TAU_H=1.0/(AH_2+BH_2); } H_INF=1./((1.+exp((svolt+71.55)/7.43))*(1.+exp((svolt+71.55)/7.43))); if(svolt>=-40.) { AJ_1=0.; BJ_1=(0.6*exp((0.057)*svolt)/(1.+exp(-0.1*(svolt+32.)))); TAU_J= 1.0/(AJ_1+BJ_1); } else { AJ_2=(((-2.5428e4)*exp(0.2444*svolt)-(6.948e-6)* exp(-0.04391*svolt))*(svolt+37.78)/ (1.+exp(0.311*(svolt+79.23)))); BJ_2=(0.02424*exp(-0.01052*svolt)/(1.+exp(-0.1378*(svolt+40.14)))); TAU_J= 1.0/(AJ_2+BJ_2); } J_INF=H_INF; Xr1_INF=1./(1.+exp((-26.-svolt)/7.)); axr1=450./(1.+exp((-45.-svolt)/10.)); bxr1=6./(1.+exp((svolt-(-30.))/11.5)); TAU_Xr1=axr1*bxr1; Xr2_INF=1./(1.+exp((svolt-(-88.))/24.)); axr2=3./(1.+exp((-60.-svolt)/20.)); bxr2=1.12/(1.+exp((svolt-60.)/20.)); TAU_Xr2=axr2*bxr2; Xs_INF=1./(1.+exp((-5.-svolt)/14.)); Axs=1100./(sqrt(1.+exp((-10.-svolt)/6))); Bxs=1./(1.+exp((svolt-60.)/20.)); TAU_Xs=Axs*Bxs; // [!] Myocardium cell R_INF=1./(1.+exp((20-svolt)/6.)); S_INF=1./(1.+exp((svolt+20)/5.)); TAU_R=9.5*exp(-(svolt+40.)*(svolt+40.)/1800.)+0.8; TAU_S=85.*exp(-(svolt+45.)*(svolt+45.)/320.)+5./(1.+exp((svolt-20.)/5.))+3.; D_INF=1./(1.+exp((-5-svolt)/7.5)); Ad=1.4/(1.+exp((-35-svolt)/13))+0.25; Bd=1.4/(1.+exp((svolt+5)/5)); Cd=1./(1.+exp((50-svolt)/20)); TAU_D=Ad*Bd+Cd; F_INF=1./(1.+exp((svolt+20)/7)); //TAU_F=1125*exp(-(svolt+27)*(svolt+27)/300)+80+165/(1.+exp((25-svolt)/10)); TAU_F=1125*exp(-(svolt+27)*(svolt+27)/240)+80+165/(1.+exp((25-svolt)/10)); // Updated version from CellML FCa_INF=(1./(1.+pow((Cai/0.000325),8))+ 0.1/(1.+exp((Cai-0.0005)/0.0001))+ 0.20/(1.+exp((Cai-0.00075)/0.0008))+ 0.23 )/1.46; if(Cai<0.00035) G_INF=1./(1.+pow((Cai/0.00035),6)); else G_INF=1./(1.+pow((Cai/0.00035),16)); //Update gates rDY_[1] = M_INF-(M_INF-sm)*exp(-dt/TAU_M); rDY_[2] = H_INF-(H_INF-sh)*exp(-dt/TAU_H); rDY_[3] = J_INF-(J_INF-sj)*exp(-dt/TAU_J); rDY_[4] = Xr1_INF-(Xr1_INF-sxr1)*exp(-dt/TAU_Xr1); rDY_[5] = Xr2_INF-(Xr2_INF-sxr2)*exp(-dt/TAU_Xr2); rDY_[6] = Xs_INF-(Xs_INF-sxs)*exp(-dt/TAU_Xs); rDY_[7] = S_INF-(S_INF-ss)*exp(-dt/TAU_S); rDY_[8] = R_INF-(R_INF-sr)*exp(-dt/TAU_R); rDY_[9] = D_INF-(D_INF-sd)*exp(-dt/TAU_D); rDY_[10] = F_INF-(F_INF-sf)*exp(-dt/TAU_F); fcaold= sfca; sfca = FCa_INF-(FCa_INF-sfca)*exptaufca; if(sfca>fcaold && (svolt)>-37.0) sfca = fcaold; gold = sg; sg = G_INF-(G_INF-sg)*exptaug; if(sg>gold && (svolt)>-37.0) sg=gold; //update voltage rDY_[0] = svolt + dt*(-sItot); rDY_[11] = sfca; rDY_[12] = sg; rDY_[13] = Cai; rDY_[14] = CaSR; rDY_[15] = Nai; rDY_[16] = Ki; } inline __device__ void RHS_gpu_epi (real *sv_, real *rDY_, real stim_current, int threadID_, real dt) { // State variables real svolt = *((real*)((char*)sv_ + pitch * 0) + threadID_); real sm = *((real*)((char*)sv_ + pitch * 1) + threadID_); real sh = *((real*)((char*)sv_ + pitch * 2) + threadID_); real sj = *((real*)((char*)sv_ + pitch * 3) + threadID_); real sxr1 = *((real*)((char*)sv_ + pitch * 4) + threadID_); real sxr2 = *((real*)((char*)sv_ + pitch * 5) + threadID_); real sxs = *((real*)((char*)sv_ + pitch * 6) + threadID_); real ss = *((real*)((char*)sv_ + pitch * 7) + threadID_); real sr = *((real*)((char*)sv_ + pitch * 8) + threadID_); real sd = *((real*)((char*)sv_ + pitch * 9) + threadID_); real sf = *((real*)((char*)sv_ + pitch * 10) + threadID_); real sfca = *((real*)((char*)sv_ + pitch * 11) + threadID_); real sg = *((real*)((char*)sv_ + pitch * 12) + threadID_); real Cai = *((real*)((char*)sv_ + pitch * 13) + threadID_); real CaSR = *((real*)((char*)sv_ + pitch * 14) + threadID_); real Nai = *((real*)((char*)sv_ + pitch * 15) + threadID_); real Ki = *((real*)((char*)sv_ + pitch * 16) + threadID_); //External concentrations real Ko=5.4; real Cao=2.0; real Nao=140.0; //Intracellular volumes real Vc=0.016404; real Vsr=0.001094; //Calcium dynamics real Bufc=0.15f; real Kbufc=0.001f; real Bufsr=10.f; real Kbufsr=0.3f; real taufca=2.f; real taug=2.f; real Vmaxup=0.000425f; real Kup=0.00025f; //Constants const real R = 8314.472f; const real F = 96485.3415f; const real T =310.0f; real RTONF =(R*T)/F; //Cellular capacitance real CAPACITANCE=0.185; //Parameters for currents //Parameters for IKr real Gkr=0.096; //Parameters for Iks real pKNa=0.03; // [!] Epicardium cell real Gks=0.245; //Parameters for Ik1 real GK1=5.405; //Parameters for Ito // [!] Epicardium cell real Gto=0.294; //Parameters for INa real GNa=14.838; //Parameters for IbNa real GbNa=0.00029; //Parameters for INaK real KmK=1.0; real KmNa=40.0; real knak=1.362; //Parameters for ICaL real GCaL=0.000175; //Parameters for IbCa real GbCa=0.000592; //Parameters for INaCa real knaca=1000; real KmNai=87.5; real KmCa=1.38; real ksat=0.1; real n=0.35; //Parameters for IpCa real GpCa=0.825; real KpCa=0.0005; //Parameters for IpK; real GpK=0.0146; real IKr; real IKs; real IK1; real Ito; real INa; real IbNa; real ICaL; real IbCa; real INaCa; real IpCa; real IpK; real INaK; real Irel; real Ileak; real dNai; real dKi; real dCai; real dCaSR; real A; // real BufferFactorc; // real BufferFactorsr; real SERCA; real Caisquare; real CaSRsquare; real CaCurrent; real CaSRCurrent; real fcaold; real gold; real Ek; real Ena; real Eks; real Eca; real CaCSQN; real bjsr; real cjsr; real CaBuf; real bc; real cc; real Ak1; real Bk1; real rec_iK1; real rec_ipK; real rec_iNaK; real AM; real BM; real AH_1; real BH_1; real AH_2; real BH_2; real AJ_1; real BJ_1; real AJ_2; real BJ_2; real M_INF; real H_INF; real J_INF; real TAU_M; real TAU_H; real TAU_J; real axr1; real bxr1; real axr2; real bxr2; real Xr1_INF; real Xr2_INF; real TAU_Xr1; real TAU_Xr2; real Axs; real Bxs; real Xs_INF; real TAU_Xs; real R_INF; real TAU_R; real S_INF; real TAU_S; real Ad; real Bd; real Cd; real TAU_D; real D_INF; real TAU_F; real F_INF; real FCa_INF; real G_INF; real inverseVcF2=1/(2*Vc*F); real inverseVcF=1./(Vc*F); real Kupsquare=Kup*Kup; // real BufcKbufc=Bufc*Kbufc; // real Kbufcsquare=Kbufc*Kbufc; // real Kbufc2=2*Kbufc; // real BufsrKbufsr=Bufsr*Kbufsr; // const real Kbufsrsquare=Kbufsr*Kbufsr; // const real Kbufsr2=2*Kbufsr; const real exptaufca=exp(-dt/taufca); const real exptaug=exp(-dt/taug); real sItot; //Needed to compute currents Ek=RTONF*(log((Ko/Ki))); Ena=RTONF*(log((Nao/Nai))); Eks=RTONF*(log((Ko+pKNa*Nao)/(Ki+pKNa*Nai))); Eca=0.5*RTONF*(log((Cao/Cai))); Ak1=0.1/(1.+exp(0.06*(svolt-Ek-200))); Bk1=(3.*exp(0.0002*(svolt-Ek+100))+ exp(0.1*(svolt-Ek-10)))/(1.+exp(-0.5*(svolt-Ek))); rec_iK1=Ak1/(Ak1+Bk1); rec_iNaK=(1./(1.+0.1245*exp(-0.1*svolt*F/(R*T))+0.0353*exp(-svolt*F/(R*T)))); rec_ipK=1./(1.+exp((25-svolt)/5.98)); //Compute currents INa=GNa*sm*sm*sm*sh*sj*(svolt-Ena); ICaL=GCaL*sd*sf*sfca*4*svolt*(F*F/(R*T))* (exp(2*svolt*F/(R*T))*Cai-0.341*Cao)/(exp(2*svolt*F/(R*T))-1.); Ito=Gto*sr*ss*(svolt-Ek); IKr=Gkr*sqrt(Ko/5.4)*sxr1*sxr2*(svolt-Ek); IKs=Gks*sxs*sxs*(svolt-Eks); IK1=GK1*rec_iK1*(svolt-Ek); INaCa=knaca*(1./(KmNai*KmNai*KmNai+Nao*Nao*Nao))*(1./(KmCa+Cao))* (1./(1+ksat*exp((n-1)*svolt*F/(R*T))))* (exp(n*svolt*F/(R*T))*Nai*Nai*Nai*Cao- exp((n-1)*svolt*F/(R*T))*Nao*Nao*Nao*Cai*2.5); INaK=knak*(Ko/(Ko+KmK))*(Nai/(Nai+KmNa))*rec_iNaK; IpCa=GpCa*Cai/(KpCa+Cai); IpK=GpK*rec_ipK*(svolt-Ek); IbNa=GbNa*(svolt-Ena); IbCa=GbCa*(svolt-Eca); //Determine total current (sItot) = IKr + IKs + IK1 + Ito + INa + IbNa + ICaL + IbCa + INaK + INaCa + IpCa + IpK + stim_current; //update concentrations Caisquare=Cai*Cai; CaSRsquare=CaSR*CaSR; CaCurrent=-(ICaL+IbCa+IpCa-2.0f*INaCa)*inverseVcF2*CAPACITANCE; A=0.016464f*CaSRsquare/(0.0625f+CaSRsquare)+0.008232f; Irel=A*sd*sg; Ileak=0.00008f*(CaSR-Cai); SERCA=Vmaxup/(1.f+(Kupsquare/Caisquare)); CaSRCurrent=SERCA-Irel-Ileak; CaCSQN=Bufsr*CaSR/(CaSR+Kbufsr); dCaSR=dt*(Vc/Vsr)*CaSRCurrent; bjsr=Bufsr-CaCSQN-dCaSR-CaSR+Kbufsr; cjsr=Kbufsr*(CaCSQN+dCaSR+CaSR); CaSR=(sqrt(bjsr*bjsr+4.*cjsr)-bjsr)/2.; CaBuf=Bufc*Cai/(Cai+Kbufc); dCai=dt*(CaCurrent-CaSRCurrent); bc=Bufc-CaBuf-dCai-Cai+Kbufc; cc=Kbufc*(CaBuf+dCai+Cai); Cai=(sqrt(bc*bc+4*cc)-bc)/2; dNai=-(INa+IbNa+3*INaK+3*INaCa)*inverseVcF*CAPACITANCE; Nai+=dt*dNai; dKi=-(stim_current+IK1+Ito+IKr+IKs-2*INaK+IpK)*inverseVcF*CAPACITANCE; Ki+=dt*dKi; //compute steady state values and time constants AM=1./(1.+exp((-60.-svolt)/5.)); BM=0.1/(1.+exp((svolt+35.)/5.))+0.10/(1.+exp((svolt-50.)/200.)); TAU_M=AM*BM; M_INF=1./((1.+exp((-56.86-svolt)/9.03))*(1.+exp((-56.86-svolt)/9.03))); if (svolt>=-40.) { AH_1=0.; BH_1=(0.77/(0.13*(1.+exp(-(svolt+10.66)/11.1)))); TAU_H= 1.0/(AH_1+BH_1); } else { AH_2=(0.057*exp(-(svolt+80.)/6.8)); BH_2=(2.7*exp(0.079*svolt)+(3.1e5)*exp(0.3485*svolt)); TAU_H=1.0/(AH_2+BH_2); } H_INF=1./((1.+exp((svolt+71.55)/7.43))*(1.+exp((svolt+71.55)/7.43))); if(svolt>=-40.) { AJ_1=0.; BJ_1=(0.6*exp((0.057)*svolt)/(1.+exp(-0.1*(svolt+32.)))); TAU_J= 1.0/(AJ_1+BJ_1); } else { AJ_2=(((-2.5428e4)*exp(0.2444*svolt)-(6.948e-6)* exp(-0.04391*svolt))*(svolt+37.78)/ (1.+exp(0.311*(svolt+79.23)))); BJ_2=(0.02424*exp(-0.01052*svolt)/(1.+exp(-0.1378*(svolt+40.14)))); TAU_J= 1.0/(AJ_2+BJ_2); } J_INF=H_INF; Xr1_INF=1./(1.+exp((-26.-svolt)/7.)); axr1=450./(1.+exp((-45.-svolt)/10.)); bxr1=6./(1.+exp((svolt-(-30.))/11.5)); TAU_Xr1=axr1*bxr1; Xr2_INF=1./(1.+exp((svolt-(-88.))/24.)); axr2=3./(1.+exp((-60.-svolt)/20.)); bxr2=1.12/(1.+exp((svolt-60.)/20.)); TAU_Xr2=axr2*bxr2; Xs_INF=1./(1.+exp((-5.-svolt)/14.)); Axs=1100./(sqrt(1.+exp((-10.-svolt)/6))); Bxs=1./(1.+exp((svolt-60.)/20.)); TAU_Xs=Axs*Bxs; R_INF=1./(1.+exp((20-svolt)/6.)); S_INF=1./(1.+exp((svolt+20)/5.)); TAU_R=9.5*exp(-(svolt+40.)*(svolt+40.)/1800.)+0.8; TAU_S=85.*exp(-(svolt+45.)*(svolt+45.)/320.)+5./(1.+exp((svolt-20.)/5.))+3.; D_INF=1./(1.+exp((-5-svolt)/7.5)); Ad=1.4/(1.+exp((-35-svolt)/13))+0.25; Bd=1.4/(1.+exp((svolt+5)/5)); Cd=1./(1.+exp((50-svolt)/20)); TAU_D=Ad*Bd+Cd; F_INF=1./(1.+exp((svolt+20)/7)); //TAU_F=1125*exp(-(svolt+27)*(svolt+27)/300)+80+165/(1.+exp((25-svolt)/10)); TAU_F=1125*exp(-(svolt+27)*(svolt+27)/240)+80+165/(1.+exp((25-svolt)/10)); // Updated from CellML FCa_INF=(1./(1.+pow((Cai/0.000325),8))+ 0.1/(1.+exp((Cai-0.0005)/0.0001))+ 0.20/(1.+exp((Cai-0.00075)/0.0008))+ 0.23 )/1.46; if(Cai<0.00035) G_INF=1./(1.+pow((Cai/0.00035),6)); else G_INF=1./(1.+pow((Cai/0.00035),16)); //Update gates rDY_[1] = M_INF-(M_INF-sm)*exp(-dt/TAU_M); rDY_[2] = H_INF-(H_INF-sh)*exp(-dt/TAU_H); rDY_[3] = J_INF-(J_INF-sj)*exp(-dt/TAU_J); rDY_[4] = Xr1_INF-(Xr1_INF-sxr1)*exp(-dt/TAU_Xr1); rDY_[5] = Xr2_INF-(Xr2_INF-sxr2)*exp(-dt/TAU_Xr2); rDY_[6] = Xs_INF-(Xs_INF-sxs)*exp(-dt/TAU_Xs); rDY_[7] = S_INF-(S_INF-ss)*exp(-dt/TAU_S); rDY_[8] = R_INF-(R_INF-sr)*exp(-dt/TAU_R); rDY_[9] = D_INF-(D_INF-sd)*exp(-dt/TAU_D); rDY_[10] = F_INF-(F_INF-sf)*exp(-dt/TAU_F); fcaold= sfca; sfca = FCa_INF-(FCa_INF-sfca)*exptaufca; if(sfca>fcaold && (svolt)>-37.0) sfca = fcaold; gold = sg; sg = G_INF-(G_INF-sg)*exptaug; if(sg>gold && (svolt)>-37.0) sg=gold; //update voltage rDY_[0] = svolt + dt*(-sItot); rDY_[11] = sfca; rDY_[12] = sg; rDY_[13] = Cai; rDY_[14] = CaSR; rDY_[15] = Nai; rDY_[16] = Ki; }
5c369ad7a91dc92861adbf7ad454d41e2314b87d.cu
#include <stddef.h> #include <stdint.h> #include "model_gpu_utils.h" #include "mixed_tentusscher_myo_epi_2004_S1.h" extern "C" SET_ODE_INITIAL_CONDITIONS_GPU(set_model_initial_conditions_gpu) { print_to_stdout_and_file("Using mixed version of TenTusscher 2004 myocardium + epicardium GPU model\n\n"); // execution configuration const int GRID = (num_volumes + BLOCK_SIZE - 1)/BLOCK_SIZE; size_t size = num_volumes*sizeof(real); check_cuda_error(cudaMallocPitch((void **) &(*sv), &pitch_h, size, (size_t )NEQ)); check_cuda_error(cudaMemcpyToSymbol(pitch, &pitch_h, sizeof(size_t))); // Get the mapping array uint32_t *mapping = NULL; uint32_t *mapping_device = NULL; if(extra_data) { mapping = (uint32_t*)extra_data; check_cuda_error(cudaMalloc((void **)&mapping_device, extra_data_bytes_size)); check_cuda_error(cudaMemcpy(mapping_device, mapping, extra_data_bytes_size, cudaMemcpyHostToDevice)); } kernel_set_model_inital_conditions <<<GRID, BLOCK_SIZE>>>(*sv, mapping_device, num_volumes); check_cuda_error( cudaPeekAtLastError() ); cudaDeviceSynchronize(); check_cuda_error(cudaFree(mapping_device)); return pitch_h; } extern "C" SOLVE_MODEL_ODES_GPU(solve_model_odes_gpu) { // execution configuration const int GRID = ((int)num_cells_to_solve + BLOCK_SIZE - 1)/BLOCK_SIZE; size_t stim_currents_size = sizeof(real)*num_cells_to_solve; size_t cells_to_solve_size = sizeof(uint32_t)*num_cells_to_solve; real *stims_currents_device; check_cuda_error(cudaMalloc((void **) &stims_currents_device, stim_currents_size)); check_cuda_error(cudaMemcpy(stims_currents_device, stim_currents, stim_currents_size, cudaMemcpyHostToDevice)); //the array cells to solve is passed when we are using and adapative mesh uint32_t *cells_to_solve_device = NULL; if(cells_to_solve != NULL) { check_cuda_error(cudaMalloc((void **) &cells_to_solve_device, cells_to_solve_size)); check_cuda_error(cudaMemcpy(cells_to_solve_device, cells_to_solve, cells_to_solve_size, cudaMemcpyHostToDevice)); } // Get the mapping array uint32_t *mapping = NULL; uint32_t *mapping_device = NULL; if(extra_data) { mapping = (uint32_t*)extra_data; check_cuda_error(cudaMalloc((void **)&mapping_device, extra_data_bytes_size)); check_cuda_error(cudaMemcpy(mapping_device, mapping, extra_data_bytes_size, cudaMemcpyHostToDevice)); } else { print_to_stderr_and_file_and_exit("You need to specify a mask function when using a mixed model!\n"); } solve_gpu <<<GRID, BLOCK_SIZE>>>(dt, sv, stims_currents_device, cells_to_solve_device, mapping_device, num_cells_to_solve, num_steps); check_cuda_error( cudaPeekAtLastError() ); check_cuda_error(cudaFree(stims_currents_device)); if(cells_to_solve_device) check_cuda_error(cudaFree(cells_to_solve_device)); if(mapping_device) check_cuda_error(cudaFree(mapping_device)); } __global__ void kernel_set_model_inital_conditions(real *sv, uint32_t *mapping, int num_volumes) { int threadID = blockDim.x * blockIdx.x + threadIdx.x; if (threadID < num_volumes) { // Initial conditions for TenTusscher 2004 myocardium if (mapping[threadID] == 0) { // Default initial conditions /* *((real * )((char *) sv + pitch * 0) + threadID) = INITIAL_V; // V; millivolt *((real * )((char *) sv + pitch * 1) + threadID) = 0.f; //M *((real * )((char *) sv + pitch * 2) + threadID) = 0.75; //H *((real * )((char *) sv + pitch * 3) + threadID) = 0.75f; //J *((real * )((char *) sv + pitch * 4) + threadID) = 0.f; //Xr1 *((real * )((char *) sv + pitch * 5) + threadID) = 1.f; //Xr2 *((real * )((char *) sv + pitch * 6) + threadID) = 0.f; //Xs *((real * )((char *) sv + pitch * 7) + threadID) = 1.f; //S *((real * )((char *) sv + pitch * 8) + threadID) = 0.f; //R *((real * )((char *) sv + pitch * 9) + threadID) = 0.f; //D *((real * )((char *) sv + pitch * 10) + threadID) = 1.f; //F *((real * )((char *) sv + pitch * 11) + threadID) = 1.f; //FCa *((real * )((char *) sv + pitch * 12) + threadID) = 1.f; //G *((real * )((char *) sv + pitch * 13) + threadID) = 0.0002; //Cai *((real * )((char *) sv + pitch * 14) + threadID) = 0.2f; //CaSR *((real * )((char *) sv + pitch * 15) + threadID) = 11.6f; //Nai *((real * )((char *) sv + pitch * 16) + threadID) = 138.3f; //Ki */ // Elnaz's steady-state initial conditions real sv_sst[]={-86.3965119057144,0.00133824305081220,0.775463576993407,0.775278393595599,0.000179499343643571,0.483303039835057,0.00297647859235379,0.999998290403642,1.98961879737287e-08,1.93486789479597e-05,0.999599147019885,1.00646342475688,0.999975178010127,5.97703651642618e-05,0.418325344820368,10.7429775420171,138.918155900633}; for (uint32_t i = 0; i < NEQ; i++) *((real * )((char *) sv + pitch * i) + threadID) = sv_sst[i]; } // Initial conditions for TenTusscher 2004 epicardium else { // Default initial conditions /* *((real * )((char *) sv + pitch * 0) + threadID) = INITIAL_V; // V; millivolt *((real * )((char *) sv + pitch * 1) + threadID) = 0.f; //M *((real * )((char *) sv + pitch * 2) + threadID) = 0.75; //H *((real * )((char *) sv + pitch * 3) + threadID) = 0.75f; //J *((real * )((char *) sv + pitch * 4) + threadID) = 0.f; //Xr1 *((real * )((char *) sv + pitch * 5) + threadID) = 1.f; //Xr2 *((real * )((char *) sv + pitch * 6) + threadID) = 0.f; //Xs *((real * )((char *) sv + pitch * 7) + threadID) = 1.f; //S *((real * )((char *) sv + pitch * 8) + threadID) = 0.f; //R *((real * )((char *) sv + pitch * 9) + threadID) = 0.f; //D *((real * )((char *) sv + pitch * 10) + threadID) = 1.f; //F *((real * )((char *) sv + pitch * 11) + threadID) = 1.f; //FCa *((real * )((char *) sv + pitch * 12) + threadID) = 1.f; //G *((real * )((char *) sv + pitch * 13) + threadID) = 0.0002; //Cai *((real * )((char *) sv + pitch * 14) + threadID) = 0.2f; //CaSR *((real * )((char *) sv + pitch * 15) + threadID) = 11.6f; //Nai *((real * )((char *) sv + pitch * 16) + threadID) = 138.3f; //Ki */ // Elnaz's steady-state initial conditions real sv_sst[]={-86.4172552153702,0.00133233093318418,0.775980725003160,0.775871451583533,0.000178484465968596,0.483518904573916,0.00297208335439809,0.999998297825169,1.98274727808946e-08,1.92952362196655e-05,0.999768268008847,1.00667048889468,0.999984854519288,5.50424977684767e-05,0.352485262813812,10.8673127043200,138.860197273148}; for (uint32_t i = 0; i < NEQ; i++) *((real * )((char *) sv + pitch * i) + threadID) = sv_sst[i]; } } } // Solving the model for each cell in the tissue matrix ni x nj __global__ void solve_gpu(real dt, real *sv, real* stim_currents, uint32_t *cells_to_solve, uint32_t *mapping, uint32_t num_cells_to_solve, int num_steps) { int threadID = blockDim.x * blockIdx.x + threadIdx.x; int sv_id; // Each thread solves one cell model if(threadID < num_cells_to_solve) { if(cells_to_solve) sv_id = cells_to_solve[threadID]; else sv_id = threadID; real rDY[NEQ]; for (int n = 0; n < num_steps; ++n) { if (mapping[sv_id] == 0) { RHS_gpu_myo(sv, rDY, stim_currents[threadID], sv_id, dt); for(int i = 0; i < NEQ; i++) { *((real *) ((char *) sv + pitch * i) + sv_id) = dt * rDY[i] + *((real *) ((char *) sv + pitch * i) + sv_id); } } else { RHS_gpu_epi(sv, rDY, stim_currents[threadID], sv_id, dt); for (int i = 0; i < NEQ; i++) { *((real *) ((char *) sv + pitch * i) + sv_id) = dt * rDY[i] + *((real *) ((char *) sv + pitch * i) + sv_id); } } } } } inline __device__ void RHS_gpu_myo (real *sv_, real *rDY_, real stim_current, int threadID_, real dt) { // State variables real svolt = *((real*)((char*)sv_ + pitch * 0) + threadID_); real sm = *((real*)((char*)sv_ + pitch * 1) + threadID_); real sh = *((real*)((char*)sv_ + pitch * 2) + threadID_); real sj = *((real*)((char*)sv_ + pitch * 3) + threadID_); real sxr1 = *((real*)((char*)sv_ + pitch * 4) + threadID_); real sxr2 = *((real*)((char*)sv_ + pitch * 5) + threadID_); real sxs = *((real*)((char*)sv_ + pitch * 6) + threadID_); real ss = *((real*)((char*)sv_ + pitch * 7) + threadID_); real sr = *((real*)((char*)sv_ + pitch * 8) + threadID_); real sd = *((real*)((char*)sv_ + pitch * 9) + threadID_); real sf = *((real*)((char*)sv_ + pitch * 10) + threadID_); real sfca = *((real*)((char*)sv_ + pitch * 11) + threadID_); real sg = *((real*)((char*)sv_ + pitch * 12) + threadID_); real Cai = *((real*)((char*)sv_ + pitch * 13) + threadID_); real CaSR = *((real*)((char*)sv_ + pitch * 14) + threadID_); real Nai = *((real*)((char*)sv_ + pitch * 15) + threadID_); real Ki = *((real*)((char*)sv_ + pitch * 16) + threadID_); //External concentrations real Ko=5.4; real Cao=2.0; real Nao=140.0; //Intracellular volumes real Vc=0.016404; real Vsr=0.001094; //Calcium dynamics real Bufc=0.15f; real Kbufc=0.001f; real Bufsr=10.f; real Kbufsr=0.3f; real taufca=2.f; real taug=2.f; real Vmaxup=0.000425f; real Kup=0.00025f; //Constants const real R = 8314.472f; const real F = 96485.3415f; const real T =310.0f; real RTONF =(R*T)/F; //Cellular capacitance real CAPACITANCE=0.185; //Parameters for currents //Parameters for IKr real Gkr=0.096; //Parameters for Iks real pKNa=0.03; // [!] Myocardium cell real Gks=0.062; //Parameters for Ik1 real GK1=5.405; //Parameters for Ito // [!] Myocardium cell real Gto=0.294; //Parameters for INa real GNa=14.838; //Parameters for IbNa real GbNa=0.00029; //Parameters for INaK real KmK=1.0; real KmNa=40.0; real knak=1.362; //Parameters for ICaL real GCaL=0.000175; //Parameters for IbCa real GbCa=0.000592; //Parameters for INaCa real knaca=1000; real KmNai=87.5; real KmCa=1.38; real ksat=0.1; real n=0.35; //Parameters for IpCa real GpCa=0.825; real KpCa=0.0005; //Parameters for IpK; real GpK=0.0146; real IKr; real IKs; real IK1; real Ito; real INa; real IbNa; real ICaL; real IbCa; real INaCa; real IpCa; real IpK; real INaK; real Irel; real Ileak; real dNai; real dKi; real dCai; real dCaSR; real A; // real BufferFactorc; // real BufferFactorsr; real SERCA; real Caisquare; real CaSRsquare; real CaCurrent; real CaSRCurrent; real fcaold; real gold; real Ek; real Ena; real Eks; real Eca; real CaCSQN; real bjsr; real cjsr; real CaBuf; real bc; real cc; real Ak1; real Bk1; real rec_iK1; real rec_ipK; real rec_iNaK; real AM; real BM; real AH_1; real BH_1; real AH_2; real BH_2; real AJ_1; real BJ_1; real AJ_2; real BJ_2; real M_INF; real H_INF; real J_INF; real TAU_M; real TAU_H; real TAU_J; real axr1; real bxr1; real axr2; real bxr2; real Xr1_INF; real Xr2_INF; real TAU_Xr1; real TAU_Xr2; real Axs; real Bxs; real Xs_INF; real TAU_Xs; real R_INF; real TAU_R; real S_INF; real TAU_S; real Ad; real Bd; real Cd; real TAU_D; real D_INF; real TAU_F; real F_INF; real FCa_INF; real G_INF; real inverseVcF2=1/(2*Vc*F); real inverseVcF=1./(Vc*F); real Kupsquare=Kup*Kup; // real BufcKbufc=Bufc*Kbufc; // real Kbufcsquare=Kbufc*Kbufc; // real Kbufc2=2*Kbufc; // real BufsrKbufsr=Bufsr*Kbufsr; // const real Kbufsrsquare=Kbufsr*Kbufsr; // const real Kbufsr2=2*Kbufsr; const real exptaufca=exp(-dt/taufca); const real exptaug=exp(-dt/taug); real sItot; //Needed to compute currents Ek=RTONF*(log((Ko/Ki))); Ena=RTONF*(log((Nao/Nai))); Eks=RTONF*(log((Ko+pKNa*Nao)/(Ki+pKNa*Nai))); Eca=0.5*RTONF*(log((Cao/Cai))); Ak1=0.1/(1.+exp(0.06*(svolt-Ek-200))); Bk1=(3.*exp(0.0002*(svolt-Ek+100))+ exp(0.1*(svolt-Ek-10)))/(1.+exp(-0.5*(svolt-Ek))); rec_iK1=Ak1/(Ak1+Bk1); rec_iNaK=(1./(1.+0.1245*exp(-0.1*svolt*F/(R*T))+0.0353*exp(-svolt*F/(R*T)))); rec_ipK=1./(1.+exp((25-svolt)/5.98)); //Compute currents INa=GNa*sm*sm*sm*sh*sj*(svolt-Ena); ICaL=GCaL*sd*sf*sfca*4*svolt*(F*F/(R*T))* (exp(2*svolt*F/(R*T))*Cai-0.341*Cao)/(exp(2*svolt*F/(R*T))-1.); Ito=Gto*sr*ss*(svolt-Ek); IKr=Gkr*sqrt(Ko/5.4)*sxr1*sxr2*(svolt-Ek); IKs=Gks*sxs*sxs*(svolt-Eks); IK1=GK1*rec_iK1*(svolt-Ek); INaCa=knaca*(1./(KmNai*KmNai*KmNai+Nao*Nao*Nao))*(1./(KmCa+Cao))* (1./(1+ksat*exp((n-1)*svolt*F/(R*T))))* (exp(n*svolt*F/(R*T))*Nai*Nai*Nai*Cao- exp((n-1)*svolt*F/(R*T))*Nao*Nao*Nao*Cai*2.5); INaK=knak*(Ko/(Ko+KmK))*(Nai/(Nai+KmNa))*rec_iNaK; IpCa=GpCa*Cai/(KpCa+Cai); IpK=GpK*rec_ipK*(svolt-Ek); IbNa=GbNa*(svolt-Ena); IbCa=GbCa*(svolt-Eca); //Determine total current (sItot) = IKr + IKs + IK1 + Ito + INa + IbNa + ICaL + IbCa + INaK + INaCa + IpCa + IpK + stim_current; //update concentrations Caisquare=Cai*Cai; CaSRsquare=CaSR*CaSR; CaCurrent=-(ICaL+IbCa+IpCa-2.0f*INaCa)*inverseVcF2*CAPACITANCE; A=0.016464f*CaSRsquare/(0.0625f+CaSRsquare)+0.008232f; Irel=A*sd*sg; Ileak=0.00008f*(CaSR-Cai); SERCA=Vmaxup/(1.f+(Kupsquare/Caisquare)); CaSRCurrent=SERCA-Irel-Ileak; CaCSQN=Bufsr*CaSR/(CaSR+Kbufsr); dCaSR=dt*(Vc/Vsr)*CaSRCurrent; bjsr=Bufsr-CaCSQN-dCaSR-CaSR+Kbufsr; cjsr=Kbufsr*(CaCSQN+dCaSR+CaSR); CaSR=(sqrt(bjsr*bjsr+4.*cjsr)-bjsr)/2.; CaBuf=Bufc*Cai/(Cai+Kbufc); dCai=dt*(CaCurrent-CaSRCurrent); bc=Bufc-CaBuf-dCai-Cai+Kbufc; cc=Kbufc*(CaBuf+dCai+Cai); Cai=(sqrt(bc*bc+4*cc)-bc)/2; dNai=-(INa+IbNa+3*INaK+3*INaCa)*inverseVcF*CAPACITANCE; Nai+=dt*dNai; dKi=-(stim_current+IK1+Ito+IKr+IKs-2*INaK+IpK)*inverseVcF*CAPACITANCE; Ki+=dt*dKi; //compute steady state values and time constants AM=1./(1.+exp((-60.-svolt)/5.)); BM=0.1/(1.+exp((svolt+35.)/5.))+0.10/(1.+exp((svolt-50.)/200.)); TAU_M=AM*BM; M_INF=1./((1.+exp((-56.86-svolt)/9.03))*(1.+exp((-56.86-svolt)/9.03))); if (svolt>=-40.) { AH_1=0.; BH_1=(0.77/(0.13*(1.+exp(-(svolt+10.66)/11.1)))); TAU_H= 1.0/(AH_1+BH_1); } else { AH_2=(0.057*exp(-(svolt+80.)/6.8)); BH_2=(2.7*exp(0.079*svolt)+(3.1e5)*exp(0.3485*svolt)); TAU_H=1.0/(AH_2+BH_2); } H_INF=1./((1.+exp((svolt+71.55)/7.43))*(1.+exp((svolt+71.55)/7.43))); if(svolt>=-40.) { AJ_1=0.; BJ_1=(0.6*exp((0.057)*svolt)/(1.+exp(-0.1*(svolt+32.)))); TAU_J= 1.0/(AJ_1+BJ_1); } else { AJ_2=(((-2.5428e4)*exp(0.2444*svolt)-(6.948e-6)* exp(-0.04391*svolt))*(svolt+37.78)/ (1.+exp(0.311*(svolt+79.23)))); BJ_2=(0.02424*exp(-0.01052*svolt)/(1.+exp(-0.1378*(svolt+40.14)))); TAU_J= 1.0/(AJ_2+BJ_2); } J_INF=H_INF; Xr1_INF=1./(1.+exp((-26.-svolt)/7.)); axr1=450./(1.+exp((-45.-svolt)/10.)); bxr1=6./(1.+exp((svolt-(-30.))/11.5)); TAU_Xr1=axr1*bxr1; Xr2_INF=1./(1.+exp((svolt-(-88.))/24.)); axr2=3./(1.+exp((-60.-svolt)/20.)); bxr2=1.12/(1.+exp((svolt-60.)/20.)); TAU_Xr2=axr2*bxr2; Xs_INF=1./(1.+exp((-5.-svolt)/14.)); Axs=1100./(sqrt(1.+exp((-10.-svolt)/6))); Bxs=1./(1.+exp((svolt-60.)/20.)); TAU_Xs=Axs*Bxs; // [!] Myocardium cell R_INF=1./(1.+exp((20-svolt)/6.)); S_INF=1./(1.+exp((svolt+20)/5.)); TAU_R=9.5*exp(-(svolt+40.)*(svolt+40.)/1800.)+0.8; TAU_S=85.*exp(-(svolt+45.)*(svolt+45.)/320.)+5./(1.+exp((svolt-20.)/5.))+3.; D_INF=1./(1.+exp((-5-svolt)/7.5)); Ad=1.4/(1.+exp((-35-svolt)/13))+0.25; Bd=1.4/(1.+exp((svolt+5)/5)); Cd=1./(1.+exp((50-svolt)/20)); TAU_D=Ad*Bd+Cd; F_INF=1./(1.+exp((svolt+20)/7)); //TAU_F=1125*exp(-(svolt+27)*(svolt+27)/300)+80+165/(1.+exp((25-svolt)/10)); TAU_F=1125*exp(-(svolt+27)*(svolt+27)/240)+80+165/(1.+exp((25-svolt)/10)); // Updated version from CellML FCa_INF=(1./(1.+pow((Cai/0.000325),8))+ 0.1/(1.+exp((Cai-0.0005)/0.0001))+ 0.20/(1.+exp((Cai-0.00075)/0.0008))+ 0.23 )/1.46; if(Cai<0.00035) G_INF=1./(1.+pow((Cai/0.00035),6)); else G_INF=1./(1.+pow((Cai/0.00035),16)); //Update gates rDY_[1] = M_INF-(M_INF-sm)*exp(-dt/TAU_M); rDY_[2] = H_INF-(H_INF-sh)*exp(-dt/TAU_H); rDY_[3] = J_INF-(J_INF-sj)*exp(-dt/TAU_J); rDY_[4] = Xr1_INF-(Xr1_INF-sxr1)*exp(-dt/TAU_Xr1); rDY_[5] = Xr2_INF-(Xr2_INF-sxr2)*exp(-dt/TAU_Xr2); rDY_[6] = Xs_INF-(Xs_INF-sxs)*exp(-dt/TAU_Xs); rDY_[7] = S_INF-(S_INF-ss)*exp(-dt/TAU_S); rDY_[8] = R_INF-(R_INF-sr)*exp(-dt/TAU_R); rDY_[9] = D_INF-(D_INF-sd)*exp(-dt/TAU_D); rDY_[10] = F_INF-(F_INF-sf)*exp(-dt/TAU_F); fcaold= sfca; sfca = FCa_INF-(FCa_INF-sfca)*exptaufca; if(sfca>fcaold && (svolt)>-37.0) sfca = fcaold; gold = sg; sg = G_INF-(G_INF-sg)*exptaug; if(sg>gold && (svolt)>-37.0) sg=gold; //update voltage rDY_[0] = svolt + dt*(-sItot); rDY_[11] = sfca; rDY_[12] = sg; rDY_[13] = Cai; rDY_[14] = CaSR; rDY_[15] = Nai; rDY_[16] = Ki; } inline __device__ void RHS_gpu_epi (real *sv_, real *rDY_, real stim_current, int threadID_, real dt) { // State variables real svolt = *((real*)((char*)sv_ + pitch * 0) + threadID_); real sm = *((real*)((char*)sv_ + pitch * 1) + threadID_); real sh = *((real*)((char*)sv_ + pitch * 2) + threadID_); real sj = *((real*)((char*)sv_ + pitch * 3) + threadID_); real sxr1 = *((real*)((char*)sv_ + pitch * 4) + threadID_); real sxr2 = *((real*)((char*)sv_ + pitch * 5) + threadID_); real sxs = *((real*)((char*)sv_ + pitch * 6) + threadID_); real ss = *((real*)((char*)sv_ + pitch * 7) + threadID_); real sr = *((real*)((char*)sv_ + pitch * 8) + threadID_); real sd = *((real*)((char*)sv_ + pitch * 9) + threadID_); real sf = *((real*)((char*)sv_ + pitch * 10) + threadID_); real sfca = *((real*)((char*)sv_ + pitch * 11) + threadID_); real sg = *((real*)((char*)sv_ + pitch * 12) + threadID_); real Cai = *((real*)((char*)sv_ + pitch * 13) + threadID_); real CaSR = *((real*)((char*)sv_ + pitch * 14) + threadID_); real Nai = *((real*)((char*)sv_ + pitch * 15) + threadID_); real Ki = *((real*)((char*)sv_ + pitch * 16) + threadID_); //External concentrations real Ko=5.4; real Cao=2.0; real Nao=140.0; //Intracellular volumes real Vc=0.016404; real Vsr=0.001094; //Calcium dynamics real Bufc=0.15f; real Kbufc=0.001f; real Bufsr=10.f; real Kbufsr=0.3f; real taufca=2.f; real taug=2.f; real Vmaxup=0.000425f; real Kup=0.00025f; //Constants const real R = 8314.472f; const real F = 96485.3415f; const real T =310.0f; real RTONF =(R*T)/F; //Cellular capacitance real CAPACITANCE=0.185; //Parameters for currents //Parameters for IKr real Gkr=0.096; //Parameters for Iks real pKNa=0.03; // [!] Epicardium cell real Gks=0.245; //Parameters for Ik1 real GK1=5.405; //Parameters for Ito // [!] Epicardium cell real Gto=0.294; //Parameters for INa real GNa=14.838; //Parameters for IbNa real GbNa=0.00029; //Parameters for INaK real KmK=1.0; real KmNa=40.0; real knak=1.362; //Parameters for ICaL real GCaL=0.000175; //Parameters for IbCa real GbCa=0.000592; //Parameters for INaCa real knaca=1000; real KmNai=87.5; real KmCa=1.38; real ksat=0.1; real n=0.35; //Parameters for IpCa real GpCa=0.825; real KpCa=0.0005; //Parameters for IpK; real GpK=0.0146; real IKr; real IKs; real IK1; real Ito; real INa; real IbNa; real ICaL; real IbCa; real INaCa; real IpCa; real IpK; real INaK; real Irel; real Ileak; real dNai; real dKi; real dCai; real dCaSR; real A; // real BufferFactorc; // real BufferFactorsr; real SERCA; real Caisquare; real CaSRsquare; real CaCurrent; real CaSRCurrent; real fcaold; real gold; real Ek; real Ena; real Eks; real Eca; real CaCSQN; real bjsr; real cjsr; real CaBuf; real bc; real cc; real Ak1; real Bk1; real rec_iK1; real rec_ipK; real rec_iNaK; real AM; real BM; real AH_1; real BH_1; real AH_2; real BH_2; real AJ_1; real BJ_1; real AJ_2; real BJ_2; real M_INF; real H_INF; real J_INF; real TAU_M; real TAU_H; real TAU_J; real axr1; real bxr1; real axr2; real bxr2; real Xr1_INF; real Xr2_INF; real TAU_Xr1; real TAU_Xr2; real Axs; real Bxs; real Xs_INF; real TAU_Xs; real R_INF; real TAU_R; real S_INF; real TAU_S; real Ad; real Bd; real Cd; real TAU_D; real D_INF; real TAU_F; real F_INF; real FCa_INF; real G_INF; real inverseVcF2=1/(2*Vc*F); real inverseVcF=1./(Vc*F); real Kupsquare=Kup*Kup; // real BufcKbufc=Bufc*Kbufc; // real Kbufcsquare=Kbufc*Kbufc; // real Kbufc2=2*Kbufc; // real BufsrKbufsr=Bufsr*Kbufsr; // const real Kbufsrsquare=Kbufsr*Kbufsr; // const real Kbufsr2=2*Kbufsr; const real exptaufca=exp(-dt/taufca); const real exptaug=exp(-dt/taug); real sItot; //Needed to compute currents Ek=RTONF*(log((Ko/Ki))); Ena=RTONF*(log((Nao/Nai))); Eks=RTONF*(log((Ko+pKNa*Nao)/(Ki+pKNa*Nai))); Eca=0.5*RTONF*(log((Cao/Cai))); Ak1=0.1/(1.+exp(0.06*(svolt-Ek-200))); Bk1=(3.*exp(0.0002*(svolt-Ek+100))+ exp(0.1*(svolt-Ek-10)))/(1.+exp(-0.5*(svolt-Ek))); rec_iK1=Ak1/(Ak1+Bk1); rec_iNaK=(1./(1.+0.1245*exp(-0.1*svolt*F/(R*T))+0.0353*exp(-svolt*F/(R*T)))); rec_ipK=1./(1.+exp((25-svolt)/5.98)); //Compute currents INa=GNa*sm*sm*sm*sh*sj*(svolt-Ena); ICaL=GCaL*sd*sf*sfca*4*svolt*(F*F/(R*T))* (exp(2*svolt*F/(R*T))*Cai-0.341*Cao)/(exp(2*svolt*F/(R*T))-1.); Ito=Gto*sr*ss*(svolt-Ek); IKr=Gkr*sqrt(Ko/5.4)*sxr1*sxr2*(svolt-Ek); IKs=Gks*sxs*sxs*(svolt-Eks); IK1=GK1*rec_iK1*(svolt-Ek); INaCa=knaca*(1./(KmNai*KmNai*KmNai+Nao*Nao*Nao))*(1./(KmCa+Cao))* (1./(1+ksat*exp((n-1)*svolt*F/(R*T))))* (exp(n*svolt*F/(R*T))*Nai*Nai*Nai*Cao- exp((n-1)*svolt*F/(R*T))*Nao*Nao*Nao*Cai*2.5); INaK=knak*(Ko/(Ko+KmK))*(Nai/(Nai+KmNa))*rec_iNaK; IpCa=GpCa*Cai/(KpCa+Cai); IpK=GpK*rec_ipK*(svolt-Ek); IbNa=GbNa*(svolt-Ena); IbCa=GbCa*(svolt-Eca); //Determine total current (sItot) = IKr + IKs + IK1 + Ito + INa + IbNa + ICaL + IbCa + INaK + INaCa + IpCa + IpK + stim_current; //update concentrations Caisquare=Cai*Cai; CaSRsquare=CaSR*CaSR; CaCurrent=-(ICaL+IbCa+IpCa-2.0f*INaCa)*inverseVcF2*CAPACITANCE; A=0.016464f*CaSRsquare/(0.0625f+CaSRsquare)+0.008232f; Irel=A*sd*sg; Ileak=0.00008f*(CaSR-Cai); SERCA=Vmaxup/(1.f+(Kupsquare/Caisquare)); CaSRCurrent=SERCA-Irel-Ileak; CaCSQN=Bufsr*CaSR/(CaSR+Kbufsr); dCaSR=dt*(Vc/Vsr)*CaSRCurrent; bjsr=Bufsr-CaCSQN-dCaSR-CaSR+Kbufsr; cjsr=Kbufsr*(CaCSQN+dCaSR+CaSR); CaSR=(sqrt(bjsr*bjsr+4.*cjsr)-bjsr)/2.; CaBuf=Bufc*Cai/(Cai+Kbufc); dCai=dt*(CaCurrent-CaSRCurrent); bc=Bufc-CaBuf-dCai-Cai+Kbufc; cc=Kbufc*(CaBuf+dCai+Cai); Cai=(sqrt(bc*bc+4*cc)-bc)/2; dNai=-(INa+IbNa+3*INaK+3*INaCa)*inverseVcF*CAPACITANCE; Nai+=dt*dNai; dKi=-(stim_current+IK1+Ito+IKr+IKs-2*INaK+IpK)*inverseVcF*CAPACITANCE; Ki+=dt*dKi; //compute steady state values and time constants AM=1./(1.+exp((-60.-svolt)/5.)); BM=0.1/(1.+exp((svolt+35.)/5.))+0.10/(1.+exp((svolt-50.)/200.)); TAU_M=AM*BM; M_INF=1./((1.+exp((-56.86-svolt)/9.03))*(1.+exp((-56.86-svolt)/9.03))); if (svolt>=-40.) { AH_1=0.; BH_1=(0.77/(0.13*(1.+exp(-(svolt+10.66)/11.1)))); TAU_H= 1.0/(AH_1+BH_1); } else { AH_2=(0.057*exp(-(svolt+80.)/6.8)); BH_2=(2.7*exp(0.079*svolt)+(3.1e5)*exp(0.3485*svolt)); TAU_H=1.0/(AH_2+BH_2); } H_INF=1./((1.+exp((svolt+71.55)/7.43))*(1.+exp((svolt+71.55)/7.43))); if(svolt>=-40.) { AJ_1=0.; BJ_1=(0.6*exp((0.057)*svolt)/(1.+exp(-0.1*(svolt+32.)))); TAU_J= 1.0/(AJ_1+BJ_1); } else { AJ_2=(((-2.5428e4)*exp(0.2444*svolt)-(6.948e-6)* exp(-0.04391*svolt))*(svolt+37.78)/ (1.+exp(0.311*(svolt+79.23)))); BJ_2=(0.02424*exp(-0.01052*svolt)/(1.+exp(-0.1378*(svolt+40.14)))); TAU_J= 1.0/(AJ_2+BJ_2); } J_INF=H_INF; Xr1_INF=1./(1.+exp((-26.-svolt)/7.)); axr1=450./(1.+exp((-45.-svolt)/10.)); bxr1=6./(1.+exp((svolt-(-30.))/11.5)); TAU_Xr1=axr1*bxr1; Xr2_INF=1./(1.+exp((svolt-(-88.))/24.)); axr2=3./(1.+exp((-60.-svolt)/20.)); bxr2=1.12/(1.+exp((svolt-60.)/20.)); TAU_Xr2=axr2*bxr2; Xs_INF=1./(1.+exp((-5.-svolt)/14.)); Axs=1100./(sqrt(1.+exp((-10.-svolt)/6))); Bxs=1./(1.+exp((svolt-60.)/20.)); TAU_Xs=Axs*Bxs; R_INF=1./(1.+exp((20-svolt)/6.)); S_INF=1./(1.+exp((svolt+20)/5.)); TAU_R=9.5*exp(-(svolt+40.)*(svolt+40.)/1800.)+0.8; TAU_S=85.*exp(-(svolt+45.)*(svolt+45.)/320.)+5./(1.+exp((svolt-20.)/5.))+3.; D_INF=1./(1.+exp((-5-svolt)/7.5)); Ad=1.4/(1.+exp((-35-svolt)/13))+0.25; Bd=1.4/(1.+exp((svolt+5)/5)); Cd=1./(1.+exp((50-svolt)/20)); TAU_D=Ad*Bd+Cd; F_INF=1./(1.+exp((svolt+20)/7)); //TAU_F=1125*exp(-(svolt+27)*(svolt+27)/300)+80+165/(1.+exp((25-svolt)/10)); TAU_F=1125*exp(-(svolt+27)*(svolt+27)/240)+80+165/(1.+exp((25-svolt)/10)); // Updated from CellML FCa_INF=(1./(1.+pow((Cai/0.000325),8))+ 0.1/(1.+exp((Cai-0.0005)/0.0001))+ 0.20/(1.+exp((Cai-0.00075)/0.0008))+ 0.23 )/1.46; if(Cai<0.00035) G_INF=1./(1.+pow((Cai/0.00035),6)); else G_INF=1./(1.+pow((Cai/0.00035),16)); //Update gates rDY_[1] = M_INF-(M_INF-sm)*exp(-dt/TAU_M); rDY_[2] = H_INF-(H_INF-sh)*exp(-dt/TAU_H); rDY_[3] = J_INF-(J_INF-sj)*exp(-dt/TAU_J); rDY_[4] = Xr1_INF-(Xr1_INF-sxr1)*exp(-dt/TAU_Xr1); rDY_[5] = Xr2_INF-(Xr2_INF-sxr2)*exp(-dt/TAU_Xr2); rDY_[6] = Xs_INF-(Xs_INF-sxs)*exp(-dt/TAU_Xs); rDY_[7] = S_INF-(S_INF-ss)*exp(-dt/TAU_S); rDY_[8] = R_INF-(R_INF-sr)*exp(-dt/TAU_R); rDY_[9] = D_INF-(D_INF-sd)*exp(-dt/TAU_D); rDY_[10] = F_INF-(F_INF-sf)*exp(-dt/TAU_F); fcaold= sfca; sfca = FCa_INF-(FCa_INF-sfca)*exptaufca; if(sfca>fcaold && (svolt)>-37.0) sfca = fcaold; gold = sg; sg = G_INF-(G_INF-sg)*exptaug; if(sg>gold && (svolt)>-37.0) sg=gold; //update voltage rDY_[0] = svolt + dt*(-sItot); rDY_[11] = sfca; rDY_[12] = sg; rDY_[13] = Cai; rDY_[14] = CaSR; rDY_[15] = Nai; rDY_[16] = Ki; }
d6fab437dead0373ffcfbd4adcf8708083623ed3.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "includes.h" /*** * File: maxwell_griffin_lab4p2.cu * Desc: Performs 2 Sobel edge detection operations on a .bmp, once by a * serial algorithm, and once by a massively parallel CUDA algorithm. */ extern "C" { } #define PIXEL_BLACK (0) #define PIXEL_WHITE (255) #define PERCENT_BLACK_THRESHOLD (0.75) #define CUDA_GRIDS (1) #define CUDA_BLOCKS_PER_GRID (32) #define CUDA_THREADS_PER_BLOCK (128) #define MS_PER_SEC (1000) #define NS_PER_MS (1000 * 1000) #define NS_PER_SEC (NS_PER_MS * MS_PER_SEC) #define LINEARIZE(row, col, dim) \ (((row) * (dim)) + (col)) static struct timespec rtcSerialStart; static struct timespec rtcSerialEnd; static struct timespec rtcParallelStart; static struct timespec rtcParallelEnd; __device__ int Sobel_Gx[3][3] = { { -1, 0, 1 }, { -2, 0, 2 }, { -1, 0, 1 } }; __device__ int Sobel_Gy[3][3] = { { 1, 2, 1 }, { 0, 0, 0 }, { -1, -2, -1 } }; /* * Display all header information and matrix and CUDA parameters. * * @param inputFile -- name of the input image * @param serialOutputFile -- name of the serial output image * @param parallelOutputFile -- name of the parallel output image * @param imageHeight -- in pixels * @param imageWidth -- in pixels */ void DisplayParameters( char *inputFile, char *serialOutputFile, char *cudaOutputFile, int imageHeight, int imageWidth) { printf("********************************************************************************\n"); printf("lab4p2: serial vs. CUDA Sobel edge detection.\n"); printf("\n"); printf("Input image: %s \t(Height: %d pixels, width: %d pixels)\n", inputFile, imageHeight, imageWidth); printf("Serial output image: \t%s\n", serialOutputFile); printf("CUDA output image: \t%s\n", cudaOutputFile); printf("\n"); printf("CUDA compute structure:\n"); printf("|-- with %d grid\n", CUDA_GRIDS); printf(" |-- with %d blocks\n", CUDA_BLOCKS_PER_GRID); printf(" |-- with %d threads per block\n", CUDA_THREADS_PER_BLOCK); printf("\n"); } /* * Display the timing and convergence results to the screen. * * @param serialConvergenceThreshold * @param serialConvergenceThreshold */ void DisplayResults( int serialConvergenceThreshold, int parallelConvergenceThreshold) { printf("Time taken for serial Sobel edge detection: %lf\n", (LINEARIZE(rtcSerialEnd.tv_sec, rtcSerialEnd.tv_nsec, NS_PER_SEC) - LINEARIZE(rtcSerialStart.tv_sec, rtcSerialStart.tv_nsec, NS_PER_SEC)) / ((double)NS_PER_SEC)); printf("Convergence Threshold: %d\n", serialConvergenceThreshold); printf("\n"); printf("Time taken for CUDA Sobel edge detection: %lf\n", (LINEARIZE(rtcParallelEnd.tv_sec, rtcParallelEnd.tv_nsec, NS_PER_SEC) - LINEARIZE(rtcParallelStart.tv_sec, rtcParallelStart.tv_nsec, NS_PER_SEC)) / ((double)NS_PER_SEC)); printf("Convergence Threshold: %d\n", parallelConvergenceThreshold); printf("********************************************************************************\n"); } /* * Serial algorithm to keep perform a Sobel edge detection on an input pixel * buffer at different brightness thresholds until a certain percentage of * pixels in the output pixel buffer are black. * * @param input -- input pixel buffer * @param output -- output pixel buffer * @param height -- height of pixel image * @param width -- width of pixel image * @return -- gradient threshold at which PERCENT_BLACK_THRESHOLD pixels are black */ __global__ void CudaSobelEdgeDetection(uint8_t *input, uint8_t *output, int height, int width, int gradientThreshold) { int row = 0; for(int i = 0; row < (height - 1); i++) { // Let the blockIdx increment beyond its dimension for cyclic distribution of the test pixels int blockRow = (i * gridDim.x) + blockIdx.x; // Calculate the row/col in the image buffer that this thread's stencil's center is on row = (LINEARIZE(blockRow, threadIdx.x, blockDim.x) / (width - 2)) + 1; int col = (LINEARIZE(blockRow, threadIdx.x, blockDim.x) % (width - 2)) + 1; // Calculate Sobel magnitude of gradient directly, instead of using Sobel_Magnitude utility double Gx = (Sobel_Gx[0][0] * input[LINEARIZE(row - 1, col - 1, width)]) + (Sobel_Gx[0][2] * input[LINEARIZE(row - 1, col + 1, width)]) + (Sobel_Gx[1][0] * input[LINEARIZE(row, col - 1, width)]) + (Sobel_Gx[1][2] * input[LINEARIZE(row, col + 1, width)]) + (Sobel_Gx[2][0] * input[LINEARIZE(row + 1, col - 1, width)]) + (Sobel_Gx[2][2] * input[LINEARIZE(row + 1, col + 1, width)]); double Gy = (Sobel_Gy[0][0] * input[LINEARIZE(row - 1, col - 1, width)]) + (Sobel_Gy[0][1] * input[LINEARIZE(row - 1, col, width)]) + (Sobel_Gy[0][2] * input[LINEARIZE(row - 1, col + 1, width)]) + (Sobel_Gy[2][0] * input[LINEARIZE(row + 1, col - 1, width)]) + (Sobel_Gy[2][1] * input[LINEARIZE(row + 1, col, width)]) + (Sobel_Gy[2][2] * input[LINEARIZE(row + 1, col + 1, width)]); if(((Gx * Gx) + (Gy * Gy)) > (gradientThreshold * gradientThreshold)) { output[LINEARIZE(row, col, width)] = PIXEL_WHITE; } else { output[LINEARIZE(row, col, width)] = PIXEL_BLACK; } } }
d6fab437dead0373ffcfbd4adcf8708083623ed3.cu
#include "includes.h" /*** * File: maxwell_griffin_lab4p2.cu * Desc: Performs 2 Sobel edge detection operations on a .bmp, once by a * serial algorithm, and once by a massively parallel CUDA algorithm. */ extern "C" { } #define PIXEL_BLACK (0) #define PIXEL_WHITE (255) #define PERCENT_BLACK_THRESHOLD (0.75) #define CUDA_GRIDS (1) #define CUDA_BLOCKS_PER_GRID (32) #define CUDA_THREADS_PER_BLOCK (128) #define MS_PER_SEC (1000) #define NS_PER_MS (1000 * 1000) #define NS_PER_SEC (NS_PER_MS * MS_PER_SEC) #define LINEARIZE(row, col, dim) \ (((row) * (dim)) + (col)) static struct timespec rtcSerialStart; static struct timespec rtcSerialEnd; static struct timespec rtcParallelStart; static struct timespec rtcParallelEnd; __device__ int Sobel_Gx[3][3] = { { -1, 0, 1 }, { -2, 0, 2 }, { -1, 0, 1 } }; __device__ int Sobel_Gy[3][3] = { { 1, 2, 1 }, { 0, 0, 0 }, { -1, -2, -1 } }; /* * Display all header information and matrix and CUDA parameters. * * @param inputFile -- name of the input image * @param serialOutputFile -- name of the serial output image * @param parallelOutputFile -- name of the parallel output image * @param imageHeight -- in pixels * @param imageWidth -- in pixels */ void DisplayParameters( char *inputFile, char *serialOutputFile, char *cudaOutputFile, int imageHeight, int imageWidth) { printf("********************************************************************************\n"); printf("lab4p2: serial vs. CUDA Sobel edge detection.\n"); printf("\n"); printf("Input image: %s \t(Height: %d pixels, width: %d pixels)\n", inputFile, imageHeight, imageWidth); printf("Serial output image: \t%s\n", serialOutputFile); printf("CUDA output image: \t%s\n", cudaOutputFile); printf("\n"); printf("CUDA compute structure:\n"); printf("|-- with %d grid\n", CUDA_GRIDS); printf(" |-- with %d blocks\n", CUDA_BLOCKS_PER_GRID); printf(" |-- with %d threads per block\n", CUDA_THREADS_PER_BLOCK); printf("\n"); } /* * Display the timing and convergence results to the screen. * * @param serialConvergenceThreshold * @param serialConvergenceThreshold */ void DisplayResults( int serialConvergenceThreshold, int parallelConvergenceThreshold) { printf("Time taken for serial Sobel edge detection: %lf\n", (LINEARIZE(rtcSerialEnd.tv_sec, rtcSerialEnd.tv_nsec, NS_PER_SEC) - LINEARIZE(rtcSerialStart.tv_sec, rtcSerialStart.tv_nsec, NS_PER_SEC)) / ((double)NS_PER_SEC)); printf("Convergence Threshold: %d\n", serialConvergenceThreshold); printf("\n"); printf("Time taken for CUDA Sobel edge detection: %lf\n", (LINEARIZE(rtcParallelEnd.tv_sec, rtcParallelEnd.tv_nsec, NS_PER_SEC) - LINEARIZE(rtcParallelStart.tv_sec, rtcParallelStart.tv_nsec, NS_PER_SEC)) / ((double)NS_PER_SEC)); printf("Convergence Threshold: %d\n", parallelConvergenceThreshold); printf("********************************************************************************\n"); } /* * Serial algorithm to keep perform a Sobel edge detection on an input pixel * buffer at different brightness thresholds until a certain percentage of * pixels in the output pixel buffer are black. * * @param input -- input pixel buffer * @param output -- output pixel buffer * @param height -- height of pixel image * @param width -- width of pixel image * @return -- gradient threshold at which PERCENT_BLACK_THRESHOLD pixels are black */ __global__ void CudaSobelEdgeDetection(uint8_t *input, uint8_t *output, int height, int width, int gradientThreshold) { int row = 0; for(int i = 0; row < (height - 1); i++) { // Let the blockIdx increment beyond its dimension for cyclic distribution of the test pixels int blockRow = (i * gridDim.x) + blockIdx.x; // Calculate the row/col in the image buffer that this thread's stencil's center is on row = (LINEARIZE(blockRow, threadIdx.x, blockDim.x) / (width - 2)) + 1; int col = (LINEARIZE(blockRow, threadIdx.x, blockDim.x) % (width - 2)) + 1; // Calculate Sobel magnitude of gradient directly, instead of using Sobel_Magnitude utility double Gx = (Sobel_Gx[0][0] * input[LINEARIZE(row - 1, col - 1, width)]) + (Sobel_Gx[0][2] * input[LINEARIZE(row - 1, col + 1, width)]) + (Sobel_Gx[1][0] * input[LINEARIZE(row, col - 1, width)]) + (Sobel_Gx[1][2] * input[LINEARIZE(row, col + 1, width)]) + (Sobel_Gx[2][0] * input[LINEARIZE(row + 1, col - 1, width)]) + (Sobel_Gx[2][2] * input[LINEARIZE(row + 1, col + 1, width)]); double Gy = (Sobel_Gy[0][0] * input[LINEARIZE(row - 1, col - 1, width)]) + (Sobel_Gy[0][1] * input[LINEARIZE(row - 1, col, width)]) + (Sobel_Gy[0][2] * input[LINEARIZE(row - 1, col + 1, width)]) + (Sobel_Gy[2][0] * input[LINEARIZE(row + 1, col - 1, width)]) + (Sobel_Gy[2][1] * input[LINEARIZE(row + 1, col, width)]) + (Sobel_Gy[2][2] * input[LINEARIZE(row + 1, col + 1, width)]); if(((Gx * Gx) + (Gy * Gy)) > (gradientThreshold * gradientThreshold)) { output[LINEARIZE(row, col, width)] = PIXEL_WHITE; } else { output[LINEARIZE(row, col, width)] = PIXEL_BLACK; } } }
3fce314da538e4e84ee1004fda2255dd16e19d94.hip
// !!! This is a file automatically generated by hipify!!! #include<curd_lib_host.h> #include<curd_lib_host.h> #include<curd_lib_host.h> #include<curd_lib_host.h> // Includes, system #include <stdlib.h> #include <stdio.h> #include <string.h> #include <math.h> #include <assert.h> #include <sys/stat.h> #include <fcntl.h> #include <sys/types.h> #include <unistd.h> #include <errno.h> #include <sys/time.h> #include <hip/hip_runtime.h> #include <hip/hip_vector_types.h> // includes, kernels #include <common.cu> #include <mummergpu.h> #include <mummergpu_kernel.cu> int USE_PRINT_KERNEL = 1; #define BREATHING_ROOM (16 * 1024 * 1024) #define BASES_PER_TREE_PAGE 8388608 //#define BASES_PER_TREE_PAGE 7000000 #define BLOCKSIZE 256 unsigned int cuda_calls = 0; void trap_dbg() { fprintf(stderr, "Trapped\n"); } #define CUDA_SAFE_CALL( call) do { \ cuda_calls++; \ hipError_t err = call; \ if( hipSuccess != err) { \ fprintf(stderr, "Cuda error in file '%s' in line %i : %d (%s).\n", \ __FILE__, __LINE__, err, hipGetErrorString( err) ); \ trap_dbg(); \ exit(EXIT_FAILURE); \ } } while (0) # define CU_SAFE_CALL_NO_SYNC( call ) do { \ hipError_t err = call; \ if( hipSuccess != err) { \ fprintf(stderr, "Cuda driver error %x in file '%s' in line %i.\n", \ err, __FILE__, __LINE__ ); \ exit(EXIT_FAILURE); \ } } while (0) # define CUT_DEVICE_INIT_DRV(cuDevice) do { \ cuDevice = 0; \ int deviceCount = 0; \ hipError_t err = hipInit(0); \ if (hipSuccess == err) \ CU_SAFE_CALL_NO_SYNC(hipGetDeviceCount(&deviceCount)); \ if (deviceCount == 0) { \ fprintf(stderr, "There is no device.\n"); \ exit(EXIT_FAILURE); \ } \ int dev; \ for (dev = 0; dev < deviceCount; ++dev) { \ int major, minor; \ CU_SAFE_CALL_NO_SYNC(hipDeviceComputeCapability(&major, &minor, dev));\ if (major >= 1) \ break; \ } \ if (dev == deviceCount) { \ fprintf(stderr, "There is no device supporting CUDA.\n"); \ exit(EXIT_FAILURE); \ } \ else \ CU_SAFE_CALL_NO_SYNC(hipDeviceGet(&cuDevice, dev)); \ } while (0) unsigned int num_bind_tex_calls = 0; #define BIND_TEX(offset, tex, arr, desc, len) do { \ CUDA_SAFE_CALL(hipBindTexture(offset, tex, arr, desc, len)); \ ++num_bind_tex_calls; \ } while(0) #define BIND_TEX_ARRAY(tex, arr, desc) do { \ CUDA_SAFE_CALL(hipBindTextureToArray(tex, arr, desc)); \ ++num_bind_tex_calls; \ } while(0) #define CUDA_MALLOC(ptr, size) do { \ hipMalloc(ptr, size); \ ++num_bind_tex_calls; \ } while(0) #define CUDA_MALLOC_PITCH(ptr, out_pitch, rowsize, numrows) do { \ hipMallocPitch(ptr, out_pitch, rowsize, numrows); \ ++num_bind_tex_calls; \ } while(0) #define CUDA_MALLOC_ARRAY(ptr, desc, pitch, rows) do { \ hipMallocArray(ptr, desc, pitch, rows); \ ++num_bind_tex_calls; \ } while(0) //////////////////////////////////////////////////////////////////////////////// // declaration, forward void runTest( int argc, char** argv); extern "C" void computeGold(MatchResults* results, char* refstr, char* queries, int* queryAddrs, int* queryLengths, PixelOfNode* nodeTexture, PixelOfChildren* childrenTexture, int numQueries, int mismatch_length, int rc); extern "C" void getReferenceString(const char * filename, char** refstr, size_t* reflen); extern "C" void createTreeTexture(const char * filename, PixelOfNode** nodeTexture, PixelOfChildren** childrenTexture, unsigned int* width, unsigned int* node_height, unsigned int* children_height, AuxiliaryNodeData** aux_data, int* num_match_coords, int min_match_len, Statistics* statistics, const char * dotfilename, const char * texfilename); extern "C" void getQueriesTexture(int qfile, char** queryTexture, size_t* queryLength, int** queryAddrs, char*** queryNames, int** queryLengths, unsigned int* numQueries, unsigned int* num_match_coords, unsigned int device_memory_avail, int min_match_length, bool rc); extern "C" int lookupNumLeaves(ReferencePage * page, TextureAddress addr); void printAlignments(ReferencePage* page, Alignment* alignments, char* query, int qrylen, TextureAddress nodeid, int qrypos, int edge_depth, int min_match, bool rc, bool forwardcoordinates); int countLeafNodes(int nodeid); extern "C" void mapQueriesEndToEnd(MatchContext* ctx, ReferencePage* page, MatchInfo* h_matches, unsigned int numMatches, Alignment* h_alignments, unsigned int numAligments); char * createTimer() { unsigned int * ptr = (unsigned int *) malloc(sizeof(struct Timer_t)); memset(ptr, 0, sizeof(struct Timer_t)); return (char *) ptr; } void startTimer(char * ptr) { gettimeofday(&(((struct Timer_t *)ptr)->start_m), NULL); } void stopTimer(char * ptr) { gettimeofday(&(((struct Timer_t *)ptr)->end_m), NULL); } float getTimerValue(char * ptr) { Timer_t * timer = (Timer_t*) ptr; if (timer == NULL) { fprintf(stderr, "Uninitialized timer!!!\n"); return 0.0; } if (timer->end_m.tv_sec == 0) { stopTimer(ptr); } return (float) (1000.0 * (timer->end_m.tv_sec - timer->start_m.tv_sec) + (0.001 * (timer->end_m.tv_usec - timer->start_m.tv_usec))); } void deleteTimer(char * ptr) { free((Timer_t *)ptr); } extern "C" int createReference(const char* fromFile, Reference* ref) { if (!fromFile || !ref) return -1; char * loadreftimer = createTimer(); startTimer(loadreftimer); getReferenceString(fromFile, &(ref->str), &(ref->len)); stopTimer(loadreftimer); ref->t_load_from_disk += getTimerValue(loadreftimer); deleteTimer(loadreftimer); return 0; } extern "C" int destroyReference(Reference* ref) { free(ref->h_node_tex_array); free(ref->h_children_tex_array); free(ref->str); #if REORDER_REF free(ref->h_ref_array); #endif free(ref->aux_data); #if TREE_ACCESS_HISTOGRAM free(ref->h_node_hist); free(ref->h_child_hist); #endif ref->str = NULL; ref->len = 0; return 0; } extern "C" int createQuerySet(const char* fromFile, QuerySet* queries) { fprintf(stderr, "Opening %s...\n", fromFile); int qfile = open(fromFile, O_RDONLY); if (qfile == -1) { fprintf(stderr, "Can't open %s: %d\n", fromFile, errno); exit (1); } queries->qfile = qfile; return 0; } extern "C" int destroyQuerySet(QuerySet* queries) { if (queries->qfile) close(queries->qfile); return 0; } extern "C" void printStringForError(int err) { } extern "C" int createMatchContext(Reference* ref, QuerySet* queries, MatchResults* matches, bool on_cpu, int min_match_length, char* stats_file, bool reverse, bool forwardreverse, bool forwardcoordinates, bool showQueryLength, char* dotfilename, char* texfilename, MatchContext* ctx) { ctx->queries = queries; ctx->ref = ref; ctx->full_ref = ref->str; ctx->full_ref_len = ref->len; ctx->on_cpu = on_cpu; ctx->min_match_length = min_match_length; ctx->stats_file = stats_file; ctx->reverse = reverse; ctx->forwardreverse = forwardreverse; ctx->forwardcoordinates = forwardcoordinates; ctx->show_query_length = showQueryLength; ctx->dotfilename = dotfilename; ctx->texfilename = texfilename; return 0; } extern "C" int destroyMatchContext(MatchContext* ctx) { free(ctx->full_ref); //destroyReference(ctx->ref); destroyQuerySet(ctx->queries); return 0; } void buildReferenceTexture(Reference* ref, char* full_ref, size_t begin, size_t end, int min_match_len, char* dotfilename, char* texfilename, Statistics* statistics) { fprintf(stderr, "Building reference texture...\n"); PixelOfNode* nodeTexture = NULL; PixelOfChildren * childrenTexture = NULL; unsigned int width = 0; unsigned int node_height = 0; unsigned int children_height = 0; AuxiliaryNodeData* aux_data = NULL; int num_nodes; char * loadreftimer = createTimer(); startTimer(loadreftimer); ref->len = end - begin + 3; ref->str = (char*)malloc(ref->len); ref->str[0] = 's'; strncpy(ref->str + 1, full_ref + begin, ref->len - 3); strcpy(ref->str + ref->len - 2, "$"); stopTimer(loadreftimer); statistics->t_ref_from_disk += getTimerValue(loadreftimer) + ref->t_load_from_disk; deleteTimer(loadreftimer); createTreeTexture(ref->str, &nodeTexture, &childrenTexture, &width, &node_height, &children_height, &aux_data, &num_nodes, min_match_len, statistics, dotfilename, texfilename); ref->h_node_tex_array = nodeTexture; ref->h_children_tex_array = childrenTexture; ref->tex_width = width; ref->tex_node_height = node_height; ref->tex_children_height = children_height; #if TREE_ACCESS_HISTOGRAM ref->h_node_hist = (int*)calloc(width * node_height, sizeof(int)); ref->h_child_hist = (int*)calloc(width * children_height, sizeof(int)); #endif ref->aux_data = aux_data; ref->num_nodes = num_nodes; ref->bytes_on_board = (width * node_height * sizeof(PixelOfNode)) + (width * children_height * sizeof(PixelOfChildren)); fprintf(stderr, "This tree will need %d bytes on the board\n", ref->bytes_on_board); #if REORDER_REF char * reordertimer = createTimer(); startTimer(reordertimer); unsigned int refpitch = ref->pitch = 65536; int numrows = ceil(ref->len / ((float)refpitch)); int blocksize = 4; numrows += blocksize; int refstrsize = numrows * refpitch; ref->h_ref_array = (char *) malloc(refstrsize); ref->bytes_on_board += refstrsize; fprintf(stderr, "The refstr (reordered) requires %d bytes\n", refstrsize); int z_max = numrows * refpitch; for (int z = 0; z < z_max; z++) { ref->h_ref_array[z] = 'Z'; } int x, y; int maxx = 0, maxy = 0; size_t reflen = ref->len; char* refstr = ref->str; int block_dim = refpitch * blocksize; for (int i = 0; i < reflen; i++) { int bigx = i % (block_dim); // ref string reorder int bigy = i / (block_dim); y = bigy * blocksize + bigx % blocksize; x = bigx / blocksize; // printf("%d: (%d,%d)=%c\n", i, x, y, refstr[i]); assert(x < refpitch); assert(y < numrows); ref->h_ref_array[y*refpitch+x] = refstr[i]; if (x > maxx) { maxx = x; } if (y > maxy) { maxy = y; } } if ((maxx >= refpitch) || (maxy >= numrows)) { fprintf(stderr, "ERROR: maxx: %d refpitch: %d, maxy: %d numrows: %d\n", maxx, refpitch, maxy, numrows); exit(1); } stopTimer(reordertimer); if (statistics) statistics->t_reorder_ref_str += getTimerValue(reordertimer); deleteTimer(reordertimer); #else fprintf(stderr, "The refstr requires %d bytes\n", ref->len); ref->bytes_on_board += ref->len; #endif } void boardMemory(size_t * free_mem, size_t * total_mem) { // The emulator doesn't allow calls to cuMemGetInfo #ifdef __DEVICE_EMULATION__ *free_mem = 512*1024*1024; *total_mem = 768*1024*1024; #else CU_SAFE_CALL_NO_SYNC(cuMemGetInfo(free_mem, total_mem)); #endif } void loadReferenceTexture(MatchContext* ctx) { Reference* ref = ctx->ref; int numrows = ceil(ref->len / ((float)ref->pitch)); int blocksize = 4; numrows += blocksize; hipChannelFormatDesc refTextureDesc = hipCreateChannelDesc(8, 0, 0, 0, hipChannelFormatKindSigned); if (!ctx->on_cpu) { char * toboardtimer = createTimer(); startTimer(toboardtimer); #if REFTEX #if REORDER_REF CUDA_MALLOC_ARRAY((hipArray**)(&ref->d_ref_array), &refTextureDesc, ref->pitch, numrows); CUDA_SAFE_CALL(hipMemcpyToArray( (hipArray*)(ref->d_ref_array), 0, 0, ref->h_ref_array, numrows*ref->pitch, hipMemcpyHostToDevice)); reftex.addressMode[0] = hipAddressModeClamp; reftex.addressMode[1] = hipAddressModeClamp; reftex.filterMode = hipFilterModePoint; reftex.normalized = false; BIND_TEX_ARRAY(reftex, (hipArray*)ref->d_ref_array, refTextureDesc); ctx->ref->bytes_on_board += numrows * ref->pitch; #else CUDA_MALLOC( (void**)(&ref->d_ref_array), ref->len); CUDA_SAFE_CALL( hipMemcpy( (void*)(ref->d_ref_array), ref->str, ref->len, hipMemcpyHostToDevice) ); reftex.addressMode[0] = hipAddressModeClamp; reftex.filterMode = hipFilterModePoint; reftex.normalized = false; // access with normalized texture coordinates hipChannelFormatDesc refDesc = hipCreateChannelDesc(8,0,0,0, hipChannelFormatKindUnsigned); BIND_TEX(0, reftex, (void*)(ref->d_ref_array), refDesc, ref->len); ctx->ref->bytes_on_board += ref->len; #endif #else #if REORDER_REF size_t refpitch; CUDA_MALLOC_PITCH( (void**)(&ref->d_ref_array), &refpitch, ref->pitch * sizeof(char), numrows); CUDA_SAFE_CALL( hipMemcpy2D((ref->d_ref_array), refpitch, ref->h_ref_array, ref->pitch , ref->pitch * sizeof(char), numrows, hipMemcpyHostToDevice)); ctx->ref->bytes_on_board += numrows * ref->pitch; #else CUDA_MALLOC( (void**)(&ref->d_ref_array), ref->len); CUDA_SAFE_CALL( hipMemcpy( (void*)(ref->d_ref_array), ref->str, ref->len, hipMemcpyHostToDevice) ); ctx->ref->bytes_on_board += ref->len; #endif #endif stopTimer(toboardtimer); ctx->statistics.t_ref_str_to_board += getTimerValue(toboardtimer); deleteTimer(toboardtimer); } else { ref->d_ref_array = NULL; } } void unloadReferenceString(Reference* ref) { #if REFTEX CUDA_SAFE_CALL(hipUnbindTexture( reftex ) ); #endif #if REORDER_REF && REFTEX CUDA_SAFE_CALL(hipFreeArray((hipArray*)(ref->d_ref_array))); #else CUDA_SAFE_CALL(hipFree((ref->d_ref_array))); #endif ref->d_ref_array = NULL; } void unloadReferenceTree(MatchContext* ctx) { Reference* ref = ctx->ref; #if REORDER_TREE // Unload nodetex #if NODETEX CUDA_SAFE_CALL(hipUnbindTexture( nodetex ) ); CUDA_SAFE_CALL(hipFreeArray((hipArray*)(ref->d_node_tex_array))); #else CUDA_SAFE_CALL(hipFree(ref->d_node_tex_array)); #endif ref->d_node_tex_array = NULL; // Unload childrentex if (ref->d_children_tex_array) { #if CHILDTEX CUDA_SAFE_CALL(hipUnbindTexture( childrentex ) ); CUDA_SAFE_CALL(hipFreeArray((hipArray*)(ref->d_children_tex_array))); #else CUDA_SAFE_CALL(hipFree(ref->d_children_tex_array)); #endif } ref->d_children_tex_array = NULL; #else #if NODETEX CUDA_SAFE_CALL(hipUnbindTexture( nodetex ) ); #endif CUDA_SAFE_CALL(hipFree(ref->d_node_tex_array)); ref->d_node_tex_array = NULL; // Unload childrentex if (ref->d_children_tex_array) { #if CHILDTEX CUDA_SAFE_CALL(hipUnbindTexture( childrentex ) ); #endif CUDA_SAFE_CALL(hipFree(ref->d_children_tex_array)); ref->d_children_tex_array = NULL; } #endif #if TREE_ACCESS_HISTOGRAM CUDA_SAFE_CALL(hipFree(ref->d_node_hist)); ref->d_node_hist = NULL; CUDA_SAFE_CALL(hipFree(ref->d_child_hist)); ref->d_child_hist = NULL; #endif } //loads a tree and text for [begin, end) in the reference void loadReference(MatchContext* ctx) { Reference* ref = ctx->ref; ref->bytes_on_board = 0; loadReferenceTexture(ctx); if (!ctx->on_cpu) { char * toboardtimer = createTimer(); startTimer(toboardtimer); // node texels ref->bytes_on_board += ref->tex_width * ref->tex_node_height * (sizeof(PixelOfNode)); // children texels ref->bytes_on_board += ref->tex_width * ref->tex_children_height * sizeof(PixelOfChildren); #if REORDER_TREE #if NODETEX hipChannelFormatDesc nodeTextureDesc = hipCreateChannelDesc(32, 32, 32, 32, hipChannelFormatKindUnsigned); CUDA_MALLOC_ARRAY( (hipArray**)(&ref->d_node_tex_array), &nodeTextureDesc, ref->tex_width, ref->tex_node_height ); CUDA_SAFE_CALL( hipMemcpyToArray( (hipArray*)(ref->d_node_tex_array), 0, 0, ref->h_node_tex_array, ref->tex_width * ref->tex_node_height * sizeof(PixelOfNode), hipMemcpyHostToDevice)); nodetex.addressMode[0] = hipAddressModeClamp; nodetex.addressMode[1] = hipAddressModeClamp; nodetex.filterMode = hipFilterModePoint; nodetex.normalized = false; // access with normalized texture coordinates BIND_TEX_ARRAY(nodetex, (hipArray*)ref->d_node_tex_array, nodeTextureDesc); #else size_t nodepitch; CUDA_MALLOC_PITCH( (void**)(&ref->d_node_tex_array), &nodepitch, ref->tex_width * sizeof(PixelOfNode), ref->tex_node_height ); CUDA_SAFE_CALL( hipMemcpy2D((ref->d_node_tex_array), nodepitch, ref->h_node_tex_array, nodepitch, ref->tex_width * sizeof(PixelOfNode), ref->tex_node_height, hipMemcpyHostToDevice)); #endif if (ref->tex_children_height) { #if CHILDTEX hipChannelFormatDesc childrenTextureDesc = hipCreateChannelDesc(32, 32, 32, 32, hipChannelFormatKindUnsigned); CUDA_MALLOC_ARRAY( (hipArray**)(&ref->d_children_tex_array), &childrenTextureDesc, ref->tex_width, ref->tex_children_height ); CUDA_SAFE_CALL( hipMemcpyToArray((hipArray*)(ref->d_children_tex_array), 0, 0, ref->h_children_tex_array, ref->tex_width * ref->tex_children_height * sizeof(PixelOfChildren), hipMemcpyHostToDevice)); childrentex.addressMode[0] = hipAddressModeClamp; childrentex.addressMode[1] = hipAddressModeClamp; childrentex.filterMode = hipFilterModePoint; childrentex.normalized = false; // access with normalized texture coordinates BIND_TEX_ARRAY(childrentex, (hipArray*)(ref->d_children_tex_array), childrenTextureDesc); #else size_t childpitch; CUDA_MALLOC_PITCH( (void**)(&ref->d_children_tex_array), &childpitch, ref->tex_width * sizeof(PixelOfChildren), ref->tex_children_height ); CUDA_SAFE_CALL( hipMemcpy2D((ref->d_children_tex_array), childpitch, ref->h_children_tex_array, childpitch, ref->tex_width * sizeof(PixelOfNode), ref->tex_children_height, hipMemcpyHostToDevice)); #endif } #if TREE_ACCESS_HISTOGRAM // node hist ref->bytes_on_board += ref->tex_width * ref->tex_node_height * sizeof(int); CUDA_MALLOC( (void**)(&ref->d_node_hist), ref->tex_width * ref->tex_node_height *sizeof(int)); CUDA_SAFE_CALL( hipMemset((ref->d_node_hist),0, ref->tex_width * ref->tex_node_height * sizeof(int))); if (ref->tex_children_height) { // children hist ref->bytes_on_board += ref->tex_width * ref->tex_children_height * sizeof(int); fprintf(stderr, "after child_hist ref->bytes_on_board:%ld\n", ref->bytes_on_board); CUDA_MALLOC( (void**)(&ref->d_child_hist), ref->tex_width * ref->tex_children_height *sizeof(int)); CUDA_SAFE_CALL( hipMemset((ref->d_child_hist),0, ref->tex_width * ref->tex_children_height * sizeof(int))); } #endif #else // NO TREE REORDERING // Node tex, 1-dimensional CUDA_MALLOC( (void**)(&ref->d_node_tex_array), ref->tex_node_height * sizeof(PixelOfNode)); CUDA_SAFE_CALL( hipMemcpy( (ref->d_node_tex_array), ref->h_node_tex_array, ref->tex_node_height * sizeof(PixelOfNode), hipMemcpyHostToDevice)); #if NODETEX hipChannelFormatDesc nodeTextureDesc = hipCreateChannelDesc(32, 32, 32, 32, hipChannelFormatKindUnsigned); nodetex.addressMode[0] = hipAddressModeClamp; nodetex.filterMode = hipFilterModePoint; nodetex.normalized = false; // access with normalized texture coordinates BIND_TEX(0, nodetex, (void*)(ref->d_node_tex_array), nodeTextureDesc, ref->tex_node_height* sizeof(PixelOfNode)); #endif if (ref->tex_children_height) { // Child tex, 1-dimensional CUDA_MALLOC( (void**)(&ref->d_children_tex_array), ref->tex_children_height * sizeof(PixelOfChildren)); CUDA_SAFE_CALL( hipMemcpy( (ref->d_children_tex_array), ref->h_children_tex_array, ref->tex_children_height * sizeof(PixelOfChildren), hipMemcpyHostToDevice)); #if CHILDTEX hipChannelFormatDesc childTextureDesc = hipCreateChannelDesc(32, 32, 32, 32, hipChannelFormatKindUnsigned); childrentex.addressMode[0] = hipAddressModeClamp; childrentex.filterMode = hipFilterModePoint; childrentex.normalized = false; // access with normalized texture coordinates BIND_TEX(0, childrentex, (void*)(ref->d_children_tex_array), childTextureDesc, ref->tex_children_height* sizeof(PixelOfChildren)); #endif } #if TREE_ACCESS_HISTOGRAM ref->bytes_on_board += ref->tex_node_height * sizeof(int); CUDA_MALLOC( (void**)(&ref->d_node_hist), ref->tex_node_height *sizeof(int)); CUDA_SAFE_CALL( hipMemset((ref->d_node_hist),0, ref->tex_node_height * sizeof(int))); if (ref->tex_children_height) { ref->bytes_on_board += ref->tex_children_height * sizeof(int); CUDA_MALLOC( (void**)(&ref->d_child_hist), ref->tex_children_height *sizeof(int)); CUDA_SAFE_CALL( hipMemset((ref->d_child_hist),0, ref->tex_children_height * sizeof(int))); } #endif #endif #if TWO_LEVEL_NODE_TREE PixelOfNode node_buf[NODE_THRESH]; memset(node_buf, 0, sizeof(node_buf)); for (unsigned int i = 0; (i < NODE_THRESH) && (i < ref->num_nodes); ++i) { TextureAddress myaddress(id2addr(i)); #if MERGETEX && REORDER_TREE myaddress.x &= 0x7FF; myaddress.x *= 2; int loc = myaddress.x + myaddress.y*MAX_TEXTURE_DIMENSION; node_buf[i]= ((PixelOfNode*)(ref->h_node_tex_array))[loc]; #elif REORDER_TREE int loc = myaddress.x + myaddress.y*MAX_TEXTURE_DIMENSION; node_buf[i]= ((PixelOfNode*)(ref->h_node_tex_array))[loc]; #elif MERGETEX node_buf[i]= ((PixelOfNode*)(ref->h_node_tex_array))[myaddress.x*2]; #else node_buf[i]= ((PixelOfNode*)(ref->h_node_tex_array))[myaddress.x]; #endif } CUDA_SAFE_CALL( hipMemcpyToSymbol(node_tree_top, node_buf, sizeof(node_buf))); #endif #if TWO_LEVEL_CHILD_TREE PixelOfChildren child_buf[CHILD_THRESH]; memset(child_buf, 0, sizeof(child_buf)); for (unsigned int i = 0; (i < CHILD_THRESH) && (i < ref->num_nodes); ++i) { TextureAddress myaddress(id2addr(i)); #if MERGETEX && REORDER_TREE myaddress.x &= 0x7FF; myaddress.x *= 2; int loc = myaddress.x + myaddress.y*MAX_TEXTURE_DIMENSION; child_buf[i]= ((PixelOfChildren*)(ref->h_node_tex_array))[loc+1]; #elif REORDER_TREE int loc = myaddress.x + myaddress.y*MAX_TEXTURE_DIMENSION; child_buf[i]= ((PixelOfChildren*)(ref->h_children))[loc]; #elif MERGETEX child_buf[i]= ((PixelOfChildren*)(ref->h_node_tex_array))[myaddress.x*2+1]; #else child_buf[i]= ((PixelOfChildren*)(ref->h_children_tex_array))[myaddress.x]; #endif } CUDA_SAFE_CALL( hipMemcpyToSymbol(child_tree_top, child_buf, sizeof(child_buf))); #endif stopTimer(toboardtimer); ctx->statistics.t_tree_to_board += getTimerValue(toboardtimer); deleteTimer(toboardtimer); fprintf(stderr, "done\n"); } else { ref->d_node_tex_array = NULL; ref->d_children_tex_array = NULL; } } void dumpQueryBlockInfo(QuerySet* queries) { fprintf(stderr, "\tProcessing queries %s to %s\n", queries->h_names[0], queries->h_names[queries->count-1]); } void loadQueries(MatchContext* ctx) { QuerySet* queries = ctx->queries; queries->bytes_on_board = 0; unsigned int numQueries = queries->count; if (!ctx->on_cpu) { fprintf(stderr, "Allocating device memory for queries... "); char* toboardtimer = createTimer(); startTimer(toboardtimer); dumpQueryBlockInfo(queries); CUDA_MALLOC((void**) &queries->d_tex_array, queries->texlen); \ queries->bytes_on_board += queries->texlen; CUDA_SAFE_CALL( hipMemcpy((void*) queries->d_tex_array, queries->h_tex_array + queries->h_addrs_tex_array[0], queries->texlen, hipMemcpyHostToDevice)); #if QRYTEX qrytex.addressMode[0] = hipAddressModeClamp; qrytex.filterMode = hipFilterModePoint; qrytex.normalized = false; // access with normalized texture coordinates hipChannelFormatDesc qryDesc = hipCreateChannelDesc(8,0,0,0, hipChannelFormatKindUnsigned); BIND_TEX(0, qrytex, (void*)(queries->d_tex_array), qryDesc, queries->texlen); #endif CUDA_MALLOC((void**) &queries->d_addrs_tex_array, numQueries * sizeof(int)); queries->bytes_on_board += numQueries * sizeof(int); CUDA_SAFE_CALL( hipMemcpy((void*) queries->d_addrs_tex_array, queries->h_addrs_tex_array, numQueries * sizeof(int), hipMemcpyHostToDevice)); CUDA_MALLOC((void**) &queries->d_lengths_array, numQueries * sizeof(int)); queries->bytes_on_board += numQueries * sizeof(int); CUDA_SAFE_CALL( hipMemcpy((void*) queries->d_lengths_array, queries->h_lengths_array, numQueries * sizeof(int), hipMemcpyHostToDevice)); stopTimer(toboardtimer); ctx->statistics.t_queries_to_board += getTimerValue(toboardtimer); deleteTimer(toboardtimer); fprintf(stderr, "\tallocated %ld bytes\n", queries->bytes_on_board); } else { queries->d_addrs_tex_array = NULL; queries->d_tex_array = NULL; queries->d_lengths_array = NULL; fprintf(stderr, " allocated %ld bytes\n", 2 * numQueries*sizeof(int) + queries->texlen); } } void unloadQueries(MatchContext* ctx) { QuerySet* queries = ctx->queries; CUDA_SAFE_CALL(hipFree(queries->d_tex_array)); queries->d_tex_array = NULL; CUDA_SAFE_CALL(hipFree(queries->d_addrs_tex_array)); queries->d_addrs_tex_array = NULL; CUDA_SAFE_CALL(hipFree(queries->d_lengths_array)); queries->d_lengths_array = NULL; queries->bytes_on_board = 0; } // Computes the location of the first MatchCoord for a given query. NOTE: // Do NOT use this function if COALESCED_QUERIES == 1 inline int match_coord_addrs(int qryid, int qry_addrs, int match_length) { return qry_addrs - qryid * (match_length + 1); } // Construct the offset table for a set of queries. This table will be used // by the printing functions, and if COALESCED_QUERIES == 1, by the matching // kernel. void buildCoordOffsetArray(MatchContext* ctx, int** h_coord_offset_array, unsigned int* num_coords) { int numCoords = 0; int match_length = ctx->min_match_length; int numQueries = ctx->queries->count; int* lengths = ctx->queries->h_lengths_array; int* coord_offsets = (int*)calloc(numQueries, sizeof(int)); #if COALESCED_QUERIES for (unsigned int i = 0; i < numQueries; i += WARP_SIZE) { // Every query in this warp will need at least this many coords int max_num_coords = 0; for (unsigned int j = 0; j < WARP_SIZE && (i + j) < numQueries; ++j) { int num_coords = lengths[i + j] - match_length + 1; if ( max_num_coords < num_coords) max_num_coords = num_coords; } unsigned int block_size = max_num_coords * WARP_SIZE; for (unsigned int j = 0; j < WARP_SIZE && (i + j) < numQueries; ++j) { ctx->results.h_coord_tex_array[i + j] = numCoords + j; } numCoords += block_size; } #else for (unsigned int i = 0; i < numQueries; ++i) { int qryoffset = ctx->queries->h_addrs_tex_array[i]; coord_offsets[i] = match_coord_addrs(i, qryoffset, match_length); } if (numQueries > 0) { unsigned int last_qry = numQueries - 1; unsigned int last_qry_len = lengths[last_qry] - match_length + 1; numCoords = coord_offsets[last_qry] + last_qry_len; fprintf(stderr, "Need %d match coords for this result array\n", numCoords); } #endif *num_coords = numCoords; *h_coord_offset_array = coord_offsets; } void loadResultBuffer(MatchContext* ctx) { unsigned int numQueries = ctx->queries->count; assert (numQueries); char* offsettimer = createTimer(); startTimer(offsettimer); buildCoordOffsetArray(ctx, &(ctx->results.h_coord_tex_array), &(ctx->results.numCoords)); stopTimer(offsettimer); ctx->statistics.t_build_coord_offsets += getTimerValue(offsettimer); deleteTimer(offsettimer); unsigned int numCoords = ctx->results.numCoords; fprintf(stderr, "Allocating result array for %d queries (%d bytes) ...", numQueries, numCoords*sizeof(MatchCoord) ); size_t boardFreeMemory = 0; size_t total_mem = 0; boardMemory(&boardFreeMemory, &total_mem); fprintf(stderr,"board free memory: %u total memory: %u\n", boardFreeMemory, total_mem); ctx->results.h_match_coords = (MatchCoord*) calloc( numCoords, sizeof(MatchCoord)); if (ctx->results.h_match_coords == NULL) { trap_dbg(); exit(EXIT_FAILURE); } if (!ctx->on_cpu) { char* toboardtimer = createTimer(); startTimer(toboardtimer); ctx->results.bytes_on_board = 0; CUDA_MALLOC( (void**) &ctx->results.d_match_coords, numCoords * sizeof(MatchCoord)); ctx->results.bytes_on_board += numCoords * sizeof(MatchCoord); CUDA_SAFE_CALL( hipMemset( (void*)ctx->results.d_match_coords, 0, numCoords * sizeof(MatchCoord))); #if COALESCED_QUERIES CUDA_MALLOC((void**) &ctx->results.d_coord_tex_array, numQueries * sizeof(int)); ctx->results.bytes_on_board += numQueries * sizeof(int); CUDA_SAFE_CALL( hipMemcpy((void*) ctx->results.d_coord_tex_array, ctx->results.h_coord_tex_array, numQueries * sizeof(int), hipMemcpyHostToDevice)); #endif stopTimer(toboardtimer); ctx->statistics.t_match_coords_to_board += getTimerValue(toboardtimer); deleteTimer(toboardtimer); } else { ctx->results.d_match_coords = NULL; } fprintf(stderr, "done\n"); } void unloadResultBuffer(MatchContext* ctx) { CUDA_SAFE_CALL(hipFree(ctx->results.d_match_coords)); ctx->results.d_match_coords = NULL; ctx->results.bytes_on_board = 0; #if COALESCED_QUERIES CUDA_SAFE_CALL(hipFree(ctx->results.d_match_coords)); #endif } void transferResultsFromDevice(MatchContext* ctx) { if (!ctx->on_cpu) { char* fromboardtimer = createTimer(); startTimer(fromboardtimer); CUDA_SAFE_CALL(hipMemcpy(ctx->results.h_match_coords, ctx->results.d_match_coords, ctx->results.numCoords * sizeof(MatchCoord), hipMemcpyDeviceToHost) ); #if TREE_ACCESS_HISTOGRAM CUDA_SAFE_CALL(hipMemcpy(ctx->ref->h_node_hist, ctx->ref->d_node_hist, ctx->ref->tex_node_height * ctx->ref->tex_width * sizeof(int), hipMemcpyDeviceToHost) ); CUDA_SAFE_CALL(hipMemcpy(ctx->ref->h_child_hist, ctx->ref->d_child_hist, ctx->ref->tex_children_height * ctx->ref->tex_width * sizeof(int), hipMemcpyDeviceToHost) ); if (ctx->statistics.node_hist_size < ctx->ref->tex_width * ctx->ref->tex_node_height) { int* temp = (int*)calloc(ctx->ref->tex_width * ctx->ref->tex_node_height, sizeof(int)); if (ctx->statistics.node_hist_size) memcpy(temp, ctx->statistics.node_hist, ctx->statistics.node_hist_size * sizeof(int)); ctx->statistics.node_hist = temp; ctx->statistics.node_hist_size = ctx->ref->tex_width * ctx->ref->tex_node_height; } if (ctx->statistics.child_hist_size < ctx->ref->tex_width * ctx->ref->tex_children_height) { temp = (int*)calloc(ctx->ref->tex_width * ctx->ref->tex_children_height, sizeof(int)); if (ctx->statistics.hist_size) memcpy(temp, ctx->statistics.child_hist, ctx->statistics.hist_size * sizeof(int)); ctx->statistics.child_hist = temp; ctx->statistics.child_hist_size = ctx->ref->tex_width * ctx->ref->tex_children_height; } for (unsigned int i = 0; i < ctx->statistics.node_hist_size; ++i) { ctx->statistics.node_hist[i] += ctx->ref->h_node_hist[i]; } for (unsigned int i = 0; i < ctx->statistics.child_hist_size; ++i) { ctx->statistics.child_hist[i] += ctx->ref->h_child_hist[i]; } #endif stopTimer(fromboardtimer); ctx->statistics.t_match_coords_from_board += getTimerValue(fromboardtimer); deleteTimer(fromboardtimer); } } int flushOutput(); int addToBuffer(char* string); char numbuffer[32]; MatchCoord* coordForQueryChar(MatchContext* ctx, unsigned int qryid, unsigned int qrychar) { MatchResults* results = &(ctx->results); MatchCoord* coords = results->h_match_coords; #if COALESCED_QUERIES return coords + results->h_coord_tex_array[qryid] + qrychar * WARP_SIZE; #else return coords + results->h_coord_tex_array[qryid] + qrychar; #endif } void coordsToPrintBuffers(MatchContext* ctx, ReferencePage* page, MatchInfo** matches, Alignment** alignments, unsigned int mem_avail, unsigned int* coord_idx, unsigned int* match_idx, unsigned int* align_idx, unsigned int* nextqry, unsigned int* nextqrychar) { unsigned int numQueries = ctx->queries->count; int match_length = ctx->min_match_length; unsigned int cidx = *coord_idx; unsigned int midx = 0; unsigned int numCoords = ctx->results.numCoords; unsigned int numMatches = 0; unsigned int numAlignments = 0; int DEBUG = 0; if (DEBUG && cidx == 0) { for (int j = 0; j < numCoords; ++j) { MatchCoord * coord = ctx->results.h_match_coords+j; if (coord->node.data > 0 && !(coord->edge_match_length & FRMASK)) { //fprintf(stdout, "node: %d\n", // coord->node); fprintf(stdout, "node: %d leaves:%d\n", coord->node.data, lookupNumLeaves(page, coord->node)); } } exit(0); } // How much can we fit into mem_avail? for (int j = cidx; j < numCoords; ++j) { MatchCoord* coord = ctx->results.h_match_coords + j; int queryAlignments = 0; int queryMatches = 0; if (coord->node.data > 0 && !(coord->edge_match_length & FRMASK)) { int numLeaves = lookupNumLeaves(page, coord->node); queryAlignments += numLeaves; queryMatches++; } int allMatches = numMatches + queryMatches; int allAlignments = numAlignments + queryAlignments; int neededSize = allMatches * sizeof(MatchInfo) + allAlignments * sizeof(Alignment); if (neededSize > mem_avail || (allMatches/BLOCKSIZE) >= MAX_GRID_DIMENSION) { // adding this match won't fit on the board break; } ++cidx; numMatches = allMatches; numAlignments = allAlignments; } MatchInfo* M = (MatchInfo*)calloc(numMatches, sizeof(MatchInfo)); unsigned int alignmentOffset = 0; int qry = *nextqry; int qrychar = *nextqrychar; bool set_full = false; while (qry < numQueries) { // h_lengths_array doesn't count the 'q' at the beginning of each query int qlen = ctx->queries->h_lengths_array[qry] + 1 - match_length; while (qrychar < qlen) { if (midx >= numMatches) { set_full = true; break; } MatchCoord* coord = coordForQueryChar(ctx, qry, qrychar); if (coord->node.data > 0 && !(coord->edge_match_length & FRMASK)) { MatchInfo m; m.resultsoffset = alignmentOffset; m.qrystartpos = qrychar; m.matchnode = coord->node; m.edgematch = coord->edge_match_length; m.numLeaves = lookupNumLeaves(page, m.matchnode); m.queryid = qry; alignmentOffset += m.numLeaves; M[midx++] = m; } ++qrychar; } if (set_full) break; ++qry; qrychar = 0; } *coord_idx = cidx; *match_idx = midx; *align_idx = alignmentOffset; *matches = M; *nextqry = qry; *nextqrychar = qrychar; fprintf(stderr, "Allocing %d bytes of host memory for %d alignments\n", alignmentOffset * sizeof(Alignment), numAlignments); *alignments = (struct Alignment *) calloc(alignmentOffset, sizeof(Alignment)); //hipHostMalloc((void**)alignments, numAlignments * sizeof(Alignment)); } void runPrintKernel(MatchContext* ctx, ReferencePage* page, MatchInfo* h_matches, unsigned int numMatches, Alignment* alignments, unsigned int numAlignments) { MatchInfo* d_matches; size_t matchesSize = numMatches * sizeof(MatchInfo); CUDA_MALLOC((void**) &d_matches, matchesSize); struct Alignment * d_alignments; size_t alignmentSize = numAlignments * sizeof(Alignment); CUDA_MALLOC((void**) &d_alignments, alignmentSize); CUDA_SAFE_CALL(hipMemset((void*) d_alignments, 0, alignmentSize)); char* atimer = createTimer(); startTimer(atimer); // Copy matches to card fprintf(stderr, "prepared %d matches %d alignments\n", numMatches, numAlignments); fprintf(stderr, "Copying %d bytes to host memory for %d alignments\n", numAlignments * sizeof(Alignment), numAlignments); int DEBUG = 0; if (DEBUG) { for (int i = 0; i < numMatches; i++) { printf("m[%d]:\t%d\t%d\t%d\t%d\t%d\t%d\n", i, h_matches[i].resultsoffset, h_matches[i].queryid, h_matches[i].matchnode.data, h_matches[i].numLeaves, h_matches[i].edgematch, h_matches[i].qrystartpos); } exit(0); } CUDA_SAFE_CALL(hipMemcpy(d_matches, h_matches, matchesSize, hipMemcpyHostToDevice)); stopTimer(atimer); float mtime = getTimerValue(atimer); // Launch the kernel int blocksize = (numMatches > BLOCKSIZE) ? BLOCKSIZE : numMatches; dim3 dimBlock(blocksize, 1, 1); dim3 dimGrid(ceil(numMatches / (float)BLOCKSIZE), 1, 1); fprintf(stderr, " Calling print kernel... "); allocateReadWriteSets( dimGrid, dimBlock, 0 ); hipLaunchKernelGGL(( printKernel) , dim3(dimGrid), dim3(dimBlock), 0 , 0, d_matches, numMatches, d_alignments, #if COALESCED_QUERIES ctx->results.d_coord_tex_array, #endif #if !QRYTEX #if COALESCED_QUERIES (int*) #endif ctx->queries->d_tex_array, #endif #if !NODETEX (_PixelOfNode*)ctx->ref->d_node_tex_array, #endif #if !CHILDTEX (_PixelOfChildren*)ctx->ref->d_children_tex_array, #endif ctx->queries->d_addrs_tex_array, ctx->queries->d_lengths_array, page->begin, page->end, page->shadow_left, page->shadow_right, ctx->min_match_length #if TREE_ACCESS_HISTOGRAM , ctx->ref->d_node_hist, ctx->ref->d_child_hist #endif ); freeReadWriteSets( dimGrid, dimBlock, 0 ); hipDeviceSynchronize(); hipError_t err = hipGetLastError(); if ( hipSuccess != err) { fprintf(stderr, "Kernel execution failed: %s.\n", hipGetErrorString(err)); exit(EXIT_FAILURE); } startTimer(atimer); // Copy the results back to the host CUDA_SAFE_CALL(hipMemcpy((void*)alignments, (void*)d_alignments, alignmentSize, hipMemcpyDeviceToHost)); hipDeviceSynchronize(); stopTimer(atimer); float atime = getTimerValue(atimer); fprintf(stderr, "memcpy time= %f\n", atime + mtime); deleteTimer(atimer); // Cleanup CUDA_SAFE_CALL(hipFree(d_alignments)); CUDA_SAFE_CALL(hipFree(d_matches)); } // TODO: need reverse-complement printing support void runPrintOnCPU(MatchContext* ctx, ReferencePage* page, MatchInfo* h_matches, unsigned int numMatches, Alignment* alignments, unsigned int numAlignments) { unsigned int min_match_length = ctx->min_match_length; int* addrs = ctx->queries->h_addrs_tex_array; int* lengths = ctx->queries->h_lengths_array; char* qrychars = ctx->queries->h_tex_array; if (!numMatches) return; int qry = -1; unsigned int qrylen; for (int i = 0; i < numMatches; ++i) { MatchInfo& match = h_matches[i]; if (match.queryid != qry) { qry = match.queryid; qrylen = lengths[qry]; } if (!(match.edgematch & FRMASK)) { printAlignments(page, alignments + match.resultsoffset, #if COALESCED_QUERIES qrychars + sizeof(int) * addrs[qry], #else qrychars + addrs[qry], #endif qrylen, match.matchnode, match.qrystartpos, match.edgematch, min_match_length, 0, ctx->forwardcoordinates); } } } int addMatchToBuffer(int left_in_ref, int qrypos, int matchlen); void getExactAlignments(MatchContext * ctx, ReferencePage * page, bool on_cpu) { assert(!ctx->reverse && !ctx->forwardreverse); size_t boardFreeMemory; size_t total_mem; if (!on_cpu) { boardMemory(&boardFreeMemory, &total_mem); fprintf(stderr, "board free memory: %u total memory: %u\n", boardFreeMemory, total_mem); } else { boardFreeMemory = 256 * 1024 * 1024; total_mem = boardFreeMemory; } #ifdef __DEVICE_EMULATION__ boardFreeMemory = 512 * 1024 * 1024; #endif boardFreeMemory -= BREATHING_ROOM; fprintf(stderr, "board free memory: %u\n", boardFreeMemory); int rTotalMatches = 0; int rTotalAlignments = 0; int totalRounds = 0; unsigned int last_coord = ctx->results.numCoords; unsigned int next_coord = 0; unsigned int nextqry = 0; unsigned int nextqrychar = 0; int lastqry = -1; while (next_coord < last_coord) { // see how many queries will fit on the board totalRounds++; unsigned int numMatches = 0; unsigned int numAlignments = 0; MatchInfo* h_matches = NULL; Alignment* h_alignments = NULL; int coord_left = next_coord; char* btimer = createTimer(); startTimer(btimer); coordsToPrintBuffers(ctx, page, &h_matches, &h_alignments, boardFreeMemory, &next_coord, &numMatches, &numAlignments, &nextqry, &nextqrychar); stopTimer(btimer); float btime = getTimerValue(btimer); ctx->statistics.t_coords_to_buffers += btime; fprintf(stderr, "buffer prep time= %f\n", btime); deleteTimer(btimer); fprintf(stderr, "Round %d: Printing results for match coords [%d-%d) of %d using %d matches and %d alignments\n", totalRounds, coord_left, next_coord, last_coord, numMatches, numAlignments); if (numMatches == 0) continue; char buf[256]; //assert(qryend > qrystart); rTotalAlignments += numAlignments; rTotalMatches += numMatches; if (num_bind_tex_calls > 100) { hipDeviceReset(); num_bind_tex_calls = 0; loadReference(ctx); loadQueries(ctx); } char* ktimer = createTimer(); startTimer(ktimer); if (on_cpu) { runPrintOnCPU(ctx, page, h_matches, numMatches, h_alignments, numAlignments); } else { runPrintKernel(ctx, page, h_matches, numMatches, h_alignments, numAlignments); } stopTimer(ktimer); float ktime = getTimerValue(ktimer); ctx->statistics.t_print_kernel += ktime; fprintf(stderr, "print kernel time= %f\n", ktime); deleteTimer(ktimer); // char* stimer = createTimer(); // startTimer(stimer); // mapQueriesEndToEnd(ctx, // page, // h_matches, // numMatches, // h_alignments, // numAlignments); // // stopTimer(stimer); // // float stime = getTimerValue(stimer); // fprintf(stderr, "postprocess time= %f\n", stime); // deleteTimer(stimer); //flushOutput(); //Process the alignments char* otimer = createTimer(); startTimer(otimer); for (int m = 0; m < numMatches; m++) { int base = h_matches[m].resultsoffset; for (int i = 0; i < h_matches[m].numLeaves; i++) { // See if there are any more left maximal alignments for this match if (h_alignments[base+i].left_in_ref == 0) { break; } if (h_matches[m].queryid != lastqry) { lastqry = h_matches[m].queryid; addToBuffer("> "); addToBuffer(*(ctx->queries->h_names + lastqry)); addToBuffer("\n"); } sprintf(buf, "%d\t%d\t%d\n", h_alignments[base+i].left_in_ref, h_matches[m].qrystartpos + 1, h_alignments[base+i].matchlen); addToBuffer(buf); // addMatchToBuffer(h_alignments[base+i].left_in_ref, // h_matches[m].qrystartpos + 1, // h_alignments[base+i].matchlen); } } flushOutput(); stopTimer(otimer); ctx->statistics.t_results_to_disk += getTimerValue(otimer); deleteTimer(otimer); free(h_matches); free(h_alignments); //hipHostFree((void*)h_alignments); } free(ctx->results.h_coord_tex_array); free(ctx->results.h_match_coords); ctx->results.h_coord_tex_array = NULL; ctx->results.h_match_coords = NULL; fprintf(stderr, "Finished processing %d matches and %d potential alignments in %d rounds\n", rTotalMatches, rTotalAlignments, totalRounds); } int getQueryBlock(MatchContext* ctx, size_t device_mem_avail) { QuerySet* queries = ctx->queries; char * queryTex = NULL; int* queryAddrs = NULL; int* queryLengths = NULL; unsigned int numQueries; unsigned int num_match_coords; size_t queryLen; char** names; fprintf(stderr, "Loading query block... "); char* queryreadtimer = createTimer(); startTimer(queryreadtimer); getQueriesTexture(queries->qfile, &queryTex, &queryLen, &queryAddrs, &names, &queryLengths, &numQueries, &num_match_coords, device_mem_avail, ctx->min_match_length, ctx->reverse || ctx->forwardreverse); stopTimer(queryreadtimer); ctx->statistics.t_queries_from_disk += getTimerValue(queryreadtimer); deleteTimer(queryreadtimer); queries->h_tex_array = queryTex; queries->count = numQueries; queries->h_addrs_tex_array = queryAddrs; queries->texlen = queryLen; queries->h_names = names; queries->h_lengths_array = queryLengths; ctx->results.numCoords = num_match_coords; fprintf(stderr, "done.\n"); return numQueries; } void destroyQueryBlock(QuerySet* queries) { free(queries->h_tex_array); queries->h_tex_array = NULL; for (int i = 0; i < queries->count; ++i) free(queries->h_names[i]); free(queries->h_names); queries->count = 0; queries->texlen = 0; free(queries->h_addrs_tex_array); queries->h_addrs_tex_array = NULL; free(queries->h_lengths_array); queries->h_lengths_array = NULL; } void resetStats(Statistics* stats) { stats->t_end_to_end = 0.0; stats->t_match_kernel = 0.0; stats->t_print_kernel = 0.0; stats->t_queries_to_board = 0.0; stats->t_match_coords_to_board = 0.0; stats->t_match_coords_from_board = 0.0; stats->t_tree_to_board = 0.0; stats->t_ref_str_to_board = 0.0; stats->t_queries_from_disk = 0.0; stats->t_ref_from_disk = 0.0; stats->t_results_to_disk = 0.0; stats->t_tree_construction = 0.0; stats->t_tree_reorder = 0.0; stats->t_tree_flatten = 0.0; stats->t_reorder_ref_str = 0.0; stats->t_build_coord_offsets = 0.0; stats->t_coords_to_buffers = 0.0; stats->bp_avg_query_length = 0.0; #if TREE_ACCESS_HISTOGRAM if (stats->node_hist_size) { free(stats->node_hist); stats->node_hist = NULL; stats->node_hist_size = 0; } if (stats->child_hist_size) { free(stats->child_hist); stats->child_hist = NULL; stats->child_hist_size = 0; } #endif } void writeStatisticsFile(Statistics* stats, char* stats_filename, char* node_hist_filename = NULL, char* child_hist_filename = NULL) { if (stats_filename) { FILE* f = fopen(stats_filename, "w"); if (!f) { fprintf(stderr, "WARNING: could not open %s for writing\n", stats_filename); } else { fprintf(f, "Q"); fprintf(f, ",R"); fprintf(f, ",T"); fprintf(f, ",m"); fprintf(f, ",r"); fprintf(f, ",t"); fprintf(f, ",n"); fprintf(f, ",Total"); fprintf(f, ",Match kernel"); fprintf(f, ",Print Kernel"); fprintf(f, ",Queries to board"); fprintf(f, ",Match coords to board"); fprintf(f, ",Match coords from board"); fprintf(f, ",Tree to board"); fprintf(f, ",Ref str to board"); fprintf(f, ",Queries from disk"); fprintf(f, ",Ref from disk"); fprintf(f, ",Output to disk"); fprintf(f, ",Tree construction"); fprintf(f, ",Tree reorder"); fprintf(f, ",Tree flatten"); fprintf(f, ",Ref reorder"); fprintf(f, ",Build coord table"); fprintf(f, ",Coords to buffers"); fprintf(f, ",Avg qry length"); fprintf(f, "\n"); fprintf(f, "%d", QRYTEX); fprintf(f, ",%d", REFTEX); fprintf(f, ",%d", TREETEX); fprintf(f, ",%d", MERGETEX); fprintf(f, ",%d", REORDER_REF); fprintf(f, ",%d", REORDER_TREE); fprintf(f, ",%d", RENUMBER_TREE); fprintf(f, ",%f", stats->t_end_to_end); fprintf(f, ",%f", stats->t_match_kernel); fprintf(f, ",%f", stats->t_print_kernel); fprintf(f, ",%f", stats->t_queries_to_board); fprintf(f, ",%f", stats->t_match_coords_to_board); fprintf(f, ",%f", stats->t_match_coords_from_board); fprintf(f, ",%f", stats->t_tree_to_board); fprintf(f, ",%f", stats->t_ref_str_to_board); fprintf(f, ",%f", stats->t_queries_from_disk); fprintf(f, ",%f", stats->t_ref_from_disk); fprintf(f, ",%f", stats->t_results_to_disk); fprintf(f, ",%f", stats->t_tree_construction); fprintf(f, ",%f", stats->t_tree_reorder); fprintf(f, ",%f", stats->t_tree_flatten); fprintf(f, ",%f", stats->t_reorder_ref_str); fprintf(f, ",%f", stats->t_build_coord_offsets); fprintf(f, ",%f", stats->t_coords_to_buffers); fprintf(f, ",%f", stats->bp_avg_query_length); fprintf(f,"\n"); fclose(f); } } #if TREE_ACCESS_HISTOGRAM if (node_hist_filename) { FILE* f = fopen(node_hist_filename, "w"); if (!f) { fprintf(stderr, "WARNING: could not open %s for writing\n", node_hist_filename); } else { for (unsigned int i = 0; i < ctx->statistics.node_hist_size; ++i) fprintf(f, "%d\t%d\n", i, ctx->statistics.node_hist[i]); } } if (child_hist_filename) { FILE* f = fopen(child_hist_filename, "w"); if (!f) { fprintf(stderr, "WARNING: could not open %s for writing\n", child_hist_filename); } else { for (unsigned int i = 0; i < ctx->statistics.child_hist_size; ++i) fprintf(f, "%d\t%d\n", i, ctx->statistics.child_hist[i]); } } float total_node_hits = 0; float tree_top_node_hits = 0; float total_child_hits = 0; float tree_top_child_hits = 0; for (unsigned int i = 0; i < ctx->statistics.node_hist_size; ++i) { total_node_hits +=ctx->statistics.node_hist[i]; if (i < 256) { tree_top_node_hits += ctx->statistics.node_hist[i]; } } for (unsigned int i = 0; i < ctx->statistics.child_hist_size; ++i) { total_child_hits +=ctx->statistics.child_hist[i]; if (i < 256) { tree_top_child_hits += ctx->statistics.child_hist[i]; } } fprintf(stderr, "Tree top node hits (%d/%d) = %f percent\n",(int)tree_top_node_hits, (int)total_node_hits, tree_top_node_hits /total_node_hits); fprintf(stderr, "Tree top child hits (%d/%d) = %f percent\n",(int)tree_top_child_hits, (int)total_child_hits, tree_top_child_hits /total_child_hits); #endif } void matchOnCPU(MatchContext* ctx, bool doRC) { //TODO: CPU is matching is disabled. if (doRC) { // Match the reverse complement of the queries to the ref computeGold(&ctx->results, ctx->ref->str, ctx->queries->h_tex_array, ctx->queries->h_addrs_tex_array, ctx->queries->h_lengths_array, (PixelOfNode*)(ctx->ref->h_node_tex_array), (PixelOfChildren*)(ctx->ref->h_children_tex_array), ctx->queries->count, ctx->min_match_length, REVERSE); } else { computeGold(&ctx->results, ctx->ref->str, ctx->queries->h_tex_array, ctx->queries->h_addrs_tex_array, ctx->queries->h_lengths_array, (PixelOfNode*)(ctx->ref->h_node_tex_array), (PixelOfChildren*)(ctx->ref->h_children_tex_array), ctx->queries->count, ctx->min_match_length, FORWARD); } } void matchOnGPU(MatchContext* ctx, bool doRC) { int numQueries = ctx->queries->count; int blocksize = (numQueries > BLOCKSIZE) ? BLOCKSIZE : numQueries; dim3 dimBlock(blocksize, 1, 1); dim3 dimGrid(ceil(numQueries / (float)BLOCKSIZE), 1, 1); // Match the reverse complement of the queries to the ref if (doRC) { //TODO: GPU RC is disabled allocateReadWriteSets( dimGrid, dimBlock, 0 ); hipLaunchKernelGGL(( mummergpuRCKernel) , dim3(dimGrid), dim3(dimBlock), 0 , 0, ctx->results.d_match_coords, ctx->queries->d_tex_array, ctx->queries->d_addrs_tex_array, ctx->queries->d_lengths_array, numQueries, ctx->min_match_length); freeReadWriteSets( dimGrid, dimBlock, 0 ); } else { allocateReadWriteSets( dimGrid, dimBlock, 0 ); hipLaunchKernelGGL(( mummergpuKernel) , dim3(dimGrid), dim3(dimBlock), 0 , 0, ctx->results.d_match_coords, #if COALESCED_QUERIES ctx->results.d_coord_tex_array, #endif #if !QRYTEX #if COALESCED_QUERIES (int*) #endif ctx->queries->d_tex_array, #endif #if !NODETEX (_PixelOfNode*)(ctx->ref->d_node_tex_array), #endif #if !CHILDTEX (_PixelOfChildren*)(ctx->ref->d_children_tex_array), #endif #if !REFTEX (char*)ctx->ref->d_ref_array, #endif ctx->queries->d_addrs_tex_array, ctx->queries->d_lengths_array, numQueries, ctx->min_match_length #if TREE_ACCESS_HISTOGRAM , ctx->ref->d_node_hist, ctx->ref->d_child_hist #endif ); freeReadWriteSets( dimGrid, dimBlock, 0 ); } // check if kernel execution generated an error hipError_t err = hipGetLastError(); if ( hipSuccess != err) { fprintf(stderr, "Kernel execution failed: %s.\n", hipGetErrorString(err)); exit(EXIT_FAILURE); } } void getMatchResults(MatchContext* ctx, unsigned int page_num) { transferResultsFromDevice(ctx); } void matchQueryBlockToReferencePage(MatchContext* ctx, ReferencePage* page, bool reverse_complement) { char* ktimer = createTimer(); fprintf(stderr, "Memory footprint is:\n\tqueries: %d\n\tref: %d\n\tresults: %d\n", ctx->queries->bytes_on_board, ctx->ref->bytes_on_board, ctx->results.bytes_on_board); startTimer(ktimer); if (ctx->on_cpu) { matchOnCPU(ctx, reverse_complement); } else { matchOnGPU(ctx, reverse_complement); hipDeviceSynchronize(); } stopTimer(ktimer); float ktime = getTimerValue(ktimer); ctx->statistics.t_match_kernel += ktime; fprintf(stderr, "match kernel time= %f\n", ktime); deleteTimer(ktimer); getMatchResults(ctx, page->id); unloadResultBuffer(ctx); } int matchSubset(MatchContext* ctx, ReferencePage* page) { loadQueries(ctx); fprintf(stderr, "Matching queries %s - %s against ref coords %d - %d\n", ctx->queries->h_names[0], ctx->queries->h_names[ctx->queries->count - 1], page->begin, page->end); loadResultBuffer(ctx); // TODO: renable RC support by calling this twice /w reverse/fwdreverse // idiom. matchQueryBlockToReferencePage(ctx, page, false); if (USE_PRINT_KERNEL && !ctx->on_cpu) { getExactAlignments(ctx, page, false); } else { getExactAlignments(ctx, page, true); } flushOutput(); unloadQueries(ctx); return 0; } int getFreeDeviceMemory(bool on_cpu) { size_t free_mem = 0; size_t total_mem = 0; // We have to 'prime' CUDA by making an allocation here. cuMemGetInfo // will return zeroes until we do a malloc. int * p = NULL; CUDA_SAFE_CALL(hipMalloc((void**)&p, sizeof(int))); CUDA_SAFE_CALL(hipFree(p)); if (!on_cpu) { boardMemory(&free_mem, &total_mem); fprintf(stderr, "board free memory: %u total memory: %u\n", free_mem, total_mem); } else { total_mem = free_mem = 804585472; // pretend we are on a 8800 GTX } return free_mem; } int matchQueriesToReferencePage(MatchContext* ctx, ReferencePage* page) { fprintf(stderr, "Beginning reference page %p\n", page); int free_mem = getFreeDeviceMemory(ctx->on_cpu); int available_mem = free_mem - page->ref.bytes_on_board - BREATHING_ROOM; ctx->ref = &(page->ref); loadReference(ctx); while (getQueryBlock(ctx, available_mem)) { matchSubset(ctx, page); ctx->statistics.bp_avg_query_length = ctx->queries->texlen / (float)(ctx->queries->count) - 2; destroyQueryBlock(ctx->queries); if (num_bind_tex_calls > 100) { hipDeviceReset(); num_bind_tex_calls = 0; loadReference(ctx); } } unloadReferenceString(ctx->ref); unloadReferenceTree(ctx); lseek(ctx->queries->qfile, 0, SEEK_SET); return 0; } void initReferencePages( MatchContext* ctx , int* num_pages, ReferencePage** pages_out) { unsigned int bases_in_ref = ctx->full_ref_len - 3; unsigned int page_size = BASES_PER_TREE_PAGE < bases_in_ref ? BASES_PER_TREE_PAGE : bases_in_ref; unsigned int num_reference_pages = ceil((bases_in_ref + 0.0) / page_size); fprintf(stderr, "Stream will use %d pages for %d bases, page size = %d\n", num_reference_pages, bases_in_ref, page_size); unsigned int page_overlap = MAX_QUERY_LEN + 1; ReferencePage* pages = (ReferencePage*) calloc(num_reference_pages, sizeof(ReferencePage)); pages[0].begin = 1; pages[0].end = pages[0].begin + page_size + ceil(page_overlap / 2.0) + 1; //the 1 is for the 's' at the beginning pages[0].shadow_left = -1; pages[0].id = 0; for (int i = 1; i < num_reference_pages - 1; ++i) { pages[i].begin = pages[i - 1].end - page_overlap; pages[i].end = pages[i].begin + page_size + page_overlap; pages[i - 1].shadow_right = pages[i].begin; pages[i].shadow_left = pages[i-1].end; pages[i].id = i; } if (num_reference_pages > 1) { int last_page = num_reference_pages - 1; pages[last_page].begin = pages[last_page - 1].end - page_overlap; pages[last_page].end = ctx->full_ref_len - 1; pages[last_page - 1].shadow_right = pages[last_page].begin; pages[last_page].shadow_right = -1; pages[last_page].shadow_left = pages[last_page - 1].end; pages[last_page].id = last_page; } *pages_out = pages; *num_pages = num_reference_pages; } int streamReferenceAgainstQueries(MatchContext* ctx) { int num_reference_pages = 0; ReferencePage* pages = NULL; initReferencePages(ctx, &num_reference_pages, &pages); buildReferenceTexture(&(pages[0].ref), ctx->full_ref, pages[0].begin, pages[0].end, ctx->min_match_length, ctx->dotfilename, ctx->texfilename, &(ctx->statistics)); matchQueriesToReferencePage(ctx, &pages[0]); destroyReference(&(pages[0].ref)); for (int i = 1; i < num_reference_pages - 1; ++i) { buildReferenceTexture(&(pages[i].ref), ctx->full_ref, pages[i].begin, pages[i].end, ctx->min_match_length, NULL, NULL, &(ctx->statistics)); matchQueriesToReferencePage(ctx, &pages[i]); destroyReference(&(pages[i].ref)); } if (num_reference_pages > 1) { int last_page = num_reference_pages - 1; buildReferenceTexture(&(pages[last_page].ref), ctx->full_ref, pages[last_page].begin, pages[last_page].end, ctx->min_match_length, NULL, NULL, &(ctx->statistics)); matchQueriesToReferencePage(ctx, &pages[last_page]); destroyReference(&(pages[last_page].ref)); } free(pages); return 0; } extern "C" int matchQueries(MatchContext* ctx) { assert(sizeof(struct PixelOfNode) == sizeof(uint4)); assert(sizeof(struct PixelOfChildren) == sizeof(uint4)); #if TREE_ACCESS_HISTOGRAM ctx->statistics.node_hist_size = 0; ctx->statistics.child_hist_size = 0; #endif resetStats(&(ctx->statistics)); char* ttimer = createTimer(); startTimer(ttimer); int ret; fprintf(stderr, "Streaming reference pages against all queries\n"); ret = streamReferenceAgainstQueries(ctx); stopTimer(ttimer); ctx->statistics.t_end_to_end += getTimerValue(ttimer); deleteTimer(ttimer); writeStatisticsFile(&(ctx->statistics), ctx->stats_file, "node_hist.out", "child_hist.out"); return ret; }
3fce314da538e4e84ee1004fda2255dd16e19d94.cu
#include<curd_lib_host.h> #include<curd_lib_host.h> #include<curd_lib_host.h> #include<curd_lib_host.h> // Includes, system #include <stdlib.h> #include <stdio.h> #include <string.h> #include <math.h> #include <assert.h> #include <sys/stat.h> #include <fcntl.h> #include <sys/types.h> #include <unistd.h> #include <errno.h> #include <sys/time.h> #include <cuda.h> #include <vector_types.h> // includes, kernels #include <common.cu> #include <mummergpu.h> #include <mummergpu_kernel.cu> int USE_PRINT_KERNEL = 1; #define BREATHING_ROOM (16 * 1024 * 1024) #define BASES_PER_TREE_PAGE 8388608 //#define BASES_PER_TREE_PAGE 7000000 #define BLOCKSIZE 256 unsigned int cuda_calls = 0; void trap_dbg() { fprintf(stderr, "Trapped\n"); } #define CUDA_SAFE_CALL( call) do { \ cuda_calls++; \ cudaError err = call; \ if( cudaSuccess != err) { \ fprintf(stderr, "Cuda error in file '%s' in line %i : %d (%s).\n", \ __FILE__, __LINE__, err, cudaGetErrorString( err) ); \ trap_dbg(); \ exit(EXIT_FAILURE); \ } } while (0) # define CU_SAFE_CALL_NO_SYNC( call ) do { \ CUresult err = call; \ if( CUDA_SUCCESS != err) { \ fprintf(stderr, "Cuda driver error %x in file '%s' in line %i.\n", \ err, __FILE__, __LINE__ ); \ exit(EXIT_FAILURE); \ } } while (0) # define CUT_DEVICE_INIT_DRV(cuDevice) do { \ cuDevice = 0; \ int deviceCount = 0; \ CUresult err = cuInit(0); \ if (CUDA_SUCCESS == err) \ CU_SAFE_CALL_NO_SYNC(cuDeviceGetCount(&deviceCount)); \ if (deviceCount == 0) { \ fprintf(stderr, "There is no device.\n"); \ exit(EXIT_FAILURE); \ } \ int dev; \ for (dev = 0; dev < deviceCount; ++dev) { \ int major, minor; \ CU_SAFE_CALL_NO_SYNC(cuDeviceComputeCapability(&major, &minor, dev));\ if (major >= 1) \ break; \ } \ if (dev == deviceCount) { \ fprintf(stderr, "There is no device supporting CUDA.\n"); \ exit(EXIT_FAILURE); \ } \ else \ CU_SAFE_CALL_NO_SYNC(cuDeviceGet(&cuDevice, dev)); \ } while (0) unsigned int num_bind_tex_calls = 0; #define BIND_TEX(offset, tex, arr, desc, len) do { \ CUDA_SAFE_CALL(cudaBindTexture(offset, tex, arr, desc, len)); \ ++num_bind_tex_calls; \ } while(0) #define BIND_TEX_ARRAY(tex, arr, desc) do { \ CUDA_SAFE_CALL(cudaBindTextureToArray(tex, arr, desc)); \ ++num_bind_tex_calls; \ } while(0) #define CUDA_MALLOC(ptr, size) do { \ cudaMalloc(ptr, size); \ ++num_bind_tex_calls; \ } while(0) #define CUDA_MALLOC_PITCH(ptr, out_pitch, rowsize, numrows) do { \ cudaMallocPitch(ptr, out_pitch, rowsize, numrows); \ ++num_bind_tex_calls; \ } while(0) #define CUDA_MALLOC_ARRAY(ptr, desc, pitch, rows) do { \ cudaMallocArray(ptr, desc, pitch, rows); \ ++num_bind_tex_calls; \ } while(0) //////////////////////////////////////////////////////////////////////////////// // declaration, forward void runTest( int argc, char** argv); extern "C" void computeGold(MatchResults* results, char* refstr, char* queries, int* queryAddrs, int* queryLengths, PixelOfNode* nodeTexture, PixelOfChildren* childrenTexture, int numQueries, int mismatch_length, int rc); extern "C" void getReferenceString(const char * filename, char** refstr, size_t* reflen); extern "C" void createTreeTexture(const char * filename, PixelOfNode** nodeTexture, PixelOfChildren** childrenTexture, unsigned int* width, unsigned int* node_height, unsigned int* children_height, AuxiliaryNodeData** aux_data, int* num_match_coords, int min_match_len, Statistics* statistics, const char * dotfilename, const char * texfilename); extern "C" void getQueriesTexture(int qfile, char** queryTexture, size_t* queryLength, int** queryAddrs, char*** queryNames, int** queryLengths, unsigned int* numQueries, unsigned int* num_match_coords, unsigned int device_memory_avail, int min_match_length, bool rc); extern "C" int lookupNumLeaves(ReferencePage * page, TextureAddress addr); void printAlignments(ReferencePage* page, Alignment* alignments, char* query, int qrylen, TextureAddress nodeid, int qrypos, int edge_depth, int min_match, bool rc, bool forwardcoordinates); int countLeafNodes(int nodeid); extern "C" void mapQueriesEndToEnd(MatchContext* ctx, ReferencePage* page, MatchInfo* h_matches, unsigned int numMatches, Alignment* h_alignments, unsigned int numAligments); char * createTimer() { unsigned int * ptr = (unsigned int *) malloc(sizeof(struct Timer_t)); memset(ptr, 0, sizeof(struct Timer_t)); return (char *) ptr; } void startTimer(char * ptr) { gettimeofday(&(((struct Timer_t *)ptr)->start_m), NULL); } void stopTimer(char * ptr) { gettimeofday(&(((struct Timer_t *)ptr)->end_m), NULL); } float getTimerValue(char * ptr) { Timer_t * timer = (Timer_t*) ptr; if (timer == NULL) { fprintf(stderr, "Uninitialized timer!!!\n"); return 0.0; } if (timer->end_m.tv_sec == 0) { stopTimer(ptr); } return (float) (1000.0 * (timer->end_m.tv_sec - timer->start_m.tv_sec) + (0.001 * (timer->end_m.tv_usec - timer->start_m.tv_usec))); } void deleteTimer(char * ptr) { free((Timer_t *)ptr); } extern "C" int createReference(const char* fromFile, Reference* ref) { if (!fromFile || !ref) return -1; char * loadreftimer = createTimer(); startTimer(loadreftimer); getReferenceString(fromFile, &(ref->str), &(ref->len)); stopTimer(loadreftimer); ref->t_load_from_disk += getTimerValue(loadreftimer); deleteTimer(loadreftimer); return 0; } extern "C" int destroyReference(Reference* ref) { free(ref->h_node_tex_array); free(ref->h_children_tex_array); free(ref->str); #if REORDER_REF free(ref->h_ref_array); #endif free(ref->aux_data); #if TREE_ACCESS_HISTOGRAM free(ref->h_node_hist); free(ref->h_child_hist); #endif ref->str = NULL; ref->len = 0; return 0; } extern "C" int createQuerySet(const char* fromFile, QuerySet* queries) { fprintf(stderr, "Opening %s...\n", fromFile); int qfile = open(fromFile, O_RDONLY); if (qfile == -1) { fprintf(stderr, "Can't open %s: %d\n", fromFile, errno); exit (1); } queries->qfile = qfile; return 0; } extern "C" int destroyQuerySet(QuerySet* queries) { if (queries->qfile) close(queries->qfile); return 0; } extern "C" void printStringForError(int err) { } extern "C" int createMatchContext(Reference* ref, QuerySet* queries, MatchResults* matches, bool on_cpu, int min_match_length, char* stats_file, bool reverse, bool forwardreverse, bool forwardcoordinates, bool showQueryLength, char* dotfilename, char* texfilename, MatchContext* ctx) { ctx->queries = queries; ctx->ref = ref; ctx->full_ref = ref->str; ctx->full_ref_len = ref->len; ctx->on_cpu = on_cpu; ctx->min_match_length = min_match_length; ctx->stats_file = stats_file; ctx->reverse = reverse; ctx->forwardreverse = forwardreverse; ctx->forwardcoordinates = forwardcoordinates; ctx->show_query_length = showQueryLength; ctx->dotfilename = dotfilename; ctx->texfilename = texfilename; return 0; } extern "C" int destroyMatchContext(MatchContext* ctx) { free(ctx->full_ref); //destroyReference(ctx->ref); destroyQuerySet(ctx->queries); return 0; } void buildReferenceTexture(Reference* ref, char* full_ref, size_t begin, size_t end, int min_match_len, char* dotfilename, char* texfilename, Statistics* statistics) { fprintf(stderr, "Building reference texture...\n"); PixelOfNode* nodeTexture = NULL; PixelOfChildren * childrenTexture = NULL; unsigned int width = 0; unsigned int node_height = 0; unsigned int children_height = 0; AuxiliaryNodeData* aux_data = NULL; int num_nodes; char * loadreftimer = createTimer(); startTimer(loadreftimer); ref->len = end - begin + 3; ref->str = (char*)malloc(ref->len); ref->str[0] = 's'; strncpy(ref->str + 1, full_ref + begin, ref->len - 3); strcpy(ref->str + ref->len - 2, "$"); stopTimer(loadreftimer); statistics->t_ref_from_disk += getTimerValue(loadreftimer) + ref->t_load_from_disk; deleteTimer(loadreftimer); createTreeTexture(ref->str, &nodeTexture, &childrenTexture, &width, &node_height, &children_height, &aux_data, &num_nodes, min_match_len, statistics, dotfilename, texfilename); ref->h_node_tex_array = nodeTexture; ref->h_children_tex_array = childrenTexture; ref->tex_width = width; ref->tex_node_height = node_height; ref->tex_children_height = children_height; #if TREE_ACCESS_HISTOGRAM ref->h_node_hist = (int*)calloc(width * node_height, sizeof(int)); ref->h_child_hist = (int*)calloc(width * children_height, sizeof(int)); #endif ref->aux_data = aux_data; ref->num_nodes = num_nodes; ref->bytes_on_board = (width * node_height * sizeof(PixelOfNode)) + (width * children_height * sizeof(PixelOfChildren)); fprintf(stderr, "This tree will need %d bytes on the board\n", ref->bytes_on_board); #if REORDER_REF char * reordertimer = createTimer(); startTimer(reordertimer); unsigned int refpitch = ref->pitch = 65536; int numrows = ceil(ref->len / ((float)refpitch)); int blocksize = 4; numrows += blocksize; int refstrsize = numrows * refpitch; ref->h_ref_array = (char *) malloc(refstrsize); ref->bytes_on_board += refstrsize; fprintf(stderr, "The refstr (reordered) requires %d bytes\n", refstrsize); int z_max = numrows * refpitch; for (int z = 0; z < z_max; z++) { ref->h_ref_array[z] = 'Z'; } int x, y; int maxx = 0, maxy = 0; size_t reflen = ref->len; char* refstr = ref->str; int block_dim = refpitch * blocksize; for (int i = 0; i < reflen; i++) { int bigx = i % (block_dim); // ref string reorder int bigy = i / (block_dim); y = bigy * blocksize + bigx % blocksize; x = bigx / blocksize; // printf("%d: (%d,%d)=%c\n", i, x, y, refstr[i]); assert(x < refpitch); assert(y < numrows); ref->h_ref_array[y*refpitch+x] = refstr[i]; if (x > maxx) { maxx = x; } if (y > maxy) { maxy = y; } } if ((maxx >= refpitch) || (maxy >= numrows)) { fprintf(stderr, "ERROR: maxx: %d refpitch: %d, maxy: %d numrows: %d\n", maxx, refpitch, maxy, numrows); exit(1); } stopTimer(reordertimer); if (statistics) statistics->t_reorder_ref_str += getTimerValue(reordertimer); deleteTimer(reordertimer); #else fprintf(stderr, "The refstr requires %d bytes\n", ref->len); ref->bytes_on_board += ref->len; #endif } void boardMemory(size_t * free_mem, size_t * total_mem) { // The emulator doesn't allow calls to cuMemGetInfo #ifdef __DEVICE_EMULATION__ *free_mem = 512*1024*1024; *total_mem = 768*1024*1024; #else CU_SAFE_CALL_NO_SYNC(cuMemGetInfo(free_mem, total_mem)); #endif } void loadReferenceTexture(MatchContext* ctx) { Reference* ref = ctx->ref; int numrows = ceil(ref->len / ((float)ref->pitch)); int blocksize = 4; numrows += blocksize; cudaChannelFormatDesc refTextureDesc = cudaCreateChannelDesc(8, 0, 0, 0, cudaChannelFormatKindSigned); if (!ctx->on_cpu) { char * toboardtimer = createTimer(); startTimer(toboardtimer); #if REFTEX #if REORDER_REF CUDA_MALLOC_ARRAY((cudaArray**)(&ref->d_ref_array), &refTextureDesc, ref->pitch, numrows); CUDA_SAFE_CALL(cudaMemcpyToArray( (cudaArray*)(ref->d_ref_array), 0, 0, ref->h_ref_array, numrows*ref->pitch, cudaMemcpyHostToDevice)); reftex.addressMode[0] = cudaAddressModeClamp; reftex.addressMode[1] = cudaAddressModeClamp; reftex.filterMode = cudaFilterModePoint; reftex.normalized = false; BIND_TEX_ARRAY(reftex, (cudaArray*)ref->d_ref_array, refTextureDesc); ctx->ref->bytes_on_board += numrows * ref->pitch; #else CUDA_MALLOC( (void**)(&ref->d_ref_array), ref->len); CUDA_SAFE_CALL( cudaMemcpy( (void*)(ref->d_ref_array), ref->str, ref->len, cudaMemcpyHostToDevice) ); reftex.addressMode[0] = cudaAddressModeClamp; reftex.filterMode = cudaFilterModePoint; reftex.normalized = false; // access with normalized texture coordinates cudaChannelFormatDesc refDesc = cudaCreateChannelDesc(8,0,0,0, cudaChannelFormatKindUnsigned); BIND_TEX(0, reftex, (void*)(ref->d_ref_array), refDesc, ref->len); ctx->ref->bytes_on_board += ref->len; #endif #else #if REORDER_REF size_t refpitch; CUDA_MALLOC_PITCH( (void**)(&ref->d_ref_array), &refpitch, ref->pitch * sizeof(char), numrows); CUDA_SAFE_CALL( cudaMemcpy2D((ref->d_ref_array), refpitch, ref->h_ref_array, ref->pitch , ref->pitch * sizeof(char), numrows, cudaMemcpyHostToDevice)); ctx->ref->bytes_on_board += numrows * ref->pitch; #else CUDA_MALLOC( (void**)(&ref->d_ref_array), ref->len); CUDA_SAFE_CALL( cudaMemcpy( (void*)(ref->d_ref_array), ref->str, ref->len, cudaMemcpyHostToDevice) ); ctx->ref->bytes_on_board += ref->len; #endif #endif stopTimer(toboardtimer); ctx->statistics.t_ref_str_to_board += getTimerValue(toboardtimer); deleteTimer(toboardtimer); } else { ref->d_ref_array = NULL; } } void unloadReferenceString(Reference* ref) { #if REFTEX CUDA_SAFE_CALL(cudaUnbindTexture( reftex ) ); #endif #if REORDER_REF && REFTEX CUDA_SAFE_CALL(cudaFreeArray((cudaArray*)(ref->d_ref_array))); #else CUDA_SAFE_CALL(cudaFree((ref->d_ref_array))); #endif ref->d_ref_array = NULL; } void unloadReferenceTree(MatchContext* ctx) { Reference* ref = ctx->ref; #if REORDER_TREE // Unload nodetex #if NODETEX CUDA_SAFE_CALL(cudaUnbindTexture( nodetex ) ); CUDA_SAFE_CALL(cudaFreeArray((cudaArray*)(ref->d_node_tex_array))); #else CUDA_SAFE_CALL(cudaFree(ref->d_node_tex_array)); #endif ref->d_node_tex_array = NULL; // Unload childrentex if (ref->d_children_tex_array) { #if CHILDTEX CUDA_SAFE_CALL(cudaUnbindTexture( childrentex ) ); CUDA_SAFE_CALL(cudaFreeArray((cudaArray*)(ref->d_children_tex_array))); #else CUDA_SAFE_CALL(cudaFree(ref->d_children_tex_array)); #endif } ref->d_children_tex_array = NULL; #else #if NODETEX CUDA_SAFE_CALL(cudaUnbindTexture( nodetex ) ); #endif CUDA_SAFE_CALL(cudaFree(ref->d_node_tex_array)); ref->d_node_tex_array = NULL; // Unload childrentex if (ref->d_children_tex_array) { #if CHILDTEX CUDA_SAFE_CALL(cudaUnbindTexture( childrentex ) ); #endif CUDA_SAFE_CALL(cudaFree(ref->d_children_tex_array)); ref->d_children_tex_array = NULL; } #endif #if TREE_ACCESS_HISTOGRAM CUDA_SAFE_CALL(cudaFree(ref->d_node_hist)); ref->d_node_hist = NULL; CUDA_SAFE_CALL(cudaFree(ref->d_child_hist)); ref->d_child_hist = NULL; #endif } //loads a tree and text for [begin, end) in the reference void loadReference(MatchContext* ctx) { Reference* ref = ctx->ref; ref->bytes_on_board = 0; loadReferenceTexture(ctx); if (!ctx->on_cpu) { char * toboardtimer = createTimer(); startTimer(toboardtimer); // node texels ref->bytes_on_board += ref->tex_width * ref->tex_node_height * (sizeof(PixelOfNode)); // children texels ref->bytes_on_board += ref->tex_width * ref->tex_children_height * sizeof(PixelOfChildren); #if REORDER_TREE #if NODETEX cudaChannelFormatDesc nodeTextureDesc = cudaCreateChannelDesc(32, 32, 32, 32, cudaChannelFormatKindUnsigned); CUDA_MALLOC_ARRAY( (cudaArray**)(&ref->d_node_tex_array), &nodeTextureDesc, ref->tex_width, ref->tex_node_height ); CUDA_SAFE_CALL( cudaMemcpyToArray( (cudaArray*)(ref->d_node_tex_array), 0, 0, ref->h_node_tex_array, ref->tex_width * ref->tex_node_height * sizeof(PixelOfNode), cudaMemcpyHostToDevice)); nodetex.addressMode[0] = cudaAddressModeClamp; nodetex.addressMode[1] = cudaAddressModeClamp; nodetex.filterMode = cudaFilterModePoint; nodetex.normalized = false; // access with normalized texture coordinates BIND_TEX_ARRAY(nodetex, (cudaArray*)ref->d_node_tex_array, nodeTextureDesc); #else size_t nodepitch; CUDA_MALLOC_PITCH( (void**)(&ref->d_node_tex_array), &nodepitch, ref->tex_width * sizeof(PixelOfNode), ref->tex_node_height ); CUDA_SAFE_CALL( cudaMemcpy2D((ref->d_node_tex_array), nodepitch, ref->h_node_tex_array, nodepitch, ref->tex_width * sizeof(PixelOfNode), ref->tex_node_height, cudaMemcpyHostToDevice)); #endif if (ref->tex_children_height) { #if CHILDTEX cudaChannelFormatDesc childrenTextureDesc = cudaCreateChannelDesc(32, 32, 32, 32, cudaChannelFormatKindUnsigned); CUDA_MALLOC_ARRAY( (cudaArray**)(&ref->d_children_tex_array), &childrenTextureDesc, ref->tex_width, ref->tex_children_height ); CUDA_SAFE_CALL( cudaMemcpyToArray((cudaArray*)(ref->d_children_tex_array), 0, 0, ref->h_children_tex_array, ref->tex_width * ref->tex_children_height * sizeof(PixelOfChildren), cudaMemcpyHostToDevice)); childrentex.addressMode[0] = cudaAddressModeClamp; childrentex.addressMode[1] = cudaAddressModeClamp; childrentex.filterMode = cudaFilterModePoint; childrentex.normalized = false; // access with normalized texture coordinates BIND_TEX_ARRAY(childrentex, (cudaArray*)(ref->d_children_tex_array), childrenTextureDesc); #else size_t childpitch; CUDA_MALLOC_PITCH( (void**)(&ref->d_children_tex_array), &childpitch, ref->tex_width * sizeof(PixelOfChildren), ref->tex_children_height ); CUDA_SAFE_CALL( cudaMemcpy2D((ref->d_children_tex_array), childpitch, ref->h_children_tex_array, childpitch, ref->tex_width * sizeof(PixelOfNode), ref->tex_children_height, cudaMemcpyHostToDevice)); #endif } #if TREE_ACCESS_HISTOGRAM // node hist ref->bytes_on_board += ref->tex_width * ref->tex_node_height * sizeof(int); CUDA_MALLOC( (void**)(&ref->d_node_hist), ref->tex_width * ref->tex_node_height *sizeof(int)); CUDA_SAFE_CALL( cudaMemset((ref->d_node_hist),0, ref->tex_width * ref->tex_node_height * sizeof(int))); if (ref->tex_children_height) { // children hist ref->bytes_on_board += ref->tex_width * ref->tex_children_height * sizeof(int); fprintf(stderr, "after child_hist ref->bytes_on_board:%ld\n", ref->bytes_on_board); CUDA_MALLOC( (void**)(&ref->d_child_hist), ref->tex_width * ref->tex_children_height *sizeof(int)); CUDA_SAFE_CALL( cudaMemset((ref->d_child_hist),0, ref->tex_width * ref->tex_children_height * sizeof(int))); } #endif #else // NO TREE REORDERING // Node tex, 1-dimensional CUDA_MALLOC( (void**)(&ref->d_node_tex_array), ref->tex_node_height * sizeof(PixelOfNode)); CUDA_SAFE_CALL( cudaMemcpy( (ref->d_node_tex_array), ref->h_node_tex_array, ref->tex_node_height * sizeof(PixelOfNode), cudaMemcpyHostToDevice)); #if NODETEX cudaChannelFormatDesc nodeTextureDesc = cudaCreateChannelDesc(32, 32, 32, 32, cudaChannelFormatKindUnsigned); nodetex.addressMode[0] = cudaAddressModeClamp; nodetex.filterMode = cudaFilterModePoint; nodetex.normalized = false; // access with normalized texture coordinates BIND_TEX(0, nodetex, (void*)(ref->d_node_tex_array), nodeTextureDesc, ref->tex_node_height* sizeof(PixelOfNode)); #endif if (ref->tex_children_height) { // Child tex, 1-dimensional CUDA_MALLOC( (void**)(&ref->d_children_tex_array), ref->tex_children_height * sizeof(PixelOfChildren)); CUDA_SAFE_CALL( cudaMemcpy( (ref->d_children_tex_array), ref->h_children_tex_array, ref->tex_children_height * sizeof(PixelOfChildren), cudaMemcpyHostToDevice)); #if CHILDTEX cudaChannelFormatDesc childTextureDesc = cudaCreateChannelDesc(32, 32, 32, 32, cudaChannelFormatKindUnsigned); childrentex.addressMode[0] = cudaAddressModeClamp; childrentex.filterMode = cudaFilterModePoint; childrentex.normalized = false; // access with normalized texture coordinates BIND_TEX(0, childrentex, (void*)(ref->d_children_tex_array), childTextureDesc, ref->tex_children_height* sizeof(PixelOfChildren)); #endif } #if TREE_ACCESS_HISTOGRAM ref->bytes_on_board += ref->tex_node_height * sizeof(int); CUDA_MALLOC( (void**)(&ref->d_node_hist), ref->tex_node_height *sizeof(int)); CUDA_SAFE_CALL( cudaMemset((ref->d_node_hist),0, ref->tex_node_height * sizeof(int))); if (ref->tex_children_height) { ref->bytes_on_board += ref->tex_children_height * sizeof(int); CUDA_MALLOC( (void**)(&ref->d_child_hist), ref->tex_children_height *sizeof(int)); CUDA_SAFE_CALL( cudaMemset((ref->d_child_hist),0, ref->tex_children_height * sizeof(int))); } #endif #endif #if TWO_LEVEL_NODE_TREE PixelOfNode node_buf[NODE_THRESH]; memset(node_buf, 0, sizeof(node_buf)); for (unsigned int i = 0; (i < NODE_THRESH) && (i < ref->num_nodes); ++i) { TextureAddress myaddress(id2addr(i)); #if MERGETEX && REORDER_TREE myaddress.x &= 0x7FF; myaddress.x *= 2; int loc = myaddress.x + myaddress.y*MAX_TEXTURE_DIMENSION; node_buf[i]= ((PixelOfNode*)(ref->h_node_tex_array))[loc]; #elif REORDER_TREE int loc = myaddress.x + myaddress.y*MAX_TEXTURE_DIMENSION; node_buf[i]= ((PixelOfNode*)(ref->h_node_tex_array))[loc]; #elif MERGETEX node_buf[i]= ((PixelOfNode*)(ref->h_node_tex_array))[myaddress.x*2]; #else node_buf[i]= ((PixelOfNode*)(ref->h_node_tex_array))[myaddress.x]; #endif } CUDA_SAFE_CALL( cudaMemcpyToSymbol(node_tree_top, node_buf, sizeof(node_buf))); #endif #if TWO_LEVEL_CHILD_TREE PixelOfChildren child_buf[CHILD_THRESH]; memset(child_buf, 0, sizeof(child_buf)); for (unsigned int i = 0; (i < CHILD_THRESH) && (i < ref->num_nodes); ++i) { TextureAddress myaddress(id2addr(i)); #if MERGETEX && REORDER_TREE myaddress.x &= 0x7FF; myaddress.x *= 2; int loc = myaddress.x + myaddress.y*MAX_TEXTURE_DIMENSION; child_buf[i]= ((PixelOfChildren*)(ref->h_node_tex_array))[loc+1]; #elif REORDER_TREE int loc = myaddress.x + myaddress.y*MAX_TEXTURE_DIMENSION; child_buf[i]= ((PixelOfChildren*)(ref->h_children))[loc]; #elif MERGETEX child_buf[i]= ((PixelOfChildren*)(ref->h_node_tex_array))[myaddress.x*2+1]; #else child_buf[i]= ((PixelOfChildren*)(ref->h_children_tex_array))[myaddress.x]; #endif } CUDA_SAFE_CALL( cudaMemcpyToSymbol(child_tree_top, child_buf, sizeof(child_buf))); #endif stopTimer(toboardtimer); ctx->statistics.t_tree_to_board += getTimerValue(toboardtimer); deleteTimer(toboardtimer); fprintf(stderr, "done\n"); } else { ref->d_node_tex_array = NULL; ref->d_children_tex_array = NULL; } } void dumpQueryBlockInfo(QuerySet* queries) { fprintf(stderr, "\tProcessing queries %s to %s\n", queries->h_names[0], queries->h_names[queries->count-1]); } void loadQueries(MatchContext* ctx) { QuerySet* queries = ctx->queries; queries->bytes_on_board = 0; unsigned int numQueries = queries->count; if (!ctx->on_cpu) { fprintf(stderr, "Allocating device memory for queries... "); char* toboardtimer = createTimer(); startTimer(toboardtimer); dumpQueryBlockInfo(queries); CUDA_MALLOC((void**) &queries->d_tex_array, queries->texlen); \ queries->bytes_on_board += queries->texlen; CUDA_SAFE_CALL( cudaMemcpy((void*) queries->d_tex_array, queries->h_tex_array + queries->h_addrs_tex_array[0], queries->texlen, cudaMemcpyHostToDevice)); #if QRYTEX qrytex.addressMode[0] = cudaAddressModeClamp; qrytex.filterMode = cudaFilterModePoint; qrytex.normalized = false; // access with normalized texture coordinates cudaChannelFormatDesc qryDesc = cudaCreateChannelDesc(8,0,0,0, cudaChannelFormatKindUnsigned); BIND_TEX(0, qrytex, (void*)(queries->d_tex_array), qryDesc, queries->texlen); #endif CUDA_MALLOC((void**) &queries->d_addrs_tex_array, numQueries * sizeof(int)); queries->bytes_on_board += numQueries * sizeof(int); CUDA_SAFE_CALL( cudaMemcpy((void*) queries->d_addrs_tex_array, queries->h_addrs_tex_array, numQueries * sizeof(int), cudaMemcpyHostToDevice)); CUDA_MALLOC((void**) &queries->d_lengths_array, numQueries * sizeof(int)); queries->bytes_on_board += numQueries * sizeof(int); CUDA_SAFE_CALL( cudaMemcpy((void*) queries->d_lengths_array, queries->h_lengths_array, numQueries * sizeof(int), cudaMemcpyHostToDevice)); stopTimer(toboardtimer); ctx->statistics.t_queries_to_board += getTimerValue(toboardtimer); deleteTimer(toboardtimer); fprintf(stderr, "\tallocated %ld bytes\n", queries->bytes_on_board); } else { queries->d_addrs_tex_array = NULL; queries->d_tex_array = NULL; queries->d_lengths_array = NULL; fprintf(stderr, " allocated %ld bytes\n", 2 * numQueries*sizeof(int) + queries->texlen); } } void unloadQueries(MatchContext* ctx) { QuerySet* queries = ctx->queries; CUDA_SAFE_CALL(cudaFree(queries->d_tex_array)); queries->d_tex_array = NULL; CUDA_SAFE_CALL(cudaFree(queries->d_addrs_tex_array)); queries->d_addrs_tex_array = NULL; CUDA_SAFE_CALL(cudaFree(queries->d_lengths_array)); queries->d_lengths_array = NULL; queries->bytes_on_board = 0; } // Computes the location of the first MatchCoord for a given query. NOTE: // Do NOT use this function if COALESCED_QUERIES == 1 inline int match_coord_addrs(int qryid, int qry_addrs, int match_length) { return qry_addrs - qryid * (match_length + 1); } // Construct the offset table for a set of queries. This table will be used // by the printing functions, and if COALESCED_QUERIES == 1, by the matching // kernel. void buildCoordOffsetArray(MatchContext* ctx, int** h_coord_offset_array, unsigned int* num_coords) { int numCoords = 0; int match_length = ctx->min_match_length; int numQueries = ctx->queries->count; int* lengths = ctx->queries->h_lengths_array; int* coord_offsets = (int*)calloc(numQueries, sizeof(int)); #if COALESCED_QUERIES for (unsigned int i = 0; i < numQueries; i += WARP_SIZE) { // Every query in this warp will need at least this many coords int max_num_coords = 0; for (unsigned int j = 0; j < WARP_SIZE && (i + j) < numQueries; ++j) { int num_coords = lengths[i + j] - match_length + 1; if ( max_num_coords < num_coords) max_num_coords = num_coords; } unsigned int block_size = max_num_coords * WARP_SIZE; for (unsigned int j = 0; j < WARP_SIZE && (i + j) < numQueries; ++j) { ctx->results.h_coord_tex_array[i + j] = numCoords + j; } numCoords += block_size; } #else for (unsigned int i = 0; i < numQueries; ++i) { int qryoffset = ctx->queries->h_addrs_tex_array[i]; coord_offsets[i] = match_coord_addrs(i, qryoffset, match_length); } if (numQueries > 0) { unsigned int last_qry = numQueries - 1; unsigned int last_qry_len = lengths[last_qry] - match_length + 1; numCoords = coord_offsets[last_qry] + last_qry_len; fprintf(stderr, "Need %d match coords for this result array\n", numCoords); } #endif *num_coords = numCoords; *h_coord_offset_array = coord_offsets; } void loadResultBuffer(MatchContext* ctx) { unsigned int numQueries = ctx->queries->count; assert (numQueries); char* offsettimer = createTimer(); startTimer(offsettimer); buildCoordOffsetArray(ctx, &(ctx->results.h_coord_tex_array), &(ctx->results.numCoords)); stopTimer(offsettimer); ctx->statistics.t_build_coord_offsets += getTimerValue(offsettimer); deleteTimer(offsettimer); unsigned int numCoords = ctx->results.numCoords; fprintf(stderr, "Allocating result array for %d queries (%d bytes) ...", numQueries, numCoords*sizeof(MatchCoord) ); size_t boardFreeMemory = 0; size_t total_mem = 0; boardMemory(&boardFreeMemory, &total_mem); fprintf(stderr,"board free memory: %u total memory: %u\n", boardFreeMemory, total_mem); ctx->results.h_match_coords = (MatchCoord*) calloc( numCoords, sizeof(MatchCoord)); if (ctx->results.h_match_coords == NULL) { trap_dbg(); exit(EXIT_FAILURE); } if (!ctx->on_cpu) { char* toboardtimer = createTimer(); startTimer(toboardtimer); ctx->results.bytes_on_board = 0; CUDA_MALLOC( (void**) &ctx->results.d_match_coords, numCoords * sizeof(MatchCoord)); ctx->results.bytes_on_board += numCoords * sizeof(MatchCoord); CUDA_SAFE_CALL( cudaMemset( (void*)ctx->results.d_match_coords, 0, numCoords * sizeof(MatchCoord))); #if COALESCED_QUERIES CUDA_MALLOC((void**) &ctx->results.d_coord_tex_array, numQueries * sizeof(int)); ctx->results.bytes_on_board += numQueries * sizeof(int); CUDA_SAFE_CALL( cudaMemcpy((void*) ctx->results.d_coord_tex_array, ctx->results.h_coord_tex_array, numQueries * sizeof(int), cudaMemcpyHostToDevice)); #endif stopTimer(toboardtimer); ctx->statistics.t_match_coords_to_board += getTimerValue(toboardtimer); deleteTimer(toboardtimer); } else { ctx->results.d_match_coords = NULL; } fprintf(stderr, "done\n"); } void unloadResultBuffer(MatchContext* ctx) { CUDA_SAFE_CALL(cudaFree(ctx->results.d_match_coords)); ctx->results.d_match_coords = NULL; ctx->results.bytes_on_board = 0; #if COALESCED_QUERIES CUDA_SAFE_CALL(cudaFree(ctx->results.d_match_coords)); #endif } void transferResultsFromDevice(MatchContext* ctx) { if (!ctx->on_cpu) { char* fromboardtimer = createTimer(); startTimer(fromboardtimer); CUDA_SAFE_CALL(cudaMemcpy(ctx->results.h_match_coords, ctx->results.d_match_coords, ctx->results.numCoords * sizeof(MatchCoord), cudaMemcpyDeviceToHost) ); #if TREE_ACCESS_HISTOGRAM CUDA_SAFE_CALL(cudaMemcpy(ctx->ref->h_node_hist, ctx->ref->d_node_hist, ctx->ref->tex_node_height * ctx->ref->tex_width * sizeof(int), cudaMemcpyDeviceToHost) ); CUDA_SAFE_CALL(cudaMemcpy(ctx->ref->h_child_hist, ctx->ref->d_child_hist, ctx->ref->tex_children_height * ctx->ref->tex_width * sizeof(int), cudaMemcpyDeviceToHost) ); if (ctx->statistics.node_hist_size < ctx->ref->tex_width * ctx->ref->tex_node_height) { int* temp = (int*)calloc(ctx->ref->tex_width * ctx->ref->tex_node_height, sizeof(int)); if (ctx->statistics.node_hist_size) memcpy(temp, ctx->statistics.node_hist, ctx->statistics.node_hist_size * sizeof(int)); ctx->statistics.node_hist = temp; ctx->statistics.node_hist_size = ctx->ref->tex_width * ctx->ref->tex_node_height; } if (ctx->statistics.child_hist_size < ctx->ref->tex_width * ctx->ref->tex_children_height) { temp = (int*)calloc(ctx->ref->tex_width * ctx->ref->tex_children_height, sizeof(int)); if (ctx->statistics.hist_size) memcpy(temp, ctx->statistics.child_hist, ctx->statistics.hist_size * sizeof(int)); ctx->statistics.child_hist = temp; ctx->statistics.child_hist_size = ctx->ref->tex_width * ctx->ref->tex_children_height; } for (unsigned int i = 0; i < ctx->statistics.node_hist_size; ++i) { ctx->statistics.node_hist[i] += ctx->ref->h_node_hist[i]; } for (unsigned int i = 0; i < ctx->statistics.child_hist_size; ++i) { ctx->statistics.child_hist[i] += ctx->ref->h_child_hist[i]; } #endif stopTimer(fromboardtimer); ctx->statistics.t_match_coords_from_board += getTimerValue(fromboardtimer); deleteTimer(fromboardtimer); } } int flushOutput(); int addToBuffer(char* string); char numbuffer[32]; MatchCoord* coordForQueryChar(MatchContext* ctx, unsigned int qryid, unsigned int qrychar) { MatchResults* results = &(ctx->results); MatchCoord* coords = results->h_match_coords; #if COALESCED_QUERIES return coords + results->h_coord_tex_array[qryid] + qrychar * WARP_SIZE; #else return coords + results->h_coord_tex_array[qryid] + qrychar; #endif } void coordsToPrintBuffers(MatchContext* ctx, ReferencePage* page, MatchInfo** matches, Alignment** alignments, unsigned int mem_avail, unsigned int* coord_idx, unsigned int* match_idx, unsigned int* align_idx, unsigned int* nextqry, unsigned int* nextqrychar) { unsigned int numQueries = ctx->queries->count; int match_length = ctx->min_match_length; unsigned int cidx = *coord_idx; unsigned int midx = 0; unsigned int numCoords = ctx->results.numCoords; unsigned int numMatches = 0; unsigned int numAlignments = 0; int DEBUG = 0; if (DEBUG && cidx == 0) { for (int j = 0; j < numCoords; ++j) { MatchCoord * coord = ctx->results.h_match_coords+j; if (coord->node.data > 0 && !(coord->edge_match_length & FRMASK)) { //fprintf(stdout, "node: %d\n", // coord->node); fprintf(stdout, "node: %d leaves:%d\n", coord->node.data, lookupNumLeaves(page, coord->node)); } } exit(0); } // How much can we fit into mem_avail? for (int j = cidx; j < numCoords; ++j) { MatchCoord* coord = ctx->results.h_match_coords + j; int queryAlignments = 0; int queryMatches = 0; if (coord->node.data > 0 && !(coord->edge_match_length & FRMASK)) { int numLeaves = lookupNumLeaves(page, coord->node); queryAlignments += numLeaves; queryMatches++; } int allMatches = numMatches + queryMatches; int allAlignments = numAlignments + queryAlignments; int neededSize = allMatches * sizeof(MatchInfo) + allAlignments * sizeof(Alignment); if (neededSize > mem_avail || (allMatches/BLOCKSIZE) >= MAX_GRID_DIMENSION) { // adding this match won't fit on the board break; } ++cidx; numMatches = allMatches; numAlignments = allAlignments; } MatchInfo* M = (MatchInfo*)calloc(numMatches, sizeof(MatchInfo)); unsigned int alignmentOffset = 0; int qry = *nextqry; int qrychar = *nextqrychar; bool set_full = false; while (qry < numQueries) { // h_lengths_array doesn't count the 'q' at the beginning of each query int qlen = ctx->queries->h_lengths_array[qry] + 1 - match_length; while (qrychar < qlen) { if (midx >= numMatches) { set_full = true; break; } MatchCoord* coord = coordForQueryChar(ctx, qry, qrychar); if (coord->node.data > 0 && !(coord->edge_match_length & FRMASK)) { MatchInfo m; m.resultsoffset = alignmentOffset; m.qrystartpos = qrychar; m.matchnode = coord->node; m.edgematch = coord->edge_match_length; m.numLeaves = lookupNumLeaves(page, m.matchnode); m.queryid = qry; alignmentOffset += m.numLeaves; M[midx++] = m; } ++qrychar; } if (set_full) break; ++qry; qrychar = 0; } *coord_idx = cidx; *match_idx = midx; *align_idx = alignmentOffset; *matches = M; *nextqry = qry; *nextqrychar = qrychar; fprintf(stderr, "Allocing %d bytes of host memory for %d alignments\n", alignmentOffset * sizeof(Alignment), numAlignments); *alignments = (struct Alignment *) calloc(alignmentOffset, sizeof(Alignment)); //cudaMallocHost((void**)alignments, numAlignments * sizeof(Alignment)); } void runPrintKernel(MatchContext* ctx, ReferencePage* page, MatchInfo* h_matches, unsigned int numMatches, Alignment* alignments, unsigned int numAlignments) { MatchInfo* d_matches; size_t matchesSize = numMatches * sizeof(MatchInfo); CUDA_MALLOC((void**) &d_matches, matchesSize); struct Alignment * d_alignments; size_t alignmentSize = numAlignments * sizeof(Alignment); CUDA_MALLOC((void**) &d_alignments, alignmentSize); CUDA_SAFE_CALL(cudaMemset((void*) d_alignments, 0, alignmentSize)); char* atimer = createTimer(); startTimer(atimer); // Copy matches to card fprintf(stderr, "prepared %d matches %d alignments\n", numMatches, numAlignments); fprintf(stderr, "Copying %d bytes to host memory for %d alignments\n", numAlignments * sizeof(Alignment), numAlignments); int DEBUG = 0; if (DEBUG) { for (int i = 0; i < numMatches; i++) { printf("m[%d]:\t%d\t%d\t%d\t%d\t%d\t%d\n", i, h_matches[i].resultsoffset, h_matches[i].queryid, h_matches[i].matchnode.data, h_matches[i].numLeaves, h_matches[i].edgematch, h_matches[i].qrystartpos); } exit(0); } CUDA_SAFE_CALL(cudaMemcpy(d_matches, h_matches, matchesSize, cudaMemcpyHostToDevice)); stopTimer(atimer); float mtime = getTimerValue(atimer); // Launch the kernel int blocksize = (numMatches > BLOCKSIZE) ? BLOCKSIZE : numMatches; dim3 dimBlock(blocksize, 1, 1); dim3 dimGrid(ceil(numMatches / (float)BLOCKSIZE), 1, 1); fprintf(stderr, " Calling print kernel... "); allocateReadWriteSets( dimGrid, dimBlock, 0 ); printKernel <<< dimGrid, dimBlock, 0 >>> (d_matches, numMatches, d_alignments, #if COALESCED_QUERIES ctx->results.d_coord_tex_array, #endif #if !QRYTEX #if COALESCED_QUERIES (int*) #endif ctx->queries->d_tex_array, #endif #if !NODETEX (_PixelOfNode*)ctx->ref->d_node_tex_array, #endif #if !CHILDTEX (_PixelOfChildren*)ctx->ref->d_children_tex_array, #endif ctx->queries->d_addrs_tex_array, ctx->queries->d_lengths_array, page->begin, page->end, page->shadow_left, page->shadow_right, ctx->min_match_length #if TREE_ACCESS_HISTOGRAM , ctx->ref->d_node_hist, ctx->ref->d_child_hist #endif ); freeReadWriteSets( dimGrid, dimBlock, 0 ); cudaThreadSynchronize(); cudaError_t err = cudaGetLastError(); if ( cudaSuccess != err) { fprintf(stderr, "Kernel execution failed: %s.\n", cudaGetErrorString(err)); exit(EXIT_FAILURE); } startTimer(atimer); // Copy the results back to the host CUDA_SAFE_CALL(cudaMemcpy((void*)alignments, (void*)d_alignments, alignmentSize, cudaMemcpyDeviceToHost)); cudaThreadSynchronize(); stopTimer(atimer); float atime = getTimerValue(atimer); fprintf(stderr, "memcpy time= %f\n", atime + mtime); deleteTimer(atimer); // Cleanup CUDA_SAFE_CALL(cudaFree(d_alignments)); CUDA_SAFE_CALL(cudaFree(d_matches)); } // TODO: need reverse-complement printing support void runPrintOnCPU(MatchContext* ctx, ReferencePage* page, MatchInfo* h_matches, unsigned int numMatches, Alignment* alignments, unsigned int numAlignments) { unsigned int min_match_length = ctx->min_match_length; int* addrs = ctx->queries->h_addrs_tex_array; int* lengths = ctx->queries->h_lengths_array; char* qrychars = ctx->queries->h_tex_array; if (!numMatches) return; int qry = -1; unsigned int qrylen; for (int i = 0; i < numMatches; ++i) { MatchInfo& match = h_matches[i]; if (match.queryid != qry) { qry = match.queryid; qrylen = lengths[qry]; } if (!(match.edgematch & FRMASK)) { printAlignments(page, alignments + match.resultsoffset, #if COALESCED_QUERIES qrychars + sizeof(int) * addrs[qry], #else qrychars + addrs[qry], #endif qrylen, match.matchnode, match.qrystartpos, match.edgematch, min_match_length, 0, ctx->forwardcoordinates); } } } int addMatchToBuffer(int left_in_ref, int qrypos, int matchlen); void getExactAlignments(MatchContext * ctx, ReferencePage * page, bool on_cpu) { assert(!ctx->reverse && !ctx->forwardreverse); size_t boardFreeMemory; size_t total_mem; if (!on_cpu) { boardMemory(&boardFreeMemory, &total_mem); fprintf(stderr, "board free memory: %u total memory: %u\n", boardFreeMemory, total_mem); } else { boardFreeMemory = 256 * 1024 * 1024; total_mem = boardFreeMemory; } #ifdef __DEVICE_EMULATION__ boardFreeMemory = 512 * 1024 * 1024; #endif boardFreeMemory -= BREATHING_ROOM; fprintf(stderr, "board free memory: %u\n", boardFreeMemory); int rTotalMatches = 0; int rTotalAlignments = 0; int totalRounds = 0; unsigned int last_coord = ctx->results.numCoords; unsigned int next_coord = 0; unsigned int nextqry = 0; unsigned int nextqrychar = 0; int lastqry = -1; while (next_coord < last_coord) { // see how many queries will fit on the board totalRounds++; unsigned int numMatches = 0; unsigned int numAlignments = 0; MatchInfo* h_matches = NULL; Alignment* h_alignments = NULL; int coord_left = next_coord; char* btimer = createTimer(); startTimer(btimer); coordsToPrintBuffers(ctx, page, &h_matches, &h_alignments, boardFreeMemory, &next_coord, &numMatches, &numAlignments, &nextqry, &nextqrychar); stopTimer(btimer); float btime = getTimerValue(btimer); ctx->statistics.t_coords_to_buffers += btime; fprintf(stderr, "buffer prep time= %f\n", btime); deleteTimer(btimer); fprintf(stderr, "Round %d: Printing results for match coords [%d-%d) of %d using %d matches and %d alignments\n", totalRounds, coord_left, next_coord, last_coord, numMatches, numAlignments); if (numMatches == 0) continue; char buf[256]; //assert(qryend > qrystart); rTotalAlignments += numAlignments; rTotalMatches += numMatches; if (num_bind_tex_calls > 100) { cudaThreadExit(); num_bind_tex_calls = 0; loadReference(ctx); loadQueries(ctx); } char* ktimer = createTimer(); startTimer(ktimer); if (on_cpu) { runPrintOnCPU(ctx, page, h_matches, numMatches, h_alignments, numAlignments); } else { runPrintKernel(ctx, page, h_matches, numMatches, h_alignments, numAlignments); } stopTimer(ktimer); float ktime = getTimerValue(ktimer); ctx->statistics.t_print_kernel += ktime; fprintf(stderr, "print kernel time= %f\n", ktime); deleteTimer(ktimer); // char* stimer = createTimer(); // startTimer(stimer); // mapQueriesEndToEnd(ctx, // page, // h_matches, // numMatches, // h_alignments, // numAlignments); // // stopTimer(stimer); // // float stime = getTimerValue(stimer); // fprintf(stderr, "postprocess time= %f\n", stime); // deleteTimer(stimer); //flushOutput(); //Process the alignments char* otimer = createTimer(); startTimer(otimer); for (int m = 0; m < numMatches; m++) { int base = h_matches[m].resultsoffset; for (int i = 0; i < h_matches[m].numLeaves; i++) { // See if there are any more left maximal alignments for this match if (h_alignments[base+i].left_in_ref == 0) { break; } if (h_matches[m].queryid != lastqry) { lastqry = h_matches[m].queryid; addToBuffer("> "); addToBuffer(*(ctx->queries->h_names + lastqry)); addToBuffer("\n"); } sprintf(buf, "%d\t%d\t%d\n", h_alignments[base+i].left_in_ref, h_matches[m].qrystartpos + 1, h_alignments[base+i].matchlen); addToBuffer(buf); // addMatchToBuffer(h_alignments[base+i].left_in_ref, // h_matches[m].qrystartpos + 1, // h_alignments[base+i].matchlen); } } flushOutput(); stopTimer(otimer); ctx->statistics.t_results_to_disk += getTimerValue(otimer); deleteTimer(otimer); free(h_matches); free(h_alignments); //cudaFreeHost((void*)h_alignments); } free(ctx->results.h_coord_tex_array); free(ctx->results.h_match_coords); ctx->results.h_coord_tex_array = NULL; ctx->results.h_match_coords = NULL; fprintf(stderr, "Finished processing %d matches and %d potential alignments in %d rounds\n", rTotalMatches, rTotalAlignments, totalRounds); } int getQueryBlock(MatchContext* ctx, size_t device_mem_avail) { QuerySet* queries = ctx->queries; char * queryTex = NULL; int* queryAddrs = NULL; int* queryLengths = NULL; unsigned int numQueries; unsigned int num_match_coords; size_t queryLen; char** names; fprintf(stderr, "Loading query block... "); char* queryreadtimer = createTimer(); startTimer(queryreadtimer); getQueriesTexture(queries->qfile, &queryTex, &queryLen, &queryAddrs, &names, &queryLengths, &numQueries, &num_match_coords, device_mem_avail, ctx->min_match_length, ctx->reverse || ctx->forwardreverse); stopTimer(queryreadtimer); ctx->statistics.t_queries_from_disk += getTimerValue(queryreadtimer); deleteTimer(queryreadtimer); queries->h_tex_array = queryTex; queries->count = numQueries; queries->h_addrs_tex_array = queryAddrs; queries->texlen = queryLen; queries->h_names = names; queries->h_lengths_array = queryLengths; ctx->results.numCoords = num_match_coords; fprintf(stderr, "done.\n"); return numQueries; } void destroyQueryBlock(QuerySet* queries) { free(queries->h_tex_array); queries->h_tex_array = NULL; for (int i = 0; i < queries->count; ++i) free(queries->h_names[i]); free(queries->h_names); queries->count = 0; queries->texlen = 0; free(queries->h_addrs_tex_array); queries->h_addrs_tex_array = NULL; free(queries->h_lengths_array); queries->h_lengths_array = NULL; } void resetStats(Statistics* stats) { stats->t_end_to_end = 0.0; stats->t_match_kernel = 0.0; stats->t_print_kernel = 0.0; stats->t_queries_to_board = 0.0; stats->t_match_coords_to_board = 0.0; stats->t_match_coords_from_board = 0.0; stats->t_tree_to_board = 0.0; stats->t_ref_str_to_board = 0.0; stats->t_queries_from_disk = 0.0; stats->t_ref_from_disk = 0.0; stats->t_results_to_disk = 0.0; stats->t_tree_construction = 0.0; stats->t_tree_reorder = 0.0; stats->t_tree_flatten = 0.0; stats->t_reorder_ref_str = 0.0; stats->t_build_coord_offsets = 0.0; stats->t_coords_to_buffers = 0.0; stats->bp_avg_query_length = 0.0; #if TREE_ACCESS_HISTOGRAM if (stats->node_hist_size) { free(stats->node_hist); stats->node_hist = NULL; stats->node_hist_size = 0; } if (stats->child_hist_size) { free(stats->child_hist); stats->child_hist = NULL; stats->child_hist_size = 0; } #endif } void writeStatisticsFile(Statistics* stats, char* stats_filename, char* node_hist_filename = NULL, char* child_hist_filename = NULL) { if (stats_filename) { FILE* f = fopen(stats_filename, "w"); if (!f) { fprintf(stderr, "WARNING: could not open %s for writing\n", stats_filename); } else { fprintf(f, "Q"); fprintf(f, ",R"); fprintf(f, ",T"); fprintf(f, ",m"); fprintf(f, ",r"); fprintf(f, ",t"); fprintf(f, ",n"); fprintf(f, ",Total"); fprintf(f, ",Match kernel"); fprintf(f, ",Print Kernel"); fprintf(f, ",Queries to board"); fprintf(f, ",Match coords to board"); fprintf(f, ",Match coords from board"); fprintf(f, ",Tree to board"); fprintf(f, ",Ref str to board"); fprintf(f, ",Queries from disk"); fprintf(f, ",Ref from disk"); fprintf(f, ",Output to disk"); fprintf(f, ",Tree construction"); fprintf(f, ",Tree reorder"); fprintf(f, ",Tree flatten"); fprintf(f, ",Ref reorder"); fprintf(f, ",Build coord table"); fprintf(f, ",Coords to buffers"); fprintf(f, ",Avg qry length"); fprintf(f, "\n"); fprintf(f, "%d", QRYTEX); fprintf(f, ",%d", REFTEX); fprintf(f, ",%d", TREETEX); fprintf(f, ",%d", MERGETEX); fprintf(f, ",%d", REORDER_REF); fprintf(f, ",%d", REORDER_TREE); fprintf(f, ",%d", RENUMBER_TREE); fprintf(f, ",%f", stats->t_end_to_end); fprintf(f, ",%f", stats->t_match_kernel); fprintf(f, ",%f", stats->t_print_kernel); fprintf(f, ",%f", stats->t_queries_to_board); fprintf(f, ",%f", stats->t_match_coords_to_board); fprintf(f, ",%f", stats->t_match_coords_from_board); fprintf(f, ",%f", stats->t_tree_to_board); fprintf(f, ",%f", stats->t_ref_str_to_board); fprintf(f, ",%f", stats->t_queries_from_disk); fprintf(f, ",%f", stats->t_ref_from_disk); fprintf(f, ",%f", stats->t_results_to_disk); fprintf(f, ",%f", stats->t_tree_construction); fprintf(f, ",%f", stats->t_tree_reorder); fprintf(f, ",%f", stats->t_tree_flatten); fprintf(f, ",%f", stats->t_reorder_ref_str); fprintf(f, ",%f", stats->t_build_coord_offsets); fprintf(f, ",%f", stats->t_coords_to_buffers); fprintf(f, ",%f", stats->bp_avg_query_length); fprintf(f,"\n"); fclose(f); } } #if TREE_ACCESS_HISTOGRAM if (node_hist_filename) { FILE* f = fopen(node_hist_filename, "w"); if (!f) { fprintf(stderr, "WARNING: could not open %s for writing\n", node_hist_filename); } else { for (unsigned int i = 0; i < ctx->statistics.node_hist_size; ++i) fprintf(f, "%d\t%d\n", i, ctx->statistics.node_hist[i]); } } if (child_hist_filename) { FILE* f = fopen(child_hist_filename, "w"); if (!f) { fprintf(stderr, "WARNING: could not open %s for writing\n", child_hist_filename); } else { for (unsigned int i = 0; i < ctx->statistics.child_hist_size; ++i) fprintf(f, "%d\t%d\n", i, ctx->statistics.child_hist[i]); } } float total_node_hits = 0; float tree_top_node_hits = 0; float total_child_hits = 0; float tree_top_child_hits = 0; for (unsigned int i = 0; i < ctx->statistics.node_hist_size; ++i) { total_node_hits +=ctx->statistics.node_hist[i]; if (i < 256) { tree_top_node_hits += ctx->statistics.node_hist[i]; } } for (unsigned int i = 0; i < ctx->statistics.child_hist_size; ++i) { total_child_hits +=ctx->statistics.child_hist[i]; if (i < 256) { tree_top_child_hits += ctx->statistics.child_hist[i]; } } fprintf(stderr, "Tree top node hits (%d/%d) = %f percent\n",(int)tree_top_node_hits, (int)total_node_hits, tree_top_node_hits /total_node_hits); fprintf(stderr, "Tree top child hits (%d/%d) = %f percent\n",(int)tree_top_child_hits, (int)total_child_hits, tree_top_child_hits /total_child_hits); #endif } void matchOnCPU(MatchContext* ctx, bool doRC) { //TODO: CPU is matching is disabled. if (doRC) { // Match the reverse complement of the queries to the ref computeGold(&ctx->results, ctx->ref->str, ctx->queries->h_tex_array, ctx->queries->h_addrs_tex_array, ctx->queries->h_lengths_array, (PixelOfNode*)(ctx->ref->h_node_tex_array), (PixelOfChildren*)(ctx->ref->h_children_tex_array), ctx->queries->count, ctx->min_match_length, REVERSE); } else { computeGold(&ctx->results, ctx->ref->str, ctx->queries->h_tex_array, ctx->queries->h_addrs_tex_array, ctx->queries->h_lengths_array, (PixelOfNode*)(ctx->ref->h_node_tex_array), (PixelOfChildren*)(ctx->ref->h_children_tex_array), ctx->queries->count, ctx->min_match_length, FORWARD); } } void matchOnGPU(MatchContext* ctx, bool doRC) { int numQueries = ctx->queries->count; int blocksize = (numQueries > BLOCKSIZE) ? BLOCKSIZE : numQueries; dim3 dimBlock(blocksize, 1, 1); dim3 dimGrid(ceil(numQueries / (float)BLOCKSIZE), 1, 1); // Match the reverse complement of the queries to the ref if (doRC) { //TODO: GPU RC is disabled allocateReadWriteSets( dimGrid, dimBlock, 0 ); mummergpuRCKernel <<< dimGrid, dimBlock, 0 >>> (ctx->results.d_match_coords, ctx->queries->d_tex_array, ctx->queries->d_addrs_tex_array, ctx->queries->d_lengths_array, numQueries, ctx->min_match_length); freeReadWriteSets( dimGrid, dimBlock, 0 ); } else { allocateReadWriteSets( dimGrid, dimBlock, 0 ); mummergpuKernel <<< dimGrid, dimBlock, 0 >>> (ctx->results.d_match_coords, #if COALESCED_QUERIES ctx->results.d_coord_tex_array, #endif #if !QRYTEX #if COALESCED_QUERIES (int*) #endif ctx->queries->d_tex_array, #endif #if !NODETEX (_PixelOfNode*)(ctx->ref->d_node_tex_array), #endif #if !CHILDTEX (_PixelOfChildren*)(ctx->ref->d_children_tex_array), #endif #if !REFTEX (char*)ctx->ref->d_ref_array, #endif ctx->queries->d_addrs_tex_array, ctx->queries->d_lengths_array, numQueries, ctx->min_match_length #if TREE_ACCESS_HISTOGRAM , ctx->ref->d_node_hist, ctx->ref->d_child_hist #endif ); freeReadWriteSets( dimGrid, dimBlock, 0 ); } // check if kernel execution generated an error cudaError_t err = cudaGetLastError(); if ( cudaSuccess != err) { fprintf(stderr, "Kernel execution failed: %s.\n", cudaGetErrorString(err)); exit(EXIT_FAILURE); } } void getMatchResults(MatchContext* ctx, unsigned int page_num) { transferResultsFromDevice(ctx); } void matchQueryBlockToReferencePage(MatchContext* ctx, ReferencePage* page, bool reverse_complement) { char* ktimer = createTimer(); fprintf(stderr, "Memory footprint is:\n\tqueries: %d\n\tref: %d\n\tresults: %d\n", ctx->queries->bytes_on_board, ctx->ref->bytes_on_board, ctx->results.bytes_on_board); startTimer(ktimer); if (ctx->on_cpu) { matchOnCPU(ctx, reverse_complement); } else { matchOnGPU(ctx, reverse_complement); cudaThreadSynchronize(); } stopTimer(ktimer); float ktime = getTimerValue(ktimer); ctx->statistics.t_match_kernel += ktime; fprintf(stderr, "match kernel time= %f\n", ktime); deleteTimer(ktimer); getMatchResults(ctx, page->id); unloadResultBuffer(ctx); } int matchSubset(MatchContext* ctx, ReferencePage* page) { loadQueries(ctx); fprintf(stderr, "Matching queries %s - %s against ref coords %d - %d\n", ctx->queries->h_names[0], ctx->queries->h_names[ctx->queries->count - 1], page->begin, page->end); loadResultBuffer(ctx); // TODO: renable RC support by calling this twice /w reverse/fwdreverse // idiom. matchQueryBlockToReferencePage(ctx, page, false); if (USE_PRINT_KERNEL && !ctx->on_cpu) { getExactAlignments(ctx, page, false); } else { getExactAlignments(ctx, page, true); } flushOutput(); unloadQueries(ctx); return 0; } int getFreeDeviceMemory(bool on_cpu) { size_t free_mem = 0; size_t total_mem = 0; // We have to 'prime' CUDA by making an allocation here. cuMemGetInfo // will return zeroes until we do a malloc. int * p = NULL; CUDA_SAFE_CALL(cudaMalloc((void**)&p, sizeof(int))); CUDA_SAFE_CALL(cudaFree(p)); if (!on_cpu) { boardMemory(&free_mem, &total_mem); fprintf(stderr, "board free memory: %u total memory: %u\n", free_mem, total_mem); } else { total_mem = free_mem = 804585472; // pretend we are on a 8800 GTX } return free_mem; } int matchQueriesToReferencePage(MatchContext* ctx, ReferencePage* page) { fprintf(stderr, "Beginning reference page %p\n", page); int free_mem = getFreeDeviceMemory(ctx->on_cpu); int available_mem = free_mem - page->ref.bytes_on_board - BREATHING_ROOM; ctx->ref = &(page->ref); loadReference(ctx); while (getQueryBlock(ctx, available_mem)) { matchSubset(ctx, page); ctx->statistics.bp_avg_query_length = ctx->queries->texlen / (float)(ctx->queries->count) - 2; destroyQueryBlock(ctx->queries); if (num_bind_tex_calls > 100) { cudaThreadExit(); num_bind_tex_calls = 0; loadReference(ctx); } } unloadReferenceString(ctx->ref); unloadReferenceTree(ctx); lseek(ctx->queries->qfile, 0, SEEK_SET); return 0; } void initReferencePages( MatchContext* ctx , int* num_pages, ReferencePage** pages_out) { unsigned int bases_in_ref = ctx->full_ref_len - 3; unsigned int page_size = BASES_PER_TREE_PAGE < bases_in_ref ? BASES_PER_TREE_PAGE : bases_in_ref; unsigned int num_reference_pages = ceil((bases_in_ref + 0.0) / page_size); fprintf(stderr, "Stream will use %d pages for %d bases, page size = %d\n", num_reference_pages, bases_in_ref, page_size); unsigned int page_overlap = MAX_QUERY_LEN + 1; ReferencePage* pages = (ReferencePage*) calloc(num_reference_pages, sizeof(ReferencePage)); pages[0].begin = 1; pages[0].end = pages[0].begin + page_size + ceil(page_overlap / 2.0) + 1; //the 1 is for the 's' at the beginning pages[0].shadow_left = -1; pages[0].id = 0; for (int i = 1; i < num_reference_pages - 1; ++i) { pages[i].begin = pages[i - 1].end - page_overlap; pages[i].end = pages[i].begin + page_size + page_overlap; pages[i - 1].shadow_right = pages[i].begin; pages[i].shadow_left = pages[i-1].end; pages[i].id = i; } if (num_reference_pages > 1) { int last_page = num_reference_pages - 1; pages[last_page].begin = pages[last_page - 1].end - page_overlap; pages[last_page].end = ctx->full_ref_len - 1; pages[last_page - 1].shadow_right = pages[last_page].begin; pages[last_page].shadow_right = -1; pages[last_page].shadow_left = pages[last_page - 1].end; pages[last_page].id = last_page; } *pages_out = pages; *num_pages = num_reference_pages; } int streamReferenceAgainstQueries(MatchContext* ctx) { int num_reference_pages = 0; ReferencePage* pages = NULL; initReferencePages(ctx, &num_reference_pages, &pages); buildReferenceTexture(&(pages[0].ref), ctx->full_ref, pages[0].begin, pages[0].end, ctx->min_match_length, ctx->dotfilename, ctx->texfilename, &(ctx->statistics)); matchQueriesToReferencePage(ctx, &pages[0]); destroyReference(&(pages[0].ref)); for (int i = 1; i < num_reference_pages - 1; ++i) { buildReferenceTexture(&(pages[i].ref), ctx->full_ref, pages[i].begin, pages[i].end, ctx->min_match_length, NULL, NULL, &(ctx->statistics)); matchQueriesToReferencePage(ctx, &pages[i]); destroyReference(&(pages[i].ref)); } if (num_reference_pages > 1) { int last_page = num_reference_pages - 1; buildReferenceTexture(&(pages[last_page].ref), ctx->full_ref, pages[last_page].begin, pages[last_page].end, ctx->min_match_length, NULL, NULL, &(ctx->statistics)); matchQueriesToReferencePage(ctx, &pages[last_page]); destroyReference(&(pages[last_page].ref)); } free(pages); return 0; } extern "C" int matchQueries(MatchContext* ctx) { assert(sizeof(struct PixelOfNode) == sizeof(uint4)); assert(sizeof(struct PixelOfChildren) == sizeof(uint4)); #if TREE_ACCESS_HISTOGRAM ctx->statistics.node_hist_size = 0; ctx->statistics.child_hist_size = 0; #endif resetStats(&(ctx->statistics)); char* ttimer = createTimer(); startTimer(ttimer); int ret; fprintf(stderr, "Streaming reference pages against all queries\n"); ret = streamReferenceAgainstQueries(ctx); stopTimer(ttimer); ctx->statistics.t_end_to_end += getTimerValue(ttimer); deleteTimer(ttimer); writeStatisticsFile(&(ctx->statistics), ctx->stats_file, "node_hist.out", "child_hist.out"); return ret; }
cbe2e0b125693b3cba5b5956bfeba5f90e3134d1.hip
// !!! This is a file automatically generated by hipify!!! #include <cassert> #include <hip/hip_runtime.h> #include <hip/hip_fp16.h> #include <hip/hip_runtime.h> #include <iostream> #include <thrust/device_ptr.h> #include <thrust/functional.h> #include <thrust/transform.h> #include <vector> #include "NvInferPlugin.h" #include "basicOps.cuh" dim3 cudaGridSize(uint n) { uint k = (n - 1) /BLOCK + 1; uint x = k ; uint y = 1 ; if (x > 65535 ) { x = ceil(sqrt(x)); y = (n - 1 )/(x*BLOCK) + 1; } dim3 d = {x,y,1} ; return d; } std::ostream &operator<<(std::ostream &output, const half &value) { output << static_cast<float>(value); return output; } namespace onnx2trt { // a convenient interface to print device memory template<typename T> int devicePrint(const T *deviceValues, int length, const std::string &info, int step) { T *values = (T *)malloc(sizeof(T) * length); hipMemcpy(values, deviceValues, sizeof(T) * length, hipMemcpyDeviceToHost); std::cout << info << ": "; for (int i = 0; i < length; i++) { if (step != 1) { if (!(i % step)) { std::cout << std::endl; } } std::cout << values[i] << " "; } std::cout << std::endl; free(values); return 0; } template int devicePrint<float>(const float *, int, const std::string &, int); template int devicePrint<half>(const half *, int, const std::string &, int); template int devicePrint<int>(const int *, int, const std::string &, int); template<typename T> int hostPrint(const T *values, int length, const std::string &info, int step) { std::cout << info << ": "; for (int i = 0; i < length; i++) { if (step != 1) { if (!(i % step)) { std::cout << std::endl; } } std::cout << values[i] << " "; } std::cout << std::endl; return 0; } template int hostPrint<float>(const float *, int, const std::string &, int); template int hostPrint<half>(const half *, int, const std::string &, int); template int hostPrint<int>(const int *, int, const std::string &, int); // namespace ops { // // refer to detectron2.layers.ops.mask_head_slice // // perform slice operation on prediction masks with given class indices // // inputs: // // logits, (num_det, class_num, mask_height, mask_width) // // pred, (num_det,) // // outputs: // // output, (num_det, mask_height, mask_width) // template<typename T, typename I> // __global__ void sliceKernel(const int64_t nThreads, const T *logits, const I *pred, T *output, // int numMasks, int numClasses, int MaskHeight, int MaskWidth) { // CUDA_1D_KERNEL_LOOP(index, nThreads) { // int pw = index % MaskWidth; // int ph = (index / MaskWidth) % MaskHeight; // int n = index / MaskWidth / MaskHeight; // int classIndex = (int)pred[n]; // const T *offset = logits + // (((int64_t)n * (int64_t)numClasses + classIndex) * (int64_t)MaskHeight + ph) * (int64_t)MaskWidth + pw; // output[index] = *offset; // } // } // hipError_t maskHeadSlice(hipStream_t stream, const void *logits, const void *pred, void *output, // int numMasks, int numClasses, int MaskHeight, int MaskWidth, nvinfer1::DataType type) { // auto outputSize = (int64_t)numMasks * (int64_t)MaskHeight * (int64_t)MaskWidth; // #ifdef VERBOSE // std::vector<std::string> types { // "kFLOAT", "kHALF", "kINT8", "kINT32" // }; // LOGGER << "type: " << types[int(type)] << std::endl; // std::cout << "output: " << numMasks << ", 1, " << MaskHeight << ", " << MaskWidth << std::endl; // std::cout << "blockNum: " << outputSize << ", " << onnx2trt::ATenCeilDiv(outputSize, 256L) << ", " << 4096L << std::endl; // #endif // dim3 grid(::min(onnx2trt::ATenCeilDiv(outputSize, (int64_t)256), (int64_t)4096)); // dim3 block(256); // assert(type == nvinfer1::DataType::kFLOAT || type == nvinfer1::DataType::kHALF); // if (type == nvinfer1::DataType::kFLOAT) { // sliceKernel<<<grid, block, 0, stream>>>( // outputSize, static_cast<const float *>(logits), static_cast<const int *>(pred), // static_cast<float *>(output), numMasks, numClasses, MaskHeight, MaskWidth); // } else { // sliceKernel<<<grid, block, 0, stream>>>( // outputSize, static_cast<const half *>(logits), static_cast<const int *>(pred), // static_cast<half *>(output), numMasks, numClasses, MaskHeight, MaskWidth); // } // return hipGetLastError(); // } // template<typename T> // struct toInt { // const T epsilon_; // explicit toInt(T epsilon) : epsilon_(epsilon) {} // __device__ int operator()(const T &input) const { // return (int)(input + epsilon_); // } // }; // template<typename D, typename T> // struct to { // __device__ T operator()(const D &input) const { // return static_cast<T>(input); // } // }; // hipError_t cudaCast(hipStream_t stream, const void *input, void *output, // nvinfer1::Dims dims, nvinfer1::DataType type, nvinfer1::DataType castType) { // #ifdef VERBOSE // std::vector<std::string> types { // "kFLOAT", "kHALF", "kINT8", "kINT32" // }; // LOGGER << "type: " << types[int(type)] << ", castType: " << types[int(castType)] // << ", dimension: " << dims.nbDims << ", shape ("; // #endif // int64_t outputSize = 1; // for (int i = 0; i < dims.nbDims; i++) { // outputSize *= (int64_t)dims.d[i]; // #ifdef VERBOSE // std::cout << dims.d[i] << ", "; // #endif // } // #ifdef VERBOSE // std::cout << ")" << std::endl; // LOGGER << "blockNum: " << outputSize << " " << onnx2trt::ATenCeilDiv(outputSize, 256L) << " " << 4096L << std::endl; // #endif // if (type == castType) { // return hipErrorInvalidValue; // } // assert(type == nvinfer1::DataType::kFLOAT || type == nvinfer1::DataType::kHALF); // switch (castType) { // case nvinfer1::DataType::kINT8: // return hipErrorInvalidValue; // case nvinfer1::DataType::kINT32: // if (type == nvinfer1::DataType::kFLOAT) { // thrust::device_ptr<const float> input_ptr = thrust::device_pointer_cast(static_cast<const float *>(input)); // thrust::device_ptr<int> output_ptr = thrust::device_pointer_cast(static_cast<int *>(output)); // thrust::transform(input_ptr, input_ptr + outputSize, output_ptr, toInt<float>(0.1)); // } else { // thrust::device_ptr<const half> input_ptr = thrust::device_pointer_cast(static_cast<const half *>(input)); // thrust::device_ptr<int> output_ptr = thrust::device_pointer_cast(static_cast<int *>(output)); // thrust::transform(input_ptr, input_ptr + outputSize, output_ptr, toInt<half>(0.1)); // } // break; // case nvinfer1::DataType::kHALF: // if (type == nvinfer1::DataType::kFLOAT) { // thrust::device_ptr<const float> input_ptr = thrust::device_pointer_cast(static_cast<const float *>(input)); // thrust::device_ptr<half> output_ptr = thrust::device_pointer_cast(static_cast<half *>(output)); // thrust::transform(input_ptr, input_ptr + outputSize, output_ptr, to<float, half>()); // } // case nvinfer1::DataType::kFLOAT: // if (type == nvinfer1::DataType::kHALF) { // thrust::device_ptr<const half> input_ptr = thrust::device_pointer_cast(static_cast<const half *>(input)); // thrust::device_ptr<float> output_ptr = thrust::device_pointer_cast(static_cast<float *>(output)); // thrust::transform(input_ptr, input_ptr + outputSize, output_ptr, to<half, float>()); // } // } // return hipGetLastError(); // } // struct modulus { // const int denominator; // modulus(int _denominator) : denominator(_denominator) {} // __device__ int operator()(const int &input) const { // return input % denominator; // } // }; // hipError_t fmod(hipStream_t stream, const int *inputs, int *outputs, int length, int denominator) { // thrust::device_ptr<const int> inputs_ptr = thrust::device_pointer_cast(inputs); // thrust::device_ptr<int> outputs_ptr = thrust::device_pointer_cast(outputs); // thrust::transform(inputs_ptr, inputs_ptr + length, outputs_ptr, modulus(denominator)); // return hipGetLastError(); // } // } }
cbe2e0b125693b3cba5b5956bfeba5f90e3134d1.cu
#include <cassert> #include <cuda.h> #include <cuda_fp16.h> #include <cuda_runtime.h> #include <iostream> #include <thrust/device_ptr.h> #include <thrust/functional.h> #include <thrust/transform.h> #include <vector> #include "NvInferPlugin.h" #include "basicOps.cuh" dim3 cudaGridSize(uint n) { uint k = (n - 1) /BLOCK + 1; uint x = k ; uint y = 1 ; if (x > 65535 ) { x = ceil(sqrt(x)); y = (n - 1 )/(x*BLOCK) + 1; } dim3 d = {x,y,1} ; return d; } std::ostream &operator<<(std::ostream &output, const half &value) { output << static_cast<float>(value); return output; } namespace onnx2trt { // a convenient interface to print device memory template<typename T> int devicePrint(const T *deviceValues, int length, const std::string &info, int step) { T *values = (T *)malloc(sizeof(T) * length); cudaMemcpy(values, deviceValues, sizeof(T) * length, cudaMemcpyDeviceToHost); std::cout << info << ": "; for (int i = 0; i < length; i++) { if (step != 1) { if (!(i % step)) { std::cout << std::endl; } } std::cout << values[i] << " "; } std::cout << std::endl; free(values); return 0; } template int devicePrint<float>(const float *, int, const std::string &, int); template int devicePrint<half>(const half *, int, const std::string &, int); template int devicePrint<int>(const int *, int, const std::string &, int); template<typename T> int hostPrint(const T *values, int length, const std::string &info, int step) { std::cout << info << ": "; for (int i = 0; i < length; i++) { if (step != 1) { if (!(i % step)) { std::cout << std::endl; } } std::cout << values[i] << " "; } std::cout << std::endl; return 0; } template int hostPrint<float>(const float *, int, const std::string &, int); template int hostPrint<half>(const half *, int, const std::string &, int); template int hostPrint<int>(const int *, int, const std::string &, int); // namespace ops { // // refer to detectron2.layers.ops.mask_head_slice // // perform slice operation on prediction masks with given class indices // // inputs: // // logits, (num_det, class_num, mask_height, mask_width) // // pred, (num_det,) // // outputs: // // output, (num_det, mask_height, mask_width) // template<typename T, typename I> // __global__ void sliceKernel(const int64_t nThreads, const T *logits, const I *pred, T *output, // int numMasks, int numClasses, int MaskHeight, int MaskWidth) { // CUDA_1D_KERNEL_LOOP(index, nThreads) { // int pw = index % MaskWidth; // int ph = (index / MaskWidth) % MaskHeight; // int n = index / MaskWidth / MaskHeight; // int classIndex = (int)pred[n]; // const T *offset = logits + // (((int64_t)n * (int64_t)numClasses + classIndex) * (int64_t)MaskHeight + ph) * (int64_t)MaskWidth + pw; // output[index] = *offset; // } // } // cudaError_t maskHeadSlice(cudaStream_t stream, const void *logits, const void *pred, void *output, // int numMasks, int numClasses, int MaskHeight, int MaskWidth, nvinfer1::DataType type) { // auto outputSize = (int64_t)numMasks * (int64_t)MaskHeight * (int64_t)MaskWidth; // #ifdef VERBOSE // std::vector<std::string> types { // "kFLOAT", "kHALF", "kINT8", "kINT32" // }; // LOGGER << "type: " << types[int(type)] << std::endl; // std::cout << "output: " << numMasks << ", 1, " << MaskHeight << ", " << MaskWidth << std::endl; // std::cout << "blockNum: " << outputSize << ", " << onnx2trt::ATenCeilDiv(outputSize, 256L) << ", " << 4096L << std::endl; // #endif // dim3 grid(std::min(onnx2trt::ATenCeilDiv(outputSize, (int64_t)256), (int64_t)4096)); // dim3 block(256); // assert(type == nvinfer1::DataType::kFLOAT || type == nvinfer1::DataType::kHALF); // if (type == nvinfer1::DataType::kFLOAT) { // sliceKernel<<<grid, block, 0, stream>>>( // outputSize, static_cast<const float *>(logits), static_cast<const int *>(pred), // static_cast<float *>(output), numMasks, numClasses, MaskHeight, MaskWidth); // } else { // sliceKernel<<<grid, block, 0, stream>>>( // outputSize, static_cast<const half *>(logits), static_cast<const int *>(pred), // static_cast<half *>(output), numMasks, numClasses, MaskHeight, MaskWidth); // } // return cudaGetLastError(); // } // template<typename T> // struct toInt { // const T epsilon_; // explicit toInt(T epsilon) : epsilon_(epsilon) {} // __device__ int operator()(const T &input) const { // return (int)(input + epsilon_); // } // }; // template<typename D, typename T> // struct to { // __device__ T operator()(const D &input) const { // return static_cast<T>(input); // } // }; // cudaError_t cudaCast(cudaStream_t stream, const void *input, void *output, // nvinfer1::Dims dims, nvinfer1::DataType type, nvinfer1::DataType castType) { // #ifdef VERBOSE // std::vector<std::string> types { // "kFLOAT", "kHALF", "kINT8", "kINT32" // }; // LOGGER << "type: " << types[int(type)] << ", castType: " << types[int(castType)] // << ", dimension: " << dims.nbDims << ", shape ("; // #endif // int64_t outputSize = 1; // for (int i = 0; i < dims.nbDims; i++) { // outputSize *= (int64_t)dims.d[i]; // #ifdef VERBOSE // std::cout << dims.d[i] << ", "; // #endif // } // #ifdef VERBOSE // std::cout << ")" << std::endl; // LOGGER << "blockNum: " << outputSize << " " << onnx2trt::ATenCeilDiv(outputSize, 256L) << " " << 4096L << std::endl; // #endif // if (type == castType) { // return cudaErrorInvalidValue; // } // assert(type == nvinfer1::DataType::kFLOAT || type == nvinfer1::DataType::kHALF); // switch (castType) { // case nvinfer1::DataType::kINT8: // return cudaErrorInvalidValue; // case nvinfer1::DataType::kINT32: // if (type == nvinfer1::DataType::kFLOAT) { // thrust::device_ptr<const float> input_ptr = thrust::device_pointer_cast(static_cast<const float *>(input)); // thrust::device_ptr<int> output_ptr = thrust::device_pointer_cast(static_cast<int *>(output)); // thrust::transform(input_ptr, input_ptr + outputSize, output_ptr, toInt<float>(0.1)); // } else { // thrust::device_ptr<const half> input_ptr = thrust::device_pointer_cast(static_cast<const half *>(input)); // thrust::device_ptr<int> output_ptr = thrust::device_pointer_cast(static_cast<int *>(output)); // thrust::transform(input_ptr, input_ptr + outputSize, output_ptr, toInt<half>(0.1)); // } // break; // case nvinfer1::DataType::kHALF: // if (type == nvinfer1::DataType::kFLOAT) { // thrust::device_ptr<const float> input_ptr = thrust::device_pointer_cast(static_cast<const float *>(input)); // thrust::device_ptr<half> output_ptr = thrust::device_pointer_cast(static_cast<half *>(output)); // thrust::transform(input_ptr, input_ptr + outputSize, output_ptr, to<float, half>()); // } // case nvinfer1::DataType::kFLOAT: // if (type == nvinfer1::DataType::kHALF) { // thrust::device_ptr<const half> input_ptr = thrust::device_pointer_cast(static_cast<const half *>(input)); // thrust::device_ptr<float> output_ptr = thrust::device_pointer_cast(static_cast<float *>(output)); // thrust::transform(input_ptr, input_ptr + outputSize, output_ptr, to<half, float>()); // } // } // return cudaGetLastError(); // } // struct modulus { // const int denominator; // modulus(int _denominator) : denominator(_denominator) {} // __device__ int operator()(const int &input) const { // return input % denominator; // } // }; // cudaError_t fmod(cudaStream_t stream, const int *inputs, int *outputs, int length, int denominator) { // thrust::device_ptr<const int> inputs_ptr = thrust::device_pointer_cast(inputs); // thrust::device_ptr<int> outputs_ptr = thrust::device_pointer_cast(outputs); // thrust::transform(inputs_ptr, inputs_ptr + length, outputs_ptr, modulus(denominator)); // return cudaGetLastError(); // } // } }
584a643bebe35cba6408fcc637a61383f8c0e6a4.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author [email protected] // @author Yurii Shyrma ([email protected]) // #include <op_boilerplate.h> #include <loops/reduce_bool.h> #include <loops/legacy_ops.h> #include <helpers/DebugHelper.h> #include <types/types.h> using namespace simdOps; //////////////////////////////////////////////////////////////////////// template <typename X, typename Z, typename OpType> __global__ void simpleReduce(void *x, Nd4jLong *xShapeInfo, void *extraParams, void *z, Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, void *reductionBuffer, Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets) { functions::reduce::ReduceBoolFunction<X,Z>::template transformCudaXD<OpType>(x, xShapeInfo, extraParams, z, zShapeInfo, dimension, dimensionLength, reductionBuffer, tadOnlyShapeInfo, tadOffsets); } //////////////////////////////////////////////////////////////////////// template <typename X, typename Z, typename OpType> __global__ void simpleScalar(void *x, Nd4jLong *xShapeInfo, void *extraParams, void *z, Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, void *reductionBuffer, Nd4jLong *tadOnlyShapeInfo) { functions::reduce::ReduceBoolFunction<X, Z>::template execScalarCuda<OpType>(x, xShapeInfo, extraParams, z, zShapeInfo, reductionBuffer, tadOnlyShapeInfo); } namespace functions { namespace reduce { //////////////////////////////////////////////////////////////////////// template <typename X, typename Z> template <typename OpType> __device__ void ReduceBoolFunction<X,Z>::aggregatePartials(void *vsPartials, Nd4jLong tid, Nd4jLong numItems, void *vextraParams) { // start the shared memory loop on the next power of 2 less // than the block size. If block size is not a power of 2, // accumulate the intermediate sums in the remainder range. auto sPartials = reinterpret_cast<Z*>(vsPartials); auto extraParams = reinterpret_cast<X*>(vextraParams); Nd4jLong floorPow2 = numItems; if (floorPow2 & (floorPow2 - 1)) { while (floorPow2 & (floorPow2 - 1)) floorPow2 &= floorPow2 - 1; if (tid >= floorPow2) sPartials[tid - floorPow2] = OpType::update(sPartials[tid - floorPow2], sPartials[tid], extraParams); __syncthreads(); } for (Nd4jLong activeThreads = floorPow2 >> 1; activeThreads; activeThreads >>= 1) { if (tid < activeThreads && tid + activeThreads < numItems) sPartials[tid] = OpType::update(sPartials[tid], sPartials[tid + activeThreads], extraParams); __syncthreads(); } } //////////////////////////////////////////////////////////////////////// template <typename X, typename Z> template <typename OpType> __device__ void ReduceBoolFunction<X,Z>::transformCudaXD( void *vx, Nd4jLong *xShapeInfo, void *vextraParams, void *vz, Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, void *vreductionBuffer, Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets) { auto x = reinterpret_cast<X*>(vx); auto z = reinterpret_cast<Z*>(vz); auto extraParams = reinterpret_cast<X*>(vextraParams); auto reductionBuffer = reinterpret_cast<Z*>(vreductionBuffer); //shared memory space for storing intermediate results __shared__ Z* sPartials; __shared__ int tadLength; __shared__ int numTads; __shared__ bool isPlainOutput; if (threadIdx.x == 0) { extern __shared__ unsigned char shmem[]; sPartials = reinterpret_cast<Z*>(shmem); tadLength = shape::length(tadOnlyShapeInfo); //tadLength(xShapeInfo, dimension, dimensionLength); numTads = shape::length(xShapeInfo) / tadLength; isPlainOutput = shape::order(zShapeInfo) == 'c' && shape::elementWiseStride(zShapeInfo) == 1; } __syncthreads(); for (int r = blockIdx.x; r < numTads; r += gridDim.x) { Nd4jLong tadOffsetForBlock = tadOffsets[r]; sPartials[threadIdx.x] = OpType::startingValue(x + tadOffsetForBlock); for (int i = threadIdx.x; i < tadLength; i += blockDim.x) { auto xOffset = tadOffsetForBlock + shape::getIndexOffset(i, tadOnlyShapeInfo, tadLength); sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::op(x[xOffset], extraParams), extraParams); } __syncthreads(); // aggregate. do NOT reduce for elements > tadLength aggregatePartials<OpType>(sPartials, threadIdx.x, nd4j::math::nd4j_min<int>(blockDim.x, tadLength), extraParams); __syncthreads(); if (threadIdx.x == 0) z[isPlainOutput ? r : shape::getIndexOffset(r, zShapeInfo, numTads)] = OpType::postProcess(sPartials[threadIdx.x], tadLength, extraParams); } } //////////////////////////////////////////////////////////////////////// template <typename X, typename Z> template <typename OpType> __device__ void ReduceBoolFunction<X,Z>::execScalarCuda(void *vx, Nd4jLong *xShapeInfo, void *vextraParams, void *vz, Nd4jLong *zShapeInfo, void *vreductionBuffer, Nd4jLong *tadOnlyShapeInfo) { auto x = reinterpret_cast<X*>(vx); auto z = reinterpret_cast<Z*>(vz); auto extraParams = reinterpret_cast<X*>(vextraParams); auto reductionBuffer = reinterpret_cast<Z*>(vreductionBuffer); auto tid = blockDim.x * blockIdx.x + threadIdx.x; //shared memory space for storing intermediate results __shared__ Z* sPartials; __shared__ Nd4jLong xEws; __shared__ Nd4jLong len; if(threadIdx.x == 0) { extern __shared__ unsigned char shmem[]; sPartials = reinterpret_cast<Z*>(shmem); xEws = shape::elementWiseStride(xShapeInfo); len = shape::length(xShapeInfo); } __syncthreads(); sPartials[threadIdx.x] = OpType::startingValue(x); if (xEws > 0) for (int i = tid; i < len; i += (blockDim.x * gridDim.x)) sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::op(x[i * xEws], extraParams), extraParams); else for (int i = tid; i < len; i += blockDim.x * gridDim.x) sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::op(x[shape::getIndexOffset(i, xShapeInfo, len)], extraParams), extraParams); __syncthreads(); aggregatePartials<OpType>(sPartials, threadIdx.x, nd4j::math::nd4j_min<int>(blockDim.x, len), extraParams); __syncthreads(); if (gridDim.x > 1) { unsigned int *tc = (unsigned int *)reductionBuffer; __shared__ bool amLast; tid = threadIdx.x; if (threadIdx.x == 0) reductionBuffer[blockIdx.x] = sPartials[0];//this->postProcess(sPartials[0],len,extraParams); __threadfence(); __syncthreads(); if (threadIdx.x == 0) { unsigned int ticket = atomicInc(&tc[16384], gridDim.x); amLast = (ticket == gridDim.x - 1); } __syncthreads(); if (amLast) { tc[16384] = 0; sPartials[threadIdx.x] = OpType::startingValue(x); for (int i = threadIdx.x; i < gridDim.x; i += blockDim.x) sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], reductionBuffer[i], extraParams); __syncthreads(); aggregatePartials<OpType>(sPartials, threadIdx.x, nd4j::math::nd4j_min<int>(gridDim.x, blockDim.x), extraParams); __syncthreads(); if (threadIdx.x == 0) { z[0] = OpType::postProcess(sPartials[0], len, extraParams); } } } else { if (threadIdx.x == 0) { unsigned int *tc = (unsigned *)reductionBuffer; tc[16384] = 0; z[0] = OpType::postProcess(sPartials[0], len, extraParams); } } } //////////////////////////////////////////////////////////////////////// template <typename X, typename Z> template<typename OpType> __host__ void ReduceBoolFunction<X,Z>::intermediateXD(dim3 launchDims, hipStream_t *stream, void *x, Nd4jLong *xShape, void *extraParams, void *z, Nd4jLong *zShape, int *dimension, int dimensionLength, void *reductionPointer, Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets) { hipLaunchKernelGGL(( simpleReduce<X, Z, OpType>), dim3(launchDims.x), dim3(launchDims.y), launchDims.z, *stream, x, xShape, extraParams, z, zShape, dimension, dimensionLength, reductionPointer, tadShapeInfo, tadOffsets); nd4j::DebugHelper::checkErrorCode(stream, "reduceBoolDim(...) failed"); } //////////////////////////////////////////////////////////////////////// template <typename X, typename Z> template<typename OpType> __host__ void ReduceBoolFunction<X,Z>::intermediateScalar(dim3 launchDims, hipStream_t *stream, void *x, Nd4jLong *xShapeInfo, void *extraParams, void *z, Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, void *reductionBuffer, Nd4jLong *tadOnlyShapeInfo) { hipLaunchKernelGGL(( simpleScalar<X, Z, OpType>), dim3(launchDims.x), dim3(launchDims.y), launchDims.z, *stream, x, xShapeInfo, extraParams, z, zShapeInfo, dimension, dimensionLength, reductionBuffer, tadOnlyShapeInfo); nd4j::DebugHelper::checkErrorCode(stream, "reduceBoolScalar(...) failed"); } //////////////////////////////////////////////////////////////////////// template <typename X, typename Y> _CUDA_H void ReduceBoolFunction<X,Y>::execReduceScalar(dim3 launchDims, hipStream_t *stream, int opNum, void *x, Nd4jLong *xShapeInfo, void *extraParams, void *z, Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, void *reductionBuffer, Nd4jLong *tadOnlyShapeInfo) { DISPATCH_BY_OPNUM_TT(intermediateScalar, PARAMS(launchDims, stream, x, xShapeInfo, extraParams, z, zShapeInfo, dimension, dimensionLength, reductionBuffer, tadOnlyShapeInfo), OPS_A(REDUCE_BOOL_OPS)); nd4j::DebugHelper::checkErrorCode(stream, "execReduceScalarFloat(...) failed"); } //////////////////////////////////////////////////////////////////////// template <typename X, typename Y> _CUDA_H void ReduceBoolFunction<X,Y>::execReduceXD(dim3 launchDims, hipStream_t *stream, int opNum, int rank, void *x, Nd4jLong *xShape, void *extraParams, void *z, Nd4jLong *zShape, int *dimension, int dimensionLength, void *reductionPointer, Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets) { DISPATCH_BY_OPNUM_TT(intermediateXD, PARAMS(launchDims, stream, x, xShape, extraParams, z, zShape, dimension, dimensionLength, reductionPointer, tadShapeInfo, tadOffsets), OPS_A(REDUCE_BOOL_OPS)); DEBUG_KERNEL(stream, opNum); } //////////////////////////////////////////////////////////////////////// template <typename X> __device__ void initializeShared(X *extraParams, X **sPartials, int sMemSize) { int sPartialsLength = sMemSize / sizeof(X); X *sPartialsDeref = (X *) *sPartials; for (int i = 0; i < sPartialsLength; i++) sPartialsDeref[i] = extraParams[0]; } BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT ReduceBoolFunction, , LIBND4J_TYPES, BOOL_TYPES); } }
584a643bebe35cba6408fcc637a61383f8c0e6a4.cu
/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author [email protected] // @author Yurii Shyrma ([email protected]) // #include <op_boilerplate.h> #include <loops/reduce_bool.h> #include <loops/legacy_ops.h> #include <helpers/DebugHelper.h> #include <types/types.h> using namespace simdOps; //////////////////////////////////////////////////////////////////////// template <typename X, typename Z, typename OpType> __global__ void simpleReduce(void *x, Nd4jLong *xShapeInfo, void *extraParams, void *z, Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, void *reductionBuffer, Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets) { functions::reduce::ReduceBoolFunction<X,Z>::template transformCudaXD<OpType>(x, xShapeInfo, extraParams, z, zShapeInfo, dimension, dimensionLength, reductionBuffer, tadOnlyShapeInfo, tadOffsets); } //////////////////////////////////////////////////////////////////////// template <typename X, typename Z, typename OpType> __global__ void simpleScalar(void *x, Nd4jLong *xShapeInfo, void *extraParams, void *z, Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, void *reductionBuffer, Nd4jLong *tadOnlyShapeInfo) { functions::reduce::ReduceBoolFunction<X, Z>::template execScalarCuda<OpType>(x, xShapeInfo, extraParams, z, zShapeInfo, reductionBuffer, tadOnlyShapeInfo); } namespace functions { namespace reduce { //////////////////////////////////////////////////////////////////////// template <typename X, typename Z> template <typename OpType> __device__ void ReduceBoolFunction<X,Z>::aggregatePartials(void *vsPartials, Nd4jLong tid, Nd4jLong numItems, void *vextraParams) { // start the shared memory loop on the next power of 2 less // than the block size. If block size is not a power of 2, // accumulate the intermediate sums in the remainder range. auto sPartials = reinterpret_cast<Z*>(vsPartials); auto extraParams = reinterpret_cast<X*>(vextraParams); Nd4jLong floorPow2 = numItems; if (floorPow2 & (floorPow2 - 1)) { while (floorPow2 & (floorPow2 - 1)) floorPow2 &= floorPow2 - 1; if (tid >= floorPow2) sPartials[tid - floorPow2] = OpType::update(sPartials[tid - floorPow2], sPartials[tid], extraParams); __syncthreads(); } for (Nd4jLong activeThreads = floorPow2 >> 1; activeThreads; activeThreads >>= 1) { if (tid < activeThreads && tid + activeThreads < numItems) sPartials[tid] = OpType::update(sPartials[tid], sPartials[tid + activeThreads], extraParams); __syncthreads(); } } //////////////////////////////////////////////////////////////////////// template <typename X, typename Z> template <typename OpType> __device__ void ReduceBoolFunction<X,Z>::transformCudaXD( void *vx, Nd4jLong *xShapeInfo, void *vextraParams, void *vz, Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, void *vreductionBuffer, Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets) { auto x = reinterpret_cast<X*>(vx); auto z = reinterpret_cast<Z*>(vz); auto extraParams = reinterpret_cast<X*>(vextraParams); auto reductionBuffer = reinterpret_cast<Z*>(vreductionBuffer); //shared memory space for storing intermediate results __shared__ Z* sPartials; __shared__ int tadLength; __shared__ int numTads; __shared__ bool isPlainOutput; if (threadIdx.x == 0) { extern __shared__ unsigned char shmem[]; sPartials = reinterpret_cast<Z*>(shmem); tadLength = shape::length(tadOnlyShapeInfo); //tadLength(xShapeInfo, dimension, dimensionLength); numTads = shape::length(xShapeInfo) / tadLength; isPlainOutput = shape::order(zShapeInfo) == 'c' && shape::elementWiseStride(zShapeInfo) == 1; } __syncthreads(); for (int r = blockIdx.x; r < numTads; r += gridDim.x) { Nd4jLong tadOffsetForBlock = tadOffsets[r]; sPartials[threadIdx.x] = OpType::startingValue(x + tadOffsetForBlock); for (int i = threadIdx.x; i < tadLength; i += blockDim.x) { auto xOffset = tadOffsetForBlock + shape::getIndexOffset(i, tadOnlyShapeInfo, tadLength); sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::op(x[xOffset], extraParams), extraParams); } __syncthreads(); // aggregate. do NOT reduce for elements > tadLength aggregatePartials<OpType>(sPartials, threadIdx.x, nd4j::math::nd4j_min<int>(blockDim.x, tadLength), extraParams); __syncthreads(); if (threadIdx.x == 0) z[isPlainOutput ? r : shape::getIndexOffset(r, zShapeInfo, numTads)] = OpType::postProcess(sPartials[threadIdx.x], tadLength, extraParams); } } //////////////////////////////////////////////////////////////////////// template <typename X, typename Z> template <typename OpType> __device__ void ReduceBoolFunction<X,Z>::execScalarCuda(void *vx, Nd4jLong *xShapeInfo, void *vextraParams, void *vz, Nd4jLong *zShapeInfo, void *vreductionBuffer, Nd4jLong *tadOnlyShapeInfo) { auto x = reinterpret_cast<X*>(vx); auto z = reinterpret_cast<Z*>(vz); auto extraParams = reinterpret_cast<X*>(vextraParams); auto reductionBuffer = reinterpret_cast<Z*>(vreductionBuffer); auto tid = blockDim.x * blockIdx.x + threadIdx.x; //shared memory space for storing intermediate results __shared__ Z* sPartials; __shared__ Nd4jLong xEws; __shared__ Nd4jLong len; if(threadIdx.x == 0) { extern __shared__ unsigned char shmem[]; sPartials = reinterpret_cast<Z*>(shmem); xEws = shape::elementWiseStride(xShapeInfo); len = shape::length(xShapeInfo); } __syncthreads(); sPartials[threadIdx.x] = OpType::startingValue(x); if (xEws > 0) for (int i = tid; i < len; i += (blockDim.x * gridDim.x)) sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::op(x[i * xEws], extraParams), extraParams); else for (int i = tid; i < len; i += blockDim.x * gridDim.x) sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::op(x[shape::getIndexOffset(i, xShapeInfo, len)], extraParams), extraParams); __syncthreads(); aggregatePartials<OpType>(sPartials, threadIdx.x, nd4j::math::nd4j_min<int>(blockDim.x, len), extraParams); __syncthreads(); if (gridDim.x > 1) { unsigned int *tc = (unsigned int *)reductionBuffer; __shared__ bool amLast; tid = threadIdx.x; if (threadIdx.x == 0) reductionBuffer[blockIdx.x] = sPartials[0];//this->postProcess(sPartials[0],len,extraParams); __threadfence(); __syncthreads(); if (threadIdx.x == 0) { unsigned int ticket = atomicInc(&tc[16384], gridDim.x); amLast = (ticket == gridDim.x - 1); } __syncthreads(); if (amLast) { tc[16384] = 0; sPartials[threadIdx.x] = OpType::startingValue(x); for (int i = threadIdx.x; i < gridDim.x; i += blockDim.x) sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], reductionBuffer[i], extraParams); __syncthreads(); aggregatePartials<OpType>(sPartials, threadIdx.x, nd4j::math::nd4j_min<int>(gridDim.x, blockDim.x), extraParams); __syncthreads(); if (threadIdx.x == 0) { z[0] = OpType::postProcess(sPartials[0], len, extraParams); } } } else { if (threadIdx.x == 0) { unsigned int *tc = (unsigned *)reductionBuffer; tc[16384] = 0; z[0] = OpType::postProcess(sPartials[0], len, extraParams); } } } //////////////////////////////////////////////////////////////////////// template <typename X, typename Z> template<typename OpType> __host__ void ReduceBoolFunction<X,Z>::intermediateXD(dim3 launchDims, cudaStream_t *stream, void *x, Nd4jLong *xShape, void *extraParams, void *z, Nd4jLong *zShape, int *dimension, int dimensionLength, void *reductionPointer, Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets) { simpleReduce<X, Z, OpType><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(x, xShape, extraParams, z, zShape, dimension, dimensionLength, reductionPointer, tadShapeInfo, tadOffsets); nd4j::DebugHelper::checkErrorCode(stream, "reduceBoolDim(...) failed"); } //////////////////////////////////////////////////////////////////////// template <typename X, typename Z> template<typename OpType> __host__ void ReduceBoolFunction<X,Z>::intermediateScalar(dim3 launchDims, cudaStream_t *stream, void *x, Nd4jLong *xShapeInfo, void *extraParams, void *z, Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, void *reductionBuffer, Nd4jLong *tadOnlyShapeInfo) { simpleScalar<X, Z, OpType><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(x, xShapeInfo, extraParams, z, zShapeInfo, dimension, dimensionLength, reductionBuffer, tadOnlyShapeInfo); nd4j::DebugHelper::checkErrorCode(stream, "reduceBoolScalar(...) failed"); } //////////////////////////////////////////////////////////////////////// template <typename X, typename Y> _CUDA_H void ReduceBoolFunction<X,Y>::execReduceScalar(dim3 launchDims, cudaStream_t *stream, int opNum, void *x, Nd4jLong *xShapeInfo, void *extraParams, void *z, Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, void *reductionBuffer, Nd4jLong *tadOnlyShapeInfo) { DISPATCH_BY_OPNUM_TT(intermediateScalar, PARAMS(launchDims, stream, x, xShapeInfo, extraParams, z, zShapeInfo, dimension, dimensionLength, reductionBuffer, tadOnlyShapeInfo), OPS_A(REDUCE_BOOL_OPS)); nd4j::DebugHelper::checkErrorCode(stream, "execReduceScalarFloat(...) failed"); } //////////////////////////////////////////////////////////////////////// template <typename X, typename Y> _CUDA_H void ReduceBoolFunction<X,Y>::execReduceXD(dim3 launchDims, cudaStream_t *stream, int opNum, int rank, void *x, Nd4jLong *xShape, void *extraParams, void *z, Nd4jLong *zShape, int *dimension, int dimensionLength, void *reductionPointer, Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets) { DISPATCH_BY_OPNUM_TT(intermediateXD, PARAMS(launchDims, stream, x, xShape, extraParams, z, zShape, dimension, dimensionLength, reductionPointer, tadShapeInfo, tadOffsets), OPS_A(REDUCE_BOOL_OPS)); DEBUG_KERNEL(stream, opNum); } //////////////////////////////////////////////////////////////////////// template <typename X> __device__ void initializeShared(X *extraParams, X **sPartials, int sMemSize) { int sPartialsLength = sMemSize / sizeof(X); X *sPartialsDeref = (X *) *sPartials; for (int i = 0; i < sPartialsLength; i++) sPartialsDeref[i] = extraParams[0]; } BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT ReduceBoolFunction, , LIBND4J_TYPES, BOOL_TYPES); } }
ea5ab5b28cc8f203452849e867c91a9524f3b7a8.hip
// !!! This is a file automatically generated by hipify!!! #include <stdio.h> #include <string.h> #include <stdarg.h> #ifdef UNIX #include <stdint.h> #include <unistd.h> #endif #include "mex.h" // CUDA #include "hip/hip_runtime.h" #include "hip/hip_runtime.h" #include "rocblas.h" #include "GPUmat.hh" // static paramaters static int init = 0; static GPUmat *gm; #include "cudaCommon.h" //double **getGPUSourcePointers(const mxArray *prhs[], int num, int *retNumel); //double **makeGPUDestinationArrays(GPUtype src, mxArray *retArray[], int howmany); //double *makeDestinationArray(GPUtype src, mxArray *retArray[]); #define OP_SOUNDSPEED 1 #define OP_GASPRESSURE 2 #define OP_TOTALPRESSURE 3 #define OP_MAGPRESSURE 4 #define OP_TOTALANDSND 5 #define OP_WARRAYS 6 #define OP_RELAXINGFLUX 7 #define OP_SEPERATELRFLUX 8 __global__ void cukern_Soundspeed(double *rho, double *E, double *px, double *py, double *pz, double *bx, double *by, double *bz, double *dout, double gam, int n); __global__ void cukern_GasPressure(double *rho, double *E, double *px, double *py, double *pz, double *bx, double *by, double *bz, double *dout, double gam, int n); __global__ void cukern_TotalPressure(double *rho, double *E, double *px, double *py, double *pz, double *bx, double *by, double *bz, double *dout, double gam, int n); __global__ void cukern_MagneticPressure(double *bx, double *by, double *bz, double *dout, int n); __global__ void cukern_TotalAndSound(double *rho, double *E, double *px, double *py, double *pz, double *bx, double *by, double *bz, double *total, double *sound, double gam, int n); __global__ void cukern_CalcWArrays(double *rho, double *E, double *px, double *py, double *pz, double *bx, double *by, double *bz, double *P, double *Cfreeze, double *rhoW, double *enerW, double *pxW, double *pyW, double *pzW, int dir, int n); __global__ void cukern_SeperateLRFlux(double *arr, double *wArr, double *left, double *right, int n); __global__ void cukern_PerformFlux(double *array0, double *Cfreeze, double *fluxRa, double *fluxRb, double *fluxLa, double *fluxLb, double *out, double lambda, int n); #define BLOCKWIDTH 256 #define THREADLOOPS 1 void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { if (init == 0) { // Initialize function // mexLock(); // load GPUmat gm = gmGetGPUmat(); init = 1; } // Determine appropriate number of arguments for RHS if (nrhs < 2) mexErrMsgTxt("Require at least (computation type, input argument)"); int operation = (int)*mxGetPr(prhs[0]); dim3 blocksize; blocksize.x = BLOCKWIDTH; blocksize.y = blocksize.z = 1; int numel; dim3 gridsize; // Select the appropriate kernel to invoke if((operation == OP_SOUNDSPEED) || (operation == OP_GASPRESSURE) || (operation == OP_TOTALPRESSURE)) { if( (nlhs != 1) || (nrhs != 10)) { mexErrMsgTxt("Soundspeed operator is Cs = cudaMHDKernels(1, rho, E, px, py, pz, bx, by, bz, gamma)"); } double gam = *mxGetPr(prhs[9]); int arrdim[3]; double **srcs = getGPUSourcePointers(prhs, arrdim, 1, 8); numel = arrdim[0]*arrdim[1]*arrdim[2]; gridsize.x = numel / (BLOCKWIDTH*THREADLOOPS); if(gridsize.x * (BLOCKWIDTH*THREADLOOPS) < numel) gridsize.x++; gridsize.y = gridsize.z =1; double **destPtr = makeGPUDestinationArrays(gm->gputype.getGPUtype(prhs[1]), plhs, 1, gm); //printf("%i %i %i %i %i %i\n", blocksize.x, blocksize.y, blocksize.z, gridsize.x, gridsize.y, gridsize.z); switch(operation) { case OP_SOUNDSPEED: hipLaunchKernelGGL(( cukern_Soundspeed), dim3(gridsize), dim3(blocksize), 0, 0, srcs[0], srcs[1], srcs[2], srcs[3], srcs[4], srcs[5], srcs[6], srcs[7], destPtr[0], gam, numel); break; case OP_GASPRESSURE: hipLaunchKernelGGL(( cukern_GasPressure), dim3(gridsize), dim3(blocksize), 0, 0, srcs[0], srcs[1], srcs[2], srcs[3], srcs[4], srcs[5], srcs[6], srcs[7], destPtr[0], gam, numel); break; case OP_TOTALPRESSURE:hipLaunchKernelGGL(( cukern_TotalPressure), dim3(gridsize), dim3(blocksize), 0, 0, srcs[0], srcs[1], srcs[2], srcs[3], srcs[4], srcs[5], srcs[6], srcs[7], destPtr[0], gam, numel); break; } free(destPtr); } else if((operation == OP_MAGPRESSURE)) { if( (nlhs != 1) || (nrhs != 4)) { mexErrMsgTxt("Magnetic pressure operator is Pm = cudaMHDKernels(4, bx, by, bz)"); } double **srcs = getGPUSourcePointers(prhs, 3, &numel, 1, gm); gridsize.x = numel / (BLOCKWIDTH*THREADLOOPS); if(gridsize.x * (BLOCKWIDTH*THREADLOOPS) < numel) gridsize.x++; gridsize.y = gridsize.z =1; double **destPtr = makeGPUDestinationArrays(gm->gputype.getGPUtype(prhs[1]), plhs, 1, gm); hipLaunchKernelGGL(( cukern_MagneticPressure), dim3(gridsize), dim3(blocksize), 0, 0, srcs[0], srcs[1], srcs[2], destPtr[0], numel); free(destPtr); free(srcs); } else if((operation == OP_TOTALANDSND)) { if( (nlhs != 2) || (nrhs != 10)) { mexErrMsgTxt("Soundspeed operator is [Ptot Cs] = cudaMHDKernels(5, rho, E, px, py, pz, bx, by, bz, gamma)"); } double gam = *mxGetPr(prhs[9]); double **srcs = getGPUSourcePointers(prhs, 8, &numel, 1, gm); gridsize.x = numel / (BLOCKWIDTH*THREADLOOPS); if(gridsize.x * (BLOCKWIDTH*THREADLOOPS) < numel) gridsize.x++; gridsize.y = gridsize.z =1; double **destPtr = makeGPUDestinationArrays(gm->gputype.getGPUtype(prhs[1]), plhs, 2, gm); hipLaunchKernelGGL(( cukern_TotalAndSound), dim3(gridsize), dim3(blocksize), 0, 0, srcs[0], srcs[1], srcs[2], srcs[3], srcs[4], srcs[5], srcs[6], srcs[7], destPtr[0], destPtr[1], gam, numel); free(destPtr); free(srcs); } else if ((operation == OP_WARRAYS)) { if( (nlhs != 5) || (nrhs != 12)) { mexErrMsgTxt("solving W operator is [rhoW enerW pxW pyW pzW] = cudaMHDKernels(6, rho, E, px, py, pz, bx, by, bz, P, cFreeze, direction)"); } int dir = (int)*mxGetPr(prhs[11]); double **srcs = getGPUSourcePointers(prhs, 10, &numel, 1, gm); gridsize.x = numel / (BLOCKWIDTH*THREADLOOPS); if(gridsize.x * (BLOCKWIDTH*THREADLOOPS) < numel) gridsize.x++; gridsize.y = gridsize.z =1; double **destPtr = makeGPUDestinationArrays(gm->gputype.getGPUtype(prhs[1]), plhs, 5, gm); hipLaunchKernelGGL(( cukern_CalcWArrays), dim3(gridsize), dim3(blocksize), 0, 0, srcs[0], srcs[1], srcs[2], srcs[3], srcs[4], srcs[5], srcs[6], srcs[7], srcs[8], srcs[9], destPtr[0], destPtr[1], destPtr[2], destPtr[3], destPtr[4], dir, numel); free(destPtr); free(srcs); } else if ((operation == OP_RELAXINGFLUX)) { if( (nlhs != 1) || (nrhs != 8)) { mexErrMsgTxt("relaxing flux operator is fluxed = cudaMHDKernels(7, old, tempfreeze, right, right_shifted, left, left_shifted, lambda)"); } double lambda = *mxGetPr(prhs[7]); double **srcs = getGPUSourcePointers(prhs, 6, &numel, 1, gm); gridsize.x = numel / (BLOCKWIDTH*THREADLOOPS); if(gridsize.x * (BLOCKWIDTH*THREADLOOPS) < numel) gridsize.x++; gridsize.y = gridsize.z =1; double **destPtr = makeGPUDestinationArrays(gm->gputype.getGPUtype(prhs[1]), plhs, 1, gm); hipLaunchKernelGGL(( cukern_PerformFlux), dim3(gridsize), dim3(blocksize), 0, 0, srcs[0], srcs[1], srcs[2], srcs[3], srcs[4], srcs[5], destPtr[0], lambda, numel); free(destPtr); free(srcs); } else if ((operation == OP_SEPERATELRFLUX)) { if ((nlhs != 2) || (nrhs != 3)) { mexErrMsgTxt("flux seperation operator is [Fl Fr] = cudaMHDKernels(8, array, wArray)"); } double **srcs = getGPUSourcePointers(prhs, 2, &numel, 1, gm); gridsize.x = numel / (BLOCKWIDTH*THREADLOOPS); if(gridsize.x * (BLOCKWIDTH*THREADLOOPS) < numel) gridsize.x++; gridsize.y = gridsize.z =1; double **destPtr = makeGPUDestinationArrays(gm->gputype.getGPUtype(prhs[1]), plhs, 2, gm); hipLaunchKernelGGL(( cukern_SeperateLRFlux), dim3(gridsize), dim3(blocksize), 0, 0, srcs[0], srcs[1], destPtr[0], destPtr[1], numel); free(destPtr); free(srcs); } } //#define KERNEL_PREAMBLE int x = THREADLOOPS*(threadIdx.x + blockDim.x*blockIdx.x); if (x >= n) {return;} int imax; ((x+THREADLOOPS) > n) ? imax = n : imax = x + THREADLOOPS; for(; x < imax; x++) #define KERNEL_PREAMBLE int x = threadIdx.x + blockDim.x*blockIdx.x; if (x >= n) { return; } // THIS KERNEL CALCULATES SOUNDSPEED __global__ void cukern_Soundspeed(double *rho, double *E, double *px, double *py, double *pz, double *bx, double *by, double *bz, double *dout, double gam, int n) { double gg1 = gam*(gam-1.0); KERNEL_PREAMBLE dout[x] = sqrt(abs( (gg1*(E[x] - .5*(px[x]*px[x] + py[x]*py[x] + pz[x]*pz[x])/rho[x]) + (2.0 -.5*gg1)*(bx[x]*bx[x] + by[x]*by[x] + bz[x]*bz[x]))/rho[x] )); } // THIS KERNEL CALCULATES GAS PRESSURE __global__ void cukern_GasPressure(double *rho, double *E, double *px, double *py, double *pz, double *bx, double *by, double *bz, double *dout, double gam, int n) { KERNEL_PREAMBLE dout[x] = (gam-1.0)*(E[x] - .5*((px[x]*px[x]+py[x]*py[x]+pz[x]*pz[x])/rho[x] + bx[x]*bx[x]+by[x]*by[x]+bz[x]*bz[x])); } // THIS KERNEL CALCULATES TOTAL PRESSURE __global__ void cukern_TotalPressure(double *rho, double *E, double *px, double *py, double *pz, double *bx, double *by, double *bz, double *dout, double gam, int n) { KERNEL_PREAMBLE dout[x] = (gam-1.0)*(E[x] - .5*((px[x]*px[x]+py[x]*py[x]+pz[x]*pz[x])/rho[x])) + .5*(2.0-gam)*(bx[x]*bx[x]+by[x]*by[x]+bz[x]*bz[x]); } // THIS KERNEL CALCULATES MAGNETIC PRESSURE __global__ void cukern_MagneticPressure(double *bx, double *by, double *bz, double *dout, int n) { KERNEL_PREAMBLE dout[x] = .5*(bx[x]*bx[x]+by[x]*by[x]+bz[x]*bz[x]); } __global__ void cukern_TotalAndSound(double *rho, double *E, double *px, double *py, double *pz, double *bx, double *by, double *bz, double *total, double *sound, double gam, int n) { double gg1 = gam*(gam-1.0); double psqhf, bsqhf; KERNEL_PREAMBLE { psqhf = .5*(px[x]*px[x]+py[x]*py[x]+pz[x]*pz[x]); bsqhf = .5*(bx[x]*bx[x]+by[x]*by[x]+bz[x]*bz[x]); total[x] = (gam-1.0)*(E[x] - psqhf/rho[x]) + (2.0-gam)*bsqhf; sound[x] = sqrt(abs( (gg1*(E[x] - psqhf/rho[x]) + (4.0 - gg1)*bsqhf)/rho[x] )); } } __global__ void cukern_CalcWArrays(double *rho, double *E, double *px, double *py, double *pz, double *bx, double *by, double *bz, double *P, double *Cfreeze, double *rhoW, double *enerW, double *pxW, double *pyW, double *pzW, int dir, int n) { double Cinv, rhoinv; KERNEL_PREAMBLE { Cinv = 1.0/Cfreeze[x]; rhoinv = 1.0/rho[x]; switch(dir) { case 1: rhoW[x] = px[x] * Cinv; enerW[x] = (px[x] * (E[x] + P[x]) - bx[x]*(px[x]*bx[x]+py[x]*by[x]+pz[x]*bz[x]) ) * (rhoinv*Cinv); pxW[x] = (px[x]*px[x]*rhoinv + P[x] - bx[x]*bx[x])*Cinv; pyW[x] = (px[x]*py[x]*rhoinv - bx[x]*by[x])*Cinv; pzW[x] = (px[x]*pz[x]*rhoinv - bx[x]*bz[x])*Cinv; break; case 2: rhoW[x] = py[x] * Cinv; enerW[x] = (py[x] * (E[x] + P[x]) - by[x]*(px[x]*bx[x]+py[x]*by[x]+pz[x]*bz[x]) ) * (rhoinv*Cinv); pxW[x] = (py[x]*px[x]*rhoinv - by[x]*bx[x])*Cinv; pyW[x] = (py[x]*py[x]*rhoinv + P[x] - by[x]*by[x])*Cinv; pzW[x] = (py[x]*pz[x]*rhoinv - by[x]*bz[x])*Cinv; break; case 3: rhoW[x] = pz[x] * Cinv; enerW[x] = (pz[x] * (E[x] + P[x]) - bz[x]*(px[x]*bx[x]+py[x]*by[x]+pz[x]*bz[x]) ) * (rhoinv*Cinv); pxW[x] = (pz[x]*px[x]*rhoinv - bz[x]*bx[x])*Cinv; pyW[x] = (pz[x]*py[x]*rhoinv - bz[x]*by[x])*Cinv; pzW[x] = (pz[x]*pz[x]*rhoinv + P[x] - bz[x]*bz[x])*Cinv; break; } } /*mass.wArray = mom(X).array ./ freezeSpd.array; %--- ENERGY DENSITY ---% ener.wArray = velocity .* (ener.array + press) - mag(X).cellMag.array .* ... ( mag(1).cellMag.array .* mom(1).array ... + mag(2).cellMag.array .* mom(2).array ... + mag(3).cellMag.array .* mom(3).array) ./ mass.array; ener.wArray = ener.wArray ./ freezeSpd.array; %--- MOMENTUM DENSITY ---% for i=1:3 mom(i).wArray = (velocity .* mom(i).array + press*dirVec(i)... - mag(X).cellMag.array .* mag(i).cellMag.array) ./ freezeSpd.array; end*/ } __global__ void cukern_PerformFlux(double *array0, double *Cfreeze, double *fluxRa, double *fluxRb, double *fluxLa, double *fluxLb, double *out, double lambda, int n) { KERNEL_PREAMBLE out[x] = array0[x] - lambda*Cfreeze[x]*(fluxRa[x] - fluxRb[x] + fluxLa[x] - fluxLb[x]); //v(i).store.array = v(i).array - 0.5*fluxFactor .* tempFreeze .* ... // ( v(i).store.fluxR.array - v(i).store.fluxR.shift(X,-1) ... // + v(i).store.fluxL.array - v(i).store.fluxL.shift(X,1) ); } __global__ void cukern_SeperateLRFlux(double *arr, double *wArr, double *left, double *right, int n) { KERNEL_PREAMBLE { left[x] = .5*(arr[x] - wArr[x]); right[x] = .5*(arr[x] + wArr[x]); } }
ea5ab5b28cc8f203452849e867c91a9524f3b7a8.cu
#include <stdio.h> #include <string.h> #include <stdarg.h> #ifdef UNIX #include <stdint.h> #include <unistd.h> #endif #include "mex.h" // CUDA #include "cuda.h" #include "cuda_runtime.h" #include "cublas.h" #include "GPUmat.hh" // static paramaters static int init = 0; static GPUmat *gm; #include "cudaCommon.h" //double **getGPUSourcePointers(const mxArray *prhs[], int num, int *retNumel); //double **makeGPUDestinationArrays(GPUtype src, mxArray *retArray[], int howmany); //double *makeDestinationArray(GPUtype src, mxArray *retArray[]); #define OP_SOUNDSPEED 1 #define OP_GASPRESSURE 2 #define OP_TOTALPRESSURE 3 #define OP_MAGPRESSURE 4 #define OP_TOTALANDSND 5 #define OP_WARRAYS 6 #define OP_RELAXINGFLUX 7 #define OP_SEPERATELRFLUX 8 __global__ void cukern_Soundspeed(double *rho, double *E, double *px, double *py, double *pz, double *bx, double *by, double *bz, double *dout, double gam, int n); __global__ void cukern_GasPressure(double *rho, double *E, double *px, double *py, double *pz, double *bx, double *by, double *bz, double *dout, double gam, int n); __global__ void cukern_TotalPressure(double *rho, double *E, double *px, double *py, double *pz, double *bx, double *by, double *bz, double *dout, double gam, int n); __global__ void cukern_MagneticPressure(double *bx, double *by, double *bz, double *dout, int n); __global__ void cukern_TotalAndSound(double *rho, double *E, double *px, double *py, double *pz, double *bx, double *by, double *bz, double *total, double *sound, double gam, int n); __global__ void cukern_CalcWArrays(double *rho, double *E, double *px, double *py, double *pz, double *bx, double *by, double *bz, double *P, double *Cfreeze, double *rhoW, double *enerW, double *pxW, double *pyW, double *pzW, int dir, int n); __global__ void cukern_SeperateLRFlux(double *arr, double *wArr, double *left, double *right, int n); __global__ void cukern_PerformFlux(double *array0, double *Cfreeze, double *fluxRa, double *fluxRb, double *fluxLa, double *fluxLb, double *out, double lambda, int n); #define BLOCKWIDTH 256 #define THREADLOOPS 1 void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { if (init == 0) { // Initialize function // mexLock(); // load GPUmat gm = gmGetGPUmat(); init = 1; } // Determine appropriate number of arguments for RHS if (nrhs < 2) mexErrMsgTxt("Require at least (computation type, input argument)"); int operation = (int)*mxGetPr(prhs[0]); dim3 blocksize; blocksize.x = BLOCKWIDTH; blocksize.y = blocksize.z = 1; int numel; dim3 gridsize; // Select the appropriate kernel to invoke if((operation == OP_SOUNDSPEED) || (operation == OP_GASPRESSURE) || (operation == OP_TOTALPRESSURE)) { if( (nlhs != 1) || (nrhs != 10)) { mexErrMsgTxt("Soundspeed operator is Cs = cudaMHDKernels(1, rho, E, px, py, pz, bx, by, bz, gamma)"); } double gam = *mxGetPr(prhs[9]); int arrdim[3]; double **srcs = getGPUSourcePointers(prhs, arrdim, 1, 8); numel = arrdim[0]*arrdim[1]*arrdim[2]; gridsize.x = numel / (BLOCKWIDTH*THREADLOOPS); if(gridsize.x * (BLOCKWIDTH*THREADLOOPS) < numel) gridsize.x++; gridsize.y = gridsize.z =1; double **destPtr = makeGPUDestinationArrays(gm->gputype.getGPUtype(prhs[1]), plhs, 1, gm); //printf("%i %i %i %i %i %i\n", blocksize.x, blocksize.y, blocksize.z, gridsize.x, gridsize.y, gridsize.z); switch(operation) { case OP_SOUNDSPEED: cukern_Soundspeed<<<gridsize, blocksize>>>(srcs[0], srcs[1], srcs[2], srcs[3], srcs[4], srcs[5], srcs[6], srcs[7], destPtr[0], gam, numel); break; case OP_GASPRESSURE: cukern_GasPressure<<<gridsize, blocksize>>>(srcs[0], srcs[1], srcs[2], srcs[3], srcs[4], srcs[5], srcs[6], srcs[7], destPtr[0], gam, numel); break; case OP_TOTALPRESSURE: cukern_TotalPressure<<<gridsize, blocksize>>>(srcs[0], srcs[1], srcs[2], srcs[3], srcs[4], srcs[5], srcs[6], srcs[7], destPtr[0], gam, numel); break; } free(destPtr); } else if((operation == OP_MAGPRESSURE)) { if( (nlhs != 1) || (nrhs != 4)) { mexErrMsgTxt("Magnetic pressure operator is Pm = cudaMHDKernels(4, bx, by, bz)"); } double **srcs = getGPUSourcePointers(prhs, 3, &numel, 1, gm); gridsize.x = numel / (BLOCKWIDTH*THREADLOOPS); if(gridsize.x * (BLOCKWIDTH*THREADLOOPS) < numel) gridsize.x++; gridsize.y = gridsize.z =1; double **destPtr = makeGPUDestinationArrays(gm->gputype.getGPUtype(prhs[1]), plhs, 1, gm); cukern_MagneticPressure<<<gridsize, blocksize>>>(srcs[0], srcs[1], srcs[2], destPtr[0], numel); free(destPtr); free(srcs); } else if((operation == OP_TOTALANDSND)) { if( (nlhs != 2) || (nrhs != 10)) { mexErrMsgTxt("Soundspeed operator is [Ptot Cs] = cudaMHDKernels(5, rho, E, px, py, pz, bx, by, bz, gamma)"); } double gam = *mxGetPr(prhs[9]); double **srcs = getGPUSourcePointers(prhs, 8, &numel, 1, gm); gridsize.x = numel / (BLOCKWIDTH*THREADLOOPS); if(gridsize.x * (BLOCKWIDTH*THREADLOOPS) < numel) gridsize.x++; gridsize.y = gridsize.z =1; double **destPtr = makeGPUDestinationArrays(gm->gputype.getGPUtype(prhs[1]), plhs, 2, gm); cukern_TotalAndSound<<<gridsize, blocksize>>>(srcs[0], srcs[1], srcs[2], srcs[3], srcs[4], srcs[5], srcs[6], srcs[7], destPtr[0], destPtr[1], gam, numel); free(destPtr); free(srcs); } else if ((operation == OP_WARRAYS)) { if( (nlhs != 5) || (nrhs != 12)) { mexErrMsgTxt("solving W operator is [rhoW enerW pxW pyW pzW] = cudaMHDKernels(6, rho, E, px, py, pz, bx, by, bz, P, cFreeze, direction)"); } int dir = (int)*mxGetPr(prhs[11]); double **srcs = getGPUSourcePointers(prhs, 10, &numel, 1, gm); gridsize.x = numel / (BLOCKWIDTH*THREADLOOPS); if(gridsize.x * (BLOCKWIDTH*THREADLOOPS) < numel) gridsize.x++; gridsize.y = gridsize.z =1; double **destPtr = makeGPUDestinationArrays(gm->gputype.getGPUtype(prhs[1]), plhs, 5, gm); cukern_CalcWArrays<<<gridsize, blocksize>>>(srcs[0], srcs[1], srcs[2], srcs[3], srcs[4], srcs[5], srcs[6], srcs[7], srcs[8], srcs[9], destPtr[0], destPtr[1], destPtr[2], destPtr[3], destPtr[4], dir, numel); free(destPtr); free(srcs); } else if ((operation == OP_RELAXINGFLUX)) { if( (nlhs != 1) || (nrhs != 8)) { mexErrMsgTxt("relaxing flux operator is fluxed = cudaMHDKernels(7, old, tempfreeze, right, right_shifted, left, left_shifted, lambda)"); } double lambda = *mxGetPr(prhs[7]); double **srcs = getGPUSourcePointers(prhs, 6, &numel, 1, gm); gridsize.x = numel / (BLOCKWIDTH*THREADLOOPS); if(gridsize.x * (BLOCKWIDTH*THREADLOOPS) < numel) gridsize.x++; gridsize.y = gridsize.z =1; double **destPtr = makeGPUDestinationArrays(gm->gputype.getGPUtype(prhs[1]), plhs, 1, gm); cukern_PerformFlux<<<gridsize, blocksize>>>(srcs[0], srcs[1], srcs[2], srcs[3], srcs[4], srcs[5], destPtr[0], lambda, numel); free(destPtr); free(srcs); } else if ((operation == OP_SEPERATELRFLUX)) { if ((nlhs != 2) || (nrhs != 3)) { mexErrMsgTxt("flux seperation operator is [Fl Fr] = cudaMHDKernels(8, array, wArray)"); } double **srcs = getGPUSourcePointers(prhs, 2, &numel, 1, gm); gridsize.x = numel / (BLOCKWIDTH*THREADLOOPS); if(gridsize.x * (BLOCKWIDTH*THREADLOOPS) < numel) gridsize.x++; gridsize.y = gridsize.z =1; double **destPtr = makeGPUDestinationArrays(gm->gputype.getGPUtype(prhs[1]), plhs, 2, gm); cukern_SeperateLRFlux<<<gridsize, blocksize>>>(srcs[0], srcs[1], destPtr[0], destPtr[1], numel); free(destPtr); free(srcs); } } //#define KERNEL_PREAMBLE int x = THREADLOOPS*(threadIdx.x + blockDim.x*blockIdx.x); if (x >= n) {return;} int imax; ((x+THREADLOOPS) > n) ? imax = n : imax = x + THREADLOOPS; for(; x < imax; x++) #define KERNEL_PREAMBLE int x = threadIdx.x + blockDim.x*blockIdx.x; if (x >= n) { return; } // THIS KERNEL CALCULATES SOUNDSPEED __global__ void cukern_Soundspeed(double *rho, double *E, double *px, double *py, double *pz, double *bx, double *by, double *bz, double *dout, double gam, int n) { double gg1 = gam*(gam-1.0); KERNEL_PREAMBLE dout[x] = sqrt(abs( (gg1*(E[x] - .5*(px[x]*px[x] + py[x]*py[x] + pz[x]*pz[x])/rho[x]) + (2.0 -.5*gg1)*(bx[x]*bx[x] + by[x]*by[x] + bz[x]*bz[x]))/rho[x] )); } // THIS KERNEL CALCULATES GAS PRESSURE __global__ void cukern_GasPressure(double *rho, double *E, double *px, double *py, double *pz, double *bx, double *by, double *bz, double *dout, double gam, int n) { KERNEL_PREAMBLE dout[x] = (gam-1.0)*(E[x] - .5*((px[x]*px[x]+py[x]*py[x]+pz[x]*pz[x])/rho[x] + bx[x]*bx[x]+by[x]*by[x]+bz[x]*bz[x])); } // THIS KERNEL CALCULATES TOTAL PRESSURE __global__ void cukern_TotalPressure(double *rho, double *E, double *px, double *py, double *pz, double *bx, double *by, double *bz, double *dout, double gam, int n) { KERNEL_PREAMBLE dout[x] = (gam-1.0)*(E[x] - .5*((px[x]*px[x]+py[x]*py[x]+pz[x]*pz[x])/rho[x])) + .5*(2.0-gam)*(bx[x]*bx[x]+by[x]*by[x]+bz[x]*bz[x]); } // THIS KERNEL CALCULATES MAGNETIC PRESSURE __global__ void cukern_MagneticPressure(double *bx, double *by, double *bz, double *dout, int n) { KERNEL_PREAMBLE dout[x] = .5*(bx[x]*bx[x]+by[x]*by[x]+bz[x]*bz[x]); } __global__ void cukern_TotalAndSound(double *rho, double *E, double *px, double *py, double *pz, double *bx, double *by, double *bz, double *total, double *sound, double gam, int n) { double gg1 = gam*(gam-1.0); double psqhf, bsqhf; KERNEL_PREAMBLE { psqhf = .5*(px[x]*px[x]+py[x]*py[x]+pz[x]*pz[x]); bsqhf = .5*(bx[x]*bx[x]+by[x]*by[x]+bz[x]*bz[x]); total[x] = (gam-1.0)*(E[x] - psqhf/rho[x]) + (2.0-gam)*bsqhf; sound[x] = sqrt(abs( (gg1*(E[x] - psqhf/rho[x]) + (4.0 - gg1)*bsqhf)/rho[x] )); } } __global__ void cukern_CalcWArrays(double *rho, double *E, double *px, double *py, double *pz, double *bx, double *by, double *bz, double *P, double *Cfreeze, double *rhoW, double *enerW, double *pxW, double *pyW, double *pzW, int dir, int n) { double Cinv, rhoinv; KERNEL_PREAMBLE { Cinv = 1.0/Cfreeze[x]; rhoinv = 1.0/rho[x]; switch(dir) { case 1: rhoW[x] = px[x] * Cinv; enerW[x] = (px[x] * (E[x] + P[x]) - bx[x]*(px[x]*bx[x]+py[x]*by[x]+pz[x]*bz[x]) ) * (rhoinv*Cinv); pxW[x] = (px[x]*px[x]*rhoinv + P[x] - bx[x]*bx[x])*Cinv; pyW[x] = (px[x]*py[x]*rhoinv - bx[x]*by[x])*Cinv; pzW[x] = (px[x]*pz[x]*rhoinv - bx[x]*bz[x])*Cinv; break; case 2: rhoW[x] = py[x] * Cinv; enerW[x] = (py[x] * (E[x] + P[x]) - by[x]*(px[x]*bx[x]+py[x]*by[x]+pz[x]*bz[x]) ) * (rhoinv*Cinv); pxW[x] = (py[x]*px[x]*rhoinv - by[x]*bx[x])*Cinv; pyW[x] = (py[x]*py[x]*rhoinv + P[x] - by[x]*by[x])*Cinv; pzW[x] = (py[x]*pz[x]*rhoinv - by[x]*bz[x])*Cinv; break; case 3: rhoW[x] = pz[x] * Cinv; enerW[x] = (pz[x] * (E[x] + P[x]) - bz[x]*(px[x]*bx[x]+py[x]*by[x]+pz[x]*bz[x]) ) * (rhoinv*Cinv); pxW[x] = (pz[x]*px[x]*rhoinv - bz[x]*bx[x])*Cinv; pyW[x] = (pz[x]*py[x]*rhoinv - bz[x]*by[x])*Cinv; pzW[x] = (pz[x]*pz[x]*rhoinv + P[x] - bz[x]*bz[x])*Cinv; break; } } /*mass.wArray = mom(X).array ./ freezeSpd.array; %--- ENERGY DENSITY ---% ener.wArray = velocity .* (ener.array + press) - mag(X).cellMag.array .* ... ( mag(1).cellMag.array .* mom(1).array ... + mag(2).cellMag.array .* mom(2).array ... + mag(3).cellMag.array .* mom(3).array) ./ mass.array; ener.wArray = ener.wArray ./ freezeSpd.array; %--- MOMENTUM DENSITY ---% for i=1:3 mom(i).wArray = (velocity .* mom(i).array + press*dirVec(i)... - mag(X).cellMag.array .* mag(i).cellMag.array) ./ freezeSpd.array; end*/ } __global__ void cukern_PerformFlux(double *array0, double *Cfreeze, double *fluxRa, double *fluxRb, double *fluxLa, double *fluxLb, double *out, double lambda, int n) { KERNEL_PREAMBLE out[x] = array0[x] - lambda*Cfreeze[x]*(fluxRa[x] - fluxRb[x] + fluxLa[x] - fluxLb[x]); //v(i).store.array = v(i).array - 0.5*fluxFactor .* tempFreeze .* ... // ( v(i).store.fluxR.array - v(i).store.fluxR.shift(X,-1) ... // + v(i).store.fluxL.array - v(i).store.fluxL.shift(X,1) ); } __global__ void cukern_SeperateLRFlux(double *arr, double *wArr, double *left, double *right, int n) { KERNEL_PREAMBLE { left[x] = .5*(arr[x] - wArr[x]); right[x] = .5*(arr[x] + wArr[x]); } }
decoderPlugin.hip
// !!! This is a file automatically generated by hipify!!! /* * Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <hip/hip_runtime.h> #include "decoderPlugin.h" #define CHECK(status) \ do \ { \ auto ret = (status); \ if (ret != 0) \ { \ std::cout << "Cuda failure: " << ret << std::endl; \ abort(); \ } \ } while (0) using namespace nvinfer1; using nvinfer1::plugin::RNNTDecoderPlugin; using nvinfer1::plugin::RNNTDecoderPluginCreator; REGISTER_TENSORRT_PLUGIN(RNNTDecoderPluginCreator); RNNTDecoderPlugin::RNNTDecoderPlugin(const PluginFieldCollection *fc) { int idx = 0; mNumLayers = *(int*)(fc->fields[idx].data); idx++; mHiddenSize = *(int*)(fc->fields[idx].data); idx++; mInputSize = *(int*)(fc->fields[idx].data); idx++; mDataType = *(nvinfer1::DataType*)(fc->fields[idx].data); idx++; mWeights_h = (void**)malloc(mNumLayers * sizeof(void*)); for (int i = 0; i < mNumLayers; i++) { mWeights_h[i] = (void*)fc->fields[idx].data; idx++; } mBias_h = (void**)malloc(mNumLayers * sizeof(void*)); for (int i = 0; i < mNumLayers; i++) { mBias_h[i] = (void*)fc->fields[idx].data; idx++; } } RNNTDecoderPlugin::RNNTDecoderPlugin(const void* data, size_t length) { const char *d = static_cast<const char*>(data); // Use maybe_unused attribute when updating to CUDA_STANDARD C++17 #ifndef NDEBUG auto d_start = d; #endif read<int>(d, mNumLayers); read<int>(d, mHiddenSize); read<int>(d, mInputSize); read<nvinfer1::DataType>(d, mDataType); mWeights_h = (void**)malloc(mNumLayers * sizeof(void*)); for (int i = 0; i < mNumLayers; i++) { size_t dataTypeSize = 0; dataTypeSize = sizeof(half); size_t sz = 4 * mHiddenSize * ((i == 0 ? mInputSize : mHiddenSize) + mHiddenSize) * dataTypeSize; mWeights_h[i] = malloc(sz); memcpy(mWeights_h[i], d, sz); d += sz; } mBias_h = (void**)malloc(mNumLayers * sizeof(void*)); for (int i = 0; i < mNumLayers; i++) { size_t dataTypeSize = 0; dataTypeSize = sizeof(half); size_t sz = 8 * mHiddenSize * dataTypeSize; mBias_h[i] = malloc(sz); memcpy(mBias_h[i], d, sz); d += sz; } assert(d == d_start + length); } const char* RNNTDecoderPlugin::getPluginType() const { return "RNNTDecoderPlugin"; } const char* RNNTDecoderPlugin::getPluginVersion() const { return "1"; } void RNNTDecoderPlugin::setPluginNamespace(const char* libNamespace) { mNamespace = libNamespace; } const char* RNNTDecoderPlugin::getPluginNamespace() const { return mNamespace.c_str(); } void RNNTDecoderPlugin::destroy() { if (mWeights_h) { free(mWeights_h); mWeights_h = nullptr; } if (mBias_h) { free(mBias_h); mBias_h = nullptr; } delete this; } void RNNTDecoderPlugin::setCUDAInfo(hipStream_t mStreamh, hipblasHandle_t mCublas, void **mWeights_d, void **mBias_d, void *mWorkSpace_d) { this->mStreamh = mStreamh; this->mCublas = mCublas; this->mWeights_d = mWeights_d; this->mBias_d = mBias_d; this->mWorkSpace_d = mWorkSpace_d; } IPluginV2DynamicExt * RNNTDecoderPlugin::clone() const { size_t sz = getSerializationSize(); char *buff = (char*)malloc(getSerializationSize()); serialize(buff); RNNTDecoderPlugin* ret = new RNNTDecoderPlugin(buff, sz); ret->setCUDAInfo(mStreamh, mCublas, mWeights_d, mBias_d, mWorkSpace_d); free(buff); return ret; } int RNNTDecoderPlugin::getNbOutputs() const { return 3; } // TODO: No idea if this needs batch size. Actually, don't know what's expected at all. /* Dims RNNTDecoderPlugin::getOutputDimensions(int index, const Dims* inputs, int nbInputDims) { assert(index >= 0 && index < this->getNbOutputs()); if (index == 0) { return Dims3(inputs[0].d[0], mNumLayers, mHiddenSize); } else { return Dims3(inputs[0].d[0], 1, mHiddenSize); } } */ DimsExprs RNNTDecoderPlugin::getOutputDimensions (int outputIndex, const DimsExprs *inputs, int nbInputs, IExprBuilder &exprBuilder) { assert(outputIndex >= 0 && outputIndex < this->getNbOutputs()); return inputs[outputIndex]; } bool RNNTDecoderPlugin::supportsFormatCombination(int pos, const PluginTensorDesc* inOut, int nbInputs, int nbOutputs) { if (inOut[pos].format != TensorFormat::kNCHW) return false; // fp16 I/O if (mDataType == nvinfer1::DataType::kHALF) { bool allHalf = true; // Don't care about pos. If all are half pass it. // The way this is called doesn't fill all of inOut, it only fills it up to pos. for (int i = 0; i <= pos; i++) { if (inOut[i].type != DataType::kHALF) { allHalf = false; } } if (allHalf) { return true; } return false; } return false; } /* void RNNTDecoderPlugin::configurePlugin(const PluginTensorDesc* in, int nbInput, const PluginTensorDesc* out, int nbOutput) { mInputSize = in[0].dims.d[in[0].dims.nbDims - 1]; } */ void RNNTDecoderPlugin::configurePlugin (const DynamicPluginTensorDesc *in, int nbInputs, const DynamicPluginTensorDesc *out, int nbOutputs) { // mInputSize = in[0].desc.dims.d[in[0].desc.dims.nbDims - 1]; } // void RNNTDecoderPlugin::configurePlugin(const Dims *inputDims, int nbInputs, const Dims *outputDims, int nbOutputs, const DataType *inputTypes, const DataType *outputTypes, const bool *inputIsBroadcast, const bool *outputIsBroadcast, PluginFormat floatFormat, int maxBatchSize) { // mInputSize = inputDims[0].d[inputDims[0].nbDims - 1]; // } int RNNTDecoderPlugin::initialize() { if (!mInitialized) { CHECK(hipblasCreate(&mCublas)); CHECK(cublasSetMathMode(mCublas, CUBLAS_TENSOR_OP_MATH)); CHECK(hipStreamCreate(&mStreamh)); mWeights_d = (void**)malloc(mNumLayers * sizeof(void*)); for (int i = 0; i < mNumLayers; i++) { size_t dataTypeSize = 0; if (mDataType == DataType::kHALF) { dataTypeSize = sizeof(half); } size_t sz = 4 * mHiddenSize * ((i == 0 ? mInputSize : mHiddenSize) + mHiddenSize) * dataTypeSize; CHECK(hipMalloc(&mWeights_d[i], sz)); CHECK(hipMemcpy(mWeights_d[i], mWeights_h[i], sz, hipMemcpyHostToDevice)); } mBias_d = (void**)malloc(mNumLayers * sizeof(void*)); for (int i = 0; i < mNumLayers; i++) { size_t dataTypeSize = 0; if (mDataType == DataType::kHALF) { dataTypeSize = sizeof(half); } size_t sz = 8 * mHiddenSize * dataTypeSize; CHECK(hipMalloc(&mBias_d[i], sz)); CHECK(hipMemcpy(mBias_d[i], mBias_h[i], sz, hipMemcpyHostToDevice)); } mWorkSpace_d = NULL;// CHECK(hipMalloc(&mWorkSpace_d, getWorkspaceSize())); } return hipSuccess; } void RNNTDecoderPlugin::terminate() { if (mCublas) { CHECK(hipblasDestroy(mCublas)); mCublas = nullptr; } if (mStreamh) { CHECK(hipStreamDestroy(mStreamh)); mStreamh = nullptr; } if (mWeights_d) { for (int i = 0; i < mNumLayers; i++) { if (mWeights_d[i]) { hipFree(mWeights_d[i]); mWeights_d[i] = nullptr; } } free(mWeights_d); mWeights_d = nullptr; } if (mBias_d) { for (int i = 0; i < mNumLayers; i++) { if (mBias_d[i]) { hipFree(mBias_d[i]); mBias_d[i] = nullptr; } } free(mBias_d); mBias_d = nullptr; } if (!mWorkSpace_d) { hipFree(mWorkSpace_d); mWorkSpace_d = nullptr; } } /* size_t RNNTDecoderPlugin::getWorkspaceSize(int maxBatchSize) const { size_t size = 0; // tmp_io size += mNumLayers * mInputSize * maxBatchSize * sizeof(half); // tmp_i size += mHiddenSize * maxBatchSize * 4 * sizeof(half); // tmp_h size += mNumLayers * mHiddenSize * maxBatchSize * 4 * sizeof(half); return size; } */ size_t RNNTDecoderPlugin::getWorkspaceSize(const PluginTensorDesc *inputs, int nbInputs, const PluginTensorDesc *outputs, int nbOutputs) const { size_t size = 0; int batchSize = inputs[0].dims.d[0]; // printf("getWorkspaceSize batchSize %d\n", batchSize); // tmp_io size += mNumLayers * mHiddenSize * batchSize * sizeof(half); // tmp_i size += mHiddenSize * batchSize * 4 * sizeof(half); // tmp_h size += mNumLayers * mHiddenSize * batchSize * 4 * sizeof(half); return size; } // int RNNTDecoderPlugin::enqueue(int batchSize, const void* const* inputs, void** outputs, void* workspace, hipStream_t stream) { int RNNTDecoderPlugin::enqueue(const PluginTensorDesc *inputDesc, const PluginTensorDesc *outputDesc, const void *const *inputs, void *const *outputs, void *workspace, hipStream_t stream) { int batchSize = inputDesc[0].dims.d[0]; int effectiveBatch = batchSize; void *tmp_io = NULL; void *tmp_i = NULL; void *tmp_h = NULL; tmp_io = workspace; tmp_i = (void*)((char*)(tmp_io) + mNumLayers * mHiddenSize * effectiveBatch * sizeof(half)); tmp_h = (void*)((char*)(tmp_i) + mHiddenSize * effectiveBatch * 4 * sizeof(half)); hipEvent_t event; CHECK(hipEventCreate(&event, hipEventDisableTiming)); CHECK(hipEventRecord(event, stream)); CHECK(hipStreamWaitEvent(mStreamh, event, 0)); CHECK(hipEventDestroy(event)); if (mDataType == nvinfer1::DataType::kHALF) { decoderStep<half, HIP_R_16F, half, HIP_R_16F, half> (mHiddenSize, mInputSize, effectiveBatch, 1, mNumLayers, this->mCublas, (half*)inputs[0], // x (half*)inputs[1], // hx, (half*)inputs[2], // cx, (half**)mWeights_d, (half**)mBias_d, // bias (half*)outputs[0], // y, (half*)outputs[1], // hy, (half*)outputs[2], // cy, (half*)tmp_io, (half*)tmp_i, (half*)tmp_h, stream, mStreamh); } return 0; } size_t RNNTDecoderPlugin::getSerializationSize() const { size_t sz = sizeof(mNumLayers) + sizeof(mHiddenSize) + sizeof(mInputSize) + sizeof(mDataType); // Weights for (int i = 0; i < mNumLayers; i++) { size_t dataTypeSize = 0; if (mDataType == DataType::kHALF) { dataTypeSize = sizeof(half); } sz += 4 * mHiddenSize * ((i == 0 ? mInputSize : mHiddenSize) + mHiddenSize) * dataTypeSize; } // Bias for (int i = 0; i < mNumLayers; i++) { size_t dataTypeSize = 0; if (mDataType == DataType::kHALF) { dataTypeSize = sizeof(half); } sz += 8 * mHiddenSize * dataTypeSize; } return sz; } void RNNTDecoderPlugin::serialize(void* buffer) const { char *d = static_cast<char*>(buffer); // Use maybe_unused attribute when updating to CUDA_STANDARD C++17 #ifndef NDEBUG auto d_start = d; #endif write<int>(d, mNumLayers); write<int>(d, mHiddenSize); write<int>(d, mInputSize); write<nvinfer1::DataType>(d, mDataType); for (int i = 0; i < mNumLayers; i++) { size_t dataTypeSize = 0; if (mDataType == DataType::kHALF) { dataTypeSize = sizeof(half); } size_t sz = 4 * mHiddenSize * ((i == 0 ? mInputSize : mHiddenSize) + mHiddenSize) * dataTypeSize; memcpy(d, mWeights_h[i], sz); d += sz; } for (int i = 0; i < mNumLayers; i++) { size_t dataTypeSize = 0; if (mDataType == DataType::kHALF) { dataTypeSize = sizeof(half); } size_t sz = 8 * mHiddenSize * dataTypeSize; memcpy(d, mBias_h[i], sz); d += sz; } assert(d == d_start + getSerializationSize()); } nvinfer1::DataType RNNTDecoderPlugin::getOutputDataType (int index, const nvinfer1::DataType *inputTypes, int nbInputs) const { return mDataType; } // bool RNNTDecoderPlugin::isOutputBroadcastAcrossBatch (int outputIndex, const bool *inputIsBroadcasted, int nbInputs) const { // return false; // } // bool RNNTDecoderPlugin::canBroadcastInputAcrossBatch (int inputIndex) const { // return inputIndex >= 2 * mNumLayers + 2; // } template <typename T> void RNNTDecoderPlugin::write(char*& buffer, const T& val) const { *reinterpret_cast<T*>(buffer) = val; buffer += sizeof(T); } template <typename T> void RNNTDecoderPlugin::read(const char*& buffer, T& val) const { val = *reinterpret_cast<const T*>(buffer); buffer += sizeof(T); } const char* RNNTDecoderPluginCreator::getPluginName() const { return "RNNTDecoderPlugin"; } const char* RNNTDecoderPluginCreator::getPluginVersion() const { return "1"; } const PluginFieldCollection* RNNTDecoderPluginCreator::getFieldNames() { return nullptr; } void RNNTDecoderPluginCreator::setPluginNamespace(const char* libNamespace) { mNamespace = libNamespace; } const char* RNNTDecoderPluginCreator::getPluginNamespace() const { return mNamespace.c_str(); } IPluginV2DynamicExt * RNNTDecoderPluginCreator::createPlugin(const char *name, const PluginFieldCollection *fc) { return new RNNTDecoderPlugin(fc); } IPluginV2DynamicExt * RNNTDecoderPluginCreator::deserializePlugin(const char *name, const void *serialData, size_t serialLength) { return new RNNTDecoderPlugin(serialData, serialLength); }
decoderPlugin.cu
/* * Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cuda.h> #include "decoderPlugin.h" #define CHECK(status) \ do \ { \ auto ret = (status); \ if (ret != 0) \ { \ std::cout << "Cuda failure: " << ret << std::endl; \ abort(); \ } \ } while (0) using namespace nvinfer1; using nvinfer1::plugin::RNNTDecoderPlugin; using nvinfer1::plugin::RNNTDecoderPluginCreator; REGISTER_TENSORRT_PLUGIN(RNNTDecoderPluginCreator); RNNTDecoderPlugin::RNNTDecoderPlugin(const PluginFieldCollection *fc) { int idx = 0; mNumLayers = *(int*)(fc->fields[idx].data); idx++; mHiddenSize = *(int*)(fc->fields[idx].data); idx++; mInputSize = *(int*)(fc->fields[idx].data); idx++; mDataType = *(nvinfer1::DataType*)(fc->fields[idx].data); idx++; mWeights_h = (void**)malloc(mNumLayers * sizeof(void*)); for (int i = 0; i < mNumLayers; i++) { mWeights_h[i] = (void*)fc->fields[idx].data; idx++; } mBias_h = (void**)malloc(mNumLayers * sizeof(void*)); for (int i = 0; i < mNumLayers; i++) { mBias_h[i] = (void*)fc->fields[idx].data; idx++; } } RNNTDecoderPlugin::RNNTDecoderPlugin(const void* data, size_t length) { const char *d = static_cast<const char*>(data); // Use maybe_unused attribute when updating to CUDA_STANDARD C++17 #ifndef NDEBUG auto d_start = d; #endif read<int>(d, mNumLayers); read<int>(d, mHiddenSize); read<int>(d, mInputSize); read<nvinfer1::DataType>(d, mDataType); mWeights_h = (void**)malloc(mNumLayers * sizeof(void*)); for (int i = 0; i < mNumLayers; i++) { size_t dataTypeSize = 0; dataTypeSize = sizeof(half); size_t sz = 4 * mHiddenSize * ((i == 0 ? mInputSize : mHiddenSize) + mHiddenSize) * dataTypeSize; mWeights_h[i] = malloc(sz); memcpy(mWeights_h[i], d, sz); d += sz; } mBias_h = (void**)malloc(mNumLayers * sizeof(void*)); for (int i = 0; i < mNumLayers; i++) { size_t dataTypeSize = 0; dataTypeSize = sizeof(half); size_t sz = 8 * mHiddenSize * dataTypeSize; mBias_h[i] = malloc(sz); memcpy(mBias_h[i], d, sz); d += sz; } assert(d == d_start + length); } const char* RNNTDecoderPlugin::getPluginType() const { return "RNNTDecoderPlugin"; } const char* RNNTDecoderPlugin::getPluginVersion() const { return "1"; } void RNNTDecoderPlugin::setPluginNamespace(const char* libNamespace) { mNamespace = libNamespace; } const char* RNNTDecoderPlugin::getPluginNamespace() const { return mNamespace.c_str(); } void RNNTDecoderPlugin::destroy() { if (mWeights_h) { free(mWeights_h); mWeights_h = nullptr; } if (mBias_h) { free(mBias_h); mBias_h = nullptr; } delete this; } void RNNTDecoderPlugin::setCUDAInfo(cudaStream_t mStreamh, cublasHandle_t mCublas, void **mWeights_d, void **mBias_d, void *mWorkSpace_d) { this->mStreamh = mStreamh; this->mCublas = mCublas; this->mWeights_d = mWeights_d; this->mBias_d = mBias_d; this->mWorkSpace_d = mWorkSpace_d; } IPluginV2DynamicExt * RNNTDecoderPlugin::clone() const { size_t sz = getSerializationSize(); char *buff = (char*)malloc(getSerializationSize()); serialize(buff); RNNTDecoderPlugin* ret = new RNNTDecoderPlugin(buff, sz); ret->setCUDAInfo(mStreamh, mCublas, mWeights_d, mBias_d, mWorkSpace_d); free(buff); return ret; } int RNNTDecoderPlugin::getNbOutputs() const { return 3; } // TODO: No idea if this needs batch size. Actually, don't know what's expected at all. /* Dims RNNTDecoderPlugin::getOutputDimensions(int index, const Dims* inputs, int nbInputDims) { assert(index >= 0 && index < this->getNbOutputs()); if (index == 0) { return Dims3(inputs[0].d[0], mNumLayers, mHiddenSize); } else { return Dims3(inputs[0].d[0], 1, mHiddenSize); } } */ DimsExprs RNNTDecoderPlugin::getOutputDimensions (int outputIndex, const DimsExprs *inputs, int nbInputs, IExprBuilder &exprBuilder) { assert(outputIndex >= 0 && outputIndex < this->getNbOutputs()); return inputs[outputIndex]; } bool RNNTDecoderPlugin::supportsFormatCombination(int pos, const PluginTensorDesc* inOut, int nbInputs, int nbOutputs) { if (inOut[pos].format != TensorFormat::kNCHW) return false; // fp16 I/O if (mDataType == nvinfer1::DataType::kHALF) { bool allHalf = true; // Don't care about pos. If all are half pass it. // The way this is called doesn't fill all of inOut, it only fills it up to pos. for (int i = 0; i <= pos; i++) { if (inOut[i].type != DataType::kHALF) { allHalf = false; } } if (allHalf) { return true; } return false; } return false; } /* void RNNTDecoderPlugin::configurePlugin(const PluginTensorDesc* in, int nbInput, const PluginTensorDesc* out, int nbOutput) { mInputSize = in[0].dims.d[in[0].dims.nbDims - 1]; } */ void RNNTDecoderPlugin::configurePlugin (const DynamicPluginTensorDesc *in, int nbInputs, const DynamicPluginTensorDesc *out, int nbOutputs) { // mInputSize = in[0].desc.dims.d[in[0].desc.dims.nbDims - 1]; } // void RNNTDecoderPlugin::configurePlugin(const Dims *inputDims, int nbInputs, const Dims *outputDims, int nbOutputs, const DataType *inputTypes, const DataType *outputTypes, const bool *inputIsBroadcast, const bool *outputIsBroadcast, PluginFormat floatFormat, int maxBatchSize) { // mInputSize = inputDims[0].d[inputDims[0].nbDims - 1]; // } int RNNTDecoderPlugin::initialize() { if (!mInitialized) { CHECK(cublasCreate(&mCublas)); CHECK(cublasSetMathMode(mCublas, CUBLAS_TENSOR_OP_MATH)); CHECK(cudaStreamCreate(&mStreamh)); mWeights_d = (void**)malloc(mNumLayers * sizeof(void*)); for (int i = 0; i < mNumLayers; i++) { size_t dataTypeSize = 0; if (mDataType == DataType::kHALF) { dataTypeSize = sizeof(half); } size_t sz = 4 * mHiddenSize * ((i == 0 ? mInputSize : mHiddenSize) + mHiddenSize) * dataTypeSize; CHECK(cudaMalloc(&mWeights_d[i], sz)); CHECK(cudaMemcpy(mWeights_d[i], mWeights_h[i], sz, cudaMemcpyHostToDevice)); } mBias_d = (void**)malloc(mNumLayers * sizeof(void*)); for (int i = 0; i < mNumLayers; i++) { size_t dataTypeSize = 0; if (mDataType == DataType::kHALF) { dataTypeSize = sizeof(half); } size_t sz = 8 * mHiddenSize * dataTypeSize; CHECK(cudaMalloc(&mBias_d[i], sz)); CHECK(cudaMemcpy(mBias_d[i], mBias_h[i], sz, cudaMemcpyHostToDevice)); } mWorkSpace_d = NULL;// CHECK(cudaMalloc(&mWorkSpace_d, getWorkspaceSize())); } return cudaSuccess; } void RNNTDecoderPlugin::terminate() { if (mCublas) { CHECK(cublasDestroy(mCublas)); mCublas = nullptr; } if (mStreamh) { CHECK(cudaStreamDestroy(mStreamh)); mStreamh = nullptr; } if (mWeights_d) { for (int i = 0; i < mNumLayers; i++) { if (mWeights_d[i]) { cudaFree(mWeights_d[i]); mWeights_d[i] = nullptr; } } free(mWeights_d); mWeights_d = nullptr; } if (mBias_d) { for (int i = 0; i < mNumLayers; i++) { if (mBias_d[i]) { cudaFree(mBias_d[i]); mBias_d[i] = nullptr; } } free(mBias_d); mBias_d = nullptr; } if (!mWorkSpace_d) { cudaFree(mWorkSpace_d); mWorkSpace_d = nullptr; } } /* size_t RNNTDecoderPlugin::getWorkspaceSize(int maxBatchSize) const { size_t size = 0; // tmp_io size += mNumLayers * mInputSize * maxBatchSize * sizeof(half); // tmp_i size += mHiddenSize * maxBatchSize * 4 * sizeof(half); // tmp_h size += mNumLayers * mHiddenSize * maxBatchSize * 4 * sizeof(half); return size; } */ size_t RNNTDecoderPlugin::getWorkspaceSize(const PluginTensorDesc *inputs, int nbInputs, const PluginTensorDesc *outputs, int nbOutputs) const { size_t size = 0; int batchSize = inputs[0].dims.d[0]; // printf("getWorkspaceSize batchSize %d\n", batchSize); // tmp_io size += mNumLayers * mHiddenSize * batchSize * sizeof(half); // tmp_i size += mHiddenSize * batchSize * 4 * sizeof(half); // tmp_h size += mNumLayers * mHiddenSize * batchSize * 4 * sizeof(half); return size; } // int RNNTDecoderPlugin::enqueue(int batchSize, const void* const* inputs, void** outputs, void* workspace, cudaStream_t stream) { int RNNTDecoderPlugin::enqueue(const PluginTensorDesc *inputDesc, const PluginTensorDesc *outputDesc, const void *const *inputs, void *const *outputs, void *workspace, cudaStream_t stream) { int batchSize = inputDesc[0].dims.d[0]; int effectiveBatch = batchSize; void *tmp_io = NULL; void *tmp_i = NULL; void *tmp_h = NULL; tmp_io = workspace; tmp_i = (void*)((char*)(tmp_io) + mNumLayers * mHiddenSize * effectiveBatch * sizeof(half)); tmp_h = (void*)((char*)(tmp_i) + mHiddenSize * effectiveBatch * 4 * sizeof(half)); cudaEvent_t event; CHECK(cudaEventCreate(&event, cudaEventDisableTiming)); CHECK(cudaEventRecord(event, stream)); CHECK(cudaStreamWaitEvent(mStreamh, event, 0)); CHECK(cudaEventDestroy(event)); if (mDataType == nvinfer1::DataType::kHALF) { decoderStep<half, CUDA_R_16F, half, CUDA_R_16F, half> (mHiddenSize, mInputSize, effectiveBatch, 1, mNumLayers, this->mCublas, (half*)inputs[0], // x (half*)inputs[1], // hx, (half*)inputs[2], // cx, (half**)mWeights_d, (half**)mBias_d, // bias (half*)outputs[0], // y, (half*)outputs[1], // hy, (half*)outputs[2], // cy, (half*)tmp_io, (half*)tmp_i, (half*)tmp_h, stream, mStreamh); } return 0; } size_t RNNTDecoderPlugin::getSerializationSize() const { size_t sz = sizeof(mNumLayers) + sizeof(mHiddenSize) + sizeof(mInputSize) + sizeof(mDataType); // Weights for (int i = 0; i < mNumLayers; i++) { size_t dataTypeSize = 0; if (mDataType == DataType::kHALF) { dataTypeSize = sizeof(half); } sz += 4 * mHiddenSize * ((i == 0 ? mInputSize : mHiddenSize) + mHiddenSize) * dataTypeSize; } // Bias for (int i = 0; i < mNumLayers; i++) { size_t dataTypeSize = 0; if (mDataType == DataType::kHALF) { dataTypeSize = sizeof(half); } sz += 8 * mHiddenSize * dataTypeSize; } return sz; } void RNNTDecoderPlugin::serialize(void* buffer) const { char *d = static_cast<char*>(buffer); // Use maybe_unused attribute when updating to CUDA_STANDARD C++17 #ifndef NDEBUG auto d_start = d; #endif write<int>(d, mNumLayers); write<int>(d, mHiddenSize); write<int>(d, mInputSize); write<nvinfer1::DataType>(d, mDataType); for (int i = 0; i < mNumLayers; i++) { size_t dataTypeSize = 0; if (mDataType == DataType::kHALF) { dataTypeSize = sizeof(half); } size_t sz = 4 * mHiddenSize * ((i == 0 ? mInputSize : mHiddenSize) + mHiddenSize) * dataTypeSize; memcpy(d, mWeights_h[i], sz); d += sz; } for (int i = 0; i < mNumLayers; i++) { size_t dataTypeSize = 0; if (mDataType == DataType::kHALF) { dataTypeSize = sizeof(half); } size_t sz = 8 * mHiddenSize * dataTypeSize; memcpy(d, mBias_h[i], sz); d += sz; } assert(d == d_start + getSerializationSize()); } nvinfer1::DataType RNNTDecoderPlugin::getOutputDataType (int index, const nvinfer1::DataType *inputTypes, int nbInputs) const { return mDataType; } // bool RNNTDecoderPlugin::isOutputBroadcastAcrossBatch (int outputIndex, const bool *inputIsBroadcasted, int nbInputs) const { // return false; // } // bool RNNTDecoderPlugin::canBroadcastInputAcrossBatch (int inputIndex) const { // return inputIndex >= 2 * mNumLayers + 2; // } template <typename T> void RNNTDecoderPlugin::write(char*& buffer, const T& val) const { *reinterpret_cast<T*>(buffer) = val; buffer += sizeof(T); } template <typename T> void RNNTDecoderPlugin::read(const char*& buffer, T& val) const { val = *reinterpret_cast<const T*>(buffer); buffer += sizeof(T); } const char* RNNTDecoderPluginCreator::getPluginName() const { return "RNNTDecoderPlugin"; } const char* RNNTDecoderPluginCreator::getPluginVersion() const { return "1"; } const PluginFieldCollection* RNNTDecoderPluginCreator::getFieldNames() { return nullptr; } void RNNTDecoderPluginCreator::setPluginNamespace(const char* libNamespace) { mNamespace = libNamespace; } const char* RNNTDecoderPluginCreator::getPluginNamespace() const { return mNamespace.c_str(); } IPluginV2DynamicExt * RNNTDecoderPluginCreator::createPlugin(const char *name, const PluginFieldCollection *fc) { return new RNNTDecoderPlugin(fc); } IPluginV2DynamicExt * RNNTDecoderPluginCreator::deserializePlugin(const char *name, const void *serialData, size_t serialLength) { return new RNNTDecoderPlugin(serialData, serialLength); }
b73044b6530df01f6887bfff35431a36b9a6129d.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /****************************************************************************** * * * Distributed Hash Cracker v3.0 * * * * Copyright (c) 2009 RPISEC. * * All rights reserved. * * * * Redistribution and use in source and binary forms, with or without modifi- * * cation, are permitted provided that the following conditions are met: * * * * * Redistributions of source code must retain the above copyright notice * * this list of conditions and the following disclaimer. * * * * * Redistributions in binary form must reproduce the above copyright * * notice, this list of conditions and the following disclaimer in the * * documentation and/or other materials provided with the distribution. * * * * * Neither the name of RPISEC nor the names of its contributors may be * * used to endorse or promote products derived from this software without * * specific prior written permission. * * * * THIS SOFTWARE IS PROVIDED BY RPISEC "AS IS" AND ANY EXPRESS OR IMPLIED * * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * * NO EVENT SHALL RPISEC BE HELD LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * * ******************************************************************************/ /*! @file md5_kernel.cu @brief CUDA implementation of MD5 */ //Left rotate #define ROTL(x, n) (((x) << (n)) | ((x) >> (32 - (n)))) //Core function #define md5round_core(a,b,c,d,k,s,t,f) a = ROTL(a + f(b,c,d) + k + t, s) + b; //Round ops #define Ff(b,c,d) (((b) & (c)) | (~(b) & (d))) #define Fg(b,c,d) (((b) & (d)) | (~(d) & (c))) #define Fh(b,c,d) ((b) ^ (c) ^ (d)) #define Fi(b,c,d) ((c) ^ ((b) | ~(d))) //Rounds #define md5round_f(a,b,c,d,i,n,t) md5round_core(a,b,c,d,buf##i,n,t,Ff) #define md5round_g(a,b,c,d,i,n,t) md5round_core(a,b,c,d,buf##i,n,t,Fg) #define md5round_h(a,b,c,d,i,n,t) md5round_core(a,b,c,d,buf##i,n,t,Fh) #define md5round_i(a,b,c,d,i,n,t) md5round_core(a,b,c,d,buf##i,n,t,Fi) //Textures texture<int, 1, hipReadModeElementType> texCharset; //Fake-array macros #define AddPadding(num) case num: \ buf##num = (buf##num & ~paddmask) | padding; \ break #define InitGuess(num, a,b,c,d) \ { \ /* Calculate the four indices */ \ LstartInit(lstart3, a); \ LstartInit(lstart2, b); \ LstartInit(lstart1, c); \ LstartInit(lstart0, d); \ /* Pack four elements into the int (if we exceed length, padding will overwrite the garbage) */ \ buf##num = \ (charset[lstart3] << 24) | \ (charset[lstart2] << 16) | \ (charset[lstart1] << 8) | \ charset[lstart0]; \ } #define LstartInit(ls, num) \ { \ /* Get initial value and apply carry-in */ \ ls = carry + start[num]; \ /* Rightmost value? Bump by index */ \ if(num == lm1) \ ls += index; \ /* Carry out */ \ if(ls >= base && num<len) \ { \ /* Calculate carry */ \ carry = ls / base; \ /* Update this digit */ \ ls %= base; \ } \ else \ carry = 0; \ } #define SaveOutput(num) case num: \ po[num] = buf##num; /*! @brief CUDA implementation of MD5 Thread-per-block requirement: minimum 64 @param gtarget Target value (four ints, little endian) @param gstart Start index in charset (array of 32 ints, data is left aligned, unused values are at right) @param gsalt Salt (not used) @param status Set to true by a thread which succeeds in cracking the hash @param output Set to the collision by a thread which succeeds in cracking the hash @param base Length of the character set (passed in texCharset texture) @param len Length of valid data in gstart @param saltlen Length of salt (not used) @param hashcount Number of hashes being tested (not used) */ extern "C" __global__ void md5Kernel(int* gtarget, int* gstart, char* gsalt, char* status, char* output, int base, int len, int saltlen, int hashcount) { //Get our position in the grid int index = (blockDim.x * blockIdx.x) + threadIdx.x; //Cache charset in shmem __shared__ char charset[256]; if(threadIdx.x < ceil((float)base / 4)) { int* ccs = (int*)&charset[0]; ccs[threadIdx.x] = tex1Dfetch(texCharset, threadIdx.x); } //Cache start value __shared__ int start[32]; if(threadIdx.x < len) start[threadIdx.x] = gstart[threadIdx.x]; //Cache target value __shared__ int target[4]; if(threadIdx.x < 4) target[threadIdx.x] = gtarget[threadIdx.x]; //Wait for all cache filling to finish __syncthreads(); //Do the core processing #include "md5_kernel_core.h" //Check results if(target[0] == a && target[1] == b && target[2] == c && target[3] == d) { *status = 1; int* po = (int*)output; switch(len / 4) { SaveOutput(7); SaveOutput(6); SaveOutput(5); SaveOutput(4); SaveOutput(3); SaveOutput(2); SaveOutput(1); SaveOutput(0); } } } /*! @brief CUDA implementation of MD5 with batch processing support Thread-per-block requirement: minimum 64 @param gtarget Target value (four ints, little endian) @param gstart Start index in charset (array of 32 ints, data is left aligned, unused values are at right) @param gsalt Salt (not used) @param status Set to true by a thread which succeeds in cracking the hash @param output Set to the collision by a thread which succeeds in cracking the hash @param base Length of the character set (passed in texCharset texture) @param len Length of valid data in gstart @param saltlen Length of salt (not used) @param hashcount Number of hashes being tested. */ extern "C" __global__ void md5BatchKernel(int* gtarget, int* gstart, char* gsalt, char* status, char* output, int base, int len, int saltlen, int hashcount) { //Get our position in the grid int index = (blockDim.x * blockIdx.x) + threadIdx.x; //Cache charset in shmem __shared__ char charset[256]; if(threadIdx.x < ceil((float)base / 4)) { int* ccs = (int*)&charset[0]; ccs[threadIdx.x] = tex1Dfetch(texCharset, threadIdx.x); } //Cache start value __shared__ int start[32]; if(threadIdx.x < len) start[threadIdx.x] = gstart[threadIdx.x]; //Cache target value __shared__ int target[4 * 128]; if(threadIdx.x < 64) { int td = threadIdx.x; if(td < hashcount) { for(int i=0; i<4; i++) target[4*td + i] = gtarget[4*td + i]; } if(td > 64) { td -= 64; if(td < hashcount) { for(int i=0; i<4; i++) target[4*td + i] = gtarget[4*td + i]; } } } //Wait for all cache filling to finish __syncthreads(); //Do the core processing #include "md5_kernel_core.h" for(int i=0; i<hashcount; i++) { int* xtarget = target + (4*i); //Check results if(xtarget[0] == a && xtarget[1] == b && xtarget[2] == c && xtarget[3] == d) { status[i] = 1; int* po = (int*)output + (i*8); switch(len / 4) { SaveOutput(7); SaveOutput(6); SaveOutput(5); SaveOutput(4); SaveOutput(3); SaveOutput(2); SaveOutput(1); SaveOutput(0); } } } }
b73044b6530df01f6887bfff35431a36b9a6129d.cu
/****************************************************************************** * * * Distributed Hash Cracker v3.0 * * * * Copyright (c) 2009 RPISEC. * * All rights reserved. * * * * Redistribution and use in source and binary forms, with or without modifi- * * cation, are permitted provided that the following conditions are met: * * * * * Redistributions of source code must retain the above copyright notice * * this list of conditions and the following disclaimer. * * * * * Redistributions in binary form must reproduce the above copyright * * notice, this list of conditions and the following disclaimer in the * * documentation and/or other materials provided with the distribution. * * * * * Neither the name of RPISEC nor the names of its contributors may be * * used to endorse or promote products derived from this software without * * specific prior written permission. * * * * THIS SOFTWARE IS PROVIDED BY RPISEC "AS IS" AND ANY EXPRESS OR IMPLIED * * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * * NO EVENT SHALL RPISEC BE HELD LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * * ******************************************************************************/ /*! @file md5_kernel.cu @brief CUDA implementation of MD5 */ //Left rotate #define ROTL(x, n) (((x) << (n)) | ((x) >> (32 - (n)))) //Core function #define md5round_core(a,b,c,d,k,s,t,f) a = ROTL(a + f(b,c,d) + k + t, s) + b; //Round ops #define Ff(b,c,d) (((b) & (c)) | (~(b) & (d))) #define Fg(b,c,d) (((b) & (d)) | (~(d) & (c))) #define Fh(b,c,d) ((b) ^ (c) ^ (d)) #define Fi(b,c,d) ((c) ^ ((b) | ~(d))) //Rounds #define md5round_f(a,b,c,d,i,n,t) md5round_core(a,b,c,d,buf##i,n,t,Ff) #define md5round_g(a,b,c,d,i,n,t) md5round_core(a,b,c,d,buf##i,n,t,Fg) #define md5round_h(a,b,c,d,i,n,t) md5round_core(a,b,c,d,buf##i,n,t,Fh) #define md5round_i(a,b,c,d,i,n,t) md5round_core(a,b,c,d,buf##i,n,t,Fi) //Textures texture<int, 1, cudaReadModeElementType> texCharset; //Fake-array macros #define AddPadding(num) case num: \ buf##num = (buf##num & ~paddmask) | padding; \ break #define InitGuess(num, a,b,c,d) \ { \ /* Calculate the four indices */ \ LstartInit(lstart3, a); \ LstartInit(lstart2, b); \ LstartInit(lstart1, c); \ LstartInit(lstart0, d); \ /* Pack four elements into the int (if we exceed length, padding will overwrite the garbage) */ \ buf##num = \ (charset[lstart3] << 24) | \ (charset[lstart2] << 16) | \ (charset[lstart1] << 8) | \ charset[lstart0]; \ } #define LstartInit(ls, num) \ { \ /* Get initial value and apply carry-in */ \ ls = carry + start[num]; \ /* Rightmost value? Bump by index */ \ if(num == lm1) \ ls += index; \ /* Carry out */ \ if(ls >= base && num<len) \ { \ /* Calculate carry */ \ carry = ls / base; \ /* Update this digit */ \ ls %= base; \ } \ else \ carry = 0; \ } #define SaveOutput(num) case num: \ po[num] = buf##num; /*! @brief CUDA implementation of MD5 Thread-per-block requirement: minimum 64 @param gtarget Target value (four ints, little endian) @param gstart Start index in charset (array of 32 ints, data is left aligned, unused values are at right) @param gsalt Salt (not used) @param status Set to true by a thread which succeeds in cracking the hash @param output Set to the collision by a thread which succeeds in cracking the hash @param base Length of the character set (passed in texCharset texture) @param len Length of valid data in gstart @param saltlen Length of salt (not used) @param hashcount Number of hashes being tested (not used) */ extern "C" __global__ void md5Kernel(int* gtarget, int* gstart, char* gsalt, char* status, char* output, int base, int len, int saltlen, int hashcount) { //Get our position in the grid int index = (blockDim.x * blockIdx.x) + threadIdx.x; //Cache charset in shmem __shared__ char charset[256]; if(threadIdx.x < ceil((float)base / 4)) { int* ccs = (int*)&charset[0]; ccs[threadIdx.x] = tex1Dfetch(texCharset, threadIdx.x); } //Cache start value __shared__ int start[32]; if(threadIdx.x < len) start[threadIdx.x] = gstart[threadIdx.x]; //Cache target value __shared__ int target[4]; if(threadIdx.x < 4) target[threadIdx.x] = gtarget[threadIdx.x]; //Wait for all cache filling to finish __syncthreads(); //Do the core processing #include "md5_kernel_core.h" //Check results if(target[0] == a && target[1] == b && target[2] == c && target[3] == d) { *status = 1; int* po = (int*)output; switch(len / 4) { SaveOutput(7); SaveOutput(6); SaveOutput(5); SaveOutput(4); SaveOutput(3); SaveOutput(2); SaveOutput(1); SaveOutput(0); } } } /*! @brief CUDA implementation of MD5 with batch processing support Thread-per-block requirement: minimum 64 @param gtarget Target value (four ints, little endian) @param gstart Start index in charset (array of 32 ints, data is left aligned, unused values are at right) @param gsalt Salt (not used) @param status Set to true by a thread which succeeds in cracking the hash @param output Set to the collision by a thread which succeeds in cracking the hash @param base Length of the character set (passed in texCharset texture) @param len Length of valid data in gstart @param saltlen Length of salt (not used) @param hashcount Number of hashes being tested. */ extern "C" __global__ void md5BatchKernel(int* gtarget, int* gstart, char* gsalt, char* status, char* output, int base, int len, int saltlen, int hashcount) { //Get our position in the grid int index = (blockDim.x * blockIdx.x) + threadIdx.x; //Cache charset in shmem __shared__ char charset[256]; if(threadIdx.x < ceil((float)base / 4)) { int* ccs = (int*)&charset[0]; ccs[threadIdx.x] = tex1Dfetch(texCharset, threadIdx.x); } //Cache start value __shared__ int start[32]; if(threadIdx.x < len) start[threadIdx.x] = gstart[threadIdx.x]; //Cache target value __shared__ int target[4 * 128]; if(threadIdx.x < 64) { int td = threadIdx.x; if(td < hashcount) { for(int i=0; i<4; i++) target[4*td + i] = gtarget[4*td + i]; } if(td > 64) { td -= 64; if(td < hashcount) { for(int i=0; i<4; i++) target[4*td + i] = gtarget[4*td + i]; } } } //Wait for all cache filling to finish __syncthreads(); //Do the core processing #include "md5_kernel_core.h" for(int i=0; i<hashcount; i++) { int* xtarget = target + (4*i); //Check results if(xtarget[0] == a && xtarget[1] == b && xtarget[2] == c && xtarget[3] == d) { status[i] = 1; int* po = (int*)output + (i*8); switch(len / 4) { SaveOutput(7); SaveOutput(6); SaveOutput(5); SaveOutput(4); SaveOutput(3); SaveOutput(2); SaveOutput(1); SaveOutput(0); } } } }
cd14c066f8aa1cbf8fe67df7eae62f6c994607ed.hip
// !!! This is a file automatically generated by hipify!!! #include <stdio.h> #include <iostream> #include <opencv2/opencv.hpp> #include <hip/hip_runtime.h> #include <hip/hip_runtime.h> //Namespaces. using namespace std; using namespace cv; //Hallar promedio y retornarlo. __device__ int cal_intensity(const int* image, int x, int y, int width, int height, int k){ int ic, ir, fc, fr, n; x-(k/2)+1<0 ? ic = 0 : ic = x-(k/2); y-(k/2)+1<0 ? ir = 0 : ir = y-(k/2); x+(k/2)+1>width ? fc = width : fc = x+(k/2)+1; y+(k/2)+1>height ? fr = height : fr = y+(k/2)+1; int red = 0, green = 0, blue = 0; for(int i=ic; i<fc; i++){ for(int j=ir; j<fr; j++){ n = image[j+i*height]; blue += (n % 1000); green += (n/1000) % 1000; red += (n/1000000) % 1000; } } blue = blue / (k*k); green = green / (k*k); red = red / (k*k); return (red*1000000)+(green*1000)+blue; } //Funcion de cada hilo. __global__ void blur_thread(const int* d_image, const int width, const int height, const int kernel, const int total_threads, int* d_blur){ int id = blockDim.x * blockIdx.x + threadIdx.x; int ir = id * ( height / total_threads ); int fr = (id + 1) * ( height / total_threads ); if(id < height){ for(int i=0; i<width; i++){ for(int j=ir; j<fr; j++){ //d_blur[j+i*height] = d_image[j+i*height];; d_blur[j+i*height] = cal_intensity(d_image, i, j, width, height, kernel); //d_blur[j*width+i] = cal_intensity(d_image, i, j, width, height, kernel); //d_blur[j+i*height] = d_image[j+i*height]; //d_blur[j+i*height] = d_image[j+i*height]; } } } } //Main. int main(int argc, char** argv){ //Variables. char* image_name; Mat image, blur_image; int kernel_size, num_threads, num_blocks; //Recibir argumentos. image_name = argv[1]; kernel_size = atoi(argv[2]); num_threads = atoi(argv[3]); if(argc != 4){ cout<<"Numero incorrecto de argumentos.\n"; return -1; } //Leer imagen image = imread(image_name); if(!image.data){ cout<<"Imagen no reconocida.\n"; return -1; } //Inicializar variables int width = image.cols; int height = image.rows; blur_image = image.clone(); hipError_t err = hipSuccess; //Malloc host int numElements = width*height; size_t size = numElements * sizeof(int); int *h_image = (int *)malloc(size); int *h_blur = (int *)malloc(size); //Imagen a un vector 3D int aux = 0; for(int i=0; i<width; i++){ for(int j=0; j<height; j++){ h_image[aux] = image.at<Vec3b>(j,i)[0]; h_image[aux] += image.at<Vec3b>(j,i)[1] * 1000; h_image[aux] += image.at<Vec3b>(j,i)[2] * 1000000; aux++; } } //Malloc devise //Imagen int *d_image = NULL; err = hipMalloc((void **)&d_image, size); if(err != hipSuccess){ cout<<"Error separando espacio imagen normal en GPU "<<hipGetErrorString(err)<<endl; return -1; } //Clon int *d_blur = NULL; err = hipMalloc((void **)&d_blur, size); if(err != hipSuccess){ cout<<"Error separando espacio imagen difuminada en GPU "<<hipGetErrorString(err)<<endl; return -1; } //MemoryCopy //Imagen err = hipMemcpy(d_image, h_image, size, hipMemcpyHostToDevice); if (err != hipSuccess){ cout<<"Error copiando datos a GPU "<<hipGetErrorString(err)<<endl; return -1; } //Lanzar GPU int blocksPerGrid = (height + num_threads - 1) / num_threads; hipLaunchKernelGGL(( blur_thread), dim3(blocksPerGrid), dim3(num_threads), 0, 0, d_image, width, height, kernel_size, height, d_blur); err = hipGetLastError(); if (err != hipSuccess){ cout<<"Fallo al lanzar Kerndel de GPU "<<hipGetErrorString(err)<<endl; return -1; } //Copiar de GPU a CPU cout<<"Copiando datos desde la GPU a CPU."<<endl; err = hipMemcpy(h_blur, d_blur, size, hipMemcpyDeviceToHost); if (err != hipSuccess){ cout<<"Error copiando desde GPU a CPU "<<hipGetErrorString(err)<<endl; return -1; } //Escribir imagen difuminada. aux = 0; for(int i=0; i<width; i++){ for(int j=0; j<height; j++){ blur_image.at<Vec3b>(j,i)[0] = (unsigned char)((h_blur[aux]) % 1000); blur_image.at<Vec3b>(j,i)[1] = (unsigned char)((h_blur[aux]/1000) % 1000); blur_image.at<Vec3b>(j,i)[2] = (unsigned char)((h_blur[aux]/1000000) % 1000); aux++; } } imwrite("blur_image.jpg", blur_image); //Libear espacio err = hipFree(d_image); if (err != hipSuccess){ cout<<"Error liberando memoria de imagen normal "<<hipGetErrorString(err)<<endl; return -1; } err = hipFree(d_blur); if (err != hipSuccess){ cout<<"Error liberando memoria de imagen difuminada "<<hipGetErrorString(err)<<endl; return -1; } free(h_image); free(h_blur); return 0; }
cd14c066f8aa1cbf8fe67df7eae62f6c994607ed.cu
#include <stdio.h> #include <iostream> #include <opencv2/opencv.hpp> #include <cuda.h> #include <cuda_runtime.h> //Namespaces. using namespace std; using namespace cv; //Hallar promedio y retornarlo. __device__ int cal_intensity(const int* image, int x, int y, int width, int height, int k){ int ic, ir, fc, fr, n; x-(k/2)+1<0 ? ic = 0 : ic = x-(k/2); y-(k/2)+1<0 ? ir = 0 : ir = y-(k/2); x+(k/2)+1>width ? fc = width : fc = x+(k/2)+1; y+(k/2)+1>height ? fr = height : fr = y+(k/2)+1; int red = 0, green = 0, blue = 0; for(int i=ic; i<fc; i++){ for(int j=ir; j<fr; j++){ n = image[j+i*height]; blue += (n % 1000); green += (n/1000) % 1000; red += (n/1000000) % 1000; } } blue = blue / (k*k); green = green / (k*k); red = red / (k*k); return (red*1000000)+(green*1000)+blue; } //Funcion de cada hilo. __global__ void blur_thread(const int* d_image, const int width, const int height, const int kernel, const int total_threads, int* d_blur){ int id = blockDim.x * blockIdx.x + threadIdx.x; int ir = id * ( height / total_threads ); int fr = (id + 1) * ( height / total_threads ); if(id < height){ for(int i=0; i<width; i++){ for(int j=ir; j<fr; j++){ //d_blur[j+i*height] = d_image[j+i*height];; d_blur[j+i*height] = cal_intensity(d_image, i, j, width, height, kernel); //d_blur[j*width+i] = cal_intensity(d_image, i, j, width, height, kernel); //d_blur[j+i*height] = d_image[j+i*height]; //d_blur[j+i*height] = d_image[j+i*height]; } } } } //Main. int main(int argc, char** argv){ //Variables. char* image_name; Mat image, blur_image; int kernel_size, num_threads, num_blocks; //Recibir argumentos. image_name = argv[1]; kernel_size = atoi(argv[2]); num_threads = atoi(argv[3]); if(argc != 4){ cout<<"Numero incorrecto de argumentos.\n"; return -1; } //Leer imagen image = imread(image_name); if(!image.data){ cout<<"Imagen no reconocida.\n"; return -1; } //Inicializar variables int width = image.cols; int height = image.rows; blur_image = image.clone(); cudaError_t err = cudaSuccess; //Malloc host int numElements = width*height; size_t size = numElements * sizeof(int); int *h_image = (int *)malloc(size); int *h_blur = (int *)malloc(size); //Imagen a un vector 3D int aux = 0; for(int i=0; i<width; i++){ for(int j=0; j<height; j++){ h_image[aux] = image.at<Vec3b>(j,i)[0]; h_image[aux] += image.at<Vec3b>(j,i)[1] * 1000; h_image[aux] += image.at<Vec3b>(j,i)[2] * 1000000; aux++; } } //Malloc devise //Imagen int *d_image = NULL; err = cudaMalloc((void **)&d_image, size); if(err != cudaSuccess){ cout<<"Error separando espacio imagen normal en GPU "<<cudaGetErrorString(err)<<endl; return -1; } //Clon int *d_blur = NULL; err = cudaMalloc((void **)&d_blur, size); if(err != cudaSuccess){ cout<<"Error separando espacio imagen difuminada en GPU "<<cudaGetErrorString(err)<<endl; return -1; } //MemoryCopy //Imagen err = cudaMemcpy(d_image, h_image, size, cudaMemcpyHostToDevice); if (err != cudaSuccess){ cout<<"Error copiando datos a GPU "<<cudaGetErrorString(err)<<endl; return -1; } //Lanzar GPU int blocksPerGrid = (height + num_threads - 1) / num_threads; blur_thread<<<blocksPerGrid, num_threads>>>(d_image, width, height, kernel_size, height, d_blur); err = cudaGetLastError(); if (err != cudaSuccess){ cout<<"Fallo al lanzar Kerndel de GPU "<<cudaGetErrorString(err)<<endl; return -1; } //Copiar de GPU a CPU cout<<"Copiando datos desde la GPU a CPU."<<endl; err = cudaMemcpy(h_blur, d_blur, size, cudaMemcpyDeviceToHost); if (err != cudaSuccess){ cout<<"Error copiando desde GPU a CPU "<<cudaGetErrorString(err)<<endl; return -1; } //Escribir imagen difuminada. aux = 0; for(int i=0; i<width; i++){ for(int j=0; j<height; j++){ blur_image.at<Vec3b>(j,i)[0] = (unsigned char)((h_blur[aux]) % 1000); blur_image.at<Vec3b>(j,i)[1] = (unsigned char)((h_blur[aux]/1000) % 1000); blur_image.at<Vec3b>(j,i)[2] = (unsigned char)((h_blur[aux]/1000000) % 1000); aux++; } } imwrite("blur_image.jpg", blur_image); //Libear espacio err = cudaFree(d_image); if (err != cudaSuccess){ cout<<"Error liberando memoria de imagen normal "<<cudaGetErrorString(err)<<endl; return -1; } err = cudaFree(d_blur); if (err != cudaSuccess){ cout<<"Error liberando memoria de imagen difuminada "<<cudaGetErrorString(err)<<endl; return -1; } free(h_image); free(h_blur); return 0; }
9c6d29b74f67b9488059736baa6a9c337a0b8f65.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /** * @file test_tiled_tree.cu * @author Adam Rogowiec * * This file is an integral part of the master thesis entitled: * "Elaboration and implementation in CUDA technology parallel version of * estimation of multidimensional random variable density function ridge * detection algorithm." * , which is conducted under the supervision of prof. dr hab. in. Marek Nacz. * * Institute of Control and Computation Engineering Faculty of Electronics and * Information Technology Warsaw University of Technology 2016 */ #include <helper_cuda.h> #include <iostream> #include <sstream> #include <typeinfo> #include <stdexcept> #include <string> #include <cmath> #include <vector> // #ifndef RD_DEBUG // #define NDEBUG // for disabling assert macro // #endif #include <assert.h> #if defined(RD_DEBUG) && !defined(CUB_STDERR) #define CUB_STDERR #endif #include "rd/gpu/device/tiled/tiled_tree.cuh" #include "rd/gpu/device/tiled/tree_drawer.cuh" #include "rd/utils/graph_drawer.hpp" #include "rd/utils/cmd_line_parser.hpp" #include "rd/utils/utilities.hpp" #include "tests/test_util.hpp" #include "cub/test_util.h" //---------------------------------------------- // global variables / constants //---------------------------------------------- static constexpr int BLOCK_THREADS = 128; static constexpr int POINTS_PER_THREAD = 4; static constexpr int MAX_TEST_DIM = 3; static constexpr int MAX_POINTS_NUM = int(1e7); static constexpr int RD_CUDA_MAX_SYNC_DEPTH = 10; static constexpr size_t HUNDRED_MB_IN_BYTES = 100 * 1024 * 1024; static int g_devId = 0; static bool g_verbose = false; static std::string g_devName = ""; //------------------------------------------------------------------------ static void configureDevice( size_t neededMemSize) { checkCudaErrors(hipDeviceReset()); checkCudaErrors(hipSetDevice(g_devId)); checkCudaErrors(hipDeviceSetLimit(hipLimitDevRuntimeSyncDepth, RD_CUDA_MAX_SYNC_DEPTH)); checkCudaErrors(hipDeviceSetLimit(hipLimitMallocHeapSize, neededMemSize)); } //------------------------------------------------------------------------ struct TileProcessOp { template <typename NodeT> __device__ __forceinline__ void operator()(NodeT const * node) const { if (threadIdx.x == 0) { _CubLog("---- Tile TileProcessOp() node id: %d, pointsCnt: %d, neighboursCnt: %d\n", node->id, node->pointsCnt, node->neighboursCnt); } } }; //------------------------------------------------------------------------ // Test kernels //------------------------------------------------------------------------ template < typename TiledTreeT, typename TileProcessOpT, int DIM, typename T> __launch_bounds__ (1) static __global__ void buildTreeKernel( TiledTreeT * tree, T const * inputPoints, int pointsNum, rd::gpu::BoundingBox<DIM, T> * d_globalBBox, int maxTileCapacity, T sphereRadius, T extensionFactor, cub::ArrayWrapper<int, DIM> const initTileCntPerDim, int stride) { // last arg: true -> debugSynchronous // new(tree) TiledTreeT(maxTileCapacity, sphereRadius, extensionFactor, true); new(tree) TiledTreeT(maxTileCapacity, sphereRadius, extensionFactor, false); TileProcessOpT tileProcessOp; hipStream_t buildTreeStream; rdDevCheckCall(hipStreamCreateWithFlags(&buildTreeStream, hipStreamNonBlocking)); rdDevCheckCall(tree->buildTree( inputPoints, pointsNum, initTileCntPerDim, d_globalBBox, tileProcessOp, buildTreeStream, stride)); rdDevCheckCall(hipStreamDestroy(buildTreeStream)); } template < typename TiledTreeT> __launch_bounds__ (1) static __global__ void deleteTiledTree( TiledTreeT * tree) { tree->~TiledTreeT(); } //------------------------------------------------------------------------ template < int DIM, rd::DataMemoryLayout IN_MEM_LAYOUT, rd::DataMemoryLayout OUT_MEM_LAYOUT, typename T> void testBuildTree( T const * h_inputPoints, int pointsNum, T sphereRadius) { typedef rd::gpu::tiled::TiledTreePolicy< BLOCK_THREADS, POINTS_PER_THREAD, cub::LOAD_LDG, rd::gpu::IO_BACKEND_CUB> TiledTreePolicyT; typedef rd::gpu::tiled::TiledTree< TiledTreePolicyT, DIM, IN_MEM_LAYOUT, OUT_MEM_LAYOUT, T> TiledTreeT; int maxTileCapacity = 0.18 * pointsNum; T extensionFactor = 1.4; T * d_inputPoints; TiledTreeT * d_tree; cub::ArrayWrapper<int, DIM> initTileCntPerDim; int inPtsStride = DIM; if (IN_MEM_LAYOUT == rd::ROW_MAJOR) { checkCudaErrors(hipMalloc(&d_inputPoints, pointsNum * DIM * sizeof(T))); } else if (IN_MEM_LAYOUT == rd::COL_MAJOR) { size_t pitch = 0; checkCudaErrors(hipMallocPitch(&d_inputPoints, &pitch, pointsNum * sizeof(T), DIM)); inPtsStride = pitch / sizeof(T); } else { throw std::runtime_error("Unsupported memory layout!"); } checkCudaErrors(hipMalloc(&d_tree, sizeof(TiledTreeT))); // Hardcoded for 3 tiles per dimension for (int k =0; k < DIM; ++k) { initTileCntPerDim.array[k] = 3; } if (IN_MEM_LAYOUT == rd::ROW_MAJOR) { rd::gpu::rdMemcpy<rd::ROW_MAJOR, rd::ROW_MAJOR, hipMemcpyHostToDevice>( d_inputPoints, h_inputPoints, DIM, pointsNum, DIM, inPtsStride); } else if (IN_MEM_LAYOUT == rd::COL_MAJOR) { rd::gpu::rdMemcpy2D<rd::COL_MAJOR, rd::ROW_MAJOR, hipMemcpyHostToDevice>( d_inputPoints, h_inputPoints, DIM, pointsNum, inPtsStride * sizeof(T), DIM * sizeof(T)); } else { throw std::runtime_error("Unsupported memory layout!"); } checkCudaErrors(hipDeviceSynchronize()); rd::gpu::BoundingBox<DIM, T> globalBBox; checkCudaErrors(globalBBox.template findBounds<IN_MEM_LAYOUT>( d_inputPoints, pointsNum, inPtsStride)); globalBBox.calcDistances(); // allocate & copy memory for device global bounding box rd::gpu::BoundingBox<DIM, T> *d_globalBBox; checkCudaErrors(hipMalloc(&d_globalBBox, sizeof(rd::gpu::BoundingBox<DIM,T>))); checkCudaErrors(hipMemcpy(d_globalBBox, &globalBBox, sizeof(rd::gpu::BoundingBox<DIM,T>), hipMemcpyHostToDevice)); checkCudaErrors(hipDeviceSynchronize()); std::cout << "Invoking buildTreeKernel" << std::endl; hipLaunchKernelGGL(( buildTreeKernel<TiledTreeT, TileProcessOp, DIM/*, IN_MEM_LAYOUT*/>), dim3(1),dim3(1), 0, 0, d_tree, d_inputPoints, pointsNum, d_globalBBox, maxTileCapacity, sphereRadius, extensionFactor, initTileCntPerDim, inPtsStride); checkCudaErrors(hipGetLastError()); checkCudaErrors(hipDeviceSynchronize()); // draw graphs rd::gpu::tiled::util::TreeDrawer<DIM, IN_MEM_LAYOUT, OUT_MEM_LAYOUT, TiledTreeT, T> treeDrawer( d_tree, d_inputPoints, pointsNum, inPtsStride); treeDrawer.drawBounds(); treeDrawer.drawEachTile(); std::cout << "Invoking deleteTiledTree kernel" << std::endl; hipLaunchKernelGGL(( deleteTiledTree<TiledTreeT>), dim3(1), dim3(1), 0, 0, d_tree); checkCudaErrors(hipGetLastError()); checkCudaErrors(hipDeviceSynchronize()); //------------------------------------------------------------------------------- // clean-up //------------------------------------------------------------------------------- checkCudaErrors(hipFree(d_tree)); checkCudaErrors(hipFree(d_inputPoints)); checkCudaErrors(hipFree(d_globalBBox)); } template < int DIM, typename T> void testMemLayout( int pointNum, PointCloud<T> const & pc) { std::vector<T> && points = pc.extractPart(pointNum, DIM); T sphereRadius = 1.45f * pc.stddev_; if (g_verbose && DIM <= 3) { rd::GraphDrawer<T> gDrawer; std::ostringstream os; os << typeid(T).name() << "_" << DIM << "D_" << g_devName; os << "_initial_samples_set"; gDrawer.showPoints(os.str(), points.data(), pointNum, DIM); } std::cout << rd::HLINE << std::endl; std::cout << "<<<<< ROW_MAJOR >>>>>" << std::endl; testBuildTree<DIM, rd::ROW_MAJOR, rd::ROW_MAJOR>(points.data(), pointNum, sphereRadius); std::cout << rd::HLINE << std::endl; std::cout << "<<<<< COL_MAJOR >>>>>" << std::endl; testBuildTree<DIM, rd::COL_MAJOR, rd::COL_MAJOR>(points.data(), pointNum, sphereRadius); } /** * @brief helper structure for static for loop over dimension */ struct IterateDimensions { template <typename D, typename T> static void impl( D idx, int pointNum, PointCloud<T> const & pc) { std::cout << rd::HLINE << std::endl; std::cout << ">>>> Dimension: " << idx << "D\n"; testMemLayout<D::value>(pointNum, pc); } }; /** * @brief Test detection time & quality relative to point dimension */ template < int DIM, typename T> // typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr> struct TestDimensions { static void impl( PointCloud<T> & pc, int pointNum) { static_assert(DIM != 0, "DIM equal to zero!\n"); pc.pointCnt_ = pointNum; pc.initializeData(); size_t neededMemSize = 5 * pointNum * DIM * sizeof(T); neededMemSize = ::max(HUNDRED_MB_IN_BYTES, neededMemSize); std::cout << "Reserve " << float(neededMemSize) / 1024.f / 1024.f << " Mb for malloc heap size" << std::endl; configureDevice(neededMemSize); std::cout << rd::HLINE << std::endl; std::cout << ">>>> Dimension: " << DIM << "D\n"; testMemLayout<DIM>(pointNum, pc); } }; template <typename T> struct TestDimensions<0, T> { static void impl( PointCloud<T> & pc, int pointNum) { pc.pointCnt_ = pointNum; pc.dim_ = MAX_TEST_DIM; pc.initializeData(); size_t neededMemSize = 10 * pointNum * MAX_TEST_DIM * sizeof(T); neededMemSize = ::max(HUNDRED_MB_IN_BYTES, neededMemSize); std::cout << "Reserve " << float(neededMemSize) / 1024.f / 1024.f << " Mb for malloc heap size" << std::endl; configureDevice(neededMemSize); StaticFor<1, MAX_TEST_DIM, IterateDimensions>::impl(pointNum, pc); } }; /** * @brief Test detection time & quality relative to number of points */ template < typename T, int DIM = 0, typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr> static void testSize( PointCloud<T> & pc, int pointNum = -1) { if (pointNum > 0) { TestDimensions<DIM, T>::impl(pc, pointNum); } else { for (int k = 1000; k <= MAX_POINTS_NUM; k *= 10) { std::cout << "\n//------------------------------------------" << "\n//\t\t pointNum: " << k << "\n//------------------------------------------\n"; TestDimensions<DIM, T>::impl(pc, k); } } } int main(int argc, char const **argv) { float a = -1.f, b = -1.f, stddev = -1.f; int pointNum = -1; rd::CommandLineArgs args(argc, argv); if (args.CheckCmdLineFlag("help")) { printf("%s \n" "\t\t[--a <a parameter of spiral or length if dim > 3>]\n" "\t\t[--b <b parameter of spiral or ignored if dim > 3>]\n" "\t\t[--stddev <standard deviation of generated samples>]\n" "\t\t[--size <number of points>]\n" "\t\t[--d=<device id>]\n" "\t\t[--v <verbose>]\n" "\n", argv[0]); exit(0); } if (args.CheckCmdLineFlag("a")) { args.GetCmdLineArgument("a", a); } if (args.CheckCmdLineFlag("b")) { args.GetCmdLineArgument("b", b); } if (args.CheckCmdLineFlag("stddev")) { args.GetCmdLineArgument("stddev", stddev); } if (args.CheckCmdLineFlag("size")) { args.GetCmdLineArgument("size", pointNum); } if (args.CheckCmdLineFlag("d")) { args.GetCmdLineArgument("d", g_devId); } if (args.CheckCmdLineFlag("v")) { g_verbose = true; } checkCudaErrors(deviceInit(g_devId)); // set device name for logging and drawing purposes hipDeviceProp_t devProp; checkCudaErrors(hipGetDeviceProperties(&devProp, g_devId)); g_devName = devProp.name; #ifdef QUICK_TEST if (pointNum < 0 || a < 0 || b < 0 || stddev < 0) { std::cout << "Have to specify parameters! Rerun with --help for help.\n"; exit(1); } std::cout << "\n//------------------------------------------" << "\n//\t\t (spiral) float: " << "\n//------------------------------------------\n"; const int dim = 3; PointCloud<float> && fpc = SpiralPointCloud<float>(a, b, pointNum, dim, stddev); TestDimensions<dim, float>::impl(fpc, pointNum); // std::cout << "\n//------------------------------------------" // << "\n//\t\t (spiral) double: " // << "\n//------------------------------------------\n"; // PointCloud<double> && dpc = SpiralPointCloud<double>(a, b, pointNum, dim, stddev); // TestDimensions<dim, double>::impl(dpc, pointNum); #else // 1e6 2D points, spiral a=22, b=10, stddev=4 #ifndef RD_DOUBLE_PRECISION std::cout << "\n//------------------------------------------" << "\n//\t\t (spiral) float: " << "\n//------------------------------------------\n"; PointCloud<float> && fpc2d = SpiralPointCloud<float>(22.f, 10.f, 0, 2, 4.f); PointCloud<float> && fpc3d = SpiralPointCloud<float>(22.f, 10.f, 0, 3, 4.f); TestDimensions<2, float>::impl(fpc2d, int(1e6)); TestDimensions<3, float>::impl(fpc3d, int(1e6)); std::cout << "\n//------------------------------------------" << "\n//\t\t (segment) float: " << "\n//------------------------------------------\n"; PointCloud<float> && fpc2 = SegmentPointCloud<float>(1000.f, 0, 0, 4.f); testSize<float>(fpc2); #else std::cout << "\n//------------------------------------------" << "\n//\t\t (spiral) double: " << "\n//------------------------------------------\n"; PointCloud<double> && dpc2d = SpiralPointCloud<double>(22.0, 10.0, 0, 2, 4.0); PointCloud<double> && dpc3d = SpiralPointCloud<double>(22.0, 10.0, 0, 3, 4.0); TestDimensions<2, double>::impl(dpc2d, int(1e6)); TestDimensions<3, double>::impl(dpc3d, int(1e6)); PointCloud<double> && dpc2 = SegmentPointCloud<double>(1000.0, 0, 0, 4.0); std::cout << "\n//------------------------------------------" << "\n//\t\t (segment) double: " << "\n//------------------------------------------\n"; testSize<double>(dpc2); #endif #endif checkCudaErrors(hipDeviceReset()); std::cout << rd::HLINE << std::endl; std::cout << "END!" << std::endl; return EXIT_SUCCESS; }
9c6d29b74f67b9488059736baa6a9c337a0b8f65.cu
/** * @file test_tiled_tree.cu * @author Adam Rogowiec * * This file is an integral part of the master thesis entitled: * "Elaboration and implementation in CUDA technology parallel version of * estimation of multidimensional random variable density function ridge * detection algorithm." * , which is conducted under the supervision of prof. dr hab. inż. Marek Nałęcz. * * Institute of Control and Computation Engineering Faculty of Electronics and * Information Technology Warsaw University of Technology 2016 */ #include <helper_cuda.h> #include <iostream> #include <sstream> #include <typeinfo> #include <stdexcept> #include <string> #include <cmath> #include <vector> // #ifndef RD_DEBUG // #define NDEBUG // for disabling assert macro // #endif #include <assert.h> #if defined(RD_DEBUG) && !defined(CUB_STDERR) #define CUB_STDERR #endif #include "rd/gpu/device/tiled/tiled_tree.cuh" #include "rd/gpu/device/tiled/tree_drawer.cuh" #include "rd/utils/graph_drawer.hpp" #include "rd/utils/cmd_line_parser.hpp" #include "rd/utils/utilities.hpp" #include "tests/test_util.hpp" #include "cub/test_util.h" //---------------------------------------------- // global variables / constants //---------------------------------------------- static constexpr int BLOCK_THREADS = 128; static constexpr int POINTS_PER_THREAD = 4; static constexpr int MAX_TEST_DIM = 3; static constexpr int MAX_POINTS_NUM = int(1e7); static constexpr int RD_CUDA_MAX_SYNC_DEPTH = 10; static constexpr size_t HUNDRED_MB_IN_BYTES = 100 * 1024 * 1024; static int g_devId = 0; static bool g_verbose = false; static std::string g_devName = ""; //------------------------------------------------------------------------ static void configureDevice( size_t neededMemSize) { checkCudaErrors(cudaDeviceReset()); checkCudaErrors(cudaSetDevice(g_devId)); checkCudaErrors(cudaDeviceSetLimit(cudaLimitDevRuntimeSyncDepth, RD_CUDA_MAX_SYNC_DEPTH)); checkCudaErrors(cudaDeviceSetLimit(cudaLimitMallocHeapSize, neededMemSize)); } //------------------------------------------------------------------------ struct TileProcessOp { template <typename NodeT> __device__ __forceinline__ void operator()(NodeT const * node) const { if (threadIdx.x == 0) { _CubLog("---- Tile TileProcessOp() node id: %d, pointsCnt: %d, neighboursCnt: %d\n", node->id, node->pointsCnt, node->neighboursCnt); } } }; //------------------------------------------------------------------------ // Test kernels //------------------------------------------------------------------------ template < typename TiledTreeT, typename TileProcessOpT, int DIM, typename T> __launch_bounds__ (1) static __global__ void buildTreeKernel( TiledTreeT * tree, T const * inputPoints, int pointsNum, rd::gpu::BoundingBox<DIM, T> * d_globalBBox, int maxTileCapacity, T sphereRadius, T extensionFactor, cub::ArrayWrapper<int, DIM> const initTileCntPerDim, int stride) { // last arg: true -> debugSynchronous // new(tree) TiledTreeT(maxTileCapacity, sphereRadius, extensionFactor, true); new(tree) TiledTreeT(maxTileCapacity, sphereRadius, extensionFactor, false); TileProcessOpT tileProcessOp; cudaStream_t buildTreeStream; rdDevCheckCall(cudaStreamCreateWithFlags(&buildTreeStream, cudaStreamNonBlocking)); rdDevCheckCall(tree->buildTree( inputPoints, pointsNum, initTileCntPerDim, d_globalBBox, tileProcessOp, buildTreeStream, stride)); rdDevCheckCall(cudaStreamDestroy(buildTreeStream)); } template < typename TiledTreeT> __launch_bounds__ (1) static __global__ void deleteTiledTree( TiledTreeT * tree) { tree->~TiledTreeT(); } //------------------------------------------------------------------------ template < int DIM, rd::DataMemoryLayout IN_MEM_LAYOUT, rd::DataMemoryLayout OUT_MEM_LAYOUT, typename T> void testBuildTree( T const * h_inputPoints, int pointsNum, T sphereRadius) { typedef rd::gpu::tiled::TiledTreePolicy< BLOCK_THREADS, POINTS_PER_THREAD, cub::LOAD_LDG, rd::gpu::IO_BACKEND_CUB> TiledTreePolicyT; typedef rd::gpu::tiled::TiledTree< TiledTreePolicyT, DIM, IN_MEM_LAYOUT, OUT_MEM_LAYOUT, T> TiledTreeT; int maxTileCapacity = 0.18 * pointsNum; T extensionFactor = 1.4; T * d_inputPoints; TiledTreeT * d_tree; cub::ArrayWrapper<int, DIM> initTileCntPerDim; int inPtsStride = DIM; if (IN_MEM_LAYOUT == rd::ROW_MAJOR) { checkCudaErrors(cudaMalloc(&d_inputPoints, pointsNum * DIM * sizeof(T))); } else if (IN_MEM_LAYOUT == rd::COL_MAJOR) { size_t pitch = 0; checkCudaErrors(cudaMallocPitch(&d_inputPoints, &pitch, pointsNum * sizeof(T), DIM)); inPtsStride = pitch / sizeof(T); } else { throw std::runtime_error("Unsupported memory layout!"); } checkCudaErrors(cudaMalloc(&d_tree, sizeof(TiledTreeT))); // Hardcoded for 3 tiles per dimension for (int k =0; k < DIM; ++k) { initTileCntPerDim.array[k] = 3; } if (IN_MEM_LAYOUT == rd::ROW_MAJOR) { rd::gpu::rdMemcpy<rd::ROW_MAJOR, rd::ROW_MAJOR, cudaMemcpyHostToDevice>( d_inputPoints, h_inputPoints, DIM, pointsNum, DIM, inPtsStride); } else if (IN_MEM_LAYOUT == rd::COL_MAJOR) { rd::gpu::rdMemcpy2D<rd::COL_MAJOR, rd::ROW_MAJOR, cudaMemcpyHostToDevice>( d_inputPoints, h_inputPoints, DIM, pointsNum, inPtsStride * sizeof(T), DIM * sizeof(T)); } else { throw std::runtime_error("Unsupported memory layout!"); } checkCudaErrors(cudaDeviceSynchronize()); rd::gpu::BoundingBox<DIM, T> globalBBox; checkCudaErrors(globalBBox.template findBounds<IN_MEM_LAYOUT>( d_inputPoints, pointsNum, inPtsStride)); globalBBox.calcDistances(); // allocate & copy memory for device global bounding box rd::gpu::BoundingBox<DIM, T> *d_globalBBox; checkCudaErrors(cudaMalloc(&d_globalBBox, sizeof(rd::gpu::BoundingBox<DIM,T>))); checkCudaErrors(cudaMemcpy(d_globalBBox, &globalBBox, sizeof(rd::gpu::BoundingBox<DIM,T>), cudaMemcpyHostToDevice)); checkCudaErrors(cudaDeviceSynchronize()); std::cout << "Invoking buildTreeKernel" << std::endl; buildTreeKernel<TiledTreeT, TileProcessOp, DIM/*, IN_MEM_LAYOUT*/><<<1,1>>>( d_tree, d_inputPoints, pointsNum, d_globalBBox, maxTileCapacity, sphereRadius, extensionFactor, initTileCntPerDim, inPtsStride); checkCudaErrors(cudaGetLastError()); checkCudaErrors(cudaDeviceSynchronize()); // draw graphs rd::gpu::tiled::util::TreeDrawer<DIM, IN_MEM_LAYOUT, OUT_MEM_LAYOUT, TiledTreeT, T> treeDrawer( d_tree, d_inputPoints, pointsNum, inPtsStride); treeDrawer.drawBounds(); treeDrawer.drawEachTile(); std::cout << "Invoking deleteTiledTree kernel" << std::endl; deleteTiledTree<TiledTreeT><<<1, 1>>>(d_tree); checkCudaErrors(cudaGetLastError()); checkCudaErrors(cudaDeviceSynchronize()); //------------------------------------------------------------------------------- // clean-up //------------------------------------------------------------------------------- checkCudaErrors(cudaFree(d_tree)); checkCudaErrors(cudaFree(d_inputPoints)); checkCudaErrors(cudaFree(d_globalBBox)); } template < int DIM, typename T> void testMemLayout( int pointNum, PointCloud<T> const & pc) { std::vector<T> && points = pc.extractPart(pointNum, DIM); T sphereRadius = 1.45f * pc.stddev_; if (g_verbose && DIM <= 3) { rd::GraphDrawer<T> gDrawer; std::ostringstream os; os << typeid(T).name() << "_" << DIM << "D_" << g_devName; os << "_initial_samples_set"; gDrawer.showPoints(os.str(), points.data(), pointNum, DIM); } std::cout << rd::HLINE << std::endl; std::cout << "<<<<< ROW_MAJOR >>>>>" << std::endl; testBuildTree<DIM, rd::ROW_MAJOR, rd::ROW_MAJOR>(points.data(), pointNum, sphereRadius); std::cout << rd::HLINE << std::endl; std::cout << "<<<<< COL_MAJOR >>>>>" << std::endl; testBuildTree<DIM, rd::COL_MAJOR, rd::COL_MAJOR>(points.data(), pointNum, sphereRadius); } /** * @brief helper structure for static for loop over dimension */ struct IterateDimensions { template <typename D, typename T> static void impl( D idx, int pointNum, PointCloud<T> const & pc) { std::cout << rd::HLINE << std::endl; std::cout << ">>>> Dimension: " << idx << "D\n"; testMemLayout<D::value>(pointNum, pc); } }; /** * @brief Test detection time & quality relative to point dimension */ template < int DIM, typename T> // typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr> struct TestDimensions { static void impl( PointCloud<T> & pc, int pointNum) { static_assert(DIM != 0, "DIM equal to zero!\n"); pc.pointCnt_ = pointNum; pc.initializeData(); size_t neededMemSize = 5 * pointNum * DIM * sizeof(T); neededMemSize = std::max(HUNDRED_MB_IN_BYTES, neededMemSize); std::cout << "Reserve " << float(neededMemSize) / 1024.f / 1024.f << " Mb for malloc heap size" << std::endl; configureDevice(neededMemSize); std::cout << rd::HLINE << std::endl; std::cout << ">>>> Dimension: " << DIM << "D\n"; testMemLayout<DIM>(pointNum, pc); } }; template <typename T> struct TestDimensions<0, T> { static void impl( PointCloud<T> & pc, int pointNum) { pc.pointCnt_ = pointNum; pc.dim_ = MAX_TEST_DIM; pc.initializeData(); size_t neededMemSize = 10 * pointNum * MAX_TEST_DIM * sizeof(T); neededMemSize = std::max(HUNDRED_MB_IN_BYTES, neededMemSize); std::cout << "Reserve " << float(neededMemSize) / 1024.f / 1024.f << " Mb for malloc heap size" << std::endl; configureDevice(neededMemSize); StaticFor<1, MAX_TEST_DIM, IterateDimensions>::impl(pointNum, pc); } }; /** * @brief Test detection time & quality relative to number of points */ template < typename T, int DIM = 0, typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr> static void testSize( PointCloud<T> & pc, int pointNum = -1) { if (pointNum > 0) { TestDimensions<DIM, T>::impl(pc, pointNum); } else { for (int k = 1000; k <= MAX_POINTS_NUM; k *= 10) { std::cout << "\n//------------------------------------------" << "\n//\t\t pointNum: " << k << "\n//------------------------------------------\n"; TestDimensions<DIM, T>::impl(pc, k); } } } int main(int argc, char const **argv) { float a = -1.f, b = -1.f, stddev = -1.f; int pointNum = -1; rd::CommandLineArgs args(argc, argv); if (args.CheckCmdLineFlag("help")) { printf("%s \n" "\t\t[--a <a parameter of spiral or length if dim > 3>]\n" "\t\t[--b <b parameter of spiral or ignored if dim > 3>]\n" "\t\t[--stddev <standard deviation of generated samples>]\n" "\t\t[--size <number of points>]\n" "\t\t[--d=<device id>]\n" "\t\t[--v <verbose>]\n" "\n", argv[0]); exit(0); } if (args.CheckCmdLineFlag("a")) { args.GetCmdLineArgument("a", a); } if (args.CheckCmdLineFlag("b")) { args.GetCmdLineArgument("b", b); } if (args.CheckCmdLineFlag("stddev")) { args.GetCmdLineArgument("stddev", stddev); } if (args.CheckCmdLineFlag("size")) { args.GetCmdLineArgument("size", pointNum); } if (args.CheckCmdLineFlag("d")) { args.GetCmdLineArgument("d", g_devId); } if (args.CheckCmdLineFlag("v")) { g_verbose = true; } checkCudaErrors(deviceInit(g_devId)); // set device name for logging and drawing purposes cudaDeviceProp devProp; checkCudaErrors(cudaGetDeviceProperties(&devProp, g_devId)); g_devName = devProp.name; #ifdef QUICK_TEST if (pointNum < 0 || a < 0 || b < 0 || stddev < 0) { std::cout << "Have to specify parameters! Rerun with --help for help.\n"; exit(1); } std::cout << "\n//------------------------------------------" << "\n//\t\t (spiral) float: " << "\n//------------------------------------------\n"; const int dim = 3; PointCloud<float> && fpc = SpiralPointCloud<float>(a, b, pointNum, dim, stddev); TestDimensions<dim, float>::impl(fpc, pointNum); // std::cout << "\n//------------------------------------------" // << "\n//\t\t (spiral) double: " // << "\n//------------------------------------------\n"; // PointCloud<double> && dpc = SpiralPointCloud<double>(a, b, pointNum, dim, stddev); // TestDimensions<dim, double>::impl(dpc, pointNum); #else // 1e6 2D points, spiral a=22, b=10, stddev=4 #ifndef RD_DOUBLE_PRECISION std::cout << "\n//------------------------------------------" << "\n//\t\t (spiral) float: " << "\n//------------------------------------------\n"; PointCloud<float> && fpc2d = SpiralPointCloud<float>(22.f, 10.f, 0, 2, 4.f); PointCloud<float> && fpc3d = SpiralPointCloud<float>(22.f, 10.f, 0, 3, 4.f); TestDimensions<2, float>::impl(fpc2d, int(1e6)); TestDimensions<3, float>::impl(fpc3d, int(1e6)); std::cout << "\n//------------------------------------------" << "\n//\t\t (segment) float: " << "\n//------------------------------------------\n"; PointCloud<float> && fpc2 = SegmentPointCloud<float>(1000.f, 0, 0, 4.f); testSize<float>(fpc2); #else std::cout << "\n//------------------------------------------" << "\n//\t\t (spiral) double: " << "\n//------------------------------------------\n"; PointCloud<double> && dpc2d = SpiralPointCloud<double>(22.0, 10.0, 0, 2, 4.0); PointCloud<double> && dpc3d = SpiralPointCloud<double>(22.0, 10.0, 0, 3, 4.0); TestDimensions<2, double>::impl(dpc2d, int(1e6)); TestDimensions<3, double>::impl(dpc3d, int(1e6)); PointCloud<double> && dpc2 = SegmentPointCloud<double>(1000.0, 0, 0, 4.0); std::cout << "\n//------------------------------------------" << "\n//\t\t (segment) double: " << "\n//------------------------------------------\n"; testSize<double>(dpc2); #endif #endif checkCudaErrors(cudaDeviceReset()); std::cout << rd::HLINE << std::endl; std::cout << "END!" << std::endl; return EXIT_SUCCESS; }
9e631d68214da24abdeb1edcb1f18f3e43132c16.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <stdio.h> /* * Host function to initialize vector elements. This function * simply initializes each element to equal its index in the * vector. */ void initWith(float num, float *a, int N) { for(int i = 0; i < N; ++i) { a[i] = num; } } /* * Device kernel stores into `result` the sum of each * same-indexed value of `a` and `b`. */ __global__ void addVectorsInto(float *result, float *a, float *b, int N) { int index = threadIdx.x + blockIdx.x * blockDim.x; int stride = blockDim.x * gridDim.x; for(int i = index; i < N; i += stride) { result[i] = a[i] + b[i]; } } /* * Host function to confirm values in `vector`. This function * assumes all values are the same `target` value. */ void checkElementsAre(float target, float *vector, int N) { for(int i = 0; i < N; i++) { if(vector[i] != target) { printf("FAIL: vector[%d] - %0.0f does not equal %0.0f\n", i, vector[i], target); exit(1); } } printf("Success! All values calculated correctly.\n"); } int main() { const int N = 2<<24; size_t size = N * sizeof(float); float *a; float *b; float *c; hipMallocManaged(&a, size); hipMallocManaged(&b, size); hipMallocManaged(&c, size); initWith(3, a, N); initWith(4, b, N); initWith(0, c, N); size_t threadsPerBlock; size_t numberOfBlocks; /* * nsys should register performance changes when execution configuration * is updated. */ threadsPerBlock = 1; numberOfBlocks = 1; hipError_t addVectorsErr; hipError_t asyncErr; hipLaunchKernelGGL(( addVectorsInto), dim3(numberOfBlocks), dim3(threadsPerBlock), 0, 0, c, a, b, N); addVectorsErr = hipGetLastError(); if(addVectorsErr != hipSuccess) printf("Error: %s\n", hipGetErrorString(addVectorsErr)); asyncErr = hipDeviceSynchronize(); if(asyncErr != hipSuccess) printf("Error: %s\n", hipGetErrorString(asyncErr)); checkElementsAre(7, c, N); hipFree(a); hipFree(b); hipFree(c); }
9e631d68214da24abdeb1edcb1f18f3e43132c16.cu
#include <stdio.h> /* * Host function to initialize vector elements. This function * simply initializes each element to equal its index in the * vector. */ void initWith(float num, float *a, int N) { for(int i = 0; i < N; ++i) { a[i] = num; } } /* * Device kernel stores into `result` the sum of each * same-indexed value of `a` and `b`. */ __global__ void addVectorsInto(float *result, float *a, float *b, int N) { int index = threadIdx.x + blockIdx.x * blockDim.x; int stride = blockDim.x * gridDim.x; for(int i = index; i < N; i += stride) { result[i] = a[i] + b[i]; } } /* * Host function to confirm values in `vector`. This function * assumes all values are the same `target` value. */ void checkElementsAre(float target, float *vector, int N) { for(int i = 0; i < N; i++) { if(vector[i] != target) { printf("FAIL: vector[%d] - %0.0f does not equal %0.0f\n", i, vector[i], target); exit(1); } } printf("Success! All values calculated correctly.\n"); } int main() { const int N = 2<<24; size_t size = N * sizeof(float); float *a; float *b; float *c; cudaMallocManaged(&a, size); cudaMallocManaged(&b, size); cudaMallocManaged(&c, size); initWith(3, a, N); initWith(4, b, N); initWith(0, c, N); size_t threadsPerBlock; size_t numberOfBlocks; /* * nsys should register performance changes when execution configuration * is updated. */ threadsPerBlock = 1; numberOfBlocks = 1; cudaError_t addVectorsErr; cudaError_t asyncErr; addVectorsInto<<<numberOfBlocks, threadsPerBlock>>>(c, a, b, N); addVectorsErr = cudaGetLastError(); if(addVectorsErr != cudaSuccess) printf("Error: %s\n", cudaGetErrorString(addVectorsErr)); asyncErr = cudaDeviceSynchronize(); if(asyncErr != cudaSuccess) printf("Error: %s\n", cudaGetErrorString(asyncErr)); checkElementsAre(7, c, N); cudaFree(a); cudaFree(b); cudaFree(c); }
b68f5f93e1d658b6a21d5239642462b8c49e180d.hip
// !!! This is a file automatically generated by hipify!!! #include <stdbool.h> #include <stdio.h> #include <string.h> #include <getopt.h> #include <hiprand/hiprand_kernel.h> #include <stdlib.h> #include <hip/hip_runtime.h> #include <sys/time.h> #include "stats_kernal.cu" #include<chrono> #include<iostream> using namespace std; using namespace std::chrono; int blocks_[20][2] = {{8,8},{16,16},{24,24},{32,32},{1,64},{1,128},{1,192},{1,256},{1,320},{1,384},{1,448},{1,512},{1,576},{1,640},{1,704},{1,768},{1,832},{1,896},{1,960},{1,1024}}; int matrices_[7][2] = {{240,240},{496,496},{784,784},{1016,1016},{1232,1232},{1680,1680},{2024,2024}}; int main(int argc, char **argv) { hipSetDevice(0); char* p;int matrix_len=strtol(argv[1], &p, 10); for(int matrix_looper=0;matrix_looper<matrix_len;matrix_looper++){ for(int block_looper=0;block_looper<20;block_looper++){ int XSIZE=matrices_[matrix_looper][0],YSIZE=matrices_[matrix_looper][1],BLOCKX=blocks_[block_looper][0],BLOCKY=blocks_[block_looper][1]; const float *data = NULL; hipMalloc(&data, XSIZE*YSIZE); float *device_soln = NULL; hipMalloc(&device_soln, XSIZE*YSIZE); const int size = 1; const int num_calcs = 1; const int num_threads = 1; const int offset = 1; int iXSIZE= XSIZE; int iYSIZE= YSIZE; while(iXSIZE%BLOCKX!=0) { iXSIZE++; } while(iYSIZE%BLOCKY!=0) { iYSIZE++; } dim3 gridBlock(iXSIZE/BLOCKX, iYSIZE/BLOCKY); dim3 threadBlock(BLOCKX, BLOCKY); hipFree(0);hipLaunchKernelGGL(( stats_kernal), dim3(gridBlock),dim3(threadBlock), 0, 0, data,device_soln,size,num_calcs,num_threads,offset); hipDeviceSynchronize(); for (int loop_counter = 0; loop_counter < 10; ++loop_counter) {hipLaunchKernelGGL(( stats_kernal), dim3(gridBlock),dim3(threadBlock), 0, 0, data,device_soln,size,num_calcs,num_threads,offset); } auto start = steady_clock::now(); for (int loop_counter = 0; loop_counter < 1000; loop_counter++) {hipLaunchKernelGGL(( stats_kernal), dim3(gridBlock),dim3(threadBlock), 0, 0, data,device_soln,size,num_calcs,num_threads,offset); } auto end = steady_clock::now(); auto usecs = duration_cast<duration<float, microseconds::period> >(end - start); cout <<'['<<usecs.count()<<','<<'('<<BLOCKX<<','<<BLOCKY<<')' << ','<<'('<<XSIZE<<','<<YSIZE<<')'<<']' << endl; } }}
b68f5f93e1d658b6a21d5239642462b8c49e180d.cu
#include <stdbool.h> #include <stdio.h> #include <string.h> #include <getopt.h> #include <curand_kernel.h> #include <stdlib.h> #include <cuda.h> #include <sys/time.h> #include "stats_kernal.cu" #include<chrono> #include<iostream> using namespace std; using namespace std::chrono; int blocks_[20][2] = {{8,8},{16,16},{24,24},{32,32},{1,64},{1,128},{1,192},{1,256},{1,320},{1,384},{1,448},{1,512},{1,576},{1,640},{1,704},{1,768},{1,832},{1,896},{1,960},{1,1024}}; int matrices_[7][2] = {{240,240},{496,496},{784,784},{1016,1016},{1232,1232},{1680,1680},{2024,2024}}; int main(int argc, char **argv) { cudaSetDevice(0); char* p;int matrix_len=strtol(argv[1], &p, 10); for(int matrix_looper=0;matrix_looper<matrix_len;matrix_looper++){ for(int block_looper=0;block_looper<20;block_looper++){ int XSIZE=matrices_[matrix_looper][0],YSIZE=matrices_[matrix_looper][1],BLOCKX=blocks_[block_looper][0],BLOCKY=blocks_[block_looper][1]; const float *data = NULL; cudaMalloc(&data, XSIZE*YSIZE); float *device_soln = NULL; cudaMalloc(&device_soln, XSIZE*YSIZE); const int size = 1; const int num_calcs = 1; const int num_threads = 1; const int offset = 1; int iXSIZE= XSIZE; int iYSIZE= YSIZE; while(iXSIZE%BLOCKX!=0) { iXSIZE++; } while(iYSIZE%BLOCKY!=0) { iYSIZE++; } dim3 gridBlock(iXSIZE/BLOCKX, iYSIZE/BLOCKY); dim3 threadBlock(BLOCKX, BLOCKY); cudaFree(0); stats_kernal<<<gridBlock,threadBlock>>>(data,device_soln,size,num_calcs,num_threads,offset); cudaDeviceSynchronize(); for (int loop_counter = 0; loop_counter < 10; ++loop_counter) { stats_kernal<<<gridBlock,threadBlock>>>(data,device_soln,size,num_calcs,num_threads,offset); } auto start = steady_clock::now(); for (int loop_counter = 0; loop_counter < 1000; loop_counter++) { stats_kernal<<<gridBlock,threadBlock>>>(data,device_soln,size,num_calcs,num_threads,offset); } auto end = steady_clock::now(); auto usecs = duration_cast<duration<float, microseconds::period> >(end - start); cout <<'['<<usecs.count()<<','<<'('<<BLOCKX<<','<<BLOCKY<<')' << ','<<'('<<XSIZE<<','<<YSIZE<<')'<<']' << endl; } }}
16c6ecb5834536b7527487c636a4fd6d6537efd8.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "includes.h" __global__ void __transpose(double *in, int instride, double *out, int outstride, int nrows, int ncols) { int nx = BLOCKDIM * gridDim.x; int ny = BLOCKDIM * gridDim.y; int ix = BLOCKDIM * blockIdx.x; int iy = BLOCKDIM * blockIdx.y; __shared__ double tile[BLOCKDIM][BLOCKDIM+1]; for (int yb = iy; yb < ncols; yb += ny) { for (int xb = ix; xb < nrows; xb += nx) { if (xb + threadIdx.x < nrows) { int ylim = min(ncols, yb + BLOCKDIM); for (int y = threadIdx.y + yb; y < ylim; y += blockDim.y) { tile[threadIdx.x][y-yb] = in[threadIdx.x+xb + y*instride]; } } __syncthreads(); if (yb + threadIdx.x < ncols) { int xlim = min(nrows, xb + BLOCKDIM); for (int x = threadIdx.y + xb; x < xlim; x += blockDim.y) { out[threadIdx.x + yb + x*outstride] = tile[x-xb][threadIdx.x]; } } __syncthreads(); } } }
16c6ecb5834536b7527487c636a4fd6d6537efd8.cu
#include "includes.h" __global__ void __transpose(double *in, int instride, double *out, int outstride, int nrows, int ncols) { int nx = BLOCKDIM * gridDim.x; int ny = BLOCKDIM * gridDim.y; int ix = BLOCKDIM * blockIdx.x; int iy = BLOCKDIM * blockIdx.y; __shared__ double tile[BLOCKDIM][BLOCKDIM+1]; for (int yb = iy; yb < ncols; yb += ny) { for (int xb = ix; xb < nrows; xb += nx) { if (xb + threadIdx.x < nrows) { int ylim = min(ncols, yb + BLOCKDIM); for (int y = threadIdx.y + yb; y < ylim; y += blockDim.y) { tile[threadIdx.x][y-yb] = in[threadIdx.x+xb + y*instride]; } } __syncthreads(); if (yb + threadIdx.x < ncols) { int xlim = min(nrows, xb + BLOCKDIM); for (int x = threadIdx.y + xb; x < xlim; x += blockDim.y) { out[threadIdx.x + yb + x*outstride] = tile[x-xb][threadIdx.x]; } } __syncthreads(); } } }
251413922d0251026b99ad3e4b95055dc9aa1d92.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "fractal.hh" #include "utils.hh" #include <cutil_inline.h> #include <cuda_gl_interop.h> #include <cutil_gl_inline.h> #include <cutil_math.h> #include <hip/hip_vector_types.h> #include <vector_functions.h> #include <math_functions.h> #include <iostream> #include <iomanip> using namespace std; #include "kernel-utils.hh" __global__ void drawJuliaKernel(unsigned int *out, float centerX, float centerY, float jcx, float jcy, float scale, size_t width, size_t height, size_t maxIters) { unsigned int x = blockIdx.x * blockDim.x + threadIdx.x; unsigned int y = blockIdx.y * blockDim.y + threadIdx.y; if (x >= width || y >= height) return; // Position of this pixel float x0 = centerX + (x - (width * 0.5f)) * scale; float y0 = centerY + (y - (height * 0.5f)) * scale; int iters = 0; float cx = x0; float cy = y0; // Squared values float scx = cx * cx, scy = cy * cy; while ((scx + scy) < 4 && iters < maxIters) { float xt = scx - scy + jcx; cy = 2 * cx * cy + jcy; cx = xt; // Calculate squared values scx = cx * cx; scy = cy * cy; iters++; } unsigned int color = getColor(iters, maxIters); out[y * width + x] = color; } JuliaRenderer::JuliaRenderer(size_t width, size_t height, float cx_, float cy_) : FractalRenderer(width, height), cx(cx_), cy(cy_) { } JuliaRenderer::~JuliaRenderer() { } void JuliaRenderer::calculateFractal(unsigned int* target) { size_t iters = 4.0f / pow(scale, 0.6); iters = min((unsigned int) iters, 10000); iters *= iterScale; cout << "Rendering Julia(" << fixed << setprecision(5) << cx << ", " << cy << ") at " << x << "," << y << " with scale " << scale << ", max iters " << iters << endl; hipLaunchKernelGGL(( drawJuliaKernel), dim3(*dimGrid), dim3(*dimBlock), 0, 0, target, x, y, cx, cy, scale, width, height, iters); changed = false; }
251413922d0251026b99ad3e4b95055dc9aa1d92.cu
#include "fractal.hh" #include "utils.hh" #include <cutil_inline.h> #include <cuda_gl_interop.h> #include <cutil_gl_inline.h> #include <cutil_math.h> #include <vector_types.h> #include <vector_functions.h> #include <math_functions.h> #include <iostream> #include <iomanip> using namespace std; #include "kernel-utils.hh" __global__ void drawJuliaKernel(unsigned int *out, float centerX, float centerY, float jcx, float jcy, float scale, size_t width, size_t height, size_t maxIters) { unsigned int x = blockIdx.x * blockDim.x + threadIdx.x; unsigned int y = blockIdx.y * blockDim.y + threadIdx.y; if (x >= width || y >= height) return; // Position of this pixel float x0 = centerX + (x - (width * 0.5f)) * scale; float y0 = centerY + (y - (height * 0.5f)) * scale; int iters = 0; float cx = x0; float cy = y0; // Squared values float scx = cx * cx, scy = cy * cy; while ((scx + scy) < 4 && iters < maxIters) { float xt = scx - scy + jcx; cy = 2 * cx * cy + jcy; cx = xt; // Calculate squared values scx = cx * cx; scy = cy * cy; iters++; } unsigned int color = getColor(iters, maxIters); out[y * width + x] = color; } JuliaRenderer::JuliaRenderer(size_t width, size_t height, float cx_, float cy_) : FractalRenderer(width, height), cx(cx_), cy(cy_) { } JuliaRenderer::~JuliaRenderer() { } void JuliaRenderer::calculateFractal(unsigned int* target) { size_t iters = 4.0f / pow(scale, 0.6); iters = min((unsigned int) iters, 10000); iters *= iterScale; cout << "Rendering Julia(" << fixed << setprecision(5) << cx << ", " << cy << ") at " << x << "," << y << " with scale " << scale << ", max iters " << iters << endl; drawJuliaKernel<<<*dimGrid, *dimBlock>>>(target, x, y, cx, cy, scale, width, height, iters); changed = false; }
6b0bf790dc099bdc8c4f5594d5f65f66212a50a8.hip
// !!! This is a file automatically generated by hipify!!! #include <stdbool.h> #include <stdio.h> #include <string.h> #include <getopt.h> #include <hiprand/hiprand_kernel.h> #include <stdlib.h> #include <hip/hip_runtime.h> #include <sys/time.h> #include "SharedMem2Registers.cu" #include<chrono> #include<iostream> using namespace std; using namespace std::chrono; int blocks_[20][2] = {{8,8},{16,16},{24,24},{32,32},{1,64},{1,128},{1,192},{1,256},{1,320},{1,384},{1,448},{1,512},{1,576},{1,640},{1,704},{1,768},{1,832},{1,896},{1,960},{1,1024}}; int matrices_[7][2] = {{240,240},{496,496},{784,784},{1016,1016},{1232,1232},{1680,1680},{2024,2024}}; int main(int argc, char **argv) { hipSetDevice(0); char* p;int matrix_len=strtol(argv[1], &p, 10); for(int matrix_looper=0;matrix_looper<matrix_len;matrix_looper++){ for(int block_looper=0;block_looper<20;block_looper++){ int XSIZE=matrices_[matrix_looper][0],YSIZE=matrices_[matrix_looper][1],BLOCKX=blocks_[block_looper][0],BLOCKY=blocks_[block_looper][1]; float *outFloat = NULL; hipMalloc(&outFloat, XSIZE*YSIZE); int iSize = XSIZE*YSIZE; int iXSIZE= XSIZE; int iYSIZE= YSIZE; while(iXSIZE%BLOCKX!=0) { iXSIZE++; } while(iYSIZE%BLOCKY!=0) { iYSIZE++; } dim3 gridBlock(iXSIZE/BLOCKX, iYSIZE/BLOCKY); dim3 threadBlock(BLOCKX, BLOCKY); hipFree(0);hipLaunchKernelGGL(( SharedMem2Registers), dim3(gridBlock),dim3(threadBlock), 0, 0, outFloat,iSize); hipDeviceSynchronize(); for (int loop_counter = 0; loop_counter < 10; ++loop_counter) {hipLaunchKernelGGL(( SharedMem2Registers), dim3(gridBlock),dim3(threadBlock), 0, 0, outFloat,iSize); } auto start = steady_clock::now(); for (int loop_counter = 0; loop_counter < 1000; loop_counter++) {hipLaunchKernelGGL(( SharedMem2Registers), dim3(gridBlock),dim3(threadBlock), 0, 0, outFloat,iSize); } auto end = steady_clock::now(); auto usecs = duration_cast<duration<float, microseconds::period> >(end - start); cout <<'['<<usecs.count()<<','<<'('<<BLOCKX<<','<<BLOCKY<<')' << ','<<'('<<XSIZE<<','<<YSIZE<<')'<<']' << endl; } }}
6b0bf790dc099bdc8c4f5594d5f65f66212a50a8.cu
#include <stdbool.h> #include <stdio.h> #include <string.h> #include <getopt.h> #include <curand_kernel.h> #include <stdlib.h> #include <cuda.h> #include <sys/time.h> #include "SharedMem2Registers.cu" #include<chrono> #include<iostream> using namespace std; using namespace std::chrono; int blocks_[20][2] = {{8,8},{16,16},{24,24},{32,32},{1,64},{1,128},{1,192},{1,256},{1,320},{1,384},{1,448},{1,512},{1,576},{1,640},{1,704},{1,768},{1,832},{1,896},{1,960},{1,1024}}; int matrices_[7][2] = {{240,240},{496,496},{784,784},{1016,1016},{1232,1232},{1680,1680},{2024,2024}}; int main(int argc, char **argv) { cudaSetDevice(0); char* p;int matrix_len=strtol(argv[1], &p, 10); for(int matrix_looper=0;matrix_looper<matrix_len;matrix_looper++){ for(int block_looper=0;block_looper<20;block_looper++){ int XSIZE=matrices_[matrix_looper][0],YSIZE=matrices_[matrix_looper][1],BLOCKX=blocks_[block_looper][0],BLOCKY=blocks_[block_looper][1]; float *outFloat = NULL; cudaMalloc(&outFloat, XSIZE*YSIZE); int iSize = XSIZE*YSIZE; int iXSIZE= XSIZE; int iYSIZE= YSIZE; while(iXSIZE%BLOCKX!=0) { iXSIZE++; } while(iYSIZE%BLOCKY!=0) { iYSIZE++; } dim3 gridBlock(iXSIZE/BLOCKX, iYSIZE/BLOCKY); dim3 threadBlock(BLOCKX, BLOCKY); cudaFree(0); SharedMem2Registers<<<gridBlock,threadBlock>>>(outFloat,iSize); cudaDeviceSynchronize(); for (int loop_counter = 0; loop_counter < 10; ++loop_counter) { SharedMem2Registers<<<gridBlock,threadBlock>>>(outFloat,iSize); } auto start = steady_clock::now(); for (int loop_counter = 0; loop_counter < 1000; loop_counter++) { SharedMem2Registers<<<gridBlock,threadBlock>>>(outFloat,iSize); } auto end = steady_clock::now(); auto usecs = duration_cast<duration<float, microseconds::period> >(end - start); cout <<'['<<usecs.count()<<','<<'('<<BLOCKX<<','<<BLOCKY<<')' << ','<<'('<<XSIZE<<','<<YSIZE<<')'<<']' << endl; } }}
8a862e28b646fac314f1d183ce45b4864d57f5c1.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* * Copyright (c) 2020, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "HugeCTR/include/layers/element_wise_function.hpp" #include "HugeCTR/include/layers/multiply_layer.hpp" #include "HugeCTR/include/utils.cuh" #include "HugeCTR/include/utils.hpp" #include <algorithm> #include <functional> #ifndef NDEBUG #include <iostream> #endif namespace HugeCTR { namespace { #define BLOCK_DIM_SIZE 32 template <typename T> __global__ void multiply_kernel(const T* input, const T* weight, T* output, int batch_size, int slot_num, int embedding_vec_size) { if ((blockIdx.x < batch_size) && (threadIdx.x < embedding_vec_size)) { for (int i = 0; i < slot_num; i++) { output[blockIdx.x * slot_num * embedding_vec_size + i * embedding_vec_size + threadIdx.x] = input[blockIdx.x * slot_num + i] * weight[i * embedding_vec_size + threadIdx.x]; } } } template <typename T> __global__ void multiply_transpose_fuse_kernel(int batch_size, int slot_num, int embedding_vec_size, const T* top_grad, const T* input, T* wgrad_tmp_trans) { int row = batch_size; int col = slot_num * embedding_vec_size; __shared__ T sh_data[BLOCK_DIM_SIZE + 1][BLOCK_DIM_SIZE]; int src_index_x = blockIdx.x * blockDim.x + threadIdx.x; int src_index_y = blockIdx.y * blockDim.y + threadIdx.y; if ((src_index_x < col) && (src_index_y < row)) { int index_in = src_index_y * col + src_index_x; sh_data[threadIdx.x][threadIdx.y] = top_grad[index_in] * input[index_in / embedding_vec_size]; } __syncthreads(); int dst_index_x = blockIdx.y * blockDim.y + threadIdx.x; int dst_index_y = blockIdx.x * blockDim.x + threadIdx.y; if ((dst_index_x < row) && (dst_index_y < col)) { int index_out = dst_index_y * row + dst_index_x; wgrad_tmp_trans[index_out] = sh_data[threadIdx.y][threadIdx.x]; } } // sum reduce computation in one block template <typename T> __global__ void sum_reduce_batch_kernel(int row, // row=gridDim.x int col, const T* input, T* output) { float local_sum = 0.0f; for (int tid = threadIdx.x; tid < col; tid += blockDim.x) { local_sum += input[blockIdx.x * col + tid]; } __syncthreads(); local_sum = blockReduceSum(local_sum); if (threadIdx.x == 0) { output[blockIdx.x] += local_sum; } } template <typename T> __global__ void multiply_dgrad_kernel(const T* top_grad, const T* weight, T* dgrad, int batch_size, int slot_num, int embedding_vec_size) { if ((blockIdx.x < batch_size) && (threadIdx.x < embedding_vec_size)) { for (int i = 0; i < slot_num; i++) { T local_sum = top_grad[blockIdx.x * slot_num * embedding_vec_size + i * embedding_vec_size + threadIdx.x] * weight[i * embedding_vec_size + threadIdx.x]; local_sum = blockReduceSum(local_sum); if (threadIdx.x == 0) { dgrad[blockIdx.x * slot_num + i] = local_sum; } } } } template <typename T> void multiply_wgrad(const T* top_grad, const T* input, T* wgrad, T* wgrad_tmp_trans, int batch_size, int slot_num, int embedding_vec_size, hipStream_t stream) { dim3 blockSize1(BLOCK_DIM_SIZE, BLOCK_DIM_SIZE, 1); dim3 gridSize1((slot_num * embedding_vec_size + blockSize1.x - 1) / blockSize1.x, (batch_size + blockSize1.y - 1) / blockSize1.y, 1); hipLaunchKernelGGL(( multiply_transpose_fuse_kernel), dim3(gridSize1), dim3(blockSize1), 0, stream, batch_size, slot_num, embedding_vec_size, top_grad, input, wgrad_tmp_trans); dim3 blockSize2(256, 1, 1); dim3 gridSize2(slot_num * embedding_vec_size, 1, 1); hipLaunchKernelGGL(( sum_reduce_batch_kernel), dim3(gridSize2), dim3(blockSize2), 0, stream, slot_num * embedding_vec_size, batch_size, wgrad_tmp_trans, wgrad); } template <typename T> void multiply_dgrad(const T* top_grad, const T* weight, T* dgrad, int batch_size, int slot_num, int embedding_vec_size, hipStream_t stream) { dim3 blockSize(embedding_vec_size, 1, 1); dim3 gridSize(batch_size, 1, 1); hipLaunchKernelGGL(( multiply_dgrad_kernel), dim3(gridSize), dim3(blockSize), 0, stream, top_grad, weight, dgrad, batch_size, slot_num, embedding_vec_size); } } // end of namespace MultiplyLayer::MultiplyLayer(const std::shared_ptr<GeneralBuffer<float>>& weight_buff, const std::shared_ptr<GeneralBuffer<float>>& wgrad_buff, const std::shared_ptr<GeneralBuffer<float>>& blob_buff, const std::shared_ptr<Tensor<float>>& in_tensor, std::shared_ptr<Tensor<float>>& out_tensor, const std::vector<size_t>& weight_dims, int device_id) : Layer(device_id) { try { CudaDeviceContext context(get_device_id()); auto in_dims = in_tensor->get_dims(); if (in_dims.size() != 2) { CK_THROW_(Error_t::WrongInput, "Only 2D tensors can be multiplied"); } if (in_tensor->get_format() != TensorFormat_t::HW) { CK_THROW_(Error_t::WrongInput, "Only TensorFormat_t::HW is allowed for multiply layer"); } if (weight_dims.size() != 2) { CK_THROW_(Error_t::WrongInput, "Only 2D weights is allowed for multiply layer"); } if (weight_dims[0] != in_dims[1]) { CK_THROW_(Error_t::WrongInput, "weight_dims[0] must be equal to in_dims[1]"); } batch_size_ = in_dims[0]; slot_num_ = weight_dims[0]; embedding_vec_size_ = weight_dims[1]; std::vector<size_t> out_dims{batch_size_, slot_num_ * embedding_vec_size_}; out_tensor.reset(new Tensor<float>(out_dims, blob_buff, in_tensor->get_format())); in_tensors_.emplace_back(in_tensor); out_tensors_.emplace_back(out_tensor); TensorFormat_t w_format = TensorFormat_t::HW; weights_.emplace_back(new Tensor<float>(weight_dims, weight_buff, w_format)); wgrad_.emplace_back(new Tensor<float>(weight_dims, wgrad_buff, w_format)); internal_buff_.reset(new GeneralBuffer<float>()); wgrad_tmp_trans_.reset(new Tensor<float>(out_dims, internal_buff_, TensorFormat_t::HW)); internal_buff_->init(get_device_id()); } catch (const std::runtime_error& rt_err) { std::cerr << rt_err.what() << std::endl; throw; } } std::vector<float> MultiplyLayer::get_initializer() { std::vector<float> initializer; size_t w_size = (weights_[0])->get_num_elements(); initializer.resize(w_size); float in_dim = slot_num_; // in_tensor dim[1] float out_dim = slot_num_ * embedding_vec_size_; // out_tensor dim[1] float limit = sqrt(6.f / (in_dim + out_dim)); HugeCTR::UnifiedDataSimulator<float> fdata_sim(-1 * limit, limit); for (size_t i = 0; i < w_size; i++) initializer[i] = fdata_sim.get_num(); return initializer; } void MultiplyLayer::fprop(hipStream_t stream) { CudaDeviceContext context(get_device_id()); float* input = in_tensors_[0]->get_ptr(); float* weight = weights_[0]->get_ptr(); float* output = out_tensors_[0]->get_ptr(); dim3 blockSize(embedding_vec_size_, 1, 1); dim3 gridSize(batch_size_, 1, 1); hipLaunchKernelGGL(( multiply_kernel), dim3(gridSize), dim3(blockSize), 0, stream, input, weight, output, batch_size_, slot_num_, embedding_vec_size_); } void MultiplyLayer::bprop(hipStream_t stream) { CudaDeviceContext context(get_device_id()); float* weight = weights_[0]->get_ptr(); float* wgrad = wgrad_[0]->get_ptr(); float* wgrad_tmp_trans = wgrad_tmp_trans_->get_ptr(); float* input = in_tensors_[0]->get_ptr(); float* output = out_tensors_[0]->get_ptr(); multiply_wgrad(output, input, wgrad, wgrad_tmp_trans, batch_size_, slot_num_, embedding_vec_size_, stream); // CAUSION: dgrad computation will modify the "input", so it must be put after wgrad computation multiply_dgrad(output, weight, input, batch_size_, slot_num_, embedding_vec_size_, stream); } } // namespace HugeCTR
8a862e28b646fac314f1d183ce45b4864d57f5c1.cu
/* * Copyright (c) 2020, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "HugeCTR/include/layers/element_wise_function.hpp" #include "HugeCTR/include/layers/multiply_layer.hpp" #include "HugeCTR/include/utils.cuh" #include "HugeCTR/include/utils.hpp" #include <algorithm> #include <functional> #ifndef NDEBUG #include <iostream> #endif namespace HugeCTR { namespace { #define BLOCK_DIM_SIZE 32 template <typename T> __global__ void multiply_kernel(const T* input, const T* weight, T* output, int batch_size, int slot_num, int embedding_vec_size) { if ((blockIdx.x < batch_size) && (threadIdx.x < embedding_vec_size)) { for (int i = 0; i < slot_num; i++) { output[blockIdx.x * slot_num * embedding_vec_size + i * embedding_vec_size + threadIdx.x] = input[blockIdx.x * slot_num + i] * weight[i * embedding_vec_size + threadIdx.x]; } } } template <typename T> __global__ void multiply_transpose_fuse_kernel(int batch_size, int slot_num, int embedding_vec_size, const T* top_grad, const T* input, T* wgrad_tmp_trans) { int row = batch_size; int col = slot_num * embedding_vec_size; __shared__ T sh_data[BLOCK_DIM_SIZE + 1][BLOCK_DIM_SIZE]; int src_index_x = blockIdx.x * blockDim.x + threadIdx.x; int src_index_y = blockIdx.y * blockDim.y + threadIdx.y; if ((src_index_x < col) && (src_index_y < row)) { int index_in = src_index_y * col + src_index_x; sh_data[threadIdx.x][threadIdx.y] = top_grad[index_in] * input[index_in / embedding_vec_size]; } __syncthreads(); int dst_index_x = blockIdx.y * blockDim.y + threadIdx.x; int dst_index_y = blockIdx.x * blockDim.x + threadIdx.y; if ((dst_index_x < row) && (dst_index_y < col)) { int index_out = dst_index_y * row + dst_index_x; wgrad_tmp_trans[index_out] = sh_data[threadIdx.y][threadIdx.x]; } } // sum reduce computation in one block template <typename T> __global__ void sum_reduce_batch_kernel(int row, // row=gridDim.x int col, const T* input, T* output) { float local_sum = 0.0f; for (int tid = threadIdx.x; tid < col; tid += blockDim.x) { local_sum += input[blockIdx.x * col + tid]; } __syncthreads(); local_sum = blockReduceSum(local_sum); if (threadIdx.x == 0) { output[blockIdx.x] += local_sum; } } template <typename T> __global__ void multiply_dgrad_kernel(const T* top_grad, const T* weight, T* dgrad, int batch_size, int slot_num, int embedding_vec_size) { if ((blockIdx.x < batch_size) && (threadIdx.x < embedding_vec_size)) { for (int i = 0; i < slot_num; i++) { T local_sum = top_grad[blockIdx.x * slot_num * embedding_vec_size + i * embedding_vec_size + threadIdx.x] * weight[i * embedding_vec_size + threadIdx.x]; local_sum = blockReduceSum(local_sum); if (threadIdx.x == 0) { dgrad[blockIdx.x * slot_num + i] = local_sum; } } } } template <typename T> void multiply_wgrad(const T* top_grad, const T* input, T* wgrad, T* wgrad_tmp_trans, int batch_size, int slot_num, int embedding_vec_size, cudaStream_t stream) { dim3 blockSize1(BLOCK_DIM_SIZE, BLOCK_DIM_SIZE, 1); dim3 gridSize1((slot_num * embedding_vec_size + blockSize1.x - 1) / blockSize1.x, (batch_size + blockSize1.y - 1) / blockSize1.y, 1); multiply_transpose_fuse_kernel<<<gridSize1, blockSize1, 0, stream>>>( batch_size, slot_num, embedding_vec_size, top_grad, input, wgrad_tmp_trans); dim3 blockSize2(256, 1, 1); dim3 gridSize2(slot_num * embedding_vec_size, 1, 1); sum_reduce_batch_kernel<<<gridSize2, blockSize2, 0, stream>>>(slot_num * embedding_vec_size, batch_size, wgrad_tmp_trans, wgrad); } template <typename T> void multiply_dgrad(const T* top_grad, const T* weight, T* dgrad, int batch_size, int slot_num, int embedding_vec_size, cudaStream_t stream) { dim3 blockSize(embedding_vec_size, 1, 1); dim3 gridSize(batch_size, 1, 1); multiply_dgrad_kernel<<<gridSize, blockSize, 0, stream>>>(top_grad, weight, dgrad, batch_size, slot_num, embedding_vec_size); } } // end of namespace MultiplyLayer::MultiplyLayer(const std::shared_ptr<GeneralBuffer<float>>& weight_buff, const std::shared_ptr<GeneralBuffer<float>>& wgrad_buff, const std::shared_ptr<GeneralBuffer<float>>& blob_buff, const std::shared_ptr<Tensor<float>>& in_tensor, std::shared_ptr<Tensor<float>>& out_tensor, const std::vector<size_t>& weight_dims, int device_id) : Layer(device_id) { try { CudaDeviceContext context(get_device_id()); auto in_dims = in_tensor->get_dims(); if (in_dims.size() != 2) { CK_THROW_(Error_t::WrongInput, "Only 2D tensors can be multiplied"); } if (in_tensor->get_format() != TensorFormat_t::HW) { CK_THROW_(Error_t::WrongInput, "Only TensorFormat_t::HW is allowed for multiply layer"); } if (weight_dims.size() != 2) { CK_THROW_(Error_t::WrongInput, "Only 2D weights is allowed for multiply layer"); } if (weight_dims[0] != in_dims[1]) { CK_THROW_(Error_t::WrongInput, "weight_dims[0] must be equal to in_dims[1]"); } batch_size_ = in_dims[0]; slot_num_ = weight_dims[0]; embedding_vec_size_ = weight_dims[1]; std::vector<size_t> out_dims{batch_size_, slot_num_ * embedding_vec_size_}; out_tensor.reset(new Tensor<float>(out_dims, blob_buff, in_tensor->get_format())); in_tensors_.emplace_back(in_tensor); out_tensors_.emplace_back(out_tensor); TensorFormat_t w_format = TensorFormat_t::HW; weights_.emplace_back(new Tensor<float>(weight_dims, weight_buff, w_format)); wgrad_.emplace_back(new Tensor<float>(weight_dims, wgrad_buff, w_format)); internal_buff_.reset(new GeneralBuffer<float>()); wgrad_tmp_trans_.reset(new Tensor<float>(out_dims, internal_buff_, TensorFormat_t::HW)); internal_buff_->init(get_device_id()); } catch (const std::runtime_error& rt_err) { std::cerr << rt_err.what() << std::endl; throw; } } std::vector<float> MultiplyLayer::get_initializer() { std::vector<float> initializer; size_t w_size = (weights_[0])->get_num_elements(); initializer.resize(w_size); float in_dim = slot_num_; // in_tensor dim[1] float out_dim = slot_num_ * embedding_vec_size_; // out_tensor dim[1] float limit = sqrt(6.f / (in_dim + out_dim)); HugeCTR::UnifiedDataSimulator<float> fdata_sim(-1 * limit, limit); for (size_t i = 0; i < w_size; i++) initializer[i] = fdata_sim.get_num(); return initializer; } void MultiplyLayer::fprop(cudaStream_t stream) { CudaDeviceContext context(get_device_id()); float* input = in_tensors_[0]->get_ptr(); float* weight = weights_[0]->get_ptr(); float* output = out_tensors_[0]->get_ptr(); dim3 blockSize(embedding_vec_size_, 1, 1); dim3 gridSize(batch_size_, 1, 1); multiply_kernel<<<gridSize, blockSize, 0, stream>>>(input, weight, output, batch_size_, slot_num_, embedding_vec_size_); } void MultiplyLayer::bprop(cudaStream_t stream) { CudaDeviceContext context(get_device_id()); float* weight = weights_[0]->get_ptr(); float* wgrad = wgrad_[0]->get_ptr(); float* wgrad_tmp_trans = wgrad_tmp_trans_->get_ptr(); float* input = in_tensors_[0]->get_ptr(); float* output = out_tensors_[0]->get_ptr(); multiply_wgrad(output, input, wgrad, wgrad_tmp_trans, batch_size_, slot_num_, embedding_vec_size_, stream); // CAUSION: dgrad computation will modify the "input", so it must be put after wgrad computation multiply_dgrad(output, weight, input, batch_size_, slot_num_, embedding_vec_size_, stream); } } // namespace HugeCTR
b8c793b80537d1e42911c012865f347995275c0c.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <algorithm> #include <vector> #include "caffe/layers/elu_layer.hpp" namespace caffe { template <typename Dtype> __global__ void ELUForward(const int n, const Dtype* in, Dtype* out, Dtype alpha) { CUDA_KERNEL_LOOP(index, n) { out[index] = in[index] > 0 ? in[index] : alpha * (exp(in[index]) - 1); } } template <typename Dtype> void ELULayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { const Dtype* bottom_data = bottom[0]->gpu_data(); Dtype* top_data = top[0]->mutable_gpu_data(); const int count = bottom[0]->count(); Dtype alpha = this->layer_param_.elu_param().alpha(); // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( ELUForward<Dtype>), dim3(CAFFE_GET_BLOCKS(count)), dim3(CAFFE_CUDA_NUM_THREADS),0,Caffe::cuda_stream(), count, bottom_data, top_data, alpha); CUDA_POST_KERNEL_CHECK; } template <typename Dtype> __global__ void ELUBackward(const int n, const Dtype* in_diff, const Dtype* out_data, const Dtype* in_data, Dtype* out_diff, Dtype alpha) { CUDA_KERNEL_LOOP(index, n) { out_diff[index] = in_data[index] > 0 ? in_diff[index] : in_diff[index] * (out_data[index] + alpha); } } template <typename Dtype> void ELULayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { if (propagate_down[0]) { const Dtype* bottom_data = bottom[0]->gpu_data(); const Dtype* top_diff = top[0]->gpu_diff(); const Dtype* top_data = top[0]->gpu_data(); Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); const int count = bottom[0]->count(); Dtype alpha = this->layer_param_.elu_param().alpha(); // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( ELUBackward<Dtype>), dim3(CAFFE_GET_BLOCKS(count)), dim3(CAFFE_CUDA_NUM_THREADS),0,Caffe::cuda_stream(), count, top_diff, top_data, bottom_data, bottom_diff, alpha); CUDA_POST_KERNEL_CHECK; } } INSTANTIATE_LAYER_GPU_FUNCS(ELULayer); } // namespace caffe
b8c793b80537d1e42911c012865f347995275c0c.cu
#include <algorithm> #include <vector> #include "caffe/layers/elu_layer.hpp" namespace caffe { template <typename Dtype> __global__ void ELUForward(const int n, const Dtype* in, Dtype* out, Dtype alpha) { CUDA_KERNEL_LOOP(index, n) { out[index] = in[index] > 0 ? in[index] : alpha * (exp(in[index]) - 1); } } template <typename Dtype> void ELULayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { const Dtype* bottom_data = bottom[0]->gpu_data(); Dtype* top_data = top[0]->mutable_gpu_data(); const int count = bottom[0]->count(); Dtype alpha = this->layer_param_.elu_param().alpha(); // NOLINT_NEXT_LINE(whitespace/operators) ELUForward<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS,0,Caffe::cuda_stream()>>>( count, bottom_data, top_data, alpha); CUDA_POST_KERNEL_CHECK; } template <typename Dtype> __global__ void ELUBackward(const int n, const Dtype* in_diff, const Dtype* out_data, const Dtype* in_data, Dtype* out_diff, Dtype alpha) { CUDA_KERNEL_LOOP(index, n) { out_diff[index] = in_data[index] > 0 ? in_diff[index] : in_diff[index] * (out_data[index] + alpha); } } template <typename Dtype> void ELULayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { if (propagate_down[0]) { const Dtype* bottom_data = bottom[0]->gpu_data(); const Dtype* top_diff = top[0]->gpu_diff(); const Dtype* top_data = top[0]->gpu_data(); Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); const int count = bottom[0]->count(); Dtype alpha = this->layer_param_.elu_param().alpha(); // NOLINT_NEXT_LINE(whitespace/operators) ELUBackward<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS,0,Caffe::cuda_stream()>>>( count, top_diff, top_data, bottom_data, bottom_diff, alpha); CUDA_POST_KERNEL_CHECK; } } INSTANTIATE_LAYER_GPU_FUNCS(ELULayer); } // namespace caffe
9a535284affe440a3e6d523281d67c8a3673fbca.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "common_hip.cuh" __global__ void process(const int* __restrict__ nitems_per_cell, const int* __restrict__ cell_data, const int* __restrict__ start_index, int* __restrict__ output, int num_cells) { int id = threadIdx.x + 32 * blockIdx.x; int n = id >= num_cells ? 0 : nitems_per_cell[id]; bool block = n >= 16; int mask = __ballot(block); if (mask != 0) { do { int bit = __ffs(mask) - 1; mask &= ~(1 << bit); int block_id = bit + 32 * blockIdx.x; int block_n = nitems_per_cell[block_id]; int block_start = start_index[block_id]; int block_data = cell_data[block_id]; for (int i = threadIdx.x; i < block_n; i += 32) output[block_start + i] = block_data + i; } while (mask != 0); } if (id < num_cells && !block) { int start = start_index[id]; int data = cell_data[id]; for (int i = 0; i < n; i++) output[start + i] = data + i; } } void process_blocked(const int* nitems_per_cell, const int* cell_data, const int* start_index, int* output, int num_cells, int num_items) { hipLaunchKernelGGL(( process), dim3(round_to(num_cells, 32)), dim3(32), 0, 0, nitems_per_cell, cell_data, start_index, output, num_cells); }
9a535284affe440a3e6d523281d67c8a3673fbca.cu
#include "common.cuh" __global__ void process(const int* __restrict__ nitems_per_cell, const int* __restrict__ cell_data, const int* __restrict__ start_index, int* __restrict__ output, int num_cells) { int id = threadIdx.x + 32 * blockIdx.x; int n = id >= num_cells ? 0 : nitems_per_cell[id]; bool block = n >= 16; int mask = __ballot(block); if (mask != 0) { do { int bit = __ffs(mask) - 1; mask &= ~(1 << bit); int block_id = bit + 32 * blockIdx.x; int block_n = nitems_per_cell[block_id]; int block_start = start_index[block_id]; int block_data = cell_data[block_id]; for (int i = threadIdx.x; i < block_n; i += 32) output[block_start + i] = block_data + i; } while (mask != 0); } if (id < num_cells && !block) { int start = start_index[id]; int data = cell_data[id]; for (int i = 0; i < n; i++) output[start + i] = data + i; } } void process_blocked(const int* nitems_per_cell, const int* cell_data, const int* start_index, int* output, int num_cells, int num_items) { process<<<round_to(num_cells, 32), 32>>>(nitems_per_cell, cell_data, start_index, output, num_cells); }
9c6e99bf7f1010a1eb7263824ec60beb0d95f089.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" // Copyright (c) 2017 Sony Corporation. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // leaky_relu.cu #include <algorithm> #include <nbla/array.hpp> #include <nbla/cuda/common.hpp> #include <nbla/cuda/function/leaky_relu.hpp> #include <nbla/variable.hpp> namespace nbla { template <typename T> __global__ void kernel_leaky_relu_forward(const int num, T *y, const T *x, float alpha) { NBLA_CUDA_KERNEL_LOOP(idx, num) { T x_idx = x[idx]; if (x_idx > 0) { y[idx] = x_idx; } else { y[idx] = alpha * x_idx; } } } template <typename T, bool accum = true> __global__ void kernel_leaky_relu_backward(const int num, T *dx, const T *x, const T *dy, float alpha) { NBLA_CUDA_KERNEL_LOOP(idx, num) { if (accum) { if (x[idx] > 0) dx[idx] += dy[idx]; else dx[idx] += alpha * dy[idx]; } else { if (x[idx] > 0) dx[idx] = dy[idx]; else dx[idx] = alpha * dy[idx]; } } } template <class T> void LeakyReLUCuda<T>::forward_impl(const Variables &inputs, const Variables &outputs) { cuda_set_device(std::stoi(this->ctx_.device_id)); const Tc *x = inputs[0]->get_data_pointer<Tc>(this->ctx_); Tc *y = outputs[0]->cast_data_and_get_pointer<Tc>(this->ctx_, !this->inplace_); size_t size = inputs[0]->size(); NBLA_CUDA_LAUNCH_KERNEL_SIMPLE(kernel_leaky_relu_forward, size, y, x, this->alpha_); } template <class T> void LeakyReLUCuda<T>::backward_impl(const Variables &inputs, const Variables &outputs, const vector<bool> &propagate_down, const vector<bool> &accum) { if (!propagate_down[0]) { return; } cuda_set_device(std::stoi(this->ctx_.device_id)); const Tc *x = inputs[0]->get_data_pointer<Tc>(this->ctx_); Tc *dx = inputs[0]->cast_grad_and_get_pointer<Tc>( this->ctx_, !(this->inplace_ || accum[0])); const Tc *dy = outputs[0]->get_grad_pointer<Tc>(this->ctx_); size_t size = inputs[0]->size(); if (dx != dy && accum[0]) { NBLA_CUDA_LAUNCH_KERNEL_SIMPLE((kernel_leaky_relu_backward<Tc, true>), size, dx, x, dy, this->alpha_); } else { NBLA_CUDA_LAUNCH_KERNEL_SIMPLE((kernel_leaky_relu_backward<Tc, false>), size, dx, x, dy, this->alpha_); } } }
9c6e99bf7f1010a1eb7263824ec60beb0d95f089.cu
// Copyright (c) 2017 Sony Corporation. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // leaky_relu.cu #include <algorithm> #include <nbla/array.hpp> #include <nbla/cuda/common.hpp> #include <nbla/cuda/function/leaky_relu.hpp> #include <nbla/variable.hpp> namespace nbla { template <typename T> __global__ void kernel_leaky_relu_forward(const int num, T *y, const T *x, float alpha) { NBLA_CUDA_KERNEL_LOOP(idx, num) { T x_idx = x[idx]; if (x_idx > 0) { y[idx] = x_idx; } else { y[idx] = alpha * x_idx; } } } template <typename T, bool accum = true> __global__ void kernel_leaky_relu_backward(const int num, T *dx, const T *x, const T *dy, float alpha) { NBLA_CUDA_KERNEL_LOOP(idx, num) { if (accum) { if (x[idx] > 0) dx[idx] += dy[idx]; else dx[idx] += alpha * dy[idx]; } else { if (x[idx] > 0) dx[idx] = dy[idx]; else dx[idx] = alpha * dy[idx]; } } } template <class T> void LeakyReLUCuda<T>::forward_impl(const Variables &inputs, const Variables &outputs) { cuda_set_device(std::stoi(this->ctx_.device_id)); const Tc *x = inputs[0]->get_data_pointer<Tc>(this->ctx_); Tc *y = outputs[0]->cast_data_and_get_pointer<Tc>(this->ctx_, !this->inplace_); size_t size = inputs[0]->size(); NBLA_CUDA_LAUNCH_KERNEL_SIMPLE(kernel_leaky_relu_forward, size, y, x, this->alpha_); } template <class T> void LeakyReLUCuda<T>::backward_impl(const Variables &inputs, const Variables &outputs, const vector<bool> &propagate_down, const vector<bool> &accum) { if (!propagate_down[0]) { return; } cuda_set_device(std::stoi(this->ctx_.device_id)); const Tc *x = inputs[0]->get_data_pointer<Tc>(this->ctx_); Tc *dx = inputs[0]->cast_grad_and_get_pointer<Tc>( this->ctx_, !(this->inplace_ || accum[0])); const Tc *dy = outputs[0]->get_grad_pointer<Tc>(this->ctx_); size_t size = inputs[0]->size(); if (dx != dy && accum[0]) { NBLA_CUDA_LAUNCH_KERNEL_SIMPLE((kernel_leaky_relu_backward<Tc, true>), size, dx, x, dy, this->alpha_); } else { NBLA_CUDA_LAUNCH_KERNEL_SIMPLE((kernel_leaky_relu_backward<Tc, false>), size, dx, x, dy, this->alpha_); } } }
81737c7942f986f6b40820c66af578ffc100463b.hip
// !!! This is a file automatically generated by hipify!!! /* * Copyright 1993-2010 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ #include <stdio.h> #include <stdlib.h> #include <chrono> #include <hip/hip_runtime.h> #include "verify.hip" //---------------------------------------------------------------------------- // Scans each warp in parallel ("warp-scan"), one element per thread. // uses 2 numElements of shared memory per thread (64 = elements per warp) //---------------------------------------------------------------------------- #define WARP_SIZE 32 __device__ unsigned int scanwarp(unsigned int val, volatile unsigned int* sData, const int maxlevel) { // The following is the same as 2 * RadixSort::WARP_SIZE * warpId + threadInWarp = // 64*(threadIdx.x >> 5) + (threadIdx.x & (RadixSort::WARP_SIZE - 1)) int localId = threadIdx.x; int idx = 2 * localId - (localId & (WARP_SIZE - 1)); sData[idx] = 0; idx += WARP_SIZE; sData[idx] = val; if (0 <= maxlevel) { sData[idx] += sData[idx - 1]; } if (1 <= maxlevel) { sData[idx] += sData[idx - 2]; } if (2 <= maxlevel) { sData[idx] += sData[idx - 4]; } if (3 <= maxlevel) { sData[idx] += sData[idx - 8]; } if (4 <= maxlevel) { sData[idx] += sData[idx -16]; } return sData[idx] - val; // convert inclusive -> exclusive } //---------------------------------------------------------------------------- // scan4 scans 4*RadixSort::CTA_SIZE numElements in a block (4 per thread), using // a warp-scan algorithm //---------------------------------------------------------------------------- __device__ uint4 scan4(const uint4 idata, unsigned int* ptr) { unsigned int idx = threadIdx.x; uint4 val4 = idata; unsigned int sum[3]; sum[0] = val4.x; sum[1] = val4.y + sum[0]; sum[2] = val4.z + sum[1]; unsigned int val = val4.w + sum[2]; val = scanwarp(val, ptr, 4); __syncthreads(); if ((idx & (WARP_SIZE - 1)) == WARP_SIZE - 1) { ptr[idx >> 5] = val + val4.w + sum[2]; } __syncthreads(); if (idx < WARP_SIZE) ptr[idx] = scanwarp(ptr[idx], ptr, 2); __syncthreads(); val += ptr[idx >> 5]; val4.x = val; val4.y = val + sum[0]; val4.z = val + sum[1]; val4.w = val + sum[2]; return val4; } __device__ uint4 rank4(const uint4 preds, unsigned int* sMem, unsigned int* numtrue) { int localId = threadIdx.x; int localSize = blockDim.x; uint4 address = scan4(preds, sMem); if (localId == localSize - 1) { numtrue[0] = address.w + preds.w; } __syncthreads(); uint4 rank; int idx = localId*4; rank.x = (preds.x) ? address.x : numtrue[0] + idx - address.x; rank.y = (preds.y) ? address.y : numtrue[0] + idx + 1 - address.y; rank.z = (preds.z) ? address.z : numtrue[0] + idx + 2 - address.z; rank.w = (preds.w) ? address.w : numtrue[0] + idx + 3 - address.w; return rank; } __global__ void radixSortBlocksKeysK( unsigned int* keysIn, unsigned int* keysOut, const unsigned int nbits, const unsigned int startbit) { int globalId = blockIdx.x * blockDim.x + threadIdx.x; __shared__ unsigned int numtrue[1]; __shared__ unsigned int sMem[4*128]; uint4 key = reinterpret_cast<uint4*>(keysIn)[globalId]; __syncthreads(); // radixSortBlockKeysOnly(&key, nbits, startbit, sMem, numtrue); int localId = threadIdx.x; int localSize = blockDim.x; for(unsigned int shift = startbit; shift < (startbit + nbits); ++shift) { uint4 lsb; lsb.x = !((key.x >> shift) & 0x1); lsb.y = !((key.y >> shift) & 0x1); lsb.z = !((key.z >> shift) & 0x1); lsb.w = !((key.w >> shift) & 0x1); uint4 r; r = rank4(lsb, sMem, numtrue); // This arithmetic strides the ranks across 4 CTA_SIZE regions sMem[(r.x & 3) * localSize + (r.x >> 2)] = key.x; sMem[(r.y & 3) * localSize + (r.y >> 2)] = key.y; sMem[(r.z & 3) * localSize + (r.z >> 2)] = key.z; sMem[(r.w & 3) * localSize + (r.w >> 2)] = key.w; __syncthreads(); // The above allows us to read without 4-way bank conflicts: key.x = sMem[localId]; key.y = sMem[localId + localSize]; key.z = sMem[localId + 2 * localSize]; key.w = sMem[localId + 3 * localSize]; __syncthreads(); } //keysOut[globalId] = key; reinterpret_cast<uint4*>(keysOut)[globalId] = key; } int main(int argc, char* argv[]) { if (argc != 3) { printf("Usage: %s <number of keys> <repeat>\n", argv[0]); return 1; } const int N = atoi(argv[1]); // assume a multiple of 512 const int repeat = atoi(argv[2]); srand(512); unsigned int *keys = (unsigned int*) malloc (N * sizeof(unsigned int)); unsigned int *out = (unsigned int*) malloc (N * sizeof(unsigned int)); for (int i = 0; i < N; i++) keys[i] = rand() % 16; const unsigned int startbit = 0; const unsigned int nbits = 4; const unsigned threads = 128; // 1 const unsigned teams = N/4/threads; // 1 unsigned int* d_keys; hipMalloc((void**)&d_keys, N*sizeof(unsigned int)); hipMemcpy(d_keys, keys, N*sizeof(unsigned int), hipMemcpyHostToDevice); unsigned int* d_tempKeys; hipMalloc((void**)&d_tempKeys, N*sizeof(unsigned int)); hipDeviceSynchronize(); auto start = std::chrono::steady_clock::now(); for (int i = 0; i < repeat; i++) hipLaunchKernelGGL(( radixSortBlocksKeysK), dim3(teams), dim3(threads), 0, 0, d_keys, d_tempKeys, nbits, startbit); hipDeviceSynchronize(); auto end = std::chrono::steady_clock::now(); auto time = std::chrono::duration_cast<std::chrono::nanoseconds>(end - start).count(); printf("Average kernel execution time: %f (us)\n", (time * 1e-3f) / repeat); hipMemcpy(out, d_tempKeys, N*sizeof(unsigned int), hipMemcpyDeviceToHost); hipFree(d_keys); hipFree(d_tempKeys); bool check = verify(out, keys, threads, N); if (check) printf("PASS\n"); else printf("FAIL\n"); free(keys); free(out); return 0; }
81737c7942f986f6b40820c66af578ffc100463b.cu
/* * Copyright 1993-2010 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ #include <stdio.h> #include <stdlib.h> #include <chrono> #include <cuda.h> #include "verify.cu" //---------------------------------------------------------------------------- // Scans each warp in parallel ("warp-scan"), one element per thread. // uses 2 numElements of shared memory per thread (64 = elements per warp) //---------------------------------------------------------------------------- #define WARP_SIZE 32 __device__ unsigned int scanwarp(unsigned int val, volatile unsigned int* sData, const int maxlevel) { // The following is the same as 2 * RadixSort::WARP_SIZE * warpId + threadInWarp = // 64*(threadIdx.x >> 5) + (threadIdx.x & (RadixSort::WARP_SIZE - 1)) int localId = threadIdx.x; int idx = 2 * localId - (localId & (WARP_SIZE - 1)); sData[idx] = 0; idx += WARP_SIZE; sData[idx] = val; if (0 <= maxlevel) { sData[idx] += sData[idx - 1]; } if (1 <= maxlevel) { sData[idx] += sData[idx - 2]; } if (2 <= maxlevel) { sData[idx] += sData[idx - 4]; } if (3 <= maxlevel) { sData[idx] += sData[idx - 8]; } if (4 <= maxlevel) { sData[idx] += sData[idx -16]; } return sData[idx] - val; // convert inclusive -> exclusive } //---------------------------------------------------------------------------- // scan4 scans 4*RadixSort::CTA_SIZE numElements in a block (4 per thread), using // a warp-scan algorithm //---------------------------------------------------------------------------- __device__ uint4 scan4(const uint4 idata, unsigned int* ptr) { unsigned int idx = threadIdx.x; uint4 val4 = idata; unsigned int sum[3]; sum[0] = val4.x; sum[1] = val4.y + sum[0]; sum[2] = val4.z + sum[1]; unsigned int val = val4.w + sum[2]; val = scanwarp(val, ptr, 4); __syncthreads(); if ((idx & (WARP_SIZE - 1)) == WARP_SIZE - 1) { ptr[idx >> 5] = val + val4.w + sum[2]; } __syncthreads(); if (idx < WARP_SIZE) ptr[idx] = scanwarp(ptr[idx], ptr, 2); __syncthreads(); val += ptr[idx >> 5]; val4.x = val; val4.y = val + sum[0]; val4.z = val + sum[1]; val4.w = val + sum[2]; return val4; } __device__ uint4 rank4(const uint4 preds, unsigned int* sMem, unsigned int* numtrue) { int localId = threadIdx.x; int localSize = blockDim.x; uint4 address = scan4(preds, sMem); if (localId == localSize - 1) { numtrue[0] = address.w + preds.w; } __syncthreads(); uint4 rank; int idx = localId*4; rank.x = (preds.x) ? address.x : numtrue[0] + idx - address.x; rank.y = (preds.y) ? address.y : numtrue[0] + idx + 1 - address.y; rank.z = (preds.z) ? address.z : numtrue[0] + idx + 2 - address.z; rank.w = (preds.w) ? address.w : numtrue[0] + idx + 3 - address.w; return rank; } __global__ void radixSortBlocksKeysK( unsigned int* keysIn, unsigned int* keysOut, const unsigned int nbits, const unsigned int startbit) { int globalId = blockIdx.x * blockDim.x + threadIdx.x; __shared__ unsigned int numtrue[1]; __shared__ unsigned int sMem[4*128]; uint4 key = reinterpret_cast<uint4*>(keysIn)[globalId]; __syncthreads(); // radixSortBlockKeysOnly(&key, nbits, startbit, sMem, numtrue); int localId = threadIdx.x; int localSize = blockDim.x; for(unsigned int shift = startbit; shift < (startbit + nbits); ++shift) { uint4 lsb; lsb.x = !((key.x >> shift) & 0x1); lsb.y = !((key.y >> shift) & 0x1); lsb.z = !((key.z >> shift) & 0x1); lsb.w = !((key.w >> shift) & 0x1); uint4 r; r = rank4(lsb, sMem, numtrue); // This arithmetic strides the ranks across 4 CTA_SIZE regions sMem[(r.x & 3) * localSize + (r.x >> 2)] = key.x; sMem[(r.y & 3) * localSize + (r.y >> 2)] = key.y; sMem[(r.z & 3) * localSize + (r.z >> 2)] = key.z; sMem[(r.w & 3) * localSize + (r.w >> 2)] = key.w; __syncthreads(); // The above allows us to read without 4-way bank conflicts: key.x = sMem[localId]; key.y = sMem[localId + localSize]; key.z = sMem[localId + 2 * localSize]; key.w = sMem[localId + 3 * localSize]; __syncthreads(); } //keysOut[globalId] = key; reinterpret_cast<uint4*>(keysOut)[globalId] = key; } int main(int argc, char* argv[]) { if (argc != 3) { printf("Usage: %s <number of keys> <repeat>\n", argv[0]); return 1; } const int N = atoi(argv[1]); // assume a multiple of 512 const int repeat = atoi(argv[2]); srand(512); unsigned int *keys = (unsigned int*) malloc (N * sizeof(unsigned int)); unsigned int *out = (unsigned int*) malloc (N * sizeof(unsigned int)); for (int i = 0; i < N; i++) keys[i] = rand() % 16; const unsigned int startbit = 0; const unsigned int nbits = 4; const unsigned threads = 128; // 1 const unsigned teams = N/4/threads; // 1 unsigned int* d_keys; cudaMalloc((void**)&d_keys, N*sizeof(unsigned int)); cudaMemcpy(d_keys, keys, N*sizeof(unsigned int), cudaMemcpyHostToDevice); unsigned int* d_tempKeys; cudaMalloc((void**)&d_tempKeys, N*sizeof(unsigned int)); cudaDeviceSynchronize(); auto start = std::chrono::steady_clock::now(); for (int i = 0; i < repeat; i++) radixSortBlocksKeysK<<<teams, threads>>>(d_keys, d_tempKeys, nbits, startbit); cudaDeviceSynchronize(); auto end = std::chrono::steady_clock::now(); auto time = std::chrono::duration_cast<std::chrono::nanoseconds>(end - start).count(); printf("Average kernel execution time: %f (us)\n", (time * 1e-3f) / repeat); cudaMemcpy(out, d_tempKeys, N*sizeof(unsigned int), cudaMemcpyDeviceToHost); cudaFree(d_keys); cudaFree(d_tempKeys); bool check = verify(out, keys, threads, N); if (check) printf("PASS\n"); else printf("FAIL\n"); free(keys); free(out); return 0; }
f2d154f3614c4b79fe3313aeea2d6556fd18ae9b.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "includes.h" // ERROR CHECKING MACROS ////////////////////////////////////////////////////// __global__ void forwardPathKernel(int noPaths, int nYears, int noSpecies, int noPatches, int noControls, int noUncertainties, float timeStep, float* initPops, float* pops, float*mmm, int* rowIdx, int* elemsPerCol, int maxElems, float* speciesParams, float* caps, float* aars, float* uncertParams, int* controls, float* uJumps, float* uBrownian, float* uJumpSizes, float* uJumpsSpecies, float* uBrownianSpecies, float* uJumpSizesSpecies, float* rgr, float* uResults, float* totalPops) { // Global thread index int idx = blockIdx.x*blockDim.x + threadIdx.x; // Only perform matrix multiplication sequentially for now. Later, if so // desired, we can use dynamic parallelism because the card in the // machine has CUDA compute compatability 3.5 if (idx < noPaths) { // Initialise the population data at time t=0 for (int ii = 0; ii < noSpecies; ii++) { float population = 0; for (int jj = 0; jj < noPatches; jj++) { pops[idx*(nYears+1)*noSpecies*noPatches + ii*noPatches + jj] = initPops[jj]; population += pops[idx*(nYears+1)*noSpecies*noPatches + ii* noPatches + jj]; } totalPops[idx*(nYears+1)*noSpecies + ii] = population; // The aars are computed in the next for loop. } // Carry over the initial value for all uncertainties for (int ii = 0; ii < noUncertainties; ii++) { uResults[idx*noUncertainties*(nYears+1) + ii] = uncertParams[ii*6]; } float* grMean; grMean = (float*)malloc(noSpecies*sizeof(float)); for (int ii = 0; ii < noSpecies; ii++) { grMean[ii] = speciesParams[ii*8]; } // All future time periods for (int ii = 0; ii < nYears; ii++) { // Control to pick int control = controls[idx*nYears + ii]; for (int jj = 0; jj < noSpecies; jj++) { totalPops[idx*(nYears+1)*noSpecies + (ii+1)*noSpecies + jj] = 0; // Adjust the global growth rate mean for this species at this // time step for this path. float jump = (uJumpsSpecies[idx*noSpecies*nYears + ii*noSpecies + jj] < speciesParams[jj*8 + 5]) ? 1.0f : 0.0f; float meanP = speciesParams[jj*8 + 1]; float reversion = speciesParams[jj*8 + 4]; float brownian = uBrownianSpecies[idx*noSpecies*nYears + ii*noSpecies + jj]*speciesParams[jj*8 + 2]; float jumpSize = uJumpSizesSpecies[idx*noSpecies*nYears + ii*noSpecies + jj]*pow(speciesParams[ jj*8 + 5],2) - pow(speciesParams[jj*8 + 5],2)/2; grMean[jj] = grMean[jj] + reversion*(meanP - grMean[jj])* timeStep + grMean[jj]*brownian + (exp(jumpSize) - 1)* grMean[jj]*jump; // Initialise temporary populations float initialPopulation = 0.0f; for (int kk = 0; kk < noPatches; kk++) { initialPopulation += pops[idx*(nYears+1)*noSpecies* noPatches + ii*noSpecies*noPatches + jj*noPatches + kk]; } // For each patch, update the population for the next time // period by using the movement and mortality matrix for the // correct species/control combination. We use registers due // to their considerably lower latency over global memory. for (int kk = 0; kk < noControls; kk++) { // Overall population at this time period float totalPop = 0.0f; int iterator = 0; for (int ll = 0; ll < noPatches; ll++) { // Population for this patch float population = 0.0f; // Transfer animals from each destination patch to // this one for the next period. for (int mm = 0; mm < elemsPerCol[(jj*noControls + kk)* noPatches + ll]; mm++) { float value = pops[idx*(nYears+1)*noSpecies* noPatches + ii*noSpecies*noPatches + jj* noPatches + rowIdx[iterator + (jj* noControls + kk)*maxElems]]*mmm[iterator + (jj*noControls + kk)*maxElems]; population += value; iterator++; } totalPop += population; // We only update the actual populations if we are in // the control that was selected. Save the total // population for the start of the next time period. if (kk == control && ii < nYears) { // Population growth based on a mean-reverting process rgr[idx*noSpecies*noPatches*nYears + ii*noSpecies* noPatches + jj*noPatches + ll] = grMean[jj] + rgr[idx*noSpecies*noPatches*nYears + ii* noSpecies*noPatches + jj*noPatches + ll]* speciesParams[jj*8 + 7]; float gr = rgr[idx*noSpecies*noPatches*nYears + ii* noSpecies*noPatches + jj*noPatches + ll]; pops[idx*(nYears+1)*noSpecies*noPatches + (ii+1)* noSpecies*noPatches + jj*noPatches + ll] = population*(1.0f + gr*(caps[jj*noPatches + ll] - population)/caps[jj*noPatches + ll]/ 100.0); totalPops[idx*noSpecies*(nYears+1) + (ii+1)* noSpecies + jj] += pops[idx*(nYears+1)* noSpecies*noPatches + (ii+1)*noSpecies* noPatches + jj*noPatches + ll]; } } // Save AAR for this control at this time aars[idx*(nYears+1)*noControls*noSpecies + ii*noControls* noSpecies + jj*noControls + kk] = totalPop/ initialPopulation; } } // Other uncertainties for (int jj = 0; jj < noUncertainties; jj++) { float jump = (uJumps[idx*noUncertainties*nYears + ii*noUncertainties + jj] < uncertParams[jj*6 + 5]) ? 1.0f : 0.0f; float curr = uResults[idx*noUncertainties*(nYears+1) + ii*noUncertainties + jj]; float meanP = uncertParams[jj*6 + 1]; float reversion = uncertParams[jj*6 + 3]; float brownian = uBrownian[idx*noUncertainties*nYears + ii*noUncertainties + jj]*uncertParams[jj*6 + 2]; float jumpSize = uJumpSizes[idx*noUncertainties*nYears + ii*noUncertainties + jj]*pow(uncertParams[jj*6 + 4],2) - pow(uncertParams[jj*6 + 4],2)/2; // Save the value of the uncertainty for the next time period uResults[idx*noUncertainties*(nYears+1)+(ii+1)*noUncertainties+jj] = curr + reversion*(meanP - curr)*timeStep + curr*brownian + (exp(jumpSize) - 1)*curr*jump; } } free(grMean); } }
f2d154f3614c4b79fe3313aeea2d6556fd18ae9b.cu
#include "includes.h" // ERROR CHECKING MACROS ////////////////////////////////////////////////////// __global__ void forwardPathKernel(int noPaths, int nYears, int noSpecies, int noPatches, int noControls, int noUncertainties, float timeStep, float* initPops, float* pops, float*mmm, int* rowIdx, int* elemsPerCol, int maxElems, float* speciesParams, float* caps, float* aars, float* uncertParams, int* controls, float* uJumps, float* uBrownian, float* uJumpSizes, float* uJumpsSpecies, float* uBrownianSpecies, float* uJumpSizesSpecies, float* rgr, float* uResults, float* totalPops) { // Global thread index int idx = blockIdx.x*blockDim.x + threadIdx.x; // Only perform matrix multiplication sequentially for now. Later, if so // desired, we can use dynamic parallelism because the card in the // machine has CUDA compute compatability 3.5 if (idx < noPaths) { // Initialise the population data at time t=0 for (int ii = 0; ii < noSpecies; ii++) { float population = 0; for (int jj = 0; jj < noPatches; jj++) { pops[idx*(nYears+1)*noSpecies*noPatches + ii*noPatches + jj] = initPops[jj]; population += pops[idx*(nYears+1)*noSpecies*noPatches + ii* noPatches + jj]; } totalPops[idx*(nYears+1)*noSpecies + ii] = population; // The aars are computed in the next for loop. } // Carry over the initial value for all uncertainties for (int ii = 0; ii < noUncertainties; ii++) { uResults[idx*noUncertainties*(nYears+1) + ii] = uncertParams[ii*6]; } float* grMean; grMean = (float*)malloc(noSpecies*sizeof(float)); for (int ii = 0; ii < noSpecies; ii++) { grMean[ii] = speciesParams[ii*8]; } // All future time periods for (int ii = 0; ii < nYears; ii++) { // Control to pick int control = controls[idx*nYears + ii]; for (int jj = 0; jj < noSpecies; jj++) { totalPops[idx*(nYears+1)*noSpecies + (ii+1)*noSpecies + jj] = 0; // Adjust the global growth rate mean for this species at this // time step for this path. float jump = (uJumpsSpecies[idx*noSpecies*nYears + ii*noSpecies + jj] < speciesParams[jj*8 + 5]) ? 1.0f : 0.0f; float meanP = speciesParams[jj*8 + 1]; float reversion = speciesParams[jj*8 + 4]; float brownian = uBrownianSpecies[idx*noSpecies*nYears + ii*noSpecies + jj]*speciesParams[jj*8 + 2]; float jumpSize = uJumpSizesSpecies[idx*noSpecies*nYears + ii*noSpecies + jj]*pow(speciesParams[ jj*8 + 5],2) - pow(speciesParams[jj*8 + 5],2)/2; grMean[jj] = grMean[jj] + reversion*(meanP - grMean[jj])* timeStep + grMean[jj]*brownian + (exp(jumpSize) - 1)* grMean[jj]*jump; // Initialise temporary populations float initialPopulation = 0.0f; for (int kk = 0; kk < noPatches; kk++) { initialPopulation += pops[idx*(nYears+1)*noSpecies* noPatches + ii*noSpecies*noPatches + jj*noPatches + kk]; } // For each patch, update the population for the next time // period by using the movement and mortality matrix for the // correct species/control combination. We use registers due // to their considerably lower latency over global memory. for (int kk = 0; kk < noControls; kk++) { // Overall population at this time period float totalPop = 0.0f; int iterator = 0; for (int ll = 0; ll < noPatches; ll++) { // Population for this patch float population = 0.0f; // Transfer animals from each destination patch to // this one for the next period. for (int mm = 0; mm < elemsPerCol[(jj*noControls + kk)* noPatches + ll]; mm++) { float value = pops[idx*(nYears+1)*noSpecies* noPatches + ii*noSpecies*noPatches + jj* noPatches + rowIdx[iterator + (jj* noControls + kk)*maxElems]]*mmm[iterator + (jj*noControls + kk)*maxElems]; population += value; iterator++; } totalPop += population; // We only update the actual populations if we are in // the control that was selected. Save the total // population for the start of the next time period. if (kk == control && ii < nYears) { // Population growth based on a mean-reverting process rgr[idx*noSpecies*noPatches*nYears + ii*noSpecies* noPatches + jj*noPatches + ll] = grMean[jj] + rgr[idx*noSpecies*noPatches*nYears + ii* noSpecies*noPatches + jj*noPatches + ll]* speciesParams[jj*8 + 7]; float gr = rgr[idx*noSpecies*noPatches*nYears + ii* noSpecies*noPatches + jj*noPatches + ll]; pops[idx*(nYears+1)*noSpecies*noPatches + (ii+1)* noSpecies*noPatches + jj*noPatches + ll] = population*(1.0f + gr*(caps[jj*noPatches + ll] - population)/caps[jj*noPatches + ll]/ 100.0); totalPops[idx*noSpecies*(nYears+1) + (ii+1)* noSpecies + jj] += pops[idx*(nYears+1)* noSpecies*noPatches + (ii+1)*noSpecies* noPatches + jj*noPatches + ll]; } } // Save AAR for this control at this time aars[idx*(nYears+1)*noControls*noSpecies + ii*noControls* noSpecies + jj*noControls + kk] = totalPop/ initialPopulation; } } // Other uncertainties for (int jj = 0; jj < noUncertainties; jj++) { float jump = (uJumps[idx*noUncertainties*nYears + ii*noUncertainties + jj] < uncertParams[jj*6 + 5]) ? 1.0f : 0.0f; float curr = uResults[idx*noUncertainties*(nYears+1) + ii*noUncertainties + jj]; float meanP = uncertParams[jj*6 + 1]; float reversion = uncertParams[jj*6 + 3]; float brownian = uBrownian[idx*noUncertainties*nYears + ii*noUncertainties + jj]*uncertParams[jj*6 + 2]; float jumpSize = uJumpSizes[idx*noUncertainties*nYears + ii*noUncertainties + jj]*pow(uncertParams[jj*6 + 4],2) - pow(uncertParams[jj*6 + 4],2)/2; // Save the value of the uncertainty for the next time period uResults[idx*noUncertainties*(nYears+1)+(ii+1)*noUncertainties+jj] = curr + reversion*(meanP - curr)*timeStep + curr*brownian + (exp(jumpSize) - 1)*curr*jump; } } free(grMean); } }
26872031f470cd050fb1849812d09b88a9023418.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "build_tracks_kernels.h" #include "reorganize_gplex.h" #include "kalmanUpdater_kernels.h" #include "computeChi2_kernels.h" constexpr int BLOCK_SIZE_X = 16; __device__ void getHitFromLayer_fn(LayerOfHitsCU& layer_of_hits, GPlexQI& HitsIdx, GPlexHV& msPar, GPlexHS& msErr, int itrack_plex, int N) { if (itrack_plex < N) { int hit_idx = HitsIdx[itrack_plex]; if (hit_idx >= 0) { Hit &hit = layer_of_hits.m_hits[hit_idx]; GetHitErr(msErr, (char *)hit.errArrayCU(), 0, N); GetHitPar(msPar, (char *)hit.posArrayCU(), 0, N); } } } __global__ void getHitFromLayer_kernel(LayerOfHitsCU& layer_of_hits, GPlexQI HitsIdx, GPlexHV msPar, GPlexHS msErr, int N) { int itrack_plex = threadIdx.x + blockDim.x * blockIdx.x; getHitFromLayer_fn(layer_of_hits, HitsIdx, msPar, msErr, itrack_plex, N); } void getHitFromLayer_wrappper( const hipStream_t& stream, LayerOfHitsCU& layer_cu, GPlexQI& HitsIdx, GPlexHV& msPar, GPlexHS& msErr, int N) { int gridx = (N-1)/BLOCK_SIZE_X + 1; dim3 grid(gridx, 1, 1); dim3 block(BLOCK_SIZE_X, 1, 1); hipLaunchKernelGGL(( getHitFromLayer_kernel) , dim3(grid), dim3(block), 0, stream , layer_cu, HitsIdx, msPar, msErr, N); } __device__ void updateMissingHits_fn(GPlexQI& HitsIdx, GPlexLV& Par_iP, GPlexLS& Err_iP, GPlexLV& Par_iC, GPlexLS& Err_iC, int i, int N) { if (i < N) { if (HitsIdx[i] < 0) { two_steps_copy<7> (Err_iC, Err_iP, i); two_steps_copy<6> (Par_iC, Par_iP, i); } } } __global__ void updateMissingHits_kernel(GPlexQI HitsIdx, GPlexLV Par_iP, GPlexLS Err_iP, GPlexLV Par_iC, GPlexLS Err_iC, int N) { int i = threadIdx.x + blockDim.x * blockIdx.x; updateMissingHits_fn(HitsIdx, Par_iP, Err_iP, Par_iC, Err_iC, i, N); } void UpdateMissingHits_wrapper( const hipStream_t& stream, GPlexQI& HitsIdx, GPlexLV& Par_iP, GPlexLS& Err_iP, GPlexLV& Par_iC, GPlexLS& Err_iC, int N) { int gridx = (N-1)/BLOCK_SIZE_X + 1; dim3 grid(gridx, 1, 1); dim3 block(BLOCK_SIZE_X, 1, 1); hipLaunchKernelGGL(( updateMissingHits_kernel) , dim3(grid), dim3(block), 0, stream , HitsIdx, Par_iP, Err_iP, Par_iC, Err_iC, N); } __device__ void UpdateWithLastHit_fn( LayerOfHitsCU& layer_of_hits, GPlexQI& HitsIdx, GPlexHV& msPar, GPlexHS& msErr, GPlexLV& Par_iP, GPlexLS& Err_iP, GPlexLV& Par_iC, GPlexLS& Err_iC, int itrack_plex, int N) { getHitFromLayer_fn(layer_of_hits, HitsIdx, msPar, msErr, itrack_plex, N); kalmanUpdate_fn(Err_iP, msErr, Par_iP, msPar, Par_iC, Err_iC, itrack_plex, N); updateMissingHits_fn(HitsIdx, Par_iP, Err_iP, Par_iC, Err_iC, itrack_plex, N); } __global__ void UpdateWithLastHit_kernel( LayerOfHitsCU& layer_of_hits, GPlexQI HitsIdx, GPlexHV msPar, GPlexHS msErr, GPlexLV Par_iP, GPlexLS Err_iP, GPlexLV Par_iC, GPlexLS Err_iC, int N) { int i = threadIdx.x + blockDim.x * blockIdx.x; UpdateWithLastHit_fn(layer_of_hits, HitsIdx, msPar, msErr, Par_iP, Err_iP, Par_iC, Err_iC, i, N); } void UpdateWithLastHit_wrapper( const hipStream_t& stream, LayerOfHitsCU& layer_cu, GPlexQI& HitsIdx, GPlexHV& msPar, GPlexHS& msErr, GPlexLV& Par_iP, GPlexLS& Err_iP, GPlexLV& Par_iC, GPlexLS& Err_iC, int N) { int gridx = (N-1)/BLOCK_SIZE_X + 1; dim3 grid(gridx, 1, 1); dim3 block(BLOCK_SIZE_X, 1, 1); hipLaunchKernelGGL(( UpdateWithLastHit_kernel) , dim3(grid), dim3(block), 0, stream , layer_cu, HitsIdx, msPar, msErr, Par_iP, Err_iP, Par_iC, Err_iC, N); }
26872031f470cd050fb1849812d09b88a9023418.cu
#include "build_tracks_kernels.h" #include "reorganize_gplex.h" #include "kalmanUpdater_kernels.h" #include "computeChi2_kernels.h" constexpr int BLOCK_SIZE_X = 16; __device__ void getHitFromLayer_fn(LayerOfHitsCU& layer_of_hits, GPlexQI& HitsIdx, GPlexHV& msPar, GPlexHS& msErr, int itrack_plex, int N) { if (itrack_plex < N) { int hit_idx = HitsIdx[itrack_plex]; if (hit_idx >= 0) { Hit &hit = layer_of_hits.m_hits[hit_idx]; GetHitErr(msErr, (char *)hit.errArrayCU(), 0, N); GetHitPar(msPar, (char *)hit.posArrayCU(), 0, N); } } } __global__ void getHitFromLayer_kernel(LayerOfHitsCU& layer_of_hits, GPlexQI HitsIdx, GPlexHV msPar, GPlexHS msErr, int N) { int itrack_plex = threadIdx.x + blockDim.x * blockIdx.x; getHitFromLayer_fn(layer_of_hits, HitsIdx, msPar, msErr, itrack_plex, N); } void getHitFromLayer_wrappper( const cudaStream_t& stream, LayerOfHitsCU& layer_cu, GPlexQI& HitsIdx, GPlexHV& msPar, GPlexHS& msErr, int N) { int gridx = (N-1)/BLOCK_SIZE_X + 1; dim3 grid(gridx, 1, 1); dim3 block(BLOCK_SIZE_X, 1, 1); getHitFromLayer_kernel <<< grid, block, 0, stream >>> (layer_cu, HitsIdx, msPar, msErr, N); } __device__ void updateMissingHits_fn(GPlexQI& HitsIdx, GPlexLV& Par_iP, GPlexLS& Err_iP, GPlexLV& Par_iC, GPlexLS& Err_iC, int i, int N) { if (i < N) { if (HitsIdx[i] < 0) { two_steps_copy<7> (Err_iC, Err_iP, i); two_steps_copy<6> (Par_iC, Par_iP, i); } } } __global__ void updateMissingHits_kernel(GPlexQI HitsIdx, GPlexLV Par_iP, GPlexLS Err_iP, GPlexLV Par_iC, GPlexLS Err_iC, int N) { int i = threadIdx.x + blockDim.x * blockIdx.x; updateMissingHits_fn(HitsIdx, Par_iP, Err_iP, Par_iC, Err_iC, i, N); } void UpdateMissingHits_wrapper( const cudaStream_t& stream, GPlexQI& HitsIdx, GPlexLV& Par_iP, GPlexLS& Err_iP, GPlexLV& Par_iC, GPlexLS& Err_iC, int N) { int gridx = (N-1)/BLOCK_SIZE_X + 1; dim3 grid(gridx, 1, 1); dim3 block(BLOCK_SIZE_X, 1, 1); updateMissingHits_kernel <<< grid, block, 0, stream >>> (HitsIdx, Par_iP, Err_iP, Par_iC, Err_iC, N); } __device__ void UpdateWithLastHit_fn( LayerOfHitsCU& layer_of_hits, GPlexQI& HitsIdx, GPlexHV& msPar, GPlexHS& msErr, GPlexLV& Par_iP, GPlexLS& Err_iP, GPlexLV& Par_iC, GPlexLS& Err_iC, int itrack_plex, int N) { getHitFromLayer_fn(layer_of_hits, HitsIdx, msPar, msErr, itrack_plex, N); kalmanUpdate_fn(Err_iP, msErr, Par_iP, msPar, Par_iC, Err_iC, itrack_plex, N); updateMissingHits_fn(HitsIdx, Par_iP, Err_iP, Par_iC, Err_iC, itrack_plex, N); } __global__ void UpdateWithLastHit_kernel( LayerOfHitsCU& layer_of_hits, GPlexQI HitsIdx, GPlexHV msPar, GPlexHS msErr, GPlexLV Par_iP, GPlexLS Err_iP, GPlexLV Par_iC, GPlexLS Err_iC, int N) { int i = threadIdx.x + blockDim.x * blockIdx.x; UpdateWithLastHit_fn(layer_of_hits, HitsIdx, msPar, msErr, Par_iP, Err_iP, Par_iC, Err_iC, i, N); } void UpdateWithLastHit_wrapper( const cudaStream_t& stream, LayerOfHitsCU& layer_cu, GPlexQI& HitsIdx, GPlexHV& msPar, GPlexHS& msErr, GPlexLV& Par_iP, GPlexLS& Err_iP, GPlexLV& Par_iC, GPlexLS& Err_iC, int N) { int gridx = (N-1)/BLOCK_SIZE_X + 1; dim3 grid(gridx, 1, 1); dim3 block(BLOCK_SIZE_X, 1, 1); UpdateWithLastHit_kernel <<< grid, block, 0, stream >>> (layer_cu, HitsIdx, msPar, msErr, Par_iP, Err_iP, Par_iC, Err_iC, N); }
0ca981de779bb6abfa388853b7c0b02d6444cef9.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* * Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "detect_utils.h" #include "cudaUtility.h" template<typename T> __global__ void gpuDetectionOverlay( T* input, T* output, int width, int height, Detection* detections, int numDetections, float4* colors ) { const int x = blockIdx.x * blockDim.x + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; if( x >= width || y >= height ) return; const T px_in = input[ y * width + x ]; T px_out = px_in; const float fx = x; const float fy = y; for( int n=0; n < numDetections; n++ ) { const Detection det = detections[n]; // check if this pixel is inside the bounding box if( fx >= det.Left && fx <= det.Right && fy >= det.Top && fy <= det.Bottom ) { const float4 color = colors[det.ClassID]; const float alpha = color.w / 255.0f; const float ialph = 1.0f - alpha; px_out.x = alpha * color.x + ialph * px_out.x; px_out.y = alpha * color.y + ialph * px_out.y; px_out.z = alpha * color.z + ialph * px_out.z; } } output[y * width + x] = px_out; } template<typename T> __global__ void gpuDetectionOverlayBox( T* input, T* output, int imgWidth, int imgHeight, int x0, int y0, int boxWidth, int boxHeight, const float4 color ) { const int box_x = blockIdx.x * blockDim.x + threadIdx.x; const int box_y = blockIdx.y * blockDim.y + threadIdx.y; if( box_x >= boxWidth || box_y >= boxHeight ) return; const int x = box_x + x0; const int y = box_y + y0; if( x >= imgWidth || y >= imgHeight ) return; T px = input[ y * imgWidth + x ]; const float alpha = color.w / 255.0f; const float ialph = 1.0f - alpha; px.x = alpha * color.x + ialph * px.x; px.y = alpha * color.y + ialph * px.y; px.z = alpha * color.z + ialph * px.z; output[y * imgWidth + x] = px; } template<typename T> hipError_t launchDetectionOverlay( T* input, T* output, uint32_t width, uint32_t height, Detection* detections, int numDetections, float4* colors ) { if( !input || !output || width == 0 || height == 0 || !detections || numDetections == 0 || !colors ) return hipErrorInvalidValue; // this assumes that the output already has the input image copied to it, // which if input != output, is done first by detectNet::Detect() for( int n=0; n < numDetections; n++ ) { const int boxWidth = (int)detections[n].Width(); const int boxHeight = (int)detections[n].Height(); // launch kernel const dim3 blockDim(8, 8); const dim3 gridDim(iDivUp(boxWidth,blockDim.x), iDivUp(boxHeight,blockDim.y)); hipLaunchKernelGGL(( gpuDetectionOverlayBox<T>), dim3(gridDim), dim3(blockDim), 0, 0, input, output, width, height, (int)detections[n].Left, (int)detections[n].Top, boxWidth, boxHeight, colors[detections[n].ClassID]); } return hipGetLastError(); } hipError_t cudaDetectionOverlay( void* input, void* output, uint32_t width, uint32_t height, imageFormat format, Detection* detections, int numDetections, float4* colors ) { if( format == IMAGE_RGB8 ) return launchDetectionOverlay<uchar3>((uchar3*)input, (uchar3*)output, width, height, detections, numDetections, colors); else if( format == IMAGE_RGBA8 ) return launchDetectionOverlay<uchar4>((uchar4*)input, (uchar4*)output, width, height, detections, numDetections, colors); else if( format == IMAGE_RGB32F ) return launchDetectionOverlay<float3>((float3*)input, (float3*)output, width, height, detections, numDetections, colors); else if( format == IMAGE_RGBA32F ) return launchDetectionOverlay<float4>((float4*)input, (float4*)output, width, height, detections, numDetections, colors); else return hipErrorInvalidValue; } __global__ void gpuDetectionTransfer( float* input, Detection* output, const int numDets, const int entryLength ) { const int n = blockIdx.x * blockDim.x + threadIdx.x; if (n >= numDets) return; float* objects_n = input + n * entryLength; output[n].Instance = n; output[n].ClassID = (uint32_t)objects_n[5]; output[n].Confidence = objects_n[4]; output[n].Left = objects_n[0]; output[n].Top = objects_n[1]; output[n].Right = objects_n[2]; output[n].Bottom = objects_n[3]; } hipError_t cudaDetectionTransfer( float* input, Detection* output, const int numDets, const int entryLength ) { if( !input || !output ) return hipErrorInvalidValue; const dim3 blockDim(32); const dim3 gridDim(iDivUp(numDets, blockDim.x)); hipLaunchKernelGGL(( gpuDetectionTransfer), dim3(gridDim), dim3(blockDim), 0, 0, input, output, numDets, entryLength); return hipGetLastError(); }
0ca981de779bb6abfa388853b7c0b02d6444cef9.cu
/* * Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "detect_utils.h" #include "cudaUtility.h" template<typename T> __global__ void gpuDetectionOverlay( T* input, T* output, int width, int height, Detection* detections, int numDetections, float4* colors ) { const int x = blockIdx.x * blockDim.x + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; if( x >= width || y >= height ) return; const T px_in = input[ y * width + x ]; T px_out = px_in; const float fx = x; const float fy = y; for( int n=0; n < numDetections; n++ ) { const Detection det = detections[n]; // check if this pixel is inside the bounding box if( fx >= det.Left && fx <= det.Right && fy >= det.Top && fy <= det.Bottom ) { const float4 color = colors[det.ClassID]; const float alpha = color.w / 255.0f; const float ialph = 1.0f - alpha; px_out.x = alpha * color.x + ialph * px_out.x; px_out.y = alpha * color.y + ialph * px_out.y; px_out.z = alpha * color.z + ialph * px_out.z; } } output[y * width + x] = px_out; } template<typename T> __global__ void gpuDetectionOverlayBox( T* input, T* output, int imgWidth, int imgHeight, int x0, int y0, int boxWidth, int boxHeight, const float4 color ) { const int box_x = blockIdx.x * blockDim.x + threadIdx.x; const int box_y = blockIdx.y * blockDim.y + threadIdx.y; if( box_x >= boxWidth || box_y >= boxHeight ) return; const int x = box_x + x0; const int y = box_y + y0; if( x >= imgWidth || y >= imgHeight ) return; T px = input[ y * imgWidth + x ]; const float alpha = color.w / 255.0f; const float ialph = 1.0f - alpha; px.x = alpha * color.x + ialph * px.x; px.y = alpha * color.y + ialph * px.y; px.z = alpha * color.z + ialph * px.z; output[y * imgWidth + x] = px; } template<typename T> cudaError_t launchDetectionOverlay( T* input, T* output, uint32_t width, uint32_t height, Detection* detections, int numDetections, float4* colors ) { if( !input || !output || width == 0 || height == 0 || !detections || numDetections == 0 || !colors ) return cudaErrorInvalidValue; // this assumes that the output already has the input image copied to it, // which if input != output, is done first by detectNet::Detect() for( int n=0; n < numDetections; n++ ) { const int boxWidth = (int)detections[n].Width(); const int boxHeight = (int)detections[n].Height(); // launch kernel const dim3 blockDim(8, 8); const dim3 gridDim(iDivUp(boxWidth,blockDim.x), iDivUp(boxHeight,blockDim.y)); gpuDetectionOverlayBox<T><<<gridDim, blockDim>>>(input, output, width, height, (int)detections[n].Left, (int)detections[n].Top, boxWidth, boxHeight, colors[detections[n].ClassID]); } return cudaGetLastError(); } cudaError_t cudaDetectionOverlay( void* input, void* output, uint32_t width, uint32_t height, imageFormat format, Detection* detections, int numDetections, float4* colors ) { if( format == IMAGE_RGB8 ) return launchDetectionOverlay<uchar3>((uchar3*)input, (uchar3*)output, width, height, detections, numDetections, colors); else if( format == IMAGE_RGBA8 ) return launchDetectionOverlay<uchar4>((uchar4*)input, (uchar4*)output, width, height, detections, numDetections, colors); else if( format == IMAGE_RGB32F ) return launchDetectionOverlay<float3>((float3*)input, (float3*)output, width, height, detections, numDetections, colors); else if( format == IMAGE_RGBA32F ) return launchDetectionOverlay<float4>((float4*)input, (float4*)output, width, height, detections, numDetections, colors); else return cudaErrorInvalidValue; } __global__ void gpuDetectionTransfer( float* input, Detection* output, const int numDets, const int entryLength ) { const int n = blockIdx.x * blockDim.x + threadIdx.x; if (n >= numDets) return; float* objects_n = input + n * entryLength; output[n].Instance = n; output[n].ClassID = (uint32_t)objects_n[5]; output[n].Confidence = objects_n[4]; output[n].Left = objects_n[0]; output[n].Top = objects_n[1]; output[n].Right = objects_n[2]; output[n].Bottom = objects_n[3]; } cudaError_t cudaDetectionTransfer( float* input, Detection* output, const int numDets, const int entryLength ) { if( !input || !output ) return cudaErrorInvalidValue; const dim3 blockDim(32); const dim3 gridDim(iDivUp(numDets, blockDim.x)); gpuDetectionTransfer<<<gridDim, blockDim>>>(input, output, numDets, entryLength); return cudaGetLastError(); }
82f583d829b53b9b4ea3d5f3a6a967a9eb8de5cf.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "DSKernels.cuh" #include <opencv2\opencv.hpp> //#define KERN_DEB #define BLOCK_X 16 #define BLOCK_Y 16 // Exchange trick: Morgan McGuire, ShaderX 2008 #define s2(a,b) { unsigned short tmp = a; a = min(a,b); b = max(tmp,b); } #define mn3(a,b,c) s2(a,b); s2(a,c); #define mx3(a,b,c) s2(b,c); s2(a,c); #define mnmx3(a,b,c) mx3(a,b,c); s2(a,b); // 3 exchanges #define mnmx4(a,b,c,d) s2(a,b); s2(c,d); s2(a,c); s2(b,d); // 4 exchanges #define mnmx5(a,b,c,d,e) s2(a,b); s2(c,d); mn3(a,c,e); mx3(b,d,e); // 6 exchanges #define mnmx6(a,b,c,d,e,f) s2(a,d); s2(b,e); s2(c,f); mn3(a,b,c); mx3(d,e,f); // 7 exchanges #define SMEM(x,y) smem[(x)+1][(y)+1] #define IN(x,y) d_in[(y)*nx + (x)] /////////////////////////////////////////////////////////////////////////////Helpers///////////////////////////////////////////////////////////////////////////// #ifdef KERN_DEB #include <iostream> static inline void _safe_cuda_call(hipError_t err, const char* msg, const char* file_name, const int line_number) { if (err != hipSuccess) { fprintf(stderr, "%s\n\nFile: %s\n\nLine Number: %d\n\nReason: %s\n", msg, file_name, line_number, hipGetErrorString(err)); std::cin.get(); exit(EXIT_FAILURE); } } #define SAFE_CALL(call,msg) _safe_cuda_call((call),(msg),__FILE__,__LINE__) #endif #define DIVIDE_UP(a, b) (int)::ceil((float)a / (float)b) /////////////////////////////////////////////////////////////////////////////Kernels///////////////////////////////////////////////////////////////////////////// __global__ void census_transform_kernel(hipTextureObject_t input_im, unsigned long long int *output_census, int width, int height){ int image_row = blockIdx.y * blockDim.y + threadIdx.y; int image_col = blockIdx.x * blockDim.x + threadIdx.x; if (image_row < height && image_col < width){ unsigned char ref = tex2D<unsigned char>(input_im, image_col, image_row); unsigned int sum1 = 0x0000; sum1 = ((tex2D<unsigned char>(input_im, image_col - 3, image_row - 4) > ref) << 31) | ((tex2D<unsigned char>(input_im, image_col - 2, image_row - 4) > ref) << 30) | ((tex2D<unsigned char>(input_im, image_col - 1, image_row - 4) > ref) << 29) | ((tex2D<unsigned char>(input_im, image_col - 0, image_row - 4) > ref) << 28) | ((tex2D<unsigned char>(input_im, image_col + 1, image_row - 4) > ref) << 27) | ((tex2D<unsigned char>(input_im, image_col + 2, image_row - 4) > ref) << 26) | ((tex2D<unsigned char>(input_im, image_col + 3, image_row - 4) > ref) << 25) | ((tex2D<unsigned char>(input_im, image_col - 3, image_row - 3) > ref) << 24) | ((tex2D<unsigned char>(input_im, image_col - 2, image_row - 3) > ref) << 23) | ((tex2D<unsigned char>(input_im, image_col - 1, image_row - 3) > ref) << 22) | ((tex2D<unsigned char>(input_im, image_col - 0, image_row - 3) > ref) << 21) | ((tex2D<unsigned char>(input_im, image_col + 1, image_row - 3) > ref) << 20) | ((tex2D<unsigned char>(input_im, image_col + 2, image_row - 3) > ref) << 19) | ((tex2D<unsigned char>(input_im, image_col + 3, image_row - 3) > ref) << 18) | ((tex2D<unsigned char>(input_im, image_col - 3, image_row - 2) > ref) << 17) | ((tex2D<unsigned char>(input_im, image_col - 2, image_row - 2) > ref) << 16) | ((tex2D<unsigned char>(input_im, image_col - 1, image_row - 2) > ref) << 15) | ((tex2D<unsigned char>(input_im, image_col - 0, image_row - 2) > ref) << 14) | ((tex2D<unsigned char>(input_im, image_col + 1, image_row - 2) > ref) << 13) | ((tex2D<unsigned char>(input_im, image_col + 2, image_row - 2) > ref) << 12) | ((tex2D<unsigned char>(input_im, image_col + 3, image_row - 2) > ref) << 11) | ((tex2D<unsigned char>(input_im, image_col - 3, image_row - 1) > ref) << 10) | ((tex2D<unsigned char>(input_im, image_col - 2, image_row - 1) > ref) << 9) | ((tex2D<unsigned char>(input_im, image_col - 1, image_row - 1) > ref) << 8) | ((tex2D<unsigned char>(input_im, image_col - 0, image_row - 1) > ref) << 7) | ((tex2D<unsigned char>(input_im, image_col + 1, image_row - 1) > ref) << 6) | ((tex2D<unsigned char>(input_im, image_col + 2, image_row - 1) > ref) << 5) | ((tex2D<unsigned char>(input_im, image_col + 3, image_row - 1) > ref) << 4) | ((tex2D<unsigned char>(input_im, image_col - 3, image_row - 0) > ref) << 3) | ((tex2D<unsigned char>(input_im, image_col - 2, image_row - 0) > ref) << 2) | ((tex2D<unsigned char>(input_im, image_col - 1, image_row - 0) > ref) << 1) | ((tex2D<unsigned char>(input_im, image_col - 0, image_row - 0) > ref) << 0); unsigned int sum2 = 0x0000; sum2 = ((tex2D<unsigned char>(input_im, image_col + 0, image_row + 0) > ref) << 31) | ((tex2D<unsigned char>(input_im, image_col + 1, image_row + 0) > ref) << 30) | ((tex2D<unsigned char>(input_im, image_col + 2, image_row + 0) > ref) << 29) | ((tex2D<unsigned char>(input_im, image_col + 3, image_row + 0) > ref) << 28) | ((tex2D<unsigned char>(input_im, image_col - 3, image_row + 1) > ref) << 27) | ((tex2D<unsigned char>(input_im, image_col - 2, image_row + 1) > ref) << 26) | ((tex2D<unsigned char>(input_im, image_col - 1, image_row + 1) > ref) << 25) | ((tex2D<unsigned char>(input_im, image_col + 0, image_row + 1) > ref) << 24) | ((tex2D<unsigned char>(input_im, image_col + 1, image_row + 1) > ref) << 23) | ((tex2D<unsigned char>(input_im, image_col + 2, image_row + 1) > ref) << 22) | ((tex2D<unsigned char>(input_im, image_col + 3, image_row + 1) > ref) << 21) | ((tex2D<unsigned char>(input_im, image_col - 3, image_row + 2) > ref) << 20) | ((tex2D<unsigned char>(input_im, image_col - 2, image_row + 2) > ref) << 19) | ((tex2D<unsigned char>(input_im, image_col - 1, image_row + 2) > ref) << 18) | ((tex2D<unsigned char>(input_im, image_col + 0, image_row + 2) > ref) << 17) | ((tex2D<unsigned char>(input_im, image_col + 1, image_row + 2) > ref) << 16) | ((tex2D<unsigned char>(input_im, image_col + 2, image_row + 2) > ref) << 15) | ((tex2D<unsigned char>(input_im, image_col + 3, image_row + 2) > ref) << 14) | ((tex2D<unsigned char>(input_im, image_col - 3, image_row + 3) > ref) << 13) | ((tex2D<unsigned char>(input_im, image_col - 2, image_row + 3) > ref) << 12) | ((tex2D<unsigned char>(input_im, image_col - 1, image_row + 3) > ref) << 11) | ((tex2D<unsigned char>(input_im, image_col + 0, image_row + 3) > ref) << 10) | ((tex2D<unsigned char>(input_im, image_col + 1, image_row + 3) > ref) << 9) | ((tex2D<unsigned char>(input_im, image_col + 2, image_row + 3) > ref) << 8) | ((tex2D<unsigned char>(input_im, image_col + 3, image_row + 3) > ref) << 7) | ((tex2D<unsigned char>(input_im, image_col - 3, image_row + 4) > ref) << 6) | ((tex2D<unsigned char>(input_im, image_col - 2, image_row + 4) > ref) << 5) | ((tex2D<unsigned char>(input_im, image_col - 1, image_row + 4) > ref) << 4) | ((tex2D<unsigned char>(input_im, image_col + 0, image_row + 4) > ref) << 3) | ((tex2D<unsigned char>(input_im, image_col + 1, image_row + 4) > ref) << 2) | ((tex2D<unsigned char>(input_im, image_col + 2, image_row + 4) > ref) << 1) | ((tex2D<unsigned char>(input_im, image_col + 3, image_row + 4) > ref) << 0); uint2 temp = make_uint2(sum1, sum2); output_census[image_row * width + image_col] = *reinterpret_cast<unsigned long long int*>(&temp); } } __global__ void cross_construct_kernel(hipTextureObject_t input_im, uchar4 *ouput_arm_vol, int arm_length, int max_arm_length, int arm_threshold, int strict_arm_threshold, int width, int height){ int image_col = blockIdx.x * blockDim.x + threadIdx.x; int image_row = blockIdx.y * blockDim.y + threadIdx.y; if (image_row < height && image_col < width){ uchar4 pix_arm = make_uchar4(0, 0, 0, 0); int ref = tex2D<unsigned char>(input_im, image_col, image_row); int scan_length, diff_curr_ref, diff_curr_next; //Upward scan scan_length = 0; diff_curr_ref = 0; diff_curr_next = 0; while (true) { diff_curr_ref = abs(ref - tex2D<unsigned char>(input_im, image_col, image_row - scan_length)); diff_curr_next = abs(ref - tex2D<unsigned char>(input_im, image_col, image_row - scan_length - 1)); if (!(scan_length < max_arm_length && image_row - scan_length > 0 && diff_curr_ref <= (arm_length < scan_length ? strict_arm_threshold : arm_threshold) && diff_curr_next <= (arm_length < scan_length ? strict_arm_threshold : arm_threshold))) break; scan_length++; } pix_arm.x = scan_length; //Downward scan scan_length = 0; diff_curr_ref = 0; diff_curr_next = 0; while (true) { diff_curr_ref = abs(ref - tex2D<unsigned char>(input_im, image_col, image_row + scan_length)); diff_curr_next = abs(ref - tex2D<unsigned char>(input_im, image_col, image_row + scan_length + 1)); if (!(scan_length < max_arm_length && image_row + scan_length < height - 1 && diff_curr_ref <= (arm_length < scan_length ? strict_arm_threshold : arm_threshold) && diff_curr_next <= (arm_length < scan_length ? strict_arm_threshold : arm_threshold))) break; scan_length++; } pix_arm.y = scan_length; //Leftward scan scan_length = 0; diff_curr_ref = 0; diff_curr_next = 0; while (true) { diff_curr_ref = abs(ref - tex2D<unsigned char>(input_im, image_col - scan_length, image_row)); diff_curr_next = abs(ref - tex2D<unsigned char>(input_im, image_col - scan_length - 1, image_row)); if (!(scan_length < max_arm_length && image_col - scan_length > 0 && diff_curr_ref <= (arm_length < scan_length ? strict_arm_threshold : arm_threshold) && diff_curr_next <= (arm_length < scan_length ? strict_arm_threshold : arm_threshold))) break; scan_length++; } pix_arm.z = scan_length; //Rightward scan scan_length = 0; diff_curr_ref = 0; diff_curr_next = 0; while (true) { diff_curr_ref = abs(ref - tex2D<unsigned char>(input_im, image_col + scan_length, image_row)); diff_curr_next = abs(ref - tex2D<unsigned char>(input_im, image_col + scan_length + 1, image_row)); if (!(scan_length < max_arm_length && image_col + scan_length < width && diff_curr_ref <= (arm_length < scan_length ? strict_arm_threshold : arm_threshold) && diff_curr_next <= (arm_length < scan_length ? strict_arm_threshold : arm_threshold))) break; scan_length++; } pix_arm.w = scan_length; pix_arm.x = pix_arm.x == 0 ? (image_row - 2 >= 0 ? 2 : 0) : pix_arm.x; pix_arm.y = pix_arm.y == 0 ? (image_row + 2 < height ? 2 : 0) : pix_arm.y; //pix_arm.x = image_row - 2 >= 0 ? 2 : pix_arm.x; //pix_arm.y = image_row + 2 < height ? 2 : pix_arm.y; pix_arm.z = pix_arm.z == 0 ? (image_col - 2 >= 0 ? 2 : 0) : pix_arm.z; pix_arm.w = pix_arm.w == 0 ? (image_col + 2 < width ? 2 : 0) : pix_arm.w; ouput_arm_vol[image_row * width + image_col] = pix_arm; } } __global__ void cost_initialization_kernel(unsigned char *left, unsigned char *right, unsigned long long int *left_census, unsigned long long int *right_census, float *cost_vol, float ad_gamma, float census_gamma, bool left_to_right, int width, int height){ extern __shared__ unsigned char temp[]; unsigned char *ref_temp = temp; unsigned char *targ_temp = &ref_temp[blockDim.x]; unsigned long long int *ref_census_temp = (unsigned long long int*)&targ_temp[blockDim.x * 2]; unsigned long long int *targ_census_temp = &ref_census_temp[blockDim.x]; //Initialize to zero ref_temp[threadIdx.x] = 0; targ_temp[threadIdx.x] = 0; targ_temp[blockDim.x + threadIdx.x] = 0; ref_census_temp[threadIdx.x] = 0; targ_census_temp[threadIdx.x] = 0; targ_census_temp[blockDim.x + threadIdx.x] = 0; __syncthreads(); int image_row = blockIdx.y; float cost = 0.0f; if (image_row < height){ if (left_to_right){ for (int image_col = 0; image_col < width; image_col++){ int block_index = image_col % blockDim.x; if (block_index == 0){ if (image_col + threadIdx.x < width){ ref_temp[threadIdx.x] = left[image_row * width + image_col + threadIdx.x]; ref_census_temp[threadIdx.x] = left_census[image_row * width + image_col + threadIdx.x]; } if (image_col + threadIdx.x < width){ targ_temp[blockDim.x + threadIdx.x] = right[image_row * width + image_col + threadIdx.x]; targ_census_temp[blockDim.x + threadIdx.x] = right_census[image_row * width + image_col + threadIdx.x]; } if ((int)(image_col - blockDim.x + threadIdx.x) >= 0 && (int)(image_col - blockDim.x + threadIdx.x) < width){ targ_temp[threadIdx.x] = right[image_row * width + image_col - blockDim.x + threadIdx.x]; targ_census_temp[threadIdx.x] = right_census[image_row * width + image_col - blockDim.x + threadIdx.x]; } __syncthreads(); } float ad_cost, census_cost; ad_cost = (fabsf(ref_temp[block_index] - targ_temp[blockDim.x + block_index - threadIdx.x]) / 255.0f) * ad_gamma; census_cost = (__popcll(ref_census_temp[block_index] ^ targ_census_temp[blockDim.x + block_index - threadIdx.x]) / 64.0f) * census_gamma; cost += ad_cost + census_cost; cost_vol[image_row * width * blockDim.x + image_col * blockDim.x + threadIdx.x] = cost; } } else{ for (int image_col = 0; image_col < width; image_col++){ int block_index = image_col % blockDim.x; if (block_index == 0){ if (image_col + threadIdx.x < width){ ref_temp[threadIdx.x] = right[image_row * width + image_col + threadIdx.x]; ref_census_temp[threadIdx.x] = right_census[image_row * width + image_col + threadIdx.x]; } if (image_col + threadIdx.x < width){ targ_temp[threadIdx.x] = left[image_row * width + image_col + threadIdx.x]; targ_census_temp[threadIdx.x] = left_census[image_row * width + image_col + threadIdx.x]; } if (image_col + blockDim.x + threadIdx.x < width){ targ_temp[blockDim.x + threadIdx.x] = left[image_row * width + image_col + blockDim.x + threadIdx.x]; targ_census_temp[blockDim.x + threadIdx.x] = left_census[image_row * width + image_col + blockDim.x + threadIdx.x]; } __syncthreads(); } float ad_cost, census_cost; ad_cost = (fabsf(ref_temp[block_index] - targ_temp[block_index + threadIdx.x]) / 255.0f) * ad_gamma; census_cost = (__popcll(ref_census_temp[block_index] ^ targ_census_temp[block_index + threadIdx.x]) / 64.0f) * census_gamma; cost += ad_cost + census_cost; cost_vol[image_row * width * blockDim.x + image_col * blockDim.x + threadIdx.x] = cost; } } } } __global__ void horizontal_aggregation_kernel(float *cost_vol_in, uchar4 *arm_vol, float *cost_vol_out, int width, int height){ int image_col = blockIdx.x; float sum = 0.0f; for (int image_row = 0; image_row < height; image_row++){ uchar4 pixel_arm = arm_vol[image_row * width + image_col]; int right_limit = image_col + pixel_arm.w; int left_limit = image_col - pixel_arm.z - 1; float aggregate = cost_vol_in[image_row * width * blockDim.x + right_limit * blockDim.x + threadIdx.x]; if (left_limit >= 0) aggregate -= cost_vol_in[image_row * width * blockDim.x + left_limit * blockDim.x + threadIdx.x]; sum += aggregate; cost_vol_out[image_row * width * blockDim.x + image_col * blockDim.x + threadIdx.x] = sum; } } __global__ void vertical_aggregation_kernel(float *cost_vol_in, uchar4 *arm_vol, float *cost_vol_out, unsigned short *disp_im, int width, int height){ int image_row = blockIdx.y; __shared__ unsigned int reduce_cache[32]; __shared__ float cost_cache[256]; for (int image_col = 0; image_col < width; image_col++){ uchar4 pix_arm = arm_vol[image_row * width + image_col]; int down_lim = image_row + pix_arm.y; int up_lim = image_row - pix_arm.x - 1; float aggregate = cost_vol_in[down_lim * width * blockDim.x + image_col * blockDim.x + threadIdx.x]; if (up_lim >= 0) aggregate -= cost_vol_in[up_lim * width * blockDim.x + image_col * blockDim.x + threadIdx.x]; //cost_vol_out[image_row * width * blockDim.x + image_col * blockDim.x + threadIdx.x] = aggregate; cost_cache[threadIdx.x] = aggregate; //Find the minimum unsigned int min_cost = (((unsigned int)(aggregate * 10000)) << 8) | threadIdx.x; unsigned int temp_min_cost = 0; int lane = threadIdx.x % 32; int wid = threadIdx.x / 32; temp_min_cost = __shfl_down(min_cost, 16); min_cost = min(min_cost, temp_min_cost); temp_min_cost = __shfl_down(min_cost, 8); min_cost = min(min_cost, temp_min_cost); temp_min_cost = __shfl_down(min_cost, 4); min_cost = min(min_cost, temp_min_cost); temp_min_cost = __shfl_down(min_cost, 2); min_cost = min(min_cost, temp_min_cost); temp_min_cost = __shfl_down(min_cost, 1); min_cost = min(min_cost, temp_min_cost); if (lane == 0) reduce_cache[wid] = min_cost; __syncthreads(); min_cost = (threadIdx.x < blockDim.x / 32) ? reduce_cache[lane] : UINT_MAX; if (wid == 0){ temp_min_cost = __shfl_down(min_cost, 4); min_cost = min(min_cost, temp_min_cost); temp_min_cost = __shfl_down(min_cost, 2); min_cost = min(min_cost, temp_min_cost); temp_min_cost = __shfl_down(min_cost, 1); min_cost = min(min_cost, temp_min_cost); } if (threadIdx.x == 0){ unsigned short disp = (unsigned short)((min_cost & 0x000000FF)); if (disp >= 1 && disp < blockDim.x - 1) disp_im[image_row * width + image_col] = (unsigned short)((disp + ((cost_cache[disp + 1] - cost_cache[disp - 1]) / (2 * (-cost_cache[disp + 1] - cost_cache[disp - 1] + 2 * cost_cache[disp])))) * 256.0f); else disp_im[image_row * width + image_col] = disp << 8; } } } __global__ void consistency_check_kernel(hipTextureObject_t left_disp_im, hipTextureObject_t right_disp_im, unsigned short *output_disp_im, int disparity_tolerance, int width, int height){ int col_to_access = blockIdx.x * blockDim.x + threadIdx.x; int row_to_access = blockIdx.y * blockDim.y + threadIdx.y; if (row_to_access < height && col_to_access < width){ unsigned short disp = tex2D<unsigned short>(left_disp_im, col_to_access, row_to_access); unsigned short to_check = tex2D<unsigned short>(right_disp_im, col_to_access - (disp >> 8), row_to_access); output_disp_im[row_to_access * width + col_to_access] = (abs(disp - to_check) <= disparity_tolerance * 256) ? disp : OUTLIER; } } __global__ void horizontal_voting_kernel(hipTextureObject_t input_disp, uchar4 *arm_vol, unsigned short *output_disp, int width, int height){ int image_row = blockIdx.y * blockDim.y + threadIdx.y; int image_col = blockIdx.x * blockDim.x + threadIdx.x; if (image_row < height && image_col < width){ int sums[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int eligible_votes = 0; int no_of_votes = 0; //Load arm data uchar4 pix_arm = arm_vol[image_col + image_row * width]; //Check disp value int disp_value = tex2D<unsigned short>(input_disp, image_col, image_row); if (disp_value == OUTLIER){ for (int pix_iter = -pix_arm.z; pix_iter <= pix_arm.w; pix_iter++){ int disp_val = tex2D<unsigned short>(input_disp, image_col + pix_iter, image_row); if (disp_val != OUTLIER){ sums[0] += ((disp_val & 1) != 0); sums[1] += ((disp_val & 2) != 0); sums[2] += ((disp_val & 4) != 0); sums[3] += ((disp_val & 8) != 0); sums[4] += ((disp_val & 16) != 0); sums[5] += ((disp_val & 32) != 0); sums[6] += ((disp_val & 64) != 0); sums[7] += ((disp_val & 128) != 0); sums[8] += ((disp_val & 256) != 0); sums[9] += ((disp_val & 512) != 0); sums[10] += ((disp_val & 1024) != 0); sums[11] += ((disp_val & 2048) != 0); sums[12] += ((disp_val & 4096) != 0); sums[13] += ((disp_val & 8192) != 0); sums[14] += ((disp_val & 16384) != 0); sums[15] += ((disp_val & 32768) != 0); eligible_votes++; } no_of_votes++; } __syncthreads(); int majority = eligible_votes * 0.5; disp_value = ( ((sums[15] > majority) << 15) + ((sums[14] > majority) << 14) + ((sums[13] > majority) << 13) + ((sums[12] > majority) << 12) + ((sums[11] > majority) << 11) + ((sums[10] > majority) << 10) + ((sums[9] > majority) << 9) + ((sums[8] > majority) << 8) + ((sums[7] > majority) << 7) + ((sums[6] > majority) << 6) + ((sums[5] > majority) << 5) + ((sums[4] > majority) << 4) + ((sums[3] > majority) << 3) + ((sums[2] > majority) << 2) + ((sums[1] > majority) << 1) + ((sums[0] > majority) << 0)); disp_value = (eligible_votes > no_of_votes * 0.35f) ? disp_value : OUTLIER; } output_disp[image_col + image_row * width] = disp_value; } } __global__ void vertical_voting_kernel(hipTextureObject_t input_disp, uchar4 *arm_vol, unsigned short *output_disp, int width, int height){ int image_row = blockIdx.y * blockDim.y + threadIdx.y; int image_col = blockIdx.x * blockDim.x + threadIdx.x; if (image_row < height && image_col < width){ int sums[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int eligible_votes = 0; int no_of_votes = 0; //Load arm data uchar4 pix_arm = arm_vol[image_col + image_row * width]; //Check disp value int disp_value = tex2D<unsigned short>(input_disp, image_col, image_row); if (disp_value == OUTLIER){ for (int pix_iter = -pix_arm.x; pix_iter <= pix_arm.y; pix_iter++){ int disp_val = tex2D<unsigned char>(input_disp, image_col, image_row + pix_iter); if (disp_val != OUTLIER){ sums[0] += ((disp_val & 1) != 0); sums[1] += ((disp_val & 2) != 0); sums[2] += ((disp_val & 4) != 0); sums[3] += ((disp_val & 8) != 0); sums[4] += ((disp_val & 16) != 0); sums[5] += ((disp_val & 32) != 0); sums[6] += ((disp_val & 64) != 0); sums[7] += ((disp_val & 128) != 0); sums[8] += ((disp_val & 256) != 0); sums[9] += ((disp_val & 512) != 0); sums[10] += ((disp_val & 1024) != 0); sums[11] += ((disp_val & 2048) != 0); sums[12] += ((disp_val & 4096) != 0); sums[13] += ((disp_val & 8192) != 0); sums[14] += ((disp_val & 16384) != 0); sums[15] += ((disp_val & 32768) != 0); eligible_votes++; } no_of_votes++; } __syncthreads(); int majority = eligible_votes * 0.5; disp_value = ( ((sums[15] > majority) << 15) + ((sums[14] > majority) << 14) + ((sums[13] > majority) << 13) + ((sums[12] > majority) << 12) + ((sums[11] > majority) << 11) + ((sums[10] > majority) << 10) + ((sums[9] > majority) << 9) + ((sums[8] > majority) << 8) + ((sums[7] > majority) << 7) + ((sums[6] > majority) << 6) + ((sums[5] > majority) << 5) + ((sums[4] > majority) << 4) + ((sums[3] > majority) << 3) + ((sums[2] > majority) << 2) + ((sums[1] > majority) << 1) + ((sums[0] > majority) << 0)); disp_value = (eligible_votes > no_of_votes * 0.35f) ? disp_value : OUTLIER; } output_disp[image_col + image_row * width] = disp_value; } } __global__ void median_filter_kernel(unsigned short *d_in, unsigned short *d_out, int nx, int ny) { int tx = threadIdx.x, ty = threadIdx.y; // guards: is at boundary? bool is_x_top = (tx == 0), is_x_bot = (tx == BLOCK_X - 1); bool is_y_top = (ty == 0), is_y_bot = (ty == BLOCK_Y - 1); __shared__ unsigned short smem[BLOCK_X + 2][BLOCK_Y + 2]; // clear out shared memory (zero padding) if (is_x_top) SMEM(tx - 1, ty) = 0; else if (is_x_bot) SMEM(tx + 1, ty) = 0; if (is_y_top) { SMEM(tx, ty - 1) = 0; if (is_x_top) SMEM(tx - 1, ty - 1) = 0; else if (is_x_bot) SMEM(tx + 1, ty - 1) = 0; } else if (is_y_bot) { SMEM(tx, ty + 1) = 0; if (is_x_top) SMEM(tx - 1, ty + 1) = 0; else if (is_x_bot) SMEM(tx + 1, ty + 1) = 0; } // guards: is at boundary and still more image? int x = blockIdx.x * blockDim.x + tx; int y = blockIdx.y * blockDim.y + ty; is_x_top &= (x > 0); is_x_bot &= (x < nx - 1); is_y_top &= (y > 0); is_y_bot &= (y < ny - 1); // each thread pulls from image SMEM(tx, ty) = IN(x, y); // self if (is_x_top) SMEM(tx - 1, ty) = IN(x - 1, y); else if (is_x_bot) SMEM(tx + 1, ty) = IN(x + 1, y); if (is_y_top) { SMEM(tx, ty - 1) = IN(x, y - 1); if (is_x_top) SMEM(tx - 1, ty - 1) = IN(x - 1, y - 1); else if (is_x_bot) SMEM(tx + 1, ty - 1) = IN(x + 1, y - 1); } else if (is_y_bot) { SMEM(tx, ty + 1) = IN(x, y + 1); if (is_x_top) SMEM(tx - 1, ty + 1) = IN(x - 1, y + 1); else if (is_x_bot) SMEM(tx + 1, ty + 1) = IN(x + 1, y + 1); } __syncthreads(); // pull top six from shared memory unsigned short v[6] = { SMEM(tx - 1, ty - 1), SMEM(tx, ty - 1), SMEM(tx + 1, ty - 1), SMEM(tx - 1, ty), SMEM(tx, ty), SMEM(tx + 1, ty) }; // with each pass, remove min and max values and add new value mnmx6(v[0], v[1], v[2], v[3], v[4], v[5]); v[5] = SMEM(tx - 1, ty + 1); // add new contestant mnmx5(v[1], v[2], v[3], v[4], v[5]); v[5] = SMEM(tx, ty + 1); mnmx4(v[2], v[3], v[4], v[5]); v[5] = SMEM(tx + 1, ty + 1); mnmx3(v[3], v[4], v[5]); // pick the middle one d_out[y*nx + x] = v[4]; } /////////////////////////////////////////////////////////////////////////////Stubs///////////////////////////////////////////////////////////////////////////// void census_transform(hipTextureObject_t input_im, unsigned long long int *output_census, int width, int height, hipStream_t stream){ dim3 threads(16, 16); dim3 blocks(DIVIDE_UP(width, threads.x), DIVIDE_UP(height, threads.y)); census_transform_kernel << <blocks, threads >> >(input_im, output_census, width, height); #ifdef KERN_DEB SAFE_CALL(hipDeviceSynchronize(), "Census transform failed."); #endif } void cross_construct(hipTextureObject_t input_im, uchar4 *arm_vol, int arm_length, int max_arm_length, int arm_threshold, int strict_arm_threshold, int width, int height, hipStream_t stream){ dim3 threads(16, 16); dim3 blocks(DIVIDE_UP(width, threads.x), DIVIDE_UP(height, threads.y)); cross_construct_kernel << <blocks, threads >> >(input_im, arm_vol, arm_length, max_arm_length, arm_threshold, strict_arm_threshold, width, height); #ifdef KERN_DEB SAFE_CALL(hipDeviceSynchronize(), "Cross construct failed."); #endif } void match(unsigned char *left, unsigned char *right, unsigned long long int *left_census, unsigned long long int *right_census, float *cost_vol_temp_a, float *cost_vol_temp_b, uchar4 *arm_vol, unsigned short *disp_im, float gamma, float census_gamma, bool left_to_right, int width, int height, int max_disparity, hipStream_t stream){ dim3 b(1, height); dim3 t(max_disparity); size_t mem_sz = t.x * (sizeof(unsigned long long int) + sizeof(unsigned char)) * 3; cost_initialization_kernel << <b, t, mem_sz >> >(left, right, left_census, right_census, (float*)cost_vol_temp_a, gamma, census_gamma, left_to_right, width, height); #ifdef KERN_DEB SAFE_CALL(hipDeviceSynchronize(), "Cost initialization failed."); #endif b = dim3(width); t = dim3(max_disparity); horizontal_aggregation_kernel << < b, t >> > ((float*)cost_vol_temp_a, arm_vol, (float*)cost_vol_temp_b, width, height); #ifdef KERN_DEB SAFE_CALL(hipDeviceSynchronize(), "Horizontal aggregation failed."); #endif b = dim3(1, height); t = dim3(max_disparity); vertical_aggregation_kernel << < b, t >> > ((float*)cost_vol_temp_b, arm_vol, (float*)cost_vol_temp_a, disp_im, width, height); #ifdef KERN_DEB SAFE_CALL(hipDeviceSynchronize(), "Horizontal aggregation failed."); #endif } void check_consistency(hipTextureObject_t left_disp_im, hipTextureObject_t right_disp_im, unsigned short *output_disp_im, int disparity_tolerance, int width, int height, hipStream_t stream){ dim3 threads(16, 16); dim3 blocks(DIVIDE_UP(width, threads.x), DIVIDE_UP(height, threads.y)); consistency_check_kernel << <blocks, threads >> >(left_disp_im, right_disp_im, output_disp_im, disparity_tolerance, width, height); #ifdef KERN_DEB SAFE_CALL(hipDeviceSynchronize(), "Consistency check failed."); #endif } void horizontal_voting(hipTextureObject_t input_disp, uchar4 *arm_vol, unsigned short *output_disp, int width, int height, hipStream_t stream){ dim3 threads(16, 16); dim3 blocks(DIVIDE_UP(width, threads.x), DIVIDE_UP(height, threads.y)); horizontal_voting_kernel << <blocks, threads >> >(input_disp, arm_vol, output_disp, width, height); #ifdef KERN_DEB SAFE_CALL(hipDeviceSynchronize(), "Horizontal voting failed."); #endif } void vertical_voting(hipTextureObject_t input_disp, uchar4 *arm_vol, unsigned short *output_disp, int width, int height, hipStream_t stream){ dim3 threads(16, 16); dim3 blocks(DIVIDE_UP(width, threads.x), DIVIDE_UP(height, threads.y)); vertical_voting_kernel << <blocks, threads >> >(input_disp, arm_vol, output_disp, width, height); #ifdef KERN_DEB SAFE_CALL(hipDeviceSynchronize(), "Vertical voting failed."); #endif } void median_filter(unsigned short *input_disp, unsigned short *output_disp, int width, int height){ dim3 blocks(width / BLOCK_X, height / BLOCK_Y); dim3 threads(BLOCK_X, BLOCK_Y); median_filter_kernel << <blocks, threads >> >(input_disp, output_disp, width, height); }
82f583d829b53b9b4ea3d5f3a6a967a9eb8de5cf.cu
#include "DSKernels.cuh" #include <opencv2\opencv.hpp> //#define KERN_DEB #define BLOCK_X 16 #define BLOCK_Y 16 // Exchange trick: Morgan McGuire, ShaderX 2008 #define s2(a,b) { unsigned short tmp = a; a = min(a,b); b = max(tmp,b); } #define mn3(a,b,c) s2(a,b); s2(a,c); #define mx3(a,b,c) s2(b,c); s2(a,c); #define mnmx3(a,b,c) mx3(a,b,c); s2(a,b); // 3 exchanges #define mnmx4(a,b,c,d) s2(a,b); s2(c,d); s2(a,c); s2(b,d); // 4 exchanges #define mnmx5(a,b,c,d,e) s2(a,b); s2(c,d); mn3(a,c,e); mx3(b,d,e); // 6 exchanges #define mnmx6(a,b,c,d,e,f) s2(a,d); s2(b,e); s2(c,f); mn3(a,b,c); mx3(d,e,f); // 7 exchanges #define SMEM(x,y) smem[(x)+1][(y)+1] #define IN(x,y) d_in[(y)*nx + (x)] /////////////////////////////////////////////////////////////////////////////Helpers///////////////////////////////////////////////////////////////////////////// #ifdef KERN_DEB #include <iostream> static inline void _safe_cuda_call(cudaError err, const char* msg, const char* file_name, const int line_number) { if (err != cudaSuccess) { fprintf(stderr, "%s\n\nFile: %s\n\nLine Number: %d\n\nReason: %s\n", msg, file_name, line_number, cudaGetErrorString(err)); std::cin.get(); exit(EXIT_FAILURE); } } #define SAFE_CALL(call,msg) _safe_cuda_call((call),(msg),__FILE__,__LINE__) #endif #define DIVIDE_UP(a, b) (int)std::ceil((float)a / (float)b) /////////////////////////////////////////////////////////////////////////////Kernels///////////////////////////////////////////////////////////////////////////// __global__ void census_transform_kernel(cudaTextureObject_t input_im, unsigned long long int *output_census, int width, int height){ int image_row = blockIdx.y * blockDim.y + threadIdx.y; int image_col = blockIdx.x * blockDim.x + threadIdx.x; if (image_row < height && image_col < width){ unsigned char ref = tex2D<unsigned char>(input_im, image_col, image_row); unsigned int sum1 = 0x0000; sum1 = ((tex2D<unsigned char>(input_im, image_col - 3, image_row - 4) > ref) << 31) | ((tex2D<unsigned char>(input_im, image_col - 2, image_row - 4) > ref) << 30) | ((tex2D<unsigned char>(input_im, image_col - 1, image_row - 4) > ref) << 29) | ((tex2D<unsigned char>(input_im, image_col - 0, image_row - 4) > ref) << 28) | ((tex2D<unsigned char>(input_im, image_col + 1, image_row - 4) > ref) << 27) | ((tex2D<unsigned char>(input_im, image_col + 2, image_row - 4) > ref) << 26) | ((tex2D<unsigned char>(input_im, image_col + 3, image_row - 4) > ref) << 25) | ((tex2D<unsigned char>(input_im, image_col - 3, image_row - 3) > ref) << 24) | ((tex2D<unsigned char>(input_im, image_col - 2, image_row - 3) > ref) << 23) | ((tex2D<unsigned char>(input_im, image_col - 1, image_row - 3) > ref) << 22) | ((tex2D<unsigned char>(input_im, image_col - 0, image_row - 3) > ref) << 21) | ((tex2D<unsigned char>(input_im, image_col + 1, image_row - 3) > ref) << 20) | ((tex2D<unsigned char>(input_im, image_col + 2, image_row - 3) > ref) << 19) | ((tex2D<unsigned char>(input_im, image_col + 3, image_row - 3) > ref) << 18) | ((tex2D<unsigned char>(input_im, image_col - 3, image_row - 2) > ref) << 17) | ((tex2D<unsigned char>(input_im, image_col - 2, image_row - 2) > ref) << 16) | ((tex2D<unsigned char>(input_im, image_col - 1, image_row - 2) > ref) << 15) | ((tex2D<unsigned char>(input_im, image_col - 0, image_row - 2) > ref) << 14) | ((tex2D<unsigned char>(input_im, image_col + 1, image_row - 2) > ref) << 13) | ((tex2D<unsigned char>(input_im, image_col + 2, image_row - 2) > ref) << 12) | ((tex2D<unsigned char>(input_im, image_col + 3, image_row - 2) > ref) << 11) | ((tex2D<unsigned char>(input_im, image_col - 3, image_row - 1) > ref) << 10) | ((tex2D<unsigned char>(input_im, image_col - 2, image_row - 1) > ref) << 9) | ((tex2D<unsigned char>(input_im, image_col - 1, image_row - 1) > ref) << 8) | ((tex2D<unsigned char>(input_im, image_col - 0, image_row - 1) > ref) << 7) | ((tex2D<unsigned char>(input_im, image_col + 1, image_row - 1) > ref) << 6) | ((tex2D<unsigned char>(input_im, image_col + 2, image_row - 1) > ref) << 5) | ((tex2D<unsigned char>(input_im, image_col + 3, image_row - 1) > ref) << 4) | ((tex2D<unsigned char>(input_im, image_col - 3, image_row - 0) > ref) << 3) | ((tex2D<unsigned char>(input_im, image_col - 2, image_row - 0) > ref) << 2) | ((tex2D<unsigned char>(input_im, image_col - 1, image_row - 0) > ref) << 1) | ((tex2D<unsigned char>(input_im, image_col - 0, image_row - 0) > ref) << 0); unsigned int sum2 = 0x0000; sum2 = ((tex2D<unsigned char>(input_im, image_col + 0, image_row + 0) > ref) << 31) | ((tex2D<unsigned char>(input_im, image_col + 1, image_row + 0) > ref) << 30) | ((tex2D<unsigned char>(input_im, image_col + 2, image_row + 0) > ref) << 29) | ((tex2D<unsigned char>(input_im, image_col + 3, image_row + 0) > ref) << 28) | ((tex2D<unsigned char>(input_im, image_col - 3, image_row + 1) > ref) << 27) | ((tex2D<unsigned char>(input_im, image_col - 2, image_row + 1) > ref) << 26) | ((tex2D<unsigned char>(input_im, image_col - 1, image_row + 1) > ref) << 25) | ((tex2D<unsigned char>(input_im, image_col + 0, image_row + 1) > ref) << 24) | ((tex2D<unsigned char>(input_im, image_col + 1, image_row + 1) > ref) << 23) | ((tex2D<unsigned char>(input_im, image_col + 2, image_row + 1) > ref) << 22) | ((tex2D<unsigned char>(input_im, image_col + 3, image_row + 1) > ref) << 21) | ((tex2D<unsigned char>(input_im, image_col - 3, image_row + 2) > ref) << 20) | ((tex2D<unsigned char>(input_im, image_col - 2, image_row + 2) > ref) << 19) | ((tex2D<unsigned char>(input_im, image_col - 1, image_row + 2) > ref) << 18) | ((tex2D<unsigned char>(input_im, image_col + 0, image_row + 2) > ref) << 17) | ((tex2D<unsigned char>(input_im, image_col + 1, image_row + 2) > ref) << 16) | ((tex2D<unsigned char>(input_im, image_col + 2, image_row + 2) > ref) << 15) | ((tex2D<unsigned char>(input_im, image_col + 3, image_row + 2) > ref) << 14) | ((tex2D<unsigned char>(input_im, image_col - 3, image_row + 3) > ref) << 13) | ((tex2D<unsigned char>(input_im, image_col - 2, image_row + 3) > ref) << 12) | ((tex2D<unsigned char>(input_im, image_col - 1, image_row + 3) > ref) << 11) | ((tex2D<unsigned char>(input_im, image_col + 0, image_row + 3) > ref) << 10) | ((tex2D<unsigned char>(input_im, image_col + 1, image_row + 3) > ref) << 9) | ((tex2D<unsigned char>(input_im, image_col + 2, image_row + 3) > ref) << 8) | ((tex2D<unsigned char>(input_im, image_col + 3, image_row + 3) > ref) << 7) | ((tex2D<unsigned char>(input_im, image_col - 3, image_row + 4) > ref) << 6) | ((tex2D<unsigned char>(input_im, image_col - 2, image_row + 4) > ref) << 5) | ((tex2D<unsigned char>(input_im, image_col - 1, image_row + 4) > ref) << 4) | ((tex2D<unsigned char>(input_im, image_col + 0, image_row + 4) > ref) << 3) | ((tex2D<unsigned char>(input_im, image_col + 1, image_row + 4) > ref) << 2) | ((tex2D<unsigned char>(input_im, image_col + 2, image_row + 4) > ref) << 1) | ((tex2D<unsigned char>(input_im, image_col + 3, image_row + 4) > ref) << 0); uint2 temp = make_uint2(sum1, sum2); output_census[image_row * width + image_col] = *reinterpret_cast<unsigned long long int*>(&temp); } } __global__ void cross_construct_kernel(cudaTextureObject_t input_im, uchar4 *ouput_arm_vol, int arm_length, int max_arm_length, int arm_threshold, int strict_arm_threshold, int width, int height){ int image_col = blockIdx.x * blockDim.x + threadIdx.x; int image_row = blockIdx.y * blockDim.y + threadIdx.y; if (image_row < height && image_col < width){ uchar4 pix_arm = make_uchar4(0, 0, 0, 0); int ref = tex2D<unsigned char>(input_im, image_col, image_row); int scan_length, diff_curr_ref, diff_curr_next; //Upward scan scan_length = 0; diff_curr_ref = 0; diff_curr_next = 0; while (true) { diff_curr_ref = abs(ref - tex2D<unsigned char>(input_im, image_col, image_row - scan_length)); diff_curr_next = abs(ref - tex2D<unsigned char>(input_im, image_col, image_row - scan_length - 1)); if (!(scan_length < max_arm_length && image_row - scan_length > 0 && diff_curr_ref <= (arm_length < scan_length ? strict_arm_threshold : arm_threshold) && diff_curr_next <= (arm_length < scan_length ? strict_arm_threshold : arm_threshold))) break; scan_length++; } pix_arm.x = scan_length; //Downward scan scan_length = 0; diff_curr_ref = 0; diff_curr_next = 0; while (true) { diff_curr_ref = abs(ref - tex2D<unsigned char>(input_im, image_col, image_row + scan_length)); diff_curr_next = abs(ref - tex2D<unsigned char>(input_im, image_col, image_row + scan_length + 1)); if (!(scan_length < max_arm_length && image_row + scan_length < height - 1 && diff_curr_ref <= (arm_length < scan_length ? strict_arm_threshold : arm_threshold) && diff_curr_next <= (arm_length < scan_length ? strict_arm_threshold : arm_threshold))) break; scan_length++; } pix_arm.y = scan_length; //Leftward scan scan_length = 0; diff_curr_ref = 0; diff_curr_next = 0; while (true) { diff_curr_ref = abs(ref - tex2D<unsigned char>(input_im, image_col - scan_length, image_row)); diff_curr_next = abs(ref - tex2D<unsigned char>(input_im, image_col - scan_length - 1, image_row)); if (!(scan_length < max_arm_length && image_col - scan_length > 0 && diff_curr_ref <= (arm_length < scan_length ? strict_arm_threshold : arm_threshold) && diff_curr_next <= (arm_length < scan_length ? strict_arm_threshold : arm_threshold))) break; scan_length++; } pix_arm.z = scan_length; //Rightward scan scan_length = 0; diff_curr_ref = 0; diff_curr_next = 0; while (true) { diff_curr_ref = abs(ref - tex2D<unsigned char>(input_im, image_col + scan_length, image_row)); diff_curr_next = abs(ref - tex2D<unsigned char>(input_im, image_col + scan_length + 1, image_row)); if (!(scan_length < max_arm_length && image_col + scan_length < width && diff_curr_ref <= (arm_length < scan_length ? strict_arm_threshold : arm_threshold) && diff_curr_next <= (arm_length < scan_length ? strict_arm_threshold : arm_threshold))) break; scan_length++; } pix_arm.w = scan_length; pix_arm.x = pix_arm.x == 0 ? (image_row - 2 >= 0 ? 2 : 0) : pix_arm.x; pix_arm.y = pix_arm.y == 0 ? (image_row + 2 < height ? 2 : 0) : pix_arm.y; //pix_arm.x = image_row - 2 >= 0 ? 2 : pix_arm.x; //pix_arm.y = image_row + 2 < height ? 2 : pix_arm.y; pix_arm.z = pix_arm.z == 0 ? (image_col - 2 >= 0 ? 2 : 0) : pix_arm.z; pix_arm.w = pix_arm.w == 0 ? (image_col + 2 < width ? 2 : 0) : pix_arm.w; ouput_arm_vol[image_row * width + image_col] = pix_arm; } } __global__ void cost_initialization_kernel(unsigned char *left, unsigned char *right, unsigned long long int *left_census, unsigned long long int *right_census, float *cost_vol, float ad_gamma, float census_gamma, bool left_to_right, int width, int height){ extern __shared__ unsigned char temp[]; unsigned char *ref_temp = temp; unsigned char *targ_temp = &ref_temp[blockDim.x]; unsigned long long int *ref_census_temp = (unsigned long long int*)&targ_temp[blockDim.x * 2]; unsigned long long int *targ_census_temp = &ref_census_temp[blockDim.x]; //Initialize to zero ref_temp[threadIdx.x] = 0; targ_temp[threadIdx.x] = 0; targ_temp[blockDim.x + threadIdx.x] = 0; ref_census_temp[threadIdx.x] = 0; targ_census_temp[threadIdx.x] = 0; targ_census_temp[blockDim.x + threadIdx.x] = 0; __syncthreads(); int image_row = blockIdx.y; float cost = 0.0f; if (image_row < height){ if (left_to_right){ for (int image_col = 0; image_col < width; image_col++){ int block_index = image_col % blockDim.x; if (block_index == 0){ if (image_col + threadIdx.x < width){ ref_temp[threadIdx.x] = left[image_row * width + image_col + threadIdx.x]; ref_census_temp[threadIdx.x] = left_census[image_row * width + image_col + threadIdx.x]; } if (image_col + threadIdx.x < width){ targ_temp[blockDim.x + threadIdx.x] = right[image_row * width + image_col + threadIdx.x]; targ_census_temp[blockDim.x + threadIdx.x] = right_census[image_row * width + image_col + threadIdx.x]; } if ((int)(image_col - blockDim.x + threadIdx.x) >= 0 && (int)(image_col - blockDim.x + threadIdx.x) < width){ targ_temp[threadIdx.x] = right[image_row * width + image_col - blockDim.x + threadIdx.x]; targ_census_temp[threadIdx.x] = right_census[image_row * width + image_col - blockDim.x + threadIdx.x]; } __syncthreads(); } float ad_cost, census_cost; ad_cost = (fabsf(ref_temp[block_index] - targ_temp[blockDim.x + block_index - threadIdx.x]) / 255.0f) * ad_gamma; census_cost = (__popcll(ref_census_temp[block_index] ^ targ_census_temp[blockDim.x + block_index - threadIdx.x]) / 64.0f) * census_gamma; cost += ad_cost + census_cost; cost_vol[image_row * width * blockDim.x + image_col * blockDim.x + threadIdx.x] = cost; } } else{ for (int image_col = 0; image_col < width; image_col++){ int block_index = image_col % blockDim.x; if (block_index == 0){ if (image_col + threadIdx.x < width){ ref_temp[threadIdx.x] = right[image_row * width + image_col + threadIdx.x]; ref_census_temp[threadIdx.x] = right_census[image_row * width + image_col + threadIdx.x]; } if (image_col + threadIdx.x < width){ targ_temp[threadIdx.x] = left[image_row * width + image_col + threadIdx.x]; targ_census_temp[threadIdx.x] = left_census[image_row * width + image_col + threadIdx.x]; } if (image_col + blockDim.x + threadIdx.x < width){ targ_temp[blockDim.x + threadIdx.x] = left[image_row * width + image_col + blockDim.x + threadIdx.x]; targ_census_temp[blockDim.x + threadIdx.x] = left_census[image_row * width + image_col + blockDim.x + threadIdx.x]; } __syncthreads(); } float ad_cost, census_cost; ad_cost = (fabsf(ref_temp[block_index] - targ_temp[block_index + threadIdx.x]) / 255.0f) * ad_gamma; census_cost = (__popcll(ref_census_temp[block_index] ^ targ_census_temp[block_index + threadIdx.x]) / 64.0f) * census_gamma; cost += ad_cost + census_cost; cost_vol[image_row * width * blockDim.x + image_col * blockDim.x + threadIdx.x] = cost; } } } } __global__ void horizontal_aggregation_kernel(float *cost_vol_in, uchar4 *arm_vol, float *cost_vol_out, int width, int height){ int image_col = blockIdx.x; float sum = 0.0f; for (int image_row = 0; image_row < height; image_row++){ uchar4 pixel_arm = arm_vol[image_row * width + image_col]; int right_limit = image_col + pixel_arm.w; int left_limit = image_col - pixel_arm.z - 1; float aggregate = cost_vol_in[image_row * width * blockDim.x + right_limit * blockDim.x + threadIdx.x]; if (left_limit >= 0) aggregate -= cost_vol_in[image_row * width * blockDim.x + left_limit * blockDim.x + threadIdx.x]; sum += aggregate; cost_vol_out[image_row * width * blockDim.x + image_col * blockDim.x + threadIdx.x] = sum; } } __global__ void vertical_aggregation_kernel(float *cost_vol_in, uchar4 *arm_vol, float *cost_vol_out, unsigned short *disp_im, int width, int height){ int image_row = blockIdx.y; __shared__ unsigned int reduce_cache[32]; __shared__ float cost_cache[256]; for (int image_col = 0; image_col < width; image_col++){ uchar4 pix_arm = arm_vol[image_row * width + image_col]; int down_lim = image_row + pix_arm.y; int up_lim = image_row - pix_arm.x - 1; float aggregate = cost_vol_in[down_lim * width * blockDim.x + image_col * blockDim.x + threadIdx.x]; if (up_lim >= 0) aggregate -= cost_vol_in[up_lim * width * blockDim.x + image_col * blockDim.x + threadIdx.x]; //cost_vol_out[image_row * width * blockDim.x + image_col * blockDim.x + threadIdx.x] = aggregate; cost_cache[threadIdx.x] = aggregate; //Find the minimum unsigned int min_cost = (((unsigned int)(aggregate * 10000)) << 8) | threadIdx.x; unsigned int temp_min_cost = 0; int lane = threadIdx.x % 32; int wid = threadIdx.x / 32; temp_min_cost = __shfl_down(min_cost, 16); min_cost = min(min_cost, temp_min_cost); temp_min_cost = __shfl_down(min_cost, 8); min_cost = min(min_cost, temp_min_cost); temp_min_cost = __shfl_down(min_cost, 4); min_cost = min(min_cost, temp_min_cost); temp_min_cost = __shfl_down(min_cost, 2); min_cost = min(min_cost, temp_min_cost); temp_min_cost = __shfl_down(min_cost, 1); min_cost = min(min_cost, temp_min_cost); if (lane == 0) reduce_cache[wid] = min_cost; __syncthreads(); min_cost = (threadIdx.x < blockDim.x / 32) ? reduce_cache[lane] : UINT_MAX; if (wid == 0){ temp_min_cost = __shfl_down(min_cost, 4); min_cost = min(min_cost, temp_min_cost); temp_min_cost = __shfl_down(min_cost, 2); min_cost = min(min_cost, temp_min_cost); temp_min_cost = __shfl_down(min_cost, 1); min_cost = min(min_cost, temp_min_cost); } if (threadIdx.x == 0){ unsigned short disp = (unsigned short)((min_cost & 0x000000FF)); if (disp >= 1 && disp < blockDim.x - 1) disp_im[image_row * width + image_col] = (unsigned short)((disp + ((cost_cache[disp + 1] - cost_cache[disp - 1]) / (2 * (-cost_cache[disp + 1] - cost_cache[disp - 1] + 2 * cost_cache[disp])))) * 256.0f); else disp_im[image_row * width + image_col] = disp << 8; } } } __global__ void consistency_check_kernel(cudaTextureObject_t left_disp_im, cudaTextureObject_t right_disp_im, unsigned short *output_disp_im, int disparity_tolerance, int width, int height){ int col_to_access = blockIdx.x * blockDim.x + threadIdx.x; int row_to_access = blockIdx.y * blockDim.y + threadIdx.y; if (row_to_access < height && col_to_access < width){ unsigned short disp = tex2D<unsigned short>(left_disp_im, col_to_access, row_to_access); unsigned short to_check = tex2D<unsigned short>(right_disp_im, col_to_access - (disp >> 8), row_to_access); output_disp_im[row_to_access * width + col_to_access] = (abs(disp - to_check) <= disparity_tolerance * 256) ? disp : OUTLIER; } } __global__ void horizontal_voting_kernel(cudaTextureObject_t input_disp, uchar4 *arm_vol, unsigned short *output_disp, int width, int height){ int image_row = blockIdx.y * blockDim.y + threadIdx.y; int image_col = blockIdx.x * blockDim.x + threadIdx.x; if (image_row < height && image_col < width){ int sums[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int eligible_votes = 0; int no_of_votes = 0; //Load arm data uchar4 pix_arm = arm_vol[image_col + image_row * width]; //Check disp value int disp_value = tex2D<unsigned short>(input_disp, image_col, image_row); if (disp_value == OUTLIER){ for (int pix_iter = -pix_arm.z; pix_iter <= pix_arm.w; pix_iter++){ int disp_val = tex2D<unsigned short>(input_disp, image_col + pix_iter, image_row); if (disp_val != OUTLIER){ sums[0] += ((disp_val & 1) != 0); sums[1] += ((disp_val & 2) != 0); sums[2] += ((disp_val & 4) != 0); sums[3] += ((disp_val & 8) != 0); sums[4] += ((disp_val & 16) != 0); sums[5] += ((disp_val & 32) != 0); sums[6] += ((disp_val & 64) != 0); sums[7] += ((disp_val & 128) != 0); sums[8] += ((disp_val & 256) != 0); sums[9] += ((disp_val & 512) != 0); sums[10] += ((disp_val & 1024) != 0); sums[11] += ((disp_val & 2048) != 0); sums[12] += ((disp_val & 4096) != 0); sums[13] += ((disp_val & 8192) != 0); sums[14] += ((disp_val & 16384) != 0); sums[15] += ((disp_val & 32768) != 0); eligible_votes++; } no_of_votes++; } __syncthreads(); int majority = eligible_votes * 0.5; disp_value = ( ((sums[15] > majority) << 15) + ((sums[14] > majority) << 14) + ((sums[13] > majority) << 13) + ((sums[12] > majority) << 12) + ((sums[11] > majority) << 11) + ((sums[10] > majority) << 10) + ((sums[9] > majority) << 9) + ((sums[8] > majority) << 8) + ((sums[7] > majority) << 7) + ((sums[6] > majority) << 6) + ((sums[5] > majority) << 5) + ((sums[4] > majority) << 4) + ((sums[3] > majority) << 3) + ((sums[2] > majority) << 2) + ((sums[1] > majority) << 1) + ((sums[0] > majority) << 0)); disp_value = (eligible_votes > no_of_votes * 0.35f) ? disp_value : OUTLIER; } output_disp[image_col + image_row * width] = disp_value; } } __global__ void vertical_voting_kernel(cudaTextureObject_t input_disp, uchar4 *arm_vol, unsigned short *output_disp, int width, int height){ int image_row = blockIdx.y * blockDim.y + threadIdx.y; int image_col = blockIdx.x * blockDim.x + threadIdx.x; if (image_row < height && image_col < width){ int sums[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int eligible_votes = 0; int no_of_votes = 0; //Load arm data uchar4 pix_arm = arm_vol[image_col + image_row * width]; //Check disp value int disp_value = tex2D<unsigned short>(input_disp, image_col, image_row); if (disp_value == OUTLIER){ for (int pix_iter = -pix_arm.x; pix_iter <= pix_arm.y; pix_iter++){ int disp_val = tex2D<unsigned char>(input_disp, image_col, image_row + pix_iter); if (disp_val != OUTLIER){ sums[0] += ((disp_val & 1) != 0); sums[1] += ((disp_val & 2) != 0); sums[2] += ((disp_val & 4) != 0); sums[3] += ((disp_val & 8) != 0); sums[4] += ((disp_val & 16) != 0); sums[5] += ((disp_val & 32) != 0); sums[6] += ((disp_val & 64) != 0); sums[7] += ((disp_val & 128) != 0); sums[8] += ((disp_val & 256) != 0); sums[9] += ((disp_val & 512) != 0); sums[10] += ((disp_val & 1024) != 0); sums[11] += ((disp_val & 2048) != 0); sums[12] += ((disp_val & 4096) != 0); sums[13] += ((disp_val & 8192) != 0); sums[14] += ((disp_val & 16384) != 0); sums[15] += ((disp_val & 32768) != 0); eligible_votes++; } no_of_votes++; } __syncthreads(); int majority = eligible_votes * 0.5; disp_value = ( ((sums[15] > majority) << 15) + ((sums[14] > majority) << 14) + ((sums[13] > majority) << 13) + ((sums[12] > majority) << 12) + ((sums[11] > majority) << 11) + ((sums[10] > majority) << 10) + ((sums[9] > majority) << 9) + ((sums[8] > majority) << 8) + ((sums[7] > majority) << 7) + ((sums[6] > majority) << 6) + ((sums[5] > majority) << 5) + ((sums[4] > majority) << 4) + ((sums[3] > majority) << 3) + ((sums[2] > majority) << 2) + ((sums[1] > majority) << 1) + ((sums[0] > majority) << 0)); disp_value = (eligible_votes > no_of_votes * 0.35f) ? disp_value : OUTLIER; } output_disp[image_col + image_row * width] = disp_value; } } __global__ void median_filter_kernel(unsigned short *d_in, unsigned short *d_out, int nx, int ny) { int tx = threadIdx.x, ty = threadIdx.y; // guards: is at boundary? bool is_x_top = (tx == 0), is_x_bot = (tx == BLOCK_X - 1); bool is_y_top = (ty == 0), is_y_bot = (ty == BLOCK_Y - 1); __shared__ unsigned short smem[BLOCK_X + 2][BLOCK_Y + 2]; // clear out shared memory (zero padding) if (is_x_top) SMEM(tx - 1, ty) = 0; else if (is_x_bot) SMEM(tx + 1, ty) = 0; if (is_y_top) { SMEM(tx, ty - 1) = 0; if (is_x_top) SMEM(tx - 1, ty - 1) = 0; else if (is_x_bot) SMEM(tx + 1, ty - 1) = 0; } else if (is_y_bot) { SMEM(tx, ty + 1) = 0; if (is_x_top) SMEM(tx - 1, ty + 1) = 0; else if (is_x_bot) SMEM(tx + 1, ty + 1) = 0; } // guards: is at boundary and still more image? int x = blockIdx.x * blockDim.x + tx; int y = blockIdx.y * blockDim.y + ty; is_x_top &= (x > 0); is_x_bot &= (x < nx - 1); is_y_top &= (y > 0); is_y_bot &= (y < ny - 1); // each thread pulls from image SMEM(tx, ty) = IN(x, y); // self if (is_x_top) SMEM(tx - 1, ty) = IN(x - 1, y); else if (is_x_bot) SMEM(tx + 1, ty) = IN(x + 1, y); if (is_y_top) { SMEM(tx, ty - 1) = IN(x, y - 1); if (is_x_top) SMEM(tx - 1, ty - 1) = IN(x - 1, y - 1); else if (is_x_bot) SMEM(tx + 1, ty - 1) = IN(x + 1, y - 1); } else if (is_y_bot) { SMEM(tx, ty + 1) = IN(x, y + 1); if (is_x_top) SMEM(tx - 1, ty + 1) = IN(x - 1, y + 1); else if (is_x_bot) SMEM(tx + 1, ty + 1) = IN(x + 1, y + 1); } __syncthreads(); // pull top six from shared memory unsigned short v[6] = { SMEM(tx - 1, ty - 1), SMEM(tx, ty - 1), SMEM(tx + 1, ty - 1), SMEM(tx - 1, ty), SMEM(tx, ty), SMEM(tx + 1, ty) }; // with each pass, remove min and max values and add new value mnmx6(v[0], v[1], v[2], v[3], v[4], v[5]); v[5] = SMEM(tx - 1, ty + 1); // add new contestant mnmx5(v[1], v[2], v[3], v[4], v[5]); v[5] = SMEM(tx, ty + 1); mnmx4(v[2], v[3], v[4], v[5]); v[5] = SMEM(tx + 1, ty + 1); mnmx3(v[3], v[4], v[5]); // pick the middle one d_out[y*nx + x] = v[4]; } /////////////////////////////////////////////////////////////////////////////Stubs///////////////////////////////////////////////////////////////////////////// void census_transform(cudaTextureObject_t input_im, unsigned long long int *output_census, int width, int height, cudaStream_t stream){ dim3 threads(16, 16); dim3 blocks(DIVIDE_UP(width, threads.x), DIVIDE_UP(height, threads.y)); census_transform_kernel << <blocks, threads >> >(input_im, output_census, width, height); #ifdef KERN_DEB SAFE_CALL(cudaDeviceSynchronize(), "Census transform failed."); #endif } void cross_construct(cudaTextureObject_t input_im, uchar4 *arm_vol, int arm_length, int max_arm_length, int arm_threshold, int strict_arm_threshold, int width, int height, cudaStream_t stream){ dim3 threads(16, 16); dim3 blocks(DIVIDE_UP(width, threads.x), DIVIDE_UP(height, threads.y)); cross_construct_kernel << <blocks, threads >> >(input_im, arm_vol, arm_length, max_arm_length, arm_threshold, strict_arm_threshold, width, height); #ifdef KERN_DEB SAFE_CALL(cudaDeviceSynchronize(), "Cross construct failed."); #endif } void match(unsigned char *left, unsigned char *right, unsigned long long int *left_census, unsigned long long int *right_census, float *cost_vol_temp_a, float *cost_vol_temp_b, uchar4 *arm_vol, unsigned short *disp_im, float gamma, float census_gamma, bool left_to_right, int width, int height, int max_disparity, cudaStream_t stream){ dim3 b(1, height); dim3 t(max_disparity); size_t mem_sz = t.x * (sizeof(unsigned long long int) + sizeof(unsigned char)) * 3; cost_initialization_kernel << <b, t, mem_sz >> >(left, right, left_census, right_census, (float*)cost_vol_temp_a, gamma, census_gamma, left_to_right, width, height); #ifdef KERN_DEB SAFE_CALL(cudaDeviceSynchronize(), "Cost initialization failed."); #endif b = dim3(width); t = dim3(max_disparity); horizontal_aggregation_kernel << < b, t >> > ((float*)cost_vol_temp_a, arm_vol, (float*)cost_vol_temp_b, width, height); #ifdef KERN_DEB SAFE_CALL(cudaDeviceSynchronize(), "Horizontal aggregation failed."); #endif b = dim3(1, height); t = dim3(max_disparity); vertical_aggregation_kernel << < b, t >> > ((float*)cost_vol_temp_b, arm_vol, (float*)cost_vol_temp_a, disp_im, width, height); #ifdef KERN_DEB SAFE_CALL(cudaDeviceSynchronize(), "Horizontal aggregation failed."); #endif } void check_consistency(cudaTextureObject_t left_disp_im, cudaTextureObject_t right_disp_im, unsigned short *output_disp_im, int disparity_tolerance, int width, int height, cudaStream_t stream){ dim3 threads(16, 16); dim3 blocks(DIVIDE_UP(width, threads.x), DIVIDE_UP(height, threads.y)); consistency_check_kernel << <blocks, threads >> >(left_disp_im, right_disp_im, output_disp_im, disparity_tolerance, width, height); #ifdef KERN_DEB SAFE_CALL(cudaDeviceSynchronize(), "Consistency check failed."); #endif } void horizontal_voting(cudaTextureObject_t input_disp, uchar4 *arm_vol, unsigned short *output_disp, int width, int height, cudaStream_t stream){ dim3 threads(16, 16); dim3 blocks(DIVIDE_UP(width, threads.x), DIVIDE_UP(height, threads.y)); horizontal_voting_kernel << <blocks, threads >> >(input_disp, arm_vol, output_disp, width, height); #ifdef KERN_DEB SAFE_CALL(cudaDeviceSynchronize(), "Horizontal voting failed."); #endif } void vertical_voting(cudaTextureObject_t input_disp, uchar4 *arm_vol, unsigned short *output_disp, int width, int height, cudaStream_t stream){ dim3 threads(16, 16); dim3 blocks(DIVIDE_UP(width, threads.x), DIVIDE_UP(height, threads.y)); vertical_voting_kernel << <blocks, threads >> >(input_disp, arm_vol, output_disp, width, height); #ifdef KERN_DEB SAFE_CALL(cudaDeviceSynchronize(), "Vertical voting failed."); #endif } void median_filter(unsigned short *input_disp, unsigned short *output_disp, int width, int height){ dim3 blocks(width / BLOCK_X, height / BLOCK_Y); dim3 threads(BLOCK_X, BLOCK_Y); median_filter_kernel << <blocks, threads >> >(input_disp, output_disp, width, height); }
9b94601a7c3e5b5c91a6dafcaeb89309eecdac1a.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "includes.h" __global__ void x2(float* x3, float x4, int x5) { int x6 = gridDim.x * blockDim.x; int x7 = threadIdx.x + blockIdx.x * blockDim.x; while (x7 < x5) { x3[x7] = x4; x7 = x7 + x6; } }
9b94601a7c3e5b5c91a6dafcaeb89309eecdac1a.cu
#include "includes.h" __global__ void x2(float* x3, float x4, int x5) { int x6 = gridDim.x * blockDim.x; int x7 = threadIdx.x + blockIdx.x * blockDim.x; while (x7 < x5) { x3[x7] = x4; x7 = x7 + x6; } }
9dcdc254133be0f53599ae9808920d1c92f1d772.hip
// !!! This is a file automatically generated by hipify!!! /* * Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - Neither the name(s) of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <stdio.h> #include <stdlib.h> #include <unordered_map> #include <vector> #include <hip/hip_runtime.h> #include <cutensor.h> #define HANDLE_ERROR(x) \ { const auto err = x; \ if( err != CUTENSOR_STATUS_SUCCESS ) \ { printf("Error: %s\n", cutensorGetErrorString(err)); return err; } \ }; #define HANDLE_CUDA_ERROR(x) \ { const auto err = x; \ if( err != hipSuccess ) \ { printf("Error: %s\n", hipGetErrorString(err)); return err; } \ }; struct GPUTimer { GPUTimer() { hipEventCreate(&start_); hipEventCreate(&stop_); hipEventRecord(start_, 0); } ~GPUTimer() { hipEventDestroy(start_); hipEventDestroy(stop_); } void start() { hipEventRecord(start_, 0); } float seconds() { hipEventRecord(stop_, 0); hipEventSynchronize(stop_); float time; hipEventElapsedTime(&time, start_, stop_); return time * 1e-3; } private: hipEvent_t start_, stop_; }; int main() { typedef float floatTypeA; typedef float floatTypeB; typedef float floatTypeC; typedef float floatTypeCompute; hipDataType typeA = HIP_R_32F; hipDataType typeC = HIP_R_32F; cutensorComputeType_t typeCompute = CUTENSOR_COMPUTE_32F; floatTypeCompute alpha = (floatTypeCompute)1.1f; floatTypeCompute beta = (floatTypeCompute)0.f; /********************** * Computing (partial) reduction : C_{m,v} = alpha * A_{m,h,k,v} + beta * C_{m,v} *********************/ std::vector<int32_t> modeA{'m','h','k','v'}; std::vector<int32_t> modeC{'m','v'}; int32_t nmodeA = modeA.size(); int32_t nmodeC = modeC.size(); std::unordered_map<int32_t, int64_t> extent; extent['m'] = 196; extent['v'] = 64; extent['h'] = 256; extent['k'] = 64; std::vector<int64_t> extentC; for (auto mode : modeC) extentC.push_back(extent[mode]); std::vector<int64_t> extentA; for (auto mode : modeA) extentA.push_back(extent[mode]); /********************** * Allocating data *********************/ size_t elementsA = 1; for (auto mode : modeA) elementsA *= extent[mode]; size_t elementsC = 1; for (auto mode : modeC) elementsC *= extent[mode]; size_t sizeA = sizeof(floatTypeA) * elementsA; size_t sizeC = sizeof(floatTypeC) * elementsC; printf("Total memory: %.2f GiB\n",(sizeA + sizeC)/1024./1024./1024); void *A_d, *C_d; HANDLE_CUDA_ERROR(hipMalloc((void**)&A_d, sizeA)); HANDLE_CUDA_ERROR(hipMalloc((void**)&C_d, sizeC)); floatTypeA *A = (floatTypeA*) malloc(sizeof(floatTypeA) * elementsA); floatTypeC *C = (floatTypeC*) malloc(sizeof(floatTypeC) * elementsC); if (A == NULL || C == NULL) { printf("Error: Host allocation of A, B, or C.\n"); return -1; } /******************* * Initialize data *******************/ for (int64_t i = 0; i < elementsA; i++) A[i] = (((float) rand())/RAND_MAX - 0.5)*100; for (int64_t i = 0; i < elementsC; i++) C[i] = (((float) rand())/RAND_MAX - 0.5)*100; HANDLE_CUDA_ERROR(hipMemcpy(C_d, C, sizeC, hipMemcpyHostToDevice)); HANDLE_CUDA_ERROR(hipMemcpy(A_d, A, sizeA, hipMemcpyHostToDevice)); /************************* * cuTENSOR *************************/ cutensorHandle_t handle; HANDLE_ERROR(cutensorInit(&handle)); /********************** * Create Tensor Descriptors **********************/ cutensorTensorDescriptor_t descA; HANDLE_ERROR(cutensorInitTensorDescriptor(&handle, &descA, nmodeA, extentA.data(), NULL /* stride */, typeA, CUTENSOR_OP_IDENTITY)); cutensorTensorDescriptor_t descC; HANDLE_ERROR(cutensorInitTensorDescriptor(&handle, &descC, nmodeC, extentC.data(), NULL /* stride */, typeC, CUTENSOR_OP_IDENTITY)); const cutensorOperator_t opReduce = CUTENSOR_OP_ADD; /********************** * Querry workspace **********************/ uint64_t worksize = 0; HANDLE_ERROR(cutensorReductionGetWorkspaceSize(&handle, A_d, &descA, modeA.data(), C_d, &descC, modeC.data(), C_d, &descC, modeC.data(), opReduce, typeCompute, &worksize)); void *work = nullptr; if (worksize > 0) { if (hipSuccess != hipMalloc(&work, worksize)) { work = nullptr; worksize = 0; } } /********************** * Run **********************/ double minTimeCUTENSOR = 1e100; cutensorStatus_t err; for(int i=0; i < 3; ++i) { HANDLE_CUDA_ERROR(hipMemcpy(C_d, C, sizeC, hipMemcpyHostToDevice)); HANDLE_CUDA_ERROR(hipDeviceSynchronize()); // Set up timing GPUTimer timer; timer.start(); err = cutensorReduction(&handle, (const void*)&alpha, A_d, &descA, modeA.data(), (const void*)&beta, C_d, &descC, modeC.data(), C_d, &descC, modeC.data(), opReduce, typeCompute, work, worksize, 0 /* stream */); // Synchronize and measure timing auto time = timer.seconds(); if (err != CUTENSOR_STATUS_SUCCESS) { printf("ERROR: %s in line %d\n", cutensorGetErrorString(err), __LINE__); } minTimeCUTENSOR = (minTimeCUTENSOR < time) ? minTimeCUTENSOR : time; } /*************************/ double transferedBytes = sizeC + sizeA; transferedBytes += ((float) beta != 0.f) ? sizeC : 0; transferedBytes /= 1e9; printf("cuTensor: %.2f GB/s\n", transferedBytes / minTimeCUTENSOR); if (A) free(A); if (C) free(C); if (A_d) hipFree(A_d); if (C_d) hipFree(C_d); if (work) hipFree(work); return 0; }
9dcdc254133be0f53599ae9808920d1c92f1d772.cu
/* * Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - Neither the name(s) of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <stdio.h> #include <stdlib.h> #include <unordered_map> #include <vector> #include <cuda_runtime.h> #include <cutensor.h> #define HANDLE_ERROR(x) \ { const auto err = x; \ if( err != CUTENSOR_STATUS_SUCCESS ) \ { printf("Error: %s\n", cutensorGetErrorString(err)); return err; } \ }; #define HANDLE_CUDA_ERROR(x) \ { const auto err = x; \ if( err != cudaSuccess ) \ { printf("Error: %s\n", cudaGetErrorString(err)); return err; } \ }; struct GPUTimer { GPUTimer() { cudaEventCreate(&start_); cudaEventCreate(&stop_); cudaEventRecord(start_, 0); } ~GPUTimer() { cudaEventDestroy(start_); cudaEventDestroy(stop_); } void start() { cudaEventRecord(start_, 0); } float seconds() { cudaEventRecord(stop_, 0); cudaEventSynchronize(stop_); float time; cudaEventElapsedTime(&time, start_, stop_); return time * 1e-3; } private: cudaEvent_t start_, stop_; }; int main() { typedef float floatTypeA; typedef float floatTypeB; typedef float floatTypeC; typedef float floatTypeCompute; cudaDataType_t typeA = CUDA_R_32F; cudaDataType_t typeC = CUDA_R_32F; cutensorComputeType_t typeCompute = CUTENSOR_COMPUTE_32F; floatTypeCompute alpha = (floatTypeCompute)1.1f; floatTypeCompute beta = (floatTypeCompute)0.f; /********************** * Computing (partial) reduction : C_{m,v} = alpha * A_{m,h,k,v} + beta * C_{m,v} *********************/ std::vector<int32_t> modeA{'m','h','k','v'}; std::vector<int32_t> modeC{'m','v'}; int32_t nmodeA = modeA.size(); int32_t nmodeC = modeC.size(); std::unordered_map<int32_t, int64_t> extent; extent['m'] = 196; extent['v'] = 64; extent['h'] = 256; extent['k'] = 64; std::vector<int64_t> extentC; for (auto mode : modeC) extentC.push_back(extent[mode]); std::vector<int64_t> extentA; for (auto mode : modeA) extentA.push_back(extent[mode]); /********************** * Allocating data *********************/ size_t elementsA = 1; for (auto mode : modeA) elementsA *= extent[mode]; size_t elementsC = 1; for (auto mode : modeC) elementsC *= extent[mode]; size_t sizeA = sizeof(floatTypeA) * elementsA; size_t sizeC = sizeof(floatTypeC) * elementsC; printf("Total memory: %.2f GiB\n",(sizeA + sizeC)/1024./1024./1024); void *A_d, *C_d; HANDLE_CUDA_ERROR(cudaMalloc((void**)&A_d, sizeA)); HANDLE_CUDA_ERROR(cudaMalloc((void**)&C_d, sizeC)); floatTypeA *A = (floatTypeA*) malloc(sizeof(floatTypeA) * elementsA); floatTypeC *C = (floatTypeC*) malloc(sizeof(floatTypeC) * elementsC); if (A == NULL || C == NULL) { printf("Error: Host allocation of A, B, or C.\n"); return -1; } /******************* * Initialize data *******************/ for (int64_t i = 0; i < elementsA; i++) A[i] = (((float) rand())/RAND_MAX - 0.5)*100; for (int64_t i = 0; i < elementsC; i++) C[i] = (((float) rand())/RAND_MAX - 0.5)*100; HANDLE_CUDA_ERROR(cudaMemcpy(C_d, C, sizeC, cudaMemcpyHostToDevice)); HANDLE_CUDA_ERROR(cudaMemcpy(A_d, A, sizeA, cudaMemcpyHostToDevice)); /************************* * cuTENSOR *************************/ cutensorHandle_t handle; HANDLE_ERROR(cutensorInit(&handle)); /********************** * Create Tensor Descriptors **********************/ cutensorTensorDescriptor_t descA; HANDLE_ERROR(cutensorInitTensorDescriptor(&handle, &descA, nmodeA, extentA.data(), NULL /* stride */, typeA, CUTENSOR_OP_IDENTITY)); cutensorTensorDescriptor_t descC; HANDLE_ERROR(cutensorInitTensorDescriptor(&handle, &descC, nmodeC, extentC.data(), NULL /* stride */, typeC, CUTENSOR_OP_IDENTITY)); const cutensorOperator_t opReduce = CUTENSOR_OP_ADD; /********************** * Querry workspace **********************/ uint64_t worksize = 0; HANDLE_ERROR(cutensorReductionGetWorkspaceSize(&handle, A_d, &descA, modeA.data(), C_d, &descC, modeC.data(), C_d, &descC, modeC.data(), opReduce, typeCompute, &worksize)); void *work = nullptr; if (worksize > 0) { if (cudaSuccess != cudaMalloc(&work, worksize)) { work = nullptr; worksize = 0; } } /********************** * Run **********************/ double minTimeCUTENSOR = 1e100; cutensorStatus_t err; for(int i=0; i < 3; ++i) { HANDLE_CUDA_ERROR(cudaMemcpy(C_d, C, sizeC, cudaMemcpyHostToDevice)); HANDLE_CUDA_ERROR(cudaDeviceSynchronize()); // Set up timing GPUTimer timer; timer.start(); err = cutensorReduction(&handle, (const void*)&alpha, A_d, &descA, modeA.data(), (const void*)&beta, C_d, &descC, modeC.data(), C_d, &descC, modeC.data(), opReduce, typeCompute, work, worksize, 0 /* stream */); // Synchronize and measure timing auto time = timer.seconds(); if (err != CUTENSOR_STATUS_SUCCESS) { printf("ERROR: %s in line %d\n", cutensorGetErrorString(err), __LINE__); } minTimeCUTENSOR = (minTimeCUTENSOR < time) ? minTimeCUTENSOR : time; } /*************************/ double transferedBytes = sizeC + sizeA; transferedBytes += ((float) beta != 0.f) ? sizeC : 0; transferedBytes /= 1e9; printf("cuTensor: %.2f GB/s\n", transferedBytes / minTimeCUTENSOR); if (A) free(A); if (C) free(C); if (A_d) cudaFree(A_d); if (C_d) cudaFree(C_d); if (work) cudaFree(work); return 0; }
bd8d7d3492d2f19baeda6495153c6027e350a87e.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" // SOMClassifier.cpp : Defines the entry point for the console application. // #include <fstream> #include <stdio.h> #include <tchar.h> #include <iostream> #include <math.h> #include <vector> #include <fstream> #include <string> #include <sstream> #include "EasyBMP\EasyBMP.h" #include <time.h> #include <thrust\extrema.h> #include <math.h> #define NUM_NEURONS 1000 struct Neuron{ int X; int Y; int Z; }; Neuron * d_neurons; Neuron * neurons; float * weights; float * d_weights; float * input_data; float * d_input_data; using namespace std; int numIterations = 1000; float initLearningRate = .8; int mapWidth = 25, mapHeight = 25, mapDepth = 25; //int initialMapRadius = 5; string int_to_str(int i){ stringstream ss; ss << i; string str = ss.str(); return str; } float map(float value, float istart, float istop, float ostart, float ostop) { return ostart + (ostop - ostart) * ((value - istart) / (istop - istart)); } void readData(float * input_data){ int numSamples = 40; string subject_id = ""; string face_position_num = ""; string face_num = ""; string final = ""; BMP image; int count = 0; int countImage = 0; for(int i = 1; i<=numSamples; i++){ subject_id = "s"+int_to_str(i); for(int j = 1; j<=10; j++){ face_position_num = int_to_str(j); for(int k = 0; k<3; k++){ face_num = int_to_str(k); final = "..\\images\\"+subject_id+"\\"+face_position_num+"\\"+face_num+".bmp"; image.ReadFromFile(final.c_str()); //face_position is the orientation ID of the face for(int l = 0; l< 23; l++){ for(int m = 0; m<28; m++){ input_data[countImage] = map((((float)image(l, m)->Red)/255), 0, 1, -1, 1); countImage++; } } } } } } double calcDistBetweenNodes(Neuron n1, Neuron n2){ double temp = (double)((n1.X-n2.X)*(n1.X-n2.X)+(n1.Y-n2.Y)*(n1.Y-n2.Y)+(n1.Z-n2.Z)*(n1.Z-n2.Z)); return sqrt(temp); } __global__ void findBMU(float * inputVector, float * weights, float * distances){ int i = threadIdx.x+(blockIdx.x*blockDim.x); if(i<NUM_NEURONS){ int offset = i*644; int count = 0; float currentDistance = 0; for(int w = offset; w<offset+644; w++){ currentDistance += abs((inputVector[count]-weights[w]))*abs((inputVector[count]-weights[w])); count++; } distances[i] = sqrt(currentDistance); } } float mapRadius(int time){ double initialMapRadius = max(mapWidth, mapHeight)/1.5; double timeConstant = numIterations/log(initialMapRadius); double radius = initialMapRadius*exp(-(time/timeConstant)); return radius; } double learningRate(int time){ float iterations = (float)numIterations; double rate = initLearningRate*exp((-(time/iterations))); return rate; } double theta(float distanceBetweenNodes, float radius){ return exp(-(distanceBetweenNodes*distanceBetweenNodes)/(2*radius*radius)); } double mapRadius(int time, int initialRadius, int newIterations){ double initialMapRadius = (double)initialRadius; double timeConstant = newIterations/log(initialMapRadius); double radius = initialMapRadius*exp(-(time/timeConstant)); return radius; } double learningRate(int time, double newLearningRate, int newIterations){ float iterations = (float)newIterations; double rate = newLearningRate*exp((-(time/iterations))); return rate; } __global__ void printWeights(float*weights){ int i = threadIdx.x+(blockIdx.x*blockDim.x); printf("%f\n", weights[i]); } void train(){ Neuron winningNeuron; int *winningNeuronID; winningNeuronID = (int*)malloc(sizeof(int)); int subjectNum; int positionNum; float neighboorhoodRadius; float rate; float distance; double coeff; float * data; data = (float*)malloc(sizeof(float)*644); float * d_data; hipMalloc(&d_data, sizeof(float)*644); float * distances; distances = (float*)malloc(sizeof(float)*NUM_NEURONS); float * d_distances; hipMalloc(&d_distances, sizeof(float)*NUM_NEURONS); int winner; float * winnerID; for(int y = 0; y<numIterations; y++){ //select a random image positionNum = rand()%10; subjectNum = rand()%4; int count = 0; for(int i = (subjectNum*30+positionNum*3)*644; i<(subjectNum*30+positionNum*3)*644+644; i++){ data[count] = input_data[i]; count++; } hipMemcpy(d_data, data, 644*sizeof(float), hipMemcpyHostToDevice); count = 0; findBMU<<<20, 50>>>(d_data, d_weights, d_distances); hipMemcpy(distances, d_distances, sizeof(float)*NUM_NEURONS, hipMemcpyDeviceToHost); winnerID = thrust::min_element(distances, distances+NUM_NEURONS); winner = winnerID-distances; neighboorhoodRadius = mapRadius(y); rate = learningRate(y); for(int h = 0; h<mapWidth; h++){ for(int i = 0; i<mapHeight; i++){ for(int j = 0; j<mapDepth; j++){ distance = calcDistBetweenNodes(neurons[h*(int)(pow((double)mapWidth, 2.0)+i*(mapWidth)+j], neurons[winner]); if(distance<neighboorhoodRadius){ coeff = theta(distance, neighboorhoodRadius)*rate; float * newWeight; newWeight = new float [644]; for (int w = 0; w<644; w++){ double diff = data[w]-weights[((h*100+i*10+j)*644)+w]; newWeight[w] =diff*coeff; } for (int w = 0; w<644; w++){ weights[((h*100+i*10+j)*644)+w]+=newWeight[w]; } delete newWeight; } } } } hipMemcpy(d_weights, weights, NUM_NEURONS*644*sizeof(float), hipMemcpyHostToDevice); if(y%10 == 0){ cout << y << endl; } } } void train(int initialSize, float newLearningRate, float number_of_iterations){ Neuron winningNeuron; int *winningNeuronID; winningNeuronID = (int*)malloc(sizeof(int)); int subjectNum; int positionNum; float neighboorhoodRadius; float rate; float distance; double coeff; float * data; data = (float*)malloc(sizeof(float)*644); float * d_data; hipMalloc(&d_data, sizeof(float)*644); float * distances; distances = (float*)malloc(sizeof(float)*NUM_NEURONS); float * d_distances; hipMalloc(&d_distances, sizeof(float)*NUM_NEURONS); int count = 0; int winner; float * winnerID; for(int y = 0; y<number_of_iterations; y++){ //select a random image positionNum = rand()%10; subjectNum = rand()%4; for(int i = (subjectNum*30+positionNum*3)*644; i<(subjectNum*30+positionNum*3)*644+644; i++){ data[count] = input_data[i]; count++; } count = 0; hipMemcpy(d_data, data, 644*sizeof(float), hipMemcpyHostToDevice); findBMU<<<20, 50>>>(d_data, d_weights, d_distances); hipMemcpy(distances, d_distances, sizeof(float)*NUM_NEURONS, hipMemcpyDeviceToHost); winnerID = thrust::min_element(distances, distances+NUM_NEURONS); winner = winnerID-distances; neighboorhoodRadius = mapRadius(y, initialSize,number_of_iterations ); rate = learningRate(y, newLearningRate, number_of_iterations); for(int h = 0; h<mapWidth; h++){ for(int i = 0; i<mapHeight; i++){ for(int j = 0; j<mapDepth; j++){ distance = calcDistBetweenNodes(neurons[h*100+i*10+j], neurons[winner]); if(distance<neighboorhoodRadius){ coeff = theta(distance, neighboorhoodRadius)*rate; float * newWeight; newWeight = new float [644]; for (int w = 0; w<644; w++){ double diff = data[w]-weights[((h*100+i*10+j)*644)+w]; newWeight[w] =diff*coeff; } for (int w = 0; w<644; w++){ weights[((h*100+i*10+j)*644)+w]+=newWeight[w]; } delete newWeight; } } } } hipMemcpy(d_weights, weights, NUM_NEURONS*644*sizeof(float), hipMemcpyHostToDevice); if(y%10 == 0){ cout << y << endl; } } } void setXYZ(Neuron * neurons){ for(int i = 0; i<10; i++){ for(int j = 0; j<10; j++){ for(int k = 0; k<10; k++){ neurons[i*100+j*10+k].X = i; neurons[i*100+j*10+k].Y = j; neurons[i*100+j*10+k].Z = k; } } } } //this is done on HOST side because rand() can't be called device side void setWeights(float * weights){ for(int i = 0; i<NUM_NEURONS*644; i++){ weights[i] = (double)rand()/RAND_MAX; } } void outputImageFromNetwork(float*input_data, int offset, char*outputFileName){ BMP image; image.SetSize(23, 38); RGBApixel pixel; int count = 0; for(int i = 0; i<23; i++){ for(int j = 0; j<28; j++){ pixel.Red = map(input_data[offset+count], 0, 1, 0, 255); pixel.Blue = map(input_data[offset+count], 0, 1, 0, 255); pixel.Green = map(input_data[offset+count], 0, 1, 0, 255); image.SetPixel(i, j, pixel); count++; } } image.WriteToFile(outputFileName); } int main(int argc, char*argv[]) { printf("helllooooooo \n"); /* * SET XYZ FOR THE HOST AND DEVICE NEURONS */ //------------------------------------------------- neurons = (Neuron *)malloc(NUM_NEURONS*sizeof(Neuron)); // allocate memory for host neurons hipMalloc((void**)&d_neurons, NUM_NEURONS*sizeof(Neuron)); // allocate memory for device neurons dim3 dim = *(new dim3(10, 10, 10)); setXYZ(neurons); //set XYZ params on DEVICE side //hipMemcpy(neurons, d_neurons, NUM_NEURONS*sizeof(Neuron), hipMemcpyDeviceToHost); // copy over to host //------------------------------------------------- printf("Stage 1 complete \n"); /* * Initialize weights */ //------------------------------------------------ srand(time(NULL)); weights = (float*)malloc(NUM_NEURONS*644*sizeof(float)); // allocate mem for host weights hipMalloc(&d_weights, NUM_NEURONS*644*sizeof(float)); // allocate mem for device weights setWeights(weights); // set weights on the HOST side hipMemcpy(d_weights, weights, NUM_NEURONS*644*sizeof(float), hipMemcpyHostToDevice); // copy over to device //------------------------------------------------- printf("Stage 2 complete \n"); /* * Read data from file */ //------------------------------------------------- input_data = (float *) malloc(1200*644*sizeof(float)); //allocate mem for host image data hipMalloc(&d_input_data, 1200*644*sizeof(float)); //allocate mem for device image data readData(input_data); // read data with host array hipMemcpy(d_input_data, input_data, 1200*644*sizeof(float), hipMemcpyHostToDevice); //copy to device //------------------------------------------------- printf("Training started \n"); train(); train(2, .02, 500); hipMemcpy(d_weights, weights, NUM_NEURONS*644*sizeof(float), hipMemcpyHostToDevice); int count = 0; float * data; data = (float*)malloc(sizeof(float)*644); float * d_data; hipMalloc(&d_data, sizeof(float)*644); float * distances; distances = (float*)malloc(sizeof(float)*NUM_NEURONS); float * d_distances; hipMalloc(&d_distances, sizeof(float)*NUM_NEURONS); int winner; float *winnerID; ofstream file; file.open("data.txt"); for(int i = 0; i<120; i+=3){ for(int j = i*644; j<i*644+644; j++){ data[count] = input_data[j]; count++; } hipMemcpy(d_data, data, 644*sizeof(float), hipMemcpyHostToDevice); count = 0; findBMU<<<20, 50>>>(d_data, d_weights, d_distances); hipMemcpy(distances, d_distances, sizeof(float)*NUM_NEURONS, hipMemcpyDeviceToHost); winnerID = thrust::min_element(distances, distances+NUM_NEURONS); winner = winnerID-distances; file << neurons[winner].X<<(i==117 ? "" : ","); } file << endl; for(int i = 0; i<120; i+=3){ for(int j = i*644; j<i*644+644; j++){ data[count] = input_data[j]; count++; } hipMemcpy(d_data, data, 644*sizeof(float), hipMemcpyHostToDevice); count = 0; findBMU<<<20, 50>>>(d_data, d_weights, d_distances); hipMemcpy(distances, d_distances, sizeof(float)*NUM_NEURONS, hipMemcpyDeviceToHost); winnerID = thrust::min_element(distances, distances+NUM_NEURONS); winner = winnerID-distances; file << neurons[winner].Y<<(i==117 ? "" : ","); } file << endl; for(int i = 0; i<120; i+=3){ for(int j = i*644; j<i*644+644; j++){ data[count] = input_data[j]; count++; } hipMemcpy(d_data, data, 644*sizeof(float), hipMemcpyHostToDevice); count = 0; findBMU<<<20, 50>>>(d_data, d_weights, d_distances); hipMemcpy(distances, d_distances, sizeof(float)*NUM_NEURONS, hipMemcpyDeviceToHost); winnerID = thrust::min_element(distances, distances+NUM_NEURONS); winner = winnerID-distances; file << neurons[winner].Z<<(i==117 ? "" : ","); } file.close(); outputImageFromNetwork(weights, 0, "OutputFileFromNetworkWeights.bmp"); } /* float * test_vector; test_vector = (float*)malloc(644*sizeof(float)); for(int i = 0; i<644; i++){ test_vector[i] = .32f; } float * d_test_vector; hipMalloc(&d_test_vector, 644*sizeof(float)); hipMemcpy(d_test_vector, test_vector, 644*sizeof(float), hipMemcpyHostToDevice); float * d_least; float * least; least = (float*)malloc(sizeof(float)); *least = 9999999; hipMalloc(&d_least, sizeof(float)); hipMemcpy(d_least, least, sizeof(float), hipMemcpyHostToDevice); int * d_winner; int * winner; winner = (int*)malloc(sizeof(int)); *winner = 0; hipMalloc(&d_winner, sizeof(int)); hipMemcpy(d_winner, winner, sizeof(int), hipMemcpyHostToDevice); */
bd8d7d3492d2f19baeda6495153c6027e350a87e.cu
// SOMClassifier.cpp : Defines the entry point for the console application. // #include <fstream> #include <stdio.h> #include <tchar.h> #include <iostream> #include <math.h> #include <vector> #include <fstream> #include <string> #include <sstream> #include "EasyBMP\EasyBMP.h" #include <time.h> #include <thrust\extrema.h> #include <math.h> #define NUM_NEURONS 1000 struct Neuron{ int X; int Y; int Z; }; Neuron * d_neurons; Neuron * neurons; float * weights; float * d_weights; float * input_data; float * d_input_data; using namespace std; int numIterations = 1000; float initLearningRate = .8; int mapWidth = 25, mapHeight = 25, mapDepth = 25; //int initialMapRadius = 5; string int_to_str(int i){ stringstream ss; ss << i; string str = ss.str(); return str; } float map(float value, float istart, float istop, float ostart, float ostop) { return ostart + (ostop - ostart) * ((value - istart) / (istop - istart)); } void readData(float * input_data){ int numSamples = 40; string subject_id = ""; string face_position_num = ""; string face_num = ""; string final = ""; BMP image; int count = 0; int countImage = 0; for(int i = 1; i<=numSamples; i++){ subject_id = "s"+int_to_str(i); for(int j = 1; j<=10; j++){ face_position_num = int_to_str(j); for(int k = 0; k<3; k++){ face_num = int_to_str(k); final = "..\\images\\"+subject_id+"\\"+face_position_num+"\\"+face_num+".bmp"; image.ReadFromFile(final.c_str()); //face_position is the orientation ID of the face for(int l = 0; l< 23; l++){ for(int m = 0; m<28; m++){ input_data[countImage] = map((((float)image(l, m)->Red)/255), 0, 1, -1, 1); countImage++; } } } } } } double calcDistBetweenNodes(Neuron n1, Neuron n2){ double temp = (double)((n1.X-n2.X)*(n1.X-n2.X)+(n1.Y-n2.Y)*(n1.Y-n2.Y)+(n1.Z-n2.Z)*(n1.Z-n2.Z)); return sqrt(temp); } __global__ void findBMU(float * inputVector, float * weights, float * distances){ int i = threadIdx.x+(blockIdx.x*blockDim.x); if(i<NUM_NEURONS){ int offset = i*644; int count = 0; float currentDistance = 0; for(int w = offset; w<offset+644; w++){ currentDistance += abs((inputVector[count]-weights[w]))*abs((inputVector[count]-weights[w])); count++; } distances[i] = sqrt(currentDistance); } } float mapRadius(int time){ double initialMapRadius = max(mapWidth, mapHeight)/1.5; double timeConstant = numIterations/log(initialMapRadius); double radius = initialMapRadius*exp(-(time/timeConstant)); return radius; } double learningRate(int time){ float iterations = (float)numIterations; double rate = initLearningRate*exp((-(time/iterations))); return rate; } double theta(float distanceBetweenNodes, float radius){ return exp(-(distanceBetweenNodes*distanceBetweenNodes)/(2*radius*radius)); } double mapRadius(int time, int initialRadius, int newIterations){ double initialMapRadius = (double)initialRadius; double timeConstant = newIterations/log(initialMapRadius); double radius = initialMapRadius*exp(-(time/timeConstant)); return radius; } double learningRate(int time, double newLearningRate, int newIterations){ float iterations = (float)newIterations; double rate = newLearningRate*exp((-(time/iterations))); return rate; } __global__ void printWeights(float*weights){ int i = threadIdx.x+(blockIdx.x*blockDim.x); printf("%f\n", weights[i]); } void train(){ Neuron winningNeuron; int *winningNeuronID; winningNeuronID = (int*)malloc(sizeof(int)); int subjectNum; int positionNum; float neighboorhoodRadius; float rate; float distance; double coeff; float * data; data = (float*)malloc(sizeof(float)*644); float * d_data; cudaMalloc(&d_data, sizeof(float)*644); float * distances; distances = (float*)malloc(sizeof(float)*NUM_NEURONS); float * d_distances; cudaMalloc(&d_distances, sizeof(float)*NUM_NEURONS); int winner; float * winnerID; for(int y = 0; y<numIterations; y++){ //select a random image positionNum = rand()%10; subjectNum = rand()%4; int count = 0; for(int i = (subjectNum*30+positionNum*3)*644; i<(subjectNum*30+positionNum*3)*644+644; i++){ data[count] = input_data[i]; count++; } cudaMemcpy(d_data, data, 644*sizeof(float), cudaMemcpyHostToDevice); count = 0; findBMU<<<20, 50>>>(d_data, d_weights, d_distances); cudaMemcpy(distances, d_distances, sizeof(float)*NUM_NEURONS, cudaMemcpyDeviceToHost); winnerID = thrust::min_element(distances, distances+NUM_NEURONS); winner = winnerID-distances; neighboorhoodRadius = mapRadius(y); rate = learningRate(y); for(int h = 0; h<mapWidth; h++){ for(int i = 0; i<mapHeight; i++){ for(int j = 0; j<mapDepth; j++){ distance = calcDistBetweenNodes(neurons[h*(int)(pow((double)mapWidth, 2.0)+i*(mapWidth)+j], neurons[winner]); if(distance<neighboorhoodRadius){ coeff = theta(distance, neighboorhoodRadius)*rate; float * newWeight; newWeight = new float [644]; for (int w = 0; w<644; w++){ double diff = data[w]-weights[((h*100+i*10+j)*644)+w]; newWeight[w] =diff*coeff; } for (int w = 0; w<644; w++){ weights[((h*100+i*10+j)*644)+w]+=newWeight[w]; } delete newWeight; } } } } cudaMemcpy(d_weights, weights, NUM_NEURONS*644*sizeof(float), cudaMemcpyHostToDevice); if(y%10 == 0){ cout << y << endl; } } } void train(int initialSize, float newLearningRate, float number_of_iterations){ Neuron winningNeuron; int *winningNeuronID; winningNeuronID = (int*)malloc(sizeof(int)); int subjectNum; int positionNum; float neighboorhoodRadius; float rate; float distance; double coeff; float * data; data = (float*)malloc(sizeof(float)*644); float * d_data; cudaMalloc(&d_data, sizeof(float)*644); float * distances; distances = (float*)malloc(sizeof(float)*NUM_NEURONS); float * d_distances; cudaMalloc(&d_distances, sizeof(float)*NUM_NEURONS); int count = 0; int winner; float * winnerID; for(int y = 0; y<number_of_iterations; y++){ //select a random image positionNum = rand()%10; subjectNum = rand()%4; for(int i = (subjectNum*30+positionNum*3)*644; i<(subjectNum*30+positionNum*3)*644+644; i++){ data[count] = input_data[i]; count++; } count = 0; cudaMemcpy(d_data, data, 644*sizeof(float), cudaMemcpyHostToDevice); findBMU<<<20, 50>>>(d_data, d_weights, d_distances); cudaMemcpy(distances, d_distances, sizeof(float)*NUM_NEURONS, cudaMemcpyDeviceToHost); winnerID = thrust::min_element(distances, distances+NUM_NEURONS); winner = winnerID-distances; neighboorhoodRadius = mapRadius(y, initialSize,number_of_iterations ); rate = learningRate(y, newLearningRate, number_of_iterations); for(int h = 0; h<mapWidth; h++){ for(int i = 0; i<mapHeight; i++){ for(int j = 0; j<mapDepth; j++){ distance = calcDistBetweenNodes(neurons[h*100+i*10+j], neurons[winner]); if(distance<neighboorhoodRadius){ coeff = theta(distance, neighboorhoodRadius)*rate; float * newWeight; newWeight = new float [644]; for (int w = 0; w<644; w++){ double diff = data[w]-weights[((h*100+i*10+j)*644)+w]; newWeight[w] =diff*coeff; } for (int w = 0; w<644; w++){ weights[((h*100+i*10+j)*644)+w]+=newWeight[w]; } delete newWeight; } } } } cudaMemcpy(d_weights, weights, NUM_NEURONS*644*sizeof(float), cudaMemcpyHostToDevice); if(y%10 == 0){ cout << y << endl; } } } void setXYZ(Neuron * neurons){ for(int i = 0; i<10; i++){ for(int j = 0; j<10; j++){ for(int k = 0; k<10; k++){ neurons[i*100+j*10+k].X = i; neurons[i*100+j*10+k].Y = j; neurons[i*100+j*10+k].Z = k; } } } } //this is done on HOST side because rand() can't be called device side void setWeights(float * weights){ for(int i = 0; i<NUM_NEURONS*644; i++){ weights[i] = (double)rand()/RAND_MAX; } } void outputImageFromNetwork(float*input_data, int offset, char*outputFileName){ BMP image; image.SetSize(23, 38); RGBApixel pixel; int count = 0; for(int i = 0; i<23; i++){ for(int j = 0; j<28; j++){ pixel.Red = map(input_data[offset+count], 0, 1, 0, 255); pixel.Blue = map(input_data[offset+count], 0, 1, 0, 255); pixel.Green = map(input_data[offset+count], 0, 1, 0, 255); image.SetPixel(i, j, pixel); count++; } } image.WriteToFile(outputFileName); } int main(int argc, char*argv[]) { printf("helllooooooo \n"); /* * SET XYZ FOR THE HOST AND DEVICE NEURONS */ //------------------------------------------------- neurons = (Neuron *)malloc(NUM_NEURONS*sizeof(Neuron)); // allocate memory for host neurons cudaMalloc((void**)&d_neurons, NUM_NEURONS*sizeof(Neuron)); // allocate memory for device neurons dim3 dim = *(new dim3(10, 10, 10)); setXYZ(neurons); //set XYZ params on DEVICE side //cudaMemcpy(neurons, d_neurons, NUM_NEURONS*sizeof(Neuron), cudaMemcpyDeviceToHost); // copy over to host //------------------------------------------------- printf("Stage 1 complete \n"); /* * Initialize weights */ //------------------------------------------------ srand(time(NULL)); weights = (float*)malloc(NUM_NEURONS*644*sizeof(float)); // allocate mem for host weights cudaMalloc(&d_weights, NUM_NEURONS*644*sizeof(float)); // allocate mem for device weights setWeights(weights); // set weights on the HOST side cudaMemcpy(d_weights, weights, NUM_NEURONS*644*sizeof(float), cudaMemcpyHostToDevice); // copy over to device //------------------------------------------------- printf("Stage 2 complete \n"); /* * Read data from file */ //------------------------------------------------- input_data = (float *) malloc(1200*644*sizeof(float)); //allocate mem for host image data cudaMalloc(&d_input_data, 1200*644*sizeof(float)); //allocate mem for device image data readData(input_data); // read data with host array cudaMemcpy(d_input_data, input_data, 1200*644*sizeof(float), cudaMemcpyHostToDevice); //copy to device //------------------------------------------------- printf("Training started \n"); train(); train(2, .02, 500); cudaMemcpy(d_weights, weights, NUM_NEURONS*644*sizeof(float), cudaMemcpyHostToDevice); int count = 0; float * data; data = (float*)malloc(sizeof(float)*644); float * d_data; cudaMalloc(&d_data, sizeof(float)*644); float * distances; distances = (float*)malloc(sizeof(float)*NUM_NEURONS); float * d_distances; cudaMalloc(&d_distances, sizeof(float)*NUM_NEURONS); int winner; float *winnerID; ofstream file; file.open("data.txt"); for(int i = 0; i<120; i+=3){ for(int j = i*644; j<i*644+644; j++){ data[count] = input_data[j]; count++; } cudaMemcpy(d_data, data, 644*sizeof(float), cudaMemcpyHostToDevice); count = 0; findBMU<<<20, 50>>>(d_data, d_weights, d_distances); cudaMemcpy(distances, d_distances, sizeof(float)*NUM_NEURONS, cudaMemcpyDeviceToHost); winnerID = thrust::min_element(distances, distances+NUM_NEURONS); winner = winnerID-distances; file << neurons[winner].X<<(i==117 ? "" : ","); } file << endl; for(int i = 0; i<120; i+=3){ for(int j = i*644; j<i*644+644; j++){ data[count] = input_data[j]; count++; } cudaMemcpy(d_data, data, 644*sizeof(float), cudaMemcpyHostToDevice); count = 0; findBMU<<<20, 50>>>(d_data, d_weights, d_distances); cudaMemcpy(distances, d_distances, sizeof(float)*NUM_NEURONS, cudaMemcpyDeviceToHost); winnerID = thrust::min_element(distances, distances+NUM_NEURONS); winner = winnerID-distances; file << neurons[winner].Y<<(i==117 ? "" : ","); } file << endl; for(int i = 0; i<120; i+=3){ for(int j = i*644; j<i*644+644; j++){ data[count] = input_data[j]; count++; } cudaMemcpy(d_data, data, 644*sizeof(float), cudaMemcpyHostToDevice); count = 0; findBMU<<<20, 50>>>(d_data, d_weights, d_distances); cudaMemcpy(distances, d_distances, sizeof(float)*NUM_NEURONS, cudaMemcpyDeviceToHost); winnerID = thrust::min_element(distances, distances+NUM_NEURONS); winner = winnerID-distances; file << neurons[winner].Z<<(i==117 ? "" : ","); } file.close(); outputImageFromNetwork(weights, 0, "OutputFileFromNetworkWeights.bmp"); } /* float * test_vector; test_vector = (float*)malloc(644*sizeof(float)); for(int i = 0; i<644; i++){ test_vector[i] = .32f; } float * d_test_vector; cudaMalloc(&d_test_vector, 644*sizeof(float)); cudaMemcpy(d_test_vector, test_vector, 644*sizeof(float), cudaMemcpyHostToDevice); float * d_least; float * least; least = (float*)malloc(sizeof(float)); *least = 9999999; cudaMalloc(&d_least, sizeof(float)); cudaMemcpy(d_least, least, sizeof(float), cudaMemcpyHostToDevice); int * d_winner; int * winner; winner = (int*)malloc(sizeof(int)); *winner = 0; cudaMalloc(&d_winner, sizeof(int)); cudaMemcpy(d_winner, winner, sizeof(int), cudaMemcpyHostToDevice); */
b11b10c79a7e29823a12b3885e353d987769b9a0.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* * Copyright 1993-2010 NVIDIA Corporation. All rights reserved. * * NVIDIA Corporation and its licensors retain all intellectual property and * proprietary rights in and to this software and related documentation. * Any use, reproduction, disclosure, or distribution of this software * and related documentation without an express license agreement from * NVIDIA Corporation is strictly prohibited. * * Please refer to the applicable NVIDIA end user license agreement (EULA) * associated with this source code for terms and conditions that govern * your use of this NVIDIA software. * * MNeumann (April 2010): Removed shrUtil dependency and added external declarations * to enable usage for MNRT. * */ //#include <shrUtils.h> #include <stdlib.h> #include <stdio.h> #include "cuda_utils.h" #include "MersenneTwister.h" //#include "MNCudaUtil.h" __device__ static mt_struct_stripped ds_MT[MT_RNG_COUNT]; static mt_struct_stripped h_MT[MT_RNG_COUNT]; //////////////////////////////////////////////////////////////////////////////// // Write MT_RNG_COUNT vertical lanes of NPerRng random numbers to *d_Random. // For coalesced global writes MT_RNG_COUNT should be a multiple of warp size. // Initial states for each generator are the same, since the states are // initialized from the global seed. In order to improve distribution properties // on small NPerRng supply dedicated (local) seed to each twister. // The local seeds, in their turn, can be extracted from global seed // by means of any simple random number generator, like LCG. //////////////////////////////////////////////////////////////////////////////// __global__ void RandomGPU( float *d_Random, int NPerRng ){ const int tid = blockDim.x * blockIdx.x + threadIdx.x; const int THREAD_N = blockDim.x * gridDim.x; int iState, iState1, iStateM, iOut; unsigned int mti, mti1, mtiM, x; unsigned int mt[MT_NN]; for(int iRng = tid; iRng < MT_RNG_COUNT; iRng += THREAD_N){ //Load bit-vector Mersenne Twister parameters mt_struct_stripped config = ds_MT[iRng]; //Initialize current state mt[0] = config.seed; for(iState = 1; iState < MT_NN; iState++) mt[iState] = (1812433253U * (mt[iState - 1] ^ (mt[iState - 1] >> 30)) + iState) & MT_WMASK; iState = 0; mti1 = mt[0]; for(iOut = 0; iOut < NPerRng; iOut++){ //iState1 = (iState + 1) % MT_NN //iStateM = (iState + MT_MM) % MT_NN iState1 = iState + 1; iStateM = iState + MT_MM; if(iState1 >= MT_NN) iState1 -= MT_NN; if(iStateM >= MT_NN) iStateM -= MT_NN; mti = mti1; mti1 = mt[iState1]; mtiM = mt[iStateM]; x = (mti & MT_UMASK) | (mti1 & MT_LMASK); x = mtiM ^ (x >> 1) ^ ((x & 1) ? config.matrix_a : 0); mt[iState] = x; iState = iState1; //Tempering transformation x ^= (x >> MT_SHIFT0); x ^= (x << MT_SHIFTB) & config.mask_b; x ^= (x << MT_SHIFTC) & config.mask_c; x ^= (x >> MT_SHIFT1); //Convert to (0, 1] float and write to global memory d_Random[iRng + iOut * MT_RNG_COUNT] = ((float)x + 1.0f) / 4294967296.0f; } } } //////////////////////////////////////////////////////////////////////////////// // Transform each of MT_RNG_COUNT lanes of NPerRng uniformly distributed // random samples, produced by RandomGPU(), to normally distributed lanes // using Cartesian form of Box-Muller transformation. // NPerRng must be even. //////////////////////////////////////////////////////////////////////////////// #define PI 3.14159265358979f __device__ inline void BoxMuller(float& u1, float& u2){ float r = sqrtf(-2.0f * logf(u1)); float phi = 2 * PI * u2; u1 = r * __cosf(phi); u2 = r * __sinf(phi); } __global__ void BoxMullerGPU(float *d_Random, int NPerRng){ const int tid = blockDim.x * blockIdx.x + threadIdx.x; const int THREAD_N = blockDim.x * gridDim.x; for(int iRng = tid; iRng < MT_RNG_COUNT; iRng += THREAD_N) for(int iOut = 0; iOut < NPerRng; iOut += 2) BoxMuller( d_Random[iRng + (iOut + 0) * MT_RNG_COUNT], d_Random[iRng + (iOut + 1) * MT_RNG_COUNT] ); } //////////////////////////////////////////////////////////////////////////////////////////////////// /// \fn extern "C" bool MersenneTwisterGPUInit(const char *fname) /// /// \brief Loads Mersenne Twister configuration from given source file. /// /// \author Mathias Neumann /// \date 11.04.2010 /// /// \param fname Filename of the configuration file. /// /// \return true if it succeeds, false if it fails. //////////////////////////////////////////////////////////////////////////////////////////////////// extern "C" bool MersenneTwisterGPUInit(const char *fname) { FILE *fd = fopen(fname, "rb"); if(!fd) { //MNFatal("Failed to open %s for Mersenne Twister configuration.", fname); return false; } if( !fread(h_MT, sizeof(h_MT), 1, fd) ) { //MNFatal("Failed to load %s for Mersenne Twister configuration.", fname); return false; } fclose(fd); return true; } //////////////////////////////////////////////////////////////////////////////////////////////////// /// \fn extern "C" void MersenneTwisterGPUSeed(unsigned int seed) /// /// \brief Seeds Mersenne Twister for current GPU context. /// /// \author Mathias Neumann /// \date 11.04.2010 /// /// \param seed The seed. //////////////////////////////////////////////////////////////////////////////////////////////////// extern "C" void MersenneTwisterGPUSeed(unsigned int seed) { int i; //Need to be thread-safe mt_struct_stripped *MT = (mt_struct_stripped *)malloc(MT_RNG_COUNT * sizeof(mt_struct_stripped)); for(i = 0; i < MT_RNG_COUNT; i++){ MT[i] = h_MT[i]; MT[i].seed = seed; } hipError_t err = hipMemcpyToSymbol(ds_MT, MT, sizeof(h_MT)); assert(err == hipSuccess); free(MT); } //////////////////////////////////////////////////////////////////////////////////////////////////// /// \fn extern "C" void MersenneTwisterGPU(float* d_outRand, int nPerRNG) /// /// \brief Performs Mersenne Twister RNG to generate a predefined number of uniform random /// numbers to use in other kernels. /// /// \author Mathias Neumann /// \date 11.04.2010 /// /// \param [out] d_outRand The generated uniform random numbers. /// \param nPerRNG The random numbers per generator. Will generate /// nPerRNG * MT_RNG_COUNT numbers. //////////////////////////////////////////////////////////////////////////////////////////////////// extern "C" void MersenneTwisterGPU(float* d_outRand, int nPerRNG) { // 32 * 128 = MT_RNG_COUNT = 4096. See SDK 3.0 sample. hipLaunchKernelGGL(( RandomGPU), dim3(32), dim3(128), 0, 0, d_outRand, nPerRNG); // MNCUDA_CHECKERROR; // CUDA_CHECK_ERROR; //BoxMullerGPU<<<32, 128>>>(d_outRand, nPerRNG); }
b11b10c79a7e29823a12b3885e353d987769b9a0.cu
/* * Copyright 1993-2010 NVIDIA Corporation. All rights reserved. * * NVIDIA Corporation and its licensors retain all intellectual property and * proprietary rights in and to this software and related documentation. * Any use, reproduction, disclosure, or distribution of this software * and related documentation without an express license agreement from * NVIDIA Corporation is strictly prohibited. * * Please refer to the applicable NVIDIA end user license agreement (EULA) * associated with this source code for terms and conditions that govern * your use of this NVIDIA software. * * MNeumann (April 2010): Removed shrUtil dependency and added external declarations * to enable usage for MNRT. * */ //#include <shrUtils.h> #include <stdlib.h> #include <stdio.h> #include "cuda_utils.h" #include "MersenneTwister.h" //#include "MNCudaUtil.h" __device__ static mt_struct_stripped ds_MT[MT_RNG_COUNT]; static mt_struct_stripped h_MT[MT_RNG_COUNT]; //////////////////////////////////////////////////////////////////////////////// // Write MT_RNG_COUNT vertical lanes of NPerRng random numbers to *d_Random. // For coalesced global writes MT_RNG_COUNT should be a multiple of warp size. // Initial states for each generator are the same, since the states are // initialized from the global seed. In order to improve distribution properties // on small NPerRng supply dedicated (local) seed to each twister. // The local seeds, in their turn, can be extracted from global seed // by means of any simple random number generator, like LCG. //////////////////////////////////////////////////////////////////////////////// __global__ void RandomGPU( float *d_Random, int NPerRng ){ const int tid = blockDim.x * blockIdx.x + threadIdx.x; const int THREAD_N = blockDim.x * gridDim.x; int iState, iState1, iStateM, iOut; unsigned int mti, mti1, mtiM, x; unsigned int mt[MT_NN]; for(int iRng = tid; iRng < MT_RNG_COUNT; iRng += THREAD_N){ //Load bit-vector Mersenne Twister parameters mt_struct_stripped config = ds_MT[iRng]; //Initialize current state mt[0] = config.seed; for(iState = 1; iState < MT_NN; iState++) mt[iState] = (1812433253U * (mt[iState - 1] ^ (mt[iState - 1] >> 30)) + iState) & MT_WMASK; iState = 0; mti1 = mt[0]; for(iOut = 0; iOut < NPerRng; iOut++){ //iState1 = (iState + 1) % MT_NN //iStateM = (iState + MT_MM) % MT_NN iState1 = iState + 1; iStateM = iState + MT_MM; if(iState1 >= MT_NN) iState1 -= MT_NN; if(iStateM >= MT_NN) iStateM -= MT_NN; mti = mti1; mti1 = mt[iState1]; mtiM = mt[iStateM]; x = (mti & MT_UMASK) | (mti1 & MT_LMASK); x = mtiM ^ (x >> 1) ^ ((x & 1) ? config.matrix_a : 0); mt[iState] = x; iState = iState1; //Tempering transformation x ^= (x >> MT_SHIFT0); x ^= (x << MT_SHIFTB) & config.mask_b; x ^= (x << MT_SHIFTC) & config.mask_c; x ^= (x >> MT_SHIFT1); //Convert to (0, 1] float and write to global memory d_Random[iRng + iOut * MT_RNG_COUNT] = ((float)x + 1.0f) / 4294967296.0f; } } } //////////////////////////////////////////////////////////////////////////////// // Transform each of MT_RNG_COUNT lanes of NPerRng uniformly distributed // random samples, produced by RandomGPU(), to normally distributed lanes // using Cartesian form of Box-Muller transformation. // NPerRng must be even. //////////////////////////////////////////////////////////////////////////////// #define PI 3.14159265358979f __device__ inline void BoxMuller(float& u1, float& u2){ float r = sqrtf(-2.0f * logf(u1)); float phi = 2 * PI * u2; u1 = r * __cosf(phi); u2 = r * __sinf(phi); } __global__ void BoxMullerGPU(float *d_Random, int NPerRng){ const int tid = blockDim.x * blockIdx.x + threadIdx.x; const int THREAD_N = blockDim.x * gridDim.x; for(int iRng = tid; iRng < MT_RNG_COUNT; iRng += THREAD_N) for(int iOut = 0; iOut < NPerRng; iOut += 2) BoxMuller( d_Random[iRng + (iOut + 0) * MT_RNG_COUNT], d_Random[iRng + (iOut + 1) * MT_RNG_COUNT] ); } //////////////////////////////////////////////////////////////////////////////////////////////////// /// \fn extern "C" bool MersenneTwisterGPUInit(const char *fname) /// /// \brief Loads Mersenne Twister configuration from given source file. /// /// \author Mathias Neumann /// \date 11.04.2010 /// /// \param fname Filename of the configuration file. /// /// \return true if it succeeds, false if it fails. //////////////////////////////////////////////////////////////////////////////////////////////////// extern "C" bool MersenneTwisterGPUInit(const char *fname) { FILE *fd = fopen(fname, "rb"); if(!fd) { //MNFatal("Failed to open %s for Mersenne Twister configuration.", fname); return false; } if( !fread(h_MT, sizeof(h_MT), 1, fd) ) { //MNFatal("Failed to load %s for Mersenne Twister configuration.", fname); return false; } fclose(fd); return true; } //////////////////////////////////////////////////////////////////////////////////////////////////// /// \fn extern "C" void MersenneTwisterGPUSeed(unsigned int seed) /// /// \brief Seeds Mersenne Twister for current GPU context. /// /// \author Mathias Neumann /// \date 11.04.2010 /// /// \param seed The seed. //////////////////////////////////////////////////////////////////////////////////////////////////// extern "C" void MersenneTwisterGPUSeed(unsigned int seed) { int i; //Need to be thread-safe mt_struct_stripped *MT = (mt_struct_stripped *)malloc(MT_RNG_COUNT * sizeof(mt_struct_stripped)); for(i = 0; i < MT_RNG_COUNT; i++){ MT[i] = h_MT[i]; MT[i].seed = seed; } cudaError_t err = cudaMemcpyToSymbol(ds_MT, MT, sizeof(h_MT)); assert(err == cudaSuccess); free(MT); } //////////////////////////////////////////////////////////////////////////////////////////////////// /// \fn extern "C" void MersenneTwisterGPU(float* d_outRand, int nPerRNG) /// /// \brief Performs Mersenne Twister RNG to generate a predefined number of uniform random /// numbers to use in other kernels. /// /// \author Mathias Neumann /// \date 11.04.2010 /// /// \param [out] d_outRand The generated uniform random numbers. /// \param nPerRNG The random numbers per generator. Will generate /// nPerRNG * MT_RNG_COUNT numbers. //////////////////////////////////////////////////////////////////////////////////////////////////// extern "C" void MersenneTwisterGPU(float* d_outRand, int nPerRNG) { // 32 * 128 = MT_RNG_COUNT = 4096. See SDK 3.0 sample. RandomGPU<<<32, 128>>>(d_outRand, nPerRNG); // MNCUDA_CHECKERROR; // CUDA_CHECK_ERROR; //BoxMullerGPU<<<32, 128>>>(d_outRand, nPerRNG); }
75690927550376ce371a43b9c3a7ccbee28c66df.hip
// !!! This is a file automatically generated by hipify!!! /*************************************************************************************************** * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /** The convolution version of 12_gemm_bias_relu. Similarly, we put bias vector in Operand C and the rest is the same as normal convolution. */ #include <iostream> #include <sstream> #include "cutlass/cutlass.h" #include "cutlass/gemm/device/gemm.h" #include "cutlass/conv/kernel/default_conv2d_fprop.h" #include "cutlass/conv/device/implicit_gemm_convolution.h" #include "cutlass/util/command_line.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/host_reorder.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/reference/device/gemm.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/tensor_copy.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/util/reference/device/convolution.h" #include "cutlass/util/tensor_view_io.h" #include "helper.h" // The code section below describes datatype for input, output tensors and computation between // elements using ElementAccumulator = float; // Data type of accumulator using ElementComputeEpilogue = ElementAccumulator; // Data type of epilogue computation using ElementInputA = cutlass::half_t; // Data type of elements in input tensor using ElementInputB = cutlass::half_t; // Data type of elements in input tensor using ElementOutput = float; // Data type of elements in output tensor using LayoutInputA = cutlass::layout::TensorNHWC; using LayoutInputB = cutlass::layout::TensorNHWC; using LayoutOutput = cutlass::layout::TensorNHWC; // This code section describes whether you want to use tensor cores or regular SIMT cores on GPU SM using MMAOp = cutlass::arch::OpClassTensorOp; // This code section describes CUDA SM architecture number using SmArch = cutlass::arch::Sm80; // This code section describes the tile size a thread block will compute using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 32>; // Threadblock tile shape // This code section describes tile size a warp will compute using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; // Warp tile shape // This code section describes the size of MMA op using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; // TensorCore instruction shape // This code section describes how threadblocks are scheduled on GPU using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>; // Number of pipelines you want to use constexpr int NumStages = 4; // This code section describe iterator algorithm selected is Analytic or Optimized static cutlass::conv::IteratorAlgorithm const IteratorAlgorithm = cutlass::conv::IteratorAlgorithm::kOptimized; // This code section describes the epilogue part of the kernel, we use default value using EpilogueOp = cutlass::epilogue::thread::LinearCombinationRelu< ElementOutput, // Data type of output matrix. 128 / cutlass::sizeof_bits<ElementOutput>::value, // The number of elements per vectorized. // memory access. This becomes the vector width of // math instructions in the epilogue too. ElementAccumulator, // Data type of accumulator ElementComputeEpilogue, // Data type for alpha in linear combination cutlass::epilogue::thread::ScaleType::NoBetaScaling>; // alpha X C + per channel bias using Conv2dFpropKernel = typename cutlass::conv::kernel::DefaultConv2dFprop< ElementInputA, LayoutInputA, ElementInputB, LayoutInputB, ElementOutput, LayoutOutput, ElementAccumulator, MMAOp, SmArch, ThreadblockShape, WarpShape, InstructionShape, EpilogueOp, SwizzleThreadBlock, NumStages, cutlass::arch::OpMultiplyAdd, IteratorAlgorithm >::Kernel; using ImplicitGemm = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel>; ///////////////////////////////////////////////////////////////////////////////////////////////// int run() { // Construct Conv2dProblemSize with user defined output size cutlass::conv::Conv2dProblemSize problem_size( {1, 7, 7, 512}, // activation {512, 3, 3, 512}, // filter {1, 1, 1, 1}, // padding {1, 1}, // striding {1, 1}, // dilation cutlass::conv::Mode::kCrossCorrelation, // mode (convolution or cross-correlation) 1 // split-k slices ); // Initialize tensors using CUTLASS helper functions cutlass::HostTensor<ElementInputA, LayoutInputA> tensor_a(problem_size.activation_extent()); cutlass::HostTensor<ElementInputB, LayoutInputB> tensor_b(problem_size.filter_extent()); // Create tensor C with dimensions 1x1x1xk which is the bias vector cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_c_bias({1, 1, 1, problem_size.K}); // Create tensor D used to store output from CUTLASS kernel cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_d(problem_size.output_extent()); // Create matrix D with dimensions M x N used to store output from reference // kernel cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_ref_d(problem_size.output_extent()); // Fill input and output matrices on host using CUTLASS helper functions cutlass::reference::host::TensorFillRandomUniform( tensor_a.host_view(), 1, ElementInputA(4), ElementInputA(-4), 0); // <- Fill tensor A on host with uniform-distribution random data cutlass::reference::host::TensorFillRandomUniform( tensor_b.host_view(), 1, ElementInputB(4), ElementInputB(-4), 0); // <- Fill tensor B on host with uniform-distribution random data cutlass::reference::host::TensorFillRandomUniform( tensor_c_bias.host_view(), 1, ElementOutput(4), ElementOutput(-4), 0); // <- Fill matrix C on host with uniform-distribution random data cutlass::reference::host::TensorFill( tensor_d.host_view()); // <- fill matrix D on host with zeros cutlass::reference::host::TensorFill( tensor_ref_d.host_view()); // <- fill matrix D for reference on host with zeros // Copy data from host to GPU tensor_a.sync_device(); tensor_b.sync_device(); tensor_c_bias.sync_device(); tensor_d.sync_device(); tensor_ref_d.sync_device(); // Initialize alpha for dot product computation ElementComputeEpilogue alpha = ElementComputeEpilogue(1); // Create a tuple of gemm kernel arguments. This is later passed as arguments to launch // instantiated CUTLASS kernel typename ImplicitGemm::Arguments arguments{ problem_size, tensor_a.device_ref(), // <- reference to tensor A on device tensor_b.device_ref(), // <- reference to tensor B on device // tensor C is treated as the bias vector. We can enable the CONV // to project away the N, H, W dimension by setting the stride to zero. {tensor_c_bias.device_data(), LayoutOutput::Stride(0)}, tensor_d.device_ref(), // <- reference to tensor D on device {alpha} }; // Instantiate CUTLASS kernel depending on templates ImplicitGemm implicit_gemm_op; // Using the arguments, query for extra workspace required for matrix multiplication computation size_t workspace_size = implicit_gemm_op.get_workspace_size(arguments); // Allocate workspace memory cutlass::device_memory::allocation<uint8_t> workspace(workspace_size); // Check the problem size is supported or not cutlass::Status status = implicit_gemm_op.can_implement(arguments); CUTLASS_CHECK(status); // Initialize CUTLASS kernel with arguments and workspace pointer status = implicit_gemm_op.initialize(arguments, workspace.get()); CUTLASS_CHECK(status); // Launch initialized CUTLASS kernel status = implicit_gemm_op(); CUTLASS_CHECK(status); // // Create instantiation for device reference conv kernel // // Launch device reference to compute strictly the product A * B cutlass::reference::device::Conv2d< ElementInputA, LayoutInputA, ElementInputB, LayoutInputB, ElementOutput, LayoutOutput, ElementComputeEpilogue, ElementAccumulator, cutlass::NumericConverter<ElementOutput, ElementComputeEpilogue>> ( cutlass::conv::Operator::kFprop, problem_size, tensor_a.device_ref(), tensor_b.device_ref(), tensor_c_bias.device_ref(), tensor_ref_d.device_ref(), alpha, ElementComputeEpilogue(0) ); // Wait for kernels to finish hipDeviceSynchronize(); // Copy output data from CUTLASS and reference kernel to host for comparison tensor_d.sync_host(); tensor_ref_d.sync_host(); // Compute bias + relu in host code for (int n = 0; n < problem_size.N; ++n) { for (int p = 0; p < problem_size.P; ++p) { for (int q = 0; q < problem_size.Q; ++q) { for (int k = 0; k < problem_size.K; ++k) { tensor_ref_d.at({n, p, q, k}) = ::max(ElementOutput(0), ElementOutput(tensor_ref_d.at({n, p, q, k}) + tensor_c_bias.at({0, 0, 0, k}))); } } } } // Check if output from CUTLASS kernel and reference kernel are equal or not std::cout << (cutlass::reference::host::TensorEquals(tensor_d.host_view(), tensor_ref_d.host_view()) ? "Passed" : "Failed") << std::endl; CUTLASS_CHECK(status); return 0; } int main(int argc, char const **args) { bool notSupported = false; // Ampere Tensor Core operations exposed with mma.sync are first available in CUDA 11.0. // // CUTLASS must be compiled with CUDA 11 Toolkit to run Conv2dFprop examples. if (!(__CUDACC_VER_MAJOR__ > 11 || (__CUDACC_VER_MAJOR__ == 11 && __CUDACC_VER_MINOR__ >= 0))) { std::cerr << "Ampere Tensor Core operations must be compiled with CUDA 11.0 Toolkit or later." << std::endl; notSupported = true; } hipDeviceProp_t props; CUDA_CHECK(hipGetDeviceProperties(&props, 0)); if (!(props.major >= 8)) { std::cerr << "Ampere Tensor Ops must be run on a machine with compute capability at least 80." << std::endl; notSupported = true; } if (notSupported) { return 0; } return run(); } /////////////////////////////////////////////////////////////////////////////////////////////////
75690927550376ce371a43b9c3a7ccbee28c66df.cu
/*************************************************************************************************** * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /** The convolution version of 12_gemm_bias_relu. Similarly, we put bias vector in Operand C and the rest is the same as normal convolution. */ #include <iostream> #include <sstream> #include "cutlass/cutlass.h" #include "cutlass/gemm/device/gemm.h" #include "cutlass/conv/kernel/default_conv2d_fprop.h" #include "cutlass/conv/device/implicit_gemm_convolution.h" #include "cutlass/util/command_line.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/host_reorder.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/reference/device/gemm.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/tensor_copy.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/util/reference/device/convolution.h" #include "cutlass/util/tensor_view_io.h" #include "helper.h" // The code section below describes datatype for input, output tensors and computation between // elements using ElementAccumulator = float; // Data type of accumulator using ElementComputeEpilogue = ElementAccumulator; // Data type of epilogue computation using ElementInputA = cutlass::half_t; // Data type of elements in input tensor using ElementInputB = cutlass::half_t; // Data type of elements in input tensor using ElementOutput = float; // Data type of elements in output tensor using LayoutInputA = cutlass::layout::TensorNHWC; using LayoutInputB = cutlass::layout::TensorNHWC; using LayoutOutput = cutlass::layout::TensorNHWC; // This code section describes whether you want to use tensor cores or regular SIMT cores on GPU SM using MMAOp = cutlass::arch::OpClassTensorOp; // This code section describes CUDA SM architecture number using SmArch = cutlass::arch::Sm80; // This code section describes the tile size a thread block will compute using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 32>; // Threadblock tile shape // This code section describes tile size a warp will compute using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; // Warp tile shape // This code section describes the size of MMA op using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; // TensorCore instruction shape // This code section describes how threadblocks are scheduled on GPU using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>; // Number of pipelines you want to use constexpr int NumStages = 4; // This code section describe iterator algorithm selected is Analytic or Optimized static cutlass::conv::IteratorAlgorithm const IteratorAlgorithm = cutlass::conv::IteratorAlgorithm::kOptimized; // This code section describes the epilogue part of the kernel, we use default value using EpilogueOp = cutlass::epilogue::thread::LinearCombinationRelu< ElementOutput, // Data type of output matrix. 128 / cutlass::sizeof_bits<ElementOutput>::value, // The number of elements per vectorized. // memory access. This becomes the vector width of // math instructions in the epilogue too. ElementAccumulator, // Data type of accumulator ElementComputeEpilogue, // Data type for alpha in linear combination cutlass::epilogue::thread::ScaleType::NoBetaScaling>; // alpha X C + per channel bias using Conv2dFpropKernel = typename cutlass::conv::kernel::DefaultConv2dFprop< ElementInputA, LayoutInputA, ElementInputB, LayoutInputB, ElementOutput, LayoutOutput, ElementAccumulator, MMAOp, SmArch, ThreadblockShape, WarpShape, InstructionShape, EpilogueOp, SwizzleThreadBlock, NumStages, cutlass::arch::OpMultiplyAdd, IteratorAlgorithm >::Kernel; using ImplicitGemm = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel>; ///////////////////////////////////////////////////////////////////////////////////////////////// int run() { // Construct Conv2dProblemSize with user defined output size cutlass::conv::Conv2dProblemSize problem_size( {1, 7, 7, 512}, // activation {512, 3, 3, 512}, // filter {1, 1, 1, 1}, // padding {1, 1}, // striding {1, 1}, // dilation cutlass::conv::Mode::kCrossCorrelation, // mode (convolution or cross-correlation) 1 // split-k slices ); // Initialize tensors using CUTLASS helper functions cutlass::HostTensor<ElementInputA, LayoutInputA> tensor_a(problem_size.activation_extent()); cutlass::HostTensor<ElementInputB, LayoutInputB> tensor_b(problem_size.filter_extent()); // Create tensor C with dimensions 1x1x1xk which is the bias vector cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_c_bias({1, 1, 1, problem_size.K}); // Create tensor D used to store output from CUTLASS kernel cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_d(problem_size.output_extent()); // Create matrix D with dimensions M x N used to store output from reference // kernel cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_ref_d(problem_size.output_extent()); // Fill input and output matrices on host using CUTLASS helper functions cutlass::reference::host::TensorFillRandomUniform( tensor_a.host_view(), 1, ElementInputA(4), ElementInputA(-4), 0); // <- Fill tensor A on host with uniform-distribution random data cutlass::reference::host::TensorFillRandomUniform( tensor_b.host_view(), 1, ElementInputB(4), ElementInputB(-4), 0); // <- Fill tensor B on host with uniform-distribution random data cutlass::reference::host::TensorFillRandomUniform( tensor_c_bias.host_view(), 1, ElementOutput(4), ElementOutput(-4), 0); // <- Fill matrix C on host with uniform-distribution random data cutlass::reference::host::TensorFill( tensor_d.host_view()); // <- fill matrix D on host with zeros cutlass::reference::host::TensorFill( tensor_ref_d.host_view()); // <- fill matrix D for reference on host with zeros // Copy data from host to GPU tensor_a.sync_device(); tensor_b.sync_device(); tensor_c_bias.sync_device(); tensor_d.sync_device(); tensor_ref_d.sync_device(); // Initialize alpha for dot product computation ElementComputeEpilogue alpha = ElementComputeEpilogue(1); // Create a tuple of gemm kernel arguments. This is later passed as arguments to launch // instantiated CUTLASS kernel typename ImplicitGemm::Arguments arguments{ problem_size, tensor_a.device_ref(), // <- reference to tensor A on device tensor_b.device_ref(), // <- reference to tensor B on device // tensor C is treated as the bias vector. We can enable the CONV // to project away the N, H, W dimension by setting the stride to zero. {tensor_c_bias.device_data(), LayoutOutput::Stride(0)}, tensor_d.device_ref(), // <- reference to tensor D on device {alpha} }; // Instantiate CUTLASS kernel depending on templates ImplicitGemm implicit_gemm_op; // Using the arguments, query for extra workspace required for matrix multiplication computation size_t workspace_size = implicit_gemm_op.get_workspace_size(arguments); // Allocate workspace memory cutlass::device_memory::allocation<uint8_t> workspace(workspace_size); // Check the problem size is supported or not cutlass::Status status = implicit_gemm_op.can_implement(arguments); CUTLASS_CHECK(status); // Initialize CUTLASS kernel with arguments and workspace pointer status = implicit_gemm_op.initialize(arguments, workspace.get()); CUTLASS_CHECK(status); // Launch initialized CUTLASS kernel status = implicit_gemm_op(); CUTLASS_CHECK(status); // // Create instantiation for device reference conv kernel // // Launch device reference to compute strictly the product A * B cutlass::reference::device::Conv2d< ElementInputA, LayoutInputA, ElementInputB, LayoutInputB, ElementOutput, LayoutOutput, ElementComputeEpilogue, ElementAccumulator, cutlass::NumericConverter<ElementOutput, ElementComputeEpilogue>> ( cutlass::conv::Operator::kFprop, problem_size, tensor_a.device_ref(), tensor_b.device_ref(), tensor_c_bias.device_ref(), tensor_ref_d.device_ref(), alpha, ElementComputeEpilogue(0) ); // Wait for kernels to finish cudaDeviceSynchronize(); // Copy output data from CUTLASS and reference kernel to host for comparison tensor_d.sync_host(); tensor_ref_d.sync_host(); // Compute bias + relu in host code for (int n = 0; n < problem_size.N; ++n) { for (int p = 0; p < problem_size.P; ++p) { for (int q = 0; q < problem_size.Q; ++q) { for (int k = 0; k < problem_size.K; ++k) { tensor_ref_d.at({n, p, q, k}) = std::max(ElementOutput(0), ElementOutput(tensor_ref_d.at({n, p, q, k}) + tensor_c_bias.at({0, 0, 0, k}))); } } } } // Check if output from CUTLASS kernel and reference kernel are equal or not std::cout << (cutlass::reference::host::TensorEquals(tensor_d.host_view(), tensor_ref_d.host_view()) ? "Passed" : "Failed") << std::endl; CUTLASS_CHECK(status); return 0; } int main(int argc, char const **args) { bool notSupported = false; // Ampere Tensor Core operations exposed with mma.sync are first available in CUDA 11.0. // // CUTLASS must be compiled with CUDA 11 Toolkit to run Conv2dFprop examples. if (!(__CUDACC_VER_MAJOR__ > 11 || (__CUDACC_VER_MAJOR__ == 11 && __CUDACC_VER_MINOR__ >= 0))) { std::cerr << "Ampere Tensor Core operations must be compiled with CUDA 11.0 Toolkit or later." << std::endl; notSupported = true; } cudaDeviceProp props; CUDA_CHECK(cudaGetDeviceProperties(&props, 0)); if (!(props.major >= 8)) { std::cerr << "Ampere Tensor Ops must be run on a machine with compute capability at least 80." << std::endl; notSupported = true; } if (notSupported) { return 0; } return run(); } /////////////////////////////////////////////////////////////////////////////////////////////////
38f765abd0e738395b4c322f7cf14e13447c99f4.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* -- MAGMA (version 1.5.0-beta3) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver @date July 2014 @generated from zlarfg-v2.cu normal z -> s, Fri Jul 18 17:34:12 2014 */ #include "common_magma.h" // 512 is maximum number of threads for CUDA capability 1.x #define BLOCK_SIZE 512 #define PRECISION_s __global__ void magma_slarfg_gpu_kernel( int n, float* dx0, float* dx, float *dtau, float *dxnorm, float* dAkk) { const int i = threadIdx.x; const int j = i + BLOCK_SIZE * blockIdx.x; __shared__ float scale; float xnorm; float dxi; #if (defined(PRECISION_s) || defined(PRECISION_d)) if( n <= 1 ) { #else if( n <= 0 ) { #endif *dtau = MAGMA_S_ZERO; *dAkk = *dx0; return; } if ( j < n-1) dxi = dx[j]; xnorm = *dxnorm; float alpha = *dx0; #if (defined(PRECISION_s) || defined(PRECISION_d)) if ( xnorm != 0 ) { if (i == 0) { float beta = sqrt( alpha*alpha + xnorm*xnorm ); beta = -copysign( beta, alpha ); // todo: deal with badly scaled vectors (see lapack's larfg) *dtau = (beta - alpha) / beta; *dAkk = beta; scale = 1. / (alpha - beta); } #else float alphar = MAGMA_S_REAL(alpha); float alphai = MAGMA_S_IMAG(alpha); if ( xnorm != 0 || alphai != 0) { if (i == 0) { float beta = sqrt( alphar*alphar + alphai*alphai + xnorm*xnorm ); beta = -copysign( beta, alphar ); // todo: deal with badly scaled vectors (see lapack's larfg) *dtau = MAGMA_S_MAKE((beta - alphar)/beta, -alphai/beta); *dAkk = MAGMA_S_MAKE(beta, 0.); alpha = MAGMA_S_MAKE( MAGMA_S_REAL(alpha) - beta, MAGMA_S_IMAG(alpha)); scale = MAGMA_S_DIV( MAGMA_S_ONE, alpha); } #endif // scale x __syncthreads(); if ( xnorm != 0 && j < n-1) dx[j] = MAGMA_S_MUL(dxi, scale); } else { *dtau = MAGMA_S_ZERO; *dAkk = *dx0; } } /* Generates Householder elementary reflector H = I - tau v v^T to reduce H [ dx0 ] = [ beta ] [ dx ] [ 0 ] with beta = norm( [dx0, dx] ) = dxnorm[0]. Stores v over dx; first element of v is 1 and is not stored. Stores beta over dx0. Stores tau. The difference with LAPACK's slarfg is that the norm of dx, and hence beta, are computed outside the routine and passed to it in dxnorm (array on the GPU). */ extern "C" void magma_slarfg_gpu( magma_int_t n, float *dx0, float *dx, float *dtau, float *dxnorm, float *dAkk) { dim3 blocks((n+BLOCK_SIZE-1) / BLOCK_SIZE); dim3 threads( BLOCK_SIZE ); /* recomputing the norm */ //magmablas_snrm2_cols(n, 1, dx0, n, dxnorm); magmablas_snrm2_cols(n-1, 1, dx0+1, n, dxnorm); hipLaunchKernelGGL(( magma_slarfg_gpu_kernel), dim3(blocks), dim3(threads), 0, magma_stream , n, dx0, dx, dtau, dxnorm, dAkk); }
38f765abd0e738395b4c322f7cf14e13447c99f4.cu
/* -- MAGMA (version 1.5.0-beta3) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver @date July 2014 @generated from zlarfg-v2.cu normal z -> s, Fri Jul 18 17:34:12 2014 */ #include "common_magma.h" // 512 is maximum number of threads for CUDA capability 1.x #define BLOCK_SIZE 512 #define PRECISION_s __global__ void magma_slarfg_gpu_kernel( int n, float* dx0, float* dx, float *dtau, float *dxnorm, float* dAkk) { const int i = threadIdx.x; const int j = i + BLOCK_SIZE * blockIdx.x; __shared__ float scale; float xnorm; float dxi; #if (defined(PRECISION_s) || defined(PRECISION_d)) if( n <= 1 ) { #else if( n <= 0 ) { #endif *dtau = MAGMA_S_ZERO; *dAkk = *dx0; return; } if ( j < n-1) dxi = dx[j]; xnorm = *dxnorm; float alpha = *dx0; #if (defined(PRECISION_s) || defined(PRECISION_d)) if ( xnorm != 0 ) { if (i == 0) { float beta = sqrt( alpha*alpha + xnorm*xnorm ); beta = -copysign( beta, alpha ); // todo: deal with badly scaled vectors (see lapack's larfg) *dtau = (beta - alpha) / beta; *dAkk = beta; scale = 1. / (alpha - beta); } #else float alphar = MAGMA_S_REAL(alpha); float alphai = MAGMA_S_IMAG(alpha); if ( xnorm != 0 || alphai != 0) { if (i == 0) { float beta = sqrt( alphar*alphar + alphai*alphai + xnorm*xnorm ); beta = -copysign( beta, alphar ); // todo: deal with badly scaled vectors (see lapack's larfg) *dtau = MAGMA_S_MAKE((beta - alphar)/beta, -alphai/beta); *dAkk = MAGMA_S_MAKE(beta, 0.); alpha = MAGMA_S_MAKE( MAGMA_S_REAL(alpha) - beta, MAGMA_S_IMAG(alpha)); scale = MAGMA_S_DIV( MAGMA_S_ONE, alpha); } #endif // scale x __syncthreads(); if ( xnorm != 0 && j < n-1) dx[j] = MAGMA_S_MUL(dxi, scale); } else { *dtau = MAGMA_S_ZERO; *dAkk = *dx0; } } /* Generates Householder elementary reflector H = I - tau v v^T to reduce H [ dx0 ] = [ beta ] [ dx ] [ 0 ] with beta = ±norm( [dx0, dx] ) = ±dxnorm[0]. Stores v over dx; first element of v is 1 and is not stored. Stores beta over dx0. Stores tau. The difference with LAPACK's slarfg is that the norm of dx, and hence beta, are computed outside the routine and passed to it in dxnorm (array on the GPU). */ extern "C" void magma_slarfg_gpu( magma_int_t n, float *dx0, float *dx, float *dtau, float *dxnorm, float *dAkk) { dim3 blocks((n+BLOCK_SIZE-1) / BLOCK_SIZE); dim3 threads( BLOCK_SIZE ); /* recomputing the norm */ //magmablas_snrm2_cols(n, 1, dx0, n, dxnorm); magmablas_snrm2_cols(n-1, 1, dx0+1, n, dxnorm); magma_slarfg_gpu_kernel<<< blocks, threads, 0, magma_stream >>>(n, dx0, dx, dtau, dxnorm, dAkk); }
9521fcabbc454dabe238c2162a5ee0bbfbe54213.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* * Copyright (c) 2019-2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** ---------------------------------------------------------------------------* * @brief Functions for computing the two hop neighbor pairs of a graph * * @file two_hop_neighbors.cu * ---------------------------------------------------------------------------**/ #include <cugraph/algorithms.hpp> #include <cugraph/legacy/graph.hpp> #include <cugraph/utilities/error.hpp> #include <rmm/device_vector.hpp> #include <rmm/exec_policy.hpp> #include "two_hop_neighbors.cuh" #include <thrust/scan.h> #include <thrust/transform.h> namespace cugraph { template <typename VT, typename ET, typename WT> std::unique_ptr<legacy::GraphCOO<VT, ET, WT>> get_two_hop_neighbors( legacy::GraphCSRView<VT, ET, WT> const& graph) { hipStream_t stream{nullptr}; rmm::device_vector<ET> exsum_degree(graph.number_of_edges + 1); ET* d_exsum_degree = exsum_degree.data().get(); // Find the degree of the out vertex of each edge degree_iterator<ET> deg_it(graph.offsets); deref_functor<degree_iterator<ET>, ET> deref(deg_it); exsum_degree[0] = ET{0}; thrust::transform(rmm::exec_policy(stream), graph.indices, graph.indices + graph.number_of_edges, d_exsum_degree + 1, deref); // Take the inclusive sum of the degrees thrust::inclusive_scan(rmm::exec_policy(stream), d_exsum_degree + 1, d_exsum_degree + graph.number_of_edges + 1, d_exsum_degree + 1); // Copy out the last value to get the size of scattered output ET output_size = exsum_degree[graph.number_of_edges]; // Allocate memory for the scattered output rmm::device_vector<VT> first_pair(output_size); rmm::device_vector<VT> second_pair(output_size); VT* d_first_pair = first_pair.data().get(); VT* d_second_pair = second_pair.data().get(); // Figure out number of blocks and allocate memory for block bucket offsets ET num_blocks = (output_size + TWO_HOP_BLOCK_SIZE - 1) / TWO_HOP_BLOCK_SIZE; rmm::device_vector<ET> block_bucket_offsets(num_blocks + 1); ET* d_block_bucket_offsets = block_bucket_offsets.data().get(); // Compute the block bucket offsets dim3 grid, block; block.x = 512; grid.x = min((ET)MAXBLOCKS, (num_blocks / 512) + 1); hipLaunchKernelGGL(( compute_bucket_offsets_kernel), dim3(grid), dim3(block), 0, nullptr, d_exsum_degree, d_block_bucket_offsets, graph.number_of_edges, output_size); block_bucket_offsets[num_blocks] = graph.number_of_edges; // Scatter the expanded edge lists into temp space grid.x = min((ET)MAXBLOCKS, num_blocks); hipLaunchKernelGGL(( scatter_expand_kernel), dim3(grid), dim3(block), 0, nullptr, d_exsum_degree, graph.indices, graph.offsets, d_block_bucket_offsets, graph.number_of_vertices, output_size, num_blocks, d_first_pair, d_second_pair); // TODO: This would be faster in a hash table (no sorting), unless there's // some reason that the result has to be sorted // Remove duplicates and self pairings auto tuple_start = thrust::make_zip_iterator(thrust::make_tuple(d_first_pair, d_second_pair)); auto tuple_end = tuple_start + output_size; thrust::sort(rmm::exec_policy(stream), tuple_start, tuple_end); tuple_end = thrust::copy_if( rmm::exec_policy(stream), tuple_start, tuple_end, tuple_start, self_loop_flagger<VT>()); tuple_end = thrust::unique(rmm::exec_policy(stream), tuple_start, tuple_end); // Get things ready to return ET outputSize = tuple_end - tuple_start; auto result = std::make_unique<legacy::GraphCOO<VT, ET, WT>>(graph.number_of_vertices, outputSize, false); hipMemcpy(result->src_indices(), d_first_pair, sizeof(VT) * outputSize, hipMemcpyDefault); hipMemcpy(result->dst_indices(), d_second_pair, sizeof(VT) * outputSize, hipMemcpyDefault); return result; } template std::unique_ptr<legacy::GraphCOO<int, int, float>> get_two_hop_neighbors( legacy::GraphCSRView<int, int, float> const&); template std::unique_ptr<legacy::GraphCOO<int, int, double>> get_two_hop_neighbors( legacy::GraphCSRView<int, int, double> const&); } // namespace cugraph
9521fcabbc454dabe238c2162a5ee0bbfbe54213.cu
/* * Copyright (c) 2019-2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** ---------------------------------------------------------------------------* * @brief Functions for computing the two hop neighbor pairs of a graph * * @file two_hop_neighbors.cu * ---------------------------------------------------------------------------**/ #include <cugraph/algorithms.hpp> #include <cugraph/legacy/graph.hpp> #include <cugraph/utilities/error.hpp> #include <rmm/device_vector.hpp> #include <rmm/exec_policy.hpp> #include "two_hop_neighbors.cuh" #include <thrust/scan.h> #include <thrust/transform.h> namespace cugraph { template <typename VT, typename ET, typename WT> std::unique_ptr<legacy::GraphCOO<VT, ET, WT>> get_two_hop_neighbors( legacy::GraphCSRView<VT, ET, WT> const& graph) { cudaStream_t stream{nullptr}; rmm::device_vector<ET> exsum_degree(graph.number_of_edges + 1); ET* d_exsum_degree = exsum_degree.data().get(); // Find the degree of the out vertex of each edge degree_iterator<ET> deg_it(graph.offsets); deref_functor<degree_iterator<ET>, ET> deref(deg_it); exsum_degree[0] = ET{0}; thrust::transform(rmm::exec_policy(stream), graph.indices, graph.indices + graph.number_of_edges, d_exsum_degree + 1, deref); // Take the inclusive sum of the degrees thrust::inclusive_scan(rmm::exec_policy(stream), d_exsum_degree + 1, d_exsum_degree + graph.number_of_edges + 1, d_exsum_degree + 1); // Copy out the last value to get the size of scattered output ET output_size = exsum_degree[graph.number_of_edges]; // Allocate memory for the scattered output rmm::device_vector<VT> first_pair(output_size); rmm::device_vector<VT> second_pair(output_size); VT* d_first_pair = first_pair.data().get(); VT* d_second_pair = second_pair.data().get(); // Figure out number of blocks and allocate memory for block bucket offsets ET num_blocks = (output_size + TWO_HOP_BLOCK_SIZE - 1) / TWO_HOP_BLOCK_SIZE; rmm::device_vector<ET> block_bucket_offsets(num_blocks + 1); ET* d_block_bucket_offsets = block_bucket_offsets.data().get(); // Compute the block bucket offsets dim3 grid, block; block.x = 512; grid.x = min((ET)MAXBLOCKS, (num_blocks / 512) + 1); compute_bucket_offsets_kernel<<<grid, block, 0, nullptr>>>( d_exsum_degree, d_block_bucket_offsets, graph.number_of_edges, output_size); block_bucket_offsets[num_blocks] = graph.number_of_edges; // Scatter the expanded edge lists into temp space grid.x = min((ET)MAXBLOCKS, num_blocks); scatter_expand_kernel<<<grid, block, 0, nullptr>>>(d_exsum_degree, graph.indices, graph.offsets, d_block_bucket_offsets, graph.number_of_vertices, output_size, num_blocks, d_first_pair, d_second_pair); // TODO: This would be faster in a hash table (no sorting), unless there's // some reason that the result has to be sorted // Remove duplicates and self pairings auto tuple_start = thrust::make_zip_iterator(thrust::make_tuple(d_first_pair, d_second_pair)); auto tuple_end = tuple_start + output_size; thrust::sort(rmm::exec_policy(stream), tuple_start, tuple_end); tuple_end = thrust::copy_if( rmm::exec_policy(stream), tuple_start, tuple_end, tuple_start, self_loop_flagger<VT>()); tuple_end = thrust::unique(rmm::exec_policy(stream), tuple_start, tuple_end); // Get things ready to return ET outputSize = tuple_end - tuple_start; auto result = std::make_unique<legacy::GraphCOO<VT, ET, WT>>(graph.number_of_vertices, outputSize, false); cudaMemcpy(result->src_indices(), d_first_pair, sizeof(VT) * outputSize, cudaMemcpyDefault); cudaMemcpy(result->dst_indices(), d_second_pair, sizeof(VT) * outputSize, cudaMemcpyDefault); return result; } template std::unique_ptr<legacy::GraphCOO<int, int, float>> get_two_hop_neighbors( legacy::GraphCSRView<int, int, float> const&); template std::unique_ptr<legacy::GraphCOO<int, int, double>> get_two_hop_neighbors( legacy::GraphCSRView<int, int, double> const&); } // namespace cugraph
3576400aeae9a389a68be266159caceb5ed821ba.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <stdio.h> #include <stdlib.h> #include <time.h> #include <assert.h> #include <unistd.h> #include <sys/time.h> #define BLOCK_SIZE 32 #define STR_SIZE 256 /* maximum power density possible (say 300W for a 10mm x 10mm chip) */ #define MAX_PD (3.0e6) /* required precision in degrees */ #define PRECISION 0.001 #define SPEC_HEAT_SI 1.75e6 #define K_SI 100 /* capacitance fitting factor */ #define FACTOR_CHIP 0.5 /* chip parameters */ float t_chip = 0.0005; float chip_height = 0.016; float chip_width = 0.016; /* ambient temperature, assuming no package at all */ float amb_temp = 80.0; void run(int argc, char** argv); /* define timer macros */ #define pin_stats_reset() startCycle() #define pin_stats_pause(cycles) stopCycle(cycles) #define pin_stats_dump(cycles) printf("timer: %Lu\n", cycles) #define CUDA_CALL_SAFE(f) \ do \ { \ hipError_t _cuda_error = f; \ if (_cuda_error != hipSuccess) \ { \ fprintf(stderr, \ "%s, %d, CUDA ERROR: %s %s\n", \ __FILE__, \ __LINE__, \ hipGetErrorName(_cuda_error), \ hipGetErrorString(_cuda_error) \ ); \ abort(); \ exit(EXIT_FAILURE); \ } \ } while (0) static inline double time_diff(struct timeval tv_start, struct timeval tv_end) { return (double)(tv_end.tv_sec - tv_start.tv_sec) * 1000.0 + (double)(tv_end.tv_usec - tv_start.tv_usec) / 1000.0; } /*void writeoutput(float *vect, int grid_rows, int grid_cols, char *file) { int i,j, index=0; FILE *fp; char str[STR_SIZE]; if( (fp = fopen(file, "w" )) == 0 ) printf( "The file was not opened\n" ); for (i=0; i < grid_rows; i++) for (j=0; j < grid_cols; j++) { sprintf(str, "%d\t%g\n", index, vect[i*grid_cols+j]); fputs(str,fp); index++; } fclose(fp); }*/ void writeoutput(float *vect, int grid_rows, int grid_cols, char *file) { FILE *fp; if ((fp = fopen(file, "wb")) == 0) { fprintf(stderr, "The file was not opened\n"); abort(); exit(EXIT_FAILURE); } if (fwrite((char *)vect, sizeof(float) * grid_rows * grid_cols, 1, fp) != 1) { fprintf(stderr, "The file was not written\n"); abort(); exit(EXIT_FAILURE); } fsync(fileno(fp)); fclose(fp); } /*void readinput(float *vect, int grid_rows, int grid_cols, char *file){ int i,j; FILE *fp; char str[STR_SIZE]; float val; if( (fp = fopen(file, "r" )) ==0 ) printf( "The file was not opened\n" ); for (i=0; i <= grid_rows-1; i++) for (j=0; j <= grid_cols-1; j++) { fgets(str, STR_SIZE, fp); if (feof(fp)) fatal("not enough lines in file"); //if ((sscanf(str, "%d%f", &index, &val) != 2) || (index != ((i-1)*(grid_cols-2)+j-1))) if ((sscanf(str, "%f", &val) != 1)) fatal("invalid file format"); vect[i*grid_cols+j] = val; } fclose(fp); }*/ void readinput(float *vect, int grid_rows, int grid_cols, char *file) { FILE *fp; if((fp = fopen(file, "rb")) == 0) { fprintf(stderr, "The file was not opened\n"); abort(); exit(EXIT_FAILURE); } if (fread((char *)vect, sizeof(float) * grid_rows * grid_cols, 1, fp) != 1) { fprintf(stderr, "The file was not read\n"); abort(); exit(EXIT_FAILURE); } fclose(fp); } #define IN_RANGE(x, min, max) ((x)>=(min) && (x)<=(max)) #define CLAMP_RANGE(x, min, max) x = (x<(min)) ? min : ((x>(max)) ? max : x ) #define MIN(a, b) ((a)<=(b) ? (a) : (b)) __global__ void calculate_temp(long iteration, //number of iteration float *power, //power input float *temp_src, //temperature input/output float *temp_dst, //temperature input/output long grid_cols, //Col of grid long grid_rows, //Row of grid long border_cols, // border offset long border_rows, // border offset float Cap, //Capacitance float Rx, float Ry, float Rz, float step, float time_elapsed) { __shared__ float temp_on_cuda[BLOCK_SIZE][BLOCK_SIZE]; __shared__ float power_on_cuda[BLOCK_SIZE][BLOCK_SIZE]; __shared__ float temp_t[BLOCK_SIZE][BLOCK_SIZE]; // saving temparary temperature result float amb_temp = 80.0; float step_div_Cap; float Rx_1,Ry_1,Rz_1; long bx = blockIdx.x; long by = blockIdx.y; long tx = threadIdx.x; long ty = threadIdx.y; step_div_Cap = step / Cap; Rx_1 = 1 / Rx; Ry_1 = 1 / Ry; Rz_1 = 1 / Rz; // each block finally computes result for a small block // after N iterations. // it is the non-overlapping small blocks that cover // all the input data // calculate the small block size long small_block_rows = BLOCK_SIZE - iteration * 2;//EXPAND_RATE long small_block_cols = BLOCK_SIZE - iteration * 2;//EXPAND_RATE // calculate the boundary for the block according to // the boundary of its small block long blkY = small_block_rows * by - border_rows; long blkX = small_block_cols * bx - border_cols; long blkYmax = blkY + BLOCK_SIZE - 1; long blkXmax = blkX + BLOCK_SIZE - 1; // calculate the global thread coordination long yidx = blkY + ty; long xidx = blkX + tx; // load data if it is within the valid input range long loadYidx = yidx, loadXidx = xidx; long index = grid_cols * loadYidx + loadXidx; if (IN_RANGE(loadYidx, 0, grid_rows - 1) && IN_RANGE(loadXidx, 0, grid_cols - 1)) { temp_on_cuda[ty][tx] = temp_src[index]; // Load the temperature data from global memory to shared memory power_on_cuda[ty][tx] = power[index]; // Load the power data from global memory to shared memory } __syncthreads(); // effective range within this block that falls within // the valid range of the input data // used to rule out computation outside the boundary. long validYmin = (blkY < 0) ? -blkY : 0; long validYmax = (blkYmax > grid_rows-1) ? BLOCK_SIZE-1-(blkYmax-grid_rows+1) : BLOCK_SIZE-1; long validXmin = (blkX < 0) ? -blkX : 0; long validXmax = (blkXmax > grid_cols-1) ? BLOCK_SIZE-1-(blkXmax-grid_cols+1) : BLOCK_SIZE-1; long N = ty-1; long S = ty+1; long W = tx-1; long E = tx+1; N = (N < validYmin) ? validYmin : N; S = (S > validYmax) ? validYmax : S; W = (W < validXmin) ? validXmin : W; E = (E > validXmax) ? validXmax : E; bool computed; for (long i=0; i<iteration ; i++){ computed = false; if( IN_RANGE(tx, i+1, BLOCK_SIZE-i-2) && \ IN_RANGE(ty, i+1, BLOCK_SIZE-i-2) && \ IN_RANGE(tx, validXmin, validXmax) && \ IN_RANGE(ty, validYmin, validYmax) ) { computed = true; temp_t[ty][tx] = temp_on_cuda[ty][tx] + step_div_Cap * (power_on_cuda[ty][tx] + (temp_on_cuda[S][tx] + temp_on_cuda[N][tx] - 2.0*temp_on_cuda[ty][tx]) * Ry_1 + (temp_on_cuda[ty][E] + temp_on_cuda[ty][W] - 2.0*temp_on_cuda[ty][tx]) * Rx_1 + (amb_temp - temp_on_cuda[ty][tx]) * Rz_1); } __syncthreads(); if(i==iteration-1) break; if(computed) //Assign the computation range temp_on_cuda[ty][tx]= temp_t[ty][tx]; __syncthreads(); } // update the global memory // after the last iteration, only threads coordinated within the // small block perform the calculation and switch on ``computed'' if (computed){ temp_dst[index]= temp_t[ty][tx]; } } /* compute N time steps */ int compute_tran_temp(float *MatrixPower, float *MatrixTemp[2], long col, long row, \ long total_iterations, long num_iterations, long blockCols, long blockRows, long borderCols, long borderRows) { dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE); dim3 dimGrid(blockCols, blockRows); float grid_height = chip_height / row; float grid_width = chip_width / col; float Cap = FACTOR_CHIP * SPEC_HEAT_SI * t_chip * grid_width * grid_height; float Rx = grid_width / (2.0 * K_SI * t_chip * grid_height); float Ry = grid_height / (2.0 * K_SI * t_chip * grid_width); float Rz = t_chip / (K_SI * grid_height * grid_width); float max_slope = MAX_PD / (FACTOR_CHIP * t_chip * SPEC_HEAT_SI); float step = PRECISION / max_slope; float t; float time_elapsed; time_elapsed = 0.001; int src = 1, dst = 0; for (t = 0; t < total_iterations; t += num_iterations) { int temp = src; src = dst; dst = temp; hipLaunchKernelGGL(( calculate_temp), dim3(dimGrid), dim3(dimBlock) , 0, 0, MIN(num_iterations, total_iterations-t), MatrixPower, MatrixTemp[src], MatrixTemp[dst], \ col, row, borderCols, borderRows, Cap, Rx, Ry, Rz, step, time_elapsed); } CUDA_CALL_SAFE(hipDeviceSynchronize()); return dst; } void usage(int argc, char **argv) { fprintf(stderr, "Usage: %s <grid_rows/grid_cols> <pyramid_height> <sim_time> <temp_file> <power_file> <output_file>\n", argv[0]); fprintf(stderr, "\t<grid_rows/grid_cols> - number of rows/cols in the grid (positive integer)\n"); fprintf(stderr, "\t<pyramid_height> - pyramid heigh(positive integer)\n"); fprintf(stderr, "\t<sim_time> - number of iterations\n"); fprintf(stderr, "\t<temp_file> - name of the file containing the initial temperature values of each cell\n"); fprintf(stderr, "\t<power_file> - name of the file containing the dissipated power values of each cell\n"); fprintf(stderr, "\t<output_file> - name of the output file\n"); exit(1); } int main(int argc, char** argv) { printf("WG size of kernel = %d X %d\n", BLOCK_SIZE, BLOCK_SIZE); run(argc,argv); return EXIT_SUCCESS; } void run(int argc, char **argv) { size_t size; long grid_rows, grid_cols; float *FilesavingTemp, *FilesavingPower, *MatrixOut; char *tfile, *pfile, *ofile; long total_iterations = 60; long pyramid_height = 1; // number of iterations struct timeval tv_start, tv_end; double kernel_time = 0; // in ms double writefile_time = 0; // in ms double readfile_time = 0; // in ms double d2h_memcpy_time = 0; // in ms double h2d_memcpy_time = 0; // in ms if (argc != 7) usage(argc, argv); if((grid_rows = atol(argv[1]))<=0|| (grid_cols = atol(argv[1]))<=0|| (pyramid_height = atoi(argv[2]))<=0|| (total_iterations = atoi(argv[3]))<=0) usage(argc, argv); tfile = argv[4]; pfile = argv[5]; ofile = argv[6]; size = grid_rows * grid_cols; /* --------------- pyramid parameters --------------- */ # define EXPAND_RATE 2// add one iteration will extend the pyramid base by 2 per each borderline long borderCols = (pyramid_height)*EXPAND_RATE/2; long borderRows = (pyramid_height)*EXPAND_RATE/2; long smallBlockCol = BLOCK_SIZE-(pyramid_height)*EXPAND_RATE; long smallBlockRow = BLOCK_SIZE-(pyramid_height)*EXPAND_RATE; long blockCols = grid_cols/smallBlockCol+((grid_cols%smallBlockCol==0)?0:1); long blockRows = grid_rows/smallBlockRow+((grid_rows%smallBlockRow==0)?0:1); FilesavingTemp = (float *)malloc(size * sizeof(float)); FilesavingPower = (float *)malloc(size * sizeof(float)); MatrixOut = (float *)calloc(size, sizeof(float)); if(!FilesavingPower || !FilesavingTemp || !MatrixOut) { fprintf(stderr, "unable to allocate memory\n"); abort(); exit(EXIT_FAILURE); } printf("pyramidHeight: %d\ngridSize: [%d, %d]\nborder:[%d, %d]\nblockGrid:[%d, %d]\ntargetBlock:[%d, %d]\n",\ pyramid_height, grid_cols, grid_rows, borderCols, borderRows, blockCols, blockRows, smallBlockCol, smallBlockRow); gettimeofday(&tv_start, NULL); readinput(FilesavingTemp, grid_rows, grid_cols, tfile); readinput(FilesavingPower, grid_rows, grid_cols, pfile); gettimeofday(&tv_end, NULL); readfile_time += time_diff(tv_start, tv_end); float *MatrixTemp[2], *MatrixPower; CUDA_CALL_SAFE(hipMalloc((void **)&MatrixTemp[0], sizeof(float) * size)); CUDA_CALL_SAFE(hipMalloc((void **)&MatrixTemp[1], sizeof(float) * size)); gettimeofday(&tv_start, NULL); CUDA_CALL_SAFE(hipMemcpy(MatrixTemp[0], FilesavingTemp, sizeof(float) * size, hipMemcpyHostToDevice)); gettimeofday(&tv_end, NULL); h2d_memcpy_time += time_diff(tv_start, tv_end); CUDA_CALL_SAFE(hipMalloc((void **)&MatrixPower, sizeof(float) * size)); gettimeofday(&tv_start, NULL); CUDA_CALL_SAFE(hipMemcpy(MatrixPower, FilesavingPower, sizeof(float) * size, hipMemcpyHostToDevice)); gettimeofday(&tv_end, NULL); h2d_memcpy_time += time_diff(tv_start, tv_end); printf("Start computing the transient temperature\n"); gettimeofday(&tv_start, NULL); int ret = compute_tran_temp(MatrixPower,MatrixTemp,grid_cols,grid_rows, \ total_iterations,pyramid_height, blockCols, blockRows, borderCols, borderRows); gettimeofday(&tv_end, NULL); kernel_time += time_diff(tv_start, tv_end); printf("Ending simulation\n"); gettimeofday(&tv_start, NULL); CUDA_CALL_SAFE(hipMemcpy(MatrixOut, MatrixTemp[ret], sizeof(float) * size, hipMemcpyDeviceToHost)); gettimeofday(&tv_end, NULL); d2h_memcpy_time += time_diff(tv_start, tv_end); gettimeofday(&tv_start, NULL); writeoutput(MatrixOut, grid_rows, grid_cols, ofile); gettimeofday(&tv_end, NULL); writefile_time += time_diff(tv_start, tv_end); CUDA_CALL_SAFE(hipFree(MatrixPower)); CUDA_CALL_SAFE(hipFree(MatrixTemp[0])); CUDA_CALL_SAFE(hipFree(MatrixTemp[1])); free(MatrixOut); printf("==> header: kernel_time (ms),writefile_time (ms),d2h_memcpy_time (ms),readfile_time (ms),h2d_memcpy_time (ms)\n"); printf("==> data: %f,%f,%f,%f,%f\n", kernel_time, writefile_time, d2h_memcpy_time, readfile_time, h2d_memcpy_time); }
3576400aeae9a389a68be266159caceb5ed821ba.cu
#include <stdio.h> #include <stdlib.h> #include <time.h> #include <assert.h> #include <unistd.h> #include <sys/time.h> #define BLOCK_SIZE 32 #define STR_SIZE 256 /* maximum power density possible (say 300W for a 10mm x 10mm chip) */ #define MAX_PD (3.0e6) /* required precision in degrees */ #define PRECISION 0.001 #define SPEC_HEAT_SI 1.75e6 #define K_SI 100 /* capacitance fitting factor */ #define FACTOR_CHIP 0.5 /* chip parameters */ float t_chip = 0.0005; float chip_height = 0.016; float chip_width = 0.016; /* ambient temperature, assuming no package at all */ float amb_temp = 80.0; void run(int argc, char** argv); /* define timer macros */ #define pin_stats_reset() startCycle() #define pin_stats_pause(cycles) stopCycle(cycles) #define pin_stats_dump(cycles) printf("timer: %Lu\n", cycles) #define CUDA_CALL_SAFE(f) \ do \ { \ cudaError_t _cuda_error = f; \ if (_cuda_error != cudaSuccess) \ { \ fprintf(stderr, \ "%s, %d, CUDA ERROR: %s %s\n", \ __FILE__, \ __LINE__, \ cudaGetErrorName(_cuda_error), \ cudaGetErrorString(_cuda_error) \ ); \ abort(); \ exit(EXIT_FAILURE); \ } \ } while (0) static inline double time_diff(struct timeval tv_start, struct timeval tv_end) { return (double)(tv_end.tv_sec - tv_start.tv_sec) * 1000.0 + (double)(tv_end.tv_usec - tv_start.tv_usec) / 1000.0; } /*void writeoutput(float *vect, int grid_rows, int grid_cols, char *file) { int i,j, index=0; FILE *fp; char str[STR_SIZE]; if( (fp = fopen(file, "w" )) == 0 ) printf( "The file was not opened\n" ); for (i=0; i < grid_rows; i++) for (j=0; j < grid_cols; j++) { sprintf(str, "%d\t%g\n", index, vect[i*grid_cols+j]); fputs(str,fp); index++; } fclose(fp); }*/ void writeoutput(float *vect, int grid_rows, int grid_cols, char *file) { FILE *fp; if ((fp = fopen(file, "wb")) == 0) { fprintf(stderr, "The file was not opened\n"); abort(); exit(EXIT_FAILURE); } if (fwrite((char *)vect, sizeof(float) * grid_rows * grid_cols, 1, fp) != 1) { fprintf(stderr, "The file was not written\n"); abort(); exit(EXIT_FAILURE); } fsync(fileno(fp)); fclose(fp); } /*void readinput(float *vect, int grid_rows, int grid_cols, char *file){ int i,j; FILE *fp; char str[STR_SIZE]; float val; if( (fp = fopen(file, "r" )) ==0 ) printf( "The file was not opened\n" ); for (i=0; i <= grid_rows-1; i++) for (j=0; j <= grid_cols-1; j++) { fgets(str, STR_SIZE, fp); if (feof(fp)) fatal("not enough lines in file"); //if ((sscanf(str, "%d%f", &index, &val) != 2) || (index != ((i-1)*(grid_cols-2)+j-1))) if ((sscanf(str, "%f", &val) != 1)) fatal("invalid file format"); vect[i*grid_cols+j] = val; } fclose(fp); }*/ void readinput(float *vect, int grid_rows, int grid_cols, char *file) { FILE *fp; if((fp = fopen(file, "rb")) == 0) { fprintf(stderr, "The file was not opened\n"); abort(); exit(EXIT_FAILURE); } if (fread((char *)vect, sizeof(float) * grid_rows * grid_cols, 1, fp) != 1) { fprintf(stderr, "The file was not read\n"); abort(); exit(EXIT_FAILURE); } fclose(fp); } #define IN_RANGE(x, min, max) ((x)>=(min) && (x)<=(max)) #define CLAMP_RANGE(x, min, max) x = (x<(min)) ? min : ((x>(max)) ? max : x ) #define MIN(a, b) ((a)<=(b) ? (a) : (b)) __global__ void calculate_temp(long iteration, //number of iteration float *power, //power input float *temp_src, //temperature input/output float *temp_dst, //temperature input/output long grid_cols, //Col of grid long grid_rows, //Row of grid long border_cols, // border offset long border_rows, // border offset float Cap, //Capacitance float Rx, float Ry, float Rz, float step, float time_elapsed) { __shared__ float temp_on_cuda[BLOCK_SIZE][BLOCK_SIZE]; __shared__ float power_on_cuda[BLOCK_SIZE][BLOCK_SIZE]; __shared__ float temp_t[BLOCK_SIZE][BLOCK_SIZE]; // saving temparary temperature result float amb_temp = 80.0; float step_div_Cap; float Rx_1,Ry_1,Rz_1; long bx = blockIdx.x; long by = blockIdx.y; long tx = threadIdx.x; long ty = threadIdx.y; step_div_Cap = step / Cap; Rx_1 = 1 / Rx; Ry_1 = 1 / Ry; Rz_1 = 1 / Rz; // each block finally computes result for a small block // after N iterations. // it is the non-overlapping small blocks that cover // all the input data // calculate the small block size long small_block_rows = BLOCK_SIZE - iteration * 2;//EXPAND_RATE long small_block_cols = BLOCK_SIZE - iteration * 2;//EXPAND_RATE // calculate the boundary for the block according to // the boundary of its small block long blkY = small_block_rows * by - border_rows; long blkX = small_block_cols * bx - border_cols; long blkYmax = blkY + BLOCK_SIZE - 1; long blkXmax = blkX + BLOCK_SIZE - 1; // calculate the global thread coordination long yidx = blkY + ty; long xidx = blkX + tx; // load data if it is within the valid input range long loadYidx = yidx, loadXidx = xidx; long index = grid_cols * loadYidx + loadXidx; if (IN_RANGE(loadYidx, 0, grid_rows - 1) && IN_RANGE(loadXidx, 0, grid_cols - 1)) { temp_on_cuda[ty][tx] = temp_src[index]; // Load the temperature data from global memory to shared memory power_on_cuda[ty][tx] = power[index]; // Load the power data from global memory to shared memory } __syncthreads(); // effective range within this block that falls within // the valid range of the input data // used to rule out computation outside the boundary. long validYmin = (blkY < 0) ? -blkY : 0; long validYmax = (blkYmax > grid_rows-1) ? BLOCK_SIZE-1-(blkYmax-grid_rows+1) : BLOCK_SIZE-1; long validXmin = (blkX < 0) ? -blkX : 0; long validXmax = (blkXmax > grid_cols-1) ? BLOCK_SIZE-1-(blkXmax-grid_cols+1) : BLOCK_SIZE-1; long N = ty-1; long S = ty+1; long W = tx-1; long E = tx+1; N = (N < validYmin) ? validYmin : N; S = (S > validYmax) ? validYmax : S; W = (W < validXmin) ? validXmin : W; E = (E > validXmax) ? validXmax : E; bool computed; for (long i=0; i<iteration ; i++){ computed = false; if( IN_RANGE(tx, i+1, BLOCK_SIZE-i-2) && \ IN_RANGE(ty, i+1, BLOCK_SIZE-i-2) && \ IN_RANGE(tx, validXmin, validXmax) && \ IN_RANGE(ty, validYmin, validYmax) ) { computed = true; temp_t[ty][tx] = temp_on_cuda[ty][tx] + step_div_Cap * (power_on_cuda[ty][tx] + (temp_on_cuda[S][tx] + temp_on_cuda[N][tx] - 2.0*temp_on_cuda[ty][tx]) * Ry_1 + (temp_on_cuda[ty][E] + temp_on_cuda[ty][W] - 2.0*temp_on_cuda[ty][tx]) * Rx_1 + (amb_temp - temp_on_cuda[ty][tx]) * Rz_1); } __syncthreads(); if(i==iteration-1) break; if(computed) //Assign the computation range temp_on_cuda[ty][tx]= temp_t[ty][tx]; __syncthreads(); } // update the global memory // after the last iteration, only threads coordinated within the // small block perform the calculation and switch on ``computed'' if (computed){ temp_dst[index]= temp_t[ty][tx]; } } /* compute N time steps */ int compute_tran_temp(float *MatrixPower, float *MatrixTemp[2], long col, long row, \ long total_iterations, long num_iterations, long blockCols, long blockRows, long borderCols, long borderRows) { dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE); dim3 dimGrid(blockCols, blockRows); float grid_height = chip_height / row; float grid_width = chip_width / col; float Cap = FACTOR_CHIP * SPEC_HEAT_SI * t_chip * grid_width * grid_height; float Rx = grid_width / (2.0 * K_SI * t_chip * grid_height); float Ry = grid_height / (2.0 * K_SI * t_chip * grid_width); float Rz = t_chip / (K_SI * grid_height * grid_width); float max_slope = MAX_PD / (FACTOR_CHIP * t_chip * SPEC_HEAT_SI); float step = PRECISION / max_slope; float t; float time_elapsed; time_elapsed = 0.001; int src = 1, dst = 0; for (t = 0; t < total_iterations; t += num_iterations) { int temp = src; src = dst; dst = temp; calculate_temp<<< dimGrid, dimBlock >>>(MIN(num_iterations, total_iterations-t), MatrixPower, MatrixTemp[src], MatrixTemp[dst], \ col, row, borderCols, borderRows, Cap, Rx, Ry, Rz, step, time_elapsed); } CUDA_CALL_SAFE(cudaDeviceSynchronize()); return dst; } void usage(int argc, char **argv) { fprintf(stderr, "Usage: %s <grid_rows/grid_cols> <pyramid_height> <sim_time> <temp_file> <power_file> <output_file>\n", argv[0]); fprintf(stderr, "\t<grid_rows/grid_cols> - number of rows/cols in the grid (positive integer)\n"); fprintf(stderr, "\t<pyramid_height> - pyramid heigh(positive integer)\n"); fprintf(stderr, "\t<sim_time> - number of iterations\n"); fprintf(stderr, "\t<temp_file> - name of the file containing the initial temperature values of each cell\n"); fprintf(stderr, "\t<power_file> - name of the file containing the dissipated power values of each cell\n"); fprintf(stderr, "\t<output_file> - name of the output file\n"); exit(1); } int main(int argc, char** argv) { printf("WG size of kernel = %d X %d\n", BLOCK_SIZE, BLOCK_SIZE); run(argc,argv); return EXIT_SUCCESS; } void run(int argc, char **argv) { size_t size; long grid_rows, grid_cols; float *FilesavingTemp, *FilesavingPower, *MatrixOut; char *tfile, *pfile, *ofile; long total_iterations = 60; long pyramid_height = 1; // number of iterations struct timeval tv_start, tv_end; double kernel_time = 0; // in ms double writefile_time = 0; // in ms double readfile_time = 0; // in ms double d2h_memcpy_time = 0; // in ms double h2d_memcpy_time = 0; // in ms if (argc != 7) usage(argc, argv); if((grid_rows = atol(argv[1]))<=0|| (grid_cols = atol(argv[1]))<=0|| (pyramid_height = atoi(argv[2]))<=0|| (total_iterations = atoi(argv[3]))<=0) usage(argc, argv); tfile = argv[4]; pfile = argv[5]; ofile = argv[6]; size = grid_rows * grid_cols; /* --------------- pyramid parameters --------------- */ # define EXPAND_RATE 2// add one iteration will extend the pyramid base by 2 per each borderline long borderCols = (pyramid_height)*EXPAND_RATE/2; long borderRows = (pyramid_height)*EXPAND_RATE/2; long smallBlockCol = BLOCK_SIZE-(pyramid_height)*EXPAND_RATE; long smallBlockRow = BLOCK_SIZE-(pyramid_height)*EXPAND_RATE; long blockCols = grid_cols/smallBlockCol+((grid_cols%smallBlockCol==0)?0:1); long blockRows = grid_rows/smallBlockRow+((grid_rows%smallBlockRow==0)?0:1); FilesavingTemp = (float *)malloc(size * sizeof(float)); FilesavingPower = (float *)malloc(size * sizeof(float)); MatrixOut = (float *)calloc(size, sizeof(float)); if(!FilesavingPower || !FilesavingTemp || !MatrixOut) { fprintf(stderr, "unable to allocate memory\n"); abort(); exit(EXIT_FAILURE); } printf("pyramidHeight: %d\ngridSize: [%d, %d]\nborder:[%d, %d]\nblockGrid:[%d, %d]\ntargetBlock:[%d, %d]\n",\ pyramid_height, grid_cols, grid_rows, borderCols, borderRows, blockCols, blockRows, smallBlockCol, smallBlockRow); gettimeofday(&tv_start, NULL); readinput(FilesavingTemp, grid_rows, grid_cols, tfile); readinput(FilesavingPower, grid_rows, grid_cols, pfile); gettimeofday(&tv_end, NULL); readfile_time += time_diff(tv_start, tv_end); float *MatrixTemp[2], *MatrixPower; CUDA_CALL_SAFE(cudaMalloc((void **)&MatrixTemp[0], sizeof(float) * size)); CUDA_CALL_SAFE(cudaMalloc((void **)&MatrixTemp[1], sizeof(float) * size)); gettimeofday(&tv_start, NULL); CUDA_CALL_SAFE(cudaMemcpy(MatrixTemp[0], FilesavingTemp, sizeof(float) * size, cudaMemcpyHostToDevice)); gettimeofday(&tv_end, NULL); h2d_memcpy_time += time_diff(tv_start, tv_end); CUDA_CALL_SAFE(cudaMalloc((void **)&MatrixPower, sizeof(float) * size)); gettimeofday(&tv_start, NULL); CUDA_CALL_SAFE(cudaMemcpy(MatrixPower, FilesavingPower, sizeof(float) * size, cudaMemcpyHostToDevice)); gettimeofday(&tv_end, NULL); h2d_memcpy_time += time_diff(tv_start, tv_end); printf("Start computing the transient temperature\n"); gettimeofday(&tv_start, NULL); int ret = compute_tran_temp(MatrixPower,MatrixTemp,grid_cols,grid_rows, \ total_iterations,pyramid_height, blockCols, blockRows, borderCols, borderRows); gettimeofday(&tv_end, NULL); kernel_time += time_diff(tv_start, tv_end); printf("Ending simulation\n"); gettimeofday(&tv_start, NULL); CUDA_CALL_SAFE(cudaMemcpy(MatrixOut, MatrixTemp[ret], sizeof(float) * size, cudaMemcpyDeviceToHost)); gettimeofday(&tv_end, NULL); d2h_memcpy_time += time_diff(tv_start, tv_end); gettimeofday(&tv_start, NULL); writeoutput(MatrixOut, grid_rows, grid_cols, ofile); gettimeofday(&tv_end, NULL); writefile_time += time_diff(tv_start, tv_end); CUDA_CALL_SAFE(cudaFree(MatrixPower)); CUDA_CALL_SAFE(cudaFree(MatrixTemp[0])); CUDA_CALL_SAFE(cudaFree(MatrixTemp[1])); free(MatrixOut); printf("==> header: kernel_time (ms),writefile_time (ms),d2h_memcpy_time (ms),readfile_time (ms),h2d_memcpy_time (ms)\n"); printf("==> data: %f,%f,%f,%f,%f\n", kernel_time, writefile_time, d2h_memcpy_time, readfile_time, h2d_memcpy_time); }
dc5683447066bd0dd94b70065983ad34239aff41.hip
// !!! This is a file automatically generated by hipify!!! #include <stdbool.h> #include <stdio.h> #include <string.h> #include <getopt.h> #include <hiprand/hiprand_kernel.h> #include <stdlib.h> #include <hip/hip_runtime.h> #include <sys/time.h> #include "adam_kernel.cu" #include<chrono> #include<iostream> using namespace std; using namespace std::chrono; int blocks_[20][2] = {{8,8},{16,16},{24,24},{32,32},{1,64},{1,128},{1,192},{1,256},{1,320},{1,384},{1,448},{1,512},{1,576},{1,640},{1,704},{1,768},{1,832},{1,896},{1,960},{1,1024}}; int matrices_[7][2] = {{240,240},{496,496},{784,784},{1016,1016},{1232,1232},{1680,1680},{2024,2024}}; int main(int argc, char **argv) { hipSetDevice(0); char* p;int matrix_len=strtol(argv[1], &p, 10); for(int matrix_looper=0;matrix_looper<matrix_len;matrix_looper++){ for(int block_looper=0;block_looper<20;block_looper++){ int XSIZE=matrices_[matrix_looper][0],YSIZE=matrices_[matrix_looper][1],BLOCKX=blocks_[block_looper][0],BLOCKY=blocks_[block_looper][1]; int N = XSIZE*YSIZE; float *x = NULL; hipMalloc(&x, XSIZE*YSIZE); float *m = NULL; hipMalloc(&m, XSIZE*YSIZE); float *v = NULL; hipMalloc(&v, XSIZE*YSIZE); float B1 = 1; float B2 = 1; float rate = 1; float eps = 1; int t = 1; int iXSIZE= XSIZE; int iYSIZE= YSIZE; while(iXSIZE%BLOCKX!=0) { iXSIZE++; } while(iYSIZE%BLOCKY!=0) { iYSIZE++; } dim3 gridBlock(iXSIZE/BLOCKX, iYSIZE/BLOCKY); dim3 threadBlock(BLOCKX, BLOCKY); hipFree(0);hipLaunchKernelGGL(( adam_kernel), dim3(gridBlock),dim3(threadBlock), 0, 0, N,x,m,v,B1,B2,rate,eps,t); hipDeviceSynchronize(); for (int loop_counter = 0; loop_counter < 10; ++loop_counter) {hipLaunchKernelGGL(( adam_kernel), dim3(gridBlock),dim3(threadBlock), 0, 0, N,x,m,v,B1,B2,rate,eps,t); } auto start = steady_clock::now(); for (int loop_counter = 0; loop_counter < 1000; loop_counter++) {hipLaunchKernelGGL(( adam_kernel), dim3(gridBlock),dim3(threadBlock), 0, 0, N,x,m,v,B1,B2,rate,eps,t); } auto end = steady_clock::now(); auto usecs = duration_cast<duration<float, microseconds::period> >(end - start); cout <<'['<<usecs.count()<<','<<'('<<BLOCKX<<','<<BLOCKY<<')' << ','<<'('<<XSIZE<<','<<YSIZE<<')'<<']' << endl; } }}
dc5683447066bd0dd94b70065983ad34239aff41.cu
#include <stdbool.h> #include <stdio.h> #include <string.h> #include <getopt.h> #include <curand_kernel.h> #include <stdlib.h> #include <cuda.h> #include <sys/time.h> #include "adam_kernel.cu" #include<chrono> #include<iostream> using namespace std; using namespace std::chrono; int blocks_[20][2] = {{8,8},{16,16},{24,24},{32,32},{1,64},{1,128},{1,192},{1,256},{1,320},{1,384},{1,448},{1,512},{1,576},{1,640},{1,704},{1,768},{1,832},{1,896},{1,960},{1,1024}}; int matrices_[7][2] = {{240,240},{496,496},{784,784},{1016,1016},{1232,1232},{1680,1680},{2024,2024}}; int main(int argc, char **argv) { cudaSetDevice(0); char* p;int matrix_len=strtol(argv[1], &p, 10); for(int matrix_looper=0;matrix_looper<matrix_len;matrix_looper++){ for(int block_looper=0;block_looper<20;block_looper++){ int XSIZE=matrices_[matrix_looper][0],YSIZE=matrices_[matrix_looper][1],BLOCKX=blocks_[block_looper][0],BLOCKY=blocks_[block_looper][1]; int N = XSIZE*YSIZE; float *x = NULL; cudaMalloc(&x, XSIZE*YSIZE); float *m = NULL; cudaMalloc(&m, XSIZE*YSIZE); float *v = NULL; cudaMalloc(&v, XSIZE*YSIZE); float B1 = 1; float B2 = 1; float rate = 1; float eps = 1; int t = 1; int iXSIZE= XSIZE; int iYSIZE= YSIZE; while(iXSIZE%BLOCKX!=0) { iXSIZE++; } while(iYSIZE%BLOCKY!=0) { iYSIZE++; } dim3 gridBlock(iXSIZE/BLOCKX, iYSIZE/BLOCKY); dim3 threadBlock(BLOCKX, BLOCKY); cudaFree(0); adam_kernel<<<gridBlock,threadBlock>>>(N,x,m,v,B1,B2,rate,eps,t); cudaDeviceSynchronize(); for (int loop_counter = 0; loop_counter < 10; ++loop_counter) { adam_kernel<<<gridBlock,threadBlock>>>(N,x,m,v,B1,B2,rate,eps,t); } auto start = steady_clock::now(); for (int loop_counter = 0; loop_counter < 1000; loop_counter++) { adam_kernel<<<gridBlock,threadBlock>>>(N,x,m,v,B1,B2,rate,eps,t); } auto end = steady_clock::now(); auto usecs = duration_cast<duration<float, microseconds::period> >(end - start); cout <<'['<<usecs.count()<<','<<'('<<BLOCKX<<','<<BLOCKY<<')' << ','<<'('<<XSIZE<<','<<YSIZE<<')'<<']' << endl; } }}
df526242eac17d4b72a2fd66740b4a1a679e12cb.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "pooling_layer.h" __global__ void MaxPoolForward(const int nthreads, const float* const bottom_data, const int num, const int channels, const int height, const int width, const int pooled_height, const int pooled_width, const int kernel_h, const int kernel_w, const int stride_h, const int stride_w, const int pad_h, const int pad_w, float* const top_data) { CUDA_KERNEL_LOOP(index, nthreads) { const int pw = index % pooled_width; const int ph = (index / pooled_width) % pooled_height; const int c = (index / pooled_width / pooled_height) % channels; const int n = index / pooled_width / pooled_height / channels; int hstart = ph * stride_h - pad_h; int wstart = pw * stride_w - pad_w; const int hend = min(hstart + kernel_h, height); const int wend = min(wstart + kernel_w, width); hstart = max(hstart, 0); wstart = max(wstart, 0); float maxval = -FLT_MAX; int maxidx = -1; const float* const bottom_slice = bottom_data + (n * channels + c) * height * width; for (int h = hstart; h < hend; ++h) { for (int w = wstart; w < wend; ++w) { if (bottom_slice[h * width + w] > maxval) { maxidx = h * width + w; maxval = bottom_slice[maxidx]; } } } top_data[index] = maxval; } } __global__ void AvePoolForward(const int nthreads, const float* const bottom_data, const int num, const int channels, const int height, const int width, const int pooled_height, const int pooled_width, const int kernel_h, const int kernel_w, const int stride_h, const int stride_w, const int pad_h, const int pad_w, float* const top_data) { CUDA_KERNEL_LOOP(index, nthreads) { const int pw = index % pooled_width; const int ph = (index / pooled_width) % pooled_height; const int c = (index / pooled_width / pooled_height) % channels; const int n = index / pooled_width / pooled_height / channels; int hstart = ph * stride_h - pad_h; int wstart = pw * stride_w - pad_w; int hend = min(hstart + kernel_h, height + pad_h); int wend = min(wstart + kernel_w, width + pad_w); const int pool_size = (hend - hstart) * (wend - wstart); hstart = max(hstart, 0); wstart = max(wstart, 0); hend = min(hend, height); wend = min(wend, width); float aveval = 0; const float* const bottom_slice = bottom_data + (n * channels + c) * height * width; for (int h = hstart; h < hend; ++h) { for (int w = wstart; w < wend; ++w) { aveval += bottom_slice[h * width + w]; } } top_data[index] = aveval / pool_size; } } void PoolingLayer::MaxPoolForward_gpu(const int nthreads, const float* const bottom_data, const int num, const int channels, const int height, const int width, const int pooled_height, const int pooled_width, const int kernel_h, const int kernel_w, const int stride_h, const int stride_w, const int pad_h, const int pad_w, float* const top_data) { hipLaunchKernelGGL(( MaxPoolForward), dim3(GET_BLOCKS(nthreads)), dim3(CUDA_NUM_THREADS), 0, 0, nthreads, bottom_data, num, channels, height, width, pooled_height, pooled_width, kernel_h, kernel_w, stride_h, stride_w, pad_h, pad_w, top_data); } void PoolingLayer::AvePoolForward_gpu(const int nthreads, const float* const bottom_data, const int num, const int channels, const int height, const int width, const int pooled_height, const int pooled_width, const int kernel_h, const int kernel_w, const int stride_h, const int stride_w, const int pad_h, const int pad_w, float* const top_data) { hipLaunchKernelGGL(( AvePoolForward), dim3(GET_BLOCKS(nthreads)), dim3(CUDA_NUM_THREADS), 0, 0, nthreads, bottom_data, num, channels, height, width, pooled_height, pooled_width, kernel_h, kernel_w, stride_h, stride_w, pad_h, pad_w, top_data); }
df526242eac17d4b72a2fd66740b4a1a679e12cb.cu
#include "pooling_layer.h" __global__ void MaxPoolForward(const int nthreads, const float* const bottom_data, const int num, const int channels, const int height, const int width, const int pooled_height, const int pooled_width, const int kernel_h, const int kernel_w, const int stride_h, const int stride_w, const int pad_h, const int pad_w, float* const top_data) { CUDA_KERNEL_LOOP(index, nthreads) { const int pw = index % pooled_width; const int ph = (index / pooled_width) % pooled_height; const int c = (index / pooled_width / pooled_height) % channels; const int n = index / pooled_width / pooled_height / channels; int hstart = ph * stride_h - pad_h; int wstart = pw * stride_w - pad_w; const int hend = min(hstart + kernel_h, height); const int wend = min(wstart + kernel_w, width); hstart = max(hstart, 0); wstart = max(wstart, 0); float maxval = -FLT_MAX; int maxidx = -1; const float* const bottom_slice = bottom_data + (n * channels + c) * height * width; for (int h = hstart; h < hend; ++h) { for (int w = wstart; w < wend; ++w) { if (bottom_slice[h * width + w] > maxval) { maxidx = h * width + w; maxval = bottom_slice[maxidx]; } } } top_data[index] = maxval; } } __global__ void AvePoolForward(const int nthreads, const float* const bottom_data, const int num, const int channels, const int height, const int width, const int pooled_height, const int pooled_width, const int kernel_h, const int kernel_w, const int stride_h, const int stride_w, const int pad_h, const int pad_w, float* const top_data) { CUDA_KERNEL_LOOP(index, nthreads) { const int pw = index % pooled_width; const int ph = (index / pooled_width) % pooled_height; const int c = (index / pooled_width / pooled_height) % channels; const int n = index / pooled_width / pooled_height / channels; int hstart = ph * stride_h - pad_h; int wstart = pw * stride_w - pad_w; int hend = min(hstart + kernel_h, height + pad_h); int wend = min(wstart + kernel_w, width + pad_w); const int pool_size = (hend - hstart) * (wend - wstart); hstart = max(hstart, 0); wstart = max(wstart, 0); hend = min(hend, height); wend = min(wend, width); float aveval = 0; const float* const bottom_slice = bottom_data + (n * channels + c) * height * width; for (int h = hstart; h < hend; ++h) { for (int w = wstart; w < wend; ++w) { aveval += bottom_slice[h * width + w]; } } top_data[index] = aveval / pool_size; } } void PoolingLayer::MaxPoolForward_gpu(const int nthreads, const float* const bottom_data, const int num, const int channels, const int height, const int width, const int pooled_height, const int pooled_width, const int kernel_h, const int kernel_w, const int stride_h, const int stride_w, const int pad_h, const int pad_w, float* const top_data) { MaxPoolForward<<<GET_BLOCKS(nthreads), CUDA_NUM_THREADS>>>(nthreads, bottom_data, num, channels, height, width, pooled_height, pooled_width, kernel_h, kernel_w, stride_h, stride_w, pad_h, pad_w, top_data); } void PoolingLayer::AvePoolForward_gpu(const int nthreads, const float* const bottom_data, const int num, const int channels, const int height, const int width, const int pooled_height, const int pooled_width, const int kernel_h, const int kernel_w, const int stride_h, const int stride_w, const int pad_h, const int pad_w, float* const top_data) { AvePoolForward<<<GET_BLOCKS(nthreads), CUDA_NUM_THREADS>>>(nthreads, bottom_data, num, channels, height, width, pooled_height, pooled_width, kernel_h, kernel_w, stride_h, stride_w, pad_h, pad_w, top_data); }
909a320dd048ba241996474d62f69b6c3e79eefc.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" // Copyright (c) 2017 Sony Corporation. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include <nbla/cuda/common.hpp> #include <nbla/cuda/solver/rmsprop.hpp> #include "./mixed_precision_training.cuh" #include "./weight_decay.cuh" namespace nbla { template <typename T> __global__ void kernel_rmsprop_update(const int num, T *data, const T *grad, T *e_sqr_grad, const float lr, const float decay, const float eps) { NBLA_CUDA_KERNEL_LOOP(idx, num) { e_sqr_grad[idx] = e_sqr_grad[idx] * decay + grad[idx] * grad[idx] * (1 - decay); data[idx] -= lr * grad[idx] / (sqrt(e_sqr_grad[idx]) + eps); } } template <typename T> void RMSpropCuda<T>::update_impl(const string &key, VariablePtr param) { Size_t size = param->size(); VariablePtr state = this->state_.at(key); T *e_sqr_grad = state->cast_data_and_get_pointer<T>(this->ctx_); const T *grad = param->get_grad_pointer<T>(this->ctx_); T *data = param->cast_data_and_get_pointer<T>(this->ctx_); NBLA_CUDA_LAUNCH_KERNEL_SIMPLE(kernel_rmsprop_update, size, data, grad, e_sqr_grad, this->lr_, this->decay_, this->eps_); } NBLA_DEF_WEIGHT_DECAY(RMSpropCuda, weight_decay_cuda); NBLA_DEF_CHECK_INF_GRAD(RMSpropCuda, check_inf_grad_cuda); NBLA_DEF_CHECK_NAN_GRAD(RMSpropCuda, check_nan_grad_cuda); NBLA_DEF_CHECK_INF_OR_NAN_GRAD(RMSpropCuda, check_inf_or_nan_grad_cuda); NBLA_DEF_SCALE_GRAD(RMSpropCuda, scale_grad_impl_cuda); }
909a320dd048ba241996474d62f69b6c3e79eefc.cu
// Copyright (c) 2017 Sony Corporation. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include <nbla/cuda/common.hpp> #include <nbla/cuda/solver/rmsprop.hpp> #include "./mixed_precision_training.cuh" #include "./weight_decay.cuh" namespace nbla { template <typename T> __global__ void kernel_rmsprop_update(const int num, T *data, const T *grad, T *e_sqr_grad, const float lr, const float decay, const float eps) { NBLA_CUDA_KERNEL_LOOP(idx, num) { e_sqr_grad[idx] = e_sqr_grad[idx] * decay + grad[idx] * grad[idx] * (1 - decay); data[idx] -= lr * grad[idx] / (sqrt(e_sqr_grad[idx]) + eps); } } template <typename T> void RMSpropCuda<T>::update_impl(const string &key, VariablePtr param) { Size_t size = param->size(); VariablePtr state = this->state_.at(key); T *e_sqr_grad = state->cast_data_and_get_pointer<T>(this->ctx_); const T *grad = param->get_grad_pointer<T>(this->ctx_); T *data = param->cast_data_and_get_pointer<T>(this->ctx_); NBLA_CUDA_LAUNCH_KERNEL_SIMPLE(kernel_rmsprop_update, size, data, grad, e_sqr_grad, this->lr_, this->decay_, this->eps_); } NBLA_DEF_WEIGHT_DECAY(RMSpropCuda, weight_decay_cuda); NBLA_DEF_CHECK_INF_GRAD(RMSpropCuda, check_inf_grad_cuda); NBLA_DEF_CHECK_NAN_GRAD(RMSpropCuda, check_nan_grad_cuda); NBLA_DEF_CHECK_INF_OR_NAN_GRAD(RMSpropCuda, check_inf_or_nan_grad_cuda); NBLA_DEF_SCALE_GRAD(RMSpropCuda, scale_grad_impl_cuda); }
cbacc721669259253c7bab82f812a32e33e9b119.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "includes.h" __global__ void findMaxIndMultipleDetector(float *input, int* maxInd, int size) { int maxIndex = 0; int count = 1; for (int i = 1; i < size; i++){ if (input[maxIndex] < input[i]){ maxIndex = i; count = 1; } else if (input[maxIndex] == input[i]){ count++; } } if(count>1) maxInd[0] = -1; else maxInd[0] = maxIndex; }
cbacc721669259253c7bab82f812a32e33e9b119.cu
#include "includes.h" __global__ void findMaxIndMultipleDetector(float *input, int* maxInd, int size) { int maxIndex = 0; int count = 1; for (int i = 1; i < size; i++){ if (input[maxIndex] < input[i]){ maxIndex = i; count = 1; } else if (input[maxIndex] == input[i]){ count++; } } if(count>1) maxInd[0] = -1; else maxInd[0] = maxIndex; }
a196dcb9f119d44a0b162c8d6c8948d40d4b6e1e.hip
// !!! This is a file automatically generated by hipify!!! //------------------------------------------------------------------------ /* Authors: Micha oczek Pawe Lipir */ //----------------------------------------------------------------------- #include <stdlib.h> #include <stdio.h> #include <limits> #include <hip/hip_runtime.h> #include "Matrix.h" #include "CudaFunctions.h" #include "MatrixCalculator.h" int main(int argc, char **argv) { MatrixCalculator Calculator; //Matrix Calculator manages all operations on matrices std::cout<<"DEMO OF COMPUTING PROGRAM"<<std::endl; //Simple interface to set all parameters and manage program char operation = '1'; while (operation != '0') { std::cout<<"Choose operation: \n" "0 - Exit\n" "1 - Addition\n" "2 - Subtraction\n" "3 - Multiplication\n" "4 - Transposition\n" "5 - VectorSum\n" <<std::endl; if (!std::cin) { std::cin.clear(); std::cin.ignore(std::numeric_limits<std::streamsize>::max(), '\n'); } //Get information from user std::cin>>operation; std::cout<<std::endl; //Case statement to menu management switch(operation) { case '0': break; case '1': Calculator.MatrixAddition(); break; case '2': Calculator.MatrixSubtraction(); break; case '3': Calculator.MatrixMultiplication(); break; case '4': Calculator.MatrixTransposition(); break; case '5': Calculator.VectorSummation(); break; default: printf("Wrong input\n"); } } }
a196dcb9f119d44a0b162c8d6c8948d40d4b6e1e.cu
//------------------------------------------------------------------------ /* Authors: Michał Żoczek Paweł Lipiór */ //----------------------------------------------------------------------- #include <stdlib.h> #include <stdio.h> #include <limits> #include <cuda_runtime.h> #include "Matrix.h" #include "CudaFunctions.h" #include "MatrixCalculator.h" int main(int argc, char **argv) { MatrixCalculator Calculator; //Matrix Calculator manages all operations on matrices std::cout<<"DEMO OF COMPUTING PROGRAM"<<std::endl; //Simple interface to set all parameters and manage program char operation = '1'; while (operation != '0') { std::cout<<"Choose operation: \n" "0 - Exit\n" "1 - Addition\n" "2 - Subtraction\n" "3 - Multiplication\n" "4 - Transposition\n" "5 - VectorSum\n" <<std::endl; if (!std::cin) { std::cin.clear(); std::cin.ignore(std::numeric_limits<std::streamsize>::max(), '\n'); } //Get information from user std::cin>>operation; std::cout<<std::endl; //Case statement to menu management switch(operation) { case '0': break; case '1': Calculator.MatrixAddition(); break; case '2': Calculator.MatrixSubtraction(); break; case '3': Calculator.MatrixMultiplication(); break; case '4': Calculator.MatrixTransposition(); break; case '5': Calculator.VectorSummation(); break; default: printf("Wrong input\n"); } } }
55b7c1b5c21c5ee7136c981403a762347b044a08.hip
// !!! This is a file automatically generated by hipify!!! #include <iostream> #include <hip/hip_runtime_api.h> #include <hip/hip_runtime.h> // Define and implement the GPU addition function // This version is a vector addition, with N threads // and one block. // Adding one a and b instance and storing in one c instance. __global__ void add(int *a, int *b, int *c) { c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x]; } // Nmber of blocks #define N 512 int main() { int *a, *b, *c; // host copies of a, b, c int *d_a, *d_b, *d_c; // device copies of a, b, c int size = N* sizeof(int); // Allocate space for device copies of a, b, c hipMalloc((void **)&d_a, size); hipMalloc((void **)&d_b, size); hipMalloc((void **)&d_c, size); // Allocate memory for the host a, b, and c arrays a = (int*)malloc(size); b = (int*)malloc(size); c = (int*)malloc(size); // Store known values in the a and b arrays for (int i = 0; i < N; ++i) { a[i] = 10*i; b[i] = 20*i; } // Copy inputs to device hipMemcpy(d_a, a, size, hipMemcpyHostToDevice); hipMemcpy(d_b, b, size, hipMemcpyHostToDevice); // Launch add() kernel on GPU with N threads on 1 block hipLaunchKernelGGL(( add), dim3(1),dim3(N), 0, 0, d_a, d_b, d_c); // Copy result back to host hipMemcpy(c, d_c, size, hipMemcpyDeviceToHost); // Print results for (int i = 0; i < N; ++i) { std::cout << "sum[" << i << "] is " << c[i] << std::endl; } // Cleanup free(a); free(b); free(c); hipFree(d_a); hipFree(d_b); hipFree(d_c); return 0; }
55b7c1b5c21c5ee7136c981403a762347b044a08.cu
#include <iostream> #include <cuda_runtime_api.h> #include <cuda.h> // Define and implement the GPU addition function // This version is a vector addition, with N threads // and one block. // Adding one a and b instance and storing in one c instance. __global__ void add(int *a, int *b, int *c) { c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x]; } // Nmber of blocks #define N 512 int main() { int *a, *b, *c; // host copies of a, b, c int *d_a, *d_b, *d_c; // device copies of a, b, c int size = N* sizeof(int); // Allocate space for device copies of a, b, c cudaMalloc((void **)&d_a, size); cudaMalloc((void **)&d_b, size); cudaMalloc((void **)&d_c, size); // Allocate memory for the host a, b, and c arrays a = (int*)malloc(size); b = (int*)malloc(size); c = (int*)malloc(size); // Store known values in the a and b arrays for (int i = 0; i < N; ++i) { a[i] = 10*i; b[i] = 20*i; } // Copy inputs to device cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice); cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice); // Launch add() kernel on GPU with N threads on 1 block add<<<1,N>>>(d_a, d_b, d_c); // Copy result back to host cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost); // Print results for (int i = 0; i < N; ++i) { std::cout << "sum[" << i << "] is " << c[i] << std::endl; } // Cleanup free(a); free(b); free(c); cudaFree(d_a); cudaFree(d_b); cudaFree(d_c); return 0; }
c67b5c2d0f4a4f6f1ef124ac1428950f3bf046cb.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <algorithm> #include <cfloat> #include <vector> #include "thrust/device_vector.h" #include "caffe/layers/softmax_layer.hpp" #include "caffe/util/math_functions.hpp" namespace caffe { template <typename Dtype> __global__ void kernel_channel_max(const int num, const int channels, const int spatial_dim, const Dtype* data, Dtype* out) { CUDA_KERNEL_LOOP(index, num * spatial_dim) { int n = index / spatial_dim; int s = index % spatial_dim; Dtype maxval = -FLT_MAX; for (int c = 0; c < channels; ++c) { maxval = max(data[(n * channels + c) * spatial_dim + s], maxval); } out[index] = maxval; } } template <typename Dtype> __global__ void kernel_channel_subtract(const int count, const int num, const int channels, const int spatial_dim, const Dtype* channel_max, Dtype* data) { CUDA_KERNEL_LOOP(index, count) { int n = index / channels / spatial_dim; int s = index % spatial_dim; data[index] -= channel_max[n * spatial_dim + s]; } } template <typename Dtype> __global__ void kernel_exp(const int count, const Dtype* data, Dtype* out) { CUDA_KERNEL_LOOP(index, count) { out[index] = exp(data[index]); } } template <typename Dtype> __global__ void kernel_channel_sum(const int num, const int channels, const int spatial_dim, const Dtype* data, Dtype* channel_sum) { CUDA_KERNEL_LOOP(index, num * spatial_dim) { int n = index / spatial_dim; int s = index % spatial_dim; Dtype sum = 0; for (int c = 0; c < channels; ++c) { sum += data[(n * channels + c) * spatial_dim + s]; } channel_sum[index] = sum; } } template <typename Dtype> __global__ void kernel_channel_div(const int count, const int num, const int channels, const int spatial_dim, const Dtype* channel_sum, Dtype* data) { CUDA_KERNEL_LOOP(index, count) { int n = index / channels / spatial_dim; int s = index % spatial_dim; data[index] /= channel_sum[n * spatial_dim + s]; } } template <typename Dtype> __global__ void kernel_channel_dot(const int num, const int channels, const int spatial_dim, const Dtype* data_1, const Dtype* data_2, Dtype* channel_dot) { CUDA_KERNEL_LOOP(index, num * spatial_dim) { int n = index / spatial_dim; int s = index % spatial_dim; Dtype dot = 0; for (int c = 0; c < channels; ++c) { dot += (data_1[(n * channels + c) * spatial_dim + s] * data_2[(n * channels + c) * spatial_dim + s]); } channel_dot[index] = dot; } } template <typename Dtype> void SoftmaxLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { const Dtype* bottom_data = bottom[0]->gpu_data(); Dtype* top_data = top[0]->mutable_gpu_data(); Dtype* scale_data = scale_.mutable_gpu_data(); int count = bottom[0]->count(); int channels = top[0]->shape(softmax_axis_); caffe_copy(count, bottom_data, top_data); // We need to subtract the max to avoid numerical issues, compute the exp, // and then normalize. // compute max // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( kernel_channel_max<Dtype>), dim3(CAFFE_GET_BLOCKS(outer_num_ * inner_num_)), dim3(CAFFE_CUDA_NUM_THREADS), 0, 0, outer_num_, channels, inner_num_, top_data, scale_data); // subtract // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( kernel_channel_subtract<Dtype>), dim3(CAFFE_GET_BLOCKS(count)), dim3(CAFFE_CUDA_NUM_THREADS), 0, 0, count, outer_num_, channels, inner_num_, scale_data, top_data); // exponentiate // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( kernel_exp<Dtype>), dim3(CAFFE_GET_BLOCKS(count)), dim3(CAFFE_CUDA_NUM_THREADS), 0, 0, count, top_data, top_data); // sum after exp // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( kernel_channel_sum<Dtype>), dim3(CAFFE_GET_BLOCKS(outer_num_ * inner_num_)), dim3(CAFFE_CUDA_NUM_THREADS), 0, 0, outer_num_, channels, inner_num_, top_data, scale_data); // divide // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( kernel_channel_div<Dtype>), dim3(CAFFE_GET_BLOCKS(count)), dim3(CAFFE_CUDA_NUM_THREADS), 0, 0, count, outer_num_, channels, inner_num_, scale_data, top_data); } template <typename Dtype> void SoftmaxLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { const Dtype* top_diff = top[0]->gpu_diff(); const Dtype* top_data = top[0]->gpu_data(); Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); Dtype* scale_data = scale_.mutable_gpu_data(); int count = top[0]->count(); int channels = top[0]->shape(softmax_axis_); caffe_copy(count, top_diff, bottom_diff); // Compute inner1d(top_diff, top_data) and subtract them from the bottom diff. // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( kernel_channel_dot<Dtype>), dim3(CAFFE_GET_BLOCKS(outer_num_ * inner_num_)), dim3(CAFFE_CUDA_NUM_THREADS), 0, 0, outer_num_, channels, inner_num_, top_diff, top_data, scale_data); // NOLINT_NEXT_LINE(whitespace/operators) hipLaunchKernelGGL(( kernel_channel_subtract<Dtype>), dim3(CAFFE_GET_BLOCKS(count)), dim3(CAFFE_CUDA_NUM_THREADS), 0, 0, count, outer_num_, channels, inner_num_, scale_data, bottom_diff); // elementwise multiplication caffe_gpu_mul<Dtype>(top[0]->count(), bottom_diff, top_data, bottom_diff); } INSTANTIATE_LAYER_GPU_FUNCS(SoftmaxLayer); } // namespace caffe
c67b5c2d0f4a4f6f1ef124ac1428950f3bf046cb.cu
#include <algorithm> #include <cfloat> #include <vector> #include "thrust/device_vector.h" #include "caffe/layers/softmax_layer.hpp" #include "caffe/util/math_functions.hpp" namespace caffe { template <typename Dtype> __global__ void kernel_channel_max(const int num, const int channels, const int spatial_dim, const Dtype* data, Dtype* out) { CUDA_KERNEL_LOOP(index, num * spatial_dim) { int n = index / spatial_dim; int s = index % spatial_dim; Dtype maxval = -FLT_MAX; for (int c = 0; c < channels; ++c) { maxval = max(data[(n * channels + c) * spatial_dim + s], maxval); } out[index] = maxval; } } template <typename Dtype> __global__ void kernel_channel_subtract(const int count, const int num, const int channels, const int spatial_dim, const Dtype* channel_max, Dtype* data) { CUDA_KERNEL_LOOP(index, count) { int n = index / channels / spatial_dim; int s = index % spatial_dim; data[index] -= channel_max[n * spatial_dim + s]; } } template <typename Dtype> __global__ void kernel_exp(const int count, const Dtype* data, Dtype* out) { CUDA_KERNEL_LOOP(index, count) { out[index] = exp(data[index]); } } template <typename Dtype> __global__ void kernel_channel_sum(const int num, const int channels, const int spatial_dim, const Dtype* data, Dtype* channel_sum) { CUDA_KERNEL_LOOP(index, num * spatial_dim) { int n = index / spatial_dim; int s = index % spatial_dim; Dtype sum = 0; for (int c = 0; c < channels; ++c) { sum += data[(n * channels + c) * spatial_dim + s]; } channel_sum[index] = sum; } } template <typename Dtype> __global__ void kernel_channel_div(const int count, const int num, const int channels, const int spatial_dim, const Dtype* channel_sum, Dtype* data) { CUDA_KERNEL_LOOP(index, count) { int n = index / channels / spatial_dim; int s = index % spatial_dim; data[index] /= channel_sum[n * spatial_dim + s]; } } template <typename Dtype> __global__ void kernel_channel_dot(const int num, const int channels, const int spatial_dim, const Dtype* data_1, const Dtype* data_2, Dtype* channel_dot) { CUDA_KERNEL_LOOP(index, num * spatial_dim) { int n = index / spatial_dim; int s = index % spatial_dim; Dtype dot = 0; for (int c = 0; c < channels; ++c) { dot += (data_1[(n * channels + c) * spatial_dim + s] * data_2[(n * channels + c) * spatial_dim + s]); } channel_dot[index] = dot; } } template <typename Dtype> void SoftmaxLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { const Dtype* bottom_data = bottom[0]->gpu_data(); Dtype* top_data = top[0]->mutable_gpu_data(); Dtype* scale_data = scale_.mutable_gpu_data(); int count = bottom[0]->count(); int channels = top[0]->shape(softmax_axis_); caffe_copy(count, bottom_data, top_data); // We need to subtract the max to avoid numerical issues, compute the exp, // and then normalize. // compute max // NOLINT_NEXT_LINE(whitespace/operators) kernel_channel_max<Dtype><<<CAFFE_GET_BLOCKS(outer_num_ * inner_num_), CAFFE_CUDA_NUM_THREADS>>>(outer_num_, channels, inner_num_, top_data, scale_data); // subtract // NOLINT_NEXT_LINE(whitespace/operators) kernel_channel_subtract<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>(count, outer_num_, channels, inner_num_, scale_data, top_data); // exponentiate // NOLINT_NEXT_LINE(whitespace/operators) kernel_exp<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>( count, top_data, top_data); // sum after exp // NOLINT_NEXT_LINE(whitespace/operators) kernel_channel_sum<Dtype><<<CAFFE_GET_BLOCKS(outer_num_ * inner_num_), CAFFE_CUDA_NUM_THREADS>>>(outer_num_, channels, inner_num_, top_data, scale_data); // divide // NOLINT_NEXT_LINE(whitespace/operators) kernel_channel_div<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>(count, outer_num_, channels, inner_num_, scale_data, top_data); } template <typename Dtype> void SoftmaxLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { const Dtype* top_diff = top[0]->gpu_diff(); const Dtype* top_data = top[0]->gpu_data(); Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); Dtype* scale_data = scale_.mutable_gpu_data(); int count = top[0]->count(); int channels = top[0]->shape(softmax_axis_); caffe_copy(count, top_diff, bottom_diff); // Compute inner1d(top_diff, top_data) and subtract them from the bottom diff. // NOLINT_NEXT_LINE(whitespace/operators) kernel_channel_dot<Dtype><<<CAFFE_GET_BLOCKS(outer_num_ * inner_num_), CAFFE_CUDA_NUM_THREADS>>>(outer_num_, channels, inner_num_, top_diff, top_data, scale_data); // NOLINT_NEXT_LINE(whitespace/operators) kernel_channel_subtract<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>(count, outer_num_, channels, inner_num_, scale_data, bottom_diff); // elementwise multiplication caffe_gpu_mul<Dtype>(top[0]->count(), bottom_diff, top_data, bottom_diff); } INSTANTIATE_LAYER_GPU_FUNCS(SoftmaxLayer); } // namespace caffe
d23a5733f0859f3d184888d7696b826751909cbd.hip
// !!! This is a file automatically generated by hipify!!! #include "funset.hpp" #include <iostream> #include <chrono> #include <hip/hip_runtime.h> #include <device_launch_parameters.h> #include "common.hpp" /* __global__: ;;,3.2 ;void;, ;, gridblock,(<<< >>>); a kernel,(GPUCUDAkernel( ),__global__);*/ __global__ static void bgr2gray(const unsigned char* src, int B2Y, int G2Y, int R2Y, int shift, int width, int height, unsigned char* dst) { /* gridDim: ,,, ,,. grid,dim3 blockDim: ,block.dim3, block;,, ; blockIdx: ,; threadblockgrid,blockIdx.x [0,gridDim.x-1],blockIdx.y[0, gridDim.y-1].uint3, blockgrid; threadIdx: ,; threadblock;threadIdx.x, threadIdx.y,threadIdx.z;uint3 ,threadblock */ int x = threadIdx.x + blockIdx.x * blockDim.x; int y = threadIdx.y + blockIdx.y * blockDim.y; //if (x == 0 && y == 0) { // printf("%d, %d, %d, %d, %d, %d\n", width, height, B2Y, G2Y, R2Y, shift); //} if (x < width && y < height) { dst[y * width + x] = (unsigned char)((src[y*width * 3 + 3 * x + 0] * B2Y + src[y*width * 3 + 3 * x + 1] * G2Y + src[y*width * 3 + 3 * x + 2] * R2Y) >> shift); } } int bgr2gray_gpu(const unsigned char* src, int width, int height, unsigned char* dst, float* elapsed_time) { const int R2Y{ 4899 }, G2Y{ 9617 }, B2Y{ 1868 }, yuv_shift{ 14 }; unsigned char *dev_src{ nullptr }, *dev_dst{ nullptr }; // hipMalloc: hipMalloc(&dev_src, width * height * 3 * sizeof(unsigned char)); hipMalloc(&dev_dst, width * height * sizeof(unsigned char)); /* hipMemcpy: ,: (1). hipMemcpyHostToHost: (2). hipMemcpyHostToDevice: (3). hipMemcpyDeviceToHost: (4). hipMemcpyDeviceToDevice: (5). hipMemcpyDefault: , (CUDA6.0) cudaMemcpy */ hipMemcpy(dev_src, src, width * height * 3 * sizeof(unsigned char), hipMemcpyHostToDevice); /* hipMemset: ,GPU */ hipMemset(dev_dst, 0, width * height * sizeof(unsigned char)); TIME_START_GPU /* dim3: uint33unsigned int dim3 1 */ // Note1024threads.x*threads.y1024 dim3 threads(32, 32); dim3 blocks((width + 31) / 32, (height + 31) / 32); /* <<< >>>: CUDA,, CUDA,, ;, ,, ;; kernel,kernel, GPU, ; API,<<<Dg,Db,Ns,S>>> ,Dgdim3,grid .Dg,gridDg.x*Dg.y*Dg.zblock;Db dim3,block.Db, blockDb.x*Db.y*Db.zthread;Nssize_t, , (extern __shared__);Ns,0;S cudaStream_t,.S,0. */ // Note: vectordata()cudaMalloccudaMemcpyvector bgr2gray << <blocks, threads >> >(dev_src, B2Y, G2Y, R2Y, yuv_shift, width, height, dev_dst); /* hipDeviceSynchronize: kernel, , cudaDeviceSynchronize; , ,, ,, ,cudaDeviceSynchronize reference: https://stackoverflow.com/questions/11888772/when-to-call-cudadevicesynchronize */ hipDeviceSynchronize(); TIME_END_GPU hipMemcpy(dst, dev_dst, width * height * sizeof(unsigned char), hipMemcpyDeviceToHost); // hipFree: cudaMalloc hipFree(dev_dst); hipFree(dev_src); return 0; }
d23a5733f0859f3d184888d7696b826751909cbd.cu
#include "funset.hpp" #include <iostream> #include <chrono> #include <cuda_runtime.h> #include <device_launch_parameters.h> #include "common.hpp" /* __global__: 函数类型限定符;在设备上运行;在主机端调用,计算能力3.2及以上可以在 设备端调用;声明的函数的返回值必须是void类型;对此类型函数的调用是异步的,即在 设备完全完成它的运行之前就返回了;对此类型函数的调用必须指定执行配置,即用于在 设备上执行函数时的grid和block的维度,以及相关的流(即插入<<< >>>运算符); a kernel,表示此函数为内核函数(运行在GPU上的CUDA并行计算函数称为kernel(内核函 数),内核函数必须通过__global__函数类型限定符定义);*/ __global__ static void bgr2gray(const unsigned char* src, int B2Y, int G2Y, int R2Y, int shift, int width, int height, unsigned char* dst) { /* gridDim: 内置变量,用于描述线程网格的维度,对于所有线程块来说,这个 变量是一个常数,用来保存线程格每一维的大小,即每个线程格中线程块的数量. 一个grid为三维,为dim3类型; blockDim: 内置变量,用于说明每个block的维度与尺寸.为dim3类型,包含 了block在三个维度上的尺寸信息;对于所有线程块来说,这个变量是一个常数, 保存的是线程块中每一维的线程数量; blockIdx: 内置变量,变量中包含的值就是当前执行设备代码的线程块的索引;用 于说明当前thread所在的block在整个grid中的位置,blockIdx.x取值范围是 [0,gridDim.x-1],blockIdx.y取值范围是[0, gridDim.y-1].为uint3类型, 包含了一个block在grid中各个维度上的索引信息; threadIdx: 内置变量,变量中包含的值就是当前执行设备代码的线程索引;用于 说明当前thread在block中的位置;如果线程是一维的可获取threadIdx.x,如果 是二维的还可获取threadIdx.y,如果是三维的还可获取threadIdx.z;为uint3类 型,包含了一个thread在block中各个维度的索引信息 */ int x = threadIdx.x + blockIdx.x * blockDim.x; int y = threadIdx.y + blockIdx.y * blockDim.y; //if (x == 0 && y == 0) { // printf("%d, %d, %d, %d, %d, %d\n", width, height, B2Y, G2Y, R2Y, shift); //} if (x < width && y < height) { dst[y * width + x] = (unsigned char)((src[y*width * 3 + 3 * x + 0] * B2Y + src[y*width * 3 + 3 * x + 1] * G2Y + src[y*width * 3 + 3 * x + 2] * R2Y) >> shift); } } int bgr2gray_gpu(const unsigned char* src, int width, int height, unsigned char* dst, float* elapsed_time) { const int R2Y{ 4899 }, G2Y{ 9617 }, B2Y{ 1868 }, yuv_shift{ 14 }; unsigned char *dev_src{ nullptr }, *dev_dst{ nullptr }; // cudaMalloc: 在设备端分配内存 cudaMalloc(&dev_src, width * height * 3 * sizeof(unsigned char)); cudaMalloc(&dev_dst, width * height * sizeof(unsigned char)); /* cudaMemcpy: 在主机端和设备端拷贝数据,此函数第四个参数仅能是下面之一: (1). cudaMemcpyHostToHost: 拷贝数据从主机端到主机端 (2). cudaMemcpyHostToDevice: 拷贝数据从主机端到设备端 (3). cudaMemcpyDeviceToHost: 拷贝数据从设备端到主机端 (4). cudaMemcpyDeviceToDevice: 拷贝数据从设备端到设备端 (5). cudaMemcpyDefault: 从指针值自动推断拷贝数据方向,需要支持 统一虚拟寻址(CUDA6.0及以上版本) cudaMemcpy函数对于主机是同步的 */ cudaMemcpy(dev_src, src, width * height * 3 * sizeof(unsigned char), cudaMemcpyHostToDevice); /* cudaMemset: 存储器初始化函数,在GPU内存上执行。用指定的值初始化或设置 设备内存 */ cudaMemset(dev_dst, 0, width * height * sizeof(unsigned char)); TIME_START_GPU /* dim3: 基于uint3定义的内置矢量类型,相当于由3个unsigned int类型组成的 结构体,可表示一个三维数组,在定义dim3类型变量时,凡是没有赋值的元素都 会被赋予默认值1 */ // Note:每一个线程块支持的最大线程数量为1024,即threads.x*threads.y必须小于等于1024 dim3 threads(32, 32); dim3 blocks((width + 31) / 32, (height + 31) / 32); /* <<< >>>: 为CUDA引入的运算符,指定线程网格和线程块维度等,传递执行参 数给CUDA编译器和运行时系统,用于说明内核函数中的线程数量,以及线程是如何 组织的;尖括号中这些参数并不是传递给设备代码的参数,而是告诉运行时如何 启动设备代码,传递给设备代码本身的参数是放在圆括号中传递的,就像标准的函 数调用一样;不同计算能力的设备对线程的总数和组织方式有不同的约束;必须 先为kernel中用到的数组或变量分配好足够的空间,再调用kernel函数,否则在 GPU计算时会发生错误,例如越界等 ; 使用运行时API时,需要在调用的内核函数名与参数列表直接以<<<Dg,Db,Ns,S>>> 的形式设置执行配置,其中:Dg是一个dim3型变量,用于设置grid的维度和各个 维度上的尺寸.设置好Dg后,grid中将有Dg.x*Dg.y*Dg.z个block;Db是 一个dim3型变量,用于设置block的维度和各个维度上的尺寸.设置好Db后,每个 block中将有Db.x*Db.y*Db.z个thread;Ns是一个size_t型变量,指定各块为此调 用动态分配的共享存储器大小,这些动态分配的存储器可供声明为外部数组 (extern __shared__)的其他任何变量使用;Ns是一个可选参数,默认值为0;S为 cudaStream_t类型,用于设置与内核函数关联的流.S是一个可选参数,默认值0. */ // Note: 核函数不支持传入参数为vector的data()指针,需要cudaMalloc和cudaMemcpy,因为vector是在主机内存中 bgr2gray << <blocks, threads >> >(dev_src, B2Y, G2Y, R2Y, yuv_shift, width, height, dev_dst); /* cudaDeviceSynchronize: kernel的启动是异步的, 为了定位它是否出错, 一 般需要加上cudaDeviceSynchronize函数进行同步; 将会一直处于阻塞状态,直到 前面所有请求的任务已经被全部执行完毕,如果前面执行的某个任务失败,将会 返回一个错误;当程序中有多个流,并且流之间在某一点需要通信时,那就必须 在这一点处加上同步的语句,即cudaDeviceSynchronize;异步启动 reference: https://stackoverflow.com/questions/11888772/when-to-call-cudadevicesynchronize */ cudaDeviceSynchronize(); TIME_END_GPU cudaMemcpy(dst, dev_dst, width * height * sizeof(unsigned char), cudaMemcpyDeviceToHost); // cudaFree: 释放设备上由cudaMalloc函数分配的内存 cudaFree(dev_dst); cudaFree(dev_src); return 0; }
8cd66d80501f11673d4968aa0ac0f2a7891befbc.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "device_launch_parameters.h" #include<math.h> #include<iostream> #include "gloveparser.cuh" #include <stdio.h> #include <thrust/sort.h> #include <thrust/device_vector.h> #include <thrust/host_vector.h> #include "point.h" #include <time.h> const int MAX_THREADS = 1024; int calculateThreads(int querypoints) { if (querypoints < MAX_THREADS) return querypoints; else return MAX_THREADS; } int calculateBlocks(int querypoints) { if (querypoints < MAX_THREADS) return 1; else return ceil(querypoints / (float)MAX_THREADS); } __global__ void add(int n_data, int n_query, int dimensions, int k, float *queryPoints, float *dataPoints, Point *results) { int queryIndex = blockIdx.x *blockDim.x + threadIdx.x; if (queryIndex < n_query) { float dotProduct; int index = queryIndex * dimensions; int result_index = queryIndex * k; //#pragma unroll; for (int i = 0; i < n_data; i++) { float dotProduct = 0; /*for (int j = 0; j < dimensions; j++) { dotProduct += queryPoints[index + j] * dataPoints[dimensions*i + j]; }*/ float angular_distance = -(i); Point currentPoint; currentPoint.ID = i; currentPoint.distance = angular_distance; Point swapPoint; for (int j = 0; (j < k && j <= i); j++) { // simple sorting. if (results[result_index + j].distance > currentPoint.distance) { swapPoint = results[result_index + j]; results[result_index + j] = currentPoint; currentPoint = swapPoint; } } } } } Point* runSimpleLinearScan(int k, int d, int N_query, int N_data, float* data, float* queries) { //Data specific elements. Are read from datafiles. hipError_t cudaStatus; cudaStatus = hipSetDevice(0); if (cudaStatus != hipSuccess) { fprintf(stderr, "hipSetDevice failed! Is there a CUDA-capable GPU installed?"); throw "Error in simpleLinearScan run."; } Point *z; z = (Point*)malloc(k*N_query * sizeof(Point)); for (int i = 0; i < k * N_query; i++) { Point p; p.ID = -1; p.distance = 2.0f; //fill z array with default max value - given sim [-1,1] z[i] = p; } float* dev_x = 0; float* dev_y = 0; Point* dev_z = 0; hipMalloc((void**)&dev_x, N_query * d * sizeof(float)); hipMalloc((void**)&dev_y, N_data * d * sizeof(float)); hipMalloc((void**)&dev_z, k * N_query * sizeof(Point)); hipMemcpy(dev_x, queries, N_query * d * sizeof(float), hipMemcpyHostToDevice); hipMemcpy(dev_y, data, N_data * d * sizeof(float), hipMemcpyHostToDevice); hipMemcpy(dev_z, z, k * N_query * sizeof(Point), hipMemcpyHostToDevice); // initialize x and y arrays on the host int threads = calculateThreads(N_query); int blocks = calculateBlocks(N_query); printf("Threads: %d\n", threads); printf("Blocks: %d\n", blocks); clock_t before = clock(); add << <blocks, threads >> > (N_data, N_query, d, k, dev_x, dev_y, dev_z); cudaStatus = hipGetLastError(); if (cudaStatus != hipSuccess) { fprintf(stderr, "addKernel launch failed: %s\n", hipGetErrorString(cudaStatus)); throw "Error in simpleLinearScan run."; } cudaStatus = hipDeviceSynchronize(); if (cudaStatus != hipSuccess) { fprintf(stderr, "hipDeviceSynchronize returned error code %d after launching addKernel!\n", cudaStatus); throw "Error in simpleLinearScan run."; } clock_t time_lapsed = clock() - before; printf("Time calculate on the GPU: %d \n", (time_lapsed * 1000 / CLOCKS_PER_SEC)); cudaStatus = hipMemcpy(z, dev_z, k * N_query * sizeof(Point), hipMemcpyDeviceToHost); if (cudaStatus != hipSuccess) { fprintf(stderr, "cuda memcpy from device to host returned error code %d \n", cudaStatus); throw "Error in simpleLinearScan run."; } for (int i = 0; i < 4; i++) { printf("Query: %d\n", i); for (int j = 0; j < k; j++) { printf("ID: %d dist: %f\n", z[j + i*k].ID, z[j +i*k].distance); } } printf("Done. \n"); //Free memory... hipFree(dev_x); hipFree(dev_y); hipFree(dev_z); cudaStatus = hipDeviceReset(); return z; }
8cd66d80501f11673d4968aa0ac0f2a7891befbc.cu
#include "cuda_runtime.h" #include "device_launch_parameters.h" #include<math.h> #include<iostream> #include "gloveparser.cuh" #include <stdio.h> #include <thrust/sort.h> #include <thrust/device_vector.h> #include <thrust/host_vector.h> #include "point.h" #include <time.h> const int MAX_THREADS = 1024; int calculateThreads(int querypoints) { if (querypoints < MAX_THREADS) return querypoints; else return MAX_THREADS; } int calculateBlocks(int querypoints) { if (querypoints < MAX_THREADS) return 1; else return ceil(querypoints / (float)MAX_THREADS); } __global__ void add(int n_data, int n_query, int dimensions, int k, float *queryPoints, float *dataPoints, Point *results) { int queryIndex = blockIdx.x *blockDim.x + threadIdx.x; if (queryIndex < n_query) { float dotProduct; int index = queryIndex * dimensions; int result_index = queryIndex * k; //#pragma unroll; for (int i = 0; i < n_data; i++) { float dotProduct = 0; /*for (int j = 0; j < dimensions; j++) { dotProduct += queryPoints[index + j] * dataPoints[dimensions*i + j]; }*/ float angular_distance = -(i); Point currentPoint; currentPoint.ID = i; currentPoint.distance = angular_distance; Point swapPoint; for (int j = 0; (j < k && j <= i); j++) { // simple sorting. if (results[result_index + j].distance > currentPoint.distance) { swapPoint = results[result_index + j]; results[result_index + j] = currentPoint; currentPoint = swapPoint; } } } } } Point* runSimpleLinearScan(int k, int d, int N_query, int N_data, float* data, float* queries) { //Data specific elements. Are read from datafiles. cudaError_t cudaStatus; cudaStatus = cudaSetDevice(0); if (cudaStatus != cudaSuccess) { fprintf(stderr, "cudaSetDevice failed! Is there a CUDA-capable GPU installed?"); throw "Error in simpleLinearScan run."; } Point *z; z = (Point*)malloc(k*N_query * sizeof(Point)); for (int i = 0; i < k * N_query; i++) { Point p; p.ID = -1; p.distance = 2.0f; //fill z array with default max value - given sim [-1,1] z[i] = p; } float* dev_x = 0; float* dev_y = 0; Point* dev_z = 0; cudaMalloc((void**)&dev_x, N_query * d * sizeof(float)); cudaMalloc((void**)&dev_y, N_data * d * sizeof(float)); cudaMalloc((void**)&dev_z, k * N_query * sizeof(Point)); cudaMemcpy(dev_x, queries, N_query * d * sizeof(float), cudaMemcpyHostToDevice); cudaMemcpy(dev_y, data, N_data * d * sizeof(float), cudaMemcpyHostToDevice); cudaMemcpy(dev_z, z, k * N_query * sizeof(Point), cudaMemcpyHostToDevice); // initialize x and y arrays on the host int threads = calculateThreads(N_query); int blocks = calculateBlocks(N_query); printf("Threads: %d\n", threads); printf("Blocks: %d\n", blocks); clock_t before = clock(); add << <blocks, threads >> > (N_data, N_query, d, k, dev_x, dev_y, dev_z); cudaStatus = cudaGetLastError(); if (cudaStatus != cudaSuccess) { fprintf(stderr, "addKernel launch failed: %s\n", cudaGetErrorString(cudaStatus)); throw "Error in simpleLinearScan run."; } cudaStatus = cudaDeviceSynchronize(); if (cudaStatus != cudaSuccess) { fprintf(stderr, "cudaDeviceSynchronize returned error code %d after launching addKernel!\n", cudaStatus); throw "Error in simpleLinearScan run."; } clock_t time_lapsed = clock() - before; printf("Time calculate on the GPU: %d \n", (time_lapsed * 1000 / CLOCKS_PER_SEC)); cudaStatus = cudaMemcpy(z, dev_z, k * N_query * sizeof(Point), cudaMemcpyDeviceToHost); if (cudaStatus != cudaSuccess) { fprintf(stderr, "cuda memcpy from device to host returned error code %d \n", cudaStatus); throw "Error in simpleLinearScan run."; } for (int i = 0; i < 4; i++) { printf("Query: %d\n", i); for (int j = 0; j < k; j++) { printf("ID: %d dist: %f\n", z[j + i*k].ID, z[j +i*k].distance); } } printf("Done. \n"); //Free memory... cudaFree(dev_x); cudaFree(dev_y); cudaFree(dev_z); cudaStatus = cudaDeviceReset(); return z; }
1cf0d35de21ed00f3b3f622159535b1eee036f73.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /** * Copyright 1993-2012 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. */ #include "globals.h" #include "cuda_functions.h" #include "cuda_math.h" #include "boundary.h" /* * The L-versions of the RHS have to be ran with * - the L-version of the derivatives * i.e.: derDev1xL instead of derDev1x * - the L-version of the grid * i.e.: h_gridL[0] instead of h_grid[0] */ /* The whole RHS in the X direction is calculated in RHSDeviceSharedFlxX_old thanks to the beneficial memory layout that allows to use small pencils */ /* For the Y and Z direction, fluxes require a small pencil discretization while the rest of the RHS can be calculated on large pencils which speed * up significantly the computation. Therefore 5 streams are used * stream 0 -> complete X RHS (in RHSDeviceSharedFlxX_old) (small pencil grid) * stream 1 -> viscous terms and pressure terms in Y (in RHSDeviceFullYL) (large pencil grid) * stream 2 -> viscous terms and pressure terms in Z (in RHSDeviceFullZL) (large pencil grid) * stream 3 -> advective fluxes in Y direction (in FLXDeviceY) (small pencil transposed grid) * stream 4 -> advective fluxes in Z direction (in FLXDeviceZ) (small pencil transposed grid)*/ __global__ void RHSDeviceSharedFlxX(myprec *rX, myprec *uX, myprec *vX, myprec *wX, myprec *eX, myprec *r, myprec *u, myprec *v, myprec *w, myprec *h , myprec *t, myprec *p, myprec *mu, myprec *lam, myprec *sij[9], myprec *dil, myprec dpdz) { Indices id(threadIdx.x,threadIdx.y,blockIdx.x,blockIdx.y,blockDim.x,blockDim.y); id.mkidX(); int si = id.i + stencilSize; // local i for shared memory access + halo offset int sj = id.tiy; // local j for shared memory access myprec rXtmp=0; myprec uXtmp=0; myprec vXtmp=0; myprec wXtmp=0; myprec eXtmp=0; myprec wrk1=0; myprec wrk2=0; __shared__ myprec s_r[sPencils][mx+stencilSize*2]; __shared__ myprec s_u[sPencils][mx+stencilSize*2]; __shared__ myprec s_v[sPencils][mx+stencilSize*2]; __shared__ myprec s_w[sPencils][mx+stencilSize*2]; __shared__ myprec s_h[sPencils][mx+stencilSize*2]; __shared__ myprec s_t[sPencils][mx+stencilSize*2]; __shared__ myprec s_p[sPencils][mx+stencilSize*2]; __shared__ myprec s_m[sPencils][mx+stencilSize*2]; __shared__ myprec s_l[sPencils][mx+stencilSize*2]; #if !periodicX __shared__ myprec s_s0[sPencils][mx+stencilSize*2]; __shared__ myprec s_s4[sPencils][mx+stencilSize*2]; __shared__ myprec s_s8[sPencils][mx+stencilSize*2]; #endif __shared__ myprec s_dil[sPencils][mx+stencilSize*2]; s_r[sj][si] = r[id.g]; s_u[sj][si] = u[id.g]; s_v[sj][si] = v[id.g]; s_w[sj][si] = w[id.g]; s_h[sj][si] = h[id.g]; s_t[sj][si] = t[id.g]; s_p[sj][si] = p[id.g]; s_m[sj][si] = mu[id.g]; s_l[sj][si] = lam[id.g]; #if !periodicX s_s0[sj][si]= sij[0][id.g]; s_s4[sj][si]= sij[4][id.g]; s_s8[sj][si]= sij[8][id.g]; #endif s_dil[sj][si] = dil[id.g]; __syncthreads(); // fill in periodic images in shared memory array if (id.i < stencilSize) { #if periodicX perBCx(s_r[sj],si); perBCx(s_u[sj],si); perBCx(s_v[sj],si); perBCx(s_w[sj],si); perBCx(s_h[sj],si); perBCx(s_t[sj],si); perBCx(s_p[sj],si); perBCx(s_m[sj],si); perBCx(s_l[sj],si); #else wallBCxMir(s_p[sj],si); wallBCxVel(s_u[sj],si); wallBCxVel(s_v[sj],si); wallBCxVel(s_w[sj],si); wallBCxExt(s_t[sj],si,1.0,1.0); stateBoundPT(s_r[sj], s_t[sj], s_u[sj], s_v[sj], s_w[sj], s_h[sj], s_p[sj], s_m[sj], s_l[sj], si); wallBCxMir(s_s0[sj],si); wallBCxVel(s_s4[sj],si); wallBCxVel(s_s8[sj],si); #endif } __syncthreads(); //initialize momentum RHS with stresses so that they can be added for both viscous terms and viscous heating without having to load additional terms uXtmp = ( 2 * sij[0][id.g] - 2./3.*s_dil[sj][si] ); vXtmp = ( sij[1][id.g] + sij[3][id.g] ); wXtmp = ( sij[2][id.g] + sij[6][id.g] ); //adding the viscous dissipation part duidx*mu*six eXtmp = s_m[sj][si]*(uXtmp*sij[0][id.g] + vXtmp*sij[1][id.g] + wXtmp*sij[2][id.g]); //Adding here the terms d (mu) dx * sxj; (lambda in case of h in rhse); derDevSharedV1x(&wrk2,s_m[sj],si); //wrk2 = d (mu) dx uXtmp *= wrk2; vXtmp *= wrk2; wXtmp *= wrk2; // viscous fluxes derivative mu*d^2ui dx^2 derDevSharedV2x(&wrk1,s_u[sj],si); uXtmp = uXtmp + wrk1*s_m[sj][si]; derDevSharedV2x(&wrk1,s_v[sj],si); vXtmp = vXtmp + wrk1*s_m[sj][si]; derDevSharedV2x(&wrk1,s_w[sj],si); wXtmp = wXtmp + wrk1*s_m[sj][si]; //adding the viscous dissipation part ui*(mu * d2duidx2 + dmudx * six) eXtmp = eXtmp + s_u[sj][si]*uXtmp + s_v[sj][si]*vXtmp + s_w[sj][si]*wXtmp; //adding the molecular conduction part (d2 temp dx2*lambda + dlambda dx * d temp dx) derDevSharedV2x(&wrk1,s_t[sj],si); eXtmp = eXtmp + wrk1*s_l[sj][si]; derDevSharedV1x(&wrk2,s_l[sj],si); //wrk2 = d (lam) dx derDevSharedV1x(&wrk1,s_t[sj],si); //wrk1 = d (t) dx eXtmp = eXtmp + wrk1*wrk2; //Adding here the terms - d (ru phi) dx; fluxQuadSharedx(&wrk1,s_r[sj],s_u[sj],si); rXtmp = wrk1; __syncthreads(); fluxCubeSharedx(&wrk1,s_r[sj],s_u[sj],s_u[sj],si); uXtmp = uXtmp + wrk1; __syncthreads(); fluxCubeSharedx(&wrk1,s_r[sj],s_u[sj],s_v[sj],si); vXtmp = vXtmp + wrk1; __syncthreads(); fluxCubeSharedx(&wrk1,s_r[sj],s_u[sj],s_w[sj],si); wXtmp = wXtmp + wrk1; __syncthreads(); fluxCubeSharedx(&wrk1,s_r[sj],s_u[sj],s_h[sj],si); eXtmp = eXtmp + wrk1; __syncthreads(); // pressure and dilation derivatives if (id.i < stencilSize) { #if periodicX perBCx(s_dil[sj],si); #else wallBCxDil(s_dil[sj],s_s0[sj],s_s4[sj],s_s8[sj],si); #endif } __syncthreads(); derDevSharedV1x(&wrk2,s_dil[sj],si); derDevShared1x(&wrk1 ,s_p[sj],si); uXtmp = uXtmp + s_m[sj][si]*wrk2/3.0 - wrk1 ; eXtmp = eXtmp + s_m[sj][si]*wrk2/3.0*s_u[sj][si]; rX[id.g] = rXtmp; uX[id.g] = uXtmp; vX[id.g] = vXtmp; wX[id.g] = wXtmp; eX[id.g] = eXtmp ; } __global__ void RHSDeviceSharedFlxY(myprec *rY, myprec *uY, myprec *vY, myprec *wY, myprec *eY, myprec *r, myprec *u, myprec *v, myprec *w, myprec *h , myprec *t, myprec *p, myprec *mu, myprec *lam, myprec *sij[9], myprec *dil, myprec dpdz) { Indices id(threadIdx.x,threadIdx.y,blockIdx.x,blockIdx.y,blockDim.x,blockDim.y); id.mkidYFlx(); int si = id.j + stencilSize; // local i for shared memory access + halo offset int sj = id.tiy; // local j for shared memory access myprec rYtmp=0; myprec uYtmp=0; myprec vYtmp=0; myprec wYtmp=0; myprec eYtmp=0; myprec wrk1=0; myprec wrk2=0; __shared__ myprec s_r[sPencils][my+stencilSize*2]; __shared__ myprec s_u[sPencils][my+stencilSize*2]; __shared__ myprec s_v[sPencils][my+stencilSize*2]; __shared__ myprec s_w[sPencils][my+stencilSize*2]; __shared__ myprec s_h[sPencils][my+stencilSize*2]; __shared__ myprec s_t[sPencils][my+stencilSize*2]; __shared__ myprec s_p[sPencils][my+stencilSize*2]; __shared__ myprec s_m[sPencils][my+stencilSize*2]; __shared__ myprec s_l[sPencils][my+stencilSize*2]; __shared__ myprec s_s3[sPencils][my+stencilSize*2]; __shared__ myprec s_s4[sPencils][my+stencilSize*2]; __shared__ myprec s_s5[sPencils][my+stencilSize*2]; __shared__ myprec s_dil[sPencils][my+stencilSize*2]; s_r[sj][si] = r[id.g]; s_u[sj][si] = u[id.g]; s_v[sj][si] = v[id.g]; s_w[sj][si] = w[id.g]; s_h[sj][si] = h[id.g]; s_t[sj][si] = t[id.g]; s_p[sj][si] = p[id.g]; s_m[sj][si] = mu[id.g]; s_l[sj][si] = lam[id.g]; s_dil[sj][si] = dil[id.g]; s_s3[sj][si] = sij[3][id.g]; s_s4[sj][si] = sij[4][id.g]; s_s5[sj][si] = sij[5][id.g]; __syncthreads(); // fill in periodic images in shared memory array if (id.j < stencilSize) { perBCy(s_r[sj],si); perBCy(s_u[sj],si); perBCy(s_v[sj],si); perBCy(s_w[sj],si); perBCy(s_h[sj],si); perBCy(s_t[sj],si); perBCy(s_p[sj],si); perBCy(s_m[sj],si); perBCy(s_l[sj],si); } __syncthreads(); //initialize momentum RHS with stresses so that they can be added for both viscous terms and viscous heating without having to load additional terms uYtmp = ( s_s3[sj][si] + sij[1][id.g] ) ; vYtmp = ( 2 * s_s4[sj][si] - 2./3.*s_dil[sj][si] ) ; wYtmp = ( s_s5[sj][si] + sij[7][id.g] ) ; //adding the viscous dissipation part duidy*mu*siy eYtmp = s_m[sj][si]*(uYtmp*s_s3[sj][si] + vYtmp*s_s4[sj][si] + wYtmp*s_s5[sj][si]); //Adding here the terms d (mu) dy * siy; derDevSharedV1y(&wrk2,s_m[sj],si); //wrk2 = d (mu) dx uYtmp *= wrk2; vYtmp *= wrk2; wYtmp *= wrk2; // viscous fluxes derivative mu*d^2dui dy^2 derDevSharedV2y(&wrk1,s_u[sj],si); uYtmp = uYtmp + wrk1*s_m[sj][si]; derDevSharedV2y(&wrk1,s_v[sj],si); vYtmp = vYtmp + wrk1*s_m[sj][si]; derDevSharedV2y(&wrk1,s_w[sj],si); wYtmp = wYtmp + wrk1*s_m[sj][si]; //adding the viscous dissipation part ui*(mu * d2duidy2 + dmudy * siy) eYtmp = eYtmp + s_u[sj][si]*uYtmp + s_v[sj][si]*vYtmp + s_w[sj][si]*wYtmp; derDevSharedV2y(&wrk1,s_t[sj],si); eYtmp = eYtmp + wrk1*s_l[sj][si]; derDevSharedV1y(&wrk2,s_l[sj],si); //wrk2 = d (lam) dx derDevSharedV1y(&wrk1,s_t[sj],si); //wrk1 = d (t) dx eYtmp = eYtmp + wrk1*wrk2; // split advection terms //Adding here the terms - d (ru phi) dy; fluxQuadSharedy(&wrk1,s_r[sj],s_v[sj],si); rYtmp = wrk1; __syncthreads(); fluxCubeSharedy(&wrk1,s_r[sj],s_v[sj],s_u[sj],si); uYtmp = uYtmp + wrk1; __syncthreads(); fluxCubeSharedy(&wrk1,s_r[sj],s_v[sj],s_v[sj],si); vYtmp = vYtmp + wrk1; __syncthreads(); fluxCubeSharedy(&wrk1,s_r[sj],s_v[sj],s_w[sj],si); wYtmp = wYtmp + wrk1; __syncthreads(); fluxCubeSharedy(&wrk1,s_r[sj],s_v[sj],s_h[sj],si); eYtmp = eYtmp + wrk1; __syncthreads(); // pressure and dilation derivatives if (id.j < stencilSize) { perBCy(s_dil[sj],si); } __syncthreads(); derDevSharedV1y(&wrk2,s_dil[sj],si); derDevShared1y(&wrk1,s_p[sj],si); vYtmp = vYtmp + s_m[sj][si]*wrk2/3.0 - wrk1 ; eYtmp = eYtmp + s_m[sj][si]*wrk2/3.0*s_v[sj][si]; #if useStreams rY[id.g] = rYtmp; uY[id.g] = uYtmp; vY[id.g] = vYtmp; wY[id.g] = wYtmp; eY[id.g] = eYtmp; #else rY[id.g] += rYtmp; uY[id.g] += uYtmp; vY[id.g] += vYtmp; wY[id.g] += wYtmp; eY[id.g] += eYtmp; #endif } __global__ void RHSDeviceSharedFlxZ(myprec *rZ, myprec *uZ, myprec *vZ, myprec *wZ, myprec *eZ, myprec *r, myprec *u, myprec *v, myprec *w, myprec *h , myprec *t, myprec *p, myprec *mu, myprec *lam, myprec *sij[9], myprec *dil, myprec dpdz) { Indices id(threadIdx.x,threadIdx.y,blockIdx.x,blockIdx.y,blockDim.x,blockDim.y); id.mkidZFlx(); int si = id.k + stencilSize; // local i for shared memory access + halo offset int sj = id.tiy; // local j for shared memory access myprec rZtmp=0; myprec uZtmp=0; myprec vZtmp=0; myprec wZtmp=0; myprec eZtmp=0; myprec wrk1=0; myprec wrk2=0; __shared__ myprec s_r[sPencils][mz+stencilSize*2]; __shared__ myprec s_u[sPencils][mz+stencilSize*2]; __shared__ myprec s_v[sPencils][mz+stencilSize*2]; __shared__ myprec s_w[sPencils][mz+stencilSize*2]; __shared__ myprec s_h[sPencils][mz+stencilSize*2]; __shared__ myprec s_t[sPencils][mz+stencilSize*2]; __shared__ myprec s_p[sPencils][mz+stencilSize*2]; __shared__ myprec s_m[sPencils][mz+stencilSize*2]; __shared__ myprec s_l[sPencils][mz+stencilSize*2]; __shared__ myprec s_s6[sPencils][mz+stencilSize*2]; __shared__ myprec s_s7[sPencils][mz+stencilSize*2]; __shared__ myprec s_s8[sPencils][mz+stencilSize*2]; __shared__ myprec s_dil[sPencils][mz+stencilSize*2]; s_r[sj][si] = r[id.g]; s_u[sj][si] = u[id.g]; s_v[sj][si] = v[id.g]; s_w[sj][si] = w[id.g]; s_h[sj][si] = h[id.g]; s_t[sj][si] = t[id.g]; s_p[sj][si] = p[id.g]; s_m[sj][si] = mu[id.g]; s_l[sj][si] = lam[id.g]; s_s6[sj][si] = sij[6][id.g]; s_s7[sj][si] = sij[7][id.g]; s_s8[sj][si] = sij[8][id.g]; s_dil[sj][si] = dil[id.g]; __syncthreads(); // fill in periodic images in shared memory array if (id.k < stencilSize) { perBCz(s_r[sj],si); perBCz(s_u[sj],si); perBCz(s_v[sj],si); perBCz(s_w[sj],si); perBCz(s_h[sj],si); perBCz(s_t[sj],si); perBCz(s_p[sj],si); perBCz(s_m[sj],si); perBCz(s_l[sj],si); } __syncthreads(); //initialize momentum RHS with stresses so that they can be added for both viscous terms and viscous heating without having to load additional terms uZtmp = ( s_s6[sj][si] + sij[2][id.g] ); vZtmp = ( s_s7[sj][si] + sij[5][id.g] ); wZtmp = (2 * s_s8[sj][si] - 2./3.*s_dil[sj][si] ); //adding the viscous dissipation part duidz*mu*siz eZtmp = s_m[sj][si]*(uZtmp*s_s6[sj][si] + vZtmp*s_s7[sj][si] + wZtmp*s_s8[sj][si]); //Adding here the terms d (mu) dz * szj; derDevSharedV1z(&wrk2,s_m[sj],si); //wrk2 = d (mu) dz uZtmp *= wrk2; vZtmp *= wrk2; wZtmp *= wrk2; // viscous fluxes derivative derDevSharedV2z(&wrk1,s_u[sj],si); uZtmp = uZtmp + wrk1*s_m[sj][si]; derDevSharedV2z(&wrk1,s_v[sj],si); vZtmp = vZtmp + wrk1*s_m[sj][si]; derDevSharedV2z(&wrk1,s_w[sj],si); wZtmp = wZtmp + wrk1*s_m[sj][si]; //adding the viscous dissipation part ui*(mu * d2duidz2 + dmudz * siz) derDevSharedV2z(&wrk1,s_t[sj],si); eZtmp = eZtmp + s_u[sj][si]*uZtmp + s_v[sj][si]*vZtmp + s_w[sj][si]*wZtmp + wrk1*s_l[sj][si]; derDevSharedV1z(&wrk2,s_l[sj],si); //wrk2 = d (lam) dz derDevSharedV1z(&wrk1,s_t[sj],si); //wrk1 = d (t) dx eZtmp = eZtmp + wrk1*wrk2; //Adding here the terms - d (ru phi) dz; fluxQuadSharedz(&wrk1,s_r[sj],s_w[sj],si); rZtmp = wrk1; __syncthreads(); fluxCubeSharedz(&wrk1,s_r[sj],s_w[sj],s_u[sj],si); uZtmp = uZtmp + wrk1; __syncthreads(); fluxCubeSharedz(&wrk1,s_r[sj],s_w[sj],s_v[sj],si); vZtmp = vZtmp + wrk1; __syncthreads(); fluxCubeSharedz(&wrk1,s_r[sj],s_w[sj],s_w[sj],si); wZtmp = wZtmp + wrk1; __syncthreads(); fluxCubeSharedz(&wrk1,s_r[sj],s_w[sj],s_h[sj],si); eZtmp = eZtmp + wrk1; __syncthreads(); // pressure and dilation derivatives __syncthreads(); if (id.k < stencilSize) { perBCz(s_dil[sj],si); } __syncthreads(); derDevSharedV1z(&wrk2,s_dil[sj],si); derDevShared1z(&wrk1,s_p[sj],si); wZtmp = wZtmp + s_m[sj][si]*wrk2/3.0 - wrk1 ; eZtmp = eZtmp + s_m[sj][si]*wrk2/3.0*s_w[sj][si]; #if useStreams rZ[id.g] = rZtmp; uZ[id.g] = uZtmp; vZ[id.g] = vZtmp; wZ[id.g] = wZtmp + dpdz; eZ[id.g] = eZtmp + dpdz*s_w[sj][si] ; #else rZ[id.g] += rZtmp; uZ[id.g] += uZtmp; vZ[id.g] += vZtmp; wZ[id.g] += wZtmp + dpdz; eZ[id.g] += eZtmp + dpdz*s_w[sj][si] ; #endif __syncthreads(); }
1cf0d35de21ed00f3b3f622159535b1eee036f73.cu
/** * Copyright 1993-2012 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. */ #include "globals.h" #include "cuda_functions.h" #include "cuda_math.h" #include "boundary.h" /* * The L-versions of the RHS have to be ran with * - the L-version of the derivatives * i.e.: derDev1xL instead of derDev1x * - the L-version of the grid * i.e.: h_gridL[0] instead of h_grid[0] */ /* The whole RHS in the X direction is calculated in RHSDeviceSharedFlxX_old thanks to the beneficial memory layout that allows to use small pencils */ /* For the Y and Z direction, fluxes require a small pencil discretization while the rest of the RHS can be calculated on large pencils which speed * up significantly the computation. Therefore 5 streams are used * stream 0 -> complete X RHS (in RHSDeviceSharedFlxX_old) (small pencil grid) * stream 1 -> viscous terms and pressure terms in Y (in RHSDeviceFullYL) (large pencil grid) * stream 2 -> viscous terms and pressure terms in Z (in RHSDeviceFullZL) (large pencil grid) * stream 3 -> advective fluxes in Y direction (in FLXDeviceY) (small pencil transposed grid) * stream 4 -> advective fluxes in Z direction (in FLXDeviceZ) (small pencil transposed grid)*/ __global__ void RHSDeviceSharedFlxX(myprec *rX, myprec *uX, myprec *vX, myprec *wX, myprec *eX, myprec *r, myprec *u, myprec *v, myprec *w, myprec *h , myprec *t, myprec *p, myprec *mu, myprec *lam, myprec *sij[9], myprec *dil, myprec dpdz) { Indices id(threadIdx.x,threadIdx.y,blockIdx.x,blockIdx.y,blockDim.x,blockDim.y); id.mkidX(); int si = id.i + stencilSize; // local i for shared memory access + halo offset int sj = id.tiy; // local j for shared memory access myprec rXtmp=0; myprec uXtmp=0; myprec vXtmp=0; myprec wXtmp=0; myprec eXtmp=0; myprec wrk1=0; myprec wrk2=0; __shared__ myprec s_r[sPencils][mx+stencilSize*2]; __shared__ myprec s_u[sPencils][mx+stencilSize*2]; __shared__ myprec s_v[sPencils][mx+stencilSize*2]; __shared__ myprec s_w[sPencils][mx+stencilSize*2]; __shared__ myprec s_h[sPencils][mx+stencilSize*2]; __shared__ myprec s_t[sPencils][mx+stencilSize*2]; __shared__ myprec s_p[sPencils][mx+stencilSize*2]; __shared__ myprec s_m[sPencils][mx+stencilSize*2]; __shared__ myprec s_l[sPencils][mx+stencilSize*2]; #if !periodicX __shared__ myprec s_s0[sPencils][mx+stencilSize*2]; __shared__ myprec s_s4[sPencils][mx+stencilSize*2]; __shared__ myprec s_s8[sPencils][mx+stencilSize*2]; #endif __shared__ myprec s_dil[sPencils][mx+stencilSize*2]; s_r[sj][si] = r[id.g]; s_u[sj][si] = u[id.g]; s_v[sj][si] = v[id.g]; s_w[sj][si] = w[id.g]; s_h[sj][si] = h[id.g]; s_t[sj][si] = t[id.g]; s_p[sj][si] = p[id.g]; s_m[sj][si] = mu[id.g]; s_l[sj][si] = lam[id.g]; #if !periodicX s_s0[sj][si]= sij[0][id.g]; s_s4[sj][si]= sij[4][id.g]; s_s8[sj][si]= sij[8][id.g]; #endif s_dil[sj][si] = dil[id.g]; __syncthreads(); // fill in periodic images in shared memory array if (id.i < stencilSize) { #if periodicX perBCx(s_r[sj],si); perBCx(s_u[sj],si); perBCx(s_v[sj],si); perBCx(s_w[sj],si); perBCx(s_h[sj],si); perBCx(s_t[sj],si); perBCx(s_p[sj],si); perBCx(s_m[sj],si); perBCx(s_l[sj],si); #else wallBCxMir(s_p[sj],si); wallBCxVel(s_u[sj],si); wallBCxVel(s_v[sj],si); wallBCxVel(s_w[sj],si); wallBCxExt(s_t[sj],si,1.0,1.0); stateBoundPT(s_r[sj], s_t[sj], s_u[sj], s_v[sj], s_w[sj], s_h[sj], s_p[sj], s_m[sj], s_l[sj], si); wallBCxMir(s_s0[sj],si); wallBCxVel(s_s4[sj],si); wallBCxVel(s_s8[sj],si); #endif } __syncthreads(); //initialize momentum RHS with stresses so that they can be added for both viscous terms and viscous heating without having to load additional terms uXtmp = ( 2 * sij[0][id.g] - 2./3.*s_dil[sj][si] ); vXtmp = ( sij[1][id.g] + sij[3][id.g] ); wXtmp = ( sij[2][id.g] + sij[6][id.g] ); //adding the viscous dissipation part duidx*mu*six eXtmp = s_m[sj][si]*(uXtmp*sij[0][id.g] + vXtmp*sij[1][id.g] + wXtmp*sij[2][id.g]); //Adding here the terms d (mu) dx * sxj; (lambda in case of h in rhse); derDevSharedV1x(&wrk2,s_m[sj],si); //wrk2 = d (mu) dx uXtmp *= wrk2; vXtmp *= wrk2; wXtmp *= wrk2; // viscous fluxes derivative mu*d^2ui dx^2 derDevSharedV2x(&wrk1,s_u[sj],si); uXtmp = uXtmp + wrk1*s_m[sj][si]; derDevSharedV2x(&wrk1,s_v[sj],si); vXtmp = vXtmp + wrk1*s_m[sj][si]; derDevSharedV2x(&wrk1,s_w[sj],si); wXtmp = wXtmp + wrk1*s_m[sj][si]; //adding the viscous dissipation part ui*(mu * d2duidx2 + dmudx * six) eXtmp = eXtmp + s_u[sj][si]*uXtmp + s_v[sj][si]*vXtmp + s_w[sj][si]*wXtmp; //adding the molecular conduction part (d2 temp dx2*lambda + dlambda dx * d temp dx) derDevSharedV2x(&wrk1,s_t[sj],si); eXtmp = eXtmp + wrk1*s_l[sj][si]; derDevSharedV1x(&wrk2,s_l[sj],si); //wrk2 = d (lam) dx derDevSharedV1x(&wrk1,s_t[sj],si); //wrk1 = d (t) dx eXtmp = eXtmp + wrk1*wrk2; //Adding here the terms - d (ru phi) dx; fluxQuadSharedx(&wrk1,s_r[sj],s_u[sj],si); rXtmp = wrk1; __syncthreads(); fluxCubeSharedx(&wrk1,s_r[sj],s_u[sj],s_u[sj],si); uXtmp = uXtmp + wrk1; __syncthreads(); fluxCubeSharedx(&wrk1,s_r[sj],s_u[sj],s_v[sj],si); vXtmp = vXtmp + wrk1; __syncthreads(); fluxCubeSharedx(&wrk1,s_r[sj],s_u[sj],s_w[sj],si); wXtmp = wXtmp + wrk1; __syncthreads(); fluxCubeSharedx(&wrk1,s_r[sj],s_u[sj],s_h[sj],si); eXtmp = eXtmp + wrk1; __syncthreads(); // pressure and dilation derivatives if (id.i < stencilSize) { #if periodicX perBCx(s_dil[sj],si); #else wallBCxDil(s_dil[sj],s_s0[sj],s_s4[sj],s_s8[sj],si); #endif } __syncthreads(); derDevSharedV1x(&wrk2,s_dil[sj],si); derDevShared1x(&wrk1 ,s_p[sj],si); uXtmp = uXtmp + s_m[sj][si]*wrk2/3.0 - wrk1 ; eXtmp = eXtmp + s_m[sj][si]*wrk2/3.0*s_u[sj][si]; rX[id.g] = rXtmp; uX[id.g] = uXtmp; vX[id.g] = vXtmp; wX[id.g] = wXtmp; eX[id.g] = eXtmp ; } __global__ void RHSDeviceSharedFlxY(myprec *rY, myprec *uY, myprec *vY, myprec *wY, myprec *eY, myprec *r, myprec *u, myprec *v, myprec *w, myprec *h , myprec *t, myprec *p, myprec *mu, myprec *lam, myprec *sij[9], myprec *dil, myprec dpdz) { Indices id(threadIdx.x,threadIdx.y,blockIdx.x,blockIdx.y,blockDim.x,blockDim.y); id.mkidYFlx(); int si = id.j + stencilSize; // local i for shared memory access + halo offset int sj = id.tiy; // local j for shared memory access myprec rYtmp=0; myprec uYtmp=0; myprec vYtmp=0; myprec wYtmp=0; myprec eYtmp=0; myprec wrk1=0; myprec wrk2=0; __shared__ myprec s_r[sPencils][my+stencilSize*2]; __shared__ myprec s_u[sPencils][my+stencilSize*2]; __shared__ myprec s_v[sPencils][my+stencilSize*2]; __shared__ myprec s_w[sPencils][my+stencilSize*2]; __shared__ myprec s_h[sPencils][my+stencilSize*2]; __shared__ myprec s_t[sPencils][my+stencilSize*2]; __shared__ myprec s_p[sPencils][my+stencilSize*2]; __shared__ myprec s_m[sPencils][my+stencilSize*2]; __shared__ myprec s_l[sPencils][my+stencilSize*2]; __shared__ myprec s_s3[sPencils][my+stencilSize*2]; __shared__ myprec s_s4[sPencils][my+stencilSize*2]; __shared__ myprec s_s5[sPencils][my+stencilSize*2]; __shared__ myprec s_dil[sPencils][my+stencilSize*2]; s_r[sj][si] = r[id.g]; s_u[sj][si] = u[id.g]; s_v[sj][si] = v[id.g]; s_w[sj][si] = w[id.g]; s_h[sj][si] = h[id.g]; s_t[sj][si] = t[id.g]; s_p[sj][si] = p[id.g]; s_m[sj][si] = mu[id.g]; s_l[sj][si] = lam[id.g]; s_dil[sj][si] = dil[id.g]; s_s3[sj][si] = sij[3][id.g]; s_s4[sj][si] = sij[4][id.g]; s_s5[sj][si] = sij[5][id.g]; __syncthreads(); // fill in periodic images in shared memory array if (id.j < stencilSize) { perBCy(s_r[sj],si); perBCy(s_u[sj],si); perBCy(s_v[sj],si); perBCy(s_w[sj],si); perBCy(s_h[sj],si); perBCy(s_t[sj],si); perBCy(s_p[sj],si); perBCy(s_m[sj],si); perBCy(s_l[sj],si); } __syncthreads(); //initialize momentum RHS with stresses so that they can be added for both viscous terms and viscous heating without having to load additional terms uYtmp = ( s_s3[sj][si] + sij[1][id.g] ) ; vYtmp = ( 2 * s_s4[sj][si] - 2./3.*s_dil[sj][si] ) ; wYtmp = ( s_s5[sj][si] + sij[7][id.g] ) ; //adding the viscous dissipation part duidy*mu*siy eYtmp = s_m[sj][si]*(uYtmp*s_s3[sj][si] + vYtmp*s_s4[sj][si] + wYtmp*s_s5[sj][si]); //Adding here the terms d (mu) dy * siy; derDevSharedV1y(&wrk2,s_m[sj],si); //wrk2 = d (mu) dx uYtmp *= wrk2; vYtmp *= wrk2; wYtmp *= wrk2; // viscous fluxes derivative mu*d^2dui dy^2 derDevSharedV2y(&wrk1,s_u[sj],si); uYtmp = uYtmp + wrk1*s_m[sj][si]; derDevSharedV2y(&wrk1,s_v[sj],si); vYtmp = vYtmp + wrk1*s_m[sj][si]; derDevSharedV2y(&wrk1,s_w[sj],si); wYtmp = wYtmp + wrk1*s_m[sj][si]; //adding the viscous dissipation part ui*(mu * d2duidy2 + dmudy * siy) eYtmp = eYtmp + s_u[sj][si]*uYtmp + s_v[sj][si]*vYtmp + s_w[sj][si]*wYtmp; derDevSharedV2y(&wrk1,s_t[sj],si); eYtmp = eYtmp + wrk1*s_l[sj][si]; derDevSharedV1y(&wrk2,s_l[sj],si); //wrk2 = d (lam) dx derDevSharedV1y(&wrk1,s_t[sj],si); //wrk1 = d (t) dx eYtmp = eYtmp + wrk1*wrk2; // split advection terms //Adding here the terms - d (ru phi) dy; fluxQuadSharedy(&wrk1,s_r[sj],s_v[sj],si); rYtmp = wrk1; __syncthreads(); fluxCubeSharedy(&wrk1,s_r[sj],s_v[sj],s_u[sj],si); uYtmp = uYtmp + wrk1; __syncthreads(); fluxCubeSharedy(&wrk1,s_r[sj],s_v[sj],s_v[sj],si); vYtmp = vYtmp + wrk1; __syncthreads(); fluxCubeSharedy(&wrk1,s_r[sj],s_v[sj],s_w[sj],si); wYtmp = wYtmp + wrk1; __syncthreads(); fluxCubeSharedy(&wrk1,s_r[sj],s_v[sj],s_h[sj],si); eYtmp = eYtmp + wrk1; __syncthreads(); // pressure and dilation derivatives if (id.j < stencilSize) { perBCy(s_dil[sj],si); } __syncthreads(); derDevSharedV1y(&wrk2,s_dil[sj],si); derDevShared1y(&wrk1,s_p[sj],si); vYtmp = vYtmp + s_m[sj][si]*wrk2/3.0 - wrk1 ; eYtmp = eYtmp + s_m[sj][si]*wrk2/3.0*s_v[sj][si]; #if useStreams rY[id.g] = rYtmp; uY[id.g] = uYtmp; vY[id.g] = vYtmp; wY[id.g] = wYtmp; eY[id.g] = eYtmp; #else rY[id.g] += rYtmp; uY[id.g] += uYtmp; vY[id.g] += vYtmp; wY[id.g] += wYtmp; eY[id.g] += eYtmp; #endif } __global__ void RHSDeviceSharedFlxZ(myprec *rZ, myprec *uZ, myprec *vZ, myprec *wZ, myprec *eZ, myprec *r, myprec *u, myprec *v, myprec *w, myprec *h , myprec *t, myprec *p, myprec *mu, myprec *lam, myprec *sij[9], myprec *dil, myprec dpdz) { Indices id(threadIdx.x,threadIdx.y,blockIdx.x,blockIdx.y,blockDim.x,blockDim.y); id.mkidZFlx(); int si = id.k + stencilSize; // local i for shared memory access + halo offset int sj = id.tiy; // local j for shared memory access myprec rZtmp=0; myprec uZtmp=0; myprec vZtmp=0; myprec wZtmp=0; myprec eZtmp=0; myprec wrk1=0; myprec wrk2=0; __shared__ myprec s_r[sPencils][mz+stencilSize*2]; __shared__ myprec s_u[sPencils][mz+stencilSize*2]; __shared__ myprec s_v[sPencils][mz+stencilSize*2]; __shared__ myprec s_w[sPencils][mz+stencilSize*2]; __shared__ myprec s_h[sPencils][mz+stencilSize*2]; __shared__ myprec s_t[sPencils][mz+stencilSize*2]; __shared__ myprec s_p[sPencils][mz+stencilSize*2]; __shared__ myprec s_m[sPencils][mz+stencilSize*2]; __shared__ myprec s_l[sPencils][mz+stencilSize*2]; __shared__ myprec s_s6[sPencils][mz+stencilSize*2]; __shared__ myprec s_s7[sPencils][mz+stencilSize*2]; __shared__ myprec s_s8[sPencils][mz+stencilSize*2]; __shared__ myprec s_dil[sPencils][mz+stencilSize*2]; s_r[sj][si] = r[id.g]; s_u[sj][si] = u[id.g]; s_v[sj][si] = v[id.g]; s_w[sj][si] = w[id.g]; s_h[sj][si] = h[id.g]; s_t[sj][si] = t[id.g]; s_p[sj][si] = p[id.g]; s_m[sj][si] = mu[id.g]; s_l[sj][si] = lam[id.g]; s_s6[sj][si] = sij[6][id.g]; s_s7[sj][si] = sij[7][id.g]; s_s8[sj][si] = sij[8][id.g]; s_dil[sj][si] = dil[id.g]; __syncthreads(); // fill in periodic images in shared memory array if (id.k < stencilSize) { perBCz(s_r[sj],si); perBCz(s_u[sj],si); perBCz(s_v[sj],si); perBCz(s_w[sj],si); perBCz(s_h[sj],si); perBCz(s_t[sj],si); perBCz(s_p[sj],si); perBCz(s_m[sj],si); perBCz(s_l[sj],si); } __syncthreads(); //initialize momentum RHS with stresses so that they can be added for both viscous terms and viscous heating without having to load additional terms uZtmp = ( s_s6[sj][si] + sij[2][id.g] ); vZtmp = ( s_s7[sj][si] + sij[5][id.g] ); wZtmp = (2 * s_s8[sj][si] - 2./3.*s_dil[sj][si] ); //adding the viscous dissipation part duidz*mu*siz eZtmp = s_m[sj][si]*(uZtmp*s_s6[sj][si] + vZtmp*s_s7[sj][si] + wZtmp*s_s8[sj][si]); //Adding here the terms d (mu) dz * szj; derDevSharedV1z(&wrk2,s_m[sj],si); //wrk2 = d (mu) dz uZtmp *= wrk2; vZtmp *= wrk2; wZtmp *= wrk2; // viscous fluxes derivative derDevSharedV2z(&wrk1,s_u[sj],si); uZtmp = uZtmp + wrk1*s_m[sj][si]; derDevSharedV2z(&wrk1,s_v[sj],si); vZtmp = vZtmp + wrk1*s_m[sj][si]; derDevSharedV2z(&wrk1,s_w[sj],si); wZtmp = wZtmp + wrk1*s_m[sj][si]; //adding the viscous dissipation part ui*(mu * d2duidz2 + dmudz * siz) derDevSharedV2z(&wrk1,s_t[sj],si); eZtmp = eZtmp + s_u[sj][si]*uZtmp + s_v[sj][si]*vZtmp + s_w[sj][si]*wZtmp + wrk1*s_l[sj][si]; derDevSharedV1z(&wrk2,s_l[sj],si); //wrk2 = d (lam) dz derDevSharedV1z(&wrk1,s_t[sj],si); //wrk1 = d (t) dx eZtmp = eZtmp + wrk1*wrk2; //Adding here the terms - d (ru phi) dz; fluxQuadSharedz(&wrk1,s_r[sj],s_w[sj],si); rZtmp = wrk1; __syncthreads(); fluxCubeSharedz(&wrk1,s_r[sj],s_w[sj],s_u[sj],si); uZtmp = uZtmp + wrk1; __syncthreads(); fluxCubeSharedz(&wrk1,s_r[sj],s_w[sj],s_v[sj],si); vZtmp = vZtmp + wrk1; __syncthreads(); fluxCubeSharedz(&wrk1,s_r[sj],s_w[sj],s_w[sj],si); wZtmp = wZtmp + wrk1; __syncthreads(); fluxCubeSharedz(&wrk1,s_r[sj],s_w[sj],s_h[sj],si); eZtmp = eZtmp + wrk1; __syncthreads(); // pressure and dilation derivatives __syncthreads(); if (id.k < stencilSize) { perBCz(s_dil[sj],si); } __syncthreads(); derDevSharedV1z(&wrk2,s_dil[sj],si); derDevShared1z(&wrk1,s_p[sj],si); wZtmp = wZtmp + s_m[sj][si]*wrk2/3.0 - wrk1 ; eZtmp = eZtmp + s_m[sj][si]*wrk2/3.0*s_w[sj][si]; #if useStreams rZ[id.g] = rZtmp; uZ[id.g] = uZtmp; vZ[id.g] = vZtmp; wZ[id.g] = wZtmp + dpdz; eZ[id.g] = eZtmp + dpdz*s_w[sj][si] ; #else rZ[id.g] += rZtmp; uZ[id.g] += uZtmp; vZ[id.g] += vZtmp; wZ[id.g] += wZtmp + dpdz; eZ[id.g] += eZtmp + dpdz*s_w[sj][si] ; #endif __syncthreads(); }
aef34a4dadbf5303ed2ca20667d0f9b801902743.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #define isnan(x) ( x != x ) #ifndef INFINITY #define INFINITY __int_as_float(0x7f800000) #endif #if (__CUDA_ARCH__ < 700) __device__ void __nanosleep(unsigned int ns){ clock_t start_clock = clock(); clock_t clock_offset = 0; while (clock_offset < ns) { clock_offset = clock() - start_clock; } } #endif __device__ void mutex_lock( unsigned int *mutex ) { unsigned int ns = 8; unsigned int counter = 0; __syncthreads(); if (threadIdx.x == 0 ){ while (atomicCAS(mutex, 0, 1) == 1) { __nanosleep(ns); counter ++; if (counter > 1000) break; if (ns < 256) { ns *= 2; } } } __syncthreads(); } __device__ void mutex_lock_noop( ) { __syncthreads(); } __device__ void mutex_unlock( unsigned int *mutex ) { __threadfence(); __syncthreads(); if (threadIdx.x == 0){ atomicExch(mutex, 0); __threadfence(); } __syncthreads(); } __device__ void mutex_unlock_noop(){ __syncthreads(); __syncthreads(); } __device__ __forceinline__ unsigned int bfe( unsigned int source, unsigned int bitIndex ) { unsigned int bit; asm volatile("bfe.u32 %0, %1, %2, %3;" : "=r"(bit) : "r"((unsigned int) source), "r"(bitIndex), "r"(1)); return bit; } __device__ __forceinline__ void warp_comparator( float &value, float &index, const int stride, const int direction ){ const float other_value = __shfl_xor_sync(0xFFFFFFFF, value, stride); const float other_index = __shfl_xor_sync(0xFFFFFFFF, index, stride); bool condition = value < other_value == direction; index = condition ? other_index : index; value = condition ? other_value : value; } __device__ __forceinline__ void block_comparator( float &value, float &index, const int stride, const int direction, const int laneID, _VOLATILE_ float valSmem[128+4], _VOLATILE_ float idxSmem[128+4] ){ valSmem[laneID] = value; idxSmem[laneID] = index; __syncthreads(); float other_value = valSmem[laneID ^ stride]; float other_index = idxSmem[laneID ^ stride]; __syncthreads(); bool condition = value < other_value == direction; index = condition ? other_index : index; value = condition ? other_value : value; } __device__ void bitonic_sort_128( float &value, float &index, _VOLATILE_ float valSmem[128+4], _VOLATILE_ float idxSmem[128+4] ) { unsigned int laneID = threadIdx.x % 128; warp_comparator(value, index, 1, bfe(laneID, 1) ^ bfe(laneID, 0)); warp_comparator(value, index, 2, bfe(laneID, 2) ^ bfe(laneID, 1)); warp_comparator(value, index, 1, bfe(laneID, 2) ^ bfe(laneID, 0)); warp_comparator(value, index, 4, bfe(laneID, 3) ^ bfe(laneID, 2)); warp_comparator(value, index, 2, bfe(laneID, 3) ^ bfe(laneID, 1)); warp_comparator(value, index, 1, bfe(laneID, 3) ^ bfe(laneID, 0)); warp_comparator(value, index, 8, bfe(laneID, 4) ^ bfe(laneID, 3)); warp_comparator(value, index, 4, bfe(laneID, 4) ^ bfe(laneID, 2)); warp_comparator(value, index, 2, bfe(laneID, 4) ^ bfe(laneID, 1)); warp_comparator(value, index, 1, bfe(laneID, 4) ^ bfe(laneID, 0)); warp_comparator(value, index, 16, bfe(laneID, 5) ^ bfe(laneID, 4)); warp_comparator(value, index, 8, bfe(laneID, 5) ^ bfe(laneID, 3)); warp_comparator(value, index, 4, bfe(laneID, 5) ^ bfe(laneID, 2)); warp_comparator(value, index, 2, bfe(laneID, 5) ^ bfe(laneID, 1)); warp_comparator(value, index, 1, bfe(laneID, 5) ^ bfe(laneID, 0)); block_comparator(value, index, 32, bfe(laneID, 6) ^ bfe(laneID, 5), laneID, valSmem, idxSmem); warp_comparator(value, index, 16, bfe(laneID, 6) ^ bfe(laneID, 4)); warp_comparator(value, index, 8, bfe(laneID, 6) ^ bfe(laneID, 3)); warp_comparator(value, index, 4, bfe(laneID, 6) ^ bfe(laneID, 2)); warp_comparator(value, index, 2, bfe(laneID, 6) ^ bfe(laneID, 1)); warp_comparator(value, index, 1, bfe(laneID, 6) ^ bfe(laneID, 0)); block_comparator(value, index, 64, bfe(laneID, 6), laneID, valSmem, idxSmem); block_comparator(value, index, 32, bfe(laneID, 5), laneID, valSmem, idxSmem); warp_comparator(value, index, 16, bfe(laneID, 4)); warp_comparator(value, index, 8, bfe(laneID, 3)); warp_comparator(value, index, 4, bfe(laneID, 2)); warp_comparator(value, index, 2, bfe(laneID, 1)); warp_comparator(value, index, 1, bfe(laneID, 0)); } __device__ void bitonic_sort_256( float &value, float &index, float* g_values, ll_t* g_indices, float valSmem[128+4], float idxSmem[128+4], int Q, int adr, bool ok ){ int laneID = threadIdx.x % 128; float other_index; float other_value; if (ok){ other_value = g_values[adr]; other_index = g_indices[adr]; } else { other_value = -INFINITY; other_index = 0; } bool condition = value > other_value == 0; if (condition){ value = value + other_value; index = index + other_index; other_value = value - other_value; other_index = index - other_index; value = value - other_value; index = index - other_index; } block_comparator(value, index, 64, !bfe(laneID, 6), laneID, valSmem, idxSmem); block_comparator(value, index, 32, !bfe(laneID, 5), laneID, valSmem, idxSmem); warp_comparator(value, index, 16, !bfe(laneID, 4)); warp_comparator(value, index, 8, !bfe(laneID, 3)); warp_comparator(value, index, 4, !bfe(laneID, 2)); warp_comparator(value, index, 2, !bfe(laneID, 1)); warp_comparator(value, index, 1, !bfe(laneID, 0)); /* */ if (ok){ g_values[adr] = value; g_indices[adr] = index; } } __device__ void bitonicSort256_noop() { __syncthreads(); __syncthreads(); __syncthreads(); __syncthreads(); } __device__ void topk_dim_1( float8 cCache[8], _VOLATILE_ float valSmem[16][128+4], _VOLATILE_ float idxSmem[16][128+4], float* values, ll_t* indices, unsigned int* mutex, int gStartx, int gStarty, int bid, int M, int N, int Q ){ int tid = threadIdx.x; int vx = tid % 16; int vy = tid / 16; int hx = tid % 128; int hy = tid / 128; #pragma unroll for (int ni=0; ni<8; ni++){ int iN = gStartx + vx*8 + ni; //if (iN < N) break; // Store cCache to cSM #pragma unroll for (int mi=0; mi<8; mi++){ int iM = gStarty + vy*8 + mi; if (likely(iM < M && iN < N)){ valSmem[vx][vy*8 + mi] = cCache[mi].val[ni]; idxSmem[vx][vy*8 + mi] = iM; } else { valSmem[vx][vy*8 + mi] = -INFINITY; idxSmem[vx][vy*8 + mi] = -1; } } __syncthreads(); // Load from cSM to cCache #pragma unroll for (int i=0; i<8; i++){ float value = valSmem[hy*8 + i][hx]; float index = idxSmem[hy*8 + i][hx]; bitonic_sort_128( value, index, valSmem[hy*8 + i], idxSmem[hy*8 + i] ); int iN = gStartx + (hy*8 + i)*8 + ni; int adr = (bid)*N*Q + iN*Q + hx; mutex_lock( &mutex[(bid)*N + iN] ); bitonic_sort_256( value, index, values, indices, valSmem[hy*8+i], idxSmem[hy*8+i], Q, adr, iN < N ); mutex_unlock( &mutex[(bid)*N + iN] ); } } } __device__ void topk_dim_2( float8 cCache[8], _VOLATILE_ float valSmem[16][128+4], _VOLATILE_ float idxSmem[16][128+4], float* values, ll_t* indices, unsigned int* mutex, int gStartx, int gStarty, int bid, int M, int N, int Q ){ int tid = threadIdx.x; int vx = tid % 16; int vy = tid / 16; int hx = tid % 128; int hy = tid / 128; #pragma unroll for (int mi=0; mi<8; mi++){ int iM = gStarty + vy*8 + mi; //if (iM >= M) break; // Store cCache to cSM #pragma unroll for (int ni=0; ni<8; ni++){ int iN = gStartx + vx*8 + ni; if (likely(iN < N && iM < M)){ valSmem[vy][vx*8 + ni] = cCache[mi].val[ni]; idxSmem[vy][vx*8 + ni] = iN; } else { valSmem[vy][vx*8 + ni] = -INFINITY; idxSmem[vy][vx*8 + ni] = -1; } } __syncthreads(); // Load from cSM to cCache #pragma unroll for (int i=0; i<8; i++){ float value = valSmem[hy*8 + i][hx]; float index = idxSmem[hy*8 + i][hx]; bitonic_sort_128( value, index, valSmem[hy*8 + i], idxSmem[hy*8 + i] ); int iM = gStarty + (hy*8 + i)*8 + mi; int adr = (bid)*M*Q + iM*Q + hx; mutex_lock( &mutex[(bid)*M + iM] ); bitonic_sort_256( value, index, values, indices, valSmem[hy*8+i], idxSmem[hy*8+i], Q, adr, iM < M ); mutex_unlock( &mutex[(bid)*M + iM] ); } } } extern "C" __global__ void topk_bmm_tn( const float* __restrict__ A, const float* __restrict__ B, float* values, ll_t* indices, unsigned int* mutex, int M, int N, int K, int DIM, int Q ){ int tid = threadIdx.x; // thread idx int bid = blockIdx.z; // batch idx // Neighboring blocks are grouped into PN x PM block groups in order to increase // L1 cache hit rate // There are ceil(M/PM) x ceil(N/PN) block groups in total. // Blocks within block groups are indexed with blockIdx.x % PN and blockIdx.x / PN int px = blockIdx.x % _PN_; int py = blockIdx.x / _PN_; int bDimX = (N + (128*_PN_) - 1) / (128*_PN_); int bDimY = (M + (128*_PM_) - 1) / (128*_PM_); int bIdxX = (blockIdx.y % bDimX) * _PN_ + px; int bIdxY = (blockIdx.y / bDimX) * _PM_ + py; int gStartx = bIdxX * 128; // starting index of block on N axis int gStarty = bIdxY * 128; // starting index of block on M axis if (gStartx > N || gStarty > M){ return; } // These are used to re-arrange threads into different shapes // for example: (256) -> (16, 16) -> (8, 32) -> (32, 8) int vx = tid % 16; int vy = tid / 16; int wx = tid % 32; // thread idx in warp int wy = tid / 32; // warp id int dx = tid % 8; int dy = tid / 8; __shared__ _VOLATILE_ float aSmem[16][128+4]; __shared__ _VOLATILE_ float bSmem[16][128+4]; float aBuffer1[4]; float bBuffer1[4]; float aBuffer2[4]; float bBuffer2[4]; float8 cCache[8]; init_cCache(cCache); // Load initial 16 x 128 tile of A and B to buffer1 and buffer2 load_ab_tn( A, B, aBuffer1, aBuffer2, bBuffer1, bBuffer2, bid, gStartx, gStarty, 0, M, N, K ); // Number of main loop iterations is ceil(k/16) int nIt = (K + 16 - 1) / 16; #pragma unroll for (int itr=0; itr<nIt; itr++){ int gStartk = itr * 16; buffer2smem_16_tn( aSmem, bSmem, aBuffer1, aBuffer2, bBuffer1, bBuffer2 ); if (likely(itr < nIt - 1)){ load_ab_tn( A, B, aBuffer1, aBuffer2, bBuffer1, bBuffer2, bid, gStartx, gStarty, gStartk + 16, M, N, K ); } // synchroznie threads in order make sure tiles of A and B are fully // loaded to shared memory. __syncthreads(); thread_matmul_16_v3(aSmem, bSmem, cCache, vx, vy); // synchronize threads to signal that shared memory is consumed. __syncthreads(); } // TopK sort along DIM if (DIM == 1){ topk_dim_1( cCache, aSmem, bSmem, values, indices, mutex, gStartx, gStarty, bid, M, N, Q); } else if (DIM == 2){ topk_dim_2( cCache, aSmem, bSmem, values, indices, mutex, gStartx, gStarty, bid, M, N, Q); } } extern "C" __global__ void topk_bmm_nt( const float* __restrict__ A, const float* __restrict__ B, float* values, ll_t* indices, unsigned int* mutex, int M, int N, int K, int DIM, int Q ){ int tid = threadIdx.x; // thread idx int bid = blockIdx.z; // batch idx // Neighboring blocks are grouped into PN x PM block groups in order to increase // L1 cache hit rate // There are ceil(M/PM) x ceil(N/PN) block groups in total. // Blocks within block groups are indexed with blockIdx.x % PN and blockIdx.x / PN int px = blockIdx.x % _PN_; int py = blockIdx.x / _PN_; int bDimX = (N + (128*_PN_) - 1) / (128*_PN_); int bDimY = (M + (128*_PM_) - 1) / (128*_PM_); int bIdxX = (blockIdx.y % bDimX) * _PN_ + px; int bIdxY = (blockIdx.y / bDimX) * _PM_ + py; int gStartx = bIdxX * 128; // starting index of block on N axis int gStarty = bIdxY * 128; // starting index of block on M axis if (gStartx > N || gStarty > M){ return; } // These are used to re-arrange threads into different shapes // for example: (256) -> (16, 16) -> (8, 32) -> (32, 8) int vx = tid % 16; int vy = tid / 16; int wx = tid % 32; // thread idx in warp int wy = tid / 32; // warp id int dx = tid % 8; int dy = tid / 8; __shared__ _VOLATILE_ float aSmem[16][128+4]; __shared__ _VOLATILE_ float bSmem[16][128+4]; float aBuffer1[4]; float bBuffer1[4]; float aBuffer2[4]; float bBuffer2[4]; float8 cCache[8]; init_cCache(cCache); // Load initial 16 x 128 tile of A and B to buffer1 and buffer2 load_ab_nt( A, B, aBuffer1, aBuffer2, bBuffer1, bBuffer2, bid, gStartx, gStarty, 0, M, N, K ); // Number of main loop iterations is ceil(k/16) int nIt = (K + 16 - 1) / 16; #pragma unroll for (int itr=0; itr<nIt; itr++){ int gStartk = itr * 16; buffer2smem_16_nt( aSmem, bSmem, aBuffer1, aBuffer2, bBuffer1, bBuffer2 ); if (likely(itr < nIt - 1)){ load_ab_nt( A, B, aBuffer1, aBuffer2, bBuffer1, bBuffer2, bid, gStartx, gStarty, gStartk + 16, M, N, K ); } // synchroznie threads in order make sure tiles of A and B are fully // loaded to shared memory. __syncthreads(); thread_matmul_16_v3(aSmem, bSmem, cCache, vx, vy); // synchronize threads to signal that shared memory is consumed. __syncthreads(); } // TopK sort along DIM if (DIM == 1){ topk_dim_1( cCache, aSmem, bSmem, values, indices, mutex, gStartx, gStarty, bid, M, N, Q); } else if (DIM == 2){ topk_dim_2( cCache, aSmem, bSmem, values, indices, mutex, gStartx, gStarty, bid, M, N, Q); } } extern "C" __global__ void topk_bmm_nn( const float* __restrict__ A, const float* __restrict__ B, float* values, ll_t* indices, unsigned int* mutex, int M, int N, int K, int DIM, int Q ){ int tid = threadIdx.x; // thread idx int bid = blockIdx.z; // batch idx // Neighboring blocks are grouped into PN x PM block groups in order to increase // L1 cache hit rate // There are ceil(M/PM) x ceil(N/PN) block groups in total. // Blocks within block groups are indexed with blockIdx.x % PN and blockIdx.x / PN int px = blockIdx.x % _PN_; int py = blockIdx.x / _PN_; int bDimX = (N + (128*_PN_) - 1) / (128*_PN_); int bDimY = (M + (128*_PM_) - 1) / (128*_PM_); int bIdxX = (blockIdx.y % bDimX) * _PN_ + px; int bIdxY = (blockIdx.y / bDimX) * _PM_ + py; int gStartx = bIdxX * 128; // starting index of block on N axis int gStarty = bIdxY * 128; // starting index of block on M axis if (gStartx > N || gStarty > M){ return; } // These are used to re-arrange threads into different shapes // for example: (256) -> (16, 16) -> (8, 32) -> (32, 8) int vx = tid % 16; int vy = tid / 16; int wx = tid % 32; // thread idx in warp int wy = tid / 32; // warp id int dx = tid % 8; int dy = tid / 8; __shared__ _VOLATILE_ float aSmem[16][128+4]; __shared__ _VOLATILE_ float bSmem[16][128+4]; float aBuffer1[4]; float bBuffer1[4]; float aBuffer2[4]; float bBuffer2[4]; float8 cCache[8]; init_cCache(cCache); // Load initial 16 x 128 tile of A and B to buffer1 and buffer2 load_ab_nn( A, B, aBuffer1, aBuffer2, bBuffer1, bBuffer2, bid, gStartx, gStarty, 0, M, N, K ); // Number of main loop iterations is ceil(k/16) int nIt = (K + 16 - 1) / 16; #pragma unroll for (int itr=0; itr<nIt; itr++){ int gStartk = itr * 16; buffer2smem_16_nn( aSmem, bSmem, aBuffer1, aBuffer2, bBuffer1, bBuffer2 ); if (likely(itr < nIt - 1)){ load_ab_nn( A, B, aBuffer1, aBuffer2, bBuffer1, bBuffer2, bid, gStartx, gStarty, gStartk + 16, M, N, K ); } // synchroznie threads in order make sure tiles of A and B are fully // loaded to shared memory. __syncthreads(); thread_matmul_16_v3(aSmem, bSmem, cCache, vx, vy); // synchronize threads to signal that shared memory is consumed. __syncthreads(); } // TopK sort along DIM if (DIM == 1){ topk_dim_1( cCache, aSmem, bSmem, values, indices, mutex, gStartx, gStarty, bid, M, N, Q); } else if (DIM == 2){ topk_dim_2( cCache, aSmem, bSmem, values, indices, mutex, gStartx, gStarty, bid, M, N, Q); } } extern "C" __global__ void topk_bmm_tt( const float* __restrict__ A, const float* __restrict__ B, float* values, ll_t* indices, unsigned int* mutex, int M, int N, int K, int DIM, int Q ){ int tid = threadIdx.x; // thread idx int bid = blockIdx.z; // batch idx // Neighboring blocks are grouped into PN x PM block groups in order to increase // L1 cache hit rate // There are ceil(M/PM) x ceil(N/PN) block groups in total. // Blocks within block groups are indexed with blockIdx.x % PN and blockIdx.x / PN int px = blockIdx.x % _PN_; int py = blockIdx.x / _PN_; int bDimX = (N + (128*_PN_) - 1) / (128*_PN_); int bDimY = (M + (128*_PM_) - 1) / (128*_PM_); int bIdxX = (blockIdx.y % bDimX) * _PN_ + px; int bIdxY = (blockIdx.y / bDimX) * _PM_ + py; int gStartx = bIdxX * 128; // starting index of block on N axis int gStarty = bIdxY * 128; // starting index of block on M axis if (gStartx > N || gStarty > M){ return; } // These are used to re-arrange threads into different shapes // for example: (256) -> (16, 16) -> (8, 32) -> (32, 8) int vx = tid % 16; int vy = tid / 16; int wx = tid % 32; // thread idx in warp int wy = tid / 32; // warp id int dx = tid % 8; int dy = tid / 8; __shared__ _VOLATILE_ float aSmem[16][128+4]; __shared__ _VOLATILE_ float bSmem[16][128+4]; float aBuffer1[4]; float bBuffer1[4]; float aBuffer2[4]; float bBuffer2[4]; float8 cCache[8]; init_cCache(cCache); // Load initial 16 x 128 tile of A and B to buffer1 and buffer2 load_ab_tt( A, B, aBuffer1, aBuffer2, bBuffer1, bBuffer2, bid, gStartx, gStarty, 0, M, N, K ); // Number of main loop iterations is ceil(k/16) int nIt = (K + 16 - 1) / 16; #pragma unroll for (int itr=0; itr<nIt; itr++){ int gStartk = itr * 16; buffer2smem_16_tt( aSmem, bSmem, aBuffer1, aBuffer2, bBuffer1, bBuffer2 ); if (likely(itr < nIt - 1)){ load_ab_tt( A, B, aBuffer1, aBuffer2, bBuffer1, bBuffer2, bid, gStartx, gStarty, gStartk + 16, M, N, K ); } // synchroznie threads in order make sure tiles of A and B are fully // loaded to shared memory. __syncthreads(); thread_matmul_16_v3(aSmem, bSmem, cCache, vx, vy); // synchronize threads to signal that shared memory is consumed. __syncthreads(); } // TopK sort along DIM if (DIM == 1){ topk_dim_1( cCache, aSmem, bSmem, values, indices, mutex, gStartx, gStarty, bid, M, N, Q); } else if (DIM == 2){ topk_dim_2( cCache, aSmem, bSmem, values, indices, mutex, gStartx, gStarty, bid, M, N, Q); } }
aef34a4dadbf5303ed2ca20667d0f9b801902743.cu
#define isnan(x) ( x != x ) #ifndef INFINITY #define INFINITY __int_as_float(0x7f800000) #endif #if (__CUDA_ARCH__ < 700) __device__ void __nanosleep(unsigned int ns){ clock_t start_clock = clock(); clock_t clock_offset = 0; while (clock_offset < ns) { clock_offset = clock() - start_clock; } } #endif __device__ void mutex_lock( unsigned int *mutex ) { unsigned int ns = 8; unsigned int counter = 0; __syncthreads(); if (threadIdx.x == 0 ){ while (atomicCAS(mutex, 0, 1) == 1) { __nanosleep(ns); counter ++; if (counter > 1000) break; if (ns < 256) { ns *= 2; } } } __syncthreads(); } __device__ void mutex_lock_noop( ) { __syncthreads(); } __device__ void mutex_unlock( unsigned int *mutex ) { __threadfence(); __syncthreads(); if (threadIdx.x == 0){ atomicExch(mutex, 0); __threadfence(); } __syncthreads(); } __device__ void mutex_unlock_noop(){ __syncthreads(); __syncthreads(); } __device__ __forceinline__ unsigned int bfe( unsigned int source, unsigned int bitIndex ) { unsigned int bit; asm volatile("bfe.u32 %0, %1, %2, %3;" : "=r"(bit) : "r"((unsigned int) source), "r"(bitIndex), "r"(1)); return bit; } __device__ __forceinline__ void warp_comparator( float &value, float &index, const int stride, const int direction ){ const float other_value = __shfl_xor_sync(0xFFFFFFFF, value, stride); const float other_index = __shfl_xor_sync(0xFFFFFFFF, index, stride); bool condition = value < other_value == direction; index = condition ? other_index : index; value = condition ? other_value : value; } __device__ __forceinline__ void block_comparator( float &value, float &index, const int stride, const int direction, const int laneID, _VOLATILE_ float valSmem[128+4], _VOLATILE_ float idxSmem[128+4] ){ valSmem[laneID] = value; idxSmem[laneID] = index; __syncthreads(); float other_value = valSmem[laneID ^ stride]; float other_index = idxSmem[laneID ^ stride]; __syncthreads(); bool condition = value < other_value == direction; index = condition ? other_index : index; value = condition ? other_value : value; } __device__ void bitonic_sort_128( float &value, float &index, _VOLATILE_ float valSmem[128+4], _VOLATILE_ float idxSmem[128+4] ) { unsigned int laneID = threadIdx.x % 128; warp_comparator(value, index, 1, bfe(laneID, 1) ^ bfe(laneID, 0)); warp_comparator(value, index, 2, bfe(laneID, 2) ^ bfe(laneID, 1)); warp_comparator(value, index, 1, bfe(laneID, 2) ^ bfe(laneID, 0)); warp_comparator(value, index, 4, bfe(laneID, 3) ^ bfe(laneID, 2)); warp_comparator(value, index, 2, bfe(laneID, 3) ^ bfe(laneID, 1)); warp_comparator(value, index, 1, bfe(laneID, 3) ^ bfe(laneID, 0)); warp_comparator(value, index, 8, bfe(laneID, 4) ^ bfe(laneID, 3)); warp_comparator(value, index, 4, bfe(laneID, 4) ^ bfe(laneID, 2)); warp_comparator(value, index, 2, bfe(laneID, 4) ^ bfe(laneID, 1)); warp_comparator(value, index, 1, bfe(laneID, 4) ^ bfe(laneID, 0)); warp_comparator(value, index, 16, bfe(laneID, 5) ^ bfe(laneID, 4)); warp_comparator(value, index, 8, bfe(laneID, 5) ^ bfe(laneID, 3)); warp_comparator(value, index, 4, bfe(laneID, 5) ^ bfe(laneID, 2)); warp_comparator(value, index, 2, bfe(laneID, 5) ^ bfe(laneID, 1)); warp_comparator(value, index, 1, bfe(laneID, 5) ^ bfe(laneID, 0)); block_comparator(value, index, 32, bfe(laneID, 6) ^ bfe(laneID, 5), laneID, valSmem, idxSmem); warp_comparator(value, index, 16, bfe(laneID, 6) ^ bfe(laneID, 4)); warp_comparator(value, index, 8, bfe(laneID, 6) ^ bfe(laneID, 3)); warp_comparator(value, index, 4, bfe(laneID, 6) ^ bfe(laneID, 2)); warp_comparator(value, index, 2, bfe(laneID, 6) ^ bfe(laneID, 1)); warp_comparator(value, index, 1, bfe(laneID, 6) ^ bfe(laneID, 0)); block_comparator(value, index, 64, bfe(laneID, 6), laneID, valSmem, idxSmem); block_comparator(value, index, 32, bfe(laneID, 5), laneID, valSmem, idxSmem); warp_comparator(value, index, 16, bfe(laneID, 4)); warp_comparator(value, index, 8, bfe(laneID, 3)); warp_comparator(value, index, 4, bfe(laneID, 2)); warp_comparator(value, index, 2, bfe(laneID, 1)); warp_comparator(value, index, 1, bfe(laneID, 0)); } __device__ void bitonic_sort_256( float &value, float &index, float* g_values, ll_t* g_indices, float valSmem[128+4], float idxSmem[128+4], int Q, int adr, bool ok ){ int laneID = threadIdx.x % 128; float other_index; float other_value; if (ok){ other_value = g_values[adr]; other_index = g_indices[adr]; } else { other_value = -INFINITY; other_index = 0; } bool condition = value > other_value == 0; if (condition){ value = value + other_value; index = index + other_index; other_value = value - other_value; other_index = index - other_index; value = value - other_value; index = index - other_index; } block_comparator(value, index, 64, !bfe(laneID, 6), laneID, valSmem, idxSmem); block_comparator(value, index, 32, !bfe(laneID, 5), laneID, valSmem, idxSmem); warp_comparator(value, index, 16, !bfe(laneID, 4)); warp_comparator(value, index, 8, !bfe(laneID, 3)); warp_comparator(value, index, 4, !bfe(laneID, 2)); warp_comparator(value, index, 2, !bfe(laneID, 1)); warp_comparator(value, index, 1, !bfe(laneID, 0)); /* */ if (ok){ g_values[adr] = value; g_indices[adr] = index; } } __device__ void bitonicSort256_noop() { __syncthreads(); __syncthreads(); __syncthreads(); __syncthreads(); } __device__ void topk_dim_1( float8 cCache[8], _VOLATILE_ float valSmem[16][128+4], _VOLATILE_ float idxSmem[16][128+4], float* values, ll_t* indices, unsigned int* mutex, int gStartx, int gStarty, int bid, int M, int N, int Q ){ int tid = threadIdx.x; int vx = tid % 16; int vy = tid / 16; int hx = tid % 128; int hy = tid / 128; #pragma unroll for (int ni=0; ni<8; ni++){ int iN = gStartx + vx*8 + ni; //if (iN < N) break; // Store cCache to cSM #pragma unroll for (int mi=0; mi<8; mi++){ int iM = gStarty + vy*8 + mi; if (likely(iM < M && iN < N)){ valSmem[vx][vy*8 + mi] = cCache[mi].val[ni]; idxSmem[vx][vy*8 + mi] = iM; } else { valSmem[vx][vy*8 + mi] = -INFINITY; idxSmem[vx][vy*8 + mi] = -1; } } __syncthreads(); // Load from cSM to cCache #pragma unroll for (int i=0; i<8; i++){ float value = valSmem[hy*8 + i][hx]; float index = idxSmem[hy*8 + i][hx]; bitonic_sort_128( value, index, valSmem[hy*8 + i], idxSmem[hy*8 + i] ); int iN = gStartx + (hy*8 + i)*8 + ni; int adr = (bid)*N*Q + iN*Q + hx; mutex_lock( &mutex[(bid)*N + iN] ); bitonic_sort_256( value, index, values, indices, valSmem[hy*8+i], idxSmem[hy*8+i], Q, adr, iN < N ); mutex_unlock( &mutex[(bid)*N + iN] ); } } } __device__ void topk_dim_2( float8 cCache[8], _VOLATILE_ float valSmem[16][128+4], _VOLATILE_ float idxSmem[16][128+4], float* values, ll_t* indices, unsigned int* mutex, int gStartx, int gStarty, int bid, int M, int N, int Q ){ int tid = threadIdx.x; int vx = tid % 16; int vy = tid / 16; int hx = tid % 128; int hy = tid / 128; #pragma unroll for (int mi=0; mi<8; mi++){ int iM = gStarty + vy*8 + mi; //if (iM >= M) break; // Store cCache to cSM #pragma unroll for (int ni=0; ni<8; ni++){ int iN = gStartx + vx*8 + ni; if (likely(iN < N && iM < M)){ valSmem[vy][vx*8 + ni] = cCache[mi].val[ni]; idxSmem[vy][vx*8 + ni] = iN; } else { valSmem[vy][vx*8 + ni] = -INFINITY; idxSmem[vy][vx*8 + ni] = -1; } } __syncthreads(); // Load from cSM to cCache #pragma unroll for (int i=0; i<8; i++){ float value = valSmem[hy*8 + i][hx]; float index = idxSmem[hy*8 + i][hx]; bitonic_sort_128( value, index, valSmem[hy*8 + i], idxSmem[hy*8 + i] ); int iM = gStarty + (hy*8 + i)*8 + mi; int adr = (bid)*M*Q + iM*Q + hx; mutex_lock( &mutex[(bid)*M + iM] ); bitonic_sort_256( value, index, values, indices, valSmem[hy*8+i], idxSmem[hy*8+i], Q, adr, iM < M ); mutex_unlock( &mutex[(bid)*M + iM] ); } } } extern "C" __global__ void topk_bmm_tn( const float* __restrict__ A, const float* __restrict__ B, float* values, ll_t* indices, unsigned int* mutex, int M, int N, int K, int DIM, int Q ){ int tid = threadIdx.x; // thread idx int bid = blockIdx.z; // batch idx // Neighboring blocks are grouped into PN x PM block groups in order to increase // L1 cache hit rate // There are ceil(M/PM) x ceil(N/PN) block groups in total. // Blocks within block groups are indexed with blockIdx.x % PN and blockIdx.x / PN int px = blockIdx.x % _PN_; int py = blockIdx.x / _PN_; int bDimX = (N + (128*_PN_) - 1) / (128*_PN_); int bDimY = (M + (128*_PM_) - 1) / (128*_PM_); int bIdxX = (blockIdx.y % bDimX) * _PN_ + px; int bIdxY = (blockIdx.y / bDimX) * _PM_ + py; int gStartx = bIdxX * 128; // starting index of block on N axis int gStarty = bIdxY * 128; // starting index of block on M axis if (gStartx > N || gStarty > M){ return; } // These are used to re-arrange threads into different shapes // for example: (256) -> (16, 16) -> (8, 32) -> (32, 8) int vx = tid % 16; int vy = tid / 16; int wx = tid % 32; // thread idx in warp int wy = tid / 32; // warp id int dx = tid % 8; int dy = tid / 8; __shared__ _VOLATILE_ float aSmem[16][128+4]; __shared__ _VOLATILE_ float bSmem[16][128+4]; float aBuffer1[4]; float bBuffer1[4]; float aBuffer2[4]; float bBuffer2[4]; float8 cCache[8]; init_cCache(cCache); // Load initial 16 x 128 tile of A and B to buffer1 and buffer2 load_ab_tn( A, B, aBuffer1, aBuffer2, bBuffer1, bBuffer2, bid, gStartx, gStarty, 0, M, N, K ); // Number of main loop iterations is ceil(k/16) int nIt = (K + 16 - 1) / 16; #pragma unroll for (int itr=0; itr<nIt; itr++){ int gStartk = itr * 16; buffer2smem_16_tn( aSmem, bSmem, aBuffer1, aBuffer2, bBuffer1, bBuffer2 ); if (likely(itr < nIt - 1)){ load_ab_tn( A, B, aBuffer1, aBuffer2, bBuffer1, bBuffer2, bid, gStartx, gStarty, gStartk + 16, M, N, K ); } // synchroznie threads in order make sure tiles of A and B are fully // loaded to shared memory. __syncthreads(); thread_matmul_16_v3(aSmem, bSmem, cCache, vx, vy); // synchronize threads to signal that shared memory is consumed. __syncthreads(); } // TopK sort along DIM if (DIM == 1){ topk_dim_1( cCache, aSmem, bSmem, values, indices, mutex, gStartx, gStarty, bid, M, N, Q); } else if (DIM == 2){ topk_dim_2( cCache, aSmem, bSmem, values, indices, mutex, gStartx, gStarty, bid, M, N, Q); } } extern "C" __global__ void topk_bmm_nt( const float* __restrict__ A, const float* __restrict__ B, float* values, ll_t* indices, unsigned int* mutex, int M, int N, int K, int DIM, int Q ){ int tid = threadIdx.x; // thread idx int bid = blockIdx.z; // batch idx // Neighboring blocks are grouped into PN x PM block groups in order to increase // L1 cache hit rate // There are ceil(M/PM) x ceil(N/PN) block groups in total. // Blocks within block groups are indexed with blockIdx.x % PN and blockIdx.x / PN int px = blockIdx.x % _PN_; int py = blockIdx.x / _PN_; int bDimX = (N + (128*_PN_) - 1) / (128*_PN_); int bDimY = (M + (128*_PM_) - 1) / (128*_PM_); int bIdxX = (blockIdx.y % bDimX) * _PN_ + px; int bIdxY = (blockIdx.y / bDimX) * _PM_ + py; int gStartx = bIdxX * 128; // starting index of block on N axis int gStarty = bIdxY * 128; // starting index of block on M axis if (gStartx > N || gStarty > M){ return; } // These are used to re-arrange threads into different shapes // for example: (256) -> (16, 16) -> (8, 32) -> (32, 8) int vx = tid % 16; int vy = tid / 16; int wx = tid % 32; // thread idx in warp int wy = tid / 32; // warp id int dx = tid % 8; int dy = tid / 8; __shared__ _VOLATILE_ float aSmem[16][128+4]; __shared__ _VOLATILE_ float bSmem[16][128+4]; float aBuffer1[4]; float bBuffer1[4]; float aBuffer2[4]; float bBuffer2[4]; float8 cCache[8]; init_cCache(cCache); // Load initial 16 x 128 tile of A and B to buffer1 and buffer2 load_ab_nt( A, B, aBuffer1, aBuffer2, bBuffer1, bBuffer2, bid, gStartx, gStarty, 0, M, N, K ); // Number of main loop iterations is ceil(k/16) int nIt = (K + 16 - 1) / 16; #pragma unroll for (int itr=0; itr<nIt; itr++){ int gStartk = itr * 16; buffer2smem_16_nt( aSmem, bSmem, aBuffer1, aBuffer2, bBuffer1, bBuffer2 ); if (likely(itr < nIt - 1)){ load_ab_nt( A, B, aBuffer1, aBuffer2, bBuffer1, bBuffer2, bid, gStartx, gStarty, gStartk + 16, M, N, K ); } // synchroznie threads in order make sure tiles of A and B are fully // loaded to shared memory. __syncthreads(); thread_matmul_16_v3(aSmem, bSmem, cCache, vx, vy); // synchronize threads to signal that shared memory is consumed. __syncthreads(); } // TopK sort along DIM if (DIM == 1){ topk_dim_1( cCache, aSmem, bSmem, values, indices, mutex, gStartx, gStarty, bid, M, N, Q); } else if (DIM == 2){ topk_dim_2( cCache, aSmem, bSmem, values, indices, mutex, gStartx, gStarty, bid, M, N, Q); } } extern "C" __global__ void topk_bmm_nn( const float* __restrict__ A, const float* __restrict__ B, float* values, ll_t* indices, unsigned int* mutex, int M, int N, int K, int DIM, int Q ){ int tid = threadIdx.x; // thread idx int bid = blockIdx.z; // batch idx // Neighboring blocks are grouped into PN x PM block groups in order to increase // L1 cache hit rate // There are ceil(M/PM) x ceil(N/PN) block groups in total. // Blocks within block groups are indexed with blockIdx.x % PN and blockIdx.x / PN int px = blockIdx.x % _PN_; int py = blockIdx.x / _PN_; int bDimX = (N + (128*_PN_) - 1) / (128*_PN_); int bDimY = (M + (128*_PM_) - 1) / (128*_PM_); int bIdxX = (blockIdx.y % bDimX) * _PN_ + px; int bIdxY = (blockIdx.y / bDimX) * _PM_ + py; int gStartx = bIdxX * 128; // starting index of block on N axis int gStarty = bIdxY * 128; // starting index of block on M axis if (gStartx > N || gStarty > M){ return; } // These are used to re-arrange threads into different shapes // for example: (256) -> (16, 16) -> (8, 32) -> (32, 8) int vx = tid % 16; int vy = tid / 16; int wx = tid % 32; // thread idx in warp int wy = tid / 32; // warp id int dx = tid % 8; int dy = tid / 8; __shared__ _VOLATILE_ float aSmem[16][128+4]; __shared__ _VOLATILE_ float bSmem[16][128+4]; float aBuffer1[4]; float bBuffer1[4]; float aBuffer2[4]; float bBuffer2[4]; float8 cCache[8]; init_cCache(cCache); // Load initial 16 x 128 tile of A and B to buffer1 and buffer2 load_ab_nn( A, B, aBuffer1, aBuffer2, bBuffer1, bBuffer2, bid, gStartx, gStarty, 0, M, N, K ); // Number of main loop iterations is ceil(k/16) int nIt = (K + 16 - 1) / 16; #pragma unroll for (int itr=0; itr<nIt; itr++){ int gStartk = itr * 16; buffer2smem_16_nn( aSmem, bSmem, aBuffer1, aBuffer2, bBuffer1, bBuffer2 ); if (likely(itr < nIt - 1)){ load_ab_nn( A, B, aBuffer1, aBuffer2, bBuffer1, bBuffer2, bid, gStartx, gStarty, gStartk + 16, M, N, K ); } // synchroznie threads in order make sure tiles of A and B are fully // loaded to shared memory. __syncthreads(); thread_matmul_16_v3(aSmem, bSmem, cCache, vx, vy); // synchronize threads to signal that shared memory is consumed. __syncthreads(); } // TopK sort along DIM if (DIM == 1){ topk_dim_1( cCache, aSmem, bSmem, values, indices, mutex, gStartx, gStarty, bid, M, N, Q); } else if (DIM == 2){ topk_dim_2( cCache, aSmem, bSmem, values, indices, mutex, gStartx, gStarty, bid, M, N, Q); } } extern "C" __global__ void topk_bmm_tt( const float* __restrict__ A, const float* __restrict__ B, float* values, ll_t* indices, unsigned int* mutex, int M, int N, int K, int DIM, int Q ){ int tid = threadIdx.x; // thread idx int bid = blockIdx.z; // batch idx // Neighboring blocks are grouped into PN x PM block groups in order to increase // L1 cache hit rate // There are ceil(M/PM) x ceil(N/PN) block groups in total. // Blocks within block groups are indexed with blockIdx.x % PN and blockIdx.x / PN int px = blockIdx.x % _PN_; int py = blockIdx.x / _PN_; int bDimX = (N + (128*_PN_) - 1) / (128*_PN_); int bDimY = (M + (128*_PM_) - 1) / (128*_PM_); int bIdxX = (blockIdx.y % bDimX) * _PN_ + px; int bIdxY = (blockIdx.y / bDimX) * _PM_ + py; int gStartx = bIdxX * 128; // starting index of block on N axis int gStarty = bIdxY * 128; // starting index of block on M axis if (gStartx > N || gStarty > M){ return; } // These are used to re-arrange threads into different shapes // for example: (256) -> (16, 16) -> (8, 32) -> (32, 8) int vx = tid % 16; int vy = tid / 16; int wx = tid % 32; // thread idx in warp int wy = tid / 32; // warp id int dx = tid % 8; int dy = tid / 8; __shared__ _VOLATILE_ float aSmem[16][128+4]; __shared__ _VOLATILE_ float bSmem[16][128+4]; float aBuffer1[4]; float bBuffer1[4]; float aBuffer2[4]; float bBuffer2[4]; float8 cCache[8]; init_cCache(cCache); // Load initial 16 x 128 tile of A and B to buffer1 and buffer2 load_ab_tt( A, B, aBuffer1, aBuffer2, bBuffer1, bBuffer2, bid, gStartx, gStarty, 0, M, N, K ); // Number of main loop iterations is ceil(k/16) int nIt = (K + 16 - 1) / 16; #pragma unroll for (int itr=0; itr<nIt; itr++){ int gStartk = itr * 16; buffer2smem_16_tt( aSmem, bSmem, aBuffer1, aBuffer2, bBuffer1, bBuffer2 ); if (likely(itr < nIt - 1)){ load_ab_tt( A, B, aBuffer1, aBuffer2, bBuffer1, bBuffer2, bid, gStartx, gStarty, gStartk + 16, M, N, K ); } // synchroznie threads in order make sure tiles of A and B are fully // loaded to shared memory. __syncthreads(); thread_matmul_16_v3(aSmem, bSmem, cCache, vx, vy); // synchronize threads to signal that shared memory is consumed. __syncthreads(); } // TopK sort along DIM if (DIM == 1){ topk_dim_1( cCache, aSmem, bSmem, values, indices, mutex, gStartx, gStarty, bid, M, N, Q); } else if (DIM == 2){ topk_dim_2( cCache, aSmem, bSmem, values, indices, mutex, gStartx, gStarty, bid, M, N, Q); } }
7c9e3ba4e0fe09257447a29a97a107f46260ee70.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "includes.h" // filename: eeTanh.cu // a simple CUDA kernel to square the elements of a matrix extern "C" // ensure function name to be exactly "eeTanh" { } __global__ void normLogErrDeriv(int N, int M, float *A, float *Y, float *out) { int i = blockIdx.x * blockDim.x + threadIdx.x; int j = blockIdx.y * blockDim.y + threadIdx.y; int index = j*N + i; int L = N*M; if (i < N && j < M) { // A2 in this case is stored in the doubled rows of A, the length of A is // doublt that of Y, out is the same length as A and will store both parts of the derivative float a = __expf(__fmul_rn(2.0, A[index+L])); float b = __fsub_rn(A[index], Y[index]); out[index] = __fmul_rn(b, a); out[index+L] = __fsub_rn(__fmul_rn(out[index], b), 1.0); } }
7c9e3ba4e0fe09257447a29a97a107f46260ee70.cu
#include "includes.h" // filename: eeTanh.cu // a simple CUDA kernel to square the elements of a matrix extern "C" // ensure function name to be exactly "eeTanh" { } __global__ void normLogErrDeriv(int N, int M, float *A, float *Y, float *out) { int i = blockIdx.x * blockDim.x + threadIdx.x; int j = blockIdx.y * blockDim.y + threadIdx.y; int index = j*N + i; int L = N*M; if (i < N && j < M) { // A2 in this case is stored in the doubled rows of A, the length of A is // doublt that of Y, out is the same length as A and will store both parts of the derivative float a = __expf(__fmul_rn(2.0, A[index+L])); float b = __fsub_rn(A[index], Y[index]); out[index] = __fmul_rn(b, a); out[index+L] = __fsub_rn(__fmul_rn(out[index], b), 1.0); } }
3834503ed5196dfe08fe98812e2a473f41c0163b.hip
// !!! This is a file automatically generated by hipify!!! /* * Copyright 2011-2015 Maxim Milakov * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "max_subsampling_layer_updater_schema.h" #include "../neural_network_exception.h" #include "../max_subsampling_layer.h" #include "max_subsampling_layer_updater_hip.cuh" #include "max_subsampling_layer_cudnn_updater_cuda.h" #include <boost/format.hpp> namespace nnforge { namespace cuda { max_subsampling_layer_updater_schema::max_subsampling_layer_updater_schema() { } max_subsampling_layer_updater_schema::~max_subsampling_layer_updater_schema() { } layer_updater_schema::ptr max_subsampling_layer_updater_schema::create_specific() const { return layer_updater_schema::ptr(new max_subsampling_layer_updater_schema()); } std::string max_subsampling_layer_updater_schema::get_type_name() const { return max_subsampling_layer::layer_type_name; } layer_updater_cuda::ptr max_subsampling_layer_updater_schema::create_updater_specific( const std::vector<layer_configuration_specific>& input_configuration_specific_list, const layer_configuration_specific& output_configuration_specific) const { layer_updater_cuda::ptr res; nnforge_shared_ptr<const max_subsampling_layer> layer_derived = nnforge_dynamic_pointer_cast<const max_subsampling_layer>(layer_schema); if (layer_derived->tiling) throw neural_network_exception("There is no CUDA updater for max subsampling layer with tiling"); switch (output_configuration_specific.dimension_sizes.size()) { case 1: res = layer_updater_cuda::ptr(new max_subsampling_layer_updater_cuda<1>()); break; case 2: res = layer_updater_cuda::ptr(new max_subsampling_layer_updater_cuda<2>()); //res = layer_updater_cuda::ptr(new max_subsampling_layer_cudnn_updater_cuda()); break; case 3: res = layer_updater_cuda::ptr(new max_subsampling_layer_updater_cuda<3>()); break; case 4: res = layer_updater_cuda::ptr(new max_subsampling_layer_updater_cuda<4>()); break; default: throw neural_network_exception((boost::format("No CUDA updater for the max subsampling layer of %1% dimensions") % output_configuration_specific.dimension_sizes.size()).str()); } return res; } } }
3834503ed5196dfe08fe98812e2a473f41c0163b.cu
/* * Copyright 2011-2015 Maxim Milakov * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "max_subsampling_layer_updater_schema.h" #include "../neural_network_exception.h" #include "../max_subsampling_layer.h" #include "max_subsampling_layer_updater_cuda.cuh" #include "max_subsampling_layer_cudnn_updater_cuda.h" #include <boost/format.hpp> namespace nnforge { namespace cuda { max_subsampling_layer_updater_schema::max_subsampling_layer_updater_schema() { } max_subsampling_layer_updater_schema::~max_subsampling_layer_updater_schema() { } layer_updater_schema::ptr max_subsampling_layer_updater_schema::create_specific() const { return layer_updater_schema::ptr(new max_subsampling_layer_updater_schema()); } std::string max_subsampling_layer_updater_schema::get_type_name() const { return max_subsampling_layer::layer_type_name; } layer_updater_cuda::ptr max_subsampling_layer_updater_schema::create_updater_specific( const std::vector<layer_configuration_specific>& input_configuration_specific_list, const layer_configuration_specific& output_configuration_specific) const { layer_updater_cuda::ptr res; nnforge_shared_ptr<const max_subsampling_layer> layer_derived = nnforge_dynamic_pointer_cast<const max_subsampling_layer>(layer_schema); if (layer_derived->tiling) throw neural_network_exception("There is no CUDA updater for max subsampling layer with tiling"); switch (output_configuration_specific.dimension_sizes.size()) { case 1: res = layer_updater_cuda::ptr(new max_subsampling_layer_updater_cuda<1>()); break; case 2: res = layer_updater_cuda::ptr(new max_subsampling_layer_updater_cuda<2>()); //res = layer_updater_cuda::ptr(new max_subsampling_layer_cudnn_updater_cuda()); break; case 3: res = layer_updater_cuda::ptr(new max_subsampling_layer_updater_cuda<3>()); break; case 4: res = layer_updater_cuda::ptr(new max_subsampling_layer_updater_cuda<4>()); break; default: throw neural_network_exception((boost::format("No CUDA updater for the max subsampling layer of %1% dimensions") % output_configuration_specific.dimension_sizes.size()).str()); } return res; } } }
983a8a6edbea2da6321409c846c66fa33eb86033.hip
// !!! This is a file automatically generated by hipify!!! /** * * bashCGPU/CUDA * https://suzukiiichiro.github.io/search/?keyword= * */ #include <iostream> #include <vector> #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include <math.h> #include <string.h> #include <time.h> #include <sys/time.h> #include <hip/hip_runtime.h> #include <hip/hip_runtime.h> #include <device_launch_parameters.h> #define THREAD_NUM 96 #define MAX 27 // //#define UINT64_C(c) c ## ULL // // unsigned long TOTAL=0; unsigned long UNIQUE=0; //GPU typedef struct local { unsigned int BOUND1,BOUND2; unsigned int TOPBIT,ENDBIT,SIDEMASK,LASTMASK; unsigned long board[MAX]; unsigned long COUNT2,COUNT4,COUNT8,TOTAL,UNIQUE; }local; // CPU / void symmetryOps(unsigned int size,struct local* l) { /** (1) 9090( 180)90(270) */ if(l->board[l->BOUND2]==1){ unsigned int ptn; unsigned int own; for(ptn=2,own=1;own<size;++own,ptn<<=1){ unsigned int bit; unsigned int you; for(bit=1,you=size-1;(l->board[you]!=ptn)&&l->board[own]>=bit;--you){ bit<<=1; } if(l->board[own]>bit){ return ; } if(l->board[own]<bit){ break; } }//end for // if(own>size-1){ l->COUNT2++; return ; }//end if }//end if /** (2) 90270 180 180 () */ // if(l->board[size-1]==l->ENDBIT){ unsigned int you; unsigned int own; for(you=size-1-1,own=1;own<=size-1;++own,--you){ unsigned int bit; unsigned int ptn; for(bit=1,ptn=l->TOPBIT;(ptn!=l->board[you])&&(l->board[own]>=bit);ptn>>=1){ bit<<=1; } if(l->board[own]>bit){ return ; } if(l->board[own]<bit){ break; } }//end for // if(own>size-1){ l->COUNT4++; return ; } }//end if /** (3)180() */ // if(l->board[l->BOUND1]==l->TOPBIT){ unsigned int ptn; unsigned int own; unsigned int you; unsigned int bit; for(ptn=l->TOPBIT>>1,own=1;own<=size-1;++own,ptn>>=1){ for(bit=1,you=0;(l->board[you]!=ptn)&&(l->board[own]>=bit);++you){ bit<<=1; } if(l->board[own]>bit){ return ; } if(l->board[own]<bit){ break; } }//end for }//end if l->COUNT8++; } // Q void symmetry_backTrack_NR(unsigned int size,unsigned int row,unsigned int _left,unsigned int _down,unsigned int _right,struct local *l) { unsigned int mask=(1<<size)-1; unsigned int down[size]; unsigned int left[size]; unsigned int right[size]; unsigned int bitmap[size]; left[row]=_left; down[row]=_down; right[row]=_right; bitmap[row]=mask&~(left[row]|down[row]|right[row]); while(row>0){ if(bitmap[row]>0){ if(row<l->BOUND1){ // bitmap[row]|=l->SIDEMASK; bitmap[row]^=l->SIDEMASK; }else if(row==l->BOUND2){ // if((down[row]&l->SIDEMASK)==0){ row--; } if((down[row]&l->SIDEMASK)!=l->SIDEMASK){ bitmap[row]&=l->SIDEMASK; } } unsigned int save_bitmap=bitmap[row]; unsigned int bit=-bitmap[row]&bitmap[row]; bitmap[row]^=bit; l->board[row]=bit; //Q if((bit&mask)!=0){ if(row==(size-1)){ if( (save_bitmap&l->LASTMASK)==0){ symmetryOps(size,l); // } row--; }else{ unsigned int n=row++; left[row]=(left[n]|bit)<<1; down[row]=(down[n]|bit); right[row]=(right[n]|bit)>>1; bitmap[row]=mask&~(left[row]|down[row]|right[row]); } }else{ row--; } }else{ row--; } }//end while } // Q void symmetry_backTrack_corner_NR(unsigned int size,unsigned int row,unsigned int _left,unsigned int _down,unsigned int _right,struct local *l) { unsigned int mask=(1<<size)-1; unsigned int bit=0; unsigned int down[size]; unsigned int left[size]; unsigned int right[size]; unsigned int bitmap[size]; left[row]=_left; down[row]=_down; right[row]=_right; bitmap[row]=mask&~(left[row]|down[row]|right[row]); while(row>=2){ if(row<l->BOUND1){ // bitmap[row]=bitmap[row]|2; // bitmap[row]=bitmap[row]^2; bitmap[row]&=~2; } if(bitmap[row]>0){ bit=-bitmap[row]&bitmap[row]; bitmap[row]^=bit; if(row==(size-1)){ l->COUNT8++; row--; }else{ unsigned int n=row++; left[row]=(left[n]|bit)<<1; down[row]=(down[n]|bit); right[row]=(right[n]|bit)>>1; l->board[row]=bit; //Q // bitmap[row]=mask&~(left[row]|down[row]|right[row]); } }else{ row--; } }//end while } // void symmetry_NR(unsigned int size,struct local* l) { l->TOTAL=l->UNIQUE=l->COUNT2=l->COUNT4=l->COUNT8=0; unsigned int bit=0; l->TOPBIT=1<<(size-1); l->ENDBIT=l->SIDEMASK=l->LASTMASK=0; l->BOUND1=2; l->BOUND2=0; l->board[0]=1; while(l->BOUND1>1&&l->BOUND1<size-1){ if(l->BOUND1<size-1){ bit=1<<l->BOUND1; l->board[1]=bit; //Q //Q symmetry_backTrack_corner_NR(size,2,(2|bit)<<1,1|bit,(2|bit)>>1,l); } l->BOUND1++; } l->TOPBIT=1<<(size-1); l->ENDBIT=l->TOPBIT>>1; l->SIDEMASK=l->TOPBIT|1; l->LASTMASK=l->TOPBIT|1; l->BOUND1=1; l->BOUND2=size-2; while(l->BOUND1>0 && l->BOUND2<size-1 && l->BOUND1<l->BOUND2){ if(l->BOUND1<l->BOUND2){ bit=1<<l->BOUND1; l->board[0]=bit; //Q //Q symmetry_backTrack_NR(size,1,bit<<1,bit,bit>>1,l); } l->BOUND1++; l->BOUND2--; l->ENDBIT=l->ENDBIT>>1; l->LASTMASK=l->LASTMASK<<1|l->LASTMASK|l->LASTMASK>>1; }//ene while UNIQUE=l->COUNT2+l->COUNT4+l->COUNT8; TOTAL=l->COUNT2*2+l->COUNT4*4+l->COUNT8*8; } // Q void symmetry_backTrack(unsigned int size,unsigned int row,unsigned int left,unsigned int down,unsigned int right,struct local* l) { unsigned int mask=(1<<size)-1; unsigned int bitmap=mask&~(left|down|right); if(row==(size-1)){ if(bitmap){ if( (bitmap&l->LASTMASK)==0){ l->board[row]=bitmap; //Q symmetryOps(size,l); // } } }else{ if(row<l->BOUND1){ bitmap=bitmap|l->SIDEMASK; bitmap=bitmap^l->SIDEMASK; }else{ if(row==l->BOUND2){ if((down&l->SIDEMASK)==0){ return; } if( (down&l->SIDEMASK)!=l->SIDEMASK){ bitmap=bitmap&l->SIDEMASK; } } } while(bitmap){ unsigned int bit=-bitmap&bitmap; bitmap=bitmap^bit; l->board[row]=bit; symmetry_backTrack(size,row+1,(left|bit)<<1,down|bit,(right|bit)>>1,l); }//end while }//end if } // Q void symmetry_backTrack_corner(unsigned int size,unsigned int row,unsigned int left,unsigned int down,unsigned int right,struct local* l) { unsigned int mask=(1<<size)-1; unsigned int bitmap=mask&~(left|down|right); unsigned int bit=0; if(row==(size-1)){ if(bitmap){ l->board[row]=bitmap; l->COUNT8++; } }else{ if(row<l->BOUND1){ // bitmap=bitmap|2; bitmap=bitmap^2; } while(bitmap){ bit=-bitmap&bitmap; bitmap=bitmap^bit; l->board[row]=bit; //Q symmetry_backTrack_corner(size,row+1,(left|bit)<<1,down|bit,(right|bit)>>1,l); } } } // void symmetry_R(unsigned int size,struct local* l) { l->TOTAL=l->UNIQUE=l->COUNT2=l->COUNT4=l->COUNT8=0; unsigned int bit=0; l->TOPBIT=1<<(size-1); l->ENDBIT=l->LASTMASK=l->SIDEMASK=0; l->BOUND1=2; l->BOUND2=0; l->board[0]=1; while(l->BOUND1>1 && l->BOUND1<size-1){ if(l->BOUND1<size-1){ bit=1<<l->BOUND1; l->board[1]=bit; //Q //Q symmetry_backTrack_corner(size,2,(2|bit)<<1,1|bit,(2|bit)>>1,l); } l->BOUND1++; }//end while l->TOPBIT=1<<(size-1); l->ENDBIT=l->TOPBIT>>1; l->SIDEMASK=l->TOPBIT|1; l->LASTMASK=l->TOPBIT|1; l->BOUND1=1; l->BOUND2=size-2; while(l->BOUND1>0 && l->BOUND2<size-1 && l->BOUND1<l->BOUND2){ if(l->BOUND1<l->BOUND2){ bit=1<<l->BOUND1; l->board[0]=bit; //Q //Q symmetry_backTrack(size,1,bit<<1,bit,bit>>1,l); } l->BOUND1++; l->BOUND2--; l->ENDBIT=l->ENDBIT>>1; l->LASTMASK=l->LASTMASK<<1|l->LASTMASK|l->LASTMASK>>1; }//ene while UNIQUE=l->COUNT2+l->COUNT4+l->COUNT8; TOTAL=l->COUNT2*2+l->COUNT4*4+l->COUNT8*8; } // GPU __host__ __device__ void GPU_symmetryOps(unsigned int size,struct local* l) { /** (1) 9090( 180)90(270) */ if(l->board[l->BOUND2]==1){ unsigned int ptn; unsigned int own; for(ptn=2,own=1;own<size;++own,ptn<<=1){ unsigned int bit; unsigned int you; for(bit=1,you=size-1;(l->board[you]!=ptn)&& l->board[own]>=bit;--you){ bit<<=1; } if(l->board[own]>bit){ return ; } if(l->board[own]<bit){ break; } }//end for // if(own>size-1){ l->COUNT2++; return ; }//end if }//end if /** (2) 90270 180 180 () */ // if(l->board[size-1]==l->ENDBIT){ unsigned int you; unsigned int own; for(you=size-1-1,own=1;own<=size-1;++own,--you){ unsigned int bit; unsigned int ptn; for(bit=1,ptn=l->TOPBIT;(ptn!=l->board[you])&&(l->board[own]>=bit);ptn>>=1){ bit<<=1; } if(l->board[own]>bit){ return ; } if(l->board[own]<bit){ break; } }//end for // if(own>size-1){ l->COUNT4++; return ; } }//end if /** (3)180() */ // if(l->board[l->BOUND1]==l->TOPBIT){ unsigned int ptn; unsigned int own; unsigned int you; unsigned int bit; for(ptn=l->TOPBIT>>1,own=1;own<=size-1;++own,ptn>>=1){ for(bit=1,you=0;(l->board[you]!=ptn)&&(l->board[own]>=bit);++you){ bit<<=1; } if(l->board[own]>bit){ return ; } if(l->board[own]<bit){ break; } }//end for }//end if l->COUNT8++; } // GPU Q __host__ __device__ void GPU_symmetry_backTrack(unsigned int size,unsigned int row,unsigned int left,unsigned int down,unsigned int right,struct local* l) { unsigned int mask=(1<<size)-1; unsigned int bitmap=mask&~(left|down|right); if(row==(size-1)){ if(bitmap){ if( (bitmap& l->LASTMASK)==0){ l->board[row]=bitmap; //Q GPU_symmetryOps(size,l); // } } }else{ if(row<l->BOUND1){ bitmap=bitmap|l->SIDEMASK; bitmap=bitmap^l->SIDEMASK; }else{ if(row==l->BOUND2){ if((down&l->SIDEMASK)==0){ return; } if( (down&l->SIDEMASK)!=l->SIDEMASK){ bitmap=bitmap&l->SIDEMASK; } } } while(bitmap){ unsigned int bit=-bitmap&bitmap; bitmap=bitmap^bit; l->board[row]=bit; GPU_symmetry_backTrack(size,row+1,(left|bit)<<1,down|bit,(right|bit)>>1,l); }//end while }//end if } // GPU Q __host__ __device__ void GPU_symmetry_backTrack_corner(unsigned int size,unsigned int row,unsigned int left,unsigned int down,unsigned int right,struct local* l) { unsigned int mask=(1<<size)-1; unsigned int bitmap=mask&~(left|down|right); unsigned int bit=0; if(row==(size-1)){ if(bitmap){ l->board[row]=bitmap; l->COUNT8++; } }else{ if(row<l->BOUND1){ // bitmap=bitmap|2; bitmap=bitmap^2; } while(bitmap){ bit=-bitmap&bitmap; bitmap=bitmap^bit; l->board[row]=bit; //Q GPU_symmetry_backTrack_corner(size,row+1,(left|bit)<<1,down|bit,(right|bit)>>1,l); } } } // GPU __host__ __device__ long GPU_symmetry_solve_nodeLayer(unsigned int size,unsigned long left,unsigned long down,unsigned long right) { long mask=(1<<size)-1; long counter=0; if (down==mask) { // down return 1; } long bit=0; for(long bitmap=mask&~(left|down|right);bitmap;bitmap^=bit){ bit=-bitmap&bitmap; counter += GPU_symmetry_solve_nodeLayer(size,(left|bit)>>1,(down|bit),(right|bit)<< 1); } return counter; } // GPU __host__ __device__ void GPU_symmetry_R(unsigned int size,struct local* l) { l->TOTAL=l->UNIQUE=l->COUNT2=l->COUNT4=l->COUNT8=0; unsigned int bit=0; l->TOPBIT=1<<(size-1); l->ENDBIT=l->LASTMASK=l->SIDEMASK=0; l->BOUND1=2; l->BOUND2=0; l->board[0]=1; while(l->BOUND1>1 && l->BOUND1<size-1){ if(l->BOUND1<size-1){ bit=1<<l->BOUND1; l->board[1]=bit; //Q //Q GPU_symmetry_backTrack_corner(size,2,(2|bit)<<1,1|bit,(2|bit)>>1,l); } l->BOUND1++; }//end while l->TOPBIT=1<<(size-1); l->ENDBIT=l->TOPBIT>>1; l->SIDEMASK=l->TOPBIT|1; l->LASTMASK=l->TOPBIT|1; l->BOUND1=1; l->BOUND2=size-2; while(l->BOUND1>0 && l->BOUND2<size-1 && l->BOUND1<l->BOUND2){ if(l->BOUND1<l->BOUND2){ bit=1<<l->BOUND1; l->board[0]=bit; //Q //Q GPU_symmetry_backTrack(size,1,bit<<1,bit,bit>>1,l); } l->BOUND1++; l->BOUND2--; l->ENDBIT=l->ENDBIT>>1; l->LASTMASK=l->LASTMASK<<1|l->LASTMASK|l->LASTMASK>>1; }//ene while l->UNIQUE=l->COUNT2+l->COUNT4+l->COUNT8; l->TOTAL=l->COUNT2*2+l->COUNT4*4+l->COUNT8*8; } // i i __global__ void dim_nodeLayer(unsigned int size,long* nodes,long* solutions,unsigned int numElements) { int i=blockDim.x * blockIdx.x+threadIdx.x; if(i<numElements){ solutions[i]=GPU_symmetry_solve_nodeLayer(size,nodes[3 * i],nodes[3 * i + 1],nodes[3 * i + 2]); } } // 0bit int countBits_nodeLayer(long n) { int counter=0; while (n){ n &= (n-1); // counter++; } return counter; } // k long kLayer_nodeLayer(int size,std::vector<long>& nodes,int k,long left,long down,long right) { long counter=0; long mask=(1<<size)-1; // down if (countBits_nodeLayer(down) == k) { nodes.push_back(left); nodes.push_back(down); nodes.push_back(right); return 1; } long bit=0; for(long bitmap=mask&~(left|down|right);bitmap;bitmap^=bit){ bit=-bitmap&bitmap; // counter+=kLayer_nodeLayer(size,nodes,k,(left|bit)>>1,(down|bit),(right|bit)<<1); } return counter; } // k std::vector<long> kLayer_nodeLayer(int size,int k) { std::vector<long> nodes{}; kLayer_nodeLayer(size,nodes,k,0,0,0); return nodes; } // void symmetry_build_nodeLayer(int size) { // 3 //3 // 2 // 4N169844 /* local l[MAX]; // */ //std::vector<long> nodes=kLayer_nodeLayer(size,4,&l[0]); std::vector<long> nodes=kLayer_nodeLayer(size,4); // // size_t nodeSize=nodes.size() * sizeof(long); long* hostNodes=(long*)malloc(nodeSize); hostNodes=&nodes[0]; long* deviceNodes=NULL; hipMalloc((void**)&deviceNodes,nodeSize); hipMemcpy(deviceNodes,hostNodes,nodeSize,hipMemcpyHostToDevice); // long* deviceSolutions=NULL; // 3 int numSolutions=nodes.size() / 6; size_t solutionSize=numSolutions * sizeof(long); hipMalloc((void**)&deviceSolutions,solutionSize); // CUDA int threadsPerBlock=256; int blocksPerGrid=(numSolutions + threadsPerBlock - 1) / threadsPerBlock; hipLaunchKernelGGL(( dim_nodeLayer) , dim3(blocksPerGrid),dim3(threadsPerBlock) , 0, 0, size,deviceNodes,deviceSolutions,numSolutions); // long* hostSolutions=(long*)malloc(solutionSize); hipMemcpy(hostSolutions,deviceSolutions,solutionSize,hipMemcpyDeviceToHost); // long solutions=0; for(long i=0;i<numSolutions;i++){ solutions += 2*hostSolutions[i]; // Symmetry } // TOTAL=solutions; } // CUDA bool InitCUDA() { int count; hipGetDeviceCount(&count); if(count==0){fprintf(stderr,"There is no device.\n");return false;} int i; for(i=0;i<count;i++){ struct hipDeviceProp_t prop; if(hipGetDeviceProperties(&prop,i)==hipSuccess){if(prop.major>=1){break;} } } if(i==count){fprintf(stderr,"There is no device supporting CUDA 1.x.\n");return false;} hipSetDevice(i); return true; } // int main(int argc,char** argv) { bool cpu=false,cpur=false,gpu=false,gpuNodeLayer=false; int argstart=2; if(argc>=2&&argv[1][0]=='-'){ if(argv[1][1]=='c'||argv[1][1]=='C'){cpu=true;} else if(argv[1][1]=='r'||argv[1][1]=='R'){cpur=true;} else if(argv[1][1]=='c'||argv[1][1]=='C'){cpu=true;} else if(argv[1][1]=='g'||argv[1][1]=='G'){gpu=true;} else if(argv[1][1]=='n'||argv[1][1]=='N'){gpuNodeLayer=true;} else{ gpuNodeLayer=true; } //gpu argstart=2; } if(argc<argstart){ printf("Usage: %s [-c|-g|-r|-s] n steps\n",argv[0]); printf(" -r: CPU \n"); printf(" -c: CPU \n"); printf(" -g: GPU \n"); printf(" -n: GPU \n"); } if(cpur){ printf("\n\n \n"); } else if(cpu){ printf("\n\n \n"); } else if(gpu){ printf("\n\n GPU\n"); } else if(gpuNodeLayer){ printf("\n\n GPU \n"); } if(cpu||cpur) { int min=4; int targetN=17; struct timeval t0; struct timeval t1; printf("%s\n"," N: Total Unique dd:hh:mm:ss.ms"); for(int size=min;size<=targetN;size++){ local l; gettimeofday(&t0,NULL);// if(cpur){ // symmetry_R(size,&l); } if(cpu){ // symmetry_NR(size,&l); } // gettimeofday(&t1,NULL);// int ss;int ms;int dd; if(t1.tv_usec<t0.tv_usec) { dd=(t1.tv_sec-t0.tv_sec-1)/86400; ss=(t1.tv_sec-t0.tv_sec-1)%86400; ms=(1000000+t1.tv_usec-t0.tv_usec+500)/10000; }else { dd=(t1.tv_sec-t0.tv_sec)/86400; ss=(t1.tv_sec-t0.tv_sec)%86400; ms=(t1.tv_usec-t0.tv_usec+500)/10000; }//end if int hh=ss/3600; int mm=(ss-hh*3600)/60; ss%=60; printf("%2d:%13ld%12ld%8.2d:%02d:%02d:%02d.%02d\n",size,TOTAL,UNIQUE,dd,hh,mm,ss,ms); } //end for }//end if if(gpu||gpuNodeLayer) { if(!InitCUDA()){return 0;} /* int steps=24576; */ int min=4; int targetN=21; struct timeval t0; struct timeval t1; printf("%s\n"," N: Total Unique dd:hh:mm:ss.ms"); for(int size=min;size<=targetN;size++){ gettimeofday(&t0,NULL); // if(gpu){ TOTAL=UNIQUE=0; local l[MAX]; GPU_symmetry_R(size,&l[0]); TOTAL=l->TOTAL; UNIQUE=l->UNIQUE; }else if(gpuNodeLayer){ TOTAL=UNIQUE=0; symmetry_build_nodeLayer(size); // } gettimeofday(&t1,NULL); // int ss;int ms;int dd; if (t1.tv_usec<t0.tv_usec) { dd=(int)(t1.tv_sec-t0.tv_sec-1)/86400; ss=(t1.tv_sec-t0.tv_sec-1)%86400; ms=(1000000+t1.tv_usec-t0.tv_usec+500)/10000; } else { dd=(int)(t1.tv_sec-t0.tv_sec)/86400; ss=(t1.tv_sec-t0.tv_sec)%86400; ms=(t1.tv_usec-t0.tv_usec+500)/10000; }//end if int hh=ss/3600; int mm=(ss-hh*3600)/60; ss%=60; printf("%2d:%13ld%12ld%8.2d:%02d:%02d:%02d.%02d\n",size,TOTAL,UNIQUE,dd,hh,mm,ss,ms); }//end for }//end if return 0; }
983a8a6edbea2da6321409c846c66fa33eb86033.cu
/** * * bash版対称解除法のC言語版のGPU/CUDA移植版 * 詳しい説明はこちらをどうぞ https://suzukiiichiro.github.io/search/?keyword=Nクイーン問題 * */ #include <iostream> #include <vector> #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include <math.h> #include <string.h> #include <time.h> #include <sys/time.h> #include <cuda.h> #include <cuda_runtime.h> #include <device_launch_parameters.h> #define THREAD_NUM 96 #define MAX 27 // システムによって以下のマクロが必要であればコメントを外してください。 //#define UINT64_C(c) c ## ULL // // グローバル変数 unsigned long TOTAL=0; unsigned long UNIQUE=0; //GPU で使うローカル構造体 typedef struct local { unsigned int BOUND1,BOUND2; unsigned int TOPBIT,ENDBIT,SIDEMASK,LASTMASK; unsigned long board[MAX]; unsigned long COUNT2,COUNT4,COUNT8,TOTAL,UNIQUE; }local; // CPU 再帰/非再帰 対称解除法 void symmetryOps(unsigned int size,struct local* l) { /** 2.クイーンが右上角以外にある場合、 (1) 90度回転させてオリジナルと同型になる場合、さらに90度回転(オリジナルか ら180度回転)させても、さらに90度回転(オリジナルから270度回転)させてもオリ ジナルと同型になる。 こちらに該当するユニーク解が属するグループの要素数は、左右反転させたパター ンを加えて2個しかありません。 */ if(l->board[l->BOUND2]==1){ unsigned int ptn; unsigned int own; for(ptn=2,own=1;own<size;++own,ptn<<=1){ unsigned int bit; unsigned int you; for(bit=1,you=size-1;(l->board[you]!=ptn)&&l->board[own]>=bit;--you){ bit<<=1; } if(l->board[own]>bit){ return ; } if(l->board[own]<bit){ break; } }//end for // 90度回転して同型なら180度回転しても270度回転しても同型である if(own>size-1){ l->COUNT2++; return ; }//end if }//end if /** 2.クイーンが右上角以外にある場合、 (2) 90度回転させてオリジナルと異なる場合は、270度回転させても必ずオリジナル とは異なる。ただし、180度回転させた場合はオリジナルと同型になることも有り得 る。こちらに該当するユニーク解が属するグループの要素数は、180度回転させて同 型になる場合は4個(左右反転×縦横回転) */ //180度回転 if(l->board[size-1]==l->ENDBIT){ unsigned int you; unsigned int own; for(you=size-1-1,own=1;own<=size-1;++own,--you){ unsigned int bit; unsigned int ptn; for(bit=1,ptn=l->TOPBIT;(ptn!=l->board[you])&&(l->board[own]>=bit);ptn>>=1){ bit<<=1; } if(l->board[own]>bit){ return ; } if(l->board[own]<bit){ break; } }//end for //90度回転が同型でなくても180度回転が同型であることもある if(own>size-1){ l->COUNT4++; return ; } }//end if /** 2.クイーンが右上角以外にある場合、 (3)180度回転させてもオリジナルと異なる場合は、8個(左右反転×縦横回転×上下反転) */ //270度回転 if(l->board[l->BOUND1]==l->TOPBIT){ unsigned int ptn; unsigned int own; unsigned int you; unsigned int bit; for(ptn=l->TOPBIT>>1,own=1;own<=size-1;++own,ptn>>=1){ for(bit=1,you=0;(l->board[you]!=ptn)&&(l->board[own]>=bit);++you){ bit<<=1; } if(l->board[own]>bit){ return ; } if(l->board[own]<bit){ break; } }//end for }//end if l->COUNT8++; } // 非再帰 角にQがないときのバックトラック void symmetry_backTrack_NR(unsigned int size,unsigned int row,unsigned int _left,unsigned int _down,unsigned int _right,struct local *l) { unsigned int mask=(1<<size)-1; unsigned int down[size]; unsigned int left[size]; unsigned int right[size]; unsigned int bitmap[size]; left[row]=_left; down[row]=_down; right[row]=_right; bitmap[row]=mask&~(left[row]|down[row]|right[row]); while(row>0){ if(bitmap[row]>0){ if(row<l->BOUND1){ //上部サイド枝刈り bitmap[row]|=l->SIDEMASK; bitmap[row]^=l->SIDEMASK; }else if(row==l->BOUND2){ //下部サイド枝刈り if((down[row]&l->SIDEMASK)==0){ row--; } if((down[row]&l->SIDEMASK)!=l->SIDEMASK){ bitmap[row]&=l->SIDEMASK; } } unsigned int save_bitmap=bitmap[row]; unsigned int bit=-bitmap[row]&bitmap[row]; bitmap[row]^=bit; l->board[row]=bit; //Qを配置 if((bit&mask)!=0){ if(row==(size-1)){ if( (save_bitmap&l->LASTMASK)==0){ symmetryOps(size,l); //対称解除法 } row--; }else{ unsigned int n=row++; left[row]=(left[n]|bit)<<1; down[row]=(down[n]|bit); right[row]=(right[n]|bit)>>1; bitmap[row]=mask&~(left[row]|down[row]|right[row]); } }else{ row--; } }else{ row--; } }//end while } // 非再帰 角にQがあるときのバックトラック void symmetry_backTrack_corner_NR(unsigned int size,unsigned int row,unsigned int _left,unsigned int _down,unsigned int _right,struct local *l) { unsigned int mask=(1<<size)-1; unsigned int bit=0; unsigned int down[size]; unsigned int left[size]; unsigned int right[size]; unsigned int bitmap[size]; left[row]=_left; down[row]=_down; right[row]=_right; bitmap[row]=mask&~(left[row]|down[row]|right[row]); while(row>=2){ if(row<l->BOUND1){ // bitmap[row]=bitmap[row]|2; // bitmap[row]=bitmap[row]^2; bitmap[row]&=~2; } if(bitmap[row]>0){ bit=-bitmap[row]&bitmap[row]; bitmap[row]^=bit; if(row==(size-1)){ l->COUNT8++; row--; }else{ unsigned int n=row++; left[row]=(left[n]|bit)<<1; down[row]=(down[n]|bit); right[row]=(right[n]|bit)>>1; l->board[row]=bit; //Qを配置 //クイーンが配置可能な位置を表す bitmap[row]=mask&~(left[row]|down[row]|right[row]); } }else{ row--; } }//end while } // 非再帰 対称解除法 void symmetry_NR(unsigned int size,struct local* l) { l->TOTAL=l->UNIQUE=l->COUNT2=l->COUNT4=l->COUNT8=0; unsigned int bit=0; l->TOPBIT=1<<(size-1); l->ENDBIT=l->SIDEMASK=l->LASTMASK=0; l->BOUND1=2; l->BOUND2=0; l->board[0]=1; while(l->BOUND1>1&&l->BOUND1<size-1){ if(l->BOUND1<size-1){ bit=1<<l->BOUND1; l->board[1]=bit; //2行目にQを配置 //角にQがあるときのバックトラック symmetry_backTrack_corner_NR(size,2,(2|bit)<<1,1|bit,(2|bit)>>1,l); } l->BOUND1++; } l->TOPBIT=1<<(size-1); l->ENDBIT=l->TOPBIT>>1; l->SIDEMASK=l->TOPBIT|1; l->LASTMASK=l->TOPBIT|1; l->BOUND1=1; l->BOUND2=size-2; while(l->BOUND1>0 && l->BOUND2<size-1 && l->BOUND1<l->BOUND2){ if(l->BOUND1<l->BOUND2){ bit=1<<l->BOUND1; l->board[0]=bit; //Qを配置 //角にQがないときのバックトラック symmetry_backTrack_NR(size,1,bit<<1,bit,bit>>1,l); } l->BOUND1++; l->BOUND2--; l->ENDBIT=l->ENDBIT>>1; l->LASTMASK=l->LASTMASK<<1|l->LASTMASK|l->LASTMASK>>1; }//ene while UNIQUE=l->COUNT2+l->COUNT4+l->COUNT8; TOTAL=l->COUNT2*2+l->COUNT4*4+l->COUNT8*8; } // 再帰 角にQがないときのバックトラック void symmetry_backTrack(unsigned int size,unsigned int row,unsigned int left,unsigned int down,unsigned int right,struct local* l) { unsigned int mask=(1<<size)-1; unsigned int bitmap=mask&~(left|down|right); if(row==(size-1)){ if(bitmap){ if( (bitmap&l->LASTMASK)==0){ l->board[row]=bitmap; //Qを配置 symmetryOps(size,l); //対称解除 } } }else{ if(row<l->BOUND1){ bitmap=bitmap|l->SIDEMASK; bitmap=bitmap^l->SIDEMASK; }else{ if(row==l->BOUND2){ if((down&l->SIDEMASK)==0){ return; } if( (down&l->SIDEMASK)!=l->SIDEMASK){ bitmap=bitmap&l->SIDEMASK; } } } while(bitmap){ unsigned int bit=-bitmap&bitmap; bitmap=bitmap^bit; l->board[row]=bit; symmetry_backTrack(size,row+1,(left|bit)<<1,down|bit,(right|bit)>>1,l); }//end while }//end if } // 再帰 角にQがあるときのバックトラック void symmetry_backTrack_corner(unsigned int size,unsigned int row,unsigned int left,unsigned int down,unsigned int right,struct local* l) { unsigned int mask=(1<<size)-1; unsigned int bitmap=mask&~(left|down|right); unsigned int bit=0; if(row==(size-1)){ if(bitmap){ l->board[row]=bitmap; l->COUNT8++; } }else{ if(row<l->BOUND1){ //枝刈り bitmap=bitmap|2; bitmap=bitmap^2; } while(bitmap){ bit=-bitmap&bitmap; bitmap=bitmap^bit; l->board[row]=bit; //Qを配置 symmetry_backTrack_corner(size,row+1,(left|bit)<<1,down|bit,(right|bit)>>1,l); } } } // 再帰 対称解除法 void symmetry_R(unsigned int size,struct local* l) { l->TOTAL=l->UNIQUE=l->COUNT2=l->COUNT4=l->COUNT8=0; unsigned int bit=0; l->TOPBIT=1<<(size-1); l->ENDBIT=l->LASTMASK=l->SIDEMASK=0; l->BOUND1=2; l->BOUND2=0; l->board[0]=1; while(l->BOUND1>1 && l->BOUND1<size-1){ if(l->BOUND1<size-1){ bit=1<<l->BOUND1; l->board[1]=bit; //2行目にQを配置 //角にQがあるときのバックトラック symmetry_backTrack_corner(size,2,(2|bit)<<1,1|bit,(2|bit)>>1,l); } l->BOUND1++; }//end while l->TOPBIT=1<<(size-1); l->ENDBIT=l->TOPBIT>>1; l->SIDEMASK=l->TOPBIT|1; l->LASTMASK=l->TOPBIT|1; l->BOUND1=1; l->BOUND2=size-2; while(l->BOUND1>0 && l->BOUND2<size-1 && l->BOUND1<l->BOUND2){ if(l->BOUND1<l->BOUND2){ bit=1<<l->BOUND1; l->board[0]=bit; //Qを配置 //角にQがないときのバックトラック symmetry_backTrack(size,1,bit<<1,bit,bit>>1,l); } l->BOUND1++; l->BOUND2--; l->ENDBIT=l->ENDBIT>>1; l->LASTMASK=l->LASTMASK<<1|l->LASTMASK|l->LASTMASK>>1; }//ene while UNIQUE=l->COUNT2+l->COUNT4+l->COUNT8; TOTAL=l->COUNT2*2+l->COUNT4*4+l->COUNT8*8; } // GPU 対称解除法 __host__ __device__ void GPU_symmetryOps(unsigned int size,struct local* l) { /** 2.クイーンが右上角以外にある場合、 (1) 90度回転させてオリジナルと同型になる場合、さらに90度回転(オリジナルか ら180度回転)させても、さらに90度回転(オリジナルから270度回転)させてもオリ ジナルと同型になる。 こちらに該当するユニーク解が属するグループの要素数は、左右反転させたパター ンを加えて2個しかありません。 */ if(l->board[l->BOUND2]==1){ unsigned int ptn; unsigned int own; for(ptn=2,own=1;own<size;++own,ptn<<=1){ unsigned int bit; unsigned int you; for(bit=1,you=size-1;(l->board[you]!=ptn)&& l->board[own]>=bit;--you){ bit<<=1; } if(l->board[own]>bit){ return ; } if(l->board[own]<bit){ break; } }//end for // 90度回転して同型なら180度回転しても270度回転しても同型である if(own>size-1){ l->COUNT2++; return ; }//end if }//end if /** 2.クイーンが右上角以外にある場合、 (2) 90度回転させてオリジナルと異なる場合は、270度回転させても必ずオリジナル とは異なる。ただし、180度回転させた場合はオリジナルと同型になることも有り得 る。こちらに該当するユニーク解が属するグループの要素数は、180度回転させて同 型になる場合は4個(左右反転×縦横回転) */ //180度回転 if(l->board[size-1]==l->ENDBIT){ unsigned int you; unsigned int own; for(you=size-1-1,own=1;own<=size-1;++own,--you){ unsigned int bit; unsigned int ptn; for(bit=1,ptn=l->TOPBIT;(ptn!=l->board[you])&&(l->board[own]>=bit);ptn>>=1){ bit<<=1; } if(l->board[own]>bit){ return ; } if(l->board[own]<bit){ break; } }//end for //90度回転が同型でなくても180度回転が同型であることもある if(own>size-1){ l->COUNT4++; return ; } }//end if /** 2.クイーンが右上角以外にある場合、 (3)180度回転させてもオリジナルと異なる場合は、8個(左右反転×縦横回転×上下反転) */ //270度回転 if(l->board[l->BOUND1]==l->TOPBIT){ unsigned int ptn; unsigned int own; unsigned int you; unsigned int bit; for(ptn=l->TOPBIT>>1,own=1;own<=size-1;++own,ptn>>=1){ for(bit=1,you=0;(l->board[you]!=ptn)&&(l->board[own]>=bit);++you){ bit<<=1; } if(l->board[own]>bit){ return ; } if(l->board[own]<bit){ break; } }//end for }//end if l->COUNT8++; } // GPU 角にQがないときのバックトラック __host__ __device__ void GPU_symmetry_backTrack(unsigned int size,unsigned int row,unsigned int left,unsigned int down,unsigned int right,struct local* l) { unsigned int mask=(1<<size)-1; unsigned int bitmap=mask&~(left|down|right); if(row==(size-1)){ if(bitmap){ if( (bitmap& l->LASTMASK)==0){ l->board[row]=bitmap; //Qを配置 GPU_symmetryOps(size,l); //対称解除 } } }else{ if(row<l->BOUND1){ bitmap=bitmap|l->SIDEMASK; bitmap=bitmap^l->SIDEMASK; }else{ if(row==l->BOUND2){ if((down&l->SIDEMASK)==0){ return; } if( (down&l->SIDEMASK)!=l->SIDEMASK){ bitmap=bitmap&l->SIDEMASK; } } } while(bitmap){ unsigned int bit=-bitmap&bitmap; bitmap=bitmap^bit; l->board[row]=bit; GPU_symmetry_backTrack(size,row+1,(left|bit)<<1,down|bit,(right|bit)>>1,l); }//end while }//end if } // GPU 角にQがあるときのバックトラック __host__ __device__ void GPU_symmetry_backTrack_corner(unsigned int size,unsigned int row,unsigned int left,unsigned int down,unsigned int right,struct local* l) { unsigned int mask=(1<<size)-1; unsigned int bitmap=mask&~(left|down|right); unsigned int bit=0; if(row==(size-1)){ if(bitmap){ l->board[row]=bitmap; l->COUNT8++; } }else{ if(row<l->BOUND1){ //枝刈り bitmap=bitmap|2; bitmap=bitmap^2; } while(bitmap){ bit=-bitmap&bitmap; bitmap=bitmap^bit; l->board[row]=bit; //Qを配置 GPU_symmetry_backTrack_corner(size,row+1,(left|bit)<<1,down|bit,(right|bit)>>1,l); } } } // GPU クイーンの効きを判定して解を返す __host__ __device__ long GPU_symmetry_solve_nodeLayer(unsigned int size,unsigned long left,unsigned long down,unsigned long right) { long mask=(1<<size)-1; long counter=0; if (down==mask) { // downがすべて専有され解が見つかる return 1; } long bit=0; for(long bitmap=mask&~(left|down|right);bitmap;bitmap^=bit){ bit=-bitmap&bitmap; counter += GPU_symmetry_solve_nodeLayer(size,(left|bit)>>1,(down|bit),(right|bit)<< 1); } return counter; } // GPU 対称解除法 __host__ __device__ void GPU_symmetry_R(unsigned int size,struct local* l) { l->TOTAL=l->UNIQUE=l->COUNT2=l->COUNT4=l->COUNT8=0; unsigned int bit=0; l->TOPBIT=1<<(size-1); l->ENDBIT=l->LASTMASK=l->SIDEMASK=0; l->BOUND1=2; l->BOUND2=0; l->board[0]=1; while(l->BOUND1>1 && l->BOUND1<size-1){ if(l->BOUND1<size-1){ bit=1<<l->BOUND1; l->board[1]=bit; //2行目にQを配置 //角にQがあるときのバックトラック GPU_symmetry_backTrack_corner(size,2,(2|bit)<<1,1|bit,(2|bit)>>1,l); } l->BOUND1++; }//end while l->TOPBIT=1<<(size-1); l->ENDBIT=l->TOPBIT>>1; l->SIDEMASK=l->TOPBIT|1; l->LASTMASK=l->TOPBIT|1; l->BOUND1=1; l->BOUND2=size-2; while(l->BOUND1>0 && l->BOUND2<size-1 && l->BOUND1<l->BOUND2){ if(l->BOUND1<l->BOUND2){ bit=1<<l->BOUND1; l->board[0]=bit; //Qを配置 //角にQがないときのバックトラック GPU_symmetry_backTrack(size,1,bit<<1,bit,bit>>1,l); } l->BOUND1++; l->BOUND2--; l->ENDBIT=l->ENDBIT>>1; l->LASTMASK=l->LASTMASK<<1|l->LASTMASK|l->LASTMASK>>1; }//ene while l->UNIQUE=l->COUNT2+l->COUNT4+l->COUNT8; l->TOTAL=l->COUNT2*2+l->COUNT4*4+l->COUNT8*8; } // ノードレイヤー i 番目のメンバを i 番目の部分木の解で埋める __global__ void dim_nodeLayer(unsigned int size,long* nodes,long* solutions,unsigned int numElements) { int i=blockDim.x * blockIdx.x+threadIdx.x; if(i<numElements){ solutions[i]=GPU_symmetry_solve_nodeLayer(size,nodes[3 * i],nodes[3 * i + 1],nodes[3 * i + 2]); } } // ノードレイヤー 0以外のbitをカウント int countBits_nodeLayer(long n) { int counter=0; while (n){ n &= (n-1); // 右端のゼロ以外の数字を削除 counter++; } return counter; } // ノードレイヤー ノードをk番目のレイヤーのノードで埋める long kLayer_nodeLayer(int size,std::vector<long>& nodes,int k,long left,long down,long right) { long counter=0; long mask=(1<<size)-1; // すべてのdownが埋まったら、解決策を見つけたことになる。 if (countBits_nodeLayer(down) == k) { nodes.push_back(left); nodes.push_back(down); nodes.push_back(right); return 1; } long bit=0; for(long bitmap=mask&~(left|down|right);bitmap;bitmap^=bit){ bit=-bitmap&bitmap; // 解を加えて対角線をずらす counter+=kLayer_nodeLayer(size,nodes,k,(left|bit)>>1,(down|bit),(right|bit)<<1); } return counter; } // ノードレイヤー k 番目のレイヤのすべてのノードを含むベクトルを返す std::vector<long> kLayer_nodeLayer(int size,int k) { std::vector<long> nodes{}; kLayer_nodeLayer(size,nodes,k,0,0,0); return nodes; } // ノードレイヤーの作成 void symmetry_build_nodeLayer(int size) { // ツリーの3番目のレイヤーにあるノード //(それぞれ連続する3つの数字でエンコードされる)のベクトル。 // レイヤー2以降はノードの数が均等なので、対称性を利用できる。 // レイヤ4には十分なノードがある(N16の場合、9844)。 /* local l[MAX]; // ローカル構造体 */ //std::vector<long> nodes=kLayer_nodeLayer(size,4,&l[0]); std::vector<long> nodes=kLayer_nodeLayer(size,4); // デバイスにはクラスがないので、 // 最初の要素を指定してからデバイスにコピーする。 size_t nodeSize=nodes.size() * sizeof(long); long* hostNodes=(long*)malloc(nodeSize); hostNodes=&nodes[0]; long* deviceNodes=NULL; cudaMalloc((void**)&deviceNodes,nodeSize); cudaMemcpy(deviceNodes,hostNodes,nodeSize,cudaMemcpyHostToDevice); // デバイス出力の割り当て long* deviceSolutions=NULL; // 必要なのはノードの半分だけで、各ノードは3つの整数で符号化される。 int numSolutions=nodes.size() / 6; size_t solutionSize=numSolutions * sizeof(long); cudaMalloc((void**)&deviceSolutions,solutionSize); // CUDAカーネルを起動する。 int threadsPerBlock=256; int blocksPerGrid=(numSolutions + threadsPerBlock - 1) / threadsPerBlock; dim_nodeLayer <<<blocksPerGrid,threadsPerBlock >>> (size,deviceNodes,deviceSolutions,numSolutions); // 結果をホストにコピー long* hostSolutions=(long*)malloc(solutionSize); cudaMemcpy(hostSolutions,deviceSolutions,solutionSize,cudaMemcpyDeviceToHost); // 部分解を加算し、結果を表示する。 long solutions=0; for(long i=0;i<numSolutions;i++){ solutions += 2*hostSolutions[i]; // Symmetry } // 出力 TOTAL=solutions; } // CUDA 初期化 bool InitCUDA() { int count; cudaGetDeviceCount(&count); if(count==0){fprintf(stderr,"There is no device.\n");return false;} int i; for(i=0;i<count;i++){ struct cudaDeviceProp prop; if(cudaGetDeviceProperties(&prop,i)==cudaSuccess){if(prop.major>=1){break;} } } if(i==count){fprintf(stderr,"There is no device supporting CUDA 1.x.\n");return false;} cudaSetDevice(i); return true; } //メイン int main(int argc,char** argv) { bool cpu=false,cpur=false,gpu=false,gpuNodeLayer=false; int argstart=2; if(argc>=2&&argv[1][0]=='-'){ if(argv[1][1]=='c'||argv[1][1]=='C'){cpu=true;} else if(argv[1][1]=='r'||argv[1][1]=='R'){cpur=true;} else if(argv[1][1]=='c'||argv[1][1]=='C'){cpu=true;} else if(argv[1][1]=='g'||argv[1][1]=='G'){gpu=true;} else if(argv[1][1]=='n'||argv[1][1]=='N'){gpuNodeLayer=true;} else{ gpuNodeLayer=true; } //デフォルトをgpuとする argstart=2; } if(argc<argstart){ printf("Usage: %s [-c|-g|-r|-s] n steps\n",argv[0]); printf(" -r: CPU 再帰\n"); printf(" -c: CPU 非再帰\n"); printf(" -g: GPU 再帰\n"); printf(" -n: GPU ノードレイヤー\n"); } if(cpur){ printf("\n\n対称解除法 再帰 \n"); } else if(cpu){ printf("\n\n対称解除法 非再帰 \n"); } else if(gpu){ printf("\n\n対称解除法 GPU\n"); } else if(gpuNodeLayer){ printf("\n\n対称解除法 GPUノードレイヤー \n"); } if(cpu||cpur) { int min=4; int targetN=17; struct timeval t0; struct timeval t1; printf("%s\n"," N: Total Unique dd:hh:mm:ss.ms"); for(int size=min;size<=targetN;size++){ local l; gettimeofday(&t0,NULL);//計測開始 if(cpur){ //再帰 symmetry_R(size,&l); } if(cpu){ //非再帰 symmetry_NR(size,&l); } // gettimeofday(&t1,NULL);//計測終了 int ss;int ms;int dd; if(t1.tv_usec<t0.tv_usec) { dd=(t1.tv_sec-t0.tv_sec-1)/86400; ss=(t1.tv_sec-t0.tv_sec-1)%86400; ms=(1000000+t1.tv_usec-t0.tv_usec+500)/10000; }else { dd=(t1.tv_sec-t0.tv_sec)/86400; ss=(t1.tv_sec-t0.tv_sec)%86400; ms=(t1.tv_usec-t0.tv_usec+500)/10000; }//end if int hh=ss/3600; int mm=(ss-hh*3600)/60; ss%=60; printf("%2d:%13ld%12ld%8.2d:%02d:%02d:%02d.%02d\n",size,TOTAL,UNIQUE,dd,hh,mm,ss,ms); } //end for }//end if if(gpu||gpuNodeLayer) { if(!InitCUDA()){return 0;} /* int steps=24576; */ int min=4; int targetN=21; struct timeval t0; struct timeval t1; printf("%s\n"," N: Total Unique dd:hh:mm:ss.ms"); for(int size=min;size<=targetN;size++){ gettimeofday(&t0,NULL); // 計測開始 if(gpu){ TOTAL=UNIQUE=0; local l[MAX]; GPU_symmetry_R(size,&l[0]); TOTAL=l->TOTAL; UNIQUE=l->UNIQUE; }else if(gpuNodeLayer){ TOTAL=UNIQUE=0; symmetry_build_nodeLayer(size); // 対称解除法 } gettimeofday(&t1,NULL); // 計測終了 int ss;int ms;int dd; if (t1.tv_usec<t0.tv_usec) { dd=(int)(t1.tv_sec-t0.tv_sec-1)/86400; ss=(t1.tv_sec-t0.tv_sec-1)%86400; ms=(1000000+t1.tv_usec-t0.tv_usec+500)/10000; } else { dd=(int)(t1.tv_sec-t0.tv_sec)/86400; ss=(t1.tv_sec-t0.tv_sec)%86400; ms=(t1.tv_usec-t0.tv_usec+500)/10000; }//end if int hh=ss/3600; int mm=(ss-hh*3600)/60; ss%=60; printf("%2d:%13ld%12ld%8.2d:%02d:%02d:%02d.%02d\n",size,TOTAL,UNIQUE,dd,hh,mm,ss,ms); }//end for }//end if return 0; }
5d564be92e273ef97cca0c53943534f301ed61ed.hip
// !!! This is a file automatically generated by hipify!!! //============================================================== // Copyright 2020 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <chrono> #include <vector> #include <hip/hip_runtime.h> #include "Projectile.hpp" #ifdef DEBUG static const int num_elements = 100; #else static const int num_elements = 10000000; #endif const float kPIValue = 3.1415; const float kGValue = 9.81; const int BLOCK_SIZE = 256; // Function to calculate the range, maximum height and total flight time of a // projectile __global__ void CalculateRange(const Projectile *obj, Projectile *pObj) { int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= num_elements) return; float proj_angle = obj[i].getangle(); float proj_vel = obj[i].getvelocity(); float sin_value = sin(proj_angle * kPIValue / 180.0f); float cos_value = cos(proj_angle * kPIValue / 180.0f); float total_time = fabs((2 * proj_vel * sin_value)) / kGValue; float max_range = fabs(proj_vel * total_time * cos_value); float max_height = (proj_vel * proj_vel * sin_value * sin_value) / 2.0f * kGValue; // h = v^2 * sin^2theta/2g pObj[i].setRangeandTime(max_range, total_time, proj_angle, proj_vel, max_height); } // in_vect and out_vect are the vectors with N Projectile numbers and are inputs to the // parallel function void GpuParallel(std::vector<Projectile>& in_vect, std::vector<Projectile>& out_vect, const int repeat) { Projectile *bufin_vect, *bufout_vect; hipMalloc((void**)&bufin_vect, sizeof(Projectile) * num_elements); hipMalloc((void**)&bufout_vect, sizeof(Projectile) * num_elements); hipMemcpy(bufin_vect, in_vect.data(), sizeof(Projectile) * num_elements, hipMemcpyHostToDevice); dim3 grids ((num_elements + BLOCK_SIZE - 1) / BLOCK_SIZE); dim3 blocks (BLOCK_SIZE); hipDeviceSynchronize(); auto start = std::chrono::steady_clock::now(); for (int i = 0; i < repeat; i++) hipLaunchKernelGGL(( CalculateRange) , dim3(grids), dim3(blocks) , 0, 0, bufin_vect, bufout_vect); hipDeviceSynchronize(); auto end = std::chrono::steady_clock::now(); auto time = std::chrono::duration_cast<std::chrono::nanoseconds>(end - start).count(); printf("Average kernel execution time: %f (s)\n", (time * 1e-9f) / repeat); hipMemcpy(out_vect.data(), bufout_vect, sizeof(Projectile) * num_elements, hipMemcpyDeviceToHost); hipFree(bufin_vect); hipFree(bufout_vect); } int main(int argc, char* argv[]) { if (argc != 2) { printf("Usage: %s <repeat>\n", argv[0]); return 1; } const int repeat = atoi(argv[1]); float init_angle = 0.0f; float init_vel = 0.0f; vector<Projectile> input_vect1, out_parallel_vect2, out_scalar_vect3; // Initialize the Input and Output vectors srand(2); for (int i = 0; i < num_elements; i++) { init_angle = rand() % 90 + 10; init_vel = rand() % 400 + 10; input_vect1.push_back(Projectile(init_angle, init_vel, 1.0f, 1.0f, 1.0f)); out_parallel_vect2.push_back(Projectile()); out_scalar_vect3.push_back(Projectile()); } // Call the DpcppParallel with the required inputs and outputs GpuParallel(input_vect1, out_parallel_vect2, repeat); #ifdef DEBUG for (int i = 0; i < num_elements; i++) { // Displaying the Parallel computation results. cout << "Parallel " << out_parallel_vect2[i]; } #endif return 0; }
5d564be92e273ef97cca0c53943534f301ed61ed.cu
//============================================================== // Copyright © 2020 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <chrono> #include <vector> #include <cuda.h> #include "Projectile.hpp" #ifdef DEBUG static const int num_elements = 100; #else static const int num_elements = 10000000; #endif const float kPIValue = 3.1415; const float kGValue = 9.81; const int BLOCK_SIZE = 256; // Function to calculate the range, maximum height and total flight time of a // projectile __global__ void CalculateRange(const Projectile *obj, Projectile *pObj) { int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= num_elements) return; float proj_angle = obj[i].getangle(); float proj_vel = obj[i].getvelocity(); float sin_value = sin(proj_angle * kPIValue / 180.0f); float cos_value = cos(proj_angle * kPIValue / 180.0f); float total_time = fabs((2 * proj_vel * sin_value)) / kGValue; float max_range = fabs(proj_vel * total_time * cos_value); float max_height = (proj_vel * proj_vel * sin_value * sin_value) / 2.0f * kGValue; // h = v^2 * sin^2theta/2g pObj[i].setRangeandTime(max_range, total_time, proj_angle, proj_vel, max_height); } // in_vect and out_vect are the vectors with N Projectile numbers and are inputs to the // parallel function void GpuParallel(std::vector<Projectile>& in_vect, std::vector<Projectile>& out_vect, const int repeat) { Projectile *bufin_vect, *bufout_vect; cudaMalloc((void**)&bufin_vect, sizeof(Projectile) * num_elements); cudaMalloc((void**)&bufout_vect, sizeof(Projectile) * num_elements); cudaMemcpy(bufin_vect, in_vect.data(), sizeof(Projectile) * num_elements, cudaMemcpyHostToDevice); dim3 grids ((num_elements + BLOCK_SIZE - 1) / BLOCK_SIZE); dim3 blocks (BLOCK_SIZE); cudaDeviceSynchronize(); auto start = std::chrono::steady_clock::now(); for (int i = 0; i < repeat; i++) CalculateRange <<< grids, blocks >>> (bufin_vect, bufout_vect); cudaDeviceSynchronize(); auto end = std::chrono::steady_clock::now(); auto time = std::chrono::duration_cast<std::chrono::nanoseconds>(end - start).count(); printf("Average kernel execution time: %f (s)\n", (time * 1e-9f) / repeat); cudaMemcpy(out_vect.data(), bufout_vect, sizeof(Projectile) * num_elements, cudaMemcpyDeviceToHost); cudaFree(bufin_vect); cudaFree(bufout_vect); } int main(int argc, char* argv[]) { if (argc != 2) { printf("Usage: %s <repeat>\n", argv[0]); return 1; } const int repeat = atoi(argv[1]); float init_angle = 0.0f; float init_vel = 0.0f; vector<Projectile> input_vect1, out_parallel_vect2, out_scalar_vect3; // Initialize the Input and Output vectors srand(2); for (int i = 0; i < num_elements; i++) { init_angle = rand() % 90 + 10; init_vel = rand() % 400 + 10; input_vect1.push_back(Projectile(init_angle, init_vel, 1.0f, 1.0f, 1.0f)); out_parallel_vect2.push_back(Projectile()); out_scalar_vect3.push_back(Projectile()); } // Call the DpcppParallel with the required inputs and outputs GpuParallel(input_vect1, out_parallel_vect2, repeat); #ifdef DEBUG for (int i = 0; i < num_elements; i++) { // Displaying the Parallel computation results. cout << "Parallel " << out_parallel_vect2[i]; } #endif return 0; }
6286af70912d47e01803dbbf0976564f4da3b401.hip
// !!! This is a file automatically generated by hipify!!! #ifndef THC_GENERIC_FILE #define THC_GENERIC_FILE "generic/MSECriterion.cu" #else void THNN_(MSECriterion_updateOutput)( THCState *state, THCTensor *input, THCTensor *target, THCTensor *output, bool sizeAverage, bool reduce) { THCUNN_check_shape(state, input, target); THCUNN_assertSameGPU(state, 3, input, target, output); if (reduce) { THCTensor_(resize1d)(state, output, 1); ptrdiff_t size = THCTensor_(nElement)(state, input); input = THCTensor_(newContiguous)(state, input); target = THCTensor_(newContiguous)(state, target); THCThrustAllocator thrustAlloc(state); thrust::device_ptr<real> input_data(THCTensor_(data)(state, input)); thrust::device_ptr<real> target_data(THCTensor_(data)(state, target)); accreal sum = thrust::inner_product( #if TORCH_HIP_VERSION >= 7000 thrust::hip::par(thrustAlloc).on(THCState_getCurrentStream(state)), #endif input_data, input_data+size, target_data, (accreal) 0, thrust::plus<accreal>(), mse_functor<real, accreal>()); if (sizeAverage) sum /= size; THCTensor_(free)(state, input); THCTensor_(free)(state, target); THCTensor_(set1d)(state, output, 0, ScalarConvert<accreal, real>::to(sum)); return; } THCTensor_(resizeAs)(state, output, input); THC_pointwiseApply3<real, real, real>( state, input, target, output, mse_updateOutput_functor<real>()); } void THNN_(MSECriterion_updateGradInput)( THCState *state, THCTensor *input, THCTensor *target, THCTensor *gradOutput, THCTensor *gradInput, bool sizeAverage, bool reduce) { THCUNN_check_shape(state, input, target); THCUNN_assertSameGPU(state, 4, input, target, gradInput, gradOutput); if (reduce) { ptrdiff_t size = THCTensor_(nElement)(state, input); THCUNN_check_dim_size(state, gradOutput, 1, 0, 1); accreal norm = sizeAverage ? (accreal)(2)/size : (accreal)(2); norm *= ScalarConvert<real, accreal>::to(THCTensor_(get1d)(state, gradOutput, 0)); input = THCTensor_(newContiguous)(state, input); target = THCTensor_(newContiguous)(state, target); THCTensor_(resizeAs)(state, gradInput, input); THCThrustAllocator thrustAlloc(state); thrust::device_ptr<real> input_data(THCTensor_(data)(state, input)); thrust::device_ptr<real> target_data(THCTensor_(data)(state, target)); thrust::device_ptr<real> gradInput_data(THCTensor_(data)(state, gradInput)); thrust::transform( #if TORCH_HIP_VERSION >= 7000 thrust::hip::par(thrustAlloc).on(THCState_getCurrentStream(state)), #endif input_data, input_data+size, target_data, gradInput_data, mse_updateGradInput_functor<real, accreal>(norm)); THCTensor_(free)(state, input); THCTensor_(free)(state, target); return; } THCUNN_check_shape(state, input, gradOutput); ptrdiff_t size = THCTensor_(nElement)(state, input); input = THCTensor_(newContiguous)(state, input); target = THCTensor_(newContiguous)(state, target); gradOutput = THCTensor_(newContiguous)(state, gradOutput); THCTensor_(resizeAs)(state, gradInput, input); THCThrustAllocator thrustAlloc(state); thrust::device_ptr<real> input_data(THCTensor_(data)(state, input)); thrust::device_ptr<real> target_data(THCTensor_(data)(state, target)); thrust::device_ptr<real> gradOutput_data(THCTensor_(data)(state, gradOutput)); thrust::device_ptr<real> gradInput_data(THCTensor_(data)(state, gradInput)); thrust::transform( #if TORCH_HIP_VERSION >= 7000 thrust::hip::par(thrustAlloc).on(THCState_getCurrentStream(state)), #endif input_data, input_data+size, target_data, gradInput_data, mse_updateGradInput_functor<real, accreal>(2)); thrust::transform( #if TORCH_HIP_VERSION >= 7000 thrust::hip::par(thrustAlloc).on(THCState_getCurrentStream(state)), #endif gradInput_data, gradInput_data+size, gradOutput_data, gradInput_data, thrust::multiplies<real>()); THCTensor_(free)(state, input); THCTensor_(free)(state, target); THCTensor_(free)(state, gradOutput); } #endif
6286af70912d47e01803dbbf0976564f4da3b401.cu
#ifndef THC_GENERIC_FILE #define THC_GENERIC_FILE "generic/MSECriterion.cu" #else void THNN_(MSECriterion_updateOutput)( THCState *state, THCTensor *input, THCTensor *target, THCTensor *output, bool sizeAverage, bool reduce) { THCUNN_check_shape(state, input, target); THCUNN_assertSameGPU(state, 3, input, target, output); if (reduce) { THCTensor_(resize1d)(state, output, 1); ptrdiff_t size = THCTensor_(nElement)(state, input); input = THCTensor_(newContiguous)(state, input); target = THCTensor_(newContiguous)(state, target); THCThrustAllocator thrustAlloc(state); thrust::device_ptr<real> input_data(THCTensor_(data)(state, input)); thrust::device_ptr<real> target_data(THCTensor_(data)(state, target)); accreal sum = thrust::inner_product( #if CUDA_VERSION >= 7000 thrust::cuda::par(thrustAlloc).on(THCState_getCurrentStream(state)), #endif input_data, input_data+size, target_data, (accreal) 0, thrust::plus<accreal>(), mse_functor<real, accreal>()); if (sizeAverage) sum /= size; THCTensor_(free)(state, input); THCTensor_(free)(state, target); THCTensor_(set1d)(state, output, 0, ScalarConvert<accreal, real>::to(sum)); return; } THCTensor_(resizeAs)(state, output, input); THC_pointwiseApply3<real, real, real>( state, input, target, output, mse_updateOutput_functor<real>()); } void THNN_(MSECriterion_updateGradInput)( THCState *state, THCTensor *input, THCTensor *target, THCTensor *gradOutput, THCTensor *gradInput, bool sizeAverage, bool reduce) { THCUNN_check_shape(state, input, target); THCUNN_assertSameGPU(state, 4, input, target, gradInput, gradOutput); if (reduce) { ptrdiff_t size = THCTensor_(nElement)(state, input); THCUNN_check_dim_size(state, gradOutput, 1, 0, 1); accreal norm = sizeAverage ? (accreal)(2)/size : (accreal)(2); norm *= ScalarConvert<real, accreal>::to(THCTensor_(get1d)(state, gradOutput, 0)); input = THCTensor_(newContiguous)(state, input); target = THCTensor_(newContiguous)(state, target); THCTensor_(resizeAs)(state, gradInput, input); THCThrustAllocator thrustAlloc(state); thrust::device_ptr<real> input_data(THCTensor_(data)(state, input)); thrust::device_ptr<real> target_data(THCTensor_(data)(state, target)); thrust::device_ptr<real> gradInput_data(THCTensor_(data)(state, gradInput)); thrust::transform( #if CUDA_VERSION >= 7000 thrust::cuda::par(thrustAlloc).on(THCState_getCurrentStream(state)), #endif input_data, input_data+size, target_data, gradInput_data, mse_updateGradInput_functor<real, accreal>(norm)); THCTensor_(free)(state, input); THCTensor_(free)(state, target); return; } THCUNN_check_shape(state, input, gradOutput); ptrdiff_t size = THCTensor_(nElement)(state, input); input = THCTensor_(newContiguous)(state, input); target = THCTensor_(newContiguous)(state, target); gradOutput = THCTensor_(newContiguous)(state, gradOutput); THCTensor_(resizeAs)(state, gradInput, input); THCThrustAllocator thrustAlloc(state); thrust::device_ptr<real> input_data(THCTensor_(data)(state, input)); thrust::device_ptr<real> target_data(THCTensor_(data)(state, target)); thrust::device_ptr<real> gradOutput_data(THCTensor_(data)(state, gradOutput)); thrust::device_ptr<real> gradInput_data(THCTensor_(data)(state, gradInput)); thrust::transform( #if CUDA_VERSION >= 7000 thrust::cuda::par(thrustAlloc).on(THCState_getCurrentStream(state)), #endif input_data, input_data+size, target_data, gradInput_data, mse_updateGradInput_functor<real, accreal>(2)); thrust::transform( #if CUDA_VERSION >= 7000 thrust::cuda::par(thrustAlloc).on(THCState_getCurrentStream(state)), #endif gradInput_data, gradInput_data+size, gradOutput_data, gradInput_data, thrust::multiplies<real>()); THCTensor_(free)(state, input); THCTensor_(free)(state, target); THCTensor_(free)(state, gradOutput); } #endif
78bae23958127e18442cdf4cecf69cff2e77bb03.hip
// !!! This is a file automatically generated by hipify!!! #include <string> #include <algorithm> #define _USE_MATH_DEFINES #include <math.h> #include <stdio.h> #include <vector> #include <thrust/sort.h> #include <thrust/device_ptr.h> #include <thrust/scan.h> #include <thrust/extrema.h> #include <thrust/device_vector.h> #include <thrust/iterator/counting_iterator.h> #include <hip/hip_runtime.h> #include <hip/hip_runtime.h> #include <driver_functions.h> #include <sys/time.h> #include "cudaRenderer.h" #include "image.h" #include "noise.h" #include "sceneLoader.h" #include "util.h" //////////////////////////////////////////////////////////////////////////////////////// // All cuda kernels here /////////////////////////////////////////////////////////////////////////////////////// struct GlobalConstants { SceneName sceneName; int numCircles; float* position; float* velocity; float* color; float* radius; int imageWidth; int imageHeight; float* imageData; }; // Global variable that is in scope, but read-only, for all cuda // kernels. The __constant__ modifier designates this variable will // be stored in special "constant" memory on the GPU. (we didn't talk // about this type of memory in class, but constant memory is a fast // place to put read-only variables). __constant__ GlobalConstants cuConstRendererParams; // Read-only lookup tables used to quickly compute noise (needed by // advanceAnimation for the snowflake scene) __constant__ int cuConstNoiseYPermutationTable[256]; __constant__ int cuConstNoiseXPermutationTable[256]; __constant__ float cuConstNoise1DValueTable[256]; // Color ramp table needed for the color ramp lookup shader #define COLOR_MAP_SIZE 5 __constant__ float cuConstColorRamp[COLOR_MAP_SIZE][3]; // Include parts of the CUDA code from external files to keep this // file simpler and to seperate code that should not be modified #include "noiseCuda.cu_inl" #include "lookupColor.cu_inl" // kernelClearImageSnowflake -- (CUDA device code) // // Clear the image, setting the image to the white-gray gradation that // is used in the snowflake image __global__ void kernelClearImageSnowflake() { int imageX = blockIdx.x * blockDim.x + threadIdx.x; int imageY = blockIdx.y * blockDim.y + threadIdx.y; int width = cuConstRendererParams.imageWidth; int height = cuConstRendererParams.imageHeight; if (imageX >= width || imageY >= height) return; int offset = 4 * (imageY * width + imageX); float shade = .4f + .45f * static_cast<float>(height-imageY) / height; float4 value = make_float4(shade, shade, shade, 1.f); // Write to global memory: As an optimization, this code uses a float4 // store, which results in more efficient code than if it were coded as // four separate float stores. *(float4*)(&cuConstRendererParams.imageData[offset]) = value; } // kernelClearImage -- (CUDA device code) // // Clear the image, setting all pixels to the specified color rgba __global__ void kernelClearImage(float r, float g, float b, float a) { int imageX = blockIdx.x * blockDim.x + threadIdx.x; int imageY = blockIdx.y * blockDim.y + threadIdx.y; int width = cuConstRendererParams.imageWidth; int height = cuConstRendererParams.imageHeight; if (imageX >= width || imageY >= height) return; int offset = 4 * (imageY * width + imageX); float4 value = make_float4(r, g, b, a); // Write to global memory: As an optimization, this code uses a float4 // store, which results in more efficient code than if it were coded as // four separate float stores. *(float4*)(&cuConstRendererParams.imageData[offset]) = value; } // kernelAdvanceFireWorks // // Update positions of fireworks __global__ void kernelAdvanceFireWorks() { const float dt = 1.f / 60.f; const float pi = M_PI; const float maxDist = 0.25f; float* velocity = cuConstRendererParams.velocity; float* position = cuConstRendererParams.position; float* radius = cuConstRendererParams.radius; int index = blockIdx.x * blockDim.x + threadIdx.x; if (index >= cuConstRendererParams.numCircles) return; if (0 <= index && index < NUM_FIREWORKS) { // firework center; no update return; } // Determine the firework center/spark indices int fIdx = (index - NUM_FIREWORKS) / NUM_SPARKS; int sfIdx = (index - NUM_FIREWORKS) % NUM_SPARKS; int index3i = 3 * fIdx; int sIdx = NUM_FIREWORKS + fIdx * NUM_SPARKS + sfIdx; int index3j = 3 * sIdx; float cx = position[index3i]; float cy = position[index3i+1]; // Update position position[index3j] += velocity[index3j] * dt; position[index3j+1] += velocity[index3j+1] * dt; // Firework sparks float sx = position[index3j]; float sy = position[index3j+1]; // Compute vector from firework-spark float cxsx = sx - cx; float cysy = sy - cy; // Compute distance from fire-work float dist = sqrt(cxsx * cxsx + cysy * cysy); if (dist > maxDist) { // restore to starting position // Random starting position on fire-work's rim float angle = (sfIdx * 2 * pi)/NUM_SPARKS; float sinA = sin(angle); float cosA = cos(angle); float x = cosA * radius[fIdx]; float y = sinA * radius[fIdx]; position[index3j] = position[index3i] + x; position[index3j+1] = position[index3i+1] + y; position[index3j+2] = 0.0f; // Travel scaled unit length velocity[index3j] = cosA/5.0; velocity[index3j+1] = sinA/5.0; velocity[index3j+2] = 0.0f; } } // kernelAdvanceHypnosis // // Update the radius/color of the circles __global__ void kernelAdvanceHypnosis() { int index = blockIdx.x * blockDim.x + threadIdx.x; if (index >= cuConstRendererParams.numCircles) return; float* radius = cuConstRendererParams.radius; float cutOff = 0.5f; // Place circle back in center after reaching threshold radisus if (radius[index] > cutOff) { radius[index] = 0.02f; } else { radius[index] += 0.01f; } } // kernelAdvanceBouncingBalls // // Update the position of the balls __global__ void kernelAdvanceBouncingBalls() { const float dt = 1.f / 60.f; const float kGravity = -2.8f; // sorry Newton const float kDragCoeff = -0.8f; const float epsilon = 0.001f; int index = blockIdx.x * blockDim.x + threadIdx.x; if (index >= cuConstRendererParams.numCircles) return; float* velocity = cuConstRendererParams.velocity; float* position = cuConstRendererParams.position; int index3 = 3 * index; // reverse velocity if center position < 0 float oldVelocity = velocity[index3+1]; float oldPosition = position[index3+1]; if (oldVelocity == 0.f && oldPosition == 0.f) { // stop-condition return; } if (position[index3+1] < 0 && oldVelocity < 0.f) { // bounce ball velocity[index3+1] *= kDragCoeff; } // update velocity: v = u + at (only along y-axis) velocity[index3+1] += kGravity * dt; // update positions (only along y-axis) position[index3+1] += velocity[index3+1] * dt; if (fabsf(velocity[index3+1] - oldVelocity) < epsilon && oldPosition < 0.0f && fabsf(position[index3+1]-oldPosition) < epsilon) { // stop ball velocity[index3+1] = 0.f; position[index3+1] = 0.f; } } // kernelAdvanceSnowflake -- (CUDA device code) // // Move the snowflake animation forward one time step. Update circle // positions and velocities. Note how the position of the snowflake // is reset if it moves off the left, right, or bottom of the screen. __global__ void kernelAdvanceSnowflake() { int index = blockIdx.x * blockDim.x + threadIdx.x; if (index >= cuConstRendererParams.numCircles) return; const float dt = 1.f / 60.f; const float kGravity = -1.8f; // sorry Newton const float kDragCoeff = 2.f; int index3 = 3 * index; float* positionPtr = &cuConstRendererParams.position[index3]; float* velocityPtr = &cuConstRendererParams.velocity[index3]; // Load from global memory float3 position = *((float3*)positionPtr); float3 velocity = *((float3*)velocityPtr); // Hack to make farther circles move more slowly, giving the // illusion of parallax float forceScaling = fmin(fmax(1.f - position.z, .1f), 1.f); // clamp // Add some noise to the motion to make the snow flutter float3 noiseInput; noiseInput.x = 10.f * position.x; noiseInput.y = 10.f * position.y; noiseInput.z = 255.f * position.z; float2 noiseForce = cudaVec2CellNoise(noiseInput, index); noiseForce.x *= 7.5f; noiseForce.y *= 5.f; // Drag float2 dragForce; dragForce.x = -1.f * kDragCoeff * velocity.x; dragForce.y = -1.f * kDragCoeff * velocity.y; // Update positions position.x += velocity.x * dt; position.y += velocity.y * dt; // Update velocities velocity.x += forceScaling * (noiseForce.x + dragForce.y) * dt; velocity.y += forceScaling * (kGravity + noiseForce.y + dragForce.y) * dt; float radius = cuConstRendererParams.radius[index]; // If the snowflake has moved off the left, right or bottom of // the screen, place it back at the top and give it a // pseudorandom x position and velocity. if ( (position.y + radius < 0.f) || (position.x + radius) < -0.f || (position.x - radius) > 1.f) { noiseInput.x = 255.f * position.x; noiseInput.y = 255.f * position.y; noiseInput.z = 255.f * position.z; noiseForce = cudaVec2CellNoise(noiseInput, index); position.x = .5f + .5f * noiseForce.x; position.y = 1.35f + radius; // Restart from 0 vertical velocity. Choose a // pseudo-random horizontal velocity. velocity.x = 2.f * noiseForce.y; velocity.y = 0.f; } // Store updated positions and velocities to global memory *((float3*)positionPtr) = position; *((float3*)velocityPtr) = velocity; } // shadePixel -- (CUDA device code) // // Given a pixel and a circle, determine the contribution to the // pixel from the circle. Update of the image is done in this // function. Called by kernelRenderCircles() __device__ __inline__ void shadePixel(int circleIndex, float2 pixelCenter, float3 p, float4* imagePtr) { float diffX = p.x - pixelCenter.x; float diffY = p.y - pixelCenter.y; float pixelDist = diffX * diffX + diffY * diffY; float rad = cuConstRendererParams.radius[circleIndex]; float maxDist = rad * rad; // Circle does not contribute to the image if (pixelDist > maxDist) return; float3 rgb; float alpha; // There is a non-zero contribution. Now compute the shading value // Suggestion: This conditional is in the inner loop. Although it // will evaluate the same for all threads, there is overhead in // setting up the lane masks, etc., to implement the conditional. It // would be wise to perform this logic outside of the loops in // kernelRenderCircles. (If feeling good about yourself, you // could use some specialized template magic). if (cuConstRendererParams.sceneName == SNOWFLAKES || cuConstRendererParams.sceneName == SNOWFLAKES_SINGLE_FRAME) { const float kCircleMaxAlpha = .5f; const float falloffScale = 4.f; float normPixelDist = sqrt(pixelDist) / rad; rgb = lookupColor(normPixelDist); float maxAlpha = .6f + .4f * (1.f-p.z); maxAlpha = kCircleMaxAlpha * fmaxf(fminf(maxAlpha, 1.f), 0.f); // kCircleMaxAlpha * clamped value alpha = maxAlpha * exp(-1.f * falloffScale * normPixelDist * normPixelDist); } else { // Simple: each circle has an assigned color int index3 = 3 * circleIndex; rgb = *(float3*)&(cuConstRendererParams.color[index3]); alpha = .5f; } float oneMinusAlpha = 1.f - alpha; // BEGIN SHOULD-BE-ATOMIC REGION // global memory read float4 existingColor = *imagePtr; float4 newColor; newColor.x = alpha * rgb.x + oneMinusAlpha * existingColor.x; newColor.y = alpha * rgb.y + oneMinusAlpha * existingColor.y; newColor.z = alpha * rgb.z + oneMinusAlpha * existingColor.z; newColor.w = alpha + existingColor.w; // Global memory write *imagePtr = newColor; // END SHOULD-BE-ATOMIC REGION } // kernelGetCirBinsCount -- (CUDA device code) // // Each thread counts how many bins there are in a corresponding circle. __global__ void kernelGetCirBinsCount(uint* count, uint binPixLength) { int circleIdx = blockDim.x * blockIdx.x + threadIdx.x; if (circleIdx >= cuConstRendererParams.numCircles) return; int circleIdx3 = circleIdx * 3; float3 cen = *(float3*) (&cuConstRendererParams.position[circleIdx3]); float rad = cuConstRendererParams.radius[circleIdx]; //Get bounding box by pixel index short imgWidth = cuConstRendererParams.imageWidth; short imgHeight = cuConstRendererParams.imageHeight; short minX = fminf(fmaxf((cen.x - rad) * imgWidth , 0), imgWidth-1); short maxX = fminf(fmaxf((cen.x + rad) * imgWidth , 0), imgWidth-1); short minY = fminf(fmaxf((cen.y - rad) * imgHeight, 0), imgHeight-1); short maxY = fminf(fmaxf((cen.y + rad) * imgHeight, 0), imgHeight-1); short xbinStart = minX / binPixLength; short xbinEnd = (maxX / binPixLength) + 1; short ybinStart = minY / binPixLength; short ybinEnd = (maxY / binPixLength) + 1; count[circleIdx] = static_cast<uint>((xbinEnd - xbinStart) * (ybinEnd - ybinStart)); } // kernelGetBin_CirInd -- (CUDA device code) // // Each thread corresponds to a circle, but it modifies two arrays containing all bins, // one for containing circle index and the other with its bin index on the image grid. // Seems like repetitive logic, but we needed to know the length beforehand! __global__ void kernelGetCirBinsPair(uint* devInputCirIdxStart, uint* devOutputBinsCir_Bin, uint* devOutputBinsCir_Cir, uint binNumLength, uint binPixLength) { int circleIdx = blockDim.x * blockIdx.x + threadIdx.x; if (circleIdx >= cuConstRendererParams.numCircles) return; int circleIdx3 = circleIdx * 3; float3 cen = *(float3*) (&cuConstRendererParams.position[circleIdx3]); float rad = cuConstRendererParams.radius[circleIdx]; //Get bounding box by pixel index short imgWidth = cuConstRendererParams.imageWidth; short imgHeight = cuConstRendererParams.imageHeight; short minX = fminf(fmaxf((cen.x-rad) * imgWidth, 0), imgWidth-1); short maxX = fminf(fmaxf((cen.x+rad) * imgWidth, 0), imgWidth-1); short minY = fminf(fmaxf((cen.y-rad) * imgHeight, 0), imgHeight-1); short maxY = fminf(fmaxf((cen.y+rad) * imgHeight, 0), imgHeight-1); short xbinStart = minX / binPixLength; short xbinEnd = (maxX / binPixLength) + 1; short ybinStart = minY / binPixLength; short ybinEnd = (maxY / binPixLength) + 1; uint ind = devInputCirIdxStart[circleIdx]; //Row-major order! for (uint y = ybinStart; y < ybinEnd; y++) { uint binOffset = y * binNumLength; for (uint x = xbinStart; x < xbinEnd; x++) { devOutputBinsCir_Bin[ind] = binOffset + x; devOutputBinsCir_Cir[ind] = circleIdx; ind++; } } } // kernelGetBinStartIndex -- (CUDA device code) // // For each bin, we want to know its starting index in out array. // We can set up shared memory across threads and check if the previous index // is different from the current index. __global__ void kernelGetBinStartIndex(uint* devOutputBinStartIndex, uint* devInputCirBins_Bin, uint binsCirLength) { __shared__ int cache[257]; //blockDim.x + 1 int binsCirIdx = blockDim.x * blockIdx.x + threadIdx.x; if (binsCirIdx >= binsCirLength) return; if (threadIdx.x == 0) { // Do most common case first for if-else if (binsCirIdx != 0) { cache[0] = devInputCirBins_Bin[binsCirIdx-1]; } else { cache[0] = 0; } } cache[1+threadIdx.x] = devInputCirBins_Bin[binsCirIdx]; // ------------------ // __syncthreads(); // // ------------------ // int index = cache[1+threadIdx.x]; bool newBin = (index != cache[threadIdx.x]); if (newBin) { // printf("New bin at: %d, %u\n", index, binsCirIdx); devOutputBinStartIndex[index] = binsCirIdx; } // ------------------ // __syncthreads(); // // ------------------ // if (binsCirIdx == binsCirLength - 1) { newBin = true; binsCirIdx = (int) binsCirLength; } if (newBin) { int j = index; while (j > 0 && devOutputBinStartIndex[j] == 0) { devOutputBinStartIndex[j] = (uint) binsCirIdx; j--; } } } // kernelGetBinSizes -- (CUDA device code) // // Find the size of each bin (how many circles are inside), which is done with // pairwise subtraction on the starting indices. __global__ void kernelGetBinSizes(uint* devOutputBinSizes, uint* devInputBinStartIndex, uint binsTotal, uint binsCirLength) { __shared__ int cache[257]; //blockDim.x + 1 int binsCirIdx = blockDim.x * blockIdx.x + threadIdx.x; if (binsCirIdx >= binsTotal) return; if (threadIdx.x == blockDim.x - 1) { // Do most common case first for if-else if (binsCirIdx != binsTotal - 1) { cache[threadIdx.x+1] = devInputBinStartIndex[binsCirIdx+1]; } } if (binsCirIdx == binsTotal - 1) { cache[1+threadIdx.x] = binsCirLength; } cache[threadIdx.x] = devInputBinStartIndex[binsCirIdx]; __syncthreads(); devOutputBinSizes[binsCirIdx] = cache[1+threadIdx.x] - cache[threadIdx.x]; } // kernelRenderCirclesTRUE -- (CUDA device code) // // My implementation of rendering circles properly. We need each thread to // operate on a grid of pixels since if each thread rendered a circle separately, // there is no guarantee of order being preserved. // __global__ void kernelRenderCirclesTRUE(uint* devCirBins_Cir, uint* devBinStartIndex, uint binNumLength, uint binPixLength, uint* devBinNumCir, uint maxBinNumCir, bool conditional, bool share) { //extern keyword since dynamically allocated! extern __shared__ float cache[]; float *shareCen = cache; float *shareRad = cache + maxBinNumCir * 3; float *shareCol = shareRad + maxBinNumCir; //Find bin from pixel coordinate short imageWidth = cuConstRendererParams.imageWidth; short imageHeight = cuConstRendererParams.imageHeight; short pixX = blockDim.x * blockIdx.x + threadIdx.x; short pixY = blockDim.y * blockIdx.y + threadIdx.y; short binX = pixX / binPixLength; short binY = pixY / binPixLength; short binInd = binY * binNumLength + binX; int binStart = devBinStartIndex[binInd]; int binSize = devBinNumCir[binInd]; short tCount = blockDim.x * blockDim.y; short threadId = threadIdx.y * blockDim.x + threadIdx.x; //Move radius and center to shared data if (share) for (int i = threadId; i < binSize; i += tCount) { uint cirIndex = devCirBins_Cir[binStart + i]; shareRad[i] = cuConstRendererParams.radius[cirIndex]; *(float3*)(&shareCen[i * 3]) = *(float3*)(&cuConstRendererParams.position[cirIndex * 3]); *(float3*)(&shareCol[i * 3]) = *(float3*)(&cuConstRendererParams.color[cirIndex * 3]); } //We do this now after moving stuff to shared data. Otheriwse results are weird! if (pixX >= imageWidth || pixY >= imageHeight) { return; } __syncthreads(); //Move lots of logic from shadePixel into here float4 *imagePtr = (float4*)(&cuConstRendererParams.imageData[4 * (pixY * imageWidth + pixX)]); float4 newColor = *imagePtr; float invWidth = 1.f / imageWidth; float invHeight = 1.f / imageHeight; float2 pcen = make_float2(invWidth * (static_cast<float>(pixX) + 0.5f), invHeight * (static_cast<float>(pixY) + 0.5f)); for (int i = 0; i < binSize; i++) { uint cirIndex = devCirBins_Cir[binStart + i]; float3 cen = (share) ? *(float3*) (&shareCen[i*3]) : *(float3*) (&cuConstRendererParams.position[cirIndex * 3]); float rad = (share) ? shareRad[i] : cuConstRendererParams.radius[cirIndex]; float maxDist = rad * rad; float diffX = pcen.x - cen.x; float diffY = pcen.y - cen.y; float pixelDist = diffX * diffX + diffY * diffY; // Circle does not contribute to the image if (pixelDist > maxDist) { continue; } float3 rgb; float alpha; if (conditional) { const float kCircleMaxAlpha = .5f; const float falloffScale = 4.f; float normPixelDist = sqrt(pixelDist) / rad; rgb = lookupColor(normPixelDist); float maxAlpha = .6f + .4f * (1.f-cen.z); maxAlpha = kCircleMaxAlpha * fmaxf(fminf(maxAlpha, 1.f), 0.f); // kCircleMaxAlpha * clamped value alpha = maxAlpha * exp(-1.f * falloffScale * normPixelDist * normPixelDist); } else { // Simple: each circle has an assigned color rgb = (share) ? *(float3*) (&shareCol[i * 3]) : *(float3*) (&cuConstRendererParams.color[cirIndex * 3]); alpha = .5f; } float oneMinusAlpha = 1.f - alpha; //draw into to the pixel shared buffer newColor.x = alpha*rgb.x + oneMinusAlpha * newColor.x; newColor.y = alpha*rgb.y + oneMinusAlpha * newColor.y; newColor.z = alpha*rgb.z + oneMinusAlpha * newColor.z; newColor.w = alpha + newColor.w; } *imagePtr = newColor; } // kerneldoesIntersectCircle -- (CUDA device code) // __global__ void kernelDoesIntersectCircle (int **dev_result, short **box, int numCir, int numPix) { printf(":D"); int indexX = blockDim.x * blockIdx.x + threadIdx.x; //Circle idx int indexY = blockDim.y * blockIdx.y + blockIdx.y; //Pixel idx if (indexX >= numCir || indexY >= numPix) return; short imageWidth = cuConstRendererParams.imageWidth; int pixX = indexY % imageWidth; int pixY = indexY / imageWidth; short *bbox = box[indexX]; if (pixX >= bbox[0] && pixX <= bbox[1] && pixY >= bbox[2] && pixY <= bbox[3]){ float rad = cuConstRendererParams.radius[indexX]; float3 p = *(float3*) (&cuConstRendererParams.position[indexX]); short imageWidth = cuConstRendererParams.imageWidth; short imageHeight = cuConstRendererParams.imageHeight; float invWidth = 1.f / imageWidth; float invHeight = 1.f / imageHeight; float2 pcen = make_float2(invWidth * (static_cast<float>(pixX) + 0.5f), invHeight * (static_cast<float>(pixY) + 0.5f)); float maxDist = rad * rad; float diffX = pcen.x - p.x; float diffY = pcen.y - p.y; float pixelDist = diffX * diffX + diffY * diffY; // Circle does not contribute to the image if (pixelDist <= maxDist) { dev_result[indexY][indexX] = 1; return; } } dev_result[indexY][indexX] = 0; } // kernelRenderCirclesBoxes-- (CUDA device code) // // Gets the bounding boxes for all circles __global__ void kernelRenderCirclesBoxes (int numCir, short** box) { int index = blockDim.x * blockIdx.x + threadIdx.x; float3 cen = *(float3*) (&cuConstRendererParams.position[3*index]); float rad = cuConstRendererParams.radius[index]; //Get bounding box by pixel index short imgWidth = cuConstRendererParams.imageWidth; short imgHeight = cuConstRendererParams.imageHeight; box[index][0] = fminf(fmaxf((cen.x-rad) * imgWidth, 0), imgWidth-1); box[index][1] = fminf(fmaxf((cen.x+rad) * imgWidth, 0), imgWidth-1); box[index][2] = fminf(fmaxf((cen.y-rad) * imgHeight, 0), imgHeight-1); box[index][3] = fminf(fmaxf((cen.y+rad) * imgHeight, 0), imgHeight-1); printf("yo"); } // kernelRenderCirclesMAYBE-- (CUDA device code) // // Really naive implementation that does a circle across multiple threads // Meant to be sequentially called across all circles. __global__ void kernelRenderCirclesMAYBE (int** pointInCircle, int numCir, short** box, bool conditional) { printf("blah"); dim3 blockDim(256, 1); dim3 gridDim((numCir + blockDim.x - 1) / blockDim.x); short pixX = blockDim.x * blockIdx.x + threadIdx.x; short pixY = blockDim.y * blockIdx.y + threadIdx.y; short imageWidth = cuConstRendererParams.imageWidth; short imageHeight = cuConstRendererParams.imageHeight; if (pixX >= imageWidth || pixY >= imageHeight) return; int pixInd = pixY * imageWidth + pixX; int* isInCircle = pointInCircle[pixInd]; float4 *imagePtr = (float4*)(&cuConstRendererParams.imageData[4 * (pixY * imageWidth + pixX)]); float4 newColor = *imagePtr; for (int i = 0; i < numCir; i++) { if (!isInCircle[i]) continue; float rad = cuConstRendererParams.radius[i]; float3 p = *(float3*) (&cuConstRendererParams.position[i*3]); float3 color = *(float3*) (&cuConstRendererParams.color[i*3]); float3 rgb; float alpha; if (conditional) { const float kCircleMaxAlpha = .5f; const float falloffScale = 4.f; float diffX = p.x - pixX; float diffY = p.y - pixY; float pixelDist = diffX * diffX + diffY * diffY; float normPixelDist = sqrt(pixelDist) / rad; rgb = lookupColor(normPixelDist); float maxAlpha = .6f + .4f * (1.f-p.z); maxAlpha = kCircleMaxAlpha * fmaxf(fminf(maxAlpha, 1.f), 0.f); // kCircleMaxAlpha * clamped value alpha = maxAlpha * exp(-1.f * falloffScale * normPixelDist * normPixelDist); } else { // Simple: each circle has an assigned color rgb = color; alpha = .5f; } float oneMinusAlpha = 1.f - alpha; //draw into to the pixel shared buffer newColor.x = alpha*rgb.x + oneMinusAlpha * newColor.x; newColor.y = alpha*rgb.y + oneMinusAlpha * newColor.y; newColor.z = alpha*rgb.z + oneMinusAlpha * newColor.z; newColor.w = alpha + newColor.w; } *imagePtr = newColor; } // kernelRenderCirclesFALSE -- (CUDA device code) // // Really naive implementation that does a circle across multiple threads // Meant to be sequentially called across all circles. __global__ void kernelRenderCirclesFALSE (short minX, short minY, float3 p, float rad, float3 color, bool conditional, int cirIndex) { short pixX = blockDim.x * blockIdx.x + threadIdx.x + minX; short pixY = blockDim.y * blockIdx.y + threadIdx.y + minY; short imageWidth = cuConstRendererParams.imageWidth; short imageHeight = cuConstRendererParams.imageHeight; float4 *imagePtr = (float4*)(&cuConstRendererParams.imageData[4 * (pixY * imageWidth + pixX)]); float4 newColor = *imagePtr; float invWidth = 1.f / imageWidth; float invHeight = 1.f / imageHeight; float2 pcen = make_float2(invWidth * (static_cast<float>(pixX) + 0.5f), invHeight * (static_cast<float>(pixY) + 0.5f)); float maxDist = rad * rad; float diffX = pcen.x - p.x; float diffY = pcen.y - p.y; float pixelDist = diffX * diffX + diffY * diffY; // Circle does not contribute to the image if (pixelDist > maxDist) { return; } float3 rgb; float alpha; if (conditional) { const float kCircleMaxAlpha = .5f; const float falloffScale = 4.f; float normPixelDist = sqrt(pixelDist) / rad; rgb = lookupColor(normPixelDist); float maxAlpha = .6f + .4f * (1.f-p.z); maxAlpha = kCircleMaxAlpha * fmaxf(fminf(maxAlpha, 1.f), 0.f); // kCircleMaxAlpha * clamped value alpha = maxAlpha * exp(-1.f * falloffScale * normPixelDist * normPixelDist); } else { // Simple: each circle has an assigned color rgb = color; alpha = .5f; } float oneMinusAlpha = 1.f - alpha; //draw into to the pixel shared buffer newColor.x = alpha*rgb.x + oneMinusAlpha * newColor.x; newColor.y = alpha*rgb.y + oneMinusAlpha * newColor.y; newColor.z = alpha*rgb.z + oneMinusAlpha * newColor.z; newColor.w = alpha + newColor.w; *imagePtr = newColor; } // kernelRenderCircles -- (CUDA device code) // // Each thread renders a circle. Since there is no protection to // ensure order of update or mutual exclusion on the output image, the // resulting image will be incorrect. __global__ void kernelRenderCircles() { int index = blockIdx.x * blockDim.x + threadIdx.x; if (index >= cuConstRendererParams.numCircles) return; int index3 = 3 * index; // Read position and radius float3 p = *(float3*)(&cuConstRendererParams.position[index3]); float rad = cuConstRendererParams.radius[index]; // Compute the bounding box of the circle. The bound is in integer // screen coordinates, so it's clamped to the edges of the screen. short imageWidth = cuConstRendererParams.imageWidth; short imageHeight = cuConstRendererParams.imageHeight; short minX = static_cast<short>(imageWidth * (p.x - rad)); short maxX = static_cast<short>(imageWidth * (p.x + rad)) + 1; short minY = static_cast<short>(imageHeight * (p.y - rad)); short maxY = static_cast<short>(imageHeight * (p.y + rad)) + 1; // A bunch of clamps. Is there a CUDA built-in for this? short screenMinX = (minX > 0) ? ((minX < imageWidth) ? minX : imageWidth) : 0; short screenMaxX = (maxX > 0) ? ((maxX < imageWidth) ? maxX : imageWidth) : 0; short screenMinY = (minY > 0) ? ((minY < imageHeight) ? minY : imageHeight) : 0; short screenMaxY = (maxY > 0) ? ((maxY < imageHeight) ? maxY : imageHeight) : 0; float invWidth = 1.f / imageWidth; float invHeight = 1.f / imageHeight; // For all pixels in the bonding box for (int pixelY=screenMinY; pixelY<screenMaxY; pixelY++) { float4* imgPtr = (float4*)(&cuConstRendererParams.imageData[4 * (pixelY * imageWidth + screenMinX)]); for (int pixelX=screenMinX; pixelX<screenMaxX; pixelX++) { float2 pixelCenterNorm = make_float2(invWidth * (static_cast<float>(pixelX) + 0.5f), invHeight * (static_cast<float>(pixelY) + 0.5f)); shadePixel(index, pixelCenterNorm, p, imgPtr); imgPtr++; } } } //////////////////////////////////////////////////////////////////////////////////////// CudaRenderer::CudaRenderer() { image = NULL; numCircles = 0; position = NULL; velocity = NULL; color = NULL; radius = NULL; cudaDevicePosition = NULL; cudaDeviceVelocity = NULL; cudaDeviceColor = NULL; cudaDeviceRadius = NULL; cudaDeviceImageData = NULL; } CudaRenderer::~CudaRenderer() { if (image) { delete image; } if (position) { delete [] position; delete [] velocity; delete [] color; delete [] radius; } if (cudaDevicePosition) { hipFree(cudaDevicePosition); hipFree(cudaDeviceVelocity); hipFree(cudaDeviceColor); hipFree(cudaDeviceRadius); hipFree(cudaDeviceImageData); hipFree(devPointInCircle); hipFree(devCirBinsCount); hipFree(devCirBinsIndex); hipFree(devBinStartIndex); hipFree(devBinNumCir); } } const Image* CudaRenderer::getImage() { // Need to copy contents of the rendered image from device memory // before we expose the Image object to the caller printf("Copying image data from device\n"); hipMemcpy(image->data, cudaDeviceImageData, sizeof(float) * 4 * image->width * image->height, hipMemcpyDeviceToHost); return image; } void CudaRenderer::loadScene(SceneName scene) { sceneName = scene; loadCircleScene(sceneName, numCircles, position, velocity, color, radius); } void CudaRenderer::setup() { int deviceCount = 0; bool isFastGPU = false; std::string name; hipError_t err = hipGetDeviceCount(&deviceCount); printf("---------------------------------------------------------\n"); printf("Initializing CUDA for CudaRenderer\n"); printf("Found %d CUDA devices\n", deviceCount); for (int i=0; i<deviceCount; i++) { hipDeviceProp_t deviceProps; hipGetDeviceProperties(&deviceProps, i); name = deviceProps.name; if (name.compare("GeForce GTX 1080") == 0) { isFastGPU = true; } printf("Device %d: %s\n", i, deviceProps.name); printf(" SMs: %d\n", deviceProps.multiProcessorCount); printf(" Global mem: %.0f MB\n", static_cast<float>(deviceProps.totalGlobalMem) / (1024 * 1024)); printf(" CUDA Cap: %d.%d\n", deviceProps.major, deviceProps.minor); } printf("---------------------------------------------------------\n"); if (!isFastGPU) { printf("WARNING: " "You're not running on a fast GPU, please consider using " "NVIDIA GTX 1080.\n"); printf("---------------------------------------------------------\n"); } // By this time the scene should be loaded. Now copy all the key // data structures into device memory so they are accessible to // CUDA kernels // // See the CUDA Programmer's Guide for descriptions of // hipMalloc and hipMemcpy /** Setup code for new approach! */ //We want more bins if there are more circles, but we also want them to be aligned //with 16x16 grids when running renderCircles. // if (numCircles < 100) { binNumLength = 4; } else if (numCircles >= 100 && numCircles < 1000) { binNumLength = 8; } else if (numCircles >= 1000 && numCircles < 10000) { binNumLength = 16; } else { binNumLength = 64; } uint notBinPixLength = (image->width - 1)/binNumLength + 1; //standard binPixLength = max(1, (notBinPixLength / 16)) * 16; //push to floor multiple of 16 binNumLength = (image->width - 1)/binPixLength + 1; //correct binNumLength //allocate memory for cuda hipMalloc(&devPointInCircle, sizeof(uint) * image->width * image->height); hipMalloc(&devCirBinsCount, sizeof(uint) * numCircles); hipMalloc(&devCirBinsIndex, sizeof(uint) * numCircles); hipMalloc(&devBinStartIndex, sizeof(uint) * binNumLength * binNumLength); hipMalloc(&devBinNumCir, sizeof(uint) * binNumLength * binNumLength); hipMalloc(&cudaDevicePosition, sizeof(float) * 3 * numCircles); hipMalloc(&cudaDeviceVelocity, sizeof(float) * 3 * numCircles); hipMalloc(&cudaDeviceColor, sizeof(float) * 3 * numCircles); hipMalloc(&cudaDeviceRadius, sizeof(float) * numCircles); hipMalloc(&cudaDeviceImageData, sizeof(float) * 4 * image->width * image->height); hipMemcpy(cudaDevicePosition, position, sizeof(float) * 3 * numCircles, hipMemcpyHostToDevice); hipMemcpy(cudaDeviceVelocity, velocity, sizeof(float) * 3 * numCircles, hipMemcpyHostToDevice); hipMemcpy(cudaDeviceColor, color, sizeof(float) * 3 * numCircles, hipMemcpyHostToDevice); hipMemcpy(cudaDeviceRadius, radius, sizeof(float) * numCircles, hipMemcpyHostToDevice); // Initialize parameters in constant memory. We didn't talk about // constant memory in class, but the use of read-only constant // memory here is an optimization over just sticking these values // in device global memory. NVIDIA GPUs have a few special tricks // for optimizing access to constant memory. Using global memory // here would have worked just as well. See the Programmer's // Guide for more information about constant memory. GlobalConstants params; params.sceneName = sceneName; params.numCircles = numCircles; params.imageWidth = image->width; params.imageHeight = image->height; params.position = cudaDevicePosition; params.velocity = cudaDeviceVelocity; params.color = cudaDeviceColor; params.radius = cudaDeviceRadius; params.imageData = cudaDeviceImageData; hipMemcpyToSymbol(cuConstRendererParams, &params, sizeof(GlobalConstants)); // Also need to copy over the noise lookup tables, so we can // implement noise on the GPU int* permX; int* permY; float* value1D; getNoiseTables(&permX, &permY, &value1D); hipMemcpyToSymbol(cuConstNoiseXPermutationTable, permX, sizeof(int) * 256); hipMemcpyToSymbol(cuConstNoiseYPermutationTable, permY, sizeof(int) * 256); hipMemcpyToSymbol(cuConstNoise1DValueTable, value1D, sizeof(float) * 256); // Copy over the color table that's used by the shading // function for circles in the snowflake demo float lookupTable[COLOR_MAP_SIZE][3] = { {1.f, 1.f, 1.f}, {1.f, 1.f, 1.f}, {.8f, .9f, 1.f}, {.8f, .9f, 1.f}, {.8f, 0.8f, 1.f}, }; hipMemcpyToSymbol(cuConstColorRamp, lookupTable, sizeof(float) * 3 * COLOR_MAP_SIZE); } // allocOutputImage -- // // Allocate buffer the renderer will render into. Check status of // image first to avoid memory leak. void CudaRenderer::allocOutputImage(int width, int height) { if (image) delete image; image = new Image(width, height); } // clearImage -- // // Clear the renderer's target image. The state of the image after // the clear depends on the scene being rendered. void CudaRenderer::clearImage() { // 256 threads per block is a healthy number dim3 blockDim(16, 16, 1); dim3 gridDim( (image->width + blockDim.x - 1) / blockDim.x, (image->height + blockDim.y - 1) / blockDim.y); if (sceneName == SNOWFLAKES || sceneName == SNOWFLAKES_SINGLE_FRAME) { hipLaunchKernelGGL(( kernelClearImageSnowflake), dim3(gridDim), dim3(blockDim), 0, 0, ); } else { hipLaunchKernelGGL(( kernelClearImage), dim3(gridDim), dim3(blockDim), 0, 0, 1.f, 1.f, 1.f, 1.f); } hipDeviceSynchronize(); } // advanceAnimation -- // // Advance the simulation one time step. Updates all circle positions // and velocities void CudaRenderer::advanceAnimation() { // 256 threads per block is a healthy number dim3 blockDim(256, 1); dim3 gridDim((numCircles + blockDim.x - 1) / blockDim.x); // only the snowflake scene has animation if (sceneName == SNOWFLAKES) { hipLaunchKernelGGL(( kernelAdvanceSnowflake), dim3(gridDim), dim3(blockDim), 0, 0, ); } else if (sceneName == BOUNCING_BALLS) { hipLaunchKernelGGL(( kernelAdvanceBouncingBalls), dim3(gridDim), dim3(blockDim), 0, 0, ); } else if (sceneName == HYPNOSIS) { hipLaunchKernelGGL(( kernelAdvanceHypnosis), dim3(gridDim), dim3(blockDim), 0, 0, ); } else if (sceneName == FIREWORKS) { hipLaunchKernelGGL(( kernelAdvanceFireWorks), dim3(gridDim), dim3(blockDim), 0, 0, ); } hipDeviceSynchronize(); } void CudaRenderer::render() { // 256 threads per block is a healthy number bool conditional = (sceneName == SNOWFLAKES || sceneName == SNOWFLAKES_SINGLE_FRAME); struct timespec start, end; clock_gettime(CLOCK_MONOTONIC_RAW, &start); dim3 blockDim(256, 1); dim3 gridDim((numCircles + blockDim.x - 1) / blockDim.x); /** Step 1: Get number of bins per circle */ hipLaunchKernelGGL(( kernelGetCirBinsCount), dim3(gridDim), dim3(blockDim), 0, 0, devCirBinsCount, binPixLength); clock_gettime(CLOCK_MONOTONIC_RAW, &end); uint delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000; printf("Time: %u\n", delta_us); /** step 1.5: If we have reason to believe that the graph has really low density, then we switch approach. This is either from having a very small amount of circles, or a sparse pattern. We can tell by checking how many circles are in each bin. */ if (numCircles < 5) { for (int i = 0; i < numCircles; i++) { float3 p = *(float3*)(&position[i*3]); float rad = radius[i]; float3 col = *(float3*)(&color[i*3]); int imgWidth = image->width; int imgHeight = image->height; int minX = fminf(fmaxf((p.x-rad) * imgWidth, 0), imgWidth-1); int maxX = fminf(fmaxf((p.x+rad) * imgWidth, 0), imgWidth-1); int minY = fminf(fmaxf((p.y-rad) * imgHeight, 0), imgHeight-1); int maxY = fminf(fmaxf((p.y+rad) * imgHeight, 0), imgHeight-1); printf("%d, %d | %d, %d\n", minX, maxX, minY, maxY); dim3 pixelBlockDim(16,16); dim3 pixelGridDim((maxX - minX) / pixelBlockDim.x + 1, (maxY - minY) / pixelBlockDim.y + 1); hipLaunchKernelGGL(( kernelRenderCirclesFALSE), dim3(pixelGridDim), dim3(pixelBlockDim), 0, 0, minX, minY, p, rad, col, conditional, i); hipDeviceSynchronize(); } return; } /**else { int imgWidth = image->width; int imgHeight = image->height; dim3 pixelBlockDim(16,16); dim3 pixelGridDim((numCircles - 1) / pixelBlockDim.x + 1, (imgWidth*imgHeight - 1) / pixelBlockDim.y + 1); short** box; hipMalloc(&box, 4 * sizeof(short) * numCircles); kernelRenderCirclesBoxes<<<gridDim, blockDim>>>(numCircles, box); //once per bin-circle kernelDoesIntersectCircle<<<pixelGridDim, pixelBlockDim>>>(devPointInCircle, box, numCircles, imgWidth*imgHeight); //once per circle kernelRenderCirclesMAYBE<<<gridDim, blockDim>>> (devPointInCircle, numCircles, box, conditional); hipFree(box); return; }*/ /** Step 2: Get starting index of the bins per circle Done by using thrust::exclusive_scan (sorry!) */ thrust::exclusive_scan(thrust::device_ptr<uint>(devCirBinsCount), thrust::device_ptr<uint>(devCirBinsCount + numCircles), thrust::device_ptr<uint>(devCirBinsIndex)); clock_gettime(CLOCK_MONOTONIC_RAW, &end); delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000; printf("Time: %u\n", delta_us); // Get how many bin-circle pairs there are uint lastCirBinsCount, lastCirBinsIndex; hipMemcpy(&lastCirBinsCount, devCirBinsCount + numCircles - 1, sizeof(uint), hipMemcpyDeviceToHost); hipMemcpy(&lastCirBinsIndex, devCirBinsIndex + numCircles - 1, sizeof(uint), hipMemcpyDeviceToHost); uint cirBinsLength = lastCirBinsCount + lastCirBinsIndex; /** Step 3: Bind each bin with its circle and relative index within its circle * 4: Sort by bin index (using thrust::stable_sort to preserve circle * order) */ uint *devCirBins_Bin, *devCirBins_Cir; hipMalloc(&devCirBins_Bin, sizeof(uint) * cirBinsLength); hipMalloc(&devCirBins_Cir, sizeof(uint) * cirBinsLength); hipLaunchKernelGGL(( kernelGetCirBinsPair), dim3(gridDim), dim3(blockDim), 0, 0, devCirBinsIndex, devCirBins_Bin, devCirBins_Cir, binNumLength, binPixLength); clock_gettime(CLOCK_MONOTONIC_RAW, &end); delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000; printf("Time: %u\n", delta_us); thrust::stable_sort_by_key(thrust::device_ptr<uint>(devCirBins_Bin), thrust::device_ptr<uint>(devCirBins_Bin + cirBinsLength), thrust::device_ptr<uint>(devCirBins_Cir)); clock_gettime(CLOCK_MONOTONIC_RAW, &end); delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000; printf("Time: %u\n", delta_us); /** Now that we have all the bins in order with circle order preserved, we * can do each bin in parallel! * * Step 5: Find the starting index of each bin and how many circles are in there */ printf("Step 5\n"); // Still use 256 threads per block uint numBins = binNumLength * binNumLength; dim3 cirBinsGridDim((cirBinsLength + blockDim.x - 1) / blockDim.x); hipLaunchKernelGGL(( kernelGetBinStartIndex), dim3(cirBinsGridDim), dim3(blockDim), 0, 0, devBinStartIndex, devCirBins_Bin, cirBinsLength); clock_gettime(CLOCK_MONOTONIC_RAW, &end); delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000; printf("Time: %u\n", delta_us); hipMemset(devBinStartIndex, 0, sizeof(uint)); dim3 binsGridDim((numBins + blockDim.x - 1) / blockDim.x); hipLaunchKernelGGL(( kernelGetBinSizes), dim3(binsGridDim), dim3(blockDim), 0, 0, devBinNumCir, devBinStartIndex, numBins, cirBinsLength); clock_gettime(CLOCK_MONOTONIC_RAW, &end); delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000; printf("Time: %u\n", delta_us); thrust::device_ptr<uint> result = thrust::max_element(thrust::device_ptr<uint>(devBinNumCir), thrust::device_ptr<uint>(devBinNumCir + numBins)); clock_gettime(CLOCK_MONOTONIC_RAW, &end); delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000; printf("Time: %u\n", delta_us); uint maxBinNumCir = result[0]; /** Step 6: Finally render the circles, with each block of pixels being drawn * on a separate thread. */ //printf("Step 6, %d\n", maxBinNumCir); dim3 pixelBlockDim(16,16); dim3 pixelGridDim((image->width - 1) / pixelBlockDim.x + 1, (image->height - 1) / pixelBlockDim.y + 1); if (maxBinNumCir < 1000) { uint sharedMemSize = maxBinNumCir * (7*sizeof(float)); //3 for center coordinates //1 for radius //printf("%d\n", sharedMemSize); //3 for color hipLaunchKernelGGL(( kernelRenderCirclesTRUE), dim3(pixelGridDim), dim3(pixelBlockDim), sharedMemSize, 0, devCirBins_Cir, devBinStartIndex, binNumLength, binPixLength, devBinNumCir, maxBinNumCir, conditional, true); } else { //Too much memory to share across threads!!! hipLaunchKernelGGL(( kernelRenderCirclesTRUE), dim3(pixelGridDim), dim3(pixelBlockDim), 0, 0, devCirBins_Cir, devBinStartIndex, binNumLength, binPixLength, devBinNumCir, maxBinNumCir, conditional, false); } // Initial solution given (BAD!) // kernelRenderCircles<<<gridDim, blockDim>>>(); hipDeviceSynchronize(); hipFree(devCirBins_Bin); hipFree(devCirBins_Cir); }
78bae23958127e18442cdf4cecf69cff2e77bb03.cu
#include <string> #include <algorithm> #define _USE_MATH_DEFINES #include <math.h> #include <stdio.h> #include <vector> #include <thrust/sort.h> #include <thrust/device_ptr.h> #include <thrust/scan.h> #include <thrust/extrema.h> #include <thrust/device_vector.h> #include <thrust/iterator/counting_iterator.h> #include <cuda.h> #include <cuda_runtime.h> #include <driver_functions.h> #include <sys/time.h> #include "cudaRenderer.h" #include "image.h" #include "noise.h" #include "sceneLoader.h" #include "util.h" //////////////////////////////////////////////////////////////////////////////////////// // All cuda kernels here /////////////////////////////////////////////////////////////////////////////////////// struct GlobalConstants { SceneName sceneName; int numCircles; float* position; float* velocity; float* color; float* radius; int imageWidth; int imageHeight; float* imageData; }; // Global variable that is in scope, but read-only, for all cuda // kernels. The __constant__ modifier designates this variable will // be stored in special "constant" memory on the GPU. (we didn't talk // about this type of memory in class, but constant memory is a fast // place to put read-only variables). __constant__ GlobalConstants cuConstRendererParams; // Read-only lookup tables used to quickly compute noise (needed by // advanceAnimation for the snowflake scene) __constant__ int cuConstNoiseYPermutationTable[256]; __constant__ int cuConstNoiseXPermutationTable[256]; __constant__ float cuConstNoise1DValueTable[256]; // Color ramp table needed for the color ramp lookup shader #define COLOR_MAP_SIZE 5 __constant__ float cuConstColorRamp[COLOR_MAP_SIZE][3]; // Include parts of the CUDA code from external files to keep this // file simpler and to seperate code that should not be modified #include "noiseCuda.cu_inl" #include "lookupColor.cu_inl" // kernelClearImageSnowflake -- (CUDA device code) // // Clear the image, setting the image to the white-gray gradation that // is used in the snowflake image __global__ void kernelClearImageSnowflake() { int imageX = blockIdx.x * blockDim.x + threadIdx.x; int imageY = blockIdx.y * blockDim.y + threadIdx.y; int width = cuConstRendererParams.imageWidth; int height = cuConstRendererParams.imageHeight; if (imageX >= width || imageY >= height) return; int offset = 4 * (imageY * width + imageX); float shade = .4f + .45f * static_cast<float>(height-imageY) / height; float4 value = make_float4(shade, shade, shade, 1.f); // Write to global memory: As an optimization, this code uses a float4 // store, which results in more efficient code than if it were coded as // four separate float stores. *(float4*)(&cuConstRendererParams.imageData[offset]) = value; } // kernelClearImage -- (CUDA device code) // // Clear the image, setting all pixels to the specified color rgba __global__ void kernelClearImage(float r, float g, float b, float a) { int imageX = blockIdx.x * blockDim.x + threadIdx.x; int imageY = blockIdx.y * blockDim.y + threadIdx.y; int width = cuConstRendererParams.imageWidth; int height = cuConstRendererParams.imageHeight; if (imageX >= width || imageY >= height) return; int offset = 4 * (imageY * width + imageX); float4 value = make_float4(r, g, b, a); // Write to global memory: As an optimization, this code uses a float4 // store, which results in more efficient code than if it were coded as // four separate float stores. *(float4*)(&cuConstRendererParams.imageData[offset]) = value; } // kernelAdvanceFireWorks // // Update positions of fireworks __global__ void kernelAdvanceFireWorks() { const float dt = 1.f / 60.f; const float pi = M_PI; const float maxDist = 0.25f; float* velocity = cuConstRendererParams.velocity; float* position = cuConstRendererParams.position; float* radius = cuConstRendererParams.radius; int index = blockIdx.x * blockDim.x + threadIdx.x; if (index >= cuConstRendererParams.numCircles) return; if (0 <= index && index < NUM_FIREWORKS) { // firework center; no update return; } // Determine the firework center/spark indices int fIdx = (index - NUM_FIREWORKS) / NUM_SPARKS; int sfIdx = (index - NUM_FIREWORKS) % NUM_SPARKS; int index3i = 3 * fIdx; int sIdx = NUM_FIREWORKS + fIdx * NUM_SPARKS + sfIdx; int index3j = 3 * sIdx; float cx = position[index3i]; float cy = position[index3i+1]; // Update position position[index3j] += velocity[index3j] * dt; position[index3j+1] += velocity[index3j+1] * dt; // Firework sparks float sx = position[index3j]; float sy = position[index3j+1]; // Compute vector from firework-spark float cxsx = sx - cx; float cysy = sy - cy; // Compute distance from fire-work float dist = sqrt(cxsx * cxsx + cysy * cysy); if (dist > maxDist) { // restore to starting position // Random starting position on fire-work's rim float angle = (sfIdx * 2 * pi)/NUM_SPARKS; float sinA = sin(angle); float cosA = cos(angle); float x = cosA * radius[fIdx]; float y = sinA * radius[fIdx]; position[index3j] = position[index3i] + x; position[index3j+1] = position[index3i+1] + y; position[index3j+2] = 0.0f; // Travel scaled unit length velocity[index3j] = cosA/5.0; velocity[index3j+1] = sinA/5.0; velocity[index3j+2] = 0.0f; } } // kernelAdvanceHypnosis // // Update the radius/color of the circles __global__ void kernelAdvanceHypnosis() { int index = blockIdx.x * blockDim.x + threadIdx.x; if (index >= cuConstRendererParams.numCircles) return; float* radius = cuConstRendererParams.radius; float cutOff = 0.5f; // Place circle back in center after reaching threshold radisus if (radius[index] > cutOff) { radius[index] = 0.02f; } else { radius[index] += 0.01f; } } // kernelAdvanceBouncingBalls // // Update the position of the balls __global__ void kernelAdvanceBouncingBalls() { const float dt = 1.f / 60.f; const float kGravity = -2.8f; // sorry Newton const float kDragCoeff = -0.8f; const float epsilon = 0.001f; int index = blockIdx.x * blockDim.x + threadIdx.x; if (index >= cuConstRendererParams.numCircles) return; float* velocity = cuConstRendererParams.velocity; float* position = cuConstRendererParams.position; int index3 = 3 * index; // reverse velocity if center position < 0 float oldVelocity = velocity[index3+1]; float oldPosition = position[index3+1]; if (oldVelocity == 0.f && oldPosition == 0.f) { // stop-condition return; } if (position[index3+1] < 0 && oldVelocity < 0.f) { // bounce ball velocity[index3+1] *= kDragCoeff; } // update velocity: v = u + at (only along y-axis) velocity[index3+1] += kGravity * dt; // update positions (only along y-axis) position[index3+1] += velocity[index3+1] * dt; if (fabsf(velocity[index3+1] - oldVelocity) < epsilon && oldPosition < 0.0f && fabsf(position[index3+1]-oldPosition) < epsilon) { // stop ball velocity[index3+1] = 0.f; position[index3+1] = 0.f; } } // kernelAdvanceSnowflake -- (CUDA device code) // // Move the snowflake animation forward one time step. Update circle // positions and velocities. Note how the position of the snowflake // is reset if it moves off the left, right, or bottom of the screen. __global__ void kernelAdvanceSnowflake() { int index = blockIdx.x * blockDim.x + threadIdx.x; if (index >= cuConstRendererParams.numCircles) return; const float dt = 1.f / 60.f; const float kGravity = -1.8f; // sorry Newton const float kDragCoeff = 2.f; int index3 = 3 * index; float* positionPtr = &cuConstRendererParams.position[index3]; float* velocityPtr = &cuConstRendererParams.velocity[index3]; // Load from global memory float3 position = *((float3*)positionPtr); float3 velocity = *((float3*)velocityPtr); // Hack to make farther circles move more slowly, giving the // illusion of parallax float forceScaling = fmin(fmax(1.f - position.z, .1f), 1.f); // clamp // Add some noise to the motion to make the snow flutter float3 noiseInput; noiseInput.x = 10.f * position.x; noiseInput.y = 10.f * position.y; noiseInput.z = 255.f * position.z; float2 noiseForce = cudaVec2CellNoise(noiseInput, index); noiseForce.x *= 7.5f; noiseForce.y *= 5.f; // Drag float2 dragForce; dragForce.x = -1.f * kDragCoeff * velocity.x; dragForce.y = -1.f * kDragCoeff * velocity.y; // Update positions position.x += velocity.x * dt; position.y += velocity.y * dt; // Update velocities velocity.x += forceScaling * (noiseForce.x + dragForce.y) * dt; velocity.y += forceScaling * (kGravity + noiseForce.y + dragForce.y) * dt; float radius = cuConstRendererParams.radius[index]; // If the snowflake has moved off the left, right or bottom of // the screen, place it back at the top and give it a // pseudorandom x position and velocity. if ( (position.y + radius < 0.f) || (position.x + radius) < -0.f || (position.x - radius) > 1.f) { noiseInput.x = 255.f * position.x; noiseInput.y = 255.f * position.y; noiseInput.z = 255.f * position.z; noiseForce = cudaVec2CellNoise(noiseInput, index); position.x = .5f + .5f * noiseForce.x; position.y = 1.35f + radius; // Restart from 0 vertical velocity. Choose a // pseudo-random horizontal velocity. velocity.x = 2.f * noiseForce.y; velocity.y = 0.f; } // Store updated positions and velocities to global memory *((float3*)positionPtr) = position; *((float3*)velocityPtr) = velocity; } // shadePixel -- (CUDA device code) // // Given a pixel and a circle, determine the contribution to the // pixel from the circle. Update of the image is done in this // function. Called by kernelRenderCircles() __device__ __inline__ void shadePixel(int circleIndex, float2 pixelCenter, float3 p, float4* imagePtr) { float diffX = p.x - pixelCenter.x; float diffY = p.y - pixelCenter.y; float pixelDist = diffX * diffX + diffY * diffY; float rad = cuConstRendererParams.radius[circleIndex]; float maxDist = rad * rad; // Circle does not contribute to the image if (pixelDist > maxDist) return; float3 rgb; float alpha; // There is a non-zero contribution. Now compute the shading value // Suggestion: This conditional is in the inner loop. Although it // will evaluate the same for all threads, there is overhead in // setting up the lane masks, etc., to implement the conditional. It // would be wise to perform this logic outside of the loops in // kernelRenderCircles. (If feeling good about yourself, you // could use some specialized template magic). if (cuConstRendererParams.sceneName == SNOWFLAKES || cuConstRendererParams.sceneName == SNOWFLAKES_SINGLE_FRAME) { const float kCircleMaxAlpha = .5f; const float falloffScale = 4.f; float normPixelDist = sqrt(pixelDist) / rad; rgb = lookupColor(normPixelDist); float maxAlpha = .6f + .4f * (1.f-p.z); maxAlpha = kCircleMaxAlpha * fmaxf(fminf(maxAlpha, 1.f), 0.f); // kCircleMaxAlpha * clamped value alpha = maxAlpha * exp(-1.f * falloffScale * normPixelDist * normPixelDist); } else { // Simple: each circle has an assigned color int index3 = 3 * circleIndex; rgb = *(float3*)&(cuConstRendererParams.color[index3]); alpha = .5f; } float oneMinusAlpha = 1.f - alpha; // BEGIN SHOULD-BE-ATOMIC REGION // global memory read float4 existingColor = *imagePtr; float4 newColor; newColor.x = alpha * rgb.x + oneMinusAlpha * existingColor.x; newColor.y = alpha * rgb.y + oneMinusAlpha * existingColor.y; newColor.z = alpha * rgb.z + oneMinusAlpha * existingColor.z; newColor.w = alpha + existingColor.w; // Global memory write *imagePtr = newColor; // END SHOULD-BE-ATOMIC REGION } // kernelGetCirBinsCount -- (CUDA device code) // // Each thread counts how many bins there are in a corresponding circle. __global__ void kernelGetCirBinsCount(uint* count, uint binPixLength) { int circleIdx = blockDim.x * blockIdx.x + threadIdx.x; if (circleIdx >= cuConstRendererParams.numCircles) return; int circleIdx3 = circleIdx * 3; float3 cen = *(float3*) (&cuConstRendererParams.position[circleIdx3]); float rad = cuConstRendererParams.radius[circleIdx]; //Get bounding box by pixel index short imgWidth = cuConstRendererParams.imageWidth; short imgHeight = cuConstRendererParams.imageHeight; short minX = fminf(fmaxf((cen.x - rad) * imgWidth , 0), imgWidth-1); short maxX = fminf(fmaxf((cen.x + rad) * imgWidth , 0), imgWidth-1); short minY = fminf(fmaxf((cen.y - rad) * imgHeight, 0), imgHeight-1); short maxY = fminf(fmaxf((cen.y + rad) * imgHeight, 0), imgHeight-1); short xbinStart = minX / binPixLength; short xbinEnd = (maxX / binPixLength) + 1; short ybinStart = minY / binPixLength; short ybinEnd = (maxY / binPixLength) + 1; count[circleIdx] = static_cast<uint>((xbinEnd - xbinStart) * (ybinEnd - ybinStart)); } // kernelGetBin_CirInd -- (CUDA device code) // // Each thread corresponds to a circle, but it modifies two arrays containing all bins, // one for containing circle index and the other with its bin index on the image grid. // Seems like repetitive logic, but we needed to know the length beforehand! __global__ void kernelGetCirBinsPair(uint* devInputCirIdxStart, uint* devOutputBinsCir_Bin, uint* devOutputBinsCir_Cir, uint binNumLength, uint binPixLength) { int circleIdx = blockDim.x * blockIdx.x + threadIdx.x; if (circleIdx >= cuConstRendererParams.numCircles) return; int circleIdx3 = circleIdx * 3; float3 cen = *(float3*) (&cuConstRendererParams.position[circleIdx3]); float rad = cuConstRendererParams.radius[circleIdx]; //Get bounding box by pixel index short imgWidth = cuConstRendererParams.imageWidth; short imgHeight = cuConstRendererParams.imageHeight; short minX = fminf(fmaxf((cen.x-rad) * imgWidth, 0), imgWidth-1); short maxX = fminf(fmaxf((cen.x+rad) * imgWidth, 0), imgWidth-1); short minY = fminf(fmaxf((cen.y-rad) * imgHeight, 0), imgHeight-1); short maxY = fminf(fmaxf((cen.y+rad) * imgHeight, 0), imgHeight-1); short xbinStart = minX / binPixLength; short xbinEnd = (maxX / binPixLength) + 1; short ybinStart = minY / binPixLength; short ybinEnd = (maxY / binPixLength) + 1; uint ind = devInputCirIdxStart[circleIdx]; //Row-major order! for (uint y = ybinStart; y < ybinEnd; y++) { uint binOffset = y * binNumLength; for (uint x = xbinStart; x < xbinEnd; x++) { devOutputBinsCir_Bin[ind] = binOffset + x; devOutputBinsCir_Cir[ind] = circleIdx; ind++; } } } // kernelGetBinStartIndex -- (CUDA device code) // // For each bin, we want to know its starting index in out array. // We can set up shared memory across threads and check if the previous index // is different from the current index. __global__ void kernelGetBinStartIndex(uint* devOutputBinStartIndex, uint* devInputCirBins_Bin, uint binsCirLength) { __shared__ int cache[257]; //blockDim.x + 1 int binsCirIdx = blockDim.x * blockIdx.x + threadIdx.x; if (binsCirIdx >= binsCirLength) return; if (threadIdx.x == 0) { // Do most common case first for if-else if (binsCirIdx != 0) { cache[0] = devInputCirBins_Bin[binsCirIdx-1]; } else { cache[0] = 0; } } cache[1+threadIdx.x] = devInputCirBins_Bin[binsCirIdx]; // ------------------ // __syncthreads(); // // ------------------ // int index = cache[1+threadIdx.x]; bool newBin = (index != cache[threadIdx.x]); if (newBin) { // printf("New bin at: %d, %u\n", index, binsCirIdx); devOutputBinStartIndex[index] = binsCirIdx; } // ------------------ // __syncthreads(); // // ------------------ // if (binsCirIdx == binsCirLength - 1) { newBin = true; binsCirIdx = (int) binsCirLength; } if (newBin) { int j = index; while (j > 0 && devOutputBinStartIndex[j] == 0) { devOutputBinStartIndex[j] = (uint) binsCirIdx; j--; } } } // kernelGetBinSizes -- (CUDA device code) // // Find the size of each bin (how many circles are inside), which is done with // pairwise subtraction on the starting indices. __global__ void kernelGetBinSizes(uint* devOutputBinSizes, uint* devInputBinStartIndex, uint binsTotal, uint binsCirLength) { __shared__ int cache[257]; //blockDim.x + 1 int binsCirIdx = blockDim.x * blockIdx.x + threadIdx.x; if (binsCirIdx >= binsTotal) return; if (threadIdx.x == blockDim.x - 1) { // Do most common case first for if-else if (binsCirIdx != binsTotal - 1) { cache[threadIdx.x+1] = devInputBinStartIndex[binsCirIdx+1]; } } if (binsCirIdx == binsTotal - 1) { cache[1+threadIdx.x] = binsCirLength; } cache[threadIdx.x] = devInputBinStartIndex[binsCirIdx]; __syncthreads(); devOutputBinSizes[binsCirIdx] = cache[1+threadIdx.x] - cache[threadIdx.x]; } // kernelRenderCirclesTRUE -- (CUDA device code) // // My implementation of rendering circles properly. We need each thread to // operate on a grid of pixels since if each thread rendered a circle separately, // there is no guarantee of order being preserved. // __global__ void kernelRenderCirclesTRUE(uint* devCirBins_Cir, uint* devBinStartIndex, uint binNumLength, uint binPixLength, uint* devBinNumCir, uint maxBinNumCir, bool conditional, bool share) { //extern keyword since dynamically allocated! extern __shared__ float cache[]; float *shareCen = cache; float *shareRad = cache + maxBinNumCir * 3; float *shareCol = shareRad + maxBinNumCir; //Find bin from pixel coordinate short imageWidth = cuConstRendererParams.imageWidth; short imageHeight = cuConstRendererParams.imageHeight; short pixX = blockDim.x * blockIdx.x + threadIdx.x; short pixY = blockDim.y * blockIdx.y + threadIdx.y; short binX = pixX / binPixLength; short binY = pixY / binPixLength; short binInd = binY * binNumLength + binX; int binStart = devBinStartIndex[binInd]; int binSize = devBinNumCir[binInd]; short tCount = blockDim.x * blockDim.y; short threadId = threadIdx.y * blockDim.x + threadIdx.x; //Move radius and center to shared data if (share) for (int i = threadId; i < binSize; i += tCount) { uint cirIndex = devCirBins_Cir[binStart + i]; shareRad[i] = cuConstRendererParams.radius[cirIndex]; *(float3*)(&shareCen[i * 3]) = *(float3*)(&cuConstRendererParams.position[cirIndex * 3]); *(float3*)(&shareCol[i * 3]) = *(float3*)(&cuConstRendererParams.color[cirIndex * 3]); } //We do this now after moving stuff to shared data. Otheriwse results are weird! if (pixX >= imageWidth || pixY >= imageHeight) { return; } __syncthreads(); //Move lots of logic from shadePixel into here float4 *imagePtr = (float4*)(&cuConstRendererParams.imageData[4 * (pixY * imageWidth + pixX)]); float4 newColor = *imagePtr; float invWidth = 1.f / imageWidth; float invHeight = 1.f / imageHeight; float2 pcen = make_float2(invWidth * (static_cast<float>(pixX) + 0.5f), invHeight * (static_cast<float>(pixY) + 0.5f)); for (int i = 0; i < binSize; i++) { uint cirIndex = devCirBins_Cir[binStart + i]; float3 cen = (share) ? *(float3*) (&shareCen[i*3]) : *(float3*) (&cuConstRendererParams.position[cirIndex * 3]); float rad = (share) ? shareRad[i] : cuConstRendererParams.radius[cirIndex]; float maxDist = rad * rad; float diffX = pcen.x - cen.x; float diffY = pcen.y - cen.y; float pixelDist = diffX * diffX + diffY * diffY; // Circle does not contribute to the image if (pixelDist > maxDist) { continue; } float3 rgb; float alpha; if (conditional) { const float kCircleMaxAlpha = .5f; const float falloffScale = 4.f; float normPixelDist = sqrt(pixelDist) / rad; rgb = lookupColor(normPixelDist); float maxAlpha = .6f + .4f * (1.f-cen.z); maxAlpha = kCircleMaxAlpha * fmaxf(fminf(maxAlpha, 1.f), 0.f); // kCircleMaxAlpha * clamped value alpha = maxAlpha * exp(-1.f * falloffScale * normPixelDist * normPixelDist); } else { // Simple: each circle has an assigned color rgb = (share) ? *(float3*) (&shareCol[i * 3]) : *(float3*) (&cuConstRendererParams.color[cirIndex * 3]); alpha = .5f; } float oneMinusAlpha = 1.f - alpha; //draw into to the pixel shared buffer newColor.x = alpha*rgb.x + oneMinusAlpha * newColor.x; newColor.y = alpha*rgb.y + oneMinusAlpha * newColor.y; newColor.z = alpha*rgb.z + oneMinusAlpha * newColor.z; newColor.w = alpha + newColor.w; } *imagePtr = newColor; } // kerneldoesIntersectCircle -- (CUDA device code) // __global__ void kernelDoesIntersectCircle (int **dev_result, short **box, int numCir, int numPix) { printf(":D"); int indexX = blockDim.x * blockIdx.x + threadIdx.x; //Circle idx int indexY = blockDim.y * blockIdx.y + blockIdx.y; //Pixel idx if (indexX >= numCir || indexY >= numPix) return; short imageWidth = cuConstRendererParams.imageWidth; int pixX = indexY % imageWidth; int pixY = indexY / imageWidth; short *bbox = box[indexX]; if (pixX >= bbox[0] && pixX <= bbox[1] && pixY >= bbox[2] && pixY <= bbox[3]){ float rad = cuConstRendererParams.radius[indexX]; float3 p = *(float3*) (&cuConstRendererParams.position[indexX]); short imageWidth = cuConstRendererParams.imageWidth; short imageHeight = cuConstRendererParams.imageHeight; float invWidth = 1.f / imageWidth; float invHeight = 1.f / imageHeight; float2 pcen = make_float2(invWidth * (static_cast<float>(pixX) + 0.5f), invHeight * (static_cast<float>(pixY) + 0.5f)); float maxDist = rad * rad; float diffX = pcen.x - p.x; float diffY = pcen.y - p.y; float pixelDist = diffX * diffX + diffY * diffY; // Circle does not contribute to the image if (pixelDist <= maxDist) { dev_result[indexY][indexX] = 1; return; } } dev_result[indexY][indexX] = 0; } // kernelRenderCirclesBoxes-- (CUDA device code) // // Gets the bounding boxes for all circles __global__ void kernelRenderCirclesBoxes (int numCir, short** box) { int index = blockDim.x * blockIdx.x + threadIdx.x; float3 cen = *(float3*) (&cuConstRendererParams.position[3*index]); float rad = cuConstRendererParams.radius[index]; //Get bounding box by pixel index short imgWidth = cuConstRendererParams.imageWidth; short imgHeight = cuConstRendererParams.imageHeight; box[index][0] = fminf(fmaxf((cen.x-rad) * imgWidth, 0), imgWidth-1); box[index][1] = fminf(fmaxf((cen.x+rad) * imgWidth, 0), imgWidth-1); box[index][2] = fminf(fmaxf((cen.y-rad) * imgHeight, 0), imgHeight-1); box[index][3] = fminf(fmaxf((cen.y+rad) * imgHeight, 0), imgHeight-1); printf("yo"); } // kernelRenderCirclesMAYBE-- (CUDA device code) // // Really naive implementation that does a circle across multiple threads // Meant to be sequentially called across all circles. __global__ void kernelRenderCirclesMAYBE (int** pointInCircle, int numCir, short** box, bool conditional) { printf("blah"); dim3 blockDim(256, 1); dim3 gridDim((numCir + blockDim.x - 1) / blockDim.x); short pixX = blockDim.x * blockIdx.x + threadIdx.x; short pixY = blockDim.y * blockIdx.y + threadIdx.y; short imageWidth = cuConstRendererParams.imageWidth; short imageHeight = cuConstRendererParams.imageHeight; if (pixX >= imageWidth || pixY >= imageHeight) return; int pixInd = pixY * imageWidth + pixX; int* isInCircle = pointInCircle[pixInd]; float4 *imagePtr = (float4*)(&cuConstRendererParams.imageData[4 * (pixY * imageWidth + pixX)]); float4 newColor = *imagePtr; for (int i = 0; i < numCir; i++) { if (!isInCircle[i]) continue; float rad = cuConstRendererParams.radius[i]; float3 p = *(float3*) (&cuConstRendererParams.position[i*3]); float3 color = *(float3*) (&cuConstRendererParams.color[i*3]); float3 rgb; float alpha; if (conditional) { const float kCircleMaxAlpha = .5f; const float falloffScale = 4.f; float diffX = p.x - pixX; float diffY = p.y - pixY; float pixelDist = diffX * diffX + diffY * diffY; float normPixelDist = sqrt(pixelDist) / rad; rgb = lookupColor(normPixelDist); float maxAlpha = .6f + .4f * (1.f-p.z); maxAlpha = kCircleMaxAlpha * fmaxf(fminf(maxAlpha, 1.f), 0.f); // kCircleMaxAlpha * clamped value alpha = maxAlpha * exp(-1.f * falloffScale * normPixelDist * normPixelDist); } else { // Simple: each circle has an assigned color rgb = color; alpha = .5f; } float oneMinusAlpha = 1.f - alpha; //draw into to the pixel shared buffer newColor.x = alpha*rgb.x + oneMinusAlpha * newColor.x; newColor.y = alpha*rgb.y + oneMinusAlpha * newColor.y; newColor.z = alpha*rgb.z + oneMinusAlpha * newColor.z; newColor.w = alpha + newColor.w; } *imagePtr = newColor; } // kernelRenderCirclesFALSE -- (CUDA device code) // // Really naive implementation that does a circle across multiple threads // Meant to be sequentially called across all circles. __global__ void kernelRenderCirclesFALSE (short minX, short minY, float3 p, float rad, float3 color, bool conditional, int cirIndex) { short pixX = blockDim.x * blockIdx.x + threadIdx.x + minX; short pixY = blockDim.y * blockIdx.y + threadIdx.y + minY; short imageWidth = cuConstRendererParams.imageWidth; short imageHeight = cuConstRendererParams.imageHeight; float4 *imagePtr = (float4*)(&cuConstRendererParams.imageData[4 * (pixY * imageWidth + pixX)]); float4 newColor = *imagePtr; float invWidth = 1.f / imageWidth; float invHeight = 1.f / imageHeight; float2 pcen = make_float2(invWidth * (static_cast<float>(pixX) + 0.5f), invHeight * (static_cast<float>(pixY) + 0.5f)); float maxDist = rad * rad; float diffX = pcen.x - p.x; float diffY = pcen.y - p.y; float pixelDist = diffX * diffX + diffY * diffY; // Circle does not contribute to the image if (pixelDist > maxDist) { return; } float3 rgb; float alpha; if (conditional) { const float kCircleMaxAlpha = .5f; const float falloffScale = 4.f; float normPixelDist = sqrt(pixelDist) / rad; rgb = lookupColor(normPixelDist); float maxAlpha = .6f + .4f * (1.f-p.z); maxAlpha = kCircleMaxAlpha * fmaxf(fminf(maxAlpha, 1.f), 0.f); // kCircleMaxAlpha * clamped value alpha = maxAlpha * exp(-1.f * falloffScale * normPixelDist * normPixelDist); } else { // Simple: each circle has an assigned color rgb = color; alpha = .5f; } float oneMinusAlpha = 1.f - alpha; //draw into to the pixel shared buffer newColor.x = alpha*rgb.x + oneMinusAlpha * newColor.x; newColor.y = alpha*rgb.y + oneMinusAlpha * newColor.y; newColor.z = alpha*rgb.z + oneMinusAlpha * newColor.z; newColor.w = alpha + newColor.w; *imagePtr = newColor; } // kernelRenderCircles -- (CUDA device code) // // Each thread renders a circle. Since there is no protection to // ensure order of update or mutual exclusion on the output image, the // resulting image will be incorrect. __global__ void kernelRenderCircles() { int index = blockIdx.x * blockDim.x + threadIdx.x; if (index >= cuConstRendererParams.numCircles) return; int index3 = 3 * index; // Read position and radius float3 p = *(float3*)(&cuConstRendererParams.position[index3]); float rad = cuConstRendererParams.radius[index]; // Compute the bounding box of the circle. The bound is in integer // screen coordinates, so it's clamped to the edges of the screen. short imageWidth = cuConstRendererParams.imageWidth; short imageHeight = cuConstRendererParams.imageHeight; short minX = static_cast<short>(imageWidth * (p.x - rad)); short maxX = static_cast<short>(imageWidth * (p.x + rad)) + 1; short minY = static_cast<short>(imageHeight * (p.y - rad)); short maxY = static_cast<short>(imageHeight * (p.y + rad)) + 1; // A bunch of clamps. Is there a CUDA built-in for this? short screenMinX = (minX > 0) ? ((minX < imageWidth) ? minX : imageWidth) : 0; short screenMaxX = (maxX > 0) ? ((maxX < imageWidth) ? maxX : imageWidth) : 0; short screenMinY = (minY > 0) ? ((minY < imageHeight) ? minY : imageHeight) : 0; short screenMaxY = (maxY > 0) ? ((maxY < imageHeight) ? maxY : imageHeight) : 0; float invWidth = 1.f / imageWidth; float invHeight = 1.f / imageHeight; // For all pixels in the bonding box for (int pixelY=screenMinY; pixelY<screenMaxY; pixelY++) { float4* imgPtr = (float4*)(&cuConstRendererParams.imageData[4 * (pixelY * imageWidth + screenMinX)]); for (int pixelX=screenMinX; pixelX<screenMaxX; pixelX++) { float2 pixelCenterNorm = make_float2(invWidth * (static_cast<float>(pixelX) + 0.5f), invHeight * (static_cast<float>(pixelY) + 0.5f)); shadePixel(index, pixelCenterNorm, p, imgPtr); imgPtr++; } } } //////////////////////////////////////////////////////////////////////////////////////// CudaRenderer::CudaRenderer() { image = NULL; numCircles = 0; position = NULL; velocity = NULL; color = NULL; radius = NULL; cudaDevicePosition = NULL; cudaDeviceVelocity = NULL; cudaDeviceColor = NULL; cudaDeviceRadius = NULL; cudaDeviceImageData = NULL; } CudaRenderer::~CudaRenderer() { if (image) { delete image; } if (position) { delete [] position; delete [] velocity; delete [] color; delete [] radius; } if (cudaDevicePosition) { cudaFree(cudaDevicePosition); cudaFree(cudaDeviceVelocity); cudaFree(cudaDeviceColor); cudaFree(cudaDeviceRadius); cudaFree(cudaDeviceImageData); cudaFree(devPointInCircle); cudaFree(devCirBinsCount); cudaFree(devCirBinsIndex); cudaFree(devBinStartIndex); cudaFree(devBinNumCir); } } const Image* CudaRenderer::getImage() { // Need to copy contents of the rendered image from device memory // before we expose the Image object to the caller printf("Copying image data from device\n"); cudaMemcpy(image->data, cudaDeviceImageData, sizeof(float) * 4 * image->width * image->height, cudaMemcpyDeviceToHost); return image; } void CudaRenderer::loadScene(SceneName scene) { sceneName = scene; loadCircleScene(sceneName, numCircles, position, velocity, color, radius); } void CudaRenderer::setup() { int deviceCount = 0; bool isFastGPU = false; std::string name; cudaError_t err = cudaGetDeviceCount(&deviceCount); printf("---------------------------------------------------------\n"); printf("Initializing CUDA for CudaRenderer\n"); printf("Found %d CUDA devices\n", deviceCount); for (int i=0; i<deviceCount; i++) { cudaDeviceProp deviceProps; cudaGetDeviceProperties(&deviceProps, i); name = deviceProps.name; if (name.compare("GeForce GTX 1080") == 0) { isFastGPU = true; } printf("Device %d: %s\n", i, deviceProps.name); printf(" SMs: %d\n", deviceProps.multiProcessorCount); printf(" Global mem: %.0f MB\n", static_cast<float>(deviceProps.totalGlobalMem) / (1024 * 1024)); printf(" CUDA Cap: %d.%d\n", deviceProps.major, deviceProps.minor); } printf("---------------------------------------------------------\n"); if (!isFastGPU) { printf("WARNING: " "You're not running on a fast GPU, please consider using " "NVIDIA GTX 1080.\n"); printf("---------------------------------------------------------\n"); } // By this time the scene should be loaded. Now copy all the key // data structures into device memory so they are accessible to // CUDA kernels // // See the CUDA Programmer's Guide for descriptions of // cudaMalloc and cudaMemcpy /** Setup code for new approach! */ //We want more bins if there are more circles, but we also want them to be aligned //with 16x16 grids when running renderCircles. // if (numCircles < 100) { binNumLength = 4; } else if (numCircles >= 100 && numCircles < 1000) { binNumLength = 8; } else if (numCircles >= 1000 && numCircles < 10000) { binNumLength = 16; } else { binNumLength = 64; } uint notBinPixLength = (image->width - 1)/binNumLength + 1; //standard binPixLength = max(1, (notBinPixLength / 16)) * 16; //push to floor multiple of 16 binNumLength = (image->width - 1)/binPixLength + 1; //correct binNumLength //allocate memory for cuda cudaMalloc(&devPointInCircle, sizeof(uint) * image->width * image->height); cudaMalloc(&devCirBinsCount, sizeof(uint) * numCircles); cudaMalloc(&devCirBinsIndex, sizeof(uint) * numCircles); cudaMalloc(&devBinStartIndex, sizeof(uint) * binNumLength * binNumLength); cudaMalloc(&devBinNumCir, sizeof(uint) * binNumLength * binNumLength); cudaMalloc(&cudaDevicePosition, sizeof(float) * 3 * numCircles); cudaMalloc(&cudaDeviceVelocity, sizeof(float) * 3 * numCircles); cudaMalloc(&cudaDeviceColor, sizeof(float) * 3 * numCircles); cudaMalloc(&cudaDeviceRadius, sizeof(float) * numCircles); cudaMalloc(&cudaDeviceImageData, sizeof(float) * 4 * image->width * image->height); cudaMemcpy(cudaDevicePosition, position, sizeof(float) * 3 * numCircles, cudaMemcpyHostToDevice); cudaMemcpy(cudaDeviceVelocity, velocity, sizeof(float) * 3 * numCircles, cudaMemcpyHostToDevice); cudaMemcpy(cudaDeviceColor, color, sizeof(float) * 3 * numCircles, cudaMemcpyHostToDevice); cudaMemcpy(cudaDeviceRadius, radius, sizeof(float) * numCircles, cudaMemcpyHostToDevice); // Initialize parameters in constant memory. We didn't talk about // constant memory in class, but the use of read-only constant // memory here is an optimization over just sticking these values // in device global memory. NVIDIA GPUs have a few special tricks // for optimizing access to constant memory. Using global memory // here would have worked just as well. See the Programmer's // Guide for more information about constant memory. GlobalConstants params; params.sceneName = sceneName; params.numCircles = numCircles; params.imageWidth = image->width; params.imageHeight = image->height; params.position = cudaDevicePosition; params.velocity = cudaDeviceVelocity; params.color = cudaDeviceColor; params.radius = cudaDeviceRadius; params.imageData = cudaDeviceImageData; cudaMemcpyToSymbol(cuConstRendererParams, &params, sizeof(GlobalConstants)); // Also need to copy over the noise lookup tables, so we can // implement noise on the GPU int* permX; int* permY; float* value1D; getNoiseTables(&permX, &permY, &value1D); cudaMemcpyToSymbol(cuConstNoiseXPermutationTable, permX, sizeof(int) * 256); cudaMemcpyToSymbol(cuConstNoiseYPermutationTable, permY, sizeof(int) * 256); cudaMemcpyToSymbol(cuConstNoise1DValueTable, value1D, sizeof(float) * 256); // Copy over the color table that's used by the shading // function for circles in the snowflake demo float lookupTable[COLOR_MAP_SIZE][3] = { {1.f, 1.f, 1.f}, {1.f, 1.f, 1.f}, {.8f, .9f, 1.f}, {.8f, .9f, 1.f}, {.8f, 0.8f, 1.f}, }; cudaMemcpyToSymbol(cuConstColorRamp, lookupTable, sizeof(float) * 3 * COLOR_MAP_SIZE); } // allocOutputImage -- // // Allocate buffer the renderer will render into. Check status of // image first to avoid memory leak. void CudaRenderer::allocOutputImage(int width, int height) { if (image) delete image; image = new Image(width, height); } // clearImage -- // // Clear the renderer's target image. The state of the image after // the clear depends on the scene being rendered. void CudaRenderer::clearImage() { // 256 threads per block is a healthy number dim3 blockDim(16, 16, 1); dim3 gridDim( (image->width + blockDim.x - 1) / blockDim.x, (image->height + blockDim.y - 1) / blockDim.y); if (sceneName == SNOWFLAKES || sceneName == SNOWFLAKES_SINGLE_FRAME) { kernelClearImageSnowflake<<<gridDim, blockDim>>>(); } else { kernelClearImage<<<gridDim, blockDim>>>(1.f, 1.f, 1.f, 1.f); } cudaDeviceSynchronize(); } // advanceAnimation -- // // Advance the simulation one time step. Updates all circle positions // and velocities void CudaRenderer::advanceAnimation() { // 256 threads per block is a healthy number dim3 blockDim(256, 1); dim3 gridDim((numCircles + blockDim.x - 1) / blockDim.x); // only the snowflake scene has animation if (sceneName == SNOWFLAKES) { kernelAdvanceSnowflake<<<gridDim, blockDim>>>(); } else if (sceneName == BOUNCING_BALLS) { kernelAdvanceBouncingBalls<<<gridDim, blockDim>>>(); } else if (sceneName == HYPNOSIS) { kernelAdvanceHypnosis<<<gridDim, blockDim>>>(); } else if (sceneName == FIREWORKS) { kernelAdvanceFireWorks<<<gridDim, blockDim>>>(); } cudaDeviceSynchronize(); } void CudaRenderer::render() { // 256 threads per block is a healthy number bool conditional = (sceneName == SNOWFLAKES || sceneName == SNOWFLAKES_SINGLE_FRAME); struct timespec start, end; clock_gettime(CLOCK_MONOTONIC_RAW, &start); dim3 blockDim(256, 1); dim3 gridDim((numCircles + blockDim.x - 1) / blockDim.x); /** Step 1: Get number of bins per circle */ kernelGetCirBinsCount<<<gridDim, blockDim>>>(devCirBinsCount, binPixLength); clock_gettime(CLOCK_MONOTONIC_RAW, &end); uint delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000; printf("Time: %u\n", delta_us); /** step 1.5: If we have reason to believe that the graph has really low density, then we switch approach. This is either from having a very small amount of circles, or a sparse pattern. We can tell by checking how many circles are in each bin. */ if (numCircles < 5) { for (int i = 0; i < numCircles; i++) { float3 p = *(float3*)(&position[i*3]); float rad = radius[i]; float3 col = *(float3*)(&color[i*3]); int imgWidth = image->width; int imgHeight = image->height; int minX = fminf(fmaxf((p.x-rad) * imgWidth, 0), imgWidth-1); int maxX = fminf(fmaxf((p.x+rad) * imgWidth, 0), imgWidth-1); int minY = fminf(fmaxf((p.y-rad) * imgHeight, 0), imgHeight-1); int maxY = fminf(fmaxf((p.y+rad) * imgHeight, 0), imgHeight-1); printf("%d, %d | %d, %d\n", minX, maxX, minY, maxY); dim3 pixelBlockDim(16,16); dim3 pixelGridDim((maxX - minX) / pixelBlockDim.x + 1, (maxY - minY) / pixelBlockDim.y + 1); kernelRenderCirclesFALSE<<<pixelGridDim, pixelBlockDim>>>(minX, minY, p, rad, col, conditional, i); cudaDeviceSynchronize(); } return; } /**else { int imgWidth = image->width; int imgHeight = image->height; dim3 pixelBlockDim(16,16); dim3 pixelGridDim((numCircles - 1) / pixelBlockDim.x + 1, (imgWidth*imgHeight - 1) / pixelBlockDim.y + 1); short** box; cudaMalloc(&box, 4 * sizeof(short) * numCircles); kernelRenderCirclesBoxes<<<gridDim, blockDim>>>(numCircles, box); //once per bin-circle kernelDoesIntersectCircle<<<pixelGridDim, pixelBlockDim>>>(devPointInCircle, box, numCircles, imgWidth*imgHeight); //once per circle kernelRenderCirclesMAYBE<<<gridDim, blockDim>>> (devPointInCircle, numCircles, box, conditional); cudaFree(box); return; }*/ /** Step 2: Get starting index of the bins per circle Done by using thrust::exclusive_scan (sorry!) */ thrust::exclusive_scan(thrust::device_ptr<uint>(devCirBinsCount), thrust::device_ptr<uint>(devCirBinsCount + numCircles), thrust::device_ptr<uint>(devCirBinsIndex)); clock_gettime(CLOCK_MONOTONIC_RAW, &end); delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000; printf("Time: %u\n", delta_us); // Get how many bin-circle pairs there are uint lastCirBinsCount, lastCirBinsIndex; cudaMemcpy(&lastCirBinsCount, devCirBinsCount + numCircles - 1, sizeof(uint), cudaMemcpyDeviceToHost); cudaMemcpy(&lastCirBinsIndex, devCirBinsIndex + numCircles - 1, sizeof(uint), cudaMemcpyDeviceToHost); uint cirBinsLength = lastCirBinsCount + lastCirBinsIndex; /** Step 3: Bind each bin with its circle and relative index within its circle * 4: Sort by bin index (using thrust::stable_sort to preserve circle * order) */ uint *devCirBins_Bin, *devCirBins_Cir; cudaMalloc(&devCirBins_Bin, sizeof(uint) * cirBinsLength); cudaMalloc(&devCirBins_Cir, sizeof(uint) * cirBinsLength); kernelGetCirBinsPair<<<gridDim, blockDim>>>(devCirBinsIndex, devCirBins_Bin, devCirBins_Cir, binNumLength, binPixLength); clock_gettime(CLOCK_MONOTONIC_RAW, &end); delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000; printf("Time: %u\n", delta_us); thrust::stable_sort_by_key(thrust::device_ptr<uint>(devCirBins_Bin), thrust::device_ptr<uint>(devCirBins_Bin + cirBinsLength), thrust::device_ptr<uint>(devCirBins_Cir)); clock_gettime(CLOCK_MONOTONIC_RAW, &end); delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000; printf("Time: %u\n", delta_us); /** Now that we have all the bins in order with circle order preserved, we * can do each bin in parallel! * * Step 5: Find the starting index of each bin and how many circles are in there */ printf("Step 5\n"); // Still use 256 threads per block uint numBins = binNumLength * binNumLength; dim3 cirBinsGridDim((cirBinsLength + blockDim.x - 1) / blockDim.x); kernelGetBinStartIndex<<<cirBinsGridDim, blockDim>>>(devBinStartIndex, devCirBins_Bin, cirBinsLength); clock_gettime(CLOCK_MONOTONIC_RAW, &end); delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000; printf("Time: %u\n", delta_us); cudaMemset(devBinStartIndex, 0, sizeof(uint)); dim3 binsGridDim((numBins + blockDim.x - 1) / blockDim.x); kernelGetBinSizes<<<binsGridDim, blockDim>>>(devBinNumCir, devBinStartIndex, numBins, cirBinsLength); clock_gettime(CLOCK_MONOTONIC_RAW, &end); delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000; printf("Time: %u\n", delta_us); thrust::device_ptr<uint> result = thrust::max_element(thrust::device_ptr<uint>(devBinNumCir), thrust::device_ptr<uint>(devBinNumCir + numBins)); clock_gettime(CLOCK_MONOTONIC_RAW, &end); delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000; printf("Time: %u\n", delta_us); uint maxBinNumCir = result[0]; /** Step 6: Finally render the circles, with each block of pixels being drawn * on a separate thread. */ //printf("Step 6, %d\n", maxBinNumCir); dim3 pixelBlockDim(16,16); dim3 pixelGridDim((image->width - 1) / pixelBlockDim.x + 1, (image->height - 1) / pixelBlockDim.y + 1); if (maxBinNumCir < 1000) { uint sharedMemSize = maxBinNumCir * (7*sizeof(float)); //3 for center coordinates //1 for radius //printf("%d\n", sharedMemSize); //3 for color kernelRenderCirclesTRUE<<<pixelGridDim, pixelBlockDim, sharedMemSize>>>(devCirBins_Cir, devBinStartIndex, binNumLength, binPixLength, devBinNumCir, maxBinNumCir, conditional, true); } else { //Too much memory to share across threads!!! kernelRenderCirclesTRUE<<<pixelGridDim, pixelBlockDim>>>(devCirBins_Cir, devBinStartIndex, binNumLength, binPixLength, devBinNumCir, maxBinNumCir, conditional, false); } // Initial solution given (BAD!) // kernelRenderCircles<<<gridDim, blockDim>>>(); cudaDeviceSynchronize(); cudaFree(devCirBins_Bin); cudaFree(devCirBins_Cir); }
33c68c9a6783f0f060a54396b36bd32723cc959f.hip
// !!! This is a file automatically generated by hipify!!! #include <ATen/ATen.h> #include <ATen/ExpandUtils.h> #include <ATen/InitialTensorOptions.h> #include <ATen/NativeFunctions.h> #include <ATen/SparseCsrTensorImpl.h> #include <ATen/SparseCsrTensorUtils.h> #include <ATen/SparseTensorUtils.h> #include <ATen/WrapDimUtilsMulti.h> #include <ATen/native/BinaryOps.h> #include <ATen/native/Resize.h> #include <algorithm> #include <hip/hip_runtime.h> #include <type_traits> #include <THH/THHThrustAllocator.cuh> #include <ATen/hip/HIPContext.h> #include <ATen/hip/HIPUtils.h> #include <ATen/hip/impl/HIPCachingAllocatorMasqueradingAsCUDA.h> #include <ATen/native/sparse/hip/SparseHIPBlas.cuh> #include <ATen/native/sparse/hip/SparseHIPTensorMath.cuh> #include <thrust/device_ptr.h> #include <thrust/execution_policy.h> #include <thrust/for_each.h> #include <thrust/sequence.h> namespace at { namespace native { using namespace at::sparse_csr; // certain utiliy functions are usable from sparse COO. using namespace at::sparse; Tensor& addmm_out_sparse_csr_dense_cuda( const Tensor& self, const SparseCsrTensor& sparse, const Tensor& dense, const Scalar& beta, const Scalar& alpha, Tensor& r) { TORCH_INTERNAL_ASSERT(sparse.is_sparse_csr()); Tensor t = *expand_size(self, {sparse.size(0), dense.size(1)}, "addmm_out_sparse_csr"); TORCH_CHECK(t.is_cuda(), "Expected all tensors to be on the same device. addmm expected 't' to be CUDA tensor"); TORCH_CHECK( r.is_cuda(), "Expected all tensors to be on the same device. addmm: expected 'out' to be CUDA tensor, but got CPU tensor"); TORCH_CHECK( sparse.is_cuda(), "Expected all tensors to be on the same device. addmm: expected 'mat1' to be a CUDA tensor, but got a CPU tensor"); TORCH_CHECK( dense.is_cuda(), "Expected all tensors to be on the same device. addmm: expected 'mat2' to be a CUDA tensor, but got a CPU tensor"); TORCH_CHECK( sparse.dim() == 2, "addmm: 2-D matrices expected, got ", sparse.dim(), "D tensor"); TORCH_CHECK( dense.dim() == 2, "addmm: 2-D matrices expected, got ", dense.dim(), "D tensor"); TORCH_CHECK( r.is_contiguous(), "out argument must be contiguous, but got: ", r.suggest_memory_format()); // mxk * kxn = mxn int64_t m = sparse.size(0); int64_t k = sparse.size(1); int64_t n = dense.size(1); TORCH_CHECK( dense.size(0) == k, "addmm: Expected dense matrix (dense) size(0)=", k, ", got ", dense.size(0)); resize_output(r, {m, n}); int64_t nnz = sparse._nnz(); if (nnz == 0) { at::mul_out(r, t, at::scalar_tensor(beta, r.options())); return r; } // TODO: Check if hipsparseSpMM can use 64-bit indices // https://docs.nvidia.com/cuda/cusparse/index.html auto col_indices = sparse.col_indices().to(at::kInt); auto crow_indices = sparse.crow_indices().to(at::kInt); auto values = sparse.values(); s_addmm_out_csr_sparse_dense_cuda_worker(nnz, m, n, k, r, beta, t, alpha, crow_indices, col_indices, values, dense); return r; } Tensor& add_out_dense_sparse_csr_cuda( Tensor& output, const Tensor& dense, const SparseCsrTensor& src, const Scalar& alpha) { TORCH_INTERNAL_ASSERT(dense.layout() == kStrided); TORCH_INTERNAL_ASSERT(src.is_sparse_csr()); TORCH_INTERNAL_ASSERT(dense.is_cuda()); TORCH_CHECK( output.is_contiguous(), "out argument must be contiguous, but got: ", output.suggest_memory_format()); TORCH_CHECK( output.is_cuda(), "add: expected 'out' to be CUDA tensor, but got tensor on device: ", output.device()); TORCH_CHECK( src.is_cuda(), "add: expected 'other' to be a CUDA tensor, but got tensor on device: ", src.device()); TORCH_CHECK( dense.sizes().equals(src.sizes()), "add: expected 'self' and 'other' to have same size, but self has size ", dense.sizes(), " while other has size ", src.sizes(), " (FYI: dense-sparse addition does not currently support broadcasting)"); auto commonDtype = promoteTypes(dense.scalar_type(), src.scalar_type()); TORCH_CHECK( canCast(commonDtype, output.scalar_type()), "Can't convert result type ", commonDtype, " to output ", output.scalar_type(), " in add operation"); Tensor src_values = src.values(); Tensor src_crow_indices = src.crow_indices(); Tensor src_col_indices = src.col_indices(); resize_output(output, dense.sizes()); Tensor resultBuffer = output; Tensor valuesBuffer = src_values.to(commonDtype); if (output.scalar_type() != commonDtype) { resultBuffer = dense.to(commonDtype); } else if (!is_same_tensor(output, dense)) { resultBuffer.copy_(dense); } AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3( kHalf, kBool, kBFloat16, commonDtype, "add_out_op2_sparse_csr", [&valuesBuffer, &resultBuffer, &alpha, &src_crow_indices, &src_col_indices]() { AT_DISPATCH_INDEX_TYPES( src_crow_indices.scalar_type(), "csr_add_out_crow_indices", [&valuesBuffer, &resultBuffer, &alpha, &src_crow_indices, &src_col_indices]() { scalar_t* values_accessor = valuesBuffer.data_ptr<scalar_t>(); scalar_t* out_ptr = resultBuffer.data_ptr<scalar_t>(); scalar_t cast_value = alpha.to<scalar_t>(); index_t* crow_indices_accessor = src_crow_indices.data_ptr<index_t>(); index_t* col_indices_accessor = src_col_indices.data_ptr<index_t>(); int64_t out_storage_offset = resultBuffer.storage_offset(); auto out_strides = resultBuffer.strides(); int64_t out_strides0 = out_strides[0]; int64_t out_strides1 = out_strides[1]; hipStream_t stream = at::hip::getCurrentHIPStreamMasqueradingAsCUDA(); auto allocator = THCThrustAllocator(globalContext().lazyInitCUDA()); auto policy = thrust::hip::par(allocator).on(stream); // Note that this could be wildly imbalanced if the sparsity pattern varies a lot between rows. thrust::for_each( policy, thrust::make_counting_iterator(int64_t(0)), thrust::make_counting_iterator(int64_t(src_crow_indices.size(0) - 1)), [values_accessor, crow_indices_accessor, col_indices_accessor, out_ptr, out_storage_offset, out_strides0, cast_value, out_strides1 ]__device__(int64_t irow) { index_t start_index = crow_indices_accessor[irow]; index_t end_index = crow_indices_accessor[irow + 1]; for (index_t i = start_index; i < end_index; ++i) { auto icol = col_indices_accessor[i]; auto index = out_storage_offset + irow * out_strides0 + icol * out_strides1; out_ptr[index] += cast_value * values_accessor[i]; } }); }); }); if (output.scalar_type() != commonDtype) { output.copy_(resultBuffer); } return output; } Tensor& add_out_sparse_csr_cuda( const Tensor& self, const SparseCsrTensor& other, const Scalar& alpha, SparseCsrTensor& out) { if (self.layout() == kStrided) { return add_out_dense_sparse_csr_cuda(out, self, other, alpha); } else { TORCH_CHECK( false, "NotImplementedError: Addition of sparse CSR tensors is not yet implemented.") } return out; } } // namespace native } // namespace at
33c68c9a6783f0f060a54396b36bd32723cc959f.cu
#include <ATen/ATen.h> #include <ATen/ExpandUtils.h> #include <ATen/InitialTensorOptions.h> #include <ATen/NativeFunctions.h> #include <ATen/SparseCsrTensorImpl.h> #include <ATen/SparseCsrTensorUtils.h> #include <ATen/SparseTensorUtils.h> #include <ATen/WrapDimUtilsMulti.h> #include <ATen/native/BinaryOps.h> #include <ATen/native/Resize.h> #include <algorithm> #include <cuda_runtime.h> #include <type_traits> #include <THC/THCThrustAllocator.cuh> #include <ATen/cuda/CUDAContext.h> #include <ATen/cuda/CUDAUtils.h> #include <c10/cuda/CUDACachingAllocator.h> #include <ATen/native/sparse/cuda/SparseCUDABlas.cuh> #include <ATen/native/sparse/cuda/SparseCUDATensorMath.cuh> #include <thrust/device_ptr.h> #include <thrust/execution_policy.h> #include <thrust/for_each.h> #include <thrust/sequence.h> namespace at { namespace native { using namespace at::sparse_csr; // certain utiliy functions are usable from sparse COO. using namespace at::sparse; Tensor& addmm_out_sparse_csr_dense_cuda( const Tensor& self, const SparseCsrTensor& sparse, const Tensor& dense, const Scalar& beta, const Scalar& alpha, Tensor& r) { TORCH_INTERNAL_ASSERT(sparse.is_sparse_csr()); Tensor t = *expand_size(self, {sparse.size(0), dense.size(1)}, "addmm_out_sparse_csr"); TORCH_CHECK(t.is_cuda(), "Expected all tensors to be on the same device. addmm expected 't' to be CUDA tensor"); TORCH_CHECK( r.is_cuda(), "Expected all tensors to be on the same device. addmm: expected 'out' to be CUDA tensor, but got CPU tensor"); TORCH_CHECK( sparse.is_cuda(), "Expected all tensors to be on the same device. addmm: expected 'mat1' to be a CUDA tensor, but got a CPU tensor"); TORCH_CHECK( dense.is_cuda(), "Expected all tensors to be on the same device. addmm: expected 'mat2' to be a CUDA tensor, but got a CPU tensor"); TORCH_CHECK( sparse.dim() == 2, "addmm: 2-D matrices expected, got ", sparse.dim(), "D tensor"); TORCH_CHECK( dense.dim() == 2, "addmm: 2-D matrices expected, got ", dense.dim(), "D tensor"); TORCH_CHECK( r.is_contiguous(), "out argument must be contiguous, but got: ", r.suggest_memory_format()); // mxk * kxn = mxn int64_t m = sparse.size(0); int64_t k = sparse.size(1); int64_t n = dense.size(1); TORCH_CHECK( dense.size(0) == k, "addmm: Expected dense matrix (dense) size(0)=", k, ", got ", dense.size(0)); resize_output(r, {m, n}); int64_t nnz = sparse._nnz(); if (nnz == 0) { at::mul_out(r, t, at::scalar_tensor(beta, r.options())); return r; } // TODO: Check if cusparseSpMM can use 64-bit indices // https://docs.nvidia.com/cuda/cusparse/index.html auto col_indices = sparse.col_indices().to(at::kInt); auto crow_indices = sparse.crow_indices().to(at::kInt); auto values = sparse.values(); s_addmm_out_csr_sparse_dense_cuda_worker(nnz, m, n, k, r, beta, t, alpha, crow_indices, col_indices, values, dense); return r; } Tensor& add_out_dense_sparse_csr_cuda( Tensor& output, const Tensor& dense, const SparseCsrTensor& src, const Scalar& alpha) { TORCH_INTERNAL_ASSERT(dense.layout() == kStrided); TORCH_INTERNAL_ASSERT(src.is_sparse_csr()); TORCH_INTERNAL_ASSERT(dense.is_cuda()); TORCH_CHECK( output.is_contiguous(), "out argument must be contiguous, but got: ", output.suggest_memory_format()); TORCH_CHECK( output.is_cuda(), "add: expected 'out' to be CUDA tensor, but got tensor on device: ", output.device()); TORCH_CHECK( src.is_cuda(), "add: expected 'other' to be a CUDA tensor, but got tensor on device: ", src.device()); TORCH_CHECK( dense.sizes().equals(src.sizes()), "add: expected 'self' and 'other' to have same size, but self has size ", dense.sizes(), " while other has size ", src.sizes(), " (FYI: dense-sparse addition does not currently support broadcasting)"); auto commonDtype = promoteTypes(dense.scalar_type(), src.scalar_type()); TORCH_CHECK( canCast(commonDtype, output.scalar_type()), "Can't convert result type ", commonDtype, " to output ", output.scalar_type(), " in add operation"); Tensor src_values = src.values(); Tensor src_crow_indices = src.crow_indices(); Tensor src_col_indices = src.col_indices(); resize_output(output, dense.sizes()); Tensor resultBuffer = output; Tensor valuesBuffer = src_values.to(commonDtype); if (output.scalar_type() != commonDtype) { resultBuffer = dense.to(commonDtype); } else if (!is_same_tensor(output, dense)) { resultBuffer.copy_(dense); } AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3( kHalf, kBool, kBFloat16, commonDtype, "add_out_op2_sparse_csr", [&valuesBuffer, &resultBuffer, &alpha, &src_crow_indices, &src_col_indices]() { AT_DISPATCH_INDEX_TYPES( src_crow_indices.scalar_type(), "csr_add_out_crow_indices", [&valuesBuffer, &resultBuffer, &alpha, &src_crow_indices, &src_col_indices]() { scalar_t* values_accessor = valuesBuffer.data_ptr<scalar_t>(); scalar_t* out_ptr = resultBuffer.data_ptr<scalar_t>(); scalar_t cast_value = alpha.to<scalar_t>(); index_t* crow_indices_accessor = src_crow_indices.data_ptr<index_t>(); index_t* col_indices_accessor = src_col_indices.data_ptr<index_t>(); int64_t out_storage_offset = resultBuffer.storage_offset(); auto out_strides = resultBuffer.strides(); int64_t out_strides0 = out_strides[0]; int64_t out_strides1 = out_strides[1]; cudaStream_t stream = at::cuda::getCurrentCUDAStream(); auto allocator = THCThrustAllocator(globalContext().lazyInitCUDA()); auto policy = thrust::cuda::par(allocator).on(stream); // Note that this could be wildly imbalanced if the sparsity pattern varies a lot between rows. thrust::for_each( policy, thrust::make_counting_iterator(int64_t(0)), thrust::make_counting_iterator(int64_t(src_crow_indices.size(0) - 1)), [values_accessor, crow_indices_accessor, col_indices_accessor, out_ptr, out_storage_offset, out_strides0, cast_value, out_strides1 ]__device__(int64_t irow) { index_t start_index = crow_indices_accessor[irow]; index_t end_index = crow_indices_accessor[irow + 1]; for (index_t i = start_index; i < end_index; ++i) { auto icol = col_indices_accessor[i]; auto index = out_storage_offset + irow * out_strides0 + icol * out_strides1; out_ptr[index] += cast_value * values_accessor[i]; } }); }); }); if (output.scalar_type() != commonDtype) { output.copy_(resultBuffer); } return output; } Tensor& add_out_sparse_csr_cuda( const Tensor& self, const SparseCsrTensor& other, const Scalar& alpha, SparseCsrTensor& out) { if (self.layout() == kStrided) { return add_out_dense_sparse_csr_cuda(out, self, other, alpha); } else { TORCH_CHECK( false, "NotImplementedError: Addition of sparse CSR tensors is not yet implemented.") } return out; } } // namespace native } // namespace at
cbc0f0033c870903587fcd027d75550190e2eb7b.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <stdio.h> #include <stdlib.h> #include <omp.h> const int TRY_COUNT = 512; void fetch_data(char *file_name, float **mat1, float **mat2, int *mat_size) { FILE *file = fopen(file_name, "r"); fscanf(file, "SizeA= %d", mat_size); float *matA = (float*) malloc(sizeof(float) * (*mat_size)); for (int i = 0; i < (*mat_size); i++) { fscanf(file, "%f", &(matA[i])); } fscanf(file, " "); fscanf(file, "SizeB= %d", mat_size); float *matB = (float*) malloc(sizeof(float) * (*mat_size)); for (int i = 0; i < (*mat_size); i++) { fscanf(file, "%f", &(matB[i])); } *mat1 = matA; *mat2 = matB; fclose(file); } __global__ void dot_product(float *mat1, float *mat2, float *tmp, int *mat_size, float *result) { tmp[threadIdx.x] = mat1[threadIdx.x] * mat2[threadIdx.x]; __syncthreads(); if(threadIdx.x == 0) { float sum = 0; for(int i = 0; i < (*mat_size); i++) { sum += tmp[i]; } *result = sum; } } int main(int argc, char **argv) { if (argc != 2) { printf("Please provide file name!"); exit(1); } float *mat1, *mat2; int mat_size; fetch_data(argv[1], &mat1, &mat2, &mat_size); float *cuda_mat1, *cuda_mat2, *cuda_tmp, *cuda_result; int *cuda_mat_size; float result_initial_value = 0; double time_total = 0; float result; if (mat_size <= 1000) { hipMalloc(&cuda_mat1, sizeof(float) * mat_size); hipMalloc(&cuda_mat2, sizeof(float) * mat_size); hipMalloc(&cuda_tmp, sizeof(float) * mat_size); hipMalloc(&cuda_mat_size, sizeof(int)); hipMalloc(&cuda_result, sizeof(float)); hipMemcpy(cuda_mat1, mat1, sizeof(float) * mat_size, hipMemcpyHostToDevice); hipMemcpy(cuda_mat2, mat2, sizeof(float) * mat_size, hipMemcpyHostToDevice); hipMemcpy(cuda_mat_size, &mat_size, sizeof(int), hipMemcpyHostToDevice); hipMemcpy(cuda_result, &result_initial_value, sizeof(float), hipMemcpyHostToDevice); for (int i = 0; i < TRY_COUNT; i++) { double start = omp_get_wtime(); hipLaunchKernelGGL(( dot_product), dim3(1), dim3(mat_size) , 0, 0, cuda_mat1, cuda_mat2, cuda_tmp, cuda_mat_size, cuda_result); hipDeviceSynchronize(); double end = omp_get_wtime(); time_total += end - start; } hipMemcpy(&result, cuda_result, sizeof(float), hipMemcpyDeviceToHost); } else { int mat_size_dummy = 1000; hipMalloc(&cuda_mat1, sizeof(float) * mat_size_dummy); hipMalloc(&cuda_mat2, sizeof(float) * mat_size_dummy); hipMalloc(&cuda_tmp, sizeof(float) * mat_size_dummy); hipMalloc(&cuda_mat_size, sizeof(int)); hipMalloc(&cuda_result, sizeof(float)); hipMemcpy(cuda_mat_size, &mat_size_dummy, sizeof(int), hipMemcpyHostToDevice); hipMemcpy(cuda_result, &result_initial_value, sizeof(float), hipMemcpyHostToDevice); for (int i = 0; i < TRY_COUNT; i++) { double start = omp_get_wtime(); result = 0; for (int cur = 0; cur < mat_size; cur += 1000) { hipMemcpy(cuda_mat1, &(mat1[cur]), sizeof(float) * mat_size_dummy, hipMemcpyHostToDevice); hipMemcpy(cuda_mat2, &(mat2[cur]), sizeof(float) * mat_size_dummy, hipMemcpyHostToDevice); hipLaunchKernelGGL(( dot_product), dim3(1), dim3(1000) , 0, 0, cuda_mat1, cuda_mat2, cuda_tmp, cuda_mat_size, cuda_result); hipDeviceSynchronize(); float result_tmp; hipMemcpy(&result_tmp, cuda_result, sizeof(float), hipMemcpyDeviceToHost); hipMemcpy(cuda_result, &result_initial_value, sizeof(float), hipMemcpyHostToDevice); result += result_tmp; } double end = omp_get_wtime(); time_total += end - start; } } printf("Result: %f\n", result); printf("Time: %fus\n", 1000000 * (time_total / ((double) TRY_COUNT))); hipFree(cuda_mat1); hipFree(cuda_mat2); hipFree(cuda_tmp); hipFree(cuda_mat_size); hipFree(cuda_result); return 0; }
cbc0f0033c870903587fcd027d75550190e2eb7b.cu
#include <stdio.h> #include <stdlib.h> #include <omp.h> const int TRY_COUNT = 512; void fetch_data(char *file_name, float **mat1, float **mat2, int *mat_size) { FILE *file = fopen(file_name, "r"); fscanf(file, "SizeA= %d", mat_size); float *matA = (float*) malloc(sizeof(float) * (*mat_size)); for (int i = 0; i < (*mat_size); i++) { fscanf(file, "%f", &(matA[i])); } fscanf(file, " "); fscanf(file, "SizeB= %d", mat_size); float *matB = (float*) malloc(sizeof(float) * (*mat_size)); for (int i = 0; i < (*mat_size); i++) { fscanf(file, "%f", &(matB[i])); } *mat1 = matA; *mat2 = matB; fclose(file); } __global__ void dot_product(float *mat1, float *mat2, float *tmp, int *mat_size, float *result) { tmp[threadIdx.x] = mat1[threadIdx.x] * mat2[threadIdx.x]; __syncthreads(); if(threadIdx.x == 0) { float sum = 0; for(int i = 0; i < (*mat_size); i++) { sum += tmp[i]; } *result = sum; } } int main(int argc, char **argv) { if (argc != 2) { printf("Please provide file name!"); exit(1); } float *mat1, *mat2; int mat_size; fetch_data(argv[1], &mat1, &mat2, &mat_size); float *cuda_mat1, *cuda_mat2, *cuda_tmp, *cuda_result; int *cuda_mat_size; float result_initial_value = 0; double time_total = 0; float result; if (mat_size <= 1000) { cudaMalloc(&cuda_mat1, sizeof(float) * mat_size); cudaMalloc(&cuda_mat2, sizeof(float) * mat_size); cudaMalloc(&cuda_tmp, sizeof(float) * mat_size); cudaMalloc(&cuda_mat_size, sizeof(int)); cudaMalloc(&cuda_result, sizeof(float)); cudaMemcpy(cuda_mat1, mat1, sizeof(float) * mat_size, cudaMemcpyHostToDevice); cudaMemcpy(cuda_mat2, mat2, sizeof(float) * mat_size, cudaMemcpyHostToDevice); cudaMemcpy(cuda_mat_size, &mat_size, sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(cuda_result, &result_initial_value, sizeof(float), cudaMemcpyHostToDevice); for (int i = 0; i < TRY_COUNT; i++) { double start = omp_get_wtime(); dot_product<<< 1, mat_size >>>(cuda_mat1, cuda_mat2, cuda_tmp, cuda_mat_size, cuda_result); cudaDeviceSynchronize(); double end = omp_get_wtime(); time_total += end - start; } cudaMemcpy(&result, cuda_result, sizeof(float), cudaMemcpyDeviceToHost); } else { int mat_size_dummy = 1000; cudaMalloc(&cuda_mat1, sizeof(float) * mat_size_dummy); cudaMalloc(&cuda_mat2, sizeof(float) * mat_size_dummy); cudaMalloc(&cuda_tmp, sizeof(float) * mat_size_dummy); cudaMalloc(&cuda_mat_size, sizeof(int)); cudaMalloc(&cuda_result, sizeof(float)); cudaMemcpy(cuda_mat_size, &mat_size_dummy, sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(cuda_result, &result_initial_value, sizeof(float), cudaMemcpyHostToDevice); for (int i = 0; i < TRY_COUNT; i++) { double start = omp_get_wtime(); result = 0; for (int cur = 0; cur < mat_size; cur += 1000) { cudaMemcpy(cuda_mat1, &(mat1[cur]), sizeof(float) * mat_size_dummy, cudaMemcpyHostToDevice); cudaMemcpy(cuda_mat2, &(mat2[cur]), sizeof(float) * mat_size_dummy, cudaMemcpyHostToDevice); dot_product<<< 1, 1000 >>>(cuda_mat1, cuda_mat2, cuda_tmp, cuda_mat_size, cuda_result); cudaDeviceSynchronize(); float result_tmp; cudaMemcpy(&result_tmp, cuda_result, sizeof(float), cudaMemcpyDeviceToHost); cudaMemcpy(cuda_result, &result_initial_value, sizeof(float), cudaMemcpyHostToDevice); result += result_tmp; } double end = omp_get_wtime(); time_total += end - start; } } printf("Result: %f\n", result); printf("Time: %fus\n", 1000000 * (time_total / ((double) TRY_COUNT))); cudaFree(cuda_mat1); cudaFree(cuda_mat2); cudaFree(cuda_tmp); cudaFree(cuda_mat_size); cudaFree(cuda_result); return 0; }
59eff126ab076923a576ca2847de596bd31c9204.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "raytrace_cuda.cuh" /* Utility function to normalize a vector. */ __device__ void normalize(float *v) { float length = sqrtf(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); for (int i = 0; i < 3; i++) v[i] /= length; } /* Utility function to compute the dot product of two vectors. */ __device__ float dotf(float *a, float *b) { float d = 0.0; for (int i = 0; i < 3; i++) d += a[i] * b[i]; return d; } /** * This function calculates the attenuation to apply in the Phong lighting model * given the vector difference between the light and the point to be rendered, * and a factor k. */ __device__ float get_attenuation(float *d, float k) { // If k is zero (the default), then we don't have to do any computation return (k == 0.0) ? 1.0 : 1.0 / (1.0 + k * dotf(d, d)); } /** * This function calculates the color of a point due to a single light using the * Phong lighting model, given the surface's normal at that point. */ __device__ void phong_lighting(float *point, float *normal, float *eye, Light *light, float *pixel) { float diffuse_sum[3] = {0.0, 0.0, 0.0}; float specular_sum[3] = {0.0, 0.0, 0.0}; // Get the vector from the camera to the point float eye_rel[3]; for (int i = 0; i < 3; i++) eye_rel[i] = eye[i] - point[i]; normalize(eye_rel); // Get the vector from the light to the point float light_rel[3]; for (int i = 0; i < 3; i++) light_rel[i] = light->position[i] - point[i]; // Calculate and apply the attenuation float light_color[3]; for (int i = 0; i < 3; i++) { light_color[i] = light->color[i] * get_attenuation(light_rel, light->attenuation_k); } normalize(light_rel); // Calculate and add the light's contribution to the diffuse and // specular reflection of the point float p = fmax(0.0, dotf(normal, light_rel)); for (int i = 0; i < 3; i++) diffuse_sum[i] += light_color[i] * p; for (int i = 0; i < 3; i++) eye_rel[i] += light_rel[i]; normalize(eye_rel); p = fmax(0.0, dotf(normal, eye_rel)); for (int i = 0; i < 3; i++) specular_sum[i] += light_color[i] * p; // Calculate and add the overall point color intensities for red, green, // and blue for (int i = 0; i < 3; i++) { pixel[i] += fmin(1, diffuse_sum[i] + specular_sum[i]); } } /** * This function calculates the intersection of a ray 'bv' shot from source 'av' * with a given sphere. */ __device__ Intersect get_sphere_intersection(float *av, float *bv, Sphere *sphere, int refracting) { // Given a sphere with center C and radius R, and a ray equation B + tA, // the intersection of the two can be found by solving |B + tA - C|^2 = R^2, // which enforces that the ray be on the sphere's surface. This is a // quadratic equation in t. Intersect intersect; float rel[3]; for (int i = 0; i < 3; i++) rel[i] = bv[i] - sphere->loc[i]; float a = dotf(av, av); float b = 2 * dotf(av, rel); float c = dotf(rel, rel) - sphere->radius * sphere->radius; float disc = b * b - 4 * a * c; // If the discriminant is less than 0, there is no solution and thus no // intersection if (disc < 0.0) { intersect.t = -1.0; return intersect; } disc = sqrtf(disc); // Choose the smaller solution for t float t = (-b - disc) / (2 * a); // If we're using this while we're refracting we're actually trying to go // across the sphere to the other side, so we want the larger solution for t if (refracting) t += disc / a; // If t is less than 0, then sphere is behind the camera (or the camera is // inside the sphere, in which case we just don't render it) if (t < 0.0) t = -1.0; // Store the intersection point and the normal vector at it intersect.t = t; if (t != -1.0) { intersect.sphere = 1; intersect.object = sphere; for (int i = 0; i < 3; i++) intersect.position[i] = av[i] * t + bv[i]; float normal[3]; for (int i = 0; i < 3; i++) normal[i] = intersect.position[i] - sphere->loc[i]; normalize(normal); for (int i = 0; i < 3; i++) intersect.normal[i] = normal[i]; } return intersect; } /** * This function calculates the intersection of a ray 'bv' shot from source 'av' * with a given plane. */ __device__ Intersect get_plane_intersection(float *av, float *bv, Plane *plane) { // Given a plane with a normal vector N and containing a point Q, and a ray // equation B + tA, the value of t at which the ray intersects the plane is // given as t = (N dot (Q - B)) / (N dot A) Intersect intersect; float rel[3]; // Calculate Q - B for (int i = 0; i < 3; i++) rel[i] = plane->origin[i] - bv[i]; float normal[3]; float *u = plane->u; float *v = plane->v; // Calculate the plane's normal vector as u cross v normal[0] = u[1] * v[2] - u[2] * v[1]; normal[1] = u[2] * v[0] - u[0] * v[2]; normal[2] = u[0] * v[1] - u[1] * v[0]; normalize(normal); // If the normal is perpendicular to the ray vector, they don't intersect float t = dotf(normal, av); if (t != 0.0) { t = dotf(normal, rel) / t; // If t < 0 then the plane is behind the ray's origin if (t < 0.0) t = -1.0; } else t = -1.0; intersect.t = t; if (t != -1.0) { // Calculate the point on the plane that the ray intersects float position[3]; for (int i = 0; i < 3; i++) position[i] = av[i] * t + bv[i]; // Get its position relative to the plane's origin for (int i = 0; i < 3; i++) rel[i] = position[i] - plane->origin[i]; // Project this vector onto the plane's u vector and make sure that it // falls within the plane's u-wise bounds float p = dotf(rel, plane->u); if (p < plane->u_min || p > plane->u_max) { intersect.t = -1.0; return intersect; } // Project this vector onto the plane's v vector and make sure that it // falls within the plane's v-wise bounds p = dotf(rel, plane->v); if (p < plane->v_min || p > plane->v_max) { intersect.t = -1.0; return intersect; } // Mark this intersection as a plane and fill in its values intersect.sphere = 0; intersect.object = plane; for (int i = 0; i < 3; i++) { intersect.position[i] = position[i]; intersect.normal[i] = normal[i]; } } return intersect; } /** * This function gets the intersection of a ray 'av' with an object surface * nearest to the ray's origin, 'bv'. */ __device__ Intersect get_nearest_intersection(float *av, float *bv, void *start, Sphere *spheres, Plane *planes, int sphere_count, int plane_count) { // Loop through every object in the scene and test it for intersection Intersect nearest, temp; nearest.t = -1.0; void *object; // Check all of the spheres for (int i = 0; i < sphere_count; i++) { object = (void *) (spheres + i); // Skip over the object the ray started on, if this is a child ray if (object == start) continue; // If the ray intersects the sphere closer than any of the other objects // we've tested so far, make this the new intersection point temp = get_sphere_intersection(av, bv, (Sphere *) object, 0); if (temp.t != -1.0 && (temp.t < nearest.t || nearest.t == -1)) { nearest = temp; nearest.object = object; } } // Then check all of the planes for (int i = 0; i < plane_count; i++) { object = (void *) (planes + i); // Skip over the object the ray started on, if this is a child ray if (object == start) continue; // If the ray intersects the plane closer than any of the other objects // we've tested so far, make this the new intersection point temp = get_plane_intersection(av, bv, (Plane *) object); if (temp.t != -1.0 && (temp.t < nearest.t || nearest.t == -1)) { nearest = temp; nearest.object = object; } } return nearest; } /** * This function calculates the shading of a point using the Phong lighting * model, taking into account the fact that some light sources are blocked by * objects, casting shadows. */ __device__ void get_shadows(Sphere *spheres, Plane *planes, Light *lights, int sphere_count, int plane_count, int light_count, Intersect intersect, float *parent, float *pixel) { // Loop through all the lights, send a ray at each one, and test if it hits // an object along the way Intersect blocked; float outgoing[3]; Light *light; void *object; for (int i = 0; i < light_count; i++) { light = lights + i; blocked.t = -1.0; // Loop through all the spheres to see if the ray hits one for (int j = 0; j < sphere_count; j++) { object = (void *) (spheres + j); // Skip over the object the point we're shading is on if (object == intersect.object) continue; for (int k = 0; k < 3; k++) outgoing[k] = light->position[k] - intersect.position[k]; blocked = get_sphere_intersection(outgoing, intersect.position, (Sphere *) object, 0); if (blocked.t != -1.0) break; } // If it didn't hit any spheres, check the planes if (blocked.t == -1.0) { for (int j = 0; j < plane_count; j++) { object = (void *) (planes + j); // Skip over the object the point we're shading is on if (object == intersect.object) continue; for (int k = 0; k < 3; k++) outgoing[k] = light->position[k] - intersect.position[k]; blocked = get_plane_intersection(outgoing, intersect.position, (Plane *) object); if (blocked.t != -1.0) break; } } // If the light isn't blocked, calculate its contribution to the point if (blocked.t == -1.0) { phong_lighting(intersect.position, intersect.normal, parent, light, pixel); } } } /** * The function calculates the contribution of an incoming ray reflected off an * object to the color of the point on its surface it first struck. */ __device__ void get_reflection(Sphere *spheres, Plane *planes, Light *lights, int sphere_count, int plane_count, int light_count, Intersect intersect, float *parent, float n, float *pixel) { // Rotate the vector from the intersection to the eye 180 degrees around the // normal, as though it reflected off of the surface float av[3]; for (int i = 0; i < 3; i++) av[i] = parent[i] - intersect.position[i]; normalize(av); float p = dotf(av, intersect.normal); for (int i = 0; i < 3; i++) av[i] = 2 * p * intersect.normal[i] - av[i]; // Find the next object this ray hits, and calculate its shading, and add it // to the shading at the ray's start location Intersect next = get_nearest_intersection(av, intersect.position, (Sphere *) intersect.object, spheres, planes, sphere_count, plane_count); get_shadows(spheres, planes, lights, sphere_count, plane_count, light_count, next, intersect.position, pixel); } /** * This function calculates the contribution of an incoming ray refracted * through an object to the color of the point on its surface it first struck. */ __device__ void get_refraction(Sphere *spheres, Plane *planes, Light *lights, int sphere_count, int light_count, int plane_count, Intersect intersect, float *parent, float n, float *pixel) { // Calculate the incoming vector float incoming[3]; for (int i = 0; i < 3; i++) incoming[i] = intersect.position[i] - parent[i]; normalize(incoming); // Calculate the cosine of the incident angle and the squared cosine of the // refracted angle float cos1 = -dotf(incoming, intersect.normal); float cossq2 = 1 - n * n * (1 - cos1 * cos1); // If the ray is totally reflected, don't trace it if (cossq2 < 0) { return; } // Calculate the refracted ray for (int i = 0; i < 3; i++) { incoming[i] = n * incoming[i] + (n * cos1 - sqrt(cossq2)) * intersect.normal[i]; } // If we're refracting through a plane, we cam just get the next object the // ray hits and be done Intersect next; if (!intersect.sphere) { next = get_nearest_intersection(incoming, intersect.position, intersect.object, spheres, planes, sphere_count, plane_count); get_shadows(spheres, planes, lights, sphere_count, plane_count, light_count, next, intersect.position, pixel); return; } // Otherwise, we have to find its intersection with the other side of the // sphere, refract it back through the surface, and then go on next = get_sphere_intersection(incoming, intersect.position, (Sphere *) intersect.object, 1); // Repeat the process, refracting the ray with the opposite relative index // of refraction float np = 1 / n; cos1 = dotf(incoming, next.normal); cossq2 = 1 - np * np * (1 - cos1 * cos1); if (cossq2 < 0) { return; } // Follow this ray to the first object it hits, and calculate the shading // there, adding it to the initially refracted point for (int i = 0; i < 3; i++) incoming[i] = np * incoming[i] + (np * cos1 - sqrt(cossq2)) * next.normal[i]; intersect = get_nearest_intersection(incoming, next.position, intersect.object, spheres, planes, sphere_count, plane_count); get_shadows(spheres, planes, lights, sphere_count, plane_count, light_count, intersect, next.position, pixel); } /** * This kernel raytraces the current scene by having each thread handle an * individual pixel. */ __global__ void raytrace_kernel(float *screen, Sphere *spheres, Plane *planes, Light *lights, int sphere_count, int plane_count, int light_count, float *cam_pos, float *e1, float *e2, float *e3, float Fd, float Fx, float Fy, int xres, int yres, float n) { // Get the x and y pixel coordinates (with 0, 0 in the lower left for // convenience) int x = blockIdx.x * blockDim.x + threadIdx.x; int y = blockIdx.y * blockDim.y + threadIdx.y; if (x < xres && y < yres) { Intersect intersect; intersect.t = -1.0; // Express the ray vector in terms of our basis by shooting it from the // camera through a point on its imaginary sensor grid float av[3]; for (int i = 0; i < 3; i++) { av[i] = Fd * e3[i] + (x - xres / 2) * (Fx / xres) * e1[i] + (y - yres / 2) * (Fy / yres) * e2[i]; } // Trace the ray to the first surface it hits intersect = get_nearest_intersection(av, cam_pos, NULL, spheres, planes, sphere_count, plane_count); // If it hits a surface, calculate its lighting, as well as a simple // reflection and refraction of the ray (i.e. recursion depth 1) if (intersect.t != -1.0) { float *pixel = screen + 3 * (y * xres + x); get_shadows(spheres, planes, lights, sphere_count, plane_count, light_count, intersect, cam_pos, pixel); get_reflection(spheres, planes, lights, sphere_count, plane_count, light_count, intersect, cam_pos, n, pixel); get_refraction(spheres, planes, lights, sphere_count, plane_count, light_count, intersect, cam_pos, n, pixel); } } } /* This function calls the kernel to raytrace the current scene. */ void call_raytrace_kernel(float *screen, Sphere *spheres, Plane *planes, Light *lights, int sphere_count, int plane_count, int light_count, float *cam_pos, float *e1, float *e2, float *e3, float Fd, float Fx, float Fy, int xres, int yres, float n) { // Have each block handle a 32 x 32 square of pixels dim3 blocks((xres - 1) / 32 + 1, (yres - 1) / 32 + 1); dim3 threads(32, 32); hipLaunchKernelGGL(( raytrace_kernel), dim3(blocks), dim3(threads), 0, 0, screen, spheres, planes, lights, sphere_count, plane_count, light_count, cam_pos, e1, e2, e3, Fd, Fx, Fy, xres, yres, n); }
59eff126ab076923a576ca2847de596bd31c9204.cu
#include "raytrace_cuda.cuh" /* Utility function to normalize a vector. */ __device__ void normalize(float *v) { float length = sqrtf(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); for (int i = 0; i < 3; i++) v[i] /= length; } /* Utility function to compute the dot product of two vectors. */ __device__ float dotf(float *a, float *b) { float d = 0.0; for (int i = 0; i < 3; i++) d += a[i] * b[i]; return d; } /** * This function calculates the attenuation to apply in the Phong lighting model * given the vector difference between the light and the point to be rendered, * and a factor k. */ __device__ float get_attenuation(float *d, float k) { // If k is zero (the default), then we don't have to do any computation return (k == 0.0) ? 1.0 : 1.0 / (1.0 + k * dotf(d, d)); } /** * This function calculates the color of a point due to a single light using the * Phong lighting model, given the surface's normal at that point. */ __device__ void phong_lighting(float *point, float *normal, float *eye, Light *light, float *pixel) { float diffuse_sum[3] = {0.0, 0.0, 0.0}; float specular_sum[3] = {0.0, 0.0, 0.0}; // Get the vector from the camera to the point float eye_rel[3]; for (int i = 0; i < 3; i++) eye_rel[i] = eye[i] - point[i]; normalize(eye_rel); // Get the vector from the light to the point float light_rel[3]; for (int i = 0; i < 3; i++) light_rel[i] = light->position[i] - point[i]; // Calculate and apply the attenuation float light_color[3]; for (int i = 0; i < 3; i++) { light_color[i] = light->color[i] * get_attenuation(light_rel, light->attenuation_k); } normalize(light_rel); // Calculate and add the light's contribution to the diffuse and // specular reflection of the point float p = fmax(0.0, dotf(normal, light_rel)); for (int i = 0; i < 3; i++) diffuse_sum[i] += light_color[i] * p; for (int i = 0; i < 3; i++) eye_rel[i] += light_rel[i]; normalize(eye_rel); p = fmax(0.0, dotf(normal, eye_rel)); for (int i = 0; i < 3; i++) specular_sum[i] += light_color[i] * p; // Calculate and add the overall point color intensities for red, green, // and blue for (int i = 0; i < 3; i++) { pixel[i] += fmin(1, diffuse_sum[i] + specular_sum[i]); } } /** * This function calculates the intersection of a ray 'bv' shot from source 'av' * with a given sphere. */ __device__ Intersect get_sphere_intersection(float *av, float *bv, Sphere *sphere, int refracting) { // Given a sphere with center C and radius R, and a ray equation B + tA, // the intersection of the two can be found by solving |B + tA - C|^2 = R^2, // which enforces that the ray be on the sphere's surface. This is a // quadratic equation in t. Intersect intersect; float rel[3]; for (int i = 0; i < 3; i++) rel[i] = bv[i] - sphere->loc[i]; float a = dotf(av, av); float b = 2 * dotf(av, rel); float c = dotf(rel, rel) - sphere->radius * sphere->radius; float disc = b * b - 4 * a * c; // If the discriminant is less than 0, there is no solution and thus no // intersection if (disc < 0.0) { intersect.t = -1.0; return intersect; } disc = sqrtf(disc); // Choose the smaller solution for t float t = (-b - disc) / (2 * a); // If we're using this while we're refracting we're actually trying to go // across the sphere to the other side, so we want the larger solution for t if (refracting) t += disc / a; // If t is less than 0, then sphere is behind the camera (or the camera is // inside the sphere, in which case we just don't render it) if (t < 0.0) t = -1.0; // Store the intersection point and the normal vector at it intersect.t = t; if (t != -1.0) { intersect.sphere = 1; intersect.object = sphere; for (int i = 0; i < 3; i++) intersect.position[i] = av[i] * t + bv[i]; float normal[3]; for (int i = 0; i < 3; i++) normal[i] = intersect.position[i] - sphere->loc[i]; normalize(normal); for (int i = 0; i < 3; i++) intersect.normal[i] = normal[i]; } return intersect; } /** * This function calculates the intersection of a ray 'bv' shot from source 'av' * with a given plane. */ __device__ Intersect get_plane_intersection(float *av, float *bv, Plane *plane) { // Given a plane with a normal vector N and containing a point Q, and a ray // equation B + tA, the value of t at which the ray intersects the plane is // given as t = (N dot (Q - B)) / (N dot A) Intersect intersect; float rel[3]; // Calculate Q - B for (int i = 0; i < 3; i++) rel[i] = plane->origin[i] - bv[i]; float normal[3]; float *u = plane->u; float *v = plane->v; // Calculate the plane's normal vector as u cross v normal[0] = u[1] * v[2] - u[2] * v[1]; normal[1] = u[2] * v[0] - u[0] * v[2]; normal[2] = u[0] * v[1] - u[1] * v[0]; normalize(normal); // If the normal is perpendicular to the ray vector, they don't intersect float t = dotf(normal, av); if (t != 0.0) { t = dotf(normal, rel) / t; // If t < 0 then the plane is behind the ray's origin if (t < 0.0) t = -1.0; } else t = -1.0; intersect.t = t; if (t != -1.0) { // Calculate the point on the plane that the ray intersects float position[3]; for (int i = 0; i < 3; i++) position[i] = av[i] * t + bv[i]; // Get its position relative to the plane's origin for (int i = 0; i < 3; i++) rel[i] = position[i] - plane->origin[i]; // Project this vector onto the plane's u vector and make sure that it // falls within the plane's u-wise bounds float p = dotf(rel, plane->u); if (p < plane->u_min || p > plane->u_max) { intersect.t = -1.0; return intersect; } // Project this vector onto the plane's v vector and make sure that it // falls within the plane's v-wise bounds p = dotf(rel, plane->v); if (p < plane->v_min || p > plane->v_max) { intersect.t = -1.0; return intersect; } // Mark this intersection as a plane and fill in its values intersect.sphere = 0; intersect.object = plane; for (int i = 0; i < 3; i++) { intersect.position[i] = position[i]; intersect.normal[i] = normal[i]; } } return intersect; } /** * This function gets the intersection of a ray 'av' with an object surface * nearest to the ray's origin, 'bv'. */ __device__ Intersect get_nearest_intersection(float *av, float *bv, void *start, Sphere *spheres, Plane *planes, int sphere_count, int plane_count) { // Loop through every object in the scene and test it for intersection Intersect nearest, temp; nearest.t = -1.0; void *object; // Check all of the spheres for (int i = 0; i < sphere_count; i++) { object = (void *) (spheres + i); // Skip over the object the ray started on, if this is a child ray if (object == start) continue; // If the ray intersects the sphere closer than any of the other objects // we've tested so far, make this the new intersection point temp = get_sphere_intersection(av, bv, (Sphere *) object, 0); if (temp.t != -1.0 && (temp.t < nearest.t || nearest.t == -1)) { nearest = temp; nearest.object = object; } } // Then check all of the planes for (int i = 0; i < plane_count; i++) { object = (void *) (planes + i); // Skip over the object the ray started on, if this is a child ray if (object == start) continue; // If the ray intersects the plane closer than any of the other objects // we've tested so far, make this the new intersection point temp = get_plane_intersection(av, bv, (Plane *) object); if (temp.t != -1.0 && (temp.t < nearest.t || nearest.t == -1)) { nearest = temp; nearest.object = object; } } return nearest; } /** * This function calculates the shading of a point using the Phong lighting * model, taking into account the fact that some light sources are blocked by * objects, casting shadows. */ __device__ void get_shadows(Sphere *spheres, Plane *planes, Light *lights, int sphere_count, int plane_count, int light_count, Intersect intersect, float *parent, float *pixel) { // Loop through all the lights, send a ray at each one, and test if it hits // an object along the way Intersect blocked; float outgoing[3]; Light *light; void *object; for (int i = 0; i < light_count; i++) { light = lights + i; blocked.t = -1.0; // Loop through all the spheres to see if the ray hits one for (int j = 0; j < sphere_count; j++) { object = (void *) (spheres + j); // Skip over the object the point we're shading is on if (object == intersect.object) continue; for (int k = 0; k < 3; k++) outgoing[k] = light->position[k] - intersect.position[k]; blocked = get_sphere_intersection(outgoing, intersect.position, (Sphere *) object, 0); if (blocked.t != -1.0) break; } // If it didn't hit any spheres, check the planes if (blocked.t == -1.0) { for (int j = 0; j < plane_count; j++) { object = (void *) (planes + j); // Skip over the object the point we're shading is on if (object == intersect.object) continue; for (int k = 0; k < 3; k++) outgoing[k] = light->position[k] - intersect.position[k]; blocked = get_plane_intersection(outgoing, intersect.position, (Plane *) object); if (blocked.t != -1.0) break; } } // If the light isn't blocked, calculate its contribution to the point if (blocked.t == -1.0) { phong_lighting(intersect.position, intersect.normal, parent, light, pixel); } } } /** * The function calculates the contribution of an incoming ray reflected off an * object to the color of the point on its surface it first struck. */ __device__ void get_reflection(Sphere *spheres, Plane *planes, Light *lights, int sphere_count, int plane_count, int light_count, Intersect intersect, float *parent, float n, float *pixel) { // Rotate the vector from the intersection to the eye 180 degrees around the // normal, as though it reflected off of the surface float av[3]; for (int i = 0; i < 3; i++) av[i] = parent[i] - intersect.position[i]; normalize(av); float p = dotf(av, intersect.normal); for (int i = 0; i < 3; i++) av[i] = 2 * p * intersect.normal[i] - av[i]; // Find the next object this ray hits, and calculate its shading, and add it // to the shading at the ray's start location Intersect next = get_nearest_intersection(av, intersect.position, (Sphere *) intersect.object, spheres, planes, sphere_count, plane_count); get_shadows(spheres, planes, lights, sphere_count, plane_count, light_count, next, intersect.position, pixel); } /** * This function calculates the contribution of an incoming ray refracted * through an object to the color of the point on its surface it first struck. */ __device__ void get_refraction(Sphere *spheres, Plane *planes, Light *lights, int sphere_count, int light_count, int plane_count, Intersect intersect, float *parent, float n, float *pixel) { // Calculate the incoming vector float incoming[3]; for (int i = 0; i < 3; i++) incoming[i] = intersect.position[i] - parent[i]; normalize(incoming); // Calculate the cosine of the incident angle and the squared cosine of the // refracted angle float cos1 = -dotf(incoming, intersect.normal); float cossq2 = 1 - n * n * (1 - cos1 * cos1); // If the ray is totally reflected, don't trace it if (cossq2 < 0) { return; } // Calculate the refracted ray for (int i = 0; i < 3; i++) { incoming[i] = n * incoming[i] + (n * cos1 - sqrt(cossq2)) * intersect.normal[i]; } // If we're refracting through a plane, we cam just get the next object the // ray hits and be done Intersect next; if (!intersect.sphere) { next = get_nearest_intersection(incoming, intersect.position, intersect.object, spheres, planes, sphere_count, plane_count); get_shadows(spheres, planes, lights, sphere_count, plane_count, light_count, next, intersect.position, pixel); return; } // Otherwise, we have to find its intersection with the other side of the // sphere, refract it back through the surface, and then go on next = get_sphere_intersection(incoming, intersect.position, (Sphere *) intersect.object, 1); // Repeat the process, refracting the ray with the opposite relative index // of refraction float np = 1 / n; cos1 = dotf(incoming, next.normal); cossq2 = 1 - np * np * (1 - cos1 * cos1); if (cossq2 < 0) { return; } // Follow this ray to the first object it hits, and calculate the shading // there, adding it to the initially refracted point for (int i = 0; i < 3; i++) incoming[i] = np * incoming[i] + (np * cos1 - sqrt(cossq2)) * next.normal[i]; intersect = get_nearest_intersection(incoming, next.position, intersect.object, spheres, planes, sphere_count, plane_count); get_shadows(spheres, planes, lights, sphere_count, plane_count, light_count, intersect, next.position, pixel); } /** * This kernel raytraces the current scene by having each thread handle an * individual pixel. */ __global__ void raytrace_kernel(float *screen, Sphere *spheres, Plane *planes, Light *lights, int sphere_count, int plane_count, int light_count, float *cam_pos, float *e1, float *e2, float *e3, float Fd, float Fx, float Fy, int xres, int yres, float n) { // Get the x and y pixel coordinates (with 0, 0 in the lower left for // convenience) int x = blockIdx.x * blockDim.x + threadIdx.x; int y = blockIdx.y * blockDim.y + threadIdx.y; if (x < xres && y < yres) { Intersect intersect; intersect.t = -1.0; // Express the ray vector in terms of our basis by shooting it from the // camera through a point on its imaginary sensor grid float av[3]; for (int i = 0; i < 3; i++) { av[i] = Fd * e3[i] + (x - xres / 2) * (Fx / xres) * e1[i] + (y - yres / 2) * (Fy / yres) * e2[i]; } // Trace the ray to the first surface it hits intersect = get_nearest_intersection(av, cam_pos, NULL, spheres, planes, sphere_count, plane_count); // If it hits a surface, calculate its lighting, as well as a simple // reflection and refraction of the ray (i.e. recursion depth 1) if (intersect.t != -1.0) { float *pixel = screen + 3 * (y * xres + x); get_shadows(spheres, planes, lights, sphere_count, plane_count, light_count, intersect, cam_pos, pixel); get_reflection(spheres, planes, lights, sphere_count, plane_count, light_count, intersect, cam_pos, n, pixel); get_refraction(spheres, planes, lights, sphere_count, plane_count, light_count, intersect, cam_pos, n, pixel); } } } /* This function calls the kernel to raytrace the current scene. */ void call_raytrace_kernel(float *screen, Sphere *spheres, Plane *planes, Light *lights, int sphere_count, int plane_count, int light_count, float *cam_pos, float *e1, float *e2, float *e3, float Fd, float Fx, float Fy, int xres, int yres, float n) { // Have each block handle a 32 x 32 square of pixels dim3 blocks((xres - 1) / 32 + 1, (yres - 1) / 32 + 1); dim3 threads(32, 32); raytrace_kernel<<<blocks, threads>>>(screen, spheres, planes, lights, sphere_count, plane_count, light_count, cam_pos, e1, e2, e3, Fd, Fx, Fy, xres, yres, n); }
3e6ae4cc2cc54af0bfd80807f6848a77f42c73e0.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" __global__ void gpuActualiza(float *layer, int posicion, float energia,int size) { float umbral = 0.001; int gid = ( blockIdx.x + gridDim.x * blockIdx.y ) * ( blockDim.x * blockDim.y ) + ( blockIdx.x + gridDim.x * blockIdx.y ) if(gid < size) { int distancia = posicion - gid; if ( distancia < 0 ) distancia = - distancia; distancia = distancia + 1; float atenuacion = sqrtf( (float)distancia ); float energia_k = energia / atenuacion; if ( energia_k >= umbral || energia_k <= -umbral ) layer[gid] = layer[gid] + energia_k; } // nos aseguramos que se haya actualizado completamente la capa antes de calcular los mximos __syncthreads(); } __global__ void gpuRelajacion(float *layer, float *layer_copy, int layer_size) { int gid = ( blockIdx.x + gridDim.x * blockIdx.y ) * ( blockDim.x * blockDim.y ) + ( blockIdx.x + gridDim.x * blockIdx.y ) if(gid>0 && gid < layer_size-1){ layer[gid] = ( layer_copy[gid-1] + layer_copy[gid] + layer_copy[gid+1] ) / 3; } } __global__ void gpuCopia(float *layer, float *layer_copy,int size) { int gid = ( blockIdx.x + gridDim.x * blockIdx.y ) * ( blockDim.x * blockDim.y ) + ( blockIdx.x + gridDim.x * blockIdx.y ) if(gid < size){ layer_copy[gid]=layer[gid]; } }
3e6ae4cc2cc54af0bfd80807f6848a77f42c73e0.cu
__global__ void gpuActualiza(float *layer, int posicion, float energia,int size) { float umbral = 0.001; int gid = ( blockIdx.x + gridDim.x * blockIdx.y ) * ( blockDim.x * blockDim.y ) + ( blockIdx.x + gridDim.x * blockIdx.y ) if(gid < size) { int distancia = posicion - gid; if ( distancia < 0 ) distancia = - distancia; distancia = distancia + 1; float atenuacion = sqrtf( (float)distancia ); float energia_k = energia / atenuacion; if ( energia_k >= umbral || energia_k <= -umbral ) layer[gid] = layer[gid] + energia_k; } // nos aseguramos que se haya actualizado completamente la capa antes de calcular los máximos __syncthreads(); } __global__ void gpuRelajacion(float *layer, float *layer_copy, int layer_size) { int gid = ( blockIdx.x + gridDim.x * blockIdx.y ) * ( blockDim.x * blockDim.y ) + ( blockIdx.x + gridDim.x * blockIdx.y ) if(gid>0 && gid < layer_size-1){ layer[gid] = ( layer_copy[gid-1] + layer_copy[gid] + layer_copy[gid+1] ) / 3; } } __global__ void gpuCopia(float *layer, float *layer_copy,int size) { int gid = ( blockIdx.x + gridDim.x * blockIdx.y ) * ( blockDim.x * blockDim.y ) + ( blockIdx.x + gridDim.x * blockIdx.y ) if(gid < size){ layer_copy[gid]=layer[gid]; } }
8fad01aad3810ebdc05310f08ff8fa78a15c6c60.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #ifndef THC_GENERIC_FILE #define THC_GENERIC_FILE "THH/generic/THHTensorMathMagma.hip" #else #if defined(THC_REAL_IS_FLOAT) || defined(THC_REAL_IS_DOUBLE) #ifdef USE_MAGMA static void THCTensor_(copyArray1d)(THCState *state, THCTensor *self, scalar_t *src, int k) { int64_t size[1] = { k }; int64_t stride[1] = { 1 }; THCTensor_(resizeNd)(state, self, 1, size, stride); size_t len = k * sizeof(scalar_t); THCudaCheck(hipMemcpy(THCStorage_(data)(state, THTensor_getStoragePtr(self)) + self->storage_offset(), src, len, hipMemcpyHostToDevice)); } static void THCTensor_(copyArray2d)(THCState *state, THCTensor *self, scalar_t *src, int m, int n) { int64_t size[2] = { m, n }; int64_t stride[2] = { 1, m }; THCTensor_(resizeNd)(state, self, 2, size, stride); size_t len = m * n * sizeof(scalar_t); THCudaCheck(hipMemcpy(THCStorage_(data)(state, THTensor_getStoragePtr(self)) + self->storage_offset(), src, len, hipMemcpyHostToDevice)); } static void THCTensor_(copyTensor2d)(THCState *state, scalar_t *dst, THCTensor *self) { THAssert(self->dim() == 2); size_t len = THCTensor_(nElement)(state, self)*sizeof(scalar_t); THCTensor *temp = THCTensor_(newTranspose)(state, self, 0, 1); THCTensor *selfc = THCTensor_(newContiguous)(state, temp); THCudaCheck(hipMemcpy(dst, THCStorage_(data)(state, THTensor_getStoragePtr(selfc)) + selfc->storage_offset(), len, hipMemcpyDeviceToHost)); THCTensor_(free)(state, temp); THCTensor_(free)(state, selfc); } #endif // USE_MAGMA static THCTensor* THCTensor_(newColumnMajor)(THCState *state, THCTensor *self, THCTensor *src) { THAssert(src->dim() == 2); if (self == src && self->stride(0) == 1 && self->stride(1) == self->size(0)) { THCTensor_(retain)(state, self); return self; } if (self == src) self = THCTensor_(new)(state); else THCTensor_(retain)(state, self); int64_t size[2] = { src->size(0), src->size(1) }; int64_t stride[2] = { 1, src->size(0) }; THCTensor_(resizeNd)(state, self, 2, size, stride); THCTensor_(copy)(state, self, src); return self; } void THCTensor_(gels)(THCState *state, THCTensor *rb_, THCTensor *ra_, THCTensor *b_, THCTensor *a_) { #ifdef USE_MAGMA THArgCheck(!a_->is_empty() && a_->dim() == 2, 1, "A should be (non-empty) 2 dimensional"); THArgCheck(!b_->is_empty() && b_->dim() == 2, 1, "b should be (non-empty) 2 dimensional"); TORCH_CHECK(a_->size(0) == b_->size(0), "Expected A and b to have same size " "at dim 0, but A has ", a_->size(0), " rows and B has ", b_->size(0), " rows"); THArgCheck(a_->size(0) >= a_->size(1), 2, "Expected A with shape (m x n) to have " "m >= n. The case for m < n is not implemented yet."); THCTensor *a = THCTensor_(newColumnMajor)(state, ra_, a_); THCTensor *b = THCTensor_(newColumnMajor)(state, rb_, b_); scalar_t *a_data = THCTensor_(data)(state, a); scalar_t *b_data = THCTensor_(data)(state, b); int64_t m = a->size(0); int64_t n = a->size(1); int64_t nrhs = b->size(1); scalar_t wkopt; int info; #if defined(THC_REAL_IS_FLOAT) magma_sgels_gpu(MagmaNoTrans, m, n, nrhs, a_data, m, b_data, m, &wkopt, -1, &info); #else magma_dgels_gpu(MagmaNoTrans, m, n, nrhs, a_data, m, b_data, m, &wkopt, -1, &info); #endif scalar_t *hwork = th_magma_malloc_pinned<scalar_t>((size_t)wkopt); #if defined(THC_REAL_IS_FLOAT) magma_sgels_gpu(MagmaNoTrans, m, n, nrhs, a_data, m, b_data, m, hwork, (int)wkopt, &info); #else magma_dgels_gpu(MagmaNoTrans, m, n, nrhs, a_data, m, b_data, m, hwork, (int)wkopt, &info); #endif magma_free_pinned(hwork); if (info != 0) THError("MAGMA gels : Argument %d : illegal value", -info); THCTensor_(freeCopyTo)(state, a, ra_); THCTensor_(freeCopyTo)(state, b, rb_); #else THError(NoMagma(gels)); #endif } void THCTensor_(syev)(THCState *state, THCTensor *re_, THCTensor *rv_, THCTensor *a, const char *jobzs, const char *uplos) { #ifdef USE_MAGMA int64_t n = THTensor_sizeLegacyNoScalars(a, 0); int64_t lda = n; magma_uplo_t uplo = uplos[0] == 'U' ? MagmaUpper : MagmaLower; magma_vec_t jobz = jobzs[0] == 'N' ? MagmaNoVec : MagmaVec; THCTensor *input = THCTensor_(newColumnMajor)(state, rv_, a); scalar_t *input_data = THCTensor_(data)(state, input); if (n > 0) { // eigen values and workspace scalar_t *w = th_magma_malloc_pinned<scalar_t>(n); scalar_t *wA = th_magma_malloc_pinned<scalar_t>(lda * n); // compute optimal size of work array int info; scalar_t lwork; int liwork; #if defined(THC_REAL_IS_FLOAT) magma_ssyevd_gpu(jobz, uplo, n, input_data, lda, w, wA, n, &lwork, -1, &liwork, -1, &info); #else magma_dsyevd_gpu(jobz, uplo, n, input_data, lda, w, wA, n, &lwork, -1, &liwork, -1, &info); #endif scalar_t *work = th_magma_malloc_pinned<scalar_t>((size_t)lwork); int *iwork = th_magma_malloc_pinned<int>(liwork); // compute eigenvalues and, optionally, eigenvectors #if defined(THC_REAL_IS_FLOAT) magma_ssyevd_gpu(jobz, uplo, n, input_data, lda, w, wA, n, work, (int) lwork, iwork, liwork, &info); #else magma_dsyevd_gpu(jobz, uplo, n, input_data, lda, w, wA, n, work, (int) lwork, iwork, liwork, &info); #endif // copy eigen values from w to re_ if (info == 0) THCTensor_(copyArray1d)(state, re_, w, n); magma_free_pinned(iwork); magma_free_pinned(work); magma_free_pinned(wA); magma_free_pinned(w); // check error value if (info > 0) THError("MAGMA syev : Failed to converge. %d off-diagonal elements of an didn't converge to zero", info); else if (info < 0) THError("MAGMA syev : Argument %d : illegal value", -info); } if (jobzs[0] == 'N') { // If eigenvector is not needed, fill the result with zeros. THCTensor_(zero)(state, rv_); THCTensor_(free)(state, input); } else { THCTensor_(freeCopyTo)(state, input, rv_); } #else THError(NoMagma(syev)); #endif } void THCTensor_(geev)(THCState *state, THCTensor *re_, THCTensor *rv_, THCTensor *a_, const char *jobvrs) { #ifdef USE_MAGMA THArgCheck(a_->dim() == 2, 3, "A should be 2 dimensional"); THArgCheck(a_->size(0) == a_->size(1), 3, "A should be square"); magma_vec_t jobvr = jobvrs[0] == 'N' ? MagmaNoVec : MagmaVec; int64_t n = a_->size(0); scalar_t *a_data = th_magma_malloc_pinned<scalar_t>(n * n); THCTensor_(copyTensor2d)(state, a_data, a_); scalar_t *wr = th_magma_malloc_pinned<scalar_t>(n); scalar_t *wi = th_magma_malloc_pinned<scalar_t>(n); scalar_t *vr_data = NULL; int64_t ldvr = 1; if (jobvr == MagmaVec) { vr_data = th_magma_malloc_pinned<scalar_t>(n * n); ldvr = n; } scalar_t *work_data = nullptr; if (n > 0) { int info; scalar_t wkopt; #if defined(THC_REAL_IS_FLOAT) magma_sgeev(MagmaNoVec, jobvr, n, a_data, n, wr, wi, NULL, 1, vr_data, ldvr, &wkopt, -1, &info); #else magma_dgeev(MagmaNoVec, jobvr, n, a_data, n, wr, wi, NULL, 1, vr_data, ldvr, &wkopt, -1, &info); #endif int lwork = (int) wkopt; work_data = th_magma_malloc_pinned<scalar_t>(lwork); #if defined(THC_REAL_IS_FLOAT) magma_sgeev(MagmaNoVec, jobvr, n, a_data, n, wr, wi, NULL, 1, vr_data, ldvr, work_data, lwork, &info); #else magma_dgeev(MagmaNoVec, jobvr, n, a_data, n, wr, wi, NULL, 1, vr_data, ldvr, work_data, lwork, &info); #endif if (info > 0) THError("MAGMA geev : Failed to converge. %d off-diagonal elements of an didn't converge to zero", info); else if (info < 0) THError("MAGMA geev : Argument %d : illegal value", -info); } { THCTensor_(resize2d)(state, re_, 2, n); THCTensor *re = THCTensor_(newContiguous)(state, re_); if (n > 0) { THCudaCheck(hipMemcpy(THCStorage_(data)(state, THTensor_getStoragePtr(re)) + re->storage_offset(), wr, n*sizeof(scalar_t), hipMemcpyHostToDevice)); THCudaCheck(hipMemcpy(THCStorage_(data)(state, THTensor_getStoragePtr(re)) + re->storage_offset() + n, wi, n*sizeof(scalar_t), hipMemcpyHostToDevice)); } THCTensor_(freeCopyTo)(state, re, re_); THCTensor_(transpose)(state, re_, NULL, 0, 1); } if (jobvr == MagmaVec) THCTensor_(copyArray2d)(state, rv_, vr_data, n, n); magma_free_pinned(work_data); magma_free_pinned(vr_data); magma_free_pinned(wi); magma_free_pinned(wr); magma_free_pinned(a_data); #else THError(NoMagma(geev)); #endif } void THCTensor_(gesdd)(THCState *state, THCTensor *ru_, THCTensor *rs_, THCTensor *rv_, THCTensor *a, const char *some, const char* compute_uv) { #ifdef USE_MAGMA THCTensor *ra_ = THCTensor_(new)(state); THCTensor_(gesdd2)(state, ru_, rs_, rv_, ra_, a, some, compute_uv); THCTensor_(free)(state, ra_); #else THError(NoMagma(gesdd)); #endif } void THCTensor_(gesdd2)(THCState *state, THCTensor *ru_, THCTensor *rs_, THCTensor *rv_, THCTensor *ra_, THCTensor *a, const char *some, const char* compute_uv) { #ifdef USE_MAGMA THArgCheck(!a->is_empty() && a->dim() == 2, 2, "A should be non-empty 2 dimensional"); char jobus = compute_uv[0] == 'N' ? 'N' : some[0]; magma_vec_t jobz = jobus == 'A' ? MagmaAllVec : jobus == 'S' ? MagmaSomeVec : jobus == 'O' ? MagmaOverwriteVec : MagmaNoVec; int iunused[1]; int64_t m = a->size(0); int64_t n = a->size(1); int64_t k = m < n ? m : n; int64_t j = (jobz == MagmaAllVec) ? m : k; int64_t jv = (jobz == MagmaAllVec) ? n : k; scalar_t *a_data = th_magma_malloc_pinned<scalar_t>(m * n); THCTensor_(copyTensor2d)(state, a_data, a); scalar_t *rs_data = th_magma_malloc_pinned<scalar_t>(k); scalar_t *ru_data = NULL; scalar_t *rv_data = NULL; if (jobz != MagmaNoVec) { ru_data = th_magma_malloc_pinned<scalar_t>(m * j); rv_data = th_magma_malloc_pinned<scalar_t>(n * n); } scalar_t wkopt; int info; #if defined(THC_REAL_IS_FLOAT) magma_sgesdd(jobz, m, n, a_data, m, rs_data, ru_data, m, rv_data, n, &wkopt, -1, iunused, &info); #else magma_dgesdd(jobz, m, n, a_data, m, rs_data, ru_data, m, rv_data, n, &wkopt, -1, iunused, &info); #endif int lwork = (int) wkopt; scalar_t *work_data = th_magma_malloc_pinned<scalar_t>(lwork); int *iwork = th_magma_malloc_pinned<int>(8 * k); #if defined(THC_REAL_IS_FLOAT) magma_sgesdd(jobz, m, n, a_data, m, rs_data, ru_data, m, rv_data, n, work_data, lwork, iwork, &info); #else magma_dgesdd(jobz, m, n, a_data, m, rs_data, ru_data, m, rv_data, n, work_data, lwork, iwork, &info); #endif if (info > 0) THError("MAGMA gesdd : the updating process of SBDSDC did not converge (error: %d)", info); else if (info < 0) THError("MAGMA gesdd : Argument %d : illegal value", -info); THCTensor_(copyArray1d)(state, rs_, rs_data, k); THCTensor_(copyArray2d)(state, ra_, a_data, m, n); if (jobz != MagmaNoVec) { THCTensor_(copyArray2d)(state, rv_, rv_data, n, n); THCTensor_(transpose)(state, rv_, NULL, 0, 1); if (jobz != MagmaAllVec) THCTensor_(narrow)(state, rv_, rv_, 1, 0, jv); THCTensor_(copyArray2d)(state, ru_, ru_data, m, j); magma_free_pinned(rv_data); magma_free_pinned(ru_data); } else { THCTensor_(resize2d)(state, rv_, n, n); THCTensor_(zero)(state, rv_); THCTensor_(resize2d)(state, ru_, m, m); THCTensor_(zero)(state, ru_); } magma_free_pinned(work_data); magma_free_pinned(iwork); magma_free_pinned(rs_data); magma_free_pinned(a_data); #else THError(NoMagma(gesdd2)); #endif } __global__ void THCTensor_(copyUpperSymmetric)(scalar_t *input, int n, int len) { for (int idx = threadIdx.x + blockIdx.x * blockDim.x; idx < len; idx += 65535) { const int r = idx % n; const int c = idx / n; if (r > c) { input[idx] = input[r*n + c]; } } } __global__ void THCTensor_(copyLowerSymmetric)(scalar_t *input, int n, int len) { for (int idx = threadIdx.x + blockIdx.x * blockDim.x; idx < len; idx += 65535) { const int r = idx % n; const int c = idx / n; if (r < c) { input[idx] = input[r*n + c]; } } } void THCTensor_(potri)(THCState *state, THCTensor *ra_, THCTensor *a, const char *uplo) { #ifdef USE_MAGMA THArgCheck(!a->is_empty() && a->dim() == 2, 2, "A should be non-empty 2 dimensional"); THArgCheck(a->size(0) == a->size(1), 2, "A should be square"); int64_t n = a->size(0); magma_uplo_t ul = uplo[0] == 'U' ? MagmaUpper : MagmaLower; THCTensor *input = THCTensor_(newColumnMajor)(state, ra_, a); scalar_t *input_data = THCTensor_(data)(state, input); int info; #if defined(THC_REAL_IS_FLOAT) magma_spotri_gpu(ul, n, input_data, n, &info); #else magma_dpotri_gpu(ul, n, input_data, n, &info); #endif if (info > 0) THError("MAGMA potri : A(%d,%d) is 0, A cannot be factorized", info, info); else if (info < 0) THError("MAGMA potri : Argument %d : illegal value", -info); hipStream_t stream = THCState_getCurrentStream(state); const int len = n*n; dim3 blocks(::min(DIVUP(len, 128), 65535)); dim3 threads(128); if (uplo[0] == 'U') { hipLaunchKernelGGL(( THCTensor_(copyUpperSymmetric)), dim3(blocks), dim3(threads), 0, stream, input_data, n, len); } else { hipLaunchKernelGGL(( THCTensor_(copyLowerSymmetric)), dim3(blocks), dim3(threads), 0, stream, input_data, n, len); } THCTensor_(freeCopyTo)(state, input, ra_); #else THError(NoMagma(potri)); #endif } void THCTensor_(geqrf)(THCState *state, THCTensor *ra_, THCTensor *rtau_, THCTensor *a_) { #ifdef USE_MAGMA THArgCheck(!a_->is_empty() && a_->dim() == 2, 2, "A should be non-empty 2 dimensional"); THCTensor *a = THCTensor_(newColumnMajor)(state, ra_, a_); int64_t m = a->size(0); int64_t n = a->size(1); int64_t k = (m < n ? m : n); #if defined(THC_REAL_IS_FLOAT) int64_t nb = magma_get_sgeqrf_nb(m, n); #else int64_t nb = magma_get_dgeqrf_nb(m, n); #endif scalar_t *rtau_data = th_magma_malloc_pinned<scalar_t>(k); scalar_t *a_data = THCTensor_(data)(state, a); int info; #if defined(THC_REAL_IS_FLOAT) magma_sgeqrf2_gpu(m, n, a_data, m, rtau_data, &info); #else magma_dgeqrf2_gpu(m, n, a_data, m, rtau_data, &info); #endif if (info != 0) THError("MAGMA geqrf2 : Argument %d : illegal value.", -info); THCTensor_(freeCopyTo)(state, a, ra_); THCTensor_(copyArray1d)(state, rtau_, rtau_data, k); magma_free_pinned(rtau_data); #else THError(NoMagma(geqrf)); #endif } #endif #endif
8fad01aad3810ebdc05310f08ff8fa78a15c6c60.cu
#ifndef THC_GENERIC_FILE #define THC_GENERIC_FILE "THC/generic/THCTensorMathMagma.cu" #else #if defined(THC_REAL_IS_FLOAT) || defined(THC_REAL_IS_DOUBLE) #ifdef USE_MAGMA static void THCTensor_(copyArray1d)(THCState *state, THCTensor *self, scalar_t *src, int k) { int64_t size[1] = { k }; int64_t stride[1] = { 1 }; THCTensor_(resizeNd)(state, self, 1, size, stride); size_t len = k * sizeof(scalar_t); THCudaCheck(cudaMemcpy(THCStorage_(data)(state, THTensor_getStoragePtr(self)) + self->storage_offset(), src, len, cudaMemcpyHostToDevice)); } static void THCTensor_(copyArray2d)(THCState *state, THCTensor *self, scalar_t *src, int m, int n) { int64_t size[2] = { m, n }; int64_t stride[2] = { 1, m }; THCTensor_(resizeNd)(state, self, 2, size, stride); size_t len = m * n * sizeof(scalar_t); THCudaCheck(cudaMemcpy(THCStorage_(data)(state, THTensor_getStoragePtr(self)) + self->storage_offset(), src, len, cudaMemcpyHostToDevice)); } static void THCTensor_(copyTensor2d)(THCState *state, scalar_t *dst, THCTensor *self) { THAssert(self->dim() == 2); size_t len = THCTensor_(nElement)(state, self)*sizeof(scalar_t); THCTensor *temp = THCTensor_(newTranspose)(state, self, 0, 1); THCTensor *selfc = THCTensor_(newContiguous)(state, temp); THCudaCheck(cudaMemcpy(dst, THCStorage_(data)(state, THTensor_getStoragePtr(selfc)) + selfc->storage_offset(), len, cudaMemcpyDeviceToHost)); THCTensor_(free)(state, temp); THCTensor_(free)(state, selfc); } #endif // USE_MAGMA static THCTensor* THCTensor_(newColumnMajor)(THCState *state, THCTensor *self, THCTensor *src) { THAssert(src->dim() == 2); if (self == src && self->stride(0) == 1 && self->stride(1) == self->size(0)) { THCTensor_(retain)(state, self); return self; } if (self == src) self = THCTensor_(new)(state); else THCTensor_(retain)(state, self); int64_t size[2] = { src->size(0), src->size(1) }; int64_t stride[2] = { 1, src->size(0) }; THCTensor_(resizeNd)(state, self, 2, size, stride); THCTensor_(copy)(state, self, src); return self; } void THCTensor_(gels)(THCState *state, THCTensor *rb_, THCTensor *ra_, THCTensor *b_, THCTensor *a_) { #ifdef USE_MAGMA THArgCheck(!a_->is_empty() && a_->dim() == 2, 1, "A should be (non-empty) 2 dimensional"); THArgCheck(!b_->is_empty() && b_->dim() == 2, 1, "b should be (non-empty) 2 dimensional"); TORCH_CHECK(a_->size(0) == b_->size(0), "Expected A and b to have same size " "at dim 0, but A has ", a_->size(0), " rows and B has ", b_->size(0), " rows"); THArgCheck(a_->size(0) >= a_->size(1), 2, "Expected A with shape (m x n) to have " "m >= n. The case for m < n is not implemented yet."); THCTensor *a = THCTensor_(newColumnMajor)(state, ra_, a_); THCTensor *b = THCTensor_(newColumnMajor)(state, rb_, b_); scalar_t *a_data = THCTensor_(data)(state, a); scalar_t *b_data = THCTensor_(data)(state, b); int64_t m = a->size(0); int64_t n = a->size(1); int64_t nrhs = b->size(1); scalar_t wkopt; int info; #if defined(THC_REAL_IS_FLOAT) magma_sgels_gpu(MagmaNoTrans, m, n, nrhs, a_data, m, b_data, m, &wkopt, -1, &info); #else magma_dgels_gpu(MagmaNoTrans, m, n, nrhs, a_data, m, b_data, m, &wkopt, -1, &info); #endif scalar_t *hwork = th_magma_malloc_pinned<scalar_t>((size_t)wkopt); #if defined(THC_REAL_IS_FLOAT) magma_sgels_gpu(MagmaNoTrans, m, n, nrhs, a_data, m, b_data, m, hwork, (int)wkopt, &info); #else magma_dgels_gpu(MagmaNoTrans, m, n, nrhs, a_data, m, b_data, m, hwork, (int)wkopt, &info); #endif magma_free_pinned(hwork); if (info != 0) THError("MAGMA gels : Argument %d : illegal value", -info); THCTensor_(freeCopyTo)(state, a, ra_); THCTensor_(freeCopyTo)(state, b, rb_); #else THError(NoMagma(gels)); #endif } void THCTensor_(syev)(THCState *state, THCTensor *re_, THCTensor *rv_, THCTensor *a, const char *jobzs, const char *uplos) { #ifdef USE_MAGMA int64_t n = THTensor_sizeLegacyNoScalars(a, 0); int64_t lda = n; magma_uplo_t uplo = uplos[0] == 'U' ? MagmaUpper : MagmaLower; magma_vec_t jobz = jobzs[0] == 'N' ? MagmaNoVec : MagmaVec; THCTensor *input = THCTensor_(newColumnMajor)(state, rv_, a); scalar_t *input_data = THCTensor_(data)(state, input); if (n > 0) { // eigen values and workspace scalar_t *w = th_magma_malloc_pinned<scalar_t>(n); scalar_t *wA = th_magma_malloc_pinned<scalar_t>(lda * n); // compute optimal size of work array int info; scalar_t lwork; int liwork; #if defined(THC_REAL_IS_FLOAT) magma_ssyevd_gpu(jobz, uplo, n, input_data, lda, w, wA, n, &lwork, -1, &liwork, -1, &info); #else magma_dsyevd_gpu(jobz, uplo, n, input_data, lda, w, wA, n, &lwork, -1, &liwork, -1, &info); #endif scalar_t *work = th_magma_malloc_pinned<scalar_t>((size_t)lwork); int *iwork = th_magma_malloc_pinned<int>(liwork); // compute eigenvalues and, optionally, eigenvectors #if defined(THC_REAL_IS_FLOAT) magma_ssyevd_gpu(jobz, uplo, n, input_data, lda, w, wA, n, work, (int) lwork, iwork, liwork, &info); #else magma_dsyevd_gpu(jobz, uplo, n, input_data, lda, w, wA, n, work, (int) lwork, iwork, liwork, &info); #endif // copy eigen values from w to re_ if (info == 0) THCTensor_(copyArray1d)(state, re_, w, n); magma_free_pinned(iwork); magma_free_pinned(work); magma_free_pinned(wA); magma_free_pinned(w); // check error value if (info > 0) THError("MAGMA syev : Failed to converge. %d off-diagonal elements of an didn't converge to zero", info); else if (info < 0) THError("MAGMA syev : Argument %d : illegal value", -info); } if (jobzs[0] == 'N') { // If eigenvector is not needed, fill the result with zeros. THCTensor_(zero)(state, rv_); THCTensor_(free)(state, input); } else { THCTensor_(freeCopyTo)(state, input, rv_); } #else THError(NoMagma(syev)); #endif } void THCTensor_(geev)(THCState *state, THCTensor *re_, THCTensor *rv_, THCTensor *a_, const char *jobvrs) { #ifdef USE_MAGMA THArgCheck(a_->dim() == 2, 3, "A should be 2 dimensional"); THArgCheck(a_->size(0) == a_->size(1), 3, "A should be square"); magma_vec_t jobvr = jobvrs[0] == 'N' ? MagmaNoVec : MagmaVec; int64_t n = a_->size(0); scalar_t *a_data = th_magma_malloc_pinned<scalar_t>(n * n); THCTensor_(copyTensor2d)(state, a_data, a_); scalar_t *wr = th_magma_malloc_pinned<scalar_t>(n); scalar_t *wi = th_magma_malloc_pinned<scalar_t>(n); scalar_t *vr_data = NULL; int64_t ldvr = 1; if (jobvr == MagmaVec) { vr_data = th_magma_malloc_pinned<scalar_t>(n * n); ldvr = n; } scalar_t *work_data = nullptr; if (n > 0) { int info; scalar_t wkopt; #if defined(THC_REAL_IS_FLOAT) magma_sgeev(MagmaNoVec, jobvr, n, a_data, n, wr, wi, NULL, 1, vr_data, ldvr, &wkopt, -1, &info); #else magma_dgeev(MagmaNoVec, jobvr, n, a_data, n, wr, wi, NULL, 1, vr_data, ldvr, &wkopt, -1, &info); #endif int lwork = (int) wkopt; work_data = th_magma_malloc_pinned<scalar_t>(lwork); #if defined(THC_REAL_IS_FLOAT) magma_sgeev(MagmaNoVec, jobvr, n, a_data, n, wr, wi, NULL, 1, vr_data, ldvr, work_data, lwork, &info); #else magma_dgeev(MagmaNoVec, jobvr, n, a_data, n, wr, wi, NULL, 1, vr_data, ldvr, work_data, lwork, &info); #endif if (info > 0) THError("MAGMA geev : Failed to converge. %d off-diagonal elements of an didn't converge to zero", info); else if (info < 0) THError("MAGMA geev : Argument %d : illegal value", -info); } { THCTensor_(resize2d)(state, re_, 2, n); THCTensor *re = THCTensor_(newContiguous)(state, re_); if (n > 0) { THCudaCheck(cudaMemcpy(THCStorage_(data)(state, THTensor_getStoragePtr(re)) + re->storage_offset(), wr, n*sizeof(scalar_t), cudaMemcpyHostToDevice)); THCudaCheck(cudaMemcpy(THCStorage_(data)(state, THTensor_getStoragePtr(re)) + re->storage_offset() + n, wi, n*sizeof(scalar_t), cudaMemcpyHostToDevice)); } THCTensor_(freeCopyTo)(state, re, re_); THCTensor_(transpose)(state, re_, NULL, 0, 1); } if (jobvr == MagmaVec) THCTensor_(copyArray2d)(state, rv_, vr_data, n, n); magma_free_pinned(work_data); magma_free_pinned(vr_data); magma_free_pinned(wi); magma_free_pinned(wr); magma_free_pinned(a_data); #else THError(NoMagma(geev)); #endif } void THCTensor_(gesdd)(THCState *state, THCTensor *ru_, THCTensor *rs_, THCTensor *rv_, THCTensor *a, const char *some, const char* compute_uv) { #ifdef USE_MAGMA THCTensor *ra_ = THCTensor_(new)(state); THCTensor_(gesdd2)(state, ru_, rs_, rv_, ra_, a, some, compute_uv); THCTensor_(free)(state, ra_); #else THError(NoMagma(gesdd)); #endif } void THCTensor_(gesdd2)(THCState *state, THCTensor *ru_, THCTensor *rs_, THCTensor *rv_, THCTensor *ra_, THCTensor *a, const char *some, const char* compute_uv) { #ifdef USE_MAGMA THArgCheck(!a->is_empty() && a->dim() == 2, 2, "A should be non-empty 2 dimensional"); char jobus = compute_uv[0] == 'N' ? 'N' : some[0]; magma_vec_t jobz = jobus == 'A' ? MagmaAllVec : jobus == 'S' ? MagmaSomeVec : jobus == 'O' ? MagmaOverwriteVec : MagmaNoVec; int iunused[1]; int64_t m = a->size(0); int64_t n = a->size(1); int64_t k = m < n ? m : n; int64_t j = (jobz == MagmaAllVec) ? m : k; int64_t jv = (jobz == MagmaAllVec) ? n : k; scalar_t *a_data = th_magma_malloc_pinned<scalar_t>(m * n); THCTensor_(copyTensor2d)(state, a_data, a); scalar_t *rs_data = th_magma_malloc_pinned<scalar_t>(k); scalar_t *ru_data = NULL; scalar_t *rv_data = NULL; if (jobz != MagmaNoVec) { ru_data = th_magma_malloc_pinned<scalar_t>(m * j); rv_data = th_magma_malloc_pinned<scalar_t>(n * n); } scalar_t wkopt; int info; #if defined(THC_REAL_IS_FLOAT) magma_sgesdd(jobz, m, n, a_data, m, rs_data, ru_data, m, rv_data, n, &wkopt, -1, iunused, &info); #else magma_dgesdd(jobz, m, n, a_data, m, rs_data, ru_data, m, rv_data, n, &wkopt, -1, iunused, &info); #endif int lwork = (int) wkopt; scalar_t *work_data = th_magma_malloc_pinned<scalar_t>(lwork); int *iwork = th_magma_malloc_pinned<int>(8 * k); #if defined(THC_REAL_IS_FLOAT) magma_sgesdd(jobz, m, n, a_data, m, rs_data, ru_data, m, rv_data, n, work_data, lwork, iwork, &info); #else magma_dgesdd(jobz, m, n, a_data, m, rs_data, ru_data, m, rv_data, n, work_data, lwork, iwork, &info); #endif if (info > 0) THError("MAGMA gesdd : the updating process of SBDSDC did not converge (error: %d)", info); else if (info < 0) THError("MAGMA gesdd : Argument %d : illegal value", -info); THCTensor_(copyArray1d)(state, rs_, rs_data, k); THCTensor_(copyArray2d)(state, ra_, a_data, m, n); if (jobz != MagmaNoVec) { THCTensor_(copyArray2d)(state, rv_, rv_data, n, n); THCTensor_(transpose)(state, rv_, NULL, 0, 1); if (jobz != MagmaAllVec) THCTensor_(narrow)(state, rv_, rv_, 1, 0, jv); THCTensor_(copyArray2d)(state, ru_, ru_data, m, j); magma_free_pinned(rv_data); magma_free_pinned(ru_data); } else { THCTensor_(resize2d)(state, rv_, n, n); THCTensor_(zero)(state, rv_); THCTensor_(resize2d)(state, ru_, m, m); THCTensor_(zero)(state, ru_); } magma_free_pinned(work_data); magma_free_pinned(iwork); magma_free_pinned(rs_data); magma_free_pinned(a_data); #else THError(NoMagma(gesdd2)); #endif } __global__ void THCTensor_(copyUpperSymmetric)(scalar_t *input, int n, int len) { for (int idx = threadIdx.x + blockIdx.x * blockDim.x; idx < len; idx += 65535) { const int r = idx % n; const int c = idx / n; if (r > c) { input[idx] = input[r*n + c]; } } } __global__ void THCTensor_(copyLowerSymmetric)(scalar_t *input, int n, int len) { for (int idx = threadIdx.x + blockIdx.x * blockDim.x; idx < len; idx += 65535) { const int r = idx % n; const int c = idx / n; if (r < c) { input[idx] = input[r*n + c]; } } } void THCTensor_(potri)(THCState *state, THCTensor *ra_, THCTensor *a, const char *uplo) { #ifdef USE_MAGMA THArgCheck(!a->is_empty() && a->dim() == 2, 2, "A should be non-empty 2 dimensional"); THArgCheck(a->size(0) == a->size(1), 2, "A should be square"); int64_t n = a->size(0); magma_uplo_t ul = uplo[0] == 'U' ? MagmaUpper : MagmaLower; THCTensor *input = THCTensor_(newColumnMajor)(state, ra_, a); scalar_t *input_data = THCTensor_(data)(state, input); int info; #if defined(THC_REAL_IS_FLOAT) magma_spotri_gpu(ul, n, input_data, n, &info); #else magma_dpotri_gpu(ul, n, input_data, n, &info); #endif if (info > 0) THError("MAGMA potri : A(%d,%d) is 0, A cannot be factorized", info, info); else if (info < 0) THError("MAGMA potri : Argument %d : illegal value", -info); cudaStream_t stream = THCState_getCurrentStream(state); const int len = n*n; dim3 blocks(std::min(DIVUP(len, 128), 65535)); dim3 threads(128); if (uplo[0] == 'U') { THCTensor_(copyUpperSymmetric)<<<blocks, threads, 0, stream>>>(input_data, n, len); } else { THCTensor_(copyLowerSymmetric)<<<blocks, threads, 0, stream>>>(input_data, n, len); } THCTensor_(freeCopyTo)(state, input, ra_); #else THError(NoMagma(potri)); #endif } void THCTensor_(geqrf)(THCState *state, THCTensor *ra_, THCTensor *rtau_, THCTensor *a_) { #ifdef USE_MAGMA THArgCheck(!a_->is_empty() && a_->dim() == 2, 2, "A should be non-empty 2 dimensional"); THCTensor *a = THCTensor_(newColumnMajor)(state, ra_, a_); int64_t m = a->size(0); int64_t n = a->size(1); int64_t k = (m < n ? m : n); #if defined(THC_REAL_IS_FLOAT) int64_t nb = magma_get_sgeqrf_nb(m, n); #else int64_t nb = magma_get_dgeqrf_nb(m, n); #endif scalar_t *rtau_data = th_magma_malloc_pinned<scalar_t>(k); scalar_t *a_data = THCTensor_(data)(state, a); int info; #if defined(THC_REAL_IS_FLOAT) magma_sgeqrf2_gpu(m, n, a_data, m, rtau_data, &info); #else magma_dgeqrf2_gpu(m, n, a_data, m, rtau_data, &info); #endif if (info != 0) THError("MAGMA geqrf2 : Argument %d : illegal value.", -info); THCTensor_(freeCopyTo)(state, a, ra_); THCTensor_(copyArray1d)(state, rtau_, rtau_data, k); magma_free_pinned(rtau_data); #else THError(NoMagma(geqrf)); #endif } #endif #endif
b3d430ca9fc19fe54201b516e7d82054c128f93d.hip
// !!! This is a file automatically generated by hipify!!! // // ServerKernels.cu // // #include "Profile.h" #include <hip/hip_runtime.h> #include <hiprand/hiprand_kernel.h> #include <hiprand/hiprand.h> #include <iostream> #include <assert.h> #include <vector> #include <thrust/reduce.h> #include <thrust/functional.h> #include <thrust/device_vector.h> #include <thrust/execution_policy.h> #include <thrust/iterator/constant_iterator.h> // ================================================================== // CudaEventTimer // // Example usage: // // T.Begin(); // generate << < blocks, threads >> > (gData, DataPerBlock); // T.End(); // hipError_t err = hipGetLastError(); // printf("\nError = %s", hipGetErrorString(err)); // printf("\nDuration of generate kernel = %.3f ms for %d floats\n\n", T.GetTime(), N); // ================================================================== class CudaEventTimer { public: CudaEventTimer() { hipEventCreate(&start); hipEventCreate(&stop); } ~CudaEventTimer() { hipEventDestroy(start); hipEventDestroy(stop); } void Begin() { hipEventRecord(start); } void End() { hipEventRecord(stop); hipEventSynchronize(stop); } float GetTime(void) { hipEventElapsedTime(&ms, start, stop); return ms; } private: hipEvent_t start, stop; float ms; }; // ================================================================== // ================================================================== using namespace std; /* BIG = 1/MACHEPF */ #define BIG 16777216.0f #define MACHEPF 5.9604644775390625E-8f /* MAXNUMF = 2^128 * (1 - 2^-24) */ #define MAXNUMF 3.4028234663852885981170418348451692544e38f /* log(2^-149) */ #define MINLOGF -103.278929903431851103f #define PIF 3.141592653589793238f #define PIINV 0.318309886183790671538f /* log( sqrt( 2*pi ) ) */ #define LS2PI 0.91893853320467274178f #define MAXLGM 2.035093e36 #define MAXLOGF 88.72283905206835f // sqrt(2pi) #define s2pi 2.50662827463100050242f /* log gamma(x+2), -.5 < x < .5 */ __host__ __device__ float polevlfB(float xx) { float t = 6.055172732649237E-004f; t = t * xx - 1.311620815545743E-003f; t = t * xx + 2.863437556468661E-003f; t = t * xx - 7.366775108654962E-003f; t = t * xx + 2.058355474821512E-002f; t = t * xx - 6.735323259371034E-002f; t = t * xx + 3.224669577325661E-001f; t = t * xx + 4.227843421859038E-001f; return t; } /* log gamma(x+1), -.25 < x < .25 */ __host__ __device__ float polevlfC(float xx) { float t = 1.369488127325832E-001f; t = t * xx - 1.590086327657347E-001f; t = t * xx + 1.692415923504637E-001f; t = t * xx - 2.067882815621965E-001f; t = t * xx + 2.705806208275915E-001f; t = t * xx - 4.006931650563372E-001f; t = t * xx + 8.224670749082976E-001f; t = t * xx - 5.772156501719101E-001f; return t; } /* approximation for 0 <= |y - 0.5| <= 3/8 */ __host__ __device__ float polevlfP0(float xx) { float t = -5.99633501014107895267E1f; t = t * xx + 9.80010754185999661536E1f; t = t * xx - 5.66762857469070293439E1f; t = t * xx + 1.39312609387279679503E1f; t = t * xx - 1.23916583867381258016E0f; return t; } __host__ __device__ float p1evlfQ0(float xx) { float t = xx + 1.95448858338141759834E0f; t = t * xx + 4.67627912898881538453E0f; t = t * xx + 8.63602421390890590575E1f; t = t * xx - 2.25462687854119370527E2f; t = t * xx + 2.00260212380060660359E2f; t = t * xx - 8.20372256168333339912E1f; t = t * xx + 1.59056225126211695515E1f; t = t * xx - 1.18331621121330003142E0f; return t; } /* Approximation for interval z = sqrt(-2 log y ) between 2 and 8 * i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14. */ __host__ __device__ float polevlfP1(float xx) { float t = 4.05544892305962419923E0f; t = t * xx + 3.15251094599893866154E1f; t = t * xx + 5.71628192246421288162E1f; t = t * xx + 4.40805073893200834700E1f; t = t * xx + 1.46849561928858024014E1f; t = t * xx + 2.18663306850790267539E0f; t = t * xx - 1.40256079171354495875E-1f; t = t * xx - 3.50424626827848203418E-2f; t = t * xx - 8.57456785154685413611E-4f; return t; } __host__ __device__ float p1evlfQ1(float xx) { float t = xx + 1.57799883256466749731E1f; t = t * xx + 4.53907635128879210584E1f; t = t * xx + 4.13172038254672030440E1f; t = t * xx + 1.50425385692907503408E1f; t = t * xx + 2.50464946208309415979E0f; t = t * xx - 1.42182922854787788574E-1f; t = t * xx - 3.80806407691578277194E-2f; t = t * xx - 9.33259480895457427372E-4f; return t; } /* Approximation for interval z = sqrt(-2 log y ) between 8 and 64 * i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890. */ __host__ __device__ float polevlfP2(float xx) { float t = 3.23774891776946035970E0f; t = t * xx + 6.91522889068984211695E0f; t = t * xx + 3.93881025292474443415E0f; t = t * xx + 1.33303460815807542389E0f; t = t * xx + 2.01485389549179081538E-1f; t = t * xx + 1.23716634817820021358E-2f; t = t * xx + 3.01581553508235416007E-4f; t = t * xx + 2.65806974686737550832E-6f; t = t * xx + 6.23974539184983293730E-9f; return t; } __host__ __device__ float p1evlfQ2(float xx) { float t = xx + 6.02427039364742014255E0f; t = t * xx + 3.67983563856160859403E0f; t = t * xx + 1.37702099489081330271E0f; t = t * xx + 2.16236993594496635890E-1f; t = t * xx + 1.34204006088543189037E-2f; t = t * xx + 3.28014464682127739104E-4f; t = t * xx + 2.89247864745380683936E-6f; t = t * xx + 6.79019408009981274425E-9f; return t; } __host__ __device__ float lgamf(float xx) { float p, q, w, z, x; float nx, tx; int i, direction; int sgngamf = 1; x = xx; if (x < 0.0f) { q = -x; w = lgamf(q); /* note this modifies sgngam! */ p = floorf(q); if (p == q) goto loverf; i = (int)p; if ((i & 1) == 0) sgngamf = -1; else sgngamf = 1; z = q - p; if (z > 0.5f) { p += 1.0f; z = p - q; } z = q * sinf(PIF * z); if (z == 0.0) goto loverf; z = -logf(PIINV*z) - w; return(z); } if (x < 6.5f) { direction = 0; z = 1.0; tx = x; nx = 0.0; if (x >= 1.5) { while (tx > 2.5f) { nx -= 1.0f; tx = x + nx; z *= tx; } x += nx - 2.0f; iv1r5: p = x * polevlfB(x); goto cont; } if (x >= 1.25f) { z *= x; x -= 1.0f; /* x + 1 - 2 */ direction = 1; goto iv1r5; } if (x >= 0.75f) { x -= 1.0f; p = x * polevlfC(x); q = 0.0f; goto contz; } while (tx < 1.5f) { if (tx == 0.0f) goto loverf; z *= tx; nx += 1.0f; tx = x + nx; } direction = 1; x += nx - 2.0f; p = x * polevlfB(x); cont: if (z < 0.0f) { sgngamf = -1; z = -z; } else { sgngamf = 1; } q = logf(z); if (direction) q = -q; contz: return(p + q); } if (x > MAXLGM) { loverf: return(sgngamf * MAXNUMF); // overflow } // Note, though an asymptotic formula could be used for x >= 3, // there is cancellation error in the following if x < 6.5. q = LS2PI - x; q += (x - 0.5f) * logf(x); if (x <= 1.0e4) { z = 1.0f / x; p = z * z; q += ((6.789774945028216E-004f * p - 2.769887652139868E-003f) * p + 8.333316229807355E-002f) * z; } return(q); } // // Continued fraction expansion #1 for incomplete beta integral. // __host__ __device__ float incbcff(float aa, float bb, float xx) { float a, b, x, xk, pk, pkm1, pkm2, qk, qkm1, qkm2; float k1, k2, k3, k4, k5, k6, k7, k8; float r, t, ans; int n; a = aa; b = bb; x = xx; k1 = a; k2 = a + b; k3 = a; k4 = a + 1.0f; k5 = 1.0f; k6 = b - 1.0f; k7 = k4; k8 = a + 2.0f; pkm2 = 0.0f; qkm2 = 1.0f; pkm1 = 1.0f; qkm1 = 1.0f; ans = 1.0f; r = 0.0f; n = 0; do { xk = -(x * k1 * k2) / (k3 * k4); pk = pkm1 + pkm2 * xk; qk = qkm1 + qkm2 * xk; pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; xk = (x * k5 * k6) / (k7 * k8); pk = pkm1 + pkm2 * xk; qk = qkm1 + qkm2 * xk; pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; if (qk != 0) r = pk / qk; if (r != 0) { t = fabsf((ans - r) / r); ans = r; } else t = 1.0f; if (t < MACHEPF) return (ans); k1 += 1.0f; k2 += 1.0f; k3 += 2.0f; k4 += 2.0f; k5 += 1.0f; k6 -= 1.0f; k7 += 2.0f; k8 += 2.0f; if ((fabsf(qk) + fabsf(pk)) > BIG) { pkm2 *= MACHEPF; pkm1 *= MACHEPF; qkm2 *= MACHEPF; qkm1 *= MACHEPF; } if ((fabsf(qk) < MACHEPF) || (fabsf(pk) < MACHEPF)) { pkm2 *= BIG; pkm1 *= BIG; qkm2 *= BIG; qkm1 *= BIG; } } while (++n < 100); return(ans); } // // Continued fraction expansion #2 for incomplete beta integral. // __host__ __device__ float incbdf(float aa, float bb, float xx) { float a, b, x, xk, pk, pkm1, pkm2, qk, qkm1, qkm2; float k1, k2, k3, k4, k5, k6, k7, k8; float r, t, ans, z; int n; a = aa; b = bb; x = xx; k1 = a; k2 = b - 1.0f; k3 = a; k4 = a + 1.0f; k5 = 1.0f; k6 = a + b; k7 = a + 1.0f; k8 = a + 2.0f; pkm2 = 0.0f; qkm2 = 1.0f; pkm1 = 1.0f; qkm1 = 1.0f; z = x / (1.0f - x); ans = 1.0f; r = 0.0f; n = 0; do { xk = -(z * k1 * k2) / (k3 * k4); pk = pkm1 + pkm2 * xk; qk = qkm1 + qkm2 * xk; pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; xk = (z * k5 * k6) / (k7 * k8); pk = pkm1 + pkm2 * xk; qk = qkm1 + qkm2 * xk; pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; if (qk != 0) r = pk / qk; if (r != 0) { t = fabsf((ans - r) / r); ans = r; } else t = 1.0f; if (t < MACHEPF) return ans; // underflow k1 += 1.0f; k2 -= 1.0f; k3 += 2.0f; k4 += 2.0f; k5 += 1.0f; k6 += 1.0f; k7 += 2.0f; k8 += 2.0f; if ((fabsf(qk) + fabsf(pk)) > BIG) { pkm2 *= MACHEPF; pkm1 *= MACHEPF; qkm2 *= MACHEPF; qkm1 *= MACHEPF; } if ((fabsf(qk) < MACHEPF) || (fabsf(pk) < MACHEPF)) { pkm2 *= BIG; pkm1 *= BIG; qkm2 *= BIG; qkm1 *= BIG; } } while (++n < 100); return(ans); } __host__ __device__ float incbpsf(float aa, float bb, float xx) { float a, b, x, t, u, y, s; a = aa; b = bb; x = xx; y = a * logf(x) + (b - 1.0f)*logf(1.0f - x) - logf(a); y -= lgamf(a) + lgamf(b); y += lgamf(a + b); t = x / (1.0f - x); s = 0.0f; u = 1.0f; do { b -= 1.0f; if (b == 0.0f) break; a += 1.0f; u *= t*b / a; s += u; } while (fabsf(u) > MACHEPF); if (y < MINLOGF) { s = 0.0f; // underflow } else s = expf(y) * (1.0f + s); return(s); } __host__ __device__ float incbetf(float aa, float bb, float xx) { float ans, a, b, t, x, onemx; int flag; if ((xx <= 0.0f) || (xx >= 1.0f)) { if (xx == 0.0f) return(0.0f); if (xx == 1.0f) return(1.0f); return(0.0f); } onemx = 1.0f - xx; // Transformation for small aa. if (aa <= 1.0f) { ans = incbetf(aa + 1.0f, bb, xx); t = aa*logf(xx) + bb*logf(1.0f - xx) + lgamf(aa + bb) - lgamf(aa + 1.0f) - lgamf(bb); if (t > MINLOGF) ans += expf(t); return(ans); } // see if x is greater than the mean. if (xx > (aa / (aa + bb))) { flag = 1; a = bb; b = aa; t = xx; x = onemx; } else { flag = 0; a = aa; b = bb; t = onemx; x = xx; } // Choose expansion for optimal convergence. if (b > 10.0f) { if (fabsf(b*x / a) < 0.3f) { t = incbpsf(a, b, x); goto bdone; } } ans = x * (a + b - 2.0f) / (a - 1.0f); if (ans < 1.0f) { ans = incbcff(a, b, x); t = b * logf(t); } else { ans = incbdf(a, b, x); t = (b - 1.0f) * logf(t); } t += a*logf(x) + lgamf(a + b) - lgamf(a) - lgamf(b); t += logf(ans / a); if (t < MINLOGF) { t = 0.0f; // underflow } else { t = expf(t); } bdone: if (flag) t = 1.0f - t; return(t); } __host__ __device__ float fdtrcf(float a, float b, float x) { float w; if ((a < 1.0f) || (b < 1.0f) || (x < 0.0f)) { return(0.0f); } w = b / (b + a * x); return incbetf(0.5f*b, 0.5f*a, w); } __host__ __device__ float ndtrif(float yy0) { float y0, x, y, z, y2, x0, x1; int code; y0 = yy0; if (y0 <= 0.0f) { // mtherr("ndtrif", DOMAIN); return(-MAXNUMF); } if (y0 >= 1.0f) { // mtherr("ndtrif", DOMAIN); return(MAXNUMF); } code = 1; y = y0; if (y > (1.0 - 0.13533528323661269189f)) /* 0.135... = exp(-2) */ { y = 1.0f - y; code = 0; } if (y > 0.13533528323661269189f) { y = y - 0.5f; y2 = y * y; // x = y + y * (y2 * polevlf(y2, P0, 4) / p1evlf(y2, Q0, 8)); x = y + y * (y2 * polevlfP0(y2) / p1evlfQ0(y2)); x = x * s2pi; return(x); } x = sqrtf(-2.0f * logf(y)); x0 = x - logf(x) / x; z = 1.0f / x; if (x < 8.0f) /* y > exp(-32) = 1.2664165549e-14 */ // x1 = z * polevlf(z, P1, 8) / p1evlf(z, Q1, 8); x1 = z * polevlfP1(z) / p1evlfQ1(z); else // x1 = z * polevlf(z, P2, 8) / p1evlf(z, Q2, 8); x1 = z * polevlfP2(z) / p1evlfQ2(z); x = x0 - x1; if (code != 0) x = -x; return(x); } __host__ __device__ float igamcf(float aa, float xx); __host__ __device__ float igamf(float aa, float xx) { float a, x, ans, ax, c, r; a = aa; x = xx; if ((x <= 0) || (a <= 0)) return(0.0f); if ((x > 1.0f) && (x > a)) return(1.0f - igamcf(a, x)); /* Compute x**a * exp(-x) / gamma(a) */ ax = a * logf(x) - x - lgamf(a); if (ax < -MAXLOGF) { // mtherr("igamf", UNDERFLOW); return(0.0f); } ax = expf(ax); /* power series */ r = a; c = 1.0f; ans = 1.0f; do { r += 1.0f; c *= x / r; ans += c; } while (c / ans > MACHEPF); return(ans * ax / a); } __host__ __device__ float igamcf(float aa, float xx) { float a, x, ans, c, yc, ax, y, z; float pk, pkm1, pkm2, qk, qkm1, qkm2; float r, t; // static float big = BIG; a = aa; x = xx; if ((x <= 0) || (a <= 0)) return(1.0f); if ((x < 1.0f) || (x < a)) return(1.0f - igamf(a, x)); ax = a * logf(x) - x - lgamf(a); if (ax < -MAXLOGF) { // mtherr("igamcf", UNDERFLOW); return(0.0f); } ax = expf(ax); /* continued fraction */ y = 1.0f - a; z = x + y + 1.0f; c = 0.0; pkm2 = 1.0f; qkm2 = x; pkm1 = x + 1.0f; qkm1 = z * x; ans = pkm1 / qkm1; do { c += 1.0f; y += 1.0f; z += 2.0f; yc = y * c; pk = pkm1 * z - pkm2 * yc; qk = qkm1 * z - qkm2 * yc; if (qk != 0) { r = pk / qk; t = fabsf((ans - r) / r); ans = r; } else t = 1.0f; pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; if (fabsf(pk) > BIG) { pkm2 *= MACHEPF; pkm1 *= MACHEPF; qkm2 *= MACHEPF; qkm1 *= MACHEPF; } } while (t > MACHEPF); return(ans * ax); } __host__ __device__ float igamif(float aa, float yy0) { float a, y0, d, y, x0, lgm; int i; if (yy0 > 0.5f) { //mtherr("igamif", PLOSS); return 0.0f; } a = aa; y0 = yy0; // approximation to inverse function d = 1.0f / (9.0f*a); y = (1.0f - d - ndtrif(y0) * sqrtf(d)); x0 = a * y * y * y; lgm = lgamf(a); for (i = 0; i<10; i++) { if (x0 <= 0.0f) { // mtherr("igamif", UNDERFLOW); return(0.0f); } y = igamcf(a, x0); /* compute the derivative of the function at this point */ d = (a - 1.0f) * logf(x0) - x0 - lgm; if (d < -MAXLOGF) { // mtherr("igamif", UNDERFLOW); goto done; } d = -expf(d); /* compute the step to the next approximation of x */ if (d == 0.0) goto done; d = (y - y0) / d; x0 = x0 - d; if (i < 3) continue; if (fabsf(d / x0) < (2.0f * MACHEPF)) goto done; } done: return(x0); } __host__ __device__ float chdtrcf(float dff, float xx) { float df, x; df = dff; x = xx; if ((x < 0.0f) || (df < 1.0f)) { // mtherr("chdtrcf", DOMAIN); return(0.0f); } return(igamcf(0.5f*df, 0.5f*x)); } __host__ __device__ float chdtrf(float dff, float xx) { float df, x; df = dff; x = xx; if ((x < 0.0f) || (df < 1.0f)) { // mtherr("chdtrf", DOMAIN); return(0.0); } return(igamf(0.5f*df, 0.5f*x)); } __host__ __device__ float chdtrif(float dff, float yy) { float y, df, x; y = yy; df = dff; if ((y < 0.0f) || (y > 1.0f) || (df < 1.0f)) { return(0.0f); } x = igamif(0.5f * df, y); return(2.0f * x); } // // Return the area under the F-Distribution from x to +infinity. // This represents the p-value. // __host__ __device__ float CumulativeFDistributionComplimentary(float dof1, float dof2, float x) { return fdtrcf(dof1, dof2, x); } // ================================================================== // Anova kernel // ================================================================== template <int BLOCK_SIZEW, int BLOCK_SIZEH, int BLOCK_MASKW> __global__ void AnovaKernel( float * __restrict__ pVoxelSubject, int * __restrict__ pSNPSubject, float * __restrict__ pVoxelSNP, int NumberOfSNPS, int NumberOfSubjects, int NumberOfVoxels) { // Block index const int ddy = gridDim.y; const int bx = blockIdx.x; int by = blockIdx.y; // Thread index const int tx = threadIdx.x; const int ty = threadIdx.y; // // First phase .. compute the between group variance. // while (by < (NumberOfVoxels+blockDim.y-1)/blockDim.y) { // Index of the first sub-matrix of VoxelSubject processed by the block const int aBegin = NumberOfSubjects * BLOCK_SIZEW * by; // Index of the last sub-matrix of VoxelSubject processed by the block const int aEnd = aBegin + NumberOfSubjects - 1; // Step size used to iterate through the sub-matrices of VoxelSubject const int aStep = BLOCK_SIZEW; // Index of the first sub-matrix of SNPSubject processed by the block const int bBegin = NumberOfSubjects * BLOCK_SIZEH * bx; // Step size used to iterate through the sub-matrices of SNPSubject const int bStep = BLOCK_SIZEH; __shared__ float s_VoxelSubject[BLOCK_SIZEH][BLOCK_SIZEW]; __shared__ int s_SNPSubject[BLOCK_SIZEH][BLOCK_SIZEW]; float n0 = 0.0f; float n1 = 0.0f; float n2 = 0.0f; float sum0 = 0.0f; float sum1 = 0.0f; float sum2 = 0.0f; for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) { const int condVox = (a - aBegin + tx < NumberOfSubjects) && (by * blockDim.y + ty < NumberOfVoxels); const int condSNP = (b - bBegin + tx < NumberOfSubjects) && (bx * blockDim.x + ty < NumberOfSNPS); s_VoxelSubject[ty][tx] = (condVox == 1) ? pVoxelSubject[a + NumberOfSubjects * ty + tx] : 0.0f; s_SNPSubject[ty][tx] = (condSNP == 1) ? pSNPSubject[b + NumberOfSubjects * ty + tx] : -1; __syncthreads(); // Synchronize to make sure the matrices are loaded #pragma unroll for (int k = 0; k < BLOCK_SIZEW; k++) { // // This access pattern guarantees no shared memory conflicts. // int SS = s_SNPSubject[tx][(k + tx) & BLOCK_MASKW]; float VS = s_VoxelSubject[ty][(k + tx) & BLOCK_MASKW]; const float C0 = (SS == 0); // Save the predicate result to avoid IF stmts const float C1 = (SS == 1); const float C2 = (SS == 2); n0 += C0; n1 += C1; n2 += C2; sum0 += C0*VS; sum1 += C1*VS; sum2 += C2*VS; } // Synchronize to make sure that the preceding // computation is done before loading two new // sub-matrices of VoxelSubject and SNPSubject in the next iteration. __syncthreads(); } const float n = n0 + n1 + n2; const float sum = sum0 + sum1 + sum2; const float mean = sum / n; const float mean0 = sum0 / fmaxf(n0, 1.0f); const float mean1 = sum1 / fmaxf(n1, 1.0f); const float mean2 = sum2 / fmaxf(n2, 1.0f); const float T0 = mean0 - mean; const float T1 = mean1 - mean; const float T2 = mean2 - mean; const float bg_var = (n0*T0*T0 + n1*T1*T1 + n2*T2*T2) / 2.0f; // // Second phase, compute the withing group variance. // float sumsq0 = 0.0f; float sumsq1 = 0.0f; float sumsq2 = 0.0f; for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) { const int condVox = (a - aBegin + tx < NumberOfSubjects) && (by * blockDim.y + ty < NumberOfVoxels); const int condSNP = (b - bBegin + tx < NumberOfSubjects) && (bx * blockDim.x + ty < NumberOfSNPS); s_VoxelSubject[ty][tx] = (condVox == 1) ? pVoxelSubject[a + NumberOfSubjects * ty + tx] : 0.0f; s_SNPSubject[ty][tx] = (condSNP == 1) ? pSNPSubject[b + NumberOfSubjects * ty + tx] : -1; __syncthreads(); // Synchronize to make sure the matrices are loaded #pragma unroll for (int k = 0; k < BLOCK_SIZEW; k++) { // // This access pattern guarantees no shared memory conflicts. // int SS = s_SNPSubject[tx][(k + tx) & BLOCK_MASKW]; float VS = s_VoxelSubject[ty][(k + tx) & BLOCK_MASKW]; float C0 = (SS == 0); // Save the predicate result to avoid IF stmts float C1 = (SS == 1); float C2 = (SS == 2); sumsq0 += C0*(VS - mean0)*(VS - mean0); sumsq1 += C1*(VS - mean1)*(VS - mean1); sumsq2 += C2*(VS - mean2)*(VS - mean2); } // Synchronize to make sure that the preceding // computation is done before loading two new // sub-matrices of VoxelSubject and SNPSubject in the next iteration. __syncthreads(); } const int tidx = blockIdx.x * blockDim.x + tx; const int tidy = by * blockDim.y + ty; const float wg_var = (sumsq0 + sumsq1 + sumsq2) / (n - 3.0f); const int c = NumberOfSNPS * BLOCK_SIZEH * by + BLOCK_SIZEW * bx; if (tidx < NumberOfSNPS && tidy < NumberOfVoxels) pVoxelSNP[c + NumberOfSNPS * ty + tx] = CumulativeFDistributionComplimentary(2.0f, n - 3.0f, bg_var / wg_var); by += ddy; } } // ================================================================== // CopySubset kernel // ================================================================== template <typename T> __global__ void CopySubsetKernel( T * Src, int * SrcList, T * Dst, int SrcH, int SrcW, int SrcListLen) { const int y = blockIdx.y * blockDim.y + threadIdx.y; const int x = blockIdx.x * blockDim.x + threadIdx.x; if (y >= SrcH) return; int srow = -1; // Zero'th thread in each warp reads the row number if ((threadIdx.x & 0x1F) == 0) srow = SrcList[y]; srow = __shfl(srow, 0); // all threads in the warp read from laneid 0 // If you put this IF statment before the __shfl instruction, then the right most warps // with less than 32 threads will hang up indefinitely. if (x >= SrcW) return; const int sidx = srow * SrcW + x; const int didx = y * SrcW + x; T val = Src[sidx]; Dst[didx] = val; } // ================================================================== // DumpRam // ================================================================== void DumpRam(float *dS1, float *dS2, int off, int cnt) { float *hS1 = new float[cnt]; float *hS2 = new float[cnt]; hipMemcpy(hS1, dS1+off, cnt * 4, hipMemcpyDeviceToHost); hipMemcpy(hS2, dS2+off, cnt * 4, hipMemcpyDeviceToHost); delete[] hS1; delete[] hS2; } // ================================================================== // DoKernelAnova // ================================================================== #define BLK_SIZEW 16 #define BLK_SIZEH 16 #define BLK_MASKW 0xF hipError_t DoKernelAnova( float *VoxelSubject, int *SNPSubject, float *VoxelSNP, int NumberOfSNPs, int NumberOfSubjects, int NumberOfVoxels, int *VoxelList, int VoxelListCount, int *SNPList, int SNPListCount) { // // 1. GPUMalloc VoxelSubjectTemp of size (VoxelListCount, NumberOfSubjects) // 2. Use VoxelList to copy the subset of VoxelSubject into VoxelSubjectTemp // // 3. GPUMalloc SNPSubjectTemp of size (SNPListCount, NumberOfSubjects) // 4. Use SNPList to copy the subset of SNPSubject into SNPSubjectTemp // // 5. call Anova with VoxelSubjectTemp, SNPSubjectTemp, VoxelListCount, SNPListCount, NumberOfSubjects // // 6. GPUFree VoxelSubjectTemp // 7. GPUFree SNPSubjectTemp hipError_t error; // Special case ... the host wants to process all of the voxels (could be as much as 8000000) but the // SNPListCount=1. This result is a VERY tall matrix that is 1 element wide. The results // are used to show how this 1 SNP affects every voxel in the 3D brain view. // if (VoxelListCount == NumberOfVoxels && SNPListCount == 1) { int *SNPSubjectTemp; error = hipMalloc(&SNPSubjectTemp, SNPListCount*NumberOfSubjects * sizeof(int)); if (error != hipSuccess) { fprintf(stderr, "hipMalloc failed on SNPSubjectTemp (error code %s)!\n", hipGetErrorString(error)); return error; } { dim3 block = dim3(512, 1, 1); dim3 grid = dim3((NumberOfSubjects + block.x - 1) / block.x, SNPListCount, 1); CopySubsetKernel<int> << <grid, block >> > (SNPSubject, SNPList, SNPSubjectTemp, NumberOfSNPs, NumberOfSubjects, SNPListCount); hipDeviceSynchronize(); error = hipGetLastError(); if (error != hipSuccess) { fprintf(stderr, "CopySubsetKernel failed on SNPSubject (error code %s)!\n", hipGetErrorString(error)); exit(EXIT_FAILURE); } } { dim3 block = dim3(BLK_SIZEW, BLK_SIZEH, 1); dim3 grid = dim3((SNPListCount + BLK_SIZEW - 1) / BLK_SIZEW, 16383, 1); AnovaKernel<BLK_SIZEW, BLK_SIZEH, BLK_MASKW> << <grid, block >> > (VoxelSubject, SNPSubjectTemp, VoxelSNP, SNPListCount, NumberOfSubjects, VoxelListCount ); } hipDeviceSynchronize(); error = hipGetLastError(); if (error != hipSuccess) { fprintf(stderr, "Failed to launch (VoxelListCount == NumberOfVoxels && SNPListCount == 1) (error code %s)!\n", hipGetErrorString(error)); } hipFree(SNPSubjectTemp); } // // This code will be called by the host when the data inside the window needs processed. // else { float *VoxelSubjectTemp; int *SNPSubjectTemp; error = hipMalloc(&VoxelSubjectTemp, VoxelListCount*NumberOfSubjects * sizeof(float)); if (error != hipSuccess) { fprintf(stderr, "hipMalloc failed on VoxelSubjectTemp (error code %s)!\n", hipGetErrorString(error)); return error; } error = hipMalloc(&SNPSubjectTemp, SNPListCount*NumberOfSubjects * sizeof(int)); if (error != hipSuccess) { fprintf(stderr, "hipMalloc failed on SNPSubjectTemp (error code %s)!\n", hipGetErrorString(error)); hipFree(VoxelSubjectTemp); return error; } { dim3 block = dim3(512, 1, 1); dim3 grid = dim3((NumberOfSubjects + block.x - 1) / block.x, VoxelListCount, 1); CopySubsetKernel<float> << <grid, block >> > (VoxelSubject, VoxelList, VoxelSubjectTemp, NumberOfVoxels, NumberOfSubjects, VoxelListCount); hipDeviceSynchronize(); error = hipGetLastError(); if (error != hipSuccess) { fprintf(stderr, "CopySubsetKernel failed on VoxelSubject (error code %s)!\n", hipGetErrorString(error)); exit(EXIT_FAILURE); } } { dim3 block = dim3(512, 1, 1); dim3 grid = dim3((NumberOfSubjects + block.x - 1) / block.x, SNPListCount, 1); CopySubsetKernel<int> << <grid, block >> > (SNPSubject, SNPList, SNPSubjectTemp, NumberOfSNPs, NumberOfSubjects, SNPListCount); hipDeviceSynchronize(); error = hipGetLastError(); if (error != hipSuccess) { fprintf(stderr, "CopySubsetKernel failed on SNPSubject (error code %s)!\n", hipGetErrorString(error)); exit(EXIT_FAILURE); } } { dim3 block = dim3(BLK_SIZEW, BLK_SIZEH, 1); dim3 grid = dim3((SNPListCount + BLK_SIZEW - 1) / BLK_SIZEW, (VoxelListCount + BLK_SIZEH - 1) / BLK_SIZEH, 1); AnovaKernel<BLK_SIZEW, BLK_SIZEH, BLK_MASKW> << <grid, block >> > (VoxelSubjectTemp, SNPSubjectTemp, VoxelSNP, SNPListCount, NumberOfSubjects, VoxelListCount ); } hipDeviceSynchronize(); error = hipGetLastError(); if (error != hipSuccess) { fprintf(stderr, "Failed to launch (error code %s)!\n", hipGetErrorString(error)); } hipFree(VoxelSubjectTemp); hipFree(SNPSubjectTemp); } return error; } // ================================================================== // DoKernelVegasTest // ================================================================== #define NumThreadsPerBlock 256 __global__ void GenerateRandomSequenceKernel(float *Dest, int NumberOfValues, hiprandState_t* States) { const int gtid = blockIdx.x * blockDim.x + threadIdx.x; __shared__ hiprandState_t RT[NumThreadsPerBlock]; RT[threadIdx.x] = States[gtid]; for (int i = gtid; i < NumberOfValues; i += blockDim.x*gridDim.x) { float T = hiprand_normal(&RT[threadIdx.x]); Dest[i] = T; } States[gtid] = RT[threadIdx.x]; } __global__ void InitRandomKernel(unsigned int seed, hiprandState_t* States) { const int gtid = blockIdx.x * blockDim.x + threadIdx.x; hiprandState_t S; hiprand_init(gtid << 8, 0, 0, &S); States[gtid] = S; } __global__ void GenerateRandomVariatesKernel(float *LDMatrix, int LDMatrixSize, float *N01VariatesBuffer, int N01Offset, int Length, float *ResultBuffer) { const int gtid = blockIdx.x * blockDim.x + threadIdx.x; for (int i = gtid; i < LDMatrixSize*Length; i += blockDim.x*gridDim.x) { float T = N01VariatesBuffer[N01Offset*LDMatrixSize*Length + i]; ResultBuffer[i] = T; } } class KGene { public: KGene() : m_SnpPos(0), m_SnpLen(0), m_pLDMatrix(0), m_LDMatrixSize(0) {}; ~KGene() { } void AddSnpPos(int pos, int len); void AddLDMatrix(uint64_t N, uint64_t MatrixPtr); int GetSnpPos(void) { return m_SnpPos; } int GetSnpLen(void) { return m_SnpLen; } float *GetLDMatrixPtr(void) { return m_pLDMatrix; } int GetLDMatrixSize(void) { return m_LDMatrixSize; } private: int m_SnpPos; int m_SnpLen; float* m_pLDMatrix; int m_LDMatrixSize; }; void KGene::AddSnpPos(int pos, int len) { m_SnpPos = pos; m_SnpLen = len; } void KGene::AddLDMatrix(uint64_t N, uint64_t MatrixPtr) { m_pLDMatrix = (float *)MatrixPtr; m_LDMatrixSize = (int)N; // Just a sanity check to insure the values // are equal. Unfortunately this implies that // AddSnpPos() is called before AddLDMatrix(). // assert(m_LDMatrixSize == m_SnpLen); } #if 0 // ========================================================================================================================= void ComputeObservedPvalues(CGene* G, int GeneNumber, int VoxelNumber, CArray2D<float> &VoxelSNP, CArray2D<float> &VoxelGeneObs) { double sum = 0; for (int i = G->GetSnpPos(); i < G->GetSnpPos() + G->GetSnpLen(); i++) { const float PValue = VoxelSNP(VoxelNumber, i); assert((1.0f - PValue) >= 0 && (1.0f - PValue) < 1); // I hate to cast the chi2inv as a float, but we are trying to make this app // as fast as possible. const float ChiSquare = (float)chi2inv(1.0f - PValue, 1); sum += ChiSquare; } VoxelGeneObs(VoxelNumber, GeneNumber) = (float)sum; cout << "\tVoxel " << setw(3) << VoxelNumber << " Gene " << setw(3) << GeneNumber; cout << " Snp-Pos " << setw(4) << G->GetSnpPos() << " Snp-Len " << setw(4) << G->GetSnpLen() << " Test Statistic " << sum << endl; } #endif struct InvChiSq_functor : public thrust::unary_function<float, float> { __host__ __device__ float operator()(float x) const { // return (float)chi2inv(1.0f - PValue, 1); return 1.0f / (x*x + 1.0f); } }; struct sumsq_functor { int R; int C; float *arr; sumsq_functor(int _R, int _C, float *_arr) : R(_R), C(_C), arr(_arr) {}; __host__ __device__ float operator()(int myC) { float sum = 0; for (int i = 0; i < R; i++) { float T = arr[i*C + myC]; sum += T * T; } return sum; } }; struct compare_functor { float Thresh; compare_functor(float Threshold) : Thresh(Threshold) {}; __host__ __device__ float operator()(float X) { return X > Thresh ? 1.0f : 0.0f; } }; hipError_t DoKernelVegasTest(float *dVoxelGeneObserved, float *dVoxelGeneSim, float *dVoxelSNP, int *dSNPPosLenPairs, uint64_t *dLDMatrixList, int NumberOfVoxels, int NumberOfGenes, int NumberOfSNPs, int NumberOfIterations, int NumberOfSNPPositionLength ) { // 1. Create the GeneList // // 2. Compute the VoxelSNPkey vector // // 3. Convert each SNP p-value to it's chi square value, then reduce // them according to the VoxelSNPkey vector, and write the result // to the VoxelGeneObserved matrix. // // 4. PerformSimulation // for each G in Genes // RandNumberCount = NumberOfVoxels* SNPS in G * Iteration // Launch Kernel to generate random N(0,1)'s // for each V in Voxels // P = pointer to next set of random N(0,1)'s // Launch MatMul Kernel( LDMatrix_G and P ) // Plus reduce SNP p-values to GeneValue, Compare to Observed, Count // Write Count/Iterations to VoxelGeneSim // next V // next G // // 5. Free GeneList // int numSMs; const int devId = 0; hipDeviceGetAttribute(&numSMs, hipDeviceAttributeMultiprocessorCount, devId); // // STEP 1 -- Create the Gene List. // vector<KGene*> GeneList; int *hSNPPosLenPairs = new int[NumberOfGenes * 2]; uint64_t *hLDMatrixList = new uint64_t[NumberOfGenes * 2]; hipError_t err = hipMemcpy(hSNPPosLenPairs, dSNPPosLenPairs, NumberOfGenes * 2 * sizeof(int), hipMemcpyDeviceToHost); assert(err == hipSuccess); err = hipMemcpy(hLDMatrixList, dLDMatrixList, NumberOfGenes * 2 * sizeof(uint64_t), hipMemcpyDeviceToHost); assert(err == hipSuccess); int MaxSnpLen = 0; for (int i = 0; i < NumberOfGenes; i++) { KGene* G = new KGene; G->AddSnpPos(hSNPPosLenPairs[2 * i], hSNPPosLenPairs[2 * i + 1]); G->AddLDMatrix(hLDMatrixList[2 * i], hLDMatrixList[2 * i + 1]); if (G->GetSnpLen() > MaxSnpLen) MaxSnpLen = G->GetSnpLen(); GeneList.push_back(G); } delete[] hSNPPosLenPairs; delete[] hLDMatrixList; // // STEP 2 // // First build a "mask" that will be used on the GPU to perform a // "reduce by key" with "transformation". The Thrust library // calls this mask a "key". // unsigned char *dVoxelSNPKey; err = hipMalloc((void**)&dVoxelSNPKey, NumberOfVoxels*NumberOfSNPs); assert(err == hipSuccess); { unsigned char *hVoxelSNPKey = new unsigned char[NumberOfVoxels*NumberOfSNPs]; int SnpSum = 0; for (int i = 0; i < GeneList.size(); i++) { memset(hVoxelSNPKey + SnpSum, i, GeneList[i]->GetSnpLen()); SnpSum += GeneList[i]->GetSnpLen(); } for (int i = 1; i < NumberOfVoxels; i++) memcpy(hVoxelSNPKey + SnpSum*i, hVoxelSNPKey, SnpSum); err = hipMemcpy(dVoxelSNPKey, hVoxelSNPKey, SnpSum*NumberOfVoxels, hipMemcpyHostToDevice); delete[] hVoxelSNPKey; } // // STEP 3 // // Convert each SNP p-value to it's chi square value, then reduce // them according to the VoxelSNPkey vector, and write the result // to the VoxelGeneObserved matrix. thrust::device_vector<unsigned char> d_OutputKeys(NumberOfVoxels*NumberOfGenes); thrust::pair<thrust::device_vector<unsigned char>::iterator, float * > new_end; new_end = thrust::reduce_by_key(thrust::device, dVoxelSNPKey, dVoxelSNPKey+ NumberOfVoxels*NumberOfSNPs, thrust::make_transform_iterator(dVoxelSNP, InvChiSq_functor()), d_OutputKeys.begin(), dVoxelGeneObserved); assert(new_end.first - d_OutputKeys.begin() == NumberOfVoxels*NumberOfGenes); // // This is kind of gross. Unfortunately I have to copy the dVoxelGeneObserved matrix // back to the host because I have to pass each value into the loops below to act // as a threshold against the computed Gene p-value. // float *hVoxelGeneObserved = new float[NumberOfVoxels*NumberOfGenes]; err = hipMemcpy(hVoxelGeneObserved, dVoxelGeneObserved, NumberOfVoxels*NumberOfGenes * sizeof(float), hipMemcpyDeviceToHost); assert(err == hipSuccess); // // STEP 4 // const int NumBlock = 512; const int NumThreads = NumThreadsPerBlock; hiprandState_t* States; err = hipMalloc((void**)&States, NumBlock * NumThreads * sizeof(hiprandState_t)); assert(err == hipSuccess); InitRandomKernel << <NumBlock, NumThreads >> > (time(0), States); float *dRandomNumberBuffer; err = hipMalloc(&dRandomNumberBuffer, MaxSnpLen * NumberOfVoxels * NumberOfIterations * sizeof(float)); assert(err == hipSuccess); float *dIterationResultBuffer; err = hipMalloc(&dIterationResultBuffer, MaxSnpLen * NumberOfIterations * sizeof(float)); assert(err == hipSuccess); thrust::device_vector<int> keys(NumberOfIterations, 0); // // Now loop over every gene ... // and loop over every voxel ... // and compute the VoxelGenSim value. // for (int g = 0; g < GeneList.size(); g++) { const int RandomNumberCount = GeneList[g]->GetSnpLen() * NumberOfVoxels * NumberOfIterations; GenerateRandomSequenceKernel << <numSMs * 32, NumThreadsPerBlock >> > (dRandomNumberBuffer, RandomNumberCount, States); for (int v = 0; v < NumberOfVoxels; v++) { const int StartingIndex = (v * GeneList[g]->GetSnpLen() * NumberOfIterations) & (~0x01F); GenerateRandomVariatesKernel << <NumBlock, NumThreads >> > (GeneList[g]->GetLDMatrixPtr(), GeneList[g]->GetLDMatrixSize(), dRandomNumberBuffer, v, NumberOfIterations, dIterationResultBuffer); // // Square every element in dIterationResultBuffer, Plus-reduce every column, threshold against dVoxelGeneObserved(g,v), Count results. // Write Count / Iterations to dVoxelGeneSim(G,Vox) thrust::device_vector<float> col_sums(NumberOfIterations); thrust::sequence(col_sums.begin(), col_sums.end()); thrust::transform(col_sums.begin(), col_sums.end(), col_sums.begin(), sumsq_functor(GeneList[g]->GetLDMatrixSize(), NumberOfIterations, thrust::raw_pointer_cast(dIterationResultBuffer))); thrust::transform(col_sums.begin(), col_sums.end(), col_sums.begin(), compare_functor(hVoxelGeneObserved[v*NumberOfGenes + g])); thrust::reduce_by_key(thrust::device, keys.begin(), keys.end(), col_sums.begin(), thrust::make_discard_iterator(), dVoxelGeneSim + v*NumberOfGenes + g ); } } thrust::transform(thrust::device, dVoxelGeneSim, dVoxelGeneSim+NumberOfVoxels*NumberOfGenes, thrust::make_constant_iterator<float>(NumberOfIterations), dVoxelGeneSim, thrust::divides<float>()); // // STEP 5 // delete[] hVoxelGeneObserved; hipFree(dIterationResultBuffer); hipFree(dRandomNumberBuffer); hipFree(States); hipFree(dVoxelSNPKey); while (!GeneList.empty()) { KGene *G = GeneList.back(); GeneList.pop_back(); delete G; } return hipSuccess; }
b3d430ca9fc19fe54201b516e7d82054c128f93d.cu
// // ServerKernels.cu // // #include "Profile.h" #include <cuda_runtime.h> #include <curand_kernel.h> #include <curand.h> #include <iostream> #include <assert.h> #include <vector> #include <thrust/reduce.h> #include <thrust/functional.h> #include <thrust/device_vector.h> #include <thrust/execution_policy.h> #include <thrust/iterator/constant_iterator.h> // ================================================================== // CudaEventTimer // // Example usage: // // T.Begin(); // generate << < blocks, threads >> > (gData, DataPerBlock); // T.End(); // cudaError_t err = cudaGetLastError(); // printf("\nError = %s", cudaGetErrorString(err)); // printf("\nDuration of generate kernel = %.3f ms for %d floats\n\n", T.GetTime(), N); // ================================================================== class CudaEventTimer { public: CudaEventTimer() { cudaEventCreate(&start); cudaEventCreate(&stop); } ~CudaEventTimer() { cudaEventDestroy(start); cudaEventDestroy(stop); } void Begin() { cudaEventRecord(start); } void End() { cudaEventRecord(stop); cudaEventSynchronize(stop); } float GetTime(void) { cudaEventElapsedTime(&ms, start, stop); return ms; } private: cudaEvent_t start, stop; float ms; }; // ================================================================== // ================================================================== using namespace std; /* BIG = 1/MACHEPF */ #define BIG 16777216.0f #define MACHEPF 5.9604644775390625E-8f /* MAXNUMF = 2^128 * (1 - 2^-24) */ #define MAXNUMF 3.4028234663852885981170418348451692544e38f /* log(2^-149) */ #define MINLOGF -103.278929903431851103f #define PIF 3.141592653589793238f #define PIINV 0.318309886183790671538f /* log( sqrt( 2*pi ) ) */ #define LS2PI 0.91893853320467274178f #define MAXLGM 2.035093e36 #define MAXLOGF 88.72283905206835f // sqrt(2pi) #define s2pi 2.50662827463100050242f /* log gamma(x+2), -.5 < x < .5 */ __host__ __device__ float polevlfB(float xx) { float t = 6.055172732649237E-004f; t = t * xx - 1.311620815545743E-003f; t = t * xx + 2.863437556468661E-003f; t = t * xx - 7.366775108654962E-003f; t = t * xx + 2.058355474821512E-002f; t = t * xx - 6.735323259371034E-002f; t = t * xx + 3.224669577325661E-001f; t = t * xx + 4.227843421859038E-001f; return t; } /* log gamma(x+1), -.25 < x < .25 */ __host__ __device__ float polevlfC(float xx) { float t = 1.369488127325832E-001f; t = t * xx - 1.590086327657347E-001f; t = t * xx + 1.692415923504637E-001f; t = t * xx - 2.067882815621965E-001f; t = t * xx + 2.705806208275915E-001f; t = t * xx - 4.006931650563372E-001f; t = t * xx + 8.224670749082976E-001f; t = t * xx - 5.772156501719101E-001f; return t; } /* approximation for 0 <= |y - 0.5| <= 3/8 */ __host__ __device__ float polevlfP0(float xx) { float t = -5.99633501014107895267E1f; t = t * xx + 9.80010754185999661536E1f; t = t * xx - 5.66762857469070293439E1f; t = t * xx + 1.39312609387279679503E1f; t = t * xx - 1.23916583867381258016E0f; return t; } __host__ __device__ float p1evlfQ0(float xx) { float t = xx + 1.95448858338141759834E0f; t = t * xx + 4.67627912898881538453E0f; t = t * xx + 8.63602421390890590575E1f; t = t * xx - 2.25462687854119370527E2f; t = t * xx + 2.00260212380060660359E2f; t = t * xx - 8.20372256168333339912E1f; t = t * xx + 1.59056225126211695515E1f; t = t * xx - 1.18331621121330003142E0f; return t; } /* Approximation for interval z = sqrt(-2 log y ) between 2 and 8 * i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14. */ __host__ __device__ float polevlfP1(float xx) { float t = 4.05544892305962419923E0f; t = t * xx + 3.15251094599893866154E1f; t = t * xx + 5.71628192246421288162E1f; t = t * xx + 4.40805073893200834700E1f; t = t * xx + 1.46849561928858024014E1f; t = t * xx + 2.18663306850790267539E0f; t = t * xx - 1.40256079171354495875E-1f; t = t * xx - 3.50424626827848203418E-2f; t = t * xx - 8.57456785154685413611E-4f; return t; } __host__ __device__ float p1evlfQ1(float xx) { float t = xx + 1.57799883256466749731E1f; t = t * xx + 4.53907635128879210584E1f; t = t * xx + 4.13172038254672030440E1f; t = t * xx + 1.50425385692907503408E1f; t = t * xx + 2.50464946208309415979E0f; t = t * xx - 1.42182922854787788574E-1f; t = t * xx - 3.80806407691578277194E-2f; t = t * xx - 9.33259480895457427372E-4f; return t; } /* Approximation for interval z = sqrt(-2 log y ) between 8 and 64 * i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890. */ __host__ __device__ float polevlfP2(float xx) { float t = 3.23774891776946035970E0f; t = t * xx + 6.91522889068984211695E0f; t = t * xx + 3.93881025292474443415E0f; t = t * xx + 1.33303460815807542389E0f; t = t * xx + 2.01485389549179081538E-1f; t = t * xx + 1.23716634817820021358E-2f; t = t * xx + 3.01581553508235416007E-4f; t = t * xx + 2.65806974686737550832E-6f; t = t * xx + 6.23974539184983293730E-9f; return t; } __host__ __device__ float p1evlfQ2(float xx) { float t = xx + 6.02427039364742014255E0f; t = t * xx + 3.67983563856160859403E0f; t = t * xx + 1.37702099489081330271E0f; t = t * xx + 2.16236993594496635890E-1f; t = t * xx + 1.34204006088543189037E-2f; t = t * xx + 3.28014464682127739104E-4f; t = t * xx + 2.89247864745380683936E-6f; t = t * xx + 6.79019408009981274425E-9f; return t; } __host__ __device__ float lgamf(float xx) { float p, q, w, z, x; float nx, tx; int i, direction; int sgngamf = 1; x = xx; if (x < 0.0f) { q = -x; w = lgamf(q); /* note this modifies sgngam! */ p = floorf(q); if (p == q) goto loverf; i = (int)p; if ((i & 1) == 0) sgngamf = -1; else sgngamf = 1; z = q - p; if (z > 0.5f) { p += 1.0f; z = p - q; } z = q * sinf(PIF * z); if (z == 0.0) goto loverf; z = -logf(PIINV*z) - w; return(z); } if (x < 6.5f) { direction = 0; z = 1.0; tx = x; nx = 0.0; if (x >= 1.5) { while (tx > 2.5f) { nx -= 1.0f; tx = x + nx; z *= tx; } x += nx - 2.0f; iv1r5: p = x * polevlfB(x); goto cont; } if (x >= 1.25f) { z *= x; x -= 1.0f; /* x + 1 - 2 */ direction = 1; goto iv1r5; } if (x >= 0.75f) { x -= 1.0f; p = x * polevlfC(x); q = 0.0f; goto contz; } while (tx < 1.5f) { if (tx == 0.0f) goto loverf; z *= tx; nx += 1.0f; tx = x + nx; } direction = 1; x += nx - 2.0f; p = x * polevlfB(x); cont: if (z < 0.0f) { sgngamf = -1; z = -z; } else { sgngamf = 1; } q = logf(z); if (direction) q = -q; contz: return(p + q); } if (x > MAXLGM) { loverf: return(sgngamf * MAXNUMF); // overflow } // Note, though an asymptotic formula could be used for x >= 3, // there is cancellation error in the following if x < 6.5. q = LS2PI - x; q += (x - 0.5f) * logf(x); if (x <= 1.0e4) { z = 1.0f / x; p = z * z; q += ((6.789774945028216E-004f * p - 2.769887652139868E-003f) * p + 8.333316229807355E-002f) * z; } return(q); } // // Continued fraction expansion #1 for incomplete beta integral. // __host__ __device__ float incbcff(float aa, float bb, float xx) { float a, b, x, xk, pk, pkm1, pkm2, qk, qkm1, qkm2; float k1, k2, k3, k4, k5, k6, k7, k8; float r, t, ans; int n; a = aa; b = bb; x = xx; k1 = a; k2 = a + b; k3 = a; k4 = a + 1.0f; k5 = 1.0f; k6 = b - 1.0f; k7 = k4; k8 = a + 2.0f; pkm2 = 0.0f; qkm2 = 1.0f; pkm1 = 1.0f; qkm1 = 1.0f; ans = 1.0f; r = 0.0f; n = 0; do { xk = -(x * k1 * k2) / (k3 * k4); pk = pkm1 + pkm2 * xk; qk = qkm1 + qkm2 * xk; pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; xk = (x * k5 * k6) / (k7 * k8); pk = pkm1 + pkm2 * xk; qk = qkm1 + qkm2 * xk; pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; if (qk != 0) r = pk / qk; if (r != 0) { t = fabsf((ans - r) / r); ans = r; } else t = 1.0f; if (t < MACHEPF) return (ans); k1 += 1.0f; k2 += 1.0f; k3 += 2.0f; k4 += 2.0f; k5 += 1.0f; k6 -= 1.0f; k7 += 2.0f; k8 += 2.0f; if ((fabsf(qk) + fabsf(pk)) > BIG) { pkm2 *= MACHEPF; pkm1 *= MACHEPF; qkm2 *= MACHEPF; qkm1 *= MACHEPF; } if ((fabsf(qk) < MACHEPF) || (fabsf(pk) < MACHEPF)) { pkm2 *= BIG; pkm1 *= BIG; qkm2 *= BIG; qkm1 *= BIG; } } while (++n < 100); return(ans); } // // Continued fraction expansion #2 for incomplete beta integral. // __host__ __device__ float incbdf(float aa, float bb, float xx) { float a, b, x, xk, pk, pkm1, pkm2, qk, qkm1, qkm2; float k1, k2, k3, k4, k5, k6, k7, k8; float r, t, ans, z; int n; a = aa; b = bb; x = xx; k1 = a; k2 = b - 1.0f; k3 = a; k4 = a + 1.0f; k5 = 1.0f; k6 = a + b; k7 = a + 1.0f; k8 = a + 2.0f; pkm2 = 0.0f; qkm2 = 1.0f; pkm1 = 1.0f; qkm1 = 1.0f; z = x / (1.0f - x); ans = 1.0f; r = 0.0f; n = 0; do { xk = -(z * k1 * k2) / (k3 * k4); pk = pkm1 + pkm2 * xk; qk = qkm1 + qkm2 * xk; pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; xk = (z * k5 * k6) / (k7 * k8); pk = pkm1 + pkm2 * xk; qk = qkm1 + qkm2 * xk; pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; if (qk != 0) r = pk / qk; if (r != 0) { t = fabsf((ans - r) / r); ans = r; } else t = 1.0f; if (t < MACHEPF) return ans; // underflow k1 += 1.0f; k2 -= 1.0f; k3 += 2.0f; k4 += 2.0f; k5 += 1.0f; k6 += 1.0f; k7 += 2.0f; k8 += 2.0f; if ((fabsf(qk) + fabsf(pk)) > BIG) { pkm2 *= MACHEPF; pkm1 *= MACHEPF; qkm2 *= MACHEPF; qkm1 *= MACHEPF; } if ((fabsf(qk) < MACHEPF) || (fabsf(pk) < MACHEPF)) { pkm2 *= BIG; pkm1 *= BIG; qkm2 *= BIG; qkm1 *= BIG; } } while (++n < 100); return(ans); } __host__ __device__ float incbpsf(float aa, float bb, float xx) { float a, b, x, t, u, y, s; a = aa; b = bb; x = xx; y = a * logf(x) + (b - 1.0f)*logf(1.0f - x) - logf(a); y -= lgamf(a) + lgamf(b); y += lgamf(a + b); t = x / (1.0f - x); s = 0.0f; u = 1.0f; do { b -= 1.0f; if (b == 0.0f) break; a += 1.0f; u *= t*b / a; s += u; } while (fabsf(u) > MACHEPF); if (y < MINLOGF) { s = 0.0f; // underflow } else s = expf(y) * (1.0f + s); return(s); } __host__ __device__ float incbetf(float aa, float bb, float xx) { float ans, a, b, t, x, onemx; int flag; if ((xx <= 0.0f) || (xx >= 1.0f)) { if (xx == 0.0f) return(0.0f); if (xx == 1.0f) return(1.0f); return(0.0f); } onemx = 1.0f - xx; // Transformation for small aa. if (aa <= 1.0f) { ans = incbetf(aa + 1.0f, bb, xx); t = aa*logf(xx) + bb*logf(1.0f - xx) + lgamf(aa + bb) - lgamf(aa + 1.0f) - lgamf(bb); if (t > MINLOGF) ans += expf(t); return(ans); } // see if x is greater than the mean. if (xx > (aa / (aa + bb))) { flag = 1; a = bb; b = aa; t = xx; x = onemx; } else { flag = 0; a = aa; b = bb; t = onemx; x = xx; } // Choose expansion for optimal convergence. if (b > 10.0f) { if (fabsf(b*x / a) < 0.3f) { t = incbpsf(a, b, x); goto bdone; } } ans = x * (a + b - 2.0f) / (a - 1.0f); if (ans < 1.0f) { ans = incbcff(a, b, x); t = b * logf(t); } else { ans = incbdf(a, b, x); t = (b - 1.0f) * logf(t); } t += a*logf(x) + lgamf(a + b) - lgamf(a) - lgamf(b); t += logf(ans / a); if (t < MINLOGF) { t = 0.0f; // underflow } else { t = expf(t); } bdone: if (flag) t = 1.0f - t; return(t); } __host__ __device__ float fdtrcf(float a, float b, float x) { float w; if ((a < 1.0f) || (b < 1.0f) || (x < 0.0f)) { return(0.0f); } w = b / (b + a * x); return incbetf(0.5f*b, 0.5f*a, w); } __host__ __device__ float ndtrif(float yy0) { float y0, x, y, z, y2, x0, x1; int code; y0 = yy0; if (y0 <= 0.0f) { // mtherr("ndtrif", DOMAIN); return(-MAXNUMF); } if (y0 >= 1.0f) { // mtherr("ndtrif", DOMAIN); return(MAXNUMF); } code = 1; y = y0; if (y > (1.0 - 0.13533528323661269189f)) /* 0.135... = exp(-2) */ { y = 1.0f - y; code = 0; } if (y > 0.13533528323661269189f) { y = y - 0.5f; y2 = y * y; // x = y + y * (y2 * polevlf(y2, P0, 4) / p1evlf(y2, Q0, 8)); x = y + y * (y2 * polevlfP0(y2) / p1evlfQ0(y2)); x = x * s2pi; return(x); } x = sqrtf(-2.0f * logf(y)); x0 = x - logf(x) / x; z = 1.0f / x; if (x < 8.0f) /* y > exp(-32) = 1.2664165549e-14 */ // x1 = z * polevlf(z, P1, 8) / p1evlf(z, Q1, 8); x1 = z * polevlfP1(z) / p1evlfQ1(z); else // x1 = z * polevlf(z, P2, 8) / p1evlf(z, Q2, 8); x1 = z * polevlfP2(z) / p1evlfQ2(z); x = x0 - x1; if (code != 0) x = -x; return(x); } __host__ __device__ float igamcf(float aa, float xx); __host__ __device__ float igamf(float aa, float xx) { float a, x, ans, ax, c, r; a = aa; x = xx; if ((x <= 0) || (a <= 0)) return(0.0f); if ((x > 1.0f) && (x > a)) return(1.0f - igamcf(a, x)); /* Compute x**a * exp(-x) / gamma(a) */ ax = a * logf(x) - x - lgamf(a); if (ax < -MAXLOGF) { // mtherr("igamf", UNDERFLOW); return(0.0f); } ax = expf(ax); /* power series */ r = a; c = 1.0f; ans = 1.0f; do { r += 1.0f; c *= x / r; ans += c; } while (c / ans > MACHEPF); return(ans * ax / a); } __host__ __device__ float igamcf(float aa, float xx) { float a, x, ans, c, yc, ax, y, z; float pk, pkm1, pkm2, qk, qkm1, qkm2; float r, t; // static float big = BIG; a = aa; x = xx; if ((x <= 0) || (a <= 0)) return(1.0f); if ((x < 1.0f) || (x < a)) return(1.0f - igamf(a, x)); ax = a * logf(x) - x - lgamf(a); if (ax < -MAXLOGF) { // mtherr("igamcf", UNDERFLOW); return(0.0f); } ax = expf(ax); /* continued fraction */ y = 1.0f - a; z = x + y + 1.0f; c = 0.0; pkm2 = 1.0f; qkm2 = x; pkm1 = x + 1.0f; qkm1 = z * x; ans = pkm1 / qkm1; do { c += 1.0f; y += 1.0f; z += 2.0f; yc = y * c; pk = pkm1 * z - pkm2 * yc; qk = qkm1 * z - qkm2 * yc; if (qk != 0) { r = pk / qk; t = fabsf((ans - r) / r); ans = r; } else t = 1.0f; pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; if (fabsf(pk) > BIG) { pkm2 *= MACHEPF; pkm1 *= MACHEPF; qkm2 *= MACHEPF; qkm1 *= MACHEPF; } } while (t > MACHEPF); return(ans * ax); } __host__ __device__ float igamif(float aa, float yy0) { float a, y0, d, y, x0, lgm; int i; if (yy0 > 0.5f) { //mtherr("igamif", PLOSS); return 0.0f; } a = aa; y0 = yy0; // approximation to inverse function d = 1.0f / (9.0f*a); y = (1.0f - d - ndtrif(y0) * sqrtf(d)); x0 = a * y * y * y; lgm = lgamf(a); for (i = 0; i<10; i++) { if (x0 <= 0.0f) { // mtherr("igamif", UNDERFLOW); return(0.0f); } y = igamcf(a, x0); /* compute the derivative of the function at this point */ d = (a - 1.0f) * logf(x0) - x0 - lgm; if (d < -MAXLOGF) { // mtherr("igamif", UNDERFLOW); goto done; } d = -expf(d); /* compute the step to the next approximation of x */ if (d == 0.0) goto done; d = (y - y0) / d; x0 = x0 - d; if (i < 3) continue; if (fabsf(d / x0) < (2.0f * MACHEPF)) goto done; } done: return(x0); } __host__ __device__ float chdtrcf(float dff, float xx) { float df, x; df = dff; x = xx; if ((x < 0.0f) || (df < 1.0f)) { // mtherr("chdtrcf", DOMAIN); return(0.0f); } return(igamcf(0.5f*df, 0.5f*x)); } __host__ __device__ float chdtrf(float dff, float xx) { float df, x; df = dff; x = xx; if ((x < 0.0f) || (df < 1.0f)) { // mtherr("chdtrf", DOMAIN); return(0.0); } return(igamf(0.5f*df, 0.5f*x)); } __host__ __device__ float chdtrif(float dff, float yy) { float y, df, x; y = yy; df = dff; if ((y < 0.0f) || (y > 1.0f) || (df < 1.0f)) { return(0.0f); } x = igamif(0.5f * df, y); return(2.0f * x); } // // Return the area under the F-Distribution from x to +infinity. // This represents the p-value. // __host__ __device__ float CumulativeFDistributionComplimentary(float dof1, float dof2, float x) { return fdtrcf(dof1, dof2, x); } // ================================================================== // Anova kernel // ================================================================== template <int BLOCK_SIZEW, int BLOCK_SIZEH, int BLOCK_MASKW> __global__ void AnovaKernel( float * __restrict__ pVoxelSubject, int * __restrict__ pSNPSubject, float * __restrict__ pVoxelSNP, int NumberOfSNPS, int NumberOfSubjects, int NumberOfVoxels) { // Block index const int ddy = gridDim.y; const int bx = blockIdx.x; int by = blockIdx.y; // Thread index const int tx = threadIdx.x; const int ty = threadIdx.y; // // First phase .. compute the between group variance. // while (by < (NumberOfVoxels+blockDim.y-1)/blockDim.y) { // Index of the first sub-matrix of VoxelSubject processed by the block const int aBegin = NumberOfSubjects * BLOCK_SIZEW * by; // Index of the last sub-matrix of VoxelSubject processed by the block const int aEnd = aBegin + NumberOfSubjects - 1; // Step size used to iterate through the sub-matrices of VoxelSubject const int aStep = BLOCK_SIZEW; // Index of the first sub-matrix of SNPSubject processed by the block const int bBegin = NumberOfSubjects * BLOCK_SIZEH * bx; // Step size used to iterate through the sub-matrices of SNPSubject const int bStep = BLOCK_SIZEH; __shared__ float s_VoxelSubject[BLOCK_SIZEH][BLOCK_SIZEW]; __shared__ int s_SNPSubject[BLOCK_SIZEH][BLOCK_SIZEW]; float n0 = 0.0f; float n1 = 0.0f; float n2 = 0.0f; float sum0 = 0.0f; float sum1 = 0.0f; float sum2 = 0.0f; for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) { const int condVox = (a - aBegin + tx < NumberOfSubjects) && (by * blockDim.y + ty < NumberOfVoxels); const int condSNP = (b - bBegin + tx < NumberOfSubjects) && (bx * blockDim.x + ty < NumberOfSNPS); s_VoxelSubject[ty][tx] = (condVox == 1) ? pVoxelSubject[a + NumberOfSubjects * ty + tx] : 0.0f; s_SNPSubject[ty][tx] = (condSNP == 1) ? pSNPSubject[b + NumberOfSubjects * ty + tx] : -1; __syncthreads(); // Synchronize to make sure the matrices are loaded #pragma unroll for (int k = 0; k < BLOCK_SIZEW; k++) { // // This access pattern guarantees no shared memory conflicts. // int SS = s_SNPSubject[tx][(k + tx) & BLOCK_MASKW]; float VS = s_VoxelSubject[ty][(k + tx) & BLOCK_MASKW]; const float C0 = (SS == 0); // Save the predicate result to avoid IF stmts const float C1 = (SS == 1); const float C2 = (SS == 2); n0 += C0; n1 += C1; n2 += C2; sum0 += C0*VS; sum1 += C1*VS; sum2 += C2*VS; } // Synchronize to make sure that the preceding // computation is done before loading two new // sub-matrices of VoxelSubject and SNPSubject in the next iteration. __syncthreads(); } const float n = n0 + n1 + n2; const float sum = sum0 + sum1 + sum2; const float mean = sum / n; const float mean0 = sum0 / fmaxf(n0, 1.0f); const float mean1 = sum1 / fmaxf(n1, 1.0f); const float mean2 = sum2 / fmaxf(n2, 1.0f); const float T0 = mean0 - mean; const float T1 = mean1 - mean; const float T2 = mean2 - mean; const float bg_var = (n0*T0*T0 + n1*T1*T1 + n2*T2*T2) / 2.0f; // // Second phase, compute the withing group variance. // float sumsq0 = 0.0f; float sumsq1 = 0.0f; float sumsq2 = 0.0f; for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) { const int condVox = (a - aBegin + tx < NumberOfSubjects) && (by * blockDim.y + ty < NumberOfVoxels); const int condSNP = (b - bBegin + tx < NumberOfSubjects) && (bx * blockDim.x + ty < NumberOfSNPS); s_VoxelSubject[ty][tx] = (condVox == 1) ? pVoxelSubject[a + NumberOfSubjects * ty + tx] : 0.0f; s_SNPSubject[ty][tx] = (condSNP == 1) ? pSNPSubject[b + NumberOfSubjects * ty + tx] : -1; __syncthreads(); // Synchronize to make sure the matrices are loaded #pragma unroll for (int k = 0; k < BLOCK_SIZEW; k++) { // // This access pattern guarantees no shared memory conflicts. // int SS = s_SNPSubject[tx][(k + tx) & BLOCK_MASKW]; float VS = s_VoxelSubject[ty][(k + tx) & BLOCK_MASKW]; float C0 = (SS == 0); // Save the predicate result to avoid IF stmts float C1 = (SS == 1); float C2 = (SS == 2); sumsq0 += C0*(VS - mean0)*(VS - mean0); sumsq1 += C1*(VS - mean1)*(VS - mean1); sumsq2 += C2*(VS - mean2)*(VS - mean2); } // Synchronize to make sure that the preceding // computation is done before loading two new // sub-matrices of VoxelSubject and SNPSubject in the next iteration. __syncthreads(); } const int tidx = blockIdx.x * blockDim.x + tx; const int tidy = by * blockDim.y + ty; const float wg_var = (sumsq0 + sumsq1 + sumsq2) / (n - 3.0f); const int c = NumberOfSNPS * BLOCK_SIZEH * by + BLOCK_SIZEW * bx; if (tidx < NumberOfSNPS && tidy < NumberOfVoxels) pVoxelSNP[c + NumberOfSNPS * ty + tx] = CumulativeFDistributionComplimentary(2.0f, n - 3.0f, bg_var / wg_var); by += ddy; } } // ================================================================== // CopySubset kernel // ================================================================== template <typename T> __global__ void CopySubsetKernel( T * Src, int * SrcList, T * Dst, int SrcH, int SrcW, int SrcListLen) { const int y = blockIdx.y * blockDim.y + threadIdx.y; const int x = blockIdx.x * blockDim.x + threadIdx.x; if (y >= SrcH) return; int srow = -1; // Zero'th thread in each warp reads the row number if ((threadIdx.x & 0x1F) == 0) srow = SrcList[y]; srow = __shfl(srow, 0); // all threads in the warp read from laneid 0 // If you put this IF statment before the __shfl instruction, then the right most warps // with less than 32 threads will hang up indefinitely. if (x >= SrcW) return; const int sidx = srow * SrcW + x; const int didx = y * SrcW + x; T val = Src[sidx]; Dst[didx] = val; } // ================================================================== // DumpRam // ================================================================== void DumpRam(float *dS1, float *dS2, int off, int cnt) { float *hS1 = new float[cnt]; float *hS2 = new float[cnt]; cudaMemcpy(hS1, dS1+off, cnt * 4, cudaMemcpyDeviceToHost); cudaMemcpy(hS2, dS2+off, cnt * 4, cudaMemcpyDeviceToHost); delete[] hS1; delete[] hS2; } // ================================================================== // DoKernelAnova // ================================================================== #define BLK_SIZEW 16 #define BLK_SIZEH 16 #define BLK_MASKW 0xF cudaError_t DoKernelAnova( float *VoxelSubject, int *SNPSubject, float *VoxelSNP, int NumberOfSNPs, int NumberOfSubjects, int NumberOfVoxels, int *VoxelList, int VoxelListCount, int *SNPList, int SNPListCount) { // // 1. GPUMalloc VoxelSubjectTemp of size (VoxelListCount, NumberOfSubjects) // 2. Use VoxelList to copy the subset of VoxelSubject into VoxelSubjectTemp // // 3. GPUMalloc SNPSubjectTemp of size (SNPListCount, NumberOfSubjects) // 4. Use SNPList to copy the subset of SNPSubject into SNPSubjectTemp // // 5. call Anova with VoxelSubjectTemp, SNPSubjectTemp, VoxelListCount, SNPListCount, NumberOfSubjects // // 6. GPUFree VoxelSubjectTemp // 7. GPUFree SNPSubjectTemp cudaError_t error; // Special case ... the host wants to process all of the voxels (could be as much as 8000000) but the // SNPListCount=1. This result is a VERY tall matrix that is 1 element wide. The results // are used to show how this 1 SNP affects every voxel in the 3D brain view. // if (VoxelListCount == NumberOfVoxels && SNPListCount == 1) { int *SNPSubjectTemp; error = cudaMalloc(&SNPSubjectTemp, SNPListCount*NumberOfSubjects * sizeof(int)); if (error != cudaSuccess) { fprintf(stderr, "cudaMalloc failed on SNPSubjectTemp (error code %s)!\n", cudaGetErrorString(error)); return error; } { dim3 block = dim3(512, 1, 1); dim3 grid = dim3((NumberOfSubjects + block.x - 1) / block.x, SNPListCount, 1); CopySubsetKernel<int> << <grid, block >> > (SNPSubject, SNPList, SNPSubjectTemp, NumberOfSNPs, NumberOfSubjects, SNPListCount); cudaDeviceSynchronize(); error = cudaGetLastError(); if (error != cudaSuccess) { fprintf(stderr, "CopySubsetKernel failed on SNPSubject (error code %s)!\n", cudaGetErrorString(error)); exit(EXIT_FAILURE); } } { dim3 block = dim3(BLK_SIZEW, BLK_SIZEH, 1); dim3 grid = dim3((SNPListCount + BLK_SIZEW - 1) / BLK_SIZEW, 16383, 1); AnovaKernel<BLK_SIZEW, BLK_SIZEH, BLK_MASKW> << <grid, block >> > (VoxelSubject, SNPSubjectTemp, VoxelSNP, SNPListCount, NumberOfSubjects, VoxelListCount ); } cudaDeviceSynchronize(); error = cudaGetLastError(); if (error != cudaSuccess) { fprintf(stderr, "Failed to launch (VoxelListCount == NumberOfVoxels && SNPListCount == 1) (error code %s)!\n", cudaGetErrorString(error)); } cudaFree(SNPSubjectTemp); } // // This code will be called by the host when the data inside the window needs processed. // else { float *VoxelSubjectTemp; int *SNPSubjectTemp; error = cudaMalloc(&VoxelSubjectTemp, VoxelListCount*NumberOfSubjects * sizeof(float)); if (error != cudaSuccess) { fprintf(stderr, "cudaMalloc failed on VoxelSubjectTemp (error code %s)!\n", cudaGetErrorString(error)); return error; } error = cudaMalloc(&SNPSubjectTemp, SNPListCount*NumberOfSubjects * sizeof(int)); if (error != cudaSuccess) { fprintf(stderr, "cudaMalloc failed on SNPSubjectTemp (error code %s)!\n", cudaGetErrorString(error)); cudaFree(VoxelSubjectTemp); return error; } { dim3 block = dim3(512, 1, 1); dim3 grid = dim3((NumberOfSubjects + block.x - 1) / block.x, VoxelListCount, 1); CopySubsetKernel<float> << <grid, block >> > (VoxelSubject, VoxelList, VoxelSubjectTemp, NumberOfVoxels, NumberOfSubjects, VoxelListCount); cudaDeviceSynchronize(); error = cudaGetLastError(); if (error != cudaSuccess) { fprintf(stderr, "CopySubsetKernel failed on VoxelSubject (error code %s)!\n", cudaGetErrorString(error)); exit(EXIT_FAILURE); } } { dim3 block = dim3(512, 1, 1); dim3 grid = dim3((NumberOfSubjects + block.x - 1) / block.x, SNPListCount, 1); CopySubsetKernel<int> << <grid, block >> > (SNPSubject, SNPList, SNPSubjectTemp, NumberOfSNPs, NumberOfSubjects, SNPListCount); cudaDeviceSynchronize(); error = cudaGetLastError(); if (error != cudaSuccess) { fprintf(stderr, "CopySubsetKernel failed on SNPSubject (error code %s)!\n", cudaGetErrorString(error)); exit(EXIT_FAILURE); } } { dim3 block = dim3(BLK_SIZEW, BLK_SIZEH, 1); dim3 grid = dim3((SNPListCount + BLK_SIZEW - 1) / BLK_SIZEW, (VoxelListCount + BLK_SIZEH - 1) / BLK_SIZEH, 1); AnovaKernel<BLK_SIZEW, BLK_SIZEH, BLK_MASKW> << <grid, block >> > (VoxelSubjectTemp, SNPSubjectTemp, VoxelSNP, SNPListCount, NumberOfSubjects, VoxelListCount ); } cudaDeviceSynchronize(); error = cudaGetLastError(); if (error != cudaSuccess) { fprintf(stderr, "Failed to launch (error code %s)!\n", cudaGetErrorString(error)); } cudaFree(VoxelSubjectTemp); cudaFree(SNPSubjectTemp); } return error; } // ================================================================== // DoKernelVegasTest // ================================================================== #define NumThreadsPerBlock 256 __global__ void GenerateRandomSequenceKernel(float *Dest, int NumberOfValues, curandState_t* States) { const int gtid = blockIdx.x * blockDim.x + threadIdx.x; __shared__ curandState_t RT[NumThreadsPerBlock]; RT[threadIdx.x] = States[gtid]; for (int i = gtid; i < NumberOfValues; i += blockDim.x*gridDim.x) { float T = curand_normal(&RT[threadIdx.x]); Dest[i] = T; } States[gtid] = RT[threadIdx.x]; } __global__ void InitRandomKernel(unsigned int seed, curandState_t* States) { const int gtid = blockIdx.x * blockDim.x + threadIdx.x; curandState_t S; curand_init(gtid << 8, 0, 0, &S); States[gtid] = S; } __global__ void GenerateRandomVariatesKernel(float *LDMatrix, int LDMatrixSize, float *N01VariatesBuffer, int N01Offset, int Length, float *ResultBuffer) { const int gtid = blockIdx.x * blockDim.x + threadIdx.x; for (int i = gtid; i < LDMatrixSize*Length; i += blockDim.x*gridDim.x) { float T = N01VariatesBuffer[N01Offset*LDMatrixSize*Length + i]; ResultBuffer[i] = T; } } class KGene { public: KGene() : m_SnpPos(0), m_SnpLen(0), m_pLDMatrix(0), m_LDMatrixSize(0) {}; ~KGene() { } void AddSnpPos(int pos, int len); void AddLDMatrix(uint64_t N, uint64_t MatrixPtr); int GetSnpPos(void) { return m_SnpPos; } int GetSnpLen(void) { return m_SnpLen; } float *GetLDMatrixPtr(void) { return m_pLDMatrix; } int GetLDMatrixSize(void) { return m_LDMatrixSize; } private: int m_SnpPos; int m_SnpLen; float* m_pLDMatrix; int m_LDMatrixSize; }; void KGene::AddSnpPos(int pos, int len) { m_SnpPos = pos; m_SnpLen = len; } void KGene::AddLDMatrix(uint64_t N, uint64_t MatrixPtr) { m_pLDMatrix = (float *)MatrixPtr; m_LDMatrixSize = (int)N; // Just a sanity check to insure the values // are equal. Unfortunately this implies that // AddSnpPos() is called before AddLDMatrix(). // assert(m_LDMatrixSize == m_SnpLen); } #if 0 // ========================================================================================================================= void ComputeObservedPvalues(CGene* G, int GeneNumber, int VoxelNumber, CArray2D<float> &VoxelSNP, CArray2D<float> &VoxelGeneObs) { double sum = 0; for (int i = G->GetSnpPos(); i < G->GetSnpPos() + G->GetSnpLen(); i++) { const float PValue = VoxelSNP(VoxelNumber, i); assert((1.0f - PValue) >= 0 && (1.0f - PValue) < 1); // I hate to cast the chi2inv as a float, but we are trying to make this app // as fast as possible. const float ChiSquare = (float)chi2inv(1.0f - PValue, 1); sum += ChiSquare; } VoxelGeneObs(VoxelNumber, GeneNumber) = (float)sum; cout << "\tVoxel " << setw(3) << VoxelNumber << " Gene " << setw(3) << GeneNumber; cout << " Snp-Pos " << setw(4) << G->GetSnpPos() << " Snp-Len " << setw(4) << G->GetSnpLen() << " Test Statistic " << sum << endl; } #endif struct InvChiSq_functor : public thrust::unary_function<float, float> { __host__ __device__ float operator()(float x) const { // return (float)chi2inv(1.0f - PValue, 1); return 1.0f / (x*x + 1.0f); } }; struct sumsq_functor { int R; int C; float *arr; sumsq_functor(int _R, int _C, float *_arr) : R(_R), C(_C), arr(_arr) {}; __host__ __device__ float operator()(int myC) { float sum = 0; for (int i = 0; i < R; i++) { float T = arr[i*C + myC]; sum += T * T; } return sum; } }; struct compare_functor { float Thresh; compare_functor(float Threshold) : Thresh(Threshold) {}; __host__ __device__ float operator()(float X) { return X > Thresh ? 1.0f : 0.0f; } }; cudaError_t DoKernelVegasTest(float *dVoxelGeneObserved, float *dVoxelGeneSim, float *dVoxelSNP, int *dSNPPosLenPairs, uint64_t *dLDMatrixList, int NumberOfVoxels, int NumberOfGenes, int NumberOfSNPs, int NumberOfIterations, int NumberOfSNPPositionLength ) { // 1. Create the GeneList // // 2. Compute the VoxelSNPkey vector // // 3. Convert each SNP p-value to it's chi square value, then reduce // them according to the VoxelSNPkey vector, and write the result // to the VoxelGeneObserved matrix. // // 4. PerformSimulation // for each G in Genes // RandNumberCount = NumberOfVoxels* SNPS in G * Iteration // Launch Kernel to generate random N(0,1)'s // for each V in Voxels // P = pointer to next set of random N(0,1)'s // Launch MatMul Kernel( LDMatrix_G and P ) // Plus reduce SNP p-values to GeneValue, Compare to Observed, Count // Write Count/Iterations to VoxelGeneSim // next V // next G // // 5. Free GeneList // int numSMs; const int devId = 0; cudaDeviceGetAttribute(&numSMs, cudaDevAttrMultiProcessorCount, devId); // // STEP 1 -- Create the Gene List. // vector<KGene*> GeneList; int *hSNPPosLenPairs = new int[NumberOfGenes * 2]; uint64_t *hLDMatrixList = new uint64_t[NumberOfGenes * 2]; cudaError_t err = cudaMemcpy(hSNPPosLenPairs, dSNPPosLenPairs, NumberOfGenes * 2 * sizeof(int), cudaMemcpyDeviceToHost); assert(err == cudaSuccess); err = cudaMemcpy(hLDMatrixList, dLDMatrixList, NumberOfGenes * 2 * sizeof(uint64_t), cudaMemcpyDeviceToHost); assert(err == cudaSuccess); int MaxSnpLen = 0; for (int i = 0; i < NumberOfGenes; i++) { KGene* G = new KGene; G->AddSnpPos(hSNPPosLenPairs[2 * i], hSNPPosLenPairs[2 * i + 1]); G->AddLDMatrix(hLDMatrixList[2 * i], hLDMatrixList[2 * i + 1]); if (G->GetSnpLen() > MaxSnpLen) MaxSnpLen = G->GetSnpLen(); GeneList.push_back(G); } delete[] hSNPPosLenPairs; delete[] hLDMatrixList; // // STEP 2 // // First build a "mask" that will be used on the GPU to perform a // "reduce by key" with "transformation". The Thrust library // calls this mask a "key". // unsigned char *dVoxelSNPKey; err = cudaMalloc((void**)&dVoxelSNPKey, NumberOfVoxels*NumberOfSNPs); assert(err == cudaSuccess); { unsigned char *hVoxelSNPKey = new unsigned char[NumberOfVoxels*NumberOfSNPs]; int SnpSum = 0; for (int i = 0; i < GeneList.size(); i++) { memset(hVoxelSNPKey + SnpSum, i, GeneList[i]->GetSnpLen()); SnpSum += GeneList[i]->GetSnpLen(); } for (int i = 1; i < NumberOfVoxels; i++) memcpy(hVoxelSNPKey + SnpSum*i, hVoxelSNPKey, SnpSum); err = cudaMemcpy(dVoxelSNPKey, hVoxelSNPKey, SnpSum*NumberOfVoxels, cudaMemcpyHostToDevice); delete[] hVoxelSNPKey; } // // STEP 3 // // Convert each SNP p-value to it's chi square value, then reduce // them according to the VoxelSNPkey vector, and write the result // to the VoxelGeneObserved matrix. thrust::device_vector<unsigned char> d_OutputKeys(NumberOfVoxels*NumberOfGenes); thrust::pair<thrust::device_vector<unsigned char>::iterator, float * > new_end; new_end = thrust::reduce_by_key(thrust::device, dVoxelSNPKey, dVoxelSNPKey+ NumberOfVoxels*NumberOfSNPs, thrust::make_transform_iterator(dVoxelSNP, InvChiSq_functor()), d_OutputKeys.begin(), dVoxelGeneObserved); assert(new_end.first - d_OutputKeys.begin() == NumberOfVoxels*NumberOfGenes); // // This is kind of gross. Unfortunately I have to copy the dVoxelGeneObserved matrix // back to the host because I have to pass each value into the loops below to act // as a threshold against the computed Gene p-value. // float *hVoxelGeneObserved = new float[NumberOfVoxels*NumberOfGenes]; err = cudaMemcpy(hVoxelGeneObserved, dVoxelGeneObserved, NumberOfVoxels*NumberOfGenes * sizeof(float), cudaMemcpyDeviceToHost); assert(err == cudaSuccess); // // STEP 4 // const int NumBlock = 512; const int NumThreads = NumThreadsPerBlock; curandState_t* States; err = cudaMalloc((void**)&States, NumBlock * NumThreads * sizeof(curandState_t)); assert(err == cudaSuccess); InitRandomKernel << <NumBlock, NumThreads >> > (time(0), States); float *dRandomNumberBuffer; err = cudaMalloc(&dRandomNumberBuffer, MaxSnpLen * NumberOfVoxels * NumberOfIterations * sizeof(float)); assert(err == cudaSuccess); float *dIterationResultBuffer; err = cudaMalloc(&dIterationResultBuffer, MaxSnpLen * NumberOfIterations * sizeof(float)); assert(err == cudaSuccess); thrust::device_vector<int> keys(NumberOfIterations, 0); // // Now loop over every gene ... // and loop over every voxel ... // and compute the VoxelGenSim value. // for (int g = 0; g < GeneList.size(); g++) { const int RandomNumberCount = GeneList[g]->GetSnpLen() * NumberOfVoxels * NumberOfIterations; GenerateRandomSequenceKernel << <numSMs * 32, NumThreadsPerBlock >> > (dRandomNumberBuffer, RandomNumberCount, States); for (int v = 0; v < NumberOfVoxels; v++) { const int StartingIndex = (v * GeneList[g]->GetSnpLen() * NumberOfIterations) & (~0x01F); GenerateRandomVariatesKernel << <NumBlock, NumThreads >> > (GeneList[g]->GetLDMatrixPtr(), GeneList[g]->GetLDMatrixSize(), dRandomNumberBuffer, v, NumberOfIterations, dIterationResultBuffer); // // Square every element in dIterationResultBuffer, Plus-reduce every column, threshold against dVoxelGeneObserved(g,v), Count results. // Write Count / Iterations to dVoxelGeneSim(G,Vox) thrust::device_vector<float> col_sums(NumberOfIterations); thrust::sequence(col_sums.begin(), col_sums.end()); thrust::transform(col_sums.begin(), col_sums.end(), col_sums.begin(), sumsq_functor(GeneList[g]->GetLDMatrixSize(), NumberOfIterations, thrust::raw_pointer_cast(dIterationResultBuffer))); thrust::transform(col_sums.begin(), col_sums.end(), col_sums.begin(), compare_functor(hVoxelGeneObserved[v*NumberOfGenes + g])); thrust::reduce_by_key(thrust::device, keys.begin(), keys.end(), col_sums.begin(), thrust::make_discard_iterator(), dVoxelGeneSim + v*NumberOfGenes + g ); } } thrust::transform(thrust::device, dVoxelGeneSim, dVoxelGeneSim+NumberOfVoxels*NumberOfGenes, thrust::make_constant_iterator<float>(NumberOfIterations), dVoxelGeneSim, thrust::divides<float>()); // // STEP 5 // delete[] hVoxelGeneObserved; cudaFree(dIterationResultBuffer); cudaFree(dRandomNumberBuffer); cudaFree(States); cudaFree(dVoxelSNPKey); while (!GeneList.empty()) { KGene *G = GeneList.back(); GeneList.pop_back(); delete G; } return cudaSuccess; }
a295a7af43c0e41525003199b50f8fff15590766.hip
// !!! This is a file automatically generated by hipify!!! /* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include <algorithm> #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/operators/rank_attention.cu.h" #include "paddle/fluid/operators/rank_attention_op.h" #include "paddle/fluid/platform/device/gpu/gpu_info.h" #include "paddle/fluid/platform/device/gpu/gpu_primitives.h" #include "paddle/phi/kernels/funcs/blas/blas.h" namespace paddle { namespace operators { template <typename DeviceContext, typename T> class RankAttentionCUDAKernel : public framework::OpKernel<T> { public: void Compute(const framework::ExecutionContext &ctx) const override { auto *X = ctx.Input<phi::DenseTensor>("X"); auto *rank_offset = ctx.Input<phi::DenseTensor>("RankOffset"); auto *param = ctx.Input<phi::DenseTensor>("RankParam"); auto *input_help = ctx.Output<phi::DenseTensor>("InputHelp"); auto *ins_rank = ctx.Output<phi::DenseTensor>("InsRank"); int max_rank = ctx.Attr<int>("MaxRank"); int64_t max_size = ctx.Attr<int>("MaxSize"); auto *Out = ctx.Output<phi::DenseTensor>("Out"); // check dims auto x_dims = X->dims(); auto ins_num = x_dims[0]; auto x_fea_dim = x_dims[1]; auto para_dims = param->dims(); auto para_row = para_dims[0]; auto para_col = para_dims[1]; auto rank_offset_dims = rank_offset->dims(); PADDLE_ENFORCE_EQ( rank_offset_dims[0], ins_num, platform::errors::InvalidArgument("Input(RankOffset) has wrong rows.")); PADDLE_ENFORCE_EQ((rank_offset_dims[1] - 1) / 2, max_rank, platform::errors::InvalidArgument( "Input(RankOffset) has wrong columns.")); PADDLE_ENFORCE_EQ( max_rank * max_rank * x_fea_dim, para_row, platform::errors::InvalidArgument("Input(RankParam) has wrong rows.")); int block_matrix_row = max_rank * x_fea_dim; auto &dev_ctx = ctx.template device_context<phi::GPUContext>(); int max_ins = ::max(ins_num, max_size); phi::DenseTensor param_help; param_help = ctx.AllocateTmpTensor<T, DeviceContext>( {max_ins * block_matrix_row, para_col}, dev_ctx); param_help.mutable_data<T>(ctx.GetPlace()); input_help->Resize({max_ins, block_matrix_row}); ins_rank->Resize({max_ins, 1}); input_help->mutable_data<T>(ctx.GetPlace()); ins_rank->mutable_data<T>(ctx.GetPlace()); Out->mutable_data<T>(ctx.GetPlace()); // initialize auto param_help_eigen = framework::EigenVector<T>::Flatten(param_help); auto input_help_eigen = framework::EigenVector<T>::Flatten(*input_help); auto ins_rank_eigen = framework::EigenVector<T>::Flatten(*ins_rank); auto out_eigen = framework::EigenVector<T>::Flatten(*Out); auto &place = *ctx.template device_context<phi::GPUContext>().eigen_device(); param_help_eigen.device(place) = param_help_eigen.constant(static_cast<T>(0)); input_help_eigen.device(place) = input_help_eigen.constant(static_cast<T>(0)); ins_rank_eigen.device(place) = ins_rank_eigen.constant(static_cast<T>(-1)); out_eigen.device(place) = out_eigen.constant(static_cast<T>(0)); // get data ptr T *input_help_data = input_help->data<T>(); T *param_help_data = param_help.data<T>(); T *ins_rank_data = ins_rank->data<T>(); T *out_data = Out->data<T>(); expand_rank_attention_input(ctx.cuda_device_context().stream(), X->data<T>(), ins_num, x_fea_dim, input_help_data, ins_num, block_matrix_row, rank_offset->data<int>(), rank_offset_dims[0], rank_offset_dims[1], ins_rank_data, max_rank); expand_rank_attention_param(ctx.cuda_device_context().stream(), X->data<T>(), ins_num, x_fea_dim, rank_offset->data<int>(), rank_offset_dims[0], rank_offset_dims[1], param->data<T>(), para_row, para_col, param_help_data, ins_num * block_matrix_row, para_col, max_rank); CBLAS_TRANSPOSE transA = CblasNoTrans; CBLAS_TRANSPOSE transB = CblasNoTrans; T alpha = 1; T beta = 0; int64_t strideA = block_matrix_row; int64_t strideB = block_matrix_row * para_col; auto blas = phi::funcs::GetBlas<phi::GPUContext, T>(dev_ctx); blas.BatchedGEMM(transA, transB, 1, para_col, block_matrix_row, alpha, input_help_data, param_help_data, beta, out_data, ins_num, strideA, strideB); } }; template <typename DeviceContext, typename T> class RankAttentionGradOpCUDAKernel : public framework::OpKernel<T> { public: void Compute(const framework::ExecutionContext &ctx) const override { auto *X = ctx.Input<phi::DenseTensor>("X"); // not use data auto *rank_offset = ctx.Input<phi::DenseTensor>("RankOffset"); // not use data auto *param = ctx.Input<phi::DenseTensor>("RankParam"); // not use data auto *input_help = ctx.Input<phi::DenseTensor>("InputHelp"); auto *ins_rank = ctx.Input<phi::DenseTensor>("InsRank"); auto *dout = ctx.Input<phi::DenseTensor>(framework::GradVarName("Out")); int64_t max_size = ctx.Attr<int>("MaxSize"); auto *drank_para = ctx.Output<phi::DenseTensor>(framework::GradVarName("RankParam")); // get dim auto x_dims = X->dims(); auto ins_num = x_dims[0]; auto x_fea_dim = x_dims[1]; auto para_dims = param->dims(); auto para_row = para_dims[0]; auto para_col = para_dims[1]; auto rank_offset_dims = rank_offset->dims(); auto max_rank = (rank_offset_dims[1] - 1) / 2; int block_matrix_row = max_rank * x_fea_dim; auto &dev_ctx = ctx.template device_context<phi::GPUContext>(); auto &place = *ctx.template device_context<phi::GPUContext>().eigen_device(); int max_ins = ::max(ins_num, max_size); // initialize out grad drank_para->mutable_data<T>(ctx.GetPlace()); auto drank_para_eigen = framework::EigenVector<T>::Flatten(*drank_para); drank_para_eigen.device(place) = drank_para_eigen.constant(static_cast<T>(0)); // copy data phi::DenseTensor param_grad; param_grad = ctx.AllocateTmpTensor<T, DeviceContext>( {max_ins * block_matrix_row, para_col}, dev_ctx); param_grad.mutable_data<T>(ctx.GetPlace()); // initialize auto param_grad_eigen = framework::EigenVector<T>::Flatten(param_grad); param_grad_eigen.device(place) = param_grad_eigen.constant(static_cast<T>(0)); // get data ptr const T *input_help_data = input_help->data<T>(); const T *ins_rank_data = ins_rank->data<T>(); T *param_grad_data = param_grad.data<T>(); auto blas = phi::funcs::GetBlas<phi::GPUContext, T>(dev_ctx); T alpha = 1; T beta = 0; // get param_grad CBLAS_TRANSPOSE transA = CblasTrans; CBLAS_TRANSPOSE transB = CblasNoTrans; int64_t strideA = block_matrix_row; int64_t strideB = para_col; blas.BatchedGEMM(transA, transB, block_matrix_row, para_col, 1, alpha, input_help_data, dout->data<T>(), beta, param_grad_data, ins_num, strideA, strideB); // merge param_grad to get drank_para merge_rank_attention_param_grad(ctx.cuda_device_context().stream(), param_grad_data, ins_num * block_matrix_row, para_col, drank_para->data<T>(), para_row, para_col, ins_rank_data, ins_num, max_rank, x_fea_dim); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; using GPUCtx = phi::GPUContext; REGISTER_OP_CUDA_KERNEL(rank_attention, ops::RankAttentionCUDAKernel<GPUCtx, float>, ops::RankAttentionCUDAKernel<GPUCtx, double>); REGISTER_OP_CUDA_KERNEL(rank_attention_grad, ops::RankAttentionGradOpCUDAKernel<GPUCtx, float>, ops::RankAttentionGradOpCUDAKernel<GPUCtx, double>);
a295a7af43c0e41525003199b50f8fff15590766.cu
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include <algorithm> #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/operators/rank_attention.cu.h" #include "paddle/fluid/operators/rank_attention_op.h" #include "paddle/fluid/platform/device/gpu/gpu_info.h" #include "paddle/fluid/platform/device/gpu/gpu_primitives.h" #include "paddle/phi/kernels/funcs/blas/blas.h" namespace paddle { namespace operators { template <typename DeviceContext, typename T> class RankAttentionCUDAKernel : public framework::OpKernel<T> { public: void Compute(const framework::ExecutionContext &ctx) const override { auto *X = ctx.Input<phi::DenseTensor>("X"); auto *rank_offset = ctx.Input<phi::DenseTensor>("RankOffset"); auto *param = ctx.Input<phi::DenseTensor>("RankParam"); auto *input_help = ctx.Output<phi::DenseTensor>("InputHelp"); auto *ins_rank = ctx.Output<phi::DenseTensor>("InsRank"); int max_rank = ctx.Attr<int>("MaxRank"); int64_t max_size = ctx.Attr<int>("MaxSize"); auto *Out = ctx.Output<phi::DenseTensor>("Out"); // check dims auto x_dims = X->dims(); auto ins_num = x_dims[0]; auto x_fea_dim = x_dims[1]; auto para_dims = param->dims(); auto para_row = para_dims[0]; auto para_col = para_dims[1]; auto rank_offset_dims = rank_offset->dims(); PADDLE_ENFORCE_EQ( rank_offset_dims[0], ins_num, platform::errors::InvalidArgument("Input(RankOffset) has wrong rows.")); PADDLE_ENFORCE_EQ((rank_offset_dims[1] - 1) / 2, max_rank, platform::errors::InvalidArgument( "Input(RankOffset) has wrong columns.")); PADDLE_ENFORCE_EQ( max_rank * max_rank * x_fea_dim, para_row, platform::errors::InvalidArgument("Input(RankParam) has wrong rows.")); int block_matrix_row = max_rank * x_fea_dim; auto &dev_ctx = ctx.template device_context<phi::GPUContext>(); int max_ins = std::max(ins_num, max_size); phi::DenseTensor param_help; param_help = ctx.AllocateTmpTensor<T, DeviceContext>( {max_ins * block_matrix_row, para_col}, dev_ctx); param_help.mutable_data<T>(ctx.GetPlace()); input_help->Resize({max_ins, block_matrix_row}); ins_rank->Resize({max_ins, 1}); input_help->mutable_data<T>(ctx.GetPlace()); ins_rank->mutable_data<T>(ctx.GetPlace()); Out->mutable_data<T>(ctx.GetPlace()); // initialize auto param_help_eigen = framework::EigenVector<T>::Flatten(param_help); auto input_help_eigen = framework::EigenVector<T>::Flatten(*input_help); auto ins_rank_eigen = framework::EigenVector<T>::Flatten(*ins_rank); auto out_eigen = framework::EigenVector<T>::Flatten(*Out); auto &place = *ctx.template device_context<phi::GPUContext>().eigen_device(); param_help_eigen.device(place) = param_help_eigen.constant(static_cast<T>(0)); input_help_eigen.device(place) = input_help_eigen.constant(static_cast<T>(0)); ins_rank_eigen.device(place) = ins_rank_eigen.constant(static_cast<T>(-1)); out_eigen.device(place) = out_eigen.constant(static_cast<T>(0)); // get data ptr T *input_help_data = input_help->data<T>(); T *param_help_data = param_help.data<T>(); T *ins_rank_data = ins_rank->data<T>(); T *out_data = Out->data<T>(); expand_rank_attention_input(ctx.cuda_device_context().stream(), X->data<T>(), ins_num, x_fea_dim, input_help_data, ins_num, block_matrix_row, rank_offset->data<int>(), rank_offset_dims[0], rank_offset_dims[1], ins_rank_data, max_rank); expand_rank_attention_param(ctx.cuda_device_context().stream(), X->data<T>(), ins_num, x_fea_dim, rank_offset->data<int>(), rank_offset_dims[0], rank_offset_dims[1], param->data<T>(), para_row, para_col, param_help_data, ins_num * block_matrix_row, para_col, max_rank); CBLAS_TRANSPOSE transA = CblasNoTrans; CBLAS_TRANSPOSE transB = CblasNoTrans; T alpha = 1; T beta = 0; int64_t strideA = block_matrix_row; int64_t strideB = block_matrix_row * para_col; auto blas = phi::funcs::GetBlas<phi::GPUContext, T>(dev_ctx); blas.BatchedGEMM(transA, transB, 1, para_col, block_matrix_row, alpha, input_help_data, param_help_data, beta, out_data, ins_num, strideA, strideB); } }; template <typename DeviceContext, typename T> class RankAttentionGradOpCUDAKernel : public framework::OpKernel<T> { public: void Compute(const framework::ExecutionContext &ctx) const override { auto *X = ctx.Input<phi::DenseTensor>("X"); // not use data auto *rank_offset = ctx.Input<phi::DenseTensor>("RankOffset"); // not use data auto *param = ctx.Input<phi::DenseTensor>("RankParam"); // not use data auto *input_help = ctx.Input<phi::DenseTensor>("InputHelp"); auto *ins_rank = ctx.Input<phi::DenseTensor>("InsRank"); auto *dout = ctx.Input<phi::DenseTensor>(framework::GradVarName("Out")); int64_t max_size = ctx.Attr<int>("MaxSize"); auto *drank_para = ctx.Output<phi::DenseTensor>(framework::GradVarName("RankParam")); // get dim auto x_dims = X->dims(); auto ins_num = x_dims[0]; auto x_fea_dim = x_dims[1]; auto para_dims = param->dims(); auto para_row = para_dims[0]; auto para_col = para_dims[1]; auto rank_offset_dims = rank_offset->dims(); auto max_rank = (rank_offset_dims[1] - 1) / 2; int block_matrix_row = max_rank * x_fea_dim; auto &dev_ctx = ctx.template device_context<phi::GPUContext>(); auto &place = *ctx.template device_context<phi::GPUContext>().eigen_device(); int max_ins = std::max(ins_num, max_size); // initialize out grad drank_para->mutable_data<T>(ctx.GetPlace()); auto drank_para_eigen = framework::EigenVector<T>::Flatten(*drank_para); drank_para_eigen.device(place) = drank_para_eigen.constant(static_cast<T>(0)); // copy data phi::DenseTensor param_grad; param_grad = ctx.AllocateTmpTensor<T, DeviceContext>( {max_ins * block_matrix_row, para_col}, dev_ctx); param_grad.mutable_data<T>(ctx.GetPlace()); // initialize auto param_grad_eigen = framework::EigenVector<T>::Flatten(param_grad); param_grad_eigen.device(place) = param_grad_eigen.constant(static_cast<T>(0)); // get data ptr const T *input_help_data = input_help->data<T>(); const T *ins_rank_data = ins_rank->data<T>(); T *param_grad_data = param_grad.data<T>(); auto blas = phi::funcs::GetBlas<phi::GPUContext, T>(dev_ctx); T alpha = 1; T beta = 0; // get param_grad CBLAS_TRANSPOSE transA = CblasTrans; CBLAS_TRANSPOSE transB = CblasNoTrans; int64_t strideA = block_matrix_row; int64_t strideB = para_col; blas.BatchedGEMM(transA, transB, block_matrix_row, para_col, 1, alpha, input_help_data, dout->data<T>(), beta, param_grad_data, ins_num, strideA, strideB); // merge param_grad to get drank_para merge_rank_attention_param_grad(ctx.cuda_device_context().stream(), param_grad_data, ins_num * block_matrix_row, para_col, drank_para->data<T>(), para_row, para_col, ins_rank_data, ins_num, max_rank, x_fea_dim); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; using GPUCtx = phi::GPUContext; REGISTER_OP_CUDA_KERNEL(rank_attention, ops::RankAttentionCUDAKernel<GPUCtx, float>, ops::RankAttentionCUDAKernel<GPUCtx, double>); REGISTER_OP_CUDA_KERNEL(rank_attention_grad, ops::RankAttentionGradOpCUDAKernel<GPUCtx, float>, ops::RankAttentionGradOpCUDAKernel<GPUCtx, double>);
5560bb95817e41553a4b18f9a6ab96838ecf40d2.hip
// !!! This is a file automatically generated by hipify!!! #include <stdio.h> #include <stdlib.h> #include <math.h> #include <hip/hip_runtime.h> #include "config.h" #include "histogram.h" #include "d_classify.h" #include "CHECK.h" #include "wrappers.h" #define CLASSBLOCKDIM 1024 static __device__ void computeHistSz(int *, int *); //parameters for building the histogram from the image //TILEWIDTH is number of pixels in a row that a single thread will handle #define TILEWIDTH 8 #define HISTBLOCKDIM 32 //prototypes for functions local to this file static float histogramOnGPU(histogramT *, unsigned char *, int, int, int); static float classifyOnGPU(float *, int *, int modelCt); //prototypes for the kernels static __global__ void d_histoKernel(histogramT *, unsigned char *, int, int, int); static __global__ void d_classifyKernel(float *, float *, int *); static __global__ void emptyKernel(); //prototypes of functions called by d_classifyKernel static __device__ void normalizeHist(float *, int *, int); static __device__ void intersection(float * normHistograms, float * intersect); //for debugging static __device__ void printFloatArray(float * array, int startIdx, int length); __device__ void printIntArray(int * data, int length); /* d_classify Performs image classification on the GPU by first building a histogram to represent the image and then comparing the histogram to each of the histogram models. Outputs: Phisto - pointer to histogramT struct containing the bins dresult - comparisonT array of structs; one element per model Inputs: models - an array of pointers to histogramT structs; one element per model to be compared to the input Pin - array contains the color pixels of the image to be used for building a histogram and doing the classification width and height - dimensions of the image pitch - size of each row Returns the amount of time it takes to build the histogram and classify the image */ float d_classify(histogramT * Phisto, comparisonT * dresult, histogramT ** models, int modelCt, unsigned char * Pin, int height, int width, int pitch) { float gpuMsecTime1, gpuMsecTime2; //launch an empty kernel to get more accurate timing hipLaunchKernelGGL(( emptyKernel), dim3(1024), dim3(1024), 0, 0, ); //build a histogram of the input image gpuMsecTime1 = histogramOnGPU(Phisto, Pin, height, width, pitch); //allocate array to hold all histograms, including the histogram for the input int * histograms = (int *) Malloc(sizeof(int) * (modelCt + 1) * TOTALBINS); //copy the histogram for the input to the beginning of the array memcpy(histograms, Phisto->histogram, sizeof(int) * TOTALBINS); //copy the remaining histograms for (int i = 1; i <= modelCt; i++) memcpy(&histograms[i*TOTALBINS], models[i - 1]->histogram, sizeof(int) * TOTALBINS); //allocate an array of floats to hold the comparisons float * comparisons = (float *) Malloc(sizeof(int) * modelCt); //perform the classification gpuMsecTime2 = classifyOnGPU(comparisons, histograms, modelCt); //copy the results into the output for (int i = 0; i < modelCt; i++) { dresult[i].comparison = comparisons[i]; strncpy(dresult[i].fileName, models[i]->fileName, NAMELEN); } return gpuMsecTime1 + gpuMsecTime2; } /* histogramOnGPU Builds a histogram to represent the input image. Outputs: Phisto - pointer to the histogramT struct containing the bins Inputs: Pin - array contains the color pixels of the image to be used for building a histogram width and height - dimensions of the image pitch - size of each row Returns the amount of time it takes to build the histogram */ float histogramOnGPU(histogramT * Phisto, unsigned char * Pin, int height, int width, int pitch) { //THIS CODE IS COMPLETE hipEvent_t start_gpu, stop_gpu; float gpuMsecTime = -1; //Use cuda functions to do the timing //create event objects CHECK(hipEventCreate(&start_gpu)); CHECK(hipEventCreate(&stop_gpu)); unsigned char * d_Pin; int numPinBytes = sizeof(unsigned char) * pitch * height * CHANNELS; histogramT * d_Phisto; //create the array on the GPU to hold input CHECK(hipMalloc((void **)&d_Pin, numPinBytes)); CHECK(hipMemcpy(d_Pin, Pin, numPinBytes, hipMemcpyHostToDevice)); //create the array on the GPU to hold the histogram CHECK(hipMalloc((void **)&d_Phisto, sizeof(histogramT))); CHECK(hipMemcpy(d_Phisto, Phisto, sizeof(histogramT), hipMemcpyHostToDevice)); //build the histogram CHECK(hipEventRecord(start_gpu)); //each thread calculates TILEWIDTH elements in a row dim3 grid(ceil(width/(float)(HISTBLOCKDIM * TILEWIDTH)), ceil(height/(float)HISTBLOCKDIM), 1); dim3 block(HISTBLOCKDIM, HISTBLOCKDIM, 1); hipLaunchKernelGGL(( d_histoKernel), dim3(grid), dim3(block), 0, 0, d_Phisto, d_Pin, height, width, pitch); CHECK(hipEventRecord(stop_gpu)); CHECK(hipMemcpy(Phisto, d_Phisto, sizeof(histogramT), hipMemcpyDeviceToHost)); //record the ending time and wait for event to complete CHECK(hipEventSynchronize(stop_gpu)); //calculate the elapsed time between the two events CHECK(hipEventElapsedTime(&gpuMsecTime, start_gpu, stop_gpu)); return gpuMsecTime; } /* d_histoKernel Kernel code executed by each thread on its own data when the kernel is launched. Each thread operates on TILEWIDTH pixels in a row. Inputs: Pin - array contains the color pixels to be used to build the histogram width and height - dimensions of the image pitch - size of each row Output: histo - pointer to a histogramT struct that contains an array of bins */ __global__ void d_histoKernel(histogramT * histo, unsigned char * Pin, int height, int width, int pitch) { //THIS CODE IS COMPLETE. You can replace it with a faster version //if you like, but the shared memory version won't work with all //TOTALBINS sizes. If you use that one, the largest BIN value can //only be 8. int colStart = (blockIdx.x * blockDim.x + threadIdx.x) * TILEWIDTH; int row = blockIdx.y * blockDim.y + threadIdx.y; int col; //use a privatization technique to reduce the number of atomic adds int accumulator = 0; int prevBin = -1; int currBin; //go through each pixel in the tile for (int i = 0; i < TILEWIDTH; i++) { col = colStart + i; if (row < height && col < width) { //flatten the 2D indices int pIndx = row * CHANNELS * pitch + col * CHANNELS; unsigned char redVal = Pin[pIndx]; unsigned char greenVal = Pin[pIndx + 1]; unsigned char blueVal = Pin[pIndx + 2]; currBin = (redVal/TONESPB)*BINS*BINS + (blueVal/TONESPB)*BINS + greenVal/TONESPB; if (currBin != prevBin) { if (accumulator > 0) atomicAdd(&(histo->histogram[prevBin]), accumulator); prevBin = currBin; accumulator = 1; } else accumulator++; } } if (accumulator > 0) { atomicAdd(&(histo->histogram[prevBin]), accumulator); } } /* classifyOnGPU Performs image classification on the GPU Outputs: comparisons - an array of size modelCt. comparisons[i] is set to the result of comparing the input image to model i The size of this array is modelCt. Inputs: histograms - an array of histograms. The histogram for the input image is in: histograms[0] ... histogram[TOTALBINS - 1] The histogram for model 0 is in: histograms[TOTALBINS] ... histogram[2*TOTALBINS - 1] The histogram for the last model is in: histograms[modelCt*TOTALBINS] ... histogram[modelCt*TOTALBINS - 1] Thus, note that the array contains the input histogram and the model histograms and thus is of size (modelCt + 1) * TOTALBINS modelCt - count of the number of models used for the classification Returns the amount of time it takes to classify the image */ float classifyOnGPU(float * comparisons, int * histograms, int modelCt) { hipEvent_t start_gpu, stop_gpu; float gpuMsecTime = -1; //allocate an float array on the GPU to hold the normalized histograms //It needs to be big enough to hold the histogram of the input image and //and the histograms of all of the models. float * normHistograms; CHECK(hipMalloc((void **)&normHistograms, sizeof(float) * TOTALBINS * (modelCt + 1))); int * dhistograms; //allocate an int array on the GPU to hold the original histograms //It needs to be big enough to hold the histogram of the input image and //and the histograms of all of the models. CHECK(hipMalloc((void **)&dhistograms, sizeof(float) * TOTALBINS * (modelCt + 1))); //copy input histograms into dhistograms CHECK(hipMemcpy(dhistograms, histograms, sizeof(int) * TOTALBINS * (modelCt + 1), hipMemcpyHostToDevice)); float * dcomparisons; //allocate a float array on the GPU to hold the comparisons //there needs to be one element per model CHECK(hipMalloc((void **)&dcomparisons, sizeof(float) * modelCt )); //Use cuda functions to do the timing //create event objects CHECK(hipEventCreate(&start_gpu)); CHECK(hipEventCreate(&stop_gpu)); //record the starting time CHECK(hipEventRecord(start_gpu)); //each model is handled by a single block of threads //an extra block of threads is needed to normalize the input histogram dim3 grid(modelCt + 1, 1, 1); //don't make block any larger than the number of bins dim3 block(min(TOTALBINS, CLASSBLOCKDIM), 1); hipLaunchKernelGGL(( d_classifyKernel), dim3(grid), dim3(block), 0, 0, dcomparisons, normHistograms, dhistograms); CHECK(hipEventRecord(stop_gpu)); //copy the device comparison array into the host comparison array CHECK(hipMemcpy(comparisons, dcomparisons, sizeof(float) * modelCt, hipMemcpyDeviceToHost)); //record the ending time and wait for event to complete CHECK(hipEventSynchronize(stop_gpu)); //calculate the elapsed time between the two events CHECK(hipEventElapsedTime(&gpuMsecTime, start_gpu, stop_gpu)); return gpuMsecTime; } /* d_classifyKernel Kernel used to do the image classification on the GPU. Each block of threads normalizes a single histogram. After that, every block except for block 0 will perform the intersection and store a result in the comparisons array. Thus, each block (except for 0) produces one result for the comparisons array. Each thread in a block handles TOTALBINS/blockDim.x elements Inputs: histograms - array of size gridDim.x * TOTALBINS. It contains gridDim.x histograms each of size TOTALBINS. The first one is the input histogram. Outputs: comparisons - comparison[i] is set to the value of the comparison of the input histogram and the histogram of model i; for example, comparison[0] is set to comparison of the input and model 0. normHistograms - array of size gridDim.x * TOTALBINS. It contains gridDim.x histograms that are equal to the normalization of the input histograms. */ __device__ int blockSync = 0; //need this to provide synchronization among blocks __global__ void d_classifyKernel(float * comparisons, float * normHistograms, int * histograms) { __shared__ int histSz; __shared__ float intersect; //thread 0 in the block should initialize histSz and intersect to 0 if (threadIdx.x == 0) { intersect = 0; histSz = 0; } __syncthreads(); computeHistSz(histograms, &histSz); __syncthreads(); /* if (threadIdx.x == 0) { printf("%d\n", histSz); } */ //normalize the histogram normalizeHist(normHistograms, histograms, histSz); __syncthreads(); //after block 0 has finished computing the normalized histogram, //one thread in its block should set blockSync to 1 so other blocks can //then proceed to compute the intersection if (blockIdx.x == 0 && threadIdx.x == 0) { atomicAdd(&blockSync, 1); __threadfence(); } else if (blockIdx.x > 0) { //if not a block 0 thread, wait until blockSync is no longer 0 before //continuing (page 193 has logic similar to what has to be done here) while (atomicAdd(&blockSync, 0) == 0); //compute the intersection intersection(normHistograms, &intersect); __syncthreads(); //one thread in all blocks except 0 should store the fractional intersect //value in the comparisons array if (threadIdx.x == 0) { //printf("Intersect: %f, NORMMAX: %d, Storing %f in comparisons[%d]\n", // intersect, NORMMAX, intersect/NORMMAX, blockIdx.x - 1); comparisons[blockIdx.x - 1] = intersect/NORMMAX; } } } /* intersection Calculates the intersection of the input histogram and a model histogram after they have been normalized. The input histogram is in normHistograms[0] ... normHistograms[TOTALBINS - 1] The model histogram is in normHistograms[TOTALBINS * blockIdx.x] ... normHistograms[TOTALBINS * blockIdx.x - 1] Inputs: normHistograms - array of TOTALBINS * gridDim.x bins (gridDim.x histograms) intersect - pointer to the shared intersect value Outputs: shared intersect variable is incremented by the intersection calculated by the thread running this code */ __device__ void intersection(float * normHistograms, float * intersect) { //compute intersection using cyclic partitioning float * normHistogramTile = &normHistograms[blockIdx.x * TOTALBINS]; int tdx = threadIdx.x; while (tdx < TOTALBINS) { float minTwo = fmin(normHistogramTile[tdx], normHistograms[tdx]); atomicAdd(intersect, minTwo); tdx += blockDim.x; } } __device__ void printIntArray(int * data, int length) { int i, j = 0; for (i = 0; i < length; i++, j++) { if ((j % 10) == 0) printf("\n%3d: ", i); printf("%5d ", data[i]); } } /* computeHistSz Calculates the size of a histogram by adding up all of the bin values. The histogram to be used for the calculation is in elements histograms[blockIdx.x * TOTALBINS] ... histograms[(blockIdx.x + 1) * TOTALBINS] Inputs: histograms - array of TOTALBINS * gridDim.x bins (gridDim.x histograms) histSz - pointer to the shared histogram size variable Outputs: shared histogram size variable is incremented by the size calculated by the thread running this code */ __device__ void computeHistSz(int * histograms, int * histSz) { //compute histogram size (sum of bins) using cyclic partitioning int tdx = threadIdx.x; int * histogramTile = &histograms[blockIdx.x * TOTALBINS]; while (tdx < TOTALBINS) { atomicAdd(histSz, histogramTile[tdx]); tdx += blockDim.x; } } /* normalizeHist Normalizes the histogram so that every bin value is between 0 and NORMMAX. The histogram to be normalized is in elements histograms[blockIdx.x * TOTALBINS] ... histograms[(blockIdx.x + 1) * TOTALBINS] The result will be stored in normHistograms[blockIdx.x * TOTALBINS] ... normHistograms[(blockIdx.x + 1) * TOTALBINS] Inputs: histograms - array that holds the histogram to be normalized histSz - size of the input histogram (sum of its bins) Outputs: normHistograms - array to hold the normalized histogram */ __device__ void normalizeHist(float * normHistograms, int * histograms, int histSz) { //compute the normalized histogram using cyclic partitioning int tdx = threadIdx.x; int * histogramTile = &histograms[blockIdx.x * TOTALBINS]; float * normHistogramTile = &normHistograms[blockIdx.x * TOTALBINS]; while (tdx < TOTALBINS) { normHistogramTile[tdx] = (histogramTile[tdx]/(float)histSz) * NORMMAX; tdx += blockDim.x; } } //this can be used for debugging __device__ void printFloatArray(float * array, int startIdx, int length) { int i, j = 0; for (i = startIdx; i < startIdx + length; i++, j++) { if ((j % 16) == 0) printf("\n%3d: ", i); printf("%6.1f ", array[i]); } } //launched to get more accurate timing __global__ void emptyKernel() { }
5560bb95817e41553a4b18f9a6ab96838ecf40d2.cu
#include <stdio.h> #include <stdlib.h> #include <math.h> #include <cuda_runtime.h> #include "config.h" #include "histogram.h" #include "d_classify.h" #include "CHECK.h" #include "wrappers.h" #define CLASSBLOCKDIM 1024 static __device__ void computeHistSz(int *, int *); //parameters for building the histogram from the image //TILEWIDTH is number of pixels in a row that a single thread will handle #define TILEWIDTH 8 #define HISTBLOCKDIM 32 //prototypes for functions local to this file static float histogramOnGPU(histogramT *, unsigned char *, int, int, int); static float classifyOnGPU(float *, int *, int modelCt); //prototypes for the kernels static __global__ void d_histoKernel(histogramT *, unsigned char *, int, int, int); static __global__ void d_classifyKernel(float *, float *, int *); static __global__ void emptyKernel(); //prototypes of functions called by d_classifyKernel static __device__ void normalizeHist(float *, int *, int); static __device__ void intersection(float * normHistograms, float * intersect); //for debugging static __device__ void printFloatArray(float * array, int startIdx, int length); __device__ void printIntArray(int * data, int length); /* d_classify Performs image classification on the GPU by first building a histogram to represent the image and then comparing the histogram to each of the histogram models. Outputs: Phisto - pointer to histogramT struct containing the bins dresult - comparisonT array of structs; one element per model Inputs: models - an array of pointers to histogramT structs; one element per model to be compared to the input Pin - array contains the color pixels of the image to be used for building a histogram and doing the classification width and height - dimensions of the image pitch - size of each row Returns the amount of time it takes to build the histogram and classify the image */ float d_classify(histogramT * Phisto, comparisonT * dresult, histogramT ** models, int modelCt, unsigned char * Pin, int height, int width, int pitch) { float gpuMsecTime1, gpuMsecTime2; //launch an empty kernel to get more accurate timing emptyKernel<<<1024, 1024>>>(); //build a histogram of the input image gpuMsecTime1 = histogramOnGPU(Phisto, Pin, height, width, pitch); //allocate array to hold all histograms, including the histogram for the input int * histograms = (int *) Malloc(sizeof(int) * (modelCt + 1) * TOTALBINS); //copy the histogram for the input to the beginning of the array memcpy(histograms, Phisto->histogram, sizeof(int) * TOTALBINS); //copy the remaining histograms for (int i = 1; i <= modelCt; i++) memcpy(&histograms[i*TOTALBINS], models[i - 1]->histogram, sizeof(int) * TOTALBINS); //allocate an array of floats to hold the comparisons float * comparisons = (float *) Malloc(sizeof(int) * modelCt); //perform the classification gpuMsecTime2 = classifyOnGPU(comparisons, histograms, modelCt); //copy the results into the output for (int i = 0; i < modelCt; i++) { dresult[i].comparison = comparisons[i]; strncpy(dresult[i].fileName, models[i]->fileName, NAMELEN); } return gpuMsecTime1 + gpuMsecTime2; } /* histogramOnGPU Builds a histogram to represent the input image. Outputs: Phisto - pointer to the histogramT struct containing the bins Inputs: Pin - array contains the color pixels of the image to be used for building a histogram width and height - dimensions of the image pitch - size of each row Returns the amount of time it takes to build the histogram */ float histogramOnGPU(histogramT * Phisto, unsigned char * Pin, int height, int width, int pitch) { //THIS CODE IS COMPLETE cudaEvent_t start_gpu, stop_gpu; float gpuMsecTime = -1; //Use cuda functions to do the timing //create event objects CHECK(cudaEventCreate(&start_gpu)); CHECK(cudaEventCreate(&stop_gpu)); unsigned char * d_Pin; int numPinBytes = sizeof(unsigned char) * pitch * height * CHANNELS; histogramT * d_Phisto; //create the array on the GPU to hold input CHECK(cudaMalloc((void **)&d_Pin, numPinBytes)); CHECK(cudaMemcpy(d_Pin, Pin, numPinBytes, cudaMemcpyHostToDevice)); //create the array on the GPU to hold the histogram CHECK(cudaMalloc((void **)&d_Phisto, sizeof(histogramT))); CHECK(cudaMemcpy(d_Phisto, Phisto, sizeof(histogramT), cudaMemcpyHostToDevice)); //build the histogram CHECK(cudaEventRecord(start_gpu)); //each thread calculates TILEWIDTH elements in a row dim3 grid(ceil(width/(float)(HISTBLOCKDIM * TILEWIDTH)), ceil(height/(float)HISTBLOCKDIM), 1); dim3 block(HISTBLOCKDIM, HISTBLOCKDIM, 1); d_histoKernel<<<grid, block>>>(d_Phisto, d_Pin, height, width, pitch); CHECK(cudaEventRecord(stop_gpu)); CHECK(cudaMemcpy(Phisto, d_Phisto, sizeof(histogramT), cudaMemcpyDeviceToHost)); //record the ending time and wait for event to complete CHECK(cudaEventSynchronize(stop_gpu)); //calculate the elapsed time between the two events CHECK(cudaEventElapsedTime(&gpuMsecTime, start_gpu, stop_gpu)); return gpuMsecTime; } /* d_histoKernel Kernel code executed by each thread on its own data when the kernel is launched. Each thread operates on TILEWIDTH pixels in a row. Inputs: Pin - array contains the color pixels to be used to build the histogram width and height - dimensions of the image pitch - size of each row Output: histo - pointer to a histogramT struct that contains an array of bins */ __global__ void d_histoKernel(histogramT * histo, unsigned char * Pin, int height, int width, int pitch) { //THIS CODE IS COMPLETE. You can replace it with a faster version //if you like, but the shared memory version won't work with all //TOTALBINS sizes. If you use that one, the largest BIN value can //only be 8. int colStart = (blockIdx.x * blockDim.x + threadIdx.x) * TILEWIDTH; int row = blockIdx.y * blockDim.y + threadIdx.y; int col; //use a privatization technique to reduce the number of atomic adds int accumulator = 0; int prevBin = -1; int currBin; //go through each pixel in the tile for (int i = 0; i < TILEWIDTH; i++) { col = colStart + i; if (row < height && col < width) { //flatten the 2D indices int pIndx = row * CHANNELS * pitch + col * CHANNELS; unsigned char redVal = Pin[pIndx]; unsigned char greenVal = Pin[pIndx + 1]; unsigned char blueVal = Pin[pIndx + 2]; currBin = (redVal/TONESPB)*BINS*BINS + (blueVal/TONESPB)*BINS + greenVal/TONESPB; if (currBin != prevBin) { if (accumulator > 0) atomicAdd(&(histo->histogram[prevBin]), accumulator); prevBin = currBin; accumulator = 1; } else accumulator++; } } if (accumulator > 0) { atomicAdd(&(histo->histogram[prevBin]), accumulator); } } /* classifyOnGPU Performs image classification on the GPU Outputs: comparisons - an array of size modelCt. comparisons[i] is set to the result of comparing the input image to model i The size of this array is modelCt. Inputs: histograms - an array of histograms. The histogram for the input image is in: histograms[0] ... histogram[TOTALBINS - 1] The histogram for model 0 is in: histograms[TOTALBINS] ... histogram[2*TOTALBINS - 1] The histogram for the last model is in: histograms[modelCt*TOTALBINS] ... histogram[modelCt*TOTALBINS - 1] Thus, note that the array contains the input histogram and the model histograms and thus is of size (modelCt + 1) * TOTALBINS modelCt - count of the number of models used for the classification Returns the amount of time it takes to classify the image */ float classifyOnGPU(float * comparisons, int * histograms, int modelCt) { cudaEvent_t start_gpu, stop_gpu; float gpuMsecTime = -1; //allocate an float array on the GPU to hold the normalized histograms //It needs to be big enough to hold the histogram of the input image and //and the histograms of all of the models. float * normHistograms; CHECK(cudaMalloc((void **)&normHistograms, sizeof(float) * TOTALBINS * (modelCt + 1))); int * dhistograms; //allocate an int array on the GPU to hold the original histograms //It needs to be big enough to hold the histogram of the input image and //and the histograms of all of the models. CHECK(cudaMalloc((void **)&dhistograms, sizeof(float) * TOTALBINS * (modelCt + 1))); //copy input histograms into dhistograms CHECK(cudaMemcpy(dhistograms, histograms, sizeof(int) * TOTALBINS * (modelCt + 1), cudaMemcpyHostToDevice)); float * dcomparisons; //allocate a float array on the GPU to hold the comparisons //there needs to be one element per model CHECK(cudaMalloc((void **)&dcomparisons, sizeof(float) * modelCt )); //Use cuda functions to do the timing //create event objects CHECK(cudaEventCreate(&start_gpu)); CHECK(cudaEventCreate(&stop_gpu)); //record the starting time CHECK(cudaEventRecord(start_gpu)); //each model is handled by a single block of threads //an extra block of threads is needed to normalize the input histogram dim3 grid(modelCt + 1, 1, 1); //don't make block any larger than the number of bins dim3 block(min(TOTALBINS, CLASSBLOCKDIM), 1); d_classifyKernel<<<grid, block>>>(dcomparisons, normHistograms, dhistograms); CHECK(cudaEventRecord(stop_gpu)); //copy the device comparison array into the host comparison array CHECK(cudaMemcpy(comparisons, dcomparisons, sizeof(float) * modelCt, cudaMemcpyDeviceToHost)); //record the ending time and wait for event to complete CHECK(cudaEventSynchronize(stop_gpu)); //calculate the elapsed time between the two events CHECK(cudaEventElapsedTime(&gpuMsecTime, start_gpu, stop_gpu)); return gpuMsecTime; } /* d_classifyKernel Kernel used to do the image classification on the GPU. Each block of threads normalizes a single histogram. After that, every block except for block 0 will perform the intersection and store a result in the comparisons array. Thus, each block (except for 0) produces one result for the comparisons array. Each thread in a block handles TOTALBINS/blockDim.x elements Inputs: histograms - array of size gridDim.x * TOTALBINS. It contains gridDim.x histograms each of size TOTALBINS. The first one is the input histogram. Outputs: comparisons - comparison[i] is set to the value of the comparison of the input histogram and the histogram of model i; for example, comparison[0] is set to comparison of the input and model 0. normHistograms - array of size gridDim.x * TOTALBINS. It contains gridDim.x histograms that are equal to the normalization of the input histograms. */ __device__ int blockSync = 0; //need this to provide synchronization among blocks __global__ void d_classifyKernel(float * comparisons, float * normHistograms, int * histograms) { __shared__ int histSz; __shared__ float intersect; //thread 0 in the block should initialize histSz and intersect to 0 if (threadIdx.x == 0) { intersect = 0; histSz = 0; } __syncthreads(); computeHistSz(histograms, &histSz); __syncthreads(); /* if (threadIdx.x == 0) { printf("%d\n", histSz); } */ //normalize the histogram normalizeHist(normHistograms, histograms, histSz); __syncthreads(); //after block 0 has finished computing the normalized histogram, //one thread in its block should set blockSync to 1 so other blocks can //then proceed to compute the intersection if (blockIdx.x == 0 && threadIdx.x == 0) { atomicAdd(&blockSync, 1); __threadfence(); } else if (blockIdx.x > 0) { //if not a block 0 thread, wait until blockSync is no longer 0 before //continuing (page 193 has logic similar to what has to be done here) while (atomicAdd(&blockSync, 0) == 0); //compute the intersection intersection(normHistograms, &intersect); __syncthreads(); //one thread in all blocks except 0 should store the fractional intersect //value in the comparisons array if (threadIdx.x == 0) { //printf("Intersect: %f, NORMMAX: %d, Storing %f in comparisons[%d]\n", // intersect, NORMMAX, intersect/NORMMAX, blockIdx.x - 1); comparisons[blockIdx.x - 1] = intersect/NORMMAX; } } } /* intersection Calculates the intersection of the input histogram and a model histogram after they have been normalized. The input histogram is in normHistograms[0] ... normHistograms[TOTALBINS - 1] The model histogram is in normHistograms[TOTALBINS * blockIdx.x] ... normHistograms[TOTALBINS * blockIdx.x - 1] Inputs: normHistograms - array of TOTALBINS * gridDim.x bins (gridDim.x histograms) intersect - pointer to the shared intersect value Outputs: shared intersect variable is incremented by the intersection calculated by the thread running this code */ __device__ void intersection(float * normHistograms, float * intersect) { //compute intersection using cyclic partitioning float * normHistogramTile = &normHistograms[blockIdx.x * TOTALBINS]; int tdx = threadIdx.x; while (tdx < TOTALBINS) { float minTwo = fmin(normHistogramTile[tdx], normHistograms[tdx]); atomicAdd(intersect, minTwo); tdx += blockDim.x; } } __device__ void printIntArray(int * data, int length) { int i, j = 0; for (i = 0; i < length; i++, j++) { if ((j % 10) == 0) printf("\n%3d: ", i); printf("%5d ", data[i]); } } /* computeHistSz Calculates the size of a histogram by adding up all of the bin values. The histogram to be used for the calculation is in elements histograms[blockIdx.x * TOTALBINS] ... histograms[(blockIdx.x + 1) * TOTALBINS] Inputs: histograms - array of TOTALBINS * gridDim.x bins (gridDim.x histograms) histSz - pointer to the shared histogram size variable Outputs: shared histogram size variable is incremented by the size calculated by the thread running this code */ __device__ void computeHistSz(int * histograms, int * histSz) { //compute histogram size (sum of bins) using cyclic partitioning int tdx = threadIdx.x; int * histogramTile = &histograms[blockIdx.x * TOTALBINS]; while (tdx < TOTALBINS) { atomicAdd(histSz, histogramTile[tdx]); tdx += blockDim.x; } } /* normalizeHist Normalizes the histogram so that every bin value is between 0 and NORMMAX. The histogram to be normalized is in elements histograms[blockIdx.x * TOTALBINS] ... histograms[(blockIdx.x + 1) * TOTALBINS] The result will be stored in normHistograms[blockIdx.x * TOTALBINS] ... normHistograms[(blockIdx.x + 1) * TOTALBINS] Inputs: histograms - array that holds the histogram to be normalized histSz - size of the input histogram (sum of its bins) Outputs: normHistograms - array to hold the normalized histogram */ __device__ void normalizeHist(float * normHistograms, int * histograms, int histSz) { //compute the normalized histogram using cyclic partitioning int tdx = threadIdx.x; int * histogramTile = &histograms[blockIdx.x * TOTALBINS]; float * normHistogramTile = &normHistograms[blockIdx.x * TOTALBINS]; while (tdx < TOTALBINS) { normHistogramTile[tdx] = (histogramTile[tdx]/(float)histSz) * NORMMAX; tdx += blockDim.x; } } //this can be used for debugging __device__ void printFloatArray(float * array, int startIdx, int length) { int i, j = 0; for (i = startIdx; i < startIdx + length; i++, j++) { if ((j % 16) == 0) printf("\n%3d: ", i); printf("%6.1f ", array[i]); } } //launched to get more accurate timing __global__ void emptyKernel() { }
7abfa661fd8fce71656a069949d4a869350e838a.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "device_launch_parameters.h" #include "math_functions.h" #include <stdio.h> #define blockMax 500 __global__ void MatrixMulKernel(const double* A, const double* B, double* C, int N) { int i = blockIdx.x*blockDim.x + threadIdx.x; if (i<N) C[i] = A[i] * B[i]; } __global__ void SigmoidKernel(double* A, double* B, int N) { int i = blockIdx.x*blockDim.x + threadIdx.x; if (i < N) { B[i] = 1 / (1 + exp10(-A[i])); } } __global__ void DsigmoidKernel(double* A, double* B, int N) { int i = blockIdx.x*blockDim.x + threadIdx.x; if (i < N) { double a = 1 + exp10(-A[i]); B[i] = (a - 1) / (a*a); } } hipError_t cuda_hadamardProduct(const double *A, const double *B, double *R, unsigned int size) { int blockNum = (size + blockMax - 1) / blockMax; MatrixMulKernel << < blockNum, blockMax >> >(A, B, R, size); hipError_t cudaStatus = hipGetLastError(); if (cudaStatus != hipSuccess) { fprintf(stderr, "addKernel launch failed: %s\n", hipGetErrorString(cudaStatus)); return cudaStatus; } cudaStatus = hipDeviceSynchronize(); if (cudaStatus != hipSuccess) { fprintf(stderr, "hipDeviceSynchronize returned error code %d after launching addKernel!\n", cudaStatus); return cudaStatus; } return cudaStatus; } int cuda_dsigmoid(double *A, double *B, unsigned int size) { int blockNum = (size + blockMax - 1) / blockMax; DsigmoidKernel << < blockNum, blockMax >> >(A, B, size); hipError_t cudaStatus = hipGetLastError(); if (cudaStatus != hipSuccess) { fprintf(stderr, "addKernel launch failed: %s\n", hipGetErrorString(cudaStatus)); return 1; } cudaStatus = hipDeviceSynchronize(); if (cudaStatus != hipSuccess) { fprintf(stderr, "hipDeviceSynchronize returned error code %d after launching addKernel!\n", cudaStatus); return 1; } return 0; } int cuda_sigmoid(double *A, double *B, unsigned int size) { int blockNum = (size + blockMax - 1) / blockMax; SigmoidKernel << < blockNum, blockMax >> >(A, B, size); hipError_t cudaStatus = hipGetLastError(); if (cudaStatus != hipSuccess) { fprintf(stderr, "addKernel launch failed: %s\n", hipGetErrorString(cudaStatus)); return 1; } cudaStatus = hipDeviceSynchronize(); if (cudaStatus != hipSuccess) { fprintf(stderr, "hipDeviceSynchronize returned error code %d after launching addKernel!\n", cudaStatus); return 1; } return 0; }
7abfa661fd8fce71656a069949d4a869350e838a.cu
#include "cuda_runtime.h" #include "device_launch_parameters.h" #include "math_functions.h" #include <stdio.h> #define blockMax 500 __global__ void MatrixMulKernel(const double* A, const double* B, double* C, int N) { int i = blockIdx.x*blockDim.x + threadIdx.x; if (i<N) C[i] = A[i] * B[i]; } __global__ void SigmoidKernel(double* A, double* B, int N) { int i = blockIdx.x*blockDim.x + threadIdx.x; if (i < N) { B[i] = 1 / (1 + exp10(-A[i])); } } __global__ void DsigmoidKernel(double* A, double* B, int N) { int i = blockIdx.x*blockDim.x + threadIdx.x; if (i < N) { double a = 1 + exp10(-A[i]); B[i] = (a - 1) / (a*a); } } cudaError_t cuda_hadamardProduct(const double *A, const double *B, double *R, unsigned int size) { int blockNum = (size + blockMax - 1) / blockMax; MatrixMulKernel << < blockNum, blockMax >> >(A, B, R, size); cudaError_t cudaStatus = cudaGetLastError(); if (cudaStatus != cudaSuccess) { fprintf(stderr, "addKernel launch failed: %s\n", cudaGetErrorString(cudaStatus)); return cudaStatus; } cudaStatus = cudaDeviceSynchronize(); if (cudaStatus != cudaSuccess) { fprintf(stderr, "cudaDeviceSynchronize returned error code %d after launching addKernel!\n", cudaStatus); return cudaStatus; } return cudaStatus; } int cuda_dsigmoid(double *A, double *B, unsigned int size) { int blockNum = (size + blockMax - 1) / blockMax; DsigmoidKernel << < blockNum, blockMax >> >(A, B, size); cudaError_t cudaStatus = cudaGetLastError(); if (cudaStatus != cudaSuccess) { fprintf(stderr, "addKernel launch failed: %s\n", cudaGetErrorString(cudaStatus)); return 1; } cudaStatus = cudaDeviceSynchronize(); if (cudaStatus != cudaSuccess) { fprintf(stderr, "cudaDeviceSynchronize returned error code %d after launching addKernel!\n", cudaStatus); return 1; } return 0; } int cuda_sigmoid(double *A, double *B, unsigned int size) { int blockNum = (size + blockMax - 1) / blockMax; SigmoidKernel << < blockNum, blockMax >> >(A, B, size); cudaError_t cudaStatus = cudaGetLastError(); if (cudaStatus != cudaSuccess) { fprintf(stderr, "addKernel launch failed: %s\n", cudaGetErrorString(cudaStatus)); return 1; } cudaStatus = cudaDeviceSynchronize(); if (cudaStatus != cudaSuccess) { fprintf(stderr, "cudaDeviceSynchronize returned error code %d after launching addKernel!\n", cudaStatus); return 1; } return 0; }
97d04abf2def30eb1690af6aa0bf46c4f6827e7e.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" // Monte Carlo simulation of Ising model on 2D lattice // using Metropolis algorithm // using checkerboard (even-odd) update #include <stdio.h> #include <stdlib.h> #include <math.h> #include <gsl/gsl_rng.h> gsl_rng *rng=NULL; // pointer to gsl_rng random number generator void exact_2d(double, double, double*, double*); void rng_MT(float*, int); double ellf(double phi, double ak); double rf(double x, double y, double z); double min(double x, double y, double z); double max(double x, double y, double z); int *spin; // host spin variables int *d_spin; // device spin variables float *h_rng; // host random numbers float *d_rng; // device random numbers __constant__ int fw[1000],bw[1000]; // declare constant memory for fw, bw __global__ void metro_gmem_odd(int* spin, float *ranf, const float B, const float T) { int x, y, parity; int i, io; int old_spin, new_spin, spins; int k1, k2, k3, k4; float de; // thread index in a block of size (tx,ty) corresponds to // the index ie/io of the lattice with size (2*tx,ty)=(Nx,Ny). // tid = threadIdx.x + threadIdx.y*blockDim.x = ie or io int Nx = 2*blockDim.x; // block size before even-odd reduction int nx = 2*blockDim.x*gridDim.x; // number of sites in x-axis of the entire lattice // next, go over the odd sites io = threadIdx.x + threadIdx.y*blockDim.x; x = (2*io)%Nx; y = ((2*io)/Nx)%Nx; parity=(x+y+1)%2; x = x + parity; // add the offsets to get its position in the full lattice x += Nx*blockIdx.x; y += blockDim.y*blockIdx.y; i = x + y*nx; old_spin = spin[i]; new_spin = -old_spin; k1 = fw[x] + y*nx; // right k2 = x + fw[y]*nx; // top k3 = bw[x] + y*nx; // left k4 = x + bw[y]*nx; // bottom spins = spin[k1] + spin[k2] + spin[k3] + spin[k4]; de = -(new_spin - old_spin)*(spins + B); if((de <= 0.0) || (ranf[i] < exp(-de/T))) { spin[i] = new_spin; // accept the new spin; } __syncthreads(); } __global__ void metro_gmem_even(int* spin, float *ranf, const float B, const float T) { int x, y, parity; int i, ie; int old_spin, new_spin, spins; int k1, k2, k3, k4; float de; // thread index in a block of size (tx,ty) corresponds to // the index ie/io of the lattice with size (2*tx,ty)=(Nx,Ny). // tid = threadIdx.x + threadIdx.y*blockDim.x = ie or io int Nx = 2*blockDim.x; // block size before even-odd reduction int nx = 2*blockDim.x*gridDim.x; // number of sites in x-axis of the entire lattice // first, go over the even sites ie = threadIdx.x + threadIdx.y*blockDim.x; x = (2*ie)%Nx; y = ((2*ie)/Nx)%Nx; parity=(x+y)%2; x = x + parity; // add the offsets to get its position in the full lattice x += Nx*blockIdx.x; y += blockDim.y*blockIdx.y; i = x + y*nx; old_spin = spin[i]; new_spin = -old_spin; k1 = fw[x] + y*nx; // right k2 = x + fw[y]*nx; // top k3 = bw[x] + y*nx; // left k4 = x + bw[y]*nx; // bottom spins = spin[k1] + spin[k2] + spin[k3] + spin[k4]; de = -(new_spin - old_spin)*(spins + B); if((de <= 0.0) || (ranf[i] < exp(-de/T))) { spin[i] = new_spin; // accept the new spin; } __syncthreads(); } int main(void) { int nx,ny; // # of sites in x and y directions respectively int ns; // ns = nx*ny, total # of sites int *ffw; // forward index int *bbw; // backward index int nt; // # of sweeps for thermalization int nm; // # of measurements int im; // interval between successive measurements int nd; // # of sweeps between displaying results int nb; // # of sweeps before saving spin configurations int sweeps; // total # of sweeps at each temperature int k1, k2; // right, top int istart; // istart = (0: cold start/1: hot start) double T; // temperature double B; // external magnetic field double energy; // total energy of the system double mag; // total magnetization of the system double te; // accumulator for energy double tm; // accumulator for mag double count; // counter for # of measurements double M; // magnetization per site, < M > double E; // energy per site, < E > double E_ex; // exact solution of < E > double M_ex; // exact solution of < M > int gid; // GPU_ID float gputime; float flops; printf("Enter the GPU ID (0/1): "); scanf("%d",&gid); printf("%d\n",gid); // Error code to check return values for CUDA calls hipError_t err = hipSuccess; err = hipSetDevice(gid); if(err != hipSuccess) { printf("!!! Cannot select GPU with device ID = %d\n", gid); exit(1); } printf("Select GPU with device ID = %d\n", gid); hipSetDevice(gid); printf("Ising Model on 2D Square Lattice with p.b.c.\n"); printf("============================================\n"); printf("Initialize the RNG\n"); rng = gsl_rng_alloc(gsl_rng_mt19937); printf("Enter the seed:\n"); long seed; scanf("%ld",&seed); printf("%ld\n",seed); gsl_rng_set(rng,seed); printf("The RNG has been initialized\n"); printf("Enter the number of sites in each dimension (<= 1000)\n"); scanf("%d",&nx); printf("%d\n",nx); ny=nx; ns=nx*ny; ffw = (int*)malloc(nx*sizeof(int)); bbw = (int*)malloc(nx*sizeof(int)); for(int i=0; i<nx; i++) { ffw[i]=(i+1)%nx; bbw[i]=(i-1+nx)%nx; } hipMemcpyToSymbol(fw, ffw, nx*sizeof(int)); // copy to constant memory hipMemcpyToSymbol(bw, bbw, nx*sizeof(int)); spin = (int*)malloc(ns*sizeof(int)); // host spin variables h_rng = (float*)malloc(ns*sizeof(float)); // host random numbers printf("Enter the # of sweeps for thermalization\n"); scanf("%d",&nt); printf("%d\n",nt); printf("Enter the # of measurements\n"); scanf("%d",&nm); printf("%d\n",nm); printf("Enter the interval between successive measurements\n"); scanf("%d",&im); printf("%d\n",im); printf("Enter the display interval\n"); scanf("%d",&nd); printf("%d\n",nd); printf("Enter the interval for saving spin configuration\n"); scanf("%d",&nb); printf("%d\n",nb); printf("Enter the temperature (in units of J/k)\n"); scanf("%lf",&T); printf("%lf\n",T); printf("Enter the external magnetization\n"); scanf("%lf",&B); printf("%lf\n",B); printf("Initialize spins configurations :\n"); printf(" 0: cold start \n"); printf(" 1: hot start \n"); scanf("%d",&istart); printf("%d\n",istart); // Set the number of threads (tx,ty) per block int tx,ty; printf("Enter the number of threads (tx,ty) per block: "); printf("For even/odd updating, tx=ty/2 is assumed: "); scanf("%d %d",&tx, &ty); printf("%d %d\n",tx, ty); if(2*tx != ty) exit(0); if(tx*ty > 1024) { printf("The number of threads per block must be less than 1024 ! \n"); exit(0); } dim3 threads(tx,ty); // The total number of threads in the grid is equal to (nx/2)*ny = ns/2 int bx = nx/tx/2; if(bx*tx*2 != nx) { printf("The block size in x is incorrect\n"); exit(0); } int by = ny/ty; if(by*ty != ny) { printf("The block size in y is incorrect\n"); exit(0); } if((bx > 65535)||(by > 65535)) { printf("The grid size exceeds the limit ! \n"); exit(0); } dim3 blocks(bx,by); printf("The dimension of the grid is (%d, %d)\n",bx,by); if(istart == 0) { for(int j=0; j<ns; j++) { // cold start spin[j] = 1; } } else { for(int j=0; j<ns; j++) { // hot start if(gsl_rng_uniform(rng) > 0.5) { spin[j] = 1; } else { spin[j] = -1; } } } char fstr[20]; char f3str[20]; char buf[5]; strcpy(fstr, "./dats/ising2d_1gpu_T_"); gcvt(T, 2, buf); strcat(fstr, buf); strcat(fstr, ".dat"); printf(fstr); strcpy(f3str, "./dats/spin_1gpu_T_"); strcat(f3str, buf); strcat(f3str, ".dat"); printf(f3str); FILE *output; output = fopen(fstr,"w"); FILE *output3; output3 = fopen(f3str,"w"); // Allocate vectors in device memory hipMalloc((void**)&d_spin, ns*sizeof(int)); // device spin variables hipMalloc((void**)&d_rng, ns*sizeof(float)); // device random numbers // Copy vectors from host memory to device memory hipMemcpy(d_spin, spin, ns*sizeof(int), hipMemcpyHostToDevice); if(B == 0.0) { exact_2d(T,B,&E_ex,&M_ex); fprintf(output,"T=%.5e B=%.5e ns=%d E_exact=%.5e M_exact=%.5e\n", T, B, ns, E_ex, M_ex); printf("T=%.5e B=%.5e ns=%d E_exact=%.5e M_exact=%.5e\n", T, B, ns, E_ex, M_ex); } else { fprintf(output,"T=%.5e B=%.5e ns=%d\n", T, B, ns); printf("T=%.5e B=%.5e ns=%d\n", T, B, ns); } fprintf(output," E M \n"); fprintf(output,"--------------------------\n"); printf("Thermalizing\n"); printf("sweeps < E > < M >\n"); printf("---------------------------------\n"); fflush(stdout); te=0.0; // initialize the accumulators tm=0.0; count=0.0; sweeps=nt+nm*im; // total # of sweeps // create the timer hipEvent_t start, stop; hipEventCreate(&start); hipEventCreate(&stop); //start the timer hipEventRecord(start,0); for(int swp=0; swp<nt; swp++) { // thermalization rng_MT(h_rng, ns); // generate ns random numbers hipMemcpy(d_rng, h_rng, ns*sizeof(float), hipMemcpyHostToDevice); hipLaunchKernelGGL(( metro_gmem_even), dim3(blocks),dim3(threads), 0, 0, d_spin, d_rng, B, T); // updating with Metropolis algorithm hipLaunchKernelGGL(( metro_gmem_odd), dim3(blocks),dim3(threads), 0, 0, d_spin, d_rng, B, T); // updating with Metropolis algorithm } for(int swp=nt; swp<sweeps; swp++) { rng_MT(h_rng, ns); // generate ns random numbers hipMemcpy(d_rng, h_rng, ns*sizeof(float), hipMemcpyHostToDevice); hipLaunchKernelGGL(( metro_gmem_even), dim3(blocks),dim3(threads), 0, 0, d_spin, d_rng, B, T); hipLaunchKernelGGL(( metro_gmem_odd), dim3(blocks),dim3(threads), 0, 0, d_spin, d_rng, B, T); int k; if(swp%im == 0) { hipMemcpy(spin, d_spin, ns*sizeof(int), hipMemcpyDeviceToHost); mag=0.0; energy=0.0; for(int j=0; j<ny; j++) { for(int i=0; i<nx; i++) { k = i + j*nx; k1 = ffw[i] + j*nx; k2 = i + ffw[j]*nx; mag = mag + spin[k]; // total magnetization; energy = energy - spin[k]*(spin[k1] + spin[k2]); // total bond energy; } } energy = energy - B*mag; te = te + energy; tm = tm + mag; count = count + 1.0; fprintf(output, "%.5e %.5e\n", energy/(double)ns, mag/(double)ns); // save the raw data } if(swp%nd == 0) { E = te/(count*(double)(ns)); M = tm/(count*(double)(ns)); printf("%d %.5e %.5e\n", swp, E, M); } if(swp%nb == 0) { hipMemcpy(spin, d_spin, ns*sizeof(int), hipMemcpyDeviceToHost); fprintf(output3,"swp = %d, spin configuration:\n",swp); for(int j=nx-1;j>-1;j--) { for(int i=0; i<nx; i++) { fprintf(output3,"%d ",spin[i+j*nx]); } fprintf(output3,"\n"); } fprintf(output3,"\n"); } } fclose(output); fclose(output3); printf("---------------------------------\n"); if(B == 0.0) { printf("T=%.5e B=%.5e ns=%d E_exact=%.5e M_exact=%.5e\n", T, B, ns, E_ex, M_ex); } else { printf("T=%.5e B=%.5e ns=%d\n", T, B, ns); } // stop the timer hipEventRecord(stop,0); hipEventSynchronize(stop); hipEventElapsedTime(&gputime, start, stop); printf("Processing time for GPU: %f (ms) \n",gputime); flops = 7.0*nx*nx*sweeps; printf("GPU Gflops: %lf\n",flops/(1000000.0*gputime)); // destroy the timer hipEventDestroy(start); hipEventDestroy(stop); gsl_rng_free(rng); hipFree(d_spin); hipFree(d_rng); free(spin); free(h_rng); return 0; } // Exact solution of 2d Ising model on the infinite lattice void exact_2d(double T, double B, double *E, double *M) { double x, y; double z, Tc, K, K1; const double pi = acos(-1.0); K = 2.0/T; if(B == 0.0) { Tc = -2.0/log(sqrt(2.0) - 1.0); // critical temperature; if(T > Tc) { *M = 0.0; } else if(T < Tc) { z = exp(-K); *M = pow(1.0 + z*z,0.25)*pow(1.0 - 6.0*z*z + pow(z,4),0.125)/sqrt(1.0 - z*z); } x = 0.5*pi; y = 2.0*sinh(K)/pow(cosh(K),2); K1 = ellf(x, y); *E = -1.0/tanh(K)*(1. + 2.0/pi*K1*(2.0*pow(tanh(K),2) - 1.0)); } else printf("Exact solution is only known for B=0 !\n"); return; } /******* * ellf * Elliptic integral of the 1st kind *******/ double ellf(double phi, double ak) { double ellf; double s; s=sin(phi); ellf=s*rf(pow(cos(phi),2),(1.0-s*ak)*(1.0+s*ak),1.0); return ellf; } double rf(double x, double y, double z) { double rf,ERRTOL,TINY,BIG,THIRD,C1,C2,C3,C4; ERRTOL=0.08; TINY=1.5e-38; BIG=3.0e37; THIRD=1.0/3.0; C1=1.0/24.0; C2=0.1; C3=3.0/44.0; C4=1.0/14.0; double alamb,ave,delx,dely,delz,e2,e3,sqrtx,sqrty,sqrtz,xt,yt,zt; if(min(x,y,z) < 0 || min(x+y,x+z,y+z) < TINY || max(x,y,z) > BIG) { printf("invalid arguments in rf\n"); exit(1); } xt=x; yt=y; zt=z; do { sqrtx=sqrt(xt); sqrty=sqrt(yt); sqrtz=sqrt(zt); alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz; xt=0.25*(xt+alamb); yt=0.25*(yt+alamb); zt=0.25*(zt+alamb); ave=THIRD*(xt+yt+zt); delx=(ave-xt)/ave; dely=(ave-yt)/ave; delz=(ave-zt)/ave; } while (max(abs(delx),abs(dely),abs(delz)) > ERRTOL); e2=delx*dely-pow(delz,2); e3=delx*dely*delz; rf=(1.0+(C1*e2-C2-C3*e3)*e2+C4*e3)/sqrt(ave); return rf; } double min(double x, double y, double z) { double m; m = (x < y) ? x : y; m = (m < z) ? m : z; return m; } double max(double x, double y, double z) { double m; m = (x > y) ? x : y; m = (m > z) ? m : z; return m; } void rng_MT(float* data, int n) // RNG with uniform distribution in (0,1) { for(int i = 0; i < n; i++) data[i] = (float) gsl_rng_uniform(rng); }
97d04abf2def30eb1690af6aa0bf46c4f6827e7e.cu
// Monte Carlo simulation of Ising model on 2D lattice // using Metropolis algorithm // using checkerboard (even-odd) update #include <stdio.h> #include <stdlib.h> #include <math.h> #include <gsl/gsl_rng.h> gsl_rng *rng=NULL; // pointer to gsl_rng random number generator void exact_2d(double, double, double*, double*); void rng_MT(float*, int); double ellf(double phi, double ak); double rf(double x, double y, double z); double min(double x, double y, double z); double max(double x, double y, double z); int *spin; // host spin variables int *d_spin; // device spin variables float *h_rng; // host random numbers float *d_rng; // device random numbers __constant__ int fw[1000],bw[1000]; // declare constant memory for fw, bw __global__ void metro_gmem_odd(int* spin, float *ranf, const float B, const float T) { int x, y, parity; int i, io; int old_spin, new_spin, spins; int k1, k2, k3, k4; float de; // thread index in a block of size (tx,ty) corresponds to // the index ie/io of the lattice with size (2*tx,ty)=(Nx,Ny). // tid = threadIdx.x + threadIdx.y*blockDim.x = ie or io int Nx = 2*blockDim.x; // block size before even-odd reduction int nx = 2*blockDim.x*gridDim.x; // number of sites in x-axis of the entire lattice // next, go over the odd sites io = threadIdx.x + threadIdx.y*blockDim.x; x = (2*io)%Nx; y = ((2*io)/Nx)%Nx; parity=(x+y+1)%2; x = x + parity; // add the offsets to get its position in the full lattice x += Nx*blockIdx.x; y += blockDim.y*blockIdx.y; i = x + y*nx; old_spin = spin[i]; new_spin = -old_spin; k1 = fw[x] + y*nx; // right k2 = x + fw[y]*nx; // top k3 = bw[x] + y*nx; // left k4 = x + bw[y]*nx; // bottom spins = spin[k1] + spin[k2] + spin[k3] + spin[k4]; de = -(new_spin - old_spin)*(spins + B); if((de <= 0.0) || (ranf[i] < exp(-de/T))) { spin[i] = new_spin; // accept the new spin; } __syncthreads(); } __global__ void metro_gmem_even(int* spin, float *ranf, const float B, const float T) { int x, y, parity; int i, ie; int old_spin, new_spin, spins; int k1, k2, k3, k4; float de; // thread index in a block of size (tx,ty) corresponds to // the index ie/io of the lattice with size (2*tx,ty)=(Nx,Ny). // tid = threadIdx.x + threadIdx.y*blockDim.x = ie or io int Nx = 2*blockDim.x; // block size before even-odd reduction int nx = 2*blockDim.x*gridDim.x; // number of sites in x-axis of the entire lattice // first, go over the even sites ie = threadIdx.x + threadIdx.y*blockDim.x; x = (2*ie)%Nx; y = ((2*ie)/Nx)%Nx; parity=(x+y)%2; x = x + parity; // add the offsets to get its position in the full lattice x += Nx*blockIdx.x; y += blockDim.y*blockIdx.y; i = x + y*nx; old_spin = spin[i]; new_spin = -old_spin; k1 = fw[x] + y*nx; // right k2 = x + fw[y]*nx; // top k3 = bw[x] + y*nx; // left k4 = x + bw[y]*nx; // bottom spins = spin[k1] + spin[k2] + spin[k3] + spin[k4]; de = -(new_spin - old_spin)*(spins + B); if((de <= 0.0) || (ranf[i] < exp(-de/T))) { spin[i] = new_spin; // accept the new spin; } __syncthreads(); } int main(void) { int nx,ny; // # of sites in x and y directions respectively int ns; // ns = nx*ny, total # of sites int *ffw; // forward index int *bbw; // backward index int nt; // # of sweeps for thermalization int nm; // # of measurements int im; // interval between successive measurements int nd; // # of sweeps between displaying results int nb; // # of sweeps before saving spin configurations int sweeps; // total # of sweeps at each temperature int k1, k2; // right, top int istart; // istart = (0: cold start/1: hot start) double T; // temperature double B; // external magnetic field double energy; // total energy of the system double mag; // total magnetization of the system double te; // accumulator for energy double tm; // accumulator for mag double count; // counter for # of measurements double M; // magnetization per site, < M > double E; // energy per site, < E > double E_ex; // exact solution of < E > double M_ex; // exact solution of < M > int gid; // GPU_ID float gputime; float flops; printf("Enter the GPU ID (0/1): "); scanf("%d",&gid); printf("%d\n",gid); // Error code to check return values for CUDA calls cudaError_t err = cudaSuccess; err = cudaSetDevice(gid); if(err != cudaSuccess) { printf("!!! Cannot select GPU with device ID = %d\n", gid); exit(1); } printf("Select GPU with device ID = %d\n", gid); cudaSetDevice(gid); printf("Ising Model on 2D Square Lattice with p.b.c.\n"); printf("============================================\n"); printf("Initialize the RNG\n"); rng = gsl_rng_alloc(gsl_rng_mt19937); printf("Enter the seed:\n"); long seed; scanf("%ld",&seed); printf("%ld\n",seed); gsl_rng_set(rng,seed); printf("The RNG has been initialized\n"); printf("Enter the number of sites in each dimension (<= 1000)\n"); scanf("%d",&nx); printf("%d\n",nx); ny=nx; ns=nx*ny; ffw = (int*)malloc(nx*sizeof(int)); bbw = (int*)malloc(nx*sizeof(int)); for(int i=0; i<nx; i++) { ffw[i]=(i+1)%nx; bbw[i]=(i-1+nx)%nx; } cudaMemcpyToSymbol(fw, ffw, nx*sizeof(int)); // copy to constant memory cudaMemcpyToSymbol(bw, bbw, nx*sizeof(int)); spin = (int*)malloc(ns*sizeof(int)); // host spin variables h_rng = (float*)malloc(ns*sizeof(float)); // host random numbers printf("Enter the # of sweeps for thermalization\n"); scanf("%d",&nt); printf("%d\n",nt); printf("Enter the # of measurements\n"); scanf("%d",&nm); printf("%d\n",nm); printf("Enter the interval between successive measurements\n"); scanf("%d",&im); printf("%d\n",im); printf("Enter the display interval\n"); scanf("%d",&nd); printf("%d\n",nd); printf("Enter the interval for saving spin configuration\n"); scanf("%d",&nb); printf("%d\n",nb); printf("Enter the temperature (in units of J/k)\n"); scanf("%lf",&T); printf("%lf\n",T); printf("Enter the external magnetization\n"); scanf("%lf",&B); printf("%lf\n",B); printf("Initialize spins configurations :\n"); printf(" 0: cold start \n"); printf(" 1: hot start \n"); scanf("%d",&istart); printf("%d\n",istart); // Set the number of threads (tx,ty) per block int tx,ty; printf("Enter the number of threads (tx,ty) per block: "); printf("For even/odd updating, tx=ty/2 is assumed: "); scanf("%d %d",&tx, &ty); printf("%d %d\n",tx, ty); if(2*tx != ty) exit(0); if(tx*ty > 1024) { printf("The number of threads per block must be less than 1024 ! \n"); exit(0); } dim3 threads(tx,ty); // The total number of threads in the grid is equal to (nx/2)*ny = ns/2 int bx = nx/tx/2; if(bx*tx*2 != nx) { printf("The block size in x is incorrect\n"); exit(0); } int by = ny/ty; if(by*ty != ny) { printf("The block size in y is incorrect\n"); exit(0); } if((bx > 65535)||(by > 65535)) { printf("The grid size exceeds the limit ! \n"); exit(0); } dim3 blocks(bx,by); printf("The dimension of the grid is (%d, %d)\n",bx,by); if(istart == 0) { for(int j=0; j<ns; j++) { // cold start spin[j] = 1; } } else { for(int j=0; j<ns; j++) { // hot start if(gsl_rng_uniform(rng) > 0.5) { spin[j] = 1; } else { spin[j] = -1; } } } char fstr[20]; char f3str[20]; char buf[5]; strcpy(fstr, "./dats/ising2d_1gpu_T_"); gcvt(T, 2, buf); strcat(fstr, buf); strcat(fstr, ".dat"); printf(fstr); strcpy(f3str, "./dats/spin_1gpu_T_"); strcat(f3str, buf); strcat(f3str, ".dat"); printf(f3str); FILE *output; output = fopen(fstr,"w"); FILE *output3; output3 = fopen(f3str,"w"); // Allocate vectors in device memory cudaMalloc((void**)&d_spin, ns*sizeof(int)); // device spin variables cudaMalloc((void**)&d_rng, ns*sizeof(float)); // device random numbers // Copy vectors from host memory to device memory cudaMemcpy(d_spin, spin, ns*sizeof(int), cudaMemcpyHostToDevice); if(B == 0.0) { exact_2d(T,B,&E_ex,&M_ex); fprintf(output,"T=%.5e B=%.5e ns=%d E_exact=%.5e M_exact=%.5e\n", T, B, ns, E_ex, M_ex); printf("T=%.5e B=%.5e ns=%d E_exact=%.5e M_exact=%.5e\n", T, B, ns, E_ex, M_ex); } else { fprintf(output,"T=%.5e B=%.5e ns=%d\n", T, B, ns); printf("T=%.5e B=%.5e ns=%d\n", T, B, ns); } fprintf(output," E M \n"); fprintf(output,"--------------------------\n"); printf("Thermalizing\n"); printf("sweeps < E > < M >\n"); printf("---------------------------------\n"); fflush(stdout); te=0.0; // initialize the accumulators tm=0.0; count=0.0; sweeps=nt+nm*im; // total # of sweeps // create the timer cudaEvent_t start, stop; cudaEventCreate(&start); cudaEventCreate(&stop); //start the timer cudaEventRecord(start,0); for(int swp=0; swp<nt; swp++) { // thermalization rng_MT(h_rng, ns); // generate ns random numbers cudaMemcpy(d_rng, h_rng, ns*sizeof(float), cudaMemcpyHostToDevice); metro_gmem_even<<<blocks,threads>>>(d_spin, d_rng, B, T); // updating with Metropolis algorithm metro_gmem_odd<<<blocks,threads>>>(d_spin, d_rng, B, T); // updating with Metropolis algorithm } for(int swp=nt; swp<sweeps; swp++) { rng_MT(h_rng, ns); // generate ns random numbers cudaMemcpy(d_rng, h_rng, ns*sizeof(float), cudaMemcpyHostToDevice); metro_gmem_even<<<blocks,threads>>>(d_spin, d_rng, B, T); metro_gmem_odd<<<blocks,threads>>>(d_spin, d_rng, B, T); int k; if(swp%im == 0) { cudaMemcpy(spin, d_spin, ns*sizeof(int), cudaMemcpyDeviceToHost); mag=0.0; energy=0.0; for(int j=0; j<ny; j++) { for(int i=0; i<nx; i++) { k = i + j*nx; k1 = ffw[i] + j*nx; k2 = i + ffw[j]*nx; mag = mag + spin[k]; // total magnetization; energy = energy - spin[k]*(spin[k1] + spin[k2]); // total bond energy; } } energy = energy - B*mag; te = te + energy; tm = tm + mag; count = count + 1.0; fprintf(output, "%.5e %.5e\n", energy/(double)ns, mag/(double)ns); // save the raw data } if(swp%nd == 0) { E = te/(count*(double)(ns)); M = tm/(count*(double)(ns)); printf("%d %.5e %.5e\n", swp, E, M); } if(swp%nb == 0) { cudaMemcpy(spin, d_spin, ns*sizeof(int), cudaMemcpyDeviceToHost); fprintf(output3,"swp = %d, spin configuration:\n",swp); for(int j=nx-1;j>-1;j--) { for(int i=0; i<nx; i++) { fprintf(output3,"%d ",spin[i+j*nx]); } fprintf(output3,"\n"); } fprintf(output3,"\n"); } } fclose(output); fclose(output3); printf("---------------------------------\n"); if(B == 0.0) { printf("T=%.5e B=%.5e ns=%d E_exact=%.5e M_exact=%.5e\n", T, B, ns, E_ex, M_ex); } else { printf("T=%.5e B=%.5e ns=%d\n", T, B, ns); } // stop the timer cudaEventRecord(stop,0); cudaEventSynchronize(stop); cudaEventElapsedTime(&gputime, start, stop); printf("Processing time for GPU: %f (ms) \n",gputime); flops = 7.0*nx*nx*sweeps; printf("GPU Gflops: %lf\n",flops/(1000000.0*gputime)); // destroy the timer cudaEventDestroy(start); cudaEventDestroy(stop); gsl_rng_free(rng); cudaFree(d_spin); cudaFree(d_rng); free(spin); free(h_rng); return 0; } // Exact solution of 2d Ising model on the infinite lattice void exact_2d(double T, double B, double *E, double *M) { double x, y; double z, Tc, K, K1; const double pi = acos(-1.0); K = 2.0/T; if(B == 0.0) { Tc = -2.0/log(sqrt(2.0) - 1.0); // critical temperature; if(T > Tc) { *M = 0.0; } else if(T < Tc) { z = exp(-K); *M = pow(1.0 + z*z,0.25)*pow(1.0 - 6.0*z*z + pow(z,4),0.125)/sqrt(1.0 - z*z); } x = 0.5*pi; y = 2.0*sinh(K)/pow(cosh(K),2); K1 = ellf(x, y); *E = -1.0/tanh(K)*(1. + 2.0/pi*K1*(2.0*pow(tanh(K),2) - 1.0)); } else printf("Exact solution is only known for B=0 !\n"); return; } /******* * ellf * Elliptic integral of the 1st kind *******/ double ellf(double phi, double ak) { double ellf; double s; s=sin(phi); ellf=s*rf(pow(cos(phi),2),(1.0-s*ak)*(1.0+s*ak),1.0); return ellf; } double rf(double x, double y, double z) { double rf,ERRTOL,TINY,BIG,THIRD,C1,C2,C3,C4; ERRTOL=0.08; TINY=1.5e-38; BIG=3.0e37; THIRD=1.0/3.0; C1=1.0/24.0; C2=0.1; C3=3.0/44.0; C4=1.0/14.0; double alamb,ave,delx,dely,delz,e2,e3,sqrtx,sqrty,sqrtz,xt,yt,zt; if(min(x,y,z) < 0 || min(x+y,x+z,y+z) < TINY || max(x,y,z) > BIG) { printf("invalid arguments in rf\n"); exit(1); } xt=x; yt=y; zt=z; do { sqrtx=sqrt(xt); sqrty=sqrt(yt); sqrtz=sqrt(zt); alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz; xt=0.25*(xt+alamb); yt=0.25*(yt+alamb); zt=0.25*(zt+alamb); ave=THIRD*(xt+yt+zt); delx=(ave-xt)/ave; dely=(ave-yt)/ave; delz=(ave-zt)/ave; } while (max(abs(delx),abs(dely),abs(delz)) > ERRTOL); e2=delx*dely-pow(delz,2); e3=delx*dely*delz; rf=(1.0+(C1*e2-C2-C3*e3)*e2+C4*e3)/sqrt(ave); return rf; } double min(double x, double y, double z) { double m; m = (x < y) ? x : y; m = (m < z) ? m : z; return m; } double max(double x, double y, double z) { double m; m = (x > y) ? x : y; m = (m > z) ? m : z; return m; } void rng_MT(float* data, int n) // RNG with uniform distribution in (0,1) { for(int i = 0; i < n; i++) data[i] = (float) gsl_rng_uniform(rng); }
f2106b6f8c3b3608f4e37638c61bf638cf5ca38e.hip
// !!! This is a file automatically generated by hipify!!! #include <stdio.h> #include <stdlib.h> #include <assert.h> #include <math.h> #include <unistd.h> #include <sys/time.h> #include <hip/hip_runtime.h> #include "../../common/polybenchUtilFuncts.h" #ifdef RD_WG_SIZE_0_0 #define BLOCK_SIZE RD_WG_SIZE_0_0 #elif defined(RD_WG_SIZE_0) #define BLOCK_SIZE RD_WG_SIZE_0 #elif defined(RD_WG_SIZE) #define BLOCK_SIZE RD_WG_SIZE #else #define BLOCK_SIZE 16 #endif #define STR_SIZE 256 /* maximum power density possible (say 300W for a 10mm x 10mm chip) */ #define MAX_PD (3.0e6) /* required precision in degrees */ #define PRECISION 0.001 #define SPEC_HEAT_SI 1.75e6 #define K_SI 100 /* capacitance fitting factor */ #define FACTOR_CHIP 0.5 /* chip parameters */ float t_chip = 0.0005; float chip_height = 0.016; float chip_width = 0.016; /* ambient temperature, assuming no package at all */ float amb_temp = 80.0; void run(int argc, char** argv); /* define timer macros */ #define pin_stats_reset() startCycle() #define pin_stats_pause(cycles) stopCycle(cycles) #define pin_stats_dump(cycles) printf("timer: %Lu\n", cycles) typedef double DT; void fatal(char *s) { fprintf(stderr, "error: %s\n", s); } void writeoutput(float *vect, int grid_rows, int grid_cols, char *file){ int i,j, index=0; FILE *fp; char str[STR_SIZE]; if( (fp = fopen(file, "w" )) == 0 ) { printf( "The file was not opened\n" ); } else{ for (i=0; i < grid_rows; i++) for (j=0; j < grid_cols; j++) { sprintf(str, "%d\t%g\n", index, vect[i*grid_cols+j]); fputs(str,fp); index++; } } fclose(fp); } void readinput(float *vect, int grid_rows, int grid_cols, char *file){ int i,j; FILE *fp; char str[STR_SIZE]; float val; if( (fp = fopen(file, "r" )) ==0 ) printf( "The file was not opened\n" ); for (i=0; i <= grid_rows-1; i++) for (j=0; j <= grid_cols-1; j++) { fgets(str, STR_SIZE, fp); if (feof(fp)) fatal("not enough lines in file"); //if ((sscanf(str, "%d%f", &index, &val) != 2) || (index != ((i-1)*(grid_cols-2)+j-1))) if ((sscanf(str, "%f", &val) != 1)) fatal("invalid file format"); vect[i*grid_cols+j] = val; } fclose(fp); } #define IN_RANGE(x, min, max) ((x)>=(min) && (x)<=(max)) #define CLAMP_RANGE(x, min, max) x = (x<(min)) ? min : ((x>(max)) ? max : x ) #define MIN(a, b) ((a)<=(b) ? (a) : (b)) __global__ void calculate_temp(int iteration, //number of iteration float *power, //power input float *temp_src, //temperature input/output float *temp_dst, //temperature input/output int grid_cols, //Col of grid int grid_rows, //Row of grid int border_cols, // border offset int border_rows, // border offset float Cap, //Capacitance float Rx, float Ry, float Rz, float step, float time_elapsed, DT* f){ __shared__ float temp_on_cuda[BLOCK_SIZE][BLOCK_SIZE]; __shared__ float power_on_cuda[BLOCK_SIZE][BLOCK_SIZE]; __shared__ float temp_t[BLOCK_SIZE][BLOCK_SIZE]; // saving temparary temperature result float amb_temp = 80.0; float step_div_Cap; float Rx_1,Ry_1,Rz_1; int bx = blockIdx.x; int by = blockIdx.y; int tx=threadIdx.x; int ty=threadIdx.y; step_div_Cap=step/Cap; Rx_1=1/Rx; Ry_1=1/Ry; Rz_1=1/Rz; // each block finally computes result for a small block // after N iterations. // it is the non-overlapping small blocks that cover // all the input data // calculate the small block size int small_block_rows = BLOCK_SIZE-iteration*2;//EXPAND_RATE int small_block_cols = BLOCK_SIZE-iteration*2;//EXPAND_RATE // calculate the boundary for the block according to // the boundary of its small block int blkY = small_block_rows*by-border_rows; int blkX = small_block_cols*bx-border_cols; int blkYmax = blkY+BLOCK_SIZE-1; int blkXmax = blkX+BLOCK_SIZE-1; // calculate the global thread coordination int yidx = blkY+ty; int xidx = blkX+tx; // load data if it is within the valid input range int loadYidx=yidx, loadXidx=xidx; int index = grid_cols*loadYidx+loadXidx; if(IN_RANGE(loadYidx, 0, grid_rows-1) && IN_RANGE(loadXidx, 0, grid_cols-1)){ temp_on_cuda[ty][tx] = temp_src[index]; // Load the temperature data from global memory to shared memory power_on_cuda[ty][tx] = power[index];// Load the power data from global memory to shared memory } __syncthreads(); // effective range within this block that falls within // the valid range of the input data // used to rule out computation outside the boundary. int validYmin = (blkY < 0) ? -blkY : 0; int validYmax = (blkYmax > grid_rows-1) ? BLOCK_SIZE-1-(blkYmax-grid_rows+1) : BLOCK_SIZE-1; int validXmin = (blkX < 0) ? -blkX : 0; int validXmax = (blkXmax > grid_cols-1) ? BLOCK_SIZE-1-(blkXmax-grid_cols+1) : BLOCK_SIZE-1; int N = ty-1; int S = ty+1; int W = tx-1; int E = tx+1; N = (N < validYmin) ? validYmin : N; S = (S > validYmax) ? validYmax : S; W = (W < validXmin) ? validXmin : W; E = (E > validXmax) ? validXmax : E; bool computed; for (int i=0; i<iteration ; i++){ computed = false; if( IN_RANGE(tx, i+1, BLOCK_SIZE-i-2) && \ IN_RANGE(ty, i+1, BLOCK_SIZE-i-2) && \ IN_RANGE(tx, validXmin, validXmax) && \ IN_RANGE(ty, validYmin, validYmax) ) { computed = true; temp_t[ty][tx] = temp_on_cuda[ty][tx] + step_div_Cap * (power_on_cuda[ty][tx] + (temp_on_cuda[S][tx] + temp_on_cuda[N][tx] - 2.0*temp_on_cuda[ty][tx]) * Ry_1 + (temp_on_cuda[ty][E] + temp_on_cuda[ty][W] - 2.0*temp_on_cuda[ty][tx]) * Rx_1 + (amb_temp - temp_on_cuda[ty][tx]) * Rz_1); } __syncthreads(); if(i==iteration-1) break; if(computed) //Assign the computation range temp_on_cuda[ty][tx]= temp_t[ty][tx]; __syncthreads(); } // update the global memory // after the last iteration, only threads coordinated within the // small block perform the calculation and switch on ``computed'' if (computed){ temp_dst[index]= temp_t[ty][tx]; } } /* compute N time steps */ int compute_tran_temp(float *MatrixPower,float *MatrixTemp[2], int col, int row,int total_iterations, int num_iterations, int blockCols, int blockRows, int borderCols, int borderRows, DT* f) { dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE); dim3 dimGrid(blockCols, blockRows); DT *F_gpu; hipMalloc((void **)&F_gpu, sizeof(DT) *2); hipMemcpy(F_gpu, f, sizeof(DT) *2, hipMemcpyHostToDevice); float grid_height = chip_height / row; float grid_width = chip_width / col; float Cap = FACTOR_CHIP * SPEC_HEAT_SI * t_chip * grid_width * grid_height; float Rx = grid_width / (2.0 * K_SI * t_chip * grid_height); float Ry = grid_height / (2.0 * K_SI * t_chip * grid_width); float Rz = t_chip / (K_SI * grid_height * grid_width); float max_slope = MAX_PD / (FACTOR_CHIP * t_chip * SPEC_HEAT_SI); float step = PRECISION / max_slope; float t; float time_elapsed; time_elapsed=0.001; int src = 1, dst = 0; for (t = 0; t < total_iterations; t+=num_iterations) { int temp = src; src = dst; dst = temp; hipLaunchKernelGGL(( calculate_temp), dim3(dimGrid), dim3(dimBlock), 0, 0, MIN(num_iterations, total_iterations-t), MatrixPower,MatrixTemp[src],MatrixTemp[dst],\ col,row,borderCols, borderRows, Cap,Rx,Ry,Rz,step,time_elapsed,F_gpu); } hipMemcpy(f, F_gpu, sizeof(DT) *2, hipMemcpyDeviceToHost); return dst; } void usage(int argc, char **argv) { fprintf(stderr, "Usage: %s <grid_rows/grid_cols> <pyramid_height> <sim_time> <temp_file> <power_file> <output_file>\n", argv[0]); fprintf(stderr, "\t<grid_rows/grid_cols> - number of rows/cols in the grid (positive integer)\n"); fprintf(stderr, "\t<pyramid_height> - pyramid heigh(positive integer)\n"); fprintf(stderr, "\t<sim_time> - number of iterations\n"); fprintf(stderr, "\t<temp_file> - name of the file containing the initial temperature values of each cell\n"); fprintf(stderr, "\t<power_file> - name of the file containing the dissipated power values of each cell\n"); fprintf(stderr, "\t<output_file> - name of the output file\n"); exit(1); } int main(int argc, char** argv) { printf("WG size of kernel = %d X %d\n", BLOCK_SIZE, BLOCK_SIZE); run(argc,argv); return EXIT_SUCCESS; } void run(int argc, char** argv) { double t_start, t_end; int size; int grid_rows,grid_cols; float *FilesavingTemp,*FilesavingPower,*MatrixOut; char *tfile, *pfile, *ofile; DT* f; f = (DT*)malloc(2*sizeof(DT)); int total_iterations = 60; int pyramid_height = 1; // number of iterations if (argc != 7) usage(argc, argv); if((grid_rows = atoi(argv[1]))<=0|| (grid_cols = atoi(argv[1]))<=0|| (pyramid_height = atoi(argv[2]))<=0|| (total_iterations = atoi(argv[3]))<=0) usage(argc, argv); tfile=argv[4]; pfile=argv[5]; ofile=argv[6]; size=grid_rows*grid_cols; /* --------------- pyramid parameters --------------- */ # define EXPAND_RATE 2// add one iteration will extend the pyramid base by 2 per each borderline int borderCols = (pyramid_height)*EXPAND_RATE/2; int borderRows = (pyramid_height)*EXPAND_RATE/2; int smallBlockCol = BLOCK_SIZE-(pyramid_height)*EXPAND_RATE; int smallBlockRow = BLOCK_SIZE-(pyramid_height)*EXPAND_RATE; int blockCols = grid_cols/smallBlockCol+((grid_cols%smallBlockCol==0)?0:1); int blockRows = grid_rows/smallBlockRow+((grid_rows%smallBlockRow==0)?0:1); FilesavingTemp = (float *) malloc(size*sizeof(float)); FilesavingPower = (float *) malloc(size*sizeof(float)); MatrixOut = (float *) calloc (size, sizeof(float)); if( !FilesavingPower || !FilesavingTemp || !MatrixOut) fatal("unable to allocate memory"); printf("pyramidHeight: %d\ngridSize: [%d, %d]\nborder:[%d, %d]\nblockGrid:[%d, %d]\ntargetBlock:[%d, %d]\n",\ pyramid_height, grid_cols, grid_rows, borderCols, borderRows, blockCols, blockRows, smallBlockCol, smallBlockRow); readinput(FilesavingTemp, grid_rows, grid_cols, tfile); readinput(FilesavingPower, grid_rows, grid_cols, pfile); float *MatrixTemp[2], *MatrixPower; hipMalloc((void**)&MatrixTemp[0], sizeof(float)*size); hipMalloc((void**)&MatrixTemp[1], sizeof(float)*size); hipMemcpy(MatrixTemp[0], FilesavingTemp, sizeof(float)*size, hipMemcpyHostToDevice); hipMalloc((void**)&MatrixPower, sizeof(float)*size); hipMemcpy(MatrixPower, FilesavingPower, sizeof(float)*size, hipMemcpyHostToDevice); printf("Start computing the transient temperature\n"); t_start = rtclock(); int ret = compute_tran_temp(MatrixPower,MatrixTemp,grid_cols,grid_rows, \ total_iterations,pyramid_height, blockCols, blockRows, borderCols, borderRows,f); t_end = rtclock(); fprintf(stdout, "GPU Runtime: %0.6lfs\n", t_end - t_start); printf("Ending simulation\n"); hipMemcpy(MatrixOut, MatrixTemp[ret], sizeof(float)*size, hipMemcpyDeviceToHost); writeoutput(MatrixOut,grid_rows, grid_cols, ofile); printf("%x %x\n",*(int *)&(f[0]),*(int *)&(f[1])); hipFree(MatrixPower); hipFree(MatrixTemp[0]); hipFree(MatrixTemp[1]); free(MatrixOut); }
f2106b6f8c3b3608f4e37638c61bf638cf5ca38e.cu
#include <stdio.h> #include <stdlib.h> #include <assert.h> #include <math.h> #include <unistd.h> #include <sys/time.h> #include <cuda.h> #include "../../common/polybenchUtilFuncts.h" #ifdef RD_WG_SIZE_0_0 #define BLOCK_SIZE RD_WG_SIZE_0_0 #elif defined(RD_WG_SIZE_0) #define BLOCK_SIZE RD_WG_SIZE_0 #elif defined(RD_WG_SIZE) #define BLOCK_SIZE RD_WG_SIZE #else #define BLOCK_SIZE 16 #endif #define STR_SIZE 256 /* maximum power density possible (say 300W for a 10mm x 10mm chip) */ #define MAX_PD (3.0e6) /* required precision in degrees */ #define PRECISION 0.001 #define SPEC_HEAT_SI 1.75e6 #define K_SI 100 /* capacitance fitting factor */ #define FACTOR_CHIP 0.5 /* chip parameters */ float t_chip = 0.0005; float chip_height = 0.016; float chip_width = 0.016; /* ambient temperature, assuming no package at all */ float amb_temp = 80.0; void run(int argc, char** argv); /* define timer macros */ #define pin_stats_reset() startCycle() #define pin_stats_pause(cycles) stopCycle(cycles) #define pin_stats_dump(cycles) printf("timer: %Lu\n", cycles) typedef double DT; void fatal(char *s) { fprintf(stderr, "error: %s\n", s); } void writeoutput(float *vect, int grid_rows, int grid_cols, char *file){ int i,j, index=0; FILE *fp; char str[STR_SIZE]; if( (fp = fopen(file, "w" )) == 0 ) { printf( "The file was not opened\n" ); } else{ for (i=0; i < grid_rows; i++) for (j=0; j < grid_cols; j++) { sprintf(str, "%d\t%g\n", index, vect[i*grid_cols+j]); fputs(str,fp); index++; } } fclose(fp); } void readinput(float *vect, int grid_rows, int grid_cols, char *file){ int i,j; FILE *fp; char str[STR_SIZE]; float val; if( (fp = fopen(file, "r" )) ==0 ) printf( "The file was not opened\n" ); for (i=0; i <= grid_rows-1; i++) for (j=0; j <= grid_cols-1; j++) { fgets(str, STR_SIZE, fp); if (feof(fp)) fatal("not enough lines in file"); //if ((sscanf(str, "%d%f", &index, &val) != 2) || (index != ((i-1)*(grid_cols-2)+j-1))) if ((sscanf(str, "%f", &val) != 1)) fatal("invalid file format"); vect[i*grid_cols+j] = val; } fclose(fp); } #define IN_RANGE(x, min, max) ((x)>=(min) && (x)<=(max)) #define CLAMP_RANGE(x, min, max) x = (x<(min)) ? min : ((x>(max)) ? max : x ) #define MIN(a, b) ((a)<=(b) ? (a) : (b)) __global__ void calculate_temp(int iteration, //number of iteration float *power, //power input float *temp_src, //temperature input/output float *temp_dst, //temperature input/output int grid_cols, //Col of grid int grid_rows, //Row of grid int border_cols, // border offset int border_rows, // border offset float Cap, //Capacitance float Rx, float Ry, float Rz, float step, float time_elapsed, DT* f){ __shared__ float temp_on_cuda[BLOCK_SIZE][BLOCK_SIZE]; __shared__ float power_on_cuda[BLOCK_SIZE][BLOCK_SIZE]; __shared__ float temp_t[BLOCK_SIZE][BLOCK_SIZE]; // saving temparary temperature result float amb_temp = 80.0; float step_div_Cap; float Rx_1,Ry_1,Rz_1; int bx = blockIdx.x; int by = blockIdx.y; int tx=threadIdx.x; int ty=threadIdx.y; step_div_Cap=step/Cap; Rx_1=1/Rx; Ry_1=1/Ry; Rz_1=1/Rz; // each block finally computes result for a small block // after N iterations. // it is the non-overlapping small blocks that cover // all the input data // calculate the small block size int small_block_rows = BLOCK_SIZE-iteration*2;//EXPAND_RATE int small_block_cols = BLOCK_SIZE-iteration*2;//EXPAND_RATE // calculate the boundary for the block according to // the boundary of its small block int blkY = small_block_rows*by-border_rows; int blkX = small_block_cols*bx-border_cols; int blkYmax = blkY+BLOCK_SIZE-1; int blkXmax = blkX+BLOCK_SIZE-1; // calculate the global thread coordination int yidx = blkY+ty; int xidx = blkX+tx; // load data if it is within the valid input range int loadYidx=yidx, loadXidx=xidx; int index = grid_cols*loadYidx+loadXidx; if(IN_RANGE(loadYidx, 0, grid_rows-1) && IN_RANGE(loadXidx, 0, grid_cols-1)){ temp_on_cuda[ty][tx] = temp_src[index]; // Load the temperature data from global memory to shared memory power_on_cuda[ty][tx] = power[index];// Load the power data from global memory to shared memory } __syncthreads(); // effective range within this block that falls within // the valid range of the input data // used to rule out computation outside the boundary. int validYmin = (blkY < 0) ? -blkY : 0; int validYmax = (blkYmax > grid_rows-1) ? BLOCK_SIZE-1-(blkYmax-grid_rows+1) : BLOCK_SIZE-1; int validXmin = (blkX < 0) ? -blkX : 0; int validXmax = (blkXmax > grid_cols-1) ? BLOCK_SIZE-1-(blkXmax-grid_cols+1) : BLOCK_SIZE-1; int N = ty-1; int S = ty+1; int W = tx-1; int E = tx+1; N = (N < validYmin) ? validYmin : N; S = (S > validYmax) ? validYmax : S; W = (W < validXmin) ? validXmin : W; E = (E > validXmax) ? validXmax : E; bool computed; for (int i=0; i<iteration ; i++){ computed = false; if( IN_RANGE(tx, i+1, BLOCK_SIZE-i-2) && \ IN_RANGE(ty, i+1, BLOCK_SIZE-i-2) && \ IN_RANGE(tx, validXmin, validXmax) && \ IN_RANGE(ty, validYmin, validYmax) ) { computed = true; temp_t[ty][tx] = temp_on_cuda[ty][tx] + step_div_Cap * (power_on_cuda[ty][tx] + (temp_on_cuda[S][tx] + temp_on_cuda[N][tx] - 2.0*temp_on_cuda[ty][tx]) * Ry_1 + (temp_on_cuda[ty][E] + temp_on_cuda[ty][W] - 2.0*temp_on_cuda[ty][tx]) * Rx_1 + (amb_temp - temp_on_cuda[ty][tx]) * Rz_1); } __syncthreads(); if(i==iteration-1) break; if(computed) //Assign the computation range temp_on_cuda[ty][tx]= temp_t[ty][tx]; __syncthreads(); } // update the global memory // after the last iteration, only threads coordinated within the // small block perform the calculation and switch on ``computed'' if (computed){ temp_dst[index]= temp_t[ty][tx]; } } /* compute N time steps */ int compute_tran_temp(float *MatrixPower,float *MatrixTemp[2], int col, int row,int total_iterations, int num_iterations, int blockCols, int blockRows, int borderCols, int borderRows, DT* f) { dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE); dim3 dimGrid(blockCols, blockRows); DT *F_gpu; cudaMalloc((void **)&F_gpu, sizeof(DT) *2); cudaMemcpy(F_gpu, f, sizeof(DT) *2, cudaMemcpyHostToDevice); float grid_height = chip_height / row; float grid_width = chip_width / col; float Cap = FACTOR_CHIP * SPEC_HEAT_SI * t_chip * grid_width * grid_height; float Rx = grid_width / (2.0 * K_SI * t_chip * grid_height); float Ry = grid_height / (2.0 * K_SI * t_chip * grid_width); float Rz = t_chip / (K_SI * grid_height * grid_width); float max_slope = MAX_PD / (FACTOR_CHIP * t_chip * SPEC_HEAT_SI); float step = PRECISION / max_slope; float t; float time_elapsed; time_elapsed=0.001; int src = 1, dst = 0; for (t = 0; t < total_iterations; t+=num_iterations) { int temp = src; src = dst; dst = temp; calculate_temp<<<dimGrid, dimBlock>>>(MIN(num_iterations, total_iterations-t), MatrixPower,MatrixTemp[src],MatrixTemp[dst],\ col,row,borderCols, borderRows, Cap,Rx,Ry,Rz,step,time_elapsed,F_gpu); } cudaMemcpy(f, F_gpu, sizeof(DT) *2, cudaMemcpyDeviceToHost); return dst; } void usage(int argc, char **argv) { fprintf(stderr, "Usage: %s <grid_rows/grid_cols> <pyramid_height> <sim_time> <temp_file> <power_file> <output_file>\n", argv[0]); fprintf(stderr, "\t<grid_rows/grid_cols> - number of rows/cols in the grid (positive integer)\n"); fprintf(stderr, "\t<pyramid_height> - pyramid heigh(positive integer)\n"); fprintf(stderr, "\t<sim_time> - number of iterations\n"); fprintf(stderr, "\t<temp_file> - name of the file containing the initial temperature values of each cell\n"); fprintf(stderr, "\t<power_file> - name of the file containing the dissipated power values of each cell\n"); fprintf(stderr, "\t<output_file> - name of the output file\n"); exit(1); } int main(int argc, char** argv) { printf("WG size of kernel = %d X %d\n", BLOCK_SIZE, BLOCK_SIZE); run(argc,argv); return EXIT_SUCCESS; } void run(int argc, char** argv) { double t_start, t_end; int size; int grid_rows,grid_cols; float *FilesavingTemp,*FilesavingPower,*MatrixOut; char *tfile, *pfile, *ofile; DT* f; f = (DT*)malloc(2*sizeof(DT)); int total_iterations = 60; int pyramid_height = 1; // number of iterations if (argc != 7) usage(argc, argv); if((grid_rows = atoi(argv[1]))<=0|| (grid_cols = atoi(argv[1]))<=0|| (pyramid_height = atoi(argv[2]))<=0|| (total_iterations = atoi(argv[3]))<=0) usage(argc, argv); tfile=argv[4]; pfile=argv[5]; ofile=argv[6]; size=grid_rows*grid_cols; /* --------------- pyramid parameters --------------- */ # define EXPAND_RATE 2// add one iteration will extend the pyramid base by 2 per each borderline int borderCols = (pyramid_height)*EXPAND_RATE/2; int borderRows = (pyramid_height)*EXPAND_RATE/2; int smallBlockCol = BLOCK_SIZE-(pyramid_height)*EXPAND_RATE; int smallBlockRow = BLOCK_SIZE-(pyramid_height)*EXPAND_RATE; int blockCols = grid_cols/smallBlockCol+((grid_cols%smallBlockCol==0)?0:1); int blockRows = grid_rows/smallBlockRow+((grid_rows%smallBlockRow==0)?0:1); FilesavingTemp = (float *) malloc(size*sizeof(float)); FilesavingPower = (float *) malloc(size*sizeof(float)); MatrixOut = (float *) calloc (size, sizeof(float)); if( !FilesavingPower || !FilesavingTemp || !MatrixOut) fatal("unable to allocate memory"); printf("pyramidHeight: %d\ngridSize: [%d, %d]\nborder:[%d, %d]\nblockGrid:[%d, %d]\ntargetBlock:[%d, %d]\n",\ pyramid_height, grid_cols, grid_rows, borderCols, borderRows, blockCols, blockRows, smallBlockCol, smallBlockRow); readinput(FilesavingTemp, grid_rows, grid_cols, tfile); readinput(FilesavingPower, grid_rows, grid_cols, pfile); float *MatrixTemp[2], *MatrixPower; cudaMalloc((void**)&MatrixTemp[0], sizeof(float)*size); cudaMalloc((void**)&MatrixTemp[1], sizeof(float)*size); cudaMemcpy(MatrixTemp[0], FilesavingTemp, sizeof(float)*size, cudaMemcpyHostToDevice); cudaMalloc((void**)&MatrixPower, sizeof(float)*size); cudaMemcpy(MatrixPower, FilesavingPower, sizeof(float)*size, cudaMemcpyHostToDevice); printf("Start computing the transient temperature\n"); t_start = rtclock(); int ret = compute_tran_temp(MatrixPower,MatrixTemp,grid_cols,grid_rows, \ total_iterations,pyramid_height, blockCols, blockRows, borderCols, borderRows,f); t_end = rtclock(); fprintf(stdout, "GPU Runtime: %0.6lfs\n", t_end - t_start); printf("Ending simulation\n"); cudaMemcpy(MatrixOut, MatrixTemp[ret], sizeof(float)*size, cudaMemcpyDeviceToHost); writeoutput(MatrixOut,grid_rows, grid_cols, ofile); printf("%x %x\n",*(int *)&(f[0]),*(int *)&(f[1])); cudaFree(MatrixPower); cudaFree(MatrixTemp[0]); cudaFree(MatrixTemp[1]); free(MatrixOut); }
73cf4dd7801c15e2dfc93fd845c5312dea5b33dd.hip
// !!! This is a file automatically generated by hipify!!! #include <iostream> #include <typeinfo> #include <random> #include <stdint.h> #include <rocblas.h> #define DEBUG #include <gemm/dispatch.h> #include <gemm/epilogue_function.h> //#include "util/matrix.h" #include "util/timer.h" using namespace cutlass; // for Windows testing float drand48() { return rand() / (RAND_MAX + 1.0); } int main(int argc, const char **argv) { // consts int m = 10240; int k = 4096; int n = 4096; float alpha = 1.0; float beta = 0.0; int g_timing_iterations = 10; static const int TransformA = 0; static const int TransformB = 0; hipStream_t stream = 0; // definitions float *A, *B, *C, *C2; hipMallocManaged(&A, m*k * sizeof(float) ); hipMallocManaged(&B, k*n * sizeof(float) ); hipMallocManaged(&C, m*n * sizeof(float) ); hipMallocManaged(&C2, m*n * sizeof(float) ); // fill out for( int jndex=0; jndex<k; jndex++ ) { for(int index=0; index<m; index++) { A[jndex*m + index] = drand48(); } } for( int jndex=0; jndex<n; jndex++ ) { for(int index=0; index<k; index++) { B[jndex*k + index] = drand48(); } } for( int jndex=0; jndex<n; jndex++ ) { for(int index=0; index<m; index++) { C[jndex*m + index] = 0; C2[jndex*m + index] = 0; } } hipDeviceSynchronize(); // CUBLAS hipblasHandle_t g_cublas_handle; hipblasCreate(&g_cublas_handle); gpu_timer timer; for (int i = 0; i < g_timing_iterations+2; i++) { if (i == 2) timer.start(); CUDA_PERROR(hipblasSgemm( g_cublas_handle, (hipblasOperation_t) TransformA, (hipblasOperation_t) TransformB, m, n, k, &alpha, A, m, B, k, &beta, C, m)); } timer.stop(); // calculate CUBLAS time int64_t num_flops = (2 * int64_t(m) * int64_t(n) * int64_t(k)) + (2 * int64_t(m) * int64_t(n)); double tcublas = timer.elapsed_millis() / g_timing_iterations; double cublas_flops = double(num_flops) / tcublas / 1.0e6; // CUTLASS typedef gemm::blas_scaled_epilogue<float, float, float> epilogue_op_t; epilogue_op_t epilogue(alpha, beta); for (int i = 0; i < g_timing_iterations+2; i++) { if (i == 2) timer.start(); gemm::dispatch<epilogue_op_t>( m, n, k, alpha, beta, A, B, C2, stream, false); } timer.stop(); // calculate CUTLASS time double tcutlass = timer.elapsed_millis() / g_timing_iterations; double cutlass_flops = double(num_flops) / tcutlass / 1.0e6; // error performance summary. No need to optimize below this line printf("CUBLAS: %.2f Gflops, CUTLASS: %.2f Gflops\n", cublas_flops, cutlass_flops); hipDeviceSynchronize(); double err = 0; for (int i=0; i<n; i++) { for (int j=0; j<m; j++) { // err += fabs(C.get(i,j) - C2.get(i,j)); err += fabs(C[i*m + j] - C2[i*m + j]); } } printf("error: %lf\n", err/n/m); hipblasDestroy(g_cublas_handle); }
73cf4dd7801c15e2dfc93fd845c5312dea5b33dd.cu
#include <iostream> #include <typeinfo> #include <random> #include <stdint.h> #include <cublas_v2.h> #define DEBUG #include <gemm/dispatch.h> #include <gemm/epilogue_function.h> //#include "util/matrix.h" #include "util/timer.h" using namespace cutlass; // for Windows testing float drand48() { return rand() / (RAND_MAX + 1.0); } int main(int argc, const char **argv) { // consts int m = 10240; int k = 4096; int n = 4096; float alpha = 1.0; float beta = 0.0; int g_timing_iterations = 10; static const int TransformA = 0; static const int TransformB = 0; cudaStream_t stream = 0; // definitions float *A, *B, *C, *C2; cudaMallocManaged(&A, m*k * sizeof(float) ); cudaMallocManaged(&B, k*n * sizeof(float) ); cudaMallocManaged(&C, m*n * sizeof(float) ); cudaMallocManaged(&C2, m*n * sizeof(float) ); // fill out for( int jndex=0; jndex<k; jndex++ ) { for(int index=0; index<m; index++) { A[jndex*m + index] = drand48(); } } for( int jndex=0; jndex<n; jndex++ ) { for(int index=0; index<k; index++) { B[jndex*k + index] = drand48(); } } for( int jndex=0; jndex<n; jndex++ ) { for(int index=0; index<m; index++) { C[jndex*m + index] = 0; C2[jndex*m + index] = 0; } } cudaDeviceSynchronize(); // CUBLAS cublasHandle_t g_cublas_handle; cublasCreate(&g_cublas_handle); gpu_timer timer; for (int i = 0; i < g_timing_iterations+2; i++) { if (i == 2) timer.start(); CUDA_PERROR(cublasSgemm( g_cublas_handle, (cublasOperation_t) TransformA, (cublasOperation_t) TransformB, m, n, k, &alpha, A, m, B, k, &beta, C, m)); } timer.stop(); // calculate CUBLAS time int64_t num_flops = (2 * int64_t(m) * int64_t(n) * int64_t(k)) + (2 * int64_t(m) * int64_t(n)); double tcublas = timer.elapsed_millis() / g_timing_iterations; double cublas_flops = double(num_flops) / tcublas / 1.0e6; // CUTLASS typedef gemm::blas_scaled_epilogue<float, float, float> epilogue_op_t; epilogue_op_t epilogue(alpha, beta); for (int i = 0; i < g_timing_iterations+2; i++) { if (i == 2) timer.start(); gemm::dispatch<epilogue_op_t>( m, n, k, alpha, beta, A, B, C2, stream, false); } timer.stop(); // calculate CUTLASS time double tcutlass = timer.elapsed_millis() / g_timing_iterations; double cutlass_flops = double(num_flops) / tcutlass / 1.0e6; // error performance summary. No need to optimize below this line printf("CUBLAS: %.2f Gflops, CUTLASS: %.2f Gflops\n", cublas_flops, cutlass_flops); cudaDeviceSynchronize(); double err = 0; for (int i=0; i<n; i++) { for (int j=0; j<m; j++) { // err += fabs(C.get(i,j) - C2.get(i,j)); err += fabs(C[i*m + j] - C2[i*m + j]); } } printf("error: %lf\n", err/n/m); cublasDestroy(g_cublas_handle); }
9ea27772cc4b74af1ef1010091050ae08c109414.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <stdio.h> #include <stdlib.h> #include <fcntl.h> #include "string.h" #include "sobel_kernel.hip" #define DEFAULT_THRESHOLD 8000 #define DEFAULT_FILENAME "BWstop-sign.ppm" #define TILE_WIDTH 14 #define BLOCK_WIDTH 16 void SobelOnDevice(int* result, unsigned int* pic, int width, int height, int thresh); unsigned int *read_ppm( char *filename, int * xsize, int * ysize, int *maxval ){ if ( !filename || filename[0] == '\0') { fprintf(stderr, "read_ppm but no file name\n"); return NULL; // fail } FILE *fp; fprintf(stderr, "read_ppm( %s )\n", filename); fp = fopen( filename, "rb"); if (!fp) { fprintf(stderr, "read_ppm() ERROR file '%s' cannot be opened for reading\n", filename); return NULL; // fail } char chars[1024]; //int num = read(fd, chars, 1000); int num = fread(chars, sizeof(char), 1000, fp); if (chars[0] != 'P' || chars[1] != '6') { fprintf(stderr, "Texture::Texture() ERROR file '%s' does not start with \"P6\" I am expecting a binary PPM file\n", filename); return NULL; } unsigned int width, height, maxvalue; char *ptr = chars+3; // P 6 newline if (*ptr == '#') // comment line! { ptr = 1 + strstr(ptr, "\n"); } num = sscanf(ptr, "%d\n%d\n%d", &width, &height, &maxvalue); fprintf(stderr, "read %d things width %d height %d maxval %d\n", num, width, height, maxvalue); *xsize = width; *ysize = height; *maxval = maxvalue; unsigned int *pic = (unsigned int *)malloc( width * height * sizeof(unsigned int)); if (!pic) { fprintf(stderr, "read_ppm() unable to allocate %d x %d unsigned ints for the picture\n", width, height); return NULL; // fail but return } // allocate buffer to read the rest of the file into int bufsize = 3 * width * height * sizeof(unsigned char); if ((*maxval) > 255) bufsize *= 2; unsigned char *buf = (unsigned char *)malloc( bufsize ); if (!buf) { fprintf(stderr, "read_ppm() unable to allocate %d bytes of read buffer\n", bufsize); return NULL; // fail but return } // really read char duh[80]; char *line = chars; // find the start of the pixel data. sprintf(duh, "%d\0", *xsize); line = strstr(line, duh); //fprintf(stderr, "%s found at offset %d\n", duh, line-chars); line += strlen(duh) + 1; sprintf(duh, "%d\0", *ysize); line = strstr(line, duh); //fprintf(stderr, "%s found at offset %d\n", duh, line-chars); line += strlen(duh) + 1; sprintf(duh, "%d\0", *maxval); line = strstr(line, duh); fprintf(stderr, "%s found at offset %d\n", duh, line - chars); line += strlen(duh) + 1; long offset = line - chars; //lseek(fd, offset, SEEK_SET); // move to the correct offset fseek(fp, offset, SEEK_SET); // move to the correct offset //long numread = read(fd, buf, bufsize); long numread = fread(buf, sizeof(char), bufsize, fp); fprintf(stderr, "Texture %s read %ld of %ld bytes\n", filename, numread, bufsize); fclose(fp); int pixels = (*xsize) * (*ysize); for (int i=0; i<pixels; i++) pic[i] = (int) buf[3*i]; // red channel return pic; // success } void write_ppm( char *filename, int xsize, int ysize, int maxval, int *pic) { FILE *fp; int x,y; fp = fopen(filename, "wb"); if (!fp) { fprintf(stderr, "FAILED TO OPEN FILE '%s' for writing\n"); exit(-1); } fprintf(fp, "P6\n"); fprintf(fp,"%d %d\n%d\n", xsize, ysize, maxval); int numpix = xsize * ysize; for (int i=0; i<numpix; i++) { unsigned char uc = (unsigned char) pic[i]; fprintf(fp, "%c%c%c", uc, uc, uc); } fclose(fp); } //check bool check(int* des, int* src, int len){ for(int i=0; i<len; ++i){ if(des[i] != src[i]){ printf("at %d des = %d, src = %d", i, des[i], src[i]); return false; } } return true; } int main( int argc, char **argv ) { int thresh = DEFAULT_THRESHOLD; char *filename; filename = strdup( DEFAULT_FILENAME); if (argc > 1) { if (argc == 3) { // filename AND threshold filename = strdup( argv[1]); thresh = atoi( argv[2] ); } if (argc == 2) { // default file but specified threshhold thresh = atoi( argv[1] ); } fprintf(stderr, "file %s threshold %d\n", filename, thresh); } int xsize, ysize, maxval; unsigned int *pic = read_ppm( filename, &xsize, &ysize, &maxval ); int numbytes = xsize * ysize * 3 * sizeof( int ); int *result = (int *) malloc( numbytes ); if (!result) { fprintf(stderr, "sobel() unable to malloc %d bytes\n", numbytes); exit(-1); // fail } int i, j, magnitude, sum1, sum2; for (int col=0; col<xsize; col++) { for (int row=0; row<ysize; row++) { *result++ = 0; } } for (i = 1; i < ysize - 1; i++) { for (j = 1; j < xsize -1; j++) { int offset = i*xsize + j; sum1 = pic[ xsize * (i-1) + j+1 ] - pic[ xsize*(i-1) + j-1 ] + 2 * pic[ xsize * (i) + j+1 ] - 2 * pic[ xsize*(i) + j-1 ] + pic[ xsize * (i+1) + j+1 ] - pic[ xsize*(i+1) + j-1 ]; sum2 = pic[ xsize * (i-1) + j-1 ] + 2 * pic[ xsize * (i-1) + j ] + pic[ xsize * (i-1) + j+1 ] - pic[xsize * (i+1) + j-1 ] - 2 * pic[ xsize * (i+1) + j ] - pic[ xsize * (i+1) + j+1 ]; magnitude = sum1*sum1 + sum2*sum2; if (magnitude > thresh) result[offset] = 255; else result[offset] = 0; } } write_ppm( "result8000gold.ppm", xsize, ysize, 255, result); // GPU Version int *resultGPU = (int *) malloc( numbytes ); if (!resultGPU) { fprintf(stderr, "sobel() unable to malloc %d bytes\n", numbytes); exit(-1); // fail } SobelOnDevice(resultGPU, pic, xsize, ysize, thresh); //check for test printf("xsize is %d, and ysize is %d: \n ", xsize, ysize); printf( "Test %s\n", (check(resultGPU, result, xsize * ysize)) ? "PASSED" : "FAILED"); write_ppm( "result9000gold.ppm", xsize, ysize, 255, resultGPU); fprintf(stderr, "sobel done\n"); } //////////////////////////////////////////////////////////////////////////////// //! Sobel On CUDA //////////////////////////////////////////////////////////////////////////////// void SobelOnDevice(int* result, unsigned int* pic, int width, int height, int thresh) { // Device input vectors unsigned int *d_pic; size_t bytes = width * height * sizeof( int ); // Allocate memory for each vector on GPU hipMalloc(&d_pic, bytes); // Copy host vectors to device hipMemcpy(d_pic, pic, bytes, hipMemcpyHostToDevice); // Allocate P on the device int *d_res; hipMalloc(&d_res, 3*bytes); // Setup the execution configuration dim3 dimBlock(BLOCK_WIDTH, BLOCK_WIDTH); dim3 dimGrid((width-1)/TILE_WIDTH + 1, (height-1)/TILE_WIDTH + 1, 1); // Launch the device computation threads! hipLaunchKernelGGL(( SobelKernel), dim3(dimGrid), dim3(dimBlock), 0, 0, d_res, d_pic, width, height, thresh); // Copy array back to host hipMemcpy(result, d_res, 3*bytes, hipMemcpyDeviceToHost ); // Free device matrices hipFree(d_pic); hipFree(d_res); }
9ea27772cc4b74af1ef1010091050ae08c109414.cu
#include <stdio.h> #include <stdlib.h> #include <fcntl.h> #include "string.h" #include "sobel_kernel.cu" #define DEFAULT_THRESHOLD 8000 #define DEFAULT_FILENAME "BWstop-sign.ppm" #define TILE_WIDTH 14 #define BLOCK_WIDTH 16 void SobelOnDevice(int* result, unsigned int* pic, int width, int height, int thresh); unsigned int *read_ppm( char *filename, int * xsize, int * ysize, int *maxval ){ if ( !filename || filename[0] == '\0') { fprintf(stderr, "read_ppm but no file name\n"); return NULL; // fail } FILE *fp; fprintf(stderr, "read_ppm( %s )\n", filename); fp = fopen( filename, "rb"); if (!fp) { fprintf(stderr, "read_ppm() ERROR file '%s' cannot be opened for reading\n", filename); return NULL; // fail } char chars[1024]; //int num = read(fd, chars, 1000); int num = fread(chars, sizeof(char), 1000, fp); if (chars[0] != 'P' || chars[1] != '6') { fprintf(stderr, "Texture::Texture() ERROR file '%s' does not start with \"P6\" I am expecting a binary PPM file\n", filename); return NULL; } unsigned int width, height, maxvalue; char *ptr = chars+3; // P 6 newline if (*ptr == '#') // comment line! { ptr = 1 + strstr(ptr, "\n"); } num = sscanf(ptr, "%d\n%d\n%d", &width, &height, &maxvalue); fprintf(stderr, "read %d things width %d height %d maxval %d\n", num, width, height, maxvalue); *xsize = width; *ysize = height; *maxval = maxvalue; unsigned int *pic = (unsigned int *)malloc( width * height * sizeof(unsigned int)); if (!pic) { fprintf(stderr, "read_ppm() unable to allocate %d x %d unsigned ints for the picture\n", width, height); return NULL; // fail but return } // allocate buffer to read the rest of the file into int bufsize = 3 * width * height * sizeof(unsigned char); if ((*maxval) > 255) bufsize *= 2; unsigned char *buf = (unsigned char *)malloc( bufsize ); if (!buf) { fprintf(stderr, "read_ppm() unable to allocate %d bytes of read buffer\n", bufsize); return NULL; // fail but return } // really read char duh[80]; char *line = chars; // find the start of the pixel data. sprintf(duh, "%d\0", *xsize); line = strstr(line, duh); //fprintf(stderr, "%s found at offset %d\n", duh, line-chars); line += strlen(duh) + 1; sprintf(duh, "%d\0", *ysize); line = strstr(line, duh); //fprintf(stderr, "%s found at offset %d\n", duh, line-chars); line += strlen(duh) + 1; sprintf(duh, "%d\0", *maxval); line = strstr(line, duh); fprintf(stderr, "%s found at offset %d\n", duh, line - chars); line += strlen(duh) + 1; long offset = line - chars; //lseek(fd, offset, SEEK_SET); // move to the correct offset fseek(fp, offset, SEEK_SET); // move to the correct offset //long numread = read(fd, buf, bufsize); long numread = fread(buf, sizeof(char), bufsize, fp); fprintf(stderr, "Texture %s read %ld of %ld bytes\n", filename, numread, bufsize); fclose(fp); int pixels = (*xsize) * (*ysize); for (int i=0; i<pixels; i++) pic[i] = (int) buf[3*i]; // red channel return pic; // success } void write_ppm( char *filename, int xsize, int ysize, int maxval, int *pic) { FILE *fp; int x,y; fp = fopen(filename, "wb"); if (!fp) { fprintf(stderr, "FAILED TO OPEN FILE '%s' for writing\n"); exit(-1); } fprintf(fp, "P6\n"); fprintf(fp,"%d %d\n%d\n", xsize, ysize, maxval); int numpix = xsize * ysize; for (int i=0; i<numpix; i++) { unsigned char uc = (unsigned char) pic[i]; fprintf(fp, "%c%c%c", uc, uc, uc); } fclose(fp); } //check bool check(int* des, int* src, int len){ for(int i=0; i<len; ++i){ if(des[i] != src[i]){ printf("at %d des = %d, src = %d", i, des[i], src[i]); return false; } } return true; } int main( int argc, char **argv ) { int thresh = DEFAULT_THRESHOLD; char *filename; filename = strdup( DEFAULT_FILENAME); if (argc > 1) { if (argc == 3) { // filename AND threshold filename = strdup( argv[1]); thresh = atoi( argv[2] ); } if (argc == 2) { // default file but specified threshhold thresh = atoi( argv[1] ); } fprintf(stderr, "file %s threshold %d\n", filename, thresh); } int xsize, ysize, maxval; unsigned int *pic = read_ppm( filename, &xsize, &ysize, &maxval ); int numbytes = xsize * ysize * 3 * sizeof( int ); int *result = (int *) malloc( numbytes ); if (!result) { fprintf(stderr, "sobel() unable to malloc %d bytes\n", numbytes); exit(-1); // fail } int i, j, magnitude, sum1, sum2; for (int col=0; col<xsize; col++) { for (int row=0; row<ysize; row++) { *result++ = 0; } } for (i = 1; i < ysize - 1; i++) { for (j = 1; j < xsize -1; j++) { int offset = i*xsize + j; sum1 = pic[ xsize * (i-1) + j+1 ] - pic[ xsize*(i-1) + j-1 ] + 2 * pic[ xsize * (i) + j+1 ] - 2 * pic[ xsize*(i) + j-1 ] + pic[ xsize * (i+1) + j+1 ] - pic[ xsize*(i+1) + j-1 ]; sum2 = pic[ xsize * (i-1) + j-1 ] + 2 * pic[ xsize * (i-1) + j ] + pic[ xsize * (i-1) + j+1 ] - pic[xsize * (i+1) + j-1 ] - 2 * pic[ xsize * (i+1) + j ] - pic[ xsize * (i+1) + j+1 ]; magnitude = sum1*sum1 + sum2*sum2; if (magnitude > thresh) result[offset] = 255; else result[offset] = 0; } } write_ppm( "result8000gold.ppm", xsize, ysize, 255, result); // GPU Version int *resultGPU = (int *) malloc( numbytes ); if (!resultGPU) { fprintf(stderr, "sobel() unable to malloc %d bytes\n", numbytes); exit(-1); // fail } SobelOnDevice(resultGPU, pic, xsize, ysize, thresh); //check for test printf("xsize is %d, and ysize is %d: \n ", xsize, ysize); printf( "Test %s\n", (check(resultGPU, result, xsize * ysize)) ? "PASSED" : "FAILED"); write_ppm( "result9000gold.ppm", xsize, ysize, 255, resultGPU); fprintf(stderr, "sobel done\n"); } //////////////////////////////////////////////////////////////////////////////// //! Sobel On CUDA //////////////////////////////////////////////////////////////////////////////// void SobelOnDevice(int* result, unsigned int* pic, int width, int height, int thresh) { // Device input vectors unsigned int *d_pic; size_t bytes = width * height * sizeof( int ); // Allocate memory for each vector on GPU cudaMalloc(&d_pic, bytes); // Copy host vectors to device cudaMemcpy(d_pic, pic, bytes, cudaMemcpyHostToDevice); // Allocate P on the device int *d_res; cudaMalloc(&d_res, 3*bytes); // Setup the execution configuration dim3 dimBlock(BLOCK_WIDTH, BLOCK_WIDTH); dim3 dimGrid((width-1)/TILE_WIDTH + 1, (height-1)/TILE_WIDTH + 1, 1); // Launch the device computation threads! SobelKernel<<<dimGrid, dimBlock>>>(d_res, d_pic, width, height, thresh); // Copy array back to host cudaMemcpy(result, d_res, 3*bytes, cudaMemcpyDeviceToHost ); // Free device matrices cudaFree(d_pic); cudaFree(d_res); }
296f86ae112a4b0f7b73a43666556fe198ba3460.hip
// !!! This is a file automatically generated by hipify!!! /*========================================================================= * * Copyright RTK Consortium * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ // rtk includes #include "rtkCudaLaplacianImageFilter.hcu" #include "rtkCudaFirstOrderKernels.hcu" #include "rtkCudaUtilities.hcu" #include <itkMacro.h> // cuda includes #include <hip/hip_runtime.h> void CUDA_laplacian(int size[3], float spacing[3], float * dev_in, float * dev_out) { int3 dev_Size = make_int3(size[0], size[1], size[2]); float3 dev_Spacing = make_float3(spacing[0], spacing[1], spacing[2]); // Reset output volume long int memorySizeOutput = size[0] * size[1] * size[2] * sizeof(float); hipMemset((void *)dev_out, 0, memorySizeOutput); // Initialize volumes to store the gradient components float * dev_grad_x; float * dev_grad_y; float * dev_grad_z; hipMalloc((void **)&dev_grad_x, memorySizeOutput); hipMalloc((void **)&dev_grad_y, memorySizeOutput); hipMalloc((void **)&dev_grad_z, memorySizeOutput); hipMemset(dev_grad_x, 0, memorySizeOutput); hipMemset(dev_grad_y, 0, memorySizeOutput); hipMemset(dev_grad_z, 0, memorySizeOutput); // Thread Block Dimensions dim3 dimBlock = dim3(16, 4, 4); int blocksInX = iDivUp(size[0], dimBlock.x); int blocksInY = iDivUp(size[1], dimBlock.y); int blocksInZ = iDivUp(size[2], dimBlock.z); dim3 dimGrid = dim3(blocksInX, blocksInY, blocksInZ); hipLaunchKernelGGL(( gradient_kernel), dim3(dimGrid), dim3(dimBlock), 0, 0, dev_in, dev_grad_x, dev_grad_y, dev_grad_z, dev_Size, dev_Spacing); CUDA_CHECK_ERROR; hipLaunchKernelGGL(( divergence_kernel), dim3(dimGrid), dim3(dimBlock), 0, 0, dev_grad_x, dev_grad_y, dev_grad_z, dev_out, dev_Size, dev_Spacing); CUDA_CHECK_ERROR; // Cleanup hipFree(dev_grad_x); hipFree(dev_grad_y); hipFree(dev_grad_z); CUDA_CHECK_ERROR; }
296f86ae112a4b0f7b73a43666556fe198ba3460.cu
/*========================================================================= * * Copyright RTK Consortium * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ // rtk includes #include "rtkCudaLaplacianImageFilter.hcu" #include "rtkCudaFirstOrderKernels.hcu" #include "rtkCudaUtilities.hcu" #include <itkMacro.h> // cuda includes #include <cuda.h> void CUDA_laplacian(int size[3], float spacing[3], float * dev_in, float * dev_out) { int3 dev_Size = make_int3(size[0], size[1], size[2]); float3 dev_Spacing = make_float3(spacing[0], spacing[1], spacing[2]); // Reset output volume long int memorySizeOutput = size[0] * size[1] * size[2] * sizeof(float); cudaMemset((void *)dev_out, 0, memorySizeOutput); // Initialize volumes to store the gradient components float * dev_grad_x; float * dev_grad_y; float * dev_grad_z; cudaMalloc((void **)&dev_grad_x, memorySizeOutput); cudaMalloc((void **)&dev_grad_y, memorySizeOutput); cudaMalloc((void **)&dev_grad_z, memorySizeOutput); cudaMemset(dev_grad_x, 0, memorySizeOutput); cudaMemset(dev_grad_y, 0, memorySizeOutput); cudaMemset(dev_grad_z, 0, memorySizeOutput); // Thread Block Dimensions dim3 dimBlock = dim3(16, 4, 4); int blocksInX = iDivUp(size[0], dimBlock.x); int blocksInY = iDivUp(size[1], dimBlock.y); int blocksInZ = iDivUp(size[2], dimBlock.z); dim3 dimGrid = dim3(blocksInX, blocksInY, blocksInZ); gradient_kernel<<<dimGrid, dimBlock>>>(dev_in, dev_grad_x, dev_grad_y, dev_grad_z, dev_Size, dev_Spacing); CUDA_CHECK_ERROR; divergence_kernel<<<dimGrid, dimBlock>>>(dev_grad_x, dev_grad_y, dev_grad_z, dev_out, dev_Size, dev_Spacing); CUDA_CHECK_ERROR; // Cleanup cudaFree(dev_grad_x); cudaFree(dev_grad_y); cudaFree(dev_grad_z); CUDA_CHECK_ERROR; }
9ee3c02ca57a58fe6a4bd1ef0dbedb7395ab25cc.hip
// !!! This is a file automatically generated by hipify!!! /* Copyright 2017 Stanford University * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "circuit.h" #include "hip/hip_runtime.h" class GPUAccumulateCharge { public: typedef float LHS; typedef float RHS; template<bool EXCLUSIVE> __host__ __device__ __forceinline__ static void apply(LHS &lhs, RHS &rhs) { #ifdef __CUDA_ARCH__ float *target = &lhs; atomicAdd(target,rhs); #else assert(false); #endif } template<bool EXCLUSIVE> __host__ __device__ __forceinline__ static void fold(RHS &rhs1, RHS rhs2) { #ifdef __CUDA_ARCH__ float *target = &rhs1; atomicAdd(target,rhs2); #else assert(false); #endif } }; template<typename AT, int SEGMENTS> struct SegmentAccessors { public: __host__ __device__ inline AT& operator[](unsigned index) { return accessors[index]; } __host__ __device__ inline const AT& operator[](unsigned index) const { return accessors[index]; } public: AT accessors[SEGMENTS]; }; __device__ __forceinline__ float find_node_voltage(const AccessorROfloat &pvt, const AccessorROfloat &shr, const AccessorROfloat &ghost, Point<1> ptr, PointerLocation loc) { switch (loc) { case PRIVATE_PTR: return pvt[ptr]; case SHARED_PTR: return shr[ptr]; case GHOST_PTR: return ghost[ptr]; default: break; // assert(false); } return 0.f; } __global__ void calc_new_currents_kernel(Point<1> first, int num_wires, float dt, int steps, const AccessorROpoint fa_in_ptr, const AccessorROpoint fa_out_ptr, const AccessorROloc fa_in_loc, const AccessorROloc fa_out_loc, const AccessorROfloat fa_inductance, const AccessorROfloat fa_resistance, const AccessorROfloat fa_wire_cap, const AccessorROfloat fa_pvt_voltage, const AccessorROfloat fa_shr_voltage, const AccessorROfloat fa_ghost_voltage, const SegmentAccessors<AccessorRWfloat,WIRE_SEGMENTS> fa_currents, const SegmentAccessors<AccessorRWfloat,WIRE_SEGMENTS-1> fa_voltages) { const int tid = blockIdx.x * blockDim.x + threadIdx.x; // We can do this because we know we have SOA layout and wires are dense if (tid < num_wires) { const Point<1> wire_ptr = first + tid; float recip_dt = 1.f/dt; float temp_v[WIRE_SEGMENTS+1]; float temp_i[WIRE_SEGMENTS]; float old_i[WIRE_SEGMENTS]; float old_v[WIRE_SEGMENTS-1]; #pragma unroll for (int i = 0; i < WIRE_SEGMENTS; i++) { temp_i[i] = fa_currents[i][wire_ptr]; old_i[i] = temp_i[i]; } #pragma unroll for (int i = 0; i < (WIRE_SEGMENTS-1); i++) { temp_v[i+1] = fa_voltages[i][wire_ptr]; old_v[i] = temp_v[i+1]; } Point<1> in_ptr = fa_in_ptr[wire_ptr]; PointerLocation in_loc = fa_in_loc[wire_ptr]; temp_v[0] = find_node_voltage(fa_pvt_voltage, fa_shr_voltage, fa_ghost_voltage, in_ptr, in_loc); Point<1> out_ptr = fa_out_ptr[wire_ptr]; PointerLocation out_loc = fa_out_loc[wire_ptr]; temp_v[WIRE_SEGMENTS] = find_node_voltage(fa_pvt_voltage, fa_shr_voltage, fa_ghost_voltage, in_ptr, in_loc); // Solve the RLC model iteratively float inductance = fa_inductance[wire_ptr]; float recip_resistance = 1.f/fa_resistance[wire_ptr]; float recip_capacitance = 1.f/fa_wire_cap[wire_ptr]; for (int j = 0; j < steps; j++) { #pragma unroll for (int i = 0; i < WIRE_SEGMENTS; i++) { temp_i[i] = ((temp_v[i] - temp_v[i+1]) - (inductance * (temp_i[i] - old_i[i]) * recip_dt)) * recip_resistance; } #pragma unroll for (int i = 0; i < (WIRE_SEGMENTS-1); i++) { temp_v[i+1] = old_v[i] + dt * (temp_i[i] - temp_i[i+1]) * recip_capacitance; } } // Write out the result #pragma unroll for (int i = 0; i < WIRE_SEGMENTS; i++) fa_currents[i][wire_ptr] = temp_i[i]; #pragma unroll for (int i = 0; i < (WIRE_SEGMENTS-1); i++) fa_voltages[i][wire_ptr] = temp_v[i+1]; } } /*static*/ __host__ void CalcNewCurrentsTask::gpu_base_impl(const CircuitPiece &piece, const std::vector<PhysicalRegion> &regions) { #ifndef DISABLE_MATH SegmentAccessors<AccessorRWfloat,WIRE_SEGMENTS> fa_currents; for (int i = 0; i < WIRE_SEGMENTS; i++) fa_currents[i] = AccessorRWfloat(regions[0], FID_CURRENT+i); SegmentAccessors<AccessorRWfloat,WIRE_SEGMENTS-1> fa_voltages; for (int i = 0; i < (WIRE_SEGMENTS-1); i++) fa_voltages[i] = AccessorRWfloat(regions[0], FID_WIRE_VOLTAGE+i); const AccessorROpoint fa_in_ptr(regions[1], FID_IN_PTR); const AccessorROpoint fa_out_ptr(regions[1], FID_OUT_PTR); const AccessorROloc fa_in_loc(regions[1], FID_IN_LOC); const AccessorROloc fa_out_loc(regions[1], FID_OUT_LOC); const AccessorROfloat fa_inductance(regions[1], FID_INDUCTANCE); const AccessorROfloat fa_resistance(regions[1], FID_RESISTANCE); const AccessorROfloat fa_wire_cap(regions[1], FID_WIRE_CAP); const AccessorROfloat fa_pvt_voltage(regions[2], FID_NODE_VOLTAGE); const AccessorROfloat fa_shr_voltage(regions[3], FID_NODE_VOLTAGE); const AccessorROfloat fa_ghost_voltage(regions[4], FID_NODE_VOLTAGE); const int threads_per_block = 256; const int num_blocks = (piece.num_wires + (threads_per_block-1)) / threads_per_block; hipLaunchKernelGGL(( calc_new_currents_kernel), dim3(num_blocks),dim3(threads_per_block), 0, 0, piece.first_wire, piece.num_wires, piece.dt, piece.steps, fa_in_ptr, fa_out_ptr, fa_in_loc, fa_out_loc, fa_inductance, fa_resistance, fa_wire_cap, fa_pvt_voltage, fa_shr_voltage, fa_ghost_voltage, fa_currents, fa_voltages); #endif } template<typename REDOP> __device__ __forceinline__ void reduce_local(const AccessorRWfloat &pvt, const AccessorRDfloat &shr, const AccessorRDfloat &ghost, Point<1> ptr, PointerLocation loc, typename REDOP::RHS value) { switch (loc) { case PRIVATE_PTR: pvt.template reduce<REDOP,true/*exclusive*/>(ptr, value); break; case SHARED_PTR: shr.template reduce<REDOP,false/*exclusive*/>(ptr, value); break; case GHOST_PTR: ghost.template reduce<REDOP,false/*exclusive*/>(ptr, value); break; default: break; // assert(false); // should never make it here } } __global__ void distribute_charge_kernel(Point<1> first, const int num_wires, float dt, const AccessorROpoint fa_in_ptr, const AccessorROpoint fa_out_ptr, const AccessorROloc fa_in_loc, const AccessorROloc fa_out_loc, const AccessorROfloat fa_in_current, const AccessorROfloat fa_out_current, const AccessorRWfloat fa_pvt_charge, const AccessorRDfloat fa_shr_charge, const AccessorRDfloat fa_ghost_charge) { const int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < num_wires) { const Point<1> wire_ptr = first + tid; float in_dq = -dt * fa_in_current[wire_ptr]; float out_dq = dt * fa_out_current[wire_ptr]; Point<1> in_ptr = fa_in_ptr[wire_ptr]; PointerLocation in_loc = fa_in_loc[wire_ptr]; reduce_local<GPUAccumulateCharge>(fa_pvt_charge, fa_shr_charge, fa_ghost_charge, in_ptr, in_loc, in_dq); Point<1> out_ptr = fa_out_ptr[wire_ptr]; PointerLocation out_loc = fa_out_loc[wire_ptr]; reduce_local<GPUAccumulateCharge>(fa_pvt_charge, fa_shr_charge, fa_ghost_charge, out_ptr, out_loc, out_dq); } } /*static*/ __host__ void DistributeChargeTask::gpu_base_impl(const CircuitPiece &piece, const std::vector<PhysicalRegion> &regions) { #ifndef DISABLE_MATH const AccessorROpoint fa_in_ptr(regions[0], FID_IN_PTR); const AccessorROpoint fa_out_ptr(regions[0], FID_OUT_PTR); const AccessorROloc fa_in_loc(regions[0], FID_IN_LOC); const AccessorROloc fa_out_loc(regions[0], FID_OUT_LOC); const AccessorROfloat fa_in_current(regions[0], FID_CURRENT); const AccessorROfloat fa_out_current(regions[0], FID_CURRENT+WIRE_SEGMENTS-1); const AccessorRWfloat fa_pvt_charge(regions[1], FID_CHARGE); const AccessorRDfloat fa_shr_charge(regions[2], FID_CHARGE, REDUCE_ID); const AccessorRDfloat fa_ghost_charge(regions[3], FID_CHARGE, REDUCE_ID); const int threads_per_block = 256; const int num_blocks = (piece.num_wires + (threads_per_block-1)) / threads_per_block; hipLaunchKernelGGL(( distribute_charge_kernel), dim3(num_blocks),dim3(threads_per_block), 0, 0, piece.first_wire, piece.num_wires, piece.dt, fa_in_ptr, fa_out_ptr, fa_in_loc, fa_out_loc, fa_in_current, fa_out_current, fa_pvt_charge, fa_shr_charge, fa_ghost_charge); #endif } __global__ void update_voltages_kernel(Point<1> first, const int num_nodes, const AccessorRWfloat fa_pvt_voltage, const AccessorRWfloat fa_shr_voltage, const AccessorRWfloat fa_pvt_charge, const AccessorRWfloat fa_shr_charge, const AccessorROfloat fa_pvt_cap, const AccessorROfloat fa_shr_cap, const AccessorROfloat fa_pvt_leakage, const AccessorROfloat fa_shr_leakage, const AccessorROloc fa_ptr_loc) { const int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < num_nodes) { const Point<1> node_ptr = first + tid; PointerLocation node_loc = fa_ptr_loc[node_ptr]; if (node_loc == PRIVATE_PTR) { float voltage = fa_pvt_voltage[node_ptr]; float charge = fa_pvt_charge[node_ptr]; float capacitance = fa_pvt_cap[node_ptr]; float leakage = fa_pvt_leakage[node_ptr]; voltage += (charge / capacitance); voltage *= (1.f - leakage); fa_pvt_voltage[node_ptr] = voltage; fa_pvt_charge[node_ptr] = 0.f; } else { float voltage = fa_shr_voltage[node_ptr]; float charge = fa_shr_charge[node_ptr]; float capacitance = fa_shr_cap[node_ptr]; float leakage = fa_shr_leakage[node_ptr]; voltage += (charge / capacitance); voltage *= (1.f - leakage); fa_pvt_voltage[node_ptr] = voltage; fa_pvt_charge[node_ptr] = 0.f; } } } /*static*/ __host__ void UpdateVoltagesTask::gpu_base_impl(const CircuitPiece &piece, const std::vector<PhysicalRegion> &regions) { #ifndef DISABLE_MATH const AccessorRWfloat fa_pvt_voltage(regions[0], FID_NODE_VOLTAGE); const AccessorRWfloat fa_pvt_charge(regions[0], FID_CHARGE); const AccessorRWfloat fa_shr_voltage(regions[1], FID_NODE_VOLTAGE); const AccessorRWfloat fa_shr_charge(regions[1], FID_CHARGE); const AccessorROfloat fa_pvt_cap(regions[2], FID_NODE_CAP); const AccessorROfloat fa_pvt_leakage(regions[2], FID_LEAKAGE); const AccessorROfloat fa_shr_cap(regions[3], FID_NODE_CAP); const AccessorROfloat fa_shr_leakage(regions[3], FID_LEAKAGE); const AccessorROloc fa_ptr_loc(regions[4], FID_LOCATOR); const int threads_per_block = 256; const int num_blocks = (piece.num_nodes + (threads_per_block-1)) / threads_per_block; hipLaunchKernelGGL(( update_voltages_kernel), dim3(num_blocks),dim3(threads_per_block), 0, 0, piece.first_node, piece.num_nodes, fa_pvt_voltage, fa_shr_voltage, fa_pvt_charge, fa_shr_charge, fa_pvt_cap, fa_shr_cap, fa_pvt_leakage, fa_shr_leakage, fa_ptr_loc); #endif }
9ee3c02ca57a58fe6a4bd1ef0dbedb7395ab25cc.cu
/* Copyright 2017 Stanford University * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "circuit.h" #include "cuda_runtime.h" class GPUAccumulateCharge { public: typedef float LHS; typedef float RHS; template<bool EXCLUSIVE> __host__ __device__ __forceinline__ static void apply(LHS &lhs, RHS &rhs) { #ifdef __CUDA_ARCH__ float *target = &lhs; atomicAdd(target,rhs); #else assert(false); #endif } template<bool EXCLUSIVE> __host__ __device__ __forceinline__ static void fold(RHS &rhs1, RHS rhs2) { #ifdef __CUDA_ARCH__ float *target = &rhs1; atomicAdd(target,rhs2); #else assert(false); #endif } }; template<typename AT, int SEGMENTS> struct SegmentAccessors { public: __host__ __device__ inline AT& operator[](unsigned index) { return accessors[index]; } __host__ __device__ inline const AT& operator[](unsigned index) const { return accessors[index]; } public: AT accessors[SEGMENTS]; }; __device__ __forceinline__ float find_node_voltage(const AccessorROfloat &pvt, const AccessorROfloat &shr, const AccessorROfloat &ghost, Point<1> ptr, PointerLocation loc) { switch (loc) { case PRIVATE_PTR: return pvt[ptr]; case SHARED_PTR: return shr[ptr]; case GHOST_PTR: return ghost[ptr]; default: break; // assert(false); } return 0.f; } __global__ void calc_new_currents_kernel(Point<1> first, int num_wires, float dt, int steps, const AccessorROpoint fa_in_ptr, const AccessorROpoint fa_out_ptr, const AccessorROloc fa_in_loc, const AccessorROloc fa_out_loc, const AccessorROfloat fa_inductance, const AccessorROfloat fa_resistance, const AccessorROfloat fa_wire_cap, const AccessorROfloat fa_pvt_voltage, const AccessorROfloat fa_shr_voltage, const AccessorROfloat fa_ghost_voltage, const SegmentAccessors<AccessorRWfloat,WIRE_SEGMENTS> fa_currents, const SegmentAccessors<AccessorRWfloat,WIRE_SEGMENTS-1> fa_voltages) { const int tid = blockIdx.x * blockDim.x + threadIdx.x; // We can do this because we know we have SOA layout and wires are dense if (tid < num_wires) { const Point<1> wire_ptr = first + tid; float recip_dt = 1.f/dt; float temp_v[WIRE_SEGMENTS+1]; float temp_i[WIRE_SEGMENTS]; float old_i[WIRE_SEGMENTS]; float old_v[WIRE_SEGMENTS-1]; #pragma unroll for (int i = 0; i < WIRE_SEGMENTS; i++) { temp_i[i] = fa_currents[i][wire_ptr]; old_i[i] = temp_i[i]; } #pragma unroll for (int i = 0; i < (WIRE_SEGMENTS-1); i++) { temp_v[i+1] = fa_voltages[i][wire_ptr]; old_v[i] = temp_v[i+1]; } Point<1> in_ptr = fa_in_ptr[wire_ptr]; PointerLocation in_loc = fa_in_loc[wire_ptr]; temp_v[0] = find_node_voltage(fa_pvt_voltage, fa_shr_voltage, fa_ghost_voltage, in_ptr, in_loc); Point<1> out_ptr = fa_out_ptr[wire_ptr]; PointerLocation out_loc = fa_out_loc[wire_ptr]; temp_v[WIRE_SEGMENTS] = find_node_voltage(fa_pvt_voltage, fa_shr_voltage, fa_ghost_voltage, in_ptr, in_loc); // Solve the RLC model iteratively float inductance = fa_inductance[wire_ptr]; float recip_resistance = 1.f/fa_resistance[wire_ptr]; float recip_capacitance = 1.f/fa_wire_cap[wire_ptr]; for (int j = 0; j < steps; j++) { #pragma unroll for (int i = 0; i < WIRE_SEGMENTS; i++) { temp_i[i] = ((temp_v[i] - temp_v[i+1]) - (inductance * (temp_i[i] - old_i[i]) * recip_dt)) * recip_resistance; } #pragma unroll for (int i = 0; i < (WIRE_SEGMENTS-1); i++) { temp_v[i+1] = old_v[i] + dt * (temp_i[i] - temp_i[i+1]) * recip_capacitance; } } // Write out the result #pragma unroll for (int i = 0; i < WIRE_SEGMENTS; i++) fa_currents[i][wire_ptr] = temp_i[i]; #pragma unroll for (int i = 0; i < (WIRE_SEGMENTS-1); i++) fa_voltages[i][wire_ptr] = temp_v[i+1]; } } /*static*/ __host__ void CalcNewCurrentsTask::gpu_base_impl(const CircuitPiece &piece, const std::vector<PhysicalRegion> &regions) { #ifndef DISABLE_MATH SegmentAccessors<AccessorRWfloat,WIRE_SEGMENTS> fa_currents; for (int i = 0; i < WIRE_SEGMENTS; i++) fa_currents[i] = AccessorRWfloat(regions[0], FID_CURRENT+i); SegmentAccessors<AccessorRWfloat,WIRE_SEGMENTS-1> fa_voltages; for (int i = 0; i < (WIRE_SEGMENTS-1); i++) fa_voltages[i] = AccessorRWfloat(regions[0], FID_WIRE_VOLTAGE+i); const AccessorROpoint fa_in_ptr(regions[1], FID_IN_PTR); const AccessorROpoint fa_out_ptr(regions[1], FID_OUT_PTR); const AccessorROloc fa_in_loc(regions[1], FID_IN_LOC); const AccessorROloc fa_out_loc(regions[1], FID_OUT_LOC); const AccessorROfloat fa_inductance(regions[1], FID_INDUCTANCE); const AccessorROfloat fa_resistance(regions[1], FID_RESISTANCE); const AccessorROfloat fa_wire_cap(regions[1], FID_WIRE_CAP); const AccessorROfloat fa_pvt_voltage(regions[2], FID_NODE_VOLTAGE); const AccessorROfloat fa_shr_voltage(regions[3], FID_NODE_VOLTAGE); const AccessorROfloat fa_ghost_voltage(regions[4], FID_NODE_VOLTAGE); const int threads_per_block = 256; const int num_blocks = (piece.num_wires + (threads_per_block-1)) / threads_per_block; calc_new_currents_kernel<<<num_blocks,threads_per_block>>>(piece.first_wire, piece.num_wires, piece.dt, piece.steps, fa_in_ptr, fa_out_ptr, fa_in_loc, fa_out_loc, fa_inductance, fa_resistance, fa_wire_cap, fa_pvt_voltage, fa_shr_voltage, fa_ghost_voltage, fa_currents, fa_voltages); #endif } template<typename REDOP> __device__ __forceinline__ void reduce_local(const AccessorRWfloat &pvt, const AccessorRDfloat &shr, const AccessorRDfloat &ghost, Point<1> ptr, PointerLocation loc, typename REDOP::RHS value) { switch (loc) { case PRIVATE_PTR: pvt.template reduce<REDOP,true/*exclusive*/>(ptr, value); break; case SHARED_PTR: shr.template reduce<REDOP,false/*exclusive*/>(ptr, value); break; case GHOST_PTR: ghost.template reduce<REDOP,false/*exclusive*/>(ptr, value); break; default: break; // assert(false); // should never make it here } } __global__ void distribute_charge_kernel(Point<1> first, const int num_wires, float dt, const AccessorROpoint fa_in_ptr, const AccessorROpoint fa_out_ptr, const AccessorROloc fa_in_loc, const AccessorROloc fa_out_loc, const AccessorROfloat fa_in_current, const AccessorROfloat fa_out_current, const AccessorRWfloat fa_pvt_charge, const AccessorRDfloat fa_shr_charge, const AccessorRDfloat fa_ghost_charge) { const int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < num_wires) { const Point<1> wire_ptr = first + tid; float in_dq = -dt * fa_in_current[wire_ptr]; float out_dq = dt * fa_out_current[wire_ptr]; Point<1> in_ptr = fa_in_ptr[wire_ptr]; PointerLocation in_loc = fa_in_loc[wire_ptr]; reduce_local<GPUAccumulateCharge>(fa_pvt_charge, fa_shr_charge, fa_ghost_charge, in_ptr, in_loc, in_dq); Point<1> out_ptr = fa_out_ptr[wire_ptr]; PointerLocation out_loc = fa_out_loc[wire_ptr]; reduce_local<GPUAccumulateCharge>(fa_pvt_charge, fa_shr_charge, fa_ghost_charge, out_ptr, out_loc, out_dq); } } /*static*/ __host__ void DistributeChargeTask::gpu_base_impl(const CircuitPiece &piece, const std::vector<PhysicalRegion> &regions) { #ifndef DISABLE_MATH const AccessorROpoint fa_in_ptr(regions[0], FID_IN_PTR); const AccessorROpoint fa_out_ptr(regions[0], FID_OUT_PTR); const AccessorROloc fa_in_loc(regions[0], FID_IN_LOC); const AccessorROloc fa_out_loc(regions[0], FID_OUT_LOC); const AccessorROfloat fa_in_current(regions[0], FID_CURRENT); const AccessorROfloat fa_out_current(regions[0], FID_CURRENT+WIRE_SEGMENTS-1); const AccessorRWfloat fa_pvt_charge(regions[1], FID_CHARGE); const AccessorRDfloat fa_shr_charge(regions[2], FID_CHARGE, REDUCE_ID); const AccessorRDfloat fa_ghost_charge(regions[3], FID_CHARGE, REDUCE_ID); const int threads_per_block = 256; const int num_blocks = (piece.num_wires + (threads_per_block-1)) / threads_per_block; distribute_charge_kernel<<<num_blocks,threads_per_block>>>(piece.first_wire, piece.num_wires, piece.dt, fa_in_ptr, fa_out_ptr, fa_in_loc, fa_out_loc, fa_in_current, fa_out_current, fa_pvt_charge, fa_shr_charge, fa_ghost_charge); #endif } __global__ void update_voltages_kernel(Point<1> first, const int num_nodes, const AccessorRWfloat fa_pvt_voltage, const AccessorRWfloat fa_shr_voltage, const AccessorRWfloat fa_pvt_charge, const AccessorRWfloat fa_shr_charge, const AccessorROfloat fa_pvt_cap, const AccessorROfloat fa_shr_cap, const AccessorROfloat fa_pvt_leakage, const AccessorROfloat fa_shr_leakage, const AccessorROloc fa_ptr_loc) { const int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < num_nodes) { const Point<1> node_ptr = first + tid; PointerLocation node_loc = fa_ptr_loc[node_ptr]; if (node_loc == PRIVATE_PTR) { float voltage = fa_pvt_voltage[node_ptr]; float charge = fa_pvt_charge[node_ptr]; float capacitance = fa_pvt_cap[node_ptr]; float leakage = fa_pvt_leakage[node_ptr]; voltage += (charge / capacitance); voltage *= (1.f - leakage); fa_pvt_voltage[node_ptr] = voltage; fa_pvt_charge[node_ptr] = 0.f; } else { float voltage = fa_shr_voltage[node_ptr]; float charge = fa_shr_charge[node_ptr]; float capacitance = fa_shr_cap[node_ptr]; float leakage = fa_shr_leakage[node_ptr]; voltage += (charge / capacitance); voltage *= (1.f - leakage); fa_pvt_voltage[node_ptr] = voltage; fa_pvt_charge[node_ptr] = 0.f; } } } /*static*/ __host__ void UpdateVoltagesTask::gpu_base_impl(const CircuitPiece &piece, const std::vector<PhysicalRegion> &regions) { #ifndef DISABLE_MATH const AccessorRWfloat fa_pvt_voltage(regions[0], FID_NODE_VOLTAGE); const AccessorRWfloat fa_pvt_charge(regions[0], FID_CHARGE); const AccessorRWfloat fa_shr_voltage(regions[1], FID_NODE_VOLTAGE); const AccessorRWfloat fa_shr_charge(regions[1], FID_CHARGE); const AccessorROfloat fa_pvt_cap(regions[2], FID_NODE_CAP); const AccessorROfloat fa_pvt_leakage(regions[2], FID_LEAKAGE); const AccessorROfloat fa_shr_cap(regions[3], FID_NODE_CAP); const AccessorROfloat fa_shr_leakage(regions[3], FID_LEAKAGE); const AccessorROloc fa_ptr_loc(regions[4], FID_LOCATOR); const int threads_per_block = 256; const int num_blocks = (piece.num_nodes + (threads_per_block-1)) / threads_per_block; update_voltages_kernel<<<num_blocks,threads_per_block>>>(piece.first_node, piece.num_nodes, fa_pvt_voltage, fa_shr_voltage, fa_pvt_charge, fa_shr_charge, fa_pvt_cap, fa_shr_cap, fa_pvt_leakage, fa_shr_leakage, fa_ptr_loc); #endif }
pinhole_camera.hip
// !!! This is a file automatically generated by hipify!!! #include "device_helpers_hip.cuh" rtDeclareVariable(float3, eye, , ); rtDeclareVariable(float3, U, , ); rtDeclareVariable(float3, V, , ); rtDeclareVariable(float3, W, , ); rtDeclareVariable(uint, volume_width, ,); rtDeclareVariable(uint, volume_height, ,); rtDeclareVariable(uint, volume_depth, ,); rtDeclareVariable(uint2, launch_index, rtLaunchIndex, ); rtDeclareVariable(uint2, launch_dim, rtLaunchDim, ); rtDeclareVariable(rtObject, top_object, ,); rtBuffer<uchar4, 2> output_buffer; RT_PROGRAM void pinhole_camera() { float2 d = make_float2(launch_index) / make_float2(launch_dim) * 2.f - 1.f; float3 ray_origin = eye; float3 ray_direction = optix::normalize(d.x*U + d.y*V + W); /*#ifdef DEBUG float t = tex3D( volume_texture, launch_index.x/(float) volume_width, launch_index.y/(float) volume_height, (frame_idx % volume_depth)/(float) volume_depth ); if (launch_index.x == 128 && launch_index.y == 128) rtPrintf("Setting t to %f for %d %d %d \n", t, launch_index.x, launch_index.y, frame_idx); #else float t = tex3D(volume_texture, launch_index.x, launch_index.y, 0); if (launch_index.x == 64 && launch_index.y == 64) rtPrintf("Setting t to %f for %d %d %d\n", t, launch_index.x, launch_index.y, frame_idx); #endif */ optix::Ray ray = optix::make_Ray(ray_origin, ray_direction, 0, 0.f, RT_DEFAULT_MAX); PerRayData_radiance prd; prd.r = prd.g = prd.b = prd.alpha = 0; rtTrace(top_object, ray, prd); output_buffer[launch_index] = make_colour( optix::make_float3(prd.r, prd.g, prd.b) // optix::make_float3(t/255.0f, t/255.0f, t/255.0f) // ray_direction*2 // transferred ); }
pinhole_camera.cu
#include "device_helpers.cuh" rtDeclareVariable(float3, eye, , ); rtDeclareVariable(float3, U, , ); rtDeclareVariable(float3, V, , ); rtDeclareVariable(float3, W, , ); rtDeclareVariable(uint, volume_width, ,); rtDeclareVariable(uint, volume_height, ,); rtDeclareVariable(uint, volume_depth, ,); rtDeclareVariable(uint2, launch_index, rtLaunchIndex, ); rtDeclareVariable(uint2, launch_dim, rtLaunchDim, ); rtDeclareVariable(rtObject, top_object, ,); rtBuffer<uchar4, 2> output_buffer; RT_PROGRAM void pinhole_camera() { float2 d = make_float2(launch_index) / make_float2(launch_dim) * 2.f - 1.f; float3 ray_origin = eye; float3 ray_direction = optix::normalize(d.x*U + d.y*V + W); /*#ifdef DEBUG float t = tex3D( volume_texture, launch_index.x/(float) volume_width, launch_index.y/(float) volume_height, (frame_idx % volume_depth)/(float) volume_depth ); if (launch_index.x == 128 && launch_index.y == 128) rtPrintf("Setting t to %f for %d %d %d \n", t, launch_index.x, launch_index.y, frame_idx); #else float t = tex3D(volume_texture, launch_index.x, launch_index.y, 0); if (launch_index.x == 64 && launch_index.y == 64) rtPrintf("Setting t to %f for %d %d %d\n", t, launch_index.x, launch_index.y, frame_idx); #endif */ optix::Ray ray = optix::make_Ray(ray_origin, ray_direction, 0, 0.f, RT_DEFAULT_MAX); PerRayData_radiance prd; prd.r = prd.g = prd.b = prd.alpha = 0; rtTrace(top_object, ray, prd); output_buffer[launch_index] = make_colour( optix::make_float3(prd.r, prd.g, prd.b) // optix::make_float3(t/255.0f, t/255.0f, t/255.0f) // ray_direction*2 // transferred ); }
c5b7a2dcc8d716bd1fe9681879a5e50683203261.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "device_launch_parameters.h" #include <stdio.h> #include <stdlib.h> #define N 512 __global__ void getMaxValueOfRow(float *d_arr, float *maxArray) { unsigned int t = threadIdx.x; unsigned int bid = blockIdx.x; __shared__ float ds_arr[N]; ds_arr[t] = d_arr[t + bid * N]; for (unsigned int stride = 1; stride < blockDim.x; stride *= 2) { __syncthreads(); if (t % (2 * stride) == 0) ds_arr[t] = ds_arr[t + stride] > ds_arr[t] ? ds_arr[t + stride] : ds_arr[t]; } maxArray[bid % N] = ds_arr[t]; } int main() { float *h_arr, *d_arr, *h_maxArray, *d_maxArray; int total = N * N; int mem_size = total * sizeof(float); h_arr = (float *) malloc(mem_size); h_maxArray = (float *) malloc(N * sizeof(float)); for (int i = 0; i < total; i++) { h_arr[i] = 3.0; } for (int i = 0; i < N; i++) { h_maxArray[i] = 0.0; } hipMalloc((void **) &d_arr, mem_size); hipMalloc((void **) &d_maxArray, N * sizeof(float)); hipMemcpy(d_arr, h_arr, mem_size, hipMemcpyHostToDevice); hipMemcpy(d_maxArray, h_maxArray, N * sizeof(float), hipMemcpyHostToDevice); dim3 threadsPerBlock(N); dim3 blocksPerGrid(N); // float time; hipEvent_t start, stop; hipEventCreate(&start); hipEventCreate(&stop); hipEventRecord(start, 0); hipLaunchKernelGGL(( getMaxValueOfRow) , dim3(blocksPerGrid), dim3(threadsPerBlock) , 0, 0, d_arr, d_maxArray); hipDeviceSynchronize(); hipEventRecord(stop, 0); hipEventSynchronize(start); hipEventSynchronize(stop); hipEventElapsedTime(&time, start, stop); printf("Time elapsed: %.6f ms\n", time); hipEventDestroy(start); hipEventDestroy(stop); hipMemcpy(h_maxArray, d_maxArray, N * sizeof(float), hipMemcpyDeviceToHost); // for (int i = 0; i < N; ++i) { // printf("The max number of row %d :%.f\n", i, h_maxArray[i]); // } // int count = 0; for (int i = 0; i < N * N; ++i) { if (h_maxArray[i] == 3) count++; } printf("count = %d\n", count); hipFree(d_arr); hipFree(d_maxArray); free(h_arr); free(h_maxArray); return 0; }
c5b7a2dcc8d716bd1fe9681879a5e50683203261.cu
#include "cuda_runtime.h" #include "device_launch_parameters.h" #include <stdio.h> #include <stdlib.h> #define N 512 __global__ void getMaxValueOfRow(float *d_arr, float *maxArray) { unsigned int t = threadIdx.x; unsigned int bid = blockIdx.x; __shared__ float ds_arr[N]; ds_arr[t] = d_arr[t + bid * N]; for (unsigned int stride = 1; stride < blockDim.x; stride *= 2) { __syncthreads(); if (t % (2 * stride) == 0) ds_arr[t] = ds_arr[t + stride] > ds_arr[t] ? ds_arr[t + stride] : ds_arr[t]; } maxArray[bid % N] = ds_arr[t]; } int main() { float *h_arr, *d_arr, *h_maxArray, *d_maxArray; int total = N * N; int mem_size = total * sizeof(float); h_arr = (float *) malloc(mem_size); h_maxArray = (float *) malloc(N * sizeof(float)); for (int i = 0; i < total; i++) { h_arr[i] = 3.0; } for (int i = 0; i < N; i++) { h_maxArray[i] = 0.0; } cudaMalloc((void **) &d_arr, mem_size); cudaMalloc((void **) &d_maxArray, N * sizeof(float)); cudaMemcpy(d_arr, h_arr, mem_size, cudaMemcpyHostToDevice); cudaMemcpy(d_maxArray, h_maxArray, N * sizeof(float), cudaMemcpyHostToDevice); dim3 threadsPerBlock(N); dim3 blocksPerGrid(N); // 记录程序开始运行的时间 float time; cudaEvent_t start, stop; cudaEventCreate(&start); cudaEventCreate(&stop); cudaEventRecord(start, 0); getMaxValueOfRow <<< blocksPerGrid, threadsPerBlock >>> (d_arr, d_maxArray); cudaDeviceSynchronize(); cudaEventRecord(stop, 0); cudaEventSynchronize(start); cudaEventSynchronize(stop); cudaEventElapsedTime(&time, start, stop); printf("Time elapsed: %.6f ms\n", time); cudaEventDestroy(start); cudaEventDestroy(stop); cudaMemcpy(h_maxArray, d_maxArray, N * sizeof(float), cudaMemcpyDeviceToHost); // for (int i = 0; i < N; ++i) { // printf("The max number of row %d :%.f\n", i, h_maxArray[i]); // } // 验证结果 int count = 0; for (int i = 0; i < N * N; ++i) { if (h_maxArray[i] == 3) count++; } printf("count = %d\n", count); cudaFree(d_arr); cudaFree(d_maxArray); free(h_arr); free(h_maxArray); return 0; }
d635b1f31dc0e9c9ee15a696d367963b5180d66c.hip
// !!! This is a file automatically generated by hipify!!! #include <assert.h> #include <stdlib.h> // CUDA runtime #include "helper.h" #include <rocblas.h> #include <hip/hip_runtime.h> /** * naive */ template <int BLOCK> __global__ void sgemm(int m, int n, int k, float *a, int lda, float *b, int ldb, float *c, int ldc) { int _m = blockIdx.x * BLOCK + threadIdx.x; int _n = blockIdx.y * BLOCK + threadIdx.y; if (_m < m and _n < n) { float sum = 0.f; for (int i = 0; i < k; ++i) { sum += a[_m * k + i] * b[i * n + _n]; } c[_m * n + _n] = sum; } } void MY_MMult(hipblasHandle_t handle, int m, int n, int k, float *d_A, int lda, float *d_B, int ldb, float *d_C, int ldc) { constexpr int BLOCK = 16; // subm, subn, subk dim3 block(BLOCK, BLOCK); dim3 grid((m + BLOCK - 1) / BLOCK, (n + BLOCK - 1) / BLOCK); hipLaunchKernelGGL(( sgemm<BLOCK>), dim3(grid), dim3(block), 0, 0, m, n, k, d_A, lda, d_B, ldb, d_C, ldc); }
d635b1f31dc0e9c9ee15a696d367963b5180d66c.cu
#include <assert.h> #include <stdlib.h> // CUDA runtime #include "helper.h" #include <cublas_v2.h> #include <cuda_runtime.h> /** * naive 实现 */ template <int BLOCK> __global__ void sgemm(int m, int n, int k, float *a, int lda, float *b, int ldb, float *c, int ldc) { int _m = blockIdx.x * BLOCK + threadIdx.x; int _n = blockIdx.y * BLOCK + threadIdx.y; if (_m < m and _n < n) { float sum = 0.f; for (int i = 0; i < k; ++i) { sum += a[_m * k + i] * b[i * n + _n]; } c[_m * n + _n] = sum; } } void MY_MMult(cublasHandle_t handle, int m, int n, int k, float *d_A, int lda, float *d_B, int ldb, float *d_C, int ldc) { constexpr int BLOCK = 16; // subm, subn, subk dim3 block(BLOCK, BLOCK); dim3 grid((m + BLOCK - 1) / BLOCK, (n + BLOCK - 1) / BLOCK); sgemm<BLOCK><<<grid, block>>>(m, n, k, d_A, lda, d_B, ldb, d_C, ldc); }
1a3d7c152decafd02bd2429dd7b56ff7a3260766.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* -- MAGMA (version 2.1.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver @date August 2016 @generated from sparse-iter/blas/zgedensereimsplit.cu, normal z -> s, Tue Aug 30 09:38:46 2016 */ #include "magmasparse_internal.h" #define BLOCK_SIZE 256 // axpy kernel for matrices stored in the MAGMA format __global__ void sgedensereimsplit_kernel( int num_rows, int num_cols, magma_index_t* rowidx, float * A, float * ReA, float * ImA ) { int row = blockIdx.x*blockDim.x+threadIdx.x; int j; if( row<num_rows ){ for( j=0; j<num_cols; j++ ){ ReA[ j ] = MAGMA_S_MAKE( MAGMA_S_REAL( A[ j ] ), 0.0 ); ImA[ j ] = MAGMA_S_MAKE( MAGMA_S_IMAG( A[ j ] ), 0.0 ); } } } /** Purpose ------- This routine takes an input matrix A in DENSE format and located on the GPU and splits it into two matrixes ReA and ImA containing the real and the imaginary contributions of A. The output matrices are allocated within the routine. Arguments --------- @param[in] A magma_s_matrix input matrix A. @param[out] ReA magma_s_matrix* output matrix contaning real contributions. @param[out] ImA magma_s_matrix* output matrix contaning real contributions. @param[in] queue magma_queue_t Queue to execute in. @ingroup magmasparse_sblas ********************************************************************/ extern "C" magma_int_t magma_sgedensereimsplit( magma_s_matrix A, magma_s_matrix *ReA, magma_s_matrix *ImA, magma_queue_t queue ) { magma_smtransfer( A, ReA, Magma_DEV, Magma_DEV, queue ); magma_smtransfer( A, ImA, Magma_DEV, Magma_DEV, queue ); int m = A.num_rows; int n = A.num_cols; dim3 grid( magma_ceildiv( m, BLOCK_SIZE ) ); magma_int_t threads = BLOCK_SIZE; hipLaunchKernelGGL(( sgedensereimsplit_kernel), dim3(grid), dim3(threads), 0, queue->cuda_stream() , m, n, A.row, A.dval, ReA->dval, ImA->dval ); return MAGMA_SUCCESS; }
1a3d7c152decafd02bd2429dd7b56ff7a3260766.cu
/* -- MAGMA (version 2.1.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver @date August 2016 @generated from sparse-iter/blas/zgedensereimsplit.cu, normal z -> s, Tue Aug 30 09:38:46 2016 */ #include "magmasparse_internal.h" #define BLOCK_SIZE 256 // axpy kernel for matrices stored in the MAGMA format __global__ void sgedensereimsplit_kernel( int num_rows, int num_cols, magma_index_t* rowidx, float * A, float * ReA, float * ImA ) { int row = blockIdx.x*blockDim.x+threadIdx.x; int j; if( row<num_rows ){ for( j=0; j<num_cols; j++ ){ ReA[ j ] = MAGMA_S_MAKE( MAGMA_S_REAL( A[ j ] ), 0.0 ); ImA[ j ] = MAGMA_S_MAKE( MAGMA_S_IMAG( A[ j ] ), 0.0 ); } } } /** Purpose ------- This routine takes an input matrix A in DENSE format and located on the GPU and splits it into two matrixes ReA and ImA containing the real and the imaginary contributions of A. The output matrices are allocated within the routine. Arguments --------- @param[in] A magma_s_matrix input matrix A. @param[out] ReA magma_s_matrix* output matrix contaning real contributions. @param[out] ImA magma_s_matrix* output matrix contaning real contributions. @param[in] queue magma_queue_t Queue to execute in. @ingroup magmasparse_sblas ********************************************************************/ extern "C" magma_int_t magma_sgedensereimsplit( magma_s_matrix A, magma_s_matrix *ReA, magma_s_matrix *ImA, magma_queue_t queue ) { magma_smtransfer( A, ReA, Magma_DEV, Magma_DEV, queue ); magma_smtransfer( A, ImA, Magma_DEV, Magma_DEV, queue ); int m = A.num_rows; int n = A.num_cols; dim3 grid( magma_ceildiv( m, BLOCK_SIZE ) ); magma_int_t threads = BLOCK_SIZE; sgedensereimsplit_kernel<<< grid, threads, 0, queue->cuda_stream() >>> ( m, n, A.row, A.dval, ReA->dval, ImA->dval ); return MAGMA_SUCCESS; }
7e9c8d84853fce9a7f63d2e418439e245e8175ef.hip
// !!! This is a file automatically generated by hipify!!! /** \file "advectshift.cu" : implements the kernel for the "advectshift" procedure */ #define __CUDA 1 #include "fargo.h" #undef __CUDA #include <stdarg.h> #include <helper_cuda.h> #include <hip/hip_runtime.h> // BLOCK_X : in azimuth //#define BLOCK_X DEF_BLOCK_X_ADVECTSHIFT #define BLOCK_X 16 // BLOCK_Y : in radius #define BLOCK_Y 2 #define GET_TAB(u,x,y,pitch) *(u + __mul24(y, pitch) + x) //PolarGrid *WorkShift; __device__ int Shift[32768]; __global__ void kernel_advsh (double *num, double *work, int ns, int pitch) { __shared__ double buffer[(6*BLOCK_X)*BLOCK_Y]; int jg = threadIdx.x + blockIdx.x * blockDim.x * 4; int ig = threadIdx.y + blockIdx.y * blockDim.y; int js = threadIdx.x; int is = threadIdx.y; int jgm, jgp; int ids = js+is*6*blockDim.x; int nshift = Shift[ig]; buffer[ids + blockDim.x] = GET_TAB (num, jg, ig, pitch); buffer[ids + 2*blockDim.x] = GET_TAB (num, jg+blockDim.x, ig, pitch); buffer[ids + 3*blockDim.x] = GET_TAB (num, jg+blockDim.x*2, ig, pitch); buffer[ids + 4*blockDim.x] = GET_TAB (num, jg+blockDim.x*3, ig, pitch); if (nshift > 0) { jgm = jg - blockDim.x; if (jgm < 0) jgm += ns; buffer[ids] = GET_TAB (num, jgm, ig, pitch); } if (nshift < 0) { jgp = jg + 4*blockDim.x; if (jgp >= ns) jgp -= ns; buffer[ids + 5*blockDim.x] = GET_TAB (num, jgp, ig, pitch); } __syncthreads (); GET_TAB (work, jg, ig, pitch) = buffer[ids + blockDim.x - nshift]; GET_TAB (work, jg+blockDim.x, ig, pitch) = buffer[ids + 2*blockDim.x - nshift]; GET_TAB (work, jg+2*blockDim.x, ig, pitch) = buffer[ids + 3*blockDim.x - nshift]; GET_TAB (work, jg+3*blockDim.x, ig, pitch) = buffer[ids + 4*blockDim.x - nshift]; } extern "C" void AdvectSHIFT_gpu (PolarGrid *array, int *Nshift) { //static int FirstTime = YES; int nr, ns; double *temp_gpu_ptr; nr = array->Nrad; ns = array->Nsec; //if (FirstTime) { // WorkShift = CreatePolarGrid (nr, ns, "WorkShift"); // FirstTime = NO; //} dim3 block (BLOCK_X, BLOCK_Y); dim3 grid ((ns+block.x-1)/block.x/4, (nr+block.y-1)/block.y); checkCudaErrors(hipMemcpyToSymbol(Shift, (void *)Nshift, (size_t)(nr*sizeof(int)), 0, hipMemcpyHostToDevice)); hipLaunchKernelGGL(( kernel_advsh) , dim3(grid), dim3(block) , 0, 0, array->gpu_field, WorkShift->gpu_field, ns, array->pitch/sizeof(double)); hipDeviceSynchronize(); getLastCudaError("Kernel advsh execution failed"); /* Swap gpu arrays to avoid memcpy on device (would halve the performance) */ temp_gpu_ptr = array->gpu_field; array->gpu_field = WorkShift->gpu_field; WorkShift->gpu_field = temp_gpu_ptr; }
7e9c8d84853fce9a7f63d2e418439e245e8175ef.cu
/** \file "advectshift.cu" : implements the kernel for the "advectshift" procedure */ #define __CUDA 1 #include "fargo.h" #undef __CUDA #include <stdarg.h> #include <helper_cuda.h> #include <cuda.h> // BLOCK_X : in azimuth //#define BLOCK_X DEF_BLOCK_X_ADVECTSHIFT #define BLOCK_X 16 // BLOCK_Y : in radius #define BLOCK_Y 2 #define GET_TAB(u,x,y,pitch) *(u + __mul24(y, pitch) + x) //PolarGrid *WorkShift; __device__ int Shift[32768]; __global__ void kernel_advsh (double *num, double *work, int ns, int pitch) { __shared__ double buffer[(6*BLOCK_X)*BLOCK_Y]; int jg = threadIdx.x + blockIdx.x * blockDim.x * 4; int ig = threadIdx.y + blockIdx.y * blockDim.y; int js = threadIdx.x; int is = threadIdx.y; int jgm, jgp; int ids = js+is*6*blockDim.x; int nshift = Shift[ig]; buffer[ids + blockDim.x] = GET_TAB (num, jg, ig, pitch); buffer[ids + 2*blockDim.x] = GET_TAB (num, jg+blockDim.x, ig, pitch); buffer[ids + 3*blockDim.x] = GET_TAB (num, jg+blockDim.x*2, ig, pitch); buffer[ids + 4*blockDim.x] = GET_TAB (num, jg+blockDim.x*3, ig, pitch); if (nshift > 0) { jgm = jg - blockDim.x; if (jgm < 0) jgm += ns; buffer[ids] = GET_TAB (num, jgm, ig, pitch); } if (nshift < 0) { jgp = jg + 4*blockDim.x; if (jgp >= ns) jgp -= ns; buffer[ids + 5*blockDim.x] = GET_TAB (num, jgp, ig, pitch); } __syncthreads (); GET_TAB (work, jg, ig, pitch) = buffer[ids + blockDim.x - nshift]; GET_TAB (work, jg+blockDim.x, ig, pitch) = buffer[ids + 2*blockDim.x - nshift]; GET_TAB (work, jg+2*blockDim.x, ig, pitch) = buffer[ids + 3*blockDim.x - nshift]; GET_TAB (work, jg+3*blockDim.x, ig, pitch) = buffer[ids + 4*blockDim.x - nshift]; } extern "C" void AdvectSHIFT_gpu (PolarGrid *array, int *Nshift) { //static int FirstTime = YES; int nr, ns; double *temp_gpu_ptr; nr = array->Nrad; ns = array->Nsec; //if (FirstTime) { // WorkShift = CreatePolarGrid (nr, ns, "WorkShift"); // FirstTime = NO; //} dim3 block (BLOCK_X, BLOCK_Y); dim3 grid ((ns+block.x-1)/block.x/4, (nr+block.y-1)/block.y); checkCudaErrors(cudaMemcpyToSymbol(Shift, (void *)Nshift, (size_t)(nr*sizeof(int)), 0, cudaMemcpyHostToDevice)); kernel_advsh <<< grid, block >>> (array->gpu_field, WorkShift->gpu_field, ns, array->pitch/sizeof(double)); cudaThreadSynchronize(); getLastCudaError("Kernel advsh execution failed"); /* Swap gpu arrays to avoid memcpy on device (would halve the performance) */ temp_gpu_ptr = array->gpu_field; array->gpu_field = WorkShift->gpu_field; WorkShift->gpu_field = temp_gpu_ptr; }
79232e6435a7ded9607e2d7f571fe68db3ce5e12.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "includes.h" __global__ void cuSearchDoublet(const int* nSpM, const float* spMmat, const int* nSpB, const float* spBmat, const int* nSpT, const float* spTmat, const float* deltaRMin, const float* deltaRMax, const float* cotThetaMax, const float* collisionRegionMin, const float* collisionRegionMax, int* nSpMcomp, int* nSpBcompPerSpM_Max, int* nSpTcompPerSpM_Max, int* nSpBcompPerSpM, int* nSpTcompPerSpM, int* McompIndex, int* BcompIndex, int* tmpBcompIndex, int* TcompIndex, int* tmpTcompIndex ){ extern __shared__ float sharedMem[]; int* mPos = (int*)sharedMem; int* isMcompat = (int*)&mPos[1]; if (threadIdx.x==0) { *isMcompat = false; } __syncthreads(); float rM = spMmat[blockIdx.x +(*nSpM)*3]; float zM = spMmat[blockIdx.x +(*nSpM)*2]; bool isBcompat(true); bool isTcompat(true); int offset(0); while (offset < max(*nSpB, *nSpT) ){ isBcompat = true; // Doublet search for bottom hits if (threadIdx.x+offset < *nSpB ){ float rB = spBmat[threadIdx.x+offset+(*nSpB)*3]; float zB = spBmat[threadIdx.x+offset+(*nSpB)*2]; float deltaR = rM - rB; if (deltaR > *deltaRMax){ isBcompat = false; } if (deltaR < *deltaRMin){ isBcompat = false; } float cotTheta = (zM - zB)/deltaR; if (fabsf(cotTheta) > *cotThetaMax){ isBcompat = false; } float zOrigin = zM - rM*cotTheta; if (zOrigin < *collisionRegionMin || zOrigin > *collisionRegionMax){ isBcompat = false; } if ( isBcompat == true ){ int bPos = atomicAdd(&nSpBcompPerSpM[blockIdx.x], 1); tmpBcompIndex[bPos+(*nSpB)*blockIdx.x]=threadIdx.x+offset; } } isTcompat = true; // Doublet search for top hits if (threadIdx.x+offset < *nSpT){ float rT = spTmat[threadIdx.x+offset+(*nSpT)*3]; float zT = spTmat[threadIdx.x+offset+(*nSpT)*2]; float deltaR = rT - rM; if (deltaR < *deltaRMin){ isTcompat = false; } if (deltaR > *deltaRMax){ isTcompat = false; } if (isTcompat == true){ float cotTheta = (zT - zM)/deltaR; if (fabsf(cotTheta) > *cotThetaMax){ isTcompat = false; } float zOrigin = zM - rM*cotTheta; if (zOrigin < *collisionRegionMin || zOrigin > *collisionRegionMax){ isTcompat = false; } } if ( isTcompat == true ){ int tPos = atomicAdd(&nSpTcompPerSpM[blockIdx.x], 1); tmpTcompIndex[tPos+(*nSpT)*blockIdx.x]=threadIdx.x+offset; } } offset += blockDim.x; } __syncthreads(); if (threadIdx.x == 0){ if (nSpBcompPerSpM[blockIdx.x] > 0 && nSpTcompPerSpM[blockIdx.x] > 0 ){ *mPos = atomicAdd(nSpMcomp,1); *isMcompat = true; McompIndex[*mPos] = blockIdx.x; int bMax = atomicMax(nSpBcompPerSpM_Max,nSpBcompPerSpM[blockIdx.x]); int tMax = atomicMax(nSpTcompPerSpM_Max,nSpTcompPerSpM[blockIdx.x]); } } __syncthreads(); if (*isMcompat == true){ offset = 0; while(offset< max(nSpBcompPerSpM[blockIdx.x], nSpTcompPerSpM[blockIdx.x] ) ){ if (threadIdx.x+offset < nSpBcompPerSpM[blockIdx.x]){ BcompIndex[threadIdx.x+offset+(*nSpB)*(*mPos)] = tmpBcompIndex[threadIdx.x+offset+(*nSpB)*blockIdx.x]; } if (threadIdx.x+offset < nSpTcompPerSpM[blockIdx.x]){ TcompIndex[threadIdx.x+offset+(*nSpT)*(*mPos)] = tmpTcompIndex[threadIdx.x+offset+(*nSpT)*blockIdx.x]; } offset += blockDim.x; } } }
79232e6435a7ded9607e2d7f571fe68db3ce5e12.cu
#include "includes.h" __global__ void cuSearchDoublet(const int* nSpM, const float* spMmat, const int* nSpB, const float* spBmat, const int* nSpT, const float* spTmat, const float* deltaRMin, const float* deltaRMax, const float* cotThetaMax, const float* collisionRegionMin, const float* collisionRegionMax, int* nSpMcomp, int* nSpBcompPerSpM_Max, int* nSpTcompPerSpM_Max, int* nSpBcompPerSpM, int* nSpTcompPerSpM, int* McompIndex, int* BcompIndex, int* tmpBcompIndex, int* TcompIndex, int* tmpTcompIndex ){ extern __shared__ float sharedMem[]; int* mPos = (int*)sharedMem; int* isMcompat = (int*)&mPos[1]; if (threadIdx.x==0) { *isMcompat = false; } __syncthreads(); float rM = spMmat[blockIdx.x +(*nSpM)*3]; float zM = spMmat[blockIdx.x +(*nSpM)*2]; bool isBcompat(true); bool isTcompat(true); int offset(0); while (offset < max(*nSpB, *nSpT) ){ isBcompat = true; // Doublet search for bottom hits if (threadIdx.x+offset < *nSpB ){ float rB = spBmat[threadIdx.x+offset+(*nSpB)*3]; float zB = spBmat[threadIdx.x+offset+(*nSpB)*2]; float deltaR = rM - rB; if (deltaR > *deltaRMax){ isBcompat = false; } if (deltaR < *deltaRMin){ isBcompat = false; } float cotTheta = (zM - zB)/deltaR; if (fabsf(cotTheta) > *cotThetaMax){ isBcompat = false; } float zOrigin = zM - rM*cotTheta; if (zOrigin < *collisionRegionMin || zOrigin > *collisionRegionMax){ isBcompat = false; } if ( isBcompat == true ){ int bPos = atomicAdd(&nSpBcompPerSpM[blockIdx.x], 1); tmpBcompIndex[bPos+(*nSpB)*blockIdx.x]=threadIdx.x+offset; } } isTcompat = true; // Doublet search for top hits if (threadIdx.x+offset < *nSpT){ float rT = spTmat[threadIdx.x+offset+(*nSpT)*3]; float zT = spTmat[threadIdx.x+offset+(*nSpT)*2]; float deltaR = rT - rM; if (deltaR < *deltaRMin){ isTcompat = false; } if (deltaR > *deltaRMax){ isTcompat = false; } if (isTcompat == true){ float cotTheta = (zT - zM)/deltaR; if (fabsf(cotTheta) > *cotThetaMax){ isTcompat = false; } float zOrigin = zM - rM*cotTheta; if (zOrigin < *collisionRegionMin || zOrigin > *collisionRegionMax){ isTcompat = false; } } if ( isTcompat == true ){ int tPos = atomicAdd(&nSpTcompPerSpM[blockIdx.x], 1); tmpTcompIndex[tPos+(*nSpT)*blockIdx.x]=threadIdx.x+offset; } } offset += blockDim.x; } __syncthreads(); if (threadIdx.x == 0){ if (nSpBcompPerSpM[blockIdx.x] > 0 && nSpTcompPerSpM[blockIdx.x] > 0 ){ *mPos = atomicAdd(nSpMcomp,1); *isMcompat = true; McompIndex[*mPos] = blockIdx.x; int bMax = atomicMax(nSpBcompPerSpM_Max,nSpBcompPerSpM[blockIdx.x]); int tMax = atomicMax(nSpTcompPerSpM_Max,nSpTcompPerSpM[blockIdx.x]); } } __syncthreads(); if (*isMcompat == true){ offset = 0; while(offset< max(nSpBcompPerSpM[blockIdx.x], nSpTcompPerSpM[blockIdx.x] ) ){ if (threadIdx.x+offset < nSpBcompPerSpM[blockIdx.x]){ BcompIndex[threadIdx.x+offset+(*nSpB)*(*mPos)] = tmpBcompIndex[threadIdx.x+offset+(*nSpB)*blockIdx.x]; } if (threadIdx.x+offset < nSpTcompPerSpM[blockIdx.x]){ TcompIndex[threadIdx.x+offset+(*nSpT)*(*mPos)] = tmpTcompIndex[threadIdx.x+offset+(*nSpT)*blockIdx.x]; } offset += blockDim.x; } } }