hash
stringlengths
64
64
content
stringlengths
0
1.51M
f2b9b1877e179154fbcaee73818ba98a97c3acab368601828ce30420adc4e282
__version__ = "1.5.1"
f18861240f1ccce047d0199e1bcd39ebb78ee3bb6a832e7446d5ab0cf4b881db
""" Finite Discrete Random Variables - Prebuilt variable types Contains ======== FiniteRV DiscreteUniform Die Bernoulli Coin Binomial BetaBinomial Hypergeometric Rademacher """ from __future__ import print_function, division import random from sympy import (S, sympify, Rational, binomial, cacheit, Integer, Dummy, Eq, Intersection, Interval, Symbol, Lambda, Piecewise, Or, Gt, Lt, Ge, Le, Contains) from sympy import beta as beta_fn from sympy.external import import_module from sympy.core.compatibility import range from sympy.tensor.array import ArrayComprehensionMap from sympy.stats.frv import (SingleFiniteDistribution, SingleFinitePSpace) from sympy.stats.rv import _value_check, Density, RandomSymbol numpy = import_module('numpy') scipy = import_module('scipy') pymc3 = import_module('pymc3') __all__ = ['FiniteRV', 'DiscreteUniform', 'Die', 'Bernoulli', 'Coin', 'Binomial', 'BetaBinomial', 'Hypergeometric', 'Rademacher' ] def rv(name, cls, *args): args = list(map(sympify, args)) dist = cls(*args) dist.check(*args) return SingleFinitePSpace(name, dist).value class FiniteDistributionHandmade(SingleFiniteDistribution): @property def dict(self): return self.args[0] def pmf(self, x): x = Symbol('x') return Lambda(x, Piecewise(*( [(v, Eq(k, x)) for k, v in self.dict.items()] + [(S.Zero, True)]))) @property def set(self): return set(self.dict.keys()) @staticmethod def check(density): for p in density.values(): _value_check((p >= 0, p <= 1), "Probability at a point must be between 0 and 1.") _value_check(Eq(sum(density.values()), 1), "Total Probability must be 1.") def FiniteRV(name, density): """ Create a Finite Random Variable given a dict representing the density. Returns a RandomSymbol. >>> from sympy.stats import FiniteRV, P, E >>> density = {0: .1, 1: .2, 2: .3, 3: .4} >>> X = FiniteRV('X', density) >>> E(X) 2.00000000000000 >>> P(X >= 2) 0.700000000000000 """ return rv(name, FiniteDistributionHandmade, density) class DiscreteUniformDistribution(SingleFiniteDistribution): @property def p(self): return Rational(1, len(self.args)) @property @cacheit def dict(self): return dict((k, self.p) for k in self.set) @property def set(self): return set(self.args) def pmf(self, x): if x in self.args: return self.p else: return S.Zero def _sample_random(self, size): x = Symbol('x') return ArrayComprehensionMap(lambda: self.args[random.randint(0, len(self.args)-1)], (x, 0, size)).doit() def DiscreteUniform(name, items): """ Create a Finite Random Variable representing a uniform distribution over the input set. Returns a RandomSymbol. Examples ======== >>> from sympy.stats import DiscreteUniform, density >>> from sympy import symbols >>> X = DiscreteUniform('X', symbols('a b c')) # equally likely over a, b, c >>> density(X).dict {a: 1/3, b: 1/3, c: 1/3} >>> Y = DiscreteUniform('Y', list(range(5))) # distribution over a range >>> density(Y).dict {0: 1/5, 1: 1/5, 2: 1/5, 3: 1/5, 4: 1/5} References ========== .. [1] https://en.wikipedia.org/wiki/Discrete_uniform_distribution .. [2] http://mathworld.wolfram.com/DiscreteUniformDistribution.html """ return rv(name, DiscreteUniformDistribution, *items) class DieDistribution(SingleFiniteDistribution): _argnames = ('sides',) @staticmethod def check(sides): _value_check((sides.is_positive, sides.is_integer), "number of sides must be a positive integer.") @property def is_symbolic(self): return not self.sides.is_number @property def high(self): return self.sides @property def low(self): return S.One @property def set(self): if self.is_symbolic: return Intersection(S.Naturals0, Interval(0, self.sides)) return set(map(Integer, list(range(1, self.sides + 1)))) def pmf(self, x): x = sympify(x) if not (x.is_number or x.is_Symbol or isinstance(x, RandomSymbol)): raise ValueError("'x' expected as an argument of type 'number' or 'Symbol' or , " "'RandomSymbol' not %s" % (type(x))) cond = Ge(x, 1) & Le(x, self.sides) & Contains(x, S.Integers) return Piecewise((S.One/self.sides, cond), (S.Zero, True)) def Die(name, sides=6): """ Create a Finite Random Variable representing a fair die. Returns a RandomSymbol. Examples ======== >>> from sympy.stats import Die, density >>> from sympy import Symbol >>> D6 = Die('D6', 6) # Six sided Die >>> density(D6).dict {1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6} >>> D4 = Die('D4', 4) # Four sided Die >>> density(D4).dict {1: 1/4, 2: 1/4, 3: 1/4, 4: 1/4} >>> n = Symbol('n', positive=True, integer=True) >>> Dn = Die('Dn', n) # n sided Die >>> density(Dn).dict Density(DieDistribution(n)) >>> density(Dn).dict.subs(n, 4).doit() {1: 1/4, 2: 1/4, 3: 1/4, 4: 1/4} """ return rv(name, DieDistribution, sides) class BernoulliDistribution(SingleFiniteDistribution): _argnames = ('p', 'succ', 'fail') @staticmethod def check(p, succ, fail): _value_check((p >= 0, p <= 1), "p should be in range [0, 1].") @property def set(self): return set([self.succ, self.fail]) def pmf(self, x): return Piecewise((self.p, x == self.succ), (1 - self.p, x == self.fail), (S.Zero, True)) def Bernoulli(name, p, succ=1, fail=0): """ Create a Finite Random Variable representing a Bernoulli process. Returns a RandomSymbol Examples ======== >>> from sympy.stats import Bernoulli, density >>> from sympy import S >>> X = Bernoulli('X', S(3)/4) # 1-0 Bernoulli variable, probability = 3/4 >>> density(X).dict {0: 1/4, 1: 3/4} >>> X = Bernoulli('X', S.Half, 'Heads', 'Tails') # A fair coin toss >>> density(X).dict {Heads: 1/2, Tails: 1/2} References ========== .. [1] https://en.wikipedia.org/wiki/Bernoulli_distribution .. [2] http://mathworld.wolfram.com/BernoulliDistribution.html """ return rv(name, BernoulliDistribution, p, succ, fail) def Coin(name, p=S.Half): """ Create a Finite Random Variable representing a Coin toss. Probability p is the chance of gettings "Heads." Half by default Returns a RandomSymbol. Examples ======== >>> from sympy.stats import Coin, density >>> from sympy import Rational >>> C = Coin('C') # A fair coin toss >>> density(C).dict {H: 1/2, T: 1/2} >>> C2 = Coin('C2', Rational(3, 5)) # An unfair coin >>> density(C2).dict {H: 3/5, T: 2/5} See Also ======== sympy.stats.Binomial References ========== .. [1] https://en.wikipedia.org/wiki/Coin_flipping """ return rv(name, BernoulliDistribution, p, 'H', 'T') class BinomialDistribution(SingleFiniteDistribution): _argnames = ('n', 'p', 'succ', 'fail') @staticmethod def check(n, p, succ, fail): _value_check((n.is_integer, n.is_nonnegative), "'n' must be nonnegative integer.") _value_check((p <= 1, p >= 0), "p should be in range [0, 1].") @property def high(self): return self.n @property def low(self): return S.Zero @property def is_symbolic(self): return not self.n.is_number @property def set(self): if self.is_symbolic: return Intersection(S.Naturals0, Interval(0, self.n)) return set(self.dict.keys()) def pmf(self, x): n, p = self.n, self.p x = sympify(x) if not (x.is_number or x.is_Symbol or isinstance(x, RandomSymbol)): raise ValueError("'x' expected as an argument of type 'number' or 'Symbol' or , " "'RandomSymbol' not %s" % (type(x))) cond = Ge(x, 0) & Le(x, n) & Contains(x, S.Integers) return Piecewise((binomial(n, x) * p**x * (1 - p)**(n - x), cond), (S.Zero, True)) @property @cacheit def dict(self): if self.is_symbolic: return Density(self) return dict((k*self.succ + (self.n-k)*self.fail, self.pmf(k)) for k in range(0, self.n + 1)) def Binomial(name, n, p, succ=1, fail=0): """ Create a Finite Random Variable representing a binomial distribution. Returns a RandomSymbol. Examples ======== >>> from sympy.stats import Binomial, density >>> from sympy import S, Symbol >>> X = Binomial('X', 4, S.Half) # Four "coin flips" >>> density(X).dict {0: 1/16, 1: 1/4, 2: 3/8, 3: 1/4, 4: 1/16} >>> n = Symbol('n', positive=True, integer=True) >>> p = Symbol('p', positive=True) >>> X = Binomial('X', n, S.Half) # n "coin flips" >>> density(X).dict Density(BinomialDistribution(n, 1/2, 1, 0)) >>> density(X).dict.subs(n, 4).doit() {0: 1/16, 1: 1/4, 2: 3/8, 3: 1/4, 4: 1/16} References ========== .. [1] https://en.wikipedia.org/wiki/Binomial_distribution .. [2] http://mathworld.wolfram.com/BinomialDistribution.html """ return rv(name, BinomialDistribution, n, p, succ, fail) #------------------------------------------------------------------------------- # Beta-binomial distribution ---------------------------------------------------------- class BetaBinomialDistribution(SingleFiniteDistribution): _argnames = ('n', 'alpha', 'beta') @staticmethod def check(n, alpha, beta): _value_check((n.is_integer, n.is_nonnegative), "'n' must be nonnegative integer. n = %s." % str(n)) _value_check((alpha > 0), "'alpha' must be: alpha > 0 . alpha = %s" % str(alpha)) _value_check((beta > 0), "'beta' must be: beta > 0 . beta = %s" % str(beta)) @property def high(self): return self.n @property def low(self): return S.Zero @property def is_symbolic(self): return not self.n.is_number @property def set(self): if self.is_symbolic: return Intersection(S.Naturals0, Interval(0, self.n)) return set(map(Integer, list(range(0, self.n + 1)))) def pmf(self, k): n, a, b = self.n, self.alpha, self.beta return binomial(n, k) * beta_fn(k + a, n - k + b) / beta_fn(a, b) def _sample_pymc3(self, size): n, a, b = int(self.n), float(self.alpha), float(self.beta) with pymc3.Model(): pymc3.BetaBinomial('X', alpha=a, beta=b, n=n) return pymc3.sample(size, chains=1, progressbar=False)[:]['X'] def BetaBinomial(name, n, alpha, beta): """ Create a Finite Random Variable representing a Beta-binomial distribution. Returns a RandomSymbol. Examples ======== >>> from sympy.stats import BetaBinomial, density >>> from sympy import S >>> X = BetaBinomial('X', 2, 1, 1) >>> density(X).dict {0: 1/3, 1: 2*beta(2, 2), 2: 1/3} References ========== .. [1] https://en.wikipedia.org/wiki/Beta-binomial_distribution .. [2] http://mathworld.wolfram.com/BetaBinomialDistribution.html """ return rv(name, BetaBinomialDistribution, n, alpha, beta) class HypergeometricDistribution(SingleFiniteDistribution): _argnames = ('N', 'm', 'n') @staticmethod def check(n, N, m): _value_check((N.is_integer, N.is_nonnegative), "'N' must be nonnegative integer. N = %s." % str(n)) _value_check((n.is_integer, n.is_nonnegative), "'n' must be nonnegative integer. n = %s." % str(n)) _value_check((m.is_integer, m.is_nonnegative), "'m' must be nonnegative integer. m = %s." % str(n)) @property def is_symbolic(self): return any(not x.is_number for x in (self.N, self.m, self.n)) @property def high(self): return Piecewise((self.n, Lt(self.n, self.m) != False), (self.m, True)) @property def low(self): return Piecewise((0, Gt(0, self.n + self.m - self.N) != False), (self.n + self.m - self.N, True)) @property def set(self): N, m, n = self.N, self.m, self.n if self.is_symbolic: return Intersection(S.Naturals0, Interval(self.low, self.high)) return set([i for i in range(max(0, n + m - N), min(n, m) + 1)]) def pmf(self, k): N, m, n = self.N, self.m, self.n return S(binomial(m, k) * binomial(N - m, n - k))/binomial(N, n) def _sample_scipy(self, size): N, m, n = int(self.N), int(self.m), int(self.n) return scipy.stats.hypergeom.rvs(M=m, n=n, N=N, size=size) def Hypergeometric(name, N, m, n): """ Create a Finite Random Variable representing a hypergeometric distribution. Returns a RandomSymbol. Examples ======== >>> from sympy.stats import Hypergeometric, density >>> from sympy import S >>> X = Hypergeometric('X', 10, 5, 3) # 10 marbles, 5 white (success), 3 draws >>> density(X).dict {0: 1/12, 1: 5/12, 2: 5/12, 3: 1/12} References ========== .. [1] https://en.wikipedia.org/wiki/Hypergeometric_distribution .. [2] http://mathworld.wolfram.com/HypergeometricDistribution.html """ return rv(name, HypergeometricDistribution, N, m, n) class RademacherDistribution(SingleFiniteDistribution): @property def set(self): return set([-1, 1]) @property def pmf(self): k = Dummy('k') return Lambda(k, Piecewise((S.Half, Or(Eq(k, -1), Eq(k, 1))), (S.Zero, True))) def Rademacher(name): """ Create a Finite Random Variable representing a Rademacher distribution. Return a RandomSymbol. Examples ======== >>> from sympy.stats import Rademacher, density >>> X = Rademacher('X') >>> density(X).dict {-1: 1/2, 1: 1/2} See Also ======== sympy.stats.Bernoulli References ========== .. [1] https://en.wikipedia.org/wiki/Rademacher_distribution """ return rv(name, RademacherDistribution)
157f317cfcd97fed2f32c5ddbab76ad778847e1d562ac7066a27b129f24bc803
from __future__ import print_function, division from sympy.core.compatibility import as_int, range from sympy.core.function import Function from sympy.core.numbers import igcd, igcdex, mod_inverse from sympy.core.power import isqrt from sympy.core.singleton import S from .primetest import isprime from .factor_ import factorint, trailing, totient, multiplicity from random import randint, Random def n_order(a, n): """Returns the order of ``a`` modulo ``n``. The order of ``a`` modulo ``n`` is the smallest integer ``k`` such that ``a**k`` leaves a remainder of 1 with ``n``. Examples ======== >>> from sympy.ntheory import n_order >>> n_order(3, 7) 6 >>> n_order(4, 7) 3 """ from collections import defaultdict a, n = as_int(a), as_int(n) if igcd(a, n) != 1: raise ValueError("The two numbers should be relatively prime") factors = defaultdict(int) f = factorint(n) for px, kx in f.items(): if kx > 1: factors[px] += kx - 1 fpx = factorint(px - 1) for py, ky in fpx.items(): factors[py] += ky group_order = 1 for px, kx in factors.items(): group_order *= px**kx order = 1 if a > n: a = a % n for p, e in factors.items(): exponent = group_order for f in range(e + 1): if pow(a, exponent, n) != 1: order *= p ** (e - f + 1) break exponent = exponent // p return order def _primitive_root_prime_iter(p): """ Generates the primitive roots for a prime ``p`` Examples ======== >>> from sympy.ntheory.residue_ntheory import _primitive_root_prime_iter >>> list(_primitive_root_prime_iter(19)) [2, 3, 10, 13, 14, 15] References ========== .. [1] W. Stein "Elementary Number Theory" (2011), page 44 """ # it is assumed that p is an int v = [(p - 1) // i for i in factorint(p - 1).keys()] a = 2 while a < p: for pw in v: # a TypeError below may indicate that p was not an int if pow(a, pw, p) == 1: break else: yield a a += 1 def primitive_root(p): """ Returns the smallest primitive root or None Parameters ========== p : positive integer Examples ======== >>> from sympy.ntheory.residue_ntheory import primitive_root >>> primitive_root(19) 2 References ========== .. [1] W. Stein "Elementary Number Theory" (2011), page 44 .. [2] P. Hackman "Elementary Number Theory" (2009), Chapter C """ p = as_int(p) if p < 1: raise ValueError('p is required to be positive') if p <= 2: return 1 f = factorint(p) if len(f) > 2: return None if len(f) == 2: if 2 not in f or f[2] > 1: return None # case p = 2*p1**k, p1 prime for p1, e1 in f.items(): if p1 != 2: break i = 1 while i < p: i += 2 if i % p1 == 0: continue if is_primitive_root(i, p): return i else: if 2 in f: if p == 4: return 3 return None p1, n = list(f.items())[0] if n > 1: # see Ref [2], page 81 g = primitive_root(p1) if is_primitive_root(g, p1**2): return g else: for i in range(2, g + p1 + 1): if igcd(i, p) == 1 and is_primitive_root(i, p): return i return next(_primitive_root_prime_iter(p)) def is_primitive_root(a, p): """ Returns True if ``a`` is a primitive root of ``p`` ``a`` is said to be the primitive root of ``p`` if gcd(a, p) == 1 and totient(p) is the smallest positive number s.t. a**totient(p) cong 1 mod(p) Examples ======== >>> from sympy.ntheory import is_primitive_root, n_order, totient >>> is_primitive_root(3, 10) True >>> is_primitive_root(9, 10) False >>> n_order(3, 10) == totient(10) True >>> n_order(9, 10) == totient(10) False """ a, p = as_int(a), as_int(p) if igcd(a, p) != 1: raise ValueError("The two numbers should be relatively prime") if a > p: a = a % p return n_order(a, p) == totient(p) def _sqrt_mod_tonelli_shanks(a, p): """ Returns the square root in the case of ``p`` prime with ``p == 1 (mod 8)`` References ========== .. [1] R. Crandall and C. Pomerance "Prime Numbers", 2nt Ed., page 101 """ s = trailing(p - 1) t = p >> s # find a non-quadratic residue while 1: d = randint(2, p - 1) r = legendre_symbol(d, p) if r == -1: break #assert legendre_symbol(d, p) == -1 A = pow(a, t, p) D = pow(d, t, p) m = 0 for i in range(s): adm = A*pow(D, m, p) % p adm = pow(adm, 2**(s - 1 - i), p) if adm % p == p - 1: m += 2**i #assert A*pow(D, m, p) % p == 1 x = pow(a, (t + 1)//2, p)*pow(D, m//2, p) % p return x def sqrt_mod(a, p, all_roots=False): """ Find a root of ``x**2 = a mod p`` Parameters ========== a : integer p : positive integer all_roots : if True the list of roots is returned or None Notes ===== If there is no root it is returned None; else the returned root is less or equal to ``p // 2``; in general is not the smallest one. It is returned ``p // 2`` only if it is the only root. Use ``all_roots`` only when it is expected that all the roots fit in memory; otherwise use ``sqrt_mod_iter``. Examples ======== >>> from sympy.ntheory import sqrt_mod >>> sqrt_mod(11, 43) 21 >>> sqrt_mod(17, 32, True) [7, 9, 23, 25] """ if all_roots: return sorted(list(sqrt_mod_iter(a, p))) try: p = abs(as_int(p)) it = sqrt_mod_iter(a, p) r = next(it) if r > p // 2: return p - r elif r < p // 2: return r else: try: r = next(it) if r > p // 2: return p - r except StopIteration: pass return r except StopIteration: return None def _product(*iters): """ Cartesian product generator Notes ===== Unlike itertools.product, it works also with iterables which do not fit in memory. See http://bugs.python.org/issue10109 Author: Fernando Sumudu with small changes """ import itertools inf_iters = tuple(itertools.cycle(enumerate(it)) for it in iters) num_iters = len(inf_iters) cur_val = [None]*num_iters first_v = True while True: i, p = 0, num_iters while p and not i: p -= 1 i, cur_val[p] = next(inf_iters[p]) if not p and not i: if first_v: first_v = False else: break yield cur_val def sqrt_mod_iter(a, p, domain=int): """ Iterate over solutions to ``x**2 = a mod p`` Parameters ========== a : integer p : positive integer domain : integer domain, ``int``, ``ZZ`` or ``Integer`` Examples ======== >>> from sympy.ntheory.residue_ntheory import sqrt_mod_iter >>> list(sqrt_mod_iter(11, 43)) [21, 22] """ from sympy.polys.galoistools import gf_crt1, gf_crt2 from sympy.polys.domains import ZZ a, p = as_int(a), abs(as_int(p)) if isprime(p): a = a % p if a == 0: res = _sqrt_mod1(a, p, 1) else: res = _sqrt_mod_prime_power(a, p, 1) if res: if domain is ZZ: for x in res: yield x else: for x in res: yield domain(x) else: f = factorint(p) v = [] pv = [] for px, ex in f.items(): if a % px == 0: rx = _sqrt_mod1(a, px, ex) if not rx: return else: rx = _sqrt_mod_prime_power(a, px, ex) if not rx: return v.append(rx) pv.append(px**ex) mm, e, s = gf_crt1(pv, ZZ) if domain is ZZ: for vx in _product(*v): r = gf_crt2(vx, pv, mm, e, s, ZZ) yield r else: for vx in _product(*v): r = gf_crt2(vx, pv, mm, e, s, ZZ) yield domain(r) def _sqrt_mod_prime_power(a, p, k): """ Find the solutions to ``x**2 = a mod p**k`` when ``a % p != 0`` Parameters ========== a : integer p : prime number k : positive integer Examples ======== >>> from sympy.ntheory.residue_ntheory import _sqrt_mod_prime_power >>> _sqrt_mod_prime_power(11, 43, 1) [21, 22] References ========== .. [1] P. Hackman "Elementary Number Theory" (2009), page 160 .. [2] http://www.numbertheory.org/php/squareroot.html .. [3] [Gathen99]_ """ from sympy.core.numbers import igcdex from sympy.polys.domains import ZZ pk = p**k a = a % pk if k == 1: if p == 2: return [ZZ(a)] if not is_quad_residue(a, p): return None if p % 4 == 3: res = pow(a, (p + 1) // 4, p) elif p % 8 == 5: sign = pow(a, (p - 1) // 4, p) if sign == 1: res = pow(a, (p + 3) // 8, p) else: b = pow(4*a, (p - 5) // 8, p) x = (2*a*b) % p if pow(x, 2, p) == a: res = x else: res = _sqrt_mod_tonelli_shanks(a, p) # ``_sqrt_mod_tonelli_shanks(a, p)`` is not deterministic; # sort to get always the same result return sorted([ZZ(res), ZZ(p - res)]) if k > 1: # see Ref.[2] if p == 2: if a % 8 != 1: return None if k <= 3: s = set() for i in range(0, pk, 4): s.add(1 + i) s.add(-1 + i) return list(s) # according to Ref.[2] for k > 2 there are two solutions # (mod 2**k-1), that is four solutions (mod 2**k), which can be # obtained from the roots of x**2 = 0 (mod 8) rv = [ZZ(1), ZZ(3), ZZ(5), ZZ(7)] # hensel lift them to solutions of x**2 = 0 (mod 2**k) # if r**2 - a = 0 mod 2**nx but not mod 2**(nx+1) # then r + 2**(nx - 1) is a root mod 2**(nx+1) n = 3 res = [] for r in rv: nx = n while nx < k: r1 = (r**2 - a) >> nx if r1 % 2: r = r + (1 << (nx - 1)) #assert (r**2 - a)% (1 << (nx + 1)) == 0 nx += 1 if r not in res: res.append(r) x = r + (1 << (k - 1)) #assert (x**2 - a) % pk == 0 if x < (1 << nx) and x not in res: if (x**2 - a) % pk == 0: res.append(x) return res rv = _sqrt_mod_prime_power(a, p, 1) if not rv: return None r = rv[0] fr = r**2 - a # hensel lifting with Newton iteration, see Ref.[3] chapter 9 # with f(x) = x**2 - a; one has f'(a) != 0 (mod p) for p != 2 n = 1 px = p while 1: n1 = n n1 *= 2 if n1 > k: break n = n1 px = px**2 frinv = igcdex(2*r, px)[0] r = (r - fr*frinv) % px fr = r**2 - a if n < k: px = p**k frinv = igcdex(2*r, px)[0] r = (r - fr*frinv) % px return [r, px - r] def _sqrt_mod1(a, p, n): """ Find solution to ``x**2 == a mod p**n`` when ``a % p == 0`` see http://www.numbertheory.org/php/squareroot.html """ pn = p**n a = a % pn if a == 0: # case gcd(a, p**k) = p**n m = n // 2 if n % 2 == 1: pm1 = p**(m + 1) def _iter0a(): i = 0 while i < pn: yield i i += pm1 return _iter0a() else: pm = p**m def _iter0b(): i = 0 while i < pn: yield i i += pm return _iter0b() # case gcd(a, p**k) = p**r, r < n f = factorint(a) r = f[p] if r % 2 == 1: return None m = r // 2 a1 = a >> r if p == 2: if n - r == 1: pnm1 = 1 << (n - m + 1) pm1 = 1 << (m + 1) def _iter1(): k = 1 << (m + 2) i = 1 << m while i < pnm1: j = i while j < pn: yield j j += k i += pm1 return _iter1() if n - r == 2: res = _sqrt_mod_prime_power(a1, p, n - r) if res is None: return None pnm = 1 << (n - m) def _iter2(): s = set() for r in res: i = 0 while i < pn: x = (r << m) + i if x not in s: s.add(x) yield x i += pnm return _iter2() if n - r > 2: res = _sqrt_mod_prime_power(a1, p, n - r) if res is None: return None pnm1 = 1 << (n - m - 1) def _iter3(): s = set() for r in res: i = 0 while i < pn: x = ((r << m) + i) % pn if x not in s: s.add(x) yield x i += pnm1 return _iter3() else: m = r // 2 a1 = a // p**r res1 = _sqrt_mod_prime_power(a1, p, n - r) if res1 is None: return None pm = p**m pnr = p**(n-r) pnm = p**(n-m) def _iter4(): s = set() pm = p**m for rx in res1: i = 0 while i < pnm: x = ((rx + i) % pn) if x not in s: s.add(x) yield x*pm i += pnr return _iter4() def is_quad_residue(a, p): """ Returns True if ``a`` (mod ``p``) is in the set of squares mod ``p``, i.e a % p in set([i**2 % p for i in range(p)]). If ``p`` is an odd prime, an iterative method is used to make the determination: >>> from sympy.ntheory import is_quad_residue >>> sorted(set([i**2 % 7 for i in range(7)])) [0, 1, 2, 4] >>> [j for j in range(7) if is_quad_residue(j, 7)] [0, 1, 2, 4] See Also ======== legendre_symbol, jacobi_symbol """ a, p = as_int(a), as_int(p) if p < 1: raise ValueError('p must be > 0') if a >= p or a < 0: a = a % p if a < 2 or p < 3: return True if not isprime(p): if p % 2 and jacobi_symbol(a, p) == -1: return False r = sqrt_mod(a, p) if r is None: return False else: return True return pow(a, (p - 1) // 2, p) == 1 def is_nthpow_residue(a, n, m): """ Returns True if ``x**n == a (mod m)`` has solutions. References ========== .. [1] P. Hackman "Elementary Number Theory" (2009), page 76 """ a, n, m = as_int(a), as_int(n), as_int(m) if m <= 0: raise ValueError('m must be > 0') if n < 0: raise ValueError('n must be >= 0') if a < 0: raise ValueError('a must be >= 0') if n == 0: if m == 1: return False return a == 1 if n == 1: return True if n == 2: return is_quad_residue(a, m) return _is_nthpow_residue_bign(a, n, m) def _is_nthpow_residue_bign(a, n, m): """Returns True if ``x**n == a (mod m)`` has solutions for n > 2.""" # assert n > 2 # assert a > 0 and m > 0 if primitive_root(m) is None: # assert m >= 8 for prime, power in factorint(m).items(): if not _is_nthpow_residue_bign_prime_power(a, n, prime, power): return False return True f = totient(m) k = f // igcd(f, n) return pow(a, k, m) == 1 def _is_nthpow_residue_bign_prime_power(a, n, p, k): """Returns True/False if a solution for ``x**n == a (mod(p**k))`` does/doesn't exist.""" # assert a > 0 # assert n > 2 # assert p is prime # assert k > 0 if a % p: if p != 2: return _is_nthpow_residue_bign(a, n, pow(p, k)) if n & 1: return True c = trailing(n) return a % pow(2, min(c + 2, k)) == 1 else: a %= pow(p, k) if not a: return True mu = multiplicity(p, a) if mu % n: return False pm = pow(p, mu) return _is_nthpow_residue_bign_prime_power(a//pm, n, p, k - mu) def _nthroot_mod2(s, q, p): f = factorint(q) v = [] for b, e in f.items(): v.extend([b]*e) for qx in v: s = _nthroot_mod1(s, qx, p, False) return s def _nthroot_mod1(s, q, p, all_roots): """ Root of ``x**q = s mod p``, ``p`` prime and ``q`` divides ``p - 1`` References ========== .. [1] A. M. Johnston "A Generalized qth Root Algorithm" """ g = primitive_root(p) if not isprime(q): r = _nthroot_mod2(s, q, p) else: f = p - 1 assert (p - 1) % q == 0 # determine k k = 0 while f % q == 0: k += 1 f = f // q # find z, x, r1 f1 = igcdex(-f, q)[0] % q z = f*f1 x = (1 + z) // q r1 = pow(s, x, p) s1 = pow(s, f, p) h = pow(g, f*q, p) t = discrete_log(p, s1, h) g2 = pow(g, z*t, p) g3 = igcdex(g2, p)[0] r = r1*g3 % p #assert pow(r, q, p) == s res = [r] h = pow(g, (p - 1) // q, p) #assert pow(h, q, p) == 1 hx = r for i in range(q - 1): hx = (hx*h) % p res.append(hx) if all_roots: res.sort() return res return min(res) def nthroot_mod(a, n, p, all_roots=False): """ Find the solutions to ``x**n = a mod p`` Parameters ========== a : integer n : positive integer p : positive integer all_roots : if False returns the smallest root, else the list of roots Examples ======== >>> from sympy.ntheory.residue_ntheory import nthroot_mod >>> nthroot_mod(11, 4, 19) 8 >>> nthroot_mod(11, 4, 19, True) [8, 11] >>> nthroot_mod(68, 3, 109) 23 """ from sympy.core.numbers import igcdex a, n, p = as_int(a), as_int(n), as_int(p) if n == 2: return sqrt_mod(a, p, all_roots) # see Hackman "Elementary Number Theory" (2009), page 76 if not is_nthpow_residue(a, n, p): return None if primitive_root(p) is None: raise NotImplementedError("Not Implemented for m without primitive root") if (p - 1) % n == 0: return _nthroot_mod1(a, n, p, all_roots) # The roots of ``x**n - a = 0 (mod p)`` are roots of # ``gcd(x**n - a, x**(p - 1) - 1) = 0 (mod p)`` pa = n pb = p - 1 b = 1 if pa < pb: a, pa, b, pb = b, pb, a, pa while pb: # x**pa - a = 0; x**pb - b = 0 # x**pa - a = x**(q*pb + r) - a = (x**pb)**q * x**r - a = # b**q * x**r - a; x**r - c = 0; c = b**-q * a mod p q, r = divmod(pa, pb) c = pow(b, q, p) c = igcdex(c, p)[0] c = (c * a) % p pa, pb = pb, r a, b = b, c if pa == 1: if all_roots: res = [a] else: res = a elif pa == 2: return sqrt_mod(a, p , all_roots) else: res = _nthroot_mod1(a, pa, p, all_roots) return res def quadratic_residues(p): """ Returns the list of quadratic residues. Examples ======== >>> from sympy.ntheory.residue_ntheory import quadratic_residues >>> quadratic_residues(7) [0, 1, 2, 4] """ p = as_int(p) r = set() for i in range(p // 2 + 1): r.add(pow(i, 2, p)) return sorted(list(r)) def legendre_symbol(a, p): r""" Returns the Legendre symbol `(a / p)`. For an integer ``a`` and an odd prime ``p``, the Legendre symbol is defined as .. math :: \genfrac(){}{}{a}{p} = \begin{cases} 0 & \text{if } p \text{ divides } a\\ 1 & \text{if } a \text{ is a quadratic residue modulo } p\\ -1 & \text{if } a \text{ is a quadratic nonresidue modulo } p \end{cases} Parameters ========== a : integer p : odd prime Examples ======== >>> from sympy.ntheory import legendre_symbol >>> [legendre_symbol(i, 7) for i in range(7)] [0, 1, 1, -1, 1, -1, -1] >>> sorted(set([i**2 % 7 for i in range(7)])) [0, 1, 2, 4] See Also ======== is_quad_residue, jacobi_symbol """ a, p = as_int(a), as_int(p) if not isprime(p) or p == 2: raise ValueError("p should be an odd prime") a = a % p if not a: return 0 if is_quad_residue(a, p): return 1 return -1 def jacobi_symbol(m, n): r""" Returns the Jacobi symbol `(m / n)`. For any integer ``m`` and any positive odd integer ``n`` the Jacobi symbol is defined as the product of the Legendre symbols corresponding to the prime factors of ``n``: .. math :: \genfrac(){}{}{m}{n} = \genfrac(){}{}{m}{p^{1}}^{\alpha_1} \genfrac(){}{}{m}{p^{2}}^{\alpha_2} ... \genfrac(){}{}{m}{p^{k}}^{\alpha_k} \text{ where } n = p_1^{\alpha_1} p_2^{\alpha_2} ... p_k^{\alpha_k} Like the Legendre symbol, if the Jacobi symbol `\genfrac(){}{}{m}{n} = -1` then ``m`` is a quadratic nonresidue modulo ``n``. But, unlike the Legendre symbol, if the Jacobi symbol `\genfrac(){}{}{m}{n} = 1` then ``m`` may or may not be a quadratic residue modulo ``n``. Parameters ========== m : integer n : odd positive integer Examples ======== >>> from sympy.ntheory import jacobi_symbol, legendre_symbol >>> from sympy import Mul, S >>> jacobi_symbol(45, 77) -1 >>> jacobi_symbol(60, 121) 1 The relationship between the ``jacobi_symbol`` and ``legendre_symbol`` can be demonstrated as follows: >>> L = legendre_symbol >>> S(45).factors() {3: 2, 5: 1} >>> jacobi_symbol(7, 45) == L(7, 3)**2 * L(7, 5)**1 True See Also ======== is_quad_residue, legendre_symbol """ m, n = as_int(m), as_int(n) if n < 0 or not n % 2: raise ValueError("n should be an odd positive integer") if m < 0 or m > n: m = m % n if not m: return int(n == 1) if n == 1 or m == 1: return 1 if igcd(m, n) != 1: return 0 j = 1 if m < 0: m = -m if n % 4 == 3: j = -j while m != 0: while m % 2 == 0 and m > 0: m >>= 1 if n % 8 in [3, 5]: j = -j m, n = n, m if m % 4 == 3 and n % 4 == 3: j = -j m %= n if n != 1: j = 0 return j class mobius(Function): """ Mobius function maps natural number to {-1, 0, 1} It is defined as follows: 1) `1` if `n = 1`. 2) `0` if `n` has a squared prime factor. 3) `(-1)^k` if `n` is a square-free positive integer with `k` number of prime factors. It is an important multiplicative function in number theory and combinatorics. It has applications in mathematical series, algebraic number theory and also physics (Fermion operator has very concrete realization with Mobius Function model). Parameters ========== n : positive integer Examples ======== >>> from sympy.ntheory import mobius >>> mobius(13*7) 1 >>> mobius(1) 1 >>> mobius(13*7*5) -1 >>> mobius(13**2) 0 References ========== .. [1] https://en.wikipedia.org/wiki/M%C3%B6bius_function .. [2] Thomas Koshy "Elementary Number Theory with Applications" """ @classmethod def eval(cls, n): if n.is_integer: if n.is_positive is not True: raise ValueError("n should be a positive integer") else: raise TypeError("n should be an integer") if n.is_prime: return S.NegativeOne elif n is S.One: return S.One elif n.is_Integer: a = factorint(n) if any(i > 1 for i in a.values()): return S.Zero return S.NegativeOne**len(a) def _discrete_log_trial_mul(n, a, b, order=None): """ Trial multiplication algorithm for computing the discrete logarithm of ``a`` to the base ``b`` modulo ``n``. The algorithm finds the discrete logarithm using exhaustive search. This naive method is used as fallback algorithm of ``discrete_log`` when the group order is very small. Examples ======== >>> from sympy.ntheory.residue_ntheory import _discrete_log_trial_mul >>> _discrete_log_trial_mul(41, 15, 7) 3 See Also ======== discrete_log References ========== .. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., & Vanstone, S. A. (1997). """ a %= n b %= n if order is None: order = n x = 1 for i in range(order): if x == a: return i x = x * b % n raise ValueError("Log does not exist") def _discrete_log_shanks_steps(n, a, b, order=None): """ Baby-step giant-step algorithm for computing the discrete logarithm of ``a`` to the base ``b`` modulo ``n``. The algorithm is a time-memory trade-off of the method of exhaustive search. It uses `O(sqrt(m))` memory, where `m` is the group order. Examples ======== >>> from sympy.ntheory.residue_ntheory import _discrete_log_shanks_steps >>> _discrete_log_shanks_steps(41, 15, 7) 3 See Also ======== discrete_log References ========== .. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., & Vanstone, S. A. (1997). """ a %= n b %= n if order is None: order = n_order(b, n) m = isqrt(order) + 1 T = dict() x = 1 for i in range(m): T[x] = i x = x * b % n z = mod_inverse(b, n) z = pow(z, m, n) x = a for i in range(m): if x in T: return i * m + T[x] x = x * z % n raise ValueError("Log does not exist") def _discrete_log_pollard_rho(n, a, b, order=None, retries=10, rseed=None): """ Pollard's Rho algorithm for computing the discrete logarithm of ``a`` to the base ``b`` modulo ``n``. It is a randomized algorithm with the same expected running time as ``_discrete_log_shanks_steps``, but requires a negligible amount of memory. Examples ======== >>> from sympy.ntheory.residue_ntheory import _discrete_log_pollard_rho >>> _discrete_log_pollard_rho(227, 3**7, 3) 7 See Also ======== discrete_log References ========== .. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., & Vanstone, S. A. (1997). """ a %= n b %= n if order is None: order = n_order(b, n) prng = Random() if rseed is not None: prng.seed(rseed) for i in range(retries): aa = prng.randint(1, order - 1) ba = prng.randint(1, order - 1) xa = pow(b, aa, n) * pow(a, ba, n) % n c = xa % 3 if c == 0: xb = a * xa % n ab = aa bb = (ba + 1) % order elif c == 1: xb = xa * xa % n ab = (aa + aa) % order bb = (ba + ba) % order else: xb = b * xa % n ab = (aa + 1) % order bb = ba for j in range(order): c = xa % 3 if c == 0: xa = a * xa % n ba = (ba + 1) % order elif c == 1: xa = xa * xa % n aa = (aa + aa) % order ba = (ba + ba) % order else: xa = b * xa % n aa = (aa + 1) % order c = xb % 3 if c == 0: xb = a * xb % n bb = (bb + 1) % order elif c == 1: xb = xb * xb % n ab = (ab + ab) % order bb = (bb + bb) % order else: xb = b * xb % n ab = (ab + 1) % order c = xb % 3 if c == 0: xb = a * xb % n bb = (bb + 1) % order elif c == 1: xb = xb * xb % n ab = (ab + ab) % order bb = (bb + bb) % order else: xb = b * xb % n ab = (ab + 1) % order if xa == xb: r = (ba - bb) % order try: e = mod_inverse(r, order) * (ab - aa) % order if (pow(b, e, n) - a) % n == 0: return e except ValueError: pass break raise ValueError("Pollard's Rho failed to find logarithm") def _discrete_log_pohlig_hellman(n, a, b, order=None): """ Pohlig-Hellman algorithm for computing the discrete logarithm of ``a`` to the base ``b`` modulo ``n``. In order to compute the discrete logarithm, the algorithm takes advantage of the factorization of the group order. It is more efficient when the group order factors into many small primes. Examples ======== >>> from sympy.ntheory.residue_ntheory import _discrete_log_pohlig_hellman >>> _discrete_log_pohlig_hellman(251, 210, 71) 197 See Also ======== discrete_log References ========== .. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., & Vanstone, S. A. (1997). """ from .modular import crt a %= n b %= n if order is None: order = n_order(b, n) f = factorint(order) l = [0] * len(f) for i, (pi, ri) in enumerate(f.items()): for j in range(ri): gj = pow(b, l[i], n) aj = pow(a * mod_inverse(gj, n), order // pi**(j + 1), n) bj = pow(b, order // pi, n) cj = discrete_log(n, aj, bj, pi, True) l[i] += cj * pi**j d, _ = crt([pi**ri for pi, ri in f.items()], l) return d def discrete_log(n, a, b, order=None, prime_order=None): """ Compute the discrete logarithm of ``a`` to the base ``b`` modulo ``n``. This is a recursive function to reduce the discrete logarithm problem in cyclic groups of composite order to the problem in cyclic groups of prime order. It employs different algorithms depending on the problem (subgroup order size, prime order or not): * Trial multiplication * Baby-step giant-step * Pollard's Rho * Pohlig-Hellman Examples ======== >>> from sympy.ntheory import discrete_log >>> discrete_log(41, 15, 7) 3 References ========== .. [1] http://mathworld.wolfram.com/DiscreteLogarithm.html .. [2] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., & Vanstone, S. A. (1997). """ n, a, b = as_int(n), as_int(a), as_int(b) if order is None: order = n_order(b, n) if prime_order is None: prime_order = isprime(order) if order < 1000: return _discrete_log_trial_mul(n, a, b, order) elif prime_order: if order < 1000000000000: return _discrete_log_shanks_steps(n, a, b, order) return _discrete_log_pollard_rho(n, a, b, order) return _discrete_log_pohlig_hellman(n, a, b, order)
d6283579dd3e722b1be0c38e0d0c13437ff61ba785eaddf5fd8315193bd3db88
""" Integer factorization """ from __future__ import print_function, division import random import math from sympy.core import sympify from sympy.core.compatibility import as_int, SYMPY_INTS, range, string_types from sympy.core.containers import Dict from sympy.core.evalf import bitcount from sympy.core.expr import Expr from sympy.core.function import Function from sympy.core.logic import fuzzy_and from sympy.core.mul import Mul from sympy.core.numbers import igcd, ilcm, Rational from sympy.core.power import integer_nthroot, Pow from sympy.core.singleton import S from .primetest import isprime from .generate import sieve, primerange, nextprime # Note: This list should be updated whenever new Mersenne primes are found. # Refer: https://www.mersenne.org/ MERSENNE_PRIME_EXPONENTS = (2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933) small_trailing = [0] * 256 for j in range(1,8): small_trailing[1<<j::1<<(j+1)] = [j] * (1<<(7-j)) def smoothness(n): """ Return the B-smooth and B-power smooth values of n. The smoothness of n is the largest prime factor of n; the power- smoothness is the largest divisor raised to its multiplicity. Examples ======== >>> from sympy.ntheory.factor_ import smoothness >>> smoothness(2**7*3**2) (3, 128) >>> smoothness(2**4*13) (13, 16) >>> smoothness(2) (2, 2) See Also ======== factorint, smoothness_p """ if n == 1: return (1, 1) # not prime, but otherwise this causes headaches facs = factorint(n) return max(facs), max(m**facs[m] for m in facs) def smoothness_p(n, m=-1, power=0, visual=None): """ Return a list of [m, (p, (M, sm(p + m), psm(p + m)))...] where: 1. p**M is the base-p divisor of n 2. sm(p + m) is the smoothness of p + m (m = -1 by default) 3. psm(p + m) is the power smoothness of p + m The list is sorted according to smoothness (default) or by power smoothness if power=1. The smoothness of the numbers to the left (m = -1) or right (m = 1) of a factor govern the results that are obtained from the p +/- 1 type factoring methods. >>> from sympy.ntheory.factor_ import smoothness_p, factorint >>> smoothness_p(10431, m=1) (1, [(3, (2, 2, 4)), (19, (1, 5, 5)), (61, (1, 31, 31))]) >>> smoothness_p(10431) (-1, [(3, (2, 2, 2)), (19, (1, 3, 9)), (61, (1, 5, 5))]) >>> smoothness_p(10431, power=1) (-1, [(3, (2, 2, 2)), (61, (1, 5, 5)), (19, (1, 3, 9))]) If visual=True then an annotated string will be returned: >>> print(smoothness_p(21477639576571, visual=1)) p**i=4410317**1 has p-1 B=1787, B-pow=1787 p**i=4869863**1 has p-1 B=2434931, B-pow=2434931 This string can also be generated directly from a factorization dictionary and vice versa: >>> factorint(17*9) {3: 2, 17: 1} >>> smoothness_p(_) 'p**i=3**2 has p-1 B=2, B-pow=2\\np**i=17**1 has p-1 B=2, B-pow=16' >>> smoothness_p(_) {3: 2, 17: 1} The table of the output logic is: ====== ====== ======= ======= | Visual ------ ---------------------- Input True False other ====== ====== ======= ======= dict str tuple str str str tuple dict tuple str tuple str n str tuple tuple mul str tuple tuple ====== ====== ======= ======= See Also ======== factorint, smoothness """ from sympy.utilities import flatten # visual must be True, False or other (stored as None) if visual in (1, 0): visual = bool(visual) elif visual not in (True, False): visual = None if isinstance(n, string_types): if visual: return n d = {} for li in n.splitlines(): k, v = [int(i) for i in li.split('has')[0].split('=')[1].split('**')] d[k] = v if visual is not True and visual is not False: return d return smoothness_p(d, visual=False) elif type(n) is not tuple: facs = factorint(n, visual=False) if power: k = -1 else: k = 1 if type(n) is not tuple: rv = (m, sorted([(f, tuple([M] + list(smoothness(f + m)))) for f, M in [i for i in facs.items()]], key=lambda x: (x[1][k], x[0]))) else: rv = n if visual is False or (visual is not True) and (type(n) in [int, Mul]): return rv lines = [] for dat in rv[1]: dat = flatten(dat) dat.insert(2, m) lines.append('p**i=%i**%i has p%+i B=%i, B-pow=%i' % tuple(dat)) return '\n'.join(lines) def trailing(n): """Count the number of trailing zero digits in the binary representation of n, i.e. determine the largest power of 2 that divides n. Examples ======== >>> from sympy import trailing >>> trailing(128) 7 >>> trailing(63) 0 """ n = abs(int(n)) if not n: return 0 low_byte = n & 0xff if low_byte: return small_trailing[low_byte] # 2**m is quick for z up through 2**30 z = bitcount(n) - 1 if isinstance(z, SYMPY_INTS): if n == 1 << z: return z if z < 300: # fixed 8-byte reduction t = 8 n >>= 8 while not n & 0xff: n >>= 8 t += 8 return t + small_trailing[n & 0xff] # binary reduction important when there might be a large # number of trailing 0s t = 0 p = 8 while not n & 1: while not n & ((1 << p) - 1): n >>= p t += p p *= 2 p //= 2 return t def multiplicity(p, n): """ Find the greatest integer m such that p**m divides n. Examples ======== >>> from sympy.ntheory import multiplicity >>> from sympy.core.numbers import Rational as R >>> [multiplicity(5, n) for n in [8, 5, 25, 125, 250]] [0, 1, 2, 3, 3] >>> multiplicity(3, R(1, 9)) -2 """ try: p, n = as_int(p), as_int(n) except ValueError: if all(isinstance(i, (SYMPY_INTS, Rational)) for i in (p, n)): p = Rational(p) n = Rational(n) if p.q == 1: if n.p == 1: return -multiplicity(p.p, n.q) return multiplicity(p.p, n.p) - multiplicity(p.p, n.q) elif p.p == 1: return multiplicity(p.q, n.q) else: like = min( multiplicity(p.p, n.p), multiplicity(p.q, n.q)) cross = min( multiplicity(p.q, n.p), multiplicity(p.p, n.q)) return like - cross raise ValueError('expecting ints or fractions, got %s and %s' % (p, n)) if n == 0: raise ValueError('no such integer exists: multiplicity of %s is not-defined' %(n)) if p == 2: return trailing(n) if p < 2: raise ValueError('p must be an integer, 2 or larger, but got %s' % p) if p == n: return 1 m = 0 n, rem = divmod(n, p) while not rem: m += 1 if m > 5: # The multiplicity could be very large. Better # to increment in powers of two e = 2 while 1: ppow = p**e if ppow < n: nnew, rem = divmod(n, ppow) if not rem: m += e e *= 2 n = nnew continue return m + multiplicity(p, n) n, rem = divmod(n, p) return m def perfect_power(n, candidates=None, big=True, factor=True): """ Return ``(b, e)`` such that ``n`` == ``b**e`` if ``n`` is a perfect power with ``e > 1``, else ``False``. A ValueError is raised if ``n`` is not an integer or is not positive. By default, the base is recursively decomposed and the exponents collected so the largest possible ``e`` is sought. If ``big=False`` then the smallest possible ``e`` (thus prime) will be chosen. If ``factor=True`` then simultaneous factorization of ``n`` is attempted since finding a factor indicates the only possible root for ``n``. This is True by default since only a few small factors will be tested in the course of searching for the perfect power. The use of ``candidates`` is primarily for internal use; if provided, False will be returned if ``n`` cannot be written as a power with one of the candidates as an exponent and factoring (beyond testing for a factor of 2) will not be attempted. Examples ======== >>> from sympy import perfect_power >>> perfect_power(16) (2, 4) >>> perfect_power(16, big=False) (4, 2) Notes ===== To know whether an integer is a perfect power of 2 use >>> is2pow = lambda n: bool(n and not n & (n - 1)) >>> [(i, is2pow(i)) for i in range(5)] [(0, False), (1, True), (2, True), (3, False), (4, True)] It is not necessary to provide ``candidates``. When provided it will be assumed that they are ints. The first one that is larger than the computed maximum possible exponent will signal failure for the routine. >>> perfect_power(3**8, [9]) False >>> perfect_power(3**8, [2, 4, 8]) (3, 8) >>> perfect_power(3**8, [4, 8], big=False) (9, 4) See Also ======== sympy.core.power.integer_nthroot sympy.ntheory.primetest.is_square """ from sympy.core.power import integer_nthroot n = as_int(n) if n < 3: if n < 1: raise ValueError('expecting positive n') return False logn = math.log(n, 2) max_possible = int(logn) + 2 # only check values less than this not_square = n % 10 in [2, 3, 7, 8] # squares cannot end in 2, 3, 7, 8 min_possible = 2 + not_square if not candidates: candidates = primerange(min_possible, max_possible) else: candidates = sorted([i for i in candidates if min_possible <= i < max_possible]) if n%2 == 0: e = trailing(n) candidates = [i for i in candidates if e%i == 0] if big: candidates = reversed(candidates) for e in candidates: r, ok = integer_nthroot(n, e) if ok: return (r, e) return False def _factors(): rv = 2 + n % 2 while True: yield rv rv = nextprime(rv) for fac, e in zip(_factors(), candidates): # see if there is a factor present if factor and n % fac == 0: # find what the potential power is if fac == 2: e = trailing(n) else: e = multiplicity(fac, n) # if it's a trivial power we are done if e == 1: return False # maybe the e-th root of n is exact r, exact = integer_nthroot(n, e) if not exact: # Having a factor, we know that e is the maximal # possible value for a root of n. # If n = fac**e*m can be written as a perfect # power then see if m can be written as r**E where # gcd(e, E) != 1 so n = (fac**(e//E)*r)**E m = n//fac**e rE = perfect_power(m, candidates=divisors(e, generator=True)) if not rE: return False else: r, E = rE r, e = fac**(e//E)*r, E if not big: e0 = primefactors(e) if e0[0] != e: r, e = r**(e//e0[0]), e0[0] return r, e # Weed out downright impossible candidates if logn/e < 40: b = 2.0**(logn/e) if abs(int(b + 0.5) - b) > 0.01: continue # now see if the plausible e makes a perfect power r, exact = integer_nthroot(n, e) if exact: if big: m = perfect_power(r, big=big, factor=factor) if m: r, e = m[0], e*m[1] return int(r), e return False def pollard_rho(n, s=2, a=1, retries=5, seed=1234, max_steps=None, F=None): r""" Use Pollard's rho method to try to extract a nontrivial factor of ``n``. The returned factor may be a composite number. If no factor is found, ``None`` is returned. The algorithm generates pseudo-random values of x with a generator function, replacing x with F(x). If F is not supplied then the function x**2 + ``a`` is used. The first value supplied to F(x) is ``s``. Upon failure (if ``retries`` is > 0) a new ``a`` and ``s`` will be supplied; the ``a`` will be ignored if F was supplied. The sequence of numbers generated by such functions generally have a a lead-up to some number and then loop around back to that number and begin to repeat the sequence, e.g. 1, 2, 3, 4, 5, 3, 4, 5 -- this leader and loop look a bit like the Greek letter rho, and thus the name, 'rho'. For a given function, very different leader-loop values can be obtained so it is a good idea to allow for retries: >>> from sympy.ntheory.generate import cycle_length >>> n = 16843009 >>> F = lambda x:(2048*pow(x, 2, n) + 32767) % n >>> for s in range(5): ... print('loop length = %4i; leader length = %3i' % next(cycle_length(F, s))) ... loop length = 2489; leader length = 42 loop length = 78; leader length = 120 loop length = 1482; leader length = 99 loop length = 1482; leader length = 285 loop length = 1482; leader length = 100 Here is an explicit example where there is a two element leadup to a sequence of 3 numbers (11, 14, 4) that then repeat: >>> x=2 >>> for i in range(9): ... x=(x**2+12)%17 ... print(x) ... 16 13 11 14 4 11 14 4 11 >>> next(cycle_length(lambda x: (x**2+12)%17, 2)) (3, 2) >>> list(cycle_length(lambda x: (x**2+12)%17, 2, values=True)) [16, 13, 11, 14, 4] Instead of checking the differences of all generated values for a gcd with n, only the kth and 2*kth numbers are checked, e.g. 1st and 2nd, 2nd and 4th, 3rd and 6th until it has been detected that the loop has been traversed. Loops may be many thousands of steps long before rho finds a factor or reports failure. If ``max_steps`` is specified, the iteration is cancelled with a failure after the specified number of steps. Examples ======== >>> from sympy import pollard_rho >>> n=16843009 >>> F=lambda x:(2048*pow(x,2,n) + 32767) % n >>> pollard_rho(n, F=F) 257 Use the default setting with a bad value of ``a`` and no retries: >>> pollard_rho(n, a=n-2, retries=0) If retries is > 0 then perhaps the problem will correct itself when new values are generated for a: >>> pollard_rho(n, a=n-2, retries=1) 257 References ========== .. [1] Richard Crandall & Carl Pomerance (2005), "Prime Numbers: A Computational Perspective", Springer, 2nd edition, 229-231 """ n = int(n) if n < 5: raise ValueError('pollard_rho should receive n > 4') prng = random.Random(seed + retries) V = s for i in range(retries + 1): U = V if not F: F = lambda x: (pow(x, 2, n) + a) % n j = 0 while 1: if max_steps and (j > max_steps): break j += 1 U = F(U) V = F(F(V)) # V is 2x further along than U g = igcd(U - V, n) if g == 1: continue if g == n: break return int(g) V = prng.randint(0, n - 1) a = prng.randint(1, n - 3) # for x**2 + a, a%n should not be 0 or -2 F = None return None def pollard_pm1(n, B=10, a=2, retries=0, seed=1234): """ Use Pollard's p-1 method to try to extract a nontrivial factor of ``n``. Either a divisor (perhaps composite) or ``None`` is returned. The value of ``a`` is the base that is used in the test gcd(a**M - 1, n). The default is 2. If ``retries`` > 0 then if no factor is found after the first attempt, a new ``a`` will be generated randomly (using the ``seed``) and the process repeated. Note: the value of M is lcm(1..B) = reduce(ilcm, range(2, B + 1)). A search is made for factors next to even numbers having a power smoothness less than ``B``. Choosing a larger B increases the likelihood of finding a larger factor but takes longer. Whether a factor of n is found or not depends on ``a`` and the power smoothness of the even number just less than the factor p (hence the name p - 1). Although some discussion of what constitutes a good ``a`` some descriptions are hard to interpret. At the modular.math site referenced below it is stated that if gcd(a**M - 1, n) = N then a**M % q**r is 1 for every prime power divisor of N. But consider the following: >>> from sympy.ntheory.factor_ import smoothness_p, pollard_pm1 >>> n=257*1009 >>> smoothness_p(n) (-1, [(257, (1, 2, 256)), (1009, (1, 7, 16))]) So we should (and can) find a root with B=16: >>> pollard_pm1(n, B=16, a=3) 1009 If we attempt to increase B to 256 we find that it doesn't work: >>> pollard_pm1(n, B=256) >>> But if the value of ``a`` is changed we find that only multiples of 257 work, e.g.: >>> pollard_pm1(n, B=256, a=257) 1009 Checking different ``a`` values shows that all the ones that didn't work had a gcd value not equal to ``n`` but equal to one of the factors: >>> from sympy.core.numbers import ilcm, igcd >>> from sympy import factorint, Pow >>> M = 1 >>> for i in range(2, 256): ... M = ilcm(M, i) ... >>> set([igcd(pow(a, M, n) - 1, n) for a in range(2, 256) if ... igcd(pow(a, M, n) - 1, n) != n]) {1009} But does aM % d for every divisor of n give 1? >>> aM = pow(255, M, n) >>> [(d, aM%Pow(*d.args)) for d in factorint(n, visual=True).args] [(257**1, 1), (1009**1, 1)] No, only one of them. So perhaps the principle is that a root will be found for a given value of B provided that: 1) the power smoothness of the p - 1 value next to the root does not exceed B 2) a**M % p != 1 for any of the divisors of n. By trying more than one ``a`` it is possible that one of them will yield a factor. Examples ======== With the default smoothness bound, this number can't be cracked: >>> from sympy.ntheory import pollard_pm1, primefactors >>> pollard_pm1(21477639576571) Increasing the smoothness bound helps: >>> pollard_pm1(21477639576571, B=2000) 4410317 Looking at the smoothness of the factors of this number we find: >>> from sympy.utilities import flatten >>> from sympy.ntheory.factor_ import smoothness_p, factorint >>> print(smoothness_p(21477639576571, visual=1)) p**i=4410317**1 has p-1 B=1787, B-pow=1787 p**i=4869863**1 has p-1 B=2434931, B-pow=2434931 The B and B-pow are the same for the p - 1 factorizations of the divisors because those factorizations had a very large prime factor: >>> factorint(4410317 - 1) {2: 2, 617: 1, 1787: 1} >>> factorint(4869863-1) {2: 1, 2434931: 1} Note that until B reaches the B-pow value of 1787, the number is not cracked; >>> pollard_pm1(21477639576571, B=1786) >>> pollard_pm1(21477639576571, B=1787) 4410317 The B value has to do with the factors of the number next to the divisor, not the divisors themselves. A worst case scenario is that the number next to the factor p has a large prime divisisor or is a perfect power. If these conditions apply then the power-smoothness will be about p/2 or p. The more realistic is that there will be a large prime factor next to p requiring a B value on the order of p/2. Although primes may have been searched for up to this level, the p/2 is a factor of p - 1, something that we don't know. The modular.math reference below states that 15% of numbers in the range of 10**15 to 15**15 + 10**4 are 10**6 power smooth so a B of 10**6 will fail 85% of the time in that range. From 10**8 to 10**8 + 10**3 the percentages are nearly reversed...but in that range the simple trial division is quite fast. References ========== .. [1] Richard Crandall & Carl Pomerance (2005), "Prime Numbers: A Computational Perspective", Springer, 2nd edition, 236-238 .. [2] http://modular.math.washington.edu/edu/2007/spring/ent/ent-html/node81.html .. [3] https://www.cs.toronto.edu/~yuvalf/Factorization.pdf """ n = int(n) if n < 4 or B < 3: raise ValueError('pollard_pm1 should receive n > 3 and B > 2') prng = random.Random(seed + B) # computing a**lcm(1,2,3,..B) % n for B > 2 # it looks weird, but it's right: primes run [2, B] # and the answer's not right until the loop is done. for i in range(retries + 1): aM = a for p in sieve.primerange(2, B + 1): e = int(math.log(B, p)) aM = pow(aM, pow(p, e), n) g = igcd(aM - 1, n) if 1 < g < n: return int(g) # get a new a: # since the exponent, lcm(1..B), is even, if we allow 'a' to be 'n-1' # then (n - 1)**even % n will be 1 which will give a g of 0 and 1 will # give a zero, too, so we set the range as [2, n-2]. Some references # say 'a' should be coprime to n, but either will detect factors. a = prng.randint(2, n - 2) def _trial(factors, n, candidates, verbose=False): """ Helper function for integer factorization. Trial factors ``n` against all integers given in the sequence ``candidates`` and updates the dict ``factors`` in-place. Returns the reduced value of ``n`` and a flag indicating whether any factors were found. """ if verbose: factors0 = list(factors.keys()) nfactors = len(factors) for d in candidates: if n % d == 0: m = multiplicity(d, n) n //= d**m factors[d] = m if verbose: for k in sorted(set(factors).difference(set(factors0))): print(factor_msg % (k, factors[k])) return int(n), len(factors) != nfactors def _check_termination(factors, n, limitp1, use_trial, use_rho, use_pm1, verbose): """ Helper function for integer factorization. Checks if ``n`` is a prime or a perfect power, and in those cases updates the factorization and raises ``StopIteration``. """ if verbose: print('Check for termination') # since we've already been factoring there is no need to do # simultaneous factoring with the power check p = perfect_power(n, factor=False) if p is not False: base, exp = p if limitp1: limit = limitp1 - 1 else: limit = limitp1 facs = factorint(base, limit, use_trial, use_rho, use_pm1, verbose=False) for b, e in facs.items(): if verbose: print(factor_msg % (b, e)) factors[b] = exp*e raise StopIteration if isprime(n): factors[int(n)] = 1 raise StopIteration if n == 1: raise StopIteration trial_int_msg = "Trial division with ints [%i ... %i] and fail_max=%i" trial_msg = "Trial division with primes [%i ... %i]" rho_msg = "Pollard's rho with retries %i, max_steps %i and seed %i" pm1_msg = "Pollard's p-1 with smoothness bound %i and seed %i" factor_msg = '\t%i ** %i' fermat_msg = 'Close factors satisying Fermat condition found.' complete_msg = 'Factorization is complete.' def _factorint_small(factors, n, limit, fail_max): """ Return the value of n and either a 0 (indicating that factorization up to the limit was complete) or else the next near-prime that would have been tested. Factoring stops if there are fail_max unsuccessful tests in a row. If factors of n were found they will be in the factors dictionary as {factor: multiplicity} and the returned value of n will have had those factors removed. The factors dictionary is modified in-place. """ def done(n, d): """return n, d if the sqrt(n) wasn't reached yet, else n, 0 indicating that factoring is done. """ if d*d <= n: return n, d return n, 0 d = 2 m = trailing(n) if m: factors[d] = m n >>= m d = 3 if limit < d: if n > 1: factors[n] = 1 return done(n, d) # reduce m = 0 while n % d == 0: n //= d m += 1 if m == 20: mm = multiplicity(d, n) m += mm n //= d**mm break if m: factors[d] = m # when d*d exceeds maxx or n we are done; if limit**2 is greater # than n then maxx is set to zero so the value of n will flag the finish if limit*limit > n: maxx = 0 else: maxx = limit*limit dd = maxx or n d = 5 fails = 0 while fails < fail_max: if d*d > dd: break # d = 6*i - 1 # reduce m = 0 while n % d == 0: n //= d m += 1 if m == 20: mm = multiplicity(d, n) m += mm n //= d**mm break if m: factors[d] = m dd = maxx or n fails = 0 else: fails += 1 d += 2 if d*d > dd: break # d = 6*i - 1 # reduce m = 0 while n % d == 0: n //= d m += 1 if m == 20: mm = multiplicity(d, n) m += mm n //= d**mm break if m: factors[d] = m dd = maxx or n fails = 0 else: fails += 1 # d = 6*(i + 1) - 1 d += 4 return done(n, d) def factorint(n, limit=None, use_trial=True, use_rho=True, use_pm1=True, verbose=False, visual=None, multiple=False): r""" Given a positive integer ``n``, ``factorint(n)`` returns a dict containing the prime factors of ``n`` as keys and their respective multiplicities as values. For example: >>> from sympy.ntheory import factorint >>> factorint(2000) # 2000 = (2**4) * (5**3) {2: 4, 5: 3} >>> factorint(65537) # This number is prime {65537: 1} For input less than 2, factorint behaves as follows: - ``factorint(1)`` returns the empty factorization, ``{}`` - ``factorint(0)`` returns ``{0:1}`` - ``factorint(-n)`` adds ``-1:1`` to the factors and then factors ``n`` Partial Factorization: If ``limit`` (> 3) is specified, the search is stopped after performing trial division up to (and including) the limit (or taking a corresponding number of rho/p-1 steps). This is useful if one has a large number and only is interested in finding small factors (if any). Note that setting a limit does not prevent larger factors from being found early; it simply means that the largest factor may be composite. Since checking for perfect power is relatively cheap, it is done regardless of the limit setting. This number, for example, has two small factors and a huge semi-prime factor that cannot be reduced easily: >>> from sympy.ntheory import isprime >>> from sympy.core.compatibility import long >>> a = 1407633717262338957430697921446883 >>> f = factorint(a, limit=10000) >>> f == {991: 1, long(202916782076162456022877024859): 1, 7: 1} True >>> isprime(max(f)) False This number has a small factor and a residual perfect power whose base is greater than the limit: >>> factorint(3*101**7, limit=5) {3: 1, 101: 7} List of Factors: If ``multiple`` is set to ``True`` then a list containing the prime factors including multiplicities is returned. >>> factorint(24, multiple=True) [2, 2, 2, 3] Visual Factorization: If ``visual`` is set to ``True``, then it will return a visual factorization of the integer. For example: >>> from sympy import pprint >>> pprint(factorint(4200, visual=True)) 3 1 2 1 2 *3 *5 *7 Note that this is achieved by using the evaluate=False flag in Mul and Pow. If you do other manipulations with an expression where evaluate=False, it may evaluate. Therefore, you should use the visual option only for visualization, and use the normal dictionary returned by visual=False if you want to perform operations on the factors. You can easily switch between the two forms by sending them back to factorint: >>> from sympy import Mul, Pow >>> regular = factorint(1764); regular {2: 2, 3: 2, 7: 2} >>> pprint(factorint(regular)) 2 2 2 2 *3 *7 >>> visual = factorint(1764, visual=True); pprint(visual) 2 2 2 2 *3 *7 >>> print(factorint(visual)) {2: 2, 3: 2, 7: 2} If you want to send a number to be factored in a partially factored form you can do so with a dictionary or unevaluated expression: >>> factorint(factorint({4: 2, 12: 3})) # twice to toggle to dict form {2: 10, 3: 3} >>> factorint(Mul(4, 12, evaluate=False)) {2: 4, 3: 1} The table of the output logic is: ====== ====== ======= ======= Visual ------ ---------------------- Input True False other ====== ====== ======= ======= dict mul dict mul n mul dict dict mul mul dict dict ====== ====== ======= ======= Notes ===== Algorithm: The function switches between multiple algorithms. Trial division quickly finds small factors (of the order 1-5 digits), and finds all large factors if given enough time. The Pollard rho and p-1 algorithms are used to find large factors ahead of time; they will often find factors of the order of 10 digits within a few seconds: >>> factors = factorint(12345678910111213141516) >>> for base, exp in sorted(factors.items()): ... print('%s %s' % (base, exp)) ... 2 2 2507191691 1 1231026625769 1 Any of these methods can optionally be disabled with the following boolean parameters: - ``use_trial``: Toggle use of trial division - ``use_rho``: Toggle use of Pollard's rho method - ``use_pm1``: Toggle use of Pollard's p-1 method ``factorint`` also periodically checks if the remaining part is a prime number or a perfect power, and in those cases stops. For unevaluated factorial, it uses Legendre's formula(theorem). If ``verbose`` is set to ``True``, detailed progress is printed. See Also ======== smoothness, smoothness_p, divisors """ if isinstance(n, Dict): n = dict(n) if multiple: fac = factorint(n, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose, visual=False, multiple=False) factorlist = sum(([p] * fac[p] if fac[p] > 0 else [S.One/p]*(-fac[p]) for p in sorted(fac)), []) return factorlist factordict = {} if visual and not isinstance(n, Mul) and not isinstance(n, dict): factordict = factorint(n, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose, visual=False) elif isinstance(n, Mul): factordict = {int(k): int(v) for k, v in n.as_powers_dict().items()} elif isinstance(n, dict): factordict = n if factordict and (isinstance(n, Mul) or isinstance(n, dict)): # check it for key in list(factordict.keys()): if isprime(key): continue e = factordict.pop(key) d = factorint(key, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose, visual=False) for k, v in d.items(): if k in factordict: factordict[k] += v*e else: factordict[k] = v*e if visual or (type(n) is dict and visual is not True and visual is not False): if factordict == {}: return S.One if -1 in factordict: factordict.pop(-1) args = [S.NegativeOne] else: args = [] args.extend([Pow(*i, evaluate=False) for i in sorted(factordict.items())]) return Mul(*args, evaluate=False) elif isinstance(n, dict) or isinstance(n, Mul): return factordict assert use_trial or use_rho or use_pm1 from sympy.functions.combinatorial.factorials import factorial if isinstance(n, factorial): x = as_int(n.args[0]) if x >= 20: factors = {} m = 2 # to initialize the if condition below for p in sieve.primerange(2, x + 1): if m > 1: m, q = 0, x // p while q != 0: m += q q //= p factors[p] = m if factors and verbose: for k in sorted(factors): print(factor_msg % (k, factors[k])) if verbose: print(complete_msg) return factors else: # if n < 20!, direct computation is faster # since it uses a lookup table n = n.func(x) n = as_int(n) if limit: limit = int(limit) # special cases if n < 0: factors = factorint( -n, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose, visual=False) factors[-1] = 1 return factors if limit and limit < 2: if n == 1: return {} return {n: 1} elif n < 10: # doing this we are assured of getting a limit > 2 # when we have to compute it later return [{0: 1}, {}, {2: 1}, {3: 1}, {2: 2}, {5: 1}, {2: 1, 3: 1}, {7: 1}, {2: 3}, {3: 2}][n] factors = {} # do simplistic factorization if verbose: sn = str(n) if len(sn) > 50: print('Factoring %s' % sn[:5] + \ '..(%i other digits)..' % (len(sn) - 10) + sn[-5:]) else: print('Factoring', n) if use_trial: # this is the preliminary factorization for small factors small = 2**15 fail_max = 600 small = min(small, limit or small) if verbose: print(trial_int_msg % (2, small, fail_max)) n, next_p = _factorint_small(factors, n, small, fail_max) else: next_p = 2 if factors and verbose: for k in sorted(factors): print(factor_msg % (k, factors[k])) if next_p == 0: if n > 1: factors[int(n)] = 1 if verbose: print(complete_msg) return factors # continue with more advanced factorization methods # first check if the simplistic run didn't finish # because of the limit and check for a perfect # power before exiting try: if limit and next_p > limit: if verbose: print('Exceeded limit:', limit) _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) if n > 1: factors[int(n)] = 1 return factors else: # Before quitting (or continuing on)... # ...do a Fermat test since it's so easy and we need the # square root anyway. Finding 2 factors is easy if they are # "close enough." This is the big root equivalent of dividing by # 2, 3, 5. sqrt_n = integer_nthroot(n, 2)[0] a = sqrt_n + 1 a2 = a**2 b2 = a2 - n for i in range(3): b, fermat = integer_nthroot(b2, 2) if fermat: break b2 += 2*a + 1 # equiv to (a + 1)**2 - n a += 1 if fermat: if verbose: print(fermat_msg) if limit: limit -= 1 for r in [a - b, a + b]: facs = factorint(r, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose) for k, v in facs.items(): factors[k] = factors.get(k, 0) + v raise StopIteration # ...see if factorization can be terminated _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) except StopIteration: if verbose: print(complete_msg) return factors # these are the limits for trial division which will # be attempted in parallel with pollard methods low, high = next_p, 2*next_p limit = limit or sqrt_n # add 1 to make sure limit is reached in primerange calls limit += 1 while 1: try: high_ = high if limit < high_: high_ = limit # Trial division if use_trial: if verbose: print(trial_msg % (low, high_)) ps = sieve.primerange(low, high_) n, found_trial = _trial(factors, n, ps, verbose) if found_trial: _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) else: found_trial = False if high > limit: if verbose: print('Exceeded limit:', limit) if n > 1: factors[int(n)] = 1 raise StopIteration # Only used advanced methods when no small factors were found if not found_trial: if (use_pm1 or use_rho): high_root = max(int(math.log(high_**0.7)), low, 3) # Pollard p-1 if use_pm1: if verbose: print(pm1_msg % (high_root, high_)) c = pollard_pm1(n, B=high_root, seed=high_) if c: # factor it and let _trial do the update ps = factorint(c, limit=limit - 1, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose) n, _ = _trial(factors, n, ps, verbose=False) _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) # Pollard rho if use_rho: max_steps = high_root if verbose: print(rho_msg % (1, max_steps, high_)) c = pollard_rho(n, retries=1, max_steps=max_steps, seed=high_) if c: # factor it and let _trial do the update ps = factorint(c, limit=limit - 1, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose) n, _ = _trial(factors, n, ps, verbose=False) _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) except StopIteration: if verbose: print(complete_msg) return factors low, high = high, high*2 def factorrat(rat, limit=None, use_trial=True, use_rho=True, use_pm1=True, verbose=False, visual=None, multiple=False): r""" Given a Rational ``r``, ``factorrat(r)`` returns a dict containing the prime factors of ``r`` as keys and their respective multiplicities as values. For example: >>> from sympy.ntheory import factorrat >>> from sympy.core.symbol import S >>> factorrat(S(8)/9) # 8/9 = (2**3) * (3**-2) {2: 3, 3: -2} >>> factorrat(S(-1)/987) # -1/789 = -1 * (3**-1) * (7**-1) * (47**-1) {-1: 1, 3: -1, 7: -1, 47: -1} Please see the docstring for ``factorint`` for detailed explanations and examples of the following keywords: - ``limit``: Integer limit up to which trial division is done - ``use_trial``: Toggle use of trial division - ``use_rho``: Toggle use of Pollard's rho method - ``use_pm1``: Toggle use of Pollard's p-1 method - ``verbose``: Toggle detailed printing of progress - ``multiple``: Toggle returning a list of factors or dict - ``visual``: Toggle product form of output """ from collections import defaultdict if multiple: fac = factorrat(rat, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose, visual=False, multiple=False) factorlist = sum(([p] * fac[p] if fac[p] > 0 else [S.One/p]*(-fac[p]) for p, _ in sorted(fac.items(), key=lambda elem: elem[0] if elem[1] > 0 else 1/elem[0])), []) return factorlist f = factorint(rat.p, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose).copy() f = defaultdict(int, f) for p, e in factorint(rat.q, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose).items(): f[p] += -e if len(f) > 1 and 1 in f: del f[1] if not visual: return dict(f) else: if -1 in f: f.pop(-1) args = [S.NegativeOne] else: args = [] args.extend([Pow(*i, evaluate=False) for i in sorted(f.items())]) return Mul(*args, evaluate=False) def primefactors(n, limit=None, verbose=False): """Return a sorted list of n's prime factors, ignoring multiplicity and any composite factor that remains if the limit was set too low for complete factorization. Unlike factorint(), primefactors() does not return -1 or 0. Examples ======== >>> from sympy.ntheory import primefactors, factorint, isprime >>> primefactors(6) [2, 3] >>> primefactors(-5) [5] >>> sorted(factorint(123456).items()) [(2, 6), (3, 1), (643, 1)] >>> primefactors(123456) [2, 3, 643] >>> sorted(factorint(10000000001, limit=200).items()) [(101, 1), (99009901, 1)] >>> isprime(99009901) False >>> primefactors(10000000001, limit=300) [101] See Also ======== divisors """ n = int(n) factors = sorted(factorint(n, limit=limit, verbose=verbose).keys()) s = [f for f in factors[:-1:] if f not in [-1, 0, 1]] if factors and isprime(factors[-1]): s += [factors[-1]] return s def _divisors(n): """Helper function for divisors which generates the divisors.""" factordict = factorint(n) ps = sorted(factordict.keys()) def rec_gen(n=0): if n == len(ps): yield 1 else: pows = [1] for j in range(factordict[ps[n]]): pows.append(pows[-1] * ps[n]) for q in rec_gen(n + 1): for p in pows: yield p * q for p in rec_gen(): yield p def divisors(n, generator=False): r""" Return all divisors of n sorted from 1..n by default. If generator is ``True`` an unordered generator is returned. The number of divisors of n can be quite large if there are many prime factors (counting repeated factors). If only the number of factors is desired use divisor_count(n). Examples ======== >>> from sympy import divisors, divisor_count >>> divisors(24) [1, 2, 3, 4, 6, 8, 12, 24] >>> divisor_count(24) 8 >>> list(divisors(120, generator=True)) [1, 2, 4, 8, 3, 6, 12, 24, 5, 10, 20, 40, 15, 30, 60, 120] Notes ===== This is a slightly modified version of Tim Peters referenced at: https://stackoverflow.com/questions/1010381/python-factorization See Also ======== primefactors, factorint, divisor_count """ n = as_int(abs(n)) if isprime(n): return [1, n] if n == 1: return [1] if n == 0: return [] rv = _divisors(n) if not generator: return sorted(rv) return rv def divisor_count(n, modulus=1): """ Return the number of divisors of ``n``. If ``modulus`` is not 1 then only those that are divisible by ``modulus`` are counted. Examples ======== >>> from sympy import divisor_count >>> divisor_count(6) 4 See Also ======== factorint, divisors, totient """ if not modulus: return 0 elif modulus != 1: n, r = divmod(n, modulus) if r: return 0 if n == 0: return 0 return Mul(*[v + 1 for k, v in factorint(n).items() if k > 1]) def _udivisors(n): """Helper function for udivisors which generates the unitary divisors.""" factorpows = [p**e for p, e in factorint(n).items()] for i in range(2**len(factorpows)): d, j, k = 1, i, 0 while j: if (j & 1): d *= factorpows[k] j >>= 1 k += 1 yield d def udivisors(n, generator=False): r""" Return all unitary divisors of n sorted from 1..n by default. If generator is ``True`` an unordered generator is returned. The number of unitary divisors of n can be quite large if there are many prime factors. If only the number of unitary divisors is desired use udivisor_count(n). Examples ======== >>> from sympy.ntheory.factor_ import udivisors, udivisor_count >>> udivisors(15) [1, 3, 5, 15] >>> udivisor_count(15) 4 >>> sorted(udivisors(120, generator=True)) [1, 3, 5, 8, 15, 24, 40, 120] See Also ======== primefactors, factorint, divisors, divisor_count, udivisor_count References ========== .. [1] https://en.wikipedia.org/wiki/Unitary_divisor .. [2] http://mathworld.wolfram.com/UnitaryDivisor.html """ n = as_int(abs(n)) if isprime(n): return [1, n] if n == 1: return [1] if n == 0: return [] rv = _udivisors(n) if not generator: return sorted(rv) return rv def udivisor_count(n): """ Return the number of unitary divisors of ``n``. Parameters ========== n : integer Examples ======== >>> from sympy.ntheory.factor_ import udivisor_count >>> udivisor_count(120) 8 See Also ======== factorint, divisors, udivisors, divisor_count, totient References ========== .. [1] http://mathworld.wolfram.com/UnitaryDivisorFunction.html """ if n == 0: return 0 return 2**len([p for p in factorint(n) if p > 1]) def _antidivisors(n): """Helper function for antidivisors which generates the antidivisors.""" for d in _divisors(n): y = 2*d if n > y and n % y: yield y for d in _divisors(2*n-1): if n > d >= 2 and n % d: yield d for d in _divisors(2*n+1): if n > d >= 2 and n % d: yield d def antidivisors(n, generator=False): r""" Return all antidivisors of n sorted from 1..n by default. Antidivisors [1]_ of n are numbers that do not divide n by the largest possible margin. If generator is True an unordered generator is returned. Examples ======== >>> from sympy.ntheory.factor_ import antidivisors >>> antidivisors(24) [7, 16] >>> sorted(antidivisors(128, generator=True)) [3, 5, 15, 17, 51, 85] See Also ======== primefactors, factorint, divisors, divisor_count, antidivisor_count References ========== .. [1] definition is described in https://oeis.org/A066272/a066272a.html """ n = as_int(abs(n)) if n <= 2: return [] rv = _antidivisors(n) if not generator: return sorted(rv) return rv def antidivisor_count(n): """ Return the number of antidivisors [1]_ of ``n``. Parameters ========== n : integer Examples ======== >>> from sympy.ntheory.factor_ import antidivisor_count >>> antidivisor_count(13) 4 >>> antidivisor_count(27) 5 See Also ======== factorint, divisors, antidivisors, divisor_count, totient References ========== .. [1] formula from https://oeis.org/A066272 """ n = as_int(abs(n)) if n <= 2: return 0 return divisor_count(2*n - 1) + divisor_count(2*n + 1) + \ divisor_count(n) - divisor_count(n, 2) - 5 class totient(Function): r""" Calculate the Euler totient function phi(n) ``totient(n)`` or `\phi(n)` is the number of positive integers `\leq` n that are relatively prime to n. Parameters ========== n : integer Examples ======== >>> from sympy.ntheory import totient >>> totient(1) 1 >>> totient(25) 20 See Also ======== divisor_count References ========== .. [1] https://en.wikipedia.org/wiki/Euler%27s_totient_function .. [2] http://mathworld.wolfram.com/TotientFunction.html """ @classmethod def eval(cls, n): n = sympify(n) if n.is_Integer: if n < 1: raise ValueError("n must be a positive integer") factors = factorint(n) return cls._from_factors(factors) elif not isinstance(n, Expr) or (n.is_integer is False) or (n.is_positive is False): raise ValueError("n must be a positive integer") def _eval_is_integer(self): return fuzzy_and([self.args[0].is_integer, self.args[0].is_positive]) @classmethod def _from_distinct_primes(self, *args): """Subroutine to compute totient from the list of assumed distinct primes Examples ======== >>> from sympy.ntheory.factor_ import totient >>> totient._from_distinct_primes(5, 7) 24 """ from functools import reduce return reduce(lambda i, j: i * (j-1), args, 1) @classmethod def _from_factors(self, factors): """Subroutine to compute totient from already-computed factors Examples ======== >>> from sympy.ntheory.factor_ import totient >>> totient._from_factors({5: 2}) 20 """ t = 1 for p, k in factors.items(): t *= (p - 1) * p**(k - 1) return t class reduced_totient(Function): r""" Calculate the Carmichael reduced totient function lambda(n) ``reduced_totient(n)`` or `\lambda(n)` is the smallest m > 0 such that `k^m \equiv 1 \mod n` for all k relatively prime to n. Examples ======== >>> from sympy.ntheory import reduced_totient >>> reduced_totient(1) 1 >>> reduced_totient(8) 2 >>> reduced_totient(30) 4 See Also ======== totient References ========== .. [1] https://en.wikipedia.org/wiki/Carmichael_function .. [2] http://mathworld.wolfram.com/CarmichaelFunction.html """ @classmethod def eval(cls, n): n = sympify(n) if n.is_Integer: if n < 1: raise ValueError("n must be a positive integer") factors = factorint(n) return cls._from_factors(factors) @classmethod def _from_factors(self, factors): """Subroutine to compute totient from already-computed factors """ t = 1 for p, k in factors.items(): if p == 2 and k > 2: t = ilcm(t, 2**(k - 2)) else: t = ilcm(t, (p - 1) * p**(k - 1)) return t @classmethod def _from_distinct_primes(self, *args): """Subroutine to compute totient from the list of assumed distinct primes """ args = [p - 1 for p in args] return ilcm(*args) def _eval_is_integer(self): return fuzzy_and([self.args[0].is_integer, self.args[0].is_positive]) class divisor_sigma(Function): r""" Calculate the divisor function `\sigma_k(n)` for positive integer n ``divisor_sigma(n, k)`` is equal to ``sum([x**k for x in divisors(n)])`` If n's prime factorization is: .. math :: n = \prod_{i=1}^\omega p_i^{m_i}, then .. math :: \sigma_k(n) = \prod_{i=1}^\omega (1+p_i^k+p_i^{2k}+\cdots + p_i^{m_ik}). Parameters ========== n : integer k : integer, optional power of divisors in the sum for k = 0, 1: ``divisor_sigma(n, 0)`` is equal to ``divisor_count(n)`` ``divisor_sigma(n, 1)`` is equal to ``sum(divisors(n))`` Default for k is 1. Examples ======== >>> from sympy.ntheory import divisor_sigma >>> divisor_sigma(18, 0) 6 >>> divisor_sigma(39, 1) 56 >>> divisor_sigma(12, 2) 210 >>> divisor_sigma(37) 38 See Also ======== divisor_count, totient, divisors, factorint References ========== .. [1] https://en.wikipedia.org/wiki/Divisor_function """ @classmethod def eval(cls, n, k=1): n = sympify(n) k = sympify(k) if n.is_prime: return 1 + n**k if n.is_Integer: if n <= 0: raise ValueError("n must be a positive integer") else: return Mul(*[(p**(k*(e + 1)) - 1)/(p**k - 1) if k != 0 else e + 1 for p, e in factorint(n).items()]) def core(n, t=2): r""" Calculate core(n, t) = `core_t(n)` of a positive integer n ``core_2(n)`` is equal to the squarefree part of n If n's prime factorization is: .. math :: n = \prod_{i=1}^\omega p_i^{m_i}, then .. math :: core_t(n) = \prod_{i=1}^\omega p_i^{m_i \mod t}. Parameters ========== n : integer t : integer core(n, t) calculates the t-th power free part of n ``core(n, 2)`` is the squarefree part of ``n`` ``core(n, 3)`` is the cubefree part of ``n`` Default for t is 2. Examples ======== >>> from sympy.ntheory.factor_ import core >>> core(24, 2) 6 >>> core(9424, 3) 1178 >>> core(379238) 379238 >>> core(15**11, 10) 15 See Also ======== factorint, sympy.solvers.diophantine.square_factor References ========== .. [1] https://en.wikipedia.org/wiki/Square-free_integer#Squarefree_core """ n = as_int(n) t = as_int(t) if n <= 0: raise ValueError("n must be a positive integer") elif t <= 1: raise ValueError("t must be >= 2") else: y = 1 for p, e in factorint(n).items(): y *= p**(e % t) return y def digits(n, b=10): """ Return a list of the digits of n in base b. The first element in the list is b (or -b if n is negative). Examples ======== >>> from sympy.ntheory.factor_ import digits >>> digits(35) [10, 3, 5] >>> digits(27, 2) [2, 1, 1, 0, 1, 1] >>> digits(65536, 256) [256, 1, 0, 0] >>> digits(-3958, 27) [-27, 5, 11, 16] """ b = as_int(b) n = as_int(n) if b <= 1: raise ValueError("b must be >= 2") else: x, y = abs(n), [] while x >= b: x, r = divmod(x, b) y.append(r) y.append(x) y.append(-b if n < 0 else b) y.reverse() return y class udivisor_sigma(Function): r""" Calculate the unitary divisor function `\sigma_k^*(n)` for positive integer n ``udivisor_sigma(n, k)`` is equal to ``sum([x**k for x in udivisors(n)])`` If n's prime factorization is: .. math :: n = \prod_{i=1}^\omega p_i^{m_i}, then .. math :: \sigma_k^*(n) = \prod_{i=1}^\omega (1+ p_i^{m_ik}). Parameters ========== k : power of divisors in the sum for k = 0, 1: ``udivisor_sigma(n, 0)`` is equal to ``udivisor_count(n)`` ``udivisor_sigma(n, 1)`` is equal to ``sum(udivisors(n))`` Default for k is 1. Examples ======== >>> from sympy.ntheory.factor_ import udivisor_sigma >>> udivisor_sigma(18, 0) 4 >>> udivisor_sigma(74, 1) 114 >>> udivisor_sigma(36, 3) 47450 >>> udivisor_sigma(111) 152 See Also ======== divisor_count, totient, divisors, udivisors, udivisor_count, divisor_sigma, factorint References ========== .. [1] http://mathworld.wolfram.com/UnitaryDivisorFunction.html """ @classmethod def eval(cls, n, k=1): n = sympify(n) k = sympify(k) if n.is_prime: return 1 + n**k if n.is_Integer: if n <= 0: raise ValueError("n must be a positive integer") else: return Mul(*[1+p**(k*e) for p, e in factorint(n).items()]) class primenu(Function): r""" Calculate the number of distinct prime factors for a positive integer n. If n's prime factorization is: .. math :: n = \prod_{i=1}^k p_i^{m_i}, then ``primenu(n)`` or `\nu(n)` is: .. math :: \nu(n) = k. Examples ======== >>> from sympy.ntheory.factor_ import primenu >>> primenu(1) 0 >>> primenu(30) 3 See Also ======== factorint References ========== .. [1] http://mathworld.wolfram.com/PrimeFactor.html """ @classmethod def eval(cls, n): n = sympify(n) if n.is_Integer: if n <= 0: raise ValueError("n must be a positive integer") else: return len(factorint(n).keys()) class primeomega(Function): r""" Calculate the number of prime factors counting multiplicities for a positive integer n. If n's prime factorization is: .. math :: n = \prod_{i=1}^k p_i^{m_i}, then ``primeomega(n)`` or `\Omega(n)` is: .. math :: \Omega(n) = \sum_{i=1}^k m_i. Examples ======== >>> from sympy.ntheory.factor_ import primeomega >>> primeomega(1) 0 >>> primeomega(20) 3 See Also ======== factorint References ========== .. [1] http://mathworld.wolfram.com/PrimeFactor.html """ @classmethod def eval(cls, n): n = sympify(n) if n.is_Integer: if n <= 0: raise ValueError("n must be a positive integer") else: return sum(factorint(n).values()) def mersenne_prime_exponent(nth): """Returns the exponent ``i`` for the nth Mersenne prime (which has the form `2^i - 1`). Examples ======== >>> from sympy.ntheory.factor_ import mersenne_prime_exponent >>> mersenne_prime_exponent(1) 2 >>> mersenne_prime_exponent(20) 4423 """ n = as_int(nth) if n < 1: raise ValueError("nth must be a positive integer; mersenne_prime_exponent(1) == 2") if n > 51: raise ValueError("There are only 51 perfect numbers; nth must be less than or equal to 51") return MERSENNE_PRIME_EXPONENTS[n - 1] def is_perfect(n): """Returns True if ``n`` is a perfect number, else False. A perfect number is equal to the sum of its positive, proper divisors. Examples ======== >>> from sympy.ntheory.factor_ import is_perfect, divisors >>> is_perfect(20) False >>> is_perfect(6) True >>> sum(divisors(6)[:-1]) 6 References ========== .. [1] http://mathworld.wolfram.com/PerfectNumber.html """ from sympy.core.power import integer_log r, b = integer_nthroot(1 + 8*n, 2) if not b: return False n, x = divmod(1 + r, 4) if x: return False e, b = integer_log(n, 2) return b and (e + 1) in MERSENNE_PRIME_EXPONENTS def is_mersenne_prime(n): """Returns True if ``n`` is a Mersenne prime, else False. A Mersenne prime is a prime number having the form `2^i - 1`. Examples ======== >>> from sympy.ntheory.factor_ import is_mersenne_prime >>> is_mersenne_prime(6) False >>> is_mersenne_prime(127) True References ========== .. [1] http://mathworld.wolfram.com/MersennePrime.html """ from sympy.core.power import integer_log r, b = integer_log(n + 1, 2) return b and r in MERSENNE_PRIME_EXPONENTS def abundance(n): """Returns the difference between the sum of the positive proper divisors of a number and the number. Examples ======== >>> from sympy.ntheory import abundance, is_perfect, is_abundant >>> abundance(6) 0 >>> is_perfect(6) True >>> abundance(10) -2 >>> is_abundant(10) False """ return divisor_sigma(n, 1) - 2 * n def is_abundant(n): """Returns True if ``n`` is an abundant number, else False. A abundant number is smaller than the sum of its positive proper divisors. Examples ======== >>> from sympy.ntheory.factor_ import is_abundant >>> is_abundant(20) True >>> is_abundant(15) False References ========== .. [1] http://mathworld.wolfram.com/AbundantNumber.html """ n = as_int(n) if is_perfect(n): return False return n % 6 == 0 or bool(abundance(n) > 0) def is_deficient(n): """Returns True if ``n`` is a deficient number, else False. A deficient number is greater than the sum of its positive proper divisors. Examples ======== >>> from sympy.ntheory.factor_ import is_deficient >>> is_deficient(20) False >>> is_deficient(15) True References ========== .. [1] http://mathworld.wolfram.com/DeficientNumber.html """ n = as_int(n) if is_perfect(n): return False return bool(abundance(n) < 0) def is_amicable(m, n): """Returns True if the numbers `m` and `n` are "amicable", else False. Amicable numbers are two different numbers so related that the sum of the proper divisors of each is equal to that of the other. Examples ======== >>> from sympy.ntheory.factor_ import is_amicable, divisor_sigma >>> is_amicable(220, 284) True >>> divisor_sigma(220) == divisor_sigma(284) True References ========== .. [1] https://en.wikipedia.org/wiki/Amicable_numbers """ if m == n: return False a, b = map(lambda i: divisor_sigma(i), (m, n)) return a == b == (m + n)
358c76a756c8b4b22dc10ec6a90f760ca49dac48c21403415597f75ab0498adf
from __future__ import print_function, division from random import randrange, choice from math import log from sympy.ntheory import primefactors from sympy import multiplicity, factorint from sympy.combinatorics import Permutation from sympy.combinatorics.permutations import (_af_commutes_with, _af_invert, _af_rmul, _af_rmuln, _af_pow, Cycle) from sympy.combinatorics.util import (_check_cycles_alt_sym, _distribute_gens_by_base, _orbits_transversals_from_bsgs, _handle_precomputed_bsgs, _base_ordering, _strong_gens_from_distr, _strip, _strip_af) from sympy.core import Basic from sympy.core.compatibility import range from sympy.functions.combinatorial.factorials import factorial from sympy.ntheory import sieve from sympy.utilities.iterables import has_variety, is_sequence, uniq from sympy.utilities.randtest import _randrange from itertools import islice rmul = Permutation.rmul_with_af _af_new = Permutation._af_new class PermutationGroup(Basic): """The class defining a Permutation group. PermutationGroup([p1, p2, ..., pn]) returns the permutation group generated by the list of permutations. This group can be supplied to Polyhedron if one desires to decorate the elements to which the indices of the permutation refer. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.permutations import Cycle >>> from sympy.combinatorics.polyhedron import Polyhedron >>> from sympy.combinatorics.perm_groups import PermutationGroup The permutations corresponding to motion of the front, right and bottom face of a 2x2 Rubik's cube are defined: >>> F = Permutation(2, 19, 21, 8)(3, 17, 20, 10)(4, 6, 7, 5) >>> R = Permutation(1, 5, 21, 14)(3, 7, 23, 12)(8, 10, 11, 9) >>> D = Permutation(6, 18, 14, 10)(7, 19, 15, 11)(20, 22, 23, 21) These are passed as permutations to PermutationGroup: >>> G = PermutationGroup(F, R, D) >>> G.order() 3674160 The group can be supplied to a Polyhedron in order to track the objects being moved. An example involving the 2x2 Rubik's cube is given there, but here is a simple demonstration: >>> a = Permutation(2, 1) >>> b = Permutation(1, 0) >>> G = PermutationGroup(a, b) >>> P = Polyhedron(list('ABC'), pgroup=G) >>> P.corners (A, B, C) >>> P.rotate(0) # apply permutation 0 >>> P.corners (A, C, B) >>> P.reset() >>> P.corners (A, B, C) Or one can make a permutation as a product of selected permutations and apply them to an iterable directly: >>> P10 = G.make_perm([0, 1]) >>> P10('ABC') ['C', 'A', 'B'] See Also ======== sympy.combinatorics.polyhedron.Polyhedron, sympy.combinatorics.permutations.Permutation References ========== .. [1] Holt, D., Eick, B., O'Brien, E. "Handbook of Computational Group Theory" .. [2] Seress, A. "Permutation Group Algorithms" .. [3] https://en.wikipedia.org/wiki/Schreier_vector .. [4] https://en.wikipedia.org/wiki/Nielsen_transformation#Product_replacement_algorithm .. [5] Frank Celler, Charles R.Leedham-Green, Scott H.Murray, Alice C.Niemeyer, and E.A.O'Brien. "Generating Random Elements of a Finite Group" .. [6] https://en.wikipedia.org/wiki/Block_%28permutation_group_theory%29 .. [7] http://www.algorithmist.com/index.php/Union_Find .. [8] https://en.wikipedia.org/wiki/Multiply_transitive_group#Multiply_transitive_groups .. [9] https://en.wikipedia.org/wiki/Center_%28group_theory%29 .. [10] https://en.wikipedia.org/wiki/Centralizer_and_normalizer .. [11] http://groupprops.subwiki.org/wiki/Derived_subgroup .. [12] https://en.wikipedia.org/wiki/Nilpotent_group .. [13] http://www.math.colostate.edu/~hulpke/CGT/cgtnotes.pdf .. [14] https://www.gap-system.org/Manuals/doc/ref/manual.pdf """ is_group = True def __new__(cls, *args, **kwargs): """The default constructor. Accepts Cycle and Permutation forms. Removes duplicates unless ``dups`` keyword is ``False``. """ if not args: args = [Permutation()] else: args = list(args[0] if is_sequence(args[0]) else args) if not args: args = [Permutation()] if any(isinstance(a, Cycle) for a in args): args = [Permutation(a) for a in args] if has_variety(a.size for a in args): degree = kwargs.pop('degree', None) if degree is None: degree = max(a.size for a in args) for i in range(len(args)): if args[i].size != degree: args[i] = Permutation(args[i], size=degree) if kwargs.pop('dups', True): args = list(uniq([_af_new(list(a)) for a in args])) if len(args) > 1: args = [g for g in args if not g.is_identity] obj = Basic.__new__(cls, *args, **kwargs) obj._generators = args obj._order = None obj._center = [] obj._is_abelian = None obj._is_transitive = None obj._is_sym = None obj._is_alt = None obj._is_primitive = None obj._is_nilpotent = None obj._is_solvable = None obj._is_trivial = None obj._transitivity_degree = None obj._max_div = None obj._is_perfect = None obj._is_cyclic = None obj._r = len(obj._generators) obj._degree = obj._generators[0].size # these attributes are assigned after running schreier_sims obj._base = [] obj._strong_gens = [] obj._strong_gens_slp = [] obj._basic_orbits = [] obj._transversals = [] obj._transversal_slp = [] # these attributes are assigned after running _random_pr_init obj._random_gens = [] # finite presentation of the group as an instance of `FpGroup` obj._fp_presentation = None return obj def __getitem__(self, i): return self._generators[i] def __contains__(self, i): """Return ``True`` if *i* is contained in PermutationGroup. Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> p = Permutation(1, 2, 3) >>> Permutation(3) in PermutationGroup(p) True """ if not isinstance(i, Permutation): raise TypeError("A PermutationGroup contains only Permutations as " "elements, not elements of type %s" % type(i)) return self.contains(i) def __len__(self): return len(self._generators) def __eq__(self, other): """Return ``True`` if PermutationGroup generated by elements in the group are same i.e they represent the same PermutationGroup. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> p = Permutation(0, 1, 2, 3, 4, 5) >>> G = PermutationGroup([p, p**2]) >>> H = PermutationGroup([p**2, p]) >>> G.generators == H.generators False >>> G == H True """ if not isinstance(other, PermutationGroup): return False set_self_gens = set(self.generators) set_other_gens = set(other.generators) # before reaching the general case there are also certain # optimisation and obvious cases requiring less or no actual # computation. if set_self_gens == set_other_gens: return True # in the most general case it will check that each generator of # one group belongs to the other PermutationGroup and vice-versa for gen1 in set_self_gens: if not other.contains(gen1): return False for gen2 in set_other_gens: if not self.contains(gen2): return False return True def __hash__(self): return super(PermutationGroup, self).__hash__() def __mul__(self, other): """ Return the direct product of two permutation groups as a permutation group. This implementation realizes the direct product by shifting the index set for the generators of the second group: so if we have ``G`` acting on ``n1`` points and ``H`` acting on ``n2`` points, ``G*H`` acts on ``n1 + n2`` points. Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.named_groups import CyclicGroup >>> G = CyclicGroup(5) >>> H = G*G >>> H PermutationGroup([ (9)(0 1 2 3 4), (5 6 7 8 9)]) >>> H.order() 25 """ gens1 = [perm._array_form for perm in self.generators] gens2 = [perm._array_form for perm in other.generators] n1 = self._degree n2 = other._degree start = list(range(n1)) end = list(range(n1, n1 + n2)) for i in range(len(gens2)): gens2[i] = [x + n1 for x in gens2[i]] gens2 = [start + gen for gen in gens2] gens1 = [gen + end for gen in gens1] together = gens1 + gens2 gens = [_af_new(x) for x in together] return PermutationGroup(gens) def _random_pr_init(self, r, n, _random_prec_n=None): r"""Initialize random generators for the product replacement algorithm. The implementation uses a modification of the original product replacement algorithm due to Leedham-Green, as described in [1], pp. 69-71; also, see [2], pp. 27-29 for a detailed theoretical analysis of the original product replacement algorithm, and [4]. The product replacement algorithm is used for producing random, uniformly distributed elements of a group `G` with a set of generators `S`. For the initialization ``_random_pr_init``, a list ``R`` of `\max\{r, |S|\}` group generators is created as the attribute ``G._random_gens``, repeating elements of `S` if necessary, and the identity element of `G` is appended to ``R`` - we shall refer to this last element as the accumulator. Then the function ``random_pr()`` is called ``n`` times, randomizing the list ``R`` while preserving the generation of `G` by ``R``. The function ``random_pr()`` itself takes two random elements ``g, h`` among all elements of ``R`` but the accumulator and replaces ``g`` with a randomly chosen element from `\{gh, g(~h), hg, (~h)g\}`. Then the accumulator is multiplied by whatever ``g`` was replaced by. The new value of the accumulator is then returned by ``random_pr()``. The elements returned will eventually (for ``n`` large enough) become uniformly distributed across `G` ([5]). For practical purposes however, the values ``n = 50, r = 11`` are suggested in [1]. Notes ===== THIS FUNCTION HAS SIDE EFFECTS: it changes the attribute self._random_gens See Also ======== random_pr """ deg = self.degree random_gens = [x._array_form for x in self.generators] k = len(random_gens) if k < r: for i in range(k, r): random_gens.append(random_gens[i - k]) acc = list(range(deg)) random_gens.append(acc) self._random_gens = random_gens # handle randomized input for testing purposes if _random_prec_n is None: for i in range(n): self.random_pr() else: for i in range(n): self.random_pr(_random_prec=_random_prec_n[i]) def _union_find_merge(self, first, second, ranks, parents, not_rep): """Merges two classes in a union-find data structure. Used in the implementation of Atkinson's algorithm as suggested in [1], pp. 83-87. The class merging process uses union by rank as an optimization. ([7]) Notes ===== THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives, ``parents``, the list of class sizes, ``ranks``, and the list of elements that are not representatives, ``not_rep``, are changed due to class merging. See Also ======== minimal_block, _union_find_rep References ========== .. [1] Holt, D., Eick, B., O'Brien, E. "Handbook of computational group theory" .. [7] http://www.algorithmist.com/index.php/Union_Find """ rep_first = self._union_find_rep(first, parents) rep_second = self._union_find_rep(second, parents) if rep_first != rep_second: # union by rank if ranks[rep_first] >= ranks[rep_second]: new_1, new_2 = rep_first, rep_second else: new_1, new_2 = rep_second, rep_first total_rank = ranks[new_1] + ranks[new_2] if total_rank > self.max_div: return -1 parents[new_2] = new_1 ranks[new_1] = total_rank not_rep.append(new_2) return 1 return 0 def _union_find_rep(self, num, parents): """Find representative of a class in a union-find data structure. Used in the implementation of Atkinson's algorithm as suggested in [1], pp. 83-87. After the representative of the class to which ``num`` belongs is found, path compression is performed as an optimization ([7]). Notes ===== THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives, ``parents``, is altered due to path compression. See Also ======== minimal_block, _union_find_merge References ========== .. [1] Holt, D., Eick, B., O'Brien, E. "Handbook of computational group theory" .. [7] http://www.algorithmist.com/index.php/Union_Find """ rep, parent = num, parents[num] while parent != rep: rep = parent parent = parents[rep] # path compression temp, parent = num, parents[num] while parent != rep: parents[temp] = rep temp = parent parent = parents[temp] return rep @property def base(self): """Return a base from the Schreier-Sims algorithm. For a permutation group `G`, a base is a sequence of points `B = (b_1, b_2, ..., b_k)` such that no element of `G` apart from the identity fixes all the points in `B`. The concepts of a base and strong generating set and their applications are discussed in depth in [1], pp. 87-89 and [2], pp. 55-57. An alternative way to think of `B` is that it gives the indices of the stabilizer cosets that contain more than the identity permutation. Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> G = PermutationGroup([Permutation(0, 1, 3)(2, 4)]) >>> G.base [0, 2] See Also ======== strong_gens, basic_transversals, basic_orbits, basic_stabilizers """ if self._base == []: self.schreier_sims() return self._base def baseswap(self, base, strong_gens, pos, randomized=False, transversals=None, basic_orbits=None, strong_gens_distr=None): r"""Swap two consecutive base points in base and strong generating set. If a base for a group `G` is given by `(b_1, b_2, ..., b_k)`, this function returns a base `(b_1, b_2, ..., b_{i+1}, b_i, ..., b_k)`, where `i` is given by ``pos``, and a strong generating set relative to that base. The original base and strong generating set are not modified. The randomized version (default) is of Las Vegas type. Parameters ========== base, strong_gens The base and strong generating set. pos The position at which swapping is performed. randomized A switch between randomized and deterministic version. transversals The transversals for the basic orbits, if known. basic_orbits The basic orbits, if known. strong_gens_distr The strong generators distributed by basic stabilizers, if known. Returns ======= (base, strong_gens) ``base`` is the new base, and ``strong_gens`` is a generating set relative to it. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> from sympy.combinatorics.testutil import _verify_bsgs >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> S = SymmetricGroup(4) >>> S.schreier_sims() >>> S.base [0, 1, 2] >>> base, gens = S.baseswap(S.base, S.strong_gens, 1, randomized=False) >>> base, gens ([0, 2, 1], [(0 1 2 3), (3)(0 1), (1 3 2), (2 3), (1 3)]) check that base, gens is a BSGS >>> S1 = PermutationGroup(gens) >>> _verify_bsgs(S1, base, gens) True See Also ======== schreier_sims Notes ===== The deterministic version of the algorithm is discussed in [1], pp. 102-103; the randomized version is discussed in [1], p.103, and [2], p.98. It is of Las Vegas type. Notice that [1] contains a mistake in the pseudocode and discussion of BASESWAP: on line 3 of the pseudocode, `|\beta_{i+1}^{\left\langle T\right\rangle}|` should be replaced by `|\beta_{i}^{\left\langle T\right\rangle}|`, and the same for the discussion of the algorithm. """ # construct the basic orbits, generators for the stabilizer chain # and transversal elements from whatever was provided transversals, basic_orbits, strong_gens_distr = \ _handle_precomputed_bsgs(base, strong_gens, transversals, basic_orbits, strong_gens_distr) base_len = len(base) degree = self.degree # size of orbit of base[pos] under the stabilizer we seek to insert # in the stabilizer chain at position pos + 1 size = len(basic_orbits[pos])*len(basic_orbits[pos + 1]) \ //len(_orbit(degree, strong_gens_distr[pos], base[pos + 1])) # initialize the wanted stabilizer by a subgroup if pos + 2 > base_len - 1: T = [] else: T = strong_gens_distr[pos + 2][:] # randomized version if randomized is True: stab_pos = PermutationGroup(strong_gens_distr[pos]) schreier_vector = stab_pos.schreier_vector(base[pos + 1]) # add random elements of the stabilizer until they generate it while len(_orbit(degree, T, base[pos])) != size: new = stab_pos.random_stab(base[pos + 1], schreier_vector=schreier_vector) T.append(new) # deterministic version else: Gamma = set(basic_orbits[pos]) Gamma.remove(base[pos]) if base[pos + 1] in Gamma: Gamma.remove(base[pos + 1]) # add elements of the stabilizer until they generate it by # ruling out member of the basic orbit of base[pos] along the way while len(_orbit(degree, T, base[pos])) != size: gamma = next(iter(Gamma)) x = transversals[pos][gamma] temp = x._array_form.index(base[pos + 1]) # (~x)(base[pos + 1]) if temp not in basic_orbits[pos + 1]: Gamma = Gamma - _orbit(degree, T, gamma) else: y = transversals[pos + 1][temp] el = rmul(x, y) if el(base[pos]) not in _orbit(degree, T, base[pos]): T.append(el) Gamma = Gamma - _orbit(degree, T, base[pos]) # build the new base and strong generating set strong_gens_new_distr = strong_gens_distr[:] strong_gens_new_distr[pos + 1] = T base_new = base[:] base_new[pos], base_new[pos + 1] = base_new[pos + 1], base_new[pos] strong_gens_new = _strong_gens_from_distr(strong_gens_new_distr) for gen in T: if gen not in strong_gens_new: strong_gens_new.append(gen) return base_new, strong_gens_new @property def basic_orbits(self): """ Return the basic orbits relative to a base and strong generating set. If `(b_1, b_2, ..., b_k)` is a base for a group `G`, and `G^{(i)} = G_{b_1, b_2, ..., b_{i-1}}` is the ``i``-th basic stabilizer (so that `G^{(1)} = G`), the ``i``-th basic orbit relative to this base is the orbit of `b_i` under `G^{(i)}`. See [1], pp. 87-89 for more information. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> S = SymmetricGroup(4) >>> S.basic_orbits [[0, 1, 2, 3], [1, 2, 3], [2, 3]] See Also ======== base, strong_gens, basic_transversals, basic_stabilizers """ if self._basic_orbits == []: self.schreier_sims() return self._basic_orbits @property def basic_stabilizers(self): """ Return a chain of stabilizers relative to a base and strong generating set. The ``i``-th basic stabilizer `G^{(i)}` relative to a base `(b_1, b_2, ..., b_k)` is `G_{b_1, b_2, ..., b_{i-1}}`. For more information, see [1], pp. 87-89. Examples ======== >>> from sympy.combinatorics.named_groups import AlternatingGroup >>> A = AlternatingGroup(4) >>> A.schreier_sims() >>> A.base [0, 1] >>> for g in A.basic_stabilizers: ... print(g) ... PermutationGroup([ (3)(0 1 2), (1 2 3)]) PermutationGroup([ (1 2 3)]) See Also ======== base, strong_gens, basic_orbits, basic_transversals """ if self._transversals == []: self.schreier_sims() strong_gens = self._strong_gens base = self._base if not base: # e.g. if self is trivial return [] strong_gens_distr = _distribute_gens_by_base(base, strong_gens) basic_stabilizers = [] for gens in strong_gens_distr: basic_stabilizers.append(PermutationGroup(gens)) return basic_stabilizers @property def basic_transversals(self): """ Return basic transversals relative to a base and strong generating set. The basic transversals are transversals of the basic orbits. They are provided as a list of dictionaries, each dictionary having keys - the elements of one of the basic orbits, and values - the corresponding transversal elements. See [1], pp. 87-89 for more information. Examples ======== >>> from sympy.combinatorics.named_groups import AlternatingGroup >>> A = AlternatingGroup(4) >>> A.basic_transversals [{0: (3), 1: (3)(0 1 2), 2: (3)(0 2 1), 3: (0 3 1)}, {1: (3), 2: (1 2 3), 3: (1 3 2)}] See Also ======== strong_gens, base, basic_orbits, basic_stabilizers """ if self._transversals == []: self.schreier_sims() return self._transversals def composition_series(self): r""" Return the composition series for a group as a list of permutation groups. The composition series for a group `G` is defined as a subnormal series `G = H_0 > H_1 > H_2 \ldots` A composition series is a subnormal series such that each factor group `H(i+1) / H(i)` is simple. A subnormal series is a composition series only if it is of maximum length. The algorithm works as follows: Starting with the derived series the idea is to fill the gap between `G = der[i]` and `H = der[i+1]` for each `i` independently. Since, all subgroups of the abelian group `G/H` are normal so, first step is to take the generators `g` of `G` and add them to generators of `H` one by one. The factor groups formed are not simple in general. Each group is obtained from the previous one by adding one generator `g`, if the previous group is denoted by `H` then the next group `K` is generated by `g` and `H`. The factor group `K/H` is cyclic and it's order is `K.order()//G.order()`. The series is then extended between `K` and `H` by groups generated by powers of `g` and `H`. The series formed is then prepended to the already existing series. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> from sympy.combinatorics.named_groups import CyclicGroup >>> S = SymmetricGroup(12) >>> G = S.sylow_subgroup(2) >>> C = G.composition_series() >>> [H.order() for H in C] [1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1] >>> G = S.sylow_subgroup(3) >>> C = G.composition_series() >>> [H.order() for H in C] [243, 81, 27, 9, 3, 1] >>> G = CyclicGroup(12) >>> C = G.composition_series() >>> [H.order() for H in C] [12, 6, 3, 1] """ der = self.derived_series() if not (all(g.is_identity for g in der[-1].generators)): raise NotImplementedError('Group should be solvable') series = [] for i in range(len(der)-1): H = der[i+1] up_seg = [] for g in der[i].generators: K = PermutationGroup([g] + H.generators) order = K.order() // H.order() down_seg = [] for p, e in factorint(order).items(): for j in range(e): down_seg.append(PermutationGroup([g] + H.generators)) g = g**p up_seg = down_seg + up_seg H = K up_seg[0] = der[i] series.extend(up_seg) series.append(der[-1]) return series def coset_transversal(self, H): """Return a transversal of the right cosets of self by its subgroup H using the second method described in [1], Subsection 4.6.7 """ if not H.is_subgroup(self): raise ValueError("The argument must be a subgroup") if H.order() == 1: return self._elements self._schreier_sims(base=H.base) # make G.base an extension of H.base base = self.base base_ordering = _base_ordering(base, self.degree) identity = Permutation(self.degree - 1) transversals = self.basic_transversals[:] # transversals is a list of dictionaries. Get rid of the keys # so that it is a list of lists and sort each list in # the increasing order of base[l]^x for l, t in enumerate(transversals): transversals[l] = sorted(t.values(), key = lambda x: base_ordering[base[l]^x]) orbits = H.basic_orbits h_stabs = H.basic_stabilizers g_stabs = self.basic_stabilizers indices = [x.order()//y.order() for x, y in zip(g_stabs, h_stabs)] # T^(l) should be a right transversal of H^(l) in G^(l) for # 1<=l<=len(base). While H^(l) is the trivial group, T^(l) # contains all the elements of G^(l) so we might just as well # start with l = len(h_stabs)-1 if len(g_stabs) > len(h_stabs): T = g_stabs[len(h_stabs)]._elements else: T = [identity] l = len(h_stabs)-1 t_len = len(T) while l > -1: T_next = [] for u in transversals[l]: if u == identity: continue b = base_ordering[base[l]^u] for t in T: p = t*u if all([base_ordering[h^p] >= b for h in orbits[l]]): T_next.append(p) if t_len + len(T_next) == indices[l]: break if t_len + len(T_next) == indices[l]: break T += T_next t_len += len(T_next) l -= 1 T.remove(identity) T = [identity] + T return T def _coset_representative(self, g, H): """Return the representative of Hg from the transversal that would be computed by ``self.coset_transversal(H)``. """ if H.order() == 1: return g # The base of self must be an extension of H.base. if not(self.base[:len(H.base)] == H.base): self._schreier_sims(base=H.base) orbits = H.basic_orbits[:] h_transversals = [list(_.values()) for _ in H.basic_transversals] transversals = [list(_.values()) for _ in self.basic_transversals] base = self.base base_ordering = _base_ordering(base, self.degree) def step(l, x): gamma = sorted(orbits[l], key = lambda y: base_ordering[y^x])[0] i = [base[l]^h for h in h_transversals[l]].index(gamma) x = h_transversals[l][i]*x if l < len(orbits)-1: for u in transversals[l]: if base[l]^u == base[l]^x: break x = step(l+1, x*u**-1)*u return x return step(0, g) def coset_table(self, H): """Return the standardised (right) coset table of self in H as a list of lists. """ # Maybe this should be made to return an instance of CosetTable # from fp_groups.py but the class would need to be changed first # to be compatible with PermutationGroups from itertools import chain, product if not H.is_subgroup(self): raise ValueError("The argument must be a subgroup") T = self.coset_transversal(H) n = len(T) A = list(chain.from_iterable((gen, gen**-1) for gen in self.generators)) table = [] for i in range(n): row = [self._coset_representative(T[i]*x, H) for x in A] row = [T.index(r) for r in row] table.append(row) # standardize (this is the same as the algorithm used in coset_table) # If CosetTable is made compatible with PermutationGroups, this # should be replaced by table.standardize() A = range(len(A)) gamma = 1 for alpha, a in product(range(n), A): beta = table[alpha][a] if beta >= gamma: if beta > gamma: for x in A: z = table[gamma][x] table[gamma][x] = table[beta][x] table[beta][x] = z for i in range(n): if table[i][x] == beta: table[i][x] = gamma elif table[i][x] == gamma: table[i][x] = beta gamma += 1 if gamma >= n-1: return table def center(self): r""" Return the center of a permutation group. The center for a group `G` is defined as `Z(G) = \{z\in G | \forall g\in G, zg = gz \}`, the set of elements of `G` that commute with all elements of `G`. It is equal to the centralizer of `G` inside `G`, and is naturally a subgroup of `G` ([9]). Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.named_groups import DihedralGroup >>> D = DihedralGroup(4) >>> G = D.center() >>> G.order() 2 See Also ======== centralizer Notes ===== This is a naive implementation that is a straightforward application of ``.centralizer()`` """ return self.centralizer(self) def centralizer(self, other): r""" Return the centralizer of a group/set/element. The centralizer of a set of permutations ``S`` inside a group ``G`` is the set of elements of ``G`` that commute with all elements of ``S``:: `C_G(S) = \{ g \in G | gs = sg \forall s \in S\}` ([10]) Usually, ``S`` is a subset of ``G``, but if ``G`` is a proper subgroup of the full symmetric group, we allow for ``S`` to have elements outside ``G``. It is naturally a subgroup of ``G``; the centralizer of a permutation group is equal to the centralizer of any set of generators for that group, since any element commuting with the generators commutes with any product of the generators. Parameters ========== other a permutation group/list of permutations/single permutation Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... CyclicGroup) >>> S = SymmetricGroup(6) >>> C = CyclicGroup(6) >>> H = S.centralizer(C) >>> H.is_subgroup(C) True See Also ======== subgroup_search Notes ===== The implementation is an application of ``.subgroup_search()`` with tests using a specific base for the group ``G``. """ if hasattr(other, 'generators'): if other.is_trivial or self.is_trivial: return self degree = self.degree identity = _af_new(list(range(degree))) orbits = other.orbits() num_orbits = len(orbits) orbits.sort(key=lambda x: -len(x)) long_base = [] orbit_reps = [None]*num_orbits orbit_reps_indices = [None]*num_orbits orbit_descr = [None]*degree for i in range(num_orbits): orbit = list(orbits[i]) orbit_reps[i] = orbit[0] orbit_reps_indices[i] = len(long_base) for point in orbit: orbit_descr[point] = i long_base = long_base + orbit base, strong_gens = self.schreier_sims_incremental(base=long_base) strong_gens_distr = _distribute_gens_by_base(base, strong_gens) i = 0 for i in range(len(base)): if strong_gens_distr[i] == [identity]: break base = base[:i] base_len = i for j in range(num_orbits): if base[base_len - 1] in orbits[j]: break rel_orbits = orbits[: j + 1] num_rel_orbits = len(rel_orbits) transversals = [None]*num_rel_orbits for j in range(num_rel_orbits): rep = orbit_reps[j] transversals[j] = dict( other.orbit_transversal(rep, pairs=True)) trivial_test = lambda x: True tests = [None]*base_len for l in range(base_len): if base[l] in orbit_reps: tests[l] = trivial_test else: def test(computed_words, l=l): g = computed_words[l] rep_orb_index = orbit_descr[base[l]] rep = orbit_reps[rep_orb_index] im = g._array_form[base[l]] im_rep = g._array_form[rep] tr_el = transversals[rep_orb_index][base[l]] # using the definition of transversal, # base[l]^g = rep^(tr_el*g); # if g belongs to the centralizer, then # base[l]^g = (rep^g)^tr_el return im == tr_el._array_form[im_rep] tests[l] = test def prop(g): return [rmul(g, gen) for gen in other.generators] == \ [rmul(gen, g) for gen in other.generators] return self.subgroup_search(prop, base=base, strong_gens=strong_gens, tests=tests) elif hasattr(other, '__getitem__'): gens = list(other) return self.centralizer(PermutationGroup(gens)) elif hasattr(other, 'array_form'): return self.centralizer(PermutationGroup([other])) def commutator(self, G, H): """ Return the commutator of two subgroups. For a permutation group ``K`` and subgroups ``G``, ``H``, the commutator of ``G`` and ``H`` is defined as the group generated by all the commutators `[g, h] = hgh^{-1}g^{-1}` for ``g`` in ``G`` and ``h`` in ``H``. It is naturally a subgroup of ``K`` ([1], p.27). Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... AlternatingGroup) >>> S = SymmetricGroup(5) >>> A = AlternatingGroup(5) >>> G = S.commutator(S, A) >>> G.is_subgroup(A) True See Also ======== derived_subgroup Notes ===== The commutator of two subgroups `H, G` is equal to the normal closure of the commutators of all the generators, i.e. `hgh^{-1}g^{-1}` for `h` a generator of `H` and `g` a generator of `G` ([1], p.28) """ ggens = G.generators hgens = H.generators commutators = [] for ggen in ggens: for hgen in hgens: commutator = rmul(hgen, ggen, ~hgen, ~ggen) if commutator not in commutators: commutators.append(commutator) res = self.normal_closure(commutators) return res def coset_factor(self, g, factor_index=False): """Return ``G``'s (self's) coset factorization of ``g`` If ``g`` is an element of ``G`` then it can be written as the product of permutations drawn from the Schreier-Sims coset decomposition, The permutations returned in ``f`` are those for which the product gives ``g``: ``g = f[n]*...f[1]*f[0]`` where ``n = len(B)`` and ``B = G.base``. f[i] is one of the permutations in ``self._basic_orbits[i]``. If factor_index==True, returns a tuple ``[b[0],..,b[n]]``, where ``b[i]`` belongs to ``self._basic_orbits[i]`` Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> Permutation.print_cyclic = True >>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5) >>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6) >>> G = PermutationGroup([a, b]) Define g: >>> g = Permutation(7)(1, 2, 4)(3, 6, 5) Confirm that it is an element of G: >>> G.contains(g) True Thus, it can be written as a product of factors (up to 3) drawn from u. See below that a factor from u1 and u2 and the Identity permutation have been used: >>> f = G.coset_factor(g) >>> f[2]*f[1]*f[0] == g True >>> f1 = G.coset_factor(g, True); f1 [0, 4, 4] >>> tr = G.basic_transversals >>> f[0] == tr[0][f1[0]] True If g is not an element of G then [] is returned: >>> c = Permutation(5, 6, 7) >>> G.coset_factor(c) [] See Also ======== sympy.combinatorics.util._strip """ if isinstance(g, (Cycle, Permutation)): g = g.list() if len(g) != self._degree: # this could either adjust the size or return [] immediately # but we don't choose between the two and just signal a possible # error raise ValueError('g should be the same size as permutations of G') I = list(range(self._degree)) basic_orbits = self.basic_orbits transversals = self._transversals factors = [] base = self.base h = g for i in range(len(base)): beta = h[base[i]] if beta == base[i]: factors.append(beta) continue if beta not in basic_orbits[i]: return [] u = transversals[i][beta]._array_form h = _af_rmul(_af_invert(u), h) factors.append(beta) if h != I: return [] if factor_index: return factors tr = self.basic_transversals factors = [tr[i][factors[i]] for i in range(len(base))] return factors def generator_product(self, g, original=False): ''' Return a list of strong generators `[s1, ..., sn]` s.t `g = sn*...*s1`. If `original=True`, make the list contain only the original group generators ''' product = [] if g.is_identity: return [] if g in self.strong_gens: if not original or g in self.generators: return [g] else: slp = self._strong_gens_slp[g] for s in slp: product.extend(self.generator_product(s, original=True)) return product elif g**-1 in self.strong_gens: g = g**-1 if not original or g in self.generators: return [g**-1] else: slp = self._strong_gens_slp[g] for s in slp: product.extend(self.generator_product(s, original=True)) l = len(product) product = [product[l-i-1]**-1 for i in range(l)] return product f = self.coset_factor(g, True) for i, j in enumerate(f): slp = self._transversal_slp[i][j] for s in slp: if not original: product.append(self.strong_gens[s]) else: s = self.strong_gens[s] product.extend(self.generator_product(s, original=True)) return product def coset_rank(self, g): """rank using Schreier-Sims representation The coset rank of ``g`` is the ordering number in which it appears in the lexicographic listing according to the coset decomposition The ordering is the same as in G.generate(method='coset'). If ``g`` does not belong to the group it returns None. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5) >>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6) >>> G = PermutationGroup([a, b]) >>> c = Permutation(7)(2, 4)(3, 5) >>> G.coset_rank(c) 16 >>> G.coset_unrank(16) (7)(2 4)(3 5) See Also ======== coset_factor """ factors = self.coset_factor(g, True) if not factors: return None rank = 0 b = 1 transversals = self._transversals base = self._base basic_orbits = self._basic_orbits for i in range(len(base)): k = factors[i] j = basic_orbits[i].index(k) rank += b*j b = b*len(transversals[i]) return rank def coset_unrank(self, rank, af=False): """unrank using Schreier-Sims representation coset_unrank is the inverse operation of coset_rank if 0 <= rank < order; otherwise it returns None. """ if rank < 0 or rank >= self.order(): return None base = self.base transversals = self.basic_transversals basic_orbits = self.basic_orbits m = len(base) v = [0]*m for i in range(m): rank, c = divmod(rank, len(transversals[i])) v[i] = basic_orbits[i][c] a = [transversals[i][v[i]]._array_form for i in range(m)] h = _af_rmuln(*a) if af: return h else: return _af_new(h) @property def degree(self): """Returns the size of the permutations in the group. The number of permutations comprising the group is given by ``len(group)``; the number of permutations that can be generated by the group is given by ``group.order()``. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([1, 0, 2]) >>> G = PermutationGroup([a]) >>> G.degree 3 >>> len(G) 1 >>> G.order() 2 >>> list(G.generate()) [(2), (2)(0 1)] See Also ======== order """ return self._degree @property def identity(self): ''' Return the identity element of the permutation group. ''' return _af_new(list(range(self.degree))) @property def elements(self): """Returns all the elements of the permutation group as a set Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> p = PermutationGroup(Permutation(1, 3), Permutation(1, 2)) >>> p.elements {(1 2 3), (1 3 2), (1 3), (2 3), (3), (3)(1 2)} """ return set(self._elements) @property def _elements(self): """Returns all the elements of the permutation group as a list Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> p = PermutationGroup(Permutation(1, 3), Permutation(1, 2)) >>> p._elements [(3), (3)(1 2), (1 3), (2 3), (1 2 3), (1 3 2)] """ return list(islice(self.generate(), None)) def derived_series(self): r"""Return the derived series for the group. The derived series for a group `G` is defined as `G = G_0 > G_1 > G_2 > \ldots` where `G_i = [G_{i-1}, G_{i-1}]`, i.e. `G_i` is the derived subgroup of `G_{i-1}`, for `i\in\mathbb{N}`. When we have `G_k = G_{k-1}` for some `k\in\mathbb{N}`, the series terminates. Returns ======= A list of permutation groups containing the members of the derived series in the order `G = G_0, G_1, G_2, \ldots`. Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... AlternatingGroup, DihedralGroup) >>> A = AlternatingGroup(5) >>> len(A.derived_series()) 1 >>> S = SymmetricGroup(4) >>> len(S.derived_series()) 4 >>> S.derived_series()[1].is_subgroup(AlternatingGroup(4)) True >>> S.derived_series()[2].is_subgroup(DihedralGroup(2)) True See Also ======== derived_subgroup """ res = [self] current = self next = self.derived_subgroup() while not current.is_subgroup(next): res.append(next) current = next next = next.derived_subgroup() return res def derived_subgroup(self): r"""Compute the derived subgroup. The derived subgroup, or commutator subgroup is the subgroup generated by all commutators `[g, h] = hgh^{-1}g^{-1}` for `g, h\in G` ; it is equal to the normal closure of the set of commutators of the generators ([1], p.28, [11]). Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([1, 0, 2, 4, 3]) >>> b = Permutation([0, 1, 3, 2, 4]) >>> G = PermutationGroup([a, b]) >>> C = G.derived_subgroup() >>> list(C.generate(af=True)) [[0, 1, 2, 3, 4], [0, 1, 3, 4, 2], [0, 1, 4, 2, 3]] See Also ======== derived_series """ r = self._r gens = [p._array_form for p in self.generators] set_commutators = set() degree = self._degree rng = list(range(degree)) for i in range(r): for j in range(r): p1 = gens[i] p2 = gens[j] c = list(range(degree)) for k in rng: c[p2[p1[k]]] = p1[p2[k]] ct = tuple(c) if not ct in set_commutators: set_commutators.add(ct) cms = [_af_new(p) for p in set_commutators] G2 = self.normal_closure(cms) return G2 def generate(self, method="coset", af=False): """Return iterator to generate the elements of the group Iteration is done with one of these methods:: method='coset' using the Schreier-Sims coset representation method='dimino' using the Dimino method If af = True it yields the array form of the permutations Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics import PermutationGroup >>> from sympy.combinatorics.polyhedron import tetrahedron The permutation group given in the tetrahedron object is also true groups: >>> G = tetrahedron.pgroup >>> G.is_group True Also the group generated by the permutations in the tetrahedron pgroup -- even the first two -- is a proper group: >>> H = PermutationGroup(G[0], G[1]) >>> J = PermutationGroup(list(H.generate())); J PermutationGroup([ (0 1)(2 3), (1 2 3), (1 3 2), (0 3 1), (0 2 3), (0 3)(1 2), (0 1 3), (3)(0 2 1), (0 3 2), (3)(0 1 2), (0 2)(1 3)]) >>> _.is_group True """ if method == "coset": return self.generate_schreier_sims(af) elif method == "dimino": return self.generate_dimino(af) else: raise NotImplementedError('No generation defined for %s' % method) def generate_dimino(self, af=False): """Yield group elements using Dimino's algorithm If af == True it yields the array form of the permutations Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1, 3]) >>> b = Permutation([0, 2, 3, 1]) >>> g = PermutationGroup([a, b]) >>> list(g.generate_dimino(af=True)) [[0, 1, 2, 3], [0, 2, 1, 3], [0, 2, 3, 1], [0, 1, 3, 2], [0, 3, 2, 1], [0, 3, 1, 2]] References ========== .. [1] The Implementation of Various Algorithms for Permutation Groups in the Computer Algebra System: AXIOM, N.J. Doye, M.Sc. Thesis """ idn = list(range(self.degree)) order = 0 element_list = [idn] set_element_list = {tuple(idn)} if af: yield idn else: yield _af_new(idn) gens = [p._array_form for p in self.generators] for i in range(len(gens)): # D elements of the subgroup G_i generated by gens[:i] D = element_list[:] N = [idn] while N: A = N N = [] for a in A: for g in gens[:i + 1]: ag = _af_rmul(a, g) if tuple(ag) not in set_element_list: # produce G_i*g for d in D: order += 1 ap = _af_rmul(d, ag) if af: yield ap else: p = _af_new(ap) yield p element_list.append(ap) set_element_list.add(tuple(ap)) N.append(ap) self._order = len(element_list) def generate_schreier_sims(self, af=False): """Yield group elements using the Schreier-Sims representation in coset_rank order If ``af = True`` it yields the array form of the permutations Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1, 3]) >>> b = Permutation([0, 2, 3, 1]) >>> g = PermutationGroup([a, b]) >>> list(g.generate_schreier_sims(af=True)) [[0, 1, 2, 3], [0, 2, 1, 3], [0, 3, 2, 1], [0, 1, 3, 2], [0, 2, 3, 1], [0, 3, 1, 2]] """ n = self._degree u = self.basic_transversals basic_orbits = self._basic_orbits if len(u) == 0: for x in self.generators: if af: yield x._array_form else: yield x return if len(u) == 1: for i in basic_orbits[0]: if af: yield u[0][i]._array_form else: yield u[0][i] return u = list(reversed(u)) basic_orbits = basic_orbits[::-1] # stg stack of group elements stg = [list(range(n))] posmax = [len(x) for x in u] n1 = len(posmax) - 1 pos = [0]*n1 h = 0 while 1: # backtrack when finished iterating over coset if pos[h] >= posmax[h]: if h == 0: return pos[h] = 0 h -= 1 stg.pop() continue p = _af_rmul(u[h][basic_orbits[h][pos[h]]]._array_form, stg[-1]) pos[h] += 1 stg.append(p) h += 1 if h == n1: if af: for i in basic_orbits[-1]: p = _af_rmul(u[-1][i]._array_form, stg[-1]) yield p else: for i in basic_orbits[-1]: p = _af_rmul(u[-1][i]._array_form, stg[-1]) p1 = _af_new(p) yield p1 stg.pop() h -= 1 @property def generators(self): """Returns the generators of the group. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.generators [(1 2), (2)(0 1)] """ return self._generators def contains(self, g, strict=True): """Test if permutation ``g`` belong to self, ``G``. If ``g`` is an element of ``G`` it can be written as a product of factors drawn from the cosets of ``G``'s stabilizers. To see if ``g`` is one of the actual generators defining the group use ``G.has(g)``. If ``strict`` is not ``True``, ``g`` will be resized, if necessary, to match the size of permutations in ``self``. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation(1, 2) >>> b = Permutation(2, 3, 1) >>> G = PermutationGroup(a, b, degree=5) >>> G.contains(G[0]) # trivial check True >>> elem = Permutation([[2, 3]], size=5) >>> G.contains(elem) True >>> G.contains(Permutation(4)(0, 1, 2, 3)) False If strict is False, a permutation will be resized, if necessary: >>> H = PermutationGroup(Permutation(5)) >>> H.contains(Permutation(3)) False >>> H.contains(Permutation(3), strict=False) True To test if a given permutation is present in the group: >>> elem in G.generators False >>> G.has(elem) False See Also ======== coset_factor, sympy.core.basic.Basic.has, __contains__ """ if not isinstance(g, Permutation): return False if g.size != self.degree: if strict: return False g = Permutation(g, size=self.degree) if g in self.generators: return True return bool(self.coset_factor(g.array_form, True)) @property def is_perfect(self): """Return ``True`` if the group is perfect. A group is perfect if it equals to its derived subgroup. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation(1,2,3)(4,5) >>> b = Permutation(1,2,3,4,5) >>> G = PermutationGroup([a, b]) >>> G.is_perfect False """ if self._is_perfect is None: self._is_perfect = self == self.derived_subgroup() return self._is_perfect @property def is_abelian(self): """Test if the group is Abelian. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.is_abelian False >>> a = Permutation([0, 2, 1]) >>> G = PermutationGroup([a]) >>> G.is_abelian True """ if self._is_abelian is not None: return self._is_abelian self._is_abelian = True gens = [p._array_form for p in self.generators] for x in gens: for y in gens: if y <= x: continue if not _af_commutes_with(x, y): self._is_abelian = False return False return True def abelian_invariants(self): """ Returns the abelian invariants for the given group. Let ``G`` be a nontrivial finite abelian group. Then G is isomorphic to the direct product of finitely many nontrivial cyclic groups of prime-power order. The prime-powers that occur as the orders of the factors are uniquely determined by G. More precisely, the primes that occur in the orders of the factors in any such decomposition of ``G`` are exactly the primes that divide ``|G|`` and for any such prime ``p``, if the orders of the factors that are p-groups in one such decomposition of ``G`` are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``, then the orders of the factors that are p-groups in any such decomposition of ``G`` are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``. The uniquely determined integers ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``, taken for all primes that divide ``|G|`` are called the invariants of the nontrivial group ``G`` as suggested in ([14], p. 542). Notes ===== We adopt the convention that the invariants of a trivial group are []. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.abelian_invariants() [2] >>> from sympy.combinatorics.named_groups import CyclicGroup >>> G = CyclicGroup(7) >>> G.abelian_invariants() [7] """ if self.is_trivial: return [] gns = self.generators inv = [] G = self H = G.derived_subgroup() Hgens = H.generators for p in primefactors(G.order()): ranks = [] while True: pows = [] for g in gns: elm = g**p if not H.contains(elm): pows.append(elm) K = PermutationGroup(Hgens + pows) if pows else H r = G.order()//K.order() G = K gns = pows if r == 1: break; ranks.append(multiplicity(p, r)) if ranks: pows = [1]*ranks[0] for i in ranks: for j in range(0, i): pows[j] = pows[j]*p inv.extend(pows) inv.sort() return inv def is_elementary(self, p): """Return ``True`` if the group is elementary abelian. An elementary abelian group is a finite abelian group, where every nontrivial element has order `p`, where `p` is a prime. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1]) >>> G = PermutationGroup([a]) >>> G.is_elementary(2) True >>> a = Permutation([0, 2, 1, 3]) >>> b = Permutation([3, 1, 2, 0]) >>> G = PermutationGroup([a, b]) >>> G.is_elementary(2) True >>> G.is_elementary(3) False """ return self.is_abelian and all(g.order() == p for g in self.generators) def _eval_is_alt_sym_naive(self, only_sym=False, only_alt=False): """A naive test using the group order.""" if only_sym and only_alt: raise ValueError( "Both {} and {} cannot be set to True" .format(only_sym, only_alt)) n = self.degree sym_order = 1 for i in range(2, n+1): sym_order *= i order = self.order() if order == sym_order: self._is_sym = True self._is_alt = False if only_alt: return False return True elif 2*order == sym_order: self._is_sym = False self._is_alt = True if only_sym: return False return True return False def _eval_is_alt_sym_monte_carlo(self, eps=0.05, perms=None): """A test using monte-carlo algorithm. Parameters ========== eps : float, optional The criterion for the incorrect ``False`` return. perms : list[Permutation], optional If explicitly given, it tests over the given candidats for testing. If ``None``, it randomly computes ``N_eps`` and chooses ``N_eps`` sample of the permutation from the group. See Also ======== _check_cycles_alt_sym """ if perms is None: n = self.degree if n < 17: c_n = 0.34 else: c_n = 0.57 d_n = (c_n*log(2))/log(n) N_eps = int(-log(eps)/d_n) perms = (self.random_pr() for i in range(N_eps)) return self._eval_is_alt_sym_monte_carlo(perms=perms) for perm in perms: if _check_cycles_alt_sym(perm): return True return False def is_alt_sym(self, eps=0.05, _random_prec=None): r"""Monte Carlo test for the symmetric/alternating group for degrees >= 8. More specifically, it is one-sided Monte Carlo with the answer True (i.e., G is symmetric/alternating) guaranteed to be correct, and the answer False being incorrect with probability eps. For degree < 8, the order of the group is checked so the test is deterministic. Notes ===== The algorithm itself uses some nontrivial results from group theory and number theory: 1) If a transitive group ``G`` of degree ``n`` contains an element with a cycle of length ``n/2 < p < n-2`` for ``p`` a prime, ``G`` is the symmetric or alternating group ([1], pp. 81-82) 2) The proportion of elements in the symmetric/alternating group having the property described in 1) is approximately `\log(2)/\log(n)` ([1], p.82; [2], pp. 226-227). The helper function ``_check_cycles_alt_sym`` is used to go over the cycles in a permutation and look for ones satisfying 1). Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.named_groups import DihedralGroup >>> D = DihedralGroup(10) >>> D.is_alt_sym() False See Also ======== _check_cycles_alt_sym """ if _random_prec is not None: N_eps = _random_prec['N_eps'] perms= (_random_prec[i] for i in range(N_eps)) return self._eval_is_alt_sym_monte_carlo(perms=perms) if self._is_sym or self._is_alt: return True if self._is_sym is False and self._is_alt is False: return False n = self.degree if n < 8: return self._eval_is_alt_sym_naive() elif self.is_transitive(): return self._eval_is_alt_sym_monte_carlo(eps=eps) self._is_sym, self._is_alt = False, False return False @property def is_nilpotent(self): """Test if the group is nilpotent. A group `G` is nilpotent if it has a central series of finite length. Alternatively, `G` is nilpotent if its lower central series terminates with the trivial group. Every nilpotent group is also solvable ([1], p.29, [12]). Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... CyclicGroup) >>> C = CyclicGroup(6) >>> C.is_nilpotent True >>> S = SymmetricGroup(5) >>> S.is_nilpotent False See Also ======== lower_central_series, is_solvable """ if self._is_nilpotent is None: lcs = self.lower_central_series() terminator = lcs[len(lcs) - 1] gens = terminator.generators degree = self.degree identity = _af_new(list(range(degree))) if all(g == identity for g in gens): self._is_solvable = True self._is_nilpotent = True return True else: self._is_nilpotent = False return False else: return self._is_nilpotent def is_normal(self, gr, strict=True): """Test if ``G=self`` is a normal subgroup of ``gr``. G is normal in gr if for each g2 in G, g1 in gr, ``g = g1*g2*g1**-1`` belongs to G It is sufficient to check this for each g1 in gr.generators and g2 in G.generators. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([1, 2, 0]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G1 = PermutationGroup([a, Permutation([2, 0, 1])]) >>> G1.is_normal(G) True """ if not self.is_subgroup(gr, strict=strict): return False d_self = self.degree d_gr = gr.degree if self.is_trivial and (d_self == d_gr or not strict): return True if self._is_abelian: return True new_self = self.copy() if not strict and d_self != d_gr: if d_self < d_gr: new_self = PermGroup(new_self.generators + [Permutation(d_gr - 1)]) else: gr = PermGroup(gr.generators + [Permutation(d_self - 1)]) gens2 = [p._array_form for p in new_self.generators] gens1 = [p._array_form for p in gr.generators] for g1 in gens1: for g2 in gens2: p = _af_rmuln(g1, g2, _af_invert(g1)) if not new_self.coset_factor(p, True): return False return True def is_primitive(self, randomized=True): r"""Test if a group is primitive. A permutation group ``G`` acting on a set ``S`` is called primitive if ``S`` contains no nontrivial block under the action of ``G`` (a block is nontrivial if its cardinality is more than ``1``). Notes ===== The algorithm is described in [1], p.83, and uses the function minimal_block to search for blocks of the form `\{0, k\}` for ``k`` ranging over representatives for the orbits of `G_0`, the stabilizer of ``0``. This algorithm has complexity `O(n^2)` where ``n`` is the degree of the group, and will perform badly if `G_0` is small. There are two implementations offered: one finds `G_0` deterministically using the function ``stabilizer``, and the other (default) produces random elements of `G_0` using ``random_stab``, hoping that they generate a subgroup of `G_0` with not too many more orbits than `G_0` (this is suggested in [1], p.83). Behavior is changed by the ``randomized`` flag. Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.named_groups import DihedralGroup >>> D = DihedralGroup(10) >>> D.is_primitive() False See Also ======== minimal_block, random_stab """ if self._is_primitive is not None: return self._is_primitive if self.is_transitive() is False: return False if randomized: random_stab_gens = [] v = self.schreier_vector(0) for i in range(len(self)): random_stab_gens.append(self.random_stab(0, v)) stab = PermutationGroup(random_stab_gens) else: stab = self.stabilizer(0) orbits = stab.orbits() for orb in orbits: x = orb.pop() if x != 0 and any(e != 0 for e in self.minimal_block([0, x])): self._is_primitive = False return False self._is_primitive = True return True def minimal_blocks(self, randomized=True): ''' For a transitive group, return the list of all minimal block systems. If a group is intransitive, return `False`. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.named_groups import DihedralGroup >>> DihedralGroup(6).minimal_blocks() [[0, 1, 0, 1, 0, 1], [0, 1, 2, 0, 1, 2]] >>> G = PermutationGroup(Permutation(1,2,5)) >>> G.minimal_blocks() False See Also ======== minimal_block, is_transitive, is_primitive ''' def _number_blocks(blocks): # number the blocks of a block system # in order and return the number of # blocks and the tuple with the # reordering n = len(blocks) appeared = {} m = 0 b = [None]*n for i in range(n): if blocks[i] not in appeared: appeared[blocks[i]] = m b[i] = m m += 1 else: b[i] = appeared[blocks[i]] return tuple(b), m if not self.is_transitive(): return False blocks = [] num_blocks = [] rep_blocks = [] if randomized: random_stab_gens = [] v = self.schreier_vector(0) for i in range(len(self)): random_stab_gens.append(self.random_stab(0, v)) stab = PermutationGroup(random_stab_gens) else: stab = self.stabilizer(0) orbits = stab.orbits() for orb in orbits: x = orb.pop() if x != 0: block = self.minimal_block([0, x]) num_block, m = _number_blocks(block) # a representative block (containing 0) rep = set(j for j in range(self.degree) if num_block[j] == 0) # check if the system is minimal with # respect to the already discovere ones minimal = True to_remove = [] for i, r in enumerate(rep_blocks): if len(r) > len(rep) and rep.issubset(r): # i-th block system is not minimal del num_blocks[i], blocks[i] to_remove.append(rep_blocks[i]) elif len(r) < len(rep) and r.issubset(rep): # the system being checked is not minimal minimal = False break # remove non-minimal representative blocks rep_blocks = [r for r in rep_blocks if r not in to_remove] if minimal and num_block not in num_blocks: blocks.append(block) num_blocks.append(num_block) rep_blocks.append(rep) return blocks @property def is_solvable(self): """Test if the group is solvable. ``G`` is solvable if its derived series terminates with the trivial group ([1], p.29). Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> S = SymmetricGroup(3) >>> S.is_solvable True See Also ======== is_nilpotent, derived_series """ if self._is_solvable is None: if self.order() % 2 != 0: return True ds = self.derived_series() terminator = ds[len(ds) - 1] gens = terminator.generators degree = self.degree identity = _af_new(list(range(degree))) if all(g == identity for g in gens): self._is_solvable = True return True else: self._is_solvable = False return False else: return self._is_solvable def is_subgroup(self, G, strict=True): """Return ``True`` if all elements of ``self`` belong to ``G``. If ``strict`` is ``False`` then if ``self``'s degree is smaller than ``G``'s, the elements will be resized to have the same degree. Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... CyclicGroup) Testing is strict by default: the degree of each group must be the same: >>> p = Permutation(0, 1, 2, 3, 4, 5) >>> G1 = PermutationGroup([Permutation(0, 1, 2), Permutation(0, 1)]) >>> G2 = PermutationGroup([Permutation(0, 2), Permutation(0, 1, 2)]) >>> G3 = PermutationGroup([p, p**2]) >>> assert G1.order() == G2.order() == G3.order() == 6 >>> G1.is_subgroup(G2) True >>> G1.is_subgroup(G3) False >>> G3.is_subgroup(PermutationGroup(G3[1])) False >>> G3.is_subgroup(PermutationGroup(G3[0])) True To ignore the size, set ``strict`` to ``False``: >>> S3 = SymmetricGroup(3) >>> S5 = SymmetricGroup(5) >>> S3.is_subgroup(S5, strict=False) True >>> C7 = CyclicGroup(7) >>> G = S5*C7 >>> S5.is_subgroup(G, False) True >>> C7.is_subgroup(G, 0) False """ if not isinstance(G, PermutationGroup): return False if self == G or self.generators[0]==Permutation(): return True if G.order() % self.order() != 0: return False if self.degree == G.degree or \ (self.degree < G.degree and not strict): gens = self.generators else: return False return all(G.contains(g, strict=strict) for g in gens) @property def is_polycyclic(self): """Return ``True`` if a group is polycyclic. A group is polycyclic if it has a subnormal series with cyclic factors. For finite groups, this is the same as if the group is solvable. Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> a = Permutation([0, 2, 1, 3]) >>> b = Permutation([2, 0, 1, 3]) >>> G = PermutationGroup([a, b]) >>> G.is_polycyclic True """ return self.is_solvable def is_transitive(self, strict=True): """Test if the group is transitive. A group is transitive if it has a single orbit. If ``strict`` is ``False`` the group is transitive if it has a single orbit of length different from 1. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1, 3]) >>> b = Permutation([2, 0, 1, 3]) >>> G1 = PermutationGroup([a, b]) >>> G1.is_transitive() False >>> G1.is_transitive(strict=False) True >>> c = Permutation([2, 3, 0, 1]) >>> G2 = PermutationGroup([a, c]) >>> G2.is_transitive() True >>> d = Permutation([1, 0, 2, 3]) >>> e = Permutation([0, 1, 3, 2]) >>> G3 = PermutationGroup([d, e]) >>> G3.is_transitive() or G3.is_transitive(strict=False) False """ if self._is_transitive: # strict or not, if True then True return self._is_transitive if strict: if self._is_transitive is not None: # we only store strict=True return self._is_transitive ans = len(self.orbit(0)) == self.degree self._is_transitive = ans return ans got_orb = False for x in self.orbits(): if len(x) > 1: if got_orb: return False got_orb = True return got_orb @property def is_trivial(self): """Test if the group is the trivial group. This is true if the group contains only the identity permutation. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> G = PermutationGroup([Permutation([0, 1, 2])]) >>> G.is_trivial True """ if self._is_trivial is None: self._is_trivial = len(self) == 1 and self[0].is_Identity return self._is_trivial def lower_central_series(self): r"""Return the lower central series for the group. The lower central series for a group `G` is the series `G = G_0 > G_1 > G_2 > \ldots` where `G_k = [G, G_{k-1}]`, i.e. every term after the first is equal to the commutator of `G` and the previous term in `G1` ([1], p.29). Returns ======= A list of permutation groups in the order `G = G_0, G_1, G_2, \ldots` Examples ======== >>> from sympy.combinatorics.named_groups import (AlternatingGroup, ... DihedralGroup) >>> A = AlternatingGroup(4) >>> len(A.lower_central_series()) 2 >>> A.lower_central_series()[1].is_subgroup(DihedralGroup(2)) True See Also ======== commutator, derived_series """ res = [self] current = self next = self.commutator(self, current) while not current.is_subgroup(next): res.append(next) current = next next = self.commutator(self, current) return res @property def max_div(self): """Maximum proper divisor of the degree of a permutation group. Notes ===== Obviously, this is the degree divided by its minimal proper divisor (larger than ``1``, if one exists). As it is guaranteed to be prime, the ``sieve`` from ``sympy.ntheory`` is used. This function is also used as an optimization tool for the functions ``minimal_block`` and ``_union_find_merge``. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> G = PermutationGroup([Permutation([0, 2, 1, 3])]) >>> G.max_div 2 See Also ======== minimal_block, _union_find_merge """ if self._max_div is not None: return self._max_div n = self.degree if n == 1: return 1 for x in sieve: if n % x == 0: d = n//x self._max_div = d return d def minimal_block(self, points): r"""For a transitive group, finds the block system generated by ``points``. If a group ``G`` acts on a set ``S``, a nonempty subset ``B`` of ``S`` is called a block under the action of ``G`` if for all ``g`` in ``G`` we have ``gB = B`` (``g`` fixes ``B``) or ``gB`` and ``B`` have no common points (``g`` moves ``B`` entirely). ([1], p.23; [6]). The distinct translates ``gB`` of a block ``B`` for ``g`` in ``G`` partition the set ``S`` and this set of translates is known as a block system. Moreover, we obviously have that all blocks in the partition have the same size, hence the block size divides ``|S|`` ([1], p.23). A ``G``-congruence is an equivalence relation ``~`` on the set ``S`` such that ``a ~ b`` implies ``g(a) ~ g(b)`` for all ``g`` in ``G``. For a transitive group, the equivalence classes of a ``G``-congruence and the blocks of a block system are the same thing ([1], p.23). The algorithm below checks the group for transitivity, and then finds the ``G``-congruence generated by the pairs ``(p_0, p_1), (p_0, p_2), ..., (p_0,p_{k-1})`` which is the same as finding the maximal block system (i.e., the one with minimum block size) such that ``p_0, ..., p_{k-1}`` are in the same block ([1], p.83). It is an implementation of Atkinson's algorithm, as suggested in [1], and manipulates an equivalence relation on the set ``S`` using a union-find data structure. The running time is just above `O(|points||S|)`. ([1], pp. 83-87; [7]). Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.named_groups import DihedralGroup >>> D = DihedralGroup(10) >>> D.minimal_block([0, 5]) [0, 1, 2, 3, 4, 0, 1, 2, 3, 4] >>> D.minimal_block([0, 1]) [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] See Also ======== _union_find_rep, _union_find_merge, is_transitive, is_primitive """ if not self.is_transitive(): return False n = self.degree gens = self.generators # initialize the list of equivalence class representatives parents = list(range(n)) ranks = [1]*n not_rep = [] k = len(points) # the block size must divide the degree of the group if k > self.max_div: return [0]*n for i in range(k - 1): parents[points[i + 1]] = points[0] not_rep.append(points[i + 1]) ranks[points[0]] = k i = 0 len_not_rep = k - 1 while i < len_not_rep: gamma = not_rep[i] i += 1 for gen in gens: # find has side effects: performs path compression on the list # of representatives delta = self._union_find_rep(gamma, parents) # union has side effects: performs union by rank on the list # of representatives temp = self._union_find_merge(gen(gamma), gen(delta), ranks, parents, not_rep) if temp == -1: return [0]*n len_not_rep += temp for i in range(n): # force path compression to get the final state of the equivalence # relation self._union_find_rep(i, parents) # rewrite result so that block representatives are minimal new_reps = {} return [new_reps.setdefault(r, i) for i, r in enumerate(parents)] def normal_closure(self, other, k=10): r"""Return the normal closure of a subgroup/set of permutations. If ``S`` is a subset of a group ``G``, the normal closure of ``A`` in ``G`` is defined as the intersection of all normal subgroups of ``G`` that contain ``A`` ([1], p.14). Alternatively, it is the group generated by the conjugates ``x^{-1}yx`` for ``x`` a generator of ``G`` and ``y`` a generator of the subgroup ``\left\langle S\right\rangle`` generated by ``S`` (for some chosen generating set for ``\left\langle S\right\rangle``) ([1], p.73). Parameters ========== other a subgroup/list of permutations/single permutation k an implementation-specific parameter that determines the number of conjugates that are adjoined to ``other`` at once Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... CyclicGroup, AlternatingGroup) >>> S = SymmetricGroup(5) >>> C = CyclicGroup(5) >>> G = S.normal_closure(C) >>> G.order() 60 >>> G.is_subgroup(AlternatingGroup(5)) True See Also ======== commutator, derived_subgroup, random_pr Notes ===== The algorithm is described in [1], pp. 73-74; it makes use of the generation of random elements for permutation groups by the product replacement algorithm. """ if hasattr(other, 'generators'): degree = self.degree identity = _af_new(list(range(degree))) if all(g == identity for g in other.generators): return other Z = PermutationGroup(other.generators[:]) base, strong_gens = Z.schreier_sims_incremental() strong_gens_distr = _distribute_gens_by_base(base, strong_gens) basic_orbits, basic_transversals = \ _orbits_transversals_from_bsgs(base, strong_gens_distr) self._random_pr_init(r=10, n=20) _loop = True while _loop: Z._random_pr_init(r=10, n=10) for i in range(k): g = self.random_pr() h = Z.random_pr() conj = h^g res = _strip(conj, base, basic_orbits, basic_transversals) if res[0] != identity or res[1] != len(base) + 1: gens = Z.generators gens.append(conj) Z = PermutationGroup(gens) strong_gens.append(conj) temp_base, temp_strong_gens = \ Z.schreier_sims_incremental(base, strong_gens) base, strong_gens = temp_base, temp_strong_gens strong_gens_distr = \ _distribute_gens_by_base(base, strong_gens) basic_orbits, basic_transversals = \ _orbits_transversals_from_bsgs(base, strong_gens_distr) _loop = False for g in self.generators: for h in Z.generators: conj = h^g res = _strip(conj, base, basic_orbits, basic_transversals) if res[0] != identity or res[1] != len(base) + 1: _loop = True break if _loop: break return Z elif hasattr(other, '__getitem__'): return self.normal_closure(PermutationGroup(other)) elif hasattr(other, 'array_form'): return self.normal_closure(PermutationGroup([other])) def orbit(self, alpha, action='tuples'): r"""Compute the orbit of alpha `\{g(\alpha) | g \in G\}` as a set. The time complexity of the algorithm used here is `O(|Orb|*r)` where `|Orb|` is the size of the orbit and ``r`` is the number of generators of the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21. Here alpha can be a single point, or a list of points. If alpha is a single point, the ordinary orbit is computed. if alpha is a list of points, there are three available options: 'union' - computes the union of the orbits of the points in the list 'tuples' - computes the orbit of the list interpreted as an ordered tuple under the group action ( i.e., g((1,2,3)) = (g(1), g(2), g(3)) ) 'sets' - computes the orbit of the list interpreted as a sets Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([1, 2, 0, 4, 5, 6, 3]) >>> G = PermutationGroup([a]) >>> G.orbit(0) {0, 1, 2} >>> G.orbit([0, 4], 'union') {0, 1, 2, 3, 4, 5, 6} See Also ======== orbit_transversal """ return _orbit(self.degree, self.generators, alpha, action) def orbit_rep(self, alpha, beta, schreier_vector=None): """Return a group element which sends ``alpha`` to ``beta``. If ``beta`` is not in the orbit of ``alpha``, the function returns ``False``. This implementation makes use of the schreier vector. For a proof of correctness, see [1], p.80 Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.named_groups import AlternatingGroup >>> G = AlternatingGroup(5) >>> G.orbit_rep(0, 4) (0 4 1 2 3) See Also ======== schreier_vector """ if schreier_vector is None: schreier_vector = self.schreier_vector(alpha) if schreier_vector[beta] is None: return False k = schreier_vector[beta] gens = [x._array_form for x in self.generators] a = [] while k != -1: a.append(gens[k]) beta = gens[k].index(beta) # beta = (~gens[k])(beta) k = schreier_vector[beta] if a: return _af_new(_af_rmuln(*a)) else: return _af_new(list(range(self._degree))) def orbit_transversal(self, alpha, pairs=False): r"""Computes a transversal for the orbit of ``alpha`` as a set. For a permutation group `G`, a transversal for the orbit `Orb = \{g(\alpha) | g \in G\}` is a set `\{g_\beta | g_\beta(\alpha) = \beta\}` for `\beta \in Orb`. Note that there may be more than one possible transversal. If ``pairs`` is set to ``True``, it returns the list of pairs `(\beta, g_\beta)`. For a proof of correctness, see [1], p.79 Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.named_groups import DihedralGroup >>> G = DihedralGroup(6) >>> G.orbit_transversal(0) [(5), (0 1 2 3 4 5), (0 5)(1 4)(2 3), (0 2 4)(1 3 5), (5)(0 4)(1 3), (0 3)(1 4)(2 5)] See Also ======== orbit """ return _orbit_transversal(self._degree, self.generators, alpha, pairs) def orbits(self, rep=False): """Return the orbits of ``self``, ordered according to lowest element in each orbit. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation(1, 5)(2, 3)(4, 0, 6) >>> b = Permutation(1, 5)(3, 4)(2, 6, 0) >>> G = PermutationGroup([a, b]) >>> G.orbits() [{0, 2, 3, 4, 6}, {1, 5}] """ return _orbits(self._degree, self._generators) def order(self): """Return the order of the group: the number of permutations that can be generated from elements of the group. The number of permutations comprising the group is given by ``len(group)``; the length of each permutation in the group is given by ``group.size``. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([1, 0, 2]) >>> G = PermutationGroup([a]) >>> G.degree 3 >>> len(G) 1 >>> G.order() 2 >>> list(G.generate()) [(2), (2)(0 1)] >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.order() 6 See Also ======== degree """ if self._order is not None: return self._order if self._is_sym: n = self._degree self._order = factorial(n) return self._order if self._is_alt: n = self._degree self._order = factorial(n)/2 return self._order basic_transversals = self.basic_transversals m = 1 for x in basic_transversals: m *= len(x) self._order = m return m def index(self, H): """ Returns the index of a permutation group. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation(1,2,3) >>> b =Permutation(3) >>> G = PermutationGroup([a]) >>> H = PermutationGroup([b]) >>> G.index(H) 3 """ if H.is_subgroup(self): return self.order()//H.order() @property def is_symmetric(self): """Return ``True`` if the group is symmetric. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> g = SymmetricGroup(5) >>> g.is_symmetric True >>> from sympy.combinatorics import Permutation, PermutationGroup >>> g = PermutationGroup( ... Permutation(0, 1, 2, 3, 4), ... Permutation(2, 3)) >>> g.is_symmetric True Notes ===== This uses a naive test involving the computation of the full group order. If you need more quicker taxonomy for large groups, you can use :meth:`PermutationGroup.is_alt_sym`. However, :meth:`PermutationGroup.is_alt_sym` may not be accurate and is not able to distinguish between an alternating group and a symmetric group. See Also ======== is_alt_sym """ _is_sym = self._is_sym if _is_sym is not None: return _is_sym n = self.degree if n >= 8: if self.is_transitive(): _is_alt_sym = self._eval_is_alt_sym_monte_carlo() if _is_alt_sym: if any(g.is_odd for g in self.generators): self._is_sym, self._is_alt = True, False return True self._is_sym, self._is_alt = False, True return False return self._eval_is_alt_sym_naive(only_sym=True) self._is_sym, self._is_alt = False, False return False return self._eval_is_alt_sym_naive(only_sym=True) @property def is_alternating(self): """Return ``True`` if the group is alternating. Examples ======== >>> from sympy.combinatorics.named_groups import AlternatingGroup >>> g = AlternatingGroup(5) >>> g.is_alternating True >>> from sympy.combinatorics import Permutation, PermutationGroup >>> g = PermutationGroup( ... Permutation(0, 1, 2, 3, 4), ... Permutation(2, 3, 4)) >>> g.is_alternating True Notes ===== This uses a naive test involving the computation of the full group order. If you need more quicker taxonomy for large groups, you can use :meth:`PermutationGroup.is_alt_sym`. However, :meth:`PermutationGroup.is_alt_sym` may not be accurate and is not able to distinguish between an alternating group and a symmetric group. See Also ======== is_alt_sym """ _is_alt = self._is_alt if _is_alt is not None: return _is_alt n = self.degree if n >= 8: if self.is_transitive(): _is_alt_sym = self._eval_is_alt_sym_monte_carlo() if _is_alt_sym: if all(g.is_even for g in self.generators): self._is_sym, self._is_alt = False, True return True self._is_sym, self._is_alt = True, False return False return self._eval_is_alt_sym_naive(only_alt=True) self._is_sym, self._is_alt = False, False return False return self._eval_is_alt_sym_naive(only_alt=True) @classmethod def _distinct_primes_lemma(cls, primes): """Subroutine to test if there is only one cyclic group for the order.""" primes = sorted(primes) l = len(primes) for i in range(l): for j in range(i+1, l): if primes[j] % primes[i] == 1: return None return True @property def is_cyclic(self): r""" Return ``True`` if the group is Cyclic. Examples ======== >>> from sympy.combinatorics.named_groups import AbelianGroup >>> G = AbelianGroup(3, 4) >>> G.is_cyclic True >>> G = AbelianGroup(4, 4) >>> G.is_cyclic False Notes ===== If the order of a group $n$ can be factored into the distinct primes $p_1, p_2, ... , p_s$ and if .. math:: \forall i, j \in \{1, 2, \ldots, s \}: p_i \not \equiv 1 \pmod {p_j} holds true, there is only one group of the order $n$ which is a cyclic group. [1]_ This is a generalization of the lemma that the group of order $15, 35, ...$ are cyclic. And also, these additional lemmas can be used to test if a group is cyclic if the order of the group is already found. - If the group is abelian and the order of the group is square-free, the group is cyclic. - If the order of the group is less than $6$ and is not $4$, the group is cyclic. - If the order of the group is prime, the group is cyclic. References ========== .. [1] 1978: John S. Rose: A Course on Group Theory, Introduction to Finite Group Theory: 1.4 """ if self._is_cyclic is not None: return self._is_cyclic if len(self.generators) == 1: self._is_cyclic = True self._is_abelian = True return True if self._is_abelian is False: self._is_cyclic = False return False order = self.order() if order < 6: self._is_abelian == True if order != 4: self._is_cyclic == True return True factors = factorint(order) if all(v == 1 for v in factors.values()): if self._is_abelian: self._is_cyclic = True return True primes = list(factors.keys()) if PermutationGroup._distinct_primes_lemma(primes) is True: self._is_cyclic = True self._is_abelian = True return True for p in factors: pgens = [] for g in self.generators: pgens.append(g**p) if self.index(self.subgroup(pgens)) != p: self._is_cyclic = False return False self._is_cyclic = True self._is_abelian = True return True def pointwise_stabilizer(self, points, incremental=True): r"""Return the pointwise stabilizer for a set of points. For a permutation group `G` and a set of points `\{p_1, p_2,\ldots, p_k\}`, the pointwise stabilizer of `p_1, p_2, \ldots, p_k` is defined as `G_{p_1,\ldots, p_k} = \{g\in G | g(p_i) = p_i \forall i\in\{1, 2,\ldots,k\}\}` ([1],p20). It is a subgroup of `G`. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> S = SymmetricGroup(7) >>> Stab = S.pointwise_stabilizer([2, 3, 5]) >>> Stab.is_subgroup(S.stabilizer(2).stabilizer(3).stabilizer(5)) True See Also ======== stabilizer, schreier_sims_incremental Notes ===== When incremental == True, rather than the obvious implementation using successive calls to ``.stabilizer()``, this uses the incremental Schreier-Sims algorithm to obtain a base with starting segment - the given points. """ if incremental: base, strong_gens = self.schreier_sims_incremental(base=points) stab_gens = [] degree = self.degree for gen in strong_gens: if [gen(point) for point in points] == points: stab_gens.append(gen) if not stab_gens: stab_gens = _af_new(list(range(degree))) return PermutationGroup(stab_gens) else: gens = self._generators degree = self.degree for x in points: gens = _stabilizer(degree, gens, x) return PermutationGroup(gens) def make_perm(self, n, seed=None): """ Multiply ``n`` randomly selected permutations from pgroup together, starting with the identity permutation. If ``n`` is a list of integers, those integers will be used to select the permutations and they will be applied in L to R order: make_perm((A, B, C)) will give CBA(I) where I is the identity permutation. ``seed`` is used to set the seed for the random selection of permutations from pgroup. If this is a list of integers, the corresponding permutations from pgroup will be selected in the order give. This is mainly used for testing purposes. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a, b = [Permutation([1, 0, 3, 2]), Permutation([1, 3, 0, 2])] >>> G = PermutationGroup([a, b]) >>> G.make_perm(1, [0]) (0 1)(2 3) >>> G.make_perm(3, [0, 1, 0]) (0 2 3 1) >>> G.make_perm([0, 1, 0]) (0 2 3 1) See Also ======== random """ if is_sequence(n): if seed is not None: raise ValueError('If n is a sequence, seed should be None') n, seed = len(n), n else: try: n = int(n) except TypeError: raise ValueError('n must be an integer or a sequence.') randrange = _randrange(seed) # start with the identity permutation result = Permutation(list(range(self.degree))) m = len(self) for i in range(n): p = self[randrange(m)] result = rmul(result, p) return result def random(self, af=False): """Return a random group element """ rank = randrange(self.order()) return self.coset_unrank(rank, af) def random_pr(self, gen_count=11, iterations=50, _random_prec=None): """Return a random group element using product replacement. For the details of the product replacement algorithm, see ``_random_pr_init`` In ``random_pr`` the actual 'product replacement' is performed. Notice that if the attribute ``_random_gens`` is empty, it needs to be initialized by ``_random_pr_init``. See Also ======== _random_pr_init """ if self._random_gens == []: self._random_pr_init(gen_count, iterations) random_gens = self._random_gens r = len(random_gens) - 1 # handle randomized input for testing purposes if _random_prec is None: s = randrange(r) t = randrange(r - 1) if t == s: t = r - 1 x = choice([1, 2]) e = choice([-1, 1]) else: s = _random_prec['s'] t = _random_prec['t'] if t == s: t = r - 1 x = _random_prec['x'] e = _random_prec['e'] if x == 1: random_gens[s] = _af_rmul(random_gens[s], _af_pow(random_gens[t], e)) random_gens[r] = _af_rmul(random_gens[r], random_gens[s]) else: random_gens[s] = _af_rmul(_af_pow(random_gens[t], e), random_gens[s]) random_gens[r] = _af_rmul(random_gens[s], random_gens[r]) return _af_new(random_gens[r]) def random_stab(self, alpha, schreier_vector=None, _random_prec=None): """Random element from the stabilizer of ``alpha``. The schreier vector for ``alpha`` is an optional argument used for speeding up repeated calls. The algorithm is described in [1], p.81 See Also ======== random_pr, orbit_rep """ if schreier_vector is None: schreier_vector = self.schreier_vector(alpha) if _random_prec is None: rand = self.random_pr() else: rand = _random_prec['rand'] beta = rand(alpha) h = self.orbit_rep(alpha, beta, schreier_vector) return rmul(~h, rand) def schreier_sims(self): """Schreier-Sims algorithm. It computes the generators of the chain of stabilizers `G > G_{b_1} > .. > G_{b1,..,b_r} > 1` in which `G_{b_1,..,b_i}` stabilizes `b_1,..,b_i`, and the corresponding ``s`` cosets. An element of the group can be written as the product `h_1*..*h_s`. We use the incremental Schreier-Sims algorithm. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.schreier_sims() >>> G.basic_transversals [{0: (2)(0 1), 1: (2), 2: (1 2)}, {0: (2), 2: (0 2)}] """ if self._transversals: return self._schreier_sims() return def _schreier_sims(self, base=None): schreier = self.schreier_sims_incremental(base=base, slp_dict=True) base, strong_gens = schreier[:2] self._base = base self._strong_gens = strong_gens self._strong_gens_slp = schreier[2] if not base: self._transversals = [] self._basic_orbits = [] return strong_gens_distr = _distribute_gens_by_base(base, strong_gens) basic_orbits, transversals, slps = _orbits_transversals_from_bsgs(base,\ strong_gens_distr, slp=True) # rewrite the indices stored in slps in terms of strong_gens for i, slp in enumerate(slps): gens = strong_gens_distr[i] for k in slp: slp[k] = [strong_gens.index(gens[s]) for s in slp[k]] self._transversals = transversals self._basic_orbits = [sorted(x) for x in basic_orbits] self._transversal_slp = slps def schreier_sims_incremental(self, base=None, gens=None, slp_dict=False): """Extend a sequence of points and generating set to a base and strong generating set. Parameters ========== base The sequence of points to be extended to a base. Optional parameter with default value ``[]``. gens The generating set to be extended to a strong generating set relative to the base obtained. Optional parameter with default value ``self.generators``. slp_dict If `True`, return a dictionary `{g: gens}` for each strong generator `g` where `gens` is a list of strong generators coming before `g` in `strong_gens`, such that the product of the elements of `gens` is equal to `g`. Returns ======= (base, strong_gens) ``base`` is the base obtained, and ``strong_gens`` is the strong generating set relative to it. The original parameters ``base``, ``gens`` remain unchanged. Examples ======== >>> from sympy.combinatorics.named_groups import AlternatingGroup >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.testutil import _verify_bsgs >>> A = AlternatingGroup(7) >>> base = [2, 3] >>> seq = [2, 3] >>> base, strong_gens = A.schreier_sims_incremental(base=seq) >>> _verify_bsgs(A, base, strong_gens) True >>> base[:2] [2, 3] Notes ===== This version of the Schreier-Sims algorithm runs in polynomial time. There are certain assumptions in the implementation - if the trivial group is provided, ``base`` and ``gens`` are returned immediately, as any sequence of points is a base for the trivial group. If the identity is present in the generators ``gens``, it is removed as it is a redundant generator. The implementation is described in [1], pp. 90-93. See Also ======== schreier_sims, schreier_sims_random """ if base is None: base = [] if gens is None: gens = self.generators[:] degree = self.degree id_af = list(range(degree)) # handle the trivial group if len(gens) == 1 and gens[0].is_Identity: if slp_dict: return base, gens, {gens[0]: [gens[0]]} return base, gens # prevent side effects _base, _gens = base[:], gens[:] # remove the identity as a generator _gens = [x for x in _gens if not x.is_Identity] # make sure no generator fixes all base points for gen in _gens: if all(x == gen._array_form[x] for x in _base): for new in id_af: if gen._array_form[new] != new: break else: assert None # can this ever happen? _base.append(new) # distribute generators according to basic stabilizers strong_gens_distr = _distribute_gens_by_base(_base, _gens) strong_gens_slp = [] # initialize the basic stabilizers, basic orbits and basic transversals orbs = {} transversals = {} slps = {} base_len = len(_base) for i in range(base_len): transversals[i], slps[i] = _orbit_transversal(degree, strong_gens_distr[i], _base[i], pairs=True, af=True, slp=True) transversals[i] = dict(transversals[i]) orbs[i] = list(transversals[i].keys()) # main loop: amend the stabilizer chain until we have generators # for all stabilizers i = base_len - 1 while i >= 0: # this flag is used to continue with the main loop from inside # a nested loop continue_i = False # test the generators for being a strong generating set db = {} for beta, u_beta in list(transversals[i].items()): for j, gen in enumerate(strong_gens_distr[i]): gb = gen._array_form[beta] u1 = transversals[i][gb] g1 = _af_rmul(gen._array_form, u_beta) slp = [(i, g) for g in slps[i][beta]] slp = [(i, j)] + slp if g1 != u1: # test if the schreier generator is in the i+1-th # would-be basic stabilizer y = True try: u1_inv = db[gb] except KeyError: u1_inv = db[gb] = _af_invert(u1) schreier_gen = _af_rmul(u1_inv, g1) u1_inv_slp = slps[i][gb][:] u1_inv_slp.reverse() u1_inv_slp = [(i, (g,)) for g in u1_inv_slp] slp = u1_inv_slp + slp h, j, slp = _strip_af(schreier_gen, _base, orbs, transversals, i, slp=slp, slps=slps) if j <= base_len: # new strong generator h at level j y = False elif h: # h fixes all base points y = False moved = 0 while h[moved] == moved: moved += 1 _base.append(moved) base_len += 1 strong_gens_distr.append([]) if y is False: # if a new strong generator is found, update the # data structures and start over h = _af_new(h) strong_gens_slp.append((h, slp)) for l in range(i + 1, j): strong_gens_distr[l].append(h) transversals[l], slps[l] =\ _orbit_transversal(degree, strong_gens_distr[l], _base[l], pairs=True, af=True, slp=True) transversals[l] = dict(transversals[l]) orbs[l] = list(transversals[l].keys()) i = j - 1 # continue main loop using the flag continue_i = True if continue_i is True: break if continue_i is True: break if continue_i is True: continue i -= 1 strong_gens = _gens[:] if slp_dict: # create the list of the strong generators strong_gens and # rewrite the indices of strong_gens_slp in terms of the # elements of strong_gens for k, slp in strong_gens_slp: strong_gens.append(k) for i in range(len(slp)): s = slp[i] if isinstance(s[1], tuple): slp[i] = strong_gens_distr[s[0]][s[1][0]]**-1 else: slp[i] = strong_gens_distr[s[0]][s[1]] strong_gens_slp = dict(strong_gens_slp) # add the original generators for g in _gens: strong_gens_slp[g] = [g] return (_base, strong_gens, strong_gens_slp) strong_gens.extend([k for k, _ in strong_gens_slp]) return _base, strong_gens def schreier_sims_random(self, base=None, gens=None, consec_succ=10, _random_prec=None): r"""Randomized Schreier-Sims algorithm. The randomized Schreier-Sims algorithm takes the sequence ``base`` and the generating set ``gens``, and extends ``base`` to a base, and ``gens`` to a strong generating set relative to that base with probability of a wrong answer at most `2^{-consec\_succ}`, provided the random generators are sufficiently random. Parameters ========== base The sequence to be extended to a base. gens The generating set to be extended to a strong generating set. consec_succ The parameter defining the probability of a wrong answer. _random_prec An internal parameter used for testing purposes. Returns ======= (base, strong_gens) ``base`` is the base and ``strong_gens`` is the strong generating set relative to it. Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.testutil import _verify_bsgs >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> S = SymmetricGroup(5) >>> base, strong_gens = S.schreier_sims_random(consec_succ=5) >>> _verify_bsgs(S, base, strong_gens) #doctest: +SKIP True Notes ===== The algorithm is described in detail in [1], pp. 97-98. It extends the orbits ``orbs`` and the permutation groups ``stabs`` to basic orbits and basic stabilizers for the base and strong generating set produced in the end. The idea of the extension process is to "sift" random group elements through the stabilizer chain and amend the stabilizers/orbits along the way when a sift is not successful. The helper function ``_strip`` is used to attempt to decompose a random group element according to the current state of the stabilizer chain and report whether the element was fully decomposed (successful sift) or not (unsuccessful sift). In the latter case, the level at which the sift failed is reported and used to amend ``stabs``, ``base``, ``gens`` and ``orbs`` accordingly. The halting condition is for ``consec_succ`` consecutive successful sifts to pass. This makes sure that the current ``base`` and ``gens`` form a BSGS with probability at least `1 - 1/\text{consec\_succ}`. See Also ======== schreier_sims """ if base is None: base = [] if gens is None: gens = self.generators base_len = len(base) n = self.degree # make sure no generator fixes all base points for gen in gens: if all(gen(x) == x for x in base): new = 0 while gen._array_form[new] == new: new += 1 base.append(new) base_len += 1 # distribute generators according to basic stabilizers strong_gens_distr = _distribute_gens_by_base(base, gens) # initialize the basic stabilizers, basic transversals and basic orbits transversals = {} orbs = {} for i in range(base_len): transversals[i] = dict(_orbit_transversal(n, strong_gens_distr[i], base[i], pairs=True)) orbs[i] = list(transversals[i].keys()) # initialize the number of consecutive elements sifted c = 0 # start sifting random elements while the number of consecutive sifts # is less than consec_succ while c < consec_succ: if _random_prec is None: g = self.random_pr() else: g = _random_prec['g'].pop() h, j = _strip(g, base, orbs, transversals) y = True # determine whether a new base point is needed if j <= base_len: y = False elif not h.is_Identity: y = False moved = 0 while h(moved) == moved: moved += 1 base.append(moved) base_len += 1 strong_gens_distr.append([]) # if the element doesn't sift, amend the strong generators and # associated stabilizers and orbits if y is False: for l in range(1, j): strong_gens_distr[l].append(h) transversals[l] = dict(_orbit_transversal(n, strong_gens_distr[l], base[l], pairs=True)) orbs[l] = list(transversals[l].keys()) c = 0 else: c += 1 # build the strong generating set strong_gens = strong_gens_distr[0][:] for gen in strong_gens_distr[1]: if gen not in strong_gens: strong_gens.append(gen) return base, strong_gens def schreier_vector(self, alpha): """Computes the schreier vector for ``alpha``. The Schreier vector efficiently stores information about the orbit of ``alpha``. It can later be used to quickly obtain elements of the group that send ``alpha`` to a particular element in the orbit. Notice that the Schreier vector depends on the order in which the group generators are listed. For a definition, see [3]. Since list indices start from zero, we adopt the convention to use "None" instead of 0 to signify that an element doesn't belong to the orbit. For the algorithm and its correctness, see [2], pp.78-80. Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.permutations import Permutation >>> a = Permutation([2, 4, 6, 3, 1, 5, 0]) >>> b = Permutation([0, 1, 3, 5, 4, 6, 2]) >>> G = PermutationGroup([a, b]) >>> G.schreier_vector(0) [-1, None, 0, 1, None, 1, 0] See Also ======== orbit """ n = self.degree v = [None]*n v[alpha] = -1 orb = [alpha] used = [False]*n used[alpha] = True gens = self.generators r = len(gens) for b in orb: for i in range(r): temp = gens[i]._array_form[b] if used[temp] is False: orb.append(temp) used[temp] = True v[temp] = i return v def stabilizer(self, alpha): r"""Return the stabilizer subgroup of ``alpha``. The stabilizer of `\alpha` is the group `G_\alpha = \{g \in G | g(\alpha) = \alpha\}`. For a proof of correctness, see [1], p.79. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.named_groups import DihedralGroup >>> G = DihedralGroup(6) >>> G.stabilizer(5) PermutationGroup([ (5)(0 4)(1 3)]) See Also ======== orbit """ return PermGroup(_stabilizer(self._degree, self._generators, alpha)) @property def strong_gens(self): r"""Return a strong generating set from the Schreier-Sims algorithm. A generating set `S = \{g_1, g_2, ..., g_t\}` for a permutation group `G` is a strong generating set relative to the sequence of points (referred to as a "base") `(b_1, b_2, ..., b_k)` if, for `1 \leq i \leq k` we have that the intersection of the pointwise stabilizer `G^{(i+1)} := G_{b_1, b_2, ..., b_i}` with `S` generates the pointwise stabilizer `G^{(i+1)}`. The concepts of a base and strong generating set and their applications are discussed in depth in [1], pp. 87-89 and [2], pp. 55-57. Examples ======== >>> from sympy.combinatorics.named_groups import DihedralGroup >>> D = DihedralGroup(4) >>> D.strong_gens [(0 1 2 3), (0 3)(1 2), (1 3)] >>> D.base [0, 1] See Also ======== base, basic_transversals, basic_orbits, basic_stabilizers """ if self._strong_gens == []: self.schreier_sims() return self._strong_gens def subgroup(self, gens): """ Return the subgroup generated by `gens` which is a list of elements of the group """ if not all([g in self for g in gens]): raise ValueError("The group doesn't contain the supplied generators") G = PermutationGroup(gens) return G def subgroup_search(self, prop, base=None, strong_gens=None, tests=None, init_subgroup=None): """Find the subgroup of all elements satisfying the property ``prop``. This is done by a depth-first search with respect to base images that uses several tests to prune the search tree. Parameters ========== prop The property to be used. Has to be callable on group elements and always return ``True`` or ``False``. It is assumed that all group elements satisfying ``prop`` indeed form a subgroup. base A base for the supergroup. strong_gens A strong generating set for the supergroup. tests A list of callables of length equal to the length of ``base``. These are used to rule out group elements by partial base images, so that ``tests[l](g)`` returns False if the element ``g`` is known not to satisfy prop base on where g sends the first ``l + 1`` base points. init_subgroup if a subgroup of the sought group is known in advance, it can be passed to the function as this parameter. Returns ======= res The subgroup of all elements satisfying ``prop``. The generating set for this group is guaranteed to be a strong generating set relative to the base ``base``. Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... AlternatingGroup) >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.testutil import _verify_bsgs >>> S = SymmetricGroup(7) >>> prop_even = lambda x: x.is_even >>> base, strong_gens = S.schreier_sims_incremental() >>> G = S.subgroup_search(prop_even, base=base, strong_gens=strong_gens) >>> G.is_subgroup(AlternatingGroup(7)) True >>> _verify_bsgs(G, base, G.generators) True Notes ===== This function is extremely lengthy and complicated and will require some careful attention. The implementation is described in [1], pp. 114-117, and the comments for the code here follow the lines of the pseudocode in the book for clarity. The complexity is exponential in general, since the search process by itself visits all members of the supergroup. However, there are a lot of tests which are used to prune the search tree, and users can define their own tests via the ``tests`` parameter, so in practice, and for some computations, it's not terrible. A crucial part in the procedure is the frequent base change performed (this is line 11 in the pseudocode) in order to obtain a new basic stabilizer. The book mentiones that this can be done by using ``.baseswap(...)``, however the current implementation uses a more straightforward way to find the next basic stabilizer - calling the function ``.stabilizer(...)`` on the previous basic stabilizer. """ # initialize BSGS and basic group properties def get_reps(orbits): # get the minimal element in the base ordering return [min(orbit, key = lambda x: base_ordering[x]) \ for orbit in orbits] def update_nu(l): temp_index = len(basic_orbits[l]) + 1 -\ len(res_basic_orbits_init_base[l]) # this corresponds to the element larger than all points if temp_index >= len(sorted_orbits[l]): nu[l] = base_ordering[degree] else: nu[l] = sorted_orbits[l][temp_index] if base is None: base, strong_gens = self.schreier_sims_incremental() base_len = len(base) degree = self.degree identity = _af_new(list(range(degree))) base_ordering = _base_ordering(base, degree) # add an element larger than all points base_ordering.append(degree) # add an element smaller than all points base_ordering.append(-1) # compute BSGS-related structures strong_gens_distr = _distribute_gens_by_base(base, strong_gens) basic_orbits, transversals = _orbits_transversals_from_bsgs(base, strong_gens_distr) # handle subgroup initialization and tests if init_subgroup is None: init_subgroup = PermutationGroup([identity]) if tests is None: trivial_test = lambda x: True tests = [] for i in range(base_len): tests.append(trivial_test) # line 1: more initializations. res = init_subgroup f = base_len - 1 l = base_len - 1 # line 2: set the base for K to the base for G res_base = base[:] # line 3: compute BSGS and related structures for K res_base, res_strong_gens = res.schreier_sims_incremental( base=res_base) res_strong_gens_distr = _distribute_gens_by_base(res_base, res_strong_gens) res_generators = res.generators res_basic_orbits_init_base = \ [_orbit(degree, res_strong_gens_distr[i], res_base[i])\ for i in range(base_len)] # initialize orbit representatives orbit_reps = [None]*base_len # line 4: orbit representatives for f-th basic stabilizer of K orbits = _orbits(degree, res_strong_gens_distr[f]) orbit_reps[f] = get_reps(orbits) # line 5: remove the base point from the representatives to avoid # getting the identity element as a generator for K orbit_reps[f].remove(base[f]) # line 6: more initializations c = [0]*base_len u = [identity]*base_len sorted_orbits = [None]*base_len for i in range(base_len): sorted_orbits[i] = basic_orbits[i][:] sorted_orbits[i].sort(key=lambda point: base_ordering[point]) # line 7: initializations mu = [None]*base_len nu = [None]*base_len # this corresponds to the element smaller than all points mu[l] = degree + 1 update_nu(l) # initialize computed words computed_words = [identity]*base_len # line 8: main loop while True: # apply all the tests while l < base_len - 1 and \ computed_words[l](base[l]) in orbit_reps[l] and \ base_ordering[mu[l]] < \ base_ordering[computed_words[l](base[l])] < \ base_ordering[nu[l]] and \ tests[l](computed_words): # line 11: change the (partial) base of K new_point = computed_words[l](base[l]) res_base[l] = new_point new_stab_gens = _stabilizer(degree, res_strong_gens_distr[l], new_point) res_strong_gens_distr[l + 1] = new_stab_gens # line 12: calculate minimal orbit representatives for the # l+1-th basic stabilizer orbits = _orbits(degree, new_stab_gens) orbit_reps[l + 1] = get_reps(orbits) # line 13: amend sorted orbits l += 1 temp_orbit = [computed_words[l - 1](point) for point in basic_orbits[l]] temp_orbit.sort(key=lambda point: base_ordering[point]) sorted_orbits[l] = temp_orbit # lines 14 and 15: update variables used minimality tests new_mu = degree + 1 for i in range(l): if base[l] in res_basic_orbits_init_base[i]: candidate = computed_words[i](base[i]) if base_ordering[candidate] > base_ordering[new_mu]: new_mu = candidate mu[l] = new_mu update_nu(l) # line 16: determine the new transversal element c[l] = 0 temp_point = sorted_orbits[l][c[l]] gamma = computed_words[l - 1]._array_form.index(temp_point) u[l] = transversals[l][gamma] # update computed words computed_words[l] = rmul(computed_words[l - 1], u[l]) # lines 17 & 18: apply the tests to the group element found g = computed_words[l] temp_point = g(base[l]) if l == base_len - 1 and \ base_ordering[mu[l]] < \ base_ordering[temp_point] < base_ordering[nu[l]] and \ temp_point in orbit_reps[l] and \ tests[l](computed_words) and \ prop(g): # line 19: reset the base of K res_generators.append(g) res_base = base[:] # line 20: recalculate basic orbits (and transversals) res_strong_gens.append(g) res_strong_gens_distr = _distribute_gens_by_base(res_base, res_strong_gens) res_basic_orbits_init_base = \ [_orbit(degree, res_strong_gens_distr[i], res_base[i]) \ for i in range(base_len)] # line 21: recalculate orbit representatives # line 22: reset the search depth orbit_reps[f] = get_reps(orbits) l = f # line 23: go up the tree until in the first branch not fully # searched while l >= 0 and c[l] == len(basic_orbits[l]) - 1: l = l - 1 # line 24: if the entire tree is traversed, return K if l == -1: return PermutationGroup(res_generators) # lines 25-27: update orbit representatives if l < f: # line 26 f = l c[l] = 0 # line 27 temp_orbits = _orbits(degree, res_strong_gens_distr[f]) orbit_reps[f] = get_reps(temp_orbits) # line 28: update variables used for minimality testing mu[l] = degree + 1 temp_index = len(basic_orbits[l]) + 1 - \ len(res_basic_orbits_init_base[l]) if temp_index >= len(sorted_orbits[l]): nu[l] = base_ordering[degree] else: nu[l] = sorted_orbits[l][temp_index] # line 29: set the next element from the current branch and update # accordingly c[l] += 1 if l == 0: gamma = sorted_orbits[l][c[l]] else: gamma = computed_words[l - 1]._array_form.index(sorted_orbits[l][c[l]]) u[l] = transversals[l][gamma] if l == 0: computed_words[l] = u[l] else: computed_words[l] = rmul(computed_words[l - 1], u[l]) @property def transitivity_degree(self): r"""Compute the degree of transitivity of the group. A permutation group `G` acting on `\Omega = \{0, 1, ..., n-1\}` is ``k``-fold transitive, if, for any k points `(a_1, a_2, ..., a_k)\in\Omega` and any k points `(b_1, b_2, ..., b_k)\in\Omega` there exists `g\in G` such that `g(a_1)=b_1, g(a_2)=b_2, ..., g(a_k)=b_k` The degree of transitivity of `G` is the maximum ``k`` such that `G` is ``k``-fold transitive. ([8]) Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.permutations import Permutation >>> a = Permutation([1, 2, 0]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.transitivity_degree 3 See Also ======== is_transitive, orbit """ if self._transitivity_degree is None: n = self.degree G = self # if G is k-transitive, a tuple (a_0,..,a_k) # can be brought to (b_0,...,b_(k-1), b_k) # where b_0,...,b_(k-1) are fixed points; # consider the group G_k which stabilizes b_0,...,b_(k-1) # if G_k is transitive on the subset excluding b_0,...,b_(k-1) # then G is (k+1)-transitive for i in range(n): orb = G.orbit((i)) if len(orb) != n - i: self._transitivity_degree = i return i G = G.stabilizer(i) self._transitivity_degree = n return n else: return self._transitivity_degree def _p_elements_group(G, p): ''' For an abelian p-group G return the subgroup consisting of all elements of order p (and the identity) ''' gens = G.generators[:] gens = sorted(gens, key=lambda x: x.order(), reverse=True) gens_p = [g**(g.order()/p) for g in gens] gens_r = [] for i in range(len(gens)): x = gens[i] x_order = x.order() # x_p has order p x_p = x**(x_order/p) if i > 0: P = PermutationGroup(gens_p[:i]) else: P = PermutationGroup(G.identity) if x**(x_order/p) not in P: gens_r.append(x**(x_order/p)) else: # replace x by an element of order (x.order()/p) # so that gens still generates G g = P.generator_product(x_p, original=True) for s in g: x = x*s**-1 x_order = x_order/p # insert x to gens so that the sorting is preserved del gens[i] del gens_p[i] j = i - 1 while j < len(gens) and gens[j].order() >= x_order: j += 1 gens = gens[:j] + [x] + gens[j:] gens_p = gens_p[:j] + [x] + gens_p[j:] return PermutationGroup(gens_r) def _sylow_alt_sym(self, p): ''' Return a p-Sylow subgroup of a symmetric or an alternating group. The algorithm for this is hinted at in [1], Chapter 4, Exercise 4. For Sym(n) with n = p^i, the idea is as follows. Partition the interval [0..n-1] into p equal parts, each of length p^(i-1): [0..p^(i-1)-1], [p^(i-1)..2*p^(i-1)-1]...[(p-1)*p^(i-1)..p^i-1]. Find a p-Sylow subgroup of Sym(p^(i-1)) (treated as a subgroup of ``self``) acting on each of the parts. Call the subgroups P_1, P_2...P_p. The generators for the subgroups P_2...P_p can be obtained from those of P_1 by applying a "shifting" permutation to them, that is, a permutation mapping [0..p^(i-1)-1] to the second part (the other parts are obtained by using the shift multiple times). The union of this permutation and the generators of P_1 is a p-Sylow subgroup of ``self``. For n not equal to a power of p, partition [0..n-1] in accordance with how n would be written in base p. E.g. for p=2 and n=11, 11 = 2^3 + 2^2 + 1 so the partition is [[0..7], [8..9], {10}]. To generate a p-Sylow subgroup, take the union of the generators for each of the parts. For the above example, {(0 1), (0 2)(1 3), (0 4), (1 5)(2 7)} from the first part, {(8 9)} from the second part and nothing from the third. This gives 4 generators in total, and the subgroup they generate is p-Sylow. Alternating groups are treated the same except when p=2. In this case, (0 1)(s s+1) should be added for an appropriate s (the start of a part) for each part in the partitions. See Also ======== sylow_subgroup, is_alt_sym ''' n = self.degree gens = [] identity = Permutation(n-1) # the case of 2-sylow subgroups of alternating groups # needs special treatment alt = p == 2 and all(g.is_even for g in self.generators) # find the presentation of n in base p coeffs = [] m = n while m > 0: coeffs.append(m % p) m = m // p power = len(coeffs)-1 # for a symmetric group, gens[:i] is the generating # set for a p-Sylow subgroup on [0..p**(i-1)-1]. For # alternating groups, the same is given by gens[:2*(i-1)] for i in range(1, power+1): if i == 1 and alt: # (0 1) shouldn't be added for alternating groups continue gen = Permutation([(j + p**(i-1)) % p**i for j in range(p**i)]) gens.append(identity*gen) if alt: gen = Permutation(0, 1)*gen*Permutation(0, 1)*gen gens.append(gen) # the first point in the current part (see the algorithm # description in the docstring) start = 0 while power > 0: a = coeffs[power] # make the permutation shifting the start of the first # part ([0..p^i-1] for some i) to the current one for s in range(a): shift = Permutation() if start > 0: for i in range(p**power): shift = shift(i, start + i) if alt: gen = Permutation(0, 1)*shift*Permutation(0, 1)*shift gens.append(gen) j = 2*(power - 1) else: j = power for i, gen in enumerate(gens[:j]): if alt and i % 2 == 1: continue # shift the generator to the start of the # partition part gen = shift*gen*shift gens.append(gen) start += p**power power = power-1 return gens def sylow_subgroup(self, p): ''' Return a p-Sylow subgroup of the group. The algorithm is described in [1], Chapter 4, Section 7 Examples ======== >>> from sympy.combinatorics.named_groups import DihedralGroup >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> from sympy.combinatorics.named_groups import AlternatingGroup >>> D = DihedralGroup(6) >>> S = D.sylow_subgroup(2) >>> S.order() 4 >>> G = SymmetricGroup(6) >>> S = G.sylow_subgroup(5) >>> S.order() 5 >>> G1 = AlternatingGroup(3) >>> G2 = AlternatingGroup(5) >>> G3 = AlternatingGroup(9) >>> S1 = G1.sylow_subgroup(3) >>> S2 = G2.sylow_subgroup(3) >>> S3 = G3.sylow_subgroup(3) >>> len1 = len(S1.lower_central_series()) >>> len2 = len(S2.lower_central_series()) >>> len3 = len(S3.lower_central_series()) >>> len1 == len2 True >>> len1 < len3 True ''' from sympy.combinatorics.homomorphisms import ( orbit_homomorphism, block_homomorphism) from sympy.ntheory.primetest import isprime if not isprime(p): raise ValueError("p must be a prime") def is_p_group(G): # check if the order of G is a power of p # and return the power m = G.order() n = 0 while m % p == 0: m = m/p n += 1 if m == 1: return True, n return False, n def _sylow_reduce(mu, nu): # reduction based on two homomorphisms # mu and nu with trivially intersecting # kernels Q = mu.image().sylow_subgroup(p) Q = mu.invert_subgroup(Q) nu = nu.restrict_to(Q) R = nu.image().sylow_subgroup(p) return nu.invert_subgroup(R) order = self.order() if order % p != 0: return PermutationGroup([self.identity]) p_group, n = is_p_group(self) if p_group: return self if self.is_alt_sym(): return PermutationGroup(self._sylow_alt_sym(p)) # if there is a non-trivial orbit with size not divisible # by p, the sylow subgroup is contained in its stabilizer # (by orbit-stabilizer theorem) orbits = self.orbits() non_p_orbits = [o for o in orbits if len(o) % p != 0 and len(o) != 1] if non_p_orbits: G = self.stabilizer(list(non_p_orbits[0]).pop()) return G.sylow_subgroup(p) if not self.is_transitive(): # apply _sylow_reduce to orbit actions orbits = sorted(orbits, key = lambda x: len(x)) omega1 = orbits.pop() omega2 = orbits[0].union(*orbits) mu = orbit_homomorphism(self, omega1) nu = orbit_homomorphism(self, omega2) return _sylow_reduce(mu, nu) blocks = self.minimal_blocks() if len(blocks) > 1: # apply _sylow_reduce to block system actions mu = block_homomorphism(self, blocks[0]) nu = block_homomorphism(self, blocks[1]) return _sylow_reduce(mu, nu) elif len(blocks) == 1: block = list(blocks)[0] if any(e != 0 for e in block): # self is imprimitive mu = block_homomorphism(self, block) if not is_p_group(mu.image())[0]: S = mu.image().sylow_subgroup(p) return mu.invert_subgroup(S).sylow_subgroup(p) # find an element of order p g = self.random() g_order = g.order() while g_order % p != 0 or g_order == 0: g = self.random() g_order = g.order() g = g**(g_order // p) if order % p**2 != 0: return PermutationGroup(g) C = self.centralizer(g) while C.order() % p**n != 0: S = C.sylow_subgroup(p) s_order = S.order() Z = S.center() P = Z._p_elements_group(p) h = P.random() C_h = self.centralizer(h) while C_h.order() % p*s_order != 0: h = P.random() C_h = self.centralizer(h) C = C_h return C.sylow_subgroup(p) def _block_verify(H, L, alpha): delta = sorted(list(H.orbit(alpha))) H_gens = H.generators # p[i] will be the number of the block # delta[i] belongs to p = [-1]*len(delta) blocks = [-1]*len(delta) B = [[]] # future list of blocks u = [0]*len(delta) # u[i] in L s.t. alpha^u[i] = B[0][i] t = L.orbit_transversal(alpha, pairs=True) for a, beta in t: B[0].append(a) i_a = delta.index(a) p[i_a] = 0 blocks[i_a] = alpha u[i_a] = beta rho = 0 m = 0 # number of blocks - 1 while rho <= m: beta = B[rho][0] for g in H_gens: d = beta^g i_d = delta.index(d) sigma = p[i_d] if sigma < 0: # define a new block m += 1 sigma = m u[i_d] = u[delta.index(beta)]*g p[i_d] = sigma rep = d blocks[i_d] = rep newb = [rep] for gamma in B[rho][1:]: i_gamma = delta.index(gamma) d = gamma^g i_d = delta.index(d) if p[i_d] < 0: u[i_d] = u[i_gamma]*g p[i_d] = sigma blocks[i_d] = rep newb.append(d) else: # B[rho] is not a block s = u[i_gamma]*g*u[i_d]**(-1) return False, s B.append(newb) else: for h in B[rho][1:]: if not h^g in B[sigma]: # B[rho] is not a block s = u[delta.index(beta)]*g*u[i_d]**(-1) return False, s rho += 1 return True, blocks def _verify(H, K, phi, z, alpha): ''' Return a list of relators ``rels`` in generators ``gens`_h` that are mapped to ``H.generators`` by ``phi`` so that given a finite presentation <gens_k | rels_k> of ``K`` on a subset of ``gens_h`` <gens_h | rels_k + rels> is a finite presentation of ``H``. ``H`` should be generated by the union of ``K.generators`` and ``z`` (a single generator), and ``H.stabilizer(alpha) == K``; ``phi`` is a canonical injection from a free group into a permutation group containing ``H``. The algorithm is described in [1], Chapter 6. Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.homomorphisms import homomorphism >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup >>> H = PermutationGroup(Permutation(0, 2), Permutation (1, 5)) >>> K = PermutationGroup(Permutation(5)(0, 2)) >>> F = free_group("x_0 x_1")[0] >>> gens = F.generators >>> phi = homomorphism(F, H, F.generators, H.generators) >>> rels_k = [gens[0]**2] # relators for presentation of K >>> z= Permutation(1, 5) >>> check, rels_h = H._verify(K, phi, z, 1) >>> check True >>> rels = rels_k + rels_h >>> G = FpGroup(F, rels) # presentation of H >>> G.order() == H.order() True See also ======== strong_presentation, presentation, stabilizer ''' orbit = H.orbit(alpha) beta = alpha^(z**-1) K_beta = K.stabilizer(beta) # orbit representatives of K_beta gammas = [alpha, beta] orbits = list(set(tuple(K_beta.orbit(o)) for o in orbit)) orbit_reps = [orb[0] for orb in orbits] for rep in orbit_reps: if rep not in gammas: gammas.append(rep) # orbit transversal of K betas = [alpha, beta] transversal = {alpha: phi.invert(H.identity), beta: phi.invert(z**-1)} for s, g in K.orbit_transversal(beta, pairs=True): if not s in transversal: transversal[s] = transversal[beta]*phi.invert(g) union = K.orbit(alpha).union(K.orbit(beta)) while (len(union) < len(orbit)): for gamma in gammas: if gamma in union: r = gamma^z if r not in union: betas.append(r) transversal[r] = transversal[gamma]*phi.invert(z) for s, g in K.orbit_transversal(r, pairs=True): if not s in transversal: transversal[s] = transversal[r]*phi.invert(g) union = union.union(K.orbit(r)) break # compute relators rels = [] for b in betas: k_gens = K.stabilizer(b).generators for y in k_gens: new_rel = transversal[b] gens = K.generator_product(y, original=True) for g in gens[::-1]: new_rel = new_rel*phi.invert(g) new_rel = new_rel*transversal[b]**-1 perm = phi(new_rel) try: gens = K.generator_product(perm, original=True) except ValueError: return False, perm for g in gens: new_rel = new_rel*phi.invert(g)**-1 if new_rel not in rels: rels.append(new_rel) for gamma in gammas: new_rel = transversal[gamma]*phi.invert(z)*transversal[gamma^z]**-1 perm = phi(new_rel) try: gens = K.generator_product(perm, original=True) except ValueError: return False, perm for g in gens: new_rel = new_rel*phi.invert(g)**-1 if new_rel not in rels: rels.append(new_rel) return True, rels def strong_presentation(G): ''' Return a strong finite presentation of `G`. The generators of the returned group are in the same order as the strong generators of `G`. The algorithm is based on Sims' Verify algorithm described in [1], Chapter 6. Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.named_groups import DihedralGroup >>> P = DihedralGroup(4) >>> G = P.strong_presentation() >>> P.order() == G.order() True See Also ======== presentation, _verify ''' from sympy.combinatorics.fp_groups import (FpGroup, simplify_presentation) from sympy.combinatorics.free_groups import free_group from sympy.combinatorics.homomorphisms import (block_homomorphism, homomorphism, GroupHomomorphism) strong_gens = G.strong_gens[:] stabs = G.basic_stabilizers[:] base = G.base[:] # injection from a free group on len(strong_gens) # generators into G gen_syms = [('x_%d'%i) for i in range(len(strong_gens))] F = free_group(', '.join(gen_syms))[0] phi = homomorphism(F, G, F.generators, strong_gens) H = PermutationGroup(G.identity) while stabs: alpha = base.pop() K = H H = stabs.pop() new_gens = [g for g in H.generators if g not in K] if K.order() == 1: z = new_gens.pop() rels = [F.generators[-1]**z.order()] intermediate_gens = [z] K = PermutationGroup(intermediate_gens) # add generators one at a time building up from K to H while new_gens: z = new_gens.pop() intermediate_gens = [z] + intermediate_gens K_s = PermutationGroup(intermediate_gens) orbit = K_s.orbit(alpha) orbit_k = K.orbit(alpha) # split into cases based on the orbit of K_s if orbit_k == orbit: if z in K: rel = phi.invert(z) perm = z else: t = K.orbit_rep(alpha, alpha^z) rel = phi.invert(z)*phi.invert(t)**-1 perm = z*t**-1 for g in K.generator_product(perm, original=True): rel = rel*phi.invert(g)**-1 new_rels = [rel] elif len(orbit_k) == 1: # `success` is always true because `strong_gens` # and `base` are already a verified BSGS. Later # this could be changed to start with a randomly # generated (potential) BSGS, and then new elements # would have to be appended to it when `success` # is false. success, new_rels = K_s._verify(K, phi, z, alpha) else: # K.orbit(alpha) should be a block # under the action of K_s on K_s.orbit(alpha) check, block = K_s._block_verify(K, alpha) if check: # apply _verify to the action of K_s # on the block system; for convenience, # add the blocks as additional points # that K_s should act on t = block_homomorphism(K_s, block) m = t.codomain.degree # number of blocks d = K_s.degree # conjugating with p will shift # permutations in t.image() to # higher numbers, e.g. # p*(0 1)*p = (m m+1) p = Permutation() for i in range(m): p *= Permutation(i, i+d) t_img = t.images # combine generators of K_s with their # action on the block system images = {g: g*p*t_img[g]*p for g in t_img} for g in G.strong_gens[:-len(K_s.generators)]: images[g] = g K_s_act = PermutationGroup(list(images.values())) f = GroupHomomorphism(G, K_s_act, images) K_act = PermutationGroup([f(g) for g in K.generators]) success, new_rels = K_s_act._verify(K_act, f.compose(phi), f(z), d) for n in new_rels: if not n in rels: rels.append(n) K = K_s group = FpGroup(F, rels) return simplify_presentation(group) def presentation(G, eliminate_gens=True): ''' Return an `FpGroup` presentation of the group. The algorithm is described in [1], Chapter 6.1. ''' from sympy.combinatorics.fp_groups import (FpGroup, simplify_presentation) from sympy.combinatorics.coset_table import CosetTable from sympy.combinatorics.free_groups import free_group from sympy.combinatorics.homomorphisms import homomorphism from itertools import product if G._fp_presentation: return G._fp_presentation if G._fp_presentation: return G._fp_presentation def _factor_group_by_rels(G, rels): if isinstance(G, FpGroup): rels.extend(G.relators) return FpGroup(G.free_group, list(set(rels))) return FpGroup(G, rels) gens = G.generators len_g = len(gens) if len_g == 1: order = gens[0].order() # handle the trivial group if order == 1: return free_group([])[0] F, x = free_group('x') return FpGroup(F, [x**order]) if G.order() > 20: half_gens = G.generators[0:(len_g+1)//2] else: half_gens = [] H = PermutationGroup(half_gens) H_p = H.presentation() len_h = len(H_p.generators) C = G.coset_table(H) n = len(C) # subgroup index gen_syms = [('x_%d'%i) for i in range(len(gens))] F = free_group(', '.join(gen_syms))[0] # mapping generators of H_p to those of F images = [F.generators[i] for i in range(len_h)] R = homomorphism(H_p, F, H_p.generators, images, check=False) # rewrite relators rels = R(H_p.relators) G_p = FpGroup(F, rels) # injective homomorphism from G_p into G T = homomorphism(G_p, G, G_p.generators, gens) C_p = CosetTable(G_p, []) C_p.table = [[None]*(2*len_g) for i in range(n)] # initiate the coset transversal transversal = [None]*n transversal[0] = G_p.identity # fill in the coset table as much as possible for i in range(2*len_h): C_p.table[0][i] = 0 gamma = 1 for alpha, x in product(range(0, n), range(2*len_g)): beta = C[alpha][x] if beta == gamma: gen = G_p.generators[x//2]**((-1)**(x % 2)) transversal[beta] = transversal[alpha]*gen C_p.table[alpha][x] = beta C_p.table[beta][x + (-1)**(x % 2)] = alpha gamma += 1 if gamma == n: break C_p.p = list(range(n)) beta = x = 0 while not C_p.is_complete(): # find the first undefined entry while C_p.table[beta][x] == C[beta][x]: x = (x + 1) % (2*len_g) if x == 0: beta = (beta + 1) % n # define a new relator gen = G_p.generators[x//2]**((-1)**(x % 2)) new_rel = transversal[beta]*gen*transversal[C[beta][x]]**-1 perm = T(new_rel) next = G_p.identity for s in H.generator_product(perm, original=True): next = next*T.invert(s)**-1 new_rel = new_rel*next # continue coset enumeration G_p = _factor_group_by_rels(G_p, [new_rel]) C_p.scan_and_fill(0, new_rel) C_p = G_p.coset_enumeration([], strategy="coset_table", draft=C_p, max_cosets=n, incomplete=True) G._fp_presentation = simplify_presentation(G_p) return G._fp_presentation def polycyclic_group(self): """ Return the PolycyclicGroup instance with below parameters: * ``pc_sequence`` : Polycyclic sequence is formed by collecting all the missing generators between the adjacent groups in the derived series of given permutation group. * ``pc_series`` : Polycyclic series is formed by adding all the missing generators of ``der[i+1]`` in ``der[i]``, where ``der`` represents the derived series. * ``relative_order`` : A list, computed by the ratio of adjacent groups in pc_series. """ from sympy.combinatorics.pc_groups import PolycyclicGroup if not self.is_polycyclic: raise ValueError("The group must be solvable") der = self.derived_series() pc_series = [] pc_sequence = [] relative_order = [] pc_series.append(der[-1]) der.reverse() for i in range(len(der)-1): H = der[i] for g in der[i+1].generators: if g not in H: H = PermutationGroup([g] + H.generators) pc_series.insert(0, H) pc_sequence.insert(0, g) G1 = pc_series[0].order() G2 = pc_series[1].order() relative_order.insert(0, G1 // G2) return PolycyclicGroup(pc_sequence, pc_series, relative_order, collector=None) def _orbit(degree, generators, alpha, action='tuples'): r"""Compute the orbit of alpha `\{g(\alpha) | g \in G\}` as a set. The time complexity of the algorithm used here is `O(|Orb|*r)` where `|Orb|` is the size of the orbit and ``r`` is the number of generators of the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21. Here alpha can be a single point, or a list of points. If alpha is a single point, the ordinary orbit is computed. if alpha is a list of points, there are three available options: 'union' - computes the union of the orbits of the points in the list 'tuples' - computes the orbit of the list interpreted as an ordered tuple under the group action ( i.e., g((1, 2, 3)) = (g(1), g(2), g(3)) ) 'sets' - computes the orbit of the list interpreted as a sets Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup, _orbit >>> a = Permutation([1, 2, 0, 4, 5, 6, 3]) >>> G = PermutationGroup([a]) >>> _orbit(G.degree, G.generators, 0) {0, 1, 2} >>> _orbit(G.degree, G.generators, [0, 4], 'union') {0, 1, 2, 3, 4, 5, 6} See Also ======== orbit, orbit_transversal """ if not hasattr(alpha, '__getitem__'): alpha = [alpha] gens = [x._array_form for x in generators] if len(alpha) == 1 or action == 'union': orb = alpha used = [False]*degree for el in alpha: used[el] = True for b in orb: for gen in gens: temp = gen[b] if used[temp] == False: orb.append(temp) used[temp] = True return set(orb) elif action == 'tuples': alpha = tuple(alpha) orb = [alpha] used = {alpha} for b in orb: for gen in gens: temp = tuple([gen[x] for x in b]) if temp not in used: orb.append(temp) used.add(temp) return set(orb) elif action == 'sets': alpha = frozenset(alpha) orb = [alpha] used = {alpha} for b in orb: for gen in gens: temp = frozenset([gen[x] for x in b]) if temp not in used: orb.append(temp) used.add(temp) return {tuple(x) for x in orb} def _orbits(degree, generators): """Compute the orbits of G. If ``rep=False`` it returns a list of sets else it returns a list of representatives of the orbits Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup, _orbits >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> _orbits(a.size, [a, b]) [{0, 1, 2}] """ orbs = [] sorted_I = list(range(degree)) I = set(sorted_I) while I: i = sorted_I[0] orb = _orbit(degree, generators, i) orbs.append(orb) # remove all indices that are in this orbit I -= orb sorted_I = [i for i in sorted_I if i not in orb] return orbs def _orbit_transversal(degree, generators, alpha, pairs, af=False, slp=False): r"""Computes a transversal for the orbit of ``alpha`` as a set. generators generators of the group ``G`` For a permutation group ``G``, a transversal for the orbit `Orb = \{g(\alpha) | g \in G\}` is a set `\{g_\beta | g_\beta(\alpha) = \beta\}` for `\beta \in Orb`. Note that there may be more than one possible transversal. If ``pairs`` is set to ``True``, it returns the list of pairs `(\beta, g_\beta)`. For a proof of correctness, see [1], p.79 if ``af`` is ``True``, the transversal elements are given in array form. If `slp` is `True`, a dictionary `{beta: slp_beta}` is returned for `\beta \in Orb` where `slp_beta` is a list of indices of the generators in `generators` s.t. if `slp_beta = [i_1 ... i_n]` `g_\beta = generators[i_n]*...*generators[i_1]`. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.named_groups import DihedralGroup >>> from sympy.combinatorics.perm_groups import _orbit_transversal >>> G = DihedralGroup(6) >>> _orbit_transversal(G.degree, G.generators, 0, False) [(5), (0 1 2 3 4 5), (0 5)(1 4)(2 3), (0 2 4)(1 3 5), (5)(0 4)(1 3), (0 3)(1 4)(2 5)] """ tr = [(alpha, list(range(degree)))] slp_dict = {alpha: []} used = [False]*degree used[alpha] = True gens = [x._array_form for x in generators] for x, px in tr: px_slp = slp_dict[x] for gen in gens: temp = gen[x] if used[temp] == False: slp_dict[temp] = [gens.index(gen)] + px_slp tr.append((temp, _af_rmul(gen, px))) used[temp] = True if pairs: if not af: tr = [(x, _af_new(y)) for x, y in tr] if not slp: return tr return tr, slp_dict if af: tr = [y for _, y in tr] if not slp: return tr return tr, slp_dict tr = [_af_new(y) for _, y in tr] if not slp: return tr return tr, slp_dict def _stabilizer(degree, generators, alpha): r"""Return the stabilizer subgroup of ``alpha``. The stabilizer of `\alpha` is the group `G_\alpha = \{g \in G | g(\alpha) = \alpha\}`. For a proof of correctness, see [1], p.79. degree : degree of G generators : generators of G Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.perm_groups import _stabilizer >>> from sympy.combinatorics.named_groups import DihedralGroup >>> G = DihedralGroup(6) >>> _stabilizer(G.degree, G.generators, 5) [(5)(0 4)(1 3), (5)] See Also ======== orbit """ orb = [alpha] table = {alpha: list(range(degree))} table_inv = {alpha: list(range(degree))} used = [False]*degree used[alpha] = True gens = [x._array_form for x in generators] stab_gens = [] for b in orb: for gen in gens: temp = gen[b] if used[temp] is False: gen_temp = _af_rmul(gen, table[b]) orb.append(temp) table[temp] = gen_temp table_inv[temp] = _af_invert(gen_temp) used[temp] = True else: schreier_gen = _af_rmuln(table_inv[temp], gen, table[b]) if schreier_gen not in stab_gens: stab_gens.append(schreier_gen) return [_af_new(x) for x in stab_gens] PermGroup = PermutationGroup
51075ba1ac56ac5701cdd5d1404cc14f809e504891a726f46e720405551240f0
from __future__ import print_function, division import random from collections import defaultdict from sympy.core.basic import Atom from sympy.core.compatibility import is_sequence, reduce, range, as_int from sympy.core.sympify import _sympify from sympy.logic.boolalg import as_Boolean from sympy.matrices import zeros from sympy.polys.polytools import lcm from sympy.utilities.iterables import (flatten, has_variety, minlex, has_dups, runs) from mpmath.libmp.libintmath import ifac def _af_rmul(a, b): """ Return the product b*a; input and output are array forms. The ith value is a[b[i]]. Examples ======== >>> from sympy.combinatorics.permutations import _af_rmul, Permutation >>> Permutation.print_cyclic = False >>> a, b = [1, 0, 2], [0, 2, 1] >>> _af_rmul(a, b) [1, 2, 0] >>> [a[b[i]] for i in range(3)] [1, 2, 0] This handles the operands in reverse order compared to the ``*`` operator: >>> a = Permutation(a) >>> b = Permutation(b) >>> list(a*b) [2, 0, 1] >>> [b(a(i)) for i in range(3)] [2, 0, 1] See Also ======== rmul, _af_rmuln """ return [a[i] for i in b] def _af_rmuln(*abc): """ Given [a, b, c, ...] return the product of ...*c*b*a using array forms. The ith value is a[b[c[i]]]. Examples ======== >>> from sympy.combinatorics.permutations import _af_rmul, Permutation >>> Permutation.print_cyclic = False >>> a, b = [1, 0, 2], [0, 2, 1] >>> _af_rmul(a, b) [1, 2, 0] >>> [a[b[i]] for i in range(3)] [1, 2, 0] This handles the operands in reverse order compared to the ``*`` operator: >>> a = Permutation(a); b = Permutation(b) >>> list(a*b) [2, 0, 1] >>> [b(a(i)) for i in range(3)] [2, 0, 1] See Also ======== rmul, _af_rmul """ a = abc m = len(a) if m == 3: p0, p1, p2 = a return [p0[p1[i]] for i in p2] if m == 4: p0, p1, p2, p3 = a return [p0[p1[p2[i]]] for i in p3] if m == 5: p0, p1, p2, p3, p4 = a return [p0[p1[p2[p3[i]]]] for i in p4] if m == 6: p0, p1, p2, p3, p4, p5 = a return [p0[p1[p2[p3[p4[i]]]]] for i in p5] if m == 7: p0, p1, p2, p3, p4, p5, p6 = a return [p0[p1[p2[p3[p4[p5[i]]]]]] for i in p6] if m == 8: p0, p1, p2, p3, p4, p5, p6, p7 = a return [p0[p1[p2[p3[p4[p5[p6[i]]]]]]] for i in p7] if m == 1: return a[0][:] if m == 2: a, b = a return [a[i] for i in b] if m == 0: raise ValueError("String must not be empty") p0 = _af_rmuln(*a[:m//2]) p1 = _af_rmuln(*a[m//2:]) return [p0[i] for i in p1] def _af_parity(pi): """ Computes the parity of a permutation in array form. The parity of a permutation reflects the parity of the number of inversions in the permutation, i.e., the number of pairs of x and y such that x > y but p[x] < p[y]. Examples ======== >>> from sympy.combinatorics.permutations import _af_parity >>> _af_parity([0, 1, 2, 3]) 0 >>> _af_parity([3, 2, 0, 1]) 1 See Also ======== Permutation """ n = len(pi) a = [0] * n c = 0 for j in range(n): if a[j] == 0: c += 1 a[j] = 1 i = j while pi[i] != j: i = pi[i] a[i] = 1 return (n - c) % 2 def _af_invert(a): """ Finds the inverse, ~A, of a permutation, A, given in array form. Examples ======== >>> from sympy.combinatorics.permutations import _af_invert, _af_rmul >>> A = [1, 2, 0, 3] >>> _af_invert(A) [2, 0, 1, 3] >>> _af_rmul(_, A) [0, 1, 2, 3] See Also ======== Permutation, __invert__ """ inv_form = [0] * len(a) for i, ai in enumerate(a): inv_form[ai] = i return inv_form def _af_pow(a, n): """ Routine for finding powers of a permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation, _af_pow >>> Permutation.print_cyclic = False >>> p = Permutation([2, 0, 3, 1]) >>> p.order() 4 >>> _af_pow(p._array_form, 4) [0, 1, 2, 3] """ if n == 0: return list(range(len(a))) if n < 0: return _af_pow(_af_invert(a), -n) if n == 1: return a[:] elif n == 2: b = [a[i] for i in a] elif n == 3: b = [a[a[i]] for i in a] elif n == 4: b = [a[a[a[i]]] for i in a] else: # use binary multiplication b = list(range(len(a))) while 1: if n & 1: b = [b[i] for i in a] n -= 1 if not n: break if n % 4 == 0: a = [a[a[a[i]]] for i in a] n = n // 4 elif n % 2 == 0: a = [a[i] for i in a] n = n // 2 return b def _af_commutes_with(a, b): """ Checks if the two permutations with array forms given by ``a`` and ``b`` commute. Examples ======== >>> from sympy.combinatorics.permutations import _af_commutes_with >>> _af_commutes_with([1, 2, 0], [0, 2, 1]) False See Also ======== Permutation, commutes_with """ return not any(a[b[i]] != b[a[i]] for i in range(len(a) - 1)) class Cycle(dict): """ Wrapper around dict which provides the functionality of a disjoint cycle. A cycle shows the rule to use to move subsets of elements to obtain a permutation. The Cycle class is more flexible than Permutation in that 1) all elements need not be present in order to investigate how multiple cycles act in sequence and 2) it can contain singletons: >>> from sympy.combinatorics.permutations import Perm, Cycle A Cycle will automatically parse a cycle given as a tuple on the rhs: >>> Cycle(1, 2)(2, 3) (1 3 2) The identity cycle, Cycle(), can be used to start a product: >>> Cycle()(1, 2)(2, 3) (1 3 2) The array form of a Cycle can be obtained by calling the list method (or passing it to the list function) and all elements from 0 will be shown: >>> a = Cycle(1, 2) >>> a.list() [0, 2, 1] >>> list(a) [0, 2, 1] If a larger (or smaller) range is desired use the list method and provide the desired size -- but the Cycle cannot be truncated to a size smaller than the largest element that is out of place: >>> b = Cycle(2, 4)(1, 2)(3, 1, 4)(1, 3) >>> b.list() [0, 2, 1, 3, 4] >>> b.list(b.size + 1) [0, 2, 1, 3, 4, 5] >>> b.list(-1) [0, 2, 1] Singletons are not shown when printing with one exception: the largest element is always shown -- as a singleton if necessary: >>> Cycle(1, 4, 10)(4, 5) (1 5 4 10) >>> Cycle(1, 2)(4)(5)(10) (1 2)(10) The array form can be used to instantiate a Permutation so other properties of the permutation can be investigated: >>> Perm(Cycle(1, 2)(3, 4).list()).transpositions() [(1, 2), (3, 4)] Notes ===== The underlying structure of the Cycle is a dictionary and although the __iter__ method has been redefined to give the array form of the cycle, the underlying dictionary items are still available with the such methods as items(): >>> list(Cycle(1, 2).items()) [(1, 2), (2, 1)] See Also ======== Permutation """ def __missing__(self, arg): """Enter arg into dictionary and return arg.""" arg = as_int(arg) self[arg] = arg return arg def __iter__(self): for i in self.list(): yield i def __call__(self, *other): """Return product of cycles processed from R to L. Examples ======== >>> from sympy.combinatorics.permutations import Cycle as C >>> from sympy.combinatorics.permutations import Permutation as Perm >>> C(1, 2)(2, 3) (1 3 2) An instance of a Cycle will automatically parse list-like objects and Permutations that are on the right. It is more flexible than the Permutation in that all elements need not be present: >>> a = C(1, 2) >>> a(2, 3) (1 3 2) >>> a(2, 3)(4, 5) (1 3 2)(4 5) """ rv = Cycle(*other) for k, v in zip(list(self.keys()), [rv[self[k]] for k in self.keys()]): rv[k] = v return rv def list(self, size=None): """Return the cycles as an explicit list starting from 0 up to the greater of the largest value in the cycles and size. Truncation of trailing unmoved items will occur when size is less than the maximum element in the cycle; if this is desired, setting ``size=-1`` will guarantee such trimming. Examples ======== >>> from sympy.combinatorics.permutations import Cycle >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> p = Cycle(2, 3)(4, 5) >>> p.list() [0, 1, 3, 2, 5, 4] >>> p.list(10) [0, 1, 3, 2, 5, 4, 6, 7, 8, 9] Passing a length too small will trim trailing, unchanged elements in the permutation: >>> Cycle(2, 4)(1, 2, 4).list(-1) [0, 2, 1] """ if not self and size is None: raise ValueError('must give size for empty Cycle') if size is not None: big = max([i for i in self.keys() if self[i] != i] + [0]) size = max(size, big + 1) else: size = self.size return [self[i] for i in range(size)] def __repr__(self): """We want it to print as a Cycle, not as a dict. Examples ======== >>> from sympy.combinatorics import Cycle >>> Cycle(1, 2) (1 2) >>> print(_) (1 2) >>> list(Cycle(1, 2).items()) [(1, 2), (2, 1)] """ if not self: return 'Cycle()' cycles = Permutation(self).cyclic_form s = ''.join(str(tuple(c)) for c in cycles) big = self.size - 1 if not any(i == big for c in cycles for i in c): s += '(%s)' % big return 'Cycle%s' % s def __str__(self): """We want it to be printed in a Cycle notation with no comma in-between. Examples ======== >>> from sympy.combinatorics import Cycle >>> Cycle(1, 2) (1 2) >>> Cycle(1, 2, 4)(5, 6) (1 2 4)(5 6) """ if not self: return '()' cycles = Permutation(self).cyclic_form s = ''.join(str(tuple(c)) for c in cycles) big = self.size - 1 if not any(i == big for c in cycles for i in c): s += '(%s)' % big s = s.replace(',', '') return s def __init__(self, *args): """Load up a Cycle instance with the values for the cycle. Examples ======== >>> from sympy.combinatorics.permutations import Cycle >>> Cycle(1, 2, 6) (1 2 6) """ if not args: return if len(args) == 1: if isinstance(args[0], Permutation): for c in args[0].cyclic_form: self.update(self(*c)) return elif isinstance(args[0], Cycle): for k, v in args[0].items(): self[k] = v return args = [as_int(a) for a in args] if any(i < 0 for i in args): raise ValueError('negative integers are not allowed in a cycle.') if has_dups(args): raise ValueError('All elements must be unique in a cycle.') for i in range(-len(args), 0): self[args[i]] = args[i + 1] @property def size(self): if not self: return 0 return max(self.keys()) + 1 def copy(self): return Cycle(self) class Permutation(Atom): """ A permutation, alternatively known as an 'arrangement number' or 'ordering' is an arrangement of the elements of an ordered list into a one-to-one mapping with itself. The permutation of a given arrangement is given by indicating the positions of the elements after re-arrangement [2]_. For example, if one started with elements [x, y, a, b] (in that order) and they were reordered as [x, y, b, a] then the permutation would be [0, 1, 3, 2]. Notice that (in SymPy) the first element is always referred to as 0 and the permutation uses the indices of the elements in the original ordering, not the elements (a, b, etc...) themselves. >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = False Permutations Notation ===================== Permutations are commonly represented in disjoint cycle or array forms. Array Notation and 2-line Form ------------------------------------ In the 2-line form, the elements and their final positions are shown as a matrix with 2 rows: [0 1 2 ... n-1] [p(0) p(1) p(2) ... p(n-1)] Since the first line is always range(n), where n is the size of p, it is sufficient to represent the permutation by the second line, referred to as the "array form" of the permutation. This is entered in brackets as the argument to the Permutation class: >>> p = Permutation([0, 2, 1]); p Permutation([0, 2, 1]) Given i in range(p.size), the permutation maps i to i^p >>> [i^p for i in range(p.size)] [0, 2, 1] The composite of two permutations p*q means first apply p, then q, so i^(p*q) = (i^p)^q which is i^p^q according to Python precedence rules: >>> q = Permutation([2, 1, 0]) >>> [i^p^q for i in range(3)] [2, 0, 1] >>> [i^(p*q) for i in range(3)] [2, 0, 1] One can use also the notation p(i) = i^p, but then the composition rule is (p*q)(i) = q(p(i)), not p(q(i)): >>> [(p*q)(i) for i in range(p.size)] [2, 0, 1] >>> [q(p(i)) for i in range(p.size)] [2, 0, 1] >>> [p(q(i)) for i in range(p.size)] [1, 2, 0] Disjoint Cycle Notation ----------------------- In disjoint cycle notation, only the elements that have shifted are indicated. In the above case, the 2 and 1 switched places. This can be entered in two ways: >>> Permutation(1, 2) == Permutation([[1, 2]]) == p True Only the relative ordering of elements in a cycle matter: >>> Permutation(1,2,3) == Permutation(2,3,1) == Permutation(3,1,2) True The disjoint cycle notation is convenient when representing permutations that have several cycles in them: >>> Permutation(1, 2)(3, 5) == Permutation([[1, 2], [3, 5]]) True It also provides some economy in entry when computing products of permutations that are written in disjoint cycle notation: >>> Permutation(1, 2)(1, 3)(2, 3) Permutation([0, 3, 2, 1]) >>> _ == Permutation([[1, 2]])*Permutation([[1, 3]])*Permutation([[2, 3]]) True Caution: when the cycles have common elements between them then the order in which the permutations are applied matters. The convention is that the permutations are applied from *right to left*. In the following, the transposition of elements 2 and 3 is followed by the transposition of elements 1 and 2: >>> Permutation(1, 2)(2, 3) == Permutation([(1, 2), (2, 3)]) True >>> Permutation(1, 2)(2, 3).list() [0, 3, 1, 2] If the first and second elements had been swapped first, followed by the swapping of the second and third, the result would have been [0, 2, 3, 1]. If, for some reason, you want to apply the cycles in the order they are entered, you can simply reverse the order of cycles: >>> Permutation([(1, 2), (2, 3)][::-1]).list() [0, 2, 3, 1] Entering a singleton in a permutation is a way to indicate the size of the permutation. The ``size`` keyword can also be used. Array-form entry: >>> Permutation([[1, 2], [9]]) Permutation([0, 2, 1], size=10) >>> Permutation([[1, 2]], size=10) Permutation([0, 2, 1], size=10) Cyclic-form entry: >>> Permutation(1, 2, size=10) Permutation([0, 2, 1], size=10) >>> Permutation(9)(1, 2) Permutation([0, 2, 1], size=10) Caution: no singleton containing an element larger than the largest in any previous cycle can be entered. This is an important difference in how Permutation and Cycle handle the __call__ syntax. A singleton argument at the start of a Permutation performs instantiation of the Permutation and is permitted: >>> Permutation(5) Permutation([], size=6) A singleton entered after instantiation is a call to the permutation -- a function call -- and if the argument is out of range it will trigger an error. For this reason, it is better to start the cycle with the singleton: The following fails because there is is no element 3: >>> Permutation(1, 2)(3) Traceback (most recent call last): ... IndexError: list index out of range This is ok: only the call to an out of range singleton is prohibited; otherwise the permutation autosizes: >>> Permutation(3)(1, 2) Permutation([0, 2, 1, 3]) >>> Permutation(1, 2)(3, 4) == Permutation(3, 4)(1, 2) True Equality testing ---------------- The array forms must be the same in order for permutations to be equal: >>> Permutation([1, 0, 2, 3]) == Permutation([1, 0]) False Identity Permutation -------------------- The identity permutation is a permutation in which no element is out of place. It can be entered in a variety of ways. All the following create an identity permutation of size 4: >>> I = Permutation([0, 1, 2, 3]) >>> all(p == I for p in [ ... Permutation(3), ... Permutation(range(4)), ... Permutation([], size=4), ... Permutation(size=4)]) True Watch out for entering the range *inside* a set of brackets (which is cycle notation): >>> I == Permutation([range(4)]) False Permutation Printing ==================== There are a few things to note about how Permutations are printed. 1) If you prefer one form (array or cycle) over another, you can set that with the print_cyclic flag. >>> Permutation(1, 2)(4, 5)(3, 4) Permutation([0, 2, 1, 4, 5, 3]) >>> p = _ >>> Permutation.print_cyclic = True >>> p (1 2)(3 4 5) >>> Permutation.print_cyclic = False 2) Regardless of the setting, a list of elements in the array for cyclic form can be obtained and either of those can be copied and supplied as the argument to Permutation: >>> p.array_form [0, 2, 1, 4, 5, 3] >>> p.cyclic_form [[1, 2], [3, 4, 5]] >>> Permutation(_) == p True 3) Printing is economical in that as little as possible is printed while retaining all information about the size of the permutation: >>> Permutation([1, 0, 2, 3]) Permutation([1, 0, 2, 3]) >>> Permutation([1, 0, 2, 3], size=20) Permutation([1, 0], size=20) >>> Permutation([1, 0, 2, 4, 3, 5, 6], size=20) Permutation([1, 0, 2, 4, 3], size=20) >>> p = Permutation([1, 0, 2, 3]) >>> Permutation.print_cyclic = True >>> p (3)(0 1) >>> Permutation.print_cyclic = False The 2 was not printed but it is still there as can be seen with the array_form and size methods: >>> p.array_form [1, 0, 2, 3] >>> p.size 4 Short introduction to other methods =================================== The permutation can act as a bijective function, telling what element is located at a given position >>> q = Permutation([5, 2, 3, 4, 1, 0]) >>> q.array_form[1] # the hard way 2 >>> q(1) # the easy way 2 >>> {i: q(i) for i in range(q.size)} # showing the bijection {0: 5, 1: 2, 2: 3, 3: 4, 4: 1, 5: 0} The full cyclic form (including singletons) can be obtained: >>> p.full_cyclic_form [[0, 1], [2], [3]] Any permutation can be factored into transpositions of pairs of elements: >>> Permutation([[1, 2], [3, 4, 5]]).transpositions() [(1, 2), (3, 5), (3, 4)] >>> Permutation.rmul(*[Permutation([ti], size=6) for ti in _]).cyclic_form [[1, 2], [3, 4, 5]] The number of permutations on a set of n elements is given by n! and is called the cardinality. >>> p.size 4 >>> p.cardinality 24 A given permutation has a rank among all the possible permutations of the same elements, but what that rank is depends on how the permutations are enumerated. (There are a number of different methods of doing so.) The lexicographic rank is given by the rank method and this rank is used to increment a permutation with addition/subtraction: >>> p.rank() 6 >>> p + 1 Permutation([1, 0, 3, 2]) >>> p.next_lex() Permutation([1, 0, 3, 2]) >>> _.rank() 7 >>> p.unrank_lex(p.size, rank=7) Permutation([1, 0, 3, 2]) The product of two permutations p and q is defined as their composition as functions, (p*q)(i) = q(p(i)) [6]_. >>> p = Permutation([1, 0, 2, 3]) >>> q = Permutation([2, 3, 1, 0]) >>> list(q*p) [2, 3, 0, 1] >>> list(p*q) [3, 2, 1, 0] >>> [q(p(i)) for i in range(p.size)] [3, 2, 1, 0] The permutation can be 'applied' to any list-like object, not only Permutations: >>> p(['zero', 'one', 'four', 'two']) ['one', 'zero', 'four', 'two'] >>> p('zo42') ['o', 'z', '4', '2'] If you have a list of arbitrary elements, the corresponding permutation can be found with the from_sequence method: >>> Permutation.from_sequence('SymPy') Permutation([1, 3, 2, 0, 4]) See Also ======== Cycle References ========== .. [1] Skiena, S. 'Permutations.' 1.1 in Implementing Discrete Mathematics Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 3-16, 1990. .. [2] Knuth, D. E. The Art of Computer Programming, Vol. 4: Combinatorial Algorithms, 1st ed. Reading, MA: Addison-Wesley, 2011. .. [3] Wendy Myrvold and Frank Ruskey. 2001. Ranking and unranking permutations in linear time. Inf. Process. Lett. 79, 6 (September 2001), 281-284. DOI=10.1016/S0020-0190(01)00141-7 .. [4] D. L. Kreher, D. R. Stinson 'Combinatorial Algorithms' CRC Press, 1999 .. [5] Graham, R. L.; Knuth, D. E.; and Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, 1994. .. [6] https://en.wikipedia.org/wiki/Permutation#Product_and_inverse .. [7] https://en.wikipedia.org/wiki/Lehmer_code """ is_Permutation = True _array_form = None _cyclic_form = None _cycle_structure = None _size = None _rank = None def __new__(cls, *args, **kwargs): """ Constructor for the Permutation object from a list or a list of lists in which all elements of the permutation may appear only once. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False Permutations entered in array-form are left unaltered: >>> Permutation([0, 2, 1]) Permutation([0, 2, 1]) Permutations entered in cyclic form are converted to array form; singletons need not be entered, but can be entered to indicate the largest element: >>> Permutation([[4, 5, 6], [0, 1]]) Permutation([1, 0, 2, 3, 5, 6, 4]) >>> Permutation([[4, 5, 6], [0, 1], [19]]) Permutation([1, 0, 2, 3, 5, 6, 4], size=20) All manipulation of permutations assumes that the smallest element is 0 (in keeping with 0-based indexing in Python) so if the 0 is missing when entering a permutation in array form, an error will be raised: >>> Permutation([2, 1]) Traceback (most recent call last): ... ValueError: Integers 0 through 2 must be present. If a permutation is entered in cyclic form, it can be entered without singletons and the ``size`` specified so those values can be filled in, otherwise the array form will only extend to the maximum value in the cycles: >>> Permutation([[1, 4], [3, 5, 2]], size=10) Permutation([0, 4, 3, 5, 1, 2], size=10) >>> _.array_form [0, 4, 3, 5, 1, 2, 6, 7, 8, 9] """ size = kwargs.pop('size', None) if size is not None: size = int(size) #a) () #b) (1) = identity #c) (1, 2) = cycle #d) ([1, 2, 3]) = array form #e) ([[1, 2]]) = cyclic form #f) (Cycle) = conversion to permutation #g) (Permutation) = adjust size or return copy ok = True if not args: # a return cls._af_new(list(range(size or 0))) elif len(args) > 1: # c return cls._af_new(Cycle(*args).list(size)) if len(args) == 1: a = args[0] if isinstance(a, cls): # g if size is None or size == a.size: return a return cls(a.array_form, size=size) if isinstance(a, Cycle): # f return cls._af_new(a.list(size)) if not is_sequence(a): # b return cls._af_new(list(range(a + 1))) if has_variety(is_sequence(ai) for ai in a): ok = False else: ok = False if not ok: raise ValueError("Permutation argument must be a list of ints, " "a list of lists, Permutation or Cycle.") # safe to assume args are valid; this also makes a copy # of the args args = list(args[0]) is_cycle = args and is_sequence(args[0]) if is_cycle: # e args = [[int(i) for i in c] for c in args] else: # d args = [int(i) for i in args] # if there are n elements present, 0, 1, ..., n-1 should be present # unless a cycle notation has been provided. A 0 will be added # for convenience in case one wants to enter permutations where # counting starts from 1. temp = flatten(args) if has_dups(temp) and not is_cycle: raise ValueError('there were repeated elements.') temp = set(temp) if not is_cycle and \ any(i not in temp for i in range(len(temp))): raise ValueError("Integers 0 through %s must be present." % max(temp)) if is_cycle: # it's not necessarily canonical so we won't store # it -- use the array form instead c = Cycle() for ci in args: c = c(*ci) aform = c.list() else: aform = list(args) if size and size > len(aform): # don't allow for truncation of permutation which # might split a cycle and lead to an invalid aform # but do allow the permutation size to be increased aform.extend(list(range(len(aform), size))) return cls._af_new(aform) def _eval_Eq(self, other): other = _sympify(other) if not isinstance(other, Permutation): return None if self._size != other._size: return None return as_Boolean(self._array_form == other._array_form) @classmethod def _af_new(cls, perm): """A method to produce a Permutation object from a list; the list is bound to the _array_form attribute, so it must not be modified; this method is meant for internal use only; the list ``a`` is supposed to be generated as a temporary value in a method, so p = Perm._af_new(a) is the only object to hold a reference to ``a``:: Examples ======== >>> from sympy.combinatorics.permutations import Perm >>> Perm.print_cyclic = False >>> a = [2,1,3,0] >>> p = Perm._af_new(a) >>> p Permutation([2, 1, 3, 0]) """ p = super(Permutation, cls).__new__(cls) p._array_form = perm p._size = len(perm) return p def _hashable_content(self): # the array_form (a list) is the Permutation arg, so we need to # return a tuple, instead return tuple(self.array_form) @property def array_form(self): """ Return a copy of the attribute _array_form Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> p = Permutation([[2, 0], [3, 1]]) >>> p.array_form [2, 3, 0, 1] >>> Permutation([[2, 0, 3, 1]]).array_form [3, 2, 0, 1] >>> Permutation([2, 0, 3, 1]).array_form [2, 0, 3, 1] >>> Permutation([[1, 2], [4, 5]]).array_form [0, 2, 1, 3, 5, 4] """ return self._array_form[:] def __repr__(self): if Permutation.print_cyclic: if not self.size: return 'Permutation()' # before taking Cycle notation, see if the last element is # a singleton and move it to the head of the string s = Cycle(self)(self.size - 1).__repr__()[len('Cycle'):] last = s.rfind('(') if not last == 0 and ',' not in s[last:]: s = s[last:] + s[:last] return 'Permutation%s' %s else: s = self.support() if not s: if self.size < 5: return 'Permutation(%s)' % str(self.array_form) return 'Permutation([], size=%s)' % self.size trim = str(self.array_form[:s[-1] + 1]) + ', size=%s' % self.size use = full = str(self.array_form) if len(trim) < len(full): use = trim return 'Permutation(%s)' % use def list(self, size=None): """Return the permutation as an explicit list, possibly trimming unmoved elements if size is less than the maximum element in the permutation; if this is desired, setting ``size=-1`` will guarantee such trimming. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> p = Permutation(2, 3)(4, 5) >>> p.list() [0, 1, 3, 2, 5, 4] >>> p.list(10) [0, 1, 3, 2, 5, 4, 6, 7, 8, 9] Passing a length too small will trim trailing, unchanged elements in the permutation: >>> Permutation(2, 4)(1, 2, 4).list(-1) [0, 2, 1] >>> Permutation(3).list(-1) [] """ if not self and size is None: raise ValueError('must give size for empty Cycle') rv = self.array_form if size is not None: if size > self.size: rv.extend(list(range(self.size, size))) else: # find first value from rhs where rv[i] != i i = self.size - 1 while rv: if rv[-1] != i: break rv.pop() i -= 1 return rv @property def cyclic_form(self): """ This is used to convert to the cyclic notation from the canonical notation. Singletons are omitted. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> p = Permutation([0, 3, 1, 2]) >>> p.cyclic_form [[1, 3, 2]] >>> Permutation([1, 0, 2, 4, 3, 5]).cyclic_form [[0, 1], [3, 4]] See Also ======== array_form, full_cyclic_form """ if self._cyclic_form is not None: return list(self._cyclic_form) array_form = self.array_form unchecked = [True] * len(array_form) cyclic_form = [] for i in range(len(array_form)): if unchecked[i]: cycle = [] cycle.append(i) unchecked[i] = False j = i while unchecked[array_form[j]]: j = array_form[j] cycle.append(j) unchecked[j] = False if len(cycle) > 1: cyclic_form.append(cycle) assert cycle == list(minlex(cycle, is_set=True)) cyclic_form.sort() self._cyclic_form = cyclic_form[:] return cyclic_form @property def full_cyclic_form(self): """Return permutation in cyclic form including singletons. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation([0, 2, 1]).full_cyclic_form [[0], [1, 2]] """ need = set(range(self.size)) - set(flatten(self.cyclic_form)) rv = self.cyclic_form rv.extend([[i] for i in need]) rv.sort() return rv @property def size(self): """ Returns the number of elements in the permutation. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation([[3, 2], [0, 1]]).size 4 See Also ======== cardinality, length, order, rank """ return self._size def support(self): """Return the elements in permutation, P, for which P[i] != i. Examples ======== >>> from sympy.combinatorics import Permutation >>> p = Permutation([[3, 2], [0, 1], [4]]) >>> p.array_form [1, 0, 3, 2, 4] >>> p.support() [0, 1, 2, 3] """ a = self.array_form return [i for i, e in enumerate(a) if a[i] != i] def __add__(self, other): """Return permutation that is other higher in rank than self. The rank is the lexicographical rank, with the identity permutation having rank of 0. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> I = Permutation([0, 1, 2, 3]) >>> a = Permutation([2, 1, 3, 0]) >>> I + a.rank() == a True See Also ======== __sub__, inversion_vector """ rank = (self.rank() + other) % self.cardinality rv = self.unrank_lex(self.size, rank) rv._rank = rank return rv def __sub__(self, other): """Return the permutation that is other lower in rank than self. See Also ======== __add__ """ return self.__add__(-other) @staticmethod def rmul(*args): """ Return product of Permutations [a, b, c, ...] as the Permutation whose ith value is a(b(c(i))). a, b, c, ... can be Permutation objects or tuples. Examples ======== >>> from sympy.combinatorics.permutations import _af_rmul, Permutation >>> Permutation.print_cyclic = False >>> a, b = [1, 0, 2], [0, 2, 1] >>> a = Permutation(a); b = Permutation(b) >>> list(Permutation.rmul(a, b)) [1, 2, 0] >>> [a(b(i)) for i in range(3)] [1, 2, 0] This handles the operands in reverse order compared to the ``*`` operator: >>> a = Permutation(a); b = Permutation(b) >>> list(a*b) [2, 0, 1] >>> [b(a(i)) for i in range(3)] [2, 0, 1] Notes ===== All items in the sequence will be parsed by Permutation as necessary as long as the first item is a Permutation: >>> Permutation.rmul(a, [0, 2, 1]) == Permutation.rmul(a, b) True The reverse order of arguments will raise a TypeError. """ rv = args[0] for i in range(1, len(args)): rv = args[i]*rv return rv @classmethod def rmul_with_af(cls, *args): """ same as rmul, but the elements of args are Permutation objects which have _array_form """ a = [x._array_form for x in args] rv = cls._af_new(_af_rmuln(*a)) return rv def mul_inv(self, other): """ other*~self, self and other have _array_form """ a = _af_invert(self._array_form) b = other._array_form return self._af_new(_af_rmul(a, b)) def __rmul__(self, other): """This is needed to coerce other to Permutation in rmul.""" cls = type(self) return cls(other)*self def __mul__(self, other): """ Return the product a*b as a Permutation; the ith value is b(a(i)). Examples ======== >>> from sympy.combinatorics.permutations import _af_rmul, Permutation >>> Permutation.print_cyclic = False >>> a, b = [1, 0, 2], [0, 2, 1] >>> a = Permutation(a); b = Permutation(b) >>> list(a*b) [2, 0, 1] >>> [b(a(i)) for i in range(3)] [2, 0, 1] This handles operands in reverse order compared to _af_rmul and rmul: >>> al = list(a); bl = list(b) >>> _af_rmul(al, bl) [1, 2, 0] >>> [al[bl[i]] for i in range(3)] [1, 2, 0] It is acceptable for the arrays to have different lengths; the shorter one will be padded to match the longer one: >>> b*Permutation([1, 0]) Permutation([1, 2, 0]) >>> Permutation([1, 0])*b Permutation([2, 0, 1]) It is also acceptable to allow coercion to handle conversion of a single list to the left of a Permutation: >>> [0, 1]*a # no change: 2-element identity Permutation([1, 0, 2]) >>> [[0, 1]]*a # exchange first two elements Permutation([0, 1, 2]) You cannot use more than 1 cycle notation in a product of cycles since coercion can only handle one argument to the left. To handle multiple cycles it is convenient to use Cycle instead of Permutation: >>> [[1, 2]]*[[2, 3]]*Permutation([]) # doctest: +SKIP >>> from sympy.combinatorics.permutations import Cycle >>> Cycle(1, 2)(2, 3) (1 3 2) """ a = self.array_form # __rmul__ makes sure the other is a Permutation b = other.array_form if not b: perm = a else: b.extend(list(range(len(b), len(a)))) perm = [b[i] for i in a] + b[len(a):] return self._af_new(perm) def commutes_with(self, other): """ Checks if the elements are commuting. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> a = Permutation([1, 4, 3, 0, 2, 5]) >>> b = Permutation([0, 1, 2, 3, 4, 5]) >>> a.commutes_with(b) True >>> b = Permutation([2, 3, 5, 4, 1, 0]) >>> a.commutes_with(b) False """ a = self.array_form b = other.array_form return _af_commutes_with(a, b) def __pow__(self, n): """ Routine for finding powers of a permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> p = Permutation([2,0,3,1]) >>> p.order() 4 >>> p**4 Permutation([0, 1, 2, 3]) """ if isinstance(n, Permutation): raise NotImplementedError( 'p**p is not defined; do you mean p^p (conjugate)?') n = int(n) return self._af_new(_af_pow(self.array_form, n)) def __rxor__(self, i): """Return self(i) when ``i`` is an int. Examples ======== >>> from sympy.combinatorics import Permutation >>> p = Permutation(1, 2, 9) >>> 2^p == p(2) == 9 True """ if int(i) == i: return self(i) else: raise NotImplementedError( "i^p = p(i) when i is an integer, not %s." % i) def __xor__(self, h): """Return the conjugate permutation ``~h*self*h` `. If ``a`` and ``b`` are conjugates, ``a = h*b*~h`` and ``b = ~h*a*h`` and both have the same cycle structure. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = True >>> p = Permutation(1, 2, 9) >>> q = Permutation(6, 9, 8) >>> p*q != q*p True Calculate and check properties of the conjugate: >>> c = p^q >>> c == ~q*p*q and p == q*c*~q True The expression q^p^r is equivalent to q^(p*r): >>> r = Permutation(9)(4, 6, 8) >>> q^p^r == q^(p*r) True If the term to the left of the conjugate operator, i, is an integer then this is interpreted as selecting the ith element from the permutation to the right: >>> all(i^p == p(i) for i in range(p.size)) True Note that the * operator as higher precedence than the ^ operator: >>> q^r*p^r == q^(r*p)^r == Permutation(9)(1, 6, 4) True Notes ===== In Python the precedence rule is p^q^r = (p^q)^r which differs in general from p^(q^r) >>> q^p^r (9)(1 4 8) >>> q^(p^r) (9)(1 8 6) For a given r and p, both of the following are conjugates of p: ~r*p*r and r*p*~r. But these are not necessarily the same: >>> ~r*p*r == r*p*~r True >>> p = Permutation(1, 2, 9)(5, 6) >>> ~r*p*r == r*p*~r False The conjugate ~r*p*r was chosen so that ``p^q^r`` would be equivalent to ``p^(q*r)`` rather than ``p^(r*q)``. To obtain r*p*~r, pass ~r to this method: >>> p^~r == r*p*~r True """ if self.size != h.size: raise ValueError("The permutations must be of equal size.") a = [None]*self.size h = h._array_form p = self._array_form for i in range(self.size): a[h[i]] = h[p[i]] return self._af_new(a) def transpositions(self): """ Return the permutation decomposed into a list of transpositions. It is always possible to express a permutation as the product of transpositions, see [1] Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([[1, 2, 3], [0, 4, 5, 6, 7]]) >>> t = p.transpositions() >>> t [(0, 7), (0, 6), (0, 5), (0, 4), (1, 3), (1, 2)] >>> print(''.join(str(c) for c in t)) (0, 7)(0, 6)(0, 5)(0, 4)(1, 3)(1, 2) >>> Permutation.rmul(*[Permutation([ti], size=p.size) for ti in t]) == p True References ========== .. [1] https://en.wikipedia.org/wiki/Transposition_%28mathematics%29#Properties """ a = self.cyclic_form res = [] for x in a: nx = len(x) if nx == 2: res.append(tuple(x)) elif nx > 2: first = x[0] for y in x[nx - 1:0:-1]: res.append((first, y)) return res @classmethod def from_sequence(self, i, key=None): """Return the permutation needed to obtain ``i`` from the sorted elements of ``i``. If custom sorting is desired, a key can be given. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> Permutation.from_sequence('SymPy') (4)(0 1 3) >>> _(sorted("SymPy")) ['S', 'y', 'm', 'P', 'y'] >>> Permutation.from_sequence('SymPy', key=lambda x: x.lower()) (4)(0 2)(1 3) """ ic = list(zip(i, list(range(len(i))))) if key: ic.sort(key=lambda x: key(x[0])) else: ic.sort() return ~Permutation([i[1] for i in ic]) def __invert__(self): """ Return the inverse of the permutation. A permutation multiplied by its inverse is the identity permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> p = Permutation([[2,0], [3,1]]) >>> ~p Permutation([2, 3, 0, 1]) >>> _ == p**-1 True >>> p*~p == ~p*p == Permutation([0, 1, 2, 3]) True """ return self._af_new(_af_invert(self._array_form)) def __iter__(self): """Yield elements from array form. Examples ======== >>> from sympy.combinatorics import Permutation >>> list(Permutation(range(3))) [0, 1, 2] """ for i in self.array_form: yield i def __call__(self, *i): """ Allows applying a permutation instance as a bijective function. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([[2, 0], [3, 1]]) >>> p.array_form [2, 3, 0, 1] >>> [p(i) for i in range(4)] [2, 3, 0, 1] If an array is given then the permutation selects the items from the array (i.e. the permutation is applied to the array): >>> from sympy.abc import x >>> p([x, 1, 0, x**2]) [0, x**2, x, 1] """ # list indices can be Integer or int; leave this # as it is (don't test or convert it) because this # gets called a lot and should be fast if len(i) == 1: i = i[0] try: # P(1) return self._array_form[i] except TypeError: try: # P([a, b, c]) return [i[j] for j in self._array_form] except Exception: raise TypeError('unrecognized argument') else: # P(1, 2, 3) return self*Permutation(Cycle(*i), size=self.size) def atoms(self): """ Returns all the elements of a permutation Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation([0, 1, 2, 3, 4, 5]).atoms() {0, 1, 2, 3, 4, 5} >>> Permutation([[0, 1], [2, 3], [4, 5]]).atoms() {0, 1, 2, 3, 4, 5} """ return set(self.array_form) def next_lex(self): """ Returns the next permutation in lexicographical order. If self is the last permutation in lexicographical order it returns None. See [4] section 2.4. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([2, 3, 1, 0]) >>> p = Permutation([2, 3, 1, 0]); p.rank() 17 >>> p = p.next_lex(); p.rank() 18 See Also ======== rank, unrank_lex """ perm = self.array_form[:] n = len(perm) i = n - 2 while perm[i + 1] < perm[i]: i -= 1 if i == -1: return None else: j = n - 1 while perm[j] < perm[i]: j -= 1 perm[j], perm[i] = perm[i], perm[j] i += 1 j = n - 1 while i < j: perm[j], perm[i] = perm[i], perm[j] i += 1 j -= 1 return self._af_new(perm) @classmethod def unrank_nonlex(self, n, r): """ This is a linear time unranking algorithm that does not respect lexicographic order [3]. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> Permutation.unrank_nonlex(4, 5) Permutation([2, 0, 3, 1]) >>> Permutation.unrank_nonlex(4, -1) Permutation([0, 1, 2, 3]) See Also ======== next_nonlex, rank_nonlex """ def _unrank1(n, r, a): if n > 0: a[n - 1], a[r % n] = a[r % n], a[n - 1] _unrank1(n - 1, r//n, a) id_perm = list(range(n)) n = int(n) r = r % ifac(n) _unrank1(n, r, id_perm) return self._af_new(id_perm) def rank_nonlex(self, inv_perm=None): """ This is a linear time ranking algorithm that does not enforce lexicographic order [3]. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.rank_nonlex() 23 See Also ======== next_nonlex, unrank_nonlex """ def _rank1(n, perm, inv_perm): if n == 1: return 0 s = perm[n - 1] t = inv_perm[n - 1] perm[n - 1], perm[t] = perm[t], s inv_perm[n - 1], inv_perm[s] = inv_perm[s], t return s + n*_rank1(n - 1, perm, inv_perm) if inv_perm is None: inv_perm = (~self).array_form if not inv_perm: return 0 perm = self.array_form[:] r = _rank1(len(perm), perm, inv_perm) return r def next_nonlex(self): """ Returns the next permutation in nonlex order [3]. If self is the last permutation in this order it returns None. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> p = Permutation([2, 0, 3, 1]); p.rank_nonlex() 5 >>> p = p.next_nonlex(); p Permutation([3, 0, 1, 2]) >>> p.rank_nonlex() 6 See Also ======== rank_nonlex, unrank_nonlex """ r = self.rank_nonlex() if r == ifac(self.size) - 1: return None return self.unrank_nonlex(self.size, r + 1) def rank(self): """ Returns the lexicographic rank of the permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.rank() 0 >>> p = Permutation([3, 2, 1, 0]) >>> p.rank() 23 See Also ======== next_lex, unrank_lex, cardinality, length, order, size """ if not self._rank is None: return self._rank rank = 0 rho = self.array_form[:] n = self.size - 1 size = n + 1 psize = int(ifac(n)) for j in range(size - 1): rank += rho[j]*psize for i in range(j + 1, size): if rho[i] > rho[j]: rho[i] -= 1 psize //= n n -= 1 self._rank = rank return rank @property def cardinality(self): """ Returns the number of all possible permutations. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.cardinality 24 See Also ======== length, order, rank, size """ return int(ifac(self.size)) def parity(self): """ Computes the parity of a permutation. The parity of a permutation reflects the parity of the number of inversions in the permutation, i.e., the number of pairs of x and y such that ``x > y`` but ``p[x] < p[y]``. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.parity() 0 >>> p = Permutation([3, 2, 0, 1]) >>> p.parity() 1 See Also ======== _af_parity """ if self._cyclic_form is not None: return (self.size - self.cycles) % 2 return _af_parity(self.array_form) @property def is_even(self): """ Checks if a permutation is even. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.is_even True >>> p = Permutation([3, 2, 1, 0]) >>> p.is_even True See Also ======== is_odd """ return not self.is_odd @property def is_odd(self): """ Checks if a permutation is odd. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.is_odd False >>> p = Permutation([3, 2, 0, 1]) >>> p.is_odd True See Also ======== is_even """ return bool(self.parity() % 2) @property def is_Singleton(self): """ Checks to see if the permutation contains only one number and is thus the only possible permutation of this set of numbers Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation([0]).is_Singleton True >>> Permutation([0, 1]).is_Singleton False See Also ======== is_Empty """ return self.size == 1 @property def is_Empty(self): """ Checks to see if the permutation is a set with zero elements Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation([]).is_Empty True >>> Permutation([0]).is_Empty False See Also ======== is_Singleton """ return self.size == 0 @property def is_identity(self): return self.is_Identity @property def is_Identity(self): """ Returns True if the Permutation is an identity permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([]) >>> p.is_Identity True >>> p = Permutation([[0], [1], [2]]) >>> p.is_Identity True >>> p = Permutation([0, 1, 2]) >>> p.is_Identity True >>> p = Permutation([0, 2, 1]) >>> p.is_Identity False See Also ======== order """ af = self.array_form return not af or all(i == af[i] for i in range(self.size)) def ascents(self): """ Returns the positions of ascents in a permutation, ie, the location where p[i] < p[i+1] Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([4, 0, 1, 3, 2]) >>> p.ascents() [1, 2] See Also ======== descents, inversions, min, max """ a = self.array_form pos = [i for i in range(len(a) - 1) if a[i] < a[i + 1]] return pos def descents(self): """ Returns the positions of descents in a permutation, ie, the location where p[i] > p[i+1] Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([4, 0, 1, 3, 2]) >>> p.descents() [0, 3] See Also ======== ascents, inversions, min, max """ a = self.array_form pos = [i for i in range(len(a) - 1) if a[i] > a[i + 1]] return pos def max(self): """ The maximum element moved by the permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([1, 0, 2, 3, 4]) >>> p.max() 1 See Also ======== min, descents, ascents, inversions """ max = 0 a = self.array_form for i in range(len(a)): if a[i] != i and a[i] > max: max = a[i] return max def min(self): """ The minimum element moved by the permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 4, 3, 2]) >>> p.min() 2 See Also ======== max, descents, ascents, inversions """ a = self.array_form min = len(a) for i in range(len(a)): if a[i] != i and a[i] < min: min = a[i] return min def inversions(self): """ Computes the number of inversions of a permutation. An inversion is where i > j but p[i] < p[j]. For small length of p, it iterates over all i and j values and calculates the number of inversions. For large length of p, it uses a variation of merge sort to calculate the number of inversions. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3, 4, 5]) >>> p.inversions() 0 >>> Permutation([3, 2, 1, 0]).inversions() 6 See Also ======== descents, ascents, min, max References ========== .. [1] http://www.cp.eng.chula.ac.th/~piak/teaching/algo/algo2008/count-inv.htm """ inversions = 0 a = self.array_form n = len(a) if n < 130: for i in range(n - 1): b = a[i] for c in a[i + 1:]: if b > c: inversions += 1 else: k = 1 right = 0 arr = a[:] temp = a[:] while k < n: i = 0 while i + k < n: right = i + k * 2 - 1 if right >= n: right = n - 1 inversions += _merge(arr, temp, i, i + k, right) i = i + k * 2 k = k * 2 return inversions def commutator(self, x): """Return the commutator of self and x: ``~x*~self*x*self`` If f and g are part of a group, G, then the commutator of f and g is the group identity iff f and g commute, i.e. fg == gf. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> p = Permutation([0, 2, 3, 1]) >>> x = Permutation([2, 0, 3, 1]) >>> c = p.commutator(x); c Permutation([2, 1, 3, 0]) >>> c == ~x*~p*x*p True >>> I = Permutation(3) >>> p = [I + i for i in range(6)] >>> for i in range(len(p)): ... for j in range(len(p)): ... c = p[i].commutator(p[j]) ... if p[i]*p[j] == p[j]*p[i]: ... assert c == I ... else: ... assert c != I ... References ========== https://en.wikipedia.org/wiki/Commutator """ a = self.array_form b = x.array_form n = len(a) if len(b) != n: raise ValueError("The permutations must be of equal size.") inva = [None]*n for i in range(n): inva[a[i]] = i invb = [None]*n for i in range(n): invb[b[i]] = i return self._af_new([a[b[inva[i]]] for i in invb]) def signature(self): """ Gives the signature of the permutation needed to place the elements of the permutation in canonical order. The signature is calculated as (-1)^<number of inversions> Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2]) >>> p.inversions() 0 >>> p.signature() 1 >>> q = Permutation([0,2,1]) >>> q.inversions() 1 >>> q.signature() -1 See Also ======== inversions """ if self.is_even: return 1 return -1 def order(self): """ Computes the order of a permutation. When the permutation is raised to the power of its order it equals the identity permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> p = Permutation([3, 1, 5, 2, 4, 0]) >>> p.order() 4 >>> (p**(p.order())) Permutation([], size=6) See Also ======== identity, cardinality, length, rank, size """ return reduce(lcm, [len(cycle) for cycle in self.cyclic_form], 1) def length(self): """ Returns the number of integers moved by a permutation. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation([0, 3, 2, 1]).length() 2 >>> Permutation([[0, 1], [2, 3]]).length() 4 See Also ======== min, max, support, cardinality, order, rank, size """ return len(self.support()) @property def cycle_structure(self): """Return the cycle structure of the permutation as a dictionary indicating the multiplicity of each cycle length. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> Permutation(3).cycle_structure {1: 4} >>> Permutation(0, 4, 3)(1, 2)(5, 6).cycle_structure {2: 2, 3: 1} """ if self._cycle_structure: rv = self._cycle_structure else: rv = defaultdict(int) singletons = self.size for c in self.cyclic_form: rv[len(c)] += 1 singletons -= len(c) if singletons: rv[1] = singletons self._cycle_structure = rv return dict(rv) # make a copy @property def cycles(self): """ Returns the number of cycles contained in the permutation (including singletons). Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation([0, 1, 2]).cycles 3 >>> Permutation([0, 1, 2]).full_cyclic_form [[0], [1], [2]] >>> Permutation(0, 1)(2, 3).cycles 2 See Also ======== sympy.functions.combinatorial.numbers.stirling """ return len(self.full_cyclic_form) def index(self): """ Returns the index of a permutation. The index of a permutation is the sum of all subscripts j such that p[j] is greater than p[j+1]. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([3, 0, 2, 1, 4]) >>> p.index() 2 """ a = self.array_form return sum([j for j in range(len(a) - 1) if a[j] > a[j + 1]]) def runs(self): """ Returns the runs of a permutation. An ascending sequence in a permutation is called a run [5]. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([2, 5, 7, 3, 6, 0, 1, 4, 8]) >>> p.runs() [[2, 5, 7], [3, 6], [0, 1, 4, 8]] >>> q = Permutation([1,3,2,0]) >>> q.runs() [[1, 3], [2], [0]] """ return runs(self.array_form) def inversion_vector(self): """Return the inversion vector of the permutation. The inversion vector consists of elements whose value indicates the number of elements in the permutation that are lesser than it and lie on its right hand side. The inversion vector is the same as the Lehmer encoding of a permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> p = Permutation([4, 8, 0, 7, 1, 5, 3, 6, 2]) >>> p.inversion_vector() [4, 7, 0, 5, 0, 2, 1, 1] >>> p = Permutation([3, 2, 1, 0]) >>> p.inversion_vector() [3, 2, 1] The inversion vector increases lexicographically with the rank of the permutation, the -ith element cycling through 0..i. >>> p = Permutation(2) >>> while p: ... print('%s %s %s' % (p, p.inversion_vector(), p.rank())) ... p = p.next_lex() ... Permutation([0, 1, 2]) [0, 0] 0 Permutation([0, 2, 1]) [0, 1] 1 Permutation([1, 0, 2]) [1, 0] 2 Permutation([1, 2, 0]) [1, 1] 3 Permutation([2, 0, 1]) [2, 0] 4 Permutation([2, 1, 0]) [2, 1] 5 See Also ======== from_inversion_vector """ self_array_form = self.array_form n = len(self_array_form) inversion_vector = [0] * (n - 1) for i in range(n - 1): val = 0 for j in range(i + 1, n): if self_array_form[j] < self_array_form[i]: val += 1 inversion_vector[i] = val return inversion_vector def rank_trotterjohnson(self): """ Returns the Trotter Johnson rank, which we get from the minimal change algorithm. See [4] section 2.4. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.rank_trotterjohnson() 0 >>> p = Permutation([0, 2, 1, 3]) >>> p.rank_trotterjohnson() 7 See Also ======== unrank_trotterjohnson, next_trotterjohnson """ if self.array_form == [] or self.is_Identity: return 0 if self.array_form == [1, 0]: return 1 perm = self.array_form n = self.size rank = 0 for j in range(1, n): k = 1 i = 0 while perm[i] != j: if perm[i] < j: k += 1 i += 1 j1 = j + 1 if rank % 2 == 0: rank = j1*rank + j1 - k else: rank = j1*rank + k - 1 return rank @classmethod def unrank_trotterjohnson(cls, size, rank): """ Trotter Johnson permutation unranking. See [4] section 2.4. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.unrank_trotterjohnson(5, 10) Permutation([0, 3, 1, 2, 4]) See Also ======== rank_trotterjohnson, next_trotterjohnson """ perm = [0]*size r2 = 0 n = ifac(size) pj = 1 for j in range(2, size + 1): pj *= j r1 = (rank * pj) // n k = r1 - j*r2 if r2 % 2 == 0: for i in range(j - 1, j - k - 1, -1): perm[i] = perm[i - 1] perm[j - k - 1] = j - 1 else: for i in range(j - 1, k, -1): perm[i] = perm[i - 1] perm[k] = j - 1 r2 = r1 return cls._af_new(perm) def next_trotterjohnson(self): """ Returns the next permutation in Trotter-Johnson order. If self is the last permutation it returns None. See [4] section 2.4. If it is desired to generate all such permutations, they can be generated in order more quickly with the ``generate_bell`` function. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> p = Permutation([3, 0, 2, 1]) >>> p.rank_trotterjohnson() 4 >>> p = p.next_trotterjohnson(); p Permutation([0, 3, 2, 1]) >>> p.rank_trotterjohnson() 5 See Also ======== rank_trotterjohnson, unrank_trotterjohnson, sympy.utilities.iterables.generate_bell """ pi = self.array_form[:] n = len(pi) st = 0 rho = pi[:] done = False m = n-1 while m > 0 and not done: d = rho.index(m) for i in range(d, m): rho[i] = rho[i + 1] par = _af_parity(rho[:m]) if par == 1: if d == m: m -= 1 else: pi[st + d], pi[st + d + 1] = pi[st + d + 1], pi[st + d] done = True else: if d == 0: m -= 1 st += 1 else: pi[st + d], pi[st + d - 1] = pi[st + d - 1], pi[st + d] done = True if m == 0: return None return self._af_new(pi) def get_precedence_matrix(self): """ Gets the precedence matrix. This is used for computing the distance between two permutations. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> p = Permutation.josephus(3, 6, 1) >>> p Permutation([2, 5, 3, 1, 4, 0]) >>> p.get_precedence_matrix() Matrix([ [0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 1, 0], [1, 1, 0, 1, 1, 1], [1, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0], [1, 1, 0, 1, 1, 0]]) See Also ======== get_precedence_distance, get_adjacency_matrix, get_adjacency_distance """ m = zeros(self.size) perm = self.array_form for i in range(m.rows): for j in range(i + 1, m.cols): m[perm[i], perm[j]] = 1 return m def get_precedence_distance(self, other): """ Computes the precedence distance between two permutations. Suppose p and p' represent n jobs. The precedence metric counts the number of times a job j is preceded by job i in both p and p'. This metric is commutative. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([2, 0, 4, 3, 1]) >>> q = Permutation([3, 1, 2, 4, 0]) >>> p.get_precedence_distance(q) 7 >>> q.get_precedence_distance(p) 7 See Also ======== get_precedence_matrix, get_adjacency_matrix, get_adjacency_distance """ if self.size != other.size: raise ValueError("The permutations must be of equal size.") self_prec_mat = self.get_precedence_matrix() other_prec_mat = other.get_precedence_matrix() n_prec = 0 for i in range(self.size): for j in range(self.size): if i == j: continue if self_prec_mat[i, j] * other_prec_mat[i, j] == 1: n_prec += 1 d = self.size * (self.size - 1)//2 - n_prec return d def get_adjacency_matrix(self): """ Computes the adjacency matrix of a permutation. If job i is adjacent to job j in a permutation p then we set m[i, j] = 1 where m is the adjacency matrix of p. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation.josephus(3, 6, 1) >>> p.get_adjacency_matrix() Matrix([ [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]]) >>> q = Permutation([0, 1, 2, 3]) >>> q.get_adjacency_matrix() Matrix([ [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 0, 0]]) See Also ======== get_precedence_matrix, get_precedence_distance, get_adjacency_distance """ m = zeros(self.size) perm = self.array_form for i in range(self.size - 1): m[perm[i], perm[i + 1]] = 1 return m def get_adjacency_distance(self, other): """ Computes the adjacency distance between two permutations. This metric counts the number of times a pair i,j of jobs is adjacent in both p and p'. If n_adj is this quantity then the adjacency distance is n - n_adj - 1 [1] [1] Reeves, Colin R. Landscapes, Operators and Heuristic search, Annals of Operational Research, 86, pp 473-490. (1999) Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 3, 1, 2, 4]) >>> q = Permutation.josephus(4, 5, 2) >>> p.get_adjacency_distance(q) 3 >>> r = Permutation([0, 2, 1, 4, 3]) >>> p.get_adjacency_distance(r) 4 See Also ======== get_precedence_matrix, get_precedence_distance, get_adjacency_matrix """ if self.size != other.size: raise ValueError("The permutations must be of the same size.") self_adj_mat = self.get_adjacency_matrix() other_adj_mat = other.get_adjacency_matrix() n_adj = 0 for i in range(self.size): for j in range(self.size): if i == j: continue if self_adj_mat[i, j] * other_adj_mat[i, j] == 1: n_adj += 1 d = self.size - n_adj - 1 return d def get_positional_distance(self, other): """ Computes the positional distance between two permutations. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 3, 1, 2, 4]) >>> q = Permutation.josephus(4, 5, 2) >>> r = Permutation([3, 1, 4, 0, 2]) >>> p.get_positional_distance(q) 12 >>> p.get_positional_distance(r) 12 See Also ======== get_precedence_distance, get_adjacency_distance """ a = self.array_form b = other.array_form if len(a) != len(b): raise ValueError("The permutations must be of the same size.") return sum([abs(a[i] - b[i]) for i in range(len(a))]) @classmethod def josephus(cls, m, n, s=1): """Return as a permutation the shuffling of range(n) using the Josephus scheme in which every m-th item is selected until all have been chosen. The returned permutation has elements listed by the order in which they were selected. The parameter ``s`` stops the selection process when there are ``s`` items remaining and these are selected by continuing the selection, counting by 1 rather than by ``m``. Consider selecting every 3rd item from 6 until only 2 remain:: choices chosen ======== ====== 012345 01 345 2 01 34 25 01 4 253 0 4 2531 0 25314 253140 Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.josephus(3, 6, 2).array_form [2, 5, 3, 1, 4, 0] References ========== .. [1] https://en.wikipedia.org/wiki/Flavius_Josephus .. [2] https://en.wikipedia.org/wiki/Josephus_problem .. [3] http://www.wou.edu/~burtonl/josephus.html """ from collections import deque m -= 1 Q = deque(list(range(n))) perm = [] while len(Q) > max(s, 1): for dp in range(m): Q.append(Q.popleft()) perm.append(Q.popleft()) perm.extend(list(Q)) return cls(perm) @classmethod def from_inversion_vector(cls, inversion): """ Calculates the permutation from the inversion vector. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> Permutation.from_inversion_vector([3, 2, 1, 0, 0]) Permutation([3, 2, 1, 0, 4, 5]) """ size = len(inversion) N = list(range(size + 1)) perm = [] try: for k in range(size): val = N[inversion[k]] perm.append(val) N.remove(val) except IndexError: raise ValueError("The inversion vector is not valid.") perm.extend(N) return cls._af_new(perm) @classmethod def random(cls, n): """ Generates a random permutation of length ``n``. Uses the underlying Python pseudo-random number generator. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.random(2) in (Permutation([1, 0]), Permutation([0, 1])) True """ perm_array = list(range(n)) random.shuffle(perm_array) return cls._af_new(perm_array) @classmethod def unrank_lex(cls, size, rank): """ Lexicographic permutation unranking. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> a = Permutation.unrank_lex(5, 10) >>> a.rank() 10 >>> a Permutation([0, 2, 4, 1, 3]) See Also ======== rank, next_lex """ perm_array = [0] * size psize = 1 for i in range(size): new_psize = psize*(i + 1) d = (rank % new_psize) // psize rank -= d*psize perm_array[size - i - 1] = d for j in range(size - i, size): if perm_array[j] > d - 1: perm_array[j] += 1 psize = new_psize return cls._af_new(perm_array) # global flag to control how permutations are printed # when True, Permutation([0, 2, 1, 3]) -> Cycle(1, 2) # when False, Permutation([0, 2, 1, 3]) -> Permutation([0, 2, 1]) print_cyclic = True def _merge(arr, temp, left, mid, right): """ Merges two sorted arrays and calculates the inversion count. Helper function for calculating inversions. This method is for internal use only. """ i = k = left j = mid inv_count = 0 while i < mid and j <= right: if arr[i] < arr[j]: temp[k] = arr[i] k += 1 i += 1 else: temp[k] = arr[j] k += 1 j += 1 inv_count += (mid -i) while i < mid: temp[k] = arr[i] k += 1 i += 1 if j <= right: k += right - j + 1 j += right - j + 1 arr[left:k + 1] = temp[left:k + 1] else: arr[left:right + 1] = temp[left:right + 1] return inv_count Perm = Permutation _af_new = Perm._af_new
f025505ba3757cf49d899c28ece27f22a954322b123aa1899f064f16cf5cf007
from __future__ import print_function, division from sympy.combinatorics import Permutation as Perm from sympy.combinatorics.perm_groups import PermutationGroup from sympy.core import Basic, Tuple from sympy.core.compatibility import as_int, range from sympy.sets import FiniteSet from sympy.utilities.iterables import (minlex, unflatten, flatten) rmul = Perm.rmul class Polyhedron(Basic): """ Represents the polyhedral symmetry group (PSG). The PSG is one of the symmetry groups of the Platonic solids. There are three polyhedral groups: the tetrahedral group of order 12, the octahedral group of order 24, and the icosahedral group of order 60. All doctests have been given in the docstring of the constructor of the object. References ========== http://mathworld.wolfram.com/PolyhedralGroup.html """ _edges = None def __new__(cls, corners, faces=[], pgroup=[]): """ The constructor of the Polyhedron group object. It takes up to three parameters: the corners, faces, and allowed transformations. The corners/vertices are entered as a list of arbitrary expressions that are used to identify each vertex. The faces are entered as a list of tuples of indices; a tuple of indices identifies the vertices which define the face. They should be entered in a cw or ccw order; they will be standardized by reversal and rotation to be give the lowest lexical ordering. If no faces are given then no edges will be computed. >>> from sympy.combinatorics.polyhedron import Polyhedron >>> Polyhedron(list('abc'), [(1, 2, 0)]).faces FiniteSet((0, 1, 2)) >>> Polyhedron(list('abc'), [(1, 0, 2)]).faces FiniteSet((0, 1, 2)) The allowed transformations are entered as allowable permutations of the vertices for the polyhedron. Instance of Permutations (as with faces) should refer to the supplied vertices by index. These permutation are stored as a PermutationGroup. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.print_cyclic = False >>> from sympy.abc import w, x, y, z Here we construct the Polyhedron object for a tetrahedron. >>> corners = [w, x, y, z] >>> faces = [(0, 1, 2), (0, 2, 3), (0, 3, 1), (1, 2, 3)] Next, allowed transformations of the polyhedron must be given. This is given as permutations of vertices. Although the vertices of a tetrahedron can be numbered in 24 (4!) different ways, there are only 12 different orientations for a physical tetrahedron. The following permutations, applied once or twice, will generate all 12 of the orientations. (The identity permutation, Permutation(range(4)), is not included since it does not change the orientation of the vertices.) >>> pgroup = [Permutation([[0, 1, 2], [3]]), \ Permutation([[0, 1, 3], [2]]), \ Permutation([[0, 2, 3], [1]]), \ Permutation([[1, 2, 3], [0]]), \ Permutation([[0, 1], [2, 3]]), \ Permutation([[0, 2], [1, 3]]), \ Permutation([[0, 3], [1, 2]])] The Polyhedron is now constructed and demonstrated: >>> tetra = Polyhedron(corners, faces, pgroup) >>> tetra.size 4 >>> tetra.edges FiniteSet((0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)) >>> tetra.corners (w, x, y, z) It can be rotated with an arbitrary permutation of vertices, e.g. the following permutation is not in the pgroup: >>> tetra.rotate(Permutation([0, 1, 3, 2])) >>> tetra.corners (w, x, z, y) An allowed permutation of the vertices can be constructed by repeatedly applying permutations from the pgroup to the vertices. Here is a demonstration that applying p and p**2 for every p in pgroup generates all the orientations of a tetrahedron and no others: >>> all = ( (w, x, y, z), \ (x, y, w, z), \ (y, w, x, z), \ (w, z, x, y), \ (z, w, y, x), \ (w, y, z, x), \ (y, z, w, x), \ (x, z, y, w), \ (z, y, x, w), \ (y, x, z, w), \ (x, w, z, y), \ (z, x, w, y) ) >>> got = [] >>> for p in (pgroup + [p**2 for p in pgroup]): ... h = Polyhedron(corners) ... h.rotate(p) ... got.append(h.corners) ... >>> set(got) == set(all) True The make_perm method of a PermutationGroup will randomly pick permutations, multiply them together, and return the permutation that can be applied to the polyhedron to give the orientation produced by those individual permutations. Here, 3 permutations are used: >>> tetra.pgroup.make_perm(3) # doctest: +SKIP Permutation([0, 3, 1, 2]) To select the permutations that should be used, supply a list of indices to the permutations in pgroup in the order they should be applied: >>> use = [0, 0, 2] >>> p002 = tetra.pgroup.make_perm(3, use) >>> p002 Permutation([1, 0, 3, 2]) Apply them one at a time: >>> tetra.reset() >>> for i in use: ... tetra.rotate(pgroup[i]) ... >>> tetra.vertices (x, w, z, y) >>> sequentially = tetra.vertices Apply the composite permutation: >>> tetra.reset() >>> tetra.rotate(p002) >>> tetra.corners (x, w, z, y) >>> tetra.corners in all and tetra.corners == sequentially True Notes ===== Defining permutation groups --------------------------- It is not necessary to enter any permutations, nor is necessary to enter a complete set of transformations. In fact, for a polyhedron, all configurations can be constructed from just two permutations. For example, the orientations of a tetrahedron can be generated from an axis passing through a vertex and face and another axis passing through a different vertex or from an axis passing through the midpoints of two edges opposite of each other. For simplicity of presentation, consider a square -- not a cube -- with vertices 1, 2, 3, and 4: 1-----2 We could think of axes of rotation being: | | 1) through the face | | 2) from midpoint 1-2 to 3-4 or 1-3 to 2-4 3-----4 3) lines 1-4 or 2-3 To determine how to write the permutations, imagine 4 cameras, one at each corner, labeled A-D: A B A B 1-----2 1-----3 vertex index: | | | | 1 0 | | | | 2 1 3-----4 2-----4 3 2 C D C D 4 3 original after rotation along 1-4 A diagonal and a face axis will be chosen for the "permutation group" from which any orientation can be constructed. >>> pgroup = [] Imagine a clockwise rotation when viewing 1-4 from camera A. The new orientation is (in camera-order): 1, 3, 2, 4 so the permutation is given using the *indices* of the vertices as: >>> pgroup.append(Permutation((0, 2, 1, 3))) Now imagine rotating clockwise when looking down an axis entering the center of the square as viewed. The new camera-order would be 3, 1, 4, 2 so the permutation is (using indices): >>> pgroup.append(Permutation((2, 0, 3, 1))) The square can now be constructed: ** use real-world labels for the vertices, entering them in camera order ** for the faces we use zero-based indices of the vertices in *edge-order* as the face is traversed; neither the direction nor the starting point matter -- the faces are only used to define edges (if so desired). >>> square = Polyhedron((1, 2, 3, 4), [(0, 1, 3, 2)], pgroup) To rotate the square with a single permutation we can do: >>> square.rotate(square.pgroup[0]) >>> square.corners (1, 3, 2, 4) To use more than one permutation (or to use one permutation more than once) it is more convenient to use the make_perm method: >>> p011 = square.pgroup.make_perm([0, 1, 1]) # diag flip + 2 rotations >>> square.reset() # return to initial orientation >>> square.rotate(p011) >>> square.corners (4, 2, 3, 1) Thinking outside the box ------------------------ Although the Polyhedron object has a direct physical meaning, it actually has broader application. In the most general sense it is just a decorated PermutationGroup, allowing one to connect the permutations to something physical. For example, a Rubik's cube is not a proper polyhedron, but the Polyhedron class can be used to represent it in a way that helps to visualize the Rubik's cube. >>> from sympy.utilities.iterables import flatten, unflatten >>> from sympy import symbols >>> from sympy.combinatorics import RubikGroup >>> facelets = flatten([symbols(s+'1:5') for s in 'UFRBLD']) >>> def show(): ... pairs = unflatten(r2.corners, 2) ... print(pairs[::2]) ... print(pairs[1::2]) ... >>> r2 = Polyhedron(facelets, pgroup=RubikGroup(2)) >>> show() [(U1, U2), (F1, F2), (R1, R2), (B1, B2), (L1, L2), (D1, D2)] [(U3, U4), (F3, F4), (R3, R4), (B3, B4), (L3, L4), (D3, D4)] >>> r2.rotate(0) # cw rotation of F >>> show() [(U1, U2), (F3, F1), (U3, R2), (B1, B2), (L1, D1), (R3, R1)] [(L4, L2), (F4, F2), (U4, R4), (B3, B4), (L3, D2), (D3, D4)] Predefined Polyhedra ==================== For convenience, the vertices and faces are defined for the following standard solids along with a permutation group for transformations. When the polyhedron is oriented as indicated below, the vertices in a given horizontal plane are numbered in ccw direction, starting from the vertex that will give the lowest indices in a given face. (In the net of the vertices, indices preceded by "-" indicate replication of the lhs index in the net.) tetrahedron, tetrahedron_faces ------------------------------ 4 vertices (vertex up) net: 0 0-0 1 2 3-1 4 faces: (0, 1, 2) (0, 2, 3) (0, 3, 1) (1, 2, 3) cube, cube_faces ---------------- 8 vertices (face up) net: 0 1 2 3-0 4 5 6 7-4 6 faces: (0, 1, 2, 3) (0, 1, 5, 4) (1, 2, 6, 5) (2, 3, 7, 6) (0, 3, 7, 4) (4, 5, 6, 7) octahedron, octahedron_faces ---------------------------- 6 vertices (vertex up) net: 0 0 0-0 1 2 3 4-1 5 5 5-5 8 faces: (0, 1, 2) (0, 2, 3) (0, 3, 4) (0, 1, 4) (1, 2, 5) (2, 3, 5) (3, 4, 5) (1, 4, 5) dodecahedron, dodecahedron_faces -------------------------------- 20 vertices (vertex up) net: 0 1 2 3 4 -0 5 6 7 8 9 -5 14 10 11 12 13-14 15 16 17 18 19-15 12 faces: (0, 1, 2, 3, 4) (0, 1, 6, 10, 5) (1, 2, 7, 11, 6) (2, 3, 8, 12, 7) (3, 4, 9, 13, 8) (0, 4, 9, 14, 5) (5, 10, 16, 15, 14) (6, 10, 16, 17, 11) (7, 11, 17, 18, 12) (8, 12, 18, 19, 13) (9, 13, 19, 15, 14)(15, 16, 17, 18, 19) icosahedron, icosahedron_faces ------------------------------ 12 vertices (face up) net: 0 0 0 0 -0 1 2 3 4 5 -1 6 7 8 9 10 -6 11 11 11 11 -11 20 faces: (0, 1, 2) (0, 2, 3) (0, 3, 4) (0, 4, 5) (0, 1, 5) (1, 2, 6) (2, 3, 7) (3, 4, 8) (4, 5, 9) (1, 5, 10) (2, 6, 7) (3, 7, 8) (4, 8, 9) (5, 9, 10) (1, 6, 10) (6, 7, 11) (7, 8, 11) (8, 9, 11) (9, 10, 11) (6, 10, 11) >>> from sympy.combinatorics.polyhedron import cube >>> cube.edges FiniteSet((0, 1), (0, 3), (0, 4), (1, 2), (1, 5), (2, 3), (2, 6), (3, 7), (4, 5), (4, 7), (5, 6), (6, 7)) If you want to use letters or other names for the corners you can still use the pre-calculated faces: >>> corners = list('abcdefgh') >>> Polyhedron(corners, cube.faces).corners (a, b, c, d, e, f, g, h) References ========== .. [1] www.ocf.berkeley.edu/~wwu/articles/platonicsolids.pdf """ faces = [minlex(f, directed=False, is_set=True) for f in faces] corners, faces, pgroup = args = \ [Tuple(*a) for a in (corners, faces, pgroup)] obj = Basic.__new__(cls, *args) obj._corners = tuple(corners) # in order given obj._faces = FiniteSet(*faces) if pgroup and pgroup[0].size != len(corners): raise ValueError("Permutation size unequal to number of corners.") # use the identity permutation if none are given obj._pgroup = PermutationGroup(( pgroup or [Perm(range(len(corners)))] )) return obj @property def corners(self): """ Get the corners of the Polyhedron. The method ``vertices`` is an alias for ``corners``. Examples ======== >>> from sympy.combinatorics import Polyhedron >>> from sympy.abc import a, b, c, d >>> p = Polyhedron(list('abcd')) >>> p.corners == p.vertices == (a, b, c, d) True See Also ======== array_form, cyclic_form """ return self._corners vertices = corners @property def array_form(self): """Return the indices of the corners. The indices are given relative to the original position of corners. Examples ======== >>> from sympy.combinatorics import Permutation, Cycle >>> from sympy.combinatorics.polyhedron import tetrahedron >>> tetrahedron = tetrahedron.copy() >>> tetrahedron.array_form [0, 1, 2, 3] >>> tetrahedron.rotate(0) >>> tetrahedron.array_form [0, 2, 3, 1] >>> tetrahedron.pgroup[0].array_form [0, 2, 3, 1] See Also ======== corners, cyclic_form """ corners = list(self.args[0]) return [corners.index(c) for c in self.corners] @property def cyclic_form(self): """Return the indices of the corners in cyclic notation. The indices are given relative to the original position of corners. See Also ======== corners, array_form """ return Perm._af_new(self.array_form).cyclic_form @property def size(self): """ Get the number of corners of the Polyhedron. """ return len(self._corners) @property def faces(self): """ Get the faces of the Polyhedron. """ return self._faces @property def pgroup(self): """ Get the permutations of the Polyhedron. """ return self._pgroup @property def edges(self): """ Given the faces of the polyhedra we can get the edges. Examples ======== >>> from sympy.combinatorics import Polyhedron >>> from sympy.abc import a, b, c >>> corners = (a, b, c) >>> faces = [(0, 1, 2)] >>> Polyhedron(corners, faces).edges FiniteSet((0, 1), (0, 2), (1, 2)) """ if self._edges is None: output = set() for face in self.faces: for i in range(len(face)): edge = tuple(sorted([face[i], face[i - 1]])) output.add(edge) self._edges = FiniteSet(*output) return self._edges def rotate(self, perm): """ Apply a permutation to the polyhedron *in place*. The permutation may be given as a Permutation instance or an integer indicating which permutation from pgroup of the Polyhedron should be applied. This is an operation that is analogous to rotation about an axis by a fixed increment. Notes ===== When a Permutation is applied, no check is done to see if that is a valid permutation for the Polyhedron. For example, a cube could be given a permutation which effectively swaps only 2 vertices. A valid permutation (that rotates the object in a physical way) will be obtained if one only uses permutations from the ``pgroup`` of the Polyhedron. On the other hand, allowing arbitrary rotations (applications of permutations) gives a way to follow named elements rather than indices since Polyhedron allows vertices to be named while Permutation works only with indices. Examples ======== >>> from sympy.combinatorics import Polyhedron, Permutation >>> from sympy.combinatorics.polyhedron import cube >>> cube = cube.copy() >>> cube.corners (0, 1, 2, 3, 4, 5, 6, 7) >>> cube.rotate(0) >>> cube.corners (1, 2, 3, 0, 5, 6, 7, 4) A non-physical "rotation" that is not prohibited by this method: >>> cube.reset() >>> cube.rotate(Permutation([[1, 2]], size=8)) >>> cube.corners (0, 2, 1, 3, 4, 5, 6, 7) Polyhedron can be used to follow elements of set that are identified by letters instead of integers: >>> shadow = h5 = Polyhedron(list('abcde')) >>> p = Permutation([3, 0, 1, 2, 4]) >>> h5.rotate(p) >>> h5.corners (d, a, b, c, e) >>> _ == shadow.corners True >>> copy = h5.copy() >>> h5.rotate(p) >>> h5.corners == copy.corners False """ if not isinstance(perm, Perm): perm = self.pgroup[perm] # and we know it's valid else: if perm.size != self.size: raise ValueError('Polyhedron and Permutation sizes differ.') a = perm.array_form corners = [self.corners[a[i]] for i in range(len(self.corners))] self._corners = tuple(corners) def reset(self): """Return corners to their original positions. Examples ======== >>> from sympy.combinatorics.polyhedron import tetrahedron as T >>> T = T.copy() >>> T.corners (0, 1, 2, 3) >>> T.rotate(0) >>> T.corners (0, 2, 3, 1) >>> T.reset() >>> T.corners (0, 1, 2, 3) """ self._corners = self.args[0] def _pgroup_calcs(): """Return the permutation groups for each of the polyhedra and the face definitions: tetrahedron, cube, octahedron, dodecahedron, icosahedron, tetrahedron_faces, cube_faces, octahedron_faces, dodecahedron_faces, icosahedron_faces (This author didn't find and didn't know of a better way to do it though there likely is such a way.) Although only 2 permutations are needed for a polyhedron in order to generate all the possible orientations, a group of permutations is provided instead. A set of permutations is called a "group" if:: a*b = c (for any pair of permutations in the group, a and b, their product, c, is in the group) a*(b*c) = (a*b)*c (for any 3 permutations in the group associativity holds) there is an identity permutation, I, such that I*a = a*I for all elements in the group a*b = I (the inverse of each permutation is also in the group) None of the polyhedron groups defined follow these definitions of a group. Instead, they are selected to contain those permutations whose powers alone will construct all orientations of the polyhedron, i.e. for permutations ``a``, ``b``, etc... in the group, ``a, a**2, ..., a**o_a``, ``b, b**2, ..., b**o_b``, etc... (where ``o_i`` is the order of permutation ``i``) generate all permutations of the polyhedron instead of mixed products like ``a*b``, ``a*b**2``, etc.... Note that for a polyhedron with n vertices, the valid permutations of the vertices exclude those that do not maintain its faces. e.g. the permutation BCDE of a square's four corners, ABCD, is a valid permutation while CBDE is not (because this would twist the square). Examples ======== The is_group checks for: closure, the presence of the Identity permutation, and the presence of the inverse for each of the elements in the group. This confirms that none of the polyhedra are true groups: >>> from sympy.combinatorics.polyhedron import ( ... tetrahedron, cube, octahedron, dodecahedron, icosahedron) ... >>> polyhedra = (tetrahedron, cube, octahedron, dodecahedron, icosahedron) >>> [h.pgroup.is_group for h in polyhedra] ... [True, True, True, True, True] Although tests in polyhedron's test suite check that powers of the permutations in the groups generate all permutations of the vertices of the polyhedron, here we also demonstrate the powers of the given permutations create a complete group for the tetrahedron: >>> from sympy.combinatorics import Permutation, PermutationGroup >>> for h in polyhedra[:1]: ... G = h.pgroup ... perms = set() ... for g in G: ... for e in range(g.order()): ... p = tuple((g**e).array_form) ... perms.add(p) ... ... perms = [Permutation(p) for p in perms] ... assert PermutationGroup(perms).is_group In addition to doing the above, the tests in the suite confirm that the faces are all present after the application of each permutation. References ========== http://dogschool.tripod.com/trianglegroup.html """ def _pgroup_of_double(polyh, ordered_faces, pgroup): n = len(ordered_faces[0]) # the vertices of the double which sits inside a give polyhedron # can be found by tracking the faces of the outer polyhedron. # A map between face and the vertex of the double is made so that # after rotation the position of the vertices can be located fmap = dict(zip(ordered_faces, range(len(ordered_faces)))) flat_faces = flatten(ordered_faces) new_pgroup = [] for i, p in enumerate(pgroup): h = polyh.copy() h.rotate(p) c = h.corners # reorder corners in the order they should appear when # enumerating the faces reorder = unflatten([c[j] for j in flat_faces], n) # make them canonical reorder = [tuple(map(as_int, minlex(f, directed=False, is_set=True))) for f in reorder] # map face to vertex: the resulting list of vertices are the # permutation that we seek for the double new_pgroup.append(Perm([fmap[f] for f in reorder])) return new_pgroup tetrahedron_faces = [ (0, 1, 2), (0, 2, 3), (0, 3, 1), # upper 3 (1, 2, 3), # bottom ] # cw from top # _t_pgroup = [ Perm([[1, 2, 3], [0]]), # cw from top Perm([[0, 1, 2], [3]]), # cw from front face Perm([[0, 3, 2], [1]]), # cw from back right face Perm([[0, 3, 1], [2]]), # cw from back left face Perm([[0, 1], [2, 3]]), # through front left edge Perm([[0, 2], [1, 3]]), # through front right edge Perm([[0, 3], [1, 2]]), # through back edge ] tetrahedron = Polyhedron( range(4), tetrahedron_faces, _t_pgroup) cube_faces = [ (0, 1, 2, 3), # upper (0, 1, 5, 4), (1, 2, 6, 5), (2, 3, 7, 6), (0, 3, 7, 4), # middle 4 (4, 5, 6, 7), # lower ] # U, D, F, B, L, R = up, down, front, back, left, right _c_pgroup = [Perm(p) for p in [ [1, 2, 3, 0, 5, 6, 7, 4], # cw from top, U [4, 0, 3, 7, 5, 1, 2, 6], # cw from F face [4, 5, 1, 0, 7, 6, 2, 3], # cw from R face [1, 0, 4, 5, 2, 3, 7, 6], # cw through UF edge [6, 2, 1, 5, 7, 3, 0, 4], # cw through UR edge [6, 7, 3, 2, 5, 4, 0, 1], # cw through UB edge [3, 7, 4, 0, 2, 6, 5, 1], # cw through UL edge [4, 7, 6, 5, 0, 3, 2, 1], # cw through FL edge [6, 5, 4, 7, 2, 1, 0, 3], # cw through FR edge [0, 3, 7, 4, 1, 2, 6, 5], # cw through UFL vertex [5, 1, 0, 4, 6, 2, 3, 7], # cw through UFR vertex [5, 6, 2, 1, 4, 7, 3, 0], # cw through UBR vertex [7, 4, 0, 3, 6, 5, 1, 2], # cw through UBL ]] cube = Polyhedron( range(8), cube_faces, _c_pgroup) octahedron_faces = [ (0, 1, 2), (0, 2, 3), (0, 3, 4), (0, 1, 4), # top 4 (1, 2, 5), (2, 3, 5), (3, 4, 5), (1, 4, 5), # bottom 4 ] octahedron = Polyhedron( range(6), octahedron_faces, _pgroup_of_double(cube, cube_faces, _c_pgroup)) dodecahedron_faces = [ (0, 1, 2, 3, 4), # top (0, 1, 6, 10, 5), (1, 2, 7, 11, 6), (2, 3, 8, 12, 7), # upper 5 (3, 4, 9, 13, 8), (0, 4, 9, 14, 5), (5, 10, 16, 15, 14), (6, 10, 16, 17, 11), (7, 11, 17, 18, 12), # lower 5 (8, 12, 18, 19, 13), (9, 13, 19, 15, 14), (15, 16, 17, 18, 19) # bottom ] def _string_to_perm(s): rv = [Perm(range(20))] p = None for si in s: if si not in '01': count = int(si) - 1 else: count = 1 if si == '0': p = _f0 elif si == '1': p = _f1 rv.extend([p]*count) return Perm.rmul(*rv) # top face cw _f0 = Perm([ 1, 2, 3, 4, 0, 6, 7, 8, 9, 5, 11, 12, 13, 14, 10, 16, 17, 18, 19, 15]) # front face cw _f1 = Perm([ 5, 0, 4, 9, 14, 10, 1, 3, 13, 15, 6, 2, 8, 19, 16, 17, 11, 7, 12, 18]) # the strings below, like 0104 are shorthand for F0*F1*F0**4 and are # the remaining 4 face rotations, 15 edge permutations, and the # 10 vertex rotations. _dodeca_pgroup = [_f0, _f1] + [_string_to_perm(s) for s in ''' 0104 140 014 0410 010 1403 03104 04103 102 120 1304 01303 021302 03130 0412041 041204103 04120410 041204104 041204102 10 01 1402 0140 04102 0412 1204 1302 0130 03120'''.strip().split()] dodecahedron = Polyhedron( range(20), dodecahedron_faces, _dodeca_pgroup) icosahedron_faces = [ (0, 1, 2), (0, 2, 3), (0, 3, 4), (0, 4, 5), (0, 1, 5), (1, 6, 7), (1, 2, 7), (2, 7, 8), (2, 3, 8), (3, 8, 9), (3, 4, 9), (4, 9, 10), (4, 5, 10), (5, 6, 10), (1, 5, 6), (6, 7, 11), (7, 8, 11), (8, 9, 11), (9, 10, 11), (6, 10, 11)] icosahedron = Polyhedron( range(12), icosahedron_faces, _pgroup_of_double( dodecahedron, dodecahedron_faces, _dodeca_pgroup)) return (tetrahedron, cube, octahedron, dodecahedron, icosahedron, tetrahedron_faces, cube_faces, octahedron_faces, dodecahedron_faces, icosahedron_faces) # ----------------------------------------------------------------------- # Standard Polyhedron groups # # These are generated using _pgroup_calcs() above. However to save # import time we encode them explicitly here. # ----------------------------------------------------------------------- tetrahedron = Polyhedron( Tuple(0, 1, 2, 3), Tuple( Tuple(0, 1, 2), Tuple(0, 2, 3), Tuple(0, 1, 3), Tuple(1, 2, 3)), Tuple( Perm(1, 2, 3), Perm(3)(0, 1, 2), Perm(0, 3, 2), Perm(0, 3, 1), Perm(0, 1)(2, 3), Perm(0, 2)(1, 3), Perm(0, 3)(1, 2) )) cube = Polyhedron( Tuple(0, 1, 2, 3, 4, 5, 6, 7), Tuple( Tuple(0, 1, 2, 3), Tuple(0, 1, 5, 4), Tuple(1, 2, 6, 5), Tuple(2, 3, 7, 6), Tuple(0, 3, 7, 4), Tuple(4, 5, 6, 7)), Tuple( Perm(0, 1, 2, 3)(4, 5, 6, 7), Perm(0, 4, 5, 1)(2, 3, 7, 6), Perm(0, 4, 7, 3)(1, 5, 6, 2), Perm(0, 1)(2, 4)(3, 5)(6, 7), Perm(0, 6)(1, 2)(3, 5)(4, 7), Perm(0, 6)(1, 7)(2, 3)(4, 5), Perm(0, 3)(1, 7)(2, 4)(5, 6), Perm(0, 4)(1, 7)(2, 6)(3, 5), Perm(0, 6)(1, 5)(2, 4)(3, 7), Perm(1, 3, 4)(2, 7, 5), Perm(7)(0, 5, 2)(3, 4, 6), Perm(0, 5, 7)(1, 6, 3), Perm(0, 7, 2)(1, 4, 6))) octahedron = Polyhedron( Tuple(0, 1, 2, 3, 4, 5), Tuple( Tuple(0, 1, 2), Tuple(0, 2, 3), Tuple(0, 3, 4), Tuple(0, 1, 4), Tuple(1, 2, 5), Tuple(2, 3, 5), Tuple(3, 4, 5), Tuple(1, 4, 5)), Tuple( Perm(5)(1, 2, 3, 4), Perm(0, 4, 5, 2), Perm(0, 1, 5, 3), Perm(0, 1)(2, 4)(3, 5), Perm(0, 2)(1, 3)(4, 5), Perm(0, 3)(1, 5)(2, 4), Perm(0, 4)(1, 3)(2, 5), Perm(0, 5)(1, 4)(2, 3), Perm(0, 5)(1, 2)(3, 4), Perm(0, 4, 1)(2, 3, 5), Perm(0, 1, 2)(3, 4, 5), Perm(0, 2, 3)(1, 5, 4), Perm(0, 4, 3)(1, 5, 2))) dodecahedron = Polyhedron( Tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), Tuple( Tuple(0, 1, 2, 3, 4), Tuple(0, 1, 6, 10, 5), Tuple(1, 2, 7, 11, 6), Tuple(2, 3, 8, 12, 7), Tuple(3, 4, 9, 13, 8), Tuple(0, 4, 9, 14, 5), Tuple(5, 10, 16, 15, 14), Tuple(6, 10, 16, 17, 11), Tuple(7, 11, 17, 18, 12), Tuple(8, 12, 18, 19, 13), Tuple(9, 13, 19, 15, 14), Tuple(15, 16, 17, 18, 19)), Tuple( Perm(0, 1, 2, 3, 4)(5, 6, 7, 8, 9)(10, 11, 12, 13, 14)(15, 16, 17, 18, 19), Perm(0, 5, 10, 6, 1)(2, 4, 14, 16, 11)(3, 9, 15, 17, 7)(8, 13, 19, 18, 12), Perm(0, 10, 17, 12, 3)(1, 6, 11, 7, 2)(4, 5, 16, 18, 8)(9, 14, 15, 19, 13), Perm(0, 6, 17, 19, 9)(1, 11, 18, 13, 4)(2, 7, 12, 8, 3)(5, 10, 16, 15, 14), Perm(0, 2, 12, 19, 14)(1, 7, 18, 15, 5)(3, 8, 13, 9, 4)(6, 11, 17, 16, 10), Perm(0, 4, 9, 14, 5)(1, 3, 13, 15, 10)(2, 8, 19, 16, 6)(7, 12, 18, 17, 11), Perm(0, 1)(2, 5)(3, 10)(4, 6)(7, 14)(8, 16)(9, 11)(12, 15)(13, 17)(18, 19), Perm(0, 7)(1, 2)(3, 6)(4, 11)(5, 12)(8, 10)(9, 17)(13, 16)(14, 18)(15, 19), Perm(0, 12)(1, 8)(2, 3)(4, 7)(5, 18)(6, 13)(9, 11)(10, 19)(14, 17)(15, 16), Perm(0, 8)(1, 13)(2, 9)(3, 4)(5, 12)(6, 19)(7, 14)(10, 18)(11, 15)(16, 17), Perm(0, 4)(1, 9)(2, 14)(3, 5)(6, 13)(7, 15)(8, 10)(11, 19)(12, 16)(17, 18), Perm(0, 5)(1, 14)(2, 15)(3, 16)(4, 10)(6, 9)(7, 19)(8, 17)(11, 13)(12, 18), Perm(0, 11)(1, 6)(2, 10)(3, 16)(4, 17)(5, 7)(8, 15)(9, 18)(12, 14)(13, 19), Perm(0, 18)(1, 12)(2, 7)(3, 11)(4, 17)(5, 19)(6, 8)(9, 16)(10, 13)(14, 15), Perm(0, 18)(1, 19)(2, 13)(3, 8)(4, 12)(5, 17)(6, 15)(7, 9)(10, 16)(11, 14), Perm(0, 13)(1, 19)(2, 15)(3, 14)(4, 9)(5, 8)(6, 18)(7, 16)(10, 12)(11, 17), Perm(0, 16)(1, 15)(2, 19)(3, 18)(4, 17)(5, 10)(6, 14)(7, 13)(8, 12)(9, 11), Perm(0, 18)(1, 17)(2, 16)(3, 15)(4, 19)(5, 12)(6, 11)(7, 10)(8, 14)(9, 13), Perm(0, 15)(1, 19)(2, 18)(3, 17)(4, 16)(5, 14)(6, 13)(7, 12)(8, 11)(9, 10), Perm(0, 17)(1, 16)(2, 15)(3, 19)(4, 18)(5, 11)(6, 10)(7, 14)(8, 13)(9, 12), Perm(0, 19)(1, 18)(2, 17)(3, 16)(4, 15)(5, 13)(6, 12)(7, 11)(8, 10)(9, 14), Perm(1, 4, 5)(2, 9, 10)(3, 14, 6)(7, 13, 16)(8, 15, 11)(12, 19, 17), Perm(19)(0, 6, 2)(3, 5, 11)(4, 10, 7)(8, 14, 17)(9, 16, 12)(13, 15, 18), Perm(0, 11, 8)(1, 7, 3)(4, 6, 12)(5, 17, 13)(9, 10, 18)(14, 16, 19), Perm(0, 7, 13)(1, 12, 9)(2, 8, 4)(5, 11, 19)(6, 18, 14)(10, 17, 15), Perm(0, 3, 9)(1, 8, 14)(2, 13, 5)(6, 12, 15)(7, 19, 10)(11, 18, 16), Perm(0, 14, 10)(1, 9, 16)(2, 13, 17)(3, 19, 11)(4, 15, 6)(7, 8, 18), Perm(0, 16, 7)(1, 10, 11)(2, 5, 17)(3, 14, 18)(4, 15, 12)(8, 9, 19), Perm(0, 16, 13)(1, 17, 8)(2, 11, 12)(3, 6, 18)(4, 10, 19)(5, 15, 9), Perm(0, 11, 15)(1, 17, 14)(2, 18, 9)(3, 12, 13)(4, 7, 19)(5, 6, 16), Perm(0, 8, 15)(1, 12, 16)(2, 18, 10)(3, 19, 5)(4, 13, 14)(6, 7, 17))) icosahedron = Polyhedron( Tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), Tuple( Tuple(0, 1, 2), Tuple(0, 2, 3), Tuple(0, 3, 4), Tuple(0, 4, 5), Tuple(0, 1, 5), Tuple(1, 6, 7), Tuple(1, 2, 7), Tuple(2, 7, 8), Tuple(2, 3, 8), Tuple(3, 8, 9), Tuple(3, 4, 9), Tuple(4, 9, 10), Tuple(4, 5, 10), Tuple(5, 6, 10), Tuple(1, 5, 6), Tuple(6, 7, 11), Tuple(7, 8, 11), Tuple(8, 9, 11), Tuple(9, 10, 11), Tuple(6, 10, 11)), Tuple( Perm(11)(1, 2, 3, 4, 5)(6, 7, 8, 9, 10), Perm(0, 5, 6, 7, 2)(3, 4, 10, 11, 8), Perm(0, 1, 7, 8, 3)(4, 5, 6, 11, 9), Perm(0, 2, 8, 9, 4)(1, 7, 11, 10, 5), Perm(0, 3, 9, 10, 5)(1, 2, 8, 11, 6), Perm(0, 4, 10, 6, 1)(2, 3, 9, 11, 7), Perm(0, 1)(2, 5)(3, 6)(4, 7)(8, 10)(9, 11), Perm(0, 2)(1, 3)(4, 7)(5, 8)(6, 9)(10, 11), Perm(0, 3)(1, 9)(2, 4)(5, 8)(6, 11)(7, 10), Perm(0, 4)(1, 9)(2, 10)(3, 5)(6, 8)(7, 11), Perm(0, 5)(1, 4)(2, 10)(3, 6)(7, 9)(8, 11), Perm(0, 6)(1, 5)(2, 10)(3, 11)(4, 7)(8, 9), Perm(0, 7)(1, 2)(3, 6)(4, 11)(5, 8)(9, 10), Perm(0, 8)(1, 9)(2, 3)(4, 7)(5, 11)(6, 10), Perm(0, 9)(1, 11)(2, 10)(3, 4)(5, 8)(6, 7), Perm(0, 10)(1, 9)(2, 11)(3, 6)(4, 5)(7, 8), Perm(0, 11)(1, 6)(2, 10)(3, 9)(4, 8)(5, 7), Perm(0, 11)(1, 8)(2, 7)(3, 6)(4, 10)(5, 9), Perm(0, 11)(1, 10)(2, 9)(3, 8)(4, 7)(5, 6), Perm(0, 11)(1, 7)(2, 6)(3, 10)(4, 9)(5, 8), Perm(0, 11)(1, 9)(2, 8)(3, 7)(4, 6)(5, 10), Perm(0, 5, 1)(2, 4, 6)(3, 10, 7)(8, 9, 11), Perm(0, 1, 2)(3, 5, 7)(4, 6, 8)(9, 10, 11), Perm(0, 2, 3)(1, 8, 4)(5, 7, 9)(6, 11, 10), Perm(0, 3, 4)(1, 8, 10)(2, 9, 5)(6, 7, 11), Perm(0, 4, 5)(1, 3, 10)(2, 9, 6)(7, 8, 11), Perm(0, 10, 7)(1, 5, 6)(2, 4, 11)(3, 9, 8), Perm(0, 6, 8)(1, 7, 2)(3, 5, 11)(4, 10, 9), Perm(0, 7, 9)(1, 11, 4)(2, 8, 3)(5, 6, 10), Perm(0, 8, 10)(1, 7, 6)(2, 11, 5)(3, 9, 4), Perm(0, 9, 6)(1, 3, 11)(2, 8, 7)(4, 10, 5))) tetrahedron_faces = list(tuple(arg) for arg in tetrahedron.faces) cube_faces = list(tuple(arg) for arg in cube.faces) octahedron_faces = list(tuple(arg) for arg in octahedron.faces) dodecahedron_faces = list(tuple(arg) for arg in dodecahedron.faces) icosahedron_faces = list(tuple(arg) for arg in icosahedron.faces)
e493b89ebf19ab4b91ca84a9b12efe0970a55d21eceef1dde8c6b447d9cfac5f
from __future__ import print_function, division from sympy.combinatorics.permutations import Permutation, _af_invert, _af_rmul from sympy.core.compatibility import range from sympy.ntheory import isprime rmul = Permutation.rmul _af_new = Permutation._af_new ############################################ # # Utilities for computational group theory # ############################################ def _base_ordering(base, degree): r""" Order `\{0, 1, ..., n-1\}` so that base points come first and in order. Parameters ========== ``base`` - the base ``degree`` - the degree of the associated permutation group Returns ======= A list ``base_ordering`` such that ``base_ordering[point]`` is the number of ``point`` in the ordering. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> from sympy.combinatorics.util import _base_ordering >>> S = SymmetricGroup(4) >>> S.schreier_sims() >>> _base_ordering(S.base, S.degree) [0, 1, 2, 3] Notes ===== This is used in backtrack searches, when we define a relation `<<` on the underlying set for a permutation group of degree `n`, `\{0, 1, ..., n-1\}`, so that if `(b_1, b_2, ..., b_k)` is a base we have `b_i << b_j` whenever `i<j` and `b_i << a` for all `i\in\{1,2, ..., k\}` and `a` is not in the base. The idea is developed and applied to backtracking algorithms in [1], pp.108-132. The points that are not in the base are taken in increasing order. References ========== .. [1] Holt, D., Eick, B., O'Brien, E. "Handbook of computational group theory" """ base_len = len(base) ordering = [0]*degree for i in range(base_len): ordering[base[i]] = i current = base_len for i in range(degree): if i not in base: ordering[i] = current current += 1 return ordering def _check_cycles_alt_sym(perm): """ Checks for cycles of prime length p with n/2 < p < n-2. Here `n` is the degree of the permutation. This is a helper function for the function is_alt_sym from sympy.combinatorics.perm_groups. Examples ======== >>> from sympy.combinatorics.util import _check_cycles_alt_sym >>> from sympy.combinatorics.permutations import Permutation >>> a = Permutation([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11, 12]]) >>> _check_cycles_alt_sym(a) False >>> b = Permutation([[0, 1, 2, 3, 4, 5, 6], [7, 8, 9, 10]]) >>> _check_cycles_alt_sym(b) True See Also ======== sympy.combinatorics.perm_groups.PermutationGroup.is_alt_sym """ n = perm.size af = perm.array_form current_len = 0 total_len = 0 used = set() for i in range(n//2): if not i in used and i < n//2 - total_len: current_len = 1 used.add(i) j = i while af[j] != i: current_len += 1 j = af[j] used.add(j) total_len += current_len if current_len > n//2 and current_len < n - 2 and isprime(current_len): return True return False def _distribute_gens_by_base(base, gens): r""" Distribute the group elements ``gens`` by membership in basic stabilizers. Notice that for a base `(b_1, b_2, ..., b_k)`, the basic stabilizers are defined as `G^{(i)} = G_{b_1, ..., b_{i-1}}` for `i \in\{1, 2, ..., k\}`. Parameters ========== ``base`` - a sequence of points in `\{0, 1, ..., n-1\}` ``gens`` - a list of elements of a permutation group of degree `n`. Returns ======= List of length `k`, where `k` is the length of ``base``. The `i`-th entry contains those elements in ``gens`` which fix the first `i` elements of ``base`` (so that the `0`-th entry is equal to ``gens`` itself). If no element fixes the first `i` elements of ``base``, the `i`-th element is set to a list containing the identity element. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.named_groups import DihedralGroup >>> from sympy.combinatorics.util import _distribute_gens_by_base >>> D = DihedralGroup(3) >>> D.schreier_sims() >>> D.strong_gens [(0 1 2), (0 2), (1 2)] >>> D.base [0, 1] >>> _distribute_gens_by_base(D.base, D.strong_gens) [[(0 1 2), (0 2), (1 2)], [(1 2)]] See Also ======== _strong_gens_from_distr, _orbits_transversals_from_bsgs, _handle_precomputed_bsgs """ base_len = len(base) degree = gens[0].size stabs = [[] for _ in range(base_len)] max_stab_index = 0 for gen in gens: j = 0 while j < base_len - 1 and gen._array_form[base[j]] == base[j]: j += 1 if j > max_stab_index: max_stab_index = j for k in range(j + 1): stabs[k].append(gen) for i in range(max_stab_index + 1, base_len): stabs[i].append(_af_new(list(range(degree)))) return stabs def _handle_precomputed_bsgs(base, strong_gens, transversals=None, basic_orbits=None, strong_gens_distr=None): """ Calculate BSGS-related structures from those present. The base and strong generating set must be provided; if any of the transversals, basic orbits or distributed strong generators are not provided, they will be calculated from the base and strong generating set. Parameters ========== ``base`` - the base ``strong_gens`` - the strong generators ``transversals`` - basic transversals ``basic_orbits`` - basic orbits ``strong_gens_distr`` - strong generators distributed by membership in basic stabilizers Returns ======= ``(transversals, basic_orbits, strong_gens_distr)`` where ``transversals`` are the basic transversals, ``basic_orbits`` are the basic orbits, and ``strong_gens_distr`` are the strong generators distributed by membership in basic stabilizers. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.named_groups import DihedralGroup >>> from sympy.combinatorics.util import _handle_precomputed_bsgs >>> D = DihedralGroup(3) >>> D.schreier_sims() >>> _handle_precomputed_bsgs(D.base, D.strong_gens, ... basic_orbits=D.basic_orbits) ([{0: (2), 1: (0 1 2), 2: (0 2)}, {1: (2), 2: (1 2)}], [[0, 1, 2], [1, 2]], [[(0 1 2), (0 2), (1 2)], [(1 2)]]) See Also ======== _orbits_transversals_from_bsgs, _distribute_gens_by_base """ if strong_gens_distr is None: strong_gens_distr = _distribute_gens_by_base(base, strong_gens) if transversals is None: if basic_orbits is None: basic_orbits, transversals = \ _orbits_transversals_from_bsgs(base, strong_gens_distr) else: transversals = \ _orbits_transversals_from_bsgs(base, strong_gens_distr, transversals_only=True) else: if basic_orbits is None: base_len = len(base) basic_orbits = [None]*base_len for i in range(base_len): basic_orbits[i] = list(transversals[i].keys()) return transversals, basic_orbits, strong_gens_distr def _orbits_transversals_from_bsgs(base, strong_gens_distr, transversals_only=False, slp=False): """ Compute basic orbits and transversals from a base and strong generating set. The generators are provided as distributed across the basic stabilizers. If the optional argument ``transversals_only`` is set to True, only the transversals are returned. Parameters ========== ``base`` - the base ``strong_gens_distr`` - strong generators distributed by membership in basic stabilizers ``transversals_only`` - a flag switching between returning only the transversals/ both orbits and transversals ``slp`` - if ``True``, return a list of dictionaries containing the generator presentations of the elements of the transversals, i.e. the list of indices of generators from `strong_gens_distr[i]` such that their product is the relevant transversal element Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> from sympy.combinatorics.util import _orbits_transversals_from_bsgs >>> from sympy.combinatorics.util import (_orbits_transversals_from_bsgs, ... _distribute_gens_by_base) >>> S = SymmetricGroup(3) >>> S.schreier_sims() >>> strong_gens_distr = _distribute_gens_by_base(S.base, S.strong_gens) >>> _orbits_transversals_from_bsgs(S.base, strong_gens_distr) ([[0, 1, 2], [1, 2]], [{0: (2), 1: (0 1 2), 2: (0 2 1)}, {1: (2), 2: (1 2)}]) See Also ======== _distribute_gens_by_base, _handle_precomputed_bsgs """ from sympy.combinatorics.perm_groups import _orbit_transversal base_len = len(base) degree = strong_gens_distr[0][0].size transversals = [None]*base_len slps = [None]*base_len if transversals_only is False: basic_orbits = [None]*base_len for i in range(base_len): transversals[i], slps[i] = _orbit_transversal(degree, strong_gens_distr[i], base[i], pairs=True, slp=True) transversals[i] = dict(transversals[i]) if transversals_only is False: basic_orbits[i] = list(transversals[i].keys()) if transversals_only: return transversals else: if not slp: return basic_orbits, transversals return basic_orbits, transversals, slps def _remove_gens(base, strong_gens, basic_orbits=None, strong_gens_distr=None): """ Remove redundant generators from a strong generating set. Parameters ========== ``base`` - a base ``strong_gens`` - a strong generating set relative to ``base`` ``basic_orbits`` - basic orbits ``strong_gens_distr`` - strong generators distributed by membership in basic stabilizers Returns ======= A strong generating set with respect to ``base`` which is a subset of ``strong_gens``. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.util import _remove_gens >>> from sympy.combinatorics.testutil import _verify_bsgs >>> S = SymmetricGroup(15) >>> base, strong_gens = S.schreier_sims_incremental() >>> new_gens = _remove_gens(base, strong_gens) >>> len(new_gens) 14 >>> _verify_bsgs(S, base, new_gens) True Notes ===== This procedure is outlined in [1],p.95. References ========== .. [1] Holt, D., Eick, B., O'Brien, E. "Handbook of computational group theory" """ from sympy.combinatorics.perm_groups import _orbit base_len = len(base) degree = strong_gens[0].size if strong_gens_distr is None: strong_gens_distr = _distribute_gens_by_base(base, strong_gens) if basic_orbits is None: basic_orbits = [] for i in range(base_len): basic_orbit = _orbit(degree, strong_gens_distr[i], base[i]) basic_orbits.append(basic_orbit) strong_gens_distr.append([]) res = strong_gens[:] for i in range(base_len - 1, -1, -1): gens_copy = strong_gens_distr[i][:] for gen in strong_gens_distr[i]: if gen not in strong_gens_distr[i + 1]: temp_gens = gens_copy[:] temp_gens.remove(gen) if temp_gens == []: continue temp_orbit = _orbit(degree, temp_gens, base[i]) if temp_orbit == basic_orbits[i]: gens_copy.remove(gen) res.remove(gen) return res def _strip(g, base, orbits, transversals): """ Attempt to decompose a permutation using a (possibly partial) BSGS structure. This is done by treating the sequence ``base`` as an actual base, and the orbits ``orbits`` and transversals ``transversals`` as basic orbits and transversals relative to it. This process is called "sifting". A sift is unsuccessful when a certain orbit element is not found or when after the sift the decomposition doesn't end with the identity element. The argument ``transversals`` is a list of dictionaries that provides transversal elements for the orbits ``orbits``. Parameters ========== ``g`` - permutation to be decomposed ``base`` - sequence of points ``orbits`` - a list in which the ``i``-th entry is an orbit of ``base[i]`` under some subgroup of the pointwise stabilizer of ` `base[0], base[1], ..., base[i - 1]``. The groups themselves are implicit in this function since the only information we need is encoded in the orbits and transversals ``transversals`` - a list of orbit transversals associated with the orbits ``orbits``. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.util import _strip >>> S = SymmetricGroup(5) >>> S.schreier_sims() >>> g = Permutation([0, 2, 3, 1, 4]) >>> _strip(g, S.base, S.basic_orbits, S.basic_transversals) ((4), 5) Notes ===== The algorithm is described in [1],pp.89-90. The reason for returning both the current state of the element being decomposed and the level at which the sifting ends is that they provide important information for the randomized version of the Schreier-Sims algorithm. References ========== [1] Holt, D., Eick, B., O'Brien, E. "Handbook of computational group theory" See Also ======== sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims_random """ h = g._array_form base_len = len(base) for i in range(base_len): beta = h[base[i]] if beta == base[i]: continue if beta not in orbits[i]: return _af_new(h), i + 1 u = transversals[i][beta]._array_form h = _af_rmul(_af_invert(u), h) return _af_new(h), base_len + 1 def _strip_af(h, base, orbits, transversals, j, slp=[], slps={}): """ optimized _strip, with h, transversals and result in array form if the stripped elements is the identity, it returns False, base_len + 1 j h[base[i]] == base[i] for i <= j """ base_len = len(base) for i in range(j+1, base_len): beta = h[base[i]] if beta == base[i]: continue if beta not in orbits[i]: if not slp: return h, i + 1 return h, i + 1, slp u = transversals[i][beta] if h == u: if not slp: return False, base_len + 1 return False, base_len + 1, slp h = _af_rmul(_af_invert(u), h) if slp: u_slp = slps[i][beta][:] u_slp.reverse() u_slp = [(i, (g,)) for g in u_slp] slp = u_slp + slp if not slp: return h, base_len + 1 return h, base_len + 1, slp def _strong_gens_from_distr(strong_gens_distr): """ Retrieve strong generating set from generators of basic stabilizers. This is just the union of the generators of the first and second basic stabilizers. Parameters ========== ``strong_gens_distr`` - strong generators distributed by membership in basic stabilizers Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> from sympy.combinatorics.util import (_strong_gens_from_distr, ... _distribute_gens_by_base) >>> S = SymmetricGroup(3) >>> S.schreier_sims() >>> S.strong_gens [(0 1 2), (2)(0 1), (1 2)] >>> strong_gens_distr = _distribute_gens_by_base(S.base, S.strong_gens) >>> _strong_gens_from_distr(strong_gens_distr) [(0 1 2), (2)(0 1), (1 2)] See Also ======== _distribute_gens_by_base """ if len(strong_gens_distr) == 1: return strong_gens_distr[0][:] else: result = strong_gens_distr[0] for gen in strong_gens_distr[1]: if gen not in result: result.append(gen) return result
2b797a92fa6935c0e68ca2e7fb4f921e9de09222a9eb68a7a865fe98c1dc74f9
from __future__ import print_function, division from collections import defaultdict from sympy.core import (Basic, S, Add, Mul, Pow, Symbol, sympify, expand_mul, expand_func, Function, Dummy, Expr, factor_terms, expand_power_exp, Eq) from sympy.core.compatibility import iterable, ordered, range, as_int from sympy.core.evaluate import global_evaluate from sympy.core.function import expand_log, count_ops, _mexpand, _coeff_isneg, nfloat from sympy.core.numbers import Float, I, pi, Rational, Integer from sympy.core.rules import Transform from sympy.core.sympify import _sympify from sympy.functions import gamma, exp, sqrt, log, exp_polar, re from sympy.functions.combinatorial.factorials import CombinatorialFunction from sympy.functions.elementary.complexes import unpolarify from sympy.functions.elementary.exponential import ExpBase from sympy.functions.elementary.hyperbolic import HyperbolicFunction from sympy.functions.elementary.integers import ceiling from sympy.functions.elementary.piecewise import Piecewise, piecewise_fold from sympy.functions.elementary.trigonometric import TrigonometricFunction from sympy.functions.special.bessel import besselj, besseli, besselk, jn, bessely from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.polys import together, cancel, factor from sympy.simplify.combsimp import combsimp from sympy.simplify.cse_opts import sub_pre, sub_post from sympy.simplify.powsimp import powsimp from sympy.simplify.radsimp import radsimp, fraction, collect_abs from sympy.simplify.sqrtdenest import sqrtdenest from sympy.simplify.trigsimp import trigsimp, exptrigsimp from sympy.utilities.iterables import has_variety, sift import mpmath def separatevars(expr, symbols=[], dict=False, force=False): """ Separates variables in an expression, if possible. By default, it separates with respect to all symbols in an expression and collects constant coefficients that are independent of symbols. If dict=True then the separated terms will be returned in a dictionary keyed to their corresponding symbols. By default, all symbols in the expression will appear as keys; if symbols are provided, then all those symbols will be used as keys, and any terms in the expression containing other symbols or non-symbols will be returned keyed to the string 'coeff'. (Passing None for symbols will return the expression in a dictionary keyed to 'coeff'.) If force=True, then bases of powers will be separated regardless of assumptions on the symbols involved. Notes ===== The order of the factors is determined by Mul, so that the separated expressions may not necessarily be grouped together. Although factoring is necessary to separate variables in some expressions, it is not necessary in all cases, so one should not count on the returned factors being factored. Examples ======== >>> from sympy.abc import x, y, z, alpha >>> from sympy import separatevars, sin >>> separatevars((x*y)**y) (x*y)**y >>> separatevars((x*y)**y, force=True) x**y*y**y >>> e = 2*x**2*z*sin(y)+2*z*x**2 >>> separatevars(e) 2*x**2*z*(sin(y) + 1) >>> separatevars(e, symbols=(x, y), dict=True) {'coeff': 2*z, x: x**2, y: sin(y) + 1} >>> separatevars(e, [x, y, alpha], dict=True) {'coeff': 2*z, alpha: 1, x: x**2, y: sin(y) + 1} If the expression is not really separable, or is only partially separable, separatevars will do the best it can to separate it by using factoring. >>> separatevars(x + x*y - 3*x**2) -x*(3*x - y - 1) If the expression is not separable then expr is returned unchanged or (if dict=True) then None is returned. >>> eq = 2*x + y*sin(x) >>> separatevars(eq) == eq True >>> separatevars(2*x + y*sin(x), symbols=(x, y), dict=True) is None True """ expr = sympify(expr) if dict: return _separatevars_dict(_separatevars(expr, force), symbols) else: return _separatevars(expr, force) def _separatevars(expr, force): from sympy.functions.elementary.complexes import Abs if isinstance(expr, Abs): arg = expr.args[0] if arg.is_Mul and not arg.is_number: s = separatevars(arg, dict=True, force=force) if s is not None: return Mul(*map(expr.func, s.values())) else: return expr if len(expr.free_symbols) < 2: return expr # don't destroy a Mul since much of the work may already be done if expr.is_Mul: args = list(expr.args) changed = False for i, a in enumerate(args): args[i] = separatevars(a, force) changed = changed or args[i] != a if changed: expr = expr.func(*args) return expr # get a Pow ready for expansion if expr.is_Pow: expr = Pow(separatevars(expr.base, force=force), expr.exp) # First try other expansion methods expr = expr.expand(mul=False, multinomial=False, force=force) _expr, reps = posify(expr) if force else (expr, {}) expr = factor(_expr).subs(reps) if not expr.is_Add: return expr # Find any common coefficients to pull out args = list(expr.args) commonc = args[0].args_cnc(cset=True, warn=False)[0] for i in args[1:]: commonc &= i.args_cnc(cset=True, warn=False)[0] commonc = Mul(*commonc) commonc = commonc.as_coeff_Mul()[1] # ignore constants commonc_set = commonc.args_cnc(cset=True, warn=False)[0] # remove them for i, a in enumerate(args): c, nc = a.args_cnc(cset=True, warn=False) c = c - commonc_set args[i] = Mul(*c)*Mul(*nc) nonsepar = Add(*args) if len(nonsepar.free_symbols) > 1: _expr = nonsepar _expr, reps = posify(_expr) if force else (_expr, {}) _expr = (factor(_expr)).subs(reps) if not _expr.is_Add: nonsepar = _expr return commonc*nonsepar def _separatevars_dict(expr, symbols): if symbols: if not all((t.is_Atom for t in symbols)): raise ValueError("symbols must be Atoms.") symbols = list(symbols) elif symbols is None: return {'coeff': expr} else: symbols = list(expr.free_symbols) if not symbols: return None ret = dict(((i, []) for i in symbols + ['coeff'])) for i in Mul.make_args(expr): expsym = i.free_symbols intersection = set(symbols).intersection(expsym) if len(intersection) > 1: return None if len(intersection) == 0: # There are no symbols, so it is part of the coefficient ret['coeff'].append(i) else: ret[intersection.pop()].append(i) # rebuild for k, v in ret.items(): ret[k] = Mul(*v) return ret def _is_sum_surds(p): args = p.args if p.is_Add else [p] for y in args: if not ((y**2).is_Rational and y.is_extended_real): return False return True def posify(eq): """Return eq (with generic symbols made positive) and a dictionary containing the mapping between the old and new symbols. Any symbol that has positive=None will be replaced with a positive dummy symbol having the same name. This replacement will allow more symbolic processing of expressions, especially those involving powers and logarithms. A dictionary that can be sent to subs to restore eq to its original symbols is also returned. >>> from sympy import posify, Symbol, log, solve >>> from sympy.abc import x >>> posify(x + Symbol('p', positive=True) + Symbol('n', negative=True)) (_x + n + p, {_x: x}) >>> eq = 1/x >>> log(eq).expand() log(1/x) >>> log(posify(eq)[0]).expand() -log(_x) >>> p, rep = posify(eq) >>> log(p).expand().subs(rep) -log(x) It is possible to apply the same transformations to an iterable of expressions: >>> eq = x**2 - 4 >>> solve(eq, x) [-2, 2] >>> eq_x, reps = posify([eq, x]); eq_x [_x**2 - 4, _x] >>> solve(*eq_x) [2] """ eq = sympify(eq) if iterable(eq): f = type(eq) eq = list(eq) syms = set() for e in eq: syms = syms.union(e.atoms(Symbol)) reps = {} for s in syms: reps.update(dict((v, k) for k, v in posify(s)[1].items())) for i, e in enumerate(eq): eq[i] = e.subs(reps) return f(eq), {r: s for s, r in reps.items()} reps = {s: Dummy(s.name, positive=True, **s.assumptions0) for s in eq.free_symbols if s.is_positive is None} eq = eq.subs(reps) return eq, {r: s for s, r in reps.items()} def hypersimp(f, k): """Given combinatorial term f(k) simplify its consecutive term ratio i.e. f(k+1)/f(k). The input term can be composed of functions and integer sequences which have equivalent representation in terms of gamma special function. The algorithm performs three basic steps: 1. Rewrite all functions in terms of gamma, if possible. 2. Rewrite all occurrences of gamma in terms of products of gamma and rising factorial with integer, absolute constant exponent. 3. Perform simplification of nested fractions, powers and if the resulting expression is a quotient of polynomials, reduce their total degree. If f(k) is hypergeometric then as result we arrive with a quotient of polynomials of minimal degree. Otherwise None is returned. For more information on the implemented algorithm refer to: 1. W. Koepf, Algorithms for m-fold Hypergeometric Summation, Journal of Symbolic Computation (1995) 20, 399-417 """ f = sympify(f) g = f.subs(k, k + 1) / f g = g.rewrite(gamma) g = expand_func(g) g = powsimp(g, deep=True, combine='exp') if g.is_rational_function(k): return simplify(g, ratio=S.Infinity) else: return None def hypersimilar(f, g, k): """Returns True if 'f' and 'g' are hyper-similar. Similarity in hypergeometric sense means that a quotient of f(k) and g(k) is a rational function in k. This procedure is useful in solving recurrence relations. For more information see hypersimp(). """ f, g = list(map(sympify, (f, g))) h = (f/g).rewrite(gamma) h = h.expand(func=True, basic=False) return h.is_rational_function(k) def signsimp(expr, evaluate=None): """Make all Add sub-expressions canonical wrt sign. If an Add subexpression, ``a``, can have a sign extracted, as determined by could_extract_minus_sign, it is replaced with Mul(-1, a, evaluate=False). This allows signs to be extracted from powers and products. Examples ======== >>> from sympy import signsimp, exp, symbols >>> from sympy.abc import x, y >>> i = symbols('i', odd=True) >>> n = -1 + 1/x >>> n/x/(-n)**2 - 1/n/x (-1 + 1/x)/(x*(1 - 1/x)**2) - 1/(x*(-1 + 1/x)) >>> signsimp(_) 0 >>> x*n + x*-n x*(-1 + 1/x) + x*(1 - 1/x) >>> signsimp(_) 0 Since powers automatically handle leading signs >>> (-2)**i -2**i signsimp can be used to put the base of a power with an integer exponent into canonical form: >>> n**i (-1 + 1/x)**i By default, signsimp doesn't leave behind any hollow simplification: if making an Add canonical wrt sign didn't change the expression, the original Add is restored. If this is not desired then the keyword ``evaluate`` can be set to False: >>> e = exp(y - x) >>> signsimp(e) == e True >>> signsimp(e, evaluate=False) exp(-(x - y)) """ if evaluate is None: evaluate = global_evaluate[0] expr = sympify(expr) if not isinstance(expr, Expr) or expr.is_Atom: return expr e = sub_post(sub_pre(expr)) if not isinstance(e, Expr) or e.is_Atom: return e if e.is_Add: return e.func(*[signsimp(a, evaluate) for a in e.args]) if evaluate: e = e.xreplace({m: -(-m) for m in e.atoms(Mul) if -(-m) != m}) return e def simplify(expr, ratio=1.7, measure=count_ops, rational=False, inverse=False, doit=True, **kwargs): """Simplifies the given expression. Simplification is not a well defined term and the exact strategies this function tries can change in the future versions of SymPy. If your algorithm relies on "simplification" (whatever it is), try to determine what you need exactly - is it powsimp()?, radsimp()?, together()?, logcombine()?, or something else? And use this particular function directly, because those are well defined and thus your algorithm will be robust. Nonetheless, especially for interactive use, or when you don't know anything about the structure of the expression, simplify() tries to apply intelligent heuristics to make the input expression "simpler". For example: >>> from sympy import simplify, cos, sin >>> from sympy.abc import x, y >>> a = (x + x**2)/(x*sin(y)**2 + x*cos(y)**2) >>> a (x**2 + x)/(x*sin(y)**2 + x*cos(y)**2) >>> simplify(a) x + 1 Note that we could have obtained the same result by using specific simplification functions: >>> from sympy import trigsimp, cancel >>> trigsimp(a) (x**2 + x)/x >>> cancel(_) x + 1 In some cases, applying :func:`simplify` may actually result in some more complicated expression. The default ``ratio=1.7`` prevents more extreme cases: if (result length)/(input length) > ratio, then input is returned unmodified. The ``measure`` parameter lets you specify the function used to determine how complex an expression is. The function should take a single argument as an expression and return a number such that if expression ``a`` is more complex than expression ``b``, then ``measure(a) > measure(b)``. The default measure function is :func:`~.count_ops`, which returns the total number of operations in the expression. For example, if ``ratio=1``, ``simplify`` output can't be longer than input. :: >>> from sympy import sqrt, simplify, count_ops, oo >>> root = 1/(sqrt(2)+3) Since ``simplify(root)`` would result in a slightly longer expression, root is returned unchanged instead:: >>> simplify(root, ratio=1) == root True If ``ratio=oo``, simplify will be applied anyway:: >>> count_ops(simplify(root, ratio=oo)) > count_ops(root) True Note that the shortest expression is not necessary the simplest, so setting ``ratio`` to 1 may not be a good idea. Heuristically, the default value ``ratio=1.7`` seems like a reasonable choice. You can easily define your own measure function based on what you feel should represent the "size" or "complexity" of the input expression. Note that some choices, such as ``lambda expr: len(str(expr))`` may appear to be good metrics, but have other problems (in this case, the measure function may slow down simplify too much for very large expressions). If you don't know what a good metric would be, the default, ``count_ops``, is a good one. For example: >>> from sympy import symbols, log >>> a, b = symbols('a b', positive=True) >>> g = log(a) + log(b) + log(a)*log(1/b) >>> h = simplify(g) >>> h log(a*b**(1 - log(a))) >>> count_ops(g) 8 >>> count_ops(h) 5 So you can see that ``h`` is simpler than ``g`` using the count_ops metric. However, we may not like how ``simplify`` (in this case, using ``logcombine``) has created the ``b**(log(1/a) + 1)`` term. A simple way to reduce this would be to give more weight to powers as operations in ``count_ops``. We can do this by using the ``visual=True`` option: >>> print(count_ops(g, visual=True)) 2*ADD + DIV + 4*LOG + MUL >>> print(count_ops(h, visual=True)) 2*LOG + MUL + POW + SUB >>> from sympy import Symbol, S >>> def my_measure(expr): ... POW = Symbol('POW') ... # Discourage powers by giving POW a weight of 10 ... count = count_ops(expr, visual=True).subs(POW, 10) ... # Every other operation gets a weight of 1 (the default) ... count = count.replace(Symbol, type(S.One)) ... return count >>> my_measure(g) 8 >>> my_measure(h) 14 >>> 15./8 > 1.7 # 1.7 is the default ratio True >>> simplify(g, measure=my_measure) -log(a)*log(b) + log(a) + log(b) Note that because ``simplify()`` internally tries many different simplification strategies and then compares them using the measure function, we get a completely different result that is still different from the input expression by doing this. If rational=True, Floats will be recast as Rationals before simplification. If rational=None, Floats will be recast as Rationals but the result will be recast as Floats. If rational=False(default) then nothing will be done to the Floats. If inverse=True, it will be assumed that a composition of inverse functions, such as sin and asin, can be cancelled in any order. For example, ``asin(sin(x))`` will yield ``x`` without checking whether x belongs to the set where this relation is true. The default is False. Note that ``simplify()`` automatically calls ``doit()`` on the final expression. You can avoid this behavior by passing ``doit=False`` as an argument. """ def shorter(*choices): """ Return the choice that has the fewest ops. In case of a tie, the expression listed first is selected. """ if not has_variety(choices): return choices[0] return min(choices, key=measure) def done(e): rv = e.doit() if doit else e return shorter(rv, collect_abs(rv)) expr = sympify(expr) kwargs = dict( ratio=kwargs.get('ratio', ratio), measure=kwargs.get('measure', measure), rational=kwargs.get('rational', rational), inverse=kwargs.get('inverse', inverse), doit=kwargs.get('doit', doit)) # no routine for Expr needs to check for is_zero if isinstance(expr, Expr) and expr.is_zero and expr*0 == S.Zero: return S.Zero _eval_simplify = getattr(expr, '_eval_simplify', None) if _eval_simplify is not None: return _eval_simplify(**kwargs) original_expr = expr = collect_abs(signsimp(expr)) if not isinstance(expr, Basic) or not expr.args: # XXX: temporary hack return expr if inverse and expr.has(Function): expr = inversecombine(expr) if not expr.args: # simplified to atomic return expr # do deep simplification handled = Add, Mul, Pow, ExpBase expr = expr.replace( # here, checking for x.args is not enough because Basic has # args but Basic does not always play well with replace, e.g. # when simultaneous is True found expressions will be masked # off with a Dummy but not all Basic objects in an expression # can be replaced with a Dummy lambda x: isinstance(x, Expr) and x.args and not isinstance( x, handled), lambda x: x.func(*[simplify(i, **kwargs) for i in x.args]), simultaneous=False) if not isinstance(expr, handled): return done(expr) if not expr.is_commutative: expr = nc_simplify(expr) # TODO: Apply different strategies, considering expression pattern: # is it a purely rational function? Is there any trigonometric function?... # See also https://github.com/sympy/sympy/pull/185. # rationalize Floats floats = False if rational is not False and expr.has(Float): floats = True expr = nsimplify(expr, rational=True) expr = bottom_up(expr, lambda w: getattr(w, 'normal', lambda: w)()) expr = Mul(*powsimp(expr).as_content_primitive()) _e = cancel(expr) expr1 = shorter(_e, _mexpand(_e).cancel()) # issue 6829 expr2 = shorter(together(expr, deep=True), together(expr1, deep=True)) if ratio is S.Infinity: expr = expr2 else: expr = shorter(expr2, expr1, expr) if not isinstance(expr, Basic): # XXX: temporary hack return expr expr = factor_terms(expr, sign=False) from sympy.simplify.hyperexpand import hyperexpand from sympy.functions.special.bessel import BesselBase from sympy import Sum, Product, Integral # Deal with Piecewise separately to avoid recursive growth of expressions if expr.has(Piecewise): # Fold into a single Piecewise expr = piecewise_fold(expr) # Apply doit, if doit=True expr = done(expr) # Still a Piecewise? if expr.has(Piecewise): # Fold into a single Piecewise, in case doit lead to some # expressions being Piecewise expr = piecewise_fold(expr) # kroneckersimp also affects Piecewise if expr.has(KroneckerDelta): expr = kroneckersimp(expr) # Still a Piecewise? if expr.has(Piecewise): from sympy.functions.elementary.piecewise import piecewise_simplify # Do not apply doit on the segments as it has already # been done above, but simplify expr = piecewise_simplify(expr, deep=True, doit=False) # Still a Piecewise? if expr.has(Piecewise): # Try factor common terms expr = shorter(expr, factor_terms(expr)) # As all expressions have been simplified above with the # complete simplify, nothing more needs to be done here return expr # hyperexpand automatically only works on hypergeometric terms # Do this after the Piecewise part to avoid recursive expansion expr = hyperexpand(expr) if expr.has(KroneckerDelta): expr = kroneckersimp(expr) if expr.has(BesselBase): expr = besselsimp(expr) if expr.has(TrigonometricFunction, HyperbolicFunction): expr = trigsimp(expr, deep=True) if expr.has(log): expr = shorter(expand_log(expr, deep=True), logcombine(expr)) if expr.has(CombinatorialFunction, gamma): # expression with gamma functions or non-integer arguments is # automatically passed to gammasimp expr = combsimp(expr) if expr.has(Sum): expr = sum_simplify(expr, **kwargs) if expr.has(Integral): expr = expr.xreplace(dict([ (i, factor_terms(i)) for i in expr.atoms(Integral)])) if expr.has(Product): expr = product_simplify(expr) from sympy.physics.units import Quantity from sympy.physics.units.util import quantity_simplify if expr.has(Quantity): expr = quantity_simplify(expr) short = shorter(powsimp(expr, combine='exp', deep=True), powsimp(expr), expr) short = shorter(short, cancel(short)) short = shorter(short, factor_terms(short), expand_power_exp(expand_mul(short))) if short.has(TrigonometricFunction, HyperbolicFunction, ExpBase): short = exptrigsimp(short) # get rid of hollow 2-arg Mul factorization hollow_mul = Transform( lambda x: Mul(*x.args), lambda x: x.is_Mul and len(x.args) == 2 and x.args[0].is_Number and x.args[1].is_Add and x.is_commutative) expr = short.xreplace(hollow_mul) numer, denom = expr.as_numer_denom() if denom.is_Add: n, d = fraction(radsimp(1/denom, symbolic=False, max_terms=1)) if n is not S.One: expr = (numer*n).expand()/d if expr.could_extract_minus_sign(): n, d = fraction(expr) if d != 0: expr = signsimp(-n/(-d)) if measure(expr) > ratio*measure(original_expr): expr = original_expr # restore floats if floats and rational is None: expr = nfloat(expr, exponent=False) return done(expr) def sum_simplify(s, **kwargs): """Main function for Sum simplification""" from sympy.concrete.summations import Sum from sympy.core.function import expand if not isinstance(s, Add): s = s.xreplace(dict([(a, sum_simplify(a, **kwargs)) for a in s.atoms(Add) if a.has(Sum)])) s = expand(s) if not isinstance(s, Add): return s terms = s.args s_t = [] # Sum Terms o_t = [] # Other Terms for term in terms: sum_terms, other = sift(Mul.make_args(term), lambda i: isinstance(i, Sum), binary=True) if not sum_terms: o_t.append(term) continue other = [Mul(*other)] s_t.append(Mul(*(other + [s._eval_simplify(**kwargs) for s in sum_terms]))) result = Add(sum_combine(s_t), *o_t) return result def sum_combine(s_t): """Helper function for Sum simplification Attempts to simplify a list of sums, by combining limits / sum function's returns the simplified sum """ from sympy.concrete.summations import Sum used = [False] * len(s_t) for method in range(2): for i, s_term1 in enumerate(s_t): if not used[i]: for j, s_term2 in enumerate(s_t): if not used[j] and i != j: temp = sum_add(s_term1, s_term2, method) if isinstance(temp, Sum) or isinstance(temp, Mul): s_t[i] = temp s_term1 = s_t[i] used[j] = True result = S.Zero for i, s_term in enumerate(s_t): if not used[i]: result = Add(result, s_term) return result def factor_sum(self, limits=None, radical=False, clear=False, fraction=False, sign=True): """Return Sum with constant factors extracted. If ``limits`` is specified then ``self`` is the summand; the other keywords are passed to ``factor_terms``. Examples ======== >>> from sympy import Sum, Integral >>> from sympy.abc import x, y >>> from sympy.simplify.simplify import factor_sum >>> s = Sum(x*y, (x, 1, 3)) >>> factor_sum(s) y*Sum(x, (x, 1, 3)) >>> factor_sum(s.function, s.limits) y*Sum(x, (x, 1, 3)) """ # XXX deprecate in favor of direct call to factor_terms from sympy.concrete.summations import Sum kwargs = dict(radical=radical, clear=clear, fraction=fraction, sign=sign) expr = Sum(self, *limits) if limits else self return factor_terms(expr, **kwargs) def sum_add(self, other, method=0): """Helper function for Sum simplification""" from sympy.concrete.summations import Sum from sympy import Mul #we know this is something in terms of a constant * a sum #so we temporarily put the constants inside for simplification #then simplify the result def __refactor(val): args = Mul.make_args(val) sumv = next(x for x in args if isinstance(x, Sum)) constant = Mul(*[x for x in args if x != sumv]) return Sum(constant * sumv.function, *sumv.limits) if isinstance(self, Mul): rself = __refactor(self) else: rself = self if isinstance(other, Mul): rother = __refactor(other) else: rother = other if type(rself) == type(rother): if method == 0: if rself.limits == rother.limits: return factor_sum(Sum(rself.function + rother.function, *rself.limits)) elif method == 1: if simplify(rself.function - rother.function) == 0: if len(rself.limits) == len(rother.limits) == 1: i = rself.limits[0][0] x1 = rself.limits[0][1] y1 = rself.limits[0][2] j = rother.limits[0][0] x2 = rother.limits[0][1] y2 = rother.limits[0][2] if i == j: if x2 == y1 + 1: return factor_sum(Sum(rself.function, (i, x1, y2))) elif x1 == y2 + 1: return factor_sum(Sum(rself.function, (i, x2, y1))) return Add(self, other) def product_simplify(s): """Main function for Product simplification""" from sympy.concrete.products import Product terms = Mul.make_args(s) p_t = [] # Product Terms o_t = [] # Other Terms for term in terms: if isinstance(term, Product): p_t.append(term) else: o_t.append(term) used = [False] * len(p_t) for method in range(2): for i, p_term1 in enumerate(p_t): if not used[i]: for j, p_term2 in enumerate(p_t): if not used[j] and i != j: if isinstance(product_mul(p_term1, p_term2, method), Product): p_t[i] = product_mul(p_term1, p_term2, method) used[j] = True result = Mul(*o_t) for i, p_term in enumerate(p_t): if not used[i]: result = Mul(result, p_term) return result def product_mul(self, other, method=0): """Helper function for Product simplification""" from sympy.concrete.products import Product if type(self) == type(other): if method == 0: if self.limits == other.limits: return Product(self.function * other.function, *self.limits) elif method == 1: if simplify(self.function - other.function) == 0: if len(self.limits) == len(other.limits) == 1: i = self.limits[0][0] x1 = self.limits[0][1] y1 = self.limits[0][2] j = other.limits[0][0] x2 = other.limits[0][1] y2 = other.limits[0][2] if i == j: if x2 == y1 + 1: return Product(self.function, (i, x1, y2)) elif x1 == y2 + 1: return Product(self.function, (i, x2, y1)) return Mul(self, other) def _nthroot_solve(p, n, prec): """ helper function for ``nthroot`` It denests ``p**Rational(1, n)`` using its minimal polynomial """ from sympy.polys.numberfields import _minimal_polynomial_sq from sympy.solvers import solve while n % 2 == 0: p = sqrtdenest(sqrt(p)) n = n // 2 if n == 1: return p pn = p**Rational(1, n) x = Symbol('x') f = _minimal_polynomial_sq(p, n, x) if f is None: return None sols = solve(f, x) for sol in sols: if abs(sol - pn).n() < 1./10**prec: sol = sqrtdenest(sol) if _mexpand(sol**n) == p: return sol def logcombine(expr, force=False): """ Takes logarithms and combines them using the following rules: - log(x) + log(y) == log(x*y) if both are positive - a*log(x) == log(x**a) if x is positive and a is real If ``force`` is True then the assumptions above will be assumed to hold if there is no assumption already in place on a quantity. For example, if ``a`` is imaginary or the argument negative, force will not perform a combination but if ``a`` is a symbol with no assumptions the change will take place. Examples ======== >>> from sympy import Symbol, symbols, log, logcombine, I >>> from sympy.abc import a, x, y, z >>> logcombine(a*log(x) + log(y) - log(z)) a*log(x) + log(y) - log(z) >>> logcombine(a*log(x) + log(y) - log(z), force=True) log(x**a*y/z) >>> x,y,z = symbols('x,y,z', positive=True) >>> a = Symbol('a', real=True) >>> logcombine(a*log(x) + log(y) - log(z)) log(x**a*y/z) The transformation is limited to factors and/or terms that contain logs, so the result depends on the initial state of expansion: >>> eq = (2 + 3*I)*log(x) >>> logcombine(eq, force=True) == eq True >>> logcombine(eq.expand(), force=True) log(x**2) + I*log(x**3) See Also ======== posify: replace all symbols with symbols having positive assumptions sympy.core.function.expand_log: expand the logarithms of products and powers; the opposite of logcombine """ def f(rv): if not (rv.is_Add or rv.is_Mul): return rv def gooda(a): # bool to tell whether the leading ``a`` in ``a*log(x)`` # could appear as log(x**a) return (a is not S.NegativeOne and # -1 *could* go, but we disallow (a.is_extended_real or force and a.is_extended_real is not False)) def goodlog(l): # bool to tell whether log ``l``'s argument can combine with others a = l.args[0] return a.is_positive or force and a.is_nonpositive is not False other = [] logs = [] log1 = defaultdict(list) for a in Add.make_args(rv): if isinstance(a, log) and goodlog(a): log1[()].append(([], a)) elif not a.is_Mul: other.append(a) else: ot = [] co = [] lo = [] for ai in a.args: if ai.is_Rational and ai < 0: ot.append(S.NegativeOne) co.append(-ai) elif isinstance(ai, log) and goodlog(ai): lo.append(ai) elif gooda(ai): co.append(ai) else: ot.append(ai) if len(lo) > 1: logs.append((ot, co, lo)) elif lo: log1[tuple(ot)].append((co, lo[0])) else: other.append(a) # if there is only one log in other, put it with the # good logs if len(other) == 1 and isinstance(other[0], log): log1[()].append(([], other.pop())) # if there is only one log at each coefficient and none have # an exponent to place inside the log then there is nothing to do if not logs and all(len(log1[k]) == 1 and log1[k][0] == [] for k in log1): return rv # collapse multi-logs as far as possible in a canonical way # TODO: see if x*log(a)+x*log(a)*log(b) -> x*log(a)*(1+log(b))? # -- in this case, it's unambiguous, but if it were were a log(c) in # each term then it's arbitrary whether they are grouped by log(a) or # by log(c). So for now, just leave this alone; it's probably better to # let the user decide for o, e, l in logs: l = list(ordered(l)) e = log(l.pop(0).args[0]**Mul(*e)) while l: li = l.pop(0) e = log(li.args[0]**e) c, l = Mul(*o), e if isinstance(l, log): # it should be, but check to be sure log1[(c,)].append(([], l)) else: other.append(c*l) # logs that have the same coefficient can multiply for k in list(log1.keys()): log1[Mul(*k)] = log(logcombine(Mul(*[ l.args[0]**Mul(*c) for c, l in log1.pop(k)]), force=force), evaluate=False) # logs that have oppositely signed coefficients can divide for k in ordered(list(log1.keys())): if not k in log1: # already popped as -k continue if -k in log1: # figure out which has the minus sign; the one with # more op counts should be the one num, den = k, -k if num.count_ops() > den.count_ops(): num, den = den, num other.append( num*log(log1.pop(num).args[0]/log1.pop(den).args[0], evaluate=False)) else: other.append(k*log1.pop(k)) return Add(*other) return bottom_up(expr, f) def inversecombine(expr): """Simplify the composition of a function and its inverse. No attention is paid to whether the inverse is a left inverse or a right inverse; thus, the result will in general not be equivalent to the original expression. Examples ======== >>> from sympy.simplify.simplify import inversecombine >>> from sympy import asin, sin, log, exp >>> from sympy.abc import x >>> inversecombine(asin(sin(x))) x >>> inversecombine(2*log(exp(3*x))) 6*x """ def f(rv): if rv.is_Function and hasattr(rv, "inverse"): if (len(rv.args) == 1 and len(rv.args[0].args) == 1 and isinstance(rv.args[0], rv.inverse(argindex=1))): rv = rv.args[0].args[0] return rv return bottom_up(expr, f) def walk(e, *target): """iterate through the args that are the given types (target) and return a list of the args that were traversed; arguments that are not of the specified types are not traversed. Examples ======== >>> from sympy.simplify.simplify import walk >>> from sympy import Min, Max >>> from sympy.abc import x, y, z >>> list(walk(Min(x, Max(y, Min(1, z))), Min)) [Min(x, Max(y, Min(1, z)))] >>> list(walk(Min(x, Max(y, Min(1, z))), Min, Max)) [Min(x, Max(y, Min(1, z))), Max(y, Min(1, z)), Min(1, z)] See Also ======== bottom_up """ if isinstance(e, target): yield e for i in e.args: for w in walk(i, *target): yield w def bottom_up(rv, F, atoms=False, nonbasic=False): """Apply ``F`` to all expressions in an expression tree from the bottom up. If ``atoms`` is True, apply ``F`` even if there are no args; if ``nonbasic`` is True, try to apply ``F`` to non-Basic objects. """ args = getattr(rv, 'args', None) if args is not None: if args: args = tuple([bottom_up(a, F, atoms, nonbasic) for a in args]) if args != rv.args: rv = rv.func(*args) rv = F(rv) elif atoms: rv = F(rv) else: if nonbasic: try: rv = F(rv) except TypeError: pass return rv def kroneckersimp(expr): """ Simplify expressions with KroneckerDelta. The only simplification currently attempted is to identify multiplicative cancellation: >>> from sympy import KroneckerDelta, kroneckersimp >>> from sympy.abc import i, j >>> kroneckersimp(1 + KroneckerDelta(0, j) * KroneckerDelta(1, j)) 1 """ def args_cancel(args1, args2): for i1 in range(2): for i2 in range(2): a1 = args1[i1] a2 = args2[i2] a3 = args1[(i1 + 1) % 2] a4 = args2[(i2 + 1) % 2] if Eq(a1, a2) is S.true and Eq(a3, a4) is S.false: return True return False def cancel_kronecker_mul(m): from sympy.utilities.iterables import subsets args = m.args deltas = [a for a in args if isinstance(a, KroneckerDelta)] for delta1, delta2 in subsets(deltas, 2): args1 = delta1.args args2 = delta2.args if args_cancel(args1, args2): return 0*m return m if not expr.has(KroneckerDelta): return expr if expr.has(Piecewise): expr = expr.rewrite(KroneckerDelta) newexpr = expr expr = None while newexpr != expr: expr = newexpr newexpr = expr.replace(lambda e: isinstance(e, Mul), cancel_kronecker_mul) return expr def besselsimp(expr): """ Simplify bessel-type functions. This routine tries to simplify bessel-type functions. Currently it only works on the Bessel J and I functions, however. It works by looking at all such functions in turn, and eliminating factors of "I" and "-1" (actually their polar equivalents) in front of the argument. Then, functions of half-integer order are rewritten using strigonometric functions and functions of integer order (> 1) are rewritten using functions of low order. Finally, if the expression was changed, compute factorization of the result with factor(). >>> from sympy import besselj, besseli, besselsimp, polar_lift, I, S >>> from sympy.abc import z, nu >>> besselsimp(besselj(nu, z*polar_lift(-1))) exp(I*pi*nu)*besselj(nu, z) >>> besselsimp(besseli(nu, z*polar_lift(-I))) exp(-I*pi*nu/2)*besselj(nu, z) >>> besselsimp(besseli(S(-1)/2, z)) sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z)) >>> besselsimp(z*besseli(0, z) + z*(besseli(2, z))/2 + besseli(1, z)) 3*z*besseli(0, z)/2 """ # TODO # - better algorithm? # - simplify (cos(pi*b)*besselj(b,z) - besselj(-b,z))/sin(pi*b) ... # - use contiguity relations? def replacer(fro, to, factors): factors = set(factors) def repl(nu, z): if factors.intersection(Mul.make_args(z)): return to(nu, z) return fro(nu, z) return repl def torewrite(fro, to): def tofunc(nu, z): return fro(nu, z).rewrite(to) return tofunc def tominus(fro): def tofunc(nu, z): return exp(I*pi*nu)*fro(nu, exp_polar(-I*pi)*z) return tofunc orig_expr = expr ifactors = [I, exp_polar(I*pi/2), exp_polar(-I*pi/2)] expr = expr.replace( besselj, replacer(besselj, torewrite(besselj, besseli), ifactors)) expr = expr.replace( besseli, replacer(besseli, torewrite(besseli, besselj), ifactors)) minusfactors = [-1, exp_polar(I*pi)] expr = expr.replace( besselj, replacer(besselj, tominus(besselj), minusfactors)) expr = expr.replace( besseli, replacer(besseli, tominus(besseli), minusfactors)) z0 = Dummy('z') def expander(fro): def repl(nu, z): if (nu % 1) == S.Half: return simplify(trigsimp(unpolarify( fro(nu, z0).rewrite(besselj).rewrite(jn).expand( func=True)).subs(z0, z))) elif nu.is_Integer and nu > 1: return fro(nu, z).expand(func=True) return fro(nu, z) return repl expr = expr.replace(besselj, expander(besselj)) expr = expr.replace(bessely, expander(bessely)) expr = expr.replace(besseli, expander(besseli)) expr = expr.replace(besselk, expander(besselk)) def _bessel_simp_recursion(expr): def _use_recursion(bessel, expr): while True: bessels = expr.find(lambda x: isinstance(x, bessel)) try: for ba in sorted(bessels, key=lambda x: re(x.args[0])): a, x = ba.args bap1 = bessel(a+1, x) bap2 = bessel(a+2, x) if expr.has(bap1) and expr.has(bap2): expr = expr.subs(ba, 2*(a+1)/x*bap1 - bap2) break else: return expr except (ValueError, TypeError): return expr if expr.has(besselj): expr = _use_recursion(besselj, expr) if expr.has(bessely): expr = _use_recursion(bessely, expr) return expr expr = _bessel_simp_recursion(expr) if expr != orig_expr: expr = expr.factor() return expr def nthroot(expr, n, max_len=4, prec=15): """ compute a real nth-root of a sum of surds Parameters ========== expr : sum of surds n : integer max_len : maximum number of surds passed as constants to ``nsimplify`` Algorithm ========= First ``nsimplify`` is used to get a candidate root; if it is not a root the minimal polynomial is computed; the answer is one of its roots. Examples ======== >>> from sympy.simplify.simplify import nthroot >>> from sympy import Rational, sqrt >>> nthroot(90 + 34*sqrt(7), 3) sqrt(7) + 3 """ expr = sympify(expr) n = sympify(n) p = expr**Rational(1, n) if not n.is_integer: return p if not _is_sum_surds(expr): return p surds = [] coeff_muls = [x.as_coeff_Mul() for x in expr.args] for x, y in coeff_muls: if not x.is_rational: return p if y is S.One: continue if not (y.is_Pow and y.exp == S.Half and y.base.is_integer): return p surds.append(y) surds.sort() surds = surds[:max_len] if expr < 0 and n % 2 == 1: p = (-expr)**Rational(1, n) a = nsimplify(p, constants=surds) res = a if _mexpand(a**n) == _mexpand(-expr) else p return -res a = nsimplify(p, constants=surds) if _mexpand(a) is not _mexpand(p) and _mexpand(a**n) == _mexpand(expr): return _mexpand(a) expr = _nthroot_solve(expr, n, prec) if expr is None: return p return expr def nsimplify(expr, constants=(), tolerance=None, full=False, rational=None, rational_conversion='base10'): """ Find a simple representation for a number or, if there are free symbols or if rational=True, then replace Floats with their Rational equivalents. If no change is made and rational is not False then Floats will at least be converted to Rationals. For numerical expressions, a simple formula that numerically matches the given numerical expression is sought (and the input should be possible to evalf to a precision of at least 30 digits). Optionally, a list of (rationally independent) constants to include in the formula may be given. A lower tolerance may be set to find less exact matches. If no tolerance is given then the least precise value will set the tolerance (e.g. Floats default to 15 digits of precision, so would be tolerance=10**-15). With full=True, a more extensive search is performed (this is useful to find simpler numbers when the tolerance is set low). When converting to rational, if rational_conversion='base10' (the default), then convert floats to rationals using their base-10 (string) representation. When rational_conversion='exact' it uses the exact, base-2 representation. Examples ======== >>> from sympy import nsimplify, sqrt, GoldenRatio, exp, I, exp, pi >>> nsimplify(4/(1+sqrt(5)), [GoldenRatio]) -2 + 2*GoldenRatio >>> nsimplify((1/(exp(3*pi*I/5)+1))) 1/2 - I*sqrt(sqrt(5)/10 + 1/4) >>> nsimplify(I**I, [pi]) exp(-pi/2) >>> nsimplify(pi, tolerance=0.01) 22/7 >>> nsimplify(0.333333333333333, rational=True, rational_conversion='exact') 6004799503160655/18014398509481984 >>> nsimplify(0.333333333333333, rational=True) 1/3 See Also ======== sympy.core.function.nfloat """ try: return sympify(as_int(expr)) except (TypeError, ValueError): pass expr = sympify(expr).xreplace({ Float('inf'): S.Infinity, Float('-inf'): S.NegativeInfinity, }) if expr is S.Infinity or expr is S.NegativeInfinity: return expr if rational or expr.free_symbols: return _real_to_rational(expr, tolerance, rational_conversion) # SymPy's default tolerance for Rationals is 15; other numbers may have # lower tolerances set, so use them to pick the largest tolerance if None # was given if tolerance is None: tolerance = 10**-min([15] + [mpmath.libmp.libmpf.prec_to_dps(n._prec) for n in expr.atoms(Float)]) # XXX should prec be set independent of tolerance or should it be computed # from tolerance? prec = 30 bprec = int(prec*3.33) constants_dict = {} for constant in constants: constant = sympify(constant) v = constant.evalf(prec) if not v.is_Float: raise ValueError("constants must be real-valued") constants_dict[str(constant)] = v._to_mpmath(bprec) exprval = expr.evalf(prec, chop=True) re, im = exprval.as_real_imag() # safety check to make sure that this evaluated to a number if not (re.is_Number and im.is_Number): return expr def nsimplify_real(x): orig = mpmath.mp.dps xv = x._to_mpmath(bprec) try: # We'll be happy with low precision if a simple fraction if not (tolerance or full): mpmath.mp.dps = 15 rat = mpmath.pslq([xv, 1]) if rat is not None: return Rational(-int(rat[1]), int(rat[0])) mpmath.mp.dps = prec newexpr = mpmath.identify(xv, constants=constants_dict, tol=tolerance, full=full) if not newexpr: raise ValueError if full: newexpr = newexpr[0] expr = sympify(newexpr) if x and not expr: # don't let x become 0 raise ValueError if expr.is_finite is False and not xv in [mpmath.inf, mpmath.ninf]: raise ValueError return expr finally: # even though there are returns above, this is executed # before leaving mpmath.mp.dps = orig try: if re: re = nsimplify_real(re) if im: im = nsimplify_real(im) except ValueError: if rational is None: return _real_to_rational(expr, rational_conversion=rational_conversion) return expr rv = re + im*S.ImaginaryUnit # if there was a change or rational is explicitly not wanted # return the value, else return the Rational representation if rv != expr or rational is False: return rv return _real_to_rational(expr, rational_conversion=rational_conversion) def _real_to_rational(expr, tolerance=None, rational_conversion='base10'): """ Replace all reals in expr with rationals. Examples ======== >>> from sympy import Rational >>> from sympy.simplify.simplify import _real_to_rational >>> from sympy.abc import x >>> _real_to_rational(.76 + .1*x**.5) sqrt(x)/10 + 19/25 If rational_conversion='base10', this uses the base-10 string. If rational_conversion='exact', the exact, base-2 representation is used. >>> _real_to_rational(0.333333333333333, rational_conversion='exact') 6004799503160655/18014398509481984 >>> _real_to_rational(0.333333333333333) 1/3 """ expr = _sympify(expr) inf = Float('inf') p = expr reps = {} reduce_num = None if tolerance is not None and tolerance < 1: reduce_num = ceiling(1/tolerance) for fl in p.atoms(Float): key = fl if reduce_num is not None: r = Rational(fl).limit_denominator(reduce_num) elif (tolerance is not None and tolerance >= 1 and fl.is_Integer is False): r = Rational(tolerance*round(fl/tolerance) ).limit_denominator(int(tolerance)) else: if rational_conversion == 'exact': r = Rational(fl) reps[key] = r continue elif rational_conversion != 'base10': raise ValueError("rational_conversion must be 'base10' or 'exact'") r = nsimplify(fl, rational=False) # e.g. log(3).n() -> log(3) instead of a Rational if fl and not r: r = Rational(fl) elif not r.is_Rational: if fl == inf or fl == -inf: r = S.ComplexInfinity elif fl < 0: fl = -fl d = Pow(10, int((mpmath.log(fl)/mpmath.log(10)))) r = -Rational(str(fl/d))*d elif fl > 0: d = Pow(10, int((mpmath.log(fl)/mpmath.log(10)))) r = Rational(str(fl/d))*d else: r = Integer(0) reps[key] = r return p.subs(reps, simultaneous=True) def clear_coefficients(expr, rhs=S.Zero): """Return `p, r` where `p` is the expression obtained when Rational additive and multiplicative coefficients of `expr` have been stripped away in a naive fashion (i.e. without simplification). The operations needed to remove the coefficients will be applied to `rhs` and returned as `r`. Examples ======== >>> from sympy.simplify.simplify import clear_coefficients >>> from sympy.abc import x, y >>> from sympy import Dummy >>> expr = 4*y*(6*x + 3) >>> clear_coefficients(expr - 2) (y*(2*x + 1), 1/6) When solving 2 or more expressions like `expr = a`, `expr = b`, etc..., it is advantageous to provide a Dummy symbol for `rhs` and simply replace it with `a`, `b`, etc... in `r`. >>> rhs = Dummy('rhs') >>> clear_coefficients(expr, rhs) (y*(2*x + 1), _rhs/12) >>> _[1].subs(rhs, 2) 1/6 """ was = None free = expr.free_symbols if expr.is_Rational: return (S.Zero, rhs - expr) while expr and was != expr: was = expr m, expr = ( expr.as_content_primitive() if free else factor_terms(expr).as_coeff_Mul(rational=True)) rhs /= m c, expr = expr.as_coeff_Add(rational=True) rhs -= c expr = signsimp(expr, evaluate = False) if _coeff_isneg(expr): expr = -expr rhs = -rhs return expr, rhs def nc_simplify(expr, deep=True): ''' Simplify a non-commutative expression composed of multiplication and raising to a power by grouping repeated subterms into one power. Priority is given to simplifications that give the fewest number of arguments in the end (for example, in a*b*a*b*c*a*b*c simplifying to (a*b)**2*c*a*b*c gives 5 arguments while a*b*(a*b*c)**2 has 3). If `expr` is a sum of such terms, the sum of the simplified terms is returned. Keyword argument `deep` controls whether or not subexpressions nested deeper inside the main expression are simplified. See examples below. Setting `deep` to `False` can save time on nested expressions that don't need simplifying on all levels. Examples ======== >>> from sympy import symbols >>> from sympy.simplify.simplify import nc_simplify >>> a, b, c = symbols("a b c", commutative=False) >>> nc_simplify(a*b*a*b*c*a*b*c) a*b*(a*b*c)**2 >>> expr = a**2*b*a**4*b*a**4 >>> nc_simplify(expr) a**2*(b*a**4)**2 >>> nc_simplify(a*b*a*b*c**2*(a*b)**2*c**2) ((a*b)**2*c**2)**2 >>> nc_simplify(a*b*a*b + 2*a*c*a**2*c*a**2*c*a) (a*b)**2 + 2*(a*c*a)**3 >>> nc_simplify(b**-1*a**-1*(a*b)**2) a*b >>> nc_simplify(a**-1*b**-1*c*a) (b*a)**(-1)*c*a >>> expr = (a*b*a*b)**2*a*c*a*c >>> nc_simplify(expr) (a*b)**4*(a*c)**2 >>> nc_simplify(expr, deep=False) (a*b*a*b)**2*(a*c)**2 ''' from sympy.matrices.expressions import (MatrixExpr, MatAdd, MatMul, MatPow, MatrixSymbol) from sympy.core.exprtools import factor_nc if isinstance(expr, MatrixExpr): expr = expr.doit(inv_expand=False) _Add, _Mul, _Pow, _Symbol = MatAdd, MatMul, MatPow, MatrixSymbol else: _Add, _Mul, _Pow, _Symbol = Add, Mul, Pow, Symbol # =========== Auxiliary functions ======================== def _overlaps(args): # Calculate a list of lists m such that m[i][j] contains the lengths # of all possible overlaps between args[:i+1] and args[i+1+j:]. # An overlap is a suffix of the prefix that matches a prefix # of the suffix. # For example, let expr=c*a*b*a*b*a*b*a*b. Then m[3][0] contains # the lengths of overlaps of c*a*b*a*b with a*b*a*b. The overlaps # are a*b*a*b, a*b and the empty word so that m[3][0]=[4,2,0]. # All overlaps rather than only the longest one are recorded # because this information helps calculate other overlap lengths. m = [[([1, 0] if a == args[0] else [0]) for a in args[1:]]] for i in range(1, len(args)): overlaps = [] j = 0 for j in range(len(args) - i - 1): overlap = [] for v in m[i-1][j+1]: if j + i + 1 + v < len(args) and args[i] == args[j+i+1+v]: overlap.append(v + 1) overlap += [0] overlaps.append(overlap) m.append(overlaps) return m def _reduce_inverses(_args): # replace consecutive negative powers by an inverse # of a product of positive powers, e.g. a**-1*b**-1*c # will simplify to (a*b)**-1*c; # return that new args list and the number of negative # powers in it (inv_tot) inv_tot = 0 # total number of inverses inverses = [] args = [] for arg in _args: if isinstance(arg, _Pow) and arg.args[1] < 0: inverses = [arg**-1] + inverses inv_tot += 1 else: if len(inverses) == 1: args.append(inverses[0]**-1) elif len(inverses) > 1: args.append(_Pow(_Mul(*inverses), -1)) inv_tot -= len(inverses) - 1 inverses = [] args.append(arg) if inverses: args.append(_Pow(_Mul(*inverses), -1)) inv_tot -= len(inverses) - 1 return inv_tot, tuple(args) def get_score(s): # compute the number of arguments of s # (including in nested expressions) overall # but ignore exponents if isinstance(s, _Pow): return get_score(s.args[0]) elif isinstance(s, (_Add, _Mul)): return sum([get_score(a) for a in s.args]) return 1 def compare(s, alt_s): # compare two possible simplifications and return a # "better" one if s != alt_s and get_score(alt_s) < get_score(s): return alt_s return s # ======================================================== if not isinstance(expr, (_Add, _Mul, _Pow)) or expr.is_commutative: return expr args = expr.args[:] if isinstance(expr, _Pow): if deep: return _Pow(nc_simplify(args[0]), args[1]).doit() else: return expr elif isinstance(expr, _Add): return _Add(*[nc_simplify(a, deep=deep) for a in args]).doit() else: # get the non-commutative part c_args, args = expr.args_cnc() com_coeff = Mul(*c_args) if com_coeff != 1: return com_coeff*nc_simplify(expr/com_coeff, deep=deep) inv_tot, args = _reduce_inverses(args) # if most arguments are negative, work with the inverse # of the expression, e.g. a**-1*b*a**-1*c**-1 will become # (c*a*b**-1*a)**-1 at the end so can work with c*a*b**-1*a invert = False if inv_tot > len(args)/2: invert = True args = [a**-1 for a in args[::-1]] if deep: args = tuple(nc_simplify(a) for a in args) m = _overlaps(args) # simps will be {subterm: end} where `end` is the ending # index of a sequence of repetitions of subterm; # this is for not wasting time with subterms that are part # of longer, already considered sequences simps = {} post = 1 pre = 1 # the simplification coefficient is the number of # arguments by which contracting a given sequence # would reduce the word; e.g. in a*b*a*b*c*a*b*c, # contracting a*b*a*b to (a*b)**2 removes 3 arguments # while a*b*c*a*b*c to (a*b*c)**2 removes 6. It's # better to contract the latter so simplification # with a maximum simplification coefficient will be chosen max_simp_coeff = 0 simp = None # information about future simplification for i in range(1, len(args)): simp_coeff = 0 l = 0 # length of a subterm p = 0 # the power of a subterm if i < len(args) - 1: rep = m[i][0] start = i # starting index of the repeated sequence end = i+1 # ending index of the repeated sequence if i == len(args)-1 or rep == [0]: # no subterm is repeated at this stage, at least as # far as the arguments are concerned - there may be # a repetition if powers are taken into account if (isinstance(args[i], _Pow) and not isinstance(args[i].args[0], _Symbol)): subterm = args[i].args[0].args l = len(subterm) if args[i-l:i] == subterm: # e.g. a*b in a*b*(a*b)**2 is not repeated # in args (= [a, b, (a*b)**2]) but it # can be matched here p += 1 start -= l if args[i+1:i+1+l] == subterm: # e.g. a*b in (a*b)**2*a*b p += 1 end += l if p: p += args[i].args[1] else: continue else: l = rep[0] # length of the longest repeated subterm at this point start -= l - 1 subterm = args[start:end] p = 2 end += l if subterm in simps and simps[subterm] >= start: # the subterm is part of a sequence that # has already been considered continue # count how many times it's repeated while end < len(args): if l in m[end-1][0]: p += 1 end += l elif isinstance(args[end], _Pow) and args[end].args[0].args == subterm: # for cases like a*b*a*b*(a*b)**2*a*b p += args[end].args[1] end += 1 else: break # see if another match can be made, e.g. # for b*a**2 in b*a**2*b*a**3 or a*b in # a**2*b*a*b pre_exp = 0 pre_arg = 1 if start - l >= 0 and args[start-l+1:start] == subterm[1:]: if isinstance(subterm[0], _Pow): pre_arg = subterm[0].args[0] exp = subterm[0].args[1] else: pre_arg = subterm[0] exp = 1 if isinstance(args[start-l], _Pow) and args[start-l].args[0] == pre_arg: pre_exp = args[start-l].args[1] - exp start -= l p += 1 elif args[start-l] == pre_arg: pre_exp = 1 - exp start -= l p += 1 post_exp = 0 post_arg = 1 if end + l - 1 < len(args) and args[end:end+l-1] == subterm[:-1]: if isinstance(subterm[-1], _Pow): post_arg = subterm[-1].args[0] exp = subterm[-1].args[1] else: post_arg = subterm[-1] exp = 1 if isinstance(args[end+l-1], _Pow) and args[end+l-1].args[0] == post_arg: post_exp = args[end+l-1].args[1] - exp end += l p += 1 elif args[end+l-1] == post_arg: post_exp = 1 - exp end += l p += 1 # Consider a*b*a**2*b*a**2*b*a: # b*a**2 is explicitly repeated, but note # that in this case a*b*a is also repeated # so there are two possible simplifications: # a*(b*a**2)**3*a**-1 or (a*b*a)**3 # The latter is obviously simpler. # But in a*b*a**2*b**2*a**2 the simplifications are # a*(b*a**2)**2 and (a*b*a)**3*a in which case # it's better to stick with the shorter subterm if post_exp and exp % 2 == 0 and start > 0: exp = exp/2 _pre_exp = 1 _post_exp = 1 if isinstance(args[start-1], _Pow) and args[start-1].args[0] == post_arg: _post_exp = post_exp + exp _pre_exp = args[start-1].args[1] - exp elif args[start-1] == post_arg: _post_exp = post_exp + exp _pre_exp = 1 - exp if _pre_exp == 0 or _post_exp == 0: if not pre_exp: start -= 1 post_exp = _post_exp pre_exp = _pre_exp pre_arg = post_arg subterm = (post_arg**exp,) + subterm[:-1] + (post_arg**exp,) simp_coeff += end-start if post_exp: simp_coeff -= 1 if pre_exp: simp_coeff -= 1 simps[subterm] = end if simp_coeff > max_simp_coeff: max_simp_coeff = simp_coeff simp = (start, _Mul(*subterm), p, end, l) pre = pre_arg**pre_exp post = post_arg**post_exp if simp: subterm = _Pow(nc_simplify(simp[1], deep=deep), simp[2]) pre = nc_simplify(_Mul(*args[:simp[0]])*pre, deep=deep) post = post*nc_simplify(_Mul(*args[simp[3]:]), deep=deep) simp = pre*subterm*post if pre != 1 or post != 1: # new simplifications may be possible but no need # to recurse over arguments simp = nc_simplify(simp, deep=False) else: simp = _Mul(*args) if invert: simp = _Pow(simp, -1) # see if factor_nc(expr) is simplified better if not isinstance(expr, MatrixExpr): f_expr = factor_nc(expr) if f_expr != expr: alt_simp = nc_simplify(f_expr, deep=deep) simp = compare(simp, alt_simp) else: simp = simp.doit(inv_expand=False) return simp
fe3a43b14f92119d402f74c16902d240ce3ffd7d53667f7823df77f772106de1
import bisect import itertools from functools import reduce from collections import defaultdict from sympy import Indexed, IndexedBase, Tuple, Sum, Add, S, Integer, diagonalize_vector, DiagMatrix from sympy.combinatorics import Permutation from sympy.core.basic import Basic from sympy.core.compatibility import accumulate, default_sort_key from sympy.core.mul import Mul from sympy.core.sympify import _sympify from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.matrices.expressions import (MatAdd, MatMul, Trace, Transpose, MatrixSymbol) from sympy.matrices.expressions.matexpr import MatrixExpr, MatrixElement from sympy.tensor.array import NDimArray class _CodegenArrayAbstract(Basic): @property def subranks(self): """ Returns the ranks of the objects in the uppermost tensor product inside the current object. In case no tensor products are contained, return the atomic ranks. Examples ======== >>> from sympy.codegen.array_utils import CodegenArrayTensorProduct, CodegenArrayContraction >>> from sympy import MatrixSymbol >>> M = MatrixSymbol("M", 3, 3) >>> N = MatrixSymbol("N", 3, 3) >>> P = MatrixSymbol("P", 3, 3) Important: do not confuse the rank of the matrix with the rank of an array. >>> tp = CodegenArrayTensorProduct(M, N, P) >>> tp.subranks [2, 2, 2] >>> co = CodegenArrayContraction(tp, (1, 2), (3, 4)) >>> co.subranks [2, 2, 2] """ return self._subranks[:] def subrank(self): """ The sum of ``subranks``. """ return sum(self.subranks) @property def shape(self): return self._shape class CodegenArrayContraction(_CodegenArrayAbstract): r""" This class is meant to represent contractions of arrays in a form easily processable by the code printers. """ def __new__(cls, expr, *contraction_indices, **kwargs): contraction_indices = _sort_contraction_indices(contraction_indices) expr = _sympify(expr) if len(contraction_indices) == 0: return expr if isinstance(expr, CodegenArrayContraction): return cls._flatten(expr, *contraction_indices) obj = Basic.__new__(cls, expr, *contraction_indices) obj._subranks = _get_subranks(expr) obj._mapping = _get_mapping_from_subranks(obj._subranks) free_indices_to_position = {i: i for i in range(sum(obj._subranks)) if all([i not in cind for cind in contraction_indices])} obj._free_indices_to_position = free_indices_to_position shape = expr.shape cls._validate(expr, *contraction_indices) if shape: shape = tuple(shp for i, shp in enumerate(shape) if not any(i in j for j in contraction_indices)) obj._shape = shape return obj @staticmethod def _validate(expr, *contraction_indices): shape = expr.shape if shape is None: return # Check that no contraction happens when the shape is mismatched: for i in contraction_indices: if len(set(shape[j] for j in i if shape[j] != -1)) != 1: raise ValueError("contracting indices of different dimensions") @classmethod def _push_indices_down(cls, contraction_indices, indices): flattened_contraction_indices = [j for i in contraction_indices for j in i] flattened_contraction_indices.sort() transform = _build_push_indices_down_func_transformation(flattened_contraction_indices) return _apply_recursively_over_nested_lists(transform, indices) @classmethod def _push_indices_up(cls, contraction_indices, indices): flattened_contraction_indices = [j for i in contraction_indices for j in i] flattened_contraction_indices.sort() transform = _build_push_indices_up_func_transformation(flattened_contraction_indices) return _apply_recursively_over_nested_lists(transform, indices) def split_multiple_contractions(self): """ Recognize multiple contractions and attempt at rewriting them as paired-contractions. """ from sympy import ask, Q contraction_indices = self.contraction_indices if isinstance(self.expr, CodegenArrayTensorProduct): args = list(self.expr.args) else: args = [self.expr] # TODO: unify API, best location in CodegenArrayTensorProduct subranks = [get_rank(i) for i in args] # TODO: unify API mapping = _get_mapping_from_subranks(subranks) reverse_mapping = {v:k for k, v in mapping.items()} new_contraction_indices = [] for indl, links in enumerate(contraction_indices): if len(links) <= 2: new_contraction_indices.append(links) continue # Check multiple contractions: # # Examples: # # * `A_ij b_j0 C_jk` ===> `A*DiagMatrix(b)*C` # # Care for: # - matrix being diagonalized (i.e. `A_ii`) # - vectors being diagonalized (i.e. `a_i0`) # Also consider the case of diagonal matrices being contracted: current_dimension = self.expr.shape[links[0]] tuple_links = [mapping[i] for i in links] arg_indices, arg_positions = zip(*tuple_links) args_updates = {} if len(arg_indices) != len(set(arg_indices)): # Maybe trace should be supported? raise NotImplementedError not_vectors = [] vectors = [] for arg_ind, arg_pos in tuple_links: mat = args[arg_ind] other_arg_pos = 1-arg_pos other_arg_abs = reverse_mapping[arg_ind, other_arg_pos] if (((1 not in mat.shape) and (not ask(Q.diagonal(mat)))) or ((current_dimension == 1) is True and mat.shape != (1, 1)) or any([other_arg_abs in l for li, l in enumerate(contraction_indices) if li != indl]) ): not_vectors.append((arg_ind, arg_pos)) continue args_updates[arg_ind] = diagonalize_vector(mat) vectors.append((arg_ind, arg_pos)) vectors.append((arg_ind, 1-arg_pos)) if len(not_vectors) > 2: new_contraction_indices.append(links) continue if len(not_vectors) == 0: new_sequence = vectors[:1] + vectors[2:] elif len(not_vectors) == 1: new_sequence = not_vectors[:1] + vectors[:-1] else: new_sequence = not_vectors[:1] + vectors + not_vectors[1:] for i in range(0, len(new_sequence) - 1, 2): arg1, pos1 = new_sequence[i] arg2, pos2 = new_sequence[i+1] if arg1 == arg2: raise NotImplementedError continue abspos1 = reverse_mapping[arg1, pos1] abspos2 = reverse_mapping[arg2, pos2] new_contraction_indices.append((abspos1, abspos2)) for ind, newarg in args_updates.items(): args[ind] = newarg return CodegenArrayContraction( CodegenArrayTensorProduct(*args), *new_contraction_indices ) def flatten_contraction_of_diagonal(self): if not isinstance(self.expr, CodegenArrayDiagonal): return self contraction_down = self.expr._push_indices_down(self.expr.diagonal_indices, self.contraction_indices) new_contraction_indices = [] diagonal_indices = self.expr.diagonal_indices[:] for i in contraction_down: contraction_group = list(i) for j in i: diagonal_with = [k for k in diagonal_indices if j in k] contraction_group.extend([l for k in diagonal_with for l in k]) diagonal_indices = [k for k in diagonal_indices if k not in diagonal_with] new_contraction_indices.append(sorted(set(contraction_group))) new_contraction_indices = CodegenArrayDiagonal._push_indices_up(diagonal_indices, new_contraction_indices) return CodegenArrayContraction( CodegenArrayDiagonal( self.expr.expr, *diagonal_indices ), *new_contraction_indices ) @staticmethod def _get_free_indices_to_position_map(free_indices, contraction_indices): free_indices_to_position = {} flattened_contraction_indices = [j for i in contraction_indices for j in i] counter = 0 for ind in free_indices: while counter in flattened_contraction_indices: counter += 1 free_indices_to_position[ind] = counter counter += 1 return free_indices_to_position @staticmethod def _get_index_shifts(expr): """ Get the mapping of indices at the positions before the contraction occurs. Examples ======== >>> from sympy.codegen.array_utils import CodegenArrayContraction, CodegenArrayTensorProduct >>> from sympy import MatrixSymbol >>> M = MatrixSymbol("M", 3, 3) >>> N = MatrixSymbol("N", 3, 3) >>> cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), [1, 2]) >>> cg._get_index_shifts(cg) [0, 2] Indeed, ``cg`` after the contraction has two dimensions, 0 and 1. They need to be shifted by 0 and 2 to get the corresponding positions before the contraction (that is, 0 and 3). """ inner_contraction_indices = expr.contraction_indices all_inner = [j for i in inner_contraction_indices for j in i] all_inner.sort() # TODO: add API for total rank and cumulative rank: total_rank = get_rank(expr) inner_rank = len(all_inner) outer_rank = total_rank - inner_rank shifts = [0 for i in range(outer_rank)] counter = 0 pointer = 0 for i in range(outer_rank): while pointer < inner_rank and counter >= all_inner[pointer]: counter += 1 pointer += 1 shifts[i] += pointer counter += 1 return shifts @staticmethod def _convert_outer_indices_to_inner_indices(expr, *outer_contraction_indices): shifts = CodegenArrayContraction._get_index_shifts(expr) outer_contraction_indices = tuple(tuple(shifts[j] + j for j in i) for i in outer_contraction_indices) return outer_contraction_indices @staticmethod def _flatten(expr, *outer_contraction_indices): inner_contraction_indices = expr.contraction_indices outer_contraction_indices = CodegenArrayContraction._convert_outer_indices_to_inner_indices(expr, *outer_contraction_indices) contraction_indices = inner_contraction_indices + outer_contraction_indices return CodegenArrayContraction(expr.expr, *contraction_indices) def _get_contraction_tuples(self): r""" Return tuples containing the argument index and position within the argument of the index position. Examples ======== >>> from sympy import MatrixSymbol, MatrixExpr, Sum, Symbol >>> from sympy.abc import i, j, k, l, N >>> from sympy.codegen.array_utils import CodegenArrayContraction, CodegenArrayTensorProduct >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, B), (1, 2)) >>> cg._get_contraction_tuples() [[(0, 1), (1, 0)]] Here the contraction pair `(1, 2)` meaning that the 2nd and 3rd indices of the tensor product `A\otimes B` are contracted, has been transformed into `(0, 1)` and `(1, 0)`, identifying the same indices in a different notation. `(0, 1)` is the second index (1) of the first argument (i.e. 0 or `A`). `(1, 0)` is the first index (i.e. 0) of the second argument (i.e. 1 or `B`). """ mapping = self._mapping return [[mapping[j] for j in i] for i in self.contraction_indices] @staticmethod def _contraction_tuples_to_contraction_indices(expr, contraction_tuples): # TODO: check that `expr` has `.subranks`: ranks = expr.subranks cumulative_ranks = [0] + list(accumulate(ranks)) return [tuple(cumulative_ranks[j]+k for j, k in i) for i in contraction_tuples] @property def free_indices(self): return self._free_indices[:] @property def free_indices_to_position(self): return dict(self._free_indices_to_position) @property def expr(self): return self.args[0] @property def contraction_indices(self): return self.args[1:] def _contraction_indices_to_components(self): expr = self.expr if not isinstance(expr, CodegenArrayTensorProduct): raise NotImplementedError("only for contractions of tensor products") ranks = expr.subranks mapping = {} counter = 0 for i, rank in enumerate(ranks): for j in range(rank): mapping[counter] = (i, j) counter += 1 return mapping def sort_args_by_name(self): """ Sort arguments in the tensor product so that their order is lexicographical. Examples ======== >>> from sympy import MatrixSymbol, MatrixExpr, Sum, Symbol >>> from sympy.abc import i, j, k, l, N >>> from sympy.codegen.array_utils import CodegenArrayContraction >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> C = MatrixSymbol("C", N, N) >>> D = MatrixSymbol("D", N, N) >>> cg = CodegenArrayContraction.from_MatMul(C*D*A*B) >>> cg CodegenArrayContraction(CodegenArrayTensorProduct(C, D, A, B), (1, 2), (3, 4), (5, 6)) >>> cg.sort_args_by_name() CodegenArrayContraction(CodegenArrayTensorProduct(A, B, C, D), (0, 7), (1, 2), (5, 6)) """ expr = self.expr if not isinstance(expr, CodegenArrayTensorProduct): return self args = expr.args sorted_data = sorted(enumerate(args), key=lambda x: default_sort_key(x[1])) pos_sorted, args_sorted = zip(*sorted_data) reordering_map = {i: pos_sorted.index(i) for i, arg in enumerate(args)} contraction_tuples = self._get_contraction_tuples() contraction_tuples = [[(reordering_map[j], k) for j, k in i] for i in contraction_tuples] c_tp = CodegenArrayTensorProduct(*args_sorted) new_contr_indices = self._contraction_tuples_to_contraction_indices( c_tp, contraction_tuples ) return CodegenArrayContraction(c_tp, *new_contr_indices) def _get_contraction_links(self): r""" Returns a dictionary of links between arguments in the tensor product being contracted. See the example for an explanation of the values. Examples ======== >>> from sympy import MatrixSymbol, MatrixExpr, Sum, Symbol >>> from sympy.abc import i, j, k, l, N >>> from sympy.codegen.array_utils import CodegenArrayContraction >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> C = MatrixSymbol("C", N, N) >>> D = MatrixSymbol("D", N, N) Matrix multiplications are pairwise contractions between neighboring matrices: `A_{ij} B_{jk} C_{kl} D_{lm}` >>> cg = CodegenArrayContraction.from_MatMul(A*B*C*D) >>> cg CodegenArrayContraction(CodegenArrayTensorProduct(A, B, C, D), (1, 2), (3, 4), (5, 6)) >>> cg._get_contraction_links() {0: {1: (1, 0)}, 1: {0: (0, 1), 1: (2, 0)}, 2: {0: (1, 1), 1: (3, 0)}, 3: {0: (2, 1)}} This dictionary is interpreted as follows: argument in position 0 (i.e. matrix `A`) has its second index (i.e. 1) contracted to `(1, 0)`, that is argument in position 1 (matrix `B`) on the first index slot of `B`, this is the contraction provided by the index `j` from `A`. The argument in position 1 (that is, matrix `B`) has two contractions, the ones provided by the indices `j` and `k`, respectively the first and second indices (0 and 1 in the sub-dict). The link `(0, 1)` and `(2, 0)` respectively. `(0, 1)` is the index slot 1 (the 2nd) of argument in position 0 (that is, `A_{\ldot j}`), and so on. """ args, dlinks = _get_contraction_links([self], self.subranks, *self.contraction_indices) return dlinks @staticmethod def from_MatMul(expr): args_nonmat = [] args = [] contractions = [] for arg in expr.args: if isinstance(arg, MatrixExpr): args.append(arg) else: args_nonmat.append(arg) contractions = [(2*i+1, 2*i+2) for i in range(len(args)-1)] return Mul.fromiter(args_nonmat)*CodegenArrayContraction( CodegenArrayTensorProduct(*args), *contractions ) def get_shape(expr): if hasattr(expr, "shape"): return expr.shape return () class CodegenArrayTensorProduct(_CodegenArrayAbstract): r""" Class to represent the tensor product of array-like objects. """ def __new__(cls, *args): args = [_sympify(arg) for arg in args] args = cls._flatten(args) ranks = [get_rank(arg) for arg in args] if len(args) == 1: return args[0] # If there are contraction objects inside, transform the whole # expression into `CodegenArrayContraction`: contractions = {i: arg for i, arg in enumerate(args) if isinstance(arg, CodegenArrayContraction)} if contractions: cumulative_ranks = list(accumulate([0] + ranks))[:-1] tp = cls(*[arg.expr if isinstance(arg, CodegenArrayContraction) else arg for arg in args]) contraction_indices = [tuple(cumulative_ranks[i] + k for k in j) for i, arg in contractions.items() for j in arg.contraction_indices] return CodegenArrayContraction(tp, *contraction_indices) #newargs = [i for i in args if hasattr(i, "shape")] #coeff = reduce(lambda x, y: x*y, [i for i in args if not hasattr(i, "shape")], S.One) #newargs[0] *= coeff obj = Basic.__new__(cls, *args) obj._subranks = ranks shapes = [get_shape(i) for i in args] if any(i is None for i in shapes): obj._shape = None else: obj._shape = tuple(j for i in shapes for j in i) return obj @classmethod def _flatten(cls, args): args = [i for arg in args for i in (arg.args if isinstance(arg, cls) else [arg])] return args class CodegenArrayElementwiseAdd(_CodegenArrayAbstract): r""" Class for elementwise array additions. """ def __new__(cls, *args): args = [_sympify(arg) for arg in args] obj = Basic.__new__(cls, *args) ranks = [get_rank(arg) for arg in args] ranks = list(set(ranks)) if len(ranks) != 1: raise ValueError("summing arrays of different ranks") obj._subranks = ranks shapes = [arg.shape for arg in args] if len(set([i for i in shapes if i is not None])) > 1: raise ValueError("mismatching shapes in addition") if any(i is None for i in shapes): obj._shape = None else: obj._shape = shapes[0] return obj class CodegenArrayPermuteDims(_CodegenArrayAbstract): r""" Class to represent permutation of axes of arrays. Examples ======== >>> from sympy.codegen.array_utils import CodegenArrayPermuteDims >>> from sympy import MatrixSymbol >>> M = MatrixSymbol("M", 3, 3) >>> cg = CodegenArrayPermuteDims(M, [1, 0]) The object ``cg`` represents the transposition of ``M``, as the permutation ``[1, 0]`` will act on its indices by switching them: `M_{ij} \Rightarrow M_{ji}` This is evident when transforming back to matrix form: >>> from sympy.codegen.array_utils import recognize_matrix_expression >>> recognize_matrix_expression(cg) M.T >>> N = MatrixSymbol("N", 3, 2) >>> cg = CodegenArrayPermuteDims(N, [1, 0]) >>> cg.shape (2, 3) """ def __new__(cls, expr, permutation): from sympy.combinatorics import Permutation expr = _sympify(expr) permutation = Permutation(permutation) plist = permutation.array_form if plist == sorted(plist): return expr obj = Basic.__new__(cls, expr, permutation) obj._subranks = [get_rank(expr)] shape = expr.shape if shape is None: obj._shape = None else: obj._shape = tuple(shape[permutation(i)] for i in range(len(shape))) return obj @property def expr(self): return self.args[0] @property def permutation(self): return self.args[1] def nest_permutation(self): r""" Nest the permutation down the expression tree. Examples ======== >>> from sympy.codegen.array_utils import (CodegenArrayPermuteDims, CodegenArrayTensorProduct, nest_permutation) >>> from sympy import MatrixSymbol >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> M = MatrixSymbol("M", 3, 3) >>> N = MatrixSymbol("N", 3, 3) >>> cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 0, 3, 2]) >>> cg CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), (0 1)(2 3)) >>> nest_permutation(cg) CodegenArrayTensorProduct(CodegenArrayPermuteDims(M, (0 1)), CodegenArrayPermuteDims(N, (0 1))) In ``cg`` both ``M`` and ``N`` are transposed. The cyclic representation of the permutation after the tensor product is `(0 1)(2 3)`. After nesting it down the expression tree, the usual transposition permutation `(0 1)` appears. """ expr = self.expr if isinstance(expr, CodegenArrayTensorProduct): # Check if the permutation keeps the subranks separated: subranks = expr.subranks subrank = expr.subrank() l = list(range(subrank)) p = [self.permutation(i) for i in l] dargs = {} counter = 0 for i, arg in zip(subranks, expr.args): p0 = p[counter:counter+i] counter += i s0 = sorted(p0) if not all([s0[j+1]-s0[j] == 1 for j in range(len(s0)-1)]): # Cross-argument permutations, impossible to nest the object: return self subpermutation = [p0.index(j) for j in s0] dargs[s0[0]] = CodegenArrayPermuteDims(arg, subpermutation) # Read the arguments sorting the according to the keys of the dict: args = [dargs[i] for i in sorted(dargs)] return CodegenArrayTensorProduct(*args) elif isinstance(expr, CodegenArrayContraction): # Invert tree hierarchy: put the contraction above. cycles = self.permutation.cyclic_form newcycles = CodegenArrayContraction._convert_outer_indices_to_inner_indices(expr, *cycles) newpermutation = Permutation(newcycles) new_contr_indices = [tuple(newpermutation(j) for j in i) for i in expr.contraction_indices] return CodegenArrayContraction(CodegenArrayPermuteDims(expr.expr, newpermutation), *new_contr_indices) elif isinstance(expr, CodegenArrayElementwiseAdd): return CodegenArrayElementwiseAdd(*[CodegenArrayPermuteDims(arg, self.permutation) for arg in expr.args]) return self def nest_permutation(expr): if isinstance(expr, CodegenArrayPermuteDims): return expr.nest_permutation() else: return expr class CodegenArrayDiagonal(_CodegenArrayAbstract): r""" Class to represent the diagonal operator. In a 2-dimensional array it returns the diagonal, this looks like the operation: `A_{ij} \rightarrow A_{ii}` The diagonal over axes 1 and 2 (the second and third) of the tensor product of two 2-dimensional arrays `A \otimes B` is `\Big[ A_{ab} B_{cd} \Big]_{abcd} \rightarrow \Big[ A_{ai} B_{id} \Big]_{adi}` In this last example the array expression has been reduced from 4-dimensional to 3-dimensional. Notice that no contraction has occurred, rather there is a new index `i` for the diagonal, contraction would have reduced the array to 2 dimensions. Notice that the diagonalized out dimensions are added as new dimensions at the end of the indices. """ def __new__(cls, expr, *diagonal_indices): expr = _sympify(expr) diagonal_indices = [Tuple(*sorted(i)) for i in diagonal_indices] if isinstance(expr, CodegenArrayDiagonal): return cls._flatten(expr, *diagonal_indices) shape = expr.shape if shape is not None: diagonal_indices = [i for i in diagonal_indices if len(i) > 1] cls._validate(expr, *diagonal_indices) #diagonal_indices = cls._remove_trivial_dimensions(shape, *diagonal_indices) # Get new shape: shp1 = tuple(shp for i,shp in enumerate(shape) if not any(i in j for j in diagonal_indices)) shp2 = tuple(shape[i[0]] for i in diagonal_indices) shape = shp1 + shp2 if len(diagonal_indices) == 0: return expr obj = Basic.__new__(cls, expr, *diagonal_indices) obj._subranks = _get_subranks(expr) obj._shape = shape return obj @staticmethod def _validate(expr, *diagonal_indices): # Check that no diagonalization happens on indices with mismatched # dimensions: shape = expr.shape for i in diagonal_indices: if len(set(shape[j] for j in i)) != 1: raise ValueError("diagonalizing indices of different dimensions") @staticmethod def _remove_trivial_dimensions(shape, *diagonal_indices): return [tuple(j for j in i) for i in diagonal_indices if shape[i[0]] != 1] @property def expr(self): return self.args[0] @property def diagonal_indices(self): return self.args[1:] @staticmethod def _flatten(expr, *outer_diagonal_indices): inner_diagonal_indices = expr.diagonal_indices all_inner = [j for i in inner_diagonal_indices for j in i] all_inner.sort() # TODO: add API for total rank and cumulative rank: total_rank = get_rank(expr) inner_rank = len(all_inner) outer_rank = total_rank - inner_rank shifts = [0 for i in range(outer_rank)] counter = 0 pointer = 0 for i in range(outer_rank): while pointer < inner_rank and counter >= all_inner[pointer]: counter += 1 pointer += 1 shifts[i] += pointer counter += 1 outer_diagonal_indices = tuple(tuple(shifts[j] + j for j in i) for i in outer_diagonal_indices) diagonal_indices = inner_diagonal_indices + outer_diagonal_indices return CodegenArrayDiagonal(expr.expr, *diagonal_indices) @classmethod def _push_indices_down(cls, diagonal_indices, indices): flattened_contraction_indices = [j for i in diagonal_indices for j in i[1:]] flattened_contraction_indices.sort() transform = _build_push_indices_down_func_transformation(flattened_contraction_indices) return _apply_recursively_over_nested_lists(transform, indices) @classmethod def _push_indices_up(cls, diagonal_indices, indices): flattened_contraction_indices = [j for i in diagonal_indices for j in i[1:]] flattened_contraction_indices.sort() transform = _build_push_indices_up_func_transformation(flattened_contraction_indices) return _apply_recursively_over_nested_lists(transform, indices) def transform_to_product(self): from sympy import ask, Q diagonal_indices = self.diagonal_indices if isinstance(self.expr, CodegenArrayContraction): # invert Diagonal and Contraction: diagonal_down = CodegenArrayContraction._push_indices_down( self.expr.contraction_indices, diagonal_indices ) newexpr = CodegenArrayDiagonal( self.expr.expr, *diagonal_down ).transform_to_product() contraction_up = newexpr._push_indices_up( diagonal_down, self.expr.contraction_indices ) return CodegenArrayContraction( newexpr, *contraction_up ) if not isinstance(self.expr, CodegenArrayTensorProduct): return self args = list(self.expr.args) # TODO: unify API subranks = [get_rank(i) for i in args] # TODO: unify API mapping = _get_mapping_from_subranks(subranks) new_contraction_indices = [] drop_diagonal_indices = [] for indl, links in enumerate(diagonal_indices): if len(links) > 2: continue # Also consider the case of diagonal matrices being contracted: current_dimension = self.expr.shape[links[0]] if current_dimension == 1: drop_diagonal_indices.append(indl) continue tuple_links = [mapping[i] for i in links] arg_indices, arg_positions = zip(*tuple_links) if len(arg_indices) != len(set(arg_indices)): # Maybe trace should be supported? raise NotImplementedError args_updates = {} count_nondiagonal = 0 last = None expression_is_square = False # Check that all args are vectors: for arg_ind, arg_pos in tuple_links: mat = args[arg_ind] if 1 in mat.shape and mat.shape != (1, 1): args_updates[arg_ind] = DiagMatrix(mat) last = arg_ind else: expression_is_square = True if not ask(Q.diagonal(mat)): count_nondiagonal += 1 if count_nondiagonal > 1: break if count_nondiagonal > 1: continue # TODO: if count_nondiagonal == 0 then the sub-expression can be recognized as HadamardProduct. for arg_ind, newmat in args_updates.items(): if not expression_is_square and arg_ind == last: continue #pass args[arg_ind] = newmat drop_diagonal_indices.append(indl) new_contraction_indices.append(links) new_diagonal_indices = CodegenArrayContraction._push_indices_up( new_contraction_indices, [e for i, e in enumerate(diagonal_indices) if i not in drop_diagonal_indices] ) return CodegenArrayDiagonal( CodegenArrayContraction( CodegenArrayTensorProduct(*args), *new_contraction_indices ), *new_diagonal_indices ) def get_rank(expr): if isinstance(expr, (MatrixExpr, MatrixElement)): return 2 if isinstance(expr, _CodegenArrayAbstract): return expr.subrank() if isinstance(expr, NDimArray): return expr.rank() if isinstance(expr, Indexed): return expr.rank if isinstance(expr, IndexedBase): shape = expr.shape if shape is None: return -1 else: return len(shape) if isinstance(expr, _RecognizeMatOp): return expr.rank() if isinstance(expr, _RecognizeMatMulLines): return expr.rank() return 0 def _get_subranks(expr): if isinstance(expr, _CodegenArrayAbstract): return expr.subranks else: return [get_rank(expr)] def _get_mapping_from_subranks(subranks): mapping = {} counter = 0 for i, rank in enumerate(subranks): for j in range(rank): mapping[counter] = (i, j) counter += 1 return mapping def _get_contraction_links(args, subranks, *contraction_indices): mapping = _get_mapping_from_subranks(subranks) contraction_tuples = [[mapping[j] for j in i] for i in contraction_indices] dlinks = defaultdict(dict) for links in contraction_tuples: if len(links) == 2: (arg1, pos1), (arg2, pos2) = links dlinks[arg1][pos1] = (arg2, pos2) dlinks[arg2][pos2] = (arg1, pos1) continue return args, dict(dlinks) def _sort_contraction_indices(pairing_indices): pairing_indices = [Tuple(*sorted(i)) for i in pairing_indices] pairing_indices.sort(key=lambda x: min(x)) return pairing_indices def _get_diagonal_indices(flattened_indices): axes_contraction = defaultdict(list) for i, ind in enumerate(flattened_indices): if isinstance(ind, (int, Integer)): # If the indices is a number, there can be no diagonal operation: continue axes_contraction[ind].append(i) axes_contraction = {k: v for k, v in axes_contraction.items() if len(v) > 1} # Put the diagonalized indices at the end: ret_indices = [i for i in flattened_indices if i not in axes_contraction] diag_indices = list(axes_contraction) diag_indices.sort(key=lambda x: flattened_indices.index(x)) diagonal_indices = [tuple(axes_contraction[i]) for i in diag_indices] ret_indices += diag_indices ret_indices = tuple(ret_indices) return diagonal_indices, ret_indices def _get_argindex(subindices, ind): for i, sind in enumerate(subindices): if ind == sind: return i if isinstance(sind, (set, frozenset)) and ind in sind: return i raise IndexError("%s not found in %s" % (ind, subindices)) def _codegen_array_parse(expr): if isinstance(expr, Sum): function = expr.function summation_indices = expr.variables subexpr, subindices = _codegen_array_parse(function) # Check dimensional consistency: shape = subexpr.shape if shape: for ind, istart, iend in expr.limits: i = _get_argindex(subindices, ind) if istart != 0 or iend+1 != shape[i]: raise ValueError("summation index and array dimension mismatch: %s" % ind) contraction_indices = [] subindices = list(subindices) if isinstance(subexpr, CodegenArrayDiagonal): diagonal_indices = list(subexpr.diagonal_indices) dindices = subindices[-len(diagonal_indices):] subindices = subindices[:-len(diagonal_indices)] for index in summation_indices: if index in dindices: position = dindices.index(index) contraction_indices.append(diagonal_indices[position]) diagonal_indices[position] = None diagonal_indices = [i for i in diagonal_indices if i is not None] for i, ind in enumerate(subindices): if ind in summation_indices: pass if diagonal_indices: subexpr = CodegenArrayDiagonal(subexpr.expr, *diagonal_indices) else: subexpr = subexpr.expr axes_contraction = defaultdict(list) for i, ind in enumerate(subindices): if ind in summation_indices: axes_contraction[ind].append(i) subindices[i] = None for k, v in axes_contraction.items(): contraction_indices.append(tuple(v)) free_indices = [i for i in subindices if i is not None] indices_ret = list(free_indices) indices_ret.sort(key=lambda x: free_indices.index(x)) return CodegenArrayContraction( subexpr, *contraction_indices, free_indices=free_indices ), tuple(indices_ret) if isinstance(expr, Mul): args, indices = zip(*[_codegen_array_parse(arg) for arg in expr.args]) # Check if there are KroneckerDelta objects: kronecker_delta_repl = {} for arg in args: if not isinstance(arg, KroneckerDelta): continue # Diagonalize two indices: i, j = arg.indices kindices = set(arg.indices) if i in kronecker_delta_repl: kindices.update(kronecker_delta_repl[i]) if j in kronecker_delta_repl: kindices.update(kronecker_delta_repl[j]) kindices = frozenset(kindices) for index in kindices: kronecker_delta_repl[index] = kindices # Remove KroneckerDelta objects, their relations should be handled by # CodegenArrayDiagonal: newargs = [] newindices = [] for arg, loc_indices in zip(args, indices): if isinstance(arg, KroneckerDelta): continue newargs.append(arg) newindices.append(loc_indices) flattened_indices = [kronecker_delta_repl.get(j, j) for i in newindices for j in i] diagonal_indices, ret_indices = _get_diagonal_indices(flattened_indices) tp = CodegenArrayTensorProduct(*newargs) if diagonal_indices: return (CodegenArrayDiagonal(tp, *diagonal_indices), ret_indices) else: return tp, ret_indices if isinstance(expr, MatrixElement): indices = expr.args[1:] diagonal_indices, ret_indices = _get_diagonal_indices(indices) if diagonal_indices: return (CodegenArrayDiagonal(expr.args[0], *diagonal_indices), ret_indices) else: return expr.args[0], ret_indices if isinstance(expr, Indexed): indices = expr.indices diagonal_indices, ret_indices = _get_diagonal_indices(indices) if diagonal_indices: return (CodegenArrayDiagonal(expr.base, *diagonal_indices), ret_indices) else: return expr.args[0], ret_indices if isinstance(expr, IndexedBase): raise NotImplementedError if isinstance(expr, KroneckerDelta): return expr, expr.indices if isinstance(expr, Add): args, indices = zip(*[_codegen_array_parse(arg) for arg in expr.args]) args = list(args) # Check if all indices are compatible. Otherwise expand the dimensions: index0set = set(indices[0]) index0 = indices[0] for i in range(1, len(args)): if set(indices[i]) != index0set: raise NotImplementedError("indices must be the same") permutation = Permutation([index0.index(j) for j in indices[i]]) # Perform index permutations: args[i] = CodegenArrayPermuteDims(args[i], permutation) return CodegenArrayElementwiseAdd(*args), index0 return expr, () raise NotImplementedError("could not recognize expression %s" % expr) def _parse_matrix_expression(expr): if isinstance(expr, MatMul): args_nonmat = [] args = [] contractions = [] for arg in expr.args: if isinstance(arg, MatrixExpr): args.append(arg) else: args_nonmat.append(arg) contractions = [(2*i+1, 2*i+2) for i in range(len(args)-1)] return Mul.fromiter(args_nonmat)*CodegenArrayContraction( CodegenArrayTensorProduct(*[_parse_matrix_expression(arg) for arg in args]), *contractions ) elif isinstance(expr, MatAdd): return CodegenArrayElementwiseAdd( *[_parse_matrix_expression(arg) for arg in expr.args] ) elif isinstance(expr, Transpose): return CodegenArrayPermuteDims( _parse_matrix_expression(expr.args[0]), [1, 0] ) else: return expr def parse_indexed_expression(expr, first_indices=None): r""" Parse indexed expression into a form useful for code generation. Examples ======== >>> from sympy.codegen.array_utils import parse_indexed_expression >>> from sympy import MatrixSymbol, Sum, symbols >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> i, j, k, d = symbols("i j k d") >>> M = MatrixSymbol("M", d, d) >>> N = MatrixSymbol("N", d, d) Recognize the trace in summation form: >>> expr = Sum(M[i, i], (i, 0, d-1)) >>> parse_indexed_expression(expr) CodegenArrayContraction(M, (0, 1)) Recognize the extraction of the diagonal by using the same index `i` on both axes of the matrix: >>> expr = M[i, i] >>> parse_indexed_expression(expr) CodegenArrayDiagonal(M, (0, 1)) This function can help perform the transformation expressed in two different mathematical notations as: `\sum_{j=0}^{N-1} A_{i,j} B_{j,k} \Longrightarrow \mathbf{A}\cdot \mathbf{B}` Recognize the matrix multiplication in summation form: >>> expr = Sum(M[i, j]*N[j, k], (j, 0, d-1)) >>> parse_indexed_expression(expr) CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)) Specify that ``k`` has to be the starting index: >>> parse_indexed_expression(expr, first_indices=[k]) CodegenArrayPermuteDims(CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)), (0 1)) """ result, indices = _codegen_array_parse(expr) if not first_indices: return result for i in first_indices: if i not in indices: first_indices.remove(i) #raise ValueError("index %s not found or not a free index" % i) first_indices.extend([i for i in indices if i not in first_indices]) permutation = [first_indices.index(i) for i in indices] return CodegenArrayPermuteDims(result, permutation) def _has_multiple_lines(expr): if isinstance(expr, _RecognizeMatMulLines): return True if isinstance(expr, _RecognizeMatOp): return expr.multiple_lines return False class _RecognizeMatOp(object): """ Class to help parsing matrix multiplication lines. """ def __init__(self, operator, args): self.operator = operator self.args = args if any(_has_multiple_lines(arg) for arg in args): multiple_lines = True else: multiple_lines = False self.multiple_lines = multiple_lines def rank(self): if self.operator == Trace: return 0 # TODO: check return 2 def __repr__(self): op = self.operator if op == MatMul: s = "*" elif op == MatAdd: s = "+" else: s = op.__name__ return "_RecognizeMatOp(%s, %s)" % (s, repr(self.args)) return "_RecognizeMatOp(%s)" % (s.join(repr(i) for i in self.args)) def __eq__(self, other): if not isinstance(other, type(self)): return False if self.operator != other.operator: return False if self.args != other.args: return False return True def __iter__(self): return iter(self.args) class _RecognizeMatMulLines(list): """ This class handles multiple parsed multiplication lines. """ def __new__(cls, args): if len(args) == 1: return args[0] return list.__new__(cls, args) def rank(self): return reduce(lambda x, y: x*y, [get_rank(i) for i in self], S.One) def __repr__(self): return "_RecognizeMatMulLines(%s)" % super(_RecognizeMatMulLines, self).__repr__() def _support_function_tp1_recognize(contraction_indices, args): if not isinstance(args, list): args = [args] subranks = [get_rank(i) for i in args] coeff = reduce(lambda x, y: x*y, [arg for arg, srank in zip(args, subranks) if srank == 0], S.One) mapping = _get_mapping_from_subranks(subranks) reverse_mapping = {v:k for k, v in mapping.items()} args, dlinks = _get_contraction_links(args, subranks, *contraction_indices) flatten_contractions = [j for i in contraction_indices for j in i] total_rank = sum(subranks) # TODO: turn `free_indices` into a list? free_indices = {i: i for i in range(total_rank) if i not in flatten_contractions} return_list = [] while dlinks: if free_indices: first_index, starting_argind = min(free_indices.items(), key=lambda x: x[1]) free_indices.pop(first_index) starting_argind, starting_pos = mapping[starting_argind] else: # Maybe a Trace first_index = None starting_argind = min(dlinks) starting_pos = 0 current_argind, current_pos = starting_argind, starting_pos matmul_args = [] last_index = None while True: elem = args[current_argind] if current_pos == 1: elem = _RecognizeMatOp(Transpose, [elem]) matmul_args.append(elem) other_pos = 1 - current_pos if current_argind not in dlinks: other_absolute = reverse_mapping[current_argind, other_pos] free_indices.pop(other_absolute, None) break link_dict = dlinks.pop(current_argind) if other_pos not in link_dict: if free_indices: last_index = [i for i, j in free_indices.items() if mapping[j] == (current_argind, other_pos)][0] else: last_index = None break if len(link_dict) > 2: raise NotImplementedError("not a matrix multiplication line") # Get the last element of `link_dict` as the next link. The last # element is the correct start for trace expressions: current_argind, current_pos = link_dict[other_pos] if current_argind == starting_argind: # This is a trace: if len(matmul_args) > 1: matmul_args = [_RecognizeMatOp(Trace, [_RecognizeMatOp(MatMul, matmul_args)])] elif args[current_argind].shape != (1, 1): matmul_args = [_RecognizeMatOp(Trace, matmul_args)] break dlinks.pop(starting_argind, None) free_indices.pop(last_index, None) return_list.append(_RecognizeMatOp(MatMul, matmul_args)) if coeff != 1: # Let's inject the coefficient: return_list[0].args.insert(0, coeff) return _RecognizeMatMulLines(return_list) def recognize_matrix_expression(expr): r""" Recognize matrix expressions in codegen objects. If more than one matrix multiplication line have been detected, return a list with the matrix expressions. Examples ======== >>> from sympy import MatrixSymbol, MatrixExpr, Sum, Symbol >>> from sympy.abc import i, j, k, l, N >>> from sympy.codegen.array_utils import CodegenArrayContraction, CodegenArrayTensorProduct >>> from sympy.codegen.array_utils import recognize_matrix_expression, parse_indexed_expression >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> C = MatrixSymbol("C", N, N) >>> D = MatrixSymbol("D", N, N) >>> expr = Sum(A[i, j]*B[j, k], (j, 0, N-1)) >>> cg = parse_indexed_expression(expr) >>> recognize_matrix_expression(cg) A*B >>> cg = parse_indexed_expression(expr, first_indices=[k]) >>> recognize_matrix_expression(cg) (A*B).T Transposition is detected: >>> expr = Sum(A[j, i]*B[j, k], (j, 0, N-1)) >>> cg = parse_indexed_expression(expr) >>> recognize_matrix_expression(cg) A.T*B >>> cg = parse_indexed_expression(expr, first_indices=[k]) >>> recognize_matrix_expression(cg) (A.T*B).T Detect the trace: >>> expr = Sum(A[i, i], (i, 0, N-1)) >>> cg = parse_indexed_expression(expr) >>> recognize_matrix_expression(cg) Trace(A) Recognize some more complex traces: >>> expr = Sum(A[i, j]*B[j, i], (i, 0, N-1), (j, 0, N-1)) >>> cg = parse_indexed_expression(expr) >>> recognize_matrix_expression(cg) Trace(A*B) More complicated expressions: >>> expr = Sum(A[i, j]*B[k, j]*A[l, k], (j, 0, N-1), (k, 0, N-1)) >>> cg = parse_indexed_expression(expr) >>> recognize_matrix_expression(cg) A*B.T*A.T Expressions constructed from matrix expressions do not contain literal indices, the positions of free indices are returned instead: >>> expr = A*B >>> cg = CodegenArrayContraction.from_MatMul(expr) >>> recognize_matrix_expression(cg) A*B If more than one line of matrix multiplications is detected, return separate matrix multiplication factors: >>> cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, B, C, D), (1, 2), (5, 6)) >>> recognize_matrix_expression(cg) [A*B, C*D] The two lines have free indices at axes 0, 3 and 4, 7, respectively. """ # TODO: expr has to be a CodegenArray... type rec = _recognize_matrix_expression(expr) return _unfold_recognized_expr(rec) def _recognize_matrix_expression(expr): if isinstance(expr, CodegenArrayContraction): # Apply some transformations: expr = expr.flatten_contraction_of_diagonal() expr = expr.split_multiple_contractions() args = _recognize_matrix_expression(expr.expr) contraction_indices = expr.contraction_indices if isinstance(args, _RecognizeMatOp) and args.operator == MatAdd: addends = [] for arg in args.args: addends.append(_support_function_tp1_recognize(contraction_indices, arg)) return _RecognizeMatOp(MatAdd, addends) elif isinstance(args, _RecognizeMatMulLines): return _support_function_tp1_recognize(contraction_indices, args) return _support_function_tp1_recognize(contraction_indices, [args]) elif isinstance(expr, CodegenArrayElementwiseAdd): add_args = [] for arg in expr.args: add_args.append(_recognize_matrix_expression(arg)) return _RecognizeMatOp(MatAdd, add_args) elif isinstance(expr, (MatrixSymbol, IndexedBase)): return expr elif isinstance(expr, CodegenArrayPermuteDims): if expr.permutation.array_form == [1, 0]: return _RecognizeMatOp(Transpose, [_recognize_matrix_expression(expr.expr)]) elif isinstance(expr.expr, CodegenArrayTensorProduct): ranks = expr.expr.subranks newrange = [expr.permutation(i) for i in range(sum(ranks))] newpos = [] counter = 0 for rank in ranks: newpos.append(newrange[counter:counter+rank]) counter += rank newargs = [] for pos, arg in zip(newpos, expr.expr.args): if pos == sorted(pos): newargs.append((_recognize_matrix_expression(arg), pos[0])) elif len(pos) == 2: newargs.append((_RecognizeMatOp(Transpose, [_recognize_matrix_expression(arg)]), pos[0])) else: raise NotImplementedError newargs.sort(key=lambda x: x[1]) newargs = [i[0] for i in newargs] return _RecognizeMatMulLines(newargs) else: raise NotImplementedError elif isinstance(expr, CodegenArrayTensorProduct): args = [_recognize_matrix_expression(arg) for arg in expr.args] multiple_lines = [_has_multiple_lines(arg) for arg in args] if any(multiple_lines): if any(a.operator != MatAdd for i, a in enumerate(args) if multiple_lines[i] and isinstance(a, _RecognizeMatOp)): raise NotImplementedError getargs = lambda x: x.args if isinstance(x, _RecognizeMatOp) else list(x) expand_args = [getargs(arg) if multiple_lines[i] else [arg] for i, arg in enumerate(args)] it = itertools.product(*expand_args) ret = _RecognizeMatOp(MatAdd, [_RecognizeMatMulLines([k for j in i for k in (j if isinstance(j, _RecognizeMatMulLines) else [j])]) for i in it]) return ret return _RecognizeMatMulLines(args) elif isinstance(expr, CodegenArrayDiagonal): pexpr = expr.transform_to_product() if expr == pexpr: return expr return _recognize_matrix_expression(pexpr) elif isinstance(expr, Transpose): return expr elif isinstance(expr, MatrixExpr): return expr return expr def _suppress_trivial_dims_in_tensor_product(mat_list): # Recognize expressions like [x, y] with shape (k, 1, k, 1) as `x*y.T`. # The matrix expression has to be equivalent to the tensor product of the matrices, with trivial dimensions (i.e. dim=1) dropped. # That is, add contractions over trivial dimensions: mat_11 = [] mat_k1 = [] for mat in mat_list: if mat.shape == (1, 1): mat_11.append(mat) elif 1 in mat.shape: if mat.shape[0] == 1: mat_k1.append(mat.T) else: mat_k1.append(mat) else: return mat_list if len(mat_k1) > 2: return mat_list a = MatMul.fromiter(mat_k1[:1]) b = MatMul.fromiter(mat_k1[1:]) x = MatMul.fromiter(mat_11) return a*x*b.T def _unfold_recognized_expr(expr): if isinstance(expr, _RecognizeMatOp): return expr.operator(*[_unfold_recognized_expr(i) for i in expr.args]) elif isinstance(expr, _RecognizeMatMulLines): unfolded = [_unfold_recognized_expr(i) for i in expr] mat_list = [i for i in unfolded if isinstance(i, MatrixExpr)] scalar_list = [i for i in unfolded if i not in mat_list] scalar = Mul.fromiter(scalar_list) mat_list = [i.doit() for i in mat_list] mat_list = [i for i in mat_list if not (i.shape == (1, 1) and i.is_Identity)] if mat_list: mat_list[0] *= scalar if len(mat_list) == 1: return mat_list[0].doit() else: return _suppress_trivial_dims_in_tensor_product(mat_list) else: return scalar else: return expr def _apply_recursively_over_nested_lists(func, arr): if isinstance(arr, (tuple, list, Tuple)): return tuple(_apply_recursively_over_nested_lists(func, i) for i in arr) elif isinstance(arr, Tuple): return Tuple.fromiter(_apply_recursively_over_nested_lists(func, i) for i in arr) else: return func(arr) def _build_push_indices_up_func_transformation(flattened_contraction_indices): shifts = {0: 0} i = 0 cumulative = 0 while i < len(flattened_contraction_indices): j = 1 while i+j < len(flattened_contraction_indices): if flattened_contraction_indices[i] + j != flattened_contraction_indices[i+j]: break j += 1 cumulative += j shifts[flattened_contraction_indices[i]] = cumulative i += j shift_keys = sorted(shifts.keys()) def func(idx): return shifts[shift_keys[bisect.bisect_right(shift_keys, idx)-1]] def transform(j): if j in flattened_contraction_indices: return None else: return j - func(j) return transform def _build_push_indices_down_func_transformation(flattened_contraction_indices): N = flattened_contraction_indices[-1]+2 shifts = [i for i in range(N) if i not in flattened_contraction_indices] def transform(j): if j < len(shifts): return shifts[j] else: return j + shifts[-1] - len(shifts) + 1 return transform
212adc2bb4a6821b4a796843b56cc579d992ab4dc3242a3820b51e413f1dec5d
r""" This module contains :py:meth:`~sympy.solvers.ode.dsolve` and different helper functions that it uses. :py:meth:`~sympy.solvers.ode.dsolve` solves ordinary differential equations. See the docstring on the various functions for their uses. Note that partial differential equations support is in ``pde.py``. Note that hint functions have docstrings describing their various methods, but they are intended for internal use. Use ``dsolve(ode, func, hint=hint)`` to solve an ODE using a specific hint. See also the docstring on :py:meth:`~sympy.solvers.ode.dsolve`. **Functions in this module** These are the user functions in this module: - :py:meth:`~sympy.solvers.ode.dsolve` - Solves ODEs. - :py:meth:`~sympy.solvers.ode.classify_ode` - Classifies ODEs into possible hints for :py:meth:`~sympy.solvers.ode.dsolve`. - :py:meth:`~sympy.solvers.ode.checkodesol` - Checks if an equation is the solution to an ODE. - :py:meth:`~sympy.solvers.ode.homogeneous_order` - Returns the homogeneous order of an expression. - :py:meth:`~sympy.solvers.ode.infinitesimals` - Returns the infinitesimals of the Lie group of point transformations of an ODE, such that it is invariant. - :py:meth:`~sympy.solvers.ode.checkinfsol` - Checks if the given infinitesimals are the actual infinitesimals of a first order ODE. These are the non-solver helper functions that are for internal use. The user should use the various options to :py:meth:`~sympy.solvers.ode.dsolve` to obtain the functionality provided by these functions: - :py:meth:`~sympy.solvers.ode.odesimp` - Does all forms of ODE simplification. - :py:meth:`~sympy.solvers.ode.ode_sol_simplicity` - A key function for comparing solutions by simplicity. - :py:meth:`~sympy.solvers.ode.constantsimp` - Simplifies arbitrary constants. - :py:meth:`~sympy.solvers.ode.constant_renumber` - Renumber arbitrary constants. - :py:meth:`~sympy.solvers.ode._handle_Integral` - Evaluate unevaluated Integrals. See also the docstrings of these functions. **Currently implemented solver methods** The following methods are implemented for solving ordinary differential equations. See the docstrings of the various hint functions for more information on each (run ``help(ode)``): - 1st order separable differential equations. - 1st order differential equations whose coefficients or `dx` and `dy` are functions homogeneous of the same order. - 1st order exact differential equations. - 1st order linear differential equations. - 1st order Bernoulli differential equations. - Power series solutions for first order differential equations. - Lie Group method of solving first order differential equations. - 2nd order Liouville differential equations. - Power series solutions for second order differential equations at ordinary and regular singular points. - `n`\th order differential equation that can be solved with algebraic rearrangement and integration. - `n`\th order linear homogeneous differential equation with constant coefficients. - `n`\th order linear inhomogeneous differential equation with constant coefficients using the method of undetermined coefficients. - `n`\th order linear inhomogeneous differential equation with constant coefficients using the method of variation of parameters. **Philosophy behind this module** This module is designed to make it easy to add new ODE solving methods without having to mess with the solving code for other methods. The idea is that there is a :py:meth:`~sympy.solvers.ode.classify_ode` function, which takes in an ODE and tells you what hints, if any, will solve the ODE. It does this without attempting to solve the ODE, so it is fast. Each solving method is a hint, and it has its own function, named ``ode_<hint>``. That function takes in the ODE and any match expression gathered by :py:meth:`~sympy.solvers.ode.classify_ode` and returns a solved result. If this result has any integrals in it, the hint function will return an unevaluated :py:class:`~sympy.integrals.integrals.Integral` class. :py:meth:`~sympy.solvers.ode.dsolve`, which is the user wrapper function around all of this, will then call :py:meth:`~sympy.solvers.ode.odesimp` on the result, which, among other things, will attempt to solve the equation for the dependent variable (the function we are solving for), simplify the arbitrary constants in the expression, and evaluate any integrals, if the hint allows it. **How to add new solution methods** If you have an ODE that you want :py:meth:`~sympy.solvers.ode.dsolve` to be able to solve, try to avoid adding special case code here. Instead, try finding a general method that will solve your ODE, as well as others. This way, the :py:mod:`~sympy.solvers.ode` module will become more robust, and unhindered by special case hacks. WolphramAlpha and Maple's DETools[odeadvisor] function are two resources you can use to classify a specific ODE. It is also better for a method to work with an `n`\th order ODE instead of only with specific orders, if possible. To add a new method, there are a few things that you need to do. First, you need a hint name for your method. Try to name your hint so that it is unambiguous with all other methods, including ones that may not be implemented yet. If your method uses integrals, also include a ``hint_Integral`` hint. If there is more than one way to solve ODEs with your method, include a hint for each one, as well as a ``<hint>_best`` hint. Your ``ode_<hint>_best()`` function should choose the best using min with ``ode_sol_simplicity`` as the key argument. See :py:meth:`~sympy.solvers.ode.ode_1st_homogeneous_coeff_best`, for example. The function that uses your method will be called ``ode_<hint>()``, so the hint must only use characters that are allowed in a Python function name (alphanumeric characters and the underscore '``_``' character). Include a function for every hint, except for ``_Integral`` hints (:py:meth:`~sympy.solvers.ode.dsolve` takes care of those automatically). Hint names should be all lowercase, unless a word is commonly capitalized (such as Integral or Bernoulli). If you have a hint that you do not want to run with ``all_Integral`` that doesn't have an ``_Integral`` counterpart (such as a best hint that would defeat the purpose of ``all_Integral``), you will need to remove it manually in the :py:meth:`~sympy.solvers.ode.dsolve` code. See also the :py:meth:`~sympy.solvers.ode.classify_ode` docstring for guidelines on writing a hint name. Determine *in general* how the solutions returned by your method compare with other methods that can potentially solve the same ODEs. Then, put your hints in the :py:data:`~sympy.solvers.ode.allhints` tuple in the order that they should be called. The ordering of this tuple determines which hints are default. Note that exceptions are ok, because it is easy for the user to choose individual hints with :py:meth:`~sympy.solvers.ode.dsolve`. In general, ``_Integral`` variants should go at the end of the list, and ``_best`` variants should go before the various hints they apply to. For example, the ``undetermined_coefficients`` hint comes before the ``variation_of_parameters`` hint because, even though variation of parameters is more general than undetermined coefficients, undetermined coefficients generally returns cleaner results for the ODEs that it can solve than variation of parameters does, and it does not require integration, so it is much faster. Next, you need to have a match expression or a function that matches the type of the ODE, which you should put in :py:meth:`~sympy.solvers.ode.classify_ode` (if the match function is more than just a few lines, like :py:meth:`~sympy.solvers.ode._undetermined_coefficients_match`, it should go outside of :py:meth:`~sympy.solvers.ode.classify_ode`). It should match the ODE without solving for it as much as possible, so that :py:meth:`~sympy.solvers.ode.classify_ode` remains fast and is not hindered by bugs in solving code. Be sure to consider corner cases. For example, if your solution method involves dividing by something, make sure you exclude the case where that division will be 0. In most cases, the matching of the ODE will also give you the various parts that you need to solve it. You should put that in a dictionary (``.match()`` will do this for you), and add that as ``matching_hints['hint'] = matchdict`` in the relevant part of :py:meth:`~sympy.solvers.ode.classify_ode`. :py:meth:`~sympy.solvers.ode.classify_ode` will then send this to :py:meth:`~sympy.solvers.ode.dsolve`, which will send it to your function as the ``match`` argument. Your function should be named ``ode_<hint>(eq, func, order, match)`. If you need to send more information, put it in the ``match`` dictionary. For example, if you had to substitute in a dummy variable in :py:meth:`~sympy.solvers.ode.classify_ode` to match the ODE, you will need to pass it to your function using the `match` dict to access it. You can access the independent variable using ``func.args[0]``, and the dependent variable (the function you are trying to solve for) as ``func.func``. If, while trying to solve the ODE, you find that you cannot, raise ``NotImplementedError``. :py:meth:`~sympy.solvers.ode.dsolve` will catch this error with the ``all`` meta-hint, rather than causing the whole routine to fail. Add a docstring to your function that describes the method employed. Like with anything else in SymPy, you will need to add a doctest to the docstring, in addition to real tests in ``test_ode.py``. Try to maintain consistency with the other hint functions' docstrings. Add your method to the list at the top of this docstring. Also, add your method to ``ode.rst`` in the ``docs/src`` directory, so that the Sphinx docs will pull its docstring into the main SymPy documentation. Be sure to make the Sphinx documentation by running ``make html`` from within the doc directory to verify that the docstring formats correctly. If your solution method involves integrating, use :py:obj:`~.Integral` instead of :py:meth:`~sympy.core.expr.Expr.integrate`. This allows the user to bypass hard/slow integration by using the ``_Integral`` variant of your hint. In most cases, calling :py:meth:`sympy.core.basic.Basic.doit` will integrate your solution. If this is not the case, you will need to write special code in :py:meth:`~sympy.solvers.ode._handle_Integral`. Arbitrary constants should be symbols named ``C1``, ``C2``, and so on. All solution methods should return an equality instance. If you need an arbitrary number of arbitrary constants, you can use ``constants = numbered_symbols(prefix='C', cls=Symbol, start=1)``. If it is possible to solve for the dependent function in a general way, do so. Otherwise, do as best as you can, but do not call solve in your ``ode_<hint>()`` function. :py:meth:`~sympy.solvers.ode.odesimp` will attempt to solve the solution for you, so you do not need to do that. Lastly, if your ODE has a common simplification that can be applied to your solutions, you can add a special case in :py:meth:`~sympy.solvers.ode.odesimp` for it. For example, solutions returned from the ``1st_homogeneous_coeff`` hints often have many :obj:`~sympy.functions.elementary.exponential.log` terms, so :py:meth:`~sympy.solvers.ode.odesimp` calls :py:meth:`~sympy.simplify.simplify.logcombine` on them (it also helps to write the arbitrary constant as ``log(C1)`` instead of ``C1`` in this case). Also consider common ways that you can rearrange your solution to have :py:meth:`~sympy.solvers.ode.constantsimp` take better advantage of it. It is better to put simplification in :py:meth:`~sympy.solvers.ode.odesimp` than in your method, because it can then be turned off with the simplify flag in :py:meth:`~sympy.solvers.ode.dsolve`. If you have any extraneous simplification in your function, be sure to only run it using ``if match.get('simplify', True):``, especially if it can be slow or if it can reduce the domain of the solution. Finally, as with every contribution to SymPy, your method will need to be tested. Add a test for each method in ``test_ode.py``. Follow the conventions there, i.e., test the solver using ``dsolve(eq, f(x), hint=your_hint)``, and also test the solution using :py:meth:`~sympy.solvers.ode.checkodesol` (you can put these in a separate tests and skip/XFAIL if it runs too slow/doesn't work). Be sure to call your hint specifically in :py:meth:`~sympy.solvers.ode.dsolve`, that way the test won't be broken simply by the introduction of another matching hint. If your method works for higher order (>1) ODEs, you will need to run ``sol = constant_renumber(sol, 'C', 1, order)`` for each solution, where ``order`` is the order of the ODE. This is because ``constant_renumber`` renumbers the arbitrary constants by printing order, which is platform dependent. Try to test every corner case of your solver, including a range of orders if it is a `n`\th order solver, but if your solver is slow, such as if it involves hard integration, try to keep the test run time down. Feel free to refactor existing hints to avoid duplicating code or creating inconsistencies. If you can show that your method exactly duplicates an existing method, including in the simplicity and speed of obtaining the solutions, then you can remove the old, less general method. The existing code is tested extensively in ``test_ode.py``, so if anything is broken, one of those tests will surely fail. """ from __future__ import print_function, division from collections import defaultdict from itertools import islice from sympy.functions import hyper from sympy.core import Add, S, Mul, Pow, oo, Rational from sympy.core.compatibility import ordered, iterable, is_sequence, range, string_types from sympy.core.containers import Tuple from sympy.core.exprtools import factor_terms from sympy.core.expr import AtomicExpr, Expr from sympy.core.function import (Function, Derivative, AppliedUndef, diff, expand, expand_mul, Subs, _mexpand) from sympy.core.multidimensional import vectorize from sympy.core.numbers import NaN, zoo, I, Number from sympy.core.relational import Equality, Eq from sympy.core.symbol import Symbol, Wild, Dummy, symbols from sympy.core.sympify import sympify from sympy.logic.boolalg import (BooleanAtom, And, Not, BooleanTrue, BooleanFalse) from sympy.functions import cos, exp, im, log, re, sin, tan, sqrt, \ atan2, conjugate, Piecewise, cbrt, besselj, bessely, airyai, airybi from sympy.functions.combinatorial.factorials import factorial from sympy.integrals.integrals import Integral, integrate from sympy.matrices import wronskian, Matrix, eye, zeros from sympy.polys import (Poly, RootOf, rootof, terms_gcd, PolynomialError, lcm, roots, gcd) from sympy.polys.polyroots import roots_quartic from sympy.polys.polytools import cancel, degree, div from sympy.series import Order from sympy.series.series import series from sympy.simplify import collect, logcombine, powsimp, separatevars, \ simplify, trigsimp, posify, cse, besselsimp from sympy.simplify.powsimp import powdenest from sympy.simplify.radsimp import collect_const, fraction from sympy.solvers import checksol, solve from sympy.solvers.pde import pdsolve from sympy.utilities import numbered_symbols, default_sort_key, sift from sympy.solvers.deutils import _preprocess, ode_order, _desolve #: This is a list of hints in the order that they should be preferred by #: :py:meth:`~sympy.solvers.ode.classify_ode`. In general, hints earlier in the #: list should produce simpler solutions than those later in the list (for #: ODEs that fit both). For now, the order of this list is based on empirical #: observations by the developers of SymPy. #: #: The hint used by :py:meth:`~sympy.solvers.ode.dsolve` for a specific ODE #: can be overridden (see the docstring). #: #: In general, ``_Integral`` hints are grouped at the end of the list, unless #: there is a method that returns an unevaluable integral most of the time #: (which go near the end of the list anyway). ``default``, ``all``, #: ``best``, and ``all_Integral`` meta-hints should not be included in this #: list, but ``_best`` and ``_Integral`` hints should be included. allhints = ( "factorable", "nth_algebraic", "separable", "1st_exact", "1st_linear", "Bernoulli", "Riccati_special_minus2", "1st_homogeneous_coeff_best", "1st_homogeneous_coeff_subs_indep_div_dep", "1st_homogeneous_coeff_subs_dep_div_indep", "almost_linear", "linear_coefficients", "separable_reduced", "1st_power_series", "lie_group", "nth_linear_constant_coeff_homogeneous", "nth_linear_euler_eq_homogeneous", "nth_linear_constant_coeff_undetermined_coefficients", "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients", "nth_linear_constant_coeff_variation_of_parameters", "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters", "Liouville", "2nd_linear_airy", "2nd_linear_bessel", "2nd_hypergeometric", "2nd_hypergeometric_Integral", "nth_order_reducible", "2nd_power_series_ordinary", "2nd_power_series_regular", "nth_algebraic_Integral", "separable_Integral", "1st_exact_Integral", "1st_linear_Integral", "Bernoulli_Integral", "1st_homogeneous_coeff_subs_indep_div_dep_Integral", "1st_homogeneous_coeff_subs_dep_div_indep_Integral", "almost_linear_Integral", "linear_coefficients_Integral", "separable_reduced_Integral", "nth_linear_constant_coeff_variation_of_parameters_Integral", "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral", "Liouville_Integral", ) lie_heuristics = ( "abaco1_simple", "abaco1_product", "abaco2_similar", "abaco2_unique_unknown", "abaco2_unique_general", "linear", "function_sum", "bivariate", "chi" ) def sub_func_doit(eq, func, new): r""" When replacing the func with something else, we usually want the derivative evaluated, so this function helps in making that happen. Examples ======== >>> from sympy import Derivative, symbols, Function >>> from sympy.solvers.ode import sub_func_doit >>> x, z = symbols('x, z') >>> y = Function('y') >>> sub_func_doit(3*Derivative(y(x), x) - 1, y(x), x) 2 >>> sub_func_doit(x*Derivative(y(x), x) - y(x)**2 + y(x), y(x), ... 1/(x*(z + 1/x))) x*(-1/(x**2*(z + 1/x)) + 1/(x**3*(z + 1/x)**2)) + 1/(x*(z + 1/x)) ...- 1/(x**2*(z + 1/x)**2) """ reps= {func: new} for d in eq.atoms(Derivative): if d.expr == func: reps[d] = new.diff(*d.variable_count) else: reps[d] = d.xreplace({func: new}).doit(deep=False) return eq.xreplace(reps) def get_numbered_constants(eq, num=1, start=1, prefix='C'): """ Returns a list of constants that do not occur in eq already. """ ncs = iter_numbered_constants(eq, start, prefix) Cs = [next(ncs) for i in range(num)] return (Cs[0] if num == 1 else tuple(Cs)) def iter_numbered_constants(eq, start=1, prefix='C'): """ Returns an iterator of constants that do not occur in eq already. """ if isinstance(eq, Expr): eq = [eq] elif not iterable(eq): raise ValueError("Expected Expr or iterable but got %s" % eq) atom_set = set().union(*[i.free_symbols for i in eq]) func_set = set().union(*[i.atoms(Function) for i in eq]) if func_set: atom_set |= {Symbol(str(f.func)) for f in func_set} return numbered_symbols(start=start, prefix=prefix, exclude=atom_set) def dsolve(eq, func=None, hint="default", simplify=True, ics= None, xi=None, eta=None, x0=0, n=6, **kwargs): r""" Solves any (supported) kind of ordinary differential equation and system of ordinary differential equations. For single ordinary differential equation ========================================= It is classified under this when number of equation in ``eq`` is one. **Usage** ``dsolve(eq, f(x), hint)`` -> Solve ordinary differential equation ``eq`` for function ``f(x)``, using method ``hint``. **Details** ``eq`` can be any supported ordinary differential equation (see the :py:mod:`~sympy.solvers.ode` docstring for supported methods). This can either be an :py:class:`~sympy.core.relational.Equality`, or an expression, which is assumed to be equal to ``0``. ``f(x)`` is a function of one variable whose derivatives in that variable make up the ordinary differential equation ``eq``. In many cases it is not necessary to provide this; it will be autodetected (and an error raised if it couldn't be detected). ``hint`` is the solving method that you want dsolve to use. Use ``classify_ode(eq, f(x))`` to get all of the possible hints for an ODE. The default hint, ``default``, will use whatever hint is returned first by :py:meth:`~sympy.solvers.ode.classify_ode`. See Hints below for more options that you can use for hint. ``simplify`` enables simplification by :py:meth:`~sympy.solvers.ode.odesimp`. See its docstring for more information. Turn this off, for example, to disable solving of solutions for ``func`` or simplification of arbitrary constants. It will still integrate with this hint. Note that the solution may contain more arbitrary constants than the order of the ODE with this option enabled. ``xi`` and ``eta`` are the infinitesimal functions of an ordinary differential equation. They are the infinitesimals of the Lie group of point transformations for which the differential equation is invariant. The user can specify values for the infinitesimals. If nothing is specified, ``xi`` and ``eta`` are calculated using :py:meth:`~sympy.solvers.ode.infinitesimals` with the help of various heuristics. ``ics`` is the set of initial/boundary conditions for the differential equation. It should be given in the form of ``{f(x0): x1, f(x).diff(x).subs(x, x2): x3}`` and so on. For power series solutions, if no initial conditions are specified ``f(0)`` is assumed to be ``C0`` and the power series solution is calculated about 0. ``x0`` is the point about which the power series solution of a differential equation is to be evaluated. ``n`` gives the exponent of the dependent variable up to which the power series solution of a differential equation is to be evaluated. **Hints** Aside from the various solving methods, there are also some meta-hints that you can pass to :py:meth:`~sympy.solvers.ode.dsolve`: ``default``: This uses whatever hint is returned first by :py:meth:`~sympy.solvers.ode.classify_ode`. This is the default argument to :py:meth:`~sympy.solvers.ode.dsolve`. ``all``: To make :py:meth:`~sympy.solvers.ode.dsolve` apply all relevant classification hints, use ``dsolve(ODE, func, hint="all")``. This will return a dictionary of ``hint:solution`` terms. If a hint causes dsolve to raise the ``NotImplementedError``, value of that hint's key will be the exception object raised. The dictionary will also include some special keys: - ``order``: The order of the ODE. See also :py:meth:`~sympy.solvers.deutils.ode_order` in ``deutils.py``. - ``best``: The simplest hint; what would be returned by ``best`` below. - ``best_hint``: The hint that would produce the solution given by ``best``. If more than one hint produces the best solution, the first one in the tuple returned by :py:meth:`~sympy.solvers.ode.classify_ode` is chosen. - ``default``: The solution that would be returned by default. This is the one produced by the hint that appears first in the tuple returned by :py:meth:`~sympy.solvers.ode.classify_ode`. ``all_Integral``: This is the same as ``all``, except if a hint also has a corresponding ``_Integral`` hint, it only returns the ``_Integral`` hint. This is useful if ``all`` causes :py:meth:`~sympy.solvers.ode.dsolve` to hang because of a difficult or impossible integral. This meta-hint will also be much faster than ``all``, because :py:meth:`~sympy.core.expr.Expr.integrate` is an expensive routine. ``best``: To have :py:meth:`~sympy.solvers.ode.dsolve` try all methods and return the simplest one. This takes into account whether the solution is solvable in the function, whether it contains any Integral classes (i.e. unevaluatable integrals), and which one is the shortest in size. See also the :py:meth:`~sympy.solvers.ode.classify_ode` docstring for more info on hints, and the :py:mod:`~sympy.solvers.ode` docstring for a list of all supported hints. **Tips** - You can declare the derivative of an unknown function this way: >>> from sympy import Function, Derivative >>> from sympy.abc import x # x is the independent variable >>> f = Function("f")(x) # f is a function of x >>> # f_ will be the derivative of f with respect to x >>> f_ = Derivative(f, x) - See ``test_ode.py`` for many tests, which serves also as a set of examples for how to use :py:meth:`~sympy.solvers.ode.dsolve`. - :py:meth:`~sympy.solvers.ode.dsolve` always returns an :py:class:`~sympy.core.relational.Equality` class (except for the case when the hint is ``all`` or ``all_Integral``). If possible, it solves the solution explicitly for the function being solved for. Otherwise, it returns an implicit solution. - Arbitrary constants are symbols named ``C1``, ``C2``, and so on. - Because all solutions should be mathematically equivalent, some hints may return the exact same result for an ODE. Often, though, two different hints will return the same solution formatted differently. The two should be equivalent. Also note that sometimes the values of the arbitrary constants in two different solutions may not be the same, because one constant may have "absorbed" other constants into it. - Do ``help(ode.ode_<hintname>)`` to get help more information on a specific hint, where ``<hintname>`` is the name of a hint without ``_Integral``. For system of ordinary differential equations ============================================= **Usage** ``dsolve(eq, func)`` -> Solve a system of ordinary differential equations ``eq`` for ``func`` being list of functions including `x(t)`, `y(t)`, `z(t)` where number of functions in the list depends upon the number of equations provided in ``eq``. **Details** ``eq`` can be any supported system of ordinary differential equations This can either be an :py:class:`~sympy.core.relational.Equality`, or an expression, which is assumed to be equal to ``0``. ``func`` holds ``x(t)`` and ``y(t)`` being functions of one variable which together with some of their derivatives make up the system of ordinary differential equation ``eq``. It is not necessary to provide this; it will be autodetected (and an error raised if it couldn't be detected). **Hints** The hints are formed by parameters returned by classify_sysode, combining them give hints name used later for forming method name. Examples ======== >>> from sympy import Function, dsolve, Eq, Derivative, sin, cos, symbols >>> from sympy.abc import x >>> f = Function('f') >>> dsolve(Derivative(f(x), x, x) + 9*f(x), f(x)) Eq(f(x), C1*sin(3*x) + C2*cos(3*x)) >>> eq = sin(x)*cos(f(x)) + cos(x)*sin(f(x))*f(x).diff(x) >>> dsolve(eq, hint='1st_exact') [Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))] >>> dsolve(eq, hint='almost_linear') [Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))] >>> t = symbols('t') >>> x, y = symbols('x, y', cls=Function) >>> eq = (Eq(Derivative(x(t),t), 12*t*x(t) + 8*y(t)), Eq(Derivative(y(t),t), 21*x(t) + 7*t*y(t))) >>> dsolve(eq) [Eq(x(t), C1*x0(t) + C2*x0(t)*Integral(8*exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)**2, t)), Eq(y(t), C1*y0(t) + C2*(y0(t)*Integral(8*exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)**2, t) + exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)))] >>> eq = (Eq(Derivative(x(t),t),x(t)*y(t)*sin(t)), Eq(Derivative(y(t),t),y(t)**2*sin(t))) >>> dsolve(eq) {Eq(x(t), -exp(C1)/(C2*exp(C1) - cos(t))), Eq(y(t), -1/(C1 - cos(t)))} """ if iterable(eq): match = classify_sysode(eq, func) eq = match['eq'] order = match['order'] func = match['func'] t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] # keep highest order term coefficient positive for i in range(len(eq)): for func_ in func: if isinstance(func_, list): pass else: if eq[i].coeff(diff(func[i],t,ode_order(eq[i], func[i]))).is_negative: eq[i] = -eq[i] match['eq'] = eq if len(set(order.values()))!=1: raise ValueError("It solves only those systems of equations whose orders are equal") match['order'] = list(order.values())[0] def recur_len(l): return sum(recur_len(item) if isinstance(item,list) else 1 for item in l) if recur_len(func) != len(eq): raise ValueError("dsolve() and classify_sysode() work with " "number of functions being equal to number of equations") if match['type_of_equation'] is None: raise NotImplementedError else: if match['is_linear'] == True: if match['no_of_equation'] > 3: solvefunc = globals()['sysode_linear_neq_order%(order)s' % match] else: solvefunc = globals()['sysode_linear_%(no_of_equation)seq_order%(order)s' % match] else: solvefunc = globals()['sysode_nonlinear_%(no_of_equation)seq_order%(order)s' % match] sols = solvefunc(match) if ics: constants = Tuple(*sols).free_symbols - Tuple(*eq).free_symbols solved_constants = solve_ics(sols, func, constants, ics) return [sol.subs(solved_constants) for sol in sols] return sols else: given_hint = hint # hint given by the user # See the docstring of _desolve for more details. hints = _desolve(eq, func=func, hint=hint, simplify=True, xi=xi, eta=eta, type='ode', ics=ics, x0=x0, n=n, **kwargs) eq = hints.pop('eq', eq) all_ = hints.pop('all', False) if all_: retdict = {} failed_hints = {} gethints = classify_ode(eq, dict=True) orderedhints = gethints['ordered_hints'] for hint in hints: try: rv = _helper_simplify(eq, hint, hints[hint], simplify) except NotImplementedError as detail: failed_hints[hint] = detail else: retdict[hint] = rv func = hints[hint]['func'] retdict['best'] = min(list(retdict.values()), key=lambda x: ode_sol_simplicity(x, func, trysolving=not simplify)) if given_hint == 'best': return retdict['best'] for i in orderedhints: if retdict['best'] == retdict.get(i, None): retdict['best_hint'] = i break retdict['default'] = gethints['default'] retdict['order'] = gethints['order'] retdict.update(failed_hints) return retdict else: # The key 'hint' stores the hint needed to be solved for. hint = hints['hint'] return _helper_simplify(eq, hint, hints, simplify, ics=ics) def _helper_simplify(eq, hint, match, simplify=True, ics=None, **kwargs): r""" Helper function of dsolve that calls the respective :py:mod:`~sympy.solvers.ode` functions to solve for the ordinary differential equations. This minimizes the computation in calling :py:meth:`~sympy.solvers.deutils._desolve` multiple times. """ r = match if hint.endswith('_Integral'): solvefunc = globals()['ode_' + hint[:-len('_Integral')]] else: solvefunc = globals()['ode_' + hint] func = r['func'] order = r['order'] match = r[hint] free = eq.free_symbols cons = lambda s: s.free_symbols.difference(free) if simplify: # odesimp() will attempt to integrate, if necessary, apply constantsimp(), # attempt to solve for func, and apply any other hint specific # simplifications sols = solvefunc(eq, func, order, match) if isinstance(sols, Expr): rv = odesimp(eq, sols, func, hint) else: rv = [odesimp(eq, s, func, hint) for s in sols] else: # We still want to integrate (you can disable it separately with the hint) match['simplify'] = False # Some hints can take advantage of this option exprs = solvefunc(eq, func, order, match) if isinstance(exprs, list): rv = [_handle_Integral(expr, func, hint) for expr in exprs] else: rv = _handle_Integral(exprs, func, hint) if isinstance(rv, list): rv = _remove_redundant_solutions(eq, rv, order, func.args[0]) if len(rv) == 1: rv = rv[0] if ics and not 'power_series' in hint: if isinstance(rv, Expr): solved_constants = solve_ics([rv], [r['func']], cons(rv), ics) rv = rv.subs(solved_constants) else: rv1 = [] for s in rv: try: solved_constants = solve_ics([s], [r['func']], cons(s), ics) except ValueError: continue rv1.append(s.subs(solved_constants)) if len(rv1) == 1: return rv1[0] rv = rv1 return rv def solve_ics(sols, funcs, constants, ics): """ Solve for the constants given initial conditions ``sols`` is a list of solutions. ``funcs`` is a list of functions. ``constants`` is a list of constants. ``ics`` is the set of initial/boundary conditions for the differential equation. It should be given in the form of ``{f(x0): x1, f(x).diff(x).subs(x, x2): x3}`` and so on. Returns a dictionary mapping constants to values. ``solution.subs(constants)`` will replace the constants in ``solution``. Example ======= >>> # From dsolve(f(x).diff(x) - f(x), f(x)) >>> from sympy import symbols, Eq, exp, Function >>> from sympy.solvers.ode import solve_ics >>> f = Function('f') >>> x, C1 = symbols('x C1') >>> sols = [Eq(f(x), C1*exp(x))] >>> funcs = [f(x)] >>> constants = [C1] >>> ics = {f(0): 2} >>> solved_constants = solve_ics(sols, funcs, constants, ics) >>> solved_constants {C1: 2} >>> sols[0].subs(solved_constants) Eq(f(x), 2*exp(x)) """ # Assume ics are of the form f(x0): value or Subs(diff(f(x), x, n), (x, # x0)): value (currently checked by classify_ode). To solve, replace x # with x0, f(x0) with value, then solve for constants. For f^(n)(x0), # differentiate the solution n times, so that f^(n)(x) appears. x = funcs[0].args[0] diff_sols = [] subs_sols = [] diff_variables = set() for funcarg, value in ics.items(): if isinstance(funcarg, AppliedUndef): x0 = funcarg.args[0] matching_func = [f for f in funcs if f.func == funcarg.func][0] S = sols elif isinstance(funcarg, (Subs, Derivative)): if isinstance(funcarg, Subs): # Make sure it stays a subs. Otherwise subs below will produce # a different looking term. funcarg = funcarg.doit() if isinstance(funcarg, Subs): deriv = funcarg.expr x0 = funcarg.point[0] variables = funcarg.expr.variables matching_func = deriv elif isinstance(funcarg, Derivative): deriv = funcarg x0 = funcarg.variables[0] variables = (x,)*len(funcarg.variables) matching_func = deriv.subs(x0, x) if variables not in diff_variables: for sol in sols: if sol.has(deriv.expr.func): diff_sols.append(Eq(sol.lhs.diff(*variables), sol.rhs.diff(*variables))) diff_variables.add(variables) S = diff_sols else: raise NotImplementedError("Unrecognized initial condition") for sol in S: if sol.has(matching_func): sol2 = sol sol2 = sol2.subs(x, x0) sol2 = sol2.subs(funcarg, value) # This check is necessary because of issue #15724 if not isinstance(sol2, BooleanAtom) or not subs_sols: subs_sols = [s for s in subs_sols if not isinstance(s, BooleanAtom)] subs_sols.append(sol2) # TODO: Use solveset here try: solved_constants = solve(subs_sols, constants, dict=True) except NotImplementedError: solved_constants = [] # XXX: We can't differentiate between the solution not existing because of # invalid initial conditions, and not existing because solve is not smart # enough. If we could use solveset, this might be improvable, but for now, # we use NotImplementedError in this case. if not solved_constants: raise ValueError("Couldn't solve for initial conditions") if solved_constants == True: raise ValueError("Initial conditions did not produce any solutions for constants. Perhaps they are degenerate.") if len(solved_constants) > 1: raise NotImplementedError("Initial conditions produced too many solutions for constants") return solved_constants[0] def classify_ode(eq, func=None, dict=False, ics=None, **kwargs): r""" Returns a tuple of possible :py:meth:`~sympy.solvers.ode.dsolve` classifications for an ODE. The tuple is ordered so that first item is the classification that :py:meth:`~sympy.solvers.ode.dsolve` uses to solve the ODE by default. In general, classifications at the near the beginning of the list will produce better solutions faster than those near the end, thought there are always exceptions. To make :py:meth:`~sympy.solvers.ode.dsolve` use a different classification, use ``dsolve(ODE, func, hint=<classification>)``. See also the :py:meth:`~sympy.solvers.ode.dsolve` docstring for different meta-hints you can use. If ``dict`` is true, :py:meth:`~sympy.solvers.ode.classify_ode` will return a dictionary of ``hint:match`` expression terms. This is intended for internal use by :py:meth:`~sympy.solvers.ode.dsolve`. Note that because dictionaries are ordered arbitrarily, this will most likely not be in the same order as the tuple. You can get help on different hints by executing ``help(ode.ode_hintname)``, where ``hintname`` is the name of the hint without ``_Integral``. See :py:data:`~sympy.solvers.ode.allhints` or the :py:mod:`~sympy.solvers.ode` docstring for a list of all supported hints that can be returned from :py:meth:`~sympy.solvers.ode.classify_ode`. Notes ===== These are remarks on hint names. ``_Integral`` If a classification has ``_Integral`` at the end, it will return the expression with an unevaluated :py:class:`~.Integral` class in it. Note that a hint may do this anyway if :py:meth:`~sympy.core.expr.Expr.integrate` cannot do the integral, though just using an ``_Integral`` will do so much faster. Indeed, an ``_Integral`` hint will always be faster than its corresponding hint without ``_Integral`` because :py:meth:`~sympy.core.expr.Expr.integrate` is an expensive routine. If :py:meth:`~sympy.solvers.ode.dsolve` hangs, it is probably because :py:meth:`~sympy.core.expr.Expr.integrate` is hanging on a tough or impossible integral. Try using an ``_Integral`` hint or ``all_Integral`` to get it return something. Note that some hints do not have ``_Integral`` counterparts. This is because :py:func:`~sympy.integrals.integrals.integrate` is not used in solving the ODE for those method. For example, `n`\th order linear homogeneous ODEs with constant coefficients do not require integration to solve, so there is no ``nth_linear_homogeneous_constant_coeff_Integrate`` hint. You can easily evaluate any unevaluated :py:class:`~sympy.integrals.integrals.Integral`\s in an expression by doing ``expr.doit()``. Ordinals Some hints contain an ordinal such as ``1st_linear``. This is to help differentiate them from other hints, as well as from other methods that may not be implemented yet. If a hint has ``nth`` in it, such as the ``nth_linear`` hints, this means that the method used to applies to ODEs of any order. ``indep`` and ``dep`` Some hints contain the words ``indep`` or ``dep``. These reference the independent variable and the dependent function, respectively. For example, if an ODE is in terms of `f(x)`, then ``indep`` will refer to `x` and ``dep`` will refer to `f`. ``subs`` If a hints has the word ``subs`` in it, it means the the ODE is solved by substituting the expression given after the word ``subs`` for a single dummy variable. This is usually in terms of ``indep`` and ``dep`` as above. The substituted expression will be written only in characters allowed for names of Python objects, meaning operators will be spelled out. For example, ``indep``/``dep`` will be written as ``indep_div_dep``. ``coeff`` The word ``coeff`` in a hint refers to the coefficients of something in the ODE, usually of the derivative terms. See the docstring for the individual methods for more info (``help(ode)``). This is contrast to ``coefficients``, as in ``undetermined_coefficients``, which refers to the common name of a method. ``_best`` Methods that have more than one fundamental way to solve will have a hint for each sub-method and a ``_best`` meta-classification. This will evaluate all hints and return the best, using the same considerations as the normal ``best`` meta-hint. Examples ======== >>> from sympy import Function, classify_ode, Eq >>> from sympy.abc import x >>> f = Function('f') >>> classify_ode(Eq(f(x).diff(x), 0), f(x)) ('nth_algebraic', 'separable', '1st_linear', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_homogeneous', 'nth_linear_euler_eq_homogeneous', 'nth_algebraic_Integral', 'separable_Integral', '1st_linear_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral') >>> classify_ode(f(x).diff(x, 2) + 3*f(x).diff(x) + 2*f(x) - 4) ('nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', 'nth_linear_constant_coeff_variation_of_parameters_Integral') """ ics = sympify(ics) prep = kwargs.pop('prep', True) if func and len(func.args) != 1: raise ValueError("dsolve() and classify_ode() only " "work with functions of one variable, not %s" % func) # Some methods want the unprocessed equation eq_orig = eq if prep or func is None: eq, func_ = _preprocess(eq, func) if func is None: func = func_ x = func.args[0] f = func.func y = Dummy('y') xi = kwargs.get('xi') eta = kwargs.get('eta') terms = kwargs.get('n') if isinstance(eq, Equality): if eq.rhs != 0: return classify_ode(eq.lhs - eq.rhs, func, dict=dict, ics=ics, xi=xi, n=terms, eta=eta, prep=False) eq = eq.lhs order = ode_order(eq, f(x)) # hint:matchdict or hint:(tuple of matchdicts) # Also will contain "default":<default hint> and "order":order items. matching_hints = {"order": order} df = f(x).diff(x) a = Wild('a', exclude=[f(x)]) b = Wild('b', exclude=[f(x)]) c = Wild('c', exclude=[f(x)]) d = Wild('d', exclude=[df, f(x).diff(x, 2)]) e = Wild('e', exclude=[df]) k = Wild('k', exclude=[df]) n = Wild('n', exclude=[x, f(x), df]) c1 = Wild('c1', exclude=[x]) a2 = Wild('a2', exclude=[x, f(x), df]) b2 = Wild('b2', exclude=[x, f(x), df]) c2 = Wild('c2', exclude=[x, f(x), df]) d2 = Wild('d2', exclude=[x, f(x), df]) a3 = Wild('a3', exclude=[f(x), df, f(x).diff(x, 2)]) b3 = Wild('b3', exclude=[f(x), df, f(x).diff(x, 2)]) c3 = Wild('c3', exclude=[f(x), df, f(x).diff(x, 2)]) r3 = {'xi': xi, 'eta': eta} # Used for the lie_group hint boundary = {} # Used to extract initial conditions C1 = Symbol("C1") # Preprocessing to get the initial conditions out if ics is not None: for funcarg in ics: # Separating derivatives if isinstance(funcarg, (Subs, Derivative)): # f(x).diff(x).subs(x, 0) is a Subs, but f(x).diff(x).subs(x, # y) is a Derivative if isinstance(funcarg, Subs): deriv = funcarg.expr old = funcarg.variables[0] new = funcarg.point[0] elif isinstance(funcarg, Derivative): deriv = funcarg # No information on this. Just assume it was x old = x new = funcarg.variables[0] if (isinstance(deriv, Derivative) and isinstance(deriv.args[0], AppliedUndef) and deriv.args[0].func == f and len(deriv.args[0].args) == 1 and old == x and not new.has(x) and all(i == deriv.variables[0] for i in deriv.variables) and not ics[funcarg].has(f)): dorder = ode_order(deriv, x) temp = 'f' + str(dorder) boundary.update({temp: new, temp + 'val': ics[funcarg]}) else: raise ValueError("Enter valid boundary conditions for Derivatives") # Separating functions elif isinstance(funcarg, AppliedUndef): if (funcarg.func == f and len(funcarg.args) == 1 and not funcarg.args[0].has(x) and not ics[funcarg].has(f)): boundary.update({'f0': funcarg.args[0], 'f0val': ics[funcarg]}) else: raise ValueError("Enter valid boundary conditions for Function") else: raise ValueError("Enter boundary conditions of the form ics={f(point}: value, f(x).diff(x, order).subs(x, point): value}") # Factorable method r = _ode_factorable_match(eq, func, kwargs.get('x0', 0)) if r: matching_hints['factorable'] = r # Any ODE that can be solved with a combination of algebra and # integrals e.g.: # d^3/dx^3(x y) = F(x) r = _nth_algebraic_match(eq_orig, func) if r['solutions']: matching_hints['nth_algebraic'] = r matching_hints['nth_algebraic_Integral'] = r eq = expand(eq) # Precondition to try remove f(x) from highest order derivative reduced_eq = None if eq.is_Add: deriv_coef = eq.coeff(f(x).diff(x, order)) if deriv_coef not in (1, 0): r = deriv_coef.match(a*f(x)**c1) if r and r[c1]: den = f(x)**r[c1] reduced_eq = Add(*[arg/den for arg in eq.args]) if not reduced_eq: reduced_eq = eq if order == 1: ## Linear case: a(x)*y'+b(x)*y+c(x) == 0 if eq.is_Add: ind, dep = reduced_eq.as_independent(f) else: u = Dummy('u') ind, dep = (reduced_eq + u).as_independent(f) ind, dep = [tmp.subs(u, 0) for tmp in [ind, dep]] r = {a: dep.coeff(df), b: dep.coeff(f(x)), c: ind} # double check f[a] since the preconditioning may have failed if not r[a].has(f) and not r[b].has(f) and ( r[a]*df + r[b]*f(x) + r[c]).expand() - reduced_eq == 0: r['a'] = a r['b'] = b r['c'] = c matching_hints["1st_linear"] = r matching_hints["1st_linear_Integral"] = r ## Bernoulli case: a(x)*y'+b(x)*y+c(x)*y**n == 0 r = collect( reduced_eq, f(x), exact=True).match(a*df + b*f(x) + c*f(x)**n) if r and r[c] != 0 and r[n] != 1: # See issue 4676 r['a'] = a r['b'] = b r['c'] = c r['n'] = n matching_hints["Bernoulli"] = r matching_hints["Bernoulli_Integral"] = r ## Riccati special n == -2 case: a2*y'+b2*y**2+c2*y/x+d2/x**2 == 0 r = collect(reduced_eq, f(x), exact=True).match(a2*df + b2*f(x)**2 + c2*f(x)/x + d2/x**2) if r and r[b2] != 0 and (r[c2] != 0 or r[d2] != 0): r['a2'] = a2 r['b2'] = b2 r['c2'] = c2 r['d2'] = d2 matching_hints["Riccati_special_minus2"] = r # NON-REDUCED FORM OF EQUATION matches r = collect(eq, df, exact=True).match(d + e * df) if r: r['d'] = d r['e'] = e r['y'] = y r[d] = r[d].subs(f(x), y) r[e] = r[e].subs(f(x), y) # FIRST ORDER POWER SERIES WHICH NEEDS INITIAL CONDITIONS # TODO: Hint first order series should match only if d/e is analytic. # For now, only d/e and (d/e).diff(arg) is checked for existence at # at a given point. # This is currently done internally in ode_1st_power_series. point = boundary.get('f0', 0) value = boundary.get('f0val', C1) check = cancel(r[d]/r[e]) check1 = check.subs({x: point, y: value}) if not check1.has(oo) and not check1.has(zoo) and \ not check1.has(NaN) and not check1.has(-oo): check2 = (check1.diff(x)).subs({x: point, y: value}) if not check2.has(oo) and not check2.has(zoo) and \ not check2.has(NaN) and not check2.has(-oo): rseries = r.copy() rseries.update({'terms': terms, 'f0': point, 'f0val': value}) matching_hints["1st_power_series"] = rseries r3.update(r) ## Exact Differential Equation: P(x, y) + Q(x, y)*y' = 0 where # dP/dy == dQ/dx try: if r[d] != 0: numerator = simplify(r[d].diff(y) - r[e].diff(x)) # The following few conditions try to convert a non-exact # differential equation into an exact one. # References : Differential equations with applications # and historical notes - George E. Simmons if numerator: # If (dP/dy - dQ/dx) / Q = f(x) # then exp(integral(f(x))*equation becomes exact factor = simplify(numerator/r[e]) variables = factor.free_symbols if len(variables) == 1 and x == variables.pop(): factor = exp(Integral(factor).doit()) r[d] *= factor r[e] *= factor matching_hints["1st_exact"] = r matching_hints["1st_exact_Integral"] = r else: # If (dP/dy - dQ/dx) / -P = f(y) # then exp(integral(f(y))*equation becomes exact factor = simplify(-numerator/r[d]) variables = factor.free_symbols if len(variables) == 1 and y == variables.pop(): factor = exp(Integral(factor).doit()) r[d] *= factor r[e] *= factor matching_hints["1st_exact"] = r matching_hints["1st_exact_Integral"] = r else: matching_hints["1st_exact"] = r matching_hints["1st_exact_Integral"] = r except NotImplementedError: # Differentiating the coefficients might fail because of things # like f(2*x).diff(x). See issue 4624 and issue 4719. pass # Any first order ODE can be ideally solved by the Lie Group # method matching_hints["lie_group"] = r3 # This match is used for several cases below; we now collect on # f(x) so the matching works. r = collect(reduced_eq, df, exact=True).match(d + e*df) if r: # Using r[d] and r[e] without any modification for hints # linear-coefficients and separable-reduced. num, den = r[d], r[e] # ODE = d/e + df r['d'] = d r['e'] = e r['y'] = y r[d] = num.subs(f(x), y) r[e] = den.subs(f(x), y) ## Separable Case: y' == P(y)*Q(x) r[d] = separatevars(r[d]) r[e] = separatevars(r[e]) # m1[coeff]*m1[x]*m1[y] + m2[coeff]*m2[x]*m2[y]*y' m1 = separatevars(r[d], dict=True, symbols=(x, y)) m2 = separatevars(r[e], dict=True, symbols=(x, y)) if m1 and m2: r1 = {'m1': m1, 'm2': m2, 'y': y} matching_hints["separable"] = r1 matching_hints["separable_Integral"] = r1 ## First order equation with homogeneous coefficients: # dy/dx == F(y/x) or dy/dx == F(x/y) ordera = homogeneous_order(r[d], x, y) if ordera is not None: orderb = homogeneous_order(r[e], x, y) if ordera == orderb: # u1=y/x and u2=x/y u1 = Dummy('u1') u2 = Dummy('u2') s = "1st_homogeneous_coeff_subs" s1 = s + "_dep_div_indep" s2 = s + "_indep_div_dep" if simplify((r[d] + u1*r[e]).subs({x: 1, y: u1})) != 0: matching_hints[s1] = r matching_hints[s1 + "_Integral"] = r if simplify((r[e] + u2*r[d]).subs({x: u2, y: 1})) != 0: matching_hints[s2] = r matching_hints[s2 + "_Integral"] = r if s1 in matching_hints and s2 in matching_hints: matching_hints["1st_homogeneous_coeff_best"] = r ## Linear coefficients of the form # y'+ F((a*x + b*y + c)/(a'*x + b'y + c')) = 0 # that can be reduced to homogeneous form. F = num/den params = _linear_coeff_match(F, func) if params: xarg, yarg = params u = Dummy('u') t = Dummy('t') # Dummy substitution for df and f(x). dummy_eq = reduced_eq.subs(((df, t), (f(x), u))) reps = ((x, x + xarg), (u, u + yarg), (t, df), (u, f(x))) dummy_eq = simplify(dummy_eq.subs(reps)) # get the re-cast values for e and d r2 = collect(expand(dummy_eq), [df, f(x)]).match(e*df + d) if r2: orderd = homogeneous_order(r2[d], x, f(x)) if orderd is not None: ordere = homogeneous_order(r2[e], x, f(x)) if orderd == ordere: # Match arguments are passed in such a way that it # is coherent with the already existing homogeneous # functions. r2[d] = r2[d].subs(f(x), y) r2[e] = r2[e].subs(f(x), y) r2.update({'xarg': xarg, 'yarg': yarg, 'd': d, 'e': e, 'y': y}) matching_hints["linear_coefficients"] = r2 matching_hints["linear_coefficients_Integral"] = r2 ## Equation of the form y' + (y/x)*H(x^n*y) = 0 # that can be reduced to separable form factor = simplify(x/f(x)*num/den) # Try representing factor in terms of x^n*y # where n is lowest power of x in factor; # first remove terms like sqrt(2)*3 from factor.atoms(Mul) u = None for mul in ordered(factor.atoms(Mul)): if mul.has(x): _, u = mul.as_independent(x, f(x)) break if u and u.has(f(x)): h = x**(degree(Poly(u.subs(f(x), y), gen=x)))*f(x) p = Wild('p') if (u/h == 1) or ((u/h).simplify().match(x**p)): t = Dummy('t') r2 = {'t': t} xpart, ypart = u.as_independent(f(x)) test = factor.subs(((u, t), (1/u, 1/t))) free = test.free_symbols if len(free) == 1 and free.pop() == t: r2.update({'power': xpart.as_base_exp()[1], 'u': test}) matching_hints["separable_reduced"] = r2 matching_hints["separable_reduced_Integral"] = r2 ## Almost-linear equation of the form f(x)*g(y)*y' + k(x)*l(y) + m(x) = 0 r = collect(eq, [df, f(x)]).match(e*df + d) if r: r2 = r.copy() r2[c] = S.Zero if r2[d].is_Add: # Separate the terms having f(x) to r[d] and # remaining to r[c] no_f, r2[d] = r2[d].as_independent(f(x)) r2[c] += no_f factor = simplify(r2[d].diff(f(x))/r[e]) if factor and not factor.has(f(x)): r2[d] = factor_terms(r2[d]) u = r2[d].as_independent(f(x), as_Add=False)[1] r2.update({'a': e, 'b': d, 'c': c, 'u': u}) r2[d] /= u r2[e] /= u.diff(f(x)) matching_hints["almost_linear"] = r2 matching_hints["almost_linear_Integral"] = r2 elif order == 2: # Liouville ODE in the form # f(x).diff(x, 2) + g(f(x))*(f(x).diff(x))**2 + h(x)*f(x).diff(x) # See Goldstein and Braun, "Advanced Methods for the Solution of # Differential Equations", pg. 98 s = d*f(x).diff(x, 2) + e*df**2 + k*df r = reduced_eq.match(s) if r and r[d] != 0: y = Dummy('y') g = simplify(r[e]/r[d]).subs(f(x), y) h = simplify(r[k]/r[d]).subs(f(x), y) if y in h.free_symbols or x in g.free_symbols: pass else: r = {'g': g, 'h': h, 'y': y} matching_hints["Liouville"] = r matching_hints["Liouville_Integral"] = r # Homogeneous second order differential equation of the form # a3*f(x).diff(x, 2) + b3*f(x).diff(x) + c3 # It has a definite power series solution at point x0 if, b3/a3 and c3/a3 # are analytic at x0. deq = a3*(f(x).diff(x, 2)) + b3*df + c3*f(x) r = collect(reduced_eq, [f(x).diff(x, 2), f(x).diff(x), f(x)]).match(deq) ordinary = False if r: if not all([r[key].is_polynomial() for key in r]): n, d = reduced_eq.as_numer_denom() reduced_eq = expand(n) r = collect(reduced_eq, [f(x).diff(x, 2), f(x).diff(x), f(x)]).match(deq) if r and r[a3] != 0: p = cancel(r[b3]/r[a3]) # Used below q = cancel(r[c3]/r[a3]) # Used below point = kwargs.get('x0', 0) check = p.subs(x, point) if not check.has(oo, NaN, zoo, -oo): check = q.subs(x, point) if not check.has(oo, NaN, zoo, -oo): ordinary = True r.update({'a3': a3, 'b3': b3, 'c3': c3, 'x0': point, 'terms': terms}) matching_hints["2nd_power_series_ordinary"] = r # Checking if the differential equation has a regular singular point # at x0. It has a regular singular point at x0, if (b3/a3)*(x - x0) # and (c3/a3)*((x - x0)**2) are analytic at x0. if not ordinary: p = cancel((x - point)*p) check = p.subs(x, point) if not check.has(oo, NaN, zoo, -oo): q = cancel(((x - point)**2)*q) check = q.subs(x, point) if not check.has(oo, NaN, zoo, -oo): coeff_dict = {'p': p, 'q': q, 'x0': point, 'terms': terms} matching_hints["2nd_power_series_regular"] = coeff_dict # For Hypergeometric solutions. _r = {} _r.update(r) rn = match_2nd_hypergeometric(_r, func) if rn: matching_hints["2nd_hypergeometric"] = rn matching_hints["2nd_hypergeometric_Integral"] = rn # If the ODE has regular singular point at x0 and is of the form # Eq((x)**2*Derivative(y(x), x, x) + x*Derivative(y(x), x) + # (a4**2*x**(2*p)-n**2)*y(x) thus Bessel's equation rn = match_2nd_linear_bessel(r, f(x)) if rn: matching_hints["2nd_linear_bessel"] = rn # If the ODE is ordinary and is of the form of Airy's Equation # Eq(x**2*Derivative(y(x),x,x)-(ax+b)*y(x)) if p.is_zero: a4 = Wild('a4', exclude=[x,f(x),df]) b4 = Wild('b4', exclude=[x,f(x),df]) rn = q.match(a4+b4*x) if rn and rn[b4] != 0: rn = {'b':rn[a4],'m':rn[b4]} matching_hints["2nd_linear_airy"] = rn if order > 0: # Any ODE that can be solved with a substitution and # repeated integration e.g.: # `d^2/dx^2(y) + x*d/dx(y) = constant #f'(x) must be finite for this to work r = _nth_order_reducible_match(reduced_eq, func) if r: matching_hints['nth_order_reducible'] = r # nth order linear ODE # a_n(x)y^(n) + ... + a_1(x)y' + a_0(x)y = F(x) = b r = _nth_linear_match(reduced_eq, func, order) # Constant coefficient case (a_i is constant for all i) if r and not any(r[i].has(x) for i in r if i >= 0): # Inhomogeneous case: F(x) is not identically 0 if r[-1]: undetcoeff = _undetermined_coefficients_match(r[-1], x) s = "nth_linear_constant_coeff_variation_of_parameters" matching_hints[s] = r matching_hints[s + "_Integral"] = r if undetcoeff['test']: r['trialset'] = undetcoeff['trialset'] matching_hints[ "nth_linear_constant_coeff_undetermined_coefficients" ] = r # Homogeneous case: F(x) is identically 0 else: matching_hints["nth_linear_constant_coeff_homogeneous"] = r # nth order Euler equation a_n*x**n*y^(n) + ... + a_1*x*y' + a_0*y = F(x) #In case of Homogeneous euler equation F(x) = 0 def _test_term(coeff, order): r""" Linear Euler ODEs have the form K*x**order*diff(y(x),x,order) = F(x), where K is independent of x and y(x), order>= 0. So we need to check that for each term, coeff == K*x**order from some K. We have a few cases, since coeff may have several different types. """ if order < 0: raise ValueError("order should be greater than 0") if coeff == 0: return True if order == 0: if x in coeff.free_symbols: return False return True if coeff.is_Mul: if coeff.has(f(x)): return False return x**order in coeff.args elif coeff.is_Pow: return coeff.as_base_exp() == (x, order) elif order == 1: return x == coeff return False # Find coefficient for highest derivative, multiply coefficients to # bring the equation into Euler form if possible r_rescaled = None if r is not None: coeff = r[order] factor = x**order / coeff r_rescaled = {i: factor*r[i] for i in r} if r_rescaled and not any(not _test_term(r_rescaled[i], i) for i in r_rescaled if i != 'trialset' and i >= 0): if not r_rescaled[-1]: matching_hints["nth_linear_euler_eq_homogeneous"] = r_rescaled else: matching_hints["nth_linear_euler_eq_nonhomogeneous_variation_of_parameters"] = r_rescaled matching_hints["nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral"] = r_rescaled e, re = posify(r_rescaled[-1].subs(x, exp(x))) undetcoeff = _undetermined_coefficients_match(e.subs(re), x) if undetcoeff['test']: r_rescaled['trialset'] = undetcoeff['trialset'] matching_hints["nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients"] = r_rescaled # Order keys based on allhints. retlist = [i for i in allhints if i in matching_hints] if dict: # Dictionaries are ordered arbitrarily, so make note of which # hint would come first for dsolve(). Use an ordered dict in Py 3. matching_hints["default"] = retlist[0] if retlist else None matching_hints["ordered_hints"] = tuple(retlist) return matching_hints else: return tuple(retlist) def equivalence(max_num_pow, dem_pow): # this function is made for checking the equivalence with 2F1 type of equation. # max_num_pow is the value of maximum power of x in numerator # and dem_pow is list of powers of different factor of form (a*x b). # reference from table 1 in paper - "Non-Liouvillian solutions for second order # linear ODEs" by L. Chan, E.S. Cheb-Terrab. # We can extend it for 1F1 and 0F1 type also. if max_num_pow == 2: if dem_pow in [[2, 2], [2, 2, 2]]: return "2F1" elif max_num_pow == 1: if dem_pow in [[1, 2, 2], [2, 2, 2], [1, 2], [2, 2]]: return "2F1" elif max_num_pow == 0: if dem_pow in [[1, 1, 2], [2, 2], [1 ,2, 2], [1, 1], [2], [1, 2], [2, 2]]: return "2F1" return None def equivalence_hypergeometric(A, B, func): from sympy import factor # This method for finding the equivalence is only for 2F1 type. # We can extend it for 1F1 and 0F1 type also. f = func x = func.args[0] df = f.diff(x) # making given equation in normal form from sympy.core.logic import fuzzy_not I1 = factor(cancel(A.diff(x)/2 + A**2/4 - B)) # computing shifted invariant(J1) of the equation J1 = factor(cancel(x**2*I1 + S(1)/4)) num, dem = J1.as_numer_denom() num = powdenest(expand(num)) dem = powdenest(expand(dem)) pow_num = set() pow_dem = set() # this function will compute the different powers of variable(x) in J1. # then it will help in finding value of k. k is power of x such that we can express # J1 = x**k * J0(x**k) then all the powers in J0 become integers. def _power_counting(num): _pow = {0} for val in num: if val.has(x): if isinstance(val, Pow) and val.as_base_exp()[0] == x: _pow.add(val.as_base_exp()[1]) elif val == x: _pow.add(val.as_base_exp()[1]) else: _pow.update(_power_counting(val.args)) return _pow pow_num = _power_counting((num, )) pow_dem = _power_counting((dem, )) pow_dem.update(pow_num) _pow = pow_dem k = gcd(_pow) # computing I0 of the given equation I0 = powdenest(simplify(factor(((J1/k**2) - S(1)/4)/((x**k)**2))), force=True) I0 = factor(cancel(powdenest(I0.subs(x, x**(S(1)/k)), force=True))) num, dem = I0.as_numer_denom() max_num_pow = max(_power_counting((num, ))) dem_args = dem.args sing_point = [] dem_pow = [] # calculating singular point of I0. for arg in dem_args: if arg.has(x): if isinstance(arg, Pow): # (x-a)**n dem_pow.append(arg.as_base_exp()[1]) sing_point.append(list(roots(arg.as_base_exp()[0], x).keys())[0]) else: # (x-a) type dem_pow.append(arg.as_base_exp()[1]) sing_point.append(list(roots(arg, x).keys())[0]) dem_pow.sort() # checking if equivalence is exists or not. if equivalence(max_num_pow, dem_pow) == "2F1": return {'I0':I0, 'k':k, 'sing_point':sing_point, 'type':"2F1"} else: return None def ode_2nd_hypergeometric(eq, func, order, match): from sympy.simplify.hyperexpand import hyperexpand from sympy import factor x = func.args[0] f = func C0, C1 = get_numbered_constants(eq, num=2) a = match['a'] b = match['b'] c = match['c'] A = match['A'] # B = match['B'] sol = None if match['type'] == "2F1": if c.is_integer == False: sol = C0*hyper([a, b], [c], x) + C1*hyper([a-c+1, b-c+1], [2-c], x)*x**(1-c) elif c == 1: y2 = Integral(exp(Integral((-(a+b+1)*x + c)/(x**2-x), x))/(hyperexpand(hyper([a, b], [c], x))**2), x)*hyper([a, b], [c], x) sol = C0*hyper([a, b], [c], x) + C1*y2 elif (c-a-b).is_integer == False: sol = C0*hyper([a, b], [1+a+b-c], 1-x) + C1*hyper([c-a, c-b], [1+c-a-b], 1-x)*(1-x)**(c-a-b) if sol is None: raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by" + " the hypergeometric method") # applying transformation in the solution subs = match['mobius'] dtdx = simplify(1/(subs.diff(x))) _B = ((a + b + 1)*x - c).subs(x, subs)*dtdx _B = factor(_B + ((x**2 -x).subs(x, subs))*(dtdx.diff(x)*dtdx)) _A = factor((x**2 - x).subs(x, subs)*(dtdx**2)) e = exp(logcombine(Integral(cancel(_B/(2*_A)), x), force=True)) sol = sol.subs(x, match['mobius']) sol = sol.subs(x, x**match['k']) e = e.subs(x, x**match['k']) if not A.is_zero: e1 = Integral(A/2, x) e1 = exp(logcombine(e1, force=True)) sol = cancel((e/e1)*x**((-match['k']+1)/2))*sol sol = Eq(func, sol) return sol sol = cancel((e)*x**((-match['k']+1)/2))*sol sol = Eq(func, sol) return sol def match_2nd_2F1_hypergeometric(I, k, sing_point, func): from sympy import factor x = func.args[0] a = Wild("a") b = Wild("b") c = Wild("c") t = Wild("t") s = Wild("s") r = Wild("r") alpha = Wild("alpha") beta = Wild("beta") gamma = Wild("gamma") delta = Wild("delta") rn = {'type':None} # I0 of the standerd 2F1 equation. I0 = ((a-b+1)*(a-b-1)*x**2 + 2*((1-a-b)*c + 2*a*b)*x + c*(c-2))/(4*x**2*(x-1)**2) if sing_point != [0, 1]: # If singular point is [0, 1] then we have standerd equation. eqs = [] sing_eqs = [-beta/alpha, -delta/gamma, (delta-beta)/(alpha-gamma)] # making equations for the finding the mobius transformation for i in range(3): if i<len(sing_point): eqs.append(Eq(sing_eqs[i], sing_point[i])) else: eqs.append(Eq(1/sing_eqs[i], 0)) # solving above equations for the mobius transformation _beta = -alpha*sing_point[0] _delta = -gamma*sing_point[1] _gamma = alpha if len(sing_point) == 3: _gamma = (_beta + sing_point[2]*alpha)/(sing_point[2] - sing_point[1]) mob = (alpha*x + beta)/(gamma*x + delta) mob = mob.subs(beta, _beta) mob = mob.subs(delta, _delta) mob = mob.subs(gamma, _gamma) mob = cancel(mob) t = (beta - delta*x)/(gamma*x - alpha) t = cancel(((t.subs(beta, _beta)).subs(delta, _delta)).subs(gamma, _gamma)) else: mob = x t = x # applying mobius transformation in I to make it into I0. I = I.subs(x, t) I = I*(t.diff(x))**2 I = factor(I) dict_I = {x**2:0, x:0, 1:0} I0_num, I0_dem = I0.as_numer_denom() # collecting coeff of (x**2, x), of the standerd equation. # substituting (a-b) = s, (a+b) = r dict_I0 = {x**2:s**2 - 1, x:(2*(1-r)*c + (r+s)*(r-s)), 1:c*(c-2)} # collecting coeff of (x**2, x) from I0 of the given equation. dict_I.update(collect(expand(cancel(I*I0_dem)), [x**2, x], evaluate=False)) eqs = [] # We are comparing the coeff of powers of different x, for finding the values of # parameters of standerd equation. for key in [x**2, x, 1]: eqs.append(Eq(dict_I[key], dict_I0[key])) # We can have many possible roots for the equation. # I am selecting the root on the basis that when we have # standard equation eq = x*(x-1)*f(x).diff(x, 2) + ((a+b+1)*x-c)*f(x).diff(x) + a*b*f(x) # then root should be a, b, c. _c = 1 - factor(sqrt(1+eqs[2].lhs)) if not _c.has(Symbol): _c = min(list(roots(eqs[2], c))) _s = factor(sqrt(eqs[0].lhs + 1)) _r = _c - factor(sqrt(_c**2 + _s**2 + eqs[1].lhs - 2*_c)) _a = (_r + _s)/2 _b = (_r - _s)/2 rn = {'a':simplify(_a), 'b':simplify(_b), 'c':simplify(_c), 'k':k, 'mobius':mob, 'type':"2F1"} return rn def match_2nd_hypergeometric(r, func): x = func.args[0] a3 = Wild('a3', exclude=[func, func.diff(x), func.diff(x, 2)]) b3 = Wild('b3', exclude=[func, func.diff(x), func.diff(x, 2)]) c3 = Wild('c3', exclude=[func, func.diff(x), func.diff(x, 2)]) A = cancel(r[b3]/r[a3]) B = cancel(r[c3]/r[a3]) d = equivalence_hypergeometric(A, B, func) rn = None if d: if d['type'] == "2F1": rn = match_2nd_2F1_hypergeometric(d['I0'], d['k'], d['sing_point'], func) if rn is not None: rn.update({'A':A, 'B':B}) # We can extend it for 1F1 and 0F1 type also. return rn def match_2nd_linear_bessel(r, func): from sympy.polys.polytools import factor # eq = a3*f(x).diff(x, 2) + b3*f(x).diff(x) + c3*f(x) f = func x = func.args[0] df = f.diff(x) a = Wild('a', exclude=[f,df]) b = Wild('b', exclude=[x, f,df]) a4 = Wild('a4', exclude=[x,f,df]) b4 = Wild('b4', exclude=[x,f,df]) c4 = Wild('c4', exclude=[x,f,df]) d4 = Wild('d4', exclude=[x,f,df]) a3 = Wild('a3', exclude=[f, df, f.diff(x, 2)]) b3 = Wild('b3', exclude=[f, df, f.diff(x, 2)]) c3 = Wild('c3', exclude=[f, df, f.diff(x, 2)]) # leading coeff of f(x).diff(x, 2) coeff = factor(r[a3]).match(a4*(x-b)**b4) if coeff: # if coeff[b4] = 0 means constant coefficient if coeff[b4] == 0: return None point = coeff[b] else: return None if point: r[a3] = simplify(r[a3].subs(x, x+point)) r[b3] = simplify(r[b3].subs(x, x+point)) r[c3] = simplify(r[c3].subs(x, x+point)) # making a3 in the form of x**2 r[a3] = cancel(r[a3]/(coeff[a4]*(x)**(-2+coeff[b4]))) r[b3] = cancel(r[b3]/(coeff[a4]*(x)**(-2+coeff[b4]))) r[c3] = cancel(r[c3]/(coeff[a4]*(x)**(-2+coeff[b4]))) # checking if b3 is of form c*(x-b) coeff1 = factor(r[b3]).match(a4*(x)) if coeff1 is None: return None # c3 maybe of very complex form so I am simply checking (a - b) form # if yes later I will match with the standerd form of bessel in a and b # a, b are wild variable defined above. _coeff2 = r[c3].match(a - b) if _coeff2 is None: return None # matching with standerd form for c3 coeff2 = factor(_coeff2[a]).match(c4**2*(x)**(2*a4)) if coeff2 is None: return None if _coeff2[b] == 0: coeff2[d4] = 0 else: coeff2[d4] = factor(_coeff2[b]).match(d4**2)[d4] rn = {'n':coeff2[d4], 'a4':coeff2[c4], 'd4':coeff2[a4]} rn['c4'] = coeff1[a4] rn['b4'] = point return rn def classify_sysode(eq, funcs=None, **kwargs): r""" Returns a dictionary of parameter names and values that define the system of ordinary differential equations in ``eq``. The parameters are further used in :py:meth:`~sympy.solvers.ode.dsolve` for solving that system. The parameter names and values are: 'is_linear' (boolean), which tells whether the given system is linear. Note that "linear" here refers to the operator: terms such as ``x*diff(x,t)`` are nonlinear, whereas terms like ``sin(t)*diff(x,t)`` are still linear operators. 'func' (list) contains the :py:class:`~sympy.core.function.Function`s that appear with a derivative in the ODE, i.e. those that we are trying to solve the ODE for. 'order' (dict) with the maximum derivative for each element of the 'func' parameter. 'func_coeff' (dict) with the coefficient for each triple ``(equation number, function, order)```. The coefficients are those subexpressions that do not appear in 'func', and hence can be considered constant for purposes of ODE solving. 'eq' (list) with the equations from ``eq``, sympified and transformed into expressions (we are solving for these expressions to be zero). 'no_of_equations' (int) is the number of equations (same as ``len(eq)``). 'type_of_equation' (string) is an internal classification of the type of ODE. References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode-toc1.htm -A. D. Polyanin and A. V. Manzhirov, Handbook of Mathematics for Engineers and Scientists Examples ======== >>> from sympy import Function, Eq, symbols, diff >>> from sympy.solvers.ode import classify_sysode >>> from sympy.abc import t >>> f, x, y = symbols('f, x, y', cls=Function) >>> k, l, m, n = symbols('k, l, m, n', Integer=True) >>> x1 = diff(x(t), t) ; y1 = diff(y(t), t) >>> x2 = diff(x(t), t, t) ; y2 = diff(y(t), t, t) >>> eq = (Eq(5*x1, 12*x(t) - 6*y(t)), Eq(2*y1, 11*x(t) + 3*y(t))) >>> classify_sysode(eq) {'eq': [-12*x(t) + 6*y(t) + 5*Derivative(x(t), t), -11*x(t) - 3*y(t) + 2*Derivative(y(t), t)], 'func': [x(t), y(t)], 'func_coeff': {(0, x(t), 0): -12, (0, x(t), 1): 5, (0, y(t), 0): 6, (0, y(t), 1): 0, (1, x(t), 0): -11, (1, x(t), 1): 0, (1, y(t), 0): -3, (1, y(t), 1): 2}, 'is_linear': True, 'no_of_equation': 2, 'order': {x(t): 1, y(t): 1}, 'type_of_equation': 'type1'} >>> eq = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t))) >>> classify_sysode(eq) {'eq': [-t**2*y(t) - 5*t*x(t) + Derivative(x(t), t), t**2*x(t) - 5*t*y(t) + Derivative(y(t), t)], 'func': [x(t), y(t)], 'func_coeff': {(0, x(t), 0): -5*t, (0, x(t), 1): 1, (0, y(t), 0): -t**2, (0, y(t), 1): 0, (1, x(t), 0): t**2, (1, x(t), 1): 0, (1, y(t), 0): -5*t, (1, y(t), 1): 1}, 'is_linear': True, 'no_of_equation': 2, 'order': {x(t): 1, y(t): 1}, 'type_of_equation': 'type4'} """ # Sympify equations and convert iterables of equations into # a list of equations def _sympify(eq): return list(map(sympify, eq if iterable(eq) else [eq])) eq, funcs = (_sympify(w) for w in [eq, funcs]) for i, fi in enumerate(eq): if isinstance(fi, Equality): eq[i] = fi.lhs - fi.rhs matching_hints = {"no_of_equation":i+1} matching_hints['eq'] = eq if i==0: raise ValueError("classify_sysode() works for systems of ODEs. " "For scalar ODEs, classify_ode should be used") t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] # find all the functions if not given order = dict() if funcs==[None]: funcs = [] for eqs in eq: derivs = eqs.atoms(Derivative) func = set().union(*[d.atoms(AppliedUndef) for d in derivs]) for func_ in func: funcs.append(func_) funcs = list(set(funcs)) if len(funcs) != len(eq): raise ValueError("Number of functions given is not equal to the number of equations %s" % funcs) func_dict = dict() for func in funcs: if not order.get(func, False): max_order = 0 for i, eqs_ in enumerate(eq): order_ = ode_order(eqs_,func) if max_order < order_: max_order = order_ eq_no = i if eq_no in func_dict: list_func = [] list_func.append(func_dict[eq_no]) list_func.append(func) func_dict[eq_no] = list_func else: func_dict[eq_no] = func order[func] = max_order funcs = [func_dict[i] for i in range(len(func_dict))] matching_hints['func'] = funcs for func in funcs: if isinstance(func, list): for func_elem in func: if len(func_elem.args) != 1: raise ValueError("dsolve() and classify_sysode() work with " "functions of one variable only, not %s" % func) else: if func and len(func.args) != 1: raise ValueError("dsolve() and classify_sysode() work with " "functions of one variable only, not %s" % func) # find the order of all equation in system of odes matching_hints["order"] = order # find coefficients of terms f(t), diff(f(t),t) and higher derivatives # and similarly for other functions g(t), diff(g(t),t) in all equations. # Here j denotes the equation number, funcs[l] denotes the function about # which we are talking about and k denotes the order of function funcs[l] # whose coefficient we are calculating. def linearity_check(eqs, j, func, is_linear_): for k in range(order[func] + 1): func_coef[j, func, k] = collect(eqs.expand(), [diff(func, t, k)]).coeff(diff(func, t, k)) if is_linear_ == True: if func_coef[j, func, k] == 0: if k == 0: coef = eqs.as_independent(func, as_Add=True)[1] for xr in range(1, ode_order(eqs,func) + 1): coef -= eqs.as_independent(diff(func, t, xr), as_Add=True)[1] if coef != 0: is_linear_ = False else: if eqs.as_independent(diff(func, t, k), as_Add=True)[1]: is_linear_ = False else: for func_ in funcs: if isinstance(func_, list): for elem_func_ in func_: dep = func_coef[j, func, k].as_independent(elem_func_, as_Add=True)[1] if dep != 0: is_linear_ = False else: dep = func_coef[j, func, k].as_independent(func_, as_Add=True)[1] if dep != 0: is_linear_ = False return is_linear_ func_coef = {} is_linear = True for j, eqs in enumerate(eq): for func in funcs: if isinstance(func, list): for func_elem in func: is_linear = linearity_check(eqs, j, func_elem, is_linear) else: is_linear = linearity_check(eqs, j, func, is_linear) matching_hints['func_coeff'] = func_coef matching_hints['is_linear'] = is_linear if len(set(order.values())) == 1: order_eq = list(matching_hints['order'].values())[0] if matching_hints['is_linear'] == True: if matching_hints['no_of_equation'] == 2: if order_eq == 1: type_of_equation = check_linear_2eq_order1(eq, funcs, func_coef) elif order_eq == 2: type_of_equation = check_linear_2eq_order2(eq, funcs, func_coef) else: type_of_equation = None elif matching_hints['no_of_equation'] == 3: if order_eq == 1: type_of_equation = check_linear_3eq_order1(eq, funcs, func_coef) if type_of_equation is None: type_of_equation = check_linear_neq_order1(eq, funcs, func_coef) else: type_of_equation = None else: if order_eq == 1: type_of_equation = check_linear_neq_order1(eq, funcs, func_coef) else: type_of_equation = None else: if matching_hints['no_of_equation'] == 2: if order_eq == 1: type_of_equation = check_nonlinear_2eq_order1(eq, funcs, func_coef) else: type_of_equation = None elif matching_hints['no_of_equation'] == 3: if order_eq == 1: type_of_equation = check_nonlinear_3eq_order1(eq, funcs, func_coef) else: type_of_equation = None else: type_of_equation = None else: type_of_equation = None matching_hints['type_of_equation'] = type_of_equation return matching_hints def check_linear_2eq_order1(eq, func, func_coef): x = func[0].func y = func[1].func fc = func_coef t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] r = dict() # for equations Eq(a1*diff(x(t),t), b1*x(t) + c1*y(t) + d1) # and Eq(a2*diff(y(t),t), b2*x(t) + c2*y(t) + d2) r['a1'] = fc[0,x(t),1] ; r['a2'] = fc[1,y(t),1] r['b1'] = -fc[0,x(t),0]/fc[0,x(t),1] ; r['b2'] = -fc[1,x(t),0]/fc[1,y(t),1] r['c1'] = -fc[0,y(t),0]/fc[0,x(t),1] ; r['c2'] = -fc[1,y(t),0]/fc[1,y(t),1] forcing = [S.Zero,S.Zero] for i in range(2): for j in Add.make_args(eq[i]): if not j.has(x(t), y(t)): forcing[i] += j if not (forcing[0].has(t) or forcing[1].has(t)): # We can handle homogeneous case and simple constant forcings r['d1'] = forcing[0] r['d2'] = forcing[1] else: # Issue #9244: nonhomogeneous linear systems are not supported return None # Conditions to check for type 6 whose equations are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and # Eq(diff(y(t),t), a*[f(t) + a*h(t)]x(t) + a*[g(t) - h(t)]*y(t)) p = 0 q = 0 p1 = cancel(r['b2']/(cancel(r['b2']/r['c2']).as_numer_denom()[0])) p2 = cancel(r['b1']/(cancel(r['b1']/r['c1']).as_numer_denom()[0])) for n, i in enumerate([p1, p2]): for j in Mul.make_args(collect_const(i)): if not j.has(t): q = j if q and n==0: if ((r['b2']/j - r['b1'])/(r['c1'] - r['c2']/j)) == j: p = 1 elif q and n==1: if ((r['b1']/j - r['b2'])/(r['c2'] - r['c1']/j)) == j: p = 2 # End of condition for type 6 if r['d1']!=0 or r['d2']!=0: if not r['d1'].has(t) and not r['d2'].has(t): if all(not r[k].has(t) for k in 'a1 a2 b1 b2 c1 c2'.split()): # Equations for type 2 are Eq(a1*diff(x(t),t),b1*x(t)+c1*y(t)+d1) and Eq(a2*diff(y(t),t),b2*x(t)+c2*y(t)+d2) return "type2" else: return None else: if all(not r[k].has(t) for k in 'a1 a2 b1 b2 c1 c2'.split()): # Equations for type 1 are Eq(a1*diff(x(t),t),b1*x(t)+c1*y(t)) and Eq(a2*diff(y(t),t),b2*x(t)+c2*y(t)) return "type1" else: r['b1'] = r['b1']/r['a1'] ; r['b2'] = r['b2']/r['a2'] r['c1'] = r['c1']/r['a1'] ; r['c2'] = r['c2']/r['a2'] if (r['b1'] == r['c2']) and (r['c1'] == r['b2']): # Equation for type 3 are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and Eq(diff(y(t),t), g(t)*x(t) + f(t)*y(t)) return "type3" elif (r['b1'] == r['c2']) and (r['c1'] == -r['b2']) or (r['b1'] == -r['c2']) and (r['c1'] == r['b2']): # Equation for type 4 are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and Eq(diff(y(t),t), -g(t)*x(t) + f(t)*y(t)) return "type4" elif (not cancel(r['b2']/r['c1']).has(t) and not cancel((r['c2']-r['b1'])/r['c1']).has(t)) \ or (not cancel(r['b1']/r['c2']).has(t) and not cancel((r['c1']-r['b2'])/r['c2']).has(t)): # Equations for type 5 are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and Eq(diff(y(t),t), a*g(t)*x(t) + [f(t) + b*g(t)]*y(t) return "type5" elif p: return "type6" else: # Equations for type 7 are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and Eq(diff(y(t),t), h(t)*x(t) + p(t)*y(t)) return "type7" def check_linear_2eq_order2(eq, func, func_coef): x = func[0].func y = func[1].func fc = func_coef t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] r = dict() a = Wild('a', exclude=[1/t]) b = Wild('b', exclude=[1/t**2]) u = Wild('u', exclude=[t, t**2]) v = Wild('v', exclude=[t, t**2]) w = Wild('w', exclude=[t, t**2]) p = Wild('p', exclude=[t, t**2]) r['a1'] = fc[0,x(t),2] ; r['a2'] = fc[1,y(t),2] r['b1'] = fc[0,x(t),1] ; r['b2'] = fc[1,x(t),1] r['c1'] = fc[0,y(t),1] ; r['c2'] = fc[1,y(t),1] r['d1'] = fc[0,x(t),0] ; r['d2'] = fc[1,x(t),0] r['e1'] = fc[0,y(t),0] ; r['e2'] = fc[1,y(t),0] const = [S.Zero, S.Zero] for i in range(2): for j in Add.make_args(eq[i]): if not (j.has(x(t)) or j.has(y(t))): const[i] += j r['f1'] = const[0] r['f2'] = const[1] if r['f1']!=0 or r['f2']!=0: if all(not r[k].has(t) for k in 'a1 a2 d1 d2 e1 e2 f1 f2'.split()) \ and r['b1']==r['c1']==r['b2']==r['c2']==0: return "type2" elif all(not r[k].has(t) for k in 'a1 a2 b1 b2 c1 c2 d1 d2 e1 e1'.split()): p = [S.Zero, S.Zero] ; q = [S.Zero, S.Zero] for n, e in enumerate([r['f1'], r['f2']]): if e.has(t): tpart = e.as_independent(t, Mul)[1] for i in Mul.make_args(tpart): if i.has(exp): b, e = i.as_base_exp() co = e.coeff(t) if co and not co.has(t) and co.has(I): p[n] = 1 else: q[n] = 1 else: q[n] = 1 else: q[n] = 1 if p[0]==1 and p[1]==1 and q[0]==0 and q[1]==0: return "type4" else: return None else: return None else: if r['b1']==r['b2']==r['c1']==r['c2']==0 and all(not r[k].has(t) \ for k in 'a1 a2 d1 d2 e1 e2'.split()): return "type1" elif r['b1']==r['e1']==r['c2']==r['d2']==0 and all(not r[k].has(t) \ for k in 'a1 a2 b2 c1 d1 e2'.split()) and r['c1'] == -r['b2'] and \ r['d1'] == r['e2']: return "type3" elif cancel(-r['b2']/r['d2'])==t and cancel(-r['c1']/r['e1'])==t and not \ (r['d2']/r['a2']).has(t) and not (r['e1']/r['a1']).has(t) and \ r['b1']==r['d1']==r['c2']==r['e2']==0: return "type5" elif ((r['a1']/r['d1']).expand()).match((p*(u*t**2+v*t+w)**2).expand()) and not \ (cancel(r['a1']*r['d2']/(r['a2']*r['d1']))).has(t) and not (r['d1']/r['e1']).has(t) and not \ (r['d2']/r['e2']).has(t) and r['b1'] == r['b2'] == r['c1'] == r['c2'] == 0: return "type10" elif not cancel(r['d1']/r['e1']).has(t) and not cancel(r['d2']/r['e2']).has(t) and not \ cancel(r['d1']*r['a2']/(r['d2']*r['a1'])).has(t) and r['b1']==r['b2']==r['c1']==r['c2']==0: return "type6" elif not cancel(r['b1']/r['c1']).has(t) and not cancel(r['b2']/r['c2']).has(t) and not \ cancel(r['b1']*r['a2']/(r['b2']*r['a1'])).has(t) and r['d1']==r['d2']==r['e1']==r['e2']==0: return "type7" elif cancel(-r['b2']/r['d2'])==t and cancel(-r['c1']/r['e1'])==t and not \ cancel(r['e1']*r['a2']/(r['d2']*r['a1'])).has(t) and r['e1'].has(t) \ and r['b1']==r['d1']==r['c2']==r['e2']==0: return "type8" elif (r['b1']/r['a1']).match(a/t) and (r['b2']/r['a2']).match(a/t) and not \ (r['b1']/r['c1']).has(t) and not (r['b2']/r['c2']).has(t) and \ (r['d1']/r['a1']).match(b/t**2) and (r['d2']/r['a2']).match(b/t**2) \ and not (r['d1']/r['e1']).has(t) and not (r['d2']/r['e2']).has(t): return "type9" elif -r['b1']/r['d1']==-r['c1']/r['e1']==-r['b2']/r['d2']==-r['c2']/r['e2']==t: return "type11" else: return None def check_linear_3eq_order1(eq, func, func_coef): x = func[0].func y = func[1].func z = func[2].func fc = func_coef t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] r = dict() r['a1'] = fc[0,x(t),1]; r['a2'] = fc[1,y(t),1]; r['a3'] = fc[2,z(t),1] r['b1'] = fc[0,x(t),0]; r['b2'] = fc[1,x(t),0]; r['b3'] = fc[2,x(t),0] r['c1'] = fc[0,y(t),0]; r['c2'] = fc[1,y(t),0]; r['c3'] = fc[2,y(t),0] r['d1'] = fc[0,z(t),0]; r['d2'] = fc[1,z(t),0]; r['d3'] = fc[2,z(t),0] forcing = [S.Zero, S.Zero, S.Zero] for i in range(3): for j in Add.make_args(eq[i]): if not j.has(x(t), y(t), z(t)): forcing[i] += j if forcing[0].has(t) or forcing[1].has(t) or forcing[2].has(t): # We can handle homogeneous case and simple constant forcings. # Issue #9244: nonhomogeneous linear systems are not supported return None if all(not r[k].has(t) for k in 'a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3'.split()): if r['c1']==r['d1']==r['d2']==0: return 'type1' elif r['c1'] == -r['b2'] and r['d1'] == -r['b3'] and r['d2'] == -r['c3'] \ and r['b1'] == r['c2'] == r['d3'] == 0: return 'type2' elif r['b1'] == r['c2'] == r['d3'] == 0 and r['c1']/r['a1'] == -r['d1']/r['a1'] \ and r['d2']/r['a2'] == -r['b2']/r['a2'] and r['b3']/r['a3'] == -r['c3']/r['a3']: return 'type3' else: return None else: for k1 in 'c1 d1 b2 d2 b3 c3'.split(): if r[k1] == 0: continue else: if all(not cancel(r[k1]/r[k]).has(t) for k in 'd1 b2 d2 b3 c3'.split() if r[k]!=0) \ and all(not cancel(r[k1]/(r['b1'] - r[k])).has(t) for k in 'b1 c2 d3'.split() if r['b1']!=r[k]): return 'type4' else: break return None def check_linear_neq_order1(eq, func, func_coef): fc = func_coef t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] n = len(eq) for i in range(n): for j in range(n): if (fc[i, func[j], 0]/fc[i, func[i], 1]).has(t): return None if len(eq) == 3: return 'type6' return 'type1' def check_nonlinear_2eq_order1(eq, func, func_coef): t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] f = Wild('f') g = Wild('g') u, v = symbols('u, v', cls=Dummy) def check_type(x, y): r1 = eq[0].match(t*diff(x(t),t) - x(t) + f) r2 = eq[1].match(t*diff(y(t),t) - y(t) + g) if not (r1 and r2): r1 = eq[0].match(diff(x(t),t) - x(t)/t + f/t) r2 = eq[1].match(diff(y(t),t) - y(t)/t + g/t) if not (r1 and r2): r1 = (-eq[0]).match(t*diff(x(t),t) - x(t) + f) r2 = (-eq[1]).match(t*diff(y(t),t) - y(t) + g) if not (r1 and r2): r1 = (-eq[0]).match(diff(x(t),t) - x(t)/t + f/t) r2 = (-eq[1]).match(diff(y(t),t) - y(t)/t + g/t) if r1 and r2 and not (r1[f].subs(diff(x(t),t),u).subs(diff(y(t),t),v).has(t) \ or r2[g].subs(diff(x(t),t),u).subs(diff(y(t),t),v).has(t)): return 'type5' else: return None for func_ in func: if isinstance(func_, list): x = func[0][0].func y = func[0][1].func eq_type = check_type(x, y) if not eq_type: eq_type = check_type(y, x) return eq_type x = func[0].func y = func[1].func fc = func_coef n = Wild('n', exclude=[x(t),y(t)]) f1 = Wild('f1', exclude=[v,t]) f2 = Wild('f2', exclude=[v,t]) g1 = Wild('g1', exclude=[u,t]) g2 = Wild('g2', exclude=[u,t]) for i in range(2): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs r = eq[0].match(diff(x(t),t) - x(t)**n*f) if r: g = (diff(y(t),t) - eq[1])/r[f] if r and not (g.has(x(t)) or g.subs(y(t),v).has(t) or r[f].subs(x(t),u).subs(y(t),v).has(t)): return 'type1' r = eq[0].match(diff(x(t),t) - exp(n*x(t))*f) if r: g = (diff(y(t),t) - eq[1])/r[f] if r and not (g.has(x(t)) or g.subs(y(t),v).has(t) or r[f].subs(x(t),u).subs(y(t),v).has(t)): return 'type2' g = Wild('g') r1 = eq[0].match(diff(x(t),t) - f) r2 = eq[1].match(diff(y(t),t) - g) if r1 and r2 and not (r1[f].subs(x(t),u).subs(y(t),v).has(t) or \ r2[g].subs(x(t),u).subs(y(t),v).has(t)): return 'type3' r1 = eq[0].match(diff(x(t),t) - f) r2 = eq[1].match(diff(y(t),t) - g) num, den = ( (r1[f].subs(x(t),u).subs(y(t),v))/ (r2[g].subs(x(t),u).subs(y(t),v))).as_numer_denom() R1 = num.match(f1*g1) R2 = den.match(f2*g2) # phi = (r1[f].subs(x(t),u).subs(y(t),v))/num if R1 and R2: return 'type4' return None def check_nonlinear_2eq_order2(eq, func, func_coef): return None def check_nonlinear_3eq_order1(eq, func, func_coef): x = func[0].func y = func[1].func z = func[2].func fc = func_coef t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] u, v, w = symbols('u, v, w', cls=Dummy) a = Wild('a', exclude=[x(t), y(t), z(t), t]) b = Wild('b', exclude=[x(t), y(t), z(t), t]) c = Wild('c', exclude=[x(t), y(t), z(t), t]) f = Wild('f') F1 = Wild('F1') F2 = Wild('F2') F3 = Wild('F3') for i in range(3): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs r1 = eq[0].match(diff(x(t),t) - a*y(t)*z(t)) r2 = eq[1].match(diff(y(t),t) - b*z(t)*x(t)) r3 = eq[2].match(diff(z(t),t) - c*x(t)*y(t)) if r1 and r2 and r3: num1, den1 = r1[a].as_numer_denom() num2, den2 = r2[b].as_numer_denom() num3, den3 = r3[c].as_numer_denom() if solve([num1*u-den1*(v-w), num2*v-den2*(w-u), num3*w-den3*(u-v)],[u, v]): return 'type1' r = eq[0].match(diff(x(t),t) - y(t)*z(t)*f) if r: r1 = collect_const(r[f]).match(a*f) r2 = ((diff(y(t),t) - eq[1])/r1[f]).match(b*z(t)*x(t)) r3 = ((diff(z(t),t) - eq[2])/r1[f]).match(c*x(t)*y(t)) if r1 and r2 and r3: num1, den1 = r1[a].as_numer_denom() num2, den2 = r2[b].as_numer_denom() num3, den3 = r3[c].as_numer_denom() if solve([num1*u-den1*(v-w), num2*v-den2*(w-u), num3*w-den3*(u-v)],[u, v]): return 'type2' r = eq[0].match(diff(x(t),t) - (F2-F3)) if r: r1 = collect_const(r[F2]).match(c*F2) r1.update(collect_const(r[F3]).match(b*F3)) if r1: if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]): r1[F2], r1[F3] = r1[F3], r1[F2] r1[c], r1[b] = -r1[b], -r1[c] r2 = eq[1].match(diff(y(t),t) - a*r1[F3] + r1[c]*F1) if r2: r3 = (eq[2] == diff(z(t),t) - r1[b]*r2[F1] + r2[a]*r1[F2]) if r1 and r2 and r3: return 'type3' r = eq[0].match(diff(x(t),t) - z(t)*F2 + y(t)*F3) if r: r1 = collect_const(r[F2]).match(c*F2) r1.update(collect_const(r[F3]).match(b*F3)) if r1: if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]): r1[F2], r1[F3] = r1[F3], r1[F2] r1[c], r1[b] = -r1[b], -r1[c] r2 = (diff(y(t),t) - eq[1]).match(a*x(t)*r1[F3] - r1[c]*z(t)*F1) if r2: r3 = (diff(z(t),t) - eq[2] == r1[b]*y(t)*r2[F1] - r2[a]*x(t)*r1[F2]) if r1 and r2 and r3: return 'type4' r = (diff(x(t),t) - eq[0]).match(x(t)*(F2 - F3)) if r: r1 = collect_const(r[F2]).match(c*F2) r1.update(collect_const(r[F3]).match(b*F3)) if r1: if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]): r1[F2], r1[F3] = r1[F3], r1[F2] r1[c], r1[b] = -r1[b], -r1[c] r2 = (diff(y(t),t) - eq[1]).match(y(t)*(a*r1[F3] - r1[c]*F1)) if r2: r3 = (diff(z(t),t) - eq[2] == z(t)*(r1[b]*r2[F1] - r2[a]*r1[F2])) if r1 and r2 and r3: return 'type5' return None def check_nonlinear_3eq_order2(eq, func, func_coef): return None def checksysodesol(eqs, sols, func=None): r""" Substitutes corresponding ``sols`` for each functions into each ``eqs`` and checks that the result of substitutions for each equation is ``0``. The equations and solutions passed can be any iterable. This only works when each ``sols`` have one function only, like `x(t)` or `y(t)`. For each function, ``sols`` can have a single solution or a list of solutions. In most cases it will not be necessary to explicitly identify the function, but if the function cannot be inferred from the original equation it can be supplied through the ``func`` argument. When a sequence of equations is passed, the same sequence is used to return the result for each equation with each function substituted with corresponding solutions. It tries the following method to find zero equivalence for each equation: Substitute the solutions for functions, like `x(t)` and `y(t)` into the original equations containing those functions. This function returns a tuple. The first item in the tuple is ``True`` if the substitution results for each equation is ``0``, and ``False`` otherwise. The second item in the tuple is what the substitution results in. Each element of the ``list`` should always be ``0`` corresponding to each equation if the first item is ``True``. Note that sometimes this function may return ``False``, but with an expression that is identically equal to ``0``, instead of returning ``True``. This is because :py:meth:`~sympy.simplify.simplify.simplify` cannot reduce the expression to ``0``. If an expression returned by each function vanishes identically, then ``sols`` really is a solution to ``eqs``. If this function seems to hang, it is probably because of a difficult simplification. Examples ======== >>> from sympy import Eq, diff, symbols, sin, cos, exp, sqrt, S, Function >>> from sympy.solvers.ode import checksysodesol >>> C1, C2 = symbols('C1:3') >>> t = symbols('t') >>> x, y = symbols('x, y', cls=Function) >>> eq = (Eq(diff(x(t),t), x(t) + y(t) + 17), Eq(diff(y(t),t), -2*x(t) + y(t) + 12)) >>> sol = [Eq(x(t), (C1*sin(sqrt(2)*t) + C2*cos(sqrt(2)*t))*exp(t) - S(5)/3), ... Eq(y(t), (sqrt(2)*C1*cos(sqrt(2)*t) - sqrt(2)*C2*sin(sqrt(2)*t))*exp(t) - S(46)/3)] >>> checksysodesol(eq, sol) (True, [0, 0]) >>> eq = (Eq(diff(x(t),t),x(t)*y(t)**4), Eq(diff(y(t),t),y(t)**3)) >>> sol = [Eq(x(t), C1*exp(-1/(4*(C2 + t)))), Eq(y(t), -sqrt(2)*sqrt(-1/(C2 + t))/2), ... Eq(x(t), C1*exp(-1/(4*(C2 + t)))), Eq(y(t), sqrt(2)*sqrt(-1/(C2 + t))/2)] >>> checksysodesol(eq, sol) (True, [0, 0]) """ def _sympify(eq): return list(map(sympify, eq if iterable(eq) else [eq])) eqs = _sympify(eqs) for i in range(len(eqs)): if isinstance(eqs[i], Equality): eqs[i] = eqs[i].lhs - eqs[i].rhs if func is None: funcs = [] for eq in eqs: derivs = eq.atoms(Derivative) func = set().union(*[d.atoms(AppliedUndef) for d in derivs]) for func_ in func: funcs.append(func_) funcs = list(set(funcs)) if not all(isinstance(func, AppliedUndef) and len(func.args) == 1 for func in funcs)\ and len({func.args for func in funcs})!=1: raise ValueError("func must be a function of one variable, not %s" % func) for sol in sols: if len(sol.atoms(AppliedUndef)) != 1: raise ValueError("solutions should have one function only") if len(funcs) != len({sol.lhs for sol in sols}): raise ValueError("number of solutions provided does not match the number of equations") dictsol = dict() for sol in sols: func = list(sol.atoms(AppliedUndef))[0] if sol.rhs == func: sol = sol.reversed solved = sol.lhs == func and not sol.rhs.has(func) if not solved: rhs = solve(sol, func) if not rhs: raise NotImplementedError else: rhs = sol.rhs dictsol[func] = rhs checkeq = [] for eq in eqs: for func in funcs: eq = sub_func_doit(eq, func, dictsol[func]) ss = simplify(eq) if ss != 0: eq = ss.expand(force=True) else: eq = 0 checkeq.append(eq) if len(set(checkeq)) == 1 and list(set(checkeq))[0] == 0: return (True, checkeq) else: return (False, checkeq) @vectorize(0) def odesimp(ode, eq, func, hint): r""" Simplifies solutions of ODEs, including trying to solve for ``func`` and running :py:meth:`~sympy.solvers.ode.constantsimp`. It may use knowledge of the type of solution that the hint returns to apply additional simplifications. It also attempts to integrate any :py:class:`~sympy.integrals.integrals.Integral`\s in the expression, if the hint is not an ``_Integral`` hint. This function should have no effect on expressions returned by :py:meth:`~sympy.solvers.ode.dsolve`, as :py:meth:`~sympy.solvers.ode.dsolve` already calls :py:meth:`~sympy.solvers.ode.odesimp`, but the individual hint functions do not call :py:meth:`~sympy.solvers.ode.odesimp` (because the :py:meth:`~sympy.solvers.ode.dsolve` wrapper does). Therefore, this function is designed for mainly internal use. Examples ======== >>> from sympy import sin, symbols, dsolve, pprint, Function >>> from sympy.solvers.ode import odesimp >>> x , u2, C1= symbols('x,u2,C1') >>> f = Function('f') >>> eq = dsolve(x*f(x).diff(x) - f(x) - x*sin(f(x)/x), f(x), ... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral', ... simplify=False) >>> pprint(eq, wrap_line=False) x ---- f(x) / | | / 1 \ | -|u2 + -------| | | /1 \| | | sin|--|| | \ \u2// log(f(x)) = log(C1) + | ---------------- d(u2) | 2 | u2 | / >>> pprint(odesimp(eq, f(x), 1, {C1}, ... hint='1st_homogeneous_coeff_subs_indep_div_dep' ... )) #doctest: +SKIP x --------- = C1 /f(x)\ tan|----| \2*x / """ x = func.args[0] f = func.func C1 = get_numbered_constants(eq, num=1) constants = eq.free_symbols - ode.free_symbols # First, integrate if the hint allows it. eq = _handle_Integral(eq, func, hint) if hint.startswith("nth_linear_euler_eq_nonhomogeneous"): eq = simplify(eq) if not isinstance(eq, Equality): raise TypeError("eq should be an instance of Equality") # Second, clean up the arbitrary constants. # Right now, nth linear hints can put as many as 2*order constants in an # expression. If that number grows with another hint, the third argument # here should be raised accordingly, or constantsimp() rewritten to handle # an arbitrary number of constants. eq = constantsimp(eq, constants) # Lastly, now that we have cleaned up the expression, try solving for func. # When CRootOf is implemented in solve(), we will want to return a CRootOf # every time instead of an Equality. # Get the f(x) on the left if possible. if eq.rhs == func and not eq.lhs.has(func): eq = [Eq(eq.rhs, eq.lhs)] # make sure we are working with lists of solutions in simplified form. if eq.lhs == func and not eq.rhs.has(func): # The solution is already solved eq = [eq] # special simplification of the rhs if hint.startswith("nth_linear_constant_coeff"): # Collect terms to make the solution look nice. # This is also necessary for constantsimp to remove unnecessary # terms from the particular solution from variation of parameters # # Collect is not behaving reliably here. The results for # some linear constant-coefficient equations with repeated # roots do not properly simplify all constants sometimes. # 'collectterms' gives different orders sometimes, and results # differ in collect based on that order. The # sort-reverse trick fixes things, but may fail in the # future. In addition, collect is splitting exponentials with # rational powers for no reason. We have to do a match # to fix this using Wilds. global collectterms try: collectterms.sort(key=default_sort_key) collectterms.reverse() except Exception: pass assert len(eq) == 1 and eq[0].lhs == f(x) sol = eq[0].rhs sol = expand_mul(sol) for i, reroot, imroot in collectterms: sol = collect(sol, x**i*exp(reroot*x)*sin(abs(imroot)*x)) sol = collect(sol, x**i*exp(reroot*x)*cos(imroot*x)) for i, reroot, imroot in collectterms: sol = collect(sol, x**i*exp(reroot*x)) del collectterms # Collect is splitting exponentials with rational powers for # no reason. We call powsimp to fix. sol = powsimp(sol) eq[0] = Eq(f(x), sol) else: # The solution is not solved, so try to solve it try: floats = any(i.is_Float for i in eq.atoms(Number)) eqsol = solve(eq, func, force=True, rational=False if floats else None) if not eqsol: raise NotImplementedError except (NotImplementedError, PolynomialError): eq = [eq] else: def _expand(expr): numer, denom = expr.as_numer_denom() if denom.is_Add: return expr else: return powsimp(expr.expand(), combine='exp', deep=True) # XXX: the rest of odesimp() expects each ``t`` to be in a # specific normal form: rational expression with numerator # expanded, but with combined exponential functions (at # least in this setup all tests pass). eq = [Eq(f(x), _expand(t)) for t in eqsol] # special simplification of the lhs. if hint.startswith("1st_homogeneous_coeff"): for j, eqi in enumerate(eq): newi = logcombine(eqi, force=True) if isinstance(newi.lhs, log) and newi.rhs == 0: newi = Eq(newi.lhs.args[0]/C1, C1) eq[j] = newi # We cleaned up the constants before solving to help the solve engine with # a simpler expression, but the solved expression could have introduced # things like -C1, so rerun constantsimp() one last time before returning. for i, eqi in enumerate(eq): eq[i] = constantsimp(eqi, constants) eq[i] = constant_renumber(eq[i], ode.free_symbols) # If there is only 1 solution, return it; # otherwise return the list of solutions. if len(eq) == 1: eq = eq[0] return eq def checkodesol(ode, sol, func=None, order='auto', solve_for_func=True): r""" Substitutes ``sol`` into ``ode`` and checks that the result is ``0``. This only works when ``func`` is one function, like `f(x)`. ``sol`` can be a single solution or a list of solutions. Each solution may be an :py:class:`~sympy.core.relational.Equality` that the solution satisfies, e.g. ``Eq(f(x), C1), Eq(f(x) + C1, 0)``; or simply an :py:class:`~sympy.core.expr.Expr`, e.g. ``f(x) - C1``. In most cases it will not be necessary to explicitly identify the function, but if the function cannot be inferred from the original equation it can be supplied through the ``func`` argument. If a sequence of solutions is passed, the same sort of container will be used to return the result for each solution. It tries the following methods, in order, until it finds zero equivalence: 1. Substitute the solution for `f` in the original equation. This only works if ``ode`` is solved for `f`. It will attempt to solve it first unless ``solve_for_func == False``. 2. Take `n` derivatives of the solution, where `n` is the order of ``ode``, and check to see if that is equal to the solution. This only works on exact ODEs. 3. Take the 1st, 2nd, ..., `n`\th derivatives of the solution, each time solving for the derivative of `f` of that order (this will always be possible because `f` is a linear operator). Then back substitute each derivative into ``ode`` in reverse order. This function returns a tuple. The first item in the tuple is ``True`` if the substitution results in ``0``, and ``False`` otherwise. The second item in the tuple is what the substitution results in. It should always be ``0`` if the first item is ``True``. Sometimes this function will return ``False`` even when an expression is identically equal to ``0``. This happens when :py:meth:`~sympy.simplify.simplify.simplify` does not reduce the expression to ``0``. If an expression returned by this function vanishes identically, then ``sol`` really is a solution to the ``ode``. If this function seems to hang, it is probably because of a hard simplification. To use this function to test, test the first item of the tuple. Examples ======== >>> from sympy import Eq, Function, checkodesol, symbols >>> x, C1 = symbols('x,C1') >>> f = Function('f') >>> checkodesol(f(x).diff(x), Eq(f(x), C1)) (True, 0) >>> assert checkodesol(f(x).diff(x), C1)[0] >>> assert not checkodesol(f(x).diff(x), x)[0] >>> checkodesol(f(x).diff(x, 2), x**2) (False, 2) """ if not isinstance(ode, Equality): ode = Eq(ode, 0) if func is None: try: _, func = _preprocess(ode.lhs) except ValueError: funcs = [s.atoms(AppliedUndef) for s in ( sol if is_sequence(sol, set) else [sol])] funcs = set().union(*funcs) if len(funcs) != 1: raise ValueError( 'must pass func arg to checkodesol for this case.') func = funcs.pop() if not isinstance(func, AppliedUndef) or len(func.args) != 1: raise ValueError( "func must be a function of one variable, not %s" % func) if is_sequence(sol, set): return type(sol)([checkodesol(ode, i, order=order, solve_for_func=solve_for_func) for i in sol]) if not isinstance(sol, Equality): sol = Eq(func, sol) elif sol.rhs == func: sol = sol.reversed if order == 'auto': order = ode_order(ode, func) solved = sol.lhs == func and not sol.rhs.has(func) if solve_for_func and not solved: rhs = solve(sol, func) if rhs: eqs = [Eq(func, t) for t in rhs] if len(rhs) == 1: eqs = eqs[0] return checkodesol(ode, eqs, order=order, solve_for_func=False) x = func.args[0] # Handle series solutions here if sol.has(Order): assert sol.lhs == func Oterm = sol.rhs.getO() solrhs = sol.rhs.removeO() Oexpr = Oterm.expr assert isinstance(Oexpr, Pow) sorder = Oexpr.exp assert Oterm == Order(x**sorder) odesubs = (ode.lhs-ode.rhs).subs(func, solrhs).doit().expand() neworder = Order(x**(sorder - order)) odesubs = odesubs + neworder assert odesubs.getO() == neworder residual = odesubs.removeO() return (residual == 0, residual) s = True testnum = 0 while s: if testnum == 0: # First pass, try substituting a solved solution directly into the # ODE. This has the highest chance of succeeding. ode_diff = ode.lhs - ode.rhs if sol.lhs == func: s = sub_func_doit(ode_diff, func, sol.rhs) s = besselsimp(s) else: testnum += 1 continue ss = simplify(s) if ss: # with the new numer_denom in power.py, if we do a simple # expansion then testnum == 0 verifies all solutions. s = ss.expand(force=True) else: s = 0 testnum += 1 elif testnum == 1: # Second pass. If we cannot substitute f, try seeing if the nth # derivative is equal, this will only work for odes that are exact, # by definition. s = simplify( trigsimp(diff(sol.lhs, x, order) - diff(sol.rhs, x, order)) - trigsimp(ode.lhs) + trigsimp(ode.rhs)) # s2 = simplify( # diff(sol.lhs, x, order) - diff(sol.rhs, x, order) - \ # ode.lhs + ode.rhs) testnum += 1 elif testnum == 2: # Third pass. Try solving for df/dx and substituting that into the # ODE. Thanks to Chris Smith for suggesting this method. Many of # the comments below are his, too. # The method: # - Take each of 1..n derivatives of the solution. # - Solve each nth derivative for d^(n)f/dx^(n) # (the differential of that order) # - Back substitute into the ODE in decreasing order # (i.e., n, n-1, ...) # - Check the result for zero equivalence if sol.lhs == func and not sol.rhs.has(func): diffsols = {0: sol.rhs} elif sol.rhs == func and not sol.lhs.has(func): diffsols = {0: sol.lhs} else: diffsols = {} sol = sol.lhs - sol.rhs for i in range(1, order + 1): # Differentiation is a linear operator, so there should always # be 1 solution. Nonetheless, we test just to make sure. # We only need to solve once. After that, we automatically # have the solution to the differential in the order we want. if i == 1: ds = sol.diff(x) try: sdf = solve(ds, func.diff(x, i)) if not sdf: raise NotImplementedError except NotImplementedError: testnum += 1 break else: diffsols[i] = sdf[0] else: # This is what the solution says df/dx should be. diffsols[i] = diffsols[i - 1].diff(x) # Make sure the above didn't fail. if testnum > 2: continue else: # Substitute it into ODE to check for self consistency. lhs, rhs = ode.lhs, ode.rhs for i in range(order, -1, -1): if i == 0 and 0 not in diffsols: # We can only substitute f(x) if the solution was # solved for f(x). break lhs = sub_func_doit(lhs, func.diff(x, i), diffsols[i]) rhs = sub_func_doit(rhs, func.diff(x, i), diffsols[i]) ode_or_bool = Eq(lhs, rhs) ode_or_bool = simplify(ode_or_bool) if isinstance(ode_or_bool, (bool, BooleanAtom)): if ode_or_bool: lhs = rhs = S.Zero else: lhs = ode_or_bool.lhs rhs = ode_or_bool.rhs # No sense in overworking simplify -- just prove that the # numerator goes to zero num = trigsimp((lhs - rhs).as_numer_denom()[0]) # since solutions are obtained using force=True we test # using the same level of assumptions ## replace function with dummy so assumptions will work _func = Dummy('func') num = num.subs(func, _func) ## posify the expression num, reps = posify(num) s = simplify(num).xreplace(reps).xreplace({_func: func}) testnum += 1 else: break if not s: return (True, s) elif s is True: # The code above never was able to change s raise NotImplementedError("Unable to test if " + str(sol) + " is a solution to " + str(ode) + ".") else: return (False, s) def ode_sol_simplicity(sol, func, trysolving=True): r""" Returns an extended integer representing how simple a solution to an ODE is. The following things are considered, in order from most simple to least: - ``sol`` is solved for ``func``. - ``sol`` is not solved for ``func``, but can be if passed to solve (e.g., a solution returned by ``dsolve(ode, func, simplify=False``). - If ``sol`` is not solved for ``func``, then base the result on the length of ``sol``, as computed by ``len(str(sol))``. - If ``sol`` has any unevaluated :py:class:`~sympy.integrals.integrals.Integral`\s, this will automatically be considered less simple than any of the above. This function returns an integer such that if solution A is simpler than solution B by above metric, then ``ode_sol_simplicity(sola, func) < ode_sol_simplicity(solb, func)``. Currently, the following are the numbers returned, but if the heuristic is ever improved, this may change. Only the ordering is guaranteed. +----------------------------------------------+-------------------+ | Simplicity | Return | +==============================================+===================+ | ``sol`` solved for ``func`` | ``-2`` | +----------------------------------------------+-------------------+ | ``sol`` not solved for ``func`` but can be | ``-1`` | +----------------------------------------------+-------------------+ | ``sol`` is not solved nor solvable for | ``len(str(sol))`` | | ``func`` | | +----------------------------------------------+-------------------+ | ``sol`` contains an | ``oo`` | | :obj:`~sympy.integrals.integrals.Integral` | | +----------------------------------------------+-------------------+ ``oo`` here means the SymPy infinity, which should compare greater than any integer. If you already know :py:meth:`~sympy.solvers.solvers.solve` cannot solve ``sol``, you can use ``trysolving=False`` to skip that step, which is the only potentially slow step. For example, :py:meth:`~sympy.solvers.ode.dsolve` with the ``simplify=False`` flag should do this. If ``sol`` is a list of solutions, if the worst solution in the list returns ``oo`` it returns that, otherwise it returns ``len(str(sol))``, that is, the length of the string representation of the whole list. Examples ======== This function is designed to be passed to ``min`` as the key argument, such as ``min(listofsolutions, key=lambda i: ode_sol_simplicity(i, f(x)))``. >>> from sympy import symbols, Function, Eq, tan, cos, sqrt, Integral >>> from sympy.solvers.ode import ode_sol_simplicity >>> x, C1, C2 = symbols('x, C1, C2') >>> f = Function('f') >>> ode_sol_simplicity(Eq(f(x), C1*x**2), f(x)) -2 >>> ode_sol_simplicity(Eq(x**2 + f(x), C1), f(x)) -1 >>> ode_sol_simplicity(Eq(f(x), C1*Integral(2*x, x)), f(x)) oo >>> eq1 = Eq(f(x)/tan(f(x)/(2*x)), C1) >>> eq2 = Eq(f(x)/tan(f(x)/(2*x) + f(x)), C2) >>> [ode_sol_simplicity(eq, f(x)) for eq in [eq1, eq2]] [28, 35] >>> min([eq1, eq2], key=lambda i: ode_sol_simplicity(i, f(x))) Eq(f(x)/tan(f(x)/(2*x)), C1) """ # TODO: if two solutions are solved for f(x), we still want to be # able to get the simpler of the two # See the docstring for the coercion rules. We check easier (faster) # things here first, to save time. if iterable(sol): # See if there are Integrals for i in sol: if ode_sol_simplicity(i, func, trysolving=trysolving) == oo: return oo return len(str(sol)) if sol.has(Integral): return oo # Next, try to solve for func. This code will change slightly when CRootOf # is implemented in solve(). Probably a CRootOf solution should fall # somewhere between a normal solution and an unsolvable expression. # First, see if they are already solved if sol.lhs == func and not sol.rhs.has(func) or \ sol.rhs == func and not sol.lhs.has(func): return -2 # We are not so lucky, try solving manually if trysolving: try: sols = solve(sol, func) if not sols: raise NotImplementedError except NotImplementedError: pass else: return -1 # Finally, a naive computation based on the length of the string version # of the expression. This may favor combined fractions because they # will not have duplicate denominators, and may slightly favor expressions # with fewer additions and subtractions, as those are separated by spaces # by the printer. # Additional ideas for simplicity heuristics are welcome, like maybe # checking if a equation has a larger domain, or if constantsimp has # introduced arbitrary constants numbered higher than the order of a # given ODE that sol is a solution of. return len(str(sol)) def _get_constant_subexpressions(expr, Cs): Cs = set(Cs) Ces = [] def _recursive_walk(expr): expr_syms = expr.free_symbols if expr_syms and expr_syms.issubset(Cs): Ces.append(expr) else: if expr.func == exp: expr = expr.expand(mul=True) if expr.func in (Add, Mul): d = sift(expr.args, lambda i : i.free_symbols.issubset(Cs)) if len(d[True]) > 1: x = expr.func(*d[True]) if not x.is_number: Ces.append(x) elif isinstance(expr, Integral): if expr.free_symbols.issubset(Cs) and \ all(len(x) == 3 for x in expr.limits): Ces.append(expr) for i in expr.args: _recursive_walk(i) return _recursive_walk(expr) return Ces def __remove_linear_redundancies(expr, Cs): cnts = {i: expr.count(i) for i in Cs} Cs = [i for i in Cs if cnts[i] > 0] def _linear(expr): if isinstance(expr, Add): xs = [i for i in Cs if expr.count(i)==cnts[i] \ and 0 == expr.diff(i, 2)] d = {} for x in xs: y = expr.diff(x) if y not in d: d[y]=[] d[y].append(x) for y in d: if len(d[y]) > 1: d[y].sort(key=str) for x in d[y][1:]: expr = expr.subs(x, 0) return expr def _recursive_walk(expr): if len(expr.args) != 0: expr = expr.func(*[_recursive_walk(i) for i in expr.args]) expr = _linear(expr) return expr if isinstance(expr, Equality): lhs, rhs = [_recursive_walk(i) for i in expr.args] f = lambda i: isinstance(i, Number) or i in Cs if isinstance(lhs, Symbol) and lhs in Cs: rhs, lhs = lhs, rhs if lhs.func in (Add, Symbol) and rhs.func in (Add, Symbol): dlhs = sift([lhs] if isinstance(lhs, AtomicExpr) else lhs.args, f) drhs = sift([rhs] if isinstance(rhs, AtomicExpr) else rhs.args, f) for i in [True, False]: for hs in [dlhs, drhs]: if i not in hs: hs[i] = [0] # this calculation can be simplified lhs = Add(*dlhs[False]) - Add(*drhs[False]) rhs = Add(*drhs[True]) - Add(*dlhs[True]) elif lhs.func in (Mul, Symbol) and rhs.func in (Mul, Symbol): dlhs = sift([lhs] if isinstance(lhs, AtomicExpr) else lhs.args, f) if True in dlhs: if False not in dlhs: dlhs[False] = [1] lhs = Mul(*dlhs[False]) rhs = rhs/Mul(*dlhs[True]) return Eq(lhs, rhs) else: return _recursive_walk(expr) @vectorize(0) def constantsimp(expr, constants): r""" Simplifies an expression with arbitrary constants in it. This function is written specifically to work with :py:meth:`~sympy.solvers.ode.dsolve`, and is not intended for general use. Simplification is done by "absorbing" the arbitrary constants into other arbitrary constants, numbers, and symbols that they are not independent of. The symbols must all have the same name with numbers after it, for example, ``C1``, ``C2``, ``C3``. The ``symbolname`` here would be '``C``', the ``startnumber`` would be 1, and the ``endnumber`` would be 3. If the arbitrary constants are independent of the variable ``x``, then the independent symbol would be ``x``. There is no need to specify the dependent function, such as ``f(x)``, because it already has the independent symbol, ``x``, in it. Because terms are "absorbed" into arbitrary constants and because constants are renumbered after simplifying, the arbitrary constants in expr are not necessarily equal to the ones of the same name in the returned result. If two or more arbitrary constants are added, multiplied, or raised to the power of each other, they are first absorbed together into a single arbitrary constant. Then the new constant is combined into other terms if necessary. Absorption of constants is done with limited assistance: 1. terms of :py:class:`~sympy.core.add.Add`\s are collected to try join constants so `e^x (C_1 \cos(x) + C_2 \cos(x))` will simplify to `e^x C_1 \cos(x)`; 2. powers with exponents that are :py:class:`~sympy.core.add.Add`\s are expanded so `e^{C_1 + x}` will be simplified to `C_1 e^x`. Use :py:meth:`~sympy.solvers.ode.constant_renumber` to renumber constants after simplification or else arbitrary numbers on constants may appear, e.g. `C_1 + C_3 x`. In rare cases, a single constant can be "simplified" into two constants. Every differential equation solution should have as many arbitrary constants as the order of the differential equation. The result here will be technically correct, but it may, for example, have `C_1` and `C_2` in an expression, when `C_1` is actually equal to `C_2`. Use your discretion in such situations, and also take advantage of the ability to use hints in :py:meth:`~sympy.solvers.ode.dsolve`. Examples ======== >>> from sympy import symbols >>> from sympy.solvers.ode import constantsimp >>> C1, C2, C3, x, y = symbols('C1, C2, C3, x, y') >>> constantsimp(2*C1*x, {C1, C2, C3}) C1*x >>> constantsimp(C1 + 2 + x, {C1, C2, C3}) C1 + x >>> constantsimp(C1*C2 + 2 + C2 + C3*x, {C1, C2, C3}) C1 + C3*x """ # This function works recursively. The idea is that, for Mul, # Add, Pow, and Function, if the class has a constant in it, then # we can simplify it, which we do by recursing down and # simplifying up. Otherwise, we can skip that part of the # expression. Cs = constants orig_expr = expr constant_subexprs = _get_constant_subexpressions(expr, Cs) for xe in constant_subexprs: xes = list(xe.free_symbols) if not xes: continue if all([expr.count(c) == xe.count(c) for c in xes]): xes.sort(key=str) expr = expr.subs(xe, xes[0]) # try to perform common sub-expression elimination of constant terms try: commons, rexpr = cse(expr) commons.reverse() rexpr = rexpr[0] for s in commons: cs = list(s[1].atoms(Symbol)) if len(cs) == 1 and cs[0] in Cs and \ cs[0] not in rexpr.atoms(Symbol) and \ not any(cs[0] in ex for ex in commons if ex != s): rexpr = rexpr.subs(s[0], cs[0]) else: rexpr = rexpr.subs(*s) expr = rexpr except Exception: pass expr = __remove_linear_redundancies(expr, Cs) def _conditional_term_factoring(expr): new_expr = terms_gcd(expr, clear=False, deep=True, expand=False) # we do not want to factor exponentials, so handle this separately if new_expr.is_Mul: infac = False asfac = False for m in new_expr.args: if isinstance(m, exp): asfac = True elif m.is_Add: infac = any(isinstance(fi, exp) for t in m.args for fi in Mul.make_args(t)) if asfac and infac: new_expr = expr break return new_expr expr = _conditional_term_factoring(expr) # call recursively if more simplification is possible if orig_expr != expr: return constantsimp(expr, Cs) return expr def constant_renumber(expr, variables=None, newconstants=None): r""" Renumber arbitrary constants in ``expr`` to use the symbol names as given in ``newconstants``. In the process, this reorders expression terms in a standard way. If ``newconstants`` is not provided then the new constant names will be ``C1``, ``C2`` etc. Otherwise ``newconstants`` should be an iterable giving the new symbols to use for the constants in order. The ``variables`` argument is a list of non-constant symbols. All other free symbols found in ``expr`` are assumed to be constants and will be renumbered. If ``variables`` is not given then any numbered symbol beginning with ``C`` (e.g. ``C1``) is assumed to be a constant. Symbols are renumbered based on ``.sort_key()``, so they should be numbered roughly in the order that they appear in the final, printed expression. Note that this ordering is based in part on hashes, so it can produce different results on different machines. The structure of this function is very similar to that of :py:meth:`~sympy.solvers.ode.constantsimp`. Examples ======== >>> from sympy import symbols, Eq, pprint >>> from sympy.solvers.ode import constant_renumber >>> x, C1, C2, C3 = symbols('x,C1:4') >>> expr = C3 + C2*x + C1*x**2 >>> expr C1*x**2 + C2*x + C3 >>> constant_renumber(expr) C1 + C2*x + C3*x**2 The ``variables`` argument specifies which are constants so that the other symbols will not be renumbered: >>> constant_renumber(expr, [C1, x]) C1*x**2 + C2 + C3*x The ``newconstants`` argument is used to specify what symbols to use when replacing the constants: >>> constant_renumber(expr, [x], newconstants=symbols('E1:4')) E1 + E2*x + E3*x**2 """ if type(expr) in (set, list, tuple): renumbered = [constant_renumber(e, variables, newconstants) for e in expr] return type(expr)(renumbered) # Symbols in solution but not ODE are constants if variables is not None: variables = set(variables) constantsymbols = list(expr.free_symbols - variables) # Any Cn is a constant... else: variables = set() isconstant = lambda s: s.startswith('C') and s[1:].isdigit() constantsymbols = [sym for sym in expr.free_symbols if isconstant(sym.name)] # Find new constants checking that they aren't already in the ODE if newconstants is None: iter_constants = numbered_symbols(start=1, prefix='C', exclude=variables) else: iter_constants = (sym for sym in newconstants if sym not in variables) global newstartnumber newstartnumber = 1 endnumber = len(constantsymbols) constants_found = [None]*(endnumber + 2) # make a mapping to send all constantsymbols to S.One and use # that to make sure that term ordering is not dependent on # the indexed value of C C_1 = [(ci, S.One) for ci in constantsymbols] sort_key=lambda arg: default_sort_key(arg.subs(C_1)) def _constant_renumber(expr): r""" We need to have an internal recursive function so that newstartnumber maintains its values throughout recursive calls. """ # FIXME: Use nonlocal here when support for Py2 is dropped: global newstartnumber if isinstance(expr, Equality): return Eq( _constant_renumber(expr.lhs), _constant_renumber(expr.rhs)) if type(expr) not in (Mul, Add, Pow) and not expr.is_Function and \ not expr.has(*constantsymbols): # Base case, as above. Hope there aren't constants inside # of some other class, because they won't be renumbered. return expr elif expr.is_Piecewise: return expr elif expr in constantsymbols: if expr not in constants_found: constants_found[newstartnumber] = expr newstartnumber += 1 return expr elif expr.is_Function or expr.is_Pow or isinstance(expr, Tuple): return expr.func( *[_constant_renumber(x) for x in expr.args]) else: sortedargs = list(expr.args) sortedargs.sort(key=sort_key) return expr.func(*[_constant_renumber(x) for x in sortedargs]) expr = _constant_renumber(expr) # Don't renumber symbols present in the ODE. constants_found = [c for c in constants_found if c not in variables] # Renumbering happens here expr = expr.subs(zip(constants_found[1:], iter_constants), simultaneous=True) return expr def _handle_Integral(expr, func, hint): r""" Converts a solution with Integrals in it into an actual solution. For most hints, this simply runs ``expr.doit()``. """ global y x = func.args[0] f = func.func if hint == "1st_exact": sol = (expr.doit()).subs(y, f(x)) del y elif hint == "1st_exact_Integral": sol = Eq(Subs(expr.lhs, y, f(x)), expr.rhs) del y elif hint == "nth_linear_constant_coeff_homogeneous": sol = expr elif not hint.endswith("_Integral"): sol = expr.doit() else: sol = expr return sol def _ode_factorable_match(eq, func, x0): from sympy.polys.polytools import factor eqs = factor(eq) eqs = fraction(eqs)[0] # p/q =0, So we need to solve only p=0 eqns = [] r = None if isinstance(eqs, Pow): # if f(x)**p=0 then f(x)=0 (p>0) if (expr.exp).is_positive: eq = expr.base if isinstance(eq, Pow): return None else: r = _ode_factorable_match(eq, func, x0) if r is None: r = {'eqns' : [eq], 'x0': x0} return r if isinstance(eqs, Mul): fac = eqs.args for i in fac: if i.has(func): eqns.append(i) if len(eqns)>0: r = {'eqns' : eqns, 'x0' : x0} return r # FIXME: replace the general solution in the docstring with # dsolve(equation, hint='1st_exact_Integral'). You will need to be able # to have assumptions on P and Q that dP/dy = dQ/dx. def ode_1st_exact(eq, func, order, match): r""" Solves 1st order exact ordinary differential equations. A 1st order differential equation is called exact if it is the total differential of a function. That is, the differential equation .. math:: P(x, y) \,\partial{}x + Q(x, y) \,\partial{}y = 0 is exact if there is some function `F(x, y)` such that `P(x, y) = \partial{}F/\partial{}x` and `Q(x, y) = \partial{}F/\partial{}y`. It can be shown that a necessary and sufficient condition for a first order ODE to be exact is that `\partial{}P/\partial{}y = \partial{}Q/\partial{}x`. Then, the solution will be as given below:: >>> from sympy import Function, Eq, Integral, symbols, pprint >>> x, y, t, x0, y0, C1= symbols('x,y,t,x0,y0,C1') >>> P, Q, F= map(Function, ['P', 'Q', 'F']) >>> pprint(Eq(Eq(F(x, y), Integral(P(t, y), (t, x0, x)) + ... Integral(Q(x0, t), (t, y0, y))), C1)) x y / / | | F(x, y) = | P(t, y) dt + | Q(x0, t) dt = C1 | | / / x0 y0 Where the first partials of `P` and `Q` exist and are continuous in a simply connected region. A note: SymPy currently has no way to represent inert substitution on an expression, so the hint ``1st_exact_Integral`` will return an integral with `dy`. This is supposed to represent the function that you are solving for. Examples ======== >>> from sympy import Function, dsolve, cos, sin >>> from sympy.abc import x >>> f = Function('f') >>> dsolve(cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x), ... f(x), hint='1st_exact') Eq(x*cos(f(x)) + f(x)**3/3, C1) References ========== - https://en.wikipedia.org/wiki/Exact_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 73 # indirect doctest """ x = func.args[0] r = match # d+e*diff(f(x),x) e = r[r['e']] d = r[r['d']] global y # This is the only way to pass dummy y to _handle_Integral y = r['y'] C1 = get_numbered_constants(eq, num=1) # Refer Joel Moses, "Symbolic Integration - The Stormy Decade", # Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558 # which gives the method to solve an exact differential equation. sol = Integral(d, x) + Integral((e - (Integral(d, x).diff(y))), y) return Eq(sol, C1) def ode_1st_homogeneous_coeff_best(eq, func, order, match): r""" Returns the best solution to an ODE from the two hints ``1st_homogeneous_coeff_subs_dep_div_indep`` and ``1st_homogeneous_coeff_subs_indep_div_dep``. This is as determined by :py:meth:`~sympy.solvers.ode.ode_sol_simplicity`. See the :py:meth:`~sympy.solvers.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep` and :py:meth:`~sympy.solvers.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep` docstrings for more information on these hints. Note that there is no ``ode_1st_homogeneous_coeff_best_Integral`` hint. Examples ======== >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), ... hint='1st_homogeneous_coeff_best', simplify=False)) / 2 \ | 3*x | log|----- + 1| | 2 | \f (x) / log(f(x)) = log(C1) - -------------- 3 References ========== - https://en.wikipedia.org/wiki/Homogeneous_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 59 # indirect doctest """ # There are two substitutions that solve the equation, u1=y/x and u2=x/y # They produce different integrals, so try them both and see which # one is easier. sol1 = ode_1st_homogeneous_coeff_subs_indep_div_dep(eq, func, order, match) sol2 = ode_1st_homogeneous_coeff_subs_dep_div_indep(eq, func, order, match) simplify = match.get('simplify', True) if simplify: # why is odesimp called here? Should it be at the usual spot? sol1 = odesimp(eq, sol1, func, "1st_homogeneous_coeff_subs_indep_div_dep") sol2 = odesimp(eq, sol2, func, "1st_homogeneous_coeff_subs_dep_div_indep") return min([sol1, sol2], key=lambda x: ode_sol_simplicity(x, func, trysolving=not simplify)) def ode_1st_homogeneous_coeff_subs_dep_div_indep(eq, func, order, match): r""" Solves a 1st order differential equation with homogeneous coefficients using the substitution `u_1 = \frac{\text{<dependent variable>}}{\text{<independent variable>}}`. This is a differential equation .. math:: P(x, y) + Q(x, y) dy/dx = 0 such that `P` and `Q` are homogeneous and of the same order. A function `F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`. Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`. If the coefficients `P` and `Q` in the differential equation above are homogeneous functions of the same order, then it can be shown that the substitution `y = u_1 x` (i.e. `u_1 = y/x`) will turn the differential equation into an equation separable in the variables `x` and `u`. If `h(u_1)` is the function that results from making the substitution `u_1 = f(x)/x` on `P(x, f(x))` and `g(u_2)` is the function that results from the substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) + Q(x, f(x)) f'(x) = 0`, then the general solution is:: >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f, g, h = map(Function, ['f', 'g', 'h']) >>> genform = g(f(x)/x) + h(f(x)/x)*f(x).diff(x) >>> pprint(genform) /f(x)\ /f(x)\ d g|----| + h|----|*--(f(x)) \ x / \ x / dx >>> pprint(dsolve(genform, f(x), ... hint='1st_homogeneous_coeff_subs_dep_div_indep_Integral')) f(x) ---- x / | | -h(u1) log(x) = C1 + | ---------------- d(u1) | u1*h(u1) + g(u1) | / Where `u_1 h(u_1) + g(u_1) \ne 0` and `x \ne 0`. See also the docstrings of :py:meth:`~sympy.solvers.ode.ode_1st_homogeneous_coeff_best` and :py:meth:`~sympy.solvers.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep`. Examples ======== >>> from sympy import Function, dsolve >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), ... hint='1st_homogeneous_coeff_subs_dep_div_indep', simplify=False)) / 3 \ |3*f(x) f (x)| log|------ + -----| | x 3 | \ x / log(x) = log(C1) - ------------------- 3 References ========== - https://en.wikipedia.org/wiki/Homogeneous_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 59 # indirect doctest """ x = func.args[0] f = func.func u = Dummy('u') u1 = Dummy('u1') # u1 == f(x)/x r = match # d+e*diff(f(x),x) C1 = get_numbered_constants(eq, num=1) xarg = match.get('xarg', 0) yarg = match.get('yarg', 0) int = Integral( (-r[r['e']]/(r[r['d']] + u1*r[r['e']])).subs({x: 1, r['y']: u1}), (u1, None, f(x)/x)) sol = logcombine(Eq(log(x), int + log(C1)), force=True) sol = sol.subs(f(x), u).subs(((u, u - yarg), (x, x - xarg), (u, f(x)))) return sol def ode_1st_homogeneous_coeff_subs_indep_div_dep(eq, func, order, match): r""" Solves a 1st order differential equation with homogeneous coefficients using the substitution `u_2 = \frac{\text{<independent variable>}}{\text{<dependent variable>}}`. This is a differential equation .. math:: P(x, y) + Q(x, y) dy/dx = 0 such that `P` and `Q` are homogeneous and of the same order. A function `F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`. Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`. If the coefficients `P` and `Q` in the differential equation above are homogeneous functions of the same order, then it can be shown that the substitution `x = u_2 y` (i.e. `u_2 = x/y`) will turn the differential equation into an equation separable in the variables `y` and `u_2`. If `h(u_2)` is the function that results from making the substitution `u_2 = x/f(x)` on `P(x, f(x))` and `g(u_2)` is the function that results from the substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) + Q(x, f(x)) f'(x) = 0`, then the general solution is: >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f, g, h = map(Function, ['f', 'g', 'h']) >>> genform = g(x/f(x)) + h(x/f(x))*f(x).diff(x) >>> pprint(genform) / x \ / x \ d g|----| + h|----|*--(f(x)) \f(x)/ \f(x)/ dx >>> pprint(dsolve(genform, f(x), ... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral')) x ---- f(x) / | | -g(u2) | ---------------- d(u2) | u2*g(u2) + h(u2) | / <BLANKLINE> f(x) = C1*e Where `u_2 g(u_2) + h(u_2) \ne 0` and `f(x) \ne 0`. See also the docstrings of :py:meth:`~sympy.solvers.ode.ode_1st_homogeneous_coeff_best` and :py:meth:`~sympy.solvers.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep`. Examples ======== >>> from sympy import Function, pprint, dsolve >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), ... hint='1st_homogeneous_coeff_subs_indep_div_dep', ... simplify=False)) / 2 \ | 3*x | log|----- + 1| | 2 | \f (x) / log(f(x)) = log(C1) - -------------- 3 References ========== - https://en.wikipedia.org/wiki/Homogeneous_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 59 # indirect doctest """ x = func.args[0] f = func.func u = Dummy('u') u2 = Dummy('u2') # u2 == x/f(x) r = match # d+e*diff(f(x),x) C1 = get_numbered_constants(eq, num=1) xarg = match.get('xarg', 0) # If xarg present take xarg, else zero yarg = match.get('yarg', 0) # If yarg present take yarg, else zero int = Integral( simplify( (-r[r['d']]/(r[r['e']] + u2*r[r['d']])).subs({x: u2, r['y']: 1})), (u2, None, x/f(x))) sol = logcombine(Eq(log(f(x)), int + log(C1)), force=True) sol = sol.subs(f(x), u).subs(((u, u - yarg), (x, x - xarg), (u, f(x)))) return sol # XXX: Should this function maybe go somewhere else? def homogeneous_order(eq, *symbols): r""" Returns the order `n` if `g` is homogeneous and ``None`` if it is not homogeneous. Determines if a function is homogeneous and if so of what order. A function `f(x, y, \cdots)` is homogeneous of order `n` if `f(t x, t y, \cdots) = t^n f(x, y, \cdots)`. If the function is of two variables, `F(x, y)`, then `f` being homogeneous of any order is equivalent to being able to rewrite `F(x, y)` as `G(x/y)` or `H(y/x)`. This fact is used to solve 1st order ordinary differential equations whose coefficients are homogeneous of the same order (see the docstrings of :py:meth:`~sympy.solvers.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep` and :py:meth:`~sympy.solvers.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep`). Symbols can be functions, but every argument of the function must be a symbol, and the arguments of the function that appear in the expression must match those given in the list of symbols. If a declared function appears with different arguments than given in the list of symbols, ``None`` is returned. Examples ======== >>> from sympy import Function, homogeneous_order, sqrt >>> from sympy.abc import x, y >>> f = Function('f') >>> homogeneous_order(f(x), f(x)) is None True >>> homogeneous_order(f(x,y), f(y, x), x, y) is None True >>> homogeneous_order(f(x), f(x), x) 1 >>> homogeneous_order(x**2*f(x)/sqrt(x**2+f(x)**2), x, f(x)) 2 >>> homogeneous_order(x**2+f(x), x, f(x)) is None True """ if not symbols: raise ValueError("homogeneous_order: no symbols were given.") symset = set(symbols) eq = sympify(eq) # The following are not supported if eq.has(Order, Derivative): return None # These are all constants if (eq.is_Number or eq.is_NumberSymbol or eq.is_number ): return S.Zero # Replace all functions with dummy variables dum = numbered_symbols(prefix='d', cls=Dummy) newsyms = set() for i in [j for j in symset if getattr(j, 'is_Function')]: iargs = set(i.args) if iargs.difference(symset): return None else: dummyvar = next(dum) eq = eq.subs(i, dummyvar) symset.remove(i) newsyms.add(dummyvar) symset.update(newsyms) if not eq.free_symbols & symset: return None # assuming order of a nested function can only be equal to zero if isinstance(eq, Function): return None if homogeneous_order( eq.args[0], *tuple(symset)) != 0 else S.Zero # make the replacement of x with x*t and see if t can be factored out t = Dummy('t', positive=True) # It is sufficient that t > 0 eqs = separatevars(eq.subs([(i, t*i) for i in symset]), [t], dict=True)[t] if eqs is S.One: return S.Zero # there was no term with only t i, d = eqs.as_independent(t, as_Add=False) b, e = d.as_base_exp() if b == t: return e def ode_1st_linear(eq, func, order, match): r""" Solves 1st order linear differential equations. These are differential equations of the form .. math:: dy/dx + P(x) y = Q(x)\text{.} These kinds of differential equations can be solved in a general way. The integrating factor `e^{\int P(x) \,dx}` will turn the equation into a separable equation. The general solution is:: >>> from sympy import Function, dsolve, Eq, pprint, diff, sin >>> from sympy.abc import x >>> f, P, Q = map(Function, ['f', 'P', 'Q']) >>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x)) >>> pprint(genform) d P(x)*f(x) + --(f(x)) = Q(x) dx >>> pprint(dsolve(genform, f(x), hint='1st_linear_Integral')) / / \ | | | | | / | / | | | | | | | | P(x) dx | - | P(x) dx | | | | | | | / | / f(x) = |C1 + | Q(x)*e dx|*e | | | \ / / Examples ======== >>> f = Function('f') >>> pprint(dsolve(Eq(x*diff(f(x), x) - f(x), x**2*sin(x)), ... f(x), '1st_linear')) f(x) = x*(C1 - cos(x)) References ========== - https://en.wikipedia.org/wiki/Linear_differential_equation#First_order_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 92 # indirect doctest """ x = func.args[0] f = func.func r = match # a*diff(f(x),x) + b*f(x) + c C1 = get_numbered_constants(eq, num=1) t = exp(Integral(r[r['b']]/r[r['a']], x)) tt = Integral(t*(-r[r['c']]/r[r['a']]), x) f = match.get('u', f(x)) # take almost-linear u if present, else f(x) return Eq(f, (tt + C1)/t) def ode_Bernoulli(eq, func, order, match): r""" Solves Bernoulli differential equations. These are equations of the form .. math:: dy/dx + P(x) y = Q(x) y^n\text{, }n \ne 1`\text{.} The substitution `w = 1/y^{1-n}` will transform an equation of this form into one that is linear (see the docstring of :py:meth:`~sympy.solvers.ode.ode_1st_linear`). The general solution is:: >>> from sympy import Function, dsolve, Eq, pprint >>> from sympy.abc import x, n >>> f, P, Q = map(Function, ['f', 'P', 'Q']) >>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)**n) >>> pprint(genform) d n P(x)*f(x) + --(f(x)) = Q(x)*f (x) dx >>> pprint(dsolve(genform, f(x), hint='Bernoulli_Integral'), num_columns=100) 1 ----- 1 - n // / \ \ || | | | || | / | / | || | | | | | || | (1 - n)* | P(x) dx | -(1 - n)* | P(x) dx| || | | | | | || | / | / | f(x) = ||C1 + (n - 1)* | -Q(x)*e dx|*e | || | | | \\ / / / Note that the equation is separable when `n = 1` (see the docstring of :py:meth:`~sympy.solvers.ode.ode_separable`). >>> pprint(dsolve(Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)), f(x), ... hint='separable_Integral')) f(x) / | / | 1 | | - dy = C1 + | (-P(x) + Q(x)) dx | y | | / / Examples ======== >>> from sympy import Function, dsolve, Eq, pprint, log >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(Eq(x*f(x).diff(x) + f(x), log(x)*f(x)**2), ... f(x), hint='Bernoulli')) 1 f(x) = ------------------- / log(x) 1\ x*|C1 + ------ + -| \ x x/ References ========== - https://en.wikipedia.org/wiki/Bernoulli_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 95 # indirect doctest """ x = func.args[0] f = func.func r = match # a*diff(f(x),x) + b*f(x) + c*f(x)**n, n != 1 C1 = get_numbered_constants(eq, num=1) t = exp((1 - r[r['n']])*Integral(r[r['b']]/r[r['a']], x)) tt = (r[r['n']] - 1)*Integral(t*r[r['c']]/r[r['a']], x) return Eq(f(x), ((tt + C1)/t)**(1/(1 - r[r['n']]))) def ode_Riccati_special_minus2(eq, func, order, match): r""" The general Riccati equation has the form .. math:: dy/dx = f(x) y^2 + g(x) y + h(x)\text{.} While it does not have a general solution [1], the "special" form, `dy/dx = a y^2 - b x^c`, does have solutions in many cases [2]. This routine returns a solution for `a(dy/dx) = b y^2 + c y/x + d/x^2` that is obtained by using a suitable change of variables to reduce it to the special form and is valid when neither `a` nor `b` are zero and either `c` or `d` is zero. >>> from sympy.abc import x, y, a, b, c, d >>> from sympy.solvers.ode import dsolve, checkodesol >>> from sympy import pprint, Function >>> f = Function('f') >>> y = f(x) >>> genform = a*y.diff(x) - (b*y**2 + c*y/x + d/x**2) >>> sol = dsolve(genform, y) >>> pprint(sol, wrap_line=False) / / __________________ \\ | __________________ | / 2 || | / 2 | \/ 4*b*d - (a + c) *log(x)|| -|a + c - \/ 4*b*d - (a + c) *tan|C1 + ----------------------------|| \ \ 2*a // f(x) = ------------------------------------------------------------------------ 2*b*x >>> checkodesol(genform, sol, order=1)[0] True References ========== 1. http://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Riccati 2. http://eqworld.ipmnet.ru/en/solutions/ode/ode0106.pdf - http://eqworld.ipmnet.ru/en/solutions/ode/ode0123.pdf """ x = func.args[0] f = func.func r = match # a2*diff(f(x),x) + b2*f(x) + c2*f(x)/x + d2/x**2 a2, b2, c2, d2 = [r[r[s]] for s in 'a2 b2 c2 d2'.split()] C1 = get_numbered_constants(eq, num=1) mu = sqrt(4*d2*b2 - (a2 - c2)**2) return Eq(f(x), (a2 - c2 - mu*tan(mu/(2*a2)*log(x) + C1))/(2*b2*x)) def ode_Liouville(eq, func, order, match): r""" Solves 2nd order Liouville differential equations. The general form of a Liouville ODE is .. math:: \frac{d^2 y}{dx^2} + g(y) \left(\! \frac{dy}{dx}\!\right)^2 + h(x) \frac{dy}{dx}\text{.} The general solution is: >>> from sympy import Function, dsolve, Eq, pprint, diff >>> from sympy.abc import x >>> f, g, h = map(Function, ['f', 'g', 'h']) >>> genform = Eq(diff(f(x),x,x) + g(f(x))*diff(f(x),x)**2 + ... h(x)*diff(f(x),x), 0) >>> pprint(genform) 2 2 /d \ d d g(f(x))*|--(f(x))| + h(x)*--(f(x)) + ---(f(x)) = 0 \dx / dx 2 dx >>> pprint(dsolve(genform, f(x), hint='Liouville_Integral')) f(x) / / | | | / | / | | | | | - | h(x) dx | | g(y) dy | | | | | / | / C1 + C2* | e dx + | e dy = 0 | | / / Examples ======== >>> from sympy import Function, dsolve, Eq, pprint >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(diff(f(x), x, x) + diff(f(x), x)**2/f(x) + ... diff(f(x), x)/x, f(x), hint='Liouville')) ________________ ________________ [f(x) = -\/ C1 + C2*log(x) , f(x) = \/ C1 + C2*log(x) ] References ========== - Goldstein and Braun, "Advanced Methods for the Solution of Differential Equations", pp. 98 - http://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Liouville # indirect doctest """ # Liouville ODE: # f(x).diff(x, 2) + g(f(x))*(f(x).diff(x, 2))**2 + h(x)*f(x).diff(x) # See Goldstein and Braun, "Advanced Methods for the Solution of # Differential Equations", pg. 98, as well as # http://www.maplesoft.com/support/help/view.aspx?path=odeadvisor/Liouville x = func.args[0] f = func.func r = match # f(x).diff(x, 2) + g*f(x).diff(x)**2 + h*f(x).diff(x) y = r['y'] C1, C2 = get_numbered_constants(eq, num=2) int = Integral(exp(Integral(r['g'], y)), (y, None, f(x))) sol = Eq(int + C1*Integral(exp(-Integral(r['h'], x)), x) + C2, 0) return sol def ode_2nd_power_series_ordinary(eq, func, order, match): r""" Gives a power series solution to a second order homogeneous differential equation with polynomial coefficients at an ordinary point. A homogeneous differential equation is of the form .. math :: P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x) = 0 For simplicity it is assumed that `P(x)`, `Q(x)` and `R(x)` are polynomials, it is sufficient that `\frac{Q(x)}{P(x)}` and `\frac{R(x)}{P(x)}` exists at `x_{0}`. A recurrence relation is obtained by substituting `y` as `\sum_{n=0}^\infty a_{n}x^{n}`, in the differential equation, and equating the nth term. Using this relation various terms can be generated. Examples ======== >>> from sympy import dsolve, Function, pprint >>> from sympy.abc import x, y >>> f = Function("f") >>> eq = f(x).diff(x, 2) + f(x) >>> pprint(dsolve(eq, hint='2nd_power_series_ordinary')) / 4 2 \ / 2\ |x x | | x | / 6\ f(x) = C2*|-- - -- + 1| + C1*x*|1 - --| + O\x / \24 2 / \ 6 / References ========== - http://tutorial.math.lamar.edu/Classes/DE/SeriesSolutions.aspx - George E. Simmons, "Differential Equations with Applications and Historical Notes", p.p 176 - 184 """ x = func.args[0] f = func.func C0, C1 = get_numbered_constants(eq, num=2) n = Dummy("n", integer=True) s = Wild("s") k = Wild("k", exclude=[x]) x0 = match.get('x0') terms = match.get('terms', 5) p = match[match['a3']] q = match[match['b3']] r = match[match['c3']] seriesdict = {} recurr = Function("r") # Generating the recurrence relation which works this way: # for the second order term the summation begins at n = 2. The coefficients # p is multiplied with an*(n - 1)*(n - 2)*x**n-2 and a substitution is made such that # the exponent of x becomes n. # For example, if p is x, then the second degree recurrence term is # an*(n - 1)*(n - 2)*x**n-1, substituting (n - 1) as n, it transforms to # an+1*n*(n - 1)*x**n. # A similar process is done with the first order and zeroth order term. coefflist = [(recurr(n), r), (n*recurr(n), q), (n*(n - 1)*recurr(n), p)] for index, coeff in enumerate(coefflist): if coeff[1]: f2 = powsimp(expand((coeff[1]*(x - x0)**(n - index)).subs(x, x + x0))) if f2.is_Add: addargs = f2.args else: addargs = [f2] for arg in addargs: powm = arg.match(s*x**k) term = coeff[0]*powm[s] if not powm[k].is_Symbol: term = term.subs(n, n - powm[k].as_independent(n)[0]) startind = powm[k].subs(n, index) # Seeing if the startterm can be reduced further. # If it vanishes for n lesser than startind, it is # equal to summation from n. if startind: for i in reversed(range(startind)): if not term.subs(n, i): seriesdict[term] = i else: seriesdict[term] = i + 1 break else: seriesdict[term] = S.Zero # Stripping of terms so that the sum starts with the same number. teq = S.Zero suminit = seriesdict.values() rkeys = seriesdict.keys() req = Add(*rkeys) if any(suminit): maxval = max(suminit) for term in seriesdict: val = seriesdict[term] if val != maxval: for i in range(val, maxval): teq += term.subs(n, val) finaldict = {} if teq: fargs = teq.atoms(AppliedUndef) if len(fargs) == 1: finaldict[fargs.pop()] = 0 else: maxf = max(fargs, key = lambda x: x.args[0]) sol = solve(teq, maxf) if isinstance(sol, list): sol = sol[0] finaldict[maxf] = sol # Finding the recurrence relation in terms of the largest term. fargs = req.atoms(AppliedUndef) maxf = max(fargs, key = lambda x: x.args[0]) minf = min(fargs, key = lambda x: x.args[0]) if minf.args[0].is_Symbol: startiter = 0 else: startiter = -minf.args[0].as_independent(n)[0] lhs = maxf rhs = solve(req, maxf) if isinstance(rhs, list): rhs = rhs[0] # Checking how many values are already present tcounter = len([t for t in finaldict.values() if t]) for _ in range(tcounter, terms - 3): # Assuming c0 and c1 to be arbitrary check = rhs.subs(n, startiter) nlhs = lhs.subs(n, startiter) nrhs = check.subs(finaldict) finaldict[nlhs] = nrhs startiter += 1 # Post processing series = C0 + C1*(x - x0) for term in finaldict: if finaldict[term]: fact = term.args[0] series += (finaldict[term].subs([(recurr(0), C0), (recurr(1), C1)])*( x - x0)**fact) series = collect(expand_mul(series), [C0, C1]) + Order(x**terms) return Eq(f(x), series) def ode_2nd_linear_airy(eq, func, order, match): r""" Gives solution of the Airy differential equation .. math :: \frac{d^2y}{dx^2} + (a + b x) y(x) = 0 in terms of Airy special functions airyai and airybi. Examples ======== >>> from sympy import dsolve, Function, pprint >>> from sympy.abc import x >>> f = Function("f") >>> eq = f(x).diff(x, 2) - x*f(x) >>> dsolve(eq) Eq(f(x), C1*airyai(x) + C2*airybi(x)) """ x = func.args[0] f = func.func C0, C1 = get_numbered_constants(eq, num=2) b = match['b'] m = match['m'] if m.is_positive: arg = - b/cbrt(m)**2 - cbrt(m)*x elif m.is_negative: arg = - b/cbrt(-m)**2 + cbrt(-m)*x else: arg = - b/cbrt(-m)**2 + cbrt(-m)*x return Eq(f(x), C0*airyai(arg) + C1*airybi(arg)) def ode_2nd_power_series_regular(eq, func, order, match): r""" Gives a power series solution to a second order homogeneous differential equation with polynomial coefficients at a regular point. A second order homogeneous differential equation is of the form .. math :: P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x) = 0 A point is said to regular singular at `x0` if `x - x0\frac{Q(x)}{P(x)}` and `(x - x0)^{2}\frac{R(x)}{P(x)}` are analytic at `x0`. For simplicity `P(x)`, `Q(x)` and `R(x)` are assumed to be polynomials. The algorithm for finding the power series solutions is: 1. Try expressing `(x - x0)P(x)` and `((x - x0)^{2})Q(x)` as power series solutions about x0. Find `p0` and `q0` which are the constants of the power series expansions. 2. Solve the indicial equation `f(m) = m(m - 1) + m*p0 + q0`, to obtain the roots `m1` and `m2` of the indicial equation. 3. If `m1 - m2` is a non integer there exists two series solutions. If `m1 = m2`, there exists only one solution. If `m1 - m2` is an integer, then the existence of one solution is confirmed. The other solution may or may not exist. The power series solution is of the form `x^{m}\sum_{n=0}^\infty a_{n}x^{n}`. The coefficients are determined by the following recurrence relation. `a_{n} = -\frac{\sum_{k=0}^{n-1} q_{n-k} + (m + k)p_{n-k}}{f(m + n)}`. For the case in which `m1 - m2` is an integer, it can be seen from the recurrence relation that for the lower root `m`, when `n` equals the difference of both the roots, the denominator becomes zero. So if the numerator is not equal to zero, a second series solution exists. Examples ======== >>> from sympy import dsolve, Function, pprint >>> from sympy.abc import x, y >>> f = Function("f") >>> eq = x*(f(x).diff(x, 2)) + 2*(f(x).diff(x)) + x*f(x) >>> pprint(dsolve(eq, hint='2nd_power_series_regular')) / 6 4 2 \ | x x x | / 4 2 \ C1*|- --- + -- - -- + 1| | x x | \ 720 24 2 / / 6\ f(x) = C2*|--- - -- + 1| + ------------------------ + O\x / \120 6 / x References ========== - George E. Simmons, "Differential Equations with Applications and Historical Notes", p.p 176 - 184 """ x = func.args[0] f = func.func C0, C1 = get_numbered_constants(eq, num=2) m = Dummy("m") # for solving the indicial equation x0 = match.get('x0') terms = match.get('terms', 5) p = match['p'] q = match['q'] # Generating the indicial equation indicial = [] for term in [p, q]: if not term.has(x): indicial.append(term) else: term = series(term, n=1, x0=x0) if isinstance(term, Order): indicial.append(S.Zero) else: for arg in term.args: if not arg.has(x): indicial.append(arg) break p0, q0 = indicial sollist = solve(m*(m - 1) + m*p0 + q0, m) if sollist and isinstance(sollist, list) and all( [sol.is_real for sol in sollist]): serdict1 = {} serdict2 = {} if len(sollist) == 1: # Only one series solution exists in this case. m1 = m2 = sollist.pop() if terms-m1-1 <= 0: return Eq(f(x), Order(terms)) serdict1 = _frobenius(terms-m1-1, m1, p0, q0, p, q, x0, x, C0) else: m1 = sollist[0] m2 = sollist[1] if m1 < m2: m1, m2 = m2, m1 # Irrespective of whether m1 - m2 is an integer or not, one # Frobenius series solution exists. serdict1 = _frobenius(terms-m1-1, m1, p0, q0, p, q, x0, x, C0) if not (m1 - m2).is_integer: # Second frobenius series solution exists. serdict2 = _frobenius(terms-m2-1, m2, p0, q0, p, q, x0, x, C1) else: # Check if second frobenius series solution exists. serdict2 = _frobenius(terms-m2-1, m2, p0, q0, p, q, x0, x, C1, check=m1) if serdict1: finalseries1 = C0 for key in serdict1: power = int(key.name[1:]) finalseries1 += serdict1[key]*(x - x0)**power finalseries1 = (x - x0)**m1*finalseries1 finalseries2 = S.Zero if serdict2: for key in serdict2: power = int(key.name[1:]) finalseries2 += serdict2[key]*(x - x0)**power finalseries2 += C1 finalseries2 = (x - x0)**m2*finalseries2 return Eq(f(x), collect(finalseries1 + finalseries2, [C0, C1]) + Order(x**terms)) def ode_2nd_linear_bessel(eq, func, order, match): r""" Gives solution of the Bessel differential equation .. math :: x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} y(x) + (x^2-n^2) y(x) if n is integer then the solution is of the form Eq(f(x), C0 besselj(n,x) + C1 bessely(n,x)) as both the solutions are linearly independent else if n is a fraction then the solution is of the form Eq(f(x), C0 besselj(n,x) + C1 besselj(-n,x)) which can also transform into Eq(f(x), C0 besselj(n,x) + C1 bessely(n,x)). Examples ======== >>> from sympy.abc import x, y, a >>> from sympy import Symbol >>> v = Symbol('v', positive=True) >>> from sympy.solvers.ode import dsolve, checkodesol >>> from sympy import pprint, Function >>> f = Function('f') >>> y = f(x) >>> genform = x**2*y.diff(x, 2) + x*y.diff(x) + (x**2 - v**2)*y >>> dsolve(genform) Eq(f(x), C1*besselj(v, x) + C2*bessely(v, x)) References ========== https://www.math24.net/bessel-differential-equation/ """ x = func.args[0] f = func.func C0, C1 = get_numbered_constants(eq, num=2) n = match['n'] a4 = match['a4'] c4 = match['c4'] d4 = match['d4'] b4 = match['b4'] n = sqrt(n**2 + Rational(1, 4)*(c4 - 1)**2) return Eq(f(x), ((x**(Rational(1-c4,2)))*(C0*besselj(n/d4,a4*x**d4/d4) + C1*bessely(n/d4,a4*x**d4/d4))).subs(x, x-b4)) def _frobenius(n, m, p0, q0, p, q, x0, x, c, check=None): r""" Returns a dict with keys as coefficients and values as their values in terms of C0 """ n = int(n) # In cases where m1 - m2 is not an integer m2 = check d = Dummy("d") numsyms = numbered_symbols("C", start=0) numsyms = [next(numsyms) for i in range(n + 1)] serlist = [] for ser in [p, q]: # Order term not present if ser.is_polynomial(x) and Poly(ser, x).degree() <= n: if x0: ser = ser.subs(x, x + x0) dict_ = Poly(ser, x).as_dict() # Order term present else: tseries = series(ser, x=x0, n=n+1) # Removing order dict_ = Poly(list(ordered(tseries.args))[: -1], x).as_dict() # Fill in with zeros, if coefficients are zero. for i in range(n + 1): if (i,) not in dict_: dict_[(i,)] = S.Zero serlist.append(dict_) pseries = serlist[0] qseries = serlist[1] indicial = d*(d - 1) + d*p0 + q0 frobdict = {} for i in range(1, n + 1): num = c*(m*pseries[(i,)] + qseries[(i,)]) for j in range(1, i): sym = Symbol("C" + str(j)) num += frobdict[sym]*((m + j)*pseries[(i - j,)] + qseries[(i - j,)]) # Checking for cases when m1 - m2 is an integer. If num equals zero # then a second Frobenius series solution cannot be found. If num is not zero # then set constant as zero and proceed. if m2 is not None and i == m2 - m: if num: return False else: frobdict[numsyms[i]] = S.Zero else: frobdict[numsyms[i]] = -num/(indicial.subs(d, m+i)) return frobdict def _nth_order_reducible_match(eq, func): r""" Matches any differential equation that can be rewritten with a smaller order. Only derivatives of ``func`` alone, wrt a single variable, are considered, and only in them should ``func`` appear. """ # ODE only handles functions of 1 variable so this affirms that state assert len(func.args) == 1 x = func.args[0] vc = [d.variable_count[0] for d in eq.atoms(Derivative) if d.expr == func and len(d.variable_count) == 1] ords = [c for v, c in vc if v == x] if len(ords) < 2: return smallest = min(ords) # make sure func does not appear outside of derivatives D = Dummy() if eq.subs(func.diff(x, smallest), D).has(func): return return {'n': smallest} def ode_nth_order_reducible(eq, func, order, match): r""" Solves ODEs that only involve derivatives of the dependent variable using a substitution of the form `f^n(x) = g(x)`. For example any second order ODE of the form `f''(x) = h(f'(x), x)` can be transformed into a pair of 1st order ODEs `g'(x) = h(g(x), x)` and `f'(x) = g(x)`. Usually the 1st order ODE for `g` is easier to solve. If that gives an explicit solution for `g` then `f` is found simply by integration. Examples ======== >>> from sympy import Function, dsolve, Eq >>> from sympy.abc import x >>> f = Function('f') >>> eq = Eq(x*f(x).diff(x)**2 + f(x).diff(x, 2), 0) >>> dsolve(eq, f(x), hint='nth_order_reducible') ... # doctest: +NORMALIZE_WHITESPACE Eq(f(x), C1 - sqrt(-1/C2)*log(-C2*sqrt(-1/C2) + x) + sqrt(-1/C2)*log(C2*sqrt(-1/C2) + x)) """ x = func.args[0] f = func.func n = match['n'] # get a unique function name for g names = [a.name for a in eq.atoms(AppliedUndef)] while True: name = Dummy().name if name not in names: g = Function(name) break w = f(x).diff(x, n) geq = eq.subs(w, g(x)) gsol = dsolve(geq, g(x)) if not isinstance(gsol, list): gsol = [gsol] # Might be multiple solutions to the reduced ODE: fsol = [] for gsoli in gsol: fsoli = dsolve(gsoli.subs(g(x), w), f(x)) # or do integration n times fsol.append(fsoli) if len(fsol) == 1: fsol = fsol[0] return fsol # This needs to produce an invertible function but the inverse depends # which variable we are integrating with respect to. Since the class can # be stored in cached results we need to ensure that we always get the # same class back for each particular integration variable so we store these # classes in a global dict: _nth_algebraic_diffx_stored = {} def _nth_algebraic_diffx(var): cls = _nth_algebraic_diffx_stored.get(var, None) if cls is None: # A class that behaves like Derivative wrt var but is "invertible". class diffx(Function): def inverse(self): # don't use integrate here because fx has been replaced by _t # in the equation; integrals will not be correct while solve # is at work. return lambda expr: Integral(expr, var) + Dummy('C') cls = _nth_algebraic_diffx_stored.setdefault(var, diffx) return cls def _nth_algebraic_match(eq, func): r""" Matches any differential equation that nth_algebraic can solve. Uses `sympy.solve` but teaches it how to integrate derivatives. This involves calling `sympy.solve` and does most of the work of finding a solution (apart from evaluating the integrals). """ # The independent variable var = func.args[0] # Derivative that solve can handle: diffx = _nth_algebraic_diffx(var) # Replace derivatives wrt the independent variable with diffx def replace(eq, var): def expand_diffx(*args): differand, diffs = args[0], args[1:] toreplace = differand for v, n in diffs: for _ in range(n): if v == var: toreplace = diffx(toreplace) else: toreplace = Derivative(toreplace, v) return toreplace return eq.replace(Derivative, expand_diffx) # Restore derivatives in solution afterwards def unreplace(eq, var): return eq.replace(diffx, lambda e: Derivative(e, var)) subs_eqn = replace(eq, var) try: # turn off simplification to protect Integrals that have # _t instead of fx in them and would otherwise factor # as t_*Integral(1, x) solns = solve(subs_eqn, func, simplify=False) except NotImplementedError: solns = [] solns = [simplify(unreplace(soln, var)) for soln in solns] solns = [Equality(func, soln) for soln in solns] return {'var':var, 'solutions':solns} def ode_nth_algebraic(eq, func, order, match): r""" Solves an `n`\th order ordinary differential equation using algebra and integrals. There is no general form for the kind of equation that this can solve. The the equation is solved algebraically treating differentiation as an invertible algebraic function. Examples ======== >>> from sympy import Function, dsolve, Eq >>> from sympy.abc import x >>> f = Function('f') >>> eq = Eq(f(x) * (f(x).diff(x)**2 - 1), 0) >>> dsolve(eq, f(x), hint='nth_algebraic') ... # doctest: +NORMALIZE_WHITESPACE [Eq(f(x), 0), Eq(f(x), C1 - x), Eq(f(x), C1 + x)] Note that this solver can return algebraic solutions that do not have any integration constants (f(x) = 0 in the above example). # indirect doctest """ return match['solutions'] def _remove_redundant_solutions(eq, solns, order, var): r""" Remove redundant solutions from the set of solutions. This function is needed because otherwise dsolve can return redundant solutions. As an example consider: eq = Eq((f(x).diff(x, 2))*f(x).diff(x), 0) There are two ways to find solutions to eq. The first is to solve f(x).diff(x, 2) = 0 leading to solution f(x)=C1 + C2*x. The second is to solve the equation f(x).diff(x) = 0 leading to the solution f(x) = C1. In this particular case we then see that the second solution is a special case of the first and we don't want to return it. This does not always happen. If we have eq = Eq((f(x)**2-4)*(f(x).diff(x)-4), 0) then we get the algebraic solution f(x) = [-2, 2] and the integral solution f(x) = x + C1 and in this case the two solutions are not equivalent wrt initial conditions so both should be returned. """ def is_special_case_of(soln1, soln2): return _is_special_case_of(soln1, soln2, eq, order, var) unique_solns = [] for soln1 in solns: for soln2 in unique_solns[:]: if is_special_case_of(soln1, soln2): break elif is_special_case_of(soln2, soln1): unique_solns.remove(soln2) else: unique_solns.append(soln1) return unique_solns def _is_special_case_of(soln1, soln2, eq, order, var): r""" True if soln1 is found to be a special case of soln2 wrt some value of the constants that appear in soln2. False otherwise. """ # The solutions returned by dsolve may be given explicitly or implicitly. # We will equate the sol1=(soln1.rhs - soln1.lhs), sol2=(soln2.rhs - soln2.lhs) # of the two solutions. # # Since this is supposed to hold for all x it also holds for derivatives. # For an order n ode we should be able to differentiate # each solution n times to get n+1 equations. # # We then try to solve those n+1 equations for the integrations constants # in sol2. If we can find a solution that doesn't depend on x then it # means that some value of the constants in sol1 is a special case of # sol2 corresponding to a particular choice of the integration constants. # In case the solution is in implicit form we subtract the sides soln1 = soln1.rhs - soln1.lhs soln2 = soln2.rhs - soln2.lhs # Work for the series solution if soln1.has(Order) and soln2.has(Order): if soln1.getO() == soln2.getO(): soln1 = soln1.removeO() soln2 = soln2.removeO() else: return False elif soln1.has(Order) or soln2.has(Order): return False constants1 = soln1.free_symbols.difference(eq.free_symbols) constants2 = soln2.free_symbols.difference(eq.free_symbols) constants1_new = get_numbered_constants(soln1 - soln2, len(constants1)) if len(constants1) == 1: constants1_new = {constants1_new} for c_old, c_new in zip(constants1, constants1_new): soln1 = soln1.subs(c_old, c_new) # n equations for sol1 = sol2, sol1'=sol2', ... lhs = soln1 rhs = soln2 eqns = [Eq(lhs, rhs)] for n in range(1, order): lhs = lhs.diff(var) rhs = rhs.diff(var) eq = Eq(lhs, rhs) eqns.append(eq) # BooleanTrue/False awkwardly show up for trivial equations if any(isinstance(eq, BooleanFalse) for eq in eqns): return False eqns = [eq for eq in eqns if not isinstance(eq, BooleanTrue)] try: constant_solns = solve(eqns, constants2) except NotImplementedError: return False # Sometimes returns a dict and sometimes a list of dicts if isinstance(constant_solns, dict): constant_solns = [constant_solns] # after solving the issue 17418, maybe we don't need the following checksol code. for constant_soln in constant_solns: for eq in eqns: eq=eq.rhs-eq.lhs if checksol(eq, constant_soln) is not True: return False # If any solution gives all constants as expressions that don't depend on # x then there exists constants for soln2 that give soln1 for constant_soln in constant_solns: if not any(c.has(var) for c in constant_soln.values()): return True return False def _nth_linear_match(eq, func, order): r""" Matches a differential equation to the linear form: .. math:: a_n(x) y^{(n)} + \cdots + a_1(x)y' + a_0(x) y + B(x) = 0 Returns a dict of order:coeff terms, where order is the order of the derivative on each term, and coeff is the coefficient of that derivative. The key ``-1`` holds the function `B(x)`. Returns ``None`` if the ODE is not linear. This function assumes that ``func`` has already been checked to be good. Examples ======== >>> from sympy import Function, cos, sin >>> from sympy.abc import x >>> from sympy.solvers.ode import _nth_linear_match >>> f = Function('f') >>> _nth_linear_match(f(x).diff(x, 3) + 2*f(x).diff(x) + ... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) - ... sin(x), f(x), 3) {-1: x - sin(x), 0: -1, 1: cos(x) + 2, 2: x, 3: 1} >>> _nth_linear_match(f(x).diff(x, 3) + 2*f(x).diff(x) + ... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) - ... sin(f(x)), f(x), 3) == None True """ x = func.args[0] one_x = {x} terms = {i: S.Zero for i in range(-1, order + 1)} for i in Add.make_args(eq): if not i.has(func): terms[-1] += i else: c, f = i.as_independent(func) if (isinstance(f, Derivative) and set(f.variables) == one_x and f.args[0] == func): terms[f.derivative_count] += c elif f == func: terms[len(f.args[1:])] += c else: return None return terms def ode_nth_linear_euler_eq_homogeneous(eq, func, order, match, returns='sol'): r""" Solves an `n`\th order linear homogeneous variable-coefficient Cauchy-Euler equidimensional ordinary differential equation. This is an equation with form `0 = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) \cdots`. These equations can be solved in a general manner, by substituting solutions of the form `f(x) = x^r`, and deriving a characteristic equation for `r`. When there are repeated roots, we include extra terms of the form `C_{r k} \ln^k(x) x^r`, where `C_{r k}` is an arbitrary integration constant, `r` is a root of the characteristic equation, and `k` ranges over the multiplicity of `r`. In the cases where the roots are complex, solutions of the form `C_1 x^a \sin(b \log(x)) + C_2 x^a \cos(b \log(x))` are returned, based on expansions with Euler's formula. The general solution is the sum of the terms found. If SymPy cannot find exact roots to the characteristic equation, a :py:obj:`~.ComplexRootOf` instance will be returned instead. >>> from sympy import Function, dsolve, Eq >>> from sympy.abc import x >>> f = Function('f') >>> dsolve(4*x**2*f(x).diff(x, 2) + f(x), f(x), ... hint='nth_linear_euler_eq_homogeneous') ... # doctest: +NORMALIZE_WHITESPACE Eq(f(x), sqrt(x)*(C1 + C2*log(x))) Note that because this method does not involve integration, there is no ``nth_linear_euler_eq_homogeneous_Integral`` hint. The following is for internal use: - ``returns = 'sol'`` returns the solution to the ODE. - ``returns = 'list'`` returns a list of linearly independent solutions, corresponding to the fundamental solution set, for use with non homogeneous solution methods like variation of parameters and undetermined coefficients. Note that, though the solutions should be linearly independent, this function does not explicitly check that. You can do ``assert simplify(wronskian(sollist)) != 0`` to check for linear independence. Also, ``assert len(sollist) == order`` will need to pass. - ``returns = 'both'``, return a dictionary ``{'sol': <solution to ODE>, 'list': <list of linearly independent solutions>}``. Examples ======== >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f = Function('f') >>> eq = f(x).diff(x, 2)*x**2 - 4*f(x).diff(x)*x + 6*f(x) >>> pprint(dsolve(eq, f(x), ... hint='nth_linear_euler_eq_homogeneous')) 2 f(x) = x *(C1 + C2*x) References ========== - https://en.wikipedia.org/wiki/Cauchy%E2%80%93Euler_equation - C. Bender & S. Orszag, "Advanced Mathematical Methods for Scientists and Engineers", Springer 1999, pp. 12 # indirect doctest """ global collectterms collectterms = [] x = func.args[0] f = func.func r = match # First, set up characteristic equation. chareq, symbol = S.Zero, Dummy('x') for i in r.keys(): if not isinstance(i, string_types) and i >= 0: chareq += (r[i]*diff(x**symbol, x, i)*x**-symbol).expand() chareq = Poly(chareq, symbol) chareqroots = [rootof(chareq, k) for k in range(chareq.degree())] # A generator of constants constants = list(get_numbered_constants(eq, num=chareq.degree()*2)) constants.reverse() # Create a dict root: multiplicity or charroots charroots = defaultdict(int) for root in chareqroots: charroots[root] += 1 gsol = S.Zero # We need keep track of terms so we can run collect() at the end. # This is necessary for constantsimp to work properly. ln = log for root, multiplicity in charroots.items(): for i in range(multiplicity): if isinstance(root, RootOf): gsol += (x**root) * constants.pop() if multiplicity != 1: raise ValueError("Value should be 1") collectterms = [(0, root, 0)] + collectterms elif root.is_real: gsol += ln(x)**i*(x**root) * constants.pop() collectterms = [(i, root, 0)] + collectterms else: reroot = re(root) imroot = im(root) gsol += ln(x)**i * (x**reroot) * ( constants.pop() * sin(abs(imroot)*ln(x)) + constants.pop() * cos(imroot*ln(x))) # Preserve ordering (multiplicity, real part, imaginary part) # It will be assumed implicitly when constructing # fundamental solution sets. collectterms = [(i, reroot, imroot)] + collectterms if returns == 'sol': return Eq(f(x), gsol) elif returns in ('list' 'both'): # HOW TO TEST THIS CODE? (dsolve does not pass 'returns' through) # Create a list of (hopefully) linearly independent solutions gensols = [] # Keep track of when to use sin or cos for nonzero imroot for i, reroot, imroot in collectterms: if imroot == 0: gensols.append(ln(x)**i*x**reroot) else: sin_form = ln(x)**i*x**reroot*sin(abs(imroot)*ln(x)) if sin_form in gensols: cos_form = ln(x)**i*x**reroot*cos(imroot*ln(x)) gensols.append(cos_form) else: gensols.append(sin_form) if returns == 'list': return gensols else: return {'sol': Eq(f(x), gsol), 'list': gensols} else: raise ValueError('Unknown value for key "returns".') def ode_nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients(eq, func, order, match, returns='sol'): r""" Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional ordinary differential equation using undetermined coefficients. This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) \cdots`. These equations can be solved in a general manner, by substituting solutions of the form `x = exp(t)`, and deriving a characteristic equation of form `g(exp(t)) = b_0 f(t) + b_1 f'(t) + b_2 f''(t) \cdots` which can be then solved by nth_linear_constant_coeff_undetermined_coefficients if g(exp(t)) has finite number of linearly independent derivatives. Functions that fit this requirement are finite sums functions of the form `a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i` is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`, and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have a finite number of derivatives, because they can be expanded into `\sin(a x)` and `\cos(b x)` terms. However, SymPy currently cannot do that expansion, so you will need to manually rewrite the expression in terms of the above to use this method. So, for example, you will need to manually convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method of undetermined coefficients on it. After replacement of x by exp(t), this method works by creating a trial function from the expression and all of its linear independent derivatives and substituting them into the original ODE. The coefficients for each term will be a system of linear equations, which are be solved for and substituted, giving the solution. If any of the trial functions are linearly dependent on the solution to the homogeneous equation, they are multiplied by sufficient `x` to make them linearly independent. Examples ======== >>> from sympy import dsolve, Function, Derivative, log >>> from sympy.abc import x >>> f = Function('f') >>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - log(x) >>> dsolve(eq, f(x), ... hint='nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients').expand() Eq(f(x), C1*x + C2*x**2 + log(x)/2 + 3/4) """ x = func.args[0] f = func.func r = match chareq, eq, symbol = S.Zero, S.Zero, Dummy('x') for i in r.keys(): if not isinstance(i, string_types) and i >= 0: chareq += (r[i]*diff(x**symbol, x, i)*x**-symbol).expand() for i in range(1,degree(Poly(chareq, symbol))+1): eq += chareq.coeff(symbol**i)*diff(f(x), x, i) if chareq.as_coeff_add(symbol)[0]: eq += chareq.as_coeff_add(symbol)[0]*f(x) e, re = posify(r[-1].subs(x, exp(x))) eq += e.subs(re) match = _nth_linear_match(eq, f(x), ode_order(eq, f(x))) match['trialset'] = r['trialset'] return ode_nth_linear_constant_coeff_undetermined_coefficients(eq, func, order, match).subs(x, log(x)).subs(f(log(x)), f(x)).expand() def ode_nth_linear_euler_eq_nonhomogeneous_variation_of_parameters(eq, func, order, match, returns='sol'): r""" Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional ordinary differential equation using variation of parameters. This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) \cdots`. This method works by assuming that the particular solution takes the form .. math:: \sum_{x=1}^{n} c_i(x) y_i(x) {a_n} {x^n} \text{,} where `y_i` is the `i`\th solution to the homogeneous equation. The solution is then solved using Wronskian's and Cramer's Rule. The particular solution is given by multiplying eq given below with `a_n x^{n}` .. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \,dx \right) y_i(x) \text{,} where `W(x)` is the Wronskian of the fundamental system (the system of `n` linearly independent solutions to the homogeneous equation), and `W_i(x)` is the Wronskian of the fundamental system with the `i`\th column replaced with `[0, 0, \cdots, 0, \frac{x^{- n}}{a_n} g{\left(x \right)}]`. This method is general enough to solve any `n`\th order inhomogeneous linear differential equation, but sometimes SymPy cannot simplify the Wronskian well enough to integrate it. If this method hangs, try using the ``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and simplifying the integrals manually. Also, prefer using ``nth_linear_constant_coeff_undetermined_coefficients`` when it applies, because it doesn't use integration, making it faster and more reliable. Warning, using simplify=False with 'nth_linear_constant_coeff_variation_of_parameters' in :py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will not attempt to simplify the Wronskian before integrating. It is recommended that you only use simplify=False with 'nth_linear_constant_coeff_variation_of_parameters_Integral' for this method, especially if the solution to the homogeneous equation has trigonometric functions in it. Examples ======== >>> from sympy import Function, dsolve, Derivative >>> from sympy.abc import x >>> f = Function('f') >>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - x**4 >>> dsolve(eq, f(x), ... hint='nth_linear_euler_eq_nonhomogeneous_variation_of_parameters').expand() Eq(f(x), C1*x + C2*x**2 + x**4/6) """ x = func.args[0] f = func.func r = match gensol = ode_nth_linear_euler_eq_homogeneous(eq, func, order, match, returns='both') match.update(gensol) r[-1] = r[-1]/r[ode_order(eq, f(x))] sol = _solve_variation_of_parameters(eq, func, order, match) return Eq(f(x), r['sol'].rhs + (sol.rhs - r['sol'].rhs)*r[ode_order(eq, f(x))]) def ode_almost_linear(eq, func, order, match): r""" Solves an almost-linear differential equation. The general form of an almost linear differential equation is .. math:: f(x) g(y) y + k(x) l(y) + m(x) = 0 \text{where} l'(y) = g(y)\text{.} This can be solved by substituting `l(y) = u(y)`. Making the given substitution reduces it to a linear differential equation of the form `u' + P(x) u + Q(x) = 0`. The general solution is >>> from sympy import Function, dsolve, Eq, pprint >>> from sympy.abc import x, y, n >>> f, g, k, l = map(Function, ['f', 'g', 'k', 'l']) >>> genform = Eq(f(x)*(l(y).diff(y)) + k(x)*l(y) + g(x), 0) >>> pprint(genform) d f(x)*--(l(y)) + g(x) + k(x)*l(y) = 0 dy >>> pprint(dsolve(genform, hint = 'almost_linear')) / // y*k(x) \\ | || ------ || | || f(x) || -y*k(x) | ||-g(x)*e || -------- | ||-------------- for k(x) != 0|| f(x) l(y) = |C1 + |< k(x) ||*e | || || | || -y*g(x) || | || -------- otherwise || | || f(x) || \ \\ // See Also ======== :meth:`sympy.solvers.ode.ode_1st_linear` Examples ======== >>> from sympy import Function, Derivative, pprint >>> from sympy.solvers.ode import dsolve, classify_ode >>> from sympy.abc import x >>> f = Function('f') >>> d = f(x).diff(x) >>> eq = x*d + x*f(x) + 1 >>> dsolve(eq, f(x), hint='almost_linear') Eq(f(x), (C1 - Ei(x))*exp(-x)) >>> pprint(dsolve(eq, f(x), hint='almost_linear')) -x f(x) = (C1 - Ei(x))*e References ========== - Joel Moses, "Symbolic Integration - The Stormy Decade", Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558 """ # Since ode_1st_linear has already been implemented, and the # coefficients have been modified to the required form in # classify_ode, just passing eq, func, order and match to # ode_1st_linear will give the required output. return ode_1st_linear(eq, func, order, match) def _linear_coeff_match(expr, func): r""" Helper function to match hint ``linear_coefficients``. Matches the expression to the form `(a_1 x + b_1 f(x) + c_1)/(a_2 x + b_2 f(x) + c_2)` where the following conditions hold: 1. `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are Rationals; 2. `c_1` or `c_2` are not equal to zero; 3. `a_2 b_1 - a_1 b_2` is not equal to zero. Return ``xarg``, ``yarg`` where 1. ``xarg`` = `(b_2 c_1 - b_1 c_2)/(a_2 b_1 - a_1 b_2)` 2. ``yarg`` = `(a_1 c_2 - a_2 c_1)/(a_2 b_1 - a_1 b_2)` Examples ======== >>> from sympy import Function >>> from sympy.abc import x >>> from sympy.solvers.ode import _linear_coeff_match >>> from sympy.functions.elementary.trigonometric import sin >>> f = Function('f') >>> _linear_coeff_match(( ... (-25*f(x) - 8*x + 62)/(4*f(x) + 11*x - 11)), f(x)) (1/9, 22/9) >>> _linear_coeff_match( ... sin((-5*f(x) - 8*x + 6)/(4*f(x) + x - 1)), f(x)) (19/27, 2/27) >>> _linear_coeff_match(sin(f(x)/x), f(x)) """ f = func.func x = func.args[0] def abc(eq): r''' Internal function of _linear_coeff_match that returns Rationals a, b, c if eq is a*x + b*f(x) + c, else None. ''' eq = _mexpand(eq) c = eq.as_independent(x, f(x), as_Add=True)[0] if not c.is_Rational: return a = eq.coeff(x) if not a.is_Rational: return b = eq.coeff(f(x)) if not b.is_Rational: return if eq == a*x + b*f(x) + c: return a, b, c def match(arg): r''' Internal function of _linear_coeff_match that returns Rationals a1, b1, c1, a2, b2, c2 and a2*b1 - a1*b2 of the expression (a1*x + b1*f(x) + c1)/(a2*x + b2*f(x) + c2) if one of c1 or c2 and a2*b1 - a1*b2 is non-zero, else None. ''' n, d = arg.together().as_numer_denom() m = abc(n) if m is not None: a1, b1, c1 = m m = abc(d) if m is not None: a2, b2, c2 = m d = a2*b1 - a1*b2 if (c1 or c2) and d: return a1, b1, c1, a2, b2, c2, d m = [fi.args[0] for fi in expr.atoms(Function) if fi.func != f and len(fi.args) == 1 and not fi.args[0].is_Function] or {expr} m1 = match(m.pop()) if m1 and all(match(mi) == m1 for mi in m): a1, b1, c1, a2, b2, c2, denom = m1 return (b2*c1 - b1*c2)/denom, (a1*c2 - a2*c1)/denom def ode_linear_coefficients(eq, func, order, match): r""" Solves a differential equation with linear coefficients. The general form of a differential equation with linear coefficients is .. math:: y' + F\left(\!\frac{a_1 x + b_1 y + c_1}{a_2 x + b_2 y + c_2}\!\right) = 0\text{,} where `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are constants and `a_1 b_2 - a_2 b_1 \ne 0`. This can be solved by substituting: .. math:: x = x' + \frac{b_2 c_1 - b_1 c_2}{a_2 b_1 - a_1 b_2} y = y' + \frac{a_1 c_2 - a_2 c_1}{a_2 b_1 - a_1 b_2}\text{.} This substitution reduces the equation to a homogeneous differential equation. See Also ======== :meth:`sympy.solvers.ode.ode_1st_homogeneous_coeff_best` :meth:`sympy.solvers.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep` :meth:`sympy.solvers.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep` Examples ======== >>> from sympy import Function, Derivative, pprint >>> from sympy.solvers.ode import dsolve, classify_ode >>> from sympy.abc import x >>> f = Function('f') >>> df = f(x).diff(x) >>> eq = (x + f(x) + 1)*df + (f(x) - 6*x + 1) >>> dsolve(eq, hint='linear_coefficients') [Eq(f(x), -x - sqrt(C1 + 7*x**2) - 1), Eq(f(x), -x + sqrt(C1 + 7*x**2) - 1)] >>> pprint(dsolve(eq, hint='linear_coefficients')) ___________ ___________ / 2 / 2 [f(x) = -x - \/ C1 + 7*x - 1, f(x) = -x + \/ C1 + 7*x - 1] References ========== - Joel Moses, "Symbolic Integration - The Stormy Decade", Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558 """ return ode_1st_homogeneous_coeff_best(eq, func, order, match) def ode_separable_reduced(eq, func, order, match): r""" Solves a differential equation that can be reduced to the separable form. The general form of this equation is .. math:: y' + (y/x) H(x^n y) = 0\text{}. This can be solved by substituting `u(y) = x^n y`. The equation then reduces to the separable form `\frac{u'}{u (\mathrm{power} - H(u))} - \frac{1}{x} = 0`. The general solution is: >>> from sympy import Function, dsolve, Eq, pprint >>> from sympy.abc import x, n >>> f, g = map(Function, ['f', 'g']) >>> genform = f(x).diff(x) + (f(x)/x)*g(x**n*f(x)) >>> pprint(genform) / n \ d f(x)*g\x *f(x)/ --(f(x)) + --------------- dx x >>> pprint(dsolve(genform, hint='separable_reduced')) n x *f(x) / | | 1 | ------------ dy = C1 + log(x) | y*(n - g(y)) | / See Also ======== :meth:`sympy.solvers.ode.ode_separable` Examples ======== >>> from sympy import Function, Derivative, pprint >>> from sympy.solvers.ode import dsolve, classify_ode >>> from sympy.abc import x >>> f = Function('f') >>> d = f(x).diff(x) >>> eq = (x - x**2*f(x))*d - f(x) >>> dsolve(eq, hint='separable_reduced') [Eq(f(x), (1 - sqrt(C1*x**2 + 1))/x), Eq(f(x), (sqrt(C1*x**2 + 1) + 1)/x)] >>> pprint(dsolve(eq, hint='separable_reduced')) ___________ ___________ / 2 / 2 1 - \/ C1*x + 1 \/ C1*x + 1 + 1 [f(x) = ------------------, f(x) = ------------------] x x References ========== - Joel Moses, "Symbolic Integration - The Stormy Decade", Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558 """ # Arguments are passed in a way so that they are coherent with the # ode_separable function x = func.args[0] f = func.func y = Dummy('y') u = match['u'].subs(match['t'], y) ycoeff = 1/(y*(match['power'] - u)) m1 = {y: 1, x: -1/x, 'coeff': 1} m2 = {y: ycoeff, x: 1, 'coeff': 1} r = {'m1': m1, 'm2': m2, 'y': y, 'hint': x**match['power']*f(x)} return ode_separable(eq, func, order, r) def ode_1st_power_series(eq, func, order, match): r""" The power series solution is a method which gives the Taylor series expansion to the solution of a differential equation. For a first order differential equation `\frac{dy}{dx} = h(x, y)`, a power series solution exists at a point `x = x_{0}` if `h(x, y)` is analytic at `x_{0}`. The solution is given by .. math:: y(x) = y(x_{0}) + \sum_{n = 1}^{\infty} \frac{F_{n}(x_{0},b)(x - x_{0})^n}{n!}, where `y(x_{0}) = b` is the value of y at the initial value of `x_{0}`. To compute the values of the `F_{n}(x_{0},b)` the following algorithm is followed, until the required number of terms are generated. 1. `F_1 = h(x_{0}, b)` 2. `F_{n+1} = \frac{\partial F_{n}}{\partial x} + \frac{\partial F_{n}}{\partial y}F_{1}` Examples ======== >>> from sympy import Function, Derivative, pprint, exp >>> from sympy.solvers.ode import dsolve >>> from sympy.abc import x >>> f = Function('f') >>> eq = exp(x)*(f(x).diff(x)) - f(x) >>> pprint(dsolve(eq, hint='1st_power_series')) 3 4 5 C1*x C1*x C1*x / 6\ f(x) = C1 + C1*x - ----- + ----- + ----- + O\x / 6 24 60 References ========== - Travis W. Walker, Analytic power series technique for solving first-order differential equations, p.p 17, 18 """ x = func.args[0] y = match['y'] f = func.func h = -match[match['d']]/match[match['e']] point = match.get('f0') value = match.get('f0val') terms = match.get('terms') # First term F = h if not h: return Eq(f(x), value) # Initialization series = value if terms > 1: hc = h.subs({x: point, y: value}) if hc.has(oo) or hc.has(NaN) or hc.has(zoo): # Derivative does not exist, not analytic return Eq(f(x), oo) elif hc: series += hc*(x - point) for factcount in range(2, terms): Fnew = F.diff(x) + F.diff(y)*h Fnewc = Fnew.subs({x: point, y: value}) # Same logic as above if Fnewc.has(oo) or Fnewc.has(NaN) or Fnewc.has(-oo) or Fnewc.has(zoo): return Eq(f(x), oo) series += Fnewc*((x - point)**factcount)/factorial(factcount) F = Fnew series += Order(x**terms) return Eq(f(x), series) def ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match, returns='sol'): r""" Solves an `n`\th order linear homogeneous differential equation with constant coefficients. This is an equation of the form .. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0 f(x) = 0\text{.} These equations can be solved in a general manner, by taking the roots of the characteristic equation `a_n m^n + a_{n-1} m^{n-1} + \cdots + a_1 m + a_0 = 0`. The solution will then be the sum of `C_n x^i e^{r x}` terms, for each where `C_n` is an arbitrary constant, `r` is a root of the characteristic equation and `i` is one of each from 0 to the multiplicity of the root - 1 (for example, a root 3 of multiplicity 2 would create the terms `C_1 e^{3 x} + C_2 x e^{3 x}`). The exponential is usually expanded for complex roots using Euler's equation `e^{I x} = \cos(x) + I \sin(x)`. Complex roots always come in conjugate pairs in polynomials with real coefficients, so the two roots will be represented (after simplifying the constants) as `e^{a x} \left(C_1 \cos(b x) + C_2 \sin(b x)\right)`. If SymPy cannot find exact roots to the characteristic equation, a :py:class:`~sympy.polys.rootoftools.ComplexRootOf` instance will be return instead. >>> from sympy import Function, dsolve, Eq >>> from sympy.abc import x >>> f = Function('f') >>> dsolve(f(x).diff(x, 5) + 10*f(x).diff(x) - 2*f(x), f(x), ... hint='nth_linear_constant_coeff_homogeneous') ... # doctest: +NORMALIZE_WHITESPACE Eq(f(x), C5*exp(x*CRootOf(_x**5 + 10*_x - 2, 0)) + (C1*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 1))) + C2*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 1))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 1))) + (C3*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 3))) + C4*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 3))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 3)))) Note that because this method does not involve integration, there is no ``nth_linear_constant_coeff_homogeneous_Integral`` hint. The following is for internal use: - ``returns = 'sol'`` returns the solution to the ODE. - ``returns = 'list'`` returns a list of linearly independent solutions, for use with non homogeneous solution methods like variation of parameters and undetermined coefficients. Note that, though the solutions should be linearly independent, this function does not explicitly check that. You can do ``assert simplify(wronskian(sollist)) != 0`` to check for linear independence. Also, ``assert len(sollist) == order`` will need to pass. - ``returns = 'both'``, return a dictionary ``{'sol': <solution to ODE>, 'list': <list of linearly independent solutions>}``. Examples ======== >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(f(x).diff(x, 4) + 2*f(x).diff(x, 3) - ... 2*f(x).diff(x, 2) - 6*f(x).diff(x) + 5*f(x), f(x), ... hint='nth_linear_constant_coeff_homogeneous')) x -2*x f(x) = (C1 + C2*x)*e + (C3*sin(x) + C4*cos(x))*e References ========== - https://en.wikipedia.org/wiki/Linear_differential_equation section: Nonhomogeneous_equation_with_constant_coefficients - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 211 # indirect doctest """ x = func.args[0] f = func.func r = match # First, set up characteristic equation. chareq, symbol = S.Zero, Dummy('x') for i in r.keys(): if type(i) == str or i < 0: pass else: chareq += r[i]*symbol**i chareq = Poly(chareq, symbol) # Can't just call roots because it doesn't return rootof for unsolveable # polynomials. chareqroots = roots(chareq, multiple=True) if len(chareqroots) != order: chareqroots = [rootof(chareq, k) for k in range(chareq.degree())] chareq_is_complex = not all([i.is_real for i in chareq.all_coeffs()]) # A generator of constants constants = list(get_numbered_constants(eq, num=chareq.degree()*2)) # Create a dict root: multiplicity or charroots charroots = defaultdict(int) for root in chareqroots: charroots[root] += 1 # We need to keep track of terms so we can run collect() at the end. # This is necessary for constantsimp to work properly. global collectterms collectterms = [] gensols = [] conjugate_roots = [] # used to prevent double-use of conjugate roots # Loop over roots in theorder provided by roots/rootof... for root in chareqroots: # but don't repoeat multiple roots. if root not in charroots: continue multiplicity = charroots.pop(root) for i in range(multiplicity): if chareq_is_complex: gensols.append(x**i*exp(root*x)) collectterms = [(i, root, 0)] + collectterms continue reroot = re(root) imroot = im(root) if imroot.has(atan2) and reroot.has(atan2): # Remove this condition when re and im stop returning # circular atan2 usages. gensols.append(x**i*exp(root*x)) collectterms = [(i, root, 0)] + collectterms else: if root in conjugate_roots: collectterms = [(i, reroot, imroot)] + collectterms continue if imroot == 0: gensols.append(x**i*exp(reroot*x)) collectterms = [(i, reroot, 0)] + collectterms continue conjugate_roots.append(conjugate(root)) gensols.append(x**i*exp(reroot*x) * sin(abs(imroot) * x)) gensols.append(x**i*exp(reroot*x) * cos( imroot * x)) # This ordering is important collectterms = [(i, reroot, imroot)] + collectterms if returns == 'list': return gensols elif returns in ('sol' 'both'): gsol = Add(*[i*j for (i, j) in zip(constants, gensols)]) if returns == 'sol': return Eq(f(x), gsol) else: return {'sol': Eq(f(x), gsol), 'list': gensols} else: raise ValueError('Unknown value for key "returns".') def ode_nth_linear_constant_coeff_undetermined_coefficients(eq, func, order, match): r""" Solves an `n`\th order linear differential equation with constant coefficients using the method of undetermined coefficients. This method works on differential equations of the form .. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0 f(x) = P(x)\text{,} where `P(x)` is a function that has a finite number of linearly independent derivatives. Functions that fit this requirement are finite sums functions of the form `a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i` is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`, and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have a finite number of derivatives, because they can be expanded into `\sin(a x)` and `\cos(b x)` terms. However, SymPy currently cannot do that expansion, so you will need to manually rewrite the expression in terms of the above to use this method. So, for example, you will need to manually convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method of undetermined coefficients on it. This method works by creating a trial function from the expression and all of its linear independent derivatives and substituting them into the original ODE. The coefficients for each term will be a system of linear equations, which are be solved for and substituted, giving the solution. If any of the trial functions are linearly dependent on the solution to the homogeneous equation, they are multiplied by sufficient `x` to make them linearly independent. Examples ======== >>> from sympy import Function, dsolve, pprint, exp, cos >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(f(x).diff(x, 2) + 2*f(x).diff(x) + f(x) - ... 4*exp(-x)*x**2 + cos(2*x), f(x), ... hint='nth_linear_constant_coeff_undetermined_coefficients')) / 4\ | x | -x 4*sin(2*x) 3*cos(2*x) f(x) = |C1 + C2*x + --|*e - ---------- + ---------- \ 3 / 25 25 References ========== - https://en.wikipedia.org/wiki/Method_of_undetermined_coefficients - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 221 # indirect doctest """ gensol = ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match, returns='both') match.update(gensol) return _solve_undetermined_coefficients(eq, func, order, match) def _solve_undetermined_coefficients(eq, func, order, match): r""" Helper function for the method of undetermined coefficients. See the :py:meth:`~sympy.solvers.ode.ode_nth_linear_constant_coeff_undetermined_coefficients` docstring for more information on this method. The parameter ``match`` should be a dictionary that has the following keys: ``list`` A list of solutions to the homogeneous equation, such as the list returned by ``ode_nth_linear_constant_coeff_homogeneous(returns='list')``. ``sol`` The general solution, such as the solution returned by ``ode_nth_linear_constant_coeff_homogeneous(returns='sol')``. ``trialset`` The set of trial functions as returned by ``_undetermined_coefficients_match()['trialset']``. """ x = func.args[0] f = func.func r = match coeffs = numbered_symbols('a', cls=Dummy) coefflist = [] gensols = r['list'] gsol = r['sol'] trialset = r['trialset'] notneedset = set([]) global collectterms if len(gensols) != order: raise NotImplementedError("Cannot find " + str(order) + " solutions to the homogeneous equation necessary to apply" + " undetermined coefficients to " + str(eq) + " (number of terms != order)") usedsin = set([]) mult = 0 # The multiplicity of the root getmult = True for i, reroot, imroot in collectterms: if getmult: mult = i + 1 getmult = False if i == 0: getmult = True if imroot: # Alternate between sin and cos if (i, reroot) in usedsin: check = x**i*exp(reroot*x)*cos(imroot*x) else: check = x**i*exp(reroot*x)*sin(abs(imroot)*x) usedsin.add((i, reroot)) else: check = x**i*exp(reroot*x) if check in trialset: # If an element of the trial function is already part of the # homogeneous solution, we need to multiply by sufficient x to # make it linearly independent. We also don't need to bother # checking for the coefficients on those elements, since we # already know it will be 0. while True: if check*x**mult in trialset: mult += 1 else: break trialset.add(check*x**mult) notneedset.add(check) newtrialset = trialset - notneedset trialfunc = 0 for i in newtrialset: c = next(coeffs) coefflist.append(c) trialfunc += c*i eqs = sub_func_doit(eq, f(x), trialfunc) coeffsdict = dict(list(zip(trialset, [0]*(len(trialset) + 1)))) eqs = _mexpand(eqs) for i in Add.make_args(eqs): s = separatevars(i, dict=True, symbols=[x]) coeffsdict[s[x]] += s['coeff'] coeffvals = solve(list(coeffsdict.values()), coefflist) if not coeffvals: raise NotImplementedError( "Could not solve `%s` using the " "method of undetermined coefficients " "(unable to solve for coefficients)." % eq) psol = trialfunc.subs(coeffvals) return Eq(f(x), gsol.rhs + psol) def _undetermined_coefficients_match(expr, x): r""" Returns a trial function match if undetermined coefficients can be applied to ``expr``, and ``None`` otherwise. A trial expression can be found for an expression for use with the method of undetermined coefficients if the expression is an additive/multiplicative combination of constants, polynomials in `x` (the independent variable of expr), `\sin(a x + b)`, `\cos(a x + b)`, and `e^{a x}` terms (in other words, it has a finite number of linearly independent derivatives). Note that you may still need to multiply each term returned here by sufficient `x` to make it linearly independent with the solutions to the homogeneous equation. This is intended for internal use by ``undetermined_coefficients`` hints. SymPy currently has no way to convert `\sin^n(x) \cos^m(y)` into a sum of only `\sin(a x)` and `\cos(b x)` terms, so these are not implemented. So, for example, you will need to manually convert `\sin^2(x)` into `[1 + \cos(2 x)]/2` to properly apply the method of undetermined coefficients on it. Examples ======== >>> from sympy import log, exp >>> from sympy.solvers.ode import _undetermined_coefficients_match >>> from sympy.abc import x >>> _undetermined_coefficients_match(9*x*exp(x) + exp(-x), x) {'test': True, 'trialset': {x*exp(x), exp(-x), exp(x)}} >>> _undetermined_coefficients_match(log(x), x) {'test': False} """ a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) expr = powsimp(expr, combine='exp') # exp(x)*exp(2*x + 1) => exp(3*x + 1) retdict = {} def _test_term(expr, x): r""" Test if ``expr`` fits the proper form for undetermined coefficients. """ if not expr.has(x): return True elif expr.is_Add: return all(_test_term(i, x) for i in expr.args) elif expr.is_Mul: if expr.has(sin, cos): foundtrig = False # Make sure that there is only one trig function in the args. # See the docstring. for i in expr.args: if i.has(sin, cos): if foundtrig: return False else: foundtrig = True return all(_test_term(i, x) for i in expr.args) elif expr.is_Function: if expr.func in (sin, cos, exp): if expr.args[0].match(a*x + b): return True else: return False else: return False elif expr.is_Pow and expr.base.is_Symbol and expr.exp.is_Integer and \ expr.exp >= 0: return True elif expr.is_Pow and expr.base.is_number: if expr.exp.match(a*x + b): return True else: return False elif expr.is_Symbol or expr.is_number: return True else: return False def _get_trial_set(expr, x, exprs=set([])): r""" Returns a set of trial terms for undetermined coefficients. The idea behind undetermined coefficients is that the terms expression repeat themselves after a finite number of derivatives, except for the coefficients (they are linearly dependent). So if we collect these, we should have the terms of our trial function. """ def _remove_coefficient(expr, x): r""" Returns the expression without a coefficient. Similar to expr.as_independent(x)[1], except it only works multiplicatively. """ term = S.One if expr.is_Mul: for i in expr.args: if i.has(x): term *= i elif expr.has(x): term = expr return term expr = expand_mul(expr) if expr.is_Add: for term in expr.args: if _remove_coefficient(term, x) in exprs: pass else: exprs.add(_remove_coefficient(term, x)) exprs = exprs.union(_get_trial_set(term, x, exprs)) else: term = _remove_coefficient(expr, x) tmpset = exprs.union({term}) oldset = set([]) while tmpset != oldset: # If you get stuck in this loop, then _test_term is probably # broken oldset = tmpset.copy() expr = expr.diff(x) term = _remove_coefficient(expr, x) if term.is_Add: tmpset = tmpset.union(_get_trial_set(term, x, tmpset)) else: tmpset.add(term) exprs = tmpset return exprs retdict['test'] = _test_term(expr, x) if retdict['test']: # Try to generate a list of trial solutions that will have the # undetermined coefficients. Note that if any of these are not linearly # independent with any of the solutions to the homogeneous equation, # then they will need to be multiplied by sufficient x to make them so. # This function DOES NOT do that (it doesn't even look at the # homogeneous equation). retdict['trialset'] = _get_trial_set(expr, x) return retdict def ode_nth_linear_constant_coeff_variation_of_parameters(eq, func, order, match): r""" Solves an `n`\th order linear differential equation with constant coefficients using the method of variation of parameters. This method works on any differential equations of the form .. math:: f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0 f(x) = P(x)\text{.} This method works by assuming that the particular solution takes the form .. math:: \sum_{x=1}^{n} c_i(x) y_i(x)\text{,} where `y_i` is the `i`\th solution to the homogeneous equation. The solution is then solved using Wronskian's and Cramer's Rule. The particular solution is given by .. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \,dx \right) y_i(x) \text{,} where `W(x)` is the Wronskian of the fundamental system (the system of `n` linearly independent solutions to the homogeneous equation), and `W_i(x)` is the Wronskian of the fundamental system with the `i`\th column replaced with `[0, 0, \cdots, 0, P(x)]`. This method is general enough to solve any `n`\th order inhomogeneous linear differential equation with constant coefficients, but sometimes SymPy cannot simplify the Wronskian well enough to integrate it. If this method hangs, try using the ``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and simplifying the integrals manually. Also, prefer using ``nth_linear_constant_coeff_undetermined_coefficients`` when it applies, because it doesn't use integration, making it faster and more reliable. Warning, using simplify=False with 'nth_linear_constant_coeff_variation_of_parameters' in :py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will not attempt to simplify the Wronskian before integrating. It is recommended that you only use simplify=False with 'nth_linear_constant_coeff_variation_of_parameters_Integral' for this method, especially if the solution to the homogeneous equation has trigonometric functions in it. Examples ======== >>> from sympy import Function, dsolve, pprint, exp, log >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(f(x).diff(x, 3) - 3*f(x).diff(x, 2) + ... 3*f(x).diff(x) - f(x) - exp(x)*log(x), f(x), ... hint='nth_linear_constant_coeff_variation_of_parameters')) / 3 \ | 2 x *(6*log(x) - 11)| x f(x) = |C1 + C2*x + C3*x + ------------------|*e \ 36 / References ========== - https://en.wikipedia.org/wiki/Variation_of_parameters - http://planetmath.org/VariationOfParameters - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 233 # indirect doctest """ gensol = ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match, returns='both') match.update(gensol) return _solve_variation_of_parameters(eq, func, order, match) def _solve_variation_of_parameters(eq, func, order, match): r""" Helper function for the method of variation of parameters and nonhomogeneous euler eq. See the :py:meth:`~sympy.solvers.ode.ode_nth_linear_constant_coeff_variation_of_parameters` docstring for more information on this method. The parameter ``match`` should be a dictionary that has the following keys: ``list`` A list of solutions to the homogeneous equation, such as the list returned by ``ode_nth_linear_constant_coeff_homogeneous(returns='list')``. ``sol`` The general solution, such as the solution returned by ``ode_nth_linear_constant_coeff_homogeneous(returns='sol')``. """ x = func.args[0] f = func.func r = match psol = 0 gensols = r['list'] gsol = r['sol'] wr = wronskian(gensols, x) if r.get('simplify', True): wr = simplify(wr) # We need much better simplification for # some ODEs. See issue 4662, for example. # To reduce commonly occurring sin(x)**2 + cos(x)**2 to 1 wr = trigsimp(wr, deep=True, recursive=True) if not wr: # The wronskian will be 0 iff the solutions are not linearly # independent. raise NotImplementedError("Cannot find " + str(order) + " solutions to the homogeneous equation necessary to apply " + "variation of parameters to " + str(eq) + " (Wronskian == 0)") if len(gensols) != order: raise NotImplementedError("Cannot find " + str(order) + " solutions to the homogeneous equation necessary to apply " + "variation of parameters to " + str(eq) + " (number of terms != order)") negoneterm = (-1)**(order) for i in gensols: psol += negoneterm*Integral(wronskian([sol for sol in gensols if sol != i], x)*r[-1]/wr, x)*i/r[order] negoneterm *= -1 if r.get('simplify', True): psol = simplify(psol) psol = trigsimp(psol, deep=True) return Eq(f(x), gsol.rhs + psol) def ode_factorable(eq, func, order, match): r""" Solves equations having a solvable factor. This function is used to solve the equation having factors. Factors may be of type algebraic or ode. It will try to solve each factor independently. Factors will be solved by calling dsolve. We will return the list of solutions. Examples ======== >>> from sympy import Function, dsolve, Eq, pprint, Derivative >>> from sympy.abc import x >>> f = Function('f') >>> eq = (f(x)**2-4)*(f(x).diff(x)+f(x)) >>> pprint(dsolve(eq, f(x))) -x [f(x) = 2, f(x) = -2, f(x) = C1*e ] """ eqns = match['eqns'] x0 = match['x0'] sols = [] for eq in eqns: try: sol = dsolve(eq, func, x0=x0) except NotImplementedError: continue else: if isinstance(sol, list): sols.extend(sol) else: sols.append(sol) if sols == []: raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by" + " the factorable group method") return sols def ode_separable(eq, func, order, match): r""" Solves separable 1st order differential equations. This is any differential equation that can be written as `P(y) \tfrac{dy}{dx} = Q(x)`. The solution can then just be found by rearranging terms and integrating: `\int P(y) \,dy = \int Q(x) \,dx`. This hint uses :py:meth:`sympy.simplify.simplify.separatevars` as its back end, so if a separable equation is not caught by this solver, it is most likely the fault of that function. :py:meth:`~sympy.simplify.simplify.separatevars` is smart enough to do most expansion and factoring necessary to convert a separable equation `F(x, y)` into the proper form `P(x)\cdot{}Q(y)`. The general solution is:: >>> from sympy import Function, dsolve, Eq, pprint >>> from sympy.abc import x >>> a, b, c, d, f = map(Function, ['a', 'b', 'c', 'd', 'f']) >>> genform = Eq(a(x)*b(f(x))*f(x).diff(x), c(x)*d(f(x))) >>> pprint(genform) d a(x)*b(f(x))*--(f(x)) = c(x)*d(f(x)) dx >>> pprint(dsolve(genform, f(x), hint='separable_Integral')) f(x) / / | | | b(y) | c(x) | ---- dy = C1 + | ---- dx | d(y) | a(x) | | / / Examples ======== >>> from sympy import Function, dsolve, Eq >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(Eq(f(x)*f(x).diff(x) + x, 3*x*f(x)**2), f(x), ... hint='separable', simplify=False)) / 2 \ 2 log\3*f (x) - 1/ x ---------------- = C1 + -- 6 2 References ========== - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 52 # indirect doctest """ x = func.args[0] f = func.func C1 = get_numbered_constants(eq, num=1) r = match # {'m1':m1, 'm2':m2, 'y':y} u = r.get('hint', f(x)) # get u from separable_reduced else get f(x) return Eq(Integral(r['m2']['coeff']*r['m2'][r['y']]/r['m1'][r['y']], (r['y'], None, u)), Integral(-r['m1']['coeff']*r['m1'][x]/ r['m2'][x], x) + C1) def checkinfsol(eq, infinitesimals, func=None, order=None): r""" This function is used to check if the given infinitesimals are the actual infinitesimals of the given first order differential equation. This method is specific to the Lie Group Solver of ODEs. As of now, it simply checks, by substituting the infinitesimals in the partial differential equation. .. math:: \frac{\partial \eta}{\partial x} + \left(\frac{\partial \eta}{\partial y} - \frac{\partial \xi}{\partial x}\right)*h - \frac{\partial \xi}{\partial y}*h^{2} - \xi\frac{\partial h}{\partial x} - \eta\frac{\partial h}{\partial y} = 0 where `\eta`, and `\xi` are the infinitesimals and `h(x,y) = \frac{dy}{dx}` The infinitesimals should be given in the form of a list of dicts ``[{xi(x, y): inf, eta(x, y): inf}]``, corresponding to the output of the function infinitesimals. It returns a list of values of the form ``[(True/False, sol)]`` where ``sol`` is the value obtained after substituting the infinitesimals in the PDE. If it is ``True``, then ``sol`` would be 0. """ if isinstance(eq, Equality): eq = eq.lhs - eq.rhs if not func: eq, func = _preprocess(eq) variables = func.args if len(variables) != 1: raise ValueError("ODE's have only one independent variable") else: x = variables[0] if not order: order = ode_order(eq, func) if order != 1: raise NotImplementedError("Lie groups solver has been implemented " "only for first order differential equations") else: df = func.diff(x) a = Wild('a', exclude = [df]) b = Wild('b', exclude = [df]) match = collect(expand(eq), df).match(a*df + b) if match: h = -simplify(match[b]/match[a]) else: try: sol = solve(eq, df) except NotImplementedError: raise NotImplementedError("Infinitesimals for the " "first order ODE could not be found") else: h = sol[0] # Find infinitesimals for one solution y = Dummy('y') h = h.subs(func, y) xi = Function('xi')(x, y) eta = Function('eta')(x, y) dxi = Function('xi')(x, func) deta = Function('eta')(x, func) pde = (eta.diff(x) + (eta.diff(y) - xi.diff(x))*h - (xi.diff(y))*h**2 - xi*(h.diff(x)) - eta*(h.diff(y))) soltup = [] for sol in infinitesimals: tsol = {xi: S(sol[dxi]).subs(func, y), eta: S(sol[deta]).subs(func, y)} sol = simplify(pde.subs(tsol).doit()) if sol: soltup.append((False, sol.subs(y, func))) else: soltup.append((True, 0)) return soltup def _ode_lie_group_try_heuristic(eq, heuristic, func, match, inf): xi = Function("xi") eta = Function("eta") f = func.func x = func.args[0] y = match['y'] h = match['h'] tempsol = [] if not inf: try: inf = infinitesimals(eq, hint=heuristic, func=func, order=1, match=match) except ValueError: return None for infsim in inf: xiinf = (infsim[xi(x, func)]).subs(func, y) etainf = (infsim[eta(x, func)]).subs(func, y) # This condition creates recursion while using pdsolve. # Since the first step while solving a PDE of form # a*(f(x, y).diff(x)) + b*(f(x, y).diff(y)) + c = 0 # is to solve the ODE dy/dx = b/a if simplify(etainf/xiinf) == h: continue rpde = f(x, y).diff(x)*xiinf + f(x, y).diff(y)*etainf r = pdsolve(rpde, func=f(x, y)).rhs s = pdsolve(rpde - 1, func=f(x, y)).rhs newcoord = [_lie_group_remove(coord) for coord in [r, s]] r = Dummy("r") s = Dummy("s") C1 = Symbol("C1") rcoord = newcoord[0] scoord = newcoord[-1] try: sol = solve([r - rcoord, s - scoord], x, y, dict=True) if sol == []: continue except NotImplementedError: continue else: sol = sol[0] xsub = sol[x] ysub = sol[y] num = simplify(scoord.diff(x) + scoord.diff(y)*h) denom = simplify(rcoord.diff(x) + rcoord.diff(y)*h) if num and denom: diffeq = simplify((num/denom).subs([(x, xsub), (y, ysub)])) sep = separatevars(diffeq, symbols=[r, s], dict=True) if sep: # Trying to separate, r and s coordinates deq = integrate((1/sep[s]), s) + C1 - integrate(sep['coeff']*sep[r], r) # Substituting and reverting back to original coordinates deq = deq.subs([(r, rcoord), (s, scoord)]) try: sdeq = solve(deq, y) except NotImplementedError: tempsol.append(deq) else: return [Eq(f(x), sol) for sol in sdeq] elif denom: # (ds/dr) is zero which means s is constant return [Eq(f(x), solve(scoord - C1, y)[0])] elif num: # (dr/ds) is zero which means r is constant return [Eq(f(x), solve(rcoord - C1, y)[0])] # If nothing works, return solution as it is, without solving for y if tempsol: return [Eq(sol.subs(y, f(x)), 0) for sol in tempsol] return None def _ode_lie_group( s, func, order, match): heuristics = lie_heuristics inf = {} f = func.func x = func.args[0] df = func.diff(x) xi = Function("xi") eta = Function("eta") xis = match['xi'] etas = match['eta'] y = match.pop('y', None) if y: h = -simplify(match[match['d']]/match[match['e']]) y = y else: y = Dummy("y") h = s.subs(func, y) if xis is not None and etas is not None: inf = [{xi(x, f(x)): S(xis), eta(x, f(x)): S(etas)}] if checkinfsol(Eq(df, s), inf, func=f(x), order=1)[0][0]: heuristics = ["user_defined"] + list(heuristics) match = {'h': h, 'y': y} # This is done so that if: # a] any heuristic raises a ValueError # another heuristic can be used. sol = None for heuristic in heuristics: sol = _ode_lie_group_try_heuristic(Eq(df, s), heuristic, func, match, inf) if sol: return sol return sol def ode_lie_group(eq, func, order, match): r""" This hint implements the Lie group method of solving first order differential equations. The aim is to convert the given differential equation from the given coordinate given system into another coordinate system where it becomes invariant under the one-parameter Lie group of translations. The converted ODE is quadrature and can be solved easily. It makes use of the :py:meth:`sympy.solvers.ode.infinitesimals` function which returns the infinitesimals of the transformation. The coordinates `r` and `s` can be found by solving the following Partial Differential Equations. .. math :: \xi\frac{\partial r}{\partial x} + \eta\frac{\partial r}{\partial y} = 0 .. math :: \xi\frac{\partial s}{\partial x} + \eta\frac{\partial s}{\partial y} = 1 The differential equation becomes separable in the new coordinate system .. math :: \frac{ds}{dr} = \frac{\frac{\partial s}{\partial x} + h(x, y)\frac{\partial s}{\partial y}}{ \frac{\partial r}{\partial x} + h(x, y)\frac{\partial r}{\partial y}} After finding the solution by integration, it is then converted back to the original coordinate system by substituting `r` and `s` in terms of `x` and `y` again. Examples ======== >>> from sympy import Function, dsolve, Eq, exp, pprint >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(f(x).diff(x) + 2*x*f(x) - x*exp(-x**2), f(x), ... hint='lie_group')) / 2\ 2 | x | -x f(x) = |C1 + --|*e \ 2 / References ========== - Solving differential equations by Symmetry Groups, John Starrett, pp. 1 - pp. 14 """ f = func.func x = func.args[0] df = func.diff(x) try: eqsol = solve(eq, df) except NotImplementedError: eqsol = [] desols = [] for s in eqsol: sol = _ode_lie_group(s, func, order, match=match) if sol: desols.extend(sol) if desols == []: raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by" + " the lie group method") return desols def _lie_group_remove(coords): r""" This function is strictly meant for internal use by the Lie group ODE solving method. It replaces arbitrary functions returned by pdsolve with either 0 or 1 or the args of the arbitrary function. The algorithm used is: 1] If coords is an instance of an Undefined Function, then the args are returned 2] If the arbitrary function is present in an Add object, it is replaced by zero. 3] If the arbitrary function is present in an Mul object, it is replaced by one. 4] If coords has no Undefined Function, it is returned as it is. Examples ======== >>> from sympy.solvers.ode import _lie_group_remove >>> from sympy import Function >>> from sympy.abc import x, y >>> F = Function("F") >>> eq = x**2*y >>> _lie_group_remove(eq) x**2*y >>> eq = F(x**2*y) >>> _lie_group_remove(eq) x**2*y >>> eq = y**2*x + F(x**3) >>> _lie_group_remove(eq) x*y**2 >>> eq = (F(x**3) + y)*x**4 >>> _lie_group_remove(eq) x**4*y """ if isinstance(coords, AppliedUndef): return coords.args[0] elif coords.is_Add: subfunc = coords.atoms(AppliedUndef) if subfunc: for func in subfunc: coords = coords.subs(func, 0) return coords elif coords.is_Pow: base, expr = coords.as_base_exp() base = _lie_group_remove(base) expr = _lie_group_remove(expr) return base**expr elif coords.is_Mul: mulargs = [] coordargs = coords.args for arg in coordargs: if not isinstance(coords, AppliedUndef): mulargs.append(_lie_group_remove(arg)) return Mul(*mulargs) return coords def infinitesimals(eq, func=None, order=None, hint='default', match=None): r""" The infinitesimal functions of an ordinary differential equation, `\xi(x,y)` and `\eta(x,y)`, are the infinitesimals of the Lie group of point transformations for which the differential equation is invariant. So, the ODE `y'=f(x,y)` would admit a Lie group `x^*=X(x,y;\varepsilon)=x+\varepsilon\xi(x,y)`, `y^*=Y(x,y;\varepsilon)=y+\varepsilon\eta(x,y)` such that `(y^*)'=f(x^*, y^*)`. A change of coordinates, to `r(x,y)` and `s(x,y)`, can be performed so this Lie group becomes the translation group, `r^*=r` and `s^*=s+\varepsilon`. They are tangents to the coordinate curves of the new system. Consider the transformation `(x, y) \to (X, Y)` such that the differential equation remains invariant. `\xi` and `\eta` are the tangents to the transformed coordinates `X` and `Y`, at `\varepsilon=0`. .. math:: \left(\frac{\partial X(x,y;\varepsilon)}{\partial\varepsilon }\right)|_{\varepsilon=0} = \xi, \left(\frac{\partial Y(x,y;\varepsilon)}{\partial\varepsilon }\right)|_{\varepsilon=0} = \eta, The infinitesimals can be found by solving the following PDE: >>> from sympy import Function, diff, Eq, pprint >>> from sympy.abc import x, y >>> xi, eta, h = map(Function, ['xi', 'eta', 'h']) >>> h = h(x, y) # dy/dx = h >>> eta = eta(x, y) >>> xi = xi(x, y) >>> genform = Eq(eta.diff(x) + (eta.diff(y) - xi.diff(x))*h ... - (xi.diff(y))*h**2 - xi*(h.diff(x)) - eta*(h.diff(y)), 0) >>> pprint(genform) /d d \ d 2 d |--(eta(x, y)) - --(xi(x, y))|*h(x, y) - eta(x, y)*--(h(x, y)) - h (x, y)*--(x \dy dx / dy dy <BLANKLINE> d d i(x, y)) - xi(x, y)*--(h(x, y)) + --(eta(x, y)) = 0 dx dx Solving the above mentioned PDE is not trivial, and can be solved only by making intelligent assumptions for `\xi` and `\eta` (heuristics). Once an infinitesimal is found, the attempt to find more heuristics stops. This is done to optimise the speed of solving the differential equation. If a list of all the infinitesimals is needed, ``hint`` should be flagged as ``all``, which gives the complete list of infinitesimals. If the infinitesimals for a particular heuristic needs to be found, it can be passed as a flag to ``hint``. Examples ======== >>> from sympy import Function, diff >>> from sympy.solvers.ode import infinitesimals >>> from sympy.abc import x >>> f = Function('f') >>> eq = f(x).diff(x) - x**2*f(x) >>> infinitesimals(eq) [{eta(x, f(x)): exp(x**3/3), xi(x, f(x)): 0}] References ========== - Solving differential equations by Symmetry Groups, John Starrett, pp. 1 - pp. 14 """ if isinstance(eq, Equality): eq = eq.lhs - eq.rhs if not func: eq, func = _preprocess(eq) variables = func.args if len(variables) != 1: raise ValueError("ODE's have only one independent variable") else: x = variables[0] if not order: order = ode_order(eq, func) if order != 1: raise NotImplementedError("Infinitesimals for only " "first order ODE's have been implemented") else: df = func.diff(x) # Matching differential equation of the form a*df + b a = Wild('a', exclude = [df]) b = Wild('b', exclude = [df]) if match: # Used by lie_group hint h = match['h'] y = match['y'] else: match = collect(expand(eq), df).match(a*df + b) if match: h = -simplify(match[b]/match[a]) else: try: sol = solve(eq, df) except NotImplementedError: raise NotImplementedError("Infinitesimals for the " "first order ODE could not be found") else: h = sol[0] # Find infinitesimals for one solution y = Dummy("y") h = h.subs(func, y) u = Dummy("u") hx = h.diff(x) hy = h.diff(y) hinv = ((1/h).subs([(x, u), (y, x)])).subs(u, y) # Inverse ODE match = {'h': h, 'func': func, 'hx': hx, 'hy': hy, 'y': y, 'hinv': hinv} if hint == 'all': xieta = [] for heuristic in lie_heuristics: function = globals()['lie_heuristic_' + heuristic] inflist = function(match, comp=True) if inflist: xieta.extend([inf for inf in inflist if inf not in xieta]) if xieta: return xieta else: raise NotImplementedError("Infinitesimals could not be found for " "the given ODE") elif hint == 'default': for heuristic in lie_heuristics: function = globals()['lie_heuristic_' + heuristic] xieta = function(match, comp=False) if xieta: return xieta raise NotImplementedError("Infinitesimals could not be found for" " the given ODE") elif hint not in lie_heuristics: raise ValueError("Heuristic not recognized: " + hint) else: function = globals()['lie_heuristic_' + hint] xieta = function(match, comp=True) if xieta: return xieta else: raise ValueError("Infinitesimals could not be found using the" " given heuristic") def lie_heuristic_abaco1_simple(match, comp=False): r""" The first heuristic uses the following four sets of assumptions on `\xi` and `\eta` .. math:: \xi = 0, \eta = f(x) .. math:: \xi = 0, \eta = f(y) .. math:: \xi = f(x), \eta = 0 .. math:: \xi = f(y), \eta = 0 The success of this heuristic is determined by algebraic factorisation. For the first assumption `\xi = 0` and `\eta` to be a function of `x`, the PDE .. math:: \frac{\partial \eta}{\partial x} + (\frac{\partial \eta}{\partial y} - \frac{\partial \xi}{\partial x})*h - \frac{\partial \xi}{\partial y}*h^{2} - \xi*\frac{\partial h}{\partial x} - \eta*\frac{\partial h}{\partial y} = 0 reduces to `f'(x) - f\frac{\partial h}{\partial y} = 0` If `\frac{\partial h}{\partial y}` is a function of `x`, then this can usually be integrated easily. A similar idea is applied to the other 3 assumptions as well. References ========== - E.S Cheb-Terrab, L.G.S Duarte and L.A,C.P da Mota, Computer Algebra Solving of First Order ODEs Using Symmetry Methods, pp. 8 """ xieta = [] y = match['y'] h = match['h'] func = match['func'] x = func.args[0] hx = match['hx'] hy = match['hy'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) hysym = hy.free_symbols if y not in hysym: try: fx = exp(integrate(hy, x)) except NotImplementedError: pass else: inf = {xi: S.Zero, eta: fx} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) factor = hy/h facsym = factor.free_symbols if x not in facsym: try: fy = exp(integrate(factor, y)) except NotImplementedError: pass else: inf = {xi: S.Zero, eta: fy.subs(y, func)} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) factor = -hx/h facsym = factor.free_symbols if y not in facsym: try: fx = exp(integrate(factor, x)) except NotImplementedError: pass else: inf = {xi: fx, eta: S.Zero} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) factor = -hx/(h**2) facsym = factor.free_symbols if x not in facsym: try: fy = exp(integrate(factor, y)) except NotImplementedError: pass else: inf = {xi: fy.subs(y, func), eta: S.Zero} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) if xieta: return xieta def lie_heuristic_abaco1_product(match, comp=False): r""" The second heuristic uses the following two assumptions on `\xi` and `\eta` .. math:: \eta = 0, \xi = f(x)*g(y) .. math:: \eta = f(x)*g(y), \xi = 0 The first assumption of this heuristic holds good if `\frac{1}{h^{2}}\frac{\partial^2}{\partial x \partial y}\log(h)` is separable in `x` and `y`, then the separated factors containing `x` is `f(x)`, and `g(y)` is obtained by .. math:: e^{\int f\frac{\partial}{\partial x}\left(\frac{1}{f*h}\right)\,dy} provided `f\frac{\partial}{\partial x}\left(\frac{1}{f*h}\right)` is a function of `y` only. The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as `\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first assumption satisfies. After obtaining `f(x)` and `g(y)`, the coordinates are again interchanged, to get `\eta` as `f(x)*g(y)` References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 7 - pp. 8 """ xieta = [] y = match['y'] h = match['h'] hinv = match['hinv'] func = match['func'] x = func.args[0] xi = Function('xi')(x, func) eta = Function('eta')(x, func) inf = separatevars(((log(h).diff(y)).diff(x))/h**2, dict=True, symbols=[x, y]) if inf and inf['coeff']: fx = inf[x] gy = simplify(fx*((1/(fx*h)).diff(x))) gysyms = gy.free_symbols if x not in gysyms: gy = exp(integrate(gy, y)) inf = {eta: S.Zero, xi: (fx*gy).subs(y, func)} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) u1 = Dummy("u1") inf = separatevars(((log(hinv).diff(y)).diff(x))/hinv**2, dict=True, symbols=[x, y]) if inf and inf['coeff']: fx = inf[x] gy = simplify(fx*((1/(fx*hinv)).diff(x))) gysyms = gy.free_symbols if x not in gysyms: gy = exp(integrate(gy, y)) etaval = fx*gy etaval = (etaval.subs([(x, u1), (y, x)])).subs(u1, y) inf = {eta: etaval.subs(y, func), xi: S.Zero} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) if xieta: return xieta def lie_heuristic_bivariate(match, comp=False): r""" The third heuristic assumes the infinitesimals `\xi` and `\eta` to be bi-variate polynomials in `x` and `y`. The assumption made here for the logic below is that `h` is a rational function in `x` and `y` though that may not be necessary for the infinitesimals to be bivariate polynomials. The coefficients of the infinitesimals are found out by substituting them in the PDE and grouping similar terms that are polynomials and since they form a linear system, solve and check for non trivial solutions. The degree of the assumed bivariates are increased till a certain maximum value. References ========== - Lie Groups and Differential Equations pp. 327 - pp. 329 """ h = match['h'] hx = match['hx'] hy = match['hy'] func = match['func'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) if h.is_rational_function(): # The maximum degree that the infinitesimals can take is # calculated by this technique. etax, etay, etad, xix, xiy, xid = symbols("etax etay etad xix xiy xid") ipde = etax + (etay - xix)*h - xiy*h**2 - xid*hx - etad*hy num, denom = cancel(ipde).as_numer_denom() deg = Poly(num, x, y).total_degree() deta = Function('deta')(x, y) dxi = Function('dxi')(x, y) ipde = (deta.diff(x) + (deta.diff(y) - dxi.diff(x))*h - (dxi.diff(y))*h**2 - dxi*hx - deta*hy) xieq = Symbol("xi0") etaeq = Symbol("eta0") for i in range(deg + 1): if i: xieq += Add(*[ Symbol("xi_" + str(power) + "_" + str(i - power))*x**power*y**(i - power) for power in range(i + 1)]) etaeq += Add(*[ Symbol("eta_" + str(power) + "_" + str(i - power))*x**power*y**(i - power) for power in range(i + 1)]) pden, denom = (ipde.subs({dxi: xieq, deta: etaeq}).doit()).as_numer_denom() pden = expand(pden) # If the individual terms are monomials, the coefficients # are grouped if pden.is_polynomial(x, y) and pden.is_Add: polyy = Poly(pden, x, y).as_dict() if polyy: symset = xieq.free_symbols.union(etaeq.free_symbols) - {x, y} soldict = solve(polyy.values(), *symset) if isinstance(soldict, list): soldict = soldict[0] if any(soldict.values()): xired = xieq.subs(soldict) etared = etaeq.subs(soldict) # Scaling is done by substituting one for the parameters # This can be any number except zero. dict_ = dict((sym, 1) for sym in symset) inf = {eta: etared.subs(dict_).subs(y, func), xi: xired.subs(dict_).subs(y, func)} return [inf] def lie_heuristic_chi(match, comp=False): r""" The aim of the fourth heuristic is to find the function `\chi(x, y)` that satisfies the PDE `\frac{d\chi}{dx} + h\frac{d\chi}{dx} - \frac{\partial h}{\partial y}\chi = 0`. This assumes `\chi` to be a bivariate polynomial in `x` and `y`. By intuition, `h` should be a rational function in `x` and `y`. The method used here is to substitute a general binomial for `\chi` up to a certain maximum degree is reached. The coefficients of the polynomials, are calculated by by collecting terms of the same order in `x` and `y`. After finding `\chi`, the next step is to use `\eta = \xi*h + \chi`, to determine `\xi` and `\eta`. This can be done by dividing `\chi` by `h` which would give `-\xi` as the quotient and `\eta` as the remainder. References ========== - E.S Cheb-Terrab, L.G.S Duarte and L.A,C.P da Mota, Computer Algebra Solving of First Order ODEs Using Symmetry Methods, pp. 8 """ h = match['h'] hy = match['hy'] func = match['func'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) if h.is_rational_function(): schi, schix, schiy = symbols("schi, schix, schiy") cpde = schix + h*schiy - hy*schi num, denom = cancel(cpde).as_numer_denom() deg = Poly(num, x, y).total_degree() chi = Function('chi')(x, y) chix = chi.diff(x) chiy = chi.diff(y) cpde = chix + h*chiy - hy*chi chieq = Symbol("chi") for i in range(1, deg + 1): chieq += Add(*[ Symbol("chi_" + str(power) + "_" + str(i - power))*x**power*y**(i - power) for power in range(i + 1)]) cnum, cden = cancel(cpde.subs({chi : chieq}).doit()).as_numer_denom() cnum = expand(cnum) if cnum.is_polynomial(x, y) and cnum.is_Add: cpoly = Poly(cnum, x, y).as_dict() if cpoly: solsyms = chieq.free_symbols - {x, y} soldict = solve(cpoly.values(), *solsyms) if isinstance(soldict, list): soldict = soldict[0] if any(soldict.values()): chieq = chieq.subs(soldict) dict_ = dict((sym, 1) for sym in solsyms) chieq = chieq.subs(dict_) # After finding chi, the main aim is to find out # eta, xi by the equation eta = xi*h + chi # One method to set xi, would be rearranging it to # (eta/h) - xi = (chi/h). This would mean dividing # chi by h would give -xi as the quotient and eta # as the remainder. Thanks to Sean Vig for suggesting # this method. xic, etac = div(chieq, h) inf = {eta: etac.subs(y, func), xi: -xic.subs(y, func)} return [inf] def lie_heuristic_function_sum(match, comp=False): r""" This heuristic uses the following two assumptions on `\xi` and `\eta` .. math:: \eta = 0, \xi = f(x) + g(y) .. math:: \eta = f(x) + g(y), \xi = 0 The first assumption of this heuristic holds good if .. math:: \frac{\partial}{\partial y}[(h\frac{\partial^{2}}{ \partial x^{2}}(h^{-1}))^{-1}] is separable in `x` and `y`, 1. The separated factors containing `y` is `\frac{\partial g}{\partial y}`. From this `g(y)` can be determined. 2. The separated factors containing `x` is `f''(x)`. 3. `h\frac{\partial^{2}}{\partial x^{2}}(h^{-1})` equals `\frac{f''(x)}{f(x) + g(y)}`. From this `f(x)` can be determined. The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as `\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first assumption satisfies. After obtaining `f(x)` and `g(y)`, the coordinates are again interchanged, to get `\eta` as `f(x) + g(y)`. For both assumptions, the constant factors are separated among `g(y)` and `f''(x)`, such that `f''(x)` obtained from 3] is the same as that obtained from 2]. If not possible, then this heuristic fails. References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 7 - pp. 8 """ xieta = [] h = match['h'] func = match['func'] hinv = match['hinv'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) for odefac in [h, hinv]: factor = odefac*((1/odefac).diff(x, 2)) sep = separatevars((1/factor).diff(y), dict=True, symbols=[x, y]) if sep and sep['coeff'] and sep[x].has(x) and sep[y].has(y): k = Dummy("k") try: gy = k*integrate(sep[y], y) except NotImplementedError: pass else: fdd = 1/(k*sep[x]*sep['coeff']) fx = simplify(fdd/factor - gy) check = simplify(fx.diff(x, 2) - fdd) if fx: if not check: fx = fx.subs(k, 1) gy = (gy/k) else: sol = solve(check, k) if sol: sol = sol[0] fx = fx.subs(k, sol) gy = (gy/k)*sol else: continue if odefac == hinv: # Inverse ODE fx = fx.subs(x, y) gy = gy.subs(y, x) etaval = factor_terms(fx + gy) if etaval.is_Mul: etaval = Mul(*[arg for arg in etaval.args if arg.has(x, y)]) if odefac == hinv: # Inverse ODE inf = {eta: etaval.subs(y, func), xi : S.Zero} else: inf = {xi: etaval.subs(y, func), eta : S.Zero} if not comp: return [inf] else: xieta.append(inf) if xieta: return xieta def lie_heuristic_abaco2_similar(match, comp=False): r""" This heuristic uses the following two assumptions on `\xi` and `\eta` .. math:: \eta = g(x), \xi = f(x) .. math:: \eta = f(y), \xi = g(y) For the first assumption, 1. First `\frac{\frac{\partial h}{\partial y}}{\frac{\partial^{2} h}{ \partial yy}}` is calculated. Let us say this value is A 2. If this is constant, then `h` is matched to the form `A(x) + B(x)e^{ \frac{y}{C}}` then, `\frac{e^{\int \frac{A(x)}{C} \,dx}}{B(x)}` gives `f(x)` and `A(x)*f(x)` gives `g(x)` 3. Otherwise `\frac{\frac{\partial A}{\partial X}}{\frac{\partial A}{ \partial Y}} = \gamma` is calculated. If a] `\gamma` is a function of `x` alone b] `\frac{\gamma\frac{\partial h}{\partial y} - \gamma'(x) - \frac{ \partial h}{\partial x}}{h + \gamma} = G` is a function of `x` alone. then, `e^{\int G \,dx}` gives `f(x)` and `-\gamma*f(x)` gives `g(x)` The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as `\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first assumption satisfies. After obtaining `f(x)` and `g(x)`, the coordinates are again interchanged, to get `\xi` as `f(x^*)` and `\eta` as `g(y^*)` References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 - pp. 12 """ h = match['h'] hx = match['hx'] hy = match['hy'] func = match['func'] hinv = match['hinv'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) factor = cancel(h.diff(y)/h.diff(y, 2)) factorx = factor.diff(x) factory = factor.diff(y) if not factor.has(x) and not factor.has(y): A = Wild('A', exclude=[y]) B = Wild('B', exclude=[y]) C = Wild('C', exclude=[x, y]) match = h.match(A + B*exp(y/C)) try: tau = exp(-integrate(match[A]/match[C]), x)/match[B] except NotImplementedError: pass else: gx = match[A]*tau return [{xi: tau, eta: gx}] else: gamma = cancel(factorx/factory) if not gamma.has(y): tauint = cancel((gamma*hy - gamma.diff(x) - hx)/(h + gamma)) if not tauint.has(y): try: tau = exp(integrate(tauint, x)) except NotImplementedError: pass else: gx = -tau*gamma return [{xi: tau, eta: gx}] factor = cancel(hinv.diff(y)/hinv.diff(y, 2)) factorx = factor.diff(x) factory = factor.diff(y) if not factor.has(x) and not factor.has(y): A = Wild('A', exclude=[y]) B = Wild('B', exclude=[y]) C = Wild('C', exclude=[x, y]) match = h.match(A + B*exp(y/C)) try: tau = exp(-integrate(match[A]/match[C]), x)/match[B] except NotImplementedError: pass else: gx = match[A]*tau return [{eta: tau.subs(x, func), xi: gx.subs(x, func)}] else: gamma = cancel(factorx/factory) if not gamma.has(y): tauint = cancel((gamma*hinv.diff(y) - gamma.diff(x) - hinv.diff(x))/( hinv + gamma)) if not tauint.has(y): try: tau = exp(integrate(tauint, x)) except NotImplementedError: pass else: gx = -tau*gamma return [{eta: tau.subs(x, func), xi: gx.subs(x, func)}] def lie_heuristic_abaco2_unique_unknown(match, comp=False): r""" This heuristic assumes the presence of unknown functions or known functions with non-integer powers. 1. A list of all functions and non-integer powers containing x and y 2. Loop over each element `f` in the list, find `\frac{\frac{\partial f}{\partial x}}{ \frac{\partial f}{\partial x}} = R` If it is separable in `x` and `y`, let `X` be the factors containing `x`. Then a] Check if `\xi = X` and `\eta = -\frac{X}{R}` satisfy the PDE. If yes, then return `\xi` and `\eta` b] Check if `\xi = \frac{-R}{X}` and `\eta = -\frac{1}{X}` satisfy the PDE. If yes, then return `\xi` and `\eta` If not, then check if a] :math:`\xi = -R,\eta = 1` b] :math:`\xi = 1, \eta = -\frac{1}{R}` are solutions. References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 - pp. 12 """ h = match['h'] hx = match['hx'] hy = match['hy'] func = match['func'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) funclist = [] for atom in h.atoms(Pow): base, exp = atom.as_base_exp() if base.has(x) and base.has(y): if not exp.is_Integer: funclist.append(atom) for function in h.atoms(AppliedUndef): syms = function.free_symbols if x in syms and y in syms: funclist.append(function) for f in funclist: frac = cancel(f.diff(y)/f.diff(x)) sep = separatevars(frac, dict=True, symbols=[x, y]) if sep and sep['coeff']: xitry1 = sep[x] etatry1 = -1/(sep[y]*sep['coeff']) pde1 = etatry1.diff(y)*h - xitry1.diff(x)*h - xitry1*hx - etatry1*hy if not simplify(pde1): return [{xi: xitry1, eta: etatry1.subs(y, func)}] xitry2 = 1/etatry1 etatry2 = 1/xitry1 pde2 = etatry2.diff(x) - (xitry2.diff(y))*h**2 - xitry2*hx - etatry2*hy if not simplify(expand(pde2)): return [{xi: xitry2.subs(y, func), eta: etatry2}] else: etatry = -1/frac pde = etatry.diff(x) + etatry.diff(y)*h - hx - etatry*hy if not simplify(pde): return [{xi: S.One, eta: etatry.subs(y, func)}] xitry = -frac pde = -xitry.diff(x)*h -xitry.diff(y)*h**2 - xitry*hx -hy if not simplify(expand(pde)): return [{xi: xitry.subs(y, func), eta: S.One}] def lie_heuristic_abaco2_unique_general(match, comp=False): r""" This heuristic finds if infinitesimals of the form `\eta = f(x)`, `\xi = g(y)` without making any assumptions on `h`. The complete sequence of steps is given in the paper mentioned below. References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 - pp. 12 """ hx = match['hx'] hy = match['hy'] func = match['func'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) A = hx.diff(y) B = hy.diff(y) + hy**2 C = hx.diff(x) - hx**2 if not (A and B and C): return Ax = A.diff(x) Ay = A.diff(y) Axy = Ax.diff(y) Axx = Ax.diff(x) Ayy = Ay.diff(y) D = simplify(2*Axy + hx*Ay - Ax*hy + (hx*hy + 2*A)*A)*A - 3*Ax*Ay if not D: E1 = simplify(3*Ax**2 + ((hx**2 + 2*C)*A - 2*Axx)*A) if E1: E2 = simplify((2*Ayy + (2*B - hy**2)*A)*A - 3*Ay**2) if not E2: E3 = simplify( E1*((28*Ax + 4*hx*A)*A**3 - E1*(hy*A + Ay)) - E1.diff(x)*8*A**4) if not E3: etaval = cancel((4*A**3*(Ax - hx*A) + E1*(hy*A - Ay))/(S(2)*A*E1)) if x not in etaval: try: etaval = exp(integrate(etaval, y)) except NotImplementedError: pass else: xival = -4*A**3*etaval/E1 if y not in xival: return [{xi: xival, eta: etaval.subs(y, func)}] else: E1 = simplify((2*Ayy + (2*B - hy**2)*A)*A - 3*Ay**2) if E1: E2 = simplify( 4*A**3*D - D**2 + E1*((2*Axx - (hx**2 + 2*C)*A)*A - 3*Ax**2)) if not E2: E3 = simplify( -(A*D)*E1.diff(y) + ((E1.diff(x) - hy*D)*A + 3*Ay*D + (A*hx - 3*Ax)*E1)*E1) if not E3: etaval = cancel(((A*hx - Ax)*E1 - (Ay + A*hy)*D)/(S(2)*A*D)) if x not in etaval: try: etaval = exp(integrate(etaval, y)) except NotImplementedError: pass else: xival = -E1*etaval/D if y not in xival: return [{xi: xival, eta: etaval.subs(y, func)}] def lie_heuristic_linear(match, comp=False): r""" This heuristic assumes 1. `\xi = ax + by + c` and 2. `\eta = fx + gy + h` After substituting the following assumptions in the determining PDE, it reduces to .. math:: f + (g - a)h - bh^{2} - (ax + by + c)\frac{\partial h}{\partial x} - (fx + gy + c)\frac{\partial h}{\partial y} Solving the reduced PDE obtained, using the method of characteristics, becomes impractical. The method followed is grouping similar terms and solving the system of linear equations obtained. The difference between the bivariate heuristic is that `h` need not be a rational function in this case. References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 - pp. 12 """ h = match['h'] hx = match['hx'] hy = match['hy'] func = match['func'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) coeffdict = {} symbols = numbered_symbols("c", cls=Dummy) symlist = [next(symbols) for _ in islice(symbols, 6)] C0, C1, C2, C3, C4, C5 = symlist pde = C3 + (C4 - C0)*h - (C0*x + C1*y + C2)*hx - (C3*x + C4*y + C5)*hy - C1*h**2 pde, denom = pde.as_numer_denom() pde = powsimp(expand(pde)) if pde.is_Add: terms = pde.args for term in terms: if term.is_Mul: rem = Mul(*[m for m in term.args if not m.has(x, y)]) xypart = term/rem if xypart not in coeffdict: coeffdict[xypart] = rem else: coeffdict[xypart] += rem else: if term not in coeffdict: coeffdict[term] = S.One else: coeffdict[term] += S.One sollist = coeffdict.values() soldict = solve(sollist, symlist) if soldict: if isinstance(soldict, list): soldict = soldict[0] subval = soldict.values() if any(t for t in subval): onedict = dict(zip(symlist, [1]*6)) xival = C0*x + C1*func + C2 etaval = C3*x + C4*func + C5 xival = xival.subs(soldict) etaval = etaval.subs(soldict) xival = xival.subs(onedict) etaval = etaval.subs(onedict) return [{xi: xival, eta: etaval}] def sysode_linear_2eq_order1(match_): x = match_['func'][0].func y = match_['func'][1].func func = match_['func'] fc = match_['func_coeff'] eq = match_['eq'] r = dict() t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] for i in range(2): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs # for equations Eq(a1*diff(x(t),t), a*x(t) + b*y(t) + k1) # and Eq(a2*diff(x(t),t), c*x(t) + d*y(t) + k2) r['a'] = -fc[0,x(t),0]/fc[0,x(t),1] r['c'] = -fc[1,x(t),0]/fc[1,y(t),1] r['b'] = -fc[0,y(t),0]/fc[0,x(t),1] r['d'] = -fc[1,y(t),0]/fc[1,y(t),1] forcing = [S.Zero,S.Zero] for i in range(2): for j in Add.make_args(eq[i]): if not j.has(x(t), y(t)): forcing[i] += j if not (forcing[0].has(t) or forcing[1].has(t)): r['k1'] = forcing[0] r['k2'] = forcing[1] else: raise NotImplementedError("Only homogeneous problems are supported" + " (and constant inhomogeneity)") if match_['type_of_equation'] == 'type1': sol = _linear_2eq_order1_type1(x, y, t, r, eq) if match_['type_of_equation'] == 'type2': gsol = _linear_2eq_order1_type1(x, y, t, r, eq) psol = _linear_2eq_order1_type2(x, y, t, r, eq) sol = [Eq(x(t), gsol[0].rhs+psol[0]), Eq(y(t), gsol[1].rhs+psol[1])] if match_['type_of_equation'] == 'type3': sol = _linear_2eq_order1_type3(x, y, t, r, eq) if match_['type_of_equation'] == 'type4': sol = _linear_2eq_order1_type4(x, y, t, r, eq) if match_['type_of_equation'] == 'type5': sol = _linear_2eq_order1_type5(x, y, t, r, eq) if match_['type_of_equation'] == 'type6': sol = _linear_2eq_order1_type6(x, y, t, r, eq) if match_['type_of_equation'] == 'type7': sol = _linear_2eq_order1_type7(x, y, t, r, eq) return sol def _linear_2eq_order1_type1(x, y, t, r, eq): r""" It is classified under system of two linear homogeneous first-order constant-coefficient ordinary differential equations. The equations which come under this type are .. math:: x' = ax + by, .. math:: y' = cx + dy The characteristics equation is written as .. math:: \lambda^{2} + (a+d) \lambda + ad - bc = 0 and its discriminant is `D = (a-d)^{2} + 4bc`. There are several cases 1. Case when `ad - bc \neq 0`. The origin of coordinates, `x = y = 0`, is the only stationary point; it is - a node if `D = 0` - a node if `D > 0` and `ad - bc > 0` - a saddle if `D > 0` and `ad - bc < 0` - a focus if `D < 0` and `a + d \neq 0` - a centre if `D < 0` and `a + d \neq 0`. 1.1. If `D > 0`. The characteristic equation has two distinct real roots `\lambda_1` and `\lambda_ 2` . The general solution of the system in question is expressed as .. math:: x = C_1 b e^{\lambda_1 t} + C_2 b e^{\lambda_2 t} .. math:: y = C_1 (\lambda_1 - a) e^{\lambda_1 t} + C_2 (\lambda_2 - a) e^{\lambda_2 t} where `C_1` and `C_2` being arbitrary constants 1.2. If `D < 0`. The characteristics equation has two conjugate roots, `\lambda_1 = \sigma + i \beta` and `\lambda_2 = \sigma - i \beta`. The general solution of the system is given by .. math:: x = b e^{\sigma t} (C_1 \sin(\beta t) + C_2 \cos(\beta t)) .. math:: y = e^{\sigma t} ([(\sigma - a) C_1 - \beta C_2] \sin(\beta t) + [\beta C_1 + (\sigma - a) C_2 \cos(\beta t)]) 1.3. If `D = 0` and `a \neq d`. The characteristic equation has two equal roots, `\lambda_1 = \lambda_2`. The general solution of the system is written as .. math:: x = 2b (C_1 + \frac{C_2}{a-d} + C_2 t) e^{\frac{a+d}{2} t} .. math:: y = [(d - a) C_1 + C_2 + (d - a) C_2 t] e^{\frac{a+d}{2} t} 1.4. If `D = 0` and `a = d \neq 0` and `b = 0` .. math:: x = C_1 e^{a t} , y = (c C_1 t + C_2) e^{a t} 1.5. If `D = 0` and `a = d \neq 0` and `c = 0` .. math:: x = (b C_1 t + C_2) e^{a t} , y = C_1 e^{a t} 2. Case when `ad - bc = 0` and `a^{2} + b^{2} > 0`. The whole straight line `ax + by = 0` consists of singular points. The original system of differential equations can be rewritten as .. math:: x' = ax + by , y' = k (ax + by) 2.1 If `a + bk \neq 0`, solution will be .. math:: x = b C_1 + C_2 e^{(a + bk) t} , y = -a C_1 + k C_2 e^{(a + bk) t} 2.2 If `a + bk = 0`, solution will be .. math:: x = C_1 (bk t - 1) + b C_2 t , y = k^{2} b C_1 t + (b k^{2} t + 1) C_2 """ C1, C2 = get_numbered_constants(eq, num=2) a, b, c, d = r['a'], r['b'], r['c'], r['d'] real_coeff = all(v.is_real for v in (a, b, c, d)) D = (a - d)**2 + 4*b*c l1 = (a + d + sqrt(D))/2 l2 = (a + d - sqrt(D))/2 equal_roots = Eq(D, 0).expand() gsol1, gsol2 = [], [] # Solutions have exponential form if either D > 0 with real coefficients # or D != 0 with complex coefficients. Eigenvalues are distinct. # For each eigenvalue lam, pick an eigenvector, making sure we don't get (0, 0) # The candidates are (b, lam-a) and (lam-d, c). exponential_form = D > 0 if real_coeff else Not(equal_roots) bad_ab_vector1 = And(Eq(b, 0), Eq(l1, a)) bad_ab_vector2 = And(Eq(b, 0), Eq(l2, a)) vector1 = Matrix((Piecewise((l1 - d, bad_ab_vector1), (b, True)), Piecewise((c, bad_ab_vector1), (l1 - a, True)))) vector2 = Matrix((Piecewise((l2 - d, bad_ab_vector2), (b, True)), Piecewise((c, bad_ab_vector2), (l2 - a, True)))) sol_vector = C1*exp(l1*t)*vector1 + C2*exp(l2*t)*vector2 gsol1.append((sol_vector[0], exponential_form)) gsol2.append((sol_vector[1], exponential_form)) # Solutions have trigonometric form for real coefficients with D < 0 # Both b and c are nonzero in this case, so (b, lam-a) is an eigenvector # It splits into real/imag parts as (b, sigma-a) and (0, beta). Then # multiply it by C1(cos(beta*t) + I*C2*sin(beta*t)) and separate real/imag trigonometric_form = D < 0 if real_coeff else False sigma = re(l1) if im(l1).is_positive: beta = im(l1) else: beta = im(l2) vector1 = Matrix((b, sigma - a)) vector2 = Matrix((0, beta)) sol_vector = exp(sigma*t) * (C1*(cos(beta*t)*vector1 - sin(beta*t)*vector2) + \ C2*(sin(beta*t)*vector1 + cos(beta*t)*vector2)) gsol1.append((sol_vector[0], trigonometric_form)) gsol2.append((sol_vector[1], trigonometric_form)) # Final case is D == 0, a single eigenvalue. If the eigenspace is 2-dimensional # then we have a scalar matrix, deal with this case first. scalar_matrix = And(Eq(a, d), Eq(b, 0), Eq(c, 0)) vector1 = Matrix((S.One, S.Zero)) vector2 = Matrix((S.Zero, S.One)) sol_vector = exp(l1*t) * (C1*vector1 + C2*vector2) gsol1.append((sol_vector[0], scalar_matrix)) gsol2.append((sol_vector[1], scalar_matrix)) # Have one eigenvector. Get a generalized eigenvector from (A-lam)*vector2 = vector1 vector1 = Matrix((Piecewise((l1 - d, bad_ab_vector1), (b, True)), Piecewise((c, bad_ab_vector1), (l1 - a, True)))) vector2 = Matrix((Piecewise((S.One, bad_ab_vector1), (S.Zero, Eq(a, l1)), (b/(a - l1), True)), Piecewise((S.Zero, bad_ab_vector1), (S.One, Eq(a, l1)), (S.Zero, True)))) sol_vector = exp(l1*t) * (C1*vector1 + C2*(vector2 + t*vector1)) gsol1.append((sol_vector[0], equal_roots)) gsol2.append((sol_vector[1], equal_roots)) return [Eq(x(t), Piecewise(*gsol1)), Eq(y(t), Piecewise(*gsol2))] def _linear_2eq_order1_type2(x, y, t, r, eq): r""" The equations of this type are .. math:: x' = ax + by + k1 , y' = cx + dy + k2 The general solution of this system is given by sum of its particular solution and the general solution of the corresponding homogeneous system is obtained from type1. 1. When `ad - bc \neq 0`. The particular solution will be `x = x_0` and `y = y_0` where `x_0` and `y_0` are determined by solving linear system of equations .. math:: a x_0 + b y_0 + k1 = 0 , c x_0 + d y_0 + k2 = 0 2. When `ad - bc = 0` and `a^{2} + b^{2} > 0`. In this case, the system of equation becomes .. math:: x' = ax + by + k_1 , y' = k (ax + by) + k_2 2.1 If `\sigma = a + bk \neq 0`, particular solution is given by .. math:: x = b \sigma^{-1} (c_1 k - c_2) t - \sigma^{-2} (a c_1 + b c_2) .. math:: y = kx + (c_2 - c_1 k) t 2.2 If `\sigma = a + bk = 0`, particular solution is given by .. math:: x = \frac{1}{2} b (c_2 - c_1 k) t^{2} + c_1 t .. math:: y = kx + (c_2 - c_1 k) t """ r['k1'] = -r['k1']; r['k2'] = -r['k2'] if (r['a']*r['d'] - r['b']*r['c']) != 0: x0, y0 = symbols('x0, y0', cls=Dummy) sol = solve((r['a']*x0+r['b']*y0+r['k1'], r['c']*x0+r['d']*y0+r['k2']), x0, y0) psol = [sol[x0], sol[y0]] elif (r['a']*r['d'] - r['b']*r['c']) == 0 and (r['a']**2+r['b']**2) > 0: k = r['c']/r['a'] sigma = r['a'] + r['b']*k if sigma != 0: sol1 = r['b']*sigma**-1*(r['k1']*k-r['k2'])*t - sigma**-2*(r['a']*r['k1']+r['b']*r['k2']) sol2 = k*sol1 + (r['k2']-r['k1']*k)*t else: # FIXME: a previous typo fix shows this is not covered by tests sol1 = r['b']*(r['k2']-r['k1']*k)*t**2 + r['k1']*t sol2 = k*sol1 + (r['k2']-r['k1']*k)*t psol = [sol1, sol2] return psol def _linear_2eq_order1_type3(x, y, t, r, eq): r""" The equations of this type of ode are .. math:: x' = f(t) x + g(t) y .. math:: y' = g(t) x + f(t) y The solution of such equations is given by .. math:: x = e^{F} (C_1 e^{G} + C_2 e^{-G}) , y = e^{F} (C_1 e^{G} - C_2 e^{-G}) where `C_1` and `C_2` are arbitrary constants, and .. math:: F = \int f(t) \,dt , G = \int g(t) \,dt """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) F = Integral(r['a'], t) G = Integral(r['b'], t) sol1 = exp(F)*(C1*exp(G) + C2*exp(-G)) sol2 = exp(F)*(C1*exp(G) - C2*exp(-G)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order1_type4(x, y, t, r, eq): r""" The equations of this type of ode are . .. math:: x' = f(t) x + g(t) y .. math:: y' = -g(t) x + f(t) y The solution is given by .. math:: x = F (C_1 \cos(G) + C_2 \sin(G)), y = F (-C_1 \sin(G) + C_2 \cos(G)) where `C_1` and `C_2` are arbitrary constants, and .. math:: F = \int f(t) \,dt , G = \int g(t) \,dt """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) if r['b'] == -r['c']: F = exp(Integral(r['a'], t)) G = Integral(r['b'], t) sol1 = F*(C1*cos(G) + C2*sin(G)) sol2 = F*(-C1*sin(G) + C2*cos(G)) elif r['d'] == -r['a']: F = exp(Integral(r['c'], t)) G = Integral(r['d'], t) sol1 = F*(-C1*sin(G) + C2*cos(G)) sol2 = F*(C1*cos(G) + C2*sin(G)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order1_type5(x, y, t, r, eq): r""" The equations of this type of ode are . .. math:: x' = f(t) x + g(t) y .. math:: y' = a g(t) x + [f(t) + b g(t)] y The transformation of .. math:: x = e^{\int f(t) \,dt} u , y = e^{\int f(t) \,dt} v , T = \int g(t) \,dt leads to a system of constant coefficient linear differential equations .. math:: u'(T) = v , v'(T) = au + bv """ u, v = symbols('u, v', cls=Function) T = Symbol('T') if not cancel(r['c']/r['b']).has(t): p = cancel(r['c']/r['b']) q = cancel((r['d']-r['a'])/r['b']) eq = (Eq(diff(u(T),T), v(T)), Eq(diff(v(T),T), p*u(T)+q*v(T))) sol = dsolve(eq) sol1 = exp(Integral(r['a'], t))*sol[0].rhs.subs(T, Integral(r['b'], t)) sol2 = exp(Integral(r['a'], t))*sol[1].rhs.subs(T, Integral(r['b'], t)) if not cancel(r['a']/r['d']).has(t): p = cancel(r['a']/r['d']) q = cancel((r['b']-r['c'])/r['d']) sol = dsolve(Eq(diff(u(T),T), v(T)), Eq(diff(v(T),T), p*u(T)+q*v(T))) sol1 = exp(Integral(r['c'], t))*sol[1].rhs.subs(T, Integral(r['d'], t)) sol2 = exp(Integral(r['c'], t))*sol[0].rhs.subs(T, Integral(r['d'], t)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order1_type6(x, y, t, r, eq): r""" The equations of this type of ode are . .. math:: x' = f(t) x + g(t) y .. math:: y' = a [f(t) + a h(t)] x + a [g(t) - h(t)] y This is solved by first multiplying the first equation by `-a` and adding it to the second equation to obtain .. math:: y' - a x' = -a h(t) (y - a x) Setting `U = y - ax` and integrating the equation we arrive at .. math:: y - ax = C_1 e^{-a \int h(t) \,dt} and on substituting the value of y in first equation give rise to first order ODEs. After solving for `x`, we can obtain `y` by substituting the value of `x` in second equation. """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) p = 0 q = 0 p1 = cancel(r['c']/cancel(r['c']/r['d']).as_numer_denom()[0]) p2 = cancel(r['a']/cancel(r['a']/r['b']).as_numer_denom()[0]) for n, i in enumerate([p1, p2]): for j in Mul.make_args(collect_const(i)): if not j.has(t): q = j if q!=0 and n==0: if ((r['c']/j - r['a'])/(r['b'] - r['d']/j)) == j: p = 1 s = j break if q!=0 and n==1: if ((r['a']/j - r['c'])/(r['d'] - r['b']/j)) == j: p = 2 s = j break if p == 1: equ = diff(x(t),t) - r['a']*x(t) - r['b']*(s*x(t) + C1*exp(-s*Integral(r['b'] - r['d']/s, t))) hint1 = classify_ode(equ)[1] sol1 = dsolve(equ, hint=hint1+'_Integral').rhs sol2 = s*sol1 + C1*exp(-s*Integral(r['b'] - r['d']/s, t)) elif p ==2: equ = diff(y(t),t) - r['c']*y(t) - r['d']*s*y(t) + C1*exp(-s*Integral(r['d'] - r['b']/s, t)) hint1 = classify_ode(equ)[1] sol2 = dsolve(equ, hint=hint1+'_Integral').rhs sol1 = s*sol2 + C1*exp(-s*Integral(r['d'] - r['b']/s, t)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order1_type7(x, y, t, r, eq): r""" The equations of this type of ode are . .. math:: x' = f(t) x + g(t) y .. math:: y' = h(t) x + p(t) y Differentiating the first equation and substituting the value of `y` from second equation will give a second-order linear equation .. math:: g x'' - (fg + gp + g') x' + (fgp - g^{2} h + f g' - f' g) x = 0 This above equation can be easily integrated if following conditions are satisfied. 1. `fgp - g^{2} h + f g' - f' g = 0` 2. `fgp - g^{2} h + f g' - f' g = ag, fg + gp + g' = bg` If first condition is satisfied then it is solved by current dsolve solver and in second case it becomes a constant coefficient differential equation which is also solved by current solver. Otherwise if the above condition fails then, a particular solution is assumed as `x = x_0(t)` and `y = y_0(t)` Then the general solution is expressed as .. math:: x = C_1 x_0(t) + C_2 x_0(t) \int \frac{g(t) F(t) P(t)}{x_0^{2}(t)} \,dt .. math:: y = C_1 y_0(t) + C_2 [\frac{F(t) P(t)}{x_0(t)} + y_0(t) \int \frac{g(t) F(t) P(t)}{x_0^{2}(t)} \,dt] where C1 and C2 are arbitrary constants and .. math:: F(t) = e^{\int f(t) \,dt} , P(t) = e^{\int p(t) \,dt} """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) e1 = r['a']*r['b']*r['c'] - r['b']**2*r['c'] + r['a']*diff(r['b'],t) - diff(r['a'],t)*r['b'] e2 = r['a']*r['c']*r['d'] - r['b']*r['c']**2 + diff(r['c'],t)*r['d'] - r['c']*diff(r['d'],t) m1 = r['a']*r['b'] + r['b']*r['d'] + diff(r['b'],t) m2 = r['a']*r['c'] + r['c']*r['d'] + diff(r['c'],t) if e1 == 0: sol1 = dsolve(r['b']*diff(x(t),t,t) - m1*diff(x(t),t)).rhs sol2 = dsolve(diff(y(t),t) - r['c']*sol1 - r['d']*y(t)).rhs elif e2 == 0: sol2 = dsolve(r['c']*diff(y(t),t,t) - m2*diff(y(t),t)).rhs sol1 = dsolve(diff(x(t),t) - r['a']*x(t) - r['b']*sol2).rhs elif not (e1/r['b']).has(t) and not (m1/r['b']).has(t): sol1 = dsolve(diff(x(t),t,t) - (m1/r['b'])*diff(x(t),t) - (e1/r['b'])*x(t)).rhs sol2 = dsolve(diff(y(t),t) - r['c']*sol1 - r['d']*y(t)).rhs elif not (e2/r['c']).has(t) and not (m2/r['c']).has(t): sol2 = dsolve(diff(y(t),t,t) - (m2/r['c'])*diff(y(t),t) - (e2/r['c'])*y(t)).rhs sol1 = dsolve(diff(x(t),t) - r['a']*x(t) - r['b']*sol2).rhs else: x0 = Function('x0')(t) # x0 and y0 being particular solutions y0 = Function('y0')(t) F = exp(Integral(r['a'],t)) P = exp(Integral(r['d'],t)) sol1 = C1*x0 + C2*x0*Integral(r['b']*F*P/x0**2, t) sol2 = C1*y0 + C2*(F*P/x0 + y0*Integral(r['b']*F*P/x0**2, t)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def sysode_linear_2eq_order2(match_): x = match_['func'][0].func y = match_['func'][1].func func = match_['func'] fc = match_['func_coeff'] eq = match_['eq'] r = dict() t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] for i in range(2): eqs = [] for terms in Add.make_args(eq[i]): eqs.append(terms/fc[i,func[i],2]) eq[i] = Add(*eqs) # for equations Eq(diff(x(t),t,t), a1*diff(x(t),t)+b1*diff(y(t),t)+c1*x(t)+d1*y(t)+e1) # and Eq(a2*diff(y(t),t,t), a2*diff(x(t),t)+b2*diff(y(t),t)+c2*x(t)+d2*y(t)+e2) r['a1'] = -fc[0,x(t),1]/fc[0,x(t),2] ; r['a2'] = -fc[1,x(t),1]/fc[1,y(t),2] r['b1'] = -fc[0,y(t),1]/fc[0,x(t),2] ; r['b2'] = -fc[1,y(t),1]/fc[1,y(t),2] r['c1'] = -fc[0,x(t),0]/fc[0,x(t),2] ; r['c2'] = -fc[1,x(t),0]/fc[1,y(t),2] r['d1'] = -fc[0,y(t),0]/fc[0,x(t),2] ; r['d2'] = -fc[1,y(t),0]/fc[1,y(t),2] const = [S.Zero, S.Zero] for i in range(2): for j in Add.make_args(eq[i]): if not (j.has(x(t)) or j.has(y(t))): const[i] += j r['e1'] = -const[0] r['e2'] = -const[1] if match_['type_of_equation'] == 'type1': sol = _linear_2eq_order2_type1(x, y, t, r, eq) elif match_['type_of_equation'] == 'type2': gsol = _linear_2eq_order2_type1(x, y, t, r, eq) psol = _linear_2eq_order2_type2(x, y, t, r, eq) sol = [Eq(x(t), gsol[0].rhs+psol[0]), Eq(y(t), gsol[1].rhs+psol[1])] elif match_['type_of_equation'] == 'type3': sol = _linear_2eq_order2_type3(x, y, t, r, eq) elif match_['type_of_equation'] == 'type4': sol = _linear_2eq_order2_type4(x, y, t, r, eq) elif match_['type_of_equation'] == 'type5': sol = _linear_2eq_order2_type5(x, y, t, r, eq) elif match_['type_of_equation'] == 'type6': sol = _linear_2eq_order2_type6(x, y, t, r, eq) elif match_['type_of_equation'] == 'type7': sol = _linear_2eq_order2_type7(x, y, t, r, eq) elif match_['type_of_equation'] == 'type8': sol = _linear_2eq_order2_type8(x, y, t, r, eq) elif match_['type_of_equation'] == 'type9': sol = _linear_2eq_order2_type9(x, y, t, r, eq) elif match_['type_of_equation'] == 'type10': sol = _linear_2eq_order2_type10(x, y, t, r, eq) elif match_['type_of_equation'] == 'type11': sol = _linear_2eq_order2_type11(x, y, t, r, eq) return sol def _linear_2eq_order2_type1(x, y, t, r, eq): r""" System of two constant-coefficient second-order linear homogeneous differential equations .. math:: x'' = ax + by .. math:: y'' = cx + dy The characteristic equation for above equations .. math:: \lambda^4 - (a + d) \lambda^2 + ad - bc = 0 whose discriminant is `D = (a - d)^2 + 4bc \neq 0` 1. When `ad - bc \neq 0` 1.1. If `D \neq 0`. The characteristic equation has four distinct roots, `\lambda_1, \lambda_2, \lambda_3, \lambda_4`. The general solution of the system is .. math:: x = C_1 b e^{\lambda_1 t} + C_2 b e^{\lambda_2 t} + C_3 b e^{\lambda_3 t} + C_4 b e^{\lambda_4 t} .. math:: y = C_1 (\lambda_1^{2} - a) e^{\lambda_1 t} + C_2 (\lambda_2^{2} - a) e^{\lambda_2 t} + C_3 (\lambda_3^{2} - a) e^{\lambda_3 t} + C_4 (\lambda_4^{2} - a) e^{\lambda_4 t} where `C_1,..., C_4` are arbitrary constants. 1.2. If `D = 0` and `a \neq d`: .. math:: x = 2 C_1 (bt + \frac{2bk}{a - d}) e^{\frac{kt}{2}} + 2 C_2 (bt + \frac{2bk}{a - d}) e^{\frac{-kt}{2}} + 2b C_3 t e^{\frac{kt}{2}} + 2b C_4 t e^{\frac{-kt}{2}} .. math:: y = C_1 (d - a) t e^{\frac{kt}{2}} + C_2 (d - a) t e^{\frac{-kt}{2}} + C_3 [(d - a) t + 2k] e^{\frac{kt}{2}} + C_4 [(d - a) t - 2k] e^{\frac{-kt}{2}} where `C_1,..., C_4` are arbitrary constants and `k = \sqrt{2 (a + d)}` 1.3. If `D = 0` and `a = d \neq 0` and `b = 0`: .. math:: x = 2 \sqrt{a} C_1 e^{\sqrt{a} t} + 2 \sqrt{a} C_2 e^{-\sqrt{a} t} .. math:: y = c C_1 t e^{\sqrt{a} t} - c C_2 t e^{-\sqrt{a} t} + C_3 e^{\sqrt{a} t} + C_4 e^{-\sqrt{a} t} 1.4. If `D = 0` and `a = d \neq 0` and `c = 0`: .. math:: x = b C_1 t e^{\sqrt{a} t} - b C_2 t e^{-\sqrt{a} t} + C_3 e^{\sqrt{a} t} + C_4 e^{-\sqrt{a} t} .. math:: y = 2 \sqrt{a} C_1 e^{\sqrt{a} t} + 2 \sqrt{a} C_2 e^{-\sqrt{a} t} 2. When `ad - bc = 0` and `a^2 + b^2 > 0`. Then the original system becomes .. math:: x'' = ax + by .. math:: y'' = k (ax + by) 2.1. If `a + bk \neq 0`: .. math:: x = C_1 e^{t \sqrt{a + bk}} + C_2 e^{-t \sqrt{a + bk}} + C_3 bt + C_4 b .. math:: y = C_1 k e^{t \sqrt{a + bk}} + C_2 k e^{-t \sqrt{a + bk}} - C_3 at - C_4 a 2.2. If `a + bk = 0`: .. math:: x = C_1 b t^3 + C_2 b t^2 + C_3 t + C_4 .. math:: y = kx + 6 C_1 t + 2 C_2 """ r['a'] = r['c1'] r['b'] = r['d1'] r['c'] = r['c2'] r['d'] = r['d2'] l = Symbol('l') C1, C2, C3, C4 = get_numbered_constants(eq, num=4) chara_eq = l**4 - (r['a']+r['d'])*l**2 + r['a']*r['d'] - r['b']*r['c'] l1 = rootof(chara_eq, 0) l2 = rootof(chara_eq, 1) l3 = rootof(chara_eq, 2) l4 = rootof(chara_eq, 3) D = (r['a'] - r['d'])**2 + 4*r['b']*r['c'] if (r['a']*r['d'] - r['b']*r['c']) != 0: if D != 0: gsol1 = C1*r['b']*exp(l1*t) + C2*r['b']*exp(l2*t) + C3*r['b']*exp(l3*t) \ + C4*r['b']*exp(l4*t) gsol2 = C1*(l1**2-r['a'])*exp(l1*t) + C2*(l2**2-r['a'])*exp(l2*t) + \ C3*(l3**2-r['a'])*exp(l3*t) + C4*(l4**2-r['a'])*exp(l4*t) else: if r['a'] != r['d']: k = sqrt(2*(r['a']+r['d'])) mid = r['b']*t+2*r['b']*k/(r['a']-r['d']) gsol1 = 2*C1*mid*exp(k*t/2) + 2*C2*mid*exp(-k*t/2) + \ 2*r['b']*C3*t*exp(k*t/2) + 2*r['b']*C4*t*exp(-k*t/2) gsol2 = C1*(r['d']-r['a'])*t*exp(k*t/2) + C2*(r['d']-r['a'])*t*exp(-k*t/2) + \ C3*((r['d']-r['a'])*t+2*k)*exp(k*t/2) + C4*((r['d']-r['a'])*t-2*k)*exp(-k*t/2) elif r['a'] == r['d'] != 0 and r['b'] == 0: sa = sqrt(r['a']) gsol1 = 2*sa*C1*exp(sa*t) + 2*sa*C2*exp(-sa*t) gsol2 = r['c']*C1*t*exp(sa*t)-r['c']*C2*t*exp(-sa*t)+C3*exp(sa*t)+C4*exp(-sa*t) elif r['a'] == r['d'] != 0 and r['c'] == 0: sa = sqrt(r['a']) gsol1 = r['b']*C1*t*exp(sa*t)-r['b']*C2*t*exp(-sa*t)+C3*exp(sa*t)+C4*exp(-sa*t) gsol2 = 2*sa*C1*exp(sa*t) + 2*sa*C2*exp(-sa*t) elif (r['a']*r['d'] - r['b']*r['c']) == 0 and (r['a']**2 + r['b']**2) > 0: k = r['c']/r['a'] if r['a'] + r['b']*k != 0: mid = sqrt(r['a'] + r['b']*k) gsol1 = C1*exp(mid*t) + C2*exp(-mid*t) + C3*r['b']*t + C4*r['b'] gsol2 = C1*k*exp(mid*t) + C2*k*exp(-mid*t) - C3*r['a']*t - C4*r['a'] else: gsol1 = C1*r['b']*t**3 + C2*r['b']*t**2 + C3*t + C4 gsol2 = k*gsol1 + 6*C1*t + 2*C2 return [Eq(x(t), gsol1), Eq(y(t), gsol2)] def _linear_2eq_order2_type2(x, y, t, r, eq): r""" The equations in this type are .. math:: x'' = a_1 x + b_1 y + c_1 .. math:: y'' = a_2 x + b_2 y + c_2 The general solution of this system is given by the sum of its particular solution and the general solution of the homogeneous system. The general solution is given by the linear system of 2 equation of order 2 and type 1 1. If `a_1 b_2 - a_2 b_1 \neq 0`. A particular solution will be `x = x_0` and `y = y_0` where the constants `x_0` and `y_0` are determined by solving the linear algebraic system .. math:: a_1 x_0 + b_1 y_0 + c_1 = 0, a_2 x_0 + b_2 y_0 + c_2 = 0 2. If `a_1 b_2 - a_2 b_1 = 0` and `a_1^2 + b_1^2 > 0`. In this case, the system in question becomes .. math:: x'' = ax + by + c_1, y'' = k (ax + by) + c_2 2.1. If `\sigma = a + bk \neq 0`, the particular solution will be .. math:: x = \frac{1}{2} b \sigma^{-1} (c_1 k - c_2) t^2 - \sigma^{-2} (a c_1 + b c_2) .. math:: y = kx + \frac{1}{2} (c_2 - c_1 k) t^2 2.2. If `\sigma = a + bk = 0`, the particular solution will be .. math:: x = \frac{1}{24} b (c_2 - c_1 k) t^4 + \frac{1}{2} c_1 t^2 .. math:: y = kx + \frac{1}{2} (c_2 - c_1 k) t^2 """ x0, y0 = symbols('x0, y0') if r['c1']*r['d2'] - r['c2']*r['d1'] != 0: sol = solve((r['c1']*x0+r['d1']*y0+r['e1'], r['c2']*x0+r['d2']*y0+r['e2']), x0, y0) psol = [sol[x0], sol[y0]] elif r['c1']*r['d2'] - r['c2']*r['d1'] == 0 and (r['c1']**2 + r['d1']**2) > 0: k = r['c2']/r['c1'] sig = r['c1'] + r['d1']*k if sig != 0: psol1 = r['d1']*sig**-1*(r['e1']*k-r['e2'])*t**2/2 - \ sig**-2*(r['c1']*r['e1']+r['d1']*r['e2']) psol2 = k*psol1 + (r['e2'] - r['e1']*k)*t**2/2 psol = [psol1, psol2] else: psol1 = r['d1']*(r['e2']-r['e1']*k)*t**4/24 + r['e1']*t**2/2 psol2 = k*psol1 + (r['e2']-r['e1']*k)*t**2/2 psol = [psol1, psol2] return psol def _linear_2eq_order2_type3(x, y, t, r, eq): r""" These type of equation is used for describing the horizontal motion of a pendulum taking into account the Earth rotation. The solution is given with `a^2 + 4b > 0`: .. math:: x = C_1 \cos(\alpha t) + C_2 \sin(\alpha t) + C_3 \cos(\beta t) + C_4 \sin(\beta t) .. math:: y = -C_1 \sin(\alpha t) + C_2 \cos(\alpha t) - C_3 \sin(\beta t) + C_4 \cos(\beta t) where `C_1,...,C_4` and .. math:: \alpha = \frac{1}{2} a + \frac{1}{2} \sqrt{a^2 + 4b}, \beta = \frac{1}{2} a - \frac{1}{2} \sqrt{a^2 + 4b} """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) if r['b1']**2 - 4*r['c1'] > 0: r['a'] = r['b1'] ; r['b'] = -r['c1'] alpha = r['a']/2 + sqrt(r['a']**2 + 4*r['b'])/2 beta = r['a']/2 - sqrt(r['a']**2 + 4*r['b'])/2 sol1 = C1*cos(alpha*t) + C2*sin(alpha*t) + C3*cos(beta*t) + C4*sin(beta*t) sol2 = -C1*sin(alpha*t) + C2*cos(alpha*t) - C3*sin(beta*t) + C4*cos(beta*t) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order2_type4(x, y, t, r, eq): r""" These equations are found in the theory of oscillations .. math:: x'' + a_1 x' + b_1 y' + c_1 x + d_1 y = k_1 e^{i \omega t} .. math:: y'' + a_2 x' + b_2 y' + c_2 x + d_2 y = k_2 e^{i \omega t} The general solution of this linear nonhomogeneous system of constant-coefficient differential equations is given by the sum of its particular solution and the general solution of the corresponding homogeneous system (with `k_1 = k_2 = 0`) 1. A particular solution is obtained by the method of undetermined coefficients: .. math:: x = A_* e^{i \omega t}, y = B_* e^{i \omega t} On substituting these expressions into the original system of differential equations, one arrive at a linear nonhomogeneous system of algebraic equations for the coefficients `A` and `B`. 2. The general solution of the homogeneous system of differential equations is determined by a linear combination of linearly independent particular solutions determined by the method of undetermined coefficients in the form of exponentials: .. math:: x = A e^{\lambda t}, y = B e^{\lambda t} On substituting these expressions into the original system and collecting the coefficients of the unknown `A` and `B`, one obtains .. math:: (\lambda^{2} + a_1 \lambda + c_1) A + (b_1 \lambda + d_1) B = 0 .. math:: (a_2 \lambda + c_2) A + (\lambda^{2} + b_2 \lambda + d_2) B = 0 The determinant of this system must vanish for nontrivial solutions A, B to exist. This requirement results in the following characteristic equation for `\lambda` .. math:: (\lambda^2 + a_1 \lambda + c_1) (\lambda^2 + b_2 \lambda + d_2) - (b_1 \lambda + d_1) (a_2 \lambda + c_2) = 0 If all roots `k_1,...,k_4` of this equation are distinct, the general solution of the original system of the differential equations has the form .. math:: x = C_1 (b_1 \lambda_1 + d_1) e^{\lambda_1 t} - C_2 (b_1 \lambda_2 + d_1) e^{\lambda_2 t} - C_3 (b_1 \lambda_3 + d_1) e^{\lambda_3 t} - C_4 (b_1 \lambda_4 + d_1) e^{\lambda_4 t} .. math:: y = C_1 (\lambda_1^{2} + a_1 \lambda_1 + c_1) e^{\lambda_1 t} + C_2 (\lambda_2^{2} + a_1 \lambda_2 + c_1) e^{\lambda_2 t} + C_3 (\lambda_3^{2} + a_1 \lambda_3 + c_1) e^{\lambda_3 t} + C_4 (\lambda_4^{2} + a_1 \lambda_4 + c_1) e^{\lambda_4 t} """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) k = Symbol('k') Ra, Ca, Rb, Cb = symbols('Ra, Ca, Rb, Cb') a1 = r['a1'] ; a2 = r['a2'] b1 = r['b1'] ; b2 = r['b2'] c1 = r['c1'] ; c2 = r['c2'] d1 = r['d1'] ; d2 = r['d2'] k1 = r['e1'].expand().as_independent(t)[0] k2 = r['e2'].expand().as_independent(t)[0] ew1 = r['e1'].expand().as_independent(t)[1] ew2 = powdenest(ew1).as_base_exp()[1] ew3 = collect(ew2, t).coeff(t) w = cancel(ew3/I) # The particular solution is assumed to be (Ra+I*Ca)*exp(I*w*t) and # (Rb+I*Cb)*exp(I*w*t) for x(t) and y(t) respectively # peq1, peq2, peq3, peq4 unused # peq1 = (-w**2+c1)*Ra - a1*w*Ca + d1*Rb - b1*w*Cb - k1 # peq2 = a1*w*Ra + (-w**2+c1)*Ca + b1*w*Rb + d1*Cb # peq3 = c2*Ra - a2*w*Ca + (-w**2+d2)*Rb - b2*w*Cb - k2 # peq4 = a2*w*Ra + c2*Ca + b2*w*Rb + (-w**2+d2)*Cb # FIXME: solve for what in what? Ra, Rb, etc I guess # but then psol not used for anything? # psol = solve([peq1, peq2, peq3, peq4]) chareq = (k**2+a1*k+c1)*(k**2+b2*k+d2) - (b1*k+d1)*(a2*k+c2) [k1, k2, k3, k4] = roots_quartic(Poly(chareq)) sol1 = -C1*(b1*k1+d1)*exp(k1*t) - C2*(b1*k2+d1)*exp(k2*t) - \ C3*(b1*k3+d1)*exp(k3*t) - C4*(b1*k4+d1)*exp(k4*t) + (Ra+I*Ca)*exp(I*w*t) a1_ = (a1-1) sol2 = C1*(k1**2+a1_*k1+c1)*exp(k1*t) + C2*(k2**2+a1_*k2+c1)*exp(k2*t) + \ C3*(k3**2+a1_*k3+c1)*exp(k3*t) + C4*(k4**2+a1_*k4+c1)*exp(k4*t) + (Rb+I*Cb)*exp(I*w*t) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order2_type5(x, y, t, r, eq): r""" The equation which come under this category are .. math:: x'' = a (t y' - y) .. math:: y'' = b (t x' - x) The transformation .. math:: u = t x' - x, b = t y' - y leads to the first-order system .. math:: u' = atv, v' = btu The general solution of this system is given by If `ab > 0`: .. math:: u = C_1 a e^{\frac{1}{2} \sqrt{ab} t^2} + C_2 a e^{-\frac{1}{2} \sqrt{ab} t^2} .. math:: v = C_1 \sqrt{ab} e^{\frac{1}{2} \sqrt{ab} t^2} - C_2 \sqrt{ab} e^{-\frac{1}{2} \sqrt{ab} t^2} If `ab < 0`: .. math:: u = C_1 a \cos(\frac{1}{2} \sqrt{\left|ab\right|} t^2) + C_2 a \sin(-\frac{1}{2} \sqrt{\left|ab\right|} t^2) .. math:: v = C_1 \sqrt{\left|ab\right|} \sin(\frac{1}{2} \sqrt{\left|ab\right|} t^2) + C_2 \sqrt{\left|ab\right|} \cos(-\frac{1}{2} \sqrt{\left|ab\right|} t^2) where `C_1` and `C_2` are arbitrary constants. On substituting the value of `u` and `v` in above equations and integrating the resulting expressions, the general solution will become .. math:: x = C_3 t + t \int \frac{u}{t^2} \,dt, y = C_4 t + t \int \frac{u}{t^2} \,dt where `C_3` and `C_4` are arbitrary constants. """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) r['a'] = -r['d1'] ; r['b'] = -r['c2'] mul = sqrt(abs(r['a']*r['b'])) if r['a']*r['b'] > 0: u = C1*r['a']*exp(mul*t**2/2) + C2*r['a']*exp(-mul*t**2/2) v = C1*mul*exp(mul*t**2/2) - C2*mul*exp(-mul*t**2/2) else: u = C1*r['a']*cos(mul*t**2/2) + C2*r['a']*sin(mul*t**2/2) v = -C1*mul*sin(mul*t**2/2) + C2*mul*cos(mul*t**2/2) sol1 = C3*t + t*Integral(u/t**2, t) sol2 = C4*t + t*Integral(v/t**2, t) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order2_type6(x, y, t, r, eq): r""" The equations are .. math:: x'' = f(t) (a_1 x + b_1 y) .. math:: y'' = f(t) (a_2 x + b_2 y) If `k_1` and `k_2` are roots of the quadratic equation .. math:: k^2 - (a_1 + b_2) k + a_1 b_2 - a_2 b_1 = 0 Then by multiplying appropriate constants and adding together original equations we obtain two independent equations: .. math:: z_1'' = k_1 f(t) z_1, z_1 = a_2 x + (k_1 - a_1) y .. math:: z_2'' = k_2 f(t) z_2, z_2 = a_2 x + (k_2 - a_1) y Solving the equations will give the values of `x` and `y` after obtaining the value of `z_1` and `z_2` by solving the differential equation and substituting the result. """ k = Symbol('k') z = Function('z') num, den = cancel( (r['c1']*x(t) + r['d1']*y(t))/ (r['c2']*x(t) + r['d2']*y(t))).as_numer_denom() f = r['c1']/num.coeff(x(t)) a1 = num.coeff(x(t)) b1 = num.coeff(y(t)) a2 = den.coeff(x(t)) b2 = den.coeff(y(t)) chareq = k**2 - (a1 + b2)*k + a1*b2 - a2*b1 k1, k2 = [rootof(chareq, k) for k in range(Poly(chareq).degree())] z1 = dsolve(diff(z(t),t,t) - k1*f*z(t)).rhs z2 = dsolve(diff(z(t),t,t) - k2*f*z(t)).rhs sol1 = (k1*z2 - k2*z1 + a1*(z1 - z2))/(a2*(k1-k2)) sol2 = (z1 - z2)/(k1 - k2) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order2_type7(x, y, t, r, eq): r""" The equations are given as .. math:: x'' = f(t) (a_1 x' + b_1 y') .. math:: y'' = f(t) (a_2 x' + b_2 y') If `k_1` and 'k_2` are roots of the quadratic equation .. math:: k^2 - (a_1 + b_2) k + a_1 b_2 - a_2 b_1 = 0 Then the system can be reduced by adding together the two equations multiplied by appropriate constants give following two independent equations: .. math:: z_1'' = k_1 f(t) z_1', z_1 = a_2 x + (k_1 - a_1) y .. math:: z_2'' = k_2 f(t) z_2', z_2 = a_2 x + (k_2 - a_1) y Integrating these and returning to the original variables, one arrives at a linear algebraic system for the unknowns `x` and `y`: .. math:: a_2 x + (k_1 - a_1) y = C_1 \int e^{k_1 F(t)} \,dt + C_2 .. math:: a_2 x + (k_2 - a_1) y = C_3 \int e^{k_2 F(t)} \,dt + C_4 where `C_1,...,C_4` are arbitrary constants and `F(t) = \int f(t) \,dt` """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) k = Symbol('k') num, den = cancel( (r['a1']*x(t) + r['b1']*y(t))/ (r['a2']*x(t) + r['b2']*y(t))).as_numer_denom() f = r['a1']/num.coeff(x(t)) a1 = num.coeff(x(t)) b1 = num.coeff(y(t)) a2 = den.coeff(x(t)) b2 = den.coeff(y(t)) chareq = k**2 - (a1 + b2)*k + a1*b2 - a2*b1 [k1, k2] = [rootof(chareq, k) for k in range(Poly(chareq).degree())] F = Integral(f, t) z1 = C1*Integral(exp(k1*F), t) + C2 z2 = C3*Integral(exp(k2*F), t) + C4 sol1 = (k1*z2 - k2*z1 + a1*(z1 - z2))/(a2*(k1-k2)) sol2 = (z1 - z2)/(k1 - k2) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order2_type8(x, y, t, r, eq): r""" The equation of this category are .. math:: x'' = a f(t) (t y' - y) .. math:: y'' = b f(t) (t x' - x) The transformation .. math:: u = t x' - x, v = t y' - y leads to the system of first-order equations .. math:: u' = a t f(t) v, v' = b t f(t) u The general solution of this system has the form If `ab > 0`: .. math:: u = C_1 a e^{\sqrt{ab} \int t f(t) \,dt} + C_2 a e^{-\sqrt{ab} \int t f(t) \,dt} .. math:: v = C_1 \sqrt{ab} e^{\sqrt{ab} \int t f(t) \,dt} - C_2 \sqrt{ab} e^{-\sqrt{ab} \int t f(t) \,dt} If `ab < 0`: .. math:: u = C_1 a \cos(\sqrt{\left|ab\right|} \int t f(t) \,dt) + C_2 a \sin(-\sqrt{\left|ab\right|} \int t f(t) \,dt) .. math:: v = C_1 \sqrt{\left|ab\right|} \sin(\sqrt{\left|ab\right|} \int t f(t) \,dt) + C_2 \sqrt{\left|ab\right|} \cos(-\sqrt{\left|ab\right|} \int t f(t) \,dt) where `C_1` and `C_2` are arbitrary constants. On substituting the value of `u` and `v` in above equations and integrating the resulting expressions, the general solution will become .. math:: x = C_3 t + t \int \frac{u}{t^2} \,dt, y = C_4 t + t \int \frac{u}{t^2} \,dt where `C_3` and `C_4` are arbitrary constants. """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) num, den = cancel(r['d1']/r['c2']).as_numer_denom() f = -r['d1']/num a = num b = den mul = sqrt(abs(a*b)) Igral = Integral(t*f, t) if a*b > 0: u = C1*a*exp(mul*Igral) + C2*a*exp(-mul*Igral) v = C1*mul*exp(mul*Igral) - C2*mul*exp(-mul*Igral) else: u = C1*a*cos(mul*Igral) + C2*a*sin(mul*Igral) v = -C1*mul*sin(mul*Igral) + C2*mul*cos(mul*Igral) sol1 = C3*t + t*Integral(u/t**2, t) sol2 = C4*t + t*Integral(v/t**2, t) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order2_type9(x, y, t, r, eq): r""" .. math:: t^2 x'' + a_1 t x' + b_1 t y' + c_1 x + d_1 y = 0 .. math:: t^2 y'' + a_2 t x' + b_2 t y' + c_2 x + d_2 y = 0 These system of equations are euler type. The substitution of `t = \sigma e^{\tau} (\sigma \neq 0)` leads to the system of constant coefficient linear differential equations .. math:: x'' + (a_1 - 1) x' + b_1 y' + c_1 x + d_1 y = 0 .. math:: y'' + a_2 x' + (b_2 - 1) y' + c_2 x + d_2 y = 0 The general solution of the homogeneous system of differential equations is determined by a linear combination of linearly independent particular solutions determined by the method of undetermined coefficients in the form of exponentials .. math:: x = A e^{\lambda t}, y = B e^{\lambda t} On substituting these expressions into the original system and collecting the coefficients of the unknown `A` and `B`, one obtains .. math:: (\lambda^{2} + (a_1 - 1) \lambda + c_1) A + (b_1 \lambda + d_1) B = 0 .. math:: (a_2 \lambda + c_2) A + (\lambda^{2} + (b_2 - 1) \lambda + d_2) B = 0 The determinant of this system must vanish for nontrivial solutions A, B to exist. This requirement results in the following characteristic equation for `\lambda` .. math:: (\lambda^2 + (a_1 - 1) \lambda + c_1) (\lambda^2 + (b_2 - 1) \lambda + d_2) - (b_1 \lambda + d_1) (a_2 \lambda + c_2) = 0 If all roots `k_1,...,k_4` of this equation are distinct, the general solution of the original system of the differential equations has the form .. math:: x = C_1 (b_1 \lambda_1 + d_1) e^{\lambda_1 t} - C_2 (b_1 \lambda_2 + d_1) e^{\lambda_2 t} - C_3 (b_1 \lambda_3 + d_1) e^{\lambda_3 t} - C_4 (b_1 \lambda_4 + d_1) e^{\lambda_4 t} .. math:: y = C_1 (\lambda_1^{2} + (a_1 - 1) \lambda_1 + c_1) e^{\lambda_1 t} + C_2 (\lambda_2^{2} + (a_1 - 1) \lambda_2 + c_1) e^{\lambda_2 t} + C_3 (\lambda_3^{2} + (a_1 - 1) \lambda_3 + c_1) e^{\lambda_3 t} + C_4 (\lambda_4^{2} + (a_1 - 1) \lambda_4 + c_1) e^{\lambda_4 t} """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) k = Symbol('k') a1 = -r['a1']*t; a2 = -r['a2']*t b1 = -r['b1']*t; b2 = -r['b2']*t c1 = -r['c1']*t**2; c2 = -r['c2']*t**2 d1 = -r['d1']*t**2; d2 = -r['d2']*t**2 eq = (k**2+(a1-1)*k+c1)*(k**2+(b2-1)*k+d2)-(b1*k+d1)*(a2*k+c2) [k1, k2, k3, k4] = roots_quartic(Poly(eq)) sol1 = -C1*(b1*k1+d1)*exp(k1*log(t)) - C2*(b1*k2+d1)*exp(k2*log(t)) - \ C3*(b1*k3+d1)*exp(k3*log(t)) - C4*(b1*k4+d1)*exp(k4*log(t)) a1_ = (a1-1) sol2 = C1*(k1**2+a1_*k1+c1)*exp(k1*log(t)) + C2*(k2**2+a1_*k2+c1)*exp(k2*log(t)) \ + C3*(k3**2+a1_*k3+c1)*exp(k3*log(t)) + C4*(k4**2+a1_*k4+c1)*exp(k4*log(t)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order2_type10(x, y, t, r, eq): r""" The equation of this category are .. math:: (\alpha t^2 + \beta t + \gamma)^{2} x'' = ax + by .. math:: (\alpha t^2 + \beta t + \gamma)^{2} y'' = cx + dy The transformation .. math:: \tau = \int \frac{1}{\alpha t^2 + \beta t + \gamma} \,dt , u = \frac{x}{\sqrt{\left|\alpha t^2 + \beta t + \gamma\right|}} , v = \frac{y}{\sqrt{\left|\alpha t^2 + \beta t + \gamma\right|}} leads to a constant coefficient linear system of equations .. math:: u'' = (a - \alpha \gamma + \frac{1}{4} \beta^{2}) u + b v .. math:: v'' = c u + (d - \alpha \gamma + \frac{1}{4} \beta^{2}) v These system of equations obtained can be solved by type1 of System of two constant-coefficient second-order linear homogeneous differential equations. """ u, v = symbols('u, v', cls=Function) assert False p = Wild('p', exclude=[t, t**2]) q = Wild('q', exclude=[t, t**2]) s = Wild('s', exclude=[t, t**2]) n = Wild('n', exclude=[t, t**2]) num, den = r['c1'].as_numer_denom() dic = den.match((n*(p*t**2+q*t+s)**2).expand()) eqz = dic[p]*t**2 + dic[q]*t + dic[s] a = num/dic[n] b = cancel(r['d1']*eqz**2) c = cancel(r['c2']*eqz**2) d = cancel(r['d2']*eqz**2) [msol1, msol2] = dsolve([Eq(diff(u(t), t, t), (a - dic[p]*dic[s] + dic[q]**2/4)*u(t) \ + b*v(t)), Eq(diff(v(t),t,t), c*u(t) + (d - dic[p]*dic[s] + dic[q]**2/4)*v(t))]) sol1 = (msol1.rhs*sqrt(abs(eqz))).subs(t, Integral(1/eqz, t)) sol2 = (msol2.rhs*sqrt(abs(eqz))).subs(t, Integral(1/eqz, t)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order2_type11(x, y, t, r, eq): r""" The equations which comes under this type are .. math:: x'' = f(t) (t x' - x) + g(t) (t y' - y) .. math:: y'' = h(t) (t x' - x) + p(t) (t y' - y) The transformation .. math:: u = t x' - x, v = t y' - y leads to the linear system of first-order equations .. math:: u' = t f(t) u + t g(t) v, v' = t h(t) u + t p(t) v On substituting the value of `u` and `v` in transformed equation gives value of `x` and `y` as .. math:: x = C_3 t + t \int \frac{u}{t^2} \,dt , y = C_4 t + t \int \frac{v}{t^2} \,dt. where `C_3` and `C_4` are arbitrary constants. """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) u, v = symbols('u, v', cls=Function) f = -r['c1'] ; g = -r['d1'] h = -r['c2'] ; p = -r['d2'] [msol1, msol2] = dsolve([Eq(diff(u(t),t), t*f*u(t) + t*g*v(t)), Eq(diff(v(t),t), t*h*u(t) + t*p*v(t))]) sol1 = C3*t + t*Integral(msol1.rhs/t**2, t) sol2 = C4*t + t*Integral(msol2.rhs/t**2, t) return [Eq(x(t), sol1), Eq(y(t), sol2)] def sysode_linear_3eq_order1(match_): x = match_['func'][0].func y = match_['func'][1].func z = match_['func'][2].func func = match_['func'] fc = match_['func_coeff'] eq = match_['eq'] r = dict() t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] for i in range(3): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs # for equations: # Eq(g1*diff(x(t),t), a1*x(t)+b1*y(t)+c1*z(t)+d1), # Eq(g2*diff(y(t),t), a2*x(t)+b2*y(t)+c2*z(t)+d2), and # Eq(g3*diff(z(t),t), a3*x(t)+b3*y(t)+c3*z(t)+d3) r['a1'] = fc[0,x(t),0]/fc[0,x(t),1]; r['a2'] = fc[1,x(t),0]/fc[1,y(t),1]; r['a3'] = fc[2,x(t),0]/fc[2,z(t),1] r['b1'] = fc[0,y(t),0]/fc[0,x(t),1]; r['b2'] = fc[1,y(t),0]/fc[1,y(t),1]; r['b3'] = fc[2,y(t),0]/fc[2,z(t),1] r['c1'] = fc[0,z(t),0]/fc[0,x(t),1]; r['c2'] = fc[1,z(t),0]/fc[1,y(t),1]; r['c3'] = fc[2,z(t),0]/fc[2,z(t),1] for i in range(3): for j in Add.make_args(eq[i]): if not j.has(x(t), y(t), z(t)): raise NotImplementedError("Only homogeneous problems are supported, non-homogeneous are not supported currently.") if match_['type_of_equation'] == 'type1': sol = _linear_3eq_order1_type1(x, y, z, t, r, eq) if match_['type_of_equation'] == 'type2': sol = _linear_3eq_order1_type2(x, y, z, t, r, eq) if match_['type_of_equation'] == 'type3': sol = _linear_3eq_order1_type3(x, y, z, t, r, eq) if match_['type_of_equation'] == 'type4': sol = _linear_3eq_order1_type4(x, y, z, t, r, eq) if match_['type_of_equation'] == 'type6': sol = _linear_neq_order1_type1(match_) return sol def _linear_3eq_order1_type1(x, y, z, t, r, eq): r""" .. math:: x' = ax .. math:: y' = bx + cy .. math:: z' = dx + ky + pz Solution of such equations are forward substitution. Solving first equations gives the value of `x`, substituting it in second and third equation and solving second equation gives `y` and similarly substituting `y` in third equation give `z`. .. math:: x = C_1 e^{at} .. math:: y = \frac{b C_1}{a - c} e^{at} + C_2 e^{ct} .. math:: z = \frac{C_1}{a - p} (d + \frac{bk}{a - c}) e^{at} + \frac{k C_2}{c - p} e^{ct} + C_3 e^{pt} where `C_1, C_2` and `C_3` are arbitrary constants. """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) a = -r['a1']; b = -r['a2']; c = -r['b2'] d = -r['a3']; k = -r['b3']; p = -r['c3'] sol1 = C1*exp(a*t) sol2 = b*C1*exp(a*t)/(a-c) + C2*exp(c*t) sol3 = C1*(d+b*k/(a-c))*exp(a*t)/(a-p) + k*C2*exp(c*t)/(c-p) + C3*exp(p*t) return [Eq(x(t), sol1), Eq(y(t), sol2), Eq(z(t), sol3)] def _linear_3eq_order1_type2(x, y, z, t, r, eq): r""" The equations of this type are .. math:: x' = cy - bz .. math:: y' = az - cx .. math:: z' = bx - ay 1. First integral: .. math:: ax + by + cz = A \qquad - (1) .. math:: x^2 + y^2 + z^2 = B^2 \qquad - (2) where `A` and `B` are arbitrary constants. It follows from these integrals that the integral lines are circles formed by the intersection of the planes `(1)` and sphere `(2)` 2. Solution: .. math:: x = a C_0 + k C_1 \cos(kt) + (c C_2 - b C_3) \sin(kt) .. math:: y = b C_0 + k C_2 \cos(kt) + (a C_2 - c C_3) \sin(kt) .. math:: z = c C_0 + k C_3 \cos(kt) + (b C_2 - a C_3) \sin(kt) where `k = \sqrt{a^2 + b^2 + c^2}` and the four constants of integration, `C_1,...,C_4` are constrained by a single relation, .. math:: a C_1 + b C_2 + c C_3 = 0 """ C0, C1, C2, C3 = get_numbered_constants(eq, num=4, start=0) a = -r['c2']; b = -r['a3']; c = -r['b1'] k = sqrt(a**2 + b**2 + c**2) C3 = (-a*C1 - b*C2)/c sol1 = a*C0 + k*C1*cos(k*t) + (c*C2-b*C3)*sin(k*t) sol2 = b*C0 + k*C2*cos(k*t) + (a*C3-c*C1)*sin(k*t) sol3 = c*C0 + k*C3*cos(k*t) + (b*C1-a*C2)*sin(k*t) return [Eq(x(t), sol1), Eq(y(t), sol2), Eq(z(t), sol3)] def _linear_3eq_order1_type3(x, y, z, t, r, eq): r""" Equations of this system of ODEs .. math:: a x' = bc (y - z) .. math:: b y' = ac (z - x) .. math:: c z' = ab (x - y) 1. First integral: .. math:: a^2 x + b^2 y + c^2 z = A where A is an arbitrary constant. It follows that the integral lines are plane curves. 2. Solution: .. math:: x = C_0 + k C_1 \cos(kt) + a^{-1} bc (C_2 - C_3) \sin(kt) .. math:: y = C_0 + k C_2 \cos(kt) + a b^{-1} c (C_3 - C_1) \sin(kt) .. math:: z = C_0 + k C_3 \cos(kt) + ab c^{-1} (C_1 - C_2) \sin(kt) where `k = \sqrt{a^2 + b^2 + c^2}` and the four constants of integration, `C_1,...,C_4` are constrained by a single relation .. math:: a^2 C_1 + b^2 C_2 + c^2 C_3 = 0 """ C0, C1, C2, C3 = get_numbered_constants(eq, num=4, start=0) c = sqrt(r['b1']*r['c2']) b = sqrt(r['b1']*r['a3']) a = sqrt(r['c2']*r['a3']) C3 = (-a**2*C1-b**2*C2)/c**2 k = sqrt(a**2 + b**2 + c**2) sol1 = C0 + k*C1*cos(k*t) + a**-1*b*c*(C2-C3)*sin(k*t) sol2 = C0 + k*C2*cos(k*t) + a*b**-1*c*(C3-C1)*sin(k*t) sol3 = C0 + k*C3*cos(k*t) + a*b*c**-1*(C1-C2)*sin(k*t) return [Eq(x(t), sol1), Eq(y(t), sol2), Eq(z(t), sol3)] def _linear_3eq_order1_type4(x, y, z, t, r, eq): r""" Equations: .. math:: x' = (a_1 f(t) + g(t)) x + a_2 f(t) y + a_3 f(t) z .. math:: y' = b_1 f(t) x + (b_2 f(t) + g(t)) y + b_3 f(t) z .. math:: z' = c_1 f(t) x + c_2 f(t) y + (c_3 f(t) + g(t)) z The transformation .. math:: x = e^{\int g(t) \,dt} u, y = e^{\int g(t) \,dt} v, z = e^{\int g(t) \,dt} w, \tau = \int f(t) \,dt leads to the system of constant coefficient linear differential equations .. math:: u' = a_1 u + a_2 v + a_3 w .. math:: v' = b_1 u + b_2 v + b_3 w .. math:: w' = c_1 u + c_2 v + c_3 w These system of equations are solved by homogeneous linear system of constant coefficients of `n` equations of first order. Then substituting the value of `u, v` and `w` in transformed equation gives value of `x, y` and `z`. """ u, v, w = symbols('u, v, w', cls=Function) a2, a3 = cancel(r['b1']/r['c1']).as_numer_denom() f = cancel(r['b1']/a2) b1 = cancel(r['a2']/f); b3 = cancel(r['c2']/f) c1 = cancel(r['a3']/f); c2 = cancel(r['b3']/f) a1, g = div(r['a1'],f) b2 = div(r['b2'],f)[0] c3 = div(r['c3'],f)[0] trans_eq = (diff(u(t),t)-a1*u(t)-a2*v(t)-a3*w(t), diff(v(t),t)-b1*u(t)-\ b2*v(t)-b3*w(t), diff(w(t),t)-c1*u(t)-c2*v(t)-c3*w(t)) sol = dsolve(trans_eq) sol1 = exp(Integral(g,t))*((sol[0].rhs).subs(t, Integral(f,t))) sol2 = exp(Integral(g,t))*((sol[1].rhs).subs(t, Integral(f,t))) sol3 = exp(Integral(g,t))*((sol[2].rhs).subs(t, Integral(f,t))) return [Eq(x(t), sol1), Eq(y(t), sol2), Eq(z(t), sol3)] def sysode_linear_neq_order1(match_): sol = _linear_neq_order1_type1(match_) return sol def _linear_neq_order1_type1(match_): r""" System of n first-order constant-coefficient linear nonhomogeneous differential equation .. math:: y'_k = a_{k1} y_1 + a_{k2} y_2 +...+ a_{kn} y_n; k = 1,2,...,n or that can be written as `\vec{y'} = A . \vec{y}` where `\vec{y}` is matrix of `y_k` for `k = 1,2,...n` and `A` is a `n \times n` matrix. Since these equations are equivalent to a first order homogeneous linear differential equation. So the general solution will contain `n` linearly independent parts and solution will consist some type of exponential functions. Assuming `y = \vec{v} e^{rt}` is a solution of the system where `\vec{v}` is a vector of coefficients of `y_1,...,y_n`. Substituting `y` and `y' = r v e^{r t}` into the equation `\vec{y'} = A . \vec{y}`, we get .. math:: r \vec{v} e^{rt} = A \vec{v} e^{rt} .. math:: r \vec{v} = A \vec{v} where `r` comes out to be eigenvalue of `A` and vector `\vec{v}` is the eigenvector of `A` corresponding to `r`. There are three possibilities of eigenvalues of `A` - `n` distinct real eigenvalues - complex conjugate eigenvalues - eigenvalues with multiplicity `k` 1. When all eigenvalues `r_1,..,r_n` are distinct with `n` different eigenvectors `v_1,...v_n` then the solution is given by .. math:: \vec{y} = C_1 e^{r_1 t} \vec{v_1} + C_2 e^{r_2 t} \vec{v_2} +...+ C_n e^{r_n t} \vec{v_n} where `C_1,C_2,...,C_n` are arbitrary constants. 2. When some eigenvalues are complex then in order to make the solution real, we take a linear combination: if `r = a + bi` has an eigenvector `\vec{v} = \vec{w_1} + i \vec{w_2}` then to obtain real-valued solutions to the system, replace the complex-valued solutions `e^{rx} \vec{v}` with real-valued solution `e^{ax} (\vec{w_1} \cos(bx) - \vec{w_2} \sin(bx))` and for `r = a - bi` replace the solution `e^{-r x} \vec{v}` with `e^{ax} (\vec{w_1} \sin(bx) + \vec{w_2} \cos(bx))` 3. If some eigenvalues are repeated. Then we get fewer than `n` linearly independent eigenvectors, we miss some of the solutions and need to construct the missing ones. We do this via generalized eigenvectors, vectors which are not eigenvectors but are close enough that we can use to write down the remaining solutions. For a eigenvalue `r` with eigenvector `\vec{w}` we obtain `\vec{w_2},...,\vec{w_k}` using .. math:: (A - r I) . \vec{w_2} = \vec{w} .. math:: (A - r I) . \vec{w_3} = \vec{w_2} .. math:: \vdots .. math:: (A - r I) . \vec{w_k} = \vec{w_{k-1}} Then the solutions to the system for the eigenspace are `e^{rt} [\vec{w}], e^{rt} [t \vec{w} + \vec{w_2}], e^{rt} [\frac{t^2}{2} \vec{w} + t \vec{w_2} + \vec{w_3}], ...,e^{rt} [\frac{t^{k-1}}{(k-1)!} \vec{w} + \frac{t^{k-2}}{(k-2)!} \vec{w_2} +...+ t \vec{w_{k-1}} + \vec{w_k}]` So, If `\vec{y_1},...,\vec{y_n}` are `n` solution of obtained from three categories of `A`, then general solution to the system `\vec{y'} = A . \vec{y}` .. math:: \vec{y} = C_1 \vec{y_1} + C_2 \vec{y_2} + \cdots + C_n \vec{y_n} """ eq = match_['eq'] func = match_['func'] fc = match_['func_coeff'] n = len(eq) t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] constants = numbered_symbols(prefix='C', cls=Symbol, start=1) M = Matrix(n,n,lambda i,j:-fc[i,func[j],0]) evector = M.eigenvects(simplify=True) def is_complex(mat, root): return Matrix(n, 1, lambda i,j: re(mat[i])*cos(im(root)*t) - im(mat[i])*sin(im(root)*t)) def is_complex_conjugate(mat, root): return Matrix(n, 1, lambda i,j: re(mat[i])*sin(abs(im(root))*t) + im(mat[i])*cos(im(root)*t)*abs(im(root))/im(root)) conjugate_root = [] e_vector = zeros(n,1) for evects in evector: if evects[0] not in conjugate_root: # If number of column of an eigenvector is not equal to the multiplicity # of its eigenvalue then the legt eigenvectors are calculated if len(evects[2])!=evects[1]: var_mat = Matrix(n, 1, lambda i,j: Symbol('x'+str(i))) Mnew = (M - evects[0]*eye(evects[2][-1].rows))*var_mat w = [0 for i in range(evects[1])] w[0] = evects[2][-1] for r in range(1, evects[1]): w_ = Mnew - w[r-1] sol_dict = solve(list(w_), var_mat[1:]) sol_dict[var_mat[0]] = var_mat[0] for key, value in sol_dict.items(): sol_dict[key] = value.subs(var_mat[0],1) w[r] = Matrix(n, 1, lambda i,j: sol_dict[var_mat[i]]) evects[2].append(w[r]) for i in range(evects[1]): C = next(constants) for j in range(i+1): if evects[0].has(I): evects[2][j] = simplify(evects[2][j]) e_vector += C*is_complex(evects[2][j], evects[0])*t**(i-j)*exp(re(evects[0])*t)/factorial(i-j) C = next(constants) e_vector += C*is_complex_conjugate(evects[2][j], evects[0])*t**(i-j)*exp(re(evects[0])*t)/factorial(i-j) else: e_vector += C*evects[2][j]*t**(i-j)*exp(evects[0]*t)/factorial(i-j) if evects[0].has(I): conjugate_root.append(conjugate(evects[0])) sol = [] for i in range(len(eq)): sol.append(Eq(func[i],e_vector[i])) return sol def sysode_nonlinear_2eq_order1(match_): func = match_['func'] eq = match_['eq'] fc = match_['func_coeff'] t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] if match_['type_of_equation'] == 'type5': sol = _nonlinear_2eq_order1_type5(func, t, eq) return sol x = func[0].func y = func[1].func for i in range(2): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs if match_['type_of_equation'] == 'type1': sol = _nonlinear_2eq_order1_type1(x, y, t, eq) elif match_['type_of_equation'] == 'type2': sol = _nonlinear_2eq_order1_type2(x, y, t, eq) elif match_['type_of_equation'] == 'type3': sol = _nonlinear_2eq_order1_type3(x, y, t, eq) elif match_['type_of_equation'] == 'type4': sol = _nonlinear_2eq_order1_type4(x, y, t, eq) return sol def _nonlinear_2eq_order1_type1(x, y, t, eq): r""" Equations: .. math:: x' = x^n F(x,y) .. math:: y' = g(y) F(x,y) Solution: .. math:: x = \varphi(y), \int \frac{1}{g(y) F(\varphi(y),y)} \,dy = t + C_2 where if `n \neq 1` .. math:: \varphi = [C_1 + (1-n) \int \frac{1}{g(y)} \,dy]^{\frac{1}{1-n}} if `n = 1` .. math:: \varphi = C_1 e^{\int \frac{1}{g(y)} \,dy} where `C_1` and `C_2` are arbitrary constants. """ C1, C2 = get_numbered_constants(eq, num=2) n = Wild('n', exclude=[x(t),y(t)]) f = Wild('f') u, v = symbols('u, v') r = eq[0].match(diff(x(t),t) - x(t)**n*f) g = ((diff(y(t),t) - eq[1])/r[f]).subs(y(t),v) F = r[f].subs(x(t),u).subs(y(t),v) n = r[n] if n!=1: phi = (C1 + (1-n)*Integral(1/g, v))**(1/(1-n)) else: phi = C1*exp(Integral(1/g, v)) phi = phi.doit() sol2 = solve(Integral(1/(g*F.subs(u,phi)), v).doit() - t - C2, v) sol = [] for sols in sol2: sol.append(Eq(x(t),phi.subs(v, sols))) sol.append(Eq(y(t), sols)) return sol def _nonlinear_2eq_order1_type2(x, y, t, eq): r""" Equations: .. math:: x' = e^{\lambda x} F(x,y) .. math:: y' = g(y) F(x,y) Solution: .. math:: x = \varphi(y), \int \frac{1}{g(y) F(\varphi(y),y)} \,dy = t + C_2 where if `\lambda \neq 0` .. math:: \varphi = -\frac{1}{\lambda} log(C_1 - \lambda \int \frac{1}{g(y)} \,dy) if `\lambda = 0` .. math:: \varphi = C_1 + \int \frac{1}{g(y)} \,dy where `C_1` and `C_2` are arbitrary constants. """ C1, C2 = get_numbered_constants(eq, num=2) n = Wild('n', exclude=[x(t),y(t)]) f = Wild('f') u, v = symbols('u, v') r = eq[0].match(diff(x(t),t) - exp(n*x(t))*f) g = ((diff(y(t),t) - eq[1])/r[f]).subs(y(t),v) F = r[f].subs(x(t),u).subs(y(t),v) n = r[n] if n: phi = -1/n*log(C1 - n*Integral(1/g, v)) else: phi = C1 + Integral(1/g, v) phi = phi.doit() sol2 = solve(Integral(1/(g*F.subs(u,phi)), v).doit() - t - C2, v) sol = [] for sols in sol2: sol.append(Eq(x(t),phi.subs(v, sols))) sol.append(Eq(y(t), sols)) return sol def _nonlinear_2eq_order1_type3(x, y, t, eq): r""" Autonomous system of general form .. math:: x' = F(x,y) .. math:: y' = G(x,y) Assuming `y = y(x, C_1)` where `C_1` is an arbitrary constant is the general solution of the first-order equation .. math:: F(x,y) y'_x = G(x,y) Then the general solution of the original system of equations has the form .. math:: \int \frac{1}{F(x,y(x,C_1))} \,dx = t + C_1 """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) v = Function('v') u = Symbol('u') f = Wild('f') g = Wild('g') r1 = eq[0].match(diff(x(t),t) - f) r2 = eq[1].match(diff(y(t),t) - g) F = r1[f].subs(x(t), u).subs(y(t), v(u)) G = r2[g].subs(x(t), u).subs(y(t), v(u)) sol2r = dsolve(Eq(diff(v(u), u), G/F)) if isinstance(sol2r, Expr): sol2r = [sol2r] for sol2s in sol2r: sol1 = solve(Integral(1/F.subs(v(u), sol2s.rhs), u).doit() - t - C2, u) sol = [] for sols in sol1: sol.append(Eq(x(t), sols)) sol.append(Eq(y(t), (sol2s.rhs).subs(u, sols))) return sol def _nonlinear_2eq_order1_type4(x, y, t, eq): r""" Equation: .. math:: x' = f_1(x) g_1(y) \phi(x,y,t) .. math:: y' = f_2(x) g_2(y) \phi(x,y,t) First integral: .. math:: \int \frac{f_2(x)}{f_1(x)} \,dx - \int \frac{g_1(y)}{g_2(y)} \,dy = C where `C` is an arbitrary constant. On solving the first integral for `x` (resp., `y` ) and on substituting the resulting expression into either equation of the original solution, one arrives at a first-order equation for determining `y` (resp., `x` ). """ C1, C2 = get_numbered_constants(eq, num=2) u, v = symbols('u, v') U, V = symbols('U, V', cls=Function) f = Wild('f') g = Wild('g') f1 = Wild('f1', exclude=[v,t]) f2 = Wild('f2', exclude=[v,t]) g1 = Wild('g1', exclude=[u,t]) g2 = Wild('g2', exclude=[u,t]) r1 = eq[0].match(diff(x(t),t) - f) r2 = eq[1].match(diff(y(t),t) - g) num, den = ( (r1[f].subs(x(t),u).subs(y(t),v))/ (r2[g].subs(x(t),u).subs(y(t),v))).as_numer_denom() R1 = num.match(f1*g1) R2 = den.match(f2*g2) phi = (r1[f].subs(x(t),u).subs(y(t),v))/num F1 = R1[f1]; F2 = R2[f2] G1 = R1[g1]; G2 = R2[g2] sol1r = solve(Integral(F2/F1, u).doit() - Integral(G1/G2,v).doit() - C1, u) sol2r = solve(Integral(F2/F1, u).doit() - Integral(G1/G2,v).doit() - C1, v) sol = [] for sols in sol1r: sol.append(Eq(y(t), dsolve(diff(V(t),t) - F2.subs(u,sols).subs(v,V(t))*G2.subs(v,V(t))*phi.subs(u,sols).subs(v,V(t))).rhs)) for sols in sol2r: sol.append(Eq(x(t), dsolve(diff(U(t),t) - F1.subs(u,U(t))*G1.subs(v,sols).subs(u,U(t))*phi.subs(v,sols).subs(u,U(t))).rhs)) return set(sol) def _nonlinear_2eq_order1_type5(func, t, eq): r""" Clairaut system of ODEs .. math:: x = t x' + F(x',y') .. math:: y = t y' + G(x',y') The following are solutions of the system `(i)` straight lines: .. math:: x = C_1 t + F(C_1, C_2), y = C_2 t + G(C_1, C_2) where `C_1` and `C_2` are arbitrary constants; `(ii)` envelopes of the above lines; `(iii)` continuously differentiable lines made up from segments of the lines `(i)` and `(ii)`. """ C1, C2 = get_numbered_constants(eq, num=2) f = Wild('f') g = Wild('g') def check_type(x, y): r1 = eq[0].match(t*diff(x(t),t) - x(t) + f) r2 = eq[1].match(t*diff(y(t),t) - y(t) + g) if not (r1 and r2): r1 = eq[0].match(diff(x(t),t) - x(t)/t + f/t) r2 = eq[1].match(diff(y(t),t) - y(t)/t + g/t) if not (r1 and r2): r1 = (-eq[0]).match(t*diff(x(t),t) - x(t) + f) r2 = (-eq[1]).match(t*diff(y(t),t) - y(t) + g) if not (r1 and r2): r1 = (-eq[0]).match(diff(x(t),t) - x(t)/t + f/t) r2 = (-eq[1]).match(diff(y(t),t) - y(t)/t + g/t) return [r1, r2] for func_ in func: if isinstance(func_, list): x = func[0][0].func y = func[0][1].func [r1, r2] = check_type(x, y) if not (r1 and r2): [r1, r2] = check_type(y, x) x, y = y, x x1 = diff(x(t),t); y1 = diff(y(t),t) return {Eq(x(t), C1*t + r1[f].subs(x1,C1).subs(y1,C2)), Eq(y(t), C2*t + r2[g].subs(x1,C1).subs(y1,C2))} def sysode_nonlinear_3eq_order1(match_): x = match_['func'][0].func y = match_['func'][1].func z = match_['func'][2].func eq = match_['eq'] t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] if match_['type_of_equation'] == 'type1': sol = _nonlinear_3eq_order1_type1(x, y, z, t, eq) if match_['type_of_equation'] == 'type2': sol = _nonlinear_3eq_order1_type2(x, y, z, t, eq) if match_['type_of_equation'] == 'type3': sol = _nonlinear_3eq_order1_type3(x, y, z, t, eq) if match_['type_of_equation'] == 'type4': sol = _nonlinear_3eq_order1_type4(x, y, z, t, eq) if match_['type_of_equation'] == 'type5': sol = _nonlinear_3eq_order1_type5(x, y, z, t, eq) return sol def _nonlinear_3eq_order1_type1(x, y, z, t, eq): r""" Equations: .. math:: a x' = (b - c) y z, \enspace b y' = (c - a) z x, \enspace c z' = (a - b) x y First Integrals: .. math:: a x^{2} + b y^{2} + c z^{2} = C_1 .. math:: a^{2} x^{2} + b^{2} y^{2} + c^{2} z^{2} = C_2 where `C_1` and `C_2` are arbitrary constants. On solving the integrals for `y` and `z` and on substituting the resulting expressions into the first equation of the system, we arrives at a separable first-order equation on `x`. Similarly doing that for other two equations, we will arrive at first order equation on `y` and `z` too. References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0401.pdf """ C1, C2 = get_numbered_constants(eq, num=2) u, v, w = symbols('u, v, w') p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) r = (diff(x(t),t) - eq[0]).match(p*y(t)*z(t)) r.update((diff(y(t),t) - eq[1]).match(q*z(t)*x(t))) r.update((diff(z(t),t) - eq[2]).match(s*x(t)*y(t))) n1, d1 = r[p].as_numer_denom() n2, d2 = r[q].as_numer_denom() n3, d3 = r[s].as_numer_denom() val = solve([n1*u-d1*v+d1*w, d2*u+n2*v-d2*w, d3*u-d3*v-n3*w],[u,v]) vals = [val[v], val[u]] c = lcm(vals[0].as_numer_denom()[1], vals[1].as_numer_denom()[1]) b = vals[0].subs(w, c) a = vals[1].subs(w, c) y_x = sqrt(((c*C1-C2) - a*(c-a)*x(t)**2)/(b*(c-b))) z_x = sqrt(((b*C1-C2) - a*(b-a)*x(t)**2)/(c*(b-c))) z_y = sqrt(((a*C1-C2) - b*(a-b)*y(t)**2)/(c*(a-c))) x_y = sqrt(((c*C1-C2) - b*(c-b)*y(t)**2)/(a*(c-a))) x_z = sqrt(((b*C1-C2) - c*(b-c)*z(t)**2)/(a*(b-a))) y_z = sqrt(((a*C1-C2) - c*(a-c)*z(t)**2)/(b*(a-b))) sol1 = dsolve(a*diff(x(t),t) - (b-c)*y_x*z_x) sol2 = dsolve(b*diff(y(t),t) - (c-a)*z_y*x_y) sol3 = dsolve(c*diff(z(t),t) - (a-b)*x_z*y_z) return [sol1, sol2, sol3] def _nonlinear_3eq_order1_type2(x, y, z, t, eq): r""" Equations: .. math:: a x' = (b - c) y z f(x, y, z, t) .. math:: b y' = (c - a) z x f(x, y, z, t) .. math:: c z' = (a - b) x y f(x, y, z, t) First Integrals: .. math:: a x^{2} + b y^{2} + c z^{2} = C_1 .. math:: a^{2} x^{2} + b^{2} y^{2} + c^{2} z^{2} = C_2 where `C_1` and `C_2` are arbitrary constants. On solving the integrals for `y` and `z` and on substituting the resulting expressions into the first equation of the system, we arrives at a first-order differential equations on `x`. Similarly doing that for other two equations we will arrive at first order equation on `y` and `z`. References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0402.pdf """ C1, C2 = get_numbered_constants(eq, num=2) u, v, w = symbols('u, v, w') p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) f = Wild('f') r1 = (diff(x(t),t) - eq[0]).match(y(t)*z(t)*f) r = collect_const(r1[f]).match(p*f) r.update(((diff(y(t),t) - eq[1])/r[f]).match(q*z(t)*x(t))) r.update(((diff(z(t),t) - eq[2])/r[f]).match(s*x(t)*y(t))) n1, d1 = r[p].as_numer_denom() n2, d2 = r[q].as_numer_denom() n3, d3 = r[s].as_numer_denom() val = solve([n1*u-d1*v+d1*w, d2*u+n2*v-d2*w, -d3*u+d3*v+n3*w],[u,v]) vals = [val[v], val[u]] c = lcm(vals[0].as_numer_denom()[1], vals[1].as_numer_denom()[1]) a = vals[0].subs(w, c) b = vals[1].subs(w, c) y_x = sqrt(((c*C1-C2) - a*(c-a)*x(t)**2)/(b*(c-b))) z_x = sqrt(((b*C1-C2) - a*(b-a)*x(t)**2)/(c*(b-c))) z_y = sqrt(((a*C1-C2) - b*(a-b)*y(t)**2)/(c*(a-c))) x_y = sqrt(((c*C1-C2) - b*(c-b)*y(t)**2)/(a*(c-a))) x_z = sqrt(((b*C1-C2) - c*(b-c)*z(t)**2)/(a*(b-a))) y_z = sqrt(((a*C1-C2) - c*(a-c)*z(t)**2)/(b*(a-b))) sol1 = dsolve(a*diff(x(t),t) - (b-c)*y_x*z_x*r[f]) sol2 = dsolve(b*diff(y(t),t) - (c-a)*z_y*x_y*r[f]) sol3 = dsolve(c*diff(z(t),t) - (a-b)*x_z*y_z*r[f]) return [sol1, sol2, sol3] def _nonlinear_3eq_order1_type3(x, y, z, t, eq): r""" Equations: .. math:: x' = c F_2 - b F_3, \enspace y' = a F_3 - c F_1, \enspace z' = b F_1 - a F_2 where `F_n = F_n(x, y, z, t)`. 1. First Integral: .. math:: a x + b y + c z = C_1, where C is an arbitrary constant. 2. If we assume function `F_n` to be independent of `t`,i.e, `F_n` = `F_n (x, y, z)` Then, on eliminating `t` and `z` from the first two equation of the system, one arrives at the first-order equation .. math:: \frac{dy}{dx} = \frac{a F_3 (x, y, z) - c F_1 (x, y, z)}{c F_2 (x, y, z) - b F_3 (x, y, z)} where `z = \frac{1}{c} (C_1 - a x - b y)` References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0404.pdf """ C1 = get_numbered_constants(eq, num=1) u, v, w = symbols('u, v, w') p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) F1, F2, F3 = symbols('F1, F2, F3', cls=Wild) r1 = (diff(x(t), t) - eq[0]).match(F2-F3) r = collect_const(r1[F2]).match(s*F2) r.update(collect_const(r1[F3]).match(q*F3)) if eq[1].has(r[F2]) and not eq[1].has(r[F3]): r[F2], r[F3] = r[F3], r[F2] r[s], r[q] = -r[q], -r[s] r.update((diff(y(t), t) - eq[1]).match(p*r[F3] - r[s]*F1)) a = r[p]; b = r[q]; c = r[s] F1 = r[F1].subs(x(t), u).subs(y(t),v).subs(z(t), w) F2 = r[F2].subs(x(t), u).subs(y(t),v).subs(z(t), w) F3 = r[F3].subs(x(t), u).subs(y(t),v).subs(z(t), w) z_xy = (C1-a*u-b*v)/c y_zx = (C1-a*u-c*w)/b x_yz = (C1-b*v-c*w)/a y_x = dsolve(diff(v(u),u) - ((a*F3-c*F1)/(c*F2-b*F3)).subs(w,z_xy).subs(v,v(u))).rhs z_x = dsolve(diff(w(u),u) - ((b*F1-a*F2)/(c*F2-b*F3)).subs(v,y_zx).subs(w,w(u))).rhs z_y = dsolve(diff(w(v),v) - ((b*F1-a*F2)/(a*F3-c*F1)).subs(u,x_yz).subs(w,w(v))).rhs x_y = dsolve(diff(u(v),v) - ((c*F2-b*F3)/(a*F3-c*F1)).subs(w,z_xy).subs(u,u(v))).rhs y_z = dsolve(diff(v(w),w) - ((a*F3-c*F1)/(b*F1-a*F2)).subs(u,x_yz).subs(v,v(w))).rhs x_z = dsolve(diff(u(w),w) - ((c*F2-b*F3)/(b*F1-a*F2)).subs(v,y_zx).subs(u,u(w))).rhs sol1 = dsolve(diff(u(t),t) - (c*F2 - b*F3).subs(v,y_x).subs(w,z_x).subs(u,u(t))).rhs sol2 = dsolve(diff(v(t),t) - (a*F3 - c*F1).subs(u,x_y).subs(w,z_y).subs(v,v(t))).rhs sol3 = dsolve(diff(w(t),t) - (b*F1 - a*F2).subs(u,x_z).subs(v,y_z).subs(w,w(t))).rhs return [sol1, sol2, sol3] def _nonlinear_3eq_order1_type4(x, y, z, t, eq): r""" Equations: .. math:: x' = c z F_2 - b y F_3, \enspace y' = a x F_3 - c z F_1, \enspace z' = b y F_1 - a x F_2 where `F_n = F_n (x, y, z, t)` 1. First integral: .. math:: a x^{2} + b y^{2} + c z^{2} = C_1 where `C` is an arbitrary constant. 2. Assuming the function `F_n` is independent of `t`: `F_n = F_n (x, y, z)`. Then on eliminating `t` and `z` from the first two equations of the system, one arrives at the first-order equation .. math:: \frac{dy}{dx} = \frac{a x F_3 (x, y, z) - c z F_1 (x, y, z)} {c z F_2 (x, y, z) - b y F_3 (x, y, z)} where `z = \pm \sqrt{\frac{1}{c} (C_1 - a x^{2} - b y^{2})}` References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0405.pdf """ C1 = get_numbered_constants(eq, num=1) u, v, w = symbols('u, v, w') p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) F1, F2, F3 = symbols('F1, F2, F3', cls=Wild) r1 = eq[0].match(diff(x(t),t) - z(t)*F2 + y(t)*F3) r = collect_const(r1[F2]).match(s*F2) r.update(collect_const(r1[F3]).match(q*F3)) if eq[1].has(r[F2]) and not eq[1].has(r[F3]): r[F2], r[F3] = r[F3], r[F2] r[s], r[q] = -r[q], -r[s] r.update((diff(y(t),t) - eq[1]).match(p*x(t)*r[F3] - r[s]*z(t)*F1)) a = r[p]; b = r[q]; c = r[s] F1 = r[F1].subs(x(t),u).subs(y(t),v).subs(z(t),w) F2 = r[F2].subs(x(t),u).subs(y(t),v).subs(z(t),w) F3 = r[F3].subs(x(t),u).subs(y(t),v).subs(z(t),w) x_yz = sqrt((C1 - b*v**2 - c*w**2)/a) y_zx = sqrt((C1 - c*w**2 - a*u**2)/b) z_xy = sqrt((C1 - a*u**2 - b*v**2)/c) y_x = dsolve(diff(v(u),u) - ((a*u*F3-c*w*F1)/(c*w*F2-b*v*F3)).subs(w,z_xy).subs(v,v(u))).rhs z_x = dsolve(diff(w(u),u) - ((b*v*F1-a*u*F2)/(c*w*F2-b*v*F3)).subs(v,y_zx).subs(w,w(u))).rhs z_y = dsolve(diff(w(v),v) - ((b*v*F1-a*u*F2)/(a*u*F3-c*w*F1)).subs(u,x_yz).subs(w,w(v))).rhs x_y = dsolve(diff(u(v),v) - ((c*w*F2-b*v*F3)/(a*u*F3-c*w*F1)).subs(w,z_xy).subs(u,u(v))).rhs y_z = dsolve(diff(v(w),w) - ((a*u*F3-c*w*F1)/(b*v*F1-a*u*F2)).subs(u,x_yz).subs(v,v(w))).rhs x_z = dsolve(diff(u(w),w) - ((c*w*F2-b*v*F3)/(b*v*F1-a*u*F2)).subs(v,y_zx).subs(u,u(w))).rhs sol1 = dsolve(diff(u(t),t) - (c*w*F2 - b*v*F3).subs(v,y_x).subs(w,z_x).subs(u,u(t))).rhs sol2 = dsolve(diff(v(t),t) - (a*u*F3 - c*w*F1).subs(u,x_y).subs(w,z_y).subs(v,v(t))).rhs sol3 = dsolve(diff(w(t),t) - (b*v*F1 - a*u*F2).subs(u,x_z).subs(v,y_z).subs(w,w(t))).rhs return [sol1, sol2, sol3] def _nonlinear_3eq_order1_type5(x, y, z, t, eq): r""" .. math:: x' = x (c F_2 - b F_3), \enspace y' = y (a F_3 - c F_1), \enspace z' = z (b F_1 - a F_2) where `F_n = F_n (x, y, z, t)` and are arbitrary functions. First Integral: .. math:: \left|x\right|^{a} \left|y\right|^{b} \left|z\right|^{c} = C_1 where `C` is an arbitrary constant. If the function `F_n` is independent of `t`, then, by eliminating `t` and `z` from the first two equations of the system, one arrives at a first-order equation. References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0406.pdf """ C1 = get_numbered_constants(eq, num=1) u, v, w = symbols('u, v, w') p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) F1, F2, F3 = symbols('F1, F2, F3', cls=Wild) r1 = eq[0].match(diff(x(t), t) - x(t)*(F2 - F3)) r = collect_const(r1[F2]).match(s*F2) r.update(collect_const(r1[F3]).match(q*F3)) if eq[1].has(r[F2]) and not eq[1].has(r[F3]): r[F2], r[F3] = r[F3], r[F2] r[s], r[q] = -r[q], -r[s] r.update((diff(y(t), t) - eq[1]).match(y(t)*(p*r[F3] - r[s]*F1))) a = r[p]; b = r[q]; c = r[s] F1 = r[F1].subs(x(t), u).subs(y(t), v).subs(z(t), w) F2 = r[F2].subs(x(t), u).subs(y(t), v).subs(z(t), w) F3 = r[F3].subs(x(t), u).subs(y(t), v).subs(z(t), w) x_yz = (C1*v**-b*w**-c)**-a y_zx = (C1*w**-c*u**-a)**-b z_xy = (C1*u**-a*v**-b)**-c y_x = dsolve(diff(v(u), u) - ((v*(a*F3 - c*F1))/(u*(c*F2 - b*F3))).subs(w, z_xy).subs(v, v(u))).rhs z_x = dsolve(diff(w(u), u) - ((w*(b*F1 - a*F2))/(u*(c*F2 - b*F3))).subs(v, y_zx).subs(w, w(u))).rhs z_y = dsolve(diff(w(v), v) - ((w*(b*F1 - a*F2))/(v*(a*F3 - c*F1))).subs(u, x_yz).subs(w, w(v))).rhs x_y = dsolve(diff(u(v), v) - ((u*(c*F2 - b*F3))/(v*(a*F3 - c*F1))).subs(w, z_xy).subs(u, u(v))).rhs y_z = dsolve(diff(v(w), w) - ((v*(a*F3 - c*F1))/(w*(b*F1 - a*F2))).subs(u, x_yz).subs(v, v(w))).rhs x_z = dsolve(diff(u(w), w) - ((u*(c*F2 - b*F3))/(w*(b*F1 - a*F2))).subs(v, y_zx).subs(u, u(w))).rhs sol1 = dsolve(diff(u(t), t) - (u*(c*F2 - b*F3)).subs(v, y_x).subs(w, z_x).subs(u, u(t))).rhs sol2 = dsolve(diff(v(t), t) - (v*(a*F3 - c*F1)).subs(u, x_y).subs(w, z_y).subs(v, v(t))).rhs sol3 = dsolve(diff(w(t), t) - (w*(b*F1 - a*F2)).subs(u, x_z).subs(v, y_z).subs(w, w(t))).rhs return [sol1, sol2, sol3]
54b50cd2edc7966b238d5e17c29392f588efb7cedbd595511a5b412fd3de804f
""" This module contains functions to: - solve a single equation for a single variable, in any domain either real or complex. - solve a single transcendental equation for a single variable in any domain either real or complex. (currently supports solving in real domain only) - solve a system of linear equations with N variables and M equations. - solve a system of Non Linear Equations with N variables and M equations """ from __future__ import print_function, division from sympy.core.sympify import sympify from sympy.core import (S, Pow, Dummy, pi, Expr, Wild, Mul, Equality, Add) from sympy.core.containers import Tuple from sympy.core.facts import InconsistentAssumptions from sympy.core.numbers import I, Number, Rational, oo from sympy.core.function import (Lambda, expand_complex, AppliedUndef, expand_log, _mexpand) from sympy.core.mod import Mod from sympy.core.numbers import igcd from sympy.core.relational import Eq, Ne from sympy.core.symbol import Symbol from sympy.core.sympify import _sympify from sympy.simplify.simplify import simplify, fraction, trigsimp from sympy.simplify import powdenest, logcombine from sympy.functions import (log, Abs, tan, cot, sin, cos, sec, csc, exp, acos, asin, acsc, asec, arg, piecewise_fold, Piecewise) from sympy.functions.elementary.trigonometric import (TrigonometricFunction, HyperbolicFunction) from sympy.functions.elementary.miscellaneous import real_root from sympy.logic.boolalg import And from sympy.sets import (FiniteSet, EmptySet, imageset, Interval, Intersection, Union, ConditionSet, ImageSet, Complement, Contains) from sympy.sets.sets import Set, ProductSet from sympy.matrices import Matrix, MatrixBase from sympy.ntheory import totient from sympy.ntheory.factor_ import divisors from sympy.ntheory.residue_ntheory import discrete_log, nthroot_mod from sympy.polys import (roots, Poly, degree, together, PolynomialError, RootOf, factor) from sympy.polys.polyerrors import CoercionFailed from sympy.polys.polytools import invert from sympy.solvers.solvers import (checksol, denoms, unrad, _simple_dens, recast_to_symbols) from sympy.solvers.polysys import solve_poly_system from sympy.solvers.inequalities import solve_univariate_inequality from sympy.utilities import filldedent from sympy.utilities.iterables import numbered_symbols, has_dups from sympy.calculus.util import periodicity, continuous_domain from sympy.core.compatibility import ordered, default_sort_key, is_sequence from types import GeneratorType from collections import defaultdict def _masked(f, *atoms): """Return ``f``, with all objects given by ``atoms`` replaced with Dummy symbols, ``d``, and the list of replacements, ``(d, e)``, where ``e`` is an object of type given by ``atoms`` in which any other instances of atoms have been recursively replaced with Dummy symbols, too. The tuples are ordered so that if they are applied in sequence, the origin ``f`` will be restored. Examples ======== >>> from sympy import cos >>> from sympy.abc import x >>> from sympy.solvers.solveset import _masked >>> f = cos(cos(x) + 1) >>> f, reps = _masked(cos(1 + cos(x)), cos) >>> f _a1 >>> reps [(_a1, cos(_a0 + 1)), (_a0, cos(x))] >>> for d, e in reps: ... f = f.xreplace({d: e}) >>> f cos(cos(x) + 1) """ sym = numbered_symbols('a', cls=Dummy, real=True) mask = [] for a in ordered(f.atoms(*atoms)): for i in mask: a = a.replace(*i) mask.append((a, next(sym))) for i, (o, n) in enumerate(mask): f = f.replace(o, n) mask[i] = (n, o) mask = list(reversed(mask)) return f, mask def _invert(f_x, y, x, domain=S.Complexes): r""" Reduce the complex valued equation ``f(x) = y`` to a set of equations ``{g(x) = h_1(y), g(x) = h_2(y), ..., g(x) = h_n(y) }`` where ``g(x)`` is a simpler function than ``f(x)``. The return value is a tuple ``(g(x), set_h)``, where ``g(x)`` is a function of ``x`` and ``set_h`` is the set of function ``{h_1(y), h_2(y), ..., h_n(y)}``. Here, ``y`` is not necessarily a symbol. The ``set_h`` contains the functions, along with the information about the domain in which they are valid, through set operations. For instance, if ``y = Abs(x) - n`` is inverted in the real domain, then ``set_h`` is not simply `{-n, n}` as the nature of `n` is unknown; rather, it is: `Intersection([0, oo) {n}) U Intersection((-oo, 0], {-n})` By default, the complex domain is used which means that inverting even seemingly simple functions like ``exp(x)`` will give very different results from those obtained in the real domain. (In the case of ``exp(x)``, the inversion via ``log`` is multi-valued in the complex domain, having infinitely many branches.) If you are working with real values only (or you are not sure which function to use) you should probably set the domain to ``S.Reals`` (or use `invert\_real` which does that automatically). Examples ======== >>> from sympy.solvers.solveset import invert_complex, invert_real >>> from sympy.abc import x, y >>> from sympy import exp, log When does exp(x) == y? >>> invert_complex(exp(x), y, x) (x, ImageSet(Lambda(_n, I*(2*_n*pi + arg(y)) + log(Abs(y))), Integers)) >>> invert_real(exp(x), y, x) (x, Intersection(FiniteSet(log(y)), Reals)) When does exp(x) == 1? >>> invert_complex(exp(x), 1, x) (x, ImageSet(Lambda(_n, 2*_n*I*pi), Integers)) >>> invert_real(exp(x), 1, x) (x, FiniteSet(0)) See Also ======== invert_real, invert_complex """ x = sympify(x) if not x.is_Symbol: raise ValueError("x must be a symbol") f_x = sympify(f_x) if x not in f_x.free_symbols: raise ValueError("Inverse of constant function doesn't exist") y = sympify(y) if x in y.free_symbols: raise ValueError("y should be independent of x ") if domain.is_subset(S.Reals): x1, s = _invert_real(f_x, FiniteSet(y), x) else: x1, s = _invert_complex(f_x, FiniteSet(y), x) if not isinstance(s, FiniteSet) or x1 != x: return x1, s return x1, s.intersection(domain) invert_complex = _invert def invert_real(f_x, y, x, domain=S.Reals): """ Inverts a real-valued function. Same as _invert, but sets the domain to ``S.Reals`` before inverting. """ return _invert(f_x, y, x, domain) def _invert_real(f, g_ys, symbol): """Helper function for _invert.""" if f == symbol: return (f, g_ys) n = Dummy('n', real=True) if hasattr(f, 'inverse') and not isinstance(f, ( TrigonometricFunction, HyperbolicFunction, )): if len(f.args) > 1: raise ValueError("Only functions with one argument are supported.") return _invert_real(f.args[0], imageset(Lambda(n, f.inverse()(n)), g_ys), symbol) if isinstance(f, Abs): return _invert_abs(f.args[0], g_ys, symbol) if f.is_Add: # f = g + h g, h = f.as_independent(symbol) if g is not S.Zero: return _invert_real(h, imageset(Lambda(n, n - g), g_ys), symbol) if f.is_Mul: # f = g*h g, h = f.as_independent(symbol) if g is not S.One: return _invert_real(h, imageset(Lambda(n, n/g), g_ys), symbol) if f.is_Pow: base, expo = f.args base_has_sym = base.has(symbol) expo_has_sym = expo.has(symbol) if not expo_has_sym: res = imageset(Lambda(n, real_root(n, expo)), g_ys) if expo.is_rational: numer, denom = expo.as_numer_denom() if denom % 2 == 0: base_positive = solveset(base >= 0, symbol, S.Reals) res = imageset(Lambda(n, real_root(n, expo) ), g_ys.intersect( Interval.Ropen(S.Zero, S.Infinity))) _inv, _set = _invert_real(base, res, symbol) return (_inv, _set.intersect(base_positive)) elif numer % 2 == 0: n = Dummy('n') neg_res = imageset(Lambda(n, -n), res) return _invert_real(base, res + neg_res, symbol) else: return _invert_real(base, res, symbol) else: if not base.is_positive: raise ValueError("x**w where w is irrational is not " "defined for negative x") return _invert_real(base, res, symbol) if not base_has_sym: rhs = g_ys.args[0] if base.is_positive: return _invert_real(expo, imageset(Lambda(n, log(n, base, evaluate=False)), g_ys), symbol) elif base.is_negative: from sympy.core.power import integer_log s, b = integer_log(rhs, base) if b: return _invert_real(expo, FiniteSet(s), symbol) else: return _invert_real(expo, S.EmptySet, symbol) elif base.is_zero: one = Eq(rhs, 1) if one == S.true: # special case: 0**x - 1 return _invert_real(expo, FiniteSet(0), symbol) elif one == S.false: return _invert_real(expo, S.EmptySet, symbol) if isinstance(f, TrigonometricFunction): if isinstance(g_ys, FiniteSet): def inv(trig): if isinstance(f, (sin, csc)): F = asin if isinstance(f, sin) else acsc return (lambda a: n*pi + (-1)**n*F(a),) if isinstance(f, (cos, sec)): F = acos if isinstance(f, cos) else asec return ( lambda a: 2*n*pi + F(a), lambda a: 2*n*pi - F(a),) if isinstance(f, (tan, cot)): return (lambda a: n*pi + f.inverse()(a),) n = Dummy('n', integer=True) invs = S.EmptySet for L in inv(f): invs += Union(*[imageset(Lambda(n, L(g)), S.Integers) for g in g_ys]) return _invert_real(f.args[0], invs, symbol) return (f, g_ys) def _invert_complex(f, g_ys, symbol): """Helper function for _invert.""" if f == symbol: return (f, g_ys) n = Dummy('n') if f.is_Add: # f = g + h g, h = f.as_independent(symbol) if g is not S.Zero: return _invert_complex(h, imageset(Lambda(n, n - g), g_ys), symbol) if f.is_Mul: # f = g*h g, h = f.as_independent(symbol) if g is not S.One: if g in set([S.NegativeInfinity, S.ComplexInfinity, S.Infinity]): return (h, S.EmptySet) return _invert_complex(h, imageset(Lambda(n, n/g), g_ys), symbol) if hasattr(f, 'inverse') and \ not isinstance(f, TrigonometricFunction) and \ not isinstance(f, HyperbolicFunction) and \ not isinstance(f, exp): if len(f.args) > 1: raise ValueError("Only functions with one argument are supported.") return _invert_complex(f.args[0], imageset(Lambda(n, f.inverse()(n)), g_ys), symbol) if isinstance(f, exp): if isinstance(g_ys, FiniteSet): exp_invs = Union(*[imageset(Lambda(n, I*(2*n*pi + arg(g_y)) + log(Abs(g_y))), S.Integers) for g_y in g_ys if g_y != 0]) return _invert_complex(f.args[0], exp_invs, symbol) return (f, g_ys) def _invert_abs(f, g_ys, symbol): """Helper function for inverting absolute value functions. Returns the complete result of inverting an absolute value function along with the conditions which must also be satisfied. If it is certain that all these conditions are met, a `FiniteSet` of all possible solutions is returned. If any condition cannot be satisfied, an `EmptySet` is returned. Otherwise, a `ConditionSet` of the solutions, with all the required conditions specified, is returned. """ if not g_ys.is_FiniteSet: # this could be used for FiniteSet, but the # results are more compact if they aren't, e.g. # ConditionSet(x, Contains(n, Interval(0, oo)), {-n, n}) vs # Union(Intersection(Interval(0, oo), {n}), Intersection(Interval(-oo, 0), {-n})) # for the solution of abs(x) - n pos = Intersection(g_ys, Interval(0, S.Infinity)) parg = _invert_real(f, pos, symbol) narg = _invert_real(-f, pos, symbol) if parg[0] != narg[0]: raise NotImplementedError return parg[0], Union(narg[1], parg[1]) # check conditions: all these must be true. If any are unknown # then return them as conditions which must be satisfied unknown = [] for a in g_ys.args: ok = a.is_nonnegative if a.is_Number else a.is_positive if ok is None: unknown.append(a) elif not ok: return symbol, S.EmptySet if unknown: conditions = And(*[Contains(i, Interval(0, oo)) for i in unknown]) else: conditions = True n = Dummy('n', real=True) # this is slightly different than above: instead of solving # +/-f on positive values, here we solve for f on +/- g_ys g_x, values = _invert_real(f, Union( imageset(Lambda(n, n), g_ys), imageset(Lambda(n, -n), g_ys)), symbol) return g_x, ConditionSet(g_x, conditions, values) def domain_check(f, symbol, p): """Returns False if point p is infinite or any subexpression of f is infinite or becomes so after replacing symbol with p. If none of these conditions is met then True will be returned. Examples ======== >>> from sympy import Mul, oo >>> from sympy.abc import x >>> from sympy.solvers.solveset import domain_check >>> g = 1/(1 + (1/(x + 1))**2) >>> domain_check(g, x, -1) False >>> domain_check(x**2, x, 0) True >>> domain_check(1/x, x, oo) False * The function relies on the assumption that the original form of the equation has not been changed by automatic simplification. >>> domain_check(x/x, x, 0) # x/x is automatically simplified to 1 True * To deal with automatic evaluations use evaluate=False: >>> domain_check(Mul(x, 1/x, evaluate=False), x, 0) False """ f, p = sympify(f), sympify(p) if p.is_infinite: return False return _domain_check(f, symbol, p) def _domain_check(f, symbol, p): # helper for domain check if f.is_Atom and f.is_finite: return True elif f.subs(symbol, p).is_infinite: return False else: return all([_domain_check(g, symbol, p) for g in f.args]) def _is_finite_with_finite_vars(f, domain=S.Complexes): """ Return True if the given expression is finite. For symbols that don't assign a value for `complex` and/or `real`, the domain will be used to assign a value; symbols that don't assign a value for `finite` will be made finite. All other assumptions are left unmodified. """ def assumptions(s): A = s.assumptions0 A.setdefault('finite', A.get('finite', True)) if domain.is_subset(S.Reals): # if this gets set it will make complex=True, too A.setdefault('real', True) else: # don't change 'real' because being complex implies # nothing about being real A.setdefault('complex', True) return A reps = {s: Dummy(**assumptions(s)) for s in f.free_symbols} return f.xreplace(reps).is_finite def _is_function_class_equation(func_class, f, symbol): """ Tests whether the equation is an equation of the given function class. The given equation belongs to the given function class if it is comprised of functions of the function class which are multiplied by or added to expressions independent of the symbol. In addition, the arguments of all such functions must be linear in the symbol as well. Examples ======== >>> from sympy.solvers.solveset import _is_function_class_equation >>> from sympy import tan, sin, tanh, sinh, exp >>> from sympy.abc import x >>> from sympy.functions.elementary.trigonometric import (TrigonometricFunction, ... HyperbolicFunction) >>> _is_function_class_equation(TrigonometricFunction, exp(x) + tan(x), x) False >>> _is_function_class_equation(TrigonometricFunction, tan(x) + sin(x), x) True >>> _is_function_class_equation(TrigonometricFunction, tan(x**2), x) False >>> _is_function_class_equation(TrigonometricFunction, tan(x + 2), x) True >>> _is_function_class_equation(HyperbolicFunction, tanh(x) + sinh(x), x) True """ if f.is_Mul or f.is_Add: return all(_is_function_class_equation(func_class, arg, symbol) for arg in f.args) if f.is_Pow: if not f.exp.has(symbol): return _is_function_class_equation(func_class, f.base, symbol) else: return False if not f.has(symbol): return True if isinstance(f, func_class): try: g = Poly(f.args[0], symbol) return g.degree() <= 1 except PolynomialError: return False else: return False def _solve_as_rational(f, symbol, domain): """ solve rational functions""" f = together(f, deep=True) g, h = fraction(f) if not h.has(symbol): try: return _solve_as_poly(g, symbol, domain) except NotImplementedError: # The polynomial formed from g could end up having # coefficients in a ring over which finding roots # isn't implemented yet, e.g. ZZ[a] for some symbol a return ConditionSet(symbol, Eq(f, 0), domain) except CoercionFailed: # contained oo, zoo or nan return S.EmptySet else: valid_solns = _solveset(g, symbol, domain) invalid_solns = _solveset(h, symbol, domain) return valid_solns - invalid_solns def _solve_trig(f, symbol, domain): """Function to call other helpers to solve trigonometric equations """ sol1 = sol = None try: sol1 = _solve_trig1(f, symbol, domain) except BaseException: pass if sol1 is None or isinstance(sol1, ConditionSet): try: sol = _solve_trig2(f, symbol, domain) except BaseException: sol = sol1 if isinstance(sol1, ConditionSet) and isinstance(sol, ConditionSet): if sol1.count_ops() < sol.count_ops(): sol = sol1 else: sol = sol1 if sol is None: raise NotImplementedError(filldedent(''' Solution to this kind of trigonometric equations is yet to be implemented''')) return sol def _solve_trig1(f, symbol, domain): """Primary Helper to solve trigonometric equations """ f = trigsimp(f) f_original = f f = f.rewrite(exp) f = together(f) g, h = fraction(f) y = Dummy('y') g, h = g.expand(), h.expand() g, h = g.subs(exp(I*symbol), y), h.subs(exp(I*symbol), y) if g.has(symbol) or h.has(symbol): return ConditionSet(symbol, Eq(f, 0), S.Reals) solns = solveset_complex(g, y) - solveset_complex(h, y) if isinstance(solns, ConditionSet): raise NotImplementedError if isinstance(solns, FiniteSet): if any(isinstance(s, RootOf) for s in solns): raise NotImplementedError result = Union(*[invert_complex(exp(I*symbol), s, symbol)[1] for s in solns]) return Intersection(result, domain) elif solns is S.EmptySet: return S.EmptySet else: return ConditionSet(symbol, Eq(f_original, 0), S.Reals) def _solve_trig2(f, symbol, domain): """Secondary helper to solve trigonometric equations, called when first helper fails """ from sympy import ilcm, expand_trig, degree f = trigsimp(f) f_original = f trig_functions = f.atoms(sin, cos, tan, sec, cot, csc) trig_arguments = [e.args[0] for e in trig_functions] denominators = [] numerators = [] for ar in trig_arguments: try: poly_ar = Poly(ar, symbol) except ValueError: raise ValueError("give up, we can't solve if this is not a polynomial in x") if poly_ar.degree() > 1: # degree >1 still bad raise ValueError("degree of variable inside polynomial should not exceed one") if poly_ar.degree() == 0: # degree 0, don't care continue c = poly_ar.all_coeffs()[0] # got the coefficient of 'symbol' numerators.append(Rational(c).p) denominators.append(Rational(c).q) x = Dummy('x') # ilcm() and igcd() require more than one argument if len(numerators) > 1: mu = Rational(2)*ilcm(*denominators)/igcd(*numerators) else: assert len(numerators) == 1 mu = Rational(2)*denominators[0]/numerators[0] f = f.subs(symbol, mu*x) f = f.rewrite(tan) f = expand_trig(f) f = together(f) g, h = fraction(f) y = Dummy('y') g, h = g.expand(), h.expand() g, h = g.subs(tan(x), y), h.subs(tan(x), y) if g.has(x) or h.has(x): return ConditionSet(symbol, Eq(f_original, 0), domain) solns = solveset(g, y, S.Reals) - solveset(h, y, S.Reals) if isinstance(solns, FiniteSet): result = Union(*[invert_real(tan(symbol/mu), s, symbol)[1] for s in solns]) dsol = invert_real(tan(symbol/mu), oo, symbol)[1] if degree(h) > degree(g): # If degree(denom)>degree(num) then there result = Union(result, dsol) # would be another sol at Lim(denom-->oo) return Intersection(result, domain) elif solns is S.EmptySet: return S.EmptySet else: return ConditionSet(symbol, Eq(f_original, 0), S.Reals) def _solve_as_poly(f, symbol, domain=S.Complexes): """ Solve the equation using polynomial techniques if it already is a polynomial equation or, with a change of variables, can be made so. """ result = None if f.is_polynomial(symbol): solns = roots(f, symbol, cubics=True, quartics=True, quintics=True, domain='EX') num_roots = sum(solns.values()) if degree(f, symbol) <= num_roots: result = FiniteSet(*solns.keys()) else: poly = Poly(f, symbol) solns = poly.all_roots() if poly.degree() <= len(solns): result = FiniteSet(*solns) else: result = ConditionSet(symbol, Eq(f, 0), domain) else: poly = Poly(f) if poly is None: result = ConditionSet(symbol, Eq(f, 0), domain) gens = [g for g in poly.gens if g.has(symbol)] if len(gens) == 1: poly = Poly(poly, gens[0]) gen = poly.gen deg = poly.degree() poly = Poly(poly.as_expr(), poly.gen, composite=True) poly_solns = FiniteSet(*roots(poly, cubics=True, quartics=True, quintics=True).keys()) if len(poly_solns) < deg: result = ConditionSet(symbol, Eq(f, 0), domain) if gen != symbol: y = Dummy('y') inverter = invert_real if domain.is_subset(S.Reals) else invert_complex lhs, rhs_s = inverter(gen, y, symbol) if lhs == symbol: result = Union(*[rhs_s.subs(y, s) for s in poly_solns]) else: result = ConditionSet(symbol, Eq(f, 0), domain) else: result = ConditionSet(symbol, Eq(f, 0), domain) if result is not None: if isinstance(result, FiniteSet): # this is to simplify solutions like -sqrt(-I) to sqrt(2)/2 # - sqrt(2)*I/2. We are not expanding for solution with symbols # or undefined functions because that makes the solution more complicated. # For example, expand_complex(a) returns re(a) + I*im(a) if all([s.atoms(Symbol, AppliedUndef) == set() and not isinstance(s, RootOf) for s in result]): s = Dummy('s') result = imageset(Lambda(s, expand_complex(s)), result) if isinstance(result, FiniteSet): result = result.intersection(domain) return result else: return ConditionSet(symbol, Eq(f, 0), domain) def _has_rational_power(expr, symbol): """ Returns (bool, den) where bool is True if the term has a non-integer rational power and den is the denominator of the expression's exponent. Examples ======== >>> from sympy.solvers.solveset import _has_rational_power >>> from sympy import sqrt >>> from sympy.abc import x >>> _has_rational_power(sqrt(x), x) (True, 2) >>> _has_rational_power(x**2, x) (False, 1) """ a, p, q = Wild('a'), Wild('p'), Wild('q') pattern_match = expr.match(a*p**q) or {} if pattern_match.get(a, S.Zero).is_zero: return (False, S.One) elif p not in pattern_match.keys(): return (False, S.One) elif isinstance(pattern_match[q], Rational) \ and pattern_match[p].has(symbol): if not pattern_match[q].q == S.One: return (True, pattern_match[q].q) if not isinstance(pattern_match[a], Pow) \ or isinstance(pattern_match[a], Mul): return (False, S.One) else: return _has_rational_power(pattern_match[a], symbol) def _solve_radical(f, symbol, solveset_solver): """ Helper function to solve equations with radicals """ eq, cov = unrad(f) if not cov: result = solveset_solver(eq, symbol) - \ Union(*[solveset_solver(g, symbol) for g in denoms(f, symbol)]) else: y, yeq = cov if not solveset_solver(y - I, y): yreal = Dummy('yreal', real=True) yeq = yeq.xreplace({y: yreal}) eq = eq.xreplace({y: yreal}) y = yreal g_y_s = solveset_solver(yeq, symbol) f_y_sols = solveset_solver(eq, y) result = Union(*[imageset(Lambda(y, g_y), f_y_sols) for g_y in g_y_s]) if isinstance(result, Complement) or isinstance(result,ConditionSet): solution_set = result else: f_set = [] # solutions for FiniteSet c_set = [] # solutions for ConditionSet for s in result: if checksol(f, symbol, s): f_set.append(s) else: c_set.append(s) solution_set = FiniteSet(*f_set) + ConditionSet(symbol, Eq(f, 0), FiniteSet(*c_set)) return solution_set def _solve_abs(f, symbol, domain): """ Helper function to solve equation involving absolute value function """ if not domain.is_subset(S.Reals): raise ValueError(filldedent(''' Absolute values cannot be inverted in the complex domain.''')) p, q, r = Wild('p'), Wild('q'), Wild('r') pattern_match = f.match(p*Abs(q) + r) or {} f_p, f_q, f_r = [pattern_match.get(i, S.Zero) for i in (p, q, r)] if not (f_p.is_zero or f_q.is_zero): domain = continuous_domain(f_q, symbol, domain) q_pos_cond = solve_univariate_inequality(f_q >= 0, symbol, relational=False, domain=domain, continuous=True) q_neg_cond = q_pos_cond.complement(domain) sols_q_pos = solveset_real(f_p*f_q + f_r, symbol).intersect(q_pos_cond) sols_q_neg = solveset_real(f_p*(-f_q) + f_r, symbol).intersect(q_neg_cond) return Union(sols_q_pos, sols_q_neg) else: return ConditionSet(symbol, Eq(f, 0), domain) def solve_decomposition(f, symbol, domain): """ Function to solve equations via the principle of "Decomposition and Rewriting". Examples ======== >>> from sympy import exp, sin, Symbol, pprint, S >>> from sympy.solvers.solveset import solve_decomposition as sd >>> x = Symbol('x') >>> f1 = exp(2*x) - 3*exp(x) + 2 >>> sd(f1, x, S.Reals) FiniteSet(0, log(2)) >>> f2 = sin(x)**2 + 2*sin(x) + 1 >>> pprint(sd(f2, x, S.Reals), use_unicode=False) 3*pi {2*n*pi + ---- | n in Integers} 2 >>> f3 = sin(x + 2) >>> pprint(sd(f3, x, S.Reals), use_unicode=False) {2*n*pi - 2 | n in Integers} U {2*n*pi - 2 + pi | n in Integers} """ from sympy.solvers.decompogen import decompogen from sympy.calculus.util import function_range # decompose the given function g_s = decompogen(f, symbol) # `y_s` represents the set of values for which the function `g` is to be # solved. # `solutions` represent the solutions of the equations `g = y_s` or # `g = 0` depending on the type of `y_s`. # As we are interested in solving the equation: f = 0 y_s = FiniteSet(0) for g in g_s: frange = function_range(g, symbol, domain) y_s = Intersection(frange, y_s) result = S.EmptySet if isinstance(y_s, FiniteSet): for y in y_s: solutions = solveset(Eq(g, y), symbol, domain) if not isinstance(solutions, ConditionSet): result += solutions else: if isinstance(y_s, ImageSet): iter_iset = (y_s,) elif isinstance(y_s, Union): iter_iset = y_s.args elif y_s is EmptySet: # y_s is not in the range of g in g_s, so no solution exists #in the given domain return EmptySet for iset in iter_iset: new_solutions = solveset(Eq(iset.lamda.expr, g), symbol, domain) dummy_var = tuple(iset.lamda.expr.free_symbols)[0] (base_set,) = iset.base_sets if isinstance(new_solutions, FiniteSet): new_exprs = new_solutions elif isinstance(new_solutions, Intersection): if isinstance(new_solutions.args[1], FiniteSet): new_exprs = new_solutions.args[1] for new_expr in new_exprs: result += ImageSet(Lambda(dummy_var, new_expr), base_set) if result is S.EmptySet: return ConditionSet(symbol, Eq(f, 0), domain) y_s = result return y_s def _solveset(f, symbol, domain, _check=False): """Helper for solveset to return a result from an expression that has already been sympify'ed and is known to contain the given symbol.""" # _check controls whether the answer is checked or not from sympy.simplify.simplify import signsimp orig_f = f if f.is_Mul: coeff, f = f.as_independent(symbol, as_Add=False) if coeff in set([S.ComplexInfinity, S.NegativeInfinity, S.Infinity]): f = together(orig_f) elif f.is_Add: a, h = f.as_independent(symbol) m, h = h.as_independent(symbol, as_Add=False) if m not in set([S.ComplexInfinity, S.Zero, S.Infinity, S.NegativeInfinity]): f = a/m + h # XXX condition `m != 0` should be added to soln # assign the solvers to use solver = lambda f, x, domain=domain: _solveset(f, x, domain) inverter = lambda f, rhs, symbol: _invert(f, rhs, symbol, domain) result = EmptySet if f.expand().is_zero: return domain elif not f.has(symbol): return EmptySet elif f.is_Mul and all(_is_finite_with_finite_vars(m, domain) for m in f.args): # if f(x) and g(x) are both finite we can say that the solution of # f(x)*g(x) == 0 is same as Union(f(x) == 0, g(x) == 0) is not true in # general. g(x) can grow to infinitely large for the values where # f(x) == 0. To be sure that we are not silently allowing any # wrong solutions we are using this technique only if both f and g are # finite for a finite input. result = Union(*[solver(m, symbol) for m in f.args]) elif _is_function_class_equation(TrigonometricFunction, f, symbol) or \ _is_function_class_equation(HyperbolicFunction, f, symbol): result = _solve_trig(f, symbol, domain) elif isinstance(f, arg): a = f.args[0] result = solveset_real(a > 0, symbol) elif f.is_Piecewise: result = EmptySet expr_set_pairs = f.as_expr_set_pairs(domain) for (expr, in_set) in expr_set_pairs: if in_set.is_Relational: in_set = in_set.as_set() solns = solver(expr, symbol, in_set) result += solns elif isinstance(f, Eq): result = solver(Add(f.lhs, - f.rhs, evaluate=False), symbol, domain) elif f.is_Relational: if not domain.is_subset(S.Reals): raise NotImplementedError(filldedent(''' Inequalities in the complex domain are not supported. Try the real domain by setting domain=S.Reals''')) try: result = solve_univariate_inequality( f, symbol, domain=domain, relational=False) except NotImplementedError: result = ConditionSet(symbol, f, domain) return result elif _is_modular(f, symbol): result = _solve_modular(f, symbol, domain) else: lhs, rhs_s = inverter(f, 0, symbol) if lhs == symbol: # do some very minimal simplification since # repeated inversion may have left the result # in a state that other solvers (e.g. poly) # would have simplified; this is done here # rather than in the inverter since here it # is only done once whereas there it would # be repeated for each step of the inversion if isinstance(rhs_s, FiniteSet): rhs_s = FiniteSet(*[Mul(* signsimp(i).as_content_primitive()) for i in rhs_s]) result = rhs_s elif isinstance(rhs_s, FiniteSet): for equation in [lhs - rhs for rhs in rhs_s]: if equation == f: if any(_has_rational_power(g, symbol)[0] for g in equation.args) or _has_rational_power( equation, symbol)[0]: result += _solve_radical(equation, symbol, solver) elif equation.has(Abs): result += _solve_abs(f, symbol, domain) else: result_rational = _solve_as_rational(equation, symbol, domain) if isinstance(result_rational, ConditionSet): # may be a transcendental type equation result += _transolve(equation, symbol, domain) else: result += result_rational else: result += solver(equation, symbol) elif rhs_s is not S.EmptySet: result = ConditionSet(symbol, Eq(f, 0), domain) if isinstance(result, ConditionSet): num, den = f.as_numer_denom() if den.has(symbol): _result = _solveset(num, symbol, domain) if not isinstance(_result, ConditionSet): singularities = _solveset(den, symbol, domain) result = _result - singularities if _check: if isinstance(result, ConditionSet): # it wasn't solved or has enumerated all conditions # -- leave it alone return result # whittle away all but the symbol-containing core # to use this for testing fx = orig_f.as_independent(symbol, as_Add=True)[1] fx = fx.as_independent(symbol, as_Add=False)[1] if isinstance(result, FiniteSet): # check the result for invalid solutions result = FiniteSet(*[s for s in result if isinstance(s, RootOf) or domain_check(fx, symbol, s)]) return result def _is_modular(f, symbol): """ Helper function to check below mentioned types of modular equations. ``A - Mod(B, C) = 0`` A -> This can or cannot be a function of symbol. B -> This is surely a function of symbol. C -> It is an integer. Parameters ========== f : Expr The equation to be checked. symbol : Symbol The concerned variable for which the equation is to be checked. Examples ======== >>> from sympy import symbols, exp, Mod >>> from sympy.solvers.solveset import _is_modular as check >>> x, y = symbols('x y') >>> check(Mod(x, 3) - 1, x) True >>> check(Mod(x, 3) - 1, y) False >>> check(Mod(x, 3)**2 - 5, x) False >>> check(Mod(x, 3)**2 - y, x) False >>> check(exp(Mod(x, 3)) - 1, x) False >>> check(Mod(3, y) - 1, y) False """ if not f.has(Mod): return False # extract modterms from f. modterms = list(f.atoms(Mod)) return (len(modterms) == 1 and # only one Mod should be present modterms[0].args[0].has(symbol) and # B-> function of symbol modterms[0].args[1].is_integer and # C-> to be an integer. any(isinstance(term, Mod) for term in list(_term_factors(f))) # free from other funcs ) def _invert_modular(modterm, rhs, n, symbol): """ Helper function to invert modular equation. ``Mod(a, m) - rhs = 0`` Generally it is inverted as (a, ImageSet(Lambda(n, m*n + rhs), S.Integers)). More simplified form will be returned if possible. If it is not invertible then (modterm, rhs) is returned. The following cases arise while inverting equation ``Mod(a, m) - rhs = 0``: 1. If a is symbol then m*n + rhs is the required solution. 2. If a is an instance of ``Add`` then we try to find two symbol independent parts of a and the symbol independent part gets tranferred to the other side and again the ``_invert_modular`` is called on the symbol dependent part. 3. If a is an instance of ``Mul`` then same as we done in ``Add`` we separate out the symbol dependent and symbol independent parts and transfer the symbol independent part to the rhs with the help of invert and again the ``_invert_modular`` is called on the symbol dependent part. 4. If a is an instance of ``Pow`` then two cases arise as following: - If a is of type (symbol_indep)**(symbol_dep) then the remainder is evaluated with the help of discrete_log function and then the least period is being found out with the help of totient function. period*n + remainder is the required solution in this case. For reference: (https://en.wikipedia.org/wiki/Euler's_theorem) - If a is of type (symbol_dep)**(symbol_indep) then we try to find all primitive solutions list with the help of nthroot_mod function. m*n + rem is the general solution where rem belongs to solutions list from nthroot_mod function. Parameters ========== modterm, rhs : Expr The modular equation to be inverted, ``modterm - rhs = 0`` symbol : Symbol The variable in the equation to be inverted. n : Dummy Dummy variable for output g_n. Returns ======= A tuple (f_x, g_n) is being returned where f_x is modular independent function of symbol and g_n being set of values f_x can have. Examples ======== >>> from sympy import symbols, exp, Mod, Dummy, S >>> from sympy.solvers.solveset import _invert_modular as invert_modular >>> x, y = symbols('x y') >>> n = Dummy('n') >>> invert_modular(Mod(exp(x), 7), S(5), n, x) (Mod(exp(x), 7), 5) >>> invert_modular(Mod(x, 7), S(5), n, x) (x, ImageSet(Lambda(_n, 7*_n + 5), Integers)) >>> invert_modular(Mod(3*x + 8, 7), S(5), n, x) (x, ImageSet(Lambda(_n, 7*_n + 6), Integers)) >>> invert_modular(Mod(x**4, 7), S(5), n, x) (x, EmptySet) >>> invert_modular(Mod(2**(x**2 + x + 1), 7), S(2), n, x) (x**2 + x + 1, ImageSet(Lambda(_n, 3*_n + 1), Naturals0)) """ a, m = modterm.args if rhs.is_real is False or any(term.is_real is False for term in list(_term_factors(a))): # Check for complex arguments return modterm, rhs if abs(rhs) >= abs(m): # if rhs has value greater than value of m. return symbol, EmptySet if a == symbol: return symbol, ImageSet(Lambda(n, m*n + rhs), S.Integers) if a.is_Add: # g + h = a g, h = a.as_independent(symbol) if g is not S.Zero: x_indep_term = rhs - Mod(g, m) return _invert_modular(Mod(h, m), Mod(x_indep_term, m), n, symbol) if a.is_Mul: # g*h = a g, h = a.as_independent(symbol) if g is not S.One: x_indep_term = rhs*invert(g, m) return _invert_modular(Mod(h, m), Mod(x_indep_term, m), n, symbol) if a.is_Pow: # base**expo = a base, expo = a.args if expo.has(symbol) and not base.has(symbol): # remainder -> solution independent of n of equation. # m, rhs are made coprime by dividing igcd(m, rhs) try: remainder = discrete_log(m / igcd(m, rhs), rhs, a.base) except ValueError: # log does not exist return modterm, rhs # period -> coefficient of n in the solution and also referred as # the least period of expo in which it is repeats itself. # (a**(totient(m)) - 1) divides m. Here is link of theorem: # (https://en.wikipedia.org/wiki/Euler's_theorem) period = totient(m) for p in divisors(period): # there might a lesser period exist than totient(m). if pow(a.base, p, m / igcd(m, a.base)) == 1: period = p break # recursion is not applied here since _invert_modular is currently # not smart enough to handle infinite rhs as here expo has infinite # rhs = ImageSet(Lambda(n, period*n + remainder), S.Naturals0). return expo, ImageSet(Lambda(n, period*n + remainder), S.Naturals0) elif base.has(symbol) and not expo.has(symbol): try: remainder_list = nthroot_mod(rhs, expo, m, all_roots=True) if remainder_list is None: return symbol, EmptySet except (ValueError, NotImplementedError): return modterm, rhs g_n = EmptySet for rem in remainder_list: g_n += ImageSet(Lambda(n, m*n + rem), S.Integers) return base, g_n return modterm, rhs def _solve_modular(f, symbol, domain): r""" Helper function for solving modular equations of type ``A - Mod(B, C) = 0``, where A can or cannot be a function of symbol, B is surely a function of symbol and C is an integer. Currently ``_solve_modular`` is only able to solve cases where A is not a function of symbol. Parameters ========== f : Expr The modular equation to be solved, ``f = 0`` symbol : Symbol The variable in the equation to be solved. domain : Set A set over which the equation is solved. It has to be a subset of Integers. Returns ======= A set of integer solutions satisfying the given modular equation. A ``ConditionSet`` if the equation is unsolvable. Examples ======== >>> from sympy.solvers.solveset import _solve_modular as solve_modulo >>> from sympy import S, Symbol, sin, Intersection, Range, Interval >>> from sympy.core.mod import Mod >>> x = Symbol('x') >>> solve_modulo(Mod(5*x - 8, 7) - 3, x, S.Integers) ImageSet(Lambda(_n, 7*_n + 5), Integers) >>> solve_modulo(Mod(5*x - 8, 7) - 3, x, S.Reals) # domain should be subset of integers. ConditionSet(x, Eq(Mod(5*x + 6, 7) - 3, 0), Reals) >>> solve_modulo(-7 + Mod(x, 5), x, S.Integers) EmptySet >>> solve_modulo(Mod(12**x, 21) - 18, x, S.Integers) ImageSet(Lambda(_n, 6*_n + 2), Naturals0) >>> solve_modulo(Mod(sin(x), 7) - 3, x, S.Integers) # not solvable ConditionSet(x, Eq(Mod(sin(x), 7) - 3, 0), Integers) >>> solve_modulo(3 - Mod(x, 5), x, Intersection(S.Integers, Interval(0, 100))) Intersection(ImageSet(Lambda(_n, 5*_n + 3), Integers), Range(0, 101, 1)) """ # extract modterm and g_y from f unsolved_result = ConditionSet(symbol, Eq(f, 0), domain) modterm = list(f.atoms(Mod))[0] rhs = -S.One*(f.subs(modterm, S.Zero)) if f.as_coefficients_dict()[modterm].is_negative: # checks if coefficient of modterm is negative in main equation. rhs *= -S.One if not domain.is_subset(S.Integers): return unsolved_result if rhs.has(symbol): # TODO Case: A-> function of symbol, can be extended here # in future. return unsolved_result n = Dummy('n', integer=True) f_x, g_n = _invert_modular(modterm, rhs, n, symbol) if f_x is modterm and g_n is rhs: return unsolved_result if f_x is symbol: if domain is not S.Integers: return domain.intersect(g_n) return g_n if isinstance(g_n, ImageSet): lamda_expr = g_n.lamda.expr lamda_vars = g_n.lamda.variables base_sets = g_n.base_sets sol_set = _solveset(f_x - lamda_expr, symbol, S.Integers) if isinstance(sol_set, FiniteSet): tmp_sol = EmptySet for sol in sol_set: tmp_sol += ImageSet(Lambda(lamda_vars, sol), *base_sets) sol_set = tmp_sol else: sol_set = ImageSet(Lambda(lamda_vars, sol_set), *base_sets) return domain.intersect(sol_set) return unsolved_result def _term_factors(f): """ Iterator to get the factors of all terms present in the given equation. Parameters ========== f : Expr Equation that needs to be addressed Returns ======= Factors of all terms present in the equation. Examples ======== >>> from sympy import symbols >>> from sympy.solvers.solveset import _term_factors >>> x = symbols('x') >>> list(_term_factors(-2 - x**2 + x*(x + 1))) [-2, -1, x**2, x, x + 1] """ for add_arg in Add.make_args(f): for mul_arg in Mul.make_args(add_arg): yield mul_arg def _solve_exponential(lhs, rhs, symbol, domain): r""" Helper function for solving (supported) exponential equations. Exponential equations are the sum of (currently) at most two terms with one or both of them having a power with a symbol-dependent exponent. For example .. math:: 5^{2x + 3} - 5^{3x - 1} .. math:: 4^{5 - 9x} - e^{2 - x} Parameters ========== lhs, rhs : Expr The exponential equation to be solved, `lhs = rhs` symbol : Symbol The variable in which the equation is solved domain : Set A set over which the equation is solved. Returns ======= A set of solutions satisfying the given equation. A ``ConditionSet`` if the equation is unsolvable or if the assumptions are not properly defined, in that case a different style of ``ConditionSet`` is returned having the solution(s) of the equation with the desired assumptions. Examples ======== >>> from sympy.solvers.solveset import _solve_exponential as solve_expo >>> from sympy import symbols, S >>> x = symbols('x', real=True) >>> a, b = symbols('a b') >>> solve_expo(2**x + 3**x - 5**x, 0, x, S.Reals) # not solvable ConditionSet(x, Eq(2**x + 3**x - 5**x, 0), Reals) >>> solve_expo(a**x - b**x, 0, x, S.Reals) # solvable but incorrect assumptions ConditionSet(x, (a > 0) & (b > 0), FiniteSet(0)) >>> solve_expo(3**(2*x) - 2**(x + 3), 0, x, S.Reals) FiniteSet(-3*log(2)/(-2*log(3) + log(2))) >>> solve_expo(2**x - 4**x, 0, x, S.Reals) FiniteSet(0) * Proof of correctness of the method The logarithm function is the inverse of the exponential function. The defining relation between exponentiation and logarithm is: .. math:: {\log_b x} = y \enspace if \enspace b^y = x Therefore if we are given an equation with exponent terms, we can convert every term to its corresponding logarithmic form. This is achieved by taking logarithms and expanding the equation using logarithmic identities so that it can easily be handled by ``solveset``. For example: .. math:: 3^{2x} = 2^{x + 3} Taking log both sides will reduce the equation to .. math:: (2x)\log(3) = (x + 3)\log(2) This form can be easily handed by ``solveset``. """ unsolved_result = ConditionSet(symbol, Eq(lhs - rhs, 0), domain) newlhs = powdenest(lhs) if lhs != newlhs: # it may also be advantageous to factor the new expr return _solveset(factor(newlhs - rhs), symbol, domain) # try again with _solveset if not (isinstance(lhs, Add) and len(lhs.args) == 2): # solving for the sum of more than two powers is possible # but not yet implemented return unsolved_result if rhs != 0: return unsolved_result a, b = list(ordered(lhs.args)) a_term = a.as_independent(symbol)[1] b_term = b.as_independent(symbol)[1] a_base, a_exp = a_term.base, a_term.exp b_base, b_exp = b_term.base, b_term.exp from sympy.functions.elementary.complexes import im if domain.is_subset(S.Reals): conditions = And( a_base > 0, b_base > 0, Eq(im(a_exp), 0), Eq(im(b_exp), 0)) else: conditions = And( Ne(a_base, 0), Ne(b_base, 0)) L, R = map(lambda i: expand_log(log(i), force=True), (a, -b)) solutions = _solveset(L - R, symbol, domain) return ConditionSet(symbol, conditions, solutions) def _is_exponential(f, symbol): r""" Return ``True`` if one or more terms contain ``symbol`` only in exponents, else ``False``. Parameters ========== f : Expr The equation to be checked symbol : Symbol The variable in which the equation is checked Examples ======== >>> from sympy import symbols, cos, exp >>> from sympy.solvers.solveset import _is_exponential as check >>> x, y = symbols('x y') >>> check(y, y) False >>> check(x**y - 1, y) True >>> check(x**y*2**y - 1, y) True >>> check(exp(x + 3) + 3**x, x) True >>> check(cos(2**x), x) False * Philosophy behind the helper The function extracts each term of the equation and checks if it is of exponential form w.r.t ``symbol``. """ rv = False for expr_arg in _term_factors(f): if symbol not in expr_arg.free_symbols: continue if (isinstance(expr_arg, Pow) and symbol not in expr_arg.base.free_symbols or isinstance(expr_arg, exp)): rv = True # symbol in exponent else: return False # dependent on symbol in non-exponential way return rv def _solve_logarithm(lhs, rhs, symbol, domain): r""" Helper to solve logarithmic equations which are reducible to a single instance of `\log`. Logarithmic equations are (currently) the equations that contains `\log` terms which can be reduced to a single `\log` term or a constant using various logarithmic identities. For example: .. math:: \log(x) + \log(x - 4) can be reduced to: .. math:: \log(x(x - 4)) Parameters ========== lhs, rhs : Expr The logarithmic equation to be solved, `lhs = rhs` symbol : Symbol The variable in which the equation is solved domain : Set A set over which the equation is solved. Returns ======= A set of solutions satisfying the given equation. A ``ConditionSet`` if the equation is unsolvable. Examples ======== >>> from sympy import symbols, log, S >>> from sympy.solvers.solveset import _solve_logarithm as solve_log >>> x = symbols('x') >>> f = log(x - 3) + log(x + 3) >>> solve_log(f, 0, x, S.Reals) FiniteSet(sqrt(10), -sqrt(10)) * Proof of correctness A logarithm is another way to write exponent and is defined by .. math:: {\log_b x} = y \enspace if \enspace b^y = x When one side of the equation contains a single logarithm, the equation can be solved by rewriting the equation as an equivalent exponential equation as defined above. But if one side contains more than one logarithm, we need to use the properties of logarithm to condense it into a single logarithm. Take for example .. math:: \log(2x) - 15 = 0 contains single logarithm, therefore we can directly rewrite it to exponential form as .. math:: x = \frac{e^{15}}{2} But if the equation has more than one logarithm as .. math:: \log(x - 3) + \log(x + 3) = 0 we use logarithmic identities to convert it into a reduced form Using, .. math:: \log(a) + \log(b) = \log(ab) the equation becomes, .. math:: \log((x - 3)(x + 3)) This equation contains one logarithm and can be solved by rewriting to exponents. """ new_lhs = logcombine(lhs, force=True) new_f = new_lhs - rhs return _solveset(new_f, symbol, domain) def _is_logarithmic(f, symbol): r""" Return ``True`` if the equation is in the form `a\log(f(x)) + b\log(g(x)) + ... + c` else ``False``. Parameters ========== f : Expr The equation to be checked symbol : Symbol The variable in which the equation is checked Returns ======= ``True`` if the equation is logarithmic otherwise ``False``. Examples ======== >>> from sympy import symbols, tan, log >>> from sympy.solvers.solveset import _is_logarithmic as check >>> x, y = symbols('x y') >>> check(log(x + 2) - log(x + 3), x) True >>> check(tan(log(2*x)), x) False >>> check(x*log(x), x) False >>> check(x + log(x), x) False >>> check(y + log(x), x) True * Philosophy behind the helper The function extracts each term and checks whether it is logarithmic w.r.t ``symbol``. """ rv = False for term in Add.make_args(f): saw_log = False for term_arg in Mul.make_args(term): if symbol not in term_arg.free_symbols: continue if isinstance(term_arg, log): if saw_log: return False # more than one log in term saw_log = True else: return False # dependent on symbol in non-log way if saw_log: rv = True return rv def _transolve(f, symbol, domain): r""" Function to solve transcendental equations. It is a helper to ``solveset`` and should be used internally. ``_transolve`` currently supports the following class of equations: - Exponential equations - Logarithmic equations Parameters ========== f : Any transcendental equation that needs to be solved. This needs to be an expression, which is assumed to be equal to ``0``. symbol : The variable for which the equation is solved. This needs to be of class ``Symbol``. domain : A set over which the equation is solved. This needs to be of class ``Set``. Returns ======= Set A set of values for ``symbol`` for which ``f`` is equal to zero. An ``EmptySet`` is returned if ``f`` does not have solutions in respective domain. A ``ConditionSet`` is returned as unsolved object if algorithms to evaluate complete solution are not yet implemented. How to use ``_transolve`` ========================= ``_transolve`` should not be used as an independent function, because it assumes that the equation (``f``) and the ``symbol`` comes from ``solveset`` and might have undergone a few modification(s). To use ``_transolve`` as an independent function the equation (``f``) and the ``symbol`` should be passed as they would have been by ``solveset``. Examples ======== >>> from sympy.solvers.solveset import _transolve as transolve >>> from sympy.solvers.solvers import _tsolve as tsolve >>> from sympy import symbols, S, pprint >>> x = symbols('x', real=True) # assumption added >>> transolve(5**(x - 3) - 3**(2*x + 1), x, S.Reals) FiniteSet(-(log(3) + 3*log(5))/(-log(5) + 2*log(3))) How ``_transolve`` works ======================== ``_transolve`` uses two types of helper functions to solve equations of a particular class: Identifying helpers: To determine whether a given equation belongs to a certain class of equation or not. Returns either ``True`` or ``False``. Solving helpers: Once an equation is identified, a corresponding helper either solves the equation or returns a form of the equation that ``solveset`` might better be able to handle. * Philosophy behind the module The purpose of ``_transolve`` is to take equations which are not already polynomial in their generator(s) and to either recast them as such through a valid transformation or to solve them outright. A pair of helper functions for each class of supported transcendental functions are employed for this purpose. One identifies the transcendental form of an equation and the other either solves it or recasts it into a tractable form that can be solved by ``solveset``. For example, an equation in the form `ab^{f(x)} - cd^{g(x)} = 0` can be transformed to `\log(a) + f(x)\log(b) - \log(c) - g(x)\log(d) = 0` (under certain assumptions) and this can be solved with ``solveset`` if `f(x)` and `g(x)` are in polynomial form. How ``_transolve`` is better than ``_tsolve`` ============================================= 1) Better output ``_transolve`` provides expressions in a more simplified form. Consider a simple exponential equation >>> f = 3**(2*x) - 2**(x + 3) >>> pprint(transolve(f, x, S.Reals), use_unicode=False) -3*log(2) {------------------} -2*log(3) + log(2) >>> pprint(tsolve(f, x), use_unicode=False) / 3 \ | --------| | log(2/9)| [-log\2 /] 2) Extensible The API of ``_transolve`` is designed such that it is easily extensible, i.e. the code that solves a given class of equations is encapsulated in a helper and not mixed in with the code of ``_transolve`` itself. 3) Modular ``_transolve`` is designed to be modular i.e, for every class of equation a separate helper for identification and solving is implemented. This makes it easy to change or modify any of the method implemented directly in the helpers without interfering with the actual structure of the API. 4) Faster Computation Solving equation via ``_transolve`` is much faster as compared to ``_tsolve``. In ``solve``, attempts are made computing every possibility to get the solutions. This series of attempts makes solving a bit slow. In ``_transolve``, computation begins only after a particular type of equation is identified. How to add new class of equations ================================= Adding a new class of equation solver is a three-step procedure: - Identify the type of the equations Determine the type of the class of equations to which they belong: it could be of ``Add``, ``Pow``, etc. types. Separate internal functions are used for each type. Write identification and solving helpers and use them from within the routine for the given type of equation (after adding it, if necessary). Something like: .. code-block:: python def add_type(lhs, rhs, x): .... if _is_exponential(lhs, x): new_eq = _solve_exponential(lhs, rhs, x) .... rhs, lhs = eq.as_independent(x) if lhs.is_Add: result = add_type(lhs, rhs, x) - Define the identification helper. - Define the solving helper. Apart from this, a few other things needs to be taken care while adding an equation solver: - Naming conventions: Name of the identification helper should be as ``_is_class`` where class will be the name or abbreviation of the class of equation. The solving helper will be named as ``_solve_class``. For example: for exponential equations it becomes ``_is_exponential`` and ``_solve_expo``. - The identifying helpers should take two input parameters, the equation to be checked and the variable for which a solution is being sought, while solving helpers would require an additional domain parameter. - Be sure to consider corner cases. - Add tests for each helper. - Add a docstring to your helper that describes the method implemented. The documentation of the helpers should identify: - the purpose of the helper, - the method used to identify and solve the equation, - a proof of correctness - the return values of the helpers """ def add_type(lhs, rhs, symbol, domain): """ Helper for ``_transolve`` to handle equations of ``Add`` type, i.e. equations taking the form as ``a*f(x) + b*g(x) + .... = c``. For example: 4**x + 8**x = 0 """ result = ConditionSet(symbol, Eq(lhs - rhs, 0), domain) # check if it is exponential type equation if _is_exponential(lhs, symbol): result = _solve_exponential(lhs, rhs, symbol, domain) # check if it is logarithmic type equation elif _is_logarithmic(lhs, symbol): result = _solve_logarithm(lhs, rhs, symbol, domain) return result result = ConditionSet(symbol, Eq(f, 0), domain) # invert_complex handles the call to the desired inverter based # on the domain specified. lhs, rhs_s = invert_complex(f, 0, symbol, domain) if isinstance(rhs_s, FiniteSet): assert (len(rhs_s.args)) == 1 rhs = rhs_s.args[0] if lhs.is_Add: result = add_type(lhs, rhs, symbol, domain) else: result = rhs_s return result def solveset(f, symbol=None, domain=S.Complexes): r"""Solves a given inequality or equation with set as output Parameters ========== f : Expr or a relational. The target equation or inequality symbol : Symbol The variable for which the equation is solved domain : Set The domain over which the equation is solved Returns ======= Set A set of values for `symbol` for which `f` is True or is equal to zero. An `EmptySet` is returned if `f` is False or nonzero. A `ConditionSet` is returned as unsolved object if algorithms to evaluate complete solution are not yet implemented. `solveset` claims to be complete in the solution set that it returns. Raises ====== NotImplementedError The algorithms to solve inequalities in complex domain are not yet implemented. ValueError The input is not valid. RuntimeError It is a bug, please report to the github issue tracker. Notes ===== Python interprets 0 and 1 as False and True, respectively, but in this function they refer to solutions of an expression. So 0 and 1 return the Domain and EmptySet, respectively, while True and False return the opposite (as they are assumed to be solutions of relational expressions). See Also ======== solveset_real: solver for real domain solveset_complex: solver for complex domain Examples ======== >>> from sympy import exp, sin, Symbol, pprint, S >>> from sympy.solvers.solveset import solveset, solveset_real * The default domain is complex. Not specifying a domain will lead to the solving of the equation in the complex domain (and this is not affected by the assumptions on the symbol): >>> x = Symbol('x') >>> pprint(solveset(exp(x) - 1, x), use_unicode=False) {2*n*I*pi | n in Integers} >>> x = Symbol('x', real=True) >>> pprint(solveset(exp(x) - 1, x), use_unicode=False) {2*n*I*pi | n in Integers} * If you want to use `solveset` to solve the equation in the real domain, provide a real domain. (Using ``solveset_real`` does this automatically.) >>> R = S.Reals >>> x = Symbol('x') >>> solveset(exp(x) - 1, x, R) FiniteSet(0) >>> solveset_real(exp(x) - 1, x) FiniteSet(0) The solution is mostly unaffected by assumptions on the symbol, but there may be some slight difference: >>> pprint(solveset(sin(x)/x,x), use_unicode=False) ({2*n*pi | n in Integers} \ {0}) U ({2*n*pi + pi | n in Integers} \ {0}) >>> p = Symbol('p', positive=True) >>> pprint(solveset(sin(p)/p, p), use_unicode=False) {2*n*pi | n in Integers} U {2*n*pi + pi | n in Integers} * Inequalities can be solved over the real domain only. Use of a complex domain leads to a NotImplementedError. >>> solveset(exp(x) > 1, x, R) Interval.open(0, oo) """ f = sympify(f) symbol = sympify(symbol) if f is S.true: return domain if f is S.false: return S.EmptySet if not isinstance(f, (Expr, Number)): raise ValueError("%s is not a valid SymPy expression" % f) if not isinstance(symbol, Expr) and symbol is not None: raise ValueError("%s is not a valid SymPy symbol" % symbol) if not isinstance(domain, Set): raise ValueError("%s is not a valid domain" %(domain)) free_symbols = f.free_symbols if symbol is None and not free_symbols: b = Eq(f, 0) if b is S.true: return domain elif b is S.false: return S.EmptySet else: raise NotImplementedError(filldedent(''' relationship between value and 0 is unknown: %s''' % b)) if symbol is None: if len(free_symbols) == 1: symbol = free_symbols.pop() elif free_symbols: raise ValueError(filldedent(''' The independent variable must be specified for a multivariate equation.''')) elif not isinstance(symbol, Symbol): f, s, swap = recast_to_symbols([f], [symbol]) # the xreplace will be needed if a ConditionSet is returned return solveset(f[0], s[0], domain).xreplace(swap) if domain.is_subset(S.Reals): if not symbol.is_real: assumptions = symbol.assumptions0 assumptions['real'] = True try: r = Dummy('r', **assumptions) return solveset(f.xreplace({symbol: r}), r, domain ).xreplace({r: symbol}) except InconsistentAssumptions: pass # Abs has its own handling method which avoids the # rewriting property that the first piece of abs(x) # is for x >= 0 and the 2nd piece for x < 0 -- solutions # can look better if the 2nd condition is x <= 0. Since # the solution is a set, duplication of results is not # an issue, e.g. {y, -y} when y is 0 will be {0} f, mask = _masked(f, Abs) f = f.rewrite(Piecewise) # everything that's not an Abs for d, e in mask: # everything *in* an Abs e = e.func(e.args[0].rewrite(Piecewise)) f = f.xreplace({d: e}) f = piecewise_fold(f) return _solveset(f, symbol, domain, _check=True) def solveset_real(f, symbol): return solveset(f, symbol, S.Reals) def solveset_complex(f, symbol): return solveset(f, symbol, S.Complexes) def _solveset_multi(eqs, syms, domains): '''Basic implementation of a multivariate solveset. For internal use (not ready for public consumption)''' rep = {} for sym, dom in zip(syms, domains): if dom is S.Reals: rep[sym] = Symbol(sym.name, real=True) eqs = [eq.subs(rep) for eq in eqs] syms = [sym.subs(rep) for sym in syms] syms = tuple(syms) if len(eqs) == 0: return ProductSet(*domains) if len(syms) == 1: sym = syms[0] domain = domains[0] solsets = [solveset(eq, sym, domain) for eq in eqs] solset = Intersection(*solsets) return ImageSet(Lambda((sym,), (sym,)), solset).doit() eqs = sorted(eqs, key=lambda eq: len(eq.free_symbols & set(syms))) for n in range(len(eqs)): sols = [] all_handled = True for sym in syms: if sym not in eqs[n].free_symbols: continue sol = solveset(eqs[n], sym, domains[syms.index(sym)]) if isinstance(sol, FiniteSet): i = syms.index(sym) symsp = syms[:i] + syms[i+1:] domainsp = domains[:i] + domains[i+1:] eqsp = eqs[:n] + eqs[n+1:] for s in sol: eqsp_sub = [eq.subs(sym, s) for eq in eqsp] sol_others = _solveset_multi(eqsp_sub, symsp, domainsp) fun = Lambda((symsp,), symsp[:i] + (s,) + symsp[i:]) sols.append(ImageSet(fun, sol_others).doit()) else: all_handled = False if all_handled: return Union(*sols) def solvify(f, symbol, domain): """Solves an equation using solveset and returns the solution in accordance with the `solve` output API. Returns ======= We classify the output based on the type of solution returned by `solveset`. Solution | Output ---------------------------------------- FiniteSet | list ImageSet, | list (if `f` is periodic) Union | EmptySet | empty list Others | None Raises ====== NotImplementedError A ConditionSet is the input. Examples ======== >>> from sympy.solvers.solveset import solvify, solveset >>> from sympy.abc import x >>> from sympy import S, tan, sin, exp >>> solvify(x**2 - 9, x, S.Reals) [-3, 3] >>> solvify(sin(x) - 1, x, S.Reals) [pi/2] >>> solvify(tan(x), x, S.Reals) [0] >>> solvify(exp(x) - 1, x, S.Complexes) >>> solvify(exp(x) - 1, x, S.Reals) [0] """ solution_set = solveset(f, symbol, domain) result = None if solution_set is S.EmptySet: result = [] elif isinstance(solution_set, ConditionSet): raise NotImplementedError('solveset is unable to solve this equation.') elif isinstance(solution_set, FiniteSet): result = list(solution_set) else: period = periodicity(f, symbol) if period is not None: solutions = S.EmptySet iter_solutions = () if isinstance(solution_set, ImageSet): iter_solutions = (solution_set,) elif isinstance(solution_set, Union): if all(isinstance(i, ImageSet) for i in solution_set.args): iter_solutions = solution_set.args for solution in iter_solutions: solutions += solution.intersect(Interval(0, period, False, True)) if isinstance(solutions, FiniteSet): result = list(solutions) else: solution = solution_set.intersect(domain) if isinstance(solution, FiniteSet): result += solution return result ############################################################################### ################################ LINSOLVE ##################################### ############################################################################### def linear_coeffs(eq, *syms, **_kw): """Return a list whose elements are the coefficients of the corresponding symbols in the sum of terms in ``eq``. The additive constant is returned as the last element of the list. Examples ======== >>> from sympy.solvers.solveset import linear_coeffs >>> from sympy.abc import x, y, z >>> linear_coeffs(3*x + 2*y - 1, x, y) [3, 2, -1] It is not necessary to expand the expression: >>> linear_coeffs(x + y*(z*(x*3 + 2) + 3), x) [3*y*z + 1, y*(2*z + 3)] But if there are nonlinear or cross terms -- even if they would cancel after simplification -- an error is raised so the situation does not pass silently past the caller's attention: >>> eq = 1/x*(x - 1) + 1/x >>> linear_coeffs(eq.expand(), x) [0, 1] >>> linear_coeffs(eq, x) Traceback (most recent call last): ... ValueError: nonlinear term encountered: 1/x >>> linear_coeffs(x*(y + 1) - x*y, x, y) Traceback (most recent call last): ... ValueError: nonlinear term encountered: x*(y + 1) """ d = defaultdict(list) eq = _sympify(eq) if not eq.has(*syms): return [S.Zero]*len(syms) + [eq] c, terms = eq.as_coeff_add(*syms) d[0].extend(Add.make_args(c)) for t in terms: m, f = t.as_coeff_mul(*syms) if len(f) != 1: break f = f[0] if f in syms: d[f].append(m) elif f.is_Add: d1 = linear_coeffs(f, *syms, **{'dict': True}) d[0].append(m*d1.pop(0)) for xf, vf in d1.items(): d[xf].append(m*vf) else: break else: for k, v in d.items(): d[k] = Add(*v) if not _kw: return [d.get(s, S.Zero) for s in syms] + [d[0]] return d # default is still list but this won't matter raise ValueError('nonlinear term encountered: %s' % t) def linear_eq_to_matrix(equations, *symbols): r""" Converts a given System of Equations into Matrix form. Here `equations` must be a linear system of equations in `symbols`. Element M[i, j] corresponds to the coefficient of the jth symbol in the ith equation. The Matrix form corresponds to the augmented matrix form. For example: .. math:: 4x + 2y + 3z = 1 .. math:: 3x + y + z = -6 .. math:: 2x + 4y + 9z = 2 This system would return `A` & `b` as given below: :: [ 4 2 3 ] [ 1 ] A = [ 3 1 1 ] b = [-6 ] [ 2 4 9 ] [ 2 ] The only simplification performed is to convert `Eq(a, b) -> a - b`. Raises ====== ValueError The equations contain a nonlinear term. The symbols are not given or are not unique. Examples ======== >>> from sympy import linear_eq_to_matrix, symbols >>> c, x, y, z = symbols('c, x, y, z') The coefficients (numerical or symbolic) of the symbols will be returned as matrices: >>> eqns = [c*x + z - 1 - c, y + z, x - y] >>> A, b = linear_eq_to_matrix(eqns, [x, y, z]) >>> A Matrix([ [c, 0, 1], [0, 1, 1], [1, -1, 0]]) >>> b Matrix([ [c + 1], [ 0], [ 0]]) This routine does not simplify expressions and will raise an error if nonlinearity is encountered: >>> eqns = [ ... (x**2 - 3*x)/(x - 3) - 3, ... y**2 - 3*y - y*(y - 4) + x - 4] >>> linear_eq_to_matrix(eqns, [x, y]) Traceback (most recent call last): ... ValueError: The term (x**2 - 3*x)/(x - 3) is nonlinear in {x, y} Simplifying these equations will discard the removable singularity in the first, reveal the linear structure of the second: >>> [e.simplify() for e in eqns] [x - 3, x + y - 4] Any such simplification needed to eliminate nonlinear terms must be done before calling this routine. """ if not symbols: raise ValueError(filldedent(''' Symbols must be given, for which coefficients are to be found. ''')) if hasattr(symbols[0], '__iter__'): symbols = symbols[0] for i in symbols: if not isinstance(i, Symbol): raise ValueError(filldedent(''' Expecting a Symbol but got %s ''' % i)) if has_dups(symbols): raise ValueError('Symbols must be unique') equations = sympify(equations) if isinstance(equations, MatrixBase): equations = list(equations) elif isinstance(equations, Expr): equations = [equations] elif not is_sequence(equations): raise ValueError(filldedent(''' Equation(s) must be given as a sequence, Expr, Eq or Matrix. ''')) A, b = [], [] for i, f in enumerate(equations): if isinstance(f, Equality): f = f.rewrite(Add, evaluate=False) coeff_list = linear_coeffs(f, *symbols) b.append(-coeff_list.pop()) A.append(coeff_list) A, b = map(Matrix, (A, b)) return A, b def linsolve(system, *symbols): r""" Solve system of N linear equations with M variables; both underdetermined and overdetermined systems are supported. The possible number of solutions is zero, one or infinite. Zero solutions throws a ValueError, whereas infinite solutions are represented parametrically in terms of the given symbols. For unique solution a FiniteSet of ordered tuples is returned. All Standard input formats are supported: For the given set of Equations, the respective input types are given below: .. math:: 3x + 2y - z = 1 .. math:: 2x - 2y + 4z = -2 .. math:: 2x - y + 2z = 0 * Augmented Matrix Form, `system` given below: :: [3 2 -1 1] system = [2 -2 4 -2] [2 -1 2 0] * List Of Equations Form `system = [3x + 2y - z - 1, 2x - 2y + 4z + 2, 2x - y + 2z]` * Input A & b Matrix Form (from Ax = b) are given as below: :: [3 2 -1 ] [ 1 ] A = [2 -2 4 ] b = [ -2 ] [2 -1 2 ] [ 0 ] `system = (A, b)` Symbols can always be passed but are actually only needed when 1) a system of equations is being passed and 2) the system is passed as an underdetermined matrix and one wants to control the name of the free variables in the result. An error is raised if no symbols are used for case 1, but if no symbols are provided for case 2, internally generated symbols will be provided. When providing symbols for case 2, there should be at least as many symbols are there are columns in matrix A. The algorithm used here is Gauss-Jordan elimination, which results, after elimination, in a row echelon form matrix. Returns ======= A FiniteSet containing an ordered tuple of values for the unknowns for which the `system` has a solution. (Wrapping the tuple in FiniteSet is used to maintain a consistent output format throughout solveset.) Returns EmptySet, if the linear system is inconsistent. Raises ====== ValueError The input is not valid. The symbols are not given. Examples ======== >>> from sympy import Matrix, S, linsolve, symbols >>> x, y, z = symbols("x, y, z") >>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]]) >>> b = Matrix([3, 6, 9]) >>> A Matrix([ [1, 2, 3], [4, 5, 6], [7, 8, 10]]) >>> b Matrix([ [3], [6], [9]]) >>> linsolve((A, b), [x, y, z]) FiniteSet((-1, 2, 0)) * Parametric Solution: In case the system is underdetermined, the function will return a parametric solution in terms of the given symbols. Those that are free will be returned unchanged. e.g. in the system below, `z` is returned as the solution for variable z; it can take on any value. >>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> b = Matrix([3, 6, 9]) >>> linsolve((A, b), x, y, z) FiniteSet((z - 1, 2 - 2*z, z)) If no symbols are given, internally generated symbols will be used. The `tau0` in the 3rd position indicates (as before) that the 3rd variable -- whatever it's named -- can take on any value: >>> linsolve((A, b)) FiniteSet((tau0 - 1, 2 - 2*tau0, tau0)) * List of Equations as input >>> Eqns = [3*x + 2*y - z - 1, 2*x - 2*y + 4*z + 2, - x + y/2 - z] >>> linsolve(Eqns, x, y, z) FiniteSet((1, -2, -2)) * Augmented Matrix as input >>> aug = Matrix([[2, 1, 3, 1], [2, 6, 8, 3], [6, 8, 18, 5]]) >>> aug Matrix([ [2, 1, 3, 1], [2, 6, 8, 3], [6, 8, 18, 5]]) >>> linsolve(aug, x, y, z) FiniteSet((3/10, 2/5, 0)) * Solve for symbolic coefficients >>> a, b, c, d, e, f = symbols('a, b, c, d, e, f') >>> eqns = [a*x + b*y - c, d*x + e*y - f] >>> linsolve(eqns, x, y) FiniteSet(((-b*f + c*e)/(a*e - b*d), (a*f - c*d)/(a*e - b*d))) * A degenerate system returns solution as set of given symbols. >>> system = Matrix(([0, 0, 0], [0, 0, 0], [0, 0, 0])) >>> linsolve(system, x, y) FiniteSet((x, y)) * For an empty system linsolve returns empty set >>> linsolve([], x) EmptySet * An error is raised if, after expansion, any nonlinearity is detected: >>> linsolve([x*(1/x - 1), (y - 1)**2 - y**2 + 1], x, y) FiniteSet((1, 1)) >>> linsolve([x**2 - 1], x) Traceback (most recent call last): ... ValueError: The term x**2 is nonlinear in {x} """ if not system: return S.EmptySet # If second argument is an iterable if symbols and hasattr(symbols[0], '__iter__'): symbols = symbols[0] sym_gen = isinstance(symbols, GeneratorType) swap = {} b = None # if we don't get b the input was bad syms_needed_msg = None # unpack system if hasattr(system, '__iter__'): # 1). (A, b) if len(system) == 2 and isinstance(system[0], MatrixBase): A, b = system # 2). (eq1, eq2, ...) if not isinstance(system[0], MatrixBase): if sym_gen or not symbols: raise ValueError(filldedent(''' When passing a system of equations, the explicit symbols for which a solution is being sought must be given as a sequence, too. ''')) system = [ _mexpand(i.lhs - i.rhs if isinstance(i, Eq) else i, recursive=True) for i in system] system, symbols, swap = recast_to_symbols(system, symbols) A, b = linear_eq_to_matrix(system, symbols) syms_needed_msg = 'free symbols in the equations provided' elif isinstance(system, MatrixBase) and not ( symbols and not isinstance(symbols, GeneratorType) and isinstance(symbols[0], MatrixBase)): # 3). A augmented with b A, b = system[:, :-1], system[:, -1:] if b is None: raise ValueError("Invalid arguments") syms_needed_msg = syms_needed_msg or 'columns of A' if sym_gen: symbols = [next(symbols) for i in range(A.cols)] if any(set(symbols) & (A.free_symbols | b.free_symbols)): raise ValueError(filldedent(''' At least one of the symbols provided already appears in the system to be solved. One way to avoid this is to use Dummy symbols in the generator, e.g. numbered_symbols('%s', cls=Dummy) ''' % symbols[0].name.rstrip('1234567890'))) try: solution, params, free_syms = A.gauss_jordan_solve(b, freevar=True) except ValueError: # No solution return S.EmptySet # Replace free parameters with free symbols if params: if not symbols: symbols = [_ for _ in params] # re-use the parameters but put them in order # params [x, y, z] # free_symbols [2, 0, 4] # idx [1, 0, 2] idx = list(zip(*sorted(zip(free_syms, range(len(free_syms))))))[1] # simultaneous replacements {y: x, x: y, z: z} replace_dict = dict(zip(symbols, [symbols[i] for i in idx])) elif len(symbols) >= A.cols: replace_dict = {v: symbols[free_syms[k]] for k, v in enumerate(params)} else: raise IndexError(filldedent(''' the number of symbols passed should have a length equal to the number of %s. ''' % syms_needed_msg)) solution = [sol.xreplace(replace_dict) for sol in solution] solution = [simplify(sol).xreplace(swap) for sol in solution] return FiniteSet(tuple(solution)) ############################################################################## # ------------------------------nonlinsolve ---------------------------------# ############################################################################## def _return_conditionset(eqs, symbols): # return conditionset eqs = (Eq(lhs, 0) for lhs in eqs) condition_set = ConditionSet( Tuple(*symbols), And(*eqs), S.Complexes**len(symbols)) return condition_set def substitution(system, symbols, result=[{}], known_symbols=[], exclude=[], all_symbols=None): r""" Solves the `system` using substitution method. It is used in `nonlinsolve`. This will be called from `nonlinsolve` when any equation(s) is non polynomial equation. Parameters ========== system : list of equations The target system of equations symbols : list of symbols to be solved. The variable(s) for which the system is solved known_symbols : list of solved symbols Values are known for these variable(s) result : An empty list or list of dict If No symbol values is known then empty list otherwise symbol as keys and corresponding value in dict. exclude : Set of expression. Mostly denominator expression(s) of the equations of the system. Final solution should not satisfy these expressions. all_symbols : known_symbols + symbols(unsolved). Returns ======= A FiniteSet of ordered tuple of values of `all_symbols` for which the `system` has solution. Order of values in the tuple is same as symbols present in the parameter `all_symbols`. If parameter `all_symbols` is None then same as symbols present in the parameter `symbols`. Please note that general FiniteSet is unordered, the solution returned here is not simply a FiniteSet of solutions, rather it is a FiniteSet of ordered tuple, i.e. the first & only argument to FiniteSet is a tuple of solutions, which is ordered, & hence the returned solution is ordered. Also note that solution could also have been returned as an ordered tuple, FiniteSet is just a wrapper `{}` around the tuple. It has no other significance except for the fact it is just used to maintain a consistent output format throughout the solveset. Raises ====== ValueError The input is not valid. The symbols are not given. AttributeError The input symbols are not `Symbol` type. Examples ======== >>> from sympy.core.symbol import symbols >>> x, y = symbols('x, y', real=True) >>> from sympy.solvers.solveset import substitution >>> substitution([x + y], [x], [{y: 1}], [y], set([]), [x, y]) FiniteSet((-1, 1)) * when you want soln should not satisfy eq `x + 1 = 0` >>> substitution([x + y], [x], [{y: 1}], [y], set([x + 1]), [y, x]) EmptySet >>> substitution([x + y], [x], [{y: 1}], [y], set([x - 1]), [y, x]) FiniteSet((1, -1)) >>> substitution([x + y - 1, y - x**2 + 5], [x, y]) FiniteSet((-3, 4), (2, -1)) * Returns both real and complex solution >>> x, y, z = symbols('x, y, z') >>> from sympy import exp, sin >>> substitution([exp(x) - sin(y), y**2 - 4], [x, y]) FiniteSet((ImageSet(Lambda(_n, 2*_n*I*pi + log(sin(2))), Integers), 2), (ImageSet(Lambda(_n, I*(2*_n*pi + pi) + log(sin(2))), Integers), -2)) >>> eqs = [z**2 + exp(2*x) - sin(y), -3 + exp(-y)] >>> substitution(eqs, [y, z]) FiniteSet((-log(3), sqrt(-exp(2*x) - sin(log(3)))), (-log(3), -sqrt(-exp(2*x) - sin(log(3)))), (ImageSet(Lambda(_n, 2*_n*I*pi - log(3)), Integers), ImageSet(Lambda(_n, sqrt(-exp(2*x) + sin(2*_n*I*pi - log(3)))), Integers)), (ImageSet(Lambda(_n, 2*_n*I*pi - log(3)), Integers), ImageSet(Lambda(_n, -sqrt(-exp(2*x) + sin(2*_n*I*pi - log(3)))), Integers))) """ from sympy import Complement from sympy.core.compatibility import is_sequence if not system: return S.EmptySet if not symbols: msg = ('Symbols must be given, for which solution of the ' 'system is to be found.') raise ValueError(filldedent(msg)) if not is_sequence(symbols): msg = ('symbols should be given as a sequence, e.g. a list.' 'Not type %s: %s') raise TypeError(filldedent(msg % (type(symbols), symbols))) sym = getattr(symbols[0], 'is_Symbol', False) if not sym: msg = ('Iterable of symbols must be given as ' 'second argument, not type %s: %s') raise ValueError(filldedent(msg % (type(symbols[0]), symbols[0]))) # By default `all_symbols` will be same as `symbols` if all_symbols is None: all_symbols = symbols old_result = result # storing complements and intersection for particular symbol complements = {} intersections = {} # when total_solveset_call equals total_conditionset # it means that solveset failed to solve all eqs. total_conditionset = -1 total_solveset_call = -1 def _unsolved_syms(eq, sort=False): """Returns the unsolved symbol present in the equation `eq`. """ free = eq.free_symbols unsolved = (free - set(known_symbols)) & set(all_symbols) if sort: unsolved = list(unsolved) unsolved.sort(key=default_sort_key) return unsolved # end of _unsolved_syms() # sort such that equation with the fewest potential symbols is first. # means eq with less number of variable first in the list. eqs_in_better_order = list( ordered(system, lambda _: len(_unsolved_syms(_)))) def add_intersection_complement(result, sym_set, **flags): # If solveset have returned some intersection/complement # for any symbol. It will be added in final solution. final_result = [] for res in result: res_copy = res for key_res, value_res in res.items(): # Intersection/complement is in Interval or Set. intersection_true = flags.get('Intersection', True) complements_true = flags.get('Complement', True) for key_sym, value_sym in sym_set.items(): if key_sym == key_res: if intersection_true: # testcase is not added for this line(intersection) new_value = \ Intersection(FiniteSet(value_res), value_sym) if new_value is not S.EmptySet: res_copy[key_res] = new_value if complements_true: new_value = \ Complement(FiniteSet(value_res), value_sym) if new_value is not S.EmptySet: res_copy[key_res] = new_value final_result.append(res_copy) return final_result # end of def add_intersection_complement() def _extract_main_soln(sol, soln_imageset): """separate the Complements, Intersections, ImageSet lambda expr and it's base_set. """ # if there is union, then need to check # Complement, Intersection, Imageset. # Order should not be changed. if isinstance(sol, Complement): # extract solution and complement complements[sym] = sol.args[1] sol = sol.args[0] # complement will be added at the end # using `add_intersection_complement` method if isinstance(sol, Intersection): # Interval/Set will be at 0th index always if sol.args[0] != Interval(-oo, oo): # sometimes solveset returns soln # with intersection `S.Reals`, to confirm that # soln is in `domain=S.Reals` or not. We don't consider # that intersection. intersections[sym] = sol.args[0] sol = sol.args[1] # after intersection and complement Imageset should # be checked. if isinstance(sol, ImageSet): soln_imagest = sol expr2 = sol.lamda.expr sol = FiniteSet(expr2) soln_imageset[expr2] = soln_imagest # if there is union of Imageset or other in soln. # no testcase is written for this if block if isinstance(sol, Union): sol_args = sol.args sol = S.EmptySet # We need in sequence so append finteset elements # and then imageset or other. for sol_arg2 in sol_args: if isinstance(sol_arg2, FiniteSet): sol += sol_arg2 else: # ImageSet, Intersection, complement then # append them directly sol += FiniteSet(sol_arg2) if not isinstance(sol, FiniteSet): sol = FiniteSet(sol) return sol, soln_imageset # end of def _extract_main_soln() # helper function for _append_new_soln def _check_exclude(rnew, imgset_yes): rnew_ = rnew if imgset_yes: # replace all dummy variables (Imageset lambda variables) # with zero before `checksol`. Considering fundamental soln # for `checksol`. rnew_copy = rnew.copy() dummy_n = imgset_yes[0] for key_res, value_res in rnew_copy.items(): rnew_copy[key_res] = value_res.subs(dummy_n, 0) rnew_ = rnew_copy # satisfy_exclude == true if it satisfies the expr of `exclude` list. try: # something like : `Mod(-log(3), 2*I*pi)` can't be # simplified right now, so `checksol` returns `TypeError`. # when this issue is fixed this try block should be # removed. Mod(-log(3), 2*I*pi) == -log(3) satisfy_exclude = any( checksol(d, rnew_) for d in exclude) except TypeError: satisfy_exclude = None return satisfy_exclude # end of def _check_exclude() # helper function for _append_new_soln def _restore_imgset(rnew, original_imageset, newresult): restore_sym = set(rnew.keys()) & \ set(original_imageset.keys()) for key_sym in restore_sym: img = original_imageset[key_sym] rnew[key_sym] = img if rnew not in newresult: newresult.append(rnew) # end of def _restore_imgset() def _append_eq(eq, result, res, delete_soln, n=None): u = Dummy('u') if n: eq = eq.subs(n, 0) satisfy = checksol(u, u, eq, minimal=True) if satisfy is False: delete_soln = True res = {} else: result.append(res) return result, res, delete_soln def _append_new_soln(rnew, sym, sol, imgset_yes, soln_imageset, original_imageset, newresult, eq=None): """If `rnew` (A dict <symbol: soln>) contains valid soln append it to `newresult` list. `imgset_yes` is (base, dummy_var) if there was imageset in previously calculated result(otherwise empty tuple). `original_imageset` is dict of imageset expr and imageset from this result. `soln_imageset` dict of imageset expr and imageset of new soln. """ satisfy_exclude = _check_exclude(rnew, imgset_yes) delete_soln = False # soln should not satisfy expr present in `exclude` list. if not satisfy_exclude: local_n = None # if it is imageset if imgset_yes: local_n = imgset_yes[0] base = imgset_yes[1] if sym and sol: # when `sym` and `sol` is `None` means no new # soln. In that case we will append rnew directly after # substituting original imagesets in rnew values if present # (second last line of this function using _restore_imgset) dummy_list = list(sol.atoms(Dummy)) # use one dummy `n` which is in # previous imageset local_n_list = [ local_n for i in range( 0, len(dummy_list))] dummy_zip = zip(dummy_list, local_n_list) lam = Lambda(local_n, sol.subs(dummy_zip)) rnew[sym] = ImageSet(lam, base) if eq is not None: newresult, rnew, delete_soln = _append_eq( eq, newresult, rnew, delete_soln, local_n) elif eq is not None: newresult, rnew, delete_soln = _append_eq( eq, newresult, rnew, delete_soln) elif soln_imageset: rnew[sym] = soln_imageset[sol] # restore original imageset _restore_imgset(rnew, original_imageset, newresult) else: newresult.append(rnew) elif satisfy_exclude: delete_soln = True rnew = {} _restore_imgset(rnew, original_imageset, newresult) return newresult, delete_soln # end of def _append_new_soln() def _new_order_result(result, eq): # separate first, second priority. `res` that makes `eq` value equals # to zero, should be used first then other result(second priority). # If it is not done then we may miss some soln. first_priority = [] second_priority = [] for res in result: if not any(isinstance(val, ImageSet) for val in res.values()): if eq.subs(res) == 0: first_priority.append(res) else: second_priority.append(res) if first_priority or second_priority: return first_priority + second_priority return result def _solve_using_known_values(result, solver): """Solves the system using already known solution (result contains the dict <symbol: value>). solver is `solveset_complex` or `solveset_real`. """ # stores imageset <expr: imageset(Lambda(n, expr), base)>. soln_imageset = {} total_solvest_call = 0 total_conditionst = 0 # sort such that equation with the fewest potential symbols is first. # means eq with less variable first for index, eq in enumerate(eqs_in_better_order): newresult = [] original_imageset = {} # if imageset expr is used to solve other symbol imgset_yes = False result = _new_order_result(result, eq) for res in result: got_symbol = set() # symbols solved in one iteration if soln_imageset: # find the imageset and use its expr. for key_res, value_res in res.items(): if isinstance(value_res, ImageSet): res[key_res] = value_res.lamda.expr original_imageset[key_res] = value_res dummy_n = value_res.lamda.expr.atoms(Dummy).pop() (base,) = value_res.base_sets imgset_yes = (dummy_n, base) # update eq with everything that is known so far eq2 = eq.subs(res).expand() unsolved_syms = _unsolved_syms(eq2, sort=True) if not unsolved_syms: if res: newresult, delete_res = _append_new_soln( res, None, None, imgset_yes, soln_imageset, original_imageset, newresult, eq2) if delete_res: # `delete_res` is true, means substituting `res` in # eq2 doesn't return `zero` or deleting the `res` # (a soln) since it staisfies expr of `exclude` # list. result.remove(res) continue # skip as it's independent of desired symbols depen = eq2.as_independent(unsolved_syms)[0] if depen.has(Abs) and solver == solveset_complex: # Absolute values cannot be inverted in the # complex domain continue soln_imageset = {} for sym in unsolved_syms: not_solvable = False try: soln = solver(eq2, sym) total_solvest_call += 1 soln_new = S.EmptySet if isinstance(soln, Complement): # separate solution and complement complements[sym] = soln.args[1] soln = soln.args[0] # complement will be added at the end if isinstance(soln, Intersection): # Interval will be at 0th index always if soln.args[0] != Interval(-oo, oo): # sometimes solveset returns soln # with intersection S.Reals, to confirm that # soln is in domain=S.Reals intersections[sym] = soln.args[0] soln_new += soln.args[1] soln = soln_new if soln_new else soln if index > 0 and solver == solveset_real: # one symbol's real soln , another symbol may have # corresponding complex soln. if not isinstance(soln, (ImageSet, ConditionSet)): soln += solveset_complex(eq2, sym) except NotImplementedError: # If sovleset is not able to solve equation `eq2`. Next # time we may get soln using next equation `eq2` continue if isinstance(soln, ConditionSet): soln = S.EmptySet # don't do `continue` we may get soln # in terms of other symbol(s) not_solvable = True total_conditionst += 1 if soln is not S.EmptySet: soln, soln_imageset = _extract_main_soln( soln, soln_imageset) for sol in soln: # sol is not a `Union` since we checked it # before this loop sol, soln_imageset = _extract_main_soln( sol, soln_imageset) sol = set(sol).pop() free = sol.free_symbols if got_symbol and any([ ss in free for ss in got_symbol ]): # sol depends on previously solved symbols # then continue continue rnew = res.copy() # put each solution in res and append the new result # in the new result list (solution for symbol `s`) # along with old results. for k, v in res.items(): if isinstance(v, Expr): # if any unsolved symbol is present # Then subs known value rnew[k] = v.subs(sym, sol) # and add this new solution if soln_imageset: # replace all lambda variables with 0. imgst = soln_imageset[sol] rnew[sym] = imgst.lamda( *[0 for i in range(0, len( imgst.lamda.variables))]) else: rnew[sym] = sol newresult, delete_res = _append_new_soln( rnew, sym, sol, imgset_yes, soln_imageset, original_imageset, newresult) if delete_res: # deleting the `res` (a soln) since it staisfies # eq of `exclude` list result.remove(res) # solution got for sym if not not_solvable: got_symbol.add(sym) # next time use this new soln if newresult: result = newresult return result, total_solvest_call, total_conditionst # end def _solve_using_know_values() new_result_real, solve_call1, cnd_call1 = _solve_using_known_values( old_result, solveset_real) new_result_complex, solve_call2, cnd_call2 = _solve_using_known_values( old_result, solveset_complex) # when `total_solveset_call` is equals to `total_conditionset` # means solvest fails to solve all the eq. # return conditionset in this case total_conditionset += (cnd_call1 + cnd_call2) total_solveset_call += (solve_call1 + solve_call2) if total_conditionset == total_solveset_call and total_solveset_call != -1: return _return_conditionset(eqs_in_better_order, all_symbols) # overall result result = new_result_real + new_result_complex result_all_variables = [] result_infinite = [] for res in result: if not res: # means {None : None} continue # If length < len(all_symbols) means infinite soln. # Some or all the soln is dependent on 1 symbol. # eg. {x: y+2} then final soln {x: y+2, y: y} if len(res) < len(all_symbols): solved_symbols = res.keys() unsolved = list(filter( lambda x: x not in solved_symbols, all_symbols)) for unsolved_sym in unsolved: res[unsolved_sym] = unsolved_sym result_infinite.append(res) if res not in result_all_variables: result_all_variables.append(res) if result_infinite: # we have general soln # eg : [{x: -1, y : 1}, {x : -y , y: y}] then # return [{x : -y, y : y}] result_all_variables = result_infinite if intersections and complements: # no testcase is added for this block result_all_variables = add_intersection_complement( result_all_variables, intersections, Intersection=True, Complement=True) elif intersections: result_all_variables = add_intersection_complement( result_all_variables, intersections, Intersection=True) elif complements: result_all_variables = add_intersection_complement( result_all_variables, complements, Complement=True) # convert to ordered tuple result = S.EmptySet for r in result_all_variables: temp = [r[symb] for symb in all_symbols] result += FiniteSet(tuple(temp)) return result # end of def substitution() def _solveset_work(system, symbols): soln = solveset(system[0], symbols[0]) if isinstance(soln, FiniteSet): _soln = FiniteSet(*[tuple((s,)) for s in soln]) return _soln else: return FiniteSet(tuple(FiniteSet(soln))) def _handle_positive_dimensional(polys, symbols, denominators): from sympy.polys.polytools import groebner # substitution method where new system is groebner basis of the system _symbols = list(symbols) _symbols.sort(key=default_sort_key) basis = groebner(polys, _symbols, polys=True) new_system = [] for poly_eq in basis: new_system.append(poly_eq.as_expr()) result = [{}] result = substitution( new_system, symbols, result, [], denominators) return result # end of def _handle_positive_dimensional() def _handle_zero_dimensional(polys, symbols, system): # solve 0 dimensional poly system using `solve_poly_system` result = solve_poly_system(polys, *symbols) # May be some extra soln is added because # we used `unrad` in `_separate_poly_nonpoly`, so # need to check and remove if it is not a soln. result_update = S.EmptySet for res in result: dict_sym_value = dict(list(zip(symbols, res))) if all(checksol(eq, dict_sym_value) for eq in system): result_update += FiniteSet(res) return result_update # end of def _handle_zero_dimensional() def _separate_poly_nonpoly(system, symbols): polys = [] polys_expr = [] nonpolys = [] denominators = set() poly = None for eq in system: # Store denom expression if it contains symbol denominators.update(_simple_dens(eq, symbols)) # try to remove sqrt and rational power without_radicals = unrad(simplify(eq)) if without_radicals: eq_unrad, cov = without_radicals if not cov: eq = eq_unrad if isinstance(eq, Expr): eq = eq.as_numer_denom()[0] poly = eq.as_poly(*symbols, extension=True) elif simplify(eq).is_number: continue if poly is not None: polys.append(poly) polys_expr.append(poly.as_expr()) else: nonpolys.append(eq) return polys, polys_expr, nonpolys, denominators # end of def _separate_poly_nonpoly() def nonlinsolve(system, *symbols): r""" Solve system of N non linear equations with M variables, which means both under and overdetermined systems are supported. Positive dimensional system is also supported (A system with infinitely many solutions is said to be positive-dimensional). In Positive dimensional system solution will be dependent on at least one symbol. Returns both real solution and complex solution(If system have). The possible number of solutions is zero, one or infinite. Parameters ========== system : list of equations The target system of equations symbols : list of Symbols symbols should be given as a sequence eg. list Returns ======= A FiniteSet of ordered tuple of values of `symbols` for which the `system` has solution. Order of values in the tuple is same as symbols present in the parameter `symbols`. Please note that general FiniteSet is unordered, the solution returned here is not simply a FiniteSet of solutions, rather it is a FiniteSet of ordered tuple, i.e. the first & only argument to FiniteSet is a tuple of solutions, which is ordered, & hence the returned solution is ordered. Also note that solution could also have been returned as an ordered tuple, FiniteSet is just a wrapper `{}` around the tuple. It has no other significance except for the fact it is just used to maintain a consistent output format throughout the solveset. For the given set of Equations, the respective input types are given below: .. math:: x*y - 1 = 0 .. math:: 4*x**2 + y**2 - 5 = 0 `system = [x*y - 1, 4*x**2 + y**2 - 5]` `symbols = [x, y]` Raises ====== ValueError The input is not valid. The symbols are not given. AttributeError The input symbols are not `Symbol` type. Examples ======== >>> from sympy.core.symbol import symbols >>> from sympy.solvers.solveset import nonlinsolve >>> x, y, z = symbols('x, y, z', real=True) >>> nonlinsolve([x*y - 1, 4*x**2 + y**2 - 5], [x, y]) FiniteSet((-1, -1), (-1/2, -2), (1/2, 2), (1, 1)) 1. Positive dimensional system and complements: >>> from sympy import pprint >>> from sympy.polys.polytools import is_zero_dimensional >>> a, b, c, d = symbols('a, b, c, d', extended_real=True) >>> eq1 = a + b + c + d >>> eq2 = a*b + b*c + c*d + d*a >>> eq3 = a*b*c + b*c*d + c*d*a + d*a*b >>> eq4 = a*b*c*d - 1 >>> system = [eq1, eq2, eq3, eq4] >>> is_zero_dimensional(system) False >>> pprint(nonlinsolve(system, [a, b, c, d]), use_unicode=False) -1 1 1 -1 {(---, -d, -, {d} \ {0}), (-, -d, ---, {d} \ {0})} d d d d >>> nonlinsolve([(x+y)**2 - 4, x + y - 2], [x, y]) FiniteSet((2 - y, y)) 2. If some of the equations are non-polynomial then `nonlinsolve` will call the `substitution` function and return real and complex solutions, if present. >>> from sympy import exp, sin >>> nonlinsolve([exp(x) - sin(y), y**2 - 4], [x, y]) FiniteSet((ImageSet(Lambda(_n, 2*_n*I*pi + log(sin(2))), Integers), 2), (ImageSet(Lambda(_n, I*(2*_n*pi + pi) + log(sin(2))), Integers), -2)) 3. If system is non-linear polynomial and zero-dimensional then it returns both solution (real and complex solutions, if present) using `solve_poly_system`: >>> from sympy import sqrt >>> nonlinsolve([x**2 - 2*y**2 -2, x*y - 2], [x, y]) FiniteSet((-2, -1), (2, 1), (-sqrt(2)*I, sqrt(2)*I), (sqrt(2)*I, -sqrt(2)*I)) 4. `nonlinsolve` can solve some linear (zero or positive dimensional) system (because it uses the `groebner` function to get the groebner basis and then uses the `substitution` function basis as the new `system`). But it is not recommended to solve linear system using `nonlinsolve`, because `linsolve` is better for general linear systems. >>> nonlinsolve([x + 2*y -z - 3, x - y - 4*z + 9 , y + z - 4], [x, y, z]) FiniteSet((3*z - 5, 4 - z, z)) 5. System having polynomial equations and only real solution is solved using `solve_poly_system`: >>> e1 = sqrt(x**2 + y**2) - 10 >>> e2 = sqrt(y**2 + (-x + 10)**2) - 3 >>> nonlinsolve((e1, e2), (x, y)) FiniteSet((191/20, -3*sqrt(391)/20), (191/20, 3*sqrt(391)/20)) >>> nonlinsolve([x**2 + 2/y - 2, x + y - 3], [x, y]) FiniteSet((1, 2), (1 - sqrt(5), 2 + sqrt(5)), (1 + sqrt(5), 2 - sqrt(5))) >>> nonlinsolve([x**2 + 2/y - 2, x + y - 3], [y, x]) FiniteSet((2, 1), (2 - sqrt(5), 1 + sqrt(5)), (2 + sqrt(5), 1 - sqrt(5))) 6. It is better to use symbols instead of Trigonometric Function or Function (e.g. replace `sin(x)` with symbol, replace `f(x)` with symbol and so on. Get soln from `nonlinsolve` and then using `solveset` get the value of `x`) How nonlinsolve is better than old solver `_solve_system` : =========================================================== 1. A positive dimensional system solver : nonlinsolve can return solution for positive dimensional system. It finds the Groebner Basis of the positive dimensional system(calling it as basis) then we can start solving equation(having least number of variable first in the basis) using solveset and substituting that solved solutions into other equation(of basis) to get solution in terms of minimum variables. Here the important thing is how we are substituting the known values and in which equations. 2. Real and Complex both solutions : nonlinsolve returns both real and complex solution. If all the equations in the system are polynomial then using `solve_poly_system` both real and complex solution is returned. If all the equations in the system are not polynomial equation then goes to `substitution` method with this polynomial and non polynomial equation(s), to solve for unsolved variables. Here to solve for particular variable solveset_real and solveset_complex is used. For both real and complex solution function `_solve_using_know_values` is used inside `substitution` function.(`substitution` function will be called when there is any non polynomial equation(s) is present). When solution is valid then add its general solution in the final result. 3. Complement and Intersection will be added if any : nonlinsolve maintains dict for complements and Intersections. If solveset find complements or/and Intersection with any Interval or set during the execution of `substitution` function ,then complement or/and Intersection for that variable is added before returning final solution. """ from sympy.polys.polytools import is_zero_dimensional if not system: return S.EmptySet if not symbols: msg = ('Symbols must be given, for which solution of the ' 'system is to be found.') raise ValueError(filldedent(msg)) if hasattr(symbols[0], '__iter__'): symbols = symbols[0] if not is_sequence(symbols) or not symbols: msg = ('Symbols must be given, for which solution of the ' 'system is to be found.') raise IndexError(filldedent(msg)) system, symbols, swap = recast_to_symbols(system, symbols) if swap: soln = nonlinsolve(system, symbols) return FiniteSet(*[tuple(i.xreplace(swap) for i in s) for s in soln]) if len(system) == 1 and len(symbols) == 1: return _solveset_work(system, symbols) # main code of def nonlinsolve() starts from here polys, polys_expr, nonpolys, denominators = _separate_poly_nonpoly( system, symbols) if len(symbols) == len(polys): # If all the equations in the system are poly if is_zero_dimensional(polys, symbols): # finite number of soln (Zero dimensional system) try: return _handle_zero_dimensional(polys, symbols, system) except NotImplementedError: # Right now it doesn't fail for any polynomial system of # equation. If `solve_poly_system` fails then `substitution` # method will handle it. result = substitution( polys_expr, symbols, exclude=denominators) return result # positive dimensional system res = _handle_positive_dimensional(polys, symbols, denominators) if res is EmptySet and any(not p.domain.is_Exact for p in polys): raise NotImplementedError("Equation not in exact domain. Try converting to rational") else: return res else: # If all the equations are not polynomial. # Use `substitution` method for the system result = substitution( polys_expr + nonpolys, symbols, exclude=denominators) return result
f630a7e0d78621b1437be4a2db4d8c0cbaa8a0428a28a799bd0905979f3a54f0
from __future__ import print_function, division from sympy.core.add import Add from sympy.core.compatibility import as_int, is_sequence, range from sympy.core.exprtools import factor_terms from sympy.core.function import _mexpand from sympy.core.mul import Mul from sympy.core.numbers import Rational from sympy.core.numbers import igcdex, ilcm, igcd from sympy.core.power import integer_nthroot, isqrt from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.symbol import Symbol, symbols from sympy.functions.elementary.complexes import sign from sympy.functions.elementary.integers import floor from sympy.functions.elementary.miscellaneous import sqrt from sympy.matrices.dense import MutableDenseMatrix as Matrix from sympy.ntheory.factor_ import ( divisors, factorint, multiplicity, perfect_power) from sympy.ntheory.generate import nextprime from sympy.ntheory.primetest import is_square, isprime from sympy.ntheory.residue_ntheory import sqrt_mod from sympy.polys.polyerrors import GeneratorsNeeded from sympy.polys.polytools import Poly, factor_list from sympy.simplify.simplify import signsimp from sympy.solvers.solvers import check_assumptions from sympy.solvers.solveset import solveset_real from sympy.utilities import default_sort_key, numbered_symbols from sympy.utilities.misc import filldedent # these are imported with 'from sympy.solvers.diophantine import * __all__ = ['diophantine', 'classify_diop'] # these types are known (but not necessarily handled) diop_known = { "binary_quadratic", "cubic_thue", "general_pythagorean", "general_sum_of_even_powers", "general_sum_of_squares", "homogeneous_general_quadratic", "homogeneous_ternary_quadratic", "homogeneous_ternary_quadratic_normal", "inhomogeneous_general_quadratic", "inhomogeneous_ternary_quadratic", "linear", "univariate"} def _is_int(i): try: as_int(i) return True except ValueError: pass def _sorted_tuple(*i): return tuple(sorted(i)) def _remove_gcd(*x): try: g = igcd(*x) except ValueError: fx = list(filter(None, x)) if len(fx) < 2: return x g = igcd(*[i.as_content_primitive()[0] for i in fx]) except TypeError: raise TypeError('_remove_gcd(a,b,c) or _remove_gcd(*container)') if g == 1: return x return tuple([i//g for i in x]) def _rational_pq(a, b): # return `(numer, denom)` for a/b; sign in numer and gcd removed return _remove_gcd(sign(b)*a, abs(b)) def _nint_or_floor(p, q): # return nearest int to p/q; in case of tie return floor(p/q) w, r = divmod(p, q) if abs(r) <= abs(q)//2: return w return w + 1 def _odd(i): return i % 2 != 0 def _even(i): return i % 2 == 0 def diophantine(eq, param=symbols("t", integer=True), syms=None, permute=False): """ Simplify the solution procedure of diophantine equation ``eq`` by converting it into a product of terms which should equal zero. For example, when solving, `x^2 - y^2 = 0` this is treated as `(x + y)(x - y) = 0` and `x + y = 0` and `x - y = 0` are solved independently and combined. Each term is solved by calling ``diop_solve()``. (Although it is possible to call ``diop_solve()`` directly, one must be careful to pass an equation in the correct form and to interpret the output correctly; ``diophantine()`` is the public-facing function to use in general.) Output of ``diophantine()`` is a set of tuples. The elements of the tuple are the solutions for each variable in the equation and are arranged according to the alphabetic ordering of the variables. e.g. For an equation with two variables, `a` and `b`, the first element of the tuple is the solution for `a` and the second for `b`. Usage ===== ``diophantine(eq, t, syms)``: Solve the diophantine equation ``eq``. ``t`` is the optional parameter to be used by ``diop_solve()``. ``syms`` is an optional list of symbols which determines the order of the elements in the returned tuple. By default, only the base solution is returned. If ``permute`` is set to True then permutations of the base solution and/or permutations of the signs of the values will be returned when applicable. >>> from sympy.solvers.diophantine import diophantine >>> from sympy.abc import a, b >>> eq = a**4 + b**4 - (2**4 + 3**4) >>> diophantine(eq) {(2, 3)} >>> diophantine(eq, permute=True) {(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)} Details ======= ``eq`` should be an expression which is assumed to be zero. ``t`` is the parameter to be used in the solution. Examples ======== >>> from sympy.abc import x, y, z >>> diophantine(x**2 - y**2) {(t_0, -t_0), (t_0, t_0)} >>> diophantine(x*(2*x + 3*y - z)) {(0, n1, n2), (t_0, t_1, 2*t_0 + 3*t_1)} >>> diophantine(x**2 + 3*x*y + 4*x) {(0, n1), (3*t_0 - 4, -t_0)} See Also ======== diop_solve() sympy.utilities.iterables.permute_signs sympy.utilities.iterables.signed_permutations """ from sympy.utilities.iterables import ( subsets, permute_signs, signed_permutations) if isinstance(eq, Eq): eq = eq.lhs - eq.rhs try: var = list(eq.expand(force=True).free_symbols) var.sort(key=default_sort_key) if syms: if not is_sequence(syms): raise TypeError( 'syms should be given as a sequence, e.g. a list') syms = [i for i in syms if i in var] if syms != var: dict_sym_index = dict(zip(syms, range(len(syms)))) return {tuple([t[dict_sym_index[i]] for i in var]) for t in diophantine(eq, param)} n, d = eq.as_numer_denom() if n.is_number: return set() if not d.is_number: dsol = diophantine(d) good = diophantine(n) - dsol return {s for s in good if _mexpand(d.subs(zip(var, s)))} else: eq = n eq = factor_terms(eq) assert not eq.is_number eq = eq.as_independent(*var, as_Add=False)[1] p = Poly(eq) assert not any(g.is_number for g in p.gens) eq = p.as_expr() assert eq.is_polynomial() except (GeneratorsNeeded, AssertionError, AttributeError): raise TypeError(filldedent(''' Equation should be a polynomial with Rational coefficients.''')) # permute only sign do_permute_signs = False # permute sign and values do_permute_signs_var = False # permute few signs permute_few_signs = False try: # if we know that factoring should not be attempted, skip # the factoring step v, c, t = classify_diop(eq) # check for permute sign if permute: len_var = len(v) permute_signs_for = [ 'general_sum_of_squares', 'general_sum_of_even_powers'] permute_signs_check = [ 'homogeneous_ternary_quadratic', 'homogeneous_ternary_quadratic_normal', 'binary_quadratic'] if t in permute_signs_for: do_permute_signs_var = True elif t in permute_signs_check: # if all the variables in eq have even powers # then do_permute_sign = True if len_var == 3: var_mul = list(subsets(v, 2)) # here var_mul is like [(x, y), (x, z), (y, z)] xy_coeff = True x_coeff = True var1_mul_var2 = map(lambda a: a[0]*a[1], var_mul) # if coeff(y*z), coeff(y*x), coeff(x*z) is not 0 then # `xy_coeff` => True and do_permute_sign => False. # Means no permuted solution. for v1_mul_v2 in var1_mul_var2: try: coeff = c[v1_mul_v2] except KeyError: coeff = 0 xy_coeff = bool(xy_coeff) and bool(coeff) var_mul = list(subsets(v, 1)) # here var_mul is like [(x,), (y, )] for v1 in var_mul: try: coeff = c[v1[0]] except KeyError: coeff = 0 x_coeff = bool(x_coeff) and bool(coeff) if not any([xy_coeff, x_coeff]): # means only x**2, y**2, z**2, const is present do_permute_signs = True elif not x_coeff: permute_few_signs = True elif len_var == 2: var_mul = list(subsets(v, 2)) # here var_mul is like [(x, y)] xy_coeff = True x_coeff = True var1_mul_var2 = map(lambda x: x[0]*x[1], var_mul) for v1_mul_v2 in var1_mul_var2: try: coeff = c[v1_mul_v2] except KeyError: coeff = 0 xy_coeff = bool(xy_coeff) and bool(coeff) var_mul = list(subsets(v, 1)) # here var_mul is like [(x,), (y, )] for v1 in var_mul: try: coeff = c[v1[0]] except KeyError: coeff = 0 x_coeff = bool(x_coeff) and bool(coeff) if not any([xy_coeff, x_coeff]): # means only x**2, y**2 and const is present # so we can get more soln by permuting this soln. do_permute_signs = True elif not x_coeff: # when coeff(x), coeff(y) is not present then signs of # x, y can be permuted such that their sign are same # as sign of x*y. # e.g 1. (x_val,y_val)=> (x_val,y_val), (-x_val,-y_val) # 2. (-x_vall, y_val)=> (-x_val,y_val), (x_val,-y_val) permute_few_signs = True if t == 'general_sum_of_squares': # trying to factor such expressions will sometimes hang terms = [(eq, 1)] else: raise TypeError except (TypeError, NotImplementedError): terms = factor_list(eq)[1] sols = set([]) for term in terms: base, _ = term var_t, _, eq_type = classify_diop(base, _dict=False) _, base = signsimp(base, evaluate=False).as_coeff_Mul() solution = diop_solve(base, param) if eq_type in [ "linear", "homogeneous_ternary_quadratic", "homogeneous_ternary_quadratic_normal", "general_pythagorean"]: sols.add(merge_solution(var, var_t, solution)) elif eq_type in [ "binary_quadratic", "general_sum_of_squares", "general_sum_of_even_powers", "univariate"]: for sol in solution: sols.add(merge_solution(var, var_t, sol)) else: raise NotImplementedError('unhandled type: %s' % eq_type) # remove null merge results if () in sols: sols.remove(()) null = tuple([0]*len(var)) # if there is no solution, return trivial solution if not sols and eq.subs(zip(var, null)).is_zero: sols.add(null) final_soln = set([]) for sol in sols: if all(_is_int(s) for s in sol): if do_permute_signs: permuted_sign = set(permute_signs(sol)) final_soln.update(permuted_sign) elif permute_few_signs: lst = list(permute_signs(sol)) lst = list(filter(lambda x: x[0]*x[1] == sol[1]*sol[0], lst)) permuted_sign = set(lst) final_soln.update(permuted_sign) elif do_permute_signs_var: permuted_sign_var = set(signed_permutations(sol)) final_soln.update(permuted_sign_var) else: final_soln.add(sol) else: final_soln.add(sol) return final_soln def merge_solution(var, var_t, solution): """ This is used to construct the full solution from the solutions of sub equations. For example when solving the equation `(x - y)(x^2 + y^2 - z^2) = 0`, solutions for each of the equations `x - y = 0` and `x^2 + y^2 - z^2` are found independently. Solutions for `x - y = 0` are `(x, y) = (t, t)`. But we should introduce a value for z when we output the solution for the original equation. This function converts `(t, t)` into `(t, t, n_{1})` where `n_{1}` is an integer parameter. """ sol = [] if None in solution: return () solution = iter(solution) params = numbered_symbols("n", integer=True, start=1) for v in var: if v in var_t: sol.append(next(solution)) else: sol.append(next(params)) for val, symb in zip(sol, var): if check_assumptions(val, **symb.assumptions0) is False: return tuple() return tuple(sol) def diop_solve(eq, param=symbols("t", integer=True)): """ Solves the diophantine equation ``eq``. Unlike ``diophantine()``, factoring of ``eq`` is not attempted. Uses ``classify_diop()`` to determine the type of the equation and calls the appropriate solver function. Use of ``diophantine()`` is recommended over other helper functions. ``diop_solve()`` can return either a set or a tuple depending on the nature of the equation. Usage ===== ``diop_solve(eq, t)``: Solve diophantine equation, ``eq`` using ``t`` as a parameter if needed. Details ======= ``eq`` should be an expression which is assumed to be zero. ``t`` is a parameter to be used in the solution. Examples ======== >>> from sympy.solvers.diophantine import diop_solve >>> from sympy.abc import x, y, z, w >>> diop_solve(2*x + 3*y - 5) (3*t_0 - 5, 5 - 2*t_0) >>> diop_solve(4*x + 3*y - 4*z + 5) (t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5) >>> diop_solve(x + 3*y - 4*z + w - 6) (t_0, t_0 + t_1, 6*t_0 + 5*t_1 + 4*t_2 - 6, 5*t_0 + 4*t_1 + 3*t_2 - 6) >>> diop_solve(x**2 + y**2 - 5) {(-2, -1), (-2, 1), (-1, -2), (-1, 2), (1, -2), (1, 2), (2, -1), (2, 1)} See Also ======== diophantine() """ var, coeff, eq_type = classify_diop(eq, _dict=False) if eq_type == "linear": return _diop_linear(var, coeff, param) elif eq_type == "binary_quadratic": return _diop_quadratic(var, coeff, param) elif eq_type == "homogeneous_ternary_quadratic": x_0, y_0, z_0 = _diop_ternary_quadratic(var, coeff) return _parametrize_ternary_quadratic( (x_0, y_0, z_0), var, coeff) elif eq_type == "homogeneous_ternary_quadratic_normal": x_0, y_0, z_0 = _diop_ternary_quadratic_normal(var, coeff) return _parametrize_ternary_quadratic( (x_0, y_0, z_0), var, coeff) elif eq_type == "general_pythagorean": return _diop_general_pythagorean(var, coeff, param) elif eq_type == "univariate": return set([(int(i),) for i in solveset_real( eq, var[0]).intersect(S.Integers)]) elif eq_type == "general_sum_of_squares": return _diop_general_sum_of_squares(var, -int(coeff[1]), limit=S.Infinity) elif eq_type == "general_sum_of_even_powers": for k in coeff.keys(): if k.is_Pow and coeff[k]: p = k.exp return _diop_general_sum_of_even_powers(var, p, -int(coeff[1]), limit=S.Infinity) if eq_type is not None and eq_type not in diop_known: raise ValueError(filldedent(''' Alhough this type of equation was identified, it is not yet handled. It should, however, be listed in `diop_known` at the top of this file. Developers should see comments at the end of `classify_diop`. ''')) # pragma: no cover else: raise NotImplementedError( 'No solver has been written for %s.' % eq_type) def classify_diop(eq, _dict=True): # docstring supplied externally try: var = list(eq.free_symbols) assert var except (AttributeError, AssertionError): raise ValueError('equation should have 1 or more free symbols') var.sort(key=default_sort_key) eq = eq.expand(force=True) coeff = eq.as_coefficients_dict() if not all(_is_int(c) for c in coeff.values()): raise TypeError("Coefficients should be Integers") diop_type = None total_degree = Poly(eq).total_degree() homogeneous = 1 not in coeff if total_degree == 1: diop_type = "linear" elif len(var) == 1: diop_type = "univariate" elif total_degree == 2 and len(var) == 2: diop_type = "binary_quadratic" elif total_degree == 2 and len(var) == 3 and homogeneous: if set(coeff) & set(var): diop_type = "inhomogeneous_ternary_quadratic" else: nonzero = [k for k in coeff if coeff[k]] if len(nonzero) == 3 and all(i**2 in nonzero for i in var): diop_type = "homogeneous_ternary_quadratic_normal" else: diop_type = "homogeneous_ternary_quadratic" elif total_degree == 2 and len(var) >= 3: if set(coeff) & set(var): diop_type = "inhomogeneous_general_quadratic" else: # there may be Pow keys like x**2 or Mul keys like x*y if any(k.is_Mul for k in coeff): # cross terms if not homogeneous: diop_type = "inhomogeneous_general_quadratic" else: diop_type = "homogeneous_general_quadratic" else: # all squares: x**2 + y**2 + ... + constant if all(coeff[k] == 1 for k in coeff if k != 1): diop_type = "general_sum_of_squares" elif all(is_square(abs(coeff[k])) for k in coeff): if abs(sum(sign(coeff[k]) for k in coeff)) == \ len(var) - 2: # all but one has the same sign # e.g. 4*x**2 + y**2 - 4*z**2 diop_type = "general_pythagorean" elif total_degree == 3 and len(var) == 2: diop_type = "cubic_thue" elif (total_degree > 3 and total_degree % 2 == 0 and all(k.is_Pow and k.exp == total_degree for k in coeff if k != 1)): if all(coeff[k] == 1 for k in coeff if k != 1): diop_type = 'general_sum_of_even_powers' if diop_type is not None: return var, dict(coeff) if _dict else coeff, diop_type # new diop type instructions # -------------------------- # if this error raises and the equation *can* be classified, # * it should be identified in the if-block above # * the type should be added to the diop_known # if a solver can be written for it, # * a dedicated handler should be written (e.g. diop_linear) # * it should be passed to that handler in diop_solve raise NotImplementedError(filldedent(''' This equation is not yet recognized or else has not been simplified sufficiently to put it in a form recognized by diop_classify().''')) classify_diop.func_doc = ''' Helper routine used by diop_solve() to find information about ``eq``. Returns a tuple containing the type of the diophantine equation along with the variables (free symbols) and their coefficients. Variables are returned as a list and coefficients are returned as a dict with the key being the respective term and the constant term is keyed to 1. The type is one of the following: * %s Usage ===== ``classify_diop(eq)``: Return variables, coefficients and type of the ``eq``. Details ======= ``eq`` should be an expression which is assumed to be zero. ``_dict`` is for internal use: when True (default) a dict is returned, otherwise a defaultdict which supplies 0 for missing keys is returned. Examples ======== >>> from sympy.solvers.diophantine import classify_diop >>> from sympy.abc import x, y, z, w, t >>> classify_diop(4*x + 6*y - 4) ([x, y], {1: -4, x: 4, y: 6}, 'linear') >>> classify_diop(x + 3*y -4*z + 5) ([x, y, z], {1: 5, x: 1, y: 3, z: -4}, 'linear') >>> classify_diop(x**2 + y**2 - x*y + x + 5) ([x, y], {1: 5, x: 1, x**2: 1, y**2: 1, x*y: -1}, 'binary_quadratic') ''' % ('\n * '.join(sorted(diop_known))) def diop_linear(eq, param=symbols("t", integer=True)): """ Solves linear diophantine equations. A linear diophantine equation is an equation of the form `a_{1}x_{1} + a_{2}x_{2} + .. + a_{n}x_{n} = 0` where `a_{1}, a_{2}, ..a_{n}` are integer constants and `x_{1}, x_{2}, ..x_{n}` are integer variables. Usage ===== ``diop_linear(eq)``: Returns a tuple containing solutions to the diophantine equation ``eq``. Values in the tuple is arranged in the same order as the sorted variables. Details ======= ``eq`` is a linear diophantine equation which is assumed to be zero. ``param`` is the parameter to be used in the solution. Examples ======== >>> from sympy.solvers.diophantine import diop_linear >>> from sympy.abc import x, y, z, t >>> diop_linear(2*x - 3*y - 5) # solves equation 2*x - 3*y - 5 == 0 (3*t_0 - 5, 2*t_0 - 5) Here x = -3*t_0 - 5 and y = -2*t_0 - 5 >>> diop_linear(2*x - 3*y - 4*z -3) (t_0, 2*t_0 + 4*t_1 + 3, -t_0 - 3*t_1 - 3) See Also ======== diop_quadratic(), diop_ternary_quadratic(), diop_general_pythagorean(), diop_general_sum_of_squares() """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == "linear": return _diop_linear(var, coeff, param) def _diop_linear(var, coeff, param): """ Solves diophantine equations of the form: a_0*x_0 + a_1*x_1 + ... + a_n*x_n == c Note that no solution exists if gcd(a_0, ..., a_n) doesn't divide c. """ if 1 in coeff: # negate coeff[] because input is of the form: ax + by + c == 0 # but is used as: ax + by == -c c = -coeff[1] else: c = 0 # Some solutions will have multiple free variables in their solutions. if param is None: params = [symbols('t')]*len(var) else: temp = str(param) + "_%i" params = [symbols(temp % i, integer=True) for i in range(len(var))] if len(var) == 1: q, r = divmod(c, coeff[var[0]]) if not r: return (q,) else: return (None,) ''' base_solution_linear() can solve diophantine equations of the form: a*x + b*y == c We break down multivariate linear diophantine equations into a series of bivariate linear diophantine equations which can then be solved individually by base_solution_linear(). Consider the following: a_0*x_0 + a_1*x_1 + a_2*x_2 == c which can be re-written as: a_0*x_0 + g_0*y_0 == c where g_0 == gcd(a_1, a_2) and y == (a_1*x_1)/g_0 + (a_2*x_2)/g_0 This leaves us with two binary linear diophantine equations. For the first equation: a == a_0 b == g_0 c == c For the second: a == a_1/g_0 b == a_2/g_0 c == the solution we find for y_0 in the first equation. The arrays A and B are the arrays of integers used for 'a' and 'b' in each of the n-1 bivariate equations we solve. ''' A = [coeff[v] for v in var] B = [] if len(var) > 2: B.append(igcd(A[-2], A[-1])) A[-2] = A[-2] // B[0] A[-1] = A[-1] // B[0] for i in range(len(A) - 3, 0, -1): gcd = igcd(B[0], A[i]) B[0] = B[0] // gcd A[i] = A[i] // gcd B.insert(0, gcd) B.append(A[-1]) ''' Consider the trivariate linear equation: 4*x_0 + 6*x_1 + 3*x_2 == 2 This can be re-written as: 4*x_0 + 3*y_0 == 2 where y_0 == 2*x_1 + x_2 (Note that gcd(3, 6) == 3) The complete integral solution to this equation is: x_0 == 2 + 3*t_0 y_0 == -2 - 4*t_0 where 't_0' is any integer. Now that we have a solution for 'x_0', find 'x_1' and 'x_2': 2*x_1 + x_2 == -2 - 4*t_0 We can then solve for '-2' and '-4' independently, and combine the results: 2*x_1a + x_2a == -2 x_1a == 0 + t_0 x_2a == -2 - 2*t_0 2*x_1b + x_2b == -4*t_0 x_1b == 0*t_0 + t_1 x_2b == -4*t_0 - 2*t_1 ==> x_1 == t_0 + t_1 x_2 == -2 - 6*t_0 - 2*t_1 where 't_0' and 't_1' are any integers. Note that: 4*(2 + 3*t_0) + 6*(t_0 + t_1) + 3*(-2 - 6*t_0 - 2*t_1) == 2 for any integral values of 't_0', 't_1'; as required. This method is generalised for many variables, below. ''' solutions = [] for i in range(len(B)): tot_x, tot_y = [], [] for j, arg in enumerate(Add.make_args(c)): if arg.is_Integer: # example: 5 -> k = 5 k, p = arg, S.One pnew = params[0] else: # arg is a Mul or Symbol # example: 3*t_1 -> k = 3 # example: t_0 -> k = 1 k, p = arg.as_coeff_Mul() pnew = params[params.index(p) + 1] sol = sol_x, sol_y = base_solution_linear(k, A[i], B[i], pnew) if p is S.One: if None in sol: return tuple([None]*len(var)) else: # convert a + b*pnew -> a*p + b*pnew if isinstance(sol_x, Add): sol_x = sol_x.args[0]*p + sol_x.args[1] if isinstance(sol_y, Add): sol_y = sol_y.args[0]*p + sol_y.args[1] tot_x.append(sol_x) tot_y.append(sol_y) solutions.append(Add(*tot_x)) c = Add(*tot_y) solutions.append(c) if param is None: # just keep the additive constant (i.e. replace t with 0) solutions = [i.as_coeff_Add()[0] for i in solutions] return tuple(solutions) def base_solution_linear(c, a, b, t=None): """ Return the base solution for the linear equation, `ax + by = c`. Used by ``diop_linear()`` to find the base solution of a linear Diophantine equation. If ``t`` is given then the parametrized solution is returned. Usage ===== ``base_solution_linear(c, a, b, t)``: ``a``, ``b``, ``c`` are coefficients in `ax + by = c` and ``t`` is the parameter to be used in the solution. Examples ======== >>> from sympy.solvers.diophantine import base_solution_linear >>> from sympy.abc import t >>> base_solution_linear(5, 2, 3) # equation 2*x + 3*y = 5 (-5, 5) >>> base_solution_linear(0, 5, 7) # equation 5*x + 7*y = 0 (0, 0) >>> base_solution_linear(5, 2, 3, t) # equation 2*x + 3*y = 5 (3*t - 5, 5 - 2*t) >>> base_solution_linear(0, 5, 7, t) # equation 5*x + 7*y = 0 (7*t, -5*t) """ a, b, c = _remove_gcd(a, b, c) if c == 0: if t is not None: if b < 0: t = -t return (b*t , -a*t) else: return (0, 0) else: x0, y0, d = igcdex(abs(a), abs(b)) x0 *= sign(a) y0 *= sign(b) if divisible(c, d): if t is not None: if b < 0: t = -t return (c*x0 + b*t, c*y0 - a*t) else: return (c*x0, c*y0) else: return (None, None) def divisible(a, b): """ Returns `True` if ``a`` is divisible by ``b`` and `False` otherwise. """ return not a % b def diop_quadratic(eq, param=symbols("t", integer=True)): """ Solves quadratic diophantine equations. i.e. equations of the form `Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0`. Returns a set containing the tuples `(x, y)` which contains the solutions. If there are no solutions then `(None, None)` is returned. Usage ===== ``diop_quadratic(eq, param)``: ``eq`` is a quadratic binary diophantine equation. ``param`` is used to indicate the parameter to be used in the solution. Details ======= ``eq`` should be an expression which is assumed to be zero. ``param`` is a parameter to be used in the solution. Examples ======== >>> from sympy.abc import x, y, t >>> from sympy.solvers.diophantine import diop_quadratic >>> diop_quadratic(x**2 + y**2 + 2*x + 2*y + 2, t) {(-1, -1)} References ========== .. [1] Methods to solve Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, [online], Available: http://www.alpertron.com.ar/METHODS.HTM .. [2] Solving the equation ax^2+ bxy + cy^2 + dx + ey + f= 0, [online], Available: http://www.jpr2718.org/ax2p.pdf See Also ======== diop_linear(), diop_ternary_quadratic(), diop_general_sum_of_squares(), diop_general_pythagorean() """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == "binary_quadratic": return _diop_quadratic(var, coeff, param) def _diop_quadratic(var, coeff, t): x, y = var A = coeff[x**2] B = coeff[x*y] C = coeff[y**2] D = coeff[x] E = coeff[y] F = coeff[1] A, B, C, D, E, F = [as_int(i) for i in _remove_gcd(A, B, C, D, E, F)] # (1) Simple-Hyperbolic case: A = C = 0, B != 0 # In this case equation can be converted to (Bx + E)(By + D) = DE - BF # We consider two cases; DE - BF = 0 and DE - BF != 0 # More details, http://www.alpertron.com.ar/METHODS.HTM#SHyperb sol = set([]) discr = B**2 - 4*A*C if A == 0 and C == 0 and B != 0: if D*E - B*F == 0: q, r = divmod(E, B) if not r: sol.add((-q, t)) q, r = divmod(D, B) if not r: sol.add((t, -q)) else: div = divisors(D*E - B*F) div = div + [-term for term in div] for d in div: x0, r = divmod(d - E, B) if not r: q, r = divmod(D*E - B*F, d) if not r: y0, r = divmod(q - D, B) if not r: sol.add((x0, y0)) # (2) Parabolic case: B**2 - 4*A*C = 0 # There are two subcases to be considered in this case. # sqrt(c)D - sqrt(a)E = 0 and sqrt(c)D - sqrt(a)E != 0 # More Details, http://www.alpertron.com.ar/METHODS.HTM#Parabol elif discr == 0: if A == 0: s = _diop_quadratic([y, x], coeff, t) for soln in s: sol.add((soln[1], soln[0])) else: g = sign(A)*igcd(A, C) a = A // g c = C // g e = sign(B/A) sqa = isqrt(a) sqc = isqrt(c) _c = e*sqc*D - sqa*E if not _c: z = symbols("z", real=True) eq = sqa*g*z**2 + D*z + sqa*F roots = solveset_real(eq, z).intersect(S.Integers) for root in roots: ans = diop_solve(sqa*x + e*sqc*y - root) sol.add((ans[0], ans[1])) elif _is_int(c): solve_x = lambda u: -e*sqc*g*_c*t**2 - (E + 2*e*sqc*g*u)*t\ - (e*sqc*g*u**2 + E*u + e*sqc*F) // _c solve_y = lambda u: sqa*g*_c*t**2 + (D + 2*sqa*g*u)*t \ + (sqa*g*u**2 + D*u + sqa*F) // _c for z0 in range(0, abs(_c)): # Check if the coefficients of y and x obtained are integers or not if (divisible(sqa*g*z0**2 + D*z0 + sqa*F, _c) and divisible(e*sqc**g*z0**2 + E*z0 + e*sqc*F, _c)): sol.add((solve_x(z0), solve_y(z0))) # (3) Method used when B**2 - 4*A*C is a square, is described in p. 6 of the below paper # by John P. Robertson. # http://www.jpr2718.org/ax2p.pdf elif is_square(discr): if A != 0: r = sqrt(discr) u, v = symbols("u, v", integer=True) eq = _mexpand( 4*A*r*u*v + 4*A*D*(B*v + r*u + r*v - B*u) + 2*A*4*A*E*(u - v) + 4*A*r*4*A*F) solution = diop_solve(eq, t) for s0, t0 in solution: num = B*t0 + r*s0 + r*t0 - B*s0 x_0 = S(num)/(4*A*r) y_0 = S(s0 - t0)/(2*r) if isinstance(s0, Symbol) or isinstance(t0, Symbol): if check_param(x_0, y_0, 4*A*r, t) != (None, None): ans = check_param(x_0, y_0, 4*A*r, t) sol.add((ans[0], ans[1])) elif x_0.is_Integer and y_0.is_Integer: if is_solution_quad(var, coeff, x_0, y_0): sol.add((x_0, y_0)) else: s = _diop_quadratic(var[::-1], coeff, t) # Interchange x and y while s: # | sol.add(s.pop()[::-1]) # and solution <--------+ # (4) B**2 - 4*A*C > 0 and B**2 - 4*A*C not a square or B**2 - 4*A*C < 0 else: P, Q = _transformation_to_DN(var, coeff) D, N = _find_DN(var, coeff) solns_pell = diop_DN(D, N) if D < 0: for x0, y0 in solns_pell: for x in [-x0, x0]: for y in [-y0, y0]: s = P*Matrix([x, y]) + Q try: sol.add(tuple([as_int(_) for _ in s])) except ValueError: pass else: # In this case equation can be transformed into a Pell equation solns_pell = set(solns_pell) for X, Y in list(solns_pell): solns_pell.add((-X, -Y)) a = diop_DN(D, 1) T = a[0][0] U = a[0][1] if all(_is_int(_) for _ in P[:4] + Q[:2]): for r, s in solns_pell: _a = (r + s*sqrt(D))*(T + U*sqrt(D))**t _b = (r - s*sqrt(D))*(T - U*sqrt(D))**t x_n = _mexpand(S(_a + _b)/2) y_n = _mexpand(S(_a - _b)/(2*sqrt(D))) s = P*Matrix([x_n, y_n]) + Q sol.add(tuple(s)) else: L = ilcm(*[_.q for _ in P[:4] + Q[:2]]) k = 1 T_k = T U_k = U while (T_k - 1) % L != 0 or U_k % L != 0: T_k, U_k = T_k*T + D*U_k*U, T_k*U + U_k*T k += 1 for X, Y in solns_pell: for i in range(k): if all(_is_int(_) for _ in P*Matrix([X, Y]) + Q): _a = (X + sqrt(D)*Y)*(T_k + sqrt(D)*U_k)**t _b = (X - sqrt(D)*Y)*(T_k - sqrt(D)*U_k)**t Xt = S(_a + _b)/2 Yt = S(_a - _b)/(2*sqrt(D)) s = P*Matrix([Xt, Yt]) + Q sol.add(tuple(s)) X, Y = X*T + D*U*Y, X*U + Y*T return sol def is_solution_quad(var, coeff, u, v): """ Check whether `(u, v)` is solution to the quadratic binary diophantine equation with the variable list ``var`` and coefficient dictionary ``coeff``. Not intended for use by normal users. """ reps = dict(zip(var, (u, v))) eq = Add(*[j*i.xreplace(reps) for i, j in coeff.items()]) return _mexpand(eq) == 0 def diop_DN(D, N, t=symbols("t", integer=True)): """ Solves the equation `x^2 - Dy^2 = N`. Mainly concerned with the case `D > 0, D` is not a perfect square, which is the same as the generalized Pell equation. The LMM algorithm [1]_ is used to solve this equation. Returns one solution tuple, (`x, y)` for each class of the solutions. Other solutions of the class can be constructed according to the values of ``D`` and ``N``. Usage ===== ``diop_DN(D, N, t)``: D and N are integers as in `x^2 - Dy^2 = N` and ``t`` is the parameter to be used in the solutions. Details ======= ``D`` and ``N`` correspond to D and N in the equation. ``t`` is the parameter to be used in the solutions. Examples ======== >>> from sympy.solvers.diophantine import diop_DN >>> diop_DN(13, -4) # Solves equation x**2 - 13*y**2 = -4 [(3, 1), (393, 109), (36, 10)] The output can be interpreted as follows: There are three fundamental solutions to the equation `x^2 - 13y^2 = -4` given by (3, 1), (393, 109) and (36, 10). Each tuple is in the form (x, y), i.e. solution (3, 1) means that `x = 3` and `y = 1`. >>> diop_DN(986, 1) # Solves equation x**2 - 986*y**2 = 1 [(49299, 1570)] See Also ======== find_DN(), diop_bf_DN() References ========== .. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004, Pages 16 - 17. [online], Available: http://www.jpr2718.org/pell.pdf """ if D < 0: if N == 0: return [(0, 0)] elif N < 0: return [] elif N > 0: sol = [] for d in divisors(square_factor(N)): sols = cornacchia(1, -D, N // d**2) if sols: for x, y in sols: sol.append((d*x, d*y)) if D == -1: sol.append((d*y, d*x)) return sol elif D == 0: if N < 0: return [] if N == 0: return [(0, t)] sN, _exact = integer_nthroot(N, 2) if _exact: return [(sN, t)] else: return [] else: # D > 0 sD, _exact = integer_nthroot(D, 2) if _exact: if N == 0: return [(sD*t, t)] else: sol = [] for y in range(floor(sign(N)*(N - 1)/(2*sD)) + 1): try: sq, _exact = integer_nthroot(D*y**2 + N, 2) except ValueError: _exact = False if _exact: sol.append((sq, y)) return sol elif 1 < N**2 < D: # It is much faster to call `_special_diop_DN`. return _special_diop_DN(D, N) else: if N == 0: return [(0, 0)] elif abs(N) == 1: pqa = PQa(0, 1, D) j = 0 G = [] B = [] for i in pqa: a = i[2] G.append(i[5]) B.append(i[4]) if j != 0 and a == 2*sD: break j = j + 1 if _odd(j): if N == -1: x = G[j - 1] y = B[j - 1] else: count = j while count < 2*j - 1: i = next(pqa) G.append(i[5]) B.append(i[4]) count += 1 x = G[count] y = B[count] else: if N == 1: x = G[j - 1] y = B[j - 1] else: return [] return [(x, y)] else: fs = [] sol = [] div = divisors(N) for d in div: if divisible(N, d**2): fs.append(d) for f in fs: m = N // f**2 zs = sqrt_mod(D, abs(m), all_roots=True) zs = [i for i in zs if i <= abs(m) // 2 ] if abs(m) != 2: zs = zs + [-i for i in zs if i] # omit dupl 0 for z in zs: pqa = PQa(z, abs(m), D) j = 0 G = [] B = [] for i in pqa: G.append(i[5]) B.append(i[4]) if j != 0 and abs(i[1]) == 1: r = G[j-1] s = B[j-1] if r**2 - D*s**2 == m: sol.append((f*r, f*s)) elif diop_DN(D, -1) != []: a = diop_DN(D, -1) sol.append((f*(r*a[0][0] + a[0][1]*s*D), f*(r*a[0][1] + s*a[0][0]))) break j = j + 1 if j == length(z, abs(m), D): break return sol def _special_diop_DN(D, N): """ Solves the equation `x^2 - Dy^2 = N` for the special case where `1 < N**2 < D` and `D` is not a perfect square. It is better to call `diop_DN` rather than this function, as the former checks the condition `1 < N**2 < D`, and calls the latter only if appropriate. Usage ===== WARNING: Internal method. Do not call directly! ``_special_diop_DN(D, N)``: D and N are integers as in `x^2 - Dy^2 = N`. Details ======= ``D`` and ``N`` correspond to D and N in the equation. Examples ======== >>> from sympy.solvers.diophantine import _special_diop_DN >>> _special_diop_DN(13, -3) # Solves equation x**2 - 13*y**2 = -3 [(7, 2), (137, 38)] The output can be interpreted as follows: There are two fundamental solutions to the equation `x^2 - 13y^2 = -3` given by (7, 2) and (137, 38). Each tuple is in the form (x, y), i.e. solution (7, 2) means that `x = 7` and `y = 2`. >>> _special_diop_DN(2445, -20) # Solves equation x**2 - 2445*y**2 = -20 [(445, 9), (17625560, 356454), (698095554475, 14118073569)] See Also ======== diop_DN() References ========== .. [1] Section 4.4.4 of the following book: Quadratic Diophantine Equations, T. Andreescu and D. Andrica, Springer, 2015. """ # The following assertion was removed for efficiency, with the understanding # that this method is not called directly. The parent method, `diop_DN` # is responsible for performing the appropriate checks. # # assert (1 < N**2 < D) and (not integer_nthroot(D, 2)[1]) sqrt_D = sqrt(D) F = [(N, 1)] f = 2 while True: f2 = f**2 if f2 > abs(N): break n, r = divmod(N, f2) if r == 0: F.append((n, f)) f += 1 P = 0 Q = 1 G0, G1 = 0, 1 B0, B1 = 1, 0 solutions = [] i = 0 while True: a = floor((P + sqrt_D) / Q) P = a*Q - P Q = (D - P**2) // Q G2 = a*G1 + G0 B2 = a*B1 + B0 for n, f in F: if G2**2 - D*B2**2 == n: solutions.append((f*G2, f*B2)) i += 1 if Q == 1 and i % 2 == 0: break G0, G1 = G1, G2 B0, B1 = B1, B2 return solutions def cornacchia(a, b, m): r""" Solves `ax^2 + by^2 = m` where `\gcd(a, b) = 1 = gcd(a, m)` and `a, b > 0`. Uses the algorithm due to Cornacchia. The method only finds primitive solutions, i.e. ones with `\gcd(x, y) = 1`. So this method can't be used to find the solutions of `x^2 + y^2 = 20` since the only solution to former is `(x, y) = (4, 2)` and it is not primitive. When `a = b`, only the solutions with `x \leq y` are found. For more details, see the References. Examples ======== >>> from sympy.solvers.diophantine import cornacchia >>> cornacchia(2, 3, 35) # equation 2x**2 + 3y**2 = 35 {(2, 3), (4, 1)} >>> cornacchia(1, 1, 25) # equation x**2 + y**2 = 25 {(4, 3)} References =========== .. [1] A. Nitaj, "L'algorithme de Cornacchia" .. [2] Solving the diophantine equation ax**2 + by**2 = m by Cornacchia's method, [online], Available: http://www.numbertheory.org/php/cornacchia.html See Also ======== sympy.utilities.iterables.signed_permutations """ sols = set() a1 = igcdex(a, m)[0] v = sqrt_mod(-b*a1, m, all_roots=True) if not v: return None for t in v: if t < m // 2: continue u, r = t, m while True: u, r = r, u % r if a*r**2 < m: break m1 = m - a*r**2 if m1 % b == 0: m1 = m1 // b s, _exact = integer_nthroot(m1, 2) if _exact: if a == b and r < s: r, s = s, r sols.add((int(r), int(s))) return sols def PQa(P_0, Q_0, D): r""" Returns useful information needed to solve the Pell equation. There are six sequences of integers defined related to the continued fraction representation of `\\frac{P + \sqrt{D}}{Q}`, namely {`P_{i}`}, {`Q_{i}`}, {`a_{i}`},{`A_{i}`}, {`B_{i}`}, {`G_{i}`}. ``PQa()`` Returns these values as a 6-tuple in the same order as mentioned above. Refer [1]_ for more detailed information. Usage ===== ``PQa(P_0, Q_0, D)``: ``P_0``, ``Q_0`` and ``D`` are integers corresponding to `P_{0}`, `Q_{0}` and `D` in the continued fraction `\\frac{P_{0} + \sqrt{D}}{Q_{0}}`. Also it's assumed that `P_{0}^2 == D mod(|Q_{0}|)` and `D` is square free. Examples ======== >>> from sympy.solvers.diophantine import PQa >>> pqa = PQa(13, 4, 5) # (13 + sqrt(5))/4 >>> next(pqa) # (P_0, Q_0, a_0, A_0, B_0, G_0) (13, 4, 3, 3, 1, -1) >>> next(pqa) # (P_1, Q_1, a_1, A_1, B_1, G_1) (-1, 1, 1, 4, 1, 3) References ========== .. [1] Solving the generalized Pell equation x^2 - Dy^2 = N, John P. Robertson, July 31, 2004, Pages 4 - 8. http://www.jpr2718.org/pell.pdf """ A_i_2 = B_i_1 = 0 A_i_1 = B_i_2 = 1 G_i_2 = -P_0 G_i_1 = Q_0 P_i = P_0 Q_i = Q_0 while True: a_i = floor((P_i + sqrt(D))/Q_i) A_i = a_i*A_i_1 + A_i_2 B_i = a_i*B_i_1 + B_i_2 G_i = a_i*G_i_1 + G_i_2 yield P_i, Q_i, a_i, A_i, B_i, G_i A_i_1, A_i_2 = A_i, A_i_1 B_i_1, B_i_2 = B_i, B_i_1 G_i_1, G_i_2 = G_i, G_i_1 P_i = a_i*Q_i - P_i Q_i = (D - P_i**2)/Q_i def diop_bf_DN(D, N, t=symbols("t", integer=True)): r""" Uses brute force to solve the equation, `x^2 - Dy^2 = N`. Mainly concerned with the generalized Pell equation which is the case when `D > 0, D` is not a perfect square. For more information on the case refer [1]_. Let `(t, u)` be the minimal positive solution of the equation `x^2 - Dy^2 = 1`. Then this method requires `\sqrt{\\frac{\mid N \mid (t \pm 1)}{2D}}` to be small. Usage ===== ``diop_bf_DN(D, N, t)``: ``D`` and ``N`` are coefficients in `x^2 - Dy^2 = N` and ``t`` is the parameter to be used in the solutions. Details ======= ``D`` and ``N`` correspond to D and N in the equation. ``t`` is the parameter to be used in the solutions. Examples ======== >>> from sympy.solvers.diophantine import diop_bf_DN >>> diop_bf_DN(13, -4) [(3, 1), (-3, 1), (36, 10)] >>> diop_bf_DN(986, 1) [(49299, 1570)] See Also ======== diop_DN() References ========== .. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004, Page 15. http://www.jpr2718.org/pell.pdf """ D = as_int(D) N = as_int(N) sol = [] a = diop_DN(D, 1) u = a[0][0] if abs(N) == 1: return diop_DN(D, N) elif N > 1: L1 = 0 L2 = integer_nthroot(int(N*(u - 1)/(2*D)), 2)[0] + 1 elif N < -1: L1, _exact = integer_nthroot(-int(N/D), 2) if not _exact: L1 += 1 L2 = integer_nthroot(-int(N*(u + 1)/(2*D)), 2)[0] + 1 else: # N = 0 if D < 0: return [(0, 0)] elif D == 0: return [(0, t)] else: sD, _exact = integer_nthroot(D, 2) if _exact: return [(sD*t, t), (-sD*t, t)] else: return [(0, 0)] for y in range(L1, L2): try: x, _exact = integer_nthroot(N + D*y**2, 2) except ValueError: _exact = False if _exact: sol.append((x, y)) if not equivalent(x, y, -x, y, D, N): sol.append((-x, y)) return sol def equivalent(u, v, r, s, D, N): """ Returns True if two solutions `(u, v)` and `(r, s)` of `x^2 - Dy^2 = N` belongs to the same equivalence class and False otherwise. Two solutions `(u, v)` and `(r, s)` to the above equation fall to the same equivalence class iff both `(ur - Dvs)` and `(us - vr)` are divisible by `N`. See reference [1]_. No test is performed to test whether `(u, v)` and `(r, s)` are actually solutions to the equation. User should take care of this. Usage ===== ``equivalent(u, v, r, s, D, N)``: `(u, v)` and `(r, s)` are two solutions of the equation `x^2 - Dy^2 = N` and all parameters involved are integers. Examples ======== >>> from sympy.solvers.diophantine import equivalent >>> equivalent(18, 5, -18, -5, 13, -1) True >>> equivalent(3, 1, -18, 393, 109, -4) False References ========== .. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004, Page 12. http://www.jpr2718.org/pell.pdf """ return divisible(u*r - D*v*s, N) and divisible(u*s - v*r, N) def length(P, Q, D): r""" Returns the (length of aperiodic part + length of periodic part) of continued fraction representation of `\\frac{P + \sqrt{D}}{Q}`. It is important to remember that this does NOT return the length of the periodic part but the sum of the lengths of the two parts as mentioned above. Usage ===== ``length(P, Q, D)``: ``P``, ``Q`` and ``D`` are integers corresponding to the continued fraction `\\frac{P + \sqrt{D}}{Q}`. Details ======= ``P``, ``D`` and ``Q`` corresponds to P, D and Q in the continued fraction, `\\frac{P + \sqrt{D}}{Q}`. Examples ======== >>> from sympy.solvers.diophantine import length >>> length(-2 , 4, 5) # (-2 + sqrt(5))/4 3 >>> length(-5, 4, 17) # (-5 + sqrt(17))/4 4 See Also ======== sympy.ntheory.continued_fraction.continued_fraction_periodic """ from sympy.ntheory.continued_fraction import continued_fraction_periodic v = continued_fraction_periodic(P, Q, D) if type(v[-1]) is list: rpt = len(v[-1]) nonrpt = len(v) - 1 else: rpt = 0 nonrpt = len(v) return rpt + nonrpt def transformation_to_DN(eq): """ This function transforms general quadratic, `ax^2 + bxy + cy^2 + dx + ey + f = 0` to more easy to deal with `X^2 - DY^2 = N` form. This is used to solve the general quadratic equation by transforming it to the latter form. Refer [1]_ for more detailed information on the transformation. This function returns a tuple (A, B) where A is a 2 X 2 matrix and B is a 2 X 1 matrix such that, Transpose([x y]) = A * Transpose([X Y]) + B Usage ===== ``transformation_to_DN(eq)``: where ``eq`` is the quadratic to be transformed. Examples ======== >>> from sympy.abc import x, y >>> from sympy.solvers.diophantine import transformation_to_DN >>> from sympy.solvers.diophantine import classify_diop >>> A, B = transformation_to_DN(x**2 - 3*x*y - y**2 - 2*y + 1) >>> A Matrix([ [1/26, 3/26], [ 0, 1/13]]) >>> B Matrix([ [-6/13], [-4/13]]) A, B returned are such that Transpose((x y)) = A * Transpose((X Y)) + B. Substituting these values for `x` and `y` and a bit of simplifying work will give an equation of the form `x^2 - Dy^2 = N`. >>> from sympy.abc import X, Y >>> from sympy import Matrix, simplify >>> u = (A*Matrix([X, Y]) + B)[0] # Transformation for x >>> u X/26 + 3*Y/26 - 6/13 >>> v = (A*Matrix([X, Y]) + B)[1] # Transformation for y >>> v Y/13 - 4/13 Next we will substitute these formulas for `x` and `y` and do ``simplify()``. >>> eq = simplify((x**2 - 3*x*y - y**2 - 2*y + 1).subs(zip((x, y), (u, v)))) >>> eq X**2/676 - Y**2/52 + 17/13 By multiplying the denominator appropriately, we can get a Pell equation in the standard form. >>> eq * 676 X**2 - 13*Y**2 + 884 If only the final equation is needed, ``find_DN()`` can be used. See Also ======== find_DN() References ========== .. [1] Solving the equation ax^2 + bxy + cy^2 + dx + ey + f = 0, John P.Robertson, May 8, 2003, Page 7 - 11. http://www.jpr2718.org/ax2p.pdf """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == "binary_quadratic": return _transformation_to_DN(var, coeff) def _transformation_to_DN(var, coeff): x, y = var a = coeff[x**2] b = coeff[x*y] c = coeff[y**2] d = coeff[x] e = coeff[y] f = coeff[1] a, b, c, d, e, f = [as_int(i) for i in _remove_gcd(a, b, c, d, e, f)] X, Y = symbols("X, Y", integer=True) if b: B, C = _rational_pq(2*a, b) A, T = _rational_pq(a, B**2) # eq_1 = A*B*X**2 + B*(c*T - A*C**2)*Y**2 + d*T*X + (B*e*T - d*T*C)*Y + f*T*B coeff = {X**2: A*B, X*Y: 0, Y**2: B*(c*T - A*C**2), X: d*T, Y: B*e*T - d*T*C, 1: f*T*B} A_0, B_0 = _transformation_to_DN([X, Y], coeff) return Matrix(2, 2, [S.One/B, -S(C)/B, 0, 1])*A_0, Matrix(2, 2, [S.One/B, -S(C)/B, 0, 1])*B_0 else: if d: B, C = _rational_pq(2*a, d) A, T = _rational_pq(a, B**2) # eq_2 = A*X**2 + c*T*Y**2 + e*T*Y + f*T - A*C**2 coeff = {X**2: A, X*Y: 0, Y**2: c*T, X: 0, Y: e*T, 1: f*T - A*C**2} A_0, B_0 = _transformation_to_DN([X, Y], coeff) return Matrix(2, 2, [S.One/B, 0, 0, 1])*A_0, Matrix(2, 2, [S.One/B, 0, 0, 1])*B_0 + Matrix([-S(C)/B, 0]) else: if e: B, C = _rational_pq(2*c, e) A, T = _rational_pq(c, B**2) # eq_3 = a*T*X**2 + A*Y**2 + f*T - A*C**2 coeff = {X**2: a*T, X*Y: 0, Y**2: A, X: 0, Y: 0, 1: f*T - A*C**2} A_0, B_0 = _transformation_to_DN([X, Y], coeff) return Matrix(2, 2, [1, 0, 0, S.One/B])*A_0, Matrix(2, 2, [1, 0, 0, S.One/B])*B_0 + Matrix([0, -S(C)/B]) else: # TODO: pre-simplification: Not necessary but may simplify # the equation. return Matrix(2, 2, [S.One/a, 0, 0, 1]), Matrix([0, 0]) def find_DN(eq): """ This function returns a tuple, `(D, N)` of the simplified form, `x^2 - Dy^2 = N`, corresponding to the general quadratic, `ax^2 + bxy + cy^2 + dx + ey + f = 0`. Solving the general quadratic is then equivalent to solving the equation `X^2 - DY^2 = N` and transforming the solutions by using the transformation matrices returned by ``transformation_to_DN()``. Usage ===== ``find_DN(eq)``: where ``eq`` is the quadratic to be transformed. Examples ======== >>> from sympy.abc import x, y >>> from sympy.solvers.diophantine import find_DN >>> find_DN(x**2 - 3*x*y - y**2 - 2*y + 1) (13, -884) Interpretation of the output is that we get `X^2 -13Y^2 = -884` after transforming `x^2 - 3xy - y^2 - 2y + 1` using the transformation returned by ``transformation_to_DN()``. See Also ======== transformation_to_DN() References ========== .. [1] Solving the equation ax^2 + bxy + cy^2 + dx + ey + f = 0, John P.Robertson, May 8, 2003, Page 7 - 11. http://www.jpr2718.org/ax2p.pdf """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == "binary_quadratic": return _find_DN(var, coeff) def _find_DN(var, coeff): x, y = var X, Y = symbols("X, Y", integer=True) A, B = _transformation_to_DN(var, coeff) u = (A*Matrix([X, Y]) + B)[0] v = (A*Matrix([X, Y]) + B)[1] eq = x**2*coeff[x**2] + x*y*coeff[x*y] + y**2*coeff[y**2] + x*coeff[x] + y*coeff[y] + coeff[1] simplified = _mexpand(eq.subs(zip((x, y), (u, v)))) coeff = simplified.as_coefficients_dict() return -coeff[Y**2]/coeff[X**2], -coeff[1]/coeff[X**2] def check_param(x, y, a, t): """ If there is a number modulo ``a`` such that ``x`` and ``y`` are both integers, then return a parametric representation for ``x`` and ``y`` else return (None, None). Here ``x`` and ``y`` are functions of ``t``. """ from sympy.simplify.simplify import clear_coefficients if x.is_number and not x.is_Integer: return (None, None) if y.is_number and not y.is_Integer: return (None, None) m, n = symbols("m, n", integer=True) c, p = (m*x + n*y).as_content_primitive() if a % c.q: return (None, None) # clear_coefficients(mx + b, R)[1] -> (R - b)/m eq = clear_coefficients(x, m)[1] - clear_coefficients(y, n)[1] junk, eq = eq.as_content_primitive() return diop_solve(eq, t) def diop_ternary_quadratic(eq): """ Solves the general quadratic ternary form, `ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0`. Returns a tuple `(x, y, z)` which is a base solution for the above equation. If there are no solutions, `(None, None, None)` is returned. Usage ===== ``diop_ternary_quadratic(eq)``: Return a tuple containing a basic solution to ``eq``. Details ======= ``eq`` should be an homogeneous expression of degree two in three variables and it is assumed to be zero. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy.solvers.diophantine import diop_ternary_quadratic >>> diop_ternary_quadratic(x**2 + 3*y**2 - z**2) (1, 0, 1) >>> diop_ternary_quadratic(4*x**2 + 5*y**2 - z**2) (1, 0, 2) >>> diop_ternary_quadratic(45*x**2 - 7*y**2 - 8*x*y - z**2) (28, 45, 105) >>> diop_ternary_quadratic(x**2 - 49*y**2 - z**2 + 13*z*y -8*x*y) (9, 1, 5) """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type in ( "homogeneous_ternary_quadratic", "homogeneous_ternary_quadratic_normal"): return _diop_ternary_quadratic(var, coeff) def _diop_ternary_quadratic(_var, coeff): x, y, z = _var var = [x, y, z] # Equations of the form B*x*y + C*z*x + E*y*z = 0 and At least two of the # coefficients A, B, C are non-zero. # There are infinitely many solutions for the equation. # Ex: (0, 0, t), (0, t, 0), (t, 0, 0) # Equation can be re-written as y*(B*x + E*z) = -C*x*z and we can find rather # unobvious solutions. Set y = -C and B*x + E*z = x*z. The latter can be solved by # using methods for binary quadratic diophantine equations. Let's select the # solution which minimizes |x| + |z| if not any(coeff[i**2] for i in var): if coeff[x*z]: sols = diophantine(coeff[x*y]*x + coeff[y*z]*z - x*z) s = sols.pop() min_sum = abs(s[0]) + abs(s[1]) for r in sols: m = abs(r[0]) + abs(r[1]) if m < min_sum: s = r min_sum = m x_0, y_0, z_0 = _remove_gcd(s[0], -coeff[x*z], s[1]) else: var[0], var[1] = _var[1], _var[0] y_0, x_0, z_0 = _diop_ternary_quadratic(var, coeff) return x_0, y_0, z_0 if coeff[x**2] == 0: # If the coefficient of x is zero change the variables if coeff[y**2] == 0: var[0], var[2] = _var[2], _var[0] z_0, y_0, x_0 = _diop_ternary_quadratic(var, coeff) else: var[0], var[1] = _var[1], _var[0] y_0, x_0, z_0 = _diop_ternary_quadratic(var, coeff) else: if coeff[x*y] or coeff[x*z]: # Apply the transformation x --> X - (B*y + C*z)/(2*A) A = coeff[x**2] B = coeff[x*y] C = coeff[x*z] D = coeff[y**2] E = coeff[y*z] F = coeff[z**2] _coeff = dict() _coeff[x**2] = 4*A**2 _coeff[y**2] = 4*A*D - B**2 _coeff[z**2] = 4*A*F - C**2 _coeff[y*z] = 4*A*E - 2*B*C _coeff[x*y] = 0 _coeff[x*z] = 0 x_0, y_0, z_0 = _diop_ternary_quadratic(var, _coeff) if x_0 is None: return (None, None, None) p, q = _rational_pq(B*y_0 + C*z_0, 2*A) x_0, y_0, z_0 = x_0*q - p, y_0*q, z_0*q elif coeff[z*y] != 0: if coeff[y**2] == 0: if coeff[z**2] == 0: # Equations of the form A*x**2 + E*yz = 0. A = coeff[x**2] E = coeff[y*z] b, a = _rational_pq(-E, A) x_0, y_0, z_0 = b, a, b else: # Ax**2 + E*y*z + F*z**2 = 0 var[0], var[2] = _var[2], _var[0] z_0, y_0, x_0 = _diop_ternary_quadratic(var, coeff) else: # A*x**2 + D*y**2 + E*y*z + F*z**2 = 0, C may be zero var[0], var[1] = _var[1], _var[0] y_0, x_0, z_0 = _diop_ternary_quadratic(var, coeff) else: # Ax**2 + D*y**2 + F*z**2 = 0, C may be zero x_0, y_0, z_0 = _diop_ternary_quadratic_normal(var, coeff) return _remove_gcd(x_0, y_0, z_0) def transformation_to_normal(eq): """ Returns the transformation Matrix that converts a general ternary quadratic equation ``eq`` (`ax^2 + by^2 + cz^2 + dxy + eyz + fxz`) to a form without cross terms: `ax^2 + by^2 + cz^2 = 0`. This is not used in solving ternary quadratics; it is only implemented for the sake of completeness. """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type in ( "homogeneous_ternary_quadratic", "homogeneous_ternary_quadratic_normal"): return _transformation_to_normal(var, coeff) def _transformation_to_normal(var, coeff): _var = list(var) # copy x, y, z = var if not any(coeff[i**2] for i in var): # https://math.stackexchange.com/questions/448051/transform-quadratic-ternary-form-to-normal-form/448065#448065 a = coeff[x*y] b = coeff[y*z] c = coeff[x*z] swap = False if not a: # b can't be 0 or else there aren't 3 vars swap = True a, b = b, a T = Matrix(((1, 1, -b/a), (1, -1, -c/a), (0, 0, 1))) if swap: T.row_swap(0, 1) T.col_swap(0, 1) return T if coeff[x**2] == 0: # If the coefficient of x is zero change the variables if coeff[y**2] == 0: _var[0], _var[2] = var[2], var[0] T = _transformation_to_normal(_var, coeff) T.row_swap(0, 2) T.col_swap(0, 2) return T else: _var[0], _var[1] = var[1], var[0] T = _transformation_to_normal(_var, coeff) T.row_swap(0, 1) T.col_swap(0, 1) return T # Apply the transformation x --> X - (B*Y + C*Z)/(2*A) if coeff[x*y] != 0 or coeff[x*z] != 0: A = coeff[x**2] B = coeff[x*y] C = coeff[x*z] D = coeff[y**2] E = coeff[y*z] F = coeff[z**2] _coeff = dict() _coeff[x**2] = 4*A**2 _coeff[y**2] = 4*A*D - B**2 _coeff[z**2] = 4*A*F - C**2 _coeff[y*z] = 4*A*E - 2*B*C _coeff[x*y] = 0 _coeff[x*z] = 0 T_0 = _transformation_to_normal(_var, _coeff) return Matrix(3, 3, [1, S(-B)/(2*A), S(-C)/(2*A), 0, 1, 0, 0, 0, 1])*T_0 elif coeff[y*z] != 0: if coeff[y**2] == 0: if coeff[z**2] == 0: # Equations of the form A*x**2 + E*yz = 0. # Apply transformation y -> Y + Z ans z -> Y - Z return Matrix(3, 3, [1, 0, 0, 0, 1, 1, 0, 1, -1]) else: # Ax**2 + E*y*z + F*z**2 = 0 _var[0], _var[2] = var[2], var[0] T = _transformation_to_normal(_var, coeff) T.row_swap(0, 2) T.col_swap(0, 2) return T else: # A*x**2 + D*y**2 + E*y*z + F*z**2 = 0, F may be zero _var[0], _var[1] = var[1], var[0] T = _transformation_to_normal(_var, coeff) T.row_swap(0, 1) T.col_swap(0, 1) return T else: return Matrix.eye(3) def parametrize_ternary_quadratic(eq): """ Returns the parametrized general solution for the ternary quadratic equation ``eq`` which has the form `ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0`. Examples ======== >>> from sympy import Tuple, ordered >>> from sympy.abc import x, y, z >>> from sympy.solvers.diophantine import parametrize_ternary_quadratic The parametrized solution may be returned with three parameters: >>> parametrize_ternary_quadratic(2*x**2 + y**2 - 2*z**2) (p**2 - 2*q**2, -2*p**2 + 4*p*q - 4*p*r - 4*q**2, p**2 - 4*p*q + 2*q**2 - 4*q*r) There might also be only two parameters: >>> parametrize_ternary_quadratic(4*x**2 + 2*y**2 - 3*z**2) (2*p**2 - 3*q**2, -4*p**2 + 12*p*q - 6*q**2, 4*p**2 - 8*p*q + 6*q**2) Notes ===== Consider ``p`` and ``q`` in the previous 2-parameter solution and observe that more than one solution can be represented by a given pair of parameters. If `p` and ``q`` are not coprime, this is trivially true since the common factor will also be a common factor of the solution values. But it may also be true even when ``p`` and ``q`` are coprime: >>> sol = Tuple(*_) >>> p, q = ordered(sol.free_symbols) >>> sol.subs([(p, 3), (q, 2)]) (6, 12, 12) >>> sol.subs([(q, 1), (p, 1)]) (-1, 2, 2) >>> sol.subs([(q, 0), (p, 1)]) (2, -4, 4) >>> sol.subs([(q, 1), (p, 0)]) (-3, -6, 6) Except for sign and a common factor, these are equivalent to the solution of (1, 2, 2). References ========== .. [1] The algorithmic resolution of Diophantine equations, Nigel P. Smart, London Mathematical Society Student Texts 41, Cambridge University Press, Cambridge, 1998. """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type in ( "homogeneous_ternary_quadratic", "homogeneous_ternary_quadratic_normal"): x_0, y_0, z_0 = _diop_ternary_quadratic(var, coeff) return _parametrize_ternary_quadratic( (x_0, y_0, z_0), var, coeff) def _parametrize_ternary_quadratic(solution, _var, coeff): # called for a*x**2 + b*y**2 + c*z**2 + d*x*y + e*y*z + f*x*z = 0 assert 1 not in coeff x_0, y_0, z_0 = solution v = list(_var) # copy if x_0 is None: return (None, None, None) if solution.count(0) >= 2: # if there are 2 zeros the equation reduces # to k*X**2 == 0 where X is x, y, or z so X must # be zero, too. So there is only the trivial # solution. return (None, None, None) if x_0 == 0: v[0], v[1] = v[1], v[0] y_p, x_p, z_p = _parametrize_ternary_quadratic( (y_0, x_0, z_0), v, coeff) return x_p, y_p, z_p x, y, z = v r, p, q = symbols("r, p, q", integer=True) eq = sum(k*v for k, v in coeff.items()) eq_1 = _mexpand(eq.subs(zip( (x, y, z), (r*x_0, r*y_0 + p, r*z_0 + q)))) A, B = eq_1.as_independent(r, as_Add=True) x = A*x_0 y = (A*y_0 - _mexpand(B/r*p)) z = (A*z_0 - _mexpand(B/r*q)) return _remove_gcd(x, y, z) def diop_ternary_quadratic_normal(eq): """ Solves the quadratic ternary diophantine equation, `ax^2 + by^2 + cz^2 = 0`. Here the coefficients `a`, `b`, and `c` should be non zero. Otherwise the equation will be a quadratic binary or univariate equation. If solvable, returns a tuple `(x, y, z)` that satisfies the given equation. If the equation does not have integer solutions, `(None, None, None)` is returned. Usage ===== ``diop_ternary_quadratic_normal(eq)``: where ``eq`` is an equation of the form `ax^2 + by^2 + cz^2 = 0`. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy.solvers.diophantine import diop_ternary_quadratic_normal >>> diop_ternary_quadratic_normal(x**2 + 3*y**2 - z**2) (1, 0, 1) >>> diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2) (1, 0, 2) >>> diop_ternary_quadratic_normal(34*x**2 - 3*y**2 - 301*z**2) (4, 9, 1) """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == "homogeneous_ternary_quadratic_normal": return _diop_ternary_quadratic_normal(var, coeff) def _diop_ternary_quadratic_normal(var, coeff): x, y, z = var a = coeff[x**2] b = coeff[y**2] c = coeff[z**2] try: assert len([k for k in coeff if coeff[k]]) == 3 assert all(coeff[i**2] for i in var) except AssertionError: raise ValueError(filldedent(''' coeff dict is not consistent with assumption of this routine: coefficients should be those of an expression in the form a*x**2 + b*y**2 + c*z**2 where a*b*c != 0.''')) (sqf_of_a, sqf_of_b, sqf_of_c), (a_1, b_1, c_1), (a_2, b_2, c_2) = \ sqf_normal(a, b, c, steps=True) A = -a_2*c_2 B = -b_2*c_2 # If following two conditions are satisfied then there are no solutions if A < 0 and B < 0: return (None, None, None) if ( sqrt_mod(-b_2*c_2, a_2) is None or sqrt_mod(-c_2*a_2, b_2) is None or sqrt_mod(-a_2*b_2, c_2) is None): return (None, None, None) z_0, x_0, y_0 = descent(A, B) z_0, q = _rational_pq(z_0, abs(c_2)) x_0 *= q y_0 *= q x_0, y_0, z_0 = _remove_gcd(x_0, y_0, z_0) # Holzer reduction if sign(a) == sign(b): x_0, y_0, z_0 = holzer(x_0, y_0, z_0, abs(a_2), abs(b_2), abs(c_2)) elif sign(a) == sign(c): x_0, z_0, y_0 = holzer(x_0, z_0, y_0, abs(a_2), abs(c_2), abs(b_2)) else: y_0, z_0, x_0 = holzer(y_0, z_0, x_0, abs(b_2), abs(c_2), abs(a_2)) x_0 = reconstruct(b_1, c_1, x_0) y_0 = reconstruct(a_1, c_1, y_0) z_0 = reconstruct(a_1, b_1, z_0) sq_lcm = ilcm(sqf_of_a, sqf_of_b, sqf_of_c) x_0 = abs(x_0*sq_lcm//sqf_of_a) y_0 = abs(y_0*sq_lcm//sqf_of_b) z_0 = abs(z_0*sq_lcm//sqf_of_c) return _remove_gcd(x_0, y_0, z_0) def sqf_normal(a, b, c, steps=False): """ Return `a', b', c'`, the coefficients of the square-free normal form of `ax^2 + by^2 + cz^2 = 0`, where `a', b', c'` are pairwise prime. If `steps` is True then also return three tuples: `sq`, `sqf`, and `(a', b', c')` where `sq` contains the square factors of `a`, `b` and `c` after removing the `gcd(a, b, c)`; `sqf` contains the values of `a`, `b` and `c` after removing both the `gcd(a, b, c)` and the square factors. The solutions for `ax^2 + by^2 + cz^2 = 0` can be recovered from the solutions of `a'x^2 + b'y^2 + c'z^2 = 0`. Examples ======== >>> from sympy.solvers.diophantine import sqf_normal >>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11) (11, 1, 5) >>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11, True) ((3, 1, 7), (5, 55, 11), (11, 1, 5)) References ========== .. [1] Legendre's Theorem, Legrange's Descent, http://public.csusm.edu/aitken_html/notes/legendre.pdf See Also ======== reconstruct() """ ABC = _remove_gcd(a, b, c) sq = tuple(square_factor(i) for i in ABC) sqf = A, B, C = tuple([i//j**2 for i,j in zip(ABC, sq)]) pc = igcd(A, B) A /= pc B /= pc pa = igcd(B, C) B /= pa C /= pa pb = igcd(A, C) A /= pb B /= pb A *= pa B *= pb C *= pc if steps: return (sq, sqf, (A, B, C)) else: return A, B, C def square_factor(a): r""" Returns an integer `c` s.t. `a = c^2k, \ c,k \in Z`. Here `k` is square free. `a` can be given as an integer or a dictionary of factors. Examples ======== >>> from sympy.solvers.diophantine import square_factor >>> square_factor(24) 2 >>> square_factor(-36*3) 6 >>> square_factor(1) 1 >>> square_factor({3: 2, 2: 1, -1: 1}) # -18 3 See Also ======== sympy.ntheory.factor_.core """ f = a if isinstance(a, dict) else factorint(a) return Mul(*[p**(e//2) for p, e in f.items()]) def reconstruct(A, B, z): """ Reconstruct the `z` value of an equivalent solution of `ax^2 + by^2 + cz^2` from the `z` value of a solution of the square-free normal form of the equation, `a'*x^2 + b'*y^2 + c'*z^2`, where `a'`, `b'` and `c'` are square free and `gcd(a', b', c') == 1`. """ f = factorint(igcd(A, B)) for p, e in f.items(): if e != 1: raise ValueError('a and b should be square-free') z *= p return z def ldescent(A, B): """ Return a non-trivial solution to `w^2 = Ax^2 + By^2` using Lagrange's method; return None if there is no such solution. . Here, `A \\neq 0` and `B \\neq 0` and `A` and `B` are square free. Output a tuple `(w_0, x_0, y_0)` which is a solution to the above equation. Examples ======== >>> from sympy.solvers.diophantine import ldescent >>> ldescent(1, 1) # w^2 = x^2 + y^2 (1, 1, 0) >>> ldescent(4, -7) # w^2 = 4x^2 - 7y^2 (2, -1, 0) This means that `x = -1, y = 0` and `w = 2` is a solution to the equation `w^2 = 4x^2 - 7y^2` >>> ldescent(5, -1) # w^2 = 5x^2 - y^2 (2, 1, -1) References ========== .. [1] The algorithmic resolution of Diophantine equations, Nigel P. Smart, London Mathematical Society Student Texts 41, Cambridge University Press, Cambridge, 1998. .. [2] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, [online], Available: http://eprints.nottingham.ac.uk/60/1/kvxefz87.pdf """ if abs(A) > abs(B): w, y, x = ldescent(B, A) return w, x, y if A == 1: return (1, 1, 0) if B == 1: return (1, 0, 1) if B == -1: # and A == -1 return r = sqrt_mod(A, B) Q = (r**2 - A) // B if Q == 0: B_0 = 1 d = 0 else: div = divisors(Q) B_0 = None for i in div: sQ, _exact = integer_nthroot(abs(Q) // i, 2) if _exact: B_0, d = sign(Q)*i, sQ break if B_0 is not None: W, X, Y = ldescent(A, B_0) return _remove_gcd((-A*X + r*W), (r*X - W), Y*(B_0*d)) def descent(A, B): """ Returns a non-trivial solution, (x, y, z), to `x^2 = Ay^2 + Bz^2` using Lagrange's descent method with lattice-reduction. `A` and `B` are assumed to be valid for such a solution to exist. This is faster than the normal Lagrange's descent algorithm because the Gaussian reduction is used. Examples ======== >>> from sympy.solvers.diophantine import descent >>> descent(3, 1) # x**2 = 3*y**2 + z**2 (1, 0, 1) `(x, y, z) = (1, 0, 1)` is a solution to the above equation. >>> descent(41, -113) (-16, -3, 1) References ========== .. [1] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, Mathematics of Computation, Volume 00, Number 0. """ if abs(A) > abs(B): x, y, z = descent(B, A) return x, z, y if B == 1: return (1, 0, 1) if A == 1: return (1, 1, 0) if B == -A: return (0, 1, 1) if B == A: x, z, y = descent(-1, A) return (A*y, z, x) w = sqrt_mod(A, B) x_0, z_0 = gaussian_reduce(w, A, B) t = (x_0**2 - A*z_0**2) // B t_2 = square_factor(t) t_1 = t // t_2**2 x_1, z_1, y_1 = descent(A, t_1) return _remove_gcd(x_0*x_1 + A*z_0*z_1, z_0*x_1 + x_0*z_1, t_1*t_2*y_1) def gaussian_reduce(w, a, b): r""" Returns a reduced solution `(x, z)` to the congruence `X^2 - aZ^2 \equiv 0 \ (mod \ b)` so that `x^2 + |a|z^2` is minimal. Details ======= Here ``w`` is a solution of the congruence `x^2 \equiv a \ (mod \ b)` References ========== .. [1] Gaussian lattice Reduction [online]. Available: http://home.ie.cuhk.edu.hk/~wkshum/wordpress/?p=404 .. [2] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, Mathematics of Computation, Volume 00, Number 0. """ u = (0, 1) v = (1, 0) if dot(u, v, w, a, b) < 0: v = (-v[0], -v[1]) if norm(u, w, a, b) < norm(v, w, a, b): u, v = v, u while norm(u, w, a, b) > norm(v, w, a, b): k = dot(u, v, w, a, b) // dot(v, v, w, a, b) u, v = v, (u[0]- k*v[0], u[1]- k*v[1]) u, v = v, u if dot(u, v, w, a, b) < dot(v, v, w, a, b)/2 or norm((u[0]-v[0], u[1]-v[1]), w, a, b) > norm(v, w, a, b): c = v else: c = (u[0] - v[0], u[1] - v[1]) return c[0]*w + b*c[1], c[0] def dot(u, v, w, a, b): r""" Returns a special dot product of the vectors `u = (u_{1}, u_{2})` and `v = (v_{1}, v_{2})` which is defined in order to reduce solution of the congruence equation `X^2 - aZ^2 \equiv 0 \ (mod \ b)`. """ u_1, u_2 = u v_1, v_2 = v return (w*u_1 + b*u_2)*(w*v_1 + b*v_2) + abs(a)*u_1*v_1 def norm(u, w, a, b): r""" Returns the norm of the vector `u = (u_{1}, u_{2})` under the dot product defined by `u \cdot v = (wu_{1} + bu_{2})(w*v_{1} + bv_{2}) + |a|*u_{1}*v_{1}` where `u = (u_{1}, u_{2})` and `v = (v_{1}, v_{2})`. """ u_1, u_2 = u return sqrt(dot((u_1, u_2), (u_1, u_2), w, a, b)) def holzer(x, y, z, a, b, c): r""" Simplify the solution `(x, y, z)` of the equation `ax^2 + by^2 = cz^2` with `a, b, c > 0` and `z^2 \geq \mid ab \mid` to a new reduced solution `(x', y', z')` such that `z'^2 \leq \mid ab \mid`. The algorithm is an interpretation of Mordell's reduction as described on page 8 of Cremona and Rusin's paper [1]_ and the work of Mordell in reference [2]_. References ========== .. [1] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, Mathematics of Computation, Volume 00, Number 0. .. [2] Diophantine Equations, L. J. Mordell, page 48. """ if _odd(c): k = 2*c else: k = c//2 small = a*b*c step = 0 while True: t1, t2, t3 = a*x**2, b*y**2, c*z**2 # check that it's a solution if t1 + t2 != t3: if step == 0: raise ValueError('bad starting solution') break x_0, y_0, z_0 = x, y, z if max(t1, t2, t3) <= small: # Holzer condition break uv = u, v = base_solution_linear(k, y_0, -x_0) if None in uv: break p, q = -(a*u*x_0 + b*v*y_0), c*z_0 r = Rational(p, q) if _even(c): w = _nint_or_floor(p, q) assert abs(w - r) <= S.Half else: w = p//q # floor if _odd(a*u + b*v + c*w): w += 1 assert abs(w - r) <= S.One A = (a*u**2 + b*v**2 + c*w**2) B = (a*u*x_0 + b*v*y_0 + c*w*z_0) x = Rational(x_0*A - 2*u*B, k) y = Rational(y_0*A - 2*v*B, k) z = Rational(z_0*A - 2*w*B, k) assert all(i.is_Integer for i in (x, y, z)) step += 1 return tuple([int(i) for i in (x_0, y_0, z_0)]) def diop_general_pythagorean(eq, param=symbols("m", integer=True)): """ Solves the general pythagorean equation, `a_{1}^2x_{1}^2 + a_{2}^2x_{2}^2 + . . . + a_{n}^2x_{n}^2 - a_{n + 1}^2x_{n + 1}^2 = 0`. Returns a tuple which contains a parametrized solution to the equation, sorted in the same order as the input variables. Usage ===== ``diop_general_pythagorean(eq, param)``: where ``eq`` is a general pythagorean equation which is assumed to be zero and ``param`` is the base parameter used to construct other parameters by subscripting. Examples ======== >>> from sympy.solvers.diophantine import diop_general_pythagorean >>> from sympy.abc import a, b, c, d, e >>> diop_general_pythagorean(a**2 + b**2 + c**2 - d**2) (m1**2 + m2**2 - m3**2, 2*m1*m3, 2*m2*m3, m1**2 + m2**2 + m3**2) >>> diop_general_pythagorean(9*a**2 - 4*b**2 + 16*c**2 + 25*d**2 + e**2) (10*m1**2 + 10*m2**2 + 10*m3**2 - 10*m4**2, 15*m1**2 + 15*m2**2 + 15*m3**2 + 15*m4**2, 15*m1*m4, 12*m2*m4, 60*m3*m4) """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == "general_pythagorean": return _diop_general_pythagorean(var, coeff, param) def _diop_general_pythagorean(var, coeff, t): if sign(coeff[var[0]**2]) + sign(coeff[var[1]**2]) + sign(coeff[var[2]**2]) < 0: for key in coeff.keys(): coeff[key] = -coeff[key] n = len(var) index = 0 for i, v in enumerate(var): if sign(coeff[v**2]) == -1: index = i m = symbols('%s1:%i' % (t, n), integer=True) ith = sum(m_i**2 for m_i in m) L = [ith - 2*m[n - 2]**2] L.extend([2*m[i]*m[n-2] for i in range(n - 2)]) sol = L[:index] + [ith] + L[index:] lcm = 1 for i, v in enumerate(var): if i == index or (index > 0 and i == 0) or (index == 0 and i == 1): lcm = ilcm(lcm, sqrt(abs(coeff[v**2]))) else: s = sqrt(coeff[v**2]) lcm = ilcm(lcm, s if _odd(s) else s//2) for i, v in enumerate(var): sol[i] = (lcm*sol[i]) / sqrt(abs(coeff[v**2])) return tuple(sol) def diop_general_sum_of_squares(eq, limit=1): r""" Solves the equation `x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`. Returns at most ``limit`` number of solutions. Usage ===== ``general_sum_of_squares(eq, limit)`` : Here ``eq`` is an expression which is assumed to be zero. Also, ``eq`` should be in the form, `x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`. Details ======= When `n = 3` if `k = 4^a(8m + 7)` for some `a, m \in Z` then there will be no solutions. Refer [1]_ for more details. Examples ======== >>> from sympy.solvers.diophantine import diop_general_sum_of_squares >>> from sympy.abc import a, b, c, d, e, f >>> diop_general_sum_of_squares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345) {(15, 22, 22, 24, 24)} Reference ========= .. [1] Representing an integer as a sum of three squares, [online], Available: http://www.proofwiki.org/wiki/Integer_as_Sum_of_Three_Squares """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == "general_sum_of_squares": return _diop_general_sum_of_squares(var, -coeff[1], limit) def _diop_general_sum_of_squares(var, k, limit=1): # solves Eq(sum(i**2 for i in var), k) n = len(var) if n < 3: raise ValueError('n must be greater than 2') s = set() if k < 0 or limit < 1: return s sign = [-1 if x.is_nonpositive else 1 for x in var] negs = sign.count(-1) != 0 took = 0 for t in sum_of_squares(k, n, zeros=True): if negs: s.add(tuple([sign[i]*j for i, j in enumerate(t)])) else: s.add(t) took += 1 if took == limit: break return s def diop_general_sum_of_even_powers(eq, limit=1): """ Solves the equation `x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0` where `e` is an even, integer power. Returns at most ``limit`` number of solutions. Usage ===== ``general_sum_of_even_powers(eq, limit)`` : Here ``eq`` is an expression which is assumed to be zero. Also, ``eq`` should be in the form, `x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0`. Examples ======== >>> from sympy.solvers.diophantine import diop_general_sum_of_even_powers >>> from sympy.abc import a, b >>> diop_general_sum_of_even_powers(a**4 + b**4 - (2**4 + 3**4)) {(2, 3)} See Also ======== power_representation """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == "general_sum_of_even_powers": for k in coeff.keys(): if k.is_Pow and coeff[k]: p = k.exp return _diop_general_sum_of_even_powers(var, p, -coeff[1], limit) def _diop_general_sum_of_even_powers(var, p, n, limit=1): # solves Eq(sum(i**2 for i in var), n) k = len(var) s = set() if n < 0 or limit < 1: return s sign = [-1 if x.is_nonpositive else 1 for x in var] negs = sign.count(-1) != 0 took = 0 for t in power_representation(n, p, k): if negs: s.add(tuple([sign[i]*j for i, j in enumerate(t)])) else: s.add(t) took += 1 if took == limit: break return s ## Functions below this comment can be more suitably grouped under ## an Additive number theory module rather than the Diophantine ## equation module. def partition(n, k=None, zeros=False): """ Returns a generator that can be used to generate partitions of an integer `n`. A partition of `n` is a set of positive integers which add up to `n`. For example, partitions of 3 are 3, 1 + 2, 1 + 1 + 1. A partition is returned as a tuple. If ``k`` equals None, then all possible partitions are returned irrespective of their size, otherwise only the partitions of size ``k`` are returned. If the ``zero`` parameter is set to True then a suitable number of zeros are added at the end of every partition of size less than ``k``. ``zero`` parameter is considered only if ``k`` is not None. When the partitions are over, the last `next()` call throws the ``StopIteration`` exception, so this function should always be used inside a try - except block. Details ======= ``partition(n, k)``: Here ``n`` is a positive integer and ``k`` is the size of the partition which is also positive integer. Examples ======== >>> from sympy.solvers.diophantine import partition >>> f = partition(5) >>> next(f) (1, 1, 1, 1, 1) >>> next(f) (1, 1, 1, 2) >>> g = partition(5, 3) >>> next(g) (1, 1, 3) >>> next(g) (1, 2, 2) >>> g = partition(5, 3, zeros=True) >>> next(g) (0, 0, 5) """ from sympy.utilities.iterables import ordered_partitions if not zeros or k is None: for i in ordered_partitions(n, k): yield tuple(i) else: for m in range(1, k + 1): for i in ordered_partitions(n, m): i = tuple(i) yield (0,)*(k - len(i)) + i def prime_as_sum_of_two_squares(p): """ Represent a prime `p` as a unique sum of two squares; this can only be done if the prime is congruent to 1 mod 4. Examples ======== >>> from sympy.solvers.diophantine import prime_as_sum_of_two_squares >>> prime_as_sum_of_two_squares(7) # can't be done >>> prime_as_sum_of_two_squares(5) (1, 2) Reference ========= .. [1] Representing a number as a sum of four squares, [online], Available: http://schorn.ch/lagrange.html See Also ======== sum_of_squares() """ if not p % 4 == 1: return if p % 8 == 5: b = 2 else: b = 3 while pow(b, (p - 1) // 2, p) == 1: b = nextprime(b) b = pow(b, (p - 1) // 4, p) a = p while b**2 > p: a, b = b, a % b return (int(a % b), int(b)) # convert from long def sum_of_three_squares(n): r""" Returns a 3-tuple `(a, b, c)` such that `a^2 + b^2 + c^2 = n` and `a, b, c \geq 0`. Returns None if `n = 4^a(8m + 7)` for some `a, m \in Z`. See [1]_ for more details. Usage ===== ``sum_of_three_squares(n)``: Here ``n`` is a non-negative integer. Examples ======== >>> from sympy.solvers.diophantine import sum_of_three_squares >>> sum_of_three_squares(44542) (18, 37, 207) References ========== .. [1] Representing a number as a sum of three squares, [online], Available: http://schorn.ch/lagrange.html See Also ======== sum_of_squares() """ special = {1:(1, 0, 0), 2:(1, 1, 0), 3:(1, 1, 1), 10: (1, 3, 0), 34: (3, 3, 4), 58:(3, 7, 0), 85:(6, 7, 0), 130:(3, 11, 0), 214:(3, 6, 13), 226:(8, 9, 9), 370:(8, 9, 15), 526:(6, 7, 21), 706:(15, 15, 16), 730:(1, 27, 0), 1414:(6, 17, 33), 1906:(13, 21, 36), 2986: (21, 32, 39), 9634: (56, 57, 57)} v = 0 if n == 0: return (0, 0, 0) v = multiplicity(4, n) n //= 4**v if n % 8 == 7: return if n in special.keys(): x, y, z = special[n] return _sorted_tuple(2**v*x, 2**v*y, 2**v*z) s, _exact = integer_nthroot(n, 2) if _exact: return (2**v*s, 0, 0) x = None if n % 8 == 3: s = s if _odd(s) else s - 1 for x in range(s, -1, -2): N = (n - x**2) // 2 if isprime(N): y, z = prime_as_sum_of_two_squares(N) return _sorted_tuple(2**v*x, 2**v*(y + z), 2**v*abs(y - z)) return if n % 8 == 2 or n % 8 == 6: s = s if _odd(s) else s - 1 else: s = s - 1 if _odd(s) else s for x in range(s, -1, -2): N = n - x**2 if isprime(N): y, z = prime_as_sum_of_two_squares(N) return _sorted_tuple(2**v*x, 2**v*y, 2**v*z) def sum_of_four_squares(n): r""" Returns a 4-tuple `(a, b, c, d)` such that `a^2 + b^2 + c^2 + d^2 = n`. Here `a, b, c, d \geq 0`. Usage ===== ``sum_of_four_squares(n)``: Here ``n`` is a non-negative integer. Examples ======== >>> from sympy.solvers.diophantine import sum_of_four_squares >>> sum_of_four_squares(3456) (8, 8, 32, 48) >>> sum_of_four_squares(1294585930293) (0, 1234, 2161, 1137796) References ========== .. [1] Representing a number as a sum of four squares, [online], Available: http://schorn.ch/lagrange.html See Also ======== sum_of_squares() """ if n == 0: return (0, 0, 0, 0) v = multiplicity(4, n) n //= 4**v if n % 8 == 7: d = 2 n = n - 4 elif n % 8 == 6 or n % 8 == 2: d = 1 n = n - 1 else: d = 0 x, y, z = sum_of_three_squares(n) return _sorted_tuple(2**v*d, 2**v*x, 2**v*y, 2**v*z) def power_representation(n, p, k, zeros=False): r""" Returns a generator for finding k-tuples of integers, `(n_{1}, n_{2}, . . . n_{k})`, such that `n = n_{1}^p + n_{2}^p + . . . n_{k}^p`. Usage ===== ``power_representation(n, p, k, zeros)``: Represent non-negative number ``n`` as a sum of ``k`` ``p``\ th powers. If ``zeros`` is true, then the solutions is allowed to contain zeros. Examples ======== >>> from sympy.solvers.diophantine import power_representation Represent 1729 as a sum of two cubes: >>> f = power_representation(1729, 3, 2) >>> next(f) (9, 10) >>> next(f) (1, 12) If the flag `zeros` is True, the solution may contain tuples with zeros; any such solutions will be generated after the solutions without zeros: >>> list(power_representation(125, 2, 3, zeros=True)) [(5, 6, 8), (3, 4, 10), (0, 5, 10), (0, 2, 11)] For even `p` the `permute_sign` function can be used to get all signed values: >>> from sympy.utilities.iterables import permute_signs >>> list(permute_signs((1, 12))) [(1, 12), (-1, 12), (1, -12), (-1, -12)] All possible signed permutations can also be obtained: >>> from sympy.utilities.iterables import signed_permutations >>> list(signed_permutations((1, 12))) [(1, 12), (-1, 12), (1, -12), (-1, -12), (12, 1), (-12, 1), (12, -1), (-12, -1)] """ n, p, k = [as_int(i) for i in (n, p, k)] if n < 0: if p % 2: for t in power_representation(-n, p, k, zeros): yield tuple(-i for i in t) return if p < 1 or k < 1: raise ValueError(filldedent(''' Expecting positive integers for `(p, k)`, but got `(%s, %s)`''' % (p, k))) if n == 0: if zeros: yield (0,)*k return if k == 1: if p == 1: yield (n,) else: be = perfect_power(n) if be: b, e = be d, r = divmod(e, p) if not r: yield (b**d,) return if p == 1: for t in partition(n, k, zeros=zeros): yield t return if p == 2: feasible = _can_do_sum_of_squares(n, k) if not feasible: return if not zeros and n > 33 and k >= 5 and k <= n and n - k in ( 13, 10, 7, 5, 4, 2, 1): '''Todd G. Will, "When Is n^2 a Sum of k Squares?", [online]. Available: https://www.maa.org/sites/default/files/Will-MMz-201037918.pdf''' return if feasible is not True: # it's prime and k == 2 yield prime_as_sum_of_two_squares(n) return if k == 2 and p > 2: be = perfect_power(n) if be and be[1] % p == 0: return # Fermat: a**n + b**n = c**n has no solution for n > 2 if n >= k: a = integer_nthroot(n - (k - 1), p)[0] for t in pow_rep_recursive(a, k, n, [], p): yield tuple(reversed(t)) if zeros: a = integer_nthroot(n, p)[0] for i in range(1, k): for t in pow_rep_recursive(a, i, n, [], p): yield tuple(reversed(t + (0,) * (k - i))) sum_of_powers = power_representation def pow_rep_recursive(n_i, k, n_remaining, terms, p): if k == 0 and n_remaining == 0: yield tuple(terms) else: if n_i >= 1 and k > 0: for t in pow_rep_recursive(n_i - 1, k, n_remaining, terms, p): yield t residual = n_remaining - pow(n_i, p) if residual >= 0: for t in pow_rep_recursive(n_i, k - 1, residual, terms + [n_i], p): yield t def sum_of_squares(n, k, zeros=False): """Return a generator that yields the k-tuples of nonnegative values, the squares of which sum to n. If zeros is False (default) then the solution will not contain zeros. The nonnegative elements of a tuple are sorted. * If k == 1 and n is square, (n,) is returned. * If k == 2 then n can only be written as a sum of squares if every prime in the factorization of n that has the form 4*k + 3 has an even multiplicity. If n is prime then it can only be written as a sum of two squares if it is in the form 4*k + 1. * if k == 3 then n can be written as a sum of squares if it does not have the form 4**m*(8*k + 7). * all integers can be written as the sum of 4 squares. * if k > 4 then n can be partitioned and each partition can be written as a sum of 4 squares; if n is not evenly divisible by 4 then n can be written as a sum of squares only if the an additional partition can be written as sum of squares. For example, if k = 6 then n is partitioned into two parts, the first being written as a sum of 4 squares and the second being written as a sum of 2 squares -- which can only be done if the condition above for k = 2 can be met, so this will automatically reject certain partitions of n. Examples ======== >>> from sympy.solvers.diophantine import sum_of_squares >>> list(sum_of_squares(25, 2)) [(3, 4)] >>> list(sum_of_squares(25, 2, True)) [(3, 4), (0, 5)] >>> list(sum_of_squares(25, 4)) [(1, 2, 2, 4)] See Also ======== sympy.utilities.iterables.signed_permutations """ for t in power_representation(n, 2, k, zeros): yield t def _can_do_sum_of_squares(n, k): """Return True if n can be written as the sum of k squares, False if it can't, or 1 if k == 2 and n is prime (in which case it *can* be written as a sum of two squares). A False is returned only if it can't be written as k-squares, even if 0s are allowed. """ if k < 1: return False if n < 0: return False if n == 0: return True if k == 1: return is_square(n) if k == 2: if n in (1, 2): return True if isprime(n): if n % 4 == 1: return 1 # signal that it was prime return False else: f = factorint(n) for p, m in f.items(): # we can proceed iff no prime factor in the form 4*k + 3 # has an odd multiplicity if (p % 4 == 3) and m % 2: return False return True if k == 3: if (n//4**multiplicity(4, n)) % 8 == 7: return False # every number can be written as a sum of 4 squares; for k > 4 partitions # can be 0 return True
a7544b2681c6e20ab94bf880d41bf37b284b5ae717e1705a49791e5a5d38a09f
""" This module contain solvers for all kinds of equations: - algebraic or transcendental, use solve() - recurrence, use rsolve() - differential, use dsolve() - nonlinear (numerically), use nsolve() (you will need a good starting point) """ from __future__ import print_function, division from sympy import divisors from sympy.core.compatibility import (iterable, is_sequence, ordered, default_sort_key, range) from sympy.core.sympify import sympify from sympy.core import (S, Add, Symbol, Equality, Dummy, Expr, Mul, Pow, Unequality) from sympy.core.exprtools import factor_terms from sympy.core.function import (expand_mul, expand_log, Derivative, AppliedUndef, UndefinedFunction, nfloat, Function, expand_power_exp, _mexpand, expand) from sympy.integrals.integrals import Integral from sympy.core.numbers import ilcm, Float, Rational from sympy.core.relational import Relational from sympy.core.logic import fuzzy_not, fuzzy_and from sympy.core.power import integer_log from sympy.logic.boolalg import And, Or, BooleanAtom from sympy.core.basic import preorder_traversal from sympy.functions import (log, exp, LambertW, cos, sin, tan, acos, asin, atan, Abs, re, im, arg, sqrt, atan2) from sympy.functions.elementary.trigonometric import (TrigonometricFunction, HyperbolicFunction) from sympy.simplify import (simplify, collect, powsimp, posify, powdenest, nsimplify, denom, logcombine, sqrtdenest, fraction, separatevars) from sympy.simplify.sqrtdenest import sqrt_depth from sympy.simplify.fu import TR1 from sympy.matrices import Matrix, zeros from sympy.polys import roots, cancel, factor, Poly, degree from sympy.polys.polyerrors import GeneratorsNeeded, PolynomialError from sympy.functions.elementary.piecewise import piecewise_fold, Piecewise from sympy.utilities.lambdify import lambdify from sympy.utilities.misc import filldedent from sympy.utilities.iterables import uniq, generate_bell, flatten from sympy.utilities.decorator import conserve_mpmath_dps from mpmath import findroot from sympy.solvers.polysys import solve_poly_system from sympy.solvers.inequalities import reduce_inequalities from types import GeneratorType from collections import defaultdict import itertools import warnings def recast_to_symbols(eqs, symbols): """Return (e, s, d) where e and s are versions of eqs and symbols in which any non-Symbol objects in symbols have been replaced with generic Dummy symbols and d is a dictionary that can be used to restore the original expressions. Examples ======== >>> from sympy.solvers.solvers import recast_to_symbols >>> from sympy import symbols, Function >>> x, y = symbols('x y') >>> fx = Function('f')(x) >>> eqs, syms = [fx + 1, x, y], [fx, y] >>> e, s, d = recast_to_symbols(eqs, syms); (e, s, d) ([_X0 + 1, x, y], [_X0, y], {_X0: f(x)}) The original equations and symbols can be restored using d: >>> assert [i.xreplace(d) for i in eqs] == eqs >>> assert [d.get(i, i) for i in s] == syms """ if not iterable(eqs) and iterable(symbols): raise ValueError('Both eqs and symbols must be iterable') new_symbols = list(symbols) swap_sym = {} for i, s in enumerate(symbols): if not isinstance(s, Symbol) and s not in swap_sym: swap_sym[s] = Dummy('X%d' % i) new_symbols[i] = swap_sym[s] new_f = [] for i in eqs: isubs = getattr(i, 'subs', None) if isubs is not None: new_f.append(isubs(swap_sym)) else: new_f.append(i) swap_sym = {v: k for k, v in swap_sym.items()} return new_f, new_symbols, swap_sym def _ispow(e): """Return True if e is a Pow or is exp.""" return isinstance(e, Expr) and (e.is_Pow or isinstance(e, exp)) def _simple_dens(f, symbols): # when checking if a denominator is zero, we can just check the # base of powers with nonzero exponents since if the base is zero # the power will be zero, too. To keep it simple and fast, we # limit simplification to exponents that are Numbers dens = set() for d in denoms(f, symbols): if d.is_Pow and d.exp.is_Number: if d.exp.is_zero: continue # foo**0 is never 0 d = d.base dens.add(d) return dens def denoms(eq, *symbols): """Return (recursively) set of all denominators that appear in eq that contain any symbol in ``symbols``; if ``symbols`` are not provided then all denominators will be returned. Examples ======== >>> from sympy.solvers.solvers import denoms >>> from sympy.abc import x, y, z >>> from sympy import sqrt >>> denoms(x/y) {y} >>> denoms(x/(y*z)) {y, z} >>> denoms(3/x + y/z) {x, z} >>> denoms(x/2 + y/z) {2, z} If `symbols` are provided then only denominators containing those symbols will be returned >>> denoms(1/x + 1/y + 1/z, y, z) {y, z} """ pot = preorder_traversal(eq) dens = set() for p in pot: den = denom(p) if den is S.One: continue for d in Mul.make_args(den): dens.add(d) if not symbols: return dens elif len(symbols) == 1: if iterable(symbols[0]): symbols = symbols[0] rv = [] for d in dens: free = d.free_symbols if any(s in free for s in symbols): rv.append(d) return set(rv) def checksol(f, symbol, sol=None, **flags): """Checks whether sol is a solution of equation f == 0. Input can be either a single symbol and corresponding value or a dictionary of symbols and values. When given as a dictionary and flag ``simplify=True``, the values in the dictionary will be simplified. ``f`` can be a single equation or an iterable of equations. A solution must satisfy all equations in ``f`` to be considered valid; if a solution does not satisfy any equation, False is returned; if one or more checks are inconclusive (and none are False) then None is returned. Examples ======== >>> from sympy import symbols >>> from sympy.solvers import checksol >>> x, y = symbols('x,y') >>> checksol(x**4 - 1, x, 1) True >>> checksol(x**4 - 1, x, 0) False >>> checksol(x**2 + y**2 - 5**2, {x: 3, y: 4}) True To check if an expression is zero using checksol, pass it as ``f`` and send an empty dictionary for ``symbol``: >>> checksol(x**2 + x - x*(x + 1), {}) True None is returned if checksol() could not conclude. flags: 'numerical=True (default)' do a fast numerical check if ``f`` has only one symbol. 'minimal=True (default is False)' a very fast, minimal testing. 'warn=True (default is False)' show a warning if checksol() could not conclude. 'simplify=True (default)' simplify solution before substituting into function and simplify the function before trying specific simplifications 'force=True (default is False)' make positive all symbols without assumptions regarding sign. """ from sympy.physics.units import Unit minimal = flags.get('minimal', False) if sol is not None: sol = {symbol: sol} elif isinstance(symbol, dict): sol = symbol else: msg = 'Expecting (sym, val) or ({sym: val}, None) but got (%s, %s)' raise ValueError(msg % (symbol, sol)) if iterable(f): if not f: raise ValueError('no functions to check') rv = True for fi in f: check = checksol(fi, sol, **flags) if check: continue if check is False: return False rv = None # don't return, wait to see if there's a False return rv if isinstance(f, Poly): f = f.as_expr() elif isinstance(f, (Equality, Unequality)): if f.rhs in (S.true, S.false): f = f.reversed B, E = f.args if B in (S.true, S.false): f = f.subs(sol) if f not in (S.true, S.false): return else: f = f.rewrite(Add, evaluate=False) if isinstance(f, BooleanAtom): return bool(f) elif not f.is_Relational and not f: return True if sol and not f.free_symbols & set(sol.keys()): # if f(y) == 0, x=3 does not set f(y) to zero...nor does it not return None illegal = set([S.NaN, S.ComplexInfinity, S.Infinity, S.NegativeInfinity]) if any(sympify(v).atoms() & illegal for k, v in sol.items()): return False was = f attempt = -1 numerical = flags.get('numerical', True) while 1: attempt += 1 if attempt == 0: val = f.subs(sol) if isinstance(val, Mul): val = val.as_independent(Unit)[0] if val.atoms() & illegal: return False elif attempt == 1: if not val.is_number: if not val.is_constant(*list(sol.keys()), simplify=not minimal): return False # there are free symbols -- simple expansion might work _, val = val.as_content_primitive() val = _mexpand(val.as_numer_denom()[0], recursive=True) elif attempt == 2: if minimal: return if flags.get('simplify', True): for k in sol: sol[k] = simplify(sol[k]) # start over without the failed expanded form, possibly # with a simplified solution val = simplify(f.subs(sol)) if flags.get('force', True): val, reps = posify(val) # expansion may work now, so try again and check exval = _mexpand(val, recursive=True) if exval.is_number: # we can decide now val = exval else: # if there are no radicals and no functions then this can't be # zero anymore -- can it? pot = preorder_traversal(expand_mul(val)) seen = set() saw_pow_func = False for p in pot: if p in seen: continue seen.add(p) if p.is_Pow and not p.exp.is_Integer: saw_pow_func = True elif p.is_Function: saw_pow_func = True elif isinstance(p, UndefinedFunction): saw_pow_func = True if saw_pow_func: break if saw_pow_func is False: return False if flags.get('force', True): # don't do a zero check with the positive assumptions in place val = val.subs(reps) nz = fuzzy_not(val.is_zero) if nz is not None: # issue 5673: nz may be True even when False # so these are just hacks to keep a false positive # from being returned # HACK 1: LambertW (issue 5673) if val.is_number and val.has(LambertW): # don't eval this to verify solution since if we got here, # numerical must be False return None # add other HACKs here if necessary, otherwise we assume # the nz value is correct return not nz break if val == was: continue elif val.is_Rational: return val == 0 if numerical and val.is_number: if val in (S.true, S.false): return bool(val) return (abs(val.n(18).n(12, chop=True)) < 1e-9) is S.true was = val if flags.get('warn', False): warnings.warn("\n\tWarning: could not verify solution %s." % sol) # returns None if it can't conclude # TODO: improve solution testing def failing_assumptions(expr, **assumptions): """Return a dictionary containing assumptions with values not matching those of the passed assumptions. Examples ======== >>> from sympy import failing_assumptions, Symbol >>> x = Symbol('x', real=True, positive=True) >>> y = Symbol('y') >>> failing_assumptions(6*x + y, real=True, positive=True) {'positive': None, 'real': None} >>> failing_assumptions(x**2 - 1, positive=True) {'positive': None} If all assumptions satisfy the ``expr`` an empty dictionary is returned. >>> failing_assumptions(x**2, positive=True) {} """ expr = sympify(expr) failed = {} for key in list(assumptions.keys()): test = getattr(expr, 'is_%s' % key, None) if test is not assumptions[key]: failed[key] = test return failed # {} or {assumption: value != desired} def check_assumptions(expr, against=None, **assumptions): """Checks whether expression ``expr`` satisfies all assumptions. ``assumptions`` is a dict of assumptions: {'assumption': True|False, ...}. Examples ======== >>> from sympy import Symbol, pi, I, exp, check_assumptions >>> check_assumptions(-5, integer=True) True >>> check_assumptions(pi, real=True, integer=False) True >>> check_assumptions(pi, real=True, negative=True) False >>> check_assumptions(exp(I*pi/7), real=False) True >>> x = Symbol('x', real=True, positive=True) >>> check_assumptions(2*x + 1, real=True, positive=True) True >>> check_assumptions(-2*x - 5, real=True, positive=True) False To check assumptions of ``expr`` against another variable or expression, pass the expression or variable as ``against``. >>> check_assumptions(2*x + 1, x) True `None` is returned if check_assumptions() could not conclude. >>> check_assumptions(2*x - 1, real=True, positive=True) >>> z = Symbol('z') >>> check_assumptions(z, real=True) See Also ======== failing_assumptions """ expr = sympify(expr) if against: if not isinstance(against, Symbol): raise TypeError('against should be of type Symbol') if assumptions: raise AssertionError('No assumptions should be specified') assumptions = against.assumptions0 def _test(key): v = getattr(expr, 'is_' + key, None) if v is not None: return assumptions[key] is v return fuzzy_and(_test(key) for key in assumptions) def solve(f, *symbols, **flags): r""" Algebraically solves equations and systems of equations. Currently supported are: - polynomial, - transcendental - piecewise combinations of the above - systems of linear and polynomial equations - systems containing relational expressions. Input is formed as: * f - a single Expr or Poly that must be zero, - an Equality - a Relational expression - a Boolean - iterable of one or more of the above * symbols (object(s) to solve for) specified as - none given (other non-numeric objects will be used) - single symbol - denested list of symbols e.g. solve(f, x, y) - ordered iterable of symbols e.g. solve(f, [x, y]) * flags 'dict'=True (default is False) return list (perhaps empty) of solution mappings 'set'=True (default is False) return list of symbols and set of tuple(s) of solution(s) 'exclude=[] (default)' don't try to solve for any of the free symbols in exclude; if expressions are given, the free symbols in them will be extracted automatically. 'check=True (default)' If False, don't do any testing of solutions. This can be useful if one wants to include solutions that make any denominator zero. 'numerical=True (default)' do a fast numerical check if ``f`` has only one symbol. 'minimal=True (default is False)' a very fast, minimal testing. 'warn=True (default is False)' show a warning if checksol() could not conclude. 'simplify=True (default)' simplify all but polynomials of order 3 or greater before returning them and (if check is not False) use the general simplify function on the solutions and the expression obtained when they are substituted into the function which should be zero 'force=True (default is False)' make positive all symbols without assumptions regarding sign. 'rational=True (default)' recast Floats as Rational; if this option is not used, the system containing floats may fail to solve because of issues with polys. If rational=None, Floats will be recast as rationals but the answer will be recast as Floats. If the flag is False then nothing will be done to the Floats. 'manual=True (default is False)' do not use the polys/matrix method to solve a system of equations, solve them one at a time as you might "manually" 'implicit=True (default is False)' allows solve to return a solution for a pattern in terms of other functions that contain that pattern; this is only needed if the pattern is inside of some invertible function like cos, exp, .... 'particular=True (default is False)' instructs solve to try to find a particular solution to a linear system with as many zeros as possible; this is very expensive 'quick=True (default is False)' when using particular=True, use a fast heuristic instead to find a solution with many zeros (instead of using the very slow method guaranteed to find the largest number of zeros possible) 'cubics=True (default)' return explicit solutions when cubic expressions are encountered 'quartics=True (default)' return explicit solutions when quartic expressions are encountered 'quintics=True (default)' return explicit solutions (if possible) when quintic expressions are encountered Examples ======== The output varies according to the input and can be seen by example:: >>> from sympy import solve, Poly, Eq, Function, exp >>> from sympy.abc import x, y, z, a, b >>> f = Function('f') * boolean or univariate Relational >>> solve(x < 3) (-oo < x) & (x < 3) * to always get a list of solution mappings, use flag dict=True >>> solve(x - 3, dict=True) [{x: 3}] >>> sol = solve([x - 3, y - 1], dict=True) >>> sol [{x: 3, y: 1}] >>> sol[0][x] 3 >>> sol[0][y] 1 * to get a list of symbols and set of solution(s) use flag set=True >>> solve([x**2 - 3, y - 1], set=True) ([x, y], {(-sqrt(3), 1), (sqrt(3), 1)}) * single expression and single symbol that is in the expression >>> solve(x - y, x) [y] >>> solve(x - 3, x) [3] >>> solve(Eq(x, 3), x) [3] >>> solve(Poly(x - 3), x) [3] >>> solve(x**2 - y**2, x, set=True) ([x], {(-y,), (y,)}) >>> solve(x**4 - 1, x, set=True) ([x], {(-1,), (1,), (-I,), (I,)}) * single expression with no symbol that is in the expression >>> solve(3, x) [] >>> solve(x - 3, y) [] * single expression with no symbol given In this case, all free symbols will be selected as potential symbols to solve for. If the equation is univariate then a list of solutions is returned; otherwise -- as is the case when symbols are given as an iterable of length > 1 -- a list of mappings will be returned. >>> solve(x - 3) [3] >>> solve(x**2 - y**2) [{x: -y}, {x: y}] >>> solve(z**2*x**2 - z**2*y**2) [{x: -y}, {x: y}, {z: 0}] >>> solve(z**2*x - z**2*y**2) [{x: y**2}, {z: 0}] * when an object other than a Symbol is given as a symbol, it is isolated algebraically and an implicit solution may be obtained. This is mostly provided as a convenience to save one from replacing the object with a Symbol and solving for that Symbol. It will only work if the specified object can be replaced with a Symbol using the subs method. >>> solve(f(x) - x, f(x)) [x] >>> solve(f(x).diff(x) - f(x) - x, f(x).diff(x)) [x + f(x)] >>> solve(f(x).diff(x) - f(x) - x, f(x)) [-x + Derivative(f(x), x)] >>> solve(x + exp(x)**2, exp(x), set=True) ([exp(x)], {(-sqrt(-x),), (sqrt(-x),)}) >>> from sympy import Indexed, IndexedBase, Tuple, sqrt >>> A = IndexedBase('A') >>> eqs = Tuple(A[1] + A[2] - 3, A[1] - A[2] + 1) >>> solve(eqs, eqs.atoms(Indexed)) {A[1]: 1, A[2]: 2} * To solve for a *symbol* implicitly, use 'implicit=True': >>> solve(x + exp(x), x) [-LambertW(1)] >>> solve(x + exp(x), x, implicit=True) [-exp(x)] * It is possible to solve for anything that can be targeted with subs: >>> solve(x + 2 + sqrt(3), x + 2) [-sqrt(3)] >>> solve((x + 2 + sqrt(3), x + 4 + y), y, x + 2) {y: -2 + sqrt(3), x + 2: -sqrt(3)} * Nothing heroic is done in this implicit solving so you may end up with a symbol still in the solution: >>> eqs = (x*y + 3*y + sqrt(3), x + 4 + y) >>> solve(eqs, y, x + 2) {y: -sqrt(3)/(x + 3), x + 2: (-2*x - 6 + sqrt(3))/(x + 3)} >>> solve(eqs, y*x, x) {x: -y - 4, x*y: -3*y - sqrt(3)} * if you attempt to solve for a number remember that the number you have obtained does not necessarily mean that the value is equivalent to the expression obtained: >>> solve(sqrt(2) - 1, 1) [sqrt(2)] >>> solve(x - y + 1, 1) # /!\ -1 is targeted, too [x/(y - 1)] >>> [_.subs(z, -1) for _ in solve((x - y + 1).subs(-1, z), 1)] [-x + y] * To solve for a function within a derivative, use dsolve. * single expression and more than 1 symbol * when there is a linear solution >>> solve(x - y**2, x, y) [(y**2, y)] >>> solve(x**2 - y, x, y) [(x, x**2)] >>> solve(x**2 - y, x, y, dict=True) [{y: x**2}] * when undetermined coefficients are identified * that are linear >>> solve((a + b)*x - b + 2, a, b) {a: -2, b: 2} * that are nonlinear >>> solve((a + b)*x - b**2 + 2, a, b, set=True) ([a, b], {(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))}) * if there is no linear solution then the first successful attempt for a nonlinear solution will be returned >>> solve(x**2 - y**2, x, y, dict=True) [{x: -y}, {x: y}] >>> solve(x**2 - y**2/exp(x), x, y, dict=True) [{x: 2*LambertW(-y/2)}, {x: 2*LambertW(y/2)}] >>> solve(x**2 - y**2/exp(x), y, x) [(-x*sqrt(exp(x)), x), (x*sqrt(exp(x)), x)] * iterable of one or more of the above * involving relationals or bools >>> solve([x < 3, x - 2]) Eq(x, 2) >>> solve([x > 3, x - 2]) False * when the system is linear * with a solution >>> solve([x - 3], x) {x: 3} >>> solve((x + 5*y - 2, -3*x + 6*y - 15), x, y) {x: -3, y: 1} >>> solve((x + 5*y - 2, -3*x + 6*y - 15), x, y, z) {x: -3, y: 1} >>> solve((x + 5*y - 2, -3*x + 6*y - z), z, x, y) {x: 2 - 5*y, z: 21*y - 6} * without a solution >>> solve([x + 3, x - 3]) [] * when the system is not linear >>> solve([x**2 + y -2, y**2 - 4], x, y, set=True) ([x, y], {(-2, -2), (0, 2), (2, -2)}) * if no symbols are given, all free symbols will be selected and a list of mappings returned >>> solve([x - 2, x**2 + y]) [{x: 2, y: -4}] >>> solve([x - 2, x**2 + f(x)], {f(x), x}) [{x: 2, f(x): -4}] * if any equation doesn't depend on the symbol(s) given it will be eliminated from the equation set and an answer may be given implicitly in terms of variables that were not of interest >>> solve([x - y, y - 3], x) {x: y} Notes ===== solve() with check=True (default) will run through the symbol tags to elimate unwanted solutions. If no assumptions are included all possible solutions will be returned. >>> from sympy import Symbol, solve >>> x = Symbol("x") >>> solve(x**2 - 1) [-1, 1] By using the positive tag only one solution will be returned: >>> pos = Symbol("pos", positive=True) >>> solve(pos**2 - 1) [1] Assumptions aren't checked when `solve()` input involves relationals or bools. When the solutions are checked, those that make any denominator zero are automatically excluded. If you do not want to exclude such solutions then use the check=False option: >>> from sympy import sin, limit >>> solve(sin(x)/x) # 0 is excluded [pi] If check=False then a solution to the numerator being zero is found: x = 0. In this case, this is a spurious solution since sin(x)/x has the well known limit (without dicontinuity) of 1 at x = 0: >>> solve(sin(x)/x, check=False) [0, pi] In the following case, however, the limit exists and is equal to the value of x = 0 that is excluded when check=True: >>> eq = x**2*(1/x - z**2/x) >>> solve(eq, x) [] >>> solve(eq, x, check=False) [0] >>> limit(eq, x, 0, '-') 0 >>> limit(eq, x, 0, '+') 0 Disabling high-order, explicit solutions ---------------------------------------- When solving polynomial expressions, one might not want explicit solutions (which can be quite long). If the expression is univariate, CRootOf instances will be returned instead: >>> solve(x**3 - x + 1) [-1/((-1/2 - sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)) - (-1/2 - sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)/3, -(-1/2 + sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)/3 - 1/((-1/2 + sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)), -(3*sqrt(69)/2 + 27/2)**(1/3)/3 - 1/(3*sqrt(69)/2 + 27/2)**(1/3)] >>> solve(x**3 - x + 1, cubics=False) [CRootOf(x**3 - x + 1, 0), CRootOf(x**3 - x + 1, 1), CRootOf(x**3 - x + 1, 2)] If the expression is multivariate, no solution might be returned: >>> solve(x**3 - x + a, x, cubics=False) [] Sometimes solutions will be obtained even when a flag is False because the expression could be factored. In the following example, the equation can be factored as the product of a linear and a quadratic factor so explicit solutions (which did not require solving a cubic expression) are obtained: >>> eq = x**3 + 3*x**2 + x - 1 >>> solve(eq, cubics=False) [-1, -1 + sqrt(2), -sqrt(2) - 1] Solving equations involving radicals ------------------------------------ Because of SymPy's use of the principle root (issue #8789), some solutions to radical equations will be missed unless check=False: >>> from sympy import root >>> eq = root(x**3 - 3*x**2, 3) + 1 - x >>> solve(eq) [] >>> solve(eq, check=False) [1/3] In the above example there is only a single solution to the equation. Other expressions will yield spurious roots which must be checked manually; roots which give a negative argument to odd-powered radicals will also need special checking: >>> from sympy import real_root, S >>> eq = root(x, 3) - root(x, 5) + S(1)/7 >>> solve(eq) # this gives 2 solutions but misses a 3rd [CRootOf(7*_p**5 - 7*_p**3 + 1, 1)**15, CRootOf(7*_p**5 - 7*_p**3 + 1, 2)**15] >>> sol = solve(eq, check=False) >>> [abs(eq.subs(x,i).n(2)) for i in sol] [0.48, 0.e-110, 0.e-110, 0.052, 0.052] The first solution is negative so real_root must be used to see that it satisfies the expression: >>> abs(real_root(eq.subs(x, sol[0])).n(2)) 0.e-110 If the roots of the equation are not real then more care will be necessary to find the roots, especially for higher order equations. Consider the following expression: >>> expr = root(x, 3) - root(x, 5) We will construct a known value for this expression at x = 3 by selecting the 1-th root for each radical: >>> expr1 = root(x, 3, 1) - root(x, 5, 1) >>> v = expr1.subs(x, -3) The solve function is unable to find any exact roots to this equation: >>> eq = Eq(expr, v); eq1 = Eq(expr1, v) >>> solve(eq, check=False), solve(eq1, check=False) ([], []) The function unrad, however, can be used to get a form of the equation for which numerical roots can be found: >>> from sympy.solvers.solvers import unrad >>> from sympy import nroots >>> e, (p, cov) = unrad(eq) >>> pvals = nroots(e) >>> inversion = solve(cov, x)[0] >>> xvals = [inversion.subs(p, i) for i in pvals] Although eq or eq1 could have been used to find xvals, the solution can only be verified with expr1: >>> z = expr - v >>> [xi.n(chop=1e-9) for xi in xvals if abs(z.subs(x, xi).n()) < 1e-9] [] >>> z1 = expr1 - v >>> [xi.n(chop=1e-9) for xi in xvals if abs(z1.subs(x, xi).n()) < 1e-9] [-3.0] See Also ======== - rsolve() for solving recurrence relationships - dsolve() for solving differential equations """ # keeping track of how f was passed since if it is a list # a dictionary of results will be returned. ########################################################################### def _sympified_list(w): return list(map(sympify, w if iterable(w) else [w])) bare_f = not iterable(f) ordered_symbols = (symbols and symbols[0] and (isinstance(symbols[0], Symbol) or is_sequence(symbols[0], include=GeneratorType) ) ) f, symbols = (_sympified_list(w) for w in [f, symbols]) if isinstance(f, list): f = [s for s in f if s is not S.true and s is not True] implicit = flags.get('implicit', False) # preprocess symbol(s) ########################################################################### if not symbols: # get symbols from equations symbols = set().union(*[fi.free_symbols for fi in f]) if len(symbols) < len(f): for fi in f: pot = preorder_traversal(fi) for p in pot: if isinstance(p, AppliedUndef): flags['dict'] = True # better show symbols symbols.add(p) pot.skip() # don't go any deeper symbols = list(symbols) ordered_symbols = False elif len(symbols) == 1 and iterable(symbols[0]): symbols = symbols[0] # remove symbols the user is not interested in exclude = flags.pop('exclude', set()) if exclude: if isinstance(exclude, Expr): exclude = [exclude] exclude = set().union(*[e.free_symbols for e in sympify(exclude)]) symbols = [s for s in symbols if s not in exclude] # preprocess equation(s) ########################################################################### for i, fi in enumerate(f): if isinstance(fi, (Equality, Unequality)): if 'ImmutableDenseMatrix' in [type(a).__name__ for a in fi.args]: fi = fi.lhs - fi.rhs else: args = fi.args if args[1] in (S.true, S.false): args = args[1], args[0] L, R = args if L in (S.false, S.true): if isinstance(fi, Unequality): L = ~L if R.is_Relational: fi = ~R if L is S.false else R elif R.is_Symbol: return L elif R.is_Boolean and (~R).is_Symbol: return ~L else: raise NotImplementedError(filldedent(''' Unanticipated argument of Eq when other arg is True or False. ''')) else: fi = fi.rewrite(Add, evaluate=False) f[i] = fi if fi.is_Relational: return reduce_inequalities(f, symbols=symbols) if isinstance(fi, Poly): f[i] = fi.as_expr() # rewrite hyperbolics in terms of exp f[i] = f[i].replace(lambda w: isinstance(w, HyperbolicFunction), lambda w: w.rewrite(exp)) # if we have a Matrix, we need to iterate over its elements again if f[i].is_Matrix: bare_f = False f.extend(list(f[i])) f[i] = S.Zero # if we can split it into real and imaginary parts then do so freei = f[i].free_symbols if freei and all(s.is_extended_real or s.is_imaginary for s in freei): fr, fi = f[i].as_real_imag() # accept as long as new re, im, arg or atan2 are not introduced had = f[i].atoms(re, im, arg, atan2) if fr and fi and fr != fi and not any( i.atoms(re, im, arg, atan2) - had for i in (fr, fi)): if bare_f: bare_f = False f[i: i + 1] = [fr, fi] # real/imag handling ----------------------------- if any(isinstance(fi, (bool, BooleanAtom)) for fi in f): if flags.get('set', False): return [], set() return [] for i, fi in enumerate(f): # Abs while True: was = fi fi = fi.replace(Abs, lambda arg: separatevars(Abs(arg)).rewrite(Piecewise) if arg.has(*symbols) else Abs(arg)) if was == fi: break for e in fi.find(Abs): if e.has(*symbols): raise NotImplementedError('solving %s when the argument ' 'is not real or imaginary.' % e) # arg _arg = [a for a in fi.atoms(arg) if a.has(*symbols)] fi = fi.xreplace(dict(list(zip(_arg, [atan(im(a.args[0])/re(a.args[0])) for a in _arg])))) # save changes f[i] = fi # see if re(s) or im(s) appear irf = [] for s in symbols: if s.is_extended_real or s.is_imaginary: continue # neither re(x) nor im(x) will appear # if re(s) or im(s) appear, the auxiliary equation must be present if any(fi.has(re(s), im(s)) for fi in f): irf.append((s, re(s) + S.ImaginaryUnit*im(s))) if irf: for s, rhs in irf: for i, fi in enumerate(f): f[i] = fi.xreplace({s: rhs}) f.append(s - rhs) symbols.extend([re(s), im(s)]) if bare_f: bare_f = False flags['dict'] = True # end of real/imag handling ----------------------------- symbols = list(uniq(symbols)) if not ordered_symbols: # we do this to make the results returned canonical in case f # contains a system of nonlinear equations; all other cases should # be unambiguous symbols = sorted(symbols, key=default_sort_key) # we can solve for non-symbol entities by replacing them with Dummy symbols f, symbols, swap_sym = recast_to_symbols(f, symbols) # this is needed in the next two events symset = set(symbols) # get rid of equations that have no symbols of interest; we don't # try to solve them because the user didn't ask and they might be # hard to solve; this means that solutions may be given in terms # of the eliminated equations e.g. solve((x-y, y-3), x) -> {x: y} newf = [] for fi in f: # let the solver handle equations that.. # - have no symbols but are expressions # - have symbols of interest # - have no symbols of interest but are constant # but when an expression is not constant and has no symbols of # interest, it can't change what we obtain for a solution from # the remaining equations so we don't include it; and if it's # zero it can be removed and if it's not zero, there is no # solution for the equation set as a whole # # The reason for doing this filtering is to allow an answer # to be obtained to queries like solve((x - y, y), x); without # this mod the return value is [] ok = False if fi.has(*symset): ok = True else: if fi.is_number: if fi.is_Number: if fi.is_zero: continue return [] ok = True else: if fi.is_constant(): ok = True if ok: newf.append(fi) if not newf: return [] f = newf del newf # mask off any Object that we aren't going to invert: Derivative, # Integral, etc... so that solving for anything that they contain will # give an implicit solution seen = set() non_inverts = set() for fi in f: pot = preorder_traversal(fi) for p in pot: if not isinstance(p, Expr) or isinstance(p, Piecewise): pass elif (isinstance(p, bool) or not p.args or p in symset or p.is_Add or p.is_Mul or p.is_Pow and not implicit or p.is_Function and not implicit) and p.func not in (re, im): continue elif not p in seen: seen.add(p) if p.free_symbols & symset: non_inverts.add(p) else: continue pot.skip() del seen non_inverts = dict(list(zip(non_inverts, [Dummy() for _ in non_inverts]))) f = [fi.subs(non_inverts) for fi in f] # Both xreplace and subs are needed below: xreplace to force substitution # inside Derivative, subs to handle non-straightforward substitutions non_inverts = [(v, k.xreplace(swap_sym).subs(swap_sym)) for k, v in non_inverts.items()] # rationalize Floats floats = False if flags.get('rational', True) is not False: for i, fi in enumerate(f): if fi.has(Float): floats = True f[i] = nsimplify(fi, rational=True) # capture any denominators before rewriting since # they may disappear after the rewrite, e.g. issue 14779 flags['_denominators'] = _simple_dens(f[0], symbols) # Any embedded piecewise functions need to be brought out to the # top level so that the appropriate strategy gets selected. # However, this is necessary only if one of the piecewise # functions depends on one of the symbols we are solving for. def _has_piecewise(e): if e.is_Piecewise: return e.has(*symbols) return any([_has_piecewise(a) for a in e.args]) for i, fi in enumerate(f): if _has_piecewise(fi): f[i] = piecewise_fold(fi) # # try to get a solution ########################################################################### if bare_f: solution = _solve(f[0], *symbols, **flags) else: solution = _solve_system(f, symbols, **flags) # # postprocessing ########################################################################### # Restore masked-off objects if non_inverts: def _do_dict(solution): return {k: v.subs(non_inverts) for k, v in solution.items()} for i in range(1): if isinstance(solution, dict): solution = _do_dict(solution) break elif solution and isinstance(solution, list): if isinstance(solution[0], dict): solution = [_do_dict(s) for s in solution] break elif isinstance(solution[0], tuple): solution = [tuple([v.subs(non_inverts) for v in s]) for s in solution] break else: solution = [v.subs(non_inverts) for v in solution] break elif not solution: break else: raise NotImplementedError(filldedent(''' no handling of %s was implemented''' % solution)) # Restore original "symbols" if a dictionary is returned. # This is not necessary for # - the single univariate equation case # since the symbol will have been removed from the solution; # - the nonlinear poly_system since that only supports zero-dimensional # systems and those results come back as a list # # ** unless there were Derivatives with the symbols, but those were handled # above. if swap_sym: symbols = [swap_sym.get(k, k) for k in symbols] if isinstance(solution, dict): solution = {swap_sym.get(k, k): v.subs(swap_sym) for k, v in solution.items()} elif solution and isinstance(solution, list) and isinstance(solution[0], dict): for i, sol in enumerate(solution): solution[i] = {swap_sym.get(k, k): v.subs(swap_sym) for k, v in sol.items()} # undo the dictionary solutions returned when the system was only partially # solved with poly-system if all symbols are present if ( not flags.get('dict', False) and solution and ordered_symbols and not isinstance(solution, dict) and all(isinstance(sol, dict) for sol in solution) ): solution = [tuple([r.get(s, s).subs(r) for s in symbols]) for r in solution] # Get assumptions about symbols, to filter solutions. # Note that if assumptions about a solution can't be verified, it is still # returned. check = flags.get('check', True) # restore floats if floats and solution and flags.get('rational', None) is None: solution = nfloat(solution, exponent=False) if check and solution: # assumption checking warn = flags.get('warn', False) got_None = [] # solutions for which one or more symbols gave None no_False = [] # solutions for which no symbols gave False if isinstance(solution, tuple): # this has already been checked and is in as_set form return solution elif isinstance(solution, list): if isinstance(solution[0], tuple): for sol in solution: for symb, val in zip(symbols, sol): test = check_assumptions(val, **symb.assumptions0) if test is False: break if test is None: got_None.append(sol) else: no_False.append(sol) elif isinstance(solution[0], dict): for sol in solution: a_None = False for symb, val in sol.items(): test = check_assumptions(val, **symb.assumptions0) if test: continue if test is False: break a_None = True else: no_False.append(sol) if a_None: got_None.append(sol) else: # list of expressions for sol in solution: test = check_assumptions(sol, **symbols[0].assumptions0) if test is False: continue no_False.append(sol) if test is None: got_None.append(sol) elif isinstance(solution, dict): a_None = False for symb, val in solution.items(): test = check_assumptions(val, **symb.assumptions0) if test: continue if test is False: no_False = None break a_None = True else: no_False = solution if a_None: got_None.append(solution) elif isinstance(solution, (Relational, And, Or)): if len(symbols) != 1: raise ValueError("Length should be 1") if warn and symbols[0].assumptions0: warnings.warn(filldedent(""" \tWarning: assumptions about variable '%s' are not handled currently.""" % symbols[0])) # TODO: check also variable assumptions for inequalities else: raise TypeError('Unrecognized solution') # improve the checker solution = no_False if warn and got_None: warnings.warn(filldedent(""" \tWarning: assumptions concerning following solution(s) can't be checked:""" + '\n\t' + ', '.join(str(s) for s in got_None))) # # done ########################################################################### as_dict = flags.get('dict', False) as_set = flags.get('set', False) if not as_set and isinstance(solution, list): # Make sure that a list of solutions is ordered in a canonical way. solution.sort(key=default_sort_key) if not as_dict and not as_set: return solution or [] # return a list of mappings or [] if not solution: solution = [] else: if isinstance(solution, dict): solution = [solution] elif iterable(solution[0]): solution = [dict(list(zip(symbols, s))) for s in solution] elif isinstance(solution[0], dict): pass else: if len(symbols) != 1: raise ValueError("Length should be 1") solution = [{symbols[0]: s} for s in solution] if as_dict: return solution assert as_set if not solution: return [], set() k = list(ordered(solution[0].keys())) return k, {tuple([s[ki] for ki in k]) for s in solution} def _solve(f, *symbols, **flags): """Return a checked solution for f in terms of one or more of the symbols. A list should be returned except for the case when a linear undetermined-coefficients equation is encountered (in which case a dictionary is returned). If no method is implemented to solve the equation, a NotImplementedError will be raised. In the case that conversion of an expression to a Poly gives None a ValueError will be raised.""" not_impl_msg = "No algorithms are implemented to solve equation %s" if len(symbols) != 1: soln = None free = f.free_symbols ex = free - set(symbols) if len(ex) != 1: ind, dep = f.as_independent(*symbols) ex = ind.free_symbols & dep.free_symbols if len(ex) == 1: ex = ex.pop() try: # soln may come back as dict, list of dicts or tuples, or # tuple of symbol list and set of solution tuples soln = solve_undetermined_coeffs(f, symbols, ex, **flags) except NotImplementedError: pass if soln: if flags.get('simplify', True): if isinstance(soln, dict): for k in soln: soln[k] = simplify(soln[k]) elif isinstance(soln, list): if isinstance(soln[0], dict): for d in soln: for k in d: d[k] = simplify(d[k]) elif isinstance(soln[0], tuple): soln = [tuple(simplify(i) for i in j) for j in soln] else: raise TypeError('unrecognized args in list') elif isinstance(soln, tuple): sym, sols = soln soln = sym, {tuple(simplify(i) for i in j) for j in sols} else: raise TypeError('unrecognized solution type') return soln # find first successful solution failed = [] got_s = set([]) result = [] for s in symbols: xi, v = solve_linear(f, symbols=[s]) if xi == s: # no need to check but we should simplify if desired if flags.get('simplify', True): v = simplify(v) vfree = v.free_symbols if got_s and any([ss in vfree for ss in got_s]): # sol depends on previously solved symbols: discard it continue got_s.add(xi) result.append({xi: v}) elif xi: # there might be a non-linear solution if xi is not 0 failed.append(s) if not failed: return result for s in failed: try: soln = _solve(f, s, **flags) for sol in soln: if got_s and any([ss in sol.free_symbols for ss in got_s]): # sol depends on previously solved symbols: discard it continue got_s.add(s) result.append({s: sol}) except NotImplementedError: continue if got_s: return result else: raise NotImplementedError(not_impl_msg % f) symbol = symbols[0] # /!\ capture this flag then set it to False so that no checking in # recursive calls will be done; only the final answer is checked flags['check'] = checkdens = check = flags.pop('check', True) # build up solutions if f is a Mul if f.is_Mul: result = set() for m in f.args: if m in set([S.NegativeInfinity, S.ComplexInfinity, S.Infinity]): result = set() break soln = _solve(m, symbol, **flags) result.update(set(soln)) result = list(result) if check: # all solutions have been checked but now we must # check that the solutions do not set denominators # in any factor to zero dens = flags.get('_denominators', _simple_dens(f, symbols)) result = [s for s in result if all(not checksol(den, {symbol: s}, **flags) for den in dens)] # set flags for quick exit at end; solutions for each # factor were already checked and simplified check = False flags['simplify'] = False elif f.is_Piecewise: result = set() for i, (expr, cond) in enumerate(f.args): if expr.is_zero: raise NotImplementedError( 'solve cannot represent interval solutions') candidates = _solve(expr, symbol, **flags) # the explicit condition for this expr is the current cond # and none of the previous conditions args = [~c for _, c in f.args[:i]] + [cond] cond = And(*args) for candidate in candidates: if candidate in result: # an unconditional value was already there continue try: v = cond.subs(symbol, candidate) _eval_simplify = getattr(v, '_eval_simplify', None) if _eval_simplify is not None: # unconditionally take the simpification of v v = _eval_simplify(ratio=2, measure=lambda x: 1) except TypeError: # incompatible type with condition(s) continue if v == False: continue if v == True: result.add(candidate) else: result.add(Piecewise( (candidate, v), (S.NaN, True))) # set flags for quick exit at end; solutions for each # piece were already checked and simplified check = False flags['simplify'] = False else: # first see if it really depends on symbol and whether there # is only a linear solution f_num, sol = solve_linear(f, symbols=symbols) if f_num.is_zero or sol is S.NaN: return [] elif f_num.is_Symbol: # no need to check but simplify if desired if flags.get('simplify', True): sol = simplify(sol) return [sol] result = False # no solution was obtained msg = '' # there is no failure message # Poly is generally robust enough to convert anything to # a polynomial and tell us the different generators that it # contains, so we will inspect the generators identified by # polys to figure out what to do. # try to identify a single generator that will allow us to solve this # as a polynomial, followed (perhaps) by a change of variables if the # generator is not a symbol try: poly = Poly(f_num) if poly is None: raise ValueError('could not convert %s to Poly' % f_num) except GeneratorsNeeded: simplified_f = simplify(f_num) if simplified_f != f_num: return _solve(simplified_f, symbol, **flags) raise ValueError('expression appears to be a constant') gens = [g for g in poly.gens if g.has(symbol)] def _as_base_q(x): """Return (b**e, q) for x = b**(p*e/q) where p/q is the leading Rational of the exponent of x, e.g. exp(-2*x/3) -> (exp(x), 3) """ b, e = x.as_base_exp() if e.is_Rational: return b, e.q if not e.is_Mul: return x, 1 c, ee = e.as_coeff_Mul() if c.is_Rational and c is not S.One: # c could be a Float return b**ee, c.q return x, 1 if len(gens) > 1: # If there is more than one generator, it could be that the # generators have the same base but different powers, e.g. # >>> Poly(exp(x) + 1/exp(x)) # Poly(exp(-x) + exp(x), exp(-x), exp(x), domain='ZZ') # # If unrad was not disabled then there should be no rational # exponents appearing as in # >>> Poly(sqrt(x) + sqrt(sqrt(x))) # Poly(sqrt(x) + x**(1/4), sqrt(x), x**(1/4), domain='ZZ') bases, qs = list(zip(*[_as_base_q(g) for g in gens])) bases = set(bases) if len(bases) > 1 or not all(q == 1 for q in qs): funcs = set(b for b in bases if b.is_Function) trig = set([_ for _ in funcs if isinstance(_, TrigonometricFunction)]) other = funcs - trig if not other and len(funcs.intersection(trig)) > 1: newf = TR1(f_num).rewrite(tan) if newf != f_num: # don't check the rewritten form --check # solutions in the un-rewritten form below flags['check'] = False result = _solve(newf, symbol, **flags) flags['check'] = check # just a simple case - see if replacement of single function # clears all symbol-dependent functions, e.g. # log(x) - log(log(x) - 1) - 3 can be solved even though it has # two generators. if result is False and funcs: funcs = list(ordered(funcs)) # put shallowest function first f1 = funcs[0] t = Dummy('t') # perform the substitution ftry = f_num.subs(f1, t) # if no Functions left, we can proceed with usual solve if not ftry.has(symbol): cv_sols = _solve(ftry, t, **flags) cv_inv = _solve(t - f1, symbol, **flags)[0] sols = list() for sol in cv_sols: sols.append(cv_inv.subs(t, sol)) result = list(ordered(sols)) if result is False: msg = 'multiple generators %s' % gens else: # e.g. case where gens are exp(x), exp(-x) u = bases.pop() t = Dummy('t') inv = _solve(u - t, symbol, **flags) if isinstance(u, (Pow, exp)): # this will be resolved by factor in _tsolve but we might # as well try a simple expansion here to get things in # order so something like the following will work now without # having to factor: # # >>> eq = (exp(I*(-x-2))+exp(I*(x+2))) # >>> eq.subs(exp(x),y) # fails # exp(I*(-x - 2)) + exp(I*(x + 2)) # >>> eq.expand().subs(exp(x),y) # works # y**I*exp(2*I) + y**(-I)*exp(-2*I) def _expand(p): b, e = p.as_base_exp() e = expand_mul(e) return expand_power_exp(b**e) ftry = f_num.replace( lambda w: w.is_Pow or isinstance(w, exp), _expand).subs(u, t) if not ftry.has(symbol): soln = _solve(ftry, t, **flags) sols = list() for sol in soln: for i in inv: sols.append(i.subs(t, sol)) result = list(ordered(sols)) elif len(gens) == 1: # There is only one generator that we are interested in, but # there may have been more than one generator identified by # polys (e.g. for symbols other than the one we are interested # in) so recast the poly in terms of our generator of interest. # Also use composite=True with f_num since Poly won't update # poly as documented in issue 8810. poly = Poly(f_num, gens[0], composite=True) # if we aren't on the tsolve-pass, use roots if not flags.pop('tsolve', False): soln = None deg = poly.degree() flags['tsolve'] = True solvers = {k: flags.get(k, True) for k in ('cubics', 'quartics', 'quintics')} soln = roots(poly, **solvers) if sum(soln.values()) < deg: # e.g. roots(32*x**5 + 400*x**4 + 2032*x**3 + # 5000*x**2 + 6250*x + 3189) -> {} # so all_roots is used and RootOf instances are # returned *unless* the system is multivariate # or high-order EX domain. try: soln = poly.all_roots() except NotImplementedError: if not flags.get('incomplete', True): raise NotImplementedError( filldedent(''' Neither high-order multivariate polynomials nor sorting of EX-domain polynomials is supported. If you want to see any results, pass keyword incomplete=True to solve; to see numerical values of roots for univariate expressions, use nroots. ''')) else: pass else: soln = list(soln.keys()) if soln is not None: u = poly.gen if u != symbol: try: t = Dummy('t') iv = _solve(u - t, symbol, **flags) soln = list(ordered({i.subs(t, s) for i in iv for s in soln})) except NotImplementedError: # perhaps _tsolve can handle f_num soln = None else: check = False # only dens need to be checked if soln is not None: if len(soln) > 2: # if the flag wasn't set then unset it since high-order # results are quite long. Perhaps one could base this # decision on a certain critical length of the # roots. In addition, wester test M2 has an expression # whose roots can be shown to be real with the # unsimplified form of the solution whereas only one of # the simplified forms appears to be real. flags['simplify'] = flags.get('simplify', False) result = soln # fallback if above fails # ----------------------- if result is False: # try unrad if flags.pop('_unrad', True): try: u = unrad(f_num, symbol) except (ValueError, NotImplementedError): u = False if u: eq, cov = u if cov: isym, ieq = cov inv = _solve(ieq, symbol, **flags)[0] rv = {inv.subs(isym, xi) for xi in _solve(eq, isym, **flags)} else: try: rv = set(_solve(eq, symbol, **flags)) except NotImplementedError: rv = None if rv is not None: result = list(ordered(rv)) # if the flag wasn't set then unset it since unrad results # can be quite long or of very high order flags['simplify'] = flags.get('simplify', False) else: pass # for coverage # try _tsolve if result is False: flags.pop('tsolve', None) # allow tsolve to be used on next pass try: soln = _tsolve(f_num, symbol, **flags) if soln is not None: result = soln except PolynomialError: pass # ----------- end of fallback ---------------------------- if result is False: raise NotImplementedError('\n'.join([msg, not_impl_msg % f])) if flags.get('simplify', True): result = list(map(simplify, result)) # we just simplified the solution so we now set the flag to # False so the simplification doesn't happen again in checksol() flags['simplify'] = False if checkdens: # reject any result that makes any denom. affirmatively 0; # if in doubt, keep it dens = _simple_dens(f, symbols) result = [s for s in result if all(not checksol(d, {symbol: s}, **flags) for d in dens)] if check: # keep only results if the check is not False result = [r for r in result if checksol(f_num, {symbol: r}, **flags) is not False] return result def _solve_system(exprs, symbols, **flags): if not exprs: return [] polys = [] dens = set() failed = [] result = False linear = False manual = flags.get('manual', False) checkdens = check = flags.get('check', True) for j, g in enumerate(exprs): dens.update(_simple_dens(g, symbols)) i, d = _invert(g, *symbols) g = d - i g = g.as_numer_denom()[0] if manual: failed.append(g) continue poly = g.as_poly(*symbols, extension=True) if poly is not None: polys.append(poly) else: failed.append(g) if not polys: solved_syms = [] else: if all(p.is_linear for p in polys): n, m = len(polys), len(symbols) matrix = zeros(n, m + 1) for i, poly in enumerate(polys): for monom, coeff in poly.terms(): try: j = monom.index(1) matrix[i, j] = coeff except ValueError: matrix[i, m] = -coeff # returns a dictionary ({symbols: values}) or None if flags.pop('particular', False): result = minsolve_linear_system(matrix, *symbols, **flags) else: result = solve_linear_system(matrix, *symbols, **flags) if failed: if result: solved_syms = list(result.keys()) else: solved_syms = [] else: linear = True else: if len(symbols) > len(polys): from sympy.utilities.iterables import subsets free = set().union(*[p.free_symbols for p in polys]) free = list(ordered(free.intersection(symbols))) got_s = set() result = [] for syms in subsets(free, len(polys)): try: # returns [] or list of tuples of solutions for syms res = solve_poly_system(polys, *syms) if res: for r in res: skip = False for r1 in r: if got_s and any([ss in r1.free_symbols for ss in got_s]): # sol depends on previously # solved symbols: discard it skip = True if not skip: got_s.update(syms) result.extend([dict(list(zip(syms, r)))]) except NotImplementedError: pass if got_s: solved_syms = list(got_s) else: raise NotImplementedError('no valid subset found') else: try: result = solve_poly_system(polys, *symbols) if result: solved_syms = symbols # we don't know here if the symbols provided # were given or not, so let solve resolve that. # A list of dictionaries is going to always be # returned from here. result = [dict(list(zip(solved_syms, r))) for r in result] except NotImplementedError: failed.extend([g.as_expr() for g in polys]) solved_syms = [] result = None if result: if isinstance(result, dict): result = [result] else: result = [{}] if failed: # For each failed equation, see if we can solve for one of the # remaining symbols from that equation. If so, we update the # solution set and continue with the next failed equation, # repeating until we are done or we get an equation that can't # be solved. def _ok_syms(e, sort=False): rv = (e.free_symbols - solved_syms) & legal if sort: rv = list(rv) rv.sort(key=default_sort_key) return rv solved_syms = set(solved_syms) # set of symbols we have solved for legal = set(symbols) # what we are interested in # sort so equation with the fewest potential symbols is first u = Dummy() # used in solution checking for eq in ordered(failed, lambda _: len(_ok_syms(_))): newresult = [] bad_results = [] got_s = set() hit = False for r in result: # update eq with everything that is known so far eq2 = eq.subs(r) # if check is True then we see if it satisfies this # equation, otherwise we just accept it if check and r: b = checksol(u, u, eq2, minimal=True) if b is not None: # this solution is sufficient to know whether # it is valid or not so we either accept or # reject it, then continue if b: newresult.append(r) else: bad_results.append(r) continue # search for a symbol amongst those available that # can be solved for ok_syms = _ok_syms(eq2, sort=True) if not ok_syms: if r: newresult.append(r) break # skip as it's independent of desired symbols for s in ok_syms: try: soln = _solve(eq2, s, **flags) except NotImplementedError: continue # put each solution in r and append the now-expanded # result in the new result list; use copy since the # solution for s in being added in-place for sol in soln: if got_s and any([ss in sol.free_symbols for ss in got_s]): # sol depends on previously solved symbols: discard it continue rnew = r.copy() for k, v in r.items(): rnew[k] = v.subs(s, sol) # and add this new solution rnew[s] = sol newresult.append(rnew) hit = True got_s.add(s) if not hit: raise NotImplementedError('could not solve %s' % eq2) else: result = newresult for b in bad_results: if b in result: result.remove(b) default_simplify = bool(failed) # rely on system-solvers to simplify if flags.get('simplify', default_simplify): for r in result: for k in r: r[k] = simplify(r[k]) flags['simplify'] = False # don't need to do so in checksol now if checkdens: result = [r for r in result if not any(checksol(d, r, **flags) for d in dens)] if check and not linear: result = [r for r in result if not any(checksol(e, r, **flags) is False for e in exprs)] result = [r for r in result if r] if linear and result: result = result[0] return result def solve_linear(lhs, rhs=0, symbols=[], exclude=[]): r""" Return a tuple derived from f = lhs - rhs that is one of the following: (0, 1) meaning that ``f`` is independent of the symbols in ``symbols`` that aren't in ``exclude``, e.g:: >>> from sympy.solvers.solvers import solve_linear >>> from sympy.abc import x, y, z >>> from sympy import cos, sin >>> eq = y*cos(x)**2 + y*sin(x)**2 - y # = y*(1 - 1) = 0 >>> solve_linear(eq) (0, 1) >>> eq = cos(x)**2 + sin(x)**2 # = 1 >>> solve_linear(eq) (0, 1) >>> solve_linear(x, exclude=[x]) (0, 1) (0, 0) meaning that there is no solution to the equation amongst the symbols given. (If the first element of the tuple is not zero then the function is guaranteed to be dependent on a symbol in ``symbols``.) (symbol, solution) where symbol appears linearly in the numerator of ``f``, is in ``symbols`` (if given) and is not in ``exclude`` (if given). No simplification is done to ``f`` other than a ``mul=True`` expansion, so the solution will correspond strictly to a unique solution. ``(n, d)`` where ``n`` and ``d`` are the numerator and denominator of ``f`` when the numerator was not linear in any symbol of interest; ``n`` will never be a symbol unless a solution for that symbol was found (in which case the second element is the solution, not the denominator). Examples ======== >>> from sympy.core.power import Pow >>> from sympy.polys.polytools import cancel The variable ``x`` appears as a linear variable in each of the following: >>> solve_linear(x + y**2) (x, -y**2) >>> solve_linear(1/x - y**2) (x, y**(-2)) When not linear in x or y then the numerator and denominator are returned. >>> solve_linear(x**2/y**2 - 3) (x**2 - 3*y**2, y**2) If the numerator of the expression is a symbol then (0, 0) is returned if the solution for that symbol would have set any denominator to 0: >>> eq = 1/(1/x - 2) >>> eq.as_numer_denom() (x, 1 - 2*x) >>> solve_linear(eq) (0, 0) But automatic rewriting may cause a symbol in the denominator to appear in the numerator so a solution will be returned: >>> (1/x)**-1 x >>> solve_linear((1/x)**-1) (x, 0) Use an unevaluated expression to avoid this: >>> solve_linear(Pow(1/x, -1, evaluate=False)) (0, 0) If ``x`` is allowed to cancel in the following expression, then it appears to be linear in ``x``, but this sort of cancellation is not done by ``solve_linear`` so the solution will always satisfy the original expression without causing a division by zero error. >>> eq = x**2*(1/x - z**2/x) >>> solve_linear(cancel(eq)) (x, 0) >>> solve_linear(eq) (x**2*(1 - z**2), x) A list of symbols for which a solution is desired may be given: >>> solve_linear(x + y + z, symbols=[y]) (y, -x - z) A list of symbols to ignore may also be given: >>> solve_linear(x + y + z, exclude=[x]) (y, -x - z) (A solution for ``y`` is obtained because it is the first variable from the canonically sorted list of symbols that had a linear solution.) """ if isinstance(lhs, Equality): if rhs: raise ValueError(filldedent(''' If lhs is an Equality, rhs must be 0 but was %s''' % rhs)) rhs = lhs.rhs lhs = lhs.lhs dens = None eq = lhs - rhs n, d = eq.as_numer_denom() if not n: return S.Zero, S.One free = n.free_symbols if not symbols: symbols = free else: bad = [s for s in symbols if not s.is_Symbol] if bad: if len(bad) == 1: bad = bad[0] if len(symbols) == 1: eg = 'solve(%s, %s)' % (eq, symbols[0]) else: eg = 'solve(%s, *%s)' % (eq, list(symbols)) raise ValueError(filldedent(''' solve_linear only handles symbols, not %s. To isolate non-symbols use solve, e.g. >>> %s <<<. ''' % (bad, eg))) symbols = free.intersection(symbols) symbols = symbols.difference(exclude) if not symbols: return S.Zero, S.One # derivatives are easy to do but tricky to analyze to see if they # are going to disallow a linear solution, so for simplicity we # just evaluate the ones that have the symbols of interest derivs = defaultdict(list) for der in n.atoms(Derivative): csym = der.free_symbols & symbols for c in csym: derivs[c].append(der) all_zero = True for xi in sorted(symbols, key=default_sort_key): # canonical order # if there are derivatives in this var, calculate them now if isinstance(derivs[xi], list): derivs[xi] = {der: der.doit() for der in derivs[xi]} newn = n.subs(derivs[xi]) dnewn_dxi = newn.diff(xi) # dnewn_dxi can be nonzero if it survives differentation by any # of its free symbols free = dnewn_dxi.free_symbols if dnewn_dxi and (not free or any(dnewn_dxi.diff(s) for s in free)): all_zero = False if dnewn_dxi is S.NaN: break if xi not in dnewn_dxi.free_symbols: vi = -1/dnewn_dxi*(newn.subs(xi, 0)) if dens is None: dens = _simple_dens(eq, symbols) if not any(checksol(di, {xi: vi}, minimal=True) is True for di in dens): # simplify any trivial integral irep = [(i, i.doit()) for i in vi.atoms(Integral) if i.function.is_number] # do a slight bit of simplification vi = expand_mul(vi.subs(irep)) return xi, vi if all_zero: return S.Zero, S.One if n.is_Symbol: # no solution for this symbol was found return S.Zero, S.Zero return n, d def minsolve_linear_system(system, *symbols, **flags): r""" Find a particular solution to a linear system. In particular, try to find a solution with the minimal possible number of non-zero variables using a naive algorithm with exponential complexity. If ``quick=True``, a heuristic is used. """ quick = flags.get('quick', False) # Check if there are any non-zero solutions at all s0 = solve_linear_system(system, *symbols, **flags) if not s0 or all(v == 0 for v in s0.values()): return s0 if quick: # We just solve the system and try to heuristically find a nice # solution. s = solve_linear_system(system, *symbols) def update(determined, solution): delete = [] for k, v in solution.items(): solution[k] = v.subs(determined) if not solution[k].free_symbols: delete.append(k) determined[k] = solution[k] for k in delete: del solution[k] determined = {} update(determined, s) while s: # NOTE sort by default_sort_key to get deterministic result k = max((k for k in s.values()), key=lambda x: (len(x.free_symbols), default_sort_key(x))) x = max(k.free_symbols, key=default_sort_key) if len(k.free_symbols) != 1: determined[x] = S.Zero else: val = solve(k)[0] if val == 0 and all(v.subs(x, val) == 0 for v in s.values()): determined[x] = S.One else: determined[x] = val update(determined, s) return determined else: # We try to select n variables which we want to be non-zero. # All others will be assumed zero. We try to solve the modified system. # If there is a non-trivial solution, just set the free variables to # one. If we do this for increasing n, trying all combinations of # variables, we will find an optimal solution. # We speed up slightly by starting at one less than the number of # variables the quick method manages. from itertools import combinations from sympy.utilities.misc import debug N = len(symbols) bestsol = minsolve_linear_system(system, *symbols, quick=True) n0 = len([x for x in bestsol.values() if x != 0]) for n in range(n0 - 1, 1, -1): debug('minsolve: %s' % n) thissol = None for nonzeros in combinations(list(range(N)), n): subm = Matrix([system.col(i).T for i in nonzeros] + [system.col(-1).T]).T s = solve_linear_system(subm, *[symbols[i] for i in nonzeros]) if s and not all(v == 0 for v in s.values()): subs = [(symbols[v], S.One) for v in nonzeros] for k, v in s.items(): s[k] = v.subs(subs) for sym in symbols: if sym not in s: if symbols.index(sym) in nonzeros: s[sym] = S.One else: s[sym] = S.Zero thissol = s break if thissol is None: break bestsol = thissol return bestsol def solve_linear_system(system, *symbols, **flags): r""" Solve system of N linear equations with M variables, which means both under- and overdetermined systems are supported. The possible number of solutions is zero, one or infinite. Respectively, this procedure will return None or a dictionary with solutions. In the case of underdetermined systems, all arbitrary parameters are skipped. This may cause a situation in which an empty dictionary is returned. In that case, all symbols can be assigned arbitrary values. Input to this functions is a Nx(M+1) matrix, which means it has to be in augmented form. If you prefer to enter N equations and M unknowns then use `solve(Neqs, *Msymbols)` instead. Note: a local copy of the matrix is made by this routine so the matrix that is passed will not be modified. The algorithm used here is fraction-free Gaussian elimination, which results, after elimination, in an upper-triangular matrix. Then solutions are found using back-substitution. This approach is more efficient and compact than the Gauss-Jordan method. >>> from sympy import Matrix, solve_linear_system >>> from sympy.abc import x, y Solve the following system:: x + 4 y == 2 -2 x + y == 14 >>> system = Matrix(( (1, 4, 2), (-2, 1, 14))) >>> solve_linear_system(system, x, y) {x: -6, y: 2} A degenerate system returns an empty dictionary. >>> system = Matrix(( (0,0,0), (0,0,0) )) >>> solve_linear_system(system, x, y) {} """ do_simplify = flags.get('simplify', True) if system.rows == system.cols - 1 == len(symbols): try: # well behaved n-equations and n-unknowns inv = inv_quick(system[:, :-1]) rv = dict(zip(symbols, inv*system[:, -1])) if do_simplify: for k, v in rv.items(): rv[k] = simplify(v) if not all(i.is_zero for i in rv.values()): # non-trivial solution return rv except ValueError: pass matrix = system[:, :] syms = list(symbols) i, m = 0, matrix.cols - 1 # don't count augmentation while i < matrix.rows: if i == m: # an overdetermined system if any(matrix[i:, m]): return None # no solutions else: # remove trailing rows matrix = matrix[:i, :] break if not matrix[i, i]: # there is no pivot in current column # so try to find one in other columns for k in range(i + 1, m): if matrix[i, k]: break else: if matrix[i, m]: # We need to know if this is always zero or not. We # assume that if there are free symbols that it is not # identically zero (or that there is more than one way # to make this zero). Otherwise, if there are none, this # is a constant and we assume that it does not simplify # to zero XXX are there better (fast) ways to test this? # The .equals(0) method could be used but that can be # slow; numerical testing is prone to errors of scaling. if not matrix[i, m].free_symbols: return None # no solution # A row of zeros with a non-zero rhs can only be accepted # if there is another equivalent row. Any such rows will # be deleted. nrows = matrix.rows rowi = matrix.row(i) ip = None j = i + 1 while j < matrix.rows: # do we need to see if the rhs of j # is a constant multiple of i's rhs? rowj = matrix.row(j) if rowj == rowi: matrix.row_del(j) elif rowj[:-1] == rowi[:-1]: if ip is None: _, ip = rowi[-1].as_content_primitive() _, jp = rowj[-1].as_content_primitive() if not (simplify(jp - ip) or simplify(jp + ip)): matrix.row_del(j) j += 1 if nrows == matrix.rows: # no solution return None # zero row or was a linear combination of # other rows or was a row with a symbolic # expression that matched other rows, e.g. [0, 0, x - y] # so now we can safely skip it matrix.row_del(i) if not matrix: # every choice of variable values is a solution # so we return an empty dict instead of None return dict() continue # we want to change the order of columns so # the order of variables must also change syms[i], syms[k] = syms[k], syms[i] matrix.col_swap(i, k) pivot_inv = S.One/matrix[i, i] # divide all elements in the current row by the pivot matrix.row_op(i, lambda x, _: x * pivot_inv) for k in range(i + 1, matrix.rows): if matrix[k, i]: coeff = matrix[k, i] # subtract from the current row the row containing # pivot and multiplied by extracted coefficient matrix.row_op(k, lambda x, j: simplify(x - matrix[i, j]*coeff)) i += 1 # if there weren't any problems, augmented matrix is now # in row-echelon form so we can check how many solutions # there are and extract them using back substitution if len(syms) == matrix.rows: # this system is Cramer equivalent so there is # exactly one solution to this system of equations k, solutions = i - 1, {} while k >= 0: content = matrix[k, m] # run back-substitution for variables for j in range(k + 1, m): content -= matrix[k, j]*solutions[syms[j]] if do_simplify: solutions[syms[k]] = simplify(content) else: solutions[syms[k]] = content k -= 1 return solutions elif len(syms) > matrix.rows: # this system will have infinite number of solutions # dependent on exactly len(syms) - i parameters k, solutions = i - 1, {} while k >= 0: content = matrix[k, m] # run back-substitution for variables for j in range(k + 1, i): content -= matrix[k, j]*solutions[syms[j]] # run back-substitution for parameters for j in range(i, m): content -= matrix[k, j]*syms[j] if do_simplify: solutions[syms[k]] = simplify(content) else: solutions[syms[k]] = content k -= 1 return solutions else: return [] # no solutions def solve_undetermined_coeffs(equ, coeffs, sym, **flags): """Solve equation of a type p(x; a_1, ..., a_k) == q(x) where both p, q are univariate polynomials and f depends on k parameters. The result of this functions is a dictionary with symbolic values of those parameters with respect to coefficients in q. This functions accepts both Equations class instances and ordinary SymPy expressions. Specification of parameters and variable is obligatory for efficiency and simplicity reason. >>> from sympy import Eq >>> from sympy.abc import a, b, c, x >>> from sympy.solvers import solve_undetermined_coeffs >>> solve_undetermined_coeffs(Eq(2*a*x + a+b, x), [a, b], x) {a: 1/2, b: -1/2} >>> solve_undetermined_coeffs(Eq(a*c*x + a+b, x), [a, b], x) {a: 1/c, b: -1/c} """ if isinstance(equ, Equality): # got equation, so move all the # terms to the left hand side equ = equ.lhs - equ.rhs equ = cancel(equ).as_numer_denom()[0] system = list(collect(equ.expand(), sym, evaluate=False).values()) if not any(equ.has(sym) for equ in system): # consecutive powers in the input expressions have # been successfully collected, so solve remaining # system using Gaussian elimination algorithm return solve(system, *coeffs, **flags) else: return None # no solutions def solve_linear_system_LU(matrix, syms): """ Solves the augmented matrix system using LUsolve and returns a dictionary in which solutions are keyed to the symbols of syms *as ordered*. The matrix must be invertible. Examples ======== >>> from sympy import Matrix >>> from sympy.abc import x, y, z >>> from sympy.solvers.solvers import solve_linear_system_LU >>> solve_linear_system_LU(Matrix([ ... [1, 2, 0, 1], ... [3, 2, 2, 1], ... [2, 0, 0, 1]]), [x, y, z]) {x: 1/2, y: 1/4, z: -1/2} See Also ======== LUsolve """ if matrix.rows != matrix.cols - 1: raise ValueError("Rows should be equal to columns - 1") A = matrix[:matrix.rows, :matrix.rows] b = matrix[:, matrix.cols - 1:] soln = A.LUsolve(b) solutions = {} for i in range(soln.rows): solutions[syms[i]] = soln[i, 0] return solutions def det_perm(M): """Return the det(``M``) by using permutations to select factors. For size larger than 8 the number of permutations becomes prohibitively large, or if there are no symbols in the matrix, it is better to use the standard determinant routines, e.g. `M.det()`. See Also ======== det_minor det_quick """ args = [] s = True n = M.rows list_ = getattr(M, '_mat', None) if list_ is None: list_ = flatten(M.tolist()) for perm in generate_bell(n): fac = [] idx = 0 for j in perm: fac.append(list_[idx + j]) idx += n term = Mul(*fac) # disaster with unevaluated Mul -- takes forever for n=7 args.append(term if s else -term) s = not s return Add(*args) def det_minor(M): """Return the ``det(M)`` computed from minors without introducing new nesting in products. See Also ======== det_perm det_quick """ n = M.rows if n == 2: return M[0, 0]*M[1, 1] - M[1, 0]*M[0, 1] else: return sum([(1, -1)[i % 2]*Add(*[M[0, i]*d for d in Add.make_args(det_minor(M.minor_submatrix(0, i)))]) if M[0, i] else S.Zero for i in range(n)]) def det_quick(M, method=None): """Return ``det(M)`` assuming that either there are lots of zeros or the size of the matrix is small. If this assumption is not met, then the normal Matrix.det function will be used with method = ``method``. See Also ======== det_minor det_perm """ if any(i.has(Symbol) for i in M): if M.rows < 8 and all(i.has(Symbol) for i in M): return det_perm(M) return det_minor(M) else: return M.det(method=method) if method else M.det() def inv_quick(M): """Return the inverse of ``M``, assuming that either there are lots of zeros or the size of the matrix is small. """ from sympy.matrices import zeros if not all(i.is_Number for i in M): if not any(i.is_Number for i in M): det = lambda _: det_perm(_) else: det = lambda _: det_minor(_) else: return M.inv() n = M.rows d = det(M) if d == S.Zero: raise ValueError("Matrix det == 0; not invertible.") ret = zeros(n) s1 = -1 for i in range(n): s = s1 = -s1 for j in range(n): di = det(M.minor_submatrix(i, j)) ret[j, i] = s*di/d s = -s return ret # these are functions that have multiple inverse values per period multi_inverses = { sin: lambda x: (asin(x), S.Pi - asin(x)), cos: lambda x: (acos(x), 2*S.Pi - acos(x)), } def _tsolve(eq, sym, **flags): """ Helper for _solve that solves a transcendental equation with respect to the given symbol. Various equations containing powers and logarithms, can be solved. There is currently no guarantee that all solutions will be returned or that a real solution will be favored over a complex one. Either a list of potential solutions will be returned or None will be returned (in the case that no method was known to get a solution for the equation). All other errors (like the inability to cast an expression as a Poly) are unhandled. Examples ======== >>> from sympy import log >>> from sympy.solvers.solvers import _tsolve as tsolve >>> from sympy.abc import x >>> tsolve(3**(2*x + 5) - 4, x) [-5/2 + log(2)/log(3), (-5*log(3)/2 + log(2) + I*pi)/log(3)] >>> tsolve(log(x) + 2*x, x) [LambertW(2)/2] """ if 'tsolve_saw' not in flags: flags['tsolve_saw'] = [] if eq in flags['tsolve_saw']: return None else: flags['tsolve_saw'].append(eq) rhs, lhs = _invert(eq, sym) if lhs == sym: return [rhs] try: if lhs.is_Add: # it's time to try factoring; powdenest is used # to try get powers in standard form for better factoring f = factor(powdenest(lhs - rhs)) if f.is_Mul: return _solve(f, sym, **flags) if rhs: f = logcombine(lhs, force=flags.get('force', True)) if f.count(log) != lhs.count(log): if isinstance(f, log): return _solve(f.args[0] - exp(rhs), sym, **flags) return _tsolve(f - rhs, sym, **flags) elif lhs.is_Pow: if lhs.exp.is_Integer: if lhs - rhs != eq: return _solve(lhs - rhs, sym, **flags) if sym not in lhs.exp.free_symbols: return _solve(lhs.base - rhs**(1/lhs.exp), sym, **flags) # _tsolve calls this with Dummy before passing the actual number in. if any(t.is_Dummy for t in rhs.free_symbols): raise NotImplementedError # _tsolve will call here again... # a ** g(x) == 0 if not rhs: # f(x)**g(x) only has solutions where f(x) == 0 and g(x) != 0 at # the same place sol_base = _solve(lhs.base, sym, **flags) return [s for s in sol_base if lhs.exp.subs(sym, s) != 0] # a ** g(x) == b if not lhs.base.has(sym): if lhs.base == 0: return _solve(lhs.exp, sym, **flags) if rhs != 0 else [] # Gets most solutions... if lhs.base == rhs.as_base_exp()[0]: # handles case when bases are equal sol = _solve(lhs.exp - rhs.as_base_exp()[1], sym, **flags) else: # handles cases when bases are not equal and exp # may or may not be equal sol = _solve(exp(log(lhs.base)*lhs.exp)-exp(log(rhs)), sym, **flags) # Check for duplicate solutions def equal(expr1, expr2): _ = Dummy() eq = checksol(expr1 - _, _, expr2) if eq is None: if nsimplify(expr1) != nsimplify(expr2): return False # they might be coincidentally the same # so check more rigorously eq = expr1.equals(expr2) return eq # Guess a rational exponent e_rat = nsimplify(log(abs(rhs))/log(abs(lhs.base))) e_rat = simplify(posify(e_rat)[0]) n, d = fraction(e_rat) if expand(lhs.base**n - rhs**d) == 0: sol = [s for s in sol if not equal(lhs.exp.subs(sym, s), e_rat)] sol.extend(_solve(lhs.exp - e_rat, sym, **flags)) return list(ordered(set(sol))) # f(x) ** g(x) == c else: sol = [] logform = lhs.exp*log(lhs.base) - log(rhs) if logform != lhs - rhs: try: sol.extend(_solve(logform, sym, **flags)) except NotImplementedError: pass # Collect possible solutions and check with substitution later. check = [] if rhs == 1: # f(x) ** g(x) = 1 -- g(x)=0 or f(x)=+-1 check.extend(_solve(lhs.exp, sym, **flags)) check.extend(_solve(lhs.base - 1, sym, **flags)) check.extend(_solve(lhs.base + 1, sym, **flags)) elif rhs.is_Rational: for d in (i for i in divisors(abs(rhs.p)) if i != 1): e, t = integer_log(rhs.p, d) if not t: continue # rhs.p != d**b for s in divisors(abs(rhs.q)): if s**e== rhs.q: r = Rational(d, s) check.extend(_solve(lhs.base - r, sym, **flags)) check.extend(_solve(lhs.base + r, sym, **flags)) check.extend(_solve(lhs.exp - e, sym, **flags)) elif rhs.is_irrational: b_l, e_l = lhs.base.as_base_exp() n, d = (e_l*lhs.exp).as_numer_denom() b, e = sqrtdenest(rhs).as_base_exp() check = [sqrtdenest(i) for i in (_solve(lhs.base - b, sym, **flags))] check.extend([sqrtdenest(i) for i in (_solve(lhs.exp - e, sym, **flags))]) if e_l*d != 1: check.extend(_solve(b_l**n - rhs**(e_l*d), sym, **flags)) for s in check: ok = checksol(eq, sym, s) if ok is None: ok = eq.subs(sym, s).equals(0) if ok: sol.append(s) return list(ordered(set(sol))) elif lhs.is_Function and len(lhs.args) == 1: if lhs.func in multi_inverses: # sin(x) = 1/3 -> x - asin(1/3) & x - (pi - asin(1/3)) soln = [] for i in multi_inverses[lhs.func](rhs): soln.extend(_solve(lhs.args[0] - i, sym, **flags)) return list(ordered(soln)) elif lhs.func == LambertW: return _solve(lhs.args[0] - rhs*exp(rhs), sym, **flags) rewrite = lhs.rewrite(exp) if rewrite != lhs: return _solve(rewrite - rhs, sym, **flags) except NotImplementedError: pass # maybe it is a lambert pattern if flags.pop('bivariate', True): # lambert forms may need some help being recognized, e.g. changing # 2**(3*x) + x**3*log(2)**3 + 3*x**2*log(2)**2 + 3*x*log(2) + 1 # to 2**(3*x) + (x*log(2) + 1)**3 g = _filtered_gens(eq.as_poly(), sym) up_or_log = set() for gi in g: if isinstance(gi, exp) or isinstance(gi, log): up_or_log.add(gi) elif gi.is_Pow: gisimp = powdenest(expand_power_exp(gi)) if gisimp.is_Pow and sym in gisimp.exp.free_symbols: up_or_log.add(gi) eq_down = expand_log(expand_power_exp(eq)).subs( dict(list(zip(up_or_log, [0]*len(up_or_log))))) eq = expand_power_exp(factor(eq_down, deep=True) + (eq - eq_down)) rhs, lhs = _invert(eq, sym) if lhs.has(sym): try: poly = lhs.as_poly() g = _filtered_gens(poly, sym) _eq = lhs - rhs sols = _solve_lambert(_eq, sym, g) # use a simplified form if it satisfies eq # and has fewer operations for n, s in enumerate(sols): ns = nsimplify(s) if ns != s and ns.count_ops() <= s.count_ops(): ok = checksol(_eq, sym, ns) if ok is None: ok = _eq.subs(sym, ns).equals(0) if ok: sols[n] = ns return sols except NotImplementedError: # maybe it's a convoluted function if len(g) == 2: try: gpu = bivariate_type(lhs - rhs, *g) if gpu is None: raise NotImplementedError g, p, u = gpu flags['bivariate'] = False inversion = _tsolve(g - u, sym, **flags) if inversion: sol = _solve(p, u, **flags) return list(ordered(set([i.subs(u, s) for i in inversion for s in sol]))) except NotImplementedError: pass else: pass if flags.pop('force', True): flags['force'] = False pos, reps = posify(lhs - rhs) if rhs == S.ComplexInfinity: return [] for u, s in reps.items(): if s == sym: break else: u = sym if pos.has(u): try: soln = _solve(pos, u, **flags) return list(ordered([s.subs(reps) for s in soln])) except NotImplementedError: pass else: pass # here for coverage return # here for coverage # TODO: option for calculating J numerically @conserve_mpmath_dps def nsolve(*args, **kwargs): r""" Solve a nonlinear equation system numerically:: nsolve(f, [args,] x0, modules=['mpmath'], **kwargs) f is a vector function of symbolic expressions representing the system. args are the variables. If there is only one variable, this argument can be omitted. x0 is a starting vector close to a solution. Use the modules keyword to specify which modules should be used to evaluate the function and the Jacobian matrix. Make sure to use a module that supports matrices. For more information on the syntax, please see the docstring of lambdify. If the keyword arguments contain 'dict'=True (default is False) nsolve will return a list (perhaps empty) of solution mappings. This might be especially useful if you want to use nsolve as a fallback to solve since using the dict argument for both methods produces return values of consistent type structure. Please note: to keep this consistency with solve, the solution will be returned in a list even though nsolve (currently at least) only finds one solution at a time. Overdetermined systems are supported. >>> from sympy import Symbol, nsolve >>> import sympy >>> import mpmath >>> mpmath.mp.dps = 15 >>> x1 = Symbol('x1') >>> x2 = Symbol('x2') >>> f1 = 3 * x1**2 - 2 * x2**2 - 1 >>> f2 = x1**2 - 2 * x1 + x2**2 + 2 * x2 - 8 >>> print(nsolve((f1, f2), (x1, x2), (-1, 1))) Matrix([[-1.19287309935246], [1.27844411169911]]) For one-dimensional functions the syntax is simplified: >>> from sympy import sin, nsolve >>> from sympy.abc import x >>> nsolve(sin(x), x, 2) 3.14159265358979 >>> nsolve(sin(x), 2) 3.14159265358979 To solve with higher precision than the default, use the prec argument. >>> from sympy import cos >>> nsolve(cos(x) - x, 1) 0.739085133215161 >>> nsolve(cos(x) - x, 1, prec=50) 0.73908513321516064165531208767387340401341175890076 >>> cos(_) 0.73908513321516064165531208767387340401341175890076 To solve for complex roots of real functions, a nonreal initial point must be specified: >>> from sympy import I >>> nsolve(x**2 + 2, I) 1.4142135623731*I mpmath.findroot is used and you can find there more extensive documentation, especially concerning keyword parameters and available solvers. Note, however, that functions which are very steep near the root the verification of the solution may fail. In this case you should use the flag `verify=False` and independently verify the solution. >>> from sympy import cos, cosh >>> from sympy.abc import i >>> f = cos(x)*cosh(x) - 1 >>> nsolve(f, 3.14*100) Traceback (most recent call last): ... ValueError: Could not find root within given tolerance. (1.39267e+230 > 2.1684e-19) >>> ans = nsolve(f, 3.14*100, verify=False); ans 312.588469032184 >>> f.subs(x, ans).n(2) 2.1e+121 >>> (f/f.diff(x)).subs(x, ans).n(2) 7.4e-15 One might safely skip the verification if bounds of the root are known and a bisection method is used: >>> bounds = lambda i: (3.14*i, 3.14*(i + 1)) >>> nsolve(f, bounds(100), solver='bisect', verify=False) 315.730061685774 Alternatively, a function may be better behaved when the denominator is ignored. Since this is not always the case, however, the decision of what function to use is left to the discretion of the user. >>> eq = x**2/(1 - x)/(1 - 2*x)**2 - 100 >>> nsolve(eq, 0.46) Traceback (most recent call last): ... ValueError: Could not find root within given tolerance. (10000 > 2.1684e-19) Try another starting point or tweak arguments. >>> nsolve(eq.as_numer_denom()[0], 0.46) 0.46792545969349058 """ # there are several other SymPy functions that use method= so # guard against that here if 'method' in kwargs: raise ValueError(filldedent(''' Keyword "method" should not be used in this context. When using some mpmath solvers directly, the keyword "method" is used, but when using nsolve (and findroot) the keyword to use is "solver".''')) if 'prec' in kwargs: prec = kwargs.pop('prec') import mpmath mpmath.mp.dps = prec else: prec = None # keyword argument to return result as a dictionary as_dict = kwargs.pop('dict', False) # interpret arguments if len(args) == 3: f = args[0] fargs = args[1] x0 = args[2] if iterable(fargs) and iterable(x0): if len(x0) != len(fargs): raise TypeError('nsolve expected exactly %i guess vectors, got %i' % (len(fargs), len(x0))) elif len(args) == 2: f = args[0] fargs = None x0 = args[1] if iterable(f): raise TypeError('nsolve expected 3 arguments, got 2') elif len(args) < 2: raise TypeError('nsolve expected at least 2 arguments, got %i' % len(args)) else: raise TypeError('nsolve expected at most 3 arguments, got %i' % len(args)) modules = kwargs.get('modules', ['mpmath']) if iterable(f): f = list(f) for i, fi in enumerate(f): if isinstance(fi, Equality): f[i] = fi.lhs - fi.rhs f = Matrix(f).T if iterable(x0): x0 = list(x0) if not isinstance(f, Matrix): # assume it's a sympy expression if isinstance(f, Equality): f = f.lhs - f.rhs syms = f.free_symbols if fargs is None: fargs = syms.copy().pop() if not (len(syms) == 1 and (fargs in syms or fargs[0] in syms)): raise ValueError(filldedent(''' expected a one-dimensional and numerical function''')) # the function is much better behaved if there is no denominator # but sending the numerator is left to the user since sometimes # the function is better behaved when the denominator is present # e.g., issue 11768 f = lambdify(fargs, f, modules) x = sympify(findroot(f, x0, **kwargs)) if as_dict: return [{fargs: x}] return x if len(fargs) > f.cols: raise NotImplementedError(filldedent(''' need at least as many equations as variables''')) verbose = kwargs.get('verbose', False) if verbose: print('f(x):') print(f) # derive Jacobian J = f.jacobian(fargs) if verbose: print('J(x):') print(J) # create functions f = lambdify(fargs, f.T, modules) J = lambdify(fargs, J, modules) # solve the system numerically x = findroot(f, x0, J=J, **kwargs) if as_dict: return [dict(zip(fargs, [sympify(xi) for xi in x]))] return Matrix(x) def _invert(eq, *symbols, **kwargs): """Return tuple (i, d) where ``i`` is independent of ``symbols`` and ``d`` contains symbols. ``i`` and ``d`` are obtained after recursively using algebraic inversion until an uninvertible ``d`` remains. If there are no free symbols then ``d`` will be zero. Some (but not necessarily all) solutions to the expression ``i - d`` will be related to the solutions of the original expression. Examples ======== >>> from sympy.solvers.solvers import _invert as invert >>> from sympy import sqrt, cos >>> from sympy.abc import x, y >>> invert(x - 3) (3, x) >>> invert(3) (3, 0) >>> invert(2*cos(x) - 1) (1/2, cos(x)) >>> invert(sqrt(x) - 3) (3, sqrt(x)) >>> invert(sqrt(x) + y, x) (-y, sqrt(x)) >>> invert(sqrt(x) + y, y) (-sqrt(x), y) >>> invert(sqrt(x) + y, x, y) (0, sqrt(x) + y) If there is more than one symbol in a power's base and the exponent is not an Integer, then the principal root will be used for the inversion: >>> invert(sqrt(x + y) - 2) (4, x + y) >>> invert(sqrt(x + y) - 2) (4, x + y) If the exponent is an integer, setting ``integer_power`` to True will force the principal root to be selected: >>> invert(x**2 - 4, integer_power=True) (2, x) """ eq = sympify(eq) if eq.args: # make sure we are working with flat eq eq = eq.func(*eq.args) free = eq.free_symbols if not symbols: symbols = free if not free & set(symbols): return eq, S.Zero dointpow = bool(kwargs.get('integer_power', False)) lhs = eq rhs = S.Zero while True: was = lhs while True: indep, dep = lhs.as_independent(*symbols) # dep + indep == rhs if lhs.is_Add: # this indicates we have done it all if indep.is_zero: break lhs = dep rhs -= indep # dep * indep == rhs else: # this indicates we have done it all if indep is S.One: break lhs = dep rhs /= indep # collect like-terms in symbols if lhs.is_Add: terms = {} for a in lhs.args: i, d = a.as_independent(*symbols) terms.setdefault(d, []).append(i) if any(len(v) > 1 for v in terms.values()): args = [] for d, i in terms.items(): if len(i) > 1: args.append(Add(*i)*d) else: args.append(i[0]*d) lhs = Add(*args) # if it's a two-term Add with rhs = 0 and two powers we can get the # dependent terms together, e.g. 3*f(x) + 2*g(x) -> f(x)/g(x) = -2/3 if lhs.is_Add and not rhs and len(lhs.args) == 2 and \ not lhs.is_polynomial(*symbols): a, b = ordered(lhs.args) ai, ad = a.as_independent(*symbols) bi, bd = b.as_independent(*symbols) if any(_ispow(i) for i in (ad, bd)): a_base, a_exp = ad.as_base_exp() b_base, b_exp = bd.as_base_exp() if a_base == b_base: # a = -b lhs = powsimp(powdenest(ad/bd)) rhs = -bi/ai else: rat = ad/bd _lhs = powsimp(ad/bd) if _lhs != rat: lhs = _lhs rhs = -bi/ai elif ai == -bi: if isinstance(ad, Function) and ad.func == bd.func: if len(ad.args) == len(bd.args) == 1: lhs = ad.args[0] - bd.args[0] elif len(ad.args) == len(bd.args): # should be able to solve # f(x, y) - f(2 - x, 0) == 0 -> x == 1 raise NotImplementedError( 'equal function with more than 1 argument') else: raise ValueError( 'function with different numbers of args') elif lhs.is_Mul and any(_ispow(a) for a in lhs.args): lhs = powsimp(powdenest(lhs)) if lhs.is_Function: if hasattr(lhs, 'inverse') and len(lhs.args) == 1: # -1 # f(x) = g -> x = f (g) # # /!\ inverse should not be defined if there are multiple values # for the function -- these are handled in _tsolve # rhs = lhs.inverse()(rhs) lhs = lhs.args[0] elif isinstance(lhs, atan2): y, x = lhs.args lhs = 2*atan(y/(sqrt(x**2 + y**2) + x)) elif lhs.func == rhs.func: if len(lhs.args) == len(rhs.args) == 1: lhs = lhs.args[0] rhs = rhs.args[0] elif len(lhs.args) == len(rhs.args): # should be able to solve # f(x, y) == f(2, 3) -> x == 2 # f(x, x + y) == f(2, 3) -> x == 2 raise NotImplementedError( 'equal function with more than 1 argument') else: raise ValueError( 'function with different numbers of args') if rhs and lhs.is_Pow and lhs.exp.is_Integer and lhs.exp < 0: lhs = 1/lhs rhs = 1/rhs # base**a = b -> base = b**(1/a) if # a is an Integer and dointpow=True (this gives real branch of root) # a is not an Integer and the equation is multivariate and the # base has more than 1 symbol in it # The rationale for this is that right now the multi-system solvers # doesn't try to resolve generators to see, for example, if the whole # system is written in terms of sqrt(x + y) so it will just fail, so we # do that step here. if lhs.is_Pow and ( lhs.exp.is_Integer and dointpow or not lhs.exp.is_Integer and len(symbols) > 1 and len(lhs.base.free_symbols & set(symbols)) > 1): rhs = rhs**(1/lhs.exp) lhs = lhs.base if lhs == was: break return rhs, lhs def unrad(eq, *syms, **flags): """ Remove radicals with symbolic arguments and return (eq, cov), None or raise an error: None is returned if there are no radicals to remove. NotImplementedError is raised if there are radicals and they cannot be removed or if the relationship between the original symbols and the change of variable needed to rewrite the system as a polynomial cannot be solved. Otherwise the tuple, ``(eq, cov)``, is returned where: ``eq``, ``cov`` ``eq`` is an equation without radicals (in the symbol(s) of interest) whose solutions are a superset of the solutions to the original expression. ``eq`` might be re-written in terms of a new variable; the relationship to the original variables is given by ``cov`` which is a list containing ``v`` and ``v**p - b`` where ``p`` is the power needed to clear the radical and ``b`` is the radical now expressed as a polynomial in the symbols of interest. For example, for sqrt(2 - x) the tuple would be ``(c, c**2 - 2 + x)``. The solutions of ``eq`` will contain solutions to the original equation (if there are any). ``syms`` an iterable of symbols which, if provided, will limit the focus of radical removal: only radicals with one or more of the symbols of interest will be cleared. All free symbols are used if ``syms`` is not set. ``flags`` are used internally for communication during recursive calls. Two options are also recognized: ``take``, when defined, is interpreted as a single-argument function that returns True if a given Pow should be handled. Radicals can be removed from an expression if: * all bases of the radicals are the same; a change of variables is done in this case. * if all radicals appear in one term of the expression * there are only 4 terms with sqrt() factors or there are less than four terms having sqrt() factors * there are only two terms with radicals Examples ======== >>> from sympy.solvers.solvers import unrad >>> from sympy.abc import x >>> from sympy import sqrt, Rational, root, real_roots, solve >>> unrad(sqrt(x)*x**Rational(1, 3) + 2) (x**5 - 64, []) >>> unrad(sqrt(x) + root(x + 1, 3)) (x**3 - x**2 - 2*x - 1, []) >>> eq = sqrt(x) + root(x, 3) - 2 >>> unrad(eq) (_p**3 + _p**2 - 2, [_p, _p**6 - x]) """ uflags = dict(check=False, simplify=False) def _cov(p, e): if cov: # XXX - uncovered oldp, olde = cov if Poly(e, p).degree(p) in (1, 2): cov[:] = [p, olde.subs(oldp, _solve(e, p, **uflags)[0])] else: raise NotImplementedError else: cov[:] = [p, e] def _canonical(eq, cov): if cov: # change symbol to vanilla so no solutions are eliminated p, e = cov rep = {p: Dummy(p.name)} eq = eq.xreplace(rep) cov = [p.xreplace(rep), e.xreplace(rep)] # remove constants and powers of factors since these don't change # the location of the root; XXX should factor or factor_terms be used? eq = factor_terms(_mexpand(eq.as_numer_denom()[0], recursive=True), clear=True) if eq.is_Mul: args = [] for f in eq.args: if f.is_number: continue if f.is_Pow and _take(f, True): args.append(f.base) else: args.append(f) eq = Mul(*args) # leave as Mul for more efficient solving # make the sign canonical free = eq.free_symbols if len(free) == 1: if eq.coeff(free.pop()**degree(eq)).could_extract_minus_sign(): eq = -eq elif eq.could_extract_minus_sign(): eq = -eq return eq, cov def _Q(pow): # return leading Rational of denominator of Pow's exponent c = pow.as_base_exp()[1].as_coeff_Mul()[0] if not c.is_Rational: return S.One return c.q # define the _take method that will determine whether a term is of interest def _take(d, take_int_pow): # return True if coefficient of any factor's exponent's den is not 1 for pow in Mul.make_args(d): if not (pow.is_Symbol or pow.is_Pow): continue b, e = pow.as_base_exp() if not b.has(*syms): continue if not take_int_pow and _Q(pow) == 1: continue free = pow.free_symbols if free.intersection(syms): return True return False _take = flags.setdefault('_take', _take) cov, nwas, rpt = [flags.setdefault(k, v) for k, v in sorted(dict(cov=[], n=None, rpt=0).items())] # preconditioning eq = powdenest(factor_terms(eq, radical=True, clear=True)) eq, d = eq.as_numer_denom() eq = _mexpand(eq, recursive=True) if eq.is_number: return syms = set(syms) or eq.free_symbols poly = eq.as_poly() gens = [g for g in poly.gens if _take(g, True)] if not gens: return # check for trivial case # - already a polynomial in integer powers if all(_Q(g) == 1 for g in gens): return # - an exponent has a symbol of interest (don't handle) if any(g.as_base_exp()[1].has(*syms) for g in gens): return def _rads_bases_lcm(poly): # if all the bases are the same or all the radicals are in one # term, `lcm` will be the lcm of the denominators of the # exponents of the radicals lcm = 1 rads = set() bases = set() for g in poly.gens: if not _take(g, False): continue q = _Q(g) if q != 1: rads.add(g) lcm = ilcm(lcm, q) bases.add(g.base) return rads, bases, lcm rads, bases, lcm = _rads_bases_lcm(poly) if not rads: return covsym = Dummy('p', nonnegative=True) # only keep in syms symbols that actually appear in radicals; # and update gens newsyms = set() for r in rads: newsyms.update(syms & r.free_symbols) if newsyms != syms: syms = newsyms gens = [g for g in gens if g.free_symbols & syms] # get terms together that have common generators drad = dict(list(zip(rads, list(range(len(rads)))))) rterms = {(): []} args = Add.make_args(poly.as_expr()) for t in args: if _take(t, False): common = set(t.as_poly().gens).intersection(rads) key = tuple(sorted([drad[i] for i in common])) else: key = () rterms.setdefault(key, []).append(t) others = Add(*rterms.pop(())) rterms = [Add(*rterms[k]) for k in rterms.keys()] # the output will depend on the order terms are processed, so # make it canonical quickly rterms = list(reversed(list(ordered(rterms)))) ok = False # we don't have a solution yet depth = sqrt_depth(eq) if len(rterms) == 1 and not (rterms[0].is_Add and lcm > 2): eq = rterms[0]**lcm - ((-others)**lcm) ok = True else: if len(rterms) == 1 and rterms[0].is_Add: rterms = list(rterms[0].args) if len(bases) == 1: b = bases.pop() if len(syms) > 1: free = b.free_symbols x = {g for g in gens if g.is_Symbol} & free if not x: x = free x = ordered(x) else: x = syms x = list(x)[0] try: inv = _solve(covsym**lcm - b, x, **uflags) if not inv: raise NotImplementedError eq = poly.as_expr().subs(b, covsym**lcm).subs(x, inv[0]) _cov(covsym, covsym**lcm - b) return _canonical(eq, cov) except NotImplementedError: pass else: # no longer consider integer powers as generators gens = [g for g in gens if _Q(g) != 1] if len(rterms) == 2: if not others: eq = rterms[0]**lcm - (-rterms[1])**lcm ok = True elif not log(lcm, 2).is_Integer: # the lcm-is-power-of-two case is handled below r0, r1 = rterms if flags.get('_reverse', False): r1, r0 = r0, r1 i0 = _rads0, _bases0, lcm0 = _rads_bases_lcm(r0.as_poly()) i1 = _rads1, _bases1, lcm1 = _rads_bases_lcm(r1.as_poly()) for reverse in range(2): if reverse: i0, i1 = i1, i0 r0, r1 = r1, r0 _rads1, _, lcm1 = i1 _rads1 = Mul(*_rads1) t1 = _rads1**lcm1 c = covsym**lcm1 - t1 for x in syms: try: sol = _solve(c, x, **uflags) if not sol: raise NotImplementedError neweq = r0.subs(x, sol[0]) + covsym*r1/_rads1 + \ others tmp = unrad(neweq, covsym) if tmp: eq, newcov = tmp if newcov: newp, newc = newcov _cov(newp, c.subs(covsym, _solve(newc, covsym, **uflags)[0])) else: _cov(covsym, c) else: eq = neweq _cov(covsym, c) ok = True break except NotImplementedError: if reverse: raise NotImplementedError( 'no successful change of variable found') else: pass if ok: break elif len(rterms) == 3: # two cube roots and another with order less than 5 # (so an analytical solution can be found) or a base # that matches one of the cube root bases info = [_rads_bases_lcm(i.as_poly()) for i in rterms] RAD = 0 BASES = 1 LCM = 2 if info[0][LCM] != 3: info.append(info.pop(0)) rterms.append(rterms.pop(0)) elif info[1][LCM] != 3: info.append(info.pop(1)) rterms.append(rterms.pop(1)) if info[0][LCM] == info[1][LCM] == 3: if info[1][BASES] != info[2][BASES]: info[0], info[1] = info[1], info[0] rterms[0], rterms[1] = rterms[1], rterms[0] if info[1][BASES] == info[2][BASES]: eq = rterms[0]**3 + (rterms[1] + rterms[2] + others)**3 ok = True elif info[2][LCM] < 5: # a*root(A, 3) + b*root(B, 3) + others = c a, b, c, d, A, B = [Dummy(i) for i in 'abcdAB'] # zz represents the unraded expression into which the # specifics for this case are substituted zz = (c - d)*(A**3*a**9 + 3*A**2*B*a**6*b**3 - 3*A**2*a**6*c**3 + 9*A**2*a**6*c**2*d - 9*A**2*a**6*c*d**2 + 3*A**2*a**6*d**3 + 3*A*B**2*a**3*b**6 + 21*A*B*a**3*b**3*c**3 - 63*A*B*a**3*b**3*c**2*d + 63*A*B*a**3*b**3*c*d**2 - 21*A*B*a**3*b**3*d**3 + 3*A*a**3*c**6 - 18*A*a**3*c**5*d + 45*A*a**3*c**4*d**2 - 60*A*a**3*c**3*d**3 + 45*A*a**3*c**2*d**4 - 18*A*a**3*c*d**5 + 3*A*a**3*d**6 + B**3*b**9 - 3*B**2*b**6*c**3 + 9*B**2*b**6*c**2*d - 9*B**2*b**6*c*d**2 + 3*B**2*b**6*d**3 + 3*B*b**3*c**6 - 18*B*b**3*c**5*d + 45*B*b**3*c**4*d**2 - 60*B*b**3*c**3*d**3 + 45*B*b**3*c**2*d**4 - 18*B*b**3*c*d**5 + 3*B*b**3*d**6 - c**9 + 9*c**8*d - 36*c**7*d**2 + 84*c**6*d**3 - 126*c**5*d**4 + 126*c**4*d**5 - 84*c**3*d**6 + 36*c**2*d**7 - 9*c*d**8 + d**9) def _t(i): b = Mul(*info[i][RAD]) return cancel(rterms[i]/b), Mul(*info[i][BASES]) aa, AA = _t(0) bb, BB = _t(1) cc = -rterms[2] dd = others eq = zz.xreplace(dict(zip( (a, A, b, B, c, d), (aa, AA, bb, BB, cc, dd)))) ok = True # handle power-of-2 cases if not ok: if log(lcm, 2).is_Integer and (not others and len(rterms) == 4 or len(rterms) < 4): def _norm2(a, b): return a**2 + b**2 + 2*a*b if len(rterms) == 4: # (r0+r1)**2 - (r2+r3)**2 r0, r1, r2, r3 = rterms eq = _norm2(r0, r1) - _norm2(r2, r3) ok = True elif len(rterms) == 3: # (r1+r2)**2 - (r0+others)**2 r0, r1, r2 = rterms eq = _norm2(r1, r2) - _norm2(r0, others) ok = True elif len(rterms) == 2: # r0**2 - (r1+others)**2 r0, r1 = rterms eq = r0**2 - _norm2(r1, others) ok = True new_depth = sqrt_depth(eq) if ok else depth rpt += 1 # XXX how many repeats with others unchanging is enough? if not ok or ( nwas is not None and len(rterms) == nwas and new_depth is not None and new_depth == depth and rpt > 3): raise NotImplementedError('Cannot remove all radicals') flags.update(dict(cov=cov, n=len(rterms), rpt=rpt)) neq = unrad(eq, *syms, **flags) if neq: eq, cov = neq eq, cov = _canonical(eq, cov) return eq, cov from sympy.solvers.bivariate import ( bivariate_type, _solve_lambert, _filtered_gens)
360a08890429fed3bead5b4da1a1fce1f1ba536c20a5aae49b13049a2eacd85c
"""py.test hacks to support XFAIL/XPASS""" from __future__ import print_function, division import sys import functools import os import contextlib import warnings from sympy.core.compatibility import get_function_name, string_types from sympy.utilities.exceptions import SymPyDeprecationWarning try: import py from _pytest.python_api import raises from _pytest.recwarn import warns from _pytest.outcomes import skip, Failed USE_PYTEST = getattr(sys, '_running_pytest', False) except ImportError: USE_PYTEST = False ON_TRAVIS = os.getenv('TRAVIS_BUILD_NUMBER', None) if not USE_PYTEST: def raises(expectedException, code=None): """ Tests that ``code`` raises the exception ``expectedException``. ``code`` may be a callable, such as a lambda expression or function name. If ``code`` is not given or None, ``raises`` will return a context manager for use in ``with`` statements; the code to execute then comes from the scope of the ``with``. ``raises()`` does nothing if the callable raises the expected exception, otherwise it raises an AssertionError. Examples ======== >>> from sympy.utilities.pytest import raises >>> raises(ZeroDivisionError, lambda: 1/0) >>> raises(ZeroDivisionError, lambda: 1/2) Traceback (most recent call last): ... Failed: DID NOT RAISE >>> with raises(ZeroDivisionError): ... n = 1/0 >>> with raises(ZeroDivisionError): ... n = 1/2 Traceback (most recent call last): ... Failed: DID NOT RAISE Note that you cannot test multiple statements via ``with raises``: >>> with raises(ZeroDivisionError): ... n = 1/0 # will execute and raise, aborting the ``with`` ... n = 9999/0 # never executed This is just what ``with`` is supposed to do: abort the contained statement sequence at the first exception and let the context manager deal with the exception. To test multiple statements, you'll need a separate ``with`` for each: >>> with raises(ZeroDivisionError): ... n = 1/0 # will execute and raise >>> with raises(ZeroDivisionError): ... n = 9999/0 # will also execute and raise """ if code is None: return RaisesContext(expectedException) elif callable(code): try: code() except expectedException: return raise Failed("DID NOT RAISE") elif isinstance(code, string_types): raise TypeError( '\'raises(xxx, "code")\' has been phased out; ' 'change \'raises(xxx, "expression")\' ' 'to \'raises(xxx, lambda: expression)\', ' '\'raises(xxx, "statement")\' ' 'to \'with raises(xxx): statement\'') else: raise TypeError( 'raises() expects a callable for the 2nd argument.') class RaisesContext(object): def __init__(self, expectedException): self.expectedException = expectedException def __enter__(self): return None def __exit__(self, exc_type, exc_value, traceback): if exc_type is None: raise Failed("DID NOT RAISE") return issubclass(exc_type, self.expectedException) class XFail(Exception): pass class XPass(Exception): pass class Skipped(Exception): pass class Failed(Exception): pass def XFAIL(func): def wrapper(): try: func() except Exception as e: message = str(e) if message != "Timeout": raise XFail(get_function_name(func)) else: raise Skipped("Timeout") raise XPass(get_function_name(func)) wrapper = functools.update_wrapper(wrapper, func) return wrapper def skip(str): raise Skipped(str) def SKIP(reason): """Similar to ``skip()``, but this is a decorator. """ def wrapper(func): def func_wrapper(): raise Skipped(reason) func_wrapper = functools.update_wrapper(func_wrapper, func) return func_wrapper return wrapper def slow(func): func._slow = True def func_wrapper(): func() func_wrapper = functools.update_wrapper(func_wrapper, func) func_wrapper.__wrapped__ = func return func_wrapper @contextlib.contextmanager def warns(warningcls, **kwargs): '''Like raises but tests that warnings are emitted. >>> from sympy.utilities.pytest import warns >>> import warnings >>> with warns(UserWarning): ... warnings.warn('deprecated', UserWarning) >>> with warns(UserWarning): ... pass Traceback (most recent call last): ... Failed: DID NOT WARN. No warnings of type UserWarning\ was emitted. The list of emitted warnings is: []. ''' match = kwargs.pop('match', '') if kwargs: raise TypeError('Invalid keyword arguments: %s' % kwargs) # Absorbs all warnings in warnrec with warnings.catch_warnings(record=True) as warnrec: # Hide all warnings but make sure that our warning is emitted warnings.simplefilter("ignore") warnings.filterwarnings("always", match, warningcls) # Now run the test yield # Raise if expected warning not found if not any(issubclass(w.category, warningcls) for w in warnrec): msg = ('Failed: DID NOT WARN.' ' No warnings of type %s was emitted.' ' The list of emitted warnings is: %s.' ) % (warningcls, [w.message for w in warnrec]) raise Failed(msg) else: XFAIL = py.test.mark.xfail SKIP = py.test.mark.skip slow = py.test.mark.slow @contextlib.contextmanager def warns_deprecated_sympy(): '''Shorthand for ``warns(SymPyDeprecationWarning)`` This is the recommended way to test that ``SymPyDeprecationWarning`` is emitted for deprecated features in SymPy. To test for other warnings use ``warns``. To suppress warnings without asserting that they are emitted use ``ignore_warnings``. >>> from sympy.utilities.pytest import warns_deprecated_sympy >>> from sympy.utilities.exceptions import SymPyDeprecationWarning >>> import warnings >>> with warns_deprecated_sympy(): ... SymPyDeprecationWarning("Don't use", feature="old thing", ... deprecated_since_version="1.0", issue=123).warn() >>> with warns_deprecated_sympy(): ... pass Traceback (most recent call last): ... Failed: DID NOT WARN. No warnings of type \ SymPyDeprecationWarning was emitted. The list of emitted warnings is: []. ''' with warns(SymPyDeprecationWarning): yield @contextlib.contextmanager def ignore_warnings(warningcls): '''Context manager to suppress warnings during tests. This function is useful for suppressing warnings during tests. The warns function should be used to assert that a warning is raised. The ignore_warnings function is useful in situation when the warning is not guaranteed to be raised (e.g. on importing a module) or if the warning comes from third-party code. When the warning is coming (reliably) from SymPy the warns function should be preferred to ignore_warnings. >>> from sympy.utilities.pytest import ignore_warnings >>> import warnings Here's a warning: >>> with warnings.catch_warnings(): # reset warnings in doctest ... warnings.simplefilter('error') ... warnings.warn('deprecated', UserWarning) Traceback (most recent call last): ... UserWarning: deprecated Let's suppress it with ignore_warnings: >>> with warnings.catch_warnings(): # reset warnings in doctest ... warnings.simplefilter('error') ... with ignore_warnings(UserWarning): ... warnings.warn('deprecated', UserWarning) (No warning emitted) ''' # Absorbs all warnings in warnrec with warnings.catch_warnings(record=True) as warnrec: # Make sure our warning doesn't get filtered warnings.simplefilter("always", warningcls) # Now run the test yield # Reissue any warnings that we aren't testing for for w in warnrec: if not issubclass(w.category, warningcls): warnings.warn_explicit(w.message, w.category, w.filename, w.lineno)
d70493dd7bd5a5983ac85547d71d0efffbadd83c2129d59811aea62fa8756ecf
"""A module providing information about the necessity of brackets""" from __future__ import print_function, division from sympy.core.function import _coeff_isneg # Default precedence values for some basic types PRECEDENCE = { "Lambda": 1, "Xor": 10, "Or": 20, "And": 30, "Relational": 35, "Add": 40, "Mul": 50, "Pow": 60, "Func": 70, "Not": 100, "Atom": 1000, "BitwiseOr": 36, "BitwiseXor": 37, "BitwiseAnd": 38 } # A dictionary assigning precedence values to certain classes. These values are # treated like they were inherited, so not every single class has to be named # here. # Do not use this with printers other than StrPrinter PRECEDENCE_VALUES = { "Equivalent": PRECEDENCE["Xor"], "Xor": PRECEDENCE["Xor"], "Implies": PRECEDENCE["Xor"], "Or": PRECEDENCE["Or"], "And": PRECEDENCE["And"], "Add": PRECEDENCE["Add"], "Pow": PRECEDENCE["Pow"], "Relational": PRECEDENCE["Relational"], "Sub": PRECEDENCE["Add"], "Not": PRECEDENCE["Not"], "Function" : PRECEDENCE["Func"], "NegativeInfinity": PRECEDENCE["Add"], "MatAdd": PRECEDENCE["Add"], "MatPow": PRECEDENCE["Pow"], "MatrixSolve": PRECEDENCE["Mul"], "TensAdd": PRECEDENCE["Add"], # As soon as `TensMul` is a subclass of `Mul`, remove this: "TensMul": PRECEDENCE["Mul"], "HadamardProduct": PRECEDENCE["Mul"], "HadamardPower": PRECEDENCE["Pow"], "KroneckerProduct": PRECEDENCE["Mul"], "Equality": PRECEDENCE["Mul"], "Unequality": PRECEDENCE["Mul"], } # Sometimes it's not enough to assign a fixed precedence value to a # class. Then a function can be inserted in this dictionary that takes # an instance of this class as argument and returns the appropriate # precedence value. # Precedence functions def precedence_Mul(item): if _coeff_isneg(item): return PRECEDENCE["Add"] return PRECEDENCE["Mul"] def precedence_Rational(item): if item.p < 0: return PRECEDENCE["Add"] return PRECEDENCE["Mul"] def precedence_Integer(item): if item.p < 0: return PRECEDENCE["Add"] return PRECEDENCE["Atom"] def precedence_Float(item): if item < 0: return PRECEDENCE["Add"] return PRECEDENCE["Atom"] def precedence_PolyElement(item): if item.is_generator: return PRECEDENCE["Atom"] elif item.is_ground: return precedence(item.coeff(1)) elif item.is_term: return PRECEDENCE["Mul"] else: return PRECEDENCE["Add"] def precedence_FracElement(item): if item.denom == 1: return precedence_PolyElement(item.numer) else: return PRECEDENCE["Mul"] def precedence_UnevaluatedExpr(item): return precedence(item.args[0]) PRECEDENCE_FUNCTIONS = { "Integer": precedence_Integer, "Mul": precedence_Mul, "Rational": precedence_Rational, "Float": precedence_Float, "PolyElement": precedence_PolyElement, "FracElement": precedence_FracElement, "UnevaluatedExpr": precedence_UnevaluatedExpr, } def precedence(item): """Returns the precedence of a given object. This is the precedence for StrPrinter. """ if hasattr(item, "precedence"): return item.precedence try: mro = item.__class__.__mro__ except AttributeError: return PRECEDENCE["Atom"] for i in mro: n = i.__name__ if n in PRECEDENCE_FUNCTIONS: return PRECEDENCE_FUNCTIONS[n](item) elif n in PRECEDENCE_VALUES: return PRECEDENCE_VALUES[n] return PRECEDENCE["Atom"] PRECEDENCE_TRADITIONAL = PRECEDENCE.copy() PRECEDENCE_TRADITIONAL['Integral'] = PRECEDENCE["Mul"] PRECEDENCE_TRADITIONAL['Sum'] = PRECEDENCE["Mul"] PRECEDENCE_TRADITIONAL['Product'] = PRECEDENCE["Mul"] PRECEDENCE_TRADITIONAL['Limit'] = PRECEDENCE["Mul"] PRECEDENCE_TRADITIONAL['Derivative'] = PRECEDENCE["Mul"] PRECEDENCE_TRADITIONAL['TensorProduct'] = PRECEDENCE["Mul"] PRECEDENCE_TRADITIONAL['Transpose'] = PRECEDENCE["Pow"] PRECEDENCE_TRADITIONAL['Adjoint'] = PRECEDENCE["Pow"] PRECEDENCE_TRADITIONAL['Dot'] = PRECEDENCE["Mul"] - 1 PRECEDENCE_TRADITIONAL['Cross'] = PRECEDENCE["Mul"] - 1 PRECEDENCE_TRADITIONAL['Gradient'] = PRECEDENCE["Mul"] - 1 PRECEDENCE_TRADITIONAL['Divergence'] = PRECEDENCE["Mul"] - 1 PRECEDENCE_TRADITIONAL['Curl'] = PRECEDENCE["Mul"] - 1 PRECEDENCE_TRADITIONAL['Laplacian'] = PRECEDENCE["Mul"] - 1 PRECEDENCE_TRADITIONAL['Union'] = PRECEDENCE['Xor'] PRECEDENCE_TRADITIONAL['Intersection'] = PRECEDENCE['Xor'] PRECEDENCE_TRADITIONAL['Complement'] = PRECEDENCE['Xor'] PRECEDENCE_TRADITIONAL['SymmetricDifference'] = PRECEDENCE['Xor'] PRECEDENCE_TRADITIONAL['ProductSet'] = PRECEDENCE['Xor'] def precedence_traditional(item): """Returns the precedence of a given object according to the traditional rules of mathematics. This is the precedence for the LaTeX and pretty printer. """ # Integral, Sum, Product, Limit have the precedence of Mul in LaTeX, # the precedence of Atom for other printers: from sympy import Integral, Sum, Product, Limit, Derivative, Transpose, Adjoint from sympy.core.expr import UnevaluatedExpr from sympy.tensor.functions import TensorProduct if isinstance(item, UnevaluatedExpr): return precedence_traditional(item.args[0]) n = item.__class__.__name__ if n in PRECEDENCE_TRADITIONAL: return PRECEDENCE_TRADITIONAL[n] return precedence(item)
d67eaf56c8c7bd277d94573bca259c57d40d7eb0d72d5a7d54621b0735d751a6
""" Python code printers This module contains python code printers for plain python as well as NumPy & SciPy enabled code. """ from collections import defaultdict from itertools import chain from sympy.core import S from .precedence import precedence from .codeprinter import CodePrinter _kw_py2and3 = { 'and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif', 'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield', 'None' # 'None' is actually not in Python 2's keyword.kwlist } _kw_only_py2 = {'exec', 'print'} _kw_only_py3 = {'False', 'nonlocal', 'True'} _known_functions = { 'Abs': 'abs', } _known_functions_math = { 'acos': 'acos', 'acosh': 'acosh', 'asin': 'asin', 'asinh': 'asinh', 'atan': 'atan', 'atan2': 'atan2', 'atanh': 'atanh', 'ceiling': 'ceil', 'cos': 'cos', 'cosh': 'cosh', 'erf': 'erf', 'erfc': 'erfc', 'exp': 'exp', 'expm1': 'expm1', 'factorial': 'factorial', 'floor': 'floor', 'gamma': 'gamma', 'hypot': 'hypot', 'loggamma': 'lgamma', 'log': 'log', 'ln': 'log', 'log10': 'log10', 'log1p': 'log1p', 'log2': 'log2', 'sin': 'sin', 'sinh': 'sinh', 'Sqrt': 'sqrt', 'tan': 'tan', 'tanh': 'tanh' } # Not used from ``math``: [copysign isclose isfinite isinf isnan ldexp frexp pow modf # radians trunc fmod fsum gcd degrees fabs] _known_constants_math = { 'Exp1': 'e', 'Pi': 'pi', 'E': 'e' # Only in python >= 3.5: # 'Infinity': 'inf', # 'NaN': 'nan' } def _print_known_func(self, expr): known = self.known_functions[expr.__class__.__name__] return '{name}({args})'.format(name=self._module_format(known), args=', '.join(map(lambda arg: self._print(arg), expr.args))) def _print_known_const(self, expr): known = self.known_constants[expr.__class__.__name__] return self._module_format(known) class AbstractPythonCodePrinter(CodePrinter): printmethod = "_pythoncode" language = "Python" reserved_words = _kw_py2and3.union(_kw_only_py3) modules = None # initialized to a set in __init__ tab = ' ' _kf = dict(chain( _known_functions.items(), [(k, 'math.' + v) for k, v in _known_functions_math.items()] )) _kc = {k: 'math.'+v for k, v in _known_constants_math.items()} _operators = {'and': 'and', 'or': 'or', 'not': 'not'} _default_settings = dict( CodePrinter._default_settings, user_functions={}, precision=17, inline=True, fully_qualified_modules=True, contract=False, standard='python3' ) def __init__(self, settings=None): super(AbstractPythonCodePrinter, self).__init__(settings) # XXX Remove after dropping python 2 support. # Python standard handler std = self._settings['standard'] if std is None: import sys std = 'python{}'.format(sys.version_info.major) if std not in ('python2', 'python3'): raise ValueError('Unrecognized python standard : {}'.format(std)) self.standard = std self.module_imports = defaultdict(set) # Known functions and constants handler self.known_functions = dict(self._kf, **(settings or {}).get( 'user_functions', {})) self.known_constants = dict(self._kc, **(settings or {}).get( 'user_constants', {})) def _declare_number_const(self, name, value): return "%s = %s" % (name, value) def _module_format(self, fqn, register=True): parts = fqn.split('.') if register and len(parts) > 1: self.module_imports['.'.join(parts[:-1])].add(parts[-1]) if self._settings['fully_qualified_modules']: return fqn else: return fqn.split('(')[0].split('[')[0].split('.')[-1] def _format_code(self, lines): return lines def _get_statement(self, codestring): return "{}".format(codestring) def _get_comment(self, text): return " # {0}".format(text) def _expand_fold_binary_op(self, op, args): """ This method expands a fold on binary operations. ``functools.reduce`` is an example of a folded operation. For example, the expression `A + B + C + D` is folded into `((A + B) + C) + D` """ if len(args) == 1: return self._print(args[0]) else: return "%s(%s, %s)" % ( self._module_format(op), self._expand_fold_binary_op(op, args[:-1]), self._print(args[-1]), ) def _expand_reduce_binary_op(self, op, args): """ This method expands a reductin on binary operations. Notice: this is NOT the same as ``functools.reduce``. For example, the expression `A + B + C + D` is reduced into: `(A + B) + (C + D)` """ if len(args) == 1: return self._print(args[0]) else: N = len(args) Nhalf = N // 2 return "%s(%s, %s)" % ( self._module_format(op), self._expand_reduce_binary_op(args[:Nhalf]), self._expand_reduce_binary_op(args[Nhalf:]), ) def _get_einsum_string(self, subranks, contraction_indices): letters = self._get_letter_generator_for_einsum() contraction_string = "" counter = 0 d = {j: min(i) for i in contraction_indices for j in i} indices = [] for rank_arg in subranks: lindices = [] for i in range(rank_arg): if counter in d: lindices.append(d[counter]) else: lindices.append(counter) counter += 1 indices.append(lindices) mapping = {} letters_free = [] letters_dum = [] for i in indices: for j in i: if j not in mapping: l = next(letters) mapping[j] = l else: l = mapping[j] contraction_string += l if j in d: if l not in letters_dum: letters_dum.append(l) else: letters_free.append(l) contraction_string += "," contraction_string = contraction_string[:-1] return contraction_string, letters_free, letters_dum def _print_NaN(self, expr): return "float('nan')" def _print_Infinity(self, expr): return "float('inf')" def _print_NegativeInfinity(self, expr): return "float('-inf')" def _print_ComplexInfinity(self, expr): return self._print_NaN(expr) def _print_Mod(self, expr): PREC = precedence(expr) return ('{0} % {1}'.format(*map(lambda x: self.parenthesize(x, PREC), expr.args))) def _print_Piecewise(self, expr): result = [] i = 0 for arg in expr.args: e = arg.expr c = arg.cond if i == 0: result.append('(') result.append('(') result.append(self._print(e)) result.append(')') result.append(' if ') result.append(self._print(c)) result.append(' else ') i += 1 result = result[:-1] if result[-1] == 'True': result = result[:-2] result.append(')') else: result.append(' else None)') return ''.join(result) def _print_Relational(self, expr): "Relational printer for Equality and Unequality" op = { '==' :'equal', '!=' :'not_equal', '<' :'less', '<=' :'less_equal', '>' :'greater', '>=' :'greater_equal', } if expr.rel_op in op: lhs = self._print(expr.lhs) rhs = self._print(expr.rhs) return '({lhs} {op} {rhs})'.format(op=expr.rel_op, lhs=lhs, rhs=rhs) return super(AbstractPythonCodePrinter, self)._print_Relational(expr) def _print_ITE(self, expr): from sympy.functions.elementary.piecewise import Piecewise return self._print(expr.rewrite(Piecewise)) def _print_Sum(self, expr): loops = ( 'for {i} in range({a}, {b}+1)'.format( i=self._print(i), a=self._print(a), b=self._print(b)) for i, a, b in expr.limits) return '(builtins.sum({function} {loops}))'.format( function=self._print(expr.function), loops=' '.join(loops)) def _print_ImaginaryUnit(self, expr): return '1j' def _print_MatrixBase(self, expr): name = expr.__class__.__name__ func = self.known_functions.get(name, name) return "%s(%s)" % (func, self._print(expr.tolist())) _print_SparseMatrix = \ _print_MutableSparseMatrix = \ _print_ImmutableSparseMatrix = \ _print_Matrix = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ lambda self, expr: self._print_MatrixBase(expr) def _indent_codestring(self, codestring): return '\n'.join([self.tab + line for line in codestring.split('\n')]) def _print_FunctionDefinition(self, fd): body = '\n'.join(map(lambda arg: self._print(arg), fd.body)) return "def {name}({parameters}):\n{body}".format( name=self._print(fd.name), parameters=', '.join([self._print(var.symbol) for var in fd.parameters]), body=self._indent_codestring(body) ) def _print_While(self, whl): body = '\n'.join(map(lambda arg: self._print(arg), whl.body)) return "while {cond}:\n{body}".format( cond=self._print(whl.condition), body=self._indent_codestring(body) ) def _print_Declaration(self, decl): return '%s = %s' % ( self._print(decl.variable.symbol), self._print(decl.variable.value) ) def _print_Return(self, ret): arg, = ret.args return 'return %s' % self._print(arg) def _print_Print(self, prnt): print_args = ', '.join(map(lambda arg: self._print(arg), prnt.print_args)) if prnt.format_string != None: # Must be '!= None', cannot be 'is not None' print_args = '{0} % ({1})'.format( self._print(prnt.format_string), print_args) if prnt.file != None: # Must be '!= None', cannot be 'is not None' print_args += ', file=%s' % self._print(prnt.file) # XXX Remove after dropping python 2 support. if self.standard == 'python2': return 'print %s' % print_args return 'print(%s)' % print_args def _print_Stream(self, strm): if str(strm.name) == 'stdout': return self._module_format('sys.stdout') elif str(strm.name) == 'stderr': return self._module_format('sys.stderr') else: return self._print(strm.name) def _print_NoneToken(self, arg): return 'None' class PythonCodePrinter(AbstractPythonCodePrinter): def _print_sign(self, e): return '(0.0 if {e} == 0 else {f}(1, {e}))'.format( f=self._module_format('math.copysign'), e=self._print(e.args[0])) def _print_Not(self, expr): PREC = precedence(expr) return self._operators['not'] + self.parenthesize(expr.args[0], PREC) def _print_Indexed(self, expr): base = expr.args[0] index = expr.args[1:] return "{}[{}]".format(str(base), ", ".join([self._print(ind) for ind in index])) def _hprint_Pow(self, expr, rational=False, sqrt='math.sqrt'): """Printing helper function for ``Pow`` Notes ===== This only preprocesses the ``sqrt`` as math formatter Examples ======== >>> from sympy.functions import sqrt >>> from sympy.printing.pycode import PythonCodePrinter >>> from sympy.abc import x Python code printer automatically looks up ``math.sqrt``. >>> printer = PythonCodePrinter({'standard':'python3'}) >>> printer._hprint_Pow(sqrt(x), rational=True) 'x**(1/2)' >>> printer._hprint_Pow(sqrt(x), rational=False) 'math.sqrt(x)' >>> printer._hprint_Pow(1/sqrt(x), rational=True) 'x**(-1/2)' >>> printer._hprint_Pow(1/sqrt(x), rational=False) '1/math.sqrt(x)' Using sqrt from numpy or mpmath >>> printer._hprint_Pow(sqrt(x), sqrt='numpy.sqrt') 'numpy.sqrt(x)' >>> printer._hprint_Pow(sqrt(x), sqrt='mpmath.sqrt') 'mpmath.sqrt(x)' See Also ======== sympy.printing.str.StrPrinter._print_Pow """ PREC = precedence(expr) if expr.exp == S.Half and not rational: func = self._module_format(sqrt) arg = self._print(expr.base) return '{func}({arg})'.format(func=func, arg=arg) if expr.is_commutative: if -expr.exp is S.Half and not rational: func = self._module_format(sqrt) num = self._print(S.One) arg = self._print(expr.base) return "{num}/{func}({arg})".format( num=num, func=func, arg=arg) base_str = self.parenthesize(expr.base, PREC, strict=False) exp_str = self.parenthesize(expr.exp, PREC, strict=False) return "{}**{}".format(base_str, exp_str) def _print_Pow(self, expr, rational=False): return self._hprint_Pow(expr, rational=rational) def _print_Rational(self, expr): # XXX Remove after dropping python 2 support. if self.standard == 'python2': return '{}./{}.'.format(expr.p, expr.q) return '{}/{}'.format(expr.p, expr.q) def _print_Half(self, expr): return self._print_Rational(expr) _print_lowergamma = CodePrinter._print_not_supported _print_uppergamma = CodePrinter._print_not_supported _print_fresnelc = CodePrinter._print_not_supported _print_fresnels = CodePrinter._print_not_supported for k in PythonCodePrinter._kf: setattr(PythonCodePrinter, '_print_%s' % k, _print_known_func) for k in _known_constants_math: setattr(PythonCodePrinter, '_print_%s' % k, _print_known_const) def pycode(expr, **settings): """ Converts an expr to a string of Python code Parameters ========== expr : Expr A SymPy expression. fully_qualified_modules : bool Whether or not to write out full module names of functions (``math.sin`` vs. ``sin``). default: ``True``. standard : str or None, optional If 'python2', Python 2 sematics will be used. If 'python3', Python 3 sematics will be used. If None, the standard will be automatically detected. Default is 'python3'. And this parameter may be removed in the future. Examples ======== >>> from sympy import tan, Symbol >>> from sympy.printing.pycode import pycode >>> pycode(tan(Symbol('x')) + 1) 'math.tan(x) + 1' """ return PythonCodePrinter(settings).doprint(expr) _not_in_mpmath = 'log1p log2'.split() _in_mpmath = [(k, v) for k, v in _known_functions_math.items() if k not in _not_in_mpmath] _known_functions_mpmath = dict(_in_mpmath, **{ 'beta': 'beta', 'fresnelc': 'fresnelc', 'fresnels': 'fresnels', 'sign': 'sign', }) _known_constants_mpmath = { 'Exp1': 'e', 'Pi': 'pi', 'GoldenRatio': 'phi', 'EulerGamma': 'euler', 'Catalan': 'catalan', 'NaN': 'nan', 'Infinity': 'inf', 'NegativeInfinity': 'ninf' } class MpmathPrinter(PythonCodePrinter): """ Lambda printer for mpmath which maintains precision for floats """ printmethod = "_mpmathcode" language = "Python with mpmath" _kf = dict(chain( _known_functions.items(), [(k, 'mpmath.' + v) for k, v in _known_functions_mpmath.items()] )) _kc = {k: 'mpmath.'+v for k, v in _known_constants_mpmath.items()} def _print_Float(self, e): # XXX: This does not handle setting mpmath.mp.dps. It is assumed that # the caller of the lambdified function will have set it to sufficient # precision to match the Floats in the expression. # Remove 'mpz' if gmpy is installed. args = str(tuple(map(int, e._mpf_))) return '{func}({args})'.format(func=self._module_format('mpmath.mpf'), args=args) def _print_Rational(self, e): return "{func}({p})/{func}({q})".format( func=self._module_format('mpmath.mpf'), q=self._print(e.q), p=self._print(e.p) ) def _print_Half(self, e): return self._print_Rational(e) def _print_uppergamma(self, e): return "{0}({1}, {2}, {3})".format( self._module_format('mpmath.gammainc'), self._print(e.args[0]), self._print(e.args[1]), self._module_format('mpmath.inf')) def _print_lowergamma(self, e): return "{0}({1}, 0, {2})".format( self._module_format('mpmath.gammainc'), self._print(e.args[0]), self._print(e.args[1])) def _print_log2(self, e): return '{0}({1})/{0}(2)'.format( self._module_format('mpmath.log'), self._print(e.args[0])) def _print_log1p(self, e): return '{0}({1}+1)'.format( self._module_format('mpmath.log'), self._print(e.args[0])) def _print_Pow(self, expr, rational=False): return self._hprint_Pow(expr, rational=rational, sqrt='mpmath.sqrt') for k in MpmathPrinter._kf: setattr(MpmathPrinter, '_print_%s' % k, _print_known_func) for k in _known_constants_mpmath: setattr(MpmathPrinter, '_print_%s' % k, _print_known_const) _not_in_numpy = 'erf erfc factorial gamma loggamma'.split() _in_numpy = [(k, v) for k, v in _known_functions_math.items() if k not in _not_in_numpy] _known_functions_numpy = dict(_in_numpy, **{ 'acos': 'arccos', 'acosh': 'arccosh', 'asin': 'arcsin', 'asinh': 'arcsinh', 'atan': 'arctan', 'atan2': 'arctan2', 'atanh': 'arctanh', 'exp2': 'exp2', 'sign': 'sign', }) _known_constants_numpy = { 'Exp1': 'e', 'Pi': 'pi', 'EulerGamma': 'euler_gamma', 'NaN': 'nan', 'Infinity': 'PINF', 'NegativeInfinity': 'NINF' } class NumPyPrinter(PythonCodePrinter): """ Numpy printer which handles vectorized piecewise functions, logical operators, etc. """ printmethod = "_numpycode" language = "Python with NumPy" _kf = dict(chain( PythonCodePrinter._kf.items(), [(k, 'numpy.' + v) for k, v in _known_functions_numpy.items()] )) _kc = {k: 'numpy.'+v for k, v in _known_constants_numpy.items()} def _print_seq(self, seq): "General sequence printer: converts to tuple" # Print tuples here instead of lists because numba supports # tuples in nopython mode. delimiter=', ' return '({},)'.format(delimiter.join(self._print(item) for item in seq)) def _print_MatMul(self, expr): "Matrix multiplication printer" if expr.as_coeff_matrices()[0] is not S.One: expr_list = expr.as_coeff_matrices()[1]+[(expr.as_coeff_matrices()[0])] return '({0})'.format(').dot('.join(self._print(i) for i in expr_list)) return '({0})'.format(').dot('.join(self._print(i) for i in expr.args)) def _print_MatPow(self, expr): "Matrix power printer" return '{0}({1}, {2})'.format(self._module_format('numpy.linalg.matrix_power'), self._print(expr.args[0]), self._print(expr.args[1])) def _print_Inverse(self, expr): "Matrix inverse printer" return '{0}({1})'.format(self._module_format('numpy.linalg.inv'), self._print(expr.args[0])) def _print_DotProduct(self, expr): # DotProduct allows any shape order, but numpy.dot does matrix # multiplication, so we have to make sure it gets 1 x n by n x 1. arg1, arg2 = expr.args if arg1.shape[0] != 1: arg1 = arg1.T if arg2.shape[1] != 1: arg2 = arg2.T return "%s(%s, %s)" % (self._module_format('numpy.dot'), self._print(arg1), self._print(arg2)) def _print_MatrixSolve(self, expr): return "%s(%s, %s)" % (self._module_format('numpy.linalg.solve'), self._print(expr.matrix), self._print(expr.vector)) def _print_Piecewise(self, expr): "Piecewise function printer" exprs = '[{0}]'.format(','.join(self._print(arg.expr) for arg in expr.args)) conds = '[{0}]'.format(','.join(self._print(arg.cond) for arg in expr.args)) # If [default_value, True] is a (expr, cond) sequence in a Piecewise object # it will behave the same as passing the 'default' kwarg to select() # *as long as* it is the last element in expr.args. # If this is not the case, it may be triggered prematurely. return '{0}({1}, {2}, default={3})'.format( self._module_format('numpy.select'), conds, exprs, self._print(S.NaN)) def _print_Relational(self, expr): "Relational printer for Equality and Unequality" op = { '==' :'equal', '!=' :'not_equal', '<' :'less', '<=' :'less_equal', '>' :'greater', '>=' :'greater_equal', } if expr.rel_op in op: lhs = self._print(expr.lhs) rhs = self._print(expr.rhs) return '{op}({lhs}, {rhs})'.format(op=self._module_format('numpy.'+op[expr.rel_op]), lhs=lhs, rhs=rhs) return super(NumPyPrinter, self)._print_Relational(expr) def _print_And(self, expr): "Logical And printer" # We have to override LambdaPrinter because it uses Python 'and' keyword. # If LambdaPrinter didn't define it, we could use StrPrinter's # version of the function and add 'logical_and' to NUMPY_TRANSLATIONS. return '{0}.reduce(({1}))'.format(self._module_format('numpy.logical_and'), ','.join(self._print(i) for i in expr.args)) def _print_Or(self, expr): "Logical Or printer" # We have to override LambdaPrinter because it uses Python 'or' keyword. # If LambdaPrinter didn't define it, we could use StrPrinter's # version of the function and add 'logical_or' to NUMPY_TRANSLATIONS. return '{0}.reduce(({1}))'.format(self._module_format('numpy.logical_or'), ','.join(self._print(i) for i in expr.args)) def _print_Not(self, expr): "Logical Not printer" # We have to override LambdaPrinter because it uses Python 'not' keyword. # If LambdaPrinter didn't define it, we would still have to define our # own because StrPrinter doesn't define it. return '{0}({1})'.format(self._module_format('numpy.logical_not'), ','.join(self._print(i) for i in expr.args)) def _print_Pow(self, expr, rational=False): # XXX Workaround for negative integer power error if expr.exp.is_integer and expr.exp.is_negative: expr = expr.base ** expr.exp.evalf() return self._hprint_Pow(expr, rational=rational, sqrt='numpy.sqrt') def _print_Min(self, expr): return '{0}(({1}))'.format(self._module_format('numpy.amin'), ','.join(self._print(i) for i in expr.args)) def _print_Max(self, expr): return '{0}(({1}))'.format(self._module_format('numpy.amax'), ','.join(self._print(i) for i in expr.args)) def _print_arg(self, expr): return "%s(%s)" % (self._module_format('numpy.angle'), self._print(expr.args[0])) def _print_im(self, expr): return "%s(%s)" % (self._module_format('numpy.imag'), self._print(expr.args[0])) def _print_Mod(self, expr): return "%s(%s)" % (self._module_format('numpy.mod'), ', '.join( map(lambda arg: self._print(arg), expr.args))) def _print_re(self, expr): return "%s(%s)" % (self._module_format('numpy.real'), self._print(expr.args[0])) def _print_sinc(self, expr): return "%s(%s)" % (self._module_format('numpy.sinc'), self._print(expr.args[0]/S.Pi)) def _print_MatrixBase(self, expr): func = self.known_functions.get(expr.__class__.__name__, None) if func is None: func = self._module_format('numpy.array') return "%s(%s)" % (func, self._print(expr.tolist())) def _print_Identity(self, expr): shape = expr.shape if all([dim.is_Integer for dim in shape]): return "%s(%s)" % (self._module_format('numpy.eye'), self._print(expr.shape[0])) else: raise NotImplementedError("Symbolic matrix dimensions are not yet supported for identity matrices") def _print_BlockMatrix(self, expr): return '{0}({1})'.format(self._module_format('numpy.block'), self._print(expr.args[0].tolist())) def _print_CodegenArrayTensorProduct(self, expr): array_list = [j for i, arg in enumerate(expr.args) for j in (self._print(arg), "[%i, %i]" % (2*i, 2*i+1))] return "%s(%s)" % (self._module_format('numpy.einsum'), ", ".join(array_list)) def _print_CodegenArrayContraction(self, expr): from sympy.codegen.array_utils import CodegenArrayTensorProduct base = expr.expr contraction_indices = expr.contraction_indices if not contraction_indices: return self._print(base) if isinstance(base, CodegenArrayTensorProduct): counter = 0 d = {j: min(i) for i in contraction_indices for j in i} indices = [] for rank_arg in base.subranks: lindices = [] for i in range(rank_arg): if counter in d: lindices.append(d[counter]) else: lindices.append(counter) counter += 1 indices.append(lindices) elems = ["%s, %s" % (self._print(arg), ind) for arg, ind in zip(base.args, indices)] return "%s(%s)" % ( self._module_format('numpy.einsum'), ", ".join(elems) ) raise NotImplementedError() def _print_CodegenArrayDiagonal(self, expr): diagonal_indices = list(expr.diagonal_indices) if len(diagonal_indices) > 1: # TODO: this should be handled in sympy.codegen.array_utils, # possibly by creating the possibility of unfolding the # CodegenArrayDiagonal object into nested ones. Same reasoning for # the array contraction. raise NotImplementedError if len(diagonal_indices[0]) != 2: raise NotImplementedError return "%s(%s, 0, axis1=%s, axis2=%s)" % ( self._module_format("numpy.diagonal"), self._print(expr.expr), diagonal_indices[0][0], diagonal_indices[0][1], ) def _print_CodegenArrayPermuteDims(self, expr): return "%s(%s, %s)" % ( self._module_format("numpy.transpose"), self._print(expr.expr), self._print(expr.permutation.array_form), ) def _print_CodegenArrayElementwiseAdd(self, expr): return self._expand_fold_binary_op('numpy.add', expr.args) _print_lowergamma = CodePrinter._print_not_supported _print_uppergamma = CodePrinter._print_not_supported _print_fresnelc = CodePrinter._print_not_supported _print_fresnels = CodePrinter._print_not_supported for k in NumPyPrinter._kf: setattr(NumPyPrinter, '_print_%s' % k, _print_known_func) for k in NumPyPrinter._kc: setattr(NumPyPrinter, '_print_%s' % k, _print_known_const) _known_functions_scipy_special = { 'erf': 'erf', 'erfc': 'erfc', 'besselj': 'jv', 'bessely': 'yv', 'besseli': 'iv', 'besselk': 'kv', 'factorial': 'factorial', 'gamma': 'gamma', 'loggamma': 'gammaln', 'digamma': 'psi', 'RisingFactorial': 'poch', 'jacobi': 'eval_jacobi', 'gegenbauer': 'eval_gegenbauer', 'chebyshevt': 'eval_chebyt', 'chebyshevu': 'eval_chebyu', 'legendre': 'eval_legendre', 'hermite': 'eval_hermite', 'laguerre': 'eval_laguerre', 'assoc_laguerre': 'eval_genlaguerre', 'beta': 'beta' } _known_constants_scipy_constants = { 'GoldenRatio': 'golden_ratio', 'Pi': 'pi', } class SciPyPrinter(NumPyPrinter): language = "Python with SciPy" _kf = dict(chain( NumPyPrinter._kf.items(), [(k, 'scipy.special.' + v) for k, v in _known_functions_scipy_special.items()] )) _kc =dict(chain( NumPyPrinter._kc.items(), [(k, 'scipy.constants.' + v) for k, v in _known_constants_scipy_constants.items()] )) def _print_SparseMatrix(self, expr): i, j, data = [], [], [] for (r, c), v in expr._smat.items(): i.append(r) j.append(c) data.append(v) return "{name}({data}, ({i}, {j}), shape={shape})".format( name=self._module_format('scipy.sparse.coo_matrix'), data=data, i=i, j=j, shape=expr.shape ) _print_ImmutableSparseMatrix = _print_SparseMatrix # SciPy's lpmv has a different order of arguments from assoc_legendre def _print_assoc_legendre(self, expr): return "{0}({2}, {1}, {3})".format( self._module_format('scipy.special.lpmv'), self._print(expr.args[0]), self._print(expr.args[1]), self._print(expr.args[2])) def _print_lowergamma(self, expr): return "{0}({2})*{1}({2}, {3})".format( self._module_format('scipy.special.gamma'), self._module_format('scipy.special.gammainc'), self._print(expr.args[0]), self._print(expr.args[1])) def _print_uppergamma(self, expr): return "{0}({2})*{1}({2}, {3})".format( self._module_format('scipy.special.gamma'), self._module_format('scipy.special.gammaincc'), self._print(expr.args[0]), self._print(expr.args[1])) def _print_fresnels(self, expr): return "{0}({1})[0]".format( self._module_format("scipy.special.fresnel"), self._print(expr.args[0])) def _print_fresnelc(self, expr): return "{0}({1})[1]".format( self._module_format("scipy.special.fresnel"), self._print(expr.args[0])) for k in SciPyPrinter._kf: setattr(SciPyPrinter, '_print_%s' % k, _print_known_func) for k in SciPyPrinter._kc: setattr(SciPyPrinter, '_print_%s' % k, _print_known_const) class SymPyPrinter(PythonCodePrinter): language = "Python with SymPy" _kf = {k: 'sympy.' + v for k, v in chain( _known_functions.items(), _known_functions_math.items() )} def _print_Function(self, expr): mod = expr.func.__module__ or '' return '%s(%s)' % (self._module_format(mod + ('.' if mod else '') + expr.func.__name__), ', '.join(map(lambda arg: self._print(arg), expr.args))) def _print_Pow(self, expr, rational=False): return self._hprint_Pow(expr, rational=rational, sqrt='sympy.sqrt')
cc9c69c2f9007067a230041e676d9a7ccefed8498a4836890d3c3af196751d2e
""" A Printer for generating readable representation of most sympy classes. """ from __future__ import print_function, division from sympy.core import S, Rational, Pow, Basic, Mul from sympy.core.mul import _keep_coeff from sympy.core.compatibility import string_types from .printer import Printer from sympy.printing.precedence import precedence, PRECEDENCE from mpmath.libmp import prec_to_dps, to_str as mlib_to_str from sympy.utilities import default_sort_key class StrPrinter(Printer): printmethod = "_sympystr" _default_settings = { "order": None, "full_prec": "auto", "sympy_integers": False, "abbrev": False, } _relationals = dict() def parenthesize(self, item, level, strict=False): if (precedence(item) < level) or ((not strict) and precedence(item) <= level): return "(%s)" % self._print(item) else: return self._print(item) def stringify(self, args, sep, level=0): return sep.join([self.parenthesize(item, level) for item in args]) def emptyPrinter(self, expr): if isinstance(expr, string_types): return expr elif isinstance(expr, Basic): return repr(expr) else: return str(expr) def _print_Add(self, expr, order=None): if self.order == 'none': terms = list(expr.args) else: terms = self._as_ordered_terms(expr, order=order) PREC = precedence(expr) l = [] for term in terms: t = self._print(term) if t.startswith('-'): sign = "-" t = t[1:] else: sign = "+" if precedence(term) < PREC: l.extend([sign, "(%s)" % t]) else: l.extend([sign, t]) sign = l.pop(0) if sign == '+': sign = "" return sign + ' '.join(l) def _print_BooleanTrue(self, expr): return "True" def _print_BooleanFalse(self, expr): return "False" def _print_Not(self, expr): return '~%s' %(self.parenthesize(expr.args[0],PRECEDENCE["Not"])) def _print_And(self, expr): return self.stringify(expr.args, " & ", PRECEDENCE["BitwiseAnd"]) def _print_Or(self, expr): return self.stringify(expr.args, " | ", PRECEDENCE["BitwiseOr"]) def _print_Xor(self, expr): return self.stringify(expr.args, " ^ ", PRECEDENCE["BitwiseXor"]) def _print_AppliedPredicate(self, expr): return '%s(%s)' % (self._print(expr.func), self._print(expr.arg)) def _print_Basic(self, expr): l = [self._print(o) for o in expr.args] return expr.__class__.__name__ + "(%s)" % ", ".join(l) def _print_BlockMatrix(self, B): if B.blocks.shape == (1, 1): self._print(B.blocks[0, 0]) return self._print(B.blocks) def _print_Catalan(self, expr): return 'Catalan' def _print_ComplexInfinity(self, expr): return 'zoo' def _print_ConditionSet(self, s): args = tuple([self._print(i) for i in (s.sym, s.condition)]) if s.base_set is S.UniversalSet: return 'ConditionSet(%s, %s)' % args args += (self._print(s.base_set),) return 'ConditionSet(%s, %s, %s)' % args def _print_Derivative(self, expr): dexpr = expr.expr dvars = [i[0] if i[1] == 1 else i for i in expr.variable_count] return 'Derivative(%s)' % ", ".join(map(lambda arg: self._print(arg), [dexpr] + dvars)) def _print_dict(self, d): keys = sorted(d.keys(), key=default_sort_key) items = [] for key in keys: item = "%s: %s" % (self._print(key), self._print(d[key])) items.append(item) return "{%s}" % ", ".join(items) def _print_Dict(self, expr): return self._print_dict(expr) def _print_RandomDomain(self, d): if hasattr(d, 'as_boolean'): return 'Domain: ' + self._print(d.as_boolean()) elif hasattr(d, 'set'): return ('Domain: ' + self._print(d.symbols) + ' in ' + self._print(d.set)) else: return 'Domain on ' + self._print(d.symbols) def _print_Dummy(self, expr): return '_' + expr.name def _print_EulerGamma(self, expr): return 'EulerGamma' def _print_Exp1(self, expr): return 'E' def _print_ExprCondPair(self, expr): return '(%s, %s)' % (self._print(expr.expr), self._print(expr.cond)) def _print_Function(self, expr): return expr.func.__name__ + "(%s)" % self.stringify(expr.args, ", ") def _print_GeometryEntity(self, expr): # GeometryEntity is special -- it's base is tuple return str(expr) def _print_GoldenRatio(self, expr): return 'GoldenRatio' def _print_TribonacciConstant(self, expr): return 'TribonacciConstant' def _print_ImaginaryUnit(self, expr): return 'I' def _print_Infinity(self, expr): return 'oo' def _print_Integral(self, expr): def _xab_tostr(xab): if len(xab) == 1: return self._print(xab[0]) else: return self._print((xab[0],) + tuple(xab[1:])) L = ', '.join([_xab_tostr(l) for l in expr.limits]) return 'Integral(%s, %s)' % (self._print(expr.function), L) def _print_Interval(self, i): fin = 'Interval{m}({a}, {b})' a, b, l, r = i.args if a.is_infinite and b.is_infinite: m = '' elif a.is_infinite and not r: m = '' elif b.is_infinite and not l: m = '' elif not l and not r: m = '' elif l and r: m = '.open' elif l: m = '.Lopen' else: m = '.Ropen' return fin.format(**{'a': a, 'b': b, 'm': m}) def _print_AccumulationBounds(self, i): return "AccumBounds(%s, %s)" % (self._print(i.min), self._print(i.max)) def _print_Inverse(self, I): return "%s**(-1)" % self.parenthesize(I.arg, PRECEDENCE["Pow"]) def _print_Lambda(self, obj): expr = obj.expr sig = obj.signature if len(sig) == 1 and sig[0].is_symbol: sig = sig[0] return "Lambda(%s, %s)" % (self._print(sig), self._print(expr)) def _print_LatticeOp(self, expr): args = sorted(expr.args, key=default_sort_key) return expr.func.__name__ + "(%s)" % ", ".join(self._print(arg) for arg in args) def _print_Limit(self, expr): e, z, z0, dir = expr.args if str(dir) == "+": return "Limit(%s, %s, %s)" % tuple(map(self._print, (e, z, z0))) else: return "Limit(%s, %s, %s, dir='%s')" % tuple(map(self._print, (e, z, z0, dir))) def _print_list(self, expr): return "[%s]" % self.stringify(expr, ", ") def _print_MatrixBase(self, expr): return expr._format_str(self) _print_MutableSparseMatrix = \ _print_ImmutableSparseMatrix = \ _print_Matrix = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ _print_MatrixBase def _print_MatrixElement(self, expr): return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \ + '[%s, %s]' % (self._print(expr.i), self._print(expr.j)) def _print_MatrixSlice(self, expr): def strslice(x): x = list(x) if x[2] == 1: del x[2] if x[1] == x[0] + 1: del x[1] if x[0] == 0: x[0] = '' return ':'.join(map(lambda arg: self._print(arg), x)) return (self._print(expr.parent) + '[' + strslice(expr.rowslice) + ', ' + strslice(expr.colslice) + ']') def _print_DeferredVector(self, expr): return expr.name def _print_Mul(self, expr): prec = precedence(expr) c, e = expr.as_coeff_Mul() if c < 0: expr = _keep_coeff(-c, e) sign = "-" else: sign = "" a = [] # items in the numerator b = [] # items that are in the denominator (if any) pow_paren = [] # Will collect all pow with more than one base element and exp = -1 if self.order not in ('old', 'none'): args = expr.as_ordered_factors() else: # use make_args in case expr was something like -x -> x args = Mul.make_args(expr) # Gather args for numerator/denominator for item in args: if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative: if item.exp != -1: b.append(Pow(item.base, -item.exp, evaluate=False)) else: if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160 pow_paren.append(item) b.append(Pow(item.base, -item.exp)) elif item.is_Rational and item is not S.Infinity: if item.p != 1: a.append(Rational(item.p)) if item.q != 1: b.append(Rational(item.q)) else: a.append(item) a = a or [S.One] a_str = [self.parenthesize(x, prec, strict=False) for x in a] b_str = [self.parenthesize(x, prec, strict=False) for x in b] # To parenthesize Pow with exp = -1 and having more than one Symbol for item in pow_paren: if item.base in b: b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)] if not b: return sign + '*'.join(a_str) elif len(b) == 1: return sign + '*'.join(a_str) + "/" + b_str[0] else: return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str) def _print_MatMul(self, expr): c, m = expr.as_coeff_mmul() if c.is_number and c < 0: expr = _keep_coeff(-c, m) sign = "-" else: sign = "" return sign + '*'.join( [self.parenthesize(arg, precedence(expr)) for arg in expr.args] ) def _print_ElementwiseApplyFunction(self, expr): return "{0}.({1})".format( expr.function, self._print(expr.expr), ) def _print_NaN(self, expr): return 'nan' def _print_NegativeInfinity(self, expr): return '-oo' def _print_Order(self, expr): if not expr.variables or all(p is S.Zero for p in expr.point): if len(expr.variables) <= 1: return 'O(%s)' % self._print(expr.expr) else: return 'O(%s)' % self.stringify((expr.expr,) + expr.variables, ', ', 0) else: return 'O(%s)' % self.stringify(expr.args, ', ', 0) def _print_Ordinal(self, expr): return expr.__str__() def _print_Cycle(self, expr): return expr.__str__() def _print_Permutation(self, expr): from sympy.combinatorics.permutations import Permutation, Cycle if Permutation.print_cyclic: if not expr.size: return '()' # before taking Cycle notation, see if the last element is # a singleton and move it to the head of the string s = Cycle(expr)(expr.size - 1).__repr__()[len('Cycle'):] last = s.rfind('(') if not last == 0 and ',' not in s[last:]: s = s[last:] + s[:last] s = s.replace(',', '') return s else: s = expr.support() if not s: if expr.size < 5: return 'Permutation(%s)' % self._print(expr.array_form) return 'Permutation([], size=%s)' % self._print(expr.size) trim = self._print(expr.array_form[:s[-1] + 1]) + ', size=%s' % self._print(expr.size) use = full = self._print(expr.array_form) if len(trim) < len(full): use = trim return 'Permutation(%s)' % use def _print_Subs(self, obj): expr, old, new = obj.args if len(obj.point) == 1: old = old[0] new = new[0] return "Subs(%s, %s, %s)" % ( self._print(expr), self._print(old), self._print(new)) def _print_TensorIndex(self, expr): return expr._print() def _print_TensorHead(self, expr): return expr._print() def _print_Tensor(self, expr): return expr._print() def _print_TensMul(self, expr): # prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)" sign, args = expr._get_args_for_traditional_printer() return sign + "*".join( [self.parenthesize(arg, precedence(expr)) for arg in args] ) def _print_TensAdd(self, expr): return expr._print() def _print_PermutationGroup(self, expr): p = [' %s' % self._print(a) for a in expr.args] return 'PermutationGroup([\n%s])' % ',\n'.join(p) def _print_Pi(self, expr): return 'pi' def _print_PolyRing(self, ring): return "Polynomial ring in %s over %s with %s order" % \ (", ".join(map(lambda rs: self._print(rs), ring.symbols)), self._print(ring.domain), self._print(ring.order)) def _print_FracField(self, field): return "Rational function field in %s over %s with %s order" % \ (", ".join(map(lambda fs: self._print(fs), field.symbols)), self._print(field.domain), self._print(field.order)) def _print_FreeGroupElement(self, elm): return elm.__str__() def _print_PolyElement(self, poly): return poly.str(self, PRECEDENCE, "%s**%s", "*") def _print_FracElement(self, frac): if frac.denom == 1: return self._print(frac.numer) else: numer = self.parenthesize(frac.numer, PRECEDENCE["Mul"], strict=True) denom = self.parenthesize(frac.denom, PRECEDENCE["Atom"], strict=True) return numer + "/" + denom def _print_Poly(self, expr): ATOM_PREC = PRECEDENCE["Atom"] - 1 terms, gens = [], [ self.parenthesize(s, ATOM_PREC) for s in expr.gens ] for monom, coeff in expr.terms(): s_monom = [] for i, exp in enumerate(monom): if exp > 0: if exp == 1: s_monom.append(gens[i]) else: s_monom.append(gens[i] + "**%d" % exp) s_monom = "*".join(s_monom) if coeff.is_Add: if s_monom: s_coeff = "(" + self._print(coeff) + ")" else: s_coeff = self._print(coeff) else: if s_monom: if coeff is S.One: terms.extend(['+', s_monom]) continue if coeff is S.NegativeOne: terms.extend(['-', s_monom]) continue s_coeff = self._print(coeff) if not s_monom: s_term = s_coeff else: s_term = s_coeff + "*" + s_monom if s_term.startswith('-'): terms.extend(['-', s_term[1:]]) else: terms.extend(['+', s_term]) if terms[0] in ['-', '+']: modifier = terms.pop(0) if modifier == '-': terms[0] = '-' + terms[0] format = expr.__class__.__name__ + "(%s, %s" from sympy.polys.polyerrors import PolynomialError try: format += ", modulus=%s" % expr.get_modulus() except PolynomialError: format += ", domain='%s'" % expr.get_domain() format += ")" for index, item in enumerate(gens): if len(item) > 2 and (item[:1] == "(" and item[len(item) - 1:] == ")"): gens[index] = item[1:len(item) - 1] return format % (' '.join(terms), ', '.join(gens)) def _print_UniversalSet(self, p): return 'UniversalSet' def _print_AlgebraicNumber(self, expr): if expr.is_aliased: return self._print(expr.as_poly().as_expr()) else: return self._print(expr.as_expr()) def _print_Pow(self, expr, rational=False): """Printing helper function for ``Pow`` Parameters ========== rational : bool, optional If ``True``, it will not attempt printing ``sqrt(x)`` or ``x**S.Half`` as ``sqrt``, and will use ``x**(1/2)`` instead. See examples for additional details Examples ======== >>> from sympy.functions import sqrt >>> from sympy.printing.str import StrPrinter >>> from sympy.abc import x How ``rational`` keyword works with ``sqrt``: >>> printer = StrPrinter() >>> printer._print_Pow(sqrt(x), rational=True) 'x**(1/2)' >>> printer._print_Pow(sqrt(x), rational=False) 'sqrt(x)' >>> printer._print_Pow(1/sqrt(x), rational=True) 'x**(-1/2)' >>> printer._print_Pow(1/sqrt(x), rational=False) '1/sqrt(x)' Notes ===== ``sqrt(x)`` is canonicalized as ``Pow(x, S.Half)`` in SymPy, so there is no need of defining a separate printer for ``sqrt``. Instead, it should be handled here as well. """ PREC = precedence(expr) if expr.exp is S.Half and not rational: return "sqrt(%s)" % self._print(expr.base) if expr.is_commutative: if -expr.exp is S.Half and not rational: # Note: Don't test "expr.exp == -S.Half" here, because that will # match -0.5, which we don't want. return "%s/sqrt(%s)" % tuple(map(lambda arg: self._print(arg), (S.One, expr.base))) if expr.exp is -S.One: # Similarly to the S.Half case, don't test with "==" here. return '%s/%s' % (self._print(S.One), self.parenthesize(expr.base, PREC, strict=False)) e = self.parenthesize(expr.exp, PREC, strict=False) if self.printmethod == '_sympyrepr' and expr.exp.is_Rational and expr.exp.q != 1: # the parenthesized exp should be '(Rational(a, b))' so strip parens, # but just check to be sure. if e.startswith('(Rational'): return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e[1:-1]) return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e) def _print_UnevaluatedExpr(self, expr): return self._print(expr.args[0]) def _print_MatPow(self, expr): PREC = precedence(expr) return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), self.parenthesize(expr.exp, PREC, strict=False)) def _print_ImmutableDenseNDimArray(self, expr): return str(expr) def _print_ImmutableSparseNDimArray(self, expr): return str(expr) def _print_Integer(self, expr): if self._settings.get("sympy_integers", False): return "S(%s)" % (expr) return str(expr.p) def _print_Integers(self, expr): return 'Integers' def _print_Naturals(self, expr): return 'Naturals' def _print_Naturals0(self, expr): return 'Naturals0' def _print_Rationals(self, expr): return 'Rationals' def _print_Reals(self, expr): return 'Reals' def _print_Complexes(self, expr): return 'Complexes' def _print_EmptySet(self, expr): return 'EmptySet' def _print_EmptySequence(self, expr): return 'EmptySequence' def _print_int(self, expr): return str(expr) def _print_mpz(self, expr): return str(expr) def _print_Rational(self, expr): if expr.q == 1: return str(expr.p) else: if self._settings.get("sympy_integers", False): return "S(%s)/%s" % (expr.p, expr.q) return "%s/%s" % (expr.p, expr.q) def _print_PythonRational(self, expr): if expr.q == 1: return str(expr.p) else: return "%d/%d" % (expr.p, expr.q) def _print_Fraction(self, expr): if expr.denominator == 1: return str(expr.numerator) else: return "%s/%s" % (expr.numerator, expr.denominator) def _print_mpq(self, expr): if expr.denominator == 1: return str(expr.numerator) else: return "%s/%s" % (expr.numerator, expr.denominator) def _print_Float(self, expr): prec = expr._prec if prec < 5: dps = 0 else: dps = prec_to_dps(expr._prec) if self._settings["full_prec"] is True: strip = False elif self._settings["full_prec"] is False: strip = True elif self._settings["full_prec"] == "auto": strip = self._print_level > 1 rv = mlib_to_str(expr._mpf_, dps, strip_zeros=strip) if rv.startswith('-.0'): rv = '-0.' + rv[3:] elif rv.startswith('.0'): rv = '0.' + rv[2:] if rv.startswith('+'): # e.g., +inf -> inf rv = rv[1:] return rv def _print_Relational(self, expr): charmap = { "==": "Eq", "!=": "Ne", ":=": "Assignment", '+=': "AddAugmentedAssignment", "-=": "SubAugmentedAssignment", "*=": "MulAugmentedAssignment", "/=": "DivAugmentedAssignment", "%=": "ModAugmentedAssignment", } if expr.rel_op in charmap: return '%s(%s, %s)' % (charmap[expr.rel_op], self._print(expr.lhs), self._print(expr.rhs)) return '%s %s %s' % (self.parenthesize(expr.lhs, precedence(expr)), self._relationals.get(expr.rel_op) or expr.rel_op, self.parenthesize(expr.rhs, precedence(expr))) def _print_ComplexRootOf(self, expr): return "CRootOf(%s, %d)" % (self._print_Add(expr.expr, order='lex'), expr.index) def _print_RootSum(self, expr): args = [self._print_Add(expr.expr, order='lex')] if expr.fun is not S.IdentityFunction: args.append(self._print(expr.fun)) return "RootSum(%s)" % ", ".join(args) def _print_GroebnerBasis(self, basis): cls = basis.__class__.__name__ exprs = [self._print_Add(arg, order=basis.order) for arg in basis.exprs] exprs = "[%s]" % ", ".join(exprs) gens = [ self._print(gen) for gen in basis.gens ] domain = "domain='%s'" % self._print(basis.domain) order = "order='%s'" % self._print(basis.order) args = [exprs] + gens + [domain, order] return "%s(%s)" % (cls, ", ".join(args)) def _print_set(self, s): items = sorted(s, key=default_sort_key) args = ', '.join(self._print(item) for item in items) if not args: return "set()" return '{%s}' % args def _print_frozenset(self, s): if not s: return "frozenset()" return "frozenset(%s)" % self._print_set(s) def _print_SparseMatrix(self, expr): from sympy.matrices import Matrix return self._print(Matrix(expr)) def _print_Sum(self, expr): def _xab_tostr(xab): if len(xab) == 1: return self._print(xab[0]) else: return self._print((xab[0],) + tuple(xab[1:])) L = ', '.join([_xab_tostr(l) for l in expr.limits]) return 'Sum(%s, %s)' % (self._print(expr.function), L) def _print_Symbol(self, expr): return expr.name _print_MatrixSymbol = _print_Symbol _print_RandomSymbol = _print_Symbol def _print_Identity(self, expr): return "I" def _print_ZeroMatrix(self, expr): return "0" def _print_OneMatrix(self, expr): return "1" def _print_Predicate(self, expr): return "Q.%s" % expr.name def _print_str(self, expr): return str(expr) def _print_tuple(self, expr): if len(expr) == 1: return "(%s,)" % self._print(expr[0]) else: return "(%s)" % self.stringify(expr, ", ") def _print_Tuple(self, expr): return self._print_tuple(expr) def _print_Transpose(self, T): return "%s.T" % self.parenthesize(T.arg, PRECEDENCE["Pow"]) def _print_Uniform(self, expr): return "Uniform(%s, %s)" % (self._print(expr.a), self._print(expr.b)) def _print_Quantity(self, expr): if self._settings.get("abbrev", False): return "%s" % expr.abbrev return "%s" % expr.name def _print_Quaternion(self, expr): s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True) for i in expr.args] a = [s[0]] + [i+"*"+j for i, j in zip(s[1:], "ijk")] return " + ".join(a) def _print_Dimension(self, expr): return str(expr) def _print_Wild(self, expr): return expr.name + '_' def _print_WildFunction(self, expr): return expr.name + '_' def _print_Zero(self, expr): if self._settings.get("sympy_integers", False): return "S(0)" return "0" def _print_DMP(self, p): from sympy.core.sympify import SympifyError try: if p.ring is not None: # TODO incorporate order return self._print(p.ring.to_sympy(p)) except SympifyError: pass cls = p.__class__.__name__ rep = self._print(p.rep) dom = self._print(p.dom) ring = self._print(p.ring) return "%s(%s, %s, %s)" % (cls, rep, dom, ring) def _print_DMF(self, expr): return self._print_DMP(expr) def _print_Object(self, obj): return 'Object("%s")' % obj.name def _print_IdentityMorphism(self, morphism): return 'IdentityMorphism(%s)' % morphism.domain def _print_NamedMorphism(self, morphism): return 'NamedMorphism(%s, %s, "%s")' % \ (morphism.domain, morphism.codomain, morphism.name) def _print_Category(self, category): return 'Category("%s")' % category.name def _print_BaseScalarField(self, field): return field._coord_sys._names[field._index] def _print_BaseVectorField(self, field): return 'e_%s' % field._coord_sys._names[field._index] def _print_Differential(self, diff): field = diff._form_field if hasattr(field, '_coord_sys'): return 'd%s' % field._coord_sys._names[field._index] else: return 'd(%s)' % self._print(field) def _print_Tr(self, expr): #TODO : Handle indices return "%s(%s)" % ("Tr", self._print(expr.args[0])) def sstr(expr, **settings): """Returns the expression as a string. For large expressions where speed is a concern, use the setting order='none'. If abbrev=True setting is used then units are printed in abbreviated form. Examples ======== >>> from sympy import symbols, Eq, sstr >>> a, b = symbols('a b') >>> sstr(Eq(a + b, 0)) 'Eq(a + b, 0)' """ p = StrPrinter(settings) s = p.doprint(expr) return s class StrReprPrinter(StrPrinter): """(internal) -- see sstrrepr""" def _print_str(self, s): return repr(s) def sstrrepr(expr, **settings): """return expr in mixed str/repr form i.e. strings are returned in repr form with quotes, and everything else is returned in str form. This function could be useful for hooking into sys.displayhook """ p = StrReprPrinter(settings) s = p.doprint(expr) return s
688d33b62198cd6cd5735e5903b265f0c0341a3f69d3845476d9e710a41cff60
""" A Printer which converts an expression into its LaTeX equivalent. """ from __future__ import print_function, division import itertools from sympy.core import S, Add, Symbol, Mod from sympy.core.alphabets import greeks from sympy.core.containers import Tuple from sympy.core.function import _coeff_isneg, AppliedUndef, Derivative from sympy.core.operations import AssocOp from sympy.core.sympify import SympifyError from sympy.logic.boolalg import true # sympy.printing imports from sympy.printing.precedence import precedence_traditional from sympy.printing.printer import Printer from sympy.printing.conventions import split_super_sub, requires_partial from sympy.printing.precedence import precedence, PRECEDENCE import mpmath.libmp as mlib from mpmath.libmp import prec_to_dps from sympy.core.compatibility import default_sort_key, range from sympy.utilities.iterables import has_variety import re # Hand-picked functions which can be used directly in both LaTeX and MathJax # Complete list at # https://docs.mathjax.org/en/latest/tex.html#supported-latex-commands # This variable only contains those functions which sympy uses. accepted_latex_functions = ['arcsin', 'arccos', 'arctan', 'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'sqrt', 'ln', 'log', 'sec', 'csc', 'cot', 'coth', 're', 'im', 'frac', 'root', 'arg', ] tex_greek_dictionary = { 'Alpha': 'A', 'Beta': 'B', 'Gamma': r'\Gamma', 'Delta': r'\Delta', 'Epsilon': 'E', 'Zeta': 'Z', 'Eta': 'H', 'Theta': r'\Theta', 'Iota': 'I', 'Kappa': 'K', 'Lambda': r'\Lambda', 'Mu': 'M', 'Nu': 'N', 'Xi': r'\Xi', 'omicron': 'o', 'Omicron': 'O', 'Pi': r'\Pi', 'Rho': 'P', 'Sigma': r'\Sigma', 'Tau': 'T', 'Upsilon': r'\Upsilon', 'Phi': r'\Phi', 'Chi': 'X', 'Psi': r'\Psi', 'Omega': r'\Omega', 'lamda': r'\lambda', 'Lamda': r'\Lambda', 'khi': r'\chi', 'Khi': r'X', 'varepsilon': r'\varepsilon', 'varkappa': r'\varkappa', 'varphi': r'\varphi', 'varpi': r'\varpi', 'varrho': r'\varrho', 'varsigma': r'\varsigma', 'vartheta': r'\vartheta', } other_symbols = set(['aleph', 'beth', 'daleth', 'gimel', 'ell', 'eth', 'hbar', 'hslash', 'mho', 'wp', ]) # Variable name modifiers modifier_dict = { # Accents 'mathring': lambda s: r'\mathring{'+s+r'}', 'ddddot': lambda s: r'\ddddot{'+s+r'}', 'dddot': lambda s: r'\dddot{'+s+r'}', 'ddot': lambda s: r'\ddot{'+s+r'}', 'dot': lambda s: r'\dot{'+s+r'}', 'check': lambda s: r'\check{'+s+r'}', 'breve': lambda s: r'\breve{'+s+r'}', 'acute': lambda s: r'\acute{'+s+r'}', 'grave': lambda s: r'\grave{'+s+r'}', 'tilde': lambda s: r'\tilde{'+s+r'}', 'hat': lambda s: r'\hat{'+s+r'}', 'bar': lambda s: r'\bar{'+s+r'}', 'vec': lambda s: r'\vec{'+s+r'}', 'prime': lambda s: "{"+s+"}'", 'prm': lambda s: "{"+s+"}'", # Faces 'bold': lambda s: r'\boldsymbol{'+s+r'}', 'bm': lambda s: r'\boldsymbol{'+s+r'}', 'cal': lambda s: r'\mathcal{'+s+r'}', 'scr': lambda s: r'\mathscr{'+s+r'}', 'frak': lambda s: r'\mathfrak{'+s+r'}', # Brackets 'norm': lambda s: r'\left\|{'+s+r'}\right\|', 'avg': lambda s: r'\left\langle{'+s+r'}\right\rangle', 'abs': lambda s: r'\left|{'+s+r'}\right|', 'mag': lambda s: r'\left|{'+s+r'}\right|', } greek_letters_set = frozenset(greeks) _between_two_numbers_p = ( re.compile(r'[0-9][} ]*$'), # search re.compile(r'[{ ]*[-+0-9]'), # match ) class LatexPrinter(Printer): printmethod = "_latex" _default_settings = { "fold_frac_powers": False, "fold_func_brackets": False, "fold_short_frac": None, "inv_trig_style": "abbreviated", "itex": False, "ln_notation": False, "long_frac_ratio": None, "mat_delim": "[", "mat_str": None, "mode": "plain", "mul_symbol": None, "order": None, "symbol_names": {}, "root_notation": True, "mat_symbol_style": "plain", "imaginary_unit": "i", "gothic_re_im": False, "decimal_separator": "period", } def __init__(self, settings=None): Printer.__init__(self, settings) if 'mode' in self._settings: valid_modes = ['inline', 'plain', 'equation', 'equation*'] if self._settings['mode'] not in valid_modes: raise ValueError("'mode' must be one of 'inline', 'plain', " "'equation' or 'equation*'") if self._settings['fold_short_frac'] is None and \ self._settings['mode'] == 'inline': self._settings['fold_short_frac'] = True mul_symbol_table = { None: r" ", "ldot": r" \,.\, ", "dot": r" \cdot ", "times": r" \times " } try: self._settings['mul_symbol_latex'] = \ mul_symbol_table[self._settings['mul_symbol']] except KeyError: self._settings['mul_symbol_latex'] = \ self._settings['mul_symbol'] try: self._settings['mul_symbol_latex_numbers'] = \ mul_symbol_table[self._settings['mul_symbol'] or 'dot'] except KeyError: if (self._settings['mul_symbol'].strip() in ['', ' ', '\\', '\\,', '\\:', '\\;', '\\quad']): self._settings['mul_symbol_latex_numbers'] = \ mul_symbol_table['dot'] else: self._settings['mul_symbol_latex_numbers'] = \ self._settings['mul_symbol'] self._delim_dict = {'(': ')', '[': ']'} imaginary_unit_table = { None: r"i", "i": r"i", "ri": r"\mathrm{i}", "ti": r"\text{i}", "j": r"j", "rj": r"\mathrm{j}", "tj": r"\text{j}", } try: self._settings['imaginary_unit_latex'] = \ imaginary_unit_table[self._settings['imaginary_unit']] except KeyError: self._settings['imaginary_unit_latex'] = \ self._settings['imaginary_unit'] def parenthesize(self, item, level, strict=False): prec_val = precedence_traditional(item) if (prec_val < level) or ((not strict) and prec_val <= level): return r"\left({}\right)".format(self._print(item)) else: return self._print(item) def parenthesize_super(self, s): """ Parenthesize s if there is a superscript in s""" if "^" in s: return r"\left({}\right)".format(s) return s def embed_super(self, s): """ Embed s in {} if there is a superscript in s""" if "^" in s: return "{{{}}}".format(s) return s def doprint(self, expr): tex = Printer.doprint(self, expr) if self._settings['mode'] == 'plain': return tex elif self._settings['mode'] == 'inline': return r"$%s$" % tex elif self._settings['itex']: return r"$$%s$$" % tex else: env_str = self._settings['mode'] return r"\begin{%s}%s\end{%s}" % (env_str, tex, env_str) def _needs_brackets(self, expr): """ Returns True if the expression needs to be wrapped in brackets when printed, False otherwise. For example: a + b => True; a => False; 10 => False; -10 => True. """ return not ((expr.is_Integer and expr.is_nonnegative) or (expr.is_Atom and (expr is not S.NegativeOne and expr.is_Rational is False))) def _needs_function_brackets(self, expr): """ Returns True if the expression needs to be wrapped in brackets when passed as an argument to a function, False otherwise. This is a more liberal version of _needs_brackets, in that many expressions which need to be wrapped in brackets when added/subtracted/raised to a power do not need them when passed to a function. Such an example is a*b. """ if not self._needs_brackets(expr): return False else: # Muls of the form a*b*c... can be folded if expr.is_Mul and not self._mul_is_clean(expr): return True # Pows which don't need brackets can be folded elif expr.is_Pow and not self._pow_is_clean(expr): return True # Add and Function always need brackets elif expr.is_Add or expr.is_Function: return True else: return False def _needs_mul_brackets(self, expr, first=False, last=False): """ Returns True if the expression needs to be wrapped in brackets when printed as part of a Mul, False otherwise. This is True for Add, but also for some container objects that would not need brackets when appearing last in a Mul, e.g. an Integral. ``last=True`` specifies that this expr is the last to appear in a Mul. ``first=True`` specifies that this expr is the first to appear in a Mul. """ from sympy import Integral, Product, Sum if expr.is_Mul: if not first and _coeff_isneg(expr): return True elif precedence_traditional(expr) < PRECEDENCE["Mul"]: return True elif expr.is_Relational: return True if expr.is_Piecewise: return True if any([expr.has(x) for x in (Mod,)]): return True if (not last and any([expr.has(x) for x in (Integral, Product, Sum)])): return True return False def _needs_add_brackets(self, expr): """ Returns True if the expression needs to be wrapped in brackets when printed as part of an Add, False otherwise. This is False for most things. """ if expr.is_Relational: return True if any([expr.has(x) for x in (Mod,)]): return True if expr.is_Add: return True return False def _mul_is_clean(self, expr): for arg in expr.args: if arg.is_Function: return False return True def _pow_is_clean(self, expr): return not self._needs_brackets(expr.base) def _do_exponent(self, expr, exp): if exp is not None: return r"\left(%s\right)^{%s}" % (expr, exp) else: return expr def _print_Basic(self, expr): ls = [self._print(o) for o in expr.args] return self._deal_with_super_sub(expr.__class__.__name__) + \ r"\left(%s\right)" % ", ".join(ls) def _print_bool(self, e): return r"\text{%s}" % e _print_BooleanTrue = _print_bool _print_BooleanFalse = _print_bool def _print_NoneType(self, e): return r"\text{%s}" % e def _print_Add(self, expr, order=None): if self.order == 'none': terms = list(expr.args) else: terms = self._as_ordered_terms(expr, order=order) tex = "" for i, term in enumerate(terms): if i == 0: pass elif _coeff_isneg(term): tex += " - " term = -term else: tex += " + " term_tex = self._print(term) if self._needs_add_brackets(term): term_tex = r"\left(%s\right)" % term_tex tex += term_tex return tex def _print_Cycle(self, expr): from sympy.combinatorics.permutations import Permutation if expr.size == 0: return r"\left( \right)" expr = Permutation(expr) expr_perm = expr.cyclic_form siz = expr.size if expr.array_form[-1] == siz - 1: expr_perm = expr_perm + [[siz - 1]] term_tex = '' for i in expr_perm: term_tex += str(i).replace(',', r"\;") term_tex = term_tex.replace('[', r"\left( ") term_tex = term_tex.replace(']', r"\right)") return term_tex _print_Permutation = _print_Cycle def _print_Float(self, expr): # Based off of that in StrPrinter dps = prec_to_dps(expr._prec) str_real = mlib.to_str(expr._mpf_, dps, strip_zeros=True) # Must always have a mul symbol (as 2.5 10^{20} just looks odd) # thus we use the number separator separator = self._settings['mul_symbol_latex_numbers'] if 'e' in str_real: (mant, exp) = str_real.split('e') if exp[0] == '+': exp = exp[1:] if self._settings['decimal_separator'] == 'comma': mant = mant.replace('.','{,}') return r"%s%s10^{%s}" % (mant, separator, exp) elif str_real == "+inf": return r"\infty" elif str_real == "-inf": return r"- \infty" else: if self._settings['decimal_separator'] == 'comma': str_real = str_real.replace('.','{,}') return str_real def _print_Cross(self, expr): vec1 = expr._expr1 vec2 = expr._expr2 return r"%s \times %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']), self.parenthesize(vec2, PRECEDENCE['Mul'])) def _print_Curl(self, expr): vec = expr._expr return r"\nabla\times %s" % self.parenthesize(vec, PRECEDENCE['Mul']) def _print_Divergence(self, expr): vec = expr._expr return r"\nabla\cdot %s" % self.parenthesize(vec, PRECEDENCE['Mul']) def _print_Dot(self, expr): vec1 = expr._expr1 vec2 = expr._expr2 return r"%s \cdot %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']), self.parenthesize(vec2, PRECEDENCE['Mul'])) def _print_Gradient(self, expr): func = expr._expr return r"\nabla %s" % self.parenthesize(func, PRECEDENCE['Mul']) def _print_Laplacian(self, expr): func = expr._expr return r"\triangle %s" % self.parenthesize(func, PRECEDENCE['Mul']) def _print_Mul(self, expr): from sympy.core.power import Pow from sympy.physics.units import Quantity include_parens = False if _coeff_isneg(expr): expr = -expr tex = "- " if expr.is_Add: tex += "(" include_parens = True else: tex = "" from sympy.simplify import fraction numer, denom = fraction(expr, exact=True) separator = self._settings['mul_symbol_latex'] numbersep = self._settings['mul_symbol_latex_numbers'] def convert(expr): if not expr.is_Mul: return str(self._print(expr)) else: _tex = last_term_tex = "" if self.order not in ('old', 'none'): args = expr.as_ordered_factors() else: args = list(expr.args) # If quantities are present append them at the back args = sorted(args, key=lambda x: isinstance(x, Quantity) or (isinstance(x, Pow) and isinstance(x.base, Quantity))) for i, term in enumerate(args): term_tex = self._print(term) if self._needs_mul_brackets(term, first=(i == 0), last=(i == len(args) - 1)): term_tex = r"\left(%s\right)" % term_tex if _between_two_numbers_p[0].search(last_term_tex) and \ _between_two_numbers_p[1].match(term_tex): # between two numbers _tex += numbersep elif _tex: _tex += separator _tex += term_tex last_term_tex = term_tex return _tex if denom is S.One and Pow(1, -1, evaluate=False) not in expr.args: # use the original expression here, since fraction() may have # altered it when producing numer and denom tex += convert(expr) else: snumer = convert(numer) sdenom = convert(denom) ldenom = len(sdenom.split()) ratio = self._settings['long_frac_ratio'] if self._settings['fold_short_frac'] and ldenom <= 2 and \ "^" not in sdenom: # handle short fractions if self._needs_mul_brackets(numer, last=False): tex += r"\left(%s\right) / %s" % (snumer, sdenom) else: tex += r"%s / %s" % (snumer, sdenom) elif ratio is not None and \ len(snumer.split()) > ratio*ldenom: # handle long fractions if self._needs_mul_brackets(numer, last=True): tex += r"\frac{1}{%s}%s\left(%s\right)" \ % (sdenom, separator, snumer) elif numer.is_Mul: # split a long numerator a = S.One b = S.One for x in numer.args: if self._needs_mul_brackets(x, last=False) or \ len(convert(a*x).split()) > ratio*ldenom or \ (b.is_commutative is x.is_commutative is False): b *= x else: a *= x if self._needs_mul_brackets(b, last=True): tex += r"\frac{%s}{%s}%s\left(%s\right)" \ % (convert(a), sdenom, separator, convert(b)) else: tex += r"\frac{%s}{%s}%s%s" \ % (convert(a), sdenom, separator, convert(b)) else: tex += r"\frac{1}{%s}%s%s" % (sdenom, separator, snumer) else: tex += r"\frac{%s}{%s}" % (snumer, sdenom) if include_parens: tex += ")" return tex def _print_Pow(self, expr): # Treat x**Rational(1,n) as special case if expr.exp.is_Rational and abs(expr.exp.p) == 1 and expr.exp.q != 1 \ and self._settings['root_notation']: base = self._print(expr.base) expq = expr.exp.q if expq == 2: tex = r"\sqrt{%s}" % base elif self._settings['itex']: tex = r"\root{%d}{%s}" % (expq, base) else: tex = r"\sqrt[%d]{%s}" % (expq, base) if expr.exp.is_negative: return r"\frac{1}{%s}" % tex else: return tex elif self._settings['fold_frac_powers'] \ and expr.exp.is_Rational \ and expr.exp.q != 1: base = self.parenthesize(expr.base, PRECEDENCE['Pow']) p, q = expr.exp.p, expr.exp.q # issue #12886: add parentheses for superscripts raised to powers if '^' in base and expr.base.is_Symbol: base = r"\left(%s\right)" % base if expr.base.is_Function: return self._print(expr.base, exp="%s/%s" % (p, q)) return r"%s^{%s/%s}" % (base, p, q) elif expr.exp.is_Rational and expr.exp.is_negative and \ expr.base.is_commutative: # special case for 1^(-x), issue 9216 if expr.base == 1: return r"%s^{%s}" % (expr.base, expr.exp) # things like 1/x return self._print_Mul(expr) else: if expr.base.is_Function: return self._print(expr.base, exp=self._print(expr.exp)) else: tex = r"%s^{%s}" return self._helper_print_standard_power(expr, tex) def _helper_print_standard_power(self, expr, template): exp = self._print(expr.exp) # issue #12886: add parentheses around superscripts raised # to powers base = self.parenthesize(expr.base, PRECEDENCE['Pow']) if '^' in base and expr.base.is_Symbol: base = r"\left(%s\right)" % base elif (isinstance(expr.base, Derivative) and base.startswith(r'\left(') and re.match(r'\\left\(\\d?d?dot', base) and base.endswith(r'\right)')): # don't use parentheses around dotted derivative base = base[6: -7] # remove outermost added parens return template % (base, exp) def _print_UnevaluatedExpr(self, expr): return self._print(expr.args[0]) def _print_Sum(self, expr): if len(expr.limits) == 1: tex = r"\sum_{%s=%s}^{%s} " % \ tuple([self._print(i) for i in expr.limits[0]]) else: def _format_ineq(l): return r"%s \leq %s \leq %s" % \ tuple([self._print(s) for s in (l[1], l[0], l[2])]) tex = r"\sum_{\substack{%s}} " % \ str.join('\\\\', [_format_ineq(l) for l in expr.limits]) if isinstance(expr.function, Add): tex += r"\left(%s\right)" % self._print(expr.function) else: tex += self._print(expr.function) return tex def _print_Product(self, expr): if len(expr.limits) == 1: tex = r"\prod_{%s=%s}^{%s} " % \ tuple([self._print(i) for i in expr.limits[0]]) else: def _format_ineq(l): return r"%s \leq %s \leq %s" % \ tuple([self._print(s) for s in (l[1], l[0], l[2])]) tex = r"\prod_{\substack{%s}} " % \ str.join('\\\\', [_format_ineq(l) for l in expr.limits]) if isinstance(expr.function, Add): tex += r"\left(%s\right)" % self._print(expr.function) else: tex += self._print(expr.function) return tex def _print_BasisDependent(self, expr): from sympy.vector import Vector o1 = [] if expr == expr.zero: return expr.zero._latex_form if isinstance(expr, Vector): items = expr.separate().items() else: items = [(0, expr)] for system, vect in items: inneritems = list(vect.components.items()) inneritems.sort(key=lambda x: x[0].__str__()) for k, v in inneritems: if v == 1: o1.append(' + ' + k._latex_form) elif v == -1: o1.append(' - ' + k._latex_form) else: arg_str = '(' + LatexPrinter().doprint(v) + ')' o1.append(' + ' + arg_str + k._latex_form) outstr = (''.join(o1)) if outstr[1] != '-': outstr = outstr[3:] else: outstr = outstr[1:] return outstr def _print_Indexed(self, expr): tex_base = self._print(expr.base) tex = '{'+tex_base+'}'+'_{%s}' % ','.join( map(self._print, expr.indices)) return tex def _print_IndexedBase(self, expr): return self._print(expr.label) def _print_Derivative(self, expr): if requires_partial(expr.expr): diff_symbol = r'\partial' else: diff_symbol = r'd' tex = "" dim = 0 for x, num in reversed(expr.variable_count): dim += num if num == 1: tex += r"%s %s" % (diff_symbol, self._print(x)) else: tex += r"%s %s^{%s}" % (diff_symbol, self.parenthesize_super(self._print(x)), self._print(num)) if dim == 1: tex = r"\frac{%s}{%s}" % (diff_symbol, tex) else: tex = r"\frac{%s^{%s}}{%s}" % (diff_symbol, self._print(dim), tex) return r"%s %s" % (tex, self.parenthesize(expr.expr, PRECEDENCE["Mul"], strict=True)) def _print_Subs(self, subs): expr, old, new = subs.args latex_expr = self._print(expr) latex_old = (self._print(e) for e in old) latex_new = (self._print(e) for e in new) latex_subs = r'\\ '.join( e[0] + '=' + e[1] for e in zip(latex_old, latex_new)) return r'\left. %s \right|_{\substack{ %s }}' % (latex_expr, latex_subs) def _print_Integral(self, expr): tex, symbols = "", [] # Only up to \iiiint exists if len(expr.limits) <= 4 and all(len(lim) == 1 for lim in expr.limits): # Use len(expr.limits)-1 so that syntax highlighters don't think # \" is an escaped quote tex = r"\i" + "i"*(len(expr.limits) - 1) + "nt" symbols = [r"\, d%s" % self._print(symbol[0]) for symbol in expr.limits] else: for lim in reversed(expr.limits): symbol = lim[0] tex += r"\int" if len(lim) > 1: if self._settings['mode'] != 'inline' \ and not self._settings['itex']: tex += r"\limits" if len(lim) == 3: tex += "_{%s}^{%s}" % (self._print(lim[1]), self._print(lim[2])) if len(lim) == 2: tex += "^{%s}" % (self._print(lim[1])) symbols.insert(0, r"\, d%s" % self._print(symbol)) return r"%s %s%s" % (tex, self.parenthesize(expr.function, PRECEDENCE["Mul"], strict=True), "".join(symbols)) def _print_Limit(self, expr): e, z, z0, dir = expr.args tex = r"\lim_{%s \to " % self._print(z) if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity): tex += r"%s}" % self._print(z0) else: tex += r"%s^%s}" % (self._print(z0), self._print(dir)) if isinstance(e, AssocOp): return r"%s\left(%s\right)" % (tex, self._print(e)) else: return r"%s %s" % (tex, self._print(e)) def _hprint_Function(self, func): r''' Logic to decide how to render a function to latex - if it is a recognized latex name, use the appropriate latex command - if it is a single letter, just use that letter - if it is a longer name, then put \operatorname{} around it and be mindful of undercores in the name ''' func = self._deal_with_super_sub(func) if func in accepted_latex_functions: name = r"\%s" % func elif len(func) == 1 or func.startswith('\\'): name = func else: name = r"\operatorname{%s}" % func return name def _print_Function(self, expr, exp=None): r''' Render functions to LaTeX, handling functions that LaTeX knows about e.g., sin, cos, ... by using the proper LaTeX command (\sin, \cos, ...). For single-letter function names, render them as regular LaTeX math symbols. For multi-letter function names that LaTeX does not know about, (e.g., Li, sech) use \operatorname{} so that the function name is rendered in Roman font and LaTeX handles spacing properly. expr is the expression involving the function exp is an exponent ''' func = expr.func.__name__ if hasattr(self, '_print_' + func) and \ not isinstance(expr, AppliedUndef): return getattr(self, '_print_' + func)(expr, exp) else: args = [str(self._print(arg)) for arg in expr.args] # How inverse trig functions should be displayed, formats are: # abbreviated: asin, full: arcsin, power: sin^-1 inv_trig_style = self._settings['inv_trig_style'] # If we are dealing with a power-style inverse trig function inv_trig_power_case = False # If it is applicable to fold the argument brackets can_fold_brackets = self._settings['fold_func_brackets'] and \ len(args) == 1 and \ not self._needs_function_brackets(expr.args[0]) inv_trig_table = ["asin", "acos", "atan", "acsc", "asec", "acot"] # If the function is an inverse trig function, handle the style if func in inv_trig_table: if inv_trig_style == "abbreviated": pass elif inv_trig_style == "full": func = "arc" + func[1:] elif inv_trig_style == "power": func = func[1:] inv_trig_power_case = True # Can never fold brackets if we're raised to a power if exp is not None: can_fold_brackets = False if inv_trig_power_case: if func in accepted_latex_functions: name = r"\%s^{-1}" % func else: name = r"\operatorname{%s}^{-1}" % func elif exp is not None: name = r'%s^{%s}' % (self._hprint_Function(func), exp) else: name = self._hprint_Function(func) if can_fold_brackets: if func in accepted_latex_functions: # Wrap argument safely to avoid parse-time conflicts # with the function name itself name += r" {%s}" else: name += r"%s" else: name += r"{\left(%s \right)}" if inv_trig_power_case and exp is not None: name += r"^{%s}" % exp return name % ",".join(args) def _print_UndefinedFunction(self, expr): return self._hprint_Function(str(expr)) def _print_ElementwiseApplyFunction(self, expr): return r"{%s}_{\circ}\left({%s}\right)" % ( self._print(expr.function), self._print(expr.expr), ) @property def _special_function_classes(self): from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.functions.special.gamma_functions import gamma, lowergamma from sympy.functions.special.beta_functions import beta from sympy.functions.special.delta_functions import DiracDelta from sympy.functions.special.error_functions import Chi return {KroneckerDelta: r'\delta', gamma: r'\Gamma', lowergamma: r'\gamma', beta: r'\operatorname{B}', DiracDelta: r'\delta', Chi: r'\operatorname{Chi}'} def _print_FunctionClass(self, expr): for cls in self._special_function_classes: if issubclass(expr, cls) and expr.__name__ == cls.__name__: return self._special_function_classes[cls] return self._hprint_Function(str(expr)) def _print_Lambda(self, expr): symbols, expr = expr.args if len(symbols) == 1: symbols = self._print(symbols[0]) else: symbols = self._print(tuple(symbols)) tex = r"\left( %s \mapsto %s \right)" % (symbols, self._print(expr)) return tex def _hprint_variadic_function(self, expr, exp=None): args = sorted(expr.args, key=default_sort_key) texargs = [r"%s" % self._print(symbol) for symbol in args] tex = r"\%s\left(%s\right)" % (self._print((str(expr.func)).lower()), ", ".join(texargs)) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex _print_Min = _print_Max = _hprint_variadic_function def _print_floor(self, expr, exp=None): tex = r"\left\lfloor{%s}\right\rfloor" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_ceiling(self, expr, exp=None): tex = r"\left\lceil{%s}\right\rceil" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_log(self, expr, exp=None): if not self._settings["ln_notation"]: tex = r"\log{\left(%s \right)}" % self._print(expr.args[0]) else: tex = r"\ln{\left(%s \right)}" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_Abs(self, expr, exp=None): tex = r"\left|{%s}\right|" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex _print_Determinant = _print_Abs def _print_re(self, expr, exp=None): if self._settings['gothic_re_im']: tex = r"\Re{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom']) else: tex = r"\operatorname{{re}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom'])) return self._do_exponent(tex, exp) def _print_im(self, expr, exp=None): if self._settings['gothic_re_im']: tex = r"\Im{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom']) else: tex = r"\operatorname{{im}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom'])) return self._do_exponent(tex, exp) def _print_Not(self, e): from sympy import Equivalent, Implies if isinstance(e.args[0], Equivalent): return self._print_Equivalent(e.args[0], r"\not\Leftrightarrow") if isinstance(e.args[0], Implies): return self._print_Implies(e.args[0], r"\not\Rightarrow") if (e.args[0].is_Boolean): return r"\neg \left(%s\right)" % self._print(e.args[0]) else: return r"\neg %s" % self._print(e.args[0]) def _print_LogOp(self, args, char): arg = args[0] if arg.is_Boolean and not arg.is_Not: tex = r"\left(%s\right)" % self._print(arg) else: tex = r"%s" % self._print(arg) for arg in args[1:]: if arg.is_Boolean and not arg.is_Not: tex += r" %s \left(%s\right)" % (char, self._print(arg)) else: tex += r" %s %s" % (char, self._print(arg)) return tex def _print_And(self, e): args = sorted(e.args, key=default_sort_key) return self._print_LogOp(args, r"\wedge") def _print_Or(self, e): args = sorted(e.args, key=default_sort_key) return self._print_LogOp(args, r"\vee") def _print_Xor(self, e): args = sorted(e.args, key=default_sort_key) return self._print_LogOp(args, r"\veebar") def _print_Implies(self, e, altchar=None): return self._print_LogOp(e.args, altchar or r"\Rightarrow") def _print_Equivalent(self, e, altchar=None): args = sorted(e.args, key=default_sort_key) return self._print_LogOp(args, altchar or r"\Leftrightarrow") def _print_conjugate(self, expr, exp=None): tex = r"\overline{%s}" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_polar_lift(self, expr, exp=None): func = r"\operatorname{polar\_lift}" arg = r"{\left(%s \right)}" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}%s" % (func, exp, arg) else: return r"%s%s" % (func, arg) def _print_ExpBase(self, expr, exp=None): # TODO should exp_polar be printed differently? # what about exp_polar(0), exp_polar(1)? tex = r"e^{%s}" % self._print(expr.args[0]) return self._do_exponent(tex, exp) def _print_elliptic_k(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"K^{%s}%s" % (exp, tex) else: return r"K%s" % tex def _print_elliptic_f(self, expr, exp=None): tex = r"\left(%s\middle| %s\right)" % \ (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"F^{%s}%s" % (exp, tex) else: return r"F%s" % tex def _print_elliptic_e(self, expr, exp=None): if len(expr.args) == 2: tex = r"\left(%s\middle| %s\right)" % \ (self._print(expr.args[0]), self._print(expr.args[1])) else: tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"E^{%s}%s" % (exp, tex) else: return r"E%s" % tex def _print_elliptic_pi(self, expr, exp=None): if len(expr.args) == 3: tex = r"\left(%s; %s\middle| %s\right)" % \ (self._print(expr.args[0]), self._print(expr.args[1]), self._print(expr.args[2])) else: tex = r"\left(%s\middle| %s\right)" % \ (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"\Pi^{%s}%s" % (exp, tex) else: return r"\Pi%s" % tex def _print_beta(self, expr, exp=None): tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"\operatorname{B}^{%s}%s" % (exp, tex) else: return r"\operatorname{B}%s" % tex def _print_uppergamma(self, expr, exp=None): tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"\Gamma^{%s}%s" % (exp, tex) else: return r"\Gamma%s" % tex def _print_lowergamma(self, expr, exp=None): tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"\gamma^{%s}%s" % (exp, tex) else: return r"\gamma%s" % tex def _hprint_one_arg_func(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}%s" % (self._print(expr.func), exp, tex) else: return r"%s%s" % (self._print(expr.func), tex) _print_gamma = _hprint_one_arg_func def _print_Chi(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\operatorname{Chi}^{%s}%s" % (exp, tex) else: return r"\operatorname{Chi}%s" % tex def _print_expint(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[1]) nu = self._print(expr.args[0]) if exp is not None: return r"\operatorname{E}_{%s}^{%s}%s" % (nu, exp, tex) else: return r"\operatorname{E}_{%s}%s" % (nu, tex) def _print_fresnels(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"S^{%s}%s" % (exp, tex) else: return r"S%s" % tex def _print_fresnelc(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"C^{%s}%s" % (exp, tex) else: return r"C%s" % tex def _print_subfactorial(self, expr, exp=None): tex = r"!%s" % self.parenthesize(expr.args[0], PRECEDENCE["Func"]) if exp is not None: return r"\left(%s\right)^{%s}" % (tex, exp) else: return tex def _print_factorial(self, expr, exp=None): tex = r"%s!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_factorial2(self, expr, exp=None): tex = r"%s!!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_binomial(self, expr, exp=None): tex = r"{\binom{%s}{%s}}" % (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_RisingFactorial(self, expr, exp=None): n, k = expr.args base = r"%s" % self.parenthesize(n, PRECEDENCE['Func']) tex = r"{%s}^{\left(%s\right)}" % (base, self._print(k)) return self._do_exponent(tex, exp) def _print_FallingFactorial(self, expr, exp=None): n, k = expr.args sub = r"%s" % self.parenthesize(k, PRECEDENCE['Func']) tex = r"{\left(%s\right)}_{%s}" % (self._print(n), sub) return self._do_exponent(tex, exp) def _hprint_BesselBase(self, expr, exp, sym): tex = r"%s" % (sym) need_exp = False if exp is not None: if tex.find('^') == -1: tex = r"%s^{%s}" % (tex, self._print(exp)) else: need_exp = True tex = r"%s_{%s}\left(%s\right)" % (tex, self._print(expr.order), self._print(expr.argument)) if need_exp: tex = self._do_exponent(tex, exp) return tex def _hprint_vec(self, vec): if not vec: return "" s = "" for i in vec[:-1]: s += "%s, " % self._print(i) s += self._print(vec[-1]) return s def _print_besselj(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'J') def _print_besseli(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'I') def _print_besselk(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'K') def _print_bessely(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'Y') def _print_yn(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'y') def _print_jn(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'j') def _print_hankel1(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'H^{(1)}') def _print_hankel2(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'H^{(2)}') def _print_hn1(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'h^{(1)}') def _print_hn2(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'h^{(2)}') def _hprint_airy(self, expr, exp=None, notation=""): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}%s" % (notation, exp, tex) else: return r"%s%s" % (notation, tex) def _hprint_airy_prime(self, expr, exp=None, notation=""): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"{%s^\prime}^{%s}%s" % (notation, exp, tex) else: return r"%s^\prime%s" % (notation, tex) def _print_airyai(self, expr, exp=None): return self._hprint_airy(expr, exp, 'Ai') def _print_airybi(self, expr, exp=None): return self._hprint_airy(expr, exp, 'Bi') def _print_airyaiprime(self, expr, exp=None): return self._hprint_airy_prime(expr, exp, 'Ai') def _print_airybiprime(self, expr, exp=None): return self._hprint_airy_prime(expr, exp, 'Bi') def _print_hyper(self, expr, exp=None): tex = r"{{}_{%s}F_{%s}\left(\begin{matrix} %s \\ %s \end{matrix}" \ r"\middle| {%s} \right)}" % \ (self._print(len(expr.ap)), self._print(len(expr.bq)), self._hprint_vec(expr.ap), self._hprint_vec(expr.bq), self._print(expr.argument)) if exp is not None: tex = r"{%s}^{%s}" % (tex, self._print(exp)) return tex def _print_meijerg(self, expr, exp=None): tex = r"{G_{%s, %s}^{%s, %s}\left(\begin{matrix} %s & %s \\" \ r"%s & %s \end{matrix} \middle| {%s} \right)}" % \ (self._print(len(expr.ap)), self._print(len(expr.bq)), self._print(len(expr.bm)), self._print(len(expr.an)), self._hprint_vec(expr.an), self._hprint_vec(expr.aother), self._hprint_vec(expr.bm), self._hprint_vec(expr.bother), self._print(expr.argument)) if exp is not None: tex = r"{%s}^{%s}" % (tex, self._print(exp)) return tex def _print_dirichlet_eta(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\eta^{%s}%s" % (self._print(exp), tex) return r"\eta%s" % tex def _print_zeta(self, expr, exp=None): if len(expr.args) == 2: tex = r"\left(%s, %s\right)" % tuple(map(self._print, expr.args)) else: tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\zeta^{%s}%s" % (self._print(exp), tex) return r"\zeta%s" % tex def _print_stieltjes(self, expr, exp=None): if len(expr.args) == 2: tex = r"_{%s}\left(%s\right)" % tuple(map(self._print, expr.args)) else: tex = r"_{%s}" % self._print(expr.args[0]) if exp is not None: return r"\gamma%s^{%s}" % (tex, self._print(exp)) return r"\gamma%s" % tex def _print_lerchphi(self, expr, exp=None): tex = r"\left(%s, %s, %s\right)" % tuple(map(self._print, expr.args)) if exp is None: return r"\Phi%s" % tex return r"\Phi^{%s}%s" % (self._print(exp), tex) def _print_polylog(self, expr, exp=None): s, z = map(self._print, expr.args) tex = r"\left(%s\right)" % z if exp is None: return r"\operatorname{Li}_{%s}%s" % (s, tex) return r"\operatorname{Li}_{%s}^{%s}%s" % (s, self._print(exp), tex) def _print_jacobi(self, expr, exp=None): n, a, b, x = map(self._print, expr.args) tex = r"P_{%s}^{\left(%s,%s\right)}\left(%s\right)" % (n, a, b, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_gegenbauer(self, expr, exp=None): n, a, x = map(self._print, expr.args) tex = r"C_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_chebyshevt(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"T_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_chebyshevu(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"U_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_legendre(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"P_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_assoc_legendre(self, expr, exp=None): n, a, x = map(self._print, expr.args) tex = r"P_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_hermite(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"H_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_laguerre(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"L_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_assoc_laguerre(self, expr, exp=None): n, a, x = map(self._print, expr.args) tex = r"L_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_Ynm(self, expr, exp=None): n, m, theta, phi = map(self._print, expr.args) tex = r"Y_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_Znm(self, expr, exp=None): n, m, theta, phi = map(self._print, expr.args) tex = r"Z_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def __print_mathieu_functions(self, character, args, prime=False, exp=None): a, q, z = map(self._print, args) sup = r"^{\prime}" if prime else "" exp = "" if not exp else "^{%s}" % self._print(exp) return r"%s%s\left(%s, %s, %s\right)%s" % (character, sup, a, q, z, exp) def _print_mathieuc(self, expr, exp=None): return self.__print_mathieu_functions("C", expr.args, exp=exp) def _print_mathieus(self, expr, exp=None): return self.__print_mathieu_functions("S", expr.args, exp=exp) def _print_mathieucprime(self, expr, exp=None): return self.__print_mathieu_functions("C", expr.args, prime=True, exp=exp) def _print_mathieusprime(self, expr, exp=None): return self.__print_mathieu_functions("S", expr.args, prime=True, exp=exp) def _print_Rational(self, expr): if expr.q != 1: sign = "" p = expr.p if expr.p < 0: sign = "- " p = -p if self._settings['fold_short_frac']: return r"%s%d / %d" % (sign, p, expr.q) return r"%s\frac{%d}{%d}" % (sign, p, expr.q) else: return self._print(expr.p) def _print_Order(self, expr): s = self._print(expr.expr) if expr.point and any(p != S.Zero for p in expr.point) or \ len(expr.variables) > 1: s += '; ' if len(expr.variables) > 1: s += self._print(expr.variables) elif expr.variables: s += self._print(expr.variables[0]) s += r'\rightarrow ' if len(expr.point) > 1: s += self._print(expr.point) else: s += self._print(expr.point[0]) return r"O\left(%s\right)" % s def _print_Symbol(self, expr, style='plain'): if expr in self._settings['symbol_names']: return self._settings['symbol_names'][expr] result = self._deal_with_super_sub(expr.name) if \ '\\' not in expr.name else expr.name if style == 'bold': result = r"\mathbf{{{}}}".format(result) return result _print_RandomSymbol = _print_Symbol def _deal_with_super_sub(self, string): if '{' in string: return string name, supers, subs = split_super_sub(string) name = translate(name) supers = [translate(sup) for sup in supers] subs = [translate(sub) for sub in subs] # glue all items together: if supers: name += "^{%s}" % " ".join(supers) if subs: name += "_{%s}" % " ".join(subs) return name def _print_Relational(self, expr): if self._settings['itex']: gt = r"\gt" lt = r"\lt" else: gt = ">" lt = "<" charmap = { "==": "=", ">": gt, "<": lt, ">=": r"\geq", "<=": r"\leq", "!=": r"\neq", } return "%s %s %s" % (self._print(expr.lhs), charmap[expr.rel_op], self._print(expr.rhs)) def _print_Piecewise(self, expr): ecpairs = [r"%s & \text{for}\: %s" % (self._print(e), self._print(c)) for e, c in expr.args[:-1]] if expr.args[-1].cond == true: ecpairs.append(r"%s & \text{otherwise}" % self._print(expr.args[-1].expr)) else: ecpairs.append(r"%s & \text{for}\: %s" % (self._print(expr.args[-1].expr), self._print(expr.args[-1].cond))) tex = r"\begin{cases} %s \end{cases}" return tex % r" \\".join(ecpairs) def _print_MatrixBase(self, expr): lines = [] for line in range(expr.rows): # horrible, should be 'rows' lines.append(" & ".join([self._print(i) for i in expr[line, :]])) mat_str = self._settings['mat_str'] if mat_str is None: if self._settings['mode'] == 'inline': mat_str = 'smallmatrix' else: if (expr.cols <= 10) is True: mat_str = 'matrix' else: mat_str = 'array' out_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}' out_str = out_str.replace('%MATSTR%', mat_str) if mat_str == 'array': out_str = out_str.replace('%s', '{' + 'c'*expr.cols + '}%s') if self._settings['mat_delim']: left_delim = self._settings['mat_delim'] right_delim = self._delim_dict[left_delim] out_str = r'\left' + left_delim + out_str + \ r'\right' + right_delim return out_str % r"\\".join(lines) _print_ImmutableMatrix = _print_ImmutableDenseMatrix \ = _print_Matrix \ = _print_MatrixBase def _print_MatrixElement(self, expr): return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True)\ + '_{%s, %s}' % (self._print(expr.i), self._print(expr.j)) def _print_MatrixSlice(self, expr): def latexslice(x): x = list(x) if x[2] == 1: del x[2] if x[1] == x[0] + 1: del x[1] if x[0] == 0: x[0] = '' return ':'.join(map(self._print, x)) return (self._print(expr.parent) + r'\left[' + latexslice(expr.rowslice) + ', ' + latexslice(expr.colslice) + r'\right]') def _print_BlockMatrix(self, expr): return self._print(expr.blocks) def _print_Transpose(self, expr): mat = expr.arg from sympy.matrices import MatrixSymbol if not isinstance(mat, MatrixSymbol): return r"\left(%s\right)^{T}" % self._print(mat) else: return "%s^{T}" % self.parenthesize(mat, precedence_traditional(expr), True) def _print_Trace(self, expr): mat = expr.arg return r"\operatorname{tr}\left(%s \right)" % self._print(mat) def _print_Adjoint(self, expr): mat = expr.arg from sympy.matrices import MatrixSymbol if not isinstance(mat, MatrixSymbol): return r"\left(%s\right)^{\dagger}" % self._print(mat) else: return r"%s^{\dagger}" % self._print(mat) def _print_MatMul(self, expr): from sympy import MatMul, Mul parens = lambda x: self.parenthesize(x, precedence_traditional(expr), False) args = expr.args if isinstance(args[0], Mul): args = args[0].as_ordered_factors() + list(args[1:]) else: args = list(args) if isinstance(expr, MatMul) and _coeff_isneg(expr): if args[0] == -1: args = args[1:] else: args[0] = -args[0] return '- ' + ' '.join(map(parens, args)) else: return ' '.join(map(parens, args)) def _print_Mod(self, expr, exp=None): if exp is not None: return r'\left(%s\bmod{%s}\right)^{%s}' % \ (self.parenthesize(expr.args[0], PRECEDENCE['Mul'], strict=True), self._print(expr.args[1]), self._print(exp)) return r'%s\bmod{%s}' % (self.parenthesize(expr.args[0], PRECEDENCE['Mul'], strict=True), self._print(expr.args[1])) def _print_HadamardProduct(self, expr): args = expr.args prec = PRECEDENCE['Pow'] parens = self.parenthesize return r' \circ '.join( map(lambda arg: parens(arg, prec, strict=True), args)) def _print_HadamardPower(self, expr): if precedence_traditional(expr.exp) < PRECEDENCE["Mul"]: template = r"%s^{\circ \left({%s}\right)}" else: template = r"%s^{\circ {%s}}" return self._helper_print_standard_power(expr, template) def _print_KroneckerProduct(self, expr): args = expr.args prec = PRECEDENCE['Pow'] parens = self.parenthesize return r' \otimes '.join( map(lambda arg: parens(arg, prec, strict=True), args)) def _print_MatPow(self, expr): base, exp = expr.base, expr.exp from sympy.matrices import MatrixSymbol if not isinstance(base, MatrixSymbol): return "\\left(%s\\right)^{%s}" % (self._print(base), self._print(exp)) else: return "%s^{%s}" % (self._print(base), self._print(exp)) def _print_MatrixSymbol(self, expr): return self._print_Symbol(expr, style=self._settings[ 'mat_symbol_style']) def _print_ZeroMatrix(self, Z): return r"\mathbb{0}" if self._settings[ 'mat_symbol_style'] == 'plain' else r"\mathbf{0}" def _print_OneMatrix(self, O): return r"\mathbb{1}" if self._settings[ 'mat_symbol_style'] == 'plain' else r"\mathbf{1}" def _print_Identity(self, I): return r"\mathbb{I}" if self._settings[ 'mat_symbol_style'] == 'plain' else r"\mathbf{I}" def _print_NDimArray(self, expr): if expr.rank() == 0: return self._print(expr[()]) mat_str = self._settings['mat_str'] if mat_str is None: if self._settings['mode'] == 'inline': mat_str = 'smallmatrix' else: if (expr.rank() == 0) or (expr.shape[-1] <= 10): mat_str = 'matrix' else: mat_str = 'array' block_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}' block_str = block_str.replace('%MATSTR%', mat_str) if self._settings['mat_delim']: left_delim = self._settings['mat_delim'] right_delim = self._delim_dict[left_delim] block_str = r'\left' + left_delim + block_str + \ r'\right' + right_delim if expr.rank() == 0: return block_str % "" level_str = [[]] + [[] for i in range(expr.rank())] shape_ranges = [list(range(i)) for i in expr.shape] for outer_i in itertools.product(*shape_ranges): level_str[-1].append(self._print(expr[outer_i])) even = True for back_outer_i in range(expr.rank()-1, -1, -1): if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]: break if even: level_str[back_outer_i].append( r" & ".join(level_str[back_outer_i+1])) else: level_str[back_outer_i].append( block_str % (r"\\".join(level_str[back_outer_i+1]))) if len(level_str[back_outer_i+1]) == 1: level_str[back_outer_i][-1] = r"\left[" + \ level_str[back_outer_i][-1] + r"\right]" even = not even level_str[back_outer_i+1] = [] out_str = level_str[0][0] if expr.rank() % 2 == 1: out_str = block_str % out_str return out_str _print_ImmutableDenseNDimArray = _print_NDimArray _print_ImmutableSparseNDimArray = _print_NDimArray _print_MutableDenseNDimArray = _print_NDimArray _print_MutableSparseNDimArray = _print_NDimArray def _printer_tensor_indices(self, name, indices, index_map={}): out_str = self._print(name) last_valence = None prev_map = None for index in indices: new_valence = index.is_up if ((index in index_map) or prev_map) and \ last_valence == new_valence: out_str += "," if last_valence != new_valence: if last_valence is not None: out_str += "}" if index.is_up: out_str += "{}^{" else: out_str += "{}_{" out_str += self._print(index.args[0]) if index in index_map: out_str += "=" out_str += self._print(index_map[index]) prev_map = True else: prev_map = False last_valence = new_valence if last_valence is not None: out_str += "}" return out_str def _print_Tensor(self, expr): name = expr.args[0].args[0] indices = expr.get_indices() return self._printer_tensor_indices(name, indices) def _print_TensorElement(self, expr): name = expr.expr.args[0].args[0] indices = expr.expr.get_indices() index_map = expr.index_map return self._printer_tensor_indices(name, indices, index_map) def _print_TensMul(self, expr): # prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)" sign, args = expr._get_args_for_traditional_printer() return sign + "".join( [self.parenthesize(arg, precedence(expr)) for arg in args] ) def _print_TensAdd(self, expr): a = [] args = expr.args for x in args: a.append(self.parenthesize(x, precedence(expr))) a.sort() s = ' + '.join(a) s = s.replace('+ -', '- ') return s def _print_TensorIndex(self, expr): return "{}%s{%s}" % ( "^" if expr.is_up else "_", self._print(expr.args[0]) ) def _print_UniversalSet(self, expr): return r"\mathbb{U}" def _print_frac(self, expr, exp=None): if exp is None: return r"\operatorname{frac}{\left(%s\right)}" % self._print(expr.args[0]) else: return r"\operatorname{frac}{\left(%s\right)}^{%s}" % ( self._print(expr.args[0]), self._print(exp)) def _print_tuple(self, expr): if self._settings['decimal_separator'] =='comma': return r"\left( %s\right)" % \ r"; \ ".join([self._print(i) for i in expr]) elif self._settings['decimal_separator'] =='period': return r"\left( %s\right)" % \ r", \ ".join([self._print(i) for i in expr]) else: raise ValueError('Unknown Decimal Separator') def _print_TensorProduct(self, expr): elements = [self._print(a) for a in expr.args] return r' \otimes '.join(elements) def _print_WedgeProduct(self, expr): elements = [self._print(a) for a in expr.args] return r' \wedge '.join(elements) def _print_Tuple(self, expr): return self._print_tuple(expr) def _print_list(self, expr): if self._settings['decimal_separator'] == 'comma': return r"\left[ %s\right]" % \ r"; \ ".join([self._print(i) for i in expr]) elif self._settings['decimal_separator'] == 'period': return r"\left[ %s\right]" % \ r", \ ".join([self._print(i) for i in expr]) else: raise ValueError('Unknown Decimal Separator') def _print_dict(self, d): keys = sorted(d.keys(), key=default_sort_key) items = [] for key in keys: val = d[key] items.append("%s : %s" % (self._print(key), self._print(val))) return r"\left\{ %s\right\}" % r", \ ".join(items) def _print_Dict(self, expr): return self._print_dict(expr) def _print_DiracDelta(self, expr, exp=None): if len(expr.args) == 1 or expr.args[1] == 0: tex = r"\delta\left(%s\right)" % self._print(expr.args[0]) else: tex = r"\delta^{\left( %s \right)}\left( %s \right)" % ( self._print(expr.args[1]), self._print(expr.args[0])) if exp: tex = r"\left(%s\right)^{%s}" % (tex, exp) return tex def _print_SingularityFunction(self, expr): shift = self._print(expr.args[0] - expr.args[1]) power = self._print(expr.args[2]) tex = r"{\left\langle %s \right\rangle}^{%s}" % (shift, power) return tex def _print_Heaviside(self, expr, exp=None): tex = r"\theta\left(%s\right)" % self._print(expr.args[0]) if exp: tex = r"\left(%s\right)^{%s}" % (tex, exp) return tex def _print_KroneckerDelta(self, expr, exp=None): i = self._print(expr.args[0]) j = self._print(expr.args[1]) if expr.args[0].is_Atom and expr.args[1].is_Atom: tex = r'\delta_{%s %s}' % (i, j) else: tex = r'\delta_{%s, %s}' % (i, j) if exp is not None: tex = r'\left(%s\right)^{%s}' % (tex, exp) return tex def _print_LeviCivita(self, expr, exp=None): indices = map(self._print, expr.args) if all(x.is_Atom for x in expr.args): tex = r'\varepsilon_{%s}' % " ".join(indices) else: tex = r'\varepsilon_{%s}' % ", ".join(indices) if exp: tex = r'\left(%s\right)^{%s}' % (tex, exp) return tex def _print_RandomDomain(self, d): if hasattr(d, 'as_boolean'): return '\\text{Domain: }' + self._print(d.as_boolean()) elif hasattr(d, 'set'): return ('\\text{Domain: }' + self._print(d.symbols) + '\\text{ in }' + self._print(d.set)) elif hasattr(d, 'symbols'): return '\\text{Domain on }' + self._print(d.symbols) else: return self._print(None) def _print_FiniteSet(self, s): items = sorted(s.args, key=default_sort_key) return self._print_set(items) def _print_set(self, s): items = sorted(s, key=default_sort_key) if self._settings['decimal_separator'] == 'comma': items = "; ".join(map(self._print, items)) elif self._settings['decimal_separator'] == 'period': items = ", ".join(map(self._print, items)) else: raise ValueError('Unknown Decimal Separator') return r"\left\{%s\right\}" % items _print_frozenset = _print_set def _print_Range(self, s): dots = r'\ldots' if s.start.is_infinite and s.stop.is_infinite: if s.step.is_positive: printset = dots, -1, 0, 1, dots else: printset = dots, 1, 0, -1, dots elif s.start.is_infinite: printset = dots, s[-1] - s.step, s[-1] elif s.stop.is_infinite: it = iter(s) printset = next(it), next(it), dots elif len(s) > 4: it = iter(s) printset = next(it), next(it), dots, s[-1] else: printset = tuple(s) return (r"\left\{" + r", ".join(self._print(el) for el in printset) + r"\right\}") def __print_number_polynomial(self, expr, letter, exp=None): if len(expr.args) == 2: if exp is not None: return r"%s_{%s}^{%s}\left(%s\right)" % (letter, self._print(expr.args[0]), self._print(exp), self._print(expr.args[1])) return r"%s_{%s}\left(%s\right)" % (letter, self._print(expr.args[0]), self._print(expr.args[1])) tex = r"%s_{%s}" % (letter, self._print(expr.args[0])) if exp is not None: tex = r"%s^{%s}" % (tex, self._print(exp)) return tex def _print_bernoulli(self, expr, exp=None): return self.__print_number_polynomial(expr, "B", exp) def _print_bell(self, expr, exp=None): if len(expr.args) == 3: tex1 = r"B_{%s, %s}" % (self._print(expr.args[0]), self._print(expr.args[1])) tex2 = r"\left(%s\right)" % r", ".join(self._print(el) for el in expr.args[2]) if exp is not None: tex = r"%s^{%s}%s" % (tex1, self._print(exp), tex2) else: tex = tex1 + tex2 return tex return self.__print_number_polynomial(expr, "B", exp) def _print_fibonacci(self, expr, exp=None): return self.__print_number_polynomial(expr, "F", exp) def _print_lucas(self, expr, exp=None): tex = r"L_{%s}" % self._print(expr.args[0]) if exp is not None: tex = r"%s^{%s}" % (tex, self._print(exp)) return tex def _print_tribonacci(self, expr, exp=None): return self.__print_number_polynomial(expr, "T", exp) def _print_SeqFormula(self, s): if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0: return r"\left\{%s\right\}_{%s=%s}^{%s}" % ( self._print(s.formula), self._print(s.variables[0]), self._print(s.start), self._print(s.stop) ) if s.start is S.NegativeInfinity: stop = s.stop printset = (r'\ldots', s.coeff(stop - 3), s.coeff(stop - 2), s.coeff(stop - 1), s.coeff(stop)) elif s.stop is S.Infinity or s.length > 4: printset = s[:4] printset.append(r'\ldots') else: printset = tuple(s) return (r"\left[" + r", ".join(self._print(el) for el in printset) + r"\right]") _print_SeqPer = _print_SeqFormula _print_SeqAdd = _print_SeqFormula _print_SeqMul = _print_SeqFormula def _print_Interval(self, i): if i.start == i.end: return r"\left\{%s\right\}" % self._print(i.start) else: if i.left_open: left = '(' else: left = '[' if i.right_open: right = ')' else: right = ']' return r"\left%s%s, %s\right%s" % \ (left, self._print(i.start), self._print(i.end), right) def _print_AccumulationBounds(self, i): return r"\left\langle %s, %s\right\rangle" % \ (self._print(i.min), self._print(i.max)) def _print_Union(self, u): prec = precedence_traditional(u) args_str = [self.parenthesize(i, prec) for i in u.args] return r" \cup ".join(args_str) def _print_Complement(self, u): prec = precedence_traditional(u) args_str = [self.parenthesize(i, prec) for i in u.args] return r" \setminus ".join(args_str) def _print_Intersection(self, u): prec = precedence_traditional(u) args_str = [self.parenthesize(i, prec) for i in u.args] return r" \cap ".join(args_str) def _print_SymmetricDifference(self, u): prec = precedence_traditional(u) args_str = [self.parenthesize(i, prec) for i in u.args] return r" \triangle ".join(args_str) def _print_ProductSet(self, p): prec = precedence_traditional(p) if len(p.sets) >= 1 and not has_variety(p.sets): return self.parenthesize(p.sets[0], prec) + "^{%d}" % len(p.sets) return r" \times ".join( self.parenthesize(set, prec) for set in p.sets) def _print_EmptySet(self, e): return r"\emptyset" def _print_Naturals(self, n): return r"\mathbb{N}" def _print_Naturals0(self, n): return r"\mathbb{N}_0" def _print_Integers(self, i): return r"\mathbb{Z}" def _print_Rationals(self, i): return r"\mathbb{Q}" def _print_Reals(self, i): return r"\mathbb{R}" def _print_Complexes(self, i): return r"\mathbb{C}" def _print_ImageSet(self, s): expr = s.lamda.expr sig = s.lamda.signature xys = ((self._print(x), self._print(y)) for x, y in zip(sig, s.base_sets)) xinys = r" , ".join(r"%s \in %s" % xy for xy in xys) return r"\left\{%s\; |\; %s\right\}" % (self._print(expr), xinys) def _print_ConditionSet(self, s): vars_print = ', '.join([self._print(var) for var in Tuple(s.sym)]) if s.base_set is S.UniversalSet: return r"\left\{%s \mid %s \right\}" % \ (vars_print, self._print(s.condition.as_expr())) return r"\left\{%s \mid %s \in %s \wedge %s \right\}" % ( vars_print, vars_print, self._print(s.base_set), self._print(s.condition)) def _print_ComplexRegion(self, s): vars_print = ', '.join([self._print(var) for var in s.variables]) return r"\left\{%s\; |\; %s \in %s \right\}" % ( self._print(s.expr), vars_print, self._print(s.sets)) def _print_Contains(self, e): return r"%s \in %s" % tuple(self._print(a) for a in e.args) def _print_FourierSeries(self, s): return self._print_Add(s.truncate()) + self._print(r' + \ldots') def _print_FormalPowerSeries(self, s): return self._print_Add(s.infinite) def _print_FiniteField(self, expr): return r"\mathbb{F}_{%s}" % expr.mod def _print_IntegerRing(self, expr): return r"\mathbb{Z}" def _print_RationalField(self, expr): return r"\mathbb{Q}" def _print_RealField(self, expr): return r"\mathbb{R}" def _print_ComplexField(self, expr): return r"\mathbb{C}" def _print_PolynomialRing(self, expr): domain = self._print(expr.domain) symbols = ", ".join(map(self._print, expr.symbols)) return r"%s\left[%s\right]" % (domain, symbols) def _print_FractionField(self, expr): domain = self._print(expr.domain) symbols = ", ".join(map(self._print, expr.symbols)) return r"%s\left(%s\right)" % (domain, symbols) def _print_PolynomialRingBase(self, expr): domain = self._print(expr.domain) symbols = ", ".join(map(self._print, expr.symbols)) inv = "" if not expr.is_Poly: inv = r"S_<^{-1}" return r"%s%s\left[%s\right]" % (inv, domain, symbols) def _print_Poly(self, poly): cls = poly.__class__.__name__ terms = [] for monom, coeff in poly.terms(): s_monom = '' for i, exp in enumerate(monom): if exp > 0: if exp == 1: s_monom += self._print(poly.gens[i]) else: s_monom += self._print(pow(poly.gens[i], exp)) if coeff.is_Add: if s_monom: s_coeff = r"\left(%s\right)" % self._print(coeff) else: s_coeff = self._print(coeff) else: if s_monom: if coeff is S.One: terms.extend(['+', s_monom]) continue if coeff is S.NegativeOne: terms.extend(['-', s_monom]) continue s_coeff = self._print(coeff) if not s_monom: s_term = s_coeff else: s_term = s_coeff + " " + s_monom if s_term.startswith('-'): terms.extend(['-', s_term[1:]]) else: terms.extend(['+', s_term]) if terms[0] in ['-', '+']: modifier = terms.pop(0) if modifier == '-': terms[0] = '-' + terms[0] expr = ' '.join(terms) gens = list(map(self._print, poly.gens)) domain = "domain=%s" % self._print(poly.get_domain()) args = ", ".join([expr] + gens + [domain]) if cls in accepted_latex_functions: tex = r"\%s {\left(%s \right)}" % (cls, args) else: tex = r"\operatorname{%s}{\left( %s \right)}" % (cls, args) return tex def _print_ComplexRootOf(self, root): cls = root.__class__.__name__ if cls == "ComplexRootOf": cls = "CRootOf" expr = self._print(root.expr) index = root.index if cls in accepted_latex_functions: return r"\%s {\left(%s, %d\right)}" % (cls, expr, index) else: return r"\operatorname{%s} {\left(%s, %d\right)}" % (cls, expr, index) def _print_RootSum(self, expr): cls = expr.__class__.__name__ args = [self._print(expr.expr)] if expr.fun is not S.IdentityFunction: args.append(self._print(expr.fun)) if cls in accepted_latex_functions: return r"\%s {\left(%s\right)}" % (cls, ", ".join(args)) else: return r"\operatorname{%s} {\left(%s\right)}" % (cls, ", ".join(args)) def _print_PolyElement(self, poly): mul_symbol = self._settings['mul_symbol_latex'] return poly.str(self, PRECEDENCE, "{%s}^{%d}", mul_symbol) def _print_FracElement(self, frac): if frac.denom == 1: return self._print(frac.numer) else: numer = self._print(frac.numer) denom = self._print(frac.denom) return r"\frac{%s}{%s}" % (numer, denom) def _print_euler(self, expr, exp=None): m, x = (expr.args[0], None) if len(expr.args) == 1 else expr.args tex = r"E_{%s}" % self._print(m) if exp is not None: tex = r"%s^{%s}" % (tex, self._print(exp)) if x is not None: tex = r"%s\left(%s\right)" % (tex, self._print(x)) return tex def _print_catalan(self, expr, exp=None): tex = r"C_{%s}" % self._print(expr.args[0]) if exp is not None: tex = r"%s^{%s}" % (tex, self._print(exp)) return tex def _print_UnifiedTransform(self, expr, s, inverse=False): return r"\mathcal{{{}}}{}_{{{}}}\left[{}\right]\left({}\right)".format(s, '^{-1}' if inverse else '', self._print(expr.args[1]), self._print(expr.args[0]), self._print(expr.args[2])) def _print_MellinTransform(self, expr): return self._print_UnifiedTransform(expr, 'M') def _print_InverseMellinTransform(self, expr): return self._print_UnifiedTransform(expr, 'M', True) def _print_LaplaceTransform(self, expr): return self._print_UnifiedTransform(expr, 'L') def _print_InverseLaplaceTransform(self, expr): return self._print_UnifiedTransform(expr, 'L', True) def _print_FourierTransform(self, expr): return self._print_UnifiedTransform(expr, 'F') def _print_InverseFourierTransform(self, expr): return self._print_UnifiedTransform(expr, 'F', True) def _print_SineTransform(self, expr): return self._print_UnifiedTransform(expr, 'SIN') def _print_InverseSineTransform(self, expr): return self._print_UnifiedTransform(expr, 'SIN', True) def _print_CosineTransform(self, expr): return self._print_UnifiedTransform(expr, 'COS') def _print_InverseCosineTransform(self, expr): return self._print_UnifiedTransform(expr, 'COS', True) def _print_DMP(self, p): try: if p.ring is not None: # TODO incorporate order return self._print(p.ring.to_sympy(p)) except SympifyError: pass return self._print(repr(p)) def _print_DMF(self, p): return self._print_DMP(p) def _print_Object(self, object): return self._print(Symbol(object.name)) def _print_LambertW(self, expr): if len(expr.args) == 1: return r"W\left(%s\right)" % self._print(expr.args[0]) return r"W_{%s}\left(%s\right)" % \ (self._print(expr.args[1]), self._print(expr.args[0])) def _print_Morphism(self, morphism): domain = self._print(morphism.domain) codomain = self._print(morphism.codomain) return "%s\\rightarrow %s" % (domain, codomain) def _print_NamedMorphism(self, morphism): pretty_name = self._print(Symbol(morphism.name)) pretty_morphism = self._print_Morphism(morphism) return "%s:%s" % (pretty_name, pretty_morphism) def _print_IdentityMorphism(self, morphism): from sympy.categories import NamedMorphism return self._print_NamedMorphism(NamedMorphism( morphism.domain, morphism.codomain, "id")) def _print_CompositeMorphism(self, morphism): # All components of the morphism have names and it is thus # possible to build the name of the composite. component_names_list = [self._print(Symbol(component.name)) for component in morphism.components] component_names_list.reverse() component_names = "\\circ ".join(component_names_list) + ":" pretty_morphism = self._print_Morphism(morphism) return component_names + pretty_morphism def _print_Category(self, morphism): return r"\mathbf{{{}}}".format(self._print(Symbol(morphism.name))) def _print_Diagram(self, diagram): if not diagram.premises: # This is an empty diagram. return self._print(S.EmptySet) latex_result = self._print(diagram.premises) if diagram.conclusions: latex_result += "\\Longrightarrow %s" % \ self._print(diagram.conclusions) return latex_result def _print_DiagramGrid(self, grid): latex_result = "\\begin{array}{%s}\n" % ("c" * grid.width) for i in range(grid.height): for j in range(grid.width): if grid[i, j]: latex_result += latex(grid[i, j]) latex_result += " " if j != grid.width - 1: latex_result += "& " if i != grid.height - 1: latex_result += "\\\\" latex_result += "\n" latex_result += "\\end{array}\n" return latex_result def _print_FreeModule(self, M): return '{{{}}}^{{{}}}'.format(self._print(M.ring), self._print(M.rank)) def _print_FreeModuleElement(self, m): # Print as row vector for convenience, for now. return r"\left[ {} \right]".format(",".join( '{' + self._print(x) + '}' for x in m)) def _print_SubModule(self, m): return r"\left\langle {} \right\rangle".format(",".join( '{' + self._print(x) + '}' for x in m.gens)) def _print_ModuleImplementedIdeal(self, m): return r"\left\langle {} \right\rangle".format(",".join( '{' + self._print(x) + '}' for [x] in m._module.gens)) def _print_Quaternion(self, expr): # TODO: This expression is potentially confusing, # shall we print it as `Quaternion( ... )`? s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True) for i in expr.args] a = [s[0]] + [i+" "+j for i, j in zip(s[1:], "ijk")] return " + ".join(a) def _print_QuotientRing(self, R): # TODO nicer fractions for few generators... return r"\frac{{{}}}{{{}}}".format(self._print(R.ring), self._print(R.base_ideal)) def _print_QuotientRingElement(self, x): return r"{{{}}} + {{{}}}".format(self._print(x.data), self._print(x.ring.base_ideal)) def _print_QuotientModuleElement(self, m): return r"{{{}}} + {{{}}}".format(self._print(m.data), self._print(m.module.killed_module)) def _print_QuotientModule(self, M): # TODO nicer fractions for few generators... return r"\frac{{{}}}{{{}}}".format(self._print(M.base), self._print(M.killed_module)) def _print_MatrixHomomorphism(self, h): return r"{{{}}} : {{{}}} \to {{{}}}".format(self._print(h._sympy_matrix()), self._print(h.domain), self._print(h.codomain)) def _print_BaseScalarField(self, field): string = field._coord_sys._names[field._index] return r'\mathbf{{{}}}'.format(self._print(Symbol(string))) def _print_BaseVectorField(self, field): string = field._coord_sys._names[field._index] return r'\partial_{{{}}}'.format(self._print(Symbol(string))) def _print_Differential(self, diff): field = diff._form_field if hasattr(field, '_coord_sys'): string = field._coord_sys._names[field._index] return r'\operatorname{{d}}{}'.format(self._print(Symbol(string))) else: string = self._print(field) return r'\operatorname{{d}}\left({}\right)'.format(string) def _print_Tr(self, p): # TODO: Handle indices contents = self._print(p.args[0]) return r'\operatorname{{tr}}\left({}\right)'.format(contents) def _print_totient(self, expr, exp=None): if exp is not None: return r'\left(\phi\left(%s\right)\right)^{%s}' % \ (self._print(expr.args[0]), self._print(exp)) return r'\phi\left(%s\right)' % self._print(expr.args[0]) def _print_reduced_totient(self, expr, exp=None): if exp is not None: return r'\left(\lambda\left(%s\right)\right)^{%s}' % \ (self._print(expr.args[0]), self._print(exp)) return r'\lambda\left(%s\right)' % self._print(expr.args[0]) def _print_divisor_sigma(self, expr, exp=None): if len(expr.args) == 2: tex = r"_%s\left(%s\right)" % tuple(map(self._print, (expr.args[1], expr.args[0]))) else: tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\sigma^{%s}%s" % (self._print(exp), tex) return r"\sigma%s" % tex def _print_udivisor_sigma(self, expr, exp=None): if len(expr.args) == 2: tex = r"_%s\left(%s\right)" % tuple(map(self._print, (expr.args[1], expr.args[0]))) else: tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\sigma^*^{%s}%s" % (self._print(exp), tex) return r"\sigma^*%s" % tex def _print_primenu(self, expr, exp=None): if exp is not None: return r'\left(\nu\left(%s\right)\right)^{%s}' % \ (self._print(expr.args[0]), self._print(exp)) return r'\nu\left(%s\right)' % self._print(expr.args[0]) def _print_primeomega(self, expr, exp=None): if exp is not None: return r'\left(\Omega\left(%s\right)\right)^{%s}' % \ (self._print(expr.args[0]), self._print(exp)) return r'\Omega\left(%s\right)' % self._print(expr.args[0]) def translate(s): r''' Check for a modifier ending the string. If present, convert the modifier to latex and translate the rest recursively. Given a description of a Greek letter or other special character, return the appropriate latex. Let everything else pass as given. >>> from sympy.printing.latex import translate >>> translate('alphahatdotprime') "{\\dot{\\hat{\\alpha}}}'" ''' # Process the rest tex = tex_greek_dictionary.get(s) if tex: return tex elif s.lower() in greek_letters_set: return "\\" + s.lower() elif s in other_symbols: return "\\" + s else: # Process modifiers, if any, and recurse for key in sorted(modifier_dict.keys(), key=lambda k:len(k), reverse=True): if s.lower().endswith(key) and len(s) > len(key): return modifier_dict[key](translate(s[:-len(key)])) return s def latex(expr, fold_frac_powers=False, fold_func_brackets=False, fold_short_frac=None, inv_trig_style="abbreviated", itex=False, ln_notation=False, long_frac_ratio=None, mat_delim="[", mat_str=None, mode="plain", mul_symbol=None, order=None, symbol_names=None, root_notation=True, mat_symbol_style="plain", imaginary_unit="i", gothic_re_im=False, decimal_separator="period" ): r"""Convert the given expression to LaTeX string representation. Parameters ========== fold_frac_powers : boolean, optional Emit ``^{p/q}`` instead of ``^{\frac{p}{q}}`` for fractional powers. fold_func_brackets : boolean, optional Fold function brackets where applicable. fold_short_frac : boolean, optional Emit ``p / q`` instead of ``\frac{p}{q}`` when the denominator is simple enough (at most two terms and no powers). The default value is ``True`` for inline mode, ``False`` otherwise. inv_trig_style : string, optional How inverse trig functions should be displayed. Can be one of ``abbreviated``, ``full``, or ``power``. Defaults to ``abbreviated``. itex : boolean, optional Specifies if itex-specific syntax is used, including emitting ``$$...$$``. ln_notation : boolean, optional If set to ``True``, ``\ln`` is used instead of default ``\log``. long_frac_ratio : float or None, optional The allowed ratio of the width of the numerator to the width of the denominator before the printer breaks off long fractions. If ``None`` (the default value), long fractions are not broken up. mat_delim : string, optional The delimiter to wrap around matrices. Can be one of ``[``, ``(``, or the empty string. Defaults to ``[``. mat_str : string, optional Which matrix environment string to emit. ``smallmatrix``, ``matrix``, ``array``, etc. Defaults to ``smallmatrix`` for inline mode, ``matrix`` for matrices of no more than 10 columns, and ``array`` otherwise. mode: string, optional Specifies how the generated code will be delimited. ``mode`` can be one of ``plain``, ``inline``, ``equation`` or ``equation*``. If ``mode`` is set to ``plain``, then the resulting code will not be delimited at all (this is the default). If ``mode`` is set to ``inline`` then inline LaTeX ``$...$`` will be used. If ``mode`` is set to ``equation`` or ``equation*``, the resulting code will be enclosed in the ``equation`` or ``equation*`` environment (remember to import ``amsmath`` for ``equation*``), unless the ``itex`` option is set. In the latter case, the ``$$...$$`` syntax is used. mul_symbol : string or None, optional The symbol to use for multiplication. Can be one of ``None``, ``ldot``, ``dot``, or ``times``. order: string, optional Any of the supported monomial orderings (currently ``lex``, ``grlex``, or ``grevlex``), ``old``, and ``none``. This parameter does nothing for Mul objects. Setting order to ``old`` uses the compatibility ordering for Add defined in Printer. For very large expressions, set the ``order`` keyword to ``none`` if speed is a concern. symbol_names : dictionary of strings mapped to symbols, optional Dictionary of symbols and the custom strings they should be emitted as. root_notation : boolean, optional If set to ``False``, exponents of the form 1/n are printed in fractonal form. Default is ``True``, to print exponent in root form. mat_symbol_style : string, optional Can be either ``plain`` (default) or ``bold``. If set to ``bold``, a MatrixSymbol A will be printed as ``\mathbf{A}``, otherwise as ``A``. imaginary_unit : string, optional String to use for the imaginary unit. Defined options are "i" (default) and "j". Adding "r" or "t" in front gives ``\mathrm`` or ``\text``, so "ri" leads to ``\mathrm{i}`` which gives `\mathrm{i}`. gothic_re_im : boolean, optional If set to ``True``, `\Re` and `\Im` is used for ``re`` and ``im``, respectively. The default is ``False`` leading to `\operatorname{re}` and `\operatorname{im}`. decimal_separator : string, optional Specifies what separator to use to separate the whole and fractional parts of a floating point number as in `2.5` for the default, ``period`` or `2{,}5` when ``comma`` is specified. Lists, sets, and tuple are printed with semicolon separating the elements when ``comma`` is chosen. For example, [1; 2; 3] when ``comma`` is chosen and [1,2,3] for when ``period`` is chosen. Notes ===== Not using a print statement for printing, results in double backslashes for latex commands since that's the way Python escapes backslashes in strings. >>> from sympy import latex, Rational >>> from sympy.abc import tau >>> latex((2*tau)**Rational(7,2)) '8 \\sqrt{2} \\tau^{\\frac{7}{2}}' >>> print(latex((2*tau)**Rational(7,2))) 8 \sqrt{2} \tau^{\frac{7}{2}} Examples ======== >>> from sympy import latex, pi, sin, asin, Integral, Matrix, Rational, log >>> from sympy.abc import x, y, mu, r, tau Basic usage: >>> print(latex((2*tau)**Rational(7,2))) 8 \sqrt{2} \tau^{\frac{7}{2}} ``mode`` and ``itex`` options: >>> print(latex((2*mu)**Rational(7,2), mode='plain')) 8 \sqrt{2} \mu^{\frac{7}{2}} >>> print(latex((2*tau)**Rational(7,2), mode='inline')) $8 \sqrt{2} \tau^{7 / 2}$ >>> print(latex((2*mu)**Rational(7,2), mode='equation*')) \begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*} >>> print(latex((2*mu)**Rational(7,2), mode='equation')) \begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation} >>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True)) $$8 \sqrt{2} \mu^{\frac{7}{2}}$$ >>> print(latex((2*mu)**Rational(7,2), mode='plain')) 8 \sqrt{2} \mu^{\frac{7}{2}} >>> print(latex((2*tau)**Rational(7,2), mode='inline')) $8 \sqrt{2} \tau^{7 / 2}$ >>> print(latex((2*mu)**Rational(7,2), mode='equation*')) \begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*} >>> print(latex((2*mu)**Rational(7,2), mode='equation')) \begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation} >>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True)) $$8 \sqrt{2} \mu^{\frac{7}{2}}$$ Fraction options: >>> print(latex((2*tau)**Rational(7,2), fold_frac_powers=True)) 8 \sqrt{2} \tau^{7/2} >>> print(latex((2*tau)**sin(Rational(7,2)))) \left(2 \tau\right)^{\sin{\left(\frac{7}{2} \right)}} >>> print(latex((2*tau)**sin(Rational(7,2)), fold_func_brackets=True)) \left(2 \tau\right)^{\sin {\frac{7}{2}}} >>> print(latex(3*x**2/y)) \frac{3 x^{2}}{y} >>> print(latex(3*x**2/y, fold_short_frac=True)) 3 x^{2} / y >>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=2)) \frac{\int r\, dr}{2 \pi} >>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=0)) \frac{1}{2 \pi} \int r\, dr Multiplication options: >>> print(latex((2*tau)**sin(Rational(7,2)), mul_symbol="times")) \left(2 \times \tau\right)^{\sin{\left(\frac{7}{2} \right)}} Trig options: >>> print(latex(asin(Rational(7,2)))) \operatorname{asin}{\left(\frac{7}{2} \right)} >>> print(latex(asin(Rational(7,2)), inv_trig_style="full")) \arcsin{\left(\frac{7}{2} \right)} >>> print(latex(asin(Rational(7,2)), inv_trig_style="power")) \sin^{-1}{\left(\frac{7}{2} \right)} Matrix options: >>> print(latex(Matrix(2, 1, [x, y]))) \left[\begin{matrix}x\\y\end{matrix}\right] >>> print(latex(Matrix(2, 1, [x, y]), mat_str = "array")) \left[\begin{array}{c}x\\y\end{array}\right] >>> print(latex(Matrix(2, 1, [x, y]), mat_delim="(")) \left(\begin{matrix}x\\y\end{matrix}\right) Custom printing of symbols: >>> print(latex(x**2, symbol_names={x: 'x_i'})) x_i^{2} Logarithms: >>> print(latex(log(10))) \log{\left(10 \right)} >>> print(latex(log(10), ln_notation=True)) \ln{\left(10 \right)} ``latex()`` also supports the builtin container types list, tuple, and dictionary. >>> print(latex([2/x, y], mode='inline')) $\left[ 2 / x, \ y\right]$ """ if symbol_names is None: symbol_names = {} settings = { 'fold_frac_powers': fold_frac_powers, 'fold_func_brackets': fold_func_brackets, 'fold_short_frac': fold_short_frac, 'inv_trig_style': inv_trig_style, 'itex': itex, 'ln_notation': ln_notation, 'long_frac_ratio': long_frac_ratio, 'mat_delim': mat_delim, 'mat_str': mat_str, 'mode': mode, 'mul_symbol': mul_symbol, 'order': order, 'symbol_names': symbol_names, 'root_notation': root_notation, 'mat_symbol_style': mat_symbol_style, 'imaginary_unit': imaginary_unit, 'gothic_re_im': gothic_re_im, 'decimal_separator': decimal_separator, } return LatexPrinter(settings).doprint(expr) def print_latex(expr, **settings): """Prints LaTeX representation of the given expression. Takes the same settings as ``latex()``.""" print(latex(expr, **settings)) def multiline_latex(lhs, rhs, terms_per_line=1, environment="align*", use_dots=False, **settings): r""" This function generates a LaTeX equation with a multiline right-hand side in an ``align*``, ``eqnarray`` or ``IEEEeqnarray`` environment. Parameters ========== lhs : Expr Left-hand side of equation rhs : Expr Right-hand side of equation terms_per_line : integer, optional Number of terms per line to print. Default is 1. environment : "string", optional Which LaTeX wnvironment to use for the output. Options are "align*" (default), "eqnarray", and "IEEEeqnarray". use_dots : boolean, optional If ``True``, ``\\dots`` is added to the end of each line. Default is ``False``. Examples ======== >>> from sympy import multiline_latex, symbols, sin, cos, exp, log, I >>> x, y, alpha = symbols('x y alpha') >>> expr = sin(alpha*y) + exp(I*alpha) - cos(log(y)) >>> print(multiline_latex(x, expr)) \begin{align*} x = & e^{i \alpha} \\ & + \sin{\left(\alpha y \right)} \\ & - \cos{\left(\log{\left(y \right)} \right)} \end{align*} Using at most two terms per line: >>> print(multiline_latex(x, expr, 2)) \begin{align*} x = & e^{i \alpha} + \sin{\left(\alpha y \right)} \\ & - \cos{\left(\log{\left(y \right)} \right)} \end{align*} Using ``eqnarray`` and dots: >>> print(multiline_latex(x, expr, terms_per_line=2, environment="eqnarray", use_dots=True)) \begin{eqnarray} x & = & e^{i \alpha} + \sin{\left(\alpha y \right)} \dots\nonumber\\ & & - \cos{\left(\log{\left(y \right)} \right)} \end{eqnarray} Using ``IEEEeqnarray``: >>> print(multiline_latex(x, expr, environment="IEEEeqnarray")) \begin{IEEEeqnarray}{rCl} x & = & e^{i \alpha} \nonumber\\ & & + \sin{\left(\alpha y \right)} \nonumber\\ & & - \cos{\left(\log{\left(y \right)} \right)} \end{IEEEeqnarray} Notes ===== All optional parameters from ``latex`` can also be used. """ # Based on code from https://github.com/sympy/sympy/issues/3001 l = LatexPrinter(**settings) if environment == "eqnarray": result = r'\begin{eqnarray}' + '\n' first_term = '& = &' nonumber = r'\nonumber' end_term = '\n\\end{eqnarray}' doubleet = True elif environment == "IEEEeqnarray": result = r'\begin{IEEEeqnarray}{rCl}' + '\n' first_term = '& = &' nonumber = r'\nonumber' end_term = '\n\\end{IEEEeqnarray}' doubleet = True elif environment == "align*": result = r'\begin{align*}' + '\n' first_term = '= &' nonumber = '' end_term = '\n\\end{align*}' doubleet = False else: raise ValueError("Unknown environment: {}".format(environment)) dots = '' if use_dots: dots=r'\dots' terms = rhs.as_ordered_terms() n_terms = len(terms) term_count = 1 for i in range(n_terms): term = terms[i] term_start = '' term_end = '' sign = '+' if term_count > terms_per_line: if doubleet: term_start = '& & ' else: term_start = '& ' term_count = 1 if term_count == terms_per_line: # End of line if i < n_terms-1: # There are terms remaining term_end = dots + nonumber + r'\\' + '\n' else: term_end = '' if term.as_ordered_factors()[0] == -1: term = -1*term sign = r'-' if i == 0: # beginning if sign == '+': sign = '' result += r'{:s} {:s}{:s} {:s} {:s}'.format(l.doprint(lhs), first_term, sign, l.doprint(term), term_end) else: result += r'{:s}{:s} {:s} {:s}'.format(term_start, sign, l.doprint(term), term_end) term_count += 1 result += end_term return result
d9de665396b03f8402ccc6433deddcc0b56b06f1371369948e49712a01ac220c
from __future__ import print_function, division from .pycode import ( PythonCodePrinter, MpmathPrinter, # MpmathPrinter is imported for backward compatibility NumPyPrinter # NumPyPrinter is imported for backward compatibility ) from sympy.utilities import default_sort_key class LambdaPrinter(PythonCodePrinter): """ This printer converts expressions into strings that can be used by lambdify. """ printmethod = "_lambdacode" def _print_And(self, expr): result = ['('] for arg in sorted(expr.args, key=default_sort_key): result.extend(['(', self._print(arg), ')']) result.append(' and ') result = result[:-1] result.append(')') return ''.join(result) def _print_Or(self, expr): result = ['('] for arg in sorted(expr.args, key=default_sort_key): result.extend(['(', self._print(arg), ')']) result.append(' or ') result = result[:-1] result.append(')') return ''.join(result) def _print_Not(self, expr): result = ['(', 'not (', self._print(expr.args[0]), '))'] return ''.join(result) def _print_BooleanTrue(self, expr): return "True" def _print_BooleanFalse(self, expr): return "False" def _print_ITE(self, expr): result = [ '((', self._print(expr.args[1]), ') if (', self._print(expr.args[0]), ') else (', self._print(expr.args[2]), '))' ] return ''.join(result) def _print_NumberSymbol(self, expr): return str(expr) def _print_Pow(self, expr, **kwargs): # XXX Temporary workaround. Should python math printer be # isolated from PythonCodePrinter? return super(PythonCodePrinter, self)._print_Pow(expr, **kwargs) # numexpr works by altering the string passed to numexpr.evaluate # rather than by populating a namespace. Thus a special printer... class NumExprPrinter(LambdaPrinter): # key, value pairs correspond to sympy name and numexpr name # functions not appearing in this dict will raise a TypeError printmethod = "_numexprcode" _numexpr_functions = { 'sin' : 'sin', 'cos' : 'cos', 'tan' : 'tan', 'asin': 'arcsin', 'acos': 'arccos', 'atan': 'arctan', 'atan2' : 'arctan2', 'sinh' : 'sinh', 'cosh' : 'cosh', 'tanh' : 'tanh', 'asinh': 'arcsinh', 'acosh': 'arccosh', 'atanh': 'arctanh', 'ln' : 'log', 'log': 'log', 'exp': 'exp', 'sqrt' : 'sqrt', 'Abs' : 'abs', 'conjugate' : 'conj', 'im' : 'imag', 're' : 'real', 'where' : 'where', 'complex' : 'complex', 'contains' : 'contains', } def _print_ImaginaryUnit(self, expr): return '1j' def _print_seq(self, seq, delimiter=', '): # simplified _print_seq taken from pretty.py s = [self._print(item) for item in seq] if s: return delimiter.join(s) else: return "" def _print_Function(self, e): func_name = e.func.__name__ nstr = self._numexpr_functions.get(func_name, None) if nstr is None: # check for implemented_function if hasattr(e, '_imp_'): return "(%s)" % self._print(e._imp_(*e.args)) else: raise TypeError("numexpr does not support function '%s'" % func_name) return "%s(%s)" % (nstr, self._print_seq(e.args)) def _print_Piecewise(self, expr): "Piecewise function printer" exprs = [self._print(arg.expr) for arg in expr.args] conds = [self._print(arg.cond) for arg in expr.args] # If [default_value, True] is a (expr, cond) sequence in a Piecewise object # it will behave the same as passing the 'default' kwarg to select() # *as long as* it is the last element in expr.args. # If this is not the case, it may be triggered prematurely. ans = [] parenthesis_count = 0 is_last_cond_True = False for cond, expr in zip(conds, exprs): if cond == 'True': ans.append(expr) is_last_cond_True = True break else: ans.append('where(%s, %s, ' % (cond, expr)) parenthesis_count += 1 if not is_last_cond_True: # simplest way to put a nan but raises # 'RuntimeWarning: invalid value encountered in log' ans.append('log(-1)') return ''.join(ans) + ')' * parenthesis_count def blacklisted(self, expr): raise TypeError("numexpr cannot be used with %s" % expr.__class__.__name__) # blacklist all Matrix printing _print_SparseMatrix = \ _print_MutableSparseMatrix = \ _print_ImmutableSparseMatrix = \ _print_Matrix = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ blacklisted # blacklist some python expressions _print_list = \ _print_tuple = \ _print_Tuple = \ _print_dict = \ _print_Dict = \ blacklisted def doprint(self, expr): lstr = super(NumExprPrinter, self).doprint(expr) return "evaluate('%s', truediv=True)" % lstr for k in NumExprPrinter._numexpr_functions: setattr(NumExprPrinter, '_print_%s' % k, NumExprPrinter._print_Function) def lambdarepr(expr, **settings): """ Returns a string usable for lambdifying. """ return LambdaPrinter(settings).doprint(expr)
36d5dc42ded7a8a7831f17f0b408d12e9d99f0227ac1206cf240704c8219f1ef
""" A MathML printer. """ from __future__ import print_function, division from sympy import sympify, S, Mul from sympy.core.compatibility import range, string_types, default_sort_key from sympy.core.function import _coeff_isneg from sympy.printing.conventions import split_super_sub, requires_partial from sympy.printing.precedence import \ precedence_traditional, PRECEDENCE, PRECEDENCE_TRADITIONAL from sympy.printing.pretty.pretty_symbology import greek_unicode from sympy.printing.printer import Printer import mpmath.libmp as mlib from mpmath.libmp import prec_to_dps class MathMLPrinterBase(Printer): """Contains common code required for MathMLContentPrinter and MathMLPresentationPrinter. """ _default_settings = { "order": None, "encoding": "utf-8", "fold_frac_powers": False, "fold_func_brackets": False, "fold_short_frac": None, "inv_trig_style": "abbreviated", "ln_notation": False, "long_frac_ratio": None, "mat_delim": "[", "mat_symbol_style": "plain", "mul_symbol": None, "root_notation": True, "symbol_names": {}, "mul_symbol_mathml_numbers": '&#xB7;', } def __init__(self, settings=None): Printer.__init__(self, settings) from xml.dom.minidom import Document, Text self.dom = Document() # Workaround to allow strings to remain unescaped # Based on # https://stackoverflow.com/questions/38015864/python-xml-dom-minidom-\ # please-dont-escape-my-strings/38041194 class RawText(Text): def writexml(self, writer, indent='', addindent='', newl=''): if self.data: writer.write(u'{}{}{}'.format(indent, self.data, newl)) def createRawTextNode(data): r = RawText() r.data = data r.ownerDocument = self.dom return r self.dom.createTextNode = createRawTextNode def doprint(self, expr): """ Prints the expression as MathML. """ mathML = Printer._print(self, expr) unistr = mathML.toxml() xmlbstr = unistr.encode('ascii', 'xmlcharrefreplace') res = xmlbstr.decode() return res def apply_patch(self): # Applying the patch of xml.dom.minidom bug # Date: 2011-11-18 # Description: http://ronrothman.com/public/leftbraned/xml-dom-minidom\ # -toprettyxml-and-silly-whitespace/#best-solution # Issue: http://bugs.python.org/issue4147 # Patch: http://hg.python.org/cpython/rev/7262f8f276ff/ from xml.dom.minidom import Element, Text, Node, _write_data def writexml(self, writer, indent="", addindent="", newl=""): # indent = current indentation # addindent = indentation to add to higher levels # newl = newline string writer.write(indent + "<" + self.tagName) attrs = self._get_attributes() a_names = list(attrs.keys()) a_names.sort() for a_name in a_names: writer.write(" %s=\"" % a_name) _write_data(writer, attrs[a_name].value) writer.write("\"") if self.childNodes: writer.write(">") if (len(self.childNodes) == 1 and self.childNodes[0].nodeType == Node.TEXT_NODE): self.childNodes[0].writexml(writer, '', '', '') else: writer.write(newl) for node in self.childNodes: node.writexml( writer, indent + addindent, addindent, newl) writer.write(indent) writer.write("</%s>%s" % (self.tagName, newl)) else: writer.write("/>%s" % (newl)) self._Element_writexml_old = Element.writexml Element.writexml = writexml def writexml(self, writer, indent="", addindent="", newl=""): _write_data(writer, "%s%s%s" % (indent, self.data, newl)) self._Text_writexml_old = Text.writexml Text.writexml = writexml def restore_patch(self): from xml.dom.minidom import Element, Text Element.writexml = self._Element_writexml_old Text.writexml = self._Text_writexml_old class MathMLContentPrinter(MathMLPrinterBase): """Prints an expression to the Content MathML markup language. References: https://www.w3.org/TR/MathML2/chapter4.html """ printmethod = "_mathml_content" def mathml_tag(self, e): """Returns the MathML tag for an expression.""" translate = { 'Add': 'plus', 'Mul': 'times', 'Derivative': 'diff', 'Number': 'cn', 'int': 'cn', 'Pow': 'power', 'Max': 'max', 'Min': 'min', 'Abs': 'abs', 'And': 'and', 'Or': 'or', 'Xor': 'xor', 'Not': 'not', 'Implies': 'implies', 'Symbol': 'ci', 'MatrixSymbol': 'ci', 'RandomSymbol': 'ci', 'Integral': 'int', 'Sum': 'sum', 'sin': 'sin', 'cos': 'cos', 'tan': 'tan', 'cot': 'cot', 'csc': 'csc', 'sec': 'sec', 'sinh': 'sinh', 'cosh': 'cosh', 'tanh': 'tanh', 'coth': 'coth', 'csch': 'csch', 'sech': 'sech', 'asin': 'arcsin', 'asinh': 'arcsinh', 'acos': 'arccos', 'acosh': 'arccosh', 'atan': 'arctan', 'atanh': 'arctanh', 'atan2': 'arctan', 'acot': 'arccot', 'acoth': 'arccoth', 'asec': 'arcsec', 'asech': 'arcsech', 'acsc': 'arccsc', 'acsch': 'arccsch', 'log': 'ln', 'Equality': 'eq', 'Unequality': 'neq', 'GreaterThan': 'geq', 'LessThan': 'leq', 'StrictGreaterThan': 'gt', 'StrictLessThan': 'lt', } for cls in e.__class__.__mro__: n = cls.__name__ if n in translate: return translate[n] # Not found in the MRO set n = e.__class__.__name__ return n.lower() def _print_Mul(self, expr): if _coeff_isneg(expr): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('minus')) x.appendChild(self._print_Mul(-expr)) return x from sympy.simplify import fraction numer, denom = fraction(expr) if denom is not S.One: x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('divide')) x.appendChild(self._print(numer)) x.appendChild(self._print(denom)) return x coeff, terms = expr.as_coeff_mul() if coeff is S.One and len(terms) == 1: # XXX since the negative coefficient has been handled, I don't # think a coeff of 1 can remain return self._print(terms[0]) if self.order != 'old': terms = Mul._from_args(terms).as_ordered_factors() x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('times')) if coeff != 1: x.appendChild(self._print(coeff)) for term in terms: x.appendChild(self._print(term)) return x def _print_Add(self, expr, order=None): args = self._as_ordered_terms(expr, order=order) lastProcessed = self._print(args[0]) plusNodes = [] for arg in args[1:]: if _coeff_isneg(arg): # use minus x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('minus')) x.appendChild(lastProcessed) x.appendChild(self._print(-arg)) # invert expression since this is now minused lastProcessed = x if arg == args[-1]: plusNodes.append(lastProcessed) else: plusNodes.append(lastProcessed) lastProcessed = self._print(arg) if arg == args[-1]: plusNodes.append(self._print(arg)) if len(plusNodes) == 1: return lastProcessed x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('plus')) while plusNodes: x.appendChild(plusNodes.pop(0)) return x def _print_Piecewise(self, expr): if expr.args[-1].cond != True: # We need the last conditional to be a True, otherwise the resulting # function may not return a result. raise ValueError("All Piecewise expressions must contain an " "(expr, True) statement to be used as a default " "condition. Without one, the generated " "expression may not evaluate to anything under " "some condition.") root = self.dom.createElement('piecewise') for i, (e, c) in enumerate(expr.args): if i == len(expr.args) - 1 and c == True: piece = self.dom.createElement('otherwise') piece.appendChild(self._print(e)) else: piece = self.dom.createElement('piece') piece.appendChild(self._print(e)) piece.appendChild(self._print(c)) root.appendChild(piece) return root def _print_MatrixBase(self, m): x = self.dom.createElement('matrix') for i in range(m.rows): x_r = self.dom.createElement('matrixrow') for j in range(m.cols): x_r.appendChild(self._print(m[i, j])) x.appendChild(x_r) return x def _print_Rational(self, e): if e.q == 1: # don't divide x = self.dom.createElement('cn') x.appendChild(self.dom.createTextNode(str(e.p))) return x x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('divide')) # numerator xnum = self.dom.createElement('cn') xnum.appendChild(self.dom.createTextNode(str(e.p))) # denominator xdenom = self.dom.createElement('cn') xdenom.appendChild(self.dom.createTextNode(str(e.q))) x.appendChild(xnum) x.appendChild(xdenom) return x def _print_Limit(self, e): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement(self.mathml_tag(e))) x_1 = self.dom.createElement('bvar') x_2 = self.dom.createElement('lowlimit') x_1.appendChild(self._print(e.args[1])) x_2.appendChild(self._print(e.args[2])) x.appendChild(x_1) x.appendChild(x_2) x.appendChild(self._print(e.args[0])) return x def _print_ImaginaryUnit(self, e): return self.dom.createElement('imaginaryi') def _print_EulerGamma(self, e): return self.dom.createElement('eulergamma') def _print_GoldenRatio(self, e): """We use unicode #x3c6 for Greek letter phi as defined here http://www.w3.org/2003/entities/2007doc/isogrk1.html""" x = self.dom.createElement('cn') x.appendChild(self.dom.createTextNode(u"\N{GREEK SMALL LETTER PHI}")) return x def _print_Exp1(self, e): return self.dom.createElement('exponentiale') def _print_Pi(self, e): return self.dom.createElement('pi') def _print_Infinity(self, e): return self.dom.createElement('infinity') def _print_NaN(self, e): return self.dom.createElement('notanumber') def _print_EmptySet(self, e): return self.dom.createElement('emptyset') def _print_BooleanTrue(self, e): return self.dom.createElement('true') def _print_BooleanFalse(self, e): return self.dom.createElement('false') def _print_NegativeInfinity(self, e): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('minus')) x.appendChild(self.dom.createElement('infinity')) return x def _print_Integral(self, e): def lime_recur(limits): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement(self.mathml_tag(e))) bvar_elem = self.dom.createElement('bvar') bvar_elem.appendChild(self._print(limits[0][0])) x.appendChild(bvar_elem) if len(limits[0]) == 3: low_elem = self.dom.createElement('lowlimit') low_elem.appendChild(self._print(limits[0][1])) x.appendChild(low_elem) up_elem = self.dom.createElement('uplimit') up_elem.appendChild(self._print(limits[0][2])) x.appendChild(up_elem) if len(limits[0]) == 2: up_elem = self.dom.createElement('uplimit') up_elem.appendChild(self._print(limits[0][1])) x.appendChild(up_elem) if len(limits) == 1: x.appendChild(self._print(e.function)) else: x.appendChild(lime_recur(limits[1:])) return x limits = list(e.limits) limits.reverse() return lime_recur(limits) def _print_Sum(self, e): # Printer can be shared because Sum and Integral have the # same internal representation. return self._print_Integral(e) def _print_Symbol(self, sym): ci = self.dom.createElement(self.mathml_tag(sym)) def join(items): if len(items) > 1: mrow = self.dom.createElement('mml:mrow') for i, item in enumerate(items): if i > 0: mo = self.dom.createElement('mml:mo') mo.appendChild(self.dom.createTextNode(" ")) mrow.appendChild(mo) mi = self.dom.createElement('mml:mi') mi.appendChild(self.dom.createTextNode(item)) mrow.appendChild(mi) return mrow else: mi = self.dom.createElement('mml:mi') mi.appendChild(self.dom.createTextNode(items[0])) return mi # translate name, supers and subs to unicode characters def translate(s): if s in greek_unicode: return greek_unicode.get(s) else: return s name, supers, subs = split_super_sub(sym.name) name = translate(name) supers = [translate(sup) for sup in supers] subs = [translate(sub) for sub in subs] mname = self.dom.createElement('mml:mi') mname.appendChild(self.dom.createTextNode(name)) if not supers: if not subs: ci.appendChild(self.dom.createTextNode(name)) else: msub = self.dom.createElement('mml:msub') msub.appendChild(mname) msub.appendChild(join(subs)) ci.appendChild(msub) else: if not subs: msup = self.dom.createElement('mml:msup') msup.appendChild(mname) msup.appendChild(join(supers)) ci.appendChild(msup) else: msubsup = self.dom.createElement('mml:msubsup') msubsup.appendChild(mname) msubsup.appendChild(join(subs)) msubsup.appendChild(join(supers)) ci.appendChild(msubsup) return ci _print_MatrixSymbol = _print_Symbol _print_RandomSymbol = _print_Symbol def _print_Pow(self, e): # Here we use root instead of power if the exponent is the reciprocal # of an integer if (self._settings['root_notation'] and e.exp.is_Rational and e.exp.p == 1): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('root')) if e.exp.q != 2: xmldeg = self.dom.createElement('degree') xmlci = self.dom.createElement('ci') xmlci.appendChild(self.dom.createTextNode(str(e.exp.q))) xmldeg.appendChild(xmlci) x.appendChild(xmldeg) x.appendChild(self._print(e.base)) return x x = self.dom.createElement('apply') x_1 = self.dom.createElement(self.mathml_tag(e)) x.appendChild(x_1) x.appendChild(self._print(e.base)) x.appendChild(self._print(e.exp)) return x def _print_Number(self, e): x = self.dom.createElement(self.mathml_tag(e)) x.appendChild(self.dom.createTextNode(str(e))) return x def _print_Derivative(self, e): x = self.dom.createElement('apply') diff_symbol = self.mathml_tag(e) if requires_partial(e.expr): diff_symbol = 'partialdiff' x.appendChild(self.dom.createElement(diff_symbol)) x_1 = self.dom.createElement('bvar') for sym, times in reversed(e.variable_count): x_1.appendChild(self._print(sym)) if times > 1: degree = self.dom.createElement('degree') degree.appendChild(self._print(sympify(times))) x_1.appendChild(degree) x.appendChild(x_1) x.appendChild(self._print(e.expr)) return x def _print_Function(self, e): x = self.dom.createElement("apply") x.appendChild(self.dom.createElement(self.mathml_tag(e))) for arg in e.args: x.appendChild(self._print(arg)) return x def _print_Basic(self, e): x = self.dom.createElement(self.mathml_tag(e)) for arg in e.args: x.appendChild(self._print(arg)) return x def _print_AssocOp(self, e): x = self.dom.createElement('apply') x_1 = self.dom.createElement(self.mathml_tag(e)) x.appendChild(x_1) for arg in e.args: x.appendChild(self._print(arg)) return x def _print_Relational(self, e): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement(self.mathml_tag(e))) x.appendChild(self._print(e.lhs)) x.appendChild(self._print(e.rhs)) return x def _print_list(self, seq): """MathML reference for the <list> element: http://www.w3.org/TR/MathML2/chapter4.html#contm.list""" dom_element = self.dom.createElement('list') for item in seq: dom_element.appendChild(self._print(item)) return dom_element def _print_int(self, p): dom_element = self.dom.createElement(self.mathml_tag(p)) dom_element.appendChild(self.dom.createTextNode(str(p))) return dom_element _print_Implies = _print_AssocOp _print_Not = _print_AssocOp _print_Xor = _print_AssocOp class MathMLPresentationPrinter(MathMLPrinterBase): """Prints an expression to the Presentation MathML markup language. References: https://www.w3.org/TR/MathML2/chapter3.html """ printmethod = "_mathml_presentation" def mathml_tag(self, e): """Returns the MathML tag for an expression.""" translate = { 'Number': 'mn', 'Limit': '&#x2192;', 'Derivative': '&dd;', 'int': 'mn', 'Symbol': 'mi', 'Integral': '&int;', 'Sum': '&#x2211;', 'sin': 'sin', 'cos': 'cos', 'tan': 'tan', 'cot': 'cot', 'asin': 'arcsin', 'asinh': 'arcsinh', 'acos': 'arccos', 'acosh': 'arccosh', 'atan': 'arctan', 'atanh': 'arctanh', 'acot': 'arccot', 'atan2': 'arctan', 'Equality': '=', 'Unequality': '&#x2260;', 'GreaterThan': '&#x2265;', 'LessThan': '&#x2264;', 'StrictGreaterThan': '>', 'StrictLessThan': '<', 'lerchphi': '&#x3A6;', 'zeta': '&#x3B6;', 'dirichlet_eta': '&#x3B7;', 'elliptic_k': '&#x39A;', 'lowergamma': '&#x3B3;', 'uppergamma': '&#x393;', 'gamma': '&#x393;', 'totient': '&#x3D5;', 'reduced_totient': '&#x3BB;', 'primenu': '&#x3BD;', 'primeomega': '&#x3A9;', 'fresnels': 'S', 'fresnelc': 'C', 'LambertW': 'W', 'Heaviside': '&#x398;', 'BooleanTrue': 'True', 'BooleanFalse': 'False', 'NoneType': 'None', 'mathieus': 'S', 'mathieuc': 'C', 'mathieusprime': 'S&#x2032;', 'mathieucprime': 'C&#x2032;', } def mul_symbol_selection(): if (self._settings["mul_symbol"] is None or self._settings["mul_symbol"] == 'None'): return '&InvisibleTimes;' elif self._settings["mul_symbol"] == 'times': return '&#xD7;' elif self._settings["mul_symbol"] == 'dot': return '&#xB7;' elif self._settings["mul_symbol"] == 'ldot': return '&#x2024;' elif not isinstance(self._settings["mul_symbol"], string_types): raise TypeError else: return self._settings["mul_symbol"] for cls in e.__class__.__mro__: n = cls.__name__ if n in translate: return translate[n] # Not found in the MRO set if e.__class__.__name__ == "Mul": return mul_symbol_selection() n = e.__class__.__name__ return n.lower() def parenthesize(self, item, level, strict=False): prec_val = precedence_traditional(item) if (prec_val < level) or ((not strict) and prec_val <= level): brac = self.dom.createElement('mfenced') brac.appendChild(self._print(item)) return brac else: return self._print(item) def _print_Mul(self, expr): def multiply(expr, mrow): from sympy.simplify import fraction numer, denom = fraction(expr) if denom is not S.One: frac = self.dom.createElement('mfrac') if self._settings["fold_short_frac"] and len(str(expr)) < 7: frac.setAttribute('bevelled', 'true') xnum = self._print(numer) xden = self._print(denom) frac.appendChild(xnum) frac.appendChild(xden) mrow.appendChild(frac) return mrow coeff, terms = expr.as_coeff_mul() if coeff is S.One and len(terms) == 1: mrow.appendChild(self._print(terms[0])) return mrow if self.order != 'old': terms = Mul._from_args(terms).as_ordered_factors() if coeff != 1: x = self._print(coeff) y = self.dom.createElement('mo') y.appendChild(self.dom.createTextNode(self.mathml_tag(expr))) mrow.appendChild(x) mrow.appendChild(y) for term in terms: mrow.appendChild(self.parenthesize(term, PRECEDENCE['Mul'])) if not term == terms[-1]: y = self.dom.createElement('mo') y.appendChild(self.dom.createTextNode(self.mathml_tag(expr))) mrow.appendChild(y) return mrow mrow = self.dom.createElement('mrow') if _coeff_isneg(expr): x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode('-')) mrow.appendChild(x) mrow = multiply(-expr, mrow) else: mrow = multiply(expr, mrow) return mrow def _print_Add(self, expr, order=None): mrow = self.dom.createElement('mrow') args = self._as_ordered_terms(expr, order=order) mrow.appendChild(self._print(args[0])) for arg in args[1:]: if _coeff_isneg(arg): # use minus x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode('-')) y = self._print(-arg) # invert expression since this is now minused else: x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode('+')) y = self._print(arg) mrow.appendChild(x) mrow.appendChild(y) return mrow def _print_MatrixBase(self, m): table = self.dom.createElement('mtable') for i in range(m.rows): x = self.dom.createElement('mtr') for j in range(m.cols): y = self.dom.createElement('mtd') y.appendChild(self._print(m[i, j])) x.appendChild(y) table.appendChild(x) if self._settings["mat_delim"] == '': return table brac = self.dom.createElement('mfenced') if self._settings["mat_delim"] == "[": brac.setAttribute('close', ']') brac.setAttribute('open', '[') brac.appendChild(table) return brac def _get_printed_Rational(self, e, folded=None): if e.p < 0: p = -e.p else: p = e.p x = self.dom.createElement('mfrac') if folded or self._settings["fold_short_frac"]: x.setAttribute('bevelled', 'true') x.appendChild(self._print(p)) x.appendChild(self._print(e.q)) if e.p < 0: mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('-')) mrow.appendChild(mo) mrow.appendChild(x) return mrow else: return x def _print_Rational(self, e): if e.q == 1: # don't divide return self._print(e.p) return self._get_printed_Rational(e, self._settings["fold_short_frac"]) def _print_Limit(self, e): mrow = self.dom.createElement('mrow') munder = self.dom.createElement('munder') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('lim')) x = self.dom.createElement('mrow') x_1 = self._print(e.args[1]) arrow = self.dom.createElement('mo') arrow.appendChild(self.dom.createTextNode(self.mathml_tag(e))) x_2 = self._print(e.args[2]) x.appendChild(x_1) x.appendChild(arrow) x.appendChild(x_2) munder.appendChild(mi) munder.appendChild(x) mrow.appendChild(munder) mrow.appendChild(self._print(e.args[0])) return mrow def _print_ImaginaryUnit(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&ImaginaryI;')) return x def _print_GoldenRatio(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&#x3A6;')) return x def _print_Exp1(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&ExponentialE;')) return x def _print_Pi(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&pi;')) return x def _print_Infinity(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&#x221E;')) return x def _print_NegativeInfinity(self, e): mrow = self.dom.createElement('mrow') y = self.dom.createElement('mo') y.appendChild(self.dom.createTextNode('-')) x = self._print_Infinity(e) mrow.appendChild(y) mrow.appendChild(x) return mrow def _print_HBar(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&#x210F;')) return x def _print_EulerGamma(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&#x3B3;')) return x def _print_TribonacciConstant(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('TribonacciConstant')) return x def _print_Dagger(self, e): msup = self.dom.createElement('msup') msup.appendChild(self._print(e.args[0])) msup.appendChild(self.dom.createTextNode('&#x2020;')) return msup def _print_Contains(self, e): mrow = self.dom.createElement('mrow') mrow.appendChild(self._print(e.args[0])) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2208;')) mrow.appendChild(mo) mrow.appendChild(self._print(e.args[1])) return mrow def _print_HilbertSpace(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&#x210B;')) return x def _print_ComplexSpace(self, e): msup = self.dom.createElement('msup') msup.appendChild(self.dom.createTextNode('&#x1D49E;')) msup.appendChild(self._print(e.args[0])) return msup def _print_FockSpace(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&#x2131;')) return x def _print_Integral(self, expr): intsymbols = {1: "&#x222B;", 2: "&#x222C;", 3: "&#x222D;"} mrow = self.dom.createElement('mrow') if len(expr.limits) <= 3 and all(len(lim) == 1 for lim in expr.limits): # Only up to three-integral signs exists mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode(intsymbols[len(expr.limits)])) mrow.appendChild(mo) else: # Either more than three or limits provided for lim in reversed(expr.limits): mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode(intsymbols[1])) if len(lim) == 1: mrow.appendChild(mo) if len(lim) == 2: msup = self.dom.createElement('msup') msup.appendChild(mo) msup.appendChild(self._print(lim[1])) mrow.appendChild(msup) if len(lim) == 3: msubsup = self.dom.createElement('msubsup') msubsup.appendChild(mo) msubsup.appendChild(self._print(lim[1])) msubsup.appendChild(self._print(lim[2])) mrow.appendChild(msubsup) # print function mrow.appendChild(self.parenthesize(expr.function, PRECEDENCE["Mul"], strict=True)) # print integration variables for lim in reversed(expr.limits): d = self.dom.createElement('mo') d.appendChild(self.dom.createTextNode('&dd;')) mrow.appendChild(d) mrow.appendChild(self._print(lim[0])) return mrow def _print_Sum(self, e): limits = list(e.limits) subsup = self.dom.createElement('munderover') low_elem = self._print(limits[0][1]) up_elem = self._print(limits[0][2]) summand = self.dom.createElement('mo') summand.appendChild(self.dom.createTextNode(self.mathml_tag(e))) low = self.dom.createElement('mrow') var = self._print(limits[0][0]) equal = self.dom.createElement('mo') equal.appendChild(self.dom.createTextNode('=')) low.appendChild(var) low.appendChild(equal) low.appendChild(low_elem) subsup.appendChild(summand) subsup.appendChild(low) subsup.appendChild(up_elem) mrow = self.dom.createElement('mrow') mrow.appendChild(subsup) if len(str(e.function)) == 1: mrow.appendChild(self._print(e.function)) else: fence = self.dom.createElement('mfenced') fence.appendChild(self._print(e.function)) mrow.appendChild(fence) return mrow def _print_Symbol(self, sym, style='plain'): def join(items): if len(items) > 1: mrow = self.dom.createElement('mrow') for i, item in enumerate(items): if i > 0: mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode(" ")) mrow.appendChild(mo) mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(item)) mrow.appendChild(mi) return mrow else: mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(items[0])) return mi # translate name, supers and subs to unicode characters def translate(s): if s in greek_unicode: return greek_unicode.get(s) else: return s name, supers, subs = split_super_sub(sym.name) name = translate(name) supers = [translate(sup) for sup in supers] subs = [translate(sub) for sub in subs] mname = self.dom.createElement('mi') mname.appendChild(self.dom.createTextNode(name)) if len(supers) == 0: if len(subs) == 0: x = mname else: x = self.dom.createElement('msub') x.appendChild(mname) x.appendChild(join(subs)) else: if len(subs) == 0: x = self.dom.createElement('msup') x.appendChild(mname) x.appendChild(join(supers)) else: x = self.dom.createElement('msubsup') x.appendChild(mname) x.appendChild(join(subs)) x.appendChild(join(supers)) # Set bold font? if style == 'bold': x.setAttribute('mathvariant', 'bold') return x def _print_MatrixSymbol(self, sym): return self._print_Symbol(sym, style=self._settings['mat_symbol_style']) _print_RandomSymbol = _print_Symbol def _print_conjugate(self, expr): enc = self.dom.createElement('menclose') enc.setAttribute('notation', 'top') enc.appendChild(self._print(expr.args[0])) return enc def _print_operator_after(self, op, expr): row = self.dom.createElement('mrow') row.appendChild(self.parenthesize(expr, PRECEDENCE["Func"])) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode(op)) row.appendChild(mo) return row def _print_factorial(self, expr): return self._print_operator_after('!', expr.args[0]) def _print_factorial2(self, expr): return self._print_operator_after('!!', expr.args[0]) def _print_binomial(self, expr): brac = self.dom.createElement('mfenced') frac = self.dom.createElement('mfrac') frac.setAttribute('linethickness', '0') frac.appendChild(self._print(expr.args[0])) frac.appendChild(self._print(expr.args[1])) brac.appendChild(frac) return brac def _print_Pow(self, e): # Here we use root instead of power if the exponent is the # reciprocal of an integer if (e.exp.is_Rational and abs(e.exp.p) == 1 and e.exp.q != 1 and self._settings['root_notation']): if e.exp.q == 2: x = self.dom.createElement('msqrt') x.appendChild(self._print(e.base)) if e.exp.q != 2: x = self.dom.createElement('mroot') x.appendChild(self._print(e.base)) x.appendChild(self._print(e.exp.q)) if e.exp.p == -1: frac = self.dom.createElement('mfrac') frac.appendChild(self._print(1)) frac.appendChild(x) return frac else: return x if e.exp.is_Rational and e.exp.q != 1: if e.exp.is_negative: top = self.dom.createElement('mfrac') top.appendChild(self._print(1)) x = self.dom.createElement('msup') x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow'])) x.appendChild(self._get_printed_Rational(-e.exp, self._settings['fold_frac_powers'])) top.appendChild(x) return top else: x = self.dom.createElement('msup') x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow'])) x.appendChild(self._get_printed_Rational(e.exp, self._settings['fold_frac_powers'])) return x if e.exp.is_negative: top = self.dom.createElement('mfrac') top.appendChild(self._print(1)) if e.exp == -1: top.appendChild(self._print(e.base)) else: x = self.dom.createElement('msup') x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow'])) x.appendChild(self._print(-e.exp)) top.appendChild(x) return top x = self.dom.createElement('msup') x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow'])) x.appendChild(self._print(e.exp)) return x def _print_Number(self, e): x = self.dom.createElement(self.mathml_tag(e)) x.appendChild(self.dom.createTextNode(str(e))) return x def _print_AccumulationBounds(self, i): brac = self.dom.createElement('mfenced') brac.setAttribute('close', u'\u27e9') brac.setAttribute('open', u'\u27e8') brac.appendChild(self._print(i.min)) brac.appendChild(self._print(i.max)) return brac def _print_Derivative(self, e): if requires_partial(e.expr): d = '&#x2202;' else: d = self.mathml_tag(e) # Determine denominator m = self.dom.createElement('mrow') dim = 0 # Total diff dimension, for numerator for sym, num in reversed(e.variable_count): dim += num if num >= 2: x = self.dom.createElement('msup') xx = self.dom.createElement('mo') xx.appendChild(self.dom.createTextNode(d)) x.appendChild(xx) x.appendChild(self._print(num)) else: x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode(d)) m.appendChild(x) y = self._print(sym) m.appendChild(y) mnum = self.dom.createElement('mrow') if dim >= 2: x = self.dom.createElement('msup') xx = self.dom.createElement('mo') xx.appendChild(self.dom.createTextNode(d)) x.appendChild(xx) x.appendChild(self._print(dim)) else: x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode(d)) mnum.appendChild(x) mrow = self.dom.createElement('mrow') frac = self.dom.createElement('mfrac') frac.appendChild(mnum) frac.appendChild(m) mrow.appendChild(frac) # Print function mrow.appendChild(self._print(e.expr)) return mrow def _print_Function(self, e): mrow = self.dom.createElement('mrow') x = self.dom.createElement('mi') if self.mathml_tag(e) == 'log' and self._settings["ln_notation"]: x.appendChild(self.dom.createTextNode('ln')) else: x.appendChild(self.dom.createTextNode(self.mathml_tag(e))) y = self.dom.createElement('mfenced') for arg in e.args: y.appendChild(self._print(arg)) mrow.appendChild(x) mrow.appendChild(y) return mrow def _print_Float(self, expr): # Based off of that in StrPrinter dps = prec_to_dps(expr._prec) str_real = mlib.to_str(expr._mpf_, dps, strip_zeros=True) # Must always have a mul symbol (as 2.5 10^{20} just looks odd) # thus we use the number separator separator = self._settings['mul_symbol_mathml_numbers'] mrow = self.dom.createElement('mrow') if 'e' in str_real: (mant, exp) = str_real.split('e') if exp[0] == '+': exp = exp[1:] mn = self.dom.createElement('mn') mn.appendChild(self.dom.createTextNode(mant)) mrow.appendChild(mn) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode(separator)) mrow.appendChild(mo) msup = self.dom.createElement('msup') mn = self.dom.createElement('mn') mn.appendChild(self.dom.createTextNode("10")) msup.appendChild(mn) mn = self.dom.createElement('mn') mn.appendChild(self.dom.createTextNode(exp)) msup.appendChild(mn) mrow.appendChild(msup) return mrow elif str_real == "+inf": return self._print_Infinity(None) elif str_real == "-inf": return self._print_NegativeInfinity(None) else: mn = self.dom.createElement('mn') mn.appendChild(self.dom.createTextNode(str_real)) return mn def _print_polylog(self, expr): mrow = self.dom.createElement('mrow') m = self.dom.createElement('msub') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('Li')) m.appendChild(mi) m.appendChild(self._print(expr.args[0])) mrow.appendChild(m) brac = self.dom.createElement('mfenced') brac.appendChild(self._print(expr.args[1])) mrow.appendChild(brac) return mrow def _print_Basic(self, e): mrow = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(self.mathml_tag(e))) mrow.appendChild(mi) brac = self.dom.createElement('mfenced') for arg in e.args: brac.appendChild(self._print(arg)) mrow.appendChild(brac) return mrow def _print_Tuple(self, e): mrow = self.dom.createElement('mrow') x = self.dom.createElement('mfenced') for arg in e.args: x.appendChild(self._print(arg)) mrow.appendChild(x) return mrow def _print_Interval(self, i): mrow = self.dom.createElement('mrow') brac = self.dom.createElement('mfenced') if i.start == i.end: # Most often, this type of Interval is converted to a FiniteSet brac.setAttribute('close', '}') brac.setAttribute('open', '{') brac.appendChild(self._print(i.start)) else: if i.right_open: brac.setAttribute('close', ')') else: brac.setAttribute('close', ']') if i.left_open: brac.setAttribute('open', '(') else: brac.setAttribute('open', '[') brac.appendChild(self._print(i.start)) brac.appendChild(self._print(i.end)) mrow.appendChild(brac) return mrow def _print_Abs(self, expr, exp=None): mrow = self.dom.createElement('mrow') x = self.dom.createElement('mfenced') x.setAttribute('close', '|') x.setAttribute('open', '|') x.appendChild(self._print(expr.args[0])) mrow.appendChild(x) return mrow _print_Determinant = _print_Abs def _print_re_im(self, c, expr): mrow = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.setAttribute('mathvariant', 'fraktur') mi.appendChild(self.dom.createTextNode(c)) mrow.appendChild(mi) brac = self.dom.createElement('mfenced') brac.appendChild(self._print(expr)) mrow.appendChild(brac) return mrow def _print_re(self, expr, exp=None): return self._print_re_im('R', expr.args[0]) def _print_im(self, expr, exp=None): return self._print_re_im('I', expr.args[0]) def _print_AssocOp(self, e): mrow = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(self.mathml_tag(e))) mrow.appendChild(mi) for arg in e.args: mrow.appendChild(self._print(arg)) return mrow def _print_SetOp(self, expr, symbol, prec): mrow = self.dom.createElement('mrow') mrow.appendChild(self.parenthesize(expr.args[0], prec)) for arg in expr.args[1:]: x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode(symbol)) y = self.parenthesize(arg, prec) mrow.appendChild(x) mrow.appendChild(y) return mrow def _print_Union(self, expr): prec = PRECEDENCE_TRADITIONAL['Union'] return self._print_SetOp(expr, '&#x222A;', prec) def _print_Intersection(self, expr): prec = PRECEDENCE_TRADITIONAL['Intersection'] return self._print_SetOp(expr, '&#x2229;', prec) def _print_Complement(self, expr): prec = PRECEDENCE_TRADITIONAL['Complement'] return self._print_SetOp(expr, '&#x2216;', prec) def _print_SymmetricDifference(self, expr): prec = PRECEDENCE_TRADITIONAL['SymmetricDifference'] return self._print_SetOp(expr, '&#x2206;', prec) def _print_ProductSet(self, expr): prec = PRECEDENCE_TRADITIONAL['ProductSet'] return self._print_SetOp(expr, '&#x00d7;', prec) def _print_FiniteSet(self, s): return self._print_set(s.args) def _print_set(self, s): items = sorted(s, key=default_sort_key) brac = self.dom.createElement('mfenced') brac.setAttribute('close', '}') brac.setAttribute('open', '{') for item in items: brac.appendChild(self._print(item)) return brac _print_frozenset = _print_set def _print_LogOp(self, args, symbol): mrow = self.dom.createElement('mrow') if args[0].is_Boolean and not args[0].is_Not: brac = self.dom.createElement('mfenced') brac.appendChild(self._print(args[0])) mrow.appendChild(brac) else: mrow.appendChild(self._print(args[0])) for arg in args[1:]: x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode(symbol)) if arg.is_Boolean and not arg.is_Not: y = self.dom.createElement('mfenced') y.appendChild(self._print(arg)) else: y = self._print(arg) mrow.appendChild(x) mrow.appendChild(y) return mrow def _print_BasisDependent(self, expr): from sympy.vector import Vector if expr == expr.zero: # Not clear if this is ever called return self._print(expr.zero) if isinstance(expr, Vector): items = expr.separate().items() else: items = [(0, expr)] mrow = self.dom.createElement('mrow') for system, vect in items: inneritems = list(vect.components.items()) inneritems.sort(key = lambda x:x[0].__str__()) for i, (k, v) in enumerate(inneritems): if v == 1: if i: # No + for first item mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('+')) mrow.appendChild(mo) mrow.appendChild(self._print(k)) elif v == -1: mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('-')) mrow.appendChild(mo) mrow.appendChild(self._print(k)) else: if i: # No + for first item mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('+')) mrow.appendChild(mo) mbrac = self.dom.createElement('mfenced') mbrac.appendChild(self._print(v)) mrow.appendChild(mbrac) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&InvisibleTimes;')) mrow.appendChild(mo) mrow.appendChild(self._print(k)) return mrow def _print_And(self, expr): args = sorted(expr.args, key=default_sort_key) return self._print_LogOp(args, '&#x2227;') def _print_Or(self, expr): args = sorted(expr.args, key=default_sort_key) return self._print_LogOp(args, '&#x2228;') def _print_Xor(self, expr): args = sorted(expr.args, key=default_sort_key) return self._print_LogOp(args, '&#x22BB;') def _print_Implies(self, expr): return self._print_LogOp(expr.args, '&#x21D2;') def _print_Equivalent(self, expr): args = sorted(expr.args, key=default_sort_key) return self._print_LogOp(args, '&#x21D4;') def _print_Not(self, e): mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#xAC;')) mrow.appendChild(mo) if (e.args[0].is_Boolean): x = self.dom.createElement('mfenced') x.appendChild(self._print(e.args[0])) else: x = self._print(e.args[0]) mrow.appendChild(x) return mrow def _print_bool(self, e): mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(self.mathml_tag(e))) return mi _print_BooleanTrue = _print_bool _print_BooleanFalse = _print_bool def _print_NoneType(self, e): mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(self.mathml_tag(e))) return mi def _print_Range(self, s): dots = u"\u2026" brac = self.dom.createElement('mfenced') brac.setAttribute('close', '}') brac.setAttribute('open', '{') if s.start.is_infinite and s.stop.is_infinite: if s.step.is_positive: printset = dots, -1, 0, 1, dots else: printset = dots, 1, 0, -1, dots elif s.start.is_infinite: printset = dots, s[-1] - s.step, s[-1] elif s.stop.is_infinite: it = iter(s) printset = next(it), next(it), dots elif len(s) > 4: it = iter(s) printset = next(it), next(it), dots, s[-1] else: printset = tuple(s) for el in printset: if el == dots: mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(dots)) brac.appendChild(mi) else: brac.appendChild(self._print(el)) return brac def _hprint_variadic_function(self, expr): args = sorted(expr.args, key=default_sort_key) mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode((str(expr.func)).lower())) mrow.appendChild(mo) brac = self.dom.createElement('mfenced') for symbol in args: brac.appendChild(self._print(symbol)) mrow.appendChild(brac) return mrow _print_Min = _print_Max = _hprint_variadic_function def _print_exp(self, expr): msup = self.dom.createElement('msup') msup.appendChild(self._print_Exp1(None)) msup.appendChild(self._print(expr.args[0])) return msup def _print_Relational(self, e): mrow = self.dom.createElement('mrow') mrow.appendChild(self._print(e.lhs)) x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode(self.mathml_tag(e))) mrow.appendChild(x) mrow.appendChild(self._print(e.rhs)) return mrow def _print_int(self, p): dom_element = self.dom.createElement(self.mathml_tag(p)) dom_element.appendChild(self.dom.createTextNode(str(p))) return dom_element def _print_BaseScalar(self, e): msub = self.dom.createElement('msub') index, system = e._id mi = self.dom.createElement('mi') mi.setAttribute('mathvariant', 'bold') mi.appendChild(self.dom.createTextNode(system._variable_names[index])) msub.appendChild(mi) mi = self.dom.createElement('mi') mi.setAttribute('mathvariant', 'bold') mi.appendChild(self.dom.createTextNode(system._name)) msub.appendChild(mi) return msub def _print_BaseVector(self, e): msub = self.dom.createElement('msub') index, system = e._id mover = self.dom.createElement('mover') mi = self.dom.createElement('mi') mi.setAttribute('mathvariant', 'bold') mi.appendChild(self.dom.createTextNode(system._vector_names[index])) mover.appendChild(mi) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('^')) mover.appendChild(mo) msub.appendChild(mover) mi = self.dom.createElement('mi') mi.setAttribute('mathvariant', 'bold') mi.appendChild(self.dom.createTextNode(system._name)) msub.appendChild(mi) return msub def _print_VectorZero(self, e): mover = self.dom.createElement('mover') mi = self.dom.createElement('mi') mi.setAttribute('mathvariant', 'bold') mi.appendChild(self.dom.createTextNode("0")) mover.appendChild(mi) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('^')) mover.appendChild(mo) return mover def _print_Cross(self, expr): mrow = self.dom.createElement('mrow') vec1 = expr._expr1 vec2 = expr._expr2 mrow.appendChild(self.parenthesize(vec1, PRECEDENCE['Mul'])) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#xD7;')) mrow.appendChild(mo) mrow.appendChild(self.parenthesize(vec2, PRECEDENCE['Mul'])) return mrow def _print_Curl(self, expr): mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2207;')) mrow.appendChild(mo) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#xD7;')) mrow.appendChild(mo) mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul'])) return mrow def _print_Divergence(self, expr): mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2207;')) mrow.appendChild(mo) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#xB7;')) mrow.appendChild(mo) mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul'])) return mrow def _print_Dot(self, expr): mrow = self.dom.createElement('mrow') vec1 = expr._expr1 vec2 = expr._expr2 mrow.appendChild(self.parenthesize(vec1, PRECEDENCE['Mul'])) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#xB7;')) mrow.appendChild(mo) mrow.appendChild(self.parenthesize(vec2, PRECEDENCE['Mul'])) return mrow def _print_Gradient(self, expr): mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2207;')) mrow.appendChild(mo) mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul'])) return mrow def _print_Laplacian(self, expr): mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2206;')) mrow.appendChild(mo) mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul'])) return mrow def _print_Integers(self, e): x = self.dom.createElement('mi') x.setAttribute('mathvariant', 'normal') x.appendChild(self.dom.createTextNode('&#x2124;')) return x def _print_Complexes(self, e): x = self.dom.createElement('mi') x.setAttribute('mathvariant', 'normal') x.appendChild(self.dom.createTextNode('&#x2102;')) return x def _print_Reals(self, e): x = self.dom.createElement('mi') x.setAttribute('mathvariant', 'normal') x.appendChild(self.dom.createTextNode('&#x211D;')) return x def _print_Naturals(self, e): x = self.dom.createElement('mi') x.setAttribute('mathvariant', 'normal') x.appendChild(self.dom.createTextNode('&#x2115;')) return x def _print_Naturals0(self, e): sub = self.dom.createElement('msub') x = self.dom.createElement('mi') x.setAttribute('mathvariant', 'normal') x.appendChild(self.dom.createTextNode('&#x2115;')) sub.appendChild(x) sub.appendChild(self._print(S.Zero)) return sub def _print_SingularityFunction(self, expr): shift = expr.args[0] - expr.args[1] power = expr.args[2] sup = self.dom.createElement('msup') brac = self.dom.createElement('mfenced') brac.setAttribute('close', u'\u27e9') brac.setAttribute('open', u'\u27e8') brac.appendChild(self._print(shift)) sup.appendChild(brac) sup.appendChild(self._print(power)) return sup def _print_NaN(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('NaN')) return x def _print_number_function(self, e, name): # Print name_arg[0] for one argument or name_arg[0](arg[1]) # for more than one argument sub = self.dom.createElement('msub') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(name)) sub.appendChild(mi) sub.appendChild(self._print(e.args[0])) if len(e.args) == 1: return sub # TODO: copy-pasted from _print_Function: can we do better? mrow = self.dom.createElement('mrow') y = self.dom.createElement('mfenced') for arg in e.args[1:]: y.appendChild(self._print(arg)) mrow.appendChild(sub) mrow.appendChild(y) return mrow def _print_bernoulli(self, e): return self._print_number_function(e, 'B') _print_bell = _print_bernoulli def _print_catalan(self, e): return self._print_number_function(e, 'C') def _print_euler(self, e): return self._print_number_function(e, 'E') def _print_fibonacci(self, e): return self._print_number_function(e, 'F') def _print_lucas(self, e): return self._print_number_function(e, 'L') def _print_stieltjes(self, e): return self._print_number_function(e, '&#x03B3;') def _print_tribonacci(self, e): return self._print_number_function(e, 'T') def _print_ComplexInfinity(self, e): x = self.dom.createElement('mover') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x221E;')) x.appendChild(mo) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('~')) x.appendChild(mo) return x def _print_EmptySet(self, e): x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode('&#x2205;')) return x def _print_UniversalSet(self, e): x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode('&#x1D54C;')) return x def _print_Adjoint(self, expr): from sympy.matrices import MatrixSymbol mat = expr.arg sup = self.dom.createElement('msup') if not isinstance(mat, MatrixSymbol): brac = self.dom.createElement('mfenced') brac.appendChild(self._print(mat)) sup.appendChild(brac) else: sup.appendChild(self._print(mat)) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2020;')) sup.appendChild(mo) return sup def _print_Transpose(self, expr): from sympy.matrices import MatrixSymbol mat = expr.arg sup = self.dom.createElement('msup') if not isinstance(mat, MatrixSymbol): brac = self.dom.createElement('mfenced') brac.appendChild(self._print(mat)) sup.appendChild(brac) else: sup.appendChild(self._print(mat)) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('T')) sup.appendChild(mo) return sup def _print_Inverse(self, expr): from sympy.matrices import MatrixSymbol mat = expr.arg sup = self.dom.createElement('msup') if not isinstance(mat, MatrixSymbol): brac = self.dom.createElement('mfenced') brac.appendChild(self._print(mat)) sup.appendChild(brac) else: sup.appendChild(self._print(mat)) sup.appendChild(self._print(-1)) return sup def _print_MatMul(self, expr): from sympy import MatMul x = self.dom.createElement('mrow') args = expr.args if isinstance(args[0], Mul): args = args[0].as_ordered_factors() + list(args[1:]) else: args = list(args) if isinstance(expr, MatMul) and _coeff_isneg(expr): if args[0] == -1: args = args[1:] else: args[0] = -args[0] mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('-')) x.appendChild(mo) for arg in args[:-1]: x.appendChild(self.parenthesize(arg, precedence_traditional(expr), False)) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&InvisibleTimes;')) x.appendChild(mo) x.appendChild(self.parenthesize(args[-1], precedence_traditional(expr), False)) return x def _print_MatPow(self, expr): from sympy.matrices import MatrixSymbol base, exp = expr.base, expr.exp sup = self.dom.createElement('msup') if not isinstance(base, MatrixSymbol): brac = self.dom.createElement('mfenced') brac.appendChild(self._print(base)) sup.appendChild(brac) else: sup.appendChild(self._print(base)) sup.appendChild(self._print(exp)) return sup def _print_HadamardProduct(self, expr): x = self.dom.createElement('mrow') args = expr.args for arg in args[:-1]: x.appendChild( self.parenthesize(arg, precedence_traditional(expr), False)) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2218;')) x.appendChild(mo) x.appendChild( self.parenthesize(args[-1], precedence_traditional(expr), False)) return x def _print_ZeroMatrix(self, Z): x = self.dom.createElement('mn') x.appendChild(self.dom.createTextNode('&#x1D7D8')) return x def _print_OneMatrix(self, Z): x = self.dom.createElement('mn') x.appendChild(self.dom.createTextNode('&#x1D7D9')) return x def _print_Identity(self, I): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&#x1D540;')) return x def _print_floor(self, e): mrow = self.dom.createElement('mrow') x = self.dom.createElement('mfenced') x.setAttribute('close', u'\u230B') x.setAttribute('open', u'\u230A') x.appendChild(self._print(e.args[0])) mrow.appendChild(x) return mrow def _print_ceiling(self, e): mrow = self.dom.createElement('mrow') x = self.dom.createElement('mfenced') x.setAttribute('close', u'\u2309') x.setAttribute('open', u'\u2308') x.appendChild(self._print(e.args[0])) mrow.appendChild(x) return mrow def _print_Lambda(self, e): x = self.dom.createElement('mfenced') mrow = self.dom.createElement('mrow') symbols = e.args[0] if len(symbols) == 1: symbols = self._print(symbols[0]) else: symbols = self._print(symbols) mrow.appendChild(symbols) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x21A6;')) mrow.appendChild(mo) mrow.appendChild(self._print(e.args[1])) x.appendChild(mrow) return x def _print_tuple(self, e): x = self.dom.createElement('mfenced') for i in e: x.appendChild(self._print(i)) return x def _print_IndexedBase(self, e): return self._print(e.label) def _print_Indexed(self, e): x = self.dom.createElement('msub') x.appendChild(self._print(e.base)) if len(e.indices) == 1: x.appendChild(self._print(e.indices[0])) return x x.appendChild(self._print(e.indices)) return x def _print_MatrixElement(self, e): x = self.dom.createElement('msub') x.appendChild(self.parenthesize(e.parent, PRECEDENCE["Atom"], strict = True)) brac = self.dom.createElement('mfenced') brac.setAttribute("close", "") brac.setAttribute("open", "") for i in e.indices: brac.appendChild(self._print(i)) x.appendChild(brac) return x def _print_elliptic_f(self, e): x = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('&#x1d5a5;')) x.appendChild(mi) y = self.dom.createElement('mfenced') y.setAttribute("separators", "|") for i in e.args: y.appendChild(self._print(i)) x.appendChild(y) return x def _print_elliptic_e(self, e): x = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('&#x1d5a4;')) x.appendChild(mi) y = self.dom.createElement('mfenced') y.setAttribute("separators", "|") for i in e.args: y.appendChild(self._print(i)) x.appendChild(y) return x def _print_elliptic_pi(self, e): x = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('&#x1d6f1;')) x.appendChild(mi) y = self.dom.createElement('mfenced') if len(e.args) == 2: y.setAttribute("separators", "|") else: y.setAttribute("separators", ";|") for i in e.args: y.appendChild(self._print(i)) x.appendChild(y) return x def _print_Ei(self, e): x = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('Ei')) x.appendChild(mi) x.appendChild(self._print(e.args)) return x def _print_expint(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msub') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('E')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) x.appendChild(y) x.appendChild(self._print(e.args[1:])) return x def _print_jacobi(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msubsup') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('P')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) y.appendChild(self._print(e.args[1:3])) x.appendChild(y) x.appendChild(self._print(e.args[3:])) return x def _print_gegenbauer(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msubsup') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('C')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) y.appendChild(self._print(e.args[1:2])) x.appendChild(y) x.appendChild(self._print(e.args[2:])) return x def _print_chebyshevt(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msub') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('T')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) x.appendChild(y) x.appendChild(self._print(e.args[1:])) return x def _print_chebyshevu(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msub') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('U')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) x.appendChild(y) x.appendChild(self._print(e.args[1:])) return x def _print_legendre(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msub') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('P')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) x.appendChild(y) x.appendChild(self._print(e.args[1:])) return x def _print_assoc_legendre(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msubsup') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('P')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) y.appendChild(self._print(e.args[1:2])) x.appendChild(y) x.appendChild(self._print(e.args[2:])) return x def _print_laguerre(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msub') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('L')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) x.appendChild(y) x.appendChild(self._print(e.args[1:])) return x def _print_assoc_laguerre(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msubsup') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('L')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) y.appendChild(self._print(e.args[1:2])) x.appendChild(y) x.appendChild(self._print(e.args[2:])) return x def _print_hermite(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msub') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('H')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) x.appendChild(y) x.appendChild(self._print(e.args[1:])) return x def mathml(expr, printer='content', **settings): """Returns the MathML representation of expr. If printer is presentation then prints Presentation MathML else prints content MathML. """ if printer == 'presentation': return MathMLPresentationPrinter(settings).doprint(expr) else: return MathMLContentPrinter(settings).doprint(expr) def print_mathml(expr, printer='content', **settings): """ Prints a pretty representation of the MathML code for expr. If printer is presentation then prints Presentation MathML else prints content MathML. Examples ======== >>> ## >>> from sympy.printing.mathml import print_mathml >>> from sympy.abc import x >>> print_mathml(x+1) #doctest: +NORMALIZE_WHITESPACE <apply> <plus/> <ci>x</ci> <cn>1</cn> </apply> >>> print_mathml(x+1, printer='presentation') <mrow> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> """ if printer == 'presentation': s = MathMLPresentationPrinter(settings) else: s = MathMLContentPrinter(settings) xml = s._print(sympify(expr)) s.apply_patch() pretty_xml = xml.toprettyxml() s.restore_patch() print(pretty_xml) # For backward compatibility MathMLPrinter = MathMLContentPrinter
a392bd188bd78123c206404904555a6bdf6ba58938a8d150a4440264aab98f29
""" A Printer for generating executable code. The most important function here is srepr that returns a string so that the relation eval(srepr(expr))=expr holds in an appropriate environment. """ from __future__ import print_function, division from sympy.core.function import AppliedUndef from .printer import Printer from mpmath.libmp import repr_dps, to_str as mlib_to_str from sympy.core.compatibility import range, string_types class ReprPrinter(Printer): printmethod = "_sympyrepr" _default_settings = { "order": None } def reprify(self, args, sep): """ Prints each item in `args` and joins them with `sep`. """ return sep.join([self.doprint(item) for item in args]) def emptyPrinter(self, expr): """ The fallback printer. """ if isinstance(expr, string_types): return expr elif hasattr(expr, "__srepr__"): return expr.__srepr__() elif hasattr(expr, "args") and hasattr(expr.args, "__iter__"): l = [] for o in expr.args: l.append(self._print(o)) return expr.__class__.__name__ + '(%s)' % ', '.join(l) elif hasattr(expr, "__module__") and hasattr(expr, "__name__"): return "<'%s.%s'>" % (expr.__module__, expr.__name__) else: return str(expr) def _print_Add(self, expr, order=None): args = self._as_ordered_terms(expr, order=order) nargs = len(args) args = map(self._print, args) clsname = type(expr).__name__ if nargs > 255: # Issue #10259, Python < 3.7 return clsname + "(*[%s])" % ", ".join(args) return clsname + "(%s)" % ", ".join(args) def _print_Cycle(self, expr): return expr.__repr__() def _print_Permutation(self, expr): return expr.__repr__() def _print_Function(self, expr): r = self._print(expr.func) r += '(%s)' % ', '.join([self._print(a) for a in expr.args]) return r def _print_FunctionClass(self, expr): if issubclass(expr, AppliedUndef): return 'Function(%r)' % (expr.__name__) else: return expr.__name__ def _print_Half(self, expr): return 'Rational(1, 2)' def _print_RationalConstant(self, expr): return str(expr) def _print_AtomicExpr(self, expr): return str(expr) def _print_NumberSymbol(self, expr): return str(expr) def _print_Integer(self, expr): return 'Integer(%i)' % expr.p def _print_Integers(self, expr): return 'Integers' def _print_Naturals(self, expr): return 'Naturals' def _print_Naturals0(self, expr): return 'Naturals0' def _print_Reals(self, expr): return 'Reals' def _print_EmptySet(self, expr): return 'EmptySet' def _print_EmptySequence(self, expr): return 'EmptySequence' def _print_list(self, expr): return "[%s]" % self.reprify(expr, ", ") def _print_MatrixBase(self, expr): # special case for some empty matrices if (expr.rows == 0) ^ (expr.cols == 0): return '%s(%s, %s, %s)' % (expr.__class__.__name__, self._print(expr.rows), self._print(expr.cols), self._print([])) l = [] for i in range(expr.rows): l.append([]) for j in range(expr.cols): l[-1].append(expr[i, j]) return '%s(%s)' % (expr.__class__.__name__, self._print(l)) _print_SparseMatrix = \ _print_MutableSparseMatrix = \ _print_ImmutableSparseMatrix = \ _print_Matrix = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ _print_MatrixBase def _print_BooleanTrue(self, expr): return "true" def _print_BooleanFalse(self, expr): return "false" def _print_NaN(self, expr): return "nan" def _print_Mul(self, expr, order=None): terms = expr.args if self.order != 'old': args = expr._new_rawargs(*terms).as_ordered_factors() else: args = terms nargs = len(args) args = map(self._print, args) clsname = type(expr).__name__ if nargs > 255: # Issue #10259, Python < 3.7 return clsname + "(*[%s])" % ", ".join(args) return clsname + "(%s)" % ", ".join(args) def _print_Rational(self, expr): return 'Rational(%s, %s)' % (self._print(expr.p), self._print(expr.q)) def _print_PythonRational(self, expr): return "%s(%d, %d)" % (expr.__class__.__name__, expr.p, expr.q) def _print_Fraction(self, expr): return 'Fraction(%s, %s)' % (self._print(expr.numerator), self._print(expr.denominator)) def _print_Float(self, expr): r = mlib_to_str(expr._mpf_, repr_dps(expr._prec)) return "%s('%s', precision=%i)" % (expr.__class__.__name__, r, expr._prec) def _print_Sum2(self, expr): return "Sum2(%s, (%s, %s, %s))" % (self._print(expr.f), self._print(expr.i), self._print(expr.a), self._print(expr.b)) def _print_Symbol(self, expr): d = expr._assumptions.generator # print the dummy_index like it was an assumption if expr.is_Dummy: d['dummy_index'] = expr.dummy_index if d == {}: return "%s(%s)" % (expr.__class__.__name__, self._print(expr.name)) else: attr = ['%s=%s' % (k, v) for k, v in d.items()] return "%s(%s, %s)" % (expr.__class__.__name__, self._print(expr.name), ', '.join(attr)) def _print_Predicate(self, expr): return "%s(%s)" % (expr.__class__.__name__, self._print(expr.name)) def _print_AppliedPredicate(self, expr): return "%s(%s, %s)" % (expr.__class__.__name__, expr.func, expr.arg) def _print_str(self, expr): return repr(expr) def _print_tuple(self, expr): if len(expr) == 1: return "(%s,)" % self._print(expr[0]) else: return "(%s)" % self.reprify(expr, ", ") def _print_WildFunction(self, expr): return "%s('%s')" % (expr.__class__.__name__, expr.name) def _print_AlgebraicNumber(self, expr): return "%s(%s, %s)" % (expr.__class__.__name__, self._print(expr.root), self._print(expr.coeffs())) def _print_PolyRing(self, ring): return "%s(%s, %s, %s)" % (ring.__class__.__name__, self._print(ring.symbols), self._print(ring.domain), self._print(ring.order)) def _print_FracField(self, field): return "%s(%s, %s, %s)" % (field.__class__.__name__, self._print(field.symbols), self._print(field.domain), self._print(field.order)) def _print_PolyElement(self, poly): terms = list(poly.terms()) terms.sort(key=poly.ring.order, reverse=True) return "%s(%s, %s)" % (poly.__class__.__name__, self._print(poly.ring), self._print(terms)) def _print_FracElement(self, frac): numer_terms = list(frac.numer.terms()) numer_terms.sort(key=frac.field.order, reverse=True) denom_terms = list(frac.denom.terms()) denom_terms.sort(key=frac.field.order, reverse=True) numer = self._print(numer_terms) denom = self._print(denom_terms) return "%s(%s, %s, %s)" % (frac.__class__.__name__, self._print(frac.field), numer, denom) def _print_FractionField(self, domain): cls = domain.__class__.__name__ field = self._print(domain.field) return "%s(%s)" % (cls, field) def _print_PolynomialRingBase(self, ring): cls = ring.__class__.__name__ dom = self._print(ring.domain) gens = ', '.join(map(self._print, ring.gens)) order = str(ring.order) if order != ring.default_order: orderstr = ", order=" + order else: orderstr = "" return "%s(%s, %s%s)" % (cls, dom, gens, orderstr) def _print_DMP(self, p): cls = p.__class__.__name__ rep = self._print(p.rep) dom = self._print(p.dom) if p.ring is not None: ringstr = ", ring=" + self._print(p.ring) else: ringstr = "" return "%s(%s, %s%s)" % (cls, rep, dom, ringstr) def _print_MonogenicFiniteExtension(self, ext): # The expanded tree shown by srepr(ext.modulus) # is not practical. return "FiniteExtension(%s)" % str(ext.modulus) def _print_ExtensionElement(self, f): rep = self._print(f.rep) ext = self._print(f.ext) return "ExtElem(%s, %s)" % (rep, ext) def srepr(expr, **settings): """return expr in repr form""" return ReprPrinter(settings).doprint(expr)
bc1cb9b3341a4d379ba9ce6c226cd99d660593fc756f687b6eb8a70318cf9577
""" Integral Transforms """ from __future__ import print_function, division from sympy.core import S from sympy.core.compatibility import reduce, range, iterable from sympy.core.function import Function from sympy.core.relational import _canonical, Ge, Gt from sympy.core.numbers import oo from sympy.core.symbol import Dummy from sympy.integrals import integrate, Integral from sympy.integrals.meijerint import _dummy from sympy.logic.boolalg import to_cnf, conjuncts, disjuncts, Or, And from sympy.simplify import simplify from sympy.utilities import default_sort_key from sympy.matrices.matrices import MatrixBase ########################################################################## # Helpers / Utilities ########################################################################## class IntegralTransformError(NotImplementedError): """ Exception raised in relation to problems computing transforms. This class is mostly used internally; if integrals cannot be computed objects representing unevaluated transforms are usually returned. The hint ``needeval=True`` can be used to disable returning transform objects, and instead raise this exception if an integral cannot be computed. """ def __init__(self, transform, function, msg): super(IntegralTransformError, self).__init__( "%s Transform could not be computed: %s." % (transform, msg)) self.function = function class IntegralTransform(Function): """ Base class for integral transforms. This class represents unevaluated transforms. To implement a concrete transform, derive from this class and implement the ``_compute_transform(f, x, s, **hints)`` and ``_as_integral(f, x, s)`` functions. If the transform cannot be computed, raise :obj:`IntegralTransformError`. Also set ``cls._name``. For instance, >>> from sympy.integrals.transforms import LaplaceTransform >>> LaplaceTransform._name 'Laplace' Implement ``self._collapse_extra`` if your function returns more than just a number and possibly a convergence condition. """ @property def function(self): """ The function to be transformed. """ return self.args[0] @property def function_variable(self): """ The dependent variable of the function to be transformed. """ return self.args[1] @property def transform_variable(self): """ The independent transform variable. """ return self.args[2] @property def free_symbols(self): """ This method returns the symbols that will exist when the transform is evaluated. """ return self.function.free_symbols.union({self.transform_variable}) \ - {self.function_variable} def _compute_transform(self, f, x, s, **hints): raise NotImplementedError def _as_integral(self, f, x, s): raise NotImplementedError def _collapse_extra(self, extra): cond = And(*extra) if cond == False: raise IntegralTransformError(self.__class__.name, None, '') return cond def doit(self, **hints): """ Try to evaluate the transform in closed form. This general function handles linearity, but apart from that leaves pretty much everything to _compute_transform. Standard hints are the following: - ``simplify``: whether or not to simplify the result - ``noconds``: if True, don't return convergence conditions - ``needeval``: if True, raise IntegralTransformError instead of returning IntegralTransform objects The default values of these hints depend on the concrete transform, usually the default is ``(simplify, noconds, needeval) = (True, False, False)``. """ from sympy import Add, expand_mul, Mul from sympy.core.function import AppliedUndef needeval = hints.pop('needeval', False) try_directly = not any(func.has(self.function_variable) for func in self.function.atoms(AppliedUndef)) if try_directly: try: return self._compute_transform(self.function, self.function_variable, self.transform_variable, **hints) except IntegralTransformError: pass fn = self.function if not fn.is_Add: fn = expand_mul(fn) if fn.is_Add: hints['needeval'] = needeval res = [self.__class__(*([x] + list(self.args[1:]))).doit(**hints) for x in fn.args] extra = [] ress = [] for x in res: if not isinstance(x, tuple): x = [x] ress.append(x[0]) if len(x) == 2: # only a condition extra.append(x[1]) elif len(x) > 2: # some region parameters and a condition (Mellin, Laplace) extra += [x[1:]] res = Add(*ress) if not extra: return res try: extra = self._collapse_extra(extra) if iterable(extra): return tuple([res]) + tuple(extra) else: return (res, extra) except IntegralTransformError: pass if needeval: raise IntegralTransformError( self.__class__._name, self.function, 'needeval') # TODO handle derivatives etc # pull out constant coefficients coeff, rest = fn.as_coeff_mul(self.function_variable) return coeff*self.__class__(*([Mul(*rest)] + list(self.args[1:]))) @property def as_integral(self): return self._as_integral(self.function, self.function_variable, self.transform_variable) def _eval_rewrite_as_Integral(self, *args, **kwargs): return self.as_integral from sympy.solvers.inequalities import _solve_inequality def _simplify(expr, doit): from sympy import powdenest, piecewise_fold if doit: return simplify(powdenest(piecewise_fold(expr), polar=True)) return expr def _noconds_(default): """ This is a decorator generator for dropping convergence conditions. Suppose you define a function ``transform(*args)`` which returns a tuple of the form ``(result, cond1, cond2, ...)``. Decorating it ``@_noconds_(default)`` will add a new keyword argument ``noconds`` to it. If ``noconds=True``, the return value will be altered to be only ``result``, whereas if ``noconds=False`` the return value will not be altered. The default value of the ``noconds`` keyword will be ``default`` (i.e. the argument of this function). """ def make_wrapper(func): from sympy.core.decorators import wraps @wraps(func) def wrapper(*args, **kwargs): noconds = kwargs.pop('noconds', default) res = func(*args, **kwargs) if noconds: return res[0] return res return wrapper return make_wrapper _noconds = _noconds_(False) ########################################################################## # Mellin Transform ########################################################################## def _default_integrator(f, x): return integrate(f, (x, 0, oo)) @_noconds def _mellin_transform(f, x, s_, integrator=_default_integrator, simplify=True): """ Backend function to compute Mellin transforms. """ from sympy import re, Max, Min, count_ops # We use a fresh dummy, because assumptions on s might drop conditions on # convergence of the integral. s = _dummy('s', 'mellin-transform', f) F = integrator(x**(s - 1) * f, x) if not F.has(Integral): return _simplify(F.subs(s, s_), simplify), (-oo, oo), S.true if not F.is_Piecewise: # XXX can this work if integration gives continuous result now? raise IntegralTransformError('Mellin', f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError( 'Mellin', f, 'integral in unexpected form') def process_conds(cond): """ Turn ``cond`` into a strip (a, b), and auxiliary conditions. """ a = -oo b = oo aux = S.true conds = conjuncts(to_cnf(cond)) t = Dummy('t', real=True) for c in conds: a_ = oo b_ = -oo aux_ = [] for d in disjuncts(c): d_ = d.replace( re, lambda x: x.as_real_imag()[0]).subs(re(s), t) if not d.is_Relational or \ d.rel_op in ('==', '!=') \ or d_.has(s) or not d_.has(t): aux_ += [d] continue soln = _solve_inequality(d_, t) if not soln.is_Relational or \ soln.rel_op in ('==', '!='): aux_ += [d] continue if soln.lts == t: b_ = Max(soln.gts, b_) else: a_ = Min(soln.lts, a_) if a_ != oo and a_ != b: a = Max(a_, a) elif b_ != -oo and b_ != a: b = Min(b_, b) else: aux = And(aux, Or(*aux_)) return a, b, aux conds = [process_conds(c) for c in disjuncts(cond)] conds = [x for x in conds if x[2] != False] conds.sort(key=lambda x: (x[0] - x[1], count_ops(x[2]))) if not conds: raise IntegralTransformError('Mellin', f, 'no convergence found') a, b, aux = conds[0] return _simplify(F.subs(s, s_), simplify), (a, b), aux class MellinTransform(IntegralTransform): """ Class representing unevaluated Mellin transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute Mellin transforms, see the :func:`mellin_transform` docstring. """ _name = 'Mellin' def _compute_transform(self, f, x, s, **hints): return _mellin_transform(f, x, s, **hints) def _as_integral(self, f, x, s): return Integral(f*x**(s - 1), (x, 0, oo)) def _collapse_extra(self, extra): from sympy import Max, Min a = [] b = [] cond = [] for (sa, sb), c in extra: a += [sa] b += [sb] cond += [c] res = (Max(*a), Min(*b)), And(*cond) if (res[0][0] >= res[0][1]) == True or res[1] == False: raise IntegralTransformError( 'Mellin', None, 'no combined convergence.') return res def mellin_transform(f, x, s, **hints): r""" Compute the Mellin transform `F(s)` of `f(x)`, .. math :: F(s) = \int_0^\infty x^{s-1} f(x) \mathrm{d}x. For all "sensible" functions, this converges absolutely in a strip `a < \operatorname{Re}(s) < b`. The Mellin transform is related via change of variables to the Fourier transform, and also to the (bilateral) Laplace transform. This function returns ``(F, (a, b), cond)`` where ``F`` is the Mellin transform of ``f``, ``(a, b)`` is the fundamental strip (as above), and ``cond`` are auxiliary convergence conditions. If the integral cannot be computed in closed form, this function returns an unevaluated :class:`MellinTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. If ``noconds=False``, then only `F` will be returned (i.e. not ``cond``, and also not the strip ``(a, b)``). >>> from sympy.integrals.transforms import mellin_transform >>> from sympy import exp >>> from sympy.abc import x, s >>> mellin_transform(exp(-x), x, s) (gamma(s), (0, oo), True) See Also ======== inverse_mellin_transform, laplace_transform, fourier_transform hankel_transform, inverse_hankel_transform """ return MellinTransform(f, x, s).doit(**hints) def _rewrite_sin(m_n, s, a, b): """ Re-write the sine function ``sin(m*s + n)`` as gamma functions, compatible with the strip (a, b). Return ``(gamma1, gamma2, fac)`` so that ``f == fac/(gamma1 * gamma2)``. >>> from sympy.integrals.transforms import _rewrite_sin >>> from sympy import pi, S >>> from sympy.abc import s >>> _rewrite_sin((pi, 0), s, 0, 1) (gamma(s), gamma(1 - s), pi) >>> _rewrite_sin((pi, 0), s, 1, 0) (gamma(s - 1), gamma(2 - s), -pi) >>> _rewrite_sin((pi, 0), s, -1, 0) (gamma(s + 1), gamma(-s), -pi) >>> _rewrite_sin((pi, pi/2), s, S(1)/2, S(3)/2) (gamma(s - 1/2), gamma(3/2 - s), -pi) >>> _rewrite_sin((pi, pi), s, 0, 1) (gamma(s), gamma(1 - s), -pi) >>> _rewrite_sin((2*pi, 0), s, 0, S(1)/2) (gamma(2*s), gamma(1 - 2*s), pi) >>> _rewrite_sin((2*pi, 0), s, S(1)/2, 1) (gamma(2*s - 1), gamma(2 - 2*s), -pi) """ # (This is a separate function because it is moderately complicated, # and I want to doctest it.) # We want to use pi/sin(pi*x) = gamma(x)*gamma(1-x). # But there is one comlication: the gamma functions determine the # inegration contour in the definition of the G-function. Usually # it would not matter if this is slightly shifted, unless this way # we create an undefined function! # So we try to write this in such a way that the gammas are # eminently on the right side of the strip. from sympy import expand_mul, pi, ceiling, gamma m, n = m_n m = expand_mul(m/pi) n = expand_mul(n/pi) r = ceiling(-m*a - n.as_real_imag()[0]) # Don't use re(n), does not expand return gamma(m*s + n + r), gamma(1 - n - r - m*s), (-1)**r*pi class MellinTransformStripError(ValueError): """ Exception raised by _rewrite_gamma. Mainly for internal use. """ pass def _rewrite_gamma(f, s, a, b): """ Try to rewrite the product f(s) as a product of gamma functions, so that the inverse Mellin transform of f can be expressed as a meijer G function. Return (an, ap), (bm, bq), arg, exp, fac such that G((an, ap), (bm, bq), arg/z**exp)*fac is the inverse Mellin transform of f(s). Raises IntegralTransformError or MellinTransformStripError on failure. It is asserted that f has no poles in the fundamental strip designated by (a, b). One of a and b is allowed to be None. The fundamental strip is important, because it determines the inversion contour. This function can handle exponentials, linear factors, trigonometric functions. This is a helper function for inverse_mellin_transform that will not attempt any transformations on f. >>> from sympy.integrals.transforms import _rewrite_gamma >>> from sympy.abc import s >>> from sympy import oo >>> _rewrite_gamma(s*(s+3)*(s-1), s, -oo, oo) (([], [-3, 0, 1]), ([-2, 1, 2], []), 1, 1, -1) >>> _rewrite_gamma((s-1)**2, s, -oo, oo) (([], [1, 1]), ([2, 2], []), 1, 1, 1) Importance of the fundamental strip: >>> _rewrite_gamma(1/s, s, 0, oo) (([1], []), ([], [0]), 1, 1, 1) >>> _rewrite_gamma(1/s, s, None, oo) (([1], []), ([], [0]), 1, 1, 1) >>> _rewrite_gamma(1/s, s, 0, None) (([1], []), ([], [0]), 1, 1, 1) >>> _rewrite_gamma(1/s, s, -oo, 0) (([], [1]), ([0], []), 1, 1, -1) >>> _rewrite_gamma(1/s, s, None, 0) (([], [1]), ([0], []), 1, 1, -1) >>> _rewrite_gamma(1/s, s, -oo, None) (([], [1]), ([0], []), 1, 1, -1) >>> _rewrite_gamma(2**(-s+3), s, -oo, oo) (([], []), ([], []), 1/2, 1, 8) """ from itertools import repeat from sympy import (Poly, gamma, Mul, re, CRootOf, exp as exp_, expand, roots, ilcm, pi, sin, cos, tan, cot, igcd, exp_polar) # Our strategy will be as follows: # 1) Guess a constant c such that the inversion integral should be # performed wrt s'=c*s (instead of plain s). Write s for s'. # 2) Process all factors, rewrite them independently as gamma functions in # argument s, or exponentials of s. # 3) Try to transform all gamma functions s.t. they have argument # a+s or a-s. # 4) Check that the resulting G function parameters are valid. # 5) Combine all the exponentials. a_, b_ = S([a, b]) def left(c, is_numer): """ Decide whether pole at c lies to the left of the fundamental strip. """ # heuristically, this is the best chance for us to solve the inequalities c = expand(re(c)) if a_ is None and b_ is oo: return True if a_ is None: return c < b_ if b_ is None: return c <= a_ if (c >= b_) == True: return False if (c <= a_) == True: return True if is_numer: return None if a_.free_symbols or b_.free_symbols or c.free_symbols: return None # XXX #raise IntegralTransformError('Inverse Mellin', f, # 'Could not determine position of singularity %s' # ' relative to fundamental strip' % c) raise MellinTransformStripError('Pole inside critical strip?') # 1) s_multipliers = [] for g in f.atoms(gamma): if not g.has(s): continue arg = g.args[0] if arg.is_Add: arg = arg.as_independent(s)[1] coeff, _ = arg.as_coeff_mul(s) s_multipliers += [coeff] for g in f.atoms(sin, cos, tan, cot): if not g.has(s): continue arg = g.args[0] if arg.is_Add: arg = arg.as_independent(s)[1] coeff, _ = arg.as_coeff_mul(s) s_multipliers += [coeff/pi] s_multipliers = [abs(x) if x.is_extended_real else x for x in s_multipliers] common_coefficient = S.One for x in s_multipliers: if not x.is_Rational: common_coefficient = x break s_multipliers = [x/common_coefficient for x in s_multipliers] if (any(not x.is_Rational for x in s_multipliers) or not common_coefficient.is_extended_real): raise IntegralTransformError("Gamma", None, "Nonrational multiplier") s_multiplier = common_coefficient/reduce(ilcm, [S(x.q) for x in s_multipliers], S.One) if s_multiplier == common_coefficient: if len(s_multipliers) == 0: s_multiplier = common_coefficient else: s_multiplier = common_coefficient \ *reduce(igcd, [S(x.p) for x in s_multipliers]) f = f.subs(s, s/s_multiplier) fac = S.One/s_multiplier exponent = S.One/s_multiplier if a_ is not None: a_ *= s_multiplier if b_ is not None: b_ *= s_multiplier # 2) numer, denom = f.as_numer_denom() numer = Mul.make_args(numer) denom = Mul.make_args(denom) args = list(zip(numer, repeat(True))) + list(zip(denom, repeat(False))) facs = [] dfacs = [] # *_gammas will contain pairs (a, c) representing Gamma(a*s + c) numer_gammas = [] denom_gammas = [] # exponentials will contain bases for exponentials of s exponentials = [] def exception(fact): return IntegralTransformError("Inverse Mellin", f, "Unrecognised form '%s'." % fact) while args: fact, is_numer = args.pop() if is_numer: ugammas, lgammas = numer_gammas, denom_gammas ufacs = facs else: ugammas, lgammas = denom_gammas, numer_gammas ufacs = dfacs def linear_arg(arg): """ Test if arg is of form a*s+b, raise exception if not. """ if not arg.is_polynomial(s): raise exception(fact) p = Poly(arg, s) if p.degree() != 1: raise exception(fact) return p.all_coeffs() # constants if not fact.has(s): ufacs += [fact] # exponentials elif fact.is_Pow or isinstance(fact, exp_): if fact.is_Pow: base = fact.base exp = fact.exp else: base = exp_polar(1) exp = fact.args[0] if exp.is_Integer: cond = is_numer if exp < 0: cond = not cond args += [(base, cond)]*abs(exp) continue elif not base.has(s): a, b = linear_arg(exp) if not is_numer: base = 1/base exponentials += [base**a] facs += [base**b] else: raise exception(fact) # linear factors elif fact.is_polynomial(s): p = Poly(fact, s) if p.degree() != 1: # We completely factor the poly. For this we need the roots. # Now roots() only works in some cases (low degree), and CRootOf # only works without parameters. So try both... coeff = p.LT()[1] rs = roots(p, s) if len(rs) != p.degree(): rs = CRootOf.all_roots(p) ufacs += [coeff] args += [(s - c, is_numer) for c in rs] continue a, c = p.all_coeffs() ufacs += [a] c /= -a # Now need to convert s - c if left(c, is_numer): ugammas += [(S.One, -c + 1)] lgammas += [(S.One, -c)] else: ufacs += [-1] ugammas += [(S.NegativeOne, c + 1)] lgammas += [(S.NegativeOne, c)] elif isinstance(fact, gamma): a, b = linear_arg(fact.args[0]) if is_numer: if (a > 0 and (left(-b/a, is_numer) == False)) or \ (a < 0 and (left(-b/a, is_numer) == True)): raise NotImplementedError( 'Gammas partially over the strip.') ugammas += [(a, b)] elif isinstance(fact, sin): # We try to re-write all trigs as gammas. This is not in # general the best strategy, since sometimes this is impossible, # but rewriting as exponentials would work. However trig functions # in inverse mellin transforms usually all come from simplifying # gamma terms, so this should work. a = fact.args[0] if is_numer: # No problem with the poles. gamma1, gamma2, fac_ = gamma(a/pi), gamma(1 - a/pi), pi else: gamma1, gamma2, fac_ = _rewrite_sin(linear_arg(a), s, a_, b_) args += [(gamma1, not is_numer), (gamma2, not is_numer)] ufacs += [fac_] elif isinstance(fact, tan): a = fact.args[0] args += [(sin(a, evaluate=False), is_numer), (sin(pi/2 - a, evaluate=False), not is_numer)] elif isinstance(fact, cos): a = fact.args[0] args += [(sin(pi/2 - a, evaluate=False), is_numer)] elif isinstance(fact, cot): a = fact.args[0] args += [(sin(pi/2 - a, evaluate=False), is_numer), (sin(a, evaluate=False), not is_numer)] else: raise exception(fact) fac *= Mul(*facs)/Mul(*dfacs) # 3) an, ap, bm, bq = [], [], [], [] for gammas, plus, minus, is_numer in [(numer_gammas, an, bm, True), (denom_gammas, bq, ap, False)]: while gammas: a, c = gammas.pop() if a != -1 and a != +1: # We use the gamma function multiplication theorem. p = abs(S(a)) newa = a/p newc = c/p if not a.is_Integer: raise TypeError("a is not an integer") for k in range(p): gammas += [(newa, newc + k/p)] if is_numer: fac *= (2*pi)**((1 - p)/2) * p**(c - S.Half) exponentials += [p**a] else: fac /= (2*pi)**((1 - p)/2) * p**(c - S.Half) exponentials += [p**(-a)] continue if a == +1: plus.append(1 - c) else: minus.append(c) # 4) # TODO # 5) arg = Mul(*exponentials) # for testability, sort the arguments an.sort(key=default_sort_key) ap.sort(key=default_sort_key) bm.sort(key=default_sort_key) bq.sort(key=default_sort_key) return (an, ap), (bm, bq), arg, exponent, fac @_noconds_(True) def _inverse_mellin_transform(F, s, x_, strip, as_meijerg=False): """ A helper for the real inverse_mellin_transform function, this one here assumes x to be real and positive. """ from sympy import (expand, expand_mul, hyperexpand, meijerg, arg, pi, re, factor, Heaviside, gamma, Add) x = _dummy('t', 'inverse-mellin-transform', F, positive=True) # Actually, we won't try integration at all. Instead we use the definition # of the Meijer G function as a fairly general inverse mellin transform. F = F.rewrite(gamma) for g in [factor(F), expand_mul(F), expand(F)]: if g.is_Add: # do all terms separately ress = [_inverse_mellin_transform(G, s, x, strip, as_meijerg, noconds=False) for G in g.args] conds = [p[1] for p in ress] ress = [p[0] for p in ress] res = Add(*ress) if not as_meijerg: res = factor(res, gens=res.atoms(Heaviside)) return res.subs(x, x_), And(*conds) try: a, b, C, e, fac = _rewrite_gamma(g, s, strip[0], strip[1]) except IntegralTransformError: continue G = meijerg(a, b, C/x**e) if as_meijerg: h = G else: try: h = hyperexpand(G) except NotImplementedError: raise IntegralTransformError( 'Inverse Mellin', F, 'Could not calculate integral') if h.is_Piecewise and len(h.args) == 3: # XXX we break modularity here! h = Heaviside(x - abs(C))*h.args[0].args[0] \ + Heaviside(abs(C) - x)*h.args[1].args[0] # We must ensure that the integral along the line we want converges, # and return that value. # See [L], 5.2 cond = [abs(arg(G.argument)) < G.delta*pi] # Note: we allow ">=" here, this corresponds to convergence if we let # limits go to oo symmetrically. ">" corresponds to absolute convergence. cond += [And(Or(len(G.ap) != len(G.bq), 0 >= re(G.nu) + 1), abs(arg(G.argument)) == G.delta*pi)] cond = Or(*cond) if cond == False: raise IntegralTransformError( 'Inverse Mellin', F, 'does not converge') return (h*fac).subs(x, x_), cond raise IntegralTransformError('Inverse Mellin', F, '') _allowed = None class InverseMellinTransform(IntegralTransform): """ Class representing unevaluated inverse Mellin transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse Mellin transforms, see the :func:`inverse_mellin_transform` docstring. """ _name = 'Inverse Mellin' _none_sentinel = Dummy('None') _c = Dummy('c') def __new__(cls, F, s, x, a, b, **opts): if a is None: a = InverseMellinTransform._none_sentinel if b is None: b = InverseMellinTransform._none_sentinel return IntegralTransform.__new__(cls, F, s, x, a, b, **opts) @property def fundamental_strip(self): a, b = self.args[3], self.args[4] if a is InverseMellinTransform._none_sentinel: a = None if b is InverseMellinTransform._none_sentinel: b = None return a, b def _compute_transform(self, F, s, x, **hints): from sympy import postorder_traversal global _allowed if _allowed is None: from sympy import ( exp, gamma, sin, cos, tan, cot, cosh, sinh, tanh, coth, factorial, rf) _allowed = set( [exp, gamma, sin, cos, tan, cot, cosh, sinh, tanh, coth, factorial, rf]) for f in postorder_traversal(F): if f.is_Function and f.has(s) and f.func not in _allowed: raise IntegralTransformError('Inverse Mellin', F, 'Component %s not recognised.' % f) strip = self.fundamental_strip return _inverse_mellin_transform(F, s, x, strip, **hints) def _as_integral(self, F, s, x): from sympy import I c = self.__class__._c return Integral(F*x**(-s), (s, c - I*oo, c + I*oo))/(2*S.Pi*S.ImaginaryUnit) def inverse_mellin_transform(F, s, x, strip, **hints): r""" Compute the inverse Mellin transform of `F(s)` over the fundamental strip given by ``strip=(a, b)``. This can be defined as .. math:: f(x) = \frac{1}{2\pi i} \int_{c - i\infty}^{c + i\infty} x^{-s} F(s) \mathrm{d}s, for any `c` in the fundamental strip. Under certain regularity conditions on `F` and/or `f`, this recovers `f` from its Mellin transform `F` (and vice versa), for positive real `x`. One of `a` or `b` may be passed as ``None``; a suitable `c` will be inferred. If the integral cannot be computed in closed form, this function returns an unevaluated :class:`InverseMellinTransform` object. Note that this function will assume x to be positive and real, regardless of the sympy assumptions! For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. >>> from sympy.integrals.transforms import inverse_mellin_transform >>> from sympy import oo, gamma >>> from sympy.abc import x, s >>> inverse_mellin_transform(gamma(s), s, x, (0, oo)) exp(-x) The fundamental strip matters: >>> f = 1/(s**2 - 1) >>> inverse_mellin_transform(f, s, x, (-oo, -1)) (x/2 - 1/(2*x))*Heaviside(x - 1) >>> inverse_mellin_transform(f, s, x, (-1, 1)) -x*Heaviside(1 - x)/2 - Heaviside(x - 1)/(2*x) >>> inverse_mellin_transform(f, s, x, (1, oo)) (-x/2 + 1/(2*x))*Heaviside(1 - x) See Also ======== mellin_transform hankel_transform, inverse_hankel_transform """ return InverseMellinTransform(F, s, x, strip[0], strip[1]).doit(**hints) ########################################################################## # Laplace Transform ########################################################################## def _simplifyconds(expr, s, a): r""" Naively simplify some conditions occurring in ``expr``, given that `\operatorname{Re}(s) > a`. >>> from sympy.integrals.transforms import _simplifyconds as simp >>> from sympy.abc import x >>> from sympy import sympify as S >>> simp(abs(x**2) < 1, x, 1) False >>> simp(abs(x**2) < 1, x, 2) False >>> simp(abs(x**2) < 1, x, 0) Abs(x**2) < 1 >>> simp(abs(1/x**2) < 1, x, 1) True >>> simp(S(1) < abs(x), x, 1) True >>> simp(S(1) < abs(1/x), x, 1) False >>> from sympy import Ne >>> simp(Ne(1, x**3), x, 1) True >>> simp(Ne(1, x**3), x, 2) True >>> simp(Ne(1, x**3), x, 0) Ne(1, x**3) """ from sympy.core.relational import ( StrictGreaterThan, StrictLessThan, Unequality ) from sympy import Abs def power(ex): if ex == s: return 1 if ex.is_Pow and ex.base == s: return ex.exp return None def bigger(ex1, ex2): """ Return True only if |ex1| > |ex2|, False only if |ex1| < |ex2|. Else return None. """ if ex1.has(s) and ex2.has(s): return None if isinstance(ex1, Abs): ex1 = ex1.args[0] if isinstance(ex2, Abs): ex2 = ex2.args[0] if ex1.has(s): return bigger(1/ex2, 1/ex1) n = power(ex2) if n is None: return None try: if n > 0 and (abs(ex1) <= abs(a)**n) == True: return False if n < 0 and (abs(ex1) >= abs(a)**n) == True: return True except TypeError: pass def replie(x, y): """ simplify x < y """ if not (x.is_positive or isinstance(x, Abs)) \ or not (y.is_positive or isinstance(y, Abs)): return (x < y) r = bigger(x, y) if r is not None: return not r return (x < y) def replue(x, y): b = bigger(x, y) if b == True or b == False: return True return Unequality(x, y) def repl(ex, *args): if ex == True or ex == False: return bool(ex) return ex.replace(*args) from sympy.simplify.radsimp import collect_abs expr = collect_abs(expr) expr = repl(expr, StrictLessThan, replie) expr = repl(expr, StrictGreaterThan, lambda x, y: replie(y, x)) expr = repl(expr, Unequality, replue) return S(expr) @_noconds def _laplace_transform(f, t, s_, simplify=True): """ The backend function for Laplace transforms. """ from sympy import (re, Max, exp, pi, Min, periodic_argument as arg_, arg, cos, Wild, symbols, polar_lift) s = Dummy('s') F = integrate(exp(-s*t) * f, (t, 0, oo)) if not F.has(Integral): return _simplify(F.subs(s, s_), simplify), -oo, S.true if not F.is_Piecewise: raise IntegralTransformError( 'Laplace', f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError( 'Laplace', f, 'integral in unexpected form') def process_conds(conds): """ Turn ``conds`` into a strip and auxiliary conditions. """ a = -oo aux = S.true conds = conjuncts(to_cnf(conds)) p, q, w1, w2, w3, w4, w5 = symbols( 'p q w1 w2 w3 w4 w5', cls=Wild, exclude=[s]) patterns = ( p*abs(arg((s + w3)*q)) < w2, p*abs(arg((s + w3)*q)) <= w2, abs(arg_((s + w3)**p*q, w1)) < w2, abs(arg_((s + w3)**p*q, w1)) <= w2, abs(arg_((polar_lift(s + w3))**p*q, w1)) < w2, abs(arg_((polar_lift(s + w3))**p*q, w1)) <= w2) for c in conds: a_ = oo aux_ = [] for d in disjuncts(c): if d.is_Relational and s in d.rhs.free_symbols: d = d.reversed if d.is_Relational and isinstance(d, (Ge, Gt)): d = d.reversedsign for pat in patterns: m = d.match(pat) if m: break if m: if m[q].is_positive and m[w2]/m[p] == pi/2: d = -re(s + m[w3]) < 0 m = d.match(p - cos(w1*abs(arg(s*w5))*w2)*abs(s**w3)**w4 < 0) if not m: m = d.match( cos(p - abs(arg_(s**w1*w5, q))*w2)*abs(s**w3)**w4 < 0) if not m: m = d.match( p - cos(abs(arg_(polar_lift(s)**w1*w5, q))*w2 )*abs(s**w3)**w4 < 0) if m and all(m[wild].is_positive for wild in [w1, w2, w3, w4, w5]): d = re(s) > m[p] d_ = d.replace( re, lambda x: x.expand().as_real_imag()[0]).subs(re(s), t) if not d.is_Relational or \ d.rel_op in ('==', '!=') \ or d_.has(s) or not d_.has(t): aux_ += [d] continue soln = _solve_inequality(d_, t) if not soln.is_Relational or \ soln.rel_op in ('==', '!='): aux_ += [d] continue if soln.lts == t: raise IntegralTransformError('Laplace', f, 'convergence not in half-plane?') else: a_ = Min(soln.lts, a_) if a_ != oo: a = Max(a_, a) else: aux = And(aux, Or(*aux_)) return a, aux conds = [process_conds(c) for c in disjuncts(cond)] conds2 = [x for x in conds if x[1] != False and x[0] != -oo] if not conds2: conds2 = [x for x in conds if x[1] != False] conds = conds2 def cnt(expr): if expr == True or expr == False: return 0 return expr.count_ops() conds.sort(key=lambda x: (-x[0], cnt(x[1]))) if not conds: raise IntegralTransformError('Laplace', f, 'no convergence found') a, aux = conds[0] def sbs(expr): return expr.subs(s, s_) if simplify: F = _simplifyconds(F, s, a) aux = _simplifyconds(aux, s, a) return _simplify(F.subs(s, s_), simplify), sbs(a), _canonical(sbs(aux)) class LaplaceTransform(IntegralTransform): """ Class representing unevaluated Laplace transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute Laplace transforms, see the :func:`laplace_transform` docstring. """ _name = 'Laplace' def _compute_transform(self, f, t, s, **hints): return _laplace_transform(f, t, s, **hints) def _as_integral(self, f, t, s): from sympy import exp return Integral(f*exp(-s*t), (t, 0, oo)) def _collapse_extra(self, extra): from sympy import Max conds = [] planes = [] for plane, cond in extra: conds.append(cond) planes.append(plane) cond = And(*conds) plane = Max(*planes) if cond == False: raise IntegralTransformError( 'Laplace', None, 'No combined convergence.') return plane, cond def laplace_transform(f, t, s, **hints): r""" Compute the Laplace Transform `F(s)` of `f(t)`, .. math :: F(s) = \int_0^\infty e^{-st} f(t) \mathrm{d}t. For all "sensible" functions, this converges absolutely in a half plane `a < \operatorname{Re}(s)`. This function returns ``(F, a, cond)`` where ``F`` is the Laplace transform of ``f``, `\operatorname{Re}(s) > a` is the half-plane of convergence, and ``cond`` are auxiliary convergence conditions. If the integral cannot be computed in closed form, this function returns an unevaluated :class:`LaplaceTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. If ``noconds=True``, only `F` will be returned (i.e. not ``cond``, and also not the plane ``a``). >>> from sympy.integrals import laplace_transform >>> from sympy.abc import t, s, a >>> laplace_transform(t**a, t, s) (s**(-a)*gamma(a + 1)/s, 0, re(a) > -1) See Also ======== inverse_laplace_transform, mellin_transform, fourier_transform hankel_transform, inverse_hankel_transform """ if isinstance(f, MatrixBase) and hasattr(f, 'applyfunc'): return f.applyfunc(lambda fij: laplace_transform(fij, t, s, **hints)) return LaplaceTransform(f, t, s).doit(**hints) @_noconds_(True) def _inverse_laplace_transform(F, s, t_, plane, simplify=True): """ The backend function for inverse Laplace transforms. """ from sympy import exp, Heaviside, log, expand_complex, Integral, Piecewise from sympy.integrals.meijerint import meijerint_inversion, _get_coeff_exp # There are two strategies we can try: # 1) Use inverse mellin transforms - related by a simple change of variables. # 2) Use the inversion integral. t = Dummy('t', real=True) def pw_simp(*args): """ Simplify a piecewise expression from hyperexpand. """ # XXX we break modularity here! if len(args) != 3: return Piecewise(*args) arg = args[2].args[0].argument coeff, exponent = _get_coeff_exp(arg, t) e1 = args[0].args[0] e2 = args[1].args[0] return Heaviside(1/abs(coeff) - t**exponent)*e1 \ + Heaviside(t**exponent - 1/abs(coeff))*e2 try: f, cond = inverse_mellin_transform(F, s, exp(-t), (None, oo), needeval=True, noconds=False) except IntegralTransformError: f = None if f is None: f = meijerint_inversion(F, s, t) if f is None: raise IntegralTransformError('Inverse Laplace', f, '') if f.is_Piecewise: f, cond = f.args[0] if f.has(Integral): raise IntegralTransformError('Inverse Laplace', f, 'inversion integral of unrecognised form.') else: cond = S.true f = f.replace(Piecewise, pw_simp) if f.is_Piecewise: # many of the functions called below can't work with piecewise # (b/c it has a bool in args) return f.subs(t, t_), cond u = Dummy('u') def simp_heaviside(arg): a = arg.subs(exp(-t), u) if a.has(t): return Heaviside(arg) rel = _solve_inequality(a > 0, u) if rel.lts == u: k = log(rel.gts) return Heaviside(t + k) else: k = log(rel.lts) return Heaviside(-(t + k)) f = f.replace(Heaviside, simp_heaviside) def simp_exp(arg): return expand_complex(exp(arg)) f = f.replace(exp, simp_exp) # TODO it would be nice to fix cosh and sinh ... simplify messes these # exponentials up return _simplify(f.subs(t, t_), simplify), cond class InverseLaplaceTransform(IntegralTransform): """ Class representing unevaluated inverse Laplace transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse Laplace transforms, see the :func:`inverse_laplace_transform` docstring. """ _name = 'Inverse Laplace' _none_sentinel = Dummy('None') _c = Dummy('c') def __new__(cls, F, s, x, plane, **opts): if plane is None: plane = InverseLaplaceTransform._none_sentinel return IntegralTransform.__new__(cls, F, s, x, plane, **opts) @property def fundamental_plane(self): plane = self.args[3] if plane is InverseLaplaceTransform._none_sentinel: plane = None return plane def _compute_transform(self, F, s, t, **hints): return _inverse_laplace_transform(F, s, t, self.fundamental_plane, **hints) def _as_integral(self, F, s, t): from sympy import I, exp c = self.__class__._c return Integral(exp(s*t)*F, (s, c - I*oo, c + I*oo))/(2*S.Pi*S.ImaginaryUnit) def inverse_laplace_transform(F, s, t, plane=None, **hints): r""" Compute the inverse Laplace transform of `F(s)`, defined as .. math :: f(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{st} F(s) \mathrm{d}s, for `c` so large that `F(s)` has no singularites in the half-plane `\operatorname{Re}(s) > c-\epsilon`. The plane can be specified by argument ``plane``, but will be inferred if passed as None. Under certain regularity conditions, this recovers `f(t)` from its Laplace Transform `F(s)`, for non-negative `t`, and vice versa. If the integral cannot be computed in closed form, this function returns an unevaluated :class:`InverseLaplaceTransform` object. Note that this function will always assume `t` to be real, regardless of the sympy assumption on `t`. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. >>> from sympy.integrals.transforms import inverse_laplace_transform >>> from sympy import exp, Symbol >>> from sympy.abc import s, t >>> a = Symbol('a', positive=True) >>> inverse_laplace_transform(exp(-a*s)/s, s, t) Heaviside(-a + t) See Also ======== laplace_transform hankel_transform, inverse_hankel_transform """ if isinstance(F, MatrixBase) and hasattr(F, 'applyfunc'): return F.applyfunc(lambda Fij: inverse_laplace_transform(Fij, s, t, plane, **hints)) return InverseLaplaceTransform(F, s, t, plane).doit(**hints) ########################################################################## # Fourier Transform ########################################################################## @_noconds_(True) def _fourier_transform(f, x, k, a, b, name, simplify=True): r""" Compute a general Fourier-type transform .. math:: F(k) = a \int_{-\infty}^{\infty} e^{bixk} f(x)\, dx. For suitable choice of *a* and *b*, this reduces to the standard Fourier and inverse Fourier transforms. """ from sympy import exp, I F = integrate(a*f*exp(b*I*x*k), (x, -oo, oo)) if not F.has(Integral): return _simplify(F, simplify), S.true integral_f = integrate(f, (x, -oo, oo)) if integral_f in (-oo, oo, S.NaN) or integral_f.has(Integral): raise IntegralTransformError(name, f, 'function not integrable on real axis') if not F.is_Piecewise: raise IntegralTransformError(name, f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError(name, f, 'integral in unexpected form') return _simplify(F, simplify), cond class FourierTypeTransform(IntegralTransform): """ Base class for Fourier transforms.""" def a(self): raise NotImplementedError( "Class %s must implement a(self) but does not" % self.__class__) def b(self): raise NotImplementedError( "Class %s must implement b(self) but does not" % self.__class__) def _compute_transform(self, f, x, k, **hints): return _fourier_transform(f, x, k, self.a(), self.b(), self.__class__._name, **hints) def _as_integral(self, f, x, k): from sympy import exp, I a = self.a() b = self.b() return Integral(a*f*exp(b*I*x*k), (x, -oo, oo)) class FourierTransform(FourierTypeTransform): """ Class representing unevaluated Fourier transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute Fourier transforms, see the :func:`fourier_transform` docstring. """ _name = 'Fourier' def a(self): return 1 def b(self): return -2*S.Pi def fourier_transform(f, x, k, **hints): r""" Compute the unitary, ordinary-frequency Fourier transform of `f`, defined as .. math:: F(k) = \int_{-\infty}^\infty f(x) e^{-2\pi i x k} \mathrm{d} x. If the transform cannot be computed in closed form, this function returns an unevaluated :class:`FourierTransform` object. For other Fourier transform conventions, see the function :func:`sympy.integrals.transforms._fourier_transform`. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. >>> from sympy import fourier_transform, exp >>> from sympy.abc import x, k >>> fourier_transform(exp(-x**2), x, k) sqrt(pi)*exp(-pi**2*k**2) >>> fourier_transform(exp(-x**2), x, k, noconds=False) (sqrt(pi)*exp(-pi**2*k**2), True) See Also ======== inverse_fourier_transform sine_transform, inverse_sine_transform cosine_transform, inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return FourierTransform(f, x, k).doit(**hints) class InverseFourierTransform(FourierTypeTransform): """ Class representing unevaluated inverse Fourier transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse Fourier transforms, see the :func:`inverse_fourier_transform` docstring. """ _name = 'Inverse Fourier' def a(self): return 1 def b(self): return 2*S.Pi def inverse_fourier_transform(F, k, x, **hints): r""" Compute the unitary, ordinary-frequency inverse Fourier transform of `F`, defined as .. math:: f(x) = \int_{-\infty}^\infty F(k) e^{2\pi i x k} \mathrm{d} k. If the transform cannot be computed in closed form, this function returns an unevaluated :class:`InverseFourierTransform` object. For other Fourier transform conventions, see the function :func:`sympy.integrals.transforms._fourier_transform`. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. >>> from sympy import inverse_fourier_transform, exp, sqrt, pi >>> from sympy.abc import x, k >>> inverse_fourier_transform(sqrt(pi)*exp(-(pi*k)**2), k, x) exp(-x**2) >>> inverse_fourier_transform(sqrt(pi)*exp(-(pi*k)**2), k, x, noconds=False) (exp(-x**2), True) See Also ======== fourier_transform sine_transform, inverse_sine_transform cosine_transform, inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return InverseFourierTransform(F, k, x).doit(**hints) ########################################################################## # Fourier Sine and Cosine Transform ########################################################################## from sympy import sin, cos, sqrt, pi @_noconds_(True) def _sine_cosine_transform(f, x, k, a, b, K, name, simplify=True): """ Compute a general sine or cosine-type transform F(k) = a int_0^oo b*sin(x*k) f(x) dx. F(k) = a int_0^oo b*cos(x*k) f(x) dx. For suitable choice of a and b, this reduces to the standard sine/cosine and inverse sine/cosine transforms. """ F = integrate(a*f*K(b*x*k), (x, 0, oo)) if not F.has(Integral): return _simplify(F, simplify), S.true if not F.is_Piecewise: raise IntegralTransformError(name, f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError(name, f, 'integral in unexpected form') return _simplify(F, simplify), cond class SineCosineTypeTransform(IntegralTransform): """ Base class for sine and cosine transforms. Specify cls._kern. """ def a(self): raise NotImplementedError( "Class %s must implement a(self) but does not" % self.__class__) def b(self): raise NotImplementedError( "Class %s must implement b(self) but does not" % self.__class__) def _compute_transform(self, f, x, k, **hints): return _sine_cosine_transform(f, x, k, self.a(), self.b(), self.__class__._kern, self.__class__._name, **hints) def _as_integral(self, f, x, k): a = self.a() b = self.b() K = self.__class__._kern return Integral(a*f*K(b*x*k), (x, 0, oo)) class SineTransform(SineCosineTypeTransform): """ Class representing unevaluated sine transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute sine transforms, see the :func:`sine_transform` docstring. """ _name = 'Sine' _kern = sin def a(self): return sqrt(2)/sqrt(pi) def b(self): return 1 def sine_transform(f, x, k, **hints): r""" Compute the unitary, ordinary-frequency sine transform of `f`, defined as .. math:: F(k) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty f(x) \sin(2\pi x k) \mathrm{d} x. If the transform cannot be computed in closed form, this function returns an unevaluated :class:`SineTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. >>> from sympy import sine_transform, exp >>> from sympy.abc import x, k, a >>> sine_transform(x*exp(-a*x**2), x, k) sqrt(2)*k*exp(-k**2/(4*a))/(4*a**(3/2)) >>> sine_transform(x**(-a), x, k) 2**(1/2 - a)*k**(a - 1)*gamma(1 - a/2)/gamma(a/2 + 1/2) See Also ======== fourier_transform, inverse_fourier_transform inverse_sine_transform cosine_transform, inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return SineTransform(f, x, k).doit(**hints) class InverseSineTransform(SineCosineTypeTransform): """ Class representing unevaluated inverse sine transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse sine transforms, see the :func:`inverse_sine_transform` docstring. """ _name = 'Inverse Sine' _kern = sin def a(self): return sqrt(2)/sqrt(pi) def b(self): return 1 def inverse_sine_transform(F, k, x, **hints): r""" Compute the unitary, ordinary-frequency inverse sine transform of `F`, defined as .. math:: f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty F(k) \sin(2\pi x k) \mathrm{d} k. If the transform cannot be computed in closed form, this function returns an unevaluated :class:`InverseSineTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. >>> from sympy import inverse_sine_transform, exp, sqrt, gamma, pi >>> from sympy.abc import x, k, a >>> inverse_sine_transform(2**((1-2*a)/2)*k**(a - 1)* ... gamma(-a/2 + 1)/gamma((a+1)/2), k, x) x**(-a) >>> inverse_sine_transform(sqrt(2)*k*exp(-k**2/(4*a))/(4*sqrt(a)**3), k, x) x*exp(-a*x**2) See Also ======== fourier_transform, inverse_fourier_transform sine_transform cosine_transform, inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return InverseSineTransform(F, k, x).doit(**hints) class CosineTransform(SineCosineTypeTransform): """ Class representing unevaluated cosine transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute cosine transforms, see the :func:`cosine_transform` docstring. """ _name = 'Cosine' _kern = cos def a(self): return sqrt(2)/sqrt(pi) def b(self): return 1 def cosine_transform(f, x, k, **hints): r""" Compute the unitary, ordinary-frequency cosine transform of `f`, defined as .. math:: F(k) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty f(x) \cos(2\pi x k) \mathrm{d} x. If the transform cannot be computed in closed form, this function returns an unevaluated :class:`CosineTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. >>> from sympy import cosine_transform, exp, sqrt, cos >>> from sympy.abc import x, k, a >>> cosine_transform(exp(-a*x), x, k) sqrt(2)*a/(sqrt(pi)*(a**2 + k**2)) >>> cosine_transform(exp(-a*sqrt(x))*cos(a*sqrt(x)), x, k) a*exp(-a**2/(2*k))/(2*k**(3/2)) See Also ======== fourier_transform, inverse_fourier_transform, sine_transform, inverse_sine_transform inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return CosineTransform(f, x, k).doit(**hints) class InverseCosineTransform(SineCosineTypeTransform): """ Class representing unevaluated inverse cosine transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse cosine transforms, see the :func:`inverse_cosine_transform` docstring. """ _name = 'Inverse Cosine' _kern = cos def a(self): return sqrt(2)/sqrt(pi) def b(self): return 1 def inverse_cosine_transform(F, k, x, **hints): r""" Compute the unitary, ordinary-frequency inverse cosine transform of `F`, defined as .. math:: f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty F(k) \cos(2\pi x k) \mathrm{d} k. If the transform cannot be computed in closed form, this function returns an unevaluated :class:`InverseCosineTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. >>> from sympy import inverse_cosine_transform, exp, sqrt, pi >>> from sympy.abc import x, k, a >>> inverse_cosine_transform(sqrt(2)*a/(sqrt(pi)*(a**2 + k**2)), k, x) exp(-a*x) >>> inverse_cosine_transform(1/sqrt(k), k, x) 1/sqrt(x) See Also ======== fourier_transform, inverse_fourier_transform, sine_transform, inverse_sine_transform cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return InverseCosineTransform(F, k, x).doit(**hints) ########################################################################## # Hankel Transform ########################################################################## @_noconds_(True) def _hankel_transform(f, r, k, nu, name, simplify=True): r""" Compute a general Hankel transform .. math:: F_\nu(k) = \int_{0}^\infty f(r) J_\nu(k r) r \mathrm{d} r. """ from sympy import besselj F = integrate(f*besselj(nu, k*r)*r, (r, 0, oo)) if not F.has(Integral): return _simplify(F, simplify), S.true if not F.is_Piecewise: raise IntegralTransformError(name, f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError(name, f, 'integral in unexpected form') return _simplify(F, simplify), cond class HankelTypeTransform(IntegralTransform): """ Base class for Hankel transforms. """ def doit(self, **hints): return self._compute_transform(self.function, self.function_variable, self.transform_variable, self.args[3], **hints) def _compute_transform(self, f, r, k, nu, **hints): return _hankel_transform(f, r, k, nu, self._name, **hints) def _as_integral(self, f, r, k, nu): from sympy import besselj return Integral(f*besselj(nu, k*r)*r, (r, 0, oo)) @property def as_integral(self): return self._as_integral(self.function, self.function_variable, self.transform_variable, self.args[3]) class HankelTransform(HankelTypeTransform): """ Class representing unevaluated Hankel transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute Hankel transforms, see the :func:`hankel_transform` docstring. """ _name = 'Hankel' def hankel_transform(f, r, k, nu, **hints): r""" Compute the Hankel transform of `f`, defined as .. math:: F_\nu(k) = \int_{0}^\infty f(r) J_\nu(k r) r \mathrm{d} r. If the transform cannot be computed in closed form, this function returns an unevaluated :class:`HankelTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. >>> from sympy import hankel_transform, inverse_hankel_transform >>> from sympy import gamma, exp, sinh, cosh >>> from sympy.abc import r, k, m, nu, a >>> ht = hankel_transform(1/r**m, r, k, nu) >>> ht 2*2**(-m)*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2) >>> inverse_hankel_transform(ht, k, r, nu) r**(-m) >>> ht = hankel_transform(exp(-a*r), r, k, 0) >>> ht a/(k**3*(a**2/k**2 + 1)**(3/2)) >>> inverse_hankel_transform(ht, k, r, 0) exp(-a*r) See Also ======== fourier_transform, inverse_fourier_transform sine_transform, inverse_sine_transform cosine_transform, inverse_cosine_transform inverse_hankel_transform mellin_transform, laplace_transform """ return HankelTransform(f, r, k, nu).doit(**hints) class InverseHankelTransform(HankelTypeTransform): """ Class representing unevaluated inverse Hankel transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse Hankel transforms, see the :func:`inverse_hankel_transform` docstring. """ _name = 'Inverse Hankel' def inverse_hankel_transform(F, k, r, nu, **hints): r""" Compute the inverse Hankel transform of `F` defined as .. math:: f(r) = \int_{0}^\infty F_\nu(k) J_\nu(k r) k \mathrm{d} k. If the transform cannot be computed in closed form, this function returns an unevaluated :class:`InverseHankelTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. >>> from sympy import hankel_transform, inverse_hankel_transform, gamma >>> from sympy import gamma, exp, sinh, cosh >>> from sympy.abc import r, k, m, nu, a >>> ht = hankel_transform(1/r**m, r, k, nu) >>> ht 2*2**(-m)*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2) >>> inverse_hankel_transform(ht, k, r, nu) r**(-m) >>> ht = hankel_transform(exp(-a*r), r, k, 0) >>> ht a/(k**3*(a**2/k**2 + 1)**(3/2)) >>> inverse_hankel_transform(ht, k, r, 0) exp(-a*r) See Also ======== fourier_transform, inverse_fourier_transform sine_transform, inverse_sine_transform cosine_transform, inverse_cosine_transform hankel_transform mellin_transform, laplace_transform """ return InverseHankelTransform(F, k, r, nu).doit(**hints)
ad10cc10097fdf694b450079af13bf548ee0d140e1c3f2833310920a7fa67b5e
from __future__ import print_function, division from sympy.concrete.expr_with_limits import AddWithLimits from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.compatibility import is_sequence from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.function import diff from sympy.core.logic import fuzzy_bool from sympy.core.mul import Mul from sympy.core.numbers import oo, pi from sympy.core.relational import Ne from sympy.core.singleton import S from sympy.core.symbol import (Dummy, Symbol, Wild) from sympy.core.sympify import sympify from sympy.functions import Piecewise, sqrt, piecewise_fold, tan, cot, atan from sympy.functions.elementary.exponential import log from sympy.functions.elementary.integers import floor from sympy.functions.elementary.complexes import Abs, sign from sympy.functions.elementary.miscellaneous import Min, Max from sympy.integrals.manualintegrate import manualintegrate from sympy.integrals.trigonometry import trigintegrate from sympy.integrals.meijerint import meijerint_definite, meijerint_indefinite from sympy.matrices import MatrixBase from sympy.polys import Poly, PolynomialError from sympy.series import limit from sympy.series.order import Order from sympy.series.formal import FormalPowerSeries from sympy.simplify.fu import sincos_to_sum from sympy.utilities.misc import filldedent class Integral(AddWithLimits): """Represents unevaluated integral.""" __slots__ = ['is_commutative'] def __new__(cls, function, *symbols, **assumptions): """Create an unevaluated integral. Arguments are an integrand followed by one or more limits. If no limits are given and there is only one free symbol in the expression, that symbol will be used, otherwise an error will be raised. >>> from sympy import Integral >>> from sympy.abc import x, y >>> Integral(x) Integral(x, x) >>> Integral(y) Integral(y, y) When limits are provided, they are interpreted as follows (using ``x`` as though it were the variable of integration): (x,) or x - indefinite integral (x, a) - "evaluate at" integral is an abstract antiderivative (x, a, b) - definite integral The ``as_dummy`` method can be used to see which symbols cannot be targeted by subs: those with a prepended underscore cannot be changed with ``subs``. (Also, the integration variables themselves -- the first element of a limit -- can never be changed by subs.) >>> i = Integral(x, x) >>> at = Integral(x, (x, x)) >>> i.as_dummy() Integral(x, x) >>> at.as_dummy() Integral(_0, (_0, x)) """ #This will help other classes define their own definitions #of behaviour with Integral. if hasattr(function, '_eval_Integral'): return function._eval_Integral(*symbols, **assumptions) obj = AddWithLimits.__new__(cls, function, *symbols, **assumptions) return obj def __getnewargs__(self): return (self.function,) + tuple([tuple(xab) for xab in self.limits]) @property def free_symbols(self): """ This method returns the symbols that will exist when the integral is evaluated. This is useful if one is trying to determine whether an integral depends on a certain symbol or not. Examples ======== >>> from sympy import Integral >>> from sympy.abc import x, y >>> Integral(x, (x, y, 1)).free_symbols {y} See Also ======== sympy.concrete.expr_with_limits.ExprWithLimits.function sympy.concrete.expr_with_limits.ExprWithLimits.limits sympy.concrete.expr_with_limits.ExprWithLimits.variables """ return AddWithLimits.free_symbols.fget(self) def _eval_is_zero(self): # This is a very naive and quick test, not intended to do the integral to # answer whether it is zero or not, e.g. Integral(sin(x), (x, 0, 2*pi)) # is zero but this routine should return None for that case. But, like # Mul, there are trivial situations for which the integral will be # zero so we check for those. if self.function.is_zero: return True got_none = False for l in self.limits: if len(l) == 3: z = (l[1] == l[2]) or (l[1] - l[2]).is_zero if z: return True elif z is None: got_none = True free = self.function.free_symbols for xab in self.limits: if len(xab) == 1: free.add(xab[0]) continue if len(xab) == 2 and xab[0] not in free: if xab[1].is_zero: return True elif xab[1].is_zero is None: got_none = True # take integration symbol out of free since it will be replaced # with the free symbols in the limits free.discard(xab[0]) # add in the new symbols for i in xab[1:]: free.update(i.free_symbols) if self.function.is_zero is False and got_none is False: return False def transform(self, x, u): r""" Performs a change of variables from `x` to `u` using the relationship given by `x` and `u` which will define the transformations `f` and `F` (which are inverses of each other) as follows: 1) If `x` is a Symbol (which is a variable of integration) then `u` will be interpreted as some function, f(u), with inverse F(u). This, in effect, just makes the substitution of x with f(x). 2) If `u` is a Symbol then `x` will be interpreted as some function, F(x), with inverse f(u). This is commonly referred to as u-substitution. Once f and F have been identified, the transformation is made as follows: .. math:: \int_a^b x \mathrm{d}x \rightarrow \int_{F(a)}^{F(b)} f(x) \frac{\mathrm{d}}{\mathrm{d}x} where `F(x)` is the inverse of `f(x)` and the limits and integrand have been corrected so as to retain the same value after integration. Notes ===== The mappings, F(x) or f(u), must lead to a unique integral. Linear or rational linear expression, `2*x`, `1/x` and `sqrt(x)`, will always work; quadratic expressions like `x**2 - 1` are acceptable as long as the resulting integrand does not depend on the sign of the solutions (see examples). The integral will be returned unchanged if `x` is not a variable of integration. `x` must be (or contain) only one of of the integration variables. If `u` has more than one free symbol then it should be sent as a tuple (`u`, `uvar`) where `uvar` identifies which variable is replacing the integration variable. XXX can it contain another integration variable? Examples ======== >>> from sympy.abc import a, b, c, d, x, u, y >>> from sympy import Integral, S, cos, sqrt >>> i = Integral(x*cos(x**2 - 1), (x, 0, 1)) transform can change the variable of integration >>> i.transform(x, u) Integral(u*cos(u**2 - 1), (u, 0, 1)) transform can perform u-substitution as long as a unique integrand is obtained: >>> i.transform(x**2 - 1, u) Integral(cos(u)/2, (u, -1, 0)) This attempt fails because x = +/-sqrt(u + 1) and the sign does not cancel out of the integrand: >>> Integral(cos(x**2 - 1), (x, 0, 1)).transform(x**2 - 1, u) Traceback (most recent call last): ... ValueError: The mapping between F(x) and f(u) did not give a unique integrand. transform can do a substitution. Here, the previous result is transformed back into the original expression using "u-substitution": >>> ui = _ >>> _.transform(sqrt(u + 1), x) == i True We can accomplish the same with a regular substitution: >>> ui.transform(u, x**2 - 1) == i True If the `x` does not contain a symbol of integration then the integral will be returned unchanged. Integral `i` does not have an integration variable `a` so no change is made: >>> i.transform(a, x) == i True When `u` has more than one free symbol the symbol that is replacing `x` must be identified by passing `u` as a tuple: >>> Integral(x, (x, 0, 1)).transform(x, (u + a, u)) Integral(a + u, (u, -a, 1 - a)) >>> Integral(x, (x, 0, 1)).transform(x, (u + a, a)) Integral(a + u, (a, -u, 1 - u)) See Also ======== sympy.concrete.expr_with_limits.ExprWithLimits.variables : Lists the integration variables as_dummy : Replace integration variables with dummy ones """ from sympy.solvers.solvers import solve, posify d = Dummy('d') xfree = x.free_symbols.intersection(self.variables) if len(xfree) > 1: raise ValueError( 'F(x) can only contain one of: %s' % self.variables) xvar = xfree.pop() if xfree else d if xvar not in self.variables: return self u = sympify(u) if isinstance(u, Expr): ufree = u.free_symbols if len(ufree) == 0: raise ValueError(filldedent(''' f(u) cannot be a constant''')) if len(ufree) > 1: raise ValueError(filldedent(''' When f(u) has more than one free symbol, the one replacing x must be identified: pass f(u) as (f(u), u)''')) uvar = ufree.pop() else: u, uvar = u if uvar not in u.free_symbols: raise ValueError(filldedent(''' Expecting a tuple (expr, symbol) where symbol identified a free symbol in expr, but symbol is not in expr's free symbols.''')) if not isinstance(uvar, Symbol): # This probably never evaluates to True raise ValueError(filldedent(''' Expecting a tuple (expr, symbol) but didn't get a symbol; got %s''' % uvar)) if x.is_Symbol and u.is_Symbol: return self.xreplace({x: u}) if not x.is_Symbol and not u.is_Symbol: raise ValueError('either x or u must be a symbol') if uvar == xvar: return self.transform(x, (u.subs(uvar, d), d)).xreplace({d: uvar}) if uvar in self.limits: raise ValueError(filldedent(''' u must contain the same variable as in x or a variable that is not already an integration variable''')) if not x.is_Symbol: F = [x.subs(xvar, d)] soln = solve(u - x, xvar, check=False) if not soln: raise ValueError('no solution for solve(F(x) - f(u), x)') f = [fi.subs(uvar, d) for fi in soln] else: f = [u.subs(uvar, d)] pdiff, reps = posify(u - x) puvar = uvar.subs([(v, k) for k, v in reps.items()]) soln = [s.subs(reps) for s in solve(pdiff, puvar)] if not soln: raise ValueError('no solution for solve(F(x) - f(u), u)') F = [fi.subs(xvar, d) for fi in soln] newfuncs = set([(self.function.subs(xvar, fi)*fi.diff(d) ).subs(d, uvar) for fi in f]) if len(newfuncs) > 1: raise ValueError(filldedent(''' The mapping between F(x) and f(u) did not give a unique integrand.''')) newfunc = newfuncs.pop() def _calc_limit_1(F, a, b): """ replace d with a, using subs if possible, otherwise limit where sign of b is considered """ wok = F.subs(d, a) if wok is S.NaN or wok.is_finite is False and a.is_finite: return limit(sign(b)*F, d, a) return wok def _calc_limit(a, b): """ replace d with a, using subs if possible, otherwise limit where sign of b is considered """ avals = list({_calc_limit_1(Fi, a, b) for Fi in F}) if len(avals) > 1: raise ValueError(filldedent(''' The mapping between F(x) and f(u) did not give a unique limit.''')) return avals[0] newlimits = [] for xab in self.limits: sym = xab[0] if sym == xvar: if len(xab) == 3: a, b = xab[1:] a, b = _calc_limit(a, b), _calc_limit(b, a) if fuzzy_bool(a - b > 0): a, b = b, a newfunc = -newfunc newlimits.append((uvar, a, b)) elif len(xab) == 2: a = _calc_limit(xab[1], 1) newlimits.append((uvar, a)) else: newlimits.append(uvar) else: newlimits.append(xab) return self.func(newfunc, *newlimits) def doit(self, **hints): """ Perform the integration using any hints given. Examples ======== >>> from sympy import Integral, Piecewise, S >>> from sympy.abc import x, t >>> p = x**2 + Piecewise((0, x/t < 0), (1, True)) >>> p.integrate((t, S(4)/5, 1), (x, -1, 1)) 1/3 See Also ======== sympy.integrals.trigonometry.trigintegrate sympy.integrals.heurisch.heurisch sympy.integrals.rationaltools.ratint as_sum : Approximate the integral using a sum """ if not hints.get('integrals', True): return self deep = hints.get('deep', True) meijerg = hints.get('meijerg', None) conds = hints.get('conds', 'piecewise') risch = hints.get('risch', None) heurisch = hints.get('heurisch', None) manual = hints.get('manual', None) if len(list(filter(None, (manual, meijerg, risch, heurisch)))) > 1: raise ValueError("At most one of manual, meijerg, risch, heurisch can be True") elif manual: meijerg = risch = heurisch = False elif meijerg: manual = risch = heurisch = False elif risch: manual = meijerg = heurisch = False elif heurisch: manual = meijerg = risch = False eval_kwargs = dict(meijerg=meijerg, risch=risch, manual=manual, heurisch=heurisch, conds=conds) if conds not in ['separate', 'piecewise', 'none']: raise ValueError('conds must be one of "separate", "piecewise", ' '"none", got: %s' % conds) if risch and any(len(xab) > 1 for xab in self.limits): raise ValueError('risch=True is only allowed for indefinite integrals.') # check for the trivial zero if self.is_zero: return S.Zero # now compute and check the function function = self.function if deep: function = function.doit(**hints) if function.is_zero: return S.Zero # hacks to handle special cases if isinstance(function, MatrixBase): return function.applyfunc( lambda f: self.func(f, self.limits).doit(**hints)) if isinstance(function, FormalPowerSeries): if len(self.limits) > 1: raise NotImplementedError xab = self.limits[0] if len(xab) > 1: return function.integrate(xab, **eval_kwargs) else: return function.integrate(xab[0], **eval_kwargs) # There is no trivial answer and special handling # is done so continue # first make sure any definite limits have integration # variables with matching assumptions reps = {} for xab in self.limits: if len(xab) != 3: continue x, a, b = xab l = (a, b) if all(i.is_nonnegative for i in l) and not x.is_nonnegative: d = Dummy(positive=True) elif all(i.is_nonpositive for i in l) and not x.is_nonpositive: d = Dummy(negative=True) elif all(i.is_real for i in l) and not x.is_real: d = Dummy(real=True) else: d = None if d: reps[x] = d if reps: undo = dict([(v, k) for k, v in reps.items()]) did = self.xreplace(reps).doit(**hints) if type(did) is tuple: # when separate=True did = tuple([i.xreplace(undo) for i in did]) else: did = did.xreplace(undo) return did # continue with existing assumptions undone_limits = [] # ulj = free symbols of any undone limits' upper and lower limits ulj = set() for xab in self.limits: # compute uli, the free symbols in the # Upper and Lower limits of limit I if len(xab) == 1: uli = set(xab[:1]) elif len(xab) == 2: uli = xab[1].free_symbols elif len(xab) == 3: uli = xab[1].free_symbols.union(xab[2].free_symbols) # this integral can be done as long as there is no blocking # limit that has been undone. An undone limit is blocking if # it contains an integration variable that is in this limit's # upper or lower free symbols or vice versa if xab[0] in ulj or any(v[0] in uli for v in undone_limits): undone_limits.append(xab) ulj.update(uli) function = self.func(*([function] + [xab])) factored_function = function.factor() if not isinstance(factored_function, Integral): function = factored_function continue if function.has(Abs, sign) and ( (len(xab) < 3 and all(x.is_extended_real for x in xab)) or (len(xab) == 3 and all(x.is_extended_real and not x.is_infinite for x in xab[1:]))): # some improper integrals are better off with Abs xr = Dummy("xr", real=True) function = (function.xreplace({xab[0]: xr}) .rewrite(Piecewise).xreplace({xr: xab[0]})) elif function.has(Min, Max): function = function.rewrite(Piecewise) if (function.has(Piecewise) and not isinstance(function, Piecewise)): function = piecewise_fold(function) if isinstance(function, Piecewise): if len(xab) == 1: antideriv = function._eval_integral(xab[0], **eval_kwargs) else: antideriv = self._eval_integral( function, xab[0], **eval_kwargs) else: # There are a number of tradeoffs in using the # Meijer G method. It can sometimes be a lot faster # than other methods, and sometimes slower. And # there are certain types of integrals for which it # is more likely to work than others. These # heuristics are incorporated in deciding what # integration methods to try, in what order. See the # integrate() docstring for details. def try_meijerg(function, xab): ret = None if len(xab) == 3 and meijerg is not False: x, a, b = xab try: res = meijerint_definite(function, x, a, b) except NotImplementedError: from sympy.integrals.meijerint import _debug _debug('NotImplementedError ' 'from meijerint_definite') res = None if res is not None: f, cond = res if conds == 'piecewise': ret = Piecewise( (f, cond), (self.func( function, (x, a, b)), True)) elif conds == 'separate': if len(self.limits) != 1: raise ValueError(filldedent(''' conds=separate not supported in multiple integrals''')) ret = f, cond else: ret = f return ret meijerg1 = meijerg if (meijerg is not False and len(xab) == 3 and xab[1].is_extended_real and xab[2].is_extended_real and not function.is_Poly and (xab[1].has(oo, -oo) or xab[2].has(oo, -oo))): ret = try_meijerg(function, xab) if ret is not None: function = ret continue meijerg1 = False # If the special meijerg code did not succeed in # finding a definite integral, then the code using # meijerint_indefinite will not either (it might # find an antiderivative, but the answer is likely # to be nonsensical). Thus if we are requested to # only use Meijer G-function methods, we give up at # this stage. Otherwise we just disable G-function # methods. if meijerg1 is False and meijerg is True: antideriv = None else: antideriv = self._eval_integral( function, xab[0], **eval_kwargs) if antideriv is None and meijerg is True: ret = try_meijerg(function, xab) if ret is not None: function = ret continue if not isinstance(antideriv, Integral) and antideriv is not None: for atan_term in antideriv.atoms(atan): atan_arg = atan_term.args[0] # Checking `atan_arg` to be linear combination of `tan` or `cot` for tan_part in atan_arg.atoms(tan): x1 = Dummy('x1') tan_exp1 = atan_arg.subs(tan_part, x1) # The coefficient of `tan` should be constant coeff = tan_exp1.diff(x1) if x1 not in coeff.free_symbols: a = tan_part.args[0] antideriv = antideriv.subs(atan_term, Add(atan_term, sign(coeff)*pi*floor((a-pi/2)/pi))) for cot_part in atan_arg.atoms(cot): x1 = Dummy('x1') cot_exp1 = atan_arg.subs(cot_part, x1) # The coefficient of `cot` should be constant coeff = cot_exp1.diff(x1) if x1 not in coeff.free_symbols: a = cot_part.args[0] antideriv = antideriv.subs(atan_term, Add(atan_term, sign(coeff)*pi*floor((a)/pi))) if antideriv is None: undone_limits.append(xab) function = self.func(*([function] + [xab])).factor() factored_function = function.factor() if not isinstance(factored_function, Integral): function = factored_function continue else: if len(xab) == 1: function = antideriv else: if len(xab) == 3: x, a, b = xab elif len(xab) == 2: x, b = xab a = None else: raise NotImplementedError if deep: if isinstance(a, Basic): a = a.doit(**hints) if isinstance(b, Basic): b = b.doit(**hints) if antideriv.is_Poly: gens = list(antideriv.gens) gens.remove(x) antideriv = antideriv.as_expr() function = antideriv._eval_interval(x, a, b) function = Poly(function, *gens) else: def is_indef_int(g, x): return (isinstance(g, Integral) and any(i == (x,) for i in g.limits)) def eval_factored(f, x, a, b): # _eval_interval for integrals with # (constant) factors # a single indefinite integral is assumed args = [] for g in Mul.make_args(f): if is_indef_int(g, x): args.append(g._eval_interval(x, a, b)) else: args.append(g) return Mul(*args) integrals, others, piecewises = [], [], [] for f in Add.make_args(antideriv): if any(is_indef_int(g, x) for g in Mul.make_args(f)): integrals.append(f) elif any(isinstance(g, Piecewise) for g in Mul.make_args(f)): piecewises.append(piecewise_fold(f)) else: others.append(f) uneval = Add(*[eval_factored(f, x, a, b) for f in integrals]) try: evalued = Add(*others)._eval_interval(x, a, b) evalued_pw = piecewise_fold(Add(*piecewises))._eval_interval(x, a, b) function = uneval + evalued + evalued_pw except NotImplementedError: # This can happen if _eval_interval depends in a # complicated way on limits that cannot be computed undone_limits.append(xab) function = self.func(*([function] + [xab])) factored_function = function.factor() if not isinstance(factored_function, Integral): function = factored_function return function def _eval_derivative(self, sym): """Evaluate the derivative of the current Integral object by differentiating under the integral sign [1], using the Fundamental Theorem of Calculus [2] when possible. Whenever an Integral is encountered that is equivalent to zero or has an integrand that is independent of the variable of integration those integrals are performed. All others are returned as Integral instances which can be resolved with doit() (provided they are integrable). References: [1] https://en.wikipedia.org/wiki/Differentiation_under_the_integral_sign [2] https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus Examples ======== >>> from sympy import Integral >>> from sympy.abc import x, y >>> i = Integral(x + y, y, (y, 1, x)) >>> i.diff(x) Integral(x + y, (y, x)) + Integral(1, y, (y, 1, x)) >>> i.doit().diff(x) == i.diff(x).doit() True >>> i.diff(y) 0 The previous must be true since there is no y in the evaluated integral: >>> i.free_symbols {x} >>> i.doit() 2*x**3/3 - x/2 - 1/6 """ # differentiate under the integral sign; we do not # check for regularity conditions (TODO), see issue 4215 # get limits and the function f, limits = self.function, list(self.limits) # the order matters if variables of integration appear in the limits # so work our way in from the outside to the inside. limit = limits.pop(-1) if len(limit) == 3: x, a, b = limit elif len(limit) == 2: x, b = limit a = None else: a = b = None x = limit[0] if limits: # f is the argument to an integral f = self.func(f, *tuple(limits)) # assemble the pieces def _do(f, ab): dab_dsym = diff(ab, sym) if not dab_dsym: return S.Zero if isinstance(f, Integral): limits = [(x, x) if (len(l) == 1 and l[0] == x) else l for l in f.limits] f = self.func(f.function, *limits) return f.subs(x, ab)*dab_dsym rv = S.Zero if b is not None: rv += _do(f, b) if a is not None: rv -= _do(f, a) if len(limit) == 1 and sym == x: # the dummy variable *is* also the real-world variable arg = f rv += arg else: # the dummy variable might match sym but it's # only a dummy and the actual variable is determined # by the limits, so mask off the variable of integration # while differentiating u = Dummy('u') arg = f.subs(x, u).diff(sym).subs(u, x) if arg: rv += self.func(arg, Tuple(x, a, b)) return rv def _eval_integral(self, f, x, meijerg=None, risch=None, manual=None, heurisch=None, conds='piecewise'): """ Calculate the anti-derivative to the function f(x). The following algorithms are applied (roughly in this order): 1. Simple heuristics (based on pattern matching and integral table): - most frequently used functions (e.g. polynomials, products of trig functions) 2. Integration of rational functions: - A complete algorithm for integrating rational functions is implemented (the Lazard-Rioboo-Trager algorithm). The algorithm also uses the partial fraction decomposition algorithm implemented in apart() as a preprocessor to make this process faster. Note that the integral of a rational function is always elementary, but in general, it may include a RootSum. 3. Full Risch algorithm: - The Risch algorithm is a complete decision procedure for integrating elementary functions, which means that given any elementary function, it will either compute an elementary antiderivative, or else prove that none exists. Currently, part of transcendental case is implemented, meaning elementary integrals containing exponentials, logarithms, and (soon!) trigonometric functions can be computed. The algebraic case, e.g., functions containing roots, is much more difficult and is not implemented yet. - If the routine fails (because the integrand is not elementary, or because a case is not implemented yet), it continues on to the next algorithms below. If the routine proves that the integrals is nonelementary, it still moves on to the algorithms below, because we might be able to find a closed-form solution in terms of special functions. If risch=True, however, it will stop here. 4. The Meijer G-Function algorithm: - This algorithm works by first rewriting the integrand in terms of very general Meijer G-Function (meijerg in SymPy), integrating it, and then rewriting the result back, if possible. This algorithm is particularly powerful for definite integrals (which is actually part of a different method of Integral), since it can compute closed-form solutions of definite integrals even when no closed-form indefinite integral exists. But it also is capable of computing many indefinite integrals as well. - Another advantage of this method is that it can use some results about the Meijer G-Function to give a result in terms of a Piecewise expression, which allows to express conditionally convergent integrals. - Setting meijerg=True will cause integrate() to use only this method. 5. The "manual integration" algorithm: - This algorithm tries to mimic how a person would find an antiderivative by hand, for example by looking for a substitution or applying integration by parts. This algorithm does not handle as many integrands but can return results in a more familiar form. - Sometimes this algorithm can evaluate parts of an integral; in this case integrate() will try to evaluate the rest of the integrand using the other methods here. - Setting manual=True will cause integrate() to use only this method. 6. The Heuristic Risch algorithm: - This is a heuristic version of the Risch algorithm, meaning that it is not deterministic. This is tried as a last resort because it can be very slow. It is still used because not enough of the full Risch algorithm is implemented, so that there are still some integrals that can only be computed using this method. The goal is to implement enough of the Risch and Meijer G-function methods so that this can be deleted. Setting heurisch=True will cause integrate() to use only this method. Set heurisch=False to not use it. """ from sympy.integrals.deltafunctions import deltaintegrate from sympy.integrals.singularityfunctions import singularityintegrate from sympy.integrals.heurisch import heurisch as heurisch_, heurisch_wrapper from sympy.integrals.rationaltools import ratint from sympy.integrals.risch import risch_integrate if risch: try: return risch_integrate(f, x, conds=conds) except NotImplementedError: return None if manual: try: result = manualintegrate(f, x) if result is not None and result.func != Integral: return result except (ValueError, PolynomialError): pass eval_kwargs = dict(meijerg=meijerg, risch=risch, manual=manual, heurisch=heurisch, conds=conds) # if it is a poly(x) then let the polynomial integrate itself (fast) # # It is important to make this check first, otherwise the other code # will return a sympy expression instead of a Polynomial. # # see Polynomial for details. if isinstance(f, Poly) and not (manual or meijerg or risch): return f.integrate(x) # Piecewise antiderivatives need to call special integrate. if isinstance(f, Piecewise): return f.piecewise_integrate(x, **eval_kwargs) # let's cut it short if `f` does not depend on `x`; if # x is only a dummy, that will be handled below if not f.has(x): return f*x # try to convert to poly(x) and then integrate if successful (fast) poly = f.as_poly(x) if poly is not None and not (manual or meijerg or risch): return poly.integrate().as_expr() if risch is not False: try: result, i = risch_integrate(f, x, separate_integral=True, conds=conds) except NotImplementedError: pass else: if i: # There was a nonelementary integral. Try integrating it. # if no part of the NonElementaryIntegral is integrated by # the Risch algorithm, then use the original function to # integrate, instead of re-written one if result == 0: from sympy.integrals.risch import NonElementaryIntegral return NonElementaryIntegral(f, x).doit(risch=False) else: return result + i.doit(risch=False) else: return result # since Integral(f=g1+g2+...) == Integral(g1) + Integral(g2) + ... # we are going to handle Add terms separately, # if `f` is not Add -- we only have one term # Note that in general, this is a bad idea, because Integral(g1) + # Integral(g2) might not be computable, even if Integral(g1 + g2) is. # For example, Integral(x**x + x**x*log(x)). But many heuristics only # work term-wise. So we compute this step last, after trying # risch_integrate. We also try risch_integrate again in this loop, # because maybe the integral is a sum of an elementary part and a # nonelementary part (like erf(x) + exp(x)). risch_integrate() is # quite fast, so this is acceptable. parts = [] args = Add.make_args(f) for g in args: coeff, g = g.as_independent(x) # g(x) = const if g is S.One and not meijerg: parts.append(coeff*x) continue # g(x) = expr + O(x**n) order_term = g.getO() if order_term is not None: h = self._eval_integral(g.removeO(), x, **eval_kwargs) if h is not None: h_order_expr = self._eval_integral(order_term.expr, x, **eval_kwargs) if h_order_expr is not None: h_order_term = order_term.func( h_order_expr, *order_term.variables) parts.append(coeff*(h + h_order_term)) continue # NOTE: if there is O(x**n) and we fail to integrate then # there is no point in trying other methods because they # will fail, too. return None # c # g(x) = (a*x+b) if g.is_Pow and not g.exp.has(x) and not meijerg: a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) M = g.base.match(a*x + b) if M is not None: if g.exp == -1: h = log(g.base) elif conds != 'piecewise': h = g.base**(g.exp + 1) / (g.exp + 1) else: h1 = log(g.base) h2 = g.base**(g.exp + 1) / (g.exp + 1) h = Piecewise((h2, Ne(g.exp, -1)), (h1, True)) parts.append(coeff * h / M[a]) continue # poly(x) # g(x) = ------- # poly(x) if g.is_rational_function(x) and not (manual or meijerg or risch): parts.append(coeff * ratint(g, x)) continue if not (manual or meijerg or risch): # g(x) = Mul(trig) h = trigintegrate(g, x, conds=conds) if h is not None: parts.append(coeff * h) continue # g(x) has at least a DiracDelta term h = deltaintegrate(g, x) if h is not None: parts.append(coeff * h) continue # g(x) has at least a Singularity Function term h = singularityintegrate(g, x) if h is not None: parts.append(coeff * h) continue # Try risch again. if risch is not False: try: h, i = risch_integrate(g, x, separate_integral=True, conds=conds) except NotImplementedError: h = None else: if i: h = h + i.doit(risch=False) parts.append(coeff*h) continue # fall back to heurisch if heurisch is not False: try: if conds == 'piecewise': h = heurisch_wrapper(g, x, hints=[]) else: h = heurisch_(g, x, hints=[]) except PolynomialError: # XXX: this exception means there is a bug in the # implementation of heuristic Risch integration # algorithm. h = None else: h = None if meijerg is not False and h is None: # rewrite using G functions try: h = meijerint_indefinite(g, x) except NotImplementedError: from sympy.integrals.meijerint import _debug _debug('NotImplementedError from meijerint_definite') if h is not None: parts.append(coeff * h) continue if h is None and manual is not False: try: result = manualintegrate(g, x) if result is not None and not isinstance(result, Integral): if result.has(Integral) and not manual: # Try to have other algorithms do the integrals # manualintegrate can't handle, # unless we were asked to use manual only. # Keep the rest of eval_kwargs in case another # method was set to False already new_eval_kwargs = eval_kwargs new_eval_kwargs["manual"] = False result = result.func(*[ arg.doit(**new_eval_kwargs) if arg.has(Integral) else arg for arg in result.args ]).expand(multinomial=False, log=False, power_exp=False, power_base=False) if not result.has(Integral): parts.append(coeff * result) continue except (ValueError, PolynomialError): # can't handle some SymPy expressions pass # if we failed maybe it was because we had # a product that could have been expanded, # so let's try an expansion of the whole # thing before giving up; we don't try this # at the outset because there are things # that cannot be solved unless they are # NOT expanded e.g., x**x*(1+log(x)). There # should probably be a checker somewhere in this # routine to look for such cases and try to do # collection on the expressions if they are already # in an expanded form if not h and len(args) == 1: f = sincos_to_sum(f).expand(mul=True, deep=False) if f.is_Add: # Note: risch will be identical on the expanded # expression, but maybe it will be able to pick out parts, # like x*(exp(x) + erf(x)). return self._eval_integral(f, x, **eval_kwargs) if h is not None: parts.append(coeff * h) else: return None return Add(*parts) def _eval_lseries(self, x, logx): expr = self.as_dummy() symb = x for l in expr.limits: if x in l[1:]: symb = l[0] break for term in expr.function.lseries(symb, logx): yield integrate(term, *expr.limits) def _eval_nseries(self, x, n, logx): expr = self.as_dummy() symb = x for l in expr.limits: if x in l[1:]: symb = l[0] break terms, order = expr.function.nseries( x=symb, n=n, logx=logx).as_coeff_add(Order) order = [o.subs(symb, x) for o in order] return integrate(terms, *expr.limits) + Add(*order)*x def _eval_as_leading_term(self, x): series_gen = self.args[0].lseries(x) for leading_term in series_gen: if leading_term != 0: break return integrate(leading_term, *self.args[1:]) def _eval_simplify(self, **kwargs): from sympy.core.exprtools import factor_terms from sympy.simplify.simplify import simplify expr = factor_terms(self) if isinstance(expr, Integral): return expr.func(*[simplify(i, **kwargs) for i in expr.args]) return expr.simplify(**kwargs) def as_sum(self, n=None, method="midpoint", evaluate=True): """ Approximates a definite integral by a sum. Arguments --------- n The number of subintervals to use, optional. method One of: 'left', 'right', 'midpoint', 'trapezoid'. evaluate If False, returns an unevaluated Sum expression. The default is True, evaluate the sum. These methods of approximate integration are described in [1]. [1] https://en.wikipedia.org/wiki/Riemann_sum#Methods Examples ======== >>> from sympy import sin, sqrt >>> from sympy.abc import x, n >>> from sympy.integrals import Integral >>> e = Integral(sin(x), (x, 3, 7)) >>> e Integral(sin(x), (x, 3, 7)) For demonstration purposes, this interval will only be split into 2 regions, bounded by [3, 5] and [5, 7]. The left-hand rule uses function evaluations at the left of each interval: >>> e.as_sum(2, 'left') 2*sin(5) + 2*sin(3) The midpoint rule uses evaluations at the center of each interval: >>> e.as_sum(2, 'midpoint') 2*sin(4) + 2*sin(6) The right-hand rule uses function evaluations at the right of each interval: >>> e.as_sum(2, 'right') 2*sin(5) + 2*sin(7) The trapezoid rule uses function evaluations on both sides of the intervals. This is equivalent to taking the average of the left and right hand rule results: >>> e.as_sum(2, 'trapezoid') 2*sin(5) + sin(3) + sin(7) >>> (e.as_sum(2, 'left') + e.as_sum(2, 'right'))/2 == _ True Here, the discontinuity at x = 0 can be avoided by using the midpoint or right-hand method: >>> e = Integral(1/sqrt(x), (x, 0, 1)) >>> e.as_sum(5).n(4) 1.730 >>> e.as_sum(10).n(4) 1.809 >>> e.doit().n(4) # the actual value is 2 2.000 The left- or trapezoid method will encounter the discontinuity and return infinity: >>> e.as_sum(5, 'left') zoo The number of intervals can be symbolic. If omitted, a dummy symbol will be used for it. >>> e = Integral(x**2, (x, 0, 2)) >>> e.as_sum(n, 'right').expand() 8/3 + 4/n + 4/(3*n**2) This shows that the midpoint rule is more accurate, as its error term decays as the square of n: >>> e.as_sum(method='midpoint').expand() 8/3 - 2/(3*_n**2) A symbolic sum is returned with evaluate=False: >>> e.as_sum(n, 'midpoint', evaluate=False) 2*Sum((2*_k/n - 1/n)**2, (_k, 1, n))/n See Also ======== Integral.doit : Perform the integration using any hints """ from sympy.concrete.summations import Sum limits = self.limits if len(limits) > 1: raise NotImplementedError( "Multidimensional midpoint rule not implemented yet") else: limit = limits[0] if (len(limit) != 3 or limit[1].is_finite is False or limit[2].is_finite is False): raise ValueError("Expecting a definite integral over " "a finite interval.") if n is None: n = Dummy('n', integer=True, positive=True) else: n = sympify(n) if (n.is_positive is False or n.is_integer is False or n.is_finite is False): raise ValueError("n must be a positive integer, got %s" % n) x, a, b = limit dx = (b - a)/n k = Dummy('k', integer=True, positive=True) f = self.function if method == "left": result = dx*Sum(f.subs(x, a + (k-1)*dx), (k, 1, n)) elif method == "right": result = dx*Sum(f.subs(x, a + k*dx), (k, 1, n)) elif method == "midpoint": result = dx*Sum(f.subs(x, a + k*dx - dx/2), (k, 1, n)) elif method == "trapezoid": result = dx*((f.subs(x, a) + f.subs(x, b))/2 + Sum(f.subs(x, a + k*dx), (k, 1, n - 1))) else: raise ValueError("Unknown method %s" % method) return result.doit() if evaluate else result def _sage_(self): import sage.all as sage f, limits = self.function._sage_(), list(self.limits) for limit in limits: if len(limit) == 1: x = limit[0] f = sage.integral(f, x._sage_(), hold=True) elif len(limit) == 2: x, b = limit f = sage.integral(f, x._sage_(), b._sage_(), hold=True) else: x, a, b = limit f = sage.integral(f, (x._sage_(), a._sage_(), b._sage_()), hold=True) return f def principal_value(self, **kwargs): """ Compute the Cauchy Principal Value of the definite integral of a real function in the given interval on the real axis. In mathematics, the Cauchy principal value, is a method for assigning values to certain improper integrals which would otherwise be undefined. Examples ======== >>> from sympy import Dummy, symbols, integrate, limit, oo >>> from sympy.integrals.integrals import Integral >>> from sympy.calculus.singularities import singularities >>> x = symbols('x') >>> Integral(x+1, (x, -oo, oo)).principal_value() oo >>> f = 1 / (x**3) >>> Integral(f, (x, -oo, oo)).principal_value() 0 >>> Integral(f, (x, -10, 10)).principal_value() 0 >>> Integral(f, (x, -10, oo)).principal_value() + Integral(f, (x, -oo, 10)).principal_value() 0 References ========== .. [1] https://en.wikipedia.org/wiki/Cauchy_principal_value .. [2] http://mathworld.wolfram.com/CauchyPrincipalValue.html """ from sympy.calculus import singularities if len(self.limits) != 1 or len(list(self.limits[0])) != 3: raise ValueError("You need to insert a variable, lower_limit, and upper_limit correctly to calculate " "cauchy's principal value") x, a, b = self.limits[0] if not (a.is_comparable and b.is_comparable and a <= b): raise ValueError("The lower_limit must be smaller than or equal to the upper_limit to calculate " "cauchy's principal value. Also, a and b need to be comparable.") if a == b: return 0 r = Dummy('r') f = self.function singularities_list = [s for s in singularities(f, x) if s.is_comparable and a <= s <= b] for i in singularities_list: if (i == b) or (i == a): raise ValueError( 'The principal value is not defined in the given interval due to singularity at %d.' % (i)) F = integrate(f, x, **kwargs) if F.has(Integral): return self if a is -oo and b is oo: I = limit(F - F.subs(x, -x), x, oo) else: I = limit(F, x, b, '-') - limit(F, x, a, '+') for s in singularities_list: I += limit(((F.subs(x, s - r)) - F.subs(x, s + r)), r, 0, '+') return I def integrate(*args, **kwargs): """integrate(f, var, ...) Compute definite or indefinite integral of one or more variables using Risch-Norman algorithm and table lookup. This procedure is able to handle elementary algebraic and transcendental functions and also a huge class of special functions, including Airy, Bessel, Whittaker and Lambert. var can be: - a symbol -- indefinite integration - a tuple (symbol, a) -- indefinite integration with result given with `a` replacing `symbol` - a tuple (symbol, a, b) -- definite integration Several variables can be specified, in which case the result is multiple integration. (If var is omitted and the integrand is univariate, the indefinite integral in that variable will be performed.) Indefinite integrals are returned without terms that are independent of the integration variables. (see examples) Definite improper integrals often entail delicate convergence conditions. Pass conds='piecewise', 'separate' or 'none' to have these returned, respectively, as a Piecewise function, as a separate result (i.e. result will be a tuple), or not at all (default is 'piecewise'). **Strategy** SymPy uses various approaches to definite integration. One method is to find an antiderivative for the integrand, and then use the fundamental theorem of calculus. Various functions are implemented to integrate polynomial, rational and trigonometric functions, and integrands containing DiracDelta terms. SymPy also implements the part of the Risch algorithm, which is a decision procedure for integrating elementary functions, i.e., the algorithm can either find an elementary antiderivative, or prove that one does not exist. There is also a (very successful, albeit somewhat slow) general implementation of the heuristic Risch algorithm. This algorithm will eventually be phased out as more of the full Risch algorithm is implemented. See the docstring of Integral._eval_integral() for more details on computing the antiderivative using algebraic methods. The option risch=True can be used to use only the (full) Risch algorithm. This is useful if you want to know if an elementary function has an elementary antiderivative. If the indefinite Integral returned by this function is an instance of NonElementaryIntegral, that means that the Risch algorithm has proven that integral to be non-elementary. Note that by default, additional methods (such as the Meijer G method outlined below) are tried on these integrals, as they may be expressible in terms of special functions, so if you only care about elementary answers, use risch=True. Also note that an unevaluated Integral returned by this function is not necessarily a NonElementaryIntegral, even with risch=True, as it may just be an indication that the particular part of the Risch algorithm needed to integrate that function is not yet implemented. Another family of strategies comes from re-writing the integrand in terms of so-called Meijer G-functions. Indefinite integrals of a single G-function can always be computed, and the definite integral of a product of two G-functions can be computed from zero to infinity. Various strategies are implemented to rewrite integrands as G-functions, and use this information to compute integrals (see the ``meijerint`` module). The option manual=True can be used to use only an algorithm that tries to mimic integration by hand. This algorithm does not handle as many integrands as the other algorithms implemented but may return results in a more familiar form. The ``manualintegrate`` module has functions that return the steps used (see the module docstring for more information). In general, the algebraic methods work best for computing antiderivatives of (possibly complicated) combinations of elementary functions. The G-function methods work best for computing definite integrals from zero to infinity of moderately complicated combinations of special functions, or indefinite integrals of very simple combinations of special functions. The strategy employed by the integration code is as follows: - If computing a definite integral, and both limits are real, and at least one limit is +- oo, try the G-function method of definite integration first. - Try to find an antiderivative, using all available methods, ordered by performance (that is try fastest method first, slowest last; in particular polynomial integration is tried first, Meijer G-functions second to last, and heuristic Risch last). - If still not successful, try G-functions irrespective of the limits. The option meijerg=True, False, None can be used to, respectively: always use G-function methods and no others, never use G-function methods, or use all available methods (in order as described above). It defaults to None. Examples ======== >>> from sympy import integrate, log, exp, oo >>> from sympy.abc import a, x, y >>> integrate(x*y, x) x**2*y/2 >>> integrate(log(x), x) x*log(x) - x >>> integrate(log(x), (x, 1, a)) a*log(a) - a + 1 >>> integrate(x) x**2/2 Terms that are independent of x are dropped by indefinite integration: >>> from sympy import sqrt >>> integrate(sqrt(1 + x), (x, 0, x)) 2*(x + 1)**(3/2)/3 - 2/3 >>> integrate(sqrt(1 + x), x) 2*(x + 1)**(3/2)/3 >>> integrate(x*y) Traceback (most recent call last): ... ValueError: specify integration variables to integrate x*y Note that ``integrate(x)`` syntax is meant only for convenience in interactive sessions and should be avoided in library code. >>> integrate(x**a*exp(-x), (x, 0, oo)) # same as conds='piecewise' Piecewise((gamma(a + 1), re(a) > -1), (Integral(x**a*exp(-x), (x, 0, oo)), True)) >>> integrate(x**a*exp(-x), (x, 0, oo), conds='none') gamma(a + 1) >>> integrate(x**a*exp(-x), (x, 0, oo), conds='separate') (gamma(a + 1), -re(a) < 1) See Also ======== Integral, Integral.doit """ doit_flags = { 'deep': False, 'meijerg': kwargs.pop('meijerg', None), 'conds': kwargs.pop('conds', 'piecewise'), 'risch': kwargs.pop('risch', None), 'heurisch': kwargs.pop('heurisch', None), 'manual': kwargs.pop('manual', None) } integral = Integral(*args, **kwargs) if isinstance(integral, Integral): return integral.doit(**doit_flags) else: new_args = [a.doit(**doit_flags) if isinstance(a, Integral) else a for a in integral.args] return integral.func(*new_args) def line_integrate(field, curve, vars): """line_integrate(field, Curve, variables) Compute the line integral. Examples ======== >>> from sympy import Curve, line_integrate, E, ln >>> from sympy.abc import x, y, t >>> C = Curve([E**t + 1, E**t - 1], (t, 0, ln(2))) >>> line_integrate(x + y, C, [x, y]) 3*sqrt(2) See Also ======== sympy.integrals.integrals.integrate, Integral """ from sympy.geometry import Curve F = sympify(field) if not F: raise ValueError( "Expecting function specifying field as first argument.") if not isinstance(curve, Curve): raise ValueError("Expecting Curve entity as second argument.") if not is_sequence(vars): raise ValueError("Expecting ordered iterable for variables.") if len(curve.functions) != len(vars): raise ValueError("Field variable size does not match curve dimension.") if curve.parameter in vars: raise ValueError("Curve parameter clashes with field parameters.") # Calculate derivatives for line parameter functions # F(r) -> F(r(t)) and finally F(r(t)*r'(t)) Ft = F dldt = 0 for i, var in enumerate(vars): _f = curve.functions[i] _dn = diff(_f, curve.parameter) # ...arc length dldt = dldt + (_dn * _dn) Ft = Ft.subs(var, _f) Ft = Ft * sqrt(dldt) integral = Integral(Ft, curve.limits).doit(deep=False) return integral
2ad404eb28f93c1d108f529cd58e530332b51e535bcb207ac7ce351bd42b6ee4
from __future__ import print_function, division from itertools import permutations from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.mul import Mul from sympy.core.symbol import Wild, Dummy, symbols from sympy.core.basic import sympify from sympy.core.numbers import Rational, pi, I from sympy.core.relational import Eq, Ne from sympy.core.singleton import S from sympy.functions import exp, sin, cos, tan, cot, asin, atan from sympy.functions import log, sinh, cosh, tanh, coth, asinh, acosh from sympy.functions import sqrt, erf, erfi, li, Ei from sympy.functions import besselj, bessely, besseli, besselk from sympy.functions import hankel1, hankel2, jn, yn from sympy.functions.elementary.complexes import Abs, re, im, sign, arg from sympy.functions.elementary.exponential import LambertW from sympy.functions.elementary.integers import floor, ceiling from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.special.delta_functions import Heaviside, DiracDelta from sympy.simplify.radsimp import collect from sympy.logic.boolalg import And, Or from sympy.utilities.iterables import uniq from sympy.polys import quo, gcd, lcm, factor, cancel, PolynomialError from sympy.polys.monomials import itermonomials from sympy.polys.polyroots import root_factors from sympy.polys.rings import PolyRing from sympy.polys.solvers import solve_lin_sys from sympy.polys.constructor import construct_domain from sympy.core.compatibility import reduce, ordered def components(f, x): """ Returns a set of all functional components of the given expression which includes symbols, function applications and compositions and non-integer powers. Fractional powers are collected with minimal, positive exponents. >>> from sympy import cos, sin >>> from sympy.abc import x, y >>> from sympy.integrals.heurisch import components >>> components(sin(x)*cos(x)**2, x) {x, sin(x), cos(x)} See Also ======== heurisch """ result = set() if x in f.free_symbols: if f.is_symbol and f.is_commutative: result.add(f) elif f.is_Function or f.is_Derivative: for g in f.args: result |= components(g, x) result.add(f) elif f.is_Pow: result |= components(f.base, x) if not f.exp.is_Integer: if f.exp.is_Rational: result.add(f.base**Rational(1, f.exp.q)) else: result |= components(f.exp, x) | {f} else: for g in f.args: result |= components(g, x) return result # name -> [] of symbols _symbols_cache = {} # NB @cacheit is not convenient here def _symbols(name, n): """get vector of symbols local to this module""" try: lsyms = _symbols_cache[name] except KeyError: lsyms = [] _symbols_cache[name] = lsyms while len(lsyms) < n: lsyms.append( Dummy('%s%i' % (name, len(lsyms))) ) return lsyms[:n] def heurisch_wrapper(f, x, rewrite=False, hints=None, mappings=None, retries=3, degree_offset=0, unnecessary_permutations=None, _try_heurisch=None): """ A wrapper around the heurisch integration algorithm. This method takes the result from heurisch and checks for poles in the denominator. For each of these poles, the integral is reevaluated, and the final integration result is given in terms of a Piecewise. Examples ======== >>> from sympy.core import symbols >>> from sympy.functions import cos >>> from sympy.integrals.heurisch import heurisch, heurisch_wrapper >>> n, x = symbols('n x') >>> heurisch(cos(n*x), x) sin(n*x)/n >>> heurisch_wrapper(cos(n*x), x) Piecewise((sin(n*x)/n, Ne(n, 0)), (x, True)) See Also ======== heurisch """ from sympy.solvers.solvers import solve, denoms f = sympify(f) if x not in f.free_symbols: return f*x res = heurisch(f, x, rewrite, hints, mappings, retries, degree_offset, unnecessary_permutations, _try_heurisch) if not isinstance(res, Basic): return res # We consider each denominator in the expression, and try to find # cases where one or more symbolic denominator might be zero. The # conditions for these cases are stored in the list slns. slns = [] for d in denoms(res): try: slns += solve(d, dict=True, exclude=(x,)) except NotImplementedError: pass if not slns: return res slns = list(uniq(slns)) # Remove the solutions corresponding to poles in the original expression. slns0 = [] for d in denoms(f): try: slns0 += solve(d, dict=True, exclude=(x,)) except NotImplementedError: pass slns = [s for s in slns if s not in slns0] if not slns: return res if len(slns) > 1: eqs = [] for sub_dict in slns: eqs.extend([Eq(key, value) for key, value in sub_dict.items()]) slns = solve(eqs, dict=True, exclude=(x,)) + slns # For each case listed in the list slns, we reevaluate the integral. pairs = [] for sub_dict in slns: expr = heurisch(f.subs(sub_dict), x, rewrite, hints, mappings, retries, degree_offset, unnecessary_permutations, _try_heurisch) cond = And(*[Eq(key, value) for key, value in sub_dict.items()]) generic = Or(*[Ne(key, value) for key, value in sub_dict.items()]) pairs.append((expr, cond)) # If there is one condition, put the generic case first. Otherwise, # doing so may lead to longer Piecewise formulas if len(pairs) == 1: pairs = [(heurisch(f, x, rewrite, hints, mappings, retries, degree_offset, unnecessary_permutations, _try_heurisch), generic), (pairs[0][0], True)] else: pairs.append((heurisch(f, x, rewrite, hints, mappings, retries, degree_offset, unnecessary_permutations, _try_heurisch), True)) return Piecewise(*pairs) class BesselTable(object): """ Derivatives of Bessel functions of orders n and n-1 in terms of each other. See the docstring of DiffCache. """ def __init__(self): self.table = {} self.n = Dummy('n') self.z = Dummy('z') self._create_table() def _create_table(t): table, n, z = t.table, t.n, t.z for f in (besselj, bessely, hankel1, hankel2): table[f] = (f(n-1, z) - n*f(n, z)/z, (n-1)*f(n-1, z)/z - f(n, z)) f = besseli table[f] = (f(n-1, z) - n*f(n, z)/z, (n-1)*f(n-1, z)/z + f(n, z)) f = besselk table[f] = (-f(n-1, z) - n*f(n, z)/z, (n-1)*f(n-1, z)/z - f(n, z)) for f in (jn, yn): table[f] = (f(n-1, z) - (n+1)*f(n, z)/z, (n-1)*f(n-1, z)/z - f(n, z)) def diffs(t, f, n, z): if f in t.table: diff0, diff1 = t.table[f] repl = [(t.n, n), (t.z, z)] return (diff0.subs(repl), diff1.subs(repl)) def has(t, f): return f in t.table _bessel_table = None class DiffCache(object): """ Store for derivatives of expressions. The standard form of the derivative of a Bessel function of order n contains two Bessel functions of orders n-1 and n+1, respectively. Such forms cannot be used in parallel Risch algorithm, because there is a linear recurrence relation between the three functions while the algorithm expects that functions and derivatives are represented in terms of algebraically independent transcendentals. The solution is to take two of the functions, e.g., those of orders n and n-1, and to express the derivatives in terms of the pair. To guarantee that the proper form is used the two derivatives are cached as soon as one is encountered. Derivatives of other functions are also cached at no extra cost. All derivatives are with respect to the same variable `x`. """ def __init__(self, x): self.cache = {} self.x = x global _bessel_table if not _bessel_table: _bessel_table = BesselTable() def get_diff(self, f): cache = self.cache if f in cache: pass elif (not hasattr(f, 'func') or not _bessel_table.has(f.func)): cache[f] = cancel(f.diff(self.x)) else: n, z = f.args d0, d1 = _bessel_table.diffs(f.func, n, z) dz = self.get_diff(z) cache[f] = d0*dz cache[f.func(n-1, z)] = d1*dz return cache[f] def heurisch(f, x, rewrite=False, hints=None, mappings=None, retries=3, degree_offset=0, unnecessary_permutations=None, _try_heurisch=None): """ Compute indefinite integral using heuristic Risch algorithm. This is a heuristic approach to indefinite integration in finite terms using the extended heuristic (parallel) Risch algorithm, based on Manuel Bronstein's "Poor Man's Integrator". The algorithm supports various classes of functions including transcendental elementary or special functions like Airy, Bessel, Whittaker and Lambert. Note that this algorithm is not a decision procedure. If it isn't able to compute the antiderivative for a given function, then this is not a proof that such a functions does not exist. One should use recursive Risch algorithm in such case. It's an open question if this algorithm can be made a full decision procedure. This is an internal integrator procedure. You should use toplevel 'integrate' function in most cases, as this procedure needs some preprocessing steps and otherwise may fail. Specification ============= heurisch(f, x, rewrite=False, hints=None) where f : expression x : symbol rewrite -> force rewrite 'f' in terms of 'tan' and 'tanh' hints -> a list of functions that may appear in anti-derivate - hints = None --> no suggestions at all - hints = [ ] --> try to figure out - hints = [f1, ..., fn] --> we know better Examples ======== >>> from sympy import tan >>> from sympy.integrals.heurisch import heurisch >>> from sympy.abc import x, y >>> heurisch(y*tan(x), x) y*log(tan(x)**2 + 1)/2 See Manuel Bronstein's "Poor Man's Integrator": [1] http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/index.html For more information on the implemented algorithm refer to: [2] K. Geddes, L. Stefanus, On the Risch-Norman Integration Method and its Implementation in Maple, Proceedings of ISSAC'89, ACM Press, 212-217. [3] J. H. Davenport, On the Parallel Risch Algorithm (I), Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157. [4] J. H. Davenport, On the Parallel Risch Algorithm (III): Use of Tangents, SIGSAM Bulletin 16 (1982), 3-6. [5] J. H. Davenport, B. M. Trager, On the Parallel Risch Algorithm (II), ACM Transactions on Mathematical Software 11 (1985), 356-362. See Also ======== sympy.integrals.integrals.Integral.doit sympy.integrals.integrals.Integral sympy.integrals.heurisch.components """ f = sympify(f) # There are some functions that Heurisch cannot currently handle, # so do not even try. # Set _try_heurisch=True to skip this check if _try_heurisch is not True: if f.has(Abs, re, im, sign, Heaviside, DiracDelta, floor, ceiling, arg): return if x not in f.free_symbols: return f*x if not f.is_Add: indep, f = f.as_independent(x) else: indep = S.One rewritables = { (sin, cos, cot): tan, (sinh, cosh, coth): tanh, } if rewrite: for candidates, rule in rewritables.items(): f = f.rewrite(candidates, rule) else: for candidates in rewritables.keys(): if f.has(*candidates): break else: rewrite = True terms = components(f, x) if hints is not None: if not hints: a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) c = Wild('c', exclude=[x]) for g in set(terms): # using copy of terms if g.is_Function: if isinstance(g, li): M = g.args[0].match(a*x**b) if M is not None: terms.add( x*(li(M[a]*x**M[b]) - (M[a]*x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) ) #terms.add( x*(li(M[a]*x**M[b]) - (x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) ) #terms.add( x*(li(M[a]*x**M[b]) - x*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) ) #terms.add( li(M[a]*x**M[b]) - Ei((M[b]+1)*log(M[a]*x**M[b])/M[b]) ) elif isinstance(g, exp): M = g.args[0].match(a*x**2) if M is not None: if M[a].is_positive: terms.add(erfi(sqrt(M[a])*x)) else: # M[a].is_negative or unknown terms.add(erf(sqrt(-M[a])*x)) M = g.args[0].match(a*x**2 + b*x + c) if M is not None: if M[a].is_positive: terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))* erfi(sqrt(M[a])*x + M[b]/(2*sqrt(M[a])))) elif M[a].is_negative: terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))* erf(sqrt(-M[a])*x - M[b]/(2*sqrt(-M[a])))) M = g.args[0].match(a*log(x)**2) if M is not None: if M[a].is_positive: terms.add(erfi(sqrt(M[a])*log(x) + 1/(2*sqrt(M[a])))) if M[a].is_negative: terms.add(erf(sqrt(-M[a])*log(x) - 1/(2*sqrt(-M[a])))) elif g.is_Pow: if g.exp.is_Rational and g.exp.q == 2: M = g.base.match(a*x**2 + b) if M is not None and M[b].is_positive: if M[a].is_positive: terms.add(asinh(sqrt(M[a]/M[b])*x)) elif M[a].is_negative: terms.add(asin(sqrt(-M[a]/M[b])*x)) M = g.base.match(a*x**2 - b) if M is not None and M[b].is_positive: if M[a].is_positive: terms.add(acosh(sqrt(M[a]/M[b])*x)) elif M[a].is_negative: terms.add((-M[b]/2*sqrt(-M[a])* atan(sqrt(-M[a])*x/sqrt(M[a]*x**2 - M[b])))) else: terms |= set(hints) dcache = DiffCache(x) for g in set(terms): # using copy of terms terms |= components(dcache.get_diff(g), x) # TODO: caching is significant factor for why permutations work at all. Change this. V = _symbols('x', len(terms)) # sort mapping expressions from largest to smallest (last is always x). mapping = list(reversed(list(zip(*ordered( # [(a[0].as_independent(x)[1], a) for a in zip(terms, V)])))[1])) # rev_mapping = {v: k for k, v in mapping} # if mappings is None: # # optimizing the number of permutations of mapping # assert mapping[-1][0] == x # if not, find it and correct this comment unnecessary_permutations = [mapping.pop(-1)] mappings = permutations(mapping) else: unnecessary_permutations = unnecessary_permutations or [] def _substitute(expr): return expr.subs(mapping) for mapping in mappings: mapping = list(mapping) mapping = mapping + unnecessary_permutations diffs = [ _substitute(dcache.get_diff(g)) for g in terms ] denoms = [ g.as_numer_denom()[1] for g in diffs ] if all(h.is_polynomial(*V) for h in denoms) and _substitute(f).is_rational_function(*V): denom = reduce(lambda p, q: lcm(p, q, *V), denoms) break else: if not rewrite: result = heurisch(f, x, rewrite=True, hints=hints, unnecessary_permutations=unnecessary_permutations) if result is not None: return indep*result return None numers = [ cancel(denom*g) for g in diffs ] def _derivation(h): return Add(*[ d * h.diff(v) for d, v in zip(numers, V) ]) def _deflation(p): for y in V: if not p.has(y): continue if _derivation(p) is not S.Zero: c, q = p.as_poly(y).primitive() return _deflation(c)*gcd(q, q.diff(y)).as_expr() return p def _splitter(p): for y in V: if not p.has(y): continue if _derivation(y) is not S.Zero: c, q = p.as_poly(y).primitive() q = q.as_expr() h = gcd(q, _derivation(q), y) s = quo(h, gcd(q, q.diff(y), y), y) c_split = _splitter(c) if s.as_poly(y).degree() == 0: return (c_split[0], q * c_split[1]) q_split = _splitter(cancel(q / s)) return (c_split[0]*q_split[0]*s, c_split[1]*q_split[1]) return (S.One, p) special = {} for term in terms: if term.is_Function: if isinstance(term, tan): special[1 + _substitute(term)**2] = False elif isinstance(term, tanh): special[1 + _substitute(term)] = False special[1 - _substitute(term)] = False elif isinstance(term, LambertW): special[_substitute(term)] = True F = _substitute(f) P, Q = F.as_numer_denom() u_split = _splitter(denom) v_split = _splitter(Q) polys = set(list(v_split) + [ u_split[0] ] + list(special.keys())) s = u_split[0] * Mul(*[ k for k, v in special.items() if v ]) polified = [ p.as_poly(*V) for p in [s, P, Q] ] if None in polified: return None #--- definitions for _integrate a, b, c = [ p.total_degree() for p in polified ] poly_denom = (s * v_split[0] * _deflation(v_split[1])).as_expr() def _exponent(g): if g.is_Pow: if g.exp.is_Rational and g.exp.q != 1: if g.exp.p > 0: return g.exp.p + g.exp.q - 1 else: return abs(g.exp.p + g.exp.q) else: return 1 elif not g.is_Atom and g.args: return max([ _exponent(h) for h in g.args ]) else: return 1 A, B = _exponent(f), a + max(b, c) if A > 1 and B > 1: monoms = tuple(itermonomials(V, A + B - 1 + degree_offset)) else: monoms = tuple(itermonomials(V, A + B + degree_offset)) poly_coeffs = _symbols('A', len(monoms)) poly_part = Add(*[ poly_coeffs[i]*monomial for i, monomial in enumerate(monoms) ]) reducibles = set() for poly in polys: if poly.has(*V): try: factorization = factor(poly, greedy=True) except PolynomialError: factorization = poly if factorization.is_Mul: factors = factorization.args else: factors = (factorization, ) for fact in factors: if fact.is_Pow: reducibles.add(fact.base) else: reducibles.add(fact) def _integrate(field=None): irreducibles = set() atans = set() pairs = set() for poly in reducibles: for z in poly.free_symbols: if z in V: break # should this be: `irreducibles |= \ else: # set(root_factors(poly, z, filter=field))` continue # and the line below deleted? # | # V irreducibles |= set(root_factors(poly, z, filter=field)) log_part, atan_part = [], [] for poly in list(irreducibles): m = collect(poly, I, evaluate=False) y = m.get(I, S.Zero) if y: x = m.get(S.One, S.Zero) if x.has(I) or y.has(I): continue # nontrivial x + I*y pairs.add((x, y)) irreducibles.remove(poly) while pairs: x, y = pairs.pop() if (x, -y) in pairs: pairs.remove((x, -y)) # Choosing b with no minus sign if y.could_extract_minus_sign(): y = -y irreducibles.add(x*x + y*y) atans.add(atan(x/y)) else: irreducibles.add(x + I*y) B = _symbols('B', len(irreducibles)) C = _symbols('C', len(atans)) # Note: the ordering matters here for poly, b in reversed(list(ordered(zip(irreducibles, B)))): if poly.has(*V): poly_coeffs.append(b) log_part.append(b * log(poly)) for poly, c in reversed(list(ordered(zip(atans, C)))): if poly.has(*V): poly_coeffs.append(c) atan_part.append(c * poly) # TODO: Currently it's better to use symbolic expressions here instead # of rational functions, because it's simpler and FracElement doesn't # give big speed improvement yet. This is because cancellation is slow # due to slow polynomial GCD algorithms. If this gets improved then # revise this code. candidate = poly_part/poly_denom + Add(*log_part) + Add(*atan_part) h = F - _derivation(candidate) / denom raw_numer = h.as_numer_denom()[0] # Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field # that we have to determine. We can't use simply atoms() because log(3), # sqrt(y) and similar expressions can appear, leading to non-trivial # domains. syms = set(poly_coeffs) | set(V) non_syms = set([]) def find_non_syms(expr): if expr.is_Integer or expr.is_Rational: pass # ignore trivial numbers elif expr in syms: pass # ignore variables elif not expr.has(*syms): non_syms.add(expr) elif expr.is_Add or expr.is_Mul or expr.is_Pow: list(map(find_non_syms, expr.args)) else: # TODO: Non-polynomial expression. This should have been # filtered out at an earlier stage. raise PolynomialError try: find_non_syms(raw_numer) except PolynomialError: return None else: ground, _ = construct_domain(non_syms, field=True) coeff_ring = PolyRing(poly_coeffs, ground) ring = PolyRing(V, coeff_ring) try: numer = ring.from_expr(raw_numer) except ValueError: raise PolynomialError solution = solve_lin_sys(numer.coeffs(), coeff_ring, _raw=False) if solution is None: return None else: return candidate.subs(solution).subs( list(zip(poly_coeffs, [S.Zero]*len(poly_coeffs)))) if not (F.free_symbols - set(V)): solution = _integrate('Q') if solution is None: solution = _integrate() else: solution = _integrate() if solution is not None: antideriv = solution.subs(rev_mapping) antideriv = cancel(antideriv).expand(force=True) if antideriv.is_Add: antideriv = antideriv.as_independent(x)[1] return indep*antideriv else: if retries >= 0: result = heurisch(f, x, mappings=mappings, rewrite=rewrite, hints=hints, retries=retries - 1, unnecessary_permutations=unnecessary_permutations) if result is not None: return indep*result return None
bd63236e3f75bc5d92e3f4f0d8fc99deb52100d4d629c8c004bd03c5625a9e91
""" Integrate functions by rewriting them as Meijer G-functions. There are three user-visible functions that can be used by other parts of the sympy library to solve various integration problems: - meijerint_indefinite - meijerint_definite - meijerint_inversion They can be used to compute, respectively, indefinite integrals, definite integrals over intervals of the real line, and inverse laplace-type integrals (from c-I*oo to c+I*oo). See the respective docstrings for details. The main references for this are: [L] Luke, Y. L. (1969), The Special Functions and Their Approximations, Volume 1 [R] Kelly B. Roach. Meijer G Function Representations. In: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, pages 205-211, New York, 1997. ACM. [P] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev (1990). Integrals and Series: More Special Functions, Vol. 3,. Gordon and Breach Science Publisher """ from __future__ import print_function, division from sympy.core import oo, S, pi, Expr from sympy.core.exprtools import factor_terms from sympy.core.function import expand, expand_mul, expand_power_base from sympy.core.add import Add from sympy.core.mul import Mul from sympy.core.numbers import Rational from sympy.core.compatibility import range from sympy.core.cache import cacheit from sympy.core.symbol import Dummy, Wild from sympy.simplify import hyperexpand, powdenest, collect from sympy.simplify.fu import sincos_to_sum from sympy.logic.boolalg import And, Or, BooleanAtom from sympy.functions.special.delta_functions import DiracDelta, Heaviside from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.piecewise import Piecewise, piecewise_fold from sympy.functions.elementary.hyperbolic import \ _rewrite_hyperbolics_as_exp, HyperbolicFunction from sympy.functions.elementary.trigonometric import cos, sin from sympy.functions.special.hyper import meijerg from sympy.utilities.iterables import multiset_partitions, ordered from sympy.utilities.misc import debug as _debug from sympy.utilities import default_sort_key # keep this at top for easy reference z = Dummy('z') def _has(res, *f): # return True if res has f; in the case of Piecewise # only return True if *all* pieces have f res = piecewise_fold(res) if getattr(res, 'is_Piecewise', False): return all(_has(i, *f) for i in res.args) return res.has(*f) def _create_lookup_table(table): """ Add formulae for the function -> meijerg lookup table. """ def wild(n): return Wild(n, exclude=[z]) p, q, a, b, c = list(map(wild, 'pqabc')) n = Wild('n', properties=[lambda x: x.is_Integer and x > 0]) t = p*z**q def add(formula, an, ap, bm, bq, arg=t, fac=S.One, cond=True, hint=True): table.setdefault(_mytype(formula, z), []).append((formula, [(fac, meijerg(an, ap, bm, bq, arg))], cond, hint)) def addi(formula, inst, cond, hint=True): table.setdefault( _mytype(formula, z), []).append((formula, inst, cond, hint)) def constant(a): return [(a, meijerg([1], [], [], [0], z)), (a, meijerg([], [1], [0], [], z))] table[()] = [(a, constant(a), True, True)] # [P], Section 8. from sympy import unpolarify, Function, Not class IsNonPositiveInteger(Function): @classmethod def eval(cls, arg): arg = unpolarify(arg) if arg.is_Integer is True: return arg <= 0 # Section 8.4.2 from sympy import (gamma, pi, cos, exp, re, sin, sinc, sqrt, sinh, cosh, factorial, log, erf, erfc, erfi, polar_lift) # TODO this needs more polar_lift (c/f entry for exp) add(Heaviside(t - b)*(t - b)**(a - 1), [a], [], [], [0], t/b, gamma(a)*b**(a - 1), And(b > 0)) add(Heaviside(b - t)*(b - t)**(a - 1), [], [a], [0], [], t/b, gamma(a)*b**(a - 1), And(b > 0)) add(Heaviside(z - (b/p)**(1/q))*(t - b)**(a - 1), [a], [], [], [0], t/b, gamma(a)*b**(a - 1), And(b > 0)) add(Heaviside((b/p)**(1/q) - z)*(b - t)**(a - 1), [], [a], [0], [], t/b, gamma(a)*b**(a - 1), And(b > 0)) add((b + t)**(-a), [1 - a], [], [0], [], t/b, b**(-a)/gamma(a), hint=Not(IsNonPositiveInteger(a))) add(abs(b - t)**(-a), [1 - a], [(1 - a)/2], [0], [(1 - a)/2], t/b, 2*sin(pi*a/2)*gamma(1 - a)*abs(b)**(-a), re(a) < 1) add((t**a - b**a)/(t - b), [0, a], [], [0, a], [], t/b, b**(a - 1)*sin(a*pi)/pi) # 12 def A1(r, sign, nu): return pi**Rational(-1, 2)*(-sign*nu/2)**(1 - 2*r) def tmpadd(r, sgn): # XXX the a**2 is bad for matching add((sqrt(a**2 + t) + sgn*a)**b/(a**2 + t)**r, [(1 + b)/2, 1 - 2*r + b/2], [], [(b - sgn*b)/2], [(b + sgn*b)/2], t/a**2, a**(b - 2*r)*A1(r, sgn, b)) tmpadd(0, 1) tmpadd(0, -1) tmpadd(S.Half, 1) tmpadd(S.Half, -1) # 13 def tmpadd(r, sgn): add((sqrt(a + p*z**q) + sgn*sqrt(p)*z**(q/2))**b/(a + p*z**q)**r, [1 - r + sgn*b/2], [1 - r - sgn*b/2], [0, S.Half], [], p*z**q/a, a**(b/2 - r)*A1(r, sgn, b)) tmpadd(0, 1) tmpadd(0, -1) tmpadd(S.Half, 1) tmpadd(S.Half, -1) # (those after look obscure) # Section 8.4.3 add(exp(polar_lift(-1)*t), [], [], [0], []) # TODO can do sin^n, sinh^n by expansion ... where? # 8.4.4 (hyperbolic functions) add(sinh(t), [], [1], [S.Half], [1, 0], t**2/4, pi**Rational(3, 2)) add(cosh(t), [], [S.Half], [0], [S.Half, S.Half], t**2/4, pi**Rational(3, 2)) # Section 8.4.5 # TODO can do t + a. but can also do by expansion... (XXX not really) add(sin(t), [], [], [S.Half], [0], t**2/4, sqrt(pi)) add(cos(t), [], [], [0], [S.Half], t**2/4, sqrt(pi)) # Section 8.4.6 (sinc function) add(sinc(t), [], [], [0], [Rational(-1, 2)], t**2/4, sqrt(pi)/2) # Section 8.5.5 def make_log1(subs): N = subs[n] return [((-1)**N*factorial(N), meijerg([], [1]*(N + 1), [0]*(N + 1), [], t))] def make_log2(subs): N = subs[n] return [(factorial(N), meijerg([1]*(N + 1), [], [], [0]*(N + 1), t))] # TODO these only hold for positive p, and can be made more general # but who uses log(x)*Heaviside(a-x) anyway ... # TODO also it would be nice to derive them recursively ... addi(log(t)**n*Heaviside(1 - t), make_log1, True) addi(log(t)**n*Heaviside(t - 1), make_log2, True) def make_log3(subs): return make_log1(subs) + make_log2(subs) addi(log(t)**n, make_log3, True) addi(log(t + a), constant(log(a)) + [(S.One, meijerg([1, 1], [], [1], [0], t/a))], True) addi(log(abs(t - a)), constant(log(abs(a))) + [(pi, meijerg([1, 1], [S.Half], [1], [0, S.Half], t/a))], True) # TODO log(x)/(x+a) and log(x)/(x-1) can also be done. should they # be derivable? # TODO further formulae in this section seem obscure # Sections 8.4.9-10 # TODO # Section 8.4.11 from sympy import Ei, I, expint, Si, Ci, Shi, Chi, fresnels, fresnelc addi(Ei(t), constant(-I*pi) + [(S.NegativeOne, meijerg([], [1], [0, 0], [], t*polar_lift(-1)))], True) # Section 8.4.12 add(Si(t), [1], [], [S.Half], [0, 0], t**2/4, sqrt(pi)/2) add(Ci(t), [], [1], [0, 0], [S.Half], t**2/4, -sqrt(pi)/2) # Section 8.4.13 add(Shi(t), [S.Half], [], [0], [Rational(-1, 2), Rational(-1, 2)], polar_lift(-1)*t**2/4, t*sqrt(pi)/4) add(Chi(t), [], [S.Half, 1], [0, 0], [S.Half, S.Half], t**2/4, - pi**S('3/2')/2) # generalized exponential integral add(expint(a, t), [], [a], [a - 1, 0], [], t) # Section 8.4.14 add(erf(t), [1], [], [S.Half], [0], t**2, 1/sqrt(pi)) # TODO exp(-x)*erf(I*x) does not work add(erfc(t), [], [1], [0, S.Half], [], t**2, 1/sqrt(pi)) # This formula for erfi(z) yields a wrong(?) minus sign #add(erfi(t), [1], [], [S.Half], [0], -t**2, I/sqrt(pi)) add(erfi(t), [S.Half], [], [0], [Rational(-1, 2)], -t**2, t/sqrt(pi)) # Fresnel Integrals add(fresnels(t), [1], [], [Rational(3, 4)], [0, Rational(1, 4)], pi**2*t**4/16, S.Half) add(fresnelc(t), [1], [], [Rational(1, 4)], [0, Rational(3, 4)], pi**2*t**4/16, S.Half) ##### bessel-type functions ##### from sympy import besselj, bessely, besseli, besselk # Section 8.4.19 add(besselj(a, t), [], [], [a/2], [-a/2], t**2/4) # all of the following are derivable #add(sin(t)*besselj(a, t), [Rational(1, 4), Rational(3, 4)], [], [(1+a)/2], # [-a/2, a/2, (1-a)/2], t**2, 1/sqrt(2)) #add(cos(t)*besselj(a, t), [Rational(1, 4), Rational(3, 4)], [], [a/2], # [-a/2, (1+a)/2, (1-a)/2], t**2, 1/sqrt(2)) #add(besselj(a, t)**2, [S.Half], [], [a], [-a, 0], t**2, 1/sqrt(pi)) #add(besselj(a, t)*besselj(b, t), [0, S.Half], [], [(a + b)/2], # [-(a+b)/2, (a - b)/2, (b - a)/2], t**2, 1/sqrt(pi)) # Section 8.4.20 add(bessely(a, t), [], [-(a + 1)/2], [a/2, -a/2], [-(a + 1)/2], t**2/4) # TODO all of the following should be derivable #add(sin(t)*bessely(a, t), [Rational(1, 4), Rational(3, 4)], [(1 - a - 1)/2], # [(1 + a)/2, (1 - a)/2], [(1 - a - 1)/2, (1 - 1 - a)/2, (1 - 1 + a)/2], # t**2, 1/sqrt(2)) #add(cos(t)*bessely(a, t), [Rational(1, 4), Rational(3, 4)], [(0 - a - 1)/2], # [(0 + a)/2, (0 - a)/2], [(0 - a - 1)/2, (1 - 0 - a)/2, (1 - 0 + a)/2], # t**2, 1/sqrt(2)) #add(besselj(a, t)*bessely(b, t), [0, S.Half], [(a - b - 1)/2], # [(a + b)/2, (a - b)/2], [(a - b - 1)/2, -(a + b)/2, (b - a)/2], # t**2, 1/sqrt(pi)) #addi(bessely(a, t)**2, # [(2/sqrt(pi), meijerg([], [S.Half, S.Half - a], [0, a, -a], # [S.Half - a], t**2)), # (1/sqrt(pi), meijerg([S.Half], [], [a], [-a, 0], t**2))], # True) #addi(bessely(a, t)*bessely(b, t), # [(2/sqrt(pi), meijerg([], [0, S.Half, (1 - a - b)/2], # [(a + b)/2, (a - b)/2, (b - a)/2, -(a + b)/2], # [(1 - a - b)/2], t**2)), # (1/sqrt(pi), meijerg([0, S.Half], [], [(a + b)/2], # [-(a + b)/2, (a - b)/2, (b - a)/2], t**2))], # True) # Section 8.4.21 ? # Section 8.4.22 add(besseli(a, t), [], [(1 + a)/2], [a/2], [-a/2, (1 + a)/2], t**2/4, pi) # TODO many more formulas. should all be derivable # Section 8.4.23 add(besselk(a, t), [], [], [a/2, -a/2], [], t**2/4, S.Half) # TODO many more formulas. should all be derivable # Complete elliptic integrals K(z) and E(z) from sympy import elliptic_k, elliptic_e add(elliptic_k(t), [S.Half, S.Half], [], [0], [0], -t, S.Half) add(elliptic_e(t), [S.Half, 3*S.Half], [], [0], [0], -t, Rational(-1, 2)/2) #################################################################### # First some helper functions. #################################################################### from sympy.utilities.timeutils import timethis timeit = timethis('meijerg') def _mytype(f, x): """ Create a hashable entity describing the type of f. """ if x not in f.free_symbols: return () elif f.is_Function: return (type(f),) else: types = [_mytype(a, x) for a in f.args] res = [] for t in types: res += list(t) res.sort() return tuple(res) class _CoeffExpValueError(ValueError): """ Exception raised by _get_coeff_exp, for internal use only. """ pass def _get_coeff_exp(expr, x): """ When expr is known to be of the form c*x**b, with c and/or b possibly 1, return c, b. >>> from sympy.abc import x, a, b >>> from sympy.integrals.meijerint import _get_coeff_exp >>> _get_coeff_exp(a*x**b, x) (a, b) >>> _get_coeff_exp(x, x) (1, 1) >>> _get_coeff_exp(2*x, x) (2, 1) >>> _get_coeff_exp(x**3, x) (1, 3) """ from sympy import powsimp (c, m) = expand_power_base(powsimp(expr)).as_coeff_mul(x) if not m: return c, S.Zero [m] = m if m.is_Pow: if m.base != x: raise _CoeffExpValueError('expr not of form a*x**b') return c, m.exp elif m == x: return c, S.One else: raise _CoeffExpValueError('expr not of form a*x**b: %s' % expr) def _exponents(expr, x): """ Find the exponents of ``x`` (not including zero) in ``expr``. >>> from sympy.integrals.meijerint import _exponents >>> from sympy.abc import x, y >>> from sympy import sin >>> _exponents(x, x) {1} >>> _exponents(x**2, x) {2} >>> _exponents(x**2 + x, x) {1, 2} >>> _exponents(x**3*sin(x + x**y) + 1/x, x) {-1, 1, 3, y} """ def _exponents_(expr, x, res): if expr == x: res.update([1]) return if expr.is_Pow and expr.base == x: res.update([expr.exp]) return for arg in expr.args: _exponents_(arg, x, res) res = set() _exponents_(expr, x, res) return res def _functions(expr, x): """ Find the types of functions in expr, to estimate the complexity. """ from sympy import Function return set(e.func for e in expr.atoms(Function) if x in e.free_symbols) def _find_splitting_points(expr, x): """ Find numbers a such that a linear substitution x -> x + a would (hopefully) simplify expr. >>> from sympy.integrals.meijerint import _find_splitting_points as fsp >>> from sympy import sin >>> from sympy.abc import a, x >>> fsp(x, x) {0} >>> fsp((x-1)**3, x) {1} >>> fsp(sin(x+3)*x, x) {-3, 0} """ p, q = [Wild(n, exclude=[x]) for n in 'pq'] def compute_innermost(expr, res): if not isinstance(expr, Expr): return m = expr.match(p*x + q) if m and m[p] != 0: res.add(-m[q]/m[p]) return if expr.is_Atom: return for arg in expr.args: compute_innermost(arg, res) innermost = set() compute_innermost(expr, innermost) return innermost def _split_mul(f, x): """ Split expression ``f`` into fac, po, g, where fac is a constant factor, po = x**s for some s independent of s, and g is "the rest". >>> from sympy.integrals.meijerint import _split_mul >>> from sympy import sin >>> from sympy.abc import s, x >>> _split_mul((3*x)**s*sin(x**2)*x, x) (3**s, x*x**s, sin(x**2)) """ from sympy import polarify, unpolarify fac = S.One po = S.One g = S.One f = expand_power_base(f) args = Mul.make_args(f) for a in args: if a == x: po *= x elif x not in a.free_symbols: fac *= a else: if a.is_Pow and x not in a.exp.free_symbols: c, t = a.base.as_coeff_mul(x) if t != (x,): c, t = expand_mul(a.base).as_coeff_mul(x) if t == (x,): po *= x**a.exp fac *= unpolarify(polarify(c**a.exp, subs=False)) continue g *= a return fac, po, g def _mul_args(f): """ Return a list ``L`` such that ``Mul(*L) == f``. If ``f`` is not a ``Mul`` or ``Pow``, ``L=[f]``. If ``f=g**n`` for an integer ``n``, ``L=[g]*n``. If ``f`` is a ``Mul``, ``L`` comes from applying ``_mul_args`` to all factors of ``f``. """ args = Mul.make_args(f) gs = [] for g in args: if g.is_Pow and g.exp.is_Integer: n = g.exp base = g.base if n < 0: n = -n base = 1/base gs += [base]*n else: gs.append(g) return gs def _mul_as_two_parts(f): """ Find all the ways to split f into a product of two terms. Return None on failure. Although the order is canonical from multiset_partitions, this is not necessarily the best order to process the terms. For example, if the case of len(gs) == 2 is removed and multiset is allowed to sort the terms, some tests fail. >>> from sympy.integrals.meijerint import _mul_as_two_parts >>> from sympy import sin, exp, ordered >>> from sympy.abc import x >>> list(ordered(_mul_as_two_parts(x*sin(x)*exp(x)))) [(x, exp(x)*sin(x)), (x*exp(x), sin(x)), (x*sin(x), exp(x))] """ gs = _mul_args(f) if len(gs) < 2: return None if len(gs) == 2: return [tuple(gs)] return [(Mul(*x), Mul(*y)) for (x, y) in multiset_partitions(gs, 2)] def _inflate_g(g, n): """ Return C, h such that h is a G function of argument z**n and g = C*h. """ # TODO should this be a method of meijerg? # See: [L, page 150, equation (5)] def inflate(params, n): """ (a1, .., ak) -> (a1/n, (a1+1)/n, ..., (ak + n-1)/n) """ res = [] for a in params: for i in range(n): res.append((a + i)/n) return res v = S(len(g.ap) - len(g.bq)) C = n**(1 + g.nu + v/2) C /= (2*pi)**((n - 1)*g.delta) return C, meijerg(inflate(g.an, n), inflate(g.aother, n), inflate(g.bm, n), inflate(g.bother, n), g.argument**n * n**(n*v)) def _flip_g(g): """ Turn the G function into one of inverse argument (i.e. G(1/x) -> G'(x)) """ # See [L], section 5.2 def tr(l): return [1 - a for a in l] return meijerg(tr(g.bm), tr(g.bother), tr(g.an), tr(g.aother), 1/g.argument) def _inflate_fox_h(g, a): r""" Let d denote the integrand in the definition of the G function ``g``. Consider the function H which is defined in the same way, but with integrand d/Gamma(a*s) (contour conventions as usual). If a is rational, the function H can be written as C*G, for a constant C and a G-function G. This function returns C, G. """ if a < 0: return _inflate_fox_h(_flip_g(g), -a) p = S(a.p) q = S(a.q) # We use the substitution s->qs, i.e. inflate g by q. We are left with an # extra factor of Gamma(p*s), for which we use Gauss' multiplication # theorem. D, g = _inflate_g(g, q) z = g.argument D /= (2*pi)**((1 - p)/2)*p**Rational(-1, 2) z /= p**p bs = [(n + 1)/p for n in range(p)] return D, meijerg(g.an, g.aother, g.bm, list(g.bother) + bs, z) _dummies = {} def _dummy(name, token, expr, **kwargs): """ Return a dummy. This will return the same dummy if the same token+name is requested more than once, and it is not already in expr. This is for being cache-friendly. """ d = _dummy_(name, token, **kwargs) if d in expr.free_symbols: return Dummy(name, **kwargs) return d def _dummy_(name, token, **kwargs): """ Return a dummy associated to name and token. Same effect as declaring it globally. """ global _dummies if not (name, token) in _dummies: _dummies[(name, token)] = Dummy(name, **kwargs) return _dummies[(name, token)] def _is_analytic(f, x): """ Check if f(x), when expressed using G functions on the positive reals, will in fact agree with the G functions almost everywhere """ from sympy import Heaviside, Abs return not any(x in expr.free_symbols for expr in f.atoms(Heaviside, Abs)) def _condsimp(cond): """ Do naive simplifications on ``cond``. Note that this routine is completely ad-hoc, simplification rules being added as need arises rather than following any logical pattern. >>> from sympy.integrals.meijerint import _condsimp as simp >>> from sympy import Or, Eq, unbranched_argument as arg, And >>> from sympy.abc import x, y, z >>> simp(Or(x < y, z, Eq(x, y))) z | (x <= y) >>> simp(Or(x <= y, And(x < y, z))) x <= y """ from sympy import ( symbols, Wild, Eq, unbranched_argument, exp_polar, pi, I, arg, periodic_argument, oo, polar_lift) from sympy.logic.boolalg import BooleanFunction if not isinstance(cond, BooleanFunction): return cond cond = cond.func(*list(map(_condsimp, cond.args))) change = True p, q, r = symbols('p q r', cls=Wild) rules = [ (Or(p < q, Eq(p, q)), p <= q), # The next two obviously are instances of a general pattern, but it is # easier to spell out the few cases we care about. (And(abs(arg(p)) <= pi, abs(arg(p) - 2*pi) <= pi), Eq(arg(p) - pi, 0)), (And(abs(2*arg(p) + pi) <= pi, abs(2*arg(p) - pi) <= pi), Eq(arg(p), 0)), (And(abs(unbranched_argument(p)) <= pi, abs(unbranched_argument(exp_polar(-2*pi*I)*p)) <= pi), Eq(unbranched_argument(exp_polar(-I*pi)*p), 0)), (And(abs(unbranched_argument(p)) <= pi/2, abs(unbranched_argument(exp_polar(-pi*I)*p)) <= pi/2), Eq(unbranched_argument(exp_polar(-I*pi/2)*p), 0)), (Or(p <= q, And(p < q, r)), p <= q) ] while change: change = False for fro, to in rules: if fro.func != cond.func: continue for n, arg1 in enumerate(cond.args): if r in fro.args[0].free_symbols: m = arg1.match(fro.args[1]) num = 1 else: num = 0 m = arg1.match(fro.args[0]) if not m: continue otherargs = [x.subs(m) for x in fro.args[:num] + fro.args[num + 1:]] otherlist = [n] for arg2 in otherargs: for k, arg3 in enumerate(cond.args): if k in otherlist: continue if arg2 == arg3: otherlist += [k] break if isinstance(arg3, And) and arg2.args[1] == r and \ isinstance(arg2, And) and arg2.args[0] in arg3.args: otherlist += [k] break if isinstance(arg3, And) and arg2.args[0] == r and \ isinstance(arg2, And) and arg2.args[1] in arg3.args: otherlist += [k] break if len(otherlist) != len(otherargs) + 1: continue newargs = [arg_ for (k, arg_) in enumerate(cond.args) if k not in otherlist] + [to.subs(m)] cond = cond.func(*newargs) change = True break # final tweak def repl_eq(orig): if orig.lhs == 0: expr = orig.rhs elif orig.rhs == 0: expr = orig.lhs else: return orig m = expr.match(arg(p)**q) if not m: m = expr.match(unbranched_argument(polar_lift(p)**q)) if not m: if isinstance(expr, periodic_argument) and not expr.args[0].is_polar \ and expr.args[1] is oo: return (expr.args[0] > 0) return orig return (m[p] > 0) return cond.replace( lambda expr: expr.is_Relational and expr.rel_op == '==', repl_eq) def _eval_cond(cond): """ Re-evaluate the conditions. """ if isinstance(cond, bool): return cond return _condsimp(cond.doit()) #################################################################### # Now the "backbone" functions to do actual integration. #################################################################### def _my_principal_branch(expr, period, full_pb=False): """ Bring expr nearer to its principal branch by removing superfluous factors. This function does *not* guarantee to yield the principal branch, to avoid introducing opaque principal_branch() objects, unless full_pb=True. """ from sympy import principal_branch res = principal_branch(expr, period) if not full_pb: res = res.replace(principal_branch, lambda x, y: x) return res def _rewrite_saxena_1(fac, po, g, x): """ Rewrite the integral fac*po*g dx, from zero to infinity, as integral fac*G, where G has argument a*x. Note po=x**s. Return fac, G. """ _, s = _get_coeff_exp(po, x) a, b = _get_coeff_exp(g.argument, x) period = g.get_period() a = _my_principal_branch(a, period) # We substitute t = x**b. C = fac/(abs(b)*a**((s + 1)/b - 1)) # Absorb a factor of (at)**((1 + s)/b - 1). def tr(l): return [a + (1 + s)/b - 1 for a in l] return C, meijerg(tr(g.an), tr(g.aother), tr(g.bm), tr(g.bother), a*x) def _check_antecedents_1(g, x, helper=False): r""" Return a condition under which the mellin transform of g exists. Any power of x has already been absorbed into the G function, so this is just $\int_0^\infty g\, dx$. See [L, section 5.6.1]. (Note that s=1.) If ``helper`` is True, only check if the MT exists at infinity, i.e. if $\int_1^\infty g\, dx$ exists. """ # NOTE if you update these conditions, please update the documentation as well from sympy import Eq, Not, ceiling, Ne, re, unbranched_argument as arg delta = g.delta eta, _ = _get_coeff_exp(g.argument, x) m, n, p, q = S([len(g.bm), len(g.an), len(g.ap), len(g.bq)]) if p > q: def tr(l): return [1 - x for x in l] return _check_antecedents_1(meijerg(tr(g.bm), tr(g.bother), tr(g.an), tr(g.aother), x/eta), x) tmp = [] for b in g.bm: tmp += [-re(b) < 1] for a in g.an: tmp += [1 < 1 - re(a)] cond_3 = And(*tmp) for b in g.bother: tmp += [-re(b) < 1] for a in g.aother: tmp += [1 < 1 - re(a)] cond_3_star = And(*tmp) cond_4 = (-re(g.nu) + (q + 1 - p)/2 > q - p) def debug(*msg): _debug(*msg) debug('Checking antecedents for 1 function:') debug(' delta=%s, eta=%s, m=%s, n=%s, p=%s, q=%s' % (delta, eta, m, n, p, q)) debug(' ap = %s, %s' % (list(g.an), list(g.aother))) debug(' bq = %s, %s' % (list(g.bm), list(g.bother))) debug(' cond_3=%s, cond_3*=%s, cond_4=%s' % (cond_3, cond_3_star, cond_4)) conds = [] # case 1 case1 = [] tmp1 = [1 <= n, p < q, 1 <= m] tmp2 = [1 <= p, 1 <= m, Eq(q, p + 1), Not(And(Eq(n, 0), Eq(m, p + 1)))] tmp3 = [1 <= p, Eq(q, p)] for k in range(ceiling(delta/2) + 1): tmp3 += [Ne(abs(arg(eta)), (delta - 2*k)*pi)] tmp = [delta > 0, abs(arg(eta)) < delta*pi] extra = [Ne(eta, 0), cond_3] if helper: extra = [] for t in [tmp1, tmp2, tmp3]: case1 += [And(*(t + tmp + extra))] conds += case1 debug(' case 1:', case1) # case 2 extra = [cond_3] if helper: extra = [] case2 = [And(Eq(n, 0), p + 1 <= m, m <= q, abs(arg(eta)) < delta*pi, *extra)] conds += case2 debug(' case 2:', case2) # case 3 extra = [cond_3, cond_4] if helper: extra = [] case3 = [And(p < q, 1 <= m, delta > 0, Eq(abs(arg(eta)), delta*pi), *extra)] case3 += [And(p <= q - 2, Eq(delta, 0), Eq(abs(arg(eta)), 0), *extra)] conds += case3 debug(' case 3:', case3) # TODO altered cases 4-7 # extra case from wofram functions site: # (reproduced verbatim from Prudnikov, section 2.24.2) # http://functions.wolfram.com/HypergeometricFunctions/MeijerG/21/02/01/ case_extra = [] case_extra += [Eq(p, q), Eq(delta, 0), Eq(arg(eta), 0), Ne(eta, 0)] if not helper: case_extra += [cond_3] s = [] for a, b in zip(g.ap, g.bq): s += [b - a] case_extra += [re(Add(*s)) < 0] case_extra = And(*case_extra) conds += [case_extra] debug(' extra case:', [case_extra]) case_extra_2 = [And(delta > 0, abs(arg(eta)) < delta*pi)] if not helper: case_extra_2 += [cond_3] case_extra_2 = And(*case_extra_2) conds += [case_extra_2] debug(' second extra case:', [case_extra_2]) # TODO This leaves only one case from the three listed by Prudnikov. # Investigate if these indeed cover everything; if so, remove the rest. return Or(*conds) def _int0oo_1(g, x): r""" Evaluate $\int_0^\infty g\, dx$ using G functions, assuming the necessary conditions are fulfilled. >>> from sympy.abc import a, b, c, d, x, y >>> from sympy import meijerg >>> from sympy.integrals.meijerint import _int0oo_1 >>> _int0oo_1(meijerg([a], [b], [c], [d], x*y), x) gamma(-a)*gamma(c + 1)/(y*gamma(-d)*gamma(b + 1)) """ # See [L, section 5.6.1]. Note that s=1. from sympy import gamma, gammasimp, unpolarify eta, _ = _get_coeff_exp(g.argument, x) res = 1/eta # XXX TODO we should reduce order first for b in g.bm: res *= gamma(b + 1) for a in g.an: res *= gamma(1 - a - 1) for b in g.bother: res /= gamma(1 - b - 1) for a in g.aother: res /= gamma(a + 1) return gammasimp(unpolarify(res)) def _rewrite_saxena(fac, po, g1, g2, x, full_pb=False): """ Rewrite the integral fac*po*g1*g2 from 0 to oo in terms of G functions with argument c*x. Return C, f1, f2 such that integral C f1 f2 from 0 to infinity equals integral fac po g1 g2 from 0 to infinity. >>> from sympy.integrals.meijerint import _rewrite_saxena >>> from sympy.abc import s, t, m >>> from sympy import meijerg >>> g1 = meijerg([], [], [0], [], s*t) >>> g2 = meijerg([], [], [m/2], [-m/2], t**2/4) >>> r = _rewrite_saxena(1, t**0, g1, g2, t) >>> r[0] s/(4*sqrt(pi)) >>> r[1] meijerg(((), ()), ((-1/2, 0), ()), s**2*t/4) >>> r[2] meijerg(((), ()), ((m/2,), (-m/2,)), t/4) """ from sympy.core.numbers import ilcm def pb(g): a, b = _get_coeff_exp(g.argument, x) per = g.get_period() return meijerg(g.an, g.aother, g.bm, g.bother, _my_principal_branch(a, per, full_pb)*x**b) _, s = _get_coeff_exp(po, x) _, b1 = _get_coeff_exp(g1.argument, x) _, b2 = _get_coeff_exp(g2.argument, x) if (b1 < 0) == True: b1 = -b1 g1 = _flip_g(g1) if (b2 < 0) == True: b2 = -b2 g2 = _flip_g(g2) if not b1.is_Rational or not b2.is_Rational: return m1, n1 = b1.p, b1.q m2, n2 = b2.p, b2.q tau = ilcm(m1*n2, m2*n1) r1 = tau//(m1*n2) r2 = tau//(m2*n1) C1, g1 = _inflate_g(g1, r1) C2, g2 = _inflate_g(g2, r2) g1 = pb(g1) g2 = pb(g2) fac *= C1*C2 a1, b = _get_coeff_exp(g1.argument, x) a2, _ = _get_coeff_exp(g2.argument, x) # arbitrarily tack on the x**s part to g1 # TODO should we try both? exp = (s + 1)/b - 1 fac = fac/(abs(b) * a1**exp) def tr(l): return [a + exp for a in l] g1 = meijerg(tr(g1.an), tr(g1.aother), tr(g1.bm), tr(g1.bother), a1*x) g2 = meijerg(g2.an, g2.aother, g2.bm, g2.bother, a2*x) return powdenest(fac, polar=True), g1, g2 def _check_antecedents(g1, g2, x): """ Return a condition under which the integral theorem applies. """ from sympy import re, Eq, Ne, cos, I, exp, sin, sign, unpolarify from sympy import arg as arg_, unbranched_argument as arg # Yes, this is madness. # XXX TODO this is a testing *nightmare* # NOTE if you update these conditions, please update the documentation as well # The following conditions are found in # [P], Section 2.24.1 # # They are also reproduced (verbatim!) at # http://functions.wolfram.com/HypergeometricFunctions/MeijerG/21/02/03/ # # Note: k=l=r=alpha=1 sigma, _ = _get_coeff_exp(g1.argument, x) omega, _ = _get_coeff_exp(g2.argument, x) s, t, u, v = S([len(g1.bm), len(g1.an), len(g1.ap), len(g1.bq)]) m, n, p, q = S([len(g2.bm), len(g2.an), len(g2.ap), len(g2.bq)]) bstar = s + t - (u + v)/2 cstar = m + n - (p + q)/2 rho = g1.nu + (u - v)/2 + 1 mu = g2.nu + (p - q)/2 + 1 phi = q - p - (v - u) eta = 1 - (v - u) - mu - rho psi = (pi*(q - m - n) + abs(arg(omega)))/(q - p) theta = (pi*(v - s - t) + abs(arg(sigma)))/(v - u) _debug('Checking antecedents:') _debug(' sigma=%s, s=%s, t=%s, u=%s, v=%s, b*=%s, rho=%s' % (sigma, s, t, u, v, bstar, rho)) _debug(' omega=%s, m=%s, n=%s, p=%s, q=%s, c*=%s, mu=%s,' % (omega, m, n, p, q, cstar, mu)) _debug(' phi=%s, eta=%s, psi=%s, theta=%s' % (phi, eta, psi, theta)) def _c1(): for g in [g1, g2]: for i in g.an: for j in g.bm: diff = i - j if diff.is_integer and diff.is_positive: return False return True c1 = _c1() c2 = And(*[re(1 + i + j) > 0 for i in g1.bm for j in g2.bm]) c3 = And(*[re(1 + i + j) < 1 + 1 for i in g1.an for j in g2.an]) c4 = And(*[(p - q)*re(1 + i - 1) - re(mu) > Rational(-3, 2) for i in g1.an]) c5 = And(*[(p - q)*re(1 + i) - re(mu) > Rational(-3, 2) for i in g1.bm]) c6 = And(*[(u - v)*re(1 + i - 1) - re(rho) > Rational(-3, 2) for i in g2.an]) c7 = And(*[(u - v)*re(1 + i) - re(rho) > Rational(-3, 2) for i in g2.bm]) c8 = (abs(phi) + 2*re((rho - 1)*(q - p) + (v - u)*(q - p) + (mu - 1)*(v - u)) > 0) c9 = (abs(phi) - 2*re((rho - 1)*(q - p) + (v - u)*(q - p) + (mu - 1)*(v - u)) > 0) c10 = (abs(arg(sigma)) < bstar*pi) c11 = Eq(abs(arg(sigma)), bstar*pi) c12 = (abs(arg(omega)) < cstar*pi) c13 = Eq(abs(arg(omega)), cstar*pi) # The following condition is *not* implemented as stated on the wolfram # function site. In the book of Prudnikov there is an additional part # (the And involving re()). However, I only have this book in russian, and # I don't read any russian. The following condition is what other people # have told me it means. # Worryingly, it is different from the condition implemented in REDUCE. # The REDUCE implementation: # https://reduce-algebra.svn.sourceforge.net/svnroot/reduce-algebra/trunk/packages/defint/definta.red # (search for tst14) # The Wolfram alpha version: # http://functions.wolfram.com/HypergeometricFunctions/MeijerG/21/02/03/03/0014/ z0 = exp(-(bstar + cstar)*pi*I) zos = unpolarify(z0*omega/sigma) zso = unpolarify(z0*sigma/omega) if zos == 1/zso: c14 = And(Eq(phi, 0), bstar + cstar <= 1, Or(Ne(zos, 1), re(mu + rho + v - u) < 1, re(mu + rho + q - p) < 1)) else: def _cond(z): '''Returns True if abs(arg(1-z)) < pi, avoiding arg(0). Note: if `z` is 1 then arg is NaN. This raises a TypeError on `NaN < pi`. Previously this gave `False` so this behavior has been hardcoded here but someone should check if this NaN is more serious! This NaN is triggered by test_meijerint() in test_meijerint.py: `meijerint_definite(exp(x), x, 0, I)` ''' return z != 1 and abs(arg_(1 - z)) < pi c14 = And(Eq(phi, 0), bstar - 1 + cstar <= 0, Or(And(Ne(zos, 1), _cond(zos)), And(re(mu + rho + v - u) < 1, Eq(zos, 1)))) c14_alt = And(Eq(phi, 0), cstar - 1 + bstar <= 0, Or(And(Ne(zso, 1), _cond(zso)), And(re(mu + rho + q - p) < 1, Eq(zso, 1)))) # Since r=k=l=1, in our case there is c14_alt which is the same as calling # us with (g1, g2) = (g2, g1). The conditions below enumerate all cases # (i.e. we don't have to try arguments reversed by hand), and indeed try # all symmetric cases. (i.e. whenever there is a condition involving c14, # there is also a dual condition which is exactly what we would get when g1, # g2 were interchanged, *but c14 was unaltered*). # Hence the following seems correct: c14 = Or(c14, c14_alt) ''' When `c15` is NaN (e.g. from `psi` being NaN as happens during 'test_issue_4992' and/or `theta` is NaN as in 'test_issue_6253', both in `test_integrals.py`) the comparison to 0 formerly gave False whereas now an error is raised. To keep the old behavior, the value of NaN is replaced with False but perhaps a closer look at this condition should be made: XXX how should conditions leading to c15=NaN be handled? ''' try: lambda_c = (q - p)*abs(omega)**(1/(q - p))*cos(psi) \ + (v - u)*abs(sigma)**(1/(v - u))*cos(theta) # the TypeError might be raised here, e.g. if lambda_c is NaN if _eval_cond(lambda_c > 0) != False: c15 = (lambda_c > 0) else: def lambda_s0(c1, c2): return c1*(q - p)*abs(omega)**(1/(q - p))*sin(psi) \ + c2*(v - u)*abs(sigma)**(1/(v - u))*sin(theta) lambda_s = Piecewise( ((lambda_s0(+1, +1)*lambda_s0(-1, -1)), And(Eq(arg(sigma), 0), Eq(arg(omega), 0))), (lambda_s0(sign(arg(omega)), +1)*lambda_s0(sign(arg(omega)), -1), And(Eq(arg(sigma), 0), Ne(arg(omega), 0))), (lambda_s0(+1, sign(arg(sigma)))*lambda_s0(-1, sign(arg(sigma))), And(Ne(arg(sigma), 0), Eq(arg(omega), 0))), (lambda_s0(sign(arg(omega)), sign(arg(sigma))), True)) tmp = [lambda_c > 0, And(Eq(lambda_c, 0), Ne(lambda_s, 0), re(eta) > -1), And(Eq(lambda_c, 0), Eq(lambda_s, 0), re(eta) > 0)] c15 = Or(*tmp) except TypeError: c15 = False for cond, i in [(c1, 1), (c2, 2), (c3, 3), (c4, 4), (c5, 5), (c6, 6), (c7, 7), (c8, 8), (c9, 9), (c10, 10), (c11, 11), (c12, 12), (c13, 13), (c14, 14), (c15, 15)]: _debug(' c%s:' % i, cond) # We will return Or(*conds) conds = [] def pr(count): _debug(' case %s:' % count, conds[-1]) conds += [And(m*n*s*t != 0, bstar.is_positive is True, cstar.is_positive is True, c1, c2, c3, c10, c12)] # 1 pr(1) conds += [And(Eq(u, v), Eq(bstar, 0), cstar.is_positive is True, sigma.is_positive is True, re(rho) < 1, c1, c2, c3, c12)] # 2 pr(2) conds += [And(Eq(p, q), Eq(cstar, 0), bstar.is_positive is True, omega.is_positive is True, re(mu) < 1, c1, c2, c3, c10)] # 3 pr(3) conds += [And(Eq(p, q), Eq(u, v), Eq(bstar, 0), Eq(cstar, 0), sigma.is_positive is True, omega.is_positive is True, re(mu) < 1, re(rho) < 1, Ne(sigma, omega), c1, c2, c3)] # 4 pr(4) conds += [And(Eq(p, q), Eq(u, v), Eq(bstar, 0), Eq(cstar, 0), sigma.is_positive is True, omega.is_positive is True, re(mu + rho) < 1, Ne(omega, sigma), c1, c2, c3)] # 5 pr(5) conds += [And(p > q, s.is_positive is True, bstar.is_positive is True, cstar >= 0, c1, c2, c3, c5, c10, c13)] # 6 pr(6) conds += [And(p < q, t.is_positive is True, bstar.is_positive is True, cstar >= 0, c1, c2, c3, c4, c10, c13)] # 7 pr(7) conds += [And(u > v, m.is_positive is True, cstar.is_positive is True, bstar >= 0, c1, c2, c3, c7, c11, c12)] # 8 pr(8) conds += [And(u < v, n.is_positive is True, cstar.is_positive is True, bstar >= 0, c1, c2, c3, c6, c11, c12)] # 9 pr(9) conds += [And(p > q, Eq(u, v), Eq(bstar, 0), cstar >= 0, sigma.is_positive is True, re(rho) < 1, c1, c2, c3, c5, c13)] # 10 pr(10) conds += [And(p < q, Eq(u, v), Eq(bstar, 0), cstar >= 0, sigma.is_positive is True, re(rho) < 1, c1, c2, c3, c4, c13)] # 11 pr(11) conds += [And(Eq(p, q), u > v, bstar >= 0, Eq(cstar, 0), omega.is_positive is True, re(mu) < 1, c1, c2, c3, c7, c11)] # 12 pr(12) conds += [And(Eq(p, q), u < v, bstar >= 0, Eq(cstar, 0), omega.is_positive is True, re(mu) < 1, c1, c2, c3, c6, c11)] # 13 pr(13) conds += [And(p < q, u > v, bstar >= 0, cstar >= 0, c1, c2, c3, c4, c7, c11, c13)] # 14 pr(14) conds += [And(p > q, u < v, bstar >= 0, cstar >= 0, c1, c2, c3, c5, c6, c11, c13)] # 15 pr(15) conds += [And(p > q, u > v, bstar >= 0, cstar >= 0, c1, c2, c3, c5, c7, c8, c11, c13, c14)] # 16 pr(16) conds += [And(p < q, u < v, bstar >= 0, cstar >= 0, c1, c2, c3, c4, c6, c9, c11, c13, c14)] # 17 pr(17) conds += [And(Eq(t, 0), s.is_positive is True, bstar.is_positive is True, phi.is_positive is True, c1, c2, c10)] # 18 pr(18) conds += [And(Eq(s, 0), t.is_positive is True, bstar.is_positive is True, phi.is_negative is True, c1, c3, c10)] # 19 pr(19) conds += [And(Eq(n, 0), m.is_positive is True, cstar.is_positive is True, phi.is_negative is True, c1, c2, c12)] # 20 pr(20) conds += [And(Eq(m, 0), n.is_positive is True, cstar.is_positive is True, phi.is_positive is True, c1, c3, c12)] # 21 pr(21) conds += [And(Eq(s*t, 0), bstar.is_positive is True, cstar.is_positive is True, c1, c2, c3, c10, c12)] # 22 pr(22) conds += [And(Eq(m*n, 0), bstar.is_positive is True, cstar.is_positive is True, c1, c2, c3, c10, c12)] # 23 pr(23) # The following case is from [Luke1969]. As far as I can tell, it is *not* # covered by Prudnikov's. # Let G1 and G2 be the two G-functions. Suppose the integral exists from # 0 to a > 0 (this is easy the easy part), that G1 is exponential decay at # infinity, and that the mellin transform of G2 exists. # Then the integral exists. mt1_exists = _check_antecedents_1(g1, x, helper=True) mt2_exists = _check_antecedents_1(g2, x, helper=True) conds += [And(mt2_exists, Eq(t, 0), u < s, bstar.is_positive is True, c10, c1, c2, c3)] pr('E1') conds += [And(mt2_exists, Eq(s, 0), v < t, bstar.is_positive is True, c10, c1, c2, c3)] pr('E2') conds += [And(mt1_exists, Eq(n, 0), p < m, cstar.is_positive is True, c12, c1, c2, c3)] pr('E3') conds += [And(mt1_exists, Eq(m, 0), q < n, cstar.is_positive is True, c12, c1, c2, c3)] pr('E4') # Let's short-circuit if this worked ... # the rest is corner-cases and terrible to read. r = Or(*conds) if _eval_cond(r) != False: return r conds += [And(m + n > p, Eq(t, 0), Eq(phi, 0), s.is_positive is True, bstar.is_positive is True, cstar.is_negative is True, abs(arg(omega)) < (m + n - p + 1)*pi, c1, c2, c10, c14, c15)] # 24 pr(24) conds += [And(m + n > q, Eq(s, 0), Eq(phi, 0), t.is_positive is True, bstar.is_positive is True, cstar.is_negative is True, abs(arg(omega)) < (m + n - q + 1)*pi, c1, c3, c10, c14, c15)] # 25 pr(25) conds += [And(Eq(p, q - 1), Eq(t, 0), Eq(phi, 0), s.is_positive is True, bstar.is_positive is True, cstar >= 0, cstar*pi < abs(arg(omega)), c1, c2, c10, c14, c15)] # 26 pr(26) conds += [And(Eq(p, q + 1), Eq(s, 0), Eq(phi, 0), t.is_positive is True, bstar.is_positive is True, cstar >= 0, cstar*pi < abs(arg(omega)), c1, c3, c10, c14, c15)] # 27 pr(27) conds += [And(p < q - 1, Eq(t, 0), Eq(phi, 0), s.is_positive is True, bstar.is_positive is True, cstar >= 0, cstar*pi < abs(arg(omega)), abs(arg(omega)) < (m + n - p + 1)*pi, c1, c2, c10, c14, c15)] # 28 pr(28) conds += [And( p > q + 1, Eq(s, 0), Eq(phi, 0), t.is_positive is True, bstar.is_positive is True, cstar >= 0, cstar*pi < abs(arg(omega)), abs(arg(omega)) < (m + n - q + 1)*pi, c1, c3, c10, c14, c15)] # 29 pr(29) conds += [And(Eq(n, 0), Eq(phi, 0), s + t > 0, m.is_positive is True, cstar.is_positive is True, bstar.is_negative is True, abs(arg(sigma)) < (s + t - u + 1)*pi, c1, c2, c12, c14, c15)] # 30 pr(30) conds += [And(Eq(m, 0), Eq(phi, 0), s + t > v, n.is_positive is True, cstar.is_positive is True, bstar.is_negative is True, abs(arg(sigma)) < (s + t - v + 1)*pi, c1, c3, c12, c14, c15)] # 31 pr(31) conds += [And(Eq(n, 0), Eq(phi, 0), Eq(u, v - 1), m.is_positive is True, cstar.is_positive is True, bstar >= 0, bstar*pi < abs(arg(sigma)), abs(arg(sigma)) < (bstar + 1)*pi, c1, c2, c12, c14, c15)] # 32 pr(32) conds += [And(Eq(m, 0), Eq(phi, 0), Eq(u, v + 1), n.is_positive is True, cstar.is_positive is True, bstar >= 0, bstar*pi < abs(arg(sigma)), abs(arg(sigma)) < (bstar + 1)*pi, c1, c3, c12, c14, c15)] # 33 pr(33) conds += [And( Eq(n, 0), Eq(phi, 0), u < v - 1, m.is_positive is True, cstar.is_positive is True, bstar >= 0, bstar*pi < abs(arg(sigma)), abs(arg(sigma)) < (s + t - u + 1)*pi, c1, c2, c12, c14, c15)] # 34 pr(34) conds += [And( Eq(m, 0), Eq(phi, 0), u > v + 1, n.is_positive is True, cstar.is_positive is True, bstar >= 0, bstar*pi < abs(arg(sigma)), abs(arg(sigma)) < (s + t - v + 1)*pi, c1, c3, c12, c14, c15)] # 35 pr(35) return Or(*conds) # NOTE An alternative, but as far as I can tell weaker, set of conditions # can be found in [L, section 5.6.2]. def _int0oo(g1, g2, x): """ Express integral from zero to infinity g1*g2 using a G function, assuming the necessary conditions are fulfilled. >>> from sympy.integrals.meijerint import _int0oo >>> from sympy.abc import s, t, m >>> from sympy import meijerg, S >>> g1 = meijerg([], [], [-S(1)/2, 0], [], s**2*t/4) >>> g2 = meijerg([], [], [m/2], [-m/2], t/4) >>> _int0oo(g1, g2, t) 4*meijerg(((1/2, 0), ()), ((m/2,), (-m/2,)), s**(-2))/s**2 """ # See: [L, section 5.6.2, equation (1)] eta, _ = _get_coeff_exp(g1.argument, x) omega, _ = _get_coeff_exp(g2.argument, x) def neg(l): return [-x for x in l] a1 = neg(g1.bm) + list(g2.an) a2 = list(g2.aother) + neg(g1.bother) b1 = neg(g1.an) + list(g2.bm) b2 = list(g2.bother) + neg(g1.aother) return meijerg(a1, a2, b1, b2, omega/eta)/eta def _rewrite_inversion(fac, po, g, x): """ Absorb ``po`` == x**s into g. """ _, s = _get_coeff_exp(po, x) a, b = _get_coeff_exp(g.argument, x) def tr(l): return [t + s/b for t in l] return (powdenest(fac/a**(s/b), polar=True), meijerg(tr(g.an), tr(g.aother), tr(g.bm), tr(g.bother), g.argument)) def _check_antecedents_inversion(g, x): """ Check antecedents for the laplace inversion integral. """ from sympy import re, im, Or, And, Eq, exp, I, Add, nan, Ne _debug('Checking antecedents for inversion:') z = g.argument _, e = _get_coeff_exp(z, x) if e < 0: _debug(' Flipping G.') # We want to assume that argument gets large as |x| -> oo return _check_antecedents_inversion(_flip_g(g), x) def statement_half(a, b, c, z, plus): coeff, exponent = _get_coeff_exp(z, x) a *= exponent b *= coeff**c c *= exponent conds = [] wp = b*exp(I*re(c)*pi/2) wm = b*exp(-I*re(c)*pi/2) if plus: w = wp else: w = wm conds += [And(Or(Eq(b, 0), re(c) <= 0), re(a) <= -1)] conds += [And(Ne(b, 0), Eq(im(c), 0), re(c) > 0, re(w) < 0)] conds += [And(Ne(b, 0), Eq(im(c), 0), re(c) > 0, re(w) <= 0, re(a) <= -1)] return Or(*conds) def statement(a, b, c, z): """ Provide a convergence statement for z**a * exp(b*z**c), c/f sphinx docs. """ return And(statement_half(a, b, c, z, True), statement_half(a, b, c, z, False)) # Notations from [L], section 5.7-10 m, n, p, q = S([len(g.bm), len(g.an), len(g.ap), len(g.bq)]) tau = m + n - p nu = q - m - n rho = (tau - nu)/2 sigma = q - p if sigma == 1: epsilon = S.Half elif sigma > 1: epsilon = 1 else: epsilon = nan theta = ((1 - sigma)/2 + Add(*g.bq) - Add(*g.ap))/sigma delta = g.delta _debug(' m=%s, n=%s, p=%s, q=%s, tau=%s, nu=%s, rho=%s, sigma=%s' % ( m, n, p, q, tau, nu, rho, sigma)) _debug(' epsilon=%s, theta=%s, delta=%s' % (epsilon, theta, delta)) # First check if the computation is valid. if not (g.delta >= e/2 or (p >= 1 and p >= q)): _debug(' Computation not valid for these parameters.') return False # Now check if the inversion integral exists. # Test "condition A" for a in g.an: for b in g.bm: if (a - b).is_integer and a > b: _debug(' Not a valid G function.') return False # There are two cases. If p >= q, we can directly use a slater expansion # like [L], 5.2 (11). Note in particular that the asymptotics of such an # expansion even hold when some of the parameters differ by integers, i.e. # the formula itself would not be valid! (b/c G functions are cts. in their # parameters) # When p < q, we need to use the theorems of [L], 5.10. if p >= q: _debug(' Using asymptotic Slater expansion.') return And(*[statement(a - 1, 0, 0, z) for a in g.an]) def E(z): return And(*[statement(a - 1, 0, 0, z) for a in g.an]) def H(z): return statement(theta, -sigma, 1/sigma, z) def Hp(z): return statement_half(theta, -sigma, 1/sigma, z, True) def Hm(z): return statement_half(theta, -sigma, 1/sigma, z, False) # [L], section 5.10 conds = [] # Theorem 1 -- p < q from test above conds += [And(1 <= n, 1 <= m, rho*pi - delta >= pi/2, delta > 0, E(z*exp(I*pi*(nu + 1))))] # Theorem 2, statements (2) and (3) conds += [And(p + 1 <= m, m + 1 <= q, delta > 0, delta < pi/2, n == 0, (m - p + 1)*pi - delta >= pi/2, Hp(z*exp(I*pi*(q - m))), Hm(z*exp(-I*pi*(q - m))))] # Theorem 2, statement (5) -- p < q from test above conds += [And(m == q, n == 0, delta > 0, (sigma + epsilon)*pi - delta >= pi/2, H(z))] # Theorem 3, statements (6) and (7) conds += [And(Or(And(p <= q - 2, 1 <= tau, tau <= sigma/2), And(p + 1 <= m + n, m + n <= (p + q)/2)), delta > 0, delta < pi/2, (tau + 1)*pi - delta >= pi/2, Hp(z*exp(I*pi*nu)), Hm(z*exp(-I*pi*nu)))] # Theorem 4, statements (10) and (11) -- p < q from test above conds += [And(1 <= m, rho > 0, delta > 0, delta + rho*pi < pi/2, (tau + epsilon)*pi - delta >= pi/2, Hp(z*exp(I*pi*nu)), Hm(z*exp(-I*pi*nu)))] # Trivial case conds += [m == 0] # TODO # Theorem 5 is quite general # Theorem 6 contains special cases for q=p+1 return Or(*conds) def _int_inversion(g, x, t): """ Compute the laplace inversion integral, assuming the formula applies. """ b, a = _get_coeff_exp(g.argument, x) C, g = _inflate_fox_h(meijerg(g.an, g.aother, g.bm, g.bother, b/t**a), -a) return C/t*g #################################################################### # Finally, the real meat. #################################################################### _lookup_table = None @cacheit @timeit def _rewrite_single(f, x, recursive=True): """ Try to rewrite f as a sum of single G functions of the form C*x**s*G(a*x**b), where b is a rational number and C is independent of x. We guarantee that result.argument.as_coeff_mul(x) returns (a, (x**b,)) or (a, ()). Returns a list of tuples (C, s, G) and a condition cond. Returns None on failure. """ from sympy import polarify, unpolarify, oo, zoo, Tuple global _lookup_table if not _lookup_table: _lookup_table = {} _create_lookup_table(_lookup_table) if isinstance(f, meijerg): from sympy import factor coeff, m = factor(f.argument, x).as_coeff_mul(x) if len(m) > 1: return None m = m[0] if m.is_Pow: if m.base != x or not m.exp.is_Rational: return None elif m != x: return None return [(1, 0, meijerg(f.an, f.aother, f.bm, f.bother, coeff*m))], True f_ = f f = f.subs(x, z) t = _mytype(f, z) if t in _lookup_table: l = _lookup_table[t] for formula, terms, cond, hint in l: subs = f.match(formula, old=True) if subs: subs_ = {} for fro, to in subs.items(): subs_[fro] = unpolarify(polarify(to, lift=True), exponents_only=True) subs = subs_ if not isinstance(hint, bool): hint = hint.subs(subs) if hint == False: continue if not isinstance(cond, (bool, BooleanAtom)): cond = unpolarify(cond.subs(subs)) if _eval_cond(cond) == False: continue if not isinstance(terms, list): terms = terms(subs) res = [] for fac, g in terms: r1 = _get_coeff_exp(unpolarify(fac.subs(subs).subs(z, x), exponents_only=True), x) try: g = g.subs(subs).subs(z, x) except ValueError: continue # NOTE these substitutions can in principle introduce oo, # zoo and other absurdities. It shouldn't matter, # but better be safe. if Tuple(*(r1 + (g,))).has(oo, zoo, -oo): continue g = meijerg(g.an, g.aother, g.bm, g.bother, unpolarify(g.argument, exponents_only=True)) res.append(r1 + (g,)) if res: return res, cond # try recursive mellin transform if not recursive: return None _debug('Trying recursive Mellin transform method.') from sympy.integrals.transforms import (mellin_transform, inverse_mellin_transform, IntegralTransformError, MellinTransformStripError) from sympy import oo, nan, zoo, simplify, cancel def my_imt(F, s, x, strip): """ Calling simplify() all the time is slow and not helpful, since most of the time it only factors things in a way that has to be un-done anyway. But sometimes it can remove apparent poles. """ # XXX should this be in inverse_mellin_transform? try: return inverse_mellin_transform(F, s, x, strip, as_meijerg=True, needeval=True) except MellinTransformStripError: return inverse_mellin_transform( simplify(cancel(expand(F))), s, x, strip, as_meijerg=True, needeval=True) f = f_ s = _dummy('s', 'rewrite-single', f) # to avoid infinite recursion, we have to force the two g functions case def my_integrator(f, x): from sympy import Integral, hyperexpand r = _meijerint_definite_4(f, x, only_double=True) if r is not None: res, cond = r res = _my_unpolarify(hyperexpand(res, rewrite='nonrepsmall')) return Piecewise((res, cond), (Integral(f, (x, 0, oo)), True)) return Integral(f, (x, 0, oo)) try: F, strip, _ = mellin_transform(f, x, s, integrator=my_integrator, simplify=False, needeval=True) g = my_imt(F, s, x, strip) except IntegralTransformError: g = None if g is None: # We try to find an expression by analytic continuation. # (also if the dummy is already in the expression, there is no point in # putting in another one) a = _dummy_('a', 'rewrite-single') if a not in f.free_symbols and _is_analytic(f, x): try: F, strip, _ = mellin_transform(f.subs(x, a*x), x, s, integrator=my_integrator, needeval=True, simplify=False) g = my_imt(F, s, x, strip).subs(a, 1) except IntegralTransformError: g = None if g is None or g.has(oo, nan, zoo): _debug('Recursive Mellin transform failed.') return None args = Add.make_args(g) res = [] for f in args: c, m = f.as_coeff_mul(x) if len(m) > 1: raise NotImplementedError('Unexpected form...') g = m[0] a, b = _get_coeff_exp(g.argument, x) res += [(c, 0, meijerg(g.an, g.aother, g.bm, g.bother, unpolarify(polarify( a, lift=True), exponents_only=True) *x**b))] _debug('Recursive Mellin transform worked:', g) return res, True def _rewrite1(f, x, recursive=True): """ Try to rewrite f using a (sum of) single G functions with argument a*x**b. Return fac, po, g such that f = fac*po*g, fac is independent of x and po = x**s. Here g is a result from _rewrite_single. Return None on failure. """ fac, po, g = _split_mul(f, x) g = _rewrite_single(g, x, recursive) if g: return fac, po, g[0], g[1] def _rewrite2(f, x): """ Try to rewrite f as a product of two G functions of arguments a*x**b. Return fac, po, g1, g2 such that f = fac*po*g1*g2, where fac is independent of x and po is x**s. Here g1 and g2 are results of _rewrite_single. Returns None on failure. """ fac, po, g = _split_mul(f, x) if any(_rewrite_single(expr, x, False) is None for expr in _mul_args(g)): return None l = _mul_as_two_parts(g) if not l: return None l = list(ordered(l, [ lambda p: max(len(_exponents(p[0], x)), len(_exponents(p[1], x))), lambda p: max(len(_functions(p[0], x)), len(_functions(p[1], x))), lambda p: max(len(_find_splitting_points(p[0], x)), len(_find_splitting_points(p[1], x)))])) for recursive in [False, True]: for fac1, fac2 in l: g1 = _rewrite_single(fac1, x, recursive) g2 = _rewrite_single(fac2, x, recursive) if g1 and g2: cond = And(g1[1], g2[1]) if cond != False: return fac, po, g1[0], g2[0], cond def meijerint_indefinite(f, x): """ Compute an indefinite integral of ``f`` by rewriting it as a G function. Examples ======== >>> from sympy.integrals.meijerint import meijerint_indefinite >>> from sympy import sin >>> from sympy.abc import x >>> meijerint_indefinite(sin(x), x) -cos(x) """ from sympy import hyper, meijerg results = [] for a in sorted(_find_splitting_points(f, x) | {S.Zero}, key=default_sort_key): res = _meijerint_indefinite_1(f.subs(x, x + a), x) if not res: continue res = res.subs(x, x - a) if _has(res, hyper, meijerg): results.append(res) else: return res if f.has(HyperbolicFunction): _debug('Try rewriting hyperbolics in terms of exp.') rv = meijerint_indefinite( _rewrite_hyperbolics_as_exp(f), x) if rv: if not type(rv) is list: return collect(factor_terms(rv), rv.atoms(exp)) results.extend(rv) if results: return next(ordered(results)) def _meijerint_indefinite_1(f, x): """ Helper that does not attempt any substitution. """ from sympy import Integral, piecewise_fold, nan, zoo _debug('Trying to compute the indefinite integral of', f, 'wrt', x) gs = _rewrite1(f, x) if gs is None: # Note: the code that calls us will do expand() and try again return None fac, po, gl, cond = gs _debug(' could rewrite:', gs) res = S.Zero for C, s, g in gl: a, b = _get_coeff_exp(g.argument, x) _, c = _get_coeff_exp(po, x) c += s # we do a substitution t=a*x**b, get integrand fac*t**rho*g fac_ = fac * C / (b*a**((1 + c)/b)) rho = (c + 1)/b - 1 # we now use t**rho*G(params, t) = G(params + rho, t) # [L, page 150, equation (4)] # and integral G(params, t) dt = G(1, params+1, 0, t) # (or a similar expression with 1 and 0 exchanged ... pick the one # which yields a well-defined function) # [R, section 5] # (Note that this dummy will immediately go away again, so we # can safely pass S.One for ``expr``.) t = _dummy('t', 'meijerint-indefinite', S.One) def tr(p): return [a + rho + 1 for a in p] if any(b.is_integer and (b <= 0) == True for b in tr(g.bm)): r = -meijerg( tr(g.an), tr(g.aother) + [1], tr(g.bm) + [0], tr(g.bother), t) else: r = meijerg( tr(g.an) + [1], tr(g.aother), tr(g.bm), tr(g.bother) + [0], t) # The antiderivative is most often expected to be defined # in the neighborhood of x = 0. if b.is_extended_nonnegative and not f.subs(x, 0).has(nan, zoo): place = 0 # Assume we can expand at zero else: place = None r = hyperexpand(r.subs(t, a*x**b), place=place) # now substitute back # Note: we really do want the powers of x to combine. res += powdenest(fac_*r, polar=True) def _clean(res): """This multiplies out superfluous powers of x we created, and chops off constants: >> _clean(x*(exp(x)/x - 1/x) + 3) exp(x) cancel is used before mul_expand since it is possible for an expression to have an additive constant that doesn't become isolated with simple expansion. Such a situation was identified in issue 6369: >>> from sympy import sqrt, cancel >>> from sympy.abc import x >>> a = sqrt(2*x + 1) >>> bad = (3*x*a**5 + 2*x - a**5 + 1)/a**2 >>> bad.expand().as_independent(x)[0] 0 >>> cancel(bad).expand().as_independent(x)[0] 1 """ from sympy import cancel res = expand_mul(cancel(res), deep=False) return Add._from_args(res.as_coeff_add(x)[1]) res = piecewise_fold(res) if res.is_Piecewise: newargs = [] for expr, cond in res.args: expr = _my_unpolarify(_clean(expr)) newargs += [(expr, cond)] res = Piecewise(*newargs) else: res = _my_unpolarify(_clean(res)) return Piecewise((res, _my_unpolarify(cond)), (Integral(f, x), True)) @timeit def meijerint_definite(f, x, a, b): """ Integrate ``f`` over the interval [``a``, ``b``], by rewriting it as a product of two G functions, or as a single G function. Return res, cond, where cond are convergence conditions. Examples ======== >>> from sympy.integrals.meijerint import meijerint_definite >>> from sympy import exp, oo >>> from sympy.abc import x >>> meijerint_definite(exp(-x**2), x, -oo, oo) (sqrt(pi), True) This function is implemented as a succession of functions meijerint_definite, _meijerint_definite_2, _meijerint_definite_3, _meijerint_definite_4. Each function in the list calls the next one (presumably) several times. This means that calling meijerint_definite can be very costly. """ # This consists of three steps: # 1) Change the integration limits to 0, oo # 2) Rewrite in terms of G functions # 3) Evaluate the integral # # There are usually several ways of doing this, and we want to try all. # This function does (1), calls _meijerint_definite_2 for step (2). from sympy import arg, exp, I, And, DiracDelta, SingularityFunction _debug('Integrating', f, 'wrt %s from %s to %s.' % (x, a, b)) if f.has(DiracDelta): _debug('Integrand has DiracDelta terms - giving up.') return None if f.has(SingularityFunction): _debug('Integrand has Singularity Function terms - giving up.') return None f_, x_, a_, b_ = f, x, a, b # Let's use a dummy in case any of the boundaries has x. d = Dummy('x') f = f.subs(x, d) x = d if a == b: return (S.Zero, True) results = [] if a is -oo and b is not oo: return meijerint_definite(f.subs(x, -x), x, -b, -a) elif a is -oo: # Integrating -oo to oo. We need to find a place to split the integral. _debug(' Integrating -oo to +oo.') innermost = _find_splitting_points(f, x) _debug(' Sensible splitting points:', innermost) for c in sorted(innermost, key=default_sort_key, reverse=True) + [S.Zero]: _debug(' Trying to split at', c) if not c.is_extended_real: _debug(' Non-real splitting point.') continue res1 = _meijerint_definite_2(f.subs(x, x + c), x) if res1 is None: _debug(' But could not compute first integral.') continue res2 = _meijerint_definite_2(f.subs(x, c - x), x) if res2 is None: _debug(' But could not compute second integral.') continue res1, cond1 = res1 res2, cond2 = res2 cond = _condsimp(And(cond1, cond2)) if cond == False: _debug(' But combined condition is always false.') continue res = res1 + res2 return res, cond elif a is oo: res = meijerint_definite(f, x, b, oo) return -res[0], res[1] elif (a, b) == (0, oo): # This is a common case - try it directly first. res = _meijerint_definite_2(f, x) if res: if _has(res[0], meijerg): results.append(res) else: return res else: if b is oo: for split in _find_splitting_points(f, x): if (a - split >= 0) == True: _debug('Trying x -> x + %s' % split) res = _meijerint_definite_2(f.subs(x, x + split) *Heaviside(x + split - a), x) if res: if _has(res[0], meijerg): results.append(res) else: return res f = f.subs(x, x + a) b = b - a a = 0 if b != oo: phi = exp(I*arg(b)) b = abs(b) f = f.subs(x, phi*x) f *= Heaviside(b - x)*phi b = oo _debug('Changed limits to', a, b) _debug('Changed function to', f) res = _meijerint_definite_2(f, x) if res: if _has(res[0], meijerg): results.append(res) else: return res if f_.has(HyperbolicFunction): _debug('Try rewriting hyperbolics in terms of exp.') rv = meijerint_definite( _rewrite_hyperbolics_as_exp(f_), x_, a_, b_) if rv: if not type(rv) is list: rv = (collect(factor_terms(rv[0]), rv[0].atoms(exp)),) + rv[1:] return rv results.extend(rv) if results: return next(ordered(results)) def _guess_expansion(f, x): """ Try to guess sensible rewritings for integrand f(x). """ from sympy import expand_trig from sympy.functions.elementary.trigonometric import TrigonometricFunction res = [(f, 'original integrand')] orig = res[-1][0] saw = {orig} expanded = expand_mul(orig) if expanded not in saw: res += [(expanded, 'expand_mul')] saw.add(expanded) expanded = expand(orig) if expanded not in saw: res += [(expanded, 'expand')] saw.add(expanded) if orig.has(TrigonometricFunction, HyperbolicFunction): expanded = expand_mul(expand_trig(orig)) if expanded not in saw: res += [(expanded, 'expand_trig, expand_mul')] saw.add(expanded) if orig.has(cos, sin): reduced = sincos_to_sum(orig) if reduced not in saw: res += [(reduced, 'trig power reduction')] saw.add(reduced) return res def _meijerint_definite_2(f, x): """ Try to integrate f dx from zero to infinity. The body of this function computes various 'simplifications' f1, f2, ... of f (e.g. by calling expand_mul(), trigexpand() - see _guess_expansion) and calls _meijerint_definite_3 with each of these in succession. If _meijerint_definite_3 succeeds with any of the simplified functions, returns this result. """ # This function does preparation for (2), calls # _meijerint_definite_3 for (2) and (3) combined. # use a positive dummy - we integrate from 0 to oo # XXX if a nonnegative symbol is used there will be test failures dummy = _dummy('x', 'meijerint-definite2', f, positive=True) f = f.subs(x, dummy) x = dummy if f == 0: return S.Zero, True for g, explanation in _guess_expansion(f, x): _debug('Trying', explanation) res = _meijerint_definite_3(g, x) if res: return res def _meijerint_definite_3(f, x): """ Try to integrate f dx from zero to infinity. This function calls _meijerint_definite_4 to try to compute the integral. If this fails, it tries using linearity. """ res = _meijerint_definite_4(f, x) if res and res[1] != False: return res if f.is_Add: _debug('Expanding and evaluating all terms.') ress = [_meijerint_definite_4(g, x) for g in f.args] if all(r is not None for r in ress): conds = [] res = S.Zero for r, c in ress: res += r conds += [c] c = And(*conds) if c != False: return res, c def _my_unpolarify(f): from sympy import unpolarify return _eval_cond(unpolarify(f)) @timeit def _meijerint_definite_4(f, x, only_double=False): """ Try to integrate f dx from zero to infinity. This function tries to apply the integration theorems found in literature, i.e. it tries to rewrite f as either one or a product of two G-functions. The parameter ``only_double`` is used internally in the recursive algorithm to disable trying to rewrite f as a single G-function. """ # This function does (2) and (3) _debug('Integrating', f) # Try single G function. if not only_double: gs = _rewrite1(f, x, recursive=False) if gs is not None: fac, po, g, cond = gs _debug('Could rewrite as single G function:', fac, po, g) res = S.Zero for C, s, f in g: if C == 0: continue C, f = _rewrite_saxena_1(fac*C, po*x**s, f, x) res += C*_int0oo_1(f, x) cond = And(cond, _check_antecedents_1(f, x)) if cond == False: break cond = _my_unpolarify(cond) if cond == False: _debug('But cond is always False.') else: _debug('Result before branch substitutions is:', res) return _my_unpolarify(hyperexpand(res)), cond # Try two G functions. gs = _rewrite2(f, x) if gs is not None: for full_pb in [False, True]: fac, po, g1, g2, cond = gs _debug('Could rewrite as two G functions:', fac, po, g1, g2) res = S.Zero for C1, s1, f1 in g1: for C2, s2, f2 in g2: r = _rewrite_saxena(fac*C1*C2, po*x**(s1 + s2), f1, f2, x, full_pb) if r is None: _debug('Non-rational exponents.') return C, f1_, f2_ = r _debug('Saxena subst for yielded:', C, f1_, f2_) cond = And(cond, _check_antecedents(f1_, f2_, x)) if cond == False: break res += C*_int0oo(f1_, f2_, x) else: continue break cond = _my_unpolarify(cond) if cond == False: _debug('But cond is always False (full_pb=%s).' % full_pb) else: _debug('Result before branch substitutions is:', res) if only_double: return res, cond return _my_unpolarify(hyperexpand(res)), cond def meijerint_inversion(f, x, t): r""" Compute the inverse laplace transform $\int_{c+i\infty}^{c-i\infty} f(x) e^{tx}\, dx$, for real c larger than the real part of all singularities of f. Note that ``t`` is always assumed real and positive. Return None if the integral does not exist or could not be evaluated. Examples ======== >>> from sympy.abc import x, t >>> from sympy.integrals.meijerint import meijerint_inversion >>> meijerint_inversion(1/x, x, t) Heaviside(t) """ from sympy import I, Integral, exp, expand, log, Add, Mul, Heaviside f_ = f t_ = t t = Dummy('t', polar=True) # We don't want sqrt(t**2) = abs(t) etc f = f.subs(t_, t) _debug('Laplace-inverting', f) if not _is_analytic(f, x): _debug('But expression is not analytic.') return None # Exponentials correspond to shifts; we filter them out and then # shift the result later. If we are given an Add this will not # work, but the calling code will take care of that. shift = S.Zero if f.is_Mul: args = list(f.args) elif isinstance(f, exp): args = [f] else: args = None if args: newargs = [] exponentials = [] while args: arg = args.pop() if isinstance(arg, exp): arg2 = expand(arg) if arg2.is_Mul: args += arg2.args continue try: a, b = _get_coeff_exp(arg.args[0], x) except _CoeffExpValueError: b = 0 if b == 1: exponentials.append(a) else: newargs.append(arg) elif arg.is_Pow: arg2 = expand(arg) if arg2.is_Mul: args += arg2.args continue if x not in arg.base.free_symbols: try: a, b = _get_coeff_exp(arg.exp, x) except _CoeffExpValueError: b = 0 if b == 1: exponentials.append(a*log(arg.base)) newargs.append(arg) else: newargs.append(arg) shift = Add(*exponentials) f = Mul(*newargs) if x not in f.free_symbols: _debug('Expression consists of constant and exp shift:', f, shift) from sympy import Eq, im cond = Eq(im(shift), 0) if cond == False: _debug('but shift is nonreal, cannot be a Laplace transform') return None res = f*DiracDelta(t + shift) _debug('Result is a delta function, possibly conditional:', res, cond) # cond is True or Eq return Piecewise((res.subs(t, t_), cond)) gs = _rewrite1(f, x) if gs is not None: fac, po, g, cond = gs _debug('Could rewrite as single G function:', fac, po, g) res = S.Zero for C, s, f in g: C, f = _rewrite_inversion(fac*C, po*x**s, f, x) res += C*_int_inversion(f, x, t) cond = And(cond, _check_antecedents_inversion(f, x)) if cond == False: break cond = _my_unpolarify(cond) if cond == False: _debug('But cond is always False.') else: _debug('Result before branch substitution:', res) res = _my_unpolarify(hyperexpand(res)) if not res.has(Heaviside): res *= Heaviside(t) res = res.subs(t, t + shift) if not isinstance(cond, bool): cond = cond.subs(t, t + shift) from sympy import InverseLaplaceTransform return Piecewise((res.subs(t, t_), cond), (InverseLaplaceTransform(f_.subs(t, t_), x, t_, None), True))
47b80dff61ce7ed0f67d45142e7bc516f83ae5cdab621eed65734674123d51b3
"""Base class for all the objects in SymPy""" from __future__ import print_function, division from collections import defaultdict from itertools import chain from .assumptions import BasicMeta, ManagedProperties from .cache import cacheit from .sympify import _sympify, sympify, SympifyError from .compatibility import (iterable, Iterator, ordered, string_types, with_metaclass, zip_longest, range, PY3, Mapping) from .singleton import S from inspect import getmro def as_Basic(expr): """Return expr as a Basic instance using strict sympify or raise a TypeError; this is just a wrapper to _sympify, raising a TypeError instead of a SympifyError.""" from sympy.utilities.misc import func_name try: return _sympify(expr) except SympifyError: raise TypeError( 'Argument must be a Basic object, not `%s`' % func_name( expr)) class Basic(with_metaclass(ManagedProperties)): """ Base class for all objects in SymPy. Conventions: 1) Always use ``.args``, when accessing parameters of some instance: >>> from sympy import cot >>> from sympy.abc import x, y >>> cot(x).args (x,) >>> cot(x).args[0] x >>> (x*y).args (x, y) >>> (x*y).args[1] y 2) Never use internal methods or variables (the ones prefixed with ``_``): >>> cot(x)._args # do not use this, use cot(x).args instead (x,) """ __slots__ = ['_mhash', # hash value '_args', # arguments '_assumptions' ] # To be overridden with True in the appropriate subclasses is_number = False is_Atom = False is_Symbol = False is_symbol = False is_Indexed = False is_Dummy = False is_Wild = False is_Function = False is_Add = False is_Mul = False is_Pow = False is_Number = False is_Float = False is_Rational = False is_Integer = False is_NumberSymbol = False is_Order = False is_Derivative = False is_Piecewise = False is_Poly = False is_AlgebraicNumber = False is_Relational = False is_Equality = False is_Boolean = False is_Not = False is_Matrix = False is_Vector = False is_Point = False is_MatAdd = False is_MatMul = False def __new__(cls, *args): obj = object.__new__(cls) obj._assumptions = cls.default_assumptions obj._mhash = None # will be set by __hash__ method. obj._args = args # all items in args must be Basic objects return obj def copy(self): return self.func(*self.args) def __reduce_ex__(self, proto): """ Pickling support.""" return type(self), self.__getnewargs__(), self.__getstate__() def __getnewargs__(self): return self.args def __getstate__(self): return {} def __setstate__(self, state): for k, v in state.items(): setattr(self, k, v) def __hash__(self): # hash cannot be cached using cache_it because infinite recurrence # occurs as hash is needed for setting cache dictionary keys h = self._mhash if h is None: h = hash((type(self).__name__,) + self._hashable_content()) self._mhash = h return h def _hashable_content(self): """Return a tuple of information about self that can be used to compute the hash. If a class defines additional attributes, like ``name`` in Symbol, then this method should be updated accordingly to return such relevant attributes. Defining more than _hashable_content is necessary if __eq__ has been defined by a class. See note about this in Basic.__eq__.""" return self._args @property def assumptions0(self): """ Return object `type` assumptions. For example: Symbol('x', real=True) Symbol('x', integer=True) are different objects. In other words, besides Python type (Symbol in this case), the initial assumptions are also forming their typeinfo. Examples ======== >>> from sympy import Symbol >>> from sympy.abc import x >>> x.assumptions0 {'commutative': True} >>> x = Symbol("x", positive=True) >>> x.assumptions0 {'commutative': True, 'complex': True, 'extended_negative': False, 'extended_nonnegative': True, 'extended_nonpositive': False, 'extended_nonzero': True, 'extended_positive': True, 'extended_real': True, 'finite': True, 'hermitian': True, 'imaginary': False, 'infinite': False, 'negative': False, 'nonnegative': True, 'nonpositive': False, 'nonzero': True, 'positive': True, 'real': True, 'zero': False} """ return {} def compare(self, other): """ Return -1, 0, 1 if the object is smaller, equal, or greater than other. Not in the mathematical sense. If the object is of a different type from the "other" then their classes are ordered according to the sorted_classes list. Examples ======== >>> from sympy.abc import x, y >>> x.compare(y) -1 >>> x.compare(x) 0 >>> y.compare(x) 1 """ # all redefinitions of __cmp__ method should start with the # following lines: if self is other: return 0 n1 = self.__class__ n2 = other.__class__ c = (n1 > n2) - (n1 < n2) if c: return c # st = self._hashable_content() ot = other._hashable_content() c = (len(st) > len(ot)) - (len(st) < len(ot)) if c: return c for l, r in zip(st, ot): l = Basic(*l) if isinstance(l, frozenset) else l r = Basic(*r) if isinstance(r, frozenset) else r if isinstance(l, Basic): c = l.compare(r) else: c = (l > r) - (l < r) if c: return c return 0 @staticmethod def _compare_pretty(a, b): from sympy.series.order import Order if isinstance(a, Order) and not isinstance(b, Order): return 1 if not isinstance(a, Order) and isinstance(b, Order): return -1 if a.is_Rational and b.is_Rational: l = a.p * b.q r = b.p * a.q return (l > r) - (l < r) else: from sympy.core.symbol import Wild p1, p2, p3 = Wild("p1"), Wild("p2"), Wild("p3") r_a = a.match(p1 * p2**p3) if r_a and p3 in r_a: a3 = r_a[p3] r_b = b.match(p1 * p2**p3) if r_b and p3 in r_b: b3 = r_b[p3] c = Basic.compare(a3, b3) if c != 0: return c return Basic.compare(a, b) @classmethod def fromiter(cls, args, **assumptions): """ Create a new object from an iterable. This is a convenience function that allows one to create objects from any iterable, without having to convert to a list or tuple first. Examples ======== >>> from sympy import Tuple >>> Tuple.fromiter(i for i in range(5)) (0, 1, 2, 3, 4) """ return cls(*tuple(args), **assumptions) @classmethod def class_key(cls): """Nice order of classes. """ return 5, 0, cls.__name__ @cacheit def sort_key(self, order=None): """ Return a sort key. Examples ======== >>> from sympy.core import S, I >>> sorted([S(1)/2, I, -I], key=lambda x: x.sort_key()) [1/2, -I, I] >>> S("[x, 1/x, 1/x**2, x**2, x**(1/2), x**(1/4), x**(3/2)]") [x, 1/x, x**(-2), x**2, sqrt(x), x**(1/4), x**(3/2)] >>> sorted(_, key=lambda x: x.sort_key()) [x**(-2), 1/x, x**(1/4), sqrt(x), x, x**(3/2), x**2] """ # XXX: remove this when issue 5169 is fixed def inner_key(arg): if isinstance(arg, Basic): return arg.sort_key(order) else: return arg args = self._sorted_args args = len(args), tuple([inner_key(arg) for arg in args]) return self.class_key(), args, S.One.sort_key(), S.One def __eq__(self, other): """Return a boolean indicating whether a == b on the basis of their symbolic trees. This is the same as a.compare(b) == 0 but faster. Notes ===== If a class that overrides __eq__() needs to retain the implementation of __hash__() from a parent class, the interpreter must be told this explicitly by setting __hash__ = <ParentClass>.__hash__. Otherwise the inheritance of __hash__() will be blocked, just as if __hash__ had been explicitly set to None. References ========== from http://docs.python.org/dev/reference/datamodel.html#object.__hash__ """ if self is other: return True tself = type(self) tother = type(other) if tself is not tother: try: other = _sympify(other) tother = type(other) except SympifyError: return NotImplemented # As long as we have the ordering of classes (sympy.core), # comparing types will be slow in Python 2, because it uses # __cmp__. Until we can remove it # (https://github.com/sympy/sympy/issues/4269), we only compare # types in Python 2 directly if they actually have __ne__. if PY3 or type(tself).__ne__ is not type.__ne__: if tself != tother: return False elif tself is not tother: return False return self._hashable_content() == other._hashable_content() def __ne__(self, other): """``a != b`` -> Compare two symbolic trees and see whether they are different this is the same as: ``a.compare(b) != 0`` but faster """ return not self == other def dummy_eq(self, other, symbol=None): """ Compare two expressions and handle dummy symbols. Examples ======== >>> from sympy import Dummy >>> from sympy.abc import x, y >>> u = Dummy('u') >>> (u**2 + 1).dummy_eq(x**2 + 1) True >>> (u**2 + 1) == (x**2 + 1) False >>> (u**2 + y).dummy_eq(x**2 + y, x) True >>> (u**2 + y).dummy_eq(x**2 + y, y) False """ s = self.as_dummy() o = _sympify(other) o = o.as_dummy() dummy_symbols = [i for i in s.free_symbols if i.is_Dummy] if len(dummy_symbols) == 1: dummy = dummy_symbols.pop() else: return s == o if symbol is None: symbols = o.free_symbols if len(symbols) == 1: symbol = symbols.pop() else: return s == o tmp = dummy.__class__() return s.subs(dummy, tmp) == o.subs(symbol, tmp) # Note, we always use the default ordering (lex) in __str__ and __repr__, # regardless of the global setting. See issue 5487. def __repr__(self): """Method to return the string representation. Return the expression as a string. """ from sympy.printing import sstr return sstr(self, order=None) def __str__(self): from sympy.printing import sstr return sstr(self, order=None) # We don't define _repr_png_ here because it would add a large amount of # data to any notebook containing SymPy expressions, without adding # anything useful to the notebook. It can still enabled manually, e.g., # for the qtconsole, with init_printing(). def _repr_latex_(self): """ IPython/Jupyter LaTeX printing To change the behavior of this (e.g., pass in some settings to LaTeX), use init_printing(). init_printing() will also enable LaTeX printing for built in numeric types like ints and container types that contain SymPy objects, like lists and dictionaries of expressions. """ from sympy.printing.latex import latex s = latex(self, mode='plain') return "$\\displaystyle %s$" % s _repr_latex_orig = _repr_latex_ def atoms(self, *types): """Returns the atoms that form the current object. By default, only objects that are truly atomic and can't be divided into smaller pieces are returned: symbols, numbers, and number symbols like I and pi. It is possible to request atoms of any type, however, as demonstrated below. Examples ======== >>> from sympy import I, pi, sin >>> from sympy.abc import x, y >>> (1 + x + 2*sin(y + I*pi)).atoms() {1, 2, I, pi, x, y} If one or more types are given, the results will contain only those types of atoms. >>> from sympy import Number, NumberSymbol, Symbol >>> (1 + x + 2*sin(y + I*pi)).atoms(Symbol) {x, y} >>> (1 + x + 2*sin(y + I*pi)).atoms(Number) {1, 2} >>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol) {1, 2, pi} >>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol, I) {1, 2, I, pi} Note that I (imaginary unit) and zoo (complex infinity) are special types of number symbols and are not part of the NumberSymbol class. The type can be given implicitly, too: >>> (1 + x + 2*sin(y + I*pi)).atoms(x) # x is a Symbol {x, y} Be careful to check your assumptions when using the implicit option since ``S(1).is_Integer = True`` but ``type(S(1))`` is ``One``, a special type of sympy atom, while ``type(S(2))`` is type ``Integer`` and will find all integers in an expression: >>> from sympy import S >>> (1 + x + 2*sin(y + I*pi)).atoms(S(1)) {1} >>> (1 + x + 2*sin(y + I*pi)).atoms(S(2)) {1, 2} Finally, arguments to atoms() can select more than atomic atoms: any sympy type (loaded in core/__init__.py) can be listed as an argument and those types of "atoms" as found in scanning the arguments of the expression recursively: >>> from sympy import Function, Mul >>> from sympy.core.function import AppliedUndef >>> f = Function('f') >>> (1 + f(x) + 2*sin(y + I*pi)).atoms(Function) {f(x), sin(y + I*pi)} >>> (1 + f(x) + 2*sin(y + I*pi)).atoms(AppliedUndef) {f(x)} >>> (1 + x + 2*sin(y + I*pi)).atoms(Mul) {I*pi, 2*sin(y + I*pi)} """ if types: types = tuple( [t if isinstance(t, type) else type(t) for t in types]) else: types = (Atom,) result = set() for expr in preorder_traversal(self): if isinstance(expr, types): result.add(expr) return result @property def free_symbols(self): """Return from the atoms of self those which are free symbols. For most expressions, all symbols are free symbols. For some classes this is not true. e.g. Integrals use Symbols for the dummy variables which are bound variables, so Integral has a method to return all symbols except those. Derivative keeps track of symbols with respect to which it will perform a derivative; those are bound variables, too, so it has its own free_symbols method. Any other method that uses bound variables should implement a free_symbols method.""" return set().union(*[a.free_symbols for a in self.args]) @property def expr_free_symbols(self): return set([]) def as_dummy(self): """Return the expression with any objects having structurally bound symbols replaced with unique, canonical symbols within the object in which they appear and having only the default assumption for commutativity being True. Examples ======== >>> from sympy import Integral, Symbol >>> from sympy.abc import x, y >>> r = Symbol('r', real=True) >>> Integral(r, (r, x)).as_dummy() Integral(_0, (_0, x)) >>> _.variables[0].is_real is None True Notes ===== Any object that has structural dummy variables should have a property, `bound_symbols` that returns a list of structural dummy symbols of the object itself. Lambda and Subs have bound symbols, but because of how they are cached, they already compare the same regardless of their bound symbols: >>> from sympy import Lambda >>> Lambda(x, x + 1) == Lambda(y, y + 1) True """ def can(x): d = {i: i.as_dummy() for i in x.bound_symbols} # mask free that shadow bound x = x.subs(d) c = x.canonical_variables # replace bound x = x.xreplace(c) # undo masking x = x.xreplace(dict((v, k) for k, v in d.items())) return x return self.replace( lambda x: hasattr(x, 'bound_symbols'), lambda x: can(x)) @property def canonical_variables(self): """Return a dictionary mapping any variable defined in ``self.bound_symbols`` to Symbols that do not clash with any existing symbol in the expression. Examples ======== >>> from sympy import Lambda >>> from sympy.abc import x >>> Lambda(x, 2*x).canonical_variables {x: _0} """ from sympy.core.symbol import Symbol from sympy.utilities.iterables import numbered_symbols if not hasattr(self, 'bound_symbols'): return {} dums = numbered_symbols('_') reps = {} v = self.bound_symbols # this free will include bound symbols that are not part of # self's bound symbols free = set([i.name for i in self.atoms(Symbol) - set(v)]) for v in v: d = next(dums) if v.is_Symbol: while v.name == d.name or d.name in free: d = next(dums) reps[v] = d return reps def rcall(self, *args): """Apply on the argument recursively through the expression tree. This method is used to simulate a common abuse of notation for operators. For instance in SymPy the the following will not work: ``(x+Lambda(y, 2*y))(z) == x+2*z``, however you can use >>> from sympy import Lambda >>> from sympy.abc import x, y, z >>> (x + Lambda(y, 2*y)).rcall(z) x + 2*z """ return Basic._recursive_call(self, args) @staticmethod def _recursive_call(expr_to_call, on_args): """Helper for rcall method.""" from sympy import Symbol def the_call_method_is_overridden(expr): for cls in getmro(type(expr)): if '__call__' in cls.__dict__: return cls != Basic if callable(expr_to_call) and the_call_method_is_overridden(expr_to_call): if isinstance(expr_to_call, Symbol): # XXX When you call a Symbol it is return expr_to_call # transformed into an UndefFunction else: return expr_to_call(*on_args) elif expr_to_call.args: args = [Basic._recursive_call( sub, on_args) for sub in expr_to_call.args] return type(expr_to_call)(*args) else: return expr_to_call def is_hypergeometric(self, k): from sympy.simplify import hypersimp return hypersimp(self, k) is not None @property def is_comparable(self): """Return True if self can be computed to a real number (or already is a real number) with precision, else False. Examples ======== >>> from sympy import exp_polar, pi, I >>> (I*exp_polar(I*pi/2)).is_comparable True >>> (I*exp_polar(I*pi*2)).is_comparable False A False result does not mean that `self` cannot be rewritten into a form that would be comparable. For example, the difference computed below is zero but without simplification it does not evaluate to a zero with precision: >>> e = 2**pi*(1 + 2**pi) >>> dif = e - e.expand() >>> dif.is_comparable False >>> dif.n(2)._prec 1 """ is_extended_real = self.is_extended_real if is_extended_real is False: return False if not self.is_number: return False # don't re-eval numbers that are already evaluated since # this will create spurious precision n, i = [p.evalf(2) if not p.is_Number else p for p in self.as_real_imag()] if not (i.is_Number and n.is_Number): return False if i: # if _prec = 1 we can't decide and if not, # the answer is False because numbers with # imaginary parts can't be compared # so return False return False else: return n._prec != 1 @property def func(self): """ The top-level function in an expression. The following should hold for all objects:: >> x == x.func(*x.args) Examples ======== >>> from sympy.abc import x >>> a = 2*x >>> a.func <class 'sympy.core.mul.Mul'> >>> a.args (2, x) >>> a.func(*a.args) 2*x >>> a == a.func(*a.args) True """ return self.__class__ @property def args(self): """Returns a tuple of arguments of 'self'. Examples ======== >>> from sympy import cot >>> from sympy.abc import x, y >>> cot(x).args (x,) >>> cot(x).args[0] x >>> (x*y).args (x, y) >>> (x*y).args[1] y Notes ===== Never use self._args, always use self.args. Only use _args in __new__ when creating a new function. Don't override .args() from Basic (so that it's easy to change the interface in the future if needed). """ return self._args @property def _sorted_args(self): """ The same as ``args``. Derived classes which don't fix an order on their arguments should override this method to produce the sorted representation. """ return self.args def as_poly(self, *gens, **args): """Converts ``self`` to a polynomial or returns ``None``. >>> from sympy import sin >>> from sympy.abc import x, y >>> print((x**2 + x*y).as_poly()) Poly(x**2 + x*y, x, y, domain='ZZ') >>> print((x**2 + x*y).as_poly(x, y)) Poly(x**2 + x*y, x, y, domain='ZZ') >>> print((x**2 + sin(y)).as_poly(x, y)) None """ from sympy.polys import Poly, PolynomialError try: poly = Poly(self, *gens, **args) if not poly.is_Poly: return None else: return poly except PolynomialError: return None def as_content_primitive(self, radical=False, clear=True): """A stub to allow Basic args (like Tuple) to be skipped when computing the content and primitive components of an expression. See Also ======== sympy.core.expr.Expr.as_content_primitive """ return S.One, self def subs(self, *args, **kwargs): """ Substitutes old for new in an expression after sympifying args. `args` is either: - two arguments, e.g. foo.subs(old, new) - one iterable argument, e.g. foo.subs(iterable). The iterable may be o an iterable container with (old, new) pairs. In this case the replacements are processed in the order given with successive patterns possibly affecting replacements already made. o a dict or set whose key/value items correspond to old/new pairs. In this case the old/new pairs will be sorted by op count and in case of a tie, by number of args and the default_sort_key. The resulting sorted list is then processed as an iterable container (see previous). If the keyword ``simultaneous`` is True, the subexpressions will not be evaluated until all the substitutions have been made. Examples ======== >>> from sympy import pi, exp, limit, oo >>> from sympy.abc import x, y >>> (1 + x*y).subs(x, pi) pi*y + 1 >>> (1 + x*y).subs({x:pi, y:2}) 1 + 2*pi >>> (1 + x*y).subs([(x, pi), (y, 2)]) 1 + 2*pi >>> reps = [(y, x**2), (x, 2)] >>> (x + y).subs(reps) 6 >>> (x + y).subs(reversed(reps)) x**2 + 2 >>> (x**2 + x**4).subs(x**2, y) y**2 + y To replace only the x**2 but not the x**4, use xreplace: >>> (x**2 + x**4).xreplace({x**2: y}) x**4 + y To delay evaluation until all substitutions have been made, set the keyword ``simultaneous`` to True: >>> (x/y).subs([(x, 0), (y, 0)]) 0 >>> (x/y).subs([(x, 0), (y, 0)], simultaneous=True) nan This has the added feature of not allowing subsequent substitutions to affect those already made: >>> ((x + y)/y).subs({x + y: y, y: x + y}) 1 >>> ((x + y)/y).subs({x + y: y, y: x + y}, simultaneous=True) y/(x + y) In order to obtain a canonical result, unordered iterables are sorted by count_op length, number of arguments and by the default_sort_key to break any ties. All other iterables are left unsorted. >>> from sympy import sqrt, sin, cos >>> from sympy.abc import a, b, c, d, e >>> A = (sqrt(sin(2*x)), a) >>> B = (sin(2*x), b) >>> C = (cos(2*x), c) >>> D = (x, d) >>> E = (exp(x), e) >>> expr = sqrt(sin(2*x))*sin(exp(x)*x)*cos(2*x) + sin(2*x) >>> expr.subs(dict([A, B, C, D, E])) a*c*sin(d*e) + b The resulting expression represents a literal replacement of the old arguments with the new arguments. This may not reflect the limiting behavior of the expression: >>> (x**3 - 3*x).subs({x: oo}) nan >>> limit(x**3 - 3*x, x, oo) oo If the substitution will be followed by numerical evaluation, it is better to pass the substitution to evalf as >>> (1/x).evalf(subs={x: 3.0}, n=21) 0.333333333333333333333 rather than >>> (1/x).subs({x: 3.0}).evalf(21) 0.333333333333333314830 as the former will ensure that the desired level of precision is obtained. See Also ======== replace: replacement capable of doing wildcard-like matching, parsing of match, and conditional replacements xreplace: exact node replacement in expr tree; also capable of using matching rules sympy.core.evalf.EvalfMixin.evalf: calculates the given formula to a desired level of precision """ from sympy.core.containers import Dict from sympy.utilities import default_sort_key from sympy import Dummy, Symbol unordered = False if len(args) == 1: sequence = args[0] if isinstance(sequence, set): unordered = True elif isinstance(sequence, (Dict, Mapping)): unordered = True sequence = sequence.items() elif not iterable(sequence): from sympy.utilities.misc import filldedent raise ValueError(filldedent(""" When a single argument is passed to subs it should be a dictionary of old: new pairs or an iterable of (old, new) tuples.""")) elif len(args) == 2: sequence = [args] else: raise ValueError("subs accepts either 1 or 2 arguments") sequence = list(sequence) for i, s in enumerate(sequence): if isinstance(s[0], string_types): # when old is a string we prefer Symbol s = Symbol(s[0]), s[1] try: s = [sympify(_, strict=not isinstance(_, string_types)) for _ in s] except SympifyError: # if it can't be sympified, skip it sequence[i] = None continue # skip if there is no change sequence[i] = None if _aresame(*s) else tuple(s) sequence = list(filter(None, sequence)) if unordered: sequence = dict(sequence) if not all(k.is_Atom for k in sequence): d = {} for o, n in sequence.items(): try: ops = o.count_ops(), len(o.args) except TypeError: ops = (0, 0) d.setdefault(ops, []).append((o, n)) newseq = [] for k in sorted(d.keys(), reverse=True): newseq.extend( sorted([v[0] for v in d[k]], key=default_sort_key)) sequence = [(k, sequence[k]) for k in newseq] del newseq, d else: sequence = sorted([(k, v) for (k, v) in sequence.items()], key=default_sort_key) if kwargs.pop('simultaneous', False): # XXX should this be the default for dict subs? reps = {} rv = self kwargs['hack2'] = True m = Dummy('subs_m') for old, new in sequence: com = new.is_commutative if com is None: com = True d = Dummy('subs_d', commutative=com) # using d*m so Subs will be used on dummy variables # in things like Derivative(f(x, y), x) in which x # is both free and bound rv = rv._subs(old, d*m, **kwargs) if not isinstance(rv, Basic): break reps[d] = new reps[m] = S.One # get rid of m return rv.xreplace(reps) else: rv = self for old, new in sequence: rv = rv._subs(old, new, **kwargs) if not isinstance(rv, Basic): break return rv @cacheit def _subs(self, old, new, **hints): """Substitutes an expression old -> new. If self is not equal to old then _eval_subs is called. If _eval_subs doesn't want to make any special replacement then a None is received which indicates that the fallback should be applied wherein a search for replacements is made amongst the arguments of self. >>> from sympy import Add >>> from sympy.abc import x, y, z Examples ======== Add's _eval_subs knows how to target x + y in the following so it makes the change: >>> (x + y + z).subs(x + y, 1) z + 1 Add's _eval_subs doesn't need to know how to find x + y in the following: >>> Add._eval_subs(z*(x + y) + 3, x + y, 1) is None True The returned None will cause the fallback routine to traverse the args and pass the z*(x + y) arg to Mul where the change will take place and the substitution will succeed: >>> (z*(x + y) + 3).subs(x + y, 1) z + 3 ** Developers Notes ** An _eval_subs routine for a class should be written if: 1) any arguments are not instances of Basic (e.g. bool, tuple); 2) some arguments should not be targeted (as in integration variables); 3) if there is something other than a literal replacement that should be attempted (as in Piecewise where the condition may be updated without doing a replacement). If it is overridden, here are some special cases that might arise: 1) If it turns out that no special change was made and all the original sub-arguments should be checked for replacements then None should be returned. 2) If it is necessary to do substitutions on a portion of the expression then _subs should be called. _subs will handle the case of any sub-expression being equal to old (which usually would not be the case) while its fallback will handle the recursion into the sub-arguments. For example, after Add's _eval_subs removes some matching terms it must process the remaining terms so it calls _subs on each of the un-matched terms and then adds them onto the terms previously obtained. 3) If the initial expression should remain unchanged then the original expression should be returned. (Whenever an expression is returned, modified or not, no further substitution of old -> new is attempted.) Sum's _eval_subs routine uses this strategy when a substitution is attempted on any of its summation variables. """ def fallback(self, old, new): """ Try to replace old with new in any of self's arguments. """ hit = False args = list(self.args) for i, arg in enumerate(args): if not hasattr(arg, '_eval_subs'): continue arg = arg._subs(old, new, **hints) if not _aresame(arg, args[i]): hit = True args[i] = arg if hit: rv = self.func(*args) hack2 = hints.get('hack2', False) if hack2 and self.is_Mul and not rv.is_Mul: # 2-arg hack coeff = S.One nonnumber = [] for i in args: if i.is_Number: coeff *= i else: nonnumber.append(i) nonnumber = self.func(*nonnumber) if coeff is S.One: return nonnumber else: return self.func(coeff, nonnumber, evaluate=False) return rv return self if _aresame(self, old): return new rv = self._eval_subs(old, new) if rv is None: rv = fallback(self, old, new) return rv def _eval_subs(self, old, new): """Override this stub if you want to do anything more than attempt a replacement of old with new in the arguments of self. See also ======== _subs """ return None def xreplace(self, rule): """ Replace occurrences of objects within the expression. Parameters ========== rule : dict-like Expresses a replacement rule Returns ======= xreplace : the result of the replacement Examples ======== >>> from sympy import symbols, pi, exp >>> x, y, z = symbols('x y z') >>> (1 + x*y).xreplace({x: pi}) pi*y + 1 >>> (1 + x*y).xreplace({x: pi, y: 2}) 1 + 2*pi Replacements occur only if an entire node in the expression tree is matched: >>> (x*y + z).xreplace({x*y: pi}) z + pi >>> (x*y*z).xreplace({x*y: pi}) x*y*z >>> (2*x).xreplace({2*x: y, x: z}) y >>> (2*2*x).xreplace({2*x: y, x: z}) 4*z >>> (x + y + 2).xreplace({x + y: 2}) x + y + 2 >>> (x + 2 + exp(x + 2)).xreplace({x + 2: y}) x + exp(y) + 2 xreplace doesn't differentiate between free and bound symbols. In the following, subs(x, y) would not change x since it is a bound symbol, but xreplace does: >>> from sympy import Integral >>> Integral(x, (x, 1, 2*x)).xreplace({x: y}) Integral(y, (y, 1, 2*y)) Trying to replace x with an expression raises an error: >>> Integral(x, (x, 1, 2*x)).xreplace({x: 2*y}) # doctest: +SKIP ValueError: Invalid limits given: ((2*y, 1, 4*y),) See Also ======== replace: replacement capable of doing wildcard-like matching, parsing of match, and conditional replacements subs: substitution of subexpressions as defined by the objects themselves. """ value, _ = self._xreplace(rule) return value def _xreplace(self, rule): """ Helper for xreplace. Tracks whether a replacement actually occurred. """ if self in rule: return rule[self], True elif rule: args = [] changed = False for a in self.args: _xreplace = getattr(a, '_xreplace', None) if _xreplace is not None: a_xr = _xreplace(rule) args.append(a_xr[0]) changed |= a_xr[1] else: args.append(a) args = tuple(args) if changed: return self.func(*args), True return self, False @cacheit def has(self, *patterns): """ Test whether any subexpression matches any of the patterns. Examples ======== >>> from sympy import sin >>> from sympy.abc import x, y, z >>> (x**2 + sin(x*y)).has(z) False >>> (x**2 + sin(x*y)).has(x, y, z) True >>> x.has(x) True Note ``has`` is a structural algorithm with no knowledge of mathematics. Consider the following half-open interval: >>> from sympy.sets import Interval >>> i = Interval.Lopen(0, 5); i Interval.Lopen(0, 5) >>> i.args (0, 5, True, False) >>> i.has(4) # there is no "4" in the arguments False >>> i.has(0) # there *is* a "0" in the arguments True Instead, use ``contains`` to determine whether a number is in the interval or not: >>> i.contains(4) True >>> i.contains(0) False Note that ``expr.has(*patterns)`` is exactly equivalent to ``any(expr.has(p) for p in patterns)``. In particular, ``False`` is returned when the list of patterns is empty. >>> x.has() False """ return any(self._has(pattern) for pattern in patterns) def _has(self, pattern): """Helper for .has()""" from sympy.core.function import UndefinedFunction, Function if isinstance(pattern, UndefinedFunction): return any(f.func == pattern or f == pattern for f in self.atoms(Function, UndefinedFunction)) pattern = sympify(pattern) if isinstance(pattern, BasicMeta): return any(isinstance(arg, pattern) for arg in preorder_traversal(self)) _has_matcher = getattr(pattern, '_has_matcher', None) if _has_matcher is not None: match = _has_matcher() return any(match(arg) for arg in preorder_traversal(self)) else: return any(arg == pattern for arg in preorder_traversal(self)) def _has_matcher(self): """Helper for .has()""" return lambda other: self == other def replace(self, query, value, map=False, simultaneous=True, exact=None): """ Replace matching subexpressions of ``self`` with ``value``. If ``map = True`` then also return the mapping {old: new} where ``old`` was a sub-expression found with query and ``new`` is the replacement value for it. If the expression itself doesn't match the query, then the returned value will be ``self.xreplace(map)`` otherwise it should be ``self.subs(ordered(map.items()))``. Traverses an expression tree and performs replacement of matching subexpressions from the bottom to the top of the tree. The default approach is to do the replacement in a simultaneous fashion so changes made are targeted only once. If this is not desired or causes problems, ``simultaneous`` can be set to False. In addition, if an expression containing more than one Wild symbol is being used to match subexpressions and the ``exact`` flag is None it will be set to True so the match will only succeed if all non-zero values are received for each Wild that appears in the match pattern. Setting this to False accepts a match of 0; while setting it True accepts all matches that have a 0 in them. See example below for cautions. The list of possible combinations of queries and replacement values is listed below: Examples ======== Initial setup >>> from sympy import log, sin, cos, tan, Wild, Mul, Add >>> from sympy.abc import x, y >>> f = log(sin(x)) + tan(sin(x**2)) 1.1. type -> type obj.replace(type, newtype) When object of type ``type`` is found, replace it with the result of passing its argument(s) to ``newtype``. >>> f.replace(sin, cos) log(cos(x)) + tan(cos(x**2)) >>> sin(x).replace(sin, cos, map=True) (cos(x), {sin(x): cos(x)}) >>> (x*y).replace(Mul, Add) x + y 1.2. type -> func obj.replace(type, func) When object of type ``type`` is found, apply ``func`` to its argument(s). ``func`` must be written to handle the number of arguments of ``type``. >>> f.replace(sin, lambda arg: sin(2*arg)) log(sin(2*x)) + tan(sin(2*x**2)) >>> (x*y).replace(Mul, lambda *args: sin(2*Mul(*args))) sin(2*x*y) 2.1. pattern -> expr obj.replace(pattern(wild), expr(wild)) Replace subexpressions matching ``pattern`` with the expression written in terms of the Wild symbols in ``pattern``. >>> a, b = map(Wild, 'ab') >>> f.replace(sin(a), tan(a)) log(tan(x)) + tan(tan(x**2)) >>> f.replace(sin(a), tan(a/2)) log(tan(x/2)) + tan(tan(x**2/2)) >>> f.replace(sin(a), a) log(x) + tan(x**2) >>> (x*y).replace(a*x, a) y Matching is exact by default when more than one Wild symbol is used: matching fails unless the match gives non-zero values for all Wild symbols: >>> (2*x + y).replace(a*x + b, b - a) y - 2 >>> (2*x).replace(a*x + b, b - a) 2*x When set to False, the results may be non-intuitive: >>> (2*x).replace(a*x + b, b - a, exact=False) 2/x 2.2. pattern -> func obj.replace(pattern(wild), lambda wild: expr(wild)) All behavior is the same as in 2.1 but now a function in terms of pattern variables is used rather than an expression: >>> f.replace(sin(a), lambda a: sin(2*a)) log(sin(2*x)) + tan(sin(2*x**2)) 3.1. func -> func obj.replace(filter, func) Replace subexpression ``e`` with ``func(e)`` if ``filter(e)`` is True. >>> g = 2*sin(x**3) >>> g.replace(lambda expr: expr.is_Number, lambda expr: expr**2) 4*sin(x**9) The expression itself is also targeted by the query but is done in such a fashion that changes are not made twice. >>> e = x*(x*y + 1) >>> e.replace(lambda x: x.is_Mul, lambda x: 2*x) 2*x*(2*x*y + 1) When matching a single symbol, `exact` will default to True, but this may or may not be the behavior that is desired: Here, we want `exact=False`: >>> from sympy import Function >>> f = Function('f') >>> e = f(1) + f(0) >>> q = f(a), lambda a: f(a + 1) >>> e.replace(*q, exact=False) f(1) + f(2) >>> e.replace(*q, exact=True) f(0) + f(2) But here, the nature of matching makes selecting the right setting tricky: >>> e = x**(1 + y) >>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=False) 1 >>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=True) x**(-x - y + 1) >>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=False) 1 >>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=True) x**(1 - y) It is probably better to use a different form of the query that describes the target expression more precisely: >>> (1 + x**(1 + y)).replace( ... lambda x: x.is_Pow and x.exp.is_Add and x.exp.args[0] == 1, ... lambda x: x.base**(1 - (x.exp - 1))) ... x**(1 - y) + 1 See Also ======== subs: substitution of subexpressions as defined by the objects themselves. xreplace: exact node replacement in expr tree; also capable of using matching rules """ from sympy.core.symbol import Dummy, Wild from sympy.simplify.simplify import bottom_up try: query = _sympify(query) except SympifyError: pass try: value = _sympify(value) except SympifyError: pass if isinstance(query, type): _query = lambda expr: isinstance(expr, query) if isinstance(value, type): _value = lambda expr, result: value(*expr.args) elif callable(value): _value = lambda expr, result: value(*expr.args) else: raise TypeError( "given a type, replace() expects another " "type or a callable") elif isinstance(query, Basic): _query = lambda expr: expr.match(query) if exact is None: exact = (len(query.atoms(Wild)) > 1) if isinstance(value, Basic): if exact: _value = lambda expr, result: (value.subs(result) if all(result.values()) else expr) else: _value = lambda expr, result: value.subs(result) elif callable(value): # match dictionary keys get the trailing underscore stripped # from them and are then passed as keywords to the callable; # if ``exact`` is True, only accept match if there are no null # values amongst those matched. if exact: _value = lambda expr, result: (value(** {str(k)[:-1]: v for k, v in result.items()}) if all(val for val in result.values()) else expr) else: _value = lambda expr, result: value(** {str(k)[:-1]: v for k, v in result.items()}) else: raise TypeError( "given an expression, replace() expects " "another expression or a callable") elif callable(query): _query = query if callable(value): _value = lambda expr, result: value(expr) else: raise TypeError( "given a callable, replace() expects " "another callable") else: raise TypeError( "first argument to replace() must be a " "type, an expression or a callable") mapping = {} # changes that took place mask = [] # the dummies that were used as change placeholders def rec_replace(expr): result = _query(expr) if result or result == {}: new = _value(expr, result) if new is not None and new != expr: mapping[expr] = new if simultaneous: # don't let this change during rebuilding; # XXX this may fail if the object being replaced # cannot be represented as a Dummy in the expression # tree, e.g. an ExprConditionPair in Piecewise # cannot be represented with a Dummy com = getattr(new, 'is_commutative', True) if com is None: com = True d = Dummy('rec_replace', commutative=com) mask.append((d, new)) expr = d else: expr = new return expr rv = bottom_up(self, rec_replace, atoms=True) # restore original expressions for Dummy symbols if simultaneous: mask = list(reversed(mask)) for o, n in mask: r = {o: n} # if a sub-expression could not be replaced with # a Dummy then this will fail; either filter # against such sub-expressions or figure out a # way to carry out simultaneous replacement # in this situation. rv = rv.xreplace(r) # if this fails, see above if not map: return rv else: if simultaneous: # restore subexpressions in mapping for o, n in mask: r = {o: n} mapping = {k.xreplace(r): v.xreplace(r) for k, v in mapping.items()} return rv, mapping def find(self, query, group=False): """Find all subexpressions matching a query. """ query = _make_find_query(query) results = list(filter(query, preorder_traversal(self))) if not group: return set(results) else: groups = {} for result in results: if result in groups: groups[result] += 1 else: groups[result] = 1 return groups def count(self, query): """Count the number of matching subexpressions. """ query = _make_find_query(query) return sum(bool(query(sub)) for sub in preorder_traversal(self)) def matches(self, expr, repl_dict={}, old=False): """ Helper method for match() that looks for a match between Wild symbols in self and expressions in expr. Examples ======== >>> from sympy import symbols, Wild, Basic >>> a, b, c = symbols('a b c') >>> x = Wild('x') >>> Basic(a + x, x).matches(Basic(a + b, c)) is None True >>> Basic(a + x, x).matches(Basic(a + b + c, b + c)) {x_: b + c} """ expr = sympify(expr) if not isinstance(expr, self.__class__): return None if self == expr: return repl_dict if len(self.args) != len(expr.args): return None d = repl_dict.copy() for arg, other_arg in zip(self.args, expr.args): if arg == other_arg: continue d = arg.xreplace(d).matches(other_arg, d, old=old) if d is None: return None return d def match(self, pattern, old=False): """ Pattern matching. Wild symbols match all. Return ``None`` when expression (self) does not match with pattern. Otherwise return a dictionary such that:: pattern.xreplace(self.match(pattern)) == self Examples ======== >>> from sympy import Wild >>> from sympy.abc import x, y >>> p = Wild("p") >>> q = Wild("q") >>> r = Wild("r") >>> e = (x+y)**(x+y) >>> e.match(p**p) {p_: x + y} >>> e.match(p**q) {p_: x + y, q_: x + y} >>> e = (2*x)**2 >>> e.match(p*q**r) {p_: 4, q_: x, r_: 2} >>> (p*q**r).xreplace(e.match(p*q**r)) 4*x**2 The ``old`` flag will give the old-style pattern matching where expressions and patterns are essentially solved to give the match. Both of the following give None unless ``old=True``: >>> (x - 2).match(p - x, old=True) {p_: 2*x - 2} >>> (2/x).match(p*x, old=True) {p_: 2/x**2} """ pattern = sympify(pattern) return pattern.matches(self, old=old) def count_ops(self, visual=None): """wrapper for count_ops that returns the operation count.""" from sympy import count_ops return count_ops(self, visual) def doit(self, **hints): """Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via 'hints' or unless the 'deep' hint was set to 'False'. >>> from sympy import Integral >>> from sympy.abc import x >>> 2*Integral(x, x) 2*Integral(x, x) >>> (2*Integral(x, x)).doit() x**2 >>> (2*Integral(x, x)).doit(deep=False) 2*Integral(x, x) """ if hints.get('deep', True): terms = [term.doit(**hints) if isinstance(term, Basic) else term for term in self.args] return self.func(*terms) else: return self def _eval_rewrite(self, pattern, rule, **hints): if self.is_Atom: if hasattr(self, rule): return getattr(self, rule)() return self if hints.get('deep', True): args = [a._eval_rewrite(pattern, rule, **hints) if isinstance(a, Basic) else a for a in self.args] else: args = self.args if pattern is None or isinstance(self, pattern): if hasattr(self, rule): rewritten = getattr(self, rule)(*args, **hints) if rewritten is not None: return rewritten return self.func(*args) if hints.get('evaluate', True) else self def _accept_eval_derivative(self, s): # This method needs to be overridden by array-like objects return s._visit_eval_derivative_scalar(self) def _visit_eval_derivative_scalar(self, base): # Base is a scalar # Types are (base: scalar, self: scalar) return base._eval_derivative(self) def _visit_eval_derivative_array(self, base): # Types are (base: array/matrix, self: scalar) # Base is some kind of array/matrix, # it should have `.applyfunc(lambda x: x.diff(self)` implemented: return base._eval_derivative_array(self) def _eval_derivative_n_times(self, s, n): # This is the default evaluator for derivatives (as called by `diff` # and `Derivative`), it will attempt a loop to derive the expression # `n` times by calling the corresponding `_eval_derivative` method, # while leaving the derivative unevaluated if `n` is symbolic. This # method should be overridden if the object has a closed form for its # symbolic n-th derivative. from sympy import Integer if isinstance(n, (int, Integer)): obj = self for i in range(n): obj2 = obj._accept_eval_derivative(s) if obj == obj2 or obj2 is None: break obj = obj2 return obj2 else: return None def rewrite(self, *args, **hints): """ Rewrite functions in terms of other functions. Rewrites expression containing applications of functions of one kind in terms of functions of different kind. For example you can rewrite trigonometric functions as complex exponentials or combinatorial functions as gamma function. As a pattern this function accepts a list of functions to to rewrite (instances of DefinedFunction class). As rule you can use string or a destination function instance (in this case rewrite() will use the str() function). There is also the possibility to pass hints on how to rewrite the given expressions. For now there is only one such hint defined called 'deep'. When 'deep' is set to False it will forbid functions to rewrite their contents. Examples ======== >>> from sympy import sin, exp >>> from sympy.abc import x Unspecified pattern: >>> sin(x).rewrite(exp) -I*(exp(I*x) - exp(-I*x))/2 Pattern as a single function: >>> sin(x).rewrite(sin, exp) -I*(exp(I*x) - exp(-I*x))/2 Pattern as a list of functions: >>> sin(x).rewrite([sin, ], exp) -I*(exp(I*x) - exp(-I*x))/2 """ if not args: return self else: pattern = args[:-1] if isinstance(args[-1], string_types): rule = '_eval_rewrite_as_' + args[-1] else: try: rule = '_eval_rewrite_as_' + args[-1].__name__ except: rule = '_eval_rewrite_as_' + args[-1].__class__.__name__ if not pattern: return self._eval_rewrite(None, rule, **hints) else: if iterable(pattern[0]): pattern = pattern[0] pattern = [p for p in pattern if self.has(p)] if pattern: return self._eval_rewrite(tuple(pattern), rule, **hints) else: return self _constructor_postprocessor_mapping = {} @classmethod def _exec_constructor_postprocessors(cls, obj): # WARNING: This API is experimental. # This is an experimental API that introduces constructor # postprosessors for SymPy Core elements. If an argument of a SymPy # expression has a `_constructor_postprocessor_mapping` attribute, it will # be interpreted as a dictionary containing lists of postprocessing # functions for matching expression node names. clsname = obj.__class__.__name__ postprocessors = defaultdict(list) for i in obj.args: try: postprocessor_mappings = ( Basic._constructor_postprocessor_mapping[cls].items() for cls in type(i).mro() if cls in Basic._constructor_postprocessor_mapping ) for k, v in chain.from_iterable(postprocessor_mappings): postprocessors[k].extend([j for j in v if j not in postprocessors[k]]) except TypeError: pass for f in postprocessors.get(clsname, []): obj = f(obj) return obj class Atom(Basic): """ A parent class for atomic things. An atom is an expression with no subexpressions. Examples ======== Symbol, Number, Rational, Integer, ... But not: Add, Mul, Pow, ... """ is_Atom = True __slots__ = [] def matches(self, expr, repl_dict={}, old=False): if self == expr: return repl_dict def xreplace(self, rule, hack2=False): return rule.get(self, self) def doit(self, **hints): return self @classmethod def class_key(cls): return 2, 0, cls.__name__ @cacheit def sort_key(self, order=None): return self.class_key(), (1, (str(self),)), S.One.sort_key(), S.One def _eval_simplify(self, **kwargs): return self @property def _sorted_args(self): # this is here as a safeguard against accidentally using _sorted_args # on Atoms -- they cannot be rebuilt as atom.func(*atom._sorted_args) # since there are no args. So the calling routine should be checking # to see that this property is not called for Atoms. raise AttributeError('Atoms have no args. It might be necessary' ' to make a check for Atoms in the calling code.') def _aresame(a, b): """Return True if a and b are structurally the same, else False. Examples ======== In SymPy (as in Python) two numbers compare the same if they have the same underlying base-2 representation even though they may not be the same type: >>> from sympy import S >>> 2.0 == S(2) True >>> 0.5 == S.Half True This routine was written to provide a query for such cases that would give false when the types do not match: >>> from sympy.core.basic import _aresame >>> _aresame(S(2.0), S(2)) False """ from .numbers import Number from .function import AppliedUndef, UndefinedFunction as UndefFunc if isinstance(a, Number) and isinstance(b, Number): return a == b and a.__class__ == b.__class__ for i, j in zip_longest(preorder_traversal(a), preorder_traversal(b)): if i != j or type(i) != type(j): if ((isinstance(i, UndefFunc) and isinstance(j, UndefFunc)) or (isinstance(i, AppliedUndef) and isinstance(j, AppliedUndef))): if i.class_key() != j.class_key(): return False else: return False return True def _atomic(e, recursive=False): """Return atom-like quantities as far as substitution is concerned: Derivatives, Functions and Symbols. Don't return any 'atoms' that are inside such quantities unless they also appear outside, too, unless `recursive` is True. Examples ======== >>> from sympy import Derivative, Function, cos >>> from sympy.abc import x, y >>> from sympy.core.basic import _atomic >>> f = Function('f') >>> _atomic(x + y) {x, y} >>> _atomic(x + f(y)) {x, f(y)} >>> _atomic(Derivative(f(x), x) + cos(x) + y) {y, cos(x), Derivative(f(x), x)} """ from sympy import Derivative, Function, Symbol pot = preorder_traversal(e) seen = set() if isinstance(e, Basic): free = getattr(e, "free_symbols", None) if free is None: return {e} else: return set() atoms = set() for p in pot: if p in seen: pot.skip() continue seen.add(p) if isinstance(p, Symbol) and p in free: atoms.add(p) elif isinstance(p, (Derivative, Function)): if not recursive: pot.skip() atoms.add(p) return atoms class preorder_traversal(Iterator): """ Do a pre-order traversal of a tree. This iterator recursively yields nodes that it has visited in a pre-order fashion. That is, it yields the current node then descends through the tree breadth-first to yield all of a node's children's pre-order traversal. For an expression, the order of the traversal depends on the order of .args, which in many cases can be arbitrary. Parameters ========== node : sympy expression The expression to traverse. keys : (default None) sort key(s) The key(s) used to sort args of Basic objects. When None, args of Basic objects are processed in arbitrary order. If key is defined, it will be passed along to ordered() as the only key(s) to use to sort the arguments; if ``key`` is simply True then the default keys of ordered will be used. Yields ====== subtree : sympy expression All of the subtrees in the tree. Examples ======== >>> from sympy import symbols >>> from sympy.core.basic import preorder_traversal >>> x, y, z = symbols('x y z') The nodes are returned in the order that they are encountered unless key is given; simply passing key=True will guarantee that the traversal is unique. >>> list(preorder_traversal((x + y)*z, keys=None)) # doctest: +SKIP [z*(x + y), z, x + y, y, x] >>> list(preorder_traversal((x + y)*z, keys=True)) [z*(x + y), z, x + y, x, y] """ def __init__(self, node, keys=None): self._skip_flag = False self._pt = self._preorder_traversal(node, keys) def _preorder_traversal(self, node, keys): yield node if self._skip_flag: self._skip_flag = False return if isinstance(node, Basic): if not keys and hasattr(node, '_argset'): # LatticeOp keeps args as a set. We should use this if we # don't care about the order, to prevent unnecessary sorting. args = node._argset else: args = node.args if keys: if keys != True: args = ordered(args, keys, default=False) else: args = ordered(args) for arg in args: for subtree in self._preorder_traversal(arg, keys): yield subtree elif iterable(node): for item in node: for subtree in self._preorder_traversal(item, keys): yield subtree def skip(self): """ Skip yielding current node's (last yielded node's) subtrees. Examples ======== >>> from sympy.core import symbols >>> from sympy.core.basic import preorder_traversal >>> x, y, z = symbols('x y z') >>> pt = preorder_traversal((x+y*z)*z) >>> for i in pt: ... print(i) ... if i == x+y*z: ... pt.skip() z*(x + y*z) z x + y*z """ self._skip_flag = True def __next__(self): return next(self._pt) def __iter__(self): return self def _make_find_query(query): """Convert the argument of Basic.find() into a callable""" try: query = sympify(query) except SympifyError: pass if isinstance(query, type): return lambda expr: isinstance(expr, query) elif isinstance(query, Basic): return lambda expr: expr.match(query) is not None return query
b9ff61060419e3d5ea54e2695b3fc546d3c0481a6cc892f0405f97073bc2b1c3
from __future__ import print_function, division from .sympify import sympify, _sympify, SympifyError from .basic import Basic, Atom from .singleton import S from .evalf import EvalfMixin, pure_complex from .decorators import _sympifyit, call_highest_priority from .cache import cacheit from .compatibility import reduce, as_int, default_sort_key, range, Iterable from sympy.utilities.misc import func_name from mpmath.libmp import mpf_log, prec_to_dps from collections import defaultdict class Expr(Basic, EvalfMixin): """ Base class for algebraic expressions. Everything that requires arithmetic operations to be defined should subclass this class, instead of Basic (which should be used only for argument storage and expression manipulation, i.e. pattern matching, substitutions, etc). See Also ======== sympy.core.basic.Basic """ __slots__ = [] is_scalar = True # self derivative is 1 @property def _diff_wrt(self): """Return True if one can differentiate with respect to this object, else False. Subclasses such as Symbol, Function and Derivative return True to enable derivatives wrt them. The implementation in Derivative separates the Symbol and non-Symbol (_diff_wrt=True) variables and temporarily converts the non-Symbols into Symbols when performing the differentiation. By default, any object deriving from Expr will behave like a scalar with self.diff(self) == 1. If this is not desired then the object must also set `is_scalar = False` or else define an _eval_derivative routine. Note, see the docstring of Derivative for how this should work mathematically. In particular, note that expr.subs(yourclass, Symbol) should be well-defined on a structural level, or this will lead to inconsistent results. Examples ======== >>> from sympy import Expr >>> e = Expr() >>> e._diff_wrt False >>> class MyScalar(Expr): ... _diff_wrt = True ... >>> MyScalar().diff(MyScalar()) 1 >>> class MySymbol(Expr): ... _diff_wrt = True ... is_scalar = False ... >>> MySymbol().diff(MySymbol()) Derivative(MySymbol(), MySymbol()) """ return False @cacheit def sort_key(self, order=None): coeff, expr = self.as_coeff_Mul() if expr.is_Pow: expr, exp = expr.args else: expr, exp = expr, S.One if expr.is_Dummy: args = (expr.sort_key(),) elif expr.is_Atom: args = (str(expr),) else: if expr.is_Add: args = expr.as_ordered_terms(order=order) elif expr.is_Mul: args = expr.as_ordered_factors(order=order) else: args = expr.args args = tuple( [ default_sort_key(arg, order=order) for arg in args ]) args = (len(args), tuple(args)) exp = exp.sort_key(order=order) return expr.class_key(), args, exp, coeff def __hash__(self): # hash cannot be cached using cache_it because infinite recurrence # occurs as hash is needed for setting cache dictionary keys h = self._mhash if h is None: h = hash((type(self).__name__,) + self._hashable_content()) self._mhash = h return h def _hashable_content(self): """Return a tuple of information about self that can be used to compute the hash. If a class defines additional attributes, like ``name`` in Symbol, then this method should be updated accordingly to return such relevant attributes. Defining more than _hashable_content is necessary if __eq__ has been defined by a class. See note about this in Basic.__eq__.""" return self._args def __eq__(self, other): try: other = _sympify(other) if not isinstance(other, Expr): return False except (SympifyError, SyntaxError): return False # check for pure number expr if not (self.is_Number and other.is_Number) and ( type(self) != type(other)): return False a, b = self._hashable_content(), other._hashable_content() if a != b: return False # check number *in* an expression for a, b in zip(a, b): if not isinstance(a, Expr): continue if a.is_Number and type(a) != type(b): return False return True # *************** # * Arithmetics * # *************** # Expr and its sublcasses use _op_priority to determine which object # passed to a binary special method (__mul__, etc.) will handle the # operation. In general, the 'call_highest_priority' decorator will choose # the object with the highest _op_priority to handle the call. # Custom subclasses that want to define their own binary special methods # should set an _op_priority value that is higher than the default. # # **NOTE**: # This is a temporary fix, and will eventually be replaced with # something better and more powerful. See issue 5510. _op_priority = 10.0 def __pos__(self): return self def __neg__(self): # Mul has its own __neg__ routine, so we just # create a 2-args Mul with the -1 in the canonical # slot 0. c = self.is_commutative return Mul._from_args((S.NegativeOne, self), c) def __abs__(self): from sympy import Abs return Abs(self) @_sympifyit('other', NotImplemented) @call_highest_priority('__radd__') def __add__(self, other): return Add(self, other) @_sympifyit('other', NotImplemented) @call_highest_priority('__add__') def __radd__(self, other): return Add(other, self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rsub__') def __sub__(self, other): return Add(self, -other) @_sympifyit('other', NotImplemented) @call_highest_priority('__sub__') def __rsub__(self, other): return Add(other, -self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rmul__') def __mul__(self, other): return Mul(self, other) @_sympifyit('other', NotImplemented) @call_highest_priority('__mul__') def __rmul__(self, other): return Mul(other, self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rpow__') def _pow(self, other): return Pow(self, other) def __pow__(self, other, mod=None): if mod is None: return self._pow(other) try: _self, other, mod = as_int(self), as_int(other), as_int(mod) if other >= 0: return pow(_self, other, mod) else: from sympy.core.numbers import mod_inverse return mod_inverse(pow(_self, -other, mod), mod) except ValueError: power = self._pow(other) try: return power%mod except TypeError: return NotImplemented @_sympifyit('other', NotImplemented) @call_highest_priority('__pow__') def __rpow__(self, other): return Pow(other, self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rdiv__') def __div__(self, other): return Mul(self, Pow(other, S.NegativeOne)) @_sympifyit('other', NotImplemented) @call_highest_priority('__div__') def __rdiv__(self, other): return Mul(other, Pow(self, S.NegativeOne)) __truediv__ = __div__ __rtruediv__ = __rdiv__ @_sympifyit('other', NotImplemented) @call_highest_priority('__rmod__') def __mod__(self, other): return Mod(self, other) @_sympifyit('other', NotImplemented) @call_highest_priority('__mod__') def __rmod__(self, other): return Mod(other, self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rfloordiv__') def __floordiv__(self, other): from sympy.functions.elementary.integers import floor return floor(self / other) @_sympifyit('other', NotImplemented) @call_highest_priority('__floordiv__') def __rfloordiv__(self, other): from sympy.functions.elementary.integers import floor return floor(other / self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rdivmod__') def __divmod__(self, other): from sympy.functions.elementary.integers import floor return floor(self / other), Mod(self, other) @_sympifyit('other', NotImplemented) @call_highest_priority('__divmod__') def __rdivmod__(self, other): from sympy.functions.elementary.integers import floor return floor(other / self), Mod(other, self) def __int__(self): # Although we only need to round to the units position, we'll # get one more digit so the extra testing below can be avoided # unless the rounded value rounded to an integer, e.g. if an # expression were equal to 1.9 and we rounded to the unit position # we would get a 2 and would not know if this rounded up or not # without doing a test (as done below). But if we keep an extra # digit we know that 1.9 is not the same as 1 and there is no # need for further testing: our int value is correct. If the value # were 1.99, however, this would round to 2.0 and our int value is # off by one. So...if our round value is the same as the int value # (regardless of how much extra work we do to calculate extra decimal # places) we need to test whether we are off by one. from sympy import Dummy if not self.is_number: raise TypeError("can't convert symbols to int") r = self.round(2) if not r.is_Number: raise TypeError("can't convert complex to int") if r in (S.NaN, S.Infinity, S.NegativeInfinity): raise TypeError("can't convert %s to int" % r) i = int(r) if not i: return 0 # off-by-one check if i == r and not (self - i).equals(0): isign = 1 if i > 0 else -1 x = Dummy() # in the following (self - i).evalf(2) will not always work while # (self - r).evalf(2) and the use of subs does; if the test that # was added when this comment was added passes, it might be safe # to simply use sign to compute this rather than doing this by hand: diff_sign = 1 if (self - x).evalf(2, subs={x: i}) > 0 else -1 if diff_sign != isign: i -= isign return i __long__ = __int__ def __float__(self): # Don't bother testing if it's a number; if it's not this is going # to fail, and if it is we still need to check that it evalf'ed to # a number. result = self.evalf() if result.is_Number: return float(result) if result.is_number and result.as_real_imag()[1]: raise TypeError("can't convert complex to float") raise TypeError("can't convert expression to float") def __complex__(self): result = self.evalf() re, im = result.as_real_imag() return complex(float(re), float(im)) def _cmp(self, other, op, cls): assert op in ("<", ">", "<=", ">=") try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s %s %s" % (self, op, other)) for me in (self, other): if me.is_extended_real is False: raise TypeError("Invalid comparison of non-real %s" % me) if me is S.NaN: raise TypeError("Invalid NaN comparison") n2 = _n2(self, other) if n2 is not None: # use float comparison for infinity. # otherwise get stuck in infinite recursion if n2 in (S.Infinity, S.NegativeInfinity): n2 = float(n2) if op == "<": return _sympify(n2 < 0) elif op == ">": return _sympify(n2 > 0) elif op == "<=": return _sympify(n2 <= 0) else: # >= return _sympify(n2 >= 0) if self.is_extended_real and other.is_extended_real: if op in ("<=", ">") \ and ((self.is_infinite and self.is_extended_negative) \ or (other.is_infinite and other.is_extended_positive)): return S.true if op == "<=" else S.false if op in ("<", ">=") \ and ((self.is_infinite and self.is_extended_positive) \ or (other.is_infinite and other.is_extended_negative)): return S.true if op == ">=" else S.false diff = self - other if diff is not S.NaN: if op == "<": test = diff.is_extended_negative elif op == ">": test = diff.is_extended_positive elif op == "<=": test = diff.is_extended_nonpositive else: # >= test = diff.is_extended_nonnegative if test is not None: return S.true if test == True else S.false # return unevaluated comparison object return cls(self, other, evaluate=False) def __ge__(self, other): from sympy import GreaterThan return self._cmp(other, ">=", GreaterThan) def __le__(self, other): from sympy import LessThan return self._cmp(other, "<=", LessThan) def __gt__(self, other): from sympy import StrictGreaterThan return self._cmp(other, ">", StrictGreaterThan) def __lt__(self, other): from sympy import StrictLessThan return self._cmp(other, "<", StrictLessThan) def __trunc__(self): if not self.is_number: raise TypeError("can't truncate symbols and expressions") else: return Integer(self) @staticmethod def _from_mpmath(x, prec): from sympy import Float if hasattr(x, "_mpf_"): return Float._new(x._mpf_, prec) elif hasattr(x, "_mpc_"): re, im = x._mpc_ re = Float._new(re, prec) im = Float._new(im, prec)*S.ImaginaryUnit return re + im else: raise TypeError("expected mpmath number (mpf or mpc)") @property def is_number(self): """Returns True if ``self`` has no free symbols and no undefined functions (AppliedUndef, to be precise). It will be faster than ``if not self.free_symbols``, however, since ``is_number`` will fail as soon as it hits a free symbol or undefined function. Examples ======== >>> from sympy import log, Integral, cos, sin, pi >>> from sympy.core.function import Function >>> from sympy.abc import x >>> f = Function('f') >>> x.is_number False >>> f(1).is_number False >>> (2*x).is_number False >>> (2 + Integral(2, x)).is_number False >>> (2 + Integral(2, (x, 1, 2))).is_number True Not all numbers are Numbers in the SymPy sense: >>> pi.is_number, pi.is_Number (True, False) If something is a number it should evaluate to a number with real and imaginary parts that are Numbers; the result may not be comparable, however, since the real and/or imaginary part of the result may not have precision. >>> cos(1).is_number and cos(1).is_comparable True >>> z = cos(1)**2 + sin(1)**2 - 1 >>> z.is_number True >>> z.is_comparable False See Also ======== sympy.core.basic.Basic.is_comparable """ return all(obj.is_number for obj in self.args) def _random(self, n=None, re_min=-1, im_min=-1, re_max=1, im_max=1): """Return self evaluated, if possible, replacing free symbols with random complex values, if necessary. The random complex value for each free symbol is generated by the random_complex_number routine giving real and imaginary parts in the range given by the re_min, re_max, im_min, and im_max values. The returned value is evaluated to a precision of n (if given) else the maximum of 15 and the precision needed to get more than 1 digit of precision. If the expression could not be evaluated to a number, or could not be evaluated to more than 1 digit of precision, then None is returned. Examples ======== >>> from sympy import sqrt >>> from sympy.abc import x, y >>> x._random() # doctest: +SKIP 0.0392918155679172 + 0.916050214307199*I >>> x._random(2) # doctest: +SKIP -0.77 - 0.87*I >>> (x + y/2)._random(2) # doctest: +SKIP -0.57 + 0.16*I >>> sqrt(2)._random(2) 1.4 See Also ======== sympy.utilities.randtest.random_complex_number """ free = self.free_symbols prec = 1 if free: from sympy.utilities.randtest import random_complex_number a, c, b, d = re_min, re_max, im_min, im_max reps = dict(list(zip(free, [random_complex_number(a, b, c, d, rational=True) for zi in free]))) try: nmag = abs(self.evalf(2, subs=reps)) except (ValueError, TypeError): # if an out of range value resulted in evalf problems # then return None -- XXX is there a way to know how to # select a good random number for a given expression? # e.g. when calculating n! negative values for n should not # be used return None else: reps = {} nmag = abs(self.evalf(2)) if not hasattr(nmag, '_prec'): # e.g. exp_polar(2*I*pi) doesn't evaluate but is_number is True return None if nmag._prec == 1: # increase the precision up to the default maximum # precision to see if we can get any significance from mpmath.libmp.libintmath import giant_steps from sympy.core.evalf import DEFAULT_MAXPREC as target # evaluate for prec in giant_steps(2, target): nmag = abs(self.evalf(prec, subs=reps)) if nmag._prec != 1: break if nmag._prec != 1: if n is None: n = max(prec, 15) return self.evalf(n, subs=reps) # never got any significance return None def is_constant(self, *wrt, **flags): """Return True if self is constant, False if not, or None if the constancy could not be determined conclusively. If an expression has no free symbols then it is a constant. If there are free symbols it is possible that the expression is a constant, perhaps (but not necessarily) zero. To test such expressions, a few strategies are tried: 1) numerical evaluation at two random points. If two such evaluations give two different values and the values have a precision greater than 1 then self is not constant. If the evaluations agree or could not be obtained with any precision, no decision is made. The numerical testing is done only if ``wrt`` is different than the free symbols. 2) differentiation with respect to variables in 'wrt' (or all free symbols if omitted) to see if the expression is constant or not. This will not always lead to an expression that is zero even though an expression is constant (see added test in test_expr.py). If all derivatives are zero then self is constant with respect to the given symbols. 3) finding out zeros of denominator expression with free_symbols. It won't be constant if there are zeros. It gives more negative answers for expression that are not constant. If neither evaluation nor differentiation can prove the expression is constant, None is returned unless two numerical values happened to be the same and the flag ``failing_number`` is True -- in that case the numerical value will be returned. If flag simplify=False is passed, self will not be simplified; the default is True since self should be simplified before testing. Examples ======== >>> from sympy import cos, sin, Sum, S, pi >>> from sympy.abc import a, n, x, y >>> x.is_constant() False >>> S(2).is_constant() True >>> Sum(x, (x, 1, 10)).is_constant() True >>> Sum(x, (x, 1, n)).is_constant() False >>> Sum(x, (x, 1, n)).is_constant(y) True >>> Sum(x, (x, 1, n)).is_constant(n) False >>> Sum(x, (x, 1, n)).is_constant(x) True >>> eq = a*cos(x)**2 + a*sin(x)**2 - a >>> eq.is_constant() True >>> eq.subs({x: pi, a: 2}) == eq.subs({x: pi, a: 3}) == 0 True >>> (0**x).is_constant() False >>> x.is_constant() False >>> (x**x).is_constant() False >>> one = cos(x)**2 + sin(x)**2 >>> one.is_constant() True >>> ((one - 1)**(x + 1)).is_constant() in (True, False) # could be 0 or 1 True """ def check_denominator_zeros(expression): from sympy.solvers.solvers import denoms retNone = False for den in denoms(expression): z = den.is_zero if z is True: return True if z is None: retNone = True if retNone: return None return False simplify = flags.get('simplify', True) if self.is_number: return True free = self.free_symbols if not free: return True # assume f(1) is some constant # if we are only interested in some symbols and they are not in the # free symbols then this expression is constant wrt those symbols wrt = set(wrt) if wrt and not wrt & free: return True wrt = wrt or free # simplify unless this has already been done expr = self if simplify: expr = expr.simplify() # is_zero should be a quick assumptions check; it can be wrong for # numbers (see test_is_not_constant test), giving False when it # shouldn't, but hopefully it will never give True unless it is sure. if expr.is_zero: return True # try numerical evaluation to see if we get two different values failing_number = None if wrt == free: # try 0 (for a) and 1 (for b) try: a = expr.subs(list(zip(free, [0]*len(free))), simultaneous=True) if a is S.NaN: # evaluation may succeed when substitution fails a = expr._random(None, 0, 0, 0, 0) except ZeroDivisionError: a = None if a is not None and a is not S.NaN: try: b = expr.subs(list(zip(free, [1]*len(free))), simultaneous=True) if b is S.NaN: # evaluation may succeed when substitution fails b = expr._random(None, 1, 0, 1, 0) except ZeroDivisionError: b = None if b is not None and b is not S.NaN and b.equals(a) is False: return False # try random real b = expr._random(None, -1, 0, 1, 0) if b is not None and b is not S.NaN and b.equals(a) is False: return False # try random complex b = expr._random() if b is not None and b is not S.NaN: if b.equals(a) is False: return False failing_number = a if a.is_number else b # now we will test each wrt symbol (or all free symbols) to see if the # expression depends on them or not using differentiation. This is # not sufficient for all expressions, however, so we don't return # False if we get a derivative other than 0 with free symbols. for w in wrt: deriv = expr.diff(w) if simplify: deriv = deriv.simplify() if deriv != 0: if not (pure_complex(deriv, or_real=True)): if flags.get('failing_number', False): return failing_number elif deriv.free_symbols: # dead line provided _random returns None in such cases return None return False cd = check_denominator_zeros(self) if cd is True: return False elif cd is None: return None return True def equals(self, other, failing_expression=False): """Return True if self == other, False if it doesn't, or None. If failing_expression is True then the expression which did not simplify to a 0 will be returned instead of None. If ``self`` is a Number (or complex number) that is not zero, then the result is False. If ``self`` is a number and has not evaluated to zero, evalf will be used to test whether the expression evaluates to zero. If it does so and the result has significance (i.e. the precision is either -1, for a Rational result, or is greater than 1) then the evalf value will be used to return True or False. """ from sympy.simplify.simplify import nsimplify, simplify from sympy.solvers.solvers import solve from sympy.polys.polyerrors import NotAlgebraic from sympy.polys.numberfields import minimal_polynomial other = sympify(other) if self == other: return True # they aren't the same so see if we can make the difference 0; # don't worry about doing simplification steps one at a time # because if the expression ever goes to 0 then the subsequent # simplification steps that are done will be very fast. diff = factor_terms(simplify(self - other), radical=True) if not diff: return True if not diff.has(Add, Mod): # if there is no expanding to be done after simplifying # then this can't be a zero return False constant = diff.is_constant(simplify=False, failing_number=True) if constant is False: return False if not diff.is_number: if constant is None: # e.g. unless the right simplification is done, a symbolic # zero is possible (see expression of issue 6829: without # simplification constant will be None). return if constant is True: # this gives a number whether there are free symbols or not ndiff = diff._random() # is_comparable will work whether the result is real # or complex; it could be None, however. if ndiff and ndiff.is_comparable: return False # sometimes we can use a simplified result to give a clue as to # what the expression should be; if the expression is *not* zero # then we should have been able to compute that and so now # we can just consider the cases where the approximation appears # to be zero -- we try to prove it via minimal_polynomial. # # removed # ns = nsimplify(diff) # if diff.is_number and (not ns or ns == diff): # # The thought was that if it nsimplifies to 0 that's a sure sign # to try the following to prove it; or if it changed but wasn't # zero that might be a sign that it's not going to be easy to # prove. But tests seem to be working without that logic. # if diff.is_number: # try to prove via self-consistency surds = [s for s in diff.atoms(Pow) if s.args[0].is_Integer] # it seems to work better to try big ones first surds.sort(key=lambda x: -x.args[0]) for s in surds: try: # simplify is False here -- this expression has already # been identified as being hard to identify as zero; # we will handle the checking ourselves using nsimplify # to see if we are in the right ballpark or not and if so # *then* the simplification will be attempted. sol = solve(diff, s, simplify=False) if sol: if s in sol: # the self-consistent result is present return True if all(si.is_Integer for si in sol): # perfect powers are removed at instantiation # so surd s cannot be an integer return False if all(i.is_algebraic is False for i in sol): # a surd is algebraic return False if any(si in surds for si in sol): # it wasn't equal to s but it is in surds # and different surds are not equal return False if any(nsimplify(s - si) == 0 and simplify(s - si) == 0 for si in sol): return True if s.is_real: if any(nsimplify(si, [s]) == s and simplify(si) == s for si in sol): return True except NotImplementedError: pass # try to prove with minimal_polynomial but know when # *not* to use this or else it can take a long time. e.g. issue 8354 if True: # change True to condition that assures non-hang try: mp = minimal_polynomial(diff) if mp.is_Symbol: return True return False except (NotAlgebraic, NotImplementedError): pass # diff has not simplified to zero; constant is either None, True # or the number with significance (is_comparable) that was randomly # calculated twice as the same value. if constant not in (True, None) and constant != 0: return False if failing_expression: return diff return None def _eval_is_positive(self): finite = self.is_finite if finite is False: return False extended_positive = self.is_extended_positive if finite is True: return extended_positive if extended_positive is False: return False def _eval_is_negative(self): finite = self.is_finite if finite is False: return False extended_negative = self.is_extended_negative if finite is True: return extended_negative if extended_negative is False: return False def _eval_is_extended_positive_negative(self, positive): from sympy.polys.numberfields import minimal_polynomial from sympy.polys.polyerrors import NotAlgebraic if self.is_number: if self.is_extended_real is False: return False # check to see that we can get a value try: n2 = self._eval_evalf(2) # XXX: This shouldn't be caught here # Catches ValueError: hypsum() failed to converge to the requested # 34 bits of accuracy except ValueError: return None if n2 is None: return None if getattr(n2, '_prec', 1) == 1: # no significance return None if n2 is S.NaN: return None r, i = self.evalf(2).as_real_imag() if not i.is_Number or not r.is_Number: return False if r._prec != 1 and i._prec != 1: return bool(not i and ((r > 0) if positive else (r < 0))) elif r._prec == 1 and (not i or i._prec == 1) and \ self.is_algebraic and not self.has(Function): try: if minimal_polynomial(self).is_Symbol: return False except (NotAlgebraic, NotImplementedError): pass def _eval_is_extended_positive(self): return self._eval_is_extended_positive_negative(positive=True) def _eval_is_extended_negative(self): return self._eval_is_extended_positive_negative(positive=False) def _eval_interval(self, x, a, b): """ Returns evaluation over an interval. For most functions this is: self.subs(x, b) - self.subs(x, a), possibly using limit() if NaN is returned from subs, or if singularities are found between a and b. If b or a is None, it only evaluates -self.subs(x, a) or self.subs(b, x), respectively. """ from sympy.series import limit, Limit from sympy.solvers.solveset import solveset from sympy.sets.sets import Interval from sympy.functions.elementary.exponential import log from sympy.calculus.util import AccumBounds if (a is None and b is None): raise ValueError('Both interval ends cannot be None.') def _eval_endpoint(left): c = a if left else b if c is None: return 0 else: C = self.subs(x, c) if C.has(S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity, AccumBounds): if (a < b) != False: C = limit(self, x, c, "+" if left else "-") else: C = limit(self, x, c, "-" if left else "+") if isinstance(C, Limit): raise NotImplementedError("Could not compute limit") return C if a == b: return 0 A = _eval_endpoint(left=True) if A is S.NaN: return A B = _eval_endpoint(left=False) if (a and b) is None: return B - A value = B - A if a.is_comparable and b.is_comparable: if a < b: domain = Interval(a, b) else: domain = Interval(b, a) # check the singularities of self within the interval # if singularities is a ConditionSet (not iterable), catch the exception and pass singularities = solveset(self.cancel().as_numer_denom()[1], x, domain=domain) for logterm in self.atoms(log): singularities = singularities | solveset(logterm.args[0], x, domain=domain) try: for s in singularities: if value is S.NaN: # no need to keep adding, it will stay NaN break if not s.is_comparable: continue if (a < s) == (s < b) == True: value += -limit(self, x, s, "+") + limit(self, x, s, "-") elif (b < s) == (s < a) == True: value += limit(self, x, s, "+") - limit(self, x, s, "-") except TypeError: pass return value def _eval_power(self, other): # subclass to compute self**other for cases when # other is not NaN, 0, or 1 return None def _eval_conjugate(self): if self.is_extended_real: return self elif self.is_imaginary: return -self def conjugate(self): from sympy.functions.elementary.complexes import conjugate as c return c(self) def _eval_transpose(self): from sympy.functions.elementary.complexes import conjugate if (self.is_complex or self.is_infinite): return self elif self.is_hermitian: return conjugate(self) elif self.is_antihermitian: return -conjugate(self) def transpose(self): from sympy.functions.elementary.complexes import transpose return transpose(self) def _eval_adjoint(self): from sympy.functions.elementary.complexes import conjugate, transpose if self.is_hermitian: return self elif self.is_antihermitian: return -self obj = self._eval_conjugate() if obj is not None: return transpose(obj) obj = self._eval_transpose() if obj is not None: return conjugate(obj) def adjoint(self): from sympy.functions.elementary.complexes import adjoint return adjoint(self) @classmethod def _parse_order(cls, order): """Parse and configure the ordering of terms. """ from sympy.polys.orderings import monomial_key startswith = getattr(order, "startswith", None) if startswith is None: reverse = False else: reverse = startswith('rev-') if reverse: order = order[4:] monom_key = monomial_key(order) def neg(monom): result = [] for m in monom: if isinstance(m, tuple): result.append(neg(m)) else: result.append(-m) return tuple(result) def key(term): _, ((re, im), monom, ncpart) = term monom = neg(monom_key(monom)) ncpart = tuple([e.sort_key(order=order) for e in ncpart]) coeff = ((bool(im), im), (re, im)) return monom, ncpart, coeff return key, reverse def as_ordered_factors(self, order=None): """Return list of ordered factors (if Mul) else [self].""" return [self] def as_ordered_terms(self, order=None, data=False): """ Transform an expression to an ordered list of terms. Examples ======== >>> from sympy import sin, cos >>> from sympy.abc import x >>> (sin(x)**2*cos(x) + sin(x)**2 + 1).as_ordered_terms() [sin(x)**2*cos(x), sin(x)**2, 1] """ from .numbers import Number, NumberSymbol if order is None and self.is_Add: # Spot the special case of Add(Number, Mul(Number, expr)) with the # first number positive and thhe second number nagative key = lambda x:not isinstance(x, (Number, NumberSymbol)) add_args = sorted(Add.make_args(self), key=key) if (len(add_args) == 2 and isinstance(add_args[0], (Number, NumberSymbol)) and isinstance(add_args[1], Mul)): mul_args = sorted(Mul.make_args(add_args[1]), key=key) if (len(mul_args) == 2 and isinstance(mul_args[0], Number) and add_args[0].is_positive and mul_args[0].is_negative): return add_args key, reverse = self._parse_order(order) terms, gens = self.as_terms() if not any(term.is_Order for term, _ in terms): ordered = sorted(terms, key=key, reverse=reverse) else: _terms, _order = [], [] for term, repr in terms: if not term.is_Order: _terms.append((term, repr)) else: _order.append((term, repr)) ordered = sorted(_terms, key=key, reverse=True) \ + sorted(_order, key=key, reverse=True) if data: return ordered, gens else: return [term for term, _ in ordered] def as_terms(self): """Transform an expression to a list of terms. """ from .add import Add from .mul import Mul from .exprtools import decompose_power gens, terms = set([]), [] for term in Add.make_args(self): coeff, _term = term.as_coeff_Mul() coeff = complex(coeff) cpart, ncpart = {}, [] if _term is not S.One: for factor in Mul.make_args(_term): if factor.is_number: try: coeff *= complex(factor) except (TypeError, ValueError): pass else: continue if factor.is_commutative: base, exp = decompose_power(factor) cpart[base] = exp gens.add(base) else: ncpart.append(factor) coeff = coeff.real, coeff.imag ncpart = tuple(ncpart) terms.append((term, (coeff, cpart, ncpart))) gens = sorted(gens, key=default_sort_key) k, indices = len(gens), {} for i, g in enumerate(gens): indices[g] = i result = [] for term, (coeff, cpart, ncpart) in terms: monom = [0]*k for base, exp in cpart.items(): monom[indices[base]] = exp result.append((term, (coeff, tuple(monom), ncpart))) return result, gens def removeO(self): """Removes the additive O(..) symbol if there is one""" return self def getO(self): """Returns the additive O(..) symbol if there is one, else None.""" return None def getn(self): """ Returns the order of the expression. The order is determined either from the O(...) term. If there is no O(...) term, it returns None. Examples ======== >>> from sympy import O >>> from sympy.abc import x >>> (1 + x + O(x**2)).getn() 2 >>> (1 + x).getn() """ from sympy import Dummy, Symbol o = self.getO() if o is None: return None elif o.is_Order: o = o.expr if o is S.One: return S.Zero if o.is_Symbol: return S.One if o.is_Pow: return o.args[1] if o.is_Mul: # x**n*log(x)**n or x**n/log(x)**n for oi in o.args: if oi.is_Symbol: return S.One if oi.is_Pow: syms = oi.atoms(Symbol) if len(syms) == 1: x = syms.pop() oi = oi.subs(x, Dummy('x', positive=True)) if oi.base.is_Symbol and oi.exp.is_Rational: return abs(oi.exp) raise NotImplementedError('not sure of order of %s' % o) def count_ops(self, visual=None): """wrapper for count_ops that returns the operation count.""" from .function import count_ops return count_ops(self, visual) def args_cnc(self, cset=False, warn=True, split_1=True): """Return [commutative factors, non-commutative factors] of self. self is treated as a Mul and the ordering of the factors is maintained. If ``cset`` is True the commutative factors will be returned in a set. If there were repeated factors (as may happen with an unevaluated Mul) then an error will be raised unless it is explicitly suppressed by setting ``warn`` to False. Note: -1 is always separated from a Number unless split_1 is False. >>> from sympy import symbols, oo >>> A, B = symbols('A B', commutative=0) >>> x, y = symbols('x y') >>> (-2*x*y).args_cnc() [[-1, 2, x, y], []] >>> (-2.5*x).args_cnc() [[-1, 2.5, x], []] >>> (-2*x*A*B*y).args_cnc() [[-1, 2, x, y], [A, B]] >>> (-2*x*A*B*y).args_cnc(split_1=False) [[-2, x, y], [A, B]] >>> (-2*x*y).args_cnc(cset=True) [{-1, 2, x, y}, []] The arg is always treated as a Mul: >>> (-2 + x + A).args_cnc() [[], [x - 2 + A]] >>> (-oo).args_cnc() # -oo is a singleton [[-1, oo], []] """ if self.is_Mul: args = list(self.args) else: args = [self] for i, mi in enumerate(args): if not mi.is_commutative: c = args[:i] nc = args[i:] break else: c = args nc = [] if c and split_1 and ( c[0].is_Number and c[0].is_extended_negative and c[0] is not S.NegativeOne): c[:1] = [S.NegativeOne, -c[0]] if cset: clen = len(c) c = set(c) if clen and warn and len(c) != clen: raise ValueError('repeated commutative arguments: %s' % [ci for ci in c if list(self.args).count(ci) > 1]) return [c, nc] def coeff(self, x, n=1, right=False): """ Returns the coefficient from the term(s) containing ``x**n``. If ``n`` is zero then all terms independent of ``x`` will be returned. When ``x`` is noncommutative, the coefficient to the left (default) or right of ``x`` can be returned. The keyword 'right' is ignored when ``x`` is commutative. See Also ======== as_coefficient: separate the expression into a coefficient and factor as_coeff_Add: separate the additive constant from an expression as_coeff_Mul: separate the multiplicative constant from an expression as_independent: separate x-dependent terms/factors from others sympy.polys.polytools.Poly.coeff_monomial: efficiently find the single coefficient of a monomial in Poly sympy.polys.polytools.Poly.nth: like coeff_monomial but powers of monomial terms are used Examples ======== >>> from sympy import symbols >>> from sympy.abc import x, y, z You can select terms that have an explicit negative in front of them: >>> (-x + 2*y).coeff(-1) x >>> (x - 2*y).coeff(-1) 2*y You can select terms with no Rational coefficient: >>> (x + 2*y).coeff(1) x >>> (3 + 2*x + 4*x**2).coeff(1) 0 You can select terms independent of x by making n=0; in this case expr.as_independent(x)[0] is returned (and 0 will be returned instead of None): >>> (3 + 2*x + 4*x**2).coeff(x, 0) 3 >>> eq = ((x + 1)**3).expand() + 1 >>> eq x**3 + 3*x**2 + 3*x + 2 >>> [eq.coeff(x, i) for i in reversed(range(4))] [1, 3, 3, 2] >>> eq -= 2 >>> [eq.coeff(x, i) for i in reversed(range(4))] [1, 3, 3, 0] You can select terms that have a numerical term in front of them: >>> (-x - 2*y).coeff(2) -y >>> from sympy import sqrt >>> (x + sqrt(2)*x).coeff(sqrt(2)) x The matching is exact: >>> (3 + 2*x + 4*x**2).coeff(x) 2 >>> (3 + 2*x + 4*x**2).coeff(x**2) 4 >>> (3 + 2*x + 4*x**2).coeff(x**3) 0 >>> (z*(x + y)**2).coeff((x + y)**2) z >>> (z*(x + y)**2).coeff(x + y) 0 In addition, no factoring is done, so 1 + z*(1 + y) is not obtained from the following: >>> (x + z*(x + x*y)).coeff(x) 1 If such factoring is desired, factor_terms can be used first: >>> from sympy import factor_terms >>> factor_terms(x + z*(x + x*y)).coeff(x) z*(y + 1) + 1 >>> n, m, o = symbols('n m o', commutative=False) >>> n.coeff(n) 1 >>> (3*n).coeff(n) 3 >>> (n*m + m*n*m).coeff(n) # = (1 + m)*n*m 1 + m >>> (n*m + m*n*m).coeff(n, right=True) # = (1 + m)*n*m m If there is more than one possible coefficient 0 is returned: >>> (n*m + m*n).coeff(n) 0 If there is only one possible coefficient, it is returned: >>> (n*m + x*m*n).coeff(m*n) x >>> (n*m + x*m*n).coeff(m*n, right=1) 1 """ x = sympify(x) if not isinstance(x, Basic): return S.Zero n = as_int(n) if not x: return S.Zero if x == self: if n == 1: return S.One return S.Zero if x is S.One: co = [a for a in Add.make_args(self) if a.as_coeff_Mul()[0] is S.One] if not co: return S.Zero return Add(*co) if n == 0: if x.is_Add and self.is_Add: c = self.coeff(x, right=right) if not c: return S.Zero if not right: return self - Add(*[a*x for a in Add.make_args(c)]) return self - Add(*[x*a for a in Add.make_args(c)]) return self.as_independent(x, as_Add=True)[0] # continue with the full method, looking for this power of x: x = x**n def incommon(l1, l2): if not l1 or not l2: return [] n = min(len(l1), len(l2)) for i in range(n): if l1[i] != l2[i]: return l1[:i] return l1[:] def find(l, sub, first=True): """ Find where list sub appears in list l. When ``first`` is True the first occurrence from the left is returned, else the last occurrence is returned. Return None if sub is not in l. >> l = range(5)*2 >> find(l, [2, 3]) 2 >> find(l, [2, 3], first=0) 7 >> find(l, [2, 4]) None """ if not sub or not l or len(sub) > len(l): return None n = len(sub) if not first: l.reverse() sub.reverse() for i in range(0, len(l) - n + 1): if all(l[i + j] == sub[j] for j in range(n)): break else: i = None if not first: l.reverse() sub.reverse() if i is not None and not first: i = len(l) - (i + n) return i co = [] args = Add.make_args(self) self_c = self.is_commutative x_c = x.is_commutative if self_c and not x_c: return S.Zero one_c = self_c or x_c xargs, nx = x.args_cnc(cset=True, warn=bool(not x_c)) # find the parts that pass the commutative terms for a in args: margs, nc = a.args_cnc(cset=True, warn=bool(not self_c)) if nc is None: nc = [] if len(xargs) > len(margs): continue resid = margs.difference(xargs) if len(resid) + len(xargs) == len(margs): if one_c: co.append(Mul(*(list(resid) + nc))) else: co.append((resid, nc)) if one_c: if co == []: return S.Zero elif co: return Add(*co) else: # both nc # now check the non-comm parts if not co: return S.Zero if all(n == co[0][1] for r, n in co): ii = find(co[0][1], nx, right) if ii is not None: if not right: return Mul(Add(*[Mul(*r) for r, c in co]), Mul(*co[0][1][:ii])) else: return Mul(*co[0][1][ii + len(nx):]) beg = reduce(incommon, (n[1] for n in co)) if beg: ii = find(beg, nx, right) if ii is not None: if not right: gcdc = co[0][0] for i in range(1, len(co)): gcdc = gcdc.intersection(co[i][0]) if not gcdc: break return Mul(*(list(gcdc) + beg[:ii])) else: m = ii + len(nx) return Add(*[Mul(*(list(r) + n[m:])) for r, n in co]) end = list(reversed( reduce(incommon, (list(reversed(n[1])) for n in co)))) if end: ii = find(end, nx, right) if ii is not None: if not right: return Add(*[Mul(*(list(r) + n[:-len(end) + ii])) for r, n in co]) else: return Mul(*end[ii + len(nx):]) # look for single match hit = None for i, (r, n) in enumerate(co): ii = find(n, nx, right) if ii is not None: if not hit: hit = ii, r, n else: break else: if hit: ii, r, n = hit if not right: return Mul(*(list(r) + n[:ii])) else: return Mul(*n[ii + len(nx):]) return S.Zero def as_expr(self, *gens): """ Convert a polynomial to a SymPy expression. Examples ======== >>> from sympy import sin >>> from sympy.abc import x, y >>> f = (x**2 + x*y).as_poly(x, y) >>> f.as_expr() x**2 + x*y >>> sin(x).as_expr() sin(x) """ return self def as_coefficient(self, expr): """ Extracts symbolic coefficient at the given expression. In other words, this functions separates 'self' into the product of 'expr' and 'expr'-free coefficient. If such separation is not possible it will return None. Examples ======== >>> from sympy import E, pi, sin, I, Poly >>> from sympy.abc import x >>> E.as_coefficient(E) 1 >>> (2*E).as_coefficient(E) 2 >>> (2*sin(E)*E).as_coefficient(E) Two terms have E in them so a sum is returned. (If one were desiring the coefficient of the term exactly matching E then the constant from the returned expression could be selected. Or, for greater precision, a method of Poly can be used to indicate the desired term from which the coefficient is desired.) >>> (2*E + x*E).as_coefficient(E) x + 2 >>> _.args[0] # just want the exact match 2 >>> p = Poly(2*E + x*E); p Poly(x*E + 2*E, x, E, domain='ZZ') >>> p.coeff_monomial(E) 2 >>> p.nth(0, 1) 2 Since the following cannot be written as a product containing E as a factor, None is returned. (If the coefficient ``2*x`` is desired then the ``coeff`` method should be used.) >>> (2*E*x + x).as_coefficient(E) >>> (2*E*x + x).coeff(E) 2*x >>> (E*(x + 1) + x).as_coefficient(E) >>> (2*pi*I).as_coefficient(pi*I) 2 >>> (2*I).as_coefficient(pi*I) See Also ======== coeff: return sum of terms have a given factor as_coeff_Add: separate the additive constant from an expression as_coeff_Mul: separate the multiplicative constant from an expression as_independent: separate x-dependent terms/factors from others sympy.polys.polytools.Poly.coeff_monomial: efficiently find the single coefficient of a monomial in Poly sympy.polys.polytools.Poly.nth: like coeff_monomial but powers of monomial terms are used """ r = self.extract_multiplicatively(expr) if r and not r.has(expr): return r def as_independent(self, *deps, **hint): """ A mostly naive separation of a Mul or Add into arguments that are not are dependent on deps. To obtain as complete a separation of variables as possible, use a separation method first, e.g.: * separatevars() to change Mul, Add and Pow (including exp) into Mul * .expand(mul=True) to change Add or Mul into Add * .expand(log=True) to change log expr into an Add The only non-naive thing that is done here is to respect noncommutative ordering of variables and to always return (0, 0) for `self` of zero regardless of hints. For nonzero `self`, the returned tuple (i, d) has the following interpretation: * i will has no variable that appears in deps * d will either have terms that contain variables that are in deps, or be equal to 0 (when self is an Add) or 1 (when self is a Mul) * if self is an Add then self = i + d * if self is a Mul then self = i*d * otherwise (self, S.One) or (S.One, self) is returned. To force the expression to be treated as an Add, use the hint as_Add=True Examples ======== -- self is an Add >>> from sympy import sin, cos, exp >>> from sympy.abc import x, y, z >>> (x + x*y).as_independent(x) (0, x*y + x) >>> (x + x*y).as_independent(y) (x, x*y) >>> (2*x*sin(x) + y + x + z).as_independent(x) (y + z, 2*x*sin(x) + x) >>> (2*x*sin(x) + y + x + z).as_independent(x, y) (z, 2*x*sin(x) + x + y) -- self is a Mul >>> (x*sin(x)*cos(y)).as_independent(x) (cos(y), x*sin(x)) non-commutative terms cannot always be separated out when self is a Mul >>> from sympy import symbols >>> n1, n2, n3 = symbols('n1 n2 n3', commutative=False) >>> (n1 + n1*n2).as_independent(n2) (n1, n1*n2) >>> (n2*n1 + n1*n2).as_independent(n2) (0, n1*n2 + n2*n1) >>> (n1*n2*n3).as_independent(n1) (1, n1*n2*n3) >>> (n1*n2*n3).as_independent(n2) (n1, n2*n3) >>> ((x-n1)*(x-y)).as_independent(x) (1, (x - y)*(x - n1)) -- self is anything else: >>> (sin(x)).as_independent(x) (1, sin(x)) >>> (sin(x)).as_independent(y) (sin(x), 1) >>> exp(x+y).as_independent(x) (1, exp(x + y)) -- force self to be treated as an Add: >>> (3*x).as_independent(x, as_Add=True) (0, 3*x) -- force self to be treated as a Mul: >>> (3+x).as_independent(x, as_Add=False) (1, x + 3) >>> (-3+x).as_independent(x, as_Add=False) (1, x - 3) Note how the below differs from the above in making the constant on the dep term positive. >>> (y*(-3+x)).as_independent(x) (y, x - 3) -- use .as_independent() for true independence testing instead of .has(). The former considers only symbols in the free symbols while the latter considers all symbols >>> from sympy import Integral >>> I = Integral(x, (x, 1, 2)) >>> I.has(x) True >>> x in I.free_symbols False >>> I.as_independent(x) == (I, 1) True >>> (I + x).as_independent(x) == (I, x) True Note: when trying to get independent terms, a separation method might need to be used first. In this case, it is important to keep track of what you send to this routine so you know how to interpret the returned values >>> from sympy import separatevars, log >>> separatevars(exp(x+y)).as_independent(x) (exp(y), exp(x)) >>> (x + x*y).as_independent(y) (x, x*y) >>> separatevars(x + x*y).as_independent(y) (x, y + 1) >>> (x*(1 + y)).as_independent(y) (x, y + 1) >>> (x*(1 + y)).expand(mul=True).as_independent(y) (x, x*y) >>> a, b=symbols('a b', positive=True) >>> (log(a*b).expand(log=True)).as_independent(b) (log(a), log(b)) See Also ======== .separatevars(), .expand(log=True), sympy.core.add.Add.as_two_terms(), sympy.core.mul.Mul.as_two_terms(), .as_coeff_add(), .as_coeff_mul() """ from .symbol import Symbol from .add import _unevaluated_Add from .mul import _unevaluated_Mul from sympy.utilities.iterables import sift if self.is_zero: return S.Zero, S.Zero func = self.func if hint.get('as_Add', isinstance(self, Add) ): want = Add else: want = Mul # sift out deps into symbolic and other and ignore # all symbols but those that are in the free symbols sym = set() other = [] for d in deps: if isinstance(d, Symbol): # Symbol.is_Symbol is True sym.add(d) else: other.append(d) def has(e): """return the standard has() if there are no literal symbols, else check to see that symbol-deps are in the free symbols.""" has_other = e.has(*other) if not sym: return has_other return has_other or e.has(*(e.free_symbols & sym)) if (want is not func or func is not Add and func is not Mul): if has(self): return (want.identity, self) else: return (self, want.identity) else: if func is Add: args = list(self.args) else: args, nc = self.args_cnc() d = sift(args, lambda x: has(x)) depend = d[True] indep = d[False] if func is Add: # all terms were treated as commutative return (Add(*indep), _unevaluated_Add(*depend)) else: # handle noncommutative by stopping at first dependent term for i, n in enumerate(nc): if has(n): depend.extend(nc[i:]) break indep.append(n) return Mul(*indep), ( Mul(*depend, evaluate=False) if nc else _unevaluated_Mul(*depend)) def as_real_imag(self, deep=True, **hints): """Performs complex expansion on 'self' and returns a tuple containing collected both real and imaginary parts. This method can't be confused with re() and im() functions, which does not perform complex expansion at evaluation. However it is possible to expand both re() and im() functions and get exactly the same results as with a single call to this function. >>> from sympy import symbols, I >>> x, y = symbols('x,y', real=True) >>> (x + y*I).as_real_imag() (x, y) >>> from sympy.abc import z, w >>> (z + w*I).as_real_imag() (re(z) - im(w), re(w) + im(z)) """ from sympy import im, re if hints.get('ignore') == self: return None else: return (re(self), im(self)) def as_powers_dict(self): """Return self as a dictionary of factors with each factor being treated as a power. The keys are the bases of the factors and the values, the corresponding exponents. The resulting dictionary should be used with caution if the expression is a Mul and contains non- commutative factors since the order that they appeared will be lost in the dictionary. See Also ======== as_ordered_factors: An alternative for noncommutative applications, returning an ordered list of factors. args_cnc: Similar to as_ordered_factors, but guarantees separation of commutative and noncommutative factors. """ d = defaultdict(int) d.update(dict([self.as_base_exp()])) return d def as_coefficients_dict(self): """Return a dictionary mapping terms to their Rational coefficient. Since the dictionary is a defaultdict, inquiries about terms which were not present will return a coefficient of 0. If an expression is not an Add it is considered to have a single term. Examples ======== >>> from sympy.abc import a, x >>> (3*x + a*x + 4).as_coefficients_dict() {1: 4, x: 3, a*x: 1} >>> _[a] 0 >>> (3*a*x).as_coefficients_dict() {a*x: 3} """ c, m = self.as_coeff_Mul() if not c.is_Rational: c = S.One m = self d = defaultdict(int) d.update({m: c}) return d def as_base_exp(self): # a -> b ** e return self, S.One def as_coeff_mul(self, *deps, **kwargs): """Return the tuple (c, args) where self is written as a Mul, ``m``. c should be a Rational multiplied by any factors of the Mul that are independent of deps. args should be a tuple of all other factors of m; args is empty if self is a Number or if self is independent of deps (when given). This should be used when you don't know if self is a Mul or not but you want to treat self as a Mul or if you want to process the individual arguments of the tail of self as a Mul. - if you know self is a Mul and want only the head, use self.args[0]; - if you don't want to process the arguments of the tail but need the tail then use self.as_two_terms() which gives the head and tail; - if you want to split self into an independent and dependent parts use ``self.as_independent(*deps)`` >>> from sympy import S >>> from sympy.abc import x, y >>> (S(3)).as_coeff_mul() (3, ()) >>> (3*x*y).as_coeff_mul() (3, (x, y)) >>> (3*x*y).as_coeff_mul(x) (3*y, (x,)) >>> (3*y).as_coeff_mul(x) (3*y, ()) """ if deps: if not self.has(*deps): return self, tuple() return S.One, (self,) def as_coeff_add(self, *deps): """Return the tuple (c, args) where self is written as an Add, ``a``. c should be a Rational added to any terms of the Add that are independent of deps. args should be a tuple of all other terms of ``a``; args is empty if self is a Number or if self is independent of deps (when given). This should be used when you don't know if self is an Add or not but you want to treat self as an Add or if you want to process the individual arguments of the tail of self as an Add. - if you know self is an Add and want only the head, use self.args[0]; - if you don't want to process the arguments of the tail but need the tail then use self.as_two_terms() which gives the head and tail. - if you want to split self into an independent and dependent parts use ``self.as_independent(*deps)`` >>> from sympy import S >>> from sympy.abc import x, y >>> (S(3)).as_coeff_add() (3, ()) >>> (3 + x).as_coeff_add() (3, (x,)) >>> (3 + x + y).as_coeff_add(x) (y + 3, (x,)) >>> (3 + y).as_coeff_add(x) (y + 3, ()) """ if deps: if not self.has(*deps): return self, tuple() return S.Zero, (self,) def primitive(self): """Return the positive Rational that can be extracted non-recursively from every term of self (i.e., self is treated like an Add). This is like the as_coeff_Mul() method but primitive always extracts a positive Rational (never a negative or a Float). Examples ======== >>> from sympy.abc import x >>> (3*(x + 1)**2).primitive() (3, (x + 1)**2) >>> a = (6*x + 2); a.primitive() (2, 3*x + 1) >>> b = (x/2 + 3); b.primitive() (1/2, x + 6) >>> (a*b).primitive() == (1, a*b) True """ if not self: return S.One, S.Zero c, r = self.as_coeff_Mul(rational=True) if c.is_negative: c, r = -c, -r return c, r def as_content_primitive(self, radical=False, clear=True): """This method should recursively remove a Rational from all arguments and return that (content) and the new self (primitive). The content should always be positive and ``Mul(*foo.as_content_primitive()) == foo``. The primitive need not be in canonical form and should try to preserve the underlying structure if possible (i.e. expand_mul should not be applied to self). Examples ======== >>> from sympy import sqrt >>> from sympy.abc import x, y, z >>> eq = 2 + 2*x + 2*y*(3 + 3*y) The as_content_primitive function is recursive and retains structure: >>> eq.as_content_primitive() (2, x + 3*y*(y + 1) + 1) Integer powers will have Rationals extracted from the base: >>> ((2 + 6*x)**2).as_content_primitive() (4, (3*x + 1)**2) >>> ((2 + 6*x)**(2*y)).as_content_primitive() (1, (2*(3*x + 1))**(2*y)) Terms may end up joining once their as_content_primitives are added: >>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive() (11, x*(y + 1)) >>> ((3*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive() (9, x*(y + 1)) >>> ((3*(z*(1 + y)) + 2.0*x*(3 + 3*y))).as_content_primitive() (1, 6.0*x*(y + 1) + 3*z*(y + 1)) >>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))**2).as_content_primitive() (121, x**2*(y + 1)**2) >>> ((x*(1 + y) + 0.4*x*(3 + 3*y))**2).as_content_primitive() (1, 4.84*x**2*(y + 1)**2) Radical content can also be factored out of the primitive: >>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True) (2, sqrt(2)*(1 + 2*sqrt(5))) If clear=False (default is True) then content will not be removed from an Add if it can be distributed to leave one or more terms with integer coefficients. >>> (x/2 + y).as_content_primitive() (1/2, x + 2*y) >>> (x/2 + y).as_content_primitive(clear=False) (1, x/2 + y) """ return S.One, self def as_numer_denom(self): """ expression -> a/b -> a, b This is just a stub that should be defined by an object's class methods to get anything else. See Also ======== normal: return a/b instead of a, b """ return self, S.One def normal(self): from .mul import _unevaluated_Mul n, d = self.as_numer_denom() if d is S.One: return n if d.is_Number: return _unevaluated_Mul(n, 1/d) else: return n/d def extract_multiplicatively(self, c): """Return None if it's not possible to make self in the form c * something in a nice way, i.e. preserving the properties of arguments of self. Examples ======== >>> from sympy import symbols, Rational >>> x, y = symbols('x,y', real=True) >>> ((x*y)**3).extract_multiplicatively(x**2 * y) x*y**2 >>> ((x*y)**3).extract_multiplicatively(x**4 * y) >>> (2*x).extract_multiplicatively(2) x >>> (2*x).extract_multiplicatively(3) >>> (Rational(1, 2)*x).extract_multiplicatively(3) x/6 """ from .add import _unevaluated_Add c = sympify(c) if self is S.NaN: return None if c is S.One: return self elif c == self: return S.One if c.is_Add: cc, pc = c.primitive() if cc is not S.One: c = Mul(cc, pc, evaluate=False) if c.is_Mul: a, b = c.as_two_terms() x = self.extract_multiplicatively(a) if x is not None: return x.extract_multiplicatively(b) else: return x quotient = self / c if self.is_Number: if self is S.Infinity: if c.is_positive: return S.Infinity elif self is S.NegativeInfinity: if c.is_negative: return S.Infinity elif c.is_positive: return S.NegativeInfinity elif self is S.ComplexInfinity: if not c.is_zero: return S.ComplexInfinity elif self.is_Integer: if not quotient.is_Integer: return None elif self.is_positive and quotient.is_negative: return None else: return quotient elif self.is_Rational: if not quotient.is_Rational: return None elif self.is_positive and quotient.is_negative: return None else: return quotient elif self.is_Float: if not quotient.is_Float: return None elif self.is_positive and quotient.is_negative: return None else: return quotient elif self.is_NumberSymbol or self.is_Symbol or self is S.ImaginaryUnit: if quotient.is_Mul and len(quotient.args) == 2: if quotient.args[0].is_Integer and quotient.args[0].is_positive and quotient.args[1] == self: return quotient elif quotient.is_Integer and c.is_Number: return quotient elif self.is_Add: cs, ps = self.primitive() # assert cs >= 1 if c.is_Number and c is not S.NegativeOne: # assert c != 1 (handled at top) if cs is not S.One: if c.is_negative: xc = -(cs.extract_multiplicatively(-c)) else: xc = cs.extract_multiplicatively(c) if xc is not None: return xc*ps # rely on 2-arg Mul to restore Add return # |c| != 1 can only be extracted from cs if c == ps: return cs # check args of ps newargs = [] for arg in ps.args: newarg = arg.extract_multiplicatively(c) if newarg is None: return # all or nothing newargs.append(newarg) if cs is not S.One: args = [cs*t for t in newargs] # args may be in different order return _unevaluated_Add(*args) else: return Add._from_args(newargs) elif self.is_Mul: args = list(self.args) for i, arg in enumerate(args): newarg = arg.extract_multiplicatively(c) if newarg is not None: args[i] = newarg return Mul(*args) elif self.is_Pow: if c.is_Pow and c.base == self.base: new_exp = self.exp.extract_additively(c.exp) if new_exp is not None: return self.base ** (new_exp) elif c == self.base: new_exp = self.exp.extract_additively(1) if new_exp is not None: return self.base ** (new_exp) def extract_additively(self, c): """Return self - c if it's possible to subtract c from self and make all matching coefficients move towards zero, else return None. Examples ======== >>> from sympy.abc import x, y >>> e = 2*x + 3 >>> e.extract_additively(x + 1) x + 2 >>> e.extract_additively(3*x) >>> e.extract_additively(4) >>> (y*(x + 1)).extract_additively(x + 1) >>> ((x + 1)*(x + 2*y + 1) + 3).extract_additively(x + 1) (x + 1)*(x + 2*y) + 3 Sometimes auto-expansion will return a less simplified result than desired; gcd_terms might be used in such cases: >>> from sympy import gcd_terms >>> (4*x*(y + 1) + y).extract_additively(x) 4*x*(y + 1) + x*(4*y + 3) - x*(4*y + 4) + y >>> gcd_terms(_) x*(4*y + 3) + y See Also ======== extract_multiplicatively coeff as_coefficient """ c = sympify(c) if self is S.NaN: return None if c.is_zero: return self elif c == self: return S.Zero elif self == S.Zero: return None if self.is_Number: if not c.is_Number: return None co = self diff = co - c # XXX should we match types? i.e should 3 - .1 succeed? if (co > 0 and diff > 0 and diff < co or co < 0 and diff < 0 and diff > co): return diff return None if c.is_Number: co, t = self.as_coeff_Add() xa = co.extract_additively(c) if xa is None: return None return xa + t # handle the args[0].is_Number case separately # since we will have trouble looking for the coeff of # a number. if c.is_Add and c.args[0].is_Number: # whole term as a term factor co = self.coeff(c) xa0 = (co.extract_additively(1) or 0)*c if xa0: diff = self - co*c return (xa0 + (diff.extract_additively(c) or diff)) or None # term-wise h, t = c.as_coeff_Add() sh, st = self.as_coeff_Add() xa = sh.extract_additively(h) if xa is None: return None xa2 = st.extract_additively(t) if xa2 is None: return None return xa + xa2 # whole term as a term factor co = self.coeff(c) xa0 = (co.extract_additively(1) or 0)*c if xa0: diff = self - co*c return (xa0 + (diff.extract_additively(c) or diff)) or None # term-wise coeffs = [] for a in Add.make_args(c): ac, at = a.as_coeff_Mul() co = self.coeff(at) if not co: return None coc, cot = co.as_coeff_Add() xa = coc.extract_additively(ac) if xa is None: return None self -= co*at coeffs.append((cot + xa)*at) coeffs.append(self) return Add(*coeffs) @property def expr_free_symbols(self): """ Like ``free_symbols``, but returns the free symbols only if they are contained in an expression node. Examples ======== >>> from sympy.abc import x, y >>> (x + y).expr_free_symbols {x, y} If the expression is contained in a non-expression object, don't return the free symbols. Compare: >>> from sympy import Tuple >>> t = Tuple(x + y) >>> t.expr_free_symbols set() >>> t.free_symbols {x, y} """ return {j for i in self.args for j in i.expr_free_symbols} def could_extract_minus_sign(self): """Return True if self is not in a canonical form with respect to its sign. For most expressions, e, there will be a difference in e and -e. When there is, True will be returned for one and False for the other; False will be returned if there is no difference. Examples ======== >>> from sympy.abc import x, y >>> e = x - y >>> {i.could_extract_minus_sign() for i in (e, -e)} {False, True} """ negative_self = -self if self == negative_self: return False # e.g. zoo*x == -zoo*x self_has_minus = (self.extract_multiplicatively(-1) is not None) negative_self_has_minus = ( (negative_self).extract_multiplicatively(-1) is not None) if self_has_minus != negative_self_has_minus: return self_has_minus else: if self.is_Add: # We choose the one with less arguments with minus signs all_args = len(self.args) negative_args = len([False for arg in self.args if arg.could_extract_minus_sign()]) positive_args = all_args - negative_args if positive_args > negative_args: return False elif positive_args < negative_args: return True elif self.is_Mul: # We choose the one with an odd number of minus signs num, den = self.as_numer_denom() args = Mul.make_args(num) + Mul.make_args(den) arg_signs = [arg.could_extract_minus_sign() for arg in args] negative_args = list(filter(None, arg_signs)) return len(negative_args) % 2 == 1 # As a last resort, we choose the one with greater value of .sort_key() return bool(self.sort_key() < negative_self.sort_key()) def extract_branch_factor(self, allow_half=False): """ Try to write self as ``exp_polar(2*pi*I*n)*z`` in a nice way. Return (z, n). >>> from sympy import exp_polar, I, pi >>> from sympy.abc import x, y >>> exp_polar(I*pi).extract_branch_factor() (exp_polar(I*pi), 0) >>> exp_polar(2*I*pi).extract_branch_factor() (1, 1) >>> exp_polar(-pi*I).extract_branch_factor() (exp_polar(I*pi), -1) >>> exp_polar(3*pi*I + x).extract_branch_factor() (exp_polar(x + I*pi), 1) >>> (y*exp_polar(-5*pi*I)*exp_polar(3*pi*I + 2*pi*x)).extract_branch_factor() (y*exp_polar(2*pi*x), -1) >>> exp_polar(-I*pi/2).extract_branch_factor() (exp_polar(-I*pi/2), 0) If allow_half is True, also extract exp_polar(I*pi): >>> exp_polar(I*pi).extract_branch_factor(allow_half=True) (1, 1/2) >>> exp_polar(2*I*pi).extract_branch_factor(allow_half=True) (1, 1) >>> exp_polar(3*I*pi).extract_branch_factor(allow_half=True) (1, 3/2) >>> exp_polar(-I*pi).extract_branch_factor(allow_half=True) (1, -1/2) """ from sympy import exp_polar, pi, I, ceiling, Add n = S.Zero res = S.One args = Mul.make_args(self) exps = [] for arg in args: if isinstance(arg, exp_polar): exps += [arg.exp] else: res *= arg piimult = S.Zero extras = [] while exps: exp = exps.pop() if exp.is_Add: exps += exp.args continue if exp.is_Mul: coeff = exp.as_coefficient(pi*I) if coeff is not None: piimult += coeff continue extras += [exp] if piimult.is_number: coeff = piimult tail = () else: coeff, tail = piimult.as_coeff_add(*piimult.free_symbols) # round down to nearest multiple of 2 branchfact = ceiling(coeff/2 - S.Half)*2 n += branchfact/2 c = coeff - branchfact if allow_half: nc = c.extract_additively(1) if nc is not None: n += S.Half c = nc newexp = pi*I*Add(*((c, ) + tail)) + Add(*extras) if newexp != 0: res *= exp_polar(newexp) return res, n def _eval_is_polynomial(self, syms): if self.free_symbols.intersection(syms) == set([]): return True return False def is_polynomial(self, *syms): r""" Return True if self is a polynomial in syms and False otherwise. This checks if self is an exact polynomial in syms. This function returns False for expressions that are "polynomials" with symbolic exponents. Thus, you should be able to apply polynomial algorithms to expressions for which this returns True, and Poly(expr, \*syms) should work if and only if expr.is_polynomial(\*syms) returns True. The polynomial does not have to be in expanded form. If no symbols are given, all free symbols in the expression will be used. This is not part of the assumptions system. You cannot do Symbol('z', polynomial=True). Examples ======== >>> from sympy import Symbol >>> x = Symbol('x') >>> ((x**2 + 1)**4).is_polynomial(x) True >>> ((x**2 + 1)**4).is_polynomial() True >>> (2**x + 1).is_polynomial(x) False >>> n = Symbol('n', nonnegative=True, integer=True) >>> (x**n + 1).is_polynomial(x) False This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be a polynomial to become one. >>> from sympy import sqrt, factor, cancel >>> y = Symbol('y', positive=True) >>> a = sqrt(y**2 + 2*y + 1) >>> a.is_polynomial(y) False >>> factor(a) y + 1 >>> factor(a).is_polynomial(y) True >>> b = (y**2 + 2*y + 1)/(y + 1) >>> b.is_polynomial(y) False >>> cancel(b) y + 1 >>> cancel(b).is_polynomial(y) True See also .is_rational_function() """ if syms: syms = set(map(sympify, syms)) else: syms = self.free_symbols if syms.intersection(self.free_symbols) == set([]): # constant polynomial return True else: return self._eval_is_polynomial(syms) def _eval_is_rational_function(self, syms): if self.free_symbols.intersection(syms) == set([]): return True return False def is_rational_function(self, *syms): """ Test whether function is a ratio of two polynomials in the given symbols, syms. When syms is not given, all free symbols will be used. The rational function does not have to be in expanded or in any kind of canonical form. This function returns False for expressions that are "rational functions" with symbolic exponents. Thus, you should be able to call .as_numer_denom() and apply polynomial algorithms to the result for expressions for which this returns True. This is not part of the assumptions system. You cannot do Symbol('z', rational_function=True). Examples ======== >>> from sympy import Symbol, sin >>> from sympy.abc import x, y >>> (x/y).is_rational_function() True >>> (x**2).is_rational_function() True >>> (x/sin(y)).is_rational_function(y) False >>> n = Symbol('n', integer=True) >>> (x**n + 1).is_rational_function(x) False This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be a rational function to become one. >>> from sympy import sqrt, factor >>> y = Symbol('y', positive=True) >>> a = sqrt(y**2 + 2*y + 1)/y >>> a.is_rational_function(y) False >>> factor(a) (y + 1)/y >>> factor(a).is_rational_function(y) True See also is_algebraic_expr(). """ if self in [S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity]: return False if syms: syms = set(map(sympify, syms)) else: syms = self.free_symbols if syms.intersection(self.free_symbols) == set([]): # constant rational function return True else: return self._eval_is_rational_function(syms) def _eval_is_algebraic_expr(self, syms): if self.free_symbols.intersection(syms) == set([]): return True return False def is_algebraic_expr(self, *syms): """ This tests whether a given expression is algebraic or not, in the given symbols, syms. When syms is not given, all free symbols will be used. The rational function does not have to be in expanded or in any kind of canonical form. This function returns False for expressions that are "algebraic expressions" with symbolic exponents. This is a simple extension to the is_rational_function, including rational exponentiation. Examples ======== >>> from sympy import Symbol, sqrt >>> x = Symbol('x', real=True) >>> sqrt(1 + x).is_rational_function() False >>> sqrt(1 + x).is_algebraic_expr() True This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be an algebraic expression to become one. >>> from sympy import exp, factor >>> a = sqrt(exp(x)**2 + 2*exp(x) + 1)/(exp(x) + 1) >>> a.is_algebraic_expr(x) False >>> factor(a).is_algebraic_expr() True See Also ======== is_rational_function() References ========== - https://en.wikipedia.org/wiki/Algebraic_expression """ if syms: syms = set(map(sympify, syms)) else: syms = self.free_symbols if syms.intersection(self.free_symbols) == set([]): # constant algebraic expression return True else: return self._eval_is_algebraic_expr(syms) ################################################################################### ##################### SERIES, LEADING TERM, LIMIT, ORDER METHODS ################## ################################################################################### def series(self, x=None, x0=0, n=6, dir="+", logx=None): """ Series expansion of "self" around ``x = x0`` yielding either terms of the series one by one (the lazy series given when n=None), else all the terms at once when n != None. Returns the series expansion of "self" around the point ``x = x0`` with respect to ``x`` up to ``O((x - x0)**n, x, x0)`` (default n is 6). If ``x=None`` and ``self`` is univariate, the univariate symbol will be supplied, otherwise an error will be raised. Parameters ========== expr : Expression The expression whose series is to be expanded. x : Symbol It is the variable of the expression to be calculated. x0 : Value The value around which ``x`` is calculated. Can be any value from ``-oo`` to ``oo``. n : Value The number of terms upto which the series is to be expanded. dir : String, optional The series-expansion can be bi-directional. If ``dir="+"``, then (x->x0+). If ``dir="-", then (x->x0-). For infinite ``x0`` (``oo`` or ``-oo``), the ``dir`` argument is determined from the direction of the infinity (i.e., ``dir="-"`` for ``oo``). logx : optional It is used to replace any log(x) in the returned series with a symbolic value rather than evaluating the actual value. Examples ======== >>> from sympy import cos, exp, tan, oo, series >>> from sympy.abc import x, y >>> cos(x).series() 1 - x**2/2 + x**4/24 + O(x**6) >>> cos(x).series(n=4) 1 - x**2/2 + O(x**4) >>> cos(x).series(x, x0=1, n=2) cos(1) - (x - 1)*sin(1) + O((x - 1)**2, (x, 1)) >>> e = cos(x + exp(y)) >>> e.series(y, n=2) cos(x + 1) - y*sin(x + 1) + O(y**2) >>> e.series(x, n=2) cos(exp(y)) - x*sin(exp(y)) + O(x**2) If ``n=None`` then a generator of the series terms will be returned. >>> term=cos(x).series(n=None) >>> [next(term) for i in range(2)] [1, -x**2/2] For ``dir=+`` (default) the series is calculated from the right and for ``dir=-`` the series from the left. For smooth functions this flag will not alter the results. >>> abs(x).series(dir="+") x >>> abs(x).series(dir="-") -x >>> f = tan(x) >>> f.series(x, 2, 6, "+") tan(2) + (1 + tan(2)**2)*(x - 2) + (x - 2)**2*(tan(2)**3 + tan(2)) + (x - 2)**3*(1/3 + 4*tan(2)**2/3 + tan(2)**4) + (x - 2)**4*(tan(2)**5 + 5*tan(2)**3/3 + 2*tan(2)/3) + (x - 2)**5*(2/15 + 17*tan(2)**2/15 + 2*tan(2)**4 + tan(2)**6) + O((x - 2)**6, (x, 2)) >>> f.series(x, 2, 3, "-") tan(2) + (2 - x)*(-tan(2)**2 - 1) + (2 - x)**2*(tan(2)**3 + tan(2)) + O((x - 2)**3, (x, 2)) Returns ======= Expr : Expression Series expansion of the expression about x0 Raises ====== TypeError If "n" and "x0" are infinity objects PoleError If "x0" is an infinity object """ from sympy import collect, Dummy, Order, Rational, Symbol, ceiling if x is None: syms = self.free_symbols if not syms: return self elif len(syms) > 1: raise ValueError('x must be given for multivariate functions.') x = syms.pop() if isinstance(x, Symbol): dep = x in self.free_symbols else: d = Dummy() dep = d in self.xreplace({x: d}).free_symbols if not dep: if n is None: return (s for s in [self]) else: return self if len(dir) != 1 or dir not in '+-': raise ValueError("Dir must be '+' or '-'") if x0 in [S.Infinity, S.NegativeInfinity]: sgn = 1 if x0 is S.Infinity else -1 s = self.subs(x, sgn/x).series(x, n=n, dir='+') if n is None: return (si.subs(x, sgn/x) for si in s) return s.subs(x, sgn/x) # use rep to shift origin to x0 and change sign (if dir is negative) # and undo the process with rep2 if x0 or dir == '-': if dir == '-': rep = -x + x0 rep2 = -x rep2b = x0 else: rep = x + x0 rep2 = x rep2b = -x0 s = self.subs(x, rep).series(x, x0=0, n=n, dir='+', logx=logx) if n is None: # lseries... return (si.subs(x, rep2 + rep2b) for si in s) return s.subs(x, rep2 + rep2b) # from here on it's x0=0 and dir='+' handling if x.is_positive is x.is_negative is None or x.is_Symbol is not True: # replace x with an x that has a positive assumption xpos = Dummy('x', positive=True, finite=True) rv = self.subs(x, xpos).series(xpos, x0, n, dir, logx=logx) if n is None: return (s.subs(xpos, x) for s in rv) else: return rv.subs(xpos, x) if n is not None: # nseries handling s1 = self._eval_nseries(x, n=n, logx=logx) o = s1.getO() or S.Zero if o: # make sure the requested order is returned ngot = o.getn() if ngot > n: # leave o in its current form (e.g. with x*log(x)) so # it eats terms properly, then replace it below if n != 0: s1 += o.subs(x, x**Rational(n, ngot)) else: s1 += Order(1, x) elif ngot < n: # increase the requested number of terms to get the desired # number keep increasing (up to 9) until the received order # is different than the original order and then predict how # many additional terms are needed for more in range(1, 9): s1 = self._eval_nseries(x, n=n + more, logx=logx) newn = s1.getn() if newn != ngot: ndo = n + ceiling((n - ngot)*more/(newn - ngot)) s1 = self._eval_nseries(x, n=ndo, logx=logx) while s1.getn() < n: s1 = self._eval_nseries(x, n=ndo, logx=logx) ndo += 1 break else: raise ValueError('Could not calculate %s terms for %s' % (str(n), self)) s1 += Order(x**n, x) o = s1.getO() s1 = s1.removeO() else: o = Order(x**n, x) s1done = s1.doit() if (s1done + o).removeO() == s1done: o = S.Zero try: return collect(s1, x) + o except NotImplementedError: return s1 + o else: # lseries handling def yield_lseries(s): """Return terms of lseries one at a time.""" for si in s: if not si.is_Add: yield si continue # yield terms 1 at a time if possible # by increasing order until all the # terms have been returned yielded = 0 o = Order(si, x)*x ndid = 0 ndo = len(si.args) while 1: do = (si - yielded + o).removeO() o *= x if not do or do.is_Order: continue if do.is_Add: ndid += len(do.args) else: ndid += 1 yield do if ndid == ndo: break yielded += do return yield_lseries(self.removeO()._eval_lseries(x, logx=logx)) def aseries(self, x=None, n=6, bound=0, hir=False): """Asymptotic Series expansion of self. This is equivalent to ``self.series(x, oo, n)``. Parameters ========== self : Expression The expression whose series is to be expanded. x : Symbol It is the variable of the expression to be calculated. n : Value The number of terms upto which the series is to be expanded. hir : Boolean Set this parameter to be True to produce hierarchical series. It stops the recursion at an early level and may provide nicer and more useful results. bound : Value, Integer Use the ``bound`` parameter to give limit on rewriting coefficients in its normalised form. Examples ======== >>> from sympy import sin, exp >>> from sympy.abc import x, y >>> e = sin(1/x + exp(-x)) - sin(1/x) >>> e.aseries(x) (1/(24*x**4) - 1/(2*x**2) + 1 + O(x**(-6), (x, oo)))*exp(-x) >>> e.aseries(x, n=3, hir=True) -exp(-2*x)*sin(1/x)/2 + exp(-x)*cos(1/x) + O(exp(-3*x), (x, oo)) >>> e = exp(exp(x)/(1 - 1/x)) >>> e.aseries(x) exp(exp(x)/(1 - 1/x)) >>> e.aseries(x, bound=3) exp(exp(x)/x**2)*exp(exp(x)/x)*exp(-exp(x) + exp(x)/(1 - 1/x) - exp(x)/x - exp(x)/x**2)*exp(exp(x)) Returns ======= Expr Asymptotic series expansion of the expression. Notes ===== This algorithm is directly induced from the limit computational algorithm provided by Gruntz. It majorly uses the mrv and rewrite sub-routines. The overall idea of this algorithm is first to look for the most rapidly varying subexpression w of a given expression f and then expands f in a series in w. Then same thing is recursively done on the leading coefficient till we get constant coefficients. If the most rapidly varying subexpression of a given expression f is f itself, the algorithm tries to find a normalised representation of the mrv set and rewrites f using this normalised representation. If the expansion contains an order term, it will be either ``O(x ** (-n))`` or ``O(w ** (-n))`` where ``w`` belongs to the most rapidly varying expression of ``self``. References ========== .. [1] A New Algorithm for Computing Asymptotic Series - Dominik Gruntz .. [2] Gruntz thesis - p90 .. [3] http://en.wikipedia.org/wiki/Asymptotic_expansion See Also ======== Expr.aseries: See the docstring of this function for complete details of this wrapper. """ from sympy import Order, Dummy from sympy.functions import exp, log from sympy.series.gruntz import mrv, rewrite if x.is_positive is x.is_negative is None: xpos = Dummy('x', positive=True) return self.subs(x, xpos).aseries(xpos, n, bound, hir).subs(xpos, x) om, exps = mrv(self, x) # We move one level up by replacing `x` by `exp(x)`, and then # computing the asymptotic series for f(exp(x)). Then asymptotic series # can be obtained by moving one-step back, by replacing x by ln(x). if x in om: s = self.subs(x, exp(x)).aseries(x, n, bound, hir).subs(x, log(x)) if s.getO(): return s + Order(1/x**n, (x, S.Infinity)) return s k = Dummy('k', positive=True) # f is rewritten in terms of omega func, logw = rewrite(exps, om, x, k) if self in om: if bound <= 0: return self s = (self.exp).aseries(x, n, bound=bound) s = s.func(*[t.removeO() for t in s.args]) res = exp(s.subs(x, 1/x).as_leading_term(x).subs(x, 1/x)) func = exp(self.args[0] - res.args[0]) / k logw = log(1/res) s = func.series(k, 0, n) # Hierarchical series if hir: return s.subs(k, exp(logw)) o = s.getO() terms = sorted(Add.make_args(s.removeO()), key=lambda i: int(i.as_coeff_exponent(k)[1])) s = S.Zero has_ord = False # Then we recursively expand these coefficients one by one into # their asymptotic series in terms of their most rapidly varying subexpressions. for t in terms: coeff, expo = t.as_coeff_exponent(k) if coeff.has(x): # Recursive step snew = coeff.aseries(x, n, bound=bound-1) if has_ord and snew.getO(): break elif snew.getO(): has_ord = True s += (snew * k**expo) else: s += t if not o or has_ord: return s.subs(k, exp(logw)) return (s + o).subs(k, exp(logw)) def taylor_term(self, n, x, *previous_terms): """General method for the taylor term. This method is slow, because it differentiates n-times. Subclasses can redefine it to make it faster by using the "previous_terms". """ from sympy import Dummy, factorial x = sympify(x) _x = Dummy('x') return self.subs(x, _x).diff(_x, n).subs(_x, x).subs(x, 0) * x**n / factorial(n) def lseries(self, x=None, x0=0, dir='+', logx=None): """ Wrapper for series yielding an iterator of the terms of the series. Note: an infinite series will yield an infinite iterator. The following, for exaxmple, will never terminate. It will just keep printing terms of the sin(x) series:: for term in sin(x).lseries(x): print term The advantage of lseries() over nseries() is that many times you are just interested in the next term in the series (i.e. the first term for example), but you don't know how many you should ask for in nseries() using the "n" parameter. See also nseries(). """ return self.series(x, x0, n=None, dir=dir, logx=logx) def _eval_lseries(self, x, logx=None): # default implementation of lseries is using nseries(), and adaptively # increasing the "n". As you can see, it is not very efficient, because # we are calculating the series over and over again. Subclasses should # override this method and implement much more efficient yielding of # terms. n = 0 series = self._eval_nseries(x, n=n, logx=logx) if not series.is_Order: if series.is_Add: yield series.removeO() else: yield series return while series.is_Order: n += 1 series = self._eval_nseries(x, n=n, logx=logx) e = series.removeO() yield e while 1: while 1: n += 1 series = self._eval_nseries(x, n=n, logx=logx).removeO() if e != series: break yield series - e e = series def nseries(self, x=None, x0=0, n=6, dir='+', logx=None): """ Wrapper to _eval_nseries if assumptions allow, else to series. If x is given, x0 is 0, dir='+', and self has x, then _eval_nseries is called. This calculates "n" terms in the innermost expressions and then builds up the final series just by "cross-multiplying" everything out. The optional ``logx`` parameter can be used to replace any log(x) in the returned series with a symbolic value to avoid evaluating log(x) at 0. A symbol to use in place of log(x) should be provided. Advantage -- it's fast, because we don't have to determine how many terms we need to calculate in advance. Disadvantage -- you may end up with less terms than you may have expected, but the O(x**n) term appended will always be correct and so the result, though perhaps shorter, will also be correct. If any of those assumptions is not met, this is treated like a wrapper to series which will try harder to return the correct number of terms. See also lseries(). Examples ======== >>> from sympy import sin, log, Symbol >>> from sympy.abc import x, y >>> sin(x).nseries(x, 0, 6) x - x**3/6 + x**5/120 + O(x**6) >>> log(x+1).nseries(x, 0, 5) x - x**2/2 + x**3/3 - x**4/4 + O(x**5) Handling of the ``logx`` parameter --- in the following example the expansion fails since ``sin`` does not have an asymptotic expansion at -oo (the limit of log(x) as x approaches 0): >>> e = sin(log(x)) >>> e.nseries(x, 0, 6) Traceback (most recent call last): ... PoleError: ... ... >>> logx = Symbol('logx') >>> e.nseries(x, 0, 6, logx=logx) sin(logx) In the following example, the expansion works but gives only an Order term unless the ``logx`` parameter is used: >>> e = x**y >>> e.nseries(x, 0, 2) O(log(x)**2) >>> e.nseries(x, 0, 2, logx=logx) exp(logx*y) """ if x and not x in self.free_symbols: return self if x is None or x0 or dir != '+': # {see XPOS above} or (x.is_positive == x.is_negative == None): return self.series(x, x0, n, dir) else: return self._eval_nseries(x, n=n, logx=logx) def _eval_nseries(self, x, n, logx): """ Return terms of series for self up to O(x**n) at x=0 from the positive direction. This is a method that should be overridden in subclasses. Users should never call this method directly (use .nseries() instead), so you don't have to write docstrings for _eval_nseries(). """ from sympy.utilities.misc import filldedent raise NotImplementedError(filldedent(""" The _eval_nseries method should be added to %s to give terms up to O(x**n) at x=0 from the positive direction so it is available when nseries calls it.""" % self.func) ) def limit(self, x, xlim, dir='+'): """ Compute limit x->xlim. """ from sympy.series.limits import limit return limit(self, x, xlim, dir) def compute_leading_term(self, x, logx=None): """ as_leading_term is only allowed for results of .series() This is a wrapper to compute a series first. """ from sympy import Dummy, log, Piecewise, piecewise_fold from sympy.series.gruntz import calculate_series if self.has(Piecewise): expr = piecewise_fold(self) else: expr = self if self.removeO() == 0: return self if logx is None: d = Dummy('logx') s = calculate_series(expr, x, d).subs(d, log(x)) else: s = calculate_series(expr, x, logx) return s.as_leading_term(x) @cacheit def as_leading_term(self, *symbols): """ Returns the leading (nonzero) term of the series expansion of self. The _eval_as_leading_term routines are used to do this, and they must always return a non-zero value. Examples ======== >>> from sympy.abc import x >>> (1 + x + x**2).as_leading_term(x) 1 >>> (1/x**2 + x + x**2).as_leading_term(x) x**(-2) """ from sympy import powsimp if len(symbols) > 1: c = self for x in symbols: c = c.as_leading_term(x) return c elif not symbols: return self x = sympify(symbols[0]) if not x.is_symbol: raise ValueError('expecting a Symbol but got %s' % x) if x not in self.free_symbols: return self obj = self._eval_as_leading_term(x) if obj is not None: return powsimp(obj, deep=True, combine='exp') raise NotImplementedError('as_leading_term(%s, %s)' % (self, x)) def _eval_as_leading_term(self, x): return self def as_coeff_exponent(self, x): """ ``c*x**e -> c,e`` where x can be any symbolic expression. """ from sympy import collect s = collect(self, x) c, p = s.as_coeff_mul(x) if len(p) == 1: b, e = p[0].as_base_exp() if b == x: return c, e return s, S.Zero def leadterm(self, x): """ Returns the leading term a*x**b as a tuple (a, b). Examples ======== >>> from sympy.abc import x >>> (1+x+x**2).leadterm(x) (1, 0) >>> (1/x**2+x+x**2).leadterm(x) (1, -2) """ from sympy import Dummy, log l = self.as_leading_term(x) d = Dummy('logx') if l.has(log(x)): l = l.subs(log(x), d) c, e = l.as_coeff_exponent(x) if x in c.free_symbols: from sympy.utilities.misc import filldedent raise ValueError(filldedent(""" cannot compute leadterm(%s, %s). The coefficient should have been free of %s but got %s""" % (self, x, x, c))) c = c.subs(d, log(x)) return c, e def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ return S.One, self def as_coeff_Add(self, rational=False): """Efficiently extract the coefficient of a summation. """ return S.Zero, self def fps(self, x=None, x0=0, dir=1, hyper=True, order=4, rational=True, full=False): """ Compute formal power power series of self. See the docstring of the :func:`fps` function in sympy.series.formal for more information. """ from sympy.series.formal import fps return fps(self, x, x0, dir, hyper, order, rational, full) def fourier_series(self, limits=None): """Compute fourier sine/cosine series of self. See the docstring of the :func:`fourier_series` in sympy.series.fourier for more information. """ from sympy.series.fourier import fourier_series return fourier_series(self, limits) ################################################################################### ##################### DERIVATIVE, INTEGRAL, FUNCTIONAL METHODS #################### ################################################################################### def diff(self, *symbols, **assumptions): assumptions.setdefault("evaluate", True) return Derivative(self, *symbols, **assumptions) ########################################################################### ###################### EXPRESSION EXPANSION METHODS ####################### ########################################################################### # Relevant subclasses should override _eval_expand_hint() methods. See # the docstring of expand() for more info. def _eval_expand_complex(self, **hints): real, imag = self.as_real_imag(**hints) return real + S.ImaginaryUnit*imag @staticmethod def _expand_hint(expr, hint, deep=True, **hints): """ Helper for ``expand()``. Recursively calls ``expr._eval_expand_hint()``. Returns ``(expr, hit)``, where expr is the (possibly) expanded ``expr`` and ``hit`` is ``True`` if ``expr`` was truly expanded and ``False`` otherwise. """ hit = False # XXX: Hack to support non-Basic args # | # V if deep and getattr(expr, 'args', ()) and not expr.is_Atom: sargs = [] for arg in expr.args: arg, arghit = Expr._expand_hint(arg, hint, **hints) hit |= arghit sargs.append(arg) if hit: expr = expr.func(*sargs) if hasattr(expr, hint): newexpr = getattr(expr, hint)(**hints) if newexpr != expr: return (newexpr, True) return (expr, hit) @cacheit def expand(self, deep=True, modulus=None, power_base=True, power_exp=True, mul=True, log=True, multinomial=True, basic=True, **hints): """ Expand an expression using hints. See the docstring of the expand() function in sympy.core.function for more information. """ from sympy.simplify.radsimp import fraction hints.update(power_base=power_base, power_exp=power_exp, mul=mul, log=log, multinomial=multinomial, basic=basic) expr = self if hints.pop('frac', False): n, d = [a.expand(deep=deep, modulus=modulus, **hints) for a in fraction(self)] return n/d elif hints.pop('denom', False): n, d = fraction(self) return n/d.expand(deep=deep, modulus=modulus, **hints) elif hints.pop('numer', False): n, d = fraction(self) return n.expand(deep=deep, modulus=modulus, **hints)/d # Although the hints are sorted here, an earlier hint may get applied # at a given node in the expression tree before another because of how # the hints are applied. e.g. expand(log(x*(y + z))) -> log(x*y + # x*z) because while applying log at the top level, log and mul are # applied at the deeper level in the tree so that when the log at the # upper level gets applied, the mul has already been applied at the # lower level. # Additionally, because hints are only applied once, the expression # may not be expanded all the way. For example, if mul is applied # before multinomial, x*(x + 1)**2 won't be expanded all the way. For # now, we just use a special case to make multinomial run before mul, # so that at least polynomials will be expanded all the way. In the # future, smarter heuristics should be applied. # TODO: Smarter heuristics def _expand_hint_key(hint): """Make multinomial come before mul""" if hint == 'mul': return 'mulz' return hint for hint in sorted(hints.keys(), key=_expand_hint_key): use_hint = hints[hint] if use_hint: hint = '_eval_expand_' + hint expr, hit = Expr._expand_hint(expr, hint, deep=deep, **hints) while True: was = expr if hints.get('multinomial', False): expr, _ = Expr._expand_hint( expr, '_eval_expand_multinomial', deep=deep, **hints) if hints.get('mul', False): expr, _ = Expr._expand_hint( expr, '_eval_expand_mul', deep=deep, **hints) if hints.get('log', False): expr, _ = Expr._expand_hint( expr, '_eval_expand_log', deep=deep, **hints) if expr == was: break if modulus is not None: modulus = sympify(modulus) if not modulus.is_Integer or modulus <= 0: raise ValueError( "modulus must be a positive integer, got %s" % modulus) terms = [] for term in Add.make_args(expr): coeff, tail = term.as_coeff_Mul(rational=True) coeff %= modulus if coeff: terms.append(coeff*tail) expr = Add(*terms) return expr ########################################################################### ################### GLOBAL ACTION VERB WRAPPER METHODS #################### ########################################################################### def integrate(self, *args, **kwargs): """See the integrate function in sympy.integrals""" from sympy.integrals import integrate return integrate(self, *args, **kwargs) def simplify(self, **kwargs): """See the simplify function in sympy.simplify""" from sympy.simplify import simplify return simplify(self, **kwargs) def nsimplify(self, constants=[], tolerance=None, full=False): """See the nsimplify function in sympy.simplify""" from sympy.simplify import nsimplify return nsimplify(self, constants, tolerance, full) def separate(self, deep=False, force=False): """See the separate function in sympy.simplify""" from sympy.core.function import expand_power_base return expand_power_base(self, deep=deep, force=force) def collect(self, syms, func=None, evaluate=True, exact=False, distribute_order_term=True): """See the collect function in sympy.simplify""" from sympy.simplify import collect return collect(self, syms, func, evaluate, exact, distribute_order_term) def together(self, *args, **kwargs): """See the together function in sympy.polys""" from sympy.polys import together return together(self, *args, **kwargs) def apart(self, x=None, **args): """See the apart function in sympy.polys""" from sympy.polys import apart return apart(self, x, **args) def ratsimp(self): """See the ratsimp function in sympy.simplify""" from sympy.simplify import ratsimp return ratsimp(self) def trigsimp(self, **args): """See the trigsimp function in sympy.simplify""" from sympy.simplify import trigsimp return trigsimp(self, **args) def radsimp(self, **kwargs): """See the radsimp function in sympy.simplify""" from sympy.simplify import radsimp return radsimp(self, **kwargs) def powsimp(self, *args, **kwargs): """See the powsimp function in sympy.simplify""" from sympy.simplify import powsimp return powsimp(self, *args, **kwargs) def combsimp(self): """See the combsimp function in sympy.simplify""" from sympy.simplify import combsimp return combsimp(self) def gammasimp(self): """See the gammasimp function in sympy.simplify""" from sympy.simplify import gammasimp return gammasimp(self) def factor(self, *gens, **args): """See the factor() function in sympy.polys.polytools""" from sympy.polys import factor return factor(self, *gens, **args) def refine(self, assumption=True): """See the refine function in sympy.assumptions""" from sympy.assumptions import refine return refine(self, assumption) def cancel(self, *gens, **args): """See the cancel function in sympy.polys""" from sympy.polys import cancel return cancel(self, *gens, **args) def invert(self, g, *gens, **args): """Return the multiplicative inverse of ``self`` mod ``g`` where ``self`` (and ``g``) may be symbolic expressions). See Also ======== sympy.core.numbers.mod_inverse, sympy.polys.polytools.invert """ from sympy.polys.polytools import invert from sympy.core.numbers import mod_inverse if self.is_number and getattr(g, 'is_number', True): return mod_inverse(self, g) return invert(self, g, *gens, **args) def round(self, n=None): """Return x rounded to the given decimal place. If a complex number would results, apply round to the real and imaginary components of the number. Examples ======== >>> from sympy import pi, E, I, S, Add, Mul, Number >>> pi.round() 3 >>> pi.round(2) 3.14 >>> (2*pi + E*I).round() 6 + 3*I The round method has a chopping effect: >>> (2*pi + I/10).round() 6 >>> (pi/10 + 2*I).round() 2*I >>> (pi/10 + E*I).round(2) 0.31 + 2.72*I Notes ===== The Python builtin function, round, always returns a float in Python 2 while the SymPy round method (and round with a Number argument in Python 3) returns a Number. >>> from sympy.core.compatibility import PY3 >>> isinstance(round(S(123), -2), Number if PY3 else float) True For a consistent behavior, and Python 3 rounding rules, import `round` from sympy.core.compatibility. >>> from sympy.core.compatibility import round >>> isinstance(round(S(123), -2), Number) True """ from sympy.core.numbers import Float x = self if not x.is_number: raise TypeError("can't round symbolic expression") if not x.is_Atom: if not pure_complex(x.n(2), or_real=True): raise TypeError( 'Expected a number but got %s:' % func_name(x)) elif x in (S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity): return x if not x.is_extended_real: i, r = x.as_real_imag() return i.round(n) + S.ImaginaryUnit*r.round(n) if not x: return S.Zero if n is None else x p = as_int(n or 0) if x.is_Integer: # XXX return Integer(round(int(x), p)) when Py2 is dropped if p >= 0: return x m = 10**-p i, r = divmod(abs(x), m) if i%2 and 2*r == m: i += 1 elif 2*r > m: i += 1 if x < 0: i *= -1 return i*m digits_to_decimal = _mag(x) # _mag(12) = 2, _mag(.012) = -1 allow = digits_to_decimal + p precs = [f._prec for f in x.atoms(Float)] dps = prec_to_dps(max(precs)) if precs else None if dps is None: # assume everything is exact so use the Python # float default or whatever was requested dps = max(15, allow) else: allow = min(allow, dps) # this will shift all digits to right of decimal # and give us dps to work with as an int shift = -digits_to_decimal + dps extra = 1 # how far we look past known digits # NOTE # mpmath will calculate the binary representation to # an arbitrary number of digits but we must base our # answer on a finite number of those digits, e.g. # .575 2589569785738035/2**52 in binary. # mpmath shows us that the first 18 digits are # >>> Float(.575).n(18) # 0.574999999999999956 # The default precision is 15 digits and if we ask # for 15 we get # >>> Float(.575).n(15) # 0.575000000000000 # mpmath handles rounding at the 15th digit. But we # need to be careful since the user might be asking # for rounding at the last digit and our semantics # are to round toward the even final digit when there # is a tie. So the extra digit will be used to make # that decision. In this case, the value is the same # to 15 digits: # >>> Float(.575).n(16) # 0.5750000000000000 # Now converting this to the 15 known digits gives # 575000000000000.0 # which rounds to integer # 5750000000000000 # And now we can round to the desired digt, e.g. at # the second from the left and we get # 5800000000000000 # and rescaling that gives # 0.58 # as the final result. # If the value is made slightly less than 0.575 we might # still obtain the same value: # >>> Float(.575-1e-16).n(16)*10**15 # 574999999999999.8 # What 15 digits best represents the known digits (which are # to the left of the decimal? 5750000000000000, the same as # before. The only way we will round down (in this case) is # if we declared that we had more than 15 digits of precision. # For example, if we use 16 digits of precision, the integer # we deal with is # >>> Float(.575-1e-16).n(17)*10**16 # 5749999999999998.4 # and this now rounds to 5749999999999998 and (if we round to # the 2nd digit from the left) we get 5700000000000000. # xf = x.n(dps + extra)*Pow(10, shift) xi = Integer(xf) # use the last digit to select the value of xi # nearest to x before rounding at the desired digit sign = 1 if x > 0 else -1 dif2 = sign*(xf - xi).n(extra) if dif2 < 0: raise NotImplementedError( 'not expecting int(x) to round away from 0') if dif2 > .5: xi += sign # round away from 0 elif dif2 == .5: xi += sign if xi%2 else -sign # round toward even # shift p to the new position ip = p - shift # let Python handle the int rounding then rescale xr = xi.round(ip) # when Py2 is drop make this round(xi.p, ip) # restore scale rv = Rational(xr, Pow(10, shift)) # return Float or Integer if rv.is_Integer: if n is None: # the single-arg case return rv # use str or else it won't be a float return Float(str(rv), dps) # keep same precision else: if not allow and rv > self: allow += 1 return Float(rv, allow) __round__ = round def _eval_derivative_matrix_lines(self, x): from sympy.matrices.expressions.matexpr import _LeftRightArgs return [_LeftRightArgs([S.One, S.One], higher=self._eval_derivative(x))] class AtomicExpr(Atom, Expr): """ A parent class for object which are both atoms and Exprs. For example: Symbol, Number, Rational, Integer, ... But not: Add, Mul, Pow, ... """ is_number = False is_Atom = True __slots__ = [] def _eval_derivative(self, s): if self == s: return S.One return S.Zero def _eval_derivative_n_times(self, s, n): from sympy import Piecewise, Eq from sympy import Tuple, MatrixExpr from sympy.matrices.common import MatrixCommon if isinstance(s, (MatrixCommon, Tuple, Iterable, MatrixExpr)): return super(AtomicExpr, self)._eval_derivative_n_times(s, n) if self == s: return Piecewise((self, Eq(n, 0)), (1, Eq(n, 1)), (0, True)) else: return Piecewise((self, Eq(n, 0)), (0, True)) def _eval_is_polynomial(self, syms): return True def _eval_is_rational_function(self, syms): return True def _eval_is_algebraic_expr(self, syms): return True def _eval_nseries(self, x, n, logx): return self @property def expr_free_symbols(self): return {self} def _mag(x): """Return integer ``i`` such that .1 <= x/10**i < 1 Examples ======== >>> from sympy.core.expr import _mag >>> from sympy import Float >>> _mag(Float(.1)) 0 >>> _mag(Float(.01)) -1 >>> _mag(Float(1234)) 4 """ from math import log10, ceil, log from sympy import Float xpos = abs(x.n()) if not xpos: return S.Zero try: mag_first_dig = int(ceil(log10(xpos))) except (ValueError, OverflowError): mag_first_dig = int(ceil(Float(mpf_log(xpos._mpf_, 53))/log(10))) # check that we aren't off by 1 if (xpos/10**mag_first_dig) >= 1: assert 1 <= (xpos/10**mag_first_dig) < 10 mag_first_dig += 1 return mag_first_dig class UnevaluatedExpr(Expr): """ Expression that is not evaluated unless released. Examples ======== >>> from sympy import UnevaluatedExpr >>> from sympy.abc import a, b, x, y >>> x*(1/x) 1 >>> x*UnevaluatedExpr(1/x) x*1/x """ def __new__(cls, arg, **kwargs): arg = _sympify(arg) obj = Expr.__new__(cls, arg, **kwargs) return obj def doit(self, **kwargs): if kwargs.get("deep", True): return self.args[0].doit(**kwargs) else: return self.args[0] def _n2(a, b): """Return (a - b).evalf(2) if a and b are comparable, else None. This should only be used when a and b are already sympified. """ # /!\ it is very important (see issue 8245) not to # use a re-evaluated number in the calculation of dif if a.is_comparable and b.is_comparable: dif = (a - b).evalf(2) if dif.is_comparable: return dif def unchanged(func, *args): """Return True if `func` applied to the `args` is unchanged. Can be used instead of `assert foo == foo`. Examples ======== >>> from sympy import Piecewise, cos, pi >>> from sympy.core.expr import unchanged >>> from sympy.abc import x >>> unchanged(cos, 1) # instead of assert cos(1) == cos(1) True >>> unchanged(cos, pi) False Comparison of args uses the builtin capabilities of the object's arguments to test for equality so args can be defined loosely. Here, the ExprCondPair arguments of Piecewise compare as equal to the tuples that can be used to create the Piecewise: >>> unchanged(Piecewise, (x, x > 1), (0, True)) True """ f = func(*args) return f.func == func and f.args == args class ExprBuilder(object): def __init__(self, op, args=[], validator=None, check=True): if not hasattr(op, "__call__"): raise TypeError("op {} needs to be callable".format(op)) self.op = op self.args = args self.validator = validator if (validator is not None) and check: self.validate() @staticmethod def _build_args(args): return [i.build() if isinstance(i, ExprBuilder) else i for i in args] def validate(self): if self.validator is None: return args = self._build_args(self.args) self.validator(*args) def build(self, check=True): args = self._build_args(self.args) if self.validator and check: self.validator(*args) return self.op(*args) def append_argument(self, arg, check=True): self.args.append(arg) if self.validator and check: self.validate(*self.args) def __getitem__(self, item): if item == 0: return self.op else: return self.args[item-1] def __repr__(self): return str(self.build()) def search_element(self, elem): for i, arg in enumerate(self.args): if isinstance(arg, ExprBuilder): ret = arg.search_index(elem) if ret is not None: return (i,) + ret elif id(arg) == id(elem): return (i,) return None from .mul import Mul from .add import Add from .power import Pow from .function import Derivative, Function from .mod import Mod from .exprtools import factor_terms from .numbers import Integer, Rational
6b0f6618086f7c77a6a2ffdbfcaf8f829d3036b8366b3ad45f37b87775762f4a
from __future__ import absolute_import, print_function, division import numbers import decimal import fractions import math import re as regex from .containers import Tuple from .sympify import converter, sympify, _sympify, SympifyError, _convert_numpy_types from .singleton import S, Singleton from .expr import Expr, AtomicExpr from .evalf import pure_complex from .decorators import _sympifyit from .cache import cacheit, clear_cache from .logic import fuzzy_not from sympy.core.compatibility import ( as_int, integer_types, long, string_types, with_metaclass, HAS_GMPY, SYMPY_INTS, int_info) from sympy.core.cache import lru_cache import mpmath import mpmath.libmp as mlib from mpmath.libmp import bitcount from mpmath.libmp.backend import MPZ from mpmath.libmp import mpf_pow, mpf_pi, mpf_e, phi_fixed from mpmath.ctx_mp import mpnumeric from mpmath.libmp.libmpf import ( finf as _mpf_inf, fninf as _mpf_ninf, fnan as _mpf_nan, fzero, _normalize as mpf_normalize, prec_to_dps, fone, fnone) from sympy.utilities.misc import debug, filldedent from .evaluate import global_evaluate from sympy.utilities.exceptions import SymPyDeprecationWarning rnd = mlib.round_nearest _LOG2 = math.log(2) def comp(z1, z2, tol=None): """Return a bool indicating whether the error between z1 and z2 is <= tol. Examples ======== If ``tol`` is None then True will be returned if ``abs(z1 - z2)*10**p <= 5`` where ``p`` is minimum value of the decimal precision of each value. >>> from sympy.core.numbers import comp, pi >>> pi4 = pi.n(4); pi4 3.142 >>> comp(_, 3.142) True >>> comp(pi4, 3.141) False >>> comp(pi4, 3.143) False A comparison of strings will be made if ``z1`` is a Number and ``z2`` is a string or ``tol`` is ''. >>> comp(pi4, 3.1415) True >>> comp(pi4, 3.1415, '') False When ``tol`` is provided and ``z2`` is non-zero and ``|z1| > 1`` the error is normalized by ``|z1|``: >>> abs(pi4 - 3.14)/pi4 0.000509791731426756 >>> comp(pi4, 3.14, .001) # difference less than 0.1% True >>> comp(pi4, 3.14, .0005) # difference less than 0.1% False When ``|z1| <= 1`` the absolute error is used: >>> 1/pi4 0.3183 >>> abs(1/pi4 - 0.3183)/(1/pi4) 3.07371499106316e-5 >>> abs(1/pi4 - 0.3183) 9.78393554684764e-6 >>> comp(1/pi4, 0.3183, 1e-5) True To see if the absolute error between ``z1`` and ``z2`` is less than or equal to ``tol``, call this as ``comp(z1 - z2, 0, tol)`` or ``comp(z1 - z2, tol=tol)``: >>> abs(pi4 - 3.14) 0.00160156249999988 >>> comp(pi4 - 3.14, 0, .002) True >>> comp(pi4 - 3.14, 0, .001) False """ if type(z2) is str: if not pure_complex(z1, or_real=True): raise ValueError('when z2 is a str z1 must be a Number') return str(z1) == z2 if not z1: z1, z2 = z2, z1 if not z1: return True if not tol: a, b = z1, z2 if tol == '': return str(a) == str(b) if tol is None: a, b = sympify(a), sympify(b) if not all(i.is_number for i in (a, b)): raise ValueError('expecting 2 numbers') fa = a.atoms(Float) fb = b.atoms(Float) if not fa and not fb: # no floats -- compare exactly return a == b # get a to be pure_complex for do in range(2): ca = pure_complex(a, or_real=True) if not ca: if fa: a = a.n(prec_to_dps(min([i._prec for i in fa]))) ca = pure_complex(a, or_real=True) break else: fa, fb = fb, fa a, b = b, a cb = pure_complex(b) if not cb and fb: b = b.n(prec_to_dps(min([i._prec for i in fb]))) cb = pure_complex(b, or_real=True) if ca and cb and (ca[1] or cb[1]): return all(comp(i, j) for i, j in zip(ca, cb)) tol = 10**prec_to_dps(min(a._prec, getattr(b, '_prec', a._prec))) return int(abs(a - b)*tol) <= 5 diff = abs(z1 - z2) az1 = abs(z1) if z2 and az1 > 1: return diff/az1 <= tol else: return diff <= tol def mpf_norm(mpf, prec): """Return the mpf tuple normalized appropriately for the indicated precision after doing a check to see if zero should be returned or not when the mantissa is 0. ``mpf_normlize`` always assumes that this is zero, but it may not be since the mantissa for mpf's values "+inf", "-inf" and "nan" have a mantissa of zero, too. Note: this is not intended to validate a given mpf tuple, so sending mpf tuples that were not created by mpmath may produce bad results. This is only a wrapper to ``mpf_normalize`` which provides the check for non- zero mpfs that have a 0 for the mantissa. """ sign, man, expt, bc = mpf if not man: # hack for mpf_normalize which does not do this; # it assumes that if man is zero the result is 0 # (see issue 6639) if not bc: return fzero else: # don't change anything; this should already # be a well formed mpf tuple return mpf # Necessary if mpmath is using the gmpy backend from mpmath.libmp.backend import MPZ rv = mpf_normalize(sign, MPZ(man), expt, bc, prec, rnd) return rv # TODO: we should use the warnings module _errdict = {"divide": False} def seterr(divide=False): """ Should sympy raise an exception on 0/0 or return a nan? divide == True .... raise an exception divide == False ... return nan """ if _errdict["divide"] != divide: clear_cache() _errdict["divide"] = divide def _as_integer_ratio(p): neg_pow, man, expt, bc = getattr(p, '_mpf_', mpmath.mpf(p)._mpf_) p = [1, -1][neg_pow % 2]*man if expt < 0: q = 2**-expt else: q = 1 p *= 2**expt return int(p), int(q) def _decimal_to_Rational_prec(dec): """Convert an ordinary decimal instance to a Rational.""" if not dec.is_finite(): raise TypeError("dec must be finite, got %s." % dec) s, d, e = dec.as_tuple() prec = len(d) if e >= 0: # it's an integer rv = Integer(int(dec)) else: s = (-1)**s d = sum([di*10**i for i, di in enumerate(reversed(d))]) rv = Rational(s*d, 10**-e) return rv, prec _floatpat = regex.compile(r"[-+]?((\d*\.\d+)|(\d+\.?))") def _literal_float(f): """Return True if n starts like a floating point number.""" return bool(_floatpat.match(f)) # (a,b) -> gcd(a,b) # TODO caching with decorator, but not to degrade performance @lru_cache(1024) def igcd(*args): """Computes nonnegative integer greatest common divisor. The algorithm is based on the well known Euclid's algorithm. To improve speed, igcd() has its own caching mechanism implemented. Examples ======== >>> from sympy.core.numbers import igcd >>> igcd(2, 4) 2 >>> igcd(5, 10, 15) 5 """ if len(args) < 2: raise TypeError( 'igcd() takes at least 2 arguments (%s given)' % len(args)) args_temp = [abs(as_int(i)) for i in args] if 1 in args_temp: return 1 a = args_temp.pop() for b in args_temp: a = igcd2(a, b) if b else a return a try: from math import gcd as igcd2 except ImportError: def igcd2(a, b): """Compute gcd of two Python integers a and b.""" if (a.bit_length() > BIGBITS and b.bit_length() > BIGBITS): return igcd_lehmer(a, b) a, b = abs(a), abs(b) while b: a, b = b, a % b return a # Use Lehmer's algorithm only for very large numbers. # The limit could be different on Python 2.7 and 3.x. # If so, then this could be defined in compatibility.py. BIGBITS = 5000 def igcd_lehmer(a, b): """Computes greatest common divisor of two integers. Euclid's algorithm for the computation of the greatest common divisor gcd(a, b) of two (positive) integers a and b is based on the division identity a = q*b + r, where the quotient q and the remainder r are integers and 0 <= r < b. Then each common divisor of a and b divides r, and it follows that gcd(a, b) == gcd(b, r). The algorithm works by constructing the sequence r0, r1, r2, ..., where r0 = a, r1 = b, and each rn is the remainder from the division of the two preceding elements. In Python, q = a // b and r = a % b are obtained by the floor division and the remainder operations, respectively. These are the most expensive arithmetic operations, especially for large a and b. Lehmer's algorithm is based on the observation that the quotients qn = r(n-1) // rn are in general small integers even when a and b are very large. Hence the quotients can be usually determined from a relatively small number of most significant bits. The efficiency of the algorithm is further enhanced by not computing each long remainder in Euclid's sequence. The remainders are linear combinations of a and b with integer coefficients derived from the quotients. The coefficients can be computed as far as the quotients can be determined from the chosen most significant parts of a and b. Only then a new pair of consecutive remainders is computed and the algorithm starts anew with this pair. References ========== .. [1] https://en.wikipedia.org/wiki/Lehmer%27s_GCD_algorithm """ a, b = abs(as_int(a)), abs(as_int(b)) if a < b: a, b = b, a # The algorithm works by using one or two digit division # whenever possible. The outer loop will replace the # pair (a, b) with a pair of shorter consecutive elements # of the Euclidean gcd sequence until a and b # fit into two Python (long) int digits. nbits = 2*int_info.bits_per_digit while a.bit_length() > nbits and b != 0: # Quotients are mostly small integers that can # be determined from most significant bits. n = a.bit_length() - nbits x, y = int(a >> n), int(b >> n) # most significant bits # Elements of the Euclidean gcd sequence are linear # combinations of a and b with integer coefficients. # Compute the coefficients of consecutive pairs # a' = A*a + B*b, b' = C*a + D*b # using small integer arithmetic as far as possible. A, B, C, D = 1, 0, 0, 1 # initial values while True: # The coefficients alternate in sign while looping. # The inner loop combines two steps to keep track # of the signs. # At this point we have # A > 0, B <= 0, C <= 0, D > 0, # x' = x + B <= x < x" = x + A, # y' = y + C <= y < y" = y + D, # and # x'*N <= a' < x"*N, y'*N <= b' < y"*N, # where N = 2**n. # Now, if y' > 0, and x"//y' and x'//y" agree, # then their common value is equal to q = a'//b'. # In addition, # x'%y" = x' - q*y" < x" - q*y' = x"%y', # and # (x'%y")*N < a'%b' < (x"%y')*N. # On the other hand, we also have x//y == q, # and therefore # x'%y" = x + B - q*(y + D) = x%y + B', # x"%y' = x + A - q*(y + C) = x%y + A', # where # B' = B - q*D < 0, A' = A - q*C > 0. if y + C <= 0: break q = (x + A) // (y + C) # Now x'//y" <= q, and equality holds if # x' - q*y" = (x - q*y) + (B - q*D) >= 0. # This is a minor optimization to avoid division. x_qy, B_qD = x - q*y, B - q*D if x_qy + B_qD < 0: break # Next step in the Euclidean sequence. x, y = y, x_qy A, B, C, D = C, D, A - q*C, B_qD # At this point the signs of the coefficients # change and their roles are interchanged. # A <= 0, B > 0, C > 0, D < 0, # x' = x + A <= x < x" = x + B, # y' = y + D < y < y" = y + C. if y + D <= 0: break q = (x + B) // (y + D) x_qy, A_qC = x - q*y, A - q*C if x_qy + A_qC < 0: break x, y = y, x_qy A, B, C, D = C, D, A_qC, B - q*D # Now the conditions on top of the loop # are again satisfied. # A > 0, B < 0, C < 0, D > 0. if B == 0: # This can only happen when y == 0 in the beginning # and the inner loop does nothing. # Long division is forced. a, b = b, a % b continue # Compute new long arguments using the coefficients. a, b = A*a + B*b, C*a + D*b # Small divisors. Finish with the standard algorithm. while b: a, b = b, a % b return a def ilcm(*args): """Computes integer least common multiple. Examples ======== >>> from sympy.core.numbers import ilcm >>> ilcm(5, 10) 10 >>> ilcm(7, 3) 21 >>> ilcm(5, 10, 15) 30 """ if len(args) < 2: raise TypeError( 'ilcm() takes at least 2 arguments (%s given)' % len(args)) if 0 in args: return 0 a = args[0] for b in args[1:]: a = a // igcd(a, b) * b # since gcd(a,b) | a return a def igcdex(a, b): """Returns x, y, g such that g = x*a + y*b = gcd(a, b). >>> from sympy.core.numbers import igcdex >>> igcdex(2, 3) (-1, 1, 1) >>> igcdex(10, 12) (-1, 1, 2) >>> x, y, g = igcdex(100, 2004) >>> x, y, g (-20, 1, 4) >>> x*100 + y*2004 4 """ if (not a) and (not b): return (0, 1, 0) if not a: return (0, b//abs(b), abs(b)) if not b: return (a//abs(a), 0, abs(a)) if a < 0: a, x_sign = -a, -1 else: x_sign = 1 if b < 0: b, y_sign = -b, -1 else: y_sign = 1 x, y, r, s = 1, 0, 0, 1 while b: (c, q) = (a % b, a // b) (a, b, r, s, x, y) = (b, c, x - q*r, y - q*s, r, s) return (x*x_sign, y*y_sign, a) def mod_inverse(a, m): """ Return the number c such that, (a * c) = 1 (mod m) where c has the same sign as m. If no such value exists, a ValueError is raised. Examples ======== >>> from sympy import S >>> from sympy.core.numbers import mod_inverse Suppose we wish to find multiplicative inverse x of 3 modulo 11. This is the same as finding x such that 3 * x = 1 (mod 11). One value of x that satisfies this congruence is 4. Because 3 * 4 = 12 and 12 = 1 (mod 11). This is the value returned by mod_inverse: >>> mod_inverse(3, 11) 4 >>> mod_inverse(-3, 11) 7 When there is a common factor between the numerators of ``a`` and ``m`` the inverse does not exist: >>> mod_inverse(2, 4) Traceback (most recent call last): ... ValueError: inverse of 2 mod 4 does not exist >>> mod_inverse(S(2)/7, S(5)/2) 7/2 References ========== - https://en.wikipedia.org/wiki/Modular_multiplicative_inverse - https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm """ c = None try: a, m = as_int(a), as_int(m) if m != 1 and m != -1: x, y, g = igcdex(a, m) if g == 1: c = x % m except ValueError: a, m = sympify(a), sympify(m) if not (a.is_number and m.is_number): raise TypeError(filldedent(''' Expected numbers for arguments; symbolic `mod_inverse` is not implemented but symbolic expressions can be handled with the similar function, sympy.polys.polytools.invert''')) big = (m > 1) if not (big is S.true or big is S.false): raise ValueError('m > 1 did not evaluate; try to simplify %s' % m) elif big: c = 1/a if c is None: raise ValueError('inverse of %s (mod %s) does not exist' % (a, m)) return c class Number(AtomicExpr): """Represents atomic numbers in SymPy. Floating point numbers are represented by the Float class. Rational numbers (of any size) are represented by the Rational class. Integer numbers (of any size) are represented by the Integer class. Float and Rational are subclasses of Number; Integer is a subclass of Rational. For example, ``2/3`` is represented as ``Rational(2, 3)`` which is a different object from the floating point number obtained with Python division ``2/3``. Even for numbers that are exactly represented in binary, there is a difference between how two forms, such as ``Rational(1, 2)`` and ``Float(0.5)``, are used in SymPy. The rational form is to be preferred in symbolic computations. Other kinds of numbers, such as algebraic numbers ``sqrt(2)`` or complex numbers ``3 + 4*I``, are not instances of Number class as they are not atomic. See Also ======== Float, Integer, Rational """ is_commutative = True is_number = True is_Number = True __slots__ = [] # Used to make max(x._prec, y._prec) return x._prec when only x is a float _prec = -1 def __new__(cls, *obj): if len(obj) == 1: obj = obj[0] if isinstance(obj, Number): return obj if isinstance(obj, SYMPY_INTS): return Integer(obj) if isinstance(obj, tuple) and len(obj) == 2: return Rational(*obj) if isinstance(obj, (float, mpmath.mpf, decimal.Decimal)): return Float(obj) if isinstance(obj, string_types): _obj = obj.lower() # float('INF') == float('inf') if _obj == 'nan': return S.NaN elif _obj == 'inf': return S.Infinity elif _obj == '+inf': return S.Infinity elif _obj == '-inf': return S.NegativeInfinity val = sympify(obj) if isinstance(val, Number): return val else: raise ValueError('String "%s" does not denote a Number' % obj) msg = "expected str|int|long|float|Decimal|Number object but got %r" raise TypeError(msg % type(obj).__name__) def invert(self, other, *gens, **args): from sympy.polys.polytools import invert if getattr(other, 'is_number', True): return mod_inverse(self, other) return invert(self, other, *gens, **args) def __divmod__(self, other): from .containers import Tuple from sympy.functions.elementary.complexes import sign try: other = Number(other) if self.is_infinite or S.NaN in (self, other): return (S.NaN, S.NaN) except TypeError: msg = "unsupported operand type(s) for divmod(): '%s' and '%s'" raise TypeError(msg % (type(self).__name__, type(other).__name__)) if not other: raise ZeroDivisionError('modulo by zero') if self.is_Integer and other.is_Integer: return Tuple(*divmod(self.p, other.p)) elif isinstance(other, Float): rat = self/Rational(other) else: rat = self/other if other.is_finite: w = int(rat) if rat > 0 else int(rat) - 1 r = self - other*w else: w = 0 if not self or (sign(self) == sign(other)) else -1 r = other if w else self return Tuple(w, r) def __rdivmod__(self, other): try: other = Number(other) except TypeError: msg = "unsupported operand type(s) for divmod(): '%s' and '%s'" raise TypeError(msg % (type(other).__name__, type(self).__name__)) return divmod(other, self) def _as_mpf_val(self, prec): """Evaluation of mpf tuple accurate to at least prec bits.""" raise NotImplementedError('%s needs ._as_mpf_val() method' % (self.__class__.__name__)) def _eval_evalf(self, prec): return Float._new(self._as_mpf_val(prec), prec) def _as_mpf_op(self, prec): prec = max(prec, self._prec) return self._as_mpf_val(prec), prec def __float__(self): return mlib.to_float(self._as_mpf_val(53)) def floor(self): raise NotImplementedError('%s needs .floor() method' % (self.__class__.__name__)) def ceiling(self): raise NotImplementedError('%s needs .ceiling() method' % (self.__class__.__name__)) def __floor__(self): return self.floor() def __ceil__(self): return self.ceiling() def _eval_conjugate(self): return self def _eval_order(self, *symbols): from sympy import Order # Order(5, x, y) -> Order(1,x,y) return Order(S.One, *symbols) def _eval_subs(self, old, new): if old == -self: return -new return self # there is no other possibility def _eval_is_finite(self): return True @classmethod def class_key(cls): return 1, 0, 'Number' @cacheit def sort_key(self, order=None): return self.class_key(), (0, ()), (), self @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number) and global_evaluate[0]: if other is S.NaN: return S.NaN elif other is S.Infinity: return S.Infinity elif other is S.NegativeInfinity: return S.NegativeInfinity return AtomicExpr.__add__(self, other) @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number) and global_evaluate[0]: if other is S.NaN: return S.NaN elif other is S.Infinity: return S.NegativeInfinity elif other is S.NegativeInfinity: return S.Infinity return AtomicExpr.__sub__(self, other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number) and global_evaluate[0]: if other is S.NaN: return S.NaN elif other is S.Infinity: if self.is_zero: return S.NaN elif self.is_positive: return S.Infinity else: return S.NegativeInfinity elif other is S.NegativeInfinity: if self.is_zero: return S.NaN elif self.is_positive: return S.NegativeInfinity else: return S.Infinity elif isinstance(other, Tuple): return NotImplemented return AtomicExpr.__mul__(self, other) @_sympifyit('other', NotImplemented) def __div__(self, other): if isinstance(other, Number) and global_evaluate[0]: if other is S.NaN: return S.NaN elif other is S.Infinity or other is S.NegativeInfinity: return S.Zero return AtomicExpr.__div__(self, other) __truediv__ = __div__ def __eq__(self, other): raise NotImplementedError('%s needs .__eq__() method' % (self.__class__.__name__)) def __ne__(self, other): raise NotImplementedError('%s needs .__ne__() method' % (self.__class__.__name__)) def __lt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s < %s" % (self, other)) raise NotImplementedError('%s needs .__lt__() method' % (self.__class__.__name__)) def __le__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s <= %s" % (self, other)) raise NotImplementedError('%s needs .__le__() method' % (self.__class__.__name__)) def __gt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s > %s" % (self, other)) return _sympify(other).__lt__(self) def __ge__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s >= %s" % (self, other)) return _sympify(other).__le__(self) def __hash__(self): return super(Number, self).__hash__() def is_constant(self, *wrt, **flags): return True def as_coeff_mul(self, *deps, **kwargs): # a -> c*t if self.is_Rational or not kwargs.pop('rational', True): return self, tuple() elif self.is_negative: return S.NegativeOne, (-self,) return S.One, (self,) def as_coeff_add(self, *deps): # a -> c + t if self.is_Rational: return self, tuple() return S.Zero, (self,) def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ if rational and not self.is_Rational: return S.One, self return (self, S.One) if self else (S.One, self) def as_coeff_Add(self, rational=False): """Efficiently extract the coefficient of a summation. """ if not rational: return self, S.Zero return S.Zero, self def gcd(self, other): """Compute GCD of `self` and `other`. """ from sympy.polys import gcd return gcd(self, other) def lcm(self, other): """Compute LCM of `self` and `other`. """ from sympy.polys import lcm return lcm(self, other) def cofactors(self, other): """Compute GCD and cofactors of `self` and `other`. """ from sympy.polys import cofactors return cofactors(self, other) class Float(Number): """Represent a floating-point number of arbitrary precision. Examples ======== >>> from sympy import Float >>> Float(3.5) 3.50000000000000 >>> Float(3) 3.00000000000000 Creating Floats from strings (and Python ``int`` and ``long`` types) will give a minimum precision of 15 digits, but the precision will automatically increase to capture all digits entered. >>> Float(1) 1.00000000000000 >>> Float(10**20) 100000000000000000000. >>> Float('1e20') 100000000000000000000. However, *floating-point* numbers (Python ``float`` types) retain only 15 digits of precision: >>> Float(1e20) 1.00000000000000e+20 >>> Float(1.23456789123456789) 1.23456789123457 It may be preferable to enter high-precision decimal numbers as strings: Float('1.23456789123456789') 1.23456789123456789 The desired number of digits can also be specified: >>> Float('1e-3', 3) 0.00100 >>> Float(100, 4) 100.0 Float can automatically count significant figures if a null string is sent for the precision; spaces or underscores are also allowed. (Auto- counting is only allowed for strings, ints and longs). >>> Float('123 456 789.123_456', '') 123456789.123456 >>> Float('12e-3', '') 0.012 >>> Float(3, '') 3. If a number is written in scientific notation, only the digits before the exponent are considered significant if a decimal appears, otherwise the "e" signifies only how to move the decimal: >>> Float('60.e2', '') # 2 digits significant 6.0e+3 >>> Float('60e2', '') # 4 digits significant 6000. >>> Float('600e-2', '') # 3 digits significant 6.00 Notes ===== Floats are inexact by their nature unless their value is a binary-exact value. >>> approx, exact = Float(.1, 1), Float(.125, 1) For calculation purposes, evalf needs to be able to change the precision but this will not increase the accuracy of the inexact value. The following is the most accurate 5-digit approximation of a value of 0.1 that had only 1 digit of precision: >>> approx.evalf(5) 0.099609 By contrast, 0.125 is exact in binary (as it is in base 10) and so it can be passed to Float or evalf to obtain an arbitrary precision with matching accuracy: >>> Float(exact, 5) 0.12500 >>> exact.evalf(20) 0.12500000000000000000 Trying to make a high-precision Float from a float is not disallowed, but one must keep in mind that the *underlying float* (not the apparent decimal value) is being obtained with high precision. For example, 0.3 does not have a finite binary representation. The closest rational is the fraction 5404319552844595/2**54. So if you try to obtain a Float of 0.3 to 20 digits of precision you will not see the same thing as 0.3 followed by 19 zeros: >>> Float(0.3, 20) 0.29999999999999998890 If you want a 20-digit value of the decimal 0.3 (not the floating point approximation of 0.3) you should send the 0.3 as a string. The underlying representation is still binary but a higher precision than Python's float is used: >>> Float('0.3', 20) 0.30000000000000000000 Although you can increase the precision of an existing Float using Float it will not increase the accuracy -- the underlying value is not changed: >>> def show(f): # binary rep of Float ... from sympy import Mul, Pow ... s, m, e, b = f._mpf_ ... v = Mul(int(m), Pow(2, int(e), evaluate=False), evaluate=False) ... print('%s at prec=%s' % (v, f._prec)) ... >>> t = Float('0.3', 3) >>> show(t) 4915/2**14 at prec=13 >>> show(Float(t, 20)) # higher prec, not higher accuracy 4915/2**14 at prec=70 >>> show(Float(t, 2)) # lower prec 307/2**10 at prec=10 The same thing happens when evalf is used on a Float: >>> show(t.evalf(20)) 4915/2**14 at prec=70 >>> show(t.evalf(2)) 307/2**10 at prec=10 Finally, Floats can be instantiated with an mpf tuple (n, c, p) to produce the number (-1)**n*c*2**p: >>> n, c, p = 1, 5, 0 >>> (-1)**n*c*2**p -5 >>> Float((1, 5, 0)) -5.00000000000000 An actual mpf tuple also contains the number of bits in c as the last element of the tuple: >>> _._mpf_ (1, 5, 0, 3) This is not needed for instantiation and is not the same thing as the precision. The mpf tuple and the precision are two separate quantities that Float tracks. In SymPy, a Float is a number that can be computed with arbitrary precision. Although floating point 'inf' and 'nan' are not such numbers, Float can create these numbers: >>> Float('-inf') -oo >>> _.is_Float False """ __slots__ = ['_mpf_', '_prec'] # A Float represents many real numbers, # both rational and irrational. is_rational = None is_irrational = None is_number = True is_real = True is_extended_real = True is_Float = True def __new__(cls, num, dps=None, prec=None, precision=None): if prec is not None: SymPyDeprecationWarning( feature="Using 'prec=XX' to denote decimal precision", useinstead="'dps=XX' for decimal precision and 'precision=XX' "\ "for binary precision", issue=12820, deprecated_since_version="1.1").warn() dps = prec del prec # avoid using this deprecated kwarg if dps is not None and precision is not None: raise ValueError('Both decimal and binary precision supplied. ' 'Supply only one. ') if isinstance(num, string_types): # Float accepts spaces as digit separators num = num.replace(' ', '').lower() # in Py 3.6 # underscores are allowed. In anticipation of that, we ignore # legally placed underscores if '_' in num: parts = num.split('_') if not (all(parts) and all(parts[i][-1].isdigit() for i in range(0, len(parts), 2)) and all(parts[i][0].isdigit() for i in range(1, len(parts), 2))): # copy Py 3.6 error raise ValueError("could not convert string to float: '%s'" % num) num = ''.join(parts) if num.startswith('.') and len(num) > 1: num = '0' + num elif num.startswith('-.') and len(num) > 2: num = '-0.' + num[2:] elif num in ('inf', '+inf'): return S.Infinity elif num == '-inf': return S.NegativeInfinity elif isinstance(num, float) and num == 0: num = '0' elif isinstance(num, float) and num == float('inf'): return S.Infinity elif isinstance(num, float) and num == float('-inf'): return S.NegativeInfinity elif isinstance(num, float) and num == float('nan'): return S.NaN elif isinstance(num, (SYMPY_INTS, Integer)): num = str(num) elif num is S.Infinity: return num elif num is S.NegativeInfinity: return num elif num is S.NaN: return num elif type(num).__module__ == 'numpy': # support for numpy datatypes num = _convert_numpy_types(num) elif isinstance(num, mpmath.mpf): if precision is None: if dps is None: precision = num.context.prec num = num._mpf_ if dps is None and precision is None: dps = 15 if isinstance(num, Float): return num if isinstance(num, string_types) and _literal_float(num): try: Num = decimal.Decimal(num) except decimal.InvalidOperation: pass else: isint = '.' not in num num, dps = _decimal_to_Rational_prec(Num) if num.is_Integer and isint: dps = max(dps, len(str(num).lstrip('-'))) dps = max(15, dps) precision = mlib.libmpf.dps_to_prec(dps) elif precision == '' and dps is None or precision is None and dps == '': if not isinstance(num, string_types): raise ValueError('The null string can only be used when ' 'the number to Float is passed as a string or an integer.') ok = None if _literal_float(num): try: Num = decimal.Decimal(num) except decimal.InvalidOperation: pass else: isint = '.' not in num num, dps = _decimal_to_Rational_prec(Num) if num.is_Integer and isint: dps = max(dps, len(str(num).lstrip('-'))) precision = mlib.libmpf.dps_to_prec(dps) ok = True if ok is None: raise ValueError('string-float not recognized: %s' % num) # decimal precision(dps) is set and maybe binary precision(precision) # as well.From here on binary precision is used to compute the Float. # Hence, if supplied use binary precision else translate from decimal # precision. if precision is None or precision == '': precision = mlib.libmpf.dps_to_prec(dps) precision = int(precision) if isinstance(num, float): _mpf_ = mlib.from_float(num, precision, rnd) elif isinstance(num, string_types): _mpf_ = mlib.from_str(num, precision, rnd) elif isinstance(num, decimal.Decimal): if num.is_finite(): _mpf_ = mlib.from_str(str(num), precision, rnd) elif num.is_nan(): return S.NaN elif num.is_infinite(): if num > 0: return S.Infinity return S.NegativeInfinity else: raise ValueError("unexpected decimal value %s" % str(num)) elif isinstance(num, tuple) and len(num) in (3, 4): if type(num[1]) is str: # it's a hexadecimal (coming from a pickled object) # assume that it is in standard form num = list(num) # If we're loading an object pickled in Python 2 into # Python 3, we may need to strip a tailing 'L' because # of a shim for int on Python 3, see issue #13470. if num[1].endswith('L'): num[1] = num[1][:-1] num[1] = MPZ(num[1], 16) _mpf_ = tuple(num) else: if len(num) == 4: # handle normalization hack return Float._new(num, precision) else: if not all(( num[0] in (0, 1), num[1] >= 0, all(type(i) in (long, int) for i in num) )): raise ValueError('malformed mpf: %s' % (num,)) # don't compute number or else it may # over/underflow return Float._new( (num[0], num[1], num[2], bitcount(num[1])), precision) else: try: _mpf_ = num._as_mpf_val(precision) except (NotImplementedError, AttributeError): _mpf_ = mpmath.mpf(num, prec=precision)._mpf_ return cls._new(_mpf_, precision, zero=False) @classmethod def _new(cls, _mpf_, _prec, zero=True): # special cases if zero and _mpf_ == fzero: return S.Zero # Float(0) -> 0.0; Float._new((0,0,0,0)) -> 0 elif _mpf_ == _mpf_nan: return S.NaN elif _mpf_ == _mpf_inf: return S.Infinity elif _mpf_ == _mpf_ninf: return S.NegativeInfinity obj = Expr.__new__(cls) obj._mpf_ = mpf_norm(_mpf_, _prec) obj._prec = _prec return obj # mpz can't be pickled def __getnewargs__(self): return (mlib.to_pickable(self._mpf_),) def __getstate__(self): return {'_prec': self._prec} def _hashable_content(self): return (self._mpf_, self._prec) def floor(self): return Integer(int(mlib.to_int( mlib.mpf_floor(self._mpf_, self._prec)))) def ceiling(self): return Integer(int(mlib.to_int( mlib.mpf_ceil(self._mpf_, self._prec)))) def __floor__(self): return self.floor() def __ceil__(self): return self.ceiling() @property def num(self): return mpmath.mpf(self._mpf_) def _as_mpf_val(self, prec): rv = mpf_norm(self._mpf_, prec) if rv != self._mpf_ and self._prec == prec: debug(self._mpf_, rv) return rv def _as_mpf_op(self, prec): return self._mpf_, max(prec, self._prec) def _eval_is_finite(self): if self._mpf_ in (_mpf_inf, _mpf_ninf): return False return True def _eval_is_infinite(self): if self._mpf_ in (_mpf_inf, _mpf_ninf): return True return False def _eval_is_integer(self): return self._mpf_ == fzero def _eval_is_negative(self): if self._mpf_ == _mpf_ninf or self._mpf_ == _mpf_inf: return False return self.num < 0 def _eval_is_positive(self): if self._mpf_ == _mpf_ninf or self._mpf_ == _mpf_inf: return False return self.num > 0 def _eval_is_extended_negative(self): if self._mpf_ == _mpf_ninf: return True if self._mpf_ == _mpf_inf: return False return self.num < 0 def _eval_is_extended_positive(self): if self._mpf_ == _mpf_inf: return True if self._mpf_ == _mpf_ninf: return False return self.num > 0 def _eval_is_zero(self): return self._mpf_ == fzero def __nonzero__(self): return self._mpf_ != fzero __bool__ = __nonzero__ def __neg__(self): return Float._new(mlib.mpf_neg(self._mpf_), self._prec) @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number) and global_evaluate[0]: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_add(self._mpf_, rhs, prec, rnd), prec) return Number.__add__(self, other) @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number) and global_evaluate[0]: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_sub(self._mpf_, rhs, prec, rnd), prec) return Number.__sub__(self, other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number) and global_evaluate[0]: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_mul(self._mpf_, rhs, prec, rnd), prec) return Number.__mul__(self, other) @_sympifyit('other', NotImplemented) def __div__(self, other): if isinstance(other, Number) and other != 0 and global_evaluate[0]: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_div(self._mpf_, rhs, prec, rnd), prec) return Number.__div__(self, other) __truediv__ = __div__ @_sympifyit('other', NotImplemented) def __mod__(self, other): if isinstance(other, Rational) and other.q != 1 and global_evaluate[0]: # calculate mod with Rationals, *then* round the result return Float(Rational.__mod__(Rational(self), other), precision=self._prec) if isinstance(other, Float) and global_evaluate[0]: r = self/other if r == int(r): return Float(0, precision=max(self._prec, other._prec)) if isinstance(other, Number) and global_evaluate[0]: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_mod(self._mpf_, rhs, prec, rnd), prec) return Number.__mod__(self, other) @_sympifyit('other', NotImplemented) def __rmod__(self, other): if isinstance(other, Float) and global_evaluate[0]: return other.__mod__(self) if isinstance(other, Number) and global_evaluate[0]: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_mod(rhs, self._mpf_, prec, rnd), prec) return Number.__rmod__(self, other) def _eval_power(self, expt): """ expt is symbolic object but not equal to 0, 1 (-p)**r -> exp(r*log(-p)) -> exp(r*(log(p) + I*Pi)) -> -> p**r*(sin(Pi*r) + cos(Pi*r)*I) """ if self == 0: if expt.is_positive: return S.Zero if expt.is_negative: return S.Infinity if isinstance(expt, Number): if isinstance(expt, Integer): prec = self._prec return Float._new( mlib.mpf_pow_int(self._mpf_, expt.p, prec, rnd), prec) elif isinstance(expt, Rational) and \ expt.p == 1 and expt.q % 2 and self.is_negative: return Pow(S.NegativeOne, expt, evaluate=False)*( -self)._eval_power(expt) expt, prec = expt._as_mpf_op(self._prec) mpfself = self._mpf_ try: y = mpf_pow(mpfself, expt, prec, rnd) return Float._new(y, prec) except mlib.ComplexResult: re, im = mlib.mpc_pow( (mpfself, fzero), (expt, fzero), prec, rnd) return Float._new(re, prec) + \ Float._new(im, prec)*S.ImaginaryUnit def __abs__(self): return Float._new(mlib.mpf_abs(self._mpf_), self._prec) def __int__(self): if self._mpf_ == fzero: return 0 return int(mlib.to_int(self._mpf_)) # uses round_fast = round_down __long__ = __int__ def __eq__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if not self: return not other if other.is_NumberSymbol: if other.is_irrational: return False return other.__eq__(self) if other.is_Float: # comparison is exact # so Float(.1, 3) != Float(.1, 33) return self._mpf_ == other._mpf_ if other.is_Rational: return other.__eq__(self) if other.is_Number: # numbers should compare at the same precision; # all _as_mpf_val routines should be sure to abide # by the request to change the prec if necessary; if # they don't, the equality test will fail since it compares # the mpf tuples ompf = other._as_mpf_val(self._prec) return bool(mlib.mpf_eq(self._mpf_, ompf)) return False # Float != non-Number def __ne__(self, other): return not self == other def _Frel(self, other, op): from sympy.core.evalf import evalf from sympy.core.numbers import prec_to_dps try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s > %s" % (self, other)) if other.is_Rational: # test self*other.q <?> other.p without losing precision ''' >>> f = Float(.1,2) >>> i = 1234567890 >>> (f*i)._mpf_ (0, 471, 18, 9) >>> mlib.mpf_mul(f._mpf_, mlib.from_int(i)) (0, 505555550955, -12, 39) ''' smpf = mlib.mpf_mul(self._mpf_, mlib.from_int(other.q)) ompf = mlib.from_int(other.p) return _sympify(bool(op(smpf, ompf))) elif other.is_Float: return _sympify(bool( op(self._mpf_, other._mpf_))) elif other.is_comparable and other not in ( S.Infinity, S.NegativeInfinity): other = other.evalf(prec_to_dps(self._prec)) if other._prec > 1: if other.is_Number: return _sympify(bool( op(self._mpf_, other._as_mpf_val(self._prec)))) def __gt__(self, other): if isinstance(other, NumberSymbol): return other.__lt__(self) rv = self._Frel(other, mlib.mpf_gt) if rv is None: return Expr.__gt__(self, other) return rv def __ge__(self, other): if isinstance(other, NumberSymbol): return other.__le__(self) rv = self._Frel(other, mlib.mpf_ge) if rv is None: return Expr.__ge__(self, other) return rv def __lt__(self, other): if isinstance(other, NumberSymbol): return other.__gt__(self) rv = self._Frel(other, mlib.mpf_lt) if rv is None: return Expr.__lt__(self, other) return rv def __le__(self, other): if isinstance(other, NumberSymbol): return other.__ge__(self) rv = self._Frel(other, mlib.mpf_le) if rv is None: return Expr.__le__(self, other) return rv def __hash__(self): return super(Float, self).__hash__() def epsilon_eq(self, other, epsilon="1e-15"): return abs(self - other) < Float(epsilon) def _sage_(self): import sage.all as sage return sage.RealNumber(str(self)) def __format__(self, format_spec): return format(decimal.Decimal(str(self)), format_spec) # Add sympify converters converter[float] = converter[decimal.Decimal] = Float # this is here to work nicely in Sage RealNumber = Float class Rational(Number): """Represents rational numbers (p/q) of any size. Examples ======== >>> from sympy import Rational, nsimplify, S, pi >>> Rational(1, 2) 1/2 Rational is unprejudiced in accepting input. If a float is passed, the underlying value of the binary representation will be returned: >>> Rational(.5) 1/2 >>> Rational(.2) 3602879701896397/18014398509481984 If the simpler representation of the float is desired then consider limiting the denominator to the desired value or convert the float to a string (which is roughly equivalent to limiting the denominator to 10**12): >>> Rational(str(.2)) 1/5 >>> Rational(.2).limit_denominator(10**12) 1/5 An arbitrarily precise Rational is obtained when a string literal is passed: >>> Rational("1.23") 123/100 >>> Rational('1e-2') 1/100 >>> Rational(".1") 1/10 >>> Rational('1e-2/3.2') 1/320 The conversion of other types of strings can be handled by the sympify() function, and conversion of floats to expressions or simple fractions can be handled with nsimplify: >>> S('.[3]') # repeating digits in brackets 1/3 >>> S('3**2/10') # general expressions 9/10 >>> nsimplify(.3) # numbers that have a simple form 3/10 But if the input does not reduce to a literal Rational, an error will be raised: >>> Rational(pi) Traceback (most recent call last): ... TypeError: invalid input: pi Low-level --------- Access numerator and denominator as .p and .q: >>> r = Rational(3, 4) >>> r 3/4 >>> r.p 3 >>> r.q 4 Note that p and q return integers (not SymPy Integers) so some care is needed when using them in expressions: >>> r.p/r.q 0.75 See Also ======== sympy.core.sympify.sympify, sympy.simplify.simplify.nsimplify """ is_real = True is_integer = False is_rational = True is_number = True __slots__ = ['p', 'q'] is_Rational = True @cacheit def __new__(cls, p, q=None, gcd=None): if q is None: if isinstance(p, Rational): return p if isinstance(p, SYMPY_INTS): pass else: if isinstance(p, (float, Float)): return Rational(*_as_integer_ratio(p)) if not isinstance(p, string_types): try: p = sympify(p) except (SympifyError, SyntaxError): pass # error will raise below else: if p.count('/') > 1: raise TypeError('invalid input: %s' % p) p = p.replace(' ', '') pq = p.rsplit('/', 1) if len(pq) == 2: p, q = pq fp = fractions.Fraction(p) fq = fractions.Fraction(q) p = fp/fq try: p = fractions.Fraction(p) except ValueError: pass # error will raise below else: return Rational(p.numerator, p.denominator, 1) if not isinstance(p, Rational): raise TypeError('invalid input: %s' % p) q = 1 gcd = 1 else: p = Rational(p) q = Rational(q) if isinstance(q, Rational): p *= q.q q = q.p if isinstance(p, Rational): q *= p.q p = p.p # p and q are now integers if q == 0: if p == 0: if _errdict["divide"]: raise ValueError("Indeterminate 0/0") else: return S.NaN return S.ComplexInfinity if q < 0: q = -q p = -p if not gcd: gcd = igcd(abs(p), q) if gcd > 1: p //= gcd q //= gcd if q == 1: return Integer(p) if p == 1 and q == 2: return S.Half obj = Expr.__new__(cls) obj.p = p obj.q = q return obj def limit_denominator(self, max_denominator=1000000): """Closest Rational to self with denominator at most max_denominator. >>> from sympy import Rational >>> Rational('3.141592653589793').limit_denominator(10) 22/7 >>> Rational('3.141592653589793').limit_denominator(100) 311/99 """ f = fractions.Fraction(self.p, self.q) return Rational(f.limit_denominator(fractions.Fraction(int(max_denominator)))) def __getnewargs__(self): return (self.p, self.q) def _hashable_content(self): return (self.p, self.q) def _eval_is_positive(self): return self.p > 0 def _eval_is_zero(self): return self.p == 0 def __neg__(self): return Rational(-self.p, self.q) @_sympifyit('other', NotImplemented) def __add__(self, other): if global_evaluate[0]: if isinstance(other, Integer): return Rational(self.p + self.q*other.p, self.q, 1) elif isinstance(other, Rational): #TODO: this can probably be optimized more return Rational(self.p*other.q + self.q*other.p, self.q*other.q) elif isinstance(other, Float): return other + self else: return Number.__add__(self, other) return Number.__add__(self, other) __radd__ = __add__ @_sympifyit('other', NotImplemented) def __sub__(self, other): if global_evaluate[0]: if isinstance(other, Integer): return Rational(self.p - self.q*other.p, self.q, 1) elif isinstance(other, Rational): return Rational(self.p*other.q - self.q*other.p, self.q*other.q) elif isinstance(other, Float): return -other + self else: return Number.__sub__(self, other) return Number.__sub__(self, other) @_sympifyit('other', NotImplemented) def __rsub__(self, other): if global_evaluate[0]: if isinstance(other, Integer): return Rational(self.q*other.p - self.p, self.q, 1) elif isinstance(other, Rational): return Rational(self.q*other.p - self.p*other.q, self.q*other.q) elif isinstance(other, Float): return -self + other else: return Number.__rsub__(self, other) return Number.__rsub__(self, other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if global_evaluate[0]: if isinstance(other, Integer): return Rational(self.p*other.p, self.q, igcd(other.p, self.q)) elif isinstance(other, Rational): return Rational(self.p*other.p, self.q*other.q, igcd(self.p, other.q)*igcd(self.q, other.p)) elif isinstance(other, Float): return other*self else: return Number.__mul__(self, other) return Number.__mul__(self, other) __rmul__ = __mul__ @_sympifyit('other', NotImplemented) def __div__(self, other): if global_evaluate[0]: if isinstance(other, Integer): if self.p and other.p == S.Zero: return S.ComplexInfinity else: return Rational(self.p, self.q*other.p, igcd(self.p, other.p)) elif isinstance(other, Rational): return Rational(self.p*other.q, self.q*other.p, igcd(self.p, other.p)*igcd(self.q, other.q)) elif isinstance(other, Float): return self*(1/other) else: return Number.__div__(self, other) return Number.__div__(self, other) @_sympifyit('other', NotImplemented) def __rdiv__(self, other): if global_evaluate[0]: if isinstance(other, Integer): return Rational(other.p*self.q, self.p, igcd(self.p, other.p)) elif isinstance(other, Rational): return Rational(other.p*self.q, other.q*self.p, igcd(self.p, other.p)*igcd(self.q, other.q)) elif isinstance(other, Float): return other*(1/self) else: return Number.__rdiv__(self, other) return Number.__rdiv__(self, other) __truediv__ = __div__ @_sympifyit('other', NotImplemented) def __mod__(self, other): if global_evaluate[0]: if isinstance(other, Rational): n = (self.p*other.q) // (other.p*self.q) return Rational(self.p*other.q - n*other.p*self.q, self.q*other.q) if isinstance(other, Float): # calculate mod with Rationals, *then* round the answer return Float(self.__mod__(Rational(other)), precision=other._prec) return Number.__mod__(self, other) return Number.__mod__(self, other) @_sympifyit('other', NotImplemented) def __rmod__(self, other): if isinstance(other, Rational): return Rational.__mod__(other, self) return Number.__rmod__(self, other) def _eval_power(self, expt): if isinstance(expt, Number): if isinstance(expt, Float): return self._eval_evalf(expt._prec)**expt if expt.is_extended_negative: # (3/4)**-2 -> (4/3)**2 ne = -expt if (ne is S.One): return Rational(self.q, self.p) if self.is_negative: return S.NegativeOne**expt*Rational(self.q, -self.p)**ne else: return Rational(self.q, self.p)**ne if expt is S.Infinity: # -oo already caught by test for negative if self.p > self.q: # (3/2)**oo -> oo return S.Infinity if self.p < -self.q: # (-3/2)**oo -> oo + I*oo return S.Infinity + S.Infinity*S.ImaginaryUnit return S.Zero if isinstance(expt, Integer): # (4/3)**2 -> 4**2 / 3**2 return Rational(self.p**expt.p, self.q**expt.p, 1) if isinstance(expt, Rational): if self.p != 1: # (4/3)**(5/6) -> 4**(5/6)*3**(-5/6) return Integer(self.p)**expt*Integer(self.q)**(-expt) # as the above caught negative self.p, now self is positive return Integer(self.q)**Rational( expt.p*(expt.q - 1), expt.q) / \ Integer(self.q)**Integer(expt.p) if self.is_extended_negative and expt.is_even: return (-self)**expt return def _as_mpf_val(self, prec): return mlib.from_rational(self.p, self.q, prec, rnd) def _mpmath_(self, prec, rnd): return mpmath.make_mpf(mlib.from_rational(self.p, self.q, prec, rnd)) def __abs__(self): return Rational(abs(self.p), self.q) def __int__(self): p, q = self.p, self.q if p < 0: return -int(-p//q) return int(p//q) __long__ = __int__ def floor(self): return Integer(self.p // self.q) def ceiling(self): return -Integer(-self.p // self.q) def __floor__(self): return self.floor() def __ceil__(self): return self.ceiling() def __eq__(self, other): from sympy.core.power import integer_log try: other = _sympify(other) except SympifyError: return NotImplemented if not isinstance(other, Number): # S(0) == S.false is False # S(0) == False is True return False if not self: return not other if other.is_NumberSymbol: if other.is_irrational: return False return other.__eq__(self) if other.is_Rational: # a Rational is always in reduced form so will never be 2/4 # so we can just check equivalence of args return self.p == other.p and self.q == other.q if other.is_Float: # all Floats have a denominator that is a power of 2 # so if self doesn't, it can't be equal to other if self.q & (self.q - 1): return False s, m, t = other._mpf_[:3] if s: m = -m if not t: # other is an odd integer if not self.is_Integer or self.is_even: return False return m == self.p if t > 0: # other is an even integer if not self.is_Integer: return False # does m*2**t == self.p return self.p and not self.p % m and \ integer_log(self.p//m, 2) == (t, True) # does non-integer s*m/2**-t = p/q? if self.is_Integer: return False return m == self.p and integer_log(self.q, 2) == (-t, True) return False def __ne__(self, other): return not self == other def _Rrel(self, other, attr): # if you want self < other, pass self, other, __gt__ try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s > %s" % (self, other)) if other.is_Number: op = None s, o = self, other if other.is_NumberSymbol: op = getattr(o, attr) elif other.is_Float: op = getattr(o, attr) elif other.is_Rational: s, o = Integer(s.p*o.q), Integer(s.q*o.p) op = getattr(o, attr) if op: return op(s) if o.is_number and o.is_extended_real: return Integer(s.p), s.q*o def __gt__(self, other): rv = self._Rrel(other, '__lt__') if rv is None: rv = self, other elif not type(rv) is tuple: return rv return Expr.__gt__(*rv) def __ge__(self, other): rv = self._Rrel(other, '__le__') if rv is None: rv = self, other elif not type(rv) is tuple: return rv return Expr.__ge__(*rv) def __lt__(self, other): rv = self._Rrel(other, '__gt__') if rv is None: rv = self, other elif not type(rv) is tuple: return rv return Expr.__lt__(*rv) def __le__(self, other): rv = self._Rrel(other, '__ge__') if rv is None: rv = self, other elif not type(rv) is tuple: return rv return Expr.__le__(*rv) def __hash__(self): return super(Rational, self).__hash__() def factors(self, limit=None, use_trial=True, use_rho=False, use_pm1=False, verbose=False, visual=False): """A wrapper to factorint which return factors of self that are smaller than limit (or cheap to compute). Special methods of factoring are disabled by default so that only trial division is used. """ from sympy.ntheory import factorrat return factorrat(self, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose).copy() def numerator(self): return self.p def denominator(self): return self.q @_sympifyit('other', NotImplemented) def gcd(self, other): if isinstance(other, Rational): if other == S.Zero: return other return Rational( Integer(igcd(self.p, other.p)), Integer(ilcm(self.q, other.q))) return Number.gcd(self, other) @_sympifyit('other', NotImplemented) def lcm(self, other): if isinstance(other, Rational): return Rational( self.p // igcd(self.p, other.p) * other.p, igcd(self.q, other.q)) return Number.lcm(self, other) def as_numer_denom(self): return Integer(self.p), Integer(self.q) def _sage_(self): import sage.all as sage return sage.Integer(self.p)/sage.Integer(self.q) def as_content_primitive(self, radical=False, clear=True): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. Examples ======== >>> from sympy import S >>> (S(-3)/2).as_content_primitive() (3/2, -1) See docstring of Expr.as_content_primitive for more examples. """ if self: if self.is_positive: return self, S.One return -self, S.NegativeOne return S.One, self def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ return self, S.One def as_coeff_Add(self, rational=False): """Efficiently extract the coefficient of a summation. """ return self, S.Zero class Integer(Rational): """Represents integer numbers of any size. Examples ======== >>> from sympy import Integer >>> Integer(3) 3 If a float or a rational is passed to Integer, the fractional part will be discarded; the effect is of rounding toward zero. >>> Integer(3.8) 3 >>> Integer(-3.8) -3 A string is acceptable input if it can be parsed as an integer: >>> Integer("9" * 20) 99999999999999999999 It is rarely needed to explicitly instantiate an Integer, because Python integers are automatically converted to Integer when they are used in SymPy expressions. """ q = 1 is_integer = True is_number = True is_Integer = True __slots__ = ['p'] def _as_mpf_val(self, prec): return mlib.from_int(self.p, prec, rnd) def _mpmath_(self, prec, rnd): return mpmath.make_mpf(self._as_mpf_val(prec)) @cacheit def __new__(cls, i): if isinstance(i, string_types): i = i.replace(' ', '') # whereas we cannot, in general, make a Rational from an # arbitrary expression, we can make an Integer unambiguously # (except when a non-integer expression happens to round to # an integer). So we proceed by taking int() of the input and # let the int routines determine whether the expression can # be made into an int or whether an error should be raised. try: ival = int(i) except TypeError: raise TypeError( "Argument of Integer should be of numeric type, got %s." % i) # We only work with well-behaved integer types. This converts, for # example, numpy.int32 instances. if ival == 1: return S.One if ival == -1: return S.NegativeOne if ival == 0: return S.Zero obj = Expr.__new__(cls) obj.p = ival return obj def __getnewargs__(self): return (self.p,) # Arithmetic operations are here for efficiency def __int__(self): return self.p __long__ = __int__ def floor(self): return Integer(self.p) def ceiling(self): return Integer(self.p) def __floor__(self): return self.floor() def __ceil__(self): return self.ceiling() def __neg__(self): return Integer(-self.p) def __abs__(self): if self.p >= 0: return self else: return Integer(-self.p) def __divmod__(self, other): from .containers import Tuple if isinstance(other, Integer) and global_evaluate[0]: return Tuple(*(divmod(self.p, other.p))) else: return Number.__divmod__(self, other) def __rdivmod__(self, other): from .containers import Tuple if isinstance(other, integer_types) and global_evaluate[0]: return Tuple(*(divmod(other, self.p))) else: try: other = Number(other) except TypeError: msg = "unsupported operand type(s) for divmod(): '%s' and '%s'" oname = type(other).__name__ sname = type(self).__name__ raise TypeError(msg % (oname, sname)) return Number.__divmod__(other, self) # TODO make it decorator + bytecodehacks? def __add__(self, other): if global_evaluate[0]: if isinstance(other, integer_types): return Integer(self.p + other) elif isinstance(other, Integer): return Integer(self.p + other.p) elif isinstance(other, Rational): return Rational(self.p*other.q + other.p, other.q, 1) return Rational.__add__(self, other) else: return Add(self, other) def __radd__(self, other): if global_evaluate[0]: if isinstance(other, integer_types): return Integer(other + self.p) elif isinstance(other, Rational): return Rational(other.p + self.p*other.q, other.q, 1) return Rational.__radd__(self, other) return Rational.__radd__(self, other) def __sub__(self, other): if global_evaluate[0]: if isinstance(other, integer_types): return Integer(self.p - other) elif isinstance(other, Integer): return Integer(self.p - other.p) elif isinstance(other, Rational): return Rational(self.p*other.q - other.p, other.q, 1) return Rational.__sub__(self, other) return Rational.__sub__(self, other) def __rsub__(self, other): if global_evaluate[0]: if isinstance(other, integer_types): return Integer(other - self.p) elif isinstance(other, Rational): return Rational(other.p - self.p*other.q, other.q, 1) return Rational.__rsub__(self, other) return Rational.__rsub__(self, other) def __mul__(self, other): if global_evaluate[0]: if isinstance(other, integer_types): return Integer(self.p*other) elif isinstance(other, Integer): return Integer(self.p*other.p) elif isinstance(other, Rational): return Rational(self.p*other.p, other.q, igcd(self.p, other.q)) return Rational.__mul__(self, other) return Rational.__mul__(self, other) def __rmul__(self, other): if global_evaluate[0]: if isinstance(other, integer_types): return Integer(other*self.p) elif isinstance(other, Rational): return Rational(other.p*self.p, other.q, igcd(self.p, other.q)) return Rational.__rmul__(self, other) return Rational.__rmul__(self, other) def __mod__(self, other): if global_evaluate[0]: if isinstance(other, integer_types): return Integer(self.p % other) elif isinstance(other, Integer): return Integer(self.p % other.p) return Rational.__mod__(self, other) return Rational.__mod__(self, other) def __rmod__(self, other): if global_evaluate[0]: if isinstance(other, integer_types): return Integer(other % self.p) elif isinstance(other, Integer): return Integer(other.p % self.p) return Rational.__rmod__(self, other) return Rational.__rmod__(self, other) def __eq__(self, other): if isinstance(other, integer_types): return (self.p == other) elif isinstance(other, Integer): return (self.p == other.p) return Rational.__eq__(self, other) def __ne__(self, other): return not self == other def __gt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s > %s" % (self, other)) if other.is_Integer: return _sympify(self.p > other.p) return Rational.__gt__(self, other) def __lt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s < %s" % (self, other)) if other.is_Integer: return _sympify(self.p < other.p) return Rational.__lt__(self, other) def __ge__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s >= %s" % (self, other)) if other.is_Integer: return _sympify(self.p >= other.p) return Rational.__ge__(self, other) def __le__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s <= %s" % (self, other)) if other.is_Integer: return _sympify(self.p <= other.p) return Rational.__le__(self, other) def __hash__(self): return hash(self.p) def __index__(self): return self.p ######################################## def _eval_is_odd(self): return bool(self.p % 2) def _eval_power(self, expt): """ Tries to do some simplifications on self**expt Returns None if no further simplifications can be done When exponent is a fraction (so we have for example a square root), we try to find a simpler representation by factoring the argument up to factors of 2**15, e.g. - sqrt(4) becomes 2 - sqrt(-4) becomes 2*I - (2**(3+7)*3**(6+7))**Rational(1,7) becomes 6*18**(3/7) Further simplification would require a special call to factorint on the argument which is not done here for sake of speed. """ from sympy.ntheory.factor_ import perfect_power if expt is S.Infinity: if self.p > S.One: return S.Infinity # cases -1, 0, 1 are done in their respective classes return S.Infinity + S.ImaginaryUnit*S.Infinity if expt is S.NegativeInfinity: return Rational(1, self)**S.Infinity if not isinstance(expt, Number): # simplify when expt is even # (-2)**k --> 2**k if self.is_negative and expt.is_even: return (-self)**expt if isinstance(expt, Float): # Rational knows how to exponentiate by a Float return super(Integer, self)._eval_power(expt) if not isinstance(expt, Rational): return if expt is S.Half and self.is_negative: # we extract I for this special case since everyone is doing so return S.ImaginaryUnit*Pow(-self, expt) if expt.is_negative: # invert base and change sign on exponent ne = -expt if self.is_negative: return S.NegativeOne**expt*Rational(1, -self)**ne else: return Rational(1, self.p)**ne # see if base is a perfect root, sqrt(4) --> 2 x, xexact = integer_nthroot(abs(self.p), expt.q) if xexact: # if it's a perfect root we've finished result = Integer(x**abs(expt.p)) if self.is_negative: result *= S.NegativeOne**expt return result # The following is an algorithm where we collect perfect roots # from the factors of base. # if it's not an nth root, it still might be a perfect power b_pos = int(abs(self.p)) p = perfect_power(b_pos) if p is not False: dict = {p[0]: p[1]} else: dict = Integer(b_pos).factors(limit=2**15) # now process the dict of factors out_int = 1 # integer part out_rad = 1 # extracted radicals sqr_int = 1 sqr_gcd = 0 sqr_dict = {} for prime, exponent in dict.items(): exponent *= expt.p # remove multiples of expt.q: (2**12)**(1/10) -> 2*(2**2)**(1/10) div_e, div_m = divmod(exponent, expt.q) if div_e > 0: out_int *= prime**div_e if div_m > 0: # see if the reduced exponent shares a gcd with e.q # (2**2)**(1/10) -> 2**(1/5) g = igcd(div_m, expt.q) if g != 1: out_rad *= Pow(prime, Rational(div_m//g, expt.q//g)) else: sqr_dict[prime] = div_m # identify gcd of remaining powers for p, ex in sqr_dict.items(): if sqr_gcd == 0: sqr_gcd = ex else: sqr_gcd = igcd(sqr_gcd, ex) if sqr_gcd == 1: break for k, v in sqr_dict.items(): sqr_int *= k**(v//sqr_gcd) if sqr_int == b_pos and out_int == 1 and out_rad == 1: result = None else: result = out_int*out_rad*Pow(sqr_int, Rational(sqr_gcd, expt.q)) if self.is_negative: result *= Pow(S.NegativeOne, expt) return result def _eval_is_prime(self): from sympy.ntheory import isprime return isprime(self) def _eval_is_composite(self): if self > 1: return fuzzy_not(self.is_prime) else: return False def as_numer_denom(self): return self, S.One def __floordiv__(self, other): if isinstance(other, Integer): return Integer(self.p // other) return Integer(divmod(self, other)[0]) def __rfloordiv__(self, other): return Integer(Integer(other).p // self.p) # Add sympify converters for i_type in integer_types: converter[i_type] = Integer class AlgebraicNumber(Expr): """Class for representing algebraic numbers in SymPy. """ __slots__ = ['rep', 'root', 'alias', 'minpoly'] is_AlgebraicNumber = True is_algebraic = True is_number = True def __new__(cls, expr, coeffs=None, alias=None, **args): """Construct a new algebraic number. """ from sympy import Poly from sympy.polys.polyclasses import ANP, DMP from sympy.polys.numberfields import minimal_polynomial from sympy.core.symbol import Symbol expr = sympify(expr) if isinstance(expr, (tuple, Tuple)): minpoly, root = expr if not minpoly.is_Poly: minpoly = Poly(minpoly) elif expr.is_AlgebraicNumber: minpoly, root = expr.minpoly, expr.root else: minpoly, root = minimal_polynomial( expr, args.get('gen'), polys=True), expr dom = minpoly.get_domain() if coeffs is not None: if not isinstance(coeffs, ANP): rep = DMP.from_sympy_list(sympify(coeffs), 0, dom) scoeffs = Tuple(*coeffs) else: rep = DMP.from_list(coeffs.to_list(), 0, dom) scoeffs = Tuple(*coeffs.to_list()) if rep.degree() >= minpoly.degree(): rep = rep.rem(minpoly.rep) else: rep = DMP.from_list([1, 0], 0, dom) scoeffs = Tuple(1, 0) sargs = (root, scoeffs) if alias is not None: if not isinstance(alias, Symbol): alias = Symbol(alias) sargs = sargs + (alias,) obj = Expr.__new__(cls, *sargs) obj.rep = rep obj.root = root obj.alias = alias obj.minpoly = minpoly return obj def __hash__(self): return super(AlgebraicNumber, self).__hash__() def _eval_evalf(self, prec): return self.as_expr()._evalf(prec) @property def is_aliased(self): """Returns ``True`` if ``alias`` was set. """ return self.alias is not None def as_poly(self, x=None): """Create a Poly instance from ``self``. """ from sympy import Dummy, Poly, PurePoly if x is not None: return Poly.new(self.rep, x) else: if self.alias is not None: return Poly.new(self.rep, self.alias) else: return PurePoly.new(self.rep, Dummy('x')) def as_expr(self, x=None): """Create a Basic expression from ``self``. """ return self.as_poly(x or self.root).as_expr().expand() def coeffs(self): """Returns all SymPy coefficients of an algebraic number. """ return [ self.rep.dom.to_sympy(c) for c in self.rep.all_coeffs() ] def native_coeffs(self): """Returns all native coefficients of an algebraic number. """ return self.rep.all_coeffs() def to_algebraic_integer(self): """Convert ``self`` to an algebraic integer. """ from sympy import Poly f = self.minpoly if f.LC() == 1: return self coeff = f.LC()**(f.degree() - 1) poly = f.compose(Poly(f.gen/f.LC())) minpoly = poly*coeff root = f.LC()*self.root return AlgebraicNumber((minpoly, root), self.coeffs()) def _eval_simplify(self, **kwargs): from sympy.polys import CRootOf, minpoly measure, ratio = kwargs['measure'], kwargs['ratio'] for r in [r for r in self.minpoly.all_roots() if r.func != CRootOf]: if minpoly(self.root - r).is_Symbol: # use the matching root if it's simpler if measure(r) < ratio*measure(self.root): return AlgebraicNumber(r) return self class RationalConstant(Rational): """ Abstract base class for rationals with specific behaviors Derived classes must define class attributes p and q and should probably all be singletons. """ __slots__ = [] def __new__(cls): return AtomicExpr.__new__(cls) class IntegerConstant(Integer): __slots__ = [] def __new__(cls): return AtomicExpr.__new__(cls) class Zero(with_metaclass(Singleton, IntegerConstant)): """The number zero. Zero is a singleton, and can be accessed by ``S.Zero`` Examples ======== >>> from sympy import S, Integer, zoo >>> Integer(0) is S.Zero True >>> 1/S.Zero zoo References ========== .. [1] https://en.wikipedia.org/wiki/Zero """ p = 0 q = 1 is_positive = False is_negative = False is_zero = True is_number = True is_comparable = True __slots__ = [] @staticmethod def __abs__(): return S.Zero @staticmethod def __neg__(): return S.Zero def _eval_power(self, expt): if expt.is_positive: return self if expt.is_negative: return S.ComplexInfinity if expt.is_extended_real is False: return S.NaN # infinities are already handled with pos and neg # tests above; now throw away leading numbers on Mul # exponent coeff, terms = expt.as_coeff_Mul() if coeff.is_negative: return S.ComplexInfinity**terms if coeff is not S.One: # there is a Number to discard return self**terms def _eval_order(self, *symbols): # Order(0,x) -> 0 return self def __nonzero__(self): return False __bool__ = __nonzero__ def as_coeff_Mul(self, rational=False): # XXX this routine should be deleted """Efficiently extract the coefficient of a summation. """ return S.One, self class One(with_metaclass(Singleton, IntegerConstant)): """The number one. One is a singleton, and can be accessed by ``S.One``. Examples ======== >>> from sympy import S, Integer >>> Integer(1) is S.One True References ========== .. [1] https://en.wikipedia.org/wiki/1_%28number%29 """ is_number = True p = 1 q = 1 __slots__ = [] @staticmethod def __abs__(): return S.One @staticmethod def __neg__(): return S.NegativeOne def _eval_power(self, expt): return self def _eval_order(self, *symbols): return @staticmethod def factors(limit=None, use_trial=True, use_rho=False, use_pm1=False, verbose=False, visual=False): if visual: return S.One else: return {} class NegativeOne(with_metaclass(Singleton, IntegerConstant)): """The number negative one. NegativeOne is a singleton, and can be accessed by ``S.NegativeOne``. Examples ======== >>> from sympy import S, Integer >>> Integer(-1) is S.NegativeOne True See Also ======== One References ========== .. [1] https://en.wikipedia.org/wiki/%E2%88%921_%28number%29 """ is_number = True p = -1 q = 1 __slots__ = [] @staticmethod def __abs__(): return S.One @staticmethod def __neg__(): return S.One def _eval_power(self, expt): if expt.is_odd: return S.NegativeOne if expt.is_even: return S.One if isinstance(expt, Number): if isinstance(expt, Float): return Float(-1.0)**expt if expt is S.NaN: return S.NaN if expt is S.Infinity or expt is S.NegativeInfinity: return S.NaN if expt is S.Half: return S.ImaginaryUnit if isinstance(expt, Rational): if expt.q == 2: return S.ImaginaryUnit**Integer(expt.p) i, r = divmod(expt.p, expt.q) if i: return self**i*self**Rational(r, expt.q) return class Half(with_metaclass(Singleton, RationalConstant)): """The rational number 1/2. Half is a singleton, and can be accessed by ``S.Half``. Examples ======== >>> from sympy import S, Rational >>> Rational(1, 2) is S.Half True References ========== .. [1] https://en.wikipedia.org/wiki/One_half """ is_number = True p = 1 q = 2 __slots__ = [] @staticmethod def __abs__(): return S.Half class Infinity(with_metaclass(Singleton, Number)): r"""Positive infinite quantity. In real analysis the symbol `\infty` denotes an unbounded limit: `x\to\infty` means that `x` grows without bound. Infinity is often used not only to define a limit but as a value in the affinely extended real number system. Points labeled `+\infty` and `-\infty` can be added to the topological space of the real numbers, producing the two-point compactification of the real numbers. Adding algebraic properties to this gives us the extended real numbers. Infinity is a singleton, and can be accessed by ``S.Infinity``, or can be imported as ``oo``. Examples ======== >>> from sympy import oo, exp, limit, Symbol >>> 1 + oo oo >>> 42/oo 0 >>> x = Symbol('x') >>> limit(exp(x), x, oo) oo See Also ======== NegativeInfinity, NaN References ========== .. [1] https://en.wikipedia.org/wiki/Infinity """ is_commutative = True is_number = True is_complex = False is_extended_real = True is_infinite = True is_comparable = True is_extended_positive = True is_prime = False __slots__ = [] def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"\infty" def _eval_subs(self, old, new): if self == old: return new def _eval_evalf(self, prec=None): return Float('inf') def evalf(self, prec=None, **options): return self._eval_evalf(prec) @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number): if other is S.NegativeInfinity or other is S.NaN: return S.NaN return self return NotImplemented __radd__ = __add__ @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number): if other is S.Infinity or other is S.NaN: return S.NaN return self return NotImplemented @_sympifyit('other', NotImplemented) def __rsub__(self, other): return (-self).__add__(other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number): if other.is_zero or other is S.NaN: return S.NaN if other.is_extended_positive: return self return S.NegativeInfinity return NotImplemented __rmul__ = __mul__ @_sympifyit('other', NotImplemented) def __div__(self, other): if isinstance(other, Number): if other is S.Infinity or \ other is S.NegativeInfinity or \ other is S.NaN: return S.NaN if other.is_extended_nonnegative: return self return S.NegativeInfinity return NotImplemented __truediv__ = __div__ def __abs__(self): return S.Infinity def __neg__(self): return S.NegativeInfinity def _eval_power(self, expt): """ ``expt`` is symbolic object but not equal to 0 or 1. ================ ======= ============================== Expression Result Notes ================ ======= ============================== ``oo ** nan`` ``nan`` ``oo ** -p`` ``0`` ``p`` is number, ``oo`` ================ ======= ============================== See Also ======== Pow NaN NegativeInfinity """ from sympy.functions import re if expt.is_extended_positive: return S.Infinity if expt.is_extended_negative: return S.Zero if expt is S.NaN: return S.NaN if expt is S.ComplexInfinity: return S.NaN if expt.is_extended_real is False and expt.is_number: expt_real = re(expt) if expt_real.is_positive: return S.ComplexInfinity if expt_real.is_negative: return S.Zero if expt_real.is_zero: return S.NaN return self**expt.evalf() def _as_mpf_val(self, prec): return mlib.finf def _sage_(self): import sage.all as sage return sage.oo def __hash__(self): return super(Infinity, self).__hash__() def __eq__(self, other): return other is S.Infinity or other == float('inf') def __ne__(self, other): return other is not S.Infinity and other != float('inf') __gt__ = Expr.__gt__ __ge__ = Expr.__ge__ __lt__ = Expr.__lt__ __le__ = Expr.__le__ def __mod__(self, other): return S.NaN __rmod__ = __mod__ def floor(self): return self def ceiling(self): return self oo = S.Infinity class NegativeInfinity(with_metaclass(Singleton, Number)): """Negative infinite quantity. NegativeInfinity is a singleton, and can be accessed by ``S.NegativeInfinity``. See Also ======== Infinity """ is_extended_real = True is_complex = False is_commutative = True is_infinite = True is_comparable = True is_extended_negative = True is_number = True is_prime = False __slots__ = [] def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"-\infty" def _eval_subs(self, old, new): if self == old: return new def _eval_evalf(self, prec=None): return Float('-inf') def evalf(self, prec=None, **options): return self._eval_evalf(prec) @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number): if other is S.Infinity or other is S.NaN: return S.NaN return self return NotImplemented __radd__ = __add__ @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number): if other is S.NegativeInfinity or other is S.NaN: return S.NaN return self return NotImplemented @_sympifyit('other', NotImplemented) def __rsub__(self, other): return (-self).__add__(other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number): if other.is_zero or other is S.NaN: return S.NaN if other.is_extended_positive: return self return S.Infinity return NotImplemented __rmul__ = __mul__ @_sympifyit('other', NotImplemented) def __div__(self, other): if isinstance(other, Number): if other is S.Infinity or \ other is S.NegativeInfinity or \ other is S.NaN: return S.NaN if other.is_extended_nonnegative: return self return S.Infinity return NotImplemented __truediv__ = __div__ def __abs__(self): return S.Infinity def __neg__(self): return S.Infinity def _eval_power(self, expt): """ ``expt`` is symbolic object but not equal to 0 or 1. ================ ======= ============================== Expression Result Notes ================ ======= ============================== ``(-oo) ** nan`` ``nan`` ``(-oo) ** oo`` ``nan`` ``(-oo) ** -oo`` ``nan`` ``(-oo) ** e`` ``oo`` ``e`` is positive even integer ``(-oo) ** o`` ``-oo`` ``o`` is positive odd integer ================ ======= ============================== See Also ======== Infinity Pow NaN """ if expt.is_number: if expt is S.NaN or \ expt is S.Infinity or \ expt is S.NegativeInfinity: return S.NaN if isinstance(expt, Integer) and expt.is_extended_positive: if expt.is_odd: return S.NegativeInfinity else: return S.Infinity return S.NegativeOne**expt*S.Infinity**expt def _as_mpf_val(self, prec): return mlib.fninf def _sage_(self): import sage.all as sage return -(sage.oo) def __hash__(self): return super(NegativeInfinity, self).__hash__() def __eq__(self, other): return other is S.NegativeInfinity or other == float('-inf') def __ne__(self, other): return other is not S.NegativeInfinity and other != float('-inf') __gt__ = Expr.__gt__ __ge__ = Expr.__ge__ __lt__ = Expr.__lt__ __le__ = Expr.__le__ def __mod__(self, other): return S.NaN __rmod__ = __mod__ def floor(self): return self def ceiling(self): return self def as_powers_dict(self): return {S.NegativeOne: 1, S.Infinity: 1} class NaN(with_metaclass(Singleton, Number)): """ Not a Number. This serves as a place holder for numeric values that are indeterminate. Most operations on NaN, produce another NaN. Most indeterminate forms, such as ``0/0`` or ``oo - oo` produce NaN. Two exceptions are ``0**0`` and ``oo**0``, which all produce ``1`` (this is consistent with Python's float). NaN is loosely related to floating point nan, which is defined in the IEEE 754 floating point standard, and corresponds to the Python ``float('nan')``. Differences are noted below. NaN is mathematically not equal to anything else, even NaN itself. This explains the initially counter-intuitive results with ``Eq`` and ``==`` in the examples below. NaN is not comparable so inequalities raise a TypeError. This is in contrast with floating point nan where all inequalities are false. NaN is a singleton, and can be accessed by ``S.NaN``, or can be imported as ``nan``. Examples ======== >>> from sympy import nan, S, oo, Eq >>> nan is S.NaN True >>> oo - oo nan >>> nan + 1 nan >>> Eq(nan, nan) # mathematical equality False >>> nan == nan # structural equality True References ========== .. [1] https://en.wikipedia.org/wiki/NaN """ is_commutative = True is_extended_real = None is_real = None is_rational = None is_algebraic = None is_transcendental = None is_integer = None is_comparable = False is_finite = None is_zero = None is_prime = None is_positive = None is_negative = None is_number = True __slots__ = [] def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"\text{NaN}" def __neg__(self): return self @_sympifyit('other', NotImplemented) def __add__(self, other): return self @_sympifyit('other', NotImplemented) def __sub__(self, other): return self @_sympifyit('other', NotImplemented) def __mul__(self, other): return self @_sympifyit('other', NotImplemented) def __div__(self, other): return self __truediv__ = __div__ def floor(self): return self def ceiling(self): return self def _as_mpf_val(self, prec): return _mpf_nan def _sage_(self): import sage.all as sage return sage.NaN def __hash__(self): return super(NaN, self).__hash__() def __eq__(self, other): # NaN is structurally equal to another NaN return other is S.NaN def __ne__(self, other): return other is not S.NaN def _eval_Eq(self, other): # NaN is not mathematically equal to anything, even NaN return S.false # Expr will _sympify and raise TypeError __gt__ = Expr.__gt__ __ge__ = Expr.__ge__ __lt__ = Expr.__lt__ __le__ = Expr.__le__ nan = S.NaN class ComplexInfinity(with_metaclass(Singleton, AtomicExpr)): r"""Complex infinity. In complex analysis the symbol `\tilde\infty`, called "complex infinity", represents a quantity with infinite magnitude, but undetermined complex phase. ComplexInfinity is a singleton, and can be accessed by ``S.ComplexInfinity``, or can be imported as ``zoo``. Examples ======== >>> from sympy import zoo, oo >>> zoo + 42 zoo >>> 42/zoo 0 >>> zoo + zoo nan >>> zoo*zoo zoo See Also ======== Infinity """ is_commutative = True is_infinite = True is_number = True is_prime = False is_complex = False is_extended_real = False __slots__ = [] def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"\tilde{\infty}" @staticmethod def __abs__(): return S.Infinity def floor(self): return self def ceiling(self): return self @staticmethod def __neg__(): return S.ComplexInfinity def _eval_power(self, expt): if expt is S.ComplexInfinity: return S.NaN if isinstance(expt, Number): if expt.is_zero: return S.NaN else: if expt.is_positive: return S.ComplexInfinity else: return S.Zero def _sage_(self): import sage.all as sage return sage.UnsignedInfinityRing.gen() zoo = S.ComplexInfinity class NumberSymbol(AtomicExpr): is_commutative = True is_finite = True is_number = True __slots__ = [] is_NumberSymbol = True def __new__(cls): return AtomicExpr.__new__(cls) def approximation(self, number_cls): """ Return an interval with number_cls endpoints that contains the value of NumberSymbol. If not implemented, then return None. """ def _eval_evalf(self, prec): return Float._new(self._as_mpf_val(prec), prec) def __eq__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if self is other: return True if other.is_Number and self.is_irrational: return False return False # NumberSymbol != non-(Number|self) def __ne__(self, other): return not self == other def __le__(self, other): if self is other: return S.true return Expr.__le__(self, other) def __ge__(self, other): if self is other: return S.true return Expr.__ge__(self, other) def __int__(self): # subclass with appropriate return value raise NotImplementedError def __long__(self): return self.__int__() def __hash__(self): return super(NumberSymbol, self).__hash__() class Exp1(with_metaclass(Singleton, NumberSymbol)): r"""The `e` constant. The transcendental number `e = 2.718281828\ldots` is the base of the natural logarithm and of the exponential function, `e = \exp(1)`. Sometimes called Euler's number or Napier's constant. Exp1 is a singleton, and can be accessed by ``S.Exp1``, or can be imported as ``E``. Examples ======== >>> from sympy import exp, log, E >>> E is exp(1) True >>> log(E) 1 References ========== .. [1] https://en.wikipedia.org/wiki/E_%28mathematical_constant%29 """ is_real = True is_positive = True is_negative = False # XXX Forces is_negative/is_nonnegative is_irrational = True is_number = True is_algebraic = False is_transcendental = True __slots__ = [] def _latex(self, printer): return r"e" @staticmethod def __abs__(): return S.Exp1 def __int__(self): return 2 def _as_mpf_val(self, prec): return mpf_e(prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (Integer(2), Integer(3)) elif issubclass(number_cls, Rational): pass def _eval_power(self, expt): from sympy import exp return exp(expt) def _eval_rewrite_as_sin(self, **kwargs): from sympy import sin I = S.ImaginaryUnit return sin(I + S.Pi/2) - I*sin(I) def _eval_rewrite_as_cos(self, **kwargs): from sympy import cos I = S.ImaginaryUnit return cos(I) + I*cos(I + S.Pi/2) def _sage_(self): import sage.all as sage return sage.e E = S.Exp1 class Pi(with_metaclass(Singleton, NumberSymbol)): r"""The `\pi` constant. The transcendental number `\pi = 3.141592654\ldots` represents the ratio of a circle's circumference to its diameter, the area of the unit circle, the half-period of trigonometric functions, and many other things in mathematics. Pi is a singleton, and can be accessed by ``S.Pi``, or can be imported as ``pi``. Examples ======== >>> from sympy import S, pi, oo, sin, exp, integrate, Symbol >>> S.Pi pi >>> pi > 3 True >>> pi.is_irrational True >>> x = Symbol('x') >>> sin(x + 2*pi) sin(x) >>> integrate(exp(-x**2), (x, -oo, oo)) sqrt(pi) References ========== .. [1] https://en.wikipedia.org/wiki/Pi """ is_real = True is_positive = True is_negative = False is_irrational = True is_number = True is_algebraic = False is_transcendental = True __slots__ = [] def _latex(self, printer): return r"\pi" @staticmethod def __abs__(): return S.Pi def __int__(self): return 3 def _as_mpf_val(self, prec): return mpf_pi(prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (Integer(3), Integer(4)) elif issubclass(number_cls, Rational): return (Rational(223, 71), Rational(22, 7)) def _sage_(self): import sage.all as sage return sage.pi pi = S.Pi class GoldenRatio(with_metaclass(Singleton, NumberSymbol)): r"""The golden ratio, `\phi`. `\phi = \frac{1 + \sqrt{5}}{2}` is algebraic number. Two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities, i.e. their maximum. GoldenRatio is a singleton, and can be accessed by ``S.GoldenRatio``. Examples ======== >>> from sympy import S >>> S.GoldenRatio > 1 True >>> S.GoldenRatio.expand(func=True) 1/2 + sqrt(5)/2 >>> S.GoldenRatio.is_irrational True References ========== .. [1] https://en.wikipedia.org/wiki/Golden_ratio """ is_real = True is_positive = True is_negative = False is_irrational = True is_number = True is_algebraic = True is_transcendental = False __slots__ = [] def _latex(self, printer): return r"\phi" def __int__(self): return 1 def _as_mpf_val(self, prec): # XXX track down why this has to be increased rv = mlib.from_man_exp(phi_fixed(prec + 10), -prec - 10) return mpf_norm(rv, prec) def _eval_expand_func(self, **hints): from sympy import sqrt return S.Half + S.Half*sqrt(5) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.One, Rational(2)) elif issubclass(number_cls, Rational): pass def _sage_(self): import sage.all as sage return sage.golden_ratio _eval_rewrite_as_sqrt = _eval_expand_func class TribonacciConstant(with_metaclass(Singleton, NumberSymbol)): r"""The tribonacci constant. The tribonacci numbers are like the Fibonacci numbers, but instead of starting with two predetermined terms, the sequence starts with three predetermined terms and each term afterwards is the sum of the preceding three terms. The tribonacci constant is the ratio toward which adjacent tribonacci numbers tend. It is a root of the polynomial `x^3 - x^2 - x - 1 = 0`, and also satisfies the equation `x + x^{-3} = 2`. TribonacciConstant is a singleton, and can be accessed by ``S.TribonacciConstant``. Examples ======== >>> from sympy import S >>> S.TribonacciConstant > 1 True >>> S.TribonacciConstant.expand(func=True) 1/3 + (19 - 3*sqrt(33))**(1/3)/3 + (3*sqrt(33) + 19)**(1/3)/3 >>> S.TribonacciConstant.is_irrational True >>> S.TribonacciConstant.n(20) 1.8392867552141611326 References ========== .. [1] https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Tribonacci_numbers """ is_real = True is_positive = True is_negative = False is_irrational = True is_number = True is_algebraic = True is_transcendental = False __slots__ = [] def _latex(self, printer): return r"\text{TribonacciConstant}" def __int__(self): return 2 def _eval_evalf(self, prec): rv = self._eval_expand_func(function=True)._eval_evalf(prec + 4) return Float(rv, precision=prec) def _eval_expand_func(self, **hints): from sympy import sqrt, cbrt return (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3 def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.One, Rational(2)) elif issubclass(number_cls, Rational): pass _eval_rewrite_as_sqrt = _eval_expand_func class EulerGamma(with_metaclass(Singleton, NumberSymbol)): r"""The Euler-Mascheroni constant. `\gamma = 0.5772157\ldots` (also called Euler's constant) is a mathematical constant recurring in analysis and number theory. It is defined as the limiting difference between the harmonic series and the natural logarithm: .. math:: \gamma = \lim\limits_{n\to\infty} \left(\sum\limits_{k=1}^n\frac{1}{k} - \ln n\right) EulerGamma is a singleton, and can be accessed by ``S.EulerGamma``. Examples ======== >>> from sympy import S >>> S.EulerGamma.is_irrational >>> S.EulerGamma > 0 True >>> S.EulerGamma > 1 False References ========== .. [1] https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant """ is_real = True is_positive = True is_negative = False is_irrational = None is_number = True __slots__ = [] def _latex(self, printer): return r"\gamma" def __int__(self): return 0 def _as_mpf_val(self, prec): # XXX track down why this has to be increased v = mlib.libhyper.euler_fixed(prec + 10) rv = mlib.from_man_exp(v, -prec - 10) return mpf_norm(rv, prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.Zero, S.One) elif issubclass(number_cls, Rational): return (S.Half, Rational(3, 5)) def _sage_(self): import sage.all as sage return sage.euler_gamma class Catalan(with_metaclass(Singleton, NumberSymbol)): r"""Catalan's constant. `K = 0.91596559\ldots` is given by the infinite series .. math:: K = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2} Catalan is a singleton, and can be accessed by ``S.Catalan``. Examples ======== >>> from sympy import S >>> S.Catalan.is_irrational >>> S.Catalan > 0 True >>> S.Catalan > 1 False References ========== .. [1] https://en.wikipedia.org/wiki/Catalan%27s_constant """ is_real = True is_positive = True is_negative = False is_irrational = None is_number = True __slots__ = [] def __int__(self): return 0 def _as_mpf_val(self, prec): # XXX track down why this has to be increased v = mlib.catalan_fixed(prec + 10) rv = mlib.from_man_exp(v, -prec - 10) return mpf_norm(rv, prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.Zero, S.One) elif issubclass(number_cls, Rational): return (Rational(9, 10), S.One) def _eval_rewrite_as_Sum(self, k_sym=None, symbols=None): from sympy import Sum, Dummy if (k_sym is not None) or (symbols is not None): return self k = Dummy('k', integer=True, nonnegative=True) return Sum((-1)**k / (2*k+1)**2, (k, 0, S.Infinity)) def _sage_(self): import sage.all as sage return sage.catalan class ImaginaryUnit(with_metaclass(Singleton, AtomicExpr)): r"""The imaginary unit, `i = \sqrt{-1}`. I is a singleton, and can be accessed by ``S.I``, or can be imported as ``I``. Examples ======== >>> from sympy import I, sqrt >>> sqrt(-1) I >>> I*I -1 >>> 1/I -I References ========== .. [1] https://en.wikipedia.org/wiki/Imaginary_unit """ is_commutative = True is_imaginary = True is_finite = True is_number = True is_algebraic = True is_transcendental = False __slots__ = [] def _latex(self, printer): return printer._settings['imaginary_unit_latex'] @staticmethod def __abs__(): return S.One def _eval_evalf(self, prec): return self def _eval_conjugate(self): return -S.ImaginaryUnit def _eval_power(self, expt): """ b is I = sqrt(-1) e is symbolic object but not equal to 0, 1 I**r -> (-1)**(r/2) -> exp(r/2*Pi*I) -> sin(Pi*r/2) + cos(Pi*r/2)*I, r is decimal I**0 mod 4 -> 1 I**1 mod 4 -> I I**2 mod 4 -> -1 I**3 mod 4 -> -I """ if isinstance(expt, Number): if isinstance(expt, Integer): expt = expt.p % 4 if expt == 0: return S.One if expt == 1: return S.ImaginaryUnit if expt == 2: return -S.One return -S.ImaginaryUnit return def as_base_exp(self): return S.NegativeOne, S.Half def _sage_(self): import sage.all as sage return sage.I @property def _mpc_(self): return (Float(0)._mpf_, Float(1)._mpf_) I = S.ImaginaryUnit def sympify_fractions(f): return Rational(f.numerator, f.denominator, 1) converter[fractions.Fraction] = sympify_fractions try: if HAS_GMPY == 2: import gmpy2 as gmpy elif HAS_GMPY == 1: import gmpy else: raise ImportError def sympify_mpz(x): return Integer(long(x)) def sympify_mpq(x): return Rational(long(x.numerator), long(x.denominator)) converter[type(gmpy.mpz(1))] = sympify_mpz converter[type(gmpy.mpq(1, 2))] = sympify_mpq except ImportError: pass def sympify_mpmath(x): return Expr._from_mpmath(x, x.context.prec) converter[mpnumeric] = sympify_mpmath def sympify_mpq(x): p, q = x._mpq_ return Rational(p, q, 1) converter[type(mpmath.rational.mpq(1, 2))] = sympify_mpq def sympify_complex(a): real, imag = list(map(sympify, (a.real, a.imag))) return real + S.ImaginaryUnit*imag converter[complex] = sympify_complex from .power import Pow, integer_nthroot from .mul import Mul Mul.identity = One() from .add import Add Add.identity = Zero() def _register_classes(): numbers.Number.register(Number) numbers.Real.register(Float) numbers.Rational.register(Rational) numbers.Rational.register(Integer) _register_classes()
7250a567d8414a4645bf239c43befbf567b2b071061e75fa472068702f046848
"""Tools for setting up printing in interactive sessions. """ from __future__ import print_function, division import sys from distutils.version import LooseVersion as V from io import BytesIO from sympy import latex as default_latex from sympy import preview from sympy.core.compatibility import integer_types from sympy.utilities.misc import debug def _init_python_printing(stringify_func, **settings): """Setup printing in Python interactive session. """ import sys from sympy.core.compatibility import builtins def _displayhook(arg): """Python's pretty-printer display hook. This function was adapted from: http://www.python.org/dev/peps/pep-0217/ """ if arg is not None: builtins._ = None print(stringify_func(arg, **settings)) builtins._ = arg sys.displayhook = _displayhook def _init_ipython_printing(ip, stringify_func, use_latex, euler, forecolor, backcolor, fontsize, latex_mode, print_builtin, latex_printer, scale, **settings): """Setup printing in IPython interactive session. """ try: from IPython.lib.latextools import latex_to_png except ImportError: pass # Guess best font color if none was given based on the ip.colors string. # From the IPython documentation: # It has four case-insensitive values: 'nocolor', 'neutral', 'linux', # 'lightbg'. The default is neutral, which should be legible on either # dark or light terminal backgrounds. linux is optimised for dark # backgrounds and lightbg for light ones. if forecolor is None: color = ip.colors.lower() if color == 'lightbg': forecolor = 'Black' elif color == 'linux': forecolor = 'White' else: # No idea, go with gray. forecolor = 'Gray' debug("init_printing: Automatic foreground color:", forecolor) preamble = "\\documentclass[varwidth,%s]{standalone}\n" \ "\\usepackage{amsmath,amsfonts}%s\\begin{document}" if euler: addpackages = '\\usepackage{euler}' else: addpackages = '' if use_latex == "svg": addpackages = addpackages + "\n\\special{color %s}" % forecolor preamble = preamble % (fontsize, addpackages) imagesize = 'tight' offset = "0cm,0cm" resolution = round(150*scale) dvi = r"-T %s -D %d -bg %s -fg %s -O %s" % ( imagesize, resolution, backcolor, forecolor, offset) dvioptions = dvi.split() svg_scale = 150/72*scale dvioptions_svg = ["--no-fonts", "--scale={}".format(svg_scale)] debug("init_printing: DVIOPTIONS:", dvioptions) debug("init_printing: DVIOPTIONS_SVG:", dvioptions_svg) debug("init_printing: PREAMBLE:", preamble) latex = latex_printer or default_latex def _print_plain(arg, p, cycle): """caller for pretty, for use in IPython 0.11""" if _can_print_latex(arg): p.text(stringify_func(arg)) else: p.text(IPython.lib.pretty.pretty(arg)) def _preview_wrapper(o): exprbuffer = BytesIO() try: preview(o, output='png', viewer='BytesIO', outputbuffer=exprbuffer, preamble=preamble, dvioptions=dvioptions) except Exception as e: # IPython swallows exceptions debug("png printing:", "_preview_wrapper exception raised:", repr(e)) raise return exprbuffer.getvalue() def _svg_wrapper(o): exprbuffer = BytesIO() try: preview(o, output='svg', viewer='BytesIO', outputbuffer=exprbuffer, preamble=preamble, dvioptions=dvioptions_svg) except Exception as e: # IPython swallows exceptions debug("svg printing:", "_preview_wrapper exception raised:", repr(e)) raise return exprbuffer.getvalue().decode('utf-8') def _matplotlib_wrapper(o): # mathtext does not understand certain latex flags, so we try to # replace them with suitable subs o = o.replace(r'\operatorname', '') o = o.replace(r'\overline', r'\bar') # mathtext can't render some LaTeX commands. For example, it can't # render any LaTeX environments such as array or matrix. So here we # ensure that if mathtext fails to render, we return None. try: try: return latex_to_png(o, color=forecolor, scale=scale) except TypeError: # Old IPython version without color and scale return latex_to_png(o) except ValueError as e: debug('matplotlib exception caught:', repr(e)) return None from sympy import Basic from sympy.matrices import MatrixBase from sympy.physics.vector import Vector, Dyadic from sympy.tensor.array import NDimArray # These should all have _repr_latex_ and _repr_latex_orig. If you update # this also update printable_types below. sympy_latex_types = (Basic, MatrixBase, Vector, Dyadic, NDimArray) def _can_print_latex(o): """Return True if type o can be printed with LaTeX. If o is a container type, this is True if and only if every element of o can be printed with LaTeX. """ try: # If you're adding another type, make sure you add it to printable_types # later in this file as well builtin_types = (list, tuple, set, frozenset) if isinstance(o, builtin_types): # If the object is a custom subclass with a custom str or # repr, use that instead. if (type(o).__str__ not in (i.__str__ for i in builtin_types) or type(o).__repr__ not in (i.__repr__ for i in builtin_types)): return False return all(_can_print_latex(i) for i in o) elif isinstance(o, dict): return all(_can_print_latex(i) and _can_print_latex(o[i]) for i in o) elif isinstance(o, bool): return False # TODO : Investigate if "elif hasattr(o, '_latex')" is more useful # to use here, than these explicit imports. elif isinstance(o, sympy_latex_types): return True elif isinstance(o, (float, integer_types)) and print_builtin: return True return False except RuntimeError: return False # This is in case maximum recursion depth is reached. # Since RecursionError is for versions of Python 3.5+ # so this is to guard against RecursionError for older versions. def _print_latex_png(o): """ A function that returns a png rendered by an external latex distribution, falling back to matplotlib rendering """ if _can_print_latex(o): s = latex(o, mode=latex_mode, **settings) if latex_mode == 'plain': s = '$\\displaystyle %s$' % s try: return _preview_wrapper(s) except RuntimeError as e: debug('preview failed with:', repr(e), ' Falling back to matplotlib backend') if latex_mode != 'inline': s = latex(o, mode='inline', **settings) return _matplotlib_wrapper(s) def _print_latex_svg(o): """ A function that returns a svg rendered by an external latex distribution, no fallback available. """ if _can_print_latex(o): s = latex(o, mode=latex_mode, **settings) if latex_mode == 'plain': s = '$\\displaystyle %s$' % s try: return _svg_wrapper(s) except RuntimeError as e: debug('preview failed with:', repr(e), ' No fallback available.') def _print_latex_matplotlib(o): """ A function that returns a png rendered by mathtext """ if _can_print_latex(o): s = latex(o, mode='inline', **settings) return _matplotlib_wrapper(s) def _print_latex_text(o): """ A function to generate the latex representation of sympy expressions. """ if _can_print_latex(o): s = latex(o, mode=latex_mode, **settings) if latex_mode == 'plain': return '$\\displaystyle %s$' % s return s def _result_display(self, arg): """IPython's pretty-printer display hook, for use in IPython 0.10 This function was adapted from: ipython/IPython/hooks.py:155 """ if self.rc.pprint: out = stringify_func(arg) if '\n' in out: print print(out) else: print(repr(arg)) import IPython if V(IPython.__version__) >= '0.11': from sympy.core.basic import Basic from sympy.matrices.matrices import MatrixBase from sympy.physics.vector import Vector, Dyadic from sympy.tensor.array import NDimArray printable_types = [Basic, MatrixBase, float, tuple, list, set, frozenset, dict, Vector, Dyadic, NDimArray] + list(integer_types) plaintext_formatter = ip.display_formatter.formatters['text/plain'] for cls in printable_types: plaintext_formatter.for_type(cls, _print_plain) svg_formatter = ip.display_formatter.formatters['image/svg+xml'] if use_latex in ('svg', ): debug("init_printing: using svg formatter") for cls in printable_types: svg_formatter.for_type(cls, _print_latex_svg) else: debug("init_printing: not using any svg formatter") for cls in printable_types: # Better way to set this, but currently does not work in IPython #png_formatter.for_type(cls, None) if cls in svg_formatter.type_printers: svg_formatter.type_printers.pop(cls) png_formatter = ip.display_formatter.formatters['image/png'] if use_latex in (True, 'png'): debug("init_printing: using png formatter") for cls in printable_types: png_formatter.for_type(cls, _print_latex_png) elif use_latex == 'matplotlib': debug("init_printing: using matplotlib formatter") for cls in printable_types: png_formatter.for_type(cls, _print_latex_matplotlib) else: debug("init_printing: not using any png formatter") for cls in printable_types: # Better way to set this, but currently does not work in IPython #png_formatter.for_type(cls, None) if cls in png_formatter.type_printers: png_formatter.type_printers.pop(cls) latex_formatter = ip.display_formatter.formatters['text/latex'] if use_latex in (True, 'mathjax'): debug("init_printing: using mathjax formatter") for cls in printable_types: latex_formatter.for_type(cls, _print_latex_text) for typ in sympy_latex_types: typ._repr_latex_ = typ._repr_latex_orig else: debug("init_printing: not using text/latex formatter") for cls in printable_types: # Better way to set this, but currently does not work in IPython #latex_formatter.for_type(cls, None) if cls in latex_formatter.type_printers: latex_formatter.type_printers.pop(cls) for typ in sympy_latex_types: typ._repr_latex_ = None else: ip.set_hook('result_display', _result_display) def _is_ipython(shell): """Is a shell instance an IPython shell?""" # shortcut, so we don't import IPython if we don't have to if 'IPython' not in sys.modules: return False try: from IPython.core.interactiveshell import InteractiveShell except ImportError: # IPython < 0.11 try: from IPython.iplib import InteractiveShell except ImportError: # Reaching this points means IPython has changed in a backward-incompatible way # that we don't know about. Warn? return False return isinstance(shell, InteractiveShell) # Used by the doctester to override the default for no_global NO_GLOBAL = False def init_printing(pretty_print=True, order=None, use_unicode=None, use_latex=None, wrap_line=None, num_columns=None, no_global=False, ip=None, euler=False, forecolor=None, backcolor='Transparent', fontsize='10pt', latex_mode='plain', print_builtin=True, str_printer=None, pretty_printer=None, latex_printer=None, scale=1.0, **settings): r""" Initializes pretty-printer depending on the environment. Parameters ========== pretty_print : boolean, default=True If True, use pretty_print to stringify or the provided pretty printer; if False, use sstrrepr to stringify or the provided string printer. order : string or None, default='lex' There are a few different settings for this parameter: lex (default), which is lexographic order; grlex, which is graded lexographic order; grevlex, which is reversed graded lexographic order; old, which is used for compatibility reasons and for long expressions; None, which sets it to lex. use_unicode : boolean or None, default=None If True, use unicode characters; if False, do not use unicode characters; if None, make a guess based on the environment. use_latex : string, boolean, or None, default=None If True, use default LaTeX rendering in GUI interfaces (png and mathjax); if False, do not use LaTeX rendering; if None, make a guess based on the environment; if 'png', enable latex rendering with an external latex compiler, falling back to matplotlib if external compilation fails; if 'matplotlib', enable LaTeX rendering with matplotlib; if 'mathjax', enable LaTeX text generation, for example MathJax rendering in IPython notebook or text rendering in LaTeX documents; if 'svg', enable LaTeX rendering with an external latex compiler, no fallback wrap_line : boolean If True, lines will wrap at the end; if False, they will not wrap but continue as one line. This is only relevant if ``pretty_print`` is True. num_columns : int or None, default=None If int, number of columns before wrapping is set to num_columns; if None, number of columns before wrapping is set to terminal width. This is only relevant if ``pretty_print`` is True. no_global : boolean, default=False If True, the settings become system wide; if False, use just for this console/session. ip : An interactive console This can either be an instance of IPython, or a class that derives from code.InteractiveConsole. euler : boolean, optional, default=False Loads the euler package in the LaTeX preamble for handwritten style fonts (http://www.ctan.org/pkg/euler). forecolor : string or None, optional, default=None DVI setting for foreground color. None means that either 'Black', 'White', or 'Gray' will be selected based on a guess of the IPython terminal color setting. See notes. backcolor : string, optional, default='Transparent' DVI setting for background color. See notes. fontsize : string, optional, default='10pt' A font size to pass to the LaTeX documentclass function in the preamble. Note that the options are limited by the documentclass. Consider using scale instead. latex_mode : string, optional, default='plain' The mode used in the LaTeX printer. Can be one of: {'inline'|'plain'|'equation'|'equation*'}. print_builtin : boolean, optional, default=True If ``True`` then floats and integers will be printed. If ``False`` the printer will only print SymPy types. str_printer : function, optional, default=None A custom string printer function. This should mimic sympy.printing.sstrrepr(). pretty_printer : function, optional, default=None A custom pretty printer. This should mimic sympy.printing.pretty(). latex_printer : function, optional, default=None A custom LaTeX printer. This should mimic sympy.printing.latex(). scale : float, optional, default=1.0 Scale the LaTeX output when using the ``png`` or ``svg`` backends. Useful for high dpi screens. settings : Any additional settings for the ``latex`` and ``pretty`` commands can be used to fine-tune the output. Examples ======== >>> from sympy.interactive import init_printing >>> from sympy import Symbol, sqrt >>> from sympy.abc import x, y >>> sqrt(5) sqrt(5) >>> init_printing(pretty_print=True) # doctest: +SKIP >>> sqrt(5) # doctest: +SKIP ___ \/ 5 >>> theta = Symbol('theta') # doctest: +SKIP >>> init_printing(use_unicode=True) # doctest: +SKIP >>> theta # doctest: +SKIP \u03b8 >>> init_printing(use_unicode=False) # doctest: +SKIP >>> theta # doctest: +SKIP theta >>> init_printing(order='lex') # doctest: +SKIP >>> str(y + x + y**2 + x**2) # doctest: +SKIP x**2 + x + y**2 + y >>> init_printing(order='grlex') # doctest: +SKIP >>> str(y + x + y**2 + x**2) # doctest: +SKIP x**2 + x + y**2 + y >>> init_printing(order='grevlex') # doctest: +SKIP >>> str(y * x**2 + x * y**2) # doctest: +SKIP x**2*y + x*y**2 >>> init_printing(order='old') # doctest: +SKIP >>> str(x**2 + y**2 + x + y) # doctest: +SKIP x**2 + x + y**2 + y >>> init_printing(num_columns=10) # doctest: +SKIP >>> x**2 + x + y**2 + y # doctest: +SKIP x + y + x**2 + y**2 Notes ===== The foreground and background colors can be selected when using 'png' or 'svg' LaTeX rendering. Note that before the ``init_printing`` command is executed, the LaTeX rendering is handled by the IPython console and not SymPy. The colors can be selected among the 68 standard colors known to ``dvips``, for a list see [1]_. In addition, the background color can be set to 'Transparent' (which is the default value). When using the 'Auto' foreground color, the guess is based on the ``colors`` variable in the IPython console, see [2]_. Hence, if that variable is set correctly in your IPython console, there is a high chance that the output will be readable, although manual settings may be needed. References ========== .. [1] https://en.wikibooks.org/wiki/LaTeX/Colors#The_68_standard_colors_known_to_dvips .. [2] https://ipython.readthedocs.io/en/stable/config/details.html#terminal-colors See Also ======== sympy.printing.latex sympy.printing.pretty """ import sys from sympy.printing.printer import Printer if pretty_print: if pretty_printer is not None: stringify_func = pretty_printer else: from sympy.printing import pretty as stringify_func else: if str_printer is not None: stringify_func = str_printer else: from sympy.printing import sstrrepr as stringify_func # Even if ip is not passed, double check that not in IPython shell in_ipython = False if ip is None: try: ip = get_ipython() except NameError: pass else: in_ipython = (ip is not None) if ip and not in_ipython: in_ipython = _is_ipython(ip) if in_ipython and pretty_print: try: import IPython # IPython 1.0 deprecates the frontend module, so we import directly # from the terminal module to prevent a deprecation message from being # shown. if V(IPython.__version__) >= '1.0': from IPython.terminal.interactiveshell import TerminalInteractiveShell else: from IPython.frontend.terminal.interactiveshell import TerminalInteractiveShell from code import InteractiveConsole except ImportError: pass else: # This will be True if we are in the qtconsole or notebook if not isinstance(ip, (InteractiveConsole, TerminalInteractiveShell)) \ and 'ipython-console' not in ''.join(sys.argv): if use_unicode is None: debug("init_printing: Setting use_unicode to True") use_unicode = True if use_latex is None: debug("init_printing: Setting use_latex to True") use_latex = True if not NO_GLOBAL and not no_global: Printer.set_global_settings(order=order, use_unicode=use_unicode, wrap_line=wrap_line, num_columns=num_columns) else: _stringify_func = stringify_func if pretty_print: stringify_func = lambda expr: \ _stringify_func(expr, order=order, use_unicode=use_unicode, wrap_line=wrap_line, num_columns=num_columns) else: stringify_func = lambda expr: _stringify_func(expr, order=order) if in_ipython: mode_in_settings = settings.pop("mode", None) if mode_in_settings: debug("init_printing: Mode is not able to be set due to internals" "of IPython printing") _init_ipython_printing(ip, stringify_func, use_latex, euler, forecolor, backcolor, fontsize, latex_mode, print_builtin, latex_printer, scale, **settings) else: _init_python_printing(stringify_func, **settings)
ccc55db8287f0c1c83e35929b55b8baabc4cf31dca20b15f3432827e285f2f57
"""User-friendly public interface to polynomial functions. """ from __future__ import print_function, division from sympy.core import ( S, Basic, Expr, I, Integer, Add, Mul, Dummy, Tuple ) from sympy.core.basic import preorder_traversal from sympy.core.compatibility import iterable, range, ordered from sympy.core.decorators import _sympifyit from sympy.core.function import Derivative from sympy.core.mul import _keep_coeff from sympy.core.relational import Relational from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.logic.boolalg import BooleanAtom from sympy.polys import polyoptions as options from sympy.polys.constructor import construct_domain from sympy.polys.domains import FF, QQ, ZZ from sympy.polys.fglmtools import matrix_fglm from sympy.polys.groebnertools import groebner as _groebner from sympy.polys.monomials import Monomial from sympy.polys.orderings import monomial_key from sympy.polys.polyclasses import DMP from sympy.polys.polyerrors import ( OperationNotSupported, DomainError, CoercionFailed, UnificationFailed, GeneratorsNeeded, PolynomialError, MultivariatePolynomialError, ExactQuotientFailed, PolificationFailed, ComputationFailed, GeneratorsError, ) from sympy.polys.polyutils import ( basic_from_dict, _sort_gens, _unify_gens, _dict_reorder, _dict_from_expr, _parallel_dict_from_expr, ) from sympy.polys.rationaltools import together from sympy.polys.rootisolation import dup_isolate_real_roots_list from sympy.utilities import group, sift, public, filldedent # Required to avoid errors import sympy.polys import mpmath from mpmath.libmp.libhyper import NoConvergence @public class Poly(Expr): """ Generic class for representing and operating on polynomial expressions. Subclasses Expr class. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y Create a univariate polynomial: >>> Poly(x*(x**2 + x - 1)**2) Poly(x**5 + 2*x**4 - x**3 - 2*x**2 + x, x, domain='ZZ') Create a univariate polynomial with specific domain: >>> from sympy import sqrt >>> Poly(x**2 + 2*x + sqrt(3), domain='R') Poly(1.0*x**2 + 2.0*x + 1.73205080756888, x, domain='RR') Create a multivariate polynomial: >>> Poly(y*x**2 + x*y + 1) Poly(x**2*y + x*y + 1, x, y, domain='ZZ') Create a univariate polynomial, where y is a constant: >>> Poly(y*x**2 + x*y + 1,x) Poly(y*x**2 + y*x + 1, x, domain='ZZ[y]') You can evaluate the above polynomial as a function of y: >>> Poly(y*x**2 + x*y + 1,x).eval(2) 6*y + 1 See Also ======== sympy.core.expr.Expr """ __slots__ = ['rep', 'gens'] is_commutative = True is_Poly = True _op_priority = 10.001 def __new__(cls, rep, *gens, **args): """Create a new polynomial instance out of something useful. """ opt = options.build_options(gens, args) if 'order' in opt: raise NotImplementedError("'order' keyword is not implemented yet") if iterable(rep, exclude=str): if isinstance(rep, dict): return cls._from_dict(rep, opt) else: return cls._from_list(list(rep), opt) else: rep = sympify(rep) if rep.is_Poly: return cls._from_poly(rep, opt) else: return cls._from_expr(rep, opt) @classmethod def new(cls, rep, *gens): """Construct :class:`Poly` instance from raw representation. """ if not isinstance(rep, DMP): raise PolynomialError( "invalid polynomial representation: %s" % rep) elif rep.lev != len(gens) - 1: raise PolynomialError("invalid arguments: %s, %s" % (rep, gens)) obj = Basic.__new__(cls) obj.rep = rep obj.gens = gens return obj @classmethod def from_dict(cls, rep, *gens, **args): """Construct a polynomial from a ``dict``. """ opt = options.build_options(gens, args) return cls._from_dict(rep, opt) @classmethod def from_list(cls, rep, *gens, **args): """Construct a polynomial from a ``list``. """ opt = options.build_options(gens, args) return cls._from_list(rep, opt) @classmethod def from_poly(cls, rep, *gens, **args): """Construct a polynomial from a polynomial. """ opt = options.build_options(gens, args) return cls._from_poly(rep, opt) @classmethod def from_expr(cls, rep, *gens, **args): """Construct a polynomial from an expression. """ opt = options.build_options(gens, args) return cls._from_expr(rep, opt) @classmethod def _from_dict(cls, rep, opt): """Construct a polynomial from a ``dict``. """ gens = opt.gens if not gens: raise GeneratorsNeeded( "can't initialize from 'dict' without generators") level = len(gens) - 1 domain = opt.domain if domain is None: domain, rep = construct_domain(rep, opt=opt) else: for monom, coeff in rep.items(): rep[monom] = domain.convert(coeff) return cls.new(DMP.from_dict(rep, level, domain), *gens) @classmethod def _from_list(cls, rep, opt): """Construct a polynomial from a ``list``. """ gens = opt.gens if not gens: raise GeneratorsNeeded( "can't initialize from 'list' without generators") elif len(gens) != 1: raise MultivariatePolynomialError( "'list' representation not supported") level = len(gens) - 1 domain = opt.domain if domain is None: domain, rep = construct_domain(rep, opt=opt) else: rep = list(map(domain.convert, rep)) return cls.new(DMP.from_list(rep, level, domain), *gens) @classmethod def _from_poly(cls, rep, opt): """Construct a polynomial from a polynomial. """ if cls != rep.__class__: rep = cls.new(rep.rep, *rep.gens) gens = opt.gens field = opt.field domain = opt.domain if gens and rep.gens != gens: if set(rep.gens) != set(gens): return cls._from_expr(rep.as_expr(), opt) else: rep = rep.reorder(*gens) if 'domain' in opt and domain: rep = rep.set_domain(domain) elif field is True: rep = rep.to_field() return rep @classmethod def _from_expr(cls, rep, opt): """Construct a polynomial from an expression. """ rep, opt = _dict_from_expr(rep, opt) return cls._from_dict(rep, opt) def _hashable_content(self): """Allow SymPy to hash Poly instances. """ return (self.rep, self.gens) def __hash__(self): return super(Poly, self).__hash__() @property def free_symbols(self): """ Free symbols of a polynomial expression. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y, z >>> Poly(x**2 + 1).free_symbols {x} >>> Poly(x**2 + y).free_symbols {x, y} >>> Poly(x**2 + y, x).free_symbols {x, y} >>> Poly(x**2 + y, x, z).free_symbols {x, y} """ symbols = set() gens = self.gens for i in range(len(gens)): for monom in self.monoms(): if monom[i]: symbols |= gens[i].free_symbols break return symbols | self.free_symbols_in_domain @property def free_symbols_in_domain(self): """ Free symbols of the domain of ``self``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 1).free_symbols_in_domain set() >>> Poly(x**2 + y).free_symbols_in_domain set() >>> Poly(x**2 + y, x).free_symbols_in_domain {y} """ domain, symbols = self.rep.dom, set() if domain.is_Composite: for gen in domain.symbols: symbols |= gen.free_symbols elif domain.is_EX: for coeff in self.coeffs(): symbols |= coeff.free_symbols return symbols @property def args(self): """ Don't mess up with the core. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).args (x**2 + 1,) """ return (self.as_expr(),) @property def gen(self): """ Return the principal generator. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).gen x """ return self.gens[0] @property def domain(self): """Get the ground domain of ``self``. """ return self.get_domain() @property def zero(self): """Return zero polynomial with ``self``'s properties. """ return self.new(self.rep.zero(self.rep.lev, self.rep.dom), *self.gens) @property def one(self): """Return one polynomial with ``self``'s properties. """ return self.new(self.rep.one(self.rep.lev, self.rep.dom), *self.gens) @property def unit(self): """Return unit polynomial with ``self``'s properties. """ return self.new(self.rep.unit(self.rep.lev, self.rep.dom), *self.gens) def unify(f, g): """ Make ``f`` and ``g`` belong to the same domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f, g = Poly(x/2 + 1), Poly(2*x + 1) >>> f Poly(1/2*x + 1, x, domain='QQ') >>> g Poly(2*x + 1, x, domain='ZZ') >>> F, G = f.unify(g) >>> F Poly(1/2*x + 1, x, domain='QQ') >>> G Poly(2*x + 1, x, domain='QQ') """ _, per, F, G = f._unify(g) return per(F), per(G) def _unify(f, g): g = sympify(g) if not g.is_Poly: try: return f.rep.dom, f.per, f.rep, f.rep.per(f.rep.dom.from_sympy(g)) except CoercionFailed: raise UnificationFailed("can't unify %s with %s" % (f, g)) if isinstance(f.rep, DMP) and isinstance(g.rep, DMP): gens = _unify_gens(f.gens, g.gens) dom, lev = f.rep.dom.unify(g.rep.dom, gens), len(gens) - 1 if f.gens != gens: f_monoms, f_coeffs = _dict_reorder( f.rep.to_dict(), f.gens, gens) if f.rep.dom != dom: f_coeffs = [dom.convert(c, f.rep.dom) for c in f_coeffs] F = DMP(dict(list(zip(f_monoms, f_coeffs))), dom, lev) else: F = f.rep.convert(dom) if g.gens != gens: g_monoms, g_coeffs = _dict_reorder( g.rep.to_dict(), g.gens, gens) if g.rep.dom != dom: g_coeffs = [dom.convert(c, g.rep.dom) for c in g_coeffs] G = DMP(dict(list(zip(g_monoms, g_coeffs))), dom, lev) else: G = g.rep.convert(dom) else: raise UnificationFailed("can't unify %s with %s" % (f, g)) cls = f.__class__ def per(rep, dom=dom, gens=gens, remove=None): if remove is not None: gens = gens[:remove] + gens[remove + 1:] if not gens: return dom.to_sympy(rep) return cls.new(rep, *gens) return dom, per, F, G def per(f, rep, gens=None, remove=None): """ Create a Poly out of the given representation. Examples ======== >>> from sympy import Poly, ZZ >>> from sympy.abc import x, y >>> from sympy.polys.polyclasses import DMP >>> a = Poly(x**2 + 1) >>> a.per(DMP([ZZ(1), ZZ(1)], ZZ), gens=[y]) Poly(y + 1, y, domain='ZZ') """ if gens is None: gens = f.gens if remove is not None: gens = gens[:remove] + gens[remove + 1:] if not gens: return f.rep.dom.to_sympy(rep) return f.__class__.new(rep, *gens) def set_domain(f, domain): """Set the ground domain of ``f``. """ opt = options.build_options(f.gens, {'domain': domain}) return f.per(f.rep.convert(opt.domain)) def get_domain(f): """Get the ground domain of ``f``. """ return f.rep.dom def set_modulus(f, modulus): """ Set the modulus of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(5*x**2 + 2*x - 1, x).set_modulus(2) Poly(x**2 + 1, x, modulus=2) """ modulus = options.Modulus.preprocess(modulus) return f.set_domain(FF(modulus)) def get_modulus(f): """ Get the modulus of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, modulus=2).get_modulus() 2 """ domain = f.get_domain() if domain.is_FiniteField: return Integer(domain.characteristic()) else: raise PolynomialError("not a polynomial over a Galois field") def _eval_subs(f, old, new): """Internal implementation of :func:`subs`. """ if old in f.gens: if new.is_number: return f.eval(old, new) else: try: return f.replace(old, new) except PolynomialError: pass return f.as_expr().subs(old, new) def exclude(f): """ Remove unnecessary generators from ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import a, b, c, d, x >>> Poly(a + x, a, b, c, d, x).exclude() Poly(a + x, a, x, domain='ZZ') """ J, new = f.rep.exclude() gens = [] for j in range(len(f.gens)): if j not in J: gens.append(f.gens[j]) return f.per(new, gens=gens) def replace(f, x, y=None, *_ignore): # XXX this does not match Basic's signature """ Replace ``x`` with ``y`` in generators list. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 1, x).replace(x, y) Poly(y**2 + 1, y, domain='ZZ') """ if y is None: if f.is_univariate: x, y = f.gen, x else: raise PolynomialError( "syntax supported only in univariate case") if x == y or x not in f.gens: return f if x in f.gens and y not in f.gens: dom = f.get_domain() if not dom.is_Composite or y not in dom.symbols: gens = list(f.gens) gens[gens.index(x)] = y return f.per(f.rep, gens=gens) raise PolynomialError("can't replace %s with %s in %s" % (x, y, f)) def reorder(f, *gens, **args): """ Efficiently apply new order of generators. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + x*y**2, x, y).reorder(y, x) Poly(y**2*x + x**2, y, x, domain='ZZ') """ opt = options.Options((), args) if not gens: gens = _sort_gens(f.gens, opt=opt) elif set(f.gens) != set(gens): raise PolynomialError( "generators list can differ only up to order of elements") rep = dict(list(zip(*_dict_reorder(f.rep.to_dict(), f.gens, gens)))) return f.per(DMP(rep, f.rep.dom, len(gens) - 1), gens=gens) def ltrim(f, gen): """ Remove dummy generators from ``f`` that are to the left of specified ``gen`` in the generators as ordered. When ``gen`` is an integer, it refers to the generator located at that position within the tuple of generators of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y, z >>> Poly(y**2 + y*z**2, x, y, z).ltrim(y) Poly(y**2 + y*z**2, y, z, domain='ZZ') >>> Poly(z, x, y, z).ltrim(-1) Poly(z, z, domain='ZZ') """ rep = f.as_dict(native=True) j = f._gen_to_level(gen) terms = {} for monom, coeff in rep.items(): if any(monom[:j]): # some generator is used in the portion to be trimmed raise PolynomialError("can't left trim %s" % f) terms[monom[j:]] = coeff gens = f.gens[j:] return f.new(DMP.from_dict(terms, len(gens) - 1, f.rep.dom), *gens) def has_only_gens(f, *gens): """ Return ``True`` if ``Poly(f, *gens)`` retains ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y, z >>> Poly(x*y + 1, x, y, z).has_only_gens(x, y) True >>> Poly(x*y + z, x, y, z).has_only_gens(x, y) False """ indices = set() for gen in gens: try: index = f.gens.index(gen) except ValueError: raise GeneratorsError( "%s doesn't have %s as generator" % (f, gen)) else: indices.add(index) for monom in f.monoms(): for i, elt in enumerate(monom): if i not in indices and elt: return False return True def to_ring(f): """ Make the ground domain a ring. Examples ======== >>> from sympy import Poly, QQ >>> from sympy.abc import x >>> Poly(x**2 + 1, domain=QQ).to_ring() Poly(x**2 + 1, x, domain='ZZ') """ if hasattr(f.rep, 'to_ring'): result = f.rep.to_ring() else: # pragma: no cover raise OperationNotSupported(f, 'to_ring') return f.per(result) def to_field(f): """ Make the ground domain a field. Examples ======== >>> from sympy import Poly, ZZ >>> from sympy.abc import x >>> Poly(x**2 + 1, x, domain=ZZ).to_field() Poly(x**2 + 1, x, domain='QQ') """ if hasattr(f.rep, 'to_field'): result = f.rep.to_field() else: # pragma: no cover raise OperationNotSupported(f, 'to_field') return f.per(result) def to_exact(f): """ Make the ground domain exact. Examples ======== >>> from sympy import Poly, RR >>> from sympy.abc import x >>> Poly(x**2 + 1.0, x, domain=RR).to_exact() Poly(x**2 + 1, x, domain='QQ') """ if hasattr(f.rep, 'to_exact'): result = f.rep.to_exact() else: # pragma: no cover raise OperationNotSupported(f, 'to_exact') return f.per(result) def retract(f, field=None): """ Recalculate the ground domain of a polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = Poly(x**2 + 1, x, domain='QQ[y]') >>> f Poly(x**2 + 1, x, domain='QQ[y]') >>> f.retract() Poly(x**2 + 1, x, domain='ZZ') >>> f.retract(field=True) Poly(x**2 + 1, x, domain='QQ') """ dom, rep = construct_domain(f.as_dict(zero=True), field=field, composite=f.domain.is_Composite or None) return f.from_dict(rep, f.gens, domain=dom) def slice(f, x, m, n=None): """Take a continuous subsequence of terms of ``f``. """ if n is None: j, m, n = 0, x, m else: j = f._gen_to_level(x) m, n = int(m), int(n) if hasattr(f.rep, 'slice'): result = f.rep.slice(m, n, j) else: # pragma: no cover raise OperationNotSupported(f, 'slice') return f.per(result) def coeffs(f, order=None): """ Returns all non-zero coefficients from ``f`` in lex order. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 + 2*x + 3, x).coeffs() [1, 2, 3] See Also ======== all_coeffs coeff_monomial nth """ return [f.rep.dom.to_sympy(c) for c in f.rep.coeffs(order=order)] def monoms(f, order=None): """ Returns all non-zero monomials from ``f`` in lex order. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 2*x*y**2 + x*y + 3*y, x, y).monoms() [(2, 0), (1, 2), (1, 1), (0, 1)] See Also ======== all_monoms """ return f.rep.monoms(order=order) def terms(f, order=None): """ Returns all non-zero terms from ``f`` in lex order. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 2*x*y**2 + x*y + 3*y, x, y).terms() [((2, 0), 1), ((1, 2), 2), ((1, 1), 1), ((0, 1), 3)] See Also ======== all_terms """ return [(m, f.rep.dom.to_sympy(c)) for m, c in f.rep.terms(order=order)] def all_coeffs(f): """ Returns all coefficients from a univariate polynomial ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 + 2*x - 1, x).all_coeffs() [1, 0, 2, -1] """ return [f.rep.dom.to_sympy(c) for c in f.rep.all_coeffs()] def all_monoms(f): """ Returns all monomials from a univariate polynomial ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 + 2*x - 1, x).all_monoms() [(3,), (2,), (1,), (0,)] See Also ======== all_terms """ return f.rep.all_monoms() def all_terms(f): """ Returns all terms from a univariate polynomial ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 + 2*x - 1, x).all_terms() [((3,), 1), ((2,), 0), ((1,), 2), ((0,), -1)] """ return [(m, f.rep.dom.to_sympy(c)) for m, c in f.rep.all_terms()] def termwise(f, func, *gens, **args): """ Apply a function to all terms of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> def func(k, coeff): ... k = k[0] ... return coeff//10**(2-k) >>> Poly(x**2 + 20*x + 400).termwise(func) Poly(x**2 + 2*x + 4, x, domain='ZZ') """ terms = {} for monom, coeff in f.terms(): result = func(monom, coeff) if isinstance(result, tuple): monom, coeff = result else: coeff = result if coeff: if monom not in terms: terms[monom] = coeff else: raise PolynomialError( "%s monomial was generated twice" % monom) return f.from_dict(terms, *(gens or f.gens), **args) def length(f): """ Returns the number of non-zero terms in ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 2*x - 1).length() 3 """ return len(f.as_dict()) def as_dict(f, native=False, zero=False): """ Switch to a ``dict`` representation. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 2*x*y**2 - y, x, y).as_dict() {(0, 1): -1, (1, 2): 2, (2, 0): 1} """ if native: return f.rep.to_dict(zero=zero) else: return f.rep.to_sympy_dict(zero=zero) def as_list(f, native=False): """Switch to a ``list`` representation. """ if native: return f.rep.to_list() else: return f.rep.to_sympy_list() def as_expr(f, *gens): """ Convert a Poly instance to an Expr instance. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = Poly(x**2 + 2*x*y**2 - y, x, y) >>> f.as_expr() x**2 + 2*x*y**2 - y >>> f.as_expr({x: 5}) 10*y**2 - y + 25 >>> f.as_expr(5, 6) 379 """ if not gens: gens = f.gens elif len(gens) == 1 and isinstance(gens[0], dict): mapping = gens[0] gens = list(f.gens) for gen, value in mapping.items(): try: index = gens.index(gen) except ValueError: raise GeneratorsError( "%s doesn't have %s as generator" % (f, gen)) else: gens[index] = value return basic_from_dict(f.rep.to_sympy_dict(), *gens) def lift(f): """ Convert algebraic coefficients to rationals. Examples ======== >>> from sympy import Poly, I >>> from sympy.abc import x >>> Poly(x**2 + I*x + 1, x, extension=I).lift() Poly(x**4 + 3*x**2 + 1, x, domain='QQ') """ if hasattr(f.rep, 'lift'): result = f.rep.lift() else: # pragma: no cover raise OperationNotSupported(f, 'lift') return f.per(result) def deflate(f): """ Reduce degree of ``f`` by mapping ``x_i**m`` to ``y_i``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**6*y**2 + x**3 + 1, x, y).deflate() ((3, 2), Poly(x**2*y + x + 1, x, y, domain='ZZ')) """ if hasattr(f.rep, 'deflate'): J, result = f.rep.deflate() else: # pragma: no cover raise OperationNotSupported(f, 'deflate') return J, f.per(result) def inject(f, front=False): """ Inject ground domain generators into ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = Poly(x**2*y + x*y**3 + x*y + 1, x) >>> f.inject() Poly(x**2*y + x*y**3 + x*y + 1, x, y, domain='ZZ') >>> f.inject(front=True) Poly(y**3*x + y*x**2 + y*x + 1, y, x, domain='ZZ') """ dom = f.rep.dom if dom.is_Numerical: return f elif not dom.is_Poly: raise DomainError("can't inject generators over %s" % dom) if hasattr(f.rep, 'inject'): result = f.rep.inject(front=front) else: # pragma: no cover raise OperationNotSupported(f, 'inject') if front: gens = dom.symbols + f.gens else: gens = f.gens + dom.symbols return f.new(result, *gens) def eject(f, *gens): """ Eject selected generators into the ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = Poly(x**2*y + x*y**3 + x*y + 1, x, y) >>> f.eject(x) Poly(x*y**3 + (x**2 + x)*y + 1, y, domain='ZZ[x]') >>> f.eject(y) Poly(y*x**2 + (y**3 + y)*x + 1, x, domain='ZZ[y]') """ dom = f.rep.dom if not dom.is_Numerical: raise DomainError("can't eject generators over %s" % dom) k = len(gens) if f.gens[:k] == gens: _gens, front = f.gens[k:], True elif f.gens[-k:] == gens: _gens, front = f.gens[:-k], False else: raise NotImplementedError( "can only eject front or back generators") dom = dom.inject(*gens) if hasattr(f.rep, 'eject'): result = f.rep.eject(dom, front=front) else: # pragma: no cover raise OperationNotSupported(f, 'eject') return f.new(result, *_gens) def terms_gcd(f): """ Remove GCD of terms from the polynomial ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**6*y**2 + x**3*y, x, y).terms_gcd() ((3, 1), Poly(x**3*y + 1, x, y, domain='ZZ')) """ if hasattr(f.rep, 'terms_gcd'): J, result = f.rep.terms_gcd() else: # pragma: no cover raise OperationNotSupported(f, 'terms_gcd') return J, f.per(result) def add_ground(f, coeff): """ Add an element of the ground domain to ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x + 1).add_ground(2) Poly(x + 3, x, domain='ZZ') """ if hasattr(f.rep, 'add_ground'): result = f.rep.add_ground(coeff) else: # pragma: no cover raise OperationNotSupported(f, 'add_ground') return f.per(result) def sub_ground(f, coeff): """ Subtract an element of the ground domain from ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x + 1).sub_ground(2) Poly(x - 1, x, domain='ZZ') """ if hasattr(f.rep, 'sub_ground'): result = f.rep.sub_ground(coeff) else: # pragma: no cover raise OperationNotSupported(f, 'sub_ground') return f.per(result) def mul_ground(f, coeff): """ Multiply ``f`` by a an element of the ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x + 1).mul_ground(2) Poly(2*x + 2, x, domain='ZZ') """ if hasattr(f.rep, 'mul_ground'): result = f.rep.mul_ground(coeff) else: # pragma: no cover raise OperationNotSupported(f, 'mul_ground') return f.per(result) def quo_ground(f, coeff): """ Quotient of ``f`` by a an element of the ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x + 4).quo_ground(2) Poly(x + 2, x, domain='ZZ') >>> Poly(2*x + 3).quo_ground(2) Poly(x + 1, x, domain='ZZ') """ if hasattr(f.rep, 'quo_ground'): result = f.rep.quo_ground(coeff) else: # pragma: no cover raise OperationNotSupported(f, 'quo_ground') return f.per(result) def exquo_ground(f, coeff): """ Exact quotient of ``f`` by a an element of the ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x + 4).exquo_ground(2) Poly(x + 2, x, domain='ZZ') >>> Poly(2*x + 3).exquo_ground(2) Traceback (most recent call last): ... ExactQuotientFailed: 2 does not divide 3 in ZZ """ if hasattr(f.rep, 'exquo_ground'): result = f.rep.exquo_ground(coeff) else: # pragma: no cover raise OperationNotSupported(f, 'exquo_ground') return f.per(result) def abs(f): """ Make all coefficients in ``f`` positive. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).abs() Poly(x**2 + 1, x, domain='ZZ') """ if hasattr(f.rep, 'abs'): result = f.rep.abs() else: # pragma: no cover raise OperationNotSupported(f, 'abs') return f.per(result) def neg(f): """ Negate all coefficients in ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).neg() Poly(-x**2 + 1, x, domain='ZZ') >>> -Poly(x**2 - 1, x) Poly(-x**2 + 1, x, domain='ZZ') """ if hasattr(f.rep, 'neg'): result = f.rep.neg() else: # pragma: no cover raise OperationNotSupported(f, 'neg') return f.per(result) def add(f, g): """ Add two polynomials ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).add(Poly(x - 2, x)) Poly(x**2 + x - 1, x, domain='ZZ') >>> Poly(x**2 + 1, x) + Poly(x - 2, x) Poly(x**2 + x - 1, x, domain='ZZ') """ g = sympify(g) if not g.is_Poly: return f.add_ground(g) _, per, F, G = f._unify(g) if hasattr(f.rep, 'add'): result = F.add(G) else: # pragma: no cover raise OperationNotSupported(f, 'add') return per(result) def sub(f, g): """ Subtract two polynomials ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).sub(Poly(x - 2, x)) Poly(x**2 - x + 3, x, domain='ZZ') >>> Poly(x**2 + 1, x) - Poly(x - 2, x) Poly(x**2 - x + 3, x, domain='ZZ') """ g = sympify(g) if not g.is_Poly: return f.sub_ground(g) _, per, F, G = f._unify(g) if hasattr(f.rep, 'sub'): result = F.sub(G) else: # pragma: no cover raise OperationNotSupported(f, 'sub') return per(result) def mul(f, g): """ Multiply two polynomials ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).mul(Poly(x - 2, x)) Poly(x**3 - 2*x**2 + x - 2, x, domain='ZZ') >>> Poly(x**2 + 1, x)*Poly(x - 2, x) Poly(x**3 - 2*x**2 + x - 2, x, domain='ZZ') """ g = sympify(g) if not g.is_Poly: return f.mul_ground(g) _, per, F, G = f._unify(g) if hasattr(f.rep, 'mul'): result = F.mul(G) else: # pragma: no cover raise OperationNotSupported(f, 'mul') return per(result) def sqr(f): """ Square a polynomial ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x - 2, x).sqr() Poly(x**2 - 4*x + 4, x, domain='ZZ') >>> Poly(x - 2, x)**2 Poly(x**2 - 4*x + 4, x, domain='ZZ') """ if hasattr(f.rep, 'sqr'): result = f.rep.sqr() else: # pragma: no cover raise OperationNotSupported(f, 'sqr') return f.per(result) def pow(f, n): """ Raise ``f`` to a non-negative power ``n``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x - 2, x).pow(3) Poly(x**3 - 6*x**2 + 12*x - 8, x, domain='ZZ') >>> Poly(x - 2, x)**3 Poly(x**3 - 6*x**2 + 12*x - 8, x, domain='ZZ') """ n = int(n) if hasattr(f.rep, 'pow'): result = f.rep.pow(n) else: # pragma: no cover raise OperationNotSupported(f, 'pow') return f.per(result) def pdiv(f, g): """ Polynomial pseudo-division of ``f`` by ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).pdiv(Poly(2*x - 4, x)) (Poly(2*x + 4, x, domain='ZZ'), Poly(20, x, domain='ZZ')) """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'pdiv'): q, r = F.pdiv(G) else: # pragma: no cover raise OperationNotSupported(f, 'pdiv') return per(q), per(r) def prem(f, g): """ Polynomial pseudo-remainder of ``f`` by ``g``. Caveat: The function prem(f, g, x) can be safely used to compute in Z[x] _only_ subresultant polynomial remainder sequences (prs's). To safely compute Euclidean and Sturmian prs's in Z[x] employ anyone of the corresponding functions found in the module sympy.polys.subresultants_qq_zz. The functions in the module with suffix _pg compute prs's in Z[x] employing rem(f, g, x), whereas the functions with suffix _amv compute prs's in Z[x] employing rem_z(f, g, x). The function rem_z(f, g, x) differs from prem(f, g, x) in that to compute the remainder polynomials in Z[x] it premultiplies the divident times the absolute value of the leading coefficient of the divisor raised to the power degree(f, x) - degree(g, x) + 1. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).prem(Poly(2*x - 4, x)) Poly(20, x, domain='ZZ') """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'prem'): result = F.prem(G) else: # pragma: no cover raise OperationNotSupported(f, 'prem') return per(result) def pquo(f, g): """ Polynomial pseudo-quotient of ``f`` by ``g``. See the Caveat note in the function prem(f, g). Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).pquo(Poly(2*x - 4, x)) Poly(2*x + 4, x, domain='ZZ') >>> Poly(x**2 - 1, x).pquo(Poly(2*x - 2, x)) Poly(2*x + 2, x, domain='ZZ') """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'pquo'): result = F.pquo(G) else: # pragma: no cover raise OperationNotSupported(f, 'pquo') return per(result) def pexquo(f, g): """ Polynomial exact pseudo-quotient of ``f`` by ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).pexquo(Poly(2*x - 2, x)) Poly(2*x + 2, x, domain='ZZ') >>> Poly(x**2 + 1, x).pexquo(Poly(2*x - 4, x)) Traceback (most recent call last): ... ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1 """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'pexquo'): try: result = F.pexquo(G) except ExactQuotientFailed as exc: raise exc.new(f.as_expr(), g.as_expr()) else: # pragma: no cover raise OperationNotSupported(f, 'pexquo') return per(result) def div(f, g, auto=True): """ Polynomial division with remainder of ``f`` by ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).div(Poly(2*x - 4, x)) (Poly(1/2*x + 1, x, domain='QQ'), Poly(5, x, domain='QQ')) >>> Poly(x**2 + 1, x).div(Poly(2*x - 4, x), auto=False) (Poly(0, x, domain='ZZ'), Poly(x**2 + 1, x, domain='ZZ')) """ dom, per, F, G = f._unify(g) retract = False if auto and dom.is_Ring and not dom.is_Field: F, G = F.to_field(), G.to_field() retract = True if hasattr(f.rep, 'div'): q, r = F.div(G) else: # pragma: no cover raise OperationNotSupported(f, 'div') if retract: try: Q, R = q.to_ring(), r.to_ring() except CoercionFailed: pass else: q, r = Q, R return per(q), per(r) def rem(f, g, auto=True): """ Computes the polynomial remainder of ``f`` by ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).rem(Poly(2*x - 4, x)) Poly(5, x, domain='ZZ') >>> Poly(x**2 + 1, x).rem(Poly(2*x - 4, x), auto=False) Poly(x**2 + 1, x, domain='ZZ') """ dom, per, F, G = f._unify(g) retract = False if auto and dom.is_Ring and not dom.is_Field: F, G = F.to_field(), G.to_field() retract = True if hasattr(f.rep, 'rem'): r = F.rem(G) else: # pragma: no cover raise OperationNotSupported(f, 'rem') if retract: try: r = r.to_ring() except CoercionFailed: pass return per(r) def quo(f, g, auto=True): """ Computes polynomial quotient of ``f`` by ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).quo(Poly(2*x - 4, x)) Poly(1/2*x + 1, x, domain='QQ') >>> Poly(x**2 - 1, x).quo(Poly(x - 1, x)) Poly(x + 1, x, domain='ZZ') """ dom, per, F, G = f._unify(g) retract = False if auto and dom.is_Ring and not dom.is_Field: F, G = F.to_field(), G.to_field() retract = True if hasattr(f.rep, 'quo'): q = F.quo(G) else: # pragma: no cover raise OperationNotSupported(f, 'quo') if retract: try: q = q.to_ring() except CoercionFailed: pass return per(q) def exquo(f, g, auto=True): """ Computes polynomial exact quotient of ``f`` by ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).exquo(Poly(x - 1, x)) Poly(x + 1, x, domain='ZZ') >>> Poly(x**2 + 1, x).exquo(Poly(2*x - 4, x)) Traceback (most recent call last): ... ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1 """ dom, per, F, G = f._unify(g) retract = False if auto and dom.is_Ring and not dom.is_Field: F, G = F.to_field(), G.to_field() retract = True if hasattr(f.rep, 'exquo'): try: q = F.exquo(G) except ExactQuotientFailed as exc: raise exc.new(f.as_expr(), g.as_expr()) else: # pragma: no cover raise OperationNotSupported(f, 'exquo') if retract: try: q = q.to_ring() except CoercionFailed: pass return per(q) def _gen_to_level(f, gen): """Returns level associated with the given generator. """ if isinstance(gen, int): length = len(f.gens) if -length <= gen < length: if gen < 0: return length + gen else: return gen else: raise PolynomialError("-%s <= gen < %s expected, got %s" % (length, length, gen)) else: try: return f.gens.index(sympify(gen)) except ValueError: raise PolynomialError( "a valid generator expected, got %s" % gen) def degree(f, gen=0): """ Returns degree of ``f`` in ``x_j``. The degree of 0 is negative infinity. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + y*x + 1, x, y).degree() 2 >>> Poly(x**2 + y*x + y, x, y).degree(y) 1 >>> Poly(0, x).degree() -oo """ j = f._gen_to_level(gen) if hasattr(f.rep, 'degree'): return f.rep.degree(j) else: # pragma: no cover raise OperationNotSupported(f, 'degree') def degree_list(f): """ Returns a list of degrees of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + y*x + 1, x, y).degree_list() (2, 1) """ if hasattr(f.rep, 'degree_list'): return f.rep.degree_list() else: # pragma: no cover raise OperationNotSupported(f, 'degree_list') def total_degree(f): """ Returns the total degree of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + y*x + 1, x, y).total_degree() 2 >>> Poly(x + y**5, x, y).total_degree() 5 """ if hasattr(f.rep, 'total_degree'): return f.rep.total_degree() else: # pragma: no cover raise OperationNotSupported(f, 'total_degree') def homogenize(f, s): """ Returns the homogeneous polynomial of ``f``. A homogeneous polynomial is a polynomial whose all monomials with non-zero coefficients have the same total degree. If you only want to check if a polynomial is homogeneous, then use :func:`Poly.is_homogeneous`. If you want not only to check if a polynomial is homogeneous but also compute its homogeneous order, then use :func:`Poly.homogeneous_order`. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y, z >>> f = Poly(x**5 + 2*x**2*y**2 + 9*x*y**3) >>> f.homogenize(z) Poly(x**5 + 2*x**2*y**2*z + 9*x*y**3*z, x, y, z, domain='ZZ') """ if not isinstance(s, Symbol): raise TypeError("``Symbol`` expected, got %s" % type(s)) if s in f.gens: i = f.gens.index(s) gens = f.gens else: i = len(f.gens) gens = f.gens + (s,) if hasattr(f.rep, 'homogenize'): return f.per(f.rep.homogenize(i), gens=gens) raise OperationNotSupported(f, 'homogeneous_order') def homogeneous_order(f): """ Returns the homogeneous order of ``f``. A homogeneous polynomial is a polynomial whose all monomials with non-zero coefficients have the same total degree. This degree is the homogeneous order of ``f``. If you only want to check if a polynomial is homogeneous, then use :func:`Poly.is_homogeneous`. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = Poly(x**5 + 2*x**3*y**2 + 9*x*y**4) >>> f.homogeneous_order() 5 """ if hasattr(f.rep, 'homogeneous_order'): return f.rep.homogeneous_order() else: # pragma: no cover raise OperationNotSupported(f, 'homogeneous_order') def LC(f, order=None): """ Returns the leading coefficient of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(4*x**3 + 2*x**2 + 3*x, x).LC() 4 """ if order is not None: return f.coeffs(order)[0] if hasattr(f.rep, 'LC'): result = f.rep.LC() else: # pragma: no cover raise OperationNotSupported(f, 'LC') return f.rep.dom.to_sympy(result) def TC(f): """ Returns the trailing coefficient of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 + 2*x**2 + 3*x, x).TC() 0 """ if hasattr(f.rep, 'TC'): result = f.rep.TC() else: # pragma: no cover raise OperationNotSupported(f, 'TC') return f.rep.dom.to_sympy(result) def EC(f, order=None): """ Returns the last non-zero coefficient of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 + 2*x**2 + 3*x, x).EC() 3 """ if hasattr(f.rep, 'coeffs'): return f.coeffs(order)[-1] else: # pragma: no cover raise OperationNotSupported(f, 'EC') def coeff_monomial(f, monom): """ Returns the coefficient of ``monom`` in ``f`` if there, else None. Examples ======== >>> from sympy import Poly, exp >>> from sympy.abc import x, y >>> p = Poly(24*x*y*exp(8) + 23*x, x, y) >>> p.coeff_monomial(x) 23 >>> p.coeff_monomial(y) 0 >>> p.coeff_monomial(x*y) 24*exp(8) Note that ``Expr.coeff()`` behaves differently, collecting terms if possible; the Poly must be converted to an Expr to use that method, however: >>> p.as_expr().coeff(x) 24*y*exp(8) + 23 >>> p.as_expr().coeff(y) 24*x*exp(8) >>> p.as_expr().coeff(x*y) 24*exp(8) See Also ======== nth: more efficient query using exponents of the monomial's generators """ return f.nth(*Monomial(monom, f.gens).exponents) def nth(f, *N): """ Returns the ``n``-th coefficient of ``f`` where ``N`` are the exponents of the generators in the term of interest. Examples ======== >>> from sympy import Poly, sqrt >>> from sympy.abc import x, y >>> Poly(x**3 + 2*x**2 + 3*x, x).nth(2) 2 >>> Poly(x**3 + 2*x*y**2 + y**2, x, y).nth(1, 2) 2 >>> Poly(4*sqrt(x)*y) Poly(4*y*(sqrt(x)), y, sqrt(x), domain='ZZ') >>> _.nth(1, 1) 4 See Also ======== coeff_monomial """ if hasattr(f.rep, 'nth'): if len(N) != len(f.gens): raise ValueError('exponent of each generator must be specified') result = f.rep.nth(*list(map(int, N))) else: # pragma: no cover raise OperationNotSupported(f, 'nth') return f.rep.dom.to_sympy(result) def coeff(f, x, n=1, right=False): # the semantics of coeff_monomial and Expr.coeff are different; # if someone is working with a Poly, they should be aware of the # differences and chose the method best suited for the query. # Alternatively, a pure-polys method could be written here but # at this time the ``right`` keyword would be ignored because Poly # doesn't work with non-commutatives. raise NotImplementedError( 'Either convert to Expr with `as_expr` method ' 'to use Expr\'s coeff method or else use the ' '`coeff_monomial` method of Polys.') def LM(f, order=None): """ Returns the leading monomial of ``f``. The Leading monomial signifies the monomial having the highest power of the principal generator in the expression f. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).LM() x**2*y**0 """ return Monomial(f.monoms(order)[0], f.gens) def EM(f, order=None): """ Returns the last non-zero monomial of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).EM() x**0*y**1 """ return Monomial(f.monoms(order)[-1], f.gens) def LT(f, order=None): """ Returns the leading term of ``f``. The Leading term signifies the term having the highest power of the principal generator in the expression f along with its coefficient. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).LT() (x**2*y**0, 4) """ monom, coeff = f.terms(order)[0] return Monomial(monom, f.gens), coeff def ET(f, order=None): """ Returns the last non-zero term of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).ET() (x**0*y**1, 3) """ monom, coeff = f.terms(order)[-1] return Monomial(monom, f.gens), coeff def max_norm(f): """ Returns maximum norm of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(-x**2 + 2*x - 3, x).max_norm() 3 """ if hasattr(f.rep, 'max_norm'): result = f.rep.max_norm() else: # pragma: no cover raise OperationNotSupported(f, 'max_norm') return f.rep.dom.to_sympy(result) def l1_norm(f): """ Returns l1 norm of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(-x**2 + 2*x - 3, x).l1_norm() 6 """ if hasattr(f.rep, 'l1_norm'): result = f.rep.l1_norm() else: # pragma: no cover raise OperationNotSupported(f, 'l1_norm') return f.rep.dom.to_sympy(result) def clear_denoms(self, convert=False): """ Clear denominators, but keep the ground domain. Examples ======== >>> from sympy import Poly, S, QQ >>> from sympy.abc import x >>> f = Poly(x/2 + S(1)/3, x, domain=QQ) >>> f.clear_denoms() (6, Poly(3*x + 2, x, domain='QQ')) >>> f.clear_denoms(convert=True) (6, Poly(3*x + 2, x, domain='ZZ')) """ f = self if not f.rep.dom.is_Field: return S.One, f dom = f.get_domain() if dom.has_assoc_Ring: dom = f.rep.dom.get_ring() if hasattr(f.rep, 'clear_denoms'): coeff, result = f.rep.clear_denoms() else: # pragma: no cover raise OperationNotSupported(f, 'clear_denoms') coeff, f = dom.to_sympy(coeff), f.per(result) if not convert or not dom.has_assoc_Ring: return coeff, f else: return coeff, f.to_ring() def rat_clear_denoms(self, g): """ Clear denominators in a rational function ``f/g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = Poly(x**2/y + 1, x) >>> g = Poly(x**3 + y, x) >>> p, q = f.rat_clear_denoms(g) >>> p Poly(x**2 + y, x, domain='ZZ[y]') >>> q Poly(y*x**3 + y**2, x, domain='ZZ[y]') """ f = self dom, per, f, g = f._unify(g) f = per(f) g = per(g) if not (dom.is_Field and dom.has_assoc_Ring): return f, g a, f = f.clear_denoms(convert=True) b, g = g.clear_denoms(convert=True) f = f.mul_ground(b) g = g.mul_ground(a) return f, g def integrate(self, *specs, **args): """ Computes indefinite integral of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 2*x + 1, x).integrate() Poly(1/3*x**3 + x**2 + x, x, domain='QQ') >>> Poly(x*y**2 + x, x, y).integrate((0, 1), (1, 0)) Poly(1/2*x**2*y**2 + 1/2*x**2, x, y, domain='QQ') """ f = self if args.get('auto', True) and f.rep.dom.is_Ring: f = f.to_field() if hasattr(f.rep, 'integrate'): if not specs: return f.per(f.rep.integrate(m=1)) rep = f.rep for spec in specs: if type(spec) is tuple: gen, m = spec else: gen, m = spec, 1 rep = rep.integrate(int(m), f._gen_to_level(gen)) return f.per(rep) else: # pragma: no cover raise OperationNotSupported(f, 'integrate') def diff(f, *specs, **kwargs): """ Computes partial derivative of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 2*x + 1, x).diff() Poly(2*x + 2, x, domain='ZZ') >>> Poly(x*y**2 + x, x, y).diff((0, 0), (1, 1)) Poly(2*x*y, x, y, domain='ZZ') """ if not kwargs.get('evaluate', True): return Derivative(f, *specs, **kwargs) if hasattr(f.rep, 'diff'): if not specs: return f.per(f.rep.diff(m=1)) rep = f.rep for spec in specs: if type(spec) is tuple: gen, m = spec else: gen, m = spec, 1 rep = rep.diff(int(m), f._gen_to_level(gen)) return f.per(rep) else: # pragma: no cover raise OperationNotSupported(f, 'diff') _eval_derivative = diff def eval(self, x, a=None, auto=True): """ Evaluate ``f`` at ``a`` in the given variable. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y, z >>> Poly(x**2 + 2*x + 3, x).eval(2) 11 >>> Poly(2*x*y + 3*x + y + 2, x, y).eval(x, 2) Poly(5*y + 8, y, domain='ZZ') >>> f = Poly(2*x*y + 3*x + y + 2*z, x, y, z) >>> f.eval({x: 2}) Poly(5*y + 2*z + 6, y, z, domain='ZZ') >>> f.eval({x: 2, y: 5}) Poly(2*z + 31, z, domain='ZZ') >>> f.eval({x: 2, y: 5, z: 7}) 45 >>> f.eval((2, 5)) Poly(2*z + 31, z, domain='ZZ') >>> f(2, 5) Poly(2*z + 31, z, domain='ZZ') """ f = self if a is None: if isinstance(x, dict): mapping = x for gen, value in mapping.items(): f = f.eval(gen, value) return f elif isinstance(x, (tuple, list)): values = x if len(values) > len(f.gens): raise ValueError("too many values provided") for gen, value in zip(f.gens, values): f = f.eval(gen, value) return f else: j, a = 0, x else: j = f._gen_to_level(x) if not hasattr(f.rep, 'eval'): # pragma: no cover raise OperationNotSupported(f, 'eval') try: result = f.rep.eval(a, j) except CoercionFailed: if not auto: raise DomainError("can't evaluate at %s in %s" % (a, f.rep.dom)) else: a_domain, [a] = construct_domain([a]) new_domain = f.get_domain().unify_with_symbols(a_domain, f.gens) f = f.set_domain(new_domain) a = new_domain.convert(a, a_domain) result = f.rep.eval(a, j) return f.per(result, remove=j) def __call__(f, *values): """ Evaluate ``f`` at the give values. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y, z >>> f = Poly(2*x*y + 3*x + y + 2*z, x, y, z) >>> f(2) Poly(5*y + 2*z + 6, y, z, domain='ZZ') >>> f(2, 5) Poly(2*z + 31, z, domain='ZZ') >>> f(2, 5, 7) 45 """ return f.eval(values) def half_gcdex(f, g, auto=True): """ Half extended Euclidean algorithm of ``f`` and ``g``. Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15 >>> g = x**3 + x**2 - 4*x - 4 >>> Poly(f).half_gcdex(Poly(g)) (Poly(-1/5*x + 3/5, x, domain='QQ'), Poly(x + 1, x, domain='QQ')) """ dom, per, F, G = f._unify(g) if auto and dom.is_Ring: F, G = F.to_field(), G.to_field() if hasattr(f.rep, 'half_gcdex'): s, h = F.half_gcdex(G) else: # pragma: no cover raise OperationNotSupported(f, 'half_gcdex') return per(s), per(h) def gcdex(f, g, auto=True): """ Extended Euclidean algorithm of ``f`` and ``g``. Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15 >>> g = x**3 + x**2 - 4*x - 4 >>> Poly(f).gcdex(Poly(g)) (Poly(-1/5*x + 3/5, x, domain='QQ'), Poly(1/5*x**2 - 6/5*x + 2, x, domain='QQ'), Poly(x + 1, x, domain='QQ')) """ dom, per, F, G = f._unify(g) if auto and dom.is_Ring: F, G = F.to_field(), G.to_field() if hasattr(f.rep, 'gcdex'): s, t, h = F.gcdex(G) else: # pragma: no cover raise OperationNotSupported(f, 'gcdex') return per(s), per(t), per(h) def invert(f, g, auto=True): """ Invert ``f`` modulo ``g`` when possible. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).invert(Poly(2*x - 1, x)) Poly(-4/3, x, domain='QQ') >>> Poly(x**2 - 1, x).invert(Poly(x - 1, x)) Traceback (most recent call last): ... NotInvertible: zero divisor """ dom, per, F, G = f._unify(g) if auto and dom.is_Ring: F, G = F.to_field(), G.to_field() if hasattr(f.rep, 'invert'): result = F.invert(G) else: # pragma: no cover raise OperationNotSupported(f, 'invert') return per(result) def revert(f, n): """ Compute ``f**(-1)`` mod ``x**n``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(1, x).revert(2) Poly(1, x, domain='ZZ') >>> Poly(1 + x, x).revert(1) Poly(1, x, domain='ZZ') >>> Poly(x**2 - 1, x).revert(1) Traceback (most recent call last): ... NotReversible: only unity is reversible in a ring >>> Poly(1/x, x).revert(1) Traceback (most recent call last): ... PolynomialError: 1/x contains an element of the generators set """ if hasattr(f.rep, 'revert'): result = f.rep.revert(int(n)) else: # pragma: no cover raise OperationNotSupported(f, 'revert') return f.per(result) def subresultants(f, g): """ Computes the subresultant PRS of ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).subresultants(Poly(x**2 - 1, x)) [Poly(x**2 + 1, x, domain='ZZ'), Poly(x**2 - 1, x, domain='ZZ'), Poly(-2, x, domain='ZZ')] """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'subresultants'): result = F.subresultants(G) else: # pragma: no cover raise OperationNotSupported(f, 'subresultants') return list(map(per, result)) def resultant(f, g, includePRS=False): """ Computes the resultant of ``f`` and ``g`` via PRS. If includePRS=True, it includes the subresultant PRS in the result. Because the PRS is used to calculate the resultant, this is more efficient than calling :func:`subresultants` separately. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = Poly(x**2 + 1, x) >>> f.resultant(Poly(x**2 - 1, x)) 4 >>> f.resultant(Poly(x**2 - 1, x), includePRS=True) (4, [Poly(x**2 + 1, x, domain='ZZ'), Poly(x**2 - 1, x, domain='ZZ'), Poly(-2, x, domain='ZZ')]) """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'resultant'): if includePRS: result, R = F.resultant(G, includePRS=includePRS) else: result = F.resultant(G) else: # pragma: no cover raise OperationNotSupported(f, 'resultant') if includePRS: return (per(result, remove=0), list(map(per, R))) return per(result, remove=0) def discriminant(f): """ Computes the discriminant of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 2*x + 3, x).discriminant() -8 """ if hasattr(f.rep, 'discriminant'): result = f.rep.discriminant() else: # pragma: no cover raise OperationNotSupported(f, 'discriminant') return f.per(result, remove=0) def dispersionset(f, g=None): r"""Compute the *dispersion set* of two polynomials. For two polynomials `f(x)` and `g(x)` with `\deg f > 0` and `\deg g > 0` the dispersion set `\operatorname{J}(f, g)` is defined as: .. math:: \operatorname{J}(f, g) & := \{a \in \mathbb{N}_0 | \gcd(f(x), g(x+a)) \neq 1\} \\ & = \{a \in \mathbb{N}_0 | \deg \gcd(f(x), g(x+a)) \geq 1\} For a single polynomial one defines `\operatorname{J}(f) := \operatorname{J}(f, f)`. Examples ======== >>> from sympy import poly >>> from sympy.polys.dispersion import dispersion, dispersionset >>> from sympy.abc import x Dispersion set and dispersion of a simple polynomial: >>> fp = poly((x - 3)*(x + 3), x) >>> sorted(dispersionset(fp)) [0, 6] >>> dispersion(fp) 6 Note that the definition of the dispersion is not symmetric: >>> fp = poly(x**4 - 3*x**2 + 1, x) >>> gp = fp.shift(-3) >>> sorted(dispersionset(fp, gp)) [2, 3, 4] >>> dispersion(fp, gp) 4 >>> sorted(dispersionset(gp, fp)) [] >>> dispersion(gp, fp) -oo Computing the dispersion also works over field extensions: >>> from sympy import sqrt >>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>') >>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>') >>> sorted(dispersionset(fp, gp)) [2] >>> sorted(dispersionset(gp, fp)) [1, 4] We can even perform the computations for polynomials having symbolic coefficients: >>> from sympy.abc import a >>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x) >>> sorted(dispersionset(fp)) [0, 1] See Also ======== dispersion References ========== 1. [ManWright94]_ 2. [Koepf98]_ 3. [Abramov71]_ 4. [Man93]_ """ from sympy.polys.dispersion import dispersionset return dispersionset(f, g) def dispersion(f, g=None): r"""Compute the *dispersion* of polynomials. For two polynomials `f(x)` and `g(x)` with `\deg f > 0` and `\deg g > 0` the dispersion `\operatorname{dis}(f, g)` is defined as: .. math:: \operatorname{dis}(f, g) & := \max\{ J(f,g) \cup \{0\} \} \\ & = \max\{ \{a \in \mathbb{N} | \gcd(f(x), g(x+a)) \neq 1\} \cup \{0\} \} and for a single polynomial `\operatorname{dis}(f) := \operatorname{dis}(f, f)`. Examples ======== >>> from sympy import poly >>> from sympy.polys.dispersion import dispersion, dispersionset >>> from sympy.abc import x Dispersion set and dispersion of a simple polynomial: >>> fp = poly((x - 3)*(x + 3), x) >>> sorted(dispersionset(fp)) [0, 6] >>> dispersion(fp) 6 Note that the definition of the dispersion is not symmetric: >>> fp = poly(x**4 - 3*x**2 + 1, x) >>> gp = fp.shift(-3) >>> sorted(dispersionset(fp, gp)) [2, 3, 4] >>> dispersion(fp, gp) 4 >>> sorted(dispersionset(gp, fp)) [] >>> dispersion(gp, fp) -oo Computing the dispersion also works over field extensions: >>> from sympy import sqrt >>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>') >>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>') >>> sorted(dispersionset(fp, gp)) [2] >>> sorted(dispersionset(gp, fp)) [1, 4] We can even perform the computations for polynomials having symbolic coefficients: >>> from sympy.abc import a >>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x) >>> sorted(dispersionset(fp)) [0, 1] See Also ======== dispersionset References ========== 1. [ManWright94]_ 2. [Koepf98]_ 3. [Abramov71]_ 4. [Man93]_ """ from sympy.polys.dispersion import dispersion return dispersion(f, g) def cofactors(f, g): """ Returns the GCD of ``f`` and ``g`` and their cofactors. Returns polynomials ``(h, cff, cfg)`` such that ``h = gcd(f, g)``, and ``cff = quo(f, h)`` and ``cfg = quo(g, h)`` are, so called, cofactors of ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).cofactors(Poly(x**2 - 3*x + 2, x)) (Poly(x - 1, x, domain='ZZ'), Poly(x + 1, x, domain='ZZ'), Poly(x - 2, x, domain='ZZ')) """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'cofactors'): h, cff, cfg = F.cofactors(G) else: # pragma: no cover raise OperationNotSupported(f, 'cofactors') return per(h), per(cff), per(cfg) def gcd(f, g): """ Returns the polynomial GCD of ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).gcd(Poly(x**2 - 3*x + 2, x)) Poly(x - 1, x, domain='ZZ') """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'gcd'): result = F.gcd(G) else: # pragma: no cover raise OperationNotSupported(f, 'gcd') return per(result) def lcm(f, g): """ Returns polynomial LCM of ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).lcm(Poly(x**2 - 3*x + 2, x)) Poly(x**3 - 2*x**2 - x + 2, x, domain='ZZ') """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'lcm'): result = F.lcm(G) else: # pragma: no cover raise OperationNotSupported(f, 'lcm') return per(result) def trunc(f, p): """ Reduce ``f`` modulo a constant ``p``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x**3 + 3*x**2 + 5*x + 7, x).trunc(3) Poly(-x**3 - x + 1, x, domain='ZZ') """ p = f.rep.dom.convert(p) if hasattr(f.rep, 'trunc'): result = f.rep.trunc(p) else: # pragma: no cover raise OperationNotSupported(f, 'trunc') return f.per(result) def monic(self, auto=True): """ Divides all coefficients by ``LC(f)``. Examples ======== >>> from sympy import Poly, ZZ >>> from sympy.abc import x >>> Poly(3*x**2 + 6*x + 9, x, domain=ZZ).monic() Poly(x**2 + 2*x + 3, x, domain='QQ') >>> Poly(3*x**2 + 4*x + 2, x, domain=ZZ).monic() Poly(x**2 + 4/3*x + 2/3, x, domain='QQ') """ f = self if auto and f.rep.dom.is_Ring: f = f.to_field() if hasattr(f.rep, 'monic'): result = f.rep.monic() else: # pragma: no cover raise OperationNotSupported(f, 'monic') return f.per(result) def content(f): """ Returns the GCD of polynomial coefficients. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(6*x**2 + 8*x + 12, x).content() 2 """ if hasattr(f.rep, 'content'): result = f.rep.content() else: # pragma: no cover raise OperationNotSupported(f, 'content') return f.rep.dom.to_sympy(result) def primitive(f): """ Returns the content and a primitive form of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x**2 + 8*x + 12, x).primitive() (2, Poly(x**2 + 4*x + 6, x, domain='ZZ')) """ if hasattr(f.rep, 'primitive'): cont, result = f.rep.primitive() else: # pragma: no cover raise OperationNotSupported(f, 'primitive') return f.rep.dom.to_sympy(cont), f.per(result) def compose(f, g): """ Computes the functional composition of ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + x, x).compose(Poly(x - 1, x)) Poly(x**2 - x, x, domain='ZZ') """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'compose'): result = F.compose(G) else: # pragma: no cover raise OperationNotSupported(f, 'compose') return per(result) def decompose(f): """ Computes a functional decomposition of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**4 + 2*x**3 - x - 1, x, domain='ZZ').decompose() [Poly(x**2 - x - 1, x, domain='ZZ'), Poly(x**2 + x, x, domain='ZZ')] """ if hasattr(f.rep, 'decompose'): result = f.rep.decompose() else: # pragma: no cover raise OperationNotSupported(f, 'decompose') return list(map(f.per, result)) def shift(f, a): """ Efficiently compute Taylor shift ``f(x + a)``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 2*x + 1, x).shift(2) Poly(x**2 + 2*x + 1, x, domain='ZZ') """ if hasattr(f.rep, 'shift'): result = f.rep.shift(a) else: # pragma: no cover raise OperationNotSupported(f, 'shift') return f.per(result) def transform(f, p, q): """ Efficiently evaluate the functional transformation ``q**n * f(p/q)``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1, x), Poly(x - 1, x)) Poly(4, x, domain='ZZ') """ P, Q = p.unify(q) F, P = f.unify(P) F, Q = F.unify(Q) if hasattr(F.rep, 'transform'): result = F.rep.transform(P.rep, Q.rep) else: # pragma: no cover raise OperationNotSupported(F, 'transform') return F.per(result) def sturm(self, auto=True): """ Computes the Sturm sequence of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 - 2*x**2 + x - 3, x).sturm() [Poly(x**3 - 2*x**2 + x - 3, x, domain='QQ'), Poly(3*x**2 - 4*x + 1, x, domain='QQ'), Poly(2/9*x + 25/9, x, domain='QQ'), Poly(-2079/4, x, domain='QQ')] """ f = self if auto and f.rep.dom.is_Ring: f = f.to_field() if hasattr(f.rep, 'sturm'): result = f.rep.sturm() else: # pragma: no cover raise OperationNotSupported(f, 'sturm') return list(map(f.per, result)) def gff_list(f): """ Computes greatest factorial factorization of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = x**5 + 2*x**4 - x**3 - 2*x**2 >>> Poly(f).gff_list() [(Poly(x, x, domain='ZZ'), 1), (Poly(x + 2, x, domain='ZZ'), 4)] """ if hasattr(f.rep, 'gff_list'): result = f.rep.gff_list() else: # pragma: no cover raise OperationNotSupported(f, 'gff_list') return [(f.per(g), k) for g, k in result] def norm(f): """ Computes the product, ``Norm(f)``, of the conjugates of a polynomial ``f`` defined over a number field ``K``. Examples ======== >>> from sympy import Poly, sqrt >>> from sympy.abc import x >>> a, b = sqrt(2), sqrt(3) A polynomial over a quadratic extension. Two conjugates x - a and x + a. >>> f = Poly(x - a, x, extension=a) >>> f.norm() Poly(x**2 - 2, x, domain='QQ') A polynomial over a quartic extension. Four conjugates x - a, x - a, x + a and x + a. >>> f = Poly(x - a, x, extension=(a, b)) >>> f.norm() Poly(x**4 - 4*x**2 + 4, x, domain='QQ') """ if hasattr(f.rep, 'norm'): r = f.rep.norm() else: # pragma: no cover raise OperationNotSupported(f, 'norm') return f.per(r) def sqf_norm(f): """ Computes square-free norm of ``f``. Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))`` is a square-free polynomial over ``K``, where ``a`` is the algebraic extension of the ground domain. Examples ======== >>> from sympy import Poly, sqrt >>> from sympy.abc import x >>> s, f, r = Poly(x**2 + 1, x, extension=[sqrt(3)]).sqf_norm() >>> s 1 >>> f Poly(x**2 - 2*sqrt(3)*x + 4, x, domain='QQ<sqrt(3)>') >>> r Poly(x**4 - 4*x**2 + 16, x, domain='QQ') """ if hasattr(f.rep, 'sqf_norm'): s, g, r = f.rep.sqf_norm() else: # pragma: no cover raise OperationNotSupported(f, 'sqf_norm') return s, f.per(g), f.per(r) def sqf_part(f): """ Computes square-free part of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 - 3*x - 2, x).sqf_part() Poly(x**2 - x - 2, x, domain='ZZ') """ if hasattr(f.rep, 'sqf_part'): result = f.rep.sqf_part() else: # pragma: no cover raise OperationNotSupported(f, 'sqf_part') return f.per(result) def sqf_list(f, all=False): """ Returns a list of square-free factors of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16 >>> Poly(f).sqf_list() (2, [(Poly(x + 1, x, domain='ZZ'), 2), (Poly(x + 2, x, domain='ZZ'), 3)]) >>> Poly(f).sqf_list(all=True) (2, [(Poly(1, x, domain='ZZ'), 1), (Poly(x + 1, x, domain='ZZ'), 2), (Poly(x + 2, x, domain='ZZ'), 3)]) """ if hasattr(f.rep, 'sqf_list'): coeff, factors = f.rep.sqf_list(all) else: # pragma: no cover raise OperationNotSupported(f, 'sqf_list') return f.rep.dom.to_sympy(coeff), [(f.per(g), k) for g, k in factors] def sqf_list_include(f, all=False): """ Returns a list of square-free factors of ``f``. Examples ======== >>> from sympy import Poly, expand >>> from sympy.abc import x >>> f = expand(2*(x + 1)**3*x**4) >>> f 2*x**7 + 6*x**6 + 6*x**5 + 2*x**4 >>> Poly(f).sqf_list_include() [(Poly(2, x, domain='ZZ'), 1), (Poly(x + 1, x, domain='ZZ'), 3), (Poly(x, x, domain='ZZ'), 4)] >>> Poly(f).sqf_list_include(all=True) [(Poly(2, x, domain='ZZ'), 1), (Poly(1, x, domain='ZZ'), 2), (Poly(x + 1, x, domain='ZZ'), 3), (Poly(x, x, domain='ZZ'), 4)] """ if hasattr(f.rep, 'sqf_list_include'): factors = f.rep.sqf_list_include(all) else: # pragma: no cover raise OperationNotSupported(f, 'sqf_list_include') return [(f.per(g), k) for g, k in factors] def factor_list(f): """ Returns a list of irreducible factors of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = 2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y >>> Poly(f).factor_list() (2, [(Poly(x + y, x, y, domain='ZZ'), 1), (Poly(x**2 + 1, x, y, domain='ZZ'), 2)]) """ if hasattr(f.rep, 'factor_list'): try: coeff, factors = f.rep.factor_list() except DomainError: return S.One, [(f, 1)] else: # pragma: no cover raise OperationNotSupported(f, 'factor_list') return f.rep.dom.to_sympy(coeff), [(f.per(g), k) for g, k in factors] def factor_list_include(f): """ Returns a list of irreducible factors of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = 2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y >>> Poly(f).factor_list_include() [(Poly(2*x + 2*y, x, y, domain='ZZ'), 1), (Poly(x**2 + 1, x, y, domain='ZZ'), 2)] """ if hasattr(f.rep, 'factor_list_include'): try: factors = f.rep.factor_list_include() except DomainError: return [(f, 1)] else: # pragma: no cover raise OperationNotSupported(f, 'factor_list_include') return [(f.per(g), k) for g, k in factors] def intervals(f, all=False, eps=None, inf=None, sup=None, fast=False, sqf=False): """ Compute isolating intervals for roots of ``f``. For real roots the Vincent-Akritas-Strzebonski (VAS) continued fractions method is used. References ========== .. [#] Alkiviadis G. Akritas and Adam W. Strzebonski: A Comparative Study of Two Real Root Isolation Methods . Nonlinear Analysis: Modelling and Control, Vol. 10, No. 4, 297-304, 2005. .. [#] Alkiviadis G. Akritas, Adam W. Strzebonski and Panagiotis S. Vigklas: Improving the Performance of the Continued Fractions Method Using new Bounds of Positive Roots. Nonlinear Analysis: Modelling and Control, Vol. 13, No. 3, 265-279, 2008. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 3, x).intervals() [((-2, -1), 1), ((1, 2), 1)] >>> Poly(x**2 - 3, x).intervals(eps=1e-2) [((-26/15, -19/11), 1), ((19/11, 26/15), 1)] """ if eps is not None: eps = QQ.convert(eps) if eps <= 0: raise ValueError("'eps' must be a positive rational") if inf is not None: inf = QQ.convert(inf) if sup is not None: sup = QQ.convert(sup) if hasattr(f.rep, 'intervals'): result = f.rep.intervals( all=all, eps=eps, inf=inf, sup=sup, fast=fast, sqf=sqf) else: # pragma: no cover raise OperationNotSupported(f, 'intervals') if sqf: def _real(interval): s, t = interval return (QQ.to_sympy(s), QQ.to_sympy(t)) if not all: return list(map(_real, result)) def _complex(rectangle): (u, v), (s, t) = rectangle return (QQ.to_sympy(u) + I*QQ.to_sympy(v), QQ.to_sympy(s) + I*QQ.to_sympy(t)) real_part, complex_part = result return list(map(_real, real_part)), list(map(_complex, complex_part)) else: def _real(interval): (s, t), k = interval return ((QQ.to_sympy(s), QQ.to_sympy(t)), k) if not all: return list(map(_real, result)) def _complex(rectangle): ((u, v), (s, t)), k = rectangle return ((QQ.to_sympy(u) + I*QQ.to_sympy(v), QQ.to_sympy(s) + I*QQ.to_sympy(t)), k) real_part, complex_part = result return list(map(_real, real_part)), list(map(_complex, complex_part)) def refine_root(f, s, t, eps=None, steps=None, fast=False, check_sqf=False): """ Refine an isolating interval of a root to the given precision. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 3, x).refine_root(1, 2, eps=1e-2) (19/11, 26/15) """ if check_sqf and not f.is_sqf: raise PolynomialError("only square-free polynomials supported") s, t = QQ.convert(s), QQ.convert(t) if eps is not None: eps = QQ.convert(eps) if eps <= 0: raise ValueError("'eps' must be a positive rational") if steps is not None: steps = int(steps) elif eps is None: steps = 1 if hasattr(f.rep, 'refine_root'): S, T = f.rep.refine_root(s, t, eps=eps, steps=steps, fast=fast) else: # pragma: no cover raise OperationNotSupported(f, 'refine_root') return QQ.to_sympy(S), QQ.to_sympy(T) def count_roots(f, inf=None, sup=None): """ Return the number of roots of ``f`` in ``[inf, sup]`` interval. Examples ======== >>> from sympy import Poly, I >>> from sympy.abc import x >>> Poly(x**4 - 4, x).count_roots(-3, 3) 2 >>> Poly(x**4 - 4, x).count_roots(0, 1 + 3*I) 1 """ inf_real, sup_real = True, True if inf is not None: inf = sympify(inf) if inf is S.NegativeInfinity: inf = None else: re, im = inf.as_real_imag() if not im: inf = QQ.convert(inf) else: inf, inf_real = list(map(QQ.convert, (re, im))), False if sup is not None: sup = sympify(sup) if sup is S.Infinity: sup = None else: re, im = sup.as_real_imag() if not im: sup = QQ.convert(sup) else: sup, sup_real = list(map(QQ.convert, (re, im))), False if inf_real and sup_real: if hasattr(f.rep, 'count_real_roots'): count = f.rep.count_real_roots(inf=inf, sup=sup) else: # pragma: no cover raise OperationNotSupported(f, 'count_real_roots') else: if inf_real and inf is not None: inf = (inf, QQ.zero) if sup_real and sup is not None: sup = (sup, QQ.zero) if hasattr(f.rep, 'count_complex_roots'): count = f.rep.count_complex_roots(inf=inf, sup=sup) else: # pragma: no cover raise OperationNotSupported(f, 'count_complex_roots') return Integer(count) def root(f, index, radicals=True): """ Get an indexed root of a polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = Poly(2*x**3 - 7*x**2 + 4*x + 4) >>> f.root(0) -1/2 >>> f.root(1) 2 >>> f.root(2) 2 >>> f.root(3) Traceback (most recent call last): ... IndexError: root index out of [-3, 2] range, got 3 >>> Poly(x**5 + x + 1).root(0) CRootOf(x**3 - x**2 + 1, 0) """ return sympy.polys.rootoftools.rootof(f, index, radicals=radicals) def real_roots(f, multiple=True, radicals=True): """ Return a list of real roots with multiplicities. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x**3 - 7*x**2 + 4*x + 4).real_roots() [-1/2, 2, 2] >>> Poly(x**3 + x + 1).real_roots() [CRootOf(x**3 + x + 1, 0)] """ reals = sympy.polys.rootoftools.CRootOf.real_roots(f, radicals=radicals) if multiple: return reals else: return group(reals, multiple=False) def all_roots(f, multiple=True, radicals=True): """ Return a list of real and complex roots with multiplicities. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x**3 - 7*x**2 + 4*x + 4).all_roots() [-1/2, 2, 2] >>> Poly(x**3 + x + 1).all_roots() [CRootOf(x**3 + x + 1, 0), CRootOf(x**3 + x + 1, 1), CRootOf(x**3 + x + 1, 2)] """ roots = sympy.polys.rootoftools.CRootOf.all_roots(f, radicals=radicals) if multiple: return roots else: return group(roots, multiple=False) def nroots(f, n=15, maxsteps=50, cleanup=True): """ Compute numerical approximations of roots of ``f``. Parameters ========== n ... the number of digits to calculate maxsteps ... the maximum number of iterations to do If the accuracy `n` cannot be reached in `maxsteps`, it will raise an exception. You need to rerun with higher maxsteps. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 3).nroots(n=15) [-1.73205080756888, 1.73205080756888] >>> Poly(x**2 - 3).nroots(n=30) [-1.73205080756887729352744634151, 1.73205080756887729352744634151] """ from sympy.functions.elementary.complexes import sign if f.is_multivariate: raise MultivariatePolynomialError( "can't compute numerical roots of %s" % f) if f.degree() <= 0: return [] # For integer and rational coefficients, convert them to integers only # (for accuracy). Otherwise just try to convert the coefficients to # mpmath.mpc and raise an exception if the conversion fails. if f.rep.dom is ZZ: coeffs = [int(coeff) for coeff in f.all_coeffs()] elif f.rep.dom is QQ: denoms = [coeff.q for coeff in f.all_coeffs()] from sympy.core.numbers import ilcm fac = ilcm(*denoms) coeffs = [int(coeff*fac) for coeff in f.all_coeffs()] else: coeffs = [coeff.evalf(n=n).as_real_imag() for coeff in f.all_coeffs()] try: coeffs = [mpmath.mpc(*coeff) for coeff in coeffs] except TypeError: raise DomainError("Numerical domain expected, got %s" % \ f.rep.dom) dps = mpmath.mp.dps mpmath.mp.dps = n try: # We need to add extra precision to guard against losing accuracy. # 10 times the degree of the polynomial seems to work well. roots = mpmath.polyroots(coeffs, maxsteps=maxsteps, cleanup=cleanup, error=False, extraprec=f.degree()*10) # Mpmath puts real roots first, then complex ones (as does all_roots) # so we make sure this convention holds here, too. roots = list(map(sympify, sorted(roots, key=lambda r: (1 if r.imag else 0, r.real, abs(r.imag), sign(r.imag))))) except NoConvergence: raise NoConvergence( 'convergence to root failed; try n < %s or maxsteps > %s' % ( n, maxsteps)) finally: mpmath.mp.dps = dps return roots def ground_roots(f): """ Compute roots of ``f`` by factorization in the ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**6 - 4*x**4 + 4*x**3 - x**2).ground_roots() {0: 2, 1: 2} """ if f.is_multivariate: raise MultivariatePolynomialError( "can't compute ground roots of %s" % f) roots = {} for factor, k in f.factor_list()[1]: if factor.is_linear: a, b = factor.all_coeffs() roots[-b/a] = k return roots def nth_power_roots_poly(f, n): """ Construct a polynomial with n-th powers of roots of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = Poly(x**4 - x**2 + 1) >>> f.nth_power_roots_poly(2) Poly(x**4 - 2*x**3 + 3*x**2 - 2*x + 1, x, domain='ZZ') >>> f.nth_power_roots_poly(3) Poly(x**4 + 2*x**2 + 1, x, domain='ZZ') >>> f.nth_power_roots_poly(4) Poly(x**4 + 2*x**3 + 3*x**2 + 2*x + 1, x, domain='ZZ') >>> f.nth_power_roots_poly(12) Poly(x**4 - 4*x**3 + 6*x**2 - 4*x + 1, x, domain='ZZ') """ if f.is_multivariate: raise MultivariatePolynomialError( "must be a univariate polynomial") N = sympify(n) if N.is_Integer and N >= 1: n = int(N) else: raise ValueError("'n' must an integer and n >= 1, got %s" % n) x = f.gen t = Dummy('t') r = f.resultant(f.__class__.from_expr(x**n - t, x, t)) return r.replace(t, x) def cancel(f, g, include=False): """ Cancel common factors in a rational function ``f/g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x**2 - 2, x).cancel(Poly(x**2 - 2*x + 1, x)) (1, Poly(2*x + 2, x, domain='ZZ'), Poly(x - 1, x, domain='ZZ')) >>> Poly(2*x**2 - 2, x).cancel(Poly(x**2 - 2*x + 1, x), include=True) (Poly(2*x + 2, x, domain='ZZ'), Poly(x - 1, x, domain='ZZ')) """ dom, per, F, G = f._unify(g) if hasattr(F, 'cancel'): result = F.cancel(G, include=include) else: # pragma: no cover raise OperationNotSupported(f, 'cancel') if not include: if dom.has_assoc_Ring: dom = dom.get_ring() cp, cq, p, q = result cp = dom.to_sympy(cp) cq = dom.to_sympy(cq) return cp/cq, per(p), per(q) else: return tuple(map(per, result)) @property def is_zero(f): """ Returns ``True`` if ``f`` is a zero polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(0, x).is_zero True >>> Poly(1, x).is_zero False """ return f.rep.is_zero @property def is_one(f): """ Returns ``True`` if ``f`` is a unit polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(0, x).is_one False >>> Poly(1, x).is_one True """ return f.rep.is_one @property def is_sqf(f): """ Returns ``True`` if ``f`` is a square-free polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 2*x + 1, x).is_sqf False >>> Poly(x**2 - 1, x).is_sqf True """ return f.rep.is_sqf @property def is_monic(f): """ Returns ``True`` if the leading coefficient of ``f`` is one. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x + 2, x).is_monic True >>> Poly(2*x + 2, x).is_monic False """ return f.rep.is_monic @property def is_primitive(f): """ Returns ``True`` if GCD of the coefficients of ``f`` is one. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x**2 + 6*x + 12, x).is_primitive False >>> Poly(x**2 + 3*x + 6, x).is_primitive True """ return f.rep.is_primitive @property def is_ground(f): """ Returns ``True`` if ``f`` is an element of the ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x, x).is_ground False >>> Poly(2, x).is_ground True >>> Poly(y, x).is_ground True """ return f.rep.is_ground @property def is_linear(f): """ Returns ``True`` if ``f`` is linear in all its variables. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x + y + 2, x, y).is_linear True >>> Poly(x*y + 2, x, y).is_linear False """ return f.rep.is_linear @property def is_quadratic(f): """ Returns ``True`` if ``f`` is quadratic in all its variables. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x*y + 2, x, y).is_quadratic True >>> Poly(x*y**2 + 2, x, y).is_quadratic False """ return f.rep.is_quadratic @property def is_monomial(f): """ Returns ``True`` if ``f`` is zero or has only one term. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(3*x**2, x).is_monomial True >>> Poly(3*x**2 + 1, x).is_monomial False """ return f.rep.is_monomial @property def is_homogeneous(f): """ Returns ``True`` if ``f`` is a homogeneous polynomial. A homogeneous polynomial is a polynomial whose all monomials with non-zero coefficients have the same total degree. If you want not only to check if a polynomial is homogeneous but also compute its homogeneous order, then use :func:`Poly.homogeneous_order`. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + x*y, x, y).is_homogeneous True >>> Poly(x**3 + x*y, x, y).is_homogeneous False """ return f.rep.is_homogeneous @property def is_irreducible(f): """ Returns ``True`` if ``f`` has no factors over its domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + x + 1, x, modulus=2).is_irreducible True >>> Poly(x**2 + 1, x, modulus=2).is_irreducible False """ return f.rep.is_irreducible @property def is_univariate(f): """ Returns ``True`` if ``f`` is a univariate polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + x + 1, x).is_univariate True >>> Poly(x*y**2 + x*y + 1, x, y).is_univariate False >>> Poly(x*y**2 + x*y + 1, x).is_univariate True >>> Poly(x**2 + x + 1, x, y).is_univariate False """ return len(f.gens) == 1 @property def is_multivariate(f): """ Returns ``True`` if ``f`` is a multivariate polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + x + 1, x).is_multivariate False >>> Poly(x*y**2 + x*y + 1, x, y).is_multivariate True >>> Poly(x*y**2 + x*y + 1, x).is_multivariate False >>> Poly(x**2 + x + 1, x, y).is_multivariate True """ return len(f.gens) != 1 @property def is_cyclotomic(f): """ Returns ``True`` if ``f`` is a cyclotomic polnomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1 >>> Poly(f).is_cyclotomic False >>> g = x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1 >>> Poly(g).is_cyclotomic True """ return f.rep.is_cyclotomic def __abs__(f): return f.abs() def __neg__(f): return f.neg() @_sympifyit('g', NotImplemented) def __add__(f, g): if not g.is_Poly: try: g = f.__class__(g, *f.gens) except PolynomialError: return f.as_expr() + g return f.add(g) @_sympifyit('g', NotImplemented) def __radd__(f, g): if not g.is_Poly: try: g = f.__class__(g, *f.gens) except PolynomialError: return g + f.as_expr() return g.add(f) @_sympifyit('g', NotImplemented) def __sub__(f, g): if not g.is_Poly: try: g = f.__class__(g, *f.gens) except PolynomialError: return f.as_expr() - g return f.sub(g) @_sympifyit('g', NotImplemented) def __rsub__(f, g): if not g.is_Poly: try: g = f.__class__(g, *f.gens) except PolynomialError: return g - f.as_expr() return g.sub(f) @_sympifyit('g', NotImplemented) def __mul__(f, g): if not g.is_Poly: try: g = f.__class__(g, *f.gens) except PolynomialError: return f.as_expr()*g return f.mul(g) @_sympifyit('g', NotImplemented) def __rmul__(f, g): if not g.is_Poly: try: g = f.__class__(g, *f.gens) except PolynomialError: return g*f.as_expr() return g.mul(f) @_sympifyit('n', NotImplemented) def __pow__(f, n): if n.is_Integer and n >= 0: return f.pow(n) else: return f.as_expr()**n @_sympifyit('g', NotImplemented) def __divmod__(f, g): if not g.is_Poly: g = f.__class__(g, *f.gens) return f.div(g) @_sympifyit('g', NotImplemented) def __rdivmod__(f, g): if not g.is_Poly: g = f.__class__(g, *f.gens) return g.div(f) @_sympifyit('g', NotImplemented) def __mod__(f, g): if not g.is_Poly: g = f.__class__(g, *f.gens) return f.rem(g) @_sympifyit('g', NotImplemented) def __rmod__(f, g): if not g.is_Poly: g = f.__class__(g, *f.gens) return g.rem(f) @_sympifyit('g', NotImplemented) def __floordiv__(f, g): if not g.is_Poly: g = f.__class__(g, *f.gens) return f.quo(g) @_sympifyit('g', NotImplemented) def __rfloordiv__(f, g): if not g.is_Poly: g = f.__class__(g, *f.gens) return g.quo(f) @_sympifyit('g', NotImplemented) def __div__(f, g): return f.as_expr()/g.as_expr() @_sympifyit('g', NotImplemented) def __rdiv__(f, g): return g.as_expr()/f.as_expr() __truediv__ = __div__ __rtruediv__ = __rdiv__ @_sympifyit('other', NotImplemented) def __eq__(self, other): f, g = self, other if not g.is_Poly: try: g = f.__class__(g, f.gens, domain=f.get_domain()) except (PolynomialError, DomainError, CoercionFailed): return False if f.gens != g.gens: return False if f.rep.dom != g.rep.dom: try: dom = f.rep.dom.unify(g.rep.dom, f.gens) except UnificationFailed: return False f = f.set_domain(dom) g = g.set_domain(dom) return f.rep == g.rep @_sympifyit('g', NotImplemented) def __ne__(f, g): return not f == g def __nonzero__(f): return not f.is_zero __bool__ = __nonzero__ def eq(f, g, strict=False): if not strict: return f == g else: return f._strict_eq(sympify(g)) def ne(f, g, strict=False): return not f.eq(g, strict=strict) def _strict_eq(f, g): return isinstance(g, f.__class__) and f.gens == g.gens and f.rep.eq(g.rep, strict=True) @public class PurePoly(Poly): """Class for representing pure polynomials. """ def _hashable_content(self): """Allow SymPy to hash Poly instances. """ return (self.rep,) def __hash__(self): return super(PurePoly, self).__hash__() @property def free_symbols(self): """ Free symbols of a polynomial. Examples ======== >>> from sympy import PurePoly >>> from sympy.abc import x, y >>> PurePoly(x**2 + 1).free_symbols set() >>> PurePoly(x**2 + y).free_symbols set() >>> PurePoly(x**2 + y, x).free_symbols {y} """ return self.free_symbols_in_domain @_sympifyit('other', NotImplemented) def __eq__(self, other): f, g = self, other if not g.is_Poly: try: g = f.__class__(g, f.gens, domain=f.get_domain()) except (PolynomialError, DomainError, CoercionFailed): return False if len(f.gens) != len(g.gens): return False if f.rep.dom != g.rep.dom: try: dom = f.rep.dom.unify(g.rep.dom, f.gens) except UnificationFailed: return False f = f.set_domain(dom) g = g.set_domain(dom) return f.rep == g.rep def _strict_eq(f, g): return isinstance(g, f.__class__) and f.rep.eq(g.rep, strict=True) def _unify(f, g): g = sympify(g) if not g.is_Poly: try: return f.rep.dom, f.per, f.rep, f.rep.per(f.rep.dom.from_sympy(g)) except CoercionFailed: raise UnificationFailed("can't unify %s with %s" % (f, g)) if len(f.gens) != len(g.gens): raise UnificationFailed("can't unify %s with %s" % (f, g)) if not (isinstance(f.rep, DMP) and isinstance(g.rep, DMP)): raise UnificationFailed("can't unify %s with %s" % (f, g)) cls = f.__class__ gens = f.gens dom = f.rep.dom.unify(g.rep.dom, gens) F = f.rep.convert(dom) G = g.rep.convert(dom) def per(rep, dom=dom, gens=gens, remove=None): if remove is not None: gens = gens[:remove] + gens[remove + 1:] if not gens: return dom.to_sympy(rep) return cls.new(rep, *gens) return dom, per, F, G @public def poly_from_expr(expr, *gens, **args): """Construct a polynomial from an expression. """ opt = options.build_options(gens, args) return _poly_from_expr(expr, opt) def _poly_from_expr(expr, opt): """Construct a polynomial from an expression. """ orig, expr = expr, sympify(expr) if not isinstance(expr, Basic): raise PolificationFailed(opt, orig, expr) elif expr.is_Poly: poly = expr.__class__._from_poly(expr, opt) opt.gens = poly.gens opt.domain = poly.domain if opt.polys is None: opt.polys = True return poly, opt elif opt.expand: expr = expr.expand() rep, opt = _dict_from_expr(expr, opt) if not opt.gens: raise PolificationFailed(opt, orig, expr) monoms, coeffs = list(zip(*list(rep.items()))) domain = opt.domain if domain is None: opt.domain, coeffs = construct_domain(coeffs, opt=opt) else: coeffs = list(map(domain.from_sympy, coeffs)) rep = dict(list(zip(monoms, coeffs))) poly = Poly._from_dict(rep, opt) if opt.polys is None: opt.polys = False return poly, opt @public def parallel_poly_from_expr(exprs, *gens, **args): """Construct polynomials from expressions. """ opt = options.build_options(gens, args) return _parallel_poly_from_expr(exprs, opt) def _parallel_poly_from_expr(exprs, opt): """Construct polynomials from expressions. """ from sympy.functions.elementary.piecewise import Piecewise if len(exprs) == 2: f, g = exprs if isinstance(f, Poly) and isinstance(g, Poly): f = f.__class__._from_poly(f, opt) g = g.__class__._from_poly(g, opt) f, g = f.unify(g) opt.gens = f.gens opt.domain = f.domain if opt.polys is None: opt.polys = True return [f, g], opt origs, exprs = list(exprs), [] _exprs, _polys = [], [] failed = False for i, expr in enumerate(origs): expr = sympify(expr) if isinstance(expr, Basic): if expr.is_Poly: _polys.append(i) else: _exprs.append(i) if opt.expand: expr = expr.expand() else: failed = True exprs.append(expr) if failed: raise PolificationFailed(opt, origs, exprs, True) if _polys: # XXX: this is a temporary solution for i in _polys: exprs[i] = exprs[i].as_expr() reps, opt = _parallel_dict_from_expr(exprs, opt) if not opt.gens: raise PolificationFailed(opt, origs, exprs, True) for k in opt.gens: if isinstance(k, Piecewise): raise PolynomialError("Piecewise generators do not make sense") coeffs_list, lengths = [], [] all_monoms = [] all_coeffs = [] for rep in reps: monoms, coeffs = list(zip(*list(rep.items()))) coeffs_list.extend(coeffs) all_monoms.append(monoms) lengths.append(len(coeffs)) domain = opt.domain if domain is None: opt.domain, coeffs_list = construct_domain(coeffs_list, opt=opt) else: coeffs_list = list(map(domain.from_sympy, coeffs_list)) for k in lengths: all_coeffs.append(coeffs_list[:k]) coeffs_list = coeffs_list[k:] polys = [] for monoms, coeffs in zip(all_monoms, all_coeffs): rep = dict(list(zip(monoms, coeffs))) poly = Poly._from_dict(rep, opt) polys.append(poly) if opt.polys is None: opt.polys = bool(_polys) return polys, opt def _update_args(args, key, value): """Add a new ``(key, value)`` pair to arguments ``dict``. """ args = dict(args) if key not in args: args[key] = value return args @public def degree(f, gen=0): """ Return the degree of ``f`` in the given variable. The degree of 0 is negative infinity. Examples ======== >>> from sympy import degree >>> from sympy.abc import x, y >>> degree(x**2 + y*x + 1, gen=x) 2 >>> degree(x**2 + y*x + 1, gen=y) 1 >>> degree(0, x) -oo See also ======== sympy.polys.polytools.Poly.total_degree degree_list """ f = sympify(f, strict=True) gen_is_Num = sympify(gen, strict=True).is_Number if f.is_Poly: p = f isNum = p.as_expr().is_Number else: isNum = f.is_Number if not isNum: if gen_is_Num: p, _ = poly_from_expr(f) else: p, _ = poly_from_expr(f, gen) if isNum: return S.Zero if f else S.NegativeInfinity if not gen_is_Num: if f.is_Poly and gen not in p.gens: # try recast without explicit gens p, _ = poly_from_expr(f.as_expr()) if gen not in p.gens: return S.Zero elif not f.is_Poly and len(f.free_symbols) > 1: raise TypeError(filldedent(''' A symbolic generator of interest is required for a multivariate expression like func = %s, e.g. degree(func, gen = %s) instead of degree(func, gen = %s). ''' % (f, next(ordered(f.free_symbols)), gen))) return Integer(p.degree(gen)) @public def total_degree(f, *gens): """ Return the total_degree of ``f`` in the given variables. Examples ======== >>> from sympy import total_degree, Poly >>> from sympy.abc import x, y, z >>> total_degree(1) 0 >>> total_degree(x + x*y) 2 >>> total_degree(x + x*y, x) 1 If the expression is a Poly and no variables are given then the generators of the Poly will be used: >>> p = Poly(x + x*y, y) >>> total_degree(p) 1 To deal with the underlying expression of the Poly, convert it to an Expr: >>> total_degree(p.as_expr()) 2 This is done automatically if any variables are given: >>> total_degree(p, x) 1 See also ======== degree """ p = sympify(f) if p.is_Poly: p = p.as_expr() if p.is_Number: rv = 0 else: if f.is_Poly: gens = gens or f.gens rv = Poly(p, gens).total_degree() return Integer(rv) @public def degree_list(f, *gens, **args): """ Return a list of degrees of ``f`` in all variables. Examples ======== >>> from sympy import degree_list >>> from sympy.abc import x, y >>> degree_list(x**2 + y*x + 1) (2, 1) """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('degree_list', 1, exc) degrees = F.degree_list() return tuple(map(Integer, degrees)) @public def LC(f, *gens, **args): """ Return the leading coefficient of ``f``. Examples ======== >>> from sympy import LC >>> from sympy.abc import x, y >>> LC(4*x**2 + 2*x*y**2 + x*y + 3*y) 4 """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('LC', 1, exc) return F.LC(order=opt.order) @public def LM(f, *gens, **args): """ Return the leading monomial of ``f``. Examples ======== >>> from sympy import LM >>> from sympy.abc import x, y >>> LM(4*x**2 + 2*x*y**2 + x*y + 3*y) x**2 """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('LM', 1, exc) monom = F.LM(order=opt.order) return monom.as_expr() @public def LT(f, *gens, **args): """ Return the leading term of ``f``. Examples ======== >>> from sympy import LT >>> from sympy.abc import x, y >>> LT(4*x**2 + 2*x*y**2 + x*y + 3*y) 4*x**2 """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('LT', 1, exc) monom, coeff = F.LT(order=opt.order) return coeff*monom.as_expr() @public def pdiv(f, g, *gens, **args): """ Compute polynomial pseudo-division of ``f`` and ``g``. Examples ======== >>> from sympy import pdiv >>> from sympy.abc import x >>> pdiv(x**2 + 1, 2*x - 4) (2*x + 4, 20) """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('pdiv', 2, exc) q, r = F.pdiv(G) if not opt.polys: return q.as_expr(), r.as_expr() else: return q, r @public def prem(f, g, *gens, **args): """ Compute polynomial pseudo-remainder of ``f`` and ``g``. Examples ======== >>> from sympy import prem >>> from sympy.abc import x >>> prem(x**2 + 1, 2*x - 4) 20 """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('prem', 2, exc) r = F.prem(G) if not opt.polys: return r.as_expr() else: return r @public def pquo(f, g, *gens, **args): """ Compute polynomial pseudo-quotient of ``f`` and ``g``. Examples ======== >>> from sympy import pquo >>> from sympy.abc import x >>> pquo(x**2 + 1, 2*x - 4) 2*x + 4 >>> pquo(x**2 - 1, 2*x - 1) 2*x + 1 """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('pquo', 2, exc) try: q = F.pquo(G) except ExactQuotientFailed: raise ExactQuotientFailed(f, g) if not opt.polys: return q.as_expr() else: return q @public def pexquo(f, g, *gens, **args): """ Compute polynomial exact pseudo-quotient of ``f`` and ``g``. Examples ======== >>> from sympy import pexquo >>> from sympy.abc import x >>> pexquo(x**2 - 1, 2*x - 2) 2*x + 2 >>> pexquo(x**2 + 1, 2*x - 4) Traceback (most recent call last): ... ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1 """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('pexquo', 2, exc) q = F.pexquo(G) if not opt.polys: return q.as_expr() else: return q @public def div(f, g, *gens, **args): """ Compute polynomial division of ``f`` and ``g``. Examples ======== >>> from sympy import div, ZZ, QQ >>> from sympy.abc import x >>> div(x**2 + 1, 2*x - 4, domain=ZZ) (0, x**2 + 1) >>> div(x**2 + 1, 2*x - 4, domain=QQ) (x/2 + 1, 5) """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('div', 2, exc) q, r = F.div(G, auto=opt.auto) if not opt.polys: return q.as_expr(), r.as_expr() else: return q, r @public def rem(f, g, *gens, **args): """ Compute polynomial remainder of ``f`` and ``g``. Examples ======== >>> from sympy import rem, ZZ, QQ >>> from sympy.abc import x >>> rem(x**2 + 1, 2*x - 4, domain=ZZ) x**2 + 1 >>> rem(x**2 + 1, 2*x - 4, domain=QQ) 5 """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('rem', 2, exc) r = F.rem(G, auto=opt.auto) if not opt.polys: return r.as_expr() else: return r @public def quo(f, g, *gens, **args): """ Compute polynomial quotient of ``f`` and ``g``. Examples ======== >>> from sympy import quo >>> from sympy.abc import x >>> quo(x**2 + 1, 2*x - 4) x/2 + 1 >>> quo(x**2 - 1, x - 1) x + 1 """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('quo', 2, exc) q = F.quo(G, auto=opt.auto) if not opt.polys: return q.as_expr() else: return q @public def exquo(f, g, *gens, **args): """ Compute polynomial exact quotient of ``f`` and ``g``. Examples ======== >>> from sympy import exquo >>> from sympy.abc import x >>> exquo(x**2 - 1, x - 1) x + 1 >>> exquo(x**2 + 1, 2*x - 4) Traceback (most recent call last): ... ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1 """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('exquo', 2, exc) q = F.exquo(G, auto=opt.auto) if not opt.polys: return q.as_expr() else: return q @public def half_gcdex(f, g, *gens, **args): """ Half extended Euclidean algorithm of ``f`` and ``g``. Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``. Examples ======== >>> from sympy import half_gcdex >>> from sympy.abc import x >>> half_gcdex(x**4 - 2*x**3 - 6*x**2 + 12*x + 15, x**3 + x**2 - 4*x - 4) (3/5 - x/5, x + 1) """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: domain, (a, b) = construct_domain(exc.exprs) try: s, h = domain.half_gcdex(a, b) except NotImplementedError: raise ComputationFailed('half_gcdex', 2, exc) else: return domain.to_sympy(s), domain.to_sympy(h) s, h = F.half_gcdex(G, auto=opt.auto) if not opt.polys: return s.as_expr(), h.as_expr() else: return s, h @public def gcdex(f, g, *gens, **args): """ Extended Euclidean algorithm of ``f`` and ``g``. Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``. Examples ======== >>> from sympy import gcdex >>> from sympy.abc import x >>> gcdex(x**4 - 2*x**3 - 6*x**2 + 12*x + 15, x**3 + x**2 - 4*x - 4) (3/5 - x/5, x**2/5 - 6*x/5 + 2, x + 1) """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: domain, (a, b) = construct_domain(exc.exprs) try: s, t, h = domain.gcdex(a, b) except NotImplementedError: raise ComputationFailed('gcdex', 2, exc) else: return domain.to_sympy(s), domain.to_sympy(t), domain.to_sympy(h) s, t, h = F.gcdex(G, auto=opt.auto) if not opt.polys: return s.as_expr(), t.as_expr(), h.as_expr() else: return s, t, h @public def invert(f, g, *gens, **args): """ Invert ``f`` modulo ``g`` when possible. Examples ======== >>> from sympy import invert, S >>> from sympy.core.numbers import mod_inverse >>> from sympy.abc import x >>> invert(x**2 - 1, 2*x - 1) -4/3 >>> invert(x**2 - 1, x - 1) Traceback (most recent call last): ... NotInvertible: zero divisor For more efficient inversion of Rationals, use the :obj:`~.mod_inverse` function: >>> mod_inverse(3, 5) 2 >>> (S(2)/5).invert(S(7)/3) 5/2 See Also ======== sympy.core.numbers.mod_inverse """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: domain, (a, b) = construct_domain(exc.exprs) try: return domain.to_sympy(domain.invert(a, b)) except NotImplementedError: raise ComputationFailed('invert', 2, exc) h = F.invert(G, auto=opt.auto) if not opt.polys: return h.as_expr() else: return h @public def subresultants(f, g, *gens, **args): """ Compute subresultant PRS of ``f`` and ``g``. Examples ======== >>> from sympy import subresultants >>> from sympy.abc import x >>> subresultants(x**2 + 1, x**2 - 1) [x**2 + 1, x**2 - 1, -2] """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('subresultants', 2, exc) result = F.subresultants(G) if not opt.polys: return [r.as_expr() for r in result] else: return result @public def resultant(f, g, *gens, **args): """ Compute resultant of ``f`` and ``g``. Examples ======== >>> from sympy import resultant >>> from sympy.abc import x >>> resultant(x**2 + 1, x**2 - 1) 4 """ includePRS = args.pop('includePRS', False) options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('resultant', 2, exc) if includePRS: result, R = F.resultant(G, includePRS=includePRS) else: result = F.resultant(G) if not opt.polys: if includePRS: return result.as_expr(), [r.as_expr() for r in R] return result.as_expr() else: if includePRS: return result, R return result @public def discriminant(f, *gens, **args): """ Compute discriminant of ``f``. Examples ======== >>> from sympy import discriminant >>> from sympy.abc import x >>> discriminant(x**2 + 2*x + 3) -8 """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('discriminant', 1, exc) result = F.discriminant() if not opt.polys: return result.as_expr() else: return result @public def cofactors(f, g, *gens, **args): """ Compute GCD and cofactors of ``f`` and ``g``. Returns polynomials ``(h, cff, cfg)`` such that ``h = gcd(f, g)``, and ``cff = quo(f, h)`` and ``cfg = quo(g, h)`` are, so called, cofactors of ``f`` and ``g``. Examples ======== >>> from sympy import cofactors >>> from sympy.abc import x >>> cofactors(x**2 - 1, x**2 - 3*x + 2) (x - 1, x + 1, x - 2) """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: domain, (a, b) = construct_domain(exc.exprs) try: h, cff, cfg = domain.cofactors(a, b) except NotImplementedError: raise ComputationFailed('cofactors', 2, exc) else: return domain.to_sympy(h), domain.to_sympy(cff), domain.to_sympy(cfg) h, cff, cfg = F.cofactors(G) if not opt.polys: return h.as_expr(), cff.as_expr(), cfg.as_expr() else: return h, cff, cfg @public def gcd_list(seq, *gens, **args): """ Compute GCD of a list of polynomials. Examples ======== >>> from sympy import gcd_list >>> from sympy.abc import x >>> gcd_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2]) x - 1 """ seq = sympify(seq) def try_non_polynomial_gcd(seq): if not gens and not args: domain, numbers = construct_domain(seq) if not numbers: return domain.zero elif domain.is_Numerical: result, numbers = numbers[0], numbers[1:] for number in numbers: result = domain.gcd(result, number) if domain.is_one(result): break return domain.to_sympy(result) return None result = try_non_polynomial_gcd(seq) if result is not None: return result options.allowed_flags(args, ['polys']) try: polys, opt = parallel_poly_from_expr(seq, *gens, **args) # gcd for domain Q[irrational] (purely algebraic irrational) if len(seq) > 1 and all(elt.is_algebraic and elt.is_irrational for elt in seq): a = seq[-1] lst = [ (a/elt).ratsimp() for elt in seq[:-1] ] if all(frc.is_rational for frc in lst): lc = 1 for frc in lst: lc = lcm(lc, frc.as_numer_denom()[0]) return a/lc except PolificationFailed as exc: result = try_non_polynomial_gcd(exc.exprs) if result is not None: return result else: raise ComputationFailed('gcd_list', len(seq), exc) if not polys: if not opt.polys: return S.Zero else: return Poly(0, opt=opt) result, polys = polys[0], polys[1:] for poly in polys: result = result.gcd(poly) if result.is_one: break if not opt.polys: return result.as_expr() else: return result @public def gcd(f, g=None, *gens, **args): """ Compute GCD of ``f`` and ``g``. Examples ======== >>> from sympy import gcd >>> from sympy.abc import x >>> gcd(x**2 - 1, x**2 - 3*x + 2) x - 1 """ if hasattr(f, '__iter__'): if g is not None: gens = (g,) + gens return gcd_list(f, *gens, **args) elif g is None: raise TypeError("gcd() takes 2 arguments or a sequence of arguments") options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) # gcd for domain Q[irrational] (purely algebraic irrational) a, b = map(sympify, (f, g)) if a.is_algebraic and a.is_irrational and b.is_algebraic and b.is_irrational: frc = (a/b).ratsimp() if frc.is_rational: return a/frc.as_numer_denom()[0] except PolificationFailed as exc: domain, (a, b) = construct_domain(exc.exprs) try: return domain.to_sympy(domain.gcd(a, b)) except NotImplementedError: raise ComputationFailed('gcd', 2, exc) result = F.gcd(G) if not opt.polys: return result.as_expr() else: return result @public def lcm_list(seq, *gens, **args): """ Compute LCM of a list of polynomials. Examples ======== >>> from sympy import lcm_list >>> from sympy.abc import x >>> lcm_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2]) x**5 - x**4 - 2*x**3 - x**2 + x + 2 """ seq = sympify(seq) def try_non_polynomial_lcm(seq): if not gens and not args: domain, numbers = construct_domain(seq) if not numbers: return domain.one elif domain.is_Numerical: result, numbers = numbers[0], numbers[1:] for number in numbers: result = domain.lcm(result, number) return domain.to_sympy(result) return None result = try_non_polynomial_lcm(seq) if result is not None: return result options.allowed_flags(args, ['polys']) try: polys, opt = parallel_poly_from_expr(seq, *gens, **args) # lcm for domain Q[irrational] (purely algebraic irrational) if len(seq) > 1 and all(elt.is_algebraic and elt.is_irrational for elt in seq): a = seq[-1] lst = [ (a/elt).ratsimp() for elt in seq[:-1] ] if all(frc.is_rational for frc in lst): lc = 1 for frc in lst: lc = lcm(lc, frc.as_numer_denom()[1]) return a*lc except PolificationFailed as exc: result = try_non_polynomial_lcm(exc.exprs) if result is not None: return result else: raise ComputationFailed('lcm_list', len(seq), exc) if not polys: if not opt.polys: return S.One else: return Poly(1, opt=opt) result, polys = polys[0], polys[1:] for poly in polys: result = result.lcm(poly) if not opt.polys: return result.as_expr() else: return result @public def lcm(f, g=None, *gens, **args): """ Compute LCM of ``f`` and ``g``. Examples ======== >>> from sympy import lcm >>> from sympy.abc import x >>> lcm(x**2 - 1, x**2 - 3*x + 2) x**3 - 2*x**2 - x + 2 """ if hasattr(f, '__iter__'): if g is not None: gens = (g,) + gens return lcm_list(f, *gens, **args) elif g is None: raise TypeError("lcm() takes 2 arguments or a sequence of arguments") options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) # lcm for domain Q[irrational] (purely algebraic irrational) a, b = map(sympify, (f, g)) if a.is_algebraic and a.is_irrational and b.is_algebraic and b.is_irrational: frc = (a/b).ratsimp() if frc.is_rational: return a*frc.as_numer_denom()[1] except PolificationFailed as exc: domain, (a, b) = construct_domain(exc.exprs) try: return domain.to_sympy(domain.lcm(a, b)) except NotImplementedError: raise ComputationFailed('lcm', 2, exc) result = F.lcm(G) if not opt.polys: return result.as_expr() else: return result @public def terms_gcd(f, *gens, **args): """ Remove GCD of terms from ``f``. If the ``deep`` flag is True, then the arguments of ``f`` will have terms_gcd applied to them. If a fraction is factored out of ``f`` and ``f`` is an Add, then an unevaluated Mul will be returned so that automatic simplification does not redistribute it. The hint ``clear``, when set to False, can be used to prevent such factoring when all coefficients are not fractions. Examples ======== >>> from sympy import terms_gcd, cos >>> from sympy.abc import x, y >>> terms_gcd(x**6*y**2 + x**3*y, x, y) x**3*y*(x**3*y + 1) The default action of polys routines is to expand the expression given to them. terms_gcd follows this behavior: >>> terms_gcd((3+3*x)*(x+x*y)) 3*x*(x*y + x + y + 1) If this is not desired then the hint ``expand`` can be set to False. In this case the expression will be treated as though it were comprised of one or more terms: >>> terms_gcd((3+3*x)*(x+x*y), expand=False) (3*x + 3)*(x*y + x) In order to traverse factors of a Mul or the arguments of other functions, the ``deep`` hint can be used: >>> terms_gcd((3 + 3*x)*(x + x*y), expand=False, deep=True) 3*x*(x + 1)*(y + 1) >>> terms_gcd(cos(x + x*y), deep=True) cos(x*(y + 1)) Rationals are factored out by default: >>> terms_gcd(x + y/2) (2*x + y)/2 Only the y-term had a coefficient that was a fraction; if one does not want to factor out the 1/2 in cases like this, the flag ``clear`` can be set to False: >>> terms_gcd(x + y/2, clear=False) x + y/2 >>> terms_gcd(x*y/2 + y**2, clear=False) y*(x/2 + y) The ``clear`` flag is ignored if all coefficients are fractions: >>> terms_gcd(x/3 + y/2, clear=False) (2*x + 3*y)/6 See Also ======== sympy.core.exprtools.gcd_terms, sympy.core.exprtools.factor_terms """ from sympy.core.relational import Equality orig = sympify(f) if not isinstance(f, Expr) or f.is_Atom: return orig if args.get('deep', False): new = f.func(*[terms_gcd(a, *gens, **args) for a in f.args]) args.pop('deep') args['expand'] = False return terms_gcd(new, *gens, **args) if isinstance(f, Equality): return f clear = args.pop('clear', True) options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: return exc.expr J, f = F.terms_gcd() if opt.domain.is_Ring: if opt.domain.is_Field: denom, f = f.clear_denoms(convert=True) coeff, f = f.primitive() if opt.domain.is_Field: coeff /= denom else: coeff = S.One term = Mul(*[x**j for x, j in zip(f.gens, J)]) if coeff == 1: coeff = S.One if term == 1: return orig if clear: return _keep_coeff(coeff, term*f.as_expr()) # base the clearing on the form of the original expression, not # the (perhaps) Mul that we have now coeff, f = _keep_coeff(coeff, f.as_expr(), clear=False).as_coeff_Mul() return _keep_coeff(coeff, term*f, clear=False) @public def trunc(f, p, *gens, **args): """ Reduce ``f`` modulo a constant ``p``. Examples ======== >>> from sympy import trunc >>> from sympy.abc import x >>> trunc(2*x**3 + 3*x**2 + 5*x + 7, 3) -x**3 - x + 1 """ options.allowed_flags(args, ['auto', 'polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('trunc', 1, exc) result = F.trunc(sympify(p)) if not opt.polys: return result.as_expr() else: return result @public def monic(f, *gens, **args): """ Divide all coefficients of ``f`` by ``LC(f)``. Examples ======== >>> from sympy import monic >>> from sympy.abc import x >>> monic(3*x**2 + 4*x + 2) x**2 + 4*x/3 + 2/3 """ options.allowed_flags(args, ['auto', 'polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('monic', 1, exc) result = F.monic(auto=opt.auto) if not opt.polys: return result.as_expr() else: return result @public def content(f, *gens, **args): """ Compute GCD of coefficients of ``f``. Examples ======== >>> from sympy import content >>> from sympy.abc import x >>> content(6*x**2 + 8*x + 12) 2 """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('content', 1, exc) return F.content() @public def primitive(f, *gens, **args): """ Compute content and the primitive form of ``f``. Examples ======== >>> from sympy.polys.polytools import primitive >>> from sympy.abc import x >>> primitive(6*x**2 + 8*x + 12) (2, 3*x**2 + 4*x + 6) >>> eq = (2 + 2*x)*x + 2 Expansion is performed by default: >>> primitive(eq) (2, x**2 + x + 1) Set ``expand`` to False to shut this off. Note that the extraction will not be recursive; use the as_content_primitive method for recursive, non-destructive Rational extraction. >>> primitive(eq, expand=False) (1, x*(2*x + 2) + 2) >>> eq.as_content_primitive() (2, x*(x + 1) + 1) """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('primitive', 1, exc) cont, result = F.primitive() if not opt.polys: return cont, result.as_expr() else: return cont, result @public def compose(f, g, *gens, **args): """ Compute functional composition ``f(g)``. Examples ======== >>> from sympy import compose >>> from sympy.abc import x >>> compose(x**2 + x, x - 1) x**2 - x """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('compose', 2, exc) result = F.compose(G) if not opt.polys: return result.as_expr() else: return result @public def decompose(f, *gens, **args): """ Compute functional decomposition of ``f``. Examples ======== >>> from sympy import decompose >>> from sympy.abc import x >>> decompose(x**4 + 2*x**3 - x - 1) [x**2 - x - 1, x**2 + x] """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('decompose', 1, exc) result = F.decompose() if not opt.polys: return [r.as_expr() for r in result] else: return result @public def sturm(f, *gens, **args): """ Compute Sturm sequence of ``f``. Examples ======== >>> from sympy import sturm >>> from sympy.abc import x >>> sturm(x**3 - 2*x**2 + x - 3) [x**3 - 2*x**2 + x - 3, 3*x**2 - 4*x + 1, 2*x/9 + 25/9, -2079/4] """ options.allowed_flags(args, ['auto', 'polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('sturm', 1, exc) result = F.sturm(auto=opt.auto) if not opt.polys: return [r.as_expr() for r in result] else: return result @public def gff_list(f, *gens, **args): """ Compute a list of greatest factorial factors of ``f``. Note that the input to ff() and rf() should be Poly instances to use the definitions here. Examples ======== >>> from sympy import gff_list, ff, Poly >>> from sympy.abc import x >>> f = Poly(x**5 + 2*x**4 - x**3 - 2*x**2, x) >>> gff_list(f) [(Poly(x, x, domain='ZZ'), 1), (Poly(x + 2, x, domain='ZZ'), 4)] >>> (ff(Poly(x), 1)*ff(Poly(x + 2), 4)).expand() == f True >>> f = Poly(x**12 + 6*x**11 - 11*x**10 - 56*x**9 + 220*x**8 + 208*x**7 - \ 1401*x**6 + 1090*x**5 + 2715*x**4 - 6720*x**3 - 1092*x**2 + 5040*x, x) >>> gff_list(f) [(Poly(x**3 + 7, x, domain='ZZ'), 2), (Poly(x**2 + 5*x, x, domain='ZZ'), 3)] >>> ff(Poly(x**3 + 7, x), 2)*ff(Poly(x**2 + 5*x, x), 3) == f True """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('gff_list', 1, exc) factors = F.gff_list() if not opt.polys: return [(g.as_expr(), k) for g, k in factors] else: return factors @public def gff(f, *gens, **args): """Compute greatest factorial factorization of ``f``. """ raise NotImplementedError('symbolic falling factorial') @public def sqf_norm(f, *gens, **args): """ Compute square-free norm of ``f``. Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))`` is a square-free polynomial over ``K``, where ``a`` is the algebraic extension of the ground domain. Examples ======== >>> from sympy import sqf_norm, sqrt >>> from sympy.abc import x >>> sqf_norm(x**2 + 1, extension=[sqrt(3)]) (1, x**2 - 2*sqrt(3)*x + 4, x**4 - 4*x**2 + 16) """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('sqf_norm', 1, exc) s, g, r = F.sqf_norm() if not opt.polys: return Integer(s), g.as_expr(), r.as_expr() else: return Integer(s), g, r @public def sqf_part(f, *gens, **args): """ Compute square-free part of ``f``. Examples ======== >>> from sympy import sqf_part >>> from sympy.abc import x >>> sqf_part(x**3 - 3*x - 2) x**2 - x - 2 """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('sqf_part', 1, exc) result = F.sqf_part() if not opt.polys: return result.as_expr() else: return result def _sorted_factors(factors, method): """Sort a list of ``(expr, exp)`` pairs. """ if method == 'sqf': def key(obj): poly, exp = obj rep = poly.rep.rep return (exp, len(rep), len(poly.gens), rep) else: def key(obj): poly, exp = obj rep = poly.rep.rep return (len(rep), len(poly.gens), exp, rep) return sorted(factors, key=key) def _factors_product(factors): """Multiply a list of ``(expr, exp)`` pairs. """ return Mul(*[f.as_expr()**k for f, k in factors]) def _symbolic_factor_list(expr, opt, method): """Helper function for :func:`_symbolic_factor`. """ coeff, factors = S.One, [] args = [i._eval_factor() if hasattr(i, '_eval_factor') else i for i in Mul.make_args(expr)] for arg in args: if arg.is_Number: coeff *= arg continue if arg.is_Mul: args.extend(arg.args) continue if arg.is_Pow: base, exp = arg.args if base.is_Number and exp.is_Number: coeff *= arg continue if base.is_Number: factors.append((base, exp)) continue else: base, exp = arg, S.One try: poly, _ = _poly_from_expr(base, opt) except PolificationFailed as exc: factors.append((exc.expr, exp)) else: func = getattr(poly, method + '_list') _coeff, _factors = func() if _coeff is not S.One: if exp.is_Integer: coeff *= _coeff**exp elif _coeff.is_positive: factors.append((_coeff, exp)) else: _factors.append((_coeff, S.One)) if exp is S.One: factors.extend(_factors) elif exp.is_integer: factors.extend([(f, k*exp) for f, k in _factors]) else: other = [] for f, k in _factors: if f.as_expr().is_positive: factors.append((f, k*exp)) else: other.append((f, k)) factors.append((_factors_product(other), exp)) return coeff, factors def _symbolic_factor(expr, opt, method): """Helper function for :func:`_factor`. """ if isinstance(expr, Expr) and not expr.is_Relational: if hasattr(expr,'_eval_factor'): return expr._eval_factor() coeff, factors = _symbolic_factor_list(together(expr, fraction=opt['fraction']), opt, method) return _keep_coeff(coeff, _factors_product(factors)) elif hasattr(expr, 'args'): return expr.func(*[_symbolic_factor(arg, opt, method) for arg in expr.args]) elif hasattr(expr, '__iter__'): return expr.__class__([_symbolic_factor(arg, opt, method) for arg in expr]) else: return expr def _generic_factor_list(expr, gens, args, method): """Helper function for :func:`sqf_list` and :func:`factor_list`. """ options.allowed_flags(args, ['frac', 'polys']) opt = options.build_options(gens, args) expr = sympify(expr) if isinstance(expr, Expr) and not expr.is_Relational: numer, denom = together(expr).as_numer_denom() cp, fp = _symbolic_factor_list(numer, opt, method) cq, fq = _symbolic_factor_list(denom, opt, method) if fq and not opt.frac: raise PolynomialError("a polynomial expected, got %s" % expr) _opt = opt.clone(dict(expand=True)) for factors in (fp, fq): for i, (f, k) in enumerate(factors): if not f.is_Poly: f, _ = _poly_from_expr(f, _opt) factors[i] = (f, k) fp = _sorted_factors(fp, method) fq = _sorted_factors(fq, method) if not opt.polys: fp = [(f.as_expr(), k) for f, k in fp] fq = [(f.as_expr(), k) for f, k in fq] coeff = cp/cq if not opt.frac: return coeff, fp else: return coeff, fp, fq else: raise PolynomialError("a polynomial expected, got %s" % expr) def _generic_factor(expr, gens, args, method): """Helper function for :func:`sqf` and :func:`factor`. """ fraction = args.pop('fraction', True) options.allowed_flags(args, []) opt = options.build_options(gens, args) opt['fraction'] = fraction return _symbolic_factor(sympify(expr), opt, method) def to_rational_coeffs(f): """ try to transform a polynomial to have rational coefficients try to find a transformation ``x = alpha*y`` ``f(x) = lc*alpha**n * g(y)`` where ``g`` is a polynomial with rational coefficients, ``lc`` the leading coefficient. If this fails, try ``x = y + beta`` ``f(x) = g(y)`` Returns ``None`` if ``g`` not found; ``(lc, alpha, None, g)`` in case of rescaling ``(None, None, beta, g)`` in case of translation Notes ===== Currently it transforms only polynomials without roots larger than 2. Examples ======== >>> from sympy import sqrt, Poly, simplify >>> from sympy.polys.polytools import to_rational_coeffs >>> from sympy.abc import x >>> p = Poly(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))}), x, domain='EX') >>> lc, r, _, g = to_rational_coeffs(p) >>> lc, r (7 + 5*sqrt(2), 2 - 2*sqrt(2)) >>> g Poly(x**3 + x**2 - 1/4*x - 1/4, x, domain='QQ') >>> r1 = simplify(1/r) >>> Poly(lc*r**3*(g.as_expr()).subs({x:x*r1}), x, domain='EX') == p True """ from sympy.simplify.simplify import simplify def _try_rescale(f, f1=None): """ try rescaling ``x -> alpha*x`` to convert f to a polynomial with rational coefficients. Returns ``alpha, f``; if the rescaling is successful, ``alpha`` is the rescaling factor, and ``f`` is the rescaled polynomial; else ``alpha`` is ``None``. """ from sympy.core.add import Add if not len(f.gens) == 1 or not (f.gens[0]).is_Atom: return None, f n = f.degree() lc = f.LC() f1 = f1 or f1.monic() coeffs = f1.all_coeffs()[1:] coeffs = [simplify(coeffx) for coeffx in coeffs] if coeffs[-2]: rescale1_x = simplify(coeffs[-2]/coeffs[-1]) coeffs1 = [] for i in range(len(coeffs)): coeffx = simplify(coeffs[i]*rescale1_x**(i + 1)) if not coeffx.is_rational: break coeffs1.append(coeffx) else: rescale_x = simplify(1/rescale1_x) x = f.gens[0] v = [x**n] for i in range(1, n + 1): v.append(coeffs1[i - 1]*x**(n - i)) f = Add(*v) f = Poly(f) return lc, rescale_x, f return None def _try_translate(f, f1=None): """ try translating ``x -> x + alpha`` to convert f to a polynomial with rational coefficients. Returns ``alpha, f``; if the translating is successful, ``alpha`` is the translating factor, and ``f`` is the shifted polynomial; else ``alpha`` is ``None``. """ from sympy.core.add import Add if not len(f.gens) == 1 or not (f.gens[0]).is_Atom: return None, f n = f.degree() f1 = f1 or f1.monic() coeffs = f1.all_coeffs()[1:] c = simplify(coeffs[0]) if c and not c.is_rational: func = Add if c.is_Add: args = c.args func = c.func else: args = [c] c1, c2 = sift(args, lambda z: z.is_rational, binary=True) alpha = -func(*c2)/n f2 = f1.shift(alpha) return alpha, f2 return None def _has_square_roots(p): """ Return True if ``f`` is a sum with square roots but no other root """ from sympy.core.exprtools import Factors coeffs = p.coeffs() has_sq = False for y in coeffs: for x in Add.make_args(y): f = Factors(x).factors r = [wx.q for b, wx in f.items() if b.is_number and wx.is_Rational and wx.q >= 2] if not r: continue if min(r) == 2: has_sq = True if max(r) > 2: return False return has_sq if f.get_domain().is_EX and _has_square_roots(f): f1 = f.monic() r = _try_rescale(f, f1) if r: return r[0], r[1], None, r[2] else: r = _try_translate(f, f1) if r: return None, None, r[0], r[1] return None def _torational_factor_list(p, x): """ helper function to factor polynomial using to_rational_coeffs Examples ======== >>> from sympy.polys.polytools import _torational_factor_list >>> from sympy.abc import x >>> from sympy import sqrt, expand, Mul >>> p = expand(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))})) >>> factors = _torational_factor_list(p, x); factors (-2, [(-x*(1 + sqrt(2))/2 + 1, 1), (-x*(1 + sqrt(2)) - 1, 1), (-x*(1 + sqrt(2)) + 1, 1)]) >>> expand(factors[0]*Mul(*[z[0] for z in factors[1]])) == p True >>> p = expand(((x**2-1)*(x-2)).subs({x:x + sqrt(2)})) >>> factors = _torational_factor_list(p, x); factors (1, [(x - 2 + sqrt(2), 1), (x - 1 + sqrt(2), 1), (x + 1 + sqrt(2), 1)]) >>> expand(factors[0]*Mul(*[z[0] for z in factors[1]])) == p True """ from sympy.simplify.simplify import simplify p1 = Poly(p, x, domain='EX') n = p1.degree() res = to_rational_coeffs(p1) if not res: return None lc, r, t, g = res factors = factor_list(g.as_expr()) if lc: c = simplify(factors[0]*lc*r**n) r1 = simplify(1/r) a = [] for z in factors[1:][0]: a.append((simplify(z[0].subs({x: x*r1})), z[1])) else: c = factors[0] a = [] for z in factors[1:][0]: a.append((z[0].subs({x: x - t}), z[1])) return (c, a) @public def sqf_list(f, *gens, **args): """ Compute a list of square-free factors of ``f``. Examples ======== >>> from sympy import sqf_list >>> from sympy.abc import x >>> sqf_list(2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16) (2, [(x + 1, 2), (x + 2, 3)]) """ return _generic_factor_list(f, gens, args, method='sqf') @public def sqf(f, *gens, **args): """ Compute square-free factorization of ``f``. Examples ======== >>> from sympy import sqf >>> from sympy.abc import x >>> sqf(2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16) 2*(x + 1)**2*(x + 2)**3 """ return _generic_factor(f, gens, args, method='sqf') @public def factor_list(f, *gens, **args): """ Compute a list of irreducible factors of ``f``. Examples ======== >>> from sympy import factor_list >>> from sympy.abc import x, y >>> factor_list(2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y) (2, [(x + y, 1), (x**2 + 1, 2)]) """ return _generic_factor_list(f, gens, args, method='factor') @public def factor(f, *gens, **args): """ Compute the factorization of expression, ``f``, into irreducibles. (To factor an integer into primes, use ``factorint``.) There two modes implemented: symbolic and formal. If ``f`` is not an instance of :class:`Poly` and generators are not specified, then the former mode is used. Otherwise, the formal mode is used. In symbolic mode, :func:`factor` will traverse the expression tree and factor its components without any prior expansion, unless an instance of :class:`~.Add` is encountered (in this case formal factorization is used). This way :func:`factor` can handle large or symbolic exponents. By default, the factorization is computed over the rationals. To factor over other domain, e.g. an algebraic or finite field, use appropriate options: ``extension``, ``modulus`` or ``domain``. Examples ======== >>> from sympy import factor, sqrt, exp >>> from sympy.abc import x, y >>> factor(2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y) 2*(x + y)*(x**2 + 1)**2 >>> factor(x**2 + 1) x**2 + 1 >>> factor(x**2 + 1, modulus=2) (x + 1)**2 >>> factor(x**2 + 1, gaussian=True) (x - I)*(x + I) >>> factor(x**2 - 2, extension=sqrt(2)) (x - sqrt(2))*(x + sqrt(2)) >>> factor((x**2 - 1)/(x**2 + 4*x + 4)) (x - 1)*(x + 1)/(x + 2)**2 >>> factor((x**2 + 4*x + 4)**10000000*(x**2 + 1)) (x + 2)**20000000*(x**2 + 1) By default, factor deals with an expression as a whole: >>> eq = 2**(x**2 + 2*x + 1) >>> factor(eq) 2**(x**2 + 2*x + 1) If the ``deep`` flag is True then subexpressions will be factored: >>> factor(eq, deep=True) 2**((x + 1)**2) If the ``fraction`` flag is False then rational expressions won't be combined. By default it is True. >>> factor(5*x + 3*exp(2 - 7*x), deep=True) (5*x*exp(7*x) + 3*exp(2))*exp(-7*x) >>> factor(5*x + 3*exp(2 - 7*x), deep=True, fraction=False) 5*x + 3*exp(2)*exp(-7*x) See Also ======== sympy.ntheory.factor_.factorint """ f = sympify(f) if args.pop('deep', False): from sympy.simplify.simplify import bottom_up def _try_factor(expr): """ Factor, but avoid changing the expression when unable to. """ fac = factor(expr, *gens, **args) if fac.is_Mul or fac.is_Pow: return fac return expr f = bottom_up(f, _try_factor) # clean up any subexpressions that may have been expanded # while factoring out a larger expression partials = {} muladd = f.atoms(Mul, Add) for p in muladd: fac = factor(p, *gens, **args) if (fac.is_Mul or fac.is_Pow) and fac != p: partials[p] = fac return f.xreplace(partials) try: return _generic_factor(f, gens, args, method='factor') except PolynomialError as msg: if not f.is_commutative: from sympy.core.exprtools import factor_nc return factor_nc(f) else: raise PolynomialError(msg) @public def intervals(F, all=False, eps=None, inf=None, sup=None, strict=False, fast=False, sqf=False): """ Compute isolating intervals for roots of ``f``. Examples ======== >>> from sympy import intervals >>> from sympy.abc import x >>> intervals(x**2 - 3) [((-2, -1), 1), ((1, 2), 1)] >>> intervals(x**2 - 3, eps=1e-2) [((-26/15, -19/11), 1), ((19/11, 26/15), 1)] """ if not hasattr(F, '__iter__'): try: F = Poly(F) except GeneratorsNeeded: return [] return F.intervals(all=all, eps=eps, inf=inf, sup=sup, fast=fast, sqf=sqf) else: polys, opt = parallel_poly_from_expr(F, domain='QQ') if len(opt.gens) > 1: raise MultivariatePolynomialError for i, poly in enumerate(polys): polys[i] = poly.rep.rep if eps is not None: eps = opt.domain.convert(eps) if eps <= 0: raise ValueError("'eps' must be a positive rational") if inf is not None: inf = opt.domain.convert(inf) if sup is not None: sup = opt.domain.convert(sup) intervals = dup_isolate_real_roots_list(polys, opt.domain, eps=eps, inf=inf, sup=sup, strict=strict, fast=fast) result = [] for (s, t), indices in intervals: s, t = opt.domain.to_sympy(s), opt.domain.to_sympy(t) result.append(((s, t), indices)) return result @public def refine_root(f, s, t, eps=None, steps=None, fast=False, check_sqf=False): """ Refine an isolating interval of a root to the given precision. Examples ======== >>> from sympy import refine_root >>> from sympy.abc import x >>> refine_root(x**2 - 3, 1, 2, eps=1e-2) (19/11, 26/15) """ try: F = Poly(f) except GeneratorsNeeded: raise PolynomialError( "can't refine a root of %s, not a polynomial" % f) return F.refine_root(s, t, eps=eps, steps=steps, fast=fast, check_sqf=check_sqf) @public def count_roots(f, inf=None, sup=None): """ Return the number of roots of ``f`` in ``[inf, sup]`` interval. If one of ``inf`` or ``sup`` is complex, it will return the number of roots in the complex rectangle with corners at ``inf`` and ``sup``. Examples ======== >>> from sympy import count_roots, I >>> from sympy.abc import x >>> count_roots(x**4 - 4, -3, 3) 2 >>> count_roots(x**4 - 4, 0, 1 + 3*I) 1 """ try: F = Poly(f, greedy=False) except GeneratorsNeeded: raise PolynomialError("can't count roots of %s, not a polynomial" % f) return F.count_roots(inf=inf, sup=sup) @public def real_roots(f, multiple=True): """ Return a list of real roots with multiplicities of ``f``. Examples ======== >>> from sympy import real_roots >>> from sympy.abc import x >>> real_roots(2*x**3 - 7*x**2 + 4*x + 4) [-1/2, 2, 2] """ try: F = Poly(f, greedy=False) except GeneratorsNeeded: raise PolynomialError( "can't compute real roots of %s, not a polynomial" % f) return F.real_roots(multiple=multiple) @public def nroots(f, n=15, maxsteps=50, cleanup=True): """ Compute numerical approximations of roots of ``f``. Examples ======== >>> from sympy import nroots >>> from sympy.abc import x >>> nroots(x**2 - 3, n=15) [-1.73205080756888, 1.73205080756888] >>> nroots(x**2 - 3, n=30) [-1.73205080756887729352744634151, 1.73205080756887729352744634151] """ try: F = Poly(f, greedy=False) except GeneratorsNeeded: raise PolynomialError( "can't compute numerical roots of %s, not a polynomial" % f) return F.nroots(n=n, maxsteps=maxsteps, cleanup=cleanup) @public def ground_roots(f, *gens, **args): """ Compute roots of ``f`` by factorization in the ground domain. Examples ======== >>> from sympy import ground_roots >>> from sympy.abc import x >>> ground_roots(x**6 - 4*x**4 + 4*x**3 - x**2) {0: 2, 1: 2} """ options.allowed_flags(args, []) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('ground_roots', 1, exc) return F.ground_roots() @public def nth_power_roots_poly(f, n, *gens, **args): """ Construct a polynomial with n-th powers of roots of ``f``. Examples ======== >>> from sympy import nth_power_roots_poly, factor, roots >>> from sympy.abc import x >>> f = x**4 - x**2 + 1 >>> g = factor(nth_power_roots_poly(f, 2)) >>> g (x**2 - x + 1)**2 >>> R_f = [ (r**2).expand() for r in roots(f) ] >>> R_g = roots(g).keys() >>> set(R_f) == set(R_g) True """ options.allowed_flags(args, []) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('nth_power_roots_poly', 1, exc) result = F.nth_power_roots_poly(n) if not opt.polys: return result.as_expr() else: return result @public def cancel(f, *gens, **args): """ Cancel common factors in a rational function ``f``. Examples ======== >>> from sympy import cancel, sqrt, Symbol >>> from sympy.abc import x >>> A = Symbol('A', commutative=False) >>> cancel((2*x**2 - 2)/(x**2 - 2*x + 1)) (2*x + 2)/(x - 1) >>> cancel((sqrt(3) + sqrt(15)*A)/(sqrt(2) + sqrt(10)*A)) sqrt(6)/2 """ from sympy.core.exprtools import factor_terms from sympy.functions.elementary.piecewise import Piecewise options.allowed_flags(args, ['polys']) f = sympify(f) if not isinstance(f, (tuple, Tuple)): if f.is_Number or isinstance(f, Relational) or not isinstance(f, Expr): return f f = factor_terms(f, radical=True) p, q = f.as_numer_denom() elif len(f) == 2: p, q = f elif isinstance(f, Tuple): return factor_terms(f) else: raise ValueError('unexpected argument: %s' % f) try: (F, G), opt = parallel_poly_from_expr((p, q), *gens, **args) except PolificationFailed: if not isinstance(f, (tuple, Tuple)): return f else: return S.One, p, q except PolynomialError as msg: if f.is_commutative and not f.has(Piecewise): raise PolynomialError(msg) # Handling of noncommutative and/or piecewise expressions if f.is_Add or f.is_Mul: c, nc = sift(f.args, lambda x: x.is_commutative is True and not x.has(Piecewise), binary=True) nc = [cancel(i) for i in nc] return f.func(cancel(f.func(*c)), *nc) else: reps = [] pot = preorder_traversal(f) next(pot) for e in pot: # XXX: This should really skip anything that's not Expr. if isinstance(e, (tuple, Tuple, BooleanAtom)): continue try: reps.append((e, cancel(e))) pot.skip() # this was handled successfully except NotImplementedError: pass return f.xreplace(dict(reps)) c, P, Q = F.cancel(G) if not isinstance(f, (tuple, Tuple)): return c*(P.as_expr()/Q.as_expr()) else: if not opt.polys: return c, P.as_expr(), Q.as_expr() else: return c, P, Q @public def reduced(f, G, *gens, **args): """ Reduces a polynomial ``f`` modulo a set of polynomials ``G``. Given a polynomial ``f`` and a set of polynomials ``G = (g_1, ..., g_n)``, computes a set of quotients ``q = (q_1, ..., q_n)`` and the remainder ``r`` such that ``f = q_1*g_1 + ... + q_n*g_n + r``, where ``r`` vanishes or ``r`` is a completely reduced polynomial with respect to ``G``. Examples ======== >>> from sympy import reduced >>> from sympy.abc import x, y >>> reduced(2*x**4 + y**2 - x**2 + y**3, [x**3 - x, y**3 - y]) ([2*x, 1], x**2 + y**2 + y) """ options.allowed_flags(args, ['polys', 'auto']) try: polys, opt = parallel_poly_from_expr([f] + list(G), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('reduced', 0, exc) domain = opt.domain retract = False if opt.auto and domain.is_Ring and not domain.is_Field: opt = opt.clone(dict(domain=domain.get_field())) retract = True from sympy.polys.rings import xring _ring, _ = xring(opt.gens, opt.domain, opt.order) for i, poly in enumerate(polys): poly = poly.set_domain(opt.domain).rep.to_dict() polys[i] = _ring.from_dict(poly) Q, r = polys[0].div(polys[1:]) Q = [Poly._from_dict(dict(q), opt) for q in Q] r = Poly._from_dict(dict(r), opt) if retract: try: _Q, _r = [q.to_ring() for q in Q], r.to_ring() except CoercionFailed: pass else: Q, r = _Q, _r if not opt.polys: return [q.as_expr() for q in Q], r.as_expr() else: return Q, r @public def groebner(F, *gens, **args): """ Computes the reduced Groebner basis for a set of polynomials. Use the ``order`` argument to set the monomial ordering that will be used to compute the basis. Allowed orders are ``lex``, ``grlex`` and ``grevlex``. If no order is specified, it defaults to ``lex``. For more information on Groebner bases, see the references and the docstring of :func:`~.solve_poly_system`. Examples ======== Example taken from [1]. >>> from sympy import groebner >>> from sympy.abc import x, y >>> F = [x*y - 2*y, 2*y**2 - x**2] >>> groebner(F, x, y, order='lex') GroebnerBasis([x**2 - 2*y**2, x*y - 2*y, y**3 - 2*y], x, y, domain='ZZ', order='lex') >>> groebner(F, x, y, order='grlex') GroebnerBasis([y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y], x, y, domain='ZZ', order='grlex') >>> groebner(F, x, y, order='grevlex') GroebnerBasis([y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y], x, y, domain='ZZ', order='grevlex') By default, an improved implementation of the Buchberger algorithm is used. Optionally, an implementation of the F5B algorithm can be used. The algorithm can be set using the ``method`` flag or with the :func:`sympy.polys.polyconfig.setup` function. >>> F = [x**2 - x - 1, (2*x - 1) * y - (x**10 - (1 - x)**10)] >>> groebner(F, x, y, method='buchberger') GroebnerBasis([x**2 - x - 1, y - 55], x, y, domain='ZZ', order='lex') >>> groebner(F, x, y, method='f5b') GroebnerBasis([x**2 - x - 1, y - 55], x, y, domain='ZZ', order='lex') References ========== 1. [Buchberger01]_ 2. [Cox97]_ """ return GroebnerBasis(F, *gens, **args) @public def is_zero_dimensional(F, *gens, **args): """ Checks if the ideal generated by a Groebner basis is zero-dimensional. The algorithm checks if the set of monomials not divisible by the leading monomial of any element of ``F`` is bounded. References ========== David A. Cox, John B. Little, Donal O'Shea. Ideals, Varieties and Algorithms, 3rd edition, p. 230 """ return GroebnerBasis(F, *gens, **args).is_zero_dimensional @public class GroebnerBasis(Basic): """Represents a reduced Groebner basis. """ def __new__(cls, F, *gens, **args): """Compute a reduced Groebner basis for a system of polynomials. """ options.allowed_flags(args, ['polys', 'method']) try: polys, opt = parallel_poly_from_expr(F, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('groebner', len(F), exc) from sympy.polys.rings import PolyRing ring = PolyRing(opt.gens, opt.domain, opt.order) polys = [ring.from_dict(poly.rep.to_dict()) for poly in polys if poly] G = _groebner(polys, ring, method=opt.method) G = [Poly._from_dict(g, opt) for g in G] return cls._new(G, opt) @classmethod def _new(cls, basis, options): obj = Basic.__new__(cls) obj._basis = tuple(basis) obj._options = options return obj @property def args(self): return (Tuple(*self._basis), Tuple(*self._options.gens)) @property def exprs(self): return [poly.as_expr() for poly in self._basis] @property def polys(self): return list(self._basis) @property def gens(self): return self._options.gens @property def domain(self): return self._options.domain @property def order(self): return self._options.order def __len__(self): return len(self._basis) def __iter__(self): if self._options.polys: return iter(self.polys) else: return iter(self.exprs) def __getitem__(self, item): if self._options.polys: basis = self.polys else: basis = self.exprs return basis[item] def __hash__(self): return hash((self._basis, tuple(self._options.items()))) def __eq__(self, other): if isinstance(other, self.__class__): return self._basis == other._basis and self._options == other._options elif iterable(other): return self.polys == list(other) or self.exprs == list(other) else: return False def __ne__(self, other): return not self == other @property def is_zero_dimensional(self): """ Checks if the ideal generated by a Groebner basis is zero-dimensional. The algorithm checks if the set of monomials not divisible by the leading monomial of any element of ``F`` is bounded. References ========== David A. Cox, John B. Little, Donal O'Shea. Ideals, Varieties and Algorithms, 3rd edition, p. 230 """ def single_var(monomial): return sum(map(bool, monomial)) == 1 exponents = Monomial([0]*len(self.gens)) order = self._options.order for poly in self.polys: monomial = poly.LM(order=order) if single_var(monomial): exponents *= monomial # If any element of the exponents vector is zero, then there's # a variable for which there's no degree bound and the ideal # generated by this Groebner basis isn't zero-dimensional. return all(exponents) def fglm(self, order): """ Convert a Groebner basis from one ordering to another. The FGLM algorithm converts reduced Groebner bases of zero-dimensional ideals from one ordering to another. This method is often used when it is infeasible to compute a Groebner basis with respect to a particular ordering directly. Examples ======== >>> from sympy.abc import x, y >>> from sympy import groebner >>> F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1] >>> G = groebner(F, x, y, order='grlex') >>> list(G.fglm('lex')) [2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7] >>> list(groebner(F, x, y, order='lex')) [2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7] References ========== .. [1] J.C. Faugere, P. Gianni, D. Lazard, T. Mora (1994). Efficient Computation of Zero-dimensional Groebner Bases by Change of Ordering """ opt = self._options src_order = opt.order dst_order = monomial_key(order) if src_order == dst_order: return self if not self.is_zero_dimensional: raise NotImplementedError("can't convert Groebner bases of ideals with positive dimension") polys = list(self._basis) domain = opt.domain opt = opt.clone(dict( domain=domain.get_field(), order=dst_order, )) from sympy.polys.rings import xring _ring, _ = xring(opt.gens, opt.domain, src_order) for i, poly in enumerate(polys): poly = poly.set_domain(opt.domain).rep.to_dict() polys[i] = _ring.from_dict(poly) G = matrix_fglm(polys, _ring, dst_order) G = [Poly._from_dict(dict(g), opt) for g in G] if not domain.is_Field: G = [g.clear_denoms(convert=True)[1] for g in G] opt.domain = domain return self._new(G, opt) def reduce(self, expr, auto=True): """ Reduces a polynomial modulo a Groebner basis. Given a polynomial ``f`` and a set of polynomials ``G = (g_1, ..., g_n)``, computes a set of quotients ``q = (q_1, ..., q_n)`` and the remainder ``r`` such that ``f = q_1*f_1 + ... + q_n*f_n + r``, where ``r`` vanishes or ``r`` is a completely reduced polynomial with respect to ``G``. Examples ======== >>> from sympy import groebner, expand >>> from sympy.abc import x, y >>> f = 2*x**4 - x**2 + y**3 + y**2 >>> G = groebner([x**3 - x, y**3 - y]) >>> G.reduce(f) ([2*x, 1], x**2 + y**2 + y) >>> Q, r = _ >>> expand(sum(q*g for q, g in zip(Q, G)) + r) 2*x**4 - x**2 + y**3 + y**2 >>> _ == f True """ poly = Poly._from_expr(expr, self._options) polys = [poly] + list(self._basis) opt = self._options domain = opt.domain retract = False if auto and domain.is_Ring and not domain.is_Field: opt = opt.clone(dict(domain=domain.get_field())) retract = True from sympy.polys.rings import xring _ring, _ = xring(opt.gens, opt.domain, opt.order) for i, poly in enumerate(polys): poly = poly.set_domain(opt.domain).rep.to_dict() polys[i] = _ring.from_dict(poly) Q, r = polys[0].div(polys[1:]) Q = [Poly._from_dict(dict(q), opt) for q in Q] r = Poly._from_dict(dict(r), opt) if retract: try: _Q, _r = [q.to_ring() for q in Q], r.to_ring() except CoercionFailed: pass else: Q, r = _Q, _r if not opt.polys: return [q.as_expr() for q in Q], r.as_expr() else: return Q, r def contains(self, poly): """ Check if ``poly`` belongs the ideal generated by ``self``. Examples ======== >>> from sympy import groebner >>> from sympy.abc import x, y >>> f = 2*x**3 + y**3 + 3*y >>> G = groebner([x**2 + y**2 - 1, x*y - 2]) >>> G.contains(f) True >>> G.contains(f + 1) False """ return self.reduce(poly)[1] == 0 @public def poly(expr, *gens, **args): """ Efficiently transform an expression into a polynomial. Examples ======== >>> from sympy import poly >>> from sympy.abc import x >>> poly(x*(x**2 + x - 1)**2) Poly(x**5 + 2*x**4 - x**3 - 2*x**2 + x, x, domain='ZZ') """ options.allowed_flags(args, []) def _poly(expr, opt): terms, poly_terms = [], [] for term in Add.make_args(expr): factors, poly_factors = [], [] for factor in Mul.make_args(term): if factor.is_Add: poly_factors.append(_poly(factor, opt)) elif factor.is_Pow and factor.base.is_Add and \ factor.exp.is_Integer and factor.exp >= 0: poly_factors.append( _poly(factor.base, opt).pow(factor.exp)) else: factors.append(factor) if not poly_factors: terms.append(term) else: product = poly_factors[0] for factor in poly_factors[1:]: product = product.mul(factor) if factors: factor = Mul(*factors) if factor.is_Number: product = product.mul(factor) else: product = product.mul(Poly._from_expr(factor, opt)) poly_terms.append(product) if not poly_terms: result = Poly._from_expr(expr, opt) else: result = poly_terms[0] for term in poly_terms[1:]: result = result.add(term) if terms: term = Add(*terms) if term.is_Number: result = result.add(term) else: result = result.add(Poly._from_expr(term, opt)) return result.reorder(*opt.get('gens', ()), **args) expr = sympify(expr) if expr.is_Poly: return Poly(expr, *gens, **args) if 'expand' not in args: args['expand'] = False opt = options.build_options(gens, args) return _poly(expr, opt)
09bf4baa5351ff44c9d4d647be76724fed9d6bb23c6dc1f6a8ff020250d70bdf
"""Groebner bases algorithms. """ from __future__ import print_function, division from sympy.core.compatibility import range from sympy.core.symbol import Dummy from sympy.polys.monomials import monomial_mul, monomial_lcm, monomial_divides, term_div from sympy.polys.orderings import lex from sympy.polys.polyerrors import DomainError from sympy.polys.polyconfig import query def groebner(seq, ring, method=None): """ Computes Groebner basis for a set of polynomials in `K[X]`. Wrapper around the (default) improved Buchberger and the other algorithms for computing Groebner bases. The choice of algorithm can be changed via ``method`` argument or :func:`sympy.polys.polyconfig.setup`, where ``method`` can be either ``buchberger`` or ``f5b``. """ if method is None: method = query('groebner') _groebner_methods = { 'buchberger': _buchberger, 'f5b': _f5b, } try: _groebner = _groebner_methods[method] except KeyError: raise ValueError("'%s' is not a valid Groebner bases algorithm (valid are 'buchberger' and 'f5b')" % method) domain, orig = ring.domain, None if not domain.is_Field or not domain.has_assoc_Field: try: orig, ring = ring, ring.clone(domain=domain.get_field()) except DomainError: raise DomainError("can't compute a Groebner basis over %s" % domain) else: seq = [ s.set_ring(ring) for s in seq ] G = _groebner(seq, ring) if orig is not None: G = [ g.clear_denoms()[1].set_ring(orig) for g in G ] return G def _buchberger(f, ring): """ Computes Groebner basis for a set of polynomials in `K[X]`. Given a set of multivariate polynomials `F`, finds another set `G`, such that Ideal `F = Ideal G` and `G` is a reduced Groebner basis. The resulting basis is unique and has monic generators if the ground domains is a field. Otherwise the result is non-unique but Groebner bases over e.g. integers can be computed (if the input polynomials are monic). Groebner bases can be used to choose specific generators for a polynomial ideal. Because these bases are unique you can check for ideal equality by comparing the Groebner bases. To see if one polynomial lies in an ideal, divide by the elements in the base and see if the remainder vanishes. They can also be used to solve systems of polynomial equations as, by choosing lexicographic ordering, you can eliminate one variable at a time, provided that the ideal is zero-dimensional (finite number of solutions). Notes ===== Algorithm used: an improved version of Buchberger's algorithm as presented in T. Becker, V. Weispfenning, Groebner Bases: A Computational Approach to Commutative Algebra, Springer, 1993, page 232. References ========== .. [1] [Bose03]_ .. [2] [Giovini91]_ .. [3] [Ajwa95]_ .. [4] [Cox97]_ """ order = ring.order monomial_mul = ring.monomial_mul monomial_div = ring.monomial_div monomial_lcm = ring.monomial_lcm def select(P): # normal selection strategy # select the pair with minimum LCM(LM(f), LM(g)) pr = min(P, key=lambda pair: order(monomial_lcm(f[pair[0]].LM, f[pair[1]].LM))) return pr def normal(g, J): h = g.rem([ f[j] for j in J ]) if not h: return None else: h = h.monic() if not h in I: I[h] = len(f) f.append(h) return h.LM, I[h] def update(G, B, ih): # update G using the set of critical pairs B and h # [BW] page 230 h = f[ih] mh = h.LM # filter new pairs (h, g), g in G C = G.copy() D = set() while C: # select a pair (h, g) by popping an element from C ig = C.pop() g = f[ig] mg = g.LM LCMhg = monomial_lcm(mh, mg) def lcm_divides(ip): # LCM(LM(h), LM(p)) divides LCM(LM(h), LM(g)) m = monomial_lcm(mh, f[ip].LM) return monomial_div(LCMhg, m) # HT(h) and HT(g) disjoint: mh*mg == LCMhg if monomial_mul(mh, mg) == LCMhg or ( not any(lcm_divides(ipx) for ipx in C) and not any(lcm_divides(pr[1]) for pr in D)): D.add((ih, ig)) E = set() while D: # select h, g from D (h the same as above) ih, ig = D.pop() mg = f[ig].LM LCMhg = monomial_lcm(mh, mg) if not monomial_mul(mh, mg) == LCMhg: E.add((ih, ig)) # filter old pairs B_new = set() while B: # select g1, g2 from B (-> CP) ig1, ig2 = B.pop() mg1 = f[ig1].LM mg2 = f[ig2].LM LCM12 = monomial_lcm(mg1, mg2) # if HT(h) does not divide lcm(HT(g1), HT(g2)) if not monomial_div(LCM12, mh) or \ monomial_lcm(mg1, mh) == LCM12 or \ monomial_lcm(mg2, mh) == LCM12: B_new.add((ig1, ig2)) B_new |= E # filter polynomials G_new = set() while G: ig = G.pop() mg = f[ig].LM if not monomial_div(mg, mh): G_new.add(ig) G_new.add(ih) return G_new, B_new # end of update ################################ if not f: return [] # replace f with a reduced list of initial polynomials; see [BW] page 203 f1 = f[:] while True: f = f1[:] f1 = [] for i in range(len(f)): p = f[i] r = p.rem(f[:i]) if r: f1.append(r.monic()) if f == f1: break I = {} # ip = I[p]; p = f[ip] F = set() # set of indices of polynomials G = set() # set of indices of intermediate would-be Groebner basis CP = set() # set of pairs of indices of critical pairs for i, h in enumerate(f): I[h] = i F.add(i) ##################################### # algorithm GROEBNERNEWS2 in [BW] page 232 while F: # select p with minimum monomial according to the monomial ordering h = min([f[x] for x in F], key=lambda f: order(f.LM)) ih = I[h] F.remove(ih) G, CP = update(G, CP, ih) # count the number of critical pairs which reduce to zero reductions_to_zero = 0 while CP: ig1, ig2 = select(CP) CP.remove((ig1, ig2)) h = spoly(f[ig1], f[ig2], ring) # ordering divisors is on average more efficient [Cox] page 111 G1 = sorted(G, key=lambda g: order(f[g].LM)) ht = normal(h, G1) if ht: G, CP = update(G, CP, ht[1]) else: reductions_to_zero += 1 ###################################### # now G is a Groebner basis; reduce it Gr = set() for ig in G: ht = normal(f[ig], G - set([ig])) if ht: Gr.add(ht[1]) Gr = [f[ig] for ig in Gr] # order according to the monomial ordering Gr = sorted(Gr, key=lambda f: order(f.LM), reverse=True) return Gr def spoly(p1, p2, ring): """ Compute LCM(LM(p1), LM(p2))/LM(p1)*p1 - LCM(LM(p1), LM(p2))/LM(p2)*p2 This is the S-poly provided p1 and p2 are monic """ LM1 = p1.LM LM2 = p2.LM LCM12 = ring.monomial_lcm(LM1, LM2) m1 = ring.monomial_div(LCM12, LM1) m2 = ring.monomial_div(LCM12, LM2) s1 = p1.mul_monom(m1) s2 = p2.mul_monom(m2) s = s1 - s2 return s # F5B # convenience functions def Sign(f): return f[0] def Polyn(f): return f[1] def Num(f): return f[2] def sig(monomial, index): return (monomial, index) def lbp(signature, polynomial, number): return (signature, polynomial, number) # signature functions def sig_cmp(u, v, order): """ Compare two signatures by extending the term order to K[X]^n. u < v iff - the index of v is greater than the index of u or - the index of v is equal to the index of u and u[0] < v[0] w.r.t. order u > v otherwise """ if u[1] > v[1]: return -1 if u[1] == v[1]: #if u[0] == v[0]: # return 0 if order(u[0]) < order(v[0]): return -1 return 1 def sig_key(s, order): """ Key for comparing two signatures. s = (m, k), t = (n, l) s < t iff [k > l] or [k == l and m < n] s > t otherwise """ return (-s[1], order(s[0])) def sig_mult(s, m): """ Multiply a signature by a monomial. The product of a signature (m, i) and a monomial n is defined as (m * t, i). """ return sig(monomial_mul(s[0], m), s[1]) # labeled polynomial functions def lbp_sub(f, g): """ Subtract labeled polynomial g from f. The signature and number of the difference of f and g are signature and number of the maximum of f and g, w.r.t. lbp_cmp. """ if sig_cmp(Sign(f), Sign(g), Polyn(f).ring.order) < 0: max_poly = g else: max_poly = f ret = Polyn(f) - Polyn(g) return lbp(Sign(max_poly), ret, Num(max_poly)) def lbp_mul_term(f, cx): """ Multiply a labeled polynomial with a term. The product of a labeled polynomial (s, p, k) by a monomial is defined as (m * s, m * p, k). """ return lbp(sig_mult(Sign(f), cx[0]), Polyn(f).mul_term(cx), Num(f)) def lbp_cmp(f, g): """ Compare two labeled polynomials. f < g iff - Sign(f) < Sign(g) or - Sign(f) == Sign(g) and Num(f) > Num(g) f > g otherwise """ if sig_cmp(Sign(f), Sign(g), Polyn(f).ring.order) == -1: return -1 if Sign(f) == Sign(g): if Num(f) > Num(g): return -1 #if Num(f) == Num(g): # return 0 return 1 def lbp_key(f): """ Key for comparing two labeled polynomials. """ return (sig_key(Sign(f), Polyn(f).ring.order), -Num(f)) # algorithm and helper functions def critical_pair(f, g, ring): """ Compute the critical pair corresponding to two labeled polynomials. A critical pair is a tuple (um, f, vm, g), where um and vm are terms such that um * f - vm * g is the S-polynomial of f and g (so, wlog assume um * f > vm * g). For performance sake, a critical pair is represented as a tuple (Sign(um * f), um, f, Sign(vm * g), vm, g), since um * f creates a new, relatively expensive object in memory, whereas Sign(um * f) and um are lightweight and f (in the tuple) is a reference to an already existing object in memory. """ domain = ring.domain ltf = Polyn(f).LT ltg = Polyn(g).LT lt = (monomial_lcm(ltf[0], ltg[0]), domain.one) um = term_div(lt, ltf, domain) vm = term_div(lt, ltg, domain) # The full information is not needed (now), so only the product # with the leading term is considered: fr = lbp_mul_term(lbp(Sign(f), Polyn(f).leading_term(), Num(f)), um) gr = lbp_mul_term(lbp(Sign(g), Polyn(g).leading_term(), Num(g)), vm) # return in proper order, such that the S-polynomial is just # u_first * f_first - u_second * f_second: if lbp_cmp(fr, gr) == -1: return (Sign(gr), vm, g, Sign(fr), um, f) else: return (Sign(fr), um, f, Sign(gr), vm, g) def cp_cmp(c, d): """ Compare two critical pairs c and d. c < d iff - lbp(c[0], _, Num(c[2]) < lbp(d[0], _, Num(d[2])) (this corresponds to um_c * f_c and um_d * f_d) or - lbp(c[0], _, Num(c[2]) >< lbp(d[0], _, Num(d[2])) and lbp(c[3], _, Num(c[5])) < lbp(d[3], _, Num(d[5])) (this corresponds to vm_c * g_c and vm_d * g_d) c > d otherwise """ zero = Polyn(c[2]).ring.zero c0 = lbp(c[0], zero, Num(c[2])) d0 = lbp(d[0], zero, Num(d[2])) r = lbp_cmp(c0, d0) if r == -1: return -1 if r == 0: c1 = lbp(c[3], zero, Num(c[5])) d1 = lbp(d[3], zero, Num(d[5])) r = lbp_cmp(c1, d1) if r == -1: return -1 #if r == 0: # return 0 return 1 def cp_key(c, ring): """ Key for comparing critical pairs. """ return (lbp_key(lbp(c[0], ring.zero, Num(c[2]))), lbp_key(lbp(c[3], ring.zero, Num(c[5])))) def s_poly(cp): """ Compute the S-polynomial of a critical pair. The S-polynomial of a critical pair cp is cp[1] * cp[2] - cp[4] * cp[5]. """ return lbp_sub(lbp_mul_term(cp[2], cp[1]), lbp_mul_term(cp[5], cp[4])) def is_rewritable_or_comparable(sign, num, B): """ Check if a labeled polynomial is redundant by checking if its signature and number imply rewritability or comparability. (sign, num) is comparable if there exists a labeled polynomial h in B, such that sign[1] (the index) is less than Sign(h)[1] and sign[0] is divisible by the leading monomial of h. (sign, num) is rewritable if there exists a labeled polynomial h in B, such thatsign[1] is equal to Sign(h)[1], num < Num(h) and sign[0] is divisible by Sign(h)[0]. """ for h in B: # comparable if sign[1] < Sign(h)[1]: if monomial_divides(Polyn(h).LM, sign[0]): return True # rewritable if sign[1] == Sign(h)[1]: if num < Num(h): if monomial_divides(Sign(h)[0], sign[0]): return True return False def f5_reduce(f, B): """ F5-reduce a labeled polynomial f by B. Continuously searches for non-zero labeled polynomial h in B, such that the leading term lt_h of h divides the leading term lt_f of f and Sign(lt_h * h) < Sign(f). If such a labeled polynomial h is found, f gets replaced by f - lt_f / lt_h * h. If no such h can be found or f is 0, f is no further F5-reducible and f gets returned. A polynomial that is reducible in the usual sense need not be F5-reducible, e.g.: >>> from sympy.polys.groebnertools import lbp, sig, f5_reduce, Polyn >>> from sympy.polys import ring, QQ, lex >>> R, x,y,z = ring("x,y,z", QQ, lex) >>> f = lbp(sig((1, 1, 1), 4), x, 3) >>> g = lbp(sig((0, 0, 0), 2), x, 2) >>> Polyn(f).rem([Polyn(g)]) 0 >>> f5_reduce(f, [g]) (((1, 1, 1), 4), x, 3) """ order = Polyn(f).ring.order domain = Polyn(f).ring.domain if not Polyn(f): return f while True: g = f for h in B: if Polyn(h): if monomial_divides(Polyn(h).LM, Polyn(f).LM): t = term_div(Polyn(f).LT, Polyn(h).LT, domain) if sig_cmp(sig_mult(Sign(h), t[0]), Sign(f), order) < 0: # The following check need not be done and is in general slower than without. #if not is_rewritable_or_comparable(Sign(gp), Num(gp), B): hp = lbp_mul_term(h, t) f = lbp_sub(f, hp) break if g == f or not Polyn(f): return f def _f5b(F, ring): """ Computes a reduced Groebner basis for the ideal generated by F. f5b is an implementation of the F5B algorithm by Yao Sun and Dingkang Wang. Similarly to Buchberger's algorithm, the algorithm proceeds by computing critical pairs, computing the S-polynomial, reducing it and adjoining the reduced S-polynomial if it is not 0. Unlike Buchberger's algorithm, each polynomial contains additional information, namely a signature and a number. The signature specifies the path of computation (i.e. from which polynomial in the original basis was it derived and how), the number says when the polynomial was added to the basis. With this information it is (often) possible to decide if an S-polynomial will reduce to 0 and can be discarded. Optimizations include: Reducing the generators before computing a Groebner basis, removing redundant critical pairs when a new polynomial enters the basis and sorting the critical pairs and the current basis. Once a Groebner basis has been found, it gets reduced. References ========== .. [1] Yao Sun, Dingkang Wang: "A New Proof for the Correctness of F5 (F5-Like) Algorithm", http://arxiv.org/abs/1004.0084 (specifically v4) .. [2] Thomas Becker, Volker Weispfenning, Groebner bases: A computational approach to commutative algebra, 1993, p. 203, 216 """ order = ring.order # reduce polynomials (like in Mario Pernici's implementation) (Becker, Weispfenning, p. 203) B = F while True: F = B B = [] for i in range(len(F)): p = F[i] r = p.rem(F[:i]) if r: B.append(r) if F == B: break # basis B = [lbp(sig(ring.zero_monom, i + 1), F[i], i + 1) for i in range(len(F))] B.sort(key=lambda f: order(Polyn(f).LM), reverse=True) # critical pairs CP = [critical_pair(B[i], B[j], ring) for i in range(len(B)) for j in range(i + 1, len(B))] CP.sort(key=lambda cp: cp_key(cp, ring), reverse=True) k = len(B) reductions_to_zero = 0 while len(CP): cp = CP.pop() # discard redundant critical pairs: if is_rewritable_or_comparable(cp[0], Num(cp[2]), B): continue if is_rewritable_or_comparable(cp[3], Num(cp[5]), B): continue s = s_poly(cp) p = f5_reduce(s, B) p = lbp(Sign(p), Polyn(p).monic(), k + 1) if Polyn(p): # remove old critical pairs, that become redundant when adding p: indices = [] for i, cp in enumerate(CP): if is_rewritable_or_comparable(cp[0], Num(cp[2]), [p]): indices.append(i) elif is_rewritable_or_comparable(cp[3], Num(cp[5]), [p]): indices.append(i) for i in reversed(indices): del CP[i] # only add new critical pairs that are not made redundant by p: for g in B: if Polyn(g): cp = critical_pair(p, g, ring) if is_rewritable_or_comparable(cp[0], Num(cp[2]), [p]): continue elif is_rewritable_or_comparable(cp[3], Num(cp[5]), [p]): continue CP.append(cp) # sort (other sorting methods/selection strategies were not as successful) CP.sort(key=lambda cp: cp_key(cp, ring), reverse=True) # insert p into B: m = Polyn(p).LM if order(m) <= order(Polyn(B[-1]).LM): B.append(p) else: for i, q in enumerate(B): if order(m) > order(Polyn(q).LM): B.insert(i, p) break k += 1 #print(len(B), len(CP), "%d critical pairs removed" % len(indices)) else: reductions_to_zero += 1 # reduce Groebner basis: H = [Polyn(g).monic() for g in B] H = red_groebner(H, ring) return sorted(H, key=lambda f: order(f.LM), reverse=True) def red_groebner(G, ring): """ Compute reduced Groebner basis, from BeckerWeispfenning93, p. 216 Selects a subset of generators, that already generate the ideal and computes a reduced Groebner basis for them. """ def reduction(P): """ The actual reduction algorithm. """ Q = [] for i, p in enumerate(P): h = p.rem(P[:i] + P[i + 1:]) if h: Q.append(h) return [p.monic() for p in Q] F = G H = [] while F: f0 = F.pop() if not any(monomial_divides(f.LM, f0.LM) for f in F + H): H.append(f0) # Becker, Weispfenning, p. 217: H is Groebner basis of the ideal generated by G. return reduction(H) def is_groebner(G, ring): """ Check if G is a Groebner basis. """ for i in range(len(G)): for j in range(i + 1, len(G)): s = spoly(G[i], G[j], ring) s = s.rem(G) if s: return False return True def is_minimal(G, ring): """ Checks if G is a minimal Groebner basis. """ order = ring.order domain = ring.domain G.sort(key=lambda g: order(g.LM)) for i, g in enumerate(G): if g.LC != domain.one: return False for h in G[:i] + G[i + 1:]: if monomial_divides(h.LM, g.LM): return False return True def is_reduced(G, ring): """ Checks if G is a reduced Groebner basis. """ order = ring.order domain = ring.domain G.sort(key=lambda g: order(g.LM)) for i, g in enumerate(G): if g.LC != domain.one: return False for term in g: for h in G[:i] + G[i + 1:]: if monomial_divides(h.LM, term[0]): return False return True def groebner_lcm(f, g): """ Computes LCM of two polynomials using Groebner bases. The LCM is computed as the unique generator of the intersection of the two ideals generated by `f` and `g`. The approach is to compute a Groebner basis with respect to lexicographic ordering of `t*f` and `(1 - t)*g`, where `t` is an unrelated variable and then filtering out the solution that doesn't contain `t`. References ========== .. [1] [Cox97]_ """ if f.ring != g.ring: raise ValueError("Values should be equal") ring = f.ring domain = ring.domain if not f or not g: return ring.zero if len(f) <= 1 and len(g) <= 1: monom = monomial_lcm(f.LM, g.LM) coeff = domain.lcm(f.LC, g.LC) return ring.term_new(monom, coeff) fc, f = f.primitive() gc, g = g.primitive() lcm = domain.lcm(fc, gc) f_terms = [ ((1,) + monom, coeff) for monom, coeff in f.terms() ] g_terms = [ ((0,) + monom, coeff) for monom, coeff in g.terms() ] \ + [ ((1,) + monom,-coeff) for monom, coeff in g.terms() ] t = Dummy("t") t_ring = ring.clone(symbols=(t,) + ring.symbols, order=lex) F = t_ring.from_terms(f_terms) G = t_ring.from_terms(g_terms) basis = groebner([F, G], t_ring) def is_independent(h, j): return all(not monom[j] for monom in h.monoms()) H = [ h for h in basis if is_independent(h, 0) ] h_terms = [ (monom[1:], coeff*lcm) for monom, coeff in H[0].terms() ] h = ring.from_terms(h_terms) return h def groebner_gcd(f, g): """Computes GCD of two polynomials using Groebner bases. """ if f.ring != g.ring: raise ValueError("Values should be equal") domain = f.ring.domain if not domain.is_Field: fc, f = f.primitive() gc, g = g.primitive() gcd = domain.gcd(fc, gc) H = (f*g).quo([groebner_lcm(f, g)]) if len(H) != 1: raise ValueError("Length should be 1") h = H[0] if not domain.is_Field: return gcd*h else: return h.monic()
40a468190aa693bd1b31ce9caa57e9133a6b2703be4ea1ba458ab70f288ed96d
""" This module contains functions for two multivariate resultants. These are: - Dixon's resultant. - Macaulay's resultant. Multivariate resultants are used to identify whether a multivariate system has common roots. That is when the resultant is equal to zero. """ from sympy import IndexedBase, Matrix, Mul, Poly from sympy import rem, prod, degree_list, diag from sympy.core.compatibility import range from sympy.polys.monomials import itermonomials, monomial_deg from sympy.polys.orderings import monomial_key from sympy.polys.polytools import poly_from_expr, total_degree from sympy.functions.combinatorial.factorials import binomial from itertools import combinations_with_replacement from sympy.utilities.exceptions import SymPyDeprecationWarning class DixonResultant(): """ A class for retrieving the Dixon's resultant of a multivariate system. Examples ======== >>> from sympy.core import symbols >>> from sympy.polys.multivariate_resultants import DixonResultant >>> x, y = symbols('x, y') >>> p = x + y >>> q = x ** 2 + y ** 3 >>> h = x ** 2 + y >>> dixon = DixonResultant(variables=[x, y], polynomials=[p, q, h]) >>> poly = dixon.get_dixon_polynomial() >>> matrix = dixon.get_dixon_matrix(polynomial=poly) >>> matrix Matrix([ [ 0, 0, -1, 0, -1], [ 0, -1, 0, -1, 0], [-1, 0, 1, 0, 0], [ 0, -1, 0, 0, 1], [-1, 0, 0, 1, 0]]) >>> matrix.det() 0 See Also ======== Notebook in examples: sympy/example/notebooks. References ========== .. [1] [Kapur1994]_ .. [2] [Palancz08]_ """ def __init__(self, polynomials, variables): """ A class that takes two lists, a list of polynomials and list of variables. Returns the Dixon matrix of the multivariate system. Parameters ---------- polynomials : list of polynomials A list of m n-degree polynomials variables: list A list of all n variables """ self.polynomials = polynomials self.variables = variables self.n = len(self.variables) self.m = len(self.polynomials) a = IndexedBase("alpha") # A list of n alpha variables (the replacing variables) self.dummy_variables = [a[i] for i in range(self.n)] # A list of the d_max of each variable. self._max_degrees = [max(degree_list(poly)[i] for poly in self.polynomials) for i in range(self.n)] @property def max_degrees(self): SymPyDeprecationWarning(feature="max_degrees", issue=17763, deprecated_since_version="1.5").warn() return self._max_degrees def get_dixon_polynomial(self): r""" Returns ======= dixon_polynomial: polynomial Dixon's polynomial is calculated as: delta = Delta(A) / ((x_1 - a_1) ... (x_n - a_n)) where, A = |p_1(x_1,... x_n), ..., p_n(x_1,... x_n)| |p_1(a_1,... x_n), ..., p_n(a_1,... x_n)| |... , ..., ...| |p_1(a_1,... a_n), ..., p_n(a_1,... a_n)| """ if self.m != (self.n + 1): raise ValueError('Method invalid for given combination.') # First row rows = [self.polynomials] temp = list(self.variables) for idx in range(self.n): temp[idx] = self.dummy_variables[idx] substitution = {var: t for var, t in zip(self.variables, temp)} rows.append([f.subs(substitution) for f in self.polynomials]) A = Matrix(rows) terms = zip(self.variables, self.dummy_variables) product_of_differences = Mul(*[a - b for a, b in terms]) dixon_polynomial = (A.det() / product_of_differences).factor() return poly_from_expr(dixon_polynomial, self.dummy_variables)[0] def get_upper_degree(self): SymPyDeprecationWarning(feature="get_upper_degree", useinstead="get_max_degrees", issue=17763, deprecated_since_version="1.5").warn() list_of_products = [self.variables[i] ** self._max_degrees[i] for i in range(self.n)] product = prod(list_of_products) product = Poly(product).monoms() return monomial_deg(*product) def get_max_degrees(self, polynomial): r""" Returns a list of the maximum degree of each variable appearing in the coefficients of the Dixon polynomial. The coefficients are viewed as polys in x_1, ... , x_n. """ deg_lists = [degree_list(Poly(poly, self.variables)) for poly in polynomial.coeffs()] max_degrees = [max(degs) for degs in zip(*deg_lists)] return max_degrees def get_dixon_matrix(self, polynomial): r""" Construct the Dixon matrix from the coefficients of polynomial \alpha. Each coefficient is viewed as a polynomial of x_1, ..., x_n. """ max_degrees = self.get_max_degrees(polynomial) # list of column headers of the Dixon matrix. monomials = itermonomials(self.variables, max_degrees) monomials = sorted(monomials, reverse=True, key=monomial_key('lex', self.variables)) dixon_matrix = Matrix([[Poly(c, *self.variables).coeff_monomial(m) for m in monomials] for c in polynomial.coeffs()]) # remove columns if needed if dixon_matrix.shape[0] != dixon_matrix.shape[1]: keep = [column for column in range(dixon_matrix.shape[-1]) if any([element != 0 for element in dixon_matrix[:, column]])] dixon_matrix = dixon_matrix[:, keep] return dixon_matrix class MacaulayResultant(): """ A class for calculating the Macaulay resultant. Note that the polynomials must be homogenized and their coefficients must be given as symbols. Examples ======== >>> from sympy.core import symbols >>> from sympy.polys.multivariate_resultants import MacaulayResultant >>> x, y, z = symbols('x, y, z') >>> a_0, a_1, a_2 = symbols('a_0, a_1, a_2') >>> b_0, b_1, b_2 = symbols('b_0, b_1, b_2') >>> c_0, c_1, c_2,c_3, c_4 = symbols('c_0, c_1, c_2, c_3, c_4') >>> f = a_0 * y - a_1 * x + a_2 * z >>> g = b_1 * x ** 2 + b_0 * y ** 2 - b_2 * z ** 2 >>> h = c_0 * y * z ** 2 - c_1 * x ** 3 + c_2 * x ** 2 * z - c_3 * x * z ** 2 + c_4 * z ** 3 >>> mac = MacaulayResultant(polynomials=[f, g, h], variables=[x, y, z]) >>> mac.monomial_set [x**4, x**3*y, x**3*z, x**2*y**2, x**2*y*z, x**2*z**2, x*y**3, x*y**2*z, x*y*z**2, x*z**3, y**4, y**3*z, y**2*z**2, y*z**3, z**4] >>> matrix = mac.get_matrix() >>> submatrix = mac.get_submatrix(matrix) >>> submatrix Matrix([ [-a_1, a_0, a_2, 0], [ 0, -a_1, 0, 0], [ 0, 0, -a_1, 0], [ 0, 0, 0, -a_1]]) See Also ======== Notebook in examples: sympy/example/notebooks. References ========== .. [1] [Bruce97]_ .. [2] [Stiller96]_ """ def __init__(self, polynomials, variables): """ Parameters ========== variables: list A list of all n variables polynomials : list of sympy polynomials A list of m n-degree polynomials """ self.polynomials = polynomials self.variables = variables self.n = len(variables) # A list of the d_max of each polynomial. self.degrees = [total_degree(poly, *self.variables) for poly in self.polynomials] self.degree_m = self._get_degree_m() self.monomials_size = self.get_size() # The set T of all possible monomials of degree degree_m self.monomial_set = self.get_monomials_of_certain_degree(self.degree_m) def _get_degree_m(self): r""" Returns ======= degree_m: int The degree_m is calculated as 1 + \sum_1 ^ n (d_i - 1), where d_i is the degree of the i polynomial """ return 1 + sum(d - 1 for d in self.degrees) def get_size(self): r""" Returns ======= size: int The size of set T. Set T is the set of all possible monomials of the n variables for degree equal to the degree_m """ return binomial(self.degree_m + self.n - 1, self.n - 1) def get_monomials_of_certain_degree(self, degree): """ Returns ======= monomials: list A list of monomials of a certain degree. """ monomials = [Mul(*monomial) for monomial in combinations_with_replacement(self.variables, degree)] return sorted(monomials, reverse=True, key=monomial_key('lex', self.variables)) def get_row_coefficients(self): """ Returns ======= row_coefficients: list The row coefficients of Macaulay's matrix """ row_coefficients = [] divisible = [] for i in range(self.n): if i == 0: degree = self.degree_m - self.degrees[i] monomial = self.get_monomials_of_certain_degree(degree) row_coefficients.append(monomial) else: divisible.append(self.variables[i - 1] ** self.degrees[i - 1]) degree = self.degree_m - self.degrees[i] poss_rows = self.get_monomials_of_certain_degree(degree) for div in divisible: for p in poss_rows: if rem(p, div) == 0: poss_rows = [item for item in poss_rows if item != p] row_coefficients.append(poss_rows) return row_coefficients def get_matrix(self): """ Returns ======= macaulay_matrix: Matrix The Macaulay numerator matrix """ rows = [] row_coefficients = self.get_row_coefficients() for i in range(self.n): for multiplier in row_coefficients[i]: coefficients = [] poly = Poly(self.polynomials[i] * multiplier, *self.variables) for mono in self.monomial_set: coefficients.append(poly.coeff_monomial(mono)) rows.append(coefficients) macaulay_matrix = Matrix(rows) return macaulay_matrix def get_reduced_nonreduced(self): r""" Returns ======= reduced: list A list of the reduced monomials non_reduced: list A list of the monomials that are not reduced Definition ========== A polynomial is said to be reduced in x_i, if its degree (the maximum degree of its monomials) in x_i is less than d_i. A polynomial that is reduced in all variables but one is said simply to be reduced. """ divisible = [] for m in self.monomial_set: temp = [] for i, v in enumerate(self.variables): temp.append(bool(total_degree(m, v) >= self.degrees[i])) divisible.append(temp) reduced = [i for i, r in enumerate(divisible) if sum(r) < self.n - 1] non_reduced = [i for i, r in enumerate(divisible) if sum(r) >= self.n -1] return reduced, non_reduced def get_submatrix(self, matrix): r""" Returns ======= macaulay_submatrix: Matrix The Macaulay denominator matrix. Columns that are non reduced are kept. The row which contains one of the a_{i}s is dropped. a_{i}s are the coefficients of x_i ^ {d_i}. """ reduced, non_reduced = self.get_reduced_nonreduced() # if reduced == [], then det(matrix) should be 1 if reduced == []: return diag([1]) # reduced != [] reduction_set = [v ** self.degrees[i] for i, v in enumerate(self.variables)] ais = list([self.polynomials[i].coeff(reduction_set[i]) for i in range(self.n)]) reduced_matrix = matrix[:, reduced] keep = [] for row in range(reduced_matrix.rows): check = [ai in reduced_matrix[row, :] for ai in ais] if True not in check: keep.append(row) return matrix[keep, non_reduced]
4e09af4fb54a9301ba599cd190a8150023a1fc05fe9662394fedb7b54c4ec31e
"""Line-like geometrical entities. Contains ======== LinearEntity Line Ray Segment LinearEntity2D Line2D Ray2D Segment2D LinearEntity3D Line3D Ray3D Segment3D """ from __future__ import division, print_function from sympy import Expr from sympy.core import S, sympify from sympy.core.compatibility import ordered from sympy.core.numbers import Rational, oo from sympy.core.relational import Eq from sympy.core.symbol import _symbol, Dummy from sympy.functions.elementary.trigonometric import (_pi_coeff as pi_coeff, acos, tan, atan2) from sympy.functions.elementary.piecewise import Piecewise from sympy.logic.boolalg import And from sympy.simplify.simplify import simplify from sympy.geometry.exceptions import GeometryError from sympy.core.containers import Tuple from sympy.core.decorators import deprecated from sympy.sets import Intersection from sympy.matrices import Matrix from sympy.solvers.solveset import linear_coeffs from .entity import GeometryEntity, GeometrySet from .point import Point, Point3D from sympy.utilities.misc import Undecidable, filldedent from sympy.utilities.exceptions import SymPyDeprecationWarning class LinearEntity(GeometrySet): """A base class for all linear entities (Line, Ray and Segment) in n-dimensional Euclidean space. Attributes ========== ambient_dimension direction length p1 p2 points Notes ===== This is an abstract class and is not meant to be instantiated. See Also ======== sympy.geometry.entity.GeometryEntity """ def __new__(cls, p1, p2=None, **kwargs): p1, p2 = Point._normalize_dimension(p1, p2) if p1 == p2: # sometimes we return a single point if we are not given two unique # points. This is done in the specific subclass raise ValueError( "%s.__new__ requires two unique Points." % cls.__name__) if len(p1) != len(p2): raise ValueError( "%s.__new__ requires two Points of equal dimension." % cls.__name__) return GeometryEntity.__new__(cls, p1, p2, **kwargs) def __contains__(self, other): """Return a definitive answer or else raise an error if it cannot be determined that other is on the boundaries of self.""" result = self.contains(other) if result is not None: return result else: raise Undecidable( "can't decide whether '%s' contains '%s'" % (self, other)) def _span_test(self, other): """Test whether the point `other` lies in the positive span of `self`. A point x is 'in front' of a point y if x.dot(y) >= 0. Return -1 if `other` is behind `self.p1`, 0 if `other` is `self.p1` and and 1 if `other` is in front of `self.p1`.""" if self.p1 == other: return 0 rel_pos = other - self.p1 d = self.direction if d.dot(rel_pos) > 0: return 1 return -1 @property def ambient_dimension(self): """A property method that returns the dimension of LinearEntity object. Parameters ========== p1 : LinearEntity Returns ======= dimension : integer Examples ======== >>> from sympy import Point, Line >>> p1, p2 = Point(0, 0), Point(1, 1) >>> l1 = Line(p1, p2) >>> l1.ambient_dimension 2 >>> from sympy import Point, Line >>> p1, p2 = Point(0, 0, 0), Point(1, 1, 1) >>> l1 = Line(p1, p2) >>> l1.ambient_dimension 3 """ return len(self.p1) def angle_between(l1, l2): """Return the non-reflex angle formed by rays emanating from the origin with directions the same as the direction vectors of the linear entities. Parameters ========== l1 : LinearEntity l2 : LinearEntity Returns ======= angle : angle in radians Notes ===== From the dot product of vectors v1 and v2 it is known that: ``dot(v1, v2) = |v1|*|v2|*cos(A)`` where A is the angle formed between the two vectors. We can get the directional vectors of the two lines and readily find the angle between the two using the above formula. See Also ======== is_perpendicular, Ray2D.closing_angle Examples ======== >>> from sympy import Point, Line, pi >>> e = Line((0, 0), (1, 0)) >>> ne = Line((0, 0), (1, 1)) >>> sw = Line((1, 1), (0, 0)) >>> ne.angle_between(e) pi/4 >>> sw.angle_between(e) 3*pi/4 To obtain the non-obtuse angle at the intersection of lines, use the ``smallest_angle_between`` method: >>> sw.smallest_angle_between(e) pi/4 >>> from sympy import Point3D, Line3D >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(-1, 2, 0) >>> l1, l2 = Line3D(p1, p2), Line3D(p2, p3) >>> l1.angle_between(l2) acos(-sqrt(2)/3) >>> l1.smallest_angle_between(l2) acos(sqrt(2)/3) """ if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity): raise TypeError('Must pass only LinearEntity objects') v1, v2 = l1.direction, l2.direction return acos(v1.dot(v2)/(abs(v1)*abs(v2))) def smallest_angle_between(l1, l2): """Return the smallest angle formed at the intersection of the lines containing the linear entities. Parameters ========== l1 : LinearEntity l2 : LinearEntity Returns ======= angle : angle in radians See Also ======== angle_between, is_perpendicular, Ray2D.closing_angle Examples ======== >>> from sympy import Point, Line, pi >>> p1, p2, p3 = Point(0, 0), Point(0, 4), Point(2, -2) >>> l1, l2 = Line(p1, p2), Line(p1, p3) >>> l1.smallest_angle_between(l2) pi/4 See Also ======== angle_between, Ray2D.closing_angle """ if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity): raise TypeError('Must pass only LinearEntity objects') v1, v2 = l1.direction, l2.direction return acos(abs(v1.dot(v2))/(abs(v1)*abs(v2))) def arbitrary_point(self, parameter='t'): """A parameterized point on the Line. Parameters ========== parameter : str, optional The name of the parameter which will be used for the parametric point. The default value is 't'. When this parameter is 0, the first point used to define the line will be returned, and when it is 1 the second point will be returned. Returns ======= point : Point Raises ====== ValueError When ``parameter`` already appears in the Line's definition. See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Point, Line >>> p1, p2 = Point(1, 0), Point(5, 3) >>> l1 = Line(p1, p2) >>> l1.arbitrary_point() Point2D(4*t + 1, 3*t) >>> from sympy import Point3D, Line3D >>> p1, p2 = Point3D(1, 0, 0), Point3D(5, 3, 1) >>> l1 = Line3D(p1, p2) >>> l1.arbitrary_point() Point3D(4*t + 1, 3*t, t) """ t = _symbol(parameter, real=True) if t.name in (f.name for f in self.free_symbols): raise ValueError(filldedent(''' Symbol %s already appears in object and cannot be used as a parameter. ''' % t.name)) # multiply on the right so the variable gets # combined with the coordinates of the point return self.p1 + (self.p2 - self.p1)*t @staticmethod def are_concurrent(*lines): """Is a sequence of linear entities concurrent? Two or more linear entities are concurrent if they all intersect at a single point. Parameters ========== lines : a sequence of linear entities. Returns ======= True : if the set of linear entities intersect in one point False : otherwise. See Also ======== sympy.geometry.util.intersection Examples ======== >>> from sympy import Point, Line, Line3D >>> p1, p2 = Point(0, 0), Point(3, 5) >>> p3, p4 = Point(-2, -2), Point(0, 2) >>> l1, l2, l3 = Line(p1, p2), Line(p1, p3), Line(p1, p4) >>> Line.are_concurrent(l1, l2, l3) True >>> l4 = Line(p2, p3) >>> Line.are_concurrent(l2, l3, l4) False >>> from sympy import Point3D, Line3D >>> p1, p2 = Point3D(0, 0, 0), Point3D(3, 5, 2) >>> p3, p4 = Point3D(-2, -2, -2), Point3D(0, 2, 1) >>> l1, l2, l3 = Line3D(p1, p2), Line3D(p1, p3), Line3D(p1, p4) >>> Line3D.are_concurrent(l1, l2, l3) True >>> l4 = Line3D(p2, p3) >>> Line3D.are_concurrent(l2, l3, l4) False """ common_points = Intersection(*lines) if common_points.is_FiniteSet and len(common_points) == 1: return True return False def contains(self, other): """Subclasses should implement this method and should return True if other is on the boundaries of self; False if not on the boundaries of self; None if a determination cannot be made.""" raise NotImplementedError() @property def direction(self): """The direction vector of the LinearEntity. Returns ======= p : a Point; the ray from the origin to this point is the direction of `self` Examples ======== >>> from sympy.geometry import Line >>> a, b = (1, 1), (1, 3) >>> Line(a, b).direction Point2D(0, 2) >>> Line(b, a).direction Point2D(0, -2) This can be reported so the distance from the origin is 1: >>> Line(b, a).direction.unit Point2D(0, -1) See Also ======== sympy.geometry.point.Point.unit """ return self.p2 - self.p1 def intersection(self, other): """The intersection with another geometrical entity. Parameters ========== o : Point or LinearEntity Returns ======= intersection : list of geometrical entities See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Point, Line, Segment >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(7, 7) >>> l1 = Line(p1, p2) >>> l1.intersection(p3) [Point2D(7, 7)] >>> p4, p5 = Point(5, 0), Point(0, 3) >>> l2 = Line(p4, p5) >>> l1.intersection(l2) [Point2D(15/8, 15/8)] >>> p6, p7 = Point(0, 5), Point(2, 6) >>> s1 = Segment(p6, p7) >>> l1.intersection(s1) [] >>> from sympy import Point3D, Line3D, Segment3D >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(7, 7, 7) >>> l1 = Line3D(p1, p2) >>> l1.intersection(p3) [Point3D(7, 7, 7)] >>> l1 = Line3D(Point3D(4,19,12), Point3D(5,25,17)) >>> l2 = Line3D(Point3D(-3, -15, -19), direction_ratio=[2,8,8]) >>> l1.intersection(l2) [Point3D(1, 1, -3)] >>> p6, p7 = Point3D(0, 5, 2), Point3D(2, 6, 3) >>> s1 = Segment3D(p6, p7) >>> l1.intersection(s1) [] """ def intersect_parallel_rays(ray1, ray2): if ray1.direction.dot(ray2.direction) > 0: # rays point in the same direction # so return the one that is "in front" return [ray2] if ray1._span_test(ray2.p1) >= 0 else [ray1] else: # rays point in opposite directions st = ray1._span_test(ray2.p1) if st < 0: return [] elif st == 0: return [ray2.p1] return [Segment(ray1.p1, ray2.p1)] def intersect_parallel_ray_and_segment(ray, seg): st1, st2 = ray._span_test(seg.p1), ray._span_test(seg.p2) if st1 < 0 and st2 < 0: return [] elif st1 >= 0 and st2 >= 0: return [seg] elif st1 >= 0: # st2 < 0: return [Segment(ray.p1, seg.p1)] elif st2 >= 0: # st1 < 0: return [Segment(ray.p1, seg.p2)] def intersect_parallel_segments(seg1, seg2): if seg1.contains(seg2): return [seg2] if seg2.contains(seg1): return [seg1] # direct the segments so they're oriented the same way if seg1.direction.dot(seg2.direction) < 0: seg2 = Segment(seg2.p2, seg2.p1) # order the segments so seg1 is "behind" seg2 if seg1._span_test(seg2.p1) < 0: seg1, seg2 = seg2, seg1 if seg2._span_test(seg1.p2) < 0: return [] return [Segment(seg2.p1, seg1.p2)] if not isinstance(other, GeometryEntity): other = Point(other, dim=self.ambient_dimension) if other.is_Point: if self.contains(other): return [other] else: return [] elif isinstance(other, LinearEntity): # break into cases based on whether # the lines are parallel, non-parallel intersecting, or skew pts = Point._normalize_dimension(self.p1, self.p2, other.p1, other.p2) rank = Point.affine_rank(*pts) if rank == 1: # we're collinear if isinstance(self, Line): return [other] if isinstance(other, Line): return [self] if isinstance(self, Ray) and isinstance(other, Ray): return intersect_parallel_rays(self, other) if isinstance(self, Ray) and isinstance(other, Segment): return intersect_parallel_ray_and_segment(self, other) if isinstance(self, Segment) and isinstance(other, Ray): return intersect_parallel_ray_and_segment(other, self) if isinstance(self, Segment) and isinstance(other, Segment): return intersect_parallel_segments(self, other) elif rank == 2: # we're in the same plane l1 = Line(*pts[:2]) l2 = Line(*pts[2:]) # check to see if we're parallel. If we are, we can't # be intersecting, since the collinear case was already # handled if l1.direction.is_scalar_multiple(l2.direction): return [] # find the intersection as if everything were lines # by solving the equation t*d + p1 == s*d' + p1' m = Matrix([l1.direction, -l2.direction]).transpose() v = Matrix([l2.p1 - l1.p1]).transpose() # we cannot use m.solve(v) because that only works for square matrices m_rref, pivots = m.col_insert(2, v).rref(simplify=True) # rank == 2 ensures we have 2 pivots, but let's check anyway if len(pivots) != 2: raise GeometryError("Failed when solving Mx=b when M={} and b={}".format(m, v)) coeff = m_rref[0, 2] line_intersection = l1.direction*coeff + self.p1 # if we're both lines, we can skip a containment check if isinstance(self, Line) and isinstance(other, Line): return [line_intersection] if ((isinstance(self, Line) or self.contains(line_intersection)) and other.contains(line_intersection)): return [line_intersection] return [] else: # we're skew return [] return other.intersection(self) def is_parallel(l1, l2): """Are two linear entities parallel? Parameters ========== l1 : LinearEntity l2 : LinearEntity Returns ======= True : if l1 and l2 are parallel, False : otherwise. See Also ======== coefficients Examples ======== >>> from sympy import Point, Line >>> p1, p2 = Point(0, 0), Point(1, 1) >>> p3, p4 = Point(3, 4), Point(6, 7) >>> l1, l2 = Line(p1, p2), Line(p3, p4) >>> Line.is_parallel(l1, l2) True >>> p5 = Point(6, 6) >>> l3 = Line(p3, p5) >>> Line.is_parallel(l1, l3) False >>> from sympy import Point3D, Line3D >>> p1, p2 = Point3D(0, 0, 0), Point3D(3, 4, 5) >>> p3, p4 = Point3D(2, 1, 1), Point3D(8, 9, 11) >>> l1, l2 = Line3D(p1, p2), Line3D(p3, p4) >>> Line3D.is_parallel(l1, l2) True >>> p5 = Point3D(6, 6, 6) >>> l3 = Line3D(p3, p5) >>> Line3D.is_parallel(l1, l3) False """ if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity): raise TypeError('Must pass only LinearEntity objects') return l1.direction.is_scalar_multiple(l2.direction) def is_perpendicular(l1, l2): """Are two linear entities perpendicular? Parameters ========== l1 : LinearEntity l2 : LinearEntity Returns ======= True : if l1 and l2 are perpendicular, False : otherwise. See Also ======== coefficients Examples ======== >>> from sympy import Point, Line >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(-1, 1) >>> l1, l2 = Line(p1, p2), Line(p1, p3) >>> l1.is_perpendicular(l2) True >>> p4 = Point(5, 3) >>> l3 = Line(p1, p4) >>> l1.is_perpendicular(l3) False >>> from sympy import Point3D, Line3D >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(-1, 2, 0) >>> l1, l2 = Line3D(p1, p2), Line3D(p2, p3) >>> l1.is_perpendicular(l2) False >>> p4 = Point3D(5, 3, 7) >>> l3 = Line3D(p1, p4) >>> l1.is_perpendicular(l3) False """ if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity): raise TypeError('Must pass only LinearEntity objects') return S.Zero.equals(l1.direction.dot(l2.direction)) def is_similar(self, other): """ Return True if self and other are contained in the same line. Examples ======== >>> from sympy import Point, Line >>> p1, p2, p3 = Point(0, 1), Point(3, 4), Point(2, 3) >>> l1 = Line(p1, p2) >>> l2 = Line(p1, p3) >>> l1.is_similar(l2) True """ l = Line(self.p1, self.p2) return l.contains(other) @property def length(self): """ The length of the line. Examples ======== >>> from sympy import Point, Line >>> p1, p2 = Point(0, 0), Point(3, 5) >>> l1 = Line(p1, p2) >>> l1.length oo """ return S.Infinity @property def p1(self): """The first defining point of a linear entity. See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Point, Line >>> p1, p2 = Point(0, 0), Point(5, 3) >>> l = Line(p1, p2) >>> l.p1 Point2D(0, 0) """ return self.args[0] @property def p2(self): """The second defining point of a linear entity. See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Point, Line >>> p1, p2 = Point(0, 0), Point(5, 3) >>> l = Line(p1, p2) >>> l.p2 Point2D(5, 3) """ return self.args[1] def parallel_line(self, p): """Create a new Line parallel to this linear entity which passes through the point `p`. Parameters ========== p : Point Returns ======= line : Line See Also ======== is_parallel Examples ======== >>> from sympy import Point, Line >>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2) >>> l1 = Line(p1, p2) >>> l2 = l1.parallel_line(p3) >>> p3 in l2 True >>> l1.is_parallel(l2) True >>> from sympy import Point3D, Line3D >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(2, 3, 4), Point3D(-2, 2, 0) >>> l1 = Line3D(p1, p2) >>> l2 = l1.parallel_line(p3) >>> p3 in l2 True >>> l1.is_parallel(l2) True """ p = Point(p, dim=self.ambient_dimension) return Line(p, p + self.direction) def perpendicular_line(self, p): """Create a new Line perpendicular to this linear entity which passes through the point `p`. Parameters ========== p : Point Returns ======= line : Line See Also ======== sympy.geometry.line.LinearEntity.is_perpendicular, perpendicular_segment Examples ======== >>> from sympy import Point, Line >>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2) >>> l1 = Line(p1, p2) >>> l2 = l1.perpendicular_line(p3) >>> p3 in l2 True >>> l1.is_perpendicular(l2) True >>> from sympy import Point3D, Line3D >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(2, 3, 4), Point3D(-2, 2, 0) >>> l1 = Line3D(p1, p2) >>> l2 = l1.perpendicular_line(p3) >>> p3 in l2 True >>> l1.is_perpendicular(l2) True """ p = Point(p, dim=self.ambient_dimension) if p in self: p = p + self.direction.orthogonal_direction return Line(p, self.projection(p)) def perpendicular_segment(self, p): """Create a perpendicular line segment from `p` to this line. The enpoints of the segment are ``p`` and the closest point in the line containing self. (If self is not a line, the point might not be in self.) Parameters ========== p : Point Returns ======= segment : Segment Notes ===== Returns `p` itself if `p` is on this linear entity. See Also ======== perpendicular_line Examples ======== >>> from sympy import Point, Line >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 2) >>> l1 = Line(p1, p2) >>> s1 = l1.perpendicular_segment(p3) >>> l1.is_perpendicular(s1) True >>> p3 in s1 True >>> l1.perpendicular_segment(Point(4, 0)) Segment2D(Point2D(4, 0), Point2D(2, 2)) >>> from sympy import Point3D, Line3D >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, 2, 0) >>> l1 = Line3D(p1, p2) >>> s1 = l1.perpendicular_segment(p3) >>> l1.is_perpendicular(s1) True >>> p3 in s1 True >>> l1.perpendicular_segment(Point3D(4, 0, 0)) Segment3D(Point3D(4, 0, 0), Point3D(4/3, 4/3, 4/3)) """ p = Point(p, dim=self.ambient_dimension) if p in self: return p l = self.perpendicular_line(p) # The intersection should be unique, so unpack the singleton p2, = Intersection(Line(self.p1, self.p2), l) return Segment(p, p2) @property def points(self): """The two points used to define this linear entity. Returns ======= points : tuple of Points See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Point, Line >>> p1, p2 = Point(0, 0), Point(5, 11) >>> l1 = Line(p1, p2) >>> l1.points (Point2D(0, 0), Point2D(5, 11)) """ return (self.p1, self.p2) def projection(self, other): """Project a point, line, ray, or segment onto this linear entity. Parameters ========== other : Point or LinearEntity (Line, Ray, Segment) Returns ======= projection : Point or LinearEntity (Line, Ray, Segment) The return type matches the type of the parameter ``other``. Raises ====== GeometryError When method is unable to perform projection. Notes ===== A projection involves taking the two points that define the linear entity and projecting those points onto a Line and then reforming the linear entity using these projections. A point P is projected onto a line L by finding the point on L that is closest to P. This point is the intersection of L and the line perpendicular to L that passes through P. See Also ======== sympy.geometry.point.Point, perpendicular_line Examples ======== >>> from sympy import Point, Line, Segment, Rational >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(Rational(1, 2), 0) >>> l1 = Line(p1, p2) >>> l1.projection(p3) Point2D(1/4, 1/4) >>> p4, p5 = Point(10, 0), Point(12, 1) >>> s1 = Segment(p4, p5) >>> l1.projection(s1) Segment2D(Point2D(5, 5), Point2D(13/2, 13/2)) >>> p1, p2, p3 = Point(0, 0, 1), Point(1, 1, 2), Point(2, 0, 1) >>> l1 = Line(p1, p2) >>> l1.projection(p3) Point3D(2/3, 2/3, 5/3) >>> p4, p5 = Point(10, 0, 1), Point(12, 1, 3) >>> s1 = Segment(p4, p5) >>> l1.projection(s1) Segment3D(Point3D(10/3, 10/3, 13/3), Point3D(5, 5, 6)) """ if not isinstance(other, GeometryEntity): other = Point(other, dim=self.ambient_dimension) def proj_point(p): return Point.project(p - self.p1, self.direction) + self.p1 if isinstance(other, Point): return proj_point(other) elif isinstance(other, LinearEntity): p1, p2 = proj_point(other.p1), proj_point(other.p2) # test to see if we're degenerate if p1 == p2: return p1 projected = other.__class__(p1, p2) projected = Intersection(self, projected) # if we happen to have intersected in only a point, return that if projected.is_FiniteSet and len(projected) == 1: # projected is a set of size 1, so unpack it in `a` a, = projected return a # order args so projection is in the same direction as self if self.direction.dot(projected.direction) < 0: p1, p2 = projected.args projected = projected.func(p2, p1) return projected raise GeometryError( "Do not know how to project %s onto %s" % (other, self)) def random_point(self, seed=None): """A random point on a LinearEntity. Returns ======= point : Point See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Point, Line, Ray, Segment >>> p1, p2 = Point(0, 0), Point(5, 3) >>> line = Line(p1, p2) >>> r = line.random_point(seed=42) # seed value is optional >>> r.n(3) Point2D(-0.72, -0.432) >>> r in line True >>> Ray(p1, p2).random_point(seed=42).n(3) Point2D(0.72, 0.432) >>> Segment(p1, p2).random_point(seed=42).n(3) Point2D(3.2, 1.92) """ import random if seed is not None: rng = random.Random(seed) else: rng = random t = Dummy() pt = self.arbitrary_point(t) if isinstance(self, Ray): v = abs(rng.gauss(0, 1)) elif isinstance(self, Segment): v = rng.random() elif isinstance(self, Line): v = rng.gauss(0, 1) else: raise NotImplementedError('unhandled line type') return pt.subs(t, Rational(v)) class Line(LinearEntity): """An infinite line in space. A 2D line is declared with two distinct points, point and slope, or an equation. A 3D line may be defined with a point and a direction ratio. Parameters ========== p1 : Point p2 : Point slope : sympy expression direction_ratio : list equation : equation of a line Notes ===== `Line` will automatically subclass to `Line2D` or `Line3D` based on the dimension of `p1`. The `slope` argument is only relevant for `Line2D` and the `direction_ratio` argument is only relevant for `Line3D`. See Also ======== sympy.geometry.point.Point sympy.geometry.line.Line2D sympy.geometry.line.Line3D Examples ======== >>> from sympy import Point, Eq >>> from sympy.geometry import Line, Segment >>> from sympy.abc import x, y, a, b >>> L = Line(Point(2,3), Point(3,5)) >>> L Line2D(Point2D(2, 3), Point2D(3, 5)) >>> L.points (Point2D(2, 3), Point2D(3, 5)) >>> L.equation() -2*x + y + 1 >>> L.coefficients (-2, 1, 1) Instantiate with keyword ``slope``: >>> Line(Point(0, 0), slope=0) Line2D(Point2D(0, 0), Point2D(1, 0)) Instantiate with another linear object >>> s = Segment((0, 0), (0, 1)) >>> Line(s).equation() x The line corresponding to an equation in the for `ax + by + c = 0`, can be entered: >>> Line(3*x + y + 18) Line2D(Point2D(0, -18), Point2D(1, -21)) If `x` or `y` has a different name, then they can be specified, too, as a string (to match the name) or symbol: >>> Line(Eq(3*a + b, -18), x='a', y=b) Line2D(Point2D(0, -18), Point2D(1, -21)) """ def __new__(cls, *args, **kwargs): from sympy.geometry.util import find if len(args) == 1 and isinstance(args[0], Expr): x = kwargs.get('x', 'x') y = kwargs.get('y', 'y') equation = args[0] if isinstance(equation, Eq): equation = equation.lhs - equation.rhs xin, yin = x, y x = find(x, equation) or Dummy() y = find(y, equation) or Dummy() a, b, c = linear_coeffs(equation, x, y) if b: return Line((0, -c/b), slope=-a/b) if a: return Line((-c/a, 0), slope=oo) raise ValueError('neither %s nor %s were found in the equation' % (xin, yin)) else: if len(args) > 0: p1 = args[0] if len(args) > 1: p2 = args[1] else: p2=None if isinstance(p1, LinearEntity): if p2: raise ValueError('If p1 is a LinearEntity, p2 must be None.') dim = len(p1.p1) else: p1 = Point(p1) dim = len(p1) if p2 is not None or isinstance(p2, Point) and p2.ambient_dimension != dim: p2 = Point(p2) if dim == 2: return Line2D(p1, p2, **kwargs) elif dim == 3: return Line3D(p1, p2, **kwargs) return LinearEntity.__new__(cls, p1, p2, **kwargs) def contains(self, other): """ Return True if `other` is on this Line, or False otherwise. Examples ======== >>> from sympy import Line,Point >>> p1, p2 = Point(0, 1), Point(3, 4) >>> l = Line(p1, p2) >>> l.contains(p1) True >>> l.contains((0, 1)) True >>> l.contains((0, 0)) False >>> a = (0, 0, 0) >>> b = (1, 1, 1) >>> c = (2, 2, 2) >>> l1 = Line(a, b) >>> l2 = Line(b, a) >>> l1 == l2 False >>> l1 in l2 True """ if not isinstance(other, GeometryEntity): other = Point(other, dim=self.ambient_dimension) if isinstance(other, Point): return Point.is_collinear(other, self.p1, self.p2) if isinstance(other, LinearEntity): return Point.is_collinear(self.p1, self.p2, other.p1, other.p2) return False def distance(self, other): """ Finds the shortest distance between a line and a point. Raises ====== NotImplementedError is raised if `other` is not a Point Examples ======== >>> from sympy import Point, Line >>> p1, p2 = Point(0, 0), Point(1, 1) >>> s = Line(p1, p2) >>> s.distance(Point(-1, 1)) sqrt(2) >>> s.distance((-1, 2)) 3*sqrt(2)/2 >>> p1, p2 = Point(0, 0, 0), Point(1, 1, 1) >>> s = Line(p1, p2) >>> s.distance(Point(-1, 1, 1)) 2*sqrt(6)/3 >>> s.distance((-1, 1, 1)) 2*sqrt(6)/3 """ if not isinstance(other, GeometryEntity): other = Point(other, dim=self.ambient_dimension) if self.contains(other): return S.Zero return self.perpendicular_segment(other).length @deprecated(useinstead="equals", issue=12860, deprecated_since_version="1.0") def equal(self, other): return self.equals(other) def equals(self, other): """Returns True if self and other are the same mathematical entities""" if not isinstance(other, Line): return False return Point.is_collinear(self.p1, other.p1, self.p2, other.p2) def plot_interval(self, parameter='t'): """The plot interval for the default geometric plot of line. Gives values that will produce a line that is +/- 5 units long (where a unit is the distance between the two points that define the line). Parameters ========== parameter : str, optional Default value is 't'. Returns ======= plot_interval : list (plot interval) [parameter, lower_bound, upper_bound] Examples ======== >>> from sympy import Point, Line >>> p1, p2 = Point(0, 0), Point(5, 3) >>> l1 = Line(p1, p2) >>> l1.plot_interval() [t, -5, 5] """ t = _symbol(parameter, real=True) return [t, -5, 5] class Ray(LinearEntity): """A Ray is a semi-line in the space with a source point and a direction. Parameters ========== p1 : Point The source of the Ray p2 : Point or radian value This point determines the direction in which the Ray propagates. If given as an angle it is interpreted in radians with the positive direction being ccw. Attributes ========== source See Also ======== sympy.geometry.line.Ray2D sympy.geometry.line.Ray3D sympy.geometry.point.Point sympy.geometry.line.Line Notes ===== `Ray` will automatically subclass to `Ray2D` or `Ray3D` based on the dimension of `p1`. Examples ======== >>> from sympy import Point, pi >>> from sympy.geometry import Ray >>> r = Ray(Point(2, 3), Point(3, 5)) >>> r Ray2D(Point2D(2, 3), Point2D(3, 5)) >>> r.points (Point2D(2, 3), Point2D(3, 5)) >>> r.source Point2D(2, 3) >>> r.xdirection oo >>> r.ydirection oo >>> r.slope 2 >>> Ray(Point(0, 0), angle=pi/4).slope 1 """ def __new__(cls, p1, p2=None, **kwargs): p1 = Point(p1) if p2 is not None: p1, p2 = Point._normalize_dimension(p1, Point(p2)) dim = len(p1) if dim == 2: return Ray2D(p1, p2, **kwargs) elif dim == 3: return Ray3D(p1, p2, **kwargs) return LinearEntity.__new__(cls, p1, *pts, **kwargs) def _svg(self, scale_factor=1., fill_color="#66cc99"): """Returns SVG path element for the LinearEntity. Parameters ========== scale_factor : float Multiplication factor for the SVG stroke-width. Default is 1. fill_color : str, optional Hex string for fill color. Default is "#66cc99". """ from sympy.core.evalf import N verts = (N(self.p1), N(self.p2)) coords = ["{0},{1}".format(p.x, p.y) for p in verts] path = "M {0} L {1}".format(coords[0], " L ".join(coords[1:])) return ( '<path fill-rule="evenodd" fill="{2}" stroke="#555555" ' 'stroke-width="{0}" opacity="0.6" d="{1}" ' 'marker-start="url(#markerCircle)" marker-end="url(#markerArrow)"/>' ).format(2. * scale_factor, path, fill_color) def contains(self, other): """ Is other GeometryEntity contained in this Ray? Examples ======== >>> from sympy import Ray,Point,Segment >>> p1, p2 = Point(0, 0), Point(4, 4) >>> r = Ray(p1, p2) >>> r.contains(p1) True >>> r.contains((1, 1)) True >>> r.contains((1, 3)) False >>> s = Segment((1, 1), (2, 2)) >>> r.contains(s) True >>> s = Segment((1, 2), (2, 5)) >>> r.contains(s) False >>> r1 = Ray((2, 2), (3, 3)) >>> r.contains(r1) True >>> r1 = Ray((2, 2), (3, 5)) >>> r.contains(r1) False """ if not isinstance(other, GeometryEntity): other = Point(other, dim=self.ambient_dimension) if isinstance(other, Point): if Point.is_collinear(self.p1, self.p2, other): # if we're in the direction of the ray, our # direction vector dot the ray's direction vector # should be non-negative return bool((self.p2 - self.p1).dot(other - self.p1) >= S.Zero) return False elif isinstance(other, Ray): if Point.is_collinear(self.p1, self.p2, other.p1, other.p2): return bool((self.p2 - self.p1).dot(other.p2 - other.p1) > S.Zero) return False elif isinstance(other, Segment): return other.p1 in self and other.p2 in self # No other known entity can be contained in a Ray return False def distance(self, other): """ Finds the shortest distance between the ray and a point. Raises ====== NotImplementedError is raised if `other` is not a Point Examples ======== >>> from sympy import Point, Ray >>> p1, p2 = Point(0, 0), Point(1, 1) >>> s = Ray(p1, p2) >>> s.distance(Point(-1, -1)) sqrt(2) >>> s.distance((-1, 2)) 3*sqrt(2)/2 >>> p1, p2 = Point(0, 0, 0), Point(1, 1, 2) >>> s = Ray(p1, p2) >>> s Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 2)) >>> s.distance(Point(-1, -1, 2)) 4*sqrt(3)/3 >>> s.distance((-1, -1, 2)) 4*sqrt(3)/3 """ if not isinstance(other, GeometryEntity): other = Point(other, dim=self.ambient_dimension) if self.contains(other): return S.Zero proj = Line(self.p1, self.p2).projection(other) if self.contains(proj): return abs(other - proj) else: return abs(other - self.source) def equals(self, other): """Returns True if self and other are the same mathematical entities""" if not isinstance(other, Ray): return False return self.source == other.source and other.p2 in self def plot_interval(self, parameter='t'): """The plot interval for the default geometric plot of the Ray. Gives values that will produce a ray that is 10 units long (where a unit is the distance between the two points that define the ray). Parameters ========== parameter : str, optional Default value is 't'. Returns ======= plot_interval : list [parameter, lower_bound, upper_bound] Examples ======== >>> from sympy import Ray, pi >>> r = Ray((0, 0), angle=pi/4) >>> r.plot_interval() [t, 0, 10] """ t = _symbol(parameter, real=True) return [t, 0, 10] @property def source(self): """The point from which the ray emanates. See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Point, Ray >>> p1, p2 = Point(0, 0), Point(4, 1) >>> r1 = Ray(p1, p2) >>> r1.source Point2D(0, 0) >>> p1, p2 = Point(0, 0, 0), Point(4, 1, 5) >>> r1 = Ray(p2, p1) >>> r1.source Point3D(4, 1, 5) """ return self.p1 class Segment(LinearEntity): """A line segment in space. Parameters ========== p1 : Point p2 : Point Attributes ========== length : number or sympy expression midpoint : Point See Also ======== sympy.geometry.line.Segment2D sympy.geometry.line.Segment3D sympy.geometry.point.Point sympy.geometry.line.Line Notes ===== If 2D or 3D points are used to define `Segment`, it will be automatically subclassed to `Segment2D` or `Segment3D`. Examples ======== >>> from sympy import Point >>> from sympy.geometry import Segment >>> Segment((1, 0), (1, 1)) # tuples are interpreted as pts Segment2D(Point2D(1, 0), Point2D(1, 1)) >>> s = Segment(Point(4, 3), Point(1, 1)) >>> s.points (Point2D(4, 3), Point2D(1, 1)) >>> s.slope 2/3 >>> s.length sqrt(13) >>> s.midpoint Point2D(5/2, 2) >>> Segment((1, 0, 0), (1, 1, 1)) # tuples are interpreted as pts Segment3D(Point3D(1, 0, 0), Point3D(1, 1, 1)) >>> s = Segment(Point(4, 3, 9), Point(1, 1, 7)); s Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7)) >>> s.points (Point3D(4, 3, 9), Point3D(1, 1, 7)) >>> s.length sqrt(17) >>> s.midpoint Point3D(5/2, 2, 8) """ def __new__(cls, p1, p2, **kwargs): p1, p2 = Point._normalize_dimension(Point(p1), Point(p2)) dim = len(p1) if dim == 2: return Segment2D(p1, p2, **kwargs) elif dim == 3: return Segment3D(p1, p2, **kwargs) return LinearEntity.__new__(cls, p1, p2, **kwargs) def contains(self, other): """ Is the other GeometryEntity contained within this Segment? Examples ======== >>> from sympy import Point, Segment >>> p1, p2 = Point(0, 1), Point(3, 4) >>> s = Segment(p1, p2) >>> s2 = Segment(p2, p1) >>> s.contains(s2) True >>> from sympy import Point3D, Segment3D >>> p1, p2 = Point3D(0, 1, 1), Point3D(3, 4, 5) >>> s = Segment3D(p1, p2) >>> s2 = Segment3D(p2, p1) >>> s.contains(s2) True >>> s.contains((p1 + p2) / 2) True """ if not isinstance(other, GeometryEntity): other = Point(other, dim=self.ambient_dimension) if isinstance(other, Point): if Point.is_collinear(other, self.p1, self.p2): if isinstance(self, Segment2D): # if it is collinear and is in the bounding box of the # segment then it must be on the segment vert = (1/self.slope).equals(0) if vert is False: isin = (self.p1.x - other.x)*(self.p2.x - other.x) <= 0 if isin in (True, False): return isin if vert is True: isin = (self.p1.y - other.y)*(self.p2.y - other.y) <= 0 if isin in (True, False): return isin # use the triangle inequality d1, d2 = other - self.p1, other - self.p2 d = self.p2 - self.p1 # without the call to simplify, sympy cannot tell that an expression # like (a+b)*(a/2+b/2) is always non-negative. If it cannot be # determined, raise an Undecidable error try: # the triangle inequality says that |d1|+|d2| >= |d| and is strict # only if other lies in the line segment return bool(simplify(Eq(abs(d1) + abs(d2) - abs(d), 0))) except TypeError: raise Undecidable("Cannot determine if {} is in {}".format(other, self)) if isinstance(other, Segment): return other.p1 in self and other.p2 in self return False def equals(self, other): """Returns True if self and other are the same mathematical entities""" return isinstance(other, self.func) and list( ordered(self.args)) == list(ordered(other.args)) def distance(self, other): """ Finds the shortest distance between a line segment and a point. Raises ====== NotImplementedError is raised if `other` is not a Point Examples ======== >>> from sympy import Point, Segment >>> p1, p2 = Point(0, 1), Point(3, 4) >>> s = Segment(p1, p2) >>> s.distance(Point(10, 15)) sqrt(170) >>> s.distance((0, 12)) sqrt(73) >>> from sympy import Point3D, Segment3D >>> p1, p2 = Point3D(0, 0, 3), Point3D(1, 1, 4) >>> s = Segment3D(p1, p2) >>> s.distance(Point3D(10, 15, 12)) sqrt(341) >>> s.distance((10, 15, 12)) sqrt(341) """ if not isinstance(other, GeometryEntity): other = Point(other, dim=self.ambient_dimension) if isinstance(other, Point): vp1 = other - self.p1 vp2 = other - self.p2 dot_prod_sign_1 = self.direction.dot(vp1) >= 0 dot_prod_sign_2 = self.direction.dot(vp2) <= 0 if dot_prod_sign_1 and dot_prod_sign_2: return Line(self.p1, self.p2).distance(other) if dot_prod_sign_1 and not dot_prod_sign_2: return abs(vp2) if not dot_prod_sign_1 and dot_prod_sign_2: return abs(vp1) raise NotImplementedError() @property def length(self): """The length of the line segment. See Also ======== sympy.geometry.point.Point.distance Examples ======== >>> from sympy import Point, Segment >>> p1, p2 = Point(0, 0), Point(4, 3) >>> s1 = Segment(p1, p2) >>> s1.length 5 >>> from sympy import Point3D, Segment3D >>> p1, p2 = Point3D(0, 0, 0), Point3D(4, 3, 3) >>> s1 = Segment3D(p1, p2) >>> s1.length sqrt(34) """ return Point.distance(self.p1, self.p2) @property def midpoint(self): """The midpoint of the line segment. See Also ======== sympy.geometry.point.Point.midpoint Examples ======== >>> from sympy import Point, Segment >>> p1, p2 = Point(0, 0), Point(4, 3) >>> s1 = Segment(p1, p2) >>> s1.midpoint Point2D(2, 3/2) >>> from sympy import Point3D, Segment3D >>> p1, p2 = Point3D(0, 0, 0), Point3D(4, 3, 3) >>> s1 = Segment3D(p1, p2) >>> s1.midpoint Point3D(2, 3/2, 3/2) """ return Point.midpoint(self.p1, self.p2) def perpendicular_bisector(self, p=None): """The perpendicular bisector of this segment. If no point is specified or the point specified is not on the bisector then the bisector is returned as a Line. Otherwise a Segment is returned that joins the point specified and the intersection of the bisector and the segment. Parameters ========== p : Point Returns ======= bisector : Line or Segment See Also ======== LinearEntity.perpendicular_segment Examples ======== >>> from sympy import Point, Segment >>> p1, p2, p3 = Point(0, 0), Point(6, 6), Point(5, 1) >>> s1 = Segment(p1, p2) >>> s1.perpendicular_bisector() Line2D(Point2D(3, 3), Point2D(-3, 9)) >>> s1.perpendicular_bisector(p3) Segment2D(Point2D(5, 1), Point2D(3, 3)) """ l = self.perpendicular_line(self.midpoint) if p is not None: p2 = Point(p, dim=self.ambient_dimension) if p2 in l: return Segment(p2, self.midpoint) return l def plot_interval(self, parameter='t'): """The plot interval for the default geometric plot of the Segment gives values that will produce the full segment in a plot. Parameters ========== parameter : str, optional Default value is 't'. Returns ======= plot_interval : list [parameter, lower_bound, upper_bound] Examples ======== >>> from sympy import Point, Segment >>> p1, p2 = Point(0, 0), Point(5, 3) >>> s1 = Segment(p1, p2) >>> s1.plot_interval() [t, 0, 1] """ t = _symbol(parameter, real=True) return [t, 0, 1] class LinearEntity2D(LinearEntity): """A base class for all linear entities (line, ray and segment) in a 2-dimensional Euclidean space. Attributes ========== p1 p2 coefficients slope points Notes ===== This is an abstract class and is not meant to be instantiated. See Also ======== sympy.geometry.entity.GeometryEntity """ @property def bounds(self): """Return a tuple (xmin, ymin, xmax, ymax) representing the bounding rectangle for the geometric figure. """ verts = self.points xs = [p.x for p in verts] ys = [p.y for p in verts] return (min(xs), min(ys), max(xs), max(ys)) def perpendicular_line(self, p): """Create a new Line perpendicular to this linear entity which passes through the point `p`. Parameters ========== p : Point Returns ======= line : Line See Also ======== sympy.geometry.line.LinearEntity.is_perpendicular, perpendicular_segment Examples ======== >>> from sympy import Point, Line >>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2) >>> l1 = Line(p1, p2) >>> l2 = l1.perpendicular_line(p3) >>> p3 in l2 True >>> l1.is_perpendicular(l2) True """ p = Point(p, dim=self.ambient_dimension) # any two lines in R^2 intersect, so blindly making # a line through p in an orthogonal direction will work return Line(p, p + self.direction.orthogonal_direction) @property def slope(self): """The slope of this linear entity, or infinity if vertical. Returns ======= slope : number or sympy expression See Also ======== coefficients Examples ======== >>> from sympy import Point, Line >>> p1, p2 = Point(0, 0), Point(3, 5) >>> l1 = Line(p1, p2) >>> l1.slope 5/3 >>> p3 = Point(0, 4) >>> l2 = Line(p1, p3) >>> l2.slope oo """ d1, d2 = (self.p1 - self.p2).args if d1 == 0: return S.Infinity return simplify(d2/d1) class Line2D(LinearEntity2D, Line): """An infinite line in space 2D. A line is declared with two distinct points or a point and slope as defined using keyword `slope`. Parameters ========== p1 : Point pt : Point slope : sympy expression See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Point >>> from sympy.abc import L >>> from sympy.geometry import Line, Segment >>> L = Line(Point(2,3), Point(3,5)) >>> L Line2D(Point2D(2, 3), Point2D(3, 5)) >>> L.points (Point2D(2, 3), Point2D(3, 5)) >>> L.equation() -2*x + y + 1 >>> L.coefficients (-2, 1, 1) Instantiate with keyword ``slope``: >>> Line(Point(0, 0), slope=0) Line2D(Point2D(0, 0), Point2D(1, 0)) Instantiate with another linear object >>> s = Segment((0, 0), (0, 1)) >>> Line(s).equation() x """ def __new__(cls, p1, pt=None, slope=None, **kwargs): if isinstance(p1, LinearEntity): if pt is not None: raise ValueError('When p1 is a LinearEntity, pt should be None') p1, pt = Point._normalize_dimension(*p1.args, dim=2) else: p1 = Point(p1, dim=2) if pt is not None and slope is None: try: p2 = Point(pt, dim=2) except (NotImplementedError, TypeError, ValueError): raise ValueError(filldedent(''' The 2nd argument was not a valid Point. If it was a slope, enter it with keyword "slope". ''')) elif slope is not None and pt is None: slope = sympify(slope) if slope.is_finite is False: # when infinite slope, don't change x dx = 0 dy = 1 else: # go over 1 up slope dx = 1 dy = slope # XXX avoiding simplification by adding to coords directly p2 = Point(p1.x + dx, p1.y + dy, evaluate=False) else: raise ValueError('A 2nd Point or keyword "slope" must be used.') return LinearEntity2D.__new__(cls, p1, p2, **kwargs) def _svg(self, scale_factor=1., fill_color="#66cc99"): """Returns SVG path element for the LinearEntity. Parameters ========== scale_factor : float Multiplication factor for the SVG stroke-width. Default is 1. fill_color : str, optional Hex string for fill color. Default is "#66cc99". """ from sympy.core.evalf import N verts = (N(self.p1), N(self.p2)) coords = ["{0},{1}".format(p.x, p.y) for p in verts] path = "M {0} L {1}".format(coords[0], " L ".join(coords[1:])) return ( '<path fill-rule="evenodd" fill="{2}" stroke="#555555" ' 'stroke-width="{0}" opacity="0.6" d="{1}" ' 'marker-start="url(#markerReverseArrow)" marker-end="url(#markerArrow)"/>' ).format(2. * scale_factor, path, fill_color) @property def coefficients(self): """The coefficients (`a`, `b`, `c`) for `ax + by + c = 0`. See Also ======== sympy.geometry.line.Line2D.equation Examples ======== >>> from sympy import Point, Line >>> from sympy.abc import x, y >>> p1, p2 = Point(0, 0), Point(5, 3) >>> l = Line(p1, p2) >>> l.coefficients (-3, 5, 0) >>> p3 = Point(x, y) >>> l2 = Line(p1, p3) >>> l2.coefficients (-y, x, 0) """ p1, p2 = self.points if p1.x == p2.x: return (S.One, S.Zero, -p1.x) elif p1.y == p2.y: return (S.Zero, S.One, -p1.y) return tuple([simplify(i) for i in (self.p1.y - self.p2.y, self.p2.x - self.p1.x, self.p1.x*self.p2.y - self.p1.y*self.p2.x)]) def equation(self, x='x', y='y'): """The equation of the line: ax + by + c. Parameters ========== x : str, optional The name to use for the x-axis, default value is 'x'. y : str, optional The name to use for the y-axis, default value is 'y'. Returns ======= equation : sympy expression See Also ======== sympy.geometry.line.Line2D.coefficients Examples ======== >>> from sympy import Point, Line >>> p1, p2 = Point(1, 0), Point(5, 3) >>> l1 = Line(p1, p2) >>> l1.equation() -3*x + 4*y + 3 """ x = _symbol(x, real=True) y = _symbol(y, real=True) p1, p2 = self.points if p1.x == p2.x: return x - p1.x elif p1.y == p2.y: return y - p1.y a, b, c = self.coefficients return a*x + b*y + c class Ray2D(LinearEntity2D, Ray): """ A Ray is a semi-line in the space with a source point and a direction. Parameters ========== p1 : Point The source of the Ray p2 : Point or radian value This point determines the direction in which the Ray propagates. If given as an angle it is interpreted in radians with the positive direction being ccw. Attributes ========== source xdirection ydirection See Also ======== sympy.geometry.point.Point, Line Examples ======== >>> from sympy import Point, pi >>> from sympy.geometry import Ray >>> r = Ray(Point(2, 3), Point(3, 5)) >>> r Ray2D(Point2D(2, 3), Point2D(3, 5)) >>> r.points (Point2D(2, 3), Point2D(3, 5)) >>> r.source Point2D(2, 3) >>> r.xdirection oo >>> r.ydirection oo >>> r.slope 2 >>> Ray(Point(0, 0), angle=pi/4).slope 1 """ def __new__(cls, p1, pt=None, angle=None, **kwargs): p1 = Point(p1, dim=2) if pt is not None and angle is None: try: p2 = Point(pt, dim=2) except (NotImplementedError, TypeError, ValueError): from sympy.utilities.misc import filldedent raise ValueError(filldedent(''' The 2nd argument was not a valid Point; if it was meant to be an angle it should be given with keyword "angle".''')) if p1 == p2: raise ValueError('A Ray requires two distinct points.') elif angle is not None and pt is None: # we need to know if the angle is an odd multiple of pi/2 c = pi_coeff(sympify(angle)) p2 = None if c is not None: if c.is_Rational: if c.q == 2: if c.p == 1: p2 = p1 + Point(0, 1) elif c.p == 3: p2 = p1 + Point(0, -1) elif c.q == 1: if c.p == 0: p2 = p1 + Point(1, 0) elif c.p == 1: p2 = p1 + Point(-1, 0) if p2 is None: c *= S.Pi else: c = angle % (2*S.Pi) if not p2: m = 2*c/S.Pi left = And(1 < m, m < 3) # is it in quadrant 2 or 3? x = Piecewise((-1, left), (Piecewise((0, Eq(m % 1, 0)), (1, True)), True)) y = Piecewise((-tan(c), left), (Piecewise((1, Eq(m, 1)), (-1, Eq(m, 3)), (tan(c), True)), True)) p2 = p1 + Point(x, y) else: raise ValueError('A 2nd point or keyword "angle" must be used.') return LinearEntity2D.__new__(cls, p1, p2, **kwargs) @property def xdirection(self): """The x direction of the ray. Positive infinity if the ray points in the positive x direction, negative infinity if the ray points in the negative x direction, or 0 if the ray is vertical. See Also ======== ydirection Examples ======== >>> from sympy import Point, Ray >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, -1) >>> r1, r2 = Ray(p1, p2), Ray(p1, p3) >>> r1.xdirection oo >>> r2.xdirection 0 """ if self.p1.x < self.p2.x: return S.Infinity elif self.p1.x == self.p2.x: return S.Zero else: return S.NegativeInfinity @property def ydirection(self): """The y direction of the ray. Positive infinity if the ray points in the positive y direction, negative infinity if the ray points in the negative y direction, or 0 if the ray is horizontal. See Also ======== xdirection Examples ======== >>> from sympy import Point, Ray >>> p1, p2, p3 = Point(0, 0), Point(-1, -1), Point(-1, 0) >>> r1, r2 = Ray(p1, p2), Ray(p1, p3) >>> r1.ydirection -oo >>> r2.ydirection 0 """ if self.p1.y < self.p2.y: return S.Infinity elif self.p1.y == self.p2.y: return S.Zero else: return S.NegativeInfinity def closing_angle(r1, r2): """Return the angle by which r2 must be rotated so it faces the same direction as r1. Parameters ========== r1 : Ray2D r2 : Ray2D Returns ======= angle : angle in radians (ccw angle is positive) See Also ======== LinearEntity.angle_between Examples ======== >>> from sympy import Ray, pi >>> r1 = Ray((0, 0), (1, 0)) >>> r2 = r1.rotate(-pi/2) >>> angle = r1.closing_angle(r2); angle pi/2 >>> r2.rotate(angle).direction.unit == r1.direction.unit True >>> r2.closing_angle(r1) -pi/2 """ if not all(isinstance(r, Ray2D) for r in (r1, r2)): # although the direction property is defined for # all linear entities, only the Ray is truly a # directed object raise TypeError('Both arguments must be Ray2D objects.') a1 = atan2(*list(reversed(r1.direction.args))) a2 = atan2(*list(reversed(r2.direction.args))) if a1*a2 < 0: a1 = 2*S.Pi + a1 if a1 < 0 else a1 a2 = 2*S.Pi + a2 if a2 < 0 else a2 return a1 - a2 class Segment2D(LinearEntity2D, Segment): """A line segment in 2D space. Parameters ========== p1 : Point p2 : Point Attributes ========== length : number or sympy expression midpoint : Point See Also ======== sympy.geometry.point.Point, Line Examples ======== >>> from sympy import Point >>> from sympy.geometry import Segment >>> Segment((1, 0), (1, 1)) # tuples are interpreted as pts Segment2D(Point2D(1, 0), Point2D(1, 1)) >>> s = Segment(Point(4, 3), Point(1, 1)); s Segment2D(Point2D(4, 3), Point2D(1, 1)) >>> s.points (Point2D(4, 3), Point2D(1, 1)) >>> s.slope 2/3 >>> s.length sqrt(13) >>> s.midpoint Point2D(5/2, 2) """ def __new__(cls, p1, p2, **kwargs): p1 = Point(p1, dim=2) p2 = Point(p2, dim=2) if p1 == p2: return p1 return LinearEntity2D.__new__(cls, p1, p2, **kwargs) def _svg(self, scale_factor=1., fill_color="#66cc99"): """Returns SVG path element for the LinearEntity. Parameters ========== scale_factor : float Multiplication factor for the SVG stroke-width. Default is 1. fill_color : str, optional Hex string for fill color. Default is "#66cc99". """ from sympy.core.evalf import N verts = (N(self.p1), N(self.p2)) coords = ["{0},{1}".format(p.x, p.y) for p in verts] path = "M {0} L {1}".format(coords[0], " L ".join(coords[1:])) return ( '<path fill-rule="evenodd" fill="{2}" stroke="#555555" ' 'stroke-width="{0}" opacity="0.6" d="{1}" />' ).format(2. * scale_factor, path, fill_color) class LinearEntity3D(LinearEntity): """An base class for all linear entities (line, ray and segment) in a 3-dimensional Euclidean space. Attributes ========== p1 p2 direction_ratio direction_cosine points Notes ===== This is a base class and is not meant to be instantiated. """ def __new__(cls, p1, p2, **kwargs): p1 = Point3D(p1, dim=3) p2 = Point3D(p2, dim=3) if p1 == p2: # if it makes sense to return a Point, handle in subclass raise ValueError( "%s.__new__ requires two unique Points." % cls.__name__) return GeometryEntity.__new__(cls, p1, p2, **kwargs) ambient_dimension = 3 @property def direction_ratio(self): """The direction ratio of a given line in 3D. See Also ======== sympy.geometry.line.Line3D.equation Examples ======== >>> from sympy import Point3D, Line3D >>> p1, p2 = Point3D(0, 0, 0), Point3D(5, 3, 1) >>> l = Line3D(p1, p2) >>> l.direction_ratio [5, 3, 1] """ p1, p2 = self.points return p1.direction_ratio(p2) @property def direction_cosine(self): """The normalized direction ratio of a given line in 3D. See Also ======== sympy.geometry.line.Line3D.equation Examples ======== >>> from sympy import Point3D, Line3D >>> p1, p2 = Point3D(0, 0, 0), Point3D(5, 3, 1) >>> l = Line3D(p1, p2) >>> l.direction_cosine [sqrt(35)/7, 3*sqrt(35)/35, sqrt(35)/35] >>> sum(i**2 for i in _) 1 """ p1, p2 = self.points return p1.direction_cosine(p2) class Line3D(LinearEntity3D, Line): """An infinite 3D line in space. A line is declared with two distinct points or a point and direction_ratio as defined using keyword `direction_ratio`. Parameters ========== p1 : Point3D pt : Point3D direction_ratio : list See Also ======== sympy.geometry.point.Point3D sympy.geometry.line.Line sympy.geometry.line.Line2D Examples ======== >>> from sympy import Point3D >>> from sympy.geometry import Line3D, Segment3D >>> L = Line3D(Point3D(2, 3, 4), Point3D(3, 5, 1)) >>> L Line3D(Point3D(2, 3, 4), Point3D(3, 5, 1)) >>> L.points (Point3D(2, 3, 4), Point3D(3, 5, 1)) """ def __new__(cls, p1, pt=None, direction_ratio=[], **kwargs): if isinstance(p1, LinearEntity3D): if pt is not None: raise ValueError('if p1 is a LinearEntity, pt must be None.') p1, pt = p1.args else: p1 = Point(p1, dim=3) if pt is not None and len(direction_ratio) == 0: pt = Point(pt, dim=3) elif len(direction_ratio) == 3 and pt is None: pt = Point3D(p1.x + direction_ratio[0], p1.y + direction_ratio[1], p1.z + direction_ratio[2]) else: raise ValueError('A 2nd Point or keyword "direction_ratio" must ' 'be used.') return LinearEntity3D.__new__(cls, p1, pt, **kwargs) def equation(self, x='x', y='y', z='z', k=None): """Return the equations that define the line in 3D. Parameters ========== x : str, optional The name to use for the x-axis, default value is 'x'. y : str, optional The name to use for the y-axis, default value is 'y'. z : str, optional The name to use for the z-axis, default value is 'z'. Returns ======= equation : Tuple of simultaneous equations Examples ======== >>> from sympy import Point3D, Line3D, solve >>> from sympy.abc import x, y, z >>> p1, p2 = Point3D(1, 0, 0), Point3D(5, 3, 0) >>> l1 = Line3D(p1, p2) >>> eq = l1.equation(x, y, z); eq (-3*x + 4*y + 3, z) >>> solve(eq.subs(z, 0), (x, y, z)) {x: 4*y/3 + 1} """ if k is not None: SymPyDeprecationWarning( feature="equation() no longer needs 'k'", issue=13742, deprecated_since_version="1.2").warn() from sympy import solve x, y, z, k = [_symbol(i, real=True) for i in (x, y, z, 'k')] p1, p2 = self.points d1, d2, d3 = p1.direction_ratio(p2) x1, y1, z1 = p1 eqs = [-d1*k + x - x1, -d2*k + y - y1, -d3*k + z - z1] # eliminate k from equations by solving first eq with k for k for i, e in enumerate(eqs): if e.has(k): kk = solve(eqs[i], k)[0] eqs.pop(i) break return Tuple(*[i.subs(k, kk).as_numer_denom()[0] for i in eqs]) class Ray3D(LinearEntity3D, Ray): """ A Ray is a semi-line in the space with a source point and a direction. Parameters ========== p1 : Point3D The source of the Ray p2 : Point or a direction vector direction_ratio: Determines the direction in which the Ray propagates. Attributes ========== source xdirection ydirection zdirection See Also ======== sympy.geometry.point.Point3D, Line3D Examples ======== >>> from sympy import Point3D >>> from sympy.geometry import Ray3D >>> r = Ray3D(Point3D(2, 3, 4), Point3D(3, 5, 0)) >>> r Ray3D(Point3D(2, 3, 4), Point3D(3, 5, 0)) >>> r.points (Point3D(2, 3, 4), Point3D(3, 5, 0)) >>> r.source Point3D(2, 3, 4) >>> r.xdirection oo >>> r.ydirection oo >>> r.direction_ratio [1, 2, -4] """ def __new__(cls, p1, pt=None, direction_ratio=[], **kwargs): from sympy.utilities.misc import filldedent if isinstance(p1, LinearEntity3D): if pt is not None: raise ValueError('If p1 is a LinearEntity, pt must be None') p1, pt = p1.args else: p1 = Point(p1, dim=3) if pt is not None and len(direction_ratio) == 0: pt = Point(pt, dim=3) elif len(direction_ratio) == 3 and pt is None: pt = Point3D(p1.x + direction_ratio[0], p1.y + direction_ratio[1], p1.z + direction_ratio[2]) else: raise ValueError(filldedent(''' A 2nd Point or keyword "direction_ratio" must be used. ''')) return LinearEntity3D.__new__(cls, p1, pt, **kwargs) @property def xdirection(self): """The x direction of the ray. Positive infinity if the ray points in the positive x direction, negative infinity if the ray points in the negative x direction, or 0 if the ray is vertical. See Also ======== ydirection Examples ======== >>> from sympy import Point3D, Ray3D >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, -1, 0) >>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3) >>> r1.xdirection oo >>> r2.xdirection 0 """ if self.p1.x < self.p2.x: return S.Infinity elif self.p1.x == self.p2.x: return S.Zero else: return S.NegativeInfinity @property def ydirection(self): """The y direction of the ray. Positive infinity if the ray points in the positive y direction, negative infinity if the ray points in the negative y direction, or 0 if the ray is horizontal. See Also ======== xdirection Examples ======== >>> from sympy import Point3D, Ray3D >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(-1, -1, -1), Point3D(-1, 0, 0) >>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3) >>> r1.ydirection -oo >>> r2.ydirection 0 """ if self.p1.y < self.p2.y: return S.Infinity elif self.p1.y == self.p2.y: return S.Zero else: return S.NegativeInfinity @property def zdirection(self): """The z direction of the ray. Positive infinity if the ray points in the positive z direction, negative infinity if the ray points in the negative z direction, or 0 if the ray is horizontal. See Also ======== xdirection Examples ======== >>> from sympy import Point3D, Ray3D >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(-1, -1, -1), Point3D(-1, 0, 0) >>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3) >>> r1.ydirection -oo >>> r2.ydirection 0 >>> r2.zdirection 0 """ if self.p1.z < self.p2.z: return S.Infinity elif self.p1.z == self.p2.z: return S.Zero else: return S.NegativeInfinity class Segment3D(LinearEntity3D, Segment): """A line segment in a 3D space. Parameters ========== p1 : Point3D p2 : Point3D Attributes ========== length : number or sympy expression midpoint : Point3D See Also ======== sympy.geometry.point.Point3D, Line3D Examples ======== >>> from sympy import Point3D >>> from sympy.geometry import Segment3D >>> Segment3D((1, 0, 0), (1, 1, 1)) # tuples are interpreted as pts Segment3D(Point3D(1, 0, 0), Point3D(1, 1, 1)) >>> s = Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7)); s Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7)) >>> s.points (Point3D(4, 3, 9), Point3D(1, 1, 7)) >>> s.length sqrt(17) >>> s.midpoint Point3D(5/2, 2, 8) """ def __new__(cls, p1, p2, **kwargs): p1 = Point(p1, dim=3) p2 = Point(p2, dim=3) if p1 == p2: return p1 return LinearEntity3D.__new__(cls, p1, p2, **kwargs)
20c25770ec602a61e0aee84f5a278337832faadb96d53073f8d9d8673294ffab
""" This module implements Holonomic Functions and various operations on them. """ from __future__ import print_function, division from sympy import (Symbol, S, Dummy, Order, rf, meijerint, I, solve, limit, Float, nsimplify, gamma) from sympy.core.compatibility import range, ordered, string_types from sympy.core.numbers import NaN, Infinity, NegativeInfinity from sympy.core.sympify import sympify from sympy.functions.combinatorial.factorials import binomial, factorial from sympy.functions.elementary.exponential import exp_polar, exp from sympy.functions.special.hyper import hyper, meijerg from sympy.matrices import Matrix from sympy.polys.rings import PolyElement from sympy.polys.fields import FracElement from sympy.polys.domains import QQ, RR from sympy.polys.polyclasses import DMF from sympy.polys.polyroots import roots from sympy.polys.polytools import Poly from sympy.printing import sstr from sympy.simplify.hyperexpand import hyperexpand from .linearsolver import NewMatrix from .recurrence import HolonomicSequence, RecurrenceOperator, RecurrenceOperators from .holonomicerrors import (NotPowerSeriesError, NotHyperSeriesError, SingularityError, NotHolonomicError) def DifferentialOperators(base, generator): r""" This function is used to create annihilators using ``Dx``. Returns an Algebra of Differential Operators also called Weyl Algebra and the operator for differentiation i.e. the ``Dx`` operator. Parameters ========== base: Base polynomial ring for the algebra. The base polynomial ring is the ring of polynomials in :math:`x` that will appear as coefficients in the operators. generator: Generator of the algebra which can be either a noncommutative ``Symbol`` or a string. e.g. "Dx" or "D". Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.abc import x >>> from sympy.holonomic.holonomic import DifferentialOperators >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') >>> R Univariate Differential Operator Algebra in intermediate Dx over the base ring ZZ[x] >>> Dx*x (1) + (x)*Dx """ ring = DifferentialOperatorAlgebra(base, generator) return (ring, ring.derivative_operator) class DifferentialOperatorAlgebra(object): r""" An Ore Algebra is a set of noncommutative polynomials in the intermediate ``Dx`` and coefficients in a base polynomial ring :math:`A`. It follows the commutation rule: .. math :: Dxa = \sigma(a)Dx + \delta(a) for :math:`a \subset A`. Where :math:`\sigma: A \Rightarrow A` is an endomorphism and :math:`\delta: A \rightarrow A` is a skew-derivation i.e. :math:`\delta(ab) = \delta(a) b + \sigma(a) \delta(b)`. If one takes the sigma as identity map and delta as the standard derivation then it becomes the algebra of Differential Operators also called a Weyl Algebra i.e. an algebra whose elements are Differential Operators. This class represents a Weyl Algebra and serves as the parent ring for Differential Operators. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy import symbols >>> from sympy.holonomic.holonomic import DifferentialOperators >>> x = symbols('x') >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') >>> R Univariate Differential Operator Algebra in intermediate Dx over the base ring ZZ[x] See Also ======== DifferentialOperator """ def __init__(self, base, generator): # the base polynomial ring for the algebra self.base = base # the operator representing differentiation i.e. `Dx` self.derivative_operator = DifferentialOperator( [base.zero, base.one], self) if generator is None: self.gen_symbol = Symbol('Dx', commutative=False) else: if isinstance(generator, string_types): self.gen_symbol = Symbol(generator, commutative=False) elif isinstance(generator, Symbol): self.gen_symbol = generator def __str__(self): string = 'Univariate Differential Operator Algebra in intermediate '\ + sstr(self.gen_symbol) + ' over the base ring ' + \ (self.base).__str__() return string __repr__ = __str__ def __eq__(self, other): if self.base == other.base and self.gen_symbol == other.gen_symbol: return True else: return False class DifferentialOperator(object): """ Differential Operators are elements of Weyl Algebra. The Operators are defined by a list of polynomials in the base ring and the parent ring of the Operator i.e. the algebra it belongs to. Takes a list of polynomials for each power of ``Dx`` and the parent ring which must be an instance of DifferentialOperatorAlgebra. A Differential Operator can be created easily using the operator ``Dx``. See examples below. Examples ======== >>> from sympy.holonomic.holonomic import DifferentialOperator, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') >>> DifferentialOperator([0, 1, x**2], R) (1)*Dx + (x**2)*Dx**2 >>> (x*Dx*x + 1 - Dx**2)**2 (2*x**2 + 2*x + 1) + (4*x**3 + 2*x**2 - 4)*Dx + (x**4 - 6*x - 2)*Dx**2 + (-2*x**2)*Dx**3 + (1)*Dx**4 See Also ======== DifferentialOperatorAlgebra """ _op_priority = 20 def __init__(self, list_of_poly, parent): """ Parameters ========== list_of_poly: List of polynomials belonging to the base ring of the algebra. parent: Parent algebra of the operator. """ # the parent ring for this operator # must be an DifferentialOperatorAlgebra object self.parent = parent base = self.parent.base self.x = base.gens[0] if isinstance(base.gens[0], Symbol) else base.gens[0][0] # sequence of polynomials in x for each power of Dx # the list should not have trailing zeroes # represents the operator # convert the expressions into ring elements using from_sympy for i, j in enumerate(list_of_poly): if not isinstance(j, base.dtype): list_of_poly[i] = base.from_sympy(sympify(j)) else: list_of_poly[i] = base.from_sympy(base.to_sympy(j)) self.listofpoly = list_of_poly # highest power of `Dx` self.order = len(self.listofpoly) - 1 def __mul__(self, other): """ Multiplies two DifferentialOperator and returns another DifferentialOperator instance using the commutation rule Dx*a = a*Dx + a' """ listofself = self.listofpoly if not isinstance(other, DifferentialOperator): if not isinstance(other, self.parent.base.dtype): listofother = [self.parent.base.from_sympy(sympify(other))] else: listofother = [other] else: listofother = other.listofpoly # multiplies a polynomial `b` with a list of polynomials def _mul_dmp_diffop(b, listofother): if isinstance(listofother, list): sol = [] for i in listofother: sol.append(i * b) return sol else: return [b * listofother] sol = _mul_dmp_diffop(listofself[0], listofother) # compute Dx^i * b def _mul_Dxi_b(b): sol1 = [self.parent.base.zero] sol2 = [] if isinstance(b, list): for i in b: sol1.append(i) sol2.append(i.diff()) else: sol1.append(self.parent.base.from_sympy(b)) sol2.append(self.parent.base.from_sympy(b).diff()) return _add_lists(sol1, sol2) for i in range(1, len(listofself)): # find Dx^i * b in ith iteration listofother = _mul_Dxi_b(listofother) # solution = solution + listofself[i] * (Dx^i * b) sol = _add_lists(sol, _mul_dmp_diffop(listofself[i], listofother)) return DifferentialOperator(sol, self.parent) def __rmul__(self, other): if not isinstance(other, DifferentialOperator): if not isinstance(other, self.parent.base.dtype): other = (self.parent.base).from_sympy(sympify(other)) sol = [] for j in self.listofpoly: sol.append(other * j) return DifferentialOperator(sol, self.parent) def __add__(self, other): if isinstance(other, DifferentialOperator): sol = _add_lists(self.listofpoly, other.listofpoly) return DifferentialOperator(sol, self.parent) else: list_self = self.listofpoly if not isinstance(other, self.parent.base.dtype): list_other = [((self.parent).base).from_sympy(sympify(other))] else: list_other = [other] sol = [] sol.append(list_self[0] + list_other[0]) sol += list_self[1:] return DifferentialOperator(sol, self.parent) __radd__ = __add__ def __sub__(self, other): return self + (-1) * other def __rsub__(self, other): return (-1) * self + other def __neg__(self): return -1 * self def __div__(self, other): return self * (S.One / other) def __truediv__(self, other): return self.__div__(other) def __pow__(self, n): if n == 1: return self if n == 0: return DifferentialOperator([self.parent.base.one], self.parent) # if self is `Dx` if self.listofpoly == self.parent.derivative_operator.listofpoly: sol = [] for i in range(0, n): sol.append(self.parent.base.zero) sol.append(self.parent.base.one) return DifferentialOperator(sol, self.parent) # the general case else: if n % 2 == 1: powreduce = self**(n - 1) return powreduce * self elif n % 2 == 0: powreduce = self**(n / 2) return powreduce * powreduce def __str__(self): listofpoly = self.listofpoly print_str = '' for i, j in enumerate(listofpoly): if j == self.parent.base.zero: continue if i == 0: print_str += '(' + sstr(j) + ')' continue if print_str: print_str += ' + ' if i == 1: print_str += '(' + sstr(j) + ')*%s' %(self.parent.gen_symbol) continue print_str += '(' + sstr(j) + ')' + '*%s**' %(self.parent.gen_symbol) + sstr(i) return print_str __repr__ = __str__ def __eq__(self, other): if isinstance(other, DifferentialOperator): if self.listofpoly == other.listofpoly and self.parent == other.parent: return True else: return False else: if self.listofpoly[0] == other: for i in self.listofpoly[1:]: if i is not self.parent.base.zero: return False return True else: return False def is_singular(self, x0): """ Checks if the differential equation is singular at x0. """ base = self.parent.base return x0 in roots(base.to_sympy(self.listofpoly[-1]), self.x) class HolonomicFunction(object): r""" A Holonomic Function is a solution to a linear homogeneous ordinary differential equation with polynomial coefficients. This differential equation can also be represented by an annihilator i.e. a Differential Operator ``L`` such that :math:`L.f = 0`. For uniqueness of these functions, initial conditions can also be provided along with the annihilator. Holonomic functions have closure properties and thus forms a ring. Given two Holonomic Functions f and g, their sum, product, integral and derivative is also a Holonomic Function. For ordinary points initial condition should be a vector of values of the derivatives i.e. :math:`[y(x_0), y'(x_0), y''(x_0) ... ]`. For regular singular points initial conditions can also be provided in this format: :math:`{s0: [C_0, C_1, ...], s1: [C^1_0, C^1_1, ...], ...}` where s0, s1, ... are the roots of indicial equation and vectors :math:`[C_0, C_1, ...], [C^0_0, C^0_1, ...], ...` are the corresponding initial terms of the associated power series. See Examples below. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols, S >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> p = HolonomicFunction(Dx - 1, x, 0, [1]) # e^x >>> q = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]) # sin(x) >>> p + q # annihilator of e^x + sin(x) HolonomicFunction((-1) + (1)*Dx + (-1)*Dx**2 + (1)*Dx**3, x, 0, [1, 2, 1]) >>> p * q # annihilator of e^x * sin(x) HolonomicFunction((2) + (-2)*Dx + (1)*Dx**2, x, 0, [0, 1]) An example of initial conditions for regular singular points, the indicial equation has only one root `1/2`. >>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}) HolonomicFunction((-1/2) + (x)*Dx, x, 0, {1/2: [1]}) >>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_expr() sqrt(x) To plot a Holonomic Function, one can use `.evalf()` for numerical computation. Here's an example on `sin(x)**2/x` using numpy and matplotlib. >>> import sympy.holonomic # doctest: +SKIP >>> from sympy import var, sin # doctest: +SKIP >>> import matplotlib.pyplot as plt # doctest: +SKIP >>> import numpy as np # doctest: +SKIP >>> var("x") # doctest: +SKIP >>> r = np.linspace(1, 5, 100) # doctest: +SKIP >>> y = sympy.holonomic.expr_to_holonomic(sin(x)**2/x, x0=1).evalf(r) # doctest: +SKIP >>> plt.plot(r, y, label="holonomic function") # doctest: +SKIP >>> plt.show() # doctest: +SKIP """ _op_priority = 20 def __init__(self, annihilator, x, x0=0, y0=None): """ Parameters ========== annihilator: Annihilator of the Holonomic Function, represented by a `DifferentialOperator` object. x: Variable of the function. x0: The point at which initial conditions are stored. Generally an integer. y0: The initial condition. The proper format for the initial condition is described in class docstring. To make the function unique, length of the vector `y0` should be equal to or greater than the order of differential equation. """ # initial condition self.y0 = y0 # the point for initial conditions, default is zero. self.x0 = x0 # differential operator L such that L.f = 0 self.annihilator = annihilator self.x = x def __str__(self): if self._have_init_cond(): str_sol = 'HolonomicFunction(%s, %s, %s, %s)' % (str(self.annihilator),\ sstr(self.x), sstr(self.x0), sstr(self.y0)) else: str_sol = 'HolonomicFunction(%s, %s)' % (str(self.annihilator),\ sstr(self.x)) return str_sol __repr__ = __str__ def unify(self, other): """ Unifies the base polynomial ring of a given two Holonomic Functions. """ R1 = self.annihilator.parent.base R2 = other.annihilator.parent.base dom1 = R1.dom dom2 = R2.dom if R1 == R2: return (self, other) R = (dom1.unify(dom2)).old_poly_ring(self.x) newparent, _ = DifferentialOperators(R, str(self.annihilator.parent.gen_symbol)) sol1 = [R1.to_sympy(i) for i in self.annihilator.listofpoly] sol2 = [R2.to_sympy(i) for i in other.annihilator.listofpoly] sol1 = DifferentialOperator(sol1, newparent) sol2 = DifferentialOperator(sol2, newparent) sol1 = HolonomicFunction(sol1, self.x, self.x0, self.y0) sol2 = HolonomicFunction(sol2, other.x, other.x0, other.y0) return (sol1, sol2) def is_singularics(self): """ Returns True if the function have singular initial condition in the dictionary format. Returns False if the function have ordinary initial condition in the list format. Returns None for all other cases. """ if isinstance(self.y0, dict): return True elif isinstance(self.y0, list): return False def _have_init_cond(self): """ Checks if the function have initial condition. """ return bool(self.y0) def _singularics_to_ord(self): """ Converts a singular initial condition to ordinary if possible. """ a = list(self.y0)[0] b = self.y0[a] if len(self.y0) == 1 and a == int(a) and a > 0: y0 = [] a = int(a) for i in range(a): y0.append(S.Zero) y0 += [j * factorial(a + i) for i, j in enumerate(b)] return HolonomicFunction(self.annihilator, self.x, self.x0, y0) def __add__(self, other): # if the ground domains are different if self.annihilator.parent.base != other.annihilator.parent.base: a, b = self.unify(other) return a + b deg1 = self.annihilator.order deg2 = other.annihilator.order dim = max(deg1, deg2) R = self.annihilator.parent.base K = R.get_field() rowsself = [self.annihilator] rowsother = [other.annihilator] gen = self.annihilator.parent.derivative_operator # constructing annihilators up to order dim for i in range(dim - deg1): diff1 = (gen * rowsself[-1]) rowsself.append(diff1) for i in range(dim - deg2): diff2 = (gen * rowsother[-1]) rowsother.append(diff2) row = rowsself + rowsother # constructing the matrix of the ansatz r = [] for expr in row: p = [] for i in range(dim + 1): if i >= len(expr.listofpoly): p.append(0) else: p.append(K.new(expr.listofpoly[i].rep)) r.append(p) r = NewMatrix(r).transpose() homosys = [[S.Zero for q in range(dim + 1)]] homosys = NewMatrix(homosys).transpose() # solving the linear system using gauss jordan solver solcomp = r.gauss_jordan_solve(homosys) sol = solcomp[0] # if a solution is not obtained then increasing the order by 1 in each # iteration while sol.is_zero: dim += 1 diff1 = (gen * rowsself[-1]) rowsself.append(diff1) diff2 = (gen * rowsother[-1]) rowsother.append(diff2) row = rowsself + rowsother r = [] for expr in row: p = [] for i in range(dim + 1): if i >= len(expr.listofpoly): p.append(S.Zero) else: p.append(K.new(expr.listofpoly[i].rep)) r.append(p) r = NewMatrix(r).transpose() homosys = [[S.Zero for q in range(dim + 1)]] homosys = NewMatrix(homosys).transpose() solcomp = r.gauss_jordan_solve(homosys) sol = solcomp[0] # taking only the coefficients needed to multiply with `self` # can be also be done the other way by taking R.H.S and multiplying with # `other` sol = sol[:dim + 1 - deg1] sol1 = _normalize(sol, self.annihilator.parent) # annihilator of the solution sol = sol1 * (self.annihilator) sol = _normalize(sol.listofpoly, self.annihilator.parent, negative=False) if not (self._have_init_cond() and other._have_init_cond()): return HolonomicFunction(sol, self.x) # both the functions have ordinary initial conditions if self.is_singularics() == False and other.is_singularics() == False: # directly add the corresponding value if self.x0 == other.x0: # try to extended the initial conditions # using the annihilator y1 = _extend_y0(self, sol.order) y2 = _extend_y0(other, sol.order) y0 = [a + b for a, b in zip(y1, y2)] return HolonomicFunction(sol, self.x, self.x0, y0) else: # change the intiial conditions to a same point selfat0 = self.annihilator.is_singular(0) otherat0 = other.annihilator.is_singular(0) if self.x0 == 0 and not selfat0 and not otherat0: return self + other.change_ics(0) elif other.x0 == 0 and not selfat0 and not otherat0: return self.change_ics(0) + other else: selfatx0 = self.annihilator.is_singular(self.x0) otheratx0 = other.annihilator.is_singular(self.x0) if not selfatx0 and not otheratx0: return self + other.change_ics(self.x0) else: return self.change_ics(other.x0) + other if self.x0 != other.x0: return HolonomicFunction(sol, self.x) # if the functions have singular_ics y1 = None y2 = None if self.is_singularics() == False and other.is_singularics() == True: # convert the ordinary initial condition to singular. _y0 = [j / factorial(i) for i, j in enumerate(self.y0)] y1 = {S.Zero: _y0} y2 = other.y0 elif self.is_singularics() == True and other.is_singularics() == False: _y0 = [j / factorial(i) for i, j in enumerate(other.y0)] y1 = self.y0 y2 = {S.Zero: _y0} elif self.is_singularics() == True and other.is_singularics() == True: y1 = self.y0 y2 = other.y0 # computing singular initial condition for the result # taking union of the series terms of both functions y0 = {} for i in y1: # add corresponding initial terms if the power # on `x` is same if i in y2: y0[i] = [a + b for a, b in zip(y1[i], y2[i])] else: y0[i] = y1[i] for i in y2: if not i in y1: y0[i] = y2[i] return HolonomicFunction(sol, self.x, self.x0, y0) def integrate(self, limits, initcond=False): """ Integrates the given holonomic function. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx - 1, x, 0, [1]).integrate((x, 0, x)) # e^x - 1 HolonomicFunction((-1)*Dx + (1)*Dx**2, x, 0, [0, 1]) >>> HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).integrate((x, 0, x)) HolonomicFunction((1)*Dx + (1)*Dx**3, x, 0, [0, 1, 0]) """ # to get the annihilator, just multiply by Dx from right D = self.annihilator.parent.derivative_operator # if the function have initial conditions of the series format if self.is_singularics() == True: r = self._singularics_to_ord() if r: return r.integrate(limits, initcond=initcond) # computing singular initial condition for the function # produced after integration. y0 = {} for i in self.y0: c = self.y0[i] c2 = [] for j in range(len(c)): if c[j] == 0: c2.append(S.Zero) # if power on `x` is -1, the integration becomes log(x) # TODO: Implement this case elif i + j + 1 == 0: raise NotImplementedError("logarithmic terms in the series are not supported") else: c2.append(c[j] / S(i + j + 1)) y0[i + 1] = c2 if hasattr(limits, "__iter__"): raise NotImplementedError("Definite integration for singular initial conditions") return HolonomicFunction(self.annihilator * D, self.x, self.x0, y0) # if no initial conditions are available for the function if not self._have_init_cond(): if initcond: return HolonomicFunction(self.annihilator * D, self.x, self.x0, [S.Zero]) return HolonomicFunction(self.annihilator * D, self.x) # definite integral # initial conditions for the answer will be stored at point `a`, # where `a` is the lower limit of the integrand if hasattr(limits, "__iter__"): if len(limits) == 3 and limits[0] == self.x: x0 = self.x0 a = limits[1] b = limits[2] definite = True else: definite = False y0 = [S.Zero] y0 += self.y0 indefinite_integral = HolonomicFunction(self.annihilator * D, self.x, self.x0, y0) if not definite: return indefinite_integral # use evalf to get the values at `a` if x0 != a: try: indefinite_expr = indefinite_integral.to_expr() except (NotHyperSeriesError, NotPowerSeriesError): indefinite_expr = None if indefinite_expr: lower = indefinite_expr.subs(self.x, a) if isinstance(lower, NaN): lower = indefinite_expr.limit(self.x, a) else: lower = indefinite_integral.evalf(a) if b == self.x: y0[0] = y0[0] - lower return HolonomicFunction(self.annihilator * D, self.x, x0, y0) elif S(b).is_Number: if indefinite_expr: upper = indefinite_expr.subs(self.x, b) if isinstance(upper, NaN): upper = indefinite_expr.limit(self.x, b) else: upper = indefinite_integral.evalf(b) return upper - lower # if the upper limit is `x`, the answer will be a function if b == self.x: return HolonomicFunction(self.annihilator * D, self.x, a, y0) # if the upper limits is a Number, a numerical value will be returned elif S(b).is_Number: try: s = HolonomicFunction(self.annihilator * D, self.x, a,\ y0).to_expr() indefinite = s.subs(self.x, b) if not isinstance(indefinite, NaN): return indefinite else: return s.limit(self.x, b) except (NotHyperSeriesError, NotPowerSeriesError): return HolonomicFunction(self.annihilator * D, self.x, a, y0).evalf(b) return HolonomicFunction(self.annihilator * D, self.x) def diff(self, *args, **kwargs): r""" Differentiation of the given Holonomic function. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).diff().to_expr() cos(x) >>> HolonomicFunction(Dx - 2, x, 0, [1]).diff().to_expr() 2*exp(2*x) See Also ======== .integrate() """ kwargs.setdefault('evaluate', True) if args: if args[0] != self.x: return S.Zero elif len(args) == 2: sol = self for i in range(args[1]): sol = sol.diff(args[0]) return sol ann = self.annihilator # if the function is constant. if ann.listofpoly[0] == ann.parent.base.zero and ann.order == 1: return S.Zero # if the coefficient of y in the differential equation is zero. # a shifting is done to compute the answer in this case. elif ann.listofpoly[0] == ann.parent.base.zero: sol = DifferentialOperator(ann.listofpoly[1:], ann.parent) if self._have_init_cond(): # if ordinary initial condition if self.is_singularics() == False: return HolonomicFunction(sol, self.x, self.x0, self.y0[1:]) # TODO: support for singular initial condition return HolonomicFunction(sol, self.x) else: return HolonomicFunction(sol, self.x) # the general algorithm R = ann.parent.base K = R.get_field() seq_dmf = [K.new(i.rep) for i in ann.listofpoly] # -y = a1*y'/a0 + a2*y''/a0 ... + an*y^n/a0 rhs = [i / seq_dmf[0] for i in seq_dmf[1:]] rhs.insert(0, K.zero) # differentiate both lhs and rhs sol = _derivate_diff_eq(rhs) # add the term y' in lhs to rhs sol = _add_lists(sol, [K.zero, K.one]) sol = _normalize(sol[1:], self.annihilator.parent, negative=False) if not self._have_init_cond() or self.is_singularics() == True: return HolonomicFunction(sol, self.x) y0 = _extend_y0(self, sol.order + 1)[1:] return HolonomicFunction(sol, self.x, self.x0, y0) def __eq__(self, other): if self.annihilator == other.annihilator: if self.x == other.x: if self._have_init_cond() and other._have_init_cond(): if self.x0 == other.x0 and self.y0 == other.y0: return True else: return False else: return True else: return False else: return False def __mul__(self, other): ann_self = self.annihilator if not isinstance(other, HolonomicFunction): other = sympify(other) if other.has(self.x): raise NotImplementedError(" Can't multiply a HolonomicFunction and expressions/functions.") if not self._have_init_cond(): return self else: y0 = _extend_y0(self, ann_self.order) y1 = [] for j in y0: y1.append((Poly.new(j, self.x) * other).rep) return HolonomicFunction(ann_self, self.x, self.x0, y1) if self.annihilator.parent.base != other.annihilator.parent.base: a, b = self.unify(other) return a * b ann_other = other.annihilator list_self = [] list_other = [] a = ann_self.order b = ann_other.order R = ann_self.parent.base K = R.get_field() for j in ann_self.listofpoly: list_self.append(K.new(j.rep)) for j in ann_other.listofpoly: list_other.append(K.new(j.rep)) # will be used to reduce the degree self_red = [-list_self[i] / list_self[a] for i in range(a)] other_red = [-list_other[i] / list_other[b] for i in range(b)] # coeff_mull[i][j] is the coefficient of Dx^i(f).Dx^j(g) coeff_mul = [[S.Zero for i in range(b + 1)] for j in range(a + 1)] coeff_mul[0][0] = S.One # making the ansatz lin_sys = [[coeff_mul[i][j] for i in range(a) for j in range(b)]] homo_sys = [[S.Zero for q in range(a * b)]] homo_sys = NewMatrix(homo_sys).transpose() sol = (NewMatrix(lin_sys).transpose()).gauss_jordan_solve(homo_sys) # until a non trivial solution is found while sol[0].is_zero: # updating the coefficients Dx^i(f).Dx^j(g) for next degree for i in range(a - 1, -1, -1): for j in range(b - 1, -1, -1): coeff_mul[i][j + 1] += coeff_mul[i][j] coeff_mul[i + 1][j] += coeff_mul[i][j] if isinstance(coeff_mul[i][j], K.dtype): coeff_mul[i][j] = DMFdiff(coeff_mul[i][j]) else: coeff_mul[i][j] = coeff_mul[i][j].diff(self.x) # reduce the terms to lower power using annihilators of f, g for i in range(a + 1): if not coeff_mul[i][b].is_zero: for j in range(b): coeff_mul[i][j] += other_red[j] * \ coeff_mul[i][b] coeff_mul[i][b] = S.Zero # not d2 + 1, as that is already covered in previous loop for j in range(b): if not coeff_mul[a][j] == 0: for i in range(a): coeff_mul[i][j] += self_red[i] * \ coeff_mul[a][j] coeff_mul[a][j] = S.Zero lin_sys.append([coeff_mul[i][j] for i in range(a) for j in range(b)]) sol = (NewMatrix(lin_sys).transpose()).gauss_jordan_solve(homo_sys) sol_ann = _normalize(sol[0][0:], self.annihilator.parent, negative=False) if not (self._have_init_cond() and other._have_init_cond()): return HolonomicFunction(sol_ann, self.x) if self.is_singularics() == False and other.is_singularics() == False: # if both the conditions are at same point if self.x0 == other.x0: # try to find more initial conditions y0_self = _extend_y0(self, sol_ann.order) y0_other = _extend_y0(other, sol_ann.order) # h(x0) = f(x0) * g(x0) y0 = [y0_self[0] * y0_other[0]] # coefficient of Dx^j(f)*Dx^i(g) in Dx^i(fg) for i in range(1, min(len(y0_self), len(y0_other))): coeff = [[0 for i in range(i + 1)] for j in range(i + 1)] for j in range(i + 1): for k in range(i + 1): if j + k == i: coeff[j][k] = binomial(i, j) sol = 0 for j in range(i + 1): for k in range(i + 1): sol += coeff[j][k]* y0_self[j] * y0_other[k] y0.append(sol) return HolonomicFunction(sol_ann, self.x, self.x0, y0) # if the points are different, consider one else: selfat0 = self.annihilator.is_singular(0) otherat0 = other.annihilator.is_singular(0) if self.x0 == 0 and not selfat0 and not otherat0: return self * other.change_ics(0) elif other.x0 == 0 and not selfat0 and not otherat0: return self.change_ics(0) * other else: selfatx0 = self.annihilator.is_singular(self.x0) otheratx0 = other.annihilator.is_singular(self.x0) if not selfatx0 and not otheratx0: return self * other.change_ics(self.x0) else: return self.change_ics(other.x0) * other if self.x0 != other.x0: return HolonomicFunction(sol_ann, self.x) # if the functions have singular_ics y1 = None y2 = None if self.is_singularics() == False and other.is_singularics() == True: _y0 = [j / factorial(i) for i, j in enumerate(self.y0)] y1 = {S.Zero: _y0} y2 = other.y0 elif self.is_singularics() == True and other.is_singularics() == False: _y0 = [j / factorial(i) for i, j in enumerate(other.y0)] y1 = self.y0 y2 = {S.Zero: _y0} elif self.is_singularics() == True and other.is_singularics() == True: y1 = self.y0 y2 = other.y0 y0 = {} # multiply every possible pair of the series terms for i in y1: for j in y2: k = min(len(y1[i]), len(y2[j])) c = [] for a in range(k): s = S.Zero for b in range(a + 1): s += y1[i][b] * y2[j][a - b] c.append(s) if not i + j in y0: y0[i + j] = c else: y0[i + j] = [a + b for a, b in zip(c, y0[i + j])] return HolonomicFunction(sol_ann, self.x, self.x0, y0) __rmul__ = __mul__ def __sub__(self, other): return self + other * -1 def __rsub__(self, other): return self * -1 + other def __neg__(self): return -1 * self def __div__(self, other): return self * (S.One / other) def __truediv__(self, other): return self.__div__(other) def __pow__(self, n): if self.annihilator.order <= 1: ann = self.annihilator parent = ann.parent if self.y0 is None: y0 = None else: y0 = [list(self.y0)[0] ** n] p0 = ann.listofpoly[0] p1 = ann.listofpoly[1] p0 = (Poly.new(p0, self.x) * n).rep sol = [parent.base.to_sympy(i) for i in [p0, p1]] dd = DifferentialOperator(sol, parent) return HolonomicFunction(dd, self.x, self.x0, y0) if n < 0: raise NotHolonomicError("Negative Power on a Holonomic Function") if n == 0: Dx = self.annihilator.parent.derivative_operator return HolonomicFunction(Dx, self.x, S.Zero, [S.One]) if n == 1: return self else: if n % 2 == 1: powreduce = self**(n - 1) return powreduce * self elif n % 2 == 0: powreduce = self**(n / 2) return powreduce * powreduce def degree(self): """ Returns the highest power of `x` in the annihilator. """ sol = [i.degree() for i in self.annihilator.listofpoly] return max(sol) def composition(self, expr, *args, **kwargs): """ Returns function after composition of a holonomic function with an algebraic function. The method can't compute initial conditions for the result by itself, so they can be also be provided. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx - 1, x).composition(x**2, 0, [1]) # e^(x**2) HolonomicFunction((-2*x) + (1)*Dx, x, 0, [1]) >>> HolonomicFunction(Dx**2 + 1, x).composition(x**2 - 1, 1, [1, 0]) HolonomicFunction((4*x**3) + (-1)*Dx + (x)*Dx**2, x, 1, [1, 0]) See Also ======== from_hyper() """ R = self.annihilator.parent a = self.annihilator.order diff = expr.diff(self.x) listofpoly = self.annihilator.listofpoly for i, j in enumerate(listofpoly): if isinstance(j, self.annihilator.parent.base.dtype): listofpoly[i] = self.annihilator.parent.base.to_sympy(j) r = listofpoly[a].subs({self.x:expr}) subs = [-listofpoly[i].subs({self.x:expr}) / r for i in range (a)] coeffs = [S.Zero for i in range(a)] # coeffs[i] == coeff of (D^i f)(a) in D^k (f(a)) coeffs[0] = S.One system = [coeffs] homogeneous = Matrix([[S.Zero for i in range(a)]]).transpose() sol = S.Zero while sol.is_zero: coeffs_next = [p.diff(self.x) for p in coeffs] for i in range(a - 1): coeffs_next[i + 1] += (coeffs[i] * diff) for i in range(a): coeffs_next[i] += (coeffs[-1] * subs[i] * diff) coeffs = coeffs_next # check for linear relations system.append(coeffs) sol, taus = (Matrix(system).transpose() ).gauss_jordan_solve(homogeneous) tau = list(taus)[0] sol = sol.subs(tau, 1) sol = _normalize(sol[0:], R, negative=False) # if initial conditions are given for the resulting function if args: return HolonomicFunction(sol, self.x, args[0], args[1]) return HolonomicFunction(sol, self.x) def to_sequence(self, lb=True): r""" Finds recurrence relation for the coefficients in the series expansion of the function about :math:`x_0`, where :math:`x_0` is the point at which the initial condition is stored. If the point :math:`x_0` is ordinary, solution of the form :math:`[(R, n_0)]` is returned. Where :math:`R` is the recurrence relation and :math:`n_0` is the smallest ``n`` for which the recurrence holds true. If the point :math:`x_0` is regular singular, a list of solutions in the format :math:`(R, p, n_0)` is returned, i.e. `[(R, p, n_0), ... ]`. Each tuple in this vector represents a recurrence relation :math:`R` associated with a root of the indicial equation ``p``. Conditions of a different format can also be provided in this case, see the docstring of HolonomicFunction class. If it's not possible to numerically compute a initial condition, it is returned as a symbol :math:`C_j`, denoting the coefficient of :math:`(x - x_0)^j` in the power series about :math:`x_0`. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols, S >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx - 1, x, 0, [1]).to_sequence() [(HolonomicSequence((-1) + (n + 1)Sn, n), u(0) = 1, 0)] >>> HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]).to_sequence() [(HolonomicSequence((n**2) + (n**2 + n)Sn, n), u(0) = 0, u(1) = 1, u(2) = -1/2, 2)] >>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_sequence() [(HolonomicSequence((n), n), u(0) = 1, 1/2, 1)] See Also ======== HolonomicFunction.series() References ========== .. [1] https://hal.inria.fr/inria-00070025/document .. [2] http://www.risc.jku.at/publications/download/risc_2244/DIPLFORM.pdf """ if self.x0 != 0: return self.shift_x(self.x0).to_sequence() # check whether a power series exists if the point is singular if self.annihilator.is_singular(self.x0): return self._frobenius(lb=lb) dict1 = {} n = Symbol('n', integer=True) dom = self.annihilator.parent.base.dom R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn') # substituting each term of the form `x^k Dx^j` in the # annihilator, according to the formula below: # x^k Dx^j = Sum(rf(n + 1 - k, j) * a(n + j - k) * x^n, (n, k, oo)) # for explanation see [2]. for i, j in enumerate(self.annihilator.listofpoly): listofdmp = j.all_coeffs() degree = len(listofdmp) - 1 for k in range(degree + 1): coeff = listofdmp[degree - k] if coeff == 0: continue if (i - k, k) in dict1: dict1[(i - k, k)] += (dom.to_sympy(coeff) * rf(n - k + 1, i)) else: dict1[(i - k, k)] = (dom.to_sympy(coeff) * rf(n - k + 1, i)) sol = [] keylist = [i[0] for i in dict1] lower = min(keylist) upper = max(keylist) degree = self.degree() # the recurrence relation holds for all values of # n greater than smallest_n, i.e. n >= smallest_n smallest_n = lower + degree dummys = {} eqs = [] unknowns = [] # an appropriate shift of the recurrence for j in range(lower, upper + 1): if j in keylist: temp = S.Zero for k in dict1.keys(): if k[0] == j: temp += dict1[k].subs(n, n - lower) sol.append(temp) else: sol.append(S.Zero) # the recurrence relation sol = RecurrenceOperator(sol, R) # computing the initial conditions for recurrence order = sol.order all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z') all_roots = all_roots.keys() if all_roots: max_root = max(all_roots) + 1 smallest_n = max(max_root, smallest_n) order += smallest_n y0 = _extend_y0(self, order) u0 = [] # u(n) = y^n(0)/factorial(n) for i, j in enumerate(y0): u0.append(j / factorial(i)) # if sufficient conditions can't be computed then # try to use the series method i.e. # equate the coefficients of x^k in the equation formed by # substituting the series in differential equation, to zero. if len(u0) < order: for i in range(degree): eq = S.Zero for j in dict1: if i + j[0] < 0: dummys[i + j[0]] = S.Zero elif i + j[0] < len(u0): dummys[i + j[0]] = u0[i + j[0]] elif not i + j[0] in dummys: dummys[i + j[0]] = Symbol('C_%s' %(i + j[0])) unknowns.append(dummys[i + j[0]]) if j[1] <= i: eq += dict1[j].subs(n, i) * dummys[i + j[0]] eqs.append(eq) # solve the system of equations formed soleqs = solve(eqs, *unknowns) if isinstance(soleqs, dict): for i in range(len(u0), order): if i not in dummys: dummys[i] = Symbol('C_%s' %i) if dummys[i] in soleqs: u0.append(soleqs[dummys[i]]) else: u0.append(dummys[i]) if lb: return [(HolonomicSequence(sol, u0), smallest_n)] return [HolonomicSequence(sol, u0)] for i in range(len(u0), order): if i not in dummys: dummys[i] = Symbol('C_%s' %i) s = False for j in soleqs: if dummys[i] in j: u0.append(j[dummys[i]]) s = True if not s: u0.append(dummys[i]) if lb: return [(HolonomicSequence(sol, u0), smallest_n)] return [HolonomicSequence(sol, u0)] def _frobenius(self, lb=True): # compute the roots of indicial equation indicialroots = self._indicial() reals = [] compl = [] for i in ordered(indicialroots.keys()): if i.is_real: reals.extend([i] * indicialroots[i]) else: a, b = i.as_real_imag() compl.extend([(i, a, b)] * indicialroots[i]) # sort the roots for a fixed ordering of solution compl.sort(key=lambda x : x[1]) compl.sort(key=lambda x : x[2]) reals.sort() # grouping the roots, roots differ by an integer are put in the same group. grp = [] for i in reals: intdiff = False if len(grp) == 0: grp.append([i]) continue for j in grp: if int(j[0] - i) == j[0] - i: j.append(i) intdiff = True break if not intdiff: grp.append([i]) # True if none of the roots differ by an integer i.e. # each element in group have only one member independent = True if all(len(i) == 1 for i in grp) else False allpos = all(i >= 0 for i in reals) allint = all(int(i) == i for i in reals) # if initial conditions are provided # then use them. if self.is_singularics() == True: rootstoconsider = [] for i in ordered(self.y0.keys()): for j in ordered(indicialroots.keys()): if j == i: rootstoconsider.append(i) elif allpos and allint: rootstoconsider = [min(reals)] elif independent: rootstoconsider = [i[0] for i in grp] + [j[0] for j in compl] elif not allint: rootstoconsider = [] for i in reals: if not int(i) == i: rootstoconsider.append(i) elif not allpos: if not self._have_init_cond() or S(self.y0[0]).is_finite == False: rootstoconsider = [min(reals)] else: posroots = [] for i in reals: if i >= 0: posroots.append(i) rootstoconsider = [min(posroots)] n = Symbol('n', integer=True) dom = self.annihilator.parent.base.dom R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn') finalsol = [] char = ord('C') for p in rootstoconsider: dict1 = {} for i, j in enumerate(self.annihilator.listofpoly): listofdmp = j.all_coeffs() degree = len(listofdmp) - 1 for k in range(degree + 1): coeff = listofdmp[degree - k] if coeff == 0: continue if (i - k, k - i) in dict1: dict1[(i - k, k - i)] += (dom.to_sympy(coeff) * rf(n - k + 1 + p, i)) else: dict1[(i - k, k - i)] = (dom.to_sympy(coeff) * rf(n - k + 1 + p, i)) sol = [] keylist = [i[0] for i in dict1] lower = min(keylist) upper = max(keylist) degree = max([i[1] for i in dict1]) degree2 = min([i[1] for i in dict1]) smallest_n = lower + degree dummys = {} eqs = [] unknowns = [] for j in range(lower, upper + 1): if j in keylist: temp = S.Zero for k in dict1.keys(): if k[0] == j: temp += dict1[k].subs(n, n - lower) sol.append(temp) else: sol.append(S.Zero) # the recurrence relation sol = RecurrenceOperator(sol, R) # computing the initial conditions for recurrence order = sol.order all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z') all_roots = all_roots.keys() if all_roots: max_root = max(all_roots) + 1 smallest_n = max(max_root, smallest_n) order += smallest_n u0 = [] if self.is_singularics() == True: u0 = self.y0[p] elif self.is_singularics() == False and p >= 0 and int(p) == p and len(rootstoconsider) == 1: y0 = _extend_y0(self, order + int(p)) # u(n) = y^n(0)/factorial(n) if len(y0) > int(p): for i in range(int(p), len(y0)): u0.append(y0[i] / factorial(i)) if len(u0) < order: for i in range(degree2, degree): eq = S.Zero for j in dict1: if i + j[0] < 0: dummys[i + j[0]] = S.Zero elif i + j[0] < len(u0): dummys[i + j[0]] = u0[i + j[0]] elif not i + j[0] in dummys: letter = chr(char) + '_%s' %(i + j[0]) dummys[i + j[0]] = Symbol(letter) unknowns.append(dummys[i + j[0]]) if j[1] <= i: eq += dict1[j].subs(n, i) * dummys[i + j[0]] eqs.append(eq) # solve the system of equations formed soleqs = solve(eqs, *unknowns) if isinstance(soleqs, dict): for i in range(len(u0), order): if i not in dummys: letter = chr(char) + '_%s' %i dummys[i] = Symbol(letter) if dummys[i] in soleqs: u0.append(soleqs[dummys[i]]) else: u0.append(dummys[i]) if lb: finalsol.append((HolonomicSequence(sol, u0), p, smallest_n)) continue else: finalsol.append((HolonomicSequence(sol, u0), p)) continue for i in range(len(u0), order): if i not in dummys: letter = chr(char) + '_%s' %i dummys[i] = Symbol(letter) s = False for j in soleqs: if dummys[i] in j: u0.append(j[dummys[i]]) s = True if not s: u0.append(dummys[i]) if lb: finalsol.append((HolonomicSequence(sol, u0), p, smallest_n)) else: finalsol.append((HolonomicSequence(sol, u0), p)) char += 1 return finalsol def series(self, n=6, coefficient=False, order=True, _recur=None): r""" Finds the power series expansion of given holonomic function about :math:`x_0`. A list of series might be returned if :math:`x_0` is a regular point with multiple roots of the indicial equation. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx - 1, x, 0, [1]).series() # e^x 1 + x + x**2/2 + x**3/6 + x**4/24 + x**5/120 + O(x**6) >>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).series(n=8) # sin(x) x - x**3/6 + x**5/120 - x**7/5040 + O(x**8) See Also ======== HolonomicFunction.to_sequence() """ if _recur is None: recurrence = self.to_sequence() else: recurrence = _recur if isinstance(recurrence, tuple) and len(recurrence) == 2: recurrence = recurrence[0] constantpower = 0 elif isinstance(recurrence, tuple) and len(recurrence) == 3: constantpower = recurrence[1] recurrence = recurrence[0] elif len(recurrence) == 1 and len(recurrence[0]) == 2: recurrence = recurrence[0][0] constantpower = 0 elif len(recurrence) == 1 and len(recurrence[0]) == 3: constantpower = recurrence[0][1] recurrence = recurrence[0][0] else: sol = [] for i in recurrence: sol.append(self.series(_recur=i)) return sol n = n - int(constantpower) l = len(recurrence.u0) - 1 k = recurrence.recurrence.order x = self.x x0 = self.x0 seq_dmp = recurrence.recurrence.listofpoly R = recurrence.recurrence.parent.base K = R.get_field() seq = [] for i, j in enumerate(seq_dmp): seq.append(K.new(j.rep)) sub = [-seq[i] / seq[k] for i in range(k)] sol = [i for i in recurrence.u0] if l + 1 >= n: pass else: # use the initial conditions to find the next term for i in range(l + 1 - k, n - k): coeff = S.Zero for j in range(k): if i + j >= 0: coeff += DMFsubs(sub[j], i) * sol[i + j] sol.append(coeff) if coefficient: return sol ser = S.Zero for i, j in enumerate(sol): ser += x**(i + constantpower) * j if order: ser += Order(x**(n + int(constantpower)), x) if x0 != 0: return ser.subs(x, x - x0) return ser def _indicial(self): """ Computes roots of the Indicial equation. """ if self.x0 != 0: return self.shift_x(self.x0)._indicial() list_coeff = self.annihilator.listofpoly R = self.annihilator.parent.base x = self.x s = R.zero y = R.one def _pole_degree(poly): root_all = roots(R.to_sympy(poly), x, filter='Z') if 0 in root_all.keys(): return root_all[0] else: return 0 degree = [j.degree() for j in list_coeff] degree = max(degree) inf = 10 * (max(1, degree) + max(1, self.annihilator.order)) deg = lambda q: inf if q.is_zero else _pole_degree(q) b = deg(list_coeff[0]) for j in range(1, len(list_coeff)): b = min(b, deg(list_coeff[j]) - j) for i, j in enumerate(list_coeff): listofdmp = j.all_coeffs() degree = len(listofdmp) - 1 if - i - b <= 0 and degree - i - b >= 0: s = s + listofdmp[degree - i - b] * y y *= x - i return roots(R.to_sympy(s), x) def evalf(self, points, method='RK4', h=0.05, derivatives=False): r""" Finds numerical value of a holonomic function using numerical methods. (RK4 by default). A set of points (real or complex) must be provided which will be the path for the numerical integration. The path should be given as a list :math:`[x_1, x_2, ... x_n]`. The numerical values will be computed at each point in this order :math:`x_1 --> x_2 --> x_3 ... --> x_n`. Returns values of the function at :math:`x_1, x_2, ... x_n` in a list. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') A straight line on the real axis from (0 to 1) >>> r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] Runge-Kutta 4th order on e^x from 0.1 to 1. Exact solution at 1 is 2.71828182845905 >>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r) [1.10517083333333, 1.22140257085069, 1.34985849706254, 1.49182424008069, 1.64872063859684, 1.82211796209193, 2.01375162659678, 2.22553956329232, 2.45960141378007, 2.71827974413517] Euler's method for the same >>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r, method='Euler') [1.1, 1.21, 1.331, 1.4641, 1.61051, 1.771561, 1.9487171, 2.14358881, 2.357947691, 2.5937424601] One can also observe that the value obtained using Runge-Kutta 4th order is much more accurate than Euler's method. """ from sympy.holonomic.numerical import _evalf lp = False # if a point `b` is given instead of a mesh if not hasattr(points, "__iter__"): lp = True b = S(points) if self.x0 == b: return _evalf(self, [b], method=method, derivatives=derivatives)[-1] if not b.is_Number: raise NotImplementedError a = self.x0 if a > b: h = -h n = int((b - a) / h) points = [a + h] for i in range(n - 1): points.append(points[-1] + h) for i in roots(self.annihilator.parent.base.to_sympy(self.annihilator.listofpoly[-1]), self.x): if i == self.x0 or i in points: raise SingularityError(self, i) if lp: return _evalf(self, points, method=method, derivatives=derivatives)[-1] return _evalf(self, points, method=method, derivatives=derivatives) def change_x(self, z): """ Changes only the variable of Holonomic Function, for internal purposes. For composition use HolonomicFunction.composition() """ dom = self.annihilator.parent.base.dom R = dom.old_poly_ring(z) parent, _ = DifferentialOperators(R, 'Dx') sol = [] for j in self.annihilator.listofpoly: sol.append(R(j.rep)) sol = DifferentialOperator(sol, parent) return HolonomicFunction(sol, z, self.x0, self.y0) def shift_x(self, a): """ Substitute `x + a` for `x`. """ x = self.x listaftershift = self.annihilator.listofpoly base = self.annihilator.parent.base sol = [base.from_sympy(base.to_sympy(i).subs(x, x + a)) for i in listaftershift] sol = DifferentialOperator(sol, self.annihilator.parent) x0 = self.x0 - a if not self._have_init_cond(): return HolonomicFunction(sol, x) return HolonomicFunction(sol, x, x0, self.y0) def to_hyper(self, as_list=False, _recur=None): r""" Returns a hypergeometric function (or linear combination of them) representing the given holonomic function. Returns an answer of the form: `a_1 \cdot x^{b_1} \cdot{hyper()} + a_2 \cdot x^{b_2} \cdot{hyper()} ...` This is very useful as one can now use ``hyperexpand`` to find the symbolic expressions/functions. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') >>> # sin(x) >>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).to_hyper() x*hyper((), (3/2,), -x**2/4) >>> # exp(x) >>> HolonomicFunction(Dx - 1, x, 0, [1]).to_hyper() hyper((), (), x) See Also ======== from_hyper, from_meijerg """ if _recur is None: recurrence = self.to_sequence() else: recurrence = _recur if isinstance(recurrence, tuple) and len(recurrence) == 2: smallest_n = recurrence[1] recurrence = recurrence[0] constantpower = 0 elif isinstance(recurrence, tuple) and len(recurrence) == 3: smallest_n = recurrence[2] constantpower = recurrence[1] recurrence = recurrence[0] elif len(recurrence) == 1 and len(recurrence[0]) == 2: smallest_n = recurrence[0][1] recurrence = recurrence[0][0] constantpower = 0 elif len(recurrence) == 1 and len(recurrence[0]) == 3: smallest_n = recurrence[0][2] constantpower = recurrence[0][1] recurrence = recurrence[0][0] else: sol = self.to_hyper(as_list=as_list, _recur=recurrence[0]) for i in recurrence[1:]: sol += self.to_hyper(as_list=as_list, _recur=i) return sol u0 = recurrence.u0 r = recurrence.recurrence x = self.x x0 = self.x0 # order of the recurrence relation m = r.order # when no recurrence exists, and the power series have finite terms if m == 0: nonzeroterms = roots(r.parent.base.to_sympy(r.listofpoly[0]), recurrence.n, filter='R') sol = S.Zero for j, i in enumerate(nonzeroterms): if i < 0 or int(i) != i: continue i = int(i) if i < len(u0): if isinstance(u0[i], (PolyElement, FracElement)): u0[i] = u0[i].as_expr() sol += u0[i] * x**i else: sol += Symbol('C_%s' %j) * x**i if isinstance(sol, (PolyElement, FracElement)): sol = sol.as_expr() * x**constantpower else: sol = sol * x**constantpower if as_list: if x0 != 0: return [(sol.subs(x, x - x0), )] return [(sol, )] if x0 != 0: return sol.subs(x, x - x0) return sol if smallest_n + m > len(u0): raise NotImplementedError("Can't compute sufficient Initial Conditions") # check if the recurrence represents a hypergeometric series is_hyper = True for i in range(1, len(r.listofpoly)-1): if r.listofpoly[i] != r.parent.base.zero: is_hyper = False break if not is_hyper: raise NotHyperSeriesError(self, self.x0) a = r.listofpoly[0] b = r.listofpoly[-1] # the constant multiple of argument of hypergeometric function if isinstance(a.rep[0], (PolyElement, FracElement)): c = - (S(a.rep[0].as_expr()) * m**(a.degree())) / (S(b.rep[0].as_expr()) * m**(b.degree())) else: c = - (S(a.rep[0]) * m**(a.degree())) / (S(b.rep[0]) * m**(b.degree())) sol = 0 arg1 = roots(r.parent.base.to_sympy(a), recurrence.n) arg2 = roots(r.parent.base.to_sympy(b), recurrence.n) # iterate through the initial conditions to find # the hypergeometric representation of the given # function. # The answer will be a linear combination # of different hypergeometric series which satisfies # the recurrence. if as_list: listofsol = [] for i in range(smallest_n + m): # if the recurrence relation doesn't hold for `n = i`, # then a Hypergeometric representation doesn't exist. # add the algebraic term a * x**i to the solution, # where a is u0[i] if i < smallest_n: if as_list: listofsol.append(((S(u0[i]) * x**(i+constantpower)).subs(x, x-x0), )) else: sol += S(u0[i]) * x**i continue # if the coefficient u0[i] is zero, then the # independent hypergeomtric series starting with # x**i is not a part of the answer. if S(u0[i]) == 0: continue ap = [] bq = [] # substitute m * n + i for n for k in ordered(arg1.keys()): ap.extend([nsimplify((i - k) / m)] * arg1[k]) for k in ordered(arg2.keys()): bq.extend([nsimplify((i - k) / m)] * arg2[k]) # convention of (k + 1) in the denominator if 1 in bq: bq.remove(1) else: ap.append(1) if as_list: listofsol.append(((S(u0[i])*x**(i+constantpower)).subs(x, x-x0), (hyper(ap, bq, c*x**m)).subs(x, x-x0))) else: sol += S(u0[i]) * hyper(ap, bq, c * x**m) * x**i if as_list: return listofsol sol = sol * x**constantpower if x0 != 0: return sol.subs(x, x - x0) return sol def to_expr(self): """ Converts a Holonomic Function back to elementary functions. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols, S >>> x = symbols('x') >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') >>> HolonomicFunction(x**2*Dx**2 + x*Dx + (x**2 - 1), x, 0, [0, S(1)/2]).to_expr() besselj(1, x) >>> HolonomicFunction((1 + x)*Dx**3 + Dx**2, x, 0, [1, 1, 1]).to_expr() x*log(x + 1) + log(x + 1) + 1 """ return hyperexpand(self.to_hyper()).simplify() def change_ics(self, b, lenics=None): """ Changes the point `x0` to `b` for initial conditions. Examples ======== >>> from sympy.holonomic import expr_to_holonomic >>> from sympy import symbols, sin, cos, exp >>> x = symbols('x') >>> expr_to_holonomic(sin(x)).change_ics(1) HolonomicFunction((1) + (1)*Dx**2, x, 1, [sin(1), cos(1)]) >>> expr_to_holonomic(exp(x)).change_ics(2) HolonomicFunction((-1) + (1)*Dx, x, 2, [exp(2)]) """ symbolic = True if lenics is None and len(self.y0) > self.annihilator.order: lenics = len(self.y0) dom = self.annihilator.parent.base.domain try: sol = expr_to_holonomic(self.to_expr(), x=self.x, x0=b, lenics=lenics, domain=dom) except (NotPowerSeriesError, NotHyperSeriesError): symbolic = False if symbolic and sol.x0 == b: return sol y0 = self.evalf(b, derivatives=True) return HolonomicFunction(self.annihilator, self.x, b, y0) def to_meijerg(self): """ Returns a linear combination of Meijer G-functions. Examples ======== >>> from sympy.holonomic import expr_to_holonomic >>> from sympy import sin, cos, hyperexpand, log, symbols >>> x = symbols('x') >>> hyperexpand(expr_to_holonomic(cos(x) + sin(x)).to_meijerg()) sin(x) + cos(x) >>> hyperexpand(expr_to_holonomic(log(x)).to_meijerg()).simplify() log(x) See Also ======== to_hyper() """ # convert to hypergeometric first rep = self.to_hyper(as_list=True) sol = S.Zero for i in rep: if len(i) == 1: sol += i[0] elif len(i) == 2: sol += i[0] * _hyper_to_meijerg(i[1]) return sol def from_hyper(func, x0=0, evalf=False): r""" Converts a hypergeometric function to holonomic. ``func`` is the Hypergeometric Function and ``x0`` is the point at which initial conditions are required. Examples ======== >>> from sympy.holonomic.holonomic import from_hyper, DifferentialOperators >>> from sympy import symbols, hyper, S >>> x = symbols('x') >>> from_hyper(hyper([], [S(3)/2], x**2/4)) HolonomicFunction((-x) + (2)*Dx + (x)*Dx**2, x, 1, [sinh(1), -sinh(1) + cosh(1)]) """ a = func.ap b = func.bq z = func.args[2] x = z.atoms(Symbol).pop() R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') # generalized hypergeometric differential equation r1 = 1 for i in range(len(a)): r1 = r1 * (x * Dx + a[i]) r2 = Dx for i in range(len(b)): r2 = r2 * (x * Dx + b[i] - 1) sol = r1 - r2 simp = hyperexpand(func) if isinstance(simp, Infinity) or isinstance(simp, NegativeInfinity): return HolonomicFunction(sol, x).composition(z) def _find_conditions(simp, x, x0, order, evalf=False): y0 = [] for i in range(order): if evalf: val = simp.subs(x, x0).evalf() else: val = simp.subs(x, x0) # return None if it is Infinite or NaN if val.is_finite is False or isinstance(val, NaN): return None y0.append(val) simp = simp.diff(x) return y0 # if the function is known symbolically if not isinstance(simp, hyper): y0 = _find_conditions(simp, x, x0, sol.order) while not y0: # if values don't exist at 0, then try to find initial # conditions at 1. If it doesn't exist at 1 too then # try 2 and so on. x0 += 1 y0 = _find_conditions(simp, x, x0, sol.order) return HolonomicFunction(sol, x).composition(z, x0, y0) if isinstance(simp, hyper): x0 = 1 # use evalf if the function can't be simplified y0 = _find_conditions(simp, x, x0, sol.order, evalf) while not y0: x0 += 1 y0 = _find_conditions(simp, x, x0, sol.order, evalf) return HolonomicFunction(sol, x).composition(z, x0, y0) return HolonomicFunction(sol, x).composition(z) def from_meijerg(func, x0=0, evalf=False, initcond=True, domain=QQ): """ Converts a Meijer G-function to Holonomic. ``func`` is the G-Function and ``x0`` is the point at which initial conditions are required. Examples ======== >>> from sympy.holonomic.holonomic import from_meijerg, DifferentialOperators >>> from sympy import symbols, meijerg, S >>> x = symbols('x') >>> from_meijerg(meijerg(([], []), ([S(1)/2], [0]), x**2/4)) HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1/sqrt(pi)]) """ a = func.ap b = func.bq n = len(func.an) m = len(func.bm) p = len(a) z = func.args[2] x = z.atoms(Symbol).pop() R, Dx = DifferentialOperators(domain.old_poly_ring(x), 'Dx') # compute the differential equation satisfied by the # Meijer G-function. mnp = (-1)**(m + n - p) r1 = x * mnp for i in range(len(a)): r1 *= x * Dx + 1 - a[i] r2 = 1 for i in range(len(b)): r2 *= x * Dx - b[i] sol = r1 - r2 if not initcond: return HolonomicFunction(sol, x).composition(z) simp = hyperexpand(func) if isinstance(simp, Infinity) or isinstance(simp, NegativeInfinity): return HolonomicFunction(sol, x).composition(z) def _find_conditions(simp, x, x0, order, evalf=False): y0 = [] for i in range(order): if evalf: val = simp.subs(x, x0).evalf() else: val = simp.subs(x, x0) if val.is_finite is False or isinstance(val, NaN): return None y0.append(val) simp = simp.diff(x) return y0 # computing initial conditions if not isinstance(simp, meijerg): y0 = _find_conditions(simp, x, x0, sol.order) while not y0: x0 += 1 y0 = _find_conditions(simp, x, x0, sol.order) return HolonomicFunction(sol, x).composition(z, x0, y0) if isinstance(simp, meijerg): x0 = 1 y0 = _find_conditions(simp, x, x0, sol.order, evalf) while not y0: x0 += 1 y0 = _find_conditions(simp, x, x0, sol.order, evalf) return HolonomicFunction(sol, x).composition(z, x0, y0) return HolonomicFunction(sol, x).composition(z) x_1 = Dummy('x_1') _lookup_table = None domain_for_table = None from sympy.integrals.meijerint import _mytype def expr_to_holonomic(func, x=None, x0=0, y0=None, lenics=None, domain=None, initcond=True): """ Converts a function or an expression to a holonomic function. Parameters ========== func: The expression to be converted. x: variable for the function. x0: point at which initial condition must be computed. y0: One can optionally provide initial condition if the method isn't able to do it automatically. lenics: Number of terms in the initial condition. By default it is equal to the order of the annihilator. domain: Ground domain for the polynomials in `x` appearing as coefficients in the annihilator. initcond: Set it false if you don't want the initial conditions to be computed. Examples ======== >>> from sympy.holonomic.holonomic import expr_to_holonomic >>> from sympy import sin, exp, symbols >>> x = symbols('x') >>> expr_to_holonomic(sin(x)) HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1]) >>> expr_to_holonomic(exp(x)) HolonomicFunction((-1) + (1)*Dx, x, 0, [1]) See Also ======== sympy.integrals.meijerint._rewrite1, _convert_poly_rat_alg, _create_table """ func = sympify(func) syms = func.free_symbols if not x: if len(syms) == 1: x= syms.pop() else: raise ValueError("Specify the variable for the function") elif x in syms: syms.remove(x) extra_syms = list(syms) if domain is None: if func.has(Float): domain = RR else: domain = QQ if len(extra_syms) != 0: domain = domain[extra_syms].get_field() # try to convert if the function is polynomial or rational solpoly = _convert_poly_rat_alg(func, x, x0=x0, y0=y0, lenics=lenics, domain=domain, initcond=initcond) if solpoly: return solpoly # create the lookup table global _lookup_table, domain_for_table if not _lookup_table: domain_for_table = domain _lookup_table = {} _create_table(_lookup_table, domain=domain) elif domain != domain_for_table: domain_for_table = domain _lookup_table = {} _create_table(_lookup_table, domain=domain) # use the table directly to convert to Holonomic if func.is_Function: f = func.subs(x, x_1) t = _mytype(f, x_1) if t in _lookup_table: l = _lookup_table[t] sol = l[0][1].change_x(x) else: sol = _convert_meijerint(func, x, initcond=False, domain=domain) if not sol: raise NotImplementedError if y0: sol.y0 = y0 if y0 or not initcond: sol.x0 = x0 return sol if not lenics: lenics = sol.annihilator.order _y0 = _find_conditions(func, x, x0, lenics) while not _y0: x0 += 1 _y0 = _find_conditions(func, x, x0, lenics) return HolonomicFunction(sol.annihilator, x, x0, _y0) if y0 or not initcond: sol = sol.composition(func.args[0]) if y0: sol.y0 = y0 sol.x0 = x0 return sol if not lenics: lenics = sol.annihilator.order _y0 = _find_conditions(func, x, x0, lenics) while not _y0: x0 += 1 _y0 = _find_conditions(func, x, x0, lenics) return sol.composition(func.args[0], x0, _y0) # iterate through the expression recursively args = func.args f = func.func from sympy.core import Add, Mul, Pow sol = expr_to_holonomic(args[0], x=x, initcond=False, domain=domain) if f is Add: for i in range(1, len(args)): sol += expr_to_holonomic(args[i], x=x, initcond=False, domain=domain) elif f is Mul: for i in range(1, len(args)): sol *= expr_to_holonomic(args[i], x=x, initcond=False, domain=domain) elif f is Pow: sol = sol**args[1] sol.x0 = x0 if not sol: raise NotImplementedError if y0: sol.y0 = y0 if y0 or not initcond: return sol if sol.y0: return sol if not lenics: lenics = sol.annihilator.order if sol.annihilator.is_singular(x0): r = sol._indicial() l = list(r) if len(r) == 1 and r[l[0]] == S.One: r = l[0] g = func / (x - x0)**r singular_ics = _find_conditions(g, x, x0, lenics) singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)] y0 = {r:singular_ics} return HolonomicFunction(sol.annihilator, x, x0, y0) _y0 = _find_conditions(func, x, x0, lenics) while not _y0: x0 += 1 _y0 = _find_conditions(func, x, x0, lenics) return HolonomicFunction(sol.annihilator, x, x0, _y0) ## Some helper functions ## def _normalize(list_of, parent, negative=True): """ Normalize a given annihilator """ num = [] denom = [] base = parent.base K = base.get_field() lcm_denom = base.from_sympy(S.One) list_of_coeff = [] # convert polynomials to the elements of associated # fraction field for i, j in enumerate(list_of): if isinstance(j, base.dtype): list_of_coeff.append(K.new(j.rep)) elif not isinstance(j, K.dtype): list_of_coeff.append(K.from_sympy(sympify(j))) else: list_of_coeff.append(j) # corresponding numerators of the sequence of polynomials num.append(list_of_coeff[i].numer()) # corresponding denominators denom.append(list_of_coeff[i].denom()) # lcm of denominators in the coefficients for i in denom: lcm_denom = i.lcm(lcm_denom) if negative: lcm_denom = -lcm_denom lcm_denom = K.new(lcm_denom.rep) # multiply the coefficients with lcm for i, j in enumerate(list_of_coeff): list_of_coeff[i] = j * lcm_denom gcd_numer = base((list_of_coeff[-1].numer() / list_of_coeff[-1].denom()).rep) # gcd of numerators in the coefficients for i in num: gcd_numer = i.gcd(gcd_numer) gcd_numer = K.new(gcd_numer.rep) # divide all the coefficients by the gcd for i, j in enumerate(list_of_coeff): frac_ans = j / gcd_numer list_of_coeff[i] = base((frac_ans.numer() / frac_ans.denom()).rep) return DifferentialOperator(list_of_coeff, parent) def _derivate_diff_eq(listofpoly): """ Let a differential equation a0(x)y(x) + a1(x)y'(x) + ... = 0 where a0, a1,... are polynomials or rational functions. The function returns b0, b1, b2... such that the differential equation b0(x)y(x) + b1(x)y'(x) +... = 0 is formed after differentiating the former equation. """ sol = [] a = len(listofpoly) - 1 sol.append(DMFdiff(listofpoly[0])) for i, j in enumerate(listofpoly[1:]): sol.append(DMFdiff(j) + listofpoly[i]) sol.append(listofpoly[a]) return sol def _hyper_to_meijerg(func): """ Converts a `hyper` to meijerg. """ ap = func.ap bq = func.bq ispoly = any(i <= 0 and int(i) == i for i in ap) if ispoly: return hyperexpand(func) z = func.args[2] # parameters of the `meijerg` function. an = (1 - i for i in ap) anp = () bm = (S.Zero, ) bmq = (1 - i for i in bq) k = S.One for i in bq: k = k * gamma(i) for i in ap: k = k / gamma(i) return k * meijerg(an, anp, bm, bmq, -z) def _add_lists(list1, list2): """Takes polynomial sequences of two annihilators a and b and returns the list of polynomials of sum of a and b. """ if len(list1) <= len(list2): sol = [a + b for a, b in zip(list1, list2)] + list2[len(list1):] else: sol = [a + b for a, b in zip(list1, list2)] + list1[len(list2):] return sol def _extend_y0(Holonomic, n): """ Tries to find more initial conditions by substituting the initial value point in the differential equation. """ if Holonomic.annihilator.is_singular(Holonomic.x0) or Holonomic.is_singularics() == True: return Holonomic.y0 annihilator = Holonomic.annihilator a = annihilator.order listofpoly = [] y0 = Holonomic.y0 R = annihilator.parent.base K = R.get_field() for i, j in enumerate(annihilator.listofpoly): if isinstance(j, annihilator.parent.base.dtype): listofpoly.append(K.new(j.rep)) if len(y0) < a or n <= len(y0): return y0 else: list_red = [-listofpoly[i] / listofpoly[a] for i in range(a)] if len(y0) > a: y1 = [y0[i] for i in range(a)] else: y1 = [i for i in y0] for i in range(n - a): sol = 0 for a, b in zip(y1, list_red): r = DMFsubs(b, Holonomic.x0) if not getattr(r, 'is_finite', True): return y0 if isinstance(r, (PolyElement, FracElement)): r = r.as_expr() sol += a * r y1.append(sol) list_red = _derivate_diff_eq(list_red) return y0 + y1[len(y0):] def DMFdiff(frac): # differentiate a DMF object represented as p/q if not isinstance(frac, DMF): return frac.diff() K = frac.ring p = K.numer(frac) q = K.denom(frac) sol_num = - p * q.diff() + q * p.diff() sol_denom = q**2 return K((sol_num.rep, sol_denom.rep)) def DMFsubs(frac, x0, mpm=False): # substitute the point x0 in DMF object of the form p/q if not isinstance(frac, DMF): return frac p = frac.num q = frac.den sol_p = S.Zero sol_q = S.Zero if mpm: from mpmath import mp for i, j in enumerate(reversed(p)): if mpm: j = sympify(j)._to_mpmath(mp.prec) sol_p += j * x0**i for i, j in enumerate(reversed(q)): if mpm: j = sympify(j)._to_mpmath(mp.prec) sol_q += j * x0**i if isinstance(sol_p, (PolyElement, FracElement)): sol_p = sol_p.as_expr() if isinstance(sol_q, (PolyElement, FracElement)): sol_q = sol_q.as_expr() return sol_p / sol_q def _convert_poly_rat_alg(func, x, x0=0, y0=None, lenics=None, domain=QQ, initcond=True): """ Converts polynomials, rationals and algebraic functions to holonomic. """ ispoly = func.is_polynomial() if not ispoly: israt = func.is_rational_function() else: israt = True if not (ispoly or israt): basepoly, ratexp = func.as_base_exp() if basepoly.is_polynomial() and ratexp.is_Number: if isinstance(ratexp, Float): ratexp = nsimplify(ratexp) m, n = ratexp.p, ratexp.q is_alg = True else: is_alg = False else: is_alg = True if not (ispoly or israt or is_alg): return None R = domain.old_poly_ring(x) _, Dx = DifferentialOperators(R, 'Dx') # if the function is constant if not func.has(x): return HolonomicFunction(Dx, x, 0, [func]) if ispoly: # differential equation satisfied by polynomial sol = func * Dx - func.diff(x) sol = _normalize(sol.listofpoly, sol.parent, negative=False) is_singular = sol.is_singular(x0) # try to compute the conditions for singular points if y0 is None and x0 == 0 and is_singular: rep = R.from_sympy(func).rep for i, j in enumerate(reversed(rep)): if j == 0: continue else: coeff = list(reversed(rep))[i:] indicial = i break for i, j in enumerate(coeff): if isinstance(j, (PolyElement, FracElement)): coeff[i] = j.as_expr() y0 = {indicial: S(coeff)} elif israt: p, q = func.as_numer_denom() # differential equation satisfied by rational sol = p * q * Dx + p * q.diff(x) - q * p.diff(x) sol = _normalize(sol.listofpoly, sol.parent, negative=False) elif is_alg: sol = n * (x / m) * Dx - 1 sol = HolonomicFunction(sol, x).composition(basepoly).annihilator is_singular = sol.is_singular(x0) # try to compute the conditions for singular points if y0 is None and x0 == 0 and is_singular and \ (lenics is None or lenics <= 1): rep = R.from_sympy(basepoly).rep for i, j in enumerate(reversed(rep)): if j == 0: continue if isinstance(j, (PolyElement, FracElement)): j = j.as_expr() coeff = S(j)**ratexp indicial = S(i) * ratexp break if isinstance(coeff, (PolyElement, FracElement)): coeff = coeff.as_expr() y0 = {indicial: S([coeff])} if y0 or not initcond: return HolonomicFunction(sol, x, x0, y0) if not lenics: lenics = sol.order if sol.is_singular(x0): r = HolonomicFunction(sol, x, x0)._indicial() l = list(r) if len(r) == 1 and r[l[0]] == S.One: r = l[0] g = func / (x - x0)**r singular_ics = _find_conditions(g, x, x0, lenics) singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)] y0 = {r:singular_ics} return HolonomicFunction(sol, x, x0, y0) y0 = _find_conditions(func, x, x0, lenics) while not y0: x0 += 1 y0 = _find_conditions(func, x, x0, lenics) return HolonomicFunction(sol, x, x0, y0) def _convert_meijerint(func, x, initcond=True, domain=QQ): args = meijerint._rewrite1(func, x) if args: fac, po, g, _ = args else: return None # lists for sum of meijerg functions fac_list = [fac * i[0] for i in g] t = po.as_base_exp() s = t[1] if t[0] is x else S.Zero po_list = [s + i[1] for i in g] G_list = [i[2] for i in g] # finds meijerg representation of x**s * meijerg(a1 ... ap, b1 ... bq, z) def _shift(func, s): z = func.args[-1] if z.has(I): z = z.subs(exp_polar, exp) d = z.collect(x, evaluate=False) b = list(d)[0] a = d[b] t = b.as_base_exp() b = t[1] if t[0] is x else S.Zero r = s / b an = (i + r for i in func.args[0][0]) ap = (i + r for i in func.args[0][1]) bm = (i + r for i in func.args[1][0]) bq = (i + r for i in func.args[1][1]) return a**-r, meijerg((an, ap), (bm, bq), z) coeff, m = _shift(G_list[0], po_list[0]) sol = fac_list[0] * coeff * from_meijerg(m, initcond=initcond, domain=domain) # add all the meijerg functions after converting to holonomic for i in range(1, len(G_list)): coeff, m = _shift(G_list[i], po_list[i]) sol += fac_list[i] * coeff * from_meijerg(m, initcond=initcond, domain=domain) return sol def _create_table(table, domain=QQ): """ Creates the look-up table. For a similar implementation see meijerint._create_lookup_table. """ def add(formula, annihilator, arg, x0=0, y0=[]): """ Adds a formula in the dictionary """ table.setdefault(_mytype(formula, x_1), []).append((formula, HolonomicFunction(annihilator, arg, x0, y0))) R = domain.old_poly_ring(x_1) _, Dx = DifferentialOperators(R, 'Dx') from sympy import (sin, cos, exp, log, erf, sqrt, pi, sinh, cosh, sinc, erfc, Si, Ci, Shi, erfi) # add some basic functions add(sin(x_1), Dx**2 + 1, x_1, 0, [0, 1]) add(cos(x_1), Dx**2 + 1, x_1, 0, [1, 0]) add(exp(x_1), Dx - 1, x_1, 0, 1) add(log(x_1), Dx + x_1*Dx**2, x_1, 1, [0, 1]) add(erf(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)]) add(erfc(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [1, -2/sqrt(pi)]) add(erfi(x_1), -2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)]) add(sinh(x_1), Dx**2 - 1, x_1, 0, [0, 1]) add(cosh(x_1), Dx**2 - 1, x_1, 0, [1, 0]) add(sinc(x_1), x_1 + 2*Dx + x_1*Dx**2, x_1) add(Si(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1) add(Ci(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1) add(Shi(x_1), -x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1) def _find_conditions(func, x, x0, order): y0 = [] for i in range(order): val = func.subs(x, x0) if isinstance(val, NaN): val = limit(func, x, x0) if val.is_finite is False or isinstance(val, NaN): return None y0.append(val) func = func.diff(x) return y0
b35b7910b9613e2502538870c0da77f821e7ee7e04f747b6700cd513c207dbce
""" This module defines tensors with abstract index notation. The abstract index notation has been first formalized by Penrose. Tensor indices are formal objects, with a tensor type; there is no notion of index range, it is only possible to assign the dimension, used to trace the Kronecker delta; the dimension can be a Symbol. The Einstein summation convention is used. The covariant indices are indicated with a minus sign in front of the index. For instance the tensor ``t = p(a)*A(b,c)*q(-c)`` has the index ``c`` contracted. A tensor expression ``t`` can be called; called with its indices in sorted order it is equal to itself: in the above example ``t(a, b) == t``; one can call ``t`` with different indices; ``t(c, d) == p(c)*A(d,a)*q(-a)``. The contracted indices are dummy indices, internally they have no name, the indices being represented by a graph-like structure. Tensors are put in canonical form using ``canon_bp``, which uses the Butler-Portugal algorithm for canonicalization using the monoterm symmetries of the tensors. If there is a (anti)symmetric metric, the indices can be raised and lowered when the tensor is put in canonical form. """ from __future__ import print_function, division from collections import defaultdict import operator import itertools from sympy import Rational, prod, Integer from sympy.combinatorics import Permutation from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, \ bsgs_direct_product, canonicalize, riemann_bsgs from sympy.core import Basic, Expr, sympify, Add, Mul, S from sympy.core.compatibility import string_types, reduce, range, SYMPY_INTS from sympy.core.containers import Tuple, Dict from sympy.core.decorators import deprecated from sympy.core.symbol import Symbol, symbols from sympy.core.sympify import CantSympify, _sympify from sympy.core.operations import AssocOp from sympy.matrices import eye from sympy.utilities.exceptions import SymPyDeprecationWarning import warnings @deprecated(useinstead=".replace_with_arrays", issue=15276, deprecated_since_version="1.4") def deprecate_data(): pass @deprecated(useinstead=".substitute_indices()", issue=17515, deprecated_since_version="1.5") def deprecate_fun_eval(): pass @deprecated(useinstead="tensor_heads()", issue=17108, deprecated_since_version="1.5") def deprecate_TensorType(): pass class _IndexStructure(CantSympify): """ This class handles the indices (free and dummy ones). It contains the algorithms to manage the dummy indices replacements and contractions of free indices under multiplications of tensor expressions, as well as stuff related to canonicalization sorting, getting the permutation of the expression and so on. It also includes tools to get the ``TensorIndex`` objects corresponding to the given index structure. """ def __init__(self, free, dum, index_types, indices, canon_bp=False): self.free = free self.dum = dum self.index_types = index_types self.indices = indices self._ext_rank = len(self.free) + 2*len(self.dum) self.dum.sort(key=lambda x: x[0]) @staticmethod def from_indices(*indices): """ Create a new ``_IndexStructure`` object from a list of ``indices`` ``indices`` ``TensorIndex`` objects, the indices. Contractions are detected upon construction. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, _IndexStructure >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz) >>> _IndexStructure.from_indices(m0, m1, -m1, m3) _IndexStructure([(m0, 0), (m3, 3)], [(1, 2)], [Lorentz, Lorentz, Lorentz, Lorentz]) """ free, dum = _IndexStructure._free_dum_from_indices(*indices) index_types = [i.tensor_index_type for i in indices] indices = _IndexStructure._replace_dummy_names(indices, free, dum) return _IndexStructure(free, dum, index_types, indices) @staticmethod def from_components_free_dum(components, free, dum): index_types = [] for component in components: index_types.extend(component.index_types) indices = _IndexStructure.generate_indices_from_free_dum_index_types(free, dum, index_types) return _IndexStructure(free, dum, index_types, indices) @staticmethod def _free_dum_from_indices(*indices): """ Convert ``indices`` into ``free``, ``dum`` for single component tensor ``free`` list of tuples ``(index, pos, 0)``, where ``pos`` is the position of index in the list of indices formed by the component tensors ``dum`` list of tuples ``(pos_contr, pos_cov, 0, 0)`` Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, \ _IndexStructure >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz) >>> _IndexStructure._free_dum_from_indices(m0, m1, -m1, m3) ([(m0, 0), (m3, 3)], [(1, 2)]) """ n = len(indices) if n == 1: return [(indices[0], 0)], [] # find the positions of the free indices and of the dummy indices free = [True]*len(indices) index_dict = {} dum = [] for i, index in enumerate(indices): name = index._name typ = index.tensor_index_type contr = index._is_up if (name, typ) in index_dict: # found a pair of dummy indices is_contr, pos = index_dict[(name, typ)] # check consistency and update free if is_contr: if contr: raise ValueError('two equal contravariant indices in slots %d and %d' %(pos, i)) else: free[pos] = False free[i] = False else: if contr: free[pos] = False free[i] = False else: raise ValueError('two equal covariant indices in slots %d and %d' %(pos, i)) if contr: dum.append((i, pos)) else: dum.append((pos, i)) else: index_dict[(name, typ)] = index._is_up, i free = [(index, i) for i, index in enumerate(indices) if free[i]] free.sort() return free, dum def get_indices(self): """ Get a list of indices, creating new tensor indices to complete dummy indices. """ return self.indices[:] @staticmethod def generate_indices_from_free_dum_index_types(free, dum, index_types): indices = [None]*(len(free)+2*len(dum)) for idx, pos in free: indices[pos] = idx generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free) for pos1, pos2 in dum: typ1 = index_types[pos1] indname = generate_dummy_name(typ1) indices[pos1] = TensorIndex(indname, typ1, True) indices[pos2] = TensorIndex(indname, typ1, False) return _IndexStructure._replace_dummy_names(indices, free, dum) @staticmethod def _get_generator_for_dummy_indices(free): cdt = defaultdict(int) # if the free indices have names with dummy_fmt, start with an # index higher than those for the dummy indices # to avoid name collisions for indx, ipos in free: if indx._name.split('_')[0] == indx.tensor_index_type.dummy_fmt[:-3]: cdt[indx.tensor_index_type] = max(cdt[indx.tensor_index_type], int(indx._name.split('_')[1]) + 1) def dummy_fmt_gen(tensor_index_type): fmt = tensor_index_type.dummy_fmt nd = cdt[tensor_index_type] cdt[tensor_index_type] += 1 return fmt % nd return dummy_fmt_gen @staticmethod def _replace_dummy_names(indices, free, dum): dum.sort(key=lambda x: x[0]) new_indices = [ind for ind in indices] assert len(indices) == len(free) + 2*len(dum) generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free) for ipos1, ipos2 in dum: typ1 = new_indices[ipos1].tensor_index_type indname = generate_dummy_name(typ1) new_indices[ipos1] = TensorIndex(indname, typ1, True) new_indices[ipos2] = TensorIndex(indname, typ1, False) return new_indices def get_free_indices(self): """ Get a list of free indices. """ # get sorted indices according to their position: free = sorted(self.free, key=lambda x: x[1]) return [i[0] for i in free] def __str__(self): return "_IndexStructure({0}, {1}, {2})".format(self.free, self.dum, self.index_types) def __repr__(self): return self.__str__() def _get_sorted_free_indices_for_canon(self): sorted_free = self.free[:] sorted_free.sort(key=lambda x: x[0]) return sorted_free def _get_sorted_dum_indices_for_canon(self): return sorted(self.dum, key=lambda x: x[0]) def _get_lexicographically_sorted_index_types(self): permutation = self.indices_canon_args()[0] index_types = [None]*self._ext_rank for i, it in enumerate(self.index_types): index_types[permutation(i)] = it return index_types def _get_lexicographically_sorted_indices(self): permutation = self.indices_canon_args()[0] indices = [None]*self._ext_rank for i, it in enumerate(self.indices): indices[permutation(i)] = it return indices def perm2tensor(self, g, is_canon_bp=False): """ Returns a ``_IndexStructure`` instance corresponding to the permutation ``g`` ``g`` permutation corresponding to the tensor in the representation used in canonicalization ``is_canon_bp`` if True, then ``g`` is the permutation corresponding to the canonical form of the tensor """ sorted_free = [i[0] for i in self._get_sorted_free_indices_for_canon()] lex_index_types = self._get_lexicographically_sorted_index_types() lex_indices = self._get_lexicographically_sorted_indices() nfree = len(sorted_free) rank = self._ext_rank dum = [[None]*2 for i in range((rank - nfree)//2)] free = [] index_types = [None]*rank indices = [None]*rank for i in range(rank): gi = g[i] index_types[i] = lex_index_types[gi] indices[i] = lex_indices[gi] if gi < nfree: ind = sorted_free[gi] assert index_types[i] == sorted_free[gi].tensor_index_type free.append((ind, i)) else: j = gi - nfree idum, cov = divmod(j, 2) if cov: dum[idum][1] = i else: dum[idum][0] = i dum = [tuple(x) for x in dum] return _IndexStructure(free, dum, index_types, indices) def indices_canon_args(self): """ Returns ``(g, dummies, msym, v)``, the entries of ``canonicalize`` see ``canonicalize`` in ``tensor_can.py`` in combinatorics module """ # to be called after sorted_components from sympy.combinatorics.permutations import _af_new n = self._ext_rank g = [None]*n + [n, n+1] # ordered indices: first the free indices, ordered by types # then the dummy indices, ordered by types and contravariant before # covariant # g[position in tensor] = position in ordered indices for i, (indx, ipos) in enumerate(self._get_sorted_free_indices_for_canon()): g[ipos] = i pos = len(self.free) j = len(self.free) dummies = [] prev = None a = [] msym = [] for ipos1, ipos2 in self._get_sorted_dum_indices_for_canon(): g[ipos1] = j g[ipos2] = j + 1 j += 2 typ = self.index_types[ipos1] if typ != prev: if a: dummies.append(a) a = [pos, pos + 1] prev = typ msym.append(typ.metric_antisym) else: a.extend([pos, pos + 1]) pos += 2 if a: dummies.append(a) return _af_new(g), dummies, msym def components_canon_args(components): numtyp = [] prev = None for t in components: if t == prev: numtyp[-1][1] += 1 else: prev = t numtyp.append([prev, 1]) v = [] for h, n in numtyp: if h._comm == 0 or h._comm == 1: comm = h._comm else: comm = TensorManager.get_comm(h._comm, h._comm) v.append((h.symmetry.base, h.symmetry.generators, n, comm)) return v class _TensorDataLazyEvaluator(CantSympify): """ EXPERIMENTAL: do not rely on this class, it may change without deprecation warnings in future versions of SymPy. This object contains the logic to associate components data to a tensor expression. Components data are set via the ``.data`` property of tensor expressions, is stored inside this class as a mapping between the tensor expression and the ``ndarray``. Computations are executed lazily: whereas the tensor expressions can have contractions, tensor products, and additions, components data are not computed until they are accessed by reading the ``.data`` property associated to the tensor expression. """ _substitutions_dict = dict() _substitutions_dict_tensmul = dict() def __getitem__(self, key): dat = self._get(key) if dat is None: return None from .array import NDimArray if not isinstance(dat, NDimArray): return dat if dat.rank() == 0: return dat[()] elif dat.rank() == 1 and len(dat) == 1: return dat[0] return dat def _get(self, key): """ Retrieve ``data`` associated with ``key``. This algorithm looks into ``self._substitutions_dict`` for all ``TensorHead`` in the ``TensExpr`` (or just ``TensorHead`` if key is a TensorHead instance). It reconstructs the components data that the tensor expression should have by performing on components data the operations that correspond to the abstract tensor operations applied. Metric tensor is handled in a different manner: it is pre-computed in ``self._substitutions_dict_tensmul``. """ if key in self._substitutions_dict: return self._substitutions_dict[key] if isinstance(key, TensorHead): return None if isinstance(key, Tensor): # special case to handle metrics. Metric tensors cannot be # constructed through contraction by the metric, their # components show if they are a matrix or its inverse. signature = tuple([i.is_up for i in key.get_indices()]) srch = (key.component,) + signature if srch in self._substitutions_dict_tensmul: return self._substitutions_dict_tensmul[srch] array_list = [self.data_from_tensor(key)] return self.data_contract_dum(array_list, key.dum, key.ext_rank) if isinstance(key, TensMul): tensmul_args = key.args if len(tensmul_args) == 1 and len(tensmul_args[0].components) == 1: # special case to handle metrics. Metric tensors cannot be # constructed through contraction by the metric, their # components show if they are a matrix or its inverse. signature = tuple([i.is_up for i in tensmul_args[0].get_indices()]) srch = (tensmul_args[0].components[0],) + signature if srch in self._substitutions_dict_tensmul: return self._substitutions_dict_tensmul[srch] #data_list = [self.data_from_tensor(i) for i in tensmul_args if isinstance(i, TensExpr)] data_list = [self.data_from_tensor(i) if isinstance(i, Tensor) else i.data for i in tensmul_args if isinstance(i, TensExpr)] coeff = prod([i for i in tensmul_args if not isinstance(i, TensExpr)]) if all([i is None for i in data_list]): return None if any([i is None for i in data_list]): raise ValueError("Mixing tensors with associated components "\ "data with tensors without components data") data_result = self.data_contract_dum(data_list, key.dum, key.ext_rank) return coeff*data_result if isinstance(key, TensAdd): data_list = [] free_args_list = [] for arg in key.args: if isinstance(arg, TensExpr): data_list.append(arg.data) free_args_list.append([x[0] for x in arg.free]) else: data_list.append(arg) free_args_list.append([]) if all([i is None for i in data_list]): return None if any([i is None for i in data_list]): raise ValueError("Mixing tensors with associated components "\ "data with tensors without components data") sum_list = [] from .array import permutedims for data, free_args in zip(data_list, free_args_list): if len(free_args) < 2: sum_list.append(data) else: free_args_pos = {y: x for x, y in enumerate(free_args)} axes = [free_args_pos[arg] for arg in key.free_args] sum_list.append(permutedims(data, axes)) return reduce(lambda x, y: x+y, sum_list) return None @staticmethod def data_contract_dum(ndarray_list, dum, ext_rank): from .array import tensorproduct, tensorcontraction, MutableDenseNDimArray arrays = list(map(MutableDenseNDimArray, ndarray_list)) prodarr = tensorproduct(*arrays) return tensorcontraction(prodarr, *dum) def data_tensorhead_from_tensmul(self, data, tensmul, tensorhead): """ This method is used when assigning components data to a ``TensMul`` object, it converts components data to a fully contravariant ndarray, which is then stored according to the ``TensorHead`` key. """ if data is None: return None return self._correct_signature_from_indices( data, tensmul.get_indices(), tensmul.free, tensmul.dum, True) def data_from_tensor(self, tensor): """ This method corrects the components data to the right signature (covariant/contravariant) using the metric associated with each ``TensorIndexType``. """ tensorhead = tensor.component if tensorhead.data is None: return None return self._correct_signature_from_indices( tensorhead.data, tensor.get_indices(), tensor.free, tensor.dum) def _assign_data_to_tensor_expr(self, key, data): if isinstance(key, TensAdd): raise ValueError('cannot assign data to TensAdd') # here it is assumed that `key` is a `TensMul` instance. if len(key.components) != 1: raise ValueError('cannot assign data to TensMul with multiple components') tensorhead = key.components[0] newdata = self.data_tensorhead_from_tensmul(data, key, tensorhead) return tensorhead, newdata def _check_permutations_on_data(self, tens, data): from .array import permutedims from .array.arrayop import Flatten if isinstance(tens, TensorHead): rank = tens.rank generators = tens.symmetry.generators elif isinstance(tens, Tensor): rank = tens.rank generators = tens.components[0].symmetry.generators elif isinstance(tens, TensorIndexType): rank = tens.metric.rank generators = tens.metric.symmetry.generators # Every generator is a permutation, check that by permuting the array # by that permutation, the array will be the same, except for a # possible sign change if the permutation admits it. for gener in generators: sign_change = +1 if (gener(rank) == rank) else -1 data_swapped = data last_data = data permute_axes = list(map(gener, list(range(rank)))) # the order of a permutation is the number of times to get the # identity by applying that permutation. for i in range(gener.order()-1): data_swapped = permutedims(data_swapped, permute_axes) # if any value in the difference array is non-zero, raise an error: if any(Flatten(last_data - sign_change*data_swapped)): raise ValueError("Component data symmetry structure error") last_data = data_swapped def __setitem__(self, key, value): """ Set the components data of a tensor object/expression. Components data are transformed to the all-contravariant form and stored with the corresponding ``TensorHead`` object. If a ``TensorHead`` object cannot be uniquely identified, it will raise an error. """ data = _TensorDataLazyEvaluator.parse_data(value) self._check_permutations_on_data(key, data) # TensorHead and TensorIndexType can be assigned data directly, while # TensMul must first convert data to a fully contravariant form, and # assign it to its corresponding TensorHead single component. if not isinstance(key, (TensorHead, TensorIndexType)): key, data = self._assign_data_to_tensor_expr(key, data) if isinstance(key, TensorHead): for dim, indextype in zip(data.shape, key.index_types): if indextype.data is None: raise ValueError("index type {} has no components data"\ " associated (needed to raise/lower index)".format(indextype)) if indextype.dim is None: continue if dim != indextype.dim: raise ValueError("wrong dimension of ndarray") self._substitutions_dict[key] = data def __delitem__(self, key): del self._substitutions_dict[key] def __contains__(self, key): return key in self._substitutions_dict def add_metric_data(self, metric, data): """ Assign data to the ``metric`` tensor. The metric tensor behaves in an anomalous way when raising and lowering indices. A fully covariant metric is the inverse transpose of the fully contravariant metric (it is meant matrix inverse). If the metric is symmetric, the transpose is not necessary and mixed covariant/contravariant metrics are Kronecker deltas. """ # hard assignment, data should not be added to `TensorHead` for metric: # the problem with `TensorHead` is that the metric is anomalous, i.e. # raising and lowering the index means considering the metric or its # inverse, this is not the case for other tensors. self._substitutions_dict_tensmul[metric, True, True] = data inverse_transpose = self.inverse_transpose_matrix(data) # in symmetric spaces, the transpose is the same as the original matrix, # the full covariant metric tensor is the inverse transpose, so this # code will be able to handle non-symmetric metrics. self._substitutions_dict_tensmul[metric, False, False] = inverse_transpose # now mixed cases, these are identical to the unit matrix if the metric # is symmetric. m = data.tomatrix() invt = inverse_transpose.tomatrix() self._substitutions_dict_tensmul[metric, True, False] = m * invt self._substitutions_dict_tensmul[metric, False, True] = invt * m @staticmethod def _flip_index_by_metric(data, metric, pos): from .array import tensorproduct, tensorcontraction mdim = metric.rank() ddim = data.rank() if pos == 0: data = tensorcontraction( tensorproduct( metric, data ), (1, mdim+pos) ) else: data = tensorcontraction( tensorproduct( data, metric ), (pos, ddim) ) return data @staticmethod def inverse_matrix(ndarray): m = ndarray.tomatrix().inv() return _TensorDataLazyEvaluator.parse_data(m) @staticmethod def inverse_transpose_matrix(ndarray): m = ndarray.tomatrix().inv().T return _TensorDataLazyEvaluator.parse_data(m) @staticmethod def _correct_signature_from_indices(data, indices, free, dum, inverse=False): """ Utility function to correct the values inside the components data ndarray according to whether indices are covariant or contravariant. It uses the metric matrix to lower values of covariant indices. """ # change the ndarray values according covariantness/contravariantness of the indices # use the metric for i, indx in enumerate(indices): if not indx.is_up and not inverse: data = _TensorDataLazyEvaluator._flip_index_by_metric(data, indx.tensor_index_type.data, i) elif not indx.is_up and inverse: data = _TensorDataLazyEvaluator._flip_index_by_metric( data, _TensorDataLazyEvaluator.inverse_matrix(indx.tensor_index_type.data), i ) return data @staticmethod def _sort_data_axes(old, new): from .array import permutedims new_data = old.data.copy() old_free = [i[0] for i in old.free] new_free = [i[0] for i in new.free] for i in range(len(new_free)): for j in range(i, len(old_free)): if old_free[j] == new_free[i]: old_free[i], old_free[j] = old_free[j], old_free[i] new_data = permutedims(new_data, (i, j)) break return new_data @staticmethod def add_rearrange_tensmul_parts(new_tensmul, old_tensmul): def sorted_compo(): return _TensorDataLazyEvaluator._sort_data_axes(old_tensmul, new_tensmul) _TensorDataLazyEvaluator._substitutions_dict[new_tensmul] = sorted_compo() @staticmethod def parse_data(data): """ Transform ``data`` to array. The parameter ``data`` may contain data in various formats, e.g. nested lists, sympy ``Matrix``, and so on. Examples ======== >>> from sympy.tensor.tensor import _TensorDataLazyEvaluator >>> _TensorDataLazyEvaluator.parse_data([1, 3, -6, 12]) [1, 3, -6, 12] >>> _TensorDataLazyEvaluator.parse_data([[1, 2], [4, 7]]) [[1, 2], [4, 7]] """ from .array import MutableDenseNDimArray if not isinstance(data, MutableDenseNDimArray): if len(data) == 2 and hasattr(data[0], '__call__'): data = MutableDenseNDimArray(data[0], data[1]) else: data = MutableDenseNDimArray(data) return data _tensor_data_substitution_dict = _TensorDataLazyEvaluator() class _TensorManager(object): """ Class to manage tensor properties. Notes ===== Tensors belong to tensor commutation groups; each group has a label ``comm``; there are predefined labels: ``0`` tensors commuting with any other tensor ``1`` tensors anticommuting among themselves ``2`` tensors not commuting, apart with those with ``comm=0`` Other groups can be defined using ``set_comm``; tensors in those groups commute with those with ``comm=0``; by default they do not commute with any other group. """ def __init__(self): self._comm_init() def _comm_init(self): self._comm = [{} for i in range(3)] for i in range(3): self._comm[0][i] = 0 self._comm[i][0] = 0 self._comm[1][1] = 1 self._comm[2][1] = None self._comm[1][2] = None self._comm_symbols2i = {0:0, 1:1, 2:2} self._comm_i2symbol = {0:0, 1:1, 2:2} @property def comm(self): return self._comm def comm_symbols2i(self, i): """ get the commutation group number corresponding to ``i`` ``i`` can be a symbol or a number or a string If ``i`` is not already defined its commutation group number is set. """ if i not in self._comm_symbols2i: n = len(self._comm) self._comm.append({}) self._comm[n][0] = 0 self._comm[0][n] = 0 self._comm_symbols2i[i] = n self._comm_i2symbol[n] = i return n return self._comm_symbols2i[i] def comm_i2symbol(self, i): """ Returns the symbol corresponding to the commutation group number. """ return self._comm_i2symbol[i] def set_comm(self, i, j, c): """ set the commutation parameter ``c`` for commutation groups ``i, j`` Parameters ========== i, j : symbols representing commutation groups c : group commutation number Notes ===== ``i, j`` can be symbols, strings or numbers, apart from ``0, 1`` and ``2`` which are reserved respectively for commuting, anticommuting tensors and tensors not commuting with any other group apart with the commuting tensors. For the remaining cases, use this method to set the commutation rules; by default ``c=None``. The group commutation number ``c`` is assigned in correspondence to the group commutation symbols; it can be 0 commuting 1 anticommuting None no commutation property Examples ======== ``G`` and ``GH`` do not commute with themselves and commute with each other; A is commuting. >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, TensorManager, TensorSymmetry >>> Lorentz = TensorIndexType('Lorentz') >>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz) >>> A = TensorHead('A', [Lorentz]) >>> G = TensorHead('G', [Lorentz], TensorSymmetry.no_symmetry(1), 'Gcomm') >>> GH = TensorHead('GH', [Lorentz], TensorSymmetry.no_symmetry(1), 'GHcomm') >>> TensorManager.set_comm('Gcomm', 'GHcomm', 0) >>> (GH(i1)*G(i0)).canon_bp() G(i0)*GH(i1) >>> (G(i1)*G(i0)).canon_bp() G(i1)*G(i0) >>> (G(i1)*A(i0)).canon_bp() A(i0)*G(i1) """ if c not in (0, 1, None): raise ValueError('`c` can assume only the values 0, 1 or None') if i not in self._comm_symbols2i: n = len(self._comm) self._comm.append({}) self._comm[n][0] = 0 self._comm[0][n] = 0 self._comm_symbols2i[i] = n self._comm_i2symbol[n] = i if j not in self._comm_symbols2i: n = len(self._comm) self._comm.append({}) self._comm[0][n] = 0 self._comm[n][0] = 0 self._comm_symbols2i[j] = n self._comm_i2symbol[n] = j ni = self._comm_symbols2i[i] nj = self._comm_symbols2i[j] self._comm[ni][nj] = c self._comm[nj][ni] = c def set_comms(self, *args): """ set the commutation group numbers ``c`` for symbols ``i, j`` Parameters ========== args : sequence of ``(i, j, c)`` """ for i, j, c in args: self.set_comm(i, j, c) def get_comm(self, i, j): """ Return the commutation parameter for commutation group numbers ``i, j`` see ``_TensorManager.set_comm`` """ return self._comm[i].get(j, 0 if i == 0 or j == 0 else None) def clear(self): """ Clear the TensorManager. """ self._comm_init() TensorManager = _TensorManager() class TensorIndexType(Basic): """ A TensorIndexType is characterized by its name and its metric. Parameters ========== name : name of the tensor type metric : metric symmetry or metric object or ``None`` dim : dimension, it can be a symbol or an integer or ``None`` eps_dim : dimension of the epsilon tensor dummy_fmt : name of the head of dummy indices Attributes ========== ``name`` ``metric_name`` : it is 'metric' or metric.name ``metric_antisym`` ``metric`` : the metric tensor ``delta`` : ``Kronecker delta`` ``epsilon`` : the ``Levi-Civita epsilon`` tensor ``dim`` ``eps_dim`` ``dummy_fmt`` ``data`` : (deprecated) a property to add ``ndarray`` values, to work in a specified basis. Notes ===== The ``metric`` parameter can be: ``metric = False`` symmetric metric (in Riemannian geometry) ``metric = True`` antisymmetric metric (for spinor calculus) ``metric = None`` there is no metric ``metric`` can be an object having ``name`` and ``antisym`` attributes. If there is a metric the metric is used to raise and lower indices. In the case of antisymmetric metric, the following raising and lowering conventions will be adopted: ``psi(a) = g(a, b)*psi(-b); chi(-a) = chi(b)*g(-b, -a)`` ``g(-a, b) = delta(-a, b); g(b, -a) = -delta(a, -b)`` where ``delta(-a, b) = delta(b, -a)`` is the ``Kronecker delta`` (see ``TensorIndex`` for the conventions on indices). If there is no metric it is not possible to raise or lower indices; e.g. the index of the defining representation of ``SU(N)`` is 'covariant' and the conjugate representation is 'contravariant'; for ``N > 2`` they are linearly independent. ``eps_dim`` is by default equal to ``dim``, if the latter is an integer; else it can be assigned (for use in naive dimensional regularization); if ``eps_dim`` is not an integer ``epsilon`` is ``None``. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> Lorentz.metric metric(Lorentz,Lorentz) """ def __new__(cls, name, metric=False, dim=None, eps_dim=None, dummy_fmt=None): if isinstance(name, string_types): name = Symbol(name) obj = Basic.__new__(cls, name, S.One if metric else S.Zero) obj._name = str(name) if not dummy_fmt: obj._dummy_fmt = '%s_%%d' % obj.name else: obj._dummy_fmt = '%s_%%d' % dummy_fmt if metric is None: obj.metric_antisym = None obj.metric = None else: if metric in (True, False, 0, 1): metric_name = 'metric' obj.metric_antisym = metric else: metric_name = metric.name obj.metric_antisym = metric.antisym sym2 = TensorSymmetry(get_symmetric_group_sgs(2, obj.metric_antisym)) obj.metric = TensorHead(metric_name, [obj]*2, sym2) obj._dim = dim obj._delta = obj.get_kronecker_delta() obj._eps_dim = eps_dim if eps_dim else dim obj._epsilon = obj.get_epsilon() obj._autogenerated = [] return obj @property @deprecated(useinstead="TensorIndex", issue=12857, deprecated_since_version="1.1") def auto_right(self): if not hasattr(self, '_auto_right'): self._auto_right = TensorIndex("auto_right", self) return self._auto_right @property @deprecated(useinstead="TensorIndex", issue=12857, deprecated_since_version="1.1") def auto_left(self): if not hasattr(self, '_auto_left'): self._auto_left = TensorIndex("auto_left", self) return self._auto_left @property @deprecated(useinstead="TensorIndex", issue=12857, deprecated_since_version="1.1") def auto_index(self): if not hasattr(self, '_auto_index'): self._auto_index = TensorIndex("auto_index", self) return self._auto_index @property def data(self): deprecate_data() return _tensor_data_substitution_dict[self] @data.setter def data(self, data): deprecate_data() # This assignment is a bit controversial, should metric components be assigned # to the metric only or also to the TensorIndexType object? The advantage here # is the ability to assign a 1D array and transform it to a 2D diagonal array. from .array import MutableDenseNDimArray data = _TensorDataLazyEvaluator.parse_data(data) if data.rank() > 2: raise ValueError("data have to be of rank 1 (diagonal metric) or 2.") if data.rank() == 1: if self.dim is not None: nda_dim = data.shape[0] if nda_dim != self.dim: raise ValueError("Dimension mismatch") dim = data.shape[0] newndarray = MutableDenseNDimArray.zeros(dim, dim) for i, val in enumerate(data): newndarray[i, i] = val data = newndarray dim1, dim2 = data.shape if dim1 != dim2: raise ValueError("Non-square matrix tensor.") if self.dim is not None: if self.dim != dim1: raise ValueError("Dimension mismatch") _tensor_data_substitution_dict[self] = data _tensor_data_substitution_dict.add_metric_data(self.metric, data) delta = self.get_kronecker_delta() i1 = TensorIndex('i1', self) i2 = TensorIndex('i2', self) delta(i1, -i2).data = _TensorDataLazyEvaluator.parse_data(eye(dim1)) @data.deleter def data(self): deprecate_data() if self in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self] if self.metric in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self.metric] def _get_matrix_fmt(self, number): return ("m" + self.dummy_fmt) % (number) @property def name(self): return self._name @property def dim(self): return self._dim @property def delta(self): return self._delta @property def eps_dim(self): return self._eps_dim @property def epsilon(self): return self._epsilon @property def dummy_fmt(self): return self._dummy_fmt def get_kronecker_delta(self): sym2 = TensorSymmetry(get_symmetric_group_sgs(2)) delta = TensorHead('KD', [self]*2, sym2) return delta def get_epsilon(self): if not isinstance(self._eps_dim, (SYMPY_INTS, Integer)): return None sym = TensorSymmetry(get_symmetric_group_sgs(self._eps_dim, 1)) epsilon = TensorHead('Eps', [self]*self._eps_dim, sym) return epsilon def __lt__(self, other): return self.name < other.name def __str__(self): return self.name __repr__ = __str__ def _components_data_full_destroy(self): """ EXPERIMENTAL: do not rely on this API method. This destroys components data associated to the ``TensorIndexType``, if any, specifically: * metric tensor data * Kronecker tensor data """ if self in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self] def delete_tensmul_data(key): if key in _tensor_data_substitution_dict._substitutions_dict_tensmul: del _tensor_data_substitution_dict._substitutions_dict_tensmul[key] # delete metric data: delete_tensmul_data((self.metric, True, True)) delete_tensmul_data((self.metric, True, False)) delete_tensmul_data((self.metric, False, True)) delete_tensmul_data((self.metric, False, False)) # delete delta tensor data: delta = self.get_kronecker_delta() if delta in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[delta] class TensorIndex(Basic): """ Represents a tensor index Parameters ========== name : name of the index, or ``True`` if you want it to be automatically assigned tensortype : ``TensorIndexType`` of the index is_up : flag for contravariant index (is_up=True by default) Attributes ========== ``name`` ``tensortype`` ``is_up`` Notes ===== Tensor indices are contracted with the Einstein summation convention. An index can be in contravariant or in covariant form; in the latter case it is represented prepending a ``-`` to the index name. Adding ``-`` to a covariant (is_up=False) index makes it contravariant. Dummy indices have a name with head given by ``tensortype._dummy_fmt`` Similar to ``symbols`` multiple contravariant indices can be created at once using ``tensor_indices(s, typ)``, where ``s`` is a string of names. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, TensorIndex, TensorHead, tensor_indices >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> mu = TensorIndex('mu', Lorentz, is_up=False) >>> nu, rho = tensor_indices('nu, rho', Lorentz) >>> A = TensorHead('A', [Lorentz, Lorentz]) >>> A(mu, nu) A(-mu, nu) >>> A(-mu, -rho) A(mu, -rho) >>> A(mu, -mu) A(-L_0, L_0) """ def __new__(cls, name, tensortype, is_up=True): if isinstance(name, string_types): name_symbol = Symbol(name) elif isinstance(name, Symbol): name_symbol = name elif name is True: name = "_i{0}".format(len(tensortype._autogenerated)) name_symbol = Symbol(name) tensortype._autogenerated.append(name_symbol) else: raise ValueError("invalid name") is_up = sympify(is_up) obj = Basic.__new__(cls, name_symbol, tensortype, is_up) obj._name = str(name) obj._tensor_index_type = tensortype obj._is_up = is_up return obj @property def name(self): return self._name @property @deprecated(useinstead="tensor_index_type", issue=12857, deprecated_since_version="1.1") def tensortype(self): return self.tensor_index_type @property def tensor_index_type(self): return self._tensor_index_type @property def is_up(self): return self._is_up def _print(self): s = self._name if not self._is_up: s = '-%s' % s return s def __lt__(self, other): return (self.tensor_index_type, self._name) < (other.tensor_index_type, other._name) def __neg__(self): t1 = TensorIndex(self.name, self.tensor_index_type, (not self.is_up)) return t1 def tensor_indices(s, typ): """ Returns list of tensor indices given their names and their types Parameters ========== s : string of comma separated names of indices typ : ``TensorIndexType`` of the indices Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz) """ if isinstance(s, string_types): a = [x.name for x in symbols(s, seq=True)] else: raise ValueError('expecting a string') tilist = [TensorIndex(i, typ) for i in a] if len(tilist) == 1: return tilist[0] return tilist class TensorSymmetry(Basic): """ Monoterm symmetry of a tensor (i.e. any symmetric or anti-symmetric index permutation). For the relevant terminology see ``tensor_can.py`` section of the combinatorics module. Parameters ========== bsgs : tuple ``(base, sgs)`` BSGS of the symmetry of the tensor Attributes ========== ``base`` : base of the BSGS ``generators`` : generators of the BSGS ``rank`` : rank of the tensor Notes ===== A tensor can have an arbitrary monoterm symmetry provided by its BSGS. Multiterm symmetries, like the cyclic symmetry of the Riemann tensor (i.e., Bianchi identity), are not covered. See combinatorics module for information on how to generate BSGS for a general index permutation group. Simple symmetries can be generated using built-in methods. See Also ======== sympy.combinatorics.tensor_can.get_symmetric_group_sgs Examples ======== Define a symmetric tensor of rank 2 >>> from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, TensorHead >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> sym = TensorSymmetry(get_symmetric_group_sgs(2)) >>> T = TensorHead('T', [Lorentz]*2, sym) Note, that the same can also be done using built-in TensorSymmetry methods >>> sym2 = TensorSymmetry.fully_symmetric(2) >>> sym == sym2 True """ def __new__(cls, *args, **kw_args): if len(args) == 1: base, generators = args[0] elif len(args) == 2: base, generators = args else: raise TypeError("bsgs required, either two separate parameters or one tuple") if not isinstance(base, Tuple): base = Tuple(*base) if not isinstance(generators, Tuple): generators = Tuple(*generators) obj = Basic.__new__(cls, base, generators, **kw_args) return obj @classmethod def fully_symmetric(cls, rank): """ Returns a fully symmetric (antisymmetric if ``rank``<0) TensorSymmetry object for ``abs(rank)`` indices. """ if rank > 0: bsgs = get_symmetric_group_sgs(rank, False) elif rank < 0: bsgs = get_symmetric_group_sgs(-rank, True) elif rank == 0: bsgs = ([], [Permutation(1)]) return TensorSymmetry(bsgs) @classmethod def direct_product(cls, *args): """ Returns a TensorSymmetry object that is being a direct product of fully (anti-)symmetric index permutation groups. Notes ===== Some examples for different values of ``(*args)``: ``(1)`` vector, equivalent to ``TensorSymmetry.fully_symmetric(1)`` ``(2)`` tensor with 2 symmetric indices, equivalent to ``.fully_symmetric(2)`` ``(-2)`` tensor with 2 antisymmetric indices, equivalent to ``.fully_symmetric(-2)`` ``(2, -2)`` tensor with the first 2 indices commuting and the last 2 anticommuting ``(1, 1, 1)`` tensor with 3 indices without any symmetry """ base, sgs = [], [Permutation(1)] for arg in args: if arg > 0: bsgs2 = get_symmetric_group_sgs(arg, False) elif arg < 0: bsgs2 = get_symmetric_group_sgs(-arg, True) else: continue base, sgs = bsgs_direct_product(base, sgs, *bsgs2) return TensorSymmetry(base, sgs) @classmethod def riemann(cls): """ Returns a monotorem symmetry of the Riemann tensor """ return TensorSymmetry(riemann_bsgs) @classmethod def no_symmetry(cls, rank): """ TensorSymmetry object for ``rank`` indices with no symmetry """ return TensorSymmetry([], [Permutation(rank+1)]) @property def base(self): return self.args[0] @property def generators(self): return self.args[1] @property def rank(self): return self.args[1][0].size - 2 @deprecated(useinstead="TensorSymmetry class constructor and methods", issue=17108, deprecated_since_version="1.5") def tensorsymmetry(*args): """ Returns a ``TensorSymmetry`` object. This method is deprecated, use ``TensorSymmetry.direct_product()`` or ``.riemann()`` instead. One can represent a tensor with any monoterm slot symmetry group using a BSGS. ``args`` can be a BSGS ``args[0]`` base ``args[1]`` sgs Usually tensors are in (direct products of) representations of the symmetric group; ``args`` can be a list of lists representing the shapes of Young tableaux Notes ===== For instance: ``[[1]]`` vector ``[[1]*n]`` symmetric tensor of rank ``n`` ``[[n]]`` antisymmetric tensor of rank ``n`` ``[[2, 2]]`` monoterm slot symmetry of the Riemann tensor ``[[1],[1]]`` vector*vector ``[[2],[1],[1]`` (antisymmetric tensor)*vector*vector Notice that with the shape ``[2, 2]`` we associate only the monoterm symmetries of the Riemann tensor; this is an abuse of notation, since the shape ``[2, 2]`` corresponds usually to the irreducible representation characterized by the monoterm symmetries and by the cyclic symmetry. """ from sympy.combinatorics import Permutation def tableau2bsgs(a): if len(a) == 1: # antisymmetric vector n = a[0] bsgs = get_symmetric_group_sgs(n, 1) else: if all(x == 1 for x in a): # symmetric vector n = len(a) bsgs = get_symmetric_group_sgs(n) elif a == [2, 2]: bsgs = riemann_bsgs else: raise NotImplementedError return bsgs if not args: return TensorSymmetry(Tuple(), Tuple(Permutation(1))) if len(args) == 2 and isinstance(args[1][0], Permutation): return TensorSymmetry(args) base, sgs = tableau2bsgs(args[0]) for a in args[1:]: basex, sgsx = tableau2bsgs(a) base, sgs = bsgs_direct_product(base, sgs, basex, sgsx) return TensorSymmetry(Tuple(base, sgs)) class TensorType(Basic): """ Class of tensor types. Deprecated, use tensor_heads() instead. Parameters ========== index_types : list of ``TensorIndexType`` of the tensor indices symmetry : ``TensorSymmetry`` of the tensor Attributes ========== ``index_types`` ``symmetry`` ``types`` : list of ``TensorIndexType`` without repetitions """ is_commutative = False def __new__(cls, index_types, symmetry, **kw_args): deprecate_TensorType() assert symmetry.rank == len(index_types) obj = Basic.__new__(cls, Tuple(*index_types), symmetry, **kw_args) return obj @property def index_types(self): return self.args[0] @property def symmetry(self): return self.args[1] @property def types(self): return sorted(set(self.index_types), key=lambda x: x.name) def __str__(self): return 'TensorType(%s)' % ([str(x) for x in self.index_types]) def __call__(self, s, comm=0): """ Return a TensorHead object or a list of TensorHead objects. ``s`` name or string of names ``comm``: commutation group number see ``_TensorManager.set_comm`` """ if isinstance(s, string_types): names = [x.name for x in symbols(s, seq=True)] else: raise ValueError('expecting a string') if len(names) == 1: return TensorHead(names[0], self.index_types, self.symmetry, comm) else: return [TensorHead(name, self.index_types, self.symmetry, comm) for name in names] @deprecated(useinstead="TensorHead class constructor or tensor_heads()", issue=17108, deprecated_since_version="1.5") def tensorhead(name, typ, sym=None, comm=0): """ Function generating tensorhead(s). This method is deprecated, use TensorHead constructor or tensor_heads() instead. Parameters ========== name : name or sequence of names (as in ``symbols``) typ : index types sym : same as ``*args`` in ``tensorsymmetry`` comm : commutation group number see ``_TensorManager.set_comm`` """ if sym is None: sym = [[1] for i in range(len(typ))] sym = tensorsymmetry(*sym) return TensorHead(name, typ, sym, comm) class TensorHead(Basic): """ Tensor head of the tensor Parameters ========== name : name of the tensor index_types : list of TensorIndexType symmetry : TensorSymmetry of the tensor comm : commutation group number Attributes ========== ``name`` ``index_types`` ``rank`` : total number of indices ``symmetry`` ``comm`` : commutation group Notes ===== Similar to ``symbols`` multiple TensorHeads can be created using ``tensorhead(s, typ, sym=None, comm=0)`` function, where ``s`` is the string of names and ``sym`` is the monoterm tensor symmetry (see ``tensorsymmetry``). A ``TensorHead`` belongs to a commutation group, defined by a symbol on number ``comm`` (see ``_TensorManager.set_comm``); tensors in a commutation group have the same commutation properties; by default ``comm`` is ``0``, the group of the commuting tensors. Examples ======== Define a fully antisymmetric tensor of rank 2: >>> from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorSymmetry >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> asym2 = TensorSymmetry.fully_symmetric(-2) >>> A = TensorHead('A', [Lorentz, Lorentz], asym2) Examples with ndarray values, the components data assigned to the ``TensorHead`` object are assumed to be in a fully-contravariant representation. In case it is necessary to assign components data which represents the values of a non-fully covariant tensor, see the other examples. >>> from sympy.tensor.tensor import tensor_indices >>> from sympy import diag >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> i0, i1 = tensor_indices('i0:2', Lorentz) Specify a replacement dictionary to keep track of the arrays to use for replacements in the tensorial expression. The ``TensorIndexType`` is associated to the metric used for contractions (in fully covariant form): >>> repl = {Lorentz: diag(1, -1, -1, -1)} Let's see some examples of working with components with the electromagnetic tensor: >>> from sympy import symbols >>> Ex, Ey, Ez, Bx, By, Bz = symbols('E_x E_y E_z B_x B_y B_z') >>> c = symbols('c', positive=True) Let's define `F`, an antisymmetric tensor: >>> F = TensorHead('F', [Lorentz, Lorentz], asym2) Let's update the dictionary to contain the matrix to use in the replacements: >>> repl.update({F(-i0, -i1): [ ... [0, Ex/c, Ey/c, Ez/c], ... [-Ex/c, 0, -Bz, By], ... [-Ey/c, Bz, 0, -Bx], ... [-Ez/c, -By, Bx, 0]]}) Now it is possible to retrieve the contravariant form of the Electromagnetic tensor: >>> F(i0, i1).replace_with_arrays(repl, [i0, i1]) [[0, -E_x/c, -E_y/c, -E_z/c], [E_x/c, 0, -B_z, B_y], [E_y/c, B_z, 0, -B_x], [E_z/c, -B_y, B_x, 0]] and the mixed contravariant-covariant form: >>> F(i0, -i1).replace_with_arrays(repl, [i0, -i1]) [[0, E_x/c, E_y/c, E_z/c], [E_x/c, 0, B_z, -B_y], [E_y/c, -B_z, 0, B_x], [E_z/c, B_y, -B_x, 0]] Energy-momentum of a particle may be represented as: >>> from sympy import symbols >>> P = TensorHead('P', [Lorentz], TensorSymmetry.no_symmetry(1)) >>> E, px, py, pz = symbols('E p_x p_y p_z', positive=True) >>> repl.update({P(i0): [E, px, py, pz]}) The contravariant and covariant components are, respectively: >>> P(i0).replace_with_arrays(repl, [i0]) [E, p_x, p_y, p_z] >>> P(-i0).replace_with_arrays(repl, [-i0]) [E, -p_x, -p_y, -p_z] The contraction of a 1-index tensor by itself: >>> expr = P(i0)*P(-i0) >>> expr.replace_with_arrays(repl, []) E**2 - p_x**2 - p_y**2 - p_z**2 """ is_commutative = False def __new__(cls, name, index_types, symmetry=None, comm=0): if isinstance(name, string_types): name_symbol = Symbol(name) elif isinstance(name, Symbol): name_symbol = name else: raise ValueError("invalid name") if symmetry is None: symmetry = TensorSymmetry.no_symmetry(len(index_types)) else: assert symmetry.rank == len(index_types) comm2i = TensorManager.comm_symbols2i(comm) obj = Basic.__new__(cls, name_symbol, Tuple(*index_types), symmetry) obj._comm = comm2i return obj @property def name(self): return self.args[0].name @property def rank(self): return len(self.args[1]) @property def symmetry(self): return self.args[2] @property def comm(self): return self._comm @property def index_types(self): return self.args[1] def __lt__(self, other): return (self.name, self.index_types) < (other.name, other.index_types) def commutes_with(self, other): """ Returns ``0`` if ``self`` and ``other`` commute, ``1`` if they anticommute. Returns ``None`` if ``self`` and ``other`` neither commute nor anticommute. """ r = TensorManager.get_comm(self._comm, other._comm) return r def _print(self): return '%s(%s)' %(self.name, ','.join([str(x) for x in self.index_types])) def __call__(self, *indices, **kw_args): """ Returns a tensor with indices. There is a special behavior in case of indices denoted by ``True``, they are considered auto-matrix indices, their slots are automatically filled, and confer to the tensor the behavior of a matrix or vector upon multiplication with another tensor containing auto-matrix indices of the same ``TensorIndexType``. This means indices get summed over the same way as in matrix multiplication. For matrix behavior, define two auto-matrix indices, for vector behavior define just one. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorSymmetry, TensorHead >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> a, b = tensor_indices('a,b', Lorentz) >>> A = TensorHead('A', [Lorentz]*2, TensorSymmetry.no_symmetry(2)) >>> t = A(a, -b) >>> t A(a, -b) """ tensor = Tensor(self, indices, **kw_args) return tensor.doit() def __pow__(self, other): with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=SymPyDeprecationWarning) if self.data is None: raise ValueError("No power on abstract tensors.") deprecate_data() from .array import tensorproduct, tensorcontraction metrics = [_.data for _ in self.index_types] marray = self.data marraydim = marray.rank() for metric in metrics: marray = tensorproduct(marray, metric, marray) marray = tensorcontraction(marray, (0, marraydim), (marraydim+1, marraydim+2)) return marray ** (other * S.Half) @property def data(self): deprecate_data() return _tensor_data_substitution_dict[self] @data.setter def data(self, data): deprecate_data() _tensor_data_substitution_dict[self] = data @data.deleter def data(self): deprecate_data() if self in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self] def __iter__(self): deprecate_data() return self.data.__iter__() def _components_data_full_destroy(self): """ EXPERIMENTAL: do not rely on this API method. Destroy components data associated to the ``TensorHead`` object, this checks for attached components data, and destroys components data too. """ # do not garbage collect Kronecker tensor (it should be done by # ``TensorIndexType`` garbage collection) deprecate_data() if self.name == "KD": return # the data attached to a tensor must be deleted only by the TensorHead # destructor. If the TensorHead is deleted, it means that there are no # more instances of that tensor anywhere. if self in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self] def tensor_heads(s, index_types, symmetry=None, comm=0): """ Returns a sequence of TensorHeads from a string `s` """ if isinstance(s, string_types): names = [x.name for x in symbols(s, seq=True)] else: raise ValueError('expecting a string') thlist = [TensorHead(name, index_types, symmetry, comm) for name in names] if len(thlist) == 1: return thlist[0] return thlist class TensExpr(Expr): """ Abstract base class for tensor expressions Notes ===== A tensor expression is an expression formed by tensors; currently the sums of tensors are distributed. A ``TensExpr`` can be a ``TensAdd`` or a ``TensMul``. ``TensMul`` objects are formed by products of component tensors, and include a coefficient, which is a SymPy expression. In the internal representation contracted indices are represented by ``(ipos1, ipos2, icomp1, icomp2)``, where ``icomp1`` is the position of the component tensor with contravariant index, ``ipos1`` is the slot which the index occupies in that component tensor. Contracted indices are therefore nameless in the internal representation. """ _op_priority = 12.0 is_commutative = False def __neg__(self): return self*S.NegativeOne def __abs__(self): raise NotImplementedError def __add__(self, other): return TensAdd(self, other).doit() def __radd__(self, other): return TensAdd(other, self).doit() def __sub__(self, other): return TensAdd(self, -other).doit() def __rsub__(self, other): return TensAdd(other, -self).doit() def __mul__(self, other): """ Multiply two tensors using Einstein summation convention. If the two tensors have an index in common, one contravariant and the other covariant, in their product the indices are summed Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz) >>> g = Lorentz.metric >>> p, q = tensor_heads('p,q', [Lorentz]) >>> t1 = p(m0) >>> t2 = q(-m0) >>> t1*t2 p(L_0)*q(-L_0) """ return TensMul(self, other).doit() def __rmul__(self, other): return TensMul(other, self).doit() def __div__(self, other): other = _sympify(other) if isinstance(other, TensExpr): raise ValueError('cannot divide by a tensor') return TensMul(self, S.One/other).doit() def __rdiv__(self, other): raise ValueError('cannot divide by a tensor') def __pow__(self, other): with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=SymPyDeprecationWarning) if self.data is None: raise ValueError("No power without ndarray data.") deprecate_data() from .array import tensorproduct, tensorcontraction free = self.free marray = self.data mdim = marray.rank() for metric in free: marray = tensorcontraction( tensorproduct( marray, metric[0].tensor_index_type.data, marray), (0, mdim), (mdim+1, mdim+2) ) return marray ** (other * S.Half) def __rpow__(self, other): raise NotImplementedError __truediv__ = __div__ __rtruediv__ = __rdiv__ def fun_eval(self, *index_tuples): deprecate_fun_eval() return self.substitute_indices(*index_tuples) def get_matrix(self): """ DEPRECATED: do not use. Returns ndarray components data as a matrix, if components data are available and ndarray dimension does not exceed 2. """ from sympy import Matrix deprecate_data() if 0 < self.rank <= 2: rows = self.data.shape[0] columns = self.data.shape[1] if self.rank == 2 else 1 if self.rank == 2: mat_list = [] * rows for i in range(rows): mat_list.append([]) for j in range(columns): mat_list[i].append(self[i, j]) else: mat_list = [None] * rows for i in range(rows): mat_list[i] = self[i] return Matrix(mat_list) else: raise NotImplementedError( "missing multidimensional reduction to matrix.") @staticmethod def _get_indices_permutation(indices1, indices2): return [indices1.index(i) for i in indices2] def expand(self, **hints): return _expand(self, **hints).doit() def _expand(self, **kwargs): return self def _get_free_indices_set(self): indset = set([]) for arg in self.args: if isinstance(arg, TensExpr): indset.update(arg._get_free_indices_set()) return indset def _get_dummy_indices_set(self): indset = set([]) for arg in self.args: if isinstance(arg, TensExpr): indset.update(arg._get_dummy_indices_set()) return indset def _get_indices_set(self): indset = set([]) for arg in self.args: if isinstance(arg, TensExpr): indset.update(arg._get_indices_set()) return indset @property def _iterate_dummy_indices(self): dummy_set = self._get_dummy_indices_set() def recursor(expr, pos): if isinstance(expr, TensorIndex): if expr in dummy_set: yield (expr, pos) elif isinstance(expr, (Tuple, TensExpr)): for p, arg in enumerate(expr.args): for i in recursor(arg, pos+(p,)): yield i return recursor(self, ()) @property def _iterate_free_indices(self): free_set = self._get_free_indices_set() def recursor(expr, pos): if isinstance(expr, TensorIndex): if expr in free_set: yield (expr, pos) elif isinstance(expr, (Tuple, TensExpr)): for p, arg in enumerate(expr.args): for i in recursor(arg, pos+(p,)): yield i return recursor(self, ()) @property def _iterate_indices(self): def recursor(expr, pos): if isinstance(expr, TensorIndex): yield (expr, pos) elif isinstance(expr, (Tuple, TensExpr)): for p, arg in enumerate(expr.args): for i in recursor(arg, pos+(p,)): yield i return recursor(self, ()) @staticmethod def _match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict): from .array import tensorcontraction, tensorproduct, permutedims index_types1 = [i.tensor_index_type for i in free_ind1] # Check if variance of indices needs to be fixed: pos2up = [] pos2down = [] free2remaining = free_ind2[:] for pos1, index1 in enumerate(free_ind1): if index1 in free2remaining: pos2 = free2remaining.index(index1) free2remaining[pos2] = None continue if -index1 in free2remaining: pos2 = free2remaining.index(-index1) free2remaining[pos2] = None free_ind2[pos2] = index1 if index1.is_up: pos2up.append(pos2) else: pos2down.append(pos2) else: index2 = free2remaining[pos1] if index2 is None: raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2)) free2remaining[pos1] = None free_ind2[pos1] = index1 if index1.is_up ^ index2.is_up: if index1.is_up: pos2up.append(pos1) else: pos2down.append(pos1) if len(set(free_ind1) & set(free_ind2)) < len(free_ind1): raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2)) # TODO: add possibility of metric after (spinors) def contract_and_permute(metric, array, pos): array = tensorcontraction(tensorproduct(metric, array), (1, 2+pos)) permu = list(range(len(free_ind1))) permu[0], permu[pos] = permu[pos], permu[0] return permutedims(array, permu) # Raise indices: for pos in pos2up: metric = replacement_dict[index_types1[pos]] metric_inverse = _TensorDataLazyEvaluator.inverse_matrix(metric) array = contract_and_permute(metric_inverse, array, pos) # Lower indices: for pos in pos2down: metric = replacement_dict[index_types1[pos]] array = contract_and_permute(metric, array, pos) if free_ind1: permutation = TensExpr._get_indices_permutation(free_ind2, free_ind1) array = permutedims(array, permutation) if hasattr(array, "rank") and array.rank() == 0: array = array[()] return free_ind2, array def replace_with_arrays(self, replacement_dict, indices=None): """ Replace the tensorial expressions with arrays. The final array will correspond to the N-dimensional array with indices arranged according to ``indices``. Parameters ========== replacement_dict dictionary containing the replacement rules for tensors. indices the index order with respect to which the array is read. The original index order will be used if no value is passed. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices >>> from sympy.tensor.tensor import TensorHead >>> from sympy import symbols, diag >>> L = TensorIndexType("L") >>> i, j = tensor_indices("i j", L) >>> A = TensorHead("A", [L]) >>> A(i).replace_with_arrays({A(i): [1, 2]}, [i]) [1, 2] Since 'indices' is optional, we can also call replace_with_arrays by this way if no specific index order is needed: >>> A(i).replace_with_arrays({A(i): [1, 2]}) [1, 2] >>> expr = A(i)*A(j) >>> expr.replace_with_arrays({A(i): [1, 2]}) [[1, 2], [2, 4]] For contractions, specify the metric of the ``TensorIndexType``, which in this case is ``L``, in its covariant form: >>> expr = A(i)*A(-i) >>> expr.replace_with_arrays({A(i): [1, 2], L: diag(1, -1)}) -3 Symmetrization of an array: >>> H = TensorHead("H", [L, L]) >>> a, b, c, d = symbols("a b c d") >>> expr = H(i, j)/2 + H(j, i)/2 >>> expr.replace_with_arrays({H(i, j): [[a, b], [c, d]]}) [[a, b/2 + c/2], [b/2 + c/2, d]] Anti-symmetrization of an array: >>> expr = H(i, j)/2 - H(j, i)/2 >>> repl = {H(i, j): [[a, b], [c, d]]} >>> expr.replace_with_arrays(repl) [[0, b/2 - c/2], [-b/2 + c/2, 0]] The same expression can be read as the transpose by inverting ``i`` and ``j``: >>> expr.replace_with_arrays(repl, [j, i]) [[0, -b/2 + c/2], [b/2 - c/2, 0]] """ from .array import Array indices = indices or [] replacement_dict = {tensor: Array(array) for tensor, array in replacement_dict.items()} # Check dimensions of replaced arrays: for tensor, array in replacement_dict.items(): if isinstance(tensor, TensorIndexType): expected_shape = [tensor.dim for i in range(2)] else: expected_shape = [index_type.dim for index_type in tensor.index_types] if len(expected_shape) != array.rank() or (not all([dim1 == dim2 if dim1 is not None else True for dim1, dim2 in zip(expected_shape, array.shape)])): raise ValueError("shapes for tensor %s expected to be %s, "\ "replacement array shape is %s" % (tensor, expected_shape, array.shape)) ret_indices, array = self._extract_data(replacement_dict) last_indices, array = self._match_indices_with_other_tensor(array, indices, ret_indices, replacement_dict) #permutation = self._get_indices_permutation(indices, ret_indices) #if not hasattr(array, "rank"): #return array #if array.rank() == 0: #array = array[()] #return array #array = permutedims(array, permutation) return array def _check_add_Sum(self, expr, index_symbols): from sympy import Sum indices = self.get_indices() dum = self.dum sum_indices = [ (index_symbols[i], 0, indices[i].tensor_index_type.dim-1) for i, j in dum] if sum_indices: expr = Sum(expr, *sum_indices) return expr class TensAdd(TensExpr, AssocOp): """ Sum of tensors Parameters ========== free_args : list of the free indices Attributes ========== ``args`` : tuple of addends ``rank`` : rank of the tensor ``free_args`` : list of the free indices in sorted order Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_heads, tensor_indices >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> a, b = tensor_indices('a,b', Lorentz) >>> p, q = tensor_heads('p,q', [Lorentz]) >>> t = p(a) + q(a); t p(a) + q(a) Examples with components data added to the tensor expression: >>> from sympy import symbols, diag >>> x, y, z, t = symbols("x y z t") >>> repl = {} >>> repl[Lorentz] = diag(1, -1, -1, -1) >>> repl[p(a)] = [1, 2, 3, 4] >>> repl[q(a)] = [x, y, z, t] The following are: 2**2 - 3**2 - 2**2 - 7**2 ==> -58 >>> expr = p(a) + q(a) >>> expr.replace_with_arrays(repl, [a]) [x + 1, y + 2, z + 3, t + 4] """ def __new__(cls, *args, **kw_args): args = [_sympify(x) for x in args if x] args = TensAdd._tensAdd_flatten(args) obj = Basic.__new__(cls, *args, **kw_args) return obj def doit(self, **kwargs): deep = kwargs.get('deep', True) if deep: args = [arg.doit(**kwargs) for arg in self.args] else: args = self.args if not args: return S.Zero if len(args) == 1 and not isinstance(args[0], TensExpr): return args[0] # now check that all addends have the same indices: TensAdd._tensAdd_check(args) # if TensAdd has only 1 element in its `args`: if len(args) == 1: # and isinstance(args[0], TensMul): return args[0] # Remove zeros: args = [x for x in args if x] # if there are no more args (i.e. have cancelled out), # just return zero: if not args: return S.Zero if len(args) == 1: return args[0] # Collect terms appearing more than once, differing by their coefficients: args = TensAdd._tensAdd_collect_terms(args) # collect canonicalized terms def sort_key(t): x = get_index_structure(t) if not isinstance(t, TensExpr): return ([], [], []) return (t.components, x.free, x.dum) args.sort(key=sort_key) if not args: return S.Zero # it there is only a component tensor return it if len(args) == 1: return args[0] obj = self.func(*args) return obj @staticmethod def _tensAdd_flatten(args): # flatten TensAdd, coerce terms which are not tensors to tensors a = [] for x in args: if isinstance(x, (Add, TensAdd)): a.extend(list(x.args)) else: a.append(x) args = [x for x in a if x.coeff] return args @staticmethod def _tensAdd_check(args): # check that all addends have the same free indices indices0 = set([x[0] for x in get_index_structure(args[0]).free]) list_indices = [set([y[0] for y in get_index_structure(x).free]) for x in args[1:]] if not all(x == indices0 for x in list_indices): raise ValueError('all tensors must have the same indices') @staticmethod def _tensAdd_collect_terms(args): # collect TensMul terms differing at most by their coefficient terms_dict = defaultdict(list) scalars = S.Zero if isinstance(args[0], TensExpr): free_indices = set(args[0].get_free_indices()) else: free_indices = set([]) for arg in args: if not isinstance(arg, TensExpr): if free_indices != set([]): raise ValueError("wrong valence") scalars += arg continue if free_indices != set(arg.get_free_indices()): raise ValueError("wrong valence") # TODO: what is the part which is not a coeff? # needs an implementation similar to .as_coeff_Mul() terms_dict[arg.nocoeff].append(arg.coeff) new_args = [TensMul(Add(*coeff), t).doit() for t, coeff in terms_dict.items() if Add(*coeff) != 0] if isinstance(scalars, Add): new_args = list(scalars.args) + new_args elif scalars != 0: new_args = [scalars] + new_args return new_args def get_indices(self): indices = [] for arg in self.args: indices.extend([i for i in get_indices(arg) if i not in indices]) return indices @property def rank(self): return self.args[0].rank @property def free_args(self): return self.args[0].free_args def _expand(self, **hints): return TensAdd(*[_expand(i, **hints) for i in self.args]) def __call__(self, *indices): deprecate_fun_eval() free_args = self.free_args indices = list(indices) if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]: raise ValueError('incompatible types') if indices == free_args: return self index_tuples = list(zip(free_args, indices)) a = [x.func(*x.substitute_indices(*index_tuples).args) for x in self.args] res = TensAdd(*a).doit() return res def canon_bp(self): """ Canonicalize using the Butler-Portugal algorithm for canonicalization under monoterm symmetries. """ expr = self.expand() args = [canon_bp(x) for x in expr.args] res = TensAdd(*args).doit() return res def equals(self, other): other = _sympify(other) if isinstance(other, TensMul) and other._coeff == 0: return all(x._coeff == 0 for x in self.args) if isinstance(other, TensExpr): if self.rank != other.rank: return False if isinstance(other, TensAdd): if set(self.args) != set(other.args): return False else: return True t = self - other if not isinstance(t, TensExpr): return t == 0 else: if isinstance(t, TensMul): return t._coeff == 0 else: return all(x._coeff == 0 for x in t.args) def __getitem__(self, item): deprecate_data() return self.data[item] def contract_delta(self, delta): args = [x.contract_delta(delta) for x in self.args] t = TensAdd(*args).doit() return canon_bp(t) def contract_metric(self, g): """ Raise or lower indices with the metric ``g`` Parameters ========== g : metric contract_all : if True, eliminate all ``g`` which are contracted Notes ===== see the ``TensorIndexType`` docstring for the contraction conventions """ args = [contract_metric(x, g) for x in self.args] t = TensAdd(*args).doit() return canon_bp(t) def substitute_indices(self, *index_tuples): new_args = [] for arg in self.args: if isinstance(arg, TensExpr): arg = arg.substitute_indices(*index_tuples) new_args.append(arg) return TensAdd(*new_args).doit() def _print(self): a = [] args = self.args for x in args: a.append(str(x)) a.sort() s = ' + '.join(a) s = s.replace('+ -', '- ') return s def _extract_data(self, replacement_dict): from sympy.tensor.array import Array, permutedims args_indices, arrays = zip(*[ arg._extract_data(replacement_dict) if isinstance(arg, TensExpr) else ([], arg) for arg in self.args ]) arrays = [Array(i) for i in arrays] ref_indices = args_indices[0] for i in range(1, len(args_indices)): indices = args_indices[i] array = arrays[i] permutation = TensMul._get_indices_permutation(indices, ref_indices) arrays[i] = permutedims(array, permutation) return ref_indices, sum(arrays, Array.zeros(*array.shape)) @property def data(self): deprecate_data() return _tensor_data_substitution_dict[self.expand()] @data.setter def data(self, data): deprecate_data() _tensor_data_substitution_dict[self] = data @data.deleter def data(self): deprecate_data() if self in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self] def __iter__(self): deprecate_data() if not self.data: raise ValueError("No iteration on abstract tensors") return self.data.flatten().__iter__() def _eval_rewrite_as_Indexed(self, *args): return Add.fromiter(args) class Tensor(TensExpr): """ Base tensor class, i.e. this represents a tensor, the single unit to be put into an expression. This object is usually created from a ``TensorHead``, by attaching indices to it. Indices preceded by a minus sign are considered contravariant, otherwise covariant. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead >>> Lorentz = TensorIndexType("Lorentz", dummy_fmt="L") >>> mu, nu = tensor_indices('mu nu', Lorentz) >>> A = TensorHead("A", [Lorentz, Lorentz]) >>> A(mu, -nu) A(mu, -nu) >>> A(mu, -mu) A(L_0, -L_0) It is also possible to use symbols instead of inidices (appropriate indices are then generated automatically). >>> from sympy import Symbol >>> x = Symbol('x') >>> A(x, mu) A(x, mu) >>> A(x, -x) A(L_0, -L_0) """ is_commutative = False def __new__(cls, tensor_head, indices, **kw_args): is_canon_bp = kw_args.pop('is_canon_bp', False) indices = cls._parse_indices(tensor_head, indices) obj = Basic.__new__(cls, tensor_head, Tuple(*indices), **kw_args) obj.head = tensor_head obj._index_structure = _IndexStructure.from_indices(*indices) obj._free_indices_set = set(obj._index_structure.get_free_indices()) if tensor_head.rank != len(indices): raise ValueError("wrong number of indices") obj._indices = indices obj._is_canon_bp = is_canon_bp obj._index_map = Tensor._build_index_map(indices, obj._index_structure) return obj @staticmethod def _build_index_map(indices, index_structure): index_map = {} for idx in indices: index_map[idx] = (indices.index(idx),) return index_map def doit(self, **kwargs): args, indices, free, dum = TensMul._tensMul_contract_indices([self]) return args[0] @staticmethod def _parse_indices(tensor_head, indices): if not isinstance(indices, (tuple, list, Tuple)): raise TypeError("indices should be an array, got %s" % type(indices)) indices = list(indices) for i, index in enumerate(indices): if isinstance(index, Symbol): indices[i] = TensorIndex(index, tensor_head.index_types[i], True) elif isinstance(index, Mul): c, e = index.as_coeff_Mul() if c == -1 and isinstance(e, Symbol): indices[i] = TensorIndex(e, tensor_head.index_types[i], False) else: raise ValueError("index not understood: %s" % index) elif not isinstance(index, TensorIndex): raise TypeError("wrong type for index: %s is %s" % (index, type(index))) return indices def _set_new_index_structure(self, im, is_canon_bp=False): indices = im.get_indices() return self._set_indices(*indices, is_canon_bp=is_canon_bp) def _set_indices(self, *indices, **kw_args): if len(indices) != self.ext_rank: raise ValueError("indices length mismatch") return self.func(self.args[0], indices, is_canon_bp=kw_args.pop('is_canon_bp', False)).doit() def _get_free_indices_set(self): return set([i[0] for i in self._index_structure.free]) def _get_dummy_indices_set(self): dummy_pos = set(itertools.chain(*self._index_structure.dum)) return set(idx for i, idx in enumerate(self.args[1]) if i in dummy_pos) def _get_indices_set(self): return set(self.args[1].args) @property def is_canon_bp(self): return self._is_canon_bp @property def indices(self): return self._indices @property def free(self): return self._index_structure.free[:] @property def free_in_args(self): return [(ind, pos, 0) for ind, pos in self.free] @property def dum(self): return self._index_structure.dum[:] @property def dum_in_args(self): return [(p1, p2, 0, 0) for p1, p2 in self.dum] @property def rank(self): return len(self.free) @property def ext_rank(self): return self._index_structure._ext_rank @property def free_args(self): return sorted([x[0] for x in self.free]) def commutes_with(self, other): """ :param other: :return: 0 commute 1 anticommute None neither commute nor anticommute """ if not isinstance(other, TensExpr): return 0 elif isinstance(other, Tensor): return self.component.commutes_with(other.component) return NotImplementedError def perm2tensor(self, g, is_canon_bp=False): """ Returns the tensor corresponding to the permutation ``g`` For further details, see the method in ``TIDS`` with the same name. """ return perm2tensor(self, g, is_canon_bp) def canon_bp(self): if self._is_canon_bp: return self expr = self.expand() g, dummies, msym = expr._index_structure.indices_canon_args() v = components_canon_args([expr.component]) can = canonicalize(g, dummies, msym, *v) if can == 0: return S.Zero tensor = self.perm2tensor(can, True) return tensor @property def index_types(self): return list(self.component.index_types) @property def coeff(self): return S.One @property def nocoeff(self): return self @property def component(self): return self.args[0] @property def components(self): return [self.args[0]] def split(self): return [self] def _expand(self, **kwargs): return self def sorted_components(self): return self def get_indices(self): """ Get a list of indices, corresponding to those of the tensor. """ return list(self.args[1]) def get_free_indices(self): """ Get a list of free indices, corresponding to those of the tensor. """ return self._index_structure.get_free_indices() def as_base_exp(self): return self, S.One def substitute_indices(self, *index_tuples): """ Return a tensor with free indices substituted according to ``index_tuples`` ``index_types`` list of tuples ``(old_index, new_index)`` Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads, TensorSymmetry >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz) >>> A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) >>> t = A(i, k)*B(-k, -j); t A(i, L_0)*B(-L_0, -j) >>> t.substitute_indices((i, k),(-j, l)) A(k, L_0)*B(-L_0, l) """ indices = [] for index in self.indices: for ind_old, ind_new in index_tuples: if (index.name == ind_old.name and index.tensor_index_type == ind_old.tensor_index_type): if index.is_up == ind_old.is_up: indices.append(ind_new) else: indices.append(-ind_new) break else: indices.append(index) return self.head(*indices) def __call__(self, *indices): deprecate_fun_eval() free_args = self.free_args indices = list(indices) if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]: raise ValueError('incompatible types') if indices == free_args: return self t = self.substitute_indices(*list(zip(free_args, indices))) # object is rebuilt in order to make sure that all contracted indices # get recognized as dummies, but only if there are contracted indices. if len(set(i if i.is_up else -i for i in indices)) != len(indices): return t.func(*t.args) return t # TODO: put this into TensExpr? def __iter__(self): deprecate_data() return self.data.__iter__() # TODO: put this into TensExpr? def __getitem__(self, item): deprecate_data() return self.data[item] def _extract_data(self, replacement_dict): from .array import Array for k, v in replacement_dict.items(): if isinstance(k, Tensor) and k.args[0] == self.args[0]: other = k array = v break else: raise ValueError("%s not found in %s" % (self, replacement_dict)) # TODO: inefficient, this should be done at root level only: replacement_dict = {k: Array(v) for k, v in replacement_dict.items()} array = Array(array) dum1 = self.dum dum2 = other.dum if len(dum2) > 0: for pair in dum2: # allow `dum2` if the contained values are also in `dum1`. if pair not in dum1: raise NotImplementedError("%s with contractions is not implemented" % other) # Remove elements in `dum2` from `dum1`: dum1 = [pair for pair in dum1 if pair not in dum2] if len(dum1) > 0: indices2 = other.get_indices() repl = {} for p1, p2 in dum1: repl[indices2[p2]] = -indices2[p1] other = other.xreplace(repl).doit() array = _TensorDataLazyEvaluator.data_contract_dum([array], dum1, len(indices2)) free_ind1 = self.get_free_indices() free_ind2 = other.get_free_indices() return self._match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict) @property def data(self): deprecate_data() return _tensor_data_substitution_dict[self] @data.setter def data(self, data): deprecate_data() # TODO: check data compatibility with properties of tensor. _tensor_data_substitution_dict[self] = data @data.deleter def data(self): deprecate_data() if self in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self] if self.metric in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self.metric] def _print(self): indices = [str(ind) for ind in self.indices] component = self.component if component.rank > 0: return ('%s(%s)' % (component.name, ', '.join(indices))) else: return ('%s' % component.name) def equals(self, other): if other == 0: return self.coeff == 0 other = _sympify(other) if not isinstance(other, TensExpr): assert not self.components return S.One == other def _get_compar_comp(self): t = self.canon_bp() r = (t.coeff, tuple(t.components), \ tuple(sorted(t.free)), tuple(sorted(t.dum))) return r return _get_compar_comp(self) == _get_compar_comp(other) def contract_metric(self, g): # if metric is not the same, ignore this step: if self.component != g: return self # in case there are free components, do not perform anything: if len(self.free) != 0: return self antisym = g.index_types[0].metric_antisym sign = S.One typ = g.index_types[0] if not antisym: # g(i, -i) if typ._dim is None: raise ValueError('dimension not assigned') sign = sign*typ._dim else: # g(i, -i) if typ._dim is None: raise ValueError('dimension not assigned') sign = sign*typ._dim dp0, dp1 = self.dum[0] if dp0 < dp1: # g(i, -i) = -D with antisymmetric metric sign = -sign return sign def contract_delta(self, metric): return self.contract_metric(metric) def _eval_rewrite_as_Indexed(self, tens, indices): from sympy import Indexed # TODO: replace .args[0] with .name: index_symbols = [i.args[0] for i in self.get_indices()] expr = Indexed(tens.args[0], *index_symbols) return self._check_add_Sum(expr, index_symbols) class TensMul(TensExpr, AssocOp): """ Product of tensors Parameters ========== coeff : SymPy coefficient of the tensor args Attributes ========== ``components`` : list of ``TensorHead`` of the component tensors ``types`` : list of nonrepeated ``TensorIndexType`` ``free`` : list of ``(ind, ipos, icomp)``, see Notes ``dum`` : list of ``(ipos1, ipos2, icomp1, icomp2)``, see Notes ``ext_rank`` : rank of the tensor counting the dummy indices ``rank`` : rank of the tensor ``coeff`` : SymPy coefficient of the tensor ``free_args`` : list of the free indices in sorted order ``is_canon_bp`` : ``True`` if the tensor in in canonical form Notes ===== ``args[0]`` list of ``TensorHead`` of the component tensors. ``args[1]`` list of ``(ind, ipos, icomp)`` where ``ind`` is a free index, ``ipos`` is the slot position of ``ind`` in the ``icomp``-th component tensor. ``args[2]`` list of tuples representing dummy indices. ``(ipos1, ipos2, icomp1, icomp2)`` indicates that the contravariant dummy index is the ``ipos1``-th slot position in the ``icomp1``-th component tensor; the corresponding covariant index is in the ``ipos2`` slot position in the ``icomp2``-th component tensor. """ identity = S.One def __new__(cls, *args, **kw_args): is_canon_bp = kw_args.get('is_canon_bp', False) args = list(map(_sympify, args)) # Flatten: args = [i for arg in args for i in (arg.args if isinstance(arg, (TensMul, Mul)) else [arg])] args, indices, free, dum = TensMul._tensMul_contract_indices(args, replace_indices=False) # Data for indices: index_types = [i.tensor_index_type for i in indices] index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp) obj = TensExpr.__new__(cls, *args) obj._indices = indices obj._index_types = index_types obj._index_structure = index_structure obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum) obj._coeff = S.One obj._is_canon_bp = is_canon_bp return obj @staticmethod def _indices_to_free_dum(args_indices): free2pos1 = {} free2pos2 = {} dummy_data = [] indices = [] # Notation for positions (to better understand the code): # `pos1`: position in the `args`. # `pos2`: position in the indices. # Example: # A(i, j)*B(k, m, n)*C(p) # `pos1` of `n` is 1 because it's in `B` (second `args` of TensMul). # `pos2` of `n` is 4 because it's the fifth overall index. # Counter for the index position wrt the whole expression: pos2 = 0 for pos1, arg_indices in enumerate(args_indices): for index_pos, index in enumerate(arg_indices): if not isinstance(index, TensorIndex): raise TypeError("expected TensorIndex") if -index in free2pos1: # Dummy index detected: other_pos1 = free2pos1.pop(-index) other_pos2 = free2pos2.pop(-index) if index.is_up: dummy_data.append((index, pos1, other_pos1, pos2, other_pos2)) else: dummy_data.append((-index, other_pos1, pos1, other_pos2, pos2)) indices.append(index) elif index in free2pos1: raise ValueError("Repeated index: %s" % index) else: free2pos1[index] = pos1 free2pos2[index] = pos2 indices.append(index) pos2 += 1 free = [(i, p) for (i, p) in free2pos2.items()] free_names = [i.name for i in free2pos2.keys()] dummy_data.sort(key=lambda x: x[3]) return indices, free, free_names, dummy_data @staticmethod def _dummy_data_to_dum(dummy_data): return [(p2a, p2b) for (i, p1a, p1b, p2a, p2b) in dummy_data] @staticmethod def _tensMul_contract_indices(args, replace_indices=True): replacements = [{} for _ in args] #_index_order = all([_has_index_order(arg) for arg in args]) args_indices = [get_indices(arg) for arg in args] indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices) cdt = defaultdict(int) def dummy_fmt_gen(tensor_index_type): fmt = tensor_index_type.dummy_fmt nd = cdt[tensor_index_type] cdt[tensor_index_type] += 1 return fmt % nd if replace_indices: for old_index, pos1cov, pos1contra, pos2cov, pos2contra in dummy_data: index_type = old_index.tensor_index_type while True: dummy_name = dummy_fmt_gen(index_type) if dummy_name not in free_names: break dummy = TensorIndex(dummy_name, index_type, True) replacements[pos1cov][old_index] = dummy replacements[pos1contra][-old_index] = -dummy indices[pos2cov] = dummy indices[pos2contra] = -dummy args = [arg.xreplace(repl) for arg, repl in zip(args, replacements)] dum = TensMul._dummy_data_to_dum(dummy_data) return args, indices, free, dum @staticmethod def _get_components_from_args(args): """ Get a list of ``Tensor`` objects having the same ``TIDS`` if multiplied by one another. """ components = [] for arg in args: if not isinstance(arg, TensExpr): continue if isinstance(arg, TensAdd): continue components.extend(arg.components) return components @staticmethod def _rebuild_tensors_list(args, index_structure): indices = index_structure.get_indices() #tensors = [None for i in components] # pre-allocate list ind_pos = 0 for i, arg in enumerate(args): if not isinstance(arg, TensExpr): continue prev_pos = ind_pos ind_pos += arg.ext_rank args[i] = Tensor(arg.component, indices[prev_pos:ind_pos]) def doit(self, **kwargs): is_canon_bp = self._is_canon_bp deep = kwargs.get('deep', True) if deep: args = [arg.doit(**kwargs) for arg in self.args] else: args = self.args args = [arg for arg in args if arg != self.identity] # Extract non-tensor coefficients: coeff = reduce(lambda a, b: a*b, [arg for arg in args if not isinstance(arg, TensExpr)], S.One) args = [arg for arg in args if isinstance(arg, TensExpr)] if len(args) == 0: return coeff if coeff != self.identity: args = [coeff] + args if coeff == 0: return S.Zero if len(args) == 1: return args[0] args, indices, free, dum = TensMul._tensMul_contract_indices(args) # Data for indices: index_types = [i.tensor_index_type for i in indices] index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp) obj = self.func(*args) obj._index_types = index_types obj._index_structure = index_structure obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum) obj._coeff = coeff obj._is_canon_bp = is_canon_bp return obj # TODO: this method should be private # TODO: should this method be renamed _from_components_free_dum ? @staticmethod def from_data(coeff, components, free, dum, **kw_args): return TensMul(coeff, *TensMul._get_tensors_from_components_free_dum(components, free, dum), **kw_args).doit() @staticmethod def _get_tensors_from_components_free_dum(components, free, dum): """ Get a list of ``Tensor`` objects by distributing ``free`` and ``dum`` indices on the ``components``. """ index_structure = _IndexStructure.from_components_free_dum(components, free, dum) indices = index_structure.get_indices() tensors = [None for i in components] # pre-allocate list # distribute indices on components to build a list of tensors: ind_pos = 0 for i, component in enumerate(components): prev_pos = ind_pos ind_pos += component.rank tensors[i] = Tensor(component, indices[prev_pos:ind_pos]) return tensors def _get_free_indices_set(self): return set([i[0] for i in self.free]) def _get_dummy_indices_set(self): dummy_pos = set(itertools.chain(*self.dum)) return set(idx for i, idx in enumerate(self._index_structure.get_indices()) if i in dummy_pos) def _get_position_offset_for_indices(self): arg_offset = [None for i in range(self.ext_rank)] counter = 0 for i, arg in enumerate(self.args): if not isinstance(arg, TensExpr): continue for j in range(arg.ext_rank): arg_offset[j + counter] = counter counter += arg.ext_rank return arg_offset @property def free_args(self): return sorted([x[0] for x in self.free]) @property def components(self): return self._get_components_from_args(self.args) @property def free(self): return self._index_structure.free[:] @property def free_in_args(self): arg_offset = self._get_position_offset_for_indices() argpos = self._get_indices_to_args_pos() return [(ind, pos-arg_offset[pos], argpos[pos]) for (ind, pos) in self.free] @property def coeff(self): return self._coeff @property def nocoeff(self): return self.func(*[t for t in self.args if isinstance(t, TensExpr)]).doit() @property def dum(self): return self._index_structure.dum[:] @property def dum_in_args(self): arg_offset = self._get_position_offset_for_indices() argpos = self._get_indices_to_args_pos() return [(p1-arg_offset[p1], p2-arg_offset[p2], argpos[p1], argpos[p2]) for p1, p2 in self.dum] @property def rank(self): return len(self.free) @property def ext_rank(self): return self._ext_rank @property def index_types(self): return self._index_types[:] def equals(self, other): if other == 0: return self.coeff == 0 other = _sympify(other) if not isinstance(other, TensExpr): assert not self.components return self._coeff == other return self.canon_bp() == other.canon_bp() def get_indices(self): """ Returns the list of indices of the tensor The indices are listed in the order in which they appear in the component tensors. The dummy indices are given a name which does not collide with the names of the free indices. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz) >>> g = Lorentz.metric >>> p, q = tensor_heads('p,q', [Lorentz]) >>> t = p(m1)*g(m0,m2) >>> t.get_indices() [m1, m0, m2] >>> t2 = p(m1)*g(-m1, m2) >>> t2.get_indices() [L_0, -L_0, m2] """ return self._indices def get_free_indices(self): """ Returns the list of free indices of the tensor The indices are listed in the order in which they appear in the component tensors. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz) >>> g = Lorentz.metric >>> p, q = tensor_heads('p,q', [Lorentz]) >>> t = p(m1)*g(m0,m2) >>> t.get_free_indices() [m1, m0, m2] >>> t2 = p(m1)*g(-m1, m2) >>> t2.get_free_indices() [m2] """ return self._index_structure.get_free_indices() def split(self): """ Returns a list of tensors, whose product is ``self`` Dummy indices contracted among different tensor components become free indices with the same name as the one used to represent the dummy indices. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads, TensorSymmetry >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz) >>> A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) >>> t = A(a,b)*B(-b,c) >>> t A(a, L_0)*B(-L_0, c) >>> t.split() [A(a, L_0), B(-L_0, c)] """ if self.args == (): return [self] splitp = [] res = 1 for arg in self.args: if isinstance(arg, Tensor): splitp.append(res*arg) res = 1 else: res *= arg return splitp def _expand(self, **hints): # TODO: temporary solution, in the future this should be linked to # `Expr.expand`. args = [_expand(arg, **hints) for arg in self.args] args1 = [arg.args if isinstance(arg, (Add, TensAdd)) else (arg,) for arg in args] return TensAdd(*[ TensMul(*i) for i in itertools.product(*args1)] ) def __neg__(self): return TensMul(S.NegativeOne, self, is_canon_bp=self._is_canon_bp).doit() def __getitem__(self, item): deprecate_data() return self.data[item] def _get_args_for_traditional_printer(self): args = list(self.args) if (self.coeff < 0) == True: # expressions like "-A(a)" sign = "-" if self.coeff == S.NegativeOne: args = args[1:] else: args[0] = -args[0] else: sign = "" return sign, args def _sort_args_for_sorted_components(self): """ Returns the ``args`` sorted according to the components commutation properties. The sorting is done taking into account the commutation group of the component tensors. """ cv = [arg for arg in self.args if isinstance(arg, TensExpr)] sign = 1 n = len(cv) - 1 for i in range(n): for j in range(n, i, -1): c = cv[j-1].commutes_with(cv[j]) # if `c` is `None`, it does neither commute nor anticommute, skip: if c not in [0, 1]: continue typ1 = sorted(set(cv[j-1].component.index_types), key=lambda x: x.name) typ2 = sorted(set(cv[j].component.index_types), key=lambda x: x.name) if (typ1, cv[j-1].component.name) > (typ2, cv[j].component.name): cv[j-1], cv[j] = cv[j], cv[j-1] # if `c` is 1, the anticommute, so change sign: if c: sign = -sign coeff = sign * self.coeff if coeff != 1: return [coeff] + cv return cv def sorted_components(self): """ Returns a tensor product with sorted components. """ return TensMul(*self._sort_args_for_sorted_components()).doit() def perm2tensor(self, g, is_canon_bp=False): """ Returns the tensor corresponding to the permutation ``g`` For further details, see the method in ``TIDS`` with the same name. """ return perm2tensor(self, g, is_canon_bp=is_canon_bp) def canon_bp(self): """ Canonicalize using the Butler-Portugal algorithm for canonicalization under monoterm symmetries. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, TensorSymmetry >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz) >>> A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2)) >>> t = A(m0,-m1)*A(m1,-m0) >>> t.canon_bp() -A(L_0, L_1)*A(-L_0, -L_1) >>> t = A(m0,-m1)*A(m1,-m2)*A(m2,-m0) >>> t.canon_bp() 0 """ if self._is_canon_bp: return self expr = self.expand() if isinstance(expr, TensAdd): return expr.canon_bp() if not expr.components: return expr t = expr.sorted_components() g, dummies, msym = t._index_structure.indices_canon_args() v = components_canon_args(t.components) can = canonicalize(g, dummies, msym, *v) if can == 0: return S.Zero tmul = t.perm2tensor(can, True) return tmul def contract_delta(self, delta): t = self.contract_metric(delta) return t def _get_indices_to_args_pos(self): """ Get a dict mapping the index position to TensMul's argument number. """ pos_map = dict() pos_counter = 0 for arg_i, arg in enumerate(self.args): if not isinstance(arg, TensExpr): continue assert isinstance(arg, Tensor) for i in range(arg.ext_rank): pos_map[pos_counter] = arg_i pos_counter += 1 return pos_map def contract_metric(self, g): """ Raise or lower indices with the metric ``g`` Parameters ========== g : metric Notes ===== see the ``TensorIndexType`` docstring for the contraction conventions Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz) >>> g = Lorentz.metric >>> p, q = tensor_heads('p,q', [Lorentz]) >>> t = p(m0)*q(m1)*g(-m0, -m1) >>> t.canon_bp() metric(L_0, L_1)*p(-L_0)*q(-L_1) >>> t.contract_metric(g).canon_bp() p(L_0)*q(-L_0) """ expr = self.expand() if self != expr: expr = expr.canon_bp() return expr.contract_metric(g) pos_map = self._get_indices_to_args_pos() args = list(self.args) antisym = g.index_types[0].metric_antisym # list of positions of the metric ``g`` inside ``args`` gpos = [i for i, x in enumerate(self.args) if isinstance(x, Tensor) and x.component == g] if not gpos: return self # Sign is either 1 or -1, to correct the sign after metric contraction # (for spinor indices). sign = 1 dum = self.dum[:] free = self.free[:] elim = set() for gposx in gpos: if gposx in elim: continue free1 = [x for x in free if pos_map[x[1]] == gposx] dum1 = [x for x in dum if pos_map[x[0]] == gposx or pos_map[x[1]] == gposx] if not dum1: continue elim.add(gposx) # subs with the multiplication neutral element, that is, remove it: args[gposx] = 1 if len(dum1) == 2: if not antisym: dum10, dum11 = dum1 if pos_map[dum10[1]] == gposx: # the index with pos p0 contravariant p0 = dum10[0] else: # the index with pos p0 is covariant p0 = dum10[1] if pos_map[dum11[1]] == gposx: # the index with pos p1 is contravariant p1 = dum11[0] else: # the index with pos p1 is covariant p1 = dum11[1] dum.append((p0, p1)) else: dum10, dum11 = dum1 # change the sign to bring the indices of the metric to contravariant # form; change the sign if dum10 has the metric index in position 0 if pos_map[dum10[1]] == gposx: # the index with pos p0 is contravariant p0 = dum10[0] if dum10[1] == 1: sign = -sign else: # the index with pos p0 is covariant p0 = dum10[1] if dum10[0] == 0: sign = -sign if pos_map[dum11[1]] == gposx: # the index with pos p1 is contravariant p1 = dum11[0] sign = -sign else: # the index with pos p1 is covariant p1 = dum11[1] dum.append((p0, p1)) elif len(dum1) == 1: if not antisym: dp0, dp1 = dum1[0] if pos_map[dp0] == pos_map[dp1]: # g(i, -i) typ = g.index_types[0] if typ._dim is None: raise ValueError('dimension not assigned') sign = sign*typ._dim else: # g(i0, i1)*p(-i1) if pos_map[dp0] == gposx: p1 = dp1 else: p1 = dp0 ind, p = free1[0] free.append((ind, p1)) else: dp0, dp1 = dum1[0] if pos_map[dp0] == pos_map[dp1]: # g(i, -i) typ = g.index_types[0] if typ._dim is None: raise ValueError('dimension not assigned') sign = sign*typ._dim if dp0 < dp1: # g(i, -i) = -D with antisymmetric metric sign = -sign else: # g(i0, i1)*p(-i1) if pos_map[dp0] == gposx: p1 = dp1 if dp0 == 0: sign = -sign else: p1 = dp0 ind, p = free1[0] free.append((ind, p1)) dum = [x for x in dum if x not in dum1] free = [x for x in free if x not in free1] # shift positions: shift = 0 shifts = [0]*len(args) for i in range(len(args)): if i in elim: shift += 2 continue shifts[i] = shift free = [(ind, p - shifts[pos_map[p]]) for (ind, p) in free if pos_map[p] not in elim] dum = [(p0 - shifts[pos_map[p0]], p1 - shifts[pos_map[p1]]) for i, (p0, p1) in enumerate(dum) if pos_map[p0] not in elim and pos_map[p1] not in elim] res = sign*TensMul(*args).doit() if not isinstance(res, TensExpr): return res im = _IndexStructure.from_components_free_dum(res.components, free, dum) return res._set_new_index_structure(im) def _set_new_index_structure(self, im, is_canon_bp=False): indices = im.get_indices() return self._set_indices(*indices, is_canon_bp=is_canon_bp) def _set_indices(self, *indices, **kw_args): if len(indices) != self.ext_rank: raise ValueError("indices length mismatch") args = list(self.args)[:] pos = 0 is_canon_bp = kw_args.pop('is_canon_bp', False) for i, arg in enumerate(args): if not isinstance(arg, TensExpr): continue assert isinstance(arg, Tensor) ext_rank = arg.ext_rank args[i] = arg._set_indices(*indices[pos:pos+ext_rank]) pos += ext_rank return TensMul(*args, is_canon_bp=is_canon_bp).doit() @staticmethod def _index_replacement_for_contract_metric(args, free, dum): for arg in args: if not isinstance(arg, TensExpr): continue assert isinstance(arg, Tensor) def substitute_indices(self, *index_tuples): new_args = [] for arg in self.args: if isinstance(arg, TensExpr): arg = arg.substitute_indices(*index_tuples) new_args.append(arg) return TensMul(*new_args).doit() def __call__(self, *indices): deprecate_fun_eval() free_args = self.free_args indices = list(indices) if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]: raise ValueError('incompatible types') if indices == free_args: return self t = self.substitute_indices(*list(zip(free_args, indices))) # object is rebuilt in order to make sure that all contracted indices # get recognized as dummies, but only if there are contracted indices. if len(set(i if i.is_up else -i for i in indices)) != len(indices): return t.func(*t.args) return t def _extract_data(self, replacement_dict): args_indices, arrays = zip(*[arg._extract_data(replacement_dict) for arg in self.args if isinstance(arg, TensExpr)]) coeff = reduce(operator.mul, [a for a in self.args if not isinstance(a, TensExpr)], S.One) indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices) dum = TensMul._dummy_data_to_dum(dummy_data) ext_rank = self.ext_rank free.sort(key=lambda x: x[1]) free_indices = [i[0] for i in free] return free_indices, coeff*_TensorDataLazyEvaluator.data_contract_dum(arrays, dum, ext_rank) @property def data(self): deprecate_data() dat = _tensor_data_substitution_dict[self.expand()] return dat @data.setter def data(self, data): deprecate_data() raise ValueError("Not possible to set component data to a tensor expression") @data.deleter def data(self): deprecate_data() raise ValueError("Not possible to delete component data to a tensor expression") def __iter__(self): deprecate_data() if self.data is None: raise ValueError("No iteration on abstract tensors") return self.data.__iter__() def _eval_rewrite_as_Indexed(self, *args): from sympy import Sum index_symbols = [i.args[0] for i in self.get_indices()] args = [arg.args[0] if isinstance(arg, Sum) else arg for arg in args] expr = Mul.fromiter(args) return self._check_add_Sum(expr, index_symbols) class TensorElement(TensExpr): """ Tensor with evaluated components. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorSymmetry >>> from sympy import symbols >>> L = TensorIndexType("L") >>> i, j, k = symbols("i j k") >>> A = TensorHead("A", [L, L], TensorSymmetry.fully_symmetric(2)) >>> A(i, j).get_free_indices() [i, j] If we want to set component ``i`` to a specific value, use the ``TensorElement`` class: >>> from sympy.tensor.tensor import TensorElement >>> te = TensorElement(A(i, j), {i: 2}) As index ``i`` has been accessed (``{i: 2}`` is the evaluation of its 3rd element), the free indices will only contain ``j``: >>> te.get_free_indices() [j] """ def __new__(cls, expr, index_map): if not isinstance(expr, Tensor): # remap if not isinstance(expr, TensExpr): raise TypeError("%s is not a tensor expression" % expr) return expr.func(*[TensorElement(arg, index_map) for arg in expr.args]) expr_free_indices = expr.get_free_indices() name_translation = {i.args[0]: i for i in expr_free_indices} index_map = {name_translation.get(index, index): value for index, value in index_map.items()} index_map = {index: value for index, value in index_map.items() if index in expr_free_indices} if len(index_map) == 0: return expr free_indices = [i for i in expr_free_indices if i not in index_map.keys()] index_map = Dict(index_map) obj = TensExpr.__new__(cls, expr, index_map) obj._free_indices = free_indices return obj @property def free(self): return [(index, i) for i, index in enumerate(self.get_free_indices())] @property def dum(self): # TODO: inherit dummies from expr return [] @property def expr(self): return self._args[0] @property def index_map(self): return self._args[1] def get_free_indices(self): return self._free_indices def get_indices(self): return self.get_free_indices() def _extract_data(self, replacement_dict): ret_indices, array = self.expr._extract_data(replacement_dict) index_map = self.index_map slice_tuple = tuple(index_map.get(i, slice(None)) for i in ret_indices) ret_indices = [i for i in ret_indices if i not in index_map] array = array.__getitem__(slice_tuple) return ret_indices, array def canon_bp(p): """ Butler-Portugal canonicalization. See ``tensor_can.py`` from the combinatorics module for the details. """ if isinstance(p, TensExpr): return p.canon_bp() return p def tensor_mul(*a): """ product of tensors """ if not a: return TensMul.from_data(S.One, [], [], []) t = a[0] for tx in a[1:]: t = t*tx return t def riemann_cyclic_replace(t_r): """ replace Riemann tensor with an equivalent expression ``R(m,n,p,q) -> 2/3*R(m,n,p,q) - 1/3*R(m,q,n,p) + 1/3*R(m,p,n,q)`` """ free = sorted(t_r.free, key=lambda x: x[1]) m, n, p, q = [x[0] for x in free] t0 = t_r*Rational(2, 3) t1 = -t_r.substitute_indices((m,m),(n,q),(p,n),(q,p))*Rational(1, 3) t2 = t_r.substitute_indices((m,m),(n,p),(p,n),(q,q))*Rational(1, 3) t3 = t0 + t1 + t2 return t3 def riemann_cyclic(t2): """ replace each Riemann tensor with an equivalent expression satisfying the cyclic identity. This trick is discussed in the reference guide to Cadabra. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, riemann_cyclic, TensorSymmetry >>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') >>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz) >>> R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann()) >>> t = R(i,j,k,l)*(R(-i,-j,-k,-l) - 2*R(-i,-k,-j,-l)) >>> riemann_cyclic(t) 0 """ t2 = t2.expand() if isinstance(t2, (TensMul, Tensor)): args = [t2] else: args = t2.args a1 = [x.split() for x in args] a2 = [[riemann_cyclic_replace(tx) for tx in y] for y in a1] a3 = [tensor_mul(*v) for v in a2] t3 = TensAdd(*a3).doit() if not t3: return t3 else: return canon_bp(t3) def get_lines(ex, index_type): """ returns ``(lines, traces, rest)`` for an index type, where ``lines`` is the list of list of positions of a matrix line, ``traces`` is the list of list of traced matrix lines, ``rest`` is the rest of the elements ot the tensor. """ def _join_lines(a): i = 0 while i < len(a): x = a[i] xend = x[-1] xstart = x[0] hit = True while hit: hit = False for j in range(i + 1, len(a)): if j >= len(a): break if a[j][0] == xend: hit = True x.extend(a[j][1:]) xend = x[-1] a.pop(j) continue if a[j][0] == xstart: hit = True a[i] = reversed(a[j][1:]) + x x = a[i] xstart = a[i][0] a.pop(j) continue if a[j][-1] == xend: hit = True x.extend(reversed(a[j][:-1])) xend = x[-1] a.pop(j) continue if a[j][-1] == xstart: hit = True a[i] = a[j][:-1] + x x = a[i] xstart = x[0] a.pop(j) continue i += 1 return a arguments = ex.args dt = {} for c in ex.args: if not isinstance(c, TensExpr): continue if c in dt: continue index_types = c.index_types a = [] for i in range(len(index_types)): if index_types[i] is index_type: a.append(i) if len(a) > 2: raise ValueError('at most two indices of type %s allowed' % index_type) if len(a) == 2: dt[c] = a #dum = ex.dum lines = [] traces = [] traces1 = [] #indices_to_args_pos = ex._get_indices_to_args_pos() # TODO: add a dum_to_components_map ? for p0, p1, c0, c1 in ex.dum_in_args: if arguments[c0] not in dt: continue if c0 == c1: traces.append([c0]) continue ta0 = dt[arguments[c0]] ta1 = dt[arguments[c1]] if p0 not in ta0: continue if ta0.index(p0) == ta1.index(p1): # case gamma(i,s0,-s1) in c0, gamma(j,-s0,s2) in c1; # to deal with this case one could add to the position # a flag for transposition; # one could write [(c0, False), (c1, True)] raise NotImplementedError # if p0 == ta0[1] then G in pos c0 is mult on the right by G in c1 # if p0 == ta0[0] then G in pos c1 is mult on the right by G in c0 ta0 = dt[arguments[c0]] b0, b1 = (c0, c1) if p0 == ta0[1] else (c1, c0) lines1 = lines[:] for line in lines: if line[-1] == b0: if line[0] == b1: n = line.index(min(line)) traces1.append(line) traces.append(line[n:] + line[:n]) else: line.append(b1) break elif line[0] == b1: line.insert(0, b0) break else: lines1.append([b0, b1]) lines = [x for x in lines1 if x not in traces1] lines = _join_lines(lines) rest = [] for line in lines: for y in line: rest.append(y) for line in traces: for y in line: rest.append(y) rest = [x for x in range(len(arguments)) if x not in rest] return lines, traces, rest def get_free_indices(t): if not isinstance(t, TensExpr): return () return t.get_free_indices() def get_indices(t): if not isinstance(t, TensExpr): return () return t.get_indices() def get_index_structure(t): if isinstance(t, TensExpr): return t._index_structure return _IndexStructure([], [], [], []) def get_coeff(t): if isinstance(t, Tensor): return S.One if isinstance(t, TensMul): return t.coeff if isinstance(t, TensExpr): raise ValueError("no coefficient associated to this tensor expression") return t def contract_metric(t, g): if isinstance(t, TensExpr): return t.contract_metric(g) return t def perm2tensor(t, g, is_canon_bp=False): """ Returns the tensor corresponding to the permutation ``g`` For further details, see the method in ``TIDS`` with the same name. """ if not isinstance(t, TensExpr): return t elif isinstance(t, (Tensor, TensMul)): nim = get_index_structure(t).perm2tensor(g, is_canon_bp=is_canon_bp) res = t._set_new_index_structure(nim, is_canon_bp=is_canon_bp) if g[-1] != len(g) - 1: return -res return res raise NotImplementedError() def substitute_indices(t, *index_tuples): if not isinstance(t, TensExpr): return t return t.substitute_indices(*index_tuples) def _expand(expr, **kwargs): if isinstance(expr, TensExpr): return expr._expand(**kwargs) else: return expr.expand(**kwargs)
73a858bb392ab532ba9d7cd3f3ef2b8200424f4ae6232ab3353c5ae0868fcbab
"""A module that handles matrices. Includes functions for fast creating matrices like zero, one/eye, random matrix, etc. """ from .common import ShapeError, NonSquareMatrixError from .dense import ( GramSchmidt, casoratian, diag, eye, hessian, jordan_cell, list2numpy, matrix2numpy, matrix_multiply_elementwise, ones, randMatrix, rot_axis1, rot_axis2, rot_axis3, symarray, wronskian, zeros) from .dense import MutableDenseMatrix from .matrices import DeferredVector, MatrixBase Matrix = MutableMatrix = MutableDenseMatrix from .sparse import MutableSparseMatrix from .sparsetools import banded from .immutable import ImmutableDenseMatrix, ImmutableSparseMatrix ImmutableMatrix = ImmutableDenseMatrix SparseMatrix = MutableSparseMatrix from .expressions import ( MatrixSlice, BlockDiagMatrix, BlockMatrix, FunctionMatrix, Identity, Inverse, MatAdd, MatMul, MatPow, MatrixExpr, MatrixSymbol, Trace, Transpose, ZeroMatrix, OneMatrix, blockcut, block_collapse, matrix_symbols, Adjoint, hadamard_product, HadamardProduct, HadamardPower, Determinant, det, diagonalize_vector, DiagMatrix, DiagonalMatrix, DiagonalOf, trace, DotProduct, kronecker_product, KroneckerProduct, OneMatrix)
bfe100c4a7990dc219a53c58469f31e5cb6b83716b85300c4eb1f5f2f233f536
""" Basic methods common to all matrices to be used when creating more advanced matrices (e.g., matrices over rings, etc.). """ from __future__ import division, print_function from collections import defaultdict from inspect import isfunction from sympy.assumptions.refine import refine from sympy.core.basic import Atom from sympy.core.compatibility import ( Iterable, as_int, is_sequence, range, reduce) from sympy.core.decorators import call_highest_priority from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.functions import Abs from sympy.simplify import simplify as _simplify from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import flatten from sympy.utilities.misc import filldedent class MatrixError(Exception): pass class ShapeError(ValueError, MatrixError): """Wrong matrix shape""" pass class NonSquareMatrixError(ShapeError): pass class NonInvertibleMatrixError(ValueError, MatrixError): """The matrix in not invertible (division by multidimensional zero error).""" pass class NonPositiveDefiniteMatrixError(ValueError, MatrixError): """The matrix is not a positive-definite matrix.""" pass class MatrixRequired(object): """All subclasses of matrix objects must implement the required matrix properties listed here.""" rows = None cols = None shape = None _simplify = None @classmethod def _new(cls, *args, **kwargs): """`_new` must, at minimum, be callable as `_new(rows, cols, mat) where mat is a flat list of the elements of the matrix.""" raise NotImplementedError("Subclasses must implement this.") def __eq__(self, other): raise NotImplementedError("Subclasses must implement this.") def __getitem__(self, key): """Implementations of __getitem__ should accept ints, in which case the matrix is indexed as a flat list, tuples (i,j) in which case the (i,j) entry is returned, slices, or mixed tuples (a,b) where a and b are any combintion of slices and integers.""" raise NotImplementedError("Subclasses must implement this.") def __len__(self): """The total number of entries in the matrix.""" raise NotImplementedError("Subclasses must implement this.") class MatrixShaping(MatrixRequired): """Provides basic matrix shaping and extracting of submatrices""" def _eval_col_del(self, col): def entry(i, j): return self[i, j] if j < col else self[i, j + 1] return self._new(self.rows, self.cols - 1, entry) def _eval_col_insert(self, pos, other): def entry(i, j): if j < pos: return self[i, j] elif pos <= j < pos + other.cols: return other[i, j - pos] return self[i, j - other.cols] return self._new(self.rows, self.cols + other.cols, lambda i, j: entry(i, j)) def _eval_col_join(self, other): rows = self.rows def entry(i, j): if i < rows: return self[i, j] return other[i - rows, j] return classof(self, other)._new(self.rows + other.rows, self.cols, lambda i, j: entry(i, j)) def _eval_extract(self, rowsList, colsList): mat = list(self) cols = self.cols indices = (i * cols + j for i in rowsList for j in colsList) return self._new(len(rowsList), len(colsList), list(mat[i] for i in indices)) def _eval_get_diag_blocks(self): sub_blocks = [] def recurse_sub_blocks(M): i = 1 while i <= M.shape[0]: if i == 1: to_the_right = M[0, i:] to_the_bottom = M[i:, 0] else: to_the_right = M[:i, i:] to_the_bottom = M[i:, :i] if any(to_the_right) or any(to_the_bottom): i += 1 continue else: sub_blocks.append(M[:i, :i]) if M.shape == M[:i, :i].shape: return else: recurse_sub_blocks(M[i:, i:]) return recurse_sub_blocks(self) return sub_blocks def _eval_row_del(self, row): def entry(i, j): return self[i, j] if i < row else self[i + 1, j] return self._new(self.rows - 1, self.cols, entry) def _eval_row_insert(self, pos, other): entries = list(self) insert_pos = pos * self.cols entries[insert_pos:insert_pos] = list(other) return self._new(self.rows + other.rows, self.cols, entries) def _eval_row_join(self, other): cols = self.cols def entry(i, j): if j < cols: return self[i, j] return other[i, j - cols] return classof(self, other)._new(self.rows, self.cols + other.cols, lambda i, j: entry(i, j)) def _eval_tolist(self): return [list(self[i,:]) for i in range(self.rows)] def _eval_vec(self): rows = self.rows def entry(n, _): # we want to read off the columns first j = n // rows i = n - j * rows return self[i, j] return self._new(len(self), 1, entry) def col_del(self, col): """Delete the specified column.""" if col < 0: col += self.cols if not 0 <= col < self.cols: raise ValueError("Column {} out of range.".format(col)) return self._eval_col_del(col) def col_insert(self, pos, other): """Insert one or more columns at the given column position. Examples ======== >>> from sympy import zeros, ones >>> M = zeros(3) >>> V = ones(3, 1) >>> M.col_insert(1, V) Matrix([ [0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0]]) See Also ======== col row_insert """ # Allows you to build a matrix even if it is null matrix if not self: return type(self)(other) pos = as_int(pos) if pos < 0: pos = self.cols + pos if pos < 0: pos = 0 elif pos > self.cols: pos = self.cols if self.rows != other.rows: raise ShapeError( "`self` and `other` must have the same number of rows.") return self._eval_col_insert(pos, other) def col_join(self, other): """Concatenates two matrices along self's last and other's first row. Examples ======== >>> from sympy import zeros, ones >>> M = zeros(3) >>> V = ones(1, 3) >>> M.col_join(V) Matrix([ [0, 0, 0], [0, 0, 0], [0, 0, 0], [1, 1, 1]]) See Also ======== col row_join """ # A null matrix can always be stacked (see #10770) if self.rows == 0 and self.cols != other.cols: return self._new(0, other.cols, []).col_join(other) if self.cols != other.cols: raise ShapeError( "`self` and `other` must have the same number of columns.") return self._eval_col_join(other) def col(self, j): """Elementary column selector. Examples ======== >>> from sympy import eye >>> eye(2).col(0) Matrix([ [1], [0]]) See Also ======== row sympy.matrices.dense.MutableDenseMatrix.col_op sympy.matrices.dense.MutableDenseMatrix.col_swap col_del col_join col_insert """ return self[:, j] def extract(self, rowsList, colsList): """Return a submatrix by specifying a list of rows and columns. Negative indices can be given. All indices must be in the range -n <= i < n where n is the number of rows or columns. Examples ======== >>> from sympy import Matrix >>> m = Matrix(4, 3, range(12)) >>> m Matrix([ [0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]) >>> m.extract([0, 1, 3], [0, 1]) Matrix([ [0, 1], [3, 4], [9, 10]]) Rows or columns can be repeated: >>> m.extract([0, 0, 1], [-1]) Matrix([ [2], [2], [5]]) Every other row can be taken by using range to provide the indices: >>> m.extract(range(0, m.rows, 2), [-1]) Matrix([ [2], [8]]) RowsList or colsList can also be a list of booleans, in which case the rows or columns corresponding to the True values will be selected: >>> m.extract([0, 1, 2, 3], [True, False, True]) Matrix([ [0, 2], [3, 5], [6, 8], [9, 11]]) """ if not is_sequence(rowsList) or not is_sequence(colsList): raise TypeError("rowsList and colsList must be iterable") # ensure rowsList and colsList are lists of integers if rowsList and all(isinstance(i, bool) for i in rowsList): rowsList = [index for index, item in enumerate(rowsList) if item] if colsList and all(isinstance(i, bool) for i in colsList): colsList = [index for index, item in enumerate(colsList) if item] # ensure everything is in range rowsList = [a2idx(k, self.rows) for k in rowsList] colsList = [a2idx(k, self.cols) for k in colsList] return self._eval_extract(rowsList, colsList) def get_diag_blocks(self): """Obtains the square sub-matrices on the main diagonal of a square matrix. Useful for inverting symbolic matrices or solving systems of linear equations which may be decoupled by having a block diagonal structure. Examples ======== >>> from sympy import Matrix >>> from sympy.abc import x, y, z >>> A = Matrix([[1, 3, 0, 0], [y, z*z, 0, 0], [0, 0, x, 0], [0, 0, 0, 0]]) >>> a1, a2, a3 = A.get_diag_blocks() >>> a1 Matrix([ [1, 3], [y, z**2]]) >>> a2 Matrix([[x]]) >>> a3 Matrix([[0]]) """ return self._eval_get_diag_blocks() @classmethod def hstack(cls, *args): """Return a matrix formed by joining args horizontally (i.e. by repeated application of row_join). Examples ======== >>> from sympy.matrices import Matrix, eye >>> Matrix.hstack(eye(2), 2*eye(2)) Matrix([ [1, 0, 2, 0], [0, 1, 0, 2]]) """ if len(args) == 0: return cls._new() kls = type(args[0]) return reduce(kls.row_join, args) def reshape(self, rows, cols): """Reshape the matrix. Total number of elements must remain the same. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 3, lambda i, j: 1) >>> m Matrix([ [1, 1, 1], [1, 1, 1]]) >>> m.reshape(1, 6) Matrix([[1, 1, 1, 1, 1, 1]]) >>> m.reshape(3, 2) Matrix([ [1, 1], [1, 1], [1, 1]]) """ if self.rows * self.cols != rows * cols: raise ValueError("Invalid reshape parameters %d %d" % (rows, cols)) return self._new(rows, cols, lambda i, j: self[i * cols + j]) def row_del(self, row): """Delete the specified row.""" if row < 0: row += self.rows if not 0 <= row < self.rows: raise ValueError("Row {} out of range.".format(row)) return self._eval_row_del(row) def row_insert(self, pos, other): """Insert one or more rows at the given row position. Examples ======== >>> from sympy import zeros, ones >>> M = zeros(3) >>> V = ones(1, 3) >>> M.row_insert(1, V) Matrix([ [0, 0, 0], [1, 1, 1], [0, 0, 0], [0, 0, 0]]) See Also ======== row col_insert """ # Allows you to build a matrix even if it is null matrix if not self: return self._new(other) pos = as_int(pos) if pos < 0: pos = self.rows + pos if pos < 0: pos = 0 elif pos > self.rows: pos = self.rows if self.cols != other.cols: raise ShapeError( "`self` and `other` must have the same number of columns.") return self._eval_row_insert(pos, other) def row_join(self, other): """Concatenates two matrices along self's last and rhs's first column Examples ======== >>> from sympy import zeros, ones >>> M = zeros(3) >>> V = ones(3, 1) >>> M.row_join(V) Matrix([ [0, 0, 0, 1], [0, 0, 0, 1], [0, 0, 0, 1]]) See Also ======== row col_join """ # A null matrix can always be stacked (see #10770) if self.cols == 0 and self.rows != other.rows: return self._new(other.rows, 0, []).row_join(other) if self.rows != other.rows: raise ShapeError( "`self` and `rhs` must have the same number of rows.") return self._eval_row_join(other) def diagonal(self, k=0): """Returns the kth diagonal of self. The main diagonal corresponds to `k=0`; diagonals above and below correspond to `k > 0` and `k < 0`, respectively. The values of `self[i, j]` for which `j - i = k`, are returned in order of increasing `i + j`, starting with `i + j = |k|`. Examples ======== >>> from sympy import Matrix, SparseMatrix >>> m = Matrix(3, 3, lambda i, j: j - i); m Matrix([ [ 0, 1, 2], [-1, 0, 1], [-2, -1, 0]]) >>> _.diagonal() Matrix([[0, 0, 0]]) >>> m.diagonal(1) Matrix([[1, 1]]) >>> m.diagonal(-2) Matrix([[-2]]) Even though the diagonal is returned as a Matrix, the element retrieval can be done with a single index: >>> Matrix.diag(1, 2, 3).diagonal()[1] # instead of [0, 1] 2 See Also ======== diag - to create a diagonal matrix """ rv = [] k = as_int(k) r = 0 if k > 0 else -k c = 0 if r else k while True: if r == self.rows or c == self.cols: break rv.append(self[r, c]) r += 1 c += 1 if not rv: raise ValueError(filldedent(''' The %s diagonal is out of range [%s, %s]''' % ( k, 1 - self.rows, self.cols - 1))) return self._new(1, len(rv), rv) def row(self, i): """Elementary row selector. Examples ======== >>> from sympy import eye >>> eye(2).row(0) Matrix([[1, 0]]) See Also ======== col sympy.matrices.dense.MutableDenseMatrix.row_op sympy.matrices.dense.MutableDenseMatrix.row_swap row_del row_join row_insert """ return self[i, :] @property def shape(self): """The shape (dimensions) of the matrix as the 2-tuple (rows, cols). Examples ======== >>> from sympy.matrices import zeros >>> M = zeros(2, 3) >>> M.shape (2, 3) >>> M.rows 2 >>> M.cols 3 """ return (self.rows, self.cols) def tolist(self): """Return the Matrix as a nested Python list. Examples ======== >>> from sympy import Matrix, ones >>> m = Matrix(3, 3, range(9)) >>> m Matrix([ [0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> m.tolist() [[0, 1, 2], [3, 4, 5], [6, 7, 8]] >>> ones(3, 0).tolist() [[], [], []] When there are no rows then it will not be possible to tell how many columns were in the original matrix: >>> ones(0, 3).tolist() [] """ if not self.rows: return [] if not self.cols: return [[] for i in range(self.rows)] return self._eval_tolist() def vec(self): """Return the Matrix converted into a one column matrix by stacking columns Examples ======== >>> from sympy import Matrix >>> m=Matrix([[1, 3], [2, 4]]) >>> m Matrix([ [1, 3], [2, 4]]) >>> m.vec() Matrix([ [1], [2], [3], [4]]) See Also ======== vech """ return self._eval_vec() @classmethod def vstack(cls, *args): """Return a matrix formed by joining args vertically (i.e. by repeated application of col_join). Examples ======== >>> from sympy.matrices import Matrix, eye >>> Matrix.vstack(eye(2), 2*eye(2)) Matrix([ [1, 0], [0, 1], [2, 0], [0, 2]]) """ if len(args) == 0: return cls._new() kls = type(args[0]) return reduce(kls.col_join, args) class MatrixSpecial(MatrixRequired): """Construction of special matrices""" @classmethod def _eval_diag(cls, rows, cols, diag_dict): """diag_dict is a defaultdict containing all the entries of the diagonal matrix.""" def entry(i, j): return diag_dict[(i, j)] return cls._new(rows, cols, entry) @classmethod def _eval_eye(cls, rows, cols): def entry(i, j): return cls.one if i == j else cls.zero return cls._new(rows, cols, entry) @classmethod def _eval_jordan_block(cls, rows, cols, eigenvalue, band='upper'): if band == 'lower': def entry(i, j): if i == j: return eigenvalue elif j + 1 == i: return cls.one return cls.zero else: def entry(i, j): if i == j: return eigenvalue elif i + 1 == j: return cls.one return cls.zero return cls._new(rows, cols, entry) @classmethod def _eval_ones(cls, rows, cols): def entry(i, j): return cls.one return cls._new(rows, cols, entry) @classmethod def _eval_zeros(cls, rows, cols): def entry(i, j): return cls.zero return cls._new(rows, cols, entry) @classmethod def diag(kls, *args, **kwargs): """Returns a matrix with the specified diagonal. If matrices are passed, a block-diagonal matrix is created (i.e. the "direct sum" of the matrices). kwargs ====== rows : rows of the resulting matrix; computed if not given. cols : columns of the resulting matrix; computed if not given. cls : class for the resulting matrix unpack : bool which, when True (default), unpacks a single sequence rather than interpreting it as a Matrix. strict : bool which, when False (default), allows Matrices to have variable-length rows. Examples ======== >>> from sympy.matrices import Matrix >>> Matrix.diag(1, 2, 3) Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) The current default is to unpack a single sequence. If this is not desired, set `unpack=False` and it will be interpreted as a matrix. >>> Matrix.diag([1, 2, 3]) == Matrix.diag(1, 2, 3) True When more than one element is passed, each is interpreted as something to put on the diagonal. Lists are converted to matricecs. Filling of the diagonal always continues from the bottom right hand corner of the previous item: this will create a block-diagonal matrix whether the matrices are square or not. >>> col = [1, 2, 3] >>> row = [[4, 5]] >>> Matrix.diag(col, row) Matrix([ [1, 0, 0], [2, 0, 0], [3, 0, 0], [0, 4, 5]]) When `unpack` is False, elements within a list need not all be of the same length. Setting `strict` to True would raise a ValueError for the following: >>> Matrix.diag([[1, 2, 3], [4, 5], [6]], unpack=False) Matrix([ [1, 2, 3], [4, 5, 0], [6, 0, 0]]) The type of the returned matrix can be set with the ``cls`` keyword. >>> from sympy.matrices import ImmutableMatrix >>> from sympy.utilities.misc import func_name >>> func_name(Matrix.diag(1, cls=ImmutableMatrix)) 'ImmutableDenseMatrix' A zero dimension matrix can be used to position the start of the filling at the start of an arbitrary row or column: >>> from sympy import ones >>> r2 = ones(0, 2) >>> Matrix.diag(r2, 1, 2) Matrix([ [0, 0, 1, 0], [0, 0, 0, 2]]) See Also ======== eye diagonal - to extract a diagonal .dense.diag .expressions.blockmatrix.BlockMatrix """ from sympy.matrices.matrices import MatrixBase from sympy.matrices.dense import Matrix from sympy.matrices.sparse import SparseMatrix klass = kwargs.get('cls', kls) strict = kwargs.get('strict', False) # lists -> Matrices unpack = kwargs.get('unpack', True) # unpack single sequence if unpack and len(args) == 1 and is_sequence(args[0]) and \ not isinstance(args[0], MatrixBase): args = args[0] # fill a default dict with the diagonal entries diag_entries = defaultdict(int) rmax = cmax = 0 # keep track of the biggest index seen for m in args: if isinstance(m, list): if strict: # if malformed, Matrix will raise an error _ = Matrix(m) r, c = _.shape m = _.tolist() else: m = SparseMatrix(m) for (i, j), _ in m._smat.items(): diag_entries[(i + rmax, j + cmax)] = _ r, c = m.shape m = [] # to skip process below elif hasattr(m, 'shape'): # a Matrix # convert to list of lists r, c = m.shape m = m.tolist() else: # in this case, we're a single value diag_entries[(rmax, cmax)] = m rmax += 1 cmax += 1 continue # process list of lists for i in range(len(m)): for j, _ in enumerate(m[i]): diag_entries[(i + rmax, j + cmax)] = _ rmax += r cmax += c rows = kwargs.get('rows', None) cols = kwargs.get('cols', None) if rows is None: rows, cols = cols, rows if rows is None: rows, cols = rmax, cmax else: cols = rows if cols is None else cols if rows < rmax or cols < cmax: raise ValueError(filldedent(''' The constructed matrix is {} x {} but a size of {} x {} was specified.'''.format(rmax, cmax, rows, cols))) return klass._eval_diag(rows, cols, diag_entries) @classmethod def eye(kls, rows, cols=None, **kwargs): """Returns an identity matrix. Args ==== rows : rows of the matrix cols : cols of the matrix (if None, cols=rows) kwargs ====== cls : class of the returned matrix """ if cols is None: cols = rows klass = kwargs.get('cls', kls) rows, cols = as_int(rows), as_int(cols) return klass._eval_eye(rows, cols) @classmethod def jordan_block(kls, size=None, eigenvalue=None, **kwargs): """Returns a Jordan block Parameters ========== size : Integer, optional Specifies the shape of the Jordan block matrix. eigenvalue : Number or Symbol Specifies the value for the main diagonal of the matrix. .. note:: The keyword ``eigenval`` is also specified as an alias of this keyword, but it is not recommended to use. We may deprecate the alias in later release. band : 'upper' or 'lower', optional Specifies the position of the off-diagonal to put `1` s on. cls : Matrix, optional Specifies the matrix class of the output form. If it is not specified, the class type where the method is being executed on will be returned. rows, cols : Integer, optional Specifies the shape of the Jordan block matrix. See Notes section for the details of how these key works. .. note:: This feature will be deprecated in the future. Returns ======= Matrix A Jordan block matrix. Raises ====== ValueError If insufficient arguments are given for matrix size specification, or no eigenvalue is given. Examples ======== Creating a default Jordan block: >>> from sympy import Matrix >>> from sympy.abc import x >>> Matrix.jordan_block(4, x) Matrix([ [x, 1, 0, 0], [0, x, 1, 0], [0, 0, x, 1], [0, 0, 0, x]]) Creating an alternative Jordan block matrix where `1` is on lower off-diagonal: >>> Matrix.jordan_block(4, x, band='lower') Matrix([ [x, 0, 0, 0], [1, x, 0, 0], [0, 1, x, 0], [0, 0, 1, x]]) Creating a Jordan block with keyword arguments >>> Matrix.jordan_block(size=4, eigenvalue=x) Matrix([ [x, 1, 0, 0], [0, x, 1, 0], [0, 0, x, 1], [0, 0, 0, x]]) Notes ===== .. note:: This feature will be deprecated in the future. The keyword arguments ``size``, ``rows``, ``cols`` relates to the Jordan block size specifications. If you want to create a square Jordan block, specify either one of the three arguments. If you want to create a rectangular Jordan block, specify ``rows`` and ``cols`` individually. +--------------------------------+---------------------+ | Arguments Given | Matrix Shape | +----------+----------+----------+----------+----------+ | size | rows | cols | rows | cols | +==========+==========+==========+==========+==========+ | size | Any | size | size | +----------+----------+----------+----------+----------+ | | None | ValueError | | +----------+----------+----------+----------+ | None | rows | None | rows | rows | | +----------+----------+----------+----------+ | | None | cols | cols | cols | + +----------+----------+----------+----------+ | | rows | cols | rows | cols | +----------+----------+----------+----------+----------+ References ========== .. [1] https://en.wikipedia.org/wiki/Jordan_matrix """ if 'rows' in kwargs or 'cols' in kwargs: SymPyDeprecationWarning( feature="Keyword arguments 'rows' or 'cols'", issue=16102, useinstead="a more generic banded matrix constructor", deprecated_since_version="1.4" ).warn() klass = kwargs.pop('cls', kls) band = kwargs.pop('band', 'upper') rows = kwargs.pop('rows', None) cols = kwargs.pop('cols', None) eigenval = kwargs.get('eigenval', None) if eigenvalue is None and eigenval is None: raise ValueError("Must supply an eigenvalue") elif eigenvalue != eigenval and None not in (eigenval, eigenvalue): raise ValueError( "Inconsistent values are given: 'eigenval'={}, " "'eigenvalue'={}".format(eigenval, eigenvalue)) else: if eigenval is not None: eigenvalue = eigenval if (size, rows, cols) == (None, None, None): raise ValueError("Must supply a matrix size") if size is not None: rows, cols = size, size elif rows is not None and cols is None: cols = rows elif cols is not None and rows is None: rows = cols rows, cols = as_int(rows), as_int(cols) return klass._eval_jordan_block(rows, cols, eigenvalue, band) @classmethod def ones(kls, rows, cols=None, **kwargs): """Returns a matrix of ones. Args ==== rows : rows of the matrix cols : cols of the matrix (if None, cols=rows) kwargs ====== cls : class of the returned matrix """ if cols is None: cols = rows klass = kwargs.get('cls', kls) rows, cols = as_int(rows), as_int(cols) return klass._eval_ones(rows, cols) @classmethod def zeros(kls, rows, cols=None, **kwargs): """Returns a matrix of zeros. Args ==== rows : rows of the matrix cols : cols of the matrix (if None, cols=rows) kwargs ====== cls : class of the returned matrix """ if cols is None: cols = rows klass = kwargs.get('cls', kls) rows, cols = as_int(rows), as_int(cols) return klass._eval_zeros(rows, cols) class MatrixProperties(MatrixRequired): """Provides basic properties of a matrix.""" def _eval_atoms(self, *types): result = set() for i in self: result.update(i.atoms(*types)) return result def _eval_free_symbols(self): return set().union(*(i.free_symbols for i in self)) def _eval_has(self, *patterns): return any(a.has(*patterns) for a in self) def _eval_is_anti_symmetric(self, simpfunc): if not all(simpfunc(self[i, j] + self[j, i]).is_zero for i in range(self.rows) for j in range(self.cols)): return False return True def _eval_is_diagonal(self): for i in range(self.rows): for j in range(self.cols): if i != j and self[i, j]: return False return True # _eval_is_hermitian is called by some general sympy # routines and has a different *args signature. Make # sure the names don't clash by adding `_matrix_` in name. def _eval_is_matrix_hermitian(self, simpfunc): mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i].conjugate())) return mat.is_zero def _eval_is_Identity(self): def dirac(i, j): if i == j: return 1 return 0 return all(self[i, j] == dirac(i, j) for i in range(self.rows) for j in range(self.cols)) def _eval_is_lower_hessenberg(self): return all(self[i, j].is_zero for i in range(self.rows) for j in range(i + 2, self.cols)) def _eval_is_lower(self): return all(self[i, j].is_zero for i in range(self.rows) for j in range(i + 1, self.cols)) def _eval_is_symbolic(self): return self.has(Symbol) def _eval_is_symmetric(self, simpfunc): mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i])) return mat.is_zero def _eval_is_zero(self): if any(i.is_zero == False for i in self): return False if any(i.is_zero is None for i in self): return None return True def _eval_is_upper_hessenberg(self): return all(self[i, j].is_zero for i in range(2, self.rows) for j in range(min(self.cols, (i - 1)))) def _eval_values(self): return [i for i in self if not i.is_zero] def atoms(self, *types): """Returns the atoms that form the current object. Examples ======== >>> from sympy.abc import x, y >>> from sympy.matrices import Matrix >>> Matrix([[x]]) Matrix([[x]]) >>> _.atoms() {x} """ types = tuple(t if isinstance(t, type) else type(t) for t in types) if not types: types = (Atom,) return self._eval_atoms(*types) @property def free_symbols(self): """Returns the free symbols within the matrix. Examples ======== >>> from sympy.abc import x >>> from sympy.matrices import Matrix >>> Matrix([[x], [1]]).free_symbols {x} """ return self._eval_free_symbols() def has(self, *patterns): """Test whether any subexpression matches any of the patterns. Examples ======== >>> from sympy import Matrix, SparseMatrix, Float >>> from sympy.abc import x, y >>> A = Matrix(((1, x), (0.2, 3))) >>> B = SparseMatrix(((1, x), (0.2, 3))) >>> A.has(x) True >>> A.has(y) False >>> A.has(Float) True >>> B.has(x) True >>> B.has(y) False >>> B.has(Float) True """ return self._eval_has(*patterns) def is_anti_symmetric(self, simplify=True): """Check if matrix M is an antisymmetric matrix, that is, M is a square matrix with all M[i, j] == -M[j, i]. When ``simplify=True`` (default), the sum M[i, j] + M[j, i] is simplified before testing to see if it is zero. By default, the SymPy simplify function is used. To use a custom function set simplify to a function that accepts a single argument which returns a simplified expression. To skip simplification, set simplify to False but note that although this will be faster, it may induce false negatives. Examples ======== >>> from sympy import Matrix, symbols >>> m = Matrix(2, 2, [0, 1, -1, 0]) >>> m Matrix([ [ 0, 1], [-1, 0]]) >>> m.is_anti_symmetric() True >>> x, y = symbols('x y') >>> m = Matrix(2, 3, [0, 0, x, -y, 0, 0]) >>> m Matrix([ [ 0, 0, x], [-y, 0, 0]]) >>> m.is_anti_symmetric() False >>> from sympy.abc import x, y >>> m = Matrix(3, 3, [0, x**2 + 2*x + 1, y, ... -(x + 1)**2 , 0, x*y, ... -y, -x*y, 0]) Simplification of matrix elements is done by default so even though two elements which should be equal and opposite wouldn't pass an equality test, the matrix is still reported as anti-symmetric: >>> m[0, 1] == -m[1, 0] False >>> m.is_anti_symmetric() True If 'simplify=False' is used for the case when a Matrix is already simplified, this will speed things up. Here, we see that without simplification the matrix does not appear anti-symmetric: >>> m.is_anti_symmetric(simplify=False) False But if the matrix were already expanded, then it would appear anti-symmetric and simplification in the is_anti_symmetric routine is not needed: >>> m = m.expand() >>> m.is_anti_symmetric(simplify=False) True """ # accept custom simplification simpfunc = simplify if not isfunction(simplify): simpfunc = _simplify if simplify else lambda x: x if not self.is_square: return False return self._eval_is_anti_symmetric(simpfunc) def is_diagonal(self): """Check if matrix is diagonal, that is matrix in which the entries outside the main diagonal are all zero. Examples ======== >>> from sympy import Matrix, diag >>> m = Matrix(2, 2, [1, 0, 0, 2]) >>> m Matrix([ [1, 0], [0, 2]]) >>> m.is_diagonal() True >>> m = Matrix(2, 2, [1, 1, 0, 2]) >>> m Matrix([ [1, 1], [0, 2]]) >>> m.is_diagonal() False >>> m = diag(1, 2, 3) >>> m Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> m.is_diagonal() True See Also ======== is_lower is_upper sympy.matrices.matrices.MatrixEigen.is_diagonalizable diagonalize """ return self._eval_is_diagonal() @property def is_hermitian(self, simplify=True): """Checks if the matrix is Hermitian. In a Hermitian matrix element i,j is the complex conjugate of element j,i. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy import I >>> from sympy.abc import x >>> a = Matrix([[1, I], [-I, 1]]) >>> a Matrix([ [ 1, I], [-I, 1]]) >>> a.is_hermitian True >>> a[0, 0] = 2*I >>> a.is_hermitian False >>> a[0, 0] = x >>> a.is_hermitian >>> a[0, 1] = a[1, 0]*I >>> a.is_hermitian False """ if not self.is_square: return False simpfunc = simplify if not isfunction(simplify): simpfunc = _simplify if simplify else lambda x: x return self._eval_is_matrix_hermitian(simpfunc) @property def is_Identity(self): if not self.is_square: return False return self._eval_is_Identity() @property def is_lower_hessenberg(self): r"""Checks if the matrix is in the lower-Hessenberg form. The lower hessenberg matrix has zero entries above the first superdiagonal. Examples ======== >>> from sympy.matrices import Matrix >>> a = Matrix([[1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]]) >>> a Matrix([ [1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]]) >>> a.is_lower_hessenberg True See Also ======== is_upper_hessenberg is_lower """ return self._eval_is_lower_hessenberg() @property def is_lower(self): """Check if matrix is a lower triangular matrix. True can be returned even if the matrix is not square. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 2, [1, 0, 0, 1]) >>> m Matrix([ [1, 0], [0, 1]]) >>> m.is_lower True >>> m = Matrix(4, 3, [0, 0, 0, 2, 0, 0, 1, 4 , 0, 6, 6, 5]) >>> m Matrix([ [0, 0, 0], [2, 0, 0], [1, 4, 0], [6, 6, 5]]) >>> m.is_lower True >>> from sympy.abc import x, y >>> m = Matrix(2, 2, [x**2 + y, y**2 + x, 0, x + y]) >>> m Matrix([ [x**2 + y, x + y**2], [ 0, x + y]]) >>> m.is_lower False See Also ======== is_upper is_diagonal is_lower_hessenberg """ return self._eval_is_lower() @property def is_square(self): """Checks if a matrix is square. A matrix is square if the number of rows equals the number of columns. The empty matrix is square by definition, since the number of rows and the number of columns are both zero. Examples ======== >>> from sympy import Matrix >>> a = Matrix([[1, 2, 3], [4, 5, 6]]) >>> b = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> c = Matrix([]) >>> a.is_square False >>> b.is_square True >>> c.is_square True """ return self.rows == self.cols def is_symbolic(self): """Checks if any elements contain Symbols. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.is_symbolic() True """ return self._eval_is_symbolic() def is_symmetric(self, simplify=True): """Check if matrix is symmetric matrix, that is square matrix and is equal to its transpose. By default, simplifications occur before testing symmetry. They can be skipped using 'simplify=False'; while speeding things a bit, this may however induce false negatives. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 2, [0, 1, 1, 2]) >>> m Matrix([ [0, 1], [1, 2]]) >>> m.is_symmetric() True >>> m = Matrix(2, 2, [0, 1, 2, 0]) >>> m Matrix([ [0, 1], [2, 0]]) >>> m.is_symmetric() False >>> m = Matrix(2, 3, [0, 0, 0, 0, 0, 0]) >>> m Matrix([ [0, 0, 0], [0, 0, 0]]) >>> m.is_symmetric() False >>> from sympy.abc import x, y >>> m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2 , 2, 0, y, 0, 3]) >>> m Matrix([ [ 1, x**2 + 2*x + 1, y], [(x + 1)**2, 2, 0], [ y, 0, 3]]) >>> m.is_symmetric() True If the matrix is already simplified, you may speed-up is_symmetric() test by using 'simplify=False'. >>> bool(m.is_symmetric(simplify=False)) False >>> m1 = m.expand() >>> m1.is_symmetric(simplify=False) True """ simpfunc = simplify if not isfunction(simplify): simpfunc = _simplify if simplify else lambda x: x if not self.is_square: return False return self._eval_is_symmetric(simpfunc) @property def is_upper_hessenberg(self): """Checks if the matrix is the upper-Hessenberg form. The upper hessenberg matrix has zero entries below the first subdiagonal. Examples ======== >>> from sympy.matrices import Matrix >>> a = Matrix([[1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]]) >>> a Matrix([ [1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]]) >>> a.is_upper_hessenberg True See Also ======== is_lower_hessenberg is_upper """ return self._eval_is_upper_hessenberg() @property def is_upper(self): """Check if matrix is an upper triangular matrix. True can be returned even if the matrix is not square. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 2, [1, 0, 0, 1]) >>> m Matrix([ [1, 0], [0, 1]]) >>> m.is_upper True >>> m = Matrix(4, 3, [5, 1, 9, 0, 4 , 6, 0, 0, 5, 0, 0, 0]) >>> m Matrix([ [5, 1, 9], [0, 4, 6], [0, 0, 5], [0, 0, 0]]) >>> m.is_upper True >>> m = Matrix(2, 3, [4, 2, 5, 6, 1, 1]) >>> m Matrix([ [4, 2, 5], [6, 1, 1]]) >>> m.is_upper False See Also ======== is_lower is_diagonal is_upper_hessenberg """ return all(self[i, j].is_zero for i in range(1, self.rows) for j in range(min(i, self.cols))) @property def is_zero(self): """Checks if a matrix is a zero matrix. A matrix is zero if every element is zero. A matrix need not be square to be considered zero. The empty matrix is zero by the principle of vacuous truth. For a matrix that may or may not be zero (e.g. contains a symbol), this will be None Examples ======== >>> from sympy import Matrix, zeros >>> from sympy.abc import x >>> a = Matrix([[0, 0], [0, 0]]) >>> b = zeros(3, 4) >>> c = Matrix([[0, 1], [0, 0]]) >>> d = Matrix([]) >>> e = Matrix([[x, 0], [0, 0]]) >>> a.is_zero True >>> b.is_zero True >>> c.is_zero False >>> d.is_zero True >>> e.is_zero """ return self._eval_is_zero() def values(self): """Return non-zero values of self.""" return self._eval_values() class MatrixOperations(MatrixRequired): """Provides basic matrix shape and elementwise operations. Should not be instantiated directly.""" def _eval_adjoint(self): return self.transpose().conjugate() def _eval_applyfunc(self, f): out = self._new(self.rows, self.cols, [f(x) for x in self]) return out def _eval_as_real_imag(self): from sympy.functions.elementary.complexes import re, im return (self.applyfunc(re), self.applyfunc(im)) def _eval_conjugate(self): return self.applyfunc(lambda x: x.conjugate()) def _eval_permute_cols(self, perm): # apply the permutation to a list mapping = list(perm) def entry(i, j): return self[i, mapping[j]] return self._new(self.rows, self.cols, entry) def _eval_permute_rows(self, perm): # apply the permutation to a list mapping = list(perm) def entry(i, j): return self[mapping[i], j] return self._new(self.rows, self.cols, entry) def _eval_trace(self): return sum(self[i, i] for i in range(self.rows)) def _eval_transpose(self): return self._new(self.cols, self.rows, lambda i, j: self[j, i]) def adjoint(self): """Conjugate transpose or Hermitian conjugation.""" return self._eval_adjoint() def applyfunc(self, f): """Apply a function to each element of the matrix. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 2, lambda i, j: i*2+j) >>> m Matrix([ [0, 1], [2, 3]]) >>> m.applyfunc(lambda i: 2*i) Matrix([ [0, 2], [4, 6]]) """ if not callable(f): raise TypeError("`f` must be callable.") return self._eval_applyfunc(f) def as_real_imag(self): """Returns a tuple containing the (real, imaginary) part of matrix.""" return self._eval_as_real_imag() def conjugate(self): """Return the by-element conjugation. Examples ======== >>> from sympy.matrices import SparseMatrix >>> from sympy import I >>> a = SparseMatrix(((1, 2 + I), (3, 4), (I, -I))) >>> a Matrix([ [1, 2 + I], [3, 4], [I, -I]]) >>> a.C Matrix([ [ 1, 2 - I], [ 3, 4], [-I, I]]) See Also ======== transpose: Matrix transposition H: Hermite conjugation sympy.matrices.matrices.MatrixBase.D: Dirac conjugation """ return self._eval_conjugate() def doit(self, **kwargs): return self.applyfunc(lambda x: x.doit()) def evalf(self, prec=None, **options): """Apply evalf() to each element of self.""" return self.applyfunc(lambda i: i.evalf(prec, **options)) def expand(self, deep=True, modulus=None, power_base=True, power_exp=True, mul=True, log=True, multinomial=True, basic=True, **hints): """Apply core.function.expand to each entry of the matrix. Examples ======== >>> from sympy.abc import x >>> from sympy.matrices import Matrix >>> Matrix(1, 1, [x*(x+1)]) Matrix([[x*(x + 1)]]) >>> _.expand() Matrix([[x**2 + x]]) """ return self.applyfunc(lambda x: x.expand( deep, modulus, power_base, power_exp, mul, log, multinomial, basic, **hints)) @property def H(self): """Return Hermite conjugate. Examples ======== >>> from sympy import Matrix, I >>> m = Matrix((0, 1 + I, 2, 3)) >>> m Matrix([ [ 0], [1 + I], [ 2], [ 3]]) >>> m.H Matrix([[0, 1 - I, 2, 3]]) See Also ======== conjugate: By-element conjugation sympy.matrices.matrices.MatrixBase.D: Dirac conjugation """ return self.T.C def permute(self, perm, orientation='rows', direction='forward'): """Permute the rows or columns of a matrix by the given list of swaps. Parameters ========== perm : a permutation. This may be a list swaps (e.g., `[[1, 2], [0, 3]]`), or any valid input to the `Permutation` constructor, including a `Permutation()` itself. If `perm` is given explicitly as a list of indices or a `Permutation`, `direction` has no effect. orientation : ('rows' or 'cols') whether to permute the rows or the columns direction : ('forward', 'backward') whether to apply the permutations from the start of the list first, or from the back of the list first Examples ======== >>> from sympy.matrices import eye >>> M = eye(3) >>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='forward') Matrix([ [0, 0, 1], [1, 0, 0], [0, 1, 0]]) >>> from sympy.matrices import eye >>> M = eye(3) >>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='backward') Matrix([ [0, 1, 0], [0, 0, 1], [1, 0, 0]]) """ # allow british variants and `columns` if direction == 'forwards': direction = 'forward' if direction == 'backwards': direction = 'backward' if orientation == 'columns': orientation = 'cols' if direction not in ('forward', 'backward'): raise TypeError("direction='{}' is an invalid kwarg. " "Try 'forward' or 'backward'".format(direction)) if orientation not in ('rows', 'cols'): raise TypeError("orientation='{}' is an invalid kwarg. " "Try 'rows' or 'cols'".format(orientation)) # ensure all swaps are in range max_index = self.rows if orientation == 'rows' else self.cols if not all(0 <= t <= max_index for t in flatten(list(perm))): raise IndexError("`swap` indices out of range.") # see if we are a list of pairs try: assert len(perm[0]) == 2 # we are a list of swaps, so `direction` matters if direction == 'backward': perm = reversed(perm) # since Permutation doesn't let us have non-disjoint cycles, # we'll construct the explicit mapping ourselves XXX Bug #12479 mapping = list(range(max_index)) for (i, j) in perm: mapping[i], mapping[j] = mapping[j], mapping[i] perm = mapping except (TypeError, AssertionError, IndexError): pass from sympy.combinatorics import Permutation perm = Permutation(perm, size=max_index) if orientation == 'rows': return self._eval_permute_rows(perm) if orientation == 'cols': return self._eval_permute_cols(perm) def permute_cols(self, swaps, direction='forward'): """Alias for `self.permute(swaps, orientation='cols', direction=direction)` See Also ======== permute """ return self.permute(swaps, orientation='cols', direction=direction) def permute_rows(self, swaps, direction='forward'): """Alias for `self.permute(swaps, orientation='rows', direction=direction)` See Also ======== permute """ return self.permute(swaps, orientation='rows', direction=direction) def refine(self, assumptions=True): """Apply refine to each element of the matrix. Examples ======== >>> from sympy import Symbol, Matrix, Abs, sqrt, Q >>> x = Symbol('x') >>> Matrix([[Abs(x)**2, sqrt(x**2)],[sqrt(x**2), Abs(x)**2]]) Matrix([ [ Abs(x)**2, sqrt(x**2)], [sqrt(x**2), Abs(x)**2]]) >>> _.refine(Q.real(x)) Matrix([ [ x**2, Abs(x)], [Abs(x), x**2]]) """ return self.applyfunc(lambda x: refine(x, assumptions)) def replace(self, F, G, map=False): """Replaces Function F in Matrix entries with Function G. Examples ======== >>> from sympy import symbols, Function, Matrix >>> F, G = symbols('F, G', cls=Function) >>> M = Matrix(2, 2, lambda i, j: F(i+j)) ; M Matrix([ [F(0), F(1)], [F(1), F(2)]]) >>> N = M.replace(F,G) >>> N Matrix([ [G(0), G(1)], [G(1), G(2)]]) """ return self.applyfunc(lambda x: x.replace(F, G, map)) def simplify(self, **kwargs): """Apply simplify to each element of the matrix. Examples ======== >>> from sympy.abc import x, y >>> from sympy import sin, cos >>> from sympy.matrices import SparseMatrix >>> SparseMatrix(1, 1, [x*sin(y)**2 + x*cos(y)**2]) Matrix([[x*sin(y)**2 + x*cos(y)**2]]) >>> _.simplify() Matrix([[x]]) """ return self.applyfunc(lambda x: x.simplify(**kwargs)) def subs(self, *args, **kwargs): # should mirror core.basic.subs """Return a new matrix with subs applied to each entry. Examples ======== >>> from sympy.abc import x, y >>> from sympy.matrices import SparseMatrix, Matrix >>> SparseMatrix(1, 1, [x]) Matrix([[x]]) >>> _.subs(x, y) Matrix([[y]]) >>> Matrix(_).subs(y, x) Matrix([[x]]) """ return self.applyfunc(lambda x: x.subs(*args, **kwargs)) def trace(self): """ Returns the trace of a square matrix i.e. the sum of the diagonal elements. Examples ======== >>> from sympy import Matrix >>> A = Matrix(2, 2, [1, 2, 3, 4]) >>> A.trace() 5 """ if self.rows != self.cols: raise NonSquareMatrixError() return self._eval_trace() def transpose(self): """ Returns the transpose of the matrix. Examples ======== >>> from sympy import Matrix >>> A = Matrix(2, 2, [1, 2, 3, 4]) >>> A.transpose() Matrix([ [1, 3], [2, 4]]) >>> from sympy import Matrix, I >>> m=Matrix(((1, 2+I), (3, 4))) >>> m Matrix([ [1, 2 + I], [3, 4]]) >>> m.transpose() Matrix([ [ 1, 3], [2 + I, 4]]) >>> m.T == m.transpose() True See Also ======== conjugate: By-element conjugation """ return self._eval_transpose() T = property(transpose, None, None, "Matrix transposition.") C = property(conjugate, None, None, "By-element conjugation.") n = evalf def xreplace(self, rule): # should mirror core.basic.xreplace """Return a new matrix with xreplace applied to each entry. Examples ======== >>> from sympy.abc import x, y >>> from sympy.matrices import SparseMatrix, Matrix >>> SparseMatrix(1, 1, [x]) Matrix([[x]]) >>> _.xreplace({x: y}) Matrix([[y]]) >>> Matrix(_).xreplace({y: x}) Matrix([[x]]) """ return self.applyfunc(lambda x: x.xreplace(rule)) _eval_simplify = simplify def _eval_trigsimp(self, **opts): from sympy.simplify import trigsimp return self.applyfunc(lambda x: trigsimp(x, **opts)) class MatrixArithmetic(MatrixRequired): """Provides basic matrix arithmetic operations. Should not be instantiated directly.""" _op_priority = 10.01 def _eval_Abs(self): return self._new(self.rows, self.cols, lambda i, j: Abs(self[i, j])) def _eval_add(self, other): return self._new(self.rows, self.cols, lambda i, j: self[i, j] + other[i, j]) def _eval_matrix_mul(self, other): def entry(i, j): try: return sum(self[i,k]*other[k,j] for k in range(self.cols)) except TypeError: # Block matrices don't work with `sum` or `Add` (ISSUE #11599) # They don't work with `sum` because `sum` tries to add `0` # initially, and for a matrix, that is a mix of a scalar and # a matrix, which raises a TypeError. Fall back to a # block-matrix-safe way to multiply if the `sum` fails. ret = self[i, 0]*other[0, j] for k in range(1, self.cols): ret += self[i, k]*other[k, j] return ret return self._new(self.rows, other.cols, entry) def _eval_matrix_mul_elementwise(self, other): return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other[i,j]) def _eval_matrix_rmul(self, other): def entry(i, j): return sum(other[i,k]*self[k,j] for k in range(other.cols)) return self._new(other.rows, self.cols, entry) def _eval_pow_by_recursion(self, num): if num == 1: return self if num % 2 == 1: return self * self._eval_pow_by_recursion(num - 1) ret = self._eval_pow_by_recursion(num // 2) return ret * ret def _eval_scalar_mul(self, other): return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other) def _eval_scalar_rmul(self, other): return self._new(self.rows, self.cols, lambda i, j: other*self[i,j]) def _eval_Mod(self, other): from sympy import Mod return self._new(self.rows, self.cols, lambda i, j: Mod(self[i, j], other)) # python arithmetic functions def __abs__(self): """Returns a new matrix with entry-wise absolute values.""" return self._eval_Abs() @call_highest_priority('__radd__') def __add__(self, other): """Return self + other, raising ShapeError if shapes don't match.""" other = _matrixify(other) # matrix-like objects can have shapes. This is # our first sanity check. if hasattr(other, 'shape'): if self.shape != other.shape: raise ShapeError("Matrix size mismatch: %s + %s" % ( self.shape, other.shape)) # honest sympy matrices defer to their class's routine if getattr(other, 'is_Matrix', False): # call the highest-priority class's _eval_add a, b = self, other if a.__class__ != classof(a, b): b, a = a, b return a._eval_add(b) # Matrix-like objects can be passed to CommonMatrix routines directly. if getattr(other, 'is_MatrixLike', False): return MatrixArithmetic._eval_add(self, other) raise TypeError('cannot add %s and %s' % (type(self), type(other))) @call_highest_priority('__rdiv__') def __div__(self, other): return self * (self.one / other) @call_highest_priority('__rmatmul__') def __matmul__(self, other): other = _matrixify(other) if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False): return NotImplemented return self.__mul__(other) def __mod__(self, other): return self.applyfunc(lambda x: x % other) @call_highest_priority('__rmul__') def __mul__(self, other): """Return self*other where other is either a scalar or a matrix of compatible dimensions. Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix([[1, 2, 3], [4, 5, 6]]) >>> 2*A == A*2 == Matrix([[2, 4, 6], [8, 10, 12]]) True >>> B = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> A*B Matrix([ [30, 36, 42], [66, 81, 96]]) >>> B*A Traceback (most recent call last): ... ShapeError: Matrices size mismatch. >>> See Also ======== matrix_multiply_elementwise """ other = _matrixify(other) # matrix-like objects can have shapes. This is # our first sanity check. if hasattr(other, 'shape') and len(other.shape) == 2: if self.shape[1] != other.shape[0]: raise ShapeError("Matrix size mismatch: %s * %s." % ( self.shape, other.shape)) # honest sympy matrices defer to their class's routine if getattr(other, 'is_Matrix', False): return self._eval_matrix_mul(other) # Matrix-like objects can be passed to CommonMatrix routines directly. if getattr(other, 'is_MatrixLike', False): return MatrixArithmetic._eval_matrix_mul(self, other) # if 'other' is not iterable then scalar multiplication. if not isinstance(other, Iterable): try: return self._eval_scalar_mul(other) except TypeError: pass return NotImplemented def __neg__(self): return self._eval_scalar_mul(-1) @call_highest_priority('__rpow__') def __pow__(self, exp): if self.rows != self.cols: raise NonSquareMatrixError() a = self jordan_pow = getattr(a, '_matrix_pow_by_jordan_blocks', None) exp = sympify(exp) if exp.is_zero: return a._new(a.rows, a.cols, lambda i, j: int(i == j)) if exp == 1: return a diagonal = getattr(a, 'is_diagonal', None) if diagonal is not None and diagonal(): return a._new(a.rows, a.cols, lambda i, j: a[i,j]**exp if i == j else 0) if exp.is_Number and exp % 1 == 0: if a.rows == 1: return a._new([[a[0]**exp]]) if exp < 0: exp = -exp a = a.inv() # When certain conditions are met, # Jordan block algorithm is faster than # computation by recursion. elif a.rows == 2 and exp > 100000 and jordan_pow is not None: try: return jordan_pow(exp) except MatrixError: pass return a._eval_pow_by_recursion(exp) if jordan_pow: try: return jordan_pow(exp) except NonInvertibleMatrixError: # Raised by jordan_pow on zero determinant matrix unless exp is # definitely known to be a non-negative integer. # Here we raise if n is definitely not a non-negative integer # but otherwise we can leave this as an unevaluated MatPow. if exp.is_integer is False or exp.is_nonnegative is False: raise from sympy.matrices.expressions import MatPow return MatPow(a, exp) @call_highest_priority('__add__') def __radd__(self, other): return self + other @call_highest_priority('__matmul__') def __rmatmul__(self, other): other = _matrixify(other) if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False): return NotImplemented return self.__rmul__(other) @call_highest_priority('__mul__') def __rmul__(self, other): other = _matrixify(other) # matrix-like objects can have shapes. This is # our first sanity check. if hasattr(other, 'shape') and len(other.shape) == 2: if self.shape[0] != other.shape[1]: raise ShapeError("Matrix size mismatch.") # honest sympy matrices defer to their class's routine if getattr(other, 'is_Matrix', False): return other._new(other.as_mutable() * self) # Matrix-like objects can be passed to CommonMatrix routines directly. if getattr(other, 'is_MatrixLike', False): return MatrixArithmetic._eval_matrix_rmul(self, other) # if 'other' is not iterable then scalar multiplication. if not isinstance(other, Iterable): try: return self._eval_scalar_rmul(other) except TypeError: pass return NotImplemented @call_highest_priority('__sub__') def __rsub__(self, a): return (-self) + a @call_highest_priority('__rsub__') def __sub__(self, a): return self + (-a) @call_highest_priority('__rtruediv__') def __truediv__(self, other): return self.__div__(other) def multiply_elementwise(self, other): """Return the Hadamard product (elementwise product) of A and B Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix([[0, 1, 2], [3, 4, 5]]) >>> B = Matrix([[1, 10, 100], [100, 10, 1]]) >>> A.multiply_elementwise(B) Matrix([ [ 0, 10, 200], [300, 40, 5]]) See Also ======== sympy.matrices.matrices.MatrixBase.cross sympy.matrices.matrices.MatrixBase.dot multiply """ if self.shape != other.shape: raise ShapeError("Matrix shapes must agree {} != {}".format(self.shape, other.shape)) return self._eval_matrix_mul_elementwise(other) class MatrixCommon(MatrixArithmetic, MatrixOperations, MatrixProperties, MatrixSpecial, MatrixShaping): """All common matrix operations including basic arithmetic, shaping, and special matrices like `zeros`, and `eye`.""" _diff_wrt = True class _MinimalMatrix(object): """Class providing the minimum functionality for a matrix-like object and implementing every method required for a `MatrixRequired`. This class does not have everything needed to become a full-fledged SymPy object, but it will satisfy the requirements of anything inheriting from `MatrixRequired`. If you wish to make a specialized matrix type, make sure to implement these methods and properties with the exception of `__init__` and `__repr__` which are included for convenience.""" is_MatrixLike = True _sympify = staticmethod(sympify) _class_priority = 3 zero = S.Zero one = S.One is_Matrix = True is_MatrixExpr = False @classmethod def _new(cls, *args, **kwargs): return cls(*args, **kwargs) def __init__(self, rows, cols=None, mat=None): if isfunction(mat): # if we passed in a function, use that to populate the indices mat = list(mat(i, j) for i in range(rows) for j in range(cols)) if cols is None and mat is None: mat = rows rows, cols = getattr(mat, 'shape', (rows, cols)) try: # if we passed in a list of lists, flatten it and set the size if cols is None and mat is None: mat = rows cols = len(mat[0]) rows = len(mat) mat = [x for l in mat for x in l] except (IndexError, TypeError): pass self.mat = tuple(self._sympify(x) for x in mat) self.rows, self.cols = rows, cols if self.rows is None or self.cols is None: raise NotImplementedError("Cannot initialize matrix with given parameters") def __getitem__(self, key): def _normalize_slices(row_slice, col_slice): """Ensure that row_slice and col_slice don't have `None` in their arguments. Any integers are converted to slices of length 1""" if not isinstance(row_slice, slice): row_slice = slice(row_slice, row_slice + 1, None) row_slice = slice(*row_slice.indices(self.rows)) if not isinstance(col_slice, slice): col_slice = slice(col_slice, col_slice + 1, None) col_slice = slice(*col_slice.indices(self.cols)) return (row_slice, col_slice) def _coord_to_index(i, j): """Return the index in _mat corresponding to the (i,j) position in the matrix. """ return i * self.cols + j if isinstance(key, tuple): i, j = key if isinstance(i, slice) or isinstance(j, slice): # if the coordinates are not slices, make them so # and expand the slices so they don't contain `None` i, j = _normalize_slices(i, j) rowsList, colsList = list(range(self.rows))[i], \ list(range(self.cols))[j] indices = (i * self.cols + j for i in rowsList for j in colsList) return self._new(len(rowsList), len(colsList), list(self.mat[i] for i in indices)) # if the key is a tuple of ints, change # it to an array index key = _coord_to_index(i, j) return self.mat[key] def __eq__(self, other): try: classof(self, other) except TypeError: return False return ( self.shape == other.shape and list(self) == list(other)) def __len__(self): return self.rows*self.cols def __repr__(self): return "_MinimalMatrix({}, {}, {})".format(self.rows, self.cols, self.mat) @property def shape(self): return (self.rows, self.cols) class _MatrixWrapper(object): """Wrapper class providing the minimum functionality for a matrix-like object: .rows, .cols, .shape, indexability, and iterability. CommonMatrix math operations should work on matrix-like objects. For example, wrapping a numpy matrix in a MatrixWrapper allows it to be passed to CommonMatrix. """ is_MatrixLike = True def __init__(self, mat, shape=None): self.mat = mat self.rows, self.cols = mat.shape if shape is None else shape def __getattr__(self, attr): """Most attribute access is passed straight through to the stored matrix""" return getattr(self.mat, attr) def __getitem__(self, key): return self.mat.__getitem__(key) def _matrixify(mat): """If `mat` is a Matrix or is matrix-like, return a Matrix or MatrixWrapper object. Otherwise `mat` is passed through without modification.""" if getattr(mat, 'is_Matrix', False): return mat if hasattr(mat, 'shape'): if len(mat.shape) == 2: return _MatrixWrapper(mat) return mat def a2idx(j, n=None): """Return integer after making positive and validating against n.""" if type(j) is not int: jindex = getattr(j, '__index__', None) if jindex is not None: j = jindex() else: raise IndexError("Invalid index a[%r]" % (j,)) if n is not None: if j < 0: j += n if not (j >= 0 and j < n): raise IndexError("Index out of range: a[%s]" % (j,)) return int(j) def classof(A, B): """ Get the type of the result when combining matrices of different types. Currently the strategy is that immutability is contagious. Examples ======== >>> from sympy import Matrix, ImmutableMatrix >>> from sympy.matrices.common import classof >>> M = Matrix([[1, 2], [3, 4]]) # a Mutable Matrix >>> IM = ImmutableMatrix([[1, 2], [3, 4]]) >>> classof(M, IM) <class 'sympy.matrices.immutable.ImmutableDenseMatrix'> """ priority_A = getattr(A, '_class_priority', None) priority_B = getattr(B, '_class_priority', None) if None not in (priority_A, priority_B): if A._class_priority > B._class_priority: return A.__class__ else: return B.__class__ try: import numpy except ImportError: pass else: if isinstance(A, numpy.ndarray): return B.__class__ if isinstance(B, numpy.ndarray): return A.__class__ raise TypeError("Incompatible classes %s, %s" % (A.__class__, B.__class__))
818b590ad0f819c33d93643af6bec71a9c63f9937df2d16a0ed7182b12618fd7
from __future__ import division, print_function import random from sympy.core import SympifyError from sympy.core.basic import Basic from sympy.core.compatibility import is_sequence, range, reduce from sympy.core.expr import Expr from sympy.core.function import expand_mul from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import cos, sin from sympy.matrices.common import \ a2idx, classof, ShapeError, NonPositiveDefiniteMatrixError from sympy.matrices.matrices import MatrixBase from sympy.simplify import simplify as _simplify from sympy.utilities.decorator import doctest_depends_on from sympy.utilities.misc import filldedent def _iszero(x): """Returns True if x is zero.""" return x.is_zero def _compare_sequence(a, b): """Compares the elements of a list/tuple `a` and a list/tuple `b`. `_compare_sequence((1,2), [1, 2])` is True, whereas `(1,2) == [1, 2]` is False""" if type(a) is type(b): # if they are the same type, compare directly return a == b # there is no overhead for calling `tuple` on a # tuple return tuple(a) == tuple(b) class DenseMatrix(MatrixBase): is_MatrixExpr = False _op_priority = 10.01 _class_priority = 4 def __eq__(self, other): other = sympify(other) self_shape = getattr(self, 'shape', None) other_shape = getattr(other, 'shape', None) if None in (self_shape, other_shape): return False if self_shape != other_shape: return False if isinstance(other, Matrix): return _compare_sequence(self._mat, other._mat) elif isinstance(other, MatrixBase): return _compare_sequence(self._mat, Matrix(other)._mat) def __getitem__(self, key): """Return portion of self defined by key. If the key involves a slice then a list will be returned (if key is a single slice) or a matrix (if key was a tuple involving a slice). Examples ======== >>> from sympy import Matrix, I >>> m = Matrix([ ... [1, 2 + I], ... [3, 4 ]]) If the key is a tuple that doesn't involve a slice then that element is returned: >>> m[1, 0] 3 When a tuple key involves a slice, a matrix is returned. Here, the first column is selected (all rows, column 0): >>> m[:, 0] Matrix([ [1], [3]]) If the slice is not a tuple then it selects from the underlying list of elements that are arranged in row order and a list is returned if a slice is involved: >>> m[0] 1 >>> m[::2] [1, 3] """ if isinstance(key, tuple): i, j = key try: i, j = self.key2ij(key) return self._mat[i*self.cols + j] except (TypeError, IndexError): if (isinstance(i, Expr) and not i.is_number) or (isinstance(j, Expr) and not j.is_number): if ((j < 0) is True) or ((j >= self.shape[1]) is True) or\ ((i < 0) is True) or ((i >= self.shape[0]) is True): raise ValueError("index out of boundary") from sympy.matrices.expressions.matexpr import MatrixElement return MatrixElement(self, i, j) if isinstance(i, slice): # XXX remove list() when PY2 support is dropped i = list(range(self.rows))[i] elif is_sequence(i): pass else: i = [i] if isinstance(j, slice): # XXX remove list() when PY2 support is dropped j = list(range(self.cols))[j] elif is_sequence(j): pass else: j = [j] return self.extract(i, j) else: # row-wise decomposition of matrix if isinstance(key, slice): return self._mat[key] return self._mat[a2idx(key)] def __setitem__(self, key, value): raise NotImplementedError() def _cholesky(self, hermitian=True): """Helper function of cholesky. Without the error checks. To be used privately. Implements the Cholesky-Banachiewicz algorithm. Returns L such that L*L.H == self if hermitian flag is True, or L*L.T == self if hermitian is False. """ L = zeros(self.rows, self.rows) if hermitian: for i in range(self.rows): for j in range(i): L[i, j] = (1 / L[j, j])*expand_mul(self[i, j] - sum(L[i, k]*L[j, k].conjugate() for k in range(j))) Lii2 = expand_mul(self[i, i] - sum(L[i, k]*L[i, k].conjugate() for k in range(i))) if Lii2.is_positive is False: raise NonPositiveDefiniteMatrixError( "Matrix must be positive-definite") L[i, i] = sqrt(Lii2) else: for i in range(self.rows): for j in range(i): L[i, j] = (1 / L[j, j])*(self[i, j] - sum(L[i, k]*L[j, k] for k in range(j))) L[i, i] = sqrt(self[i, i] - sum(L[i, k]**2 for k in range(i))) return self._new(L) def _eval_add(self, other): # we assume both arguments are dense matrices since # sparse matrices have a higher priority mat = [a + b for a,b in zip(self._mat, other._mat)] return classof(self, other)._new(self.rows, self.cols, mat, copy=False) def _eval_extract(self, rowsList, colsList): mat = self._mat cols = self.cols indices = (i * cols + j for i in rowsList for j in colsList) return self._new(len(rowsList), len(colsList), list(mat[i] for i in indices), copy=False) def _eval_matrix_mul(self, other): from sympy import Add # cache attributes for faster access self_cols = self.cols other_rows, other_cols = other.rows, other.cols other_len = other_rows * other_cols new_mat_rows = self.rows new_mat_cols = other.cols # preallocate the array new_mat = [self.zero]*new_mat_rows*new_mat_cols # if we multiply an n x 0 with a 0 x m, the # expected behavior is to produce an n x m matrix of zeros if self.cols != 0 and other.rows != 0: # cache self._mat and other._mat for performance mat = self._mat other_mat = other._mat for i in range(len(new_mat)): row, col = i // new_mat_cols, i % new_mat_cols row_indices = range(self_cols*row, self_cols*(row+1)) col_indices = range(col, other_len, other_cols) vec = (mat[a]*other_mat[b] for a,b in zip(row_indices, col_indices)) try: new_mat[i] = Add(*vec) except (TypeError, SympifyError): # Block matrices don't work with `sum` or `Add` (ISSUE #11599) # They don't work with `sum` because `sum` tries to add `0` # initially, and for a matrix, that is a mix of a scalar and # a matrix, which raises a TypeError. Fall back to a # block-matrix-safe way to multiply if the `sum` fails. vec = (mat[a]*other_mat[b] for a,b in zip(row_indices, col_indices)) new_mat[i] = reduce(lambda a,b: a + b, vec) return classof(self, other)._new(new_mat_rows, new_mat_cols, new_mat, copy=False) def _eval_matrix_mul_elementwise(self, other): mat = [a*b for a,b in zip(self._mat, other._mat)] return classof(self, other)._new(self.rows, self.cols, mat, copy=False) def _eval_inverse(self, **kwargs): """Return the matrix inverse using the method indicated (default is Gauss elimination). kwargs ====== method : ('GE', 'LU', or 'ADJ') iszerofunc try_block_diag Notes ===== According to the ``method`` keyword, it calls the appropriate method: GE .... inverse_GE(); default LU .... inverse_LU() ADJ ... inverse_ADJ() According to the ``try_block_diag`` keyword, it will try to form block diagonal matrices using the method get_diag_blocks(), invert these individually, and then reconstruct the full inverse matrix. Note, the GE and LU methods may require the matrix to be simplified before it is inverted in order to properly detect zeros during pivoting. In difficult cases a custom zero detection function can be provided by setting the ``iszerosfunc`` argument to a function that should return True if its argument is zero. The ADJ routine computes the determinant and uses that to detect singular matrices in addition to testing for zeros on the diagonal. See Also ======== inverse_LU inverse_GE inverse_ADJ """ from sympy.matrices import diag method = kwargs.get('method', 'GE') iszerofunc = kwargs.get('iszerofunc', _iszero) if kwargs.get('try_block_diag', False): blocks = self.get_diag_blocks() r = [] for block in blocks: r.append(block.inv(method=method, iszerofunc=iszerofunc)) return diag(*r) M = self.as_mutable() if method == "GE": rv = M.inverse_GE(iszerofunc=iszerofunc) elif method == "LU": rv = M.inverse_LU(iszerofunc=iszerofunc) elif method == "ADJ": rv = M.inverse_ADJ(iszerofunc=iszerofunc) else: # make sure to add an invertibility check (as in inverse_LU) # if a new method is added. raise ValueError("Inversion method unrecognized") return self._new(rv) def _eval_scalar_mul(self, other): mat = [other*a for a in self._mat] return self._new(self.rows, self.cols, mat, copy=False) def _eval_scalar_rmul(self, other): mat = [a*other for a in self._mat] return self._new(self.rows, self.cols, mat, copy=False) def _eval_tolist(self): mat = list(self._mat) cols = self.cols return [mat[i*cols:(i + 1)*cols] for i in range(self.rows)] def _LDLdecomposition(self, hermitian=True): """Helper function of LDLdecomposition. Without the error checks. To be used privately. Returns L and D such that L*D*L.H == self if hermitian flag is True, or L*D*L.T == self if hermitian is False. """ # https://en.wikipedia.org/wiki/Cholesky_decomposition#LDL_decomposition_2 D = zeros(self.rows, self.rows) L = eye(self.rows) if hermitian: for i in range(self.rows): for j in range(i): L[i, j] = (1 / D[j, j])*expand_mul(self[i, j] - sum( L[i, k]*L[j, k].conjugate()*D[k, k] for k in range(j))) D[i, i] = expand_mul(self[i, i] - sum(L[i, k]*L[i, k].conjugate()*D[k, k] for k in range(i))) if D[i, i].is_positive is False: raise NonPositiveDefiniteMatrixError( "Matrix must be positive-definite") else: for i in range(self.rows): for j in range(i): L[i, j] = (1 / D[j, j])*(self[i, j] - sum( L[i, k]*L[j, k]*D[k, k] for k in range(j))) D[i, i] = self[i, i] - sum(L[i, k]**2*D[k, k] for k in range(i)) return self._new(L), self._new(D) def _lower_triangular_solve(self, rhs): """Helper function of function lower_triangular_solve. Without the error checks. To be used privately. """ X = zeros(self.rows, rhs.cols) for j in range(rhs.cols): for i in range(self.rows): if self[i, i] == 0: raise TypeError("Matrix must be non-singular.") X[i, j] = (rhs[i, j] - sum(self[i, k]*X[k, j] for k in range(i))) / self[i, i] return self._new(X) def _upper_triangular_solve(self, rhs): """Helper function of function upper_triangular_solve. Without the error checks, to be used privately. """ X = zeros(self.rows, rhs.cols) for j in range(rhs.cols): for i in reversed(range(self.rows)): if self[i, i] == 0: raise ValueError("Matrix must be non-singular.") X[i, j] = (rhs[i, j] - sum(self[i, k]*X[k, j] for k in range(i + 1, self.rows))) / self[i, i] return self._new(X) def as_immutable(self): """Returns an Immutable version of this Matrix """ from .immutable import ImmutableDenseMatrix as cls if self.rows and self.cols: return cls._new(self.tolist()) return cls._new(self.rows, self.cols, []) def as_mutable(self): """Returns a mutable version of this matrix Examples ======== >>> from sympy import ImmutableMatrix >>> X = ImmutableMatrix([[1, 2], [3, 4]]) >>> Y = X.as_mutable() >>> Y[1, 1] = 5 # Can set values in Y >>> Y Matrix([ [1, 2], [3, 5]]) """ return Matrix(self) def equals(self, other, failing_expression=False): """Applies ``equals`` to corresponding elements of the matrices, trying to prove that the elements are equivalent, returning True if they are, False if any pair is not, and None (or the first failing expression if failing_expression is True) if it cannot be decided if the expressions are equivalent or not. This is, in general, an expensive operation. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x >>> from sympy import cos >>> A = Matrix([x*(x - 1), 0]) >>> B = Matrix([x**2 - x, 0]) >>> A == B False >>> A.simplify() == B.simplify() True >>> A.equals(B) True >>> A.equals(2) False See Also ======== sympy.core.expr.Expr.equals """ self_shape = getattr(self, 'shape', None) other_shape = getattr(other, 'shape', None) if None in (self_shape, other_shape): return False if self_shape != other_shape: return False rv = True for i in range(self.rows): for j in range(self.cols): ans = self[i, j].equals(other[i, j], failing_expression) if ans is False: return False elif ans is not True and rv is True: rv = ans return rv def _force_mutable(x): """Return a matrix as a Matrix, otherwise return x.""" if getattr(x, 'is_Matrix', False): return x.as_mutable() elif isinstance(x, Basic): return x elif hasattr(x, '__array__'): a = x.__array__() if len(a.shape) == 0: return sympify(a) return Matrix(x) return x class MutableDenseMatrix(DenseMatrix, MatrixBase): def __new__(cls, *args, **kwargs): return cls._new(*args, **kwargs) @classmethod def _new(cls, *args, **kwargs): # if the `copy` flag is set to False, the input # was rows, cols, [list]. It should be used directly # without creating a copy. if kwargs.get('copy', True) is False: if len(args) != 3: raise TypeError("'copy=False' requires a matrix be initialized as rows,cols,[list]") rows, cols, flat_list = args else: rows, cols, flat_list = cls._handle_creation_inputs(*args, **kwargs) flat_list = list(flat_list) # create a shallow copy self = object.__new__(cls) self.rows = rows self.cols = cols self._mat = flat_list return self def __setitem__(self, key, value): """ Examples ======== >>> from sympy import Matrix, I, zeros, ones >>> m = Matrix(((1, 2+I), (3, 4))) >>> m Matrix([ [1, 2 + I], [3, 4]]) >>> m[1, 0] = 9 >>> m Matrix([ [1, 2 + I], [9, 4]]) >>> m[1, 0] = [[0, 1]] To replace row r you assign to position r*m where m is the number of columns: >>> M = zeros(4) >>> m = M.cols >>> M[3*m] = ones(1, m)*2; M Matrix([ [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [2, 2, 2, 2]]) And to replace column c you can assign to position c: >>> M[2] = ones(m, 1)*4; M Matrix([ [0, 0, 4, 0], [0, 0, 4, 0], [0, 0, 4, 0], [2, 2, 4, 2]]) """ rv = self._setitem(key, value) if rv is not None: i, j, value = rv self._mat[i*self.cols + j] = value def as_mutable(self): return self.copy() def col_del(self, i): """Delete the given column. Examples ======== >>> from sympy.matrices import eye >>> M = eye(3) >>> M.col_del(1) >>> M Matrix([ [1, 0], [0, 0], [0, 1]]) See Also ======== col row_del """ if i < -self.cols or i >= self.cols: raise IndexError("Index out of range: 'i=%s', valid -%s <= i < %s" % (i, self.cols, self.cols)) for j in range(self.rows - 1, -1, -1): del self._mat[i + j*self.cols] self.cols -= 1 def col_op(self, j, f): """In-place operation on col j using two-arg functor whose args are interpreted as (self[i, j], i). Examples ======== >>> from sympy.matrices import eye >>> M = eye(3) >>> M.col_op(1, lambda v, i: v + 2*M[i, 0]); M Matrix([ [1, 2, 0], [0, 1, 0], [0, 0, 1]]) See Also ======== col row_op """ self._mat[j::self.cols] = [f(*t) for t in list(zip(self._mat[j::self.cols], list(range(self.rows))))] def col_swap(self, i, j): """Swap the two given columns of the matrix in-place. Examples ======== >>> from sympy.matrices import Matrix >>> M = Matrix([[1, 0], [1, 0]]) >>> M Matrix([ [1, 0], [1, 0]]) >>> M.col_swap(0, 1) >>> M Matrix([ [0, 1], [0, 1]]) See Also ======== col row_swap """ for k in range(0, self.rows): self[k, i], self[k, j] = self[k, j], self[k, i] def copyin_list(self, key, value): """Copy in elements from a list. Parameters ========== key : slice The section of this matrix to replace. value : iterable The iterable to copy values from. Examples ======== >>> from sympy.matrices import eye >>> I = eye(3) >>> I[:2, 0] = [1, 2] # col >>> I Matrix([ [1, 0, 0], [2, 1, 0], [0, 0, 1]]) >>> I[1, :2] = [[3, 4]] >>> I Matrix([ [1, 0, 0], [3, 4, 0], [0, 0, 1]]) See Also ======== copyin_matrix """ if not is_sequence(value): raise TypeError("`value` must be an ordered iterable, not %s." % type(value)) return self.copyin_matrix(key, Matrix(value)) def copyin_matrix(self, key, value): """Copy in values from a matrix into the given bounds. Parameters ========== key : slice The section of this matrix to replace. value : Matrix The matrix to copy values from. Examples ======== >>> from sympy.matrices import Matrix, eye >>> M = Matrix([[0, 1], [2, 3], [4, 5]]) >>> I = eye(3) >>> I[:3, :2] = M >>> I Matrix([ [0, 1, 0], [2, 3, 0], [4, 5, 1]]) >>> I[0, 1] = M >>> I Matrix([ [0, 0, 1], [2, 2, 3], [4, 4, 5]]) See Also ======== copyin_list """ rlo, rhi, clo, chi = self.key2bounds(key) shape = value.shape dr, dc = rhi - rlo, chi - clo if shape != (dr, dc): raise ShapeError(filldedent("The Matrix `value` doesn't have the " "same dimensions " "as the in sub-Matrix given by `key`.")) for i in range(value.rows): for j in range(value.cols): self[i + rlo, j + clo] = value[i, j] def fill(self, value): """Fill the matrix with the scalar value. See Also ======== zeros ones """ self._mat = [value]*len(self) def row_del(self, i): """Delete the given row. Examples ======== >>> from sympy.matrices import eye >>> M = eye(3) >>> M.row_del(1) >>> M Matrix([ [1, 0, 0], [0, 0, 1]]) See Also ======== row col_del """ if i < -self.rows or i >= self.rows: raise IndexError("Index out of range: 'i = %s', valid -%s <= i" " < %s" % (i, self.rows, self.rows)) if i < 0: i += self.rows del self._mat[i*self.cols:(i+1)*self.cols] self.rows -= 1 def row_op(self, i, f): """In-place operation on row ``i`` using two-arg functor whose args are interpreted as ``(self[i, j], j)``. Examples ======== >>> from sympy.matrices import eye >>> M = eye(3) >>> M.row_op(1, lambda v, j: v + 2*M[0, j]); M Matrix([ [1, 0, 0], [2, 1, 0], [0, 0, 1]]) See Also ======== row zip_row_op col_op """ i0 = i*self.cols ri = self._mat[i0: i0 + self.cols] self._mat[i0: i0 + self.cols] = [f(x, j) for x, j in zip(ri, list(range(self.cols)))] def row_swap(self, i, j): """Swap the two given rows of the matrix in-place. Examples ======== >>> from sympy.matrices import Matrix >>> M = Matrix([[0, 1], [1, 0]]) >>> M Matrix([ [0, 1], [1, 0]]) >>> M.row_swap(0, 1) >>> M Matrix([ [1, 0], [0, 1]]) See Also ======== row col_swap """ for k in range(0, self.cols): self[i, k], self[j, k] = self[j, k], self[i, k] def simplify(self, **kwargs): """Applies simplify to the elements of a matrix in place. This is a shortcut for M.applyfunc(lambda x: simplify(x, ratio, measure)) See Also ======== sympy.simplify.simplify.simplify """ for i in range(len(self._mat)): self._mat[i] = _simplify(self._mat[i], **kwargs) def zip_row_op(self, i, k, f): """In-place operation on row ``i`` using two-arg functor whose args are interpreted as ``(self[i, j], self[k, j])``. Examples ======== >>> from sympy.matrices import eye >>> M = eye(3) >>> M.zip_row_op(1, 0, lambda v, u: v + 2*u); M Matrix([ [1, 0, 0], [2, 1, 0], [0, 0, 1]]) See Also ======== row row_op col_op """ i0 = i*self.cols k0 = k*self.cols ri = self._mat[i0: i0 + self.cols] rk = self._mat[k0: k0 + self.cols] self._mat[i0: i0 + self.cols] = [f(x, y) for x, y in zip(ri, rk)] # Utility functions MutableMatrix = Matrix = MutableDenseMatrix ########### # Numpy Utility Functions: # list2numpy, matrix2numpy, symmarray, rot_axis[123] ########### def list2numpy(l, dtype=object): # pragma: no cover """Converts python list of SymPy expressions to a NumPy array. See Also ======== matrix2numpy """ from numpy import empty a = empty(len(l), dtype) for i, s in enumerate(l): a[i] = s return a def matrix2numpy(m, dtype=object): # pragma: no cover """Converts SymPy's matrix to a NumPy array. See Also ======== list2numpy """ from numpy import empty a = empty(m.shape, dtype) for i in range(m.rows): for j in range(m.cols): a[i, j] = m[i, j] return a def rot_axis3(theta): """Returns a rotation matrix for a rotation of theta (in radians) about the 3-axis. Examples ======== >>> from sympy import pi >>> from sympy.matrices import rot_axis3 A rotation of pi/3 (60 degrees): >>> theta = pi/3 >>> rot_axis3(theta) Matrix([ [ 1/2, sqrt(3)/2, 0], [-sqrt(3)/2, 1/2, 0], [ 0, 0, 1]]) If we rotate by pi/2 (90 degrees): >>> rot_axis3(pi/2) Matrix([ [ 0, 1, 0], [-1, 0, 0], [ 0, 0, 1]]) See Also ======== rot_axis1: Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis rot_axis2: Returns a rotation matrix for a rotation of theta (in radians) about the 2-axis """ ct = cos(theta) st = sin(theta) lil = ((ct, st, 0), (-st, ct, 0), (0, 0, 1)) return Matrix(lil) def rot_axis2(theta): """Returns a rotation matrix for a rotation of theta (in radians) about the 2-axis. Examples ======== >>> from sympy import pi >>> from sympy.matrices import rot_axis2 A rotation of pi/3 (60 degrees): >>> theta = pi/3 >>> rot_axis2(theta) Matrix([ [ 1/2, 0, -sqrt(3)/2], [ 0, 1, 0], [sqrt(3)/2, 0, 1/2]]) If we rotate by pi/2 (90 degrees): >>> rot_axis2(pi/2) Matrix([ [0, 0, -1], [0, 1, 0], [1, 0, 0]]) See Also ======== rot_axis1: Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis rot_axis3: Returns a rotation matrix for a rotation of theta (in radians) about the 3-axis """ ct = cos(theta) st = sin(theta) lil = ((ct, 0, -st), (0, 1, 0), (st, 0, ct)) return Matrix(lil) def rot_axis1(theta): """Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis. Examples ======== >>> from sympy import pi >>> from sympy.matrices import rot_axis1 A rotation of pi/3 (60 degrees): >>> theta = pi/3 >>> rot_axis1(theta) Matrix([ [1, 0, 0], [0, 1/2, sqrt(3)/2], [0, -sqrt(3)/2, 1/2]]) If we rotate by pi/2 (90 degrees): >>> rot_axis1(pi/2) Matrix([ [1, 0, 0], [0, 0, 1], [0, -1, 0]]) See Also ======== rot_axis2: Returns a rotation matrix for a rotation of theta (in radians) about the 2-axis rot_axis3: Returns a rotation matrix for a rotation of theta (in radians) about the 3-axis """ ct = cos(theta) st = sin(theta) lil = ((1, 0, 0), (0, ct, st), (0, -st, ct)) return Matrix(lil) @doctest_depends_on(modules=('numpy',)) def symarray(prefix, shape, **kwargs): # pragma: no cover r"""Create a numpy ndarray of symbols (as an object array). The created symbols are named ``prefix_i1_i2_``... You should thus provide a non-empty prefix if you want your symbols to be unique for different output arrays, as SymPy symbols with identical names are the same object. Parameters ---------- prefix : string A prefix prepended to the name of every symbol. shape : int or tuple Shape of the created array. If an int, the array is one-dimensional; for more than one dimension the shape must be a tuple. \*\*kwargs : dict keyword arguments passed on to Symbol Examples ======== These doctests require numpy. >>> from sympy import symarray >>> symarray('', 3) [_0 _1 _2] If you want multiple symarrays to contain distinct symbols, you *must* provide unique prefixes: >>> a = symarray('', 3) >>> b = symarray('', 3) >>> a[0] == b[0] True >>> a = symarray('a', 3) >>> b = symarray('b', 3) >>> a[0] == b[0] False Creating symarrays with a prefix: >>> symarray('a', 3) [a_0 a_1 a_2] For more than one dimension, the shape must be given as a tuple: >>> symarray('a', (2, 3)) [[a_0_0 a_0_1 a_0_2] [a_1_0 a_1_1 a_1_2]] >>> symarray('a', (2, 3, 2)) [[[a_0_0_0 a_0_0_1] [a_0_1_0 a_0_1_1] [a_0_2_0 a_0_2_1]] <BLANKLINE> [[a_1_0_0 a_1_0_1] [a_1_1_0 a_1_1_1] [a_1_2_0 a_1_2_1]]] For setting assumptions of the underlying Symbols: >>> [s.is_real for s in symarray('a', 2, real=True)] [True, True] """ from numpy import empty, ndindex arr = empty(shape, dtype=object) for index in ndindex(shape): arr[index] = Symbol('%s_%s' % (prefix, '_'.join(map(str, index))), **kwargs) return arr ############### # Functions ############### def casoratian(seqs, n, zero=True): """Given linear difference operator L of order 'k' and homogeneous equation Ly = 0 we want to compute kernel of L, which is a set of 'k' sequences: a(n), b(n), ... z(n). Solutions of L are linearly independent iff their Casoratian, denoted as C(a, b, ..., z), do not vanish for n = 0. Casoratian is defined by k x k determinant:: + a(n) b(n) . . . z(n) + | a(n+1) b(n+1) . . . z(n+1) | | . . . . | | . . . . | | . . . . | + a(n+k-1) b(n+k-1) . . . z(n+k-1) + It proves very useful in rsolve_hyper() where it is applied to a generating set of a recurrence to factor out linearly dependent solutions and return a basis: >>> from sympy import Symbol, casoratian, factorial >>> n = Symbol('n', integer=True) Exponential and factorial are linearly independent: >>> casoratian([2**n, factorial(n)], n) != 0 True """ seqs = list(map(sympify, seqs)) if not zero: f = lambda i, j: seqs[j].subs(n, n + i) else: f = lambda i, j: seqs[j].subs(n, i) k = len(seqs) return Matrix(k, k, f).det() def eye(*args, **kwargs): """Create square identity matrix n x n See Also ======== diag zeros ones """ return Matrix.eye(*args, **kwargs) def diag(*values, **kwargs): """Returns a matrix with the provided values placed on the diagonal. If non-square matrices are included, they will produce a block-diagonal matrix. Examples ======== This version of diag is a thin wrapper to Matrix.diag that differs in that it treats all lists like matrices -- even when a single list is given. If this is not desired, either put a `*` before the list or set `unpack=True`. >>> from sympy import diag >>> diag([1, 2, 3], unpack=True) # = diag(1,2,3) or diag(*[1,2,3]) Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> diag([1, 2, 3]) # a column vector Matrix([ [1], [2], [3]]) See Also ======== .common.MatrixCommon.eye .common.MatrixCommon.diagonal - to extract a diagonal .common.MatrixCommon.diag .expressions.blockmatrix.BlockMatrix """ # Extract any setting so we don't duplicate keywords sent # as named parameters: kw = kwargs.copy() strict = kw.pop('strict', True) # lists will be converted to Matrices unpack = kw.pop('unpack', False) return Matrix.diag(*values, strict=strict, unpack=unpack, **kw) def GramSchmidt(vlist, orthonormal=False): """Apply the Gram-Schmidt process to a set of vectors. Parameters ========== vlist : List of Matrix Vectors to be orthogonalized for. orthonormal : Bool, optional If true, return an orthonormal basis. Returns ======= vlist : List of Matrix Orthogonalized vectors Notes ===== This routine is mostly duplicate from ``Matrix.orthogonalize``, except for some difference that this always raises error when linearly dependent vectors are found, and the keyword ``normalize`` has been named as ``orthonormal`` in this function. See Also ======== .matrices.MatrixSubspaces.orthogonalize References ========== .. [1] https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process """ return MutableDenseMatrix.orthogonalize( *vlist, normalize=orthonormal, rankcheck=True ) def hessian(f, varlist, constraints=[]): """Compute Hessian matrix for a function f wrt parameters in varlist which may be given as a sequence or a row/column vector. A list of constraints may optionally be given. Examples ======== >>> from sympy import Function, hessian, pprint >>> from sympy.abc import x, y >>> f = Function('f')(x, y) >>> g1 = Function('g')(x, y) >>> g2 = x**2 + 3*y >>> pprint(hessian(f, (x, y), [g1, g2])) [ d d ] [ 0 0 --(g(x, y)) --(g(x, y)) ] [ dx dy ] [ ] [ 0 0 2*x 3 ] [ ] [ 2 2 ] [d d d ] [--(g(x, y)) 2*x ---(f(x, y)) -----(f(x, y))] [dx 2 dy dx ] [ dx ] [ ] [ 2 2 ] [d d d ] [--(g(x, y)) 3 -----(f(x, y)) ---(f(x, y)) ] [dy dy dx 2 ] [ dy ] References ========== https://en.wikipedia.org/wiki/Hessian_matrix See Also ======== sympy.matrices.matrices.MatrixCalculus.jacobian wronskian """ # f is the expression representing a function f, return regular matrix if isinstance(varlist, MatrixBase): if 1 not in varlist.shape: raise ShapeError("`varlist` must be a column or row vector.") if varlist.cols == 1: varlist = varlist.T varlist = varlist.tolist()[0] if is_sequence(varlist): n = len(varlist) if not n: raise ShapeError("`len(varlist)` must not be zero.") else: raise ValueError("Improper variable list in hessian function") if not getattr(f, 'diff'): # check differentiability raise ValueError("Function `f` (%s) is not differentiable" % f) m = len(constraints) N = m + n out = zeros(N) for k, g in enumerate(constraints): if not getattr(g, 'diff'): # check differentiability raise ValueError("Function `f` (%s) is not differentiable" % f) for i in range(n): out[k, i + m] = g.diff(varlist[i]) for i in range(n): for j in range(i, n): out[i + m, j + m] = f.diff(varlist[i]).diff(varlist[j]) for i in range(N): for j in range(i + 1, N): out[j, i] = out[i, j] return out def jordan_cell(eigenval, n): """ Create a Jordan block: Examples ======== >>> from sympy.matrices import jordan_cell >>> from sympy.abc import x >>> jordan_cell(x, 4) Matrix([ [x, 1, 0, 0], [0, x, 1, 0], [0, 0, x, 1], [0, 0, 0, x]]) """ return Matrix.jordan_block(size=n, eigenvalue=eigenval) def matrix_multiply_elementwise(A, B): """Return the Hadamard product (elementwise product) of A and B >>> from sympy.matrices import matrix_multiply_elementwise >>> from sympy.matrices import Matrix >>> A = Matrix([[0, 1, 2], [3, 4, 5]]) >>> B = Matrix([[1, 10, 100], [100, 10, 1]]) >>> matrix_multiply_elementwise(A, B) Matrix([ [ 0, 10, 200], [300, 40, 5]]) See Also ======== sympy.matrices.common.MatrixCommon.__mul__ """ return A.multiply_elementwise(B) def ones(*args, **kwargs): """Returns a matrix of ones with ``rows`` rows and ``cols`` columns; if ``cols`` is omitted a square matrix will be returned. See Also ======== zeros eye diag """ if 'c' in kwargs: kwargs['cols'] = kwargs.pop('c') return Matrix.ones(*args, **kwargs) def randMatrix(r, c=None, min=0, max=99, seed=None, symmetric=False, percent=100, prng=None): """Create random matrix with dimensions ``r`` x ``c``. If ``c`` is omitted the matrix will be square. If ``symmetric`` is True the matrix must be square. If ``percent`` is less than 100 then only approximately the given percentage of elements will be non-zero. The pseudo-random number generator used to generate matrix is chosen in the following way. * If ``prng`` is supplied, it will be used as random number generator. It should be an instance of ``random.Random``, or at least have ``randint`` and ``shuffle`` methods with same signatures. * if ``prng`` is not supplied but ``seed`` is supplied, then new ``random.Random`` with given ``seed`` will be created; * otherwise, a new ``random.Random`` with default seed will be used. Examples ======== >>> from sympy.matrices import randMatrix >>> randMatrix(3) # doctest:+SKIP [25, 45, 27] [44, 54, 9] [23, 96, 46] >>> randMatrix(3, 2) # doctest:+SKIP [87, 29] [23, 37] [90, 26] >>> randMatrix(3, 3, 0, 2) # doctest:+SKIP [0, 2, 0] [2, 0, 1] [0, 0, 1] >>> randMatrix(3, symmetric=True) # doctest:+SKIP [85, 26, 29] [26, 71, 43] [29, 43, 57] >>> A = randMatrix(3, seed=1) >>> B = randMatrix(3, seed=2) >>> A == B False >>> A == randMatrix(3, seed=1) True >>> randMatrix(3, symmetric=True, percent=50) # doctest:+SKIP [77, 70, 0], [70, 0, 0], [ 0, 0, 88] """ if c is None: c = r # Note that ``Random()`` is equivalent to ``Random(None)`` prng = prng or random.Random(seed) if not symmetric: m = Matrix._new(r, c, lambda i, j: prng.randint(min, max)) if percent == 100: return m z = int(r*c*(100 - percent) // 100) m._mat[:z] = [S.Zero]*z prng.shuffle(m._mat) return m # Symmetric case if r != c: raise ValueError('For symmetric matrices, r must equal c, but %i != %i' % (r, c)) m = zeros(r) ij = [(i, j) for i in range(r) for j in range(i, r)] if percent != 100: ij = prng.sample(ij, int(len(ij)*percent // 100)) for i, j in ij: value = prng.randint(min, max) m[i, j] = m[j, i] = value return m def wronskian(functions, var, method='bareiss'): """ Compute Wronskian for [] of functions :: | f1 f2 ... fn | | f1' f2' ... fn' | | . . . . | W(f1, ..., fn) = | . . . . | | . . . . | | (n) (n) (n) | | D (f1) D (f2) ... D (fn) | see: https://en.wikipedia.org/wiki/Wronskian See Also ======== sympy.matrices.matrices.MatrixCalculus.jacobian hessian """ for index in range(0, len(functions)): functions[index] = sympify(functions[index]) n = len(functions) if n == 0: return 1 W = Matrix(n, n, lambda i, j: functions[i].diff(var, j)) return W.det(method) def zeros(*args, **kwargs): """Returns a matrix of zeros with ``rows`` rows and ``cols`` columns; if ``cols`` is omitted a square matrix will be returned. See Also ======== ones eye diag """ if 'c' in kwargs: kwargs['cols'] = kwargs.pop('c') return Matrix.zeros(*args, **kwargs)
5feb3f22930b17584fc3b7dbdc63cd2ec95c0b24b59e8001f4dd3552fc75244a
from __future__ import division, print_function import copy from collections import defaultdict from sympy.core.compatibility import Callable, as_int, is_sequence, range from sympy.core.containers import Dict from sympy.core.expr import Expr from sympy.core.singleton import S from sympy.functions import Abs from sympy.functions.elementary.miscellaneous import sqrt from sympy.utilities.iterables import uniq from sympy.utilities.misc import filldedent from .common import a2idx from .dense import Matrix from .matrices import MatrixBase, ShapeError class SparseMatrix(MatrixBase): """ A sparse matrix (a matrix with a large number of zero elements). Examples ======== >>> from sympy.matrices import SparseMatrix, ones >>> SparseMatrix(2, 2, range(4)) Matrix([ [0, 1], [2, 3]]) >>> SparseMatrix(2, 2, {(1, 1): 2}) Matrix([ [0, 0], [0, 2]]) A SparseMatrix can be instantiated from a ragged list of lists: >>> SparseMatrix([[1, 2, 3], [1, 2], [1]]) Matrix([ [1, 2, 3], [1, 2, 0], [1, 0, 0]]) For safety, one may include the expected size and then an error will be raised if the indices of any element are out of range or (for a flat list) if the total number of elements does not match the expected shape: >>> SparseMatrix(2, 2, [1, 2]) Traceback (most recent call last): ... ValueError: List length (2) != rows*columns (4) Here, an error is not raised because the list is not flat and no element is out of range: >>> SparseMatrix(2, 2, [[1, 2]]) Matrix([ [1, 2], [0, 0]]) But adding another element to the first (and only) row will cause an error to be raised: >>> SparseMatrix(2, 2, [[1, 2, 3]]) Traceback (most recent call last): ... ValueError: The location (0, 2) is out of designated range: (1, 1) To autosize the matrix, pass None for rows: >>> SparseMatrix(None, [[1, 2, 3]]) Matrix([[1, 2, 3]]) >>> SparseMatrix(None, {(1, 1): 1, (3, 3): 3}) Matrix([ [0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 3]]) Values that are themselves a Matrix are automatically expanded: >>> SparseMatrix(4, 4, {(1, 1): ones(2)}) Matrix([ [0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]]) A ValueError is raised if the expanding matrix tries to overwrite a different element already present: >>> SparseMatrix(3, 3, {(0, 0): ones(2), (1, 1): 2}) Traceback (most recent call last): ... ValueError: collision at (1, 1) See Also ======== DenseMatrix MutableSparseMatrix ImmutableSparseMatrix """ def __new__(cls, *args, **kwargs): self = object.__new__(cls) if len(args) == 1 and isinstance(args[0], SparseMatrix): self.rows = args[0].rows self.cols = args[0].cols self._smat = dict(args[0]._smat) return self self._smat = {} # autosizing if len(args) == 2 and args[0] is None: args = (None,) + args if len(args) == 3: r, c = args[:2] if r is c is None: self.rows = self.cols = None elif None in (r, c): raise ValueError( 'Pass rows=None and no cols for autosizing.') else: self.rows, self.cols = map(as_int, args[:2]) if isinstance(args[2], Callable): op = args[2] for i in range(self.rows): for j in range(self.cols): value = self._sympify( op(self._sympify(i), self._sympify(j))) if value: self._smat[i, j] = value elif isinstance(args[2], (dict, Dict)): def update(i, j, v): # update self._smat and make sure there are # no collisions if v: if (i, j) in self._smat and v != self._smat[i, j]: raise ValueError('collision at %s' % ((i, j),)) self._smat[i, j] = v # manual copy, copy.deepcopy() doesn't work for key, v in args[2].items(): r, c = key if isinstance(v, SparseMatrix): for (i, j), vij in v._smat.items(): update(r + i, c + j, vij) else: if isinstance(v, (Matrix, list, tuple)): v = SparseMatrix(v) for i, j in v._smat: update(r + i, c + j, v[i, j]) else: v = self._sympify(v) update(r, c, self._sympify(v)) elif is_sequence(args[2]): flat = not any(is_sequence(i) for i in args[2]) if not flat: s = SparseMatrix(args[2]) self._smat = s._smat else: if len(args[2]) != self.rows*self.cols: raise ValueError( 'Flat list length (%s) != rows*columns (%s)' % (len(args[2]), self.rows*self.cols)) flat_list = args[2] for i in range(self.rows): for j in range(self.cols): value = self._sympify(flat_list[i*self.cols + j]) if value: self._smat[i, j] = value if self.rows is None: # autosizing k = self._smat.keys() self.rows = max([i[0] for i in k]) + 1 if k else 0 self.cols = max([i[1] for i in k]) + 1 if k else 0 else: for i, j in self._smat.keys(): if i and i >= self.rows or j and j >= self.cols: r, c = self.shape raise ValueError(filldedent(''' The location %s is out of designated range: %s''' % ((i, j), (r - 1, c - 1)))) else: if (len(args) == 1 and isinstance(args[0], (list, tuple))): # list of values or lists v = args[0] c = 0 for i, row in enumerate(v): if not isinstance(row, (list, tuple)): row = [row] for j, vij in enumerate(row): if vij: self._smat[i, j] = self._sympify(vij) c = max(c, len(row)) self.rows = len(v) if c else 0 self.cols = c else: # handle full matrix forms with _handle_creation_inputs r, c, _list = Matrix._handle_creation_inputs(*args) self.rows = r self.cols = c for i in range(self.rows): for j in range(self.cols): value = _list[self.cols*i + j] if value: self._smat[i, j] = value return self def __eq__(self, other): self_shape = getattr(self, 'shape', None) other_shape = getattr(other, 'shape', None) if None in (self_shape, other_shape): return False if self_shape != other_shape: return False if isinstance(other, SparseMatrix): return self._smat == other._smat elif isinstance(other, MatrixBase): return self._smat == MutableSparseMatrix(other)._smat def __getitem__(self, key): if isinstance(key, tuple): i, j = key try: i, j = self.key2ij(key) return self._smat.get((i, j), S.Zero) except (TypeError, IndexError): if isinstance(i, slice): # XXX remove list() when PY2 support is dropped i = list(range(self.rows))[i] elif is_sequence(i): pass elif isinstance(i, Expr) and not i.is_number: from sympy.matrices.expressions.matexpr import MatrixElement return MatrixElement(self, i, j) else: if i >= self.rows: raise IndexError('Row index out of bounds') i = [i] if isinstance(j, slice): # XXX remove list() when PY2 support is dropped j = list(range(self.cols))[j] elif is_sequence(j): pass elif isinstance(j, Expr) and not j.is_number: from sympy.matrices.expressions.matexpr import MatrixElement return MatrixElement(self, i, j) else: if j >= self.cols: raise IndexError('Col index out of bounds') j = [j] return self.extract(i, j) # check for single arg, like M[:] or M[3] if isinstance(key, slice): lo, hi = key.indices(len(self))[:2] L = [] for i in range(lo, hi): m, n = divmod(i, self.cols) L.append(self._smat.get((m, n), S.Zero)) return L i, j = divmod(a2idx(key, len(self)), self.cols) return self._smat.get((i, j), S.Zero) def __setitem__(self, key, value): raise NotImplementedError() def _cholesky_solve(self, rhs): # for speed reasons, this is not uncommented, but if you are # having difficulties, try uncommenting to make sure that the # input matrix is symmetric #assert self.is_symmetric() L = self._cholesky_sparse() Y = L._lower_triangular_solve(rhs) rv = L.T._upper_triangular_solve(Y) return rv def _cholesky_sparse(self): """Algorithm for numeric Cholesky factorization of a sparse matrix.""" Crowstruc = self.row_structure_symbolic_cholesky() C = self.zeros(self.rows) for i in range(len(Crowstruc)): for j in Crowstruc[i]: if i != j: C[i, j] = self[i, j] summ = 0 for p1 in Crowstruc[i]: if p1 < j: for p2 in Crowstruc[j]: if p2 < j: if p1 == p2: summ += C[i, p1]*C[j, p1] else: break else: break C[i, j] -= summ C[i, j] /= C[j, j] else: C[j, j] = self[j, j] summ = 0 for k in Crowstruc[j]: if k < j: summ += C[j, k]**2 else: break C[j, j] -= summ C[j, j] = sqrt(C[j, j]) return C def _eval_inverse(self, **kwargs): """Return the matrix inverse using Cholesky or LDL (default) decomposition as selected with the ``method`` keyword: 'CH' or 'LDL', respectively. Examples ======== >>> from sympy import SparseMatrix, Matrix >>> A = SparseMatrix([ ... [ 2, -1, 0], ... [-1, 2, -1], ... [ 0, 0, 2]]) >>> A.inv('CH') Matrix([ [2/3, 1/3, 1/6], [1/3, 2/3, 1/3], [ 0, 0, 1/2]]) >>> A.inv(method='LDL') # use of 'method=' is optional Matrix([ [2/3, 1/3, 1/6], [1/3, 2/3, 1/3], [ 0, 0, 1/2]]) >>> A * _ Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) """ sym = self.is_symmetric() M = self.as_mutable() I = M.eye(M.rows) if not sym: t = M.T r1 = M[0, :] M = t*M I = t*I method = kwargs.get('method', 'LDL') if method in "LDL": solve = M._LDL_solve elif method == "CH": solve = M._cholesky_solve else: raise NotImplementedError( 'Method may be "CH" or "LDL", not %s.' % method) rv = M.hstack(*[solve(I[:, i]) for i in range(I.cols)]) if not sym: scale = (r1*rv[:, 0])[0, 0] rv /= scale return self._new(rv) def _eval_Abs(self): return self.applyfunc(lambda x: Abs(x)) def _eval_add(self, other): """If `other` is a SparseMatrix, add efficiently. Otherwise, do standard addition.""" if not isinstance(other, SparseMatrix): return self + self._new(other) smat = {} zero = self._sympify(0) for key in set().union(self._smat.keys(), other._smat.keys()): sum = self._smat.get(key, zero) + other._smat.get(key, zero) if sum != 0: smat[key] = sum return self._new(self.rows, self.cols, smat) def _eval_col_insert(self, icol, other): if not isinstance(other, SparseMatrix): other = SparseMatrix(other) new_smat = {} # make room for the new rows for key, val in self._smat.items(): row, col = key if col >= icol: col += other.cols new_smat[row, col] = val # add other's keys for key, val in other._smat.items(): row, col = key new_smat[row, col + icol] = val return self._new(self.rows, self.cols + other.cols, new_smat) def _eval_conjugate(self): smat = {key: val.conjugate() for key,val in self._smat.items()} return self._new(self.rows, self.cols, smat) def _eval_extract(self, rowsList, colsList): urow = list(uniq(rowsList)) ucol = list(uniq(colsList)) smat = {} if len(urow)*len(ucol) < len(self._smat): # there are fewer elements requested than there are elements in the matrix for i, r in enumerate(urow): for j, c in enumerate(ucol): smat[i, j] = self._smat.get((r, c), 0) else: # most of the request will be zeros so check all of self's entries, # keeping only the ones that are desired for rk, ck in self._smat: if rk in urow and ck in ucol: smat[urow.index(rk), ucol.index(ck)] = self._smat[rk, ck] rv = self._new(len(urow), len(ucol), smat) # rv is nominally correct but there might be rows/cols # which require duplication if len(rowsList) != len(urow): for i, r in enumerate(rowsList): i_previous = rowsList.index(r) if i_previous != i: rv = rv.row_insert(i, rv.row(i_previous)) if len(colsList) != len(ucol): for i, c in enumerate(colsList): i_previous = colsList.index(c) if i_previous != i: rv = rv.col_insert(i, rv.col(i_previous)) return rv @classmethod def _eval_eye(cls, rows, cols): entries = {(i,i): S.One for i in range(min(rows, cols))} return cls._new(rows, cols, entries) def _eval_has(self, *patterns): # if the matrix has any zeros, see if S.Zero # has the pattern. If _smat is full length, # the matrix has no zeros. zhas = S.Zero.has(*patterns) if len(self._smat) == self.rows*self.cols: zhas = False return any(self[key].has(*patterns) for key in self._smat) or zhas def _eval_is_Identity(self): if not all(self[i, i] == 1 for i in range(self.rows)): return False return len(self._smat) == self.rows def _eval_is_symmetric(self, simpfunc): diff = (self - self.T).applyfunc(simpfunc) return len(diff.values()) == 0 def _eval_matrix_mul(self, other): """Fast multiplication exploiting the sparsity of the matrix.""" if not isinstance(other, SparseMatrix): return self*self._new(other) # if we made it here, we're both sparse matrices # create quick lookups for rows and cols row_lookup = defaultdict(dict) for (i,j), val in self._smat.items(): row_lookup[i][j] = val col_lookup = defaultdict(dict) for (i,j), val in other._smat.items(): col_lookup[j][i] = val smat = {} for row in row_lookup.keys(): for col in col_lookup.keys(): # find the common indices of non-zero entries. # these are the only things that need to be multiplied. indices = set(col_lookup[col].keys()) & set(row_lookup[row].keys()) if indices: val = sum(row_lookup[row][k]*col_lookup[col][k] for k in indices) smat[row, col] = val return self._new(self.rows, other.cols, smat) def _eval_row_insert(self, irow, other): if not isinstance(other, SparseMatrix): other = SparseMatrix(other) new_smat = {} # make room for the new rows for key, val in self._smat.items(): row, col = key if row >= irow: row += other.rows new_smat[row, col] = val # add other's keys for key, val in other._smat.items(): row, col = key new_smat[row + irow, col] = val return self._new(self.rows + other.rows, self.cols, new_smat) def _eval_scalar_mul(self, other): return self.applyfunc(lambda x: x*other) def _eval_scalar_rmul(self, other): return self.applyfunc(lambda x: other*x) def _eval_transpose(self): """Returns the transposed SparseMatrix of this SparseMatrix. Examples ======== >>> from sympy.matrices import SparseMatrix >>> a = SparseMatrix(((1, 2), (3, 4))) >>> a Matrix([ [1, 2], [3, 4]]) >>> a.T Matrix([ [1, 3], [2, 4]]) """ smat = {(j,i): val for (i,j),val in self._smat.items()} return self._new(self.cols, self.rows, smat) def _eval_values(self): return [v for k,v in self._smat.items() if not v.is_zero] @classmethod def _eval_zeros(cls, rows, cols): return cls._new(rows, cols, {}) def _LDL_solve(self, rhs): # for speed reasons, this is not uncommented, but if you are # having difficulties, try uncommenting to make sure that the # input matrix is symmetric #assert self.is_symmetric() L, D = self._LDL_sparse() Z = L._lower_triangular_solve(rhs) Y = D._diagonal_solve(Z) return L.T._upper_triangular_solve(Y) def _LDL_sparse(self): """Algorithm for numeric LDL factorization, exploiting sparse structure. """ Lrowstruc = self.row_structure_symbolic_cholesky() L = self.eye(self.rows) D = self.zeros(self.rows, self.cols) for i in range(len(Lrowstruc)): for j in Lrowstruc[i]: if i != j: L[i, j] = self[i, j] summ = 0 for p1 in Lrowstruc[i]: if p1 < j: for p2 in Lrowstruc[j]: if p2 < j: if p1 == p2: summ += L[i, p1]*L[j, p1]*D[p1, p1] else: break else: break L[i, j] -= summ L[i, j] /= D[j, j] else: # i == j D[i, i] = self[i, i] summ = 0 for k in Lrowstruc[i]: if k < i: summ += L[i, k]**2*D[k, k] else: break D[i, i] -= summ return L, D def _lower_triangular_solve(self, rhs): """Fast algorithm for solving a lower-triangular system, exploiting the sparsity of the given matrix. """ rows = [[] for i in range(self.rows)] for i, j, v in self.row_list(): if i > j: rows[i].append((j, v)) X = rhs.as_mutable().copy() for j in range(rhs.cols): for i in range(rhs.rows): for u, v in rows[i]: X[i, j] -= v*X[u, j] X[i, j] /= self[i, i] return self._new(X) @property def _mat(self): """Return a list of matrix elements. Some routines in DenseMatrix use `_mat` directly to speed up operations.""" return list(self) def _upper_triangular_solve(self, rhs): """Fast algorithm for solving an upper-triangular system, exploiting the sparsity of the given matrix. """ rows = [[] for i in range(self.rows)] for i, j, v in self.row_list(): if i < j: rows[i].append((j, v)) X = rhs.as_mutable().copy() for j in range(rhs.cols): for i in reversed(range(rhs.rows)): for u, v in reversed(rows[i]): X[i, j] -= v*X[u, j] X[i, j] /= self[i, i] return self._new(X) def applyfunc(self, f): """Apply a function to each element of the matrix. Examples ======== >>> from sympy.matrices import SparseMatrix >>> m = SparseMatrix(2, 2, lambda i, j: i*2+j) >>> m Matrix([ [0, 1], [2, 3]]) >>> m.applyfunc(lambda i: 2*i) Matrix([ [0, 2], [4, 6]]) """ if not callable(f): raise TypeError("`f` must be callable.") out = self.copy() for k, v in self._smat.items(): fv = f(v) if fv: out._smat[k] = fv else: out._smat.pop(k, None) return out def as_immutable(self): """Returns an Immutable version of this Matrix.""" from .immutable import ImmutableSparseMatrix return ImmutableSparseMatrix(self) def as_mutable(self): """Returns a mutable version of this matrix. Examples ======== >>> from sympy import ImmutableMatrix >>> X = ImmutableMatrix([[1, 2], [3, 4]]) >>> Y = X.as_mutable() >>> Y[1, 1] = 5 # Can set values in Y >>> Y Matrix([ [1, 2], [3, 5]]) """ return MutableSparseMatrix(self) def cholesky(self): """ Returns the Cholesky decomposition L of a matrix A such that L * L.T = A A must be a square, symmetric, positive-definite and non-singular matrix Examples ======== >>> from sympy.matrices import SparseMatrix >>> A = SparseMatrix(((25,15,-5),(15,18,0),(-5,0,11))) >>> A.cholesky() Matrix([ [ 5, 0, 0], [ 3, 3, 0], [-1, 1, 3]]) >>> A.cholesky() * A.cholesky().T == A True """ from sympy.core.numbers import nan, oo if not self.is_symmetric(): raise ValueError('Cholesky decomposition applies only to ' 'symmetric matrices.') M = self.as_mutable()._cholesky_sparse() if M.has(nan) or M.has(oo): raise ValueError('Cholesky decomposition applies only to ' 'positive-definite matrices') return self._new(M) def col_list(self): """Returns a column-sorted list of non-zero elements of the matrix. Examples ======== >>> from sympy.matrices import SparseMatrix >>> a=SparseMatrix(((1, 2), (3, 4))) >>> a Matrix([ [1, 2], [3, 4]]) >>> a.CL [(0, 0, 1), (1, 0, 3), (0, 1, 2), (1, 1, 4)] See Also ======== sympy.matrices.sparse.MutableSparseMatrix.col_op sympy.matrices.sparse.SparseMatrix.row_list """ return [tuple(k + (self[k],)) for k in sorted(list(self._smat.keys()), key=lambda k: list(reversed(k)))] def copy(self): return self._new(self.rows, self.cols, self._smat) def LDLdecomposition(self): """ Returns the LDL Decomposition (matrices ``L`` and ``D``) of matrix ``A``, such that ``L * D * L.T == A``. ``A`` must be a square, symmetric, positive-definite and non-singular. This method eliminates the use of square root and ensures that all the diagonal entries of L are 1. Examples ======== >>> from sympy.matrices import SparseMatrix >>> A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) >>> L, D = A.LDLdecomposition() >>> L Matrix([ [ 1, 0, 0], [ 3/5, 1, 0], [-1/5, 1/3, 1]]) >>> D Matrix([ [25, 0, 0], [ 0, 9, 0], [ 0, 0, 9]]) >>> L * D * L.T == A True """ from sympy.core.numbers import nan, oo if not self.is_symmetric(): raise ValueError('LDL decomposition applies only to ' 'symmetric matrices.') L, D = self.as_mutable()._LDL_sparse() if L.has(nan) or L.has(oo) or D.has(nan) or D.has(oo): raise ValueError('LDL decomposition applies only to ' 'positive-definite matrices') return self._new(L), self._new(D) def liupc(self): """Liu's algorithm, for pre-determination of the Elimination Tree of the given matrix, used in row-based symbolic Cholesky factorization. Examples ======== >>> from sympy.matrices import SparseMatrix >>> S = SparseMatrix([ ... [1, 0, 3, 2], ... [0, 0, 1, 0], ... [4, 0, 0, 5], ... [0, 6, 7, 0]]) >>> S.liupc() ([[0], [], [0], [1, 2]], [4, 3, 4, 4]) References ========== Symbolic Sparse Cholesky Factorization using Elimination Trees, Jeroen Van Grondelle (1999) http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582 """ # Algorithm 2.4, p 17 of reference # get the indices of the elements that are non-zero on or below diag R = [[] for r in range(self.rows)] for r, c, _ in self.row_list(): if c <= r: R[r].append(c) inf = len(R) # nothing will be this large parent = [inf]*self.rows virtual = [inf]*self.rows for r in range(self.rows): for c in R[r][:-1]: while virtual[c] < r: t = virtual[c] virtual[c] = r c = t if virtual[c] == inf: parent[c] = virtual[c] = r return R, parent def nnz(self): """Returns the number of non-zero elements in Matrix.""" return len(self._smat) def row_list(self): """Returns a row-sorted list of non-zero elements of the matrix. Examples ======== >>> from sympy.matrices import SparseMatrix >>> a = SparseMatrix(((1, 2), (3, 4))) >>> a Matrix([ [1, 2], [3, 4]]) >>> a.RL [(0, 0, 1), (0, 1, 2), (1, 0, 3), (1, 1, 4)] See Also ======== sympy.matrices.sparse.MutableSparseMatrix.row_op sympy.matrices.sparse.SparseMatrix.col_list """ return [tuple(k + (self[k],)) for k in sorted(list(self._smat.keys()), key=lambda k: list(k))] def row_structure_symbolic_cholesky(self): """Symbolic cholesky factorization, for pre-determination of the non-zero structure of the Cholesky factororization. Examples ======== >>> from sympy.matrices import SparseMatrix >>> S = SparseMatrix([ ... [1, 0, 3, 2], ... [0, 0, 1, 0], ... [4, 0, 0, 5], ... [0, 6, 7, 0]]) >>> S.row_structure_symbolic_cholesky() [[0], [], [0], [1, 2]] References ========== Symbolic Sparse Cholesky Factorization using Elimination Trees, Jeroen Van Grondelle (1999) http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582 """ R, parent = self.liupc() inf = len(R) # this acts as infinity Lrow = copy.deepcopy(R) for k in range(self.rows): for j in R[k]: while j != inf and j != k: Lrow[k].append(j) j = parent[j] Lrow[k] = list(sorted(set(Lrow[k]))) return Lrow def scalar_multiply(self, scalar): "Scalar element-wise multiplication" M = self.zeros(*self.shape) if scalar: for i in self._smat: v = scalar*self._smat[i] if v: M._smat[i] = v else: M._smat.pop(i, None) return M def solve_least_squares(self, rhs, method='LDL'): """Return the least-square fit to the data. By default the cholesky_solve routine is used (method='CH'); other methods of matrix inversion can be used. To find out which are available, see the docstring of the .inv() method. Examples ======== >>> from sympy.matrices import SparseMatrix, Matrix, ones >>> A = Matrix([1, 2, 3]) >>> B = Matrix([2, 3, 4]) >>> S = SparseMatrix(A.row_join(B)) >>> S Matrix([ [1, 2], [2, 3], [3, 4]]) If each line of S represent coefficients of Ax + By and x and y are [2, 3] then S*xy is: >>> r = S*Matrix([2, 3]); r Matrix([ [ 8], [13], [18]]) But let's add 1 to the middle value and then solve for the least-squares value of xy: >>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy Matrix([ [ 5/3], [10/3]]) The error is given by S*xy - r: >>> S*xy - r Matrix([ [1/3], [1/3], [1/3]]) >>> _.norm().n(2) 0.58 If a different xy is used, the norm will be higher: >>> xy += ones(2, 1)/10 >>> (S*xy - r).norm().n(2) 1.5 """ t = self.T return (t*self).inv(method=method)*t*rhs def solve(self, rhs, method='LDL'): """Return solution to self*soln = rhs using given inversion method. For a list of possible inversion methods, see the .inv() docstring. """ if not self.is_square: if self.rows < self.cols: raise ValueError('Under-determined system.') elif self.rows > self.cols: raise ValueError('For over-determined system, M, having ' 'more rows than columns, try M.solve_least_squares(rhs).') else: return self.inv(method=method)*rhs RL = property(row_list, None, None, "Alternate faster representation") CL = property(col_list, None, None, "Alternate faster representation") class MutableSparseMatrix(SparseMatrix, MatrixBase): @classmethod def _new(cls, *args, **kwargs): return cls(*args) def __setitem__(self, key, value): """Assign value to position designated by key. Examples ======== >>> from sympy.matrices import SparseMatrix, ones >>> M = SparseMatrix(2, 2, {}) >>> M[1] = 1; M Matrix([ [0, 1], [0, 0]]) >>> M[1, 1] = 2; M Matrix([ [0, 1], [0, 2]]) >>> M = SparseMatrix(2, 2, {}) >>> M[:, 1] = [1, 1]; M Matrix([ [0, 1], [0, 1]]) >>> M = SparseMatrix(2, 2, {}) >>> M[1, :] = [[1, 1]]; M Matrix([ [0, 0], [1, 1]]) To replace row r you assign to position r*m where m is the number of columns: >>> M = SparseMatrix(4, 4, {}) >>> m = M.cols >>> M[3*m] = ones(1, m)*2; M Matrix([ [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [2, 2, 2, 2]]) And to replace column c you can assign to position c: >>> M[2] = ones(m, 1)*4; M Matrix([ [0, 0, 4, 0], [0, 0, 4, 0], [0, 0, 4, 0], [2, 2, 4, 2]]) """ rv = self._setitem(key, value) if rv is not None: i, j, value = rv if value: self._smat[i, j] = value elif (i, j) in self._smat: del self._smat[i, j] def as_mutable(self): return self.copy() __hash__ = None def col_del(self, k): """Delete the given column of the matrix. Examples ======== >>> from sympy.matrices import SparseMatrix >>> M = SparseMatrix([[0, 0], [0, 1]]) >>> M Matrix([ [0, 0], [0, 1]]) >>> M.col_del(0) >>> M Matrix([ [0], [1]]) See Also ======== row_del """ newD = {} k = a2idx(k, self.cols) for (i, j) in self._smat: if j == k: pass elif j > k: newD[i, j - 1] = self._smat[i, j] else: newD[i, j] = self._smat[i, j] self._smat = newD self.cols -= 1 def col_join(self, other): """Returns B augmented beneath A (row-wise joining):: [A] [B] Examples ======== >>> from sympy import SparseMatrix, Matrix, ones >>> A = SparseMatrix(ones(3)) >>> A Matrix([ [1, 1, 1], [1, 1, 1], [1, 1, 1]]) >>> B = SparseMatrix.eye(3) >>> B Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> C = A.col_join(B); C Matrix([ [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> C == A.col_join(Matrix(B)) True Joining along columns is the same as appending rows at the end of the matrix: >>> C == A.row_insert(A.rows, Matrix(B)) True """ # A null matrix can always be stacked (see #10770) if self.rows == 0 and self.cols != other.cols: return self._new(0, other.cols, []).col_join(other) A, B = self, other if not A.cols == B.cols: raise ShapeError() A = A.copy() if not isinstance(B, SparseMatrix): k = 0 b = B._mat for i in range(B.rows): for j in range(B.cols): v = b[k] if v: A._smat[i + A.rows, j] = v k += 1 else: for (i, j), v in B._smat.items(): A._smat[i + A.rows, j] = v A.rows += B.rows return A def col_op(self, j, f): """In-place operation on col j using two-arg functor whose args are interpreted as (self[i, j], i) for i in range(self.rows). Examples ======== >>> from sympy.matrices import SparseMatrix >>> M = SparseMatrix.eye(3)*2 >>> M[1, 0] = -1 >>> M.col_op(1, lambda v, i: v + 2*M[i, 0]); M Matrix([ [ 2, 4, 0], [-1, 0, 0], [ 0, 0, 2]]) """ for i in range(self.rows): v = self._smat.get((i, j), S.Zero) fv = f(v, i) if fv: self._smat[i, j] = fv elif v: self._smat.pop((i, j)) def col_swap(self, i, j): """Swap, in place, columns i and j. Examples ======== >>> from sympy.matrices import SparseMatrix >>> S = SparseMatrix.eye(3); S[2, 1] = 2 >>> S.col_swap(1, 0); S Matrix([ [0, 1, 0], [1, 0, 0], [2, 0, 1]]) """ if i > j: i, j = j, i rows = self.col_list() temp = [] for ii, jj, v in rows: if jj == i: self._smat.pop((ii, jj)) temp.append((ii, v)) elif jj == j: self._smat.pop((ii, jj)) self._smat[ii, i] = v elif jj > j: break for k, v in temp: self._smat[k, j] = v def copyin_list(self, key, value): if not is_sequence(value): raise TypeError("`value` must be of type list or tuple.") self.copyin_matrix(key, Matrix(value)) def copyin_matrix(self, key, value): # include this here because it's not part of BaseMatrix rlo, rhi, clo, chi = self.key2bounds(key) shape = value.shape dr, dc = rhi - rlo, chi - clo if shape != (dr, dc): raise ShapeError( "The Matrix `value` doesn't have the same dimensions " "as the in sub-Matrix given by `key`.") if not isinstance(value, SparseMatrix): for i in range(value.rows): for j in range(value.cols): self[i + rlo, j + clo] = value[i, j] else: if (rhi - rlo)*(chi - clo) < len(self): for i in range(rlo, rhi): for j in range(clo, chi): self._smat.pop((i, j), None) else: for i, j, v in self.row_list(): if rlo <= i < rhi and clo <= j < chi: self._smat.pop((i, j), None) for k, v in value._smat.items(): i, j = k self[i + rlo, j + clo] = value[i, j] def fill(self, value): """Fill self with the given value. Notes ===== Unless many values are going to be deleted (i.e. set to zero) this will create a matrix that is slower than a dense matrix in operations. Examples ======== >>> from sympy.matrices import SparseMatrix >>> M = SparseMatrix.zeros(3); M Matrix([ [0, 0, 0], [0, 0, 0], [0, 0, 0]]) >>> M.fill(1); M Matrix([ [1, 1, 1], [1, 1, 1], [1, 1, 1]]) """ if not value: self._smat = {} else: v = self._sympify(value) self._smat = {(i, j): v for i in range(self.rows) for j in range(self.cols)} def row_del(self, k): """Delete the given row of the matrix. Examples ======== >>> from sympy.matrices import SparseMatrix >>> M = SparseMatrix([[0, 0], [0, 1]]) >>> M Matrix([ [0, 0], [0, 1]]) >>> M.row_del(0) >>> M Matrix([[0, 1]]) See Also ======== col_del """ newD = {} k = a2idx(k, self.rows) for (i, j) in self._smat: if i == k: pass elif i > k: newD[i - 1, j] = self._smat[i, j] else: newD[i, j] = self._smat[i, j] self._smat = newD self.rows -= 1 def row_join(self, other): """Returns B appended after A (column-wise augmenting):: [A B] Examples ======== >>> from sympy import SparseMatrix, Matrix >>> A = SparseMatrix(((1, 0, 1), (0, 1, 0), (1, 1, 0))) >>> A Matrix([ [1, 0, 1], [0, 1, 0], [1, 1, 0]]) >>> B = SparseMatrix(((1, 0, 0), (0, 1, 0), (0, 0, 1))) >>> B Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> C = A.row_join(B); C Matrix([ [1, 0, 1, 1, 0, 0], [0, 1, 0, 0, 1, 0], [1, 1, 0, 0, 0, 1]]) >>> C == A.row_join(Matrix(B)) True Joining at row ends is the same as appending columns at the end of the matrix: >>> C == A.col_insert(A.cols, B) True """ # A null matrix can always be stacked (see #10770) if self.cols == 0 and self.rows != other.rows: return self._new(other.rows, 0, []).row_join(other) A, B = self, other if not A.rows == B.rows: raise ShapeError() A = A.copy() if not isinstance(B, SparseMatrix): k = 0 b = B._mat for i in range(B.rows): for j in range(B.cols): v = b[k] if v: A._smat[i, j + A.cols] = v k += 1 else: for (i, j), v in B._smat.items(): A._smat[i, j + A.cols] = v A.cols += B.cols return A def row_op(self, i, f): """In-place operation on row ``i`` using two-arg functor whose args are interpreted as ``(self[i, j], j)``. Examples ======== >>> from sympy.matrices import SparseMatrix >>> M = SparseMatrix.eye(3)*2 >>> M[0, 1] = -1 >>> M.row_op(1, lambda v, j: v + 2*M[0, j]); M Matrix([ [2, -1, 0], [4, 0, 0], [0, 0, 2]]) See Also ======== row zip_row_op col_op """ for j in range(self.cols): v = self._smat.get((i, j), S.Zero) fv = f(v, j) if fv: self._smat[i, j] = fv elif v: self._smat.pop((i, j)) def row_swap(self, i, j): """Swap, in place, columns i and j. Examples ======== >>> from sympy.matrices import SparseMatrix >>> S = SparseMatrix.eye(3); S[2, 1] = 2 >>> S.row_swap(1, 0); S Matrix([ [0, 1, 0], [1, 0, 0], [0, 2, 1]]) """ if i > j: i, j = j, i rows = self.row_list() temp = [] for ii, jj, v in rows: if ii == i: self._smat.pop((ii, jj)) temp.append((jj, v)) elif ii == j: self._smat.pop((ii, jj)) self._smat[i, jj] = v elif ii > j: break for k, v in temp: self._smat[j, k] = v def zip_row_op(self, i, k, f): """In-place operation on row ``i`` using two-arg functor whose args are interpreted as ``(self[i, j], self[k, j])``. Examples ======== >>> from sympy.matrices import SparseMatrix >>> M = SparseMatrix.eye(3)*2 >>> M[0, 1] = -1 >>> M.zip_row_op(1, 0, lambda v, u: v + 2*u); M Matrix([ [2, -1, 0], [4, 0, 0], [0, 0, 2]]) See Also ======== row row_op col_op """ self.row_op(i, lambda v, j: f(v, self[k, j]))
595474a336759cdb4f99d6c6c4fcae6b5a4ba1c2ea168d25c340e985e730ae34
from __future__ import division, print_function from types import FunctionType from mpmath.libmp.libmpf import prec_to_dps from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.compatibility import ( Callable, NotIterable, as_int, default_sort_key, is_sequence, range, reduce, string_types) from sympy.core.decorators import deprecated from sympy.core.expr import Expr from sympy.core.function import expand_mul from sympy.core.logic import fuzzy_and, fuzzy_or from sympy.core.numbers import Float, Integer, mod_inverse from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import Dummy, Symbol, _uniquely_named_symbol, symbols from sympy.core.sympify import sympify from sympy.functions import exp, factorial, log from sympy.functions.elementary.miscellaneous import Max, Min, sqrt from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.polys import PurePoly, cancel, roots from sympy.printing import sstr from sympy.simplify import nsimplify from sympy.simplify import simplify as _simplify from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import flatten, numbered_symbols from sympy.utilities.misc import filldedent from .common import ( MatrixCommon, MatrixError, NonSquareMatrixError, NonInvertibleMatrixError, ShapeError, NonPositiveDefiniteMatrixError) def _iszero(x): """Returns True if x is zero.""" return getattr(x, 'is_zero', None) def _is_zero_after_expand_mul(x): """Tests by expand_mul only, suitable for polynomials and rational functions.""" return expand_mul(x) == 0 class DeferredVector(Symbol, NotIterable): """A vector whose components are deferred (e.g. for use with lambdify) Examples ======== >>> from sympy import DeferredVector, lambdify >>> X = DeferredVector( 'X' ) >>> X X >>> expr = (X[0] + 2, X[2] + 3) >>> func = lambdify( X, expr) >>> func( [1, 2, 3] ) (3, 6) """ def __getitem__(self, i): if i == -0: i = 0 if i < 0: raise IndexError('DeferredVector index out of range') component_name = '%s[%d]' % (self.name, i) return Symbol(component_name) def __str__(self): return sstr(self) def __repr__(self): return "DeferredVector('%s')" % self.name class MatrixDeterminant(MatrixCommon): """Provides basic matrix determinant operations. Should not be instantiated directly.""" def _eval_berkowitz_toeplitz_matrix(self): """Return (A,T) where T the Toeplitz matrix used in the Berkowitz algorithm corresponding to ``self`` and A is the first principal submatrix.""" # the 0 x 0 case is trivial if self.rows == 0 and self.cols == 0: return self._new(1,1, [self.one]) # # Partition self = [ a_11 R ] # [ C A ] # a, R = self[0,0], self[0, 1:] C, A = self[1:, 0], self[1:,1:] # # The Toeplitz matrix looks like # # [ 1 ] # [ -a 1 ] # [ -RC -a 1 ] # [ -RAC -RC -a 1 ] # [ -RA**2C -RAC -RC -a 1 ] # etc. # Compute the diagonal entries. # Because multiplying matrix times vector is so much # more efficient than matrix times matrix, recursively # compute -R * A**n * C. diags = [C] for i in range(self.rows - 2): diags.append(A * diags[i]) diags = [(-R*d)[0, 0] for d in diags] diags = [self.one, -a] + diags def entry(i,j): if j > i: return self.zero return diags[i - j] toeplitz = self._new(self.cols + 1, self.rows, entry) return (A, toeplitz) def _eval_berkowitz_vector(self): """ Run the Berkowitz algorithm and return a vector whose entries are the coefficients of the characteristic polynomial of ``self``. Given N x N matrix, efficiently compute coefficients of characteristic polynomials of ``self`` without division in the ground domain. This method is particularly useful for computing determinant, principal minors and characteristic polynomial when ``self`` has complicated coefficients e.g. polynomials. Semi-direct usage of this algorithm is also important in computing efficiently sub-resultant PRS. Assuming that M is a square matrix of dimension N x N and I is N x N identity matrix, then the Berkowitz vector is an N x 1 vector whose entries are coefficients of the polynomial charpoly(M) = det(t*I - M) As a consequence, all polynomials generated by Berkowitz algorithm are monic. For more information on the implemented algorithm refer to: [1] S.J. Berkowitz, On computing the determinant in small parallel time using a small number of processors, ACM, Information Processing Letters 18, 1984, pp. 147-150 [2] M. Keber, Division-Free computation of sub-resultants using Bezout matrices, Tech. Report MPI-I-2006-1-006, Saarbrucken, 2006 """ # handle the trivial cases if self.rows == 0 and self.cols == 0: return self._new(1, 1, [self.one]) elif self.rows == 1 and self.cols == 1: return self._new(2, 1, [self.one, -self[0,0]]) submat, toeplitz = self._eval_berkowitz_toeplitz_matrix() return toeplitz * submat._eval_berkowitz_vector() def _eval_det_bareiss(self, iszerofunc=_is_zero_after_expand_mul): """Compute matrix determinant using Bareiss' fraction-free algorithm which is an extension of the well known Gaussian elimination method. This approach is best suited for dense symbolic matrices and will result in a determinant with minimal number of fractions. It means that less term rewriting is needed on resulting formulae. TODO: Implement algorithm for sparse matrices (SFF), http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps. """ # Recursively implemented Bareiss' algorithm as per Deanna Richelle Leggett's # thesis http://www.math.usm.edu/perry/Research/Thesis_DRL.pdf def bareiss(mat, cumm=1): if mat.rows == 0: return mat.one elif mat.rows == 1: return mat[0, 0] # find a pivot and extract the remaining matrix # With the default iszerofunc, _find_reasonable_pivot slows down # the computation by the factor of 2.5 in one test. # Relevant issues: #10279 and #13877. pivot_pos, pivot_val, _, _ = _find_reasonable_pivot(mat[:, 0], iszerofunc=iszerofunc) if pivot_pos is None: return mat.zero # if we have a valid pivot, we'll do a "row swap", so keep the # sign of the det sign = (-1) ** (pivot_pos % 2) # we want every row but the pivot row and every column rows = list(i for i in range(mat.rows) if i != pivot_pos) cols = list(range(mat.cols)) tmp_mat = mat.extract(rows, cols) def entry(i, j): ret = (pivot_val*tmp_mat[i, j + 1] - mat[pivot_pos, j + 1]*tmp_mat[i, 0]) / cumm if not ret.is_Atom: return cancel(ret) return ret return sign*bareiss(self._new(mat.rows - 1, mat.cols - 1, entry), pivot_val) return cancel(bareiss(self)) def _eval_det_berkowitz(self): """ Use the Berkowitz algorithm to compute the determinant.""" berk_vector = self._eval_berkowitz_vector() return (-1)**(len(berk_vector) - 1) * berk_vector[-1] def _eval_det_lu(self, iszerofunc=_iszero, simpfunc=None): """ Computes the determinant of a matrix from its LU decomposition. This function uses the LU decomposition computed by LUDecomposition_Simple(). The keyword arguments iszerofunc and simpfunc are passed to LUDecomposition_Simple(). iszerofunc is a callable that returns a boolean indicating if its input is zero, or None if it cannot make the determination. simpfunc is a callable that simplifies its input. The default is simpfunc=None, which indicate that the pivot search algorithm should not attempt to simplify any candidate pivots. If simpfunc fails to simplify its input, then it must return its input instead of a copy.""" if self.rows == 0: return self.one # sympy/matrices/tests/test_matrices.py contains a test that # suggests that the determinant of a 0 x 0 matrix is one, by # convention. lu, row_swaps = self.LUdecomposition_Simple(iszerofunc=iszerofunc, simpfunc=None) # P*A = L*U => det(A) = det(L)*det(U)/det(P) = det(P)*det(U). # Lower triangular factor L encoded in lu has unit diagonal => det(L) = 1. # P is a permutation matrix => det(P) in {-1, 1} => 1/det(P) = det(P). # LUdecomposition_Simple() returns a list of row exchange index pairs, rather # than a permutation matrix, but det(P) = (-1)**len(row_swaps). # Avoid forming the potentially time consuming product of U's diagonal entries # if the product is zero. # Bottom right entry of U is 0 => det(A) = 0. # It may be impossible to determine if this entry of U is zero when it is symbolic. if iszerofunc(lu[lu.rows-1, lu.rows-1]): return self.zero # Compute det(P) det = -self.one if len(row_swaps)%2 else self.one # Compute det(U) by calculating the product of U's diagonal entries. # The upper triangular portion of lu is the upper triangular portion of the # U factor in the LU decomposition. for k in range(lu.rows): det *= lu[k, k] # return det(P)*det(U) return det def _eval_determinant(self): """Assumed to exist by matrix expressions; If we subclass MatrixDeterminant, we can fully evaluate determinants.""" return self.det() def adjugate(self, method="berkowitz"): """Returns the adjugate, or classical adjoint, of a matrix. That is, the transpose of the matrix of cofactors. https://en.wikipedia.org/wiki/Adjugate See Also ======== cofactor_matrix sympy.matrices.common.MatrixCommon.transpose """ return self.cofactor_matrix(method).transpose() def charpoly(self, x='lambda', simplify=_simplify): """Computes characteristic polynomial det(x*I - self) where I is the identity matrix. A PurePoly is returned, so using different variables for ``x`` does not affect the comparison or the polynomials: Examples ======== >>> from sympy import Matrix >>> from sympy.abc import x, y >>> A = Matrix([[1, 3], [2, 0]]) >>> A.charpoly(x) == A.charpoly(y) True Specifying ``x`` is optional; a symbol named ``lambda`` is used by default (which looks good when pretty-printed in unicode): >>> A.charpoly().as_expr() lambda**2 - lambda - 6 And if ``x`` clashes with an existing symbol, underscores will be prepended to the name to make it unique: >>> A = Matrix([[1, 2], [x, 0]]) >>> A.charpoly(x).as_expr() _x**2 - _x - 2*x Whether you pass a symbol or not, the generator can be obtained with the gen attribute since it may not be the same as the symbol that was passed: >>> A.charpoly(x).gen _x >>> A.charpoly(x).gen == x False Notes ===== The Samuelson-Berkowitz algorithm is used to compute the characteristic polynomial efficiently and without any division operations. Thus the characteristic polynomial over any commutative ring without zero divisors can be computed. See Also ======== det """ if not self.is_square: raise NonSquareMatrixError() berk_vector = self._eval_berkowitz_vector() x = _uniquely_named_symbol(x, berk_vector) return PurePoly([simplify(a) for a in berk_vector], x) def cofactor(self, i, j, method="berkowitz"): """Calculate the cofactor of an element. See Also ======== cofactor_matrix minor minor_submatrix """ if not self.is_square or self.rows < 1: raise NonSquareMatrixError() return (-1)**((i + j) % 2) * self.minor(i, j, method) def cofactor_matrix(self, method="berkowitz"): """Return a matrix containing the cofactor of each element. See Also ======== cofactor minor minor_submatrix adjugate """ if not self.is_square or self.rows < 1: raise NonSquareMatrixError() return self._new(self.rows, self.cols, lambda i, j: self.cofactor(i, j, method)) def det(self, method="bareiss", iszerofunc=None): """Computes the determinant of a matrix. Parameters ========== method : string, optional Specifies the algorithm used for computing the matrix determinant. If the matrix is at most 3x3, a hard-coded formula is used and the specified method is ignored. Otherwise, it defaults to ``'bareiss'``. If it is set to ``'bareiss'``, Bareiss' fraction-free algorithm will be used. If it is set to ``'berkowitz'``, Berkowitz' algorithm will be used. Otherwise, if it is set to ``'lu'``, LU decomposition will be used. .. note:: For backward compatibility, legacy keys like "bareis" and "det_lu" can still be used to indicate the corresponding methods. And the keys are also case-insensitive for now. However, it is suggested to use the precise keys for specifying the method. iszerofunc : FunctionType or None, optional If it is set to ``None``, it will be defaulted to ``_iszero`` if the method is set to ``'bareiss'``, and ``_is_zero_after_expand_mul`` if the method is set to ``'lu'``. It can also accept any user-specified zero testing function, if it is formatted as a function which accepts a single symbolic argument and returns ``True`` if it is tested as zero and ``False`` if it tested as non-zero, and also ``None`` if it is undecidable. Returns ======= det : Basic Result of determinant. Raises ====== ValueError If unrecognized keys are given for ``method`` or ``iszerofunc``. NonSquareMatrixError If attempted to calculate determinant from a non-square matrix. """ # sanitize `method` method = method.lower() if method == "bareis": method = "bareiss" if method == "det_lu": method = "lu" if method not in ("bareiss", "berkowitz", "lu"): raise ValueError("Determinant method '%s' unrecognized" % method) if iszerofunc is None: if method == "bareiss": iszerofunc = _is_zero_after_expand_mul elif method == "lu": iszerofunc = _iszero elif not isinstance(iszerofunc, FunctionType): raise ValueError("Zero testing method '%s' unrecognized" % iszerofunc) # if methods were made internal and all determinant calculations # passed through here, then these lines could be factored out of # the method routines if not self.is_square: raise NonSquareMatrixError() n = self.rows if n == 0: return self.one elif n == 1: return self[0,0] elif n == 2: return self[0, 0] * self[1, 1] - self[0, 1] * self[1, 0] elif n == 3: return (self[0, 0] * self[1, 1] * self[2, 2] + self[0, 1] * self[1, 2] * self[2, 0] + self[0, 2] * self[1, 0] * self[2, 1] - self[0, 2] * self[1, 1] * self[2, 0] - self[0, 0] * self[1, 2] * self[2, 1] - self[0, 1] * self[1, 0] * self[2, 2]) if method == "bareiss": return self._eval_det_bareiss(iszerofunc=iszerofunc) elif method == "berkowitz": return self._eval_det_berkowitz() elif method == "lu": return self._eval_det_lu(iszerofunc=iszerofunc) def minor(self, i, j, method="berkowitz"): """Return the (i,j) minor of ``self``. That is, return the determinant of the matrix obtained by deleting the `i`th row and `j`th column from ``self``. See Also ======== minor_submatrix cofactor det """ if not self.is_square or self.rows < 1: raise NonSquareMatrixError() return self.minor_submatrix(i, j).det(method=method) def minor_submatrix(self, i, j): """Return the submatrix obtained by removing the `i`th row and `j`th column from ``self``. See Also ======== minor cofactor """ if i < 0: i += self.rows if j < 0: j += self.cols if not 0 <= i < self.rows or not 0 <= j < self.cols: raise ValueError("`i` and `j` must satisfy 0 <= i < ``self.rows`` " "(%d)" % self.rows + "and 0 <= j < ``self.cols`` (%d)." % self.cols) rows = [a for a in range(self.rows) if a != i] cols = [a for a in range(self.cols) if a != j] return self.extract(rows, cols) class MatrixReductions(MatrixDeterminant): """Provides basic matrix row/column operations. Should not be instantiated directly.""" def _eval_col_op_swap(self, col1, col2): def entry(i, j): if j == col1: return self[i, col2] elif j == col2: return self[i, col1] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_col_op_multiply_col_by_const(self, col, k): def entry(i, j): if j == col: return k * self[i, j] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_col_op_add_multiple_to_other_col(self, col, k, col2): def entry(i, j): if j == col: return self[i, j] + k * self[i, col2] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_row_op_swap(self, row1, row2): def entry(i, j): if i == row1: return self[row2, j] elif i == row2: return self[row1, j] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_row_op_multiply_row_by_const(self, row, k): def entry(i, j): if i == row: return k * self[i, j] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_row_op_add_multiple_to_other_row(self, row, k, row2): def entry(i, j): if i == row: return self[i, j] + k * self[row2, j] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_echelon_form(self, iszerofunc, simpfunc): """Returns (mat, swaps) where ``mat`` is a row-equivalent matrix in echelon form and ``swaps`` is a list of row-swaps performed.""" reduced, pivot_cols, swaps = self._row_reduce(iszerofunc, simpfunc, normalize_last=True, normalize=False, zero_above=False) return reduced, pivot_cols, swaps def _eval_is_echelon(self, iszerofunc): if self.rows <= 0 or self.cols <= 0: return True zeros_below = all(iszerofunc(t) for t in self[1:, 0]) if iszerofunc(self[0, 0]): return zeros_below and self[:, 1:]._eval_is_echelon(iszerofunc) return zeros_below and self[1:, 1:]._eval_is_echelon(iszerofunc) def _eval_rref(self, iszerofunc, simpfunc, normalize_last=True): reduced, pivot_cols, swaps = self._row_reduce(iszerofunc, simpfunc, normalize_last, normalize=True, zero_above=True) return reduced, pivot_cols def _normalize_op_args(self, op, col, k, col1, col2, error_str="col"): """Validate the arguments for a row/column operation. ``error_str`` can be one of "row" or "col" depending on the arguments being parsed.""" if op not in ["n->kn", "n<->m", "n->n+km"]: raise ValueError("Unknown {} operation '{}'. Valid col operations " "are 'n->kn', 'n<->m', 'n->n+km'".format(error_str, op)) # define self_col according to error_str self_cols = self.cols if error_str == 'col' else self.rows # normalize and validate the arguments if op == "n->kn": col = col if col is not None else col1 if col is None or k is None: raise ValueError("For a {0} operation 'n->kn' you must provide the " "kwargs `{0}` and `k`".format(error_str)) if not 0 <= col < self_cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col)) if op == "n<->m": # we need two cols to swap. It doesn't matter # how they were specified, so gather them together and # remove `None` cols = set((col, k, col1, col2)).difference([None]) if len(cols) > 2: # maybe the user left `k` by mistake? cols = set((col, col1, col2)).difference([None]) if len(cols) != 2: raise ValueError("For a {0} operation 'n<->m' you must provide the " "kwargs `{0}1` and `{0}2`".format(error_str)) col1, col2 = cols if not 0 <= col1 < self_cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col1)) if not 0 <= col2 < self_cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col2)) if op == "n->n+km": col = col1 if col is None else col col2 = col1 if col2 is None else col2 if col is None or col2 is None or k is None: raise ValueError("For a {0} operation 'n->n+km' you must provide the " "kwargs `{0}`, `k`, and `{0}2`".format(error_str)) if col == col2: raise ValueError("For a {0} operation 'n->n+km' `{0}` and `{0}2` must " "be different.".format(error_str)) if not 0 <= col < self_cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col)) if not 0 <= col2 < self_cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col2)) return op, col, k, col1, col2 def _permute_complexity_right(self, iszerofunc): """Permute columns with complicated elements as far right as they can go. Since the ``sympy`` row reduction algorithms start on the left, having complexity right-shifted speeds things up. Returns a tuple (mat, perm) where perm is a permutation of the columns to perform to shift the complex columns right, and mat is the permuted matrix.""" def complexity(i): # the complexity of a column will be judged by how many # element's zero-ness cannot be determined return sum(1 if iszerofunc(e) is None else 0 for e in self[:, i]) complex = [(complexity(i), i) for i in range(self.cols)] perm = [j for (i, j) in sorted(complex)] return (self.permute(perm, orientation='cols'), perm) def _row_reduce(self, iszerofunc, simpfunc, normalize_last=True, normalize=True, zero_above=True): """Row reduce ``self`` and return a tuple (rref_matrix, pivot_cols, swaps) where pivot_cols are the pivot columns and swaps are any row swaps that were used in the process of row reduction. Parameters ========== iszerofunc : determines if an entry can be used as a pivot simpfunc : used to simplify elements and test if they are zero if ``iszerofunc`` returns `None` normalize_last : indicates where all row reduction should happen in a fraction-free manner and then the rows are normalized (so that the pivots are 1), or whether rows should be normalized along the way (like the naive row reduction algorithm) normalize : whether pivot rows should be normalized so that the pivot value is 1 zero_above : whether entries above the pivot should be zeroed. If ``zero_above=False``, an echelon matrix will be returned. """ rows, cols = self.rows, self.cols mat = list(self) def get_col(i): return mat[i::cols] def row_swap(i, j): mat[i*cols:(i + 1)*cols], mat[j*cols:(j + 1)*cols] = \ mat[j*cols:(j + 1)*cols], mat[i*cols:(i + 1)*cols] def cross_cancel(a, i, b, j): """Does the row op row[i] = a*row[i] - b*row[j]""" q = (j - i)*cols for p in range(i*cols, (i + 1)*cols): mat[p] = a*mat[p] - b*mat[p + q] piv_row, piv_col = 0, 0 pivot_cols = [] swaps = [] # use a fraction free method to zero above and below each pivot while piv_col < cols and piv_row < rows: pivot_offset, pivot_val, \ assumed_nonzero, newly_determined = _find_reasonable_pivot( get_col(piv_col)[piv_row:], iszerofunc, simpfunc) # _find_reasonable_pivot may have simplified some things # in the process. Let's not let them go to waste for (offset, val) in newly_determined: offset += piv_row mat[offset*cols + piv_col] = val if pivot_offset is None: piv_col += 1 continue pivot_cols.append(piv_col) if pivot_offset != 0: row_swap(piv_row, pivot_offset + piv_row) swaps.append((piv_row, pivot_offset + piv_row)) # if we aren't normalizing last, we normalize # before we zero the other rows if normalize_last is False: i, j = piv_row, piv_col mat[i*cols + j] = self.one for p in range(i*cols + j + 1, (i + 1)*cols): mat[p] = mat[p] / pivot_val # after normalizing, the pivot value is 1 pivot_val = self.one # zero above and below the pivot for row in range(rows): # don't zero our current row if row == piv_row: continue # don't zero above the pivot unless we're told. if zero_above is False and row < piv_row: continue # if we're already a zero, don't do anything val = mat[row*cols + piv_col] if iszerofunc(val): continue cross_cancel(pivot_val, row, val, piv_row) piv_row += 1 # normalize each row if normalize_last is True and normalize is True: for piv_i, piv_j in enumerate(pivot_cols): pivot_val = mat[piv_i*cols + piv_j] mat[piv_i*cols + piv_j] = self.one for p in range(piv_i*cols + piv_j + 1, (piv_i + 1)*cols): mat[p] = mat[p] / pivot_val return self._new(self.rows, self.cols, mat), tuple(pivot_cols), tuple(swaps) def echelon_form(self, iszerofunc=_iszero, simplify=False, with_pivots=False): """Returns a matrix row-equivalent to ``self`` that is in echelon form. Note that echelon form of a matrix is *not* unique, however, properties like the row space and the null space are preserved.""" simpfunc = simplify if isinstance( simplify, FunctionType) else _simplify mat, pivots, swaps = self._eval_echelon_form(iszerofunc, simpfunc) if with_pivots: return mat, pivots return mat def elementary_col_op(self, op="n->kn", col=None, k=None, col1=None, col2=None): """Performs the elementary column operation `op`. `op` may be one of * "n->kn" (column n goes to k*n) * "n<->m" (swap column n and column m) * "n->n+km" (column n goes to column n + k*column m) Parameters ========== op : string; the elementary row operation col : the column to apply the column operation k : the multiple to apply in the column operation col1 : one column of a column swap col2 : second column of a column swap or column "m" in the column operation "n->n+km" """ op, col, k, col1, col2 = self._normalize_op_args(op, col, k, col1, col2, "col") # now that we've validated, we're all good to dispatch if op == "n->kn": return self._eval_col_op_multiply_col_by_const(col, k) if op == "n<->m": return self._eval_col_op_swap(col1, col2) if op == "n->n+km": return self._eval_col_op_add_multiple_to_other_col(col, k, col2) def elementary_row_op(self, op="n->kn", row=None, k=None, row1=None, row2=None): """Performs the elementary row operation `op`. `op` may be one of * "n->kn" (row n goes to k*n) * "n<->m" (swap row n and row m) * "n->n+km" (row n goes to row n + k*row m) Parameters ========== op : string; the elementary row operation row : the row to apply the row operation k : the multiple to apply in the row operation row1 : one row of a row swap row2 : second row of a row swap or row "m" in the row operation "n->n+km" """ op, row, k, row1, row2 = self._normalize_op_args(op, row, k, row1, row2, "row") # now that we've validated, we're all good to dispatch if op == "n->kn": return self._eval_row_op_multiply_row_by_const(row, k) if op == "n<->m": return self._eval_row_op_swap(row1, row2) if op == "n->n+km": return self._eval_row_op_add_multiple_to_other_row(row, k, row2) @property def is_echelon(self, iszerofunc=_iszero): """Returns `True` if the matrix is in echelon form. That is, all rows of zeros are at the bottom, and below each leading non-zero in a row are exclusively zeros.""" return self._eval_is_echelon(iszerofunc) def rank(self, iszerofunc=_iszero, simplify=False): """ Returns the rank of a matrix >>> from sympy import Matrix >>> from sympy.abc import x >>> m = Matrix([[1, 2], [x, 1 - 1/x]]) >>> m.rank() 2 >>> n = Matrix(3, 3, range(1, 10)) >>> n.rank() 2 """ simpfunc = simplify if isinstance( simplify, FunctionType) else _simplify # for small matrices, we compute the rank explicitly # if is_zero on elements doesn't answer the question # for small matrices, we fall back to the full routine. if self.rows <= 0 or self.cols <= 0: return 0 if self.rows <= 1 or self.cols <= 1: zeros = [iszerofunc(x) for x in self] if False in zeros: return 1 if self.rows == 2 and self.cols == 2: zeros = [iszerofunc(x) for x in self] if not False in zeros and not None in zeros: return 0 det = self.det() if iszerofunc(det) and False in zeros: return 1 if iszerofunc(det) is False: return 2 mat, _ = self._permute_complexity_right(iszerofunc=iszerofunc) echelon_form, pivots, swaps = mat._eval_echelon_form(iszerofunc=iszerofunc, simpfunc=simpfunc) return len(pivots) def rref(self, iszerofunc=_iszero, simplify=False, pivots=True, normalize_last=True): """Return reduced row-echelon form of matrix and indices of pivot vars. Parameters ========== iszerofunc : Function A function used for detecting whether an element can act as a pivot. ``lambda x: x.is_zero`` is used by default. simplify : Function A function used to simplify elements when looking for a pivot. By default SymPy's ``simplify`` is used. pivots : True or False If ``True``, a tuple containing the row-reduced matrix and a tuple of pivot columns is returned. If ``False`` just the row-reduced matrix is returned. normalize_last : True or False If ``True``, no pivots are normalized to `1` until after all entries above and below each pivot are zeroed. This means the row reduction algorithm is fraction free until the very last step. If ``False``, the naive row reduction procedure is used where each pivot is normalized to be `1` before row operations are used to zero above and below the pivot. Notes ===== The default value of ``normalize_last=True`` can provide significant speedup to row reduction, especially on matrices with symbols. However, if you depend on the form row reduction algorithm leaves entries of the matrix, set ``noramlize_last=False`` Examples ======== >>> from sympy import Matrix >>> from sympy.abc import x >>> m = Matrix([[1, 2], [x, 1 - 1/x]]) >>> m.rref() (Matrix([ [1, 0], [0, 1]]), (0, 1)) >>> rref_matrix, rref_pivots = m.rref() >>> rref_matrix Matrix([ [1, 0], [0, 1]]) >>> rref_pivots (0, 1) """ simpfunc = simplify if isinstance( simplify, FunctionType) else _simplify ret, pivot_cols = self._eval_rref(iszerofunc=iszerofunc, simpfunc=simpfunc, normalize_last=normalize_last) if pivots: ret = (ret, pivot_cols) return ret class MatrixSubspaces(MatrixReductions): """Provides methods relating to the fundamental subspaces of a matrix. Should not be instantiated directly.""" def columnspace(self, simplify=False): """Returns a list of vectors (Matrix objects) that span columnspace of ``self`` Examples ======== >>> from sympy.matrices import Matrix >>> m = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6]) >>> m Matrix([ [ 1, 3, 0], [-2, -6, 0], [ 3, 9, 6]]) >>> m.columnspace() [Matrix([ [ 1], [-2], [ 3]]), Matrix([ [0], [0], [6]])] See Also ======== nullspace rowspace """ reduced, pivots = self.echelon_form(simplify=simplify, with_pivots=True) return [self.col(i) for i in pivots] def nullspace(self, simplify=False, iszerofunc=_iszero): """Returns list of vectors (Matrix objects) that span nullspace of ``self`` Examples ======== >>> from sympy.matrices import Matrix >>> m = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6]) >>> m Matrix([ [ 1, 3, 0], [-2, -6, 0], [ 3, 9, 6]]) >>> m.nullspace() [Matrix([ [-3], [ 1], [ 0]])] See Also ======== columnspace rowspace """ reduced, pivots = self.rref(iszerofunc=iszerofunc, simplify=simplify) free_vars = [i for i in range(self.cols) if i not in pivots] basis = [] for free_var in free_vars: # for each free variable, we will set it to 1 and all others # to 0. Then, we will use back substitution to solve the system vec = [self.zero]*self.cols vec[free_var] = self.one for piv_row, piv_col in enumerate(pivots): vec[piv_col] -= reduced[piv_row, free_var] basis.append(vec) return [self._new(self.cols, 1, b) for b in basis] def rowspace(self, simplify=False): """Returns a list of vectors that span the row space of ``self``.""" reduced, pivots = self.echelon_form(simplify=simplify, with_pivots=True) return [reduced.row(i) for i in range(len(pivots))] @classmethod def orthogonalize(cls, *vecs, **kwargs): """Apply the Gram-Schmidt orthogonalization procedure to vectors supplied in ``vecs``. Parameters ========== vecs vectors to be made orthogonal normalize : bool If ``True``, return an orthonormal basis. rankcheck : bool If ``True``, the computation does not stop when encountering linearly dependent vectors. If ``False``, it will raise ``ValueError`` when any zero or linearly dependent vectors are found. Returns ======= list List of orthogonal (or orthonormal) basis vectors. See Also ======== MatrixBase.QRdecomposition References ========== .. [1] https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process """ normalize = kwargs.get('normalize', False) rankcheck = kwargs.get('rankcheck', False) def project(a, b): return b * (a.dot(b, hermitian=True) / b.dot(b, hermitian=True)) def perp_to_subspace(vec, basis): """projects vec onto the subspace given by the orthogonal basis ``basis``""" components = [project(vec, b) for b in basis] if len(basis) == 0: return vec return vec - reduce(lambda a, b: a + b, components) ret = [] # make sure we start with a non-zero vector vecs = list(vecs) while len(vecs) > 0 and vecs[0].is_zero: if rankcheck is False: del vecs[0] else: raise ValueError( "GramSchmidt: vector set not linearly independent") for vec in vecs: perp = perp_to_subspace(vec, ret) if not perp.is_zero: ret.append(perp) elif rankcheck is True: raise ValueError( "GramSchmidt: vector set not linearly independent") if normalize: ret = [vec / vec.norm() for vec in ret] return ret class MatrixEigen(MatrixSubspaces): """Provides basic matrix eigenvalue/vector operations. Should not be instantiated directly.""" def diagonalize(self, reals_only=False, sort=False, normalize=False): """ Return (P, D), where D is diagonal and D = P^-1 * M * P where M is current matrix. Parameters ========== reals_only : bool. Whether to throw an error if complex numbers are need to diagonalize. (Default: False) sort : bool. Sort the eigenvalues along the diagonal. (Default: False) normalize : bool. If True, normalize the columns of P. (Default: False) Examples ======== >>> from sympy import Matrix >>> m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2]) >>> m Matrix([ [1, 2, 0], [0, 3, 0], [2, -4, 2]]) >>> (P, D) = m.diagonalize() >>> D Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> P Matrix([ [-1, 0, -1], [ 0, 0, -1], [ 2, 1, 2]]) >>> P.inv() * m * P Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) See Also ======== is_diagonal is_diagonalizable """ if not self.is_square: raise NonSquareMatrixError() if not self.is_diagonalizable(reals_only=reals_only): raise MatrixError("Matrix is not diagonalizable") eigenvecs = self.eigenvects(simplify=True) if sort: eigenvecs = sorted(eigenvecs, key=default_sort_key) p_cols, diag = [], [] for val, mult, basis in eigenvecs: diag += [val] * mult p_cols += basis if normalize: p_cols = [v / v.norm() for v in p_cols] return self.hstack(*p_cols), self.diag(*diag) def eigenvals(self, error_when_incomplete=True, **flags): r"""Return eigenvalues using the Berkowitz agorithm to compute the characteristic polynomial. Parameters ========== error_when_incomplete : bool, optional If it is set to ``True``, it will raise an error if not all eigenvalues are computed. This is caused by ``roots`` not returning a full list of eigenvalues. simplify : bool or function, optional If it is set to ``True``, it attempts to return the most simplified form of expressions returned by applying default simplification method in every routine. If it is set to ``False``, it will skip simplification in this particular routine to save computation resources. If a function is passed to, it will attempt to apply the particular function as simplification method. rational : bool, optional If it is set to ``True``, every floating point numbers would be replaced with rationals before computation. It can solve some issues of ``roots`` routine not working well with floats. multiple : bool, optional If it is set to ``True``, the result will be in the form of a list. If it is set to ``False``, the result will be in the form of a dictionary. Returns ======= eigs : list or dict Eigenvalues of a matrix. The return format would be specified by the key ``multiple``. Raises ====== MatrixError If not enough roots had got computed. NonSquareMatrixError If attempted to compute eigenvalues from a non-square matrix. See Also ======== MatrixDeterminant.charpoly eigenvects Notes ===== Eigenvalues of a matrix `A` can be computed by solving a matrix equation `\det(A - \lambda I) = 0` """ simplify = flags.get('simplify', False) # Collect simplify flag before popped up, to reuse later in the routine. multiple = flags.get('multiple', False) # Collect multiple flag to decide whether return as a dict or list. rational = flags.pop('rational', True) mat = self if not mat: return {} if rational: mat = mat.applyfunc( lambda x: nsimplify(x, rational=True) if x.has(Float) else x) if mat.is_upper or mat.is_lower: if not self.is_square: raise NonSquareMatrixError() diagonal_entries = [mat[i, i] for i in range(mat.rows)] if multiple: eigs = diagonal_entries else: eigs = {} for diagonal_entry in diagonal_entries: if diagonal_entry not in eigs: eigs[diagonal_entry] = 0 eigs[diagonal_entry] += 1 else: flags.pop('simplify', None) # pop unsupported flag if isinstance(simplify, FunctionType): eigs = roots(mat.charpoly(x=Dummy('x'), simplify=simplify), **flags) else: eigs = roots(mat.charpoly(x=Dummy('x')), **flags) # make sure the algebraic multiplicity sums to the # size of the matrix if error_when_incomplete and (sum(eigs.values()) if isinstance(eigs, dict) else len(eigs)) != self.cols: raise MatrixError("Could not compute eigenvalues for {}".format(self)) # Since 'simplify' flag is unsupported in roots() # simplify() function will be applied once at the end of the routine. if not simplify: return eigs if not isinstance(simplify, FunctionType): simplify = _simplify # With 'multiple' flag set true, simplify() will be mapped for the list # Otherwise, simplify() will be mapped for the keys of the dictionary if not multiple: return {simplify(key): value for key, value in eigs.items()} else: return [simplify(value) for value in eigs] def eigenvects(self, error_when_incomplete=True, iszerofunc=_iszero, **flags): """Return list of triples (eigenval, multiplicity, eigenspace). Parameters ========== error_when_incomplete : bool, optional Raise an error when not all eigenvalues are computed. This is caused by ``roots`` not returning a full list of eigenvalues. iszerofunc : function, optional Specifies a zero testing function to be used in ``rref``. Default value is ``_iszero``, which uses SymPy's naive and fast default assumption handler. It can also accept any user-specified zero testing function, if it is formatted as a function which accepts a single symbolic argument and returns ``True`` if it is tested as zero and ``False`` if it is tested as non-zero, and ``None`` if it is undecidable. simplify : bool or function, optional If ``True``, ``as_content_primitive()`` will be used to tidy up normalization artifacts. It will also be used by the ``nullspace`` routine. chop : bool or positive number, optional If the matrix contains any Floats, they will be changed to Rationals for computation purposes, but the answers will be returned after being evaluated with evalf. The ``chop`` flag is passed to ``evalf``. When ``chop=True`` a default precision will be used; a number will be interpreted as the desired level of precision. Returns ======= ret : [(eigenval, multiplicity, eigenspace), ...] A ragged list containing tuples of data obtained by ``eigenvals`` and ``nullspace``. ``eigenspace`` is a list containing the ``eigenvector`` for each eigenvalue. ``eigenvector`` is a vector in the form of a ``Matrix``. e.g. a vector of length 3 is returned as ``Matrix([a_1, a_2, a_3])``. Raises ====== NotImplementedError If failed to compute nullspace. See Also ======== eigenvals MatrixSubspaces.nullspace """ simplify = flags.get('simplify', True) if not isinstance(simplify, FunctionType): simpfunc = _simplify if simplify else lambda x: x primitive = flags.get('simplify', False) chop = flags.pop('chop', False) flags.pop('multiple', None) # remove this if it's there mat = self # roots doesn't like Floats, so replace them with Rationals has_floats = self.has(Float) if has_floats: mat = mat.applyfunc(lambda x: nsimplify(x, rational=True)) def eigenspace(eigenval): """Get a basis for the eigenspace for a particular eigenvalue""" m = mat - self.eye(mat.rows) * eigenval ret = m.nullspace(iszerofunc=iszerofunc) # the nullspace for a real eigenvalue should be # non-trivial. If we didn't find an eigenvector, try once # more a little harder if len(ret) == 0 and simplify: ret = m.nullspace(iszerofunc=iszerofunc, simplify=True) if len(ret) == 0: raise NotImplementedError( "Can't evaluate eigenvector for eigenvalue %s" % eigenval) return ret eigenvals = mat.eigenvals(rational=False, error_when_incomplete=error_when_incomplete, **flags) ret = [(val, mult, eigenspace(val)) for val, mult in sorted(eigenvals.items(), key=default_sort_key)] if primitive: # if the primitive flag is set, get rid of any common # integer denominators def denom_clean(l): from sympy import gcd return [(v / gcd(list(v))).applyfunc(simpfunc) for v in l] ret = [(val, mult, denom_clean(es)) for val, mult, es in ret] if has_floats: # if we had floats to start with, turn the eigenvectors to floats ret = [(val.evalf(chop=chop), mult, [v.evalf(chop=chop) for v in es]) for val, mult, es in ret] return ret def is_diagonalizable(self, reals_only=False, **kwargs): """Returns true if a matrix is diagonalizable. Parameters ========== reals_only : bool. If reals_only=True, determine whether the matrix can be diagonalized without complex numbers. (Default: False) kwargs ====== clear_cache : bool. If True, clear the result of any computations when finished. (Default: True) Examples ======== >>> from sympy import Matrix >>> m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2]) >>> m Matrix([ [1, 2, 0], [0, 3, 0], [2, -4, 2]]) >>> m.is_diagonalizable() True >>> m = Matrix(2, 2, [0, 1, 0, 0]) >>> m Matrix([ [0, 1], [0, 0]]) >>> m.is_diagonalizable() False >>> m = Matrix(2, 2, [0, 1, -1, 0]) >>> m Matrix([ [ 0, 1], [-1, 0]]) >>> m.is_diagonalizable() True >>> m.is_diagonalizable(reals_only=True) False See Also ======== is_diagonal diagonalize """ if 'clear_cache' in kwargs: SymPyDeprecationWarning( feature='clear_cache', deprecated_since_version=1.4, issue=15887 ).warn() if 'clear_subproducts' in kwargs: SymPyDeprecationWarning( feature='clear_subproducts', deprecated_since_version=1.4, issue=15887 ).warn() if not self.is_square: return False if all(e.is_real for e in self) and self.is_symmetric(): # every real symmetric matrix is real diagonalizable return True eigenvecs = self.eigenvects(simplify=True) ret = True for val, mult, basis in eigenvecs: # if we have a complex eigenvalue if reals_only and not val.is_real: ret = False # if the geometric multiplicity doesn't equal the algebraic if mult != len(basis): ret = False return ret def _eval_is_positive_definite(self, method="eigen"): """Algorithm dump for computing positive-definiteness of a matrix. Parameters ========== method : str, optional Specifies the method for computing positive-definiteness of a matrix. If ``'eigen'``, it computes the full eigenvalues and decides if the matrix is positive-definite. If ``'CH'``, it attempts computing the Cholesky decomposition to detect the definitiveness. If ``'LDL'``, it attempts computing the LDL decomposition to detect the definitiveness. """ if self.is_hermitian: if method == 'eigen': eigen = self.eigenvals() args = [x.is_positive for x in eigen.keys()] return fuzzy_and(args) elif method == 'CH': try: self.cholesky(hermitian=True) except NonPositiveDefiniteMatrixError: return False return True elif method == 'LDL': try: self.LDLdecomposition(hermitian=True) except NonPositiveDefiniteMatrixError: return False return True else: raise NotImplementedError() elif self.is_square: M_H = (self + self.H) / 2 return M_H._eval_is_positive_definite(method=method) def is_positive_definite(self): return self._eval_is_positive_definite() def is_positive_semidefinite(self): if self.is_hermitian: eigen = self.eigenvals() args = [x.is_nonnegative for x in eigen.keys()] return fuzzy_and(args) elif self.is_square: return ((self + self.H) / 2).is_positive_semidefinite def is_negative_definite(self): if self.is_hermitian: eigen = self.eigenvals() args = [x.is_negative for x in eigen.keys()] return fuzzy_and(args) elif self.is_square: return ((self + self.H) / 2).is_negative_definite def is_negative_semidefinite(self): if self.is_hermitian: eigen = self.eigenvals() args = [x.is_nonpositive for x in eigen.keys()] return fuzzy_and(args) elif self.is_square: return ((self + self.H) / 2).is_negative_semidefinite def is_indefinite(self): if self.is_hermitian: eigen = self.eigenvals() args1 = [x.is_positive for x in eigen.keys()] any_positive = fuzzy_or(args1) args2 = [x.is_negative for x in eigen.keys()] any_negative = fuzzy_or(args2) return fuzzy_and([any_positive, any_negative]) elif self.is_square: return ((self + self.H) / 2).is_indefinite _doc_positive_definite = \ r"""Finds out the definiteness of a matrix. Examples ======== An example of numeric positive definite matrix: >>> from sympy import Matrix >>> A = Matrix([[1, -2], [-2, 6]]) >>> A.is_positive_definite True >>> A.is_positive_semidefinite True >>> A.is_negative_definite False >>> A.is_negative_semidefinite False >>> A.is_indefinite False An example of numeric negative definite matrix: >>> A = Matrix([[-1, 2], [2, -6]]) >>> A.is_positive_definite False >>> A.is_positive_semidefinite False >>> A.is_negative_definite True >>> A.is_negative_semidefinite True >>> A.is_indefinite False An example of numeric indefinite matrix: >>> A = Matrix([[1, 2], [2, 1]]) >>> A.is_positive_definite False >>> A.is_positive_semidefinite False >>> A.is_negative_definite True >>> A.is_negative_semidefinite True >>> A.is_indefinite False Notes ===== Definitiveness is not very commonly discussed for non-hermitian matrices. However, computing the definitiveness of a matrix can be generalized over any real matrix by taking the symmetric part: `A_S = 1/2 (A + A^{T})` Or over any complex matrix by taking the hermitian part: `A_H = 1/2 (A + A^{H})` And computing the eigenvalues. References ========== .. [1] https://en.wikipedia.org/wiki/Definiteness_of_a_matrix#Eigenvalues .. [2] http://mathworld.wolfram.com/PositiveDefiniteMatrix.html .. [3] Johnson, C. R. "Positive Definite Matrices." Amer. Math. Monthly 77, 259-264 1970. """ is_positive_definite = \ property(fget=is_positive_definite, doc=_doc_positive_definite) is_positive_semidefinite = \ property(fget=is_positive_semidefinite, doc=_doc_positive_definite) is_negative_definite = \ property(fget=is_negative_definite, doc=_doc_positive_definite) is_negative_semidefinite = \ property(fget=is_negative_semidefinite, doc=_doc_positive_definite) is_indefinite = \ property(fget=is_indefinite, doc=_doc_positive_definite) def jordan_form(self, calc_transform=True, **kwargs): """Return ``(P, J)`` where `J` is a Jordan block matrix and `P` is a matrix such that ``self == P*J*P**-1`` Parameters ========== calc_transform : bool If ``False``, then only `J` is returned. chop : bool All matrices are converted to exact types when computing eigenvalues and eigenvectors. As a result, there may be approximation errors. If ``chop==True``, these errors will be truncated. Examples ======== >>> from sympy import Matrix >>> m = Matrix([[ 6, 5, -2, -3], [-3, -1, 3, 3], [ 2, 1, -2, -3], [-1, 1, 5, 5]]) >>> P, J = m.jordan_form() >>> J Matrix([ [2, 1, 0, 0], [0, 2, 0, 0], [0, 0, 2, 1], [0, 0, 0, 2]]) See Also ======== jordan_block """ if not self.is_square: raise NonSquareMatrixError("Only square matrices have Jordan forms") chop = kwargs.pop('chop', False) mat = self has_floats = self.has(Float) if has_floats: try: max_prec = max(term._prec for term in self._mat if isinstance(term, Float)) except ValueError: # if no term in the matrix is explicitly a Float calling max() # will throw a error so setting max_prec to default value of 53 max_prec = 53 # setting minimum max_dps to 15 to prevent loss of precision in # matrix containing non evaluated expressions max_dps = max(prec_to_dps(max_prec), 15) def restore_floats(*args): """If ``has_floats`` is `True`, cast all ``args`` as matrices of floats.""" if has_floats: args = [m.evalf(prec=max_dps, chop=chop) for m in args] if len(args) == 1: return args[0] return args # cache calculations for some speedup mat_cache = {} def eig_mat(val, pow): """Cache computations of ``(self - val*I)**pow`` for quick retrieval""" if (val, pow) in mat_cache: return mat_cache[(val, pow)] if (val, pow - 1) in mat_cache: mat_cache[(val, pow)] = mat_cache[(val, pow - 1)] * mat_cache[(val, 1)] else: mat_cache[(val, pow)] = (mat - val*self.eye(self.rows))**pow return mat_cache[(val, pow)] # helper functions def nullity_chain(val, algebraic_multiplicity): """Calculate the sequence [0, nullity(E), nullity(E**2), ...] until it is constant where ``E = self - val*I``""" # mat.rank() is faster than computing the null space, # so use the rank-nullity theorem cols = self.cols ret = [0] nullity = cols - eig_mat(val, 1).rank() i = 2 while nullity != ret[-1]: ret.append(nullity) if nullity == algebraic_multiplicity: break nullity = cols - eig_mat(val, i).rank() i += 1 # Due to issues like #7146 and #15872, SymPy sometimes # gives the wrong rank. In this case, raise an error # instead of returning an incorrect matrix if nullity < ret[-1] or nullity > algebraic_multiplicity: raise MatrixError( "SymPy had encountered an inconsistent " "result while computing Jordan block: " "{}".format(self)) return ret def blocks_from_nullity_chain(d): """Return a list of the size of each Jordan block. If d_n is the nullity of E**n, then the number of Jordan blocks of size n is 2*d_n - d_(n-1) - d_(n+1)""" # d[0] is always the number of columns, so skip past it mid = [2*d[n] - d[n - 1] - d[n + 1] for n in range(1, len(d) - 1)] # d is assumed to plateau with "d[ len(d) ] == d[-1]", so # 2*d_n - d_(n-1) - d_(n+1) == d_n - d_(n-1) end = [d[-1] - d[-2]] if len(d) > 1 else [d[0]] return mid + end def pick_vec(small_basis, big_basis): """Picks a vector from big_basis that isn't in the subspace spanned by small_basis""" if len(small_basis) == 0: return big_basis[0] for v in big_basis: _, pivots = self.hstack(*(small_basis + [v])).echelon_form(with_pivots=True) if pivots[-1] == len(small_basis): return v # roots doesn't like Floats, so replace them with Rationals if has_floats: mat = mat.applyfunc(lambda x: nsimplify(x, rational=True)) # first calculate the jordan block structure eigs = mat.eigenvals() # make sure that we found all the roots by counting # the algebraic multiplicity if sum(m for m in eigs.values()) != mat.cols: raise MatrixError("Could not compute eigenvalues for {}".format(mat)) # most matrices have distinct eigenvalues # and so are diagonalizable. In this case, don't # do extra work! if len(eigs.keys()) == mat.cols: blocks = list(sorted(eigs.keys(), key=default_sort_key)) jordan_mat = mat.diag(*blocks) if not calc_transform: return restore_floats(jordan_mat) jordan_basis = [eig_mat(eig, 1).nullspace()[0] for eig in blocks] basis_mat = mat.hstack(*jordan_basis) return restore_floats(basis_mat, jordan_mat) block_structure = [] for eig in sorted(eigs.keys(), key=default_sort_key): algebraic_multiplicity = eigs[eig] chain = nullity_chain(eig, algebraic_multiplicity) block_sizes = blocks_from_nullity_chain(chain) # if block_sizes == [a, b, c, ...], then the number of # Jordan blocks of size 1 is a, of size 2 is b, etc. # create an array that has (eig, block_size) with one # entry for each block size_nums = [(i+1, num) for i, num in enumerate(block_sizes)] # we expect larger Jordan blocks to come earlier size_nums.reverse() block_structure.extend( (eig, size) for size, num in size_nums for _ in range(num)) jordan_form_size = sum(size for eig, size in block_structure) if jordan_form_size != self.rows: raise MatrixError( "SymPy had encountered an inconsistent result while " "computing Jordan block. : {}".format(self)) blocks = (mat.jordan_block(size=size, eigenvalue=eig) for eig, size in block_structure) jordan_mat = mat.diag(*blocks) if not calc_transform: return restore_floats(jordan_mat) # For each generalized eigenspace, calculate a basis. # We start by looking for a vector in null( (A - eig*I)**n ) # which isn't in null( (A - eig*I)**(n-1) ) where n is # the size of the Jordan block # # Ideally we'd just loop through block_structure and # compute each generalized eigenspace. However, this # causes a lot of unneeded computation. Instead, we # go through the eigenvalues separately, since we know # their generalized eigenspaces must have bases that # are linearly independent. jordan_basis = [] for eig in sorted(eigs.keys(), key=default_sort_key): eig_basis = [] for block_eig, size in block_structure: if block_eig != eig: continue null_big = (eig_mat(eig, size)).nullspace() null_small = (eig_mat(eig, size - 1)).nullspace() # we want to pick something that is in the big basis # and not the small, but also something that is independent # of any other generalized eigenvectors from a different # generalized eigenspace sharing the same eigenvalue. vec = pick_vec(null_small + eig_basis, null_big) new_vecs = [(eig_mat(eig, i))*vec for i in range(size)] eig_basis.extend(new_vecs) jordan_basis.extend(reversed(new_vecs)) basis_mat = mat.hstack(*jordan_basis) return restore_floats(basis_mat, jordan_mat) def left_eigenvects(self, **flags): """Returns left eigenvectors and eigenvalues. This function returns the list of triples (eigenval, multiplicity, basis) for the left eigenvectors. Options are the same as for eigenvects(), i.e. the ``**flags`` arguments gets passed directly to eigenvects(). Examples ======== >>> from sympy import Matrix >>> M = Matrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]]) >>> M.eigenvects() [(-1, 1, [Matrix([ [-1], [ 1], [ 0]])]), (0, 1, [Matrix([ [ 0], [-1], [ 1]])]), (2, 1, [Matrix([ [2/3], [1/3], [ 1]])])] >>> M.left_eigenvects() [(-1, 1, [Matrix([[-2, 1, 1]])]), (0, 1, [Matrix([[-1, -1, 1]])]), (2, 1, [Matrix([[1, 1, 1]])])] """ eigs = self.transpose().eigenvects(**flags) return [(val, mult, [l.transpose() for l in basis]) for val, mult, basis in eigs] def singular_values(self): """Compute the singular values of a Matrix Examples ======== >>> from sympy import Matrix, Symbol >>> x = Symbol('x', real=True) >>> A = Matrix([[0, 1, 0], [0, x, 0], [-1, 0, 0]]) >>> A.singular_values() [sqrt(x**2 + 1), 1, 0] See Also ======== condition_number """ mat = self if self.rows >= self.cols: valmultpairs = (mat.H * mat).eigenvals() else: valmultpairs = (mat * mat.H).eigenvals() # Expands result from eigenvals into a simple list vals = [] for k, v in valmultpairs.items(): vals += [sqrt(k)] * v # dangerous! same k in several spots! # Pad with zeros if singular values are computed in reverse way, # to give consistent format. if len(vals) < self.cols: vals += [self.zero] * (self.cols - len(vals)) # sort them in descending order vals.sort(reverse=True, key=default_sort_key) return vals class MatrixCalculus(MatrixCommon): """Provides calculus-related matrix operations.""" def diff(self, *args, **kwargs): """Calculate the derivative of each element in the matrix. ``args`` will be passed to the ``integrate`` function. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.diff(x) Matrix([ [1, 0], [0, 0]]) See Also ======== integrate limit """ # XXX this should be handled here rather than in Derivative from sympy import Derivative kwargs.setdefault('evaluate', True) deriv = Derivative(self, *args, evaluate=True) if not isinstance(self, Basic): return deriv.as_mutable() else: return deriv def _eval_derivative(self, arg): return self.applyfunc(lambda x: x.diff(arg)) def _accept_eval_derivative(self, s): return s._visit_eval_derivative_array(self) def _visit_eval_derivative_scalar(self, base): # Types are (base: scalar, self: matrix) return self.applyfunc(lambda x: base.diff(x)) def _visit_eval_derivative_array(self, base): # Types are (base: array/matrix, self: matrix) from sympy import derive_by_array return derive_by_array(base, self) def integrate(self, *args): """Integrate each element of the matrix. ``args`` will be passed to the ``integrate`` function. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.integrate((x, )) Matrix([ [x**2/2, x*y], [ x, 0]]) >>> M.integrate((x, 0, 2)) Matrix([ [2, 2*y], [2, 0]]) See Also ======== limit diff """ return self.applyfunc(lambda x: x.integrate(*args)) def jacobian(self, X): """Calculates the Jacobian matrix (derivative of a vector-valued function). Parameters ========== ``self`` : vector of expressions representing functions f_i(x_1, ..., x_n). X : set of x_i's in order, it can be a list or a Matrix Both ``self`` and X can be a row or a column matrix in any order (i.e., jacobian() should always work). Examples ======== >>> from sympy import sin, cos, Matrix >>> from sympy.abc import rho, phi >>> X = Matrix([rho*cos(phi), rho*sin(phi), rho**2]) >>> Y = Matrix([rho, phi]) >>> X.jacobian(Y) Matrix([ [cos(phi), -rho*sin(phi)], [sin(phi), rho*cos(phi)], [ 2*rho, 0]]) >>> X = Matrix([rho*cos(phi), rho*sin(phi)]) >>> X.jacobian(Y) Matrix([ [cos(phi), -rho*sin(phi)], [sin(phi), rho*cos(phi)]]) See Also ======== hessian wronskian """ if not isinstance(X, MatrixBase): X = self._new(X) # Both X and ``self`` can be a row or a column matrix, so we need to make # sure all valid combinations work, but everything else fails: if self.shape[0] == 1: m = self.shape[1] elif self.shape[1] == 1: m = self.shape[0] else: raise TypeError("``self`` must be a row or a column matrix") if X.shape[0] == 1: n = X.shape[1] elif X.shape[1] == 1: n = X.shape[0] else: raise TypeError("X must be a row or a column matrix") # m is the number of functions and n is the number of variables # computing the Jacobian is now easy: return self._new(m, n, lambda j, i: self[j].diff(X[i])) def limit(self, *args): """Calculate the limit of each element in the matrix. ``args`` will be passed to the ``limit`` function. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.limit(x, 2) Matrix([ [2, y], [1, 0]]) See Also ======== integrate diff """ return self.applyfunc(lambda x: x.limit(*args)) # https://github.com/sympy/sympy/pull/12854 class MatrixDeprecated(MatrixCommon): """A class to house deprecated matrix methods.""" def _legacy_array_dot(self, b): """Compatibility function for deprecated behavior of ``matrix.dot(vector)`` """ from .dense import Matrix if not isinstance(b, MatrixBase): if is_sequence(b): if len(b) != self.cols and len(b) != self.rows: raise ShapeError( "Dimensions incorrect for dot product: %s, %s" % ( self.shape, len(b))) return self.dot(Matrix(b)) else: raise TypeError( "`b` must be an ordered iterable or Matrix, not %s." % type(b)) mat = self if mat.cols == b.rows: if b.cols != 1: mat = mat.T b = b.T prod = flatten((mat * b).tolist()) return prod if mat.cols == b.cols: return mat.dot(b.T) elif mat.rows == b.rows: return mat.T.dot(b) else: raise ShapeError("Dimensions incorrect for dot product: %s, %s" % ( self.shape, b.shape)) def berkowitz_charpoly(self, x=Dummy('lambda'), simplify=_simplify): return self.charpoly(x=x) def berkowitz_det(self): """Computes determinant using Berkowitz method. See Also ======== det berkowitz """ return self.det(method='berkowitz') def berkowitz_eigenvals(self, **flags): """Computes eigenvalues of a Matrix using Berkowitz method. See Also ======== berkowitz """ return self.eigenvals(**flags) def berkowitz_minors(self): """Computes principal minors using Berkowitz method. See Also ======== berkowitz """ sign, minors = self.one, [] for poly in self.berkowitz(): minors.append(sign * poly[-1]) sign = -sign return tuple(minors) def berkowitz(self): from sympy.matrices import zeros berk = ((1,),) if not self: return berk if not self.is_square: raise NonSquareMatrixError() A, N = self, self.rows transforms = [0] * (N - 1) for n in range(N, 1, -1): T, k = zeros(n + 1, n), n - 1 R, C = -A[k, :k], A[:k, k] A, a = A[:k, :k], -A[k, k] items = [C] for i in range(0, n - 2): items.append(A * items[i]) for i, B in enumerate(items): items[i] = (R * B)[0, 0] items = [self.one, a] + items for i in range(n): T[i:, i] = items[:n - i + 1] transforms[k - 1] = T polys = [self._new([self.one, -A[0, 0]])] for i, T in enumerate(transforms): polys.append(T * polys[i]) return berk + tuple(map(tuple, polys)) def cofactorMatrix(self, method="berkowitz"): return self.cofactor_matrix(method=method) def det_bareis(self): return self.det(method='bareiss') def det_bareiss(self): """Compute matrix determinant using Bareiss' fraction-free algorithm which is an extension of the well known Gaussian elimination method. This approach is best suited for dense symbolic matrices and will result in a determinant with minimal number of fractions. It means that less term rewriting is needed on resulting formulae. TODO: Implement algorithm for sparse matrices (SFF), http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps. See Also ======== det berkowitz_det """ return self.det(method='bareiss') def det_LU_decomposition(self): """Compute matrix determinant using LU decomposition Note that this method fails if the LU decomposition itself fails. In particular, if the matrix has no inverse this method will fail. TODO: Implement algorithm for sparse matrices (SFF), http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps. See Also ======== det det_bareiss berkowitz_det """ return self.det(method='lu') def jordan_cell(self, eigenval, n): return self.jordan_block(size=n, eigenvalue=eigenval) def jordan_cells(self, calc_transformation=True): P, J = self.jordan_form() return P, J.get_diag_blocks() def minorEntry(self, i, j, method="berkowitz"): return self.minor(i, j, method=method) def minorMatrix(self, i, j): return self.minor_submatrix(i, j) def permuteBkwd(self, perm): """Permute the rows of the matrix with the given permutation in reverse.""" return self.permute_rows(perm, direction='backward') def permuteFwd(self, perm): """Permute the rows of the matrix with the given permutation.""" return self.permute_rows(perm, direction='forward') class MatrixBase(MatrixDeprecated, MatrixCalculus, MatrixEigen, MatrixCommon): """Base class for matrix objects.""" # Added just for numpy compatibility __array_priority__ = 11 is_Matrix = True _class_priority = 3 _sympify = staticmethod(sympify) zero = S.Zero one = S.One __hash__ = None # Mutable # Defined here the same as on Basic. # We don't define _repr_png_ here because it would add a large amount of # data to any notebook containing SymPy expressions, without adding # anything useful to the notebook. It can still enabled manually, e.g., # for the qtconsole, with init_printing(). def _repr_latex_(self): """ IPython/Jupyter LaTeX printing To change the behavior of this (e.g., pass in some settings to LaTeX), use init_printing(). init_printing() will also enable LaTeX printing for built in numeric types like ints and container types that contain SymPy objects, like lists and dictionaries of expressions. """ from sympy.printing.latex import latex s = latex(self, mode='plain') return "$\\displaystyle %s$" % s _repr_latex_orig = _repr_latex_ def __array__(self, dtype=object): from .dense import matrix2numpy return matrix2numpy(self, dtype=dtype) def __getattr__(self, attr): if attr in ('diff', 'integrate', 'limit'): def doit(*args): item_doit = lambda item: getattr(item, attr)(*args) return self.applyfunc(item_doit) return doit else: raise AttributeError( "%s has no attribute %s." % (self.__class__.__name__, attr)) def __len__(self): """Return the number of elements of ``self``. Implemented mainly so bool(Matrix()) == False. """ return self.rows * self.cols def __mathml__(self): mml = "" for i in range(self.rows): mml += "<matrixrow>" for j in range(self.cols): mml += self[i, j].__mathml__() mml += "</matrixrow>" return "<matrix>" + mml + "</matrix>" # needed for python 2 compatibility def __ne__(self, other): return not self == other def _diagonal_solve(self, rhs): """Helper function of function diagonal_solve, without the error checks, to be used privately. """ return self._new( rhs.rows, rhs.cols, lambda i, j: rhs[i, j] / self[i, i]) def _matrix_pow_by_jordan_blocks(self, num): from sympy.matrices import diag, MutableMatrix from sympy import binomial def jordan_cell_power(jc, n): N = jc.shape[0] l = jc[0,0] if l.is_zero: if N == 1 and n.is_nonnegative: jc[0,0] = l**n elif not (n.is_integer and n.is_nonnegative): raise NonInvertibleMatrixError("Non-invertible matrix can only be raised to a nonnegative integer") else: for i in range(N): jc[0,i] = KroneckerDelta(i, n) else: for i in range(N): bn = binomial(n, i) if isinstance(bn, binomial): bn = bn._eval_expand_func() jc[0,i] = l**(n-i)*bn for i in range(N): for j in range(1, N-i): jc[j,i+j] = jc [j-1,i+j-1] P, J = self.jordan_form() jordan_cells = J.get_diag_blocks() # Make sure jordan_cells matrices are mutable: jordan_cells = [MutableMatrix(j) for j in jordan_cells] for j in jordan_cells: jordan_cell_power(j, num) return self._new(P*diag(*jordan_cells)*P.inv()) def __repr__(self): return sstr(self) def __str__(self): if self.rows == 0 or self.cols == 0: return 'Matrix(%s, %s, [])' % (self.rows, self.cols) return "Matrix(%s)" % str(self.tolist()) def _format_str(self, printer=None): if not printer: from sympy.printing.str import StrPrinter printer = StrPrinter() # Handle zero dimensions: if self.rows == 0 or self.cols == 0: return 'Matrix(%s, %s, [])' % (self.rows, self.cols) if self.rows == 1: return "Matrix([%s])" % self.table(printer, rowsep=',\n') return "Matrix([\n%s])" % self.table(printer, rowsep=',\n') @classmethod def irregular(cls, ntop, *matrices, **kwargs): """Return a matrix filled by the given matrices which are listed in order of appearance from left to right, top to bottom as they first appear in the matrix. They must fill the matrix completely. Examples ======== >>> from sympy import ones, Matrix >>> Matrix.irregular(3, ones(2,1), ones(3,3)*2, ones(2,2)*3, ... ones(1,1)*4, ones(2,2)*5, ones(1,2)*6, ones(1,2)*7) Matrix([ [1, 2, 2, 2, 3, 3], [1, 2, 2, 2, 3, 3], [4, 2, 2, 2, 5, 5], [6, 6, 7, 7, 5, 5]]) """ from sympy.core.compatibility import as_int ntop = as_int(ntop) # make sure we are working with explicit matrices b = [i.as_explicit() if hasattr(i, 'as_explicit') else i for i in matrices] q = list(range(len(b))) dat = [i.rows for i in b] active = [q.pop(0) for _ in range(ntop)] cols = sum([b[i].cols for i in active]) rows = [] while any(dat): r = [] for a, j in enumerate(active): r.extend(b[j][-dat[j], :]) dat[j] -= 1 if dat[j] == 0 and q: active[a] = q.pop(0) if len(r) != cols: raise ValueError(filldedent(''' Matrices provided do not appear to fill the space completely.''')) rows.append(r) return cls._new(rows) @classmethod def _handle_creation_inputs(cls, *args, **kwargs): """Return the number of rows, cols and flat matrix elements. Examples ======== >>> from sympy import Matrix, I Matrix can be constructed as follows: * from a nested list of iterables >>> Matrix( ((1, 2+I), (3, 4)) ) Matrix([ [1, 2 + I], [3, 4]]) * from un-nested iterable (interpreted as a column) >>> Matrix( [1, 2] ) Matrix([ [1], [2]]) * from un-nested iterable with dimensions >>> Matrix(1, 2, [1, 2] ) Matrix([[1, 2]]) * from no arguments (a 0 x 0 matrix) >>> Matrix() Matrix(0, 0, []) * from a rule >>> Matrix(2, 2, lambda i, j: i/(j + 1) ) Matrix([ [0, 0], [1, 1/2]]) See Also ======== irregular - filling a matrix with irregular blocks """ from sympy.matrices.sparse import SparseMatrix from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.matrices.expressions.blockmatrix import BlockMatrix from sympy.utilities.iterables import reshape flat_list = None if len(args) == 1: # Matrix(SparseMatrix(...)) if isinstance(args[0], SparseMatrix): return args[0].rows, args[0].cols, flatten(args[0].tolist()) # Matrix(Matrix(...)) elif isinstance(args[0], MatrixBase): return args[0].rows, args[0].cols, args[0]._mat # Matrix(MatrixSymbol('X', 2, 2)) elif isinstance(args[0], Basic) and args[0].is_Matrix: return args[0].rows, args[0].cols, args[0].as_explicit()._mat # Matrix(numpy.ones((2, 2))) elif hasattr(args[0], "__array__"): # NumPy array or matrix or some other object that implements # __array__. So let's first use this method to get a # numpy.array() and then make a python list out of it. arr = args[0].__array__() if len(arr.shape) == 2: rows, cols = arr.shape[0], arr.shape[1] flat_list = [cls._sympify(i) for i in arr.ravel()] return rows, cols, flat_list elif len(arr.shape) == 1: rows, cols = arr.shape[0], 1 flat_list = [cls.zero] * rows for i in range(len(arr)): flat_list[i] = cls._sympify(arr[i]) return rows, cols, flat_list else: raise NotImplementedError( "SymPy supports just 1D and 2D matrices") # Matrix([1, 2, 3]) or Matrix([[1, 2], [3, 4]]) elif is_sequence(args[0]) \ and not isinstance(args[0], DeferredVector): dat = list(args[0]) ismat = lambda i: isinstance(i, MatrixBase) and ( evaluate or isinstance(i, BlockMatrix) or isinstance(i, MatrixSymbol)) raw = lambda i: is_sequence(i) and not ismat(i) evaluate = kwargs.get('evaluate', True) if evaluate: def do(x): # make Block and Symbol explicit if isinstance(x, (list, tuple)): return type(x)([do(i) for i in x]) if isinstance(x, BlockMatrix) or \ isinstance(x, MatrixSymbol) and \ all(_.is_Integer for _ in x.shape): return x.as_explicit() return x dat = do(dat) if dat == [] or dat == [[]]: rows = cols = 0 flat_list = [] elif not any(raw(i) or ismat(i) for i in dat): # a column as a list of values flat_list = [cls._sympify(i) for i in dat] rows = len(flat_list) cols = 1 if rows else 0 elif evaluate and all(ismat(i) for i in dat): # a column as a list of matrices ncol = set(i.cols for i in dat if any(i.shape)) if ncol: if len(ncol) != 1: raise ValueError('mismatched dimensions') flat_list = [_ for i in dat for r in i.tolist() for _ in r] cols = ncol.pop() rows = len(flat_list)//cols else: rows = cols = 0 flat_list = [] elif evaluate and any(ismat(i) for i in dat): ncol = set() flat_list = [] for i in dat: if ismat(i): flat_list.extend( [k for j in i.tolist() for k in j]) if any(i.shape): ncol.add(i.cols) elif raw(i): if i: ncol.add(len(i)) flat_list.extend(i) else: ncol.add(1) flat_list.append(i) if len(ncol) > 1: raise ValueError('mismatched dimensions') cols = ncol.pop() rows = len(flat_list)//cols else: # list of lists; each sublist is a logical row # which might consist of many rows if the values in # the row are matrices flat_list = [] ncol = set() rows = cols = 0 for row in dat: if not is_sequence(row) and \ not getattr(row, 'is_Matrix', False): raise ValueError('expecting list of lists') if not row: continue if evaluate and all(ismat(i) for i in row): r, c, flatT = cls._handle_creation_inputs( [i.T for i in row]) T = reshape(flatT, [c]) flat = [T[i][j] for j in range(c) for i in range(r)] r, c = c, r else: r = 1 if getattr(row, 'is_Matrix', False): c = 1 flat = [row] else: c = len(row) flat = [cls._sympify(i) for i in row] ncol.add(c) if len(ncol) > 1: raise ValueError('mismatched dimensions') flat_list.extend(flat) rows += r cols = ncol.pop() if ncol else 0 elif len(args) == 3: rows = as_int(args[0]) cols = as_int(args[1]) if rows < 0 or cols < 0: raise ValueError("Cannot create a {} x {} matrix. " "Both dimensions must be positive".format(rows, cols)) # Matrix(2, 2, lambda i, j: i+j) if len(args) == 3 and isinstance(args[2], Callable): op = args[2] flat_list = [] for i in range(rows): flat_list.extend( [cls._sympify(op(cls._sympify(i), cls._sympify(j))) for j in range(cols)]) # Matrix(2, 2, [1, 2, 3, 4]) elif len(args) == 3 and is_sequence(args[2]): flat_list = args[2] if len(flat_list) != rows * cols: raise ValueError( 'List length should be equal to rows*columns') flat_list = [cls._sympify(i) for i in flat_list] # Matrix() elif len(args) == 0: # Empty Matrix rows = cols = 0 flat_list = [] if flat_list is None: raise TypeError(filldedent(''' Data type not understood; expecting list of lists or lists of values.''')) return rows, cols, flat_list def _setitem(self, key, value): """Helper to set value at location given by key. Examples ======== >>> from sympy import Matrix, I, zeros, ones >>> m = Matrix(((1, 2+I), (3, 4))) >>> m Matrix([ [1, 2 + I], [3, 4]]) >>> m[1, 0] = 9 >>> m Matrix([ [1, 2 + I], [9, 4]]) >>> m[1, 0] = [[0, 1]] To replace row r you assign to position r*m where m is the number of columns: >>> M = zeros(4) >>> m = M.cols >>> M[3*m] = ones(1, m)*2; M Matrix([ [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [2, 2, 2, 2]]) And to replace column c you can assign to position c: >>> M[2] = ones(m, 1)*4; M Matrix([ [0, 0, 4, 0], [0, 0, 4, 0], [0, 0, 4, 0], [2, 2, 4, 2]]) """ from .dense import Matrix is_slice = isinstance(key, slice) i, j = key = self.key2ij(key) is_mat = isinstance(value, MatrixBase) if type(i) is slice or type(j) is slice: if is_mat: self.copyin_matrix(key, value) return if not isinstance(value, Expr) and is_sequence(value): self.copyin_list(key, value) return raise ValueError('unexpected value: %s' % value) else: if (not is_mat and not isinstance(value, Basic) and is_sequence(value)): value = Matrix(value) is_mat = True if is_mat: if is_slice: key = (slice(*divmod(i, self.cols)), slice(*divmod(j, self.cols))) else: key = (slice(i, i + value.rows), slice(j, j + value.cols)) self.copyin_matrix(key, value) else: return i, j, self._sympify(value) return def add(self, b): """Return self + b """ return self + b def cholesky_solve(self, rhs): """Solves ``Ax = B`` using Cholesky decomposition, for a general square non-singular matrix. For a non-square matrix with rows > cols, the least squares solution is returned. See Also ======== lower_triangular_solve upper_triangular_solve gauss_jordan_solve diagonal_solve LDLsolve LUsolve QRsolve pinv_solve """ hermitian = True if self.is_symmetric(): hermitian = False L = self._cholesky(hermitian=hermitian) elif self.is_hermitian: L = self._cholesky(hermitian=hermitian) elif self.rows >= self.cols: L = (self.H * self)._cholesky(hermitian=hermitian) rhs = self.H * rhs else: raise NotImplementedError('Under-determined System. ' 'Try M.gauss_jordan_solve(rhs)') Y = L._lower_triangular_solve(rhs) if hermitian: return (L.H)._upper_triangular_solve(Y) else: return (L.T)._upper_triangular_solve(Y) def cholesky(self, hermitian=True): """Returns the Cholesky-type decomposition L of a matrix A such that L * L.H == A if hermitian flag is True, or L * L.T == A if hermitian is False. A must be a Hermitian positive-definite matrix if hermitian is True, or a symmetric matrix if it is False. Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) >>> A.cholesky() Matrix([ [ 5, 0, 0], [ 3, 3, 0], [-1, 1, 3]]) >>> A.cholesky() * A.cholesky().T Matrix([ [25, 15, -5], [15, 18, 0], [-5, 0, 11]]) The matrix can have complex entries: >>> from sympy import I >>> A = Matrix(((9, 3*I), (-3*I, 5))) >>> A.cholesky() Matrix([ [ 3, 0], [-I, 2]]) >>> A.cholesky() * A.cholesky().H Matrix([ [ 9, 3*I], [-3*I, 5]]) Non-hermitian Cholesky-type decomposition may be useful when the matrix is not positive-definite. >>> A = Matrix([[1, 2], [2, 1]]) >>> L = A.cholesky(hermitian=False) >>> L Matrix([ [1, 0], [2, sqrt(3)*I]]) >>> L*L.T == A True See Also ======== LDLdecomposition LUdecomposition QRdecomposition """ if not self.is_square: raise NonSquareMatrixError("Matrix must be square.") if hermitian and not self.is_hermitian: raise ValueError("Matrix must be Hermitian.") if not hermitian and not self.is_symmetric(): raise ValueError("Matrix must be symmetric.") return self._cholesky(hermitian=hermitian) def condition_number(self): """Returns the condition number of a matrix. This is the maximum singular value divided by the minimum singular value Examples ======== >>> from sympy import Matrix, S >>> A = Matrix([[1, 0, 0], [0, 10, 0], [0, 0, S.One/10]]) >>> A.condition_number() 100 See Also ======== singular_values """ if not self: return self.zero singularvalues = self.singular_values() return Max(*singularvalues) / Min(*singularvalues) def copy(self): """ Returns the copy of a matrix. Examples ======== >>> from sympy import Matrix >>> A = Matrix(2, 2, [1, 2, 3, 4]) >>> A.copy() Matrix([ [1, 2], [3, 4]]) """ return self._new(self.rows, self.cols, self._mat) def cross(self, b): r""" Return the cross product of ``self`` and ``b`` relaxing the condition of compatible dimensions: if each has 3 elements, a matrix of the same type and shape as ``self`` will be returned. If ``b`` has the same shape as ``self`` then common identities for the cross product (like `a \times b = - b \times a`) will hold. Parameters ========== b : 3x1 or 1x3 Matrix See Also ======== dot multiply multiply_elementwise """ if not is_sequence(b): raise TypeError( "`b` must be an ordered iterable or Matrix, not %s." % type(b)) if not (self.rows * self.cols == b.rows * b.cols == 3): raise ShapeError("Dimensions incorrect for cross product: %s x %s" % ((self.rows, self.cols), (b.rows, b.cols))) else: return self._new(self.rows, self.cols, ( (self[1] * b[2] - self[2] * b[1]), (self[2] * b[0] - self[0] * b[2]), (self[0] * b[1] - self[1] * b[0]))) @property def D(self): """Return Dirac conjugate (if ``self.rows == 4``). Examples ======== >>> from sympy import Matrix, I, eye >>> m = Matrix((0, 1 + I, 2, 3)) >>> m.D Matrix([[0, 1 - I, -2, -3]]) >>> m = (eye(4) + I*eye(4)) >>> m[0, 3] = 2 >>> m.D Matrix([ [1 - I, 0, 0, 0], [ 0, 1 - I, 0, 0], [ 0, 0, -1 + I, 0], [ 2, 0, 0, -1 + I]]) If the matrix does not have 4 rows an AttributeError will be raised because this property is only defined for matrices with 4 rows. >>> Matrix(eye(2)).D Traceback (most recent call last): ... AttributeError: Matrix has no attribute D. See Also ======== sympy.matrices.common.MatrixCommon.conjugate: By-element conjugation sympy.matrices.common.MatrixCommon.H: Hermite conjugation """ from sympy.physics.matrices import mgamma if self.rows != 4: # In Python 3.2, properties can only return an AttributeError # so we can't raise a ShapeError -- see commit which added the # first line of this inline comment. Also, there is no need # for a message since MatrixBase will raise the AttributeError raise AttributeError return self.H * mgamma(0) def diagonal_solve(self, rhs): """Solves ``Ax = B`` efficiently, where A is a diagonal Matrix, with non-zero diagonal entries. Examples ======== >>> from sympy.matrices import Matrix, eye >>> A = eye(2)*2 >>> B = Matrix([[1, 2], [3, 4]]) >>> A.diagonal_solve(B) == B/2 True See Also ======== lower_triangular_solve upper_triangular_solve gauss_jordan_solve cholesky_solve LDLsolve LUsolve QRsolve pinv_solve """ if not self.is_diagonal(): raise TypeError("Matrix should be diagonal") if rhs.rows != self.rows: raise TypeError("Size mis-match") return self._diagonal_solve(rhs) def dot(self, b, hermitian=None, conjugate_convention=None): """Return the dot or inner product of two vectors of equal length. Here ``self`` must be a ``Matrix`` of size 1 x n or n x 1, and ``b`` must be either a matrix of size 1 x n, n x 1, or a list/tuple of length n. A scalar is returned. By default, ``dot`` does not conjugate ``self`` or ``b``, even if there are complex entries. Set ``hermitian=True`` (and optionally a ``conjugate_convention``) to compute the hermitian inner product. Possible kwargs are ``hermitian`` and ``conjugate_convention``. If ``conjugate_convention`` is ``"left"``, ``"math"`` or ``"maths"``, the conjugate of the first vector (``self``) is used. If ``"right"`` or ``"physics"`` is specified, the conjugate of the second vector ``b`` is used. Examples ======== >>> from sympy import Matrix >>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> v = Matrix([1, 1, 1]) >>> M.row(0).dot(v) 6 >>> M.col(0).dot(v) 12 >>> v = [3, 2, 1] >>> M.row(0).dot(v) 10 >>> from sympy import I >>> q = Matrix([1*I, 1*I, 1*I]) >>> q.dot(q, hermitian=False) -3 >>> q.dot(q, hermitian=True) 3 >>> q1 = Matrix([1, 1, 1*I]) >>> q.dot(q1, hermitian=True, conjugate_convention="maths") 1 - 2*I >>> q.dot(q1, hermitian=True, conjugate_convention="physics") 1 + 2*I See Also ======== cross multiply multiply_elementwise """ from .dense import Matrix if not isinstance(b, MatrixBase): if is_sequence(b): if len(b) != self.cols and len(b) != self.rows: raise ShapeError( "Dimensions incorrect for dot product: %s, %s" % ( self.shape, len(b))) return self.dot(Matrix(b)) else: raise TypeError( "`b` must be an ordered iterable or Matrix, not %s." % type(b)) mat = self if (1 not in mat.shape) or (1 not in b.shape) : SymPyDeprecationWarning( feature="Dot product of non row/column vectors", issue=13815, deprecated_since_version="1.2", useinstead="* to take matrix products").warn() return mat._legacy_array_dot(b) if len(mat) != len(b): raise ShapeError("Dimensions incorrect for dot product: %s, %s" % (self.shape, b.shape)) n = len(mat) if mat.shape != (1, n): mat = mat.reshape(1, n) if b.shape != (n, 1): b = b.reshape(n, 1) # Now ``mat`` is a row vector and ``b`` is a column vector. # If it so happens that only conjugate_convention is passed # then automatically set hermitian to True. If only hermitian # is true but no conjugate_convention is not passed then # automatically set it to ``"maths"`` if conjugate_convention is not None and hermitian is None: hermitian = True if hermitian and conjugate_convention is None: conjugate_convention = "maths" if hermitian == True: if conjugate_convention in ("maths", "left", "math"): mat = mat.conjugate() elif conjugate_convention in ("physics", "right"): b = b.conjugate() else: raise ValueError("Unknown conjugate_convention was entered." " conjugate_convention must be one of the" " following: math, maths, left, physics or right.") return (mat * b)[0] def dual(self): """Returns the dual of a matrix, which is: ``(1/2)*levicivita(i, j, k, l)*M(k, l)`` summed over indices `k` and `l` Since the levicivita method is anti_symmetric for any pairwise exchange of indices, the dual of a symmetric matrix is the zero matrix. Strictly speaking the dual defined here assumes that the 'matrix' `M` is a contravariant anti_symmetric second rank tensor, so that the dual is a covariant second rank tensor. """ from sympy import LeviCivita from sympy.matrices import zeros M, n = self[:, :], self.rows work = zeros(n) if self.is_symmetric(): return work for i in range(1, n): for j in range(1, n): acum = 0 for k in range(1, n): acum += LeviCivita(i, j, 0, k) * M[0, k] work[i, j] = acum work[j, i] = -acum for l in range(1, n): acum = 0 for a in range(1, n): for b in range(1, n): acum += LeviCivita(0, l, a, b) * M[a, b] acum /= 2 work[0, l] = -acum work[l, 0] = acum return work def _eval_matrix_exp_jblock(self): """A helper function to compute an exponential of a Jordan block matrix Examples ======== >>> from sympy import Symbol, Matrix >>> l = Symbol('lamda') A trivial example of 1*1 Jordan block: >>> m = Matrix.jordan_block(1, l) >>> m._eval_matrix_exp_jblock() Matrix([[exp(lamda)]]) An example of 3*3 Jordan block: >>> m = Matrix.jordan_block(3, l) >>> m._eval_matrix_exp_jblock() Matrix([ [exp(lamda), exp(lamda), exp(lamda)/2], [ 0, exp(lamda), exp(lamda)], [ 0, 0, exp(lamda)]]) References ========== .. [1] https://en.wikipedia.org/wiki/Matrix_function#Jordan_decomposition """ size = self.rows l = self[0, 0] exp_l = exp(l) bands = {i: exp_l / factorial(i) for i in range(size)} from .sparsetools import banded return self.__class__(banded(size, bands)) def exp(self): """Return the exponential of a square matrix Examples ======== >>> from sympy import Symbol, Matrix >>> t = Symbol('t') >>> m = Matrix([[0, 1], [-1, 0]]) * t >>> m.exp() Matrix([ [ exp(I*t)/2 + exp(-I*t)/2, -I*exp(I*t)/2 + I*exp(-I*t)/2], [I*exp(I*t)/2 - I*exp(-I*t)/2, exp(I*t)/2 + exp(-I*t)/2]]) """ if not self.is_square: raise NonSquareMatrixError( "Exponentiation is valid only for square matrices") try: P, J = self.jordan_form() cells = J.get_diag_blocks() except MatrixError: raise NotImplementedError( "Exponentiation is implemented only for matrices for which the Jordan normal form can be computed") blocks = [cell._eval_matrix_exp_jblock() for cell in cells] from sympy.matrices import diag from sympy import re eJ = diag(*blocks) # n = self.rows ret = P * eJ * P.inv() if all(value.is_real for value in self.values()): return type(self)(re(ret)) else: return type(self)(ret) def _eval_matrix_log_jblock(self): """Helper function to compute logarithm of a jordan block. Examples ======== >>> from sympy import Symbol, Matrix >>> l = Symbol('lamda') A trivial example of 1*1 Jordan block: >>> m = Matrix.jordan_block(1, l) >>> m._eval_matrix_log_jblock() Matrix([[log(lamda)]]) An example of 3*3 Jordan block: >>> m = Matrix.jordan_block(3, l) >>> m._eval_matrix_log_jblock() Matrix([ [log(lamda), 1/lamda, -1/(2*lamda**2)], [ 0, log(lamda), 1/lamda], [ 0, 0, log(lamda)]]) """ size = self.rows l = self[0, 0] if l.is_zero: raise MatrixError( 'Could not take logarithm or reciprocal for the given ' 'eigenvalue {}'.format(l)) bands = {0: log(l)} for i in range(1, size): bands[i] = -((-l) ** -i) / i from .sparsetools import banded return self.__class__(banded(size, bands)) def log(self, simplify=cancel): """Return the logarithm of a square matrix Parameters ========== simplify : function, bool The function to simplify the result with. Default is ``cancel``, which is effective to reduce the expression growing for taking reciprocals and inverses for symbolic matrices. Examples ======== >>> from sympy import S, Matrix Examples for positive-definite matrices: >>> m = Matrix([[1, 1], [0, 1]]) >>> m.log() Matrix([ [0, 1], [0, 0]]) >>> m = Matrix([[S(5)/4, S(3)/4], [S(3)/4, S(5)/4]]) >>> m.log() Matrix([ [ 0, log(2)], [log(2), 0]]) Examples for non positive-definite matrices: >>> m = Matrix([[S(3)/4, S(5)/4], [S(5)/4, S(3)/4]]) >>> m.log() Matrix([ [ I*pi/2, log(2) - I*pi/2], [log(2) - I*pi/2, I*pi/2]]) >>> m = Matrix( ... [[0, 0, 0, 1], ... [0, 0, 1, 0], ... [0, 1, 0, 0], ... [1, 0, 0, 0]]) >>> m.log() Matrix([ [ I*pi/2, 0, 0, -I*pi/2], [ 0, I*pi/2, -I*pi/2, 0], [ 0, -I*pi/2, I*pi/2, 0], [-I*pi/2, 0, 0, I*pi/2]]) """ if not self.is_square: raise NonSquareMatrixError( "Logarithm is valid only for square matrices") try: if simplify: P, J = simplify(self).jordan_form() else: P, J = self.jordan_form() cells = J.get_diag_blocks() except MatrixError: raise NotImplementedError( "Logarithm is implemented only for matrices for which " "the Jordan normal form can be computed") blocks = [ cell._eval_matrix_log_jblock() for cell in cells] from sympy.matrices import diag eJ = diag(*blocks) if simplify: ret = simplify(P * eJ * simplify(P.inv())) ret = self.__class__(ret) else: ret = P * eJ * P.inv() return ret def gauss_jordan_solve(self, B, freevar=False): """ Solves ``Ax = B`` using Gauss Jordan elimination. There may be zero, one, or infinite solutions. If one solution exists, it will be returned. If infinite solutions exist, it will be returned parametrically. If no solutions exist, It will throw ValueError. Parameters ========== B : Matrix The right hand side of the equation to be solved for. Must have the same number of rows as matrix A. freevar : List If the system is underdetermined (e.g. A has more columns than rows), infinite solutions are possible, in terms of arbitrary values of free variables. Then the index of the free variables in the solutions (column Matrix) will be returned by freevar, if the flag `freevar` is set to `True`. Returns ======= x : Matrix The matrix that will satisfy ``Ax = B``. Will have as many rows as matrix A has columns, and as many columns as matrix B. params : Matrix If the system is underdetermined (e.g. A has more columns than rows), infinite solutions are possible, in terms of arbitrary parameters. These arbitrary parameters are returned as params Matrix. Examples ======== >>> from sympy import Matrix >>> A = Matrix([[1, 2, 1, 1], [1, 2, 2, -1], [2, 4, 0, 6]]) >>> B = Matrix([7, 12, 4]) >>> sol, params = A.gauss_jordan_solve(B) >>> sol Matrix([ [-2*tau0 - 3*tau1 + 2], [ tau0], [ 2*tau1 + 5], [ tau1]]) >>> params Matrix([ [tau0], [tau1]]) >>> taus_zeroes = { tau:0 for tau in params } >>> sol_unique = sol.xreplace(taus_zeroes) >>> sol_unique Matrix([ [2], [0], [5], [0]]) >>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]]) >>> B = Matrix([3, 6, 9]) >>> sol, params = A.gauss_jordan_solve(B) >>> sol Matrix([ [-1], [ 2], [ 0]]) >>> params Matrix(0, 1, []) >>> A = Matrix([[2, -7], [-1, 4]]) >>> B = Matrix([[-21, 3], [12, -2]]) >>> sol, params = A.gauss_jordan_solve(B) >>> sol Matrix([ [0, -2], [3, -1]]) >>> params Matrix(0, 2, []) See Also ======== lower_triangular_solve upper_triangular_solve cholesky_solve diagonal_solve LDLsolve LUsolve QRsolve pinv References ========== .. [1] https://en.wikipedia.org/wiki/Gaussian_elimination """ from sympy.matrices import Matrix, zeros cls = self.__class__ aug = self.hstack(self.copy(), B.copy()) B_cols = B.cols row, col = aug[:, :-B_cols].shape # solve by reduced row echelon form A, pivots = aug.rref(simplify=True) A, v = A[:, :-B_cols], A[:, -B_cols:] pivots = list(filter(lambda p: p < col, pivots)) rank = len(pivots) # Bring to block form permutation = Matrix(range(col)).T for i, c in enumerate(pivots): permutation.col_swap(i, c) # check for existence of solutions # rank of aug Matrix should be equal to rank of coefficient matrix if not v[rank:, :].is_zero: raise ValueError("Linear system has no solution") # Get index of free symbols (free parameters) free_var_index = permutation[ len(pivots):] # non-pivots columns are free variables # Free parameters # what are current unnumbered free symbol names? name = _uniquely_named_symbol('tau', aug, compare=lambda i: str(i).rstrip('1234567890')).name gen = numbered_symbols(name) tau = Matrix([next(gen) for k in range((col - rank)*B_cols)]).reshape( col - rank, B_cols) # Full parametric solution V = A[:rank, [c for c in range(A.cols) if c not in pivots]] vt = v[:rank, :] free_sol = tau.vstack(vt - V * tau, tau) # Undo permutation sol = zeros(col, B_cols) for k in range(col): sol[permutation[k], :] = free_sol[k,:] sol, tau = cls(sol), cls(tau) if freevar: return sol, tau, free_var_index else: return sol, tau def inv_mod(self, m): r""" Returns the inverse of the matrix `K` (mod `m`), if it exists. Method to find the matrix inverse of `K` (mod `m`) implemented in this function: * Compute `\mathrm{adj}(K) = \mathrm{cof}(K)^t`, the adjoint matrix of `K`. * Compute `r = 1/\mathrm{det}(K) \pmod m`. * `K^{-1} = r\cdot \mathrm{adj}(K) \pmod m`. Examples ======== >>> from sympy import Matrix >>> A = Matrix(2, 2, [1, 2, 3, 4]) >>> A.inv_mod(5) Matrix([ [3, 1], [4, 2]]) >>> A.inv_mod(3) Matrix([ [1, 1], [0, 1]]) """ if not self.is_square: raise NonSquareMatrixError() N = self.cols det_K = self.det() det_inv = None try: det_inv = mod_inverse(det_K, m) except ValueError: raise NonInvertibleMatrixError('Matrix is not invertible (mod %d)' % m) K_adj = self.adjugate() K_inv = self.__class__(N, N, [det_inv * K_adj[i, j] % m for i in range(N) for j in range(N)]) return K_inv def inverse_ADJ(self, iszerofunc=_iszero): """Calculates the inverse using the adjugate matrix and a determinant. See Also ======== inv inverse_LU inverse_GE """ if not self.is_square: raise NonSquareMatrixError("A Matrix must be square to invert.") d = self.det(method='berkowitz') zero = d.equals(0) if zero is None: # if equals() can't decide, will rref be able to? ok = self.rref(simplify=True)[0] zero = any(iszerofunc(ok[j, j]) for j in range(ok.rows)) if zero: raise NonInvertibleMatrixError("Matrix det == 0; not invertible.") return self.adjugate() / d def inverse_GE(self, iszerofunc=_iszero): """Calculates the inverse using Gaussian elimination. See Also ======== inv inverse_LU inverse_ADJ """ from .dense import Matrix if not self.is_square: raise NonSquareMatrixError("A Matrix must be square to invert.") big = Matrix.hstack(self.as_mutable(), Matrix.eye(self.rows)) red = big.rref(iszerofunc=iszerofunc, simplify=True)[0] if any(iszerofunc(red[j, j]) for j in range(red.rows)): raise NonInvertibleMatrixError("Matrix det == 0; not invertible.") return self._new(red[:, big.rows:]) def inverse_LU(self, iszerofunc=_iszero): """Calculates the inverse using LU decomposition. See Also ======== inv inverse_GE inverse_ADJ """ if not self.is_square: raise NonSquareMatrixError() ok = self.rref(simplify=True)[0] if any(iszerofunc(ok[j, j]) for j in range(ok.rows)): raise NonInvertibleMatrixError("Matrix det == 0; not invertible.") return self.LUsolve(self.eye(self.rows), iszerofunc=_iszero) def inv(self, method=None, **kwargs): """ Return the inverse of a matrix. CASE 1: If the matrix is a dense matrix. Return the matrix inverse using the method indicated (default is Gauss elimination). Parameters ========== method : ('GE', 'LU', or 'ADJ') Notes ===== According to the ``method`` keyword, it calls the appropriate method: GE .... inverse_GE(); default LU .... inverse_LU() ADJ ... inverse_ADJ() See Also ======== inverse_LU inverse_GE inverse_ADJ Raises ------ ValueError If the determinant of the matrix is zero. CASE 2: If the matrix is a sparse matrix. Return the matrix inverse using Cholesky or LDL (default). kwargs ====== method : ('CH', 'LDL') Notes ===== According to the ``method`` keyword, it calls the appropriate method: LDL ... inverse_LDL(); default CH .... inverse_CH() Raises ------ ValueError If the determinant of the matrix is zero. """ if not self.is_square: raise NonSquareMatrixError() if method is not None: kwargs['method'] = method return self._eval_inverse(**kwargs) def is_nilpotent(self): """Checks if a matrix is nilpotent. A matrix B is nilpotent if for some integer k, B**k is a zero matrix. Examples ======== >>> from sympy import Matrix >>> a = Matrix([[0, 0, 0], [1, 0, 0], [1, 1, 0]]) >>> a.is_nilpotent() True >>> a = Matrix([[1, 0, 1], [1, 0, 0], [1, 1, 0]]) >>> a.is_nilpotent() False """ if not self: return True if not self.is_square: raise NonSquareMatrixError( "Nilpotency is valid only for square matrices") x = _uniquely_named_symbol('x', self) p = self.charpoly(x) if p.args[0] == x ** self.rows: return True return False def key2bounds(self, keys): """Converts a key with potentially mixed types of keys (integer and slice) into a tuple of ranges and raises an error if any index is out of ``self``'s range. See Also ======== key2ij """ from sympy.matrices.common import a2idx as a2idx_ # Remove this line after deprecation of a2idx from matrices.py islice, jslice = [isinstance(k, slice) for k in keys] if islice: if not self.rows: rlo = rhi = 0 else: rlo, rhi = keys[0].indices(self.rows)[:2] else: rlo = a2idx_(keys[0], self.rows) rhi = rlo + 1 if jslice: if not self.cols: clo = chi = 0 else: clo, chi = keys[1].indices(self.cols)[:2] else: clo = a2idx_(keys[1], self.cols) chi = clo + 1 return rlo, rhi, clo, chi def key2ij(self, key): """Converts key into canonical form, converting integers or indexable items into valid integers for ``self``'s range or returning slices unchanged. See Also ======== key2bounds """ from sympy.matrices.common import a2idx as a2idx_ # Remove this line after deprecation of a2idx from matrices.py if is_sequence(key): if not len(key) == 2: raise TypeError('key must be a sequence of length 2') return [a2idx_(i, n) if not isinstance(i, slice) else i for i, n in zip(key, self.shape)] elif isinstance(key, slice): return key.indices(len(self))[:2] else: return divmod(a2idx_(key, len(self)), self.cols) def LDLdecomposition(self, hermitian=True): """Returns the LDL Decomposition (L, D) of matrix A, such that L * D * L.H == A if hermitian flag is True, or L * D * L.T == A if hermitian is False. This method eliminates the use of square root. Further this ensures that all the diagonal entries of L are 1. A must be a Hermitian positive-definite matrix if hermitian is True, or a symmetric matrix otherwise. Examples ======== >>> from sympy.matrices import Matrix, eye >>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) >>> L, D = A.LDLdecomposition() >>> L Matrix([ [ 1, 0, 0], [ 3/5, 1, 0], [-1/5, 1/3, 1]]) >>> D Matrix([ [25, 0, 0], [ 0, 9, 0], [ 0, 0, 9]]) >>> L * D * L.T * A.inv() == eye(A.rows) True The matrix can have complex entries: >>> from sympy import I >>> A = Matrix(((9, 3*I), (-3*I, 5))) >>> L, D = A.LDLdecomposition() >>> L Matrix([ [ 1, 0], [-I/3, 1]]) >>> D Matrix([ [9, 0], [0, 4]]) >>> L*D*L.H == A True See Also ======== cholesky LUdecomposition QRdecomposition """ if not self.is_square: raise NonSquareMatrixError("Matrix must be square.") if hermitian and not self.is_hermitian: raise ValueError("Matrix must be Hermitian.") if not hermitian and not self.is_symmetric(): raise ValueError("Matrix must be symmetric.") return self._LDLdecomposition(hermitian=hermitian) def LDLsolve(self, rhs): """Solves ``Ax = B`` using LDL decomposition, for a general square and non-singular matrix. For a non-square matrix with rows > cols, the least squares solution is returned. Examples ======== >>> from sympy.matrices import Matrix, eye >>> A = eye(2)*2 >>> B = Matrix([[1, 2], [3, 4]]) >>> A.LDLsolve(B) == B/2 True See Also ======== LDLdecomposition lower_triangular_solve upper_triangular_solve gauss_jordan_solve cholesky_solve diagonal_solve LUsolve QRsolve pinv_solve """ hermitian = True if self.is_symmetric(): hermitian = False L, D = self.LDLdecomposition(hermitian=hermitian) elif self.is_hermitian: L, D = self.LDLdecomposition(hermitian=hermitian) elif self.rows >= self.cols: L, D = (self.H * self).LDLdecomposition(hermitian=hermitian) rhs = self.H * rhs else: raise NotImplementedError('Under-determined System. ' 'Try M.gauss_jordan_solve(rhs)') Y = L._lower_triangular_solve(rhs) Z = D._diagonal_solve(Y) if hermitian: return (L.H)._upper_triangular_solve(Z) else: return (L.T)._upper_triangular_solve(Z) def lower_triangular_solve(self, rhs): """Solves ``Ax = B``, where A is a lower triangular matrix. See Also ======== upper_triangular_solve gauss_jordan_solve cholesky_solve diagonal_solve LDLsolve LUsolve QRsolve pinv_solve """ if not self.is_square: raise NonSquareMatrixError("Matrix must be square.") if rhs.rows != self.rows: raise ShapeError("Matrices size mismatch.") if not self.is_lower: raise ValueError("Matrix must be lower triangular.") return self._lower_triangular_solve(rhs) def LUdecomposition(self, iszerofunc=_iszero, simpfunc=None, rankcheck=False): """Returns (L, U, perm) where L is a lower triangular matrix with unit diagonal, U is an upper triangular matrix, and perm is a list of row swap index pairs. If A is the original matrix, then A = (L*U).permuteBkwd(perm), and the row permutation matrix P such that P*A = L*U can be computed by P=eye(A.row).permuteFwd(perm). See documentation for LUCombined for details about the keyword argument rankcheck, iszerofunc, and simpfunc. Examples ======== >>> from sympy import Matrix >>> a = Matrix([[4, 3], [6, 3]]) >>> L, U, _ = a.LUdecomposition() >>> L Matrix([ [ 1, 0], [3/2, 1]]) >>> U Matrix([ [4, 3], [0, -3/2]]) See Also ======== cholesky LDLdecomposition QRdecomposition LUdecomposition_Simple LUdecompositionFF LUsolve """ combined, p = self.LUdecomposition_Simple(iszerofunc=iszerofunc, simpfunc=simpfunc, rankcheck=rankcheck) # L is lower triangular ``self.rows x self.rows`` # U is upper triangular ``self.rows x self.cols`` # L has unit diagonal. For each column in combined, the subcolumn # below the diagonal of combined is shared by L. # If L has more columns than combined, then the remaining subcolumns # below the diagonal of L are zero. # The upper triangular portion of L and combined are equal. def entry_L(i, j): if i < j: # Super diagonal entry return self.zero elif i == j: return self.one elif j < combined.cols: return combined[i, j] # Subdiagonal entry of L with no corresponding # entry in combined return self.zero def entry_U(i, j): return self.zero if i > j else combined[i, j] L = self._new(combined.rows, combined.rows, entry_L) U = self._new(combined.rows, combined.cols, entry_U) return L, U, p def LUdecomposition_Simple(self, iszerofunc=_iszero, simpfunc=None, rankcheck=False): """Compute an lu decomposition of m x n matrix A, where P*A = L*U * L is m x m lower triangular with unit diagonal * U is m x n upper triangular * P is an m x m permutation matrix Returns an m x n matrix lu, and an m element list perm where each element of perm is a pair of row exchange indices. The factors L and U are stored in lu as follows: The subdiagonal elements of L are stored in the subdiagonal elements of lu, that is lu[i, j] = L[i, j] whenever i > j. The elements on the diagonal of L are all 1, and are not explicitly stored. U is stored in the upper triangular portion of lu, that is lu[i ,j] = U[i, j] whenever i <= j. The output matrix can be visualized as: Matrix([ [u, u, u, u], [l, u, u, u], [l, l, u, u], [l, l, l, u]]) where l represents a subdiagonal entry of the L factor, and u represents an entry from the upper triangular entry of the U factor. perm is a list row swap index pairs such that if A is the original matrix, then A = (L*U).permuteBkwd(perm), and the row permutation matrix P such that ``P*A = L*U`` can be computed by ``P=eye(A.row).permuteFwd(perm)``. The keyword argument rankcheck determines if this function raises a ValueError when passed a matrix whose rank is strictly less than min(num rows, num cols). The default behavior is to decompose a rank deficient matrix. Pass rankcheck=True to raise a ValueError instead. (This mimics the previous behavior of this function). The keyword arguments iszerofunc and simpfunc are used by the pivot search algorithm. iszerofunc is a callable that returns a boolean indicating if its input is zero, or None if it cannot make the determination. simpfunc is a callable that simplifies its input. The default is simpfunc=None, which indicate that the pivot search algorithm should not attempt to simplify any candidate pivots. If simpfunc fails to simplify its input, then it must return its input instead of a copy. When a matrix contains symbolic entries, the pivot search algorithm differs from the case where every entry can be categorized as zero or nonzero. The algorithm searches column by column through the submatrix whose top left entry coincides with the pivot position. If it exists, the pivot is the first entry in the current search column that iszerofunc guarantees is nonzero. If no such candidate exists, then each candidate pivot is simplified if simpfunc is not None. The search is repeated, with the difference that a candidate may be the pivot if ``iszerofunc()`` cannot guarantee that it is nonzero. In the second search the pivot is the first candidate that iszerofunc can guarantee is nonzero. If no such candidate exists, then the pivot is the first candidate for which iszerofunc returns None. If no such candidate exists, then the search is repeated in the next column to the right. The pivot search algorithm differs from the one in ``rref()``, which relies on ``_find_reasonable_pivot()``. Future versions of ``LUdecomposition_simple()`` may use ``_find_reasonable_pivot()``. See Also ======== LUdecomposition LUdecompositionFF LUsolve """ if rankcheck: # https://github.com/sympy/sympy/issues/9796 pass if self.rows == 0 or self.cols == 0: # Define LU decomposition of a matrix with no entries as a matrix # of the same dimensions with all zero entries. return self.zeros(self.rows, self.cols), [] lu = self.as_mutable() row_swaps = [] pivot_col = 0 for pivot_row in range(0, lu.rows - 1): # Search for pivot. Prefer entry that iszeropivot determines # is nonzero, over entry that iszeropivot cannot guarantee # is zero. # XXX ``_find_reasonable_pivot`` uses slow zero testing. Blocked by bug #10279 # Future versions of LUdecomposition_simple can pass iszerofunc and simpfunc # to _find_reasonable_pivot(). # In pass 3 of _find_reasonable_pivot(), the predicate in ``if x.equals(S.Zero):`` # calls sympy.simplify(), and not the simplification function passed in via # the keyword argument simpfunc. iszeropivot = True while pivot_col != self.cols and iszeropivot: sub_col = (lu[r, pivot_col] for r in range(pivot_row, self.rows)) pivot_row_offset, pivot_value, is_assumed_non_zero, ind_simplified_pairs =\ _find_reasonable_pivot_naive(sub_col, iszerofunc, simpfunc) iszeropivot = pivot_value is None if iszeropivot: # All candidate pivots in this column are zero. # Proceed to next column. pivot_col += 1 if rankcheck and pivot_col != pivot_row: # All entries including and below the pivot position are # zero, which indicates that the rank of the matrix is # strictly less than min(num rows, num cols) # Mimic behavior of previous implementation, by throwing a # ValueError. raise ValueError("Rank of matrix is strictly less than" " number of rows or columns." " Pass keyword argument" " rankcheck=False to compute" " the LU decomposition of this matrix.") candidate_pivot_row = None if pivot_row_offset is None else pivot_row + pivot_row_offset if candidate_pivot_row is None and iszeropivot: # If candidate_pivot_row is None and iszeropivot is True # after pivot search has completed, then the submatrix # below and to the right of (pivot_row, pivot_col) is # all zeros, indicating that Gaussian elimination is # complete. return lu, row_swaps # Update entries simplified during pivot search. for offset, val in ind_simplified_pairs: lu[pivot_row + offset, pivot_col] = val if pivot_row != candidate_pivot_row: # Row swap book keeping: # Record which rows were swapped. # Update stored portion of L factor by multiplying L on the # left and right with the current permutation. # Swap rows of U. row_swaps.append([pivot_row, candidate_pivot_row]) # Update L. lu[pivot_row, 0:pivot_row], lu[candidate_pivot_row, 0:pivot_row] = \ lu[candidate_pivot_row, 0:pivot_row], lu[pivot_row, 0:pivot_row] # Swap pivot row of U with candidate pivot row. lu[pivot_row, pivot_col:lu.cols], lu[candidate_pivot_row, pivot_col:lu.cols] = \ lu[candidate_pivot_row, pivot_col:lu.cols], lu[pivot_row, pivot_col:lu.cols] # Introduce zeros below the pivot by adding a multiple of the # pivot row to a row under it, and store the result in the # row under it. # Only entries in the target row whose index is greater than # start_col may be nonzero. start_col = pivot_col + 1 for row in range(pivot_row + 1, lu.rows): # Store factors of L in the subcolumn below # (pivot_row, pivot_row). lu[row, pivot_row] =\ lu[row, pivot_col]/lu[pivot_row, pivot_col] # Form the linear combination of the pivot row and the current # row below the pivot row that zeros the entries below the pivot. # Employing slicing instead of a loop here raises # NotImplementedError: Cannot add Zero to MutableSparseMatrix # in sympy/matrices/tests/test_sparse.py. # c = pivot_row + 1 if pivot_row == pivot_col else pivot_col for c in range(start_col, lu.cols): lu[row, c] = lu[row, c] - lu[row, pivot_row]*lu[pivot_row, c] if pivot_row != pivot_col: # matrix rank < min(num rows, num cols), # so factors of L are not stored directly below the pivot. # These entries are zero by construction, so don't bother # computing them. for row in range(pivot_row + 1, lu.rows): lu[row, pivot_col] = self.zero pivot_col += 1 if pivot_col == lu.cols: # All candidate pivots are zero implies that Gaussian # elimination is complete. return lu, row_swaps if rankcheck: if iszerofunc( lu[Min(lu.rows, lu.cols) - 1, Min(lu.rows, lu.cols) - 1]): raise ValueError("Rank of matrix is strictly less than" " number of rows or columns." " Pass keyword argument" " rankcheck=False to compute" " the LU decomposition of this matrix.") return lu, row_swaps def LUdecompositionFF(self): """Compute a fraction-free LU decomposition. Returns 4 matrices P, L, D, U such that PA = L D**-1 U. If the elements of the matrix belong to some integral domain I, then all elements of L, D and U are guaranteed to belong to I. **Reference** - W. Zhou & D.J. Jeffrey, "Fraction-free matrix factors: new forms for LU and QR factors". Frontiers in Computer Science in China, Vol 2, no. 1, pp. 67-80, 2008. See Also ======== LUdecomposition LUdecomposition_Simple LUsolve """ from sympy.matrices import SparseMatrix zeros = SparseMatrix.zeros eye = SparseMatrix.eye n, m = self.rows, self.cols U, L, P = self.as_mutable(), eye(n), eye(n) DD = zeros(n, n) oldpivot = 1 for k in range(n - 1): if U[k, k] == 0: for kpivot in range(k + 1, n): if U[kpivot, k]: break else: raise ValueError("Matrix is not full rank") U[k, k:], U[kpivot, k:] = U[kpivot, k:], U[k, k:] L[k, :k], L[kpivot, :k] = L[kpivot, :k], L[k, :k] P[k, :], P[kpivot, :] = P[kpivot, :], P[k, :] L[k, k] = Ukk = U[k, k] DD[k, k] = oldpivot * Ukk for i in range(k + 1, n): L[i, k] = Uik = U[i, k] for j in range(k + 1, m): U[i, j] = (Ukk * U[i, j] - U[k, j] * Uik) / oldpivot U[i, k] = 0 oldpivot = Ukk DD[n - 1, n - 1] = oldpivot return P, L, DD, U def LUsolve(self, rhs, iszerofunc=_iszero): """Solve the linear system ``Ax = rhs`` for ``x`` where ``A = self``. This is for symbolic matrices, for real or complex ones use mpmath.lu_solve or mpmath.qr_solve. See Also ======== lower_triangular_solve upper_triangular_solve gauss_jordan_solve cholesky_solve diagonal_solve LDLsolve QRsolve pinv_solve LUdecomposition """ if rhs.rows != self.rows: raise ShapeError( "``self`` and ``rhs`` must have the same number of rows.") m = self.rows n = self.cols if m < n: raise NotImplementedError("Underdetermined systems not supported.") try: A, perm = self.LUdecomposition_Simple( iszerofunc=_iszero, rankcheck=True) except ValueError: raise NotImplementedError("Underdetermined systems not supported.") b = rhs.permute_rows(perm).as_mutable() # forward substitution, all diag entries are scaled to 1 for i in range(m): for j in range(min(i, n)): scale = A[i, j] b.zip_row_op(i, j, lambda x, y: x - y * scale) # consistency check for overdetermined systems if m > n: for i in range(n, m): for j in range(b.cols): if not iszerofunc(b[i, j]): raise ValueError("The system is inconsistent.") b = b[0:n, :] # truncate zero rows if consistent # backward substitution for i in range(n - 1, -1, -1): for j in range(i + 1, n): scale = A[i, j] b.zip_row_op(i, j, lambda x, y: x - y * scale) scale = A[i, i] b.row_op(i, lambda x, _: x / scale) return rhs.__class__(b) def multiply(self, b): """Returns ``self*b`` See Also ======== dot cross multiply_elementwise """ return self * b def normalized(self, iszerofunc=_iszero): """Return the normalized version of ``self``. Parameters ========== iszerofunc : Function, optional A function to determine whether ``self`` is a zero vector. The default ``_iszero`` tests to see if each element is exactly zero. Returns ======= Matrix Normalized vector form of ``self``. It has the same length as a unit vector. However, a zero vector will be returned for a vector with norm 0. Raises ====== ShapeError If the matrix is not in a vector form. See Also ======== norm """ if self.rows != 1 and self.cols != 1: raise ShapeError("A Matrix must be a vector to normalize.") norm = self.norm() if iszerofunc(norm): out = self.zeros(self.rows, self.cols) else: out = self.applyfunc(lambda i: i / norm) return out def norm(self, ord=None): """Return the Norm of a Matrix or Vector. In the simplest case this is the geometric size of the vector Other norms can be specified by the ord parameter ===== ============================ ========================== ord norm for matrices norm for vectors ===== ============================ ========================== None Frobenius norm 2-norm 'fro' Frobenius norm - does not exist inf maximum row sum max(abs(x)) -inf -- min(abs(x)) 1 maximum column sum as below -1 -- as below 2 2-norm (largest sing. value) as below -2 smallest singular value as below other - does not exist sum(abs(x)**ord)**(1./ord) ===== ============================ ========================== Examples ======== >>> from sympy import Matrix, Symbol, trigsimp, cos, sin, oo >>> x = Symbol('x', real=True) >>> v = Matrix([cos(x), sin(x)]) >>> trigsimp( v.norm() ) 1 >>> v.norm(10) (sin(x)**10 + cos(x)**10)**(1/10) >>> A = Matrix([[1, 1], [1, 1]]) >>> A.norm(1) # maximum sum of absolute values of A is 2 2 >>> A.norm(2) # Spectral norm (max of |Ax|/|x| under 2-vector-norm) 2 >>> A.norm(-2) # Inverse spectral norm (smallest singular value) 0 >>> A.norm() # Frobenius Norm 2 >>> A.norm(oo) # Infinity Norm 2 >>> Matrix([1, -2]).norm(oo) 2 >>> Matrix([-1, 2]).norm(-oo) 1 See Also ======== normalized """ # Row or Column Vector Norms vals = list(self.values()) or [0] if self.rows == 1 or self.cols == 1: if ord == 2 or ord is None: # Common case sqrt(<x, x>) return sqrt(Add(*(abs(i) ** 2 for i in vals))) elif ord == 1: # sum(abs(x)) return Add(*(abs(i) for i in vals)) elif ord is S.Infinity: # max(abs(x)) return Max(*[abs(i) for i in vals]) elif ord is S.NegativeInfinity: # min(abs(x)) return Min(*[abs(i) for i in vals]) # Otherwise generalize the 2-norm, Sum(x_i**ord)**(1/ord) # Note that while useful this is not mathematically a norm try: return Pow(Add(*(abs(i) ** ord for i in vals)), S.One / ord) except (NotImplementedError, TypeError): raise ValueError("Expected order to be Number, Symbol, oo") # Matrix Norms else: if ord == 1: # Maximum column sum m = self.applyfunc(abs) return Max(*[sum(m.col(i)) for i in range(m.cols)]) elif ord == 2: # Spectral Norm # Maximum singular value return Max(*self.singular_values()) elif ord == -2: # Minimum singular value return Min(*self.singular_values()) elif ord is S.Infinity: # Infinity Norm - Maximum row sum m = self.applyfunc(abs) return Max(*[sum(m.row(i)) for i in range(m.rows)]) elif (ord is None or isinstance(ord, string_types) and ord.lower() in ['f', 'fro', 'frobenius', 'vector']): # Reshape as vector and send back to norm function return self.vec().norm(ord=2) else: raise NotImplementedError("Matrix Norms under development") def pinv_solve(self, B, arbitrary_matrix=None): """Solve ``Ax = B`` using the Moore-Penrose pseudoinverse. There may be zero, one, or infinite solutions. If one solution exists, it will be returned. If infinite solutions exist, one will be returned based on the value of arbitrary_matrix. If no solutions exist, the least-squares solution is returned. Parameters ========== B : Matrix The right hand side of the equation to be solved for. Must have the same number of rows as matrix A. arbitrary_matrix : Matrix If the system is underdetermined (e.g. A has more columns than rows), infinite solutions are possible, in terms of an arbitrary matrix. This parameter may be set to a specific matrix to use for that purpose; if so, it must be the same shape as x, with as many rows as matrix A has columns, and as many columns as matrix B. If left as None, an appropriate matrix containing dummy symbols in the form of ``wn_m`` will be used, with n and m being row and column position of each symbol. Returns ======= x : Matrix The matrix that will satisfy ``Ax = B``. Will have as many rows as matrix A has columns, and as many columns as matrix B. Examples ======== >>> from sympy import Matrix >>> A = Matrix([[1, 2, 3], [4, 5, 6]]) >>> B = Matrix([7, 8]) >>> A.pinv_solve(B) Matrix([ [ _w0_0/6 - _w1_0/3 + _w2_0/6 - 55/18], [-_w0_0/3 + 2*_w1_0/3 - _w2_0/3 + 1/9], [ _w0_0/6 - _w1_0/3 + _w2_0/6 + 59/18]]) >>> A.pinv_solve(B, arbitrary_matrix=Matrix([0, 0, 0])) Matrix([ [-55/18], [ 1/9], [ 59/18]]) See Also ======== lower_triangular_solve upper_triangular_solve gauss_jordan_solve cholesky_solve diagonal_solve LDLsolve LUsolve QRsolve pinv Notes ===== This may return either exact solutions or least squares solutions. To determine which, check ``A * A.pinv() * B == B``. It will be True if exact solutions exist, and False if only a least-squares solution exists. Be aware that the left hand side of that equation may need to be simplified to correctly compare to the right hand side. References ========== .. [1] https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse#Obtaining_all_solutions_of_a_linear_system """ from sympy.matrices import eye A = self A_pinv = self.pinv() if arbitrary_matrix is None: rows, cols = A.cols, B.cols w = symbols('w:{0}_:{1}'.format(rows, cols), cls=Dummy) arbitrary_matrix = self.__class__(cols, rows, w).T return A_pinv * B + (eye(A.cols) - A_pinv * A) * arbitrary_matrix def _eval_pinv_full_rank(self): """Subroutine for full row or column rank matrices. For full row rank matrices, inverse of ``A * A.H`` Exists. For full column rank matrices, inverse of ``A.H * A`` Exists. This routine can apply for both cases by checking the shape and have small decision. """ if self.is_zero: return self.H if self.rows >= self.cols: return (self.H * self).inv() * self.H else: return self.H * (self * self.H).inv() def _eval_pinv_rank_decomposition(self): """Subroutine for rank decomposition With rank decompositions, `A` can be decomposed into two full- rank matrices, and each matrix can take pseudoinverse individually. """ if self.is_zero: return self.H B, C = self.rank_decomposition() Bp = B._eval_pinv_full_rank() Cp = C._eval_pinv_full_rank() return Cp * Bp def _eval_pinv_diagonalization(self): """Subroutine using diagonalization This routine can sometimes fail if SymPy's eigenvalue computation is not reliable. """ if self.is_zero: return self.H A = self AH = self.H try: if self.rows >= self.cols: P, D = (AH * A).diagonalize(normalize=True) D_pinv = D.applyfunc(lambda x: 0 if _iszero(x) else 1 / x) return P * D_pinv * P.H * AH else: P, D = (A * AH).diagonalize(normalize=True) D_pinv = D.applyfunc(lambda x: 0 if _iszero(x) else 1 / x) return AH * P * D_pinv * P.H except MatrixError: raise NotImplementedError( 'pinv for rank-deficient matrices where ' 'diagonalization of A.H*A fails is not supported yet.') def pinv(self, method='RD'): """Calculate the Moore-Penrose pseudoinverse of the matrix. The Moore-Penrose pseudoinverse exists and is unique for any matrix. If the matrix is invertible, the pseudoinverse is the same as the inverse. Parameters ========== method : String, optional Specifies the method for computing the pseudoinverse. If ``'RD'``, Rank-Decomposition will be used. If ``'ED'``, Diagonalization will be used. Examples ======== Computing pseudoinverse by rank decomposition : >>> from sympy import Matrix >>> A = Matrix([[1, 2, 3], [4, 5, 6]]) >>> A.pinv() Matrix([ [-17/18, 4/9], [ -1/9, 1/9], [ 13/18, -2/9]]) Computing pseudoinverse by diagonalization : >>> B = A.pinv(method='ED') >>> B.simplify() >>> B Matrix([ [-17/18, 4/9], [ -1/9, 1/9], [ 13/18, -2/9]]) See Also ======== inv pinv_solve References ========== .. [1] https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse """ # Trivial case: pseudoinverse of all-zero matrix is its transpose. if self.is_zero: return self.H if method == 'RD': return self._eval_pinv_rank_decomposition() elif method == 'ED': return self._eval_pinv_diagonalization() else: raise ValueError() def print_nonzero(self, symb="X"): """Shows location of non-zero entries for fast shape lookup. Examples ======== >>> from sympy.matrices import Matrix, eye >>> m = Matrix(2, 3, lambda i, j: i*3+j) >>> m Matrix([ [0, 1, 2], [3, 4, 5]]) >>> m.print_nonzero() [ XX] [XXX] >>> m = eye(4) >>> m.print_nonzero("x") [x ] [ x ] [ x ] [ x] """ s = [] for i in range(self.rows): line = [] for j in range(self.cols): if self[i, j] == 0: line.append(" ") else: line.append(str(symb)) s.append("[%s]" % ''.join(line)) print('\n'.join(s)) def project(self, v): """Return the projection of ``self`` onto the line containing ``v``. Examples ======== >>> from sympy import Matrix, S, sqrt >>> V = Matrix([sqrt(3)/2, S.Half]) >>> x = Matrix([[1, 0]]) >>> V.project(x) Matrix([[sqrt(3)/2, 0]]) >>> V.project(-x) Matrix([[sqrt(3)/2, 0]]) """ return v * (self.dot(v) / v.dot(v)) def QRdecomposition(self): """Return Q, R where A = Q*R, Q is orthogonal and R is upper triangular. Examples ======== This is the example from wikipedia: >>> from sympy import Matrix >>> A = Matrix([[12, -51, 4], [6, 167, -68], [-4, 24, -41]]) >>> Q, R = A.QRdecomposition() >>> Q Matrix([ [ 6/7, -69/175, -58/175], [ 3/7, 158/175, 6/175], [-2/7, 6/35, -33/35]]) >>> R Matrix([ [14, 21, -14], [ 0, 175, -70], [ 0, 0, 35]]) >>> A == Q*R True QR factorization of an identity matrix: >>> A = Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> Q, R = A.QRdecomposition() >>> Q Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> R Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) See Also ======== cholesky LDLdecomposition LUdecomposition QRsolve """ cls = self.__class__ mat = self.as_mutable() n = mat.rows m = mat.cols ranked = list() # Pad with additional rows to make wide matrices square # nOrig keeps track of original size so zeros can be trimmed from Q if n < m: nOrig = n n = m mat = mat.col_join(mat.zeros(n - nOrig, m)) else: nOrig = n Q, R = mat.zeros(n, m), mat.zeros(m) for j in range(m): # for each column vector tmp = mat[:, j] # take original v for i in range(j): # subtract the project of mat on new vector R[i, j] = Q[:, i].dot(mat[:, j], hermitian=True) tmp -= Q[:, i] * R[i, j] tmp.expand() # normalize it R[j, j] = tmp.norm() if not R[j, j].is_zero: ranked.append(j) Q[:, j] = tmp / R[j, j] if len(ranked) != 0: return ( cls(Q.extract(range(nOrig), ranked)), cls(R.extract(ranked, range(R.cols))) ) else: # Trivial case handling for zero-rank matrix # Force Q as matrix containing standard basis vectors for i in range(Min(nOrig, m)): Q[i, i] = 1 return ( cls(Q.extract(range(nOrig), range(Min(nOrig, m)))), cls(R.extract(range(Min(nOrig, m)), range(R.cols))) ) def QRsolve(self, b): """Solve the linear system ``Ax = b``. ``self`` is the matrix ``A``, the method argument is the vector ``b``. The method returns the solution vector ``x``. If ``b`` is a matrix, the system is solved for each column of ``b`` and the return value is a matrix of the same shape as ``b``. This method is slower (approximately by a factor of 2) but more stable for floating-point arithmetic than the LUsolve method. However, LUsolve usually uses an exact arithmetic, so you don't need to use QRsolve. This is mainly for educational purposes and symbolic matrices, for real (or complex) matrices use mpmath.qr_solve. See Also ======== lower_triangular_solve upper_triangular_solve gauss_jordan_solve cholesky_solve diagonal_solve LDLsolve LUsolve pinv_solve QRdecomposition """ Q, R = self.as_mutable().QRdecomposition() y = Q.T * b # back substitution to solve R*x = y: # We build up the result "backwards" in the vector 'x' and reverse it # only in the end. x = [] n = R.rows for j in range(n - 1, -1, -1): tmp = y[j, :] for k in range(j + 1, n): tmp -= R[j, k] * x[n - 1 - k] x.append(tmp / R[j, j]) return self._new([row._mat for row in reversed(x)]) def rank_decomposition(self, iszerofunc=_iszero, simplify=False): r"""Returns a pair of matrices (`C`, `F`) with matching rank such that `A = C F`. Parameters ========== iszerofunc : Function, optional A function used for detecting whether an element can act as a pivot. ``lambda x: x.is_zero`` is used by default. simplify : Bool or Function, optional A function used to simplify elements when looking for a pivot. By default SymPy's ``simplify`` is used. Returns ======= (C, F) : Matrices `C` and `F` are full-rank matrices with rank as same as `A`, whose product gives `A`. See Notes for additional mathematical details. Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix([ ... [1, 3, 1, 4], ... [2, 7, 3, 9], ... [1, 5, 3, 1], ... [1, 2, 0, 8] ... ]) >>> C, F = A.rank_decomposition() >>> C Matrix([ [1, 3, 4], [2, 7, 9], [1, 5, 1], [1, 2, 8]]) >>> F Matrix([ [1, 0, -2, 0], [0, 1, 1, 0], [0, 0, 0, 1]]) >>> C * F == A True Notes ===== Obtaining `F`, an RREF of `A`, is equivalent to creating a product .. math:: E_n E_{n-1} ... E_1 A = F where `E_n, E_{n-1}, ... , E_1` are the elimination matrices or permutation matrices equivalent to each row-reduction step. The inverse of the same product of elimination matrices gives `C`: .. math:: C = (E_n E_{n-1} ... E_1)^{-1} It is not necessary, however, to actually compute the inverse: the columns of `C` are those from the original matrix with the same column indices as the indices of the pivot columns of `F`. References ========== .. [1] https://en.wikipedia.org/wiki/Rank_factorization .. [2] Piziak, R.; Odell, P. L. (1 June 1999). "Full Rank Factorization of Matrices". Mathematics Magazine. 72 (3): 193. doi:10.2307/2690882 See Also ======== rref """ (F, pivot_cols) = self.rref( simplify=simplify, iszerofunc=iszerofunc, pivots=True) rank = len(pivot_cols) C = self.extract(range(self.rows), pivot_cols) F = F[:rank, :] return (C, F) def solve_least_squares(self, rhs, method='CH'): """Return the least-square fit to the data. Parameters ========== rhs : Matrix Vector representing the right hand side of the linear equation. method : string or boolean, optional If set to ``'CH'``, ``cholesky_solve`` routine will be used. If set to ``'LDL'``, ``LDLsolve`` routine will be used. If set to ``'QR'``, ``QRsolve`` routine will be used. If set to ``'PINV'``, ``pinv_solve`` routine will be used. Otherwise, the conjugate of ``self`` will be used to create a system of equations that is passed to ``solve`` along with the hint defined by ``method``. Returns ======= solutions : Matrix Vector representing the solution. Examples ======== >>> from sympy.matrices import Matrix, ones >>> A = Matrix([1, 2, 3]) >>> B = Matrix([2, 3, 4]) >>> S = Matrix(A.row_join(B)) >>> S Matrix([ [1, 2], [2, 3], [3, 4]]) If each line of S represent coefficients of Ax + By and x and y are [2, 3] then S*xy is: >>> r = S*Matrix([2, 3]); r Matrix([ [ 8], [13], [18]]) But let's add 1 to the middle value and then solve for the least-squares value of xy: >>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy Matrix([ [ 5/3], [10/3]]) The error is given by S*xy - r: >>> S*xy - r Matrix([ [1/3], [1/3], [1/3]]) >>> _.norm().n(2) 0.58 If a different xy is used, the norm will be higher: >>> xy += ones(2, 1)/10 >>> (S*xy - r).norm().n(2) 1.5 """ if method == 'CH': return self.cholesky_solve(rhs) elif method == 'QR': return self.QRsolve(rhs) elif method == 'LDL': return self.LDLsolve(rhs) elif method == 'PINV': return self.pinv_solve(rhs) else: t = self.H return (t * self).solve(t * rhs, method=method) def solve(self, rhs, method='GJ'): """Solves linear equation where the unique solution exists. Parameters ========== rhs : Matrix Vector representing the right hand side of the linear equation. method : string, optional If set to ``'GJ'``, the Gauss-Jordan elimination will be used, which is implemented in the routine ``gauss_jordan_solve``. If set to ``'LU'``, ``LUsolve`` routine will be used. If set to ``'QR'``, ``QRsolve`` routine will be used. If set to ``'PINV'``, ``pinv_solve`` routine will be used. It also supports the methods available for special linear systems For positive definite systems: If set to ``'CH'``, ``cholesky_solve`` routine will be used. If set to ``'LDL'``, ``LDLsolve`` routine will be used. To use a different method and to compute the solution via the inverse, use a method defined in the .inv() docstring. Returns ======= solutions : Matrix Vector representing the solution. Raises ====== ValueError If there is not a unique solution then a ``ValueError`` will be raised. If ``self`` is not square, a ``ValueError`` and a different routine for solving the system will be suggested. """ if method == 'GJ': try: soln, param = self.gauss_jordan_solve(rhs) if param: raise NonInvertibleMatrixError("Matrix det == 0; not invertible. " "Try ``self.gauss_jordan_solve(rhs)`` to obtain a parametric solution.") except ValueError: # raise same error as in inv: self.zeros(1).inv() return soln elif method == 'LU': return self.LUsolve(rhs) elif method == 'CH': return self.cholesky_solve(rhs) elif method == 'QR': return self.QRsolve(rhs) elif method == 'LDL': return self.LDLsolve(rhs) elif method == 'PINV': return self.pinv_solve(rhs) else: return self.inv(method=method)*rhs def table(self, printer, rowstart='[', rowend=']', rowsep='\n', colsep=', ', align='right'): r""" String form of Matrix as a table. ``printer`` is the printer to use for on the elements (generally something like StrPrinter()) ``rowstart`` is the string used to start each row (by default '['). ``rowend`` is the string used to end each row (by default ']'). ``rowsep`` is the string used to separate rows (by default a newline). ``colsep`` is the string used to separate columns (by default ', '). ``align`` defines how the elements are aligned. Must be one of 'left', 'right', or 'center'. You can also use '<', '>', and '^' to mean the same thing, respectively. This is used by the string printer for Matrix. Examples ======== >>> from sympy import Matrix >>> from sympy.printing.str import StrPrinter >>> M = Matrix([[1, 2], [-33, 4]]) >>> printer = StrPrinter() >>> M.table(printer) '[ 1, 2]\n[-33, 4]' >>> print(M.table(printer)) [ 1, 2] [-33, 4] >>> print(M.table(printer, rowsep=',\n')) [ 1, 2], [-33, 4] >>> print('[%s]' % M.table(printer, rowsep=',\n')) [[ 1, 2], [-33, 4]] >>> print(M.table(printer, colsep=' ')) [ 1 2] [-33 4] >>> print(M.table(printer, align='center')) [ 1 , 2] [-33, 4] >>> print(M.table(printer, rowstart='{', rowend='}')) { 1, 2} {-33, 4} """ # Handle zero dimensions: if self.rows == 0 or self.cols == 0: return '[]' # Build table of string representations of the elements res = [] # Track per-column max lengths for pretty alignment maxlen = [0] * self.cols for i in range(self.rows): res.append([]) for j in range(self.cols): s = printer._print(self[i, j]) res[-1].append(s) maxlen[j] = max(len(s), maxlen[j]) # Patch strings together align = { 'left': 'ljust', 'right': 'rjust', 'center': 'center', '<': 'ljust', '>': 'rjust', '^': 'center', }[align] for i, row in enumerate(res): for j, elem in enumerate(row): row[j] = getattr(elem, align)(maxlen[j]) res[i] = rowstart + colsep.join(row) + rowend return rowsep.join(res) def upper_triangular_solve(self, rhs): """Solves ``Ax = B``, where A is an upper triangular matrix. See Also ======== lower_triangular_solve gauss_jordan_solve cholesky_solve diagonal_solve LDLsolve LUsolve QRsolve pinv_solve """ if not self.is_square: raise NonSquareMatrixError("Matrix must be square.") if rhs.rows != self.rows: raise TypeError("Matrix size mismatch.") if not self.is_upper: raise TypeError("Matrix is not upper triangular.") return self._upper_triangular_solve(rhs) def vech(self, diagonal=True, check_symmetry=True): """Return the unique elements of a symmetric Matrix as a one column matrix by stacking the elements in the lower triangle. Arguments: diagonal -- include the diagonal cells of ``self`` or not check_symmetry -- checks symmetry of ``self`` but not completely reliably Examples ======== >>> from sympy import Matrix >>> m=Matrix([[1, 2], [2, 3]]) >>> m Matrix([ [1, 2], [2, 3]]) >>> m.vech() Matrix([ [1], [2], [3]]) >>> m.vech(diagonal=False) Matrix([[2]]) See Also ======== vec """ from sympy.matrices import zeros c = self.cols if c != self.rows: raise ShapeError("Matrix must be square") if check_symmetry: self.simplify() if self != self.transpose(): raise ValueError( "Matrix appears to be asymmetric; consider check_symmetry=False") count = 0 if diagonal: v = zeros(c * (c + 1) // 2, 1) for j in range(c): for i in range(j, c): v[count] = self[i, j] count += 1 else: v = zeros(c * (c - 1) // 2, 1) for j in range(c): for i in range(j + 1, c): v[count] = self[i, j] count += 1 return v @deprecated( issue=15109, useinstead="from sympy.matrices.common import classof", deprecated_since_version="1.3") def classof(A, B): from sympy.matrices.common import classof as classof_ return classof_(A, B) @deprecated( issue=15109, deprecated_since_version="1.3", useinstead="from sympy.matrices.common import a2idx") def a2idx(j, n=None): from sympy.matrices.common import a2idx as a2idx_ return a2idx_(j, n) def _find_reasonable_pivot(col, iszerofunc=_iszero, simpfunc=_simplify): """ Find the lowest index of an item in ``col`` that is suitable for a pivot. If ``col`` consists only of Floats, the pivot with the largest norm is returned. Otherwise, the first element where ``iszerofunc`` returns False is used. If ``iszerofunc`` doesn't return false, items are simplified and retested until a suitable pivot is found. Returns a 4-tuple (pivot_offset, pivot_val, assumed_nonzero, newly_determined) where pivot_offset is the index of the pivot, pivot_val is the (possibly simplified) value of the pivot, assumed_nonzero is True if an assumption that the pivot was non-zero was made without being proved, and newly_determined are elements that were simplified during the process of pivot finding.""" newly_determined = [] col = list(col) # a column that contains a mix of floats and integers # but at least one float is considered a numerical # column, and so we do partial pivoting if all(isinstance(x, (Float, Integer)) for x in col) and any( isinstance(x, Float) for x in col): col_abs = [abs(x) for x in col] max_value = max(col_abs) if iszerofunc(max_value): # just because iszerofunc returned True, doesn't # mean the value is numerically zero. Make sure # to replace all entries with numerical zeros if max_value != 0: newly_determined = [(i, 0) for i, x in enumerate(col) if x != 0] return (None, None, False, newly_determined) index = col_abs.index(max_value) return (index, col[index], False, newly_determined) # PASS 1 (iszerofunc directly) possible_zeros = [] for i, x in enumerate(col): is_zero = iszerofunc(x) # is someone wrote a custom iszerofunc, it may return # BooleanFalse or BooleanTrue instead of True or False, # so use == for comparison instead of `is` if is_zero == False: # we found something that is definitely not zero return (i, x, False, newly_determined) possible_zeros.append(is_zero) # by this point, we've found no certain non-zeros if all(possible_zeros): # if everything is definitely zero, we have # no pivot return (None, None, False, newly_determined) # PASS 2 (iszerofunc after simplify) # we haven't found any for-sure non-zeros, so # go through the elements iszerofunc couldn't # make a determination about and opportunistically # simplify to see if we find something for i, x in enumerate(col): if possible_zeros[i] is not None: continue simped = simpfunc(x) is_zero = iszerofunc(simped) if is_zero == True or is_zero == False: newly_determined.append((i, simped)) if is_zero == False: return (i, simped, False, newly_determined) possible_zeros[i] = is_zero # after simplifying, some things that were recognized # as zeros might be zeros if all(possible_zeros): # if everything is definitely zero, we have # no pivot return (None, None, False, newly_determined) # PASS 3 (.equals(0)) # some expressions fail to simplify to zero, but # ``.equals(0)`` evaluates to True. As a last-ditch # attempt, apply ``.equals`` to these expressions for i, x in enumerate(col): if possible_zeros[i] is not None: continue if x.equals(S.Zero): # ``.iszero`` may return False with # an implicit assumption (e.g., ``x.equals(0)`` # when ``x`` is a symbol), so only treat it # as proved when ``.equals(0)`` returns True possible_zeros[i] = True newly_determined.append((i, S.Zero)) if all(possible_zeros): return (None, None, False, newly_determined) # at this point there is nothing that could definitely # be a pivot. To maintain compatibility with existing # behavior, we'll assume that an illdetermined thing is # non-zero. We should probably raise a warning in this case i = possible_zeros.index(None) return (i, col[i], True, newly_determined) def _find_reasonable_pivot_naive(col, iszerofunc=_iszero, simpfunc=None): """ Helper that computes the pivot value and location from a sequence of contiguous matrix column elements. As a side effect of the pivot search, this function may simplify some of the elements of the input column. A list of these simplified entries and their indices are also returned. This function mimics the behavior of _find_reasonable_pivot(), but does less work trying to determine if an indeterminate candidate pivot simplifies to zero. This more naive approach can be much faster, with the trade-off that it may erroneously return a pivot that is zero. ``col`` is a sequence of contiguous column entries to be searched for a suitable pivot. ``iszerofunc`` is a callable that returns a Boolean that indicates if its input is zero, or None if no such determination can be made. ``simpfunc`` is a callable that simplifies its input. It must return its input if it does not simplify its input. Passing in ``simpfunc=None`` indicates that the pivot search should not attempt to simplify any candidate pivots. Returns a 4-tuple: (pivot_offset, pivot_val, assumed_nonzero, newly_determined) ``pivot_offset`` is the sequence index of the pivot. ``pivot_val`` is the value of the pivot. pivot_val and col[pivot_index] are equivalent, but will be different when col[pivot_index] was simplified during the pivot search. ``assumed_nonzero`` is a boolean indicating if the pivot cannot be guaranteed to be zero. If assumed_nonzero is true, then the pivot may or may not be non-zero. If assumed_nonzero is false, then the pivot is non-zero. ``newly_determined`` is a list of index-value pairs of pivot candidates that were simplified during the pivot search. """ # indeterminates holds the index-value pairs of each pivot candidate # that is neither zero or non-zero, as determined by iszerofunc(). # If iszerofunc() indicates that a candidate pivot is guaranteed # non-zero, or that every candidate pivot is zero then the contents # of indeterminates are unused. # Otherwise, the only viable candidate pivots are symbolic. # In this case, indeterminates will have at least one entry, # and all but the first entry are ignored when simpfunc is None. indeterminates = [] for i, col_val in enumerate(col): col_val_is_zero = iszerofunc(col_val) if col_val_is_zero == False: # This pivot candidate is non-zero. return i, col_val, False, [] elif col_val_is_zero is None: # The candidate pivot's comparison with zero # is indeterminate. indeterminates.append((i, col_val)) if len(indeterminates) == 0: # All candidate pivots are guaranteed to be zero, i.e. there is # no pivot. return None, None, False, [] if simpfunc is None: # Caller did not pass in a simplification function that might # determine if an indeterminate pivot candidate is guaranteed # to be nonzero, so assume the first indeterminate candidate # is non-zero. return indeterminates[0][0], indeterminates[0][1], True, [] # newly_determined holds index-value pairs of candidate pivots # that were simplified during the search for a non-zero pivot. newly_determined = [] for i, col_val in indeterminates: tmp_col_val = simpfunc(col_val) if id(col_val) != id(tmp_col_val): # simpfunc() simplified this candidate pivot. newly_determined.append((i, tmp_col_val)) if iszerofunc(tmp_col_val) == False: # Candidate pivot simplified to a guaranteed non-zero value. return i, tmp_col_val, False, newly_determined return indeterminates[0][0], indeterminates[0][1], True, newly_determined
2638065b9296ce8846222925863b410b0da49ca2cc7975b170b4855b7081a964
from .sets import (Set, Interval, Union, EmptySet, FiniteSet, ProductSet, Intersection, imageset, Complement, SymmetricDifference) from .fancysets import ImageSet, Range, ComplexRegion, Reals from .contains import Contains from .conditionset import ConditionSet from .ordinals import Ordinal, OmegaPower, ord0 from .powerset import PowerSet from ..core.singleton import S Reals = S.Reals Naturals = S.Naturals Naturals0 = S.Naturals0 UniversalSet = S.UniversalSet EmptySet = S.EmptySet Integers = S.Integers Rationals = S.Rationals del S
614274e510d1f225e6bb031629618210bbd6ba3f4b42f0147f70025b57059c50
from __future__ import print_function, division from functools import reduce from sympy.core.basic import Basic from sympy.core.compatibility import with_metaclass, range, PY3 from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.function import Lambda from sympy.core.logic import fuzzy_not, fuzzy_or from sympy.core.numbers import oo, Integer from sympy.core.relational import Eq from sympy.core.singleton import Singleton, S from sympy.core.symbol import Dummy, symbols, Symbol from sympy.core.sympify import _sympify, sympify, converter from sympy.logic.boolalg import And from sympy.sets.sets import (Set, Interval, Union, FiniteSet, ProductSet) from sympy.utilities.misc import filldedent from sympy.utilities.iterables import cartes class Rationals(with_metaclass(Singleton, Set)): """ Represents the rational numbers. This set is also available as the Singleton, S.Rationals. Examples ======== >>> from sympy import S >>> S.Half in S.Rationals True >>> iterable = iter(S.Rationals) >>> [next(iterable) for i in range(12)] [0, 1, -1, 1/2, 2, -1/2, -2, 1/3, 3, -1/3, -3, 2/3] """ is_iterable = True _inf = S.NegativeInfinity _sup = S.Infinity is_empty = False def _contains(self, other): if not isinstance(other, Expr): return False if other.is_Number: return other.is_Rational return other.is_rational def __iter__(self): from sympy.core.numbers import igcd, Rational yield S.Zero yield S.One yield S.NegativeOne d = 2 while True: for n in range(d): if igcd(n, d) == 1: yield Rational(n, d) yield Rational(d, n) yield Rational(-n, d) yield Rational(-d, n) d += 1 @property def _boundary(self): return self class Naturals(with_metaclass(Singleton, Set)): """ Represents the natural numbers (or counting numbers) which are all positive integers starting from 1. This set is also available as the Singleton, S.Naturals. Examples ======== >>> from sympy import S, Interval, pprint >>> 5 in S.Naturals True >>> iterable = iter(S.Naturals) >>> next(iterable) 1 >>> next(iterable) 2 >>> next(iterable) 3 >>> pprint(S.Naturals.intersect(Interval(0, 10))) {1, 2, ..., 10} See Also ======== Naturals0 : non-negative integers (i.e. includes 0, too) Integers : also includes negative integers """ is_iterable = True _inf = S.One _sup = S.Infinity is_empty = False def _contains(self, other): if not isinstance(other, Expr): return False elif other.is_positive and other.is_integer: return True elif other.is_integer is False or other.is_positive is False: return False def __iter__(self): i = self._inf while True: yield i i = i + 1 @property def _boundary(self): return self def as_relational(self, x): from sympy.functions.elementary.integers import floor return And(Eq(floor(x), x), x >= self.inf, x < oo) class Naturals0(Naturals): """Represents the whole numbers which are all the non-negative integers, inclusive of zero. See Also ======== Naturals : positive integers; does not include 0 Integers : also includes the negative integers """ _inf = S.Zero is_empty = False def _contains(self, other): if not isinstance(other, Expr): return S.false elif other.is_integer and other.is_nonnegative: return S.true elif other.is_integer is False or other.is_nonnegative is False: return S.false class Integers(with_metaclass(Singleton, Set)): """ Represents all integers: positive, negative and zero. This set is also available as the Singleton, S.Integers. Examples ======== >>> from sympy import S, Interval, pprint >>> 5 in S.Naturals True >>> iterable = iter(S.Integers) >>> next(iterable) 0 >>> next(iterable) 1 >>> next(iterable) -1 >>> next(iterable) 2 >>> pprint(S.Integers.intersect(Interval(-4, 4))) {-4, -3, ..., 4} See Also ======== Naturals0 : non-negative integers Integers : positive and negative integers and zero """ is_iterable = True is_empty = False def _contains(self, other): if not isinstance(other, Expr): return S.false return other.is_integer def __iter__(self): yield S.Zero i = S.One while True: yield i yield -i i = i + 1 @property def _inf(self): return S.NegativeInfinity @property def _sup(self): return S.Infinity @property def _boundary(self): return self def as_relational(self, x): from sympy.functions.elementary.integers import floor return And(Eq(floor(x), x), -oo < x, x < oo) class Reals(with_metaclass(Singleton, Interval)): """ Represents all real numbers from negative infinity to positive infinity, including all integer, rational and irrational numbers. This set is also available as the Singleton, S.Reals. Examples ======== >>> from sympy import S, Interval, Rational, pi, I >>> 5 in S.Reals True >>> Rational(-1, 2) in S.Reals True >>> pi in S.Reals True >>> 3*I in S.Reals False >>> S.Reals.contains(pi) True See Also ======== ComplexRegion """ def __new__(cls): return Interval.__new__(cls, S.NegativeInfinity, S.Infinity) def __eq__(self, other): return other == Interval(S.NegativeInfinity, S.Infinity) def __hash__(self): return hash(Interval(S.NegativeInfinity, S.Infinity)) class ImageSet(Set): """ Image of a set under a mathematical function. The transformation must be given as a Lambda function which has as many arguments as the elements of the set upon which it operates, e.g. 1 argument when acting on the set of integers or 2 arguments when acting on a complex region. This function is not normally called directly, but is called from `imageset`. Examples ======== >>> from sympy import Symbol, S, pi, Dummy, Lambda >>> from sympy.sets.sets import FiniteSet, Interval >>> from sympy.sets.fancysets import ImageSet >>> x = Symbol('x') >>> N = S.Naturals >>> squares = ImageSet(Lambda(x, x**2), N) # {x**2 for x in N} >>> 4 in squares True >>> 5 in squares False >>> FiniteSet(0, 1, 2, 3, 4, 5, 6, 7, 9, 10).intersect(squares) FiniteSet(1, 4, 9) >>> square_iterable = iter(squares) >>> for i in range(4): ... next(square_iterable) 1 4 9 16 If you want to get value for `x` = 2, 1/2 etc. (Please check whether the `x` value is in `base_set` or not before passing it as args) >>> squares.lamda(2) 4 >>> squares.lamda(S(1)/2) 1/4 >>> n = Dummy('n') >>> solutions = ImageSet(Lambda(n, n*pi), S.Integers) # solutions of sin(x) = 0 >>> dom = Interval(-1, 1) >>> dom.intersect(solutions) FiniteSet(0) See Also ======== sympy.sets.sets.imageset """ def __new__(cls, flambda, *sets): if not isinstance(flambda, Lambda): raise ValueError('First argument must be a Lambda') signature = flambda.signature if len(signature) != len(sets): raise ValueError('Incompatible signature') sets = [_sympify(s) for s in sets] if not all(isinstance(s, Set) for s in sets): raise TypeError("Set arguments to ImageSet should of type Set") if not all(cls._check_sig(sg, st) for sg, st in zip(signature, sets)): raise ValueError("Signature %s does not match sets %s" % (signature, sets)) if flambda is S.IdentityFunction and len(sets) == 1: return sets[0] if not set(flambda.variables) & flambda.expr.free_symbols: is_empty = fuzzy_or(s.is_empty for s in sets) if is_empty == True: return S.EmptySet elif is_empty == False: return FiniteSet(flambda.expr) return Basic.__new__(cls, flambda, *sets) lamda = property(lambda self: self.args[0]) base_sets = property(lambda self: self.args[1:]) @property def base_set(self): # XXX: Maybe deprecate this? It is poorly defined in handling # the multivariate case... sets = self.base_sets if len(sets) == 1: return sets[0] else: return ProductSet(*sets).flatten() @property def base_pset(self): return ProductSet(*self.base_sets) @classmethod def _check_sig(cls, sig_i, set_i): if sig_i.is_symbol: return True elif isinstance(set_i, ProductSet): sets = set_i.sets if len(sig_i) != len(sets): return False # Recurse through the signature for nested tuples: return all(cls._check_sig(ts, ps) for ts, ps in zip(sig_i, sets)) else: # XXX: Need a better way of checking whether a set is a set of # Tuples or not. For example a FiniteSet can contain Tuples # but so can an ImageSet or a ConditionSet. Others like # Integers, Reals etc can not contain Tuples. We could just # list the possibilities here... Current code for e.g. # _contains probably only works for ProductSet. return True # Give the benefit of the doubt def __iter__(self): already_seen = set() for i in self.base_pset: val = self.lamda(*i) if val in already_seen: continue else: already_seen.add(val) yield val def _is_multivariate(self): return len(self.lamda.variables) > 1 def _contains(self, other): from sympy.solvers.solveset import _solveset_multi def get_symsetmap(signature, base_sets): '''Attempt to get a map of symbols to base_sets''' queue = list(zip(signature, base_sets)) symsetmap = {} for sig, base_set in queue: if sig.is_symbol: symsetmap[sig] = base_set elif base_set.is_ProductSet: sets = base_set.sets if len(sig) != len(sets): raise ValueError("Incompatible signature") # Recurse queue.extend(zip(sig, sets)) else: # If we get here then we have something like sig = (x, y) and # base_set = {(1, 2), (3, 4)}. For now we give up. return None return symsetmap def get_equations(expr, candidate): '''Find the equations relating symbols in expr and candidate.''' queue = [(expr, candidate)] for e, c in queue: if not isinstance(e, Tuple): yield Eq(e, c) elif not isinstance(c, Tuple) or len(e) != len(c): yield False return else: queue.extend(zip(e, c)) # Get the basic objects together: other = _sympify(other) expr = self.lamda.expr sig = self.lamda.signature variables = self.lamda.variables base_sets = self.base_sets # Use dummy symbols for ImageSet parameters so they don't match # anything in other rep = {v: Dummy(v.name) for v in variables} variables = [v.subs(rep) for v in variables] sig = sig.subs(rep) expr = expr.subs(rep) # Map the parts of other to those in the Lambda expr equations = [] for eq in get_equations(expr, other): # Unsatisfiable equation? if eq is False: return False equations.append(eq) # Map the symbols in the signature to the corresponding domains symsetmap = get_symsetmap(sig, base_sets) if symsetmap is None: # Can't factor the base sets to a ProductSet return None # Which of the variables in the Lambda signature need to be solved for? symss = (eq.free_symbols for eq in equations) variables = set(variables) & reduce(set.union, symss, set()) # Use internal multivariate solveset variables = tuple(variables) base_sets = [symsetmap[v] for v in variables] solnset = _solveset_multi(equations, variables, base_sets) if solnset is None: return None return fuzzy_not(solnset.is_empty) @property def is_iterable(self): return all(s.is_iterable for s in self.base_sets) def doit(self, **kwargs): from sympy.sets.setexpr import SetExpr f = self.lamda sig = f.signature if len(sig) == 1 and sig[0].is_symbol and isinstance(f.expr, Expr): base_set = self.base_sets[0] return SetExpr(base_set)._eval_func(f).set if all(s.is_FiniteSet for s in self.base_sets): return FiniteSet(*(f(*a) for a in cartes(*self.base_sets))) return self class Range(Set): """ Represents a range of integers. Can be called as Range(stop), Range(start, stop), or Range(start, stop, step); when stop is not given it defaults to 1. `Range(stop)` is the same as `Range(0, stop, 1)` and the stop value (juse as for Python ranges) is not included in the Range values. >>> from sympy import Range >>> list(Range(3)) [0, 1, 2] The step can also be negative: >>> list(Range(10, 0, -2)) [10, 8, 6, 4, 2] The stop value is made canonical so equivalent ranges always have the same args: >>> Range(0, 10, 3) Range(0, 12, 3) Infinite ranges are allowed. ``oo`` and ``-oo`` are never included in the set (``Range`` is always a subset of ``Integers``). If the starting point is infinite, then the final value is ``stop - step``. To iterate such a range, it needs to be reversed: >>> from sympy import oo >>> r = Range(-oo, 1) >>> r[-1] 0 >>> next(iter(r)) Traceback (most recent call last): ... TypeError: Cannot iterate over Range with infinite start >>> next(iter(r.reversed)) 0 Although Range is a set (and supports the normal set operations) it maintains the order of the elements and can be used in contexts where `range` would be used. >>> from sympy import Interval >>> Range(0, 10, 2).intersect(Interval(3, 7)) Range(4, 8, 2) >>> list(_) [4, 6] Although slicing of a Range will always return a Range -- possibly empty -- an empty set will be returned from any intersection that is empty: >>> Range(3)[:0] Range(0, 0, 1) >>> Range(3).intersect(Interval(4, oo)) EmptySet >>> Range(3).intersect(Range(4, oo)) EmptySet Range will accept symbolic arguments but has very limited support for doing anything other than displaying the Range: >>> from sympy import Symbol, pprint >>> from sympy.abc import i, j, k >>> Range(i, j, k).start i >>> Range(i, j, k).inf Traceback (most recent call last): ... ValueError: invalid method for symbolic range Better success will be had when using integer symbols: >>> n = Symbol('n', integer=True) >>> r = Range(n, n + 20, 3) >>> r.inf n >>> pprint(r) {n, n + 3, ..., n + 17} """ is_iterable = True def __new__(cls, *args): from sympy.functions.elementary.integers import ceiling if len(args) == 1: if isinstance(args[0], range): raise TypeError( 'use sympify(%s) to convert range to Range' % args[0]) # expand range slc = slice(*args) if slc.step == 0: raise ValueError("step cannot be 0") start, stop, step = slc.start or 0, slc.stop, slc.step or 1 try: ok = [] for w in (start, stop, step): w = sympify(w) if w in [S.NegativeInfinity, S.Infinity] or ( w.has(Symbol) and w.is_integer != False): ok.append(w) elif not w.is_Integer: raise ValueError else: ok.append(w) except ValueError: raise ValueError(filldedent(''' Finite arguments to Range must be integers; `imageset` can define other cases, e.g. use `imageset(i, i/10, Range(3))` to give [0, 1/10, 1/5].''')) start, stop, step = ok null = False if any(i.has(Symbol) for i in (start, stop, step)): if start == stop: null = True else: end = stop elif start.is_infinite: span = step*(stop - start) if span is S.NaN or span <= 0: null = True elif step.is_Integer and stop.is_infinite and abs(step) != 1: raise ValueError(filldedent(''' Step size must be %s in this case.''' % (1 if step > 0 else -1))) else: end = stop else: oostep = step.is_infinite if oostep: step = S.One if step > 0 else S.NegativeOne n = ceiling((stop - start)/step) if n <= 0: null = True elif oostep: end = start + 1 step = S.One # make it a canonical single step else: end = start + n*step if null: start = end = S.Zero step = S.One return Basic.__new__(cls, start, end, step) start = property(lambda self: self.args[0]) stop = property(lambda self: self.args[1]) step = property(lambda self: self.args[2]) @property def reversed(self): """Return an equivalent Range in the opposite order. Examples ======== >>> from sympy import Range >>> Range(10).reversed Range(9, -1, -1) """ if self.has(Symbol): _ = self.size # validate if not self: return self return self.func( self.stop - self.step, self.start - self.step, -self.step) def _contains(self, other): if not self: return S.false if other.is_infinite: return S.false if not other.is_integer: return other.is_integer if self.has(Symbol): try: _ = self.size # validate except ValueError: return if self.start.is_finite: ref = self.start elif self.stop.is_finite: ref = self.stop else: return other.is_Integer if (ref - other) % self.step: # off sequence return S.false return _sympify(other >= self.inf and other <= self.sup) def __iter__(self): if self.has(Symbol): _ = self.size # validate if self.start in [S.NegativeInfinity, S.Infinity]: raise TypeError("Cannot iterate over Range with infinite start") elif self: i = self.start step = self.step while True: if (step > 0 and not (self.start <= i < self.stop)) or \ (step < 0 and not (self.stop < i <= self.start)): break yield i i += step def __len__(self): rv = self.size if rv is S.Infinity: raise ValueError('Use .size to get the length of an infinite Range') return int(rv) @property def size(self): if not self: return S.Zero dif = self.stop - self.start if self.has(Symbol): if dif.has(Symbol) or self.step.has(Symbol) or ( not self.start.is_integer and not self.stop.is_integer): raise ValueError('invalid method for symbolic range') if dif.is_infinite: return S.Infinity return Integer(abs(dif//self.step)) def __nonzero__(self): return self.start != self.stop __bool__ = __nonzero__ def __getitem__(self, i): from sympy.functions.elementary.integers import ceiling ooslice = "cannot slice from the end with an infinite value" zerostep = "slice step cannot be zero" # if we had to take every other element in the following # oo, ..., 6, 4, 2, 0 # we might get oo, ..., 4, 0 or oo, ..., 6, 2 ambiguous = "cannot unambiguously re-stride from the end " + \ "with an infinite value" if isinstance(i, slice): if self.size.is_finite: # validates, too start, stop, step = i.indices(self.size) n = ceiling((stop - start)/step) if n <= 0: return Range(0) canonical_stop = start + n*step end = canonical_stop - step ss = step*self.step return Range(self[start], self[end] + ss, ss) else: # infinite Range start = i.start stop = i.stop if i.step == 0: raise ValueError(zerostep) step = i.step or 1 ss = step*self.step #--------------------- # handle infinite on right # e.g. Range(0, oo) or Range(0, -oo, -1) # -------------------- if self.stop.is_infinite: # start and stop are not interdependent -- # they only depend on step --so we use the # equivalent reversed values return self.reversed[ stop if stop is None else -stop + 1: start if start is None else -start: step].reversed #--------------------- # handle infinite on the left # e.g. Range(oo, 0, -1) or Range(-oo, 0) # -------------------- # consider combinations of # start/stop {== None, < 0, == 0, > 0} and # step {< 0, > 0} if start is None: if stop is None: if step < 0: return Range(self[-1], self.start, ss) elif step > 1: raise ValueError(ambiguous) else: # == 1 return self elif stop < 0: if step < 0: return Range(self[-1], self[stop], ss) else: # > 0 return Range(self.start, self[stop], ss) elif stop == 0: if step > 0: return Range(0) else: # < 0 raise ValueError(ooslice) elif stop == 1: if step > 0: raise ValueError(ooslice) # infinite singleton else: # < 0 raise ValueError(ooslice) else: # > 1 raise ValueError(ooslice) elif start < 0: if stop is None: if step < 0: return Range(self[start], self.start, ss) else: # > 0 return Range(self[start], self.stop, ss) elif stop < 0: return Range(self[start], self[stop], ss) elif stop == 0: if step < 0: raise ValueError(ooslice) else: # > 0 return Range(0) elif stop > 0: raise ValueError(ooslice) elif start == 0: if stop is None: if step < 0: raise ValueError(ooslice) # infinite singleton elif step > 1: raise ValueError(ambiguous) else: # == 1 return self elif stop < 0: if step > 1: raise ValueError(ambiguous) elif step == 1: return Range(self.start, self[stop], ss) else: # < 0 return Range(0) else: # >= 0 raise ValueError(ooslice) elif start > 0: raise ValueError(ooslice) else: if not self: raise IndexError('Range index out of range') if i == 0: if self.start.is_infinite: raise ValueError(ooslice) if self.has(Symbol): if (self.stop > self.start) == self.step.is_positive and self.step.is_positive is not None: pass else: _ = self.size # validate return self.start if i == -1: if self.stop.is_infinite: raise ValueError(ooslice) n = self.stop - self.step if n.is_Integer or ( n.is_integer and ( (n - self.start).is_nonnegative == self.step.is_positive)): return n _ = self.size # validate rv = (self.stop if i < 0 else self.start) + i*self.step if rv.is_infinite: raise ValueError(ooslice) if rv < self.inf or rv > self.sup: raise IndexError("Range index out of range") return rv @property def _inf(self): if not self: raise NotImplementedError if self.has(Symbol): if self.step.is_positive: return self[0] elif self.step.is_negative: return self[-1] _ = self.size # validate if self.step > 0: return self.start else: return self.stop - self.step @property def _sup(self): if not self: raise NotImplementedError if self.has(Symbol): if self.step.is_positive: return self[-1] elif self.step.is_negative: return self[0] _ = self.size # validate if self.step > 0: return self.stop - self.step else: return self.start @property def _boundary(self): return self def as_relational(self, x): """Rewrite a Range in terms of equalities and logic operators. """ from sympy.functions.elementary.integers import floor return And( Eq(x, floor(x)), x >= self.inf if self.inf in self else x > self.inf, x <= self.sup if self.sup in self else x < self.sup) if PY3: converter[range] = lambda r: Range(r.start, r.stop, r.step) else: converter[xrange] = lambda r: Range(*r.__reduce__()[1]) def normalize_theta_set(theta): """ Normalize a Real Set `theta` in the Interval [0, 2*pi). It returns a normalized value of theta in the Set. For Interval, a maximum of one cycle [0, 2*pi], is returned i.e. for theta equal to [0, 10*pi], returned normalized value would be [0, 2*pi). As of now intervals with end points as non-multiples of `pi` is not supported. Raises ====== NotImplementedError The algorithms for Normalizing theta Set are not yet implemented. ValueError The input is not valid, i.e. the input is not a real set. RuntimeError It is a bug, please report to the github issue tracker. Examples ======== >>> from sympy.sets.fancysets import normalize_theta_set >>> from sympy import Interval, FiniteSet, pi >>> normalize_theta_set(Interval(9*pi/2, 5*pi)) Interval(pi/2, pi) >>> normalize_theta_set(Interval(-3*pi/2, pi/2)) Interval.Ropen(0, 2*pi) >>> normalize_theta_set(Interval(-pi/2, pi/2)) Union(Interval(0, pi/2), Interval.Ropen(3*pi/2, 2*pi)) >>> normalize_theta_set(Interval(-4*pi, 3*pi)) Interval.Ropen(0, 2*pi) >>> normalize_theta_set(Interval(-3*pi/2, -pi/2)) Interval(pi/2, 3*pi/2) >>> normalize_theta_set(FiniteSet(0, pi, 3*pi)) FiniteSet(0, pi) """ from sympy.functions.elementary.trigonometric import _pi_coeff as coeff if theta.is_Interval: interval_len = theta.measure # one complete circle if interval_len >= 2*S.Pi: if interval_len == 2*S.Pi and theta.left_open and theta.right_open: k = coeff(theta.start) return Union(Interval(0, k*S.Pi, False, True), Interval(k*S.Pi, 2*S.Pi, True, True)) return Interval(0, 2*S.Pi, False, True) k_start, k_end = coeff(theta.start), coeff(theta.end) if k_start is None or k_end is None: raise NotImplementedError("Normalizing theta without pi as coefficient is " "not yet implemented") new_start = k_start*S.Pi new_end = k_end*S.Pi if new_start > new_end: return Union(Interval(S.Zero, new_end, False, theta.right_open), Interval(new_start, 2*S.Pi, theta.left_open, True)) else: return Interval(new_start, new_end, theta.left_open, theta.right_open) elif theta.is_FiniteSet: new_theta = [] for element in theta: k = coeff(element) if k is None: raise NotImplementedError('Normalizing theta without pi as ' 'coefficient, is not Implemented.') else: new_theta.append(k*S.Pi) return FiniteSet(*new_theta) elif theta.is_Union: return Union(*[normalize_theta_set(interval) for interval in theta.args]) elif theta.is_subset(S.Reals): raise NotImplementedError("Normalizing theta when, it is of type %s is not " "implemented" % type(theta)) else: raise ValueError(" %s is not a real set" % (theta)) class ComplexRegion(Set): """ Represents the Set of all Complex Numbers. It can represent a region of Complex Plane in both the standard forms Polar and Rectangular coordinates. * Polar Form Input is in the form of the ProductSet or Union of ProductSets of the intervals of r and theta, & use the flag polar=True. Z = {z in C | z = r*[cos(theta) + I*sin(theta)], r in [r], theta in [theta]} * Rectangular Form Input is in the form of the ProductSet or Union of ProductSets of interval of x and y the of the Complex numbers in a Plane. Default input type is in rectangular form. Z = {z in C | z = x + I*y, x in [Re(z)], y in [Im(z)]} Examples ======== >>> from sympy.sets.fancysets import ComplexRegion >>> from sympy.sets import Interval >>> from sympy import S, I, Union >>> a = Interval(2, 3) >>> b = Interval(4, 6) >>> c = Interval(1, 8) >>> c1 = ComplexRegion(a*b) # Rectangular Form >>> c1 CartesianComplexRegion(ProductSet(Interval(2, 3), Interval(4, 6))) * c1 represents the rectangular region in complex plane surrounded by the coordinates (2, 4), (3, 4), (3, 6) and (2, 6), of the four vertices. >>> c2 = ComplexRegion(Union(a*b, b*c)) >>> c2 CartesianComplexRegion(Union(ProductSet(Interval(2, 3), Interval(4, 6)), ProductSet(Interval(4, 6), Interval(1, 8)))) * c2 represents the Union of two rectangular regions in complex plane. One of them surrounded by the coordinates of c1 and other surrounded by the coordinates (4, 1), (6, 1), (6, 8) and (4, 8). >>> 2.5 + 4.5*I in c1 True >>> 2.5 + 6.5*I in c1 False >>> r = Interval(0, 1) >>> theta = Interval(0, 2*S.Pi) >>> c2 = ComplexRegion(r*theta, polar=True) # Polar Form >>> c2 # unit Disk PolarComplexRegion(ProductSet(Interval(0, 1), Interval.Ropen(0, 2*pi))) * c2 represents the region in complex plane inside the Unit Disk centered at the origin. >>> 0.5 + 0.5*I in c2 True >>> 1 + 2*I in c2 False >>> unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True) >>> upper_half_unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi), polar=True) >>> intersection = unit_disk.intersect(upper_half_unit_disk) >>> intersection PolarComplexRegion(ProductSet(Interval(0, 1), Interval(0, pi))) >>> intersection == upper_half_unit_disk True See Also ======== CartesianComplexRegion PolarComplexRegion Complexes """ is_ComplexRegion = True def __new__(cls, sets, polar=False): if polar is False: return CartesianComplexRegion(sets) elif polar is True: return PolarComplexRegion(sets) else: raise ValueError("polar should be either True or False") @property def sets(self): """ Return raw input sets to the self. Examples ======== >>> from sympy import Interval, ComplexRegion, Union >>> a = Interval(2, 3) >>> b = Interval(4, 5) >>> c = Interval(1, 7) >>> C1 = ComplexRegion(a*b) >>> C1.sets ProductSet(Interval(2, 3), Interval(4, 5)) >>> C2 = ComplexRegion(Union(a*b, b*c)) >>> C2.sets Union(ProductSet(Interval(2, 3), Interval(4, 5)), ProductSet(Interval(4, 5), Interval(1, 7))) """ return self.args[0] @property def psets(self): """ Return a tuple of sets (ProductSets) input of the self. Examples ======== >>> from sympy import Interval, ComplexRegion, Union >>> a = Interval(2, 3) >>> b = Interval(4, 5) >>> c = Interval(1, 7) >>> C1 = ComplexRegion(a*b) >>> C1.psets (ProductSet(Interval(2, 3), Interval(4, 5)),) >>> C2 = ComplexRegion(Union(a*b, b*c)) >>> C2.psets (ProductSet(Interval(2, 3), Interval(4, 5)), ProductSet(Interval(4, 5), Interval(1, 7))) """ if self.sets.is_ProductSet: psets = () psets = psets + (self.sets, ) else: psets = self.sets.args return psets @property def a_interval(self): """ Return the union of intervals of `x` when, self is in rectangular form, or the union of intervals of `r` when self is in polar form. Examples ======== >>> from sympy import Interval, ComplexRegion, Union >>> a = Interval(2, 3) >>> b = Interval(4, 5) >>> c = Interval(1, 7) >>> C1 = ComplexRegion(a*b) >>> C1.a_interval Interval(2, 3) >>> C2 = ComplexRegion(Union(a*b, b*c)) >>> C2.a_interval Union(Interval(2, 3), Interval(4, 5)) """ a_interval = [] for element in self.psets: a_interval.append(element.args[0]) a_interval = Union(*a_interval) return a_interval @property def b_interval(self): """ Return the union of intervals of `y` when, self is in rectangular form, or the union of intervals of `theta` when self is in polar form. Examples ======== >>> from sympy import Interval, ComplexRegion, Union >>> a = Interval(2, 3) >>> b = Interval(4, 5) >>> c = Interval(1, 7) >>> C1 = ComplexRegion(a*b) >>> C1.b_interval Interval(4, 5) >>> C2 = ComplexRegion(Union(a*b, b*c)) >>> C2.b_interval Interval(1, 7) """ b_interval = [] for element in self.psets: b_interval.append(element.args[1]) b_interval = Union(*b_interval) return b_interval @property def _measure(self): """ The measure of self.sets. Examples ======== >>> from sympy import Interval, ComplexRegion, S >>> a, b = Interval(2, 5), Interval(4, 8) >>> c = Interval(0, 2*S.Pi) >>> c1 = ComplexRegion(a*b) >>> c1.measure 12 >>> c2 = ComplexRegion(a*c, polar=True) >>> c2.measure 6*pi """ return self.sets._measure @classmethod def from_real(cls, sets): """ Converts given subset of real numbers to a complex region. Examples ======== >>> from sympy import Interval, ComplexRegion >>> unit = Interval(0,1) >>> ComplexRegion.from_real(unit) CartesianComplexRegion(ProductSet(Interval(0, 1), FiniteSet(0))) """ if not sets.is_subset(S.Reals): raise ValueError("sets must be a subset of the real line") return CartesianComplexRegion(sets * FiniteSet(0)) def _contains(self, other): from sympy.functions import arg, Abs from sympy.core.containers import Tuple other = sympify(other) isTuple = isinstance(other, Tuple) if isTuple and len(other) != 2: raise ValueError('expecting Tuple of length 2') # If the other is not an Expression, and neither a Tuple if not isinstance(other, Expr) and not isinstance(other, Tuple): return S.false # self in rectangular form if not self.polar: re, im = other if isTuple else other.as_real_imag() for element in self.psets: if And(element.args[0]._contains(re), element.args[1]._contains(im)): return True return False # self in polar form elif self.polar: if isTuple: r, theta = other elif other.is_zero: r, theta = S.Zero, S.Zero else: r, theta = Abs(other), arg(other) for element in self.psets: if And(element.args[0]._contains(r), element.args[1]._contains(theta)): return True return False class CartesianComplexRegion(ComplexRegion): """ Set representing a square region of the complex plane. Z = {z in C | z = x + I*y, x in [Re(z)], y in [Im(z)]} Examples ======== >>> from sympy.sets.fancysets import ComplexRegion >>> from sympy.sets.sets import Interval >>> from sympy import I >>> region = ComplexRegion(Interval(1, 3) * Interval(4, 6)) >>> 2 + 5*I in region True >>> 5*I in region False See also ======== ComplexRegion PolarComplexRegion Complexes """ polar = False variables = symbols('x, y', cls=Dummy) def __new__(cls, sets): if sets == S.Reals*S.Reals: return S.Complexes if all(_a.is_FiniteSet for _a in sets.args) and (len(sets.args) == 2): # ** ProductSet of FiniteSets in the Complex Plane. ** # For Cases like ComplexRegion({2, 4}*{3}), It # would return {2 + 3*I, 4 + 3*I} # FIXME: This should probably be handled with something like: # return ImageSet(Lambda((x, y), x+I*y), sets).rewrite(FiniteSet) complex_num = [] for x in sets.args[0]: for y in sets.args[1]: complex_num.append(x + S.ImaginaryUnit*y) return FiniteSet(*complex_num) else: return Set.__new__(cls, sets) @property def expr(self): x, y = self.variables return x + S.ImaginaryUnit*y class PolarComplexRegion(ComplexRegion): """ Set representing a polar region of the complex plane. Z = {z in C | z = r*[cos(theta) + I*sin(theta)], r in [r], theta in [theta]} Examples ======== >>> from sympy.sets.fancysets import ComplexRegion, Interval >>> from sympy import oo, pi, I >>> rset = Interval(0, oo) >>> thetaset = Interval(0, pi) >>> upper_half_plane = ComplexRegion(rset * thetaset, polar=True) >>> 1 + I in upper_half_plane True >>> 1 - I in upper_half_plane False See also ======== ComplexRegion CartesianComplexRegion Complexes """ polar = True variables = symbols('r, theta', cls=Dummy) def __new__(cls, sets): new_sets = [] # sets is Union of ProductSets if not sets.is_ProductSet: for k in sets.args: new_sets.append(k) # sets is ProductSets else: new_sets.append(sets) # Normalize input theta for k, v in enumerate(new_sets): new_sets[k] = ProductSet(v.args[0], normalize_theta_set(v.args[1])) sets = Union(*new_sets) return Set.__new__(cls, sets) @property def expr(self): from sympy.functions.elementary.trigonometric import sin, cos r, theta = self.variables return r*(cos(theta) + S.ImaginaryUnit*sin(theta)) class Complexes(with_metaclass(Singleton, CartesianComplexRegion)): """ The Set of all complex numbers Examples ======== >>> from sympy import S, I >>> S.Complexes Complexes >>> 1 + I in S.Complexes True See also ======== Reals ComplexRegion """ # Override property from superclass since Complexes has no args sets = ProductSet(S.Reals, S.Reals) def __new__(cls): return Set.__new__(cls) def __str__(self): return "S.Complexes" def __repr__(self): return "S.Complexes"
b4bacee7a1504e4d4b675aed8a101f604595243bd536da1218f5dbdff43ae82c
from __future__ import print_function, division from collections import defaultdict import inspect from sympy.core.basic import Basic from sympy.core.compatibility import (iterable, with_metaclass, ordered, range, PY3, reduce) from sympy.core.cache import cacheit from sympy.core.containers import Tuple from sympy.core.decorators import deprecated from sympy.core.evalf import EvalfMixin from sympy.core.evaluate import global_evaluate from sympy.core.expr import Expr from sympy.core.logic import fuzzy_bool, fuzzy_or, fuzzy_and from sympy.core.numbers import Float from sympy.core.operations import LatticeOp from sympy.core.relational import Eq, Ne from sympy.core.singleton import Singleton, S from sympy.core.symbol import Symbol, Dummy, _uniquely_named_symbol from sympy.core.sympify import _sympify, sympify, converter from sympy.logic.boolalg import And, Or, Not, Xor, true, false from sympy.sets.contains import Contains from sympy.utilities import subsets from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import iproduct, sift, roundrobin from sympy.utilities.misc import func_name, filldedent from mpmath import mpi, mpf tfn = defaultdict(lambda: None, { True: S.true, S.true: S.true, False: S.false, S.false: S.false}) class Set(Basic): """ The base class for any kind of set. This is not meant to be used directly as a container of items. It does not behave like the builtin ``set``; see :class:`FiniteSet` for that. Real intervals are represented by the :class:`Interval` class and unions of sets by the :class:`Union` class. The empty set is represented by the :class:`EmptySet` class and available as a singleton as ``S.EmptySet``. """ is_number = False is_iterable = False is_interval = False is_FiniteSet = False is_Interval = False is_ProductSet = False is_Union = False is_Intersection = None is_UniversalSet = None is_Complement = None is_ComplexRegion = False @property def is_empty(self): """ Property method to check whether a set is empty. Returns ``True``, ``False`` or ``None`` (if unknown). Examples ======== >>> from sympy import Interval, var >>> x = var('x', real=True) >>> Interval(x, x + 1).is_empty False """ return None @property @deprecated(useinstead="is S.EmptySet or is_empty", issue=16946, deprecated_since_version="1.5") def is_EmptySet(self): return None @staticmethod def _infimum_key(expr): """ Return infimum (if possible) else S.Infinity. """ try: infimum = expr.inf assert infimum.is_comparable except (NotImplementedError, AttributeError, AssertionError, ValueError): infimum = S.Infinity return infimum def union(self, other): """ Returns the union of 'self' and 'other'. Examples ======== As a shortcut it is possible to use the '+' operator: >>> from sympy import Interval, FiniteSet >>> Interval(0, 1).union(Interval(2, 3)) Union(Interval(0, 1), Interval(2, 3)) >>> Interval(0, 1) + Interval(2, 3) Union(Interval(0, 1), Interval(2, 3)) >>> Interval(1, 2, True, True) + FiniteSet(2, 3) Union(FiniteSet(3), Interval.Lopen(1, 2)) Similarly it is possible to use the '-' operator for set differences: >>> Interval(0, 2) - Interval(0, 1) Interval.Lopen(1, 2) >>> Interval(1, 3) - FiniteSet(2) Union(Interval.Ropen(1, 2), Interval.Lopen(2, 3)) """ return Union(self, other) def intersect(self, other): """ Returns the intersection of 'self' and 'other'. >>> from sympy import Interval >>> Interval(1, 3).intersect(Interval(1, 2)) Interval(1, 2) >>> from sympy import imageset, Lambda, symbols, S >>> n, m = symbols('n m') >>> a = imageset(Lambda(n, 2*n), S.Integers) >>> a.intersect(imageset(Lambda(m, 2*m + 1), S.Integers)) EmptySet """ return Intersection(self, other) def intersection(self, other): """ Alias for :meth:`intersect()` """ return self.intersect(other) def is_disjoint(self, other): """ Returns True if 'self' and 'other' are disjoint Examples ======== >>> from sympy import Interval >>> Interval(0, 2).is_disjoint(Interval(1, 2)) False >>> Interval(0, 2).is_disjoint(Interval(3, 4)) True References ========== .. [1] https://en.wikipedia.org/wiki/Disjoint_sets """ return self.intersect(other) == S.EmptySet def isdisjoint(self, other): """ Alias for :meth:`is_disjoint()` """ return self.is_disjoint(other) def complement(self, universe): r""" The complement of 'self' w.r.t the given universe. Examples ======== >>> from sympy import Interval, S >>> Interval(0, 1).complement(S.Reals) Union(Interval.open(-oo, 0), Interval.open(1, oo)) >>> Interval(0, 1).complement(S.UniversalSet) Complement(UniversalSet, Interval(0, 1)) """ return Complement(universe, self) def _complement(self, other): # this behaves as other - self if isinstance(self, ProductSet) and isinstance(other, ProductSet): # If self and other are disjoint then other - self == self if len(self.sets) != len(other.sets): return other # There can be other ways to represent this but this gives: # (A x B) - (C x D) = ((A - C) x B) U (A x (B - D)) overlaps = [] pairs = list(zip(self.sets, other.sets)) for n in range(len(pairs)): sets = (o if i != n else o-s for i, (s, o) in enumerate(pairs)) overlaps.append(ProductSet(*sets)) return Union(*overlaps) elif isinstance(other, Interval): if isinstance(self, Interval) or isinstance(self, FiniteSet): return Intersection(other, self.complement(S.Reals)) elif isinstance(other, Union): return Union(*(o - self for o in other.args)) elif isinstance(other, Complement): return Complement(other.args[0], Union(other.args[1], self), evaluate=False) elif isinstance(other, EmptySet): return S.EmptySet elif isinstance(other, FiniteSet): from sympy.utilities.iterables import sift sifted = sift(other, lambda x: fuzzy_bool(self.contains(x))) # ignore those that are contained in self return Union(FiniteSet(*(sifted[False])), Complement(FiniteSet(*(sifted[None])), self, evaluate=False) if sifted[None] else S.EmptySet) def symmetric_difference(self, other): """ Returns symmetric difference of `self` and `other`. Examples ======== >>> from sympy import Interval, S >>> Interval(1, 3).symmetric_difference(S.Reals) Union(Interval.open(-oo, 1), Interval.open(3, oo)) >>> Interval(1, 10).symmetric_difference(S.Reals) Union(Interval.open(-oo, 1), Interval.open(10, oo)) >>> from sympy import S, EmptySet >>> S.Reals.symmetric_difference(EmptySet) Reals References ========== .. [1] https://en.wikipedia.org/wiki/Symmetric_difference """ return SymmetricDifference(self, other) def _symmetric_difference(self, other): return Union(Complement(self, other), Complement(other, self)) @property def inf(self): """ The infimum of 'self' Examples ======== >>> from sympy import Interval, Union >>> Interval(0, 1).inf 0 >>> Union(Interval(0, 1), Interval(2, 3)).inf 0 """ return self._inf @property def _inf(self): raise NotImplementedError("(%s)._inf" % self) @property def sup(self): """ The supremum of 'self' Examples ======== >>> from sympy import Interval, Union >>> Interval(0, 1).sup 1 >>> Union(Interval(0, 1), Interval(2, 3)).sup 3 """ return self._sup @property def _sup(self): raise NotImplementedError("(%s)._sup" % self) def contains(self, other): """ Returns a SymPy value indicating whether ``other`` is contained in ``self``: ``true`` if it is, ``false`` if it isn't, else an unevaluated ``Contains`` expression (or, as in the case of ConditionSet and a union of FiniteSet/Intervals, an expression indicating the conditions for containment). Examples ======== >>> from sympy import Interval, S >>> from sympy.abc import x >>> Interval(0, 1).contains(0.5) True As a shortcut it is possible to use the 'in' operator, but that will raise an error unless an affirmative true or false is not obtained. >>> Interval(0, 1).contains(x) (0 <= x) & (x <= 1) >>> x in Interval(0, 1) Traceback (most recent call last): ... TypeError: did not evaluate to a bool: None The result of 'in' is a bool, not a SymPy value >>> 1 in Interval(0, 2) True >>> _ is S.true False """ other = sympify(other, strict=True) c = self._contains(other) if c is None: return Contains(other, self, evaluate=False) b = tfn[c] if b is None: return c return b def _contains(self, other): raise NotImplementedError(filldedent(''' (%s)._contains(%s) is not defined. This method, when defined, will receive a sympified object. The method should return True, False, None or something that expresses what must be true for the containment of that object in self to be evaluated. If None is returned then a generic Contains object will be returned by the ``contains`` method.''' % (self, other))) def is_subset(self, other): """ Returns True if 'self' is a subset of 'other'. Examples ======== >>> from sympy import Interval >>> Interval(0, 0.5).is_subset(Interval(0, 1)) True >>> Interval(0, 1).is_subset(Interval(0, 1, left_open=True)) False """ if isinstance(other, Set): dispatch = getattr(self, '_eval_is_subset', None) if dispatch is not None: ret = dispatch(other) if ret is not None: return ret s_o = self.intersect(other) if s_o == self: return True # This assumes that an unevaluated Intersection will always come # back as an Intersection... elif isinstance(s_o, Intersection): return None else: return False else: raise ValueError("Unknown argument '%s'" % other) def issubset(self, other): """ Alias for :meth:`is_subset()` """ return self.is_subset(other) def is_proper_subset(self, other): """ Returns True if 'self' is a proper subset of 'other'. Examples ======== >>> from sympy import Interval >>> Interval(0, 0.5).is_proper_subset(Interval(0, 1)) True >>> Interval(0, 1).is_proper_subset(Interval(0, 1)) False """ if isinstance(other, Set): return self != other and self.is_subset(other) else: raise ValueError("Unknown argument '%s'" % other) def is_superset(self, other): """ Returns True if 'self' is a superset of 'other'. Examples ======== >>> from sympy import Interval >>> Interval(0, 0.5).is_superset(Interval(0, 1)) False >>> Interval(0, 1).is_superset(Interval(0, 1, left_open=True)) True """ if isinstance(other, Set): return other.is_subset(self) else: raise ValueError("Unknown argument '%s'" % other) def issuperset(self, other): """ Alias for :meth:`is_superset()` """ return self.is_superset(other) def is_proper_superset(self, other): """ Returns True if 'self' is a proper superset of 'other'. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).is_proper_superset(Interval(0, 0.5)) True >>> Interval(0, 1).is_proper_superset(Interval(0, 1)) False """ if isinstance(other, Set): return self != other and self.is_superset(other) else: raise ValueError("Unknown argument '%s'" % other) def _eval_powerset(self): from .powerset import PowerSet return PowerSet(self) def powerset(self): """ Find the Power set of 'self'. Examples ======== >>> from sympy import EmptySet, FiniteSet, Interval, PowerSet A power set of an empty set: >>> from sympy import FiniteSet, EmptySet >>> A = EmptySet >>> A.powerset() FiniteSet(EmptySet) A power set of a finite set: >>> A = FiniteSet(1, 2) >>> a, b, c = FiniteSet(1), FiniteSet(2), FiniteSet(1, 2) >>> A.powerset() == FiniteSet(a, b, c, EmptySet) True A power set of an interval: >>> Interval(1, 2).powerset() PowerSet(Interval(1, 2)) References ========== .. [1] https://en.wikipedia.org/wiki/Power_set """ return self._eval_powerset() @property def measure(self): """ The (Lebesgue) measure of 'self' Examples ======== >>> from sympy import Interval, Union >>> Interval(0, 1).measure 1 >>> Union(Interval(0, 1), Interval(2, 3)).measure 2 """ return self._measure @property def boundary(self): """ The boundary or frontier of a set A point x is on the boundary of a set S if 1. x is in the closure of S. I.e. Every neighborhood of x contains a point in S. 2. x is not in the interior of S. I.e. There does not exist an open set centered on x contained entirely within S. There are the points on the outer rim of S. If S is open then these points need not actually be contained within S. For example, the boundary of an interval is its start and end points. This is true regardless of whether or not the interval is open. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).boundary FiniteSet(0, 1) >>> Interval(0, 1, True, False).boundary FiniteSet(0, 1) """ return self._boundary @property def is_open(self): """ Property method to check whether a set is open. A set is open if and only if it has an empty intersection with its boundary. Examples ======== >>> from sympy import S >>> S.Reals.is_open True """ if not Intersection(self, self.boundary): return True # We can't confidently claim that an intersection exists return None @property def is_closed(self): """ A property method to check whether a set is closed. A set is closed if its complement is an open set. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).is_closed True """ return self.boundary.is_subset(self) @property def closure(self): """ Property method which returns the closure of a set. The closure is defined as the union of the set itself and its boundary. Examples ======== >>> from sympy import S, Interval >>> S.Reals.closure Reals >>> Interval(0, 1).closure Interval(0, 1) """ return self + self.boundary @property def interior(self): """ Property method which returns the interior of a set. The interior of a set S consists all points of S that do not belong to the boundary of S. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).interior Interval.open(0, 1) >>> Interval(0, 1).boundary.interior EmptySet """ return self - self.boundary @property def _boundary(self): raise NotImplementedError() @property def _measure(self): raise NotImplementedError("(%s)._measure" % self) def __add__(self, other): return self.union(other) def __or__(self, other): return self.union(other) def __and__(self, other): return self.intersect(other) def __mul__(self, other): return ProductSet(self, other) def __xor__(self, other): return SymmetricDifference(self, other) def __pow__(self, exp): if not (sympify(exp).is_Integer and exp >= 0): raise ValueError("%s: Exponent must be a positive Integer" % exp) return ProductSet(*[self]*exp) def __sub__(self, other): return Complement(self, other) def __contains__(self, other): other = sympify(other) c = self._contains(other) b = tfn[c] if b is None: raise TypeError('did not evaluate to a bool: %r' % c) return b class ProductSet(Set): """ Represents a Cartesian Product of Sets. Returns a Cartesian product given several sets as either an iterable or individual arguments. Can use '*' operator on any sets for convenient shorthand. Examples ======== >>> from sympy import Interval, FiniteSet, ProductSet >>> I = Interval(0, 5); S = FiniteSet(1, 2, 3) >>> ProductSet(I, S) ProductSet(Interval(0, 5), FiniteSet(1, 2, 3)) >>> (2, 2) in ProductSet(I, S) True >>> Interval(0, 1) * Interval(0, 1) # The unit square ProductSet(Interval(0, 1), Interval(0, 1)) >>> coin = FiniteSet('H', 'T') >>> set(coin**2) {(H, H), (H, T), (T, H), (T, T)} The Cartesian product is not commutative or associative e.g.: >>> I*S == S*I False >>> (I*I)*I == I*(I*I) False Notes ===== - Passes most operations down to the argument sets References ========== .. [1] https://en.wikipedia.org/wiki/Cartesian_product """ is_ProductSet = True def __new__(cls, *sets, **assumptions): if len(sets) == 1 and iterable(sets[0]) and not isinstance(sets[0], (Set, set)): SymPyDeprecationWarning( feature="ProductSet(iterable)", useinstead="ProductSet(*iterable)", issue=17557, deprecated_since_version="1.5" ).warn() sets = tuple(sets[0]) sets = [sympify(s) for s in sets] if not all(isinstance(s, Set) for s in sets): raise TypeError("Arguments to ProductSet should be of type Set") # Nullary product of sets is *not* the empty set if len(sets) == 0: return FiniteSet(()) if S.EmptySet in sets: return S.EmptySet return Basic.__new__(cls, *sets, **assumptions) @property def sets(self): return self.args def flatten(self): def _flatten(sets): for s in sets: if s.is_ProductSet: for s2 in _flatten(s.sets): yield s2 else: yield s return ProductSet(*_flatten(self.sets)) def _eval_Eq(self, other): if not other.is_ProductSet: return if len(self.sets) != len(other.sets): return false eqs = (Eq(x, y) for x, y in zip(self.sets, other.sets)) return tfn[fuzzy_and(map(fuzzy_bool, eqs))] def _contains(self, element): """ 'in' operator for ProductSets Examples ======== >>> from sympy import Interval >>> (2, 3) in Interval(0, 5) * Interval(0, 5) True >>> (10, 10) in Interval(0, 5) * Interval(0, 5) False Passes operation on to constituent sets """ if element.is_Symbol: return None if not isinstance(element, Tuple) or len(element) != len(self.sets): return False return fuzzy_and(s._contains(e) for s, e in zip(self.sets, element)) def as_relational(self, *symbols): symbols = [_sympify(s) for s in symbols] if len(symbols) != len(self.sets) or not all( i.is_Symbol for i in symbols): raise ValueError( 'number of symbols must match the number of sets') return And(*[s.as_relational(i) for s, i in zip(self.sets, symbols)]) @property def _boundary(self): return Union(*(ProductSet(*(b + b.boundary if i != j else b.boundary for j, b in enumerate(self.sets))) for i, a in enumerate(self.sets))) @property def is_iterable(self): """ A property method which tests whether a set is iterable or not. Returns True if set is iterable, otherwise returns False. Examples ======== >>> from sympy import FiniteSet, Interval, ProductSet >>> I = Interval(0, 1) >>> A = FiniteSet(1, 2, 3, 4, 5) >>> I.is_iterable False >>> A.is_iterable True """ return all(set.is_iterable for set in self.sets) def __iter__(self): """ A method which implements is_iterable property method. If self.is_iterable returns True (both constituent sets are iterable), then return the Cartesian Product. Otherwise, raise TypeError. """ return iproduct(*self.sets) @property def is_empty(self): return fuzzy_or(s.is_empty for s in self.sets) @property def _measure(self): measure = 1 for s in self.sets: measure *= s.measure return measure def __len__(self): return reduce(lambda a, b: a*b, (len(s) for s in self.args)) def __bool__(self): return all([bool(s) for s in self.sets]) __nonzero__ = __bool__ class Interval(Set, EvalfMixin): """ Represents a real interval as a Set. Usage: Returns an interval with end points "start" and "end". For left_open=True (default left_open is False) the interval will be open on the left. Similarly, for right_open=True the interval will be open on the right. Examples ======== >>> from sympy import Symbol, Interval >>> Interval(0, 1) Interval(0, 1) >>> Interval.Ropen(0, 1) Interval.Ropen(0, 1) >>> Interval.Ropen(0, 1) Interval.Ropen(0, 1) >>> Interval.Lopen(0, 1) Interval.Lopen(0, 1) >>> Interval.open(0, 1) Interval.open(0, 1) >>> a = Symbol('a', real=True) >>> Interval(0, a) Interval(0, a) Notes ===== - Only real end points are supported - Interval(a, b) with a > b will return the empty set - Use the evalf() method to turn an Interval into an mpmath 'mpi' interval instance References ========== .. [1] https://en.wikipedia.org/wiki/Interval_%28mathematics%29 """ is_Interval = True def __new__(cls, start, end, left_open=False, right_open=False): start = _sympify(start) end = _sympify(end) left_open = _sympify(left_open) right_open = _sympify(right_open) if not all(isinstance(a, (type(true), type(false))) for a in [left_open, right_open]): raise NotImplementedError( "left_open and right_open can have only true/false values, " "got %s and %s" % (left_open, right_open)) inftys = [S.Infinity, S.NegativeInfinity] # Only allow real intervals (use symbols with 'is_extended_real=True'). if not all(i.is_extended_real is not False or i in inftys for i in (start, end)): raise ValueError("Non-real intervals are not supported") # evaluate if possible if (end < start) == True: return S.EmptySet elif (end - start).is_negative: return S.EmptySet if end == start and (left_open or right_open): return S.EmptySet if end == start and not (left_open or right_open): if start is S.Infinity or start is S.NegativeInfinity: return S.EmptySet return FiniteSet(end) # Make sure infinite interval end points are open. if start is S.NegativeInfinity: left_open = true if end is S.Infinity: right_open = true if start == S.Infinity or end == S.NegativeInfinity: return S.EmptySet return Basic.__new__(cls, start, end, left_open, right_open) @property def start(self): """ The left end point of 'self'. This property takes the same value as the 'inf' property. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).start 0 """ return self._args[0] _inf = left = start @classmethod def open(cls, a, b): """Return an interval including neither boundary.""" return cls(a, b, True, True) @classmethod def Lopen(cls, a, b): """Return an interval not including the left boundary.""" return cls(a, b, True, False) @classmethod def Ropen(cls, a, b): """Return an interval not including the right boundary.""" return cls(a, b, False, True) @property def end(self): """ The right end point of 'self'. This property takes the same value as the 'sup' property. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).end 1 """ return self._args[1] _sup = right = end @property def left_open(self): """ True if 'self' is left-open. Examples ======== >>> from sympy import Interval >>> Interval(0, 1, left_open=True).left_open True >>> Interval(0, 1, left_open=False).left_open False """ return self._args[2] @property def right_open(self): """ True if 'self' is right-open. Examples ======== >>> from sympy import Interval >>> Interval(0, 1, right_open=True).right_open True >>> Interval(0, 1, right_open=False).right_open False """ return self._args[3] @property def is_empty(self): if self.left_open or self.right_open: cond = self.start >= self.end # One/both bounds open else: cond = self.start > self.end # Both bounds closed return fuzzy_bool(cond) def _complement(self, other): if other == S.Reals: a = Interval(S.NegativeInfinity, self.start, True, not self.left_open) b = Interval(self.end, S.Infinity, not self.right_open, True) return Union(a, b) if isinstance(other, FiniteSet): nums = [m for m in other.args if m.is_number] if nums == []: return None return Set._complement(self, other) @property def _boundary(self): finite_points = [p for p in (self.start, self.end) if abs(p) != S.Infinity] return FiniteSet(*finite_points) def _contains(self, other): if not isinstance(other, Expr) or ( other is S.Infinity or other is S.NegativeInfinity or other is S.NaN or other is S.ComplexInfinity) or other.is_extended_real is False: return false if self.start is S.NegativeInfinity and self.end is S.Infinity: if not other.is_extended_real is None: return other.is_extended_real d = Dummy() return self.as_relational(d).subs(d, other) def as_relational(self, x): """Rewrite an interval in terms of inequalities and logic operators.""" x = sympify(x) if self.right_open: right = x < self.end else: right = x <= self.end if self.left_open: left = self.start < x else: left = self.start <= x return And(left, right) @property def _measure(self): return self.end - self.start def to_mpi(self, prec=53): return mpi(mpf(self.start._eval_evalf(prec)), mpf(self.end._eval_evalf(prec))) def _eval_evalf(self, prec): return Interval(self.left._eval_evalf(prec), self.right._eval_evalf(prec), left_open=self.left_open, right_open=self.right_open) def _is_comparable(self, other): is_comparable = self.start.is_comparable is_comparable &= self.end.is_comparable is_comparable &= other.start.is_comparable is_comparable &= other.end.is_comparable return is_comparable @property def is_left_unbounded(self): """Return ``True`` if the left endpoint is negative infinity. """ return self.left is S.NegativeInfinity or self.left == Float("-inf") @property def is_right_unbounded(self): """Return ``True`` if the right endpoint is positive infinity. """ return self.right is S.Infinity or self.right == Float("+inf") def _eval_Eq(self, other): if not isinstance(other, Interval): if isinstance(other, FiniteSet): return false elif isinstance(other, Set): return None return false return And(Eq(self.left, other.left), Eq(self.right, other.right), self.left_open == other.left_open, self.right_open == other.right_open) class Union(Set, LatticeOp, EvalfMixin): """ Represents a union of sets as a :class:`Set`. Examples ======== >>> from sympy import Union, Interval >>> Union(Interval(1, 2), Interval(3, 4)) Union(Interval(1, 2), Interval(3, 4)) The Union constructor will always try to merge overlapping intervals, if possible. For example: >>> Union(Interval(1, 2), Interval(2, 3)) Interval(1, 3) See Also ======== Intersection References ========== .. [1] https://en.wikipedia.org/wiki/Union_%28set_theory%29 """ is_Union = True @property def identity(self): return S.EmptySet @property def zero(self): return S.UniversalSet def __new__(cls, *args, **kwargs): evaluate = kwargs.get('evaluate', global_evaluate[0]) # flatten inputs to merge intersections and iterables args = _sympify(args) # Reduce sets using known rules if evaluate: args = list(cls._new_args_filter(args)) return simplify_union(args) args = list(ordered(args, Set._infimum_key)) obj = Basic.__new__(cls, *args) obj._argset = frozenset(args) return obj @property @cacheit def args(self): return self._args def _complement(self, universe): # DeMorgan's Law return Intersection(s.complement(universe) for s in self.args) @property def _inf(self): # We use Min so that sup is meaningful in combination with symbolic # interval end points. from sympy.functions.elementary.miscellaneous import Min return Min(*[set.inf for set in self.args]) @property def _sup(self): # We use Max so that sup is meaningful in combination with symbolic # end points. from sympy.functions.elementary.miscellaneous import Max return Max(*[set.sup for set in self.args]) @property def is_empty(self): return fuzzy_and(set.is_empty for set in self.args) @property def _measure(self): # Measure of a union is the sum of the measures of the sets minus # the sum of their pairwise intersections plus the sum of their # triple-wise intersections minus ... etc... # Sets is a collection of intersections and a set of elementary # sets which made up those intersections (called "sos" for set of sets) # An example element might of this list might be: # ( {A,B,C}, A.intersect(B).intersect(C) ) # Start with just elementary sets ( ({A}, A), ({B}, B), ... ) # Then get and subtract ( ({A,B}, (A int B), ... ) while non-zero sets = [(FiniteSet(s), s) for s in self.args] measure = 0 parity = 1 while sets: # Add up the measure of these sets and add or subtract it to total measure += parity * sum(inter.measure for sos, inter in sets) # For each intersection in sets, compute the intersection with every # other set not already part of the intersection. sets = ((sos + FiniteSet(newset), newset.intersect(intersection)) for sos, intersection in sets for newset in self.args if newset not in sos) # Clear out sets with no measure sets = [(sos, inter) for sos, inter in sets if inter.measure != 0] # Clear out duplicates sos_list = [] sets_list = [] for set in sets: if set[0] in sos_list: continue else: sos_list.append(set[0]) sets_list.append(set) sets = sets_list # Flip Parity - next time subtract/add if we added/subtracted here parity *= -1 return measure @property def _boundary(self): def boundary_of_set(i): """ The boundary of set i minus interior of all other sets """ b = self.args[i].boundary for j, a in enumerate(self.args): if j != i: b = b - a.interior return b return Union(*map(boundary_of_set, range(len(self.args)))) def _contains(self, other): return Or(*[s.contains(other) for s in self.args]) def as_relational(self, symbol): """Rewrite a Union in terms of equalities and logic operators. """ if all(isinstance(i, (FiniteSet, Interval)) for i in self.args): if len(self.args) == 2: a, b = self.args if (a.sup == b.inf and a.inf is S.NegativeInfinity and b.sup is S.Infinity): return And(Ne(symbol, a.sup), symbol < b.sup, symbol > a.inf) return Or(*[set.as_relational(symbol) for set in self.args]) raise NotImplementedError('relational of Union with non-Intervals') @property def is_iterable(self): return all(arg.is_iterable for arg in self.args) def _eval_evalf(self, prec): try: return Union(*(set._eval_evalf(prec) for set in self.args)) except (TypeError, ValueError, NotImplementedError): import sys raise (TypeError("Not all sets are evalf-able"), None, sys.exc_info()[2]) def __iter__(self): return roundrobin(*(iter(arg) for arg in self.args)) class Intersection(Set, LatticeOp): """ Represents an intersection of sets as a :class:`Set`. Examples ======== >>> from sympy import Intersection, Interval >>> Intersection(Interval(1, 3), Interval(2, 4)) Interval(2, 3) We often use the .intersect method >>> Interval(1,3).intersect(Interval(2,4)) Interval(2, 3) See Also ======== Union References ========== .. [1] https://en.wikipedia.org/wiki/Intersection_%28set_theory%29 """ is_Intersection = True @property def identity(self): return S.UniversalSet @property def zero(self): return S.EmptySet def __new__(cls, *args, **kwargs): evaluate = kwargs.get('evaluate', global_evaluate[0]) # flatten inputs to merge intersections and iterables args = list(ordered(set(_sympify(args)))) # Reduce sets using known rules if evaluate: args = list(cls._new_args_filter(args)) return simplify_intersection(args) args = list(ordered(args, Set._infimum_key)) obj = Basic.__new__(cls, *args) obj._argset = frozenset(args) return obj @property @cacheit def args(self): return self._args @property def is_iterable(self): return any(arg.is_iterable for arg in self.args) @property def _inf(self): raise NotImplementedError() @property def _sup(self): raise NotImplementedError() def _contains(self, other): return And(*[set.contains(other) for set in self.args]) def __iter__(self): sets_sift = sift(self.args, lambda x: x.is_iterable) completed = False candidates = sets_sift[True] + sets_sift[None] finite_candidates, others = [], [] for candidate in candidates: length = None try: length = len(candidate) except: others.append(candidate) if length is not None: finite_candidates.append(candidate) finite_candidates.sort(key=len) for s in finite_candidates + others: other_sets = set(self.args) - set((s,)) other = Intersection(*other_sets, evaluate=False) completed = True for x in s: try: if x in other: yield x except TypeError: completed = False if completed: return if not completed: if not candidates: raise TypeError("None of the constituent sets are iterable") raise TypeError( "The computation had not completed because of the " "undecidable set membership is found in every candidates.") @staticmethod def _handle_finite_sets(args): '''Simplify intersection of one or more FiniteSets and other sets''' # First separate the FiniteSets from the others fs_args, others = sift(args, lambda x: x.is_FiniteSet, binary=True) # Let the caller handle intersection of non-FiniteSets if not fs_args: return # Convert to Python sets and build the set of all elements fs_sets = [set(fs) for fs in fs_args] all_elements = reduce(lambda a, b: a | b, fs_sets, set()) # Extract elements that are definitely in or definitely not in the # intersection. Here we check contains for all of args. definite = set() for e in all_elements: inall = fuzzy_and(s.contains(e) for s in args) if inall is True: definite.add(e) if inall is not None: for s in fs_sets: s.discard(e) # At this point all elements in all of fs_sets are possibly in the # intersection. In some cases this is because they are definitely in # the intersection of the finite sets but it's not clear if they are # members of others. We might have {m, n}, {m}, and Reals where we # don't know if m or n is real. We want to remove n here but it is # possibly in because it might be equal to m. So what we do now is # extract the elements that are definitely in the remaining finite # sets iteratively until we end up with {n}, {}. At that point if we # get any empty set all remaining elements are discarded. fs_elements = reduce(lambda a, b: a | b, fs_sets, set()) # Need fuzzy containment testing fs_symsets = [FiniteSet(*s) for s in fs_sets] while fs_elements: for e in fs_elements: infs = fuzzy_and(s.contains(e) for s in fs_symsets) if infs is True: definite.add(e) if infs is not None: for n, s in enumerate(fs_sets): # Update Python set and FiniteSet if e in s: s.remove(e) fs_symsets[n] = FiniteSet(*s) fs_elements.remove(e) break # If we completed the for loop without removing anything we are # done so quit the outer while loop else: break # If any of the sets of remainder elements is empty then we discard # all of them for the intersection. if not all(fs_sets): fs_sets = [set()] # Here we fold back the definitely included elements into each fs. # Since they are definitely included they must have been members of # each FiniteSet to begin with. We could instead fold these in with a # Union at the end to get e.g. {3}|({x}&{y}) rather than {3,x}&{3,y}. if definite: fs_sets = [fs | definite for fs in fs_sets] if fs_sets == [set()]: return S.EmptySet sets = [FiniteSet(*s) for s in fs_sets] # Any set in others is redundant if it contains all the elements that # are in the finite sets so we don't need it in the Intersection all_elements = reduce(lambda a, b: a | b, fs_sets, set()) is_redundant = lambda o: all(fuzzy_bool(o.contains(e)) for e in all_elements) others = [o for o in others if not is_redundant(o)] if others: rest = Intersection(*others) # XXX: Maybe this shortcut should be at the beginning. For large # FiniteSets it could much more efficient to process the other # sets first... if rest is S.EmptySet: return S.EmptySet # Flatten the Intersection if rest.is_Intersection: sets.extend(rest.args) else: sets.append(rest) if len(sets) == 1: return sets[0] else: return Intersection(*sets, evaluate=False) def as_relational(self, symbol): """Rewrite an Intersection in terms of equalities and logic operators""" return And(*[set.as_relational(symbol) for set in self.args]) class Complement(Set, EvalfMixin): r"""Represents the set difference or relative complement of a set with another set. `A - B = \{x \in A \mid x \notin B\}` Examples ======== >>> from sympy import Complement, FiniteSet >>> Complement(FiniteSet(0, 1, 2), FiniteSet(1)) FiniteSet(0, 2) See Also ========= Intersection, Union References ========== .. [1] http://mathworld.wolfram.com/ComplementSet.html """ is_Complement = True def __new__(cls, a, b, evaluate=True): if evaluate: return Complement.reduce(a, b) return Basic.__new__(cls, a, b) @staticmethod def reduce(A, B): """ Simplify a :class:`Complement`. """ if B == S.UniversalSet or A.is_subset(B): return S.EmptySet if isinstance(B, Union): return Intersection(*(s.complement(A) for s in B.args)) result = B._complement(A) if result is not None: return result else: return Complement(A, B, evaluate=False) def _contains(self, other): A = self.args[0] B = self.args[1] return And(A.contains(other), Not(B.contains(other))) def as_relational(self, symbol): """Rewrite a complement in terms of equalities and logic operators""" A, B = self.args A_rel = A.as_relational(symbol) B_rel = Not(B.as_relational(symbol)) return And(A_rel, B_rel) @property def is_iterable(self): if self.args[0].is_iterable: return True def __iter__(self): A, B = self.args for a in A: if a not in B: yield a else: continue class EmptySet(with_metaclass(Singleton, Set)): """ Represents the empty set. The empty set is available as a singleton as S.EmptySet. Examples ======== >>> from sympy import S, Interval >>> S.EmptySet EmptySet >>> Interval(1, 2).intersect(S.EmptySet) EmptySet See Also ======== UniversalSet References ========== .. [1] https://en.wikipedia.org/wiki/Empty_set """ is_empty = True is_FiniteSet = True @property @deprecated(useinstead="is S.EmptySet or is_empty", issue=16946, deprecated_since_version="1.5") def is_EmptySet(self): return True @property def _measure(self): return 0 def _contains(self, other): return false def as_relational(self, symbol): return false def __len__(self): return 0 def __iter__(self): return iter([]) def _eval_powerset(self): return FiniteSet(self) @property def _boundary(self): return self def _complement(self, other): return other def _symmetric_difference(self, other): return other class UniversalSet(with_metaclass(Singleton, Set)): """ Represents the set of all things. The universal set is available as a singleton as S.UniversalSet Examples ======== >>> from sympy import S, Interval >>> S.UniversalSet UniversalSet >>> Interval(1, 2).intersect(S.UniversalSet) Interval(1, 2) See Also ======== EmptySet References ========== .. [1] https://en.wikipedia.org/wiki/Universal_set """ is_UniversalSet = True is_empty = False def _complement(self, other): return S.EmptySet def _symmetric_difference(self, other): return other @property def _measure(self): return S.Infinity def _contains(self, other): return true def as_relational(self, symbol): return true @property def _boundary(self): return S.EmptySet class FiniteSet(Set, EvalfMixin): """ Represents a finite set of discrete numbers Examples ======== >>> from sympy import FiniteSet >>> FiniteSet(1, 2, 3, 4) FiniteSet(1, 2, 3, 4) >>> 3 in FiniteSet(1, 2, 3, 4) True >>> members = [1, 2, 3, 4] >>> f = FiniteSet(*members) >>> f FiniteSet(1, 2, 3, 4) >>> f - FiniteSet(2) FiniteSet(1, 3, 4) >>> f + FiniteSet(2, 5) FiniteSet(1, 2, 3, 4, 5) References ========== .. [1] https://en.wikipedia.org/wiki/Finite_set """ is_FiniteSet = True is_iterable = True is_empty = False def __new__(cls, *args, **kwargs): evaluate = kwargs.get('evaluate', global_evaluate[0]) if evaluate: args = list(map(sympify, args)) if len(args) == 0: return S.EmptySet else: args = list(map(sympify, args)) args = list(ordered(set(args), Set._infimum_key)) obj = Basic.__new__(cls, *args) return obj def _eval_Eq(self, other): if not isinstance(other, FiniteSet): # XXX: If Interval(x, x, evaluate=False) worked then the line # below would mean that # FiniteSet(x) & Interval(x, x, evaluate=False) -> false if isinstance(other, Interval): return false elif isinstance(other, Set): return None return false def all_in_both(): s_set = set(self.args) o_set = set(other.args) yield fuzzy_and(self._contains(e) for e in o_set - s_set) yield fuzzy_and(other._contains(e) for e in s_set - o_set) return tfn[fuzzy_and(all_in_both())] def __iter__(self): return iter(self.args) def _complement(self, other): if isinstance(other, Interval): nums = sorted(m for m in self.args if m.is_number) if other == S.Reals and nums != []: syms = [m for m in self.args if m.is_Symbol] # Reals cannot contain elements other than numbers and symbols. intervals = [] # Build up a list of intervals between the elements intervals += [Interval(S.NegativeInfinity, nums[0], True, True)] for a, b in zip(nums[:-1], nums[1:]): intervals.append(Interval(a, b, True, True)) # both open intervals.append(Interval(nums[-1], S.Infinity, True, True)) if syms != []: return Complement(Union(*intervals, evaluate=False), FiniteSet(*syms), evaluate=False) else: return Union(*intervals, evaluate=False) elif nums == []: return None elif isinstance(other, FiniteSet): unk = [] for i in self: c = sympify(other.contains(i)) if c is not S.true and c is not S.false: unk.append(i) unk = FiniteSet(*unk) if unk == self: return not_true = [] for i in other: c = sympify(self.contains(i)) if c is not S.true: not_true.append(i) return Complement(FiniteSet(*not_true), unk) return Set._complement(self, other) def _contains(self, other): """ Tests whether an element, other, is in the set. Relies on Python's set class. This tests for object equality All inputs are sympified Examples ======== >>> from sympy import FiniteSet >>> 1 in FiniteSet(1, 2) True >>> 5 in FiniteSet(1, 2) False """ # evaluate=True is needed to override evaluate=False context; # we need Eq to do the evaluation return fuzzy_or(fuzzy_bool(Eq(e, other, evaluate=True)) for e in self.args) @property def _boundary(self): return self @property def _inf(self): from sympy.functions.elementary.miscellaneous import Min return Min(*self) @property def _sup(self): from sympy.functions.elementary.miscellaneous import Max return Max(*self) @property def measure(self): return 0 def __len__(self): return len(self.args) def as_relational(self, symbol): """Rewrite a FiniteSet in terms of equalities and logic operators. """ from sympy.core.relational import Eq return Or(*[Eq(symbol, elem) for elem in self]) def compare(self, other): return (hash(self) - hash(other)) def _eval_evalf(self, prec): return FiniteSet(*[elem._eval_evalf(prec) for elem in self]) @property def _sorted_args(self): return self.args def _eval_powerset(self): return self.func(*[self.func(*s) for s in subsets(self.args)]) def _eval_rewrite_as_PowerSet(self, *args, **kwargs): """Rewriting method for a finite set to a power set.""" from .powerset import PowerSet is2pow = lambda n: bool(n and not n & (n - 1)) if not is2pow(len(self)): return None fs_test = lambda arg: isinstance(arg, Set) and arg.is_FiniteSet if not all((fs_test(arg) for arg in args)): return None biggest = max(args, key=len) for arg in subsets(biggest.args): arg_set = FiniteSet(*arg) if arg_set not in args: return None return PowerSet(biggest) def __ge__(self, other): if not isinstance(other, Set): raise TypeError("Invalid comparison of set with %s" % func_name(other)) return other.is_subset(self) def __gt__(self, other): if not isinstance(other, Set): raise TypeError("Invalid comparison of set with %s" % func_name(other)) return self.is_proper_superset(other) def __le__(self, other): if not isinstance(other, Set): raise TypeError("Invalid comparison of set with %s" % func_name(other)) return self.is_subset(other) def __lt__(self, other): if not isinstance(other, Set): raise TypeError("Invalid comparison of set with %s" % func_name(other)) return self.is_proper_subset(other) converter[set] = lambda x: FiniteSet(*x) converter[frozenset] = lambda x: FiniteSet(*x) class SymmetricDifference(Set): """Represents the set of elements which are in either of the sets and not in their intersection. Examples ======== >>> from sympy import SymmetricDifference, FiniteSet >>> SymmetricDifference(FiniteSet(1, 2, 3), FiniteSet(3, 4, 5)) FiniteSet(1, 2, 4, 5) See Also ======== Complement, Union References ========== .. [1] https://en.wikipedia.org/wiki/Symmetric_difference """ is_SymmetricDifference = True def __new__(cls, a, b, evaluate=True): if evaluate: return SymmetricDifference.reduce(a, b) return Basic.__new__(cls, a, b) @staticmethod def reduce(A, B): result = B._symmetric_difference(A) if result is not None: return result else: return SymmetricDifference(A, B, evaluate=False) def as_relational(self, symbol): """Rewrite a symmetric_difference in terms of equalities and logic operators""" A, B = self.args A_rel = A.as_relational(symbol) B_rel = B.as_relational(symbol) return Xor(A_rel, B_rel) @property def is_iterable(self): if all(arg.is_iterable for arg in self.args): return True def __iter__(self): args = self.args union = roundrobin(*(iter(arg) for arg in args)) for item in union: count = 0 for s in args: if item in s: count += 1 if count % 2 == 1: yield item def imageset(*args): r""" Return an image of the set under transformation ``f``. If this function can't compute the image, it returns an unevaluated ImageSet object. .. math:: \{ f(x) \mid x \in \mathrm{self} \} Examples ======== >>> from sympy import S, Interval, Symbol, imageset, sin, Lambda >>> from sympy.abc import x, y >>> imageset(x, 2*x, Interval(0, 2)) Interval(0, 4) >>> imageset(lambda x: 2*x, Interval(0, 2)) Interval(0, 4) >>> imageset(Lambda(x, sin(x)), Interval(-2, 1)) ImageSet(Lambda(x, sin(x)), Interval(-2, 1)) >>> imageset(sin, Interval(-2, 1)) ImageSet(Lambda(x, sin(x)), Interval(-2, 1)) >>> imageset(lambda y: x + y, Interval(-2, 1)) ImageSet(Lambda(y, x + y), Interval(-2, 1)) Expressions applied to the set of Integers are simplified to show as few negatives as possible and linear expressions are converted to a canonical form. If this is not desirable then the unevaluated ImageSet should be used. >>> imageset(x, -2*x + 5, S.Integers) ImageSet(Lambda(x, 2*x + 1), Integers) See Also ======== sympy.sets.fancysets.ImageSet """ from sympy.core import Lambda from sympy.sets.fancysets import ImageSet from sympy.sets.setexpr import set_function if len(args) < 2: raise ValueError('imageset expects at least 2 args, got: %s' % len(args)) if isinstance(args[0], (Symbol, tuple)) and len(args) > 2: f = Lambda(args[0], args[1]) set_list = args[2:] else: f = args[0] set_list = args[1:] if isinstance(f, Lambda): pass elif callable(f): nargs = getattr(f, 'nargs', {}) if nargs: if len(nargs) != 1: raise NotImplemented(filldedent(''' This function can take more than 1 arg but the potentially complicated set input has not been analyzed at this point to know its dimensions. TODO ''')) N = nargs.args[0] if N == 1: s = 'x' else: s = [Symbol('x%i' % i) for i in range(1, N + 1)] else: if PY3: s = inspect.signature(f).parameters else: s = inspect.getargspec(f).args dexpr = _sympify(f(*[Dummy() for i in s])) var = tuple(_uniquely_named_symbol(Symbol(i), dexpr) for i in s) f = Lambda(var, f(*var)) else: raise TypeError(filldedent(''' expecting lambda, Lambda, or FunctionClass, not \'%s\'.''' % func_name(f))) if any(not isinstance(s, Set) for s in set_list): name = [func_name(s) for s in set_list] raise ValueError( 'arguments after mapping should be sets, not %s' % name) if len(set_list) == 1: set = set_list[0] try: # TypeError if arg count != set dimensions r = set_function(f, set) if r is None: raise TypeError if not r: return r except TypeError: r = ImageSet(f, set) if isinstance(r, ImageSet): f, set = r.args if f.variables[0] == f.expr: return set if isinstance(set, ImageSet): # XXX: Maybe this should just be: # f2 = set.lambda # fun = Lambda(f2.signature, f(*f2.expr)) # return imageset(fun, *set.base_sets) if len(set.lamda.variables) == 1 and len(f.variables) == 1: x = set.lamda.variables[0] y = f.variables[0] return imageset( Lambda(x, f.expr.subs(y, set.lamda.expr)), *set.base_sets) if r is not None: return r return ImageSet(f, *set_list) def is_function_invertible_in_set(func, setv): """ Checks whether function ``func`` is invertible when the domain is restricted to set ``setv``. """ from sympy import exp, log # Functions known to always be invertible: if func in (exp, log): return True u = Dummy("u") fdiff = func(u).diff(u) # monotonous functions: # TODO: check subsets (`func` in `setv`) if (fdiff > 0) == True or (fdiff < 0) == True: return True # TODO: support more return None def simplify_union(args): """ Simplify a :class:`Union` using known rules We first start with global rules like 'Merge all FiniteSets' Then we iterate through all pairs and ask the constituent sets if they can simplify themselves with any other constituent. This process depends on ``union_sets(a, b)`` functions. """ from sympy.sets.handlers.union import union_sets # ===== Global Rules ===== if not args: return S.EmptySet for arg in args: if not isinstance(arg, Set): raise TypeError("Input args to Union must be Sets") # Merge all finite sets finite_sets = [x for x in args if x.is_FiniteSet] if len(finite_sets) > 1: a = (x for set in finite_sets for x in set) finite_set = FiniteSet(*a) args = [finite_set] + [x for x in args if not x.is_FiniteSet] # ===== Pair-wise Rules ===== # Here we depend on rules built into the constituent sets args = set(args) new_args = True while new_args: for s in args: new_args = False for t in args - set((s,)): new_set = union_sets(s, t) # This returns None if s does not know how to intersect # with t. Returns the newly intersected set otherwise if new_set is not None: if not isinstance(new_set, set): new_set = set((new_set, )) new_args = (args - set((s, t))).union(new_set) break if new_args: args = new_args break if len(args) == 1: return args.pop() else: return Union(*args, evaluate=False) def simplify_intersection(args): """ Simplify an intersection using known rules We first start with global rules like 'if any empty sets return empty set' and 'distribute any unions' Then we iterate through all pairs and ask the constituent sets if they can simplify themselves with any other constituent """ # ===== Global Rules ===== if not args: return S.UniversalSet for arg in args: if not isinstance(arg, Set): raise TypeError("Input args to Union must be Sets") # If any EmptySets return EmptySet if S.EmptySet in args: return S.EmptySet # Handle Finite sets rv = Intersection._handle_finite_sets(args) if rv is not None: return rv # If any of the sets are unions, return a Union of Intersections for s in args: if s.is_Union: other_sets = set(args) - set((s,)) if len(other_sets) > 0: other = Intersection(*other_sets) return Union(*(Intersection(arg, other) for arg in s.args)) else: return Union(*[arg for arg in s.args]) for s in args: if s.is_Complement: args.remove(s) other_sets = args + [s.args[0]] return Complement(Intersection(*other_sets), s.args[1]) from sympy.sets.handlers.intersection import intersection_sets # At this stage we are guaranteed not to have any # EmptySets, FiniteSets, or Unions in the intersection # ===== Pair-wise Rules ===== # Here we depend on rules built into the constituent sets args = set(args) new_args = True while new_args: for s in args: new_args = False for t in args - set((s,)): new_set = intersection_sets(s, t) # This returns None if s does not know how to intersect # with t. Returns the newly intersected set otherwise if new_set is not None: new_args = (args - set((s, t))).union(set((new_set, ))) break if new_args: args = new_args break if len(args) == 1: return args.pop() else: return Intersection(*args, evaluate=False) def _handle_finite_sets(op, x, y, commutative): # Handle finite sets: fs_args, other = sift([x, y], lambda x: isinstance(x, FiniteSet), binary=True) if len(fs_args) == 2: return FiniteSet(*[op(i, j) for i in fs_args[0] for j in fs_args[1]]) elif len(fs_args) == 1: sets = [_apply_operation(op, other[0], i, commutative) for i in fs_args[0]] return Union(*sets) else: return None def _apply_operation(op, x, y, commutative): from sympy.sets import ImageSet from sympy import symbols,Lambda d = Dummy('d') out = _handle_finite_sets(op, x, y, commutative) if out is None: out = op(x, y) if out is None and commutative: out = op(y, x) if out is None: _x, _y = symbols("x y") if isinstance(x, Set) and not isinstance(y, Set): out = ImageSet(Lambda(d, op(d, y)), x).doit() elif not isinstance(x, Set) and isinstance(y, Set): out = ImageSet(Lambda(d, op(x, d)), y).doit() else: out = ImageSet(Lambda((_x, _y), op(_x, _y)), x, y) return out def set_add(x, y): from sympy.sets.handlers.add import _set_add return _apply_operation(_set_add, x, y, commutative=True) def set_sub(x, y): from sympy.sets.handlers.add import _set_sub return _apply_operation(_set_sub, x, y, commutative=False) def set_mul(x, y): from sympy.sets.handlers.mul import _set_mul return _apply_operation(_set_mul, x, y, commutative=True) def set_div(x, y): from sympy.sets.handlers.mul import _set_div return _apply_operation(_set_div, x, y, commutative=False) def set_pow(x, y): from sympy.sets.handlers.power import _set_pow return _apply_operation(_set_pow, x, y, commutative=False) def set_function(f, x): from sympy.sets.handlers.functions import _set_function return _set_function(f, x)
8331269f5fc88345eb54361582f900e361aaee7c90bdcd9f7f5146f4ea24fead
"""Plotting module for Sympy. A plot is represented by the ``Plot`` class that contains a reference to the backend and a list of the data series to be plotted. The data series are instances of classes meant to simplify getting points and meshes from sympy expressions. ``plot_backends`` is a dictionary with all the backends. This module gives only the essential. For all the fancy stuff use directly the backend. You can get the backend wrapper for every plot from the ``_backend`` attribute. Moreover the data series classes have various useful methods like ``get_points``, ``get_segments``, ``get_meshes``, etc, that may be useful if you wish to use another plotting library. Especially if you need publication ready graphs and this module is not enough for you - just get the ``_backend`` attribute and add whatever you want directly to it. In the case of matplotlib (the common way to graph data in python) just copy ``_backend.fig`` which is the figure and ``_backend.ax`` which is the axis and work on them as you would on any other matplotlib object. Simplicity of code takes much greater importance than performance. Don't use it if you care at all about performance. A new backend instance is initialized every time you call ``show()`` and the old one is left to the garbage collector. """ from __future__ import print_function, division import warnings from sympy import sympify, Expr, Tuple, Dummy, Symbol from sympy.external import import_module from sympy.core.function import arity from sympy.core.compatibility import range, Callable from sympy.utilities.iterables import is_sequence from .experimental_lambdify import (vectorized_lambdify, lambdify) # N.B. # When changing the minimum module version for matplotlib, please change # the same in the `SymPyDocTestFinder`` in `sympy/utilities/runtests.py` # Backend specific imports - textplot from sympy.plotting.textplot import textplot # Global variable # Set to False when running tests / doctests so that the plots don't show. _show = True def unset_show(): """ Disable show(). For use in the tests. """ global _show _show = False ############################################################################## # The public interface ############################################################################## class Plot(object): """The central class of the plotting module. For interactive work the function ``plot`` is better suited. This class permits the plotting of sympy expressions using numerous backends (matplotlib, textplot, the old pyglet module for sympy, Google charts api, etc). The figure can contain an arbitrary number of plots of sympy expressions, lists of coordinates of points, etc. Plot has a private attribute _series that contains all data series to be plotted (expressions for lines or surfaces, lists of points, etc (all subclasses of BaseSeries)). Those data series are instances of classes not imported by ``from sympy import *``. The customization of the figure is on two levels. Global options that concern the figure as a whole (eg title, xlabel, scale, etc) and per-data series options (eg name) and aesthetics (eg. color, point shape, line type, etc.). The difference between options and aesthetics is that an aesthetic can be a function of the coordinates (or parameters in a parametric plot). The supported values for an aesthetic are: - None (the backend uses default values) - a constant - a function of one variable (the first coordinate or parameter) - a function of two variables (the first and second coordinate or parameters) - a function of three variables (only in nonparametric 3D plots) Their implementation depends on the backend so they may not work in some backends. If the plot is parametric and the arity of the aesthetic function permits it the aesthetic is calculated over parameters and not over coordinates. If the arity does not permit calculation over parameters the calculation is done over coordinates. Only cartesian coordinates are supported for the moment, but you can use the parametric plots to plot in polar, spherical and cylindrical coordinates. The arguments for the constructor Plot must be subclasses of BaseSeries. Any global option can be specified as a keyword argument. The global options for a figure are: - title : str - xlabel : str - ylabel : str - legend : bool - xscale : {'linear', 'log'} - yscale : {'linear', 'log'} - axis : bool - axis_center : tuple of two floats or {'center', 'auto'} - xlim : tuple of two floats - ylim : tuple of two floats - aspect_ratio : tuple of two floats or {'auto'} - autoscale : bool - margin : float in [0, 1] The per data series options and aesthetics are: There are none in the base series. See below for options for subclasses. Some data series support additional aesthetics or options: ListSeries, LineOver1DRangeSeries, Parametric2DLineSeries, Parametric3DLineSeries support the following: Aesthetics: - line_color : function which returns a float. options: - label : str - steps : bool - integers_only : bool SurfaceOver2DRangeSeries, ParametricSurfaceSeries support the following: aesthetics: - surface_color : function which returns a float. """ def __init__(self, *args, **kwargs): super(Plot, self).__init__() # Options for the graph as a whole. # The possible values for each option are described in the docstring of # Plot. They are based purely on convention, no checking is done. self.title = None self.xlabel = None self.ylabel = None self.aspect_ratio = 'auto' self.xlim = None self.ylim = None self.axis_center = 'auto' self.axis = True self.xscale = 'linear' self.yscale = 'linear' self.legend = False self.autoscale = True self.margin = 0 self.annotations = None self.markers = None self.rectangles = None self.fill = None # Contains the data objects to be plotted. The backend should be smart # enough to iterate over this list. self._series = [] self._series.extend(args) # The backend type. On every show() a new backend instance is created # in self._backend which is tightly coupled to the Plot instance # (thanks to the parent attribute of the backend). self.backend = DefaultBackend # The keyword arguments should only contain options for the plot. for key, val in kwargs.items(): if hasattr(self, key): setattr(self, key, val) def show(self): # TODO move this to the backend (also for save) if hasattr(self, '_backend'): self._backend.close() self._backend = self.backend(self) self._backend.show() def save(self, path): if hasattr(self, '_backend'): self._backend.close() self._backend = self.backend(self) self._backend.save(path) def __str__(self): series_strs = [('[%d]: ' % i) + str(s) for i, s in enumerate(self._series)] return 'Plot object containing:\n' + '\n'.join(series_strs) def __getitem__(self, index): return self._series[index] def __setitem__(self, index, *args): if len(args) == 1 and isinstance(args[0], BaseSeries): self._series[index] = args def __delitem__(self, index): del self._series[index] def append(self, arg): """Adds an element from a plot's series to an existing plot. Examples ======== Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the second plot's first series object to the first, use the ``append`` method, like so: .. plot:: :format: doctest :include-source: True >>> from sympy import symbols >>> from sympy.plotting import plot >>> x = symbols('x') >>> p1 = plot(x*x, show=False) >>> p2 = plot(x, show=False) >>> p1.append(p2[0]) >>> p1 Plot object containing: [0]: cartesian line: x**2 for x over (-10.0, 10.0) [1]: cartesian line: x for x over (-10.0, 10.0) >>> p1.show() See Also ======== extend """ if isinstance(arg, BaseSeries): self._series.append(arg) else: raise TypeError('Must specify element of plot to append.') def extend(self, arg): """Adds all series from another plot. Examples ======== Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the second plot to the first, use the ``extend`` method, like so: .. plot:: :format: doctest :include-source: True >>> from sympy import symbols >>> from sympy.plotting import plot >>> x = symbols('x') >>> p1 = plot(x**2, show=False) >>> p2 = plot(x, -x, show=False) >>> p1.extend(p2) >>> p1 Plot object containing: [0]: cartesian line: x**2 for x over (-10.0, 10.0) [1]: cartesian line: x for x over (-10.0, 10.0) [2]: cartesian line: -x for x over (-10.0, 10.0) >>> p1.show() """ if isinstance(arg, Plot): self._series.extend(arg._series) elif is_sequence(arg): self._series.extend(arg) else: raise TypeError('Expecting Plot or sequence of BaseSeries') class PlotGrid(object): """This class helps to plot subplots from already created sympy plots in a single figure. Examples ======== .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy import symbols >>> from sympy.plotting import plot, plot3d, PlotGrid >>> x, y = symbols('x, y') >>> p1 = plot(x, x**2, x**3, (x, -5, 5)) >>> p2 = plot((x**2, (x, -6, 6)), (x, (x, -5, 5))) >>> p3 = plot(x**3, (x, -5, 5)) >>> p4 = plot3d(x*y, (x, -5, 5), (y, -5, 5)) Plotting vertically in a single line: .. plot:: :context: close-figs :format: doctest :include-source: True >>> PlotGrid(2, 1 , p1, p2) PlotGrid object containing: Plot[0]:Plot object containing: [0]: cartesian line: x for x over (-5.0, 5.0) [1]: cartesian line: x**2 for x over (-5.0, 5.0) [2]: cartesian line: x**3 for x over (-5.0, 5.0) Plot[1]:Plot object containing: [0]: cartesian line: x**2 for x over (-6.0, 6.0) [1]: cartesian line: x for x over (-5.0, 5.0) Plotting horizontally in a single line: .. plot:: :context: close-figs :format: doctest :include-source: True >>> PlotGrid(1, 3 , p2, p3, p4) PlotGrid object containing: Plot[0]:Plot object containing: [0]: cartesian line: x**2 for x over (-6.0, 6.0) [1]: cartesian line: x for x over (-5.0, 5.0) Plot[1]:Plot object containing: [0]: cartesian line: x**3 for x over (-5.0, 5.0) Plot[2]:Plot object containing: [0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0) Plotting in a grid form: .. plot:: :context: close-figs :format: doctest :include-source: True >>> PlotGrid(2, 2, p1, p2 ,p3, p4) PlotGrid object containing: Plot[0]:Plot object containing: [0]: cartesian line: x for x over (-5.0, 5.0) [1]: cartesian line: x**2 for x over (-5.0, 5.0) [2]: cartesian line: x**3 for x over (-5.0, 5.0) Plot[1]:Plot object containing: [0]: cartesian line: x**2 for x over (-6.0, 6.0) [1]: cartesian line: x for x over (-5.0, 5.0) Plot[2]:Plot object containing: [0]: cartesian line: x**3 for x over (-5.0, 5.0) Plot[3]:Plot object containing: [0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0) """ def __init__(self, nrows, ncolumns, *args, **kwargs): """ Parameters ========== nrows : The number of rows that should be in the grid of the required subplot ncolumns : The number of columns that should be in the grid of the required subplot nrows and ncolumns together define the required grid Arguments ========= A list of predefined plot objects entered in a row-wise sequence i.e. plot objects which are to be in the top row of the required grid are written first, then the second row objects and so on Keyword arguments ================= show : Boolean The default value is set to ``True``. Set show to ``False`` and the function will not display the subplot. The returned instance of the ``PlotGrid`` class can then be used to save or display the plot by calling the ``save()`` and ``show()`` methods respectively. """ self.nrows = nrows self.ncolumns = ncolumns self._series = [] self.args = args for arg in args: self._series.append(arg._series) self.backend = DefaultBackend show = kwargs.pop('show', True) if show: self.show() def show(self): if hasattr(self, '_backend'): self._backend.close() self._backend = self.backend(self) self._backend.show() def save(self, path): if hasattr(self, '_backend'): self._backend.close() self._backend = self.backend(self) self._backend.save(path) def __str__(self): plot_strs = [('Plot[%d]:' % i) + str(plot) for i, plot in enumerate(self.args)] return 'PlotGrid object containing:\n' + '\n'.join(plot_strs) ############################################################################## # Data Series ############################################################################## #TODO more general way to calculate aesthetics (see get_color_array) ### The base class for all series class BaseSeries(object): """Base class for the data objects containing stuff to be plotted. The backend should check if it supports the data series that it's given. (eg TextBackend supports only LineOver1DRange). It's the backend responsibility to know how to use the class of data series that it's given. Some data series classes are grouped (using a class attribute like is_2Dline) according to the api they present (based only on convention). The backend is not obliged to use that api (eg. The LineOver1DRange belongs to the is_2Dline group and presents the get_points method, but the TextBackend does not use the get_points method). """ # Some flags follow. The rationale for using flags instead of checking base # classes is that setting multiple flags is simpler than multiple # inheritance. is_2Dline = False # Some of the backends expect: # - get_points returning 1D np.arrays list_x, list_y # - get_segments returning np.array (done in Line2DBaseSeries) # - get_color_array returning 1D np.array (done in Line2DBaseSeries) # with the colors calculated at the points from get_points is_3Dline = False # Some of the backends expect: # - get_points returning 1D np.arrays list_x, list_y, list_y # - get_segments returning np.array (done in Line2DBaseSeries) # - get_color_array returning 1D np.array (done in Line2DBaseSeries) # with the colors calculated at the points from get_points is_3Dsurface = False # Some of the backends expect: # - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays) # - get_points an alias for get_meshes is_contour = False # Some of the backends expect: # - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays) # - get_points an alias for get_meshes is_implicit = False # Some of the backends expect: # - get_meshes returning mesh_x (1D array), mesh_y(1D array, # mesh_z (2D np.arrays) # - get_points an alias for get_meshes # Different from is_contour as the colormap in backend will be # different is_parametric = False # The calculation of aesthetics expects: # - get_parameter_points returning one or two np.arrays (1D or 2D) # used for calculation aesthetics def __init__(self): super(BaseSeries, self).__init__() @property def is_3D(self): flags3D = [ self.is_3Dline, self.is_3Dsurface ] return any(flags3D) @property def is_line(self): flagslines = [ self.is_2Dline, self.is_3Dline ] return any(flagslines) ### 2D lines class Line2DBaseSeries(BaseSeries): """A base class for 2D lines. - adding the label, steps and only_integers options - making is_2Dline true - defining get_segments and get_color_array """ is_2Dline = True _dim = 2 def __init__(self): super(Line2DBaseSeries, self).__init__() self.label = None self.steps = False self.only_integers = False self.line_color = None def get_segments(self): np = import_module('numpy') points = self.get_points() if self.steps is True: x = np.array((points[0], points[0])).T.flatten()[1:] y = np.array((points[1], points[1])).T.flatten()[:-1] points = (x, y) points = np.ma.array(points).T.reshape(-1, 1, self._dim) return np.ma.concatenate([points[:-1], points[1:]], axis=1) def get_color_array(self): np = import_module('numpy') c = self.line_color if hasattr(c, '__call__'): f = np.vectorize(c) nargs = arity(c) if nargs == 1 and self.is_parametric: x = self.get_parameter_points() return f(centers_of_segments(x)) else: variables = list(map(centers_of_segments, self.get_points())) if nargs == 1: return f(variables[0]) elif nargs == 2: return f(*variables[:2]) else: # only if the line is 3D (otherwise raises an error) return f(*variables) else: return c*np.ones(self.nb_of_points) class List2DSeries(Line2DBaseSeries): """Representation for a line consisting of list of points.""" def __init__(self, list_x, list_y): np = import_module('numpy') super(List2DSeries, self).__init__() self.list_x = np.array(list_x) self.list_y = np.array(list_y) self.label = 'list' def __str__(self): return 'list plot' def get_points(self): return (self.list_x, self.list_y) class LineOver1DRangeSeries(Line2DBaseSeries): """Representation for a line consisting of a SymPy expression over a range.""" def __init__(self, expr, var_start_end, **kwargs): super(LineOver1DRangeSeries, self).__init__() self.expr = sympify(expr) self.label = str(self.expr) self.var = sympify(var_start_end[0]) self.start = float(var_start_end[1]) self.end = float(var_start_end[2]) self.nb_of_points = kwargs.get('nb_of_points', 300) self.adaptive = kwargs.get('adaptive', True) self.depth = kwargs.get('depth', 12) self.line_color = kwargs.get('line_color', None) self.xscale = kwargs.get('xscale', 'linear') def __str__(self): return 'cartesian line: %s for %s over %s' % ( str(self.expr), str(self.var), str((self.start, self.end))) def get_segments(self): """ Adaptively gets segments for plotting. The adaptive sampling is done by recursively checking if three points are almost collinear. If they are not collinear, then more points are added between those points. References ========== .. [1] Adaptive polygonal approximation of parametric curves, Luiz Henrique de Figueiredo. """ if self.only_integers or not self.adaptive: return super(LineOver1DRangeSeries, self).get_segments() else: f = lambdify([self.var], self.expr) list_segments = [] np = import_module('numpy') def sample(p, q, depth): """ Samples recursively if three points are almost collinear. For depth < 6, points are added irrespective of whether they satisfy the collinearity condition or not. The maximum depth allowed is 12. """ # Randomly sample to avoid aliasing. random = 0.45 + np.random.rand() * 0.1 if self.xscale == 'log': xnew = 10**(np.log10(p[0]) + random * (np.log10(q[0]) - np.log10(p[0]))) else: xnew = p[0] + random * (q[0] - p[0]) ynew = f(xnew) new_point = np.array([xnew, ynew]) # Maximum depth if depth > self.depth: list_segments.append([p, q]) # Sample irrespective of whether the line is flat till the # depth of 6. We are not using linspace to avoid aliasing. elif depth < 6: sample(p, new_point, depth + 1) sample(new_point, q, depth + 1) # Sample ten points if complex values are encountered # at both ends. If there is a real value in between, then # sample those points further. elif p[1] is None and q[1] is None: if self.xscale == 'log': xarray = np.logspace(p[0], q[0], 10) else: xarray = np.linspace(p[0], q[0], 10) yarray = list(map(f, xarray)) if any(y is not None for y in yarray): for i in range(len(yarray) - 1): if yarray[i] is not None or yarray[i + 1] is not None: sample([xarray[i], yarray[i]], [xarray[i + 1], yarray[i + 1]], depth + 1) # Sample further if one of the end points in None (i.e. a # complex value) or the three points are not almost collinear. elif (p[1] is None or q[1] is None or new_point[1] is None or not flat(p, new_point, q)): sample(p, new_point, depth + 1) sample(new_point, q, depth + 1) else: list_segments.append([p, q]) f_start = f(self.start) f_end = f(self.end) sample(np.array([self.start, f_start]), np.array([self.end, f_end]), 0) return list_segments def get_points(self): np = import_module('numpy') if self.only_integers is True: if self.xscale == 'log': list_x = np.logspace(int(self.start), int(self.end), num=int(self.end) - int(self.start) + 1) else: list_x = np.linspace(int(self.start), int(self.end), num=int(self.end) - int(self.start) + 1) else: if self.xscale == 'log': list_x = np.logspace(self.start, self.end, num=self.nb_of_points) else: list_x = np.linspace(self.start, self.end, num=self.nb_of_points) f = vectorized_lambdify([self.var], self.expr) list_y = f(list_x) return (list_x, list_y) class Parametric2DLineSeries(Line2DBaseSeries): """Representation for a line consisting of two parametric sympy expressions over a range.""" is_parametric = True def __init__(self, expr_x, expr_y, var_start_end, **kwargs): super(Parametric2DLineSeries, self).__init__() self.expr_x = sympify(expr_x) self.expr_y = sympify(expr_y) self.label = "(%s, %s)" % (str(self.expr_x), str(self.expr_y)) self.var = sympify(var_start_end[0]) self.start = float(var_start_end[1]) self.end = float(var_start_end[2]) self.nb_of_points = kwargs.get('nb_of_points', 300) self.adaptive = kwargs.get('adaptive', True) self.depth = kwargs.get('depth', 12) self.line_color = kwargs.get('line_color', None) def __str__(self): return 'parametric cartesian line: (%s, %s) for %s over %s' % ( str(self.expr_x), str(self.expr_y), str(self.var), str((self.start, self.end))) def get_parameter_points(self): np = import_module('numpy') return np.linspace(self.start, self.end, num=self.nb_of_points) def get_points(self): param = self.get_parameter_points() fx = vectorized_lambdify([self.var], self.expr_x) fy = vectorized_lambdify([self.var], self.expr_y) list_x = fx(param) list_y = fy(param) return (list_x, list_y) def get_segments(self): """ Adaptively gets segments for plotting. The adaptive sampling is done by recursively checking if three points are almost collinear. If they are not collinear, then more points are added between those points. References ========== [1] Adaptive polygonal approximation of parametric curves, Luiz Henrique de Figueiredo. """ if not self.adaptive: return super(Parametric2DLineSeries, self).get_segments() f_x = lambdify([self.var], self.expr_x) f_y = lambdify([self.var], self.expr_y) list_segments = [] def sample(param_p, param_q, p, q, depth): """ Samples recursively if three points are almost collinear. For depth < 6, points are added irrespective of whether they satisfy the collinearity condition or not. The maximum depth allowed is 12. """ # Randomly sample to avoid aliasing. np = import_module('numpy') random = 0.45 + np.random.rand() * 0.1 param_new = param_p + random * (param_q - param_p) xnew = f_x(param_new) ynew = f_y(param_new) new_point = np.array([xnew, ynew]) # Maximum depth if depth > self.depth: list_segments.append([p, q]) # Sample irrespective of whether the line is flat till the # depth of 6. We are not using linspace to avoid aliasing. elif depth < 6: sample(param_p, param_new, p, new_point, depth + 1) sample(param_new, param_q, new_point, q, depth + 1) # Sample ten points if complex values are encountered # at both ends. If there is a real value in between, then # sample those points further. elif ((p[0] is None and q[1] is None) or (p[1] is None and q[1] is None)): param_array = np.linspace(param_p, param_q, 10) x_array = list(map(f_x, param_array)) y_array = list(map(f_y, param_array)) if any(x is not None and y is not None for x, y in zip(x_array, y_array)): for i in range(len(y_array) - 1): if ((x_array[i] is not None and y_array[i] is not None) or (x_array[i + 1] is not None and y_array[i + 1] is not None)): point_a = [x_array[i], y_array[i]] point_b = [x_array[i + 1], y_array[i + 1]] sample(param_array[i], param_array[i], point_a, point_b, depth + 1) # Sample further if one of the end points in None (i.e. a complex # value) or the three points are not almost collinear. elif (p[0] is None or p[1] is None or q[1] is None or q[0] is None or not flat(p, new_point, q)): sample(param_p, param_new, p, new_point, depth + 1) sample(param_new, param_q, new_point, q, depth + 1) else: list_segments.append([p, q]) f_start_x = f_x(self.start) f_start_y = f_y(self.start) start = [f_start_x, f_start_y] f_end_x = f_x(self.end) f_end_y = f_y(self.end) end = [f_end_x, f_end_y] sample(self.start, self.end, start, end, 0) return list_segments ### 3D lines class Line3DBaseSeries(Line2DBaseSeries): """A base class for 3D lines. Most of the stuff is derived from Line2DBaseSeries.""" is_2Dline = False is_3Dline = True _dim = 3 def __init__(self): super(Line3DBaseSeries, self).__init__() class Parametric3DLineSeries(Line3DBaseSeries): """Representation for a 3D line consisting of two parametric sympy expressions and a range.""" def __init__(self, expr_x, expr_y, expr_z, var_start_end, **kwargs): super(Parametric3DLineSeries, self).__init__() self.expr_x = sympify(expr_x) self.expr_y = sympify(expr_y) self.expr_z = sympify(expr_z) self.label = "(%s, %s)" % (str(self.expr_x), str(self.expr_y)) self.var = sympify(var_start_end[0]) self.start = float(var_start_end[1]) self.end = float(var_start_end[2]) self.nb_of_points = kwargs.get('nb_of_points', 300) self.line_color = kwargs.get('line_color', None) def __str__(self): return '3D parametric cartesian line: (%s, %s, %s) for %s over %s' % ( str(self.expr_x), str(self.expr_y), str(self.expr_z), str(self.var), str((self.start, self.end))) def get_parameter_points(self): np = import_module('numpy') return np.linspace(self.start, self.end, num=self.nb_of_points) def get_points(self): param = self.get_parameter_points() fx = vectorized_lambdify([self.var], self.expr_x) fy = vectorized_lambdify([self.var], self.expr_y) fz = vectorized_lambdify([self.var], self.expr_z) list_x = fx(param) list_y = fy(param) list_z = fz(param) return (list_x, list_y, list_z) ### Surfaces class SurfaceBaseSeries(BaseSeries): """A base class for 3D surfaces.""" is_3Dsurface = True def __init__(self): super(SurfaceBaseSeries, self).__init__() self.surface_color = None def get_color_array(self): np = import_module('numpy') c = self.surface_color if isinstance(c, Callable): f = np.vectorize(c) nargs = arity(c) if self.is_parametric: variables = list(map(centers_of_faces, self.get_parameter_meshes())) if nargs == 1: return f(variables[0]) elif nargs == 2: return f(*variables) variables = list(map(centers_of_faces, self.get_meshes())) if nargs == 1: return f(variables[0]) elif nargs == 2: return f(*variables[:2]) else: return f(*variables) else: return c*np.ones(self.nb_of_points) class SurfaceOver2DRangeSeries(SurfaceBaseSeries): """Representation for a 3D surface consisting of a sympy expression and 2D range.""" def __init__(self, expr, var_start_end_x, var_start_end_y, **kwargs): super(SurfaceOver2DRangeSeries, self).__init__() self.expr = sympify(expr) self.var_x = sympify(var_start_end_x[0]) self.start_x = float(var_start_end_x[1]) self.end_x = float(var_start_end_x[2]) self.var_y = sympify(var_start_end_y[0]) self.start_y = float(var_start_end_y[1]) self.end_y = float(var_start_end_y[2]) self.nb_of_points_x = kwargs.get('nb_of_points_x', 50) self.nb_of_points_y = kwargs.get('nb_of_points_y', 50) self.surface_color = kwargs.get('surface_color', None) def __str__(self): return ('cartesian surface: %s for' ' %s over %s and %s over %s') % ( str(self.expr), str(self.var_x), str((self.start_x, self.end_x)), str(self.var_y), str((self.start_y, self.end_y))) def get_meshes(self): np = import_module('numpy') mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x, num=self.nb_of_points_x), np.linspace(self.start_y, self.end_y, num=self.nb_of_points_y)) f = vectorized_lambdify((self.var_x, self.var_y), self.expr) return (mesh_x, mesh_y, f(mesh_x, mesh_y)) class ParametricSurfaceSeries(SurfaceBaseSeries): """Representation for a 3D surface consisting of three parametric sympy expressions and a range.""" is_parametric = True def __init__( self, expr_x, expr_y, expr_z, var_start_end_u, var_start_end_v, **kwargs): super(ParametricSurfaceSeries, self).__init__() self.expr_x = sympify(expr_x) self.expr_y = sympify(expr_y) self.expr_z = sympify(expr_z) self.var_u = sympify(var_start_end_u[0]) self.start_u = float(var_start_end_u[1]) self.end_u = float(var_start_end_u[2]) self.var_v = sympify(var_start_end_v[0]) self.start_v = float(var_start_end_v[1]) self.end_v = float(var_start_end_v[2]) self.nb_of_points_u = kwargs.get('nb_of_points_u', 50) self.nb_of_points_v = kwargs.get('nb_of_points_v', 50) self.surface_color = kwargs.get('surface_color', None) def __str__(self): return ('parametric cartesian surface: (%s, %s, %s) for' ' %s over %s and %s over %s') % ( str(self.expr_x), str(self.expr_y), str(self.expr_z), str(self.var_u), str((self.start_u, self.end_u)), str(self.var_v), str((self.start_v, self.end_v))) def get_parameter_meshes(self): np = import_module('numpy') return np.meshgrid(np.linspace(self.start_u, self.end_u, num=self.nb_of_points_u), np.linspace(self.start_v, self.end_v, num=self.nb_of_points_v)) def get_meshes(self): mesh_u, mesh_v = self.get_parameter_meshes() fx = vectorized_lambdify((self.var_u, self.var_v), self.expr_x) fy = vectorized_lambdify((self.var_u, self.var_v), self.expr_y) fz = vectorized_lambdify((self.var_u, self.var_v), self.expr_z) return (fx(mesh_u, mesh_v), fy(mesh_u, mesh_v), fz(mesh_u, mesh_v)) ### Contours class ContourSeries(BaseSeries): """Representation for a contour plot.""" # The code is mostly repetition of SurfaceOver2DRange. # Presently used in contour_plot function is_contour = True def __init__(self, expr, var_start_end_x, var_start_end_y): super(ContourSeries, self).__init__() self.nb_of_points_x = 50 self.nb_of_points_y = 50 self.expr = sympify(expr) self.var_x = sympify(var_start_end_x[0]) self.start_x = float(var_start_end_x[1]) self.end_x = float(var_start_end_x[2]) self.var_y = sympify(var_start_end_y[0]) self.start_y = float(var_start_end_y[1]) self.end_y = float(var_start_end_y[2]) self.get_points = self.get_meshes def __str__(self): return ('contour: %s for ' '%s over %s and %s over %s') % ( str(self.expr), str(self.var_x), str((self.start_x, self.end_x)), str(self.var_y), str((self.start_y, self.end_y))) def get_meshes(self): np = import_module('numpy') mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x, num=self.nb_of_points_x), np.linspace(self.start_y, self.end_y, num=self.nb_of_points_y)) f = vectorized_lambdify((self.var_x, self.var_y), self.expr) return (mesh_x, mesh_y, f(mesh_x, mesh_y)) ############################################################################## # Backends ############################################################################## class BaseBackend(object): def __init__(self, parent): super(BaseBackend, self).__init__() self.parent = parent # Don't have to check for the success of importing matplotlib in each case; # we will only be using this backend if we can successfully import matploblib class MatplotlibBackend(BaseBackend): def __init__(self, parent): super(MatplotlibBackend, self).__init__(parent) self.matplotlib = import_module('matplotlib', __import__kwargs={'fromlist': ['pyplot', 'cm', 'collections']}, min_module_version='1.1.0', catch=(RuntimeError,)) self.plt = self.matplotlib.pyplot self.cm = self.matplotlib.cm self.LineCollection = self.matplotlib.collections.LineCollection if isinstance(self.parent, Plot): nrows, ncolumns = 1, 1 series_list = [self.parent._series] elif isinstance(self.parent, PlotGrid): nrows, ncolumns = self.parent.nrows, self.parent.ncolumns series_list = self.parent._series self.ax = [] self.fig = self.plt.figure() for i, series in enumerate(series_list): are_3D = [s.is_3D for s in series] if any(are_3D) and not all(are_3D): raise ValueError('The matplotlib backend can not mix 2D and 3D.') elif all(are_3D): # mpl_toolkits.mplot3d is necessary for # projection='3d' mpl_toolkits = import_module('mpl_toolkits', __import__kwargs={'fromlist': ['mplot3d']}) self.ax.append(self.fig.add_subplot(nrows, ncolumns, i + 1, projection='3d')) elif not any(are_3D): self.ax.append(self.fig.add_subplot(nrows, ncolumns, i + 1)) self.ax[i].spines['left'].set_position('zero') self.ax[i].spines['right'].set_color('none') self.ax[i].spines['bottom'].set_position('zero') self.ax[i].spines['top'].set_color('none') self.ax[i].spines['left'].set_smart_bounds(True) self.ax[i].spines['bottom'].set_smart_bounds(False) self.ax[i].xaxis.set_ticks_position('bottom') self.ax[i].yaxis.set_ticks_position('left') def _process_series(self, series, ax, parent): for s in series: # Create the collections if s.is_2Dline: collection = self.LineCollection(s.get_segments()) ax.add_collection(collection) elif s.is_contour: ax.contour(*s.get_meshes()) elif s.is_3Dline: # TODO too complicated, I blame matplotlib mpl_toolkits = import_module('mpl_toolkits', __import__kwargs={'fromlist': ['mplot3d']}) art3d = mpl_toolkits.mplot3d.art3d collection = art3d.Line3DCollection(s.get_segments()) ax.add_collection(collection) x, y, z = s.get_points() ax.set_xlim((min(x), max(x))) ax.set_ylim((min(y), max(y))) ax.set_zlim((min(z), max(z))) elif s.is_3Dsurface: x, y, z = s.get_meshes() collection = ax.plot_surface(x, y, z, cmap=getattr(self.cm, 'viridis', self.cm.jet), rstride=1, cstride=1, linewidth=0.1) elif s.is_implicit: # Smart bounds have to be set to False for implicit plots. ax.spines['left'].set_smart_bounds(False) ax.spines['bottom'].set_smart_bounds(False) points = s.get_raster() if len(points) == 2: # interval math plotting x, y = _matplotlib_list(points[0]) ax.fill(x, y, facecolor=s.line_color, edgecolor='None') else: # use contourf or contour depending on whether it is # an inequality or equality. # XXX: ``contour`` plots multiple lines. Should be fixed. ListedColormap = self.matplotlib.colors.ListedColormap colormap = ListedColormap(["white", s.line_color]) xarray, yarray, zarray, plot_type = points if plot_type == 'contour': ax.contour(xarray, yarray, zarray, cmap=colormap) else: ax.contourf(xarray, yarray, zarray, cmap=colormap) else: raise ValueError('The matplotlib backend supports only ' 'is_2Dline, is_3Dline, is_3Dsurface and ' 'is_contour objects.') # Customise the collections with the corresponding per-series # options. if hasattr(s, 'label'): collection.set_label(s.label) if s.is_line and s.line_color: if isinstance(s.line_color, (float, int)) or isinstance(s.line_color, Callable): color_array = s.get_color_array() collection.set_array(color_array) else: collection.set_color(s.line_color) if s.is_3Dsurface and s.surface_color: if self.matplotlib.__version__ < "1.2.0": # TODO in the distant future remove this check warnings.warn('The version of matplotlib is too old to use surface coloring.') elif isinstance(s.surface_color, (float, int)) or isinstance(s.surface_color, Callable): color_array = s.get_color_array() color_array = color_array.reshape(color_array.size) collection.set_array(color_array) else: collection.set_color(s.surface_color) # Set global options. # TODO The 3D stuff # XXX The order of those is important. mpl_toolkits = import_module('mpl_toolkits', __import__kwargs={'fromlist': ['mplot3d']}) Axes3D = mpl_toolkits.mplot3d.Axes3D if parent.xscale and not isinstance(ax, Axes3D): ax.set_xscale(parent.xscale) if parent.yscale and not isinstance(ax, Axes3D): ax.set_yscale(parent.yscale) if not isinstance(ax, Axes3D) or self.matplotlib.__version__ >= '1.2.0': # XXX in the distant future remove this check ax.set_autoscale_on(parent.autoscale) if parent.axis_center: val = parent.axis_center if isinstance(ax, Axes3D): pass elif val == 'center': ax.spines['left'].set_position('center') ax.spines['bottom'].set_position('center') elif val == 'auto': xl, xh = ax.get_xlim() yl, yh = ax.get_ylim() pos_left = ('data', 0) if xl*xh <= 0 else 'center' pos_bottom = ('data', 0) if yl*yh <= 0 else 'center' ax.spines['left'].set_position(pos_left) ax.spines['bottom'].set_position(pos_bottom) else: ax.spines['left'].set_position(('data', val[0])) ax.spines['bottom'].set_position(('data', val[1])) if not parent.axis: ax.set_axis_off() if parent.legend: if ax.legend(): ax.legend_.set_visible(parent.legend) if parent.margin: ax.set_xmargin(parent.margin) ax.set_ymargin(parent.margin) if parent.title: ax.set_title(parent.title) if parent.xlabel: ax.set_xlabel(parent.xlabel, position=(1, 0)) if parent.ylabel: ax.set_ylabel(parent.ylabel, position=(0, 1)) if parent.annotations: for a in parent.annotations: ax.annotate(**a) if parent.markers: for marker in parent.markers: # make a copy of the marker dictionary # so that it doesn't get altered m = marker.copy() args = m.pop('args') ax.plot(*args, **m) if parent.rectangles: for r in parent.rectangles: rect = self.matplotlib.patches.Rectangle(**r) ax.add_patch(rect) if parent.fill: ax.fill_between(**parent.fill) # xlim and ylim shoulld always be set at last so that plot limits # doesn't get altered during the process. if parent.xlim: from sympy.core.basic import Basic xlim = parent.xlim if any(isinstance(i, Basic) and not i.is_real for i in xlim): raise ValueError( "All numbers from xlim={} must be real".format(xlim)) if any(isinstance(i, Basic) and not i.is_finite for i in xlim): raise ValueError( "All numbers from xlim={} must be finite".format(xlim)) xlim = (float(i) for i in xlim) ax.set_xlim(xlim) else: if parent._series and all(isinstance(s, LineOver1DRangeSeries) for s in parent._series): starts = [s.start for s in parent._series] ends = [s.end for s in parent._series] ax.set_xlim(min(starts), max(ends)) if parent.ylim: from sympy.core.basic import Basic ylim = parent.ylim if any(isinstance(i,Basic) and not i.is_real for i in ylim): raise ValueError( "All numbers from ylim={} must be real".format(ylim)) if any(isinstance(i,Basic) and not i.is_finite for i in ylim): raise ValueError( "All numbers from ylim={} must be finite".format(ylim)) ylim = (float(i) for i in ylim) ax.set_ylim(ylim) def process_series(self): """ Iterates over every ``Plot`` object and further calls _process_series() """ parent = self.parent if isinstance(parent, Plot): series_list = [parent._series] else: series_list = parent._series for i, (series, ax) in enumerate(zip(series_list, self.ax)): if isinstance(self.parent, PlotGrid): parent = self.parent.args[i] self._process_series(series, ax, parent) def show(self): self.process_series() #TODO after fixing https://github.com/ipython/ipython/issues/1255 # you can uncomment the next line and remove the pyplot.show() call #self.fig.show() if _show: self.fig.tight_layout() self.plt.show() else: self.close() def save(self, path): self.process_series() self.fig.savefig(path) def close(self): self.plt.close(self.fig) class TextBackend(BaseBackend): def __init__(self, parent): super(TextBackend, self).__init__(parent) def show(self): if not _show: return if len(self.parent._series) != 1: raise ValueError( 'The TextBackend supports only one graph per Plot.') elif not isinstance(self.parent._series[0], LineOver1DRangeSeries): raise ValueError( 'The TextBackend supports only expressions over a 1D range') else: ser = self.parent._series[0] textplot(ser.expr, ser.start, ser.end) def close(self): pass class DefaultBackend(BaseBackend): def __new__(cls, parent): matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,)) if matplotlib: return MatplotlibBackend(parent) else: return TextBackend(parent) plot_backends = { 'matplotlib': MatplotlibBackend, 'text': TextBackend, 'default': DefaultBackend } ############################################################################## # Finding the centers of line segments or mesh faces ############################################################################## def centers_of_segments(array): np = import_module('numpy') return np.mean(np.vstack((array[:-1], array[1:])), 0) def centers_of_faces(array): np = import_module('numpy') return np.mean(np.dstack((array[:-1, :-1], array[1:, :-1], array[:-1, 1:], array[:-1, :-1], )), 2) def flat(x, y, z, eps=1e-3): """Checks whether three points are almost collinear""" np = import_module('numpy') # Workaround plotting piecewise (#8577): # workaround for `lambdify` in `.experimental_lambdify` fails # to return numerical values in some cases. Lower-level fix # in `lambdify` is possible. vector_a = (x - y).astype(np.float) vector_b = (z - y).astype(np.float) dot_product = np.dot(vector_a, vector_b) vector_a_norm = np.linalg.norm(vector_a) vector_b_norm = np.linalg.norm(vector_b) cos_theta = dot_product / (vector_a_norm * vector_b_norm) return abs(cos_theta + 1) < eps def _matplotlib_list(interval_list): """ Returns lists for matplotlib ``fill`` command from a list of bounding rectangular intervals """ xlist = [] ylist = [] if len(interval_list): for intervals in interval_list: intervalx = intervals[0] intervaly = intervals[1] xlist.extend([intervalx.start, intervalx.start, intervalx.end, intervalx.end, None]) ylist.extend([intervaly.start, intervaly.end, intervaly.end, intervaly.start, None]) else: #XXX Ugly hack. Matplotlib does not accept empty lists for ``fill`` xlist.extend([None, None, None, None]) ylist.extend([None, None, None, None]) return xlist, ylist ####New API for plotting module #### # TODO: Add color arrays for plots. # TODO: Add more plotting options for 3d plots. # TODO: Adaptive sampling for 3D plots. def plot(*args, **kwargs): """ Plots a function of a single variable and returns an instance of the ``Plot`` class (also, see the description of the ``show`` keyword argument below). The plotting uses an adaptive algorithm which samples recursively to accurately plot the plot. The adaptive algorithm uses a random point near the midpoint of two points that has to be further sampled. Hence the same plots can appear slightly different. Usage ===== Single Plot ``plot(expr, range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots with same range. ``plot(expr1, expr2, ..., range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots with different ranges. ``plot((expr1, range), (expr2, range), ..., **kwargs)`` Range has to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr`` : Expression representing the function of single variable ``range``: (x, 0, 5), A 3-tuple denoting the range of the free variable. Keyword Arguments ================= Arguments for ``plot`` function: ``show``: Boolean. The default value is set to ``True``. Set show to ``False`` and the function will not display the plot. The returned instance of the ``Plot`` class can then be used to save or display the plot by calling the ``save()`` and ``show()`` methods respectively. Arguments for :obj:`LineOver1DRangeSeries` class: ``adaptive``: Boolean. The default value is set to True. Set adaptive to False and specify ``nb_of_points`` if uniform sampling is required. ``depth``: int Recursion depth of the adaptive algorithm. A depth of value ``n`` samples a maximum of `2^{n}` points. ``nb_of_points``: int. Used when the ``adaptive`` is set to False. The function is uniformly sampled at ``nb_of_points`` number of points. Aesthetics options: ``line_color``: float. Specifies the color for the plot. See ``Plot`` to see how to set color for the plots. If there are multiple plots, then the same series series are applied to all the plots. If you want to set these options separately, you can index the ``Plot`` object returned and set it. Arguments for ``Plot`` class: ``title`` : str. Title of the plot. It is set to the latex representation of the expression, if the plot has only one expression. ``xlabel`` : str. Label for the x-axis. ``ylabel`` : str. Label for the y-axis. ``xscale``: {'linear', 'log'} Sets the scaling of the x-axis. ``yscale``: {'linear', 'log'} Sets the scaling if the y-axis. ``axis_center``: tuple of two floats denoting the coordinates of the center or {'center', 'auto'} ``xlim`` : tuple of two floats, denoting the x-axis limits. ``ylim`` : tuple of two floats, denoting the y-axis limits. ``annotations``: list. A list of dictionaries specifying the type of annotation required. The keys in the dictionary should be equivalent to the arguments of the matplotlib's annotate() function. ``markers``: list. A list of dictionaries specifying the type the markers required. The keys in the dictionary should be equivalent to the arguments of the matplotlib's plot() function along with the marker related keyworded arguments. ``rectangles``: list. A list of dictionaries specifying the dimensions of the rectangles to be plotted. The keys in the dictionary should be equivalent to the arguments of the matplotlib's patches.Rectangle class. ``fill``: dict. A dictionary specifying the type of color filling required in the plot. The keys in the dictionary should be equivalent to the arguments of the matplotlib's fill_between() function. Examples ======== .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy import symbols >>> from sympy.plotting import plot >>> x = symbols('x') Single Plot .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot(x**2, (x, -5, 5)) Plot object containing: [0]: cartesian line: x**2 for x over (-5.0, 5.0) Multiple plots with single range. .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot(x, x**2, x**3, (x, -5, 5)) Plot object containing: [0]: cartesian line: x for x over (-5.0, 5.0) [1]: cartesian line: x**2 for x over (-5.0, 5.0) [2]: cartesian line: x**3 for x over (-5.0, 5.0) Multiple plots with different ranges. .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot((x**2, (x, -6, 6)), (x, (x, -5, 5))) Plot object containing: [0]: cartesian line: x**2 for x over (-6.0, 6.0) [1]: cartesian line: x for x over (-5.0, 5.0) No adaptive sampling. .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot(x**2, adaptive=False, nb_of_points=400) Plot object containing: [0]: cartesian line: x**2 for x over (-10.0, 10.0) See Also ======== Plot, LineOver1DRangeSeries """ args = list(map(sympify, args)) free = set() for a in args: if isinstance(a, Expr): free |= a.free_symbols if len(free) > 1: raise ValueError( 'The same variable should be used in all ' 'univariate expressions being plotted.') x = free.pop() if free else Symbol('x') kwargs.setdefault('xlabel', x.name) kwargs.setdefault('ylabel', 'f(%s)' % x.name) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 1, 1) series = [LineOver1DRangeSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots def plot_parametric(*args, **kwargs): """ Plots a 2D parametric plot. The plotting uses an adaptive algorithm which samples recursively to accurately plot the plot. The adaptive algorithm uses a random point near the midpoint of two points that has to be further sampled. Hence the same plots can appear slightly different. Usage ===== Single plot. ``plot_parametric(expr_x, expr_y, range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots with same range. ``plot_parametric((expr1_x, expr1_y), (expr2_x, expr2_y), range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots with different ranges. ``plot_parametric((expr_x, expr_y, range), ..., **kwargs)`` Range has to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr_x`` : Expression representing the function along x. ``expr_y`` : Expression representing the function along y. ``range``: (u, 0, 5), A 3-tuple denoting the range of the parameter variable. Keyword Arguments ================= Arguments for ``Parametric2DLineSeries`` class: ``adaptive``: Boolean. The default value is set to True. Set adaptive to False and specify ``nb_of_points`` if uniform sampling is required. ``depth``: int Recursion depth of the adaptive algorithm. A depth of value ``n`` samples a maximum of `2^{n}` points. ``nb_of_points``: int. Used when the ``adaptive`` is set to False. The function is uniformly sampled at ``nb_of_points`` number of points. Aesthetics ---------- ``line_color``: function which returns a float. Specifies the color for the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same Series arguments are applied to all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class: ``xlabel`` : str. Label for the x-axis. ``ylabel`` : str. Label for the y-axis. ``xscale``: {'linear', 'log'} Sets the scaling of the x-axis. ``yscale``: {'linear', 'log'} Sets the scaling if the y-axis. ``axis_center``: tuple of two floats denoting the coordinates of the center or {'center', 'auto'} ``xlim`` : tuple of two floats, denoting the x-axis limits. ``ylim`` : tuple of two floats, denoting the y-axis limits. Examples ======== .. plot:: :context: reset :format: doctest :include-source: True >>> from sympy import symbols, cos, sin >>> from sympy.plotting import plot_parametric >>> u = symbols('u') Single Parametric plot .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot_parametric(cos(u), sin(u), (u, -5, 5)) Plot object containing: [0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0) Multiple parametric plot with single range. .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot_parametric((cos(u), sin(u)), (u, cos(u))) Plot object containing: [0]: parametric cartesian line: (cos(u), sin(u)) for u over (-10.0, 10.0) [1]: parametric cartesian line: (u, cos(u)) for u over (-10.0, 10.0) Multiple parametric plots. .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot_parametric((cos(u), sin(u), (u, -5, 5)), ... (cos(u), u, (u, -5, 5))) Plot object containing: [0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0) [1]: parametric cartesian line: (cos(u), u) for u over (-5.0, 5.0) See Also ======== Plot, Parametric2DLineSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 2, 1) series = [Parametric2DLineSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots def plot3d_parametric_line(*args, **kwargs): """ Plots a 3D parametric line plot. Usage ===== Single plot: ``plot3d_parametric_line(expr_x, expr_y, expr_z, range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots. ``plot3d_parametric_line((expr_x, expr_y, expr_z, range), ..., **kwargs)`` Ranges have to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr_x`` : Expression representing the function along x. ``expr_y`` : Expression representing the function along y. ``expr_z`` : Expression representing the function along z. ``range``: ``(u, 0, 5)``, A 3-tuple denoting the range of the parameter variable. Keyword Arguments ================= Arguments for ``Parametric3DLineSeries`` class. ``nb_of_points``: The range is uniformly sampled at ``nb_of_points`` number of points. Aesthetics: ``line_color``: function which returns a float. Specifies the color for the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same series arguments are applied to all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class. ``title`` : str. Title of the plot. Examples ======== .. plot:: :context: reset :format: doctest :include-source: True >>> from sympy import symbols, cos, sin >>> from sympy.plotting import plot3d_parametric_line >>> u = symbols('u') Single plot. .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot3d_parametric_line(cos(u), sin(u), u, (u, -5, 5)) Plot object containing: [0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0) Multiple plots. .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot3d_parametric_line((cos(u), sin(u), u, (u, -5, 5)), ... (sin(u), u**2, u, (u, -5, 5))) Plot object containing: [0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0) [1]: 3D parametric cartesian line: (sin(u), u**2, u) for u over (-5.0, 5.0) See Also ======== Plot, Parametric3DLineSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 3, 1) series = [Parametric3DLineSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots def plot3d(*args, **kwargs): """ Plots a 3D surface plot. Usage ===== Single plot ``plot3d(expr, range_x, range_y, **kwargs)`` If the ranges are not specified, then a default range of (-10, 10) is used. Multiple plot with the same range. ``plot3d(expr1, expr2, range_x, range_y, **kwargs)`` If the ranges are not specified, then a default range of (-10, 10) is used. Multiple plots with different ranges. ``plot3d((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)`` Ranges have to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr`` : Expression representing the function along x. ``range_x``: (x, 0, 5), A 3-tuple denoting the range of the x variable. ``range_y``: (y, 0, 5), A 3-tuple denoting the range of the y variable. Keyword Arguments ================= Arguments for ``SurfaceOver2DRangeSeries`` class: ``nb_of_points_x``: int. The x range is sampled uniformly at ``nb_of_points_x`` of points. ``nb_of_points_y``: int. The y range is sampled uniformly at ``nb_of_points_y`` of points. Aesthetics: ``surface_color``: Function which returns a float. Specifies the color for the surface of the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same series arguments are applied to all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class: ``title`` : str. Title of the plot. Examples ======== .. plot:: :context: reset :format: doctest :include-source: True >>> from sympy import symbols >>> from sympy.plotting import plot3d >>> x, y = symbols('x y') Single plot .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot3d(x*y, (x, -5, 5), (y, -5, 5)) Plot object containing: [0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0) Multiple plots with same range .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot3d(x*y, -x*y, (x, -5, 5), (y, -5, 5)) Plot object containing: [0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0) [1]: cartesian surface: -x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0) Multiple plots with different ranges. .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot3d((x**2 + y**2, (x, -5, 5), (y, -5, 5)), ... (x*y, (x, -3, 3), (y, -3, 3))) Plot object containing: [0]: cartesian surface: x**2 + y**2 for x over (-5.0, 5.0) and y over (-5.0, 5.0) [1]: cartesian surface: x*y for x over (-3.0, 3.0) and y over (-3.0, 3.0) See Also ======== Plot, SurfaceOver2DRangeSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 1, 2) series = [SurfaceOver2DRangeSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots def plot3d_parametric_surface(*args, **kwargs): """ Plots a 3D parametric surface plot. Usage ===== Single plot. ``plot3d_parametric_surface(expr_x, expr_y, expr_z, range_u, range_v, **kwargs)`` If the ranges is not specified, then a default range of (-10, 10) is used. Multiple plots. ``plot3d_parametric_surface((expr_x, expr_y, expr_z, range_u, range_v), ..., **kwargs)`` Ranges have to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr_x``: Expression representing the function along ``x``. ``expr_y``: Expression representing the function along ``y``. ``expr_z``: Expression representing the function along ``z``. ``range_u``: ``(u, 0, 5)``, A 3-tuple denoting the range of the ``u`` variable. ``range_v``: ``(v, 0, 5)``, A 3-tuple denoting the range of the v variable. Keyword Arguments ================= Arguments for ``ParametricSurfaceSeries`` class: ``nb_of_points_u``: int. The ``u`` range is sampled uniformly at ``nb_of_points_v`` of points ``nb_of_points_y``: int. The ``v`` range is sampled uniformly at ``nb_of_points_y`` of points Aesthetics: ``surface_color``: Function which returns a float. Specifies the color for the surface of the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same series arguments are applied for all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class: ``title`` : str. Title of the plot. Examples ======== .. plot:: :context: reset :format: doctest :include-source: True >>> from sympy import symbols, cos, sin >>> from sympy.plotting import plot3d_parametric_surface >>> u, v = symbols('u v') Single plot. .. plot:: :context: close-figs :format: doctest :include-source: True >>> plot3d_parametric_surface(cos(u + v), sin(u - v), u - v, ... (u, -5, 5), (v, -5, 5)) Plot object containing: [0]: parametric cartesian surface: (cos(u + v), sin(u - v), u - v) for u over (-5.0, 5.0) and v over (-5.0, 5.0) See Also ======== Plot, ParametricSurfaceSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 3, 2) series = [ParametricSurfaceSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots def plot_contour(*args, **kwargs): """ Draws contour plot of a function Usage ===== Single plot ``plot_contour(expr, range_x, range_y, **kwargs)`` If the ranges are not specified, then a default range of (-10, 10) is used. Multiple plot with the same range. ``plot_contour(expr1, expr2, range_x, range_y, **kwargs)`` If the ranges are not specified, then a default range of (-10, 10) is used. Multiple plots with different ranges. ``plot_contour((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)`` Ranges have to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr`` : Expression representing the function along x. ``range_x``: (x, 0, 5), A 3-tuple denoting the range of the x variable. ``range_y``: (y, 0, 5), A 3-tuple denoting the range of the y variable. Keyword Arguments ================= Arguments for ``ContourSeries`` class: ``nb_of_points_x``: int. The x range is sampled uniformly at ``nb_of_points_x`` of points. ``nb_of_points_y``: int. The y range is sampled uniformly at ``nb_of_points_y`` of points. Aesthetics: ``surface_color``: Function which returns a float. Specifies the color for the surface of the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same series arguments are applied to all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class: ``title`` : str. Title of the plot. See Also ======== Plot, ContourSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) plot_expr = check_arguments(args, 1, 2) series = [ContourSeries(*arg) for arg in plot_expr] plot_contours = Plot(*series, **kwargs) if len(plot_expr[0].free_symbols) > 2: raise ValueError('Contour Plot cannot Plot for more than two variables.') if show: plot_contours.show() return plot_contours def check_arguments(args, expr_len, nb_of_free_symbols): """ Checks the arguments and converts into tuples of the form (exprs, ranges) Examples ======== .. plot:: :context: reset :format: doctest :include-source: True >>> from sympy import plot, cos, sin, symbols >>> from sympy.plotting.plot import check_arguments >>> x = symbols('x') >>> check_arguments([cos(x), sin(x)], 2, 1) [(cos(x), sin(x), (x, -10, 10))] >>> check_arguments([x, x**2], 1, 1) [(x, (x, -10, 10)), (x**2, (x, -10, 10))] """ if not args: return [] if expr_len > 1 and isinstance(args[0], Expr): # Multiple expressions same range. # The arguments are tuples when the expression length is # greater than 1. if len(args) < expr_len: raise ValueError("len(args) should not be less than expr_len") for i in range(len(args)): if isinstance(args[i], Tuple): break else: i = len(args) + 1 exprs = Tuple(*args[:i]) free_symbols = list(set().union(*[e.free_symbols for e in exprs])) if len(args) == expr_len + nb_of_free_symbols: #Ranges given plots = [exprs + Tuple(*args[expr_len:])] else: default_range = Tuple(-10, 10) ranges = [] for symbol in free_symbols: ranges.append(Tuple(symbol) + default_range) for i in range(len(free_symbols) - nb_of_free_symbols): ranges.append(Tuple(Dummy()) + default_range) plots = [exprs + Tuple(*ranges)] return plots if isinstance(args[0], Expr) or (isinstance(args[0], Tuple) and len(args[0]) == expr_len and expr_len != 3): # Cannot handle expressions with number of expression = 3. It is # not possible to differentiate between expressions and ranges. #Series of plots with same range for i in range(len(args)): if isinstance(args[i], Tuple) and len(args[i]) != expr_len: break if not isinstance(args[i], Tuple): args[i] = Tuple(args[i]) else: i = len(args) + 1 exprs = args[:i] assert all(isinstance(e, Expr) for expr in exprs for e in expr) free_symbols = list(set().union(*[e.free_symbols for expr in exprs for e in expr])) if len(free_symbols) > nb_of_free_symbols: raise ValueError("The number of free_symbols in the expression " "is greater than %d" % nb_of_free_symbols) if len(args) == i + nb_of_free_symbols and isinstance(args[i], Tuple): ranges = Tuple(*[range_expr for range_expr in args[ i:i + nb_of_free_symbols]]) plots = [expr + ranges for expr in exprs] return plots else: # Use default ranges. default_range = Tuple(-10, 10) ranges = [] for symbol in free_symbols: ranges.append(Tuple(symbol) + default_range) for i in range(nb_of_free_symbols - len(free_symbols)): ranges.append(Tuple(Dummy()) + default_range) ranges = Tuple(*ranges) plots = [expr + ranges for expr in exprs] return plots elif isinstance(args[0], Tuple) and len(args[0]) == expr_len + nb_of_free_symbols: # Multiple plots with different ranges. for arg in args: for i in range(expr_len): if not isinstance(arg[i], Expr): raise ValueError("Expected an expression, given %s" % str(arg[i])) for i in range(nb_of_free_symbols): if not len(arg[i + expr_len]) == 3: raise ValueError("The ranges should be a tuple of " "length 3, got %s" % str(arg[i + expr_len])) return args
4a8b717a5dee9dcd4058f51199a2a08a6849d58692459bb51cf485e101c1d131
from __future__ import print_function, division from sympy.core.numbers import Float from sympy.core.symbol import Dummy from sympy.core.compatibility import range from sympy.utilities.lambdify import lambdify import math def is_valid(x): """Check if a floating point number is valid""" if x is None: return False if isinstance(x, complex): return False return not math.isinf(x) and not math.isnan(x) def rescale(y, W, H, mi, ma): """Rescale the given array `y` to fit into the integer values between `0` and `H-1` for the values between ``mi`` and ``ma``. """ y_new = list() norm = ma - mi offset = (ma + mi) / 2 for x in range(W): if is_valid(y[x]): normalized = (y[x] - offset) / norm if not is_valid(normalized): y_new.append(None) else: # XXX There are some test failings because of the # difference between the python 2 and 3 rounding. rescaled = Float((normalized*H + H/2) * (H-1)/H).round() rescaled = int(rescaled) y_new.append(rescaled) else: y_new.append(None) return y_new def linspace(start, stop, num): return [start + (stop - start) * x / (num-1) for x in range(num)] def textplot_str(expr, a, b, W=55, H=18): """Generator for the lines of the plot""" free = expr.free_symbols if len(free) > 1: raise ValueError( "The expression must have a single variable. (Got {})" .format(free)) x = free.pop() if free else Dummy() f = lambdify([x], expr) a = float(a) b = float(b) # Calculate function values x = linspace(a, b, W) y = list() for val in x: try: y.append(f(val)) except: y.append(None) # Normalize height to screen space y_valid = list(filter(is_valid, y)) if y_valid: ma = max(y_valid) mi = min(y_valid) if ma == mi: if ma: mi, ma = sorted([0, 2*ma]) else: mi, ma = -1, 1 else: mi, ma = -1, 1 y = rescale(y, W, H, mi, ma) y_bins = linspace(mi, ma, H) # Draw plot margin = 7 for h in range(H - 1, -1, -1): s = [' '] * W for i in range(W): if y[i] == h: if (i == 0 or y[i - 1] == h - 1) and (i == W - 1 or y[i + 1] == h + 1): s[i] = '/' elif (i == 0 or y[i - 1] == h + 1) and (i == W - 1 or y[i + 1] == h - 1): s[i] = '\\' else: s[i] = '.' # Print y values if h in (0, H//2, H - 1): prefix = ("%g" % y_bins[h]).rjust(margin)[:margin] else: prefix = " "*margin s = "".join(s) if h == H//2: s = s.replace(" ", "-") yield prefix + " | " + s # Print x values bottom = " " * (margin + 3) bottom += ("%g" % x[0]).ljust(W//2) if W % 2 == 1: bottom += ("%g" % x[W//2]).ljust(W//2) else: bottom += ("%g" % x[W//2]).ljust(W//2-1) bottom += "%g" % x[-1] yield bottom def textplot(expr, a, b, W=55, H=18): r""" Print a crude ASCII art plot of the SymPy expression 'expr' (which should contain a single symbol, e.g. x or something else) over the interval [a, b]. Examples ======== >>> from sympy import Symbol, sin >>> from sympy.plotting import textplot >>> t = Symbol('t') >>> textplot(sin(t)*t, 0, 15) 14.1605 | ... | . | . | . . | .. | / .. . | / . | / 2.30284 | ------...---------------/--------.------------.-------- | .... ... / | .. \ / . . | .. / . | .. / . | ... . | . | . | \ . -11.037 | ... 0 7.5 15 """ for line in textplot_str(expr, a, b, W, H): print(line)
ea54cd6b4d38a3c6ac6e231ca5e781ef68b1c406bc2faa7c9a709b9daf2e4ea6
from sympy import E as e from sympy import (Symbol, Abs, exp, expint, S, pi, simplify, Interval, erf, erfc, Ne, EulerGamma, Eq, log, lowergamma, uppergamma, symbols, sqrt, And, gamma, beta, Piecewise, Integral, sin, cos, tan, sinh, cosh, besseli, floor, expand_func, Rational, I, re, im, lambdify, hyper, diff, Or, Mul, sign) from sympy.core.compatibility import range from sympy.external import import_module from sympy.functions.special.error_functions import erfinv from sympy.functions.special.hyper import meijerg from sympy.sets.sets import Intersection, FiniteSet from sympy.stats import (P, E, where, density, variance, covariance, skewness, kurtosis, given, pspace, cdf, characteristic_function, moment_generating_function, ContinuousRV, sample, Arcsin, Benini, Beta, BetaNoncentral, BetaPrime, Cauchy, Chi, ChiSquared, ChiNoncentral, Dagum, Erlang, ExGaussian, Exponential, ExponentialPower, FDistribution, FisherZ, Frechet, Gamma, GammaInverse, Gompertz, Gumbel, Kumaraswamy, Laplace, Logistic, LogLogistic, LogNormal, Maxwell, Nakagami, Normal, GaussianInverse, Pareto, QuadraticU, RaisedCosine, Rayleigh, ShiftedGompertz, StudentT, Trapezoidal, Triangular, Uniform, UniformSum, VonMises, Weibull, WignerSemicircle, Wald, correlation, moment, cmoment, smoment, quantile) from sympy.stats.crv_types import NormalDistribution from sympy.stats.joint_rv import JointPSpace from sympy.utilities.pytest import raises, XFAIL, slow, skip from sympy.utilities.randtest import verify_numerically as tn oo = S.Infinity x, y, z = map(Symbol, 'xyz') def test_single_normal(): mu = Symbol('mu', real=True) sigma = Symbol('sigma', positive=True) X = Normal('x', 0, 1) Y = X*sigma + mu assert E(Y) == mu assert variance(Y) == sigma**2 pdf = density(Y) x = Symbol('x', real=True) assert (pdf(x) == 2**S.Half*exp(-(x - mu)**2/(2*sigma**2))/(2*pi**S.Half*sigma)) assert P(X**2 < 1) == erf(2**S.Half/2) assert quantile(Y)(x) == Intersection(S.Reals, FiniteSet(sqrt(2)*sigma*(sqrt(2)*mu/(2*sigma) + erfinv(2*x - 1)))) assert E(X, Eq(X, mu)) == mu def test_conditional_1d(): X = Normal('x', 0, 1) Y = given(X, X >= 0) z = Symbol('z') assert density(Y)(z) == 2 * density(X)(z) assert Y.pspace.domain.set == Interval(0, oo) assert E(Y) == sqrt(2) / sqrt(pi) assert E(X**2) == E(Y**2) def test_ContinuousDomain(): X = Normal('x', 0, 1) assert where(X**2 <= 1).set == Interval(-1, 1) assert where(X**2 <= 1).symbol == X.symbol where(And(X**2 <= 1, X >= 0)).set == Interval(0, 1) raises(ValueError, lambda: where(sin(X) > 1)) Y = given(X, X >= 0) assert Y.pspace.domain.set == Interval(0, oo) @slow def test_multiple_normal(): X, Y = Normal('x', 0, 1), Normal('y', 0, 1) p = Symbol("p", positive=True) assert E(X + Y) == 0 assert variance(X + Y) == 2 assert variance(X + X) == 4 assert covariance(X, Y) == 0 assert covariance(2*X + Y, -X) == -2*variance(X) assert skewness(X) == 0 assert skewness(X + Y) == 0 assert kurtosis(X) == 3 assert kurtosis(X+Y) == 3 assert correlation(X, Y) == 0 assert correlation(X, X + Y) == correlation(X, X - Y) assert moment(X, 2) == 1 assert cmoment(X, 3) == 0 assert moment(X + Y, 4) == 12 assert cmoment(X, 2) == variance(X) assert smoment(X*X, 2) == 1 assert smoment(X + Y, 3) == skewness(X + Y) assert smoment(X + Y, 4) == kurtosis(X + Y) assert E(X, Eq(X + Y, 0)) == 0 assert variance(X, Eq(X + Y, 0)) == S.Half assert quantile(X)(p) == sqrt(2)*erfinv(2*p - S.One) def test_symbolic(): mu1, mu2 = symbols('mu1 mu2', real=True) s1, s2 = symbols('sigma1 sigma2', positive=True) rate = Symbol('lambda', positive=True) X = Normal('x', mu1, s1) Y = Normal('y', mu2, s2) Z = Exponential('z', rate) a, b, c = symbols('a b c', real=True) assert E(X) == mu1 assert E(X + Y) == mu1 + mu2 assert E(a*X + b) == a*E(X) + b assert variance(X) == s1**2 assert variance(X + a*Y + b) == variance(X) + a**2*variance(Y) assert E(Z) == 1/rate assert E(a*Z + b) == a*E(Z) + b assert E(X + a*Z + b) == mu1 + a/rate + b def test_cdf(): X = Normal('x', 0, 1) d = cdf(X) assert P(X < 1) == d(1).rewrite(erfc) assert d(0) == S.Half d = cdf(X, X > 0) # given X>0 assert d(0) == 0 Y = Exponential('y', 10) d = cdf(Y) assert d(-5) == 0 assert P(Y > 3) == 1 - d(3) raises(ValueError, lambda: cdf(X + Y)) Z = Exponential('z', 1) f = cdf(Z) z = Symbol('z') assert f(z) == Piecewise((1 - exp(-z), z >= 0), (0, True)) def test_characteristic_function(): X = Uniform('x', 0, 1) cf = characteristic_function(X) assert cf(1) == -I*(-1 + exp(I)) Y = Normal('y', 1, 1) cf = characteristic_function(Y) assert cf(0) == 1 assert cf(1) == exp(I - S.Half) Z = Exponential('z', 5) cf = characteristic_function(Z) assert cf(0) == 1 assert cf(1).expand() == Rational(25, 26) + I*Rational(5, 26) X = GaussianInverse('x', 1, 1) cf = characteristic_function(X) assert cf(0) == 1 assert cf(1) == exp(1 - sqrt(1 - 2*I)) X = ExGaussian('x', 0, 1, 1) cf = characteristic_function(X) assert cf(0) == 1 assert cf(1) == (1 + I)*exp(Rational(-1, 2))/2 def test_moment_generating_function(): t = symbols('t', positive=True) # Symbolic tests a, b, c = symbols('a b c') mgf = moment_generating_function(Beta('x', a, b))(t) assert mgf == hyper((a,), (a + b,), t) mgf = moment_generating_function(Chi('x', a))(t) assert mgf == sqrt(2)*t*gamma(a/2 + S.Half)*\ hyper((a/2 + S.Half,), (Rational(3, 2),), t**2/2)/gamma(a/2) +\ hyper((a/2,), (S.Half,), t**2/2) mgf = moment_generating_function(ChiSquared('x', a))(t) assert mgf == (1 - 2*t)**(-a/2) mgf = moment_generating_function(Erlang('x', a, b))(t) assert mgf == (1 - t/b)**(-a) mgf = moment_generating_function(ExGaussian("x", a, b, c))(t) assert mgf == exp(a*t + b**2*t**2/2)/(1 - t/c) mgf = moment_generating_function(Exponential('x', a))(t) assert mgf == a/(a - t) mgf = moment_generating_function(Gamma('x', a, b))(t) assert mgf == (-b*t + 1)**(-a) mgf = moment_generating_function(Gumbel('x', a, b))(t) assert mgf == exp(b*t)*gamma(-a*t + 1) mgf = moment_generating_function(Gompertz('x', a, b))(t) assert mgf == b*exp(b)*expint(t/a, b) mgf = moment_generating_function(Laplace('x', a, b))(t) assert mgf == exp(a*t)/(-b**2*t**2 + 1) mgf = moment_generating_function(Logistic('x', a, b))(t) assert mgf == exp(a*t)*beta(-b*t + 1, b*t + 1) mgf = moment_generating_function(Normal('x', a, b))(t) assert mgf == exp(a*t + b**2*t**2/2) mgf = moment_generating_function(Pareto('x', a, b))(t) assert mgf == b*(-a*t)**b*uppergamma(-b, -a*t) mgf = moment_generating_function(QuadraticU('x', a, b))(t) assert str(mgf) == ("(3*(t*(-4*b + (a + b)**2) + 4)*exp(b*t) - " "3*(t*(a**2 + 2*a*(b - 2) + b**2) + 4)*exp(a*t))/(t**2*(a - b)**3)") mgf = moment_generating_function(RaisedCosine('x', a, b))(t) assert mgf == pi**2*exp(a*t)*sinh(b*t)/(b*t*(b**2*t**2 + pi**2)) mgf = moment_generating_function(Rayleigh('x', a))(t) assert mgf == sqrt(2)*sqrt(pi)*a*t*(erf(sqrt(2)*a*t/2) + 1)\ *exp(a**2*t**2/2)/2 + 1 mgf = moment_generating_function(Triangular('x', a, b, c))(t) assert str(mgf) == ("(-2*(-a + b)*exp(c*t) + 2*(-a + c)*exp(b*t) + " "2*(b - c)*exp(a*t))/(t**2*(-a + b)*(-a + c)*(b - c))") mgf = moment_generating_function(Uniform('x', a, b))(t) assert mgf == (-exp(a*t) + exp(b*t))/(t*(-a + b)) mgf = moment_generating_function(UniformSum('x', a))(t) assert mgf == ((exp(t) - 1)/t)**a mgf = moment_generating_function(WignerSemicircle('x', a))(t) assert mgf == 2*besseli(1, a*t)/(a*t) # Numeric tests mgf = moment_generating_function(Beta('x', 1, 1))(t) assert mgf.diff(t).subs(t, 1) == hyper((2,), (3,), 1)/2 mgf = moment_generating_function(Chi('x', 1))(t) assert mgf.diff(t).subs(t, 1) == sqrt(2)*hyper((1,), (Rational(3, 2),), S.Half )/sqrt(pi) + hyper((Rational(3, 2),), (Rational(3, 2),), S.Half) + 2*sqrt(2)*hyper((2,), (Rational(5, 2),), S.Half)/(3*sqrt(pi)) mgf = moment_generating_function(ChiSquared('x', 1))(t) assert mgf.diff(t).subs(t, 1) == I mgf = moment_generating_function(Erlang('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == 1 mgf = moment_generating_function(ExGaussian("x", 0, 1, 1))(t) assert mgf.diff(t).subs(t, 2) == -exp(2) mgf = moment_generating_function(Exponential('x', 1))(t) assert mgf.diff(t).subs(t, 0) == 1 mgf = moment_generating_function(Gamma('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == 1 mgf = moment_generating_function(Gumbel('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == EulerGamma + 1 mgf = moment_generating_function(Gompertz('x', 1, 1))(t) assert mgf.diff(t).subs(t, 1) == -e*meijerg(((), (1, 1)), ((0, 0, 0), ()), 1) mgf = moment_generating_function(Laplace('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == 1 mgf = moment_generating_function(Logistic('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == beta(1, 1) mgf = moment_generating_function(Normal('x', 0, 1))(t) assert mgf.diff(t).subs(t, 1) == exp(S.Half) mgf = moment_generating_function(Pareto('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == expint(1, 0) mgf = moment_generating_function(QuadraticU('x', 1, 2))(t) assert mgf.diff(t).subs(t, 1) == -12*e - 3*exp(2) mgf = moment_generating_function(RaisedCosine('x', 1, 1))(t) assert mgf.diff(t).subs(t, 1) == -2*e*pi**2*sinh(1)/\ (1 + pi**2)**2 + e*pi**2*cosh(1)/(1 + pi**2) mgf = moment_generating_function(Rayleigh('x', 1))(t) assert mgf.diff(t).subs(t, 0) == sqrt(2)*sqrt(pi)/2 mgf = moment_generating_function(Triangular('x', 1, 3, 2))(t) assert mgf.diff(t).subs(t, 1) == -e + exp(3) mgf = moment_generating_function(Uniform('x', 0, 1))(t) assert mgf.diff(t).subs(t, 1) == 1 mgf = moment_generating_function(UniformSum('x', 1))(t) assert mgf.diff(t).subs(t, 1) == 1 mgf = moment_generating_function(WignerSemicircle('x', 1))(t) assert mgf.diff(t).subs(t, 1) == -2*besseli(1, 1) + besseli(2, 1) +\ besseli(0, 1) def test_sample_continuous(): z = Symbol('z') Z = ContinuousRV(z, exp(-z), set=Interval(0, oo)) assert sample(Z) in Z.pspace.domain.set sym, val = list(Z.pspace.sample().items())[0] assert sym == Z and val in Interval(0, oo) assert density(Z)(-1) == 0 def test_ContinuousRV(): x = Symbol('x') pdf = sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)) # Normal distribution # X and Y should be equivalent X = ContinuousRV(x, pdf) Y = Normal('y', 0, 1) assert variance(X) == variance(Y) assert P(X > 0) == P(Y > 0) def test_arcsin(): from sympy import asin a = Symbol("a", real=True) b = Symbol("b", real=True) X = Arcsin('x', a, b) assert density(X)(x) == 1/(pi*sqrt((-x + b)*(x - a))) assert cdf(X)(x) == Piecewise((0, a > x), (2*asin(sqrt((-a + x)/(-a + b)))/pi, b >= x), (1, True)) def test_benini(): alpha = Symbol("alpha", positive=True) beta = Symbol("beta", positive=True) sigma = Symbol("sigma", positive=True) X = Benini('x', alpha, beta, sigma) assert density(X)(x) == ((alpha/x + 2*beta*log(x/sigma)/x) *exp(-alpha*log(x/sigma) - beta*log(x/sigma)**2)) alpha = Symbol("alpha", nonpositive=True) raises(ValueError, lambda: Benini('x', alpha, beta, sigma)) beta = Symbol("beta", nonpositive=True) raises(ValueError, lambda: Benini('x', alpha, beta, sigma)) alpha = Symbol("alpha", positive=True) raises(ValueError, lambda: Benini('x', alpha, beta, sigma)) beta = Symbol("beta", positive=True) sigma = Symbol("sigma", nonpositive=True) raises(ValueError, lambda: Benini('x', alpha, beta, sigma)) def test_beta(): a, b = symbols('alpha beta', positive=True) B = Beta('x', a, b) assert pspace(B).domain.set == Interval(0, 1) dens = density(B) x = Symbol('x') assert dens(x) == x**(a - 1)*(1 - x)**(b - 1) / beta(a, b) assert simplify(E(B)) == a / (a + b) assert simplify(variance(B)) == a*b / (a**3 + 3*a**2*b + a**2 + 3*a*b**2 + 2*a*b + b**3 + b**2) # Full symbolic solution is too much, test with numeric version a, b = 1, 2 B = Beta('x', a, b) assert expand_func(E(B)) == a / S(a + b) assert expand_func(variance(B)) == (a*b) / S((a + b)**2 * (a + b + 1)) def test_beta_noncentral(): a, b = symbols('a b', positive=True) c = Symbol('c', nonnegative=True) _k = Symbol('k') X = BetaNoncentral('x', a, b, c) assert pspace(X).domain.set == Interval(0, 1) dens = density(X) z = Symbol('z') assert str(dens(z)) == ("Sum(z**(_k + a - 1)*(c/2)**_k*(1 - z)**(b - 1)*exp(-c/2)/" "(beta(_k + a, b)*factorial(_k)), (_k, 0, oo))") # BetaCentral should not raise if the assumptions # on the symbols can not be determined a, b, c = symbols('a b c') assert BetaNoncentral('x', a, b, c) a = Symbol('a', positive=False, real=True) raises(ValueError, lambda: BetaNoncentral('x', a, b, c)) a = Symbol('a', positive=True) b = Symbol('b', positive=False, real=True) raises(ValueError, lambda: BetaNoncentral('x', a, b, c)) a = Symbol('a', positive=True) b = Symbol('b', positive=True) c = Symbol('c', nonnegative=False, real=True) raises(ValueError, lambda: BetaNoncentral('x', a, b, c)) def test_betaprime(): alpha = Symbol("alpha", positive=True) betap = Symbol("beta", positive=True) X = BetaPrime('x', alpha, betap) assert density(X)(x) == x**(alpha - 1)*(x + 1)**(-alpha - betap)/beta(alpha, betap) alpha = Symbol("alpha", nonpositive=True) raises(ValueError, lambda: BetaPrime('x', alpha, betap)) alpha = Symbol("alpha", positive=True) betap = Symbol("beta", nonpositive=True) raises(ValueError, lambda: BetaPrime('x', alpha, betap)) def test_cauchy(): x0 = Symbol("x0") gamma = Symbol("gamma", positive=True) p = Symbol("p", positive=True) X = Cauchy('x', x0, gamma) assert density(X)(x) == 1/(pi*gamma*(1 + (x - x0)**2/gamma**2)) assert diff(cdf(X)(x), x) == density(X)(x) assert quantile(X)(p) == gamma*tan(pi*(p - S.Half)) + x0 gamma = Symbol("gamma", nonpositive=True) raises(ValueError, lambda: Cauchy('x', x0, gamma)) def test_chi(): k = Symbol("k", integer=True) X = Chi('x', k) assert density(X)(x) == 2**(-k/2 + 1)*x**(k - 1)*exp(-x**2/2)/gamma(k/2) k = Symbol("k", integer=True, positive=False) raises(ValueError, lambda: Chi('x', k)) k = Symbol("k", integer=False, positive=True) raises(ValueError, lambda: Chi('x', k)) def test_chi_noncentral(): k = Symbol("k", integer=True) l = Symbol("l") X = ChiNoncentral("x", k, l) assert density(X)(x) == (x**k*l*(x*l)**(-k/2)* exp(-x**2/2 - l**2/2)*besseli(k/2 - 1, x*l)) k = Symbol("k", integer=True, positive=False) raises(ValueError, lambda: ChiNoncentral('x', k, l)) k = Symbol("k", integer=True, positive=True) l = Symbol("l", nonpositive=True) raises(ValueError, lambda: ChiNoncentral('x', k, l)) k = Symbol("k", integer=False) l = Symbol("l", positive=True) raises(ValueError, lambda: ChiNoncentral('x', k, l)) def test_chi_squared(): k = Symbol("k", integer=True) X = ChiSquared('x', k) assert density(X)(x) == 2**(-k/2)*x**(k/2 - 1)*exp(-x/2)/gamma(k/2) assert cdf(X)(x) == Piecewise((lowergamma(k/2, x/2)/gamma(k/2), x >= 0), (0, True)) assert E(X) == k assert variance(X) == 2*k X = ChiSquared('x', 15) assert cdf(X)(3) == -14873*sqrt(6)*exp(Rational(-3, 2))/(5005*sqrt(pi)) + erf(sqrt(6)/2) k = Symbol("k", integer=True, positive=False) raises(ValueError, lambda: ChiSquared('x', k)) k = Symbol("k", integer=False, positive=True) raises(ValueError, lambda: ChiSquared('x', k)) def test_dagum(): p = Symbol("p", positive=True) b = Symbol("b", positive=True) a = Symbol("a", positive=True) X = Dagum('x', p, a, b) assert density(X)(x) == a*p*(x/b)**(a*p)*((x/b)**a + 1)**(-p - 1)/x assert cdf(X)(x) == Piecewise(((1 + (x/b)**(-a))**(-p), x >= 0), (0, True)) p = Symbol("p", nonpositive=True) raises(ValueError, lambda: Dagum('x', p, a, b)) p = Symbol("p", positive=True) b = Symbol("b", nonpositive=True) raises(ValueError, lambda: Dagum('x', p, a, b)) b = Symbol("b", positive=True) a = Symbol("a", nonpositive=True) raises(ValueError, lambda: Dagum('x', p, a, b)) def test_erlang(): k = Symbol("k", integer=True, positive=True) l = Symbol("l", positive=True) X = Erlang("x", k, l) assert density(X)(x) == x**(k - 1)*l**k*exp(-x*l)/gamma(k) assert cdf(X)(x) == Piecewise((lowergamma(k, l*x)/gamma(k), x > 0), (0, True)) def test_exgaussian(): m, z = symbols("m, z") s, l = symbols("s, l", positive=True) X = ExGaussian("x", m, s, l) assert density(X)(z) == l*exp(l*(l*s**2 + 2*m - 2*z)/2) *\ erfc(sqrt(2)*(l*s**2 + m - z)/(2*s))/2 # Note: actual_output simplifies to expected_output. # Ideally cdf(X)(z) would return expected_output # expected_output = (erf(sqrt(2)*(l*s**2 + m - z)/(2*s)) - 1)*exp(l*(l*s**2 + 2*m - 2*z)/2)/2 - erf(sqrt(2)*(m - z)/(2*s))/2 + S.Half u = l*(z - m) v = l*s GaussianCDF1 = cdf(Normal('x', 0, v))(u) GaussianCDF2 = cdf(Normal('x', v**2, v))(u) actual_output = GaussianCDF1 - exp(-u + (v**2/2) + log(GaussianCDF2)) assert cdf(X)(z) == actual_output # assert simplify(actual_output) == expected_output assert variance(X).expand() == s**2 + l**(-2) assert skewness(X).expand() == 2/(l**3*s**2*sqrt(s**2 + l**(-2)) + l * sqrt(s**2 + l**(-2))) def test_exponential(): rate = Symbol('lambda', positive=True) X = Exponential('x', rate) p = Symbol("p", positive=True, real=True,finite=True) assert E(X) == 1/rate assert variance(X) == 1/rate**2 assert skewness(X) == 2 assert skewness(X) == smoment(X, 3) assert kurtosis(X) == 9 assert kurtosis(X) == smoment(X, 4) assert smoment(2*X, 4) == smoment(X, 4) assert moment(X, 3) == 3*2*1/rate**3 assert P(X > 0) is S.One assert P(X > 1) == exp(-rate) assert P(X > 10) == exp(-10*rate) assert quantile(X)(p) == -log(1-p)/rate assert where(X <= 1).set == Interval(0, 1) def test_exponential_power(): mu = Symbol('mu') z = Symbol('z') alpha = Symbol('alpha', positive=True) beta = Symbol('beta', positive=True) X = ExponentialPower('x', mu, alpha, beta) assert density(X)(z) == beta*exp(-(Abs(mu - z)/alpha) ** beta)/(2*alpha*gamma(1/beta)) assert cdf(X)(z) == S.Half + lowergamma(1/beta, (Abs(mu - z)/alpha)**beta)*sign(-mu + z)/\ (2*gamma(1/beta)) def test_f_distribution(): d1 = Symbol("d1", positive=True) d2 = Symbol("d2", positive=True) X = FDistribution("x", d1, d2) assert density(X)(x) == (d2**(d2/2)*sqrt((d1*x)**d1*(d1*x + d2)**(-d1 - d2)) /(x*beta(d1/2, d2/2))) d1 = Symbol("d1", nonpositive=True) raises(ValueError, lambda: FDistribution('x', d1, d1)) d1 = Symbol("d1", positive=True, integer=False) raises(ValueError, lambda: FDistribution('x', d1, d1)) d1 = Symbol("d1", positive=True) d2 = Symbol("d2", nonpositive=True) raises(ValueError, lambda: FDistribution('x', d1, d2)) d2 = Symbol("d2", positive=True, integer=False) raises(ValueError, lambda: FDistribution('x', d1, d2)) def test_fisher_z(): d1 = Symbol("d1", positive=True) d2 = Symbol("d2", positive=True) X = FisherZ("x", d1, d2) assert density(X)(x) == (2*d1**(d1/2)*d2**(d2/2)*(d1*exp(2*x) + d2) **(-d1/2 - d2/2)*exp(d1*x)/beta(d1/2, d2/2)) def test_frechet(): a = Symbol("a", positive=True) s = Symbol("s", positive=True) m = Symbol("m", real=True) X = Frechet("x", a, s=s, m=m) assert density(X)(x) == a*((x - m)/s)**(-a - 1)*exp(-((x - m)/s)**(-a))/s assert cdf(X)(x) == Piecewise((exp(-((-m + x)/s)**(-a)), m <= x), (0, True)) def test_gamma(): k = Symbol("k", positive=True) theta = Symbol("theta", positive=True) X = Gamma('x', k, theta) assert density(X)(x) == x**(k - 1)*theta**(-k)*exp(-x/theta)/gamma(k) assert cdf(X, meijerg=True)(z) == Piecewise( (-k*lowergamma(k, 0)/gamma(k + 1) + k*lowergamma(k, z/theta)/gamma(k + 1), z >= 0), (0, True)) # assert simplify(variance(X)) == k*theta**2 # handled numerically below assert E(X) == moment(X, 1) k, theta = symbols('k theta', positive=True) X = Gamma('x', k, theta) assert E(X) == k*theta assert variance(X) == k*theta**2 assert skewness(X).expand() == 2/sqrt(k) assert kurtosis(X).expand() == 3 + 6/k def test_gamma_inverse(): a = Symbol("a", positive=True) b = Symbol("b", positive=True) X = GammaInverse("x", a, b) assert density(X)(x) == x**(-a - 1)*b**a*exp(-b/x)/gamma(a) assert cdf(X)(x) == Piecewise((uppergamma(a, b/x)/gamma(a), x > 0), (0, True)) def test_sampling_gamma_inverse(): scipy = import_module('scipy') if not scipy: skip('Scipy not installed. Abort tests for sampling of gamma inverse.') X = GammaInverse("x", 1, 1) assert sample(X) in X.pspace.domain.set def test_gompertz(): b = Symbol("b", positive=True) eta = Symbol("eta", positive=True) X = Gompertz("x", b, eta) assert density(X)(x) == b*eta*exp(eta)*exp(b*x)*exp(-eta*exp(b*x)) assert cdf(X)(x) == 1 - exp(eta)*exp(-eta*exp(b*x)) assert diff(cdf(X)(x), x) == density(X)(x) def test_gumbel(): beta = Symbol("beta", positive=True) mu = Symbol("mu") x = Symbol("x") y = Symbol("y") X = Gumbel("x", beta, mu) Y = Gumbel("y", beta, mu, minimum=True) assert density(X)(x).expand() == \ exp(mu/beta)*exp(-x/beta)*exp(-exp(mu/beta)*exp(-x/beta))/beta assert density(Y)(y).expand() == \ exp(-mu/beta)*exp(y/beta)*exp(-exp(-mu/beta)*exp(y/beta))/beta assert cdf(X)(x).expand() == \ exp(-exp(mu/beta)*exp(-x/beta)) def test_kumaraswamy(): a = Symbol("a", positive=True) b = Symbol("b", positive=True) X = Kumaraswamy("x", a, b) assert density(X)(x) == x**(a - 1)*a*b*(-x**a + 1)**(b - 1) assert cdf(X)(x) == Piecewise((0, x < 0), (-(-x**a + 1)**b + 1, x <= 1), (1, True)) def test_laplace(): mu = Symbol("mu") b = Symbol("b", positive=True) X = Laplace('x', mu, b) assert density(X)(x) == exp(-Abs(x - mu)/b)/(2*b) assert cdf(X)(x) == Piecewise((exp((-mu + x)/b)/2, mu > x), (-exp((mu - x)/b)/2 + 1, True)) def test_logistic(): mu = Symbol("mu", real=True) s = Symbol("s", positive=True) p = Symbol("p", positive=True) X = Logistic('x', mu, s) assert density(X)(x) == exp((-x + mu)/s)/(s*(exp((-x + mu)/s) + 1)**2) assert cdf(X)(x) == 1/(exp((mu - x)/s) + 1) assert quantile(X)(p) == mu - s*log(-S.One + 1/p) def test_loglogistic(): a, b = symbols('a b') assert LogLogistic('x', a, b) a = Symbol('a', negative=True) b = Symbol('b', positive=True) raises(ValueError, lambda: LogLogistic('x', a, b)) a = Symbol('a', positive=True) b = Symbol('b', negative=True) raises(ValueError, lambda: LogLogistic('x', a, b)) a, b, z, p = symbols('a b z p', positive=True) X = LogLogistic('x', a, b) assert density(X)(z) == b*(z/a)**(b - 1)/(a*((z/a)**b + 1)**2) assert cdf(X)(z) == 1/(1 + (z/a)**(-b)) assert quantile(X)(p) == a*(p/(1 - p))**(1/b) # Expectation assert E(X) == Piecewise((S.NaN, b <= 1), (pi*a/(b*sin(pi/b)), True)) b = symbols('b', prime=True) # b > 1 X = LogLogistic('x', a, b) assert E(X) == pi*a/(b*sin(pi/b)) def test_lognormal(): mean = Symbol('mu', real=True) std = Symbol('sigma', positive=True) X = LogNormal('x', mean, std) # The sympy integrator can't do this too well #assert E(X) == exp(mean+std**2/2) #assert variance(X) == (exp(std**2)-1) * exp(2*mean + std**2) # Right now, only density function and sampling works for i in range(3): X = LogNormal('x', i, 1) assert sample(X) in X.pspace.domain.set # The sympy integrator can't do this too well #assert E(X) == mu = Symbol("mu", real=True) sigma = Symbol("sigma", positive=True) X = LogNormal('x', mu, sigma) assert density(X)(x) == (sqrt(2)*exp(-(-mu + log(x))**2 /(2*sigma**2))/(2*x*sqrt(pi)*sigma)) X = LogNormal('x', 0, 1) # Mean 0, standard deviation 1 assert density(X)(x) == sqrt(2)*exp(-log(x)**2/2)/(2*x*sqrt(pi)) def test_maxwell(): a = Symbol("a", positive=True) X = Maxwell('x', a) assert density(X)(x) == (sqrt(2)*x**2*exp(-x**2/(2*a**2))/ (sqrt(pi)*a**3)) assert E(X) == 2*sqrt(2)*a/sqrt(pi) assert variance(X) == -8*a**2/pi + 3*a**2 assert cdf(X)(x) == erf(sqrt(2)*x/(2*a)) - sqrt(2)*x*exp(-x**2/(2*a**2))/(sqrt(pi)*a) assert diff(cdf(X)(x), x) == density(X)(x) def test_nakagami(): mu = Symbol("mu", positive=True) omega = Symbol("omega", positive=True) X = Nakagami('x', mu, omega) assert density(X)(x) == (2*x**(2*mu - 1)*mu**mu*omega**(-mu) *exp(-x**2*mu/omega)/gamma(mu)) assert simplify(E(X)) == (sqrt(mu)*sqrt(omega) *gamma(mu + S.Half)/gamma(mu + 1)) assert simplify(variance(X)) == ( omega - omega*gamma(mu + S.Half)**2/(gamma(mu)*gamma(mu + 1))) assert cdf(X)(x) == Piecewise( (lowergamma(mu, mu*x**2/omega)/gamma(mu), x > 0), (0, True)) def test_gaussian_inverse(): # test for symbolic parameters a, b = symbols('a b') assert GaussianInverse('x', a, b) # Inverse Gaussian distribution is also known as Wald distribution # `GaussianInverse` can also be referred by the name `Wald` a, b, z = symbols('a b z') X = Wald('x', a, b) assert density(X)(z) == sqrt(2)*sqrt(b/z**3)*exp(-b*(-a + z)**2/(2*a**2*z))/(2*sqrt(pi)) a, b = symbols('a b', positive=True) z = Symbol('z', positive=True) X = GaussianInverse('x', a, b) assert density(X)(z) == sqrt(2)*sqrt(b)*sqrt(z**(-3))*exp(-b*(-a + z)**2/(2*a**2*z))/(2*sqrt(pi)) assert E(X) == a assert variance(X).expand() == a**3/b assert cdf(X)(z) == (S.Half - erf(sqrt(2)*sqrt(b)*(1 + z/a)/(2*sqrt(z)))/2)*exp(2*b/a) +\ erf(sqrt(2)*sqrt(b)*(-1 + z/a)/(2*sqrt(z)))/2 + S.Half a = symbols('a', nonpositive=True) raises(ValueError, lambda: GaussianInverse('x', a, b)) a = symbols('a', positive=True) b = symbols('b', nonpositive=True) raises(ValueError, lambda: GaussianInverse('x', a, b)) def test_sampling_gaussian_inverse(): scipy = import_module('scipy') if not scipy: skip('Scipy not installed. Abort tests for sampling of Gaussian inverse.') X = GaussianInverse("x", 1, 1) assert sample(X) in X.pspace.domain.set def test_pareto(): xm, beta = symbols('xm beta', positive=True) alpha = beta + 5 X = Pareto('x', xm, alpha) dens = density(X) x = Symbol('x') assert dens(x) == x**(-(alpha + 1))*xm**(alpha)*(alpha) assert simplify(E(X)) == alpha*xm/(alpha-1) # computation of taylor series for MGF still too slow #assert simplify(variance(X)) == xm**2*alpha / ((alpha-1)**2*(alpha-2)) def test_pareto_numeric(): xm, beta = 3, 2 alpha = beta + 5 X = Pareto('x', xm, alpha) assert E(X) == alpha*xm/S(alpha - 1) assert variance(X) == xm**2*alpha / S(((alpha - 1)**2*(alpha - 2))) # Skewness tests too slow. Try shortcutting function? def test_raised_cosine(): mu = Symbol("mu", real=True) s = Symbol("s", positive=True) X = RaisedCosine("x", mu, s) assert density(X)(x) == (Piecewise(((cos(pi*(x - mu)/s) + 1)/(2*s), And(x <= mu + s, mu - s <= x)), (0, True))) def test_rayleigh(): sigma = Symbol("sigma", positive=True) X = Rayleigh('x', sigma) assert density(X)(x) == x*exp(-x**2/(2*sigma**2))/sigma**2 assert E(X) == sqrt(2)*sqrt(pi)*sigma/2 assert variance(X) == -pi*sigma**2/2 + 2*sigma**2 assert cdf(X)(x) == 1 - exp(-x**2/(2*sigma**2)) assert diff(cdf(X)(x), x) == density(X)(x) def test_shiftedgompertz(): b = Symbol("b", positive=True) eta = Symbol("eta", positive=True) X = ShiftedGompertz("x", b, eta) assert density(X)(x) == b*(eta*(1 - exp(-b*x)) + 1)*exp(-b*x)*exp(-eta*exp(-b*x)) def test_studentt(): nu = Symbol("nu", positive=True) X = StudentT('x', nu) assert density(X)(x) == (1 + x**2/nu)**(-nu/2 - S.Half)/(sqrt(nu)*beta(S.Half, nu/2)) assert cdf(X)(x) == S.Half + x*gamma(nu/2 + S.Half)*hyper((S.Half, nu/2 + S.Half), (Rational(3, 2),), -x**2/nu)/(sqrt(pi)*sqrt(nu)*gamma(nu/2)) def test_trapezoidal(): a = Symbol("a", real=True) b = Symbol("b", real=True) c = Symbol("c", real=True) d = Symbol("d", real=True) X = Trapezoidal('x', a, b, c, d) assert density(X)(x) == Piecewise(((-2*a + 2*x)/((-a + b)*(-a - b + c + d)), (a <= x) & (x < b)), (2/(-a - b + c + d), (b <= x) & (x < c)), ((2*d - 2*x)/((-c + d)*(-a - b + c + d)), (c <= x) & (x <= d)), (0, True)) X = Trapezoidal('x', 0, 1, 2, 3) assert E(X) == Rational(3, 2) assert variance(X) == Rational(5, 12) assert P(X < 2) == Rational(3, 4) def test_triangular(): a = Symbol("a") b = Symbol("b") c = Symbol("c") X = Triangular('x', a, b, c) assert str(density(X)(x)) == ("Piecewise(((-2*a + 2*x)/((-a + b)*(-a + c)), (a <= x) & (c > x)), " "(2/(-a + b), Eq(c, x)), ((2*b - 2*x)/((-a + b)*(b - c)), (b >= x) & (c < x)), (0, True))") def test_quadratic_u(): a = Symbol("a", real=True) b = Symbol("b", real=True) X = QuadraticU("x", a, b) assert density(X)(x) == (Piecewise((12*(x - a/2 - b/2)**2/(-a + b)**3, And(x <= b, a <= x)), (0, True))) def test_uniform(): l = Symbol('l', real=True) w = Symbol('w', positive=True) X = Uniform('x', l, l + w) assert E(X) == l + w/2 assert variance(X).expand() == w**2/12 # With numbers all is well X = Uniform('x', 3, 5) assert P(X < 3) == 0 and P(X > 5) == 0 assert P(X < 4) == P(X > 4) == S.Half z = Symbol('z') p = density(X)(z) assert p.subs(z, 3.7) == S.Half assert p.subs(z, -1) == 0 assert p.subs(z, 6) == 0 c = cdf(X) assert c(2) == 0 and c(3) == 0 assert c(Rational(7, 2)) == Rational(1, 4) assert c(5) == 1 and c(6) == 1 @XFAIL def test_uniform_P(): """ This stopped working because SingleContinuousPSpace.compute_density no longer calls integrate on a DiracDelta but rather just solves directly. integrate used to call UniformDistribution.expectation which special-cased subsed out the Min and Max terms that Uniform produces I decided to regress on this class for general cleanliness (and I suspect speed) of the algorithm. """ l = Symbol('l', real=True) w = Symbol('w', positive=True) X = Uniform('x', l, l + w) assert P(X < l) == 0 and P(X > l + w) == 0 def test_uniformsum(): n = Symbol("n", integer=True) _k = Symbol("k") x = Symbol("x") X = UniformSum('x', n) assert str(density(X)(x)) == ("Sum((-1)**_k*(-_k + x)**(n - 1)" "*binomial(n, _k), (_k, 0, floor(x)))/factorial(n - 1)") def test_von_mises(): mu = Symbol("mu") k = Symbol("k", positive=True) X = VonMises("x", mu, k) assert density(X)(x) == exp(k*cos(x - mu))/(2*pi*besseli(0, k)) def test_weibull(): a, b = symbols('a b', positive=True) # FIXME: simplify(E(X)) seems to hang without extended_positive=True # On a Linux machine this had a rapid memory leak... # a, b = symbols('a b', positive=True) X = Weibull('x', a, b) assert E(X).expand() == a * gamma(1 + 1/b) assert variance(X).expand() == (a**2 * gamma(1 + 2/b) - E(X)**2).expand() assert simplify(skewness(X)) == (2*gamma(1 + 1/b)**3 - 3*gamma(1 + 1/b)*gamma(1 + 2/b) + gamma(1 + 3/b))/(-gamma(1 + 1/b)**2 + gamma(1 + 2/b))**Rational(3, 2) assert simplify(kurtosis(X)) == (-3*gamma(1 + 1/b)**4 +\ 6*gamma(1 + 1/b)**2*gamma(1 + 2/b) - 4*gamma(1 + 1/b)*gamma(1 + 3/b) + gamma(1 + 4/b))/(gamma(1 + 1/b)**2 - gamma(1 + 2/b))**2 def test_weibull_numeric(): # Test for integers and rationals a = 1 bvals = [S.Half, 1, Rational(3, 2), 5] for b in bvals: X = Weibull('x', a, b) assert simplify(E(X)) == expand_func(a * gamma(1 + 1/S(b))) assert simplify(variance(X)) == simplify( a**2 * gamma(1 + 2/S(b)) - E(X)**2) # Not testing Skew... it's slow with int/frac values > 3/2 def test_wignersemicircle(): R = Symbol("R", positive=True) X = WignerSemicircle('x', R) assert density(X)(x) == 2*sqrt(-x**2 + R**2)/(pi*R**2) assert E(X) == 0 def test_prefab_sampling(): N = Normal('X', 0, 1) L = LogNormal('L', 0, 1) E = Exponential('Ex', 1) P = Pareto('P', 1, 3) W = Weibull('W', 1, 1) U = Uniform('U', 0, 1) B = Beta('B', 2, 5) G = Gamma('G', 1, 3) variables = [N, L, E, P, W, U, B, G] niter = 10 for var in variables: for i in range(niter): assert sample(var) in var.pspace.domain.set def test_input_value_assertions(): a, b = symbols('a b') p, q = symbols('p q', positive=True) m, n = symbols('m n', positive=False, real=True) raises(ValueError, lambda: Normal('x', 3, 0)) raises(ValueError, lambda: Normal('x', m, n)) Normal('X', a, p) # No error raised raises(ValueError, lambda: Exponential('x', m)) Exponential('Ex', p) # No error raised for fn in [Pareto, Weibull, Beta, Gamma]: raises(ValueError, lambda: fn('x', m, p)) raises(ValueError, lambda: fn('x', p, n)) fn('x', p, q) # No error raised def test_unevaluated(): X = Normal('x', 0, 1) assert str(E(X, evaluate=False)) == ("Integral(sqrt(2)*x*exp(-x**2/2)/" "(2*sqrt(pi)), (x, -oo, oo))") assert str(E(X + 1, evaluate=False)) == ("Integral(sqrt(2)*x*exp(-x**2/2)/" "(2*sqrt(pi)), (x, -oo, oo)) + 1") assert str(P(X > 0, evaluate=False)) == ("Integral(sqrt(2)*exp(-_z**2/2)/" "(2*sqrt(pi)), (_z, 0, oo))") assert P(X > 0, X**2 < 1, evaluate=False) == S.Half def test_probability_unevaluated(): T = Normal('T', 30, 3) assert type(P(T > 33, evaluate=False)) == Integral def test_density_unevaluated(): X = Normal('X', 0, 1) Y = Normal('Y', 0, 2) assert isinstance(density(X+Y, evaluate=False)(z), Integral) def test_NormalDistribution(): nd = NormalDistribution(0, 1) x = Symbol('x') assert nd.cdf(x) == erf(sqrt(2)*x/2)/2 + S.Half assert isinstance(nd.sample(), float) or nd.sample().is_Number assert nd.expectation(1, x) == 1 assert nd.expectation(x, x) == 0 assert nd.expectation(x**2, x) == 1 def test_random_parameters(): mu = Normal('mu', 2, 3) meas = Normal('T', mu, 1) assert density(meas, evaluate=False)(z) assert isinstance(pspace(meas), JointPSpace) #assert density(meas, evaluate=False)(z) == Integral(mu.pspace.pdf * # meas.pspace.pdf, (mu.symbol, -oo, oo)).subs(meas.symbol, z) def test_random_parameters_given(): mu = Normal('mu', 2, 3) meas = Normal('T', mu, 1) assert given(meas, Eq(mu, 5)) == Normal('T', 5, 1) def test_conjugate_priors(): mu = Normal('mu', 2, 3) x = Normal('x', mu, 1) assert isinstance(simplify(density(mu, Eq(x, y), evaluate=False)(z)), Mul) def test_difficult_univariate(): """ Since using solve in place of deltaintegrate we're able to perform substantially more complex density computations on single continuous random variables """ x = Normal('x', 0, 1) assert density(x**3) assert density(exp(x**2)) assert density(log(x)) def test_issue_10003(): X = Exponential('x', 3) G = Gamma('g', 1, 2) assert P(X < -1) is S.Zero assert P(G < -1) is S.Zero @slow def test_precomputed_cdf(): x = symbols("x", real=True) mu = symbols("mu", real=True) sigma, xm, alpha = symbols("sigma xm alpha", positive=True) n = symbols("n", integer=True, positive=True) distribs = [ Normal("X", mu, sigma), Pareto("P", xm, alpha), ChiSquared("C", n), Exponential("E", sigma), # LogNormal("L", mu, sigma), ] for X in distribs: compdiff = cdf(X)(x) - simplify(X.pspace.density.compute_cdf()(x)) compdiff = simplify(compdiff.rewrite(erfc)) assert compdiff == 0 @slow def test_precomputed_characteristic_functions(): import mpmath def test_cf(dist, support_lower_limit, support_upper_limit): pdf = density(dist) t = Symbol('t') x = Symbol('x') # first function is the hardcoded CF of the distribution cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath') # second function is the Fourier transform of the density function f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath') cf2 = lambda t: mpmath.quad(lambda x: f(x, t), [support_lower_limit, support_upper_limit], maxdegree=10) # compare the two functions at various points for test_point in [2, 5, 8, 11]: n1 = cf1(test_point) n2 = cf2(test_point) assert abs(re(n1) - re(n2)) < 1e-12 assert abs(im(n1) - im(n2)) < 1e-12 test_cf(Beta('b', 1, 2), 0, 1) test_cf(Chi('c', 3), 0, mpmath.inf) test_cf(ChiSquared('c', 2), 0, mpmath.inf) test_cf(Exponential('e', 6), 0, mpmath.inf) test_cf(Logistic('l', 1, 2), -mpmath.inf, mpmath.inf) test_cf(Normal('n', -1, 5), -mpmath.inf, mpmath.inf) test_cf(RaisedCosine('r', 3, 1), 2, 4) test_cf(Rayleigh('r', 0.5), 0, mpmath.inf) test_cf(Uniform('u', -1, 1), -1, 1) test_cf(WignerSemicircle('w', 3), -3, 3) def test_long_precomputed_cdf(): x = symbols("x", real=True) distribs = [ Arcsin("A", -5, 9), Dagum("D", 4, 10, 3), Erlang("E", 14, 5), Frechet("F", 2, 6, -3), Gamma("G", 2, 7), GammaInverse("GI", 3, 5), Kumaraswamy("K", 6, 8), Laplace("LA", -5, 4), Logistic("L", -6, 7), Nakagami("N", 2, 7), StudentT("S", 4) ] for distr in distribs: for _ in range(5): assert tn(diff(cdf(distr)(x), x), density(distr)(x), x, a=0, b=0, c=1, d=0) US = UniformSum("US", 5) pdf01 = density(US)(x).subs(floor(x), 0).doit() # pdf on (0, 1) cdf01 = cdf(US, evaluate=False)(x).subs(floor(x), 0).doit() # cdf on (0, 1) assert tn(diff(cdf01, x), pdf01, x, a=0, b=0, c=1, d=0) def test_issue_13324(): X = Uniform('X', 0, 1) assert E(X, X > S.Half) == Rational(3, 4) assert E(X, X > 0) == S.Half def test_FiniteSet_prob(): x = symbols('x') E = Exponential('E', 3) N = Normal('N', 5, 7) assert P(Eq(E, 1)) is S.Zero assert P(Eq(N, 2)) is S.Zero assert P(Eq(N, x)) is S.Zero def test_prob_neq(): E = Exponential('E', 4) X = ChiSquared('X', 4) x = symbols('x') assert P(Ne(E, 2)) == 1 assert P(Ne(X, 4)) == 1 assert P(Ne(X, 4)) == 1 assert P(Ne(X, 5)) == 1 assert P(Ne(E, x)) == 1 def test_union(): N = Normal('N', 3, 2) assert simplify(P(N**2 - N > 2)) == \ -erf(sqrt(2))/2 - erfc(sqrt(2)/4)/2 + Rational(3, 2) assert simplify(P(N**2 - 4 > 0)) == \ -erf(5*sqrt(2)/4)/2 - erfc(sqrt(2)/4)/2 + Rational(3, 2) def test_Or(): N = Normal('N', 0, 1) assert simplify(P(Or(N > 2, N < 1))) == \ -erf(sqrt(2))/2 - erfc(sqrt(2)/2)/2 + Rational(3, 2) assert P(Or(N < 0, N < 1)) == P(N < 1) assert P(Or(N > 0, N < 0)) == 1 def test_conditional_eq(): E = Exponential('E', 1) assert P(Eq(E, 1), Eq(E, 1)) == 1 assert P(Eq(E, 1), Eq(E, 2)) == 0 assert P(E > 1, Eq(E, 2)) == 1 assert P(E < 1, Eq(E, 2)) == 0
3ff00ff0ac5941347ba8321e92b5fd7568364a21ef721219ad042865f9f4d03f
from sympy import (Mul, S, Pow, Symbol, summation, Dict, factorial as fac, sqrt) from sympy.core.evalf import bitcount from sympy.core.numbers import Integer, Rational from sympy.core.compatibility import long, range from sympy.ntheory import (totient, factorint, primefactors, divisors, nextprime, primerange, pollard_rho, perfect_power, multiplicity, trailing, divisor_count, primorial, pollard_pm1, divisor_sigma, factorrat, reduced_totient) from sympy.ntheory.factor_ import (smoothness, smoothness_p, antidivisors, antidivisor_count, core, digits, udivisors, udivisor_sigma, udivisor_count, primenu, primeomega, small_trailing, mersenne_prime_exponent, is_perfect, is_mersenne_prime, is_abundant, is_deficient, is_amicable) from sympy.utilities.pytest import raises from sympy.utilities.iterables import capture def fac_multiplicity(n, p): """Return the power of the prime number p in the factorization of n!""" if p > n: return 0 if p > n//2: return 1 q, m = n, 0 while q >= p: q //= p m += q return m def multiproduct(seq=(), start=1): """ Return the product of a sequence of factors with multiplicities, times the value of the parameter ``start``. The input may be a sequence of (factor, exponent) pairs or a dict of such pairs. >>> multiproduct({3:7, 2:5}, 4) # = 3**7 * 2**5 * 4 279936 """ if not seq: return start if isinstance(seq, dict): seq = iter(seq.items()) units = start multi = [] for base, exp in seq: if not exp: continue elif exp == 1: units *= base else: if exp % 2: units *= base multi.append((base, exp//2)) return units * multiproduct(multi)**2 def test_trailing_bitcount(): assert trailing(0) == 0 assert trailing(1) == 0 assert trailing(-1) == 0 assert trailing(2) == 1 assert trailing(7) == 0 assert trailing(-7) == 0 for i in range(100): assert trailing((1 << i)) == i assert trailing((1 << i) * 31337) == i assert trailing((1 << 1000001)) == 1000001 assert trailing((1 << 273956)*7**37) == 273956 # issue 12709 big = small_trailing[-1]*2 assert trailing(-big) == trailing(big) assert bitcount(-big) == bitcount(big) def test_multiplicity(): for b in range(2, 20): for i in range(100): assert multiplicity(b, b**i) == i assert multiplicity(b, (b**i) * 23) == i assert multiplicity(b, (b**i) * 1000249) == i # Should be fast assert multiplicity(10, 10**10023) == 10023 # Should exit quickly assert multiplicity(10**10, 10**10) == 1 # Should raise errors for bad input raises(ValueError, lambda: multiplicity(1, 1)) raises(ValueError, lambda: multiplicity(1, 2)) raises(ValueError, lambda: multiplicity(1.3, 2)) raises(ValueError, lambda: multiplicity(2, 0)) raises(ValueError, lambda: multiplicity(1.3, 0)) # handles Rationals assert multiplicity(10, Rational(30, 7)) == 1 assert multiplicity(Rational(2, 7), Rational(4, 7)) == 1 assert multiplicity(Rational(1, 7), Rational(3, 49)) == 2 assert multiplicity(Rational(2, 7), Rational(7, 2)) == -1 assert multiplicity(3, Rational(1, 9)) == -2 def test_perfect_power(): raises(ValueError, lambda: perfect_power(0)) raises(ValueError, lambda: perfect_power(Rational(25, 4))) assert perfect_power(1) is False assert perfect_power(2) is False assert perfect_power(3) is False assert perfect_power(4) == (2, 2) assert perfect_power(14) is False assert perfect_power(25) == (5, 2) assert perfect_power(22) is False assert perfect_power(22, [2]) is False assert perfect_power(137**(3*5*13)) == (137, 3*5*13) assert perfect_power(137**(3*5*13) + 1) is False assert perfect_power(137**(3*5*13) - 1) is False assert perfect_power(103005006004**7) == (103005006004, 7) assert perfect_power(103005006004**7 + 1) is False assert perfect_power(103005006004**7 - 1) is False assert perfect_power(103005006004**12) == (103005006004, 12) assert perfect_power(103005006004**12 + 1) is False assert perfect_power(103005006004**12 - 1) is False assert perfect_power(2**10007) == (2, 10007) assert perfect_power(2**10007 + 1) is False assert perfect_power(2**10007 - 1) is False assert perfect_power((9**99 + 1)**60) == (9**99 + 1, 60) assert perfect_power((9**99 + 1)**60 + 1) is False assert perfect_power((9**99 + 1)**60 - 1) is False assert perfect_power((10**40000)**2, big=False) == (10**40000, 2) assert perfect_power(10**100000) == (10, 100000) assert perfect_power(10**100001) == (10, 100001) assert perfect_power(13**4, [3, 5]) is False assert perfect_power(3**4, [3, 10], factor=0) is False assert perfect_power(3**3*5**3) == (15, 3) assert perfect_power(2**3*5**5) is False assert perfect_power(2*13**4) is False assert perfect_power(2**5*3**3) is False t = 2**24 for d in divisors(24): m = perfect_power(t*3**d) assert m and m[1] == d or d == 1 m = perfect_power(t*3**d, big=False) assert m and m[1] == 2 or d == 1 or d == 3, (d, m) def test_factorint(): assert primefactors(123456) == [2, 3, 643] assert factorint(0) == {0: 1} assert factorint(1) == {} assert factorint(-1) == {-1: 1} assert factorint(-2) == {-1: 1, 2: 1} assert factorint(-16) == {-1: 1, 2: 4} assert factorint(2) == {2: 1} assert factorint(126) == {2: 1, 3: 2, 7: 1} assert factorint(123456) == {2: 6, 3: 1, 643: 1} assert factorint(5951757) == {3: 1, 7: 1, 29: 2, 337: 1} assert factorint(64015937) == {7993: 1, 8009: 1} assert factorint(2**(2**6) + 1) == {274177: 1, 67280421310721: 1} #issue 17676 assert factorint(28300421052393658575) == {3: 1, 5: 2, 11: 2, 43: 1, 2063: 2, 4127: 1, 4129: 1} assert factorint(2063**2 * 4127**1 * 4129**1) == {2063: 2, 4127: 1, 4129: 1} assert factorint(2347**2 * 7039**1 * 7043**1) == {2347: 2, 7039: 1, 7043: 1} assert factorint(0, multiple=True) == [0] assert factorint(1, multiple=True) == [] assert factorint(-1, multiple=True) == [-1] assert factorint(-2, multiple=True) == [-1, 2] assert factorint(-16, multiple=True) == [-1, 2, 2, 2, 2] assert factorint(2, multiple=True) == [2] assert factorint(24, multiple=True) == [2, 2, 2, 3] assert factorint(126, multiple=True) == [2, 3, 3, 7] assert factorint(123456, multiple=True) == [2, 2, 2, 2, 2, 2, 3, 643] assert factorint(5951757, multiple=True) == [3, 7, 29, 29, 337] assert factorint(64015937, multiple=True) == [7993, 8009] assert factorint(2**(2**6) + 1, multiple=True) == [274177, 67280421310721] assert factorint(fac(1, evaluate=False)) == {} assert factorint(fac(7, evaluate=False)) == {2: 4, 3: 2, 5: 1, 7: 1} assert factorint(fac(15, evaluate=False)) == \ {2: 11, 3: 6, 5: 3, 7: 2, 11: 1, 13: 1} assert factorint(fac(20, evaluate=False)) == \ {2: 18, 3: 8, 5: 4, 7: 2, 11: 1, 13: 1, 17: 1, 19: 1} assert factorint(fac(23, evaluate=False)) == \ {2: 19, 3: 9, 5: 4, 7: 3, 11: 2, 13: 1, 17: 1, 19: 1, 23: 1} assert multiproduct(factorint(fac(200))) == fac(200) assert multiproduct(factorint(fac(200, evaluate=False))) == fac(200) for b, e in factorint(fac(150)).items(): assert e == fac_multiplicity(150, b) for b, e in factorint(fac(150, evaluate=False)).items(): assert e == fac_multiplicity(150, b) assert factorint(103005006059**7) == {103005006059: 7} assert factorint(31337**191) == {31337: 191} assert factorint(2**1000 * 3**500 * 257**127 * 383**60) == \ {2: 1000, 3: 500, 257: 127, 383: 60} assert len(factorint(fac(10000))) == 1229 assert len(factorint(fac(10000, evaluate=False))) == 1229 assert factorint(12932983746293756928584532764589230) == \ {2: 1, 5: 1, 73: 1, 727719592270351: 1, 63564265087747: 1, 383: 1} assert factorint(727719592270351) == {727719592270351: 1} assert factorint(2**64 + 1, use_trial=False) == factorint(2**64 + 1) for n in range(60000): assert multiproduct(factorint(n)) == n assert pollard_rho(2**64 + 1, seed=1) == 274177 assert pollard_rho(19, seed=1) is None assert factorint(3, limit=2) == {3: 1} assert factorint(12345) == {3: 1, 5: 1, 823: 1} assert factorint( 12345, limit=3) == {4115: 1, 3: 1} # the 5 is greater than the limit assert factorint(1, limit=1) == {} assert factorint(0, 3) == {0: 1} assert factorint(12, limit=1) == {12: 1} assert factorint(30, limit=2) == {2: 1, 15: 1} assert factorint(16, limit=2) == {2: 4} assert factorint(124, limit=3) == {2: 2, 31: 1} assert factorint(4*31**2, limit=3) == {2: 2, 31: 2} p1 = nextprime(2**32) p2 = nextprime(2**16) p3 = nextprime(p2) assert factorint(p1*p2*p3) == {p1: 1, p2: 1, p3: 1} assert factorint(13*17*19, limit=15) == {13: 1, 17*19: 1} assert factorint(1951*15013*15053, limit=2000) == {225990689: 1, 1951: 1} assert factorint(primorial(17) + 1, use_pm1=0) == \ {long(19026377261): 1, 3467: 1, 277: 1, 105229: 1} # when prime b is closer than approx sqrt(8*p) to prime p then they are # "close" and have a trivial factorization a = nextprime(2**2**8) # 78 digits b = nextprime(a + 2**2**4) assert 'Fermat' in capture(lambda: factorint(a*b, verbose=1)) raises(ValueError, lambda: pollard_rho(4)) raises(ValueError, lambda: pollard_pm1(3)) raises(ValueError, lambda: pollard_pm1(10, B=2)) # verbose coverage n = nextprime(2**16)*nextprime(2**17)*nextprime(1901) assert 'with primes' in capture(lambda: factorint(n, verbose=1)) capture(lambda: factorint(nextprime(2**16)*1012, verbose=1)) n = nextprime(2**17) capture(lambda: factorint(n**3, verbose=1)) # perfect power termination capture(lambda: factorint(2*n, verbose=1)) # factoring complete msg # exceed 1st n = nextprime(2**17) n *= nextprime(n) assert '1000' in capture(lambda: factorint(n, limit=1000, verbose=1)) n *= nextprime(n) assert len(factorint(n)) == 3 assert len(factorint(n, limit=p1)) == 3 n *= nextprime(2*n) # exceed 2nd assert '2001' in capture(lambda: factorint(n, limit=2000, verbose=1)) assert capture( lambda: factorint(n, limit=4000, verbose=1)).count('Pollard') == 2 # non-prime pm1 result n = nextprime(8069) n *= nextprime(2*n)*nextprime(2*n, 2) capture(lambda: factorint(n, verbose=1)) # non-prime pm1 result # factor fermat composite p1 = nextprime(2**17) p2 = nextprime(2*p1) assert factorint((p1*p2**2)**3) == {p1: 3, p2: 6} # Test for non integer input raises(ValueError, lambda: factorint(4.5)) # test dict/Dict input sans = '2**10*3**3' n = {4: 2, 12: 3} assert str(factorint(n)) == sans assert str(factorint(Dict(n))) == sans def test_divisors_and_divisor_count(): assert divisors(-1) == [1] assert divisors(0) == [] assert divisors(1) == [1] assert divisors(2) == [1, 2] assert divisors(3) == [1, 3] assert divisors(17) == [1, 17] assert divisors(10) == [1, 2, 5, 10] assert divisors(100) == [1, 2, 4, 5, 10, 20, 25, 50, 100] assert divisors(101) == [1, 101] assert divisor_count(0) == 0 assert divisor_count(-1) == 1 assert divisor_count(1) == 1 assert divisor_count(6) == 4 assert divisor_count(12) == 6 assert divisor_count(180, 3) == divisor_count(180//3) assert divisor_count(2*3*5, 7) == 0 def test_udivisors_and_udivisor_count(): assert udivisors(-1) == [1] assert udivisors(0) == [] assert udivisors(1) == [1] assert udivisors(2) == [1, 2] assert udivisors(3) == [1, 3] assert udivisors(17) == [1, 17] assert udivisors(10) == [1, 2, 5, 10] assert udivisors(100) == [1, 4, 25, 100] assert udivisors(101) == [1, 101] assert udivisors(1000) == [1, 8, 125, 1000] assert udivisor_count(0) == 0 assert udivisor_count(-1) == 1 assert udivisor_count(1) == 1 assert udivisor_count(6) == 4 assert udivisor_count(12) == 4 assert udivisor_count(180) == 8 assert udivisor_count(2*3*5*7) == 16 def test_issue_6981(): S = set(divisors(4)).union(set(divisors(Integer(2)))) assert S == {1,2,4} def test_totient(): assert [totient(k) for k in range(1, 12)] == \ [1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10] assert totient(5005) == 2880 assert totient(5006) == 2502 assert totient(5009) == 5008 assert totient(2**100) == 2**99 raises(ValueError, lambda: totient(30.1)) raises(ValueError, lambda: totient(20.001)) m = Symbol("m", integer=True) assert totient(m) assert totient(m).subs(m, 3**10) == 3**10 - 3**9 assert summation(totient(m), (m, 1, 11)) == 42 n = Symbol("n", integer=True, positive=True) assert totient(n).is_integer x=Symbol("x", integer=False) raises(ValueError, lambda: totient(x)) y=Symbol("y", positive=False) raises(ValueError, lambda: totient(y)) z=Symbol("z", positive=True, integer=True) raises(ValueError, lambda: totient(2**(-z))) def test_reduced_totient(): assert [reduced_totient(k) for k in range(1, 16)] == \ [1, 1, 2, 2, 4, 2, 6, 2, 6, 4, 10, 2, 12, 6, 4] assert reduced_totient(5005) == 60 assert reduced_totient(5006) == 2502 assert reduced_totient(5009) == 5008 assert reduced_totient(2**100) == 2**98 m = Symbol("m", integer=True) assert reduced_totient(m) assert reduced_totient(m).subs(m, 2**3*3**10) == 3**10 - 3**9 assert summation(reduced_totient(m), (m, 1, 16)) == 68 n = Symbol("n", integer=True, positive=True) assert reduced_totient(n).is_integer def test_divisor_sigma(): assert [divisor_sigma(k) for k in range(1, 12)] == \ [1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12] assert [divisor_sigma(k, 2) for k in range(1, 12)] == \ [1, 5, 10, 21, 26, 50, 50, 85, 91, 130, 122] assert divisor_sigma(23450) == 50592 assert divisor_sigma(23450, 0) == 24 assert divisor_sigma(23450, 1) == 50592 assert divisor_sigma(23450, 2) == 730747500 assert divisor_sigma(23450, 3) == 14666785333344 m = Symbol("m", integer=True) k = Symbol("k", integer=True) assert divisor_sigma(m) assert divisor_sigma(m, k) assert divisor_sigma(m).subs(m, 3**10) == 88573 assert divisor_sigma(m, k).subs([(m, 3**10), (k, 3)]) == 213810021790597 assert summation(divisor_sigma(m), (m, 1, 11)) == 99 def test_udivisor_sigma(): assert [udivisor_sigma(k) for k in range(1, 12)] == \ [1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12] assert [udivisor_sigma(k, 3) for k in range(1, 12)] == \ [1, 9, 28, 65, 126, 252, 344, 513, 730, 1134, 1332] assert udivisor_sigma(23450) == 42432 assert udivisor_sigma(23450, 0) == 16 assert udivisor_sigma(23450, 1) == 42432 assert udivisor_sigma(23450, 2) == 702685000 assert udivisor_sigma(23450, 4) == 321426961814978248 m = Symbol("m", integer=True) k = Symbol("k", integer=True) assert udivisor_sigma(m) assert udivisor_sigma(m, k) assert udivisor_sigma(m).subs(m, 4**9) == 262145 assert udivisor_sigma(m, k).subs([(m, 4**9), (k, 2)]) == 68719476737 assert summation(udivisor_sigma(m), (m, 2, 15)) == 169 def test_issue_4356(): assert factorint(1030903) == {53: 2, 367: 1} def test_divisors(): assert divisors(28) == [1, 2, 4, 7, 14, 28] assert [x for x in divisors(3*5*7, 1)] == [1, 3, 5, 15, 7, 21, 35, 105] assert divisors(0) == [] def test_divisor_count(): assert divisor_count(0) == 0 assert divisor_count(6) == 4 def test_antidivisors(): assert antidivisors(-1) == [] assert antidivisors(-3) == [2] assert antidivisors(14) == [3, 4, 9] assert antidivisors(237) == [2, 5, 6, 11, 19, 25, 43, 95, 158] assert antidivisors(12345) == [2, 6, 7, 10, 30, 1646, 3527, 4938, 8230] assert antidivisors(393216) == [262144] assert sorted(x for x in antidivisors(3*5*7, 1)) == \ [2, 6, 10, 11, 14, 19, 30, 42, 70] assert antidivisors(1) == [] def test_antidivisor_count(): assert antidivisor_count(0) == 0 assert antidivisor_count(-1) == 0 assert antidivisor_count(-4) == 1 assert antidivisor_count(20) == 3 assert antidivisor_count(25) == 5 assert antidivisor_count(38) == 7 assert antidivisor_count(180) == 6 assert antidivisor_count(2*3*5) == 3 def test_smoothness_and_smoothness_p(): assert smoothness(1) == (1, 1) assert smoothness(2**4*3**2) == (3, 16) assert smoothness_p(10431, m=1) == \ (1, [(3, (2, 2, 4)), (19, (1, 5, 5)), (61, (1, 31, 31))]) assert smoothness_p(10431) == \ (-1, [(3, (2, 2, 2)), (19, (1, 3, 9)), (61, (1, 5, 5))]) assert smoothness_p(10431, power=1) == \ (-1, [(3, (2, 2, 2)), (61, (1, 5, 5)), (19, (1, 3, 9))]) assert smoothness_p(21477639576571, visual=1) == \ 'p**i=4410317**1 has p-1 B=1787, B-pow=1787\n' + \ 'p**i=4869863**1 has p-1 B=2434931, B-pow=2434931' def test_visual_factorint(): assert factorint(1, visual=1) == 1 forty2 = factorint(42, visual=True) assert type(forty2) == Mul assert str(forty2) == '2**1*3**1*7**1' assert factorint(1, visual=True) is S.One no = dict(evaluate=False) assert factorint(42**2, visual=True) == Mul(Pow(2, 2, **no), Pow(3, 2, **no), Pow(7, 2, **no), **no) assert -1 in factorint(-42, visual=True).args def test_factorrat(): assert str(factorrat(S(12)/1, visual=True)) == '2**2*3**1' assert str(factorrat(Rational(1, 1), visual=True)) == '1' assert str(factorrat(S(25)/14, visual=True)) == '5**2/(2*7)' assert str(factorrat(Rational(25, 14), visual=True)) == '5**2/(2*7)' assert str(factorrat(S(-25)/14/9, visual=True)) == '-5**2/(2*3**2*7)' assert factorrat(S(12)/1, multiple=True) == [2, 2, 3] assert factorrat(Rational(1, 1), multiple=True) == [] assert factorrat(S(25)/14, multiple=True) == [Rational(1, 7), S.Half, 5, 5] assert factorrat(Rational(25, 14), multiple=True) == [Rational(1, 7), S.Half, 5, 5] assert factorrat(Rational(12, 1), multiple=True) == [2, 2, 3] assert factorrat(S(-25)/14/9, multiple=True) == \ [-1, Rational(1, 7), Rational(1, 3), Rational(1, 3), S.Half, 5, 5] def test_visual_io(): sm = smoothness_p fi = factorint # with smoothness_p n = 124 d = fi(n) m = fi(d, visual=True) t = sm(n) s = sm(t) for th in [d, s, t, n, m]: assert sm(th, visual=True) == s assert sm(th, visual=1) == s for th in [d, s, t, n, m]: assert sm(th, visual=False) == t assert [sm(th, visual=None) for th in [d, s, t, n, m]] == [s, d, s, t, t] assert [sm(th, visual=2) for th in [d, s, t, n, m]] == [s, d, s, t, t] # with factorint for th in [d, m, n]: assert fi(th, visual=True) == m assert fi(th, visual=1) == m for th in [d, m, n]: assert fi(th, visual=False) == d assert [fi(th, visual=None) for th in [d, m, n]] == [m, d, d] assert [fi(th, visual=0) for th in [d, m, n]] == [m, d, d] # test reevaluation no = dict(evaluate=False) assert sm({4: 2}, visual=False) == sm(16) assert sm(Mul(*[Pow(k, v, **no) for k, v in {4: 2, 2: 6}.items()], **no), visual=False) == sm(2**10) assert fi({4: 2}, visual=False) == fi(16) assert fi(Mul(*[Pow(k, v, **no) for k, v in {4: 2, 2: 6}.items()], **no), visual=False) == fi(2**10) def test_core(): assert core(35**13, 10) == 42875 assert core(210**2) == 1 assert core(7776, 3) == 36 assert core(10**27, 22) == 10**5 assert core(537824) == 14 assert core(1, 6) == 1 def test_digits(): assert all([digits(n, 2)[1:] == [int(d) for d in format(n, 'b')] for n in range(20)]) assert all([digits(n, 8)[1:] == [int(d) for d in format(n, 'o')] for n in range(20)]) assert all([digits(n, 16)[1:] == [int(d, 16) for d in format(n, 'x')] for n in range(20)]) assert digits(2345, 34) == [34, 2, 0, 33] assert digits(384753, 71) == [71, 1, 5, 23, 4] assert digits(93409) == [10, 9, 3, 4, 0, 9] assert digits(-92838, 11) == [-11, 6, 3, 8, 2, 9] def test_primenu(): assert primenu(2) == 1 assert primenu(2 * 3) == 2 assert primenu(2 * 3 * 5) == 3 assert primenu(3 * 25) == primenu(3) + primenu(25) assert [primenu(p) for p in primerange(1, 10)] == [1, 1, 1, 1] assert primenu(fac(50)) == 15 assert primenu(2 ** 9941 - 1) == 1 n = Symbol('n', integer=True) assert primenu(n) assert primenu(n).subs(n, 2 ** 31 - 1) == 1 assert summation(primenu(n), (n, 2, 30)) == 43 def test_primeomega(): assert primeomega(2) == 1 assert primeomega(2 * 2) == 2 assert primeomega(2 * 2 * 3) == 3 assert primeomega(3 * 25) == primeomega(3) + primeomega(25) assert [primeomega(p) for p in primerange(1, 10)] == [1, 1, 1, 1] assert primeomega(fac(50)) == 108 assert primeomega(2 ** 9941 - 1) == 1 n = Symbol('n', integer=True) assert primeomega(n) assert primeomega(n).subs(n, 2 ** 31 - 1) == 1 assert summation(primeomega(n), (n, 2, 30)) == 59 def test_mersenne_prime_exponent(): assert mersenne_prime_exponent(1) == 2 assert mersenne_prime_exponent(4) == 7 assert mersenne_prime_exponent(10) == 89 assert mersenne_prime_exponent(25) == 21701 raises(ValueError, lambda: mersenne_prime_exponent(52)) raises(ValueError, lambda: mersenne_prime_exponent(0)) def test_is_perfect(): assert is_perfect(6) is True assert is_perfect(15) is False assert is_perfect(28) is True assert is_perfect(400) is False assert is_perfect(496) is True assert is_perfect(8128) is True assert is_perfect(10000) is False def test_is_mersenne_prime(): assert is_mersenne_prime(10) is False assert is_mersenne_prime(127) is True assert is_mersenne_prime(511) is False assert is_mersenne_prime(131071) is True assert is_mersenne_prime(2147483647) is True def test_is_abundant(): assert is_abundant(10) is False assert is_abundant(12) is True assert is_abundant(18) is True assert is_abundant(21) is False assert is_abundant(945) is True def test_is_deficient(): assert is_deficient(10) is True assert is_deficient(22) is True assert is_deficient(56) is False assert is_deficient(20) is False assert is_deficient(36) is False def test_is_amicable(): assert is_amicable(173, 129) is False assert is_amicable(220, 284) is True assert is_amicable(8756, 8756) is False
ef42638fabb9673a5c52f9c0554157d9fa69e80e6c322dc55a558059be19e97a
from itertools import permutations from sympy.core.compatibility import range from sympy.core.expr import unchanged from sympy.core.relational import Eq from sympy.core.symbol import Symbol from sympy.core.singleton import S from sympy.combinatorics.permutations import (Permutation, _af_parity, _af_rmul, _af_rmuln, Cycle) from sympy.utilities.pytest import raises rmul = Permutation.rmul a = Symbol('a', integer=True) def test_Permutation(): # don't auto fill 0 raises(ValueError, lambda: Permutation([1])) p = Permutation([0, 1, 2, 3]) # call as bijective assert [p(i) for i in range(p.size)] == list(p) # call as operator assert p(list(range(p.size))) == list(p) # call as function assert list(p(1, 2)) == [0, 2, 1, 3] # conversion to list assert list(p) == list(range(4)) assert Permutation(size=4) == Permutation(3) assert Permutation(Permutation(3), size=5) == Permutation(4) # cycle form with size assert Permutation([[1, 2]], size=4) == Permutation([[1, 2], [0], [3]]) # random generation assert Permutation.random(2) in (Permutation([1, 0]), Permutation([0, 1])) p = Permutation([2, 5, 1, 6, 3, 0, 4]) q = Permutation([[1], [0, 3, 5, 6, 2, 4]]) assert len({p, p}) == 1 r = Permutation([1, 3, 2, 0, 4, 6, 5]) ans = Permutation(_af_rmuln(*[w.array_form for w in (p, q, r)])).array_form assert rmul(p, q, r).array_form == ans # make sure no other permutation of p, q, r could have given # that answer for a, b, c in permutations((p, q, r)): if (a, b, c) == (p, q, r): continue assert rmul(a, b, c).array_form != ans assert p.support() == list(range(7)) assert q.support() == [0, 2, 3, 4, 5, 6] assert Permutation(p.cyclic_form).array_form == p.array_form assert p.cardinality == 5040 assert q.cardinality == 5040 assert q.cycles == 2 assert rmul(q, p) == Permutation([4, 6, 1, 2, 5, 3, 0]) assert rmul(p, q) == Permutation([6, 5, 3, 0, 2, 4, 1]) assert _af_rmul(p.array_form, q.array_form) == \ [6, 5, 3, 0, 2, 4, 1] assert rmul(Permutation([[1, 2, 3], [0, 4]]), Permutation([[1, 2, 4], [0], [3]])).cyclic_form == \ [[0, 4, 2], [1, 3]] assert q.array_form == [3, 1, 4, 5, 0, 6, 2] assert q.cyclic_form == [[0, 3, 5, 6, 2, 4]] assert q.full_cyclic_form == [[0, 3, 5, 6, 2, 4], [1]] assert p.cyclic_form == [[0, 2, 1, 5], [3, 6, 4]] t = p.transpositions() assert t == [(0, 5), (0, 1), (0, 2), (3, 4), (3, 6)] assert Permutation.rmul(*[Permutation(Cycle(*ti)) for ti in (t)]) assert Permutation([1, 0]).transpositions() == [(0, 1)] assert p**13 == p assert q**0 == Permutation(list(range(q.size))) assert q**-2 == ~q**2 assert q**2 == Permutation([5, 1, 0, 6, 3, 2, 4]) assert q**3 == q**2*q assert q**4 == q**2*q**2 a = Permutation(1, 3) b = Permutation(2, 0, 3) I = Permutation(3) assert ~a == a**-1 assert a*~a == I assert a*b**-1 == a*~b ans = Permutation(0, 5, 3, 1, 6)(2, 4) assert (p + q.rank()).rank() == ans.rank() assert (p + q.rank())._rank == ans.rank() assert (q + p.rank()).rank() == ans.rank() raises(TypeError, lambda: p + Permutation(list(range(10)))) assert (p - q.rank()).rank() == Permutation(0, 6, 3, 1, 2, 5, 4).rank() assert p.rank() - q.rank() < 0 # for coverage: make sure mod is used assert (q - p.rank()).rank() == Permutation(1, 4, 6, 2)(3, 5).rank() assert p*q == Permutation(_af_rmuln(*[list(w) for w in (q, p)])) assert p*Permutation([]) == p assert Permutation([])*p == p assert p*Permutation([[0, 1]]) == Permutation([2, 5, 0, 6, 3, 1, 4]) assert Permutation([[0, 1]])*p == Permutation([5, 2, 1, 6, 3, 0, 4]) pq = p ^ q assert pq == Permutation([5, 6, 0, 4, 1, 2, 3]) assert pq == rmul(q, p, ~q) qp = q ^ p assert qp == Permutation([4, 3, 6, 2, 1, 5, 0]) assert qp == rmul(p, q, ~p) raises(ValueError, lambda: p ^ Permutation([])) assert p.commutator(q) == Permutation(0, 1, 3, 4, 6, 5, 2) assert q.commutator(p) == Permutation(0, 2, 5, 6, 4, 3, 1) assert p.commutator(q) == ~q.commutator(p) raises(ValueError, lambda: p.commutator(Permutation([]))) assert len(p.atoms()) == 7 assert q.atoms() == {0, 1, 2, 3, 4, 5, 6} assert p.inversion_vector() == [2, 4, 1, 3, 1, 0] assert q.inversion_vector() == [3, 1, 2, 2, 0, 1] assert Permutation.from_inversion_vector(p.inversion_vector()) == p assert Permutation.from_inversion_vector(q.inversion_vector()).array_form\ == q.array_form raises(ValueError, lambda: Permutation.from_inversion_vector([0, 2])) assert Permutation([i for i in range(500, -1, -1)]).inversions() == 125250 s = Permutation([0, 4, 1, 3, 2]) assert s.parity() == 0 _ = s.cyclic_form # needed to create a value for _cyclic_form assert len(s._cyclic_form) != s.size and s.parity() == 0 assert not s.is_odd assert s.is_even assert Permutation([0, 1, 4, 3, 2]).parity() == 1 assert _af_parity([0, 4, 1, 3, 2]) == 0 assert _af_parity([0, 1, 4, 3, 2]) == 1 s = Permutation([0]) assert s.is_Singleton assert Permutation([]).is_Empty r = Permutation([3, 2, 1, 0]) assert (r**2).is_Identity assert rmul(~p, p).is_Identity assert (~p)**13 == Permutation([5, 2, 0, 4, 6, 1, 3]) assert ~(r**2).is_Identity assert p.max() == 6 assert p.min() == 0 q = Permutation([[6], [5], [0, 1, 2, 3, 4]]) assert q.max() == 4 assert q.min() == 0 p = Permutation([1, 5, 2, 0, 3, 6, 4]) q = Permutation([[1, 2, 3, 5, 6], [0, 4]]) assert p.ascents() == [0, 3, 4] assert q.ascents() == [1, 2, 4] assert r.ascents() == [] assert p.descents() == [1, 2, 5] assert q.descents() == [0, 3, 5] assert Permutation(r.descents()).is_Identity assert p.inversions() == 7 # test the merge-sort with a longer permutation big = list(p) + list(range(p.max() + 1, p.max() + 130)) assert Permutation(big).inversions() == 7 assert p.signature() == -1 assert q.inversions() == 11 assert q.signature() == -1 assert rmul(p, ~p).inversions() == 0 assert rmul(p, ~p).signature() == 1 assert p.order() == 6 assert q.order() == 10 assert (p**(p.order())).is_Identity assert p.length() == 6 assert q.length() == 7 assert r.length() == 4 assert p.runs() == [[1, 5], [2], [0, 3, 6], [4]] assert q.runs() == [[4], [2, 3, 5], [0, 6], [1]] assert r.runs() == [[3], [2], [1], [0]] assert p.index() == 8 assert q.index() == 8 assert r.index() == 3 assert p.get_precedence_distance(q) == q.get_precedence_distance(p) assert p.get_adjacency_distance(q) == p.get_adjacency_distance(q) assert p.get_positional_distance(q) == p.get_positional_distance(q) p = Permutation([0, 1, 2, 3]) q = Permutation([3, 2, 1, 0]) assert p.get_precedence_distance(q) == 6 assert p.get_adjacency_distance(q) == 3 assert p.get_positional_distance(q) == 8 p = Permutation([0, 3, 1, 2, 4]) q = Permutation.josephus(4, 5, 2) assert p.get_adjacency_distance(q) == 3 raises(ValueError, lambda: p.get_adjacency_distance(Permutation([]))) raises(ValueError, lambda: p.get_positional_distance(Permutation([]))) raises(ValueError, lambda: p.get_precedence_distance(Permutation([]))) a = [Permutation.unrank_nonlex(4, i) for i in range(5)] iden = Permutation([0, 1, 2, 3]) for i in range(5): for j in range(i + 1, 5): assert a[i].commutes_with(a[j]) == \ (rmul(a[i], a[j]) == rmul(a[j], a[i])) if a[i].commutes_with(a[j]): assert a[i].commutator(a[j]) == iden assert a[j].commutator(a[i]) == iden a = Permutation(3) b = Permutation(0, 6, 3)(1, 2) assert a.cycle_structure == {1: 4} assert b.cycle_structure == {2: 1, 3: 1, 1: 2} def test_Permutation_subclassing(): # Subclass that adds permutation application on iterables class CustomPermutation(Permutation): def __call__(self, *i): try: return super(CustomPermutation, self).__call__(*i) except TypeError: pass try: perm_obj = i[0] return [self._array_form[j] for j in perm_obj] except Exception: raise TypeError('unrecognized argument') def __eq__(self, other): if isinstance(other, Permutation): return self._hashable_content() == other._hashable_content() else: return super(CustomPermutation, self).__eq__(other) def __hash__(self): return super(CustomPermutation, self).__hash__() p = CustomPermutation([1, 2, 3, 0]) q = Permutation([1, 2, 3, 0]) assert p == q raises(TypeError, lambda: q([1, 2])) assert [2, 3] == p([1, 2]) assert type(p * q) == CustomPermutation assert type(q * p) == Permutation # True because q.__mul__(p) is called! # Run all tests for the Permutation class also on the subclass def wrapped_test_Permutation(): # Monkeypatch the class definition in the globals globals()['__Perm'] = globals()['Permutation'] globals()['Permutation'] = CustomPermutation test_Permutation() globals()['Permutation'] = globals()['__Perm'] # Restore del globals()['__Perm'] wrapped_test_Permutation() def test_josephus(): assert Permutation.josephus(4, 6, 1) == Permutation([3, 1, 0, 2, 5, 4]) assert Permutation.josephus(1, 5, 1).is_Identity def test_ranking(): assert Permutation.unrank_lex(5, 10).rank() == 10 p = Permutation.unrank_lex(15, 225) assert p.rank() == 225 p1 = p.next_lex() assert p1.rank() == 226 assert Permutation.unrank_lex(15, 225).rank() == 225 assert Permutation.unrank_lex(10, 0).is_Identity p = Permutation.unrank_lex(4, 23) assert p.rank() == 23 assert p.array_form == [3, 2, 1, 0] assert p.next_lex() is None p = Permutation([1, 5, 2, 0, 3, 6, 4]) q = Permutation([[1, 2, 3, 5, 6], [0, 4]]) a = [Permutation.unrank_trotterjohnson(4, i).array_form for i in range(5)] assert a == [[0, 1, 2, 3], [0, 1, 3, 2], [0, 3, 1, 2], [3, 0, 1, 2], [3, 0, 2, 1] ] assert [Permutation(pa).rank_trotterjohnson() for pa in a] == list(range(5)) assert Permutation([0, 1, 2, 3]).next_trotterjohnson() == \ Permutation([0, 1, 3, 2]) assert q.rank_trotterjohnson() == 2283 assert p.rank_trotterjohnson() == 3389 assert Permutation([1, 0]).rank_trotterjohnson() == 1 a = Permutation(list(range(3))) b = a l = [] tj = [] for i in range(6): l.append(a) tj.append(b) a = a.next_lex() b = b.next_trotterjohnson() assert a == b is None assert {tuple(a) for a in l} == {tuple(a) for a in tj} p = Permutation([2, 5, 1, 6, 3, 0, 4]) q = Permutation([[6], [5], [0, 1, 2, 3, 4]]) assert p.rank() == 1964 assert q.rank() == 870 assert Permutation([]).rank_nonlex() == 0 prank = p.rank_nonlex() assert prank == 1600 assert Permutation.unrank_nonlex(7, 1600) == p qrank = q.rank_nonlex() assert qrank == 41 assert Permutation.unrank_nonlex(7, 41) == Permutation(q.array_form) a = [Permutation.unrank_nonlex(4, i).array_form for i in range(24)] assert a == [ [1, 2, 3, 0], [3, 2, 0, 1], [1, 3, 0, 2], [1, 2, 0, 3], [2, 3, 1, 0], [2, 0, 3, 1], [3, 0, 1, 2], [2, 0, 1, 3], [1, 3, 2, 0], [3, 0, 2, 1], [1, 0, 3, 2], [1, 0, 2, 3], [2, 1, 3, 0], [2, 3, 0, 1], [3, 1, 0, 2], [2, 1, 0, 3], [3, 2, 1, 0], [0, 2, 3, 1], [0, 3, 1, 2], [0, 2, 1, 3], [3, 1, 2, 0], [0, 3, 2, 1], [0, 1, 3, 2], [0, 1, 2, 3]] N = 10 p1 = Permutation(a[0]) for i in range(1, N+1): p1 = p1*Permutation(a[i]) p2 = Permutation.rmul_with_af(*[Permutation(h) for h in a[N::-1]]) assert p1 == p2 ok = [] p = Permutation([1, 0]) for i in range(3): ok.append(p.array_form) p = p.next_nonlex() if p is None: ok.append(None) break assert ok == [[1, 0], [0, 1], None] assert Permutation([3, 2, 0, 1]).next_nonlex() == Permutation([1, 3, 0, 2]) assert [Permutation(pa).rank_nonlex() for pa in a] == list(range(24)) def test_mul(): a, b = [0, 2, 1, 3], [0, 1, 3, 2] assert _af_rmul(a, b) == [0, 2, 3, 1] assert _af_rmuln(a, b, list(range(4))) == [0, 2, 3, 1] assert rmul(Permutation(a), Permutation(b)).array_form == [0, 2, 3, 1] a = Permutation([0, 2, 1, 3]) b = (0, 1, 3, 2) c = (3, 1, 2, 0) assert Permutation.rmul(a, b, c) == Permutation([1, 2, 3, 0]) assert Permutation.rmul(a, c) == Permutation([3, 2, 1, 0]) raises(TypeError, lambda: Permutation.rmul(b, c)) n = 6 m = 8 a = [Permutation.unrank_nonlex(n, i).array_form for i in range(m)] h = list(range(n)) for i in range(m): h = _af_rmul(h, a[i]) h2 = _af_rmuln(*a[:i + 1]) assert h == h2 def test_args(): p = Permutation([(0, 3, 1, 2), (4, 5)]) assert p._cyclic_form is None assert Permutation(p) == p assert p.cyclic_form == [[0, 3, 1, 2], [4, 5]] assert p._array_form == [3, 2, 0, 1, 5, 4] p = Permutation((0, 3, 1, 2)) assert p._cyclic_form is None assert p._array_form == [0, 3, 1, 2] assert Permutation([0]) == Permutation((0, )) assert Permutation([[0], [1]]) == Permutation(((0, ), (1, ))) == \ Permutation(((0, ), [1])) assert Permutation([[1, 2]]) == Permutation([0, 2, 1]) assert Permutation([[1], [4, 2]]) == Permutation([0, 1, 4, 3, 2]) assert Permutation([[1], [4, 2]], size=1) == Permutation([0, 1, 4, 3, 2]) assert Permutation( [[1], [4, 2]], size=6) == Permutation([0, 1, 4, 3, 2, 5]) assert Permutation([[0, 1], [0, 2]]) == Permutation(0, 1, 2) assert Permutation([], size=3) == Permutation([0, 1, 2]) assert Permutation(3).list(5) == [0, 1, 2, 3, 4] assert Permutation(3).list(-1) == [] assert Permutation(5)(1, 2).list(-1) == [0, 2, 1] assert Permutation(5)(1, 2).list() == [0, 2, 1, 3, 4, 5] raises(ValueError, lambda: Permutation([1, 2], [0])) # enclosing brackets needed raises(ValueError, lambda: Permutation([[1, 2], 0])) # enclosing brackets needed on 0 raises(ValueError, lambda: Permutation([1, 1, 0])) raises(ValueError, lambda: Permutation([4, 5], size=10)) # where are 0-3? # but this is ok because cycles imply that only those listed moved assert Permutation(4, 5) == Permutation([0, 1, 2, 3, 5, 4]) def test_Cycle(): assert str(Cycle()) == '()' assert Cycle(Cycle(1,2)) == Cycle(1, 2) assert Cycle(1,2).copy() == Cycle(1,2) assert list(Cycle(1, 3, 2)) == [0, 3, 1, 2] assert Cycle(1, 2)(2, 3) == Cycle(1, 3, 2) assert Cycle(1, 2)(2, 3)(4, 5) == Cycle(1, 3, 2)(4, 5) assert Permutation(Cycle(1, 2)(2, 1, 0, 3)).cyclic_form, Cycle(0, 2, 1) raises(ValueError, lambda: Cycle().list()) assert Cycle(1, 2).list() == [0, 2, 1] assert Cycle(1, 2).list(4) == [0, 2, 1, 3] assert Cycle(3).list(2) == [0, 1] assert Cycle(3).list(6) == [0, 1, 2, 3, 4, 5] assert Permutation(Cycle(1, 2), size=4) == \ Permutation([0, 2, 1, 3]) assert str(Cycle(1, 2)(4, 5)) == '(1 2)(4 5)' assert str(Cycle(1, 2)) == '(1 2)' assert Cycle(Permutation(list(range(3)))) == Cycle() assert Cycle(1, 2).list() == [0, 2, 1] assert Cycle(1, 2).list(4) == [0, 2, 1, 3] assert Cycle().size == 0 raises(ValueError, lambda: Cycle((1, 2))) raises(ValueError, lambda: Cycle(1, 2, 1)) raises(TypeError, lambda: Cycle(1, 2)*{}) raises(ValueError, lambda: Cycle(4)[a]) raises(ValueError, lambda: Cycle(2, -4, 3)) # check round-trip p = Permutation([[1, 2], [4, 3]], size=5) assert Permutation(Cycle(p)) == p def test_from_sequence(): assert Permutation.from_sequence('SymPy') == Permutation(4)(0, 1, 3) assert Permutation.from_sequence('SymPy', key=lambda x: x.lower()) == \ Permutation(4)(0, 2)(1, 3) def test_printing_cyclic(): Permutation.print_cyclic = True p1 = Permutation([0, 2, 1]) assert repr(p1) == 'Permutation(1, 2)' assert str(p1) == '(1 2)' p2 = Permutation() assert repr(p2) == 'Permutation()' assert str(p2) == '()' p3 = Permutation([1, 2, 0, 3]) assert repr(p3) == 'Permutation(3)(0, 1, 2)' def test_printing_non_cyclic(): Permutation.print_cyclic = False p1 = Permutation([0, 1, 2, 3, 4, 5]) assert repr(p1) == 'Permutation([], size=6)' assert str(p1) == 'Permutation([], size=6)' p2 = Permutation([0, 1, 2]) assert repr(p2) == 'Permutation([0, 1, 2])' assert str(p2) == 'Permutation([0, 1, 2])' p3 = Permutation([0, 2, 1]) assert repr(p3) == 'Permutation([0, 2, 1])' assert str(p3) == 'Permutation([0, 2, 1])' p4 = Permutation([0, 1, 3, 2, 4, 5, 6, 7]) assert repr(p4) == 'Permutation([0, 1, 3, 2], size=8)' def test_permutation_equality(): a = Permutation(0, 1, 2) b = Permutation(0, 1, 2) assert Eq(a, b) is S.true c = Permutation(0, 2, 1) assert Eq(a, c) is S.false d = Permutation(0, 1, 2, size=4) assert unchanged(Eq, a, d) e = Permutation(0, 2, 1, size=4) assert unchanged(Eq, a, e) i = Permutation() assert unchanged(Eq, i, 0) assert unchanged(Eq, 0, i)
60170e0a804d537a74d46af478273d3cfecd344e457b9d3fc5dc0f5fd9a81606
# This testfile tests SymPy <-> Sage compatibility # # Execute this test inside Sage, e.g. with: # sage -python bin/test sympy/external/tests/test_sage.py # # This file can be tested by Sage itself by: # sage -t sympy/external/tests/test_sage.py # and if all tests pass, it should be copied (verbatim) to Sage, so that it is # automatically doctested by Sage. Note that this second method imports the # version of SymPy in Sage, whereas the -python method imports the local version # of SymPy (both use the local version of the tests, however). # # Don't test any SymPy features here. Just pure interaction with Sage. # Always write regular SymPy tests for anything, that can be tested in pure # Python (without Sage). Here we test everything, that a user may need when # using SymPy with Sage. import os import re import sys from sympy.external import import_module sage = import_module('sage.all', __import__kwargs={'fromlist': ['all']}) if not sage: #bin/test will not execute any tests now disabled = True import sympy from sympy.utilities.pytest import XFAIL def is_trivially_equal(lhs, rhs): """ True if lhs and rhs are trivially equal. Use this for comparison of Sage expressions. Otherwise you may start the whole proof machinery which may not exist at the time of testing. """ assert (lhs - rhs).is_trivial_zero() def check_expression(expr, var_symbols, only_from_sympy=False): """ Does eval(expr) both in Sage and SymPy and does other checks. """ # evaluate the expression in the context of Sage: if var_symbols: sage.var(var_symbols) a = globals().copy() # safety checks... a.update(sage.__dict__) assert "sin" in a is_different = False try: e_sage = eval(expr, a) assert not isinstance(e_sage, sympy.Basic) except (NameError, TypeError): is_different = True pass # evaluate the expression in the context of SymPy: if var_symbols: sympy_vars = sympy.var(var_symbols) b = globals().copy() b.update(sympy.__dict__) assert "sin" in b b.update(sympy.__dict__) e_sympy = eval(expr, b) assert isinstance(e_sympy, sympy.Basic) # Sympy func may have specific _sage_ method if is_different: _sage_method = getattr(e_sympy.func, "_sage_") e_sage = _sage_method(sympy.S(e_sympy)) # Do the actual checks: if not only_from_sympy: assert sympy.S(e_sage) == e_sympy is_trivially_equal(e_sage, sage.SR(e_sympy)) def test_basics(): check_expression("x", "x") check_expression("x**2", "x") check_expression("x**2+y**3", "x y") check_expression("1/(x+y)**2-x**3/4", "x y") def test_complex(): check_expression("I", "") check_expression("23+I*4", "x") @XFAIL def test_complex_fail(): # Sage doesn't properly implement _sympy_ on I check_expression("I*y", "y") check_expression("x+I*y", "x y") def test_integer(): check_expression("4*x", "x") check_expression("-4*x", "x") def test_real(): check_expression("1.123*x", "x") check_expression("-18.22*x", "x") def test_E(): assert sympy.sympify(sage.e) == sympy.E is_trivially_equal(sage.e, sage.SR(sympy.E)) def test_pi(): assert sympy.sympify(sage.pi) == sympy.pi is_trivially_equal(sage.pi, sage.SR(sympy.pi)) def test_euler_gamma(): assert sympy.sympify(sage.euler_gamma) == sympy.EulerGamma is_trivially_equal(sage.euler_gamma, sage.SR(sympy.EulerGamma)) def test_oo(): assert sympy.sympify(sage.oo) == sympy.oo assert sage.oo == sage.SR(sympy.oo).pyobject() assert sympy.sympify(-sage.oo) == -sympy.oo assert -sage.oo == sage.SR(-sympy.oo).pyobject() #assert sympy.sympify(sage.UnsignedInfinityRing.gen()) == sympy.zoo #assert sage.UnsignedInfinityRing.gen() == sage.SR(sympy.zoo) def test_NaN(): assert sympy.sympify(sage.NaN) == sympy.nan is_trivially_equal(sage.NaN, sage.SR(sympy.nan)) def test_Catalan(): assert sympy.sympify(sage.catalan) == sympy.Catalan is_trivially_equal(sage.catalan, sage.SR(sympy.Catalan)) def test_GoldenRation(): assert sympy.sympify(sage.golden_ratio) == sympy.GoldenRatio is_trivially_equal(sage.golden_ratio, sage.SR(sympy.GoldenRatio)) def test_functions(): # Test at least one Function without own _sage_ method assert not "_sage_" in sympy.factorial.__dict__ check_expression("factorial(x)", "x") check_expression("sin(x)", "x") check_expression("cos(x)", "x") check_expression("tan(x)", "x") check_expression("cot(x)", "x") check_expression("asin(x)", "x") check_expression("acos(x)", "x") check_expression("atan(x)", "x") check_expression("atan2(y, x)", "x, y") check_expression("acot(x)", "x") check_expression("sinh(x)", "x") check_expression("cosh(x)", "x") check_expression("tanh(x)", "x") check_expression("coth(x)", "x") check_expression("asinh(x)", "x") check_expression("acosh(x)", "x") check_expression("atanh(x)", "x") check_expression("acoth(x)", "x") check_expression("exp(x)", "x") check_expression("gamma(x)", "x") check_expression("log(x)", "x") check_expression("re(x)", "x") check_expression("im(x)", "x") check_expression("sign(x)", "x") check_expression("abs(x)", "x") check_expression("arg(x)", "x") check_expression("conjugate(x)", "x") # The following tests differently named functions check_expression("besselj(y, x)", "x, y") check_expression("bessely(y, x)", "x, y") check_expression("besseli(y, x)", "x, y") check_expression("besselk(y, x)", "x, y") check_expression("DiracDelta(x)", "x") check_expression("KroneckerDelta(x, y)", "x, y") check_expression("expint(y, x)", "x, y") check_expression("Si(x)", "x") check_expression("Ci(x)", "x") check_expression("Shi(x)", "x") check_expression("Chi(x)", "x") check_expression("loggamma(x)", "x") check_expression("Ynm(n,m,x,y)", "n, m, x, y") check_expression("hyper((n,m),(m,n),x)", "n, m, x") check_expression("uppergamma(y, x)", "x, y") def test_issue_4023(): sage.var("a x") log = sage.log i = sympy.integrate(log(x)/a, (x, a, a + 1)) i2 = sympy.simplify(i) s = sage.SR(i2) is_trivially_equal(s, -log(a) + log(a + 1) + log(a + 1)/a - 1/a) def test_integral(): #test Sympy-->Sage check_expression("Integral(x, (x,))", "x", only_from_sympy=True) check_expression("Integral(x, (x, 0, 1))", "x", only_from_sympy=True) check_expression("Integral(x*y, (x,), (y, ))", "x,y", only_from_sympy=True) check_expression("Integral(x*y, (x,), (y, 0, 1))", "x,y", only_from_sympy=True) check_expression("Integral(x*y, (x, 0, 1), (y,))", "x,y", only_from_sympy=True) check_expression("Integral(x*y, (x, 0, 1), (y, 0, 1))", "x,y", only_from_sympy=True) check_expression("Integral(x*y*z, (x, 0, 1), (y, 0, 1), (z, 0, 1))", "x,y,z", only_from_sympy=True) @XFAIL def test_integral_failing(): # Note: sage may attempt to turn this into Integral(x, (x, x, 0)) check_expression("Integral(x, (x, 0))", "x", only_from_sympy=True) check_expression("Integral(x*y, (x,), (y, 0))", "x,y", only_from_sympy=True) check_expression("Integral(x*y, (x, 0, 1), (y, 0))", "x,y", only_from_sympy=True) def test_undefined_function(): f = sympy.Function('f') sf = sage.function('f') x = sympy.symbols('x') sx = sage.var('x') is_trivially_equal(sf(sx), f(x)._sage_()) assert f(x) == sympy.sympify(sf(sx)) assert sf == f._sage_() #assert bool(f == sympy.sympify(sf)) def test_abstract_function(): from sage.symbolic.expression import Expression x,y = sympy.symbols('x y') f = sympy.Function('f') expr = f(x,y) sexpr = expr._sage_() assert isinstance(sexpr,Expression), "converted expression %r is not sage expression" % sexpr # This test has to be uncommented in the future: it depends on the sage ticket #22802 (https://trac.sagemath.org/ticket/22802) # invexpr = sexpr._sympy_() # assert invexpr == expr, "inverse coversion %r is not correct " % invexpr # This string contains Sage doctests, that execute all the functions above. # When you add a new function, please add it here as well. """ TESTS:: sage: from sympy.external.tests.test_sage import * sage: test_basics() sage: test_basics() sage: test_complex() sage: test_integer() sage: test_real() sage: test_E() sage: test_pi() sage: test_euler_gamma() sage: test_oo() sage: test_NaN() sage: test_Catalan() sage: test_GoldenRation() sage: test_functions() sage: test_issue_4023() sage: test_integral() sage: test_undefined_function() sage: test_abstract_function() Sage has no symbolic Lucas function at the moment:: sage: check_expression("lucas(x)", "x") Traceback (most recent call last): ... AttributeError... """
6888b0b5da1c8abb37ccff91a5317f474da2c7a65733b58a21865c80631ca9b6
from itertools import product as cartes from sympy import ( limit, exp, oo, log, sqrt, Limit, sin, floor, cos, ceiling, atan, gamma, Symbol, S, pi, Integral, Rational, I, tan, cot, integrate, Sum, sign, Function, subfactorial, symbols, binomial, simplify, frac, Float, sec, zoo, fresnelc, fresnels, acos, erfi, LambertW, factorial, Ei, EulerGamma) from sympy.calculus.util import AccumBounds from sympy.core.add import Add from sympy.core.mul import Mul from sympy.series.limits import heuristics from sympy.series.order import Order from sympy.utilities.pytest import XFAIL, raises from sympy.abc import x, y, z, k n = Symbol('n', integer=True, positive=True) def test_basic1(): assert limit(x, x, oo) is oo assert limit(x, x, -oo) is -oo assert limit(-x, x, oo) is -oo assert limit(x**2, x, -oo) is oo assert limit(-x**2, x, oo) is -oo assert limit(x*log(x), x, 0, dir="+") == 0 assert limit(1/x, x, oo) == 0 assert limit(exp(x), x, oo) is oo assert limit(-exp(x), x, oo) is -oo assert limit(exp(x)/x, x, oo) is oo assert limit(1/x - exp(-x), x, oo) == 0 assert limit(x + 1/x, x, oo) is oo assert limit(x - x**2, x, oo) is -oo assert limit((1 + x)**(1 + sqrt(2)), x, 0) == 1 assert limit((1 + x)**oo, x, 0) is oo assert limit((1 + x)**oo, x, 0, dir='-') == 0 assert limit((1 + x + y)**oo, x, 0, dir='-') == (1 + y)**(oo) assert limit(y/x/log(x), x, 0) == -oo*sign(y) assert limit(cos(x + y)/x, x, 0) == sign(cos(y))*oo assert limit(gamma(1/x + 3), x, oo) == 2 assert limit(S.NaN, x, -oo) is S.NaN assert limit(Order(2)*x, x, S.NaN) is S.NaN assert limit(1/(x - 1), x, 1, dir="+") is oo assert limit(1/(x - 1), x, 1, dir="-") is -oo assert limit(1/(5 - x)**3, x, 5, dir="+") is -oo assert limit(1/(5 - x)**3, x, 5, dir="-") is oo assert limit(1/sin(x), x, pi, dir="+") is -oo assert limit(1/sin(x), x, pi, dir="-") is oo assert limit(1/cos(x), x, pi/2, dir="+") is -oo assert limit(1/cos(x), x, pi/2, dir="-") is oo assert limit(1/tan(x**3), x, (2*pi)**Rational(1, 3), dir="+") is oo assert limit(1/tan(x**3), x, (2*pi)**Rational(1, 3), dir="-") is -oo assert limit(1/cot(x)**3, x, (pi*Rational(3, 2)), dir="+") is -oo assert limit(1/cot(x)**3, x, (pi*Rational(3, 2)), dir="-") is oo # test bi-directional limits assert limit(sin(x)/x, x, 0, dir="+-") == 1 assert limit(x**2, x, 0, dir="+-") == 0 assert limit(1/x**2, x, 0, dir="+-") is oo # test failing bi-directional limits raises(ValueError, lambda: limit(1/x, x, 0, dir="+-")) # approaching 0 # from dir="+" assert limit(1 + 1/x, x, 0) is oo # from dir='-' # Add assert limit(1 + 1/x, x, 0, dir='-') is -oo # Pow assert limit(x**(-2), x, 0, dir='-') is oo assert limit(x**(-3), x, 0, dir='-') is -oo assert limit(1/sqrt(x), x, 0, dir='-') == (-oo)*I assert limit(x**2, x, 0, dir='-') == 0 assert limit(sqrt(x), x, 0, dir='-') == 0 assert limit(x**-pi, x, 0, dir='-') == oo*sign((-1)**(-pi)) assert limit((1 + cos(x))**oo, x, 0) is oo def test_basic2(): assert limit(x**x, x, 0, dir="+") == 1 assert limit((exp(x) - 1)/x, x, 0) == 1 assert limit(1 + 1/x, x, oo) == 1 assert limit(-exp(1/x), x, oo) == -1 assert limit(x + exp(-x), x, oo) is oo assert limit(x + exp(-x**2), x, oo) is oo assert limit(x + exp(-exp(x)), x, oo) is oo assert limit(13 + 1/x - exp(-x), x, oo) == 13 def test_basic3(): assert limit(1/x, x, 0, dir="+") is oo assert limit(1/x, x, 0, dir="-") is -oo def test_basic4(): assert limit(2*x + y*x, x, 0) == 0 assert limit(2*x + y*x, x, 1) == 2 + y assert limit(2*x**8 + y*x**(-3), x, -2) == 512 - y/8 assert limit(sqrt(x + 1) - sqrt(x), x, oo) == 0 assert integrate(1/(x**3 + 1), (x, 0, oo)) == 2*pi*sqrt(3)/9 def test_basic5(): class my(Function): @classmethod def eval(cls, arg): if arg is S.Infinity: return S.NaN assert limit(my(x), x, oo) == Limit(my(x), x, oo) def test_issue_3885(): assert limit(x*y + x*z, z, 2) == x*y + 2*x def test_Limit(): assert Limit(sin(x)/x, x, 0) != 1 assert Limit(sin(x)/x, x, 0).doit() == 1 assert Limit(x, x, 0, dir='+-').args == (x, x, 0, Symbol('+-')) def test_floor(): assert limit(floor(x), x, -2, "+") == -2 assert limit(floor(x), x, -2, "-") == -3 assert limit(floor(x), x, -1, "+") == -1 assert limit(floor(x), x, -1, "-") == -2 assert limit(floor(x), x, 0, "+") == 0 assert limit(floor(x), x, 0, "-") == -1 assert limit(floor(x), x, 1, "+") == 1 assert limit(floor(x), x, 1, "-") == 0 assert limit(floor(x), x, 2, "+") == 2 assert limit(floor(x), x, 2, "-") == 1 assert limit(floor(x), x, 248, "+") == 248 assert limit(floor(x), x, 248, "-") == 247 def test_floor_requires_robust_assumptions(): assert limit(floor(sin(x)), x, 0, "+") == 0 assert limit(floor(sin(x)), x, 0, "-") == -1 assert limit(floor(cos(x)), x, 0, "+") == 0 assert limit(floor(cos(x)), x, 0, "-") == 0 assert limit(floor(5 + sin(x)), x, 0, "+") == 5 assert limit(floor(5 + sin(x)), x, 0, "-") == 4 assert limit(floor(5 + cos(x)), x, 0, "+") == 5 assert limit(floor(5 + cos(x)), x, 0, "-") == 5 def test_ceiling(): assert limit(ceiling(x), x, -2, "+") == -1 assert limit(ceiling(x), x, -2, "-") == -2 assert limit(ceiling(x), x, -1, "+") == 0 assert limit(ceiling(x), x, -1, "-") == -1 assert limit(ceiling(x), x, 0, "+") == 1 assert limit(ceiling(x), x, 0, "-") == 0 assert limit(ceiling(x), x, 1, "+") == 2 assert limit(ceiling(x), x, 1, "-") == 1 assert limit(ceiling(x), x, 2, "+") == 3 assert limit(ceiling(x), x, 2, "-") == 2 assert limit(ceiling(x), x, 248, "+") == 249 assert limit(ceiling(x), x, 248, "-") == 248 def test_ceiling_requires_robust_assumptions(): assert limit(ceiling(sin(x)), x, 0, "+") == 1 assert limit(ceiling(sin(x)), x, 0, "-") == 0 assert limit(ceiling(cos(x)), x, 0, "+") == 1 assert limit(ceiling(cos(x)), x, 0, "-") == 1 assert limit(ceiling(5 + sin(x)), x, 0, "+") == 6 assert limit(ceiling(5 + sin(x)), x, 0, "-") == 5 assert limit(ceiling(5 + cos(x)), x, 0, "+") == 6 assert limit(ceiling(5 + cos(x)), x, 0, "-") == 6 def test_atan(): x = Symbol("x", real=True) assert limit(atan(x)*sin(1/x), x, 0) == 0 assert limit(atan(x) + sqrt(x + 1) - sqrt(x), x, oo) == pi/2 def test_abs(): assert limit(abs(x), x, 0) == 0 assert limit(abs(sin(x)), x, 0) == 0 assert limit(abs(cos(x)), x, 0) == 1 assert limit(abs(sin(x + 1)), x, 0) == sin(1) def test_heuristic(): x = Symbol("x", real=True) assert heuristics(sin(1/x) + atan(x), x, 0, '+') == AccumBounds(-1, 1) assert limit(log(2 + sqrt(atan(x))*sqrt(sin(1/x))), x, 0) == log(2) def test_issue_3871(): z = Symbol("z", positive=True) f = -1/z*exp(-z*x) assert limit(f, x, oo) == 0 assert f.limit(x, oo) == 0 def test_exponential(): n = Symbol('n') x = Symbol('x', real=True) assert limit((1 + x/n)**n, n, oo) == exp(x) assert limit((1 + x/(2*n))**n, n, oo) == exp(x/2) assert limit((1 + x/(2*n + 1))**n, n, oo) == exp(x/2) assert limit(((x - 1)/(x + 1))**x, x, oo) == exp(-2) assert limit(1 + (1 + 1/x)**x, x, oo) == 1 + S.Exp1 assert limit((2 + 6*x)**x/(6*x)**x, x, oo) == exp(S('1/3')) @XFAIL def test_exponential2(): n = Symbol('n') assert limit((1 + x/(n + sin(n)))**n, n, oo) == exp(x) def test_doit(): f = Integral(2 * x, x) l = Limit(f, x, oo) assert l.doit() is oo def test_AccumBounds(): assert limit(sin(k) - sin(k + 1), k, oo) == AccumBounds(-2, 2) assert limit(cos(k) - cos(k + 1) + 1, k, oo) == AccumBounds(-1, 3) # not the exact bound assert limit(sin(k) - sin(k)*cos(k), k, oo) == AccumBounds(-2, 2) # test for issue #9934 t1 = Mul(S.Half, 1/(-1 + cos(1)), Add(AccumBounds(-3, 1), cos(1))) assert limit(simplify(Sum(cos(n).rewrite(exp), (n, 0, k)).doit().rewrite(sin)), k, oo) == t1 t2 = Mul(S.Half, Add(AccumBounds(-2, 2), sin(1)), 1/(-cos(1) + 1)) assert limit(simplify(Sum(sin(n).rewrite(exp), (n, 0, k)).doit().rewrite(sin)), k, oo) == t2 assert limit(frac(x)**x, x, oo) == AccumBounds(0, oo) assert limit(((sin(x) + 1)/2)**x, x, oo) == AccumBounds(0, oo) # Possible improvement: AccumBounds(0, 1) @XFAIL def test_doit2(): f = Integral(2 * x, x) l = Limit(f, x, oo) # limit() breaks on the contained Integral. assert l.doit(deep=False) == l def test_issue_3792(): assert limit((1 - cos(x))/x**2, x, S.Half) == 4 - 4*cos(S.Half) assert limit(sin(sin(x + 1) + 1), x, 0) == sin(1 + sin(1)) assert limit(abs(sin(x + 1) + 1), x, 0) == 1 + sin(1) def test_issue_4090(): assert limit(1/(x + 3), x, 2) == Rational(1, 5) assert limit(1/(x + pi), x, 2) == S.One/(2 + pi) assert limit(log(x)/(x**2 + 3), x, 2) == log(2)/7 assert limit(log(x)/(x**2 + pi), x, 2) == log(2)/(4 + pi) def test_issue_4547(): assert limit(cot(x), x, 0, dir='+') is oo assert limit(cot(x), x, pi/2, dir='+') == 0 def test_issue_5164(): assert limit(x**0.5, x, oo) == oo**0.5 is oo assert limit(x**0.5, x, 16) == S(16)**0.5 assert limit(x**0.5, x, 0) == 0 assert limit(x**(-0.5), x, oo) == 0 assert limit(x**(-0.5), x, 4) == S(4)**(-0.5) def test_issue_5183(): # using list(...) so py.test can recalculate values tests = list(cartes([x, -x], [-1, 1], [2, 3, S.Half, Rational(2, 3)], ['-', '+'])) results = (oo, oo, -oo, oo, -oo*I, oo, -oo*(-1)**Rational(1, 3), oo, 0, 0, 0, 0, 0, 0, 0, 0, oo, oo, oo, -oo, oo, -oo*I, oo, -oo*(-1)**Rational(1, 3), 0, 0, 0, 0, 0, 0, 0, 0) assert len(tests) == len(results) for i, (args, res) in enumerate(zip(tests, results)): y, s, e, d = args eq = y**(s*e) try: assert limit(eq, x, 0, dir=d) == res except AssertionError: if 0: # change to 1 if you want to see the failing tests print() print(i, res, eq, d, limit(eq, x, 0, dir=d)) else: assert None def test_issue_5184(): assert limit(sin(x)/x, x, oo) == 0 assert limit(atan(x), x, oo) == pi/2 assert limit(gamma(x), x, oo) is oo assert limit(cos(x)/x, x, oo) == 0 assert limit(gamma(x), x, S.Half) == sqrt(pi) r = Symbol('r', real=True) assert limit(r*sin(1/r), r, 0) == 0 def test_issue_5229(): assert limit((1 + y)**(1/y) - S.Exp1, y, 0) == 0 def test_issue_4546(): # using list(...) so py.test can recalculate values tests = list(cartes([cot, tan], [-pi/2, 0, pi/2, pi, pi*Rational(3, 2)], ['-', '+'])) results = (0, 0, -oo, oo, 0, 0, -oo, oo, 0, 0, oo, -oo, 0, 0, oo, -oo, 0, 0, oo, -oo) assert len(tests) == len(results) for i, (args, res) in enumerate(zip(tests, results)): f, l, d = args eq = f(x) try: assert limit(eq, x, l, dir=d) == res except AssertionError: if 0: # change to 1 if you want to see the failing tests print() print(i, res, eq, l, d, limit(eq, x, l, dir=d)) else: assert None def test_issue_3934(): assert limit((1 + x**log(3))**(1/x), x, 0) == 1 assert limit((5**(1/x) + 3**(1/x))**x, x, 0) == 5 def test_calculate_series(): # needs gruntz calculate_series to go to n = 32 assert limit(x**Rational(77, 3)/(1 + x**Rational(77, 3)), x, oo) == 1 # needs gruntz calculate_series to go to n = 128 assert limit(x**101.1/(1 + x**101.1), x, oo) == 1 def test_issue_5955(): assert limit((x**16)/(1 + x**16), x, oo) == 1 assert limit((x**100)/(1 + x**100), x, oo) == 1 assert limit((x**1885)/(1 + x**1885), x, oo) == 1 assert limit((x**1000/((x + 1)**1000 + exp(-x))), x, oo) == 1 def test_newissue(): assert limit(exp(1/sin(x))/exp(cot(x)), x, 0) == 1 def test_extended_real_line(): assert limit(x - oo, x, oo) is -oo assert limit(oo - x, x, -oo) is oo assert limit(x**2/(x - 5) - oo, x, oo) is -oo assert limit(1/(x + sin(x)) - oo, x, 0) is -oo assert limit(oo/x, x, oo) is oo assert limit(x - oo + 1/x, x, oo) is -oo assert limit(x - oo + 1/x, x, 0) is -oo @XFAIL def test_order_oo(): x = Symbol('x', positive=True) assert Order(x)*oo != Order(1, x) assert limit(oo/(x**2 - 4), x, oo) is oo def test_issue_5436(): raises(NotImplementedError, lambda: limit(exp(x*y), x, oo)) raises(NotImplementedError, lambda: limit(exp(-x*y), x, oo)) def test_Limit_dir(): raises(TypeError, lambda: Limit(x, x, 0, dir=0)) raises(ValueError, lambda: Limit(x, x, 0, dir='0')) def test_polynomial(): assert limit((x + 1)**1000/((x + 1)**1000 + 1), x, oo) == 1 assert limit((x + 1)**1000/((x + 1)**1000 + 1), x, -oo) == 1 def test_rational(): assert limit(1/y - (1/(y + x) + x/(y + x)/y)/z, x, oo) == (z - 1)/(y*z) assert limit(1/y - (1/(y + x) + x/(y + x)/y)/z, x, -oo) == (z - 1)/(y*z) def test_issue_5740(): assert limit(log(x)*z - log(2*x)*y, x, 0) == oo*sign(y - z) def test_issue_6366(): n = Symbol('n', integer=True, positive=True) r = (n + 1)*x**(n + 1)/(x**(n + 1) - 1) - x/(x - 1) assert limit(r, x, 1).simplify() == n/2 def test_factorial(): from sympy import factorial, E f = factorial(x) assert limit(f, x, oo) is oo assert limit(x/f, x, oo) == 0 # see Stirling's approximation: # https://en.wikipedia.org/wiki/Stirling's_approximation assert limit(f/(sqrt(2*pi*x)*(x/E)**x), x, oo) == 1 assert limit(f, x, -oo) == factorial(-oo) assert limit(f, x, x**2) == factorial(x**2) assert limit(f, x, -x**2) == factorial(-x**2) def test_issue_6560(): e = (5*x**3/4 - x*Rational(3, 4) + (y*(3*x**2/2 - S.Half) + 35*x**4/8 - 15*x**2/4 + Rational(3, 8))/(2*(y + 1))) assert limit(e, y, oo) == (5*x**3 + 3*x**2 - 3*x - 1)/4 def test_issue_5172(): n = Symbol('n') r = Symbol('r', positive=True) c = Symbol('c') p = Symbol('p', positive=True) m = Symbol('m', negative=True) expr = ((2*n*(n - r + 1)/(n + r*(n - r + 1)))**c + (r - 1)*(n*(n - r + 2)/(n + r*(n - r + 1)))**c - n)/(n**c - n) expr = expr.subs(c, c + 1) raises(NotImplementedError, lambda: limit(expr, n, oo)) assert limit(expr.subs(c, m), n, oo) == 1 assert limit(expr.subs(c, p), n, oo).simplify() == \ (2**(p + 1) + r - 1)/(r + 1)**(p + 1) def test_issue_7088(): a = Symbol('a') assert limit(sqrt(x/(x + a)), x, oo) == 1 def test_issue_6364(): a = Symbol('a') e = z/(1 - sqrt(1 + z)*sin(a)**2 - sqrt(1 - z)*cos(a)**2) assert limit(e, z, 0).simplify() == 2/cos(2*a) def test_issue_4099(): a = Symbol('a') assert limit(a/x, x, 0) == oo*sign(a) assert limit(-a/x, x, 0) == -oo*sign(a) assert limit(-a*x, x, oo) == -oo*sign(a) assert limit(a*x, x, oo) == oo*sign(a) def test_issue_4503(): dx = Symbol('dx') assert limit((sqrt(1 + exp(x + dx)) - sqrt(1 + exp(x)))/dx, dx, 0) == \ exp(x)/(2*sqrt(exp(x) + 1)) def test_issue_8730(): assert limit(subfactorial(x), x, oo) is oo def test_issue_10801(): # make sure limits work with binomial assert limit(16**k / (k * binomial(2*k, k)**2), k, oo) == pi def test_issue_9205(): x, y, a = symbols('x, y, a') assert Limit(x, x, a).free_symbols == {a} assert Limit(x, x, a, '-').free_symbols == {a} assert Limit(x + y, x + y, a).free_symbols == {a} assert Limit(-x**2 + y, x**2, a).free_symbols == {y, a} def test_issue_11879(): assert simplify(limit(((x+y)**n-x**n)/y, y, 0)) == n*x**(n-1) def test_limit_with_Float(): k = symbols("k") assert limit(1.0 ** k, k, oo) == 1 assert limit(0.3*1.0**k, k, oo) == Float(0.3) def test_issue_10610(): assert limit(3**x*3**(-x - 1)*(x + 1)**2/x**2, x, oo) == Rational(1, 3) def test_issue_6599(): assert limit((n + cos(n))/n, n, oo) == 1 def test_issue_12555(): assert limit((3**x + 2* x**10) / (x**10 + exp(x)), x, -oo) == 2 assert limit((3**x + 2* x**10) / (x**10 + exp(x)), x, oo) is oo def test_issue_13332(): assert limit(sqrt(30)*5**(-5*x - 1)*(46656*x)**x*(5*x + 2)**(5*x + 5*S.Half) * (6*x + 2)**(-6*x - 5*S.Half), x, oo) == Rational(25, 36) def test_issue_12564(): assert limit(x**2 + x*sin(x) + cos(x), x, -oo) is oo assert limit(x**2 + x*sin(x) + cos(x), x, oo) is oo assert limit(((x + cos(x))**2).expand(), x, oo) is oo assert limit(((x + sin(x))**2).expand(), x, oo) is oo assert limit(((x + cos(x))**2).expand(), x, -oo) is oo assert limit(((x + sin(x))**2).expand(), x, -oo) is oo def test_issue_14456(): raises(NotImplementedError, lambda: Limit(exp(x), x, zoo).doit()) raises(NotImplementedError, lambda: Limit(x**2/(x+1), x, zoo).doit()) def test_issue_14411(): assert limit(3*sec(4*pi*x - x/3), x, 3*pi/(24*pi - 2)) is -oo def test_issue_14574(): assert limit(sqrt(x)*cos(x - x**2) / (x + 1), x, oo) == 0 def test_issue_10102(): assert limit(fresnels(x), x, oo) == S.Half assert limit(3 + fresnels(x), x, oo) == 3 + S.Half assert limit(5*fresnels(x), x, oo) == Rational(5, 2) assert limit(fresnelc(x), x, oo) == S.Half assert limit(fresnels(x), x, -oo) == Rational(-1, 2) assert limit(4*fresnelc(x), x, -oo) == -2 def test_issue_14377(): raises(NotImplementedError, lambda: limit(exp(I*x)*sin(pi*x), x, oo)) def test_issue_15984(): assert limit((-x + log(exp(x) + 1))/x, x, oo, dir='-').doit() == 0 def test_issue_13575(): result = limit(acos(erfi(x)), x, 1) assert isinstance(result, Add) re, im = result.evalf().as_real_imag() assert abs(re) < 1e-12 assert abs(im - 1.08633774961570) < 1e-12 def test_issue_17325(): assert Limit(sin(x)/x, x, 0, dir="+-").doit() == 1 assert Limit(x**2, x, 0, dir="+-").doit() == 0 assert Limit(1/x**2, x, 0, dir="+-").doit() is oo raises(ValueError, lambda: Limit(1/x, x, 0, dir="+-").doit()) def test_issue_10978(): assert LambertW(x).limit(x, 0) == 0 @XFAIL def test_issue_14313_comment(): assert limit(floor(n/2), n, oo) is oo @XFAIL def test_issue_15323(): d = ((1 - 1/x)**x).diff(x) assert limit(d, x, 1, dir='+') == 1 def test_issue_12571(): assert limit(-LambertW(-log(x))/log(x), x, 1) == 1 def test_issue_14590(): assert limit((x**3*((x + 1)/x)**x)/((x + 1)*(x + 2)*(x + 3)), x, oo) == exp(1) def test_issue_17431(): assert limit(((n + 1) + 1) / (((n + 1) + 2) * factorial(n + 1)) * (n + 2) * factorial(n) / (n + 1), n, oo) == 0 assert limit((n + 2)**2*factorial(n)/((n + 1)*(n + 3)*factorial(n + 1)) , n, oo) == 0 assert limit((n + 1) * factorial(n) / (n * factorial(n + 1)), n, oo) == 0 def test_issue_17671(): assert limit(Ei(-log(x)) - log(log(x))/x, x, 1) == EulerGamma
07ac9f3000fb39cfe63d2ff8145ab3bf505f1417d93ea0358d851a7b8610a844
from sympy import ( sqrt, Derivative, symbols, collect, Function, factor, Wild, S, collect_const, log, fraction, I, cos, Add, O,sin, rcollect, Mul, radsimp, diff, root, Symbol, Rational, exp, Abs) from sympy.core.expr import unchanged from sympy.core.mul import _unevaluated_Mul as umul from sympy.simplify.radsimp import (_unevaluated_Add, collect_sqrt, fraction_expand, collect_abs) from sympy.utilities.pytest import XFAIL, raises from sympy.abc import x, y, z, a, b, c, d def test_radsimp(): r2 = sqrt(2) r3 = sqrt(3) r5 = sqrt(5) r7 = sqrt(7) assert fraction(radsimp(1/r2)) == (sqrt(2), 2) assert radsimp(1/(1 + r2)) == \ -1 + sqrt(2) assert radsimp(1/(r2 + r3)) == \ -sqrt(2) + sqrt(3) assert fraction(radsimp(1/(1 + r2 + r3))) == \ (-sqrt(6) + sqrt(2) + 2, 4) assert fraction(radsimp(1/(r2 + r3 + r5))) == \ (-sqrt(30) + 2*sqrt(3) + 3*sqrt(2), 12) assert fraction(radsimp(1/(1 + r2 + r3 + r5))) == ( (-34*sqrt(10) - 26*sqrt(15) - 55*sqrt(3) - 61*sqrt(2) + 14*sqrt(30) + 93 + 46*sqrt(6) + 53*sqrt(5), 71)) assert fraction(radsimp(1/(r2 + r3 + r5 + r7))) == ( (-50*sqrt(42) - 133*sqrt(5) - 34*sqrt(70) - 145*sqrt(3) + 22*sqrt(105) + 185*sqrt(2) + 62*sqrt(30) + 135*sqrt(7), 215)) z = radsimp(1/(1 + r2/3 + r3/5 + r5 + r7)) assert len((3616791619821680643598*z).args) == 16 assert radsimp(1/z) == 1/z assert radsimp(1/z, max_terms=20).expand() == 1 + r2/3 + r3/5 + r5 + r7 assert radsimp(1/(r2*3)) == \ sqrt(2)/6 assert radsimp(1/(r2*a + r3 + r5 + r7)) == ( (8*sqrt(2)*a**7 - 8*sqrt(7)*a**6 - 8*sqrt(5)*a**6 - 8*sqrt(3)*a**6 - 180*sqrt(2)*a**5 + 8*sqrt(30)*a**5 + 8*sqrt(42)*a**5 + 8*sqrt(70)*a**5 - 24*sqrt(105)*a**4 + 84*sqrt(3)*a**4 + 100*sqrt(5)*a**4 + 116*sqrt(7)*a**4 - 72*sqrt(70)*a**3 - 40*sqrt(42)*a**3 - 8*sqrt(30)*a**3 + 782*sqrt(2)*a**3 - 462*sqrt(3)*a**2 - 302*sqrt(7)*a**2 - 254*sqrt(5)*a**2 + 120*sqrt(105)*a**2 - 795*sqrt(2)*a - 62*sqrt(30)*a + 82*sqrt(42)*a + 98*sqrt(70)*a - 118*sqrt(105) + 59*sqrt(7) + 295*sqrt(5) + 531*sqrt(3))/(16*a**8 - 480*a**6 + 3128*a**4 - 6360*a**2 + 3481)) assert radsimp(1/(r2*a + r2*b + r3 + r7)) == ( (sqrt(2)*a*(a + b)**2 - 5*sqrt(2)*a + sqrt(42)*a + sqrt(2)*b*(a + b)**2 - 5*sqrt(2)*b + sqrt(42)*b - sqrt(7)*(a + b)**2 - sqrt(3)*(a + b)**2 - 2*sqrt(3) + 2*sqrt(7))/(2*a**4 + 8*a**3*b + 12*a**2*b**2 - 20*a**2 + 8*a*b**3 - 40*a*b + 2*b**4 - 20*b**2 + 8)) assert radsimp(1/(r2*a + r2*b + r2*c + r2*d)) == \ sqrt(2)/(2*a + 2*b + 2*c + 2*d) assert radsimp(1/(1 + r2*a + r2*b + r2*c + r2*d)) == ( (sqrt(2)*a + sqrt(2)*b + sqrt(2)*c + sqrt(2)*d - 1)/(2*a**2 + 4*a*b + 4*a*c + 4*a*d + 2*b**2 + 4*b*c + 4*b*d + 2*c**2 + 4*c*d + 2*d**2 - 1)) assert radsimp((y**2 - x)/(y - sqrt(x))) == \ sqrt(x) + y assert radsimp(-(y**2 - x)/(y - sqrt(x))) == \ -(sqrt(x) + y) assert radsimp(1/(1 - I + a*I)) == \ (-I*a + 1 + I)/(a**2 - 2*a + 2) assert radsimp(1/((-x + y)*(x - sqrt(y)))) == \ (-x - sqrt(y))/((x - y)*(x**2 - y)) e = (3 + 3*sqrt(2))*x*(3*x - 3*sqrt(y)) assert radsimp(e) == x*(3 + 3*sqrt(2))*(3*x - 3*sqrt(y)) assert radsimp(1/e) == ( (-9*x + 9*sqrt(2)*x - 9*sqrt(y) + 9*sqrt(2)*sqrt(y))/(9*x*(9*x**2 - 9*y))) assert radsimp(1 + 1/(1 + sqrt(3))) == \ Mul(S.Half, -1 + sqrt(3), evaluate=False) + 1 A = symbols("A", commutative=False) assert radsimp(x**2 + sqrt(2)*x**2 - sqrt(2)*x*A) == \ x**2 + sqrt(2)*x**2 - sqrt(2)*x*A assert radsimp(1/sqrt(5 + 2 * sqrt(6))) == -sqrt(2) + sqrt(3) assert radsimp(1/sqrt(5 + 2 * sqrt(6))**3) == -(-sqrt(3) + sqrt(2))**3 # issue 6532 assert fraction(radsimp(1/sqrt(x))) == (sqrt(x), x) assert fraction(radsimp(1/sqrt(2*x + 3))) == (sqrt(2*x + 3), 2*x + 3) assert fraction(radsimp(1/sqrt(2*(x + 3)))) == (sqrt(2*x + 6), 2*x + 6) # issue 5994 e = S('-(2 + 2*sqrt(2) + 4*2**(1/4))/' '(1 + 2**(3/4) + 3*2**(1/4) + 3*sqrt(2))') assert radsimp(e).expand() == -2*2**Rational(3, 4) - 2*2**Rational(1, 4) + 2 + 2*sqrt(2) # issue 5986 (modifications to radimp didn't initially recognize this so # the test is included here) assert radsimp(1/(-sqrt(5)/2 - S.Half + (-sqrt(5)/2 - S.Half)**2)) == 1 # from issue 5934 eq = ( (-240*sqrt(2)*sqrt(sqrt(5) + 5)*sqrt(8*sqrt(5) + 40) - 360*sqrt(2)*sqrt(-8*sqrt(5) + 40)*sqrt(-sqrt(5) + 5) - 120*sqrt(10)*sqrt(-8*sqrt(5) + 40)*sqrt(-sqrt(5) + 5) + 120*sqrt(2)*sqrt(-sqrt(5) + 5)*sqrt(8*sqrt(5) + 40) + 120*sqrt(2)*sqrt(-8*sqrt(5) + 40)*sqrt(sqrt(5) + 5) + 120*sqrt(10)*sqrt(-sqrt(5) + 5)*sqrt(8*sqrt(5) + 40) + 120*sqrt(10)*sqrt(-8*sqrt(5) + 40)*sqrt(sqrt(5) + 5))/(-36000 - 7200*sqrt(5) + (12*sqrt(10)*sqrt(sqrt(5) + 5) + 24*sqrt(10)*sqrt(-sqrt(5) + 5))**2)) assert radsimp(eq) is S.NaN # it's 0/0 # work with normal form e = 1/sqrt(sqrt(7)/7 + 2*sqrt(2) + 3*sqrt(3) + 5*sqrt(5)) + 3 assert radsimp(e) == ( -sqrt(sqrt(7) + 14*sqrt(2) + 21*sqrt(3) + 35*sqrt(5))*(-11654899*sqrt(35) - 1577436*sqrt(210) - 1278438*sqrt(15) - 1346996*sqrt(10) + 1635060*sqrt(6) + 5709765 + 7539830*sqrt(14) + 8291415*sqrt(21))/1300423175 + 3) # obey power rules base = sqrt(3) - sqrt(2) assert radsimp(1/base**3) == (sqrt(3) + sqrt(2))**3 assert radsimp(1/(-base)**3) == -(sqrt(2) + sqrt(3))**3 assert radsimp(1/(-base)**x) == (-base)**(-x) assert radsimp(1/base**x) == (sqrt(2) + sqrt(3))**x assert radsimp(root(1/(-1 - sqrt(2)), -x)) == (-1)**(-1/x)*(1 + sqrt(2))**(1/x) # recurse e = cos(1/(1 + sqrt(2))) assert radsimp(e) == cos(-sqrt(2) + 1) assert radsimp(e/2) == cos(-sqrt(2) + 1)/2 assert radsimp(1/e) == 1/cos(-sqrt(2) + 1) assert radsimp(2/e) == 2/cos(-sqrt(2) + 1) assert fraction(radsimp(e/sqrt(x))) == (sqrt(x)*cos(-sqrt(2)+1), x) # test that symbolic denominators are not processed r = 1 + sqrt(2) assert radsimp(x/r, symbolic=False) == -x*(-sqrt(2) + 1) assert radsimp(x/(y + r), symbolic=False) == x/(y + 1 + sqrt(2)) assert radsimp(x/(y + r)/r, symbolic=False) == \ -x*(-sqrt(2) + 1)/(y + 1 + sqrt(2)) # issue 7408 eq = sqrt(x)/sqrt(y) assert radsimp(eq) == umul(sqrt(x), sqrt(y), 1/y) assert radsimp(eq, symbolic=False) == eq # issue 7498 assert radsimp(sqrt(x)/sqrt(y)**3) == umul(sqrt(x), sqrt(y**3), 1/y**3) # for coverage eq = sqrt(x)/y**2 assert radsimp(eq) == eq def test_radsimp_issue_3214(): c, p = symbols('c p', positive=True) s = sqrt(c**2 - p**2) b = (c + I*p - s)/(c + I*p + s) assert radsimp(b) == -I*(c + I*p - sqrt(c**2 - p**2))**2/(2*c*p) def test_collect_1(): """Collect with respect to a Symbol""" x, y, z, n = symbols('x,y,z,n') assert collect(1, x) == 1 assert collect( x + y*x, x ) == x * (1 + y) assert collect( x + x**2, x ) == x + x**2 assert collect( x**2 + y*x**2, x ) == (x**2)*(1 + y) assert collect( x**2 + y*x, x ) == x*y + x**2 assert collect( 2*x**2 + y*x**2 + 3*x*y, [x] ) == x**2*(2 + y) + 3*x*y assert collect( 2*x**2 + y*x**2 + 3*x*y, [y] ) == 2*x**2 + y*(x**2 + 3*x) assert collect( ((1 + y + x)**4).expand(), x) == ((1 + y)**4).expand() + \ x*(4*(1 + y)**3).expand() + x**2*(6*(1 + y)**2).expand() + \ x**3*(4*(1 + y)).expand() + x**4 # symbols can be given as any iterable expr = x + y assert collect(expr, expr.free_symbols) == expr def test_collect_2(): """Collect with respect to a sum""" a, b, x = symbols('a,b,x') assert collect(a*(cos(x) + sin(x)) + b*(cos(x) + sin(x)), sin(x) + cos(x)) == (a + b)*(cos(x) + sin(x)) def test_collect_3(): """Collect with respect to a product""" a, b, c = symbols('a,b,c') f = Function('f') x, y, z, n = symbols('x,y,z,n') assert collect(-x/8 + x*y, -x) == x*(y - Rational(1, 8)) assert collect( 1 + x*(y**2), x*y ) == 1 + x*(y**2) assert collect( x*y + a*x*y, x*y) == x*y*(1 + a) assert collect( 1 + x*y + a*x*y, x*y) == 1 + x*y*(1 + a) assert collect(a*x*f(x) + b*(x*f(x)), x*f(x)) == x*(a + b)*f(x) assert collect(a*x*log(x) + b*(x*log(x)), x*log(x)) == x*(a + b)*log(x) assert collect(a*x**2*log(x)**2 + b*(x*log(x))**2, x*log(x)) == \ x**2*log(x)**2*(a + b) # with respect to a product of three symbols assert collect(y*x*z + a*x*y*z, x*y*z) == (1 + a)*x*y*z def test_collect_4(): """Collect with respect to a power""" a, b, c, x = symbols('a,b,c,x') assert collect(a*x**c + b*x**c, x**c) == x**c*(a + b) # issue 6096: 2 stays with c (unless c is integer or x is positive0 assert collect(a*x**(2*c) + b*x**(2*c), x**c) == x**(2*c)*(a + b) def test_collect_5(): """Collect with respect to a tuple""" a, x, y, z, n = symbols('a,x,y,z,n') assert collect(x**2*y**4 + z*(x*y**2)**2 + z + a*z, [x*y**2, z]) in [ z*(1 + a + x**2*y**4) + x**2*y**4, z*(1 + a) + x**2*y**4*(1 + z) ] assert collect((1 + (x + y) + (x + y)**2).expand(), [x, y]) == 1 + y + x*(1 + 2*y) + x**2 + y**2 def test_collect_D(): D = Derivative f = Function('f') x, a, b = symbols('x,a,b') fx = D(f(x), x) fxx = D(f(x), x, x) assert collect(a*fx + b*fx, fx) == (a + b)*fx assert collect(a*D(fx, x) + b*D(fx, x), fx) == (a + b)*D(fx, x) assert collect(a*fxx + b*fxx, fx) == (a + b)*D(fx, x) # issue 4784 assert collect(5*f(x) + 3*fx, fx) == 5*f(x) + 3*fx assert collect(f(x) + f(x)*diff(f(x), x) + x*diff(f(x), x)*f(x), f(x).diff(x)) == \ (x*f(x) + f(x))*D(f(x), x) + f(x) assert collect(f(x) + f(x)*diff(f(x), x) + x*diff(f(x), x)*f(x), f(x).diff(x), exact=True) == \ (x*f(x) + f(x))*D(f(x), x) + f(x) assert collect(1/f(x) + 1/f(x)*diff(f(x), x) + x*diff(f(x), x)/f(x), f(x).diff(x), exact=True) == \ (1/f(x) + x/f(x))*D(f(x), x) + 1/f(x) e = (1 + x*fx + fx)/f(x) assert collect(e.expand(), fx) == fx*(x/f(x) + 1/f(x)) + 1/f(x) def test_collect_func(): f = ((x + a + 1)**3).expand() assert collect(f, x) == a**3 + 3*a**2 + 3*a + x**3 + x**2*(3*a + 3) + \ x*(3*a**2 + 6*a + 3) + 1 assert collect(f, x, factor) == x**3 + 3*x**2*(a + 1) + 3*x*(a + 1)**2 + \ (a + 1)**3 assert collect(f, x, evaluate=False) == { S.One: a**3 + 3*a**2 + 3*a + 1, x: 3*a**2 + 6*a + 3, x**2: 3*a + 3, x**3: 1 } assert collect(f, x, factor, evaluate=False) == { S.One: (a + 1)**3, x: 3*(a + 1)**2, x**2: umul(S(3), a + 1), x**3: 1} def test_collect_order(): a, b, x, t = symbols('a,b,x,t') assert collect(t + t*x + t*x**2 + O(x**3), t) == t*(1 + x + x**2 + O(x**3)) assert collect(t + t*x + x**2 + O(x**3), t) == \ t*(1 + x + O(x**3)) + x**2 + O(x**3) f = a*x + b*x + c*x**2 + d*x**2 + O(x**3) g = x*(a + b) + x**2*(c + d) + O(x**3) assert collect(f, x) == g assert collect(f, x, distribute_order_term=False) == g f = sin(a + b).series(b, 0, 10) assert collect(f, [sin(a), cos(a)]) == \ sin(a)*cos(b).series(b, 0, 10) + cos(a)*sin(b).series(b, 0, 10) assert collect(f, [sin(a), cos(a)], distribute_order_term=False) == \ sin(a)*cos(b).series(b, 0, 10).removeO() + \ cos(a)*sin(b).series(b, 0, 10).removeO() + O(b**10) def test_rcollect(): assert rcollect((x**2*y + x*y + x + y)/(x + y), y) == \ (x + y*(1 + x + x**2))/(x + y) assert rcollect(sqrt(-((x + 1)*(y + 1))), z) == sqrt(-((x + 1)*(y + 1))) def test_collect_D_0(): D = Derivative f = Function('f') x, a, b = symbols('x,a,b') fxx = D(f(x), x, x) assert collect(a*fxx + b*fxx, fxx) == (a + b)*fxx def test_collect_Wild(): """Collect with respect to functions with Wild argument""" a, b, x, y = symbols('a b x y') f = Function('f') w1 = Wild('.1') w2 = Wild('.2') assert collect(f(x) + a*f(x), f(w1)) == (1 + a)*f(x) assert collect(f(x, y) + a*f(x, y), f(w1)) == f(x, y) + a*f(x, y) assert collect(f(x, y) + a*f(x, y), f(w1, w2)) == (1 + a)*f(x, y) assert collect(f(x, y) + a*f(x, y), f(w1, w1)) == f(x, y) + a*f(x, y) assert collect(f(x, x) + a*f(x, x), f(w1, w1)) == (1 + a)*f(x, x) assert collect(a*(x + 1)**y + (x + 1)**y, w1**y) == (1 + a)*(x + 1)**y assert collect(a*(x + 1)**y + (x + 1)**y, w1**b) == \ a*(x + 1)**y + (x + 1)**y assert collect(a*(x + 1)**y + (x + 1)**y, (x + 1)**w2) == \ (1 + a)*(x + 1)**y assert collect(a*(x + 1)**y + (x + 1)**y, w1**w2) == (1 + a)*(x + 1)**y def test_collect_const(): # coverage not provided by above tests assert collect_const(2*sqrt(3) + 4*a*sqrt(5)) == \ 2*(2*sqrt(5)*a + sqrt(3)) # let the primitive reabsorb assert collect_const(2*sqrt(3) + 4*a*sqrt(5), sqrt(3)) == \ 2*sqrt(3) + 4*a*sqrt(5) assert collect_const(sqrt(2)*(1 + sqrt(2)) + sqrt(3) + x*sqrt(2)) == \ sqrt(2)*(x + 1 + sqrt(2)) + sqrt(3) # issue 5290 assert collect_const(2*x + 2*y + 1, 2) == \ collect_const(2*x + 2*y + 1) == \ Add(S.One, Mul(2, x + y, evaluate=False), evaluate=False) assert collect_const(-y - z) == Mul(-1, y + z, evaluate=False) assert collect_const(2*x - 2*y - 2*z, 2) == \ Mul(2, x - y - z, evaluate=False) assert collect_const(2*x - 2*y - 2*z, -2) == \ _unevaluated_Add(2*x, Mul(-2, y + z, evaluate=False)) # this is why the content_primitive is used eq = (sqrt(15 + 5*sqrt(2))*x + sqrt(3 + sqrt(2))*y)*2 assert collect_sqrt(eq + 2) == \ 2*sqrt(sqrt(2) + 3)*(sqrt(5)*x + y) + 2 # issue 16296 assert collect_const(a + b + x/2 + y/2) == a + b + Mul(S.Half, x + y, evaluate=False) def test_issue_13143(): f = Function('f') fx = f(x).diff(x) e = f(x) + fx + f(x)*fx # collect function before derivative assert collect(e, Wild('w')) == f(x)*(fx + 1) + fx e = f(x) + f(x)*fx + x*fx*f(x) assert collect(e, fx) == (x*f(x) + f(x))*fx + f(x) assert collect(e, f(x)) == (x*fx + fx + 1)*f(x) e = f(x) + fx + f(x)*fx assert collect(e, [f(x), fx]) == f(x)*(1 + fx) + fx assert collect(e, [fx, f(x)]) == fx*(1 + f(x)) + f(x) def test_issue_6097(): assert collect(a*y**(2.0*x) + b*y**(2.0*x), y**x) == y**(2.0*x)*(a + b) assert collect(a*2**(2.0*x) + b*2**(2.0*x), 2**x) == 2**(2.0*x)*(a + b) def test_fraction_expand(): eq = (x + y)*y/x assert eq.expand(frac=True) == fraction_expand(eq) == (x*y + y**2)/x assert eq.expand() == y + y**2/x def test_fraction(): x, y, z = map(Symbol, 'xyz') A = Symbol('A', commutative=False) assert fraction(S.Half) == (1, 2) assert fraction(x) == (x, 1) assert fraction(1/x) == (1, x) assert fraction(x/y) == (x, y) assert fraction(x/2) == (x, 2) assert fraction(x*y/z) == (x*y, z) assert fraction(x/(y*z)) == (x, y*z) assert fraction(1/y**2) == (1, y**2) assert fraction(x/y**2) == (x, y**2) assert fraction((x**2 + 1)/y) == (x**2 + 1, y) assert fraction(x*(y + 1)/y**7) == (x*(y + 1), y**7) assert fraction(exp(-x), exact=True) == (exp(-x), 1) assert fraction((1/(x + y))/2, exact=True) == (1, Mul(2,(x + y), evaluate=False)) assert fraction(x*A/y) == (x*A, y) assert fraction(x*A**-1/y) == (x*A**-1, y) n = symbols('n', negative=True) assert fraction(exp(n)) == (1, exp(-n)) assert fraction(exp(-n)) == (exp(-n), 1) p = symbols('p', positive=True) assert fraction(exp(-p)*log(p), exact=True) == (exp(-p)*log(p), 1) def test_issue_5615(): aA, Re, a, b, D = symbols('aA Re a b D') e = ((D**3*a + b*aA**3)/Re).expand() assert collect(e, [aA**3/Re, a]) == e def test_issue_5933(): from sympy import Polygon, RegularPolygon, denom x = Polygon(*RegularPolygon((0, 0), 1, 5).vertices).centroid.x assert abs(denom(x).n()) > 1e-12 assert abs(denom(radsimp(x))) > 1e-12 # in case simplify didn't handle it def test_issue_14608(): a, b = symbols('a b', commutative=False) x, y = symbols('x y') raises(AttributeError, lambda: collect(a*b + b*a, a)) assert collect(x*y + y*(x+1), a) == x*y + y*(x+1) assert collect(x*y + y*(x+1) + a*b + b*a, y) == y*(2*x + 1) + a*b + b*a def test_collect_abs(): s = abs(x) + abs(y) assert collect_abs(s) == s assert unchanged(Mul, abs(x), abs(y)) ans = Abs(x*y) assert isinstance(ans, Abs) assert collect_abs(abs(x)*abs(y)) == ans assert collect_abs(1 + exp(abs(x)*abs(y))) == 1 + exp(ans) # See https://github.com/sympy/sympy/issues/12910 p = Symbol('p', positive=True) assert collect_abs(p/abs(1-p)).is_commutative is True
339a602702b63174df75819afd1a9eee47356be6a63065ad8cfef499f8696735
from sympy import ( Abs, acos, Add, asin, atan, Basic, binomial, besselsimp, collect,cos, cosh, cot, coth, count_ops, csch, Derivative, diff, E, Eq, erf, exp, exp_polar, expand, expand_multinomial, factor, factorial, Float, fraction, Function, gamma, GoldenRatio, hyper, hypersimp, I, Integral, integrate, KroneckerDelta, log, logcombine, Lt, Matrix, MatrixSymbol, Mul, nsimplify, O, oo, pi, Piecewise, posify, rad, Rational, root, S, separatevars, signsimp, simplify, sign, sin, sinc, sinh, solve, sqrt, Sum, Symbol, symbols, sympify, tan, tanh, zoo) from sympy.core.mul import _keep_coeff from sympy.core.expr import unchanged from sympy.simplify.simplify import nthroot, inversecombine from sympy.utilities.pytest import XFAIL, slow, raises from sympy.core.compatibility import range, PY3 from sympy.abc import x, y, z, t, a, b, c, d, e, f, g, h, i, k def test_issue_7263(): assert abs((simplify(30.8**2 - 82.5**2 * sin(rad(11.6))**2)).evalf() - \ 673.447451402970) < 1e-12 @XFAIL def test_factorial_simplify(): # There are more tests in test_factorials.py. These are just to # ensure that simplify() calls factorial_simplify correctly from sympy.specfun.factorials import factorial x = Symbol('x') assert simplify(factorial(x)/x) == factorial(x - 1) assert simplify(factorial(factorial(x))) == factorial(factorial(x)) def test_simplify_expr(): x, y, z, k, n, m, w, s, A = symbols('x,y,z,k,n,m,w,s,A') f = Function('f') assert all(simplify(tmp) == tmp for tmp in [I, E, oo, x, -x, -oo, -E, -I]) e = 1/x + 1/y assert e != (x + y)/(x*y) assert simplify(e) == (x + y)/(x*y) e = A**2*s**4/(4*pi*k*m**3) assert simplify(e) == e e = (4 + 4*x - 2*(2 + 2*x))/(2 + 2*x) assert simplify(e) == 0 e = (-4*x*y**2 - 2*y**3 - 2*x**2*y)/(x + y)**2 assert simplify(e) == -2*y e = -x - y - (x + y)**(-1)*y**2 + (x + y)**(-1)*x**2 assert simplify(e) == -2*y e = (x + x*y)/x assert simplify(e) == 1 + y e = (f(x) + y*f(x))/f(x) assert simplify(e) == 1 + y e = (2 * (1/n - cos(n * pi)/n))/pi assert simplify(e) == (-cos(pi*n) + 1)/(pi*n)*2 e = integrate(1/(x**3 + 1), x).diff(x) assert simplify(e) == 1/(x**3 + 1) e = integrate(x/(x**2 + 3*x + 1), x).diff(x) assert simplify(e) == x/(x**2 + 3*x + 1) f = Symbol('f') A = Matrix([[2*k - m*w**2, -k], [-k, k - m*w**2]]).inv() assert simplify((A*Matrix([0, f]))[1]) == \ -f*(2*k - m*w**2)/(k**2 - (k - m*w**2)*(2*k - m*w**2)) f = -x + y/(z + t) + z*x/(z + t) + z*a/(z + t) + t*x/(z + t) assert simplify(f) == (y + a*z)/(z + t) # issue 10347 expr = -x*(y**2 - 1)*(2*y**2*(x**2 - 1)/(a*(x**2 - y**2)**2) + (x**2 - 1) /(a*(x**2 - y**2)))/(a*(x**2 - y**2)) + x*(-2*x**2*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(a*(x**2 - y**2)**2) - x**2*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(a*(x**2 - 1)*(x**2 - y**2)) + (x**2*sqrt((-x**2 + 1)* (y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(x**2 - 1) + sqrt( (-x**2 + 1)*(y**2 - 1))*(x*(-x*y**2 + x)/sqrt(-x**2*y**2 + x**2 + y**2 - 1) + sqrt(-x**2*y**2 + x**2 + y**2 - 1))*sin(z))/(a*sqrt((-x**2 + 1)*( y**2 - 1))*(x**2 - y**2)))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(a* (x**2 - y**2)) + x*(-2*x**2*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a* (x**2 - y**2)**2) - x**2*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a* (x**2 - 1)*(x**2 - y**2)) + (x**2*sqrt((-x**2 + 1)*(y**2 - 1))*sqrt(-x**2 *y**2 + x**2 + y**2 - 1)*cos(z)/(x**2 - 1) + x*sqrt((-x**2 + 1)*(y**2 - 1))*(-x*y**2 + x)*cos(z)/sqrt(-x**2*y**2 + x**2 + y**2 - 1) + sqrt((-x**2 + 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z))/(a*sqrt((-x**2 + 1)*(y**2 - 1))*(x**2 - y**2)))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos( z)/(a*(x**2 - y**2)) - y*sqrt((-x**2 + 1)*(y**2 - 1))*(-x*y*sqrt(-x**2* y**2 + x**2 + y**2 - 1)*sin(z)/(a*(x**2 - y**2)*(y**2 - 1)) + 2*x*y*sqrt( -x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(a*(x**2 - y**2)**2) + (x*y*sqrt(( -x**2 + 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(y**2 - 1) + x*sqrt((-x**2 + 1)*(y**2 - 1))*(-x**2*y + y)*sin(z)/sqrt(-x**2*y**2 + x**2 + y**2 - 1))/(a*sqrt((-x**2 + 1)*(y**2 - 1))*(x**2 - y**2)))*sin( z)/(a*(x**2 - y**2)) + y*(x**2 - 1)*(-2*x*y*(x**2 - 1)/(a*(x**2 - y**2) **2) + 2*x*y/(a*(x**2 - y**2)))/(a*(x**2 - y**2)) + y*(x**2 - 1)*(y**2 - 1)*(-x*y*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a*(x**2 - y**2)*(y**2 - 1)) + 2*x*y*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a*(x**2 - y**2) **2) + (x*y*sqrt((-x**2 + 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(y**2 - 1) + x*sqrt((-x**2 + 1)*(y**2 - 1))*(-x**2*y + y)*cos( z)/sqrt(-x**2*y**2 + x**2 + y**2 - 1))/(a*sqrt((-x**2 + 1)*(y**2 - 1) )*(x**2 - y**2)))*cos(z)/(a*sqrt((-x**2 + 1)*(y**2 - 1))*(x**2 - y**2) ) - x*sqrt((-x**2 + 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin( z)**2/(a**2*(x**2 - 1)*(x**2 - y**2)*(y**2 - 1)) - x*sqrt((-x**2 + 1)*( y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)**2/(a**2*(x**2 - 1)*( x**2 - y**2)*(y**2 - 1)) assert simplify(expr) == 2*x/(a**2*(x**2 - y**2)) #issue 17631 assert simplify('((-1/2)*Boole(True)*Boole(False)-1)*Boole(True)') == \ Mul(sympify('(2 + Boole(True)*Boole(False))'), sympify('-Boole(True)/2')) A, B = symbols('A,B', commutative=False) assert simplify(A*B - B*A) == A*B - B*A assert simplify(A/(1 + y/x)) == x*A/(x + y) assert simplify(A*(1/x + 1/y)) == A/x + A/y #(x + y)*A/(x*y) assert simplify(log(2) + log(3)) == log(6) assert simplify(log(2*x) - log(2)) == log(x) assert simplify(hyper([], [], x)) == exp(x) def test_issue_3557(): f_1 = x*a + y*b + z*c - 1 f_2 = x*d + y*e + z*f - 1 f_3 = x*g + y*h + z*i - 1 solutions = solve([f_1, f_2, f_3], x, y, z, simplify=False) assert simplify(solutions[y]) == \ (a*i + c*d + f*g - a*f - c*g - d*i)/ \ (a*e*i + b*f*g + c*d*h - a*f*h - b*d*i - c*e*g) def test_simplify_other(): assert simplify(sin(x)**2 + cos(x)**2) == 1 assert simplify(gamma(x + 1)/gamma(x)) == x assert simplify(sin(x)**2 + cos(x)**2 + factorial(x)/gamma(x)) == 1 + x assert simplify( Eq(sin(x)**2 + cos(x)**2, factorial(x)/gamma(x))) == Eq(x, 1) nc = symbols('nc', commutative=False) assert simplify(x + x*nc) == x*(1 + nc) # issue 6123 # f = exp(-I*(k*sqrt(t) + x/(2*sqrt(t)))**2) # ans = integrate(f, (k, -oo, oo), conds='none') ans = I*(-pi*x*exp(I*pi*Rational(-3, 4) + I*x**2/(4*t))*erf(x*exp(I*pi*Rational(-3, 4))/ (2*sqrt(t)))/(2*sqrt(t)) + pi*x*exp(I*pi*Rational(-3, 4) + I*x**2/(4*t))/ (2*sqrt(t)))*exp(-I*x**2/(4*t))/(sqrt(pi)*x) - I*sqrt(pi) * \ (-erf(x*exp(I*pi/4)/(2*sqrt(t))) + 1)*exp(I*pi/4)/(2*sqrt(t)) assert simplify(ans) == -(-1)**Rational(3, 4)*sqrt(pi)/sqrt(t) # issue 6370 assert simplify(2**(2 + x)/4) == 2**x def test_simplify_complex(): cosAsExp = cos(x)._eval_rewrite_as_exp(x) tanAsExp = tan(x)._eval_rewrite_as_exp(x) assert simplify(cosAsExp*tanAsExp) == sin(x) # issue 4341 # issue 10124 assert simplify(exp(Matrix([[0, -1], [1, 0]]))) == Matrix([[cos(1), -sin(1)], [sin(1), cos(1)]]) def test_simplify_ratio(): # roots of x**3-3*x+5 roots = ['(1/2 - sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3) + 1/((1/2 - ' 'sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3))', '1/((1/2 + sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3)) + ' '(1/2 + sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3)', '-(sqrt(21)/2 + 5/2)**(1/3) - 1/(sqrt(21)/2 + 5/2)**(1/3)'] for r in roots: r = S(r) assert count_ops(simplify(r, ratio=1)) <= count_ops(r) # If ratio=oo, simplify() is always applied: assert simplify(r, ratio=oo) is not r def test_simplify_measure(): measure1 = lambda expr: len(str(expr)) measure2 = lambda expr: -count_ops(expr) # Return the most complicated result expr = (x + 1)/(x + sin(x)**2 + cos(x)**2) assert measure1(simplify(expr, measure=measure1)) <= measure1(expr) assert measure2(simplify(expr, measure=measure2)) <= measure2(expr) expr2 = Eq(sin(x)**2 + cos(x)**2, 1) assert measure1(simplify(expr2, measure=measure1)) <= measure1(expr2) assert measure2(simplify(expr2, measure=measure2)) <= measure2(expr2) def test_simplify_rational(): expr = 2**x*2.**y assert simplify(expr, rational = True) == 2**(x+y) assert simplify(expr, rational = None) == 2.0**(x+y) assert simplify(expr, rational = False) == expr def test_simplify_issue_1308(): assert simplify(exp(Rational(-1, 2)) + exp(Rational(-3, 2))) == \ (1 + E)*exp(Rational(-3, 2)) def test_issue_5652(): assert simplify(E + exp(-E)) == exp(-E) + E n = symbols('n', commutative=False) assert simplify(n + n**(-n)) == n + n**(-n) def test_simplify_fail1(): x = Symbol('x') y = Symbol('y') e = (x + y)**2/(-4*x*y**2 - 2*y**3 - 2*x**2*y) assert simplify(e) == 1 / (-2*y) def test_nthroot(): assert nthroot(90 + 34*sqrt(7), 3) == sqrt(7) + 3 q = 1 + sqrt(2) - 2*sqrt(3) + sqrt(6) + sqrt(7) assert nthroot(expand_multinomial(q**3), 3) == q assert nthroot(41 + 29*sqrt(2), 5) == 1 + sqrt(2) assert nthroot(-41 - 29*sqrt(2), 5) == -1 - sqrt(2) expr = 1320*sqrt(10) + 4216 + 2576*sqrt(6) + 1640*sqrt(15) assert nthroot(expr, 5) == 1 + sqrt(6) + sqrt(15) q = 1 + sqrt(2) + sqrt(3) + sqrt(5) assert expand_multinomial(nthroot(expand_multinomial(q**5), 5)) == q q = 1 + sqrt(2) + 7*sqrt(6) + 2*sqrt(10) assert nthroot(expand_multinomial(q**5), 5, 8) == q q = 1 + sqrt(2) - 2*sqrt(3) + 1171*sqrt(6) assert nthroot(expand_multinomial(q**3), 3) == q assert nthroot(expand_multinomial(q**6), 6) == q def test_nthroot1(): q = 1 + sqrt(2) + sqrt(3) + S.One/10**20 p = expand_multinomial(q**5) assert nthroot(p, 5) == q q = 1 + sqrt(2) + sqrt(3) + S.One/10**30 p = expand_multinomial(q**5) assert nthroot(p, 5) == q def test_separatevars(): x, y, z, n = symbols('x,y,z,n') assert separatevars(2*n*x*z + 2*x*y*z) == 2*x*z*(n + y) assert separatevars(x*z + x*y*z) == x*z*(1 + y) assert separatevars(pi*x*z + pi*x*y*z) == pi*x*z*(1 + y) assert separatevars(x*y**2*sin(x) + x*sin(x)*sin(y)) == \ x*(sin(y) + y**2)*sin(x) assert separatevars(x*exp(x + y) + x*exp(x)) == x*(1 + exp(y))*exp(x) assert separatevars((x*(y + 1))**z).is_Pow # != x**z*(1 + y)**z assert separatevars(1 + x + y + x*y) == (x + 1)*(y + 1) assert separatevars(y/pi*exp(-(z - x)/cos(n))) == \ y*exp(x/cos(n))*exp(-z/cos(n))/pi assert separatevars((x + y)*(x - y) + y**2 + 2*x + 1) == (x + 1)**2 # issue 4858 p = Symbol('p', positive=True) assert separatevars(sqrt(p**2 + x*p**2)) == p*sqrt(1 + x) assert separatevars(sqrt(y*(p**2 + x*p**2))) == p*sqrt(y*(1 + x)) assert separatevars(sqrt(y*(p**2 + x*p**2)), force=True) == \ p*sqrt(y)*sqrt(1 + x) # issue 4865 assert separatevars(sqrt(x*y)).is_Pow assert separatevars(sqrt(x*y), force=True) == sqrt(x)*sqrt(y) # issue 4957 # any type sequence for symbols is fine assert separatevars(((2*x + 2)*y), dict=True, symbols=()) == \ {'coeff': 1, x: 2*x + 2, y: y} # separable assert separatevars(((2*x + 2)*y), dict=True, symbols=[x]) == \ {'coeff': y, x: 2*x + 2} assert separatevars(((2*x + 2)*y), dict=True, symbols=[]) == \ {'coeff': 1, x: 2*x + 2, y: y} assert separatevars(((2*x + 2)*y), dict=True) == \ {'coeff': 1, x: 2*x + 2, y: y} assert separatevars(((2*x + 2)*y), dict=True, symbols=None) == \ {'coeff': y*(2*x + 2)} # not separable assert separatevars(3, dict=True) is None assert separatevars(2*x + y, dict=True, symbols=()) is None assert separatevars(2*x + y, dict=True) is None assert separatevars(2*x + y, dict=True, symbols=None) == {'coeff': 2*x + y} # issue 4808 n, m = symbols('n,m', commutative=False) assert separatevars(m + n*m) == (1 + n)*m assert separatevars(x + x*n) == x*(1 + n) # issue 4910 f = Function('f') assert separatevars(f(x) + x*f(x)) == f(x) + x*f(x) # a noncommutable object present eq = x*(1 + hyper((), (), y*z)) assert separatevars(eq) == eq s = separatevars(abs(x*y)) assert s == abs(x)*abs(y) and s.is_Mul z = cos(1)**2 + sin(1)**2 - 1 a = abs(x*z) s = separatevars(a) assert not a.is_Mul and s.is_Mul and s == abs(x)*abs(z) s = separatevars(abs(x*y*z)) assert s == abs(x)*abs(y)*abs(z) # abs(x+y)/abs(z) would be better but we test this here to # see that it doesn't raise assert separatevars(abs((x+y)/z)) == abs((x+y)/z) def test_separatevars_advanced_factor(): x, y, z = symbols('x,y,z') assert separatevars(1 + log(x)*log(y) + log(x) + log(y)) == \ (log(x) + 1)*(log(y) + 1) assert separatevars(1 + x - log(z) - x*log(z) - exp(y)*log(z) - x*exp(y)*log(z) + x*exp(y) + exp(y)) == \ -((x + 1)*(log(z) - 1)*(exp(y) + 1)) x, y = symbols('x,y', positive=True) assert separatevars(1 + log(x**log(y)) + log(x*y)) == \ (log(x) + 1)*(log(y) + 1) def test_hypersimp(): n, k = symbols('n,k', integer=True) assert hypersimp(factorial(k), k) == k + 1 assert hypersimp(factorial(k**2), k) is None assert hypersimp(1/factorial(k), k) == 1/(k + 1) assert hypersimp(2**k/factorial(k)**2, k) == 2/(k + 1)**2 assert hypersimp(binomial(n, k), k) == (n - k)/(k + 1) assert hypersimp(binomial(n + 1, k), k) == (n - k + 1)/(k + 1) term = (4*k + 1)*factorial(k)/factorial(2*k + 1) assert hypersimp(term, k) == S.Half*((4*k + 5)/(3 + 14*k + 8*k**2)) term = 1/((2*k - 1)*factorial(2*k + 1)) assert hypersimp(term, k) == (k - S.Half)/((k + 1)*(2*k + 1)*(2*k + 3)) term = binomial(n, k)*(-1)**k/factorial(k) assert hypersimp(term, k) == (k - n)/(k + 1)**2 def test_nsimplify(): x = Symbol("x") assert nsimplify(0) == 0 assert nsimplify(-1) == -1 assert nsimplify(1) == 1 assert nsimplify(1 + x) == 1 + x assert nsimplify(2.7) == Rational(27, 10) assert nsimplify(1 - GoldenRatio) == (1 - sqrt(5))/2 assert nsimplify((1 + sqrt(5))/4, [GoldenRatio]) == GoldenRatio/2 assert nsimplify(2/GoldenRatio, [GoldenRatio]) == 2*GoldenRatio - 2 assert nsimplify(exp(pi*I*Rational(5, 3), evaluate=False)) == \ sympify('1/2 - sqrt(3)*I/2') assert nsimplify(sin(pi*Rational(3, 5), evaluate=False)) == \ sympify('sqrt(sqrt(5)/8 + 5/8)') assert nsimplify(sqrt(atan('1', evaluate=False))*(2 + I), [pi]) == \ sqrt(pi) + sqrt(pi)/2*I assert nsimplify(2 + exp(2*atan('1/4')*I)) == sympify('49/17 + 8*I/17') assert nsimplify(pi, tolerance=0.01) == Rational(22, 7) assert nsimplify(pi, tolerance=0.001) == Rational(355, 113) assert nsimplify(0.33333, tolerance=1e-4) == Rational(1, 3) assert nsimplify(2.0**(1/3.), tolerance=0.001) == Rational(635, 504) assert nsimplify(2.0**(1/3.), tolerance=0.001, full=True) == \ 2**Rational(1, 3) assert nsimplify(x + .5, rational=True) == S.Half + x assert nsimplify(1/.3 + x, rational=True) == Rational(10, 3) + x assert nsimplify(log(3).n(), rational=True) == \ sympify('109861228866811/100000000000000') assert nsimplify(Float(0.272198261287950), [pi, log(2)]) == pi*log(2)/8 assert nsimplify(Float(0.272198261287950).n(3), [pi, log(2)]) == \ -pi/4 - log(2) + Rational(7, 4) assert nsimplify(x/7.0) == x/7 assert nsimplify(pi/1e2) == pi/100 assert nsimplify(pi/1e2, rational=False) == pi/100.0 assert nsimplify(pi/1e-7) == 10000000*pi assert not nsimplify( factor(-3.0*z**2*(z**2)**(-2.5) + 3*(z**2)**(-1.5))).atoms(Float) e = x**0.0 assert e.is_Pow and nsimplify(x**0.0) == 1 assert nsimplify(3.333333, tolerance=0.1, rational=True) == Rational(10, 3) assert nsimplify(3.333333, tolerance=0.01, rational=True) == Rational(10, 3) assert nsimplify(3.666666, tolerance=0.1, rational=True) == Rational(11, 3) assert nsimplify(3.666666, tolerance=0.01, rational=True) == Rational(11, 3) assert nsimplify(33, tolerance=10, rational=True) == Rational(33) assert nsimplify(33.33, tolerance=10, rational=True) == Rational(30) assert nsimplify(37.76, tolerance=10, rational=True) == Rational(40) assert nsimplify(-203.1) == Rational(-2031, 10) assert nsimplify(.2, tolerance=0) == Rational(1, 5) assert nsimplify(-.2, tolerance=0) == Rational(-1, 5) assert nsimplify(.2222, tolerance=0) == Rational(1111, 5000) assert nsimplify(-.2222, tolerance=0) == Rational(-1111, 5000) # issue 7211, PR 4112 assert nsimplify(S(2e-8)) == Rational(1, 50000000) # issue 7322 direct test assert nsimplify(1e-42, rational=True) != 0 # issue 10336 inf = Float('inf') infs = (-oo, oo, inf, -inf) for i in infs: ans = sign(i)*oo assert nsimplify(i) == ans assert nsimplify(i + x) == x + ans assert nsimplify(0.33333333, rational=True, rational_conversion='exact') == Rational(0.33333333) # Make sure nsimplify on expressions uses full precision assert nsimplify(pi.evalf(100)*x, rational_conversion='exact').evalf(100) == pi.evalf(100)*x def test_issue_9448(): tmp = sympify("1/(1 - (-1)**(2/3) - (-1)**(1/3)) + 1/(1 + (-1)**(2/3) + (-1)**(1/3))") assert nsimplify(tmp) == S.Half def test_extract_minus_sign(): x = Symbol("x") y = Symbol("y") a = Symbol("a") b = Symbol("b") assert simplify(-x/-y) == x/y assert simplify(-x/y) == -x/y assert simplify(x/y) == x/y assert simplify(x/-y) == -x/y assert simplify(-x/0) == zoo*x assert simplify(Rational(-5, 0)) is zoo assert simplify(-a*x/(-y - b)) == a*x/(b + y) def test_diff(): x = Symbol("x") y = Symbol("y") f = Function("f") g = Function("g") assert simplify(g(x).diff(x)*f(x).diff(x) - f(x).diff(x)*g(x).diff(x)) == 0 assert simplify(2*f(x)*f(x).diff(x) - diff(f(x)**2, x)) == 0 assert simplify(diff(1/f(x), x) + f(x).diff(x)/f(x)**2) == 0 assert simplify(f(x).diff(x, y) - f(x).diff(y, x)) == 0 def test_logcombine_1(): x, y = symbols("x,y") a = Symbol("a") z, w = symbols("z,w", positive=True) b = Symbol("b", real=True) assert logcombine(log(x) + 2*log(y)) == log(x) + 2*log(y) assert logcombine(log(x) + 2*log(y), force=True) == log(x*y**2) assert logcombine(a*log(w) + log(z)) == a*log(w) + log(z) assert logcombine(b*log(z) + b*log(x)) == log(z**b) + b*log(x) assert logcombine(b*log(z) - log(w)) == log(z**b/w) assert logcombine(log(x)*log(z)) == log(x)*log(z) assert logcombine(log(w)*log(x)) == log(w)*log(x) assert logcombine(cos(-2*log(z) + b*log(w))) in [cos(log(w**b/z**2)), cos(log(z**2/w**b))] assert logcombine(log(log(x) - log(y)) - log(z), force=True) == \ log(log(x/y)/z) assert logcombine((2 + I)*log(x), force=True) == (2 + I)*log(x) assert logcombine((x**2 + log(x) - log(y))/(x*y), force=True) == \ (x**2 + log(x/y))/(x*y) # the following could also give log(z*x**log(y**2)), what we # are testing is that a canonical result is obtained assert logcombine(log(x)*2*log(y) + log(z), force=True) == \ log(z*y**log(x**2)) assert logcombine((x*y + sqrt(x**4 + y**4) + log(x) - log(y))/(pi*x**Rational(2, 3)* sqrt(y)**3), force=True) == ( x*y + sqrt(x**4 + y**4) + log(x/y))/(pi*x**Rational(2, 3)*y**Rational(3, 2)) assert logcombine(gamma(-log(x/y))*acos(-log(x/y)), force=True) == \ acos(-log(x/y))*gamma(-log(x/y)) assert logcombine(2*log(z)*log(w)*log(x) + log(z) + log(w)) == \ log(z**log(w**2))*log(x) + log(w*z) assert logcombine(3*log(w) + 3*log(z)) == log(w**3*z**3) assert logcombine(x*(y + 1) + log(2) + log(3)) == x*(y + 1) + log(6) assert logcombine((x + y)*log(w) + (-x - y)*log(3)) == (x + y)*log(w/3) # a single unknown can combine assert logcombine(log(x) + log(2)) == log(2*x) eq = log(abs(x)) + log(abs(y)) assert logcombine(eq) == eq reps = {x: 0, y: 0} assert log(abs(x)*abs(y)).subs(reps) != eq.subs(reps) def test_logcombine_complex_coeff(): i = Integral((sin(x**2) + cos(x**3))/x, x) assert logcombine(i, force=True) == i assert logcombine(i + 2*log(x), force=True) == \ i + log(x**2) def test_issue_5950(): x, y = symbols("x,y", positive=True) assert logcombine(log(3) - log(2)) == log(Rational(3,2), evaluate=False) assert logcombine(log(x) - log(y)) == log(x/y) assert logcombine(log(Rational(3,2), evaluate=False) - log(2)) == \ log(Rational(3,4), evaluate=False) def test_posify(): from sympy.abc import x assert str(posify( x + Symbol('p', positive=True) + Symbol('n', negative=True))) == '(_x + n + p, {_x: x})' eq, rep = posify(1/x) assert log(eq).expand().subs(rep) == -log(x) assert str(posify([x, 1 + x])) == '([_x, _x + 1], {_x: x})' x = symbols('x') p = symbols('p', positive=True) n = symbols('n', negative=True) orig = [x, n, p] modified, reps = posify(orig) assert str(modified) == '[_x, n, p]' assert [w.subs(reps) for w in modified] == orig assert str(Integral(posify(1/x + y)[0], (y, 1, 3)).expand()) == \ 'Integral(1/_x, (y, 1, 3)) + Integral(_y, (y, 1, 3))' assert str(Sum(posify(1/x**n)[0], (n,1,3)).expand()) == \ 'Sum(_x**(-n), (n, 1, 3))' # issue 16438 k = Symbol('k', finite=True) eq, rep = posify(k) assert eq.assumptions0 == {'positive': True, 'zero': False, 'imaginary': False, 'nonpositive': False, 'commutative': True, 'hermitian': True, 'real': True, 'nonzero': True, 'nonnegative': True, 'negative': False, 'complex': True, 'finite': True, 'infinite': False, 'extended_real':True, 'extended_negative': False, 'extended_nonnegative': True, 'extended_nonpositive': False, 'extended_nonzero': True, 'extended_positive': True} def test_issue_4194(): # simplify should call cancel from sympy.abc import x, y f = Function('f') assert simplify((4*x + 6*f(y))/(2*x + 3*f(y))) == 2 @XFAIL def test_simplify_float_vs_integer(): # Test for issue 4473: # https://github.com/sympy/sympy/issues/4473 assert simplify(x**2.0 - x**2) == 0 assert simplify(x**2 - x**2.0) == 0 def test_as_content_primitive(): assert (x/2 + y).as_content_primitive() == (S.Half, x + 2*y) assert (x/2 + y).as_content_primitive(clear=False) == (S.One, x/2 + y) assert (y*(x/2 + y)).as_content_primitive() == (S.Half, y*(x + 2*y)) assert (y*(x/2 + y)).as_content_primitive(clear=False) == (S.One, y*(x/2 + y)) # although the _as_content_primitive methods do not alter the underlying structure, # the as_content_primitive function will touch up the expression and join # bases that would otherwise have not been joined. assert ((x*(2 + 2*x)*(3*x + 3)**2)).as_content_primitive() == \ (18, x*(x + 1)**3) assert (2 + 2*x + 2*y*(3 + 3*y)).as_content_primitive() == \ (2, x + 3*y*(y + 1) + 1) assert ((2 + 6*x)**2).as_content_primitive() == \ (4, (3*x + 1)**2) assert ((2 + 6*x)**(2*y)).as_content_primitive() == \ (1, (_keep_coeff(S(2), (3*x + 1)))**(2*y)) assert (5 + 10*x + 2*y*(3 + 3*y)).as_content_primitive() == \ (1, 10*x + 6*y*(y + 1) + 5) assert ((5*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive() == \ (11, x*(y + 1)) assert ((5*(x*(1 + y)) + 2*x*(3 + 3*y))**2).as_content_primitive() == \ (121, x**2*(y + 1)**2) assert (y**2).as_content_primitive() == \ (1, y**2) assert (S.Infinity).as_content_primitive() == (1, oo) eq = x**(2 + y) assert (eq).as_content_primitive() == (1, eq) assert (S.Half**(2 + x)).as_content_primitive() == (Rational(1, 4), 2**-x) assert (Rational(-1, 2)**(2 + x)).as_content_primitive() == \ (Rational(1, 4), (Rational(-1, 2))**x) assert (Rational(-1, 2)**(2 + x)).as_content_primitive() == \ (Rational(1, 4), Rational(-1, 2)**x) assert (4**((1 + y)/2)).as_content_primitive() == (2, 4**(y/2)) assert (3**((1 + y)/2)).as_content_primitive() == \ (1, 3**(Mul(S.Half, 1 + y, evaluate=False))) assert (5**Rational(3, 4)).as_content_primitive() == (1, 5**Rational(3, 4)) assert (5**Rational(7, 4)).as_content_primitive() == (5, 5**Rational(3, 4)) assert Add(z*Rational(5, 7), 0.5*x, y*Rational(3, 2), evaluate=False).as_content_primitive() == \ (Rational(1, 14), 7.0*x + 21*y + 10*z) assert (2**Rational(3, 4) + 2**Rational(1, 4)*sqrt(3)).as_content_primitive(radical=True) == \ (1, 2**Rational(1, 4)*(sqrt(2) + sqrt(3))) def test_signsimp(): e = x*(-x + 1) + x*(x - 1) assert signsimp(Eq(e, 0)) is S.true assert Abs(x - 1) == Abs(1 - x) assert signsimp(y - x) == y - x assert signsimp(y - x, evaluate=False) == Mul(-1, x - y, evaluate=False) def test_besselsimp(): from sympy import besselj, besseli, exp_polar, cosh, cosine_transform, bessely assert besselsimp(exp(-I*pi*y/2)*besseli(y, z*exp_polar(I*pi/2))) == \ besselj(y, z) assert besselsimp(exp(-I*pi*a/2)*besseli(a, 2*sqrt(x)*exp_polar(I*pi/2))) == \ besselj(a, 2*sqrt(x)) assert besselsimp(sqrt(2)*sqrt(pi)*x**Rational(1, 4)*exp(I*pi/4)*exp(-I*pi*a/2) * besseli(Rational(-1, 2), sqrt(x)*exp_polar(I*pi/2)) * besseli(a, sqrt(x)*exp_polar(I*pi/2))/2) == \ besselj(a, sqrt(x)) * cos(sqrt(x)) assert besselsimp(besseli(Rational(-1, 2), z)) == \ sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z)) assert besselsimp(besseli(a, z*exp_polar(-I*pi/2))) == \ exp(-I*pi*a/2)*besselj(a, z) assert cosine_transform(1/t*sin(a/t), t, y) == \ sqrt(2)*sqrt(pi)*besselj(0, 2*sqrt(a)*sqrt(y))/2 assert besselsimp(x**2*(a*(-2*besselj(5*I, x) + besselj(-2 + 5*I, x) + besselj(2 + 5*I, x)) + b*(-2*bessely(5*I, x) + bessely(-2 + 5*I, x) + bessely(2 + 5*I, x)))/4 + x*(a*(besselj(-1 + 5*I, x)/2 - besselj(1 + 5*I, x)/2) + b*(bessely(-1 + 5*I, x)/2 - bessely(1 + 5*I, x)/2)) + (x**2 + 25)*(a*besselj(5*I, x) + b*bessely(5*I, x))) == 0 assert besselsimp(81*x**2*(a*(besselj(Rational(-5, 3), 9*x) - 2*besselj(Rational(1, 3), 9*x) + besselj(Rational(7, 3), 9*x)) + b*(bessely(Rational(-5, 3), 9*x) - 2*bessely(Rational(1, 3), 9*x) + bessely(Rational(7, 3), 9*x)))/4 + x*(a*(9*besselj(Rational(-2, 3), 9*x)/2 - 9*besselj(Rational(4, 3), 9*x)/2) + b*(9*bessely(Rational(-2, 3), 9*x)/2 - 9*bessely(Rational(4, 3), 9*x)/2)) + (81*x**2 - Rational(1, 9))*(a*besselj(Rational(1, 3), 9*x) + b*bessely(Rational(1, 3), 9*x))) == 0 assert besselsimp(besselj(a-1,x) + besselj(a+1, x) - 2*a*besselj(a, x)/x) == 0 assert besselsimp(besselj(a-1,x) + besselj(a+1, x) + besselj(a, x)) == (2*a + x)*besselj(a, x)/x assert besselsimp(x**2* besselj(a,x) + x**3*besselj(a+1, x) + besselj(a+2, x)) == \ 2*a*x*besselj(a + 1, x) + x**3*besselj(a + 1, x) - x**2*besselj(a + 2, x) + 2*x*besselj(a + 1, x) + besselj(a + 2, x) def test_Piecewise(): e1 = x*(x + y) - y*(x + y) e2 = sin(x)**2 + cos(x)**2 e3 = expand((x + y)*y/x) s1 = simplify(e1) s2 = simplify(e2) s3 = simplify(e3) assert simplify(Piecewise((e1, x < e2), (e3, True))) == \ Piecewise((s1, x < s2), (s3, True)) def test_polymorphism(): class A(Basic): def _eval_simplify(x, **kwargs): return S.One a = A(5, 2) assert simplify(a) == 1 def test_issue_from_PR1599(): n1, n2, n3, n4 = symbols('n1 n2 n3 n4', negative=True) assert simplify(I*sqrt(n1)) == -sqrt(-n1) def test_issue_6811(): eq = (x + 2*y)*(2*x + 2) assert simplify(eq) == (x + 1)*(x + 2*y)*2 # reject the 2-arg Mul -- these are a headache for test writing assert simplify(eq.expand()) == \ 2*x**2 + 4*x*y + 2*x + 4*y def test_issue_6920(): e = [cos(x) + I*sin(x), cos(x) - I*sin(x), cosh(x) - sinh(x), cosh(x) + sinh(x)] ok = [exp(I*x), exp(-I*x), exp(-x), exp(x)] # wrap in f to show that the change happens wherever ei occurs f = Function('f') assert [simplify(f(ei)).args[0] for ei in e] == ok def test_issue_7001(): from sympy.abc import r, R assert simplify(-(r*Piecewise((pi*Rational(4, 3), r <= R), (-8*pi*R**3/(3*r**3), True)) + 2*Piecewise((pi*r*Rational(4, 3), r <= R), (4*pi*R**3/(3*r**2), True)))/(4*pi*r)) == \ Piecewise((-1, r <= R), (0, True)) def test_inequality_no_auto_simplify(): # no simplify on creation but can be simplified lhs = cos(x)**2 + sin(x)**2 rhs = 2 e = Lt(lhs, rhs, evaluate=False) assert e is not S.true assert simplify(e) def test_issue_9398(): from sympy import Number, cancel assert cancel(1e-14) != 0 assert cancel(1e-14*I) != 0 assert simplify(1e-14) != 0 assert simplify(1e-14*I) != 0 assert (I*Number(1.)*Number(10)**Number(-14)).simplify() != 0 assert cancel(1e-20) != 0 assert cancel(1e-20*I) != 0 assert simplify(1e-20) != 0 assert simplify(1e-20*I) != 0 assert cancel(1e-100) != 0 assert cancel(1e-100*I) != 0 assert simplify(1e-100) != 0 assert simplify(1e-100*I) != 0 f = Float("1e-1000") assert cancel(f) != 0 assert cancel(f*I) != 0 assert simplify(f) != 0 assert simplify(f*I) != 0 def test_issue_9324_simplify(): M = MatrixSymbol('M', 10, 10) e = M[0, 0] + M[5, 4] + 1304 assert simplify(e) == e def test_issue_13474(): x = Symbol('x') assert simplify(x + csch(sinc(1))) == x + csch(sinc(1)) def test_simplify_function_inverse(): # "inverse" attribute does not guarantee that f(g(x)) is x # so this simplification should not happen automatically. # See issue #12140 x, y = symbols('x, y') g = Function('g') class f(Function): def inverse(self, argindex=1): return g assert simplify(f(g(x))) == f(g(x)) assert inversecombine(f(g(x))) == x assert simplify(f(g(x)), inverse=True) == x assert simplify(f(g(sin(x)**2 + cos(x)**2)), inverse=True) == 1 assert simplify(f(g(x, y)), inverse=True) == f(g(x, y)) assert unchanged(asin, sin(x)) assert simplify(asin(sin(x))) == asin(sin(x)) assert simplify(2*asin(sin(3*x)), inverse=True) == 6*x assert simplify(log(exp(x))) == log(exp(x)) assert simplify(log(exp(x)), inverse=True) == x assert simplify(log(exp(x), 2), inverse=True) == x/log(2) assert simplify(log(exp(x), 2, evaluate=False), inverse=True) == x/log(2) def test_clear_coefficients(): from sympy.simplify.simplify import clear_coefficients assert clear_coefficients(4*y*(6*x + 3)) == (y*(2*x + 1), 0) assert clear_coefficients(4*y*(6*x + 3) - 2) == (y*(2*x + 1), Rational(1, 6)) assert clear_coefficients(4*y*(6*x + 3) - 2, x) == (y*(2*x + 1), x/12 + Rational(1, 6)) assert clear_coefficients(sqrt(2) - 2) == (sqrt(2), 2) assert clear_coefficients(4*sqrt(2) - 2) == (sqrt(2), S.Half) assert clear_coefficients(S(3), x) == (0, x - 3) assert clear_coefficients(S.Infinity, x) == (S.Infinity, x) assert clear_coefficients(-S.Pi, x) == (S.Pi, -x) assert clear_coefficients(2 - S.Pi/3, x) == (pi, -3*x + 6) def test_nc_simplify(): from sympy.simplify.simplify import nc_simplify from sympy.matrices.expressions import (MatrixExpr, MatAdd, MatMul, MatPow, Identity) from sympy.core import Pow from functools import reduce a, b, c, d = symbols('a b c d', commutative = False) x = Symbol('x') A = MatrixSymbol("A", x, x) B = MatrixSymbol("B", x, x) C = MatrixSymbol("C", x, x) D = MatrixSymbol("D", x, x) subst = {a: A, b: B, c: C, d:D} funcs = {Add: lambda x,y: x+y, Mul: lambda x,y: x*y } def _to_matrix(expr): if expr in subst: return subst[expr] if isinstance(expr, Pow): return MatPow(_to_matrix(expr.args[0]), expr.args[1]) elif isinstance(expr, (Add, Mul)): return reduce(funcs[expr.func],[_to_matrix(a) for a in expr.args]) else: return expr*Identity(x) def _check(expr, simplified, deep=True, matrix=True): assert nc_simplify(expr, deep=deep) == simplified assert expand(expr) == expand(simplified) if matrix: m_simp = _to_matrix(simplified).doit(inv_expand=False) assert nc_simplify(_to_matrix(expr), deep=deep) == m_simp _check(a*b*a*b*a*b*c*(a*b)**3*c, ((a*b)**3*c)**2) _check(a*b*(a*b)**-2*a*b, 1) _check(a**2*b*a*b*a*b*(a*b)**-1, a*(a*b)**2, matrix=False) _check(b*a*b**2*a*b**2*a*b**2, b*(a*b**2)**3) _check(a*b*a**2*b*a**2*b*a**3, (a*b*a)**3*a**2) _check(a**2*b*a**4*b*a**4*b*a**2, (a**2*b*a**2)**3) _check(a**3*b*a**4*b*a**4*b*a, a**3*(b*a**4)**3*a**-3) _check(a*b*a*b + a*b*c*x*a*b*c, (a*b)**2 + x*(a*b*c)**2) _check(a*b*a*b*c*a*b*a*b*c, ((a*b)**2*c)**2) _check(b**-1*a**-1*(a*b)**2, a*b) _check(a**-1*b*c**-1, (c*b**-1*a)**-1) expr = a**3*b*a**4*b*a**4*b*a**2*b*a**2*(b*a**2)**2*b*a**2*b*a**2 for i in range(10): expr *= a*b _check(expr, a**3*(b*a**4)**2*(b*a**2)**6*(a*b)**10) _check((a*b*a*b)**2, (a*b*a*b)**2, deep=False) _check(a*b*(c*d)**2, a*b*(c*d)**2) expr = b**-1*(a**-1*b**-1 - a**-1*c*b**-1)**-1*a**-1 assert nc_simplify(expr) == (1-c)**-1 # commutative expressions should be returned without an error assert nc_simplify(2*x**2) == 2*x**2 def test_issue_15965(): A = Sum(z*x**y, (x, 1, a)) anew = z*Sum(x**y, (x, 1, a)) B = Integral(x*y, x) bdo = x**2*y/2 assert simplify(A + B) == anew + bdo assert simplify(A) == anew assert simplify(B) == bdo assert simplify(B, doit=False) == y*Integral(x, x) def test_issue_17137(): assert simplify(cos(x)**I) == cos(x)**I assert simplify(cos(x)**(2 + 3*I)) == cos(x)**(2 + 3*I) def test_issue_7971(): z = Integral(x, (x, 1, 1)) assert z != 0 assert simplify(z) is S.Zero @slow def test_issue_17141_slow(): # Should not give RecursionError assert simplify((2**acos(I+1)**2).rewrite('log')) == 2**((pi + 2*I*log(-1 + sqrt(1 - 2*I) + I))**2/4) def test_issue_17141(): # Check that there is no RecursionError assert simplify(x**(1 / acos(I))) == x**(2/(pi - 2*I*log(1 + sqrt(2)))) assert simplify(acos(-I)**2*acos(I)**2) == \ log(1 + sqrt(2))**4 + pi**2*log(1 + sqrt(2))**2/2 + pi**4/16 assert simplify(2**acos(I)**2) == 2**((pi - 2*I*log(1 + sqrt(2)))**2/4) p = 2**acos(I+1)**2 assert simplify(p) == p def test_simplify_kroneckerdelta(): i, j = symbols("i j") K = KroneckerDelta assert simplify(K(i, j)) == K(i, j) assert simplify(K(0, j)) == K(0, j) assert simplify(K(i, 0)) == K(i, 0) assert simplify(K(0, j).rewrite(Piecewise) * K(1, j)) == 0 assert simplify(K(1, i) + Piecewise((1, Eq(j, 2)), (0, True))) == K(1, i) + K(2, j) # issue 17214 assert simplify(K(0, j) * K(1, j)) == 0 n = Symbol('n', integer=True) assert simplify(K(0, n) * K(1, n)) == 0 M = Matrix(4, 4, lambda i, j: K(j - i, n) if i <= j else 0) assert simplify(M**2) == Matrix([[K(0, n), 0, K(1, n), 0], [0, K(0, n), 0, K(1, n)], [0, 0, K(0, n), 0], [0, 0, 0, K(0, n)]]) def test_issue_17292(): assert simplify(abs(x)/abs(x**2)) == 1/abs(x) # this is bigger than the issue: check that deep processing works assert simplify(5*abs((x**2 - 1)/(x - 1))) == 5*Abs(x + 1)
38d17d8a2f8afffa5bdf69795c859fd9c1c77496df21fea71a0d4126b2537f42
import os from sympy import Symbol, symbols from sympy.codegen.ast import ( Assignment, Print, Declaration, FunctionDefinition, Return, real, FunctionCall, Variable, Element, integer ) from sympy.codegen.fnodes import ( allocatable, ArrayConstructor, isign, dsign, cmplx, kind, literal_dp, Program, Module, use, Subroutine, dimension, assumed_extent, ImpliedDoLoop, intent_out, size, Do, SubroutineCall, sum_, array, bind_C ) from sympy.codegen.futils import render_as_module from sympy.core.expr import unchanged from sympy.core.compatibility import PY3 from sympy.external import import_module from sympy.printing.fcode import fcode from sympy.utilities._compilation import has_fortran, compile_run_strings, compile_link_import_strings from sympy.utilities._compilation.util import TemporaryDirectory, may_xfail from sympy.utilities.pytest import skip cython = import_module('cython') np = import_module('numpy') def test_size(): x = Symbol('x', real=True) sx = size(x) assert fcode(sx, source_format='free') == 'size(x)' @may_xfail def test_size_assumed_shape(): if not has_fortran(): skip("No fortran compiler found.") a = Symbol('a', real=True) body = [Return((sum_(a**2)/size(a))**.5)] arr = array(a, dim=[':'], intent='in') fd = FunctionDefinition(real, 'rms', [arr], body) f_mod = render_as_module([fd], 'mod_rms') (stdout, stderr), info = compile_run_strings([ ('rms.f90', render_as_module([fd], 'mod_rms')), ('main.f90', ( 'program myprog\n' 'use mod_rms, only: rms\n' 'real*8, dimension(4), parameter :: x = [4, 2, 2, 2]\n' 'print *, dsqrt(7d0) - rms(x)\n' 'end program\n' )) ], clean=True) assert '0.00000' in stdout assert stderr == '' assert info['exit_status'] == os.EX_OK @may_xfail def test_ImpliedDoLoop(): if not has_fortran(): skip("No fortran compiler found.") a, i = symbols('a i', integer=True) idl = ImpliedDoLoop(i**3, i, -3, 3, 2) ac = ArrayConstructor([-28, idl, 28]) a = array(a, dim=[':'], attrs=[allocatable]) prog = Program('idlprog', [ a.as_Declaration(), Assignment(a, ac), Print([a]) ]) fsrc = fcode(prog, standard=2003, source_format='free') (stdout, stderr), info = compile_run_strings([('main.f90', fsrc)], clean=True) for numstr in '-28 -27 -1 1 27 28'.split(): assert numstr in stdout assert stderr == '' assert info['exit_status'] == os.EX_OK @may_xfail def test_Program(): x = Symbol('x', real=True) vx = Variable.deduced(x, 42) decl = Declaration(vx) prnt = Print([x, x+1]) prog = Program('foo', [decl, prnt]) if not has_fortran(): skip("No fortran compiler found.") (stdout, stderr), info = compile_run_strings([('main.f90', fcode(prog, standard=90))], clean=True) assert '42' in stdout assert '43' in stdout assert stderr == '' assert info['exit_status'] == os.EX_OK @may_xfail def test_Module(): x = Symbol('x', real=True) v_x = Variable.deduced(x) sq = FunctionDefinition(real, 'sqr', [v_x], [Return(x**2)]) mod_sq = Module('mod_sq', [], [sq]) sq_call = FunctionCall('sqr', [42.]) prg_sq = Program('foobar', [ use('mod_sq', only=['sqr']), Print(['"Square of 42 = "', sq_call]) ]) if not has_fortran(): skip("No fortran compiler found.") (stdout, stderr), info = compile_run_strings([ ('mod_sq.f90', fcode(mod_sq, standard=90)), ('main.f90', fcode(prg_sq, standard=90)) ], clean=True) assert '42' in stdout assert str(42**2) in stdout assert stderr == '' @may_xfail def test_Subroutine(): # Code to generate the subroutine in the example from # http://www.fortran90.org/src/best-practices.html#arrays r = Symbol('r', real=True) i = Symbol('i', integer=True) v_r = Variable.deduced(r, attrs=(dimension(assumed_extent), intent_out)) v_i = Variable.deduced(i) v_n = Variable('n', integer) do_loop = Do([ Assignment(Element(r, [i]), literal_dp(1)/i**2) ], i, 1, v_n) sub = Subroutine("f", [v_r], [ Declaration(v_n), Declaration(v_i), Assignment(v_n, size(r)), do_loop ]) x = Symbol('x', real=True) v_x3 = Variable.deduced(x, attrs=[dimension(3)]) mod = Module('mymod', definitions=[sub]) prog = Program('foo', [ use(mod, only=[sub]), Declaration(v_x3), SubroutineCall(sub, [v_x3]), Print([sum_(v_x3), v_x3]) ]) if not has_fortran(): skip("No fortran compiler found.") (stdout, stderr), info = compile_run_strings([ ('a.f90', fcode(mod, standard=90)), ('b.f90', fcode(prog, standard=90)) ], clean=True) ref = [1.0/i**2 for i in range(1, 4)] assert str(sum(ref))[:-3] in stdout for _ in ref: assert str(_)[:-3] in stdout assert stderr == '' def test_isign(): x = Symbol('x', integer=True) assert unchanged(isign, 1, x) assert fcode(isign(1, x), standard=95, source_format='free') == 'isign(1, x)' def test_dsign(): x = Symbol('x') assert unchanged(dsign, 1, x) assert fcode(dsign(literal_dp(1), x), standard=95, source_format='free') == 'dsign(1d0, x)' def test_cmplx(): x = Symbol('x') assert unchanged(cmplx, 1, x) def test_kind(): x = Symbol('x') assert unchanged(kind, x) def test_literal_dp(): assert fcode(literal_dp(0), source_format='free') == '0d0' @may_xfail def test_bind_C(): if not has_fortran(): skip("No fortran compiler found.") if not cython: skip("Cython not found.") if not np: skip("NumPy not found.") a = Symbol('a', real=True) s = Symbol('s', integer=True) body = [Return((sum_(a**2)/s)**.5)] arr = array(a, dim=[s], intent='in') fd = FunctionDefinition(real, 'rms', [arr, s], body, attrs=[bind_C('rms')]) f_mod = render_as_module([fd], 'mod_rms') with TemporaryDirectory() as folder: mod, info = compile_link_import_strings([ ('rms.f90', f_mod), ('_rms.pyx', ( "#cython: language_level={}\n".format("3" if PY3 else "2") + "cdef extern double rms(double*, int*)\n" "def py_rms(double[::1] x):\n" " cdef int s = x.size\n" " return rms(&x[0], &s)\n")) ], build_dir=folder) assert abs(mod.py_rms(np.array([2., 4., 2., 2.])) - 7**0.5) < 1e-14
cf44836158d187a9f37c4153e942b0172d64293f9122f8c13f86ff69d740f2d4
from sympy import symbols, IndexedBase, HadamardProduct, Identity, cos from sympy.codegen.array_utils import (CodegenArrayContraction, CodegenArrayTensorProduct, CodegenArrayDiagonal, CodegenArrayPermuteDims, CodegenArrayElementwiseAdd, _codegen_array_parse, _recognize_matrix_expression, _RecognizeMatOp, _RecognizeMatMulLines, _unfold_recognized_expr, parse_indexed_expression, recognize_matrix_expression, _parse_matrix_expression) from sympy import (MatrixSymbol, Sum) from sympy.combinatorics import Permutation from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.matrices.expressions.diagonal import DiagMatrix from sympy.matrices.expressions.matexpr import MatrixElement from sympy.matrices import (Trace, MatAdd, MatMul, Transpose) from sympy.utilities.pytest import raises, XFAIL A, B = symbols("A B", cls=IndexedBase) i, j, k, l, m, n = symbols("i j k l m n") M = MatrixSymbol("M", k, k) N = MatrixSymbol("N", k, k) P = MatrixSymbol("P", k, k) Q = MatrixSymbol("Q", k, k) def test_codegen_array_contraction_construction(): cg = CodegenArrayContraction(A) assert cg == A s = Sum(A[i]*B[i], (i, 0, 3)) cg = parse_indexed_expression(s) assert cg == CodegenArrayContraction(CodegenArrayTensorProduct(A, B), (0, 1)) cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, B), (1, 0)) assert cg == CodegenArrayContraction(CodegenArrayTensorProduct(A, B), (0, 1)) expr = M*N result = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)) assert CodegenArrayContraction.from_MatMul(expr) == result elem = expr[i, j] assert parse_indexed_expression(elem) == result expr = M*N*M result = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, M), (1, 2), (3, 4)) assert CodegenArrayContraction.from_MatMul(expr) == result elem = expr[i, j] result = CodegenArrayContraction(CodegenArrayTensorProduct(M, M, N), (1, 4), (2, 5)) cg = parse_indexed_expression(elem) cg = cg.sort_args_by_name() assert cg == result def test_codegen_array_contraction_indices_types(): cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 1)) indtup = cg._get_contraction_tuples() assert indtup == [[(0, 0), (0, 1)]] assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(0, 1)] cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)) indtup = cg._get_contraction_tuples() assert indtup == [[(0, 1), (1, 0)]] assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(1, 2)] cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, M, N), (1, 4), (2, 5)) indtup = cg._get_contraction_tuples() assert indtup == [[(0, 1), (2, 0)], [(1, 0), (2, 1)]] assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(1, 4), (2, 5)] def test_codegen_array_recognize_matrix_mul_lines(): cg = CodegenArrayContraction(CodegenArrayTensorProduct(M), (0, 1)) assert recognize_matrix_expression(cg) == Trace(M) cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 1), (2, 3)) assert recognize_matrix_expression(cg) == Trace(M)*Trace(N) cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 3), (1, 2)) assert recognize_matrix_expression(cg) == Trace(M*N) cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 2), (1, 3)) assert recognize_matrix_expression(cg) == Trace(M*N.T) cg = parse_indexed_expression((M*N*P)[i,j]) assert recognize_matrix_expression(cg) == M*N*P cg = CodegenArrayContraction.from_MatMul(M*N*P) assert recognize_matrix_expression(cg) == M*N*P cg = parse_indexed_expression((M*N.T*P)[i,j]) assert recognize_matrix_expression(cg) == M*N.T*P cg = CodegenArrayContraction.from_MatMul(M*N.T*P) assert recognize_matrix_expression(cg) == M*N.T*P cg = CodegenArrayContraction(CodegenArrayTensorProduct(M,N,P,Q), (1, 2), (5, 6)) assert recognize_matrix_expression(cg) == [M*N, P*Q] expr = -2*M*N elem = expr[i, j] cg = parse_indexed_expression(elem) assert recognize_matrix_expression(cg) == -2*M*N def test_codegen_array_flatten(): # Flatten nested CodegenArrayTensorProduct objects: expr1 = CodegenArrayTensorProduct(M, N) expr2 = CodegenArrayTensorProduct(P, Q) expr = CodegenArrayTensorProduct(expr1, expr2) assert expr == CodegenArrayTensorProduct(M, N, P, Q) assert expr.args == (M, N, P, Q) # Flatten mixed CodegenArrayTensorProduct and CodegenArrayContraction objects: cg1 = CodegenArrayContraction(expr1, (1, 2)) cg2 = CodegenArrayContraction(expr2, (0, 3)) expr = CodegenArrayTensorProduct(cg1, cg2) assert expr == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (1, 2), (4, 7)) expr = CodegenArrayTensorProduct(M, cg1) assert expr == CodegenArrayContraction(CodegenArrayTensorProduct(M, M, N), (3, 4)) # Flatten nested CodegenArrayContraction objects: cgnested = CodegenArrayContraction(cg1, (0, 1)) assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 3), (1, 2)) cgnested = CodegenArrayContraction(CodegenArrayTensorProduct(cg1, cg2), (0, 3)) assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 6), (1, 2), (4, 7)) cg3 = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4)) cgnested = CodegenArrayContraction(cg3, (0, 1)) assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 5), (1, 3), (2, 4)) cgnested = CodegenArrayContraction(cg3, (0, 3), (1, 2)) assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 7), (1, 3), (2, 4), (5, 6)) cg4 = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7)) cgnested = CodegenArrayContraction(cg4, (0, 1)) assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 2), (1, 5), (3, 7)) cgnested = CodegenArrayContraction(cg4, (0, 1), (2, 3)) assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 2), (1, 5), (3, 7), (4, 6)) cg = CodegenArrayDiagonal(cg4) assert cg == cg4 assert isinstance(cg, type(cg4)) # Flatten nested CodegenArrayDiagonal objects: cg1 = CodegenArrayDiagonal(expr1, (1, 2)) cg2 = CodegenArrayDiagonal(expr2, (0, 3)) cg3 = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4)) cg4 = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7)) cgnested = CodegenArrayDiagonal(cg1, (0, 1)) assert cgnested == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (1, 2), (0, 3)) cgnested = CodegenArrayDiagonal(cg3, (1, 2)) assert cgnested == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4), (5, 6)) cgnested = CodegenArrayDiagonal(cg4, (1, 2)) assert cgnested == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7), (2, 4)) def test_codegen_array_parse(): expr = M[i, j] assert _codegen_array_parse(expr) == (M, (i, j)) expr = M[i, j]*N[k, l] assert _codegen_array_parse(expr) == (CodegenArrayTensorProduct(M, N), (i, j, k, l)) expr = M[i, j]*N[j, k] assert _codegen_array_parse(expr) == (CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (1, 2)), (i, k, j)) expr = Sum(M[i, j]*N[j, k], (j, 0, k-1)) assert _codegen_array_parse(expr) == (CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)), (i, k)) expr = M[i, j] + N[i, j] assert _codegen_array_parse(expr) == (CodegenArrayElementwiseAdd(M, N), (i, j)) expr = M[i, j] + N[j, i] assert _codegen_array_parse(expr) == (CodegenArrayElementwiseAdd(M, CodegenArrayPermuteDims(N, Permutation([1,0]))), (i, j)) expr = M[i, j] + M[j, i] assert _codegen_array_parse(expr) == (CodegenArrayElementwiseAdd(M, CodegenArrayPermuteDims(M, Permutation([1,0]))), (i, j)) expr = (M*N*P)[i, j] assert _codegen_array_parse(expr) == (CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P), (1, 2), (3, 4)), (i, j)) expr = expr.function # Disregard summation in previous expression ret1, ret2 = _codegen_array_parse(expr) assert ret1 == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P), (1, 2), (3, 4)) assert str(ret2) == "(i, j, _i_1, _i_2)" expr = KroneckerDelta(i, j)*M[i, k] assert _codegen_array_parse(expr) == (M, ({i, j}, k)) expr = KroneckerDelta(i, j)*KroneckerDelta(j, k)*M[i, l] assert _codegen_array_parse(expr) == (M, ({i, j, k}, l)) expr = KroneckerDelta(j, k)*(M[i, j]*N[k, l] + N[i, j]*M[k, l]) assert _codegen_array_parse(expr) == (CodegenArrayDiagonal(CodegenArrayElementwiseAdd( CodegenArrayTensorProduct(M, N), CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), Permutation(0, 2)(1, 3)) ), (1, 2)), (i, l, frozenset({j, k}))) expr = KroneckerDelta(j, m)*KroneckerDelta(m, k)*(M[i, j]*N[k, l] + N[i, j]*M[k, l]) assert _codegen_array_parse(expr) == (CodegenArrayDiagonal(CodegenArrayElementwiseAdd( CodegenArrayTensorProduct(M, N), CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), Permutation(0, 2)(1, 3)) ), (1, 2)), (i, l, frozenset({j, m, k}))) expr = KroneckerDelta(i, j)*KroneckerDelta(j, k)*KroneckerDelta(k,m)*M[i, 0]*KroneckerDelta(m, n) assert _codegen_array_parse(expr) == (M, ({i,j,k,m,n}, 0)) expr = M[i, i] assert _codegen_array_parse(expr) == (CodegenArrayDiagonal(M, (0, 1)), (i,)) def test_codegen_array_diagonal(): cg = CodegenArrayDiagonal(M, (1, 0)) assert cg == CodegenArrayDiagonal(M, (0, 1)) cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P), (4, 1), (2, 0)) assert cg == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P), (1, 4), (0, 2)) def test_codegen_recognize_matrix_expression(): expr = CodegenArrayElementwiseAdd(M, CodegenArrayPermuteDims(M, [1, 0])) rec = _recognize_matrix_expression(expr) assert rec == _RecognizeMatOp(MatAdd, [M, _RecognizeMatOp(Transpose, [M])]) assert _unfold_recognized_expr(rec) == M + Transpose(M) expr = M[i,j] + N[i,j] p1, p2 = _codegen_array_parse(expr) rec = _recognize_matrix_expression(p1) assert rec == _RecognizeMatOp(MatAdd, [M, N]) assert _unfold_recognized_expr(rec) == M + N expr = M[i,j] + N[j,i] p1, p2 = _codegen_array_parse(expr) rec = _recognize_matrix_expression(p1) assert rec == _RecognizeMatOp(MatAdd, [M, _RecognizeMatOp(Transpose, [N])]) assert _unfold_recognized_expr(rec) == M + N.T expr = M[i,j]*N[k,l] + N[i,j]*M[k,l] p1, p2 = _codegen_array_parse(expr) rec = _recognize_matrix_expression(p1) assert rec == _RecognizeMatOp(MatAdd, [_RecognizeMatMulLines([M, N]), _RecognizeMatMulLines([N, M])]) #assert _unfold_recognized_expr(rec) == TensorProduct(M, N) + TensorProduct(N, M) maybe? expr = (M*N*P)[i, j] p1, p2 = _codegen_array_parse(expr) rec = _recognize_matrix_expression(p1) assert rec == _RecognizeMatMulLines([_RecognizeMatOp(MatMul, [M, N, P])]) assert _unfold_recognized_expr(rec) == M*N*P expr = Sum(M[i,j]*(N*P)[j,m], (j, 0, k-1)) p1, p2 = _codegen_array_parse(expr) rec = _recognize_matrix_expression(p1) assert rec == _RecognizeMatOp(MatMul, [M, N, P]) assert _unfold_recognized_expr(rec) == M*N*P expr = Sum((P[j, m] + P[m, j])*(M[i,j]*N[m,n] + N[i,j]*M[m,n]), (j, 0, k-1), (m, 0, k-1)) p1, p2 = _codegen_array_parse(expr) rec = _recognize_matrix_expression(p1) assert rec == _RecognizeMatOp(MatAdd, [ _RecognizeMatOp(MatMul, [M, _RecognizeMatOp(MatAdd, [P, _RecognizeMatOp(Transpose, [P])]), N]), _RecognizeMatOp(MatMul, [N, _RecognizeMatOp(MatAdd, [P, _RecognizeMatOp(Transpose, [P])]), M]) ]) assert _unfold_recognized_expr(rec) == M*(P + P.T)*N + N*(P + P.T)*M def test_codegen_array_shape(): expr = CodegenArrayTensorProduct(M, N, P, Q) assert expr.shape == (k, k, k, k, k, k, k, k) Z = MatrixSymbol("Z", m, n) expr = CodegenArrayTensorProduct(M, Z) assert expr.shape == (k, k, m, n) expr2 = CodegenArrayContraction(expr, (0, 1)) assert expr2.shape == (m, n) expr2 = CodegenArrayDiagonal(expr, (0, 1)) assert expr2.shape == (m, n, k) exprp = CodegenArrayPermuteDims(expr, [2, 1, 3, 0]) assert exprp.shape == (m, k, n, k) expr3 = CodegenArrayTensorProduct(N, Z) expr2 = CodegenArrayElementwiseAdd(expr, expr3) assert expr2.shape == (k, k, m, n) # Contraction along axes with discordant dimensions: raises(ValueError, lambda: CodegenArrayContraction(expr, (1, 2))) # Also diagonal needs the same dimensions: raises(ValueError, lambda: CodegenArrayDiagonal(expr, (1, 2))) def test_codegen_array_parse_out_of_bounds(): expr = Sum(M[i, i], (i, 0, 4)) raises(ValueError, lambda: parse_indexed_expression(expr)) expr = Sum(M[i, i], (i, 0, k)) raises(ValueError, lambda: parse_indexed_expression(expr)) expr = Sum(M[i, i], (i, 1, k-1)) raises(ValueError, lambda: parse_indexed_expression(expr)) expr = Sum(M[i, j]*N[j,m], (j, 0, 4)) raises(ValueError, lambda: parse_indexed_expression(expr)) expr = Sum(M[i, j]*N[j,m], (j, 0, k)) raises(ValueError, lambda: parse_indexed_expression(expr)) expr = Sum(M[i, j]*N[j,m], (j, 1, k-1)) raises(ValueError, lambda: parse_indexed_expression(expr)) def test_codegen_permutedims_sink(): cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [0, 1, 3, 2]) sunk = cg.nest_permutation() assert sunk == CodegenArrayTensorProduct(M, CodegenArrayPermuteDims(N, [1, 0])) assert recognize_matrix_expression(sunk) == [M, N.T] cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 0, 3, 2]) sunk = cg.nest_permutation() assert sunk == CodegenArrayTensorProduct(CodegenArrayPermuteDims(M, [1, 0]), CodegenArrayPermuteDims(N, [1, 0])) assert recognize_matrix_expression(sunk) == [M.T, N.T] cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [3, 2, 1, 0]) sunk = cg.nest_permutation() assert sunk == CodegenArrayTensorProduct(CodegenArrayPermuteDims(N, [1, 0]), CodegenArrayPermuteDims(M, [1, 0])) assert recognize_matrix_expression(sunk) == [N.T, M.T] cg = CodegenArrayPermuteDims(CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)), [1, 0]) sunk = cg.nest_permutation() assert sunk == CodegenArrayContraction(CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [[0, 3]]), (1, 2)) cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 0, 3, 2]) sunk = cg.nest_permutation() assert sunk == CodegenArrayTensorProduct(CodegenArrayPermuteDims(M, [1, 0]), CodegenArrayPermuteDims(N, [1, 0])) cg = CodegenArrayPermuteDims(CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P), (1, 2), (3, 4)), [1, 0]) sunk = cg.nest_permutation() assert sunk == CodegenArrayContraction(CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N, P), [[0, 5]]), (1, 2), (3, 4)) sunk2 = sunk.expr.nest_permutation() def test_parsing_of_matrix_expressions(): expr = M*N assert _parse_matrix_expression(expr) == CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)) expr = Transpose(M) assert _parse_matrix_expression(expr) == CodegenArrayPermuteDims(M, [1, 0]) expr = M*Transpose(N) assert _parse_matrix_expression(expr) == CodegenArrayContraction(CodegenArrayTensorProduct(M, CodegenArrayPermuteDims(N, [1, 0])), (1, 2)) def test_special_matrices(): a = MatrixSymbol("a", k, 1) b = MatrixSymbol("b", k, 1) expr = a.T*b elem = expr[0, 0] cg = parse_indexed_expression(elem) assert cg == CodegenArrayContraction(CodegenArrayTensorProduct(a, b), (0, 2)) assert recognize_matrix_expression(cg) == a.T*b def test_push_indices_up_and_down(): indices = list(range(10)) contraction_indices = [(0, 6), (2, 8)] assert CodegenArrayContraction._push_indices_down(contraction_indices, indices) == (1, 3, 4, 5, 7, 9, 10, 11, 12, 13) assert CodegenArrayContraction._push_indices_up(contraction_indices, indices) == (None, 0, None, 1, 2, 3, None, 4, None, 5) assert CodegenArrayDiagonal._push_indices_down(contraction_indices, indices) == (0, 1, 2, 3, 4, 5, 7, 9, 10, 11) assert CodegenArrayDiagonal._push_indices_up(contraction_indices, indices) == (0, 1, 2, 3, 4, 5, None, 6, None, 7) contraction_indices = [(1, 2), (7, 8)] assert CodegenArrayContraction._push_indices_down(contraction_indices, indices) == (0, 3, 4, 5, 6, 9, 10, 11, 12, 13) assert CodegenArrayContraction._push_indices_up(contraction_indices, indices) == (0, None, None, 1, 2, 3, 4, None, None, 5) assert CodegenArrayContraction._push_indices_down(contraction_indices, indices) == (0, 3, 4, 5, 6, 9, 10, 11, 12, 13) assert CodegenArrayDiagonal._push_indices_up(contraction_indices, indices) == (0, 1, None, 2, 3, 4, 5, 6, None, 7) def test_recognize_diagonalized_vectors(): a = MatrixSymbol("a", k, 1) b = MatrixSymbol("b", k, 1) A = MatrixSymbol("A", k, k) B = MatrixSymbol("B", k, k) C = MatrixSymbol("C", k, k) X = MatrixSymbol("X", k, k) x = MatrixSymbol("x", k, 1) I1 = Identity(1) I = Identity(k) # Check matrix recognition over trivial dimensions: cg = CodegenArrayTensorProduct(a, b) assert recognize_matrix_expression(cg) == a*b.T cg = CodegenArrayTensorProduct(I1, a, b) assert recognize_matrix_expression(cg) == a*I1*b.T # Recognize trace inside a tensor product: cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, B, C), (0, 3), (1, 2)) assert recognize_matrix_expression(cg) == Trace(A*B)*C # Transform diagonal operator to contraction: cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(A, a), (1, 2)) assert cg.transform_to_product() == CodegenArrayContraction(CodegenArrayTensorProduct(A, DiagMatrix(a)), (1, 2)) assert recognize_matrix_expression(cg) == A*DiagMatrix(a) cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(a, b), (0, 2)) assert cg.transform_to_product() == CodegenArrayContraction(CodegenArrayTensorProduct(DiagMatrix(a), b), (0, 2)) assert recognize_matrix_expression(cg).doit() == DiagMatrix(a)*b cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(A, a), (0, 2)) assert cg.transform_to_product() == CodegenArrayContraction(CodegenArrayTensorProduct(A, DiagMatrix(a)), (0, 2)) assert recognize_matrix_expression(cg) == A.T*DiagMatrix(a) cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(I, x, I1), (0, 2), (3, 5)) assert cg.transform_to_product() == CodegenArrayContraction(CodegenArrayTensorProduct(I, DiagMatrix(x), I1), (0, 2)) cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(I, x, A, B), (1, 2), (5, 6)) assert cg.transform_to_product() == CodegenArrayDiagonal(CodegenArrayContraction(CodegenArrayTensorProduct(I, DiagMatrix(x), A, B), (1, 2)), (3, 4)) cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(x, I1), (1, 2)) assert isinstance(cg, CodegenArrayDiagonal) assert cg.diagonal_indices == ((1, 2),) assert recognize_matrix_expression(cg) == x cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(x, I), (0, 2)) assert cg.transform_to_product() == CodegenArrayContraction(CodegenArrayTensorProduct(DiagMatrix(x), I), (0, 2)) assert recognize_matrix_expression(cg).doit() == DiagMatrix(x) cg = CodegenArrayDiagonal(x, (1,)) assert cg == x # Ignore identity matrices with contractions: cg = CodegenArrayContraction(CodegenArrayTensorProduct(I, A, I, I), (0, 2), (1, 3), (5, 7)) assert cg.split_multiple_contractions() == cg assert recognize_matrix_expression(cg) == Trace(A)*I cg = CodegenArrayContraction(CodegenArrayTensorProduct(Trace(A) * I, I, I), (1, 5), (3, 4)) assert cg.split_multiple_contractions() == cg assert recognize_matrix_expression(cg).doit() == Trace(A)*I # Add DiagMatrix when required: cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a), (1, 2)) assert cg.split_multiple_contractions() == cg assert recognize_matrix_expression(cg) == A*a cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, B), (1, 2, 4)) assert cg.split_multiple_contractions() == CodegenArrayContraction(CodegenArrayTensorProduct(A, DiagMatrix(a), B), (1, 2), (3, 4)) assert recognize_matrix_expression(cg) == A*DiagMatrix(a)*B cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, B), (0, 2, 4)) assert cg.split_multiple_contractions() == CodegenArrayContraction(CodegenArrayTensorProduct(A, DiagMatrix(a), B), (0, 2), (3, 4)) assert recognize_matrix_expression(cg) == A.T*DiagMatrix(a)*B cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, b, a.T, B), (0, 2, 4, 7, 9)) assert cg.split_multiple_contractions() == CodegenArrayContraction(CodegenArrayTensorProduct(A, DiagMatrix(a), DiagMatrix(b), DiagMatrix(a), B), (0, 2), (3, 4), (5, 7), (6, 9)) assert recognize_matrix_expression(cg).doit() == A.T*DiagMatrix(a)*DiagMatrix(b)*DiagMatrix(a)*B.T cg = CodegenArrayContraction(CodegenArrayTensorProduct(I1, I1, I1), (1, 2, 4)) assert cg.split_multiple_contractions() == CodegenArrayContraction(CodegenArrayTensorProduct(I1, I1, I1), (1, 2), (3, 4)) assert recognize_matrix_expression(cg).doit() == Identity(1) cg = CodegenArrayContraction(CodegenArrayTensorProduct(I, I, I, I, A), (1, 2, 8), (5, 6, 9)) assert recognize_matrix_expression(cg.split_multiple_contractions()).doit() == A cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, C, a, B), (1, 2, 4), (5, 6, 8)) assert cg.split_multiple_contractions() == CodegenArrayContraction(CodegenArrayTensorProduct(A, DiagMatrix(a), C, DiagMatrix(a), B), (1, 2), (3, 4), (5, 6), (7, 8)) assert recognize_matrix_expression(cg) == A*DiagMatrix(a)*C*DiagMatrix(a)*B cg = CodegenArrayContraction(CodegenArrayTensorProduct(a, I1, b, I1, (a.T*b).applyfunc(cos)), (1, 2, 8), (5, 6, 9)) assert cg.split_multiple_contractions() == CodegenArrayContraction(CodegenArrayTensorProduct(a, I1, b, I1, (a.T*b).applyfunc(cos)), (1, 2), (3, 8), (5, 6), (7, 9)) assert recognize_matrix_expression(cg) == MatMul(a, I1, (a.T*b).applyfunc(cos), Transpose(I1), b.T) cg = CodegenArrayContraction(CodegenArrayTensorProduct(A.T, a, b, b.T, (A*X*b).applyfunc(cos)), (1, 2, 8), (5, 6, 9)) assert cg.split_multiple_contractions() == CodegenArrayContraction( CodegenArrayTensorProduct(A.T, DiagMatrix(a), b, b.T, (A*X*b).applyfunc(cos)), (1, 2), (3, 8), (5, 6, 9)) # assert recognize_matrix_expression(cg) # Check no overlap of lines: cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, C, a, B), (1, 2, 4), (5, 6, 8), (3, 7)) assert cg.split_multiple_contractions() == cg cg = CodegenArrayContraction(CodegenArrayTensorProduct(a, b, A), (0, 2, 4), (1, 3)) assert cg.split_multiple_contractions() == cg
98aad986413c314403804cd9daa9e28fae2aa3682653f3e78815b7aa13169739
from __future__ import print_function, division from sympy.core import S, sympify, cacheit, pi, I, Rational from sympy.core.add import Add from sympy.core.function import Function, ArgumentIndexError, _coeff_isneg from sympy.functions.combinatorial.factorials import factorial, RisingFactorial from sympy.functions.elementary.exponential import exp, log, match_real_imag from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.integers import floor from sympy import pi, Eq from sympy.logic import Or, And from sympy.core.logic import fuzzy_or, fuzzy_and, fuzzy_bool def _rewrite_hyperbolics_as_exp(expr): expr = sympify(expr) return expr.xreplace({h: h.rewrite(exp) for h in expr.atoms(HyperbolicFunction)}) ############################################################################### ########################### HYPERBOLIC FUNCTIONS ############################## ############################################################################### class HyperbolicFunction(Function): """ Base class for hyperbolic functions. See Also ======== sinh, cosh, tanh, coth """ unbranched = True def _peeloff_ipi(arg): """ Split ARG into two parts, a "rest" and a multiple of I*pi/2. This assumes ARG to be an Add. The multiple of I*pi returned in the second position is always a Rational. Examples ======== >>> from sympy.functions.elementary.hyperbolic import _peeloff_ipi as peel >>> from sympy import pi, I >>> from sympy.abc import x, y >>> peel(x + I*pi/2) (x, I*pi/2) >>> peel(x + I*2*pi/3 + I*pi*y) (x + I*pi*y + I*pi/6, I*pi/2) """ for a in Add.make_args(arg): if a == S.Pi*S.ImaginaryUnit: K = S.One break elif a.is_Mul: K, p = a.as_two_terms() if p == S.Pi*S.ImaginaryUnit and K.is_Rational: break else: return arg, S.Zero m1 = (K % S.Half)*S.Pi*S.ImaginaryUnit m2 = K*S.Pi*S.ImaginaryUnit - m1 return arg - m2, m2 class sinh(HyperbolicFunction): r""" The hyperbolic sine function, `\frac{e^x - e^{-x}}{2}`. * sinh(x) -> Returns the hyperbolic sine of x See Also ======== cosh, tanh, asinh """ def fdiff(self, argindex=1): """ Returns the first derivative of this function. """ if argindex == 1: return cosh(self.args[0]) else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return asinh @classmethod def eval(cls, arg): from sympy import sin arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.NegativeInfinity elif arg.is_zero: return S.Zero elif arg.is_negative: return -cls(-arg) else: if arg is S.ComplexInfinity: return S.NaN i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return S.ImaginaryUnit * sin(i_coeff) else: if _coeff_isneg(arg): return -cls(-arg) if arg.is_Add: x, m = _peeloff_ipi(arg) if m: return sinh(m)*cosh(x) + cosh(m)*sinh(x) if arg.is_zero: return S.Zero if arg.func == asinh: return arg.args[0] if arg.func == acosh: x = arg.args[0] return sqrt(x - 1) * sqrt(x + 1) if arg.func == atanh: x = arg.args[0] return x/sqrt(1 - x**2) if arg.func == acoth: x = arg.args[0] return 1/(sqrt(x - 1) * sqrt(x + 1)) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): """ Returns the next term in the Taylor series expansion. """ if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) > 2: p = previous_terms[-2] return p * x**2 / (n*(n - 1)) else: return x**(n) / factorial(n) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): """ Returns this function as a complex coordinate. """ from sympy import cos, sin if self.args[0].is_extended_real: if deep: hints['complex'] = False return (self.expand(deep, **hints), S.Zero) else: return (self, S.Zero) if deep: re, im = self.args[0].expand(deep, **hints).as_real_imag() else: re, im = self.args[0].as_real_imag() return (sinh(re)*cos(im), cosh(re)*sin(im)) def _eval_expand_complex(self, deep=True, **hints): re_part, im_part = self.as_real_imag(deep=deep, **hints) return re_part + im_part*S.ImaginaryUnit def _eval_expand_trig(self, deep=True, **hints): if deep: arg = self.args[0].expand(deep, **hints) else: arg = self.args[0] x = None if arg.is_Add: # TODO, implement more if deep stuff here x, y = arg.as_two_terms() else: coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One and coeff.is_Integer and terms is not S.One: x = terms y = (coeff - 1)*x if x is not None: return (sinh(x)*cosh(y) + sinh(y)*cosh(x)).expand(trig=True) return sinh(arg) def _eval_rewrite_as_tractable(self, arg, **kwargs): return (exp(arg) - exp(-arg)) / 2 def _eval_rewrite_as_exp(self, arg, **kwargs): return (exp(arg) - exp(-arg)) / 2 def _eval_rewrite_as_cosh(self, arg, **kwargs): return -S.ImaginaryUnit*cosh(arg + S.Pi*S.ImaginaryUnit/2) def _eval_rewrite_as_tanh(self, arg, **kwargs): tanh_half = tanh(S.Half*arg) return 2*tanh_half/(1 - tanh_half**2) def _eval_rewrite_as_coth(self, arg, **kwargs): coth_half = coth(S.Half*arg) return 2*coth_half/(coth_half**2 - 1) def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_is_real(self): arg = self.args[0] if arg.is_real: return True # if `im` is of the form n*pi # else, check if it is a number re, im = arg.as_real_imag() return (im%pi).is_zero def _eval_is_extended_real(self): if self.args[0].is_extended_real: return True def _eval_is_positive(self): if self.args[0].is_extended_real: return self.args[0].is_positive def _eval_is_negative(self): if self.args[0].is_extended_real: return self.args[0].is_negative def _eval_is_finite(self): arg = self.args[0] return arg.is_finite def _eval_is_zero(self): arg = self.args[0] if arg.is_zero: return True class cosh(HyperbolicFunction): r""" The hyperbolic cosine function, `\frac{e^x + e^{-x}}{2}`. * cosh(x) -> Returns the hyperbolic cosine of x See Also ======== sinh, tanh, acosh """ def _eval_is_positive(self): arg = self.args[0] if arg.is_real: return True re, im = arg.as_real_imag() im_mod = im % (2*pi) if im_mod == 0: return True if re == 0: if im_mod < pi/2 or im_mod > 3*pi/2: return True elif im_mod >= pi/2 or im_mod <= 3*pi/2: return False return fuzzy_or([fuzzy_and([fuzzy_bool(Eq(re, 0)), fuzzy_or([fuzzy_bool(im_mod < pi/2), fuzzy_bool(im_mod > 3*pi/2)])]), fuzzy_bool(Eq(im_mod, 0))]) def _eval_is_nonnegative(self): arg = self.args[0] if arg.is_real: return True re, im = arg.as_real_imag() im_mod = im % (2*pi) if im_mod == 0: return True if re == 0: if im_mod <= pi/2 or im_mod >= 3*pi/2: return True elif im_mod > pi/2 or im_mod < 3*pi/2: return False return fuzzy_or([fuzzy_and([fuzzy_bool(Eq(re, 0)), fuzzy_or([fuzzy_bool(im_mod <= pi/2), fuzzy_bool(im_mod >= 3*pi/2)])]), fuzzy_bool(Eq(im_mod, 0))]) def fdiff(self, argindex=1): if argindex == 1: return sinh(self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy import cos arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.Infinity elif arg.is_zero: return S.One elif arg.is_negative: return cls(-arg) else: if arg is S.ComplexInfinity: return S.NaN i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return cos(i_coeff) else: if _coeff_isneg(arg): return cls(-arg) if arg.is_Add: x, m = _peeloff_ipi(arg) if m: return cosh(m)*cosh(x) + sinh(m)*sinh(x) if arg.is_zero: return S.One if arg.func == asinh: return sqrt(1 + arg.args[0]**2) if arg.func == acosh: return arg.args[0] if arg.func == atanh: return 1/sqrt(1 - arg.args[0]**2) if arg.func == acoth: x = arg.args[0] return x/(sqrt(x - 1) * sqrt(x + 1)) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) if len(previous_terms) > 2: p = previous_terms[-2] return p * x**2 / (n*(n - 1)) else: return x**(n)/factorial(n) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): from sympy import cos, sin if self.args[0].is_extended_real: if deep: hints['complex'] = False return (self.expand(deep, **hints), S.Zero) else: return (self, S.Zero) if deep: re, im = self.args[0].expand(deep, **hints).as_real_imag() else: re, im = self.args[0].as_real_imag() return (cosh(re)*cos(im), sinh(re)*sin(im)) def _eval_expand_complex(self, deep=True, **hints): re_part, im_part = self.as_real_imag(deep=deep, **hints) return re_part + im_part*S.ImaginaryUnit def _eval_expand_trig(self, deep=True, **hints): if deep: arg = self.args[0].expand(deep, **hints) else: arg = self.args[0] x = None if arg.is_Add: # TODO, implement more if deep stuff here x, y = arg.as_two_terms() else: coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One and coeff.is_Integer and terms is not S.One: x = terms y = (coeff - 1)*x if x is not None: return (cosh(x)*cosh(y) + sinh(x)*sinh(y)).expand(trig=True) return cosh(arg) def _eval_rewrite_as_tractable(self, arg, **kwargs): return (exp(arg) + exp(-arg)) / 2 def _eval_rewrite_as_exp(self, arg, **kwargs): return (exp(arg) + exp(-arg)) / 2 def _eval_rewrite_as_sinh(self, arg, **kwargs): return -S.ImaginaryUnit*sinh(arg + S.Pi*S.ImaginaryUnit/2) def _eval_rewrite_as_tanh(self, arg, **kwargs): tanh_half = tanh(S.Half*arg)**2 return (1 + tanh_half)/(1 - tanh_half) def _eval_rewrite_as_coth(self, arg, **kwargs): coth_half = coth(S.Half*arg)**2 return (coth_half + 1)/(coth_half - 1) def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return S.One else: return self.func(arg) def _eval_is_real(self): arg = self.args[0] # `cosh(x)` is real for real OR purely imaginary `x` if arg.is_real or arg.is_imaginary: return True # cosh(a+ib) = cos(b)*cosh(a) + i*sin(b)*sinh(a) # the imaginary part can be an expression like n*pi # if not, check if the imaginary part is a number re, im = arg.as_real_imag() return (im%pi).is_zero def _eval_is_finite(self): arg = self.args[0] return arg.is_finite class tanh(HyperbolicFunction): r""" The hyperbolic tangent function, `\frac{\sinh(x)}{\cosh(x)}`. * tanh(x) -> Returns the hyperbolic tangent of x See Also ======== sinh, cosh, atanh """ def fdiff(self, argindex=1): if argindex == 1: return S.One - tanh(self.args[0])**2 else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return atanh @classmethod def eval(cls, arg): from sympy import tan arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.One elif arg is S.NegativeInfinity: return S.NegativeOne elif arg.is_zero: return S.Zero elif arg.is_negative: return -cls(-arg) else: if arg is S.ComplexInfinity: return S.NaN i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: if _coeff_isneg(i_coeff): return -S.ImaginaryUnit * tan(-i_coeff) return S.ImaginaryUnit * tan(i_coeff) else: if _coeff_isneg(arg): return -cls(-arg) if arg.is_Add: x, m = _peeloff_ipi(arg) if m: tanhm = tanh(m) if tanhm is S.ComplexInfinity: return coth(x) else: # tanhm == 0 return tanh(x) if arg.is_zero: return S.Zero if arg.func == asinh: x = arg.args[0] return x/sqrt(1 + x**2) if arg.func == acosh: x = arg.args[0] return sqrt(x - 1) * sqrt(x + 1) / x if arg.func == atanh: return arg.args[0] if arg.func == acoth: return 1/arg.args[0] @staticmethod @cacheit def taylor_term(n, x, *previous_terms): from sympy import bernoulli if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) a = 2**(n + 1) B = bernoulli(n + 1) F = factorial(n + 1) return a*(a - 1) * B/F * x**n def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): from sympy import cos, sin if self.args[0].is_extended_real: if deep: hints['complex'] = False return (self.expand(deep, **hints), S.Zero) else: return (self, S.Zero) if deep: re, im = self.args[0].expand(deep, **hints).as_real_imag() else: re, im = self.args[0].as_real_imag() denom = sinh(re)**2 + cos(im)**2 return (sinh(re)*cosh(re)/denom, sin(im)*cos(im)/denom) def _eval_rewrite_as_tractable(self, arg, **kwargs): neg_exp, pos_exp = exp(-arg), exp(arg) return (pos_exp - neg_exp)/(pos_exp + neg_exp) def _eval_rewrite_as_exp(self, arg, **kwargs): neg_exp, pos_exp = exp(-arg), exp(arg) return (pos_exp - neg_exp)/(pos_exp + neg_exp) def _eval_rewrite_as_sinh(self, arg, **kwargs): return S.ImaginaryUnit*sinh(arg)/sinh(S.Pi*S.ImaginaryUnit/2 - arg) def _eval_rewrite_as_cosh(self, arg, **kwargs): return S.ImaginaryUnit*cosh(S.Pi*S.ImaginaryUnit/2 - arg)/cosh(arg) def _eval_rewrite_as_coth(self, arg, **kwargs): return 1/coth(arg) def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_is_real(self): from sympy import cos, sinh arg = self.args[0] if arg.is_real: return True re, im = arg.as_real_imag() # if denom = 0, tanh(arg) = zoo if re == 0 and im % pi == pi/2: return None # check if im is of the form n*pi/2 to make sin(2*im) = 0 # if not, im could be a number, return False in that case return (im % (pi/2)).is_zero def _eval_is_extended_real(self): if self.args[0].is_extended_real: return True def _eval_is_positive(self): if self.args[0].is_extended_real: return self.args[0].is_positive def _eval_is_negative(self): if self.args[0].is_extended_real: return self.args[0].is_negative def _eval_is_finite(self): from sympy import sinh, cos arg = self.args[0] re, im = arg.as_real_imag() denom = cos(im)**2 + sinh(re)**2 if denom == 0: return False elif denom.is_number: return True if arg.is_extended_real: return True def _eval_is_zero(self): arg = self.args[0] if arg.is_zero: return True class coth(HyperbolicFunction): r""" The hyperbolic cotangent function, `\frac{\cosh(x)}{\sinh(x)}`. * coth(x) -> Returns the hyperbolic cotangent of x """ def fdiff(self, argindex=1): if argindex == 1: return -1/sinh(self.args[0])**2 else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return acoth @classmethod def eval(cls, arg): from sympy import cot arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.One elif arg is S.NegativeInfinity: return S.NegativeOne elif arg.is_zero: return S.ComplexInfinity elif arg.is_negative: return -cls(-arg) else: if arg is S.ComplexInfinity: return S.NaN i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: if _coeff_isneg(i_coeff): return S.ImaginaryUnit * cot(-i_coeff) return -S.ImaginaryUnit * cot(i_coeff) else: if _coeff_isneg(arg): return -cls(-arg) if arg.is_Add: x, m = _peeloff_ipi(arg) if m: cothm = coth(m) if cothm is S.ComplexInfinity: return coth(x) else: # cothm == 0 return tanh(x) if arg.is_zero: return S.ComplexInfinity if arg.func == asinh: x = arg.args[0] return sqrt(1 + x**2)/x if arg.func == acosh: x = arg.args[0] return x/(sqrt(x - 1) * sqrt(x + 1)) if arg.func == atanh: return 1/arg.args[0] if arg.func == acoth: return arg.args[0] @staticmethod @cacheit def taylor_term(n, x, *previous_terms): from sympy import bernoulli if n == 0: return 1 / sympify(x) elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) B = bernoulli(n + 1) F = factorial(n + 1) return 2**(n + 1) * B/F * x**n def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): from sympy import cos, sin if self.args[0].is_extended_real: if deep: hints['complex'] = False return (self.expand(deep, **hints), S.Zero) else: return (self, S.Zero) if deep: re, im = self.args[0].expand(deep, **hints).as_real_imag() else: re, im = self.args[0].as_real_imag() denom = sinh(re)**2 + sin(im)**2 return (sinh(re)*cosh(re)/denom, -sin(im)*cos(im)/denom) def _eval_rewrite_as_tractable(self, arg, **kwargs): neg_exp, pos_exp = exp(-arg), exp(arg) return (pos_exp + neg_exp)/(pos_exp - neg_exp) def _eval_rewrite_as_exp(self, arg, **kwargs): neg_exp, pos_exp = exp(-arg), exp(arg) return (pos_exp + neg_exp)/(pos_exp - neg_exp) def _eval_rewrite_as_sinh(self, arg, **kwargs): return -S.ImaginaryUnit*sinh(S.Pi*S.ImaginaryUnit/2 - arg)/sinh(arg) def _eval_rewrite_as_cosh(self, arg, **kwargs): return -S.ImaginaryUnit*cosh(arg)/cosh(S.Pi*S.ImaginaryUnit/2 - arg) def _eval_rewrite_as_tanh(self, arg, **kwargs): return 1/tanh(arg) def _eval_is_positive(self): if self.args[0].is_extended_real: return self.args[0].is_positive def _eval_is_negative(self): if self.args[0].is_extended_real: return self.args[0].is_negative def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return 1/arg else: return self.func(arg) class ReciprocalHyperbolicFunction(HyperbolicFunction): """Base class for reciprocal functions of hyperbolic functions. """ #To be defined in class _reciprocal_of = None _is_even = None _is_odd = None @classmethod def eval(cls, arg): if arg.could_extract_minus_sign(): if cls._is_even: return cls(-arg) if cls._is_odd: return -cls(-arg) t = cls._reciprocal_of.eval(arg) if hasattr(arg, 'inverse') and arg.inverse() == cls: return arg.args[0] return 1/t if t is not None else t def _call_reciprocal(self, method_name, *args, **kwargs): # Calls method_name on _reciprocal_of o = self._reciprocal_of(self.args[0]) return getattr(o, method_name)(*args, **kwargs) def _calculate_reciprocal(self, method_name, *args, **kwargs): # If calling method_name on _reciprocal_of returns a value != None # then return the reciprocal of that value t = self._call_reciprocal(method_name, *args, **kwargs) return 1/t if t is not None else t def _rewrite_reciprocal(self, method_name, arg): # Special handling for rewrite functions. If reciprocal rewrite returns # unmodified expression, then return None t = self._call_reciprocal(method_name, arg) if t is not None and t != self._reciprocal_of(arg): return 1/t def _eval_rewrite_as_exp(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_exp", arg) def _eval_rewrite_as_tractable(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_tractable", arg) def _eval_rewrite_as_tanh(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_tanh", arg) def _eval_rewrite_as_coth(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_coth", arg) def as_real_imag(self, deep = True, **hints): return (1 / self._reciprocal_of(self.args[0])).as_real_imag(deep, **hints) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def _eval_expand_complex(self, deep=True, **hints): re_part, im_part = self.as_real_imag(deep=True, **hints) return re_part + S.ImaginaryUnit*im_part def _eval_as_leading_term(self, x): return (1/self._reciprocal_of(self.args[0]))._eval_as_leading_term(x) def _eval_is_extended_real(self): return self._reciprocal_of(self.args[0]).is_extended_real def _eval_is_finite(self): return (1/self._reciprocal_of(self.args[0])).is_finite class csch(ReciprocalHyperbolicFunction): r""" The hyperbolic cosecant function, `\frac{2}{e^x - e^{-x}}` * csch(x) -> Returns the hyperbolic cosecant of x See Also ======== sinh, cosh, tanh, sech, asinh, acosh """ _reciprocal_of = sinh _is_odd = True def fdiff(self, argindex=1): """ Returns the first derivative of this function """ if argindex == 1: return -coth(self.args[0]) * csch(self.args[0]) else: raise ArgumentIndexError(self, argindex) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): """ Returns the next term in the Taylor series expansion """ from sympy import bernoulli if n == 0: return 1/sympify(x) elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) B = bernoulli(n + 1) F = factorial(n + 1) return 2 * (1 - 2**n) * B/F * x**n def _eval_rewrite_as_cosh(self, arg, **kwargs): return S.ImaginaryUnit / cosh(arg + S.ImaginaryUnit * S.Pi / 2) def _eval_is_positive(self): if self.args[0].is_extended_real: return self.args[0].is_positive def _eval_is_negative(self): if self.args[0].is_extended_real: return self.args[0].is_negative def _sage_(self): import sage.all as sage return sage.csch(self.args[0]._sage_()) class sech(ReciprocalHyperbolicFunction): r""" The hyperbolic secant function, `\frac{2}{e^x + e^{-x}}` * sech(x) -> Returns the hyperbolic secant of x See Also ======== sinh, cosh, tanh, coth, csch, asinh, acosh """ _reciprocal_of = cosh _is_even = True def fdiff(self, argindex=1): if argindex == 1: return - tanh(self.args[0])*sech(self.args[0]) else: raise ArgumentIndexError(self, argindex) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): from sympy.functions.combinatorial.numbers import euler if n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) return euler(n) / factorial(n) * x**(n) def _eval_rewrite_as_sinh(self, arg, **kwargs): return S.ImaginaryUnit / sinh(arg + S.ImaginaryUnit * S.Pi /2) def _eval_is_positive(self): if self.args[0].is_extended_real: return True def _sage_(self): import sage.all as sage return sage.sech(self.args[0]._sage_()) ############################################################################### ############################# HYPERBOLIC INVERSES ############################# ############################################################################### class InverseHyperbolicFunction(Function): """Base class for inverse hyperbolic functions.""" pass class asinh(InverseHyperbolicFunction): """ The inverse hyperbolic sine function. * asinh(x) -> Returns the inverse hyperbolic sine of x See Also ======== acosh, atanh, sinh """ def fdiff(self, argindex=1): if argindex == 1: return 1/sqrt(self.args[0]**2 + 1) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy import asin arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.NegativeInfinity elif arg.is_zero: return S.Zero elif arg is S.One: return log(sqrt(2) + 1) elif arg is S.NegativeOne: return log(sqrt(2) - 1) elif arg.is_negative: return -cls(-arg) else: if arg is S.ComplexInfinity: return S.ComplexInfinity if arg.is_zero: return S.Zero i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return S.ImaginaryUnit * asin(i_coeff) else: if _coeff_isneg(arg): return -cls(-arg) if isinstance(arg, sinh) and arg.args[0].is_number: z = arg.args[0] if z.is_real: return z r, i = match_real_imag(z) if r is not None and i is not None: f = floor((i + pi/2)/pi) m = z - I*pi*f even = f.is_even if even is True: return m elif even is False: return -m @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) >= 2 and n > 2: p = previous_terms[-2] return -p * (n - 2)**2/(n*(n - 1)) * x**2 else: k = (n - 1) // 2 R = RisingFactorial(S.Half, k) F = factorial(k) return (-1)**k * R / F * x**n / n def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_rewrite_as_log(self, x, **kwargs): return log(x + sqrt(x**2 + 1)) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return sinh def _eval_is_zero(self): arg = self.args[0] if arg.is_zero: return True class acosh(InverseHyperbolicFunction): """ The inverse hyperbolic cosine function. * acosh(x) -> Returns the inverse hyperbolic cosine of x See Also ======== asinh, atanh, cosh """ def fdiff(self, argindex=1): if argindex == 1: return 1/sqrt(self.args[0]**2 - 1) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.Infinity elif arg.is_zero: return S.Pi*S.ImaginaryUnit / 2 elif arg is S.One: return S.Zero elif arg is S.NegativeOne: return S.Pi*S.ImaginaryUnit if arg.is_number: cst_table = { S.ImaginaryUnit: log(S.ImaginaryUnit*(1 + sqrt(2))), -S.ImaginaryUnit: log(-S.ImaginaryUnit*(1 + sqrt(2))), S.Half: S.Pi/3, Rational(-1, 2): S.Pi*Rational(2, 3), sqrt(2)/2: S.Pi/4, -sqrt(2)/2: S.Pi*Rational(3, 4), 1/sqrt(2): S.Pi/4, -1/sqrt(2): S.Pi*Rational(3, 4), sqrt(3)/2: S.Pi/6, -sqrt(3)/2: S.Pi*Rational(5, 6), (sqrt(3) - 1)/sqrt(2**3): S.Pi*Rational(5, 12), -(sqrt(3) - 1)/sqrt(2**3): S.Pi*Rational(7, 12), sqrt(2 + sqrt(2))/2: S.Pi/8, -sqrt(2 + sqrt(2))/2: S.Pi*Rational(7, 8), sqrt(2 - sqrt(2))/2: S.Pi*Rational(3, 8), -sqrt(2 - sqrt(2))/2: S.Pi*Rational(5, 8), (1 + sqrt(3))/(2*sqrt(2)): S.Pi/12, -(1 + sqrt(3))/(2*sqrt(2)): S.Pi*Rational(11, 12), (sqrt(5) + 1)/4: S.Pi/5, -(sqrt(5) + 1)/4: S.Pi*Rational(4, 5) } if arg in cst_table: if arg.is_extended_real: return cst_table[arg]*S.ImaginaryUnit return cst_table[arg] if arg is S.ComplexInfinity: return S.ComplexInfinity if arg == S.ImaginaryUnit*S.Infinity: return S.Infinity + S.ImaginaryUnit*S.Pi/2 if arg == -S.ImaginaryUnit*S.Infinity: return S.Infinity - S.ImaginaryUnit*S.Pi/2 if arg.is_zero: return S.Pi*S.ImaginaryUnit*S.Half if isinstance(arg, cosh) and arg.args[0].is_number: z = arg.args[0] if z.is_real: from sympy.functions.elementary.complexes import Abs return Abs(z) r, i = match_real_imag(z) if r is not None and i is not None: f = floor(i/pi) m = z - I*pi*f even = f.is_even if even is True: if r.is_nonnegative: return m elif r.is_negative: return -m elif even is False: m -= I*pi if r.is_nonpositive: return -m elif r.is_positive: return m @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return S.Pi*S.ImaginaryUnit / 2 elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) >= 2 and n > 2: p = previous_terms[-2] return p * (n - 2)**2/(n*(n - 1)) * x**2 else: k = (n - 1) // 2 R = RisingFactorial(S.Half, k) F = factorial(k) return -R / F * S.ImaginaryUnit * x**n / n def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return S.ImaginaryUnit*S.Pi/2 else: return self.func(arg) def _eval_rewrite_as_log(self, x, **kwargs): return log(x + sqrt(x + 1) * sqrt(x - 1)) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return cosh class atanh(InverseHyperbolicFunction): """ The inverse hyperbolic tangent function. * atanh(x) -> Returns the inverse hyperbolic tangent of x See Also ======== asinh, acosh, tanh """ def fdiff(self, argindex=1): if argindex == 1: return 1/(1 - self.args[0]**2) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy import atan arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg.is_zero: return S.Zero elif arg is S.One: return S.Infinity elif arg is S.NegativeOne: return S.NegativeInfinity elif arg is S.Infinity: return -S.ImaginaryUnit * atan(arg) elif arg is S.NegativeInfinity: return S.ImaginaryUnit * atan(-arg) elif arg.is_negative: return -cls(-arg) else: if arg is S.ComplexInfinity: from sympy.calculus.util import AccumBounds return S.ImaginaryUnit*AccumBounds(-S.Pi/2, S.Pi/2) i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return S.ImaginaryUnit * atan(i_coeff) else: if _coeff_isneg(arg): return -cls(-arg) if arg.is_zero: return S.Zero if isinstance(arg, tanh) and arg.args[0].is_number: z = arg.args[0] if z.is_real: return z r, i = match_real_imag(z) if r is not None and i is not None: f = floor(2*i/pi) even = f.is_even m = z - I*f*pi/2 if even is True: return m elif even is False: return m - I*pi/2 @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) return x**n / n def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_rewrite_as_log(self, x, **kwargs): return (log(1 + x) - log(1 - x)) / 2 def _eval_is_zero(self): arg = self.args[0] if arg.is_zero: return True def inverse(self, argindex=1): """ Returns the inverse of this function. """ return tanh class acoth(InverseHyperbolicFunction): """ The inverse hyperbolic cotangent function. * acoth(x) -> Returns the inverse hyperbolic cotangent of x """ def fdiff(self, argindex=1): if argindex == 1: return 1/(1 - self.args[0]**2) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy import acot arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Zero elif arg is S.NegativeInfinity: return S.Zero elif arg.is_zero: return S.Pi*S.ImaginaryUnit / 2 elif arg is S.One: return S.Infinity elif arg is S.NegativeOne: return S.NegativeInfinity elif arg.is_negative: return -cls(-arg) else: if arg is S.ComplexInfinity: return S.Zero i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return -S.ImaginaryUnit * acot(i_coeff) else: if _coeff_isneg(arg): return -cls(-arg) if arg.is_zero: return S.Pi*S.ImaginaryUnit*S.Half @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return S.Pi*S.ImaginaryUnit / 2 elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) return x**n / n def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return S.ImaginaryUnit*S.Pi/2 else: return self.func(arg) def _eval_rewrite_as_log(self, x, **kwargs): return (log(1 + 1/x) - log(1 - 1/x)) / 2 def inverse(self, argindex=1): """ Returns the inverse of this function. """ return coth class asech(InverseHyperbolicFunction): """ The inverse hyperbolic secant function. * asech(x) -> Returns the inverse hyperbolic secant of x Examples ======== >>> from sympy import asech, sqrt, S >>> from sympy.abc import x >>> asech(x).diff(x) -1/(x*sqrt(1 - x**2)) >>> asech(1).diff(x) 0 >>> asech(1) 0 >>> asech(S(2)) I*pi/3 >>> asech(-sqrt(2)) 3*I*pi/4 >>> asech((sqrt(6) - sqrt(2))) I*pi/12 See Also ======== asinh, atanh, cosh, acoth References ========== .. [1] https://en.wikipedia.org/wiki/Hyperbolic_function .. [2] http://dlmf.nist.gov/4.37 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSech/ """ def fdiff(self, argindex=1): if argindex == 1: z = self.args[0] return -1/(z*sqrt(1 - z**2)) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Pi*S.ImaginaryUnit / 2 elif arg is S.NegativeInfinity: return S.Pi*S.ImaginaryUnit / 2 elif arg.is_zero: return S.Infinity elif arg is S.One: return S.Zero elif arg is S.NegativeOne: return S.Pi*S.ImaginaryUnit if arg.is_number: cst_table = { S.ImaginaryUnit: - (S.Pi*S.ImaginaryUnit / 2) + log(1 + sqrt(2)), -S.ImaginaryUnit: (S.Pi*S.ImaginaryUnit / 2) + log(1 + sqrt(2)), (sqrt(6) - sqrt(2)): S.Pi / 12, (sqrt(2) - sqrt(6)): 11*S.Pi / 12, sqrt(2 - 2/sqrt(5)): S.Pi / 10, -sqrt(2 - 2/sqrt(5)): 9*S.Pi / 10, 2 / sqrt(2 + sqrt(2)): S.Pi / 8, -2 / sqrt(2 + sqrt(2)): 7*S.Pi / 8, 2 / sqrt(3): S.Pi / 6, -2 / sqrt(3): 5*S.Pi / 6, (sqrt(5) - 1): S.Pi / 5, (1 - sqrt(5)): 4*S.Pi / 5, sqrt(2): S.Pi / 4, -sqrt(2): 3*S.Pi / 4, sqrt(2 + 2/sqrt(5)): 3*S.Pi / 10, -sqrt(2 + 2/sqrt(5)): 7*S.Pi / 10, S(2): S.Pi / 3, -S(2): 2*S.Pi / 3, sqrt(2*(2 + sqrt(2))): 3*S.Pi / 8, -sqrt(2*(2 + sqrt(2))): 5*S.Pi / 8, (1 + sqrt(5)): 2*S.Pi / 5, (-1 - sqrt(5)): 3*S.Pi / 5, (sqrt(6) + sqrt(2)): 5*S.Pi / 12, (-sqrt(6) - sqrt(2)): 7*S.Pi / 12, } if arg in cst_table: if arg.is_extended_real: return cst_table[arg]*S.ImaginaryUnit return cst_table[arg] if arg is S.ComplexInfinity: from sympy.calculus.util import AccumBounds return S.ImaginaryUnit*AccumBounds(-S.Pi/2, S.Pi/2) if arg.is_zero: return S.Infinity @staticmethod @cacheit def expansion_term(n, x, *previous_terms): if n == 0: return log(2 / x) elif n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) if len(previous_terms) > 2 and n > 2: p = previous_terms[-2] return p * (n - 1)**2 // (n // 2)**2 * x**2 / 4 else: k = n // 2 R = RisingFactorial(S.Half , k) * n F = factorial(k) * n // 2 * n // 2 return -1 * R / F * x**n / 4 def inverse(self, argindex=1): """ Returns the inverse of this function. """ return sech def _eval_rewrite_as_log(self, arg, **kwargs): return log(1/arg + sqrt(1/arg - 1) * sqrt(1/arg + 1)) class acsch(InverseHyperbolicFunction): """ The inverse hyperbolic cosecant function. * acsch(x) -> Returns the inverse hyperbolic cosecant of x Examples ======== >>> from sympy import acsch, sqrt, S >>> from sympy.abc import x >>> acsch(x).diff(x) -1/(x**2*sqrt(1 + x**(-2))) >>> acsch(1).diff(x) 0 >>> acsch(1) log(1 + sqrt(2)) >>> acsch(S.ImaginaryUnit) -I*pi/2 >>> acsch(-2*S.ImaginaryUnit) I*pi/6 >>> acsch(S.ImaginaryUnit*(sqrt(6) - sqrt(2))) -5*I*pi/12 References ========== .. [1] https://en.wikipedia.org/wiki/Hyperbolic_function .. [2] http://dlmf.nist.gov/4.37 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCsch/ """ def fdiff(self, argindex=1): if argindex == 1: z = self.args[0] return -1/(z**2*sqrt(1 + 1/z**2)) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Zero elif arg is S.NegativeInfinity: return S.Zero elif arg.is_zero: return S.ComplexInfinity elif arg is S.One: return log(1 + sqrt(2)) elif arg is S.NegativeOne: return - log(1 + sqrt(2)) if arg.is_number: cst_table = { S.ImaginaryUnit: -S.Pi / 2, S.ImaginaryUnit*(sqrt(2) + sqrt(6)): -S.Pi / 12, S.ImaginaryUnit*(1 + sqrt(5)): -S.Pi / 10, S.ImaginaryUnit*2 / sqrt(2 - sqrt(2)): -S.Pi / 8, S.ImaginaryUnit*2: -S.Pi / 6, S.ImaginaryUnit*sqrt(2 + 2/sqrt(5)): -S.Pi / 5, S.ImaginaryUnit*sqrt(2): -S.Pi / 4, S.ImaginaryUnit*(sqrt(5)-1): -3*S.Pi / 10, S.ImaginaryUnit*2 / sqrt(3): -S.Pi / 3, S.ImaginaryUnit*2 / sqrt(2 + sqrt(2)): -3*S.Pi / 8, S.ImaginaryUnit*sqrt(2 - 2/sqrt(5)): -2*S.Pi / 5, S.ImaginaryUnit*(sqrt(6) - sqrt(2)): -5*S.Pi / 12, S(2): -S.ImaginaryUnit*log((1+sqrt(5))/2), } if arg in cst_table: return cst_table[arg]*S.ImaginaryUnit if arg is S.ComplexInfinity: return S.Zero if arg.is_zero: return S.ComplexInfinity if _coeff_isneg(arg): return -cls(-arg) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return csch def _eval_rewrite_as_log(self, arg, **kwargs): return log(1/arg + sqrt(1/arg**2 + 1))
f4766ea47163ec834d9c8d8d001226b998a0e418d3adc025de375dc4618d865e
"""Hypergeometric and Meijer G-functions""" from __future__ import print_function, division from sympy.core import S, I, pi, oo, zoo, ilcm, Mod from sympy.core.function import Function, Derivative, ArgumentIndexError from sympy.core.compatibility import reduce, range from sympy.core.containers import Tuple from sympy.core.mul import Mul from sympy.core.symbol import Dummy from sympy.functions import (sqrt, exp, log, sin, cos, asin, atan, sinh, cosh, asinh, acosh, atanh, acoth, Abs) from sympy.utilities.iterables import default_sort_key class TupleArg(Tuple): def limit(self, x, xlim, dir='+'): """ Compute limit x->xlim. """ from sympy.series.limits import limit return TupleArg(*[limit(f, x, xlim, dir) for f in self.args]) # TODO should __new__ accept **options? # TODO should constructors should check if parameters are sensible? def _prep_tuple(v): """ Turn an iterable argument V into a Tuple and unpolarify, since both hypergeometric and meijer g-functions are unbranched in their parameters. Examples ======== >>> from sympy.functions.special.hyper import _prep_tuple >>> _prep_tuple([1, 2, 3]) (1, 2, 3) >>> _prep_tuple((4, 5)) (4, 5) >>> _prep_tuple((7, 8, 9)) (7, 8, 9) """ from sympy import unpolarify return TupleArg(*[unpolarify(x) for x in v]) class TupleParametersBase(Function): """ Base class that takes care of differentiation, when some of the arguments are actually tuples. """ # This is not deduced automatically since there are Tuples as arguments. is_commutative = True def _eval_derivative(self, s): try: res = 0 if self.args[0].has(s) or self.args[1].has(s): for i, p in enumerate(self._diffargs): m = self._diffargs[i].diff(s) if m != 0: res += self.fdiff((1, i))*m return res + self.fdiff(3)*self.args[2].diff(s) except (ArgumentIndexError, NotImplementedError): return Derivative(self, s) class hyper(TupleParametersBase): r""" The (generalized) hypergeometric function is defined by a series where the ratios of successive terms are a rational function of the summation index. When convergent, it is continued analytically to the largest possible domain. The hypergeometric function depends on two vectors of parameters, called the numerator parameters :math:`a_p`, and the denominator parameters :math:`b_q`. It also has an argument :math:`z`. The series definition is .. math :: {}_pF_q\left(\begin{matrix} a_1, \cdots, a_p \\ b_1, \cdots, b_q \end{matrix} \middle| z \right) = \sum_{n=0}^\infty \frac{(a_1)_n \cdots (a_p)_n}{(b_1)_n \cdots (b_q)_n} \frac{z^n}{n!}, where :math:`(a)_n = (a)(a+1)\cdots(a+n-1)` denotes the rising factorial. If one of the :math:`b_q` is a non-positive integer then the series is undefined unless one of the `a_p` is a larger (i.e. smaller in magnitude) non-positive integer. If none of the :math:`b_q` is a non-positive integer and one of the :math:`a_p` is a non-positive integer, then the series reduces to a polynomial. To simplify the following discussion, we assume that none of the :math:`a_p` or :math:`b_q` is a non-positive integer. For more details, see the references. The series converges for all :math:`z` if :math:`p \le q`, and thus defines an entire single-valued function in this case. If :math:`p = q+1` the series converges for :math:`|z| < 1`, and can be continued analytically into a half-plane. If :math:`p > q+1` the series is divergent for all :math:`z`. Note: The hypergeometric function constructor currently does *not* check if the parameters actually yield a well-defined function. Examples ======== The parameters :math:`a_p` and :math:`b_q` can be passed as arbitrary iterables, for example: >>> from sympy.functions import hyper >>> from sympy.abc import x, n, a >>> hyper((1, 2, 3), [3, 4], x) hyper((1, 2, 3), (3, 4), x) There is also pretty printing (it looks better using unicode): >>> from sympy import pprint >>> pprint(hyper((1, 2, 3), [3, 4], x), use_unicode=False) _ |_ /1, 2, 3 | \ | | | x| 3 2 \ 3, 4 | / The parameters must always be iterables, even if they are vectors of length one or zero: >>> hyper((1, ), [], x) hyper((1,), (), x) But of course they may be variables (but if they depend on x then you should not expect much implemented functionality): >>> hyper((n, a), (n**2,), x) hyper((n, a), (n**2,), x) The hypergeometric function generalizes many named special functions. The function hyperexpand() tries to express a hypergeometric function using named special functions. For example: >>> from sympy import hyperexpand >>> hyperexpand(hyper([], [], x)) exp(x) You can also use expand_func: >>> from sympy import expand_func >>> expand_func(x*hyper([1, 1], [2], -x)) log(x + 1) More examples: >>> from sympy import S >>> hyperexpand(hyper([], [S(1)/2], -x**2/4)) cos(x) >>> hyperexpand(x*hyper([S(1)/2, S(1)/2], [S(3)/2], x**2)) asin(x) We can also sometimes hyperexpand parametric functions: >>> from sympy.abc import a >>> hyperexpand(hyper([-a], [], x)) (1 - x)**a See Also ======== sympy.simplify.hyperexpand sympy.functions.special.gamma_functions.gamma meijerg References ========== .. [1] Luke, Y. L. (1969), The Special Functions and Their Approximations, Volume 1 .. [2] https://en.wikipedia.org/wiki/Generalized_hypergeometric_function """ def __new__(cls, ap, bq, z, **kwargs): # TODO should we check convergence conditions? return Function.__new__(cls, _prep_tuple(ap), _prep_tuple(bq), z, **kwargs) @classmethod def eval(cls, ap, bq, z): from sympy import unpolarify if len(ap) <= len(bq) or (len(ap) == len(bq) + 1 and (Abs(z) <= 1) == True): nz = unpolarify(z) if z != nz: return hyper(ap, bq, nz) def fdiff(self, argindex=3): if argindex != 3: raise ArgumentIndexError(self, argindex) nap = Tuple(*[a + 1 for a in self.ap]) nbq = Tuple(*[b + 1 for b in self.bq]) fac = Mul(*self.ap)/Mul(*self.bq) return fac*hyper(nap, nbq, self.argument) def _eval_expand_func(self, **hints): from sympy import gamma, hyperexpand if len(self.ap) == 2 and len(self.bq) == 1 and self.argument == 1: a, b = self.ap c = self.bq[0] return gamma(c)*gamma(c - a - b)/gamma(c - a)/gamma(c - b) return hyperexpand(self) def _eval_rewrite_as_Sum(self, ap, bq, z, **kwargs): from sympy.functions import factorial, RisingFactorial, Piecewise from sympy import Sum n = Dummy("n", integer=True) rfap = Tuple(*[RisingFactorial(a, n) for a in ap]) rfbq = Tuple(*[RisingFactorial(b, n) for b in bq]) coeff = Mul(*rfap) / Mul(*rfbq) return Piecewise((Sum(coeff * z**n / factorial(n), (n, 0, oo)), self.convergence_statement), (self, True)) @property def argument(self): """ Argument of the hypergeometric function. """ return self.args[2] @property def ap(self): """ Numerator parameters of the hypergeometric function. """ return Tuple(*self.args[0]) @property def bq(self): """ Denominator parameters of the hypergeometric function. """ return Tuple(*self.args[1]) @property def _diffargs(self): return self.ap + self.bq @property def eta(self): """ A quantity related to the convergence of the series. """ return sum(self.ap) - sum(self.bq) @property def radius_of_convergence(self): """ Compute the radius of convergence of the defining series. Note that even if this is not oo, the function may still be evaluated outside of the radius of convergence by analytic continuation. But if this is zero, then the function is not actually defined anywhere else. >>> from sympy.functions import hyper >>> from sympy.abc import z >>> hyper((1, 2), [3], z).radius_of_convergence 1 >>> hyper((1, 2, 3), [4], z).radius_of_convergence 0 >>> hyper((1, 2), (3, 4), z).radius_of_convergence oo """ if any(a.is_integer and (a <= 0) == True for a in self.ap + self.bq): aints = [a for a in self.ap if a.is_Integer and (a <= 0) == True] bints = [a for a in self.bq if a.is_Integer and (a <= 0) == True] if len(aints) < len(bints): return S.Zero popped = False for b in bints: cancelled = False while aints: a = aints.pop() if a >= b: cancelled = True break popped = True if not cancelled: return S.Zero if aints or popped: # There are still non-positive numerator parameters. # This is a polynomial. return oo if len(self.ap) == len(self.bq) + 1: return S.One elif len(self.ap) <= len(self.bq): return oo else: return S.Zero @property def convergence_statement(self): """ Return a condition on z under which the series converges. """ from sympy import And, Or, re, Ne, oo R = self.radius_of_convergence if R == 0: return False if R == oo: return True # The special functions and their approximations, page 44 e = self.eta z = self.argument c1 = And(re(e) < 0, abs(z) <= 1) c2 = And(0 <= re(e), re(e) < 1, abs(z) <= 1, Ne(z, 1)) c3 = And(re(e) >= 1, abs(z) < 1) return Or(c1, c2, c3) def _eval_simplify(self, **kwargs): from sympy.simplify.hyperexpand import hyperexpand return hyperexpand(self) def _sage_(self): import sage.all as sage ap = [arg._sage_() for arg in self.args[0]] bq = [arg._sage_() for arg in self.args[1]] return sage.hypergeometric(ap, bq, self.argument._sage_()) class meijerg(TupleParametersBase): r""" The Meijer G-function is defined by a Mellin-Barnes type integral that resembles an inverse Mellin transform. It generalizes the hypergeometric functions. The Meijer G-function depends on four sets of parameters. There are "*numerator parameters*" :math:`a_1, \ldots, a_n` and :math:`a_{n+1}, \ldots, a_p`, and there are "*denominator parameters*" :math:`b_1, \ldots, b_m` and :math:`b_{m+1}, \ldots, b_q`. Confusingly, it is traditionally denoted as follows (note the position of `m`, `n`, `p`, `q`, and how they relate to the lengths of the four parameter vectors): .. math :: G_{p,q}^{m,n} \left(\begin{matrix}a_1, \cdots, a_n & a_{n+1}, \cdots, a_p \\ b_1, \cdots, b_m & b_{m+1}, \cdots, b_q \end{matrix} \middle| z \right). However, in sympy the four parameter vectors are always available separately (see examples), so that there is no need to keep track of the decorating sub- and super-scripts on the G symbol. The G function is defined as the following integral: .. math :: \frac{1}{2 \pi i} \int_L \frac{\prod_{j=1}^m \Gamma(b_j - s) \prod_{j=1}^n \Gamma(1 - a_j + s)}{\prod_{j=m+1}^q \Gamma(1- b_j +s) \prod_{j=n+1}^p \Gamma(a_j - s)} z^s \mathrm{d}s, where :math:`\Gamma(z)` is the gamma function. There are three possible contours which we will not describe in detail here (see the references). If the integral converges along more than one of them the definitions agree. The contours all separate the poles of :math:`\Gamma(1-a_j+s)` from the poles of :math:`\Gamma(b_k-s)`, so in particular the G function is undefined if :math:`a_j - b_k \in \mathbb{Z}_{>0}` for some :math:`j \le n` and :math:`k \le m`. The conditions under which one of the contours yields a convergent integral are complicated and we do not state them here, see the references. Note: Currently the Meijer G-function constructor does *not* check any convergence conditions. Examples ======== You can pass the parameters either as four separate vectors: >>> from sympy.functions import meijerg >>> from sympy.abc import x, a >>> from sympy.core.containers import Tuple >>> from sympy import pprint >>> pprint(meijerg((1, 2), (a, 4), (5,), [], x), use_unicode=False) __1, 2 /1, 2 a, 4 | \ /__ | | x| \_|4, 1 \ 5 | / or as two nested vectors: >>> pprint(meijerg([(1, 2), (3, 4)], ([5], Tuple()), x), use_unicode=False) __1, 2 /1, 2 3, 4 | \ /__ | | x| \_|4, 1 \ 5 | / As with the hypergeometric function, the parameters may be passed as arbitrary iterables. Vectors of length zero and one also have to be passed as iterables. The parameters need not be constants, but if they depend on the argument then not much implemented functionality should be expected. All the subvectors of parameters are available: >>> from sympy import pprint >>> g = meijerg([1], [2], [3], [4], x) >>> pprint(g, use_unicode=False) __1, 1 /1 2 | \ /__ | | x| \_|2, 2 \3 4 | / >>> g.an (1,) >>> g.ap (1, 2) >>> g.aother (2,) >>> g.bm (3,) >>> g.bq (3, 4) >>> g.bother (4,) The Meijer G-function generalizes the hypergeometric functions. In some cases it can be expressed in terms of hypergeometric functions, using Slater's theorem. For example: >>> from sympy import hyperexpand >>> from sympy.abc import a, b, c >>> hyperexpand(meijerg([a], [], [c], [b], x), allow_hyper=True) x**c*gamma(-a + c + 1)*hyper((-a + c + 1,), (-b + c + 1,), -x)/gamma(-b + c + 1) Thus the Meijer G-function also subsumes many named functions as special cases. You can use expand_func or hyperexpand to (try to) rewrite a Meijer G-function in terms of named special functions. For example: >>> from sympy import expand_func, S >>> expand_func(meijerg([[],[]], [[0],[]], -x)) exp(x) >>> hyperexpand(meijerg([[],[]], [[S(1)/2],[0]], (x/2)**2)) sin(x)/sqrt(pi) See Also ======== hyper sympy.simplify.hyperexpand References ========== .. [1] Luke, Y. L. (1969), The Special Functions and Their Approximations, Volume 1 .. [2] https://en.wikipedia.org/wiki/Meijer_G-function """ def __new__(cls, *args, **kwargs): if len(args) == 5: args = [(args[0], args[1]), (args[2], args[3]), args[4]] if len(args) != 3: raise TypeError("args must be either as, as', bs, bs', z or " "as, bs, z") def tr(p): if len(p) != 2: raise TypeError("wrong argument") return TupleArg(_prep_tuple(p[0]), _prep_tuple(p[1])) arg0, arg1 = tr(args[0]), tr(args[1]) if Tuple(arg0, arg1).has(oo, zoo, -oo): raise ValueError("G-function parameters must be finite") if any((a - b).is_Integer and a - b > 0 for a in arg0[0] for b in arg1[0]): raise ValueError("no parameter a1, ..., an may differ from " "any b1, ..., bm by a positive integer") # TODO should we check convergence conditions? return Function.__new__(cls, arg0, arg1, args[2], **kwargs) def fdiff(self, argindex=3): if argindex != 3: return self._diff_wrt_parameter(argindex[1]) if len(self.an) >= 1: a = list(self.an) a[0] -= 1 G = meijerg(a, self.aother, self.bm, self.bother, self.argument) return 1/self.argument * ((self.an[0] - 1)*self + G) elif len(self.bm) >= 1: b = list(self.bm) b[0] += 1 G = meijerg(self.an, self.aother, b, self.bother, self.argument) return 1/self.argument * (self.bm[0]*self - G) else: return S.Zero def _diff_wrt_parameter(self, idx): # Differentiation wrt a parameter can only be done in very special # cases. In particular, if we want to differentiate with respect to # `a`, all other gamma factors have to reduce to rational functions. # # Let MT denote mellin transform. Suppose T(-s) is the gamma factor # appearing in the definition of G. Then # # MT(log(z)G(z)) = d/ds T(s) = d/da T(s) + ... # # Thus d/da G(z) = log(z)G(z) - ... # The ... can be evaluated as a G function under the above conditions, # the formula being most easily derived by using # # d Gamma(s + n) Gamma(s + n) / 1 1 1 \ # -- ------------ = ------------ | - + ---- + ... + --------- | # ds Gamma(s) Gamma(s) \ s s + 1 s + n - 1 / # # which follows from the difference equation of the digamma function. # (There is a similar equation for -n instead of +n). # We first figure out how to pair the parameters. an = list(self.an) ap = list(self.aother) bm = list(self.bm) bq = list(self.bother) if idx < len(an): an.pop(idx) else: idx -= len(an) if idx < len(ap): ap.pop(idx) else: idx -= len(ap) if idx < len(bm): bm.pop(idx) else: bq.pop(idx - len(bm)) pairs1 = [] pairs2 = [] for l1, l2, pairs in [(an, bq, pairs1), (ap, bm, pairs2)]: while l1: x = l1.pop() found = None for i, y in enumerate(l2): if not Mod((x - y).simplify(), 1): found = i break if found is None: raise NotImplementedError('Derivative not expressible ' 'as G-function?') y = l2[i] l2.pop(i) pairs.append((x, y)) # Now build the result. res = log(self.argument)*self for a, b in pairs1: sign = 1 n = a - b base = b if n < 0: sign = -1 n = b - a base = a for k in range(n): res -= sign*meijerg(self.an + (base + k + 1,), self.aother, self.bm, self.bother + (base + k + 0,), self.argument) for a, b in pairs2: sign = 1 n = b - a base = a if n < 0: sign = -1 n = a - b base = b for k in range(n): res -= sign*meijerg(self.an, self.aother + (base + k + 1,), self.bm + (base + k + 0,), self.bother, self.argument) return res def get_period(self): """ Return a number P such that G(x*exp(I*P)) == G(x). >>> from sympy.functions.special.hyper import meijerg >>> from sympy.abc import z >>> from sympy import pi, S >>> meijerg([1], [], [], [], z).get_period() 2*pi >>> meijerg([pi], [], [], [], z).get_period() oo >>> meijerg([1, 2], [], [], [], z).get_period() oo >>> meijerg([1,1], [2], [1, S(1)/2, S(1)/3], [1], z).get_period() 12*pi """ # This follows from slater's theorem. def compute(l): # first check that no two differ by an integer for i, b in enumerate(l): if not b.is_Rational: return oo for j in range(i + 1, len(l)): if not Mod((b - l[j]).simplify(), 1): return oo return reduce(ilcm, (x.q for x in l), 1) beta = compute(self.bm) alpha = compute(self.an) p, q = len(self.ap), len(self.bq) if p == q: if beta == oo or alpha == oo: return oo return 2*pi*ilcm(alpha, beta) elif p < q: return 2*pi*beta else: return 2*pi*alpha def _eval_expand_func(self, **hints): from sympy import hyperexpand return hyperexpand(self) def _eval_evalf(self, prec): # The default code is insufficient for polar arguments. # mpmath provides an optional argument "r", which evaluates # G(z**(1/r)). I am not sure what its intended use is, but we hijack it # here in the following way: to evaluate at a number z of |argument| # less than (say) n*pi, we put r=1/n, compute z' = root(z, n) # (carefully so as not to loose the branch information), and evaluate # G(z'**(1/r)) = G(z'**n) = G(z). from sympy.functions import exp_polar, ceiling from sympy import Expr import mpmath znum = self.argument._eval_evalf(prec) if znum.has(exp_polar): znum, branch = znum.as_coeff_mul(exp_polar) if len(branch) != 1: return branch = branch[0].args[0]/I else: branch = S.Zero n = ceiling(abs(branch/S.Pi)) + 1 znum = znum**(S.One/n)*exp(I*branch / n) # Convert all args to mpf or mpc try: [z, r, ap, bq] = [arg._to_mpmath(prec) for arg in [znum, 1/n, self.args[0], self.args[1]]] except ValueError: return with mpmath.workprec(prec): v = mpmath.meijerg(ap, bq, z, r) return Expr._from_mpmath(v, prec) def integrand(self, s): """ Get the defining integrand D(s). """ from sympy import gamma return self.argument**s \ * Mul(*(gamma(b - s) for b in self.bm)) \ * Mul(*(gamma(1 - a + s) for a in self.an)) \ / Mul(*(gamma(1 - b + s) for b in self.bother)) \ / Mul(*(gamma(a - s) for a in self.aother)) @property def argument(self): """ Argument of the Meijer G-function. """ return self.args[2] @property def an(self): """ First set of numerator parameters. """ return Tuple(*self.args[0][0]) @property def ap(self): """ Combined numerator parameters. """ return Tuple(*(self.args[0][0] + self.args[0][1])) @property def aother(self): """ Second set of numerator parameters. """ return Tuple(*self.args[0][1]) @property def bm(self): """ First set of denominator parameters. """ return Tuple(*self.args[1][0]) @property def bq(self): """ Combined denominator parameters. """ return Tuple(*(self.args[1][0] + self.args[1][1])) @property def bother(self): """ Second set of denominator parameters. """ return Tuple(*self.args[1][1]) @property def _diffargs(self): return self.ap + self.bq @property def nu(self): """ A quantity related to the convergence region of the integral, c.f. references. """ return sum(self.bq) - sum(self.ap) @property def delta(self): """ A quantity related to the convergence region of the integral, c.f. references. """ return len(self.bm) + len(self.an) - S(len(self.ap) + len(self.bq))/2 @property def is_number(self): """ Returns true if expression has numeric data only. """ return not self.free_symbols class HyperRep(Function): """ A base class for "hyper representation functions". This is used exclusively in hyperexpand(), but fits more logically here. pFq is branched at 1 if p == q+1. For use with slater-expansion, we want define an "analytic continuation" to all polar numbers, which is continuous on circles and on the ray t*exp_polar(I*pi). Moreover, we want a "nice" expression for the various cases. This base class contains the core logic, concrete derived classes only supply the actual functions. """ @classmethod def eval(cls, *args): from sympy import unpolarify newargs = tuple(map(unpolarify, args[:-1])) + args[-1:] if args != newargs: return cls(*newargs) @classmethod def _expr_small(cls, x): """ An expression for F(x) which holds for |x| < 1. """ raise NotImplementedError @classmethod def _expr_small_minus(cls, x): """ An expression for F(-x) which holds for |x| < 1. """ raise NotImplementedError @classmethod def _expr_big(cls, x, n): """ An expression for F(exp_polar(2*I*pi*n)*x), |x| > 1. """ raise NotImplementedError @classmethod def _expr_big_minus(cls, x, n): """ An expression for F(exp_polar(2*I*pi*n + pi*I)*x), |x| > 1. """ raise NotImplementedError def _eval_rewrite_as_nonrep(self, *args, **kwargs): from sympy import Piecewise x, n = self.args[-1].extract_branch_factor(allow_half=True) minus = False newargs = self.args[:-1] + (x,) if not n.is_Integer: minus = True n -= S.Half newerargs = newargs + (n,) if minus: small = self._expr_small_minus(*newargs) big = self._expr_big_minus(*newerargs) else: small = self._expr_small(*newargs) big = self._expr_big(*newerargs) if big == small: return small return Piecewise((big, abs(x) > 1), (small, True)) def _eval_rewrite_as_nonrepsmall(self, *args, **kwargs): x, n = self.args[-1].extract_branch_factor(allow_half=True) args = self.args[:-1] + (x,) if not n.is_Integer: return self._expr_small_minus(*args) return self._expr_small(*args) class HyperRep_power1(HyperRep): """ Return a representative for hyper([-a], [], z) == (1 - z)**a. """ @classmethod def _expr_small(cls, a, x): return (1 - x)**a @classmethod def _expr_small_minus(cls, a, x): return (1 + x)**a @classmethod def _expr_big(cls, a, x, n): if a.is_integer: return cls._expr_small(a, x) return (x - 1)**a*exp((2*n - 1)*pi*I*a) @classmethod def _expr_big_minus(cls, a, x, n): if a.is_integer: return cls._expr_small_minus(a, x) return (1 + x)**a*exp(2*n*pi*I*a) class HyperRep_power2(HyperRep): """ Return a representative for hyper([a, a - 1/2], [2*a], z). """ @classmethod def _expr_small(cls, a, x): return 2**(2*a - 1)*(1 + sqrt(1 - x))**(1 - 2*a) @classmethod def _expr_small_minus(cls, a, x): return 2**(2*a - 1)*(1 + sqrt(1 + x))**(1 - 2*a) @classmethod def _expr_big(cls, a, x, n): sgn = -1 if n.is_odd: sgn = 1 n -= 1 return 2**(2*a - 1)*(1 + sgn*I*sqrt(x - 1))**(1 - 2*a) \ *exp(-2*n*pi*I*a) @classmethod def _expr_big_minus(cls, a, x, n): sgn = 1 if n.is_odd: sgn = -1 return sgn*2**(2*a - 1)*(sqrt(1 + x) + sgn)**(1 - 2*a)*exp(-2*pi*I*a*n) class HyperRep_log1(HyperRep): """ Represent -z*hyper([1, 1], [2], z) == log(1 - z). """ @classmethod def _expr_small(cls, x): return log(1 - x) @classmethod def _expr_small_minus(cls, x): return log(1 + x) @classmethod def _expr_big(cls, x, n): return log(x - 1) + (2*n - 1)*pi*I @classmethod def _expr_big_minus(cls, x, n): return log(1 + x) + 2*n*pi*I class HyperRep_atanh(HyperRep): """ Represent hyper([1/2, 1], [3/2], z) == atanh(sqrt(z))/sqrt(z). """ @classmethod def _expr_small(cls, x): return atanh(sqrt(x))/sqrt(x) def _expr_small_minus(cls, x): return atan(sqrt(x))/sqrt(x) def _expr_big(cls, x, n): if n.is_even: return (acoth(sqrt(x)) + I*pi/2)/sqrt(x) else: return (acoth(sqrt(x)) - I*pi/2)/sqrt(x) def _expr_big_minus(cls, x, n): if n.is_even: return atan(sqrt(x))/sqrt(x) else: return (atan(sqrt(x)) - pi)/sqrt(x) class HyperRep_asin1(HyperRep): """ Represent hyper([1/2, 1/2], [3/2], z) == asin(sqrt(z))/sqrt(z). """ @classmethod def _expr_small(cls, z): return asin(sqrt(z))/sqrt(z) @classmethod def _expr_small_minus(cls, z): return asinh(sqrt(z))/sqrt(z) @classmethod def _expr_big(cls, z, n): return S.NegativeOne**n*((S.Half - n)*pi/sqrt(z) + I*acosh(sqrt(z))/sqrt(z)) @classmethod def _expr_big_minus(cls, z, n): return S.NegativeOne**n*(asinh(sqrt(z))/sqrt(z) + n*pi*I/sqrt(z)) class HyperRep_asin2(HyperRep): """ Represent hyper([1, 1], [3/2], z) == asin(sqrt(z))/sqrt(z)/sqrt(1-z). """ # TODO this can be nicer @classmethod def _expr_small(cls, z): return HyperRep_asin1._expr_small(z) \ /HyperRep_power1._expr_small(S.Half, z) @classmethod def _expr_small_minus(cls, z): return HyperRep_asin1._expr_small_minus(z) \ /HyperRep_power1._expr_small_minus(S.Half, z) @classmethod def _expr_big(cls, z, n): return HyperRep_asin1._expr_big(z, n) \ /HyperRep_power1._expr_big(S.Half, z, n) @classmethod def _expr_big_minus(cls, z, n): return HyperRep_asin1._expr_big_minus(z, n) \ /HyperRep_power1._expr_big_minus(S.Half, z, n) class HyperRep_sqrts1(HyperRep): """ Return a representative for hyper([-a, 1/2 - a], [1/2], z). """ @classmethod def _expr_small(cls, a, z): return ((1 - sqrt(z))**(2*a) + (1 + sqrt(z))**(2*a))/2 @classmethod def _expr_small_minus(cls, a, z): return (1 + z)**a*cos(2*a*atan(sqrt(z))) @classmethod def _expr_big(cls, a, z, n): if n.is_even: return ((sqrt(z) + 1)**(2*a)*exp(2*pi*I*n*a) + (sqrt(z) - 1)**(2*a)*exp(2*pi*I*(n - 1)*a))/2 else: n -= 1 return ((sqrt(z) - 1)**(2*a)*exp(2*pi*I*a*(n + 1)) + (sqrt(z) + 1)**(2*a)*exp(2*pi*I*a*n))/2 @classmethod def _expr_big_minus(cls, a, z, n): if n.is_even: return (1 + z)**a*exp(2*pi*I*n*a)*cos(2*a*atan(sqrt(z))) else: return (1 + z)**a*exp(2*pi*I*n*a)*cos(2*a*atan(sqrt(z)) - 2*pi*a) class HyperRep_sqrts2(HyperRep): """ Return a representative for sqrt(z)/2*[(1-sqrt(z))**2a - (1 + sqrt(z))**2a] == -2*z/(2*a+1) d/dz hyper([-a - 1/2, -a], [1/2], z)""" @classmethod def _expr_small(cls, a, z): return sqrt(z)*((1 - sqrt(z))**(2*a) - (1 + sqrt(z))**(2*a))/2 @classmethod def _expr_small_minus(cls, a, z): return sqrt(z)*(1 + z)**a*sin(2*a*atan(sqrt(z))) @classmethod def _expr_big(cls, a, z, n): if n.is_even: return sqrt(z)/2*((sqrt(z) - 1)**(2*a)*exp(2*pi*I*a*(n - 1)) - (sqrt(z) + 1)**(2*a)*exp(2*pi*I*a*n)) else: n -= 1 return sqrt(z)/2*((sqrt(z) - 1)**(2*a)*exp(2*pi*I*a*(n + 1)) - (sqrt(z) + 1)**(2*a)*exp(2*pi*I*a*n)) def _expr_big_minus(cls, a, z, n): if n.is_even: return (1 + z)**a*exp(2*pi*I*n*a)*sqrt(z)*sin(2*a*atan(sqrt(z))) else: return (1 + z)**a*exp(2*pi*I*n*a)*sqrt(z) \ *sin(2*a*atan(sqrt(z)) - 2*pi*a) class HyperRep_log2(HyperRep): """ Represent log(1/2 + sqrt(1 - z)/2) == -z/4*hyper([3/2, 1, 1], [2, 2], z) """ @classmethod def _expr_small(cls, z): return log(S.Half + sqrt(1 - z)/2) @classmethod def _expr_small_minus(cls, z): return log(S.Half + sqrt(1 + z)/2) @classmethod def _expr_big(cls, z, n): if n.is_even: return (n - S.Half)*pi*I + log(sqrt(z)/2) + I*asin(1/sqrt(z)) else: return (n - S.Half)*pi*I + log(sqrt(z)/2) - I*asin(1/sqrt(z)) def _expr_big_minus(cls, z, n): if n.is_even: return pi*I*n + log(S.Half + sqrt(1 + z)/2) else: return pi*I*n + log(sqrt(1 + z)/2 - S.Half) class HyperRep_cosasin(HyperRep): """ Represent hyper([a, -a], [1/2], z) == cos(2*a*asin(sqrt(z))). """ # Note there are many alternative expressions, e.g. as powers of a sum of # square roots. @classmethod def _expr_small(cls, a, z): return cos(2*a*asin(sqrt(z))) @classmethod def _expr_small_minus(cls, a, z): return cosh(2*a*asinh(sqrt(z))) @classmethod def _expr_big(cls, a, z, n): return cosh(2*a*acosh(sqrt(z)) + a*pi*I*(2*n - 1)) @classmethod def _expr_big_minus(cls, a, z, n): return cosh(2*a*asinh(sqrt(z)) + 2*a*pi*I*n) class HyperRep_sinasin(HyperRep): """ Represent 2*a*z*hyper([1 - a, 1 + a], [3/2], z) == sqrt(z)/sqrt(1-z)*sin(2*a*asin(sqrt(z))) """ @classmethod def _expr_small(cls, a, z): return sqrt(z)/sqrt(1 - z)*sin(2*a*asin(sqrt(z))) @classmethod def _expr_small_minus(cls, a, z): return -sqrt(z)/sqrt(1 + z)*sinh(2*a*asinh(sqrt(z))) @classmethod def _expr_big(cls, a, z, n): return -1/sqrt(1 - 1/z)*sinh(2*a*acosh(sqrt(z)) + a*pi*I*(2*n - 1)) @classmethod def _expr_big_minus(cls, a, z, n): return -1/sqrt(1 + 1/z)*sinh(2*a*asinh(sqrt(z)) + 2*a*pi*I*n) class appellf1(Function): r""" This is the Appell hypergeometric function of two variables as: .. math :: F_1(a,b_1,b_2,c,x,y) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(a)_{m+n} (b_1)_m (b_2)_n}{(c)_{m+n}} \frac{x^m y^n}{m! n!}. References ========== .. [1] https://en.wikipedia.org/wiki/Appell_series .. [2] http://functions.wolfram.com/HypergeometricFunctions/AppellF1/ """ @classmethod def eval(cls, a, b1, b2, c, x, y): if default_sort_key(b1) > default_sort_key(b2): b1, b2 = b2, b1 x, y = y, x return cls(a, b1, b2, c, x, y) elif b1 == b2 and default_sort_key(x) > default_sort_key(y): x, y = y, x return cls(a, b1, b2, c, x, y) if x == 0 and y == 0: return S.One def fdiff(self, argindex=5): a, b1, b2, c, x, y = self.args if argindex == 5: return (a*b1/c)*appellf1(a + 1, b1 + 1, b2, c + 1, x, y) elif argindex == 6: return (a*b2/c)*appellf1(a + 1, b1, b2 + 1, c + 1, x, y) elif argindex in (1, 2, 3, 4): return Derivative(self, self.args[argindex-1]) else: raise ArgumentIndexError(self, argindex)
592f2ff838802078c716a9b617e5985a77943eecdc6c7701103d916f2d962f44
from __future__ import print_function, division from sympy.core import Add, S, sympify, oo, pi, Dummy, expand_func from sympy.core.compatibility import range, as_int from sympy.core.function import Function, ArgumentIndexError from sympy.core.logic import fuzzy_and, fuzzy_not from sympy.core.numbers import Rational from sympy.core.power import Pow from sympy.functions.special.zeta_functions import zeta from sympy.functions.special.error_functions import erf, erfc, Ei from sympy.functions.elementary.complexes import re from sympy.functions.elementary.exponential import exp, log from sympy.functions.elementary.integers import ceiling, floor from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import sin, cos, cot from sympy.functions.combinatorial.numbers import bernoulli, harmonic from sympy.functions.combinatorial.factorials import factorial, rf, RisingFactorial def intlike(n): try: as_int(n, strict=False) return True except ValueError: return False ############################################################################### ############################ COMPLETE GAMMA FUNCTION ########################## ############################################################################### class gamma(Function): r""" The gamma function .. math:: \Gamma(x) := \int^{\infty}_{0} t^{x-1} e^{-t} \mathrm{d}t. The ``gamma`` function implements the function which passes through the values of the factorial function, i.e. `\Gamma(n) = (n - 1)!` when n is an integer. More general, `\Gamma(z)` is defined in the whole complex plane except at the negative integers where there are simple poles. Examples ======== >>> from sympy import S, I, pi, oo, gamma >>> from sympy.abc import x Several special values are known: >>> gamma(1) 1 >>> gamma(4) 6 >>> gamma(S(3)/2) sqrt(pi)/2 The Gamma function obeys the mirror symmetry: >>> from sympy import conjugate >>> conjugate(gamma(x)) gamma(conjugate(x)) Differentiation with respect to x is supported: >>> from sympy import diff >>> diff(gamma(x), x) gamma(x)*polygamma(0, x) Series expansion is also supported: >>> from sympy import series >>> series(gamma(x), x, 0, 3) 1/x - EulerGamma + x*(EulerGamma**2/2 + pi**2/12) + x**2*(-EulerGamma*pi**2/12 + polygamma(2, 1)/6 - EulerGamma**3/6) + O(x**3) We can numerically evaluate the gamma function to arbitrary precision on the whole complex plane: >>> gamma(pi).evalf(40) 2.288037795340032417959588909060233922890 >>> gamma(1+I).evalf(20) 0.49801566811835604271 - 0.15494982830181068512*I See Also ======== lowergamma: Lower incomplete gamma function. uppergamma: Upper incomplete gamma function. polygamma: Polygamma function. loggamma: Log Gamma function. digamma: Digamma function. trigamma: Trigamma function. sympy.functions.special.beta_functions.beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Gamma_function .. [2] http://dlmf.nist.gov/5 .. [3] http://mathworld.wolfram.com/GammaFunction.html .. [4] http://functions.wolfram.com/GammaBetaErf/Gamma/ """ unbranched = True def fdiff(self, argindex=1): if argindex == 1: return self.func(self.args[0])*polygamma(0, self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif intlike(arg): if arg.is_positive: return factorial(arg - 1) else: return S.ComplexInfinity elif arg.is_Rational: if arg.q == 2: n = abs(arg.p) // arg.q if arg.is_positive: k, coeff = n, S.One else: n = k = n + 1 if n & 1 == 0: coeff = S.One else: coeff = S.NegativeOne for i in range(3, 2*k, 2): coeff *= i if arg.is_positive: return coeff*sqrt(S.Pi) / 2**n else: return 2**n*sqrt(S.Pi) / coeff def _eval_expand_func(self, **hints): arg = self.args[0] if arg.is_Rational: if abs(arg.p) > arg.q: x = Dummy('x') n = arg.p // arg.q p = arg.p - n*arg.q return self.func(x + n)._eval_expand_func().subs(x, Rational(p, arg.q)) if arg.is_Add: coeff, tail = arg.as_coeff_add() if coeff and coeff.q != 1: intpart = floor(coeff) tail = (coeff - intpart,) + tail coeff = intpart tail = arg._new_rawargs(*tail, reeval=False) return self.func(tail)*RisingFactorial(tail, coeff) return self.func(*self.args) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def _eval_is_real(self): x = self.args[0] if x.is_nonpositive and x.is_integer: return False if intlike(x) and x <= 0: return False if x.is_positive or x.is_noninteger: return True def _eval_is_positive(self): x = self.args[0] if x.is_positive: return True elif x.is_noninteger: return floor(x).is_even def _eval_rewrite_as_tractable(self, z, **kwargs): return exp(loggamma(z)) def _eval_rewrite_as_factorial(self, z, **kwargs): return factorial(z - 1) def _eval_nseries(self, x, n, logx): x0 = self.args[0].limit(x, 0) if not (x0.is_Integer and x0 <= 0): return super(gamma, self)._eval_nseries(x, n, logx) t = self.args[0] - x0 return (self.func(t + 1)/rf(self.args[0], -x0 + 1))._eval_nseries(x, n, logx) def _sage_(self): import sage.all as sage return sage.gamma(self.args[0]._sage_()) def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0] arg_1 = arg.as_leading_term(x) if Order(x, x).contains(arg_1): return S(1) / arg_1 if Order(1, x).contains(arg_1): return self.func(arg_1) #################################################### # The correct result here should be 'None'. # # Indeed arg in not bounded as x tends to 0. # # Consequently the series expansion does not admit # # the leading term. # # For compatibility reasons, the return value here # # is the original function, i.e. gamma(arg), # # instead of None. # #################################################### return self.func(arg) ############################################################################### ################## LOWER and UPPER INCOMPLETE GAMMA FUNCTIONS ################# ############################################################################### class lowergamma(Function): r""" The lower incomplete gamma function. It can be defined as the meromorphic continuation of .. math:: \gamma(s, x) := \int_0^x t^{s-1} e^{-t} \mathrm{d}t = \Gamma(s) - \Gamma(s, x). This can be shown to be the same as .. math:: \gamma(s, x) = \frac{x^s}{s} {}_1F_1\left({s \atop s+1} \middle| -x\right), where :math:`{}_1F_1` is the (confluent) hypergeometric function. Examples ======== >>> from sympy import lowergamma, S >>> from sympy.abc import s, x >>> lowergamma(s, x) lowergamma(s, x) >>> lowergamma(3, x) -2*(x**2/2 + x + 1)*exp(-x) + 2 >>> lowergamma(-S(1)/2, x) -2*sqrt(pi)*erf(sqrt(x)) - 2*exp(-x)/sqrt(x) See Also ======== gamma: Gamma function. uppergamma: Upper incomplete gamma function. polygamma: Polygamma function. loggamma: Log Gamma function. digamma: Digamma function. trigamma: Trigamma function. sympy.functions.special.beta_functions.beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Incomplete_gamma_function#Lower_incomplete_Gamma_function .. [2] Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6, Section 5, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables .. [3] http://dlmf.nist.gov/8 .. [4] http://functions.wolfram.com/GammaBetaErf/Gamma2/ .. [5] http://functions.wolfram.com/GammaBetaErf/Gamma3/ """ def fdiff(self, argindex=2): from sympy import meijerg, unpolarify if argindex == 2: a, z = self.args return exp(-unpolarify(z))*z**(a - 1) elif argindex == 1: a, z = self.args return gamma(a)*digamma(a) - log(z)*uppergamma(a, z) \ - meijerg([], [1, 1], [0, 0, a], [], z) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, a, x): # For lack of a better place, we use this one to extract branching # information. The following can be # found in the literature (c/f references given above), albeit scattered: # 1) For fixed x != 0, lowergamma(s, x) is an entire function of s # 2) For fixed positive integers s, lowergamma(s, x) is an entire # function of x. # 3) For fixed non-positive integers s, # lowergamma(s, exp(I*2*pi*n)*x) = # 2*pi*I*n*(-1)**(-s)/factorial(-s) + lowergamma(s, x) # (this follows from lowergamma(s, x).diff(x) = x**(s-1)*exp(-x)). # 4) For fixed non-integral s, # lowergamma(s, x) = x**s*gamma(s)*lowergamma_unbranched(s, x), # where lowergamma_unbranched(s, x) is an entire function (in fact # of both s and x), i.e. # lowergamma(s, exp(2*I*pi*n)*x) = exp(2*pi*I*n*a)*lowergamma(a, x) from sympy import unpolarify, I if x is S.Zero: return S.Zero nx, n = x.extract_branch_factor() if a.is_integer and a.is_positive: nx = unpolarify(x) if nx != x: return lowergamma(a, nx) elif a.is_integer and a.is_nonpositive: if n != 0: return 2*pi*I*n*(-1)**(-a)/factorial(-a) + lowergamma(a, nx) elif n != 0: return exp(2*pi*I*n*a)*lowergamma(a, nx) # Special values. if a.is_Number: if a is S.One: return S.One - exp(-x) elif a is S.Half: return sqrt(pi)*erf(sqrt(x)) elif a.is_Integer or (2*a).is_Integer: b = a - 1 if b.is_positive: if a.is_integer: return factorial(b) - exp(-x) * factorial(b) * Add(*[x ** k / factorial(k) for k in range(a)]) else: return gamma(a)*(lowergamma(S.Half, x)/sqrt(pi) - exp(-x)*Add(*[x**(k - S.Half)/gamma(S.Half + k) for k in range(1, a + S.Half)])) if not a.is_Integer: return (-1)**(S.Half - a)*pi*erf(sqrt(x))/gamma(1 - a) + exp(-x)*Add(*[x**(k + a - 1)*gamma(a)/gamma(a + k) for k in range(1, Rational(3, 2) - a)]) if x.is_zero: return S.Zero def _eval_evalf(self, prec): from mpmath import mp, workprec from sympy import Expr if all(x.is_number for x in self.args): a = self.args[0]._to_mpmath(prec) z = self.args[1]._to_mpmath(prec) with workprec(prec): res = mp.gammainc(a, 0, z) return Expr._from_mpmath(res, prec) else: return self def _eval_conjugate(self): x = self.args[1] if x not in (S.Zero, S.NegativeInfinity): return self.func(self.args[0].conjugate(), x.conjugate()) def _eval_rewrite_as_uppergamma(self, s, x, **kwargs): return gamma(s) - uppergamma(s, x) def _eval_rewrite_as_expint(self, s, x, **kwargs): from sympy import expint if s.is_integer and s.is_nonpositive: return self return self.rewrite(uppergamma).rewrite(expint) def _eval_is_zero(self): x = self.args[1] if x.is_zero: return True class uppergamma(Function): r""" The upper incomplete gamma function. It can be defined as the meromorphic continuation of .. math:: \Gamma(s, x) := \int_x^\infty t^{s-1} e^{-t} \mathrm{d}t = \Gamma(s) - \gamma(s, x). where `\gamma(s, x)` is the lower incomplete gamma function, :class:`lowergamma`. This can be shown to be the same as .. math:: \Gamma(s, x) = \Gamma(s) - \frac{x^s}{s} {}_1F_1\left({s \atop s+1} \middle| -x\right), where :math:`{}_1F_1` is the (confluent) hypergeometric function. The upper incomplete gamma function is also essentially equivalent to the generalized exponential integral: .. math:: \operatorname{E}_{n}(x) = \int_{1}^{\infty}{\frac{e^{-xt}}{t^n} \, dt} = x^{n-1}\Gamma(1-n,x). Examples ======== >>> from sympy import uppergamma, S >>> from sympy.abc import s, x >>> uppergamma(s, x) uppergamma(s, x) >>> uppergamma(3, x) 2*(x**2/2 + x + 1)*exp(-x) >>> uppergamma(-S(1)/2, x) -2*sqrt(pi)*erfc(sqrt(x)) + 2*exp(-x)/sqrt(x) >>> uppergamma(-2, x) expint(3, x)/x**2 See Also ======== gamma: Gamma function. lowergamma: Lower incomplete gamma function. polygamma: Polygamma function. loggamma: Log Gamma function. digamma: Digamma function. trigamma: Trigamma function. sympy.functions.special.beta_functions.beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Incomplete_gamma_function#Upper_incomplete_Gamma_function .. [2] Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6, Section 5, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables .. [3] http://dlmf.nist.gov/8 .. [4] http://functions.wolfram.com/GammaBetaErf/Gamma2/ .. [5] http://functions.wolfram.com/GammaBetaErf/Gamma3/ .. [6] https://en.wikipedia.org/wiki/Exponential_integral#Relation_with_other_functions """ def fdiff(self, argindex=2): from sympy import meijerg, unpolarify if argindex == 2: a, z = self.args return -exp(-unpolarify(z))*z**(a - 1) elif argindex == 1: a, z = self.args return uppergamma(a, z)*log(z) + meijerg([], [1, 1], [0, 0, a], [], z) else: raise ArgumentIndexError(self, argindex) def _eval_evalf(self, prec): from mpmath import mp, workprec from sympy import Expr if all(x.is_number for x in self.args): a = self.args[0]._to_mpmath(prec) z = self.args[1]._to_mpmath(prec) with workprec(prec): res = mp.gammainc(a, z, mp.inf) return Expr._from_mpmath(res, prec) return self @classmethod def eval(cls, a, z): from sympy import unpolarify, I, expint if z.is_Number: if z is S.NaN: return S.NaN elif z is S.Infinity: return S.Zero elif z.is_zero: if re(a).is_positive: return gamma(a) # We extract branching information here. C/f lowergamma. nx, n = z.extract_branch_factor() if a.is_integer and a.is_positive: nx = unpolarify(z) if z != nx: return uppergamma(a, nx) elif a.is_integer and a.is_nonpositive: if n != 0: return -2*pi*I*n*(-1)**(-a)/factorial(-a) + uppergamma(a, nx) elif n != 0: return gamma(a)*(1 - exp(2*pi*I*n*a)) + exp(2*pi*I*n*a)*uppergamma(a, nx) # Special values. if a.is_Number: if a is S.Zero and z.is_positive: return -Ei(-z) elif a is S.One: return exp(-z) elif a is S.Half: return sqrt(pi)*erfc(sqrt(z)) elif a.is_Integer or (2*a).is_Integer: b = a - 1 if b.is_positive: if a.is_integer: return exp(-z) * factorial(b) * Add(*[z**k / factorial(k) for k in range(a)]) else: return gamma(a) * erfc(sqrt(z)) + (-1)**(a - S(3)/2) * exp(-z) * sqrt(z) * Add(*[gamma(-S.Half - k) * (-z)**k / gamma(1-a) for k in range(a - S.Half)]) elif b.is_Integer: return expint(-b, z)*unpolarify(z)**(b + 1) if not a.is_Integer: return (-1)**(S.Half - a) * pi*erfc(sqrt(z))/gamma(1-a) - z**a * exp(-z) * Add(*[z**k * gamma(a) / gamma(a+k+1) for k in range(S.Half - a)]) if a.is_zero and z.is_positive: return -Ei(-z) if z.is_zero and re(a).is_positive: return gamma(a) def _eval_conjugate(self): z = self.args[1] if not z in (S.Zero, S.NegativeInfinity): return self.func(self.args[0].conjugate(), z.conjugate()) def _eval_rewrite_as_lowergamma(self, s, x, **kwargs): return gamma(s) - lowergamma(s, x) def _eval_rewrite_as_expint(self, s, x, **kwargs): from sympy import expint return expint(1 - s, x)*x**s def _sage_(self): import sage.all as sage return sage.gamma(self.args[0]._sage_(), self.args[1]._sage_()) ############################################################################### ###################### POLYGAMMA and LOGGAMMA FUNCTIONS ####################### ############################################################################### class polygamma(Function): r""" The function ``polygamma(n, z)`` returns ``log(gamma(z)).diff(n + 1)``. It is a meromorphic function on `\mathbb{C}` and defined as the (n+1)-th derivative of the logarithm of the gamma function: .. math:: \psi^{(n)} (z) := \frac{\mathrm{d}^{n+1}}{\mathrm{d} z^{n+1}} \log\Gamma(z). Examples ======== Several special values are known: >>> from sympy import S, polygamma >>> polygamma(0, 1) -EulerGamma >>> polygamma(0, 1/S(2)) -2*log(2) - EulerGamma >>> polygamma(0, 1/S(3)) -log(3) - sqrt(3)*pi/6 - EulerGamma - log(sqrt(3)) >>> polygamma(0, 1/S(4)) -pi/2 - log(4) - log(2) - EulerGamma >>> polygamma(0, 2) 1 - EulerGamma >>> polygamma(0, 23) 19093197/5173168 - EulerGamma >>> from sympy import oo, I >>> polygamma(0, oo) oo >>> polygamma(0, -oo) oo >>> polygamma(0, I*oo) oo >>> polygamma(0, -I*oo) oo Differentiation with respect to x is supported: >>> from sympy import Symbol, diff >>> x = Symbol("x") >>> diff(polygamma(0, x), x) polygamma(1, x) >>> diff(polygamma(0, x), x, 2) polygamma(2, x) >>> diff(polygamma(0, x), x, 3) polygamma(3, x) >>> diff(polygamma(1, x), x) polygamma(2, x) >>> diff(polygamma(1, x), x, 2) polygamma(3, x) >>> diff(polygamma(2, x), x) polygamma(3, x) >>> diff(polygamma(2, x), x, 2) polygamma(4, x) >>> n = Symbol("n") >>> diff(polygamma(n, x), x) polygamma(n + 1, x) >>> diff(polygamma(n, x), x, 2) polygamma(n + 2, x) We can rewrite polygamma functions in terms of harmonic numbers: >>> from sympy import harmonic >>> polygamma(0, x).rewrite(harmonic) harmonic(x - 1) - EulerGamma >>> polygamma(2, x).rewrite(harmonic) 2*harmonic(x - 1, 3) - 2*zeta(3) >>> ni = Symbol("n", integer=True) >>> polygamma(ni, x).rewrite(harmonic) (-1)**(n + 1)*(-harmonic(x - 1, n + 1) + zeta(n + 1))*factorial(n) See Also ======== gamma: Gamma function. lowergamma: Lower incomplete gamma function. uppergamma: Upper incomplete gamma function. loggamma: Log Gamma function. digamma: Digamma function. trigamma: Trigamma function. sympy.functions.special.beta_functions.beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Polygamma_function .. [2] http://mathworld.wolfram.com/PolygammaFunction.html .. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma/ .. [4] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/ """ def _eval_evalf(self, prec): n = self.args[0] # the mpmath polygamma implementation valid only for nonnegative integers if n.is_number and n.is_real: if (n.is_integer or n == int(n)) and n.is_nonnegative: return super(polygamma, self)._eval_evalf(prec) def fdiff(self, argindex=2): if argindex == 2: n, z = self.args[:2] return polygamma(n + 1, z) else: raise ArgumentIndexError(self, argindex) def _eval_is_real(self): if self.args[0].is_positive and self.args[1].is_positive: return True def _eval_is_complex(self): z = self.args[1] is_negative_integer = fuzzy_and([z.is_negative, z.is_integer]) return fuzzy_and([z.is_complex, fuzzy_not(is_negative_integer)]) def _eval_is_positive(self): if self.args[0].is_positive and self.args[1].is_positive: return self.args[0].is_odd def _eval_is_negative(self): if self.args[0].is_positive and self.args[1].is_positive: return self.args[0].is_even def _eval_aseries(self, n, args0, x, logx): from sympy import Order if args0[1] != oo or not \ (self.args[0].is_Integer and self.args[0].is_nonnegative): return super(polygamma, self)._eval_aseries(n, args0, x, logx) z = self.args[1] N = self.args[0] if N == 0: # digamma function series # Abramowitz & Stegun, p. 259, 6.3.18 r = log(z) - 1/(2*z) o = None if n < 2: o = Order(1/z, x) else: m = ceiling((n + 1)//2) l = [bernoulli(2*k) / (2*k*z**(2*k)) for k in range(1, m)] r -= Add(*l) o = Order(1/z**(2*m), x) return r._eval_nseries(x, n, logx) + o else: # proper polygamma function # Abramowitz & Stegun, p. 260, 6.4.10 # We return terms to order higher than O(x**n) on purpose # -- otherwise we would not be able to return any terms for # quite a long time! fac = gamma(N) e0 = fac + N*fac/(2*z) m = ceiling((n + 1)//2) for k in range(1, m): fac = fac*(2*k + N - 1)*(2*k + N - 2) / ((2*k)*(2*k - 1)) e0 += bernoulli(2*k)*fac/z**(2*k) o = Order(1/z**(2*m), x) if n == 0: o = Order(1/z, x) elif n == 1: o = Order(1/z**2, x) r = e0._eval_nseries(z, n, logx) + o return (-1 * (-1/z)**N * r)._eval_nseries(x, n, logx) @classmethod def eval(cls, n, z): n, z = map(sympify, (n, z)) from sympy import unpolarify if n.is_integer: if n.is_nonnegative: nz = unpolarify(z) if z != nz: return polygamma(n, nz) if n is S.NegativeOne: return loggamma(z) else: if z.is_Number: if z is S.NaN: return S.NaN elif z is S.Infinity: if n.is_Number: if n.is_zero: return S.Infinity else: return S.Zero if n.is_zero: return S.Infinity elif z.is_Integer: if z.is_nonpositive: return S.ComplexInfinity else: if n.is_zero: return -S.EulerGamma + harmonic(z - 1, 1) elif n.is_odd: return (-1)**(n + 1)*factorial(n)*zeta(n + 1, z) if n.is_zero: if z is S.NaN: return S.NaN elif z.is_Rational: p, q = z.as_numer_denom() # only expand for small denominators to avoid creating long expressions if q <= 5: return expand_func(polygamma(S.Zero, z, evaluate=False)) elif z in (S.Infinity, S.NegativeInfinity): return S.Infinity else: t = z.extract_multiplicatively(S.ImaginaryUnit) if t in (S.Infinity, S.NegativeInfinity): return S.Infinity # TODO n == 1 also can do some rational z def _eval_expand_func(self, **hints): n, z = self.args if n.is_Integer and n.is_nonnegative: if z.is_Add: coeff = z.args[0] if coeff.is_Integer: e = -(n + 1) if coeff > 0: tail = Add(*[Pow( z - i, e) for i in range(1, int(coeff) + 1)]) else: tail = -Add(*[Pow( z + i, e) for i in range(0, int(-coeff))]) return polygamma(n, z - coeff) + (-1)**n*factorial(n)*tail elif z.is_Mul: coeff, z = z.as_two_terms() if coeff.is_Integer and coeff.is_positive: tail = [ polygamma(n, z + Rational( i, coeff)) for i in range(0, int(coeff)) ] if n == 0: return Add(*tail)/coeff + log(coeff) else: return Add(*tail)/coeff**(n + 1) z *= coeff if n == 0 and z.is_Rational: p, q = z.as_numer_denom() # Reference: # Values of the polygamma functions at rational arguments, J. Choi, 2007 part_1 = -S.EulerGamma - pi * cot(p * pi / q) / 2 - log(q) + Add( *[cos(2 * k * pi * p / q) * log(2 * sin(k * pi / q)) for k in range(1, q)]) if z > 0: n = floor(z) z0 = z - n return part_1 + Add(*[1 / (z0 + k) for k in range(n)]) elif z < 0: n = floor(1 - z) z0 = z + n return part_1 - Add(*[1 / (z0 - 1 - k) for k in range(n)]) return polygamma(n, z) def _eval_rewrite_as_zeta(self, n, z, **kwargs): if n.is_integer: if (n - S.One).is_nonnegative: return (-1)**(n + 1)*factorial(n)*zeta(n + 1, z) def _eval_rewrite_as_harmonic(self, n, z, **kwargs): if n.is_integer: if n.is_zero: return harmonic(z - 1) - S.EulerGamma else: return S.NegativeOne**(n+1) * factorial(n) * (zeta(n+1) - harmonic(z-1, n+1)) def _eval_as_leading_term(self, x): from sympy import Order n, z = [a.as_leading_term(x) for a in self.args] o = Order(z, x) if n == 0 and o.contains(1/x): return o.getn() * log(x) else: return self.func(n, z) class loggamma(Function): r""" The ``loggamma`` function implements the logarithm of the gamma function i.e, `\log\Gamma(x)`. Examples ======== Several special values are known. For numerical integral arguments we have: >>> from sympy import loggamma >>> loggamma(-2) oo >>> loggamma(0) oo >>> loggamma(1) 0 >>> loggamma(2) 0 >>> loggamma(3) log(2) and for symbolic values: >>> from sympy import Symbol >>> n = Symbol("n", integer=True, positive=True) >>> loggamma(n) log(gamma(n)) >>> loggamma(-n) oo for half-integral values: >>> from sympy import S, pi >>> loggamma(S(5)/2) log(3*sqrt(pi)/4) >>> loggamma(n/2) log(2**(1 - n)*sqrt(pi)*gamma(n)/gamma(n/2 + 1/2)) and general rational arguments: >>> from sympy import expand_func >>> L = loggamma(S(16)/3) >>> expand_func(L).doit() -5*log(3) + loggamma(1/3) + log(4) + log(7) + log(10) + log(13) >>> L = loggamma(S(19)/4) >>> expand_func(L).doit() -4*log(4) + loggamma(3/4) + log(3) + log(7) + log(11) + log(15) >>> L = loggamma(S(23)/7) >>> expand_func(L).doit() -3*log(7) + log(2) + loggamma(2/7) + log(9) + log(16) The loggamma function has the following limits towards infinity: >>> from sympy import oo >>> loggamma(oo) oo >>> loggamma(-oo) zoo The loggamma function obeys the mirror symmetry if `x \in \mathbb{C} \setminus \{-\infty, 0\}`: >>> from sympy.abc import x >>> from sympy import conjugate >>> conjugate(loggamma(x)) loggamma(conjugate(x)) Differentiation with respect to x is supported: >>> from sympy import diff >>> diff(loggamma(x), x) polygamma(0, x) Series expansion is also supported: >>> from sympy import series >>> series(loggamma(x), x, 0, 4) -log(x) - EulerGamma*x + pi**2*x**2/12 + x**3*polygamma(2, 1)/6 + O(x**4) We can numerically evaluate the gamma function to arbitrary precision on the whole complex plane: >>> from sympy import I >>> loggamma(5).evalf(30) 3.17805383034794561964694160130 >>> loggamma(I).evalf(20) -0.65092319930185633889 - 1.8724366472624298171*I See Also ======== gamma: Gamma function. lowergamma: Lower incomplete gamma function. uppergamma: Upper incomplete gamma function. polygamma: Polygamma function. digamma: Digamma function. trigamma: Trigamma function. sympy.functions.special.beta_functions.beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Gamma_function .. [2] http://dlmf.nist.gov/5 .. [3] http://mathworld.wolfram.com/LogGammaFunction.html .. [4] http://functions.wolfram.com/GammaBetaErf/LogGamma/ """ @classmethod def eval(cls, z): z = sympify(z) if z.is_integer: if z.is_nonpositive: return S.Infinity elif z.is_positive: return log(gamma(z)) elif z.is_rational: p, q = z.as_numer_denom() # Half-integral values: if p.is_positive and q == 2: return log(sqrt(S.Pi) * 2**(1 - p) * gamma(p) / gamma((p + 1)*S.Half)) if z is S.Infinity: return S.Infinity elif abs(z) is S.Infinity: return S.ComplexInfinity if z is S.NaN: return S.NaN def _eval_expand_func(self, **hints): from sympy import Sum z = self.args[0] if z.is_Rational: p, q = z.as_numer_denom() # General rational arguments (u + p/q) # Split z as n + p/q with p < q n = p // q p = p - n*q if p.is_positive and q.is_positive and p < q: k = Dummy("k") if n.is_positive: return loggamma(p / q) - n*log(q) + Sum(log((k - 1)*q + p), (k, 1, n)) elif n.is_negative: return loggamma(p / q) - n*log(q) + S.Pi*S.ImaginaryUnit*n - Sum(log(k*q - p), (k, 1, -n)) elif n.is_zero: return loggamma(p / q) return self def _eval_nseries(self, x, n, logx=None): x0 = self.args[0].limit(x, 0) if x0.is_zero: f = self._eval_rewrite_as_intractable(*self.args) return f._eval_nseries(x, n, logx) return super(loggamma, self)._eval_nseries(x, n, logx) def _eval_aseries(self, n, args0, x, logx): from sympy import Order if args0[0] != oo: return super(loggamma, self)._eval_aseries(n, args0, x, logx) z = self.args[0] m = min(n, ceiling((n + S.One)/2)) r = log(z)*(z - S.Half) - z + log(2*pi)/2 l = [bernoulli(2*k) / (2*k*(2*k - 1)*z**(2*k - 1)) for k in range(1, m)] o = None if m == 0: o = Order(1, x) else: o = Order(1/z**(2*m - 1), x) # It is very inefficient to first add the order and then do the nseries return (r + Add(*l))._eval_nseries(x, n, logx) + o def _eval_rewrite_as_intractable(self, z, **kwargs): return log(gamma(z)) def _eval_is_real(self): z = self.args[0] if z.is_positive: return True elif z.is_nonpositive: return False def _eval_conjugate(self): z = self.args[0] if not z in (S.Zero, S.NegativeInfinity): return self.func(z.conjugate()) def fdiff(self, argindex=1): if argindex == 1: return polygamma(0, self.args[0]) else: raise ArgumentIndexError(self, argindex) def _sage_(self): import sage.all as sage return sage.log_gamma(self.args[0]._sage_()) class digamma(Function): r""" The digamma function is the first derivative of the loggamma function i.e, .. math:: \psi(x) := \frac{\mathrm{d}}{\mathrm{d} z} \log\Gamma(z) = \frac{\Gamma'(z)}{\Gamma(z) } In this case, ``digamma(z) = polygamma(0, z)``. Examples ======== >>> from sympy import digamma >>> digamma(0) zoo >>> from sympy import Symbol >>> z = Symbol('z') >>> digamma(z) polygamma(0, z) To retain digamma as it is: >>> digamma(0, evaluate=False) digamma(0) >>> digamma(z, evaluate=False) digamma(z) See Also ======== gamma: Gamma function. lowergamma: Lower incomplete gamma function. uppergamma: Upper incomplete gamma function. polygamma: Polygamma function. loggamma: Log Gamma function. trigamma: Trigamma function. sympy.functions.special.beta_functions.beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Digamma_function .. [2] http://mathworld.wolfram.com/DigammaFunction.html .. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/ """ def _eval_evalf(self, prec): z = self.args[0] return polygamma(0, z).evalf(prec) def fdiff(self, argindex=1): z = self.args[0] return polygamma(0, z).fdiff() def _eval_is_real(self): z = self.args[0] return polygamma(0, z).is_real def _eval_is_positive(self): z = self.args[0] return polygamma(0, z).is_positive def _eval_is_negative(self): z = self.args[0] return polygamma(0, z).is_negative def _eval_aseries(self, n, args0, x, logx): as_polygamma = self.rewrite(polygamma) args0 = [S.Zero,] + args0 return as_polygamma._eval_aseries(n, args0, x, logx) @classmethod def eval(cls, z): return polygamma(0, z) def _eval_expand_func(self, **hints): z = self.args[0] return polygamma(0, z).expand(func=True) def _eval_rewrite_as_harmonic(self, z, **kwargs): return harmonic(z - 1) - S.EulerGamma def _eval_rewrite_as_polygamma(self, z, **kwargs): return polygamma(0, z) def _eval_as_leading_term(self, x): z = self.args[0] return polygamma(0, z).as_leading_term(x) class trigamma(Function): r""" The trigamma function is the second derivative of the loggamma function i.e, .. math:: \psi^{(1)}(z) := \frac{\mathrm{d}^{2}}{\mathrm{d} z^{2}} \log\Gamma(z). In this case, ``trigamma(z) = polygamma(1, z)``. Examples ======== >>> from sympy import trigamma >>> trigamma(0) zoo >>> from sympy import Symbol >>> z = Symbol('z') >>> trigamma(z) polygamma(1, z) To retain trigamma as it is: >>> trigamma(0, evaluate=False) trigamma(0) >>> trigamma(z, evaluate=False) trigamma(z) See Also ======== gamma: Gamma function. lowergamma: Lower incomplete gamma function. uppergamma: Upper incomplete gamma function. polygamma: Polygamma function. loggamma: Log Gamma function. digamma: Digamma function. sympy.functions.special.beta_functions.beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Trigamma_function .. [2] http://mathworld.wolfram.com/TrigammaFunction.html .. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/ """ def _eval_evalf(self, prec): z = self.args[0] return polygamma(1, z).evalf(prec) def fdiff(self, argindex=1): z = self.args[0] return polygamma(1, z).fdiff() def _eval_is_real(self): z = self.args[0] return polygamma(1, z).is_real def _eval_is_positive(self): z = self.args[0] return polygamma(1, z).is_positive def _eval_is_negative(self): z = self.args[0] return polygamma(1, z).is_negative def _eval_aseries(self, n, args0, x, logx): as_polygamma = self.rewrite(polygamma) args0 = [S.One,] + args0 return as_polygamma._eval_aseries(n, args0, x, logx) @classmethod def eval(cls, z): return polygamma(1, z) def _eval_expand_func(self, **hints): z = self.args[0] return polygamma(1, z).expand(func=True) def _eval_rewrite_as_zeta(self, z, **kwargs): return zeta(2, z) def _eval_rewrite_as_polygamma(self, z, **kwargs): return polygamma(1, z) def _eval_rewrite_as_harmonic(self, z, **kwargs): return -harmonic(z - 1, 2) + S.Pi**2 / 6 def _eval_as_leading_term(self, x): z = self.args[0] return polygamma(1, z).as_leading_term(x) ############################################################################### ##################### COMPLETE MULTIVARIATE GAMMA FUNCTION #################### ############################################################################### class multigamma(Function): r""" The multivariate gamma function is a generalization of the gamma function i.e, .. math:: \Gamma_p(z) = \pi^{p(p-1)/4}\prod_{k=1}^p \Gamma[z + (1 - k)/2]. Special case, multigamma(x, 1) = gamma(x) Parameters ========== p: order or dimension of the multivariate gamma function Examples ======== >>> from sympy import S, I, pi, oo, gamma, multigamma >>> from sympy import Symbol >>> x = Symbol('x') >>> p = Symbol('p', positive=True, integer=True) >>> multigamma(x, p) pi**(p*(p - 1)/4)*Product(gamma(-_k/2 + x + 1/2), (_k, 1, p)) Several special values are known: >>> multigamma(1, 1) 1 >>> multigamma(4, 1) 6 >>> multigamma(S(3)/2, 1) sqrt(pi)/2 Writing multigamma in terms of gamma function >>> multigamma(x, 1) gamma(x) >>> multigamma(x, 2) sqrt(pi)*gamma(x)*gamma(x - 1/2) >>> multigamma(x, 3) pi**(3/2)*gamma(x)*gamma(x - 1)*gamma(x - 1/2) See Also ======== gamma, lowergamma, uppergamma, polygamma, loggamma, digamma, trigamma sympy.functions.special.beta_functions.beta References ========== .. [1] https://en.wikipedia.org/wiki/Multivariate_gamma_function """ unbranched = True def fdiff(self, argindex=2): from sympy import Sum if argindex == 2: x, p = self.args k = Dummy("k") return self.func(x, p)*Sum(polygamma(0, x + (1 - k)/2), (k, 1, p)) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, x, p): from sympy import Product x, p = map(sympify, (x, p)) if p.is_positive is False or p.is_integer is False: raise ValueError('Order parameter p must be positive integer.') k = Dummy("k") return (pi**(p*(p - 1)/4)*Product(gamma(x + (1 - k)/2), (k, 1, p))).doit() def _eval_conjugate(self): x, p = self.args return self.func(x.conjugate(), p) def _eval_is_real(self): x, p = self.args y = 2*x if y.is_integer and (y <= (p - 1)) is True: return False if intlike(y) and (y <= (p - 1)): return False if y > (p - 1) or y.is_noninteger: return True
8e0e6b86dcd340c4215c7670cba5dc66deff76b71137837a7cc3fe9ca83ef694
from __future__ import print_function, division from sympy.core import S, sympify, diff from sympy.core.decorators import deprecated from sympy.core.function import Function, ArgumentIndexError from sympy.core.logic import fuzzy_not from sympy.core.relational import Eq, Ne from sympy.functions.elementary.complexes import im, sign from sympy.functions.elementary.piecewise import Piecewise from sympy.polys.polyerrors import PolynomialError from sympy.utilities import filldedent ############################################################################### ################################ DELTA FUNCTION ############################### ############################################################################### class DiracDelta(Function): """ The DiracDelta function and its derivatives. DiracDelta is not an ordinary function. It can be rigorously defined either as a distribution or as a measure. DiracDelta only makes sense in definite integrals, and in particular, integrals of the form ``Integral(f(x)*DiracDelta(x - x0), (x, a, b))``, where it equals ``f(x0)`` if ``a <= x0 <= b`` and ``0`` otherwise. Formally, DiracDelta acts in some ways like a function that is ``0`` everywhere except at ``0``, but in many ways it also does not. It can often be useful to treat DiracDelta in formal ways, building up and manipulating expressions with delta functions (which may eventually be integrated), but care must be taken to not treat it as a real function. SymPy's ``oo`` is similar. It only truly makes sense formally in certain contexts (such as integration limits), but SymPy allows its use everywhere, and it tries to be consistent with operations on it (like ``1/oo``), but it is easy to get into trouble and get wrong results if ``oo`` is treated too much like a number. Similarly, if DiracDelta is treated too much like a function, it is easy to get wrong or nonsensical results. DiracDelta function has the following properties: 1) ``diff(Heaviside(x), x) = DiracDelta(x)`` 2) ``integrate(DiracDelta(x - a)*f(x),(x, -oo, oo)) = f(a)`` and ``integrate(DiracDelta(x - a)*f(x),(x, a - e, a + e)) = f(a)`` 3) ``DiracDelta(x) = 0`` for all ``x != 0`` 4) ``DiracDelta(g(x)) = Sum_i(DiracDelta(x - x_i)/abs(g'(x_i)))`` Where ``x_i``-s are the roots of ``g`` 5) ``DiracDelta(-x) = DiracDelta(x)`` Derivatives of ``k``-th order of DiracDelta have the following property: 6) ``DiracDelta(x, k) = 0``, for all ``x != 0`` 7) ``DiracDelta(-x, k) = -DiracDelta(x, k)`` for odd ``k`` 8) ``DiracDelta(-x, k) = DiracDelta(x, k)`` for even ``k`` Examples ======== >>> from sympy import DiracDelta, diff, pi, Piecewise >>> from sympy.abc import x, y >>> DiracDelta(x) DiracDelta(x) >>> DiracDelta(1) 0 >>> DiracDelta(-1) 0 >>> DiracDelta(pi) 0 >>> DiracDelta(x - 4).subs(x, 4) DiracDelta(0) >>> diff(DiracDelta(x)) DiracDelta(x, 1) >>> diff(DiracDelta(x - 1),x,2) DiracDelta(x - 1, 2) >>> diff(DiracDelta(x**2 - 1),x,2) 2*(2*x**2*DiracDelta(x**2 - 1, 2) + DiracDelta(x**2 - 1, 1)) >>> DiracDelta(3*x).is_simple(x) True >>> DiracDelta(x**2).is_simple(x) False >>> DiracDelta((x**2 - 1)*y).expand(diracdelta=True, wrt=x) DiracDelta(x - 1)/(2*Abs(y)) + DiracDelta(x + 1)/(2*Abs(y)) See Also ======== Heaviside sympy.simplify.simplify.simplify, is_simple sympy.functions.special.tensor_functions.KroneckerDelta References ========== .. [1] http://mathworld.wolfram.com/DeltaFunction.html """ is_real = True def fdiff(self, argindex=1): """ Returns the first derivative of a DiracDelta Function. The difference between ``diff()`` and ``fdiff()`` is:- ``diff()`` is the user-level function and ``fdiff()`` is an object method. ``fdiff()`` is just a convenience method available in the ``Function`` class. It returns the derivative of the function without considering the chain rule. ``diff(function, x)`` calls ``Function._eval_derivative`` which in turn calls ``fdiff()`` internally to compute the derivative of the function. Examples ======== >>> from sympy import DiracDelta, diff >>> from sympy.abc import x >>> DiracDelta(x).fdiff() DiracDelta(x, 1) >>> DiracDelta(x, 1).fdiff() DiracDelta(x, 2) >>> DiracDelta(x**2 - 1).fdiff() DiracDelta(x**2 - 1, 1) >>> diff(DiracDelta(x, 1)).fdiff() DiracDelta(x, 3) """ if argindex == 1: #I didn't know if there is a better way to handle default arguments k = 0 if len(self.args) > 1: k = self.args[1] return self.func(self.args[0], k + 1) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg, k=0): """ Returns a simplified form or a value of DiracDelta depending on the argument passed by the DiracDelta object. The ``eval()`` method is automatically called when the ``DiracDelta`` class is about to be instantiated and it returns either some simplified instance or the unevaluated instance depending on the argument passed. In other words, ``eval()`` method is not needed to be called explicitly, it is being called and evaluated once the object is called. Examples ======== >>> from sympy import DiracDelta, S, Subs >>> from sympy.abc import x >>> DiracDelta(x) DiracDelta(x) >>> DiracDelta(-x, 1) -DiracDelta(x, 1) >>> DiracDelta(1) 0 >>> DiracDelta(5, 1) 0 >>> DiracDelta(0) DiracDelta(0) >>> DiracDelta(-1) 0 >>> DiracDelta(S.NaN) nan >>> DiracDelta(x).eval(1) 0 >>> DiracDelta(x - 100).subs(x, 5) 0 >>> DiracDelta(x - 100).subs(x, 100) DiracDelta(0) """ k = sympify(k) if not k.is_Integer or k.is_negative: raise ValueError("Error: the second argument of DiracDelta must be \ a non-negative integer, %s given instead." % (k,)) arg = sympify(arg) if arg is S.NaN: return S.NaN if arg.is_nonzero: return S.Zero if fuzzy_not(im(arg).is_zero): raise ValueError(filldedent(''' Function defined only for Real Values. Complex part: %s found in %s .''' % ( repr(im(arg)), repr(arg)))) c, nc = arg.args_cnc() if c and c[0] is S.NegativeOne: # keep this fast and simple instead of using # could_extract_minus_sign if k.is_odd: return -cls(-arg, k) elif k.is_even: return cls(-arg, k) if k else cls(-arg) @deprecated(useinstead="expand(diracdelta=True, wrt=x)", issue=12859, deprecated_since_version="1.1") def simplify(self, x, **kwargs): return self.expand(diracdelta=True, wrt=x) def _eval_expand_diracdelta(self, **hints): """Compute a simplified representation of the function using property number 4. Pass wrt as a hint to expand the expression with respect to a particular variable. wrt is: - a variable with respect to which a DiracDelta expression will get expanded. Examples ======== >>> from sympy import DiracDelta >>> from sympy.abc import x, y >>> DiracDelta(x*y).expand(diracdelta=True, wrt=x) DiracDelta(x)/Abs(y) >>> DiracDelta(x*y).expand(diracdelta=True, wrt=y) DiracDelta(y)/Abs(x) >>> DiracDelta(x**2 + x - 2).expand(diracdelta=True, wrt=x) DiracDelta(x - 1)/3 + DiracDelta(x + 2)/3 See Also ======== is_simple, Diracdelta """ from sympy.polys.polyroots import roots wrt = hints.get('wrt', None) if wrt is None: free = self.free_symbols if len(free) == 1: wrt = free.pop() else: raise TypeError(filldedent(''' When there is more than 1 free symbol or variable in the expression, the 'wrt' keyword is required as a hint to expand when using the DiracDelta hint.''')) if not self.args[0].has(wrt) or (len(self.args) > 1 and self.args[1] != 0 ): return self try: argroots = roots(self.args[0], wrt) result = 0 valid = True darg = abs(diff(self.args[0], wrt)) for r, m in argroots.items(): if r.is_real is not False and m == 1: result += self.func(wrt - r)/darg.subs(wrt, r) else: # don't handle non-real and if m != 1 then # a polynomial will have a zero in the derivative (darg) # at r valid = False break if valid: return result except PolynomialError: pass return self def is_simple(self, x): """is_simple(self, x) Tells whether the argument(args[0]) of DiracDelta is a linear expression in x. x can be: - a symbol Examples ======== >>> from sympy import DiracDelta, cos >>> from sympy.abc import x, y >>> DiracDelta(x*y).is_simple(x) True >>> DiracDelta(x*y).is_simple(y) True >>> DiracDelta(x**2 + x - 2).is_simple(x) False >>> DiracDelta(cos(x)).is_simple(x) False See Also ======== sympy.simplify.simplify.simplify, DiracDelta """ p = self.args[0].as_poly(x) if p: return p.degree() == 1 return False def _eval_rewrite_as_Piecewise(self, *args, **kwargs): """Represents DiracDelta in a Piecewise form Examples ======== >>> from sympy import DiracDelta, Piecewise, Symbol, SingularityFunction >>> x = Symbol('x') >>> DiracDelta(x).rewrite(Piecewise) Piecewise((DiracDelta(0), Eq(x, 0)), (0, True)) >>> DiracDelta(x - 5).rewrite(Piecewise) Piecewise((DiracDelta(0), Eq(x - 5, 0)), (0, True)) >>> DiracDelta(x**2 - 5).rewrite(Piecewise) Piecewise((DiracDelta(0), Eq(x**2 - 5, 0)), (0, True)) >>> DiracDelta(x - 5, 4).rewrite(Piecewise) DiracDelta(x - 5, 4) """ if len(args) == 1: return Piecewise((DiracDelta(0), Eq(args[0], 0)), (0, True)) def _eval_rewrite_as_SingularityFunction(self, *args, **kwargs): """ Returns the DiracDelta expression written in the form of Singularity Functions. """ from sympy.solvers import solve from sympy.functions import SingularityFunction if self == DiracDelta(0): return SingularityFunction(0, 0, -1) if self == DiracDelta(0, 1): return SingularityFunction(0, 0, -2) free = self.free_symbols if len(free) == 1: x = (free.pop()) if len(args) == 1: return SingularityFunction(x, solve(args[0], x)[0], -1) return SingularityFunction(x, solve(args[0], x)[0], -args[1] - 1) else: # I don't know how to handle the case for DiracDelta expressions # having arguments with more than one variable. raise TypeError(filldedent(''' rewrite(SingularityFunction) doesn't support arguments with more that 1 variable.''')) def _sage_(self): import sage.all as sage return sage.dirac_delta(self.args[0]._sage_()) ############################################################################### ############################## HEAVISIDE FUNCTION ############################# ############################################################################### class Heaviside(Function): """Heaviside Piecewise function Heaviside function has the following properties [1]_: 1) ``diff(Heaviside(x),x) = DiracDelta(x)`` ``( 0, if x < 0`` 2) ``Heaviside(x) = < ( undefined if x==0 [1]`` ``( 1, if x > 0`` 3) ``Max(0,x).diff(x) = Heaviside(x)`` .. [1] Regarding to the value at 0, Mathematica defines ``H(0) = 1``, but Maple uses ``H(0) = undefined``. Different application areas may have specific conventions. For example, in control theory, it is common practice to assume ``H(0) == 0`` to match the Laplace transform of a DiracDelta distribution. To specify the value of Heaviside at x=0, a second argument can be given. Omit this 2nd argument or pass ``None`` to recover the default behavior. >>> from sympy import Heaviside, S >>> from sympy.abc import x >>> Heaviside(9) 1 >>> Heaviside(-9) 0 >>> Heaviside(0) Heaviside(0) >>> Heaviside(0, S.Half) 1/2 >>> (Heaviside(x) + 1).replace(Heaviside(x), Heaviside(x, 1)) Heaviside(x, 1) + 1 See Also ======== DiracDelta References ========== .. [2] http://mathworld.wolfram.com/HeavisideStepFunction.html .. [3] http://dlmf.nist.gov/1.16#iv """ is_real = True def fdiff(self, argindex=1): """ Returns the first derivative of a Heaviside Function. Examples ======== >>> from sympy import Heaviside, diff >>> from sympy.abc import x >>> Heaviside(x).fdiff() DiracDelta(x) >>> Heaviside(x**2 - 1).fdiff() DiracDelta(x**2 - 1) >>> diff(Heaviside(x)).fdiff() DiracDelta(x, 1) """ if argindex == 1: # property number 1 return DiracDelta(self.args[0]) else: raise ArgumentIndexError(self, argindex) def __new__(cls, arg, H0=None, **options): if isinstance(H0, Heaviside) and len(H0.args) == 1: H0 = None if H0 is None: return super(cls, cls).__new__(cls, arg, **options) return super(cls, cls).__new__(cls, arg, H0, **options) @classmethod def eval(cls, arg, H0=None): """ Returns a simplified form or a value of Heaviside depending on the argument passed by the Heaviside object. The ``eval()`` method is automatically called when the ``Heaviside`` class is about to be instantiated and it returns either some simplified instance or the unevaluated instance depending on the argument passed. In other words, ``eval()`` method is not needed to be called explicitly, it is being called and evaluated once the object is called. Examples ======== >>> from sympy import Heaviside, S >>> from sympy.abc import x >>> Heaviside(x) Heaviside(x) >>> Heaviside(19) 1 >>> Heaviside(0) Heaviside(0) >>> Heaviside(0, 1) 1 >>> Heaviside(-5) 0 >>> Heaviside(S.NaN) nan >>> Heaviside(x).eval(100) 1 >>> Heaviside(x - 100).subs(x, 5) 0 >>> Heaviside(x - 100).subs(x, 105) 1 """ H0 = sympify(H0) arg = sympify(arg) if arg.is_extended_negative: return S.Zero elif arg.is_extended_positive: return S.One elif arg.is_zero: return H0 elif arg is S.NaN: return S.NaN elif fuzzy_not(im(arg).is_zero): raise ValueError("Function defined only for Real Values. Complex part: %s found in %s ." % (repr(im(arg)), repr(arg)) ) def _eval_rewrite_as_Piecewise(self, arg, H0=None, **kwargs): """Represents Heaviside in a Piecewise form Examples ======== >>> from sympy import Heaviside, Piecewise, Symbol, pprint >>> x = Symbol('x') >>> Heaviside(x).rewrite(Piecewise) Piecewise((0, x < 0), (Heaviside(0), Eq(x, 0)), (1, x > 0)) >>> Heaviside(x - 5).rewrite(Piecewise) Piecewise((0, x - 5 < 0), (Heaviside(0), Eq(x - 5, 0)), (1, x - 5 > 0)) >>> Heaviside(x**2 - 1).rewrite(Piecewise) Piecewise((0, x**2 - 1 < 0), (Heaviside(0), Eq(x**2 - 1, 0)), (1, x**2 - 1 > 0)) """ if H0 is None: return Piecewise((0, arg < 0), (Heaviside(0), Eq(arg, 0)), (1, arg > 0)) if H0 == 0: return Piecewise((0, arg <= 0), (1, arg > 0)) if H0 == 1: return Piecewise((0, arg < 0), (1, arg >= 0)) return Piecewise((0, arg < 0), (H0, Eq(arg, 0)), (1, arg > 0)) def _eval_rewrite_as_sign(self, arg, H0=None, **kwargs): """Represents the Heaviside function in the form of sign function. The value of the second argument of Heaviside must specify Heaviside(0) = 1/2 for rewritting as sign to be strictly equivalent. For easier usage, we also allow this rewriting when Heaviside(0) is undefined. Examples ======== >>> from sympy import Heaviside, Symbol, sign, S >>> x = Symbol('x', real=True) >>> Heaviside(x, H0=S.Half).rewrite(sign) sign(x)/2 + 1/2 >>> Heaviside(x, 0).rewrite(sign) Piecewise((sign(x)/2 + 1/2, Ne(x, 0)), (0, True)) >>> Heaviside(x - 2, H0=S.Half).rewrite(sign) sign(x - 2)/2 + 1/2 >>> Heaviside(x**2 - 2*x + 1, H0=S.Half).rewrite(sign) sign(x**2 - 2*x + 1)/2 + 1/2 >>> y = Symbol('y') >>> Heaviside(y).rewrite(sign) Heaviside(y) >>> Heaviside(y**2 - 2*y + 1).rewrite(sign) Heaviside(y**2 - 2*y + 1) See Also ======== sign """ if arg.is_extended_real: pw1 = Piecewise( ((sign(arg) + 1)/2, Ne(arg, 0)), (Heaviside(0, H0=H0), True)) pw2 = Piecewise( ((sign(arg) + 1)/2, Eq(Heaviside(0, H0=H0), S(1)/2)), (pw1, True)) return pw2 def _eval_rewrite_as_SingularityFunction(self, args, **kwargs): """ Returns the Heaviside expression written in the form of Singularity Functions. """ from sympy.solvers import solve from sympy.functions import SingularityFunction if self == Heaviside(0): return SingularityFunction(0, 0, 0) free = self.free_symbols if len(free) == 1: x = (free.pop()) return SingularityFunction(x, solve(args, x)[0], 0) # TODO # ((x - 5)**3*Heaviside(x - 5)).rewrite(SingularityFunction) should output # SingularityFunction(x, 5, 0) instead of (x - 5)**3*SingularityFunction(x, 5, 0) else: # I don't know how to handle the case for Heaviside expressions # having arguments with more than one variable. raise TypeError(filldedent(''' rewrite(SingularityFunction) doesn't support arguments with more that 1 variable.''')) def _sage_(self): import sage.all as sage return sage.heaviside(self.args[0]._sage_())
bf103a7cab516f95f99ca9ab300904c26ab057e4076ab595f0eb227ad06dd2df
from __future__ import print_function, division from sympy.core import S, sympify from sympy.core.compatibility import range from sympy.functions import Piecewise, piecewise_fold from sympy.sets.sets import Interval from sympy.core.cache import lru_cache def _add_splines(c, b1, d, b2): """Construct c*b1 + d*b2.""" if b1 == S.Zero or c == S.Zero: rv = piecewise_fold(d * b2) elif b2 == S.Zero or d == S.Zero: rv = piecewise_fold(c * b1) else: new_args = [] # Just combining the Piecewise without any fancy optimization p1 = piecewise_fold(c * b1) p2 = piecewise_fold(d * b2) # Search all Piecewise arguments except (0, True) p2args = list(p2.args[:-1]) # This merging algorithm assumes the conditions in # p1 and p2 are sorted for arg in p1.args[:-1]: # Conditional of Piecewise are And objects # the args of the And object is a tuple of two # Relational objects the numerical value is in the .rhs # of the Relational object expr = arg.expr cond = arg.cond lower = cond.args[0].rhs # Check p2 for matching conditions that can be merged for i, arg2 in enumerate(p2args): expr2 = arg2.expr cond2 = arg2.cond lower_2 = cond2.args[0].rhs upper_2 = cond2.args[1].rhs if cond2 == cond: # Conditions match, join expressions expr += expr2 # Remove matching element del p2args[i] # No need to check the rest break elif lower_2 < lower and upper_2 <= lower: # Check if arg2 condition smaller than arg1, # add to new_args by itself (no match expected # in p1) new_args.append(arg2) del p2args[i] break # Checked all, add expr and cond new_args.append((expr, cond)) # Add remaining items from p2args new_args.extend(p2args) # Add final (0, True) new_args.append((0, True)) rv = Piecewise(*new_args) return rv.expand() @lru_cache(maxsize=128) def bspline_basis(d, knots, n, x): """The `n`-th B-spline at `x` of degree `d` with knots. B-Splines are piecewise polynomials of degree `d` [1]_. They are defined on a set of knots, which is a sequence of integers or floats. The 0th degree splines have a value of one on a single interval: >>> from sympy import bspline_basis >>> from sympy.abc import x >>> d = 0 >>> knots = tuple(range(5)) >>> bspline_basis(d, knots, 0, x) Piecewise((1, (x >= 0) & (x <= 1)), (0, True)) For a given ``(d, knots)`` there are ``len(knots)-d-1`` B-splines defined, that are indexed by ``n`` (starting at 0). Here is an example of a cubic B-spline: >>> bspline_basis(3, tuple(range(5)), 0, x) Piecewise((x**3/6, (x >= 0) & (x <= 1)), (-x**3/2 + 2*x**2 - 2*x + 2/3, (x >= 1) & (x <= 2)), (x**3/2 - 4*x**2 + 10*x - 22/3, (x >= 2) & (x <= 3)), (-x**3/6 + 2*x**2 - 8*x + 32/3, (x >= 3) & (x <= 4)), (0, True)) By repeating knot points, you can introduce discontinuities in the B-splines and their derivatives: >>> d = 1 >>> knots = (0, 0, 2, 3, 4) >>> bspline_basis(d, knots, 0, x) Piecewise((1 - x/2, (x >= 0) & (x <= 2)), (0, True)) It is quite time consuming to construct and evaluate B-splines. If you need to evaluate a B-splines many times, it is best to lambdify them first: >>> from sympy import lambdify >>> d = 3 >>> knots = tuple(range(10)) >>> b0 = bspline_basis(d, knots, 0, x) >>> f = lambdify(x, b0) >>> y = f(0.5) See Also ======== bspline_basis_set References ========== .. [1] https://en.wikipedia.org/wiki/B-spline """ knots = tuple(sympify(k) for k in knots) d = int(d) n = int(n) n_knots = len(knots) n_intervals = n_knots - 1 if n + d + 1 > n_intervals: raise ValueError("n + d + 1 must not exceed len(knots) - 1") if d == 0: result = Piecewise( (S.One, Interval(knots[n], knots[n + 1]).contains(x)), (0, True) ) elif d > 0: denom = knots[n + d + 1] - knots[n + 1] if denom != S.Zero: B = (knots[n + d + 1] - x) / denom b2 = bspline_basis(d - 1, knots, n + 1, x) else: b2 = B = S.Zero denom = knots[n + d] - knots[n] if denom != S.Zero: A = (x - knots[n]) / denom b1 = bspline_basis(d - 1, knots, n, x) else: b1 = A = S.Zero result = _add_splines(A, b1, B, b2) else: raise ValueError("degree must be non-negative: %r" % n) return result def bspline_basis_set(d, knots, x): """Return the ``len(knots)-d-1`` B-splines at ``x`` of degree ``d`` with ``knots``. This function returns a list of Piecewise polynomials that are the ``len(knots)-d-1`` B-splines of degree ``d`` for the given knots. This function calls ``bspline_basis(d, knots, n, x)`` for different values of ``n``. Examples ======== >>> from sympy import bspline_basis_set >>> from sympy.abc import x >>> d = 2 >>> knots = range(5) >>> splines = bspline_basis_set(d, knots, x) >>> splines [Piecewise((x**2/2, (x >= 0) & (x <= 1)), (-x**2 + 3*x - 3/2, (x >= 1) & (x <= 2)), (x**2/2 - 3*x + 9/2, (x >= 2) & (x <= 3)), (0, True)), Piecewise((x**2/2 - x + 1/2, (x >= 1) & (x <= 2)), (-x**2 + 5*x - 11/2, (x >= 2) & (x <= 3)), (x**2/2 - 4*x + 8, (x >= 3) & (x <= 4)), (0, True))] See Also ======== bspline_basis """ n_splines = len(knots) - d - 1 return [bspline_basis(d, tuple(knots), i, x) for i in range(n_splines)] def interpolating_spline(d, x, X, Y): """Return spline of degree ``d``, passing through the given ``X`` and ``Y`` values. This function returns a piecewise function such that each part is a polynomial of degree not greater than ``d``. The value of ``d`` must be 1 or greater and the values of ``X`` must be strictly increasing. Examples ======== >>> from sympy import interpolating_spline >>> from sympy.abc import x >>> interpolating_spline(1, x, [1, 2, 4, 7], [3, 6, 5, 7]) Piecewise((3*x, (x >= 1) & (x <= 2)), (7 - x/2, (x >= 2) & (x <= 4)), (2*x/3 + 7/3, (x >= 4) & (x <= 7))) >>> interpolating_spline(3, x, [-2, 0, 1, 3, 4], [4, 2, 1, 1, 3]) Piecewise((7*x**3/117 + 7*x**2/117 - 131*x/117 + 2, (x >= -2) & (x <= 1)), (10*x**3/117 - 2*x**2/117 - 122*x/117 + 77/39, (x >= 1) & (x <= 4))) See Also ======== bspline_basis_set, sympy.polys.specialpolys.interpolating_poly """ from sympy import symbols, Number, Dummy, Rational from sympy.solvers.solveset import linsolve from sympy.matrices.dense import Matrix # Input sanitization d = sympify(d) if not (d.is_Integer and d.is_positive): raise ValueError("Spline degree must be a positive integer, not %s." % d) if len(X) != len(Y): raise ValueError("Number of X and Y coordinates must be the same.") if len(X) < d + 1: raise ValueError("Degree must be less than the number of control points.") if not all(a < b for a, b in zip(X, X[1:])): raise ValueError("The x-coordinates must be strictly increasing.") # Evaluating knots value if d.is_odd: j = (d + 1) // 2 interior_knots = X[j:-j] else: j = d // 2 interior_knots = [ Rational(a + b, 2) for a, b in zip(X[j : -j - 1], X[j + 1 : -j]) ] knots = [X[0]] * (d + 1) + list(interior_knots) + [X[-1]] * (d + 1) basis = bspline_basis_set(d, knots, x) A = [[b.subs(x, v) for b in basis] for v in X] coeff = linsolve((Matrix(A), Matrix(Y)), symbols("c0:{}".format(len(X)), cls=Dummy)) coeff = list(coeff)[0] intervals = set([c for b in basis for (e, c) in b.args if c != True]) # Sorting the intervals # ival contains the end-points of each interval ival = [e.atoms(Number) for e in intervals] ival = [list(sorted(e))[0] for e in ival] com = zip(ival, intervals) com = sorted(com, key=lambda x: x[0]) intervals = [y for x, y in com] basis_dicts = [dict((c, e) for (e, c) in b.args) for b in basis] spline = [] for i in intervals: piece = sum( [c * d.get(i, S.Zero) for (c, d) in zip(coeff, basis_dicts)], S.Zero ) spline.append((piece, i)) return Piecewise(*spline)
8b775016a273efc12cac46fbf1a26933b95d980d36a88f4c27504af7499eadcc
from __future__ import print_function, division from sympy.core import S from sympy.core.function import Function, ArgumentIndexError from sympy.functions.special.gamma_functions import gamma, digamma ############################################################################### ############################ COMPLETE BETA FUNCTION ########################## ############################################################################### class beta(Function): r""" The beta integral is called the Eulerian integral of the first kind by Legendre: .. math:: \mathrm{B}(x,y) := \int^{1}_{0} t^{x-1} (1-t)^{y-1} \mathrm{d}t. Beta function or Euler's first integral is closely associated with gamma function. The Beta function often used in probability theory and mathematical statistics. It satisfies properties like: .. math:: \mathrm{B}(a,1) = \frac{1}{a} \\ \mathrm{B}(a,b) = \mathrm{B}(b,a) \\ \mathrm{B}(a,b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)} Therefore for integral values of a and b: .. math:: \mathrm{B} = \frac{(a-1)! (b-1)!}{(a+b-1)!} Examples ======== >>> from sympy import I, pi >>> from sympy.abc import x, y The Beta function obeys the mirror symmetry: >>> from sympy import beta >>> from sympy import conjugate >>> conjugate(beta(x, y)) beta(conjugate(x), conjugate(y)) Differentiation with respect to both x and y is supported: >>> from sympy import beta >>> from sympy import diff >>> diff(beta(x, y), x) (polygamma(0, x) - polygamma(0, x + y))*beta(x, y) >>> from sympy import beta >>> from sympy import diff >>> diff(beta(x, y), y) (polygamma(0, y) - polygamma(0, x + y))*beta(x, y) We can numerically evaluate the gamma function to arbitrary precision on the whole complex plane: >>> from sympy import beta >>> beta(pi, pi).evalf(40) 0.02671848900111377452242355235388489324562 >>> beta(1 + I, 1 + I).evalf(20) -0.2112723729365330143 - 0.7655283165378005676*I See Also ======== sympy.functions.special.gamma_functions.gamma: Gamma function. sympy.functions.special.gamma_functions.uppergamma: Upper incomplete gamma function. sympy.functions.special.gamma_functions.lowergamma: Lower incomplete gamma function. sympy.functions.special.gamma_functions.polygamma: Polygamma function. sympy.functions.special.gamma_functions.loggamma: Log Gamma function. sympy.functions.special.gamma_functions.digamma: Digamma function. sympy.functions.special.gamma_functions.trigamma: Trigamma function. References ========== .. [1] https://en.wikipedia.org/wiki/Beta_function .. [2] http://mathworld.wolfram.com/BetaFunction.html .. [3] http://dlmf.nist.gov/5.12 """ nargs = 2 unbranched = True def fdiff(self, argindex): x, y = self.args if argindex == 1: # Diff wrt x return beta(x, y)*(digamma(x) - digamma(x + y)) elif argindex == 2: # Diff wrt y return beta(x, y)*(digamma(y) - digamma(x + y)) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, x, y): if y is S.One: return 1/x if x is S.One: return 1/y def _eval_expand_func(self, **hints): x, y = self.args return gamma(x)*gamma(y) / gamma(x + y) def _eval_is_real(self): return self.args[0].is_real and self.args[1].is_real def _eval_conjugate(self): return self.func(self.args[0].conjugate(), self.args[1].conjugate()) def _eval_rewrite_as_gamma(self, x, y, **kwargs): return self._eval_expand_func(**kwargs)
f133ad6729564d6fe02690d50db445eb55aaefd7ccb87abed49bf5f7332e531d
""" Riemann zeta and related function. """ from __future__ import print_function, division from sympy.core import Function, S, sympify, pi, I from sympy.core.compatibility import range from sympy.core.function import ArgumentIndexError from sympy.functions.combinatorial.numbers import bernoulli, factorial, harmonic from sympy.functions.elementary.exponential import log, exp_polar from sympy.functions.elementary.miscellaneous import sqrt ############################################################################### ###################### LERCH TRANSCENDENT ##################################### ############################################################################### class lerchphi(Function): r""" Lerch transcendent (Lerch phi function). For :math:`\operatorname{Re}(a) > 0`, `|z| < 1` and `s \in \mathbb{C}`, the Lerch transcendent is defined as .. math :: \Phi(z, s, a) = \sum_{n=0}^\infty \frac{z^n}{(n + a)^s}, where the standard branch of the argument is used for :math:`n + a`, and by analytic continuation for other values of the parameters. A commonly used related function is the Lerch zeta function, defined by .. math:: L(q, s, a) = \Phi(e^{2\pi i q}, s, a). **Analytic Continuation and Branching Behavior** It can be shown that .. math:: \Phi(z, s, a) = z\Phi(z, s, a+1) + a^{-s}. This provides the analytic continuation to `\operatorname{Re}(a) \le 0`. Assume now `\operatorname{Re}(a) > 0`. The integral representation .. math:: \Phi_0(z, s, a) = \int_0^\infty \frac{t^{s-1} e^{-at}}{1 - ze^{-t}} \frac{\mathrm{d}t}{\Gamma(s)} provides an analytic continuation to :math:`\mathbb{C} - [1, \infty)`. Finally, for :math:`x \in (1, \infty)` we find .. math:: \lim_{\epsilon \to 0^+} \Phi_0(x + i\epsilon, s, a) -\lim_{\epsilon \to 0^+} \Phi_0(x - i\epsilon, s, a) = \frac{2\pi i \log^{s-1}{x}}{x^a \Gamma(s)}, using the standard branch for both :math:`\log{x}` and :math:`\log{\log{x}}` (a branch of :math:`\log{\log{x}}` is needed to evaluate :math:`\log{x}^{s-1}`). This concludes the analytic continuation. The Lerch transcendent is thus branched at :math:`z \in \{0, 1, \infty\}` and :math:`a \in \mathbb{Z}_{\le 0}`. For fixed :math:`z, a` outside these branch points, it is an entire function of :math:`s`. See Also ======== polylog, zeta References ========== .. [1] Bateman, H.; Erdelyi, A. (1953), Higher Transcendental Functions, Vol. I, New York: McGraw-Hill. Section 1.11. .. [2] http://dlmf.nist.gov/25.14 .. [3] https://en.wikipedia.org/wiki/Lerch_transcendent Examples ======== The Lerch transcendent is a fairly general function, for this reason it does not automatically evaluate to simpler functions. Use expand_func() to achieve this. If :math:`z=1`, the Lerch transcendent reduces to the Hurwitz zeta function: >>> from sympy import lerchphi, expand_func >>> from sympy.abc import z, s, a >>> expand_func(lerchphi(1, s, a)) zeta(s, a) More generally, if :math:`z` is a root of unity, the Lerch transcendent reduces to a sum of Hurwitz zeta functions: >>> expand_func(lerchphi(-1, s, a)) 2**(-s)*zeta(s, a/2) - 2**(-s)*zeta(s, a/2 + 1/2) If :math:`a=1`, the Lerch transcendent reduces to the polylogarithm: >>> expand_func(lerchphi(z, s, 1)) polylog(s, z)/z More generally, if :math:`a` is rational, the Lerch transcendent reduces to a sum of polylogarithms: >>> from sympy import S >>> expand_func(lerchphi(z, s, S(1)/2)) 2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) - polylog(s, sqrt(z)*exp_polar(I*pi))/sqrt(z)) >>> expand_func(lerchphi(z, s, S(3)/2)) -2**s/z + 2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) - polylog(s, sqrt(z)*exp_polar(I*pi))/sqrt(z))/z The derivatives with respect to :math:`z` and :math:`a` can be computed in closed form: >>> lerchphi(z, s, a).diff(z) (-a*lerchphi(z, s, a) + lerchphi(z, s - 1, a))/z >>> lerchphi(z, s, a).diff(a) -s*lerchphi(z, s + 1, a) """ def _eval_expand_func(self, **hints): from sympy import exp, I, floor, Add, Poly, Dummy, exp_polar, unpolarify z, s, a = self.args if z == 1: return zeta(s, a) if s.is_Integer and s <= 0: t = Dummy('t') p = Poly((t + a)**(-s), t) start = 1/(1 - t) res = S.Zero for c in reversed(p.all_coeffs()): res += c*start start = t*start.diff(t) return res.subs(t, z) if a.is_Rational: # See section 18 of # Kelly B. Roach. Hypergeometric Function Representations. # In: Proceedings of the 1997 International Symposium on Symbolic and # Algebraic Computation, pages 205-211, New York, 1997. ACM. # TODO should something be polarified here? add = S.Zero mul = S.One # First reduce a to the interaval (0, 1] if a > 1: n = floor(a) if n == a: n -= 1 a -= n mul = z**(-n) add = Add(*[-z**(k - n)/(a + k)**s for k in range(n)]) elif a <= 0: n = floor(-a) + 1 a += n mul = z**n add = Add(*[z**(n - 1 - k)/(a - k - 1)**s for k in range(n)]) m, n = S([a.p, a.q]) zet = exp_polar(2*pi*I/n) root = z**(1/n) return add + mul*n**(s - 1)*Add( *[polylog(s, zet**k*root)._eval_expand_func(**hints) / (unpolarify(zet)**k*root)**m for k in range(n)]) # TODO use minpoly instead of ad-hoc methods when issue 5888 is fixed if isinstance(z, exp) and (z.args[0]/(pi*I)).is_Rational or z in [-1, I, -I]: # TODO reference? if z == -1: p, q = S([1, 2]) elif z == I: p, q = S([1, 4]) elif z == -I: p, q = S([-1, 4]) else: arg = z.args[0]/(2*pi*I) p, q = S([arg.p, arg.q]) return Add(*[exp(2*pi*I*k*p/q)/q**s*zeta(s, (k + a)/q) for k in range(q)]) return lerchphi(z, s, a) def fdiff(self, argindex=1): z, s, a = self.args if argindex == 3: return -s*lerchphi(z, s + 1, a) elif argindex == 1: return (lerchphi(z, s - 1, a) - a*lerchphi(z, s, a))/z else: raise ArgumentIndexError def _eval_rewrite_helper(self, z, s, a, target): res = self._eval_expand_func() if res.has(target): return res else: return self def _eval_rewrite_as_zeta(self, z, s, a, **kwargs): return self._eval_rewrite_helper(z, s, a, zeta) def _eval_rewrite_as_polylog(self, z, s, a, **kwargs): return self._eval_rewrite_helper(z, s, a, polylog) ############################################################################### ###################### POLYLOGARITHM ########################################## ############################################################################### class polylog(Function): r""" Polylogarithm function. For :math:`|z| < 1` and :math:`s \in \mathbb{C}`, the polylogarithm is defined by .. math:: \operatorname{Li}_s(z) = \sum_{n=1}^\infty \frac{z^n}{n^s}, where the standard branch of the argument is used for :math:`n`. It admits an analytic continuation which is branched at :math:`z=1` (notably not on the sheet of initial definition), :math:`z=0` and :math:`z=\infty`. The name polylogarithm comes from the fact that for :math:`s=1`, the polylogarithm is related to the ordinary logarithm (see examples), and that .. math:: \operatorname{Li}_{s+1}(z) = \int_0^z \frac{\operatorname{Li}_s(t)}{t} \mathrm{d}t. The polylogarithm is a special case of the Lerch transcendent: .. math:: \operatorname{Li}_{s}(z) = z \Phi(z, s, 1) See Also ======== zeta, lerchphi Examples ======== For :math:`z \in \{0, 1, -1\}`, the polylogarithm is automatically expressed using other functions: >>> from sympy import polylog >>> from sympy.abc import s >>> polylog(s, 0) 0 >>> polylog(s, 1) zeta(s) >>> polylog(s, -1) -dirichlet_eta(s) If :math:`s` is a negative integer, :math:`0` or :math:`1`, the polylogarithm can be expressed using elementary functions. This can be done using expand_func(): >>> from sympy import expand_func >>> from sympy.abc import z >>> expand_func(polylog(1, z)) -log(1 - z) >>> expand_func(polylog(0, z)) z/(1 - z) The derivative with respect to :math:`z` can be computed in closed form: >>> polylog(s, z).diff(z) polylog(s - 1, z)/z The polylogarithm can be expressed in terms of the lerch transcendent: >>> from sympy import lerchphi >>> polylog(s, z).rewrite(lerchphi) z*lerchphi(z, s, 1) """ @classmethod def eval(cls, s, z): s, z = sympify((s, z)) if z is S.One: return zeta(s) elif z is S.NegativeOne: return -dirichlet_eta(s) elif z is S.Zero: return S.Zero elif s == 2: if z == S.Half: return pi**2/12 - log(2)**2/2 elif z == 2: return pi**2/4 - I*pi*log(2) elif z == -(sqrt(5) - 1)/2: return -pi**2/15 + log((sqrt(5)-1)/2)**2/2 elif z == -(sqrt(5) + 1)/2: return -pi**2/10 - log((sqrt(5)+1)/2)**2 elif z == (3 - sqrt(5))/2: return pi**2/15 - log((sqrt(5)-1)/2)**2 elif z == (sqrt(5) - 1)/2: return pi**2/10 - log((sqrt(5)-1)/2)**2 if z.is_zero: return S.Zero # Make an effort to determine if z is 1 to avoid replacing into # expression with singularity zone = z.equals(S.One) if zone: return zeta(s) elif zone is False: # For s = 0 or -1 use explicit formulas to evaluate, but # automatically expanding polylog(1, z) to -log(1-z) seems # undesirable for summation methods based on hypergeometric # functions if s is S.Zero: return z/(1 - z) elif s is S.NegativeOne: return z/(1 - z)**2 if s.is_zero: return z/(1 - z) # polylog is branched, but not over the unit disk from sympy.functions.elementary.complexes import (Abs, unpolarify, polar_lift) if z.has(exp_polar, polar_lift) and (zone or (Abs(z) <= S.One) == True): return cls(s, unpolarify(z)) def fdiff(self, argindex=1): s, z = self.args if argindex == 2: return polylog(s - 1, z)/z raise ArgumentIndexError def _eval_rewrite_as_lerchphi(self, s, z, **kwargs): return z*lerchphi(z, s, 1) def _eval_expand_func(self, **hints): from sympy import log, expand_mul, Dummy s, z = self.args if s == 1: return -log(1 - z) if s.is_Integer and s <= 0: u = Dummy('u') start = u/(1 - u) for _ in range(-s): start = u*start.diff(u) return expand_mul(start).subs(u, z) return polylog(s, z) def _eval_is_zero(self): z = self.args[1] if z.is_zero: return True ############################################################################### ###################### HURWITZ GENERALIZED ZETA FUNCTION ###################### ############################################################################### class zeta(Function): r""" Hurwitz zeta function (or Riemann zeta function). For `\operatorname{Re}(a) > 0` and `\operatorname{Re}(s) > 1`, this function is defined as .. math:: \zeta(s, a) = \sum_{n=0}^\infty \frac{1}{(n + a)^s}, where the standard choice of argument for :math:`n + a` is used. For fixed :math:`a` with `\operatorname{Re}(a) > 0` the Hurwitz zeta function admits a meromorphic continuation to all of :math:`\mathbb{C}`, it is an unbranched function with a simple pole at :math:`s = 1`. Analytic continuation to other :math:`a` is possible under some circumstances, but this is not typically done. The Hurwitz zeta function is a special case of the Lerch transcendent: .. math:: \zeta(s, a) = \Phi(1, s, a). This formula defines an analytic continuation for all possible values of :math:`s` and :math:`a` (also `\operatorname{Re}(a) < 0`), see the documentation of :class:`lerchphi` for a description of the branching behavior. If no value is passed for :math:`a`, by this function assumes a default value of :math:`a = 1`, yielding the Riemann zeta function. See Also ======== dirichlet_eta, lerchphi, polylog References ========== .. [1] http://dlmf.nist.gov/25.11 .. [2] https://en.wikipedia.org/wiki/Hurwitz_zeta_function Examples ======== For :math:`a = 1` the Hurwitz zeta function reduces to the famous Riemann zeta function: .. math:: \zeta(s, 1) = \zeta(s) = \sum_{n=1}^\infty \frac{1}{n^s}. >>> from sympy import zeta >>> from sympy.abc import s >>> zeta(s, 1) zeta(s) >>> zeta(s) zeta(s) The Riemann zeta function can also be expressed using the Dirichlet eta function: >>> from sympy import dirichlet_eta >>> zeta(s).rewrite(dirichlet_eta) dirichlet_eta(s)/(1 - 2**(1 - s)) The Riemann zeta function at positive even integer and negative odd integer values is related to the Bernoulli numbers: >>> zeta(2) pi**2/6 >>> zeta(4) pi**4/90 >>> zeta(-1) -1/12 The specific formulae are: .. math:: \zeta(2n) = (-1)^{n+1} \frac{B_{2n} (2\pi)^{2n}}{2(2n)!} .. math:: \zeta(-n) = -\frac{B_{n+1}}{n+1} At negative even integers the Riemann zeta function is zero: >>> zeta(-4) 0 No closed-form expressions are known at positive odd integers, but numerical evaluation is possible: >>> zeta(3).n() 1.20205690315959 The derivative of :math:`\zeta(s, a)` with respect to :math:`a` is easily computed: >>> from sympy.abc import a >>> zeta(s, a).diff(a) -s*zeta(s + 1, a) However the derivative with respect to :math:`s` has no useful closed form expression: >>> zeta(s, a).diff(s) Derivative(zeta(s, a), s) The Hurwitz zeta function can be expressed in terms of the Lerch transcendent, :class:`~.lerchphi`: >>> from sympy import lerchphi >>> zeta(s, a).rewrite(lerchphi) lerchphi(1, s, a) """ @classmethod def eval(cls, z, a_=None): if a_ is None: z, a = list(map(sympify, (z, 1))) else: z, a = list(map(sympify, (z, a_))) if a.is_Number: if a is S.NaN: return S.NaN elif a is S.One and a_ is not None: return cls(z) # TODO Should a == 0 return S.NaN as well? if z.is_Number: if z is S.NaN: return S.NaN elif z is S.Infinity: return S.One elif z.is_zero: return S.Half - a elif z is S.One: return S.ComplexInfinity if z.is_integer: if a.is_Integer: if z.is_negative: zeta = (-1)**z * bernoulli(-z + 1)/(-z + 1) elif z.is_even and z.is_positive: B, F = bernoulli(z), factorial(z) zeta = ((-1)**(z/2+1) * 2**(z - 1) * B * pi**z) / F else: return if a.is_negative: return zeta + harmonic(abs(a), z) else: return zeta - harmonic(a - 1, z) if z.is_zero: return S.Half - a def _eval_rewrite_as_dirichlet_eta(self, s, a=1, **kwargs): if a != 1: return self s = self.args[0] return dirichlet_eta(s)/(1 - 2**(1 - s)) def _eval_rewrite_as_lerchphi(self, s, a=1, **kwargs): return lerchphi(1, s, a) def _eval_is_finite(self): arg_is_one = (self.args[0] - 1).is_zero if arg_is_one is not None: return not arg_is_one def fdiff(self, argindex=1): if len(self.args) == 2: s, a = self.args else: s, a = self.args + (1,) if argindex == 2: return -s*zeta(s + 1, a) else: raise ArgumentIndexError class dirichlet_eta(Function): r""" Dirichlet eta function. For `\operatorname{Re}(s) > 0`, this function is defined as .. math:: \eta(s) = \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^s}. It admits a unique analytic continuation to all of :math:`\mathbb{C}`. It is an entire, unbranched function. See Also ======== zeta References ========== .. [1] https://en.wikipedia.org/wiki/Dirichlet_eta_function Examples ======== The Dirichlet eta function is closely related to the Riemann zeta function: >>> from sympy import dirichlet_eta, zeta >>> from sympy.abc import s >>> dirichlet_eta(s).rewrite(zeta) (1 - 2**(1 - s))*zeta(s) """ @classmethod def eval(cls, s): if s == 1: return log(2) z = zeta(s) if not z.has(zeta): return (1 - 2**(1 - s))*z def _eval_rewrite_as_zeta(self, s, **kwargs): return (1 - 2**(1 - s)) * zeta(s) class stieltjes(Function): r"""Represents Stieltjes constants, :math:`\gamma_{k}` that occur in Laurent Series expansion of the Riemann zeta function. Examples ======== >>> from sympy import stieltjes >>> from sympy.abc import n, m >>> stieltjes(n) stieltjes(n) zero'th stieltjes constant >>> stieltjes(0) EulerGamma >>> stieltjes(0, 1) EulerGamma For generalized stieltjes constants >>> stieltjes(n, m) stieltjes(n, m) Constants are only defined for integers >= 0 >>> stieltjes(-1) zoo References ========== .. [1] https://en.wikipedia.org/wiki/Stieltjes_constants """ @classmethod def eval(cls, n, a=None): n = sympify(n) if a is not None: a = sympify(a) if a is S.NaN: return S.NaN if a.is_Integer and a.is_nonpositive: return S.ComplexInfinity if n.is_Number: if n is S.NaN: return S.NaN elif n < 0: return S.ComplexInfinity elif not n.is_Integer: return S.ComplexInfinity elif n is S.Zero and a in [None, 1]: return S.EulerGamma if n.is_extended_negative: return S.ComplexInfinity if n.is_zero and a in [None, 1]: return S.EulerGamma if n.is_integer == False: return S.ComplexInfinity
8df56c91cf98ee20682e1a1e1c593dfd55f3ac7020c42a1305fbc9ce3302c9c3
""" This module contains the Mathieu functions. """ from __future__ import print_function, division from sympy.core.function import Function, ArgumentIndexError from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import sin, cos class MathieuBase(Function): """ Abstract base class for Mathieu functions. This class is meant to reduce code duplication. """ unbranched = True def _eval_conjugate(self): a, q, z = self.args return self.func(a.conjugate(), q.conjugate(), z.conjugate()) class mathieus(MathieuBase): r""" The Mathieu Sine function `S(a,q,z)`. This function is one solution of the Mathieu differential equation: .. math :: y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0 The other solution is the Mathieu Cosine function. Examples ======== >>> from sympy import diff, mathieus >>> from sympy.abc import a, q, z >>> mathieus(a, q, z) mathieus(a, q, z) >>> mathieus(a, 0, z) sin(sqrt(a)*z) >>> diff(mathieus(a, q, z), z) mathieusprime(a, q, z) See Also ======== mathieuc: Mathieu cosine function. mathieusprime: Derivative of Mathieu sine function. mathieucprime: Derivative of Mathieu cosine function. References ========== .. [1] https://en.wikipedia.org/wiki/Mathieu_function .. [2] http://dlmf.nist.gov/28 .. [3] http://mathworld.wolfram.com/MathieuBase.html .. [4] http://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuS/ """ def fdiff(self, argindex=1): if argindex == 3: a, q, z = self.args return mathieusprime(a, q, z) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, a, q, z): if q.is_Number and q.is_zero: return sin(sqrt(a)*z) # Try to pull out factors of -1 if z.could_extract_minus_sign(): return -cls(a, q, -z) class mathieuc(MathieuBase): r""" The Mathieu Cosine function `C(a,q,z)`. This function is one solution of the Mathieu differential equation: .. math :: y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0 The other solution is the Mathieu Sine function. Examples ======== >>> from sympy import diff, mathieuc >>> from sympy.abc import a, q, z >>> mathieuc(a, q, z) mathieuc(a, q, z) >>> mathieuc(a, 0, z) cos(sqrt(a)*z) >>> diff(mathieuc(a, q, z), z) mathieucprime(a, q, z) See Also ======== mathieus: Mathieu sine function mathieusprime: Derivative of Mathieu sine function mathieucprime: Derivative of Mathieu cosine function References ========== .. [1] https://en.wikipedia.org/wiki/Mathieu_function .. [2] http://dlmf.nist.gov/28 .. [3] http://mathworld.wolfram.com/MathieuBase.html .. [4] http://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuC/ """ def fdiff(self, argindex=1): if argindex == 3: a, q, z = self.args return mathieucprime(a, q, z) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, a, q, z): if q.is_Number and q.is_zero: return cos(sqrt(a)*z) # Try to pull out factors of -1 if z.could_extract_minus_sign(): return cls(a, q, -z) class mathieusprime(MathieuBase): r""" The derivative `S^{\prime}(a,q,z)` of the Mathieu Sine function. This function is one solution of the Mathieu differential equation: .. math :: y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0 The other solution is the Mathieu Cosine function. Examples ======== >>> from sympy import diff, mathieusprime >>> from sympy.abc import a, q, z >>> mathieusprime(a, q, z) mathieusprime(a, q, z) >>> mathieusprime(a, 0, z) sqrt(a)*cos(sqrt(a)*z) >>> diff(mathieusprime(a, q, z), z) (-a + 2*q*cos(2*z))*mathieus(a, q, z) See Also ======== mathieus: Mathieu sine function mathieuc: Mathieu cosine function mathieucprime: Derivative of Mathieu cosine function References ========== .. [1] https://en.wikipedia.org/wiki/Mathieu_function .. [2] http://dlmf.nist.gov/28 .. [3] http://mathworld.wolfram.com/MathieuBase.html .. [4] http://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuSPrime/ """ def fdiff(self, argindex=1): if argindex == 3: a, q, z = self.args return (2*q*cos(2*z) - a)*mathieus(a, q, z) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, a, q, z): if q.is_Number and q.is_zero: return sqrt(a)*cos(sqrt(a)*z) # Try to pull out factors of -1 if z.could_extract_minus_sign(): return cls(a, q, -z) class mathieucprime(MathieuBase): r""" The derivative `C^{\prime}(a,q,z)` of the Mathieu Cosine function. This function is one solution of the Mathieu differential equation: .. math :: y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0 The other solution is the Mathieu Sine function. Examples ======== >>> from sympy import diff, mathieucprime >>> from sympy.abc import a, q, z >>> mathieucprime(a, q, z) mathieucprime(a, q, z) >>> mathieucprime(a, 0, z) -sqrt(a)*sin(sqrt(a)*z) >>> diff(mathieucprime(a, q, z), z) (-a + 2*q*cos(2*z))*mathieuc(a, q, z) See Also ======== mathieus: Mathieu sine function mathieuc: Mathieu cosine function mathieusprime: Derivative of Mathieu sine function References ========== .. [1] https://en.wikipedia.org/wiki/Mathieu_function .. [2] http://dlmf.nist.gov/28 .. [3] http://mathworld.wolfram.com/MathieuBase.html .. [4] http://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuCPrime/ """ def fdiff(self, argindex=1): if argindex == 3: a, q, z = self.args return (2*q*cos(2*z) - a)*mathieuc(a, q, z) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, a, q, z): if q.is_Number and q.is_zero: return -sqrt(a)*sin(sqrt(a)*z) # Try to pull out factors of -1 if z.could_extract_minus_sign(): return -cls(a, q, -z)
5092dfbcfea009748e25694cf403ef5224ec7047ee40e68cb47134026b5c5ab9
from __future__ import print_function, division from functools import wraps from sympy import S, pi, I, Rational, Wild, cacheit, sympify from sympy.core.function import Function, ArgumentIndexError from sympy.core.power import Pow from sympy.core.compatibility import range from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.trigonometric import sin, cos, csc, cot from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.miscellaneous import sqrt, root from sympy.functions.elementary.complexes import re, im from sympy.functions.special.gamma_functions import gamma from sympy.functions.special.hyper import hyper from sympy.polys.orthopolys import spherical_bessel_fn as fn # TODO # o Scorer functions G1 and G2 # o Asymptotic expansions # These are possible, e.g. for fixed order, but since the bessel type # functions are oscillatory they are not actually tractable at # infinity, so this is not particularly useful right now. # o Series Expansions for functions of the second kind about zero # o Nicer series expansions. # o More rewriting. # o Add solvers to ode.py (or rather add solvers for the hypergeometric equation). class BesselBase(Function): """ Abstract base class for bessel-type functions. This class is meant to reduce code duplication. All Bessel type functions can 1) be differentiated, and the derivatives expressed in terms of similar functions and 2) be rewritten in terms of other bessel-type functions. Here "bessel-type functions" are assumed to have one complex parameter. To use this base class, define class attributes ``_a`` and ``_b`` such that ``2*F_n' = -_a*F_{n+1} + b*F_{n-1}``. """ @property def order(self): """ The order of the bessel-type function. """ return self.args[0] @property def argument(self): """ The argument of the bessel-type function. """ return self.args[1] @classmethod def eval(cls, nu, z): return def fdiff(self, argindex=2): if argindex != 2: raise ArgumentIndexError(self, argindex) return (self._b/2 * self.__class__(self.order - 1, self.argument) - self._a/2 * self.__class__(self.order + 1, self.argument)) def _eval_conjugate(self): z = self.argument if z.is_extended_negative is False: return self.__class__(self.order.conjugate(), z.conjugate()) def _eval_expand_func(self, **hints): nu, z, f = self.order, self.argument, self.__class__ if nu.is_extended_real: if (nu - 1).is_extended_positive: return (-self._a*self._b*f(nu - 2, z)._eval_expand_func() + 2*self._a*(nu - 1)*f(nu - 1, z)._eval_expand_func()/z) elif (nu + 1).is_extended_negative: return (2*self._b*(nu + 1)*f(nu + 1, z)._eval_expand_func()/z - self._a*self._b*f(nu + 2, z)._eval_expand_func()) return self def _eval_simplify(self, **kwargs): from sympy.simplify.simplify import besselsimp return besselsimp(self) class besselj(BesselBase): r""" Bessel function of the first kind. The Bessel $J$ function of order $\nu$ is defined to be the function satisfying Bessel's differential equation .. math :: z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu^2) w = 0, with Laurent expansion .. math :: J_\nu(z) = z^\nu \left(\frac{1}{\Gamma(\nu + 1) 2^\nu} + O(z^2) \right), if $\nu$ is not a negative integer. If $\nu=-n \in \mathbb{Z}_{<0}$ *is* a negative integer, then the definition is .. math :: J_{-n}(z) = (-1)^n J_n(z). Examples ======== Create a Bessel function object: >>> from sympy import besselj, jn >>> from sympy.abc import z, n >>> b = besselj(n, z) Differentiate it: >>> b.diff(z) besselj(n - 1, z)/2 - besselj(n + 1, z)/2 Rewrite in terms of spherical Bessel functions: >>> b.rewrite(jn) sqrt(2)*sqrt(z)*jn(n - 1/2, z)/sqrt(pi) Access the parameter and argument: >>> b.order n >>> b.argument z See Also ======== bessely, besseli, besselk References ========== .. [1] Abramowitz, Milton; Stegun, Irene A., eds. (1965), "Chapter 9", Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables .. [2] Luke, Y. L. (1969), The Special Functions and Their Approximations, Volume 1 .. [3] https://en.wikipedia.org/wiki/Bessel_function .. [4] http://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/ """ _a = S.One _b = S.One @classmethod def eval(cls, nu, z): if z.is_zero: if nu.is_zero: return S.One elif (nu.is_integer and nu.is_zero is False) or re(nu).is_positive: return S.Zero elif re(nu).is_negative and not (nu.is_integer is True): return S.ComplexInfinity elif nu.is_imaginary: return S.NaN if z is S.Infinity or (z is S.NegativeInfinity): return S.Zero if z.could_extract_minus_sign(): return (z)**nu*(-z)**(-nu)*besselj(nu, -z) if nu.is_integer: if nu.could_extract_minus_sign(): return S.NegativeOne**(-nu)*besselj(-nu, z) newz = z.extract_multiplicatively(I) if newz: # NOTE we don't want to change the function if z==0 return I**(nu)*besseli(nu, newz) # branch handling: from sympy import unpolarify, exp if nu.is_integer: newz = unpolarify(z) if newz != z: return besselj(nu, newz) else: newz, n = z.extract_branch_factor() if n != 0: return exp(2*n*pi*nu*I)*besselj(nu, newz) nnu = unpolarify(nu) if nu != nnu: return besselj(nnu, z) def _eval_rewrite_as_besseli(self, nu, z, **kwargs): from sympy import polar_lift, exp return exp(I*pi*nu/2)*besseli(nu, polar_lift(-I)*z) def _eval_rewrite_as_bessely(self, nu, z, **kwargs): if nu.is_integer is False: return csc(pi*nu)*bessely(-nu, z) - cot(pi*nu)*bessely(nu, z) def _eval_rewrite_as_jn(self, nu, z, **kwargs): return sqrt(2*z/pi)*jn(nu - S.Half, self.argument) def _eval_is_extended_real(self): nu, z = self.args if nu.is_integer and z.is_extended_real: return True def _sage_(self): import sage.all as sage return sage.bessel_J(self.args[0]._sage_(), self.args[1]._sage_()) class bessely(BesselBase): r""" Bessel function of the second kind. The Bessel $Y$ function of order $\nu$ is defined as .. math :: Y_\nu(z) = \lim_{\mu \to \nu} \frac{J_\mu(z) \cos(\pi \mu) - J_{-\mu}(z)}{\sin(\pi \mu)}, where $J_\mu(z)$ is the Bessel function of the first kind. It is a solution to Bessel's equation, and linearly independent from $J_\nu$. Examples ======== >>> from sympy import bessely, yn >>> from sympy.abc import z, n >>> b = bessely(n, z) >>> b.diff(z) bessely(n - 1, z)/2 - bessely(n + 1, z)/2 >>> b.rewrite(yn) sqrt(2)*sqrt(z)*yn(n - 1/2, z)/sqrt(pi) See Also ======== besselj, besseli, besselk References ========== .. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselY/ """ _a = S.One _b = S.One @classmethod def eval(cls, nu, z): if z.is_zero: if nu.is_zero: return S.NegativeInfinity elif re(nu).is_zero is False: return S.ComplexInfinity elif re(nu).is_zero: return S.NaN if z is S.Infinity or z is S.NegativeInfinity: return S.Zero if nu.is_integer: if nu.could_extract_minus_sign(): return S.NegativeOne**(-nu)*bessely(-nu, z) def _eval_rewrite_as_besselj(self, nu, z, **kwargs): if nu.is_integer is False: return csc(pi*nu)*(cos(pi*nu)*besselj(nu, z) - besselj(-nu, z)) def _eval_rewrite_as_besseli(self, nu, z, **kwargs): aj = self._eval_rewrite_as_besselj(*self.args) if aj: return aj.rewrite(besseli) def _eval_rewrite_as_yn(self, nu, z, **kwargs): return sqrt(2*z/pi) * yn(nu - S.Half, self.argument) def _eval_is_extended_real(self): nu, z = self.args if nu.is_integer and z.is_positive: return True def _sage_(self): import sage.all as sage return sage.bessel_Y(self.args[0]._sage_(), self.args[1]._sage_()) class besseli(BesselBase): r""" Modified Bessel function of the first kind. The Bessel I function is a solution to the modified Bessel equation .. math :: z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 + \nu^2)^2 w = 0. It can be defined as .. math :: I_\nu(z) = i^{-\nu} J_\nu(iz), where $J_\nu(z)$ is the Bessel function of the first kind. Examples ======== >>> from sympy import besseli >>> from sympy.abc import z, n >>> besseli(n, z).diff(z) besseli(n - 1, z)/2 + besseli(n + 1, z)/2 See Also ======== besselj, bessely, besselk References ========== .. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselI/ """ _a = -S.One _b = S.One @classmethod def eval(cls, nu, z): if z.is_zero: if nu.is_zero: return S.One elif (nu.is_integer and nu.is_zero is False) or re(nu).is_positive: return S.Zero elif re(nu).is_negative and not (nu.is_integer is True): return S.ComplexInfinity elif nu.is_imaginary: return S.NaN if z.is_imaginary: if im(z) is S.Infinity or im(z) is S.NegativeInfinity: return S.Zero if z.could_extract_minus_sign(): return (z)**nu*(-z)**(-nu)*besseli(nu, -z) if nu.is_integer: if nu.could_extract_minus_sign(): return besseli(-nu, z) newz = z.extract_multiplicatively(I) if newz: # NOTE we don't want to change the function if z==0 return I**(-nu)*besselj(nu, -newz) # branch handling: from sympy import unpolarify, exp if nu.is_integer: newz = unpolarify(z) if newz != z: return besseli(nu, newz) else: newz, n = z.extract_branch_factor() if n != 0: return exp(2*n*pi*nu*I)*besseli(nu, newz) nnu = unpolarify(nu) if nu != nnu: return besseli(nnu, z) def _eval_rewrite_as_besselj(self, nu, z, **kwargs): from sympy import polar_lift, exp return exp(-I*pi*nu/2)*besselj(nu, polar_lift(I)*z) def _eval_rewrite_as_bessely(self, nu, z, **kwargs): aj = self._eval_rewrite_as_besselj(*self.args) if aj: return aj.rewrite(bessely) def _eval_rewrite_as_jn(self, nu, z, **kwargs): return self._eval_rewrite_as_besselj(*self.args).rewrite(jn) def _eval_is_extended_real(self): nu, z = self.args if nu.is_integer and z.is_extended_real: return True def _sage_(self): import sage.all as sage return sage.bessel_I(self.args[0]._sage_(), self.args[1]._sage_()) class besselk(BesselBase): r""" Modified Bessel function of the second kind. The Bessel K function of order $\nu$ is defined as .. math :: K_\nu(z) = \lim_{\mu \to \nu} \frac{\pi}{2} \frac{I_{-\mu}(z) -I_\mu(z)}{\sin(\pi \mu)}, where $I_\mu(z)$ is the modified Bessel function of the first kind. It is a solution of the modified Bessel equation, and linearly independent from $Y_\nu$. Examples ======== >>> from sympy import besselk >>> from sympy.abc import z, n >>> besselk(n, z).diff(z) -besselk(n - 1, z)/2 - besselk(n + 1, z)/2 See Also ======== besselj, besseli, bessely References ========== .. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselK/ """ _a = S.One _b = -S.One @classmethod def eval(cls, nu, z): if z.is_zero: if nu.is_zero: return S.Infinity elif re(nu).is_zero is False: return S.ComplexInfinity elif re(nu).is_zero: return S.NaN if z.is_imaginary: if im(z) is S.Infinity or im(z) is S.NegativeInfinity: return S.Zero if nu.is_integer: if nu.could_extract_minus_sign(): return besselk(-nu, z) def _eval_rewrite_as_besseli(self, nu, z, **kwargs): if nu.is_integer is False: return pi*csc(pi*nu)*(besseli(-nu, z) - besseli(nu, z))/2 def _eval_rewrite_as_besselj(self, nu, z, **kwargs): ai = self._eval_rewrite_as_besseli(*self.args) if ai: return ai.rewrite(besselj) def _eval_rewrite_as_bessely(self, nu, z, **kwargs): aj = self._eval_rewrite_as_besselj(*self.args) if aj: return aj.rewrite(bessely) def _eval_rewrite_as_yn(self, nu, z, **kwargs): ay = self._eval_rewrite_as_bessely(*self.args) if ay: return ay.rewrite(yn) def _eval_is_extended_real(self): nu, z = self.args if nu.is_integer and z.is_positive: return True def _sage_(self): import sage.all as sage return sage.bessel_K(self.args[0]._sage_(), self.args[1]._sage_()) class hankel1(BesselBase): r""" Hankel function of the first kind. This function is defined as .. math :: H_\nu^{(1)} = J_\nu(z) + iY_\nu(z), where $J_\nu(z)$ is the Bessel function of the first kind, and $Y_\nu(z)$ is the Bessel function of the second kind. It is a solution to Bessel's equation. Examples ======== >>> from sympy import hankel1 >>> from sympy.abc import z, n >>> hankel1(n, z).diff(z) hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2 See Also ======== hankel2, besselj, bessely References ========== .. [1] http://functions.wolfram.com/Bessel-TypeFunctions/HankelH1/ """ _a = S.One _b = S.One def _eval_conjugate(self): z = self.argument if z.is_extended_negative is False: return hankel2(self.order.conjugate(), z.conjugate()) class hankel2(BesselBase): r""" Hankel function of the second kind. This function is defined as .. math :: H_\nu^{(2)} = J_\nu(z) - iY_\nu(z), where $J_\nu(z)$ is the Bessel function of the first kind, and $Y_\nu(z)$ is the Bessel function of the second kind. It is a solution to Bessel's equation, and linearly independent from $H_\nu^{(1)}$. Examples ======== >>> from sympy import hankel2 >>> from sympy.abc import z, n >>> hankel2(n, z).diff(z) hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2 See Also ======== hankel1, besselj, bessely References ========== .. [1] http://functions.wolfram.com/Bessel-TypeFunctions/HankelH2/ """ _a = S.One _b = S.One def _eval_conjugate(self): z = self.argument if z.is_extended_negative is False: return hankel1(self.order.conjugate(), z.conjugate()) def assume_integer_order(fn): @wraps(fn) def g(self, nu, z): if nu.is_integer: return fn(self, nu, z) return g class SphericalBesselBase(BesselBase): """ Base class for spherical Bessel functions. These are thin wrappers around ordinary Bessel functions, since spherical Bessel functions differ from the ordinary ones just by a slight change in order. To use this class, define the ``_rewrite`` and ``_expand`` methods. """ def _expand(self, **hints): """ Expand self into a polynomial. Nu is guaranteed to be Integer. """ raise NotImplementedError('expansion') def _rewrite(self): """ Rewrite self in terms of ordinary Bessel functions. """ raise NotImplementedError('rewriting') def _eval_expand_func(self, **hints): if self.order.is_Integer: return self._expand(**hints) return self def _eval_evalf(self, prec): if self.order.is_Integer: return self._rewrite()._eval_evalf(prec) def fdiff(self, argindex=2): if argindex != 2: raise ArgumentIndexError(self, argindex) return self.__class__(self.order - 1, self.argument) - \ self * (self.order + 1)/self.argument def _jn(n, z): return fn(n, z)*sin(z) + (-1)**(n + 1)*fn(-n - 1, z)*cos(z) def _yn(n, z): # (-1)**(n + 1) * _jn(-n - 1, z) return (-1)**(n + 1) * fn(-n - 1, z)*sin(z) - fn(n, z)*cos(z) class jn(SphericalBesselBase): r""" Spherical Bessel function of the first kind. This function is a solution to the spherical Bessel equation .. math :: z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + 2z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu(\nu + 1)) w = 0. It can be defined as .. math :: j_\nu(z) = \sqrt{\frac{\pi}{2z}} J_{\nu + \frac{1}{2}}(z), where $J_\nu(z)$ is the Bessel function of the first kind. The spherical Bessel functions of integral order are calculated using the formula: .. math:: j_n(z) = f_n(z) \sin{z} + (-1)^{n+1} f_{-n-1}(z) \cos{z}, where the coefficients $f_n(z)$ are available as :func:`sympy.polys.orthopolys.spherical_bessel_fn`. Examples ======== >>> from sympy import Symbol, jn, sin, cos, expand_func, besselj, bessely >>> from sympy import simplify >>> z = Symbol("z") >>> nu = Symbol("nu", integer=True) >>> print(expand_func(jn(0, z))) sin(z)/z >>> expand_func(jn(1, z)) == sin(z)/z**2 - cos(z)/z True >>> expand_func(jn(3, z)) (-6/z**2 + 15/z**4)*sin(z) + (1/z - 15/z**3)*cos(z) >>> jn(nu, z).rewrite(besselj) sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(nu + 1/2, z)/2 >>> jn(nu, z).rewrite(bessely) (-1)**nu*sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(-nu - 1/2, z)/2 >>> jn(2, 5.2+0.3j).evalf(20) 0.099419756723640344491 - 0.054525080242173562897*I See Also ======== besselj, bessely, besselk, yn References ========== .. [1] http://dlmf.nist.gov/10.47 """ @classmethod def eval(cls, nu, z): if z.is_zero: if nu.is_zero: return S.One elif nu.is_integer: if nu.is_positive: return S.Zero else: return S.ComplexInfinity if z in (S.NegativeInfinity, S.Infinity): return S.Zero def _rewrite(self): return self._eval_rewrite_as_besselj(self.order, self.argument) def _eval_rewrite_as_besselj(self, nu, z, **kwargs): return sqrt(pi/(2*z)) * besselj(nu + S.Half, z) def _eval_rewrite_as_bessely(self, nu, z, **kwargs): return (-1)**nu * sqrt(pi/(2*z)) * bessely(-nu - S.Half, z) def _eval_rewrite_as_yn(self, nu, z, **kwargs): return (-1)**(nu) * yn(-nu - 1, z) def _expand(self, **hints): return _jn(self.order, self.argument) class yn(SphericalBesselBase): r""" Spherical Bessel function of the second kind. This function is another solution to the spherical Bessel equation, and linearly independent from $j_n$. It can be defined as .. math :: y_\nu(z) = \sqrt{\frac{\pi}{2z}} Y_{\nu + \frac{1}{2}}(z), where $Y_\nu(z)$ is the Bessel function of the second kind. For integral orders $n$, $y_n$ is calculated using the formula: .. math:: y_n(z) = (-1)^{n+1} j_{-n-1}(z) Examples ======== >>> from sympy import Symbol, yn, sin, cos, expand_func, besselj, bessely >>> z = Symbol("z") >>> nu = Symbol("nu", integer=True) >>> print(expand_func(yn(0, z))) -cos(z)/z >>> expand_func(yn(1, z)) == -cos(z)/z**2-sin(z)/z True >>> yn(nu, z).rewrite(besselj) (-1)**(nu + 1)*sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(-nu - 1/2, z)/2 >>> yn(nu, z).rewrite(bessely) sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(nu + 1/2, z)/2 >>> yn(2, 5.2+0.3j).evalf(20) 0.18525034196069722536 + 0.014895573969924817587*I See Also ======== besselj, bessely, besselk, jn References ========== .. [1] http://dlmf.nist.gov/10.47 """ def _rewrite(self): return self._eval_rewrite_as_bessely(self.order, self.argument) @assume_integer_order def _eval_rewrite_as_besselj(self, nu, z, **kwargs): return (-1)**(nu+1) * sqrt(pi/(2*z)) * besselj(-nu - S.Half, z) @assume_integer_order def _eval_rewrite_as_bessely(self, nu, z, **kwargs): return sqrt(pi/(2*z)) * bessely(nu + S.Half, z) def _eval_rewrite_as_jn(self, nu, z, **kwargs): return (-1)**(nu + 1) * jn(-nu - 1, z) def _expand(self, **hints): return _yn(self.order, self.argument) class SphericalHankelBase(SphericalBesselBase): def _rewrite(self): return self._eval_rewrite_as_besselj(self.order, self.argument) @assume_integer_order def _eval_rewrite_as_besselj(self, nu, z, **kwargs): # jn +- I*yn # jn as beeselj: sqrt(pi/(2*z)) * besselj(nu + S.Half, z) # yn as besselj: (-1)**(nu+1) * sqrt(pi/(2*z)) * besselj(-nu - S.Half, z) hks = self._hankel_kind_sign return sqrt(pi/(2*z))*(besselj(nu + S.Half, z) + hks*I*(-1)**(nu+1)*besselj(-nu - S.Half, z)) @assume_integer_order def _eval_rewrite_as_bessely(self, nu, z, **kwargs): # jn +- I*yn # jn as bessely: (-1)**nu * sqrt(pi/(2*z)) * bessely(-nu - S.Half, z) # yn as bessely: sqrt(pi/(2*z)) * bessely(nu + S.Half, z) hks = self._hankel_kind_sign return sqrt(pi/(2*z))*((-1)**nu*bessely(-nu - S.Half, z) + hks*I*bessely(nu + S.Half, z)) def _eval_rewrite_as_yn(self, nu, z, **kwargs): hks = self._hankel_kind_sign return jn(nu, z).rewrite(yn) + hks*I*yn(nu, z) def _eval_rewrite_as_jn(self, nu, z, **kwargs): hks = self._hankel_kind_sign return jn(nu, z) + hks*I*yn(nu, z).rewrite(jn) def _eval_expand_func(self, **hints): if self.order.is_Integer: return self._expand(**hints) else: nu = self.order z = self.argument hks = self._hankel_kind_sign return jn(nu, z) + hks*I*yn(nu, z) def _expand(self, **hints): n = self.order z = self.argument hks = self._hankel_kind_sign # fully expanded version # return ((fn(n, z) * sin(z) + # (-1)**(n + 1) * fn(-n - 1, z) * cos(z)) + # jn # (hks * I * (-1)**(n + 1) * # (fn(-n - 1, z) * hk * I * sin(z) + # (-1)**(-n) * fn(n, z) * I * cos(z))) # +-I*yn # ) return (_jn(n, z) + hks*I*_yn(n, z)).expand() class hn1(SphericalHankelBase): r""" Spherical Hankel function of the first kind. This function is defined as .. math:: h_\nu^(1)(z) = j_\nu(z) + i y_\nu(z), where $j_\nu(z)$ and $y_\nu(z)$ are the spherical Bessel function of the first and second kinds. For integral orders $n$, $h_n^(1)$ is calculated using the formula: .. math:: h_n^(1)(z) = j_{n}(z) + i (-1)^{n+1} j_{-n-1}(z) Examples ======== >>> from sympy import Symbol, hn1, hankel1, expand_func, yn, jn >>> z = Symbol("z") >>> nu = Symbol("nu", integer=True) >>> print(expand_func(hn1(nu, z))) jn(nu, z) + I*yn(nu, z) >>> print(expand_func(hn1(0, z))) sin(z)/z - I*cos(z)/z >>> print(expand_func(hn1(1, z))) -I*sin(z)/z - cos(z)/z + sin(z)/z**2 - I*cos(z)/z**2 >>> hn1(nu, z).rewrite(jn) (-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z) >>> hn1(nu, z).rewrite(yn) (-1)**nu*yn(-nu - 1, z) + I*yn(nu, z) >>> hn1(nu, z).rewrite(hankel1) sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel1(nu, z)/2 See Also ======== hn2, jn, yn, hankel1, hankel2 References ========== .. [1] http://dlmf.nist.gov/10.47 """ _hankel_kind_sign = S.One @assume_integer_order def _eval_rewrite_as_hankel1(self, nu, z, **kwargs): return sqrt(pi/(2*z))*hankel1(nu, z) class hn2(SphericalHankelBase): r""" Spherical Hankel function of the second kind. This function is defined as .. math:: h_\nu^(2)(z) = j_\nu(z) - i y_\nu(z), where $j_\nu(z)$ and $y_\nu(z)$ are the spherical Bessel function of the first and second kinds. For integral orders $n$, $h_n^(2)$ is calculated using the formula: .. math:: h_n^(2)(z) = j_{n} - i (-1)^{n+1} j_{-n-1}(z) Examples ======== >>> from sympy import Symbol, hn2, hankel2, expand_func, jn, yn >>> z = Symbol("z") >>> nu = Symbol("nu", integer=True) >>> print(expand_func(hn2(nu, z))) jn(nu, z) - I*yn(nu, z) >>> print(expand_func(hn2(0, z))) sin(z)/z + I*cos(z)/z >>> print(expand_func(hn2(1, z))) I*sin(z)/z - cos(z)/z + sin(z)/z**2 + I*cos(z)/z**2 >>> hn2(nu, z).rewrite(hankel2) sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel2(nu, z)/2 >>> hn2(nu, z).rewrite(jn) -(-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z) >>> hn2(nu, z).rewrite(yn) (-1)**nu*yn(-nu - 1, z) - I*yn(nu, z) See Also ======== hn1, jn, yn, hankel1, hankel2 References ========== .. [1] http://dlmf.nist.gov/10.47 """ _hankel_kind_sign = -S.One @assume_integer_order def _eval_rewrite_as_hankel2(self, nu, z, **kwargs): return sqrt(pi/(2*z))*hankel2(nu, z) def jn_zeros(n, k, method="sympy", dps=15): """ Zeros of the spherical Bessel function of the first kind. This returns an array of zeros of jn up to the k-th zero. * method = "sympy": uses `mpmath.besseljzero <http://mpmath.org/doc/current/functions/bessel.html#mpmath.besseljzero>`_ * method = "scipy": uses the `SciPy's sph_jn <http://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jn_zeros.html>`_ and `newton <http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.newton.html>`_ to find all roots, which is faster than computing the zeros using a general numerical solver, but it requires SciPy and only works with low precision floating point numbers. [The function used with method="sympy" is a recent addition to mpmath, before that a general solver was used.] Examples ======== >>> from sympy import jn_zeros >>> jn_zeros(2, 4, dps=5) [5.7635, 9.095, 12.323, 15.515] See Also ======== jn, yn, besselj, besselk, bessely """ from math import pi if method == "sympy": from mpmath import besseljzero from mpmath.libmp.libmpf import dps_to_prec from sympy import Expr prec = dps_to_prec(dps) return [Expr._from_mpmath(besseljzero(S(n + 0.5)._to_mpmath(prec), int(l)), prec) for l in range(1, k + 1)] elif method == "scipy": from scipy.optimize import newton try: from scipy.special import spherical_jn f = lambda x: spherical_jn(n, x) except ImportError: from scipy.special import sph_jn f = lambda x: sph_jn(n, x)[0][-1] else: raise NotImplementedError("Unknown method.") def solver(f, x): if method == "scipy": root = newton(f, x) else: raise NotImplementedError("Unknown method.") return root # we need to approximate the position of the first root: root = n + pi # determine the first root exactly: root = solver(f, root) roots = [root] for i in range(k - 1): # estimate the position of the next root using the last root + pi: root = solver(f, root + pi) roots.append(root) return roots class AiryBase(Function): """ Abstract base class for Airy functions. This class is meant to reduce code duplication. """ def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def _eval_is_extended_real(self): return self.args[0].is_extended_real def as_real_imag(self, deep=True, **hints): z = self.args[0] zc = z.conjugate() f = self.func u = (f(z)+f(zc))/2 v = I*(f(zc)-f(z))/2 return u, v def _eval_expand_complex(self, deep=True, **hints): re_part, im_part = self.as_real_imag(deep=deep, **hints) return re_part + im_part*S.ImaginaryUnit class airyai(AiryBase): r""" The Airy function $\operatorname{Ai}$ of the first kind. The Airy function $\operatorname{Ai}(z)$ is defined to be the function satisfying Airy's differential equation .. math:: \frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0. Equivalently, for real $z$ .. math:: \operatorname{Ai}(z) := \frac{1}{\pi} \int_0^\infty \cos\left(\frac{t^3}{3} + z t\right) \mathrm{d}t. Examples ======== Create an Airy function object: >>> from sympy import airyai >>> from sympy.abc import z >>> airyai(z) airyai(z) Several special values are known: >>> airyai(0) 3**(1/3)/(3*gamma(2/3)) >>> from sympy import oo >>> airyai(oo) 0 >>> airyai(-oo) 0 The Airy function obeys the mirror symmetry: >>> from sympy import conjugate >>> conjugate(airyai(z)) airyai(conjugate(z)) Differentiation with respect to z is supported: >>> from sympy import diff >>> diff(airyai(z), z) airyaiprime(z) >>> diff(airyai(z), z, 2) z*airyai(z) Series expansion is also supported: >>> from sympy import series >>> series(airyai(z), z, 0, 3) 3**(5/6)*gamma(1/3)/(6*pi) - 3**(1/6)*z*gamma(2/3)/(2*pi) + O(z**3) We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane: >>> airyai(-2).evalf(50) 0.22740742820168557599192443603787379946077222541710 Rewrite Ai(z) in terms of hypergeometric functions: >>> from sympy import hyper >>> airyai(z).rewrite(hyper) -3**(2/3)*z*hyper((), (4/3,), z**3/9)/(3*gamma(1/3)) + 3**(1/3)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3)) See Also ======== airybi: Airy function of the second kind. airyaiprime: Derivative of the Airy function of the first kind. airybiprime: Derivative of the Airy function of the second kind. References ========== .. [1] https://en.wikipedia.org/wiki/Airy_function .. [2] http://dlmf.nist.gov/9 .. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions .. [4] http://mathworld.wolfram.com/AiryFunctions.html """ nargs = 1 unbranched = True @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Zero elif arg is S.NegativeInfinity: return S.Zero elif arg.is_zero: return S.One / (3**Rational(2, 3) * gamma(Rational(2, 3))) if arg.is_zero: return S.One / (3**Rational(2, 3) * gamma(Rational(2, 3))) def fdiff(self, argindex=1): if argindex == 1: return airyaiprime(self.args[0]) else: raise ArgumentIndexError(self, argindex) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0: return S.Zero else: x = sympify(x) if len(previous_terms) > 1: p = previous_terms[-1] return ((3**Rational(1, 3)*x)**(-n)*(3**Rational(1, 3)*x)**(n + 1)*sin(pi*(n*Rational(2, 3) + Rational(4, 3)))*factorial(n) * gamma(n/3 + Rational(2, 3))/(sin(pi*(n*Rational(2, 3) + Rational(2, 3)))*factorial(n + 1)*gamma(n/3 + Rational(1, 3))) * p) else: return (S.One/(3**Rational(2, 3)*pi) * gamma((n+S.One)/S(3)) * sin(2*pi*(n+S.One)/S(3)) / factorial(n) * (root(3, 3)*x)**n) def _eval_rewrite_as_besselj(self, z, **kwargs): ot = Rational(1, 3) tt = Rational(2, 3) a = Pow(-z, Rational(3, 2)) if re(z).is_negative: return ot*sqrt(-z) * (besselj(-ot, tt*a) + besselj(ot, tt*a)) def _eval_rewrite_as_besseli(self, z, **kwargs): ot = Rational(1, 3) tt = Rational(2, 3) a = Pow(z, Rational(3, 2)) if re(z).is_positive: return ot*sqrt(z) * (besseli(-ot, tt*a) - besseli(ot, tt*a)) else: return ot*(Pow(a, ot)*besseli(-ot, tt*a) - z*Pow(a, -ot)*besseli(ot, tt*a)) def _eval_rewrite_as_hyper(self, z, **kwargs): pf1 = S.One / (3**Rational(2, 3)*gamma(Rational(2, 3))) pf2 = z / (root(3, 3)*gamma(Rational(1, 3))) return pf1 * hyper([], [Rational(2, 3)], z**3/9) - pf2 * hyper([], [Rational(4, 3)], z**3/9) def _eval_expand_func(self, **hints): arg = self.args[0] symbs = arg.free_symbols if len(symbs) == 1: z = symbs.pop() c = Wild("c", exclude=[z]) d = Wild("d", exclude=[z]) m = Wild("m", exclude=[z]) n = Wild("n", exclude=[z]) M = arg.match(c*(d*z**n)**m) if M is not None: m = M[m] # The transformation is given by 03.05.16.0001.01 # http://functions.wolfram.com/Bessel-TypeFunctions/AiryAi/16/01/01/0001/ if (3*m).is_integer: c = M[c] d = M[d] n = M[n] pf = (d * z**n)**m / (d**m * z**(m*n)) newarg = c * d**m * z**(m*n) return S.Half * ((pf + S.One)*airyai(newarg) - (pf - S.One)/sqrt(3)*airybi(newarg)) class airybi(AiryBase): r""" The Airy function $\operatorname{Bi}$ of the second kind. The Airy function $\operatorname{Bi}(z)$ is defined to be the function satisfying Airy's differential equation .. math:: \frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0. Equivalently, for real $z$ .. math:: \operatorname{Bi}(z) := \frac{1}{\pi} \int_0^\infty \exp\left(-\frac{t^3}{3} + z t\right) + \sin\left(\frac{t^3}{3} + z t\right) \mathrm{d}t. Examples ======== Create an Airy function object: >>> from sympy import airybi >>> from sympy.abc import z >>> airybi(z) airybi(z) Several special values are known: >>> airybi(0) 3**(5/6)/(3*gamma(2/3)) >>> from sympy import oo >>> airybi(oo) oo >>> airybi(-oo) 0 The Airy function obeys the mirror symmetry: >>> from sympy import conjugate >>> conjugate(airybi(z)) airybi(conjugate(z)) Differentiation with respect to z is supported: >>> from sympy import diff >>> diff(airybi(z), z) airybiprime(z) >>> diff(airybi(z), z, 2) z*airybi(z) Series expansion is also supported: >>> from sympy import series >>> series(airybi(z), z, 0, 3) 3**(1/3)*gamma(1/3)/(2*pi) + 3**(2/3)*z*gamma(2/3)/(2*pi) + O(z**3) We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane: >>> airybi(-2).evalf(50) -0.41230258795639848808323405461146104203453483447240 Rewrite Bi(z) in terms of hypergeometric functions: >>> from sympy import hyper >>> airybi(z).rewrite(hyper) 3**(1/6)*z*hyper((), (4/3,), z**3/9)/gamma(1/3) + 3**(5/6)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3)) See Also ======== airyai: Airy function of the first kind. airyaiprime: Derivative of the Airy function of the first kind. airybiprime: Derivative of the Airy function of the second kind. References ========== .. [1] https://en.wikipedia.org/wiki/Airy_function .. [2] http://dlmf.nist.gov/9 .. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions .. [4] http://mathworld.wolfram.com/AiryFunctions.html """ nargs = 1 unbranched = True @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.Zero elif arg.is_zero: return S.One / (3**Rational(1, 6) * gamma(Rational(2, 3))) if arg.is_zero: return S.One / (3**Rational(1, 6) * gamma(Rational(2, 3))) def fdiff(self, argindex=1): if argindex == 1: return airybiprime(self.args[0]) else: raise ArgumentIndexError(self, argindex) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0: return S.Zero else: x = sympify(x) if len(previous_terms) > 1: p = previous_terms[-1] return (3**Rational(1, 3)*x * Abs(sin(2*pi*(n + S.One)/S(3))) * factorial((n - S.One)/S(3)) / ((n + S.One) * Abs(cos(2*pi*(n + S.Half)/S(3))) * factorial((n - 2)/S(3))) * p) else: return (S.One/(root(3, 6)*pi) * gamma((n + S.One)/S(3)) * Abs(sin(2*pi*(n + S.One)/S(3))) / factorial(n) * (root(3, 3)*x)**n) def _eval_rewrite_as_besselj(self, z, **kwargs): ot = Rational(1, 3) tt = Rational(2, 3) a = Pow(-z, Rational(3, 2)) if re(z).is_negative: return sqrt(-z/3) * (besselj(-ot, tt*a) - besselj(ot, tt*a)) def _eval_rewrite_as_besseli(self, z, **kwargs): ot = Rational(1, 3) tt = Rational(2, 3) a = Pow(z, Rational(3, 2)) if re(z).is_positive: return sqrt(z)/sqrt(3) * (besseli(-ot, tt*a) + besseli(ot, tt*a)) else: b = Pow(a, ot) c = Pow(a, -ot) return sqrt(ot)*(b*besseli(-ot, tt*a) + z*c*besseli(ot, tt*a)) def _eval_rewrite_as_hyper(self, z, **kwargs): pf1 = S.One / (root(3, 6)*gamma(Rational(2, 3))) pf2 = z*root(3, 6) / gamma(Rational(1, 3)) return pf1 * hyper([], [Rational(2, 3)], z**3/9) + pf2 * hyper([], [Rational(4, 3)], z**3/9) def _eval_expand_func(self, **hints): arg = self.args[0] symbs = arg.free_symbols if len(symbs) == 1: z = symbs.pop() c = Wild("c", exclude=[z]) d = Wild("d", exclude=[z]) m = Wild("m", exclude=[z]) n = Wild("n", exclude=[z]) M = arg.match(c*(d*z**n)**m) if M is not None: m = M[m] # The transformation is given by 03.06.16.0001.01 # http://functions.wolfram.com/Bessel-TypeFunctions/AiryBi/16/01/01/0001/ if (3*m).is_integer: c = M[c] d = M[d] n = M[n] pf = (d * z**n)**m / (d**m * z**(m*n)) newarg = c * d**m * z**(m*n) return S.Half * (sqrt(3)*(S.One - pf)*airyai(newarg) + (S.One + pf)*airybi(newarg)) class airyaiprime(AiryBase): r""" The derivative $\operatorname{Ai}^\prime$ of the Airy function of the first kind. The Airy function $\operatorname{Ai}^\prime(z)$ is defined to be the function .. math:: \operatorname{Ai}^\prime(z) := \frac{\mathrm{d} \operatorname{Ai}(z)}{\mathrm{d} z}. Examples ======== Create an Airy function object: >>> from sympy import airyaiprime >>> from sympy.abc import z >>> airyaiprime(z) airyaiprime(z) Several special values are known: >>> airyaiprime(0) -3**(2/3)/(3*gamma(1/3)) >>> from sympy import oo >>> airyaiprime(oo) 0 The Airy function obeys the mirror symmetry: >>> from sympy import conjugate >>> conjugate(airyaiprime(z)) airyaiprime(conjugate(z)) Differentiation with respect to z is supported: >>> from sympy import diff >>> diff(airyaiprime(z), z) z*airyai(z) >>> diff(airyaiprime(z), z, 2) z*airyaiprime(z) + airyai(z) Series expansion is also supported: >>> from sympy import series >>> series(airyaiprime(z), z, 0, 3) -3**(2/3)/(3*gamma(1/3)) + 3**(1/3)*z**2/(6*gamma(2/3)) + O(z**3) We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane: >>> airyaiprime(-2).evalf(50) 0.61825902074169104140626429133247528291577794512415 Rewrite Ai'(z) in terms of hypergeometric functions: >>> from sympy import hyper >>> airyaiprime(z).rewrite(hyper) 3**(1/3)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) - 3**(2/3)*hyper((), (1/3,), z**3/9)/(3*gamma(1/3)) See Also ======== airyai: Airy function of the first kind. airybi: Airy function of the second kind. airybiprime: Derivative of the Airy function of the second kind. References ========== .. [1] https://en.wikipedia.org/wiki/Airy_function .. [2] http://dlmf.nist.gov/9 .. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions .. [4] http://mathworld.wolfram.com/AiryFunctions.html """ nargs = 1 unbranched = True @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Zero if arg.is_zero: return S.NegativeOne / (3**Rational(1, 3) * gamma(Rational(1, 3))) def fdiff(self, argindex=1): if argindex == 1: return self.args[0]*airyai(self.args[0]) else: raise ArgumentIndexError(self, argindex) def _eval_evalf(self, prec): from mpmath import mp, workprec from sympy import Expr z = self.args[0]._to_mpmath(prec) with workprec(prec): res = mp.airyai(z, derivative=1) return Expr._from_mpmath(res, prec) def _eval_rewrite_as_besselj(self, z, **kwargs): tt = Rational(2, 3) a = Pow(-z, Rational(3, 2)) if re(z).is_negative: return z/3 * (besselj(-tt, tt*a) - besselj(tt, tt*a)) def _eval_rewrite_as_besseli(self, z, **kwargs): ot = Rational(1, 3) tt = Rational(2, 3) a = tt * Pow(z, Rational(3, 2)) if re(z).is_positive: return z/3 * (besseli(tt, a) - besseli(-tt, a)) else: a = Pow(z, Rational(3, 2)) b = Pow(a, tt) c = Pow(a, -tt) return ot * (z**2*c*besseli(tt, tt*a) - b*besseli(-ot, tt*a)) def _eval_rewrite_as_hyper(self, z, **kwargs): pf1 = z**2 / (2*3**Rational(2, 3)*gamma(Rational(2, 3))) pf2 = 1 / (root(3, 3)*gamma(Rational(1, 3))) return pf1 * hyper([], [Rational(5, 3)], z**3/9) - pf2 * hyper([], [Rational(1, 3)], z**3/9) def _eval_expand_func(self, **hints): arg = self.args[0] symbs = arg.free_symbols if len(symbs) == 1: z = symbs.pop() c = Wild("c", exclude=[z]) d = Wild("d", exclude=[z]) m = Wild("m", exclude=[z]) n = Wild("n", exclude=[z]) M = arg.match(c*(d*z**n)**m) if M is not None: m = M[m] # The transformation is in principle # given by 03.07.16.0001.01 but note # that there is an error in this formula. # http://functions.wolfram.com/Bessel-TypeFunctions/AiryAiPrime/16/01/01/0001/ if (3*m).is_integer: c = M[c] d = M[d] n = M[n] pf = (d**m * z**(n*m)) / (d * z**n)**m newarg = c * d**m * z**(n*m) return S.Half * ((pf + S.One)*airyaiprime(newarg) + (pf - S.One)/sqrt(3)*airybiprime(newarg)) class airybiprime(AiryBase): r""" The derivative $\operatorname{Bi}^\prime$ of the Airy function of the first kind. The Airy function $\operatorname{Bi}^\prime(z)$ is defined to be the function .. math:: \operatorname{Bi}^\prime(z) := \frac{\mathrm{d} \operatorname{Bi}(z)}{\mathrm{d} z}. Examples ======== Create an Airy function object: >>> from sympy import airybiprime >>> from sympy.abc import z >>> airybiprime(z) airybiprime(z) Several special values are known: >>> airybiprime(0) 3**(1/6)/gamma(1/3) >>> from sympy import oo >>> airybiprime(oo) oo >>> airybiprime(-oo) 0 The Airy function obeys the mirror symmetry: >>> from sympy import conjugate >>> conjugate(airybiprime(z)) airybiprime(conjugate(z)) Differentiation with respect to z is supported: >>> from sympy import diff >>> diff(airybiprime(z), z) z*airybi(z) >>> diff(airybiprime(z), z, 2) z*airybiprime(z) + airybi(z) Series expansion is also supported: >>> from sympy import series >>> series(airybiprime(z), z, 0, 3) 3**(1/6)/gamma(1/3) + 3**(5/6)*z**2/(6*gamma(2/3)) + O(z**3) We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane: >>> airybiprime(-2).evalf(50) 0.27879516692116952268509756941098324140300059345163 Rewrite Bi'(z) in terms of hypergeometric functions: >>> from sympy import hyper >>> airybiprime(z).rewrite(hyper) 3**(5/6)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) + 3**(1/6)*hyper((), (1/3,), z**3/9)/gamma(1/3) See Also ======== airyai: Airy function of the first kind. airybi: Airy function of the second kind. airyaiprime: Derivative of the Airy function of the first kind. References ========== .. [1] https://en.wikipedia.org/wiki/Airy_function .. [2] http://dlmf.nist.gov/9 .. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions .. [4] http://mathworld.wolfram.com/AiryFunctions.html """ nargs = 1 unbranched = True @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.Zero elif arg.is_zero: return 3**Rational(1, 6) / gamma(Rational(1, 3)) if arg.is_zero: return 3**Rational(1, 6) / gamma(Rational(1, 3)) def fdiff(self, argindex=1): if argindex == 1: return self.args[0]*airybi(self.args[0]) else: raise ArgumentIndexError(self, argindex) def _eval_evalf(self, prec): from mpmath import mp, workprec from sympy import Expr z = self.args[0]._to_mpmath(prec) with workprec(prec): res = mp.airybi(z, derivative=1) return Expr._from_mpmath(res, prec) def _eval_rewrite_as_besselj(self, z, **kwargs): tt = Rational(2, 3) a = tt * Pow(-z, Rational(3, 2)) if re(z).is_negative: return -z/sqrt(3) * (besselj(-tt, a) + besselj(tt, a)) def _eval_rewrite_as_besseli(self, z, **kwargs): ot = Rational(1, 3) tt = Rational(2, 3) a = tt * Pow(z, Rational(3, 2)) if re(z).is_positive: return z/sqrt(3) * (besseli(-tt, a) + besseli(tt, a)) else: a = Pow(z, Rational(3, 2)) b = Pow(a, tt) c = Pow(a, -tt) return sqrt(ot) * (b*besseli(-tt, tt*a) + z**2*c*besseli(tt, tt*a)) def _eval_rewrite_as_hyper(self, z, **kwargs): pf1 = z**2 / (2*root(3, 6)*gamma(Rational(2, 3))) pf2 = root(3, 6) / gamma(Rational(1, 3)) return pf1 * hyper([], [Rational(5, 3)], z**3/9) + pf2 * hyper([], [Rational(1, 3)], z**3/9) def _eval_expand_func(self, **hints): arg = self.args[0] symbs = arg.free_symbols if len(symbs) == 1: z = symbs.pop() c = Wild("c", exclude=[z]) d = Wild("d", exclude=[z]) m = Wild("m", exclude=[z]) n = Wild("n", exclude=[z]) M = arg.match(c*(d*z**n)**m) if M is not None: m = M[m] # The transformation is in principle # given by 03.08.16.0001.01 but note # that there is an error in this formula. # http://functions.wolfram.com/Bessel-TypeFunctions/AiryBiPrime/16/01/01/0001/ if (3*m).is_integer: c = M[c] d = M[d] n = M[n] pf = (d**m * z**(n*m)) / (d * z**n)**m newarg = c * d**m * z**(n*m) return S.Half * (sqrt(3)*(pf - S.One)*airyaiprime(newarg) + (pf + S.One)*airybiprime(newarg)) class marcumq(Function): r""" The Marcum Q-function It is defined by the meromorphic continuation of .. math:: Q_m(a, b) = a^{- m + 1} \int_{b}^{\infty} x^{m} e^{- \frac{a^{2}}{2} - \frac{x^{2}}{2}} I_{m - 1}\left(a x\right)\, dx Examples ======== >>> from sympy import marcumq >>> from sympy.abc import m, a, b, x >>> marcumq(m, a, b) marcumq(m, a, b) Special values: >>> marcumq(m, 0, b) uppergamma(m, b**2/2)/gamma(m) >>> marcumq(0, 0, 0) 0 >>> marcumq(0, a, 0) 1 - exp(-a**2/2) >>> marcumq(1, a, a) 1/2 + exp(-a**2)*besseli(0, a**2)/2 >>> marcumq(2, a, a) 1/2 + exp(-a**2)*besseli(0, a**2)/2 + exp(-a**2)*besseli(1, a**2) Differentiation with respect to a and b is supported: >>> from sympy import diff >>> diff(marcumq(m, a, b), a) a*(-marcumq(m, a, b) + marcumq(m + 1, a, b)) >>> diff(marcumq(m, a, b), b) -a**(1 - m)*b**m*exp(-a**2/2 - b**2/2)*besseli(m - 1, a*b) References ========== .. [1] https://en.wikipedia.org/wiki/Marcum_Q-function .. [2] http://mathworld.wolfram.com/MarcumQ-Function.html """ @classmethod def eval(cls, m, a, b): from sympy import exp, uppergamma if a is S.Zero: if m is S.Zero and b is S.Zero: return S.Zero return uppergamma(m, b**2 * S.Half) / gamma(m) if m is S.Zero and b is S.Zero: return 1 - 1 / exp(a**2 * S.Half) if a == b: if m is S.One: return (1 + exp(-a**2) * besseli(0, a**2))*S.Half if m == 2: return S.Half + S.Half * exp(-a**2) * besseli(0, a**2) + exp(-a**2) * besseli(1, a**2) if a.is_zero: if m.is_zero and b.is_zero: return S.Zero return uppergamma(m, b**2*S.Half) / gamma(m) if m.is_zero and b.is_zero: return 1 - 1 / exp(a**2*S.Half) def fdiff(self, argindex=2): from sympy import exp m, a, b = self.args if argindex == 2: return a * (-marcumq(m, a, b) + marcumq(1+m, a, b)) elif argindex == 3: return (-b**m / a**(m-1)) * exp(-(a**2 + b**2)/2) * besseli(m-1, a*b) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_Integral(self, m, a, b, **kwargs): from sympy import Integral, exp, Dummy, oo x = kwargs.get('x', Dummy('x')) return a ** (1 - m) * \ Integral(x**m * exp(-(x**2 + a**2)/2) * besseli(m-1, a*x), [x, b, oo]) def _eval_rewrite_as_Sum(self, m, a, b, **kwargs): from sympy import Sum, exp, Dummy, oo k = kwargs.get('k', Dummy('k')) return exp(-(a**2 + b**2) / 2) * Sum((a/b)**k * besseli(k, a*b), [k, 1-m, oo]) def _eval_rewrite_as_besseli(self, m, a, b, **kwargs): if a == b: from sympy import exp if m == 1: return (1 + exp(-a**2) * besseli(0, a**2)) / 2 if m.is_Integer and m >= 2: s = sum([besseli(i, a**2) for i in range(1, m)]) return S.Half + exp(-a**2) * besseli(0, a**2) / 2 + exp(-a**2) * s def _eval_is_zero(self): if all(arg.is_zero for arg in self.args): return True
dcead7f945ce9abc09376cb0300d15b12a8c04d8724f185d4ac29429c734d829
""" Elliptic integrals. """ from __future__ import print_function, division from sympy.core import S, pi, I, Rational from sympy.core.function import Function, ArgumentIndexError from sympy.functions.elementary.complexes import sign from sympy.functions.elementary.hyperbolic import atanh from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import sin, tan from sympy.functions.special.gamma_functions import gamma from sympy.functions.special.hyper import hyper, meijerg class elliptic_k(Function): r""" The complete elliptic integral of the first kind, defined by .. math:: K(m) = F\left(\tfrac{\pi}{2}\middle| m\right) where `F\left(z\middle| m\right)` is the Legendre incomplete elliptic integral of the first kind. The function `K(m)` is a single-valued function on the complex plane with branch cut along the interval `(1, \infty)`. Note that our notation defines the incomplete elliptic integral in terms of the parameter `m` instead of the elliptic modulus (eccentricity) `k`. In this case, the parameter `m` is defined as `m=k^2`. Examples ======== >>> from sympy import elliptic_k, I, pi >>> from sympy.abc import m >>> elliptic_k(0) pi/2 >>> elliptic_k(1.0 + I) 1.50923695405127 + 0.625146415202697*I >>> elliptic_k(m).series(n=3) pi/2 + pi*m/8 + 9*pi*m**2/128 + O(m**3) See Also ======== elliptic_f References ========== .. [1] https://en.wikipedia.org/wiki/Elliptic_integrals .. [2] http://functions.wolfram.com/EllipticIntegrals/EllipticK """ @classmethod def eval(cls, m): if m.is_zero: return pi/2 elif m is S.Half: return 8*pi**Rational(3, 2)/gamma(Rational(-1, 4))**2 elif m is S.One: return S.ComplexInfinity elif m is S.NegativeOne: return gamma(Rational(1, 4))**2/(4*sqrt(2*pi)) elif m in (S.Infinity, S.NegativeInfinity, I*S.Infinity, I*S.NegativeInfinity, S.ComplexInfinity): return S.Zero if m.is_zero: return pi*S.Half def fdiff(self, argindex=1): m = self.args[0] return (elliptic_e(m) - (1 - m)*elliptic_k(m))/(2*m*(1 - m)) def _eval_conjugate(self): m = self.args[0] if (m.is_real and (m - 1).is_positive) is False: return self.func(m.conjugate()) def _eval_nseries(self, x, n, logx): from sympy.simplify import hyperexpand return hyperexpand(self.rewrite(hyper)._eval_nseries(x, n=n, logx=logx)) def _eval_rewrite_as_hyper(self, m, **kwargs): return pi*S.Half*hyper((S.Half, S.Half), (S.One,), m) def _eval_rewrite_as_meijerg(self, m, **kwargs): return meijerg(((S.Half, S.Half), []), ((S.Zero,), (S.Zero,)), -m)/2 def _eval_is_zero(self): m = self.args[0] if m.is_infinite: return True def _eval_rewrite_as_Integral(self, *args): from sympy import Integral, Dummy t = Dummy('t') m = self.args[0] return Integral(1/sqrt(1 - m*sin(t)**2), (t, 0, pi/2)) def _sage_(self): import sage.all as sage return sage.elliptic_kc(self.args[0]._sage_()) class elliptic_f(Function): r""" The Legendre incomplete elliptic integral of the first kind, defined by .. math:: F\left(z\middle| m\right) = \int_0^z \frac{dt}{\sqrt{1 - m \sin^2 t}} This function reduces to a complete elliptic integral of the first kind, `K(m)`, when `z = \pi/2`. Note that our notation defines the incomplete elliptic integral in terms of the parameter `m` instead of the elliptic modulus (eccentricity) `k`. In this case, the parameter `m` is defined as `m=k^2`. Examples ======== >>> from sympy import elliptic_f, I, O >>> from sympy.abc import z, m >>> elliptic_f(z, m).series(z) z + z**5*(3*m**2/40 - m/30) + m*z**3/6 + O(z**6) >>> elliptic_f(3.0 + I/2, 1.0 + I) 2.909449841483 + 1.74720545502474*I See Also ======== elliptic_k References ========== .. [1] https://en.wikipedia.org/wiki/Elliptic_integrals .. [2] http://functions.wolfram.com/EllipticIntegrals/EllipticF """ @classmethod def eval(cls, z, m): if z.is_zero: return S.Zero if m.is_zero: return z k = 2*z/pi if k.is_integer: return k*elliptic_k(m) elif m in (S.Infinity, S.NegativeInfinity): return S.Zero elif z.could_extract_minus_sign(): return -elliptic_f(-z, m) def fdiff(self, argindex=1): z, m = self.args fm = sqrt(1 - m*sin(z)**2) if argindex == 1: return 1/fm elif argindex == 2: return (elliptic_e(z, m)/(2*m*(1 - m)) - elliptic_f(z, m)/(2*m) - sin(2*z)/(4*(1 - m)*fm)) raise ArgumentIndexError(self, argindex) def _eval_conjugate(self): z, m = self.args if (m.is_real and (m - 1).is_positive) is False: return self.func(z.conjugate(), m.conjugate()) def _eval_rewrite_as_Integral(self, *args): from sympy import Integral, Dummy t = Dummy('t') z, m = self.args[0], self.args[1] return Integral(1/(sqrt(1 - m*sin(t)**2)), (t, 0, z)) def _eval_is_zero(self): z, m = self.args if z.is_zero: return True if m.is_extended_real and m.is_infinite: return True class elliptic_e(Function): r""" Called with two arguments `z` and `m`, evaluates the incomplete elliptic integral of the second kind, defined by .. math:: E\left(z\middle| m\right) = \int_0^z \sqrt{1 - m \sin^2 t} dt Called with a single argument `m`, evaluates the Legendre complete elliptic integral of the second kind .. math:: E(m) = E\left(\tfrac{\pi}{2}\middle| m\right) The function `E(m)` is a single-valued function on the complex plane with branch cut along the interval `(1, \infty)`. Note that our notation defines the incomplete elliptic integral in terms of the parameter `m` instead of the elliptic modulus (eccentricity) `k`. In this case, the parameter `m` is defined as `m=k^2`. Examples ======== >>> from sympy import elliptic_e, I, pi, O >>> from sympy.abc import z, m >>> elliptic_e(z, m).series(z) z + z**5*(-m**2/40 + m/30) - m*z**3/6 + O(z**6) >>> elliptic_e(m).series(n=4) pi/2 - pi*m/8 - 3*pi*m**2/128 - 5*pi*m**3/512 + O(m**4) >>> elliptic_e(1 + I, 2 - I/2).n() 1.55203744279187 + 0.290764986058437*I >>> elliptic_e(0) pi/2 >>> elliptic_e(2.0 - I) 0.991052601328069 + 0.81879421395609*I References ========== .. [1] https://en.wikipedia.org/wiki/Elliptic_integrals .. [2] http://functions.wolfram.com/EllipticIntegrals/EllipticE2 .. [3] http://functions.wolfram.com/EllipticIntegrals/EllipticE """ @classmethod def eval(cls, m, z=None): if z is not None: z, m = m, z k = 2*z/pi if m.is_zero: return z if z.is_zero: return S.Zero elif k.is_integer: return k*elliptic_e(m) elif m in (S.Infinity, S.NegativeInfinity): return S.ComplexInfinity elif z.could_extract_minus_sign(): return -elliptic_e(-z, m) else: if m.is_zero: return pi/2 elif m is S.One: return S.One elif m is S.Infinity: return I*S.Infinity elif m is S.NegativeInfinity: return S.Infinity elif m is S.ComplexInfinity: return S.ComplexInfinity def fdiff(self, argindex=1): if len(self.args) == 2: z, m = self.args if argindex == 1: return sqrt(1 - m*sin(z)**2) elif argindex == 2: return (elliptic_e(z, m) - elliptic_f(z, m))/(2*m) else: m = self.args[0] if argindex == 1: return (elliptic_e(m) - elliptic_k(m))/(2*m) raise ArgumentIndexError(self, argindex) def _eval_conjugate(self): if len(self.args) == 2: z, m = self.args if (m.is_real and (m - 1).is_positive) is False: return self.func(z.conjugate(), m.conjugate()) else: m = self.args[0] if (m.is_real and (m - 1).is_positive) is False: return self.func(m.conjugate()) def _eval_nseries(self, x, n, logx): from sympy.simplify import hyperexpand if len(self.args) == 1: return hyperexpand(self.rewrite(hyper)._eval_nseries(x, n=n, logx=logx)) return super(elliptic_e, self)._eval_nseries(x, n=n, logx=logx) def _eval_rewrite_as_hyper(self, *args, **kwargs): if len(args) == 1: m = args[0] return (pi/2)*hyper((Rational(-1, 2), S.Half), (S.One,), m) def _eval_rewrite_as_meijerg(self, *args, **kwargs): if len(args) == 1: m = args[0] return -meijerg(((S.Half, Rational(3, 2)), []), \ ((S.Zero,), (S.Zero,)), -m)/4 def _eval_rewrite_as_Integral(self, *args): from sympy import Integral, Dummy z, m = (pi/2, self.args[0]) if len(self.args) == 1 else self.args t = Dummy('t') return Integral(sqrt(1 - m*sin(t)**2), (t, 0, z)) class elliptic_pi(Function): r""" Called with three arguments `n`, `z` and `m`, evaluates the Legendre incomplete elliptic integral of the third kind, defined by .. math:: \Pi\left(n; z\middle| m\right) = \int_0^z \frac{dt} {\left(1 - n \sin^2 t\right) \sqrt{1 - m \sin^2 t}} Called with two arguments `n` and `m`, evaluates the complete elliptic integral of the third kind: .. math:: \Pi\left(n\middle| m\right) = \Pi\left(n; \tfrac{\pi}{2}\middle| m\right) Note that our notation defines the incomplete elliptic integral in terms of the parameter `m` instead of the elliptic modulus (eccentricity) `k`. In this case, the parameter `m` is defined as `m=k^2`. Examples ======== >>> from sympy import elliptic_pi, I, pi, O, S >>> from sympy.abc import z, n, m >>> elliptic_pi(n, z, m).series(z, n=4) z + z**3*(m/6 + n/3) + O(z**4) >>> elliptic_pi(0.5 + I, 1.0 - I, 1.2) 2.50232379629182 - 0.760939574180767*I >>> elliptic_pi(0, 0) pi/2 >>> elliptic_pi(1.0 - I/3, 2.0 + I) 3.29136443417283 + 0.32555634906645*I References ========== .. [1] https://en.wikipedia.org/wiki/Elliptic_integrals .. [2] http://functions.wolfram.com/EllipticIntegrals/EllipticPi3 .. [3] http://functions.wolfram.com/EllipticIntegrals/EllipticPi """ @classmethod def eval(cls, n, m, z=None): if z is not None: n, z, m = n, m, z if n.is_zero: return elliptic_f(z, m) elif n is S.One: return (elliptic_f(z, m) + (sqrt(1 - m*sin(z)**2)*tan(z) - elliptic_e(z, m))/(1 - m)) k = 2*z/pi if k.is_integer: return k*elliptic_pi(n, m) elif m.is_zero: return atanh(sqrt(n - 1)*tan(z))/sqrt(n - 1) elif n == m: return (elliptic_f(z, n) - elliptic_pi(1, z, n) + tan(z)/sqrt(1 - n*sin(z)**2)) elif n in (S.Infinity, S.NegativeInfinity): return S.Zero elif m in (S.Infinity, S.NegativeInfinity): return S.Zero elif z.could_extract_minus_sign(): return -elliptic_pi(n, -z, m) if n.is_zero: return elliptic_f(z, m) if m.is_extended_real and m.is_infinite or \ n.is_extended_real and n.is_infinite: return S.Zero else: if n.is_zero: return elliptic_k(m) elif n is S.One: return S.ComplexInfinity elif m.is_zero: return pi/(2*sqrt(1 - n)) elif m == S.One: return S.NegativeInfinity/sign(n - 1) elif n == m: return elliptic_e(n)/(1 - n) elif n in (S.Infinity, S.NegativeInfinity): return S.Zero elif m in (S.Infinity, S.NegativeInfinity): return S.Zero if n.is_zero: return elliptic_k(m) if m.is_extended_real and m.is_infinite or \ n.is_extended_real and n.is_infinite: return S.Zero def _eval_conjugate(self): if len(self.args) == 3: n, z, m = self.args if (n.is_real and (n - 1).is_positive) is False and \ (m.is_real and (m - 1).is_positive) is False: return self.func(n.conjugate(), z.conjugate(), m.conjugate()) else: n, m = self.args return self.func(n.conjugate(), m.conjugate()) def fdiff(self, argindex=1): if len(self.args) == 3: n, z, m = self.args fm, fn = sqrt(1 - m*sin(z)**2), 1 - n*sin(z)**2 if argindex == 1: return (elliptic_e(z, m) + (m - n)*elliptic_f(z, m)/n + (n**2 - m)*elliptic_pi(n, z, m)/n - n*fm*sin(2*z)/(2*fn))/(2*(m - n)*(n - 1)) elif argindex == 2: return 1/(fm*fn) elif argindex == 3: return (elliptic_e(z, m)/(m - 1) + elliptic_pi(n, z, m) - m*sin(2*z)/(2*(m - 1)*fm))/(2*(n - m)) else: n, m = self.args if argindex == 1: return (elliptic_e(m) + (m - n)*elliptic_k(m)/n + (n**2 - m)*elliptic_pi(n, m)/n)/(2*(m - n)*(n - 1)) elif argindex == 2: return (elliptic_e(m)/(m - 1) + elliptic_pi(n, m))/(2*(n - m)) raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_Integral(self, *args): from sympy import Integral, Dummy if len(self.args) == 2: n, m, z = self.args[0], self.args[1], pi/2 else: n, z, m = self.args t = Dummy('t') return Integral(1/((1 - n*sin(t)**2)*sqrt(1 - m*sin(t)**2)), (t, 0, z))
e79cdfe370fdcf7ac6ddad5ebc7f2c23fe9b6aa9a7868d63875894105edc3c76
""" This module contains various functions that are special cases of incomplete gamma functions. It should probably be renamed. """ from __future__ import print_function, division from sympy.core import Add, S, sympify, cacheit, pi, I, Rational from sympy.core.compatibility import range from sympy.core.function import Function, ArgumentIndexError from sympy.core.symbol import Symbol from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.integers import floor from sympy.functions.elementary.miscellaneous import sqrt, root from sympy.functions.elementary.exponential import exp, log from sympy.functions.elementary.complexes import polar_lift from sympy.functions.elementary.hyperbolic import cosh, sinh from sympy.functions.elementary.trigonometric import cos, sin, sinc from sympy.functions.special.hyper import hyper, meijerg # TODO series expansions # TODO see the "Note:" in Ei # Helper function def real_to_real_as_real_imag(self, deep=True, **hints): if self.args[0].is_extended_real: if deep: hints['complex'] = False return (self.expand(deep, **hints), S.Zero) else: return (self, S.Zero) if deep: x, y = self.args[0].expand(deep, **hints).as_real_imag() else: x, y = self.args[0].as_real_imag() re = (self.func(x + I*y) + self.func(x - I*y))/2 im = (self.func(x + I*y) - self.func(x - I*y))/(2*I) return (re, im) ############################################################################### ################################ ERROR FUNCTION ############################### ############################################################################### class erf(Function): r""" The Gauss error function. This function is defined as: .. math :: \mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \mathrm{d}t. Examples ======== >>> from sympy import I, oo, erf >>> from sympy.abc import z Several special values are known: >>> erf(0) 0 >>> erf(oo) 1 >>> erf(-oo) -1 >>> erf(I*oo) oo*I >>> erf(-I*oo) -oo*I In general one can pull out factors of -1 and I from the argument: >>> erf(-z) -erf(z) The error function obeys the mirror symmetry: >>> from sympy import conjugate >>> conjugate(erf(z)) erf(conjugate(z)) Differentiation with respect to z is supported: >>> from sympy import diff >>> diff(erf(z), z) 2*exp(-z**2)/sqrt(pi) We can numerically evaluate the error function to arbitrary precision on the whole complex plane: >>> erf(4).evalf(30) 0.999999984582742099719981147840 >>> erf(-4*I).evalf(30) -1296959.73071763923152794095062*I See Also ======== erfc: Complementary error function. erfi: Imaginary error function. erf2: Two-argument error function. erfinv: Inverse error function. erfcinv: Inverse Complementary error function. erf2inv: Inverse two-argument error function. References ========== .. [1] https://en.wikipedia.org/wiki/Error_function .. [2] http://dlmf.nist.gov/7 .. [3] http://mathworld.wolfram.com/Erf.html .. [4] http://functions.wolfram.com/GammaBetaErf/Erf """ unbranched = True def fdiff(self, argindex=1): if argindex == 1: return 2*exp(-self.args[0]**2)/sqrt(S.Pi) else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return erfinv @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.One elif arg is S.NegativeInfinity: return S.NegativeOne elif arg.is_zero: return S.Zero if isinstance(arg, erfinv): return arg.args[0] if isinstance(arg, erfcinv): return S.One - arg.args[0] if arg.is_zero: return S.Zero # Only happens with unevaluated erf2inv if isinstance(arg, erf2inv) and arg.args[0].is_zero: return arg.args[1] # Try to pull out factors of I t = arg.extract_multiplicatively(S.ImaginaryUnit) if t is S.Infinity or t is S.NegativeInfinity: return arg # Try to pull out factors of -1 if arg.could_extract_minus_sign(): return -cls(-arg) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) k = floor((n - 1)/S(2)) if len(previous_terms) > 2: return -previous_terms[-2] * x**2 * (n - 2)/(n*k) else: return 2*(-1)**k * x**n/(n*factorial(k)*sqrt(S.Pi)) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def _eval_is_real(self): return self.args[0].is_extended_real def _eval_is_finite(self): if self.args[0].is_finite: return True else: return self.args[0].is_extended_real def _eval_is_zero(self): if self.args[0].is_zero: return True def _eval_rewrite_as_uppergamma(self, z, **kwargs): from sympy import uppergamma return sqrt(z**2)/z*(S.One - uppergamma(S.Half, z**2)/sqrt(S.Pi)) def _eval_rewrite_as_fresnels(self, z, **kwargs): arg = (S.One - S.ImaginaryUnit)*z/sqrt(pi) return (S.One + S.ImaginaryUnit)*(fresnelc(arg) - I*fresnels(arg)) def _eval_rewrite_as_fresnelc(self, z, **kwargs): arg = (S.One - S.ImaginaryUnit)*z/sqrt(pi) return (S.One + S.ImaginaryUnit)*(fresnelc(arg) - I*fresnels(arg)) def _eval_rewrite_as_meijerg(self, z, **kwargs): return z/sqrt(pi)*meijerg([S.Half], [], [0], [Rational(-1, 2)], z**2) def _eval_rewrite_as_hyper(self, z, **kwargs): return 2*z/sqrt(pi)*hyper([S.Half], [3*S.Half], -z**2) def _eval_rewrite_as_expint(self, z, **kwargs): return sqrt(z**2)/z - z*expint(S.Half, z**2)/sqrt(S.Pi) def _eval_rewrite_as_tractable(self, z, **kwargs): return S.One - _erfs(z)*exp(-z**2) def _eval_rewrite_as_erfc(self, z, **kwargs): return S.One - erfc(z) def _eval_rewrite_as_erfi(self, z, **kwargs): return -I*erfi(I*z) def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return 2*x/sqrt(pi) else: return self.func(arg) as_real_imag = real_to_real_as_real_imag class erfc(Function): r""" Complementary Error Function. The function is defined as: .. math :: \mathrm{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} \mathrm{d}t Examples ======== >>> from sympy import I, oo, erfc >>> from sympy.abc import z Several special values are known: >>> erfc(0) 1 >>> erfc(oo) 0 >>> erfc(-oo) 2 >>> erfc(I*oo) -oo*I >>> erfc(-I*oo) oo*I The error function obeys the mirror symmetry: >>> from sympy import conjugate >>> conjugate(erfc(z)) erfc(conjugate(z)) Differentiation with respect to z is supported: >>> from sympy import diff >>> diff(erfc(z), z) -2*exp(-z**2)/sqrt(pi) It also follows >>> erfc(-z) 2 - erfc(z) We can numerically evaluate the complementary error function to arbitrary precision on the whole complex plane: >>> erfc(4).evalf(30) 0.0000000154172579002800188521596734869 >>> erfc(4*I).evalf(30) 1.0 - 1296959.73071763923152794095062*I See Also ======== erf: Gaussian error function. erfi: Imaginary error function. erf2: Two-argument error function. erfinv: Inverse error function. erfcinv: Inverse Complementary error function. erf2inv: Inverse two-argument error function. References ========== .. [1] https://en.wikipedia.org/wiki/Error_function .. [2] http://dlmf.nist.gov/7 .. [3] http://mathworld.wolfram.com/Erfc.html .. [4] http://functions.wolfram.com/GammaBetaErf/Erfc """ unbranched = True def fdiff(self, argindex=1): if argindex == 1: return -2*exp(-self.args[0]**2)/sqrt(S.Pi) else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return erfcinv @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Zero elif arg.is_zero: return S.One if isinstance(arg, erfinv): return S.One - arg.args[0] if isinstance(arg, erfcinv): return arg.args[0] if arg.is_zero: return S.One # Try to pull out factors of I t = arg.extract_multiplicatively(S.ImaginaryUnit) if t is S.Infinity or t is S.NegativeInfinity: return -arg # Try to pull out factors of -1 if arg.could_extract_minus_sign(): return S(2) - cls(-arg) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return S.One elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) k = floor((n - 1)/S(2)) if len(previous_terms) > 2: return -previous_terms[-2] * x**2 * (n - 2)/(n*k) else: return -2*(-1)**k * x**n/(n*factorial(k)*sqrt(S.Pi)) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def _eval_is_real(self): return self.args[0].is_extended_real def _eval_rewrite_as_tractable(self, z, **kwargs): return self.rewrite(erf).rewrite("tractable", deep=True) def _eval_rewrite_as_erf(self, z, **kwargs): return S.One - erf(z) def _eval_rewrite_as_erfi(self, z, **kwargs): return S.One + I*erfi(I*z) def _eval_rewrite_as_fresnels(self, z, **kwargs): arg = (S.One - S.ImaginaryUnit)*z/sqrt(pi) return S.One - (S.One + S.ImaginaryUnit)*(fresnelc(arg) - I*fresnels(arg)) def _eval_rewrite_as_fresnelc(self, z, **kwargs): arg = (S.One-S.ImaginaryUnit)*z/sqrt(pi) return S.One - (S.One + S.ImaginaryUnit)*(fresnelc(arg) - I*fresnels(arg)) def _eval_rewrite_as_meijerg(self, z, **kwargs): return S.One - z/sqrt(pi)*meijerg([S.Half], [], [0], [Rational(-1, 2)], z**2) def _eval_rewrite_as_hyper(self, z, **kwargs): return S.One - 2*z/sqrt(pi)*hyper([S.Half], [3*S.Half], -z**2) def _eval_rewrite_as_uppergamma(self, z, **kwargs): from sympy import uppergamma return S.One - sqrt(z**2)/z*(S.One - uppergamma(S.Half, z**2)/sqrt(S.Pi)) def _eval_rewrite_as_expint(self, z, **kwargs): return S.One - sqrt(z**2)/z + z*expint(S.Half, z**2)/sqrt(S.Pi) def _eval_expand_func(self, **hints): return self.rewrite(erf) def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return S.One else: return self.func(arg) as_real_imag = real_to_real_as_real_imag class erfi(Function): r""" Imaginary error function. The function erfi is defined as: .. math :: \mathrm{erfi}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{t^2} \mathrm{d}t Examples ======== >>> from sympy import I, oo, erfi >>> from sympy.abc import z Several special values are known: >>> erfi(0) 0 >>> erfi(oo) oo >>> erfi(-oo) -oo >>> erfi(I*oo) I >>> erfi(-I*oo) -I In general one can pull out factors of -1 and I from the argument: >>> erfi(-z) -erfi(z) >>> from sympy import conjugate >>> conjugate(erfi(z)) erfi(conjugate(z)) Differentiation with respect to z is supported: >>> from sympy import diff >>> diff(erfi(z), z) 2*exp(z**2)/sqrt(pi) We can numerically evaluate the imaginary error function to arbitrary precision on the whole complex plane: >>> erfi(2).evalf(30) 18.5648024145755525987042919132 >>> erfi(-2*I).evalf(30) -0.995322265018952734162069256367*I See Also ======== erf: Gaussian error function. erfc: Complementary error function. erf2: Two-argument error function. erfinv: Inverse error function. erfcinv: Inverse Complementary error function. erf2inv: Inverse two-argument error function. References ========== .. [1] https://en.wikipedia.org/wiki/Error_function .. [2] http://mathworld.wolfram.com/Erfi.html .. [3] http://functions.wolfram.com/GammaBetaErf/Erfi """ unbranched = True def fdiff(self, argindex=1): if argindex == 1: return 2*exp(self.args[0]**2)/sqrt(S.Pi) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, z): if z.is_Number: if z is S.NaN: return S.NaN elif z.is_zero: return S.Zero elif z is S.Infinity: return S.Infinity if z.is_zero: return S.Zero # Try to pull out factors of -1 if z.could_extract_minus_sign(): return -cls(-z) # Try to pull out factors of I nz = z.extract_multiplicatively(I) if nz is not None: if nz is S.Infinity: return I if isinstance(nz, erfinv): return I*nz.args[0] if isinstance(nz, erfcinv): return I*(S.One - nz.args[0]) # Only happens with unevaluated erf2inv if isinstance(nz, erf2inv) and nz.args[0].is_zero: return I*nz.args[1] @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) k = floor((n - 1)/S(2)) if len(previous_terms) > 2: return previous_terms[-2] * x**2 * (n - 2)/(n*k) else: return 2 * x**n/(n*factorial(k)*sqrt(S.Pi)) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def _eval_is_extended_real(self): return self.args[0].is_extended_real def _eval_is_zero(self): if self.args[0].is_zero: return True def _eval_rewrite_as_tractable(self, z, **kwargs): return self.rewrite(erf).rewrite("tractable", deep=True) def _eval_rewrite_as_erf(self, z, **kwargs): return -I*erf(I*z) def _eval_rewrite_as_erfc(self, z, **kwargs): return I*erfc(I*z) - I def _eval_rewrite_as_fresnels(self, z, **kwargs): arg = (S.One + S.ImaginaryUnit)*z/sqrt(pi) return (S.One - S.ImaginaryUnit)*(fresnelc(arg) - I*fresnels(arg)) def _eval_rewrite_as_fresnelc(self, z, **kwargs): arg = (S.One + S.ImaginaryUnit)*z/sqrt(pi) return (S.One - S.ImaginaryUnit)*(fresnelc(arg) - I*fresnels(arg)) def _eval_rewrite_as_meijerg(self, z, **kwargs): return z/sqrt(pi)*meijerg([S.Half], [], [0], [Rational(-1, 2)], -z**2) def _eval_rewrite_as_hyper(self, z, **kwargs): return 2*z/sqrt(pi)*hyper([S.Half], [3*S.Half], z**2) def _eval_rewrite_as_uppergamma(self, z, **kwargs): from sympy import uppergamma return sqrt(-z**2)/z*(uppergamma(S.Half, -z**2)/sqrt(S.Pi) - S.One) def _eval_rewrite_as_expint(self, z, **kwargs): return sqrt(-z**2)/z - z*expint(S.Half, -z**2)/sqrt(S.Pi) def _eval_expand_func(self, **hints): return self.rewrite(erf) as_real_imag = real_to_real_as_real_imag class erf2(Function): r""" Two-argument error function. This function is defined as: .. math :: \mathrm{erf2}(x, y) = \frac{2}{\sqrt{\pi}} \int_x^y e^{-t^2} \mathrm{d}t Examples ======== >>> from sympy import I, oo, erf2 >>> from sympy.abc import x, y Several special values are known: >>> erf2(0, 0) 0 >>> erf2(x, x) 0 >>> erf2(x, oo) 1 - erf(x) >>> erf2(x, -oo) -erf(x) - 1 >>> erf2(oo, y) erf(y) - 1 >>> erf2(-oo, y) erf(y) + 1 In general one can pull out factors of -1: >>> erf2(-x, -y) -erf2(x, y) The error function obeys the mirror symmetry: >>> from sympy import conjugate >>> conjugate(erf2(x, y)) erf2(conjugate(x), conjugate(y)) Differentiation with respect to x, y is supported: >>> from sympy import diff >>> diff(erf2(x, y), x) -2*exp(-x**2)/sqrt(pi) >>> diff(erf2(x, y), y) 2*exp(-y**2)/sqrt(pi) See Also ======== erf: Gaussian error function. erfc: Complementary error function. erfi: Imaginary error function. erfinv: Inverse error function. erfcinv: Inverse Complementary error function. erf2inv: Inverse two-argument error function. References ========== .. [1] http://functions.wolfram.com/GammaBetaErf/Erf2/ """ def fdiff(self, argindex): x, y = self.args if argindex == 1: return -2*exp(-x**2)/sqrt(S.Pi) elif argindex == 2: return 2*exp(-y**2)/sqrt(S.Pi) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, x, y): I = S.Infinity N = S.NegativeInfinity O = S.Zero if x is S.NaN or y is S.NaN: return S.NaN elif x == y: return S.Zero elif (x is I or x is N or x is O) or (y is I or y is N or y is O): return erf(y) - erf(x) if isinstance(y, erf2inv) and y.args[0] == x: return y.args[1] if x.is_zero or y.is_zero or x.is_extended_real and x.is_infinite or \ y.is_extended_real and y.is_infinite: return erf(y) - erf(x) #Try to pull out -1 factor sign_x = x.could_extract_minus_sign() sign_y = y.could_extract_minus_sign() if (sign_x and sign_y): return -cls(-x, -y) elif (sign_x or sign_y): return erf(y)-erf(x) def _eval_conjugate(self): return self.func(self.args[0].conjugate(), self.args[1].conjugate()) def _eval_is_extended_real(self): return self.args[0].is_extended_real and self.args[1].is_extended_real def _eval_rewrite_as_erf(self, x, y, **kwargs): return erf(y) - erf(x) def _eval_rewrite_as_erfc(self, x, y, **kwargs): return erfc(x) - erfc(y) def _eval_rewrite_as_erfi(self, x, y, **kwargs): return I*(erfi(I*x)-erfi(I*y)) def _eval_rewrite_as_fresnels(self, x, y, **kwargs): return erf(y).rewrite(fresnels) - erf(x).rewrite(fresnels) def _eval_rewrite_as_fresnelc(self, x, y, **kwargs): return erf(y).rewrite(fresnelc) - erf(x).rewrite(fresnelc) def _eval_rewrite_as_meijerg(self, x, y, **kwargs): return erf(y).rewrite(meijerg) - erf(x).rewrite(meijerg) def _eval_rewrite_as_hyper(self, x, y, **kwargs): return erf(y).rewrite(hyper) - erf(x).rewrite(hyper) def _eval_rewrite_as_uppergamma(self, x, y, **kwargs): from sympy import uppergamma return (sqrt(y**2)/y*(S.One - uppergamma(S.Half, y**2)/sqrt(S.Pi)) - sqrt(x**2)/x*(S.One - uppergamma(S.Half, x**2)/sqrt(S.Pi))) def _eval_rewrite_as_expint(self, x, y, **kwargs): return erf(y).rewrite(expint) - erf(x).rewrite(expint) def _eval_expand_func(self, **hints): return self.rewrite(erf) class erfinv(Function): r""" Inverse Error Function. The erfinv function is defined as: .. math :: \mathrm{erf}(x) = y \quad \Rightarrow \quad \mathrm{erfinv}(y) = x Examples ======== >>> from sympy import I, oo, erfinv >>> from sympy.abc import x Several special values are known: >>> erfinv(0) 0 >>> erfinv(1) oo Differentiation with respect to x is supported: >>> from sympy import diff >>> diff(erfinv(x), x) sqrt(pi)*exp(erfinv(x)**2)/2 We can numerically evaluate the inverse error function to arbitrary precision on [-1, 1]: >>> erfinv(0.2).evalf(30) 0.179143454621291692285822705344 See Also ======== erf: Gaussian error function. erfc: Complementary error function. erfi: Imaginary error function. erf2: Two-argument error function. erfcinv: Inverse Complementary error function. erf2inv: Inverse two-argument error function. References ========== .. [1] https://en.wikipedia.org/wiki/Error_function#Inverse_functions .. [2] http://functions.wolfram.com/GammaBetaErf/InverseErf/ """ def fdiff(self, argindex =1): if argindex == 1: return sqrt(S.Pi)*exp(self.func(self.args[0])**2)*S.Half else : raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return erf @classmethod def eval(cls, z): if z is S.NaN: return S.NaN elif z is S.NegativeOne: return S.NegativeInfinity elif z.is_zero: return S.Zero elif z is S.One: return S.Infinity if isinstance(z, erf) and z.args[0].is_extended_real: return z.args[0] if z.is_zero: return S.Zero # Try to pull out factors of -1 nz = z.extract_multiplicatively(-1) if nz is not None and (isinstance(nz, erf) and (nz.args[0]).is_extended_real): return -nz.args[0] def _eval_rewrite_as_erfcinv(self, z, **kwargs): return erfcinv(1-z) def _eval_is_zero(self): if self.args[0].is_zero: return True class erfcinv (Function): r""" Inverse Complementary Error Function. The erfcinv function is defined as: .. math :: \mathrm{erfc}(x) = y \quad \Rightarrow \quad \mathrm{erfcinv}(y) = x Examples ======== >>> from sympy import I, oo, erfcinv >>> from sympy.abc import x Several special values are known: >>> erfcinv(1) 0 >>> erfcinv(0) oo Differentiation with respect to x is supported: >>> from sympy import diff >>> diff(erfcinv(x), x) -sqrt(pi)*exp(erfcinv(x)**2)/2 See Also ======== erf: Gaussian error function. erfc: Complementary error function. erfi: Imaginary error function. erf2: Two-argument error function. erfinv: Inverse error function. erf2inv: Inverse two-argument error function. References ========== .. [1] https://en.wikipedia.org/wiki/Error_function#Inverse_functions .. [2] http://functions.wolfram.com/GammaBetaErf/InverseErfc/ """ def fdiff(self, argindex =1): if argindex == 1: return -sqrt(S.Pi)*exp(self.func(self.args[0])**2)*S.Half else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return erfc @classmethod def eval(cls, z): if z is S.NaN: return S.NaN elif z.is_zero: return S.Infinity elif z is S.One: return S.Zero elif z == 2: return S.NegativeInfinity if z.is_zero: return S.Infinity def _eval_rewrite_as_erfinv(self, z, **kwargs): return erfinv(1-z) class erf2inv(Function): r""" Two-argument Inverse error function. The erf2inv function is defined as: .. math :: \mathrm{erf2}(x, w) = y \quad \Rightarrow \quad \mathrm{erf2inv}(x, y) = w Examples ======== >>> from sympy import I, oo, erf2inv, erfinv, erfcinv >>> from sympy.abc import x, y Several special values are known: >>> erf2inv(0, 0) 0 >>> erf2inv(1, 0) 1 >>> erf2inv(0, 1) oo >>> erf2inv(0, y) erfinv(y) >>> erf2inv(oo, y) erfcinv(-y) Differentiation with respect to x and y is supported: >>> from sympy import diff >>> diff(erf2inv(x, y), x) exp(-x**2 + erf2inv(x, y)**2) >>> diff(erf2inv(x, y), y) sqrt(pi)*exp(erf2inv(x, y)**2)/2 See Also ======== erf: Gaussian error function. erfc: Complementary error function. erfi: Imaginary error function. erf2: Two-argument error function. erfinv: Inverse error function. erfcinv: Inverse complementary error function. References ========== .. [1] http://functions.wolfram.com/GammaBetaErf/InverseErf2/ """ def fdiff(self, argindex): x, y = self.args if argindex == 1: return exp(self.func(x,y)**2-x**2) elif argindex == 2: return sqrt(S.Pi)*S.Half*exp(self.func(x,y)**2) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, x, y): if x is S.NaN or y is S.NaN: return S.NaN elif x.is_zero and y.is_zero: return S.Zero elif x.is_zero and y is S.One: return S.Infinity elif x is S.One and y.is_zero: return S.One elif x.is_zero: return erfinv(y) elif x is S.Infinity: return erfcinv(-y) elif y.is_zero: return x elif y is S.Infinity: return erfinv(x) if x.is_zero: if y.is_zero: return S.Zero else: return erfinv(y) if y.is_zero: return x def _eval_is_zero(self): x, y = self.args if x.is_zero and y.is_zero: return True ############################################################################### #################### EXPONENTIAL INTEGRALS #################################### ############################################################################### class Ei(Function): r""" The classical exponential integral. For use in SymPy, this function is defined as .. math:: \operatorname{Ei}(x) = \sum_{n=1}^\infty \frac{x^n}{n\, n!} + \log(x) + \gamma, where `\gamma` is the Euler-Mascheroni constant. If `x` is a polar number, this defines an analytic function on the Riemann surface of the logarithm. Otherwise this defines an analytic function in the cut plane `\mathbb{C} \setminus (-\infty, 0]`. **Background** The name *exponential integral* comes from the following statement: .. math:: \operatorname{Ei}(x) = \int_{-\infty}^x \frac{e^t}{t} \mathrm{d}t If the integral is interpreted as a Cauchy principal value, this statement holds for `x > 0` and `\operatorname{Ei}(x)` as defined above. Examples ======== >>> from sympy import Ei, polar_lift, exp_polar, I, pi >>> from sympy.abc import x >>> Ei(-1) Ei(-1) This yields a real value: >>> Ei(-1).n(chop=True) -0.219383934395520 On the other hand the analytic continuation is not real: >>> Ei(polar_lift(-1)).n(chop=True) -0.21938393439552 + 3.14159265358979*I The exponential integral has a logarithmic branch point at the origin: >>> Ei(x*exp_polar(2*I*pi)) Ei(x) + 2*I*pi Differentiation is supported: >>> Ei(x).diff(x) exp(x)/x The exponential integral is related to many other special functions. For example: >>> from sympy import uppergamma, expint, Shi >>> Ei(x).rewrite(expint) -expint(1, x*exp_polar(I*pi)) - I*pi >>> Ei(x).rewrite(Shi) Chi(x) + Shi(x) See Also ======== expint: Generalised exponential integral. E1: Special case of the generalised exponential integral. li: Logarithmic integral. Li: Offset logarithmic integral. Si: Sine integral. Ci: Cosine integral. Shi: Hyperbolic sine integral. Chi: Hyperbolic cosine integral. sympy.functions.special.gamma_functions.uppergamma: Upper incomplete gamma function. References ========== .. [1] http://dlmf.nist.gov/6.6 .. [2] https://en.wikipedia.org/wiki/Exponential_integral .. [3] Abramowitz & Stegun, section 5: http://people.math.sfu.ca/~cbm/aands/page_228.htm """ @classmethod def eval(cls, z): if z.is_zero: return S.NegativeInfinity elif z is S.Infinity: return S.Infinity elif z is S.NegativeInfinity: return S.Zero if z.is_zero: return S.NegativeInfinity nz, n = z.extract_branch_factor() if n: return Ei(nz) + 2*I*pi*n def fdiff(self, argindex=1): from sympy import unpolarify arg = unpolarify(self.args[0]) if argindex == 1: return exp(arg)/arg else: raise ArgumentIndexError(self, argindex) def _eval_evalf(self, prec): if (self.args[0]/polar_lift(-1)).is_positive: return Function._eval_evalf(self, prec) + (I*pi)._eval_evalf(prec) return Function._eval_evalf(self, prec) def _eval_rewrite_as_uppergamma(self, z, **kwargs): from sympy import uppergamma # XXX this does not currently work usefully because uppergamma # immediately turns into expint return -uppergamma(0, polar_lift(-1)*z) - I*pi def _eval_rewrite_as_expint(self, z, **kwargs): return -expint(1, polar_lift(-1)*z) - I*pi def _eval_rewrite_as_li(self, z, **kwargs): if isinstance(z, log): return li(z.args[0]) # TODO: # Actually it only holds that: # Ei(z) = li(exp(z)) # for -pi < imag(z) <= pi return li(exp(z)) def _eval_rewrite_as_Si(self, z, **kwargs): if z.is_negative: return Shi(z) + Chi(z) - I*pi else: return Shi(z) + Chi(z) _eval_rewrite_as_Ci = _eval_rewrite_as_Si _eval_rewrite_as_Chi = _eval_rewrite_as_Si _eval_rewrite_as_Shi = _eval_rewrite_as_Si def _eval_rewrite_as_tractable(self, z, **kwargs): return exp(z) * _eis(z) def _eval_nseries(self, x, n, logx): x0 = self.args[0].limit(x, 0) if x0.is_zero: f = self._eval_rewrite_as_Si(*self.args) return f._eval_nseries(x, n, logx) return super(Ei, self)._eval_nseries(x, n, logx) class expint(Function): r""" Generalized exponential integral. This function is defined as .. math:: \operatorname{E}_\nu(z) = z^{\nu - 1} \Gamma(1 - \nu, z), where `\Gamma(1 - \nu, z)` is the upper incomplete gamma function (``uppergamma``). Hence for :math:`z` with positive real part we have .. math:: \operatorname{E}_\nu(z) = \int_1^\infty \frac{e^{-zt}}{t^\nu} \mathrm{d}t, which explains the name. The representation as an incomplete gamma function provides an analytic continuation for :math:`\operatorname{E}_\nu(z)`. If :math:`\nu` is a non-positive integer the exponential integral is thus an unbranched function of :math:`z`, otherwise there is a branch point at the origin. Refer to the incomplete gamma function documentation for details of the branching behavior. Examples ======== >>> from sympy import expint, S >>> from sympy.abc import nu, z Differentiation is supported. Differentiation with respect to z explains further the name: for integral orders, the exponential integral is an iterated integral of the exponential function. >>> expint(nu, z).diff(z) -expint(nu - 1, z) Differentiation with respect to nu has no classical expression: >>> expint(nu, z).diff(nu) -z**(nu - 1)*meijerg(((), (1, 1)), ((0, 0, 1 - nu), ()), z) At non-postive integer orders, the exponential integral reduces to the exponential function: >>> expint(0, z) exp(-z)/z >>> expint(-1, z) exp(-z)/z + exp(-z)/z**2 At half-integers it reduces to error functions: >>> expint(S(1)/2, z) sqrt(pi)*erfc(sqrt(z))/sqrt(z) At positive integer orders it can be rewritten in terms of exponentials and expint(1, z). Use expand_func() to do this: >>> from sympy import expand_func >>> expand_func(expint(5, z)) z**4*expint(1, z)/24 + (-z**3 + z**2 - 2*z + 6)*exp(-z)/24 The generalised exponential integral is essentially equivalent to the incomplete gamma function: >>> from sympy import uppergamma >>> expint(nu, z).rewrite(uppergamma) z**(nu - 1)*uppergamma(1 - nu, z) As such it is branched at the origin: >>> from sympy import exp_polar, pi, I >>> expint(4, z*exp_polar(2*pi*I)) I*pi*z**3/3 + expint(4, z) >>> expint(nu, z*exp_polar(2*pi*I)) z**(nu - 1)*(exp(2*I*pi*nu) - 1)*gamma(1 - nu) + expint(nu, z) See Also ======== Ei: Another related function called exponential integral. E1: The classical case, returns expint(1, z). li: Logarithmic integral. Li: Offset logarithmic integral. Si: Sine integral. Ci: Cosine integral. Shi: Hyperbolic sine integral. Chi: Hyperbolic cosine integral. sympy.functions.special.gamma_functions.uppergamma References ========== .. [1] http://dlmf.nist.gov/8.19 .. [2] http://functions.wolfram.com/GammaBetaErf/ExpIntegralE/ .. [3] https://en.wikipedia.org/wiki/Exponential_integral """ @classmethod def eval(cls, nu, z): from sympy import (unpolarify, expand_mul, uppergamma, exp, gamma, factorial) nu2 = unpolarify(nu) if nu != nu2: return expint(nu2, z) if nu.is_Integer and nu <= 0 or (not nu.is_Integer and (2*nu).is_Integer): return unpolarify(expand_mul(z**(nu - 1)*uppergamma(1 - nu, z))) # Extract branching information. This can be deduced from what is # explained in lowergamma.eval(). z, n = z.extract_branch_factor() if n is S.Zero: return if nu.is_integer: if not nu > 0: return return expint(nu, z) \ - 2*pi*I*n*(-1)**(nu - 1)/factorial(nu - 1)*unpolarify(z)**(nu - 1) else: return (exp(2*I*pi*nu*n) - 1)*z**(nu - 1)*gamma(1 - nu) + expint(nu, z) def fdiff(self, argindex): from sympy import meijerg nu, z = self.args if argindex == 1: return -z**(nu - 1)*meijerg([], [1, 1], [0, 0, 1 - nu], [], z) elif argindex == 2: return -expint(nu - 1, z) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_uppergamma(self, nu, z, **kwargs): from sympy import uppergamma return z**(nu - 1)*uppergamma(1 - nu, z) def _eval_rewrite_as_Ei(self, nu, z, **kwargs): from sympy import exp_polar, unpolarify, exp, factorial if nu == 1: return -Ei(z*exp_polar(-I*pi)) - I*pi elif nu.is_Integer and nu > 1: # DLMF, 8.19.7 x = -unpolarify(z) return x**(nu - 1)/factorial(nu - 1)*E1(z).rewrite(Ei) + \ exp(x)/factorial(nu - 1) * \ Add(*[factorial(nu - k - 2)*x**k for k in range(nu - 1)]) else: return self def _eval_expand_func(self, **hints): return self.rewrite(Ei).rewrite(expint, **hints) def _eval_rewrite_as_Si(self, nu, z, **kwargs): if nu != 1: return self return Shi(z) - Chi(z) _eval_rewrite_as_Ci = _eval_rewrite_as_Si _eval_rewrite_as_Chi = _eval_rewrite_as_Si _eval_rewrite_as_Shi = _eval_rewrite_as_Si def _eval_nseries(self, x, n, logx): if not self.args[0].has(x): nu = self.args[0] if nu == 1: f = self._eval_rewrite_as_Si(*self.args) return f._eval_nseries(x, n, logx) elif nu.is_Integer and nu > 1: f = self._eval_rewrite_as_Ei(*self.args) return f._eval_nseries(x, n, logx) return super(expint, self)._eval_nseries(x, n, logx) def _sage_(self): import sage.all as sage return sage.exp_integral_e(self.args[0]._sage_(), self.args[1]._sage_()) def E1(z): """ Classical case of the generalized exponential integral. This is equivalent to ``expint(1, z)``. See Also ======== Ei: Exponential integral. expint: Generalised exponential integral. li: Logarithmic integral. Li: Offset logarithmic integral. Si: Sine integral. Ci: Cosine integral. Shi: Hyperbolic sine integral. Chi: Hyperbolic cosine integral. """ return expint(1, z) class li(Function): r""" The classical logarithmic integral. For the use in SymPy, this function is defined as .. math:: \operatorname{li}(x) = \int_0^x \frac{1}{\log(t)} \mathrm{d}t \,. Examples ======== >>> from sympy import I, oo, li >>> from sympy.abc import z Several special values are known: >>> li(0) 0 >>> li(1) -oo >>> li(oo) oo Differentiation with respect to z is supported: >>> from sympy import diff >>> diff(li(z), z) 1/log(z) Defining the `li` function via an integral: The logarithmic integral can also be defined in terms of Ei: >>> from sympy import Ei >>> li(z).rewrite(Ei) Ei(log(z)) >>> diff(li(z).rewrite(Ei), z) 1/log(z) We can numerically evaluate the logarithmic integral to arbitrary precision on the whole complex plane (except the singular points): >>> li(2).evalf(30) 1.04516378011749278484458888919 >>> li(2*I).evalf(30) 1.0652795784357498247001125598 + 3.08346052231061726610939702133*I We can even compute Soldner's constant by the help of mpmath: >>> from mpmath import findroot >>> findroot(li, 2) 1.45136923488338 Further transformations include rewriting `li` in terms of the trigonometric integrals `Si`, `Ci`, `Shi` and `Chi`: >>> from sympy import Si, Ci, Shi, Chi >>> li(z).rewrite(Si) -log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)) >>> li(z).rewrite(Ci) -log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)) >>> li(z).rewrite(Shi) -log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z)) >>> li(z).rewrite(Chi) -log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z)) See Also ======== Li: Offset logarithmic integral. Ei: Exponential integral. expint: Generalised exponential integral. E1: Special case of the generalised exponential integral. Si: Sine integral. Ci: Cosine integral. Shi: Hyperbolic sine integral. Chi: Hyperbolic cosine integral. References ========== .. [1] https://en.wikipedia.org/wiki/Logarithmic_integral .. [2] http://mathworld.wolfram.com/LogarithmicIntegral.html .. [3] http://dlmf.nist.gov/6 .. [4] http://mathworld.wolfram.com/SoldnersConstant.html """ @classmethod def eval(cls, z): if z.is_zero: return S.Zero elif z is S.One: return S.NegativeInfinity elif z is S.Infinity: return S.Infinity if z.is_zero: return S.Zero def fdiff(self, argindex=1): arg = self.args[0] if argindex == 1: return S.One / log(arg) else: raise ArgumentIndexError(self, argindex) def _eval_conjugate(self): z = self.args[0] # Exclude values on the branch cut (-oo, 0) if not z.is_extended_negative: return self.func(z.conjugate()) def _eval_rewrite_as_Li(self, z, **kwargs): return Li(z) + li(2) def _eval_rewrite_as_Ei(self, z, **kwargs): return Ei(log(z)) def _eval_rewrite_as_uppergamma(self, z, **kwargs): from sympy import uppergamma return (-uppergamma(0, -log(z)) + S.Half*(log(log(z)) - log(S.One/log(z))) - log(-log(z))) def _eval_rewrite_as_Si(self, z, **kwargs): return (Ci(I*log(z)) - I*Si(I*log(z)) - S.Half*(log(S.One/log(z)) - log(log(z))) - log(I*log(z))) _eval_rewrite_as_Ci = _eval_rewrite_as_Si def _eval_rewrite_as_Shi(self, z, **kwargs): return (Chi(log(z)) - Shi(log(z)) - S.Half*(log(S.One/log(z)) - log(log(z)))) _eval_rewrite_as_Chi = _eval_rewrite_as_Shi def _eval_rewrite_as_hyper(self, z, **kwargs): return (log(z)*hyper((1, 1), (2, 2), log(z)) + S.Half*(log(log(z)) - log(S.One/log(z))) + S.EulerGamma) def _eval_rewrite_as_meijerg(self, z, **kwargs): return (-log(-log(z)) - S.Half*(log(S.One/log(z)) - log(log(z))) - meijerg(((), (1,)), ((0, 0), ()), -log(z))) def _eval_rewrite_as_tractable(self, z, **kwargs): return z * _eis(log(z)) def _eval_is_zero(self): z = self.args[0] if z.is_zero: return True class Li(Function): r""" The offset logarithmic integral. For the use in SymPy, this function is defined as .. math:: \operatorname{Li}(x) = \operatorname{li}(x) - \operatorname{li}(2) Examples ======== >>> from sympy import I, oo, Li >>> from sympy.abc import z The following special value is known: >>> Li(2) 0 Differentiation with respect to z is supported: >>> from sympy import diff >>> diff(Li(z), z) 1/log(z) The shifted logarithmic integral can be written in terms of `li(z)`: >>> from sympy import li >>> Li(z).rewrite(li) li(z) - li(2) We can numerically evaluate the logarithmic integral to arbitrary precision on the whole complex plane (except the singular points): >>> Li(2).evalf(30) 0 >>> Li(4).evalf(30) 1.92242131492155809316615998938 See Also ======== li: Logarithmic integral. Ei: Exponential integral. expint: Generalised exponential integral. E1: Special case of the generalised exponential integral. Si: Sine integral. Ci: Cosine integral. Shi: Hyperbolic sine integral. Chi: Hyperbolic cosine integral. References ========== .. [1] https://en.wikipedia.org/wiki/Logarithmic_integral .. [2] http://mathworld.wolfram.com/LogarithmicIntegral.html .. [3] http://dlmf.nist.gov/6 """ @classmethod def eval(cls, z): if z is S.Infinity: return S.Infinity elif z == S(2): return S.Zero def fdiff(self, argindex=1): arg = self.args[0] if argindex == 1: return S.One / log(arg) else: raise ArgumentIndexError(self, argindex) def _eval_evalf(self, prec): return self.rewrite(li).evalf(prec) def _eval_rewrite_as_li(self, z, **kwargs): return li(z) - li(2) def _eval_rewrite_as_tractable(self, z, **kwargs): return self.rewrite(li).rewrite("tractable", deep=True) ############################################################################### #################### TRIGONOMETRIC INTEGRALS ################################## ############################################################################### class TrigonometricIntegral(Function): """ Base class for trigonometric integrals. """ @classmethod def eval(cls, z): if z is S.Zero: return cls._atzero elif z is S.Infinity: return cls._atinf() elif z is S.NegativeInfinity: return cls._atneginf() if z.is_zero: return cls._atzero nz = z.extract_multiplicatively(polar_lift(I)) if nz is None and cls._trigfunc(0) == 0: nz = z.extract_multiplicatively(I) if nz is not None: return cls._Ifactor(nz, 1) nz = z.extract_multiplicatively(polar_lift(-I)) if nz is not None: return cls._Ifactor(nz, -1) nz = z.extract_multiplicatively(polar_lift(-1)) if nz is None and cls._trigfunc(0) == 0: nz = z.extract_multiplicatively(-1) if nz is not None: return cls._minusfactor(nz) nz, n = z.extract_branch_factor() if n == 0 and nz == z: return return 2*pi*I*n*cls._trigfunc(0) + cls(nz) def fdiff(self, argindex=1): from sympy import unpolarify arg = unpolarify(self.args[0]) if argindex == 1: return self._trigfunc(arg)/arg else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_Ei(self, z, **kwargs): return self._eval_rewrite_as_expint(z).rewrite(Ei) def _eval_rewrite_as_uppergamma(self, z, **kwargs): from sympy import uppergamma return self._eval_rewrite_as_expint(z).rewrite(uppergamma) def _eval_nseries(self, x, n, logx): # NOTE this is fairly inefficient from sympy import log, EulerGamma, Pow n += 1 if self.args[0].subs(x, 0) != 0: return super(TrigonometricIntegral, self)._eval_nseries(x, n, logx) baseseries = self._trigfunc(x)._eval_nseries(x, n, logx) if self._trigfunc(0) != 0: baseseries -= 1 baseseries = baseseries.replace(Pow, lambda t, n: t**n/n, simultaneous=False) if self._trigfunc(0) != 0: baseseries += EulerGamma + log(x) return baseseries.subs(x, self.args[0])._eval_nseries(x, n, logx) class Si(TrigonometricIntegral): r""" Sine integral. This function is defined by .. math:: \operatorname{Si}(z) = \int_0^z \frac{\sin{t}}{t} \mathrm{d}t. It is an entire function. Examples ======== >>> from sympy import Si >>> from sympy.abc import z The sine integral is an antiderivative of sin(z)/z: >>> Si(z).diff(z) sin(z)/z It is unbranched: >>> from sympy import exp_polar, I, pi >>> Si(z*exp_polar(2*I*pi)) Si(z) Sine integral behaves much like ordinary sine under multiplication by ``I``: >>> Si(I*z) I*Shi(z) >>> Si(-z) -Si(z) It can also be expressed in terms of exponential integrals, but beware that the latter is branched: >>> from sympy import expint >>> Si(z).rewrite(expint) -I*(-expint(1, z*exp_polar(-I*pi/2))/2 + expint(1, z*exp_polar(I*pi/2))/2) + pi/2 It can be rewritten in the form of sinc function (By definition) >>> from sympy import sinc >>> Si(z).rewrite(sinc) Integral(sinc(t), (t, 0, z)) See Also ======== Ci: Cosine integral. Shi: Hyperbolic sine integral. Chi: Hyperbolic cosine integral. Ei: Exponential integral. expint: Generalised exponential integral. sinc: unnormalized sinc function E1: Special case of the generalised exponential integral. li: Logarithmic integral. Li: Offset logarithmic integral. References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_integral """ _trigfunc = sin _atzero = S.Zero @classmethod def _atinf(cls): return pi*S.Half @classmethod def _atneginf(cls): return -pi*S.Half @classmethod def _minusfactor(cls, z): return -Si(z) @classmethod def _Ifactor(cls, z, sign): return I*Shi(z)*sign def _eval_rewrite_as_expint(self, z, **kwargs): # XXX should we polarify z? return pi/2 + (E1(polar_lift(I)*z) - E1(polar_lift(-I)*z))/2/I def _eval_rewrite_as_sinc(self, z, **kwargs): from sympy import Integral t = Symbol('t', Dummy=True) return Integral(sinc(t), (t, 0, z)) def _eval_is_zero(self): z = self.args[0] if z.is_zero: return True def _sage_(self): import sage.all as sage return sage.sin_integral(self.args[0]._sage_()) class Ci(TrigonometricIntegral): r""" Cosine integral. This function is defined for positive `x` by .. math:: \operatorname{Ci}(x) = \gamma + \log{x} + \int_0^x \frac{\cos{t} - 1}{t} \mathrm{d}t = -\int_x^\infty \frac{\cos{t}}{t} \mathrm{d}t, where `\gamma` is the Euler-Mascheroni constant. We have .. math:: \operatorname{Ci}(z) = -\frac{\operatorname{E}_1\left(e^{i\pi/2} z\right) + \operatorname{E}_1\left(e^{-i \pi/2} z\right)}{2} which holds for all polar `z` and thus provides an analytic continuation to the Riemann surface of the logarithm. The formula also holds as stated for `z \in \mathbb{C}` with `\Re(z) > 0`. By lifting to the principal branch we obtain an analytic function on the cut complex plane. Examples ======== >>> from sympy import Ci >>> from sympy.abc import z The cosine integral is a primitive of `\cos(z)/z`: >>> Ci(z).diff(z) cos(z)/z It has a logarithmic branch point at the origin: >>> from sympy import exp_polar, I, pi >>> Ci(z*exp_polar(2*I*pi)) Ci(z) + 2*I*pi The cosine integral behaves somewhat like ordinary `\cos` under multiplication by `i`: >>> from sympy import polar_lift >>> Ci(polar_lift(I)*z) Chi(z) + I*pi/2 >>> Ci(polar_lift(-1)*z) Ci(z) + I*pi It can also be expressed in terms of exponential integrals: >>> from sympy import expint >>> Ci(z).rewrite(expint) -expint(1, z*exp_polar(-I*pi/2))/2 - expint(1, z*exp_polar(I*pi/2))/2 See Also ======== Si: Sine integral. Shi: Hyperbolic sine integral. Chi: Hyperbolic cosine integral. Ei: Exponential integral. expint: Generalised exponential integral. E1: Special case of the generalised exponential integral. li: Logarithmic integral. Li: Offset logarithmic integral. References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_integral """ _trigfunc = cos _atzero = S.ComplexInfinity @classmethod def _atinf(cls): return S.Zero @classmethod def _atneginf(cls): return I*pi @classmethod def _minusfactor(cls, z): return Ci(z) + I*pi @classmethod def _Ifactor(cls, z, sign): return Chi(z) + I*pi/2*sign def _eval_rewrite_as_expint(self, z, **kwargs): return -(E1(polar_lift(I)*z) + E1(polar_lift(-I)*z))/2 def _sage_(self): import sage.all as sage return sage.cos_integral(self.args[0]._sage_()) class Shi(TrigonometricIntegral): r""" Sinh integral. This function is defined by .. math:: \operatorname{Shi}(z) = \int_0^z \frac{\sinh{t}}{t} \mathrm{d}t. It is an entire function. Examples ======== >>> from sympy import Shi >>> from sympy.abc import z The Sinh integral is a primitive of `\sinh(z)/z`: >>> Shi(z).diff(z) sinh(z)/z It is unbranched: >>> from sympy import exp_polar, I, pi >>> Shi(z*exp_polar(2*I*pi)) Shi(z) The `\sinh` integral behaves much like ordinary `\sinh` under multiplication by `i`: >>> Shi(I*z) I*Si(z) >>> Shi(-z) -Shi(z) It can also be expressed in terms of exponential integrals, but beware that the latter is branched: >>> from sympy import expint >>> Shi(z).rewrite(expint) expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2 See Also ======== Si: Sine integral. Ci: Cosine integral. Chi: Hyperbolic cosine integral. Ei: Exponential integral. expint: Generalised exponential integral. E1: Special case of the generalised exponential integral. li: Logarithmic integral. Li: Offset logarithmic integral. References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_integral """ _trigfunc = sinh _atzero = S.Zero @classmethod def _atinf(cls): return S.Infinity @classmethod def _atneginf(cls): return S.NegativeInfinity @classmethod def _minusfactor(cls, z): return -Shi(z) @classmethod def _Ifactor(cls, z, sign): return I*Si(z)*sign def _eval_rewrite_as_expint(self, z, **kwargs): from sympy import exp_polar # XXX should we polarify z? return (E1(z) - E1(exp_polar(I*pi)*z))/2 - I*pi/2 def _eval_is_zero(self): z = self.args[0] if z.is_zero: return True def _sage_(self): import sage.all as sage return sage.sinh_integral(self.args[0]._sage_()) class Chi(TrigonometricIntegral): r""" Cosh integral. This function is defined for positive :math:`x` by .. math:: \operatorname{Chi}(x) = \gamma + \log{x} + \int_0^x \frac{\cosh{t} - 1}{t} \mathrm{d}t, where :math:`\gamma` is the Euler-Mascheroni constant. We have .. math:: \operatorname{Chi}(z) = \operatorname{Ci}\left(e^{i \pi/2}z\right) - i\frac{\pi}{2}, which holds for all polar :math:`z` and thus provides an analytic continuation to the Riemann surface of the logarithm. By lifting to the principal branch we obtain an analytic function on the cut complex plane. Examples ======== >>> from sympy import Chi >>> from sympy.abc import z The `\cosh` integral is a primitive of `\cosh(z)/z`: >>> Chi(z).diff(z) cosh(z)/z It has a logarithmic branch point at the origin: >>> from sympy import exp_polar, I, pi >>> Chi(z*exp_polar(2*I*pi)) Chi(z) + 2*I*pi The `\cosh` integral behaves somewhat like ordinary `\cosh` under multiplication by `i`: >>> from sympy import polar_lift >>> Chi(polar_lift(I)*z) Ci(z) + I*pi/2 >>> Chi(polar_lift(-1)*z) Chi(z) + I*pi It can also be expressed in terms of exponential integrals: >>> from sympy import expint >>> Chi(z).rewrite(expint) -expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2 See Also ======== Si: Sine integral. Ci: Cosine integral. Shi: Hyperbolic sine integral. Ei: Exponential integral. expint: Generalised exponential integral. E1: Special case of the generalised exponential integral. li: Logarithmic integral. Li: Offset logarithmic integral. References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_integral """ _trigfunc = cosh _atzero = S.ComplexInfinity @classmethod def _atinf(cls): return S.Infinity @classmethod def _atneginf(cls): return S.Infinity @classmethod def _minusfactor(cls, z): return Chi(z) + I*pi @classmethod def _Ifactor(cls, z, sign): return Ci(z) + I*pi/2*sign def _eval_rewrite_as_expint(self, z, **kwargs): from sympy import exp_polar return -I*pi/2 - (E1(z) + E1(exp_polar(I*pi)*z))/2 def _sage_(self): import sage.all as sage return sage.cosh_integral(self.args[0]._sage_()) ############################################################################### #################### FRESNEL INTEGRALS ######################################## ############################################################################### class FresnelIntegral(Function): """ Base class for the Fresnel integrals.""" unbranched = True @classmethod def eval(cls, z): # Values at positive infinities signs # if any were extracted automatically if z is S.Infinity: return S.Half # Value at zero if z.is_zero: return S.Zero # Try to pull out factors of -1 and I prefact = S.One newarg = z changed = False nz = newarg.extract_multiplicatively(-1) if nz is not None: prefact = -prefact newarg = nz changed = True nz = newarg.extract_multiplicatively(I) if nz is not None: prefact = cls._sign*I*prefact newarg = nz changed = True if changed: return prefact*cls(newarg) def fdiff(self, argindex=1): if argindex == 1: return self._trigfunc(S.Half*pi*self.args[0]**2) else: raise ArgumentIndexError(self, argindex) def _eval_is_extended_real(self): return self.args[0].is_extended_real _eval_is_finite = _eval_is_extended_real def _eval_is_zero(self): z = self.args[0] if z.is_zero: return True def _eval_conjugate(self): return self.func(self.args[0].conjugate()) as_real_imag = real_to_real_as_real_imag class fresnels(FresnelIntegral): r""" Fresnel integral S. This function is defined by .. math:: \operatorname{S}(z) = \int_0^z \sin{\frac{\pi}{2} t^2} \mathrm{d}t. It is an entire function. Examples ======== >>> from sympy import I, oo, fresnels >>> from sympy.abc import z Several special values are known: >>> fresnels(0) 0 >>> fresnels(oo) 1/2 >>> fresnels(-oo) -1/2 >>> fresnels(I*oo) -I/2 >>> fresnels(-I*oo) I/2 In general one can pull out factors of -1 and `i` from the argument: >>> fresnels(-z) -fresnels(z) >>> fresnels(I*z) -I*fresnels(z) The Fresnel S integral obeys the mirror symmetry `\overline{S(z)} = S(\bar{z})`: >>> from sympy import conjugate >>> conjugate(fresnels(z)) fresnels(conjugate(z)) Differentiation with respect to `z` is supported: >>> from sympy import diff >>> diff(fresnels(z), z) sin(pi*z**2/2) Defining the Fresnel functions via an integral >>> from sympy import integrate, pi, sin, gamma, expand_func >>> integrate(sin(pi*z**2/2), z) 3*fresnels(z)*gamma(3/4)/(4*gamma(7/4)) >>> expand_func(integrate(sin(pi*z**2/2), z)) fresnels(z) We can numerically evaluate the Fresnel integral to arbitrary precision on the whole complex plane: >>> fresnels(2).evalf(30) 0.343415678363698242195300815958 >>> fresnels(-2*I).evalf(30) 0.343415678363698242195300815958*I See Also ======== fresnelc: Fresnel cosine integral. References ========== .. [1] https://en.wikipedia.org/wiki/Fresnel_integral .. [2] http://dlmf.nist.gov/7 .. [3] http://mathworld.wolfram.com/FresnelIntegrals.html .. [4] http://functions.wolfram.com/GammaBetaErf/FresnelS .. [5] The converging factors for the fresnel integrals by John W. Wrench Jr. and Vicki Alley """ _trigfunc = sin _sign = -S.One @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0: return S.Zero else: x = sympify(x) if len(previous_terms) > 1: p = previous_terms[-1] return (-pi**2*x**4*(4*n - 1)/(8*n*(2*n + 1)*(4*n + 3))) * p else: return x**3 * (-x**4)**n * (S(2)**(-2*n - 1)*pi**(2*n + 1)) / ((4*n + 3)*factorial(2*n + 1)) def _eval_rewrite_as_erf(self, z, **kwargs): return (S.One + I)/4 * (erf((S.One + I)/2*sqrt(pi)*z) - I*erf((S.One - I)/2*sqrt(pi)*z)) def _eval_rewrite_as_hyper(self, z, **kwargs): return pi*z**3/6 * hyper([Rational(3, 4)], [Rational(3, 2), Rational(7, 4)], -pi**2*z**4/16) def _eval_rewrite_as_meijerg(self, z, **kwargs): return (pi*z**Rational(9, 4) / (sqrt(2)*(z**2)**Rational(3, 4)*(-z)**Rational(3, 4)) * meijerg([], [1], [Rational(3, 4)], [Rational(1, 4), 0], -pi**2*z**4/16)) def _eval_aseries(self, n, args0, x, logx): from sympy import Order point = args0[0] # Expansion at oo and -oo if point in [S.Infinity, -S.Infinity]: z = self.args[0] # expansion of S(x) = S1(x*sqrt(pi/2)), see reference[5] page 1-8 # as only real infinities are dealt with, sin and cos are O(1) p = [(-1)**k * factorial(4*k + 1) / (2**(2*k + 2) * z**(4*k + 3) * 2**(2*k)*factorial(2*k)) for k in range(0, n) if 4*k + 3 < n] q = [1/(2*z)] + [(-1)**k * factorial(4*k - 1) / (2**(2*k + 1) * z**(4*k + 1) * 2**(2*k - 1)*factorial(2*k - 1)) for k in range(1, n) if 4*k + 1 < n] p = [-sqrt(2/pi)*t for t in p] q = [-sqrt(2/pi)*t for t in q] s = 1 if point is S.Infinity else -1 # The expansion at oo is 1/2 + some odd powers of z # To get the expansion at -oo, replace z by -z and flip the sign # The result -1/2 + the same odd powers of z as before. return s*S.Half + (sin(z**2)*Add(*p) + cos(z**2)*Add(*q) ).subs(x, sqrt(2/pi)*x) + Order(1/z**n, x) # All other points are not handled return super(fresnels, self)._eval_aseries(n, args0, x, logx) class fresnelc(FresnelIntegral): r""" Fresnel integral C. This function is defined by .. math:: \operatorname{C}(z) = \int_0^z \cos{\frac{\pi}{2} t^2} \mathrm{d}t. It is an entire function. Examples ======== >>> from sympy import I, oo, fresnelc >>> from sympy.abc import z Several special values are known: >>> fresnelc(0) 0 >>> fresnelc(oo) 1/2 >>> fresnelc(-oo) -1/2 >>> fresnelc(I*oo) I/2 >>> fresnelc(-I*oo) -I/2 In general one can pull out factors of -1 and `i` from the argument: >>> fresnelc(-z) -fresnelc(z) >>> fresnelc(I*z) I*fresnelc(z) The Fresnel C integral obeys the mirror symmetry `\overline{C(z)} = C(\bar{z})`: >>> from sympy import conjugate >>> conjugate(fresnelc(z)) fresnelc(conjugate(z)) Differentiation with respect to `z` is supported: >>> from sympy import diff >>> diff(fresnelc(z), z) cos(pi*z**2/2) Defining the Fresnel functions via an integral >>> from sympy import integrate, pi, cos, gamma, expand_func >>> integrate(cos(pi*z**2/2), z) fresnelc(z)*gamma(1/4)/(4*gamma(5/4)) >>> expand_func(integrate(cos(pi*z**2/2), z)) fresnelc(z) We can numerically evaluate the Fresnel integral to arbitrary precision on the whole complex plane: >>> fresnelc(2).evalf(30) 0.488253406075340754500223503357 >>> fresnelc(-2*I).evalf(30) -0.488253406075340754500223503357*I See Also ======== fresnels: Fresnel sine integral. References ========== .. [1] https://en.wikipedia.org/wiki/Fresnel_integral .. [2] http://dlmf.nist.gov/7 .. [3] http://mathworld.wolfram.com/FresnelIntegrals.html .. [4] http://functions.wolfram.com/GammaBetaErf/FresnelC .. [5] The converging factors for the fresnel integrals by John W. Wrench Jr. and Vicki Alley """ _trigfunc = cos _sign = S.One @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0: return S.Zero else: x = sympify(x) if len(previous_terms) > 1: p = previous_terms[-1] return (-pi**2*x**4*(4*n - 3)/(8*n*(2*n - 1)*(4*n + 1))) * p else: return x * (-x**4)**n * (S(2)**(-2*n)*pi**(2*n)) / ((4*n + 1)*factorial(2*n)) def _eval_rewrite_as_erf(self, z, **kwargs): return (S.One - I)/4 * (erf((S.One + I)/2*sqrt(pi)*z) + I*erf((S.One - I)/2*sqrt(pi)*z)) def _eval_rewrite_as_hyper(self, z, **kwargs): return z * hyper([Rational(1, 4)], [S.Half, Rational(5, 4)], -pi**2*z**4/16) def _eval_rewrite_as_meijerg(self, z, **kwargs): return (pi*z**Rational(3, 4) / (sqrt(2)*root(z**2, 4)*root(-z, 4)) * meijerg([], [1], [Rational(1, 4)], [Rational(3, 4), 0], -pi**2*z**4/16)) def _eval_aseries(self, n, args0, x, logx): from sympy import Order point = args0[0] # Expansion at oo if point in [S.Infinity, -S.Infinity]: z = self.args[0] # expansion of C(x) = C1(x*sqrt(pi/2)), see reference[5] page 1-8 # as only real infinities are dealt with, sin and cos are O(1) p = [(-1)**k * factorial(4*k + 1) / (2**(2*k + 2) * z**(4*k + 3) * 2**(2*k)*factorial(2*k)) for k in range(0, n) if 4*k + 3 < n] q = [1/(2*z)] + [(-1)**k * factorial(4*k - 1) / (2**(2*k + 1) * z**(4*k + 1) * 2**(2*k - 1)*factorial(2*k - 1)) for k in range(1, n) if 4*k + 1 < n] p = [-sqrt(2/pi)*t for t in p] q = [ sqrt(2/pi)*t for t in q] s = 1 if point is S.Infinity else -1 # The expansion at oo is 1/2 + some odd powers of z # To get the expansion at -oo, replace z by -z and flip the sign # The result -1/2 + the same odd powers of z as before. return s*S.Half + (cos(z**2)*Add(*p) + sin(z**2)*Add(*q) ).subs(x, sqrt(2/pi)*x) + Order(1/z**n, x) # All other points are not handled return super(fresnelc, self)._eval_aseries(n, args0, x, logx) ############################################################################### #################### HELPER FUNCTIONS ######################################### ############################################################################### class _erfs(Function): """ Helper function to make the `\\mathrm{erf}(z)` function tractable for the Gruntz algorithm. """ def _eval_aseries(self, n, args0, x, logx): from sympy import Order point = args0[0] # Expansion at oo if point is S.Infinity: z = self.args[0] l = [ 1/sqrt(S.Pi) * factorial(2*k)*(-S( 4))**(-k)/factorial(k) * (1/z)**(2*k + 1) for k in range(0, n) ] o = Order(1/z**(2*n + 1), x) # It is very inefficient to first add the order and then do the nseries return (Add(*l))._eval_nseries(x, n, logx) + o # Expansion at I*oo t = point.extract_multiplicatively(S.ImaginaryUnit) if t is S.Infinity: z = self.args[0] # TODO: is the series really correct? l = [ 1/sqrt(S.Pi) * factorial(2*k)*(-S( 4))**(-k)/factorial(k) * (1/z)**(2*k + 1) for k in range(0, n) ] o = Order(1/z**(2*n + 1), x) # It is very inefficient to first add the order and then do the nseries return (Add(*l))._eval_nseries(x, n, logx) + o # All other points are not handled return super(_erfs, self)._eval_aseries(n, args0, x, logx) def fdiff(self, argindex=1): if argindex == 1: z = self.args[0] return -2/sqrt(S.Pi) + 2*z*_erfs(z) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_intractable(self, z, **kwargs): return (S.One - erf(z))*exp(z**2) class _eis(Function): """ Helper function to make the `\\mathrm{Ei}(z)` and `\\mathrm{li}(z)` functions tractable for the Gruntz algorithm. """ def _eval_aseries(self, n, args0, x, logx): from sympy import Order if args0[0] != S.Infinity: return super(_erfs, self)._eval_aseries(n, args0, x, logx) z = self.args[0] l = [ factorial(k) * (1/z)**(k + 1) for k in range(0, n) ] o = Order(1/z**(n + 1), x) # It is very inefficient to first add the order and then do the nseries return (Add(*l))._eval_nseries(x, n, logx) + o def fdiff(self, argindex=1): if argindex == 1: z = self.args[0] return S.One / z - _eis(z) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_intractable(self, z, **kwargs): return exp(-z)*Ei(z) def _eval_nseries(self, x, n, logx): x0 = self.args[0].limit(x, 0) if x0.is_zero: f = self._eval_rewrite_as_intractable(*self.args) return f._eval_nseries(x, n, logx) return super(_eis, self)._eval_nseries(x, n, logx)
f13ba85c22f41345fd5b55b9fd05c38bd9a24d5b0b44193cd139679896e13f0c
import string from sympy import ( Symbol, symbols, Dummy, S, Sum, Rational, oo, pi, I, floor, limit, expand_func, diff, EulerGamma, cancel, re, im, Product, carmichael, TribonacciConstant) from sympy.functions import ( bernoulli, harmonic, bell, fibonacci, tribonacci, lucas, euler, catalan, genocchi, partition, binomial, gamma, sqrt, cbrt, hyper, log, digamma, trigamma, polygamma, factorial, sin, cos, cot, zeta) from sympy.functions.combinatorial.numbers import _nT from sympy.core.compatibility import range from sympy.core.expr import unchanged from sympy.core.numbers import GoldenRatio, Integer from sympy.utilities.pytest import XFAIL, raises x = Symbol('x') def test_carmichael(): assert carmichael.find_carmichael_numbers_in_range(0, 561) == [] assert carmichael.find_carmichael_numbers_in_range(561, 562) == [561] assert carmichael.find_carmichael_numbers_in_range(561, 1105) == carmichael.find_carmichael_numbers_in_range(561, 562) assert carmichael.find_first_n_carmichaels(5) == [561, 1105, 1729, 2465, 2821] assert carmichael.is_prime(2821) == False assert carmichael.is_prime(2465) == False assert carmichael.is_prime(1729) == False assert carmichael.is_prime(1105) == False assert carmichael.is_prime(561) == False raises(ValueError, lambda: carmichael.is_carmichael(-2)) raises(ValueError, lambda: carmichael.find_carmichael_numbers_in_range(-2, 2)) raises(ValueError, lambda: carmichael.find_carmichael_numbers_in_range(22, 2)) def test_bernoulli(): assert bernoulli(0) == 1 assert bernoulli(1) == Rational(-1, 2) assert bernoulli(2) == Rational(1, 6) assert bernoulli(3) == 0 assert bernoulli(4) == Rational(-1, 30) assert bernoulli(5) == 0 assert bernoulli(6) == Rational(1, 42) assert bernoulli(7) == 0 assert bernoulli(8) == Rational(-1, 30) assert bernoulli(10) == Rational(5, 66) assert bernoulli(1000001) == 0 assert bernoulli(0, x) == 1 assert bernoulli(1, x) == x - S.Half assert bernoulli(2, x) == x**2 - x + Rational(1, 6) assert bernoulli(3, x) == x**3 - (3*x**2)/2 + x/2 # Should be fast; computed with mpmath b = bernoulli(1000) assert b.p % 10**10 == 7950421099 assert b.q == 342999030 b = bernoulli(10**6, evaluate=False).evalf() assert str(b) == '-2.23799235765713e+4767529' # Issue #8527 l = Symbol('l', integer=True) m = Symbol('m', integer=True, nonnegative=True) n = Symbol('n', integer=True, positive=True) assert isinstance(bernoulli(2 * l + 1), bernoulli) assert isinstance(bernoulli(2 * m + 1), bernoulli) assert bernoulli(2 * n + 1) == 0 raises(ValueError, lambda: bernoulli(-2)) def test_fibonacci(): assert [fibonacci(n) for n in range(-3, 5)] == [2, -1, 1, 0, 1, 1, 2, 3] assert fibonacci(100) == 354224848179261915075 assert [lucas(n) for n in range(-3, 5)] == [-4, 3, -1, 2, 1, 3, 4, 7] assert lucas(100) == 792070839848372253127 assert fibonacci(1, x) == 1 assert fibonacci(2, x) == x assert fibonacci(3, x) == x**2 + 1 assert fibonacci(4, x) == x**3 + 2*x # issue #8800 n = Dummy('n') assert fibonacci(n).limit(n, S.Infinity) is S.Infinity assert lucas(n).limit(n, S.Infinity) is S.Infinity assert fibonacci(n).rewrite(sqrt) == \ 2**(-n)*sqrt(5)*((1 + sqrt(5))**n - (-sqrt(5) + 1)**n) / 5 assert fibonacci(n).rewrite(sqrt).subs(n, 10).expand() == fibonacci(10) assert fibonacci(n).rewrite(GoldenRatio).subs(n,10).evalf() == \ fibonacci(10) assert lucas(n).rewrite(sqrt) == \ (fibonacci(n-1).rewrite(sqrt) + fibonacci(n+1).rewrite(sqrt)).simplify() assert lucas(n).rewrite(sqrt).subs(n, 10).expand() == lucas(10) raises(ValueError, lambda: fibonacci(-3, x)) def test_tribonacci(): assert [tribonacci(n) for n in range(8)] == [0, 1, 1, 2, 4, 7, 13, 24] assert tribonacci(100) == 98079530178586034536500564 assert tribonacci(0, x) == 0 assert tribonacci(1, x) == 1 assert tribonacci(2, x) == x**2 assert tribonacci(3, x) == x**4 + x assert tribonacci(4, x) == x**6 + 2*x**3 + 1 assert tribonacci(5, x) == x**8 + 3*x**5 + 3*x**2 n = Dummy('n') assert tribonacci(n).limit(n, S.Infinity) is S.Infinity w = (-1 + S.ImaginaryUnit * sqrt(3)) / 2 a = (1 + cbrt(19 + 3*sqrt(33)) + cbrt(19 - 3*sqrt(33))) / 3 b = (1 + w*cbrt(19 + 3*sqrt(33)) + w**2*cbrt(19 - 3*sqrt(33))) / 3 c = (1 + w**2*cbrt(19 + 3*sqrt(33)) + w*cbrt(19 - 3*sqrt(33))) / 3 assert tribonacci(n).rewrite(sqrt) == \ (a**(n + 1)/((a - b)*(a - c)) + b**(n + 1)/((b - a)*(b - c)) + c**(n + 1)/((c - a)*(c - b))) assert tribonacci(n).rewrite(sqrt).subs(n, 4).simplify() == tribonacci(4) assert tribonacci(n).rewrite(GoldenRatio).subs(n,10).evalf() == \ tribonacci(10) assert tribonacci(n).rewrite(TribonacciConstant) == floor( 3*TribonacciConstant**n*(102*sqrt(33) + 586)**Rational(1, 3)/ (-2*(102*sqrt(33) + 586)**Rational(1, 3) + 4 + (102*sqrt(33) + 586)**Rational(2, 3)) + S.Half) raises(ValueError, lambda: tribonacci(-1, x)) def test_bell(): assert [bell(n) for n in range(8)] == [1, 1, 2, 5, 15, 52, 203, 877] assert bell(0, x) == 1 assert bell(1, x) == x assert bell(2, x) == x**2 + x assert bell(5, x) == x**5 + 10*x**4 + 25*x**3 + 15*x**2 + x assert bell(oo) is S.Infinity raises(ValueError, lambda: bell(oo, x)) raises(ValueError, lambda: bell(-1)) raises(ValueError, lambda: bell(S.Half)) X = symbols('x:6') # X = (x0, x1, .. x5) # at the same time: X[1] = x1, X[2] = x2 for standard readablity. # but we must supply zero-based indexed object X[1:] = (x1, .. x5) assert bell(6, 2, X[1:]) == 6*X[5]*X[1] + 15*X[4]*X[2] + 10*X[3]**2 assert bell( 6, 3, X[1:]) == 15*X[4]*X[1]**2 + 60*X[3]*X[2]*X[1] + 15*X[2]**3 X = (1, 10, 100, 1000, 10000) assert bell(6, 2, X) == (6 + 15 + 10)*10000 X = (1, 2, 3, 3, 5) assert bell(6, 2, X) == 6*5 + 15*3*2 + 10*3**2 X = (1, 2, 3, 5) assert bell(6, 3, X) == 15*5 + 60*3*2 + 15*2**3 # Dobinski's formula n = Symbol('n', integer=True, nonnegative=True) # For large numbers, this is too slow # For nonintegers, there are significant precision errors for i in [0, 2, 3, 7, 13, 42, 55]: assert bell(i).evalf() == bell(n).rewrite(Sum).evalf(subs={n: i}) m = Symbol("m") assert bell(m).rewrite(Sum) == bell(m) assert bell(n, m).rewrite(Sum) == bell(n, m) # issue 9184 n = Dummy('n') assert bell(n).limit(n, S.Infinity) is S.Infinity def test_harmonic(): n = Symbol("n") m = Symbol("m") assert harmonic(n, 0) == n assert harmonic(n).evalf() == harmonic(n) assert harmonic(n, 1) == harmonic(n) assert harmonic(1, n).evalf() == harmonic(1, n) assert harmonic(0, 1) == 0 assert harmonic(1, 1) == 1 assert harmonic(2, 1) == Rational(3, 2) assert harmonic(3, 1) == Rational(11, 6) assert harmonic(4, 1) == Rational(25, 12) assert harmonic(0, 2) == 0 assert harmonic(1, 2) == 1 assert harmonic(2, 2) == Rational(5, 4) assert harmonic(3, 2) == Rational(49, 36) assert harmonic(4, 2) == Rational(205, 144) assert harmonic(0, 3) == 0 assert harmonic(1, 3) == 1 assert harmonic(2, 3) == Rational(9, 8) assert harmonic(3, 3) == Rational(251, 216) assert harmonic(4, 3) == Rational(2035, 1728) assert harmonic(oo, -1) is S.NaN assert harmonic(oo, 0) is oo assert harmonic(oo, S.Half) is oo assert harmonic(oo, 1) is oo assert harmonic(oo, 2) == (pi**2)/6 assert harmonic(oo, 3) == zeta(3) assert harmonic(0, m) == 0 def test_harmonic_rational(): ne = S(6) no = S(5) pe = S(8) po = S(9) qe = S(10) qo = S(13) Heee = harmonic(ne + pe/qe) Aeee = (-log(10) + 2*(Rational(-1, 4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + Rational(5, 8))) + 2*(-sqrt(5)/4 - Rational(1, 4))*log(sqrt(sqrt(5)/8 + Rational(5, 8))) + pi*sqrt(2*sqrt(5)/5 + 1)/2 + Rational(13944145, 4720968)) Heeo = harmonic(ne + pe/qo) Aeeo = (-log(26) + 2*log(sin(pi*Rational(3, 13)))*cos(pi*Rational(4, 13)) + 2*log(sin(pi*Rational(2, 13)))*cos(pi*Rational(32, 13)) + 2*log(sin(pi*Rational(5, 13)))*cos(pi*Rational(80, 13)) - 2*log(sin(pi*Rational(6, 13)))*cos(pi*Rational(5, 13)) - 2*log(sin(pi*Rational(4, 13)))*cos(pi/13) + pi*cot(pi*Rational(5, 13))/2 - 2*log(sin(pi/13))*cos(pi*Rational(3, 13)) + Rational(2422020029, 702257080)) Heoe = harmonic(ne + po/qe) Aeoe = (-log(20) + 2*(Rational(1, 4) + sqrt(5)/4)*log(Rational(-1, 4) + sqrt(5)/4) + 2*(Rational(-1, 4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + Rational(5, 8))) + 2*(-sqrt(5)/4 - Rational(1, 4))*log(sqrt(sqrt(5)/8 + Rational(5, 8))) + 2*(-sqrt(5)/4 + Rational(1, 4))*log(Rational(1, 4) + sqrt(5)/4) + Rational(11818877030, 4286604231) + pi*sqrt(2*sqrt(5) + 5)/2) Heoo = harmonic(ne + po/qo) Aeoo = (-log(26) + 2*log(sin(pi*Rational(3, 13)))*cos(pi*Rational(54, 13)) + 2*log(sin(pi*Rational(4, 13)))*cos(pi*Rational(6, 13)) + 2*log(sin(pi*Rational(6, 13)))*cos(pi*Rational(108, 13)) - 2*log(sin(pi*Rational(5, 13)))*cos(pi/13) - 2*log(sin(pi/13))*cos(pi*Rational(5, 13)) + pi*cot(pi*Rational(4, 13))/2 - 2*log(sin(pi*Rational(2, 13)))*cos(pi*Rational(3, 13)) + Rational(11669332571, 3628714320)) Hoee = harmonic(no + pe/qe) Aoee = (-log(10) + 2*(Rational(-1, 4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + Rational(5, 8))) + 2*(-sqrt(5)/4 - Rational(1, 4))*log(sqrt(sqrt(5)/8 + Rational(5, 8))) + pi*sqrt(2*sqrt(5)/5 + 1)/2 + Rational(779405, 277704)) Hoeo = harmonic(no + pe/qo) Aoeo = (-log(26) + 2*log(sin(pi*Rational(3, 13)))*cos(pi*Rational(4, 13)) + 2*log(sin(pi*Rational(2, 13)))*cos(pi*Rational(32, 13)) + 2*log(sin(pi*Rational(5, 13)))*cos(pi*Rational(80, 13)) - 2*log(sin(pi*Rational(6, 13)))*cos(pi*Rational(5, 13)) - 2*log(sin(pi*Rational(4, 13)))*cos(pi/13) + pi*cot(pi*Rational(5, 13))/2 - 2*log(sin(pi/13))*cos(pi*Rational(3, 13)) + Rational(53857323, 16331560)) Hooe = harmonic(no + po/qe) Aooe = (-log(20) + 2*(Rational(1, 4) + sqrt(5)/4)*log(Rational(-1, 4) + sqrt(5)/4) + 2*(Rational(-1, 4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + Rational(5, 8))) + 2*(-sqrt(5)/4 - Rational(1, 4))*log(sqrt(sqrt(5)/8 + Rational(5, 8))) + 2*(-sqrt(5)/4 + Rational(1, 4))*log(Rational(1, 4) + sqrt(5)/4) + Rational(486853480, 186374097) + pi*sqrt(2*sqrt(5) + 5)/2) Hooo = harmonic(no + po/qo) Aooo = (-log(26) + 2*log(sin(pi*Rational(3, 13)))*cos(pi*Rational(54, 13)) + 2*log(sin(pi*Rational(4, 13)))*cos(pi*Rational(6, 13)) + 2*log(sin(pi*Rational(6, 13)))*cos(pi*Rational(108, 13)) - 2*log(sin(pi*Rational(5, 13)))*cos(pi/13) - 2*log(sin(pi/13))*cos(pi*Rational(5, 13)) + pi*cot(pi*Rational(4, 13))/2 - 2*log(sin(pi*Rational(2, 13)))*cos(3*pi/13) + Rational(383693479, 125128080)) H = [Heee, Heeo, Heoe, Heoo, Hoee, Hoeo, Hooe, Hooo] A = [Aeee, Aeeo, Aeoe, Aeoo, Aoee, Aoeo, Aooe, Aooo] for h, a in zip(H, A): e = expand_func(h).doit() assert cancel(e/a) == 1 assert abs(h.n() - a.n()) < 1e-12 def test_harmonic_evalf(): assert str(harmonic(1.5).evalf(n=10)) == '1.280372306' assert str(harmonic(1.5, 2).evalf(n=10)) == '1.154576311' # issue 7443 def test_harmonic_rewrite(): n = Symbol("n") m = Symbol("m") assert harmonic(n).rewrite(digamma) == polygamma(0, n + 1) + EulerGamma assert harmonic(n).rewrite(trigamma) == polygamma(0, n + 1) + EulerGamma assert harmonic(n).rewrite(polygamma) == polygamma(0, n + 1) + EulerGamma assert harmonic(n,3).rewrite(polygamma) == polygamma(2, n + 1)/2 - polygamma(2, 1)/2 assert harmonic(n,m).rewrite(polygamma) == (-1)**m*(polygamma(m - 1, 1) - polygamma(m - 1, n + 1))/factorial(m - 1) assert expand_func(harmonic(n+4)) == harmonic(n) + 1/(n + 4) + 1/(n + 3) + 1/(n + 2) + 1/(n + 1) assert expand_func(harmonic(n-4)) == harmonic(n) - 1/(n - 1) - 1/(n - 2) - 1/(n - 3) - 1/n assert harmonic(n, m).rewrite("tractable") == harmonic(n, m).rewrite(polygamma) _k = Dummy("k") assert harmonic(n).rewrite(Sum).dummy_eq(Sum(1/_k, (_k, 1, n))) assert harmonic(n, m).rewrite(Sum).dummy_eq(Sum(_k**(-m), (_k, 1, n))) @XFAIL def test_harmonic_limit_fail(): n = Symbol("n") m = Symbol("m") # For m > 1: assert limit(harmonic(n, m), n, oo) == zeta(m) def test_euler(): assert euler(0) == 1 assert euler(1) == 0 assert euler(2) == -1 assert euler(3) == 0 assert euler(4) == 5 assert euler(6) == -61 assert euler(8) == 1385 assert euler(20, evaluate=False) != 370371188237525 n = Symbol('n', integer=True) assert euler(n) != -1 assert euler(n).subs(n, 2) == -1 raises(ValueError, lambda: euler(-2)) raises(ValueError, lambda: euler(-3)) raises(ValueError, lambda: euler(2.3)) assert euler(20).evalf() == 370371188237525.0 assert euler(20, evaluate=False).evalf() == 370371188237525.0 assert euler(n).rewrite(Sum) == euler(n) n = Symbol('n', integer=True, nonnegative=True) assert euler(2*n + 1).rewrite(Sum) == 0 _j = Dummy('j') _k = Dummy('k') assert euler(2*n).rewrite(Sum).dummy_eq( I*Sum((-1)**_j*2**(-_k)*I**(-_k)*(-2*_j + _k)**(2*n + 1)* binomial(_k, _j)/_k, (_j, 0, _k), (_k, 1, 2*n + 1))) def test_euler_odd(): n = Symbol('n', odd=True, positive=True) assert euler(n) == 0 n = Symbol('n', odd=True) assert euler(n) != 0 def test_euler_polynomials(): assert euler(0, x) == 1 assert euler(1, x) == x - S.Half assert euler(2, x) == x**2 - x assert euler(3, x) == x**3 - (3*x**2)/2 + Rational(1, 4) m = Symbol('m') assert isinstance(euler(m, x), euler) from sympy import Float A = Float('-0.46237208575048694923364757452876131e8') # from Maple B = euler(19, S.Pi.evalf(32)) assert abs((A - B)/A) < 1e-31 # expect low relative error C = euler(19, S.Pi, evaluate=False).evalf(32) assert abs((A - C)/A) < 1e-31 def test_euler_polynomial_rewrite(): m = Symbol('m') A = euler(m, x).rewrite('Sum'); assert A.subs({m:3, x:5}).doit() == euler(3, 5) def test_catalan(): n = Symbol('n', integer=True) m = Symbol('m', integer=True, positive=True) k = Symbol('k', integer=True, nonnegative=True) p = Symbol('p', nonnegative=True) catalans = [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786] for i, c in enumerate(catalans): assert catalan(i) == c assert catalan(n).rewrite(factorial).subs(n, i) == c assert catalan(n).rewrite(Product).subs(n, i).doit() == c assert unchanged(catalan, x) assert catalan(2*x).rewrite(binomial) == binomial(4*x, 2*x)/(2*x + 1) assert catalan(S.Half).rewrite(gamma) == 8/(3*pi) assert catalan(S.Half).rewrite(factorial).rewrite(gamma) ==\ 8 / (3 * pi) assert catalan(3*x).rewrite(gamma) == 4**( 3*x)*gamma(3*x + S.Half)/(sqrt(pi)*gamma(3*x + 2)) assert catalan(x).rewrite(hyper) == hyper((-x + 1, -x), (2,), 1) assert catalan(n).rewrite(factorial) == factorial(2*n) / (factorial(n + 1) * factorial(n)) assert isinstance(catalan(n).rewrite(Product), catalan) assert isinstance(catalan(m).rewrite(Product), Product) assert diff(catalan(x), x) == (polygamma( 0, x + S.Half) - polygamma(0, x + 2) + log(4))*catalan(x) assert catalan(x).evalf() == catalan(x) c = catalan(S.Half).evalf() assert str(c) == '0.848826363156775' c = catalan(I).evalf(3) assert str((re(c), im(c))) == '(0.398, -0.0209)' # Assumptions assert catalan(p).is_positive is True assert catalan(k).is_integer is True assert catalan(m+3).is_composite is True def test_genocchi(): genocchis = [1, -1, 0, 1, 0, -3, 0, 17] for n, g in enumerate(genocchis): assert genocchi(n + 1) == g m = Symbol('m', integer=True) n = Symbol('n', integer=True, positive=True) assert unchanged(genocchi, m) assert genocchi(2*n + 1) == 0 assert genocchi(n).rewrite(bernoulli) == (1 - 2 ** n) * bernoulli(n) * 2 assert genocchi(2 * n).is_odd assert genocchi(2 * n).is_even is False assert genocchi(2 * n + 1).is_even assert genocchi(n).is_integer assert genocchi(4 * n).is_positive # these are the only 2 prime Genocchi numbers assert genocchi(6, evaluate=False).is_prime == S(-3).is_prime assert genocchi(8, evaluate=False).is_prime assert genocchi(4 * n + 2).is_negative assert genocchi(4 * n + 1).is_negative is False assert genocchi(4 * n - 2).is_negative raises(ValueError, lambda: genocchi(Rational(5, 4))) raises(ValueError, lambda: genocchi(-2)) def test_partition(): partition_nums = [1, 1, 2, 3, 5, 7, 11, 15, 22] for n, p in enumerate(partition_nums): assert partition(n) == p x = Symbol('x') y = Symbol('y', real=True) m = Symbol('m', integer=True) n = Symbol('n', integer=True, negative=True) p = Symbol('p', integer=True, nonnegative=True) assert partition(m).is_integer assert not partition(m).is_negative assert partition(m).is_nonnegative assert partition(n).is_zero assert partition(p).is_positive assert partition(x).subs(x, 7) == 15 assert partition(y).subs(y, 8) == 22 raises(ValueError, lambda: partition(Rational(5, 4))) def test__nT(): assert [_nT(i, j) for i in range(5) for j in range(i + 2)] == [ 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 1, 1, 0] check = [_nT(10, i) for i in range(11)] assert check == [0, 1, 5, 8, 9, 7, 5, 3, 2, 1, 1] assert all(type(i) is int for i in check) assert _nT(10, 5) == 7 assert _nT(100, 98) == 2 assert _nT(100, 100) == 1 assert _nT(10, 3) == 8 def test_nC_nP_nT(): from sympy.utilities.iterables import ( multiset_permutations, multiset_combinations, multiset_partitions, partitions, subsets, permutations) from sympy.functions.combinatorial.numbers import ( nP, nC, nT, stirling, _stirling1, _stirling2, _multiset_histogram, _AOP_product) from sympy.combinatorics.permutations import Permutation from sympy.core.numbers import oo from random import choice c = string.ascii_lowercase for i in range(100): s = ''.join(choice(c) for i in range(7)) u = len(s) == len(set(s)) try: tot = 0 for i in range(8): check = nP(s, i) tot += check assert len(list(multiset_permutations(s, i))) == check if u: assert nP(len(s), i) == check assert nP(s) == tot except AssertionError: print(s, i, 'failed perm test') raise ValueError() for i in range(100): s = ''.join(choice(c) for i in range(7)) u = len(s) == len(set(s)) try: tot = 0 for i in range(8): check = nC(s, i) tot += check assert len(list(multiset_combinations(s, i))) == check if u: assert nC(len(s), i) == check assert nC(s) == tot if u: assert nC(len(s)) == tot except AssertionError: print(s, i, 'failed combo test') raise ValueError() for i in range(1, 10): tot = 0 for j in range(1, i + 2): check = nT(i, j) assert check.is_Integer tot += check assert sum(1 for p in partitions(i, j, size=True) if p[0] == j) == check assert nT(i) == tot for i in range(1, 10): tot = 0 for j in range(1, i + 2): check = nT(range(i), j) tot += check assert len(list(multiset_partitions(list(range(i)), j))) == check assert nT(range(i)) == tot for i in range(100): s = ''.join(choice(c) for i in range(7)) u = len(s) == len(set(s)) try: tot = 0 for i in range(1, 8): check = nT(s, i) tot += check assert len(list(multiset_partitions(s, i))) == check if u: assert nT(range(len(s)), i) == check if u: assert nT(range(len(s))) == tot assert nT(s) == tot except AssertionError: print(s, i, 'failed partition test') raise ValueError() # tests for Stirling numbers of the first kind that are not tested in the # above assert [stirling(9, i, kind=1) for i in range(11)] == [ 0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 0] perms = list(permutations(range(4))) assert [sum(1 for p in perms if Permutation(p).cycles == i) for i in range(5)] == [0, 6, 11, 6, 1] == [ stirling(4, i, kind=1) for i in range(5)] # http://oeis.org/A008275 assert [stirling(n, k, signed=1) for n in range(10) for k in range(1, n + 1)] == [ 1, -1, 1, 2, -3, 1, -6, 11, -6, 1, 24, -50, 35, -10, 1, -120, 274, -225, 85, -15, 1, 720, -1764, 1624, -735, 175, -21, 1, -5040, 13068, -13132, 6769, -1960, 322, -28, 1, 40320, -109584, 118124, -67284, 22449, -4536, 546, -36, 1] # https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind assert [stirling(n, k, kind=1) for n in range(10) for k in range(n+1)] == [ 1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 6, 11, 6, 1, 0, 24, 50, 35, 10, 1, 0, 120, 274, 225, 85, 15, 1, 0, 720, 1764, 1624, 735, 175, 21, 1, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1] # https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind assert [stirling(n, k, kind=2) for n in range(10) for k in range(n+1)] == [ 1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 6, 1, 0, 1, 15, 25, 10, 1, 0, 1, 31, 90, 65, 15, 1, 0, 1, 63, 301, 350, 140, 21, 1, 0, 1, 127, 966, 1701, 1050, 266, 28, 1, 0, 1, 255, 3025, 7770, 6951, 2646, 462, 36, 1] assert stirling(3, 4, kind=1) == stirling(3, 4, kind=1) == 0 raises(ValueError, lambda: stirling(-2, 2)) # Assertion that the return type is SymPy Integer. assert isinstance(_stirling1(6, 3), Integer) assert isinstance(_stirling2(6, 3), Integer) def delta(p): if len(p) == 1: return oo return min(abs(i[0] - i[1]) for i in subsets(p, 2)) parts = multiset_partitions(range(5), 3) d = 2 assert (sum(1 for p in parts if all(delta(i) >= d for i in p)) == stirling(5, 3, d=d) == 7) # other coverage tests assert nC('abb', 2) == nC('aab', 2) == 2 assert nP(3, 3, replacement=True) == nP('aabc', 3, replacement=True) == 27 assert nP(3, 4) == 0 assert nP('aabc', 5) == 0 assert nC(4, 2, replacement=True) == nC('abcdd', 2, replacement=True) == \ len(list(multiset_combinations('aabbccdd', 2))) == 10 assert nC('abcdd') == sum(nC('abcdd', i) for i in range(6)) == 24 assert nC(list('abcdd'), 4) == 4 assert nT('aaaa') == nT(4) == len(list(partitions(4))) == 5 assert nT('aaab') == len(list(multiset_partitions('aaab'))) == 7 assert nC('aabb'*3, 3) == 4 # aaa, bbb, abb, baa assert dict(_AOP_product((4,1,1,1))) == { 0: 1, 1: 4, 2: 7, 3: 8, 4: 8, 5: 7, 6: 4, 7: 1} # the following was the first t that showed a problem in a previous form of # the function, so it's not as random as it may appear t = (3, 9, 4, 6, 6, 5, 5, 2, 10, 4) assert sum(_AOP_product(t)[i] for i in range(55)) == 58212000 raises(ValueError, lambda: _multiset_histogram({1:'a'})) def test_PR_14617(): from sympy.functions.combinatorial.numbers import nT for n in (0, []): for k in (-1, 0, 1): if k == 0: assert nT(n, k) == 1 else: assert nT(n, k) == 0 def test_issue_8496(): n = Symbol("n") k = Symbol("k") raises(TypeError, lambda: catalan(n, k)) def test_issue_8601(): n = Symbol('n', integer=True, negative=True) assert catalan(n - 1) is S.Zero assert catalan(Rational(-1, 2)) is S.ComplexInfinity assert catalan(-S.One) == Rational(-1, 2) c1 = catalan(-5.6).evalf() assert str(c1) == '6.93334070531408e-5' c2 = catalan(-35.4).evalf() assert str(c2) == '-4.14189164517449e-24'
e5804a8fea4bb88f1938b6af5f8a1e90faa3eeb12d820487c564795d4e9a95db
from sympy import (symbols, Symbol, sinh, nan, oo, zoo, pi, asinh, acosh, log, sqrt, coth, I, cot, E, tanh, tan, cosh, cos, S, sin, Rational, atanh, acoth, Integer, O, exp, sech, sec, csch, asech, acsch, acos, asin, expand_mul, AccumBounds, im, re) from sympy.core.expr import unchanged from sympy.core.function import ArgumentIndexError from sympy.utilities.pytest import raises def test_sinh(): x, y = symbols('x,y') k = Symbol('k', integer=True) assert sinh(nan) is nan assert sinh(zoo) is nan assert sinh(oo) is oo assert sinh(-oo) is -oo assert sinh(0) == 0 assert unchanged(sinh, 1) assert sinh(-1) == -sinh(1) assert unchanged(sinh, x) assert sinh(-x) == -sinh(x) assert unchanged(sinh, pi) assert sinh(-pi) == -sinh(pi) assert unchanged(sinh, 2**1024 * E) assert sinh(-2**1024 * E) == -sinh(2**1024 * E) assert sinh(pi*I) == 0 assert sinh(-pi*I) == 0 assert sinh(2*pi*I) == 0 assert sinh(-2*pi*I) == 0 assert sinh(-3*10**73*pi*I) == 0 assert sinh(7*10**103*pi*I) == 0 assert sinh(pi*I/2) == I assert sinh(-pi*I/2) == -I assert sinh(pi*I*Rational(5, 2)) == I assert sinh(pi*I*Rational(7, 2)) == -I assert sinh(pi*I/3) == S.Half*sqrt(3)*I assert sinh(pi*I*Rational(-2, 3)) == Rational(-1, 2)*sqrt(3)*I assert sinh(pi*I/4) == S.Half*sqrt(2)*I assert sinh(-pi*I/4) == Rational(-1, 2)*sqrt(2)*I assert sinh(pi*I*Rational(17, 4)) == S.Half*sqrt(2)*I assert sinh(pi*I*Rational(-3, 4)) == Rational(-1, 2)*sqrt(2)*I assert sinh(pi*I/6) == S.Half*I assert sinh(-pi*I/6) == Rational(-1, 2)*I assert sinh(pi*I*Rational(7, 6)) == Rational(-1, 2)*I assert sinh(pi*I*Rational(-5, 6)) == Rational(-1, 2)*I assert sinh(pi*I/105) == sin(pi/105)*I assert sinh(-pi*I/105) == -sin(pi/105)*I assert unchanged(sinh, 2 + 3*I) assert sinh(x*I) == sin(x)*I assert sinh(k*pi*I) == 0 assert sinh(17*k*pi*I) == 0 assert sinh(k*pi*I/2) == sin(k*pi/2)*I assert sinh(x).as_real_imag(deep=False) == (cos(im(x))*sinh(re(x)), sin(im(x))*cosh(re(x))) x = Symbol('x', extended_real=True) assert sinh(x).as_real_imag(deep=False) == (sinh(x), 0) x = Symbol('x', real=True) assert sinh(I*x).is_finite is True assert sinh(x).is_real is True assert sinh(I).is_real is False def test_sinh_series(): x = Symbol('x') assert sinh(x).series(x, 0, 10) == \ x + x**3/6 + x**5/120 + x**7/5040 + x**9/362880 + O(x**10) def test_sinh_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: sinh(x).fdiff(2)) def test_cosh(): x, y = symbols('x,y') k = Symbol('k', integer=True) assert cosh(nan) is nan assert cosh(zoo) is nan assert cosh(oo) is oo assert cosh(-oo) is oo assert cosh(0) == 1 assert unchanged(cosh, 1) assert cosh(-1) == cosh(1) assert unchanged(cosh, x) assert cosh(-x) == cosh(x) assert cosh(pi*I) == cos(pi) assert cosh(-pi*I) == cos(pi) assert unchanged(cosh, 2**1024 * E) assert cosh(-2**1024 * E) == cosh(2**1024 * E) assert cosh(pi*I/2) == 0 assert cosh(-pi*I/2) == 0 assert cosh((-3*10**73 + 1)*pi*I/2) == 0 assert cosh((7*10**103 + 1)*pi*I/2) == 0 assert cosh(pi*I) == -1 assert cosh(-pi*I) == -1 assert cosh(5*pi*I) == -1 assert cosh(8*pi*I) == 1 assert cosh(pi*I/3) == S.Half assert cosh(pi*I*Rational(-2, 3)) == Rational(-1, 2) assert cosh(pi*I/4) == S.Half*sqrt(2) assert cosh(-pi*I/4) == S.Half*sqrt(2) assert cosh(pi*I*Rational(11, 4)) == Rational(-1, 2)*sqrt(2) assert cosh(pi*I*Rational(-3, 4)) == Rational(-1, 2)*sqrt(2) assert cosh(pi*I/6) == S.Half*sqrt(3) assert cosh(-pi*I/6) == S.Half*sqrt(3) assert cosh(pi*I*Rational(7, 6)) == Rational(-1, 2)*sqrt(3) assert cosh(pi*I*Rational(-5, 6)) == Rational(-1, 2)*sqrt(3) assert cosh(pi*I/105) == cos(pi/105) assert cosh(-pi*I/105) == cos(pi/105) assert unchanged(cosh, 2 + 3*I) assert cosh(x*I) == cos(x) assert cosh(k*pi*I) == cos(k*pi) assert cosh(17*k*pi*I) == cos(17*k*pi) assert unchanged(cosh, k*pi) assert cosh(x).as_real_imag(deep=False) == (cos(im(x))*cosh(re(x)), sin(im(x))*sinh(re(x))) x = Symbol('x', extended_real=True) assert cosh(x).as_real_imag(deep=False) == (cosh(x), 0) x = Symbol('x', real=True) assert cosh(I*x).is_finite is True assert cosh(I*x).is_real is True assert cosh(I*2 + 1).is_real is False def test_cosh_series(): x = Symbol('x') assert cosh(x).series(x, 0, 10) == \ 1 + x**2/2 + x**4/24 + x**6/720 + x**8/40320 + O(x**10) def test_cosh_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: cosh(x).fdiff(2)) def test_tanh(): x, y = symbols('x,y') k = Symbol('k', integer=True) assert tanh(nan) is nan assert tanh(zoo) is nan assert tanh(oo) == 1 assert tanh(-oo) == -1 assert tanh(0) == 0 assert unchanged(tanh, 1) assert tanh(-1) == -tanh(1) assert unchanged(tanh, x) assert tanh(-x) == -tanh(x) assert unchanged(tanh, pi) assert tanh(-pi) == -tanh(pi) assert unchanged(tanh, 2**1024 * E) assert tanh(-2**1024 * E) == -tanh(2**1024 * E) assert tanh(pi*I) == 0 assert tanh(-pi*I) == 0 assert tanh(2*pi*I) == 0 assert tanh(-2*pi*I) == 0 assert tanh(-3*10**73*pi*I) == 0 assert tanh(7*10**103*pi*I) == 0 assert tanh(pi*I/2) is zoo assert tanh(-pi*I/2) is zoo assert tanh(pi*I*Rational(5, 2)) is zoo assert tanh(pi*I*Rational(7, 2)) is zoo assert tanh(pi*I/3) == sqrt(3)*I assert tanh(pi*I*Rational(-2, 3)) == sqrt(3)*I assert tanh(pi*I/4) == I assert tanh(-pi*I/4) == -I assert tanh(pi*I*Rational(17, 4)) == I assert tanh(pi*I*Rational(-3, 4)) == I assert tanh(pi*I/6) == I/sqrt(3) assert tanh(-pi*I/6) == -I/sqrt(3) assert tanh(pi*I*Rational(7, 6)) == I/sqrt(3) assert tanh(pi*I*Rational(-5, 6)) == I/sqrt(3) assert tanh(pi*I/105) == tan(pi/105)*I assert tanh(-pi*I/105) == -tan(pi/105)*I assert unchanged(tanh, 2 + 3*I) assert tanh(x*I) == tan(x)*I assert tanh(k*pi*I) == 0 assert tanh(17*k*pi*I) == 0 assert tanh(k*pi*I/2) == tan(k*pi/2)*I assert tanh(x).as_real_imag(deep=False) == (sinh(re(x))*cosh(re(x))/(cos(im(x))**2 + sinh(re(x))**2), sin(im(x))*cos(im(x))/(cos(im(x))**2 + sinh(re(x))**2)) x = Symbol('x', extended_real=True) assert tanh(x).as_real_imag(deep=False) == (tanh(x), 0) assert tanh(I*pi/3 + 1).is_real is False assert tanh(x).is_real is True assert tanh(I*pi*x/2).is_real is None def test_tanh_series(): x = Symbol('x') assert tanh(x).series(x, 0, 10) == \ x - x**3/3 + 2*x**5/15 - 17*x**7/315 + 62*x**9/2835 + O(x**10) def test_tanh_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: tanh(x).fdiff(2)) def test_coth(): x, y = symbols('x,y') k = Symbol('k', integer=True) assert coth(nan) is nan assert coth(zoo) is nan assert coth(oo) == 1 assert coth(-oo) == -1 assert coth(0) is zoo assert unchanged(coth, 1) assert coth(-1) == -coth(1) assert unchanged(coth, x) assert coth(-x) == -coth(x) assert coth(pi*I) == -I*cot(pi) assert coth(-pi*I) == cot(pi)*I assert unchanged(coth, 2**1024 * E) assert coth(-2**1024 * E) == -coth(2**1024 * E) assert coth(pi*I) == -I*cot(pi) assert coth(-pi*I) == I*cot(pi) assert coth(2*pi*I) == -I*cot(2*pi) assert coth(-2*pi*I) == I*cot(2*pi) assert coth(-3*10**73*pi*I) == I*cot(3*10**73*pi) assert coth(7*10**103*pi*I) == -I*cot(7*10**103*pi) assert coth(pi*I/2) == 0 assert coth(-pi*I/2) == 0 assert coth(pi*I*Rational(5, 2)) == 0 assert coth(pi*I*Rational(7, 2)) == 0 assert coth(pi*I/3) == -I/sqrt(3) assert coth(pi*I*Rational(-2, 3)) == -I/sqrt(3) assert coth(pi*I/4) == -I assert coth(-pi*I/4) == I assert coth(pi*I*Rational(17, 4)) == -I assert coth(pi*I*Rational(-3, 4)) == -I assert coth(pi*I/6) == -sqrt(3)*I assert coth(-pi*I/6) == sqrt(3)*I assert coth(pi*I*Rational(7, 6)) == -sqrt(3)*I assert coth(pi*I*Rational(-5, 6)) == -sqrt(3)*I assert coth(pi*I/105) == -cot(pi/105)*I assert coth(-pi*I/105) == cot(pi/105)*I assert unchanged(coth, 2 + 3*I) assert coth(x*I) == -cot(x)*I assert coth(k*pi*I) == -cot(k*pi)*I assert coth(17*k*pi*I) == -cot(17*k*pi)*I assert coth(k*pi*I) == -cot(k*pi)*I assert coth(log(tan(2))) == coth(log(-tan(2))) assert coth(1 + I*pi/2) == tanh(1) assert coth(x).as_real_imag(deep=False) == (sinh(re(x))*cosh(re(x))/(sin(im(x))**2 + sinh(re(x))**2), -sin(im(x))*cos(im(x))/(sin(im(x))**2 + sinh(re(x))**2)) x = Symbol('x', extended_real=True) assert coth(x).as_real_imag(deep=False) == (coth(x), 0) def test_coth_series(): x = Symbol('x') assert coth(x).series(x, 0, 8) == \ 1/x + x/3 - x**3/45 + 2*x**5/945 - x**7/4725 + O(x**8) def test_coth_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: coth(x).fdiff(2)) def test_csch(): x, y = symbols('x,y') k = Symbol('k', integer=True) n = Symbol('n', positive=True) assert csch(nan) is nan assert csch(zoo) is nan assert csch(oo) == 0 assert csch(-oo) == 0 assert csch(0) is zoo assert csch(-1) == -csch(1) assert csch(-x) == -csch(x) assert csch(-pi) == -csch(pi) assert csch(-2**1024 * E) == -csch(2**1024 * E) assert csch(pi*I) is zoo assert csch(-pi*I) is zoo assert csch(2*pi*I) is zoo assert csch(-2*pi*I) is zoo assert csch(-3*10**73*pi*I) is zoo assert csch(7*10**103*pi*I) is zoo assert csch(pi*I/2) == -I assert csch(-pi*I/2) == I assert csch(pi*I*Rational(5, 2)) == -I assert csch(pi*I*Rational(7, 2)) == I assert csch(pi*I/3) == -2/sqrt(3)*I assert csch(pi*I*Rational(-2, 3)) == 2/sqrt(3)*I assert csch(pi*I/4) == -sqrt(2)*I assert csch(-pi*I/4) == sqrt(2)*I assert csch(pi*I*Rational(7, 4)) == sqrt(2)*I assert csch(pi*I*Rational(-3, 4)) == sqrt(2)*I assert csch(pi*I/6) == -2*I assert csch(-pi*I/6) == 2*I assert csch(pi*I*Rational(7, 6)) == 2*I assert csch(pi*I*Rational(-7, 6)) == -2*I assert csch(pi*I*Rational(-5, 6)) == 2*I assert csch(pi*I/105) == -1/sin(pi/105)*I assert csch(-pi*I/105) == 1/sin(pi/105)*I assert csch(x*I) == -1/sin(x)*I assert csch(k*pi*I) is zoo assert csch(17*k*pi*I) is zoo assert csch(k*pi*I/2) == -1/sin(k*pi/2)*I assert csch(n).is_real is True def test_csch_series(): x = Symbol('x') assert csch(x).series(x, 0, 10) == \ 1/ x - x/6 + 7*x**3/360 - 31*x**5/15120 + 127*x**7/604800 \ - 73*x**9/3421440 + O(x**10) def test_csch_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: csch(x).fdiff(2)) def test_sech(): x, y = symbols('x, y') k = Symbol('k', integer=True) n = Symbol('n', positive=True) assert sech(nan) is nan assert sech(zoo) is nan assert sech(oo) == 0 assert sech(-oo) == 0 assert sech(0) == 1 assert sech(-1) == sech(1) assert sech(-x) == sech(x) assert sech(pi*I) == sec(pi) assert sech(-pi*I) == sec(pi) assert sech(-2**1024 * E) == sech(2**1024 * E) assert sech(pi*I/2) is zoo assert sech(-pi*I/2) is zoo assert sech((-3*10**73 + 1)*pi*I/2) is zoo assert sech((7*10**103 + 1)*pi*I/2) is zoo assert sech(pi*I) == -1 assert sech(-pi*I) == -1 assert sech(5*pi*I) == -1 assert sech(8*pi*I) == 1 assert sech(pi*I/3) == 2 assert sech(pi*I*Rational(-2, 3)) == -2 assert sech(pi*I/4) == sqrt(2) assert sech(-pi*I/4) == sqrt(2) assert sech(pi*I*Rational(5, 4)) == -sqrt(2) assert sech(pi*I*Rational(-5, 4)) == -sqrt(2) assert sech(pi*I/6) == 2/sqrt(3) assert sech(-pi*I/6) == 2/sqrt(3) assert sech(pi*I*Rational(7, 6)) == -2/sqrt(3) assert sech(pi*I*Rational(-5, 6)) == -2/sqrt(3) assert sech(pi*I/105) == 1/cos(pi/105) assert sech(-pi*I/105) == 1/cos(pi/105) assert sech(x*I) == 1/cos(x) assert sech(k*pi*I) == 1/cos(k*pi) assert sech(17*k*pi*I) == 1/cos(17*k*pi) assert sech(n).is_real is True def test_sech_series(): x = Symbol('x') assert sech(x).series(x, 0, 10) == \ 1 - x**2/2 + 5*x**4/24 - 61*x**6/720 + 277*x**8/8064 + O(x**10) def test_sech_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: sech(x).fdiff(2)) def test_asinh(): x, y = symbols('x,y') assert unchanged(asinh, x) assert asinh(-x) == -asinh(x) #at specific points assert asinh(nan) is nan assert asinh( 0) == 0 assert asinh(+1) == log(sqrt(2) + 1) assert asinh(-1) == log(sqrt(2) - 1) assert asinh(I) == pi*I/2 assert asinh(-I) == -pi*I/2 assert asinh(I/2) == pi*I/6 assert asinh(-I/2) == -pi*I/6 # at infinites assert asinh(oo) is oo assert asinh(-oo) is -oo assert asinh(I*oo) is oo assert asinh(-I *oo) is -oo assert asinh(zoo) is zoo #properties assert asinh(I *(sqrt(3) - 1)/(2**Rational(3, 2))) == pi*I/12 assert asinh(-I *(sqrt(3) - 1)/(2**Rational(3, 2))) == -pi*I/12 assert asinh(I*(sqrt(5) - 1)/4) == pi*I/10 assert asinh(-I*(sqrt(5) - 1)/4) == -pi*I/10 assert asinh(I*(sqrt(5) + 1)/4) == pi*I*Rational(3, 10) assert asinh(-I*(sqrt(5) + 1)/4) == pi*I*Rational(-3, 10) # Symmetry assert asinh(Rational(-1, 2)) == -asinh(S.Half) # inverse composition assert unchanged(asinh, sinh(Symbol('v1'))) assert asinh(sinh(0, evaluate=False)) == 0 assert asinh(sinh(-3, evaluate=False)) == -3 assert asinh(sinh(2, evaluate=False)) == 2 assert asinh(sinh(I, evaluate=False)) == I assert asinh(sinh(-I, evaluate=False)) == -I assert asinh(sinh(5*I, evaluate=False)) == -2*I*pi + 5*I assert asinh(sinh(15 + 11*I)) == 15 - 4*I*pi + 11*I assert asinh(sinh(-73 + 97*I)) == 73 - 97*I + 31*I*pi assert asinh(sinh(-7 - 23*I)) == 7 - 7*I*pi + 23*I assert asinh(sinh(13 - 3*I)) == -13 - I*pi + 3*I def test_asinh_rewrite(): x = Symbol('x') assert asinh(x).rewrite(log) == log(x + sqrt(x**2 + 1)) def test_asinh_series(): x = Symbol('x') assert asinh(x).series(x, 0, 8) == \ x - x**3/6 + 3*x**5/40 - 5*x**7/112 + O(x**8) t5 = asinh(x).taylor_term(5, x) assert t5 == 3*x**5/40 assert asinh(x).taylor_term(7, x, t5, 0) == -5*x**7/112 def test_asinh_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: asinh(x).fdiff(2)) def test_acosh(): x = Symbol('x') assert unchanged(acosh, -x) #at specific points assert acosh(1) == 0 assert acosh(-1) == pi*I assert acosh(0) == I*pi/2 assert acosh(S.Half) == I*pi/3 assert acosh(Rational(-1, 2)) == pi*I*Rational(2, 3) assert acosh(nan) is nan # at infinites assert acosh(oo) is oo assert acosh(-oo) is oo assert acosh(I*oo) == oo + I*pi/2 assert acosh(-I*oo) == oo - I*pi/2 assert acosh(zoo) is zoo assert acosh(I) == log(I*(1 + sqrt(2))) assert acosh(-I) == log(-I*(1 + sqrt(2))) assert acosh((sqrt(3) - 1)/(2*sqrt(2))) == pi*I*Rational(5, 12) assert acosh(-(sqrt(3) - 1)/(2*sqrt(2))) == pi*I*Rational(7, 12) assert acosh(sqrt(2)/2) == I*pi/4 assert acosh(-sqrt(2)/2) == I*pi*Rational(3, 4) assert acosh(sqrt(3)/2) == I*pi/6 assert acosh(-sqrt(3)/2) == I*pi*Rational(5, 6) assert acosh(sqrt(2 + sqrt(2))/2) == I*pi/8 assert acosh(-sqrt(2 + sqrt(2))/2) == I*pi*Rational(7, 8) assert acosh(sqrt(2 - sqrt(2))/2) == I*pi*Rational(3, 8) assert acosh(-sqrt(2 - sqrt(2))/2) == I*pi*Rational(5, 8) assert acosh((1 + sqrt(3))/(2*sqrt(2))) == I*pi/12 assert acosh(-(1 + sqrt(3))/(2*sqrt(2))) == I*pi*Rational(11, 12) assert acosh((sqrt(5) + 1)/4) == I*pi/5 assert acosh(-(sqrt(5) + 1)/4) == I*pi*Rational(4, 5) assert str(acosh(5*I).n(6)) == '2.31244 + 1.5708*I' assert str(acosh(-5*I).n(6)) == '2.31244 - 1.5708*I' # inverse composition assert unchanged(acosh, Symbol('v1')) assert acosh(cosh(-3, evaluate=False)) == 3 assert acosh(cosh(3, evaluate=False)) == 3 assert acosh(cosh(0, evaluate=False)) == 0 assert acosh(cosh(I, evaluate=False)) == I assert acosh(cosh(-I, evaluate=False)) == I assert acosh(cosh(7*I, evaluate=False)) == -2*I*pi + 7*I assert acosh(cosh(1 + I)) == 1 + I assert acosh(cosh(3 - 3*I)) == 3 - 3*I assert acosh(cosh(-3 + 2*I)) == 3 - 2*I assert acosh(cosh(-5 - 17*I)) == 5 - 6*I*pi + 17*I assert acosh(cosh(-21 + 11*I)) == 21 - 11*I + 4*I*pi assert acosh(cosh(cosh(1) + I)) == cosh(1) + I def test_acosh_rewrite(): x = Symbol('x') assert acosh(x).rewrite(log) == log(x + sqrt(x - 1)*sqrt(x + 1)) def test_acosh_series(): x = Symbol('x') assert acosh(x).series(x, 0, 8) == \ -I*x + pi*I/2 - I*x**3/6 - 3*I*x**5/40 - 5*I*x**7/112 + O(x**8) t5 = acosh(x).taylor_term(5, x) assert t5 == - 3*I*x**5/40 assert acosh(x).taylor_term(7, x, t5, 0) == - 5*I*x**7/112 def test_acosh_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: acosh(x).fdiff(2)) def test_asech(): x = Symbol('x') assert unchanged(asech, -x) # values at fixed points assert asech(1) == 0 assert asech(-1) == pi*I assert asech(0) is oo assert asech(2) == I*pi/3 assert asech(-2) == 2*I*pi / 3 assert asech(nan) is nan # at infinites assert asech(oo) == I*pi/2 assert asech(-oo) == I*pi/2 assert asech(zoo) == I*AccumBounds(-pi/2, pi/2) assert asech(I) == log(1 + sqrt(2)) - I*pi/2 assert asech(-I) == log(1 + sqrt(2)) + I*pi/2 assert asech(sqrt(2) - sqrt(6)) == 11*I*pi / 12 assert asech(sqrt(2 - 2/sqrt(5))) == I*pi / 10 assert asech(-sqrt(2 - 2/sqrt(5))) == 9*I*pi / 10 assert asech(2 / sqrt(2 + sqrt(2))) == I*pi / 8 assert asech(-2 / sqrt(2 + sqrt(2))) == 7*I*pi / 8 assert asech(sqrt(5) - 1) == I*pi / 5 assert asech(1 - sqrt(5)) == 4*I*pi / 5 assert asech(-sqrt(2*(2 + sqrt(2)))) == 5*I*pi / 8 # properties # asech(x) == acosh(1/x) assert asech(sqrt(2)) == acosh(1/sqrt(2)) assert asech(2/sqrt(3)) == acosh(sqrt(3)/2) assert asech(2/sqrt(2 + sqrt(2))) == acosh(sqrt(2 + sqrt(2))/2) assert asech(2) == acosh(S.Half) # asech(x) == I*acos(1/x) # (Note: the exact formula is asech(x) == +/- I*acos(1/x)) assert asech(-sqrt(2)) == I*acos(-1/sqrt(2)) assert asech(-2/sqrt(3)) == I*acos(-sqrt(3)/2) assert asech(-S(2)) == I*acos(Rational(-1, 2)) assert asech(-2/sqrt(2)) == I*acos(-sqrt(2)/2) # sech(asech(x)) / x == 1 assert expand_mul(sech(asech(sqrt(6) - sqrt(2))) / (sqrt(6) - sqrt(2))) == 1 assert expand_mul(sech(asech(sqrt(6) + sqrt(2))) / (sqrt(6) + sqrt(2))) == 1 assert (sech(asech(sqrt(2 + 2/sqrt(5)))) / (sqrt(2 + 2/sqrt(5)))).simplify() == 1 assert (sech(asech(-sqrt(2 + 2/sqrt(5)))) / (-sqrt(2 + 2/sqrt(5)))).simplify() == 1 assert (sech(asech(sqrt(2*(2 + sqrt(2))))) / (sqrt(2*(2 + sqrt(2))))).simplify() == 1 assert expand_mul(sech(asech((1 + sqrt(5)))) / ((1 + sqrt(5)))) == 1 assert expand_mul(sech(asech((-1 - sqrt(5)))) / ((-1 - sqrt(5)))) == 1 assert expand_mul(sech(asech((-sqrt(6) - sqrt(2)))) / ((-sqrt(6) - sqrt(2)))) == 1 # numerical evaluation assert str(asech(5*I).n(6)) == '0.19869 - 1.5708*I' assert str(asech(-5*I).n(6)) == '0.19869 + 1.5708*I' def test_asech_series(): x = Symbol('x') t6 = asech(x).expansion_term(6, x) assert t6 == -5*x**6/96 assert asech(x).expansion_term(8, x, t6, 0) == -35*x**8/1024 def test_asech_rewrite(): x = Symbol('x') assert asech(x).rewrite(log) == log(1/x + sqrt(1/x - 1) * sqrt(1/x + 1)) def test_asech_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: asech(x).fdiff(2)) def test_acsch(): x = Symbol('x') assert unchanged(acsch, x) assert acsch(-x) == -acsch(x) # values at fixed points assert acsch(1) == log(1 + sqrt(2)) assert acsch(-1) == - log(1 + sqrt(2)) assert acsch(0) is zoo assert acsch(2) == log((1+sqrt(5))/2) assert acsch(-2) == - log((1+sqrt(5))/2) assert acsch(I) == - I*pi/2 assert acsch(-I) == I*pi/2 assert acsch(-I*(sqrt(6) + sqrt(2))) == I*pi / 12 assert acsch(I*(sqrt(2) + sqrt(6))) == -I*pi / 12 assert acsch(-I*(1 + sqrt(5))) == I*pi / 10 assert acsch(I*(1 + sqrt(5))) == -I*pi / 10 assert acsch(-I*2 / sqrt(2 - sqrt(2))) == I*pi / 8 assert acsch(I*2 / sqrt(2 - sqrt(2))) == -I*pi / 8 assert acsch(-I*2) == I*pi / 6 assert acsch(I*2) == -I*pi / 6 assert acsch(-I*sqrt(2 + 2/sqrt(5))) == I*pi / 5 assert acsch(I*sqrt(2 + 2/sqrt(5))) == -I*pi / 5 assert acsch(-I*sqrt(2)) == I*pi / 4 assert acsch(I*sqrt(2)) == -I*pi / 4 assert acsch(-I*(sqrt(5)-1)) == 3*I*pi / 10 assert acsch(I*(sqrt(5)-1)) == -3*I*pi / 10 assert acsch(-I*2 / sqrt(3)) == I*pi / 3 assert acsch(I*2 / sqrt(3)) == -I*pi / 3 assert acsch(-I*2 / sqrt(2 + sqrt(2))) == 3*I*pi / 8 assert acsch(I*2 / sqrt(2 + sqrt(2))) == -3*I*pi / 8 assert acsch(-I*sqrt(2 - 2/sqrt(5))) == 2*I*pi / 5 assert acsch(I*sqrt(2 - 2/sqrt(5))) == -2*I*pi / 5 assert acsch(-I*(sqrt(6) - sqrt(2))) == 5*I*pi / 12 assert acsch(I*(sqrt(6) - sqrt(2))) == -5*I*pi / 12 assert acsch(nan) is nan # properties # acsch(x) == asinh(1/x) assert acsch(-I*sqrt(2)) == asinh(I/sqrt(2)) assert acsch(-I*2 / sqrt(3)) == asinh(I*sqrt(3) / 2) # acsch(x) == -I*asin(I/x) assert acsch(-I*sqrt(2)) == -I*asin(-1/sqrt(2)) assert acsch(-I*2 / sqrt(3)) == -I*asin(-sqrt(3)/2) # csch(acsch(x)) / x == 1 assert expand_mul(csch(acsch(-I*(sqrt(6) + sqrt(2)))) / (-I*(sqrt(6) + sqrt(2)))) == 1 assert expand_mul(csch(acsch(I*(1 + sqrt(5)))) / ((I*(1 + sqrt(5))))) == 1 assert (csch(acsch(I*sqrt(2 - 2/sqrt(5)))) / (I*sqrt(2 - 2/sqrt(5)))).simplify() == 1 assert (csch(acsch(-I*sqrt(2 - 2/sqrt(5)))) / (-I*sqrt(2 - 2/sqrt(5)))).simplify() == 1 # numerical evaluation assert str(acsch(5*I+1).n(6)) == '0.0391819 - 0.193363*I' assert str(acsch(-5*I+1).n(6)) == '0.0391819 + 0.193363*I' def test_acsch_infinities(): assert acsch(oo) == 0 assert acsch(-oo) == 0 assert acsch(zoo) == 0 def test_acsch_rewrite(): x = Symbol('x') assert acsch(x).rewrite(log) == log(1/x + sqrt(1/x**2 + 1)) def test_acsch_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: acsch(x).fdiff(2)) def test_atanh(): x = Symbol('x') #at specific points assert atanh(0) == 0 assert atanh(I) == I*pi/4 assert atanh(-I) == -I*pi/4 assert atanh(1) is oo assert atanh(-1) is -oo assert atanh(nan) is nan # at infinites assert atanh(oo) == -I*pi/2 assert atanh(-oo) == I*pi/2 assert atanh(I*oo) == I*pi/2 assert atanh(-I*oo) == -I*pi/2 assert atanh(zoo) == I*AccumBounds(-pi/2, pi/2) #properties assert atanh(-x) == -atanh(x) assert atanh(I/sqrt(3)) == I*pi/6 assert atanh(-I/sqrt(3)) == -I*pi/6 assert atanh(I*sqrt(3)) == I*pi/3 assert atanh(-I*sqrt(3)) == -I*pi/3 assert atanh(I*(1 + sqrt(2))) == pi*I*Rational(3, 8) assert atanh(I*(sqrt(2) - 1)) == pi*I/8 assert atanh(I*(1 - sqrt(2))) == -pi*I/8 assert atanh(-I*(1 + sqrt(2))) == pi*I*Rational(-3, 8) assert atanh(I*sqrt(5 + 2*sqrt(5))) == I*pi*Rational(2, 5) assert atanh(-I*sqrt(5 + 2*sqrt(5))) == I*pi*Rational(-2, 5) assert atanh(I*(2 - sqrt(3))) == pi*I/12 assert atanh(I*(sqrt(3) - 2)) == -pi*I/12 assert atanh(oo) == -I*pi/2 # Symmetry assert atanh(Rational(-1, 2)) == -atanh(S.Half) # inverse composition assert unchanged(atanh, tanh(Symbol('v1'))) assert atanh(tanh(-5, evaluate=False)) == -5 assert atanh(tanh(0, evaluate=False)) == 0 assert atanh(tanh(7, evaluate=False)) == 7 assert atanh(tanh(I, evaluate=False)) == I assert atanh(tanh(-I, evaluate=False)) == -I assert atanh(tanh(-11*I, evaluate=False)) == -11*I + 4*I*pi assert atanh(tanh(3 + I)) == 3 + I assert atanh(tanh(4 + 5*I)) == 4 - 2*I*pi + 5*I assert atanh(tanh(pi/2)) == pi/2 assert atanh(tanh(pi)) == pi assert atanh(tanh(-3 + 7*I)) == -3 - 2*I*pi + 7*I assert atanh(tanh(9 - I*Rational(2, 3))) == 9 - I*Rational(2, 3) assert atanh(tanh(-32 - 123*I)) == -32 - 123*I + 39*I*pi def test_atanh_rewrite(): x = Symbol('x') assert atanh(x).rewrite(log) == (log(1 + x) - log(1 - x)) / 2 def test_atanh_series(): x = Symbol('x') assert atanh(x).series(x, 0, 10) == \ x + x**3/3 + x**5/5 + x**7/7 + x**9/9 + O(x**10) def test_atanh_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: atanh(x).fdiff(2)) def test_acoth(): x = Symbol('x') #at specific points assert acoth(0) == I*pi/2 assert acoth(I) == -I*pi/4 assert acoth(-I) == I*pi/4 assert acoth(1) is oo assert acoth(-1) is -oo assert acoth(nan) is nan # at infinites assert acoth(oo) == 0 assert acoth(-oo) == 0 assert acoth(I*oo) == 0 assert acoth(-I*oo) == 0 assert acoth(zoo) == 0 #properties assert acoth(-x) == -acoth(x) assert acoth(I/sqrt(3)) == -I*pi/3 assert acoth(-I/sqrt(3)) == I*pi/3 assert acoth(I*sqrt(3)) == -I*pi/6 assert acoth(-I*sqrt(3)) == I*pi/6 assert acoth(I*(1 + sqrt(2))) == -pi*I/8 assert acoth(-I*(sqrt(2) + 1)) == pi*I/8 assert acoth(I*(1 - sqrt(2))) == pi*I*Rational(3, 8) assert acoth(I*(sqrt(2) - 1)) == pi*I*Rational(-3, 8) assert acoth(I*sqrt(5 + 2*sqrt(5))) == -I*pi/10 assert acoth(-I*sqrt(5 + 2*sqrt(5))) == I*pi/10 assert acoth(I*(2 + sqrt(3))) == -pi*I/12 assert acoth(-I*(2 + sqrt(3))) == pi*I/12 assert acoth(I*(2 - sqrt(3))) == pi*I*Rational(-5, 12) assert acoth(I*(sqrt(3) - 2)) == pi*I*Rational(5, 12) # Symmetry assert acoth(Rational(-1, 2)) == -acoth(S.Half) def test_acoth_rewrite(): x = Symbol('x') assert acoth(x).rewrite(log) == (log(1 + 1/x) - log(1 - 1/x)) / 2 def test_acoth_series(): x = Symbol('x') assert acoth(x).series(x, 0, 10) == \ I*pi/2 + x + x**3/3 + x**5/5 + x**7/7 + x**9/9 + O(x**10) def test_acoth_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: acoth(x).fdiff(2)) def test_inverses(): x = Symbol('x') assert sinh(x).inverse() == asinh raises(AttributeError, lambda: cosh(x).inverse()) assert tanh(x).inverse() == atanh assert coth(x).inverse() == acoth assert asinh(x).inverse() == sinh assert acosh(x).inverse() == cosh assert atanh(x).inverse() == tanh assert acoth(x).inverse() == coth assert asech(x).inverse() == sech assert acsch(x).inverse() == csch def test_leading_term(): x = Symbol('x') assert cosh(x).as_leading_term(x) == 1 assert coth(x).as_leading_term(x) == 1/x assert acosh(x).as_leading_term(x) == I*pi/2 assert acoth(x).as_leading_term(x) == I*pi/2 for func in [sinh, tanh, asinh, atanh]: assert func(x).as_leading_term(x) == x for func in [sinh, cosh, tanh, coth, asinh, acosh, atanh, acoth]: for arg in (1/x, S.Half): eq = func(arg) assert eq.as_leading_term(x) == eq for func in [csch, sech]: eq = func(S.Half) assert eq.as_leading_term(x) == eq def test_complex(): a, b = symbols('a,b', real=True) z = a + b*I for func in [sinh, cosh, tanh, coth, sech, csch]: assert func(z).conjugate() == func(a - b*I) for deep in [True, False]: assert sinh(z).expand( complex=True, deep=deep) == sinh(a)*cos(b) + I*cosh(a)*sin(b) assert cosh(z).expand( complex=True, deep=deep) == cosh(a)*cos(b) + I*sinh(a)*sin(b) assert tanh(z).expand(complex=True, deep=deep) == sinh(a)*cosh( a)/(cos(b)**2 + sinh(a)**2) + I*sin(b)*cos(b)/(cos(b)**2 + sinh(a)**2) assert coth(z).expand(complex=True, deep=deep) == sinh(a)*cosh( a)/(sin(b)**2 + sinh(a)**2) - I*sin(b)*cos(b)/(sin(b)**2 + sinh(a)**2) assert csch(z).expand(complex=True, deep=deep) == cos(b) * sinh(a) / (sin(b)**2\ *cosh(a)**2 + cos(b)**2 * sinh(a)**2) - I*sin(b) * cosh(a) / (sin(b)**2\ *cosh(a)**2 + cos(b)**2 * sinh(a)**2) assert sech(z).expand(complex=True, deep=deep) == cos(b) * cosh(a) / (sin(b)**2\ *sinh(a)**2 + cos(b)**2 * cosh(a)**2) - I*sin(b) * sinh(a) / (sin(b)**2\ *sinh(a)**2 + cos(b)**2 * cosh(a)**2) def test_complex_2899(): a, b = symbols('a,b', real=True) for deep in [True, False]: for func in [sinh, cosh, tanh, coth]: assert func(a).expand(complex=True, deep=deep) == func(a) def test_simplifications(): x = Symbol('x') assert sinh(asinh(x)) == x assert sinh(acosh(x)) == sqrt(x - 1) * sqrt(x + 1) assert sinh(atanh(x)) == x/sqrt(1 - x**2) assert sinh(acoth(x)) == 1/(sqrt(x - 1) * sqrt(x + 1)) assert cosh(asinh(x)) == sqrt(1 + x**2) assert cosh(acosh(x)) == x assert cosh(atanh(x)) == 1/sqrt(1 - x**2) assert cosh(acoth(x)) == x/(sqrt(x - 1) * sqrt(x + 1)) assert tanh(asinh(x)) == x/sqrt(1 + x**2) assert tanh(acosh(x)) == sqrt(x - 1) * sqrt(x + 1) / x assert tanh(atanh(x)) == x assert tanh(acoth(x)) == 1/x assert coth(asinh(x)) == sqrt(1 + x**2)/x assert coth(acosh(x)) == x/(sqrt(x - 1) * sqrt(x + 1)) assert coth(atanh(x)) == 1/x assert coth(acoth(x)) == x assert csch(asinh(x)) == 1/x assert csch(acosh(x)) == 1/(sqrt(x - 1) * sqrt(x + 1)) assert csch(atanh(x)) == sqrt(1 - x**2)/x assert csch(acoth(x)) == sqrt(x - 1) * sqrt(x + 1) assert sech(asinh(x)) == 1/sqrt(1 + x**2) assert sech(acosh(x)) == 1/x assert sech(atanh(x)) == sqrt(1 - x**2) assert sech(acoth(x)) == sqrt(x - 1) * sqrt(x + 1)/x def test_issue_4136(): assert cosh(asinh(Integer(3)/2)) == sqrt(Integer(13)/4) def test_sinh_rewrite(): x = Symbol('x') assert sinh(x).rewrite(exp) == (exp(x) - exp(-x))/2 \ == sinh(x).rewrite('tractable') assert sinh(x).rewrite(cosh) == -I*cosh(x + I*pi/2) tanh_half = tanh(S.Half*x) assert sinh(x).rewrite(tanh) == 2*tanh_half/(1 - tanh_half**2) coth_half = coth(S.Half*x) assert sinh(x).rewrite(coth) == 2*coth_half/(coth_half**2 - 1) def test_cosh_rewrite(): x = Symbol('x') assert cosh(x).rewrite(exp) == (exp(x) + exp(-x))/2 \ == cosh(x).rewrite('tractable') assert cosh(x).rewrite(sinh) == -I*sinh(x + I*pi/2) tanh_half = tanh(S.Half*x)**2 assert cosh(x).rewrite(tanh) == (1 + tanh_half)/(1 - tanh_half) coth_half = coth(S.Half*x)**2 assert cosh(x).rewrite(coth) == (coth_half + 1)/(coth_half - 1) def test_tanh_rewrite(): x = Symbol('x') assert tanh(x).rewrite(exp) == (exp(x) - exp(-x))/(exp(x) + exp(-x)) \ == tanh(x).rewrite('tractable') assert tanh(x).rewrite(sinh) == I*sinh(x)/sinh(I*pi/2 - x) assert tanh(x).rewrite(cosh) == I*cosh(I*pi/2 - x)/cosh(x) assert tanh(x).rewrite(coth) == 1/coth(x) def test_coth_rewrite(): x = Symbol('x') assert coth(x).rewrite(exp) == (exp(x) + exp(-x))/(exp(x) - exp(-x)) \ == coth(x).rewrite('tractable') assert coth(x).rewrite(sinh) == -I*sinh(I*pi/2 - x)/sinh(x) assert coth(x).rewrite(cosh) == -I*cosh(x)/cosh(I*pi/2 - x) assert coth(x).rewrite(tanh) == 1/tanh(x) def test_csch_rewrite(): x = Symbol('x') assert csch(x).rewrite(exp) == 1 / (exp(x)/2 - exp(-x)/2) \ == csch(x).rewrite('tractable') assert csch(x).rewrite(cosh) == I/cosh(x + I*pi/2) tanh_half = tanh(S.Half*x) assert csch(x).rewrite(tanh) == (1 - tanh_half**2)/(2*tanh_half) coth_half = coth(S.Half*x) assert csch(x).rewrite(coth) == (coth_half**2 - 1)/(2*coth_half) def test_sech_rewrite(): x = Symbol('x') assert sech(x).rewrite(exp) == 1 / (exp(x)/2 + exp(-x)/2) \ == sech(x).rewrite('tractable') assert sech(x).rewrite(sinh) == I/sinh(x + I*pi/2) tanh_half = tanh(S.Half*x)**2 assert sech(x).rewrite(tanh) == (1 - tanh_half)/(1 + tanh_half) coth_half = coth(S.Half*x)**2 assert sech(x).rewrite(coth) == (coth_half - 1)/(coth_half + 1) def test_derivs(): x = Symbol('x') assert coth(x).diff(x) == -sinh(x)**(-2) assert sinh(x).diff(x) == cosh(x) assert cosh(x).diff(x) == sinh(x) assert tanh(x).diff(x) == -tanh(x)**2 + 1 assert csch(x).diff(x) == -coth(x)*csch(x) assert sech(x).diff(x) == -tanh(x)*sech(x) assert acoth(x).diff(x) == 1/(-x**2 + 1) assert asinh(x).diff(x) == 1/sqrt(x**2 + 1) assert acosh(x).diff(x) == 1/sqrt(x**2 - 1) assert atanh(x).diff(x) == 1/(-x**2 + 1) assert asech(x).diff(x) == -1/(x*sqrt(1 - x**2)) assert acsch(x).diff(x) == -1/(x**2*sqrt(1 + x**(-2))) def test_sinh_expansion(): x, y = symbols('x,y') assert sinh(x+y).expand(trig=True) == sinh(x)*cosh(y) + cosh(x)*sinh(y) assert sinh(2*x).expand(trig=True) == 2*sinh(x)*cosh(x) assert sinh(3*x).expand(trig=True).expand() == \ sinh(x)**3 + 3*sinh(x)*cosh(x)**2 def test_cosh_expansion(): x, y = symbols('x,y') assert cosh(x+y).expand(trig=True) == cosh(x)*cosh(y) + sinh(x)*sinh(y) assert cosh(2*x).expand(trig=True) == cosh(x)**2 + sinh(x)**2 assert cosh(3*x).expand(trig=True).expand() == \ 3*sinh(x)**2*cosh(x) + cosh(x)**3 def test_cosh_positive(): # See issue 11721 # cosh(x) is positive for real values of x x = symbols('x') k = symbols('k', real=True) n = symbols('n', integer=True) assert cosh(k).is_positive is True assert cosh(k + 2*n*pi*I).is_positive is True assert cosh(I*pi/4).is_positive is True assert cosh(3*I*pi/4).is_positive is False def test_cosh_nonnegative(): x = symbols('x') k = symbols('k', real=True) n = symbols('n', integer=True) assert cosh(k).is_nonnegative is True assert cosh(k + 2*n*pi*I).is_nonnegative is True assert cosh(I*pi/4).is_nonnegative is True assert cosh(3*I*pi/4).is_nonnegative is False assert cosh(S.Zero).is_nonnegative is True def test_real_assumptions(): z = Symbol('z', real=False) assert sinh(z).is_real is None assert cosh(z).is_real is None assert tanh(z).is_real is None assert sech(z).is_real is None assert csch(z).is_real is None assert coth(z).is_real is None def test_sign_assumptions(): p = Symbol('p', positive=True) n = Symbol('n', negative=True) assert sinh(n).is_negative is True assert sinh(p).is_positive is True assert cosh(n).is_positive is True assert cosh(p).is_positive is True assert tanh(n).is_negative is True assert tanh(p).is_positive is True assert csch(n).is_negative is True assert csch(p).is_positive is True assert sech(n).is_positive is True assert sech(p).is_positive is True assert coth(n).is_negative is True assert coth(p).is_positive is True
035fabe947091dd46600062fdf1b02b50a831d925bd54501d09d5a82168cf100
from sympy.core.containers import Tuple from sympy.core.function import (Function, Lambda, nfloat) from sympy.core.mod import Mod from sympy.core.numbers import (E, I, Rational, oo, pi) from sympy.core.relational import (Eq, Gt, Ne) from sympy.core.singleton import S from sympy.core.symbol import (Dummy, Symbol, symbols) from sympy.functions.elementary.complexes import (Abs, arg, im, re, sign) from sympy.functions.elementary.exponential import (LambertW, exp, log) from sympy.functions.elementary.hyperbolic import (HyperbolicFunction, atanh, sinh, tanh) from sympy.functions.elementary.miscellaneous import sqrt, Min, Max from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import ( TrigonometricFunction, acos, acot, acsc, asec, asin, atan, atan2, cos, cot, csc, sec, sin, tan) from sympy.functions.special.error_functions import (erf, erfc, erfcinv, erfinv) from sympy.logic.boolalg import And from sympy.matrices.dense import MutableDenseMatrix as Matrix from sympy.matrices.immutable import ImmutableDenseMatrix from sympy.polys.polytools import Poly from sympy.polys.rootoftools import CRootOf from sympy.sets.contains import Contains from sympy.sets.conditionset import ConditionSet from sympy.sets.fancysets import ImageSet from sympy.sets.sets import (Complement, EmptySet, FiniteSet, Intersection, Interval, Union, imageset, ProductSet) from sympy.tensor.indexed import Indexed from sympy.utilities.iterables import numbered_symbols from sympy.utilities.pytest import XFAIL, raises, skip, slow, SKIP from sympy.utilities.randtest import verify_numerically as tn from sympy.physics.units import cm from sympy.solvers.solveset import ( solveset_real, domain_check, solveset_complex, linear_eq_to_matrix, linsolve, _is_function_class_equation, invert_real, invert_complex, solveset, solve_decomposition, substitution, nonlinsolve, solvify, _is_finite_with_finite_vars, _transolve, _is_exponential, _solve_exponential, _is_logarithmic, _solve_logarithm, _term_factors, _is_modular) a = Symbol('a', real=True) b = Symbol('b', real=True) c = Symbol('c', real=True) x = Symbol('x', real=True) y = Symbol('y', real=True) z = Symbol('z', real=True) q = Symbol('q', real=True) m = Symbol('m', real=True) n = Symbol('n', real=True) def test_invert_real(): x = Symbol('x', real=True) y = Symbol('y') n = Symbol('n') def ireal(x, s=S.Reals): return Intersection(s, x) # issue 14223 assert invert_real(x, 0, x, Interval(1, 2)) == (x, S.EmptySet) assert invert_real(exp(x), y, x) == (x, ireal(FiniteSet(log(y)))) y = Symbol('y', positive=True) n = Symbol('n', real=True) assert invert_real(x + 3, y, x) == (x, FiniteSet(y - 3)) assert invert_real(x*3, y, x) == (x, FiniteSet(y / 3)) assert invert_real(exp(x), y, x) == (x, FiniteSet(log(y))) assert invert_real(exp(3*x), y, x) == (x, FiniteSet(log(y) / 3)) assert invert_real(exp(x + 3), y, x) == (x, FiniteSet(log(y) - 3)) assert invert_real(exp(x) + 3, y, x) == (x, ireal(FiniteSet(log(y - 3)))) assert invert_real(exp(x)*3, y, x) == (x, FiniteSet(log(y / 3))) assert invert_real(log(x), y, x) == (x, FiniteSet(exp(y))) assert invert_real(log(3*x), y, x) == (x, FiniteSet(exp(y) / 3)) assert invert_real(log(x + 3), y, x) == (x, FiniteSet(exp(y) - 3)) assert invert_real(Abs(x), y, x) == (x, FiniteSet(y, -y)) assert invert_real(2**x, y, x) == (x, FiniteSet(log(y)/log(2))) assert invert_real(2**exp(x), y, x) == (x, ireal(FiniteSet(log(log(y)/log(2))))) assert invert_real(x**2, y, x) == (x, FiniteSet(sqrt(y), -sqrt(y))) assert invert_real(x**S.Half, y, x) == (x, FiniteSet(y**2)) raises(ValueError, lambda: invert_real(x, x, x)) raises(ValueError, lambda: invert_real(x**pi, y, x)) raises(ValueError, lambda: invert_real(S.One, y, x)) assert invert_real(x**31 + x, y, x) == (x**31 + x, FiniteSet(y)) lhs = x**31 + x base_values = FiniteSet(y - 1, -y - 1) assert invert_real(Abs(x**31 + x + 1), y, x) == (lhs, base_values) assert invert_real(sin(x), y, x) == \ (x, imageset(Lambda(n, n*pi + (-1)**n*asin(y)), S.Integers)) assert invert_real(sin(exp(x)), y, x) == \ (x, imageset(Lambda(n, log((-1)**n*asin(y) + n*pi)), S.Integers)) assert invert_real(csc(x), y, x) == \ (x, imageset(Lambda(n, n*pi + (-1)**n*acsc(y)), S.Integers)) assert invert_real(csc(exp(x)), y, x) == \ (x, imageset(Lambda(n, log((-1)**n*acsc(y) + n*pi)), S.Integers)) assert invert_real(cos(x), y, x) == \ (x, Union(imageset(Lambda(n, 2*n*pi + acos(y)), S.Integers), \ imageset(Lambda(n, 2*n*pi - acos(y)), S.Integers))) assert invert_real(cos(exp(x)), y, x) == \ (x, Union(imageset(Lambda(n, log(2*n*pi + acos(y))), S.Integers), \ imageset(Lambda(n, log(2*n*pi - acos(y))), S.Integers))) assert invert_real(sec(x), y, x) == \ (x, Union(imageset(Lambda(n, 2*n*pi + asec(y)), S.Integers), \ imageset(Lambda(n, 2*n*pi - asec(y)), S.Integers))) assert invert_real(sec(exp(x)), y, x) == \ (x, Union(imageset(Lambda(n, log(2*n*pi + asec(y))), S.Integers), \ imageset(Lambda(n, log(2*n*pi - asec(y))), S.Integers))) assert invert_real(tan(x), y, x) == \ (x, imageset(Lambda(n, n*pi + atan(y)), S.Integers)) assert invert_real(tan(exp(x)), y, x) == \ (x, imageset(Lambda(n, log(n*pi + atan(y))), S.Integers)) assert invert_real(cot(x), y, x) == \ (x, imageset(Lambda(n, n*pi + acot(y)), S.Integers)) assert invert_real(cot(exp(x)), y, x) == \ (x, imageset(Lambda(n, log(n*pi + acot(y))), S.Integers)) assert invert_real(tan(tan(x)), y, x) == \ (tan(x), imageset(Lambda(n, n*pi + atan(y)), S.Integers)) x = Symbol('x', positive=True) assert invert_real(x**pi, y, x) == (x, FiniteSet(y**(1/pi))) def test_invert_complex(): assert invert_complex(x + 3, y, x) == (x, FiniteSet(y - 3)) assert invert_complex(x*3, y, x) == (x, FiniteSet(y / 3)) assert invert_complex(exp(x), y, x) == \ (x, imageset(Lambda(n, I*(2*pi*n + arg(y)) + log(Abs(y))), S.Integers)) assert invert_complex(log(x), y, x) == (x, FiniteSet(exp(y))) raises(ValueError, lambda: invert_real(1, y, x)) raises(ValueError, lambda: invert_complex(x, x, x)) raises(ValueError, lambda: invert_complex(x, x, 1)) # https://github.com/skirpichev/omg/issues/16 assert invert_complex(sinh(x), 0, x) != (x, FiniteSet(0)) def test_domain_check(): assert domain_check(1/(1 + (1/(x+1))**2), x, -1) is False assert domain_check(x**2, x, 0) is True assert domain_check(x, x, oo) is False assert domain_check(0, x, oo) is False def test_issue_11536(): assert solveset(0**x - 100, x, S.Reals) == S.EmptySet assert solveset(0**x - 1, x, S.Reals) == FiniteSet(0) def test_issue_17479(): import sympy as sb from sympy.solvers.solveset import nonlinsolve x, y, z = sb.symbols("x, y, z") f = (x**2 + y**2)**2 + (x**2 + z**2)**2 - 2*(2*x**2 + y**2 + z**2) fx = sb.diff(f, x) fy = sb.diff(f, y) fz = sb.diff(f, z) sol = nonlinsolve([fx, fy, fz], [x, y, z]) # FIXME: This previously gave 18 solutions and now gives 20 due to fixes # in the handling of intersection of FiniteSets or possibly a small change # to ImageSet._contains. However Using expand I can turn this into 16 # solutions either way: # # >>> len(FiniteSet(*(Tuple(*(expand(w) for w in s)) for s in sol))) # 16 # assert len(sol) == 20 def test_is_function_class_equation(): from sympy.abc import x, a assert _is_function_class_equation(TrigonometricFunction, tan(x), x) is True assert _is_function_class_equation(TrigonometricFunction, tan(x) - 1, x) is True assert _is_function_class_equation(TrigonometricFunction, tan(x) + sin(x), x) is True assert _is_function_class_equation(TrigonometricFunction, tan(x) + sin(x) - a, x) is True assert _is_function_class_equation(TrigonometricFunction, sin(x)*tan(x) + sin(x), x) is True assert _is_function_class_equation(TrigonometricFunction, sin(x)*tan(x + a) + sin(x), x) is True assert _is_function_class_equation(TrigonometricFunction, sin(x)*tan(x*a) + sin(x), x) is True assert _is_function_class_equation(TrigonometricFunction, a*tan(x) - 1, x) is True assert _is_function_class_equation(TrigonometricFunction, tan(x)**2 + sin(x) - 1, x) is True assert _is_function_class_equation(TrigonometricFunction, tan(x) + x, x) is False assert _is_function_class_equation(TrigonometricFunction, tan(x**2), x) is False assert _is_function_class_equation(TrigonometricFunction, tan(x**2) + sin(x), x) is False assert _is_function_class_equation(TrigonometricFunction, tan(x)**sin(x), x) is False assert _is_function_class_equation(TrigonometricFunction, tan(sin(x)) + sin(x), x) is False assert _is_function_class_equation(HyperbolicFunction, tanh(x), x) is True assert _is_function_class_equation(HyperbolicFunction, tanh(x) - 1, x) is True assert _is_function_class_equation(HyperbolicFunction, tanh(x) + sinh(x), x) is True assert _is_function_class_equation(HyperbolicFunction, tanh(x) + sinh(x) - a, x) is True assert _is_function_class_equation(HyperbolicFunction, sinh(x)*tanh(x) + sinh(x), x) is True assert _is_function_class_equation(HyperbolicFunction, sinh(x)*tanh(x + a) + sinh(x), x) is True assert _is_function_class_equation(HyperbolicFunction, sinh(x)*tanh(x*a) + sinh(x), x) is True assert _is_function_class_equation(HyperbolicFunction, a*tanh(x) - 1, x) is True assert _is_function_class_equation(HyperbolicFunction, tanh(x)**2 + sinh(x) - 1, x) is True assert _is_function_class_equation(HyperbolicFunction, tanh(x) + x, x) is False assert _is_function_class_equation(HyperbolicFunction, tanh(x**2), x) is False assert _is_function_class_equation(HyperbolicFunction, tanh(x**2) + sinh(x), x) is False assert _is_function_class_equation(HyperbolicFunction, tanh(x)**sinh(x), x) is False assert _is_function_class_equation(HyperbolicFunction, tanh(sinh(x)) + sinh(x), x) is False def test_garbage_input(): raises(ValueError, lambda: solveset_real([x], x)) assert solveset_real(x, 1) == S.EmptySet assert solveset_real(x - 1, 1) == FiniteSet(x) assert solveset_real(x, pi) == S.EmptySet assert solveset_real(x, x**2) == S.EmptySet raises(ValueError, lambda: solveset_complex([x], x)) assert solveset_complex(x, pi) == S.EmptySet raises(ValueError, lambda: solveset((x, y), x)) raises(ValueError, lambda: solveset(x + 1, S.Reals)) raises(ValueError, lambda: solveset(x + 1, x, 2)) def test_solve_mul(): assert solveset_real((a*x + b)*(exp(x) - 3), x) == \ Union({log(3)}, Intersection({-b/a}, S.Reals)) anz = Symbol('anz', nonzero=True) assert solveset_real((anz*x + b)*(exp(x) - 3), x) == \ FiniteSet(-b/anz, log(3)) assert solveset_real((2*x + 8)*(8 + exp(x)), x) == FiniteSet(S(-4)) assert solveset_real(x/log(x), x) == EmptySet() def test_solve_invert(): assert solveset_real(exp(x) - 3, x) == FiniteSet(log(3)) assert solveset_real(log(x) - 3, x) == FiniteSet(exp(3)) assert solveset_real(3**(x + 2), x) == FiniteSet() assert solveset_real(3**(2 - x), x) == FiniteSet() assert solveset_real(y - b*exp(a/x), x) == Intersection( S.Reals, FiniteSet(a/log(y/b))) # issue 4504 assert solveset_real(2**x - 10, x) == FiniteSet(1 + log(5)/log(2)) def test_errorinverses(): assert solveset_real(erf(x) - S.Half, x) == \ FiniteSet(erfinv(S.Half)) assert solveset_real(erfinv(x) - 2, x) == \ FiniteSet(erf(2)) assert solveset_real(erfc(x) - S.One, x) == \ FiniteSet(erfcinv(S.One)) assert solveset_real(erfcinv(x) - 2, x) == FiniteSet(erfc(2)) def test_solve_polynomial(): assert solveset_real(3*x - 2, x) == FiniteSet(Rational(2, 3)) assert solveset_real(x**2 - 1, x) == FiniteSet(-S.One, S.One) assert solveset_real(x - y**3, x) == FiniteSet(y ** 3) a11, a12, a21, a22, b1, b2 = symbols('a11, a12, a21, a22, b1, b2') assert solveset_real(x**3 - 15*x - 4, x) == FiniteSet( -2 + 3 ** S.Half, S(4), -2 - 3 ** S.Half) assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1) assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4) assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16) assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27) assert len(solveset_real(x**5 + x**3 + 1, x)) == 1 assert len(solveset_real(-2*x**3 + 4*x**2 - 2*x + 6, x)) > 0 assert solveset_real(x**6 + x**4 + I, x) == ConditionSet(x, Eq(x**6 + x**4 + I, 0), S.Reals) def test_return_root_of(): f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20 s = list(solveset_complex(f, x)) for root in s: assert root.func == CRootOf # if one uses solve to get the roots of a polynomial that has a CRootOf # solution, make sure that the use of nfloat during the solve process # doesn't fail. Note: if you want numerical solutions to a polynomial # it is *much* faster to use nroots to get them than to solve the # equation only to get CRootOf solutions which are then numerically # evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather # than [i.n() for i in solve(eq)] to get the numerical roots of eq. assert nfloat(list(solveset_complex(x**5 + 3*x**3 + 7, x))[0], exponent=False) == CRootOf(x**5 + 3*x**3 + 7, 0).n() sol = list(solveset_complex(x**6 - 2*x + 2, x)) assert all(isinstance(i, CRootOf) for i in sol) and len(sol) == 6 f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20 s = list(solveset_complex(f, x)) for root in s: assert root.func == CRootOf s = x**5 + 4*x**3 + 3*x**2 + Rational(7, 4) assert solveset_complex(s, x) == \ FiniteSet(*Poly(s*4, domain='ZZ').all_roots()) # Refer issue #7876 eq = x*(x - 1)**2*(x + 1)*(x**6 - x + 1) assert solveset_complex(eq, x) == \ FiniteSet(-1, 0, 1, CRootOf(x**6 - x + 1, 0), CRootOf(x**6 - x + 1, 1), CRootOf(x**6 - x + 1, 2), CRootOf(x**6 - x + 1, 3), CRootOf(x**6 - x + 1, 4), CRootOf(x**6 - x + 1, 5)) def test__has_rational_power(): from sympy.solvers.solveset import _has_rational_power assert _has_rational_power(sqrt(2), x)[0] is False assert _has_rational_power(x*sqrt(2), x)[0] is False assert _has_rational_power(x**2*sqrt(x), x) == (True, 2) assert _has_rational_power(sqrt(2)*x**Rational(1, 3), x) == (True, 3) assert _has_rational_power(sqrt(x)*x**Rational(1, 3), x) == (True, 6) def test_solveset_sqrt_1(): assert solveset_real(sqrt(5*x + 6) - 2 - x, x) == \ FiniteSet(-S.One, S(2)) assert solveset_real(sqrt(x - 1) - x + 7, x) == FiniteSet(10) assert solveset_real(sqrt(x - 2) - 5, x) == FiniteSet(27) assert solveset_real(sqrt(x) - 2 - 5, x) == FiniteSet(49) assert solveset_real(sqrt(x**3), x) == FiniteSet(0) assert solveset_real(sqrt(x - 1), x) == FiniteSet(1) def test_solveset_sqrt_2(): # http://tutorial.math.lamar.edu/Classes/Alg/SolveRadicalEqns.aspx#Solve_Rad_Ex2_a assert solveset_real(sqrt(2*x - 1) - sqrt(x - 4) - 2, x) == \ FiniteSet(S(5), S(13)) assert solveset_real(sqrt(x + 7) + 2 - sqrt(3 - x), x) == \ FiniteSet(-6) # http://www.purplemath.com/modules/solverad.htm assert solveset_real(sqrt(17*x - sqrt(x**2 - 5)) - 7, x) == \ FiniteSet(3) eq = x + 1 - (x**4 + 4*x**3 - x)**Rational(1, 4) assert solveset_real(eq, x) == FiniteSet(Rational(-1, 2), Rational(-1, 3)) eq = sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4) assert solveset_real(eq, x) == FiniteSet(0) eq = sqrt(x + 4) + sqrt(2*x - 1) - 3*sqrt(x - 1) assert solveset_real(eq, x) == FiniteSet(5) eq = sqrt(x)*sqrt(x - 7) - 12 assert solveset_real(eq, x) == FiniteSet(16) eq = sqrt(x - 3) + sqrt(x) - 3 assert solveset_real(eq, x) == FiniteSet(4) eq = sqrt(2*x**2 - 7) - (3 - x) assert solveset_real(eq, x) == FiniteSet(-S(8), S(2)) # others eq = sqrt(9*x**2 + 4) - (3*x + 2) assert solveset_real(eq, x) == FiniteSet(0) assert solveset_real(sqrt(x - 3) - sqrt(x) - 3, x) == FiniteSet() eq = (2*x - 5)**Rational(1, 3) - 3 assert solveset_real(eq, x) == FiniteSet(16) assert solveset_real(sqrt(x) + sqrt(sqrt(x)) - 4, x) == \ FiniteSet((Rational(-1, 2) + sqrt(17)/2)**4) eq = sqrt(x) - sqrt(x - 1) + sqrt(sqrt(x)) assert solveset_real(eq, x) == FiniteSet() eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5) ans = solveset_real(eq, x) ra = S('''-1484/375 - 4*(-1/2 + sqrt(3)*I/2)*(-12459439/52734375 + 114*sqrt(12657)/78125)**(1/3) - 172564/(140625*(-1/2 + sqrt(3)*I/2)*(-12459439/52734375 + 114*sqrt(12657)/78125)**(1/3))''') rb = Rational(4, 5) assert all(abs(eq.subs(x, i).n()) < 1e-10 for i in (ra, rb)) and \ len(ans) == 2 and \ set([i.n(chop=True) for i in ans]) == \ set([i.n(chop=True) for i in (ra, rb)]) assert solveset_real(sqrt(x) + x**Rational(1, 3) + x**Rational(1, 4), x) == FiniteSet(0) assert solveset_real(x/sqrt(x**2 + 1), x) == FiniteSet(0) eq = (x - y**3)/((y**2)*sqrt(1 - y**2)) assert solveset_real(eq, x) == FiniteSet(y**3) # issue 4497 assert solveset_real(1/(5 + x)**Rational(1, 5) - 9, x) == \ FiniteSet(Rational(-295244, 59049)) @XFAIL def test_solve_sqrt_fail(): # this only works if we check real_root(eq.subs(x, Rational(1, 3))) # but checksol doesn't work like that eq = (x**3 - 3*x**2)**Rational(1, 3) + 1 - x assert solveset_real(eq, x) == FiniteSet(Rational(1, 3)) @slow def test_solve_sqrt_3(): R = Symbol('R') eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1) sol = solveset_complex(eq, R) fset = [Rational(5, 3) + 4*sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3, -sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3 + 40*re(1/((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 + sqrt(30)*sin(atan(3*sqrt(111)/251)/3)/3 + Rational(5, 3) + I*(-sqrt(30)*cos(atan(3*sqrt(111)/251)/3)/3 - sqrt(10)*sin(atan(3*sqrt(111)/251)/3)/3 + 40*im(1/((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9)] cset = [40*re(1/((Rational(-1, 2) + sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 - sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3 - sqrt(30)*sin(atan(3*sqrt(111)/251)/3)/3 + Rational(5, 3) + I*(40*im(1/((Rational(-1, 2) + sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 - sqrt(10)*sin(atan(3*sqrt(111)/251)/3)/3 + sqrt(30)*cos(atan(3*sqrt(111)/251)/3)/3)] assert sol._args[0] == FiniteSet(*fset) assert sol._args[1] == ConditionSet( R, Eq(sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1), 0), FiniteSet(*cset)) # the number of real roots will depend on the value of m: for m=1 there are 4 # and for m=-1 there are none. eq = -sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) + sqrt((-m**2/2 - sqrt( 4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m - sqrt( 4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2) unsolved_object = ConditionSet(q, Eq(sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) - sqrt((-m**2/2 - sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m - sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2), 0), S.Reals) assert solveset_real(eq, q) == unsolved_object def test_solve_polynomial_symbolic_param(): assert solveset_complex((x**2 - 1)**2 - a, x) == \ FiniteSet(sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)), sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a))) # issue 4507 assert solveset_complex(y - b/(1 + a*x), x) == \ FiniteSet((b/y - 1)/a) - FiniteSet(-1/a) # issue 4508 assert solveset_complex(y - b*x/(a + x), x) == \ FiniteSet(-a*y/(y - b)) - FiniteSet(-a) def test_solve_rational(): assert solveset_real(1/x + 1, x) == FiniteSet(-S.One) assert solveset_real(1/exp(x) - 1, x) == FiniteSet(0) assert solveset_real(x*(1 - 5/x), x) == FiniteSet(5) assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2) assert solveset_real((x**2/(7 - x)).diff(x), x) == \ FiniteSet(S.Zero, S(14)) def test_solveset_real_gen_is_pow(): assert solveset_real(sqrt(1) + 1, x) == EmptySet() def test_no_sol(): assert solveset(1 - oo*x) == EmptySet() assert solveset(oo*x, x) == EmptySet() assert solveset(oo*x - oo, x) == EmptySet() assert solveset_real(4, x) == EmptySet() assert solveset_real(exp(x), x) == EmptySet() assert solveset_real(x**2 + 1, x) == EmptySet() assert solveset_real(-3*a/sqrt(x), x) == EmptySet() assert solveset_real(1/x, x) == EmptySet() assert solveset_real(-(1 + x)/(2 + x)**2 + 1/(2 + x), x) == \ EmptySet() def test_sol_zero_real(): assert solveset_real(0, x) == S.Reals assert solveset(0, x, Interval(1, 2)) == Interval(1, 2) assert solveset_real(-x**2 - 2*x + (x + 1)**2 - 1, x) == S.Reals def test_no_sol_rational_extragenous(): assert solveset_real((x/(x + 1) + 3)**(-2), x) == EmptySet() assert solveset_real((x - 1)/(1 + 1/(x - 1)), x) == EmptySet() def test_solve_polynomial_cv_1a(): """ Test for solving on equations that can be converted to a polynomial equation using the change of variable y -> x**Rational(p, q) """ assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1) assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4) assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16) assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27) assert solveset_real(x*(x**(S.One / 3) - 3), x) == \ FiniteSet(S.Zero, S(27)) def test_solveset_real_rational(): """Test solveset_real for rational functions""" assert solveset_real((x - y**3) / ((y**2)*sqrt(1 - y**2)), x) \ == FiniteSet(y**3) # issue 4486 assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2) def test_solveset_real_log(): assert solveset_real(log((x-1)*(x+1)), x) == \ FiniteSet(sqrt(2), -sqrt(2)) def test_poly_gens(): assert solveset_real(4**(2*(x**2) + 2*x) - 8, x) == \ FiniteSet(Rational(-3, 2), S.Half) def test_solve_abs(): x = Symbol('x') n = Dummy('n') raises(ValueError, lambda: solveset(Abs(x) - 1, x)) assert solveset(Abs(x) - n, x, S.Reals) == ConditionSet(x, Contains(n, Interval(0, oo)), {-n, n}) assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2) assert solveset_real(Abs(x) + 2, x) is S.EmptySet assert solveset_real(Abs(x + 3) - 2*Abs(x - 3), x) == \ FiniteSet(1, 9) assert solveset_real(2*Abs(x) - Abs(x - 1), x) == \ FiniteSet(-1, Rational(1, 3)) sol = ConditionSet( x, And( Contains(b, Interval(0, oo)), Contains(a + b, Interval(0, oo)), Contains(a - b, Interval(0, oo))), FiniteSet(-a - b - 3, -a + b - 3, a - b - 3, a + b - 3)) eq = Abs(Abs(x + 3) - a) - b assert invert_real(eq, 0, x)[1] == sol reps = {a: 3, b: 1} eqab = eq.subs(reps) for i in sol.subs(reps): assert not eqab.subs(x, i) assert solveset(Eq(sin(Abs(x)), 1), x, domain=S.Reals) == Union( Intersection(Interval(0, oo), ImageSet(Lambda(n, (-1)**n*pi/2 + n*pi), S.Integers)), Intersection(Interval(-oo, 0), ImageSet(Lambda(n, n*pi - (-1)**(-n)*pi/2), S.Integers))) def test_issue_9565(): assert solveset_real(Abs((x - 1)/(x - 5)) <= Rational(1, 3), x) == Interval(-1, 2) def test_issue_10069(): eq = abs(1/(x - 1)) - 1 > 0 u = Union(Interval.open(0, 1), Interval.open(1, 2)) assert solveset_real(eq, x) == u @XFAIL def test_rewrite_trigh(): # if this import passes then the test below should also pass from sympy import sech assert solveset_real(sinh(x) + sech(x), x) == FiniteSet( 2*atanh(Rational(-1, 2) + sqrt(5)/2 - sqrt(-2*sqrt(5) + 2)/2), 2*atanh(Rational(-1, 2) + sqrt(5)/2 + sqrt(-2*sqrt(5) + 2)/2), 2*atanh(-sqrt(5)/2 - S.Half + sqrt(2 + 2*sqrt(5))/2), 2*atanh(-sqrt(2 + 2*sqrt(5))/2 - sqrt(5)/2 - S.Half)) def test_real_imag_splitting(): a, b = symbols('a b', real=True) assert solveset_real(sqrt(a**2 - b**2) - 3, a) == \ FiniteSet(-sqrt(b**2 + 9), sqrt(b**2 + 9)) assert solveset_real(sqrt(a**2 + b**2) - 3, a) != \ S.EmptySet def test_units(): assert solveset_real(1/x - 1/(2*cm), x) == FiniteSet(2*cm) def test_solve_only_exp_1(): y = Symbol('y', positive=True) assert solveset_real(exp(x) - y, x) == FiniteSet(log(y)) assert solveset_real(exp(x) + exp(-x) - 4, x) == \ FiniteSet(log(-sqrt(3) + 2), log(sqrt(3) + 2)) assert solveset_real(exp(x) + exp(-x) - y, x) != S.EmptySet def test_atan2(): # The .inverse() method on atan2 works only if x.is_real is True and the # second argument is a real constant assert solveset_real(atan2(x, 2) - pi/3, x) == FiniteSet(2*sqrt(3)) def test_piecewise_solveset(): eq = Piecewise((x - 2, Gt(x, 2)), (2 - x, True)) - 3 assert set(solveset_real(eq, x)) == set(FiniteSet(-1, 5)) absxm3 = Piecewise( (x - 3, 0 <= x - 3), (3 - x, 0 > x - 3)) y = Symbol('y', positive=True) assert solveset_real(absxm3 - y, x) == FiniteSet(-y + 3, y + 3) f = Piecewise(((x - 2)**2, x >= 0), (0, True)) assert solveset(f, x, domain=S.Reals) == Union(FiniteSet(2), Interval(-oo, 0, True, True)) assert solveset( Piecewise((x + 1, x > 0), (I, True)) - I, x, S.Reals ) == Interval(-oo, 0) assert solveset(Piecewise((x - 1, Ne(x, I)), (x, True)), x) == FiniteSet(1) def test_solveset_complex_polynomial(): from sympy.abc import x, a, b, c assert solveset_complex(a*x**2 + b*x + c, x) == \ FiniteSet(-b/(2*a) - sqrt(-4*a*c + b**2)/(2*a), -b/(2*a) + sqrt(-4*a*c + b**2)/(2*a)) assert solveset_complex(x - y**3, y) == FiniteSet( (-x**Rational(1, 3))/2 + I*sqrt(3)*x**Rational(1, 3)/2, x**Rational(1, 3), (-x**Rational(1, 3))/2 - I*sqrt(3)*x**Rational(1, 3)/2) assert solveset_complex(x + 1/x - 1, x) == \ FiniteSet(S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2) def test_sol_zero_complex(): assert solveset_complex(0, x) == S.Complexes def test_solveset_complex_rational(): assert solveset_complex((x - 1)*(x - I)/(x - 3), x) == \ FiniteSet(1, I) assert solveset_complex((x - y**3)/((y**2)*sqrt(1 - y**2)), x) == \ FiniteSet(y**3) assert solveset_complex(-x**2 - I, x) == \ FiniteSet(-sqrt(2)/2 + sqrt(2)*I/2, sqrt(2)/2 - sqrt(2)*I/2) def test_solve_quintics(): skip("This test is too slow") f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979 s = solveset_complex(f, x) for root in s: res = f.subs(x, root.n()).n() assert tn(res, 0) f = x**5 + 15*x + 12 s = solveset_complex(f, x) for root in s: res = f.subs(x, root.n()).n() assert tn(res, 0) def test_solveset_complex_exp(): from sympy.abc import x, n assert solveset_complex(exp(x) - 1, x) == \ imageset(Lambda(n, I*2*n*pi), S.Integers) assert solveset_complex(exp(x) - I, x) == \ imageset(Lambda(n, I*(2*n*pi + pi/2)), S.Integers) assert solveset_complex(1/exp(x), x) == S.EmptySet assert solveset_complex(sinh(x).rewrite(exp), x) == \ imageset(Lambda(n, n*pi*I), S.Integers) def test_solveset_real_exp(): from sympy.abc import x, y assert solveset(Eq((-2)**x, 4), x, S.Reals) == FiniteSet(2) assert solveset(Eq(-2**x, 4), x, S.Reals) == S.EmptySet assert solveset(Eq((-3)**x, 27), x, S.Reals) == S.EmptySet assert solveset(Eq((-5)**(x+1), 625), x, S.Reals) == FiniteSet(3) assert solveset(Eq(2**(x-3), -16), x, S.Reals) == S.EmptySet assert solveset(Eq((-3)**(x - 3), -3**39), x, S.Reals) == FiniteSet(42) assert solveset(Eq(2**x, y), x, S.Reals) == Intersection(S.Reals, FiniteSet(log(y)/log(2))) assert invert_real((-2)**(2*x) - 16, 0, x) == (x, FiniteSet(2)) def test_solve_complex_log(): assert solveset_complex(log(x), x) == FiniteSet(1) assert solveset_complex(1 - log(a + 4*x**2), x) == \ FiniteSet(-sqrt(-a + E)/2, sqrt(-a + E)/2) def test_solve_complex_sqrt(): assert solveset_complex(sqrt(5*x + 6) - 2 - x, x) == \ FiniteSet(-S.One, S(2)) assert solveset_complex(sqrt(5*x + 6) - (2 + 2*I) - x, x) == \ FiniteSet(-S(2), 3 - 4*I) assert solveset_complex(4*x*(1 - a * sqrt(x)), x) == \ FiniteSet(S.Zero, 1 / a ** 2) def test_solveset_complex_tan(): s = solveset_complex(tan(x).rewrite(exp), x) assert s == imageset(Lambda(n, pi*n), S.Integers) - \ imageset(Lambda(n, pi*n + pi/2), S.Integers) def test_solve_trig(): from sympy.abc import n assert solveset_real(sin(x), x) == \ Union(imageset(Lambda(n, 2*pi*n), S.Integers), imageset(Lambda(n, 2*pi*n + pi), S.Integers)) assert solveset_real(sin(x) - 1, x) == \ imageset(Lambda(n, 2*pi*n + pi/2), S.Integers) assert solveset_real(cos(x), x) == \ Union(imageset(Lambda(n, 2*pi*n + pi/2), S.Integers), imageset(Lambda(n, 2*pi*n + pi*Rational(3, 2)), S.Integers)) assert solveset_real(sin(x) + cos(x), x) == \ Union(imageset(Lambda(n, 2*n*pi + pi*Rational(3, 4)), S.Integers), imageset(Lambda(n, 2*n*pi + pi*Rational(7, 4)), S.Integers)) assert solveset_real(sin(x)**2 + cos(x)**2, x) == S.EmptySet assert solveset_complex(cos(x) - S.Half, x) == \ Union(imageset(Lambda(n, 2*n*pi + pi*Rational(5, 3)), S.Integers), imageset(Lambda(n, 2*n*pi + pi/3), S.Integers)) y, a = symbols('y,a') assert solveset(sin(y + a) - sin(y), a, domain=S.Reals) == \ Union(ImageSet(Lambda(n, 2*n*pi), S.Integers), Intersection(ImageSet(Lambda(n, -I*(I*( 2*n*pi + arg(-exp(-2*I*y))) + 2*im(y))), S.Integers), S.Reals)) assert solveset_real(sin(2*x)*cos(x) + cos(2*x)*sin(x)-1, x) == \ ImageSet(Lambda(n, n*pi*Rational(2, 3) + pi/6), S.Integers) # Tests for _solve_trig2() function assert solveset_real(2*cos(x)*cos(2*x) - 1, x) == \ Union(ImageSet(Lambda(n, 2*n*pi + 2*atan(sqrt(-2*2**Rational(1, 3)*(67 + 9*sqrt(57))**Rational(2, 3) + 8*2**Rational(2, 3) + 11*(67 + 9*sqrt(57))**Rational(1, 3))/(3*(67 + 9*sqrt(57))**Rational(1, 6)))), S.Integers), ImageSet(Lambda(n, 2*n*pi - 2*atan(sqrt(-2*2**Rational(1, 3)*(67 + 9*sqrt(57))**Rational(2, 3) + 8*2**Rational(2, 3) + 11*(67 + 9*sqrt(57))**Rational(1, 3))/(3*(67 + 9*sqrt(57))**Rational(1, 6))) + 2*pi), S.Integers)) assert solveset_real(2*tan(x)*sin(x) + 1, x) == Union( ImageSet(Lambda(n, 2*n*pi + atan(sqrt(2)*sqrt(-1 +sqrt(17))/ (1 - sqrt(17))) + pi), S.Integers), ImageSet(Lambda(n, 2*n*pi - atan(sqrt(2)*sqrt(-1 + sqrt(17))/ (1 - sqrt(17))) + pi), S.Integers)) assert solveset_real(cos(2*x)*cos(4*x) - 1, x) == \ ImageSet(Lambda(n, n*pi), S.Integers) def test_solve_invalid_sol(): assert 0 not in solveset_real(sin(x)/x, x) assert 0 not in solveset_complex((exp(x) - 1)/x, x) @XFAIL def test_solve_trig_simplified(): from sympy.abc import n assert solveset_real(sin(x), x) == \ imageset(Lambda(n, n*pi), S.Integers) assert solveset_real(cos(x), x) == \ imageset(Lambda(n, n*pi + pi/2), S.Integers) assert solveset_real(cos(x) + sin(x), x) == \ imageset(Lambda(n, n*pi - pi/4), S.Integers) @XFAIL def test_solve_lambert(): assert solveset_real(x*exp(x) - 1, x) == FiniteSet(LambertW(1)) assert solveset_real(exp(x) + x, x) == FiniteSet(-LambertW(1)) assert solveset_real(x + 2**x, x) == \ FiniteSet(-LambertW(log(2))/log(2)) # issue 4739 ans = solveset_real(3*x + 5 + 2**(-5*x + 3), x) assert ans == FiniteSet(Rational(-5, 3) + LambertW(-10240*2**Rational(1, 3)*log(2)/3)/(5*log(2))) eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9) result = solveset_real(eq, x) ans = FiniteSet((log(2401) + 5*LambertW(-log(7**(7*3**Rational(1, 5)/5))))/(3*log(7))/-1) assert result == ans assert solveset_real(eq.expand(), x) == result assert solveset_real(5*x - 1 + 3*exp(2 - 7*x), x) == \ FiniteSet(Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7) assert solveset_real(2*x + 5 + log(3*x - 2), x) == \ FiniteSet(Rational(2, 3) + LambertW(2*exp(Rational(-19, 3))/3)/2) assert solveset_real(3*x + log(4*x), x) == \ FiniteSet(LambertW(Rational(3, 4))/3) assert solveset_real(x**x - 2) == FiniteSet(exp(LambertW(log(2)))) a = Symbol('a') assert solveset_real(-a*x + 2*x*log(x), x) == FiniteSet(exp(a/2)) a = Symbol('a', real=True) assert solveset_real(a/x + exp(x/2), x) == \ FiniteSet(2*LambertW(-a/2)) assert solveset_real((a/x + exp(x/2)).diff(x), x) == \ FiniteSet(4*LambertW(sqrt(2)*sqrt(a)/4)) # coverage test assert solveset_real(tanh(x + 3)*tanh(x - 3) - 1, x) == EmptySet() assert solveset_real((x**2 - 2*x + 1).subs(x, log(x) + 3*x), x) == \ FiniteSet(LambertW(3*S.Exp1)/3) assert solveset_real((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1), x) == \ FiniteSet(LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3) assert solveset_real((x**2 - 2*x - 2).subs(x, log(x) + 3*x), x) == \ FiniteSet(LambertW(3*exp(1 + sqrt(3)))/3, LambertW(3*exp(-sqrt(3) + 1))/3) assert solveset_real(x*log(x) + 3*x + 1, x) == \ FiniteSet(exp(-3 + LambertW(-exp(3)))) eq = (x*exp(x) - 3).subs(x, x*exp(x)) assert solveset_real(eq, x) == \ FiniteSet(LambertW(3*exp(-LambertW(3)))) assert solveset_real(3*log(a**(3*x + 5)) + a**(3*x + 5), x) == \ FiniteSet(-((log(a**5) + LambertW(Rational(1, 3)))/(3*log(a)))) p = symbols('p', positive=True) assert solveset_real(3*log(p**(3*x + 5)) + p**(3*x + 5), x) == \ FiniteSet( log((-3**Rational(1, 3) - 3**Rational(5, 6)*I)*LambertW(Rational(1, 3))**Rational(1, 3)/(2*p**Rational(5, 3)))/log(p), log((-3**Rational(1, 3) + 3**Rational(5, 6)*I)*LambertW(Rational(1, 3))**Rational(1, 3)/(2*p**Rational(5, 3)))/log(p), log((3*LambertW(Rational(1, 3))/p**5)**(1/(3*log(p)))),) # checked numerically # check collection b = Symbol('b') eq = 3*log(a**(3*x + 5)) + b*log(a**(3*x + 5)) + a**(3*x + 5) assert solveset_real(eq, x) == FiniteSet( -((log(a**5) + LambertW(1/(b + 3)))/(3*log(a)))) # issue 4271 assert solveset_real((a/x + exp(x/2)).diff(x, 2), x) == FiniteSet( 6*LambertW((-1)**Rational(1, 3)*a**Rational(1, 3)/3)) assert solveset_real(x**3 - 3**x, x) == \ FiniteSet(-3/log(3)*LambertW(-log(3)/3)) assert solveset_real(3**cos(x) - cos(x)**3) == FiniteSet( acos(-3*LambertW(-log(3)/3)/log(3))) assert solveset_real(x**2 - 2**x, x) == \ solveset_real(-x**2 + 2**x, x) assert solveset_real(3*log(x) - x*log(3)) == FiniteSet( -3*LambertW(-log(3)/3)/log(3), -3*LambertW(-log(3)/3, -1)/log(3)) assert solveset_real(LambertW(2*x) - y) == FiniteSet( y*exp(y)/2) @XFAIL def test_other_lambert(): a = Rational(6, 5) assert solveset_real(x**a - a**x, x) == FiniteSet( a, -a*LambertW(-log(a)/a)/log(a)) def test_solveset(): x = Symbol('x') f = Function('f') raises(ValueError, lambda: solveset(x + y)) assert solveset(x, 1) == S.EmptySet assert solveset(f(1)**2 + y + 1, f(1) ) == FiniteSet(-sqrt(-y - 1), sqrt(-y - 1)) assert solveset(f(1)**2 - 1, f(1), S.Reals) == FiniteSet(-1, 1) assert solveset(f(1)**2 + 1, f(1)) == FiniteSet(-I, I) assert solveset(x - 1, 1) == FiniteSet(x) assert solveset(sin(x) - cos(x), sin(x)) == FiniteSet(cos(x)) assert solveset(0, domain=S.Reals) == S.Reals assert solveset(1) == S.EmptySet assert solveset(True, domain=S.Reals) == S.Reals # issue 10197 assert solveset(False, domain=S.Reals) == S.EmptySet assert solveset(exp(x) - 1, domain=S.Reals) == FiniteSet(0) assert solveset(exp(x) - 1, x, S.Reals) == FiniteSet(0) assert solveset(Eq(exp(x), 1), x, S.Reals) == FiniteSet(0) assert solveset(exp(x) - 1, exp(x), S.Reals) == FiniteSet(1) A = Indexed('A', x) assert solveset(A - 1, A, S.Reals) == FiniteSet(1) assert solveset(x - 1 >= 0, x, S.Reals) == Interval(1, oo) assert solveset(exp(x) - 1 >= 0, x, S.Reals) == Interval(0, oo) assert solveset(exp(x) - 1, x) == imageset(Lambda(n, 2*I*pi*n), S.Integers) assert solveset(Eq(exp(x), 1), x) == imageset(Lambda(n, 2*I*pi*n), S.Integers) # issue 13825 assert solveset(x**2 + f(0) + 1, x) == {-sqrt(-f(0) - 1), sqrt(-f(0) - 1)} def test__solveset_multi(): from sympy.solvers.solveset import _solveset_multi from sympy import Reals # Basic univariate case: from sympy.abc import x assert _solveset_multi([x**2-1], [x], [S.Reals]) == FiniteSet((1,), (-1,)) # Linear systems of two equations from sympy.abc import x, y assert _solveset_multi([x+y, x+1], [x, y], [Reals, Reals]) == FiniteSet((-1, 1)) assert _solveset_multi([x+y, x+1], [y, x], [Reals, Reals]) == FiniteSet((1, -1)) assert _solveset_multi([x+y, x-y-1], [x, y], [Reals, Reals]) == FiniteSet((S(1)/2, -S(1)/2)) assert _solveset_multi([x-1, y-2], [x, y], [Reals, Reals]) == FiniteSet((1, 2)) #assert _solveset_multi([x+y], [x, y], [Reals, Reals]) == ImageSet(Lambda(x, (x, -x)), Reals) assert _solveset_multi([x+y], [x, y], [Reals, Reals]) == Union( ImageSet(Lambda(((x,),), (x, -x)), ProductSet(Reals)), ImageSet(Lambda(((y,),), (-y, y)), ProductSet(Reals))) assert _solveset_multi([x+y, x+y+1], [x, y], [Reals, Reals]) == S.EmptySet assert _solveset_multi([x+y, x-y, x-1], [x, y], [Reals, Reals]) == S.EmptySet assert _solveset_multi([x+y, x-y, x-1], [y, x], [Reals, Reals]) == S.EmptySet # Systems of three equations: from sympy.abc import x, y, z assert _solveset_multi([x+y+z-1, x+y-z-2, x-y-z-3], [x, y, z], [Reals, Reals, Reals]) == FiniteSet((2, -S.Half, -S.Half)) # Nonlinear systems: from sympy.abc import r, theta, z, x, y assert _solveset_multi([x**2+y**2-2, x+y], [x, y], [Reals, Reals]) == FiniteSet((-1, 1), (1, -1)) assert _solveset_multi([x**2-1, y], [x, y], [Reals, Reals]) == FiniteSet((1, 0), (-1, 0)) #assert _solveset_multi([x**2-y**2], [x, y], [Reals, Reals]) == Union( # ImageSet(Lambda(x, (x, -x)), Reals), ImageSet(Lambda(x, (x, x)), Reals)) assert _solveset_multi([x**2-y**2], [x, y], [Reals, Reals]) == Union( ImageSet(Lambda(((x,),), (x, -Abs(x))), ProductSet(Reals)), ImageSet(Lambda(((x,),), (x, Abs(x))), ProductSet(Reals)), ImageSet(Lambda(((y,),), (-Abs(y), y)), ProductSet(Reals)), ImageSet(Lambda(((y,),), (Abs(y), y)), ProductSet(Reals))) assert _solveset_multi([r*cos(theta)-1, r*sin(theta)], [theta, r], [Interval(0, pi), Interval(-1, 1)]) == FiniteSet((0, 1), (pi, -1)) assert _solveset_multi([r*cos(theta)-1, r*sin(theta)], [r, theta], [Interval(0, 1), Interval(0, pi)]) == FiniteSet((1, 0)) #assert _solveset_multi([r*cos(theta)-r, r*sin(theta)], [r, theta], # [Interval(0, 1), Interval(0, pi)]) == ? assert _solveset_multi([r*cos(theta)-r, r*sin(theta)], [r, theta], [Interval(0, 1), Interval(0, pi)]) == Union( ImageSet(Lambda(((r,),), (r, 0)), ImageSet(Lambda(r, (r,)), Interval(0, 1))), ImageSet(Lambda(((theta,),), (0, theta)), ImageSet(Lambda(theta, (theta,)), Interval(0, pi)))) def test_conditionset(): assert solveset(Eq(sin(x)**2 + cos(x)**2, 1), x, domain=S.Reals) == \ ConditionSet(x, True, S.Reals) assert solveset(Eq(x**2 + x*sin(x), 1), x, domain=S.Reals ) == ConditionSet(x, Eq(x**2 + x*sin(x) - 1, 0), S.Reals) assert solveset(Eq(-I*(exp(I*x) - exp(-I*x))/2, 1), x ) == imageset(Lambda(n, 2*n*pi + pi/2), S.Integers) assert solveset(x + sin(x) > 1, x, domain=S.Reals ) == ConditionSet(x, x + sin(x) > 1, S.Reals) assert solveset(Eq(sin(Abs(x)), x), x, domain=S.Reals ) == ConditionSet(x, Eq(-x + sin(Abs(x)), 0), S.Reals) assert solveset(y**x-z, x, S.Reals) == \ ConditionSet(x, Eq(y**x - z, 0), S.Reals) @XFAIL def test_conditionset_equality(): ''' Checking equality of different representations of ConditionSet''' assert solveset(Eq(tan(x), y), x) == ConditionSet(x, Eq(tan(x), y), S.Complexes) def test_solveset_domain(): x = Symbol('x') assert solveset(x**2 - x - 6, x, Interval(0, oo)) == FiniteSet(3) assert solveset(x**2 - 1, x, Interval(0, oo)) == FiniteSet(1) assert solveset(x**4 - 16, x, Interval(0, 10)) == FiniteSet(2) def test_improve_coverage(): from sympy.solvers.solveset import _has_rational_power x = Symbol('x') solution = solveset(exp(x) + sin(x), x, S.Reals) unsolved_object = ConditionSet(x, Eq(exp(x) + sin(x), 0), S.Reals) assert solution == unsolved_object assert _has_rational_power(sin(x)*exp(x) + 1, x) == (False, S.One) assert _has_rational_power((sin(x)**2)*(exp(x) + 1)**3, x) == (False, S.One) def test_issue_9522(): x = Symbol('x') expr1 = Eq(1/(x**2 - 4) + x, 1/(x**2 - 4) + 2) expr2 = Eq(1/x + x, 1/x) assert solveset(expr1, x, S.Reals) == EmptySet() assert solveset(expr2, x, S.Reals) == EmptySet() def test_solvify(): x = Symbol('x') assert solvify(x**2 + 10, x, S.Reals) == [] assert solvify(x**3 + 1, x, S.Complexes) == [-1, S.Half - sqrt(3)*I/2, S.Half + sqrt(3)*I/2] assert solvify(log(x), x, S.Reals) == [1] assert solvify(cos(x), x, S.Reals) == [pi/2, pi*Rational(3, 2)] assert solvify(sin(x) + 1, x, S.Reals) == [pi*Rational(3, 2)] raises(NotImplementedError, lambda: solvify(sin(exp(x)), x, S.Complexes)) def test_abs_invert_solvify(): assert solvify(sin(Abs(x)), x, S.Reals) is None def test_linear_eq_to_matrix(): x, y, z = symbols('x, y, z') a, b, c, d, e, f, g, h, i, j, k, l = symbols('a:l') eqns1 = [2*x + y - 2*z - 3, x - y - z, x + y + 3*z - 12] eqns2 = [Eq(3*x + 2*y - z, 1), Eq(2*x - 2*y + 4*z, -2), -2*x + y - 2*z] A, B = linear_eq_to_matrix(eqns1, x, y, z) assert A == Matrix([[2, 1, -2], [1, -1, -1], [1, 1, 3]]) assert B == Matrix([[3], [0], [12]]) A, B = linear_eq_to_matrix(eqns2, x, y, z) assert A == Matrix([[3, 2, -1], [2, -2, 4], [-2, 1, -2]]) assert B == Matrix([[1], [-2], [0]]) # Pure symbolic coefficients eqns3 = [a*b*x + b*y + c*z - d, e*x + d*x + f*y + g*z - h, i*x + j*y + k*z - l] A, B = linear_eq_to_matrix(eqns3, x, y, z) assert A == Matrix([[a*b, b, c], [d + e, f, g], [i, j, k]]) assert B == Matrix([[d], [h], [l]]) # raise ValueError if # 1) no symbols are given raises(ValueError, lambda: linear_eq_to_matrix(eqns3)) # 2) there are duplicates raises(ValueError, lambda: linear_eq_to_matrix(eqns3, [x, x, y])) # 3) there are non-symbols raises(ValueError, lambda: linear_eq_to_matrix(eqns3, [x, 1/a, y])) # 4) a nonlinear term is detected in the original expression raises(ValueError, lambda: linear_eq_to_matrix(Eq(1/x + x, 1/x))) assert linear_eq_to_matrix(1, x) == (Matrix([[0]]), Matrix([[-1]])) # issue 15195 assert linear_eq_to_matrix(x + y*(z*(3*x + 2) + 3), x) == ( Matrix([[3*y*z + 1]]), Matrix([[-y*(2*z + 3)]])) assert linear_eq_to_matrix(Matrix( [[a*x + b*y - 7], [5*x + 6*y - c]]), x, y) == ( Matrix([[a, b], [5, 6]]), Matrix([[7], [c]])) # issue 15312 assert linear_eq_to_matrix(Eq(x + 2, 1), x) == ( Matrix([[1]]), Matrix([[-1]])) def test_issue_16577(): assert linear_eq_to_matrix(Eq(a*(2*x + 3*y) + 4*y, 5), x, y) == ( Matrix([[2*a, 3*a + 4]]), Matrix([[5]])) def test_linsolve(): x, y, z, u, v, w = symbols("x, y, z, u, v, w") x1, x2, x3, x4 = symbols('x1, x2, x3, x4') # Test for different input forms M = Matrix([[1, 2, 1, 1, 7], [1, 2, 2, -1, 12], [2, 4, 0, 6, 4]]) system1 = A, b = M[:, :-1], M[:, -1] Eqns = [x1 + 2*x2 + x3 + x4 - 7, x1 + 2*x2 + 2*x3 - x4 - 12, 2*x1 + 4*x2 + 6*x4 - 4] sol = FiniteSet((-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4)) assert linsolve(Eqns, (x1, x2, x3, x4)) == sol assert linsolve(Eqns, *(x1, x2, x3, x4)) == sol assert linsolve(system1, (x1, x2, x3, x4)) == sol assert linsolve(system1, *(x1, x2, x3, x4)) == sol # issue 9667 - symbols can be Dummy symbols x1, x2, x3, x4 = symbols('x:4', cls=Dummy) assert linsolve(system1, x1, x2, x3, x4) == FiniteSet( (-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4)) # raise ValueError for garbage value raises(ValueError, lambda: linsolve(Eqns)) raises(ValueError, lambda: linsolve(x1)) raises(ValueError, lambda: linsolve(x1, x2)) raises(ValueError, lambda: linsolve((A,), x1, x2)) raises(ValueError, lambda: linsolve(A, b, x1, x2)) #raise ValueError if equations are non-linear in given variables raises(ValueError, lambda: linsolve([x + y - 1, x ** 2 + y - 3], [x, y])) raises(ValueError, lambda: linsolve([cos(x) + y, x + y], [x, y])) assert linsolve([x + z - 1, x ** 2 + y - 3], [z, y]) == {(-x + 1, -x**2 + 3)} # Fully symbolic test a, b, c, d, e, f = symbols('a, b, c, d, e, f') A = Matrix([[a, b], [c, d]]) B = Matrix([[e], [f]]) system2 = (A, B) sol = FiniteSet(((-b*f + d*e)/(a*d - b*c), (a*f - c*e)/(a*d - b*c))) assert linsolve(system2, [x, y]) == sol # No solution A = Matrix([[1, 2, 3], [2, 4, 6], [3, 6, 9]]) b = Matrix([0, 0, 1]) assert linsolve((A, b), (x, y, z)) == EmptySet() # Issue #10056 A, B, J1, J2 = symbols('A B J1 J2') Augmatrix = Matrix([ [2*I*J1, 2*I*J2, -2/J1], [-2*I*J2, -2*I*J1, 2/J2], [0, 2, 2*I/(J1*J2)], [2, 0, 0], ]) assert linsolve(Augmatrix, A, B) == FiniteSet((0, I/(J1*J2))) # Issue #10121 - Assignment of free variables a, b, c, d, e = symbols('a, b, c, d, e') Augmatrix = Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]]) assert linsolve(Augmatrix, a, b, c, d, e) == FiniteSet((a, 0, c, 0, e)) raises(IndexError, lambda: linsolve(Augmatrix, a, b, c)) x0, x1, x2, _x0 = symbols('tau0 tau1 tau2 _tau0') assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]]) ) == FiniteSet((x0, 0, x1, _x0, x2)) x0, x1, x2, _x0 = symbols('_tau0 _tau1 _tau2 tau0') assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]]) ) == FiniteSet((x0, 0, x1, _x0, x2)) x0, x1, x2, _x0 = symbols('_tau0 _tau1 _tau2 tau1') assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]]) ) == FiniteSet((x0, 0, x1, _x0, x2)) # symbols can be given as generators x0, x2, x4 = symbols('x0, x2, x4') assert linsolve(Augmatrix, numbered_symbols('x') ) == FiniteSet((x0, 0, x2, 0, x4)) Augmatrix[-1, -1] = x0 # use Dummy to avoid clash; the names may clash but the symbols # will not Augmatrix[-1, -1] = symbols('_x0') assert len(linsolve( Augmatrix, numbered_symbols('x', cls=Dummy)).free_symbols) == 4 # Issue #12604 f = Function('f') assert linsolve([f(x) - 5], f(x)) == FiniteSet((5,)) # Issue #14860 from sympy.physics.units import meter, newton, kilo Eqns = [8*kilo*newton + x + y, 28*kilo*newton*meter + 3*x*meter] assert linsolve(Eqns, x, y) == {(newton*Rational(-28000, 3), newton*Rational(4000, 3))} # linsolve fully expands expressions, so removable singularities # and other nonlinearity does not raise an error assert linsolve([Eq(x, x + y)], [x, y]) == {(x, 0)} assert linsolve([Eq(1/x, 1/x + y)], [x, y]) == {(x, 0)} assert linsolve([Eq(y/x, y/x + y)], [x, y]) == {(x, 0)} assert linsolve([Eq(x*(x + 1), x**2 + y)], [x, y]) == {(y, y)} def test_linsolve_immutable(): A = ImmutableDenseMatrix([[1, 1, 2], [0, 1, 2], [0, 0, 1]]) B = ImmutableDenseMatrix([2, 1, -1]) c = symbols('c1 c2 c3') assert linsolve([A, B], c) == FiniteSet((1, 3, -1)) A = ImmutableDenseMatrix([[1, 1, 7], [1, -1, 3]]) assert linsolve(A) == FiniteSet((5, 2)) def test_solve_decomposition(): x = Symbol('x') n = Dummy('n') f1 = exp(3*x) - 6*exp(2*x) + 11*exp(x) - 6 f2 = sin(x)**2 - 2*sin(x) + 1 f3 = sin(x)**2 - sin(x) f4 = sin(x + 1) f5 = exp(x + 2) - 1 f6 = 1/log(x) f7 = 1/x s1 = ImageSet(Lambda(n, 2*n*pi), S.Integers) s2 = ImageSet(Lambda(n, 2*n*pi + pi), S.Integers) s3 = ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers) s4 = ImageSet(Lambda(n, 2*n*pi - 1), S.Integers) s5 = ImageSet(Lambda(n, 2*n*pi - 1 + pi), S.Integers) assert solve_decomposition(f1, x, S.Reals) == FiniteSet(0, log(2), log(3)) assert solve_decomposition(f2, x, S.Reals) == s3 assert solve_decomposition(f3, x, S.Reals) == Union(s1, s2, s3) assert solve_decomposition(f4, x, S.Reals) == Union(s4, s5) assert solve_decomposition(f5, x, S.Reals) == FiniteSet(-2) assert solve_decomposition(f6, x, S.Reals) == S.EmptySet assert solve_decomposition(f7, x, S.Reals) == S.EmptySet assert solve_decomposition(x, x, Interval(1, 2)) == S.EmptySet # nonlinsolve testcases def test_nonlinsolve_basic(): assert nonlinsolve([],[]) == S.EmptySet assert nonlinsolve([],[x, y]) == S.EmptySet system = [x, y - x - 5] assert nonlinsolve([x],[x, y]) == FiniteSet((0, y)) assert nonlinsolve(system, [y]) == FiniteSet((x + 5,)) soln = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),) assert nonlinsolve([sin(x) - 1], [x]) == FiniteSet(tuple(soln)) assert nonlinsolve([x**2 - 1], [x]) == FiniteSet((-1,), (1,)) soln = FiniteSet((y, y)) assert nonlinsolve([x - y, 0], x, y) == soln assert nonlinsolve([0, x - y], x, y) == soln assert nonlinsolve([x - y, x - y], x, y) == soln assert nonlinsolve([x, 0], x, y) == FiniteSet((0, y)) f = Function('f') assert nonlinsolve([f(x), 0], f(x), y) == FiniteSet((0, y)) assert nonlinsolve([f(x), 0], f(x), f(y)) == FiniteSet((0, f(y))) A = Indexed('A', x) assert nonlinsolve([A, 0], A, y) == FiniteSet((0, y)) assert nonlinsolve([x**2 -1], [sin(x)]) == FiniteSet((S.EmptySet,)) assert nonlinsolve([x**2 -1], sin(x)) == FiniteSet((S.EmptySet,)) assert nonlinsolve([x**2 -1], 1) == FiniteSet((x**2,)) assert nonlinsolve([x**2 -1], x + y) == FiniteSet((S.EmptySet,)) def test_nonlinsolve_abs(): soln = FiniteSet((x, Abs(x))) assert nonlinsolve([Abs(x) - y], x, y) == soln def test_raise_exception_nonlinsolve(): raises(IndexError, lambda: nonlinsolve([x**2 -1], [])) raises(ValueError, lambda: nonlinsolve([x**2 -1])) raises(NotImplementedError, lambda: nonlinsolve([(x+y)**2 - 9, x**2 - y**2 - 0.75], (x, y))) def test_trig_system(): # TODO: add more simple testcases when solveset returns # simplified soln for Trig eq assert nonlinsolve([sin(x) - 1, cos(x) -1 ], x) == S.EmptySet soln1 = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),) soln = FiniteSet(soln1) assert nonlinsolve([sin(x) - 1, cos(x)], x) == soln @XFAIL def test_trig_system_fail(): # fails because solveset trig solver is not much smart. sys = [x + y - pi/2, sin(x) + sin(y) - 1] # solveset returns conditionset for sin(x) + sin(y) - 1 soln_1 = (ImageSet(Lambda(n, n*pi + pi/2), S.Integers), ImageSet(Lambda(n, n*pi)), S.Integers) soln_1 = FiniteSet(soln_1) soln_2 = (ImageSet(Lambda(n, n*pi), S.Integers), ImageSet(Lambda(n, n*pi+ pi/2), S.Integers)) soln_2 = FiniteSet(soln_2) soln = soln_1 + soln_2 assert nonlinsolve(sys, [x, y]) == soln # Add more cases from here # http://www.vitutor.com/geometry/trigonometry/equations_systems.html#uno sys = [sin(x) + sin(y) - (sqrt(3)+1)/2, sin(x) - sin(y) - (sqrt(3) - 1)/2] soln_x = Union(ImageSet(Lambda(n, 2*n*pi + pi/3), S.Integers), ImageSet(Lambda(n, 2*n*pi + pi*Rational(2, 3)), S.Integers)) soln_y = Union(ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers), ImageSet(Lambda(n, 2*n*pi + pi*Rational(5, 6)), S.Integers)) assert nonlinsolve(sys, [x, y]) ==FiniteSet((soln_x, soln_y)) def test_nonlinsolve_positive_dimensional(): x, y, z, a, b, c, d = symbols('x, y, z, a, b, c, d', extended_real = True) assert nonlinsolve([x*y, x*y - x], [x, y]) == FiniteSet((0, y)) system = [a**2 + a*c, a - b] assert nonlinsolve(system, [a, b]) == FiniteSet((0, 0), (-c, -c)) # here (a= 0, b = 0) is independent soln so both is printed. # if symbols = [a, b, c] then only {a : -c ,b : -c} eq1 = a + b + c + d eq2 = a*b + b*c + c*d + d*a eq3 = a*b*c + b*c*d + c*d*a + d*a*b eq4 = a*b*c*d - 1 system = [eq1, eq2, eq3, eq4] sol1 = (-1/d, -d, 1/d, FiniteSet(d) - FiniteSet(0)) sol2 = (1/d, -d, -1/d, FiniteSet(d) - FiniteSet(0)) soln = FiniteSet(sol1, sol2) assert nonlinsolve(system, [a, b, c, d]) == soln def test_nonlinsolve_polysys(): x, y, z = symbols('x, y, z', real = True) assert nonlinsolve([x**2 + y - 2, x**2 + y], [x, y]) == S.EmptySet s = (-y + 2, y) assert nonlinsolve([(x + y)**2 - 4, x + y - 2], [x, y]) == FiniteSet(s) system = [x**2 - y**2] soln_real = FiniteSet((-y, y), (y, y)) soln_complex = FiniteSet((-Abs(y), y), (Abs(y), y)) soln =soln_real + soln_complex assert nonlinsolve(system, [x, y]) == soln system = [x**2 - y**2] soln_real= FiniteSet((y, -y), (y, y)) soln_complex = FiniteSet((y, -Abs(y)), (y, Abs(y))) soln = soln_real + soln_complex assert nonlinsolve(system, [y, x]) == soln system = [x**2 + y - 3, x - y - 4] assert nonlinsolve(system, (x, y)) != nonlinsolve(system, (y, x)) def test_nonlinsolve_using_substitution(): x, y, z, n = symbols('x, y, z, n', real = True) system = [(x + y)*n - y**2 + 2] s_x = (n*y - y**2 + 2)/n soln = (-s_x, y) assert nonlinsolve(system, [x, y]) == FiniteSet(soln) system = [z**2*x**2 - z**2*y**2/exp(x)] soln_real_1 = (y, x, 0) soln_real_2 = (-exp(x/2)*Abs(x), x, z) soln_real_3 = (exp(x/2)*Abs(x), x, z) soln_complex_1 = (-x*exp(x/2), x, z) soln_complex_2 = (x*exp(x/2), x, z) syms = [y, x, z] soln = FiniteSet(soln_real_1, soln_complex_1, soln_complex_2,\ soln_real_2, soln_real_3) assert nonlinsolve(system,syms) == soln def test_nonlinsolve_complex(): x, y, z = symbols('x, y, z') n = Dummy('n') assert nonlinsolve([exp(x) - sin(y), 1/y - 3], [x, y]) == { (ImageSet(Lambda(n, 2*n*I*pi + log(sin(Rational(1, 3)))), S.Integers), Rational(1, 3))} system = [exp(x) - sin(y), 1/exp(y) - 3] assert nonlinsolve(system, [x, y]) == { (ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sin(log(3)))), S.Integers), -log(3)), (ImageSet(Lambda(n, I*(2*n*pi + arg(sin(2*n*I*pi - log(3)))) + log(Abs(sin(2*n*I*pi - log(3))))), S.Integers), ImageSet(Lambda(n, 2*n*I*pi - log(3)), S.Integers))} system = [exp(x) - sin(y), y**2 - 4] assert nonlinsolve(system, [x, y]) == { (ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sin(2))), S.Integers), -2), (ImageSet(Lambda(n, 2*n*I*pi + log(sin(2))), S.Integers), 2)} @XFAIL def test_solve_nonlinear_trans(): # After the transcendental equation solver these will work x, y, z = symbols('x, y, z', real=True) soln1 = FiniteSet((2*LambertW(y/2), y)) soln2 = FiniteSet((-x*sqrt(exp(x)), y), (x*sqrt(exp(x)), y)) soln3 = FiniteSet((x*exp(x/2), x)) soln4 = FiniteSet(2*LambertW(y/2), y) assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln1 assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln2 assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln3 assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln4 def test_issue_5132_1(): system = [sqrt(x**2 + y**2) - sqrt(10), x + y - 4] assert nonlinsolve(system, [x, y]) == FiniteSet((1, 3), (3, 1)) n = Dummy('n') eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3] s_real_y = -log(3) s_real_z = sqrt(-exp(2*x) - sin(log(3))) soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z)) lam = Lambda(n, 2*n*I*pi + -log(3)) s_complex_y = ImageSet(lam, S.Integers) lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3)))) s_complex_z_1 = ImageSet(lam, S.Integers) lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3)))) s_complex_z_2 = ImageSet(lam, S.Integers) soln_complex = FiniteSet( (s_complex_y, s_complex_z_1), (s_complex_y, s_complex_z_2) ) soln = soln_real + soln_complex assert nonlinsolve(eqs, [y, z]) == soln def test_issue_5132_2(): x, y = symbols('x, y', real=True) eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3] n = Dummy('n') soln_real = (log(-z**2 + sin(y))/2, z) lam = Lambda( n, I*(2*n*pi + arg(-z**2 + sin(y)))/2 + log(Abs(z**2 - sin(y)))/2) img = ImageSet(lam, S.Integers) # not sure about the complex soln. But it looks correct. soln_complex = (img, z) soln = FiniteSet(soln_real, soln_complex) assert nonlinsolve(eqs, [x, z]) == soln r, t = symbols('r, t') system = [r - x**2 - y**2, tan(t) - y/x] s_x = sqrt(r/(tan(t)**2 + 1)) s_y = sqrt(r/(tan(t)**2 + 1))*tan(t) soln = FiniteSet((s_x, s_y), (-s_x, -s_y)) assert nonlinsolve(system, [x, y]) == soln def test_issue_6752(): a,b,c,d = symbols('a, b, c, d', real=True) assert nonlinsolve([a**2 + a, a - b], [a, b]) == {(-1, -1), (0, 0)} @SKIP("slow") def test_issue_5114_solveset(): # slow testcase a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('a:r') # there is no 'a' in the equation set but this is how the # problem was originally posed syms = [a, b, c, f, h, k, n] eqs = [b + r/d - c/d, c*(1/d + 1/e + 1/g) - f/g - r/d, f*(1/g + 1/i + 1/j) - c/g - h/i, h*(1/i + 1/l + 1/m) - f/i - k/m, k*(1/m + 1/o + 1/p) - h/m - n/p, n*(1/p + 1/q) - k/p] assert len(nonlinsolve(eqs, syms)) == 1 @SKIP("Hangs") def _test_issue_5335(): # Not able to check zero dimensional system. # is_zero_dimensional Hangs lam, a0, conc = symbols('lam a0 conc') eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x, a0*(1 - x/2)*x - 1*y - 0.743436700916726*y, x + y - conc] sym = [x, y, a0] # there are 4 solutions but only two are valid assert len(nonlinsolve(eqs, sym)) == 2 # float lam, a0, conc = symbols('lam a0 conc') eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x, a0*(1 - x/2)*x - 1*y - 0.743436700916726*y, x + y - conc] sym = [x, y, a0] assert len(nonlinsolve(eqs, sym)) == 2 def test_issue_2777(): # the equations represent two circles x, y = symbols('x y', real=True) e1, e2 = sqrt(x**2 + y**2) - 10, sqrt(y**2 + (-x + 10)**2) - 3 a, b = Rational(191, 20), 3*sqrt(391)/20 ans = {(a, -b), (a, b)} assert nonlinsolve((e1, e2), (x, y)) == ans assert nonlinsolve((e1, e2/(x - a)), (x, y)) == S.EmptySet # make the 2nd circle's radius be -3 e2 += 6 assert nonlinsolve((e1, e2), (x, y)) == S.EmptySet def test_issue_8828(): x1 = 0 y1 = -620 r1 = 920 x2 = 126 y2 = 276 x3 = 51 y3 = 205 r3 = 104 v = [x, y, z] f1 = (x - x1)**2 + (y - y1)**2 - (r1 - z)**2 f2 = (x2 - x)**2 + (y2 - y)**2 - z**2 f3 = (x - x3)**2 + (y - y3)**2 - (r3 - z)**2 F = [f1, f2, f3] g1 = sqrt((x - x1)**2 + (y - y1)**2) + z - r1 g2 = f2 g3 = sqrt((x - x3)**2 + (y - y3)**2) + z - r3 G = [g1, g2, g3] # both soln same A = nonlinsolve(F, v) B = nonlinsolve(G, v) assert A == B def test_nonlinsolve_conditionset(): # when solveset failed to solve all the eq # return conditionset f = Function('f') f1 = f(x) - pi/2 f2 = f(y) - pi*Rational(3, 2) intermediate_system = Eq(2*f(x) - pi, 0) & Eq(2*f(y) - 3*pi, 0) symbols = Tuple(x, y) soln = ConditionSet( symbols, intermediate_system, S.Complexes**2) assert nonlinsolve([f1, f2], [x, y]) == soln def test_substitution_basic(): assert substitution([], [x, y]) == S.EmptySet assert substitution([], []) == S.EmptySet system = [2*x**2 + 3*y**2 - 30, 3*x**2 - 2*y**2 - 19] soln = FiniteSet((-3, -2), (-3, 2), (3, -2), (3, 2)) assert substitution(system, [x, y]) == soln soln = FiniteSet((-1, 1)) assert substitution([x + y], [x], [{y: 1}], [y], set([]), [x, y]) == soln assert substitution( [x + y], [x], [{y: 1}], [y], set([x + 1]), [y, x]) == S.EmptySet def test_issue_5132_substitution(): x, y, z, r, t = symbols('x, y, z, r, t', real=True) system = [r - x**2 - y**2, tan(t) - y/x] s_x_1 = Complement(FiniteSet(-sqrt(r/(tan(t)**2 + 1))), FiniteSet(0)) s_x_2 = Complement(FiniteSet(sqrt(r/(tan(t)**2 + 1))), FiniteSet(0)) s_y = sqrt(r/(tan(t)**2 + 1))*tan(t) soln = FiniteSet((s_x_2, s_y)) + FiniteSet((s_x_1, -s_y)) assert substitution(system, [x, y]) == soln n = Dummy('n') eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3] s_real_y = -log(3) s_real_z = sqrt(-exp(2*x) - sin(log(3))) soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z)) lam = Lambda(n, 2*n*I*pi + -log(3)) s_complex_y = ImageSet(lam, S.Integers) lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3)))) s_complex_z_1 = ImageSet(lam, S.Integers) lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3)))) s_complex_z_2 = ImageSet(lam, S.Integers) soln_complex = FiniteSet( (s_complex_y, s_complex_z_1), (s_complex_y, s_complex_z_2)) soln = soln_real + soln_complex assert substitution(eqs, [y, z]) == soln def test_raises_substitution(): raises(ValueError, lambda: substitution([x**2 -1], [])) raises(TypeError, lambda: substitution([x**2 -1])) raises(ValueError, lambda: substitution([x**2 -1], [sin(x)])) raises(TypeError, lambda: substitution([x**2 -1], x)) raises(TypeError, lambda: substitution([x**2 -1], 1)) # end of tests for nonlinsolve def test_issue_9556(): x = Symbol('x') b = Symbol('b', positive=True) assert solveset(Abs(x) + 1, x, S.Reals) == EmptySet() assert solveset(Abs(x) + b, x, S.Reals) == EmptySet() assert solveset(Eq(b, -1), b, S.Reals) == EmptySet() def test_issue_9611(): x = Symbol('x') a = Symbol('a') y = Symbol('y') assert solveset(Eq(x - x + a, a), x, S.Reals) == S.Reals assert solveset(Eq(y - y + a, a), y) == S.Complexes def test_issue_9557(): x = Symbol('x') a = Symbol('a') assert solveset(x**2 + a, x, S.Reals) == Intersection(S.Reals, FiniteSet(-sqrt(-a), sqrt(-a))) def test_issue_9778(): assert solveset(x**3 + 1, x, S.Reals) == FiniteSet(-1) assert solveset(x**Rational(3, 5) + 1, x, S.Reals) == S.EmptySet assert solveset(x**3 + y, x, S.Reals) == \ FiniteSet(-Abs(y)**Rational(1, 3)*sign(y)) def test_issue_10214(): assert solveset(x**Rational(3, 2) + 4, x, S.Reals) == S.EmptySet assert solveset(x**(Rational(-3, 2)) + 4, x, S.Reals) == S.EmptySet ans = FiniteSet(-2**Rational(2, 3)) assert solveset(x**(S(3)) + 4, x, S.Reals) == ans assert (x**(S(3)) + 4).subs(x,list(ans)[0]) == 0 # substituting ans and verifying the result. assert (x**(S(3)) + 4).subs(x,-(-2)**Rational(2, 3)) == 0 def test_issue_9849(): assert solveset(Abs(sin(x)) + 1, x, S.Reals) == S.EmptySet def test_issue_9953(): assert linsolve([ ], x) == S.EmptySet def test_issue_9913(): assert solveset(2*x + 1/(x - 10)**2, x, S.Reals) == \ FiniteSet(-(3*sqrt(24081)/4 + Rational(4027, 4))**Rational(1, 3)/3 - 100/ (3*(3*sqrt(24081)/4 + Rational(4027, 4))**Rational(1, 3)) + Rational(20, 3)) def test_issue_10397(): assert solveset(sqrt(x), x, S.Complexes) == FiniteSet(0) def test_issue_14987(): raises(ValueError, lambda: linear_eq_to_matrix( [x**2], x)) raises(ValueError, lambda: linear_eq_to_matrix( [x*(-3/x + 1) + 2*y - a], [x, y])) raises(ValueError, lambda: linear_eq_to_matrix( [(x**2 - 3*x)/(x - 3) - 3], x)) raises(ValueError, lambda: linear_eq_to_matrix( [(x + 1)**3 - x**3 - 3*x**2 + 7], x)) raises(ValueError, lambda: linear_eq_to_matrix( [x*(1/x + 1) + y], [x, y])) raises(ValueError, lambda: linear_eq_to_matrix( [(x + 1)*y], [x, y])) raises(ValueError, lambda: linear_eq_to_matrix( [Eq(1/x, 1/x + y)], [x, y])) raises(ValueError, lambda: linear_eq_to_matrix( [Eq(y/x, y/x + y)], [x, y])) raises(ValueError, lambda: linear_eq_to_matrix( [Eq(x*(x + 1), x**2 + y)], [x, y])) def test_simplification(): eq = x + (a - b)/(-2*a + 2*b) assert solveset(eq, x) == FiniteSet(S.Half) assert solveset(eq, x, S.Reals) == Intersection({-((a - b)/(-2*a + 2*b))}, S.Reals) # So that ap - bn is not zero: ap = Symbol('ap', positive=True) bn = Symbol('bn', negative=True) eq = x + (ap - bn)/(-2*ap + 2*bn) assert solveset(eq, x) == FiniteSet(S.Half) assert solveset(eq, x, S.Reals) == FiniteSet(S.Half) def test_issue_10555(): f = Function('f') g = Function('g') assert solveset(f(x) - pi/2, x, S.Reals) == \ ConditionSet(x, Eq(f(x) - pi/2, 0), S.Reals) assert solveset(f(g(x)) - pi/2, g(x), S.Reals) == \ ConditionSet(g(x), Eq(f(g(x)) - pi/2, 0), S.Reals) def test_issue_8715(): eq = x + 1/x > -2 + 1/x assert solveset(eq, x, S.Reals) == \ (Interval.open(-2, oo) - FiniteSet(0)) assert solveset(eq.subs(x,log(x)), x, S.Reals) == \ Interval.open(exp(-2), oo) - FiniteSet(1) def test_issue_11174(): r, t = symbols('r t') eq = z**2 + exp(2*x) - sin(y) soln = Intersection(S.Reals, FiniteSet(log(-z**2 + sin(y))/2)) assert solveset(eq, x, S.Reals) == soln eq = sqrt(r)*Abs(tan(t))/sqrt(tan(t)**2 + 1) + x*tan(t) s = -sqrt(r)*Abs(tan(t))/(sqrt(tan(t)**2 + 1)*tan(t)) soln = Intersection(S.Reals, FiniteSet(s)) assert solveset(eq, x, S.Reals) == soln def test_issue_11534(): # eq and eq2 should give the same solution as a Complement eq = -y + x/sqrt(-x**2 + 1) eq2 = -y**2 + x**2/(-x**2 + 1) soln = Complement(FiniteSet(-y/sqrt(y**2 + 1), y/sqrt(y**2 + 1)), FiniteSet(-1, 1)) assert solveset(eq, x, S.Reals) == soln assert solveset(eq2, x, S.Reals) == soln def test_issue_10477(): assert solveset((x**2 + 4*x - 3)/x < 2, x, S.Reals) == \ Union(Interval.open(-oo, -3), Interval.open(0, 1)) def test_issue_10671(): assert solveset(sin(y), y, Interval(0, pi)) == FiniteSet(0, pi) i = Interval(1, 10) assert solveset((1/x).diff(x) < 0, x, i) == i def test_issue_11064(): eq = x + sqrt(x**2 - 5) assert solveset(eq > 0, x, S.Reals) == \ Interval(sqrt(5), oo) assert solveset(eq < 0, x, S.Reals) == \ Interval(-oo, -sqrt(5)) assert solveset(eq > sqrt(5), x, S.Reals) == \ Interval.Lopen(sqrt(5), oo) def test_issue_12478(): eq = sqrt(x - 2) + 2 soln = solveset_real(eq, x) assert soln is S.EmptySet assert solveset(eq < 0, x, S.Reals) is S.EmptySet assert solveset(eq > 0, x, S.Reals) == Interval(2, oo) def test_issue_12429(): eq = solveset(log(x)/x <= 0, x, S.Reals) sol = Interval.Lopen(0, 1) assert eq == sol def test_solveset_arg(): assert solveset(arg(x), x, S.Reals) == Interval.open(0, oo) assert solveset(arg(4*x -3), x) == Interval.open(Rational(3, 4), oo) def test__is_finite_with_finite_vars(): f = _is_finite_with_finite_vars # issue 12482 assert all(f(1/x) is None for x in ( Dummy(), Dummy(real=True), Dummy(complex=True))) assert f(1/Dummy(real=False)) is True # b/c it's finite but not 0 def test_issue_13550(): assert solveset(x**2 - 2*x - 15, symbol = x, domain = Interval(-oo, 0)) == FiniteSet(-3) def test_issue_13849(): t = symbols('t') assert nonlinsolve((t*(sqrt(5) + sqrt(2)) - sqrt(2), t), t) == EmptySet() def test_issue_14223(): x = Symbol('x') assert solveset((Abs(x + Min(x, 2)) - 2).rewrite(Piecewise), x, S.Reals) == FiniteSet(-1, 1) assert solveset((Abs(x + Min(x, 2)) - 2).rewrite(Piecewise), x, Interval(0, 2)) == FiniteSet(1) def test_issue_10158(): x = Symbol('x') dom = S.Reals assert solveset(x*Max(x, 15) - 10, x, dom) == FiniteSet(Rational(2, 3)) assert solveset(x*Min(x, 15) - 10, x, dom) == FiniteSet(-sqrt(10), sqrt(10)) assert solveset(Max(Abs(x - 3) - 1, x + 2) - 3, x, dom) == FiniteSet(-1, 1) assert solveset(Abs(x - 1) - Abs(y), x, dom) == FiniteSet(-Abs(y) + 1, Abs(y) + 1) assert solveset(Abs(x + 4*Abs(x + 1)), x, dom) == FiniteSet(Rational(-4, 3), Rational(-4, 5)) assert solveset(2*Abs(x + Abs(x + Max(3, x))) - 2, x, S.Reals) == FiniteSet(-1, -2) dom = S.Complexes raises(ValueError, lambda: solveset(x*Max(x, 15) - 10, x, dom)) raises(ValueError, lambda: solveset(x*Min(x, 15) - 10, x, dom)) raises(ValueError, lambda: solveset(Max(Abs(x - 3) - 1, x + 2) - 3, x, dom)) raises(ValueError, lambda: solveset(Abs(x - 1) - Abs(y), x, dom)) raises(ValueError, lambda: solveset(Abs(x + 4*Abs(x + 1)), x, dom)) def test_issue_14300(): x, y, n = symbols('x y n') f = 1 - exp(-18000000*x) - y a1 = FiniteSet(-log(-y + 1)/18000000) assert solveset(f, x, S.Reals) == \ Intersection(S.Reals, a1) assert solveset(f, x) == \ ImageSet(Lambda(n, -I*(2*n*pi + arg(-y + 1))/18000000 - log(Abs(y - 1))/18000000), S.Integers) def test_issue_14454(): x = Symbol('x') number = CRootOf(x**4 + x - 1, 2) raises(ValueError, lambda: invert_real(number, 0, x, S.Reals)) assert invert_real(x**2, number, x, S.Reals) # no error def test_term_factors(): assert list(_term_factors(3**x - 2)) == [-2, 3**x] expr = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3) assert set(_term_factors(expr)) == set([ 3**(x + 2), 4**(x + 2), 3**(x + 3), 4**(x - 1), -1, 4**(x + 1)]) #################### tests for transolve and its helpers ############### def test_transolve(): assert _transolve(3**x, x, S.Reals) == S.EmptySet assert _transolve(3**x - 9**(x + 5), x, S.Reals) == FiniteSet(-10) # exponential tests def test_exponential_real(): from sympy.abc import x, y, z e1 = 3**(2*x) - 2**(x + 3) e2 = 4**(5 - 9*x) - 8**(2 - x) e3 = 2**x + 4**x e4 = exp(log(5)*x) - 2**x e5 = exp(x/y)*exp(-z/y) - 2 e6 = 5**(x/2) - 2**(x/3) e7 = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3) e8 = -9*exp(-2*x + 5) + 4*exp(3*x + 1) e9 = 2**x + 4**x + 8**x - 84 assert solveset(e1, x, S.Reals) == FiniteSet( -3*log(2)/(-2*log(3) + log(2))) assert solveset(e2, x, S.Reals) == FiniteSet(Rational(4, 15)) assert solveset(e3, x, S.Reals) == S.EmptySet assert solveset(e4, x, S.Reals) == FiniteSet(0) assert solveset(e5, x, S.Reals) == Intersection( S.Reals, FiniteSet(y*log(2*exp(z/y)))) assert solveset(e6, x, S.Reals) == FiniteSet(0) assert solveset(e7, x, S.Reals) == FiniteSet(2) assert solveset(e8, x, S.Reals) == FiniteSet(-2*log(2)/5 + 2*log(3)/5 + Rational(4, 5)) assert solveset(e9, x, S.Reals) == FiniteSet(2) assert solveset_real(-9*exp(-2*x + 5) + 2**(x + 1), x) == FiniteSet( -((-5 - 2*log(3) + log(2))/(log(2) + 2))) assert solveset_real(4**(x/2) - 2**(x/3), x) == FiniteSet(0) b = sqrt(6)*sqrt(log(2))/sqrt(log(5)) assert solveset_real(5**(x/2) - 2**(3/x), x) == FiniteSet(-b, b) # coverage test C1, C2 = symbols('C1 C2') f = Function('f') assert solveset_real(C1 + C2/x**2 - exp(-f(x)), f(x)) == Intersection( S.Reals, FiniteSet(-log(C1 + C2/x**2))) y = symbols('y', positive=True) assert solveset_real(x**2 - y**2/exp(x), y) == Intersection( S.Reals, FiniteSet(-sqrt(x**2*exp(x)), sqrt(x**2*exp(x)))) p = Symbol('p', positive=True) assert solveset_real((1/p + 1)**(p + 1), p) == EmptySet() @XFAIL def test_exponential_complex(): from sympy.abc import x from sympy import Dummy n = Dummy('n') assert solveset_complex(2**x + 4**x, x) == imageset( Lambda(n, I*(2*n*pi + pi)/log(2)), S.Integers) assert solveset_complex(x**z*y**z - 2, z) == FiniteSet( log(2)/(log(x) + log(y))) assert solveset_complex(4**(x/2) - 2**(x/3), x) == imageset( Lambda(n, 3*n*I*pi/log(2)), S.Integers) assert solveset(2**x + 32, x) == imageset( Lambda(n, (I*(2*n*pi + pi) + 5*log(2))/log(2)), S.Integers) eq = (2**exp(y**2/x) + 2)/(x**2 + 15) a = sqrt(x)*sqrt(-log(log(2)) + log(log(2) + 2*n*I*pi)) assert solveset_complex(eq, y) == FiniteSet(-a, a) union1 = imageset(Lambda(n, I*(2*n*pi - pi*Rational(2, 3))/log(2)), S.Integers) union2 = imageset(Lambda(n, I*(2*n*pi + pi*Rational(2, 3))/log(2)), S.Integers) assert solveset(2**x + 4**x + 8**x, x) == Union(union1, union2) eq = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3) res = solveset(eq, x) num = 2*n*I*pi - 4*log(2) + 2*log(3) den = -2*log(2) + log(3) ans = imageset(Lambda(n, num/den), S.Integers) assert res == ans def test_expo_conditionset(): from sympy.abc import x, y f1 = (exp(x) + 1)**x - 2 f2 = (x + 2)**y*x - 3 f3 = 2**x - exp(x) - 3 f4 = log(x) - exp(x) f5 = 2**x + 3**x - 5**x assert solveset(f1, x, S.Reals) == ConditionSet( x, Eq((exp(x) + 1)**x - 2, 0), S.Reals) assert solveset(f2, x, S.Reals) == ConditionSet( x, Eq(x*(x + 2)**y - 3, 0), S.Reals) assert solveset(f3, x, S.Reals) == ConditionSet( x, Eq(2**x - exp(x) - 3, 0), S.Reals) assert solveset(f4, x, S.Reals) == ConditionSet( x, Eq(-exp(x) + log(x), 0), S.Reals) assert solveset(f5, x, S.Reals) == ConditionSet( x, Eq(2**x + 3**x - 5**x, 0), S.Reals) def test_exponential_symbols(): x, y, z = symbols('x y z', positive=True) assert solveset(z**x - y, x, S.Reals) == Intersection( S.Reals, FiniteSet(log(y)/log(z))) w = symbols('w') f1 = 2*x**w - 4*y**w f2 = (x/y)**w - 2 sol1 = Intersection({log(2)/(log(x) - log(y))}, S.Reals) sol2 = Intersection({log(2)/log(x/y)}, S.Reals) assert solveset(f1, w, S.Reals) == sol1 assert solveset(f2, w, S.Reals) == sol2 assert solveset(x**x, x, S.Reals) == S.EmptySet assert solveset(x**y - 1, y, S.Reals) == FiniteSet(0) assert solveset(exp(x/y)*exp(-z/y) - 2, y, S.Reals) == FiniteSet( (x - z)/log(2)) - FiniteSet(0) a, b, x, y = symbols('a b x y') assert solveset_real(a**x - b**x, x) == ConditionSet( x, (a > 0) & (b > 0), FiniteSet(0)) assert solveset(a**x - b**x, x) == ConditionSet( x, Ne(a, 0) & Ne(b, 0), FiniteSet(0)) @XFAIL def test_issue_10864(): assert solveset(x**(y*z) - x, x, S.Reals) == FiniteSet(1) @XFAIL def test_solve_only_exp_2(): assert solveset_real(sqrt(exp(x)) + sqrt(exp(-x)) - 4, x) == \ FiniteSet(2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2)) def test_is_exponential(): x, y, z = symbols('x y z') assert _is_exponential(y, x) is False assert _is_exponential(3**x - 2, x) is True assert _is_exponential(5**x - 7**(2 - x), x) is True assert _is_exponential(sin(2**x) - 4*x, x) is False assert _is_exponential(x**y - z, y) is True assert _is_exponential(x**y - z, x) is False assert _is_exponential(2**x + 4**x - 1, x) is True assert _is_exponential(x**(y*z) - x, x) is False assert _is_exponential(x**(2*x) - 3**x, x) is False assert _is_exponential(x**y - y*z, y) is False assert _is_exponential(x**y - x*z, y) is True def test_solve_exponential(): assert _solve_exponential(3**(2*x) - 2**(x + 3), 0, x, S.Reals) == \ FiniteSet(-3*log(2)/(-2*log(3) + log(2))) assert _solve_exponential(2**y + 4**y, 1, y, S.Reals) == \ FiniteSet(log(Rational(-1, 2) + sqrt(5)/2)/log(2)) assert _solve_exponential(2**y + 4**y, 0, y, S.Reals) == \ S.EmptySet assert _solve_exponential(2**x + 3**x - 5**x, 0, x, S.Reals) == \ ConditionSet(x, Eq(2**x + 3**x - 5**x, 0), S.Reals) # end of exponential tests # logarithmic tests def test_logarithmic(): assert solveset_real(log(x - 3) + log(x + 3), x) == FiniteSet( -sqrt(10), sqrt(10)) assert solveset_real(log(x + 1) - log(2*x - 1), x) == FiniteSet(2) assert solveset_real(log(x + 3) + log(1 + 3/x) - 3, x) == FiniteSet( -3 + sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 + exp(3)/2, -sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 - 3 + exp(3)/2) eq = z - log(x) + log(y/(x*(-1 + y**2/x**2))) assert solveset_real(eq, x) == \ Intersection(S.Reals, FiniteSet(-sqrt(y**2 - y*exp(z)), sqrt(y**2 - y*exp(z)))) - \ Intersection(S.Reals, FiniteSet(-sqrt(y**2), sqrt(y**2))) assert solveset_real( log(3*x) - log(-x + 1) - log(4*x + 1), x) == FiniteSet(Rational(-1, 2), S.Half) assert solveset(log(x**y) - y*log(x), x, S.Reals) == S.Reals @XFAIL def test_uselogcombine_2(): eq = log(exp(2*x) + 1) + log(-tanh(x) + 1) - log(2) assert solveset_real(eq, x) == EmptySet() eq = log(8*x) - log(sqrt(x) + 1) - 2 assert solveset_real(eq, x) == EmptySet() def test_is_logarithmic(): assert _is_logarithmic(y, x) is False assert _is_logarithmic(log(x), x) is True assert _is_logarithmic(log(x) - 3, x) is True assert _is_logarithmic(log(x)*log(y), x) is True assert _is_logarithmic(log(x)**2, x) is False assert _is_logarithmic(log(x - 3) + log(x + 3), x) is True assert _is_logarithmic(log(x**y) - y*log(x), x) is True assert _is_logarithmic(sin(log(x)), x) is False assert _is_logarithmic(x + y, x) is False assert _is_logarithmic(log(3*x) - log(1 - x) + 4, x) is True assert _is_logarithmic(log(x) + log(y) + x, x) is False assert _is_logarithmic(log(log(x - 3)) + log(x - 3), x) is True assert _is_logarithmic(log(log(3) + x) + log(x), x) is True assert _is_logarithmic(log(x)*(y + 3) + log(x), y) is False def test_solve_logarithm(): y = Symbol('y') assert _solve_logarithm(log(x**y) - y*log(x), 0, x, S.Reals) == S.Reals y = Symbol('y', positive=True) assert _solve_logarithm(log(x)*log(y), 0, x, S.Reals) == FiniteSet(1) # end of logarithmic tests def test_linear_coeffs(): from sympy.solvers.solveset import linear_coeffs assert linear_coeffs(0, x) == [0, 0] assert all(i is S.Zero for i in linear_coeffs(0, x)) assert linear_coeffs(x + 2*y + 3, x, y) == [1, 2, 3] assert linear_coeffs(x + 2*y + 3, y, x) == [2, 1, 3] assert linear_coeffs(x + 2*x**2 + 3, x, x**2) == [1, 2, 3] raises(ValueError, lambda: linear_coeffs(x + 2*x**2 + x**3, x, x**2)) raises(ValueError, lambda: linear_coeffs(1/x*(x - 1) + 1/x, x)) assert linear_coeffs(a*(x + y), x, y) == [a, a, 0] assert linear_coeffs(1.0, x, y) == [0, 0, 1.0] # modular tests def test_is_modular(): x, y = symbols('x y') assert _is_modular(y, x) is False assert _is_modular(Mod(x, 3) - 1, x) is True assert _is_modular(Mod(x**3 - 3*x**2 - x + 1, 3) - 1, x) is True assert _is_modular(Mod(exp(x + y), 3) - 2, x) is True assert _is_modular(Mod(exp(x + y), 3) - log(x), x) is True assert _is_modular(Mod(x, 3) - 1, y) is False assert _is_modular(Mod(x, 3)**2 - 5, x) is False assert _is_modular(Mod(x, 3)**2 - y, x) is False assert _is_modular(exp(Mod(x, 3)) - 1, x) is False assert _is_modular(Mod(3, y) - 1, y) is False def test_invert_modular(): x, y = symbols('x y') n = Dummy('n', integer=True) from sympy.solvers.solveset import _invert_modular as invert_modular # non invertible cases assert invert_modular(Mod(sin(x), 7), S(5), n, x) == (Mod(sin(x), 7), 5) assert invert_modular(Mod(exp(x), 7), S(5), n, x) == (Mod(exp(x), 7), 5) assert invert_modular(Mod(log(x), 7), S(5), n, x) == (Mod(log(x), 7), 5) # a is symbol assert invert_modular(Mod(x, 7), S(5), n, x) == \ (x, ImageSet(Lambda(n, 7*n + 5), S.Integers)) # a.is_Add assert invert_modular(Mod(x + 8, 7), S(5), n, x) == \ (x, ImageSet(Lambda(n, 7*n + 4), S.Integers)) assert invert_modular(Mod(x**2 + x, 7), S(5), n, x) == \ (Mod(x**2 + x, 7), 5) # a.is_Mul assert invert_modular(Mod(3*x, 7), S(5), n, x) == \ (x, ImageSet(Lambda(n, 7*n + 4), S.Integers)) assert invert_modular(Mod((x + 1)*(x + 2), 7), S(5), n, x) == \ (Mod((x + 1)*(x + 2), 7), 5) # a.is_Pow assert invert_modular(Mod(x**4, 7), S(5), n, x) == \ (x, EmptySet()) assert invert_modular(Mod(3**x, 4), S(3), n, x) == \ (x, ImageSet(Lambda(n, 2*n + 1), S.Naturals0)) assert invert_modular(Mod(2**(x**2 + x + 1), 7), S(2), n, x) == \ (x**2 + x + 1, ImageSet(Lambda(n, 3*n + 1), S.Naturals0)) def test_solve_modular(): x = Symbol('x') n = Dummy('n', integer=True) # if rhs has symbol (need to be implemented in future). assert solveset(Mod(x, 4) - x, x, S.Integers) == \ ConditionSet(x, Eq(-x + Mod(x, 4), 0), \ S.Integers) # when _invert_modular fails to invert assert solveset(3 - Mod(sin(x), 7), x, S.Integers) == \ ConditionSet(x, Eq(Mod(sin(x), 7) - 3, 0), S.Integers) assert solveset(3 - Mod(log(x), 7), x, S.Integers) == \ ConditionSet(x, Eq(Mod(log(x), 7) - 3, 0), S.Integers) assert solveset(3 - Mod(exp(x), 7), x, S.Integers) == \ ConditionSet(x, Eq(Mod(exp(x), 7) - 3, 0), S.Integers) # EmptySet solution definitely assert solveset(7 - Mod(x, 5), x, S.Integers) == EmptySet() assert solveset(5 - Mod(x, 5), x, S.Integers) == EmptySet() # Negative m assert solveset(2 + Mod(x, -3), x, S.Integers) == \ ImageSet(Lambda(n, -3*n - 2), S.Integers) assert solveset(4 + Mod(x, -3), x, S.Integers) == EmptySet() # linear expression in Mod assert solveset(3 - Mod(x, 5), x, S.Integers) == ImageSet(Lambda(n, 5*n + 3), S.Integers) assert solveset(3 - Mod(5*x - 8, 7), x, S.Integers) == \ ImageSet(Lambda(n, 7*n + 5), S.Integers) assert solveset(3 - Mod(5*x, 7), x, S.Integers) == \ ImageSet(Lambda(n, 7*n + 2), S.Integers) # higher degree expression in Mod assert solveset(Mod(x**2, 160) - 9, x, S.Integers) == \ Union(ImageSet(Lambda(n, 160*n + 3), S.Integers), ImageSet(Lambda(n, 160*n + 13), S.Integers), ImageSet(Lambda(n, 160*n + 67), S.Integers), ImageSet(Lambda(n, 160*n + 77), S.Integers), ImageSet(Lambda(n, 160*n + 83), S.Integers), ImageSet(Lambda(n, 160*n + 93), S.Integers), ImageSet(Lambda(n, 160*n + 147), S.Integers), ImageSet(Lambda(n, 160*n + 157), S.Integers)) assert solveset(3 - Mod(x**4, 7), x, S.Integers) == EmptySet() assert solveset(Mod(x**4, 17) - 13, x, S.Integers) == \ Union(ImageSet(Lambda(n, 17*n + 3), S.Integers), ImageSet(Lambda(n, 17*n + 5), S.Integers), ImageSet(Lambda(n, 17*n + 12), S.Integers), ImageSet(Lambda(n, 17*n + 14), S.Integers)) # a.is_Pow tests assert solveset(Mod(7**x, 41) - 15, x, S.Integers) == \ ImageSet(Lambda(n, 40*n + 3), S.Naturals0) assert solveset(Mod(12**x, 21) - 18, x, S.Integers) == \ ImageSet(Lambda(n, 6*n + 2), S.Naturals0) assert solveset(Mod(3**x, 4) - 3, x, S.Integers) == \ ImageSet(Lambda(n, 2*n + 1), S.Naturals0) assert solveset(Mod(2**x, 7) - 2 , x, S.Integers) == \ ImageSet(Lambda(n, 3*n + 1), S.Naturals0) assert solveset(Mod(3**(3**x), 4) - 3, x, S.Integers) == \ Intersection(ImageSet(Lambda(n, Intersection({log(2*n + 1)/log(3)}, S.Integers)), S.Naturals0), S.Integers) # Not Implemented for m without primitive root assert solveset(Mod(x**3, 8) - 1, x, S.Integers) == \ ConditionSet(x, Eq(Mod(x**3, 8) - 1, 0), S.Integers) assert solveset(Mod(x**4, 9) - 4, x, S.Integers) == \ ConditionSet(x, Eq(Mod(x**4, 9) - 4, 0), S.Integers) # domain intersection assert solveset(3 - Mod(5*x - 8, 7), x, S.Naturals0) == \ Intersection(ImageSet(Lambda(n, 7*n + 5), S.Integers), S.Naturals0) # Complex args assert solveset(Mod(x, 3) - I, x, S.Integers) == \ EmptySet() assert solveset(Mod(I*x, 3) - 2, x, S.Integers) == \ ConditionSet(x, Eq(Mod(I*x, 3) - 2, 0), S.Integers) assert solveset(Mod(I + x, 3) - 2, x, S.Integers) == \ ConditionSet(x, Eq(Mod(x + I, 3) - 2, 0), S.Integers) # issue 13178 n = symbols('n', integer=True) a = 742938285 z = 1898888478 m = 2**31 - 1 x = 20170816 assert solveset(x - Mod(a**n*z, m), n, S.Integers) == \ ImageSet(Lambda(n, 2147483646*n + 100), S.Naturals0) assert solveset(x - Mod(a**n*z, m), n, S.Naturals0) == \ Intersection(ImageSet(Lambda(n, 2147483646*n + 100), S.Naturals0), S.Naturals0) assert solveset(x - Mod(a**(2*n)*z, m), n, S.Integers) == \ Intersection(ImageSet(Lambda(n, 1073741823*n + 50), S.Naturals0), S.Integers) assert solveset(x - Mod(a**(2*n + 7)*z, m), n, S.Integers) == EmptySet() assert solveset(x - Mod(a**(n - 4)*z, m), n, S.Integers) == \ Intersection(ImageSet(Lambda(n, 2147483646*n + 104), S.Naturals0), S.Integers) @XFAIL def test_solve_modular_fail(): # issue 17373 (https://github.com/sympy/sympy/issues/17373) assert solveset(Mod(x**4, 14) - 11, x, S.Integers) == \ Union(ImageSet(Lambda(n, 14*n + 3), S.Integers), ImageSet(Lambda(n, 14*n + 11), S.Integers)) assert solveset(Mod(x**31, 74) - 43, x, S.Integers) == \ ImageSet(Lambda(n, 74*n + 31), S.Integers) # end of modular tests
d1f6d7980e48ce01c596e5973f8af6663880d3565b096d2f70d7a59fa312f166
from sympy import (acos, acosh, asinh, atan, cos, Derivative, diff, Dummy, Eq, Ne, erf, erfi, exp, Function, I, Integral, LambertW, log, O, pi, Rational, rootof, S, sin, sqrt, Subs, Symbol, tan, asin, sinh, Piecewise, symbols, Poly, sec, Ei, re, im, atan2, collect, hyper) from sympy.solvers.ode import (_undetermined_coefficients_match, checkodesol, classify_ode, classify_sysode, constant_renumber, constantsimp, homogeneous_order, infinitesimals, checkinfsol, checksysodesol, solve_ics, dsolve, get_numbered_constants) from sympy.functions import airyai, airybi, besselj, bessely from sympy.solvers.deutils import ode_order from sympy.utilities.pytest import XFAIL, skip, raises, slow, ON_TRAVIS, SKIP from sympy.utilities.misc import filldedent C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 = symbols('C0:11') u, x, y, z = symbols('u,x:z', real=True) f = Function('f') g = Function('g') h = Function('h') # Note: the tests below may fail (but still be correct) if ODE solver, # the integral engine, solve(), or even simplify() changes. Also, in # differently formatted solutions, the arbitrary constants might not be # equal. Using specific hints in tests can help to avoid this. # Tests of order higher than 1 should run the solutions through # constant_renumber because it will normalize it (constant_renumber causes # dsolve() to return different results on different machines) def test_linear_2eq_order1(): x, y, z = symbols('x, y, z', cls=Function) k, l, m, n = symbols('k, l, m, n', Integer=True) t = Symbol('t') x0, y0 = symbols('x0, y0', cls=Function) eq1 = (Eq(diff(x(t),t), 9*y(t)), Eq(diff(y(t),t), 12*x(t))) sol1 = [Eq(x(t), 9*C1*exp(6*sqrt(3)*t) + 9*C2*exp(-6*sqrt(3)*t)), \ Eq(y(t), 6*sqrt(3)*C1*exp(6*sqrt(3)*t) - 6*sqrt(3)*C2*exp(-6*sqrt(3)*t))] assert checksysodesol(eq1, sol1) == (True, [0, 0]) eq2 = (Eq(diff(x(t),t), 2*x(t) + 4*y(t)), Eq(diff(y(t),t), 12*x(t) + 41*y(t))) sol2 = [Eq(x(t), 4*C1*exp(t*(sqrt(1713)/2 + Rational(43, 2))) + 4*C2*exp(t*(-sqrt(1713)/2 + Rational(43, 2)))), \ Eq(y(t), C1*(Rational(39, 2) + sqrt(1713)/2)*exp(t*(sqrt(1713)/2 + Rational(43, 2))) + \ C2*(-sqrt(1713)/2 + Rational(39, 2))*exp(t*(-sqrt(1713)/2 + Rational(43, 2))))] assert checksysodesol(eq2, sol2) == (True, [0, 0]) eq3 = (Eq(diff(x(t),t), x(t) + y(t)), Eq(diff(y(t),t), -2*x(t) + 2*y(t))) sol3 = [Eq(x(t), (C1*cos(sqrt(7)*t/2) + C2*sin(sqrt(7)*t/2))*exp(t*Rational(3, 2))), \ Eq(y(t), (C1*(-sqrt(7)*sin(sqrt(7)*t/2)/2 + cos(sqrt(7)*t/2)/2) + \ C2*(sin(sqrt(7)*t/2)/2 + sqrt(7)*cos(sqrt(7)*t/2)/2))*exp(t*Rational(3, 2)))] assert checksysodesol(eq3, sol3) == (True, [0, 0]) eq4 = (Eq(diff(x(t),t), x(t) + y(t) + 9), Eq(diff(y(t),t), 2*x(t) + 5*y(t) + 23)) sol4 = [Eq(x(t), C1*exp(t*(sqrt(6) + 3)) + C2*exp(t*(-sqrt(6) + 3)) - Rational(22, 3)), \ Eq(y(t), C1*(2 + sqrt(6))*exp(t*(sqrt(6) + 3)) + C2*(-sqrt(6) + 2)*exp(t*(-sqrt(6) + 3)) - Rational(5, 3))] assert checksysodesol(eq4, sol4) == (True, [0, 0]) eq5 = (Eq(diff(x(t),t), x(t) + y(t) + 81), Eq(diff(y(t),t), -2*x(t) + y(t) + 23)) sol5 = [Eq(x(t), (C1*cos(sqrt(2)*t) + C2*sin(sqrt(2)*t))*exp(t) - Rational(58, 3)), \ Eq(y(t), (-sqrt(2)*C1*sin(sqrt(2)*t) + sqrt(2)*C2*cos(sqrt(2)*t))*exp(t) - Rational(185, 3))] assert checksysodesol(eq5, sol5) == (True, [0, 0]) eq6 = (Eq(diff(x(t),t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t),t), 2*x(t) + 5*t*y(t))) sol6 = [Eq(x(t), (C1*exp(2*t) + C2*exp(-2*t))*exp(Rational(5, 2)*t**2)), \ Eq(y(t), (C1*exp(2*t) - C2*exp(-2*t))*exp(Rational(5, 2)*t**2))] s = dsolve(eq6) assert checksysodesol(eq6, sol6) == (True, [0, 0]) eq7 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t))) sol7 = [Eq(x(t), (C1*cos((t**3)/3) + C2*sin((t**3)/3))*exp(Rational(5, 2)*t**2)), \ Eq(y(t), (-C1*sin((t**3)/3) + C2*cos((t**3)/3))*exp(Rational(5, 2)*t**2))] assert checksysodesol(eq7, sol7) == (True, [0, 0]) eq8 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + (5*t+9*t**2)*y(t))) sol8 = [Eq(x(t), (C1*exp((sqrt(77)/2 + Rational(9, 2))*(t**3)/3) + \ C2*exp((-sqrt(77)/2 + Rational(9, 2))*(t**3)/3))*exp(Rational(5, 2)*t**2)), \ Eq(y(t), (C1*(sqrt(77)/2 + Rational(9, 2))*exp((sqrt(77)/2 + Rational(9, 2))*(t**3)/3) + \ C2*(-sqrt(77)/2 + Rational(9, 2))*exp((-sqrt(77)/2 + Rational(9, 2))*(t**3)/3))*exp(Rational(5, 2)*t**2))] assert checksysodesol(eq8, sol8) == (True, [0, 0]) eq10 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), (1-t**2)*x(t) + (5*t+9*t**2)*y(t))) sol10 = [Eq(x(t), C1*x0(t) + C2*x0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t)), \ Eq(y(t), C1*y0(t) + C2*(y0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t) + \ exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)))] s = dsolve(eq10) assert s == sol10 # too complicated to test with subs and simplify # assert checksysodesol(eq10, sol10) == (True, [0, 0]) # this one fails def test_linear_2eq_order1_nonhomog_linear(): e = [Eq(diff(f(x), x), f(x) + g(x) + 5*x), Eq(diff(g(x), x), f(x) - g(x))] raises(NotImplementedError, lambda: dsolve(e)) def test_linear_2eq_order1_nonhomog(): # Note: once implemented, add some tests esp. with resonance e = [Eq(diff(f(x), x), f(x) + exp(x)), Eq(diff(g(x), x), f(x) + g(x) + x*exp(x))] raises(NotImplementedError, lambda: dsolve(e)) def test_linear_2eq_order1_type2_degen(): e = [Eq(diff(f(x), x), f(x) + 5), Eq(diff(g(x), x), f(x) + 7)] s1 = [Eq(f(x), C1*exp(x) - 5), Eq(g(x), C1*exp(x) - C2 + 2*x - 5)] assert checksysodesol(e, s1) == (True, [0, 0]) def test_dsolve_linear_2eq_order1_diag_triangular(): e = [Eq(diff(f(x), x), f(x)), Eq(diff(g(x), x), g(x))] s1 = [Eq(f(x), C1*exp(x)), Eq(g(x), C2*exp(x))] assert checksysodesol(e, s1) == (True, [0, 0]) e = [Eq(diff(f(x), x), 2*f(x)), Eq(diff(g(x), x), 3*f(x) + 7*g(x))] s1 = [Eq(f(x), -5*C2*exp(2*x)), Eq(g(x), 5*C1*exp(7*x) + 3*C2*exp(2*x))] assert checksysodesol(e, s1) == (True, [0, 0]) def test_sysode_linear_2eq_order1_type1_D_lt_0(): e = [Eq(diff(f(x), x), -9*I*f(x) - 4*g(x)), Eq(diff(g(x), x), -4*I*g(x))] s1 = [Eq(f(x), -4*C1*exp(-4*I*x) - 4*C2*exp(-9*I*x)), \ Eq(g(x), 5*I*C1*exp(-4*I*x))] assert checksysodesol(e, s1) == (True, [0, 0]) def test_sysode_linear_2eq_order1_type1_D_lt_0_b_eq_0(): e = [Eq(diff(f(x), x), -9*I*f(x)), Eq(diff(g(x), x), -4*I*g(x))] s1 = [Eq(f(x), -5*I*C2*exp(-9*I*x)), Eq(g(x), 5*I*C1*exp(-4*I*x))] assert checksysodesol(e, s1) == (True, [0, 0]) def test_sysode_linear_2eq_order1_many_zeros(): t = Symbol('t') corner_cases = [(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 0, I), (I, 0, 0, -I), (0, I, 0, 0), (0, I, I, 0)] s1 = [[Eq(f(t), C1), Eq(g(t), C2)], [Eq(f(t), C1*exp(t)), Eq(g(t), -C2)], [Eq(f(t), C1 + C2*t), Eq(g(t), C2)], [Eq(f(t), C2), Eq(g(t), C1 + C2*t)], [Eq(f(t), -C2), Eq(g(t), C1*exp(t))], [Eq(f(t), C1*(1 - I)*exp(t)), Eq(g(t), C2*(-1 + I)*exp(I*t))], [Eq(f(t), 2*I*C1*exp(I*t)), Eq(g(t), -2*I*C2*exp(-I*t))], [Eq(f(t), I*C1 + I*C2*t), Eq(g(t), C2)], [Eq(f(t), I*C1*exp(I*t) + I*C2*exp(-I*t)), \ Eq(g(t), I*C1*exp(I*t) - I*C2*exp(-I*t))] ] for r, sol in zip(corner_cases, s1): eq = [Eq(diff(f(t), t), r[0]*f(t) + r[1]*g(t)), Eq(diff(g(t), t), r[2]*f(t) + r[3]*g(t))] assert checksysodesol(eq, sol) == (True, [0, 0]) def test_dsolve_linsystem_symbol_piecewise(): u = Symbol('u') # XXX it's more complicated with real u eq = (Eq(diff(f(x), x), 2*f(x) + g(x)), Eq(diff(g(x), x), u*f(x))) s1 = [Eq(f(x), Piecewise((C1*exp(x*(sqrt(4*u + 4)/2 + 1)) + C2*exp(x*(-sqrt(4*u + 4)/2 + 1)), Ne(4*u + 4, 0)), ((C1 + C2*(x + Piecewise((0, Eq(sqrt(4*u + 4)/2 + 1, 2)), (1/(-sqrt(4*u + 4)/2 + 1), True))))*exp(x*(sqrt(4*u + 4)/2 + 1)), True))), Eq(g(x), Piecewise((C1*(sqrt(4*u + 4)/2 - 1)*exp(x*(sqrt(4*u + 4)/2 + 1)) + C2*(-sqrt(4*u + 4)/2 - 1)*exp(x*(-sqrt(4*u + 4)/2 + 1)), Ne(4*u + 4, 0)), ((C1*(sqrt(4*u + 4)/2 - 1) + C2*(x*(sqrt(4*u + 4)/2 - 1) + Piecewise((1, Eq(sqrt(4*u + 4)/2 + 1, 2)), (0, True))))*exp(x*(sqrt(4*u + 4)/2 + 1)), True)))] assert dsolve(eq) == s1 # FIXME: assert checksysodesol(eq, s) == (True, [0, 0]) # Remove lines below when checksysodesol works s = [(l.lhs, l.rhs) for l in s1] for v in [0, 7, -42, 5*I, 3 + 4*I]: assert eq[0].subs(s).subs(u, v).doit().simplify() assert eq[1].subs(s).subs(u, v).doit().simplify() # example from https://groups.google.com/d/msg/sympy/xmzoqW6tWaE/sf0bgQrlCgAJ i, r1, c1, r2, c2, t = symbols('i, r1, c1, r2, c2, t') x1 = Function('x1') x2 = Function('x2') eq1 = r1*c1*Derivative(x1(t), t) + x1(t) - x2(t) - r1*i eq2 = r2*c1*Derivative(x1(t), t) + r2*c2*Derivative(x2(t), t) + x2(t) - r2*i sol = dsolve((eq1, eq2)) # FIXME: assert checksysodesol(eq, sol) == (True, [0, 0]) # Remove line below when checksysodesol works assert all(s.has(Piecewise) for s in sol) @slow def test_linear_2eq_order2(): x, y, z = symbols('x, y, z', cls=Function) k, l, m, n = symbols('k, l, m, n', Integer=True) t, l = symbols('t, l') x0, y0 = symbols('x0, y0', cls=Function) eq1 = (Eq(diff(x(t),t,t), 5*x(t) + 43*y(t)), Eq(diff(y(t),t,t), x(t) + 9*y(t))) sol1 = [Eq(x(t), 43*C1*exp(t*rootof(l**4 - 14*l**2 + 2, 0)) + 43*C2*exp(t*rootof(l**4 - 14*l**2 + 2, 1)) + \ 43*C3*exp(t*rootof(l**4 - 14*l**2 + 2, 2)) + 43*C4*exp(t*rootof(l**4 - 14*l**2 + 2, 3))), \ Eq(y(t), C1*(rootof(l**4 - 14*l**2 + 2, 0)**2 - 5)*exp(t*rootof(l**4 - 14*l**2 + 2, 0)) + \ C2*(rootof(l**4 - 14*l**2 + 2, 1)**2 - 5)*exp(t*rootof(l**4 - 14*l**2 + 2, 1)) + \ C3*(rootof(l**4 - 14*l**2 + 2, 2)**2 - 5)*exp(t*rootof(l**4 - 14*l**2 + 2, 2)) + \ C4*(rootof(l**4 - 14*l**2 + 2, 3)**2 - 5)*exp(t*rootof(l**4 - 14*l**2 + 2, 3)))] assert dsolve(eq1) == sol1 # FIXME: assert checksysodesol(eq1, sol1) == (True, [0, 0]) # this one fails eq2 = (Eq(diff(x(t),t,t), 8*x(t)+3*y(t)+31), Eq(diff(y(t),t,t), 9*x(t)+7*y(t)+12)) sol2 = [Eq(x(t), 3*C1*exp(t*rootof(l**4 - 15*l**2 + 29, 0)) + 3*C2*exp(t*rootof(l**4 - 15*l**2 + 29, 1)) + \ 3*C3*exp(t*rootof(l**4 - 15*l**2 + 29, 2)) + 3*C4*exp(t*rootof(l**4 - 15*l**2 + 29, 3)) - Rational(181, 29)), \ Eq(y(t), C1*(rootof(l**4 - 15*l**2 + 29, 0)**2 - 8)*exp(t*rootof(l**4 - 15*l**2 + 29, 0)) + \ C2*(rootof(l**4 - 15*l**2 + 29, 1)**2 - 8)*exp(t*rootof(l**4 - 15*l**2 + 29, 1)) + \ C3*(rootof(l**4 - 15*l**2 + 29, 2)**2 - 8)*exp(t*rootof(l**4 - 15*l**2 + 29, 2)) + \ C4*(rootof(l**4 - 15*l**2 + 29, 3)**2 - 8)*exp(t*rootof(l**4 - 15*l**2 + 29, 3)) + Rational(183, 29))] assert dsolve(eq2) == sol2 # FIXME: assert checksysodesol(eq2, sol2) == (True, [0, 0]) # this one fails eq3 = (Eq(diff(x(t),t,t) - 9*diff(y(t),t) + 7*x(t),0), Eq(diff(y(t),t,t) + 9*diff(x(t),t) + 7*y(t),0)) sol3 = [Eq(x(t), C1*cos(t*(Rational(9, 2) + sqrt(109)/2)) + C2*sin(t*(Rational(9, 2) + sqrt(109)/2)) + C3*cos(t*(-sqrt(109)/2 + Rational(9, 2))) + \ C4*sin(t*(-sqrt(109)/2 + Rational(9, 2)))), Eq(y(t), -C1*sin(t*(Rational(9, 2) + sqrt(109)/2)) + C2*cos(t*(Rational(9, 2) + sqrt(109)/2)) - \ C3*sin(t*(-sqrt(109)/2 + Rational(9, 2))) + C4*cos(t*(-sqrt(109)/2 + Rational(9, 2))))] assert dsolve(eq3) == sol3 assert checksysodesol(eq3, sol3) == (True, [0, 0]) eq4 = (Eq(diff(x(t),t,t), 9*t*diff(y(t),t)-9*y(t)), Eq(diff(y(t),t,t),7*t*diff(x(t),t)-7*x(t))) sol4 = [Eq(x(t), C3*t + t*Integral((9*C1*exp(3*sqrt(7)*t**2/2) + 9*C2*exp(-3*sqrt(7)*t**2/2))/t**2, t)), \ Eq(y(t), C4*t + t*Integral((3*sqrt(7)*C1*exp(3*sqrt(7)*t**2/2) - 3*sqrt(7)*C2*exp(-3*sqrt(7)*t**2/2))/t**2, t))] assert dsolve(eq4) == sol4 assert checksysodesol(eq4, sol4) == (True, [0, 0]) eq5 = (Eq(diff(x(t),t,t), (log(t)+t**2)*diff(x(t),t)+(log(t)+t**2)*3*diff(y(t),t)), Eq(diff(y(t),t,t), \ (log(t)+t**2)*2*diff(x(t),t)+(log(t)+t**2)*9*diff(y(t),t))) sol5 = [Eq(x(t), -sqrt(22)*(C1*Integral(exp((-sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) + C2 - \ C3*Integral(exp((sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) - C4 - \ (sqrt(22) + 5)*(C1*Integral(exp((-sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) + C2) + \ (-sqrt(22) + 5)*(C3*Integral(exp((sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) + C4))/88), \ Eq(y(t), -sqrt(22)*(C1*Integral(exp((-sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) + \ C2 - C3*Integral(exp((sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) - C4)/44)] assert dsolve(eq5) == sol5 assert checksysodesol(eq5, sol5) == (True, [0, 0]) eq6 = (Eq(diff(x(t),t,t), log(t)*t*diff(y(t),t) - log(t)*y(t)), Eq(diff(y(t),t,t), log(t)*t*diff(x(t),t) - log(t)*x(t))) sol6 = [Eq(x(t), C3*t + t*Integral((C1*exp(Integral(t*log(t), t)) + \ C2*exp(-Integral(t*log(t), t)))/t**2, t)), Eq(y(t), C4*t + t*Integral((C1*exp(Integral(t*log(t), t)) - \ C2*exp(-Integral(t*log(t), t)))/t**2, t))] assert dsolve(eq6) == sol6 assert checksysodesol(eq6, sol6) == (True, [0, 0]) eq7 = (Eq(diff(x(t),t,t), log(t)*(t*diff(x(t),t) - x(t)) + exp(t)*(t*diff(y(t),t) - y(t))), \ Eq(diff(y(t),t,t), (t**2)*(t*diff(x(t),t) - x(t)) + (t)*(t*diff(y(t),t) - y(t)))) sol7 = [Eq(x(t), C3*t + t*Integral((C1*x0(t) + C2*x0(t)*Integral(t*exp(t)*exp(Integral(t**2, t))*\ exp(Integral(t*log(t), t))/x0(t)**2, t))/t**2, t)), Eq(y(t), C4*t + t*Integral((C1*y0(t) + \ C2*(y0(t)*Integral(t*exp(t)*exp(Integral(t**2, t))*exp(Integral(t*log(t), t))/x0(t)**2, t) + \ exp(Integral(t**2, t))*exp(Integral(t*log(t), t))/x0(t)))/t**2, t))] assert dsolve(eq7) == sol7 # FIXME: assert checksysodesol(eq7, sol7) == (True, [0, 0]) eq8 = (Eq(diff(x(t),t,t), t*(4*x(t) + 9*y(t))), Eq(diff(y(t),t,t), t*(12*x(t) - 6*y(t)))) sol8 = [Eq(x(t), -sqrt(133)*(-4*C1*airyai(t*(-1 + sqrt(133))**(S(1)/3)) + 4*C1*airyai(-t*(1 + \ sqrt(133))**(S(1)/3)) - 4*C2*airybi(t*(-1 + sqrt(133))**(S(1)/3)) + 4*C2*airybi(-t*(1 + sqrt(133))**(S(1)/3)) +\ (-sqrt(133) - 1)*(C1*airyai(t*(-1 + sqrt(133))**(S(1)/3)) + C2*airybi(t*(-1 + sqrt(133))**(S(1)/3))) - (-1 +\ sqrt(133))*(C1*airyai(-t*(1 + sqrt(133))**(S(1)/3)) + C2*airybi(-t*(1 + sqrt(133))**(S(1)/3))))/3192), \ Eq(y(t), -sqrt(133)*(-C1*airyai(t*(-1 + sqrt(133))**(S(1)/3)) + C1*airyai(-t*(1 + sqrt(133))**(S(1)/3)) -\ C2*airybi(t*(-1 + sqrt(133))**(S(1)/3)) + C2*airybi(-t*(1 + sqrt(133))**(S(1)/3)))/266)] assert dsolve(eq8) == sol8 assert checksysodesol(eq8, sol8) == (True, [0, 0]) assert filldedent(dsolve(eq8)) == filldedent(''' [Eq(x(t), -sqrt(133)*(-4*C1*airyai(t*(-1 + sqrt(133))**(1/3)) + 4*C1*airyai(-t*(1 + sqrt(133))**(1/3)) - 4*C2*airybi(t*(-1 + sqrt(133))**(1/3)) + 4*C2*airybi(-t*(1 + sqrt(133))**(1/3)) + (-sqrt(133) - 1)*(C1*airyai(t*(-1 + sqrt(133))**(1/3)) + C2*airybi(t*(-1 + sqrt(133))**(1/3))) - (-1 + sqrt(133))*(C1*airyai(-t*(1 + sqrt(133))**(1/3)) + C2*airybi(-t*(1 + sqrt(133))**(1/3))))/3192), Eq(y(t), -sqrt(133)*(-C1*airyai(t*(-1 + sqrt(133))**(1/3)) + C1*airyai(-t*(1 + sqrt(133))**(1/3)) - C2*airybi(t*(-1 + sqrt(133))**(1/3)) + C2*airybi(-t*(1 + sqrt(133))**(1/3)))/266)]''') assert checksysodesol(eq8, sol8) == (True, [0, 0]) eq9 = (Eq(diff(x(t),t,t), t*(4*diff(x(t),t) + 9*diff(y(t),t))), Eq(diff(y(t),t,t), t*(12*diff(x(t),t) - 6*diff(y(t),t)))) sol9 = [Eq(x(t), -sqrt(133)*(4*C1*Integral(exp((-sqrt(133) - 1)*Integral(t, t)), t) + 4*C2 - \ 4*C3*Integral(exp((-1 + sqrt(133))*Integral(t, t)), t) - 4*C4 - (-1 + sqrt(133))*(C1*Integral(exp((-sqrt(133) - \ 1)*Integral(t, t)), t) + C2) + (-sqrt(133) - 1)*(C3*Integral(exp((-1 + sqrt(133))*Integral(t, t)), t) + \ C4))/3192), Eq(y(t), -sqrt(133)*(C1*Integral(exp((-sqrt(133) - 1)*Integral(t, t)), t) + C2 - \ C3*Integral(exp((-1 + sqrt(133))*Integral(t, t)), t) - C4)/266)] assert dsolve(eq9) == sol9 assert checksysodesol(eq9, sol9) == (True, [0, 0]) eq10 = (t**2*diff(x(t),t,t) + 3*t*diff(x(t),t) + 4*t*diff(y(t),t) + 12*x(t) + 9*y(t), \ t**2*diff(y(t),t,t) + 2*t*diff(x(t),t) - 5*t*diff(y(t),t) + 15*x(t) + 8*y(t)) sol10 = [Eq(x(t), -C1*(-2*sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + 13 + 2*sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \ 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + \ 346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))))*exp((-sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \ 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))/2 + 1 + sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)))/2)*log(t)) - \ C2*(-2*sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \ 13 - 2*sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3))))*exp((-sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \ 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))/2 + 1 - sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \ 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)))/2)*log(t)) - C3*t**(1 + sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \ 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))/2 + sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)))/2)*(2*sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + 13 + 2*sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)))) - C4*t**(-sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)))/2 + 1 + sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3))/2)*(-2*sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3))) + 2*sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + 13)), Eq(y(t), C1*(-sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \ 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 14 + (-sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \ 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))/2 + 1 + sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \ 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)))/2)**2 + sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \ 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3))))*exp((-sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3))/2 + 1 + sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \ 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)))/2)*log(t)) + C2*(-sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \ 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 14 - sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \ 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3))) + (-sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3))/2 + 1 - sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \ 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)))/2)**2)*exp((-sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3))/2 + 1 - sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \ 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)))/2)*log(t)) + C3*t**(1 + sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \ 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))/2 + sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)))/2)*(sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3))) + 14 + (1 + sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3))/2 + sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)))/2)**2) + C4*t**(-sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + \ 346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \ 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)))/2 + 1 + sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \ 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))/2)*(-sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + \ 8 + 346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \ 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))) + (-sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + \ 346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \ 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)))/2 + 1 + sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \ 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))/2)**2 + sqrt(-346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 14))] assert dsolve(eq10) == sol10 # FIXME: assert checksysodesol(eq10, sol10) == (True, [0, 0]) # this hangs or at least takes a while... def test_linear_3eq_order1(): x, y, z = symbols('x, y, z', cls=Function) t = Symbol('t') eq1 = (Eq(diff(x(t),t), 21*x(t)), Eq(diff(y(t),t), 17*x(t)+3*y(t)), Eq(diff(z(t),t), 5*x(t)+7*y(t)+9*z(t))) sol1 = [Eq(x(t), C1*exp(21*t)), Eq(y(t), 17*C1*exp(21*t)/18 + C2*exp(3*t)), \ Eq(z(t), 209*C1*exp(21*t)/216 - 7*C2*exp(3*t)/6 + C3*exp(9*t))] assert checksysodesol(eq1, sol1) == (True, [0, 0, 0]) eq2 = (Eq(diff(x(t),t),3*y(t)-11*z(t)),Eq(diff(y(t),t),7*z(t)-3*x(t)),Eq(diff(z(t),t),11*x(t)-7*y(t))) sol2 = [Eq(x(t), 7*C0 + sqrt(179)*C1*cos(sqrt(179)*t) + (77*C1/3 + 130*C2/3)*sin(sqrt(179)*t)), \ Eq(y(t), 11*C0 + sqrt(179)*C2*cos(sqrt(179)*t) + (-58*C1/3 - 77*C2/3)*sin(sqrt(179)*t)), \ Eq(z(t), 3*C0 + sqrt(179)*(-7*C1/3 - 11*C2/3)*cos(sqrt(179)*t) + (11*C1 - 7*C2)*sin(sqrt(179)*t))] assert checksysodesol(eq2, sol2) == (True, [0, 0, 0]) eq3 = (Eq(3*diff(x(t),t),4*5*(y(t)-z(t))),Eq(4*diff(y(t),t),3*5*(z(t)-x(t))),Eq(5*diff(z(t),t),3*4*(x(t)-y(t)))) sol3 = [Eq(x(t), C0 + 5*sqrt(2)*C1*cos(5*sqrt(2)*t) + (12*C1/5 + 164*C2/15)*sin(5*sqrt(2)*t)), \ Eq(y(t), C0 + 5*sqrt(2)*C2*cos(5*sqrt(2)*t) + (-51*C1/10 - 12*C2/5)*sin(5*sqrt(2)*t)), \ Eq(z(t), C0 + 5*sqrt(2)*(-9*C1/25 - 16*C2/25)*cos(5*sqrt(2)*t) + (12*C1/5 - 12*C2/5)*sin(5*sqrt(2)*t))] assert checksysodesol(eq3, sol3) == (True, [0, 0, 0]) f = t**3 + log(t) g = t**2 + sin(t) eq4 = (Eq(diff(x(t),t),(4*f+g)*x(t)-f*y(t)-2*f*z(t)), Eq(diff(y(t),t),2*f*x(t)+(f+g)*y(t)-2*f*z(t)), Eq(diff(z(t),t),5*f*x(t)+f*y(t)+(-3*f+g)*z(t))) sol4 = [Eq(x(t), (C1*exp(-2*Integral(t**3 + log(t), t)) + C2*(sqrt(3)*sin(sqrt(3)*Integral(t**3 + log(t), t))/6 \ + cos(sqrt(3)*Integral(t**3 + log(t), t))/2) + C3*(sin(sqrt(3)*Integral(t**3 + log(t), t))/2 - \ sqrt(3)*cos(sqrt(3)*Integral(t**3 + log(t), t))/6))*exp(Integral(-t**2 - sin(t), t))), Eq(y(t), \ (C2*(sqrt(3)*sin(sqrt(3)*Integral(t**3 + log(t), t))/6 + cos(sqrt(3)*Integral(t**3 + log(t), t))/2) + \ C3*(sin(sqrt(3)*Integral(t**3 + log(t), t))/2 - sqrt(3)*cos(sqrt(3)*Integral(t**3 + log(t), t))/6))*\ exp(Integral(-t**2 - sin(t), t))), Eq(z(t), (C1*exp(-2*Integral(t**3 + log(t), t)) + C2*cos(sqrt(3)*\ Integral(t**3 + log(t), t)) + C3*sin(sqrt(3)*Integral(t**3 + log(t), t)))*exp(Integral(-t**2 - sin(t), t)))] assert dsolve(eq4) == sol4 # FIXME: assert checksysodesol(eq4, sol4) == (True, [0, 0, 0]) # this one fails eq5 = (Eq(diff(x(t),t),4*x(t) - z(t)),Eq(diff(y(t),t),2*x(t)+2*y(t)-z(t)),Eq(diff(z(t),t),3*x(t)+y(t))) sol5 = [Eq(x(t), C1*exp(2*t) + C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t)/2 + C3*t*exp(2*t) + C3*exp(2*t)), \ Eq(y(t), C1*exp(2*t) + C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t)/2 + C3*t*exp(2*t)), \ Eq(z(t), 2*C1*exp(2*t) + 2*C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t) + C3*t*exp(2*t) + C3*exp(2*t))] assert checksysodesol(eq5, sol5) == (True, [0, 0, 0]) eq6 = (Eq(diff(x(t),t),4*x(t) - y(t) - 2*z(t)),Eq(diff(y(t),t),2*x(t) + y(t)- 2*z(t)),Eq(diff(z(t),t),5*x(t)-3*z(t))) sol6 = [Eq(x(t), C1*exp(2*t) + C2*(-sin(t)/5 + 3*cos(t)/5) + C3*(3*sin(t)/5 + cos(t)/5)), Eq(y(t), C2*(-sin(t)/5 + 3*cos(t)/5) + C3*(3*sin(t)/5 + cos(t)/5)), Eq(z(t), C1*exp(2*t) + C2*cos(t) + C3*sin(t))] assert checksysodesol(eq6, sol6) == (True, [0, 0, 0]) def test_linear_3eq_order1_nonhomog(): e = [Eq(diff(f(x), x), -9*f(x) - 4*g(x)), Eq(diff(g(x), x), -4*g(x)), Eq(diff(h(x), x), h(x) + exp(x))] raises(NotImplementedError, lambda: dsolve(e)) @XFAIL def test_linear_3eq_order1_diagonal(): # code makes assumptions about coefficients being nonzero, breaks when assumptions are not true e = [Eq(diff(f(x), x), f(x)), Eq(diff(g(x), x), g(x)), Eq(diff(h(x), x), h(x))] s1 = [Eq(f(x), C1*exp(x)), Eq(g(x), C2*exp(x)), Eq(h(x), C3*exp(x))] s = dsolve(e) assert s == s1 assert checksysodesol(e, s1) == (True, [0, 0, 0]) def test_nonlinear_2eq_order1(): x, y, z = symbols('x, y, z', cls=Function) t = Symbol('t') eq1 = (Eq(diff(x(t),t),x(t)*y(t)**3), Eq(diff(y(t),t),y(t)**5)) sol1 = [ Eq(x(t), C1*exp((-1/(4*C2 + 4*t))**(Rational(-1, 4)))), Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), C1*exp(-1/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), C1*exp(-I/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), C1*exp(I/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))] assert dsolve(eq1) == sol1 assert checksysodesol(eq1, sol1) == (True, [0, 0]) eq2 = (Eq(diff(x(t),t), exp(3*x(t))*y(t)**3),Eq(diff(y(t),t), y(t)**5)) sol2 = [ Eq(x(t), -log(C1 - 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), -log(C1 + 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), -log(C1 + 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), -log(C1 - 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))] assert dsolve(eq2) == sol2 assert checksysodesol(eq2, sol2) == (True, [0, 0]) eq3 = (Eq(diff(x(t),t), y(t)*x(t)), Eq(diff(y(t),t), x(t)**3)) tt = Rational(2, 3) sol3 = [ Eq(x(t), 6**tt/(6*(-sinh(sqrt(C1)*(C2 + t)/2)/sqrt(C1))**tt)), Eq(y(t), sqrt(C1 + C1/sinh(sqrt(C1)*(C2 + t)/2)**2)/3)] assert dsolve(eq3) == sol3 # FIXME: assert checksysodesol(eq3, sol3) == (True, [0, 0]) eq4 = (Eq(diff(x(t),t),x(t)*y(t)*sin(t)**2), Eq(diff(y(t),t),y(t)**2*sin(t)**2)) sol4 = set([Eq(x(t), -2*exp(C1)/(C2*exp(C1) + t - sin(2*t)/2)), Eq(y(t), -2/(C1 + t - sin(2*t)/2))]) assert dsolve(eq4) == sol4 # FIXME: assert checksysodesol(eq4, sol4) == (True, [0, 0]) eq5 = (Eq(x(t),t*diff(x(t),t)+diff(x(t),t)*diff(y(t),t)), Eq(y(t),t*diff(y(t),t)+diff(y(t),t)**2)) sol5 = set([Eq(x(t), C1*C2 + C1*t), Eq(y(t), C2**2 + C2*t)]) assert dsolve(eq5) == sol5 assert checksysodesol(eq5, sol5) == (True, [0, 0]) eq6 = (Eq(diff(x(t),t),x(t)**2*y(t)**3), Eq(diff(y(t),t),y(t)**5)) sol6 = [ Eq(x(t), 1/(C1 - 1/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), 1/(C1 + (-1/(4*C2 + 4*t))**(Rational(-1, 4)))), Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), 1/(C1 + I/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), 1/(C1 - I/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))] assert dsolve(eq6) == sol6 assert checksysodesol(eq6, sol6) == (True, [0, 0]) def test_checksysodesol(): x, y, z = symbols('x, y, z', cls=Function) t = Symbol('t') eq = (Eq(diff(x(t),t), 9*y(t)), Eq(diff(y(t),t), 12*x(t))) sol = [Eq(x(t), 9*C1*exp(-6*sqrt(3)*t) + 9*C2*exp(6*sqrt(3)*t)), \ Eq(y(t), -6*sqrt(3)*C1*exp(-6*sqrt(3)*t) + 6*sqrt(3)*C2*exp(6*sqrt(3)*t))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t), 2*x(t) + 4*y(t)), Eq(diff(y(t),t), 12*x(t) + 41*y(t))) sol = [Eq(x(t), 4*C1*exp(t*(-sqrt(1713)/2 + Rational(43, 2))) + 4*C2*exp(t*(sqrt(1713)/2 + \ Rational(43, 2)))), Eq(y(t), C1*(-sqrt(1713)/2 + Rational(39, 2))*exp(t*(-sqrt(1713)/2 + \ Rational(43, 2))) + C2*(Rational(39, 2) + sqrt(1713)/2)*exp(t*(sqrt(1713)/2 + Rational(43, 2))))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t), x(t) + y(t)), Eq(diff(y(t),t), -2*x(t) + 2*y(t))) sol = [Eq(x(t), (C1*sin(sqrt(7)*t/2) + C2*cos(sqrt(7)*t/2))*exp(t*Rational(3, 2))), \ Eq(y(t), ((C1/2 - sqrt(7)*C2/2)*sin(sqrt(7)*t/2) + (sqrt(7)*C1/2 + \ C2/2)*cos(sqrt(7)*t/2))*exp(t*Rational(3, 2)))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t), x(t) + y(t) + 9), Eq(diff(y(t),t), 2*x(t) + 5*y(t) + 23)) sol = [Eq(x(t), C1*exp(t*(-sqrt(6) + 3)) + C2*exp(t*(sqrt(6) + 3)) - \ Rational(22, 3)), Eq(y(t), C1*(-sqrt(6) + 2)*exp(t*(-sqrt(6) + 3)) + C2*(2 + \ sqrt(6))*exp(t*(sqrt(6) + 3)) - Rational(5, 3))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t), x(t) + y(t) + 81), Eq(diff(y(t),t), -2*x(t) + y(t) + 23)) sol = [Eq(x(t), (C1*sin(sqrt(2)*t) + C2*cos(sqrt(2)*t))*exp(t) - Rational(58, 3)), \ Eq(y(t), (sqrt(2)*C1*cos(sqrt(2)*t) - sqrt(2)*C2*sin(sqrt(2)*t))*exp(t) - Rational(185, 3))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t),t), 2*x(t) + 5*t*y(t))) sol = [Eq(x(t), (C1*exp((Integral(2, t).doit())) + C2*exp(-(Integral(2, t)).doit()))*\ exp((Integral(5*t, t)).doit())), Eq(y(t), (C1*exp((Integral(2, t)).doit()) - \ C2*exp(-(Integral(2, t)).doit()))*exp((Integral(5*t, t)).doit()))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t))) sol = [Eq(x(t), (C1*cos((Integral(t**2, t)).doit()) + C2*sin((Integral(t**2, t)).doit()))*\ exp((Integral(5*t, t)).doit())), Eq(y(t), (-C1*sin((Integral(t**2, t)).doit()) + \ C2*cos((Integral(t**2, t)).doit()))*exp((Integral(5*t, t)).doit()))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + (5*t+9*t**2)*y(t))) sol = [Eq(x(t), (C1*exp((-sqrt(77)/2 + Rational(9, 2))*(Integral(t**2, t)).doit()) + \ C2*exp((sqrt(77)/2 + Rational(9, 2))*(Integral(t**2, t)).doit()))*exp((Integral(5*t, t)).doit())), \ Eq(y(t), (C1*(-sqrt(77)/2 + Rational(9, 2))*exp((-sqrt(77)/2 + Rational(9, 2))*(Integral(t**2, t)).doit()) + \ C2*(sqrt(77)/2 + Rational(9, 2))*exp((sqrt(77)/2 + Rational(9, 2))*(Integral(t**2, t)).doit()))*exp((Integral(5*t, t)).doit()))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t,t), 5*x(t) + 43*y(t)), Eq(diff(y(t),t,t), x(t) + 9*y(t))) root0 = -sqrt(-sqrt(47) + 7) root1 = sqrt(-sqrt(47) + 7) root2 = -sqrt(sqrt(47) + 7) root3 = sqrt(sqrt(47) + 7) sol = [Eq(x(t), 43*C1*exp(t*root0) + 43*C2*exp(t*root1) + 43*C3*exp(t*root2) + 43*C4*exp(t*root3)), \ Eq(y(t), C1*(root0**2 - 5)*exp(t*root0) + C2*(root1**2 - 5)*exp(t*root1) + \ C3*(root2**2 - 5)*exp(t*root2) + C4*(root3**2 - 5)*exp(t*root3))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t,t), 8*x(t)+3*y(t)+31), Eq(diff(y(t),t,t), 9*x(t)+7*y(t)+12)) root0 = -sqrt(-sqrt(109)/2 + Rational(15, 2)) root1 = sqrt(-sqrt(109)/2 + Rational(15, 2)) root2 = -sqrt(sqrt(109)/2 + Rational(15, 2)) root3 = sqrt(sqrt(109)/2 + Rational(15, 2)) sol = [Eq(x(t), 3*C1*exp(t*root0) + 3*C2*exp(t*root1) + 3*C3*exp(t*root2) + 3*C4*exp(t*root3) - Rational(181, 29)), \ Eq(y(t), C1*(root0**2 - 8)*exp(t*root0) + C2*(root1**2 - 8)*exp(t*root1) + \ C3*(root2**2 - 8)*exp(t*root2) + C4*(root3**2 - 8)*exp(t*root3) + Rational(183, 29))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t,t) - 9*diff(y(t),t) + 7*x(t),0), Eq(diff(y(t),t,t) + 9*diff(x(t),t) + 7*y(t),0)) sol = [Eq(x(t), C1*cos(t*(Rational(9, 2) + sqrt(109)/2)) + C2*sin(t*(Rational(9, 2) + sqrt(109)/2)) + \ C3*cos(t*(-sqrt(109)/2 + Rational(9, 2))) + C4*sin(t*(-sqrt(109)/2 + Rational(9, 2)))), Eq(y(t), -C1*sin(t*(Rational(9, 2) + sqrt(109)/2)) \ + C2*cos(t*(Rational(9, 2) + sqrt(109)/2)) - C3*sin(t*(-sqrt(109)/2 + Rational(9, 2))) + C4*cos(t*(-sqrt(109)/2 + Rational(9, 2))))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t,t), 9*t*diff(y(t),t)-9*y(t)), Eq(diff(y(t),t,t),7*t*diff(x(t),t)-7*x(t))) I1 = sqrt(6)*7**Rational(1, 4)*sqrt(pi)*erfi(sqrt(6)*7**Rational(1, 4)*t/2)/2 - exp(3*sqrt(7)*t**2/2)/t I2 = -sqrt(6)*7**Rational(1, 4)*sqrt(pi)*erf(sqrt(6)*7**Rational(1, 4)*t/2)/2 - exp(-3*sqrt(7)*t**2/2)/t sol = [Eq(x(t), C3*t + t*(9*C1*I1 + 9*C2*I2)), Eq(y(t), C4*t + t*(3*sqrt(7)*C1*I1 - 3*sqrt(7)*C2*I2))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t), 21*x(t)), Eq(diff(y(t),t), 17*x(t)+3*y(t)), Eq(diff(z(t),t), 5*x(t)+7*y(t)+9*z(t))) sol = [Eq(x(t), C1*exp(21*t)), Eq(y(t), 17*C1*exp(21*t)/18 + C2*exp(3*t)), \ Eq(z(t), 209*C1*exp(21*t)/216 - 7*C2*exp(3*t)/6 + C3*exp(9*t))] assert checksysodesol(eq, sol) == (True, [0, 0, 0]) eq = (Eq(diff(x(t),t),3*y(t)-11*z(t)),Eq(diff(y(t),t),7*z(t)-3*x(t)),Eq(diff(z(t),t),11*x(t)-7*y(t))) sol = [Eq(x(t), 7*C0 + sqrt(179)*C1*cos(sqrt(179)*t) + (77*C1/3 + 130*C2/3)*sin(sqrt(179)*t)), \ Eq(y(t), 11*C0 + sqrt(179)*C2*cos(sqrt(179)*t) + (-58*C1/3 - 77*C2/3)*sin(sqrt(179)*t)), \ Eq(z(t), 3*C0 + sqrt(179)*(-7*C1/3 - 11*C2/3)*cos(sqrt(179)*t) + (11*C1 - 7*C2)*sin(sqrt(179)*t))] assert checksysodesol(eq, sol) == (True, [0, 0, 0]) eq = (Eq(3*diff(x(t),t),4*5*(y(t)-z(t))),Eq(4*diff(y(t),t),3*5*(z(t)-x(t))),Eq(5*diff(z(t),t),3*4*(x(t)-y(t)))) sol = [Eq(x(t), C0 + 5*sqrt(2)*C1*cos(5*sqrt(2)*t) + (12*C1/5 + 164*C2/15)*sin(5*sqrt(2)*t)), \ Eq(y(t), C0 + 5*sqrt(2)*C2*cos(5*sqrt(2)*t) + (-51*C1/10 - 12*C2/5)*sin(5*sqrt(2)*t)), \ Eq(z(t), C0 + 5*sqrt(2)*(-9*C1/25 - 16*C2/25)*cos(5*sqrt(2)*t) + (12*C1/5 - 12*C2/5)*sin(5*sqrt(2)*t))] assert checksysodesol(eq, sol) == (True, [0, 0, 0]) eq = (Eq(diff(x(t),t),4*x(t) - z(t)),Eq(diff(y(t),t),2*x(t)+2*y(t)-z(t)),Eq(diff(z(t),t),3*x(t)+y(t))) sol = [Eq(x(t), C1*exp(2*t) + C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t)/2 + C3*t*exp(2*t) + C3*exp(2*t)), \ Eq(y(t), C1*exp(2*t) + C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t)/2 + C3*t*exp(2*t)), \ Eq(z(t), 2*C1*exp(2*t) + 2*C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t) + C3*t*exp(2*t) + C3*exp(2*t))] assert checksysodesol(eq, sol) == (True, [0, 0, 0]) eq = (Eq(diff(x(t),t),4*x(t) - y(t) - 2*z(t)),Eq(diff(y(t),t),2*x(t) + y(t)- 2*z(t)),Eq(diff(z(t),t),5*x(t)-3*z(t))) sol = [Eq(x(t), C1*exp(2*t) + C2*(-sin(t) + 3*cos(t)) + C3*(3*sin(t) + cos(t))), \ Eq(y(t), C2*(-sin(t) + 3*cos(t)) + C3*(3*sin(t) + cos(t))), Eq(z(t), C1*exp(2*t) + 5*C2*cos(t) + 5*C3*sin(t))] assert checksysodesol(eq, sol) == (True, [0, 0, 0]) eq = (Eq(diff(x(t),t),x(t)*y(t)**3), Eq(diff(y(t),t),y(t)**5)) sol = [Eq(x(t), C1*exp((-1/(4*C2 + 4*t))**(Rational(-1, 4)))), Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)), \ Eq(x(t), C1*exp(-1/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)), \ Eq(x(t), C1*exp(-I/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)), \ Eq(x(t), C1*exp(I/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t), exp(3*x(t))*y(t)**3),Eq(diff(y(t),t), y(t)**5)) sol = [Eq(x(t), -log(C1 - 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)), \ Eq(x(t), -log(C1 + 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)), \ Eq(x(t), -log(C1 + 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)), \ Eq(x(t), -log(C1 - 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(x(t),t*diff(x(t),t)+diff(x(t),t)*diff(y(t),t)), Eq(y(t),t*diff(y(t),t)+diff(y(t),t)**2)) sol = set([Eq(x(t), C1*C2 + C1*t), Eq(y(t), C2**2 + C2*t)]) assert checksysodesol(eq, sol) == (True, [0, 0]) @slow def test_nonlinear_3eq_order1(): x, y, z = symbols('x, y, z', cls=Function) t, u = symbols('t u') eq1 = (4*diff(x(t),t) + 2*y(t)*z(t), 3*diff(y(t),t) - z(t)*x(t), 5*diff(z(t),t) - x(t)*y(t)) sol1 = [Eq(4*Integral(1/(sqrt(-4*u**2 - 3*C1 + C2)*sqrt(-4*u**2 + 5*C1 - C2)), (u, x(t))), C3 - sqrt(15)*t/15), Eq(3*Integral(1/(sqrt(-6*u**2 - C1 + 5*C2)*sqrt(3*u**2 + C1 - 4*C2)), (u, y(t))), C3 + sqrt(5)*t/10), Eq(5*Integral(1/(sqrt(-10*u**2 - 3*C1 + C2)* sqrt(5*u**2 + 4*C1 - C2)), (u, z(t))), C3 + sqrt(3)*t/6)] assert [i.dummy_eq(j) for i, j in zip(dsolve(eq1), sol1)] # FIXME: assert checksysodesol(eq1, sol1) == (True, [0, 0, 0]) eq2 = (4*diff(x(t),t) + 2*y(t)*z(t)*sin(t), 3*diff(y(t),t) - z(t)*x(t)*sin(t), 5*diff(z(t),t) - x(t)*y(t)*sin(t)) sol2 = [Eq(3*Integral(1/(sqrt(-6*u**2 - C1 + 5*C2)*sqrt(3*u**2 + C1 - 4*C2)), (u, x(t))), C3 + sqrt(5)*cos(t)/10), Eq(4*Integral(1/(sqrt(-4*u**2 - 3*C1 + C2)*sqrt(-4*u**2 + 5*C1 - C2)), (u, y(t))), C3 - sqrt(15)*cos(t)/15), Eq(5*Integral(1/(sqrt(-10*u**2 - 3*C1 + C2)* sqrt(5*u**2 + 4*C1 - C2)), (u, z(t))), C3 + sqrt(3)*cos(t)/6)] assert [i.dummy_eq(j) for i, j in zip(dsolve(eq2), sol2)] # FIXME: assert checksysodesol(eq2, sol2) == (True, [0, 0, 0]) @slow def test_checkodesol(): from sympy import Ei # For the most part, checkodesol is well tested in the tests below. # These tests only handle cases not checked below. raises(ValueError, lambda: checkodesol(f(x, y).diff(x), Eq(f(x, y), x))) raises(ValueError, lambda: checkodesol(f(x).diff(x), Eq(f(x, y), x), f(x, y))) assert checkodesol(f(x).diff(x), Eq(f(x, y), x)) == \ (False, -f(x).diff(x) + f(x, y).diff(x) - 1) assert checkodesol(f(x).diff(x), Eq(f(x), x)) is not True assert checkodesol(f(x).diff(x), Eq(f(x), x)) == (False, 1) sol1 = Eq(f(x)**5 + 11*f(x) - 2*f(x) + x, 0) assert checkodesol(diff(sol1.lhs, x), sol1) == (True, 0) assert checkodesol(diff(sol1.lhs, x)*exp(f(x)), sol1) == (True, 0) assert checkodesol(diff(sol1.lhs, x, 2), sol1) == (True, 0) assert checkodesol(diff(sol1.lhs, x, 2)*exp(f(x)), sol1) == (True, 0) assert checkodesol(diff(sol1.lhs, x, 3), sol1) == (True, 0) assert checkodesol(diff(sol1.lhs, x, 3)*exp(f(x)), sol1) == (True, 0) assert checkodesol(diff(sol1.lhs, x, 3), Eq(f(x), x*log(x))) == \ (False, 60*x**4*((log(x) + 1)**2 + log(x))*( log(x) + 1)*log(x)**2 - 5*x**4*log(x)**4 - 9) assert checkodesol(diff(exp(f(x)) + x, x)*x, Eq(exp(f(x)) + x, 0)) == \ (True, 0) assert checkodesol(diff(exp(f(x)) + x, x)*x, Eq(exp(f(x)) + x, 0), solve_for_func=False) == (True, 0) assert checkodesol(f(x).diff(x, 2), [Eq(f(x), C1 + C2*x), Eq(f(x), C2 + C1*x), Eq(f(x), C1*x + C2*x**2)]) == \ [(True, 0), (True, 0), (False, C2)] assert checkodesol(f(x).diff(x, 2), set([Eq(f(x), C1 + C2*x), Eq(f(x), C2 + C1*x), Eq(f(x), C1*x + C2*x**2)])) == \ set([(True, 0), (True, 0), (False, C2)]) assert checkodesol(f(x).diff(x) - 1/f(x)/2, Eq(f(x)**2, x)) == \ [(True, 0), (True, 0)] assert checkodesol(f(x).diff(x) - f(x), Eq(C1*exp(x), f(x))) == (True, 0) # Based on test_1st_homogeneous_coeff_ode2_eq3sol. Make sure that # checkodesol tries back substituting f(x) when it can. eq3 = x*exp(f(x)/x) + f(x) - x*f(x).diff(x) sol3 = Eq(f(x), log(log(C1/x)**(-x))) assert not checkodesol(eq3, sol3)[1].has(f(x)) # This case was failing intermittently depending on hash-seed: eqn = Eq(Derivative(x*Derivative(f(x), x), x)/x, exp(x)) sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x)) assert checkodesol(eqn, sol, order=2, solve_for_func=False)[0] eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (2*x**2 +25)*f(x) sol = Eq(f(x), C1*besselj(5*I, sqrt(2)*x) + C2*bessely(5*I, sqrt(2)*x)) assert checkodesol(eq, sol) == (True, 0) @slow def test_dsolve_options(): eq = x*f(x).diff(x) + f(x) a = dsolve(eq, hint='all') b = dsolve(eq, hint='all', simplify=False) c = dsolve(eq, hint='all_Integral') keys = ['1st_exact', '1st_exact_Integral', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_homogeneous_coeff_subs_dep_div_indep_Integral', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_linear', '1st_linear_Integral', 'almost_linear', 'almost_linear_Integral', 'best', 'best_hint', 'default', 'lie_group', 'nth_linear_euler_eq_homogeneous', 'order', 'separable', 'separable_Integral'] Integral_keys = ['1st_exact_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_linear_Integral', 'almost_linear_Integral', 'best', 'best_hint', 'default', 'nth_linear_euler_eq_homogeneous', 'order', 'separable_Integral'] assert sorted(a.keys()) == keys assert a['order'] == ode_order(eq, f(x)) assert a['best'] == Eq(f(x), C1/x) assert dsolve(eq, hint='best') == Eq(f(x), C1/x) assert a['default'] == 'separable' assert a['best_hint'] == 'separable' assert not a['1st_exact'].has(Integral) assert not a['separable'].has(Integral) assert not a['1st_homogeneous_coeff_best'].has(Integral) assert not a['1st_homogeneous_coeff_subs_dep_div_indep'].has(Integral) assert not a['1st_homogeneous_coeff_subs_indep_div_dep'].has(Integral) assert not a['1st_linear'].has(Integral) assert a['1st_linear_Integral'].has(Integral) assert a['1st_exact_Integral'].has(Integral) assert a['1st_homogeneous_coeff_subs_dep_div_indep_Integral'].has(Integral) assert a['1st_homogeneous_coeff_subs_indep_div_dep_Integral'].has(Integral) assert a['separable_Integral'].has(Integral) assert sorted(b.keys()) == keys assert b['order'] == ode_order(eq, f(x)) assert b['best'] == Eq(f(x), C1/x) assert dsolve(eq, hint='best', simplify=False) == Eq(f(x), C1/x) assert b['default'] == 'separable' assert b['best_hint'] == '1st_linear' assert a['separable'] != b['separable'] assert a['1st_homogeneous_coeff_subs_dep_div_indep'] != \ b['1st_homogeneous_coeff_subs_dep_div_indep'] assert a['1st_homogeneous_coeff_subs_indep_div_dep'] != \ b['1st_homogeneous_coeff_subs_indep_div_dep'] assert not b['1st_exact'].has(Integral) assert not b['separable'].has(Integral) assert not b['1st_homogeneous_coeff_best'].has(Integral) assert not b['1st_homogeneous_coeff_subs_dep_div_indep'].has(Integral) assert not b['1st_homogeneous_coeff_subs_indep_div_dep'].has(Integral) assert not b['1st_linear'].has(Integral) assert b['1st_linear_Integral'].has(Integral) assert b['1st_exact_Integral'].has(Integral) assert b['1st_homogeneous_coeff_subs_dep_div_indep_Integral'].has(Integral) assert b['1st_homogeneous_coeff_subs_indep_div_dep_Integral'].has(Integral) assert b['separable_Integral'].has(Integral) assert sorted(c.keys()) == Integral_keys raises(ValueError, lambda: dsolve(eq, hint='notarealhint')) raises(ValueError, lambda: dsolve(eq, hint='Liouville')) assert dsolve(f(x).diff(x) - 1/f(x)**2, hint='all')['best'] == \ dsolve(f(x).diff(x) - 1/f(x)**2, hint='best') assert dsolve(f(x) + f(x).diff(x) + sin(x).diff(x) + 1, f(x), hint="1st_linear_Integral") == \ Eq(f(x), (C1 + Integral((-sin(x).diff(x) - 1)* exp(Integral(1, x)), x))*exp(-Integral(1, x))) def test_classify_ode(): assert classify_ode(f(x).diff(x, 2), f(x)) == \ ( 'nth_algebraic', 'nth_linear_constant_coeff_homogeneous', 'nth_linear_euler_eq_homogeneous', 'Liouville', '2nd_power_series_ordinary', 'nth_algebraic_Integral', 'Liouville_Integral', ) assert classify_ode(f(x), f(x)) == ('nth_algebraic', 'nth_algebraic_Integral') assert classify_ode(Eq(f(x).diff(x), 0), f(x)) == ( 'nth_algebraic', 'separable', '1st_linear', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_homogeneous', 'nth_linear_euler_eq_homogeneous', 'nth_algebraic_Integral', 'separable_Integral', '1st_linear_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral') assert classify_ode(f(x).diff(x)**2, f(x)) == ('nth_algebraic', 'separable', '1st_linear', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_homogeneous', 'nth_linear_euler_eq_homogeneous', 'nth_algebraic_Integral', 'separable_Integral', '1st_linear_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral') # issue 4749: f(x) should be cleared from highest derivative before classifying a = classify_ode(Eq(f(x).diff(x) + f(x), x), f(x)) b = classify_ode(f(x).diff(x)*f(x) + f(x)*f(x) - x*f(x), f(x)) c = classify_ode(f(x).diff(x)/f(x) + f(x)/f(x) - x/f(x), f(x)) assert a == ('1st_linear', 'Bernoulli', 'almost_linear', '1st_power_series', "lie_group", 'nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', '1st_linear_Integral', 'Bernoulli_Integral', 'almost_linear_Integral', 'nth_linear_constant_coeff_variation_of_parameters_Integral') assert b == ('factorable', '1st_linear', 'Bernoulli', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', '1st_linear_Integral', 'Bernoulli_Integral', 'nth_linear_constant_coeff_variation_of_parameters_Integral') assert c == ('1st_linear', 'Bernoulli', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', '1st_linear_Integral', 'Bernoulli_Integral', 'nth_linear_constant_coeff_variation_of_parameters_Integral') assert classify_ode( 2*x*f(x)*f(x).diff(x) + (1 + x)*f(x)**2 - exp(x), f(x) ) == ('Bernoulli', 'almost_linear', 'lie_group', 'Bernoulli_Integral', 'almost_linear_Integral') assert 'Riccati_special_minus2' in \ classify_ode(2*f(x).diff(x) + f(x)**2 - f(x)/x + 3*x**(-2), f(x)) raises(ValueError, lambda: classify_ode(x + f(x, y).diff(x).diff( y), f(x, y))) # issue 5176 k = Symbol('k') assert classify_ode(f(x).diff(x)/(k*f(x) + k*x*f(x)) + 2*f(x)/(k*f(x) + k*x*f(x)) + x*f(x).diff(x)/(k*f(x) + k*x*f(x)) + z, f(x)) == \ ('separable', '1st_exact', '1st_power_series', 'lie_group', 'separable_Integral', '1st_exact_Integral') # preprocessing ans = ('nth_algebraic', 'separable', '1st_exact', '1st_linear', 'Bernoulli', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', 'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters', 'nth_algebraic_Integral', 'separable_Integral', '1st_exact_Integral', '1st_linear_Integral', 'Bernoulli_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral', 'nth_linear_constant_coeff_variation_of_parameters_Integral', 'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral') # w/o f(x) given assert classify_ode(diff(f(x) + x, x) + diff(f(x), x)) == ans # w/ f(x) and prep=True assert classify_ode(diff(f(x) + x, x) + diff(f(x), x), f(x), prep=True) == ans assert classify_ode(Eq(2*x**3*f(x).diff(x), 0), f(x)) == \ ('factorable', 'nth_algebraic', 'separable', '1st_linear', '1st_power_series', 'lie_group', 'nth_linear_euler_eq_homogeneous', 'nth_algebraic_Integral', 'separable_Integral', '1st_linear_Integral') assert classify_ode(Eq(2*f(x)**3*f(x).diff(x), 0), f(x)) == \ ('factorable', 'nth_algebraic', 'separable', '1st_power_series', 'lie_group', 'nth_algebraic_Integral', 'separable_Integral') # test issue 13864 assert classify_ode(Eq(diff(f(x), x) - f(x)**x, 0), f(x)) == \ ('1st_power_series', 'lie_group') assert isinstance(classify_ode(Eq(f(x), 5), f(x), dict=True), dict) def test_classify_ode_ics(): # Dummy eq = f(x).diff(x, x) - f(x) # Not f(0) or f'(0) ics = {x: 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) ############################ # f(0) type (AppliedUndef) # ############################ # Wrong function ics = {g(0): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Contains x ics = {f(x): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Too many args ics = {f(0, 0): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # point contains f # XXX: Should be NotImplementedError ics = {f(0): f(1)} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Does not raise ics = {f(0): 1} classify_ode(eq, f(x), ics=ics) ##################### # f'(0) type (Subs) # ##################### # Wrong function ics = {g(x).diff(x).subs(x, 0): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Contains x ics = {f(y).diff(y).subs(y, x): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Wrong variable ics = {f(y).diff(y).subs(y, 0): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Too many args ics = {f(x, y).diff(x).subs(x, 0): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Derivative wrt wrong vars ics = {Derivative(f(x), x, y).subs(x, 0): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # point contains f # XXX: Should be NotImplementedError ics = {f(x).diff(x).subs(x, 0): f(0)} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Does not raise ics = {f(x).diff(x).subs(x, 0): 1} classify_ode(eq, f(x), ics=ics) ########################### # f'(y) type (Derivative) # ########################### # Wrong function ics = {g(x).diff(x).subs(x, y): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Contains x ics = {f(y).diff(y).subs(y, x): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Too many args ics = {f(x, y).diff(x).subs(x, y): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Derivative wrt wrong vars ics = {Derivative(f(x), x, z).subs(x, y): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # point contains f # XXX: Should be NotImplementedError ics = {f(x).diff(x).subs(x, y): f(0)} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Does not raise ics = {f(x).diff(x).subs(x, y): 1} classify_ode(eq, f(x), ics=ics) def test_classify_sysode(): # Here x is assumed to be x(t) and y as y(t) for simplicity. # Similarly diff(x,t) and diff(y,y) is assumed to be x1 and y1 respectively. k, l, m, n = symbols('k, l, m, n', Integer=True) k1, k2, k3, l1, l2, l3, m1, m2, m3 = symbols('k1, k2, k3, l1, l2, l3, m1, m2, m3', Integer=True) P, Q, R, p, q, r = symbols('P, Q, R, p, q, r', cls=Function) P1, P2, P3, Q1, Q2, R1, R2 = symbols('P1, P2, P3, Q1, Q2, R1, R2', cls=Function) x, y, z = symbols('x, y, z', cls=Function) t = symbols('t') x1 = diff(x(t),t) ; y1 = diff(y(t),t) ; z1 = diff(z(t),t) x2 = diff(x(t),t,t) ; y2 = diff(y(t),t,t) eq1 = (Eq(diff(x(t),t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t),t), 2*x(t) + 5*t*y(t))) sol1 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -5*t, (1, x(t), 1): 0, (0, x(t), 1): 1, \ (1, y(t), 0): -5*t, (1, x(t), 0): -2, (0, y(t), 1): 0, (0, y(t), 0): -2, (1, y(t), 1): 1}, \ 'type_of_equation': 'type3', 'func': [x(t), y(t)], 'is_linear': True, 'eq': [-5*t*x(t) - 2*y(t) + \ Derivative(x(t), t), -5*t*y(t) - 2*x(t) + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}} assert classify_sysode(eq1) == sol1 eq2 = (Eq(x2, k*x(t) - l*y1), Eq(y2, l*x1 + k*y(t))) sol2 = {'order': {y(t): 2, x(t): 2}, 'type_of_equation': 'type3', 'is_linear': True, 'eq': \ [-k*x(t) + l*Derivative(y(t), t) + Derivative(x(t), t, t), -k*y(t) - l*Derivative(x(t), t) + \ Derivative(y(t), t, t)], 'no_of_equation': 2, 'func_coeff': {(0, y(t), 0): 0, (0, x(t), 2): 1, \ (1, y(t), 1): 0, (1, y(t), 2): 1, (1, x(t), 2): 0, (0, y(t), 2): 0, (0, x(t), 0): -k, (1, x(t), 1): \ -l, (0, x(t), 1): 0, (0, y(t), 1): l, (1, x(t), 0): 0, (1, y(t), 0): -k}, 'func': [x(t), y(t)]} assert classify_sysode(eq2) == sol2 eq3 = (Eq(x2+4*x1+3*y1+9*x(t)+7*y(t), 11*exp(I*t)), Eq(y2+5*x1+8*y1+3*x(t)+12*y(t), 2*exp(I*t))) sol3 = {'no_of_equation': 2, 'func_coeff': {(1, x(t), 2): 0, (0, y(t), 2): 0, (0, x(t), 0): 9, \ (1, x(t), 1): 5, (0, x(t), 1): 4, (0, y(t), 1): 3, (1, x(t), 0): 3, (1, y(t), 0): 12, (0, y(t), 0): 7, \ (0, x(t), 2): 1, (1, y(t), 2): 1, (1, y(t), 1): 8}, 'type_of_equation': 'type4', 'func': [x(t), y(t)], \ 'is_linear': True, 'eq': [9*x(t) + 7*y(t) - 11*exp(I*t) + 4*Derivative(x(t), t) + 3*Derivative(y(t), t) + \ Derivative(x(t), t, t), 3*x(t) + 12*y(t) - 2*exp(I*t) + 5*Derivative(x(t), t) + 8*Derivative(y(t), t) + \ Derivative(y(t), t, t)], 'order': {y(t): 2, x(t): 2}} assert classify_sysode(eq3) == sol3 eq4 = (Eq((4*t**2 + 7*t + 1)**2*x2, 5*x(t) + 35*y(t)), Eq((4*t**2 + 7*t + 1)**2*y2, x(t) + 9*y(t))) sol4 = {'no_of_equation': 2, 'func_coeff': {(1, x(t), 2): 0, (0, y(t), 2): 0, (0, x(t), 0): -5, \ (1, x(t), 1): 0, (0, x(t), 1): 0, (0, y(t), 1): 0, (1, x(t), 0): -1, (1, y(t), 0): -9, (0, y(t), 0): -35, \ (0, x(t), 2): 16*t**4 + 56*t**3 + 57*t**2 + 14*t + 1, (1, y(t), 2): 16*t**4 + 56*t**3 + 57*t**2 + 14*t + 1, \ (1, y(t), 1): 0}, 'type_of_equation': 'type10', 'func': [x(t), y(t)], 'is_linear': True, \ 'eq': [(4*t**2 + 7*t + 1)**2*Derivative(x(t), t, t) - 5*x(t) - 35*y(t), (4*t**2 + 7*t + 1)**2*Derivative(y(t), t, t)\ - x(t) - 9*y(t)], 'order': {y(t): 2, x(t): 2}} assert classify_sysode(eq4) == sol4 eq5 = (Eq(diff(x(t),t), x(t) + y(t) + 9), Eq(diff(y(t),t), 2*x(t) + 5*y(t) + 23)) sol5 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -1, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): -5, \ (1, x(t), 0): -2, (0, y(t), 1): 0, (0, y(t), 0): -1, (1, y(t), 1): 1}, 'type_of_equation': 'type2', \ 'func': [x(t), y(t)], 'is_linear': True, 'eq': [-x(t) - y(t) + Derivative(x(t), t) - 9, -2*x(t) - 5*y(t) + \ Derivative(y(t), t) - 23], 'order': {y(t): 1, x(t): 1}} assert classify_sysode(eq5) == sol5 eq6 = (Eq(x1, exp(k*x(t))*P(x(t),y(t))), Eq(y1,r(y(t))*P(x(t),y(t)))) sol6 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): 0, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): 0, \ (1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): 0, (1, y(t), 1): 1}, 'type_of_equation': 'type2', 'func': \ [x(t), y(t)], 'is_linear': False, 'eq': [-P(x(t), y(t))*exp(k*x(t)) + Derivative(x(t), t), -P(x(t), \ y(t))*r(y(t)) + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}} assert classify_sysode(eq6) == sol6 eq7 = (Eq(x1, x(t)**2+y(t)/x(t)), Eq(y1, x(t)/y(t))) sol7 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): 0, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): 0, \ (1, x(t), 0): -1/y(t), (0, y(t), 1): 0, (0, y(t), 0): -1/x(t), (1, y(t), 1): 1}, 'type_of_equation': 'type3', \ 'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)**2 + Derivative(x(t), t) - y(t)/x(t), -x(t)/y(t) + \ Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}} assert classify_sysode(eq7) == sol7 eq8 = (Eq(x1, P1(x(t))*Q1(y(t))*R(x(t),y(t),t)), Eq(y1, P1(x(t))*Q1(y(t))*R(x(t),y(t),t))) sol8 = {'func': [x(t), y(t)], 'is_linear': False, 'type_of_equation': 'type4', 'eq': \ [-P1(x(t))*Q1(y(t))*R(x(t), y(t), t) + Derivative(x(t), t), -P1(x(t))*Q1(y(t))*R(x(t), y(t), t) + \ Derivative(y(t), t)], 'func_coeff': {(0, y(t), 1): 0, (1, y(t), 1): 1, (1, x(t), 1): 0, (0, y(t), 0): 0, \ (1, x(t), 0): 0, (0, x(t), 0): 0, (1, y(t), 0): 0, (0, x(t), 1): 1}, 'order': {y(t): 1, x(t): 1}, 'no_of_equation': 2} assert classify_sysode(eq8) == sol8 eq9 = (Eq(x1,3*y(t)-11*z(t)),Eq(y1,7*z(t)-3*x(t)),Eq(z1,11*x(t)-7*y(t))) sol9 = {'no_of_equation': 3, 'func_coeff': {(1, y(t), 0): 0, (2, y(t), 1): 0, (2, z(t), 1): 1, \ (0, x(t), 0): 0, (2, x(t), 1): 0, (1, x(t), 1): 0, (2, y(t), 0): 7, (0, x(t), 1): 1, (1, z(t), 1): 0, \ (0, y(t), 1): 0, (1, x(t), 0): 3, (0, z(t), 0): 11, (0, y(t), 0): -3, (1, z(t), 0): -7, (0, z(t), 1): 0, \ (2, x(t), 0): -11, (2, z(t), 0): 0, (1, y(t), 1): 1}, 'type_of_equation': 'type2', 'func': [x(t), y(t), z(t)], \ 'is_linear': True, 'eq': [-3*y(t) + 11*z(t) + Derivative(x(t), t), 3*x(t) - 7*z(t) + Derivative(y(t), t), \ -11*x(t) + 7*y(t) + Derivative(z(t), t)], 'order': {z(t): 1, y(t): 1, x(t): 1}} assert classify_sysode(eq9) == sol9 eq10 = (x2 + log(t)*(t*x1 - x(t)) + exp(t)*(t*y1 - y(t)), y2 + (t**2)*(t*x1 - x(t)) + (t)*(t*y1 - y(t))) sol10 = {'no_of_equation': 2, 'func_coeff': {(1, x(t), 2): 0, (0, y(t), 2): 0, (0, x(t), 0): -log(t), \ (1, x(t), 1): t**3, (0, x(t), 1): t*log(t), (0, y(t), 1): t*exp(t), (1, x(t), 0): -t**2, (1, y(t), 0): -t, \ (0, y(t), 0): -exp(t), (0, x(t), 2): 1, (1, y(t), 2): 1, (1, y(t), 1): t**2}, 'type_of_equation': 'type11', \ 'func': [x(t), y(t)], 'is_linear': True, 'eq': [(t*Derivative(x(t), t) - x(t))*log(t) + (t*Derivative(y(t), t) - \ y(t))*exp(t) + Derivative(x(t), t, t), t**2*(t*Derivative(x(t), t) - x(t)) + t*(t*Derivative(y(t), t) - y(t)) \ + Derivative(y(t), t, t)], 'order': {y(t): 2, x(t): 2}} assert classify_sysode(eq10) == sol10 eq11 = (Eq(x1,x(t)*y(t)**3), Eq(y1,y(t)**5)) sol11 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -y(t)**3, (1, x(t), 1): 0, (0, x(t), 1): 1, \ (1, y(t), 0): 0, (1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): 0, (1, y(t), 1): 1}, 'type_of_equation': \ 'type1', 'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)*y(t)**3 + Derivative(x(t), t), \ -y(t)**5 + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}} assert classify_sysode(eq11) == sol11 eq12 = (Eq(x1, y(t)), Eq(y1, x(t))) sol12 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): 0, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): 0, \ (1, x(t), 0): -1, (0, y(t), 1): 0, (0, y(t), 0): -1, (1, y(t), 1): 1}, 'type_of_equation': 'type1', 'func': \ [x(t), y(t)], 'is_linear': True, 'eq': [-y(t) + Derivative(x(t), t), -x(t) + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}} assert classify_sysode(eq12) == sol12 eq13 = (Eq(x1,x(t)*y(t)*sin(t)**2), Eq(y1,y(t)**2*sin(t)**2)) sol13 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -y(t)*sin(t)**2, (1, x(t), 1): 0, (0, x(t), 1): 1, \ (1, y(t), 0): 0, (1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): -x(t)*sin(t)**2, (1, y(t), 1): 1}, \ 'type_of_equation': 'type4', 'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)*y(t)*sin(t)**2 + \ Derivative(x(t), t), -y(t)**2*sin(t)**2 + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}} assert classify_sysode(eq13) == sol13 eq14 = (Eq(x1, 21*x(t)), Eq(y1, 17*x(t)+3*y(t)), Eq(z1, 5*x(t)+7*y(t)+9*z(t))) sol14 = {'no_of_equation': 3, 'func_coeff': {(1, y(t), 0): -3, (2, y(t), 1): 0, (2, z(t), 1): 1, \ (0, x(t), 0): -21, (2, x(t), 1): 0, (1, x(t), 1): 0, (2, y(t), 0): -7, (0, x(t), 1): 1, (1, z(t), 1): 0, \ (0, y(t), 1): 0, (1, x(t), 0): -17, (0, z(t), 0): 0, (0, y(t), 0): 0, (1, z(t), 0): 0, (0, z(t), 1): 0, \ (2, x(t), 0): -5, (2, z(t), 0): -9, (1, y(t), 1): 1}, 'type_of_equation': 'type1', 'func': [x(t), y(t), z(t)], \ 'is_linear': True, 'eq': [-21*x(t) + Derivative(x(t), t), -17*x(t) - 3*y(t) + Derivative(y(t), t), -5*x(t) - \ 7*y(t) - 9*z(t) + Derivative(z(t), t)], 'order': {z(t): 1, y(t): 1, x(t): 1}} assert classify_sysode(eq14) == sol14 eq15 = (Eq(x1,4*x(t)+5*y(t)+2*z(t)),Eq(y1,x(t)+13*y(t)+9*z(t)),Eq(z1,32*x(t)+41*y(t)+11*z(t))) sol15 = {'no_of_equation': 3, 'func_coeff': {(1, y(t), 0): -13, (2, y(t), 1): 0, (2, z(t), 1): 1, \ (0, x(t), 0): -4, (2, x(t), 1): 0, (1, x(t), 1): 0, (2, y(t), 0): -41, (0, x(t), 1): 1, (1, z(t), 1): 0, \ (0, y(t), 1): 0, (1, x(t), 0): -1, (0, z(t), 0): -2, (0, y(t), 0): -5, (1, z(t), 0): -9, (0, z(t), 1): 0, \ (2, x(t), 0): -32, (2, z(t), 0): -11, (1, y(t), 1): 1}, 'type_of_equation': 'type6', 'func': \ [x(t), y(t), z(t)], 'is_linear': True, 'eq': [-4*x(t) - 5*y(t) - 2*z(t) + Derivative(x(t), t), -x(t) - 13*y(t) - \ 9*z(t) + Derivative(y(t), t), -32*x(t) - 41*y(t) - 11*z(t) + Derivative(z(t), t)], 'order': {z(t): 1, y(t): 1, x(t): 1}} assert classify_sysode(eq15) == sol15 eq16 = (Eq(3*x1,4*5*(y(t)-z(t))),Eq(4*y1,3*5*(z(t)-x(t))),Eq(5*z1,3*4*(x(t)-y(t)))) sol16 = {'no_of_equation': 3, 'func_coeff': {(1, y(t), 0): 0, (2, y(t), 1): 0, (2, z(t), 1): 5, \ (0, x(t), 0): 0, (2, x(t), 1): 0, (1, x(t), 1): 0, (2, y(t), 0): 12, (0, x(t), 1): 3, (1, z(t), 1): 0, \ (0, y(t), 1): 0, (1, x(t), 0): 15, (0, z(t), 0): 20, (0, y(t), 0): -20, (1, z(t), 0): -15, (0, z(t), 1): 0, \ (2, x(t), 0): -12, (2, z(t), 0): 0, (1, y(t), 1): 4}, 'type_of_equation': 'type3', 'func': [x(t), y(t), z(t)], \ 'is_linear': True, 'eq': [-20*y(t) + 20*z(t) + 3*Derivative(x(t), t), 15*x(t) - 15*z(t) + 4*Derivative(y(t), t), \ -12*x(t) + 12*y(t) + 5*Derivative(z(t), t)], 'order': {z(t): 1, y(t): 1, x(t): 1}} assert classify_sysode(eq16) == sol16 # issue 8193: funcs parameter for classify_sysode has to actually work assert classify_sysode(eq1, funcs=[x(t), y(t)]) == sol1 def test_solve_ics(): # Basic tests that things work from dsolve. assert dsolve(f(x).diff(x) - 1/f(x), f(x), ics={f(1): 2}) == \ Eq(f(x), sqrt(2 * x + 2)) assert dsolve(f(x).diff(x) - f(x), f(x), ics={f(0): 1}) == Eq(f(x), exp(x)) assert dsolve(f(x).diff(x) - f(x), f(x), ics={f(x).diff(x).subs(x, 0): 1}) == Eq(f(x), exp(x)) assert dsolve(f(x).diff(x, x) + f(x), f(x), ics={f(0): 1, f(x).diff(x).subs(x, 0): 1}) == Eq(f(x), sin(x) + cos(x)) assert dsolve([f(x).diff(x) - f(x) + g(x), g(x).diff(x) - g(x) - f(x)], [f(x), g(x)], ics={f(0): 1, g(0): 0}) == [Eq(f(x), exp(x)*cos(x)), Eq(g(x), exp(x)*sin(x))] # Test cases where dsolve returns two solutions. eq = (x**2*f(x)**2 - x).diff(x) assert dsolve(eq, f(x), ics={f(1): 0}) == [Eq(f(x), -sqrt(x - 1)/x), Eq(f(x), sqrt(x - 1)/x)] assert dsolve(eq, f(x), ics={f(x).diff(x).subs(x, 1): 0}) == [Eq(f(x), -sqrt(x - S.Half)/x), Eq(f(x), sqrt(x - S.Half)/x)] eq = cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x) assert dsolve(eq, f(x), ics={f(0):1}, hint='1st_exact', simplify=False) == Eq(x*cos(f(x)) + f(x)**3/3, Rational(1, 3)) assert dsolve(eq, f(x), ics={f(0):1}, hint='1st_exact', simplify=True) == Eq(x*cos(f(x)) + f(x)**3/3, Rational(1, 3)) assert solve_ics([Eq(f(x), C1*exp(x))], [f(x)], [C1], {f(0): 1}) == {C1: 1} assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1, f(pi/2): 1}) == {C1: 1, C2: 1} assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1, f(x).diff(x).subs(x, 0): 1}) == {C1: 1, C2: 1} assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1}) == \ {C2: 1} # Some more complicated tests Refer to PR #16098 assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(0):0, f(x).diff(x).subs(x, 1):0})) == \ {Eq(f(x), 0), Eq(f(x), x ** 3 / 6 - x / 2)} assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(0):0})) == \ {Eq(f(x), 0), Eq(f(x), C2*x + x**3/6)} K, r, f0 = symbols('K r f0') sol = Eq(f(x), K*f0*exp(r*x)/((-K + f0)*(f0*exp(r*x)/(-K + f0) - 1))) assert (dsolve(Eq(f(x).diff(x), r * f(x) * (1 - f(x) / K)), f(x), ics={f(0): f0})) == sol #Order dependent issues Refer to PR #16098 assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(x).diff(x).subs(x,0):0, f(0):0})) == \ {Eq(f(x), 0), Eq(f(x), x ** 3 / 6)} assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(0):0, f(x).diff(x).subs(x,0):0})) == \ {Eq(f(x), 0), Eq(f(x), x ** 3 / 6)} # XXX: Ought to be ValueError raises(ValueError, lambda: solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1, f(pi): 1})) # Degenerate case. f'(0) is identically 0. raises(ValueError, lambda: solve_ics([Eq(f(x), sqrt(C1 - x**2))], [f(x)], [C1], {f(x).diff(x).subs(x, 0): 0})) EI, q, L = symbols('EI q L') # eq = Eq(EI*diff(f(x), x, 4), q) sols = [Eq(f(x), C1 + C2*x + C3*x**2 + C4*x**3 + q*x**4/(24*EI))] funcs = [f(x)] constants = [C1, C2, C3, C4] # Test both cases, Derivative (the default from f(x).diff(x).subs(x, L)), # and Subs ics1 = {f(0): 0, f(x).diff(x).subs(x, 0): 0, f(L).diff(L, 2): 0, f(L).diff(L, 3): 0} ics2 = {f(0): 0, f(x).diff(x).subs(x, 0): 0, Subs(f(x).diff(x, 2), x, L): 0, Subs(f(x).diff(x, 3), x, L): 0} solved_constants1 = solve_ics(sols, funcs, constants, ics1) solved_constants2 = solve_ics(sols, funcs, constants, ics2) assert solved_constants1 == solved_constants2 == { C1: 0, C2: 0, C3: L**2*q/(4*EI), C4: -L*q/(6*EI)} def test_ode_order(): f = Function('f') g = Function('g') x = Symbol('x') assert ode_order(3*x*exp(f(x)), f(x)) == 0 assert ode_order(x*diff(f(x), x) + 3*x*f(x) - sin(x)/x, f(x)) == 1 assert ode_order(x**2*f(x).diff(x, x) + x*diff(f(x), x) - f(x), f(x)) == 2 assert ode_order(diff(x*exp(f(x)), x, x), f(x)) == 2 assert ode_order(diff(x*diff(x*exp(f(x)), x, x), x), f(x)) == 3 assert ode_order(diff(f(x), x, x), g(x)) == 0 assert ode_order(diff(f(x), x, x)*diff(g(x), x), f(x)) == 2 assert ode_order(diff(f(x), x, x)*diff(g(x), x), g(x)) == 1 assert ode_order(diff(x*diff(x*exp(f(x)), x, x), x), g(x)) == 0 # issue 5835: ode_order has to also work for unevaluated derivatives # (ie, without using doit()). assert ode_order(Derivative(x*f(x), x), f(x)) == 1 assert ode_order(x*sin(Derivative(x*f(x)**2, x, x)), f(x)) == 2 assert ode_order(Derivative(x*Derivative(x*exp(f(x)), x, x), x), g(x)) == 0 assert ode_order(Derivative(f(x), x, x), g(x)) == 0 assert ode_order(Derivative(x*exp(f(x)), x, x), f(x)) == 2 assert ode_order(Derivative(f(x), x, x)*Derivative(g(x), x), g(x)) == 1 assert ode_order(Derivative(x*Derivative(f(x), x, x), x), f(x)) == 3 assert ode_order( x*sin(Derivative(x*Derivative(f(x), x)**2, x, x)), f(x)) == 3 # In all tests below, checkodesol has the order option set to prevent # superfluous calls to ode_order(), and the solve_for_func flag set to False # because dsolve() already tries to solve for the function, unless the # simplify=False option is set. def test_old_ode_tests(): # These are simple tests from the old ode module eq1 = Eq(f(x).diff(x), 0) eq2 = Eq(3*f(x).diff(x) - 5, 0) eq3 = Eq(3*f(x).diff(x), 5) eq4 = Eq(9*f(x).diff(x, x) + f(x), 0) eq5 = Eq(9*f(x).diff(x, x), f(x)) # Type: a(x)f'(x)+b(x)*f(x)+c(x)=0 eq6 = Eq(x**2*f(x).diff(x) + 3*x*f(x) - sin(x)/x, 0) eq7 = Eq(f(x).diff(x, x) - 3*diff(f(x), x) + 2*f(x), 0) # Type: 2nd order, constant coefficients (two real different roots) eq8 = Eq(f(x).diff(x, x) - 4*diff(f(x), x) + 4*f(x), 0) # Type: 2nd order, constant coefficients (two real equal roots) eq9 = Eq(f(x).diff(x, x) + 2*diff(f(x), x) + 3*f(x), 0) # Type: 2nd order, constant coefficients (two complex roots) eq10 = Eq(3*f(x).diff(x) - 1, 0) eq11 = Eq(x*f(x).diff(x) - 1, 0) sol1 = Eq(f(x), C1) sol2 = Eq(f(x), C1 + x*Rational(5, 3)) sol3 = Eq(f(x), C1 + x*Rational(5, 3)) sol4 = Eq(f(x), C1*sin(x/3) + C2*cos(x/3)) sol5 = Eq(f(x), C1*exp(-x/3) + C2*exp(x/3)) sol6 = Eq(f(x), (C1 - cos(x))/x**3) sol7 = Eq(f(x), (C1 + C2*exp(x))*exp(x)) sol8 = Eq(f(x), (C1 + C2*x)*exp(2*x)) sol9 = Eq(f(x), (C1*sin(x*sqrt(2)) + C2*cos(x*sqrt(2)))*exp(-x)) sol10 = Eq(f(x), C1 + x/3) sol11 = Eq(f(x), C1 + log(x)) assert dsolve(eq1) == sol1 assert dsolve(eq1.lhs) == sol1 assert dsolve(eq2) == sol2 assert dsolve(eq3) == sol3 assert dsolve(eq4) == sol4 assert dsolve(eq5) == sol5 assert dsolve(eq6) == sol6 assert dsolve(eq7) == sol7 assert dsolve(eq8) == sol8 assert dsolve(eq9) == sol9 assert dsolve(eq10) == sol10 assert dsolve(eq11) == sol11 assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0] assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0] assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0] assert checkodesol(eq4, sol4, order=2, solve_for_func=False)[0] assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0] assert checkodesol(eq6, sol6, order=1, solve_for_func=False)[0] assert checkodesol(eq7, sol7, order=2, solve_for_func=False)[0] assert checkodesol(eq8, sol8, order=2, solve_for_func=False)[0] assert checkodesol(eq9, sol9, order=2, solve_for_func=False)[0] assert checkodesol(eq10, sol10, order=1, solve_for_func=False)[0] assert checkodesol(eq11, sol11, order=1, solve_for_func=False)[0] def test_1st_linear(): # Type: first order linear form f'(x)+p(x)f(x)=q(x) eq = Eq(f(x).diff(x) + x*f(x), x**2) sol = Eq(f(x), (C1 + x*exp(x**2/2) - sqrt(2)*sqrt(pi)*erfi(sqrt(2)*x/2)/2)*exp(-x**2/2)) assert dsolve(eq, hint='1st_linear') == sol assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] def test_Bernoulli(): # Type: Bernoulli, f'(x) + p(x)*f(x) == q(x)*f(x)**n eq = Eq(x*f(x).diff(x) + f(x) - f(x)**2, 0) sol = dsolve(eq, f(x), hint='Bernoulli') assert sol == Eq(f(x), 1/(x*(C1 + 1/x))) assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] def test_Riccati_special_minus2(): # Type: Riccati special alpha = -2, a*dy/dx + b*y**2 + c*y/x +d/x**2 eq = 2*f(x).diff(x) + f(x)**2 - f(x)/x + 3*x**(-2) sol = dsolve(eq, f(x), hint='Riccati_special_minus2') assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] @slow def test_1st_exact1(): # Type: Exact differential equation, p(x,f) + q(x,f)*f' == 0, # where dp/df == dq/dx eq1 = sin(x)*cos(f(x)) + cos(x)*sin(f(x))*f(x).diff(x) eq2 = (2*x*f(x) + 1)/f(x) + (f(x) - x)/f(x)**2*f(x).diff(x) eq3 = 2*x + f(x)*cos(x) + (2*f(x) + sin(x) - sin(f(x)))*f(x).diff(x) eq4 = cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x) eq5 = 2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x) sol1 = [Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))] sol2 = Eq(f(x), exp(C1 - x**2 + LambertW(-x*exp(-C1 + x**2)))) sol2b = Eq(log(f(x)) + x/f(x) + x**2, C1) sol3 = Eq(f(x)*sin(x) + cos(f(x)) + x**2 + f(x)**2, C1) sol4 = Eq(x*cos(f(x)) + f(x)**3/3, C1) sol5 = Eq(x**2*f(x) + f(x)**3/3, C1) assert dsolve(eq1, f(x), hint='1st_exact') == sol1 assert dsolve(eq2, f(x), hint='1st_exact') == sol2 assert dsolve(eq3, f(x), hint='1st_exact') == sol3 assert dsolve(eq4, hint='1st_exact') == sol4 assert dsolve(eq5, hint='1st_exact', simplify=False) == sol5 assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0] # issue 5080 blocks the testing of this solution # FIXME: assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0] assert checkodesol(eq2, sol2b, order=1, solve_for_func=False)[0] assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0] assert checkodesol(eq4, sol4, order=1, solve_for_func=False)[0] assert checkodesol(eq5, sol5, order=1, solve_for_func=False)[0] @slow @XFAIL def test_1st_exact2(): """ This is an exact equation that fails under the exact engine. It is caught by first order homogeneous albeit with a much contorted solution. The exact engine fails because of a poorly simplified integral of q(0,y)dy, where q is the function multiplying f'. The solutions should be Eq(sqrt(x**2+f(x)**2)**3+y**3, C1). The equation below is equivalent, but it is so complex that checkodesol fails, and takes a long time to do so. """ if ON_TRAVIS: skip("Too slow for travis.") eq = (x*sqrt(x**2 + f(x)**2) - (x**2*f(x)/(f(x) - sqrt(x**2 + f(x)**2)))*f(x).diff(x)) sol = dsolve(eq) assert sol == Eq(log(x), C1 - 9*sqrt(1 + f(x)**2/x**2)*asinh(f(x)/x)/(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2)) - 9*sqrt(1 + f(x)**2/x**2)* log(1 - sqrt(1 + f(x)**2/x**2)*f(x)/x + 2*f(x)**2/x**2)/ (-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2)) + 9*asinh(f(x)/x)*f(x)/(x*(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2))) + 9*f(x)*log(1 - sqrt(1 + f(x)**2/x**2)*f(x)/x + 2*f(x)**2/x**2)/ (x*(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2)))) assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] def test_separable1(): # test_separable1-5 are from Ordinary Differential Equations, Tenenbaum and # Pollard, pg. 55 eq1 = f(x).diff(x) - f(x) eq2 = x*f(x).diff(x) - f(x) eq3 = f(x).diff(x) + sin(x) eq4 = f(x)**2 + 1 - (x**2 + 1)*f(x).diff(x) eq5 = f(x).diff(x)/tan(x) - f(x) - 2 eq6 = f(x).diff(x) * (1 - sin(f(x))) - 1 sol1 = Eq(f(x), C1*exp(x)) sol2 = Eq(f(x), C1*x) sol3 = Eq(f(x), C1 + cos(x)) sol4 = Eq(f(x), tan(C1 + atan(x))) sol5 = Eq(f(x), C1/cos(x) - 2) sol6 = Eq(-x + f(x) + cos(f(x)), C1) assert dsolve(eq1, hint='separable') == sol1 assert dsolve(eq2, hint='separable') == sol2 assert dsolve(eq3, hint='separable') == sol3 assert dsolve(eq4, hint='separable') == sol4 assert dsolve(eq5, hint='separable') == sol5 assert dsolve(eq6, hint='separable') == sol6 assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0] assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0] assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0] assert checkodesol(eq4, sol4, order=1, solve_for_func=False)[0] assert checkodesol(eq5, sol5, order=1, solve_for_func=False)[0] assert checkodesol(eq6, sol6, order=1, solve_for_func=False)[0] @slow def test_separable2(): a = Symbol('a') eq6 = f(x)*x**2*f(x).diff(x) - f(x)**3 - 2*x**2*f(x).diff(x) eq7 = f(x)**2 - 1 - (2*f(x) + x*f(x))*f(x).diff(x) eq8 = x*log(x)*f(x).diff(x) + sqrt(1 + f(x)**2) eq9 = exp(x + 1)*tan(f(x)) + cos(f(x))*f(x).diff(x) eq10 = (x*cos(f(x)) + x**2*sin(f(x))*f(x).diff(x) - a**2*sin(f(x))*f(x).diff(x)) sol6 = Eq(Integral((u - 2)/u**3, (u, f(x))), C1 + Integral(x**(-2), x)) sol7 = Eq(-log(-1 + f(x)**2)/2, C1 - log(2 + x)) sol8 = Eq(asinh(f(x)), C1 - log(log(x))) # integrate cannot handle the integral on the lhs (cos/tan) sol9 = Eq(Integral(cos(u)/tan(u), (u, f(x))), C1 + Integral(-exp(1)*exp(x), x)) sol10 = Eq(-log(cos(f(x))), C1 - log(- a**2 + x**2)/2) assert dsolve(eq6, hint='separable_Integral').dummy_eq(sol6) assert dsolve(eq7, hint='separable', simplify=False) == sol7 assert dsolve(eq8, hint='separable', simplify=False) == sol8 assert dsolve(eq9, hint='separable_Integral').dummy_eq(sol9) assert dsolve(eq10, hint='separable', simplify=False) == sol10 assert checkodesol(eq6, sol6, order=1, solve_for_func=False)[0] assert checkodesol(eq7, sol7, order=1, solve_for_func=False)[0] assert checkodesol(eq8, sol8, order=1, solve_for_func=False)[0] assert checkodesol(eq9, sol9, order=1, solve_for_func=False)[0] assert checkodesol(eq10, sol10, order=1, solve_for_func=False)[0] def test_separable3(): eq11 = f(x).diff(x) - f(x)*tan(x) eq12 = (x - 1)*cos(f(x))*f(x).diff(x) - 2*x*sin(f(x)) eq13 = f(x).diff(x) - f(x)*log(f(x))/tan(x) sol11 = Eq(f(x), C1/cos(x)) sol12 = Eq(log(sin(f(x))), C1 + 2*x + 2*log(x - 1)) sol13 = Eq(log(log(f(x))), C1 + log(sin(x))) assert dsolve(eq11, hint='separable') == sol11 assert dsolve(eq12, hint='separable', simplify=False) == sol12 assert dsolve(eq13, hint='separable', simplify=False) == sol13 assert checkodesol(eq11, sol11, order=1, solve_for_func=False)[0] assert checkodesol(eq12, sol12, order=1, solve_for_func=False)[0] assert checkodesol(eq13, sol13, order=1, solve_for_func=False)[0] def test_separable4(): # This has a slow integral (1/((1 + y**2)*atan(y))), so we isolate it. eq14 = x*f(x).diff(x) + (1 + f(x)**2)*atan(f(x)) sol14 = Eq(log(atan(f(x))), C1 - log(x)) assert dsolve(eq14, hint='separable', simplify=False) == sol14 assert checkodesol(eq14, sol14, order=1, solve_for_func=False)[0] def test_separable5(): eq15 = f(x).diff(x) + x*(f(x) + 1) eq16 = exp(f(x)**2)*(x**2 + 2*x + 1) + (x*f(x) + f(x))*f(x).diff(x) eq17 = f(x).diff(x) + f(x) eq18 = sin(x)*cos(2*f(x)) + cos(x)*sin(2*f(x))*f(x).diff(x) eq19 = (1 - x)*f(x).diff(x) - x*(f(x) + 1) eq20 = f(x)*diff(f(x), x) + x - 3*x*f(x)**2 eq21 = f(x).diff(x) - exp(x + f(x)) sol15 = Eq(f(x), -1 + C1*exp(-x**2/2)) sol16 = Eq(-exp(-f(x)**2)/2, C1 - x - x**2/2) sol17 = Eq(f(x), C1*exp(-x)) sol18 = Eq(-log(cos(2*f(x)))/2, C1 + log(cos(x))) sol19 = Eq(f(x), (C1*exp(-x) - x + 1)/(x - 1)) sol20 = Eq(log(-1 + 3*f(x)**2)/6, C1 + x**2/2) sol21 = Eq(-exp(-f(x)), C1 + exp(x)) assert dsolve(eq15, hint='separable') == sol15 assert dsolve(eq16, hint='separable', simplify=False) == sol16 assert dsolve(eq17, hint='separable') == sol17 assert dsolve(eq18, hint='separable', simplify=False) == sol18 assert dsolve(eq19, hint='separable') == sol19 assert dsolve(eq20, hint='separable', simplify=False) == sol20 assert dsolve(eq21, hint='separable', simplify=False) == sol21 assert checkodesol(eq15, sol15, order=1, solve_for_func=False)[0] assert checkodesol(eq16, sol16, order=1, solve_for_func=False)[0] assert checkodesol(eq17, sol17, order=1, solve_for_func=False)[0] assert checkodesol(eq18, sol18, order=1, solve_for_func=False)[0] assert checkodesol(eq19, sol19, order=1, solve_for_func=False)[0] assert checkodesol(eq20, sol20, order=1, solve_for_func=False)[0] assert checkodesol(eq21, sol21, order=1, solve_for_func=False)[0] def test_separable_1_5_checkodesol(): eq12 = (x - 1)*cos(f(x))*f(x).diff(x) - 2*x*sin(f(x)) sol12 = Eq(-log(1 - cos(f(x))**2)/2, C1 - 2*x - 2*log(1 - x)) assert checkodesol(eq12, sol12, order=1, solve_for_func=False)[0] def test_homogeneous_order(): assert homogeneous_order(exp(y/x) + tan(y/x), x, y) == 0 assert homogeneous_order(x**2 + sin(x)*cos(y), x, y) is None assert homogeneous_order(x - y - x*sin(y/x), x, y) == 1 assert homogeneous_order((x*y + sqrt(x**4 + y**4) + x**2*(log(x) - log(y)))/ (pi*x**Rational(2, 3)*sqrt(y)**3), x, y) == Rational(-1, 6) assert homogeneous_order(y/x*cos(y/x) - x/y*sin(y/x) + cos(y/x), x, y) == 0 assert homogeneous_order(f(x), x, f(x)) == 1 assert homogeneous_order(f(x)**2, x, f(x)) == 2 assert homogeneous_order(x*y*z, x, y) == 2 assert homogeneous_order(x*y*z, x, y, z) == 3 assert homogeneous_order(x**2*f(x)/sqrt(x**2 + f(x)**2), f(x)) is None assert homogeneous_order(f(x, y)**2, x, f(x, y), y) == 2 assert homogeneous_order(f(x, y)**2, x, f(x), y) is None assert homogeneous_order(f(x, y)**2, x, f(x, y)) is None assert homogeneous_order(f(y, x)**2, x, y, f(x, y)) is None assert homogeneous_order(f(y), f(x), x) is None assert homogeneous_order(-f(x)/x + 1/sin(f(x)/ x), f(x), x) == 0 assert homogeneous_order(log(1/y) + log(x**2), x, y) is None assert homogeneous_order(log(1/y) + log(x), x, y) == 0 assert homogeneous_order(log(x/y), x, y) == 0 assert homogeneous_order(2*log(1/y) + 2*log(x), x, y) == 0 a = Symbol('a') assert homogeneous_order(a*log(1/y) + a*log(x), x, y) == 0 assert homogeneous_order(f(x).diff(x), x, y) is None assert homogeneous_order(-f(x).diff(x) + x, x, y) is None assert homogeneous_order(O(x), x, y) is None assert homogeneous_order(x + O(x**2), x, y) is None assert homogeneous_order(x**pi, x) == pi assert homogeneous_order(x**x, x) is None raises(ValueError, lambda: homogeneous_order(x*y)) @slow def test_1st_homogeneous_coeff_ode(): # Type: First order homogeneous, y'=f(y/x) eq1 = f(x)/x*cos(f(x)/x) - (x/f(x)*sin(f(x)/x) + cos(f(x)/x))*f(x).diff(x) eq2 = x*f(x).diff(x) - f(x) - x*sin(f(x)/x) eq3 = f(x) + (x*log(f(x)/x) - 2*x)*diff(f(x), x) eq4 = 2*f(x)*exp(x/f(x)) + f(x)*f(x).diff(x) - 2*x*exp(x/f(x))*f(x).diff(x) eq5 = 2*x**2*f(x) + f(x)**3 + (x*f(x)**2 - 2*x**3)*f(x).diff(x) eq6 = x*exp(f(x)/x) - f(x)*sin(f(x)/x) + x*sin(f(x)/x)*f(x).diff(x) eq7 = (x + sqrt(f(x)**2 - x*f(x)))*f(x).diff(x) - f(x) eq8 = x + f(x) - (x - f(x))*f(x).diff(x) sol1 = Eq(log(x), C1 - log(f(x)*sin(f(x)/x)/x)) sol2 = Eq(log(x), log(C1) + log(cos(f(x)/x) - 1)/2 - log(cos(f(x)/x) + 1)/2) sol3 = Eq(f(x), -exp(C1)*LambertW(-x*exp(-C1 + 1))) sol4 = Eq(log(f(x)), C1 - 2*exp(x/f(x))) sol5 = Eq(f(x), exp(2*C1 + LambertW(-2*x**4*exp(-4*C1))/2)/x) sol6 = Eq(log(x), C1 + exp(-f(x)/x)*sin(f(x)/x)/2 + exp(-f(x)/x)*cos(f(x)/x)/2) sol7 = Eq(log(f(x)), C1 - 2*sqrt(-x/f(x) + 1)) sol8 = Eq(log(x), C1 - log(sqrt(1 + f(x)**2/x**2)) + atan(f(x)/x)) # indep_div_dep actually has a simpler solution for eq2, # but it runs too slow assert dsolve(eq1, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol1 assert dsolve(eq2, hint='1st_homogeneous_coeff_subs_dep_div_indep', simplify=False) == sol2 assert dsolve(eq3, hint='1st_homogeneous_coeff_best') == sol3 assert dsolve(eq4, hint='1st_homogeneous_coeff_best') == sol4 assert dsolve(eq5, hint='1st_homogeneous_coeff_best') == sol5 assert dsolve(eq6, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol6 assert dsolve(eq7, hint='1st_homogeneous_coeff_best') == sol7 assert dsolve(eq8, hint='1st_homogeneous_coeff_best') == sol8 # FIXME: sol3 and sol5 don't work with checkodesol (because of LambertW?) # previous code was testing with these other solutions: sol3b = Eq(-f(x)/(1 + log(x/f(x))), C1) sol5b = Eq(log(C1*x*sqrt(1/x)*sqrt(f(x))) + x**2/(2*f(x)**2), 0) assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0] assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0] assert checkodesol(eq3, sol3b, order=1, solve_for_func=False)[0] assert checkodesol(eq4, sol4, order=1, solve_for_func=False)[0] assert checkodesol(eq5, sol5b, order=1, solve_for_func=False)[0] assert checkodesol(eq6, sol6, order=1, solve_for_func=False)[0] assert checkodesol(eq8, sol8, order=1, solve_for_func=False)[0] def test_1st_homogeneous_coeff_ode_check2(): eq2 = x*f(x).diff(x) - f(x) - x*sin(f(x)/x) sol2 = Eq(x/tan(f(x)/(2*x)), C1) assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0] @XFAIL def test_1st_homogeneous_coeff_ode_check3(): skip('This is a known issue.') # checker cannot determine that the following expression is zero: # (False, # x*(log(exp(-LambertW(C1*x))) + # LambertW(C1*x))*exp(-LambertW(C1*x) + 1)) # This is blocked by issue 5080. eq3 = f(x) + (x*log(f(x)/x) - 2*x)*diff(f(x), x) sol3a = Eq(f(x), x*exp(1 - LambertW(C1*x))) assert checkodesol(eq3, sol3a, solve_for_func=True)[0] # Checker can't verify this form either # (False, # C1*(log(C1*LambertW(C2*x)/x) + LambertW(C2*x) - 1)*LambertW(C2*x)) # It is because a = W(a)*exp(W(a)), so log(a) == log(W(a)) + W(a) and C2 = # -E/C1 (which can be verified by solving with simplify=False). sol3b = Eq(f(x), C1*LambertW(C2*x)) assert checkodesol(eq3, sol3b, solve_for_func=True)[0] def test_1st_homogeneous_coeff_ode_check7(): eq7 = (x + sqrt(f(x)**2 - x*f(x)))*f(x).diff(x) - f(x) sol7 = Eq(log(C1*f(x)) + 2*sqrt(1 - x/f(x)), 0) assert checkodesol(eq7, sol7, order=1, solve_for_func=False)[0] def test_1st_homogeneous_coeff_ode2(): eq1 = f(x).diff(x) - f(x)/x + 1/sin(f(x)/x) eq2 = x**2 + f(x)**2 - 2*x*f(x)*f(x).diff(x) eq3 = x*exp(f(x)/x) + f(x) - x*f(x).diff(x) sol1 = [Eq(f(x), x*(-acos(C1 + log(x)) + 2*pi)), Eq(f(x), x*acos(C1 + log(x)))] sol2 = Eq(log(f(x)), log(C1) + log(x/f(x)) - log(x**2/f(x)**2 - 1)) sol3 = Eq(f(x), log((1/(C1 - log(x)))**x)) # specific hints are applied for speed reasons assert dsolve(eq1, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol1 assert dsolve(eq2, hint='1st_homogeneous_coeff_best', simplify=False) == sol2 assert dsolve(eq3, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol3 # FIXME: sol3 doesn't work with checkodesol (because of **x?) # previous code was testing with this other solution: sol3b = Eq(f(x), log(log(C1/x)**(-x))) assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0] assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0] assert checkodesol(eq3, sol3b, order=1, solve_for_func=False)[0] def test_1st_homogeneous_coeff_ode_check9(): _u2 = Dummy('u2') __a = Dummy('a') eq9 = f(x)**2 + (x*sqrt(f(x)**2 - x**2) - x*f(x))*f(x).diff(x) sol9 = Eq(-Integral(-1/(-(1 - sqrt(1 - _u2**2))*_u2 + _u2), (_u2, __a, x/f(x))) + log(C1*f(x)), 0) assert checkodesol(eq9, sol9, order=1, solve_for_func=False)[0] def test_1st_homogeneous_coeff_ode3(): # The standard integration engine cannot handle one of the integrals # involved (see issue 4551). meijerg code comes up with an answer, but in # unconventional form. # checkodesol fails for this equation, so its test is in # test_1st_homogeneous_coeff_ode_check9 above. It has to compare string # expressions because u2 is a dummy variable. eq = f(x)**2 + (x*sqrt(f(x)**2 - x**2) - x*f(x))*f(x).diff(x) sol = Eq(log(f(x)), C1 + Piecewise( (acosh(f(x)/x), abs(f(x)**2)/x**2 > 1), (-I*asin(f(x)/x), True))) assert dsolve(eq, hint='1st_homogeneous_coeff_subs_indep_div_dep') == sol def test_1st_homogeneous_coeff_corner_case(): eq1 = f(x).diff(x) - f(x)/x c1 = classify_ode(eq1, f(x)) eq2 = x*f(x).diff(x) - f(x) c2 = classify_ode(eq2, f(x)) sdi = "1st_homogeneous_coeff_subs_dep_div_indep" sid = "1st_homogeneous_coeff_subs_indep_div_dep" assert sid not in c1 and sdi not in c1 assert sid not in c2 and sdi not in c2 @slow def test_nth_linear_constant_coeff_homogeneous(): # From Exercise 20, in Ordinary Differential Equations, # Tenenbaum and Pollard, pg. 220 a = Symbol('a', positive=True) k = Symbol('k', real=True) eq1 = f(x).diff(x, 2) + 2*f(x).diff(x) eq2 = f(x).diff(x, 2) - 3*f(x).diff(x) + 2*f(x) eq3 = f(x).diff(x, 2) - f(x) eq4 = f(x).diff(x, 3) + f(x).diff(x, 2) - 6*f(x).diff(x) eq5 = 6*f(x).diff(x, 2) - 11*f(x).diff(x) + 4*f(x) eq6 = Eq(f(x).diff(x, 2) + 2*f(x).diff(x) - f(x), 0) eq7 = diff(f(x), x, 3) + diff(f(x), x, 2) - 10*diff(f(x), x) - 6*f(x) eq8 = f(x).diff(x, 4) - f(x).diff(x, 3) - 4*f(x).diff(x, 2) + \ 4*f(x).diff(x) eq9 = f(x).diff(x, 4) + 4*f(x).diff(x, 3) + f(x).diff(x, 2) - \ 4*f(x).diff(x) - 2*f(x) eq10 = f(x).diff(x, 4) - a**2*f(x) eq11 = f(x).diff(x, 2) - 2*k*f(x).diff(x) - 2*f(x) eq12 = f(x).diff(x, 2) + 4*k*f(x).diff(x) - 12*k**2*f(x) eq13 = f(x).diff(x, 4) eq14 = f(x).diff(x, 2) + 4*f(x).diff(x) + 4*f(x) eq15 = 3*f(x).diff(x, 3) + 5*f(x).diff(x, 2) + f(x).diff(x) - f(x) eq16 = f(x).diff(x, 3) - 6*f(x).diff(x, 2) + 12*f(x).diff(x) - 8*f(x) eq17 = f(x).diff(x, 2) - 2*a*f(x).diff(x) + a**2*f(x) eq18 = f(x).diff(x, 4) + 3*f(x).diff(x, 3) eq19 = f(x).diff(x, 4) - 2*f(x).diff(x, 2) eq20 = f(x).diff(x, 4) + 2*f(x).diff(x, 3) - 11*f(x).diff(x, 2) - \ 12*f(x).diff(x) + 36*f(x) eq21 = 36*f(x).diff(x, 4) - 37*f(x).diff(x, 2) + 4*f(x).diff(x) + 5*f(x) eq22 = f(x).diff(x, 4) - 8*f(x).diff(x, 2) + 16*f(x) eq23 = f(x).diff(x, 2) - 2*f(x).diff(x) + 5*f(x) eq24 = f(x).diff(x, 2) - f(x).diff(x) + f(x) eq25 = f(x).diff(x, 4) + 5*f(x).diff(x, 2) + 6*f(x) eq26 = f(x).diff(x, 2) - 4*f(x).diff(x) + 20*f(x) eq27 = f(x).diff(x, 4) + 4*f(x).diff(x, 2) + 4*f(x) eq28 = f(x).diff(x, 3) + 8*f(x) eq29 = f(x).diff(x, 4) + 4*f(x).diff(x, 2) eq30 = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) eq31 = f(x).diff(x, 4) + f(x).diff(x, 2) + f(x) eq32 = f(x).diff(x, 4) + 4*f(x).diff(x, 2) + f(x) sol1 = Eq(f(x), C1 + C2*exp(-2*x)) sol2 = Eq(f(x), (C1 + C2*exp(x))*exp(x)) sol3 = Eq(f(x), C1*exp(x) + C2*exp(-x)) sol4 = Eq(f(x), C1 + C2*exp(-3*x) + C3*exp(2*x)) sol5 = Eq(f(x), C1*exp(x/2) + C2*exp(x*Rational(4, 3))) sol6 = Eq(f(x), C1*exp(x*(-1 + sqrt(2))) + C2*exp(x*(-sqrt(2) - 1))) sol7 = Eq(f(x), C1*exp(3*x) + C2*exp(x*(-2 - sqrt(2))) + C3*exp(x*(-2 + sqrt(2)))) sol8 = Eq(f(x), C1 + C2*exp(x) + C3*exp(-2*x) + C4*exp(2*x)) sol9 = Eq(f(x), C1*exp(x) + C2*exp(-x) + C3*exp(x*(-2 + sqrt(2))) + C4*exp(x*(-2 - sqrt(2)))) sol10 = Eq(f(x), C1*sin(x*sqrt(a)) + C2*cos(x*sqrt(a)) + C3*exp(x*sqrt(a)) + C4*exp(-x*sqrt(a))) sol11 = Eq(f(x), C1*exp(x*(k - sqrt(k**2 + 2))) + C2*exp(x*(k + sqrt(k**2 + 2)))) sol12 = Eq(f(x), C1*exp(-6*k*x) + C2*exp(2*k*x)) sol13 = Eq(f(x), C1 + C2*x + C3*x**2 + C4*x**3) sol14 = Eq(f(x), (C1 + C2*x)*exp(-2*x)) sol15 = Eq(f(x), (C1 + C2*x)*exp(-x) + C3*exp(x/3)) sol16 = Eq(f(x), (C1 + C2*x + C3*x**2)*exp(2*x)) sol17 = Eq(f(x), (C1 + C2*x)*exp(a*x)) sol18 = Eq(f(x), C1 + C2*x + C3*x**2 + C4*exp(-3*x)) sol19 = Eq(f(x), C1 + C2*x + C3*exp(x*sqrt(2)) + C4*exp(-x*sqrt(2))) sol20 = Eq(f(x), (C1 + C2*x)*exp(-3*x) + (C3 + C4*x)*exp(2*x)) sol21 = Eq(f(x), C1*exp(x/2) + C2*exp(-x) + C3*exp(-x/3) + C4*exp(x*Rational(5, 6))) sol22 = Eq(f(x), (C1 + C2*x)*exp(-2*x) + (C3 + C4*x)*exp(2*x)) sol23 = Eq(f(x), (C1*sin(2*x) + C2*cos(2*x))*exp(x)) sol24 = Eq(f(x), (C1*sin(x*sqrt(3)/2) + C2*cos(x*sqrt(3)/2))*exp(x/2)) sol25 = Eq(f(x), C1*cos(x*sqrt(3)) + C2*sin(x*sqrt(3)) + C3*sin(x*sqrt(2)) + C4*cos(x*sqrt(2))) sol26 = Eq(f(x), (C1*sin(4*x) + C2*cos(4*x))*exp(2*x)) sol27 = Eq(f(x), (C1 + C2*x)*sin(x*sqrt(2)) + (C3 + C4*x)*cos(x*sqrt(2))) sol28 = Eq(f(x), (C1*sin(x*sqrt(3)) + C2*cos(x*sqrt(3)))*exp(x) + C3*exp(-2*x)) sol29 = Eq(f(x), C1 + C2*sin(2*x) + C3*cos(2*x) + C4*x) sol30 = Eq(f(x), C1 + (C2 + C3*x)*sin(x) + (C4 + C5*x)*cos(x)) sol31 = Eq(f(x), (C1*sin(sqrt(3)*x/2) + C2*cos(sqrt(3)*x/2))/sqrt(exp(x)) + (C3*sin(sqrt(3)*x/2) + C4*cos(sqrt(3)*x/2))*sqrt(exp(x))) sol32 = Eq(f(x), C1*sin(x*sqrt(-sqrt(3) + 2)) + C2*sin(x*sqrt(sqrt(3) + 2)) + C3*cos(x*sqrt(-sqrt(3) + 2)) + C4*cos(x*sqrt(sqrt(3) + 2))) sol1s = constant_renumber(sol1) sol2s = constant_renumber(sol2) sol3s = constant_renumber(sol3) sol4s = constant_renumber(sol4) sol5s = constant_renumber(sol5) sol6s = constant_renumber(sol6) sol7s = constant_renumber(sol7) sol8s = constant_renumber(sol8) sol9s = constant_renumber(sol9) sol10s = constant_renumber(sol10) sol11s = constant_renumber(sol11) sol12s = constant_renumber(sol12) sol13s = constant_renumber(sol13) sol14s = constant_renumber(sol14) sol15s = constant_renumber(sol15) sol16s = constant_renumber(sol16) sol17s = constant_renumber(sol17) sol18s = constant_renumber(sol18) sol19s = constant_renumber(sol19) sol20s = constant_renumber(sol20) sol21s = constant_renumber(sol21) sol22s = constant_renumber(sol22) sol23s = constant_renumber(sol23) sol24s = constant_renumber(sol24) sol25s = constant_renumber(sol25) sol26s = constant_renumber(sol26) sol27s = constant_renumber(sol27) sol28s = constant_renumber(sol28) sol29s = constant_renumber(sol29) sol30s = constant_renumber(sol30) assert dsolve(eq1) in (sol1, sol1s) assert dsolve(eq2) in (sol2, sol2s) assert dsolve(eq3) in (sol3, sol3s) assert dsolve(eq4) in (sol4, sol4s) assert dsolve(eq5) in (sol5, sol5s) assert dsolve(eq6) in (sol6, sol6s) assert dsolve(eq7) in (sol7, sol7s) assert dsolve(eq8) in (sol8, sol8s) assert dsolve(eq9) in (sol9, sol9s) assert dsolve(eq10) in (sol10, sol10s) assert dsolve(eq11) in (sol11, sol11s) assert dsolve(eq12) in (sol12, sol12s) assert dsolve(eq13) in (sol13, sol13s) assert dsolve(eq14) in (sol14, sol14s) assert dsolve(eq15) in (sol15, sol15s) assert dsolve(eq16) in (sol16, sol16s) assert dsolve(eq17) in (sol17, sol17s) assert dsolve(eq18) in (sol18, sol18s) assert dsolve(eq19) in (sol19, sol19s) assert dsolve(eq20) in (sol20, sol20s) assert dsolve(eq21) in (sol21, sol21s) assert dsolve(eq22) in (sol22, sol22s) assert dsolve(eq23) in (sol23, sol23s) assert dsolve(eq24) in (sol24, sol24s) assert dsolve(eq25) in (sol25, sol25s) assert dsolve(eq26) in (sol26, sol26s) assert dsolve(eq27) in (sol27, sol27s) assert dsolve(eq28) in (sol28, sol28s) assert dsolve(eq29) in (sol29, sol29s) assert dsolve(eq30) in (sol30, sol30s) assert dsolve(eq31) in (sol31,) assert dsolve(eq32) in (sol32,) assert checkodesol(eq1, sol1, order=2, solve_for_func=False)[0] assert checkodesol(eq2, sol2, order=2, solve_for_func=False)[0] assert checkodesol(eq3, sol3, order=2, solve_for_func=False)[0] assert checkodesol(eq4, sol4, order=3, solve_for_func=False)[0] assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0] assert checkodesol(eq6, sol6, order=2, solve_for_func=False)[0] assert checkodesol(eq7, sol7, order=3, solve_for_func=False)[0] assert checkodesol(eq8, sol8, order=4, solve_for_func=False)[0] assert checkodesol(eq9, sol9, order=4, solve_for_func=False)[0] assert checkodesol(eq10, sol10, order=4, solve_for_func=False)[0] assert checkodesol(eq11, sol11, order=2, solve_for_func=False)[0] assert checkodesol(eq12, sol12, order=2, solve_for_func=False)[0] assert checkodesol(eq13, sol13, order=4, solve_for_func=False)[0] assert checkodesol(eq14, sol14, order=2, solve_for_func=False)[0] assert checkodesol(eq15, sol15, order=3, solve_for_func=False)[0] assert checkodesol(eq16, sol16, order=3, solve_for_func=False)[0] assert checkodesol(eq17, sol17, order=2, solve_for_func=False)[0] assert checkodesol(eq18, sol18, order=4, solve_for_func=False)[0] assert checkodesol(eq19, sol19, order=4, solve_for_func=False)[0] assert checkodesol(eq20, sol20, order=4, solve_for_func=False)[0] assert checkodesol(eq21, sol21, order=4, solve_for_func=False)[0] assert checkodesol(eq22, sol22, order=4, solve_for_func=False)[0] assert checkodesol(eq23, sol23, order=2, solve_for_func=False)[0] assert checkodesol(eq24, sol24, order=2, solve_for_func=False)[0] assert checkodesol(eq25, sol25, order=4, solve_for_func=False)[0] assert checkodesol(eq26, sol26, order=2, solve_for_func=False)[0] assert checkodesol(eq27, sol27, order=4, solve_for_func=False)[0] assert checkodesol(eq28, sol28, order=3, solve_for_func=False)[0] assert checkodesol(eq29, sol29, order=4, solve_for_func=False)[0] assert checkodesol(eq30, sol30, order=5, solve_for_func=False)[0] assert checkodesol(eq31, sol31, order=4, solve_for_func=False)[0] assert checkodesol(eq32, sol32, order=4, solve_for_func=False)[0] # Issue #15237 eqn = Derivative(x*f(x), x, x, x) hint = 'nth_linear_constant_coeff_homogeneous' raises(ValueError, lambda: dsolve(eqn, f(x), hint, prep=True)) raises(ValueError, lambda: dsolve(eqn, f(x), hint, prep=False)) def test_nth_linear_constant_coeff_homogeneous_rootof(): # One real root, two complex conjugate pairs eq = f(x).diff(x, 5) + 11*f(x).diff(x) - 2*f(x) r1, r2, r3, r4, r5 = [rootof(x**5 + 11*x - 2, n) for n in range(5)] sol = Eq(f(x), C5*exp(r1*x) + exp(re(r2)*x) * (C1*sin(im(r2)*x) + C2*cos(im(r2)*x)) + exp(re(r4)*x) * (C3*sin(im(r4)*x) + C4*cos(im(r4)*x)) ) assert dsolve(eq) == sol # FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs... # Three real roots, one complex conjugate pair eq = f(x).diff(x,5) - 3*f(x).diff(x) + f(x) r1, r2, r3, r4, r5 = [rootof(x**5 - 3*x + 1, n) for n in range(5)] sol = Eq(f(x), C3*exp(r1*x) + C4*exp(r2*x) + C5*exp(r3*x) + exp(re(r4)*x) * (C1*sin(im(r4)*x) + C2*cos(im(r4)*x)) ) assert dsolve(eq) == sol # FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs... # Five distinct real roots eq = f(x).diff(x,5) - 100*f(x).diff(x,3) + 1000*f(x).diff(x) + f(x) r1, r2, r3, r4, r5 = [rootof(x**5 - 100*x**3 + 1000*x + 1, n) for n in range(5)] sol = Eq(f(x), C1*exp(r1*x) + C2*exp(r2*x) + C3*exp(r3*x) + C4*exp(r4*x) + C5*exp(r5*x)) assert dsolve(eq) == sol # FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs... # Rational root and unsolvable quintic eq = f(x).diff(x, 6) - 6*f(x).diff(x, 5) + 5*f(x).diff(x, 4) + 10*f(x).diff(x) - 50 * f(x) r2, r3, r4, r5, r6 = [rootof(x**5 - x**4 + 10, n) for n in range(5)] sol = Eq(f(x), C5*exp(5*x) + C6*exp(x*r2) + exp(re(r3)*x) * (C1*sin(im(r3)*x) + C2*cos(im(r3)*x)) + exp(re(r5)*x) * (C3*sin(im(r5)*x) + C4*cos(im(r5)*x)) ) assert dsolve(eq) == sol # FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs... # Five double roots (this is (x**5 - x + 1)**2) eq = f(x).diff(x, 10) - 2*f(x).diff(x, 6) + 2*f(x).diff(x, 5) + f(x).diff(x, 2) - 2*f(x).diff(x, 1) + f(x) r1, r2, r3, r4, r5 = [rootof(x**5 - x + 1, n) for n in range(5)] sol = Eq(f(x), (C1 + C2 *x)*exp(r1*x) + exp(re(r2)*x) * ((C3 + C4*x)*sin(im(r2)*x) + (C5 + C6 *x)*cos(im(r2)*x)) + exp(re(r4)*x) * ((C7 + C8*x)*sin(im(r4)*x) + (C9 + C10*x)*cos(im(r4)*x)) ) assert dsolve(eq) == sol # FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs... def test_nth_linear_constant_coeff_homogeneous_irrational(): our_hint='nth_linear_constant_coeff_homogeneous' eq = Eq(sqrt(2) * f(x).diff(x,x,x) + f(x).diff(x), 0) sol = Eq(f(x), C1 + C2*sin(2**Rational(3, 4)*x/2) + C3*cos(2**Rational(3, 4)*x/2)) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint) == sol assert dsolve(eq, f(x)) == sol assert checkodesol(eq, sol, order=3, solve_for_func=False)[0] E = exp(1) eq = Eq(E * f(x).diff(x,x,x) + f(x).diff(x), 0) sol = Eq(f(x), C1 + C2*sin(x/sqrt(E)) + C3*cos(x/sqrt(E))) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint) == sol assert dsolve(eq, f(x)) == sol assert checkodesol(eq, sol, order=3, solve_for_func=False)[0] eq = Eq(pi * f(x).diff(x,x,x) + f(x).diff(x), 0) sol = Eq(f(x), C1 + C2*sin(x/sqrt(pi)) + C3*cos(x/sqrt(pi))) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint) == sol assert dsolve(eq, f(x)) == sol assert checkodesol(eq, sol, order=3, solve_for_func=False)[0] eq = Eq(I * f(x).diff(x,x,x) + f(x).diff(x), 0) sol = Eq(f(x), C1 + C2*exp(-sqrt(I)*x) + C3*exp(sqrt(I)*x)) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint) == sol assert dsolve(eq, f(x)) == sol assert checkodesol(eq, sol, order=3, solve_for_func=False)[0] @XFAIL @slow def test_nth_linear_constant_coeff_homogeneous_rootof_sol(): if ON_TRAVIS: skip("Too slow for travis.") eq = f(x).diff(x, 5) + 11*f(x).diff(x) - 2*f(x) sol = Eq(f(x), C1*exp(x*rootof(x**5 + 11*x - 2, 0)) + C2*exp(x*rootof(x**5 + 11*x - 2, 1)) + C3*exp(x*rootof(x**5 + 11*x - 2, 2)) + C4*exp(x*rootof(x**5 + 11*x - 2, 3)) + C5*exp(x*rootof(x**5 + 11*x - 2, 4))) assert checkodesol(eq, sol, order=5, solve_for_func=False)[0] @XFAIL def test_noncircularized_real_imaginary_parts(): # If this passes, lines numbered 3878-3882 (at the time of this commit) # of sympy/solvers/ode.py for nth_linear_constant_coeff_homogeneous # should be removed. y = sqrt(1+x) i, r = im(y), re(y) assert not (i.has(atan2) and r.has(atan2)) def test_collect_respecting_exponentials(): # If this test passes, lines 1306-1311 (at the time of this commit) # of sympy/solvers/ode.py should be removed. sol = 1 + exp(x/2) assert sol == collect( sol, exp(x/3)) def test_undetermined_coefficients_match(): assert _undetermined_coefficients_match(g(x), x) == {'test': False} assert _undetermined_coefficients_match(sin(2*x + sqrt(5)), x) == \ {'test': True, 'trialset': set([cos(2*x + sqrt(5)), sin(2*x + sqrt(5))])} assert _undetermined_coefficients_match(sin(x)*cos(x), x) == \ {'test': False} s = set([cos(x), x*cos(x), x**2*cos(x), x**2*sin(x), x*sin(x), sin(x)]) assert _undetermined_coefficients_match(sin(x)*(x**2 + x + 1), x) == \ {'test': True, 'trialset': s} assert _undetermined_coefficients_match( sin(x)*x**2 + sin(x)*x + sin(x), x) == {'test': True, 'trialset': s} assert _undetermined_coefficients_match( exp(2*x)*sin(x)*(x**2 + x + 1), x ) == { 'test': True, 'trialset': set([exp(2*x)*sin(x), x**2*exp(2*x)*sin(x), cos(x)*exp(2*x), x**2*cos(x)*exp(2*x), x*cos(x)*exp(2*x), x*exp(2*x)*sin(x)])} assert _undetermined_coefficients_match(1/sin(x), x) == {'test': False} assert _undetermined_coefficients_match(log(x), x) == {'test': False} assert _undetermined_coefficients_match(2**(x)*(x**2 + x + 1), x) == \ {'test': True, 'trialset': set([2**x, x*2**x, x**2*2**x])} assert _undetermined_coefficients_match(x**y, x) == {'test': False} assert _undetermined_coefficients_match(exp(x)*exp(2*x + 1), x) == \ {'test': True, 'trialset': set([exp(1 + 3*x)])} assert _undetermined_coefficients_match(sin(x)*(x**2 + x + 1), x) == \ {'test': True, 'trialset': set([x*cos(x), x*sin(x), x**2*cos(x), x**2*sin(x), cos(x), sin(x)])} assert _undetermined_coefficients_match(sin(x)*(x + sin(x)), x) == \ {'test': False} assert _undetermined_coefficients_match(sin(x)*(x + sin(2*x)), x) == \ {'test': False} assert _undetermined_coefficients_match(sin(x)*tan(x), x) == \ {'test': False} assert _undetermined_coefficients_match( x**2*sin(x)*exp(x) + x*sin(x) + x, x ) == { 'test': True, 'trialset': set([x**2*cos(x)*exp(x), x, cos(x), S.One, exp(x)*sin(x), sin(x), x*exp(x)*sin(x), x*cos(x), x*cos(x)*exp(x), x*sin(x), cos(x)*exp(x), x**2*exp(x)*sin(x)])} assert _undetermined_coefficients_match(4*x*sin(x - 2), x) == { 'trialset': set([x*cos(x - 2), x*sin(x - 2), cos(x - 2), sin(x - 2)]), 'test': True, } assert _undetermined_coefficients_match(2**x*x, x) == \ {'test': True, 'trialset': set([2**x, x*2**x])} assert _undetermined_coefficients_match(2**x*exp(2*x), x) == \ {'test': True, 'trialset': set([2**x*exp(2*x)])} assert _undetermined_coefficients_match(exp(-x)/x, x) == \ {'test': False} # Below are from Ordinary Differential Equations, # Tenenbaum and Pollard, pg. 231 assert _undetermined_coefficients_match(S(4), x) == \ {'test': True, 'trialset': set([S.One])} assert _undetermined_coefficients_match(12*exp(x), x) == \ {'test': True, 'trialset': set([exp(x)])} assert _undetermined_coefficients_match(exp(I*x), x) == \ {'test': True, 'trialset': set([exp(I*x)])} assert _undetermined_coefficients_match(sin(x), x) == \ {'test': True, 'trialset': set([cos(x), sin(x)])} assert _undetermined_coefficients_match(cos(x), x) == \ {'test': True, 'trialset': set([cos(x), sin(x)])} assert _undetermined_coefficients_match(8 + 6*exp(x) + 2*sin(x), x) == \ {'test': True, 'trialset': set([S.One, cos(x), sin(x), exp(x)])} assert _undetermined_coefficients_match(x**2, x) == \ {'test': True, 'trialset': set([S.One, x, x**2])} assert _undetermined_coefficients_match(9*x*exp(x) + exp(-x), x) == \ {'test': True, 'trialset': set([x*exp(x), exp(x), exp(-x)])} assert _undetermined_coefficients_match(2*exp(2*x)*sin(x), x) == \ {'test': True, 'trialset': set([exp(2*x)*sin(x), cos(x)*exp(2*x)])} assert _undetermined_coefficients_match(x - sin(x), x) == \ {'test': True, 'trialset': set([S.One, x, cos(x), sin(x)])} assert _undetermined_coefficients_match(x**2 + 2*x, x) == \ {'test': True, 'trialset': set([S.One, x, x**2])} assert _undetermined_coefficients_match(4*x*sin(x), x) == \ {'test': True, 'trialset': set([x*cos(x), x*sin(x), cos(x), sin(x)])} assert _undetermined_coefficients_match(x*sin(2*x), x) == \ {'test': True, 'trialset': set([x*cos(2*x), x*sin(2*x), cos(2*x), sin(2*x)])} assert _undetermined_coefficients_match(x**2*exp(-x), x) == \ {'test': True, 'trialset': set([x*exp(-x), x**2*exp(-x), exp(-x)])} assert _undetermined_coefficients_match(2*exp(-x) - x**2*exp(-x), x) == \ {'test': True, 'trialset': set([x*exp(-x), x**2*exp(-x), exp(-x)])} assert _undetermined_coefficients_match(exp(-2*x) + x**2, x) == \ {'test': True, 'trialset': set([S.One, x, x**2, exp(-2*x)])} assert _undetermined_coefficients_match(x*exp(-x), x) == \ {'test': True, 'trialset': set([x*exp(-x), exp(-x)])} assert _undetermined_coefficients_match(x + exp(2*x), x) == \ {'test': True, 'trialset': set([S.One, x, exp(2*x)])} assert _undetermined_coefficients_match(sin(x) + exp(-x), x) == \ {'test': True, 'trialset': set([cos(x), sin(x), exp(-x)])} assert _undetermined_coefficients_match(exp(x), x) == \ {'test': True, 'trialset': set([exp(x)])} # converted from sin(x)**2 assert _undetermined_coefficients_match(S.Half - cos(2*x)/2, x) == \ {'test': True, 'trialset': set([S.One, cos(2*x), sin(2*x)])} # converted from exp(2*x)*sin(x)**2 assert _undetermined_coefficients_match( exp(2*x)*(S.Half + cos(2*x)/2), x ) == { 'test': True, 'trialset': set([exp(2*x)*sin(2*x), cos(2*x)*exp(2*x), exp(2*x)])} assert _undetermined_coefficients_match(2*x + sin(x) + cos(x), x) == \ {'test': True, 'trialset': set([S.One, x, cos(x), sin(x)])} # converted from sin(2*x)*sin(x) assert _undetermined_coefficients_match(cos(x)/2 - cos(3*x)/2, x) == \ {'test': True, 'trialset': set([cos(x), cos(3*x), sin(x), sin(3*x)])} assert _undetermined_coefficients_match(cos(x**2), x) == {'test': False} assert _undetermined_coefficients_match(2**(x**2), x) == {'test': False} @slow def test_nth_linear_constant_coeff_undetermined_coefficients(): hint = 'nth_linear_constant_coeff_undetermined_coefficients' g = exp(-x) f2 = f(x).diff(x, 2) c = 3*f(x).diff(x, 3) + 5*f2 + f(x).diff(x) - f(x) - x eq1 = c - x*g eq2 = c - g # 3-27 below are from Ordinary Differential Equations, # Tenenbaum and Pollard, pg. 231 eq3 = f2 + 3*f(x).diff(x) + 2*f(x) - 4 eq4 = f2 + 3*f(x).diff(x) + 2*f(x) - 12*exp(x) eq5 = f2 + 3*f(x).diff(x) + 2*f(x) - exp(I*x) eq6 = f2 + 3*f(x).diff(x) + 2*f(x) - sin(x) eq7 = f2 + 3*f(x).diff(x) + 2*f(x) - cos(x) eq8 = f2 + 3*f(x).diff(x) + 2*f(x) - (8 + 6*exp(x) + 2*sin(x)) eq9 = f2 + f(x).diff(x) + f(x) - x**2 eq10 = f2 - 2*f(x).diff(x) - 8*f(x) - 9*x*exp(x) - 10*exp(-x) eq11 = f2 - 3*f(x).diff(x) - 2*exp(2*x)*sin(x) eq12 = f(x).diff(x, 4) - 2*f2 + f(x) - x + sin(x) eq13 = f2 + f(x).diff(x) - x**2 - 2*x eq14 = f2 + f(x).diff(x) - x - sin(2*x) eq15 = f2 + f(x) - 4*x*sin(x) eq16 = f2 + 4*f(x) - x*sin(2*x) eq17 = f2 + 2*f(x).diff(x) + f(x) - x**2*exp(-x) eq18 = f(x).diff(x, 3) + 3*f2 + 3*f(x).diff(x) + f(x) - 2*exp(-x) + \ x**2*exp(-x) eq19 = f2 + 3*f(x).diff(x) + 2*f(x) - exp(-2*x) - x**2 eq20 = f2 - 3*f(x).diff(x) + 2*f(x) - x*exp(-x) eq21 = f2 + f(x).diff(x) - 6*f(x) - x - exp(2*x) eq22 = f2 + f(x) - sin(x) - exp(-x) eq23 = f(x).diff(x, 3) - 3*f2 + 3*f(x).diff(x) - f(x) - exp(x) # sin(x)**2 eq24 = f2 + f(x) - S.Half - cos(2*x)/2 # exp(2*x)*sin(x)**2 eq25 = f(x).diff(x, 3) - f(x).diff(x) - exp(2*x)*(S.Half - cos(2*x)/2) eq26 = (f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - sin(x) - cos(x)) # sin(2*x)*sin(x), skip 3127 for now, match bug eq27 = f2 + f(x) - cos(x)/2 + cos(3*x)/2 eq28 = f(x).diff(x) - 1 sol1 = Eq(f(x), -1 - x + (C1 + C2*x - 3*x**2/32 - x**3/24)*exp(-x) + C3*exp(x/3)) sol2 = Eq(f(x), -1 - x + (C1 + C2*x - x**2/8)*exp(-x) + C3*exp(x/3)) sol3 = Eq(f(x), 2 + C1*exp(-x) + C2*exp(-2*x)) sol4 = Eq(f(x), 2*exp(x) + C1*exp(-x) + C2*exp(-2*x)) sol5 = Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + exp(I*x)/10 - 3*I*exp(I*x)/10) sol6 = Eq(f(x), -3*cos(x)/10 + sin(x)/10 + C1*exp(-x) + C2*exp(-2*x)) sol7 = Eq(f(x), cos(x)/10 + 3*sin(x)/10 + C1*exp(-x) + C2*exp(-2*x)) sol8 = Eq(f(x), 4 - 3*cos(x)/5 + sin(x)/5 + exp(x) + C1*exp(-x) + C2*exp(-2*x)) sol9 = Eq(f(x), -2*x + x**2 + (C1*sin(x*sqrt(3)/2) + C2*cos(x*sqrt(3)/2))*exp(-x/2)) sol10 = Eq(f(x), -x*exp(x) - 2*exp(-x) + C1*exp(-2*x) + C2*exp(4*x)) sol11 = Eq(f(x), C1 + C2*exp(3*x) + (-3*sin(x) - cos(x))*exp(2*x)/5) sol12 = Eq(f(x), x - sin(x)/4 + (C1 + C2*x)*exp(-x) + (C3 + C4*x)*exp(x)) sol13 = Eq(f(x), C1 + x**3/3 + C2*exp(-x)) sol14 = Eq(f(x), C1 - x - sin(2*x)/5 - cos(2*x)/10 + x**2/2 + C2*exp(-x)) sol15 = Eq(f(x), (C1 + x)*sin(x) + (C2 - x**2)*cos(x)) sol16 = Eq(f(x), (C1 + x/16)*sin(2*x) + (C2 - x**2/8)*cos(2*x)) sol17 = Eq(f(x), (C1 + C2*x + x**4/12)*exp(-x)) sol18 = Eq(f(x), (C1 + C2*x + C3*x**2 - x**5/60 + x**3/3)*exp(-x)) sol19 = Eq(f(x), Rational(7, 4) - x*Rational(3, 2) + x**2/2 + C1*exp(-x) + (C2 - x)*exp(-2*x)) sol20 = Eq(f(x), C1*exp(x) + C2*exp(2*x) + (6*x + 5)*exp(-x)/36) sol21 = Eq(f(x), Rational(-1, 36) - x/6 + C1*exp(-3*x) + (C2 + x/5)*exp(2*x)) sol22 = Eq(f(x), C1*sin(x) + (C2 - x/2)*cos(x) + exp(-x)/2) sol23 = Eq(f(x), (C1 + C2*x + C3*x**2 + x**3/6)*exp(x)) sol24 = Eq(f(x), S.Half - cos(2*x)/6 + C1*sin(x) + C2*cos(x)) sol25 = Eq(f(x), C1 + C2*exp(-x) + C3*exp(x) + (-21*sin(2*x) + 27*cos(2*x) + 130)*exp(2*x)/1560) sol26 = Eq(f(x), C1 + (C2 + C3*x - x**2/8)*sin(x) + (C4 + C5*x + x**2/8)*cos(x) + x**2) sol27 = Eq(f(x), cos(3*x)/16 + C1*cos(x) + (C2 + x/4)*sin(x)) sol28 = Eq(f(x), C1 + x) sol1s = constant_renumber(sol1) sol2s = constant_renumber(sol2) sol3s = constant_renumber(sol3) sol4s = constant_renumber(sol4) sol5s = constant_renumber(sol5) sol6s = constant_renumber(sol6) sol7s = constant_renumber(sol7) sol8s = constant_renumber(sol8) sol9s = constant_renumber(sol9) sol10s = constant_renumber(sol10) sol11s = constant_renumber(sol11) sol12s = constant_renumber(sol12) sol13s = constant_renumber(sol13) sol14s = constant_renumber(sol14) sol15s = constant_renumber(sol15) sol16s = constant_renumber(sol16) sol17s = constant_renumber(sol17) sol18s = constant_renumber(sol18) sol19s = constant_renumber(sol19) sol20s = constant_renumber(sol20) sol21s = constant_renumber(sol21) sol22s = constant_renumber(sol22) sol23s = constant_renumber(sol23) sol24s = constant_renumber(sol24) sol25s = constant_renumber(sol25) sol26s = constant_renumber(sol26) sol27s = constant_renumber(sol27) assert dsolve(eq1, hint=hint) in (sol1, sol1s) assert dsolve(eq2, hint=hint) in (sol2, sol2s) assert dsolve(eq3, hint=hint) in (sol3, sol3s) assert dsolve(eq4, hint=hint) in (sol4, sol4s) assert dsolve(eq5, hint=hint) in (sol5, sol5s) assert dsolve(eq6, hint=hint) in (sol6, sol6s) assert dsolve(eq7, hint=hint) in (sol7, sol7s) assert dsolve(eq8, hint=hint) in (sol8, sol8s) assert dsolve(eq9, hint=hint) in (sol9, sol9s) assert dsolve(eq10, hint=hint) in (sol10, sol10s) assert dsolve(eq11, hint=hint) in (sol11, sol11s) assert dsolve(eq12, hint=hint) in (sol12, sol12s) assert dsolve(eq13, hint=hint) in (sol13, sol13s) assert dsolve(eq14, hint=hint) in (sol14, sol14s) assert dsolve(eq15, hint=hint) in (sol15, sol15s) assert dsolve(eq16, hint=hint) in (sol16, sol16s) assert dsolve(eq17, hint=hint) in (sol17, sol17s) assert dsolve(eq18, hint=hint) in (sol18, sol18s) assert dsolve(eq19, hint=hint) in (sol19, sol19s) assert dsolve(eq20, hint=hint) in (sol20, sol20s) assert dsolve(eq21, hint=hint) in (sol21, sol21s) assert dsolve(eq22, hint=hint) in (sol22, sol22s) assert dsolve(eq23, hint=hint) in (sol23, sol23s) assert dsolve(eq24, hint=hint) in (sol24, sol24s) assert dsolve(eq25, hint=hint) in (sol25, sol25s) assert dsolve(eq26, hint=hint) in (sol26, sol26s) assert dsolve(eq27, hint=hint) in (sol27, sol27s) assert dsolve(eq28, hint=hint) == sol28 assert checkodesol(eq1, sol1, order=3, solve_for_func=False)[0] assert checkodesol(eq2, sol2, order=3, solve_for_func=False)[0] assert checkodesol(eq3, sol3, order=2, solve_for_func=False)[0] assert checkodesol(eq4, sol4, order=2, solve_for_func=False)[0] assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0] assert checkodesol(eq6, sol6, order=2, solve_for_func=False)[0] assert checkodesol(eq7, sol7, order=2, solve_for_func=False)[0] assert checkodesol(eq8, sol8, order=2, solve_for_func=False)[0] assert checkodesol(eq9, sol9, order=2, solve_for_func=False)[0] assert checkodesol(eq10, sol10, order=2, solve_for_func=False)[0] assert checkodesol(eq11, sol11, order=2, solve_for_func=False)[0] assert checkodesol(eq12, sol12, order=4, solve_for_func=False)[0] assert checkodesol(eq13, sol13, order=2, solve_for_func=False)[0] assert checkodesol(eq14, sol14, order=2, solve_for_func=False)[0] assert checkodesol(eq15, sol15, order=2, solve_for_func=False)[0] assert checkodesol(eq16, sol16, order=2, solve_for_func=False)[0] assert checkodesol(eq17, sol17, order=2, solve_for_func=False)[0] assert checkodesol(eq18, sol18, order=3, solve_for_func=False)[0] assert checkodesol(eq19, sol19, order=2, solve_for_func=False)[0] assert checkodesol(eq20, sol20, order=2, solve_for_func=False)[0] assert checkodesol(eq21, sol21, order=2, solve_for_func=False)[0] assert checkodesol(eq22, sol22, order=2, solve_for_func=False)[0] assert checkodesol(eq23, sol23, order=3, solve_for_func=False)[0] assert checkodesol(eq24, sol24, order=2, solve_for_func=False)[0] assert checkodesol(eq25, sol25, order=3, solve_for_func=False)[0] assert checkodesol(eq26, sol26, order=5, solve_for_func=False)[0] assert checkodesol(eq27, sol27, order=2, solve_for_func=False)[0] assert checkodesol(eq28, sol28, order=1, solve_for_func=False)[0] def test_issue_5787(): # This test case is to show the classification of imaginary constants under # nth_linear_constant_coeff_undetermined_coefficients eq = Eq(diff(f(x), x), I*f(x) + S.Half - I) our_hint = 'nth_linear_constant_coeff_undetermined_coefficients' assert our_hint in classify_ode(eq) @XFAIL def test_nth_linear_constant_coeff_undetermined_coefficients_imaginary_exp(): # Equivalent to eq26 in # test_nth_linear_constant_coeff_undetermined_coefficients above. # This fails because the algorithm for undetermined coefficients # doesn't know to multiply exp(I*x) by sufficient x because it is linearly # dependent on sin(x) and cos(x). hint = 'nth_linear_constant_coeff_undetermined_coefficients' eq26a = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - exp(I*x) sol26 = Eq(f(x), C1 + (C2 + C3*x - x**2/8)*sin(x) + (C4 + C5*x + x**2/8)*cos(x) + x**2) assert dsolve(eq26a, hint=hint) == sol26 assert checkodesol(eq26a, sol26, order=5, solve_for_func=False)[0] @slow def test_nth_linear_constant_coeff_variation_of_parameters(): hint = 'nth_linear_constant_coeff_variation_of_parameters' g = exp(-x) f2 = f(x).diff(x, 2) c = 3*f(x).diff(x, 3) + 5*f2 + f(x).diff(x) - f(x) - x eq1 = c - x*g eq2 = c - g eq3 = f(x).diff(x) - 1 eq4 = f2 + 3*f(x).diff(x) + 2*f(x) - 4 eq5 = f2 + 3*f(x).diff(x) + 2*f(x) - 12*exp(x) eq6 = f2 - 2*f(x).diff(x) - 8*f(x) - 9*x*exp(x) - 10*exp(-x) eq7 = f2 + 2*f(x).diff(x) + f(x) - x**2*exp(-x) eq8 = f2 - 3*f(x).diff(x) + 2*f(x) - x*exp(-x) eq9 = f(x).diff(x, 3) - 3*f2 + 3*f(x).diff(x) - f(x) - exp(x) eq10 = f2 + 2*f(x).diff(x) + f(x) - exp(-x)/x eq11 = f2 + f(x) - 1/sin(x)*1/cos(x) eq12 = f(x).diff(x, 4) - 1/x sol1 = Eq(f(x), -1 - x + (C1 + C2*x - 3*x**2/32 - x**3/24)*exp(-x) + C3*exp(x/3)) sol2 = Eq(f(x), -1 - x + (C1 + C2*x - x**2/8)*exp(-x) + C3*exp(x/3)) sol3 = Eq(f(x), C1 + x) sol4 = Eq(f(x), 2 + C1*exp(-x) + C2*exp(-2*x)) sol5 = Eq(f(x), 2*exp(x) + C1*exp(-x) + C2*exp(-2*x)) sol6 = Eq(f(x), -x*exp(x) - 2*exp(-x) + C1*exp(-2*x) + C2*exp(4*x)) sol7 = Eq(f(x), (C1 + C2*x + x**4/12)*exp(-x)) sol8 = Eq(f(x), C1*exp(x) + C2*exp(2*x) + (6*x + 5)*exp(-x)/36) sol9 = Eq(f(x), (C1 + C2*x + C3*x**2 + x**3/6)*exp(x)) sol10 = Eq(f(x), (C1 + x*(C2 + log(x)))*exp(-x)) sol11 = Eq(f(x), (C1 + log(sin(x) - 1)/2 - log(sin(x) + 1)/2 )*cos(x) + (C2 + log(cos(x) - 1)/2 - log(cos(x) + 1)/2)*sin(x)) sol12 = Eq(f(x), C1 + C2*x + x**3*(C3 + log(x)/6) + C4*x**2) sol1s = constant_renumber(sol1) sol2s = constant_renumber(sol2) sol3s = constant_renumber(sol3) sol4s = constant_renumber(sol4) sol5s = constant_renumber(sol5) sol6s = constant_renumber(sol6) sol7s = constant_renumber(sol7) sol8s = constant_renumber(sol8) sol9s = constant_renumber(sol9) sol10s = constant_renumber(sol10) sol11s = constant_renumber(sol11) sol12s = constant_renumber(sol12) assert dsolve(eq1, hint=hint) in (sol1, sol1s) assert dsolve(eq2, hint=hint) in (sol2, sol2s) assert dsolve(eq3, hint=hint) in (sol3, sol3s) assert dsolve(eq4, hint=hint) in (sol4, sol4s) assert dsolve(eq5, hint=hint) in (sol5, sol5s) assert dsolve(eq6, hint=hint) in (sol6, sol6s) assert dsolve(eq7, hint=hint) in (sol7, sol7s) assert dsolve(eq8, hint=hint) in (sol8, sol8s) assert dsolve(eq9, hint=hint) in (sol9, sol9s) assert dsolve(eq10, hint=hint) in (sol10, sol10s) assert dsolve(eq11, hint=hint + '_Integral').doit() in (sol11, sol11s) assert dsolve(eq12, hint=hint) in (sol12, sol12s) assert checkodesol(eq1, sol1, order=3, solve_for_func=False)[0] assert checkodesol(eq2, sol2, order=3, solve_for_func=False)[0] assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0] assert checkodesol(eq4, sol4, order=2, solve_for_func=False)[0] assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0] assert checkodesol(eq6, sol6, order=2, solve_for_func=False)[0] assert checkodesol(eq7, sol7, order=2, solve_for_func=False)[0] assert checkodesol(eq8, sol8, order=2, solve_for_func=False)[0] assert checkodesol(eq9, sol9, order=3, solve_for_func=False)[0] assert checkodesol(eq10, sol10, order=2, solve_for_func=False)[0] assert checkodesol(eq12, sol12, order=4, solve_for_func=False)[0] @slow def test_nth_linear_constant_coeff_variation_of_parameters_simplify_False(): # solve_variation_of_parameters shouldn't attempt to simplify the # Wronskian if simplify=False. If wronskian() ever gets good enough # to simplify the result itself, this test might fail. our_hint = 'nth_linear_constant_coeff_variation_of_parameters_Integral' eq = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - exp(I*x) sol_simp = dsolve(eq, f(x), hint=our_hint, simplify=True) sol_nsimp = dsolve(eq, f(x), hint=our_hint, simplify=False) assert sol_simp != sol_nsimp # /---------- # eq.subs(*sol_simp.args) doesn't simplify to zero without help (t, zero) = checkodesol(eq, sol_simp, order=5, solve_for_func=False) # if this fails because zero.is_zero, replace this block with # assert checkodesol(eq, sol_simp, order=5, solve_for_func=False)[0] assert not zero.is_zero and zero.rewrite(exp).simplify() == 0 # \----------- (t, zero) = checkodesol(eq, sol_nsimp, order=5, solve_for_func=False) # if this fails because zero.is_zero, replace this block with # assert checkodesol(eq, sol_simp, order=5, solve_for_func=False)[0] assert zero == 0 # \----------- assert t def test_Liouville_ODE(): hint = 'Liouville' # The first part here used to be test_ODE_1() from test_solvers.py eq1 = diff(f(x), x)/x + diff(f(x), x, x)/2 - diff(f(x), x)**2/2 eq1a = diff(x*exp(-f(x)), x, x) # compare to test_unexpanded_Liouville_ODE() below eq2 = (eq1*exp(-f(x))/exp(f(x))).expand() eq3 = diff(f(x), x, x) + 1/f(x)*(diff(f(x), x))**2 + 1/x*diff(f(x), x) eq4 = x*diff(f(x), x, x) + x/f(x)*diff(f(x), x)**2 + x*diff(f(x), x) eq5 = Eq((x*exp(f(x))).diff(x, x), 0) sol1 = Eq(f(x), log(x/(C1 + C2*x))) sol1a = Eq(C1 + C2/x - exp(-f(x)), 0) sol2 = sol1 sol3 = set( [Eq(f(x), -sqrt(C1 + C2*log(x))), Eq(f(x), sqrt(C1 + C2*log(x)))]) sol4 = set([Eq(f(x), sqrt(C1 + C2*exp(x))*exp(-x/2)), Eq(f(x), -sqrt(C1 + C2*exp(x))*exp(-x/2))]) sol5 = Eq(f(x), log(C1 + C2/x)) sol1s = constant_renumber(sol1) sol2s = constant_renumber(sol2) sol3s = constant_renumber(sol3) sol4s = constant_renumber(sol4) sol5s = constant_renumber(sol5) assert dsolve(eq1, hint=hint) in (sol1, sol1s) assert dsolve(eq1a, hint=hint) in (sol1, sol1s) assert dsolve(eq2, hint=hint) in (sol2, sol2s) assert set(dsolve(eq3, hint=hint)) in (sol3, sol3s) assert set(dsolve(eq4, hint=hint)) in (sol4, sol4s) assert dsolve(eq5, hint=hint) in (sol5, sol5s) assert checkodesol(eq1, sol1, order=2, solve_for_func=False)[0] assert checkodesol(eq1a, sol1a, order=2, solve_for_func=False)[0] assert checkodesol(eq2, sol2, order=2, solve_for_func=False)[0] assert checkodesol(eq3, sol3, order=2, solve_for_func=False) == {(True, 0)} assert checkodesol(eq4, sol4, order=2, solve_for_func=False) == {(True, 0)} assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0] not_Liouville1 = classify_ode(diff(f(x), x)/x + f(x)*diff(f(x), x, x)/2 - diff(f(x), x)**2/2, f(x)) not_Liouville2 = classify_ode(diff(f(x), x)/x + diff(f(x), x, x)/2 - x*diff(f(x), x)**2/2, f(x)) assert hint not in not_Liouville1 assert hint not in not_Liouville2 assert hint + '_Integral' not in not_Liouville1 assert hint + '_Integral' not in not_Liouville2 def test_unexpanded_Liouville_ODE(): # This is the same as eq1 from test_Liouville_ODE() above. eq1 = diff(f(x), x)/x + diff(f(x), x, x)/2 - diff(f(x), x)**2/2 eq2 = eq1*exp(-f(x))/exp(f(x)) sol2 = Eq(f(x), log(x/(C1 + C2*x))) sol2s = constant_renumber(sol2) assert dsolve(eq2) in (sol2, sol2s) assert checkodesol(eq2, sol2, order=2, solve_for_func=False)[0] def test_issue_4785(): from sympy.abc import A eq = x + A*(x + diff(f(x), x) + f(x)) + diff(f(x), x) + f(x) + 2 assert classify_ode(eq, f(x)) == ('1st_linear', 'almost_linear', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', '1st_linear_Integral', 'almost_linear_Integral', 'nth_linear_constant_coeff_variation_of_parameters_Integral') # issue 4864 eq = (x**2 + f(x)**2)*f(x).diff(x) - 2*x*f(x) assert classify_ode(eq, f(x)) == ('1st_exact', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_power_series', 'lie_group', '1st_exact_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral') def test_issue_4825(): raises(ValueError, lambda: dsolve(f(x, y).diff(x) - y*f(x, y), f(x))) assert classify_ode(f(x, y).diff(x) - y*f(x, y), f(x), dict=True) == \ {'order': 0, 'default': None, 'ordered_hints': ()} # See also issue 3793, test Z13. raises(ValueError, lambda: dsolve(f(x).diff(x), f(y))) assert classify_ode(f(x).diff(x), f(y), dict=True) == \ {'order': 0, 'default': None, 'ordered_hints': ()} def test_constant_renumber_order_issue_5308(): from sympy.utilities.iterables import variations assert constant_renumber(C1*x + C2*y) == \ constant_renumber(C1*y + C2*x) == \ C1*x + C2*y e = C1*(C2 + x)*(C3 + y) for a, b, c in variations([C1, C2, C3], 3): assert constant_renumber(a*(b + x)*(c + y)) == e def test_issue_5770(): k = Symbol("k", real=True) t = Symbol('t') w = Function('w') sol = dsolve(w(t).diff(t, 6) - k**6*w(t), w(t)) assert len([s for s in sol.free_symbols if s.name.startswith('C')]) == 6 assert constantsimp((C1*cos(x) + C2*cos(x))*exp(x), set([C1, C2])) == \ C1*cos(x)*exp(x) assert constantsimp(C1*cos(x) + C2*cos(x) + C3*sin(x), set([C1, C2, C3])) == \ C1*cos(x) + C3*sin(x) assert constantsimp(exp(C1 + x), set([C1])) == C1*exp(x) assert constantsimp(x + C1 + y, set([C1, y])) == C1 + x assert constantsimp(x + C1 + Integral(x, (x, 1, 2)), set([C1])) == C1 + x def test_issue_5112_5430(): assert homogeneous_order(-log(x) + acosh(x), x) is None assert homogeneous_order(y - log(x), x, y) is None def test_nth_order_linear_euler_eq_homogeneous(): x, t, a, b, c = symbols('x t a b c') y = Function('y') our_hint = "nth_linear_euler_eq_homogeneous" eq = diff(f(t), t, 4)*t**4 - 13*diff(f(t), t, 2)*t**2 + 36*f(t) assert our_hint in classify_ode(eq) eq = a*y(t) + b*t*diff(y(t), t) + c*t**2*diff(y(t), t, 2) assert our_hint in classify_ode(eq) eq = Eq(-3*diff(f(x), x)*x + 2*x**2*diff(f(x), x, x), 0) sol = C1 + C2*x**Rational(5, 2) sols = constant_renumber(sol) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = Eq(3*f(x) - 5*diff(f(x), x)*x + 2*x**2*diff(f(x), x, x), 0) sol = C1*sqrt(x) + C2*x**3 sols = constant_renumber(sol) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = Eq(4*f(x) + 5*diff(f(x), x)*x + x**2*diff(f(x), x, x), 0) sol = (C1 + C2*log(x))/x**2 sols = constant_renumber(sol) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = Eq(6*f(x) - 6*diff(f(x), x)*x + 1*x**2*diff(f(x), x, x) + x**3*diff(f(x), x, x, x), 0) sol = dsolve(eq, f(x), hint=our_hint) sol = C1/x**2 + C2*x + C3*x**3 sols = constant_renumber(sol) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = Eq(-125*f(x) + 61*diff(f(x), x)*x - 12*x**2*diff(f(x), x, x) + x**3*diff(f(x), x, x, x), 0) sol = x**5*(C1 + C2*log(x) + C3*log(x)**2) sols = [sol, constant_renumber(sol)] sols += [sols[-1].expand()] assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint).rhs in sols assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = t**2*diff(y(t), t, 2) + t*diff(y(t), t) - 9*y(t) sol = C1*t**3 + C2*t**-3 sols = constant_renumber(sol) assert our_hint in classify_ode(eq) assert dsolve(eq, y(t), hint=our_hint).rhs in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = sin(x)*x**2*f(x).diff(x, 2) + sin(x)*x*f(x).diff(x) + sin(x)*f(x) sol = C1*sin(log(x)) + C2*cos(log(x)) sols = constant_renumber(sol) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] def test_nth_order_linear_euler_eq_nonhomogeneous_undetermined_coefficients(): x, t = symbols('x t') a, b, c, d = symbols('a b c d', integer=True) our_hint = "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients" eq = x**4*diff(f(x), x, 4) - 13*x**2*diff(f(x), x, 2) + 36*f(x) + x assert our_hint in classify_ode(eq, f(x)) eq = a*x**2*diff(f(x), x, 2) + b*x*diff(f(x), x) + c*f(x) + d*log(x) assert our_hint in classify_ode(eq, f(x)) eq = Eq(x**2*diff(f(x), x, x) + x*diff(f(x), x), 1) sol = C1 + C2*log(x) + log(x)**2/2 sols = constant_renumber(sol) assert our_hint in classify_ode(eq, f(x)) assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = Eq(x**2*diff(f(x), x, x) - 2*x*diff(f(x), x) + 2*f(x), x**3) sol = x*(C1 + C2*x + Rational(1, 2)*x**2) sols = constant_renumber(sol) assert our_hint in classify_ode(eq, f(x)) assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = Eq(x**2*diff(f(x), x, x) - x*diff(f(x), x) - 3*f(x), log(x)/x) sol = C1/x + C2*x**3 - Rational(1, 16)*log(x)/x - Rational(1, 8)*log(x)**2/x sols = constant_renumber(sol) assert our_hint in classify_ode(eq, f(x)) assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = Eq(x**2*diff(f(x), x, x) + 3*x*diff(f(x), x) - 8*f(x), log(x)**3 - log(x)) sol = C1/x**4 + C2*x**2 - Rational(1,8)*log(x)**3 - Rational(3,32)*log(x)**2 - Rational(1,64)*log(x) - Rational(7, 256) sols = constant_renumber(sol) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = Eq(x**3*diff(f(x), x, x, x) - 3*x**2*diff(f(x), x, x) + 6*x*diff(f(x), x) - 6*f(x), log(x)) sol = C1*x + C2*x**2 + C3*x**3 - Rational(1, 6)*log(x) - Rational(11, 36) sols = constant_renumber(sol) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] def test_nth_order_linear_euler_eq_nonhomogeneous_variation_of_parameters(): x, t = symbols('x, t') a, b, c, d = symbols('a, b, c, d', integer=True) our_hint = "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters" eq = Eq(x**2*diff(f(x),x,2) - 8*x*diff(f(x),x) + 12*f(x), x**2) assert our_hint in classify_ode(eq, f(x)) eq = Eq(a*x**3*diff(f(x),x,3) + b*x**2*diff(f(x),x,2) + c*x*diff(f(x),x) + d*f(x), x*log(x)) assert our_hint in classify_ode(eq, f(x)) eq = Eq(x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x), x**4) sol = C1*x + C2*x**2 + x**4/6 sols = constant_renumber(sol) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = Eq(3*x**2*diff(f(x), x, x) + 6*x*diff(f(x), x) - 6*f(x), x**3*exp(x)) sol = C1/x**2 + C2*x + x*exp(x)/3 - 4*exp(x)/3 + 8*exp(x)/(3*x) - 8*exp(x)/(3*x**2) sols = constant_renumber(sol) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = Eq(x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x), x**4*exp(x)) sol = C1*x + C2*x**2 + x**2*exp(x) - 2*x*exp(x) sols = constant_renumber(sol) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - log(x) sol = C1*x + C2*x**2 + log(x)/2 + Rational(3, 4) sols = constant_renumber(sol) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x)) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint) == sol assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] def test_issue_5095(): f = Function('f') raises(ValueError, lambda: dsolve(f(x).diff(x)**2, f(x), 'fdsjf')) def test_almost_linear(): from sympy import Ei A = Symbol('A', positive=True) our_hint = 'almost_linear' f = Function('f') d = f(x).diff(x) eq = x**2*f(x)**2*d + f(x)**3 + 1 sol = dsolve(eq, f(x), hint = 'almost_linear') assert sol[0].rhs == (C1*exp(3/x) - 1)**Rational(1, 3) assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] eq = x*f(x)*d + 2*x*f(x)**2 + 1 sol = [ Eq(f(x), -sqrt((C1 - 2*Ei(4*x))*exp(-4*x))), Eq(f(x), sqrt((C1 - 2*Ei(4*x))*exp(-4*x))) ] assert set(dsolve(eq, f(x), hint = 'almost_linear')) == set(sol) assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] eq = x*d + x*f(x) + 1 sol = dsolve(eq, f(x), hint = 'almost_linear') assert sol.rhs == (C1 - Ei(x))*exp(-x) assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] assert our_hint in classify_ode(eq, f(x)) eq = x*exp(f(x))*d + exp(f(x)) + 3*x sol = dsolve(eq, f(x), hint = 'almost_linear') assert sol.rhs == log(C1/x - x*Rational(3, 2)) assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] eq = x + A*(x + diff(f(x), x) + f(x)) + diff(f(x), x) + f(x) + 2 sol = dsolve(eq, f(x), hint = 'almost_linear') assert sol.rhs == (C1 + Piecewise( (x, Eq(A + 1, 0)), ((-A*x + A - x - 1)*exp(x)/(A + 1), True)))*exp(-x) assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] def test_exact_enhancement(): f = Function('f')(x) df = Derivative(f, x) eq = f/x**2 + ((f*x - 1)/x)*df sol = [Eq(f, (i*sqrt(C1*x**2 + 1) + 1)/x) for i in (-1, 1)] assert set(dsolve(eq, f)) == set(sol) assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0), (True, 0)] eq = (x*f - 1) + df*(x**2 - x*f) sol = [Eq(f, x - sqrt(C1 + x**2 - 2*log(x))), Eq(f, x + sqrt(C1 + x**2 - 2*log(x)))] assert set(dsolve(eq, f)) == set(sol) assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0), (True, 0)] eq = (x + 2)*sin(f) + df*x*cos(f) sol = [Eq(f, -asin(C1*exp(-x)/x**2) + pi), Eq(f, asin(C1*exp(-x)/x**2))] assert set(dsolve(eq, f)) == set(sol) assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0), (True, 0)] @slow def test_separable_reduced(): f = Function('f') x = Symbol('x') df = f(x).diff(x) eq = (x / f(x))*df + tan(x**2*f(x) / (x**2*f(x) - 1)) assert classify_ode(eq) == ('separable_reduced', 'lie_group', 'separable_reduced_Integral') eq = x* df + f(x)* (1 / (x**2*f(x) - 1)) assert classify_ode(eq) == ('separable_reduced', 'lie_group', 'separable_reduced_Integral') sol = dsolve(eq, hint = 'separable_reduced', simplify=False) assert sol.lhs == log(x**2*f(x))/3 + log(x**2*f(x) - Rational(3, 2))/6 assert sol.rhs == C1 + log(x) assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] eq = f(x).diff(x) + (f(x) / (x**4*f(x) - x)) assert classify_ode(eq) == ('separable_reduced', 'lie_group', 'separable_reduced_Integral') sol = dsolve(eq, hint = 'separable_reduced') # FIXME: This one hangs #assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0)] * 4 assert len(sol) == 4 eq = x*df + f(x)*(x**2*f(x)) sol = dsolve(eq, hint = 'separable_reduced', simplify=False) assert sol == Eq(log(x**2*f(x))/2 - log(x**2*f(x) - 2)/2, C1 + log(x)) assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] def test_homogeneous_function(): f = Function('f') eq1 = tan(x + f(x)) eq2 = sin((3*x)/(4*f(x))) eq3 = cos(x*f(x)*Rational(3, 4)) eq4 = log((3*x + 4*f(x))/(5*f(x) + 7*x)) eq5 = exp((2*x**2)/(3*f(x)**2)) eq6 = log((3*x + 4*f(x))/(5*f(x) + 7*x) + exp((2*x**2)/(3*f(x)**2))) eq7 = sin((3*x)/(5*f(x) + x**2)) assert homogeneous_order(eq1, x, f(x)) == None assert homogeneous_order(eq2, x, f(x)) == 0 assert homogeneous_order(eq3, x, f(x)) == None assert homogeneous_order(eq4, x, f(x)) == 0 assert homogeneous_order(eq5, x, f(x)) == 0 assert homogeneous_order(eq6, x, f(x)) == 0 assert homogeneous_order(eq7, x, f(x)) == None def test_linear_coeff_match(): from sympy.solvers.ode import _linear_coeff_match n, d = z*(2*x + 3*f(x) + 5), z*(7*x + 9*f(x) + 11) rat = n/d eq1 = sin(rat) + cos(rat.expand()) eq2 = rat eq3 = log(sin(rat)) ans = (4, Rational(-13, 3)) assert _linear_coeff_match(eq1, f(x)) == ans assert _linear_coeff_match(eq2, f(x)) == ans assert _linear_coeff_match(eq3, f(x)) == ans # no c eq4 = (3*x)/f(x) # not x and f(x) eq5 = (3*x + 2)/x # denom will be zero eq6 = (3*x + 2*f(x) + 1)/(3*x + 2*f(x) + 5) # not rational coefficient eq7 = (3*x + 2*f(x) + sqrt(2))/(3*x + 2*f(x) + 5) assert _linear_coeff_match(eq4, f(x)) is None assert _linear_coeff_match(eq5, f(x)) is None assert _linear_coeff_match(eq6, f(x)) is None assert _linear_coeff_match(eq7, f(x)) is None def test_linear_coefficients(): f = Function('f') sol = Eq(f(x), C1/(x**2 + 6*x + 9) - Rational(3, 2)) eq = f(x).diff(x) + (3 + 2*f(x))/(x + 3) assert dsolve(eq, hint='linear_coefficients') == sol assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] def test_constantsimp_take_problem(): c = exp(C1) + 2 assert len(Poly(constantsimp(exp(C1) + c + c*x, [C1])).gens) == 2 def test_issue_6879(): f = Function('f') eq = Eq(Derivative(f(x), x, 2) - 2*Derivative(f(x), x) + f(x), sin(x)) sol = (C1 + C2*x)*exp(x) + cos(x)/2 assert dsolve(eq).rhs == sol assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] def test_issue_6989(): f = Function('f') k = Symbol('k') eq = f(x).diff(x) - x*exp(-k*x) csol = Eq(f(x), C1 + Piecewise( ((-k*x - 1)*exp(-k*x)/k**2, Ne(k**2, 0)), (x**2/2, True) )) sol = dsolve(eq, f(x)) assert sol == csol assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] eq = -f(x).diff(x) + x*exp(-k*x) csol = Eq(f(x), C1 + Piecewise( ((-k*x - 1)*exp(-k*x)/k**2, Ne(k**2, 0)), (x**2/2, True) )) sol = dsolve(eq, f(x)) assert sol == csol assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] def test_heuristic1(): y, a, b, c, a4, a3, a2, a1, a0 = symbols("y a b c a4 a3 a2 a1 a0") f = Function('f') xi = Function('xi') eta = Function('eta') df = f(x).diff(x) eq = Eq(df, x**2*f(x)) eq1 = f(x).diff(x) + a*f(x) - c*exp(b*x) eq2 = f(x).diff(x) + 2*x*f(x) - x*exp(-x**2) eq3 = (1 + 2*x)*df + 2 - 4*exp(-f(x)) eq4 = f(x).diff(x) - (a4*x**4 + a3*x**3 + a2*x**2 + a1*x + a0)**Rational(-1, 2) eq5 = x**2*df - f(x) + x**2*exp(x - (1/x)) eqlist = [eq, eq1, eq2, eq3, eq4, eq5] i = infinitesimals(eq, hint='abaco1_simple') assert i == [{eta(x, f(x)): exp(x**3/3), xi(x, f(x)): 0}, {eta(x, f(x)): f(x), xi(x, f(x)): 0}, {eta(x, f(x)): 0, xi(x, f(x)): x**(-2)}] i1 = infinitesimals(eq1, hint='abaco1_simple') assert i1 == [{eta(x, f(x)): exp(-a*x), xi(x, f(x)): 0}] i2 = infinitesimals(eq2, hint='abaco1_simple') assert i2 == [{eta(x, f(x)): exp(-x**2), xi(x, f(x)): 0}] i3 = infinitesimals(eq3, hint='abaco1_simple') assert i3 == [{eta(x, f(x)): 0, xi(x, f(x)): 2*x + 1}, {eta(x, f(x)): 0, xi(x, f(x)): 1/(exp(f(x)) - 2)}] i4 = infinitesimals(eq4, hint='abaco1_simple') assert i4 == [{eta(x, f(x)): 1, xi(x, f(x)): 0}, {eta(x, f(x)): 0, xi(x, f(x)): sqrt(a0 + a1*x + a2*x**2 + a3*x**3 + a4*x**4)}] i5 = infinitesimals(eq5, hint='abaco1_simple') assert i5 == [{xi(x, f(x)): 0, eta(x, f(x)): exp(-1/x)}] ilist = [i, i1, i2, i3, i4, i5] for eq, i in (zip(eqlist, ilist)): check = checkinfsol(eq, i) assert check[0] def test_issue_6247(): eq = x**2*f(x)**2 + x*Derivative(f(x), x) sol = Eq(f(x), 2*C1/(C1*x**2 - 1)) assert dsolve(eq, hint = 'separable_reduced') == sol assert checkodesol(eq, sol, order=1)[0] eq = f(x).diff(x, x) + 4*f(x) sol = Eq(f(x), C1*sin(2*x) + C2*cos(2*x)) assert dsolve(eq) == sol assert checkodesol(eq, sol, order=1)[0] def test_heuristic2(): xi = Function('xi') eta = Function('eta') df = f(x).diff(x) # This ODE can be solved by the Lie Group method, when there are # better assumptions eq = df - (f(x)/x)*(x*log(x**2/f(x)) + 2) i = infinitesimals(eq, hint='abaco1_product') assert i == [{eta(x, f(x)): f(x)*exp(-x), xi(x, f(x)): 0}] assert checkinfsol(eq, i)[0] @slow def test_heuristic3(): xi = Function('xi') eta = Function('eta') a, b = symbols("a b") df = f(x).diff(x) eq = x**2*df + x*f(x) + f(x)**2 + x**2 i = infinitesimals(eq, hint='bivariate') assert i == [{eta(x, f(x)): f(x), xi(x, f(x)): x}] assert checkinfsol(eq, i)[0] eq = x**2*(-f(x)**2 + df)- a*x**2*f(x) + 2 - a*x i = infinitesimals(eq, hint='bivariate') assert checkinfsol(eq, i)[0] def test_heuristic_4(): y, a = symbols("y a") eq = x*(f(x).diff(x)) + 1 - f(x)**2 i = infinitesimals(eq, hint='chi') assert checkinfsol(eq, i)[0] def test_heuristic_function_sum(): xi = Function('xi') eta = Function('eta') eq = f(x).diff(x) - (3*(1 + x**2/f(x)**2)*atan(f(x)/x) + (1 - 2*f(x))/x + (1 - 3*f(x))*(x/f(x)**2)) i = infinitesimals(eq, hint='function_sum') assert i == [{eta(x, f(x)): f(x)**(-2) + x**(-2), xi(x, f(x)): 0}] assert checkinfsol(eq, i)[0] def test_heuristic_abaco2_similar(): xi = Function('xi') eta = Function('eta') F = Function('F') a, b = symbols("a b") eq = f(x).diff(x) - F(a*x + b*f(x)) i = infinitesimals(eq, hint='abaco2_similar') assert i == [{eta(x, f(x)): -a/b, xi(x, f(x)): 1}] assert checkinfsol(eq, i)[0] eq = f(x).diff(x) - (f(x)**2 / (sin(f(x) - x) - x**2 + 2*x*f(x))) i = infinitesimals(eq, hint='abaco2_similar') assert i == [{eta(x, f(x)): f(x)**2, xi(x, f(x)): f(x)**2}] assert checkinfsol(eq, i)[0] def test_heuristic_abaco2_unique_unknown(): xi = Function('xi') eta = Function('eta') F = Function('F') a, b = symbols("a b") x = Symbol("x", positive=True) eq = f(x).diff(x) - x**(a - 1)*(f(x)**(1 - b))*F(x**a/a + f(x)**b/b) i = infinitesimals(eq, hint='abaco2_unique_unknown') assert i == [{eta(x, f(x)): -f(x)*f(x)**(-b), xi(x, f(x)): x*x**(-a)}] assert checkinfsol(eq, i)[0] eq = f(x).diff(x) + tan(F(x**2 + f(x)**2) + atan(x/f(x))) i = infinitesimals(eq, hint='abaco2_unique_unknown') assert i == [{eta(x, f(x)): x, xi(x, f(x)): -f(x)}] assert checkinfsol(eq, i)[0] eq = (x*f(x).diff(x) + f(x) + 2*x)**2 -4*x*f(x) -4*x**2 -4*a i = infinitesimals(eq, hint='abaco2_unique_unknown') assert checkinfsol(eq, i)[0] def test_heuristic_linear(): a, b, m, n = symbols("a b m n") eq = x**(n*(m + 1) - m)*(f(x).diff(x)) - a*f(x)**n -b*x**(n*(m + 1)) i = infinitesimals(eq, hint='linear') assert checkinfsol(eq, i)[0] @XFAIL def test_kamke(): a, b, alpha, c = symbols("a b alpha c") eq = x**2*(a*f(x)**2+(f(x).diff(x))) + b*x**alpha + c i = infinitesimals(eq, hint='sum_function') assert checkinfsol(eq, i)[0] def test_series(): C1 = Symbol("C1") eq = f(x).diff(x) - f(x) sol = Eq(f(x), C1 + C1*x + C1*x**2/2 + C1*x**3/6 + C1*x**4/24 + C1*x**5/120 + O(x**6)) assert dsolve(eq, hint='1st_power_series') == sol assert checkodesol(eq, sol, order=1)[0] eq = f(x).diff(x) - x*f(x) sol = Eq(f(x), C1*x**4/8 + C1*x**2/2 + C1 + O(x**6)) assert dsolve(eq, hint='1st_power_series') == sol assert checkodesol(eq, sol, order=1)[0] eq = f(x).diff(x) - sin(x*f(x)) sol = Eq(f(x), (x - 2)**2*(1+ sin(4))*cos(4) + (x - 2)*sin(4) + 2 + O(x**3)) assert dsolve(eq, hint='1st_power_series', ics={f(2): 2}, n=3) == sol # FIXME: The solution here should be O((x-2)**3) so is incorrect #assert checkodesol(eq, sol, order=1)[0] @XFAIL @SKIP def test_lie_group_issue17322(): eq=x*f(x).diff(x)*(f(x)+4) + (f(x)**2) -2*f(x)-2*x sol = dsolve(eq, f(x)) assert checkodesol(eq, sol) == (True, 0) eq=x*f(x).diff(x)*(f(x)+4) + (f(x)**2) -2*f(x)-2*x sol = dsolve(eq) assert checkodesol(eq, sol) == (True, 0) eq=Eq(x**7*Derivative(f(x), x) + 5*x**3*f(x)**2 - (2*x**2 + 2)*f(x)**3, 0) sol = dsolve(eq) assert checkodesol(eq, sol) == (True, 0) eq=f(x).diff(x) - (f(x) - x*log(x))**2/x**2 + log(x) sol = dsolve(eq) assert checkodesol(eq, sol) == (True, 0) @slow def test_lie_group(): C1 = Symbol("C1") x = Symbol("x") # assuming x is real generates an error! a, b, c = symbols("a b c") eq = f(x).diff(x)**2 sol = dsolve(eq, f(x), hint='lie_group') assert checkodesol(eq, sol) == (True, 0) eq = Eq(f(x).diff(x), x**2*f(x)) sol = dsolve(eq, f(x), hint='lie_group') assert sol == Eq(f(x), C1*exp(x**3)**Rational(1, 3)) assert checkodesol(eq, sol) == (True, 0) eq = f(x).diff(x) + a*f(x) - c*exp(b*x) sol = dsolve(eq, f(x), hint='lie_group') assert checkodesol(eq, sol) == (True, 0) eq = f(x).diff(x) + 2*x*f(x) - x*exp(-x**2) sol = dsolve(eq, f(x), hint='lie_group') actual_sol = Eq(f(x), (C1 + x**2/2)*exp(-x**2)) errstr = str(eq)+' : '+str(sol)+' == '+str(actual_sol) assert sol == actual_sol, errstr assert checkodesol(eq, sol) == (True, 0) eq = (1 + 2*x)*(f(x).diff(x)) + 2 - 4*exp(-f(x)) sol = dsolve(eq, f(x), hint='lie_group') assert sol == Eq(f(x), log(C1/(2*x + 1) + 2)) assert checkodesol(eq, sol) == (True, 0) eq = x**2*(f(x).diff(x)) - f(x) + x**2*exp(x - (1/x)) sol = dsolve(eq, f(x), hint='lie_group') assert checkodesol(eq, sol)[0] eq = x**2*f(x)**2 + x*Derivative(f(x), x) sol = dsolve(eq, f(x), hint='lie_group') assert sol == Eq(f(x), 2/(C1 + x**2)) assert checkodesol(eq, sol) == (True, 0) eq=diff(f(x),x) + 2*x*f(x) - x*exp(-x**2) sol = Eq(f(x), exp(-x**2)*(C1 + x**2/2)) assert sol == dsolve(eq, hint='lie_group') assert checkodesol(eq, sol) == (True, 0) eq = diff(f(x),x) + f(x)*cos(x) - exp(2*x) sol = Eq(f(x), exp(-sin(x))*(C1 + Integral(exp(2*x)*exp(sin(x)), x))) assert sol == dsolve(eq, hint='lie_group') assert checkodesol(eq, sol) == (True, 0) eq = diff(f(x),x) + f(x)*cos(x) - sin(2*x)/2 sol = Eq(f(x), C1*exp(-sin(x)) + sin(x) - 1) assert sol == dsolve(eq, hint='lie_group') assert checkodesol(eq, sol) == (True, 0) eq = x*diff(f(x),x) + f(x) - x*sin(x) sol = Eq(f(x), (C1 - x*cos(x) + sin(x))/x) assert sol == dsolve(eq, hint='lie_group') assert checkodesol(eq, sol) == (True, 0) eq = x*diff(f(x),x) - f(x) - x/log(x) sol = Eq(f(x), x*(C1 + log(log(x)))) assert sol == dsolve(eq, hint='lie_group') assert checkodesol(eq, sol) == (True, 0) eq = (f(x).diff(x)-f(x)) * (f(x).diff(x)+f(x)) sol = [Eq(f(x), C1*exp(x)), Eq(f(x), C1*exp(-x))] assert set(sol) == set(dsolve(eq, hint='lie_group')) assert checkodesol(eq, sol[0]) == (True, 0) assert checkodesol(eq, sol[1]) == (True, 0) eq = f(x).diff(x) * (f(x).diff(x) - f(x)) sol = [Eq(f(x), C1*exp(x)), Eq(f(x), C1)] assert set(sol) == set(dsolve(eq, hint='lie_group')) assert checkodesol(eq, sol[0]) == (True, 0) assert checkodesol(eq, sol[1]) == (True, 0) @XFAIL def test_lie_group_issue15219(): eqn = exp(f(x).diff(x)-f(x)) assert 'lie_group' not in classify_ode(eqn, f(x)) def test_user_infinitesimals(): x = Symbol("x") # assuming x is real generates an error eq = x*(f(x).diff(x)) + 1 - f(x)**2 sol = Eq(f(x), (C1 + x**2)/(C1 - x**2)) infinitesimals = {'xi':sqrt(f(x) - 1)/sqrt(f(x) + 1), 'eta':0} assert dsolve(eq, hint='lie_group', **infinitesimals) == sol assert checkodesol(eq, sol) == (True, 0) def test_issue_7081(): eq = x*(f(x).diff(x)) + 1 - f(x)**2 s = Eq(f(x), -1/(-C1 + x**2)*(C1 + x**2)) assert dsolve(eq) == s assert checkodesol(eq, s) == (True, 0) @slow def test_2nd_power_series_ordinary(): C1, C2 = symbols("C1 C2") eq = f(x).diff(x, 2) - x*f(x) assert classify_ode(eq) == ('2nd_linear_airy', '2nd_power_series_ordinary') sol = Eq(f(x), C2*(x**3/6 + 1) + C1*x*(x**3/12 + 1) + O(x**6)) assert dsolve(eq, hint='2nd_power_series_ordinary') == sol assert checkodesol(eq, sol) == (True, 0) sol = Eq(f(x), C2*((x + 2)**4/6 + (x + 2)**3/6 - (x + 2)**2 + 1) + C1*(x + (x + 2)**4/12 - (x + 2)**3/3 + S(2)) + O(x**6)) assert dsolve(eq, hint='2nd_power_series_ordinary', x0=-2) == sol # FIXME: Solution should be O((x+2)**6) # assert checkodesol(eq, sol) == (True, 0) sol = Eq(f(x), C2*x + C1 + O(x**2)) assert dsolve(eq, hint='2nd_power_series_ordinary', n=2) == sol assert checkodesol(eq, sol) == (True, 0) eq = (1 + x**2)*(f(x).diff(x, 2)) + 2*x*(f(x).diff(x)) -2*f(x) assert classify_ode(eq) == ('2nd_power_series_ordinary',) sol = Eq(f(x), C2*(-x**4/3 + x**2 + 1) + C1*x + O(x**6)) assert dsolve(eq) == sol assert checkodesol(eq, sol) == (True, 0) eq = f(x).diff(x, 2) + x*(f(x).diff(x)) + f(x) assert classify_ode(eq) == ('2nd_power_series_ordinary',) sol = Eq(f(x), C2*(x**4/8 - x**2/2 + 1) + C1*x*(-x**2/3 + 1) + O(x**6)) assert dsolve(eq) == sol # FIXME: checkodesol fails for this solution... # assert checkodesol(eq, sol) == (True, 0) eq = f(x).diff(x, 2) + f(x).diff(x) - x*f(x) assert classify_ode(eq) == ('2nd_power_series_ordinary',) sol = Eq(f(x), C2*(-x**4/24 + x**3/6 + 1) + C1*x*(x**3/24 + x**2/6 - x/2 + 1) + O(x**6)) assert dsolve(eq) == sol # FIXME: checkodesol fails for this solution... # assert checkodesol(eq, sol) == (True, 0) eq = f(x).diff(x, 2) + x*f(x) assert classify_ode(eq) == ('2nd_linear_airy', '2nd_power_series_ordinary') sol = Eq(f(x), C2*(x**6/180 - x**3/6 + 1) + C1*x*(-x**3/12 + 1) + O(x**7)) assert dsolve(eq, hint='2nd_power_series_ordinary', n=7) == sol assert checkodesol(eq, sol) == (True, 0) def test_Airy_equation(): eq = f(x).diff(x, 2) - x*f(x) sol = Eq(f(x), C1*airyai(x) + C2*airybi(x)) sols = constant_renumber(sol) assert classify_ode(eq) == ("2nd_linear_airy",'2nd_power_series_ordinary') assert checkodesol(eq, sol) == (True, 0) assert dsolve(eq, f(x)) in (sol, sols) assert dsolve(eq, f(x), hint='2nd_linear_airy') in (sol, sols) eq = f(x).diff(x, 2) + 2*x*f(x) sol = Eq(f(x), C1*airyai(-2**(S(1)/3)*x) + C2*airybi(-2**(S(1)/3)*x)) sols = constant_renumber(sol) assert classify_ode(eq) == ("2nd_linear_airy",'2nd_power_series_ordinary') assert checkodesol(eq, sol) == (True, 0) assert dsolve(eq, f(x)) in (sol, sols) assert dsolve(eq, f(x), hint='2nd_linear_airy') in (sol, sols) def test_2nd_power_series_regular(): C1, C2 = symbols("C1 C2") eq = x**2*(f(x).diff(x, 2)) - 3*x*(f(x).diff(x)) + (4*x + 4)*f(x) sol = Eq(f(x), C1*x**2*(-16*x**3/9 + 4*x**2 - 4*x + 1) + O(x**6)) assert dsolve(eq, hint='2nd_power_series_regular') == sol assert checkodesol(eq, sol) == (True, 0) eq = 4*x**2*(f(x).diff(x, 2)) -8*x**2*(f(x).diff(x)) + (4*x**2 + 1)*f(x) sol = Eq(f(x), C1*sqrt(x)*(x**4/24 + x**3/6 + x**2/2 + x + 1) + O(x**6)) assert dsolve(eq, hint='2nd_power_series_regular') == sol assert checkodesol(eq, sol) == (True, 0) eq = x**2*(f(x).diff(x, 2)) - x**2*(f(x).diff(x)) + ( x**2 - 2)*f(x) sol = Eq(f(x), C1*(-x**6/720 - 3*x**5/80 - x**4/8 + x**2/2 + x/2 + 1)/x + C2*x**2*(-x**3/60 + x**2/20 + x/2 + 1) + O(x**6)) assert dsolve(eq) == sol assert checkodesol(eq, sol) == (True, 0) eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 - Rational(1, 4))*f(x) sol = Eq(f(x), C1*(x**4/24 - x**2/2 + 1)/sqrt(x) + C2*sqrt(x)*(x**4/120 - x**2/6 + 1) + O(x**6)) assert dsolve(eq, hint='2nd_power_series_regular') == sol assert checkodesol(eq, sol) == (True, 0) def test_2nd_linear_bessel_equation(): eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 - 4)*f(x) sol = Eq(f(x), C1*besselj(2, x) + C2*bessely(2, x)) sols = constant_renumber(sol) assert dsolve(eq, f(x)) in (sol, sols) assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 +25)*f(x) sol = Eq(f(x), C1*besselj(5*I, x) + C2*bessely(5*I, x)) sols = constant_renumber(sol) assert dsolve(eq, f(x)) in (sol, sols) assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols) checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2)*f(x) sol = Eq(f(x), C1*besselj(0, x) + C2*bessely(0, x)) sols = constant_renumber(sol) assert dsolve(eq, f(x)) in (sol, sols) assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (81*x**2 -S(1)/9)*f(x) sol = Eq(f(x), C1*besselj(S(1)/3, 9*x) + C2*bessely(S(1)/3, 9*x)) sols = constant_renumber(sol) assert dsolve(eq, f(x)) in (sol, sols) assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols) checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**4 - 4)*f(x) sol = Eq(f(x), C1*besselj(1, x**2/2) + C2*bessely(1, x**2/2)) sols = constant_renumber(sol) assert dsolve(eq, f(x)) in (sol, sols) assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) eq = x**2*(f(x).diff(x, 2)) + 2*x*(f(x).diff(x)) + (x**4 - 4)*f(x) sol = Eq(f(x), (C1*besselj(sqrt(17)/4, x**2/2) + C2*bessely(sqrt(17)/4, x**2/2))/sqrt(x)) sols = constant_renumber(sol) assert dsolve(eq, f(x)) in (sol, sols) assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 - S(1)/4)*f(x) sol = Eq(f(x), C1*besselj(S(1)/2, x) + C2*bessely(S(1)/2, x)) sols = constant_renumber(sol) assert dsolve(eq, f(x)) in (sol, sols) assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) eq = x**2*(f(x).diff(x, 2)) - 3*x*(f(x).diff(x)) + (4*x + 4)*f(x) sol = Eq(f(x), x**2*(C1*besselj(0, 4*sqrt(x)) + C2*bessely(0, 4*sqrt(x)))) sols = constant_renumber(sol) assert dsolve(eq, f(x)) in (sol, sols) assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) eq = x*(f(x).diff(x, 2)) - f(x).diff(x) + 4*x**3*f(x) sol = Eq(f(x), x*(C1*besselj(S(1)/2, x**2) + C2*bessely(S(1)/2, x**2))) sols = constant_renumber(sol) assert dsolve(eq, f(x)) in (sol, sols) assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) eq = (x-2)**2*(f(x).diff(x, 2)) - (x-2)*f(x).diff(x) + 4*(x-2)**2*f(x) sol = Eq(f(x), (x - 2)*(C1*besselj(1, 2*x - 4) + C2*bessely(1, 2*x - 4))) sols = constant_renumber(sol) assert dsolve(eq, f(x)) in (sol, sols) assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) def test_issue_7093(): x = Symbol("x") # assuming x is real leads to an error sol = [Eq(f(x), C1 - 2*x*sqrt(x**3)/5), Eq(f(x), C1 + 2*x*sqrt(x**3)/5)] eq = Derivative(f(x), x)**2 - x**3 assert set(dsolve(eq)) == set(sol) assert checkodesol(eq, sol) == [(True, 0)] * 2 def test_dsolve_linsystem_symbol(): eps = Symbol('epsilon', positive=True) eq1 = (Eq(diff(f(x), x), -eps*g(x)), Eq(diff(g(x), x), eps*f(x))) sol1 = [Eq(f(x), -C1*eps*cos(eps*x) - C2*eps*sin(eps*x)), Eq(g(x), -C1*eps*sin(eps*x) + C2*eps*cos(eps*x))] assert checksysodesol(eq1, sol1) == (True, [0, 0]) def test_C1_function_9239(): t = Symbol('t') C1 = Function('C1') C2 = Function('C2') C3 = Symbol('C3') C4 = Symbol('C4') eq = (Eq(diff(C1(t), t), 9*C2(t)), Eq(diff(C2(t), t), 12*C1(t))) sol = [Eq(C1(t), 9*C3*exp(6*sqrt(3)*t) + 9*C4*exp(-6*sqrt(3)*t)), Eq(C2(t), 6*sqrt(3)*C3*exp(6*sqrt(3)*t) - 6*sqrt(3)*C4*exp(-6*sqrt(3)*t))] assert checksysodesol(eq, sol) == (True, [0, 0]) def test_issue_15056(): t = Symbol('t') C3 = Symbol('C3') assert get_numbered_constants(Symbol('C1') * Function('C2')(t)) == C3 def test_issue_10379(): t,y = symbols('t,y') eq = f(t).diff(t)-(1-51.05*y*f(t)) sol = Eq(f(t), (0.019588638589618*exp(y*(C1 - 51.05*t)) + 0.019588638589618)/y) dsolve_sol = dsolve(eq, rational=False) assert str(dsolve_sol) == str(sol) assert checkodesol(eq, dsolve_sol)[0] def test_issue_10867(): x = Symbol('x') eq = Eq(g(x).diff(x).diff(x), (x-2)**2 + (x-3)**3) sol = Eq(g(x), C1 + C2*x + x**5/20 - 2*x**4/3 + 23*x**3/6 - 23*x**2/2) assert dsolve(eq, g(x)) == sol assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) def test_issue_11290(): eq = cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x) sol_1 = dsolve(eq, f(x), simplify=False, hint='1st_exact_Integral') sol_0 = dsolve(eq, f(x), simplify=False, hint='1st_exact') assert sol_1.dummy_eq(Eq(Subs( Integral(u**2 - x*sin(u) - Integral(-sin(u), x), u) + Integral(cos(u), x), u, f(x)), C1)) assert sol_1.doit() == sol_0 assert checkodesol(eq, sol_0, order=1, solve_for_func=False) assert checkodesol(eq, sol_1, order=1, solve_for_func=False) def test_issue_4838(): # Issue #15999 eq = f(x).diff(x) - C1*f(x) sol = Eq(f(x), C2*exp(C1*x)) assert dsolve(eq, f(x)) == sol assert checkodesol(eq, sol, order=1, solve_for_func=False) == (True, 0) # Issue #13691 eq = f(x).diff(x) - C1*g(x).diff(x) sol = Eq(f(x), C2 + C1*g(x)) assert dsolve(eq, f(x)) == sol assert checkodesol(eq, sol, f(x), order=1, solve_for_func=False) == (True, 0) # Issue #4838 eq = f(x).diff(x) - 3*C1 - 3*x**2 sol = Eq(f(x), C2 + 3*C1*x + x**3) assert dsolve(eq, f(x)) == sol assert checkodesol(eq, sol, order=1, solve_for_func=False) == (True, 0) @slow def test_issue_14395(): eq = Derivative(f(x), x, x) + 9*f(x) - sec(x) sol = Eq(f(x), (C1 - x/3 + sin(2*x)/3)*sin(3*x) + (C2 + log(cos(x)) - 2*log(cos(x)**2)/3 + 2*cos(x)**2/3)*cos(3*x)) assert dsolve(eq, f(x)) == sol # FIXME: assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) def test_sysode_linear_neq_order1(): from sympy.abc import t Z0 = Function('Z0') Z1 = Function('Z1') Z2 = Function('Z2') Z3 = Function('Z3') k01, k10, k20, k21, k23, k30 = symbols('k01 k10 k20 k21 k23 k30') eq = (Eq(Derivative(Z0(t), t), -k01*Z0(t) + k10*Z1(t) + k20*Z2(t) + k30*Z3(t)), Eq(Derivative(Z1(t), t), k01*Z0(t) - k10*Z1(t) + k21*Z2(t)), Eq(Derivative(Z2(t), t), -(k20 + k21 + k23)*Z2(t)), Eq(Derivative(Z3(t), t), k23*Z2(t) - k30*Z3(t))) sols_eq = [Eq(Z0(t), C1*k10/k01 + C2*(-k10 + k30)*exp(-k30*t)/(k01 + k10 - k30) - C3*exp(t*(- k01 - k10)) + C4*(k10*k20 + k10*k21 - k10*k30 - k20**2 - k20*k21 - k20*k23 + k20*k30 + k23*k30)*exp(t*(-k20 - k21 - k23))/(k23*(k01 + k10 - k20 - k21 - k23))), Eq(Z1(t), C1 - C2*k01*exp(-k30*t)/(k01 + k10 - k30) + C3*exp(t*(-k01 - k10)) + C4*(k01*k20 + k01*k21 - k01*k30 - k20*k21 - k21**2 - k21*k23 + k21*k30)*exp(t*(-k20 - k21 - k23))/(k23*(k01 + k10 - k20 - k21 - k23))), Eq(Z2(t), C4*(-k20 - k21 - k23 + k30)*exp(t*(-k20 - k21 - k23))/k23), Eq(Z3(t), C2*exp(-k30*t) + C4*exp(t*(-k20 - k21 - k23)))] assert dsolve(eq, simplify=False) == sols_eq assert checksysodesol(eq, sols_eq) == (True, [0, 0, 0, 0]) @slow def test_nth_order_reducible(): from sympy.solvers.ode import _nth_order_reducible_match eqn = Eq(x*Derivative(f(x), x)**2 + Derivative(f(x), x, 2), 0) sol = Eq(f(x), C1 - sqrt(-1/C2)*log(-C2*sqrt(-1/C2) + x) + sqrt(-1/C2)*log(C2*sqrt(-1/C2) + x)) assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0) assert sol == dsolve(eqn, f(x), hint='nth_order_reducible') assert sol == dsolve(eqn, f(x)) F = lambda eq: _nth_order_reducible_match(eq, f(x)) D = Derivative assert F(D(y*f(x), x, y) + D(f(x), x)) is None assert F(D(y*f(y), y, y) + D(f(y), y)) is None assert F(f(x)*D(f(x), x) + D(f(x), x, 2)) is None assert F(D(x*f(y), y, 2) + D(u*y*f(x), x, 3)) is None # no simplification by design assert F(D(f(y), y, 2) + D(f(y), y, 3) + D(f(x), x, 4)) is None assert F(D(f(x), x, 2) + D(f(x), x, 3)) == dict(n=2) eqn = -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x)) assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0) assert sol == dsolve(eqn, f(x)) assert sol == dsolve(eqn, f(x), hint='nth_order_reducible') eqn = Eq(sqrt(2) * f(x).diff(x,x,x) + f(x).diff(x), 0) sol = Eq(f(x), C1 + C2*sin(2**Rational(3, 4)*x/2) + C3*cos(2**Rational(3, 4)*x/2)) assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0) assert sol == dsolve(eqn, f(x)) assert sol == dsolve(eqn, f(x), hint='nth_order_reducible') eqn = f(x).diff(x, 2) + 2*f(x).diff(x) sol = Eq(f(x), C1 + C2*exp(-2*x)) sols = constant_renumber(sol) assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0) assert dsolve(eqn, f(x)) in (sol, sols) assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols) eqn = f(x).diff(x, 3) + f(x).diff(x, 2) - 6*f(x).diff(x) sol = Eq(f(x), C1 + C2*exp(-3*x) + C3*exp(2*x)) sols = constant_renumber(sol) assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0) assert dsolve(eqn, f(x)) in (sol, sols) assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols) eqn = f(x).diff(x, 4) - f(x).diff(x, 3) - 4*f(x).diff(x, 2) + \ 4*f(x).diff(x) sol = Eq(f(x), C1 + C2*exp(x) + C3*exp(-2*x) + C4*exp(2*x)) sols = constant_renumber(sol) assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0) assert dsolve(eqn, f(x)) in (sol, sols) assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols) eqn = f(x).diff(x, 4) + 3*f(x).diff(x, 3) sol = Eq(f(x), C1 + C2*x + C3*x**2 + C4*exp(-3*x)) sols = constant_renumber(sol) assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0) assert dsolve(eqn, f(x)) in (sol, sols) assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols) eqn = f(x).diff(x, 4) - 2*f(x).diff(x, 2) sol = Eq(f(x), C1 + C2*x + C3*exp(x*sqrt(2)) + C4*exp(-x*sqrt(2))) sols = constant_renumber(sol) assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0) assert dsolve(eqn, f(x)) in (sol, sols) assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols) eqn = f(x).diff(x, 4) + 4*f(x).diff(x, 2) sol = Eq(f(x), C1 + C2*sin(2*x) + C3*cos(2*x) + C4*x) sols = constant_renumber(sol) assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0) assert dsolve(eqn, f(x)) in (sol, sols) assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols) eqn = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) # These are equivalent: sol1 = Eq(f(x), C1 + (C2 + C3*x)*sin(x) + (C4 + C5*x)*cos(x)) sol2 = Eq(f(x), C1 + C2*(x*sin(x) + cos(x)) + C3*(-x*cos(x) + sin(x)) + C4*sin(x) + C5*cos(x)) sol1s = constant_renumber(sol1) sol2s = constant_renumber(sol2) assert checkodesol(eqn, sol1, order=2, solve_for_func=False) == (True, 0) assert checkodesol(eqn, sol2, order=2, solve_for_func=False) == (True, 0) assert dsolve(eqn, f(x)) in (sol1, sol1s) assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol2, sol2s) # In this case the reduced ODE has two distinct solutions eqn = f(x).diff(x, 2) - f(x).diff(x)**3 sol = [Eq(f(x), C2 - sqrt(2)*I*(C1 + x)*sqrt(1/(C1 + x))), Eq(f(x), C2 + sqrt(2)*I*(C1 + x)*sqrt(1/(C1 + x)))] sols = constant_renumber(sol) assert checkodesol(eqn, sol, order=2, solve_for_func=False) == [(True, 0), (True, 0)] assert dsolve(eqn, f(x)) in (sol, sols) assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols) def test_nth_algebraic(): eqn = Eq(Derivative(f(x), x), Derivative(g(x), x)) sol = Eq(f(x), C1 + g(x)) assert checkodesol(eqn, sol, order=1, solve_for_func=False)[0] assert sol == dsolve(eqn, f(x), hint='nth_algebraic'), dsolve(eqn, f(x), hint='nth_algebraic') assert sol == dsolve(eqn, f(x)) eqn = (diff(f(x)) - x)*(diff(f(x)) + x) sol = [Eq(f(x), C1 - x**2/2), Eq(f(x), C1 + x**2/2)] assert checkodesol(eqn, sol, order=1, solve_for_func=False)[0] assert set(sol) == set(dsolve(eqn, f(x), hint='nth_algebraic')) assert set(sol) == set(dsolve(eqn, f(x))) eqn = (1 - sin(f(x))) * f(x).diff(x) sol = Eq(f(x), C1) assert checkodesol(eqn, sol, order=1, solve_for_func=False)[0] assert sol == dsolve(eqn, f(x), hint='nth_algebraic') assert sol == dsolve(eqn, f(x)) M, m, r, t = symbols('M m r t') phi = Function('phi') eqn = Eq(-M * phi(t).diff(t), Rational(3, 2) * m * r**2 * phi(t).diff(t) * phi(t).diff(t,t)) solns = [Eq(phi(t), C1), Eq(phi(t), C1 + C2*t - M*t**2/(3*m*r**2))] assert checkodesol(eqn, solns[0], order=2, solve_for_func=False)[0] assert checkodesol(eqn, solns[1], order=2, solve_for_func=False)[0] assert set(solns) == set(dsolve(eqn, phi(t), hint='nth_algebraic')) assert set(solns) == set(dsolve(eqn, phi(t))) eqn = f(x) * f(x).diff(x) * f(x).diff(x, x) sol = Eq(f(x), C1 + C2*x) assert checkodesol(eqn, sol, order=1, solve_for_func=False)[0] assert sol == dsolve(eqn, f(x), hint='nth_algebraic') assert sol == dsolve(eqn, f(x)) eqn = f(x) * f(x).diff(x) * f(x).diff(x, x) * (f(x) - 1) sol = Eq(f(x), C1 + C2*x) assert checkodesol(eqn, sol, order=1, solve_for_func=False)[0] assert sol == dsolve(eqn, f(x), hint='nth_algebraic') assert sol == dsolve(eqn, f(x)) eqn = f(x) * f(x).diff(x) * f(x).diff(x, x) * (f(x) - 1) * (f(x).diff(x) - x) solns = [Eq(f(x), C1 + x**2/2), Eq(f(x), C1 + C2*x)] assert checkodesol(eqn, solns[0], order=2, solve_for_func=False)[0] assert checkodesol(eqn, solns[1], order=2, solve_for_func=False)[0] assert set(solns) == set(dsolve(eqn, f(x), hint='nth_algebraic')) assert set(solns) == set(dsolve(eqn, f(x))) def test_nth_algebraic_issue15999(): eqn = f(x).diff(x) - C1 sol = Eq(f(x), C1*x + C2) # Correct solution assert checkodesol(eqn, sol, order=1, solve_for_func=False) == (True, 0) assert dsolve(eqn, f(x), hint='nth_algebraic') == sol assert dsolve(eqn, f(x)) == sol def test_nth_algebraic_redundant_solutions(): # This one has a redundant solution that should be removed eqn = f(x)*f(x).diff(x) soln = Eq(f(x), C1) assert checkodesol(eqn, soln, order=1, solve_for_func=False)[0] assert soln == dsolve(eqn, f(x), hint='nth_algebraic') assert soln == dsolve(eqn, f(x)) # This has two integral solutions and no algebraic solutions eqn = (diff(f(x)) - x)*(diff(f(x)) + x) sol = [Eq(f(x), C1 - x**2/2), Eq(f(x), C1 + x**2/2)] assert all(c[0] for c in checkodesol(eqn, sol, order=1, solve_for_func=False)) assert set(sol) == set(dsolve(eqn, f(x), hint='nth_algebraic')) assert set(sol) == set(dsolve(eqn, f(x))) eqn = f(x) + f(x)*f(x).diff(x) solns = [Eq(f(x), 0), Eq(f(x), C1 - x)] assert all(c[0] for c in checkodesol(eqn, solns, order=1, solve_for_func=False)) assert set(solns) == set(dsolve(eqn, f(x))) from sympy.solvers.ode import _remove_redundant_solutions solns = [Eq(f(x), exp(x)), Eq(f(x), C1*exp(C2*x))] solns_final = _remove_redundant_solutions(eqn, solns, 2, x) assert solns_final == [Eq(f(x), C1*exp(C2*x))] # This one needs a substitution f' = g. eqn = -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x)) assert checkodesol(eqn, sol, order=2, solve_for_func=False)[0] assert sol == dsolve(eqn, f(x)) # # These tests can be combined with the above test if they get fixed # so that dsolve actually works in all these cases. # # prep = True breaks this def test_nth_algebraic_noprep1(): eqn = Derivative(x*f(x), x, x, x) sol = Eq(f(x), (C1 + C2*x + C3*x**2) / x) assert checkodesol(eqn, sol, order=3, solve_for_func=False)[0] assert sol == dsolve(eqn, f(x), prep=False, hint='nth_algebraic') @XFAIL def test_nth_algebraic_prep1(): eqn = Derivative(x*f(x), x, x, x) sol = Eq(f(x), (C1 + C2*x + C3*x**2) / x) assert checkodesol(eqn, sol, order=3, solve_for_func=False)[0] assert sol == dsolve(eqn, f(x), prep=True, hint='nth_algebraic') assert sol == dsolve(eqn, f(x)) # prep = True breaks this def test_nth_algebraic_noprep2(): eqn = Eq(Derivative(x*Derivative(f(x), x), x)/x, exp(x)) sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x)) assert checkodesol(eqn, sol, order=2, solve_for_func=False)[0] assert sol == dsolve(eqn, f(x), prep=False, hint='nth_algebraic') @XFAIL def test_nth_algebraic_prep2(): eqn = Eq(Derivative(x*Derivative(f(x), x), x)/x, exp(x)) sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x)) assert checkodesol(eqn, sol, order=2, solve_for_func=False)[0] assert sol == dsolve(eqn, f(x), prep=True, hint='nth_algebraic') assert sol == dsolve(eqn, f(x)) # Needs to be a way to know how to combine derivatives in the expression def test_factoring_ode(): from sympy import Mul eqn = Derivative(x*f(x), x, x, x) + Derivative(f(x), x, x, x) # 2-arg Mul! soln = Eq(f(x), C1 + C2*x + C3/Mul(2, (x + 1), evaluate=False)) assert checkodesol(eqn, soln, order=2, solve_for_func=False)[0] assert soln == dsolve(eqn, f(x)) def test_issue_11542(): m = 96 g = 9.8 k = .2 f1 = g * m t = Symbol('t') v = Function('v') v_equation = dsolve(f1 - k * (v(t) ** 2) - m * Derivative(v(t)), 0) assert str(v_equation) == \ 'Eq(v(t), -68.585712797929/tanh(C1 - 0.142886901662352*t))' def test_issue_15913(): eq = -C1/x - 2*x*f(x) - f(x) + Derivative(f(x), x) sol = C2*exp(x**2 + x) + exp(x**2 + x)*Integral(C1*exp(-x**2 - x)/x, x) assert checkodesol(eq, sol) == (True, 0) sol = C1 + C2*exp(-x*y) eq = Derivative(y*f(x), x) + f(x).diff(x, 2) assert checkodesol(eq, sol, f(x)) == (True, 0) def test_issue_16146(): raises(ValueError, lambda: dsolve([f(x).diff(x), g(x).diff(x)], [f(x), g(x), h(x)])) raises(ValueError, lambda: dsolve([f(x).diff(x), g(x).diff(x)], [f(x)])) def test_dsolve_remove_redundant_solutions(): eq = (f(x)-2)*f(x).diff(x) sol = Eq(f(x), C1) assert dsolve(eq) == sol eq = (f(x)-sin(x))*(f(x).diff(x, 2)) sol = {Eq(f(x), C1 + C2*x), Eq(f(x), sin(x))} assert set(dsolve(eq)) == sol eq = (f(x)**2-2*f(x)+1)*f(x).diff(x, 3) sol = Eq(f(x), C1 + C2*x + C3*x**2) assert dsolve(eq) == sol def test_factorable(): eq = f(x) + f(x)*f(x).diff(x) sols = [Eq(f(x), C1 - x), Eq(f(x), 0)] assert set(sols) == set(dsolve(eq, f(x), hint='factorable')) assert checkodesol(eq, sols) == 2*[(True, 0)] eq = f(x)*(f(x).diff(x)+f(x)*x+2) sols = [Eq(f(x), (C1 - sqrt(2)*sqrt(pi)*erfi(sqrt(2)*x/2)) *exp(-x**2/2)), Eq(f(x), 0)] assert set(sols) == set(dsolve(eq, f(x), hint='factorable')) assert checkodesol(eq, sols) == 2*[(True, 0)] eq = (f(x).diff(x)+f(x)*x**2)*(f(x).diff(x, 2) + x*f(x)) sols = [Eq(f(x), C1*airyai(-x) + C2*airybi(-x)), Eq(f(x), C1*exp(-x**3/3))] assert set(sols) == set(dsolve(eq, f(x), hint='factorable')) assert checkodesol(eq, sols[1]) == (True, 0) eq = (f(x).diff(x)+f(x)*x**2)*(f(x).diff(x, 2) + f(x)) sols = [Eq(f(x), C1*exp(-x**3/3)), Eq(f(x), C1*sin(x) + C2*cos(x))] assert set(sols) == set(dsolve(eq, f(x), hint='factorable')) assert checkodesol(eq, sols) == 2*[(True, 0)] eq = (f(x).diff(x)**2-1)*(f(x).diff(x)**2-4) sols = [Eq(f(x), C1 - x), Eq(f(x), C1 + x), Eq(f(x), C1 + 2*x), Eq(f(x), C1 - 2*x)] assert set(sols) == set(dsolve(eq, f(x), hint='factorable')) assert checkodesol(eq, sols) == 4*[(True, 0)] eq = (f(x).diff(x, 2)-exp(f(x)))*f(x).diff(x) sol = Eq(f(x), C1) assert sol == dsolve(eq, f(x), hint='factorable') assert checkodesol(eq, sol) == (True, 0) eq = (f(x).diff(x)**2-1)*(f(x)*f(x).diff(x)-1) sol = [Eq(f(x), C1 - x), Eq(f(x), -sqrt(C1 + 2*x)), Eq(f(x), sqrt(C1 + 2*x)), Eq(f(x), C1 + x)] assert set(sol) == set(dsolve(eq, f(x), hint='factorable')) assert checkodesol(eq, sol) == 4*[(True, 0)] eq = Derivative(f(x), x)**4 - 2*Derivative(f(x), x)**2 + 1 sol = [Eq(f(x), C1 - x), Eq(f(x), C1 + x)] assert set(sol) == set(dsolve(eq, f(x), hint='factorable')) assert checkodesol(eq, sol) == 2*[(True, 0)] eq = f(x)**2*Derivative(f(x), x)**6 - 2*f(x)**2*Derivative(f(x), x)**4 + f(x)**2*Derivative(f(x), x)**2 - 2*f(x)*Derivative(f(x), x)**5 + 4*f(x)*Derivative(f(x), x)**3 - 2*f(x)*Derivative(f(x), x) + Derivative(f(x), x)**4 - 2*Derivative(f(x), x)**2 + 1 sol = [Eq(f(x), C1 - x), Eq(f(x), -sqrt(C1 + 2*x)), Eq(f(x), sqrt(C1 + 2*x)), Eq(f(x), C1 + x)] assert set(sol) == set(dsolve(eq, f(x), hint='factorable')) assert checkodesol(eq, sol) == 4*[(True, 0)] eq = (f(x).diff(x, 2)-exp(f(x)))*(f(x).diff(x, 2)+exp(f(x))) raises(NotImplementedError, lambda: dsolve(eq, hint = 'factorable')) eq = x**4*f(x)**2 + 2*x**4*f(x)*Derivative(f(x), (x, 2)) + x**4*Derivative(f(x), (x, 2))**2 + 2*x**3*f(x)*Derivative(f(x), x) + 2*x**3*Derivative(f(x), x)*Derivative(f(x), (x, 2)) - 7*x**2*f(x)**2 - 7*x**2*f(x)*Derivative(f(x), (x, 2)) + x**2*Derivative(f(x), x)**2 - 7*x*f(x)*Derivative(f(x), x) + 12*f(x)**2 sol = [Eq(f(x), C1*besselj(2, x) + C2*bessely(2, x)), Eq(f(x), C1*besselj(sqrt(3), x) + C2*bessely(sqrt(3), x))] assert set(sol) == set(dsolve(eq, f(x), hint='factorable')) assert checkodesol(eq, sol) == 2*[(True, 0)] def test_issue_17322(): eq = (f(x).diff(x)-f(x)) * (f(x).diff(x)+f(x)) sol = [Eq(f(x), C1*exp(-x)), Eq(f(x), C1*exp(x))] assert set(sol) == set(dsolve(eq, hint='lie_group')) assert checkodesol(eq, sol) == 2*[(True, 0)] eq = f(x).diff(x)*(f(x).diff(x)+f(x)) sol = [Eq(f(x), C1), Eq(f(x), C1*exp(-x))] assert set(sol) == set(dsolve(eq, hint='lie_group')) assert checkodesol(eq, sol) == 2*[(True, 0)] def test_2nd_2F1_hypergeometric(): eq = x*(x-1)*f(x).diff(x, 2) + (S(3)/2 -2*x)*f(x).diff(x) + 2*f(x) sol = Eq(f(x), C1*x**(S(5)/2)*hyper((S(3)/2, S(1)/2), (S(7)/2,), x) + C2*hyper((-1, -2), (-S(3)/2,), x)) assert sol == dsolve(eq, hint='2nd_hypergeometric') assert checkodesol(eq, sol) == (True, 0) eq = x*(x-1)*f(x).diff(x, 2) + (S(7)/2*x)*f(x).diff(x) + f(x) sol = Eq(f(x), (C1*(1 - x)**(S(5)/2)*hyper((S(1)/2, 2), (S(7)/2,), 1 - x) + C2*hyper((-S(1)/2, -2), (-S(3)/2,), 1 - x))/(x - 1)**(S(5)/2)) assert sol == dsolve(eq, hint='2nd_hypergeometric') assert checkodesol(eq, sol) == (True, 0) eq = x*(x-1)*f(x).diff(x, 2) + (S(3)+ S(7)/2*x)*f(x).diff(x) + f(x) sol = Eq(f(x), (C1*(1 - x)**(S(11)/2)*hyper((S(1)/2, 2), (S(13)/2,), 1 - x) + C2*hyper((-S(7)/2, -5), (-S(9)/2,), 1 - x))/(x - 1)**(S(11)/2)) assert sol == dsolve(eq, hint='2nd_hypergeometric') assert checkodesol(eq, sol) == (True, 0) eq = x*(x-1)*f(x).diff(x, 2) + (-1+ S(7)/2*x)*f(x).diff(x) + f(x) sol = Eq(f(x), (C1 + C2*Integral(exp(Integral((1 - x/2)/(x*(x - 1)), x))/(1 - x/2)**2, x))*exp(Integral(1/(x - 1), x)/4)*exp(-Integral(7/(x - 1), x)/4)*hyper((S(1)/2, -1), (1,), x)) assert sol == dsolve(eq, hint='2nd_hypergeometric_Integral') assert checkodesol(eq, sol) == (True, 0) eq = -x**(S(5)/7)*(-416*x**(S(9)/7)/9 - 2385*x**(S(5)/7)/49 + S(298)*x/3)*f(x)/(196*(-x**(S(6)/7) + x)**2*(x**(S(6)/7) + x)**2) + Derivative(f(x), (x, 2)) sol = Eq(f(x), x**(S(45)/98)*(C1*x**(S(4)/49)*hyper((S(1)/3, -S(1)/2), (S(9)/7,), x**(S(2)/7)) + C2*hyper((S(1)/21, -S(11)/14), (S(5)/7,), x**(S(2)/7)))/(x**(S(2)/7) - 1)**(S(19)/84)) assert sol == dsolve(eq, hint='2nd_hypergeometric') # assert checkodesol(eq, sol) == (True, 0) #issue-https://github.com/sympy/sympy/issues/17702
904a98afbfb04e8fae521a6612393bb16d1d737fc7f55aa033f20d2ff09b17b7
from distutils.version import LooseVersion as V from itertools import product import math import inspect import mpmath from sympy.utilities.pytest import raises from sympy import ( symbols, lambdify, sqrt, sin, cos, tan, pi, acos, acosh, Rational, Float, Matrix, Lambda, Piecewise, exp, E, Integral, oo, I, Abs, Function, true, false, And, Or, Not, ITE, Min, Max, floor, diff, IndexedBase, Sum, DotProduct, Eq, Dummy, sinc, erf, erfc, factorial, gamma, loggamma, digamma, RisingFactorial, besselj, bessely, besseli, besselk, S, beta, MatrixSymbol, fresnelc, fresnels) from sympy.functions.elementary.complexes import re, im, Abs, arg from sympy.functions.special.polynomials import \ chebyshevt, chebyshevu, legendre, hermite, laguerre, gegenbauer, \ assoc_legendre, assoc_laguerre, jacobi from sympy.printing.lambdarepr import LambdaPrinter from sympy.printing.pycode import NumPyPrinter from sympy.utilities.lambdify import implemented_function, lambdastr from sympy.utilities.pytest import skip from sympy.utilities.decorator import conserve_mpmath_dps from sympy.external import import_module from sympy.functions.special.gamma_functions import uppergamma, lowergamma import sympy MutableDenseMatrix = Matrix numpy = import_module('numpy') scipy = import_module('scipy') numexpr = import_module('numexpr') tensorflow = import_module('tensorflow') if tensorflow: # Hide Tensorflow warnings import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' w, x, y, z = symbols('w,x,y,z') #================== Test different arguments ======================= def test_no_args(): f = lambdify([], 1) raises(TypeError, lambda: f(-1)) assert f() == 1 def test_single_arg(): f = lambdify(x, 2*x) assert f(1) == 2 def test_list_args(): f = lambdify([x, y], x + y) assert f(1, 2) == 3 def test_nested_args(): f1 = lambdify([[w, x]], [w, x]) assert f1([91, 2]) == [91, 2] raises(TypeError, lambda: f1(1, 2)) f2 = lambdify([(w, x), (y, z)], [w, x, y, z]) assert f2((18, 12), (73, 4)) == [18, 12, 73, 4] raises(TypeError, lambda: f2(3, 4)) f3 = lambdify([w, [[[x]], y], z], [w, x, y, z]) assert f3(10, [[[52]], 31], 44) == [10, 52, 31, 44] def test_str_args(): f = lambdify('x,y,z', 'z,y,x') assert f(3, 2, 1) == (1, 2, 3) assert f(1.0, 2.0, 3.0) == (3.0, 2.0, 1.0) # make sure correct number of args required raises(TypeError, lambda: f(0)) def test_own_namespace_1(): myfunc = lambda x: 1 f = lambdify(x, sin(x), {"sin": myfunc}) assert f(0.1) == 1 assert f(100) == 1 def test_own_namespace_2(): def myfunc(x): return 1 f = lambdify(x, sin(x), {'sin': myfunc}) assert f(0.1) == 1 assert f(100) == 1 def test_own_module(): f = lambdify(x, sin(x), math) assert f(0) == 0.0 def test_bad_args(): # no vargs given raises(TypeError, lambda: lambdify(1)) # same with vector exprs raises(TypeError, lambda: lambdify([1, 2])) def test_atoms(): # Non-Symbol atoms should not be pulled out from the expression namespace f = lambdify(x, pi + x, {"pi": 3.14}) assert f(0) == 3.14 f = lambdify(x, I + x, {"I": 1j}) assert f(1) == 1 + 1j #================== Test different modules ========================= # high precision output of sin(0.2*pi) is used to detect if precision is lost unwanted @conserve_mpmath_dps def test_sympy_lambda(): mpmath.mp.dps = 50 sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020") f = lambdify(x, sin(x), "sympy") assert f(x) == sin(x) prec = 1e-15 assert -prec < f(Rational(1, 5)).evalf() - Float(str(sin02)) < prec # arctan is in numpy module and should not be available # The arctan below gives NameError. What is this supposed to test? # raises(NameError, lambda: lambdify(x, arctan(x), "sympy")) @conserve_mpmath_dps def test_math_lambda(): mpmath.mp.dps = 50 sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020") f = lambdify(x, sin(x), "math") prec = 1e-15 assert -prec < f(0.2) - sin02 < prec raises(TypeError, lambda: f(x)) # if this succeeds, it can't be a python math function @conserve_mpmath_dps def test_mpmath_lambda(): mpmath.mp.dps = 50 sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020") f = lambdify(x, sin(x), "mpmath") prec = 1e-49 # mpmath precision is around 50 decimal places assert -prec < f(mpmath.mpf("0.2")) - sin02 < prec raises(TypeError, lambda: f(x)) # if this succeeds, it can't be a mpmath function @conserve_mpmath_dps def test_number_precision(): mpmath.mp.dps = 50 sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020") f = lambdify(x, sin02, "mpmath") prec = 1e-49 # mpmath precision is around 50 decimal places assert -prec < f(0) - sin02 < prec @conserve_mpmath_dps def test_mpmath_precision(): mpmath.mp.dps = 100 assert str(lambdify((), pi.evalf(100), 'mpmath')()) == str(pi.evalf(100)) #================== Test Translations ============================== # We can only check if all translated functions are valid. It has to be checked # by hand if they are complete. def test_math_transl(): from sympy.utilities.lambdify import MATH_TRANSLATIONS for sym, mat in MATH_TRANSLATIONS.items(): assert sym in sympy.__dict__ assert mat in math.__dict__ def test_mpmath_transl(): from sympy.utilities.lambdify import MPMATH_TRANSLATIONS for sym, mat in MPMATH_TRANSLATIONS.items(): assert sym in sympy.__dict__ or sym == 'Matrix' assert mat in mpmath.__dict__ def test_numpy_transl(): if not numpy: skip("numpy not installed.") from sympy.utilities.lambdify import NUMPY_TRANSLATIONS for sym, nump in NUMPY_TRANSLATIONS.items(): assert sym in sympy.__dict__ assert nump in numpy.__dict__ def test_scipy_transl(): if not scipy: skip("scipy not installed.") from sympy.utilities.lambdify import SCIPY_TRANSLATIONS for sym, scip in SCIPY_TRANSLATIONS.items(): assert sym in sympy.__dict__ assert scip in scipy.__dict__ or scip in scipy.special.__dict__ def test_numpy_translation_abs(): if not numpy: skip("numpy not installed.") f = lambdify(x, Abs(x), "numpy") assert f(-1) == 1 assert f(1) == 1 def test_numexpr_printer(): if not numexpr: skip("numexpr not installed.") # if translation/printing is done incorrectly then evaluating # a lambdified numexpr expression will throw an exception from sympy.printing.lambdarepr import NumExprPrinter blacklist = ('where', 'complex', 'contains') arg_tuple = (x, y, z) # some functions take more than one argument for sym in NumExprPrinter._numexpr_functions.keys(): if sym in blacklist: continue ssym = S(sym) if hasattr(ssym, '_nargs'): nargs = ssym._nargs[0] else: nargs = 1 args = arg_tuple[:nargs] f = lambdify(args, ssym(*args), modules='numexpr') assert f(*(1, )*nargs) is not None def test_issue_9334(): if not numexpr: skip("numexpr not installed.") if not numpy: skip("numpy not installed.") expr = S('b*a - sqrt(a**2)') a, b = sorted(expr.free_symbols, key=lambda s: s.name) func_numexpr = lambdify((a,b), expr, modules=[numexpr], dummify=False) foo, bar = numpy.random.random((2, 4)) func_numexpr(foo, bar) def test_issue_12984(): import warnings if not numexpr: skip("numexpr not installed.") func_numexpr = lambdify((x,y,z), Piecewise((y, x >= 0), (z, x > -1)), numexpr) assert func_numexpr(1, 24, 42) == 24 with warnings.catch_warnings(): warnings.simplefilter("ignore", RuntimeWarning) assert str(func_numexpr(-1, 24, 42)) == 'nan' #================== Test some functions ============================ def test_exponentiation(): f = lambdify(x, x**2) assert f(-1) == 1 assert f(0) == 0 assert f(1) == 1 assert f(-2) == 4 assert f(2) == 4 assert f(2.5) == 6.25 def test_sqrt(): f = lambdify(x, sqrt(x)) assert f(0) == 0.0 assert f(1) == 1.0 assert f(4) == 2.0 assert abs(f(2) - 1.414) < 0.001 assert f(6.25) == 2.5 def test_trig(): f = lambdify([x], [cos(x), sin(x)], 'math') d = f(pi) prec = 1e-11 assert -prec < d[0] + 1 < prec assert -prec < d[1] < prec d = f(3.14159) prec = 1e-5 assert -prec < d[0] + 1 < prec assert -prec < d[1] < prec #================== Test vectors =================================== def test_vector_simple(): f = lambdify((x, y, z), (z, y, x)) assert f(3, 2, 1) == (1, 2, 3) assert f(1.0, 2.0, 3.0) == (3.0, 2.0, 1.0) # make sure correct number of args required raises(TypeError, lambda: f(0)) def test_vector_discontinuous(): f = lambdify(x, (-1/x, 1/x)) raises(ZeroDivisionError, lambda: f(0)) assert f(1) == (-1.0, 1.0) assert f(2) == (-0.5, 0.5) assert f(-2) == (0.5, -0.5) def test_trig_symbolic(): f = lambdify([x], [cos(x), sin(x)], 'math') d = f(pi) assert abs(d[0] + 1) < 0.0001 assert abs(d[1] - 0) < 0.0001 def test_trig_float(): f = lambdify([x], [cos(x), sin(x)]) d = f(3.14159) assert abs(d[0] + 1) < 0.0001 assert abs(d[1] - 0) < 0.0001 def test_docs(): f = lambdify(x, x**2) assert f(2) == 4 f = lambdify([x, y, z], [z, y, x]) assert f(1, 2, 3) == [3, 2, 1] f = lambdify(x, sqrt(x)) assert f(4) == 2.0 f = lambdify((x, y), sin(x*y)**2) assert f(0, 5) == 0 def test_math(): f = lambdify((x, y), sin(x), modules="math") assert f(0, 5) == 0 def test_sin(): f = lambdify(x, sin(x)**2) assert isinstance(f(2), float) f = lambdify(x, sin(x)**2, modules="math") assert isinstance(f(2), float) def test_matrix(): A = Matrix([[x, x*y], [sin(z) + 4, x**z]]) sol = Matrix([[1, 2], [sin(3) + 4, 1]]) f = lambdify((x, y, z), A, modules="sympy") assert f(1, 2, 3) == sol f = lambdify((x, y, z), (A, [A]), modules="sympy") assert f(1, 2, 3) == (sol, [sol]) J = Matrix((x, x + y)).jacobian((x, y)) v = Matrix((x, y)) sol = Matrix([[1, 0], [1, 1]]) assert lambdify(v, J, modules='sympy')(1, 2) == sol assert lambdify(v.T, J, modules='sympy')(1, 2) == sol def test_numpy_matrix(): if not numpy: skip("numpy not installed.") A = Matrix([[x, x*y], [sin(z) + 4, x**z]]) sol_arr = numpy.array([[1, 2], [numpy.sin(3) + 4, 1]]) #Lambdify array first, to ensure return to array as default f = lambdify((x, y, z), A, ['numpy']) numpy.testing.assert_allclose(f(1, 2, 3), sol_arr) #Check that the types are arrays and matrices assert isinstance(f(1, 2, 3), numpy.ndarray) # gh-15071 class dot(Function): pass x_dot_mtx = dot(x, Matrix([[2], [1], [0]])) f_dot1 = lambdify(x, x_dot_mtx) inp = numpy.zeros((17, 3)) assert numpy.all(f_dot1(inp) == 0) strict_kw = dict(allow_unknown_functions=False, inline=True, fully_qualified_modules=False) p2 = NumPyPrinter(dict(user_functions={'dot': 'dot'}, **strict_kw)) f_dot2 = lambdify(x, x_dot_mtx, printer=p2) assert numpy.all(f_dot2(inp) == 0) p3 = NumPyPrinter(strict_kw) # The line below should probably fail upon construction (before calling with "(inp)"): raises(Exception, lambda: lambdify(x, x_dot_mtx, printer=p3)(inp)) def test_numpy_transpose(): if not numpy: skip("numpy not installed.") A = Matrix([[1, x], [0, 1]]) f = lambdify((x), A.T, modules="numpy") numpy.testing.assert_array_equal(f(2), numpy.array([[1, 0], [2, 1]])) def test_numpy_dotproduct(): if not numpy: skip("numpy not installed") A = Matrix([x, y, z]) f1 = lambdify([x, y, z], DotProduct(A, A), modules='numpy') f2 = lambdify([x, y, z], DotProduct(A, A.T), modules='numpy') f3 = lambdify([x, y, z], DotProduct(A.T, A), modules='numpy') f4 = lambdify([x, y, z], DotProduct(A, A.T), modules='numpy') assert f1(1, 2, 3) == \ f2(1, 2, 3) == \ f3(1, 2, 3) == \ f4(1, 2, 3) == \ numpy.array([14]) def test_numpy_inverse(): if not numpy: skip("numpy not installed.") A = Matrix([[1, x], [0, 1]]) f = lambdify((x), A**-1, modules="numpy") numpy.testing.assert_array_equal(f(2), numpy.array([[1, -2], [0, 1]])) def test_numpy_old_matrix(): if not numpy: skip("numpy not installed.") A = Matrix([[x, x*y], [sin(z) + 4, x**z]]) sol_arr = numpy.array([[1, 2], [numpy.sin(3) + 4, 1]]) f = lambdify((x, y, z), A, [{'ImmutableDenseMatrix': numpy.matrix}, 'numpy']) numpy.testing.assert_allclose(f(1, 2, 3), sol_arr) assert isinstance(f(1, 2, 3), numpy.matrix) def test_python_div_zero_issue_11306(): if not numpy: skip("numpy not installed.") p = Piecewise((1 / x, y < -1), (x, y < 1), (1 / x, True)) f = lambdify([x, y], p, modules='numpy') numpy.seterr(divide='ignore') assert float(f(numpy.array([0]),numpy.array([0.5]))) == 0 assert str(float(f(numpy.array([0]),numpy.array([1])))) == 'inf' numpy.seterr(divide='warn') def test_issue9474(): mods = [None, 'math'] if numpy: mods.append('numpy') if mpmath: mods.append('mpmath') for mod in mods: f = lambdify(x, S.One/x, modules=mod) assert f(2) == 0.5 f = lambdify(x, floor(S.One/x), modules=mod) assert f(2) == 0 for absfunc, modules in product([Abs, abs], mods): f = lambdify(x, absfunc(x), modules=modules) assert f(-1) == 1 assert f(1) == 1 assert f(3+4j) == 5 def test_issue_9871(): if not numexpr: skip("numexpr not installed.") if not numpy: skip("numpy not installed.") r = sqrt(x**2 + y**2) expr = diff(1/r, x) xn = yn = numpy.linspace(1, 10, 16) # expr(xn, xn) = -xn/(sqrt(2)*xn)^3 fv_exact = -numpy.sqrt(2.)**-3 * xn**-2 fv_numpy = lambdify((x, y), expr, modules='numpy')(xn, yn) fv_numexpr = lambdify((x, y), expr, modules='numexpr')(xn, yn) numpy.testing.assert_allclose(fv_numpy, fv_exact, rtol=1e-10) numpy.testing.assert_allclose(fv_numexpr, fv_exact, rtol=1e-10) def test_numpy_piecewise(): if not numpy: skip("numpy not installed.") pieces = Piecewise((x, x < 3), (x**2, x > 5), (0, True)) f = lambdify(x, pieces, modules="numpy") numpy.testing.assert_array_equal(f(numpy.arange(10)), numpy.array([0, 1, 2, 0, 0, 0, 36, 49, 64, 81])) # If we evaluate somewhere all conditions are False, we should get back NaN nodef_func = lambdify(x, Piecewise((x, x > 0), (-x, x < 0))) numpy.testing.assert_array_equal(nodef_func(numpy.array([-1, 0, 1])), numpy.array([1, numpy.nan, 1])) def test_numpy_logical_ops(): if not numpy: skip("numpy not installed.") and_func = lambdify((x, y), And(x, y), modules="numpy") and_func_3 = lambdify((x, y, z), And(x, y, z), modules="numpy") or_func = lambdify((x, y), Or(x, y), modules="numpy") or_func_3 = lambdify((x, y, z), Or(x, y, z), modules="numpy") not_func = lambdify((x), Not(x), modules="numpy") arr1 = numpy.array([True, True]) arr2 = numpy.array([False, True]) arr3 = numpy.array([True, False]) numpy.testing.assert_array_equal(and_func(arr1, arr2), numpy.array([False, True])) numpy.testing.assert_array_equal(and_func_3(arr1, arr2, arr3), numpy.array([False, False])) numpy.testing.assert_array_equal(or_func(arr1, arr2), numpy.array([True, True])) numpy.testing.assert_array_equal(or_func_3(arr1, arr2, arr3), numpy.array([True, True])) numpy.testing.assert_array_equal(not_func(arr2), numpy.array([True, False])) def test_numpy_matmul(): if not numpy: skip("numpy not installed.") xmat = Matrix([[x, y], [z, 1+z]]) ymat = Matrix([[x**2], [Abs(x)]]) mat_func = lambdify((x, y, z), xmat*ymat, modules="numpy") numpy.testing.assert_array_equal(mat_func(0.5, 3, 4), numpy.array([[1.625], [3.5]])) numpy.testing.assert_array_equal(mat_func(-0.5, 3, 4), numpy.array([[1.375], [3.5]])) # Multiple matrices chained together in multiplication f = lambdify((x, y, z), xmat*xmat*xmat, modules="numpy") numpy.testing.assert_array_equal(f(0.5, 3, 4), numpy.array([[72.125, 119.25], [159, 251]])) def test_numpy_numexpr(): if not numpy: skip("numpy not installed.") if not numexpr: skip("numexpr not installed.") a, b, c = numpy.random.randn(3, 128, 128) # ensure that numpy and numexpr return same value for complicated expression expr = sin(x) + cos(y) + tan(z)**2 + Abs(z-y)*acos(sin(y*z)) + \ Abs(y-z)*acosh(2+exp(y-x))- sqrt(x**2+I*y**2) npfunc = lambdify((x, y, z), expr, modules='numpy') nefunc = lambdify((x, y, z), expr, modules='numexpr') assert numpy.allclose(npfunc(a, b, c), nefunc(a, b, c)) def test_numexpr_userfunctions(): if not numpy: skip("numpy not installed.") if not numexpr: skip("numexpr not installed.") a, b = numpy.random.randn(2, 10) uf = type('uf', (Function, ), {'eval' : classmethod(lambda x, y : y**2+1)}) func = lambdify(x, 1-uf(x), modules='numexpr') assert numpy.allclose(func(a), -(a**2)) uf = implemented_function(Function('uf'), lambda x, y : 2*x*y+1) func = lambdify((x, y), uf(x, y), modules='numexpr') assert numpy.allclose(func(a, b), 2*a*b+1) def test_tensorflow_basic_math(): if not tensorflow: skip("tensorflow not installed.") expr = Max(sin(x), Abs(1/(x+2))) func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: a = tensorflow.constant(0, dtype=tensorflow.float32) assert func(a).eval(session=s) == 0.5 def test_tensorflow_placeholders(): if not tensorflow: skip("tensorflow not installed.") expr = Max(sin(x), Abs(1/(x+2))) func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: a = tensorflow.compat.v1.placeholder(dtype=tensorflow.float32) assert func(a).eval(session=s, feed_dict={a: 0}) == 0.5 def test_tensorflow_variables(): if not tensorflow: skip("tensorflow not installed.") expr = Max(sin(x), Abs(1/(x+2))) func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: a = tensorflow.Variable(0, dtype=tensorflow.float32) s.run(a.initializer) assert func(a).eval(session=s, feed_dict={a: 0}) == 0.5 def test_tensorflow_logical_operations(): if not tensorflow: skip("tensorflow not installed.") expr = Not(And(Or(x, y), y)) func = lambdify([x, y], expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: assert func(False, True).eval(session=s) == False def test_tensorflow_piecewise(): if not tensorflow: skip("tensorflow not installed.") expr = Piecewise((0, Eq(x,0)), (-1, x < 0), (1, x > 0)) func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: assert func(-1).eval(session=s) == -1 assert func(0).eval(session=s) == 0 assert func(1).eval(session=s) == 1 def test_tensorflow_multi_max(): if not tensorflow: skip("tensorflow not installed.") expr = Max(x, -x, x**2) func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: assert func(-2).eval(session=s) == 4 def test_tensorflow_multi_min(): if not tensorflow: skip("tensorflow not installed.") expr = Min(x, -x, x**2) func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: assert func(-2).eval(session=s) == -2 def test_tensorflow_relational(): if not tensorflow: skip("tensorflow not installed.") expr = x >= 0 func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: assert func(1).eval(session=s) == True def test_tensorflow_complexes(): if not tensorflow: skip("tensorflow not installed") func1 = lambdify(x, re(x), modules="tensorflow") func2 = lambdify(x, im(x), modules="tensorflow") func3 = lambdify(x, Abs(x), modules="tensorflow") func4 = lambdify(x, arg(x), modules="tensorflow") with tensorflow.compat.v1.Session() as s: # For versions before # https://github.com/tensorflow/tensorflow/issues/30029 # resolved, using python numeric types may not work a = tensorflow.constant(1+2j) assert func1(a).eval(session=s) == 1 assert func2(a).eval(session=s) == 2 tensorflow_result = func3(a).eval(session=s) sympy_result = Abs(1 + 2j).evalf() assert abs(tensorflow_result-sympy_result) < 10**-6 tensorflow_result = func4(a).eval(session=s) sympy_result = arg(1 + 2j).evalf() assert abs(tensorflow_result-sympy_result) < 10**-6 def test_tensorflow_array_arg(): # Test for issue 14655 (tensorflow part) if not tensorflow: skip("tensorflow not installed.") f = lambdify([[x, y]], x*x + y, 'tensorflow') with tensorflow.compat.v1.Session() as s: fcall = f(tensorflow.constant([2.0, 1.0])) assert fcall.eval(session=s) == 5.0 #================== Test symbolic ================================== def test_integral(): f = Lambda(x, exp(-x**2)) l = lambdify(x, Integral(f(x), (x, -oo, oo)), modules="sympy") assert l(x) == Integral(exp(-x**2), (x, -oo, oo)) def test_sym_single_arg(): f = lambdify(x, x * y) assert f(z) == z * y def test_sym_list_args(): f = lambdify([x, y], x + y + z) assert f(1, 2) == 3 + z def test_sym_integral(): f = Lambda(x, exp(-x**2)) l = lambdify(x, Integral(f(x), (x, -oo, oo)), modules="sympy") assert l(y).doit() == sqrt(pi) def test_namespace_order(): # lambdify had a bug, such that module dictionaries or cached module # dictionaries would pull earlier namespaces into themselves. # Because the module dictionaries form the namespace of the # generated lambda, this meant that the behavior of a previously # generated lambda function could change as a result of later calls # to lambdify. n1 = {'f': lambda x: 'first f'} n2 = {'f': lambda x: 'second f', 'g': lambda x: 'function g'} f = sympy.Function('f') g = sympy.Function('g') if1 = lambdify(x, f(x), modules=(n1, "sympy")) assert if1(1) == 'first f' if2 = lambdify(x, g(x), modules=(n2, "sympy")) # previously gave 'second f' assert if1(1) == 'first f' assert if2(1) == 'function g' def test_namespace_type(): # lambdify had a bug where it would reject modules of type unicode # on Python 2. x = sympy.Symbol('x') lambdify(x, x, modules=u'math') def test_imps(): # Here we check if the default returned functions are anonymous - in # the sense that we can have more than one function with the same name f = implemented_function('f', lambda x: 2*x) g = implemented_function('f', lambda x: math.sqrt(x)) l1 = lambdify(x, f(x)) l2 = lambdify(x, g(x)) assert str(f(x)) == str(g(x)) assert l1(3) == 6 assert l2(3) == math.sqrt(3) # check that we can pass in a Function as input func = sympy.Function('myfunc') assert not hasattr(func, '_imp_') my_f = implemented_function(func, lambda x: 2*x) assert hasattr(my_f, '_imp_') # Error for functions with same name and different implementation f2 = implemented_function("f", lambda x: x + 101) raises(ValueError, lambda: lambdify(x, f(f2(x)))) def test_imps_errors(): # Test errors that implemented functions can return, and still be able to # form expressions. # See: https://github.com/sympy/sympy/issues/10810 # # XXX: Removed AttributeError here. This test was added due to issue 10810 # but that issue was about ValueError. It doesn't seem reasonable to # "support" catching AttributeError in the same context... for val, error_class in product((0, 0., 2, 2.0), (TypeError, ValueError)): def myfunc(a): if a == 0: raise error_class return 1 f = implemented_function('f', myfunc) expr = f(val) assert expr == f(val) def test_imps_wrong_args(): raises(ValueError, lambda: implemented_function(sin, lambda x: x)) def test_lambdify_imps(): # Test lambdify with implemented functions # first test basic (sympy) lambdify f = sympy.cos assert lambdify(x, f(x))(0) == 1 assert lambdify(x, 1 + f(x))(0) == 2 assert lambdify((x, y), y + f(x))(0, 1) == 2 # make an implemented function and test f = implemented_function("f", lambda x: x + 100) assert lambdify(x, f(x))(0) == 100 assert lambdify(x, 1 + f(x))(0) == 101 assert lambdify((x, y), y + f(x))(0, 1) == 101 # Can also handle tuples, lists, dicts as expressions lam = lambdify(x, (f(x), x)) assert lam(3) == (103, 3) lam = lambdify(x, [f(x), x]) assert lam(3) == [103, 3] lam = lambdify(x, [f(x), (f(x), x)]) assert lam(3) == [103, (103, 3)] lam = lambdify(x, {f(x): x}) assert lam(3) == {103: 3} lam = lambdify(x, {f(x): x}) assert lam(3) == {103: 3} lam = lambdify(x, {x: f(x)}) assert lam(3) == {3: 103} # Check that imp preferred to other namespaces by default d = {'f': lambda x: x + 99} lam = lambdify(x, f(x), d) assert lam(3) == 103 # Unless flag passed lam = lambdify(x, f(x), d, use_imps=False) assert lam(3) == 102 def test_dummification(): t = symbols('t') F = Function('F') G = Function('G') #"\alpha" is not a valid python variable name #lambdify should sub in a dummy for it, and return #without a syntax error alpha = symbols(r'\alpha') some_expr = 2 * F(t)**2 / G(t) lam = lambdify((F(t), G(t)), some_expr) assert lam(3, 9) == 2 lam = lambdify(sin(t), 2 * sin(t)**2) assert lam(F(t)) == 2 * F(t)**2 #Test that \alpha was properly dummified lam = lambdify((alpha, t), 2*alpha + t) assert lam(2, 1) == 5 raises(SyntaxError, lambda: lambdify(F(t) * G(t), F(t) * G(t) + 5)) raises(SyntaxError, lambda: lambdify(2 * F(t), 2 * F(t) + 5)) raises(SyntaxError, lambda: lambdify(2 * F(t), 4 * F(t) + 5)) def test_curly_matrix_symbol(): # Issue #15009 curlyv = sympy.MatrixSymbol("{v}", 2, 1) lam = lambdify(curlyv, curlyv) assert lam(1)==1 lam = lambdify(curlyv, curlyv, dummify=True) assert lam(1)==1 def test_python_keywords(): # Test for issue 7452. The automatic dummification should ensure use of # Python reserved keywords as symbol names will create valid lambda # functions. This is an additional regression test. python_if = symbols('if') expr = python_if / 2 f = lambdify(python_if, expr) assert f(4.0) == 2.0 def test_lambdify_docstring(): func = lambdify((w, x, y, z), w + x + y + z) ref = ( "Created with lambdify. Signature:\n\n" "func(w, x, y, z)\n\n" "Expression:\n\n" "w + x + y + z" ).splitlines() assert func.__doc__.splitlines()[:len(ref)] == ref syms = symbols('a1:26') func = lambdify(syms, sum(syms)) ref = ( "Created with lambdify. Signature:\n\n" "func(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15,\n" " a16, a17, a18, a19, a20, a21, a22, a23, a24, a25)\n\n" "Expression:\n\n" "a1 + a10 + a11 + a12 + a13 + a14 + a15 + a16 + a17 + a18 + a19 + a2 + a20 +..." ).splitlines() assert func.__doc__.splitlines()[:len(ref)] == ref #================== Test special printers ========================== def test_special_printers(): from sympy.polys.numberfields import IntervalPrinter def intervalrepr(expr): return IntervalPrinter().doprint(expr) expr = sqrt(sqrt(2) + sqrt(3)) + S.Half func0 = lambdify((), expr, modules="mpmath", printer=intervalrepr) func1 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter) func2 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter()) mpi = type(mpmath.mpi(1, 2)) assert isinstance(func0(), mpi) assert isinstance(func1(), mpi) assert isinstance(func2(), mpi) def test_true_false(): # We want exact is comparison here, not just == assert lambdify([], true)() is True assert lambdify([], false)() is False def test_issue_2790(): assert lambdify((x, (y, z)), x + y)(1, (2, 4)) == 3 assert lambdify((x, (y, (w, z))), w + x + y + z)(1, (2, (3, 4))) == 10 assert lambdify(x, x + 1, dummify=False)(1) == 2 def test_issue_12092(): f = implemented_function('f', lambda x: x**2) assert f(f(2)).evalf() == Float(16) def test_issue_14911(): class Variable(sympy.Symbol): def _sympystr(self, printer): return printer.doprint(self.name) _lambdacode = _sympystr _numpycode = _sympystr x = Variable('x') y = 2 * x code = LambdaPrinter().doprint(y) assert code.replace(' ', '') == '2*x' def test_ITE(): assert lambdify((x, y, z), ITE(x, y, z))(True, 5, 3) == 5 assert lambdify((x, y, z), ITE(x, y, z))(False, 5, 3) == 3 def test_Min_Max(): # see gh-10375 assert lambdify((x, y, z), Min(x, y, z))(1, 2, 3) == 1 assert lambdify((x, y, z), Max(x, y, z))(1, 2, 3) == 3 def test_Indexed(): # Issue #10934 if not numpy: skip("numpy not installed") a = IndexedBase('a') i, j = symbols('i j') b = numpy.array([[1, 2], [3, 4]]) assert lambdify(a, Sum(a[x, y], (x, 0, 1), (y, 0, 1)))(b) == 10 def test_issue_12173(): #test for issue 12173 exp1 = lambdify((x, y), uppergamma(x, y),"mpmath")(1, 2) exp2 = lambdify((x, y), lowergamma(x, y),"mpmath")(1, 2) assert exp1 == uppergamma(1, 2).evalf() assert exp2 == lowergamma(1, 2).evalf() def test_issue_13642(): if not numpy: skip("numpy not installed") f = lambdify(x, sinc(x)) assert Abs(f(1) - sinc(1)).n() < 1e-15 def test_sinc_mpmath(): f = lambdify(x, sinc(x), "mpmath") assert Abs(f(1) - sinc(1)).n() < 1e-15 def test_lambdify_dummy_arg(): d1 = Dummy() f1 = lambdify(d1, d1 + 1, dummify=False) assert f1(2) == 3 f1b = lambdify(d1, d1 + 1) assert f1b(2) == 3 d2 = Dummy('x') f2 = lambdify(d2, d2 + 1) assert f2(2) == 3 f3 = lambdify([[d2]], d2 + 1) assert f3([2]) == 3 def test_lambdify_mixed_symbol_dummy_args(): d = Dummy() # Contrived example of name clash dsym = symbols(str(d)) f = lambdify([d, dsym], d - dsym) assert f(4, 1) == 3 def test_numpy_array_arg(): # Test for issue 14655 (numpy part) if not numpy: skip("numpy not installed") f = lambdify([[x, y]], x*x + y, 'numpy') assert f(numpy.array([2.0, 1.0])) == 5 def test_scipy_fns(): if not scipy: skip("scipy not installed") single_arg_sympy_fns = [erf, erfc, factorial, gamma, loggamma, digamma] single_arg_scipy_fns = [scipy.special.erf, scipy.special.erfc, scipy.special.factorial, scipy.special.gamma, scipy.special.gammaln, scipy.special.psi] numpy.random.seed(0) for (sympy_fn, scipy_fn) in zip(single_arg_sympy_fns, single_arg_scipy_fns): f = lambdify(x, sympy_fn(x), modules="scipy") for i in range(20): tv = numpy.random.uniform(-10, 10) + 1j*numpy.random.uniform(-5, 5) # SciPy thinks that factorial(z) is 0 when re(z) < 0 and # does not support complex numbers. # SymPy does not think so. if sympy_fn == factorial: tv = numpy.abs(tv) # SciPy supports gammaln for real arguments only, # and there is also a branch cut along the negative real axis if sympy_fn == loggamma: tv = numpy.abs(tv) # SymPy's digamma evaluates as polygamma(0, z) # which SciPy supports for real arguments only if sympy_fn == digamma: tv = numpy.real(tv) sympy_result = sympy_fn(tv).evalf() assert abs(f(tv) - sympy_result) < 1e-13*(1 + abs(sympy_result)) assert abs(f(tv) - scipy_fn(tv)) < 1e-13*(1 + abs(sympy_result)) double_arg_sympy_fns = [RisingFactorial, besselj, bessely, besseli, besselk] double_arg_scipy_fns = [scipy.special.poch, scipy.special.jv, scipy.special.yv, scipy.special.iv, scipy.special.kv] for (sympy_fn, scipy_fn) in zip(double_arg_sympy_fns, double_arg_scipy_fns): f = lambdify((x, y), sympy_fn(x, y), modules="scipy") for i in range(20): # SciPy supports only real orders of Bessel functions tv1 = numpy.random.uniform(-10, 10) tv2 = numpy.random.uniform(-10, 10) + 1j*numpy.random.uniform(-5, 5) # SciPy supports poch for real arguments only if sympy_fn == RisingFactorial: tv2 = numpy.real(tv2) sympy_result = sympy_fn(tv1, tv2).evalf() assert abs(f(tv1, tv2) - sympy_result) < 1e-13*(1 + abs(sympy_result)) assert abs(f(tv1, tv2) - scipy_fn(tv1, tv2)) < 1e-13*(1 + abs(sympy_result)) def test_scipy_polys(): if not scipy: skip("scipy not installed") numpy.random.seed(0) params = symbols('n k a b') # list polynomials with the number of parameters polys = [ (chebyshevt, 1), (chebyshevu, 1), (legendre, 1), (hermite, 1), (laguerre, 1), (gegenbauer, 2), (assoc_legendre, 2), (assoc_laguerre, 2), (jacobi, 3) ] msg = \ "The random test of the function {func} with the arguments " \ "{args} had failed because the SymPy result {sympy_result} " \ "and SciPy result {scipy_result} had failed to converge " \ "within the tolerance {tol} " \ "(Actual absolute difference : {diff})" for sympy_fn, num_params in polys: args = params[:num_params] + (x,) f = lambdify(args, sympy_fn(*args)) for _ in range(10): tn = numpy.random.randint(3, 10) tparams = tuple(numpy.random.uniform(0, 5, size=num_params-1)) tv = numpy.random.uniform(-10, 10) + 1j*numpy.random.uniform(-5, 5) # SciPy supports hermite for real arguments only if sympy_fn == hermite: tv = numpy.real(tv) # assoc_legendre needs x in (-1, 1) and integer param at most n if sympy_fn == assoc_legendre: tv = numpy.random.uniform(-1, 1) tparams = tuple(numpy.random.randint(1, tn, size=1)) vals = (tn,) + tparams + (tv,) scipy_result = f(*vals) sympy_result = sympy_fn(*vals).evalf() atol = 1e-9*(1 + abs(sympy_result)) diff = abs(scipy_result - sympy_result) try: assert diff < atol except TypeError: raise AssertionError( msg.format( func=repr(sympy_fn), args=repr(vals), sympy_result=repr(sympy_result), scipy_result=repr(scipy_result), diff=diff, tol=atol) ) def test_lambdify_inspect(): f = lambdify(x, x**2) # Test that inspect.getsource works but don't hard-code implementation # details assert 'x**2' in inspect.getsource(f) def test_issue_14941(): x, y = Dummy(), Dummy() # test dict f1 = lambdify([x, y], {x: 3, y: 3}, 'sympy') assert f1(2, 3) == {2: 3, 3: 3} # test tuple f2 = lambdify([x, y], (y, x), 'sympy') assert f2(2, 3) == (3, 2) # test list f3 = lambdify([x, y], [y, x], 'sympy') assert f3(2, 3) == [3, 2] def test_lambdify_Derivative_arg_issue_16468(): f = Function('f')(x) fx = f.diff() assert lambdify((f, fx), f + fx)(10, 5) == 15 assert eval(lambdastr((f, fx), f/fx))(10, 5) == 2 raises(SyntaxError, lambda: eval(lambdastr((f, fx), f/fx, dummify=False))) assert eval(lambdastr((f, fx), f/fx, dummify=True))(10, 5) == 2 assert eval(lambdastr((fx, f), f/fx, dummify=True))(S(10), 5) == S.Half assert lambdify(fx, 1 + fx)(41) == 42 assert eval(lambdastr(fx, 1 + fx, dummify=True))(41) == 42 def test_imag_real(): f_re = lambdify([z], sympy.re(z)) val = 3+2j assert f_re(val) == val.real f_im = lambdify([z], sympy.im(z)) # see #15400 assert f_im(val) == val.imag def test_MatrixSymbol_issue_15578(): if not numpy: skip("numpy not installed") A = MatrixSymbol('A', 2, 2) A0 = numpy.array([[1, 2], [3, 4]]) f = lambdify(A, A**(-1)) assert numpy.allclose(f(A0), numpy.array([[-2., 1.], [1.5, -0.5]])) g = lambdify(A, A**3) assert numpy.allclose(g(A0), numpy.array([[37, 54], [81, 118]])) def test_issue_15654(): if not scipy: skip("scipy not installed") from sympy.abc import n, l, r, Z from sympy.physics import hydrogen nv, lv, rv, Zv = 1, 0, 3, 1 sympy_value = hydrogen.R_nl(nv, lv, rv, Zv).evalf() f = lambdify((n, l, r, Z), hydrogen.R_nl(n, l, r, Z)) scipy_value = f(nv, lv, rv, Zv) assert abs(sympy_value - scipy_value) < 1e-15 def test_issue_15827(): if not numpy: skip("numpy not installed") A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 2, 3) C = MatrixSymbol("C", 3, 4) D = MatrixSymbol("D", 4, 5) k=symbols("k") f = lambdify(A, (2*k)*A) g = lambdify(A, (2+k)*A) h = lambdify(A, 2*A) i = lambdify((B, C, D), 2*B*C*D) assert numpy.array_equal(f(numpy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])), \ numpy.array([[2*k, 4*k, 6*k], [2*k, 4*k, 6*k], [2*k, 4*k, 6*k]], dtype=object)) assert numpy.array_equal(g(numpy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])), \ numpy.array([[k + 2, 2*k + 4, 3*k + 6], [k + 2, 2*k + 4, 3*k + 6], \ [k + 2, 2*k + 4, 3*k + 6]], dtype=object)) assert numpy.array_equal(h(numpy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])), \ numpy.array([[2, 4, 6], [2, 4, 6], [2, 4, 6]])) assert numpy.array_equal(i(numpy.array([[1, 2, 3], [1, 2, 3]]), numpy.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]), \ numpy.array([[1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5]])), numpy.array([[ 120, 240, 360, 480, 600], \ [ 120, 240, 360, 480, 600]])) def test_issue_16930(): if not scipy: skip("scipy not installed") x = symbols("x") f = lambda x: S.GoldenRatio * x**2 f_ = lambdify(x, f(x), modules='scipy') assert f_(1) == scipy.constants.golden_ratio def test_single_e(): f = lambdify(x, E) assert f(23) == exp(1.0) def test_issue_16536(): if not scipy: skip("scipy not installed") a = symbols('a') f1 = lowergamma(a, x) F = lambdify((a, x), f1, modules='scipy') assert abs(lowergamma(1, 3) - F(1, 3)) <= 1e-10 f2 = uppergamma(a, x) F = lambdify((a, x), f2, modules='scipy') assert abs(uppergamma(1, 3) - F(1, 3)) <= 1e-10 def test_fresnel_integrals_scipy(): if not scipy: skip("scipy not installed") f1 = fresnelc(x) f2 = fresnels(x) F1 = lambdify(x, f1, modules='scipy') F2 = lambdify(x, f2, modules='scipy') assert abs(fresnelc(1.3) - F1(1.3)) <= 1e-10 assert abs(fresnels(1.3) - F2(1.3)) <= 1e-10 def test_beta_scipy(): if not scipy: skip("scipy not installed") f = beta(x, y) F = lambdify((x, y), f, modules='scipy') assert abs(beta(1.3, 2.3) - F(1.3, 2.3)) <= 1e-10 def test_beta_math(): f = beta(x, y) F = lambdify((x, y), f, modules='math') assert abs(beta(1.3, 2.3) - F(1.3, 2.3)) <= 1e-10
8b80c778973bce67e602e3f715ff2d029ed37cbf7302742da664391c7ac5cf14
""" Tests from Michael Wester's 1999 paper "Review of CAS mathematical capabilities". http://www.math.unm.edu/~wester/cas/book/Wester.pdf See also http://math.unm.edu/~wester/cas_review.html for detailed output of each tested system. """ from sympy import (Rational, symbols, Dummy, factorial, sqrt, log, exp, oo, zoo, product, binomial, rf, pi, gamma, igcd, factorint, radsimp, combsimp, npartitions, totient, primerange, factor, simplify, gcd, resultant, expand, I, trigsimp, tan, sin, cos, cot, diff, nan, limit, EulerGamma, polygamma, bernoulli, hyper, hyperexpand, besselj, asin, assoc_legendre, Function, re, im, DiracDelta, chebyshevt, legendre_poly, polylog, series, O, atan, sinh, cosh, tanh, floor, ceiling, solve, asinh, acot, csc, sec, LambertW, N, apart, sqrtdenest, factorial2, powdenest, Mul, S, ZZ, Poly, expand_func, E, Q, And, Lt, Min, ask, refine, AlgebraicNumber, continued_fraction_iterator as cf_i, continued_fraction_periodic as cf_p, continued_fraction_convergents as cf_c, continued_fraction_reduce as cf_r, FiniteSet, elliptic_e, elliptic_f, powsimp, hessian, wronskian, fibonacci, sign, Lambda, Piecewise, Subs, residue, Derivative, logcombine, Symbol, Intersection, Union, EmptySet, Interval, idiff, ImageSet, acos, Max, MatMul, conjugate) import mpmath from sympy.functions.combinatorial.numbers import stirling from sympy.functions.special.delta_functions import Heaviside from sympy.functions.special.error_functions import Ci, Si, erf from sympy.functions.special.zeta_functions import zeta from sympy.utilities.pytest import XFAIL, slow, SKIP, skip, ON_TRAVIS from sympy.utilities.iterables import partitions from mpmath import mpi, mpc from sympy.matrices import Matrix, GramSchmidt, eye from sympy.matrices.expressions.blockmatrix import BlockMatrix, block_collapse from sympy.matrices.expressions import MatrixSymbol, ZeroMatrix from sympy.physics.quantum import Commutator from sympy.assumptions import assuming from sympy.polys.rings import PolyRing from sympy.polys.fields import FracField from sympy.polys.solvers import solve_lin_sys from sympy.concrete import Sum from sympy.concrete.products import Product from sympy.integrals import integrate from sympy.integrals.transforms import laplace_transform,\ inverse_laplace_transform, LaplaceTransform, fourier_transform,\ mellin_transform from sympy.solvers.recurr import rsolve from sympy.solvers.solveset import solveset, solveset_real, linsolve from sympy.solvers.ode import dsolve from sympy.core.relational import Equality from sympy.core.compatibility import range, PY3 from itertools import islice, takewhile from sympy.series.formal import fps from sympy.series.fourier import fourier_series from sympy.calculus.util import minimum R = Rational x, y, z = symbols('x y z') i, j, k, l, m, n = symbols('i j k l m n', integer=True) f = Function('f') g = Function('g') # A. Boolean Logic and Quantifier Elimination # Not implemented. # B. Set Theory def test_B1(): assert (FiniteSet(i, j, j, k, k, k) | FiniteSet(l, k, j) | FiniteSet(j, m, j)) == FiniteSet(i, j, k, l, m) def test_B2(): assert (FiniteSet(i, j, j, k, k, k) & FiniteSet(l, k, j) & FiniteSet(j, m, j)) == Intersection({j, m}, {i, j, k}, {j, k, l}) # Previous output below. Not sure why that should be the expected output. # There should probably be a way to rewrite Intersections that way but I # don't see why an Intersection should evaluate like that: # # == Union({j}, Intersection({m}, Union({j, k}, Intersection({i}, {l})))) def test_B3(): assert (FiniteSet(i, j, k, l, m) - FiniteSet(j) == FiniteSet(i, k, l, m)) def test_B4(): assert (FiniteSet(*(FiniteSet(i, j)*FiniteSet(k, l))) == FiniteSet((i, k), (i, l), (j, k), (j, l))) # C. Numbers def test_C1(): assert (factorial(50) == 30414093201713378043612608166064768844377641568960512000000000000) def test_C2(): assert (factorint(factorial(50)) == {2: 47, 3: 22, 5: 12, 7: 8, 11: 4, 13: 3, 17: 2, 19: 2, 23: 2, 29: 1, 31: 1, 37: 1, 41: 1, 43: 1, 47: 1}) def test_C3(): assert (factorial2(10), factorial2(9)) == (3840, 945) # Base conversions; not really implemented by sympy # Whatever. Take credit! def test_C4(): assert 0xABC == 2748 def test_C5(): assert 123 == int('234', 7) def test_C6(): assert int('677', 8) == int('1BF', 16) == 447 def test_C7(): assert log(32768, 8) == 5 def test_C8(): # Modular multiplicative inverse. Would be nice if divmod could do this. assert ZZ.invert(5, 7) == 3 assert ZZ.invert(5, 6) == 5 def test_C9(): assert igcd(igcd(1776, 1554), 5698) == 74 def test_C10(): x = 0 for n in range(2, 11): x += R(1, n) assert x == R(4861, 2520) def test_C11(): assert R(1, 7) == S('0.[142857]') def test_C12(): assert R(7, 11) * R(22, 7) == 2 def test_C13(): test = R(10, 7) * (1 + R(29, 1000)) ** R(1, 3) good = 3 ** R(1, 3) assert test == good def test_C14(): assert sqrtdenest(sqrt(2*sqrt(3) + 4)) == 1 + sqrt(3) def test_C15(): test = sqrtdenest(sqrt(14 + 3*sqrt(3 + 2*sqrt(5 - 12*sqrt(3 - 2*sqrt(2)))))) good = sqrt(2) + 3 assert test == good def test_C16(): test = sqrtdenest(sqrt(10 + 2*sqrt(6) + 2*sqrt(10) + 2*sqrt(15))) good = sqrt(2) + sqrt(3) + sqrt(5) assert test == good def test_C17(): test = radsimp((sqrt(3) + sqrt(2)) / (sqrt(3) - sqrt(2))) good = 5 + 2*sqrt(6) assert test == good def test_C18(): assert simplify((sqrt(-2 + sqrt(-5)) * sqrt(-2 - sqrt(-5))).expand(complex=True)) == 3 @XFAIL def test_C19(): assert radsimp(simplify((90 + 34*sqrt(7)) ** R(1, 3))) == 3 + sqrt(7) def test_C20(): inside = (135 + 78*sqrt(3)) test = AlgebraicNumber((inside**R(2, 3) + 3) * sqrt(3) / inside**R(1, 3)) assert simplify(test) == AlgebraicNumber(12) def test_C21(): assert simplify(AlgebraicNumber((41 + 29*sqrt(2)) ** R(1, 5))) == \ AlgebraicNumber(1 + sqrt(2)) @XFAIL def test_C22(): test = simplify(((6 - 4*sqrt(2))*log(3 - 2*sqrt(2)) + (3 - 2*sqrt(2))*log(17 - 12*sqrt(2)) + 32 - 24*sqrt(2)) / (48*sqrt(2) - 72)) good = sqrt(2)/3 - log(sqrt(2) - 1)/3 assert test == good def test_C23(): assert 2 * oo - 3 is oo @XFAIL def test_C24(): raise NotImplementedError("2**aleph_null == aleph_1") # D. Numerical Analysis def test_D1(): assert 0.0 / sqrt(2) == 0.0 def test_D2(): assert str(exp(-1000000).evalf()) == '3.29683147808856e-434295' def test_D3(): assert exp(pi*sqrt(163)).evalf(50).num.ae(262537412640768744) def test_D4(): assert floor(R(-5, 3)) == -2 assert ceiling(R(-5, 3)) == -1 @XFAIL def test_D5(): raise NotImplementedError("cubic_spline([1, 2, 4, 5], [1, 4, 2, 3], x)(3) == 27/8") @XFAIL def test_D6(): raise NotImplementedError("translate sum(a[i]*x**i, (i,1,n)) to FORTRAN") @XFAIL def test_D7(): raise NotImplementedError("translate sum(a[i]*x**i, (i,1,n)) to C") @XFAIL def test_D8(): # One way is to cheat by converting the sum to a string, # and replacing the '[' and ']' with ''. # E.g., horner(S(str(_).replace('[','').replace(']',''))) raise NotImplementedError("apply Horner's rule to sum(a[i]*x**i, (i,1,5))") @XFAIL def test_D9(): raise NotImplementedError("translate D8 to FORTRAN") @XFAIL def test_D10(): raise NotImplementedError("translate D8 to C") @XFAIL def test_D11(): #Is there a way to use count_ops? raise NotImplementedError("flops(sum(product(f[i][k], (i,1,k)), (k,1,n)))") @XFAIL def test_D12(): assert (mpi(-4, 2) * x + mpi(1, 3)) ** 2 == mpi(-8, 16)*x**2 + mpi(-24, 12)*x + mpi(1, 9) @XFAIL def test_D13(): raise NotImplementedError("discretize a PDE: diff(f(x,t),t) == diff(diff(f(x,t),x),x)") # E. Statistics # See scipy; all of this is numerical. # F. Combinatorial Theory. def test_F1(): assert rf(x, 3) == x*(1 + x)*(2 + x) def test_F2(): assert expand_func(binomial(n, 3)) == n*(n - 1)*(n - 2)/6 @XFAIL def test_F3(): assert combsimp(2**n * factorial(n) * factorial2(2*n - 1)) == factorial(2*n) @XFAIL def test_F4(): assert combsimp((2**n * factorial(n) * product(2*k - 1, (k, 1, n)))) == factorial(2*n) @XFAIL def test_F5(): assert gamma(n + R(1, 2)) / sqrt(pi) / factorial(n) == factorial(2*n)/2**(2*n)/factorial(n)**2 def test_F6(): partTest = [p.copy() for p in partitions(4)] partDesired = [{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2:1}, {1: 4}] assert partTest == partDesired def test_F7(): assert npartitions(4) == 5 def test_F8(): assert stirling(5, 2, signed=True) == -50 # if signed, then kind=1 def test_F9(): assert totient(1776) == 576 # G. Number Theory def test_G1(): assert list(primerange(999983, 1000004)) == [999983, 1000003] @XFAIL def test_G2(): raise NotImplementedError("find the primitive root of 191 == 19") @XFAIL def test_G3(): raise NotImplementedError("(a+b)**p mod p == a**p + b**p mod p; p prime") # ... G14 Modular equations are not implemented. def test_G15(): assert Rational(sqrt(3).evalf()).limit_denominator(15) == R(26, 15) assert list(takewhile(lambda x: x.q <= 15, cf_c(cf_i(sqrt(3)))))[-1] == \ R(26, 15) def test_G16(): assert list(islice(cf_i(pi),10)) == [3, 7, 15, 1, 292, 1, 1, 1, 2, 1] def test_G17(): assert cf_p(0, 1, 23) == [4, [1, 3, 1, 8]] def test_G18(): assert cf_p(1, 2, 5) == [[1]] assert cf_r([[1]]).expand() == S.Half + sqrt(5)/2 @XFAIL def test_G19(): s = symbols('s', integer=True, positive=True) it = cf_i((exp(1/s) - 1)/(exp(1/s) + 1)) assert list(islice(it, 5)) == [0, 2*s, 6*s, 10*s, 14*s] def test_G20(): s = symbols('s', integer=True, positive=True) # Wester erroneously has this as -s + sqrt(s**2 + 1) assert cf_r([[2*s]]) == s + sqrt(s**2 + 1) @XFAIL def test_G20b(): s = symbols('s', integer=True, positive=True) assert cf_p(s, 1, s**2 + 1) == [[2*s]] # H. Algebra def test_H1(): assert simplify(2*2**n) == simplify(2**(n + 1)) assert powdenest(2*2**n) == simplify(2**(n + 1)) def test_H2(): assert powsimp(4 * 2**n) == 2**(n + 2) def test_H3(): assert (-1)**(n*(n + 1)) == 1 def test_H4(): expr = factor(6*x - 10) assert type(expr) is Mul assert expr.args[0] == 2 assert expr.args[1] == 3*x - 5 p1 = 64*x**34 - 21*x**47 - 126*x**8 - 46*x**5 - 16*x**60 - 81 p2 = 72*x**60 - 25*x**25 - 19*x**23 - 22*x**39 - 83*x**52 + 54*x**10 + 81 q = 34*x**19 - 25*x**16 + 70*x**7 + 20*x**3 - 91*x - 86 def test_H5(): assert gcd(p1, p2, x) == 1 def test_H6(): assert gcd(expand(p1 * q), expand(p2 * q)) == q def test_H7(): p1 = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5 p2 = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z assert gcd(p1, p2, x, y, z) == 1 def test_H8(): p1 = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5 p2 = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z q = 11*x**12*y**7*z**13 - 23*x**2*y**8*z**10 + 47*x**17*y**5*z**8 assert gcd(p1 * q, p2 * q, x, y, z) == q def test_H9(): p1 = 2*x**(n + 4) - x**(n + 2) p2 = 4*x**(n + 1) + 3*x**n assert gcd(p1, p2) == x**n def test_H10(): p1 = 3*x**4 + 3*x**3 + x**2 - x - 2 p2 = x**3 - 3*x**2 + x + 5 assert resultant(p1, p2, x) == 0 def test_H11(): assert resultant(p1 * q, p2 * q, x) == 0 def test_H12(): num = x**2 - 4 den = x**2 + 4*x + 4 assert simplify(num/den) == (x - 2)/(x + 2) @XFAIL def test_H13(): assert simplify((exp(x) - 1) / (exp(x/2) + 1)) == exp(x/2) - 1 def test_H14(): p = (x + 1) ** 20 ep = expand(p) assert ep == (1 + 20*x + 190*x**2 + 1140*x**3 + 4845*x**4 + 15504*x**5 + 38760*x**6 + 77520*x**7 + 125970*x**8 + 167960*x**9 + 184756*x**10 + 167960*x**11 + 125970*x**12 + 77520*x**13 + 38760*x**14 + 15504*x**15 + 4845*x**16 + 1140*x**17 + 190*x**18 + 20*x**19 + x**20) dep = diff(ep, x) assert dep == (20 + 380*x + 3420*x**2 + 19380*x**3 + 77520*x**4 + 232560*x**5 + 542640*x**6 + 1007760*x**7 + 1511640*x**8 + 1847560*x**9 + 1847560*x**10 + 1511640*x**11 + 1007760*x**12 + 542640*x**13 + 232560*x**14 + 77520*x**15 + 19380*x**16 + 3420*x**17 + 380*x**18 + 20*x**19) assert factor(dep) == 20*(1 + x)**19 def test_H15(): assert simplify((Mul(*[x - r for r in solveset(x**3 + x**2 - 7)]))) == x**3 + x**2 - 7 def test_H16(): assert factor(x**100 - 1) == ((x - 1)*(x + 1)*(x**2 + 1)*(x**4 - x**3 + x**2 - x + 1)*(x**4 + x**3 + x**2 + x + 1)*(x**8 - x**6 + x**4 - x**2 + 1)*(x**20 - x**15 + x**10 - x**5 + 1)*(x**20 + x**15 + x**10 + x**5 + 1)*(x**40 - x**30 + x**20 - x**10 + 1)) def test_H17(): assert simplify(factor(expand(p1 * p2)) - p1*p2) == 0 @XFAIL def test_H18(): # Factor over complex rationals. test = factor(4*x**4 + 8*x**3 + 77*x**2 + 18*x + 153) good = (2*x + 3*I)*(2*x - 3*I)*(x + 1 - 4*I)*(x + 1 + 4*I) assert test == good def test_H19(): a = symbols('a') # The idea is to let a**2 == 2, then solve 1/(a-1). Answer is a+1") assert Poly(a - 1).invert(Poly(a**2 - 2)) == a + 1 @XFAIL def test_H20(): raise NotImplementedError("let a**2==2; (x**3 + (a-2)*x**2 - " + "(2*a+3)*x - 3*a) / (x**2-2) = (x**2 - 2*x - 3) / (x-a)") @XFAIL def test_H21(): raise NotImplementedError("evaluate (b+c)**4 assuming b**3==2, c**2==3. \ Answer is 2*b + 8*c + 18*b**2 + 12*b*c + 9") def test_H22(): assert factor(x**4 - 3*x**2 + 1, modulus=5) == (x - 2)**2 * (x + 2)**2 def test_H23(): f = x**11 + x + 1 g = (x**2 + x + 1) * (x**9 - x**8 + x**6 - x**5 + x**3 - x**2 + 1) assert factor(f, modulus=65537) == g def test_H24(): phi = AlgebraicNumber(S.GoldenRatio.expand(func=True), alias='phi') assert factor(x**4 - 3*x**2 + 1, extension=phi) == \ (x - phi)*(x + 1 - phi)*(x - 1 + phi)*(x + phi) def test_H25(): e = (x - 2*y**2 + 3*z**3) ** 20 assert factor(expand(e)) == e def test_H26(): g = expand((sin(x) - 2*cos(y)**2 + 3*tan(z)**3)**20) assert factor(g, expand=False) == (-sin(x) + 2*cos(y)**2 - 3*tan(z)**3)**20 def test_H27(): f = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5 g = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z h = -2*z*y**7 \ *(6*x**9*y**9*z**3 + 10*x**7*z**6 + 17*y*x**5*z**12 + 40*y**7) \ *(3*x**22 + 47*x**17*y**5*z**8 - 6*x**15*y**9*z**2 - 24*x*y**19*z**8 - 5) assert factor(expand(f*g)) == h @XFAIL def test_H28(): raise NotImplementedError("expand ((1 - c**2)**5 * (1 - s**2)**5 * " + "(c**2 + s**2)**10) with c**2 + s**2 = 1. Answer is c**10*s**10.") @XFAIL def test_H29(): assert factor(4*x**2 - 21*x*y + 20*y**2, modulus=3) == (x + y)*(x - y) def test_H30(): test = factor(x**3 + y**3, extension=sqrt(-3)) answer = (x + y)*(x + y*(-R(1, 2) - sqrt(3)/2*I))*(x + y*(-R(1, 2) + sqrt(3)/2*I)) assert answer == test def test_H31(): f = (x**2 + 2*x + 3)/(x**3 + 4*x**2 + 5*x + 2) g = 2 / (x + 1)**2 - 2 / (x + 1) + 3 / (x + 2) assert apart(f) == g @XFAIL def test_H32(): # issue 6558 raise NotImplementedError("[A*B*C - (A*B*C)**(-1)]*A*C*B (product \ of a non-commuting product and its inverse)") def test_H33(): A, B, C = symbols('A, B, C', commutative=False) assert (Commutator(A, Commutator(B, C)) + Commutator(B, Commutator(C, A)) + Commutator(C, Commutator(A, B))).doit().expand() == 0 # I. Trigonometry def test_I1(): assert tan(pi*R(7, 10)) == -sqrt(1 + 2/sqrt(5)) @XFAIL def test_I2(): assert sqrt((1 + cos(6))/2) == -cos(3) def test_I3(): assert cos(n*pi) + sin((4*n - 1)*pi/2) == (-1)**n - 1 def test_I4(): assert refine(cos(pi*cos(n*pi)) + sin(pi/2*cos(n*pi)), Q.integer(n)) == (-1)**n - 1 @XFAIL def test_I5(): assert sin((n**5/5 + n**4/2 + n**3/3 - n/30) * pi) == 0 @XFAIL def test_I6(): raise NotImplementedError("assuming -3*pi<x<-5*pi/2, abs(cos(x)) == -cos(x), abs(sin(x)) == -sin(x)") @XFAIL def test_I7(): assert cos(3*x)/cos(x) == cos(x)**2 - 3*sin(x)**2 @XFAIL def test_I8(): assert cos(3*x)/cos(x) == 2*cos(2*x) - 1 @XFAIL def test_I9(): # Supposed to do this with rewrite rules. assert cos(3*x)/cos(x) == cos(x)**2 - 3*sin(x)**2 def test_I10(): assert trigsimp((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1)) is nan @SKIP("hangs") @XFAIL def test_I11(): assert limit((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1), x, 0) != 0 @XFAIL def test_I12(): # This should fail or return nan or something. res = diff((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1), x) assert res is nan # trigsimp(res) gives nan # J. Special functions. def test_J1(): assert bernoulli(16) == R(-3617, 510) def test_J2(): assert diff(elliptic_e(x, y**2), y) == (elliptic_e(x, y**2) - elliptic_f(x, y**2))/y @XFAIL def test_J3(): raise NotImplementedError("Jacobi elliptic functions: diff(dn(u,k), u) == -k**2*sn(u,k)*cn(u,k)") def test_J4(): assert gamma(R(-1, 2)) == -2*sqrt(pi) def test_J5(): assert polygamma(0, R(1, 3)) == -log(3) - sqrt(3)*pi/6 - EulerGamma - log(sqrt(3)) def test_J6(): assert mpmath.besselj(2, 1 + 1j).ae(mpc('0.04157988694396212', '0.24739764151330632')) def test_J7(): assert simplify(besselj(R(-5,2), pi/2)) == 12/(pi**2) def test_J8(): p = besselj(R(3,2), z) q = (sin(z)/z - cos(z))/sqrt(pi*z/2) assert simplify(expand_func(p) -q) == 0 def test_J9(): assert besselj(0, z).diff(z) == - besselj(1, z) def test_J10(): mu, nu = symbols('mu, nu', integer=True) assert assoc_legendre(nu, mu, 0) == 2**mu*sqrt(pi)/gamma((nu - mu)/2 + 1)/gamma((-nu - mu + 1)/2) def test_J11(): assert simplify(assoc_legendre(3, 1, x)) == simplify(-R(3, 2)*sqrt(1 - x**2)*(5*x**2 - 1)) @slow def test_J12(): assert simplify(chebyshevt(1008, x) - 2*x*chebyshevt(1007, x) + chebyshevt(1006, x)) == 0 def test_J13(): a = symbols('a', integer=True, negative=False) assert chebyshevt(a, -1) == (-1)**a def test_J14(): p = hyper([S.Half, S.Half], [R(3, 2)], z**2) assert hyperexpand(p) == asin(z)/z @XFAIL def test_J15(): raise NotImplementedError("F((n+2)/2,-(n-2)/2,R(3,2),sin(z)**2) == sin(n*z)/(n*sin(z)*cos(z)); F(.) is hypergeometric function") @XFAIL def test_J16(): raise NotImplementedError("diff(zeta(x), x) @ x=0 == -log(2*pi)/2") def test_J17(): assert integrate(f((x + 2)/5)*DiracDelta((x - 2)/3) - g(x)*diff(DiracDelta(x - 1), x), (x, 0, 3)) == 3*f(R(4, 5)) + Subs(Derivative(g(x), x), x, 1) @XFAIL def test_J18(): raise NotImplementedError("define an antisymmetric function") # K. The Complex Domain def test_K1(): z1, z2 = symbols('z1, z2', complex=True) assert re(z1 + I*z2) == -im(z2) + re(z1) assert im(z1 + I*z2) == im(z1) + re(z2) def test_K2(): assert abs(3 - sqrt(7) + I*sqrt(6*sqrt(7) - 15)) == 1 @XFAIL def test_K3(): a, b = symbols('a, b', real=True) assert simplify(abs(1/(a + I/a + I*b))) == 1/sqrt(a**2 + (I/a + b)**2) def test_K4(): assert log(3 + 4*I).expand(complex=True) == log(5) + I*atan(R(4, 3)) def test_K5(): x, y = symbols('x, y', real=True) assert tan(x + I*y).expand(complex=True) == (sin(2*x)/(cos(2*x) + cosh(2*y)) + I*sinh(2*y)/(cos(2*x) + cosh(2*y))) def test_K6(): assert sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z)) == sqrt(x*y)/sqrt(x) assert sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z)) != sqrt(y) def test_K7(): y = symbols('y', real=True, negative=False) expr = sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z)) sexpr = simplify(expr) assert sexpr == sqrt(y) @XFAIL def test_K8(): z = symbols('z', complex=True) assert simplify(sqrt(1/z) - 1/sqrt(z)) != 0 # Passes z = symbols('z', complex=True, negative=False) assert simplify(sqrt(1/z) - 1/sqrt(z)) == 0 # Fails def test_K9(): z = symbols('z', real=True, positive=True) assert simplify(sqrt(1/z) - 1/sqrt(z)) == 0 def test_K10(): z = symbols('z', real=True, negative=True) assert simplify(sqrt(1/z) + 1/sqrt(z)) == 0 # This goes up to K25 # L. Determining Zero Equivalence def test_L1(): assert sqrt(997) - (997**3)**R(1, 6) == 0 def test_L2(): assert sqrt(999983) - (999983**3)**R(1, 6) == 0 def test_L3(): assert simplify((2**R(1, 3) + 4**R(1, 3))**3 - 6*(2**R(1, 3) + 4**R(1, 3)) - 6) == 0 def test_L4(): assert trigsimp(cos(x)**3 + cos(x)*sin(x)**2 - cos(x)) == 0 @XFAIL def test_L5(): assert log(tan(R(1, 2)*x + pi/4)) - asinh(tan(x)) == 0 def test_L6(): assert (log(tan(x/2 + pi/4)) - asinh(tan(x))).diff(x).subs({x: 0}) == 0 @XFAIL def test_L7(): assert simplify(log((2*sqrt(x) + 1)/(sqrt(4*x + 4*sqrt(x) + 1)))) == 0 @XFAIL def test_L8(): assert simplify((4*x + 4*sqrt(x) + 1)**(sqrt(x)/(2*sqrt(x) + 1)) \ *(2*sqrt(x) + 1)**(1/(2*sqrt(x) + 1)) - 2*sqrt(x) - 1) == 0 @XFAIL def test_L9(): z = symbols('z', complex=True) assert simplify(2**(1 - z)*gamma(z)*zeta(z)*cos(z*pi/2) - pi**2*zeta(1 - z)) == 0 # M. Equations @XFAIL def test_M1(): assert Equality(x, 2)/2 + Equality(1, 1) == Equality(x/2 + 1, 2) def test_M2(): # The roots of this equation should all be real. Note that this # doesn't test that they are correct. sol = solveset(3*x**3 - 18*x**2 + 33*x - 19, x) assert all(s.expand(complex=True).is_real for s in sol) @XFAIL def test_M5(): assert solveset(x**6 - 9*x**4 - 4*x**3 + 27*x**2 - 36*x - 23, x) == FiniteSet(2**(1/3) + sqrt(3), 2**(1/3) - sqrt(3), +sqrt(3) - 1/2**(2/3) + I*sqrt(3)/2**(2/3), +sqrt(3) - 1/2**(2/3) - I*sqrt(3)/2**(2/3), -sqrt(3) - 1/2**(2/3) + I*sqrt(3)/2**(2/3), -sqrt(3) - 1/2**(2/3) - I*sqrt(3)/2**(2/3)) def test_M6(): assert set(solveset(x**7 - 1, x)) == \ {cos(n*pi*R(2, 7)) + I*sin(n*pi*R(2, 7)) for n in range(0, 7)} # The paper asks for exp terms, but sin's and cos's may be acceptable; # if the results are simplified, exp terms appear for all but # -sin(pi/14) - I*cos(pi/14) and -sin(pi/14) + I*cos(pi/14) which # will simplify if you apply the transformation foo.rewrite(exp).expand() def test_M7(): # TODO: Replace solve with solveset, as of now test fails for solveset sol = solve(x**8 - 8*x**7 + 34*x**6 - 92*x**5 + 175*x**4 - 236*x**3 + 226*x**2 - 140*x + 46, x) assert [s.simplify() for s in sol] == [ 1 - sqrt(-6 - 2*I*sqrt(3 + 4*sqrt(3)))/2, 1 + sqrt(-6 - 2*I*sqrt(3 + 4*sqrt(3)))/2, 1 - sqrt(-6 + 2*I*sqrt(3 + 4*sqrt(3)))/2, 1 + sqrt(-6 + 2*I*sqrt(3 + 4*sqrt (3)))/2, 1 - sqrt(-6 + 2*sqrt(-3 + 4*sqrt(3)))/2, 1 + sqrt(-6 + 2*sqrt(-3 + 4*sqrt(3)))/2, 1 - sqrt(-6 - 2*sqrt(-3 + 4*sqrt(3)))/2, 1 + sqrt(-6 - 2*sqrt(-3 + 4*sqrt(3)))/2] @XFAIL # There are an infinite number of solutions. def test_M8(): x = Symbol('x') z = symbols('z', complex=True) assert solveset(exp(2*x) + 2*exp(x) + 1 - z, x, S.Reals) == \ FiniteSet(log(1 + z - 2*sqrt(z))/2, log(1 + z + 2*sqrt(z))/2) # This one could be simplified better (the 1/2 could be pulled into the log # as a sqrt, and the function inside the log can be factored as a square, # giving [log(sqrt(z) - 1), log(sqrt(z) + 1)]). Also, there should be an # infinite number of solutions. # x = {log(sqrt(z) - 1), log(sqrt(z) + 1) + i pi} [+ n 2 pi i, + n 2 pi i] # where n is an arbitrary integer. See url of detailed output above. @XFAIL def test_M9(): # x = symbols('x') raise NotImplementedError("solveset(exp(2-x**2)-exp(-x),x) has complex solutions.") def test_M10(): # TODO: Replace solve with solveset, as of now test fails for solveset assert solve(exp(x) - x, x) == [-LambertW(-1)] @XFAIL def test_M11(): assert solveset(x**x - x, x) == FiniteSet(-1, 1) def test_M12(): # TODO: x = [-1, 2*(+/-asinh(1)*I + n*pi}, 3*(pi/6 + n*pi/3)] # TODO: Replace solve with solveset, as of now test fails for solveset assert solve((x + 1)*(sin(x)**2 + 1)**2*cos(3*x)**3, x) == [ -1, pi/6, pi/2, - I*log(1 + sqrt(2)), I*log(1 + sqrt(2)), pi - I*log(1 + sqrt(2)), pi + I*log(1 + sqrt(2)), ] @XFAIL def test_M13(): n = Dummy('n') assert solveset_real(sin(x) - cos(x), x) == ImageSet(Lambda(n, n*pi - pi*R(7, 4)), S.Integers) @XFAIL def test_M14(): n = Dummy('n') assert solveset_real(tan(x) - 1, x) == ImageSet(Lambda(n, n*pi + pi/4), S.Integers) def test_M15(): if PY3: n = Dummy('n') assert solveset(sin(x) - S.Half) in (Union(ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers), ImageSet(Lambda(n, 2*n*pi + pi*R(5, 6)), S.Integers)), Union(ImageSet(Lambda(n, 2*n*pi + pi*R(5, 6)), S.Integers), ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers))) @XFAIL def test_M16(): n = Dummy('n') assert solveset(sin(x) - tan(x), x) == ImageSet(Lambda(n, n*pi), S.Integers) @XFAIL def test_M17(): assert solveset_real(asin(x) - atan(x), x) == FiniteSet(0) @XFAIL def test_M18(): assert solveset_real(acos(x) - atan(x), x) == FiniteSet(sqrt((sqrt(5) - 1)/2)) def test_M19(): # TODO: Replace solve with solveset, as of now test fails for solveset assert solve((x - 2)/x**R(1, 3), x) == [2] def test_M20(): assert solveset(sqrt(x**2 + 1) - x + 2, x) == EmptySet def test_M21(): assert solveset(x + sqrt(x) - 2) == FiniteSet(1) def test_M22(): assert solveset(2*sqrt(x) + 3*x**R(1, 4) - 2) == FiniteSet(R(1, 16)) def test_M23(): x = symbols('x', complex=True) # TODO: Replace solve with solveset, as of now test fails for solveset assert solve(x - 1/sqrt(1 + x**2)) == [ -I*sqrt(S.Half + sqrt(5)/2), sqrt(Rational(-1, 2) + sqrt(5)/2)] def test_M24(): # TODO: Replace solve with solveset, as of now test fails for solveset solution = solve(1 - binomial(m, 2)*2**k, k) answer = log(2/(m*(m - 1)), 2) assert solution[0].expand() == answer.expand() def test_M25(): a, b, c, d = symbols(':d', positive=True) x = symbols('x') # TODO: Replace solve with solveset, as of now test fails for solveset assert solve(a*b**x - c*d**x, x)[0].expand() == (log(c/a)/log(b/d)).expand() def test_M26(): # TODO: Replace solve with solveset, as of now test fails for solveset assert solve(sqrt(log(x)) - log(sqrt(x))) == [1, exp(4)] def test_M27(): x = symbols('x', real=True) b = symbols('b', real=True) with assuming(Q.is_true(sin(cos(1/E**2) + 1) + b > 0)): # TODO: Replace solve with solveset solve(log(acos(asin(x**R(2, 3) - b) - 1)) + 2, x) == [-b - sin(1 + cos(1/E**2))**R(3/2), b + sin(1 + cos(1/E**2))**R(3/2)] @XFAIL def test_M28(): assert solveset_real(5*x + exp((x - 5)/2) - 8*x**3, x, assume=Q.real(x)) == [-0.784966, -0.016291, 0.802557] def test_M29(): x = symbols('x') assert solveset(abs(x - 1) - 2, domain=S.Reals) == FiniteSet(-1, 3) def test_M30(): # TODO: Replace solve with solveset, as of now # solveset doesn't supports assumptions # assert solve(abs(2*x + 5) - abs(x - 2),x, assume=Q.real(x)) == [-1, -7] assert solveset_real(abs(2*x + 5) - abs(x - 2), x) == FiniteSet(-1, -7) def test_M31(): # TODO: Replace solve with solveset, as of now # solveset doesn't supports assumptions # assert solve(1 - abs(x) - max(-x - 2, x - 2),x, assume=Q.real(x)) == [-3/2, 3/2] assert solveset_real(1 - abs(x) - Max(-x - 2, x - 2), x) == FiniteSet(R(-3, 2), R(3, 2)) @XFAIL def test_M32(): # TODO: Replace solve with solveset, as of now # solveset doesn't supports assumptions assert solveset_real(Max(2 - x**2, x)- Max(-x, (x**3)/9), x) == FiniteSet(-1, 3) @XFAIL def test_M33(): # TODO: Replace solve with solveset, as of now # solveset doesn't supports assumptions # Second answer can be written in another form. The second answer is the root of x**3 + 9*x**2 - 18 = 0 in the interval (-2, -1). assert solveset_real(Max(2 - x**2, x) - x**3/9, x) == FiniteSet(-3, -1.554894, 3) @XFAIL def test_M34(): z = symbols('z', complex=True) assert solveset((1 + I) * z + (2 - I) * conjugate(z) + 3*I, z) == FiniteSet(2 + 3*I) def test_M35(): x, y = symbols('x y', real=True) assert linsolve((3*x - 2*y - I*y + 3*I).as_real_imag(), y, x) == FiniteSet((3, 2)) def test_M36(): # TODO: Replace solve with solveset, as of now # solveset doesn't supports solving for function # assert solve(f**2 + f - 2, x) == [Eq(f(x), 1), Eq(f(x), -2)] assert solveset(f(x)**2 + f(x) - 2, f(x)) == FiniteSet(-2, 1) def test_M37(): assert linsolve([x + y + z - 6, 2*x + y + 2*z - 10, x + 3*y + z - 10 ], x, y, z) == \ FiniteSet((-z + 4, 2, z)) def test_M38(): a, b, c = symbols('a, b, c') domain = FracField([a, b, c], ZZ).to_domain() ring = PolyRing('k1:50', domain) (k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k30, k31, k32, k33, k34, k35, k36, k37, k38, k39, k40, k41, k42, k43, k44, k45, k46, k47, k48, k49) = ring.gens system = [ -b*k8/a + c*k8/a, -b*k11/a + c*k11/a, -b*k10/a + c*k10/a + k2, -k3 - b*k9/a + c*k9/a, -b*k14/a + c*k14/a, -b*k15/a + c*k15/a, -b*k18/a + c*k18/a - k2, -b*k17/a + c*k17/a, -b*k16/a + c*k16/a + k4, -b*k13/a + c*k13/a - b*k21/a + c*k21/a + b*k5/a - c*k5/a, b*k44/a - c*k44/a, -b*k45/a + c*k45/a, -b*k20/a + c*k20/a, -b*k44/a + c*k44/a, b*k46/a - c*k46/a, b**2*k47/a**2 - 2*b*c*k47/a**2 + c**2*k47/a**2, k3, -k4, -b*k12/a + c*k12/a - a*k6/b + c*k6/b, -b*k19/a + c*k19/a + a*k7/c - b*k7/c, b*k45/a - c*k45/a, -b*k46/a + c*k46/a, -k48 + c*k48/a + c*k48/b - c**2*k48/(a*b), -k49 + b*k49/a + b*k49/c - b**2*k49/(a*c), a*k1/b - c*k1/b, a*k4/b - c*k4/b, a*k3/b - c*k3/b + k9, -k10 + a*k2/b - c*k2/b, a*k7/b - c*k7/b, -k9, k11, b*k12/a - c*k12/a + a*k6/b - c*k6/b, a*k15/b - c*k15/b, k10 + a*k18/b - c*k18/b, -k11 + a*k17/b - c*k17/b, a*k16/b - c*k16/b, -a*k13/b + c*k13/b + a*k21/b - c*k21/b + a*k5/b - c*k5/b, -a*k44/b + c*k44/b, a*k45/b - c*k45/b, a*k14/c - b*k14/c + a*k20/b - c*k20/b, a*k44/b - c*k44/b, -a*k46/b + c*k46/b, -k47 + c*k47/a + c*k47/b - c**2*k47/(a*b), a*k19/b - c*k19/b, -a*k45/b + c*k45/b, a*k46/b - c*k46/b, a**2*k48/b**2 - 2*a*c*k48/b**2 + c**2*k48/b**2, -k49 + a*k49/b + a*k49/c - a**2*k49/(b*c), k16, -k17, -a*k1/c + b*k1/c, -k16 - a*k4/c + b*k4/c, -a*k3/c + b*k3/c, k18 - a*k2/c + b*k2/c, b*k19/a - c*k19/a - a*k7/c + b*k7/c, -a*k6/c + b*k6/c, -a*k8/c + b*k8/c, -a*k11/c + b*k11/c + k17, -a*k10/c + b*k10/c - k18, -a*k9/c + b*k9/c, -a*k14/c + b*k14/c - a*k20/b + c*k20/b, -a*k13/c + b*k13/c + a*k21/c - b*k21/c - a*k5/c + b*k5/c, a*k44/c - b*k44/c, -a*k45/c + b*k45/c, -a*k44/c + b*k44/c, a*k46/c - b*k46/c, -k47 + b*k47/a + b*k47/c - b**2*k47/(a*c), -a*k12/c + b*k12/c, a*k45/c - b*k45/c, -a*k46/c + b*k46/c, -k48 + a*k48/b + a*k48/c - a**2*k48/(b*c), a**2*k49/c**2 - 2*a*b*k49/c**2 + b**2*k49/c**2, k8, k11, -k15, k10 - k18, -k17, k9, -k16, -k29, k14 - k32, -k21 + k23 - k31, -k24 - k30, -k35, k44, -k45, k36, k13 - k23 + k39, -k20 + k38, k25 + k37, b*k26/a - c*k26/a - k34 + k42, -2*k44, k45, k46, b*k47/a - c*k47/a, k41, k44, -k46, -b*k47/a + c*k47/a, k12 + k24, -k19 - k25, -a*k27/b + c*k27/b - k33, k45, -k46, -a*k48/b + c*k48/b, a*k28/c - b*k28/c + k40, -k45, k46, a*k48/b - c*k48/b, a*k49/c - b*k49/c, -a*k49/c + b*k49/c, -k1, -k4, -k3, k15, k18 - k2, k17, k16, k22, k25 - k7, k24 + k30, k21 + k23 - k31, k28, -k44, k45, -k30 - k6, k20 + k32, k27 + b*k33/a - c*k33/a, k44, -k46, -b*k47/a + c*k47/a, -k36, k31 - k39 - k5, -k32 - k38, k19 - k37, k26 - a*k34/b + c*k34/b - k42, k44, -2*k45, k46, a*k48/b - c*k48/b, a*k35/c - b*k35/c - k41, -k44, k46, b*k47/a - c*k47/a, -a*k49/c + b*k49/c, -k40, k45, -k46, -a*k48/b + c*k48/b, a*k49/c - b*k49/c, k1, k4, k3, -k8, -k11, -k10 + k2, -k9, k37 + k7, -k14 - k38, -k22, -k25 - k37, -k24 + k6, -k13 - k23 + k39, -k28 + b*k40/a - c*k40/a, k44, -k45, -k27, -k44, k46, b*k47/a - c*k47/a, k29, k32 + k38, k31 - k39 + k5, -k12 + k30, k35 - a*k41/b + c*k41/b, -k44, k45, -k26 + k34 + a*k42/c - b*k42/c, k44, k45, -2*k46, -b*k47/a + c*k47/a, -a*k48/b + c*k48/b, a*k49/c - b*k49/c, k33, -k45, k46, a*k48/b - c*k48/b, -a*k49/c + b*k49/c ] solution = { k49: 0, k48: 0, k47: 0, k46: 0, k45: 0, k44: 0, k41: 0, k40: 0, k38: 0, k37: 0, k36: 0, k35: 0, k33: 0, k32: 0, k30: 0, k29: 0, k28: 0, k27: 0, k25: 0, k24: 0, k22: 0, k21: 0, k20: 0, k19: 0, k18: 0, k17: 0, k16: 0, k15: 0, k14: 0, k13: 0, k12: 0, k11: 0, k10: 0, k9: 0, k8: 0, k7: 0, k6: 0, k5: 0, k4: 0, k3: 0, k2: 0, k1: 0, k34: b/c*k42, k31: k39, k26: a/c*k42, k23: k39 } assert solve_lin_sys(system, ring) == solution def test_M39(): x, y, z = symbols('x y z', complex=True) # TODO: Replace solve with solveset, as of now # solveset doesn't supports non-linear multivariate assert solve([x**2*y + 3*y*z - 4, -3*x**2*z + 2*y**2 + 1, 2*y*z**2 - z**2 - 1 ]) ==\ [{y: 1, z: 1, x: -1}, {y: 1, z: 1, x: 1},\ {y: sqrt(2)*I, z: R(1,3) - sqrt(2)*I/3, x: -sqrt(-1 - sqrt(2)*I)},\ {y: sqrt(2)*I, z: R(1,3) - sqrt(2)*I/3, x: sqrt(-1 - sqrt(2)*I)},\ {y: -sqrt(2)*I, z: R(1,3) + sqrt(2)*I/3, x: -sqrt(-1 + sqrt(2)*I)},\ {y: -sqrt(2)*I, z: R(1,3) + sqrt(2)*I/3, x: sqrt(-1 + sqrt(2)*I)}] # N. Inequalities def test_N1(): assert ask(Q.is_true(E**pi > pi**E)) @XFAIL def test_N2(): x = symbols('x', real=True) assert ask(Q.is_true(x**4 - x + 1 > 0)) is True assert ask(Q.is_true(x**4 - x + 1 > 1)) is False @XFAIL def test_N3(): x = symbols('x', real=True) assert ask(Q.is_true(And(Lt(-1, x), Lt(x, 1))), Q.is_true(abs(x) < 1 )) @XFAIL def test_N4(): x, y = symbols('x y', real=True) assert ask(Q.is_true(2*x**2 > 2*y**2), Q.is_true((x > y) & (y > 0))) is True @XFAIL def test_N5(): x, y, k = symbols('x y k', real=True) assert ask(Q.is_true(k*x**2 > k*y**2), Q.is_true((x > y) & (y > 0) & (k > 0))) is True @XFAIL def test_N6(): x, y, k, n = symbols('x y k n', real=True) assert ask(Q.is_true(k*x**n > k*y**n), Q.is_true((x > y) & (y > 0) & (k > 0) & (n > 0))) is True @XFAIL def test_N7(): x, y = symbols('x y', real=True) assert ask(Q.is_true(y > 0), Q.is_true((x > 1) & (y >= x - 1))) is True @XFAIL def test_N8(): x, y, z = symbols('x y z', real=True) assert ask(Q.is_true((x == y) & (y == z)), Q.is_true((x >= y) & (y >= z) & (z >= x))) def test_N9(): x = Symbol('x') assert solveset(abs(x - 1) > 2, domain=S.Reals) == Union(Interval(-oo, -1, False, True), Interval(3, oo, True)) def test_N10(): x = Symbol('x') p = (x - 1)*(x - 2)*(x - 3)*(x - 4)*(x - 5) assert solveset(expand(p) < 0, domain=S.Reals) == Union(Interval(-oo, 1, True, True), Interval(2, 3, True, True), Interval(4, 5, True, True)) def test_N11(): x = Symbol('x') assert solveset(6/(x - 3) <= 3, domain=S.Reals) == Union(Interval(-oo, 3, True, True), Interval(5, oo)) def test_N12(): x = Symbol('x') assert solveset(sqrt(x) < 2, domain=S.Reals) == Interval(0, 4, False, True) def test_N13(): x = Symbol('x') assert solveset(sin(x) < 2, domain=S.Reals) == S.Reals @XFAIL def test_N14(): x = Symbol('x') # Gives 'Union(Interval(Integer(0), Mul(Rational(1, 2), pi), false, true), # Interval(Mul(Rational(1, 2), pi), Mul(Integer(2), pi), true, false))' # which is not the correct answer, but the provided also seems wrong. assert solveset(sin(x) < 1, x, domain=S.Reals) == Union(Interval(-oo, pi/2, True, True), Interval(pi/2, oo, True, True)) def test_N15(): r, t = symbols('r t') # raises NotImplementedError: only univariate inequalities are supported solveset(abs(2*r*(cos(t) - 1) + 1) <= 1, r, S.Reals) def test_N16(): r, t = symbols('r t') solveset((r**2)*((cos(t) - 4)**2)*sin(t)**2 < 9, r, S.Reals) @XFAIL def test_N17(): # currently only univariate inequalities are supported assert solveset((x + y > 0, x - y < 0), (x, y)) == (abs(x) < y) def test_O1(): M = Matrix((1 + I, -2, 3*I)) assert sqrt(expand(M.dot(M.H))) == sqrt(15) def test_O2(): assert Matrix((2, 2, -3)).cross(Matrix((1, 3, 1))) == Matrix([[11], [-5], [4]]) # The vector module has no way of representing vectors symbolically (without # respect to a basis) @XFAIL def test_O3(): # assert (va ^ vb) | (vc ^ vd) == -(va | vc)*(vb | vd) + (va | vd)*(vb | vc) raise NotImplementedError("""The vector module has no way of representing vectors symbolically (without respect to a basis)""") def test_O4(): from sympy.vector import CoordSys3D, Del N = CoordSys3D("N") delop = Del() i, j, k = N.base_vectors() x, y, z = N.base_scalars() F = i*(x*y*z) + j*((x*y*z)**2) + k*((y**2)*(z**3)) assert delop.cross(F).doit() == (-2*x**2*y**2*z + 2*y*z**3)*i + x*y*j + (2*x*y**2*z**2 - x*z)*k @XFAIL def test_O5(): #assert grad|(f^g)-g|(grad^f)+f|(grad^g) == 0 raise NotImplementedError("""The vector module has no way of representing vectors symbolically (without respect to a basis)""") #testO8-O9 MISSING!! def test_O10(): L = [Matrix([2, 3, 5]), Matrix([3, 6, 2]), Matrix([8, 3, 6])] assert GramSchmidt(L) == [Matrix([ [2], [3], [5]]), Matrix([ [R(23, 19)], [R(63, 19)], [R(-47, 19)]]), Matrix([ [R(1692, 353)], [R(-1551, 706)], [R(-423, 706)]])] def test_P1(): assert Matrix(3, 3, lambda i, j: j - i).diagonal(-1) == Matrix( 1, 2, [-1, -1]) def test_P2(): M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) M.row_del(1) M.col_del(2) assert M == Matrix([[1, 2], [7, 8]]) def test_P3(): A = Matrix([ [11, 12, 13, 14], [21, 22, 23, 24], [31, 32, 33, 34], [41, 42, 43, 44]]) A11 = A[0:3, 1:4] A12 = A[(0, 1, 3), (2, 0, 3)] A21 = A A221 = -A[0:2, 2:4] A222 = -A[(3, 0), (2, 1)] A22 = BlockMatrix([[A221, A222]]).T rows = [[-A11, A12], [A21, A22]] from sympy.utilities.pytest import raises raises(ValueError, lambda: BlockMatrix(rows)) B = Matrix(rows) assert B == Matrix([ [-12, -13, -14, 13, 11, 14], [-22, -23, -24, 23, 21, 24], [-32, -33, -34, 43, 41, 44], [11, 12, 13, 14, -13, -23], [21, 22, 23, 24, -14, -24], [31, 32, 33, 34, -43, -13], [41, 42, 43, 44, -42, -12]]) @XFAIL def test_P4(): raise NotImplementedError("Block matrix diagonalization not supported") def test_P5(): M = Matrix([[7, 11], [3, 8]]) assert M % 2 == Matrix([[1, 1], [1, 0]]) def test_P6(): M = Matrix([[cos(x), sin(x)], [-sin(x), cos(x)]]) assert M.diff(x, 2) == Matrix([[-cos(x), -sin(x)], [sin(x), -cos(x)]]) def test_P7(): M = Matrix([[x, y]])*( z*Matrix([[1, 3, 5], [2, 4, 6]]) + Matrix([[7, -9, 11], [-8, 10, -12]])) assert M == Matrix([[x*(z + 7) + y*(2*z - 8), x*(3*z - 9) + y*(4*z + 10), x*(5*z + 11) + y*(6*z - 12)]]) def test_P8(): M = Matrix([[1, -2*I], [-3*I, 4]]) assert M.norm(ord=S.Infinity) == 7 def test_P9(): a, b, c = symbols('a b c', nonzero=True) M = Matrix([[a/(b*c), 1/c, 1/b], [1/c, b/(a*c), 1/a], [1/b, 1/a, c/(a*b)]]) assert factor(M.norm('fro')) == (a**2 + b**2 + c**2)/(abs(a)*abs(b)*abs(c)) @XFAIL def test_P10(): M = Matrix([[1, 2 + 3*I], [f(4 - 5*I), 6]]) # conjugate(f(4 - 5*i)) is not simplified to f(4+5*I) assert M.H == Matrix([[1, f(4 + 5*I)], [2 + 3*I, 6]]) @XFAIL def test_P11(): # raises NotImplementedError("Matrix([[x,y],[1,x*y]]).inv() # not simplifying to extract common factor") assert Matrix([[x, y], [1, x*y]]).inv() == (1/(x**2 - 1))*Matrix([[x, -1], [-1/y, x/y]]) def test_P11_workaround(): M = Matrix([[x, y], [1, x*y]]).inv() c = gcd(tuple(M)) assert MatMul(c, M/c, evaluate=False) == MatMul(c, Matrix([ [-x*y, y], [ 1, -x]]), evaluate=False) def test_P12(): A11 = MatrixSymbol('A11', n, n) A12 = MatrixSymbol('A12', n, n) A22 = MatrixSymbol('A22', n, n) B = BlockMatrix([[A11, A12], [ZeroMatrix(n, n), A22]]) assert block_collapse(B.I) == BlockMatrix([[A11.I, (-1)*A11.I*A12*A22.I], [ZeroMatrix(n, n), A22.I]]) def test_P13(): M = Matrix([[1, x - 2, x - 3], [x - 1, x**2 - 3*x + 6, x**2 - 3*x - 2], [x - 2, x**2 - 8, 2*(x**2) - 12*x + 14]]) L, U, _ = M.LUdecomposition() assert simplify(L) == Matrix([[1, 0, 0], [x - 1, 1, 0], [x - 2, x - 3, 1]]) assert simplify(U) == Matrix([[1, x - 2, x - 3], [0, 4, x - 5], [0, 0, x - 7]]) def test_P14(): M = Matrix([[1, 2, 3, 1, 3], [3, 2, 1, 1, 7], [0, 2, 4, 1, 1], [1, 1, 1, 1, 4]]) R, _ = M.rref() assert R == Matrix([[1, 0, -1, 0, 2], [0, 1, 2, 0, -1], [0, 0, 0, 1, 3], [0, 0, 0, 0, 0]]) def test_P15(): M = Matrix([[-1, 3, 7, -5], [4, -2, 1, 3], [2, 4, 15, -7]]) assert M.rank() == 2 def test_P16(): M = Matrix([[2*sqrt(2), 8], [6*sqrt(6), 24*sqrt(3)]]) assert M.rank() == 1 def test_P17(): t = symbols('t', real=True) M=Matrix([ [sin(2*t), cos(2*t)], [2*(1 - (cos(t)**2))*cos(t), (1 - 2*(sin(t)**2))*sin(t)]]) assert M.rank() == 1 def test_P18(): M = Matrix([[1, 0, -2, 0], [-2, 1, 0, 3], [-1, 2, -6, 6]]) assert M.nullspace() == [Matrix([[2], [4], [1], [0]]), Matrix([[0], [-3], [0], [1]])] def test_P19(): w = symbols('w') M = Matrix([[1, 1, 1, 1], [w, x, y, z], [w**2, x**2, y**2, z**2], [w**3, x**3, y**3, z**3]]) assert M.det() == (w**3*x**2*y - w**3*x**2*z - w**3*x*y**2 + w**3*x*z**2 + w**3*y**2*z - w**3*y*z**2 - w**2*x**3*y + w**2*x**3*z + w**2*x*y**3 - w**2*x*z**3 - w**2*y**3*z + w**2*y*z**3 + w*x**3*y**2 - w*x**3*z**2 - w*x**2*y**3 + w*x**2*z**3 + w*y**3*z**2 - w*y**2*z**3 - x**3*y**2*z + x**3*y*z**2 + x**2*y**3*z - x**2*y*z**3 - x*y**3*z**2 + x*y**2*z**3 ) @XFAIL def test_P20(): raise NotImplementedError("Matrix minimal polynomial not supported") def test_P21(): M = Matrix([[5, -3, -7], [-2, 1, 2], [2, -3, -4]]) assert M.charpoly(x).as_expr() == x**3 - 2*x**2 - 5*x + 6 def test_P22(): d = 100 M = (2 - x)*eye(d) assert M.eigenvals() == {-x + 2: d} def test_P23(): M = Matrix([ [2, 1, 0, 0, 0], [1, 2, 1, 0, 0], [0, 1, 2, 1, 0], [0, 0, 1, 2, 1], [0, 0, 0, 1, 2]]) assert M.eigenvals() == { S('1'): 1, S('2'): 1, S('3'): 1, S('sqrt(3) + 2'): 1, S('-sqrt(3) + 2'): 1} def test_P24(): M = Matrix([[611, 196, -192, 407, -8, -52, -49, 29], [196, 899, 113, -192, -71, -43, -8, -44], [-192, 113, 899, 196, 61, 49, 8, 52], [ 407, -192, 196, 611, 8, 44, 59, -23], [ -8, -71, 61, 8, 411, -599, 208, 208], [ -52, -43, 49, 44, -599, 411, 208, 208], [ -49, -8, 8, 59, 208, 208, 99, -911], [ 29, -44, 52, -23, 208, 208, -911, 99]]) assert M.eigenvals() == { S('0'): 1, S('10*sqrt(10405)'): 1, S('100*sqrt(26) + 510'): 1, S('1000'): 2, S('-100*sqrt(26) + 510'): 1, S('-10*sqrt(10405)'): 1, S('1020'): 1} def test_P25(): MF = N(Matrix([[ 611, 196, -192, 407, -8, -52, -49, 29], [ 196, 899, 113, -192, -71, -43, -8, -44], [-192, 113, 899, 196, 61, 49, 8, 52], [ 407, -192, 196, 611, 8, 44, 59, -23], [ -8, -71, 61, 8, 411, -599, 208, 208], [ -52, -43, 49, 44, -599, 411, 208, 208], [ -49, -8, 8, 59, 208, 208, 99, -911], [ 29, -44, 52, -23, 208, 208, -911, 99]])) assert (Matrix(sorted(MF.eigenvals())) - Matrix( [-1020.0490184299969, 0.0, 0.09804864072151699, 1000.0, 1019.9019513592784, 1020.0, 1020.0490184299969])).norm() < 1e-13 def test_P26(): a0, a1, a2, a3, a4 = symbols('a0 a1 a2 a3 a4') M = Matrix([[-a4, -a3, -a2, -a1, -a0, 0, 0, 0, 0], [ 1, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 1, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 1, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 1, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, -1, -1, 0, 0], [ 0, 0, 0, 0, 0, 1, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 1, -1, -1], [ 0, 0, 0, 0, 0, 0, 0, 1, 0]]) assert M.eigenvals(error_when_incomplete=False) == { S('-1/2 - sqrt(3)*I/2'): 2, S('-1/2 + sqrt(3)*I/2'): 2} def test_P27(): a = symbols('a') M = Matrix([[a, 0, 0, 0, 0], [0, 0, 0, 0, 1], [0, 0, a, 0, 0], [0, 0, 0, a, 0], [0, -2, 0, 0, 2]]) assert M.eigenvects() == [(a, 3, [Matrix([[1], [0], [0], [0], [0]]), Matrix([[0], [0], [1], [0], [0]]), Matrix([[0], [0], [0], [1], [0]])]), (1 - I, 1, [Matrix([[ 0], [-1/(-1 + I)], [ 0], [ 0], [ 1]])]), (1 + I, 1, [Matrix([[ 0], [-1/(-1 - I)], [ 0], [ 0], [ 1]])])] @XFAIL def test_P28(): raise NotImplementedError("Generalized eigenvectors not supported \ https://github.com/sympy/sympy/issues/5293") @XFAIL def test_P29(): raise NotImplementedError("Generalized eigenvectors not supported \ https://github.com/sympy/sympy/issues/5293") def test_P30(): M = Matrix([[1, 0, 0, 1, -1], [0, 1, -2, 3, -3], [0, 0, -1, 2, -2], [1, -1, 1, 0, 1], [1, -1, 1, -1, 2]]) _, J = M.jordan_form() assert J == Matrix([[-1, 0, 0, 0, 0], [0, 1, 1, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 1], [0, 0, 0, 0, 1]]) @XFAIL def test_P31(): raise NotImplementedError("Smith normal form not implemented") def test_P32(): M = Matrix([[1, -2], [2, 1]]) assert exp(M).rewrite(cos).simplify() == Matrix([[E*cos(2), -E*sin(2)], [E*sin(2), E*cos(2)]]) def test_P33(): w, t = symbols('w t') M = Matrix([[0, 1, 0, 0], [0, 0, 0, 2*w], [0, 0, 0, 1], [0, -2*w, 3*w**2, 0]]) assert exp(M*t).rewrite(cos).expand() == Matrix([ [1, -3*t + 4*sin(t*w)/w, 6*t*w - 6*sin(t*w), -2*cos(t*w)/w + 2/w], [0, 4*cos(t*w) - 3, -6*w*cos(t*w) + 6*w, 2*sin(t*w)], [0, 2*cos(t*w)/w - 2/w, -3*cos(t*w) + 4, sin(t*w)/w], [0, -2*sin(t*w), 3*w*sin(t*w), cos(t*w)]]) @XFAIL def test_P34(): a, b, c = symbols('a b c', real=True) M = Matrix([[a, 1, 0, 0, 0, 0], [0, a, 0, 0, 0, 0], [0, 0, b, 0, 0, 0], [0, 0, 0, c, 1, 0], [0, 0, 0, 0, c, 1], [0, 0, 0, 0, 0, c]]) # raises exception, sin(M) not supported. exp(M*I) also not supported # https://github.com/sympy/sympy/issues/6218 assert sin(M) == Matrix([[sin(a), cos(a), 0, 0, 0, 0], [0, sin(a), 0, 0, 0, 0], [0, 0, sin(b), 0, 0, 0], [0, 0, 0, sin(c), cos(c), -sin(c)/2], [0, 0, 0, 0, sin(c), cos(c)], [0, 0, 0, 0, 0, sin(c)]]) @XFAIL def test_P35(): M = pi/2*Matrix([[2, 1, 1], [2, 3, 2], [1, 1, 2]]) # raises exception, sin(M) not supported. exp(M*I) also not supported # https://github.com/sympy/sympy/issues/6218 assert sin(M) == eye(3) @XFAIL def test_P36(): M = Matrix([[10, 7], [7, 17]]) assert sqrt(M) == Matrix([[3, 1], [1, 4]]) def test_P37(): M = Matrix([[1, 1, 0], [0, 1, 0], [0, 0, 1]]) assert M**S.Half == Matrix([[1, R(1, 2), 0], [0, 1, 0], [0, 0, 1]]) @XFAIL def test_P38(): M=Matrix([[0, 1, 0], [0, 0, 0], [0, 0, 0]]) #raises ValueError: Matrix det == 0; not invertible M**S.Half @XFAIL def test_P39(): """ M=Matrix([ [1, 1], [2, 2], [3, 3]]) M.SVD() """ raise NotImplementedError("Singular value decomposition not implemented") def test_P40(): r, t = symbols('r t', real=True) M = Matrix([r*cos(t), r*sin(t)]) assert M.jacobian(Matrix([r, t])) == Matrix([[cos(t), -r*sin(t)], [sin(t), r*cos(t)]]) def test_P41(): r, t = symbols('r t', real=True) assert hessian(r**2*sin(t),(r,t)) == Matrix([[ 2*sin(t), 2*r*cos(t)], [2*r*cos(t), -r**2*sin(t)]]) def test_P42(): assert wronskian([cos(x), sin(x)], x).simplify() == 1 def test_P43(): def __my_jacobian(M, Y): return Matrix([M.diff(v).T for v in Y]).T r, t = symbols('r t', real=True) M = Matrix([r*cos(t), r*sin(t)]) assert __my_jacobian(M,[r,t]) == Matrix([[cos(t), -r*sin(t)], [sin(t), r*cos(t)]]) def test_P44(): def __my_hessian(f, Y): V = Matrix([diff(f, v) for v in Y]) return Matrix([V.T.diff(v) for v in Y]) r, t = symbols('r t', real=True) assert __my_hessian(r**2*sin(t), (r, t)) == Matrix([ [ 2*sin(t), 2*r*cos(t)], [2*r*cos(t), -r**2*sin(t)]]) def test_P45(): def __my_wronskian(Y, v): M = Matrix([Matrix(Y).T.diff(x, n) for n in range(0, len(Y))]) return M.det() assert __my_wronskian([cos(x), sin(x)], x).simplify() == 1 # Q1-Q6 Tensor tests missing @XFAIL def test_R1(): i, j, n = symbols('i j n', integer=True, positive=True) xn = MatrixSymbol('xn', n, 1) Sm = Sum((xn[i, 0] - Sum(xn[j, 0], (j, 0, n - 1))/n)**2, (i, 0, n - 1)) # sum does not calculate # Unknown result Sm.doit() raise NotImplementedError('Unknown result') @XFAIL def test_R2(): m, b = symbols('m b') i, n = symbols('i n', integer=True, positive=True) xn = MatrixSymbol('xn', n, 1) yn = MatrixSymbol('yn', n, 1) f = Sum((yn[i, 0] - m*xn[i, 0] - b)**2, (i, 0, n - 1)) f1 = diff(f, m) f2 = diff(f, b) # raises TypeError: solveset() takes at most 2 arguments (3 given) solveset((f1, f2), (m, b), domain=S.Reals) @XFAIL def test_R3(): n, k = symbols('n k', integer=True, positive=True) sk = ((-1)**k) * (binomial(2*n, k))**2 Sm = Sum(sk, (k, 1, oo)) T = Sm.doit() T2 = T.combsimp() # returns -((-1)**n*factorial(2*n) # - (factorial(n))**2)*exp_polar(-I*pi)/(factorial(n))**2 assert T2 == (-1)**n*binomial(2*n, n) @XFAIL def test_R4(): # Macsyma indefinite sum test case: #(c15) /* Check whether the full Gosper algorithm is implemented # => 1/2^(n + 1) binomial(n, k - 1) */ #closedform(indefsum(binomial(n, k)/2^n - binomial(n + 1, k)/2^(n + 1), k)); #Time= 2690 msecs # (- n + k - 1) binomial(n + 1, k) #(d15) - -------------------------------- # n # 2 2 (n + 1) # #(c16) factcomb(makefact(%)); #Time= 220 msecs # n! #(d16) ---------------- # n # 2 k! 2 (n - k)! # Might be possible after fixing https://github.com/sympy/sympy/pull/1879 raise NotImplementedError("Indefinite sum not supported") @XFAIL def test_R5(): a, b, c, n, k = symbols('a b c n k', integer=True, positive=True) sk = ((-1)**k)*(binomial(a + b, a + k) *binomial(b + c, b + k)*binomial(c + a, c + k)) Sm = Sum(sk, (k, 1, oo)) T = Sm.doit() # hypergeometric series not calculated assert T == factorial(a+b+c)/(factorial(a)*factorial(b)*factorial(c)) def test_R6(): n, k = symbols('n k', integer=True, positive=True) gn = MatrixSymbol('gn', n + 2, 1) Sm = Sum(gn[k, 0] - gn[k - 1, 0], (k, 1, n + 1)) assert Sm.doit() == -gn[0, 0] + gn[n + 1, 0] def test_R7(): n, k = symbols('n k', integer=True, positive=True) T = Sum(k**3,(k,1,n)).doit() assert T.factor() == n**2*(n + 1)**2/4 @XFAIL def test_R8(): n, k = symbols('n k', integer=True, positive=True) Sm = Sum(k**2*binomial(n, k), (k, 1, n)) T = Sm.doit() #returns Piecewise function assert T.combsimp() == n*(n + 1)*2**(n - 2) def test_R9(): n, k = symbols('n k', integer=True, positive=True) Sm = Sum(binomial(n, k - 1)/k, (k, 1, n + 1)) assert Sm.doit().simplify() == (2**(n + 1) - 1)/(n + 1) @XFAIL def test_R10(): n, m, r, k = symbols('n m r k', integer=True, positive=True) Sm = Sum(binomial(n, k)*binomial(m, r - k), (k, 0, r)) T = Sm.doit() T2 = T.combsimp().rewrite(factorial) assert T2 == factorial(m + n)/(factorial(r)*factorial(m + n - r)) assert T2 == binomial(m + n, r).rewrite(factorial) # rewrite(binomial) is not working. # https://github.com/sympy/sympy/issues/7135 T3 = T2.rewrite(binomial) assert T3 == binomial(m + n, r) @XFAIL def test_R11(): n, k = symbols('n k', integer=True, positive=True) sk = binomial(n, k)*fibonacci(k) Sm = Sum(sk, (k, 0, n)) T = Sm.doit() # Fibonacci simplification not implemented # https://github.com/sympy/sympy/issues/7134 assert T == fibonacci(2*n) @XFAIL def test_R12(): n, k = symbols('n k', integer=True, positive=True) Sm = Sum(fibonacci(k)**2, (k, 0, n)) T = Sm.doit() assert T == fibonacci(n)*fibonacci(n + 1) @XFAIL def test_R13(): n, k = symbols('n k', integer=True, positive=True) Sm = Sum(sin(k*x), (k, 1, n)) T = Sm.doit() # Sum is not calculated assert T.simplify() == cot(x/2)/2 - cos(x*(2*n + 1)/2)/(2*sin(x/2)) @XFAIL def test_R14(): n, k = symbols('n k', integer=True, positive=True) Sm = Sum(sin((2*k - 1)*x), (k, 1, n)) T = Sm.doit() # Sum is not calculated assert T.simplify() == sin(n*x)**2/sin(x) @XFAIL def test_R15(): n, k = symbols('n k', integer=True, positive=True) Sm = Sum(binomial(n - k, k), (k, 0, floor(n/2))) T = Sm.doit() # Sum is not calculated assert T.simplify() == fibonacci(n + 1) def test_R16(): k = symbols('k', integer=True, positive=True) Sm = Sum(1/k**2 + 1/k**3, (k, 1, oo)) assert Sm.doit() == zeta(3) + pi**2/6 def test_R17(): k = symbols('k', integer=True, positive=True) assert abs(float(Sum(1/k**2 + 1/k**3, (k, 1, oo))) - 2.8469909700078206) < 1e-15 def test_R18(): k = symbols('k', integer=True, positive=True) Sm = Sum(1/(2**k*k**2), (k, 1, oo)) T = Sm.doit() assert T.simplify() == -log(2)**2/2 + pi**2/12 @slow @XFAIL def test_R19(): k = symbols('k', integer=True, positive=True) Sm = Sum(1/((3*k + 1)*(3*k + 2)*(3*k + 3)), (k, 0, oo)) T = Sm.doit() # assert fails, T not simplified assert T.simplify() == -log(3)/4 + sqrt(3)*pi/12 @XFAIL def test_R20(): n, k = symbols('n k', integer=True, positive=True) Sm = Sum(binomial(n, 4*k), (k, 0, oo)) T = Sm.doit() # assert fails, T not simplified assert T.simplify() == 2**(n/2)*cos(pi*n/4)/2 + 2**(n - 1)/2 @XFAIL def test_R21(): k = symbols('k', integer=True, positive=True) Sm = Sum(1/(sqrt(k*(k + 1)) * (sqrt(k) + sqrt(k + 1))), (k, 1, oo)) T = Sm.doit() # Sum not calculated assert T.simplify() == 1 # test_R22 answer not available in Wester samples # Sum(Sum(binomial(n, k)*binomial(n - k, n - 2*k)*x**n*y**(n - 2*k), # (k, 0, floor(n/2))), (n, 0, oo)) with abs(x*y)<1? @XFAIL def test_R23(): n, k = symbols('n k', integer=True, positive=True) Sm = Sum(Sum((factorial(n)/(factorial(k)**2*factorial(n - 2*k)))* (x/y)**k*(x*y)**(n - k), (n, 2*k, oo)), (k, 0, oo)) # Missing how to express constraint abs(x*y)<1? T = Sm.doit() # Sum not calculated assert T == -1/sqrt(x**2*y**2 - 4*x**2 - 2*x*y + 1) def test_R24(): m, k = symbols('m k', integer=True, positive=True) Sm = Sum(Product(k/(2*k - 1), (k, 1, m)), (m, 2, oo)) assert Sm.doit() == pi/2 def test_S1(): k = symbols('k', integer=True, positive=True) Pr = Product(gamma(k/3), (k, 1, 8)) assert Pr.doit().simplify() == 640*sqrt(3)*pi**3/6561 def test_S2(): n, k = symbols('n k', integer=True, positive=True) assert Product(k, (k, 1, n)).doit() == factorial(n) def test_S3(): n, k = symbols('n k', integer=True, positive=True) assert Product(x**k, (k, 1, n)).doit().simplify() == x**(n*(n + 1)/2) def test_S4(): n, k = symbols('n k', integer=True, positive=True) assert Product(1 + 1/k, (k, 1, n -1)).doit().simplify() == n def test_S5(): n, k = symbols('n k', integer=True, positive=True) assert (Product((2*k - 1)/(2*k), (k, 1, n)).doit().gammasimp() == gamma(n + S.Half)/(sqrt(pi)*gamma(n + 1))) @XFAIL def test_S6(): n, k = symbols('n k', integer=True, positive=True) # Product does not evaluate assert (Product(x**2 -2*x*cos(k*pi/n) + 1, (k, 1, n - 1)).doit().simplify() == (x**(2*n) - 1)/(x**2 - 1)) @XFAIL def test_S7(): k = symbols('k', integer=True, positive=True) Pr = Product((k**3 - 1)/(k**3 + 1), (k, 2, oo)) T = Pr.doit() # Product does not evaluate assert T.simplify() == R(2, 3) @XFAIL def test_S8(): k = symbols('k', integer=True, positive=True) Pr = Product(1 - 1/(2*k)**2, (k, 1, oo)) T = Pr.doit() # Product does not evaluate assert T.simplify() == 2/pi @XFAIL def test_S9(): k = symbols('k', integer=True, positive=True) Pr = Product(1 + (-1)**(k + 1)/(2*k - 1), (k, 1, oo)) T = Pr.doit() # Product produces 0 # https://github.com/sympy/sympy/issues/7133 assert T.simplify() == sqrt(2) @XFAIL def test_S10(): k = symbols('k', integer=True, positive=True) Pr = Product((k*(k + 1) + 1 + I)/(k*(k + 1) + 1 - I), (k, 0, oo)) T = Pr.doit() # Product does not evaluate assert T.simplify() == -1 def test_T1(): assert limit((1 + 1/n)**n, n, oo) == E assert limit((1 - cos(x))/x**2, x, 0) == S.Half def test_T2(): assert limit((3**x + 5**x)**(1/x), x, oo) == 5 def test_T3(): assert limit(log(x)/(log(x) + sin(x)), x, oo) == 1 def test_T4(): assert limit((exp(x*exp(-x)/(exp(-x) + exp(-2*x**2/(x + 1)))) - exp(x))/x, x, oo) == -exp(2) def test_T5(): assert limit(x*log(x)*log(x*exp(x) - x**2)**2/log(log(x**2 + 2*exp(exp(3*x**3*log(x))))), x, oo) == R(1, 3) def test_T6(): assert limit(1/n * factorial(n)**(1/n), n, oo) == exp(-1) def test_T7(): limit(1/n * gamma(n + 1)**(1/n), n, oo) def test_T8(): a, z = symbols('a z', real=True, positive=True) assert limit(gamma(z + a)/gamma(z)*exp(-a*log(z)), z, oo) == 1 @XFAIL def test_T9(): z, k = symbols('z k', real=True, positive=True) # raises NotImplementedError: # Don't know how to calculate the mrv of '(1, k)' assert limit(hyper((1, k), (1,), z/k), k, oo) == exp(z) @XFAIL def test_T10(): # No longer raises PoleError, but should return euler-mascheroni constant assert limit(zeta(x) - 1/(x - 1), x, 1) == integrate(-1/x + 1/floor(x), (x, 1, oo)) @XFAIL def test_T11(): n, k = symbols('n k', integer=True, positive=True) # evaluates to 0 assert limit(n**x/(x*product((1 + x/k), (k, 1, n))), n, oo) == gamma(x) @XFAIL def test_T12(): x, t = symbols('x t', real=True) # Does not evaluate the limit but returns an expression with erf assert limit(x * integrate(exp(-t**2), (t, 0, x))/(1 - exp(-x**2)), x, 0) == 1 def test_T13(): x = symbols('x', real=True) assert [limit(x/abs(x), x, 0, dir='-'), limit(x/abs(x), x, 0, dir='+')] == [-1, 1] def test_T14(): x = symbols('x', real=True) assert limit(atan(-log(x)), x, 0, dir='+') == pi/2 def test_U1(): x = symbols('x', real=True) assert diff(abs(x), x) == sign(x) def test_U2(): f = Lambda(x, Piecewise((-x, x < 0), (x, x >= 0))) assert diff(f(x), x) == Piecewise((-1, x < 0), (1, x >= 0)) def test_U3(): f = Lambda(x, Piecewise((x**2 - 1, x == 1), (x**3, x != 1))) f1 = Lambda(x, diff(f(x), x)) assert f1(x) == 3*x**2 assert f1(1) == 3 @XFAIL def test_U4(): n = symbols('n', integer=True, positive=True) x = symbols('x', real=True) d = diff(x**n, x, n) assert d.rewrite(factorial) == factorial(n) def test_U5(): # issue 6681 t = symbols('t') ans = ( Derivative(f(g(t)), g(t))*Derivative(g(t), (t, 2)) + Derivative(f(g(t)), (g(t), 2))*Derivative(g(t), t)**2) assert f(g(t)).diff(t, 2) == ans assert ans.doit() == ans def test_U6(): h = Function('h') T = integrate(f(y), (y, h(x), g(x))) assert T.diff(x) == ( f(g(x))*Derivative(g(x), x) - f(h(x))*Derivative(h(x), x)) @XFAIL def test_U7(): p, t = symbols('p t', real=True) # Exact differential => d(V(P, T)) => dV/dP DP + dV/dT DT # raises ValueError: Since there is more than one variable in the # expression, the variable(s) of differentiation must be supplied to # differentiate f(p,t) diff(f(p, t)) def test_U8(): x, y = symbols('x y', real=True) eq = cos(x*y) + x # If SymPy had implicit_diff() function this hack could be avoided # TODO: Replace solve with solveset, current test fails for solveset assert idiff(y - eq, y, x) == (-y*sin(x*y) + 1)/(x*sin(x*y) + 1) def test_U9(): # Wester sample case for Maple: # O29 := diff(f(x, y), x) + diff(f(x, y), y); # /d \ /d \ # |-- f(x, y)| + |-- f(x, y)| # \dx / \dy / # # O30 := factor(subs(f(x, y) = g(x^2 + y^2), %)); # 2 2 # 2 D(g)(x + y ) (x + y) x, y = symbols('x y', real=True) su = diff(f(x, y), x) + diff(f(x, y), y) s2 = su.subs(f(x, y), g(x**2 + y**2)) s3 = s2.doit().factor() # Subs not performed, s3 = 2*(x + y)*Subs(Derivative( # g(_xi_1), _xi_1), _xi_1, x**2 + y**2) # Derivative(g(x*2 + y**2), x**2 + y**2) is not valid in SymPy, # and probably will remain that way. You can take derivatives with respect # to other expressions only if they are atomic, like a symbol or a # function. # D operator should be added to SymPy # See https://github.com/sympy/sympy/issues/4719. assert s3 == (x + y)*Subs(Derivative(g(x), x), x, x**2 + y**2)*2 def test_U10(): # see issue 2519: assert residue((z**3 + 5)/((z**4 - 1)*(z + 1)), z, -1) == R(-9, 4) @XFAIL def test_U11(): # assert (2*dx + dz) ^ (3*dx + dy + dz) ^ (dx + dy + 4*dz) == 8*dx ^ dy ^dz raise NotImplementedError @XFAIL def test_U12(): # Wester sample case: # (c41) /* d(3 x^5 dy /\ dz + 5 x y^2 dz /\ dx + 8 z dx /\ dy) # => (15 x^4 + 10 x y + 8) dx /\ dy /\ dz */ # factor(ext_diff(3*x^5 * dy ~ dz + 5*x*y^2 * dz ~ dx + 8*z * dx ~ dy)); # 4 # (d41) (10 x y + 15 x + 8) dx dy dz raise NotImplementedError( "External diff of differential form not supported") def test_U13(): assert minimum(x**4 - x + 1, x) == -3*2**R(1,3)/8 + 1 @XFAIL def test_U14(): #f = 1/(x**2 + y**2 + 1) #assert [minimize(f), maximize(f)] == [0,1] raise NotImplementedError("minimize(), maximize() not supported") @XFAIL def test_U15(): raise NotImplementedError("minimize() not supported and also solve does \ not support multivariate inequalities") @XFAIL def test_U16(): raise NotImplementedError("minimize() not supported in SymPy and also \ solve does not support multivariate inequalities") @XFAIL def test_U17(): raise NotImplementedError("Linear programming, symbolic simplex not \ supported in SymPy") def test_V1(): x = symbols('x', real=True) assert integrate(abs(x), x) == Piecewise((-x**2/2, x <= 0), (x**2/2, True)) def test_V2(): assert integrate(Piecewise((-x, x < 0), (x, x >= 0)), x ) == Piecewise((-x**2/2, x < 0), (x**2/2, True)) def test_V3(): assert integrate(1/(x**3 + 2),x).diff().simplify() == 1/(x**3 + 2) def test_V4(): assert integrate(2**x/sqrt(1 + 4**x), x) == asinh(2**x)/log(2) @XFAIL def test_V5(): # Returns (-45*x**2 + 80*x - 41)/(5*sqrt(2*x - 1)*(4*x**2 - 4*x + 1)) assert (integrate((3*x - 5)**2/(2*x - 1)**R(7, 2), x).simplify() == (-41 + 80*x - 45*x**2)/(5*(2*x - 1)**R(5, 2))) @XFAIL def test_V6(): # returns RootSum(40*_z**2 - 1, Lambda(_i, _i*log(-4*_i + exp(-m*x))))/m assert (integrate(1/(2*exp(m*x) - 5*exp(-m*x)), x) == sqrt(10)*( log(2*exp(m*x) - sqrt(10)) - log(2*exp(m*x) + sqrt(10)))/(20*m)) def test_V7(): r1 = integrate(sinh(x)**4/cosh(x)**2) assert r1.simplify() == x*R(-3, 2) + sinh(x)**3/(2*cosh(x)) + 3*tanh(x)/2 @XFAIL def test_V8_V9(): #Macsyma test case: #(c27) /* This example involves several symbolic parameters # => 1/sqrt(b^2 - a^2) log([sqrt(b^2 - a^2) tan(x/2) + a + b]/ # [sqrt(b^2 - a^2) tan(x/2) - a - b]) (a^2 < b^2) # [Gradshteyn and Ryzhik 2.553(3)] */ #assume(b^2 > a^2)$ #(c28) integrate(1/(a + b*cos(x)), x); #(c29) trigsimp(ratsimp(diff(%, x))); # 1 #(d29) ------------ # b cos(x) + a raise NotImplementedError( "Integrate with assumption not supported") def test_V10(): assert integrate(1/(3 + 3*cos(x) + 4*sin(x)), x) == log(tan(x/2) + R(3, 4))/4 def test_V11(): r1 = integrate(1/(4 + 3*cos(x) + 4*sin(x)), x) r2 = factor(r1) assert (logcombine(r2, force=True) == log(((tan(x/2) + 1)/(tan(x/2) + 7))**R(1, 3))) @XFAIL def test_V12(): r1 = integrate(1/(5 + 3*cos(x) + 4*sin(x)), x) # Correct result in python2.7.4, wrong result in python3.5 # https://github.com/sympy/sympy/issues/7157 assert r1 == -1/(tan(x/2) + 2) @XFAIL def test_V13(): r1 = integrate(1/(6 + 3*cos(x) + 4*sin(x)), x) # expression not simplified, returns: -sqrt(11)*I*log(tan(x/2) + 4/3 # - sqrt(11)*I/3)/11 + sqrt(11)*I*log(tan(x/2) + 4/3 + sqrt(11)*I/3)/11 assert r1.simplify() == 2*sqrt(11)*atan(sqrt(11)*(3*tan(x/2) + 4)/11)/11 @slow @XFAIL def test_V14(): r1 = integrate(log(abs(x**2 - y**2)), x) # Piecewise result does not simplify to the desired result. assert (r1.simplify() == x*log(abs(x**2 - y**2)) + y*log(x + y) - y*log(x - y) - 2*x) def test_V15(): r1 = integrate(x*acot(x/y), x) assert simplify(r1 - (x*y + (x**2 + y**2)*acot(x/y))/2) == 0 @XFAIL def test_V16(): # Integral not calculated assert integrate(cos(5*x)*Ci(2*x), x) == Ci(2*x)*sin(5*x)/5 - (Si(3*x) + Si(7*x))/10 @XFAIL def test_V17(): r1 = integrate((diff(f(x), x)*g(x) - f(x)*diff(g(x), x))/(f(x)**2 - g(x)**2), x) # integral not calculated assert simplify(r1 - (f(x) - g(x))/(f(x) + g(x))/2) == 0 @XFAIL def test_W1(): # The function has a pole at y. # The integral has a Cauchy principal value of zero but SymPy returns -I*pi # https://github.com/sympy/sympy/issues/7159 assert integrate(1/(x - y), (x, y - 1, y + 1)) == 0 @XFAIL def test_W2(): # The function has a pole at y. # The integral is divergent but SymPy returns -2 # https://github.com/sympy/sympy/issues/7160 # Test case in Macsyma: # (c6) errcatch(integrate(1/(x - a)^2, x, a - 1, a + 1)); # Integral is divergent assert integrate(1/(x - y)**2, (x, y - 1, y + 1)) is zoo @XFAIL @slow def test_W3(): # integral is not calculated # https://github.com/sympy/sympy/issues/7161 assert integrate(sqrt(x + 1/x - 2), (x, 0, 1)) == R(4, 3) @XFAIL @slow def test_W4(): # integral is not calculated assert integrate(sqrt(x + 1/x - 2), (x, 1, 2)) == -2*sqrt(2)/3 + R(4, 3) @XFAIL @slow def test_W5(): # integral is not calculated assert integrate(sqrt(x + 1/x - 2), (x, 0, 2)) == -2*sqrt(2)/3 + R(8, 3) @XFAIL @slow def test_W6(): # integral is not calculated assert integrate(sqrt(2 - 2*cos(2*x))/2, (x, pi*R(-3, 4), -pi/4)) == sqrt(2) def test_W7(): a = symbols('a', real=True, positive=True) r1 = integrate(cos(x)/(x**2 + a**2), (x, -oo, oo)) assert r1.simplify() == pi*exp(-a)/a @XFAIL def test_W8(): # Test case in Mathematica: # In[19]:= Integrate[t^(a - 1)/(1 + t), {t, 0, Infinity}, # Assumptions -> 0 < a < 1] # Out[19]= Pi Csc[a Pi] raise NotImplementedError( "Integrate with assumption 0 < a < 1 not supported") @XFAIL def test_W9(): # Integrand with a residue at infinity => -2 pi [sin(pi/5) + sin(2pi/5)] # (principal value) [Levinson and Redheffer, p. 234] *) r1 = integrate(5*x**3/(1 + x + x**2 + x**3 + x**4), (x, -oo, oo)) r2 = r1.doit() assert r2 == -2*pi*(sqrt(-sqrt(5)/8 + 5/8) + sqrt(sqrt(5)/8 + 5/8)) @XFAIL def test_W10(): # integrate(1/[1 + x + x^2 + ... + x^(2 n)], x = -infinity..infinity) = # 2 pi/(2 n + 1) [1 + cos(pi/[2 n + 1])] csc(2 pi/[2 n + 1]) # [Levinson and Redheffer, p. 255] => 2 pi/5 [1 + cos(pi/5)] csc(2 pi/5) */ r1 = integrate(x/(1 + x + x**2 + x**4), (x, -oo, oo)) r2 = r1.doit() assert r2 == 2*pi*(sqrt(5)/4 + 5/4)*csc(pi*R(2, 5))/5 @XFAIL def test_W11(): # integral not calculated assert (integrate(sqrt(1 - x**2)/(1 + x**2), (x, -1, 1)) == pi*(-1 + sqrt(2))) def test_W12(): p = symbols('p', real=True, positive=True) q = symbols('q', real=True) r1 = integrate(x*exp(-p*x**2 + 2*q*x), (x, -oo, oo)) assert r1.simplify() == sqrt(pi)*q*exp(q**2/p)/p**R(3, 2) @XFAIL def test_W13(): # Integral not calculated. Expected result is 2*(Euler_mascheroni_constant) r1 = integrate(1/log(x) + 1/(1 - x) - log(log(1/x)), (x, 0, 1)) assert r1 == 2*EulerGamma def test_W14(): assert integrate(sin(x)/x*exp(2*I*x), (x, -oo, oo)) == 0 @XFAIL def test_W15(): # integral not calculated assert integrate(log(gamma(x))*cos(6*pi*x), (x, 0, 1)) == R(1, 12) def test_W16(): assert integrate((1 + x)**3*legendre_poly(1, x)*legendre_poly(2, x), (x, -1, 1)) == R(36, 35) def test_W17(): a, b = symbols('a b', real=True, positive=True) assert integrate(exp(-a*x)*besselj(0, b*x), (x, 0, oo)) == 1/(b*sqrt(a**2/b**2 + 1)) def test_W18(): assert integrate((besselj(1, x)/x)**2, (x, 0, oo)) == 4/(3*pi) @XFAIL def test_W19(): # Integral not calculated # Expected result is (cos 7 - 1)/7 [Gradshteyn and Ryzhik 6.782(3)] assert integrate(Ci(x)*besselj(0, 2*sqrt(7*x)), (x, 0, oo)) == (cos(7) - 1)/7 @XFAIL def test_W20(): # integral not calculated assert (integrate(x**2*polylog(3, 1/(x + 1)), (x, 0, 1)) == -pi**2/36 - R(17, 108) + zeta(3)/4 + (-pi**2/2 - 4*log(2) + log(2)**2 + 35/3)*log(2)/9) def test_W21(): assert abs(N(integrate(x**2*polylog(3, 1/(x + 1)), (x, 0, 1))) - 0.210882859565594) < 1e-15 def test_W22(): t, u = symbols('t u', real=True) s = Lambda(x, Piecewise((1, And(x >= 1, x <= 2)), (0, True))) assert integrate(s(t)*cos(t), (t, 0, u)) == Piecewise( (0, u < 0), (-sin(Min(1, u)) + sin(Min(2, u)), True)) @slow def test_W23(): a, b = symbols('a b', real=True, positive=True) r1 = integrate(integrate(x/(x**2 + y**2), (x, a, b)), (y, -oo, oo)) assert r1.collect(pi) == pi*(-a + b) def test_W23b(): # like W23 but limits are reversed a, b = symbols('a b', real=True, positive=True) r2 = integrate(integrate(x/(x**2 + y**2), (y, -oo, oo)), (x, a, b)) assert r2.collect(pi) == pi*(-a + b) @XFAIL @slow def test_W24(): if ON_TRAVIS: skip("Too slow for travis.") # Not that slow, but does not fully evaluate so simplify is slow. # Maybe also require doit() x, y = symbols('x y', real=True) r1 = integrate(integrate(sqrt(x**2 + y**2), (x, 0, 1)), (y, 0, 1)) assert (r1 - (sqrt(2) + asinh(1))/3).simplify() == 0 @XFAIL @slow def test_W25(): if ON_TRAVIS: skip("Too slow for travis.") a, x, y = symbols('a x y', real=True) i1 = integrate( sin(a)*sin(y)/sqrt(1 - sin(a)**2*sin(x)**2*sin(y)**2), (x, 0, pi/2)) i2 = integrate(i1, (y, 0, pi/2)) assert (i2 - pi*a/2).simplify() == 0 def test_W26(): x, y = symbols('x y', real=True) assert integrate(integrate(abs(y - x**2), (y, 0, 2)), (x, -1, 1)) == R(46, 15) def test_W27(): a, b, c = symbols('a b c') assert integrate(integrate(integrate(1, (z, 0, c*(1 - x/a - y/b))), (y, 0, b*(1 - x/a))), (x, 0, a)) == a*b*c/6 def test_X1(): v, c = symbols('v c', real=True) assert (series(1/sqrt(1 - (v/c)**2), v, x0=0, n=8) == 5*v**6/(16*c**6) + 3*v**4/(8*c**4) + v**2/(2*c**2) + 1 + O(v**8)) def test_X2(): v, c = symbols('v c', real=True) s1 = series(1/sqrt(1 - (v/c)**2), v, x0=0, n=8) assert (1/s1**2).series(v, x0=0, n=8) == -v**2/c**2 + 1 + O(v**8) def test_X3(): s1 = (sin(x).series()/cos(x).series()).series() s2 = tan(x).series() assert s2 == x + x**3/3 + 2*x**5/15 + O(x**6) assert s1 == s2 def test_X4(): s1 = log(sin(x)/x).series() assert s1 == -x**2/6 - x**4/180 + O(x**6) assert log(series(sin(x)/x)).series() == s1 @XFAIL def test_X5(): # test case in Mathematica syntax: # In[21]:= (* => [a f'(a d) + g(b d) + integrate(h(c y), y = 0..d)] # + [a^2 f''(a d) + b g'(b d) + h(c d)] (x - d) *) # In[22]:= D[f[a*x], x] + g[b*x] + Integrate[h[c*y], {y, 0, x}] # Out[22]= g[b x] + Integrate[h[c y], {y, 0, x}] + a f'[a x] # In[23]:= Series[%, {x, d, 1}] # Out[23]= (g[b d] + Integrate[h[c y], {y, 0, d}] + a f'[a d]) + # 2 2 # (h[c d] + b g'[b d] + a f''[a d]) (-d + x) + O[-d + x] h = Function('h') a, b, c, d = symbols('a b c d', real=True) # series() raises NotImplementedError: # The _eval_nseries method should be added to <class # 'sympy.core.function.Subs'> to give terms up to O(x**n) at x=0 series(diff(f(a*x), x) + g(b*x) + integrate(h(c*y), (y, 0, x)), x, x0=d, n=2) # assert missing, until exception is removed def test_X6(): # Taylor series of nonscalar objects (noncommutative multiplication) # expected result => (B A - A B) t^2/2 + O(t^3) [Stanly Steinberg] a, b = symbols('a b', commutative=False, scalar=False) assert (series(exp((a + b)*x) - exp(a*x) * exp(b*x), x, x0=0, n=3) == x**2*(-a*b/2 + b*a/2) + O(x**3)) def test_X7(): # => sum( Bernoulli[k]/k! x^(k - 2), k = 1..infinity ) # = 1/x^2 - 1/(2 x) + 1/12 - x^2/720 + x^4/30240 + O(x^6) # [Levinson and Redheffer, p. 173] assert (series(1/(x*(exp(x) - 1)), x, 0, 7) == x**(-2) - 1/(2*x) + R(1, 12) - x**2/720 + x**4/30240 - x**6/1209600 + O(x**7)) def test_X8(): # Puiseux series (terms with fractional degree): # => 1/sqrt(x - 3/2 pi) + (x - 3/2 pi)^(3/2) / 12 + O([x - 3/2 pi]^(7/2)) # see issue 7167: x = symbols('x', real=True) assert (series(sqrt(sec(x)), x, x0=pi*3/2, n=4) == 1/sqrt(x - pi*R(3, 2)) + (x - pi*R(3, 2))**R(3, 2)/12 + (x - pi*R(3, 2))**R(7, 2)/160 + O((x - pi*R(3, 2))**4, (x, pi*R(3, 2)))) def test_X9(): assert (series(x**x, x, x0=0, n=4) == 1 + x*log(x) + x**2*log(x)**2/2 + x**3*log(x)**3/6 + O(x**4*log(x)**4)) def test_X10(): z, w = symbols('z w') assert (series(log(sinh(z)) + log(cosh(z + w)), z, x0=0, n=2) == log(cosh(w)) + log(z) + z*sinh(w)/cosh(w) + O(z**2)) def test_X11(): z, w = symbols('z w') assert (series(log(sinh(z) * cosh(z + w)), z, x0=0, n=2) == log(cosh(w)) + log(z) + z*sinh(w)/cosh(w) + O(z**2)) @XFAIL def test_X12(): # Look at the generalized Taylor series around x = 1 # Result => (x - 1)^a/e^b [1 - (a + 2 b) (x - 1) / 2 + O((x - 1)^2)] a, b, x = symbols('a b x', real=True) # series returns O(log(x-1)**2) # https://github.com/sympy/sympy/issues/7168 assert (series(log(x)**a*exp(-b*x), x, x0=1, n=2) == (x - 1)**a/exp(b)*(1 - (a + 2*b)*(x - 1)/2 + O((x - 1)**2))) def test_X13(): assert series(sqrt(2*x**2 + 1), x, x0=oo, n=1) == sqrt(2)*x + O(1/x, (x, oo)) @XFAIL def test_X14(): # Wallis' product => 1/sqrt(pi n) + ... [Knopp, p. 385] assert series(1/2**(2*n)*binomial(2*n, n), n, x==oo, n=1) == 1/(sqrt(pi)*sqrt(n)) + O(1/x, (x, oo)) @SKIP("https://github.com/sympy/sympy/issues/7164") def test_X15(): # => 0!/x - 1!/x^2 + 2!/x^3 - 3!/x^4 + O(1/x^5) [Knopp, p. 544] x, t = symbols('x t', real=True) # raises RuntimeError: maximum recursion depth exceeded # https://github.com/sympy/sympy/issues/7164 # 2019-02-17: Raises # PoleError: # Asymptotic expansion of Ei around [-oo] is not implemented. e1 = integrate(exp(-t)/t, (t, x, oo)) assert (series(e1, x, x0=oo, n=5) == 6/x**4 + 2/x**3 - 1/x**2 + 1/x + O(x**(-5), (x, oo))) def test_X16(): # Multivariate Taylor series expansion => 1 - (x^2 + 2 x y + y^2)/2 + O(x^4) assert (series(cos(x + y), x + y, x0=0, n=4) == 1 - (x + y)**2/2 + O(x**4 + x**3*y + x**2*y**2 + x*y**3 + y**4, x, y)) @XFAIL def test_X17(): # Power series (compute the general formula) # (c41) powerseries(log(sin(x)/x), x, 0); # /aquarius/data2/opt/local/macsyma_422/library1/trgred.so being loaded. # inf # ==== i1 2 i1 2 i1 # \ (- 1) 2 bern(2 i1) x # (d41) > ------------------------------ # / 2 i1 (2 i1)! # ==== # i1 = 1 # fps does not calculate assert fps(log(sin(x)/x)) == \ Sum((-1)**k*2**(2*k - 1)*bernoulli(2*k)*x**(2*k)/(k*factorial(2*k)), (k, 1, oo)) @XFAIL def test_X18(): # Power series (compute the general formula). Maple FPS: # > FormalPowerSeries(exp(-x)*sin(x), x = 0); # infinity # ----- (1/2 k) k # \ 2 sin(3/4 k Pi) x # ) ------------------------- # / k! # ----- # # Now, sympy returns # oo # _____ # \ ` # \ / k k\ # \ k |I*(-1 - I) I*(-1 + I) | # \ x *|----------- - -----------| # / \ 2 2 / # / ------------------------------ # / k! # /____, # k = 0 k = Dummy('k') assert fps(exp(-x)*sin(x)) == \ Sum(2**(S.Half*k)*sin(R(3, 4)*k*pi)*x**k/factorial(k), (k, 0, oo)) @XFAIL def test_X19(): # (c45) /* Derive an explicit Taylor series solution of y as a function of # x from the following implicit relation: # y = x - 1 + (x - 1)^2/2 + 2/3 (x - 1)^3 + (x - 1)^4 + # 17/10 (x - 1)^5 + ... # */ # x = sin(y) + cos(y); # Time= 0 msecs # (d45) x = sin(y) + cos(y) # # (c46) taylor_revert(%, y, 7); raise NotImplementedError("Solve using series not supported. \ Inverse Taylor series expansion also not supported") @XFAIL def test_X20(): # Pade (rational function) approximation => (2 - x)/(2 + x) # > numapprox[pade](exp(-x), x = 0, [1, 1]); # bytes used=9019816, alloc=3669344, time=13.12 # 1 - 1/2 x # --------- # 1 + 1/2 x # mpmath support numeric Pade approximant but there is # no symbolic implementation in SymPy # https://en.wikipedia.org/wiki/Pad%C3%A9_approximant raise NotImplementedError("Symbolic Pade approximant not supported") def test_X21(): """ Test whether `fourier_series` of x periodical on the [-p, p] interval equals `- (2 p / pi) sum( (-1)^n / n sin(n pi x / p), n = 1..infinity )`. """ p = symbols('p', positive=True) n = symbols('n', positive=True, integer=True) s = fourier_series(x, (x, -p, p)) # All cosine coefficients are equal to 0 assert s.an.formula == 0 # Check for sine coefficients assert s.bn.formula.subs(s.bn.variables[0], 0) == 0 assert s.bn.formula.subs(s.bn.variables[0], n) == \ -2*p/pi * (-1)**n / n * sin(n*pi*x/p) @XFAIL def test_X22(): # (c52) /* => p / 2 # - (2 p / pi^2) sum( [1 - (-1)^n] cos(n pi x / p) / n^2, # n = 1..infinity ) */ # fourier_series(abs(x), x, p); # p # (e52) a = - # 0 2 # # %nn # (2 (- 1) - 2) p # (e53) a = ------------------ # %nn 2 2 # %pi %nn # # (e54) b = 0 # %nn # # Time= 5290 msecs # inf %nn %pi %nn x # ==== (2 (- 1) - 2) cos(---------) # \ p # p > ------------------------------- # / 2 # ==== %nn # %nn = 1 p # (d54) ----------------------------------------- + - # 2 2 # %pi raise NotImplementedError("Fourier series not supported") def test_Y1(): t = symbols('t', real=True, positive=True) w = symbols('w', real=True) s = symbols('s') F, _, _ = laplace_transform(cos((w - 1)*t), t, s) assert F == s/(s**2 + (w - 1)**2) def test_Y2(): t = symbols('t', real=True, positive=True) w = symbols('w', real=True) s = symbols('s') f = inverse_laplace_transform(s/(s**2 + (w - 1)**2), s, t) assert f == cos(t*w - t) def test_Y3(): t = symbols('t', real=True, positive=True) w = symbols('w', real=True) s = symbols('s') F, _, _ = laplace_transform(sinh(w*t)*cosh(w*t), t, s) assert F == w/(s**2 - 4*w**2) def test_Y4(): t = symbols('t', real=True, positive=True) s = symbols('s') F, _, _ = laplace_transform(erf(3/sqrt(t)), t, s) assert F == (1 - exp(-6*sqrt(s)))/s @XFAIL def test_Y5_Y6(): # Solve y'' + y = 4 [H(t - 1) - H(t - 2)], y(0) = 1, y'(0) = 0 where H is the # Heaviside (unit step) function (the RHS describes a pulse of magnitude 4 and # duration 1). See David A. Sanchez, Richard C. Allen, Jr. and Walter T. # Kyner, _Differential Equations: An Introduction_, Addison-Wesley Publishing # Company, 1983, p. 211. First, take the Laplace transform of the ODE # => s^2 Y(s) - s + Y(s) = 4/s [e^(-s) - e^(-2 s)] # where Y(s) is the Laplace transform of y(t) t = symbols('t', real=True, positive=True) s = symbols('s') y = Function('y') F, _, _ = laplace_transform(diff(y(t), t, 2) + y(t) - 4*(Heaviside(t - 1) - Heaviside(t - 2)), t, s) # Laplace transform for diff() not calculated # https://github.com/sympy/sympy/issues/7176 assert (F == s**2*LaplaceTransform(y(t), t, s) - s + LaplaceTransform(y(t), t, s) - 4*exp(-s)/s + 4*exp(-2*s)/s) # TODO implement second part of test case # Now, solve for Y(s) and then take the inverse Laplace transform # => Y(s) = s/(s^2 + 1) + 4 [1/s - s/(s^2 + 1)] [e^(-s) - e^(-2 s)] # => y(t) = cos t + 4 {[1 - cos(t - 1)] H(t - 1) - [1 - cos(t - 2)] H(t - 2)} @XFAIL def test_Y7(): # What is the Laplace transform of an infinite square wave? # => 1/s + 2 sum( (-1)^n e^(- s n a)/s, n = 1..infinity ) # [Sanchez, Allen and Kyner, p. 213] t = symbols('t', real=True, positive=True) a = symbols('a', real=True) s = symbols('s') F, _, _ = laplace_transform(1 + 2*Sum((-1)**n*Heaviside(t - n*a), (n, 1, oo)), t, s) # returns 2*LaplaceTransform(Sum((-1)**n*Heaviside(-a*n + t), # (n, 1, oo)), t, s) + 1/s # https://github.com/sympy/sympy/issues/7177 assert F == 2*Sum((-1)**n*exp(-a*n*s)/s, (n, 1, oo)) + 1/s @XFAIL def test_Y8(): assert fourier_transform(1, x, z) == DiracDelta(z) def test_Y9(): assert (fourier_transform(exp(-9*x**2), x, z) == sqrt(pi)*exp(-pi**2*z**2/9)/3) def test_Y10(): assert (fourier_transform(abs(x)*exp(-3*abs(x)), x, z) == (-8*pi**2*z**2 + 18)/(16*pi**4*z**4 + 72*pi**2*z**2 + 81)) @SKIP("https://github.com/sympy/sympy/issues/7181") @slow def test_Y11(): # => pi cot(pi s) (0 < Re s < 1) [Gradshteyn and Ryzhik 17.43(5)] x, s = symbols('x s') # raises RuntimeError: maximum recursion depth exceeded # https://github.com/sympy/sympy/issues/7181 # Update 2019-02-17 raises: # TypeError: cannot unpack non-iterable MellinTransform object F, _, _ = mellin_transform(1/(1 - x), x, s) assert F == pi*cot(pi*s) @XFAIL def test_Y12(): # => 2^(s - 4) gamma(s/2)/gamma(4 - s/2) (0 < Re s < 1) # [Gradshteyn and Ryzhik 17.43(16)] x, s = symbols('x s') # returns Wrong value -2**(s - 4)*gamma(s/2 - 3)/gamma(-s/2 + 1) # https://github.com/sympy/sympy/issues/7182 F, _, _ = mellin_transform(besselj(3, x)/x**3, x, s) assert F == -2**(s - 4)*gamma(s/2)/gamma(-s/2 + 4) @XFAIL def test_Y13(): # Z[H(t - m T)] => z/[z^m (z - 1)] (H is the Heaviside (unit step) function) z raise NotImplementedError("z-transform not supported") @XFAIL def test_Y14(): # Z[H(t - m T)] => z/[z^m (z - 1)] (H is the Heaviside (unit step) function) raise NotImplementedError("z-transform not supported") def test_Z1(): r = Function('r') assert (rsolve(r(n + 2) - 2*r(n + 1) + r(n) - 2, r(n), {r(0): 1, r(1): m}).simplify() == n**2 + n*(m - 2) + 1) def test_Z2(): r = Function('r') assert (rsolve(r(n) - (5*r(n - 1) - 6*r(n - 2)), r(n), {r(0): 0, r(1): 1}) == -2**n + 3**n) def test_Z3(): # => r(n) = Fibonacci[n + 1] [Cohen, p. 83] r = Function('r') # recurrence solution is correct, Wester expects it to be simplified to # fibonacci(n+1), but that is quite hard assert (rsolve(r(n) - (r(n - 1) + r(n - 2)), r(n), {r(1): 1, r(2): 2}).simplify() == 2**(-n)*((1 + sqrt(5))**n*(sqrt(5) + 5) + (-sqrt(5) + 1)**n*(-sqrt(5) + 5))/10) @XFAIL def test_Z4(): # => [c^(n+1) [c^(n+1) - 2 c - 2] + (n+1) c^2 + 2 c - n] / [(c-1)^3 (c+1)] # [Joan Z. Yu and Robert Israel in sci.math.symbolic] r = Function('r') c = symbols('c') # raises ValueError: Polynomial or rational function expected, # got '(c**2 - c**n)/(c - c**n) s = rsolve(r(n) - ((1 + c - c**(n-1) - c**(n+1))/(1 - c**n)*r(n - 1) - c*(1 - c**(n-2))/(1 - c**(n-1))*r(n - 2) + 1), r(n), {r(1): 1, r(2): (2 + 2*c + c**2)/(1 + c)}) assert (s - (c*(n + 1)*(c*(n + 1) - 2*c - 2) + (n + 1)*c**2 + 2*c - n)/((c-1)**3*(c+1)) == 0) @XFAIL def test_Z5(): # Second order ODE with initial conditions---solve directly # transform: f(t) = sin(2 t)/8 - t cos(2 t)/4 C1, C2 = symbols('C1 C2') # initial conditions not supported, this is a manual workaround # https://github.com/sympy/sympy/issues/4720 eq = Derivative(f(x), x, 2) + 4*f(x) - sin(2*x) sol = dsolve(eq, f(x)) f0 = Lambda(x, sol.rhs) assert f0(x) == C2*sin(2*x) + (C1 - x/4)*cos(2*x) f1 = Lambda(x, diff(f0(x), x)) # TODO: Replace solve with solveset, when it works for solveset const_dict = solve((f0(0), f1(0))) result = f0(x).subs(C1, const_dict[C1]).subs(C2, const_dict[C2]) assert result == -x*cos(2*x)/4 + sin(2*x)/8 # Result is OK, but ODE solving with initial conditions should be # supported without all this manual work raise NotImplementedError('ODE solving with initial conditions \ not supported') @XFAIL def test_Z6(): # Second order ODE with initial conditions---solve using Laplace # transform: f(t) = sin(2 t)/8 - t cos(2 t)/4 t = symbols('t', real=True, positive=True) s = symbols('s') eq = Derivative(f(t), t, 2) + 4*f(t) - sin(2*t) F, _, _ = laplace_transform(eq, t, s) # Laplace transform for diff() not calculated # https://github.com/sympy/sympy/issues/7176 assert (F == s**2*LaplaceTransform(f(t), t, s) + 4*LaplaceTransform(f(t), t, s) - 2/(s**2 + 4)) # rest of test case not implemented
2add5358a8cec11485aad6f453da70d38fcb48c2c56bf73adda932cf29d0164e
from __future__ import print_function, division import itertools from sympy.core import S from sympy.core.compatibility import range, string_types from sympy.core.containers import Tuple from sympy.core.function import _coeff_isneg from sympy.core.mul import Mul from sympy.core.numbers import Rational from sympy.core.power import Pow from sympy.core.symbol import Symbol from sympy.core.sympify import SympifyError from sympy.printing.conventions import requires_partial from sympy.printing.precedence import PRECEDENCE, precedence, precedence_traditional from sympy.printing.printer import Printer from sympy.printing.str import sstr from sympy.utilities import default_sort_key from sympy.utilities.iterables import has_variety from sympy.printing.pretty.stringpict import prettyForm, stringPict from sympy.printing.pretty.pretty_symbology import xstr, hobj, vobj, xobj, \ xsym, pretty_symbol, pretty_atom, pretty_use_unicode, greek_unicode, U, \ pretty_try_use_unicode, annotated # rename for usage from outside pprint_use_unicode = pretty_use_unicode pprint_try_use_unicode = pretty_try_use_unicode class PrettyPrinter(Printer): """Printer, which converts an expression into 2D ASCII-art figure.""" printmethod = "_pretty" _default_settings = { "order": None, "full_prec": "auto", "use_unicode": None, "wrap_line": True, "num_columns": None, "use_unicode_sqrt_char": True, "root_notation": True, "mat_symbol_style": "plain", "imaginary_unit": "i", } def __init__(self, settings=None): Printer.__init__(self, settings) if not isinstance(self._settings['imaginary_unit'], string_types): raise TypeError("'imaginary_unit' must a string, not {}".format(self._settings['imaginary_unit'])) elif self._settings['imaginary_unit'] not in ["i", "j"]: raise ValueError("'imaginary_unit' must be either 'i' or 'j', not '{}'".format(self._settings['imaginary_unit'])) self.emptyPrinter = lambda x: prettyForm(xstr(x)) @property def _use_unicode(self): if self._settings['use_unicode']: return True else: return pretty_use_unicode() def doprint(self, expr): return self._print(expr).render(**self._settings) # empty op so _print(stringPict) returns the same def _print_stringPict(self, e): return e def _print_basestring(self, e): return prettyForm(e) def _print_atan2(self, e): pform = prettyForm(*self._print_seq(e.args).parens()) pform = prettyForm(*pform.left('atan2')) return pform def _print_Symbol(self, e, bold_name=False): symb = pretty_symbol(e.name, bold_name) return prettyForm(symb) _print_RandomSymbol = _print_Symbol def _print_MatrixSymbol(self, e): return self._print_Symbol(e, self._settings['mat_symbol_style'] == "bold") def _print_Float(self, e): # we will use StrPrinter's Float printer, but we need to handle the # full_prec ourselves, according to the self._print_level full_prec = self._settings["full_prec"] if full_prec == "auto": full_prec = self._print_level == 1 return prettyForm(sstr(e, full_prec=full_prec)) def _print_Cross(self, e): vec1 = e._expr1 vec2 = e._expr2 pform = self._print(vec2) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN')))) pform = prettyForm(*pform.left(')')) pform = prettyForm(*pform.left(self._print(vec1))) pform = prettyForm(*pform.left('(')) return pform def _print_Curl(self, e): vec = e._expr pform = self._print(vec) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN')))) pform = prettyForm(*pform.left(self._print(U('NABLA')))) return pform def _print_Divergence(self, e): vec = e._expr pform = self._print(vec) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR')))) pform = prettyForm(*pform.left(self._print(U('NABLA')))) return pform def _print_Dot(self, e): vec1 = e._expr1 vec2 = e._expr2 pform = self._print(vec2) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR')))) pform = prettyForm(*pform.left(')')) pform = prettyForm(*pform.left(self._print(vec1))) pform = prettyForm(*pform.left('(')) return pform def _print_Gradient(self, e): func = e._expr pform = self._print(func) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('NABLA')))) return pform def _print_Laplacian(self, e): func = e._expr pform = self._print(func) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('INCREMENT')))) return pform def _print_Atom(self, e): try: # print atoms like Exp1 or Pi return prettyForm(pretty_atom(e.__class__.__name__, printer=self)) except KeyError: return self.emptyPrinter(e) # Infinity inherits from Number, so we have to override _print_XXX order _print_Infinity = _print_Atom _print_NegativeInfinity = _print_Atom _print_EmptySet = _print_Atom _print_Naturals = _print_Atom _print_Naturals0 = _print_Atom _print_Integers = _print_Atom _print_Rationals = _print_Atom _print_Complexes = _print_Atom _print_EmptySequence = _print_Atom def _print_Reals(self, e): if self._use_unicode: return self._print_Atom(e) else: inf_list = ['-oo', 'oo'] return self._print_seq(inf_list, '(', ')') def _print_subfactorial(self, e): x = e.args[0] pform = self._print(x) # Add parentheses if needed if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol): pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left('!')) return pform def _print_factorial(self, e): x = e.args[0] pform = self._print(x) # Add parentheses if needed if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol): pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.right('!')) return pform def _print_factorial2(self, e): x = e.args[0] pform = self._print(x) # Add parentheses if needed if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol): pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.right('!!')) return pform def _print_binomial(self, e): n, k = e.args n_pform = self._print(n) k_pform = self._print(k) bar = ' '*max(n_pform.width(), k_pform.width()) pform = prettyForm(*k_pform.above(bar)) pform = prettyForm(*pform.above(n_pform)) pform = prettyForm(*pform.parens('(', ')')) pform.baseline = (pform.baseline + 1)//2 return pform def _print_Relational(self, e): op = prettyForm(' ' + xsym(e.rel_op) + ' ') l = self._print(e.lhs) r = self._print(e.rhs) pform = prettyForm(*stringPict.next(l, op, r)) return pform def _print_Not(self, e): from sympy import Equivalent, Implies if self._use_unicode: arg = e.args[0] pform = self._print(arg) if isinstance(arg, Equivalent): return self._print_Equivalent(arg, altchar=u"\N{LEFT RIGHT DOUBLE ARROW WITH STROKE}") if isinstance(arg, Implies): return self._print_Implies(arg, altchar=u"\N{RIGHTWARDS ARROW WITH STROKE}") if arg.is_Boolean and not arg.is_Not: pform = prettyForm(*pform.parens()) return prettyForm(*pform.left(u"\N{NOT SIGN}")) else: return self._print_Function(e) def __print_Boolean(self, e, char, sort=True): args = e.args if sort: args = sorted(e.args, key=default_sort_key) arg = args[0] pform = self._print(arg) if arg.is_Boolean and not arg.is_Not: pform = prettyForm(*pform.parens()) for arg in args[1:]: pform_arg = self._print(arg) if arg.is_Boolean and not arg.is_Not: pform_arg = prettyForm(*pform_arg.parens()) pform = prettyForm(*pform.right(u' %s ' % char)) pform = prettyForm(*pform.right(pform_arg)) return pform def _print_And(self, e): if self._use_unicode: return self.__print_Boolean(e, u"\N{LOGICAL AND}") else: return self._print_Function(e, sort=True) def _print_Or(self, e): if self._use_unicode: return self.__print_Boolean(e, u"\N{LOGICAL OR}") else: return self._print_Function(e, sort=True) def _print_Xor(self, e): if self._use_unicode: return self.__print_Boolean(e, u"\N{XOR}") else: return self._print_Function(e, sort=True) def _print_Nand(self, e): if self._use_unicode: return self.__print_Boolean(e, u"\N{NAND}") else: return self._print_Function(e, sort=True) def _print_Nor(self, e): if self._use_unicode: return self.__print_Boolean(e, u"\N{NOR}") else: return self._print_Function(e, sort=True) def _print_Implies(self, e, altchar=None): if self._use_unicode: return self.__print_Boolean(e, altchar or u"\N{RIGHTWARDS ARROW}", sort=False) else: return self._print_Function(e) def _print_Equivalent(self, e, altchar=None): if self._use_unicode: return self.__print_Boolean(e, altchar or u"\N{LEFT RIGHT DOUBLE ARROW}") else: return self._print_Function(e, sort=True) def _print_conjugate(self, e): pform = self._print(e.args[0]) return prettyForm( *pform.above( hobj('_', pform.width())) ) def _print_Abs(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.parens('|', '|')) return pform _print_Determinant = _print_Abs def _print_floor(self, e): if self._use_unicode: pform = self._print(e.args[0]) pform = prettyForm(*pform.parens('lfloor', 'rfloor')) return pform else: return self._print_Function(e) def _print_ceiling(self, e): if self._use_unicode: pform = self._print(e.args[0]) pform = prettyForm(*pform.parens('lceil', 'rceil')) return pform else: return self._print_Function(e) def _print_Derivative(self, deriv): if requires_partial(deriv.expr) and self._use_unicode: deriv_symbol = U('PARTIAL DIFFERENTIAL') else: deriv_symbol = r'd' x = None count_total_deriv = 0 for sym, num in reversed(deriv.variable_count): s = self._print(sym) ds = prettyForm(*s.left(deriv_symbol)) count_total_deriv += num if (not num.is_Integer) or (num > 1): ds = ds**prettyForm(str(num)) if x is None: x = ds else: x = prettyForm(*x.right(' ')) x = prettyForm(*x.right(ds)) f = prettyForm( binding=prettyForm.FUNC, *self._print(deriv.expr).parens()) pform = prettyForm(deriv_symbol) if (count_total_deriv > 1) != False: pform = pform**prettyForm(str(count_total_deriv)) pform = prettyForm(*pform.below(stringPict.LINE, x)) pform.baseline = pform.baseline + 1 pform = prettyForm(*stringPict.next(pform, f)) pform.binding = prettyForm.MUL return pform def _print_Cycle(self, dc): from sympy.combinatorics.permutations import Permutation, Cycle # for Empty Cycle if dc == Cycle(): cyc = stringPict('') return prettyForm(*cyc.parens()) dc_list = Permutation(dc.list()).cyclic_form # for Identity Cycle if dc_list == []: cyc = self._print(dc.size - 1) return prettyForm(*cyc.parens()) cyc = stringPict('') for i in dc_list: l = self._print(str(tuple(i)).replace(',', '')) cyc = prettyForm(*cyc.right(l)) return cyc def _print_Integral(self, integral): f = integral.function # Add parentheses if arg involves addition of terms and # create a pretty form for the argument prettyF = self._print(f) # XXX generalize parens if f.is_Add: prettyF = prettyForm(*prettyF.parens()) # dx dy dz ... arg = prettyF for x in integral.limits: prettyArg = self._print(x[0]) # XXX qparens (parens if needs-parens) if prettyArg.width() > 1: prettyArg = prettyForm(*prettyArg.parens()) arg = prettyForm(*arg.right(' d', prettyArg)) # \int \int \int ... firstterm = True s = None for lim in integral.limits: x = lim[0] # Create bar based on the height of the argument h = arg.height() H = h + 2 # XXX hack! ascii_mode = not self._use_unicode if ascii_mode: H += 2 vint = vobj('int', H) # Construct the pretty form with the integral sign and the argument pform = prettyForm(vint) pform.baseline = arg.baseline + ( H - h)//2 # covering the whole argument if len(lim) > 1: # Create pretty forms for endpoints, if definite integral. # Do not print empty endpoints. if len(lim) == 2: prettyA = prettyForm("") prettyB = self._print(lim[1]) if len(lim) == 3: prettyA = self._print(lim[1]) prettyB = self._print(lim[2]) if ascii_mode: # XXX hack # Add spacing so that endpoint can more easily be # identified with the correct integral sign spc = max(1, 3 - prettyB.width()) prettyB = prettyForm(*prettyB.left(' ' * spc)) spc = max(1, 4 - prettyA.width()) prettyA = prettyForm(*prettyA.right(' ' * spc)) pform = prettyForm(*pform.above(prettyB)) pform = prettyForm(*pform.below(prettyA)) if not ascii_mode: # XXX hack pform = prettyForm(*pform.right(' ')) if firstterm: s = pform # first term firstterm = False else: s = prettyForm(*s.left(pform)) pform = prettyForm(*arg.left(s)) pform.binding = prettyForm.MUL return pform def _print_Product(self, expr): func = expr.term pretty_func = self._print(func) horizontal_chr = xobj('_', 1) corner_chr = xobj('_', 1) vertical_chr = xobj('|', 1) if self._use_unicode: # use unicode corners horizontal_chr = xobj('-', 1) corner_chr = u'\N{BOX DRAWINGS LIGHT DOWN AND HORIZONTAL}' func_height = pretty_func.height() first = True max_upper = 0 sign_height = 0 for lim in expr.limits: pretty_lower, pretty_upper = self.__print_SumProduct_Limits(lim) width = (func_height + 2) * 5 // 3 - 2 sign_lines = [horizontal_chr + corner_chr + (horizontal_chr * (width-2)) + corner_chr + horizontal_chr] for _ in range(func_height + 1): sign_lines.append(' ' + vertical_chr + (' ' * (width-2)) + vertical_chr + ' ') pretty_sign = stringPict('') pretty_sign = prettyForm(*pretty_sign.stack(*sign_lines)) max_upper = max(max_upper, pretty_upper.height()) if first: sign_height = pretty_sign.height() pretty_sign = prettyForm(*pretty_sign.above(pretty_upper)) pretty_sign = prettyForm(*pretty_sign.below(pretty_lower)) if first: pretty_func.baseline = 0 first = False height = pretty_sign.height() padding = stringPict('') padding = prettyForm(*padding.stack(*[' ']*(height - 1))) pretty_sign = prettyForm(*pretty_sign.right(padding)) pretty_func = prettyForm(*pretty_sign.right(pretty_func)) pretty_func.baseline = max_upper + sign_height//2 pretty_func.binding = prettyForm.MUL return pretty_func def __print_SumProduct_Limits(self, lim): def print_start(lhs, rhs): op = prettyForm(' ' + xsym("==") + ' ') l = self._print(lhs) r = self._print(rhs) pform = prettyForm(*stringPict.next(l, op, r)) return pform prettyUpper = self._print(lim[2]) prettyLower = print_start(lim[0], lim[1]) return prettyLower, prettyUpper def _print_Sum(self, expr): ascii_mode = not self._use_unicode def asum(hrequired, lower, upper, use_ascii): def adjust(s, wid=None, how='<^>'): if not wid or len(s) > wid: return s need = wid - len(s) if how == '<^>' or how == "<" or how not in list('<^>'): return s + ' '*need half = need//2 lead = ' '*half if how == ">": return " "*need + s return lead + s + ' '*(need - len(lead)) h = max(hrequired, 2) d = h//2 w = d + 1 more = hrequired % 2 lines = [] if use_ascii: lines.append("_"*(w) + ' ') lines.append(r"\%s`" % (' '*(w - 1))) for i in range(1, d): lines.append('%s\\%s' % (' '*i, ' '*(w - i))) if more: lines.append('%s)%s' % (' '*(d), ' '*(w - d))) for i in reversed(range(1, d)): lines.append('%s/%s' % (' '*i, ' '*(w - i))) lines.append("/" + "_"*(w - 1) + ',') return d, h + more, lines, more else: w = w + more d = d + more vsum = vobj('sum', 4) lines.append("_"*(w)) for i in range(0, d): lines.append('%s%s%s' % (' '*i, vsum[2], ' '*(w - i - 1))) for i in reversed(range(0, d)): lines.append('%s%s%s' % (' '*i, vsum[4], ' '*(w - i - 1))) lines.append(vsum[8]*(w)) return d, h + 2*more, lines, more f = expr.function prettyF = self._print(f) if f.is_Add: # add parens prettyF = prettyForm(*prettyF.parens()) H = prettyF.height() + 2 # \sum \sum \sum ... first = True max_upper = 0 sign_height = 0 for lim in expr.limits: prettyLower, prettyUpper = self.__print_SumProduct_Limits(lim) max_upper = max(max_upper, prettyUpper.height()) # Create sum sign based on the height of the argument d, h, slines, adjustment = asum( H, prettyLower.width(), prettyUpper.width(), ascii_mode) prettySign = stringPict('') prettySign = prettyForm(*prettySign.stack(*slines)) if first: sign_height = prettySign.height() prettySign = prettyForm(*prettySign.above(prettyUpper)) prettySign = prettyForm(*prettySign.below(prettyLower)) if first: # change F baseline so it centers on the sign prettyF.baseline -= d - (prettyF.height()//2 - prettyF.baseline) first = False # put padding to the right pad = stringPict('') pad = prettyForm(*pad.stack(*[' ']*h)) prettySign = prettyForm(*prettySign.right(pad)) # put the present prettyF to the right prettyF = prettyForm(*prettySign.right(prettyF)) # adjust baseline of ascii mode sigma with an odd height so that it is # exactly through the center ascii_adjustment = ascii_mode if not adjustment else 0 prettyF.baseline = max_upper + sign_height//2 + ascii_adjustment prettyF.binding = prettyForm.MUL return prettyF def _print_Limit(self, l): e, z, z0, dir = l.args E = self._print(e) if precedence(e) <= PRECEDENCE["Mul"]: E = prettyForm(*E.parens('(', ')')) Lim = prettyForm('lim') LimArg = self._print(z) if self._use_unicode: LimArg = prettyForm(*LimArg.right(u'\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{RIGHTWARDS ARROW}')) else: LimArg = prettyForm(*LimArg.right('->')) LimArg = prettyForm(*LimArg.right(self._print(z0))) if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity): dir = "" else: if self._use_unicode: dir = u'\N{SUPERSCRIPT PLUS SIGN}' if str(dir) == "+" else u'\N{SUPERSCRIPT MINUS}' LimArg = prettyForm(*LimArg.right(self._print(dir))) Lim = prettyForm(*Lim.below(LimArg)) Lim = prettyForm(*Lim.right(E), binding=prettyForm.MUL) return Lim def _print_matrix_contents(self, e): """ This method factors out what is essentially grid printing. """ M = e # matrix Ms = {} # i,j -> pretty(M[i,j]) for i in range(M.rows): for j in range(M.cols): Ms[i, j] = self._print(M[i, j]) # h- and v- spacers hsep = 2 vsep = 1 # max width for columns maxw = [-1] * M.cols for j in range(M.cols): maxw[j] = max([Ms[i, j].width() for i in range(M.rows)] or [0]) # drawing result D = None for i in range(M.rows): D_row = None for j in range(M.cols): s = Ms[i, j] # reshape s to maxw # XXX this should be generalized, and go to stringPict.reshape ? assert s.width() <= maxw[j] # hcenter it, +0.5 to the right 2 # ( it's better to align formula starts for say 0 and r ) # XXX this is not good in all cases -- maybe introduce vbaseline? wdelta = maxw[j] - s.width() wleft = wdelta // 2 wright = wdelta - wleft s = prettyForm(*s.right(' '*wright)) s = prettyForm(*s.left(' '*wleft)) # we don't need vcenter cells -- this is automatically done in # a pretty way because when their baselines are taking into # account in .right() if D_row is None: D_row = s # first box in a row continue D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer D_row = prettyForm(*D_row.right(s)) if D is None: D = D_row # first row in a picture continue # v-spacer for _ in range(vsep): D = prettyForm(*D.below(' ')) D = prettyForm(*D.below(D_row)) if D is None: D = prettyForm('') # Empty Matrix return D def _print_MatrixBase(self, e): D = self._print_matrix_contents(e) D.baseline = D.height()//2 D = prettyForm(*D.parens('[', ']')) return D _print_ImmutableMatrix = _print_MatrixBase _print_Matrix = _print_MatrixBase def _print_TensorProduct(self, expr): # This should somehow share the code with _print_WedgeProduct: circled_times = "\u2297" return self._print_seq(expr.args, None, None, circled_times, parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"]) def _print_WedgeProduct(self, expr): # This should somehow share the code with _print_TensorProduct: wedge_symbol = u"\u2227" return self._print_seq(expr.args, None, None, wedge_symbol, parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"]) def _print_Trace(self, e): D = self._print(e.arg) D = prettyForm(*D.parens('(',')')) D.baseline = D.height()//2 D = prettyForm(*D.left('\n'*(0) + 'tr')) return D def _print_MatrixElement(self, expr): from sympy.matrices import MatrixSymbol from sympy import Symbol if (isinstance(expr.parent, MatrixSymbol) and expr.i.is_number and expr.j.is_number): return self._print( Symbol(expr.parent.name + '_%d%d' % (expr.i, expr.j))) else: prettyFunc = self._print(expr.parent) prettyFunc = prettyForm(*prettyFunc.parens()) prettyIndices = self._print_seq((expr.i, expr.j), delimiter=', ' ).parens(left='[', right=']')[0] pform = prettyForm(binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyIndices)) # store pform parts so it can be reassembled e.g. when powered pform.prettyFunc = prettyFunc pform.prettyArgs = prettyIndices return pform def _print_MatrixSlice(self, m): # XXX works only for applied functions prettyFunc = self._print(m.parent) def ppslice(x): x = list(x) if x[2] == 1: del x[2] if x[1] == x[0] + 1: del x[1] if x[0] == 0: x[0] = '' return prettyForm(*self._print_seq(x, delimiter=':')) prettyArgs = self._print_seq((ppslice(m.rowslice), ppslice(m.colslice)), delimiter=', ').parens(left='[', right=']')[0] pform = prettyForm( binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) # store pform parts so it can be reassembled e.g. when powered pform.prettyFunc = prettyFunc pform.prettyArgs = prettyArgs return pform def _print_Transpose(self, expr): pform = self._print(expr.arg) from sympy.matrices import MatrixSymbol if not isinstance(expr.arg, MatrixSymbol): pform = prettyForm(*pform.parens()) pform = pform**(prettyForm('T')) return pform def _print_Adjoint(self, expr): pform = self._print(expr.arg) if self._use_unicode: dag = prettyForm(u'\N{DAGGER}') else: dag = prettyForm('+') from sympy.matrices import MatrixSymbol if not isinstance(expr.arg, MatrixSymbol): pform = prettyForm(*pform.parens()) pform = pform**dag return pform def _print_BlockMatrix(self, B): if B.blocks.shape == (1, 1): return self._print(B.blocks[0, 0]) return self._print(B.blocks) def _print_MatAdd(self, expr): s = None for item in expr.args: pform = self._print(item) if s is None: s = pform # First element else: coeff = item.as_coeff_mmul()[0] if _coeff_isneg(S(coeff)): s = prettyForm(*stringPict.next(s, ' ')) pform = self._print(item) else: s = prettyForm(*stringPict.next(s, ' + ')) s = prettyForm(*stringPict.next(s, pform)) return s def _print_MatMul(self, expr): args = list(expr.args) from sympy import Add, MatAdd, HadamardProduct, KroneckerProduct for i, a in enumerate(args): if (isinstance(a, (Add, MatAdd, HadamardProduct, KroneckerProduct)) and len(expr.args) > 1): args[i] = prettyForm(*self._print(a).parens()) else: args[i] = self._print(a) return prettyForm.__mul__(*args) def _print_Identity(self, expr): if self._use_unicode: return prettyForm(u'\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL I}') else: return prettyForm('I') def _print_ZeroMatrix(self, expr): if self._use_unicode: return prettyForm(u'\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ZERO}') else: return prettyForm('0') def _print_OneMatrix(self, expr): if self._use_unicode: return prettyForm(u'\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ONE}') else: return prettyForm('1') def _print_DotProduct(self, expr): args = list(expr.args) for i, a in enumerate(args): args[i] = self._print(a) return prettyForm.__mul__(*args) def _print_MatPow(self, expr): pform = self._print(expr.base) from sympy.matrices import MatrixSymbol if not isinstance(expr.base, MatrixSymbol): pform = prettyForm(*pform.parens()) pform = pform**(self._print(expr.exp)) return pform def _print_HadamardProduct(self, expr): from sympy import MatAdd, MatMul, HadamardProduct if self._use_unicode: delim = pretty_atom('Ring') else: delim = '.*' return self._print_seq(expr.args, None, None, delim, parenthesize=lambda x: isinstance(x, (MatAdd, MatMul, HadamardProduct))) def _print_HadamardPower(self, expr): # from sympy import MatAdd, MatMul if self._use_unicode: circ = pretty_atom('Ring') else: circ = self._print('.') pretty_base = self._print(expr.base) pretty_exp = self._print(expr.exp) if precedence(expr.exp) < PRECEDENCE["Mul"]: pretty_exp = prettyForm(*pretty_exp.parens()) pretty_circ_exp = prettyForm( binding=prettyForm.LINE, *stringPict.next(circ, pretty_exp) ) return pretty_base**pretty_circ_exp def _print_KroneckerProduct(self, expr): from sympy import MatAdd, MatMul if self._use_unicode: delim = u' \N{N-ARY CIRCLED TIMES OPERATOR} ' else: delim = ' x ' return self._print_seq(expr.args, None, None, delim, parenthesize=lambda x: isinstance(x, (MatAdd, MatMul))) def _print_FunctionMatrix(self, X): D = self._print(X.lamda.expr) D = prettyForm(*D.parens('[', ']')) return D def _print_BasisDependent(self, expr): from sympy.vector import Vector if not self._use_unicode: raise NotImplementedError("ASCII pretty printing of BasisDependent is not implemented") if expr == expr.zero: return prettyForm(expr.zero._pretty_form) o1 = [] vectstrs = [] if isinstance(expr, Vector): items = expr.separate().items() else: items = [(0, expr)] for system, vect in items: inneritems = list(vect.components.items()) inneritems.sort(key = lambda x: x[0].__str__()) for k, v in inneritems: #if the coef of the basis vector is 1 #we skip the 1 if v == 1: o1.append(u"" + k._pretty_form) #Same for -1 elif v == -1: o1.append(u"(-1) " + k._pretty_form) #For a general expr else: #We always wrap the measure numbers in #parentheses arg_str = self._print( v).parens()[0] o1.append(arg_str + ' ' + k._pretty_form) vectstrs.append(k._pretty_form) #outstr = u("").join(o1) if o1[0].startswith(u" + "): o1[0] = o1[0][3:] elif o1[0].startswith(" "): o1[0] = o1[0][1:] #Fixing the newlines lengths = [] strs = [''] flag = [] for i, partstr in enumerate(o1): flag.append(0) # XXX: What is this hack? if '\n' in partstr: tempstr = partstr tempstr = tempstr.replace(vectstrs[i], '') if u'\N{right parenthesis extension}' in tempstr: # If scalar is a fraction for paren in range(len(tempstr)): flag[i] = 1 if tempstr[paren] == u'\N{right parenthesis extension}': tempstr = tempstr[:paren] + u'\N{right parenthesis extension}'\ + ' ' + vectstrs[i] + tempstr[paren + 1:] break elif u'\N{RIGHT PARENTHESIS LOWER HOOK}' in tempstr: flag[i] = 1 tempstr = tempstr.replace(u'\N{RIGHT PARENTHESIS LOWER HOOK}', u'\N{RIGHT PARENTHESIS LOWER HOOK}' + ' ' + vectstrs[i]) else: tempstr = tempstr.replace(u'\N{RIGHT PARENTHESIS UPPER HOOK}', u'\N{RIGHT PARENTHESIS UPPER HOOK}' + ' ' + vectstrs[i]) o1[i] = tempstr o1 = [x.split('\n') for x in o1] n_newlines = max([len(x) for x in o1]) # Width of part in its pretty form if 1 in flag: # If there was a fractional scalar for i, parts in enumerate(o1): if len(parts) == 1: # If part has no newline parts.insert(0, ' ' * (len(parts[0]))) flag[i] = 1 for i, parts in enumerate(o1): lengths.append(len(parts[flag[i]])) for j in range(n_newlines): if j+1 <= len(parts): if j >= len(strs): strs.append(' ' * (sum(lengths[:-1]) + 3*(len(lengths)-1))) if j == flag[i]: strs[flag[i]] += parts[flag[i]] + ' + ' else: strs[j] += parts[j] + ' '*(lengths[-1] - len(parts[j])+ 3) else: if j >= len(strs): strs.append(' ' * (sum(lengths[:-1]) + 3*(len(lengths)-1))) strs[j] += ' '*(lengths[-1]+3) return prettyForm(u'\n'.join([s[:-3] for s in strs])) def _print_NDimArray(self, expr): from sympy import ImmutableMatrix if expr.rank() == 0: return self._print(expr[()]) level_str = [[]] + [[] for i in range(expr.rank())] shape_ranges = [list(range(i)) for i in expr.shape] # leave eventual matrix elements unflattened mat = lambda x: ImmutableMatrix(x, evaluate=False) for outer_i in itertools.product(*shape_ranges): level_str[-1].append(expr[outer_i]) even = True for back_outer_i in range(expr.rank()-1, -1, -1): if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]: break if even: level_str[back_outer_i].append(level_str[back_outer_i+1]) else: level_str[back_outer_i].append(mat( level_str[back_outer_i+1])) if len(level_str[back_outer_i + 1]) == 1: level_str[back_outer_i][-1] = mat( [[level_str[back_outer_i][-1]]]) even = not even level_str[back_outer_i+1] = [] out_expr = level_str[0][0] if expr.rank() % 2 == 1: out_expr = mat([out_expr]) return self._print(out_expr) _print_ImmutableDenseNDimArray = _print_NDimArray _print_ImmutableSparseNDimArray = _print_NDimArray _print_MutableDenseNDimArray = _print_NDimArray _print_MutableSparseNDimArray = _print_NDimArray def _printer_tensor_indices(self, name, indices, index_map={}): center = stringPict(name) top = stringPict(" "*center.width()) bot = stringPict(" "*center.width()) last_valence = None prev_map = None for i, index in enumerate(indices): indpic = self._print(index.args[0]) if ((index in index_map) or prev_map) and last_valence == index.is_up: if index.is_up: top = prettyForm(*stringPict.next(top, ",")) else: bot = prettyForm(*stringPict.next(bot, ",")) if index in index_map: indpic = prettyForm(*stringPict.next(indpic, "=")) indpic = prettyForm(*stringPict.next(indpic, self._print(index_map[index]))) prev_map = True else: prev_map = False if index.is_up: top = stringPict(*top.right(indpic)) center = stringPict(*center.right(" "*indpic.width())) bot = stringPict(*bot.right(" "*indpic.width())) else: bot = stringPict(*bot.right(indpic)) center = stringPict(*center.right(" "*indpic.width())) top = stringPict(*top.right(" "*indpic.width())) last_valence = index.is_up pict = prettyForm(*center.above(top)) pict = prettyForm(*pict.below(bot)) return pict def _print_Tensor(self, expr): name = expr.args[0].name indices = expr.get_indices() return self._printer_tensor_indices(name, indices) def _print_TensorElement(self, expr): name = expr.expr.args[0].name indices = expr.expr.get_indices() index_map = expr.index_map return self._printer_tensor_indices(name, indices, index_map) def _print_TensMul(self, expr): sign, args = expr._get_args_for_traditional_printer() args = [ prettyForm(*self._print(i).parens()) if precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i) for i in args ] pform = prettyForm.__mul__(*args) if sign: return prettyForm(*pform.left(sign)) else: return pform def _print_TensAdd(self, expr): args = [ prettyForm(*self._print(i).parens()) if precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i) for i in expr.args ] return prettyForm.__add__(*args) def _print_TensorIndex(self, expr): sym = expr.args[0] if not expr.is_up: sym = -sym return self._print(sym) def _print_PartialDerivative(self, deriv): if self._use_unicode: deriv_symbol = U('PARTIAL DIFFERENTIAL') else: deriv_symbol = r'd' x = None for variable in reversed(deriv.variables): s = self._print(variable) ds = prettyForm(*s.left(deriv_symbol)) if x is None: x = ds else: x = prettyForm(*x.right(' ')) x = prettyForm(*x.right(ds)) f = prettyForm( binding=prettyForm.FUNC, *self._print(deriv.expr).parens()) pform = prettyForm(deriv_symbol) pform = prettyForm(*pform.below(stringPict.LINE, x)) pform.baseline = pform.baseline + 1 pform = prettyForm(*stringPict.next(pform, f)) pform.binding = prettyForm.MUL return pform def _print_Piecewise(self, pexpr): P = {} for n, ec in enumerate(pexpr.args): P[n, 0] = self._print(ec.expr) if ec.cond == True: P[n, 1] = prettyForm('otherwise') else: P[n, 1] = prettyForm( *prettyForm('for ').right(self._print(ec.cond))) hsep = 2 vsep = 1 len_args = len(pexpr.args) # max widths maxw = [max([P[i, j].width() for i in range(len_args)]) for j in range(2)] # FIXME: Refactor this code and matrix into some tabular environment. # drawing result D = None for i in range(len_args): D_row = None for j in range(2): p = P[i, j] assert p.width() <= maxw[j] wdelta = maxw[j] - p.width() wleft = wdelta // 2 wright = wdelta - wleft p = prettyForm(*p.right(' '*wright)) p = prettyForm(*p.left(' '*wleft)) if D_row is None: D_row = p continue D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer D_row = prettyForm(*D_row.right(p)) if D is None: D = D_row # first row in a picture continue # v-spacer for _ in range(vsep): D = prettyForm(*D.below(' ')) D = prettyForm(*D.below(D_row)) D = prettyForm(*D.parens('{', '')) D.baseline = D.height()//2 D.binding = prettyForm.OPEN return D def _print_ITE(self, ite): from sympy.functions.elementary.piecewise import Piecewise return self._print(ite.rewrite(Piecewise)) def _hprint_vec(self, v): D = None for a in v: p = a if D is None: D = p else: D = prettyForm(*D.right(', ')) D = prettyForm(*D.right(p)) if D is None: D = stringPict(' ') return D def _hprint_vseparator(self, p1, p2): tmp = prettyForm(*p1.right(p2)) sep = stringPict(vobj('|', tmp.height()), baseline=tmp.baseline) return prettyForm(*p1.right(sep, p2)) def _print_hyper(self, e): # FIXME refactor Matrix, Piecewise, and this into a tabular environment ap = [self._print(a) for a in e.ap] bq = [self._print(b) for b in e.bq] P = self._print(e.argument) P.baseline = P.height()//2 # Drawing result - first create the ap, bq vectors D = None for v in [ap, bq]: D_row = self._hprint_vec(v) if D is None: D = D_row # first row in a picture else: D = prettyForm(*D.below(' ')) D = prettyForm(*D.below(D_row)) # make sure that the argument `z' is centred vertically D.baseline = D.height()//2 # insert horizontal separator P = prettyForm(*P.left(' ')) D = prettyForm(*D.right(' ')) # insert separating `|` D = self._hprint_vseparator(D, P) # add parens D = prettyForm(*D.parens('(', ')')) # create the F symbol above = D.height()//2 - 1 below = D.height() - above - 1 sz, t, b, add, img = annotated('F') F = prettyForm('\n' * (above - t) + img + '\n' * (below - b), baseline=above + sz) add = (sz + 1)//2 F = prettyForm(*F.left(self._print(len(e.ap)))) F = prettyForm(*F.right(self._print(len(e.bq)))) F.baseline = above + add D = prettyForm(*F.right(' ', D)) return D def _print_meijerg(self, e): # FIXME refactor Matrix, Piecewise, and this into a tabular environment v = {} v[(0, 0)] = [self._print(a) for a in e.an] v[(0, 1)] = [self._print(a) for a in e.aother] v[(1, 0)] = [self._print(b) for b in e.bm] v[(1, 1)] = [self._print(b) for b in e.bother] P = self._print(e.argument) P.baseline = P.height()//2 vp = {} for idx in v: vp[idx] = self._hprint_vec(v[idx]) for i in range(2): maxw = max(vp[(0, i)].width(), vp[(1, i)].width()) for j in range(2): s = vp[(j, i)] left = (maxw - s.width()) // 2 right = maxw - left - s.width() s = prettyForm(*s.left(' ' * left)) s = prettyForm(*s.right(' ' * right)) vp[(j, i)] = s D1 = prettyForm(*vp[(0, 0)].right(' ', vp[(0, 1)])) D1 = prettyForm(*D1.below(' ')) D2 = prettyForm(*vp[(1, 0)].right(' ', vp[(1, 1)])) D = prettyForm(*D1.below(D2)) # make sure that the argument `z' is centred vertically D.baseline = D.height()//2 # insert horizontal separator P = prettyForm(*P.left(' ')) D = prettyForm(*D.right(' ')) # insert separating `|` D = self._hprint_vseparator(D, P) # add parens D = prettyForm(*D.parens('(', ')')) # create the G symbol above = D.height()//2 - 1 below = D.height() - above - 1 sz, t, b, add, img = annotated('G') F = prettyForm('\n' * (above - t) + img + '\n' * (below - b), baseline=above + sz) pp = self._print(len(e.ap)) pq = self._print(len(e.bq)) pm = self._print(len(e.bm)) pn = self._print(len(e.an)) def adjust(p1, p2): diff = p1.width() - p2.width() if diff == 0: return p1, p2 elif diff > 0: return p1, prettyForm(*p2.left(' '*diff)) else: return prettyForm(*p1.left(' '*-diff)), p2 pp, pm = adjust(pp, pm) pq, pn = adjust(pq, pn) pu = prettyForm(*pm.right(', ', pn)) pl = prettyForm(*pp.right(', ', pq)) ht = F.baseline - above - 2 if ht > 0: pu = prettyForm(*pu.below('\n'*ht)) p = prettyForm(*pu.below(pl)) F.baseline = above F = prettyForm(*F.right(p)) F.baseline = above + add D = prettyForm(*F.right(' ', D)) return D def _print_ExpBase(self, e): # TODO should exp_polar be printed differently? # what about exp_polar(0), exp_polar(1)? base = prettyForm(pretty_atom('Exp1', 'e')) return base ** self._print(e.args[0]) def _print_Function(self, e, sort=False, func_name=None): # optional argument func_name for supplying custom names # XXX works only for applied functions return self._helper_print_function(e.func, e.args, sort=sort, func_name=func_name) def _print_mathieuc(self, e): return self._print_Function(e, func_name='C') def _print_mathieus(self, e): return self._print_Function(e, func_name='S') def _print_mathieucprime(self, e): return self._print_Function(e, func_name="C'") def _print_mathieusprime(self, e): return self._print_Function(e, func_name="S'") def _helper_print_function(self, func, args, sort=False, func_name=None, delimiter=', ', elementwise=False): if sort: args = sorted(args, key=default_sort_key) if not func_name and hasattr(func, "__name__"): func_name = func.__name__ if func_name: prettyFunc = self._print(Symbol(func_name)) else: prettyFunc = prettyForm(*self._print(func).parens()) if elementwise: if self._use_unicode: circ = pretty_atom('Modifier Letter Low Ring') else: circ = '.' circ = self._print(circ) prettyFunc = prettyForm( binding=prettyForm.LINE, *stringPict.next(prettyFunc, circ) ) prettyArgs = prettyForm(*self._print_seq(args, delimiter=delimiter).parens()) pform = prettyForm( binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) # store pform parts so it can be reassembled e.g. when powered pform.prettyFunc = prettyFunc pform.prettyArgs = prettyArgs return pform def _print_ElementwiseApplyFunction(self, e): func = e.function arg = e.expr args = [arg] return self._helper_print_function(func, args, delimiter="", elementwise=True) @property def _special_function_classes(self): from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.functions.special.gamma_functions import gamma, lowergamma from sympy.functions.special.zeta_functions import lerchphi from sympy.functions.special.beta_functions import beta from sympy.functions.special.delta_functions import DiracDelta from sympy.functions.special.error_functions import Chi return {KroneckerDelta: [greek_unicode['delta'], 'delta'], gamma: [greek_unicode['Gamma'], 'Gamma'], lerchphi: [greek_unicode['Phi'], 'lerchphi'], lowergamma: [greek_unicode['gamma'], 'gamma'], beta: [greek_unicode['Beta'], 'B'], DiracDelta: [greek_unicode['delta'], 'delta'], Chi: ['Chi', 'Chi']} def _print_FunctionClass(self, expr): for cls in self._special_function_classes: if issubclass(expr, cls) and expr.__name__ == cls.__name__: if self._use_unicode: return prettyForm(self._special_function_classes[cls][0]) else: return prettyForm(self._special_function_classes[cls][1]) func_name = expr.__name__ return prettyForm(pretty_symbol(func_name)) def _print_GeometryEntity(self, expr): # GeometryEntity is based on Tuple but should not print like a Tuple return self.emptyPrinter(expr) def _print_lerchphi(self, e): func_name = greek_unicode['Phi'] if self._use_unicode else 'lerchphi' return self._print_Function(e, func_name=func_name) def _print_dirichlet_eta(self, e): func_name = greek_unicode['eta'] if self._use_unicode else 'dirichlet_eta' return self._print_Function(e, func_name=func_name) def _print_Heaviside(self, e): func_name = greek_unicode['theta'] if self._use_unicode else 'Heaviside' return self._print_Function(e, func_name=func_name) def _print_fresnels(self, e): return self._print_Function(e, func_name="S") def _print_fresnelc(self, e): return self._print_Function(e, func_name="C") def _print_airyai(self, e): return self._print_Function(e, func_name="Ai") def _print_airybi(self, e): return self._print_Function(e, func_name="Bi") def _print_airyaiprime(self, e): return self._print_Function(e, func_name="Ai'") def _print_airybiprime(self, e): return self._print_Function(e, func_name="Bi'") def _print_LambertW(self, e): return self._print_Function(e, func_name="W") def _print_Lambda(self, e): expr = e.expr sig = e.signature if self._use_unicode: arrow = u" \N{RIGHTWARDS ARROW FROM BAR} " else: arrow = " -> " if len(sig) == 1 and sig[0].is_symbol: sig = sig[0] var_form = self._print(sig) return prettyForm(*stringPict.next(var_form, arrow, self._print(expr)), binding=8) def _print_Order(self, expr): pform = self._print(expr.expr) if (expr.point and any(p != S.Zero for p in expr.point)) or \ len(expr.variables) > 1: pform = prettyForm(*pform.right("; ")) if len(expr.variables) > 1: pform = prettyForm(*pform.right(self._print(expr.variables))) elif len(expr.variables): pform = prettyForm(*pform.right(self._print(expr.variables[0]))) if self._use_unicode: pform = prettyForm(*pform.right(u" \N{RIGHTWARDS ARROW} ")) else: pform = prettyForm(*pform.right(" -> ")) if len(expr.point) > 1: pform = prettyForm(*pform.right(self._print(expr.point))) else: pform = prettyForm(*pform.right(self._print(expr.point[0]))) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left("O")) return pform def _print_SingularityFunction(self, e): if self._use_unicode: shift = self._print(e.args[0]-e.args[1]) n = self._print(e.args[2]) base = prettyForm("<") base = prettyForm(*base.right(shift)) base = prettyForm(*base.right(">")) pform = base**n return pform else: n = self._print(e.args[2]) shift = self._print(e.args[0]-e.args[1]) base = self._print_seq(shift, "<", ">", ' ') return base**n def _print_beta(self, e): func_name = greek_unicode['Beta'] if self._use_unicode else 'B' return self._print_Function(e, func_name=func_name) def _print_gamma(self, e): func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma' return self._print_Function(e, func_name=func_name) def _print_uppergamma(self, e): func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma' return self._print_Function(e, func_name=func_name) def _print_lowergamma(self, e): func_name = greek_unicode['gamma'] if self._use_unicode else 'lowergamma' return self._print_Function(e, func_name=func_name) def _print_DiracDelta(self, e): if self._use_unicode: if len(e.args) == 2: a = prettyForm(greek_unicode['delta']) b = self._print(e.args[1]) b = prettyForm(*b.parens()) c = self._print(e.args[0]) c = prettyForm(*c.parens()) pform = a**b pform = prettyForm(*pform.right(' ')) pform = prettyForm(*pform.right(c)) return pform pform = self._print(e.args[0]) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left(greek_unicode['delta'])) return pform else: return self._print_Function(e) def _print_expint(self, e): from sympy import Function if e.args[0].is_Integer and self._use_unicode: return self._print_Function(Function('E_%s' % e.args[0])(e.args[1])) return self._print_Function(e) def _print_Chi(self, e): # This needs a special case since otherwise it comes out as greek # letter chi... prettyFunc = prettyForm("Chi") prettyArgs = prettyForm(*self._print_seq(e.args).parens()) pform = prettyForm( binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) # store pform parts so it can be reassembled e.g. when powered pform.prettyFunc = prettyFunc pform.prettyArgs = prettyArgs return pform def _print_elliptic_e(self, e): pforma0 = self._print(e.args[0]) if len(e.args) == 1: pform = pforma0 else: pforma1 = self._print(e.args[1]) pform = self._hprint_vseparator(pforma0, pforma1) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left('E')) return pform def _print_elliptic_k(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left('K')) return pform def _print_elliptic_f(self, e): pforma0 = self._print(e.args[0]) pforma1 = self._print(e.args[1]) pform = self._hprint_vseparator(pforma0, pforma1) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left('F')) return pform def _print_elliptic_pi(self, e): name = greek_unicode['Pi'] if self._use_unicode else 'Pi' pforma0 = self._print(e.args[0]) pforma1 = self._print(e.args[1]) if len(e.args) == 2: pform = self._hprint_vseparator(pforma0, pforma1) else: pforma2 = self._print(e.args[2]) pforma = self._hprint_vseparator(pforma1, pforma2) pforma = prettyForm(*pforma.left('; ')) pform = prettyForm(*pforma.left(pforma0)) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left(name)) return pform def _print_GoldenRatio(self, expr): if self._use_unicode: return prettyForm(pretty_symbol('phi')) return self._print(Symbol("GoldenRatio")) def _print_EulerGamma(self, expr): if self._use_unicode: return prettyForm(pretty_symbol('gamma')) return self._print(Symbol("EulerGamma")) def _print_Mod(self, expr): pform = self._print(expr.args[0]) if pform.binding > prettyForm.MUL: pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.right(' mod ')) pform = prettyForm(*pform.right(self._print(expr.args[1]))) pform.binding = prettyForm.OPEN return pform def _print_Add(self, expr, order=None): if self.order == 'none': terms = list(expr.args) else: terms = self._as_ordered_terms(expr, order=order) pforms, indices = [], [] def pretty_negative(pform, index): """Prepend a minus sign to a pretty form. """ #TODO: Move this code to prettyForm if index == 0: if pform.height() > 1: pform_neg = '- ' else: pform_neg = '-' else: pform_neg = ' - ' if (pform.binding > prettyForm.NEG or pform.binding == prettyForm.ADD): p = stringPict(*pform.parens()) else: p = pform p = stringPict.next(pform_neg, p) # Lower the binding to NEG, even if it was higher. Otherwise, it # will print as a + ( - (b)), instead of a - (b). return prettyForm(binding=prettyForm.NEG, *p) for i, term in enumerate(terms): if term.is_Mul and _coeff_isneg(term): coeff, other = term.as_coeff_mul(rational=False) pform = self._print(Mul(-coeff, *other, evaluate=False)) pforms.append(pretty_negative(pform, i)) elif term.is_Rational and term.q > 1: pforms.append(None) indices.append(i) elif term.is_Number and term < 0: pform = self._print(-term) pforms.append(pretty_negative(pform, i)) elif term.is_Relational: pforms.append(prettyForm(*self._print(term).parens())) else: pforms.append(self._print(term)) if indices: large = True for pform in pforms: if pform is not None and pform.height() > 1: break else: large = False for i in indices: term, negative = terms[i], False if term < 0: term, negative = -term, True if large: pform = prettyForm(str(term.p))/prettyForm(str(term.q)) else: pform = self._print(term) if negative: pform = pretty_negative(pform, i) pforms[i] = pform return prettyForm.__add__(*pforms) def _print_Mul(self, product): from sympy.physics.units import Quantity a = [] # items in the numerator b = [] # items that are in the denominator (if any) if self.order not in ('old', 'none'): args = product.as_ordered_factors() else: args = list(product.args) # If quantities are present append them at the back args = sorted(args, key=lambda x: isinstance(x, Quantity) or (isinstance(x, Pow) and isinstance(x.base, Quantity))) # Gather terms for numerator/denominator for item in args: if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative: if item.exp != -1: b.append(Pow(item.base, -item.exp, evaluate=False)) else: b.append(Pow(item.base, -item.exp)) elif item.is_Rational and item is not S.Infinity: if item.p != 1: a.append( Rational(item.p) ) if item.q != 1: b.append( Rational(item.q) ) else: a.append(item) from sympy import Integral, Piecewise, Product, Sum # Convert to pretty forms. Add parens to Add instances if there # is more than one term in the numer/denom for i in range(0, len(a)): if (a[i].is_Add and len(a) > 1) or (i != len(a) - 1 and isinstance(a[i], (Integral, Piecewise, Product, Sum))): a[i] = prettyForm(*self._print(a[i]).parens()) elif a[i].is_Relational: a[i] = prettyForm(*self._print(a[i]).parens()) else: a[i] = self._print(a[i]) for i in range(0, len(b)): if (b[i].is_Add and len(b) > 1) or (i != len(b) - 1 and isinstance(b[i], (Integral, Piecewise, Product, Sum))): b[i] = prettyForm(*self._print(b[i]).parens()) else: b[i] = self._print(b[i]) # Construct a pretty form if len(b) == 0: return prettyForm.__mul__(*a) else: if len(a) == 0: a.append( self._print(S.One) ) return prettyForm.__mul__(*a)/prettyForm.__mul__(*b) # A helper function for _print_Pow to print x**(1/n) def _print_nth_root(self, base, expt): bpretty = self._print(base) # In very simple cases, use a single-char root sign if (self._settings['use_unicode_sqrt_char'] and self._use_unicode and expt is S.Half and bpretty.height() == 1 and (bpretty.width() == 1 or (base.is_Integer and base.is_nonnegative))): return prettyForm(*bpretty.left(u'\N{SQUARE ROOT}')) # Construct root sign, start with the \/ shape _zZ = xobj('/', 1) rootsign = xobj('\\', 1) + _zZ # Make exponent number to put above it if isinstance(expt, Rational): exp = str(expt.q) if exp == '2': exp = '' else: exp = str(expt.args[0]) exp = exp.ljust(2) if len(exp) > 2: rootsign = ' '*(len(exp) - 2) + rootsign # Stack the exponent rootsign = stringPict(exp + '\n' + rootsign) rootsign.baseline = 0 # Diagonal: length is one less than height of base linelength = bpretty.height() - 1 diagonal = stringPict('\n'.join( ' '*(linelength - i - 1) + _zZ + ' '*i for i in range(linelength) )) # Put baseline just below lowest line: next to exp diagonal.baseline = linelength - 1 # Make the root symbol rootsign = prettyForm(*rootsign.right(diagonal)) # Det the baseline to match contents to fix the height # but if the height of bpretty is one, the rootsign must be one higher rootsign.baseline = max(1, bpretty.baseline) #build result s = prettyForm(hobj('_', 2 + bpretty.width())) s = prettyForm(*bpretty.above(s)) s = prettyForm(*s.left(rootsign)) return s def _print_Pow(self, power): from sympy.simplify.simplify import fraction b, e = power.as_base_exp() if power.is_commutative: if e is S.NegativeOne: return prettyForm("1")/self._print(b) n, d = fraction(e) if n is S.One and d.is_Atom and not e.is_Integer and self._settings['root_notation']: return self._print_nth_root(b, e) if e.is_Rational and e < 0: return prettyForm("1")/self._print(Pow(b, -e, evaluate=False)) if b.is_Relational: return prettyForm(*self._print(b).parens()).__pow__(self._print(e)) return self._print(b)**self._print(e) def _print_UnevaluatedExpr(self, expr): return self._print(expr.args[0]) def __print_numer_denom(self, p, q): if q == 1: if p < 0: return prettyForm(str(p), binding=prettyForm.NEG) else: return prettyForm(str(p)) elif abs(p) >= 10 and abs(q) >= 10: # If more than one digit in numer and denom, print larger fraction if p < 0: return prettyForm(str(p), binding=prettyForm.NEG)/prettyForm(str(q)) # Old printing method: #pform = prettyForm(str(-p))/prettyForm(str(q)) #return prettyForm(binding=prettyForm.NEG, *pform.left('- ')) else: return prettyForm(str(p))/prettyForm(str(q)) else: return None def _print_Rational(self, expr): result = self.__print_numer_denom(expr.p, expr.q) if result is not None: return result else: return self.emptyPrinter(expr) def _print_Fraction(self, expr): result = self.__print_numer_denom(expr.numerator, expr.denominator) if result is not None: return result else: return self.emptyPrinter(expr) def _print_ProductSet(self, p): if len(p.sets) >= 1 and not has_variety(p.sets): from sympy import Pow return self._print(Pow(p.sets[0], len(p.sets), evaluate=False)) else: prod_char = u"\N{MULTIPLICATION SIGN}" if self._use_unicode else 'x' return self._print_seq(p.sets, None, None, ' %s ' % prod_char, parenthesize=lambda set: set.is_Union or set.is_Intersection or set.is_ProductSet) def _print_FiniteSet(self, s): items = sorted(s.args, key=default_sort_key) return self._print_seq(items, '{', '}', ', ' ) def _print_Range(self, s): if self._use_unicode: dots = u"\N{HORIZONTAL ELLIPSIS}" else: dots = '...' if s.start.is_infinite and s.stop.is_infinite: if s.step.is_positive: printset = dots, -1, 0, 1, dots else: printset = dots, 1, 0, -1, dots elif s.start.is_infinite: printset = dots, s[-1] - s.step, s[-1] elif s.stop.is_infinite: it = iter(s) printset = next(it), next(it), dots elif len(s) > 4: it = iter(s) printset = next(it), next(it), dots, s[-1] else: printset = tuple(s) return self._print_seq(printset, '{', '}', ', ' ) def _print_Interval(self, i): if i.start == i.end: return self._print_seq(i.args[:1], '{', '}') else: if i.left_open: left = '(' else: left = '[' if i.right_open: right = ')' else: right = ']' return self._print_seq(i.args[:2], left, right) def _print_AccumulationBounds(self, i): left = '<' right = '>' return self._print_seq(i.args[:2], left, right) def _print_Intersection(self, u): delimiter = ' %s ' % pretty_atom('Intersection', 'n') return self._print_seq(u.args, None, None, delimiter, parenthesize=lambda set: set.is_ProductSet or set.is_Union or set.is_Complement) def _print_Union(self, u): union_delimiter = ' %s ' % pretty_atom('Union', 'U') return self._print_seq(u.args, None, None, union_delimiter, parenthesize=lambda set: set.is_ProductSet or set.is_Intersection or set.is_Complement) def _print_SymmetricDifference(self, u): if not self._use_unicode: raise NotImplementedError("ASCII pretty printing of SymmetricDifference is not implemented") sym_delimeter = ' %s ' % pretty_atom('SymmetricDifference') return self._print_seq(u.args, None, None, sym_delimeter) def _print_Complement(self, u): delimiter = r' \ ' return self._print_seq(u.args, None, None, delimiter, parenthesize=lambda set: set.is_ProductSet or set.is_Intersection or set.is_Union) def _print_ImageSet(self, ts): if self._use_unicode: inn = u"\N{SMALL ELEMENT OF}" else: inn = 'in' fun = ts.lamda sets = ts.base_sets signature = fun.signature expr = self._print(fun.expr) bar = self._print("|") if len(signature) == 1: return self._print_seq((expr, bar, signature[0], inn, sets[0]), "{", "}", ' ') else: pargs = tuple(j for var, setv in zip(signature, sets) for j in (var, inn, setv, ",")) return self._print_seq((expr, bar) + pargs[:-1], "{", "}", ' ') def _print_ConditionSet(self, ts): if self._use_unicode: inn = u"\N{SMALL ELEMENT OF}" # using _and because and is a keyword and it is bad practice to # overwrite them _and = u"\N{LOGICAL AND}" else: inn = 'in' _and = 'and' variables = self._print_seq(Tuple(ts.sym)) as_expr = getattr(ts.condition, 'as_expr', None) if as_expr is not None: cond = self._print(ts.condition.as_expr()) else: cond = self._print(ts.condition) if self._use_unicode: cond = self._print_seq(cond, "(", ")") bar = self._print("|") if ts.base_set is S.UniversalSet: return self._print_seq((variables, bar, cond), "{", "}", ' ') base = self._print(ts.base_set) return self._print_seq((variables, bar, variables, inn, base, _and, cond), "{", "}", ' ') def _print_ComplexRegion(self, ts): if self._use_unicode: inn = u"\N{SMALL ELEMENT OF}" else: inn = 'in' variables = self._print_seq(ts.variables) expr = self._print(ts.expr) bar = self._print("|") prodsets = self._print(ts.sets) return self._print_seq((expr, bar, variables, inn, prodsets), "{", "}", ' ') def _print_Contains(self, e): var, set = e.args if self._use_unicode: el = u" \N{ELEMENT OF} " return prettyForm(*stringPict.next(self._print(var), el, self._print(set)), binding=8) else: return prettyForm(sstr(e)) def _print_FourierSeries(self, s): if self._use_unicode: dots = u"\N{HORIZONTAL ELLIPSIS}" else: dots = '...' return self._print_Add(s.truncate()) + self._print(dots) def _print_FormalPowerSeries(self, s): return self._print_Add(s.infinite) def _print_SetExpr(self, se): pretty_set = prettyForm(*self._print(se.set).parens()) pretty_name = self._print(Symbol("SetExpr")) return prettyForm(*pretty_name.right(pretty_set)) def _print_SeqFormula(self, s): if self._use_unicode: dots = u"\N{HORIZONTAL ELLIPSIS}" else: dots = '...' if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0: raise NotImplementedError("Pretty printing of sequences with symbolic bound not implemented") if s.start is S.NegativeInfinity: stop = s.stop printset = (dots, s.coeff(stop - 3), s.coeff(stop - 2), s.coeff(stop - 1), s.coeff(stop)) elif s.stop is S.Infinity or s.length > 4: printset = s[:4] printset.append(dots) printset = tuple(printset) else: printset = tuple(s) return self._print_list(printset) _print_SeqPer = _print_SeqFormula _print_SeqAdd = _print_SeqFormula _print_SeqMul = _print_SeqFormula def _print_seq(self, seq, left=None, right=None, delimiter=', ', parenthesize=lambda x: False): s = None try: for item in seq: pform = self._print(item) if parenthesize(item): pform = prettyForm(*pform.parens()) if s is None: # first element s = pform else: # XXX: Under the tests from #15686 this raises: # AttributeError: 'Fake' object has no attribute 'baseline' # This is caught below but that is not the right way to # fix it. s = prettyForm(*stringPict.next(s, delimiter)) s = prettyForm(*stringPict.next(s, pform)) if s is None: s = stringPict('') except AttributeError: s = None for item in seq: pform = self.doprint(item) if parenthesize(item): pform = prettyForm(*pform.parens()) if s is None: # first element s = pform else : s = prettyForm(*stringPict.next(s, delimiter)) s = prettyForm(*stringPict.next(s, pform)) if s is None: s = stringPict('') s = prettyForm(*s.parens(left, right, ifascii_nougly=True)) return s def join(self, delimiter, args): pform = None for arg in args: if pform is None: pform = arg else: pform = prettyForm(*pform.right(delimiter)) pform = prettyForm(*pform.right(arg)) if pform is None: return prettyForm("") else: return pform def _print_list(self, l): return self._print_seq(l, '[', ']') def _print_tuple(self, t): if len(t) == 1: ptuple = prettyForm(*stringPict.next(self._print(t[0]), ',')) return prettyForm(*ptuple.parens('(', ')', ifascii_nougly=True)) else: return self._print_seq(t, '(', ')') def _print_Tuple(self, expr): return self._print_tuple(expr) def _print_dict(self, d): keys = sorted(d.keys(), key=default_sort_key) items = [] for k in keys: K = self._print(k) V = self._print(d[k]) s = prettyForm(*stringPict.next(K, ': ', V)) items.append(s) return self._print_seq(items, '{', '}') def _print_Dict(self, d): return self._print_dict(d) def _print_set(self, s): if not s: return prettyForm('set()') items = sorted(s, key=default_sort_key) pretty = self._print_seq(items) pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True)) return pretty def _print_frozenset(self, s): if not s: return prettyForm('frozenset()') items = sorted(s, key=default_sort_key) pretty = self._print_seq(items) pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True)) pretty = prettyForm(*pretty.parens('(', ')', ifascii_nougly=True)) pretty = prettyForm(*stringPict.next(type(s).__name__, pretty)) return pretty def _print_UniversalSet(self, s): if self._use_unicode: return prettyForm(u"\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL U}") else: return prettyForm('UniversalSet') def _print_PolyRing(self, ring): return prettyForm(sstr(ring)) def _print_FracField(self, field): return prettyForm(sstr(field)) def _print_FreeGroupElement(self, elm): return prettyForm(str(elm)) def _print_PolyElement(self, poly): return prettyForm(sstr(poly)) def _print_FracElement(self, frac): return prettyForm(sstr(frac)) def _print_AlgebraicNumber(self, expr): if expr.is_aliased: return self._print(expr.as_poly().as_expr()) else: return self._print(expr.as_expr()) def _print_ComplexRootOf(self, expr): args = [self._print_Add(expr.expr, order='lex'), expr.index] pform = prettyForm(*self._print_seq(args).parens()) pform = prettyForm(*pform.left('CRootOf')) return pform def _print_RootSum(self, expr): args = [self._print_Add(expr.expr, order='lex')] if expr.fun is not S.IdentityFunction: args.append(self._print(expr.fun)) pform = prettyForm(*self._print_seq(args).parens()) pform = prettyForm(*pform.left('RootSum')) return pform def _print_FiniteField(self, expr): if self._use_unicode: form = u'\N{DOUBLE-STRUCK CAPITAL Z}_%d' else: form = 'GF(%d)' return prettyForm(pretty_symbol(form % expr.mod)) def _print_IntegerRing(self, expr): if self._use_unicode: return prettyForm(u'\N{DOUBLE-STRUCK CAPITAL Z}') else: return prettyForm('ZZ') def _print_RationalField(self, expr): if self._use_unicode: return prettyForm(u'\N{DOUBLE-STRUCK CAPITAL Q}') else: return prettyForm('QQ') def _print_RealField(self, domain): if self._use_unicode: prefix = u'\N{DOUBLE-STRUCK CAPITAL R}' else: prefix = 'RR' if domain.has_default_precision: return prettyForm(prefix) else: return self._print(pretty_symbol(prefix + "_" + str(domain.precision))) def _print_ComplexField(self, domain): if self._use_unicode: prefix = u'\N{DOUBLE-STRUCK CAPITAL C}' else: prefix = 'CC' if domain.has_default_precision: return prettyForm(prefix) else: return self._print(pretty_symbol(prefix + "_" + str(domain.precision))) def _print_PolynomialRing(self, expr): args = list(expr.symbols) if not expr.order.is_default: order = prettyForm(*prettyForm("order=").right(self._print(expr.order))) args.append(order) pform = self._print_seq(args, '[', ']') pform = prettyForm(*pform.left(self._print(expr.domain))) return pform def _print_FractionField(self, expr): args = list(expr.symbols) if not expr.order.is_default: order = prettyForm(*prettyForm("order=").right(self._print(expr.order))) args.append(order) pform = self._print_seq(args, '(', ')') pform = prettyForm(*pform.left(self._print(expr.domain))) return pform def _print_PolynomialRingBase(self, expr): g = expr.symbols if str(expr.order) != str(expr.default_order): g = g + ("order=" + str(expr.order),) pform = self._print_seq(g, '[', ']') pform = prettyForm(*pform.left(self._print(expr.domain))) return pform def _print_GroebnerBasis(self, basis): exprs = [ self._print_Add(arg, order=basis.order) for arg in basis.exprs ] exprs = prettyForm(*self.join(", ", exprs).parens(left="[", right="]")) gens = [ self._print(gen) for gen in basis.gens ] domain = prettyForm( *prettyForm("domain=").right(self._print(basis.domain))) order = prettyForm( *prettyForm("order=").right(self._print(basis.order))) pform = self.join(", ", [exprs] + gens + [domain, order]) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left(basis.__class__.__name__)) return pform def _print_Subs(self, e): pform = self._print(e.expr) pform = prettyForm(*pform.parens()) h = pform.height() if pform.height() > 1 else 2 rvert = stringPict(vobj('|', h), baseline=pform.baseline) pform = prettyForm(*pform.right(rvert)) b = pform.baseline pform.baseline = pform.height() - 1 pform = prettyForm(*pform.right(self._print_seq([ self._print_seq((self._print(v[0]), xsym('=='), self._print(v[1])), delimiter='') for v in zip(e.variables, e.point) ]))) pform.baseline = b return pform def _print_number_function(self, e, name): # Print name_arg[0] for one argument or name_arg[0](arg[1]) # for more than one argument pform = prettyForm(name) arg = self._print(e.args[0]) pform_arg = prettyForm(" "*arg.width()) pform_arg = prettyForm(*pform_arg.below(arg)) pform = prettyForm(*pform.right(pform_arg)) if len(e.args) == 1: return pform m, x = e.args # TODO: copy-pasted from _print_Function: can we do better? prettyFunc = pform prettyArgs = prettyForm(*self._print_seq([x]).parens()) pform = prettyForm( binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) pform.prettyFunc = prettyFunc pform.prettyArgs = prettyArgs return pform def _print_euler(self, e): return self._print_number_function(e, "E") def _print_catalan(self, e): return self._print_number_function(e, "C") def _print_bernoulli(self, e): return self._print_number_function(e, "B") _print_bell = _print_bernoulli def _print_lucas(self, e): return self._print_number_function(e, "L") def _print_fibonacci(self, e): return self._print_number_function(e, "F") def _print_tribonacci(self, e): return self._print_number_function(e, "T") def _print_stieltjes(self, e): if self._use_unicode: return self._print_number_function(e, u'\N{GREEK SMALL LETTER GAMMA}') else: return self._print_number_function(e, "stieltjes") def _print_KroneckerDelta(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.right((prettyForm(',')))) pform = prettyForm(*pform.right((self._print(e.args[1])))) if self._use_unicode: a = stringPict(pretty_symbol('delta')) else: a = stringPict('d') b = pform top = stringPict(*b.left(' '*a.width())) bot = stringPict(*a.right(' '*b.width())) return prettyForm(binding=prettyForm.POW, *bot.below(top)) def _print_RandomDomain(self, d): if hasattr(d, 'as_boolean'): pform = self._print('Domain: ') pform = prettyForm(*pform.right(self._print(d.as_boolean()))) return pform elif hasattr(d, 'set'): pform = self._print('Domain: ') pform = prettyForm(*pform.right(self._print(d.symbols))) pform = prettyForm(*pform.right(self._print(' in '))) pform = prettyForm(*pform.right(self._print(d.set))) return pform elif hasattr(d, 'symbols'): pform = self._print('Domain on ') pform = prettyForm(*pform.right(self._print(d.symbols))) return pform else: return self._print(None) def _print_DMP(self, p): try: if p.ring is not None: # TODO incorporate order return self._print(p.ring.to_sympy(p)) except SympifyError: pass return self._print(repr(p)) def _print_DMF(self, p): return self._print_DMP(p) def _print_Object(self, object): return self._print(pretty_symbol(object.name)) def _print_Morphism(self, morphism): arrow = xsym("-->") domain = self._print(morphism.domain) codomain = self._print(morphism.codomain) tail = domain.right(arrow, codomain)[0] return prettyForm(tail) def _print_NamedMorphism(self, morphism): pretty_name = self._print(pretty_symbol(morphism.name)) pretty_morphism = self._print_Morphism(morphism) return prettyForm(pretty_name.right(":", pretty_morphism)[0]) def _print_IdentityMorphism(self, morphism): from sympy.categories import NamedMorphism return self._print_NamedMorphism( NamedMorphism(morphism.domain, morphism.codomain, "id")) def _print_CompositeMorphism(self, morphism): circle = xsym(".") # All components of the morphism have names and it is thus # possible to build the name of the composite. component_names_list = [pretty_symbol(component.name) for component in morphism.components] component_names_list.reverse() component_names = circle.join(component_names_list) + ":" pretty_name = self._print(component_names) pretty_morphism = self._print_Morphism(morphism) return prettyForm(pretty_name.right(pretty_morphism)[0]) def _print_Category(self, category): return self._print(pretty_symbol(category.name)) def _print_Diagram(self, diagram): if not diagram.premises: # This is an empty diagram. return self._print(S.EmptySet) pretty_result = self._print(diagram.premises) if diagram.conclusions: results_arrow = " %s " % xsym("==>") pretty_conclusions = self._print(diagram.conclusions)[0] pretty_result = pretty_result.right( results_arrow, pretty_conclusions) return prettyForm(pretty_result[0]) def _print_DiagramGrid(self, grid): from sympy.matrices import Matrix from sympy import Symbol matrix = Matrix([[grid[i, j] if grid[i, j] else Symbol(" ") for j in range(grid.width)] for i in range(grid.height)]) return self._print_matrix_contents(matrix) def _print_FreeModuleElement(self, m): # Print as row vector for convenience, for now. return self._print_seq(m, '[', ']') def _print_SubModule(self, M): return self._print_seq(M.gens, '<', '>') def _print_FreeModule(self, M): return self._print(M.ring)**self._print(M.rank) def _print_ModuleImplementedIdeal(self, M): return self._print_seq([x for [x] in M._module.gens], '<', '>') def _print_QuotientRing(self, R): return self._print(R.ring) / self._print(R.base_ideal) def _print_QuotientRingElement(self, R): return self._print(R.data) + self._print(R.ring.base_ideal) def _print_QuotientModuleElement(self, m): return self._print(m.data) + self._print(m.module.killed_module) def _print_QuotientModule(self, M): return self._print(M.base) / self._print(M.killed_module) def _print_MatrixHomomorphism(self, h): matrix = self._print(h._sympy_matrix()) matrix.baseline = matrix.height() // 2 pform = prettyForm(*matrix.right(' : ', self._print(h.domain), ' %s> ' % hobj('-', 2), self._print(h.codomain))) return pform def _print_BaseScalarField(self, field): string = field._coord_sys._names[field._index] return self._print(pretty_symbol(string)) def _print_BaseVectorField(self, field): s = U('PARTIAL DIFFERENTIAL') + '_' + field._coord_sys._names[field._index] return self._print(pretty_symbol(s)) def _print_Differential(self, diff): field = diff._form_field if hasattr(field, '_coord_sys'): string = field._coord_sys._names[field._index] return self._print(u'\N{DOUBLE-STRUCK ITALIC SMALL D} ' + pretty_symbol(string)) else: pform = self._print(field) pform = prettyForm(*pform.parens()) return prettyForm(*pform.left(u"\N{DOUBLE-STRUCK ITALIC SMALL D}")) def _print_Tr(self, p): #TODO: Handle indices pform = self._print(p.args[0]) pform = prettyForm(*pform.left('%s(' % (p.__class__.__name__))) pform = prettyForm(*pform.right(')')) return pform def _print_primenu(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.parens()) if self._use_unicode: pform = prettyForm(*pform.left(greek_unicode['nu'])) else: pform = prettyForm(*pform.left('nu')) return pform def _print_primeomega(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.parens()) if self._use_unicode: pform = prettyForm(*pform.left(greek_unicode['Omega'])) else: pform = prettyForm(*pform.left('Omega')) return pform def _print_Quantity(self, e): if e.name.name == 'degree': pform = self._print(u"\N{DEGREE SIGN}") return pform else: return self.emptyPrinter(e) def _print_AssignmentBase(self, e): op = prettyForm(' ' + xsym(e.op) + ' ') l = self._print(e.lhs) r = self._print(e.rhs) pform = prettyForm(*stringPict.next(l, op, r)) return pform def pretty(expr, **settings): """Returns a string containing the prettified form of expr. For information on keyword arguments see pretty_print function. """ pp = PrettyPrinter(settings) # XXX: this is an ugly hack, but at least it works use_unicode = pp._settings['use_unicode'] uflag = pretty_use_unicode(use_unicode) try: return pp.doprint(expr) finally: pretty_use_unicode(uflag) def pretty_print(expr, wrap_line=True, num_columns=None, use_unicode=None, full_prec="auto", order=None, use_unicode_sqrt_char=True, root_notation = True, mat_symbol_style="plain", imaginary_unit="i"): """Prints expr in pretty form. pprint is just a shortcut for this function. Parameters ========== expr : expression The expression to print. wrap_line : bool, optional (default=True) Line wrapping enabled/disabled. num_columns : int or None, optional (default=None) Number of columns before line breaking (default to None which reads the terminal width), useful when using SymPy without terminal. use_unicode : bool or None, optional (default=None) Use unicode characters, such as the Greek letter pi instead of the string pi. full_prec : bool or string, optional (default="auto") Use full precision. order : bool or string, optional (default=None) Set to 'none' for long expressions if slow; default is None. use_unicode_sqrt_char : bool, optional (default=True) Use compact single-character square root symbol (when unambiguous). root_notation : bool, optional (default=True) Set to 'False' for printing exponents of the form 1/n in fractional form. By default exponent is printed in root form. mat_symbol_style : string, optional (default="plain") Set to "bold" for printing MatrixSymbols using a bold mathematical symbol face. By default the standard face is used. imaginary_unit : string, optional (default="i") Letter to use for imaginary unit when use_unicode is True. Can be "i" (default) or "j". """ print(pretty(expr, wrap_line=wrap_line, num_columns=num_columns, use_unicode=use_unicode, full_prec=full_prec, order=order, use_unicode_sqrt_char=use_unicode_sqrt_char, root_notation=root_notation, mat_symbol_style=mat_symbol_style, imaginary_unit=imaginary_unit)) pprint = pretty_print def pager_print(expr, **settings): """Prints expr using the pager, in pretty form. This invokes a pager command using pydoc. Lines are not wrapped automatically. This routine is meant to be used with a pager that allows sideways scrolling, like ``less -S``. Parameters are the same as for ``pretty_print``. If you wish to wrap lines, pass ``num_columns=None`` to auto-detect the width of the terminal. """ from pydoc import pager from locale import getpreferredencoding if 'num_columns' not in settings: settings['num_columns'] = 500000 # disable line wrap pager(pretty(expr, **settings).encode(getpreferredencoding()))
644da564df528f4bb67395fc41f79351eb7e227577bef2280c440ff5bd0c0c16
from sympy.utilities.pytest import raises from sympy import (symbols, Function, Integer, Matrix, Abs, Rational, Float, S, WildFunction, ImmutableDenseMatrix, sin, true, false, ones, sqrt, root, AlgebraicNumber, Symbol, Dummy, Wild, MatrixSymbol) from sympy.combinatorics import Cycle, Permutation from sympy.core.compatibility import exec_ from sympy.geometry import Point, Ellipse from sympy.printing import srepr from sympy.polys import ring, field, ZZ, QQ, lex, grlex, Poly from sympy.polys.polyclasses import DMP from sympy.polys.agca.extensions import FiniteExtension x, y = symbols('x,y') # eval(srepr(expr)) == expr has to succeed in the right environment. The right # environment is the scope of "from sympy import *" for most cases. ENV = {} exec_("from sympy import *", ENV) def sT(expr, string, import_stmt=None): """ sT := sreprTest Tests that srepr delivers the expected string and that the condition eval(srepr(expr))==expr holds. """ if import_stmt is None: ENV2 = ENV else: ENV2 = ENV.copy() exec_(import_stmt, ENV2) assert srepr(expr) == string assert eval(string, ENV2) == expr def test_printmethod(): class R(Abs): def _sympyrepr(self, printer): return "foo(%s)" % printer._print(self.args[0]) assert srepr(R(x)) == "foo(Symbol('x'))" def test_Add(): sT(x + y, "Add(Symbol('x'), Symbol('y'))") assert srepr(x**2 + 1, order='lex') == "Add(Pow(Symbol('x'), Integer(2)), Integer(1))" assert srepr(x**2 + 1, order='old') == "Add(Integer(1), Pow(Symbol('x'), Integer(2)))" def test_more_than_255_args_issue_10259(): from sympy import Add, Mul for op in (Add, Mul): expr = op(*symbols('x:256')) assert eval(srepr(expr)) == expr def test_Function(): sT(Function("f")(x), "Function('f')(Symbol('x'))") # test unapplied Function sT(Function('f'), "Function('f')") sT(sin(x), "sin(Symbol('x'))") sT(sin, "sin") def test_Geometry(): sT(Point(0, 0), "Point2D(Integer(0), Integer(0))") sT(Ellipse(Point(0, 0), 5, 1), "Ellipse(Point2D(Integer(0), Integer(0)), Integer(5), Integer(1))") # TODO more tests def test_Singletons(): sT(S.Catalan, 'Catalan') sT(S.ComplexInfinity, 'zoo') sT(S.EulerGamma, 'EulerGamma') sT(S.Exp1, 'E') sT(S.GoldenRatio, 'GoldenRatio') sT(S.TribonacciConstant, 'TribonacciConstant') sT(S.Half, 'Rational(1, 2)') sT(S.ImaginaryUnit, 'I') sT(S.Infinity, 'oo') sT(S.NaN, 'nan') sT(S.NegativeInfinity, '-oo') sT(S.NegativeOne, 'Integer(-1)') sT(S.One, 'Integer(1)') sT(S.Pi, 'pi') sT(S.Zero, 'Integer(0)') def test_Integer(): sT(Integer(4), "Integer(4)") def test_list(): sT([x, Integer(4)], "[Symbol('x'), Integer(4)]") def test_Matrix(): for cls, name in [(Matrix, "MutableDenseMatrix"), (ImmutableDenseMatrix, "ImmutableDenseMatrix")]: sT(cls([[x**+1, 1], [y, x + y]]), "%s([[Symbol('x'), Integer(1)], [Symbol('y'), Add(Symbol('x'), Symbol('y'))]])" % name) sT(cls(), "%s([])" % name) sT(cls([[x**+1, 1], [y, x + y]]), "%s([[Symbol('x'), Integer(1)], [Symbol('y'), Add(Symbol('x'), Symbol('y'))]])" % name) def test_empty_Matrix(): sT(ones(0, 3), "MutableDenseMatrix(0, 3, [])") sT(ones(4, 0), "MutableDenseMatrix(4, 0, [])") sT(ones(0, 0), "MutableDenseMatrix([])") def test_Rational(): sT(Rational(1, 3), "Rational(1, 3)") sT(Rational(-1, 3), "Rational(-1, 3)") def test_Float(): sT(Float('1.23', dps=3), "Float('1.22998', precision=13)") sT(Float('1.23456789', dps=9), "Float('1.23456788994', precision=33)") sT(Float('1.234567890123456789', dps=19), "Float('1.234567890123456789013', precision=66)") sT(Float('0.60038617995049726', dps=15), "Float('0.60038617995049726', precision=53)") sT(Float('1.23', precision=13), "Float('1.22998', precision=13)") sT(Float('1.23456789', precision=33), "Float('1.23456788994', precision=33)") sT(Float('1.234567890123456789', precision=66), "Float('1.234567890123456789013', precision=66)") sT(Float('0.60038617995049726', precision=53), "Float('0.60038617995049726', precision=53)") sT(Float('0.60038617995049726', 15), "Float('0.60038617995049726', precision=53)") def test_Symbol(): sT(x, "Symbol('x')") sT(y, "Symbol('y')") sT(Symbol('x', negative=True), "Symbol('x', negative=True)") def test_Symbol_two_assumptions(): x = Symbol('x', negative=0, integer=1) # order could vary s1 = "Symbol('x', integer=True, negative=False)" s2 = "Symbol('x', negative=False, integer=True)" assert srepr(x) in (s1, s2) assert eval(srepr(x), ENV) == x def test_Symbol_no_special_commutative_treatment(): sT(Symbol('x'), "Symbol('x')") sT(Symbol('x', commutative=False), "Symbol('x', commutative=False)") sT(Symbol('x', commutative=0), "Symbol('x', commutative=False)") sT(Symbol('x', commutative=True), "Symbol('x', commutative=True)") sT(Symbol('x', commutative=1), "Symbol('x', commutative=True)") def test_Wild(): sT(Wild('x', even=True), "Wild('x', even=True)") def test_Dummy(): d = Dummy('d') sT(d, "Dummy('d', dummy_index=%s)" % str(d.dummy_index)) def test_Dummy_assumption(): d = Dummy('d', nonzero=True) assert d == eval(srepr(d)) s1 = "Dummy('d', dummy_index=%s, nonzero=True)" % str(d.dummy_index) s2 = "Dummy('d', nonzero=True, dummy_index=%s)" % str(d.dummy_index) assert srepr(d) in (s1, s2) def test_Dummy_from_Symbol(): # should not get the full dictionary of assumptions n = Symbol('n', integer=True) d = n.as_dummy() assert srepr(d ) == "Dummy('n', dummy_index=%s)" % str(d.dummy_index) def test_tuple(): sT((x,), "(Symbol('x'),)") sT((x, y), "(Symbol('x'), Symbol('y'))") def test_WildFunction(): sT(WildFunction('w'), "WildFunction('w')") def test_settins(): raises(TypeError, lambda: srepr(x, method="garbage")) def test_Mul(): sT(3*x**3*y, "Mul(Integer(3), Pow(Symbol('x'), Integer(3)), Symbol('y'))") assert srepr(3*x**3*y, order='old') == "Mul(Integer(3), Symbol('y'), Pow(Symbol('x'), Integer(3)))" def test_AlgebraicNumber(): a = AlgebraicNumber(sqrt(2)) sT(a, "AlgebraicNumber(Pow(Integer(2), Rational(1, 2)), [Integer(1), Integer(0)])") a = AlgebraicNumber(root(-2, 3)) sT(a, "AlgebraicNumber(Pow(Integer(-2), Rational(1, 3)), [Integer(1), Integer(0)])") def test_PolyRing(): assert srepr(ring("x", ZZ, lex)[0]) == "PolyRing((Symbol('x'),), ZZ, lex)" assert srepr(ring("x,y", QQ, grlex)[0]) == "PolyRing((Symbol('x'), Symbol('y')), QQ, grlex)" assert srepr(ring("x,y,z", ZZ["t"], lex)[0]) == "PolyRing((Symbol('x'), Symbol('y'), Symbol('z')), ZZ[t], lex)" def test_FracField(): assert srepr(field("x", ZZ, lex)[0]) == "FracField((Symbol('x'),), ZZ, lex)" assert srepr(field("x,y", QQ, grlex)[0]) == "FracField((Symbol('x'), Symbol('y')), QQ, grlex)" assert srepr(field("x,y,z", ZZ["t"], lex)[0]) == "FracField((Symbol('x'), Symbol('y'), Symbol('z')), ZZ[t], lex)" def test_PolyElement(): R, x, y = ring("x,y", ZZ) assert srepr(3*x**2*y + 1) == "PolyElement(PolyRing((Symbol('x'), Symbol('y')), ZZ, lex), [((2, 1), 3), ((0, 0), 1)])" def test_FracElement(): F, x, y = field("x,y", ZZ) assert srepr((3*x**2*y + 1)/(x - y**2)) == "FracElement(FracField((Symbol('x'), Symbol('y')), ZZ, lex), [((2, 1), 3), ((0, 0), 1)], [((1, 0), 1), ((0, 2), -1)])" def test_FractionField(): assert srepr(QQ.frac_field(x)) == \ "FractionField(FracField((Symbol('x'),), QQ, lex))" assert srepr(QQ.frac_field(x, y, order=grlex)) == \ "FractionField(FracField((Symbol('x'), Symbol('y')), QQ, grlex))" def test_PolynomialRingBase(): assert srepr(ZZ.old_poly_ring(x)) == \ "GlobalPolynomialRing(ZZ, Symbol('x'))" assert srepr(ZZ[x].old_poly_ring(y)) == \ "GlobalPolynomialRing(ZZ[x], Symbol('y'))" assert srepr(QQ.frac_field(x).old_poly_ring(y)) == \ "GlobalPolynomialRing(FractionField(FracField((Symbol('x'),), QQ, lex)), Symbol('y'))" def test_DMP(): assert srepr(DMP([1, 2], ZZ)) == 'DMP([1, 2], ZZ)' assert srepr(ZZ.old_poly_ring(x)([1, 2])) == \ "DMP([1, 2], ZZ, ring=GlobalPolynomialRing(ZZ, Symbol('x')))" def test_FiniteExtension(): assert srepr(FiniteExtension(Poly(x**2 + 1, x))) == \ "FiniteExtension(Poly(x**2 + 1, x, domain='ZZ'))" def test_ExtensionElement(): A = FiniteExtension(Poly(x**2 + 1, x)) assert srepr(A.generator) == \ "ExtElem(DMP([1, 0], ZZ, ring=GlobalPolynomialRing(ZZ, Symbol('x'))), FiniteExtension(Poly(x**2 + 1, x, domain='ZZ')))" def test_BooleanAtom(): assert srepr(true) == "true" assert srepr(false) == "false" def test_Integers(): sT(S.Integers, "Integers") def test_Naturals(): sT(S.Naturals, "Naturals") def test_Naturals0(): sT(S.Naturals0, "Naturals0") def test_Reals(): sT(S.Reals, "Reals") def test_matrix_expressions(): n = symbols('n', integer=True) A = MatrixSymbol("A", n, n) B = MatrixSymbol("B", n, n) sT(A, "MatrixSymbol(Symbol('A'), Symbol('n', integer=True), Symbol('n', integer=True))") sT(A*B, "MatMul(MatrixSymbol(Symbol('A'), Symbol('n', integer=True), Symbol('n', integer=True)), MatrixSymbol(Symbol('B'), Symbol('n', integer=True), Symbol('n', integer=True)))") sT(A + B, "MatAdd(MatrixSymbol(Symbol('A'), Symbol('n', integer=True), Symbol('n', integer=True)), MatrixSymbol(Symbol('B'), Symbol('n', integer=True), Symbol('n', integer=True)))") def test_Cycle(): # FIXME: sT fails because Cycle is not immutable and calling srepr(Cycle(1, 2)) # adds keys to the Cycle dict (GH-17661) #import_stmt = "from sympy.combinatorics import Cycle" #sT(Cycle(1, 2), "Cycle(1, 2)", import_stmt) assert srepr(Cycle(1, 2)) == "Cycle(1, 2)" def test_Permutation(): import_stmt = "from sympy.combinatorics import Permutation" print_cyclic = Permutation.print_cyclic try: Permutation.print_cyclic = True sT(Permutation(1, 2), "Permutation(1, 2)", import_stmt) finally: Permutation.print_cyclic = print_cyclic
85df7b97f0632eb298ce139a1d5cfcb1607b041fe0df102105672c865a8ef10a
from sympy import (Abs, Catalan, cos, Derivative, E, EulerGamma, exp, factorial, factorial2, Function, GoldenRatio, TribonacciConstant, I, Integer, Integral, Interval, Lambda, Limit, Matrix, nan, O, oo, pi, Pow, Rational, Float, Rel, S, sin, SparseMatrix, sqrt, summation, Sum, Symbol, symbols, Wild, WildFunction, zeta, zoo, Dummy, Dict, Tuple, FiniteSet, factor, subfactorial, true, false, Equivalent, Xor, Complement, SymmetricDifference, AccumBounds, UnevaluatedExpr, Eq, Ne, Quaternion, Subs, log, MatrixSymbol) from sympy.core import Expr, Mul from sympy.physics.units import second, joule from sympy.polys import Poly, rootof, RootSum, groebner, ring, field, ZZ, QQ, lex, grlex from sympy.geometry import Point, Circle from sympy.utilities.pytest import raises from sympy.core.compatibility import range from sympy.printing import sstr, sstrrepr, StrPrinter from sympy.core.trace import Tr x, y, z, w, t = symbols('x,y,z,w,t') d = Dummy('d') def test_printmethod(): class R(Abs): def _sympystr(self, printer): return "foo(%s)" % printer._print(self.args[0]) assert sstr(R(x)) == "foo(x)" class R(Abs): def _sympystr(self, printer): return "foo" assert sstr(R(x)) == "foo" def test_Abs(): assert str(Abs(x)) == "Abs(x)" assert str(Abs(Rational(1, 6))) == "1/6" assert str(Abs(Rational(-1, 6))) == "1/6" def test_Add(): assert str(x + y) == "x + y" assert str(x + 1) == "x + 1" assert str(x + x**2) == "x**2 + x" assert str(5 + x + y + x*y + x**2 + y**2) == "x**2 + x*y + x + y**2 + y + 5" assert str(1 + x + x**2/2 + x**3/3) == "x**3/3 + x**2/2 + x + 1" assert str(2*x - 7*x**2 + 2 + 3*y) == "-7*x**2 + 2*x + 3*y + 2" assert str(x - y) == "x - y" assert str(2 - x) == "2 - x" assert str(x - 2) == "x - 2" assert str(x - y - z - w) == "-w + x - y - z" assert str(x - z*y**2*z*w) == "-w*y**2*z**2 + x" assert str(x - 1*y*x*y) == "-x*y**2 + x" assert str(sin(x).series(x, 0, 15)) == "x - x**3/6 + x**5/120 - x**7/5040 + x**9/362880 - x**11/39916800 + x**13/6227020800 + O(x**15)" def test_Catalan(): assert str(Catalan) == "Catalan" def test_ComplexInfinity(): assert str(zoo) == "zoo" def test_Derivative(): assert str(Derivative(x, y)) == "Derivative(x, y)" assert str(Derivative(x**2, x, evaluate=False)) == "Derivative(x**2, x)" assert str(Derivative( x**2/y, x, y, evaluate=False)) == "Derivative(x**2/y, x, y)" def test_dict(): assert str({1: 1 + x}) == sstr({1: 1 + x}) == "{1: x + 1}" assert str({1: x**2, 2: y*x}) in ("{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}") assert sstr({1: x**2, 2: y*x}) == "{1: x**2, 2: x*y}" def test_Dict(): assert str(Dict({1: 1 + x})) == sstr({1: 1 + x}) == "{1: x + 1}" assert str(Dict({1: x**2, 2: y*x})) in ( "{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}") assert sstr(Dict({1: x**2, 2: y*x})) == "{1: x**2, 2: x*y}" def test_Dummy(): assert str(d) == "_d" assert str(d + x) == "_d + x" def test_EulerGamma(): assert str(EulerGamma) == "EulerGamma" def test_Exp(): assert str(E) == "E" def test_factorial(): n = Symbol('n', integer=True) assert str(factorial(-2)) == "zoo" assert str(factorial(0)) == "1" assert str(factorial(7)) == "5040" assert str(factorial(n)) == "factorial(n)" assert str(factorial(2*n)) == "factorial(2*n)" assert str(factorial(factorial(n))) == 'factorial(factorial(n))' assert str(factorial(factorial2(n))) == 'factorial(factorial2(n))' assert str(factorial2(factorial(n))) == 'factorial2(factorial(n))' assert str(factorial2(factorial2(n))) == 'factorial2(factorial2(n))' assert str(subfactorial(3)) == "2" assert str(subfactorial(n)) == "subfactorial(n)" assert str(subfactorial(2*n)) == "subfactorial(2*n)" def test_Function(): f = Function('f') fx = f(x) w = WildFunction('w') assert str(f) == "f" assert str(fx) == "f(x)" assert str(w) == "w_" def test_Geometry(): assert sstr(Point(0, 0)) == 'Point2D(0, 0)' assert sstr(Circle(Point(0, 0), 3)) == 'Circle(Point2D(0, 0), 3)' # TODO test other Geometry entities def test_GoldenRatio(): assert str(GoldenRatio) == "GoldenRatio" def test_TribonacciConstant(): assert str(TribonacciConstant) == "TribonacciConstant" def test_ImaginaryUnit(): assert str(I) == "I" def test_Infinity(): assert str(oo) == "oo" assert str(oo*I) == "oo*I" def test_Integer(): assert str(Integer(-1)) == "-1" assert str(Integer(1)) == "1" assert str(Integer(-3)) == "-3" assert str(Integer(0)) == "0" assert str(Integer(25)) == "25" def test_Integral(): assert str(Integral(sin(x), y)) == "Integral(sin(x), y)" assert str(Integral(sin(x), (y, 0, 1))) == "Integral(sin(x), (y, 0, 1))" def test_Interval(): n = (S.NegativeInfinity, 1, 2, S.Infinity) for i in range(len(n)): for j in range(i + 1, len(n)): for l in (True, False): for r in (True, False): ival = Interval(n[i], n[j], l, r) assert S(str(ival)) == ival def test_AccumBounds(): a = Symbol('a', real=True) assert str(AccumBounds(0, a)) == "AccumBounds(0, a)" assert str(AccumBounds(0, 1)) == "AccumBounds(0, 1)" def test_Lambda(): assert str(Lambda(d, d**2)) == "Lambda(_d, _d**2)" # issue 2908 assert str(Lambda((), 1)) == "Lambda((), 1)" assert str(Lambda((), x)) == "Lambda((), x)" assert str(Lambda((x, y), x+y)) == "Lambda((x, y), x + y)" assert str(Lambda(((x, y),), x+y)) == "Lambda(((x, y),), x + y)" def test_Limit(): assert str(Limit(sin(x)/x, x, y)) == "Limit(sin(x)/x, x, y)" assert str(Limit(1/x, x, 0)) == "Limit(1/x, x, 0)" assert str( Limit(sin(x)/x, x, y, dir="-")) == "Limit(sin(x)/x, x, y, dir='-')" def test_list(): assert str([x]) == sstr([x]) == "[x]" assert str([x**2, x*y + 1]) == sstr([x**2, x*y + 1]) == "[x**2, x*y + 1]" assert str([x**2, [y + x]]) == sstr([x**2, [y + x]]) == "[x**2, [x + y]]" def test_Matrix_str(): M = Matrix([[x**+1, 1], [y, x + y]]) assert str(M) == "Matrix([[x, 1], [y, x + y]])" assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])" M = Matrix([[1]]) assert str(M) == sstr(M) == "Matrix([[1]])" M = Matrix([[1, 2]]) assert str(M) == sstr(M) == "Matrix([[1, 2]])" M = Matrix() assert str(M) == sstr(M) == "Matrix(0, 0, [])" M = Matrix(0, 1, lambda i, j: 0) assert str(M) == sstr(M) == "Matrix(0, 1, [])" def test_Mul(): assert str(x/y) == "x/y" assert str(y/x) == "y/x" assert str(x/y/z) == "x/(y*z)" assert str((x + 1)/(y + 2)) == "(x + 1)/(y + 2)" assert str(2*x/3) == '2*x/3' assert str(-2*x/3) == '-2*x/3' assert str(-1.0*x) == '-1.0*x' assert str(1.0*x) == '1.0*x' # For issue 14160 assert str(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False), evaluate=False)) == '-2*x/(y*y)' class CustomClass1(Expr): is_commutative = True class CustomClass2(Expr): is_commutative = True cc1 = CustomClass1() cc2 = CustomClass2() assert str(Rational(2)*cc1) == '2*CustomClass1()' assert str(cc1*Rational(2)) == '2*CustomClass1()' assert str(cc1*Float("1.5")) == '1.5*CustomClass1()' assert str(cc2*Rational(2)) == '2*CustomClass2()' assert str(cc2*Rational(2)*cc1) == '2*CustomClass1()*CustomClass2()' assert str(cc1*Rational(2)*cc2) == '2*CustomClass1()*CustomClass2()' def test_NaN(): assert str(nan) == "nan" def test_NegativeInfinity(): assert str(-oo) == "-oo" def test_Order(): assert str(O(x)) == "O(x)" assert str(O(x**2)) == "O(x**2)" assert str(O(x*y)) == "O(x*y, x, y)" assert str(O(x, x)) == "O(x)" assert str(O(x, (x, 0))) == "O(x)" assert str(O(x, (x, oo))) == "O(x, (x, oo))" assert str(O(x, x, y)) == "O(x, x, y)" assert str(O(x, x, y)) == "O(x, x, y)" assert str(O(x, (x, oo), (y, oo))) == "O(x, (x, oo), (y, oo))" def test_Permutation_Cycle(): from sympy.combinatorics import Permutation, Cycle # general principle: economically, canonically show all moved elements # and the size of the permutation. for p, s in [ (Cycle(), '()'), (Cycle(2), '(2)'), (Cycle(2, 1), '(1 2)'), (Cycle(1, 2)(5)(6, 7)(10), '(1 2)(6 7)(10)'), (Cycle(3, 4)(1, 2)(3, 4), '(1 2)(4)'), ]: assert str(p) == s Permutation.print_cyclic = False for p, s in [ (Permutation([]), 'Permutation([])'), (Permutation([], size=1), 'Permutation([0])'), (Permutation([], size=2), 'Permutation([0, 1])'), (Permutation([], size=10), 'Permutation([], size=10)'), (Permutation([1, 0, 2]), 'Permutation([1, 0, 2])'), (Permutation([1, 0, 2, 3, 4, 5]), 'Permutation([1, 0], size=6)'), (Permutation([1, 0, 2, 3, 4, 5], size=10), 'Permutation([1, 0], size=10)'), ]: assert str(p) == s Permutation.print_cyclic = True for p, s in [ (Permutation([]), '()'), (Permutation([], size=1), '(0)'), (Permutation([], size=2), '(1)'), (Permutation([], size=10), '(9)'), (Permutation([1, 0, 2]), '(2)(0 1)'), (Permutation([1, 0, 2, 3, 4, 5]), '(5)(0 1)'), (Permutation([1, 0, 2, 3, 4, 5], size=10), '(9)(0 1)'), (Permutation([0, 1, 3, 2, 4, 5], size=10), '(9)(2 3)'), ]: assert str(p) == s def test_Pi(): assert str(pi) == "pi" def test_Poly(): assert str(Poly(0, x)) == "Poly(0, x, domain='ZZ')" assert str(Poly(1, x)) == "Poly(1, x, domain='ZZ')" assert str(Poly(x, x)) == "Poly(x, x, domain='ZZ')" assert str(Poly(2*x + 1, x)) == "Poly(2*x + 1, x, domain='ZZ')" assert str(Poly(2*x - 1, x)) == "Poly(2*x - 1, x, domain='ZZ')" assert str(Poly(-1, x)) == "Poly(-1, x, domain='ZZ')" assert str(Poly(-x, x)) == "Poly(-x, x, domain='ZZ')" assert str(Poly(-2*x + 1, x)) == "Poly(-2*x + 1, x, domain='ZZ')" assert str(Poly(-2*x - 1, x)) == "Poly(-2*x - 1, x, domain='ZZ')" assert str(Poly(x - 1, x)) == "Poly(x - 1, x, domain='ZZ')" assert str(Poly(2*x + x**5, x)) == "Poly(x**5 + 2*x, x, domain='ZZ')" assert str(Poly(3**(2*x), 3**x)) == "Poly((3**x)**2, 3**x, domain='ZZ')" assert str(Poly((x**2)**x)) == "Poly(((x**2)**x), (x**2)**x, domain='ZZ')" assert str(Poly((x + y)**3, (x + y), expand=False) ) == "Poly((x + y)**3, x + y, domain='ZZ')" assert str(Poly((x - 1)**2, (x - 1), expand=False) ) == "Poly((x - 1)**2, x - 1, domain='ZZ')" assert str( Poly(x**2 + 1 + y, x)) == "Poly(x**2 + y + 1, x, domain='ZZ[y]')" assert str( Poly(x**2 - 1 + y, x)) == "Poly(x**2 + y - 1, x, domain='ZZ[y]')" assert str(Poly(x**2 + I*x, x)) == "Poly(x**2 + I*x, x, domain='EX')" assert str(Poly(x**2 - I*x, x)) == "Poly(x**2 - I*x, x, domain='EX')" assert str(Poly(-x*y*z + x*y - 1, x, y, z) ) == "Poly(-x*y*z + x*y - 1, x, y, z, domain='ZZ')" assert str(Poly(-w*x**21*y**7*z + (1 + w)*z**3 - 2*x*z + 1, x, y, z)) == \ "Poly(-w*x**21*y**7*z - 2*x*z + (w + 1)*z**3 + 1, x, y, z, domain='ZZ[w]')" assert str(Poly(x**2 + 1, x, modulus=2)) == "Poly(x**2 + 1, x, modulus=2)" assert str(Poly(2*x**2 + 3*x + 4, x, modulus=17)) == "Poly(2*x**2 + 3*x + 4, x, modulus=17)" def test_PolyRing(): assert str(ring("x", ZZ, lex)[0]) == "Polynomial ring in x over ZZ with lex order" assert str(ring("x,y", QQ, grlex)[0]) == "Polynomial ring in x, y over QQ with grlex order" assert str(ring("x,y,z", ZZ["t"], lex)[0]) == "Polynomial ring in x, y, z over ZZ[t] with lex order" def test_FracField(): assert str(field("x", ZZ, lex)[0]) == "Rational function field in x over ZZ with lex order" assert str(field("x,y", QQ, grlex)[0]) == "Rational function field in x, y over QQ with grlex order" assert str(field("x,y,z", ZZ["t"], lex)[0]) == "Rational function field in x, y, z over ZZ[t] with lex order" def test_PolyElement(): Ruv, u,v = ring("u,v", ZZ) Rxyz, x,y,z = ring("x,y,z", Ruv) assert str(x - x) == "0" assert str(x - 1) == "x - 1" assert str(x + 1) == "x + 1" assert str(x**2) == "x**2" assert str(x**(-2)) == "x**(-2)" assert str(x**QQ(1, 2)) == "x**(1/2)" assert str((u**2 + 3*u*v + 1)*x**2*y + u + 1) == "(u**2 + 3*u*v + 1)*x**2*y + u + 1" assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x" assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1" assert str((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == "-(u**2 - 3*u*v + 1)*x**2*y - (u + 1)*x - 1" assert str(-(v**2 + v + 1)*x + 3*u*v + 1) == "-(v**2 + v + 1)*x + 3*u*v + 1" assert str(-(v**2 + v + 1)*x - 3*u*v + 1) == "-(v**2 + v + 1)*x - 3*u*v + 1" def test_FracElement(): Fuv, u,v = field("u,v", ZZ) Fxyzt, x,y,z,t = field("x,y,z,t", Fuv) assert str(x - x) == "0" assert str(x - 1) == "x - 1" assert str(x + 1) == "x + 1" assert str(x/3) == "x/3" assert str(x/z) == "x/z" assert str(x*y/z) == "x*y/z" assert str(x/(z*t)) == "x/(z*t)" assert str(x*y/(z*t)) == "x*y/(z*t)" assert str((x - 1)/y) == "(x - 1)/y" assert str((x + 1)/y) == "(x + 1)/y" assert str((-x - 1)/y) == "(-x - 1)/y" assert str((x + 1)/(y*z)) == "(x + 1)/(y*z)" assert str(-y/(x + 1)) == "-y/(x + 1)" assert str(y*z/(x + 1)) == "y*z/(x + 1)" assert str(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - 1)" assert str(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - u*v*t - 1)" def test_Pow(): assert str(x**-1) == "1/x" assert str(x**-2) == "x**(-2)" assert str(x**2) == "x**2" assert str((x + y)**-1) == "1/(x + y)" assert str((x + y)**-2) == "(x + y)**(-2)" assert str((x + y)**2) == "(x + y)**2" assert str((x + y)**(1 + x)) == "(x + y)**(x + 1)" assert str(x**Rational(1, 3)) == "x**(1/3)" assert str(1/x**Rational(1, 3)) == "x**(-1/3)" assert str(sqrt(sqrt(x))) == "x**(1/4)" # not the same as x**-1 assert str(x**-1.0) == 'x**(-1.0)' # see issue #2860 assert str(Pow(S(2), -1.0, evaluate=False)) == '2**(-1.0)' def test_sqrt(): assert str(sqrt(x)) == "sqrt(x)" assert str(sqrt(x**2)) == "sqrt(x**2)" assert str(1/sqrt(x)) == "1/sqrt(x)" assert str(1/sqrt(x**2)) == "1/sqrt(x**2)" assert str(y/sqrt(x)) == "y/sqrt(x)" assert str(x**0.5) == "x**0.5" assert str(1/x**0.5) == "x**(-0.5)" def test_Rational(): n1 = Rational(1, 4) n2 = Rational(1, 3) n3 = Rational(2, 4) n4 = Rational(2, -4) n5 = Rational(0) n7 = Rational(3) n8 = Rational(-3) assert str(n1*n2) == "1/12" assert str(n1*n2) == "1/12" assert str(n3) == "1/2" assert str(n1*n3) == "1/8" assert str(n1 + n3) == "3/4" assert str(n1 + n2) == "7/12" assert str(n1 + n4) == "-1/4" assert str(n4*n4) == "1/4" assert str(n4 + n2) == "-1/6" assert str(n4 + n5) == "-1/2" assert str(n4*n5) == "0" assert str(n3 + n4) == "0" assert str(n1**n7) == "1/64" assert str(n2**n7) == "1/27" assert str(n2**n8) == "27" assert str(n7**n8) == "1/27" assert str(Rational("-25")) == "-25" assert str(Rational("1.25")) == "5/4" assert str(Rational("-2.6e-2")) == "-13/500" assert str(S("25/7")) == "25/7" assert str(S("-123/569")) == "-123/569" assert str(S("0.1[23]", rational=1)) == "61/495" assert str(S("5.1[666]", rational=1)) == "31/6" assert str(S("-5.1[666]", rational=1)) == "-31/6" assert str(S("0.[9]", rational=1)) == "1" assert str(S("-0.[9]", rational=1)) == "-1" assert str(sqrt(Rational(1, 4))) == "1/2" assert str(sqrt(Rational(1, 36))) == "1/6" assert str((123**25) ** Rational(1, 25)) == "123" assert str((123**25 + 1)**Rational(1, 25)) != "123" assert str((123**25 - 1)**Rational(1, 25)) != "123" assert str((123**25 - 1)**Rational(1, 25)) != "122" assert str(sqrt(Rational(81, 36))**3) == "27/8" assert str(1/sqrt(Rational(81, 36))**3) == "8/27" assert str(sqrt(-4)) == str(2*I) assert str(2**Rational(1, 10**10)) == "2**(1/10000000000)" assert sstr(Rational(2, 3), sympy_integers=True) == "S(2)/3" x = Symbol("x") assert sstr(x**Rational(2, 3), sympy_integers=True) == "x**(S(2)/3)" assert sstr(Eq(x, Rational(2, 3)), sympy_integers=True) == "Eq(x, S(2)/3)" assert sstr(Limit(x, x, Rational(7, 2)), sympy_integers=True) == \ "Limit(x, x, S(7)/2)" def test_Float(): # NOTE dps is the whole number of decimal digits assert str(Float('1.23', dps=1 + 2)) == '1.23' assert str(Float('1.23456789', dps=1 + 8)) == '1.23456789' assert str( Float('1.234567890123456789', dps=1 + 18)) == '1.234567890123456789' assert str(pi.evalf(1 + 2)) == '3.14' assert str(pi.evalf(1 + 14)) == '3.14159265358979' assert str(pi.evalf(1 + 64)) == ('3.141592653589793238462643383279' '5028841971693993751058209749445923') assert str(pi.round(-1)) == '0.0' assert str((pi**400 - (pi**400).round(1)).n(2)) == '-0.e+88' def test_Relational(): assert str(Rel(x, y, "<")) == "x < y" assert str(Rel(x + y, y, "==")) == "Eq(x + y, y)" assert str(Rel(x, y, "!=")) == "Ne(x, y)" assert str(Eq(x, 1) | Eq(x, 2)) == "Eq(x, 1) | Eq(x, 2)" assert str(Ne(x, 1) & Ne(x, 2)) == "Ne(x, 1) & Ne(x, 2)" def test_CRootOf(): assert str(rootof(x**5 + 2*x - 1, 0)) == "CRootOf(x**5 + 2*x - 1, 0)" def test_RootSum(): f = x**5 + 2*x - 1 assert str( RootSum(f, Lambda(z, z), auto=False)) == "RootSum(x**5 + 2*x - 1)" assert str(RootSum(f, Lambda( z, z**2), auto=False)) == "RootSum(x**5 + 2*x - 1, Lambda(z, z**2))" def test_GroebnerBasis(): assert str(groebner( [], x, y)) == "GroebnerBasis([], x, y, domain='ZZ', order='lex')" F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1] assert str(groebner(F, order='grlex')) == \ "GroebnerBasis([x**2 - x - 3*y + 1, y**2 - 2*x + y - 1], x, y, domain='ZZ', order='grlex')" assert str(groebner(F, order='lex')) == \ "GroebnerBasis([2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7], x, y, domain='ZZ', order='lex')" def test_set(): assert sstr(set()) == 'set()' assert sstr(frozenset()) == 'frozenset()' assert sstr(set([1])) == '{1}' assert sstr(frozenset([1])) == 'frozenset({1})' assert sstr(set([1, 2, 3])) == '{1, 2, 3}' assert sstr(frozenset([1, 2, 3])) == 'frozenset({1, 2, 3})' assert sstr( set([1, x, x**2, x**3, x**4])) == '{1, x, x**2, x**3, x**4}' assert sstr( frozenset([1, x, x**2, x**3, x**4])) == 'frozenset({1, x, x**2, x**3, x**4})' def test_SparseMatrix(): M = SparseMatrix([[x**+1, 1], [y, x + y]]) assert str(M) == "Matrix([[x, 1], [y, x + y]])" assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])" def test_Sum(): assert str(summation(cos(3*z), (z, x, y))) == "Sum(cos(3*z), (z, x, y))" assert str(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \ "Sum(x*y**2, (x, -2, 2), (y, -5, 5))" def test_Symbol(): assert str(y) == "y" assert str(x) == "x" e = x assert str(e) == "x" def test_tuple(): assert str((x,)) == sstr((x,)) == "(x,)" assert str((x + y, 1 + x)) == sstr((x + y, 1 + x)) == "(x + y, x + 1)" assert str((x + y, ( 1 + x, x**2))) == sstr((x + y, (1 + x, x**2))) == "(x + y, (x + 1, x**2))" def test_Quaternion_str_printer(): q = Quaternion(x, y, z, t) assert str(q) == "x + y*i + z*j + t*k" q = Quaternion(x,y,z,x*t) assert str(q) == "x + y*i + z*j + t*x*k" q = Quaternion(x,y,z,x+t) assert str(q) == "x + y*i + z*j + (t + x)*k" def test_Quantity_str(): assert sstr(second, abbrev=True) == "s" assert sstr(joule, abbrev=True) == "J" assert str(second) == "second" assert str(joule) == "joule" def test_wild_str(): # Check expressions containing Wild not causing infinite recursion w = Wild('x') assert str(w + 1) == 'x_ + 1' assert str(exp(2**w) + 5) == 'exp(2**x_) + 5' assert str(3*w + 1) == '3*x_ + 1' assert str(1/w + 1) == '1 + 1/x_' assert str(w**2 + 1) == 'x_**2 + 1' assert str(1/(1 - w)) == '1/(1 - x_)' def test_zeta(): assert str(zeta(3)) == "zeta(3)" def test_issue_3101(): e = x - y a = str(e) b = str(e) assert a == b def test_issue_3103(): e = -2*sqrt(x) - y/sqrt(x)/2 assert str(e) not in ["(-2)*x**1/2(-1/2)*x**(-1/2)*y", "-2*x**1/2(-1/2)*x**(-1/2)*y", "-2*x**1/2-1/2*x**-1/2*w"] assert str(e) == "-2*sqrt(x) - y/(2*sqrt(x))" def test_issue_4021(): e = Integral(x, x) + 1 assert str(e) == 'Integral(x, x) + 1' def test_sstrrepr(): assert sstr('abc') == 'abc' assert sstrrepr('abc') == "'abc'" e = ['a', 'b', 'c', x] assert sstr(e) == "[a, b, c, x]" assert sstrrepr(e) == "['a', 'b', 'c', x]" def test_infinity(): assert sstr(oo*I) == "oo*I" def test_full_prec(): assert sstr(S("0.3"), full_prec=True) == "0.300000000000000" assert sstr(S("0.3"), full_prec="auto") == "0.300000000000000" assert sstr(S("0.3"), full_prec=False) == "0.3" assert sstr(S("0.3")*x, full_prec=True) in [ "0.300000000000000*x", "x*0.300000000000000" ] assert sstr(S("0.3")*x, full_prec="auto") in [ "0.3*x", "x*0.3" ] assert sstr(S("0.3")*x, full_prec=False) in [ "0.3*x", "x*0.3" ] def test_noncommutative(): A, B, C = symbols('A,B,C', commutative=False) assert sstr(A*B*C**-1) == "A*B*C**(-1)" assert sstr(C**-1*A*B) == "C**(-1)*A*B" assert sstr(A*C**-1*B) == "A*C**(-1)*B" assert sstr(sqrt(A)) == "sqrt(A)" assert sstr(1/sqrt(A)) == "A**(-1/2)" def test_empty_printer(): str_printer = StrPrinter() assert str_printer.emptyPrinter("foo") == "foo" assert str_printer.emptyPrinter(x*y) == "x*y" assert str_printer.emptyPrinter(32) == "32" def test_settings(): raises(TypeError, lambda: sstr(S(4), method="garbage")) def test_RandomDomain(): from sympy.stats import Normal, Die, Exponential, pspace, where X = Normal('x1', 0, 1) assert str(where(X > 0)) == "Domain: (0 < x1) & (x1 < oo)" D = Die('d1', 6) assert str(where(D > 4)) == "Domain: Eq(d1, 5) | Eq(d1, 6)" A = Exponential('a', 1) B = Exponential('b', 1) assert str(pspace(Tuple(A, B)).domain) == "Domain: (0 <= a) & (0 <= b) & (a < oo) & (b < oo)" def test_FiniteSet(): assert str(FiniteSet(*range(1, 51))) == ( 'FiniteSet(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,' ' 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,' ' 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50)' ) assert str(FiniteSet(*range(1, 6))) == 'FiniteSet(1, 2, 3, 4, 5)' def test_UniversalSet(): assert str(S.UniversalSet) == 'UniversalSet' def test_PrettyPoly(): from sympy.polys.domains import QQ F = QQ.frac_field(x, y) R = QQ[x, y] assert sstr(F.convert(x/(x + y))) == sstr(x/(x + y)) assert sstr(R.convert(x + y)) == sstr(x + y) def test_categories(): from sympy.categories import (Object, NamedMorphism, IdentityMorphism, Category) A = Object("A") B = Object("B") f = NamedMorphism(A, B, "f") id_A = IdentityMorphism(A) K = Category("K") assert str(A) == 'Object("A")' assert str(f) == 'NamedMorphism(Object("A"), Object("B"), "f")' assert str(id_A) == 'IdentityMorphism(Object("A"))' assert str(K) == 'Category("K")' def test_Tr(): A, B = symbols('A B', commutative=False) t = Tr(A*B) assert str(t) == 'Tr(A*B)' def test_issue_6387(): assert str(factor(-3.0*z + 3)) == '-3.0*(1.0*z - 1.0)' def test_MatMul_MatAdd(): from sympy import MatrixSymbol assert str(2*(MatrixSymbol("X", 2, 2) + MatrixSymbol("Y", 2, 2))) == \ "2*(X + Y)" def test_MatrixSlice(): from sympy.matrices.expressions import MatrixSymbol assert str(MatrixSymbol('X', 10, 10)[:5, 1:9:2]) == 'X[:5, 1:9:2]' assert str(MatrixSymbol('X', 10, 10)[5, :5:2]) == 'X[5, :5:2]' def test_true_false(): assert str(true) == repr(true) == sstr(true) == "True" assert str(false) == repr(false) == sstr(false) == "False" def test_Equivalent(): assert str(Equivalent(y, x)) == "Equivalent(x, y)" def test_Xor(): assert str(Xor(y, x, evaluate=False)) == "x ^ y" def test_Complement(): assert str(Complement(S.Reals, S.Naturals)) == 'Complement(Reals, Naturals)' def test_SymmetricDifference(): assert str(SymmetricDifference(Interval(2, 3), Interval(3, 4),evaluate=False)) == \ 'SymmetricDifference(Interval(2, 3), Interval(3, 4))' def test_UnevaluatedExpr(): a, b = symbols("a b") expr1 = 2*UnevaluatedExpr(a+b) assert str(expr1) == "2*(a + b)" def test_MatrixElement_printing(): # test cases for issue #11821 A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) assert(str(A[0, 0]) == "A[0, 0]") assert(str(3 * A[0, 0]) == "3*A[0, 0]") F = C[0, 0].subs(C, A - B) assert str(F) == "(A - B)[0, 0]" def test_MatrixSymbol_printing(): A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) assert str(A - A*B - B) == "A - A*B - B" assert str(A*B - (A+B)) == "-(A + B) + A*B" assert str(A**(-1)) == "A**(-1)" assert str(A**3) == "A**3" def test_MatrixExpressions(): n = Symbol('n', integer=True) X = MatrixSymbol('X', n, n) assert str(X) == "X" Y = X[1:2:3, 4:5:6] assert str(Y) == "X[1:3, 4:6]" Z = X[1:10:2] assert str(Z) == "X[1:10:2, :n]" # Apply function elementwise (`ElementwiseApplyFunc`): expr = (X.T*X).applyfunc(sin) assert str(expr) == 'sin.(X.T*X)' lamda = Lambda(x, 1/x) expr = (n*X).applyfunc(lamda) assert str(expr) == 'Lambda(_d, 1/_d).(n*X)' def test_Subs_printing(): assert str(Subs(x, (x,), (1,))) == 'Subs(x, x, 1)' assert str(Subs(x + y, (x, y), (1, 2))) == 'Subs(x + y, (x, y), (1, 2))' def test_issue_15716(): e = Integral(factorial(x), (x, -oo, oo)) assert e.as_terms() == ([(e, ((1.0, 0.0), (1,), ()))], [e]) def test_str_special_matrices(): from sympy.matrices import Identity, ZeroMatrix, OneMatrix assert str(Identity(4)) == 'I' assert str(ZeroMatrix(2, 2)) == '0' assert str(OneMatrix(2, 2)) == '1' def test_issue_14567(): assert factorial(Sum(-1, (x, 0, 0))) + y # doesn't raise an error
0a0cbb40ad262ba59690de0dfc91e6a9e68f4080c9f6a1d94b6b2afae5935f0a
from sympy import ( Add, Abs, Chi, Ci, CosineTransform, Dict, Ei, Eq, FallingFactorial, FiniteSet, Float, FourierTransform, Function, Indexed, IndexedBase, Integral, Interval, InverseCosineTransform, InverseFourierTransform, Derivative, InverseLaplaceTransform, InverseMellinTransform, InverseSineTransform, Lambda, LaplaceTransform, Limit, Matrix, Max, MellinTransform, Min, Mul, Order, Piecewise, Poly, ring, field, ZZ, Pow, Product, Range, Rational, RisingFactorial, rootof, RootSum, S, Shi, Si, SineTransform, Subs, Sum, Symbol, ImageSet, Tuple, Ynm, Znm, arg, asin, acsc, Mod, assoc_laguerre, assoc_legendre, beta, binomial, catalan, ceiling, Complement, chebyshevt, chebyshevu, conjugate, cot, coth, diff, dirichlet_eta, euler, exp, expint, factorial, factorial2, floor, gamma, gegenbauer, hermite, hyper, im, jacobi, laguerre, legendre, lerchphi, log, frac, meijerg, oo, polar_lift, polylog, re, root, sin, sqrt, symbols, uppergamma, zeta, subfactorial, totient, elliptic_k, elliptic_f, elliptic_e, elliptic_pi, cos, tan, Wild, true, false, Equivalent, Not, Contains, divisor_sigma, SeqPer, SeqFormula, SeqAdd, SeqMul, fourier_series, pi, ConditionSet, ComplexRegion, fps, AccumBounds, reduced_totient, primenu, primeomega, SingularityFunction, stieltjes, mathieuc, mathieus, mathieucprime, mathieusprime, UnevaluatedExpr, Quaternion, I, KroneckerProduct, LambertW) from sympy.ntheory.factor_ import udivisor_sigma from sympy.abc import mu, tau from sympy.printing.latex import (latex, translate, greek_letters_set, tex_greek_dictionary, multiline_latex) from sympy.tensor.array import (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableSparseNDimArray, MutableDenseNDimArray, tensorproduct) from sympy.utilities.pytest import XFAIL, raises from sympy.functions import DiracDelta, Heaviside, KroneckerDelta, LeviCivita from sympy.functions.combinatorial.numbers import bernoulli, bell, lucas, \ fibonacci, tribonacci from sympy.logic import Implies from sympy.logic.boolalg import And, Or, Xor from sympy.physics.quantum import Commutator, Operator from sympy.physics.units import degree, radian, kg, meter, gibibyte, microgram, second from sympy.core.trace import Tr from sympy.core.compatibility import range from sympy.combinatorics.permutations import Cycle, Permutation from sympy import MatrixSymbol, ln from sympy.vector import CoordSys3D, Cross, Curl, Dot, Divergence, Gradient, Laplacian from sympy.sets.setexpr import SetExpr from sympy.sets.sets import \ Union, Intersection, Complement, SymmetricDifference, ProductSet import sympy as sym class lowergamma(sym.lowergamma): pass # testing notation inheritance by a subclass with same name x, y, z, t, a, b, c = symbols('x y z t a b c') k, m, n = symbols('k m n', integer=True) def test_printmethod(): class R(Abs): def _latex(self, printer): return "foo(%s)" % printer._print(self.args[0]) assert latex(R(x)) == "foo(x)" class R(Abs): def _latex(self, printer): return "foo" assert latex(R(x)) == "foo" def test_latex_basic(): assert latex(1 + x) == "x + 1" assert latex(x**2) == "x^{2}" assert latex(x**(1 + x)) == "x^{x + 1}" assert latex(x**3 + x + 1 + x**2) == "x^{3} + x^{2} + x + 1" assert latex(2*x*y) == "2 x y" assert latex(2*x*y, mul_symbol='dot') == r"2 \cdot x \cdot y" assert latex(3*x**2*y, mul_symbol='\\,') == r"3\,x^{2}\,y" assert latex(1.5*3**x, mul_symbol='\\,') == r"1.5 \cdot 3^{x}" assert latex(1/x) == r"\frac{1}{x}" assert latex(1/x, fold_short_frac=True) == "1 / x" assert latex(-S(3)/2) == r"- \frac{3}{2}" assert latex(-S(3)/2, fold_short_frac=True) == r"- 3 / 2" assert latex(1/x**2) == r"\frac{1}{x^{2}}" assert latex(1/(x + y)/2) == r"\frac{1}{2 \left(x + y\right)}" assert latex(x/2) == r"\frac{x}{2}" assert latex(x/2, fold_short_frac=True) == "x / 2" assert latex((x + y)/(2*x)) == r"\frac{x + y}{2 x}" assert latex((x + y)/(2*x), fold_short_frac=True) == \ r"\left(x + y\right) / 2 x" assert latex((x + y)/(2*x), long_frac_ratio=0) == \ r"\frac{1}{2 x} \left(x + y\right)" assert latex((x + y)/x) == r"\frac{x + y}{x}" assert latex((x + y)/x, long_frac_ratio=3) == r"\frac{x + y}{x}" assert latex((2*sqrt(2)*x)/3) == r"\frac{2 \sqrt{2} x}{3}" assert latex((2*sqrt(2)*x)/3, long_frac_ratio=2) == \ r"\frac{2 x}{3} \sqrt{2}" assert latex(2*Integral(x, x)/3) == r"\frac{2 \int x\, dx}{3}" assert latex(2*Integral(x, x)/3, fold_short_frac=True) == \ r"\left(2 \int x\, dx\right) / 3" assert latex(sqrt(x)) == r"\sqrt{x}" assert latex(x**Rational(1, 3)) == r"\sqrt[3]{x}" assert latex(x**Rational(1, 3), root_notation=False) == r"x^{\frac{1}{3}}" assert latex(sqrt(x)**3) == r"x^{\frac{3}{2}}" assert latex(sqrt(x), itex=True) == r"\sqrt{x}" assert latex(x**Rational(1, 3), itex=True) == r"\root{3}{x}" assert latex(sqrt(x)**3, itex=True) == r"x^{\frac{3}{2}}" assert latex(x**Rational(3, 4)) == r"x^{\frac{3}{4}}" assert latex(x**Rational(3, 4), fold_frac_powers=True) == "x^{3/4}" assert latex((x + 1)**Rational(3, 4)) == \ r"\left(x + 1\right)^{\frac{3}{4}}" assert latex((x + 1)**Rational(3, 4), fold_frac_powers=True) == \ r"\left(x + 1\right)^{3/4}" assert latex(1.5e20*x) == r"1.5 \cdot 10^{20} x" assert latex(1.5e20*x, mul_symbol='dot') == r"1.5 \cdot 10^{20} \cdot x" assert latex(1.5e20*x, mul_symbol='times') == \ r"1.5 \times 10^{20} \times x" assert latex(1/sin(x)) == r"\frac{1}{\sin{\left(x \right)}}" assert latex(sin(x)**-1) == r"\frac{1}{\sin{\left(x \right)}}" assert latex(sin(x)**Rational(3, 2)) == \ r"\sin^{\frac{3}{2}}{\left(x \right)}" assert latex(sin(x)**Rational(3, 2), fold_frac_powers=True) == \ r"\sin^{3/2}{\left(x \right)}" assert latex(~x) == r"\neg x" assert latex(x & y) == r"x \wedge y" assert latex(x & y & z) == r"x \wedge y \wedge z" assert latex(x | y) == r"x \vee y" assert latex(x | y | z) == r"x \vee y \vee z" assert latex((x & y) | z) == r"z \vee \left(x \wedge y\right)" assert latex(Implies(x, y)) == r"x \Rightarrow y" assert latex(~(x >> ~y)) == r"x \not\Rightarrow \neg y" assert latex(Implies(Or(x,y), z)) == r"\left(x \vee y\right) \Rightarrow z" assert latex(Implies(z, Or(x,y))) == r"z \Rightarrow \left(x \vee y\right)" assert latex(~(x & y)) == r"\neg \left(x \wedge y\right)" assert latex(~x, symbol_names={x: "x_i"}) == r"\neg x_i" assert latex(x & y, symbol_names={x: "x_i", y: "y_i"}) == \ r"x_i \wedge y_i" assert latex(x & y & z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \ r"x_i \wedge y_i \wedge z_i" assert latex(x | y, symbol_names={x: "x_i", y: "y_i"}) == r"x_i \vee y_i" assert latex(x | y | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \ r"x_i \vee y_i \vee z_i" assert latex((x & y) | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \ r"z_i \vee \left(x_i \wedge y_i\right)" assert latex(Implies(x, y), symbol_names={x: "x_i", y: "y_i"}) == \ r"x_i \Rightarrow y_i" p = Symbol('p', positive=True) assert latex(exp(-p)*log(p)) == r"e^{- p} \log{\left(p \right)}" def test_latex_builtins(): assert latex(True) == r"\text{True}" assert latex(False) == r"\text{False}" assert latex(None) == r"\text{None}" assert latex(true) == r"\text{True}" assert latex(false) == r'\text{False}' def test_latex_SingularityFunction(): assert latex(SingularityFunction(x, 4, 5)) == \ r"{\left\langle x - 4 \right\rangle}^{5}" assert latex(SingularityFunction(x, -3, 4)) == \ r"{\left\langle x + 3 \right\rangle}^{4}" assert latex(SingularityFunction(x, 0, 4)) == \ r"{\left\langle x \right\rangle}^{4}" assert latex(SingularityFunction(x, a, n)) == \ r"{\left\langle - a + x \right\rangle}^{n}" assert latex(SingularityFunction(x, 4, -2)) == \ r"{\left\langle x - 4 \right\rangle}^{-2}" assert latex(SingularityFunction(x, 4, -1)) == \ r"{\left\langle x - 4 \right\rangle}^{-1}" def test_latex_cycle(): assert latex(Cycle(1, 2, 4)) == r"\left( 1\; 2\; 4\right)" assert latex(Cycle(1, 2)(4, 5, 6)) == \ r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)" assert latex(Cycle()) == r"\left( \right)" def test_latex_permutation(): assert latex(Permutation(1, 2, 4)) == r"\left( 1\; 2\; 4\right)" assert latex(Permutation(1, 2)(4, 5, 6)) == \ r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)" assert latex(Permutation()) == r"\left( \right)" assert latex(Permutation(2, 4)*Permutation(5)) == \ r"\left( 2\; 4\right)\left( 5\right)" assert latex(Permutation(5)) == r"\left( 5\right)" def test_latex_Float(): assert latex(Float(1.0e100)) == r"1.0 \cdot 10^{100}" assert latex(Float(1.0e-100)) == r"1.0 \cdot 10^{-100}" assert latex(Float(1.0e-100), mul_symbol="times") == \ r"1.0 \times 10^{-100}" def test_latex_vector_expressions(): A = CoordSys3D('A') assert latex(Cross(A.i, A.j*A.x*3+A.k)) == \ r"\mathbf{\hat{i}_{A}} \times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)" assert latex(Cross(A.i, A.j)) == \ r"\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}" assert latex(x*Cross(A.i, A.j)) == \ r"x \left(\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}\right)" assert latex(Cross(x*A.i, A.j)) == \ r'- \mathbf{\hat{j}_{A}} \times \left((x)\mathbf{\hat{i}_{A}}\right)' assert latex(Curl(3*A.x*A.j)) == \ r"\nabla\times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)" assert latex(Curl(3*A.x*A.j+A.i)) == \ r"\nabla\times \left(\mathbf{\hat{i}_{A}} + (3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)" assert latex(Curl(3*x*A.x*A.j)) == \ r"\nabla\times \left((3 \mathbf{{x}_{A}} x)\mathbf{\hat{j}_{A}}\right)" assert latex(x*Curl(3*A.x*A.j)) == \ r"x \left(\nabla\times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)\right)" assert latex(Divergence(3*A.x*A.j+A.i)) == \ r"\nabla\cdot \left(\mathbf{\hat{i}_{A}} + (3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)" assert latex(Divergence(3*A.x*A.j)) == \ r"\nabla\cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)" assert latex(x*Divergence(3*A.x*A.j)) == \ r"x \left(\nabla\cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)\right)" assert latex(Dot(A.i, A.j*A.x*3+A.k)) == \ r"\mathbf{\hat{i}_{A}} \cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)" assert latex(Dot(A.i, A.j)) == \ r"\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}" assert latex(Dot(x*A.i, A.j)) == \ r"\mathbf{\hat{j}_{A}} \cdot \left((x)\mathbf{\hat{i}_{A}}\right)" assert latex(x*Dot(A.i, A.j)) == \ r"x \left(\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}\right)" assert latex(Gradient(A.x)) == r"\nabla \mathbf{{x}_{A}}" assert latex(Gradient(A.x + 3*A.y)) == \ r"\nabla \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)" assert latex(x*Gradient(A.x)) == r"x \left(\nabla \mathbf{{x}_{A}}\right)" assert latex(Gradient(x*A.x)) == r"\nabla \left(\mathbf{{x}_{A}} x\right)" assert latex(Laplacian(A.x)) == r"\triangle \mathbf{{x}_{A}}" assert latex(Laplacian(A.x + 3*A.y)) == \ r"\triangle \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)" assert latex(x*Laplacian(A.x)) == r"x \left(\triangle \mathbf{{x}_{A}}\right)" assert latex(Laplacian(x*A.x)) == r"\triangle \left(\mathbf{{x}_{A}} x\right)" def test_latex_symbols(): Gamma, lmbda, rho = symbols('Gamma, lambda, rho') tau, Tau, TAU, taU = symbols('tau, Tau, TAU, taU') assert latex(tau) == r"\tau" assert latex(Tau) == "T" assert latex(TAU) == r"\tau" assert latex(taU) == r"\tau" # Check that all capitalized greek letters are handled explicitly capitalized_letters = set(l.capitalize() for l in greek_letters_set) assert len(capitalized_letters - set(tex_greek_dictionary.keys())) == 0 assert latex(Gamma + lmbda) == r"\Gamma + \lambda" assert latex(Gamma * lmbda) == r"\Gamma \lambda" assert latex(Symbol('q1')) == r"q_{1}" assert latex(Symbol('q21')) == r"q_{21}" assert latex(Symbol('epsilon0')) == r"\epsilon_{0}" assert latex(Symbol('omega1')) == r"\omega_{1}" assert latex(Symbol('91')) == r"91" assert latex(Symbol('alpha_new')) == r"\alpha_{new}" assert latex(Symbol('C^orig')) == r"C^{orig}" assert latex(Symbol('x^alpha')) == r"x^{\alpha}" assert latex(Symbol('beta^alpha')) == r"\beta^{\alpha}" assert latex(Symbol('e^Alpha')) == r"e^{A}" assert latex(Symbol('omega_alpha^beta')) == r"\omega^{\beta}_{\alpha}" assert latex(Symbol('omega') ** Symbol('beta')) == r"\omega^{\beta}" @XFAIL def test_latex_symbols_failing(): rho, mass, volume = symbols('rho, mass, volume') assert latex( volume * rho == mass) == r"\rho \mathrm{volume} = \mathrm{mass}" assert latex(volume / mass * rho == 1) == \ r"\rho \mathrm{volume} {\mathrm{mass}}^{(-1)} = 1" assert latex(mass**3 * volume**3) == \ r"{\mathrm{mass}}^{3} \cdot {\mathrm{volume}}^{3}" def test_latex_functions(): assert latex(exp(x)) == "e^{x}" assert latex(exp(1) + exp(2)) == "e + e^{2}" f = Function('f') assert latex(f(x)) == r'f{\left(x \right)}' assert latex(f) == r'f' g = Function('g') assert latex(g(x, y)) == r'g{\left(x,y \right)}' assert latex(g) == r'g' h = Function('h') assert latex(h(x, y, z)) == r'h{\left(x,y,z \right)}' assert latex(h) == r'h' Li = Function('Li') assert latex(Li) == r'\operatorname{Li}' assert latex(Li(x)) == r'\operatorname{Li}{\left(x \right)}' mybeta = Function('beta') # not to be confused with the beta function assert latex(mybeta(x, y, z)) == r"\beta{\left(x,y,z \right)}" assert latex(beta(x, y)) == r'\operatorname{B}\left(x, y\right)' assert latex(beta(x, y)**2) == r'\operatorname{B}^{2}\left(x, y\right)' assert latex(mybeta(x)) == r"\beta{\left(x \right)}" assert latex(mybeta) == r"\beta" g = Function('gamma') # not to be confused with the gamma function assert latex(g(x, y, z)) == r"\gamma{\left(x,y,z \right)}" assert latex(g(x)) == r"\gamma{\left(x \right)}" assert latex(g) == r"\gamma" a1 = Function('a_1') assert latex(a1) == r"\operatorname{a_{1}}" assert latex(a1(x)) == r"\operatorname{a_{1}}{\left(x \right)}" # issue 5868 omega1 = Function('omega1') assert latex(omega1) == r"\omega_{1}" assert latex(omega1(x)) == r"\omega_{1}{\left(x \right)}" assert latex(sin(x)) == r"\sin{\left(x \right)}" assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}" assert latex(sin(2*x**2), fold_func_brackets=True) == \ r"\sin {2 x^{2}}" assert latex(sin(x**2), fold_func_brackets=True) == \ r"\sin {x^{2}}" assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left(x \right)}" assert latex(asin(x)**2, inv_trig_style="full") == \ r"\arcsin^{2}{\left(x \right)}" assert latex(asin(x)**2, inv_trig_style="power") == \ r"\sin^{-1}{\left(x \right)}^{2}" assert latex(asin(x**2), inv_trig_style="power", fold_func_brackets=True) == \ r"\sin^{-1} {x^{2}}" assert latex(acsc(x), inv_trig_style="full") == \ r"\operatorname{arccsc}{\left(x \right)}" assert latex(factorial(k)) == r"k!" assert latex(factorial(-k)) == r"\left(- k\right)!" assert latex(factorial(k)**2) == r"k!^{2}" assert latex(subfactorial(k)) == r"!k" assert latex(subfactorial(-k)) == r"!\left(- k\right)" assert latex(subfactorial(k)**2) == r"\left(!k\right)^{2}" assert latex(factorial2(k)) == r"k!!" assert latex(factorial2(-k)) == r"\left(- k\right)!!" assert latex(factorial2(k)**2) == r"k!!^{2}" assert latex(binomial(2, k)) == r"{\binom{2}{k}}" assert latex(binomial(2, k)**2) == r"{\binom{2}{k}}^{2}" assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{k}" assert latex(RisingFactorial(3, k)) == r"{3}^{\left(k\right)}" assert latex(floor(x)) == r"\left\lfloor{x}\right\rfloor" assert latex(ceiling(x)) == r"\left\lceil{x}\right\rceil" assert latex(frac(x)) == r"\operatorname{frac}{\left(x\right)}" assert latex(floor(x)**2) == r"\left\lfloor{x}\right\rfloor^{2}" assert latex(ceiling(x)**2) == r"\left\lceil{x}\right\rceil^{2}" assert latex(frac(x)**2) == r"\operatorname{frac}{\left(x\right)}^{2}" assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)" assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}" assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)" assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}" assert latex(Abs(x)) == r"\left|{x}\right|" assert latex(Abs(x)**2) == r"\left|{x}\right|^{2}" assert latex(re(x)) == r"\operatorname{re}{\left(x\right)}" assert latex(re(x + y)) == \ r"\operatorname{re}{\left(x\right)} + \operatorname{re}{\left(y\right)}" assert latex(im(x)) == r"\operatorname{im}{\left(x\right)}" assert latex(conjugate(x)) == r"\overline{x}" assert latex(conjugate(x)**2) == r"\overline{x}^{2}" assert latex(conjugate(x**2)) == r"\overline{x}^{2}" assert latex(gamma(x)) == r"\Gamma\left(x\right)" w = Wild('w') assert latex(gamma(w)) == r"\Gamma\left(w\right)" assert latex(Order(x)) == r"O\left(x\right)" assert latex(Order(x, x)) == r"O\left(x\right)" assert latex(Order(x, (x, 0))) == r"O\left(x\right)" assert latex(Order(x, (x, oo))) == r"O\left(x; x\rightarrow \infty\right)" assert latex(Order(x - y, (x, y))) == \ r"O\left(x - y; x\rightarrow y\right)" assert latex(Order(x, x, y)) == \ r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)" assert latex(Order(x, x, y)) == \ r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)" assert latex(Order(x, (x, oo), (y, oo))) == \ r"O\left(x; \left( x, \ y\right)\rightarrow \left( \infty, \ \infty\right)\right)" assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)' assert latex(lowergamma(x, y)**2) == r'\gamma^{2}\left(x, y\right)' assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)' assert latex(uppergamma(x, y)**2) == r'\Gamma^{2}\left(x, y\right)' assert latex(cot(x)) == r'\cot{\left(x \right)}' assert latex(coth(x)) == r'\coth{\left(x \right)}' assert latex(re(x)) == r'\operatorname{re}{\left(x\right)}' assert latex(im(x)) == r'\operatorname{im}{\left(x\right)}' assert latex(root(x, y)) == r'x^{\frac{1}{y}}' assert latex(arg(x)) == r'\arg{\left(x \right)}' assert latex(zeta(x)) == r"\zeta\left(x\right)" assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)" assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)" assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)" assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)" assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)" assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)" assert latex( polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)" assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)" assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)" assert latex(stieltjes(x)) == r"\gamma_{x}" assert latex(stieltjes(x)**2) == r"\gamma_{x}^{2}" assert latex(stieltjes(x, y)) == r"\gamma_{x}\left(y\right)" assert latex(stieltjes(x, y)**2) == r"\gamma_{x}\left(y\right)^{2}" assert latex(elliptic_k(z)) == r"K\left(z\right)" assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)" assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)" assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)" assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)" assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)" assert latex(elliptic_e(z)) == r"E\left(z\right)" assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)" assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)" assert latex(elliptic_pi(x, y, z)**2) == \ r"\Pi^{2}\left(x; y\middle| z\right)" assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)" assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)" assert latex(Ei(x)) == r'\operatorname{Ei}{\left(x \right)}' assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left(x \right)}' assert latex(expint(x, y)) == r'\operatorname{E}_{x}\left(y\right)' assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)' assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left(x \right)}' assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left(x \right)}' assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left(x \right)}' assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}\left(x\right)' assert latex(Chi(x)) == r'\operatorname{Chi}\left(x\right)' assert latex(jacobi(n, a, b, x)) == \ r'P_{n}^{\left(a,b\right)}\left(x\right)' assert latex(jacobi(n, a, b, x)**2) == \ r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}' assert latex(gegenbauer(n, a, x)) == \ r'C_{n}^{\left(a\right)}\left(x\right)' assert latex(gegenbauer(n, a, x)**2) == \ r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)' assert latex(chebyshevt(n, x)**2) == \ r'\left(T_{n}\left(x\right)\right)^{2}' assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)' assert latex(chebyshevu(n, x)**2) == \ r'\left(U_{n}\left(x\right)\right)^{2}' assert latex(legendre(n, x)) == r'P_{n}\left(x\right)' assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}' assert latex(assoc_legendre(n, a, x)) == \ r'P_{n}^{\left(a\right)}\left(x\right)' assert latex(assoc_legendre(n, a, x)**2) == \ r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)' assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}' assert latex(assoc_laguerre(n, a, x)) == \ r'L_{n}^{\left(a\right)}\left(x\right)' assert latex(assoc_laguerre(n, a, x)**2) == \ r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(hermite(n, x)) == r'H_{n}\left(x\right)' assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}' theta = Symbol("theta", real=True) phi = Symbol("phi", real=True) assert latex(Ynm(n, m, theta, phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)' assert latex(Ynm(n, m, theta, phi)**3) == \ r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}' assert latex(Znm(n, m, theta, phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)' assert latex(Znm(n, m, theta, phi)**3) == \ r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}' # Test latex printing of function names with "_" assert latex(polar_lift(0)) == \ r"\operatorname{polar\_lift}{\left(0 \right)}" assert latex(polar_lift(0)**3) == \ r"\operatorname{polar\_lift}^{3}{\left(0 \right)}" assert latex(totient(n)) == r'\phi\left(n\right)' assert latex(totient(n) ** 2) == r'\left(\phi\left(n\right)\right)^{2}' assert latex(reduced_totient(n)) == r'\lambda\left(n\right)' assert latex(reduced_totient(n) ** 2) == \ r'\left(\lambda\left(n\right)\right)^{2}' assert latex(divisor_sigma(x)) == r"\sigma\left(x\right)" assert latex(divisor_sigma(x)**2) == r"\sigma^{2}\left(x\right)" assert latex(divisor_sigma(x, y)) == r"\sigma_y\left(x\right)" assert latex(divisor_sigma(x, y)**2) == r"\sigma^{2}_y\left(x\right)" assert latex(udivisor_sigma(x)) == r"\sigma^*\left(x\right)" assert latex(udivisor_sigma(x)**2) == r"\sigma^*^{2}\left(x\right)" assert latex(udivisor_sigma(x, y)) == r"\sigma^*_y\left(x\right)" assert latex(udivisor_sigma(x, y)**2) == r"\sigma^*^{2}_y\left(x\right)" assert latex(primenu(n)) == r'\nu\left(n\right)' assert latex(primenu(n) ** 2) == r'\left(\nu\left(n\right)\right)^{2}' assert latex(primeomega(n)) == r'\Omega\left(n\right)' assert latex(primeomega(n) ** 2) == \ r'\left(\Omega\left(n\right)\right)^{2}' assert latex(LambertW(n)) == r'W\left(n\right)' assert latex(LambertW(n, -1)) == r'W_{-1}\left(n\right)' assert latex(LambertW(n, k)) == r'W_{k}\left(n\right)' assert latex(Mod(x, 7)) == r'x\bmod{7}' assert latex(Mod(x + 1, 7)) == r'\left(x + 1\right)\bmod{7}' assert latex(Mod(2 * x, 7)) == r'2 x\bmod{7}' assert latex(Mod(x, 7) + 1) == r'\left(x\bmod{7}\right) + 1' assert latex(2 * Mod(x, 7)) == r'2 \left(x\bmod{7}\right)' # some unknown function name should get rendered with \operatorname fjlkd = Function('fjlkd') assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left(x \right)}' # even when it is referred to without an argument assert latex(fjlkd) == r'\operatorname{fjlkd}' # test that notation passes to subclasses of the same name only def test_function_subclass_different_name(): class mygamma(gamma): pass assert latex(mygamma) == r"\operatorname{mygamma}" assert latex(mygamma(x)) == r"\operatorname{mygamma}{\left(x \right)}" def test_hyper_printing(): from sympy import pi from sympy.abc import x, z assert latex(meijerg(Tuple(pi, pi, x), Tuple(1), (0, 1), Tuple(1, 2, 3/pi), z)) == \ r'{G_{4, 5}^{2, 3}\left(\begin{matrix} \pi, \pi, x & 1 \\0, 1 & 1, 2, '\ r'\frac{3}{\pi} \end{matrix} \middle| {z} \right)}' assert latex(meijerg(Tuple(), Tuple(1), (0,), Tuple(), z)) == \ r'{G_{1, 1}^{1, 0}\left(\begin{matrix} & 1 \\0 & \end{matrix} \middle| {z} \right)}' assert latex(hyper((x, 2), (3,), z)) == \ r'{{}_{2}F_{1}\left(\begin{matrix} x, 2 ' \ r'\\ 3 \end{matrix}\middle| {z} \right)}' assert latex(hyper(Tuple(), Tuple(1), z)) == \ r'{{}_{0}F_{1}\left(\begin{matrix} ' \ r'\\ 1 \end{matrix}\middle| {z} \right)}' def test_latex_bessel(): from sympy.functions.special.bessel import (besselj, bessely, besseli, besselk, hankel1, hankel2, jn, yn, hn1, hn2) from sympy.abc import z assert latex(besselj(n, z**2)**k) == r'J^{k}_{n}\left(z^{2}\right)' assert latex(bessely(n, z)) == r'Y_{n}\left(z\right)' assert latex(besseli(n, z)) == r'I_{n}\left(z\right)' assert latex(besselk(n, z)) == r'K_{n}\left(z\right)' assert latex(hankel1(n, z**2)**2) == \ r'\left(H^{(1)}_{n}\left(z^{2}\right)\right)^{2}' assert latex(hankel2(n, z)) == r'H^{(2)}_{n}\left(z\right)' assert latex(jn(n, z)) == r'j_{n}\left(z\right)' assert latex(yn(n, z)) == r'y_{n}\left(z\right)' assert latex(hn1(n, z)) == r'h^{(1)}_{n}\left(z\right)' assert latex(hn2(n, z)) == r'h^{(2)}_{n}\left(z\right)' def test_latex_fresnel(): from sympy.functions.special.error_functions import (fresnels, fresnelc) from sympy.abc import z assert latex(fresnels(z)) == r'S\left(z\right)' assert latex(fresnelc(z)) == r'C\left(z\right)' assert latex(fresnels(z)**2) == r'S^{2}\left(z\right)' assert latex(fresnelc(z)**2) == r'C^{2}\left(z\right)' def test_latex_brackets(): assert latex((-1)**x) == r"\left(-1\right)^{x}" def test_latex_indexed(): Psi_symbol = Symbol('Psi_0', complex=True, real=False) Psi_indexed = IndexedBase(Symbol('Psi', complex=True, real=False)) symbol_latex = latex(Psi_symbol * conjugate(Psi_symbol)) indexed_latex = latex(Psi_indexed[0] * conjugate(Psi_indexed[0])) # \\overline{{\\Psi}_{0}} {\\Psi}_{0} vs. \\Psi_{0} \\overline{\\Psi_{0}} assert symbol_latex == '\\Psi_{0} \\overline{\\Psi_{0}}' assert indexed_latex == '\\overline{{\\Psi}_{0}} {\\Psi}_{0}' # Symbol('gamma') gives r'\gamma' assert latex(Indexed('x1', Symbol('i'))) == '{x_{1}}_{i}' assert latex(IndexedBase('gamma')) == r'\gamma' assert latex(IndexedBase('a b')) == 'a b' assert latex(IndexedBase('a_b')) == 'a_{b}' def test_latex_derivatives(): # regular "d" for ordinary derivatives assert latex(diff(x**3, x, evaluate=False)) == \ r"\frac{d}{d x} x^{3}" assert latex(diff(sin(x) + x**2, x, evaluate=False)) == \ r"\frac{d}{d x} \left(x^{2} + \sin{\left(x \right)}\right)" assert latex(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False))\ == \ r"\frac{d^{2}}{d x^{2}} \left(x^{2} + \sin{\left(x \right)}\right)" assert latex(diff(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False), evaluate=False)) == \ r"\frac{d^{3}}{d x^{3}} \left(x^{2} + \sin{\left(x \right)}\right)" # \partial for partial derivatives assert latex(diff(sin(x * y), x, evaluate=False)) == \ r"\frac{\partial}{\partial x} \sin{\left(x y \right)}" assert latex(diff(sin(x * y) + x**2, x, evaluate=False)) == \ r"\frac{\partial}{\partial x} \left(x^{2} + \sin{\left(x y \right)}\right)" assert latex(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False)) == \ r"\frac{\partial^{2}}{\partial x^{2}} \left(x^{2} + \sin{\left(x y \right)}\right)" assert latex(diff(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False), x, evaluate=False)) == \ r"\frac{\partial^{3}}{\partial x^{3}} \left(x^{2} + \sin{\left(x y \right)}\right)" # mixed partial derivatives f = Function("f") assert latex(diff(diff(f(x, y), x, evaluate=False), y, evaluate=False)) == \ r"\frac{\partial^{2}}{\partial y\partial x} " + latex(f(x, y)) assert latex(diff(diff(diff(f(x, y), x, evaluate=False), x, evaluate=False), y, evaluate=False)) == \ r"\frac{\partial^{3}}{\partial y\partial x^{2}} " + latex(f(x, y)) # use ordinary d when one of the variables has been integrated out assert latex(diff(Integral(exp(-x*y), (x, 0, oo)), y, evaluate=False)) == \ r"\frac{d}{d y} \int\limits_{0}^{\infty} e^{- x y}\, dx" # Derivative wrapped in power: assert latex(diff(x, x, evaluate=False)**2) == \ r"\left(\frac{d}{d x} x\right)^{2}" assert latex(diff(f(x), x)**2) == \ r"\left(\frac{d}{d x} f{\left(x \right)}\right)^{2}" assert latex(diff(f(x), (x, n))) == \ r"\frac{d^{n}}{d x^{n}} f{\left(x \right)}" x1 = Symbol('x1') x2 = Symbol('x2') assert latex(diff(f(x1, x2), x1)) == r'\frac{\partial}{\partial x_{1}} f{\left(x_{1},x_{2} \right)}' n1 = Symbol('n1') assert latex(diff(f(x), (x, n1))) == r'\frac{d^{n_{1}}}{d x^{n_{1}}} f{\left(x \right)}' n2 = Symbol('n2') assert latex(diff(f(x), (x, Max(n1, n2)))) == \ r'\frac{d^{\max\left(n_{1}, n_{2}\right)}}{d x^{\max\left(n_{1}, n_{2}\right)}} f{\left(x \right)}' def test_latex_subs(): assert latex(Subs(x*y, ( x, y), (1, 2))) == r'\left. x y \right|_{\substack{ x=1\\ y=2 }}' def test_latex_integrals(): assert latex(Integral(log(x), x)) == r"\int \log{\left(x \right)}\, dx" assert latex(Integral(x**2, (x, 0, 1))) == \ r"\int\limits_{0}^{1} x^{2}\, dx" assert latex(Integral(x**2, (x, 10, 20))) == \ r"\int\limits_{10}^{20} x^{2}\, dx" assert latex(Integral(y*x**2, (x, 0, 1), y)) == \ r"\int\int\limits_{0}^{1} x^{2} y\, dx\, dy" assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*') == \ r"\begin{equation*}\int\int\limits_{0}^{1} x^{2} y\, dx\, dy\end{equation*}" assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*', itex=True) \ == r"$$\int\int_{0}^{1} x^{2} y\, dx\, dy$$" assert latex(Integral(x, (x, 0))) == r"\int\limits^{0} x\, dx" assert latex(Integral(x*y, x, y)) == r"\iint x y\, dx\, dy" assert latex(Integral(x*y*z, x, y, z)) == r"\iiint x y z\, dx\, dy\, dz" assert latex(Integral(x*y*z*t, x, y, z, t)) == \ r"\iiiint t x y z\, dx\, dy\, dz\, dt" assert latex(Integral(x, x, x, x, x, x, x)) == \ r"\int\int\int\int\int\int x\, dx\, dx\, dx\, dx\, dx\, dx" assert latex(Integral(x, x, y, (z, 0, 1))) == \ r"\int\limits_{0}^{1}\int\int x\, dx\, dy\, dz" # fix issue #10806 assert latex(Integral(z, z)**2) == r"\left(\int z\, dz\right)^{2}" assert latex(Integral(x + z, z)) == r"\int \left(x + z\right)\, dz" assert latex(Integral(x+z/2, z)) == \ r"\int \left(x + \frac{z}{2}\right)\, dz" assert latex(Integral(x**y, z)) == r"\int x^{y}\, dz" def test_latex_sets(): for s in (frozenset, set): assert latex(s([x*y, x**2])) == r"\left\{x^{2}, x y\right\}" assert latex(s(range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}" assert latex(s(range(1, 13))) == \ r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}" s = FiniteSet assert latex(s(*[x*y, x**2])) == r"\left\{x^{2}, x y\right\}" assert latex(s(*range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}" assert latex(s(*range(1, 13))) == \ r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}" def test_latex_SetExpr(): iv = Interval(1, 3) se = SetExpr(iv) assert latex(se) == r"SetExpr\left(\left[1, 3\right]\right)" def test_latex_Range(): assert latex(Range(1, 51)) == \ r'\left\{1, 2, \ldots, 50\right\}' assert latex(Range(1, 4)) == r'\left\{1, 2, 3\right\}' assert latex(Range(0, 3, 1)) == r'\left\{0, 1, 2\right\}' assert latex(Range(0, 30, 1)) == r'\left\{0, 1, \ldots, 29\right\}' assert latex(Range(30, 1, -1)) == r'\left\{30, 29, \ldots, 2\right\}' assert latex(Range(0, oo, 2)) == r'\left\{0, 2, \ldots\right\}' assert latex(Range(oo, -2, -2)) == r'\left\{\ldots, 2, 0\right\}' assert latex(Range(-2, -oo, -1)) == \ r'\left\{-2, -3, \ldots\right\}' def test_latex_sequences(): s1 = SeqFormula(a**2, (0, oo)) s2 = SeqPer((1, 2)) latex_str = r'\left[0, 1, 4, 9, \ldots\right]' assert latex(s1) == latex_str latex_str = r'\left[1, 2, 1, 2, \ldots\right]' assert latex(s2) == latex_str s3 = SeqFormula(a**2, (0, 2)) s4 = SeqPer((1, 2), (0, 2)) latex_str = r'\left[0, 1, 4\right]' assert latex(s3) == latex_str latex_str = r'\left[1, 2, 1\right]' assert latex(s4) == latex_str s5 = SeqFormula(a**2, (-oo, 0)) s6 = SeqPer((1, 2), (-oo, 0)) latex_str = r'\left[\ldots, 9, 4, 1, 0\right]' assert latex(s5) == latex_str latex_str = r'\left[\ldots, 2, 1, 2, 1\right]' assert latex(s6) == latex_str latex_str = r'\left[1, 3, 5, 11, \ldots\right]' assert latex(SeqAdd(s1, s2)) == latex_str latex_str = r'\left[1, 3, 5\right]' assert latex(SeqAdd(s3, s4)) == latex_str latex_str = r'\left[\ldots, 11, 5, 3, 1\right]' assert latex(SeqAdd(s5, s6)) == latex_str latex_str = r'\left[0, 2, 4, 18, \ldots\right]' assert latex(SeqMul(s1, s2)) == latex_str latex_str = r'\left[0, 2, 4\right]' assert latex(SeqMul(s3, s4)) == latex_str latex_str = r'\left[\ldots, 18, 4, 2, 0\right]' assert latex(SeqMul(s5, s6)) == latex_str # Sequences with symbolic limits, issue 12629 s7 = SeqFormula(a**2, (a, 0, x)) latex_str = r'\left\{a^{2}\right\}_{a=0}^{x}' assert latex(s7) == latex_str b = Symbol('b') s8 = SeqFormula(b*a**2, (a, 0, 2)) latex_str = r'\left[0, b, 4 b\right]' assert latex(s8) == latex_str def test_latex_FourierSeries(): latex_str = \ r'2 \sin{\left(x \right)} - \sin{\left(2 x \right)} + \frac{2 \sin{\left(3 x \right)}}{3} + \ldots' assert latex(fourier_series(x, (x, -pi, pi))) == latex_str def test_latex_FormalPowerSeries(): latex_str = r'\sum_{k=1}^{\infty} - \frac{\left(-1\right)^{- k} x^{k}}{k}' assert latex(fps(log(1 + x))) == latex_str def test_latex_intervals(): a = Symbol('a', real=True) assert latex(Interval(0, 0)) == r"\left\{0\right\}" assert latex(Interval(0, a)) == r"\left[0, a\right]" assert latex(Interval(0, a, False, False)) == r"\left[0, a\right]" assert latex(Interval(0, a, True, False)) == r"\left(0, a\right]" assert latex(Interval(0, a, False, True)) == r"\left[0, a\right)" assert latex(Interval(0, a, True, True)) == r"\left(0, a\right)" def test_latex_AccumuBounds(): a = Symbol('a', real=True) assert latex(AccumBounds(0, 1)) == r"\left\langle 0, 1\right\rangle" assert latex(AccumBounds(0, a)) == r"\left\langle 0, a\right\rangle" assert latex(AccumBounds(a + 1, a + 2)) == \ r"\left\langle a + 1, a + 2\right\rangle" def test_latex_emptyset(): assert latex(S.EmptySet) == r"\emptyset" def test_latex_universalset(): assert latex(S.UniversalSet) == r"\mathbb{U}" def test_latex_commutator(): A = Operator('A') B = Operator('B') comm = Commutator(B, A) assert latex(comm.doit()) == r"- (A B - B A)" def test_latex_union(): assert latex(Union(Interval(0, 1), Interval(2, 3))) == \ r"\left[0, 1\right] \cup \left[2, 3\right]" assert latex(Union(Interval(1, 1), Interval(2, 2), Interval(3, 4))) == \ r"\left\{1, 2\right\} \cup \left[3, 4\right]" def test_latex_intersection(): assert latex(Intersection(Interval(0, 1), Interval(x, y))) == \ r"\left[0, 1\right] \cap \left[x, y\right]" def test_latex_symmetric_difference(): assert latex(SymmetricDifference(Interval(2, 5), Interval(4, 7), evaluate=False)) == \ r'\left[2, 5\right] \triangle \left[4, 7\right]' def test_latex_Complement(): assert latex(Complement(S.Reals, S.Naturals)) == \ r"\mathbb{R} \setminus \mathbb{N}" def test_latex_productset(): line = Interval(0, 1) bigline = Interval(0, 10) fset = FiniteSet(1, 2, 3) assert latex(line**2) == r"%s^{2}" % latex(line) assert latex(line**10) == r"%s^{10}" % latex(line) assert latex((line * bigline * fset).flatten()) == r"%s \times %s \times %s" % ( latex(line), latex(bigline), latex(fset)) def test_set_operators_parenthesis(): a, b, c, d = symbols('a:d') A = FiniteSet(a) B = FiniteSet(b) C = FiniteSet(c) D = FiniteSet(d) U1 = Union(A, B, evaluate=False) U2 = Union(C, D, evaluate=False) I1 = Intersection(A, B, evaluate=False) I2 = Intersection(C, D, evaluate=False) C1 = Complement(A, B, evaluate=False) C2 = Complement(C, D, evaluate=False) D1 = SymmetricDifference(A, B, evaluate=False) D2 = SymmetricDifference(C, D, evaluate=False) # XXX ProductSet does not support evaluate keyword P1 = ProductSet(A, B) P2 = ProductSet(C, D) assert latex(Intersection(A, U2, evaluate=False)) == \ '\\left\\{a\\right\\} \\cap ' \ '\\left(\\left\\{c\\right\\} \\cup \\left\\{d\\right\\}\\right)' assert latex(Intersection(U1, U2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\cup \\left\\{b\\right\\}\\right) ' \ '\\cap \\left(\\left\\{c\\right\\} \\cup \\left\\{d\\right\\}\\right)' assert latex(Intersection(C1, C2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\setminus ' \ '\\left\\{b\\right\\}\\right) \\cap \\left(\\left\\{c\\right\\} ' \ '\\setminus \\left\\{d\\right\\}\\right)' assert latex(Intersection(D1, D2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\triangle ' \ '\\left\\{b\\right\\}\\right) \\cap \\left(\\left\\{c\\right\\} ' \ '\\triangle \\left\\{d\\right\\}\\right)' assert latex(Intersection(P1, P2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\times \\left\\{b\\right\\}\\right) ' \ '\\cap \\left(\\left\\{c\\right\\} \\times ' \ '\\left\\{d\\right\\}\\right)' assert latex(Union(A, I2, evaluate=False)) == \ '\\left\\{a\\right\\} \\cup ' \ '\\left(\\left\\{c\\right\\} \\cap \\left\\{d\\right\\}\\right)' assert latex(Union(I1, I2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\cap ''\\left\\{b\\right\\}\\right) ' \ '\\cup \\left(\\left\\{c\\right\\} \\cap \\left\\{d\\right\\}\\right)' assert latex(Union(C1, C2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\setminus ' \ '\\left\\{b\\right\\}\\right) \\cup \\left(\\left\\{c\\right\\} ' \ '\\setminus \\left\\{d\\right\\}\\right)' assert latex(Union(D1, D2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\triangle ' \ '\\left\\{b\\right\\}\\right) \\cup \\left(\\left\\{c\\right\\} ' \ '\\triangle \\left\\{d\\right\\}\\right)' assert latex(Union(P1, P2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\times \\left\\{b\\right\\}\\right) ' \ '\\cup \\left(\\left\\{c\\right\\} \\times ' \ '\\left\\{d\\right\\}\\right)' assert latex(Complement(A, C2, evaluate=False)) == \ '\\left\\{a\\right\\} \\setminus \\left(\\left\\{c\\right\\} ' \ '\\setminus \\left\\{d\\right\\}\\right)' assert latex(Complement(U1, U2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\cup \\left\\{b\\right\\}\\right) ' \ '\\setminus \\left(\\left\\{c\\right\\} \\cup ' \ '\\left\\{d\\right\\}\\right)' assert latex(Complement(I1, I2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\cap \\left\\{b\\right\\}\\right) ' \ '\\setminus \\left(\\left\\{c\\right\\} \\cap ' \ '\\left\\{d\\right\\}\\right)' assert latex(Complement(D1, D2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\triangle ' \ '\\left\\{b\\right\\}\\right) \\setminus ' \ '\\left(\\left\\{c\\right\\} \\triangle \\left\\{d\\right\\}\\right)' assert latex(Complement(P1, P2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\times \\left\\{b\\right\\}\\right) '\ '\\setminus \\left(\\left\\{c\\right\\} \\times '\ '\\left\\{d\\right\\}\\right)' assert latex(SymmetricDifference(A, D2, evaluate=False)) == \ '\\left\\{a\\right\\} \\triangle \\left(\\left\\{c\\right\\} ' \ '\\triangle \\left\\{d\\right\\}\\right)' assert latex(SymmetricDifference(U1, U2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\cup \\left\\{b\\right\\}\\right) ' \ '\\triangle \\left(\\left\\{c\\right\\} \\cup ' \ '\\left\\{d\\right\\}\\right)' assert latex(SymmetricDifference(I1, I2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\cap \\left\\{b\\right\\}\\right) ' \ '\\triangle \\left(\\left\\{c\\right\\} \\cap ' \ '\\left\\{d\\right\\}\\right)' assert latex(SymmetricDifference(C1, C2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\setminus ' \ '\\left\\{b\\right\\}\\right) \\triangle ' \ '\\left(\\left\\{c\\right\\} \\setminus \\left\\{d\\right\\}\\right)' assert latex(SymmetricDifference(P1, P2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\times \\left\\{b\\right\\}\\right) ' \ '\\triangle \\left(\\left\\{c\\right\\} \\times ' \ '\\left\\{d\\right\\}\\right)' # XXX This can be incorrect since cartesian product is not associative assert latex(ProductSet(A, P2).flatten()) == \ '\\left\\{a\\right\\} \\times \\left\\{c\\right\\} \\times ' \ '\\left\\{d\\right\\}' assert latex(ProductSet(U1, U2)) == \ '\\left(\\left\\{a\\right\\} \\cup \\left\\{b\\right\\}\\right) ' \ '\\times \\left(\\left\\{c\\right\\} \\cup ' \ '\\left\\{d\\right\\}\\right)' assert latex(ProductSet(I1, I2)) == \ '\\left(\\left\\{a\\right\\} \\cap \\left\\{b\\right\\}\\right) ' \ '\\times \\left(\\left\\{c\\right\\} \\cap ' \ '\\left\\{d\\right\\}\\right)' assert latex(ProductSet(C1, C2)) == \ '\\left(\\left\\{a\\right\\} \\setminus ' \ '\\left\\{b\\right\\}\\right) \\times \\left(\\left\\{c\\right\\} ' \ '\\setminus \\left\\{d\\right\\}\\right)' assert latex(ProductSet(D1, D2)) == \ '\\left(\\left\\{a\\right\\} \\triangle ' \ '\\left\\{b\\right\\}\\right) \\times \\left(\\left\\{c\\right\\} ' \ '\\triangle \\left\\{d\\right\\}\\right)' def test_latex_Complexes(): assert latex(S.Complexes) == r"\mathbb{C}" def test_latex_Naturals(): assert latex(S.Naturals) == r"\mathbb{N}" def test_latex_Naturals0(): assert latex(S.Naturals0) == r"\mathbb{N}_0" def test_latex_Integers(): assert latex(S.Integers) == r"\mathbb{Z}" def test_latex_ImageSet(): x = Symbol('x') assert latex(ImageSet(Lambda(x, x**2), S.Naturals)) == \ r"\left\{x^{2}\; |\; x \in \mathbb{N}\right\}" y = Symbol('y') imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4}) assert latex(imgset) == \ r"\left\{x + y\; |\; x \in \left\{1, 2, 3\right\} , y \in \left\{3, 4\right\}\right\}" imgset = ImageSet(Lambda(((x, y),), x + y), ProductSet({1, 2, 3}, {3, 4})) assert latex(imgset) == \ r"\left\{x + y\; |\; \left( x, \ y\right) \in \left\{1, 2, 3\right\} \times \left\{3, 4\right\}\right\}" def test_latex_ConditionSet(): x = Symbol('x') assert latex(ConditionSet(x, Eq(x**2, 1), S.Reals)) == \ r"\left\{x \mid x \in \mathbb{R} \wedge x^{2} = 1 \right\}" assert latex(ConditionSet(x, Eq(x**2, 1), S.UniversalSet)) == \ r"\left\{x \mid x^{2} = 1 \right\}" def test_latex_ComplexRegion(): assert latex(ComplexRegion(Interval(3, 5)*Interval(4, 6))) == \ r"\left\{x + y i\; |\; x, y \in \left[3, 5\right] \times \left[4, 6\right] \right\}" assert latex(ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)) == \ r"\left\{r \left(i \sin{\left(\theta \right)} + \cos{\left(\theta "\ r"\right)}\right)\; |\; r, \theta \in \left[0, 1\right] \times \left[0, 2 \pi\right) \right\}" def test_latex_Contains(): x = Symbol('x') assert latex(Contains(x, S.Naturals)) == r"x \in \mathbb{N}" def test_latex_sum(): assert latex(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \ r"\sum_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}" assert latex(Sum(x**2, (x, -2, 2))) == \ r"\sum_{x=-2}^{2} x^{2}" assert latex(Sum(x**2 + y, (x, -2, 2))) == \ r"\sum_{x=-2}^{2} \left(x^{2} + y\right)" assert latex(Sum(x**2 + y, (x, -2, 2))**2) == \ r"\left(\sum_{x=-2}^{2} \left(x^{2} + y\right)\right)^{2}" def test_latex_product(): assert latex(Product(x*y**2, (x, -2, 2), (y, -5, 5))) == \ r"\prod_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}" assert latex(Product(x**2, (x, -2, 2))) == \ r"\prod_{x=-2}^{2} x^{2}" assert latex(Product(x**2 + y, (x, -2, 2))) == \ r"\prod_{x=-2}^{2} \left(x^{2} + y\right)" assert latex(Product(x, (x, -2, 2))**2) == \ r"\left(\prod_{x=-2}^{2} x\right)^{2}" def test_latex_limits(): assert latex(Limit(x, x, oo)) == r"\lim_{x \to \infty} x" # issue 8175 f = Function('f') assert latex(Limit(f(x), x, 0)) == r"\lim_{x \to 0^+} f{\left(x \right)}" assert latex(Limit(f(x), x, 0, "-")) == \ r"\lim_{x \to 0^-} f{\left(x \right)}" # issue #10806 assert latex(Limit(f(x), x, 0)**2) == \ r"\left(\lim_{x \to 0^+} f{\left(x \right)}\right)^{2}" # bi-directional limit assert latex(Limit(f(x), x, 0, dir='+-')) == \ r"\lim_{x \to 0} f{\left(x \right)}" def test_latex_log(): assert latex(log(x)) == r"\log{\left(x \right)}" assert latex(ln(x)) == r"\log{\left(x \right)}" assert latex(log(x), ln_notation=True) == r"\ln{\left(x \right)}" assert latex(log(x)+log(y)) == \ r"\log{\left(x \right)} + \log{\left(y \right)}" assert latex(log(x)+log(y), ln_notation=True) == \ r"\ln{\left(x \right)} + \ln{\left(y \right)}" assert latex(pow(log(x), x)) == r"\log{\left(x \right)}^{x}" assert latex(pow(log(x), x), ln_notation=True) == \ r"\ln{\left(x \right)}^{x}" def test_issue_3568(): beta = Symbol(r'\beta') y = beta + x assert latex(y) in [r'\beta + x', r'x + \beta'] beta = Symbol(r'beta') y = beta + x assert latex(y) in [r'\beta + x', r'x + \beta'] def test_latex(): assert latex((2*tau)**Rational(7, 2)) == "8 \\sqrt{2} \\tau^{\\frac{7}{2}}" assert latex((2*mu)**Rational(7, 2), mode='equation*') == \ "\\begin{equation*}8 \\sqrt{2} \\mu^{\\frac{7}{2}}\\end{equation*}" assert latex((2*mu)**Rational(7, 2), mode='equation', itex=True) == \ "$$8 \\sqrt{2} \\mu^{\\frac{7}{2}}$$" assert latex([2/x, y]) == r"\left[ \frac{2}{x}, \ y\right]" def test_latex_dict(): d = {Rational(1): 1, x**2: 2, x: 3, x**3: 4} assert latex(d) == \ r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}' D = Dict(d) assert latex(D) == \ r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}' def test_latex_list(): ll = [Symbol('omega1'), Symbol('a'), Symbol('alpha')] assert latex(ll) == r'\left[ \omega_{1}, \ a, \ \alpha\right]' def test_latex_rational(): # tests issue 3973 assert latex(-Rational(1, 2)) == "- \\frac{1}{2}" assert latex(Rational(-1, 2)) == "- \\frac{1}{2}" assert latex(Rational(1, -2)) == "- \\frac{1}{2}" assert latex(-Rational(-1, 2)) == "\\frac{1}{2}" assert latex(-Rational(1, 2)*x) == "- \\frac{x}{2}" assert latex(-Rational(1, 2)*x + Rational(-2, 3)*y) == \ "- \\frac{x}{2} - \\frac{2 y}{3}" def test_latex_inverse(): # tests issue 4129 assert latex(1/x) == "\\frac{1}{x}" assert latex(1/(x + y)) == "\\frac{1}{x + y}" def test_latex_DiracDelta(): assert latex(DiracDelta(x)) == r"\delta\left(x\right)" assert latex(DiracDelta(x)**2) == r"\left(\delta\left(x\right)\right)^{2}" assert latex(DiracDelta(x, 0)) == r"\delta\left(x\right)" assert latex(DiracDelta(x, 5)) == \ r"\delta^{\left( 5 \right)}\left( x \right)" assert latex(DiracDelta(x, 5)**2) == \ r"\left(\delta^{\left( 5 \right)}\left( x \right)\right)^{2}" def test_latex_Heaviside(): assert latex(Heaviside(x)) == r"\theta\left(x\right)" assert latex(Heaviside(x)**2) == r"\left(\theta\left(x\right)\right)^{2}" def test_latex_KroneckerDelta(): assert latex(KroneckerDelta(x, y)) == r"\delta_{x y}" assert latex(KroneckerDelta(x, y + 1)) == r"\delta_{x, y + 1}" # issue 6578 assert latex(KroneckerDelta(x + 1, y)) == r"\delta_{y, x + 1}" assert latex(Pow(KroneckerDelta(x, y), 2, evaluate=False)) == \ r"\left(\delta_{x y}\right)^{2}" def test_latex_LeviCivita(): assert latex(LeviCivita(x, y, z)) == r"\varepsilon_{x y z}" assert latex(LeviCivita(x, y, z)**2) == \ r"\left(\varepsilon_{x y z}\right)^{2}" assert latex(LeviCivita(x, y, z + 1)) == r"\varepsilon_{x, y, z + 1}" assert latex(LeviCivita(x, y + 1, z)) == r"\varepsilon_{x, y + 1, z}" assert latex(LeviCivita(x + 1, y, z)) == r"\varepsilon_{x + 1, y, z}" def test_mode(): expr = x + y assert latex(expr) == 'x + y' assert latex(expr, mode='plain') == 'x + y' assert latex(expr, mode='inline') == '$x + y$' assert latex( expr, mode='equation*') == '\\begin{equation*}x + y\\end{equation*}' assert latex( expr, mode='equation') == '\\begin{equation}x + y\\end{equation}' raises(ValueError, lambda: latex(expr, mode='foo')) def test_latex_mathieu(): assert latex(mathieuc(x, y, z)) == r"C\left(x, y, z\right)" assert latex(mathieus(x, y, z)) == r"S\left(x, y, z\right)" assert latex(mathieuc(x, y, z)**2) == r"C\left(x, y, z\right)^{2}" assert latex(mathieus(x, y, z)**2) == r"S\left(x, y, z\right)^{2}" assert latex(mathieucprime(x, y, z)) == r"C^{\prime}\left(x, y, z\right)" assert latex(mathieusprime(x, y, z)) == r"S^{\prime}\left(x, y, z\right)" assert latex(mathieucprime(x, y, z)**2) == r"C^{\prime}\left(x, y, z\right)^{2}" assert latex(mathieusprime(x, y, z)**2) == r"S^{\prime}\left(x, y, z\right)^{2}" def test_latex_Piecewise(): p = Piecewise((x, x < 1), (x**2, True)) assert latex(p) == "\\begin{cases} x & \\text{for}\\: x < 1 \\\\x^{2} &" \ " \\text{otherwise} \\end{cases}" assert latex(p, itex=True) == \ "\\begin{cases} x & \\text{for}\\: x \\lt 1 \\\\x^{2} &" \ " \\text{otherwise} \\end{cases}" p = Piecewise((x, x < 0), (0, x >= 0)) assert latex(p) == '\\begin{cases} x & \\text{for}\\: x < 0 \\\\0 &' \ ' \\text{otherwise} \\end{cases}' A, B = symbols("A B", commutative=False) p = Piecewise((A**2, Eq(A, B)), (A*B, True)) s = r"\begin{cases} A^{2} & \text{for}\: A = B \\A B & \text{otherwise} \end{cases}" assert latex(p) == s assert latex(A*p) == r"A \left(%s\right)" % s assert latex(p*A) == r"\left(%s\right) A" % s assert latex(Piecewise((x, x < 1), (x**2, x < 2))) == \ '\\begin{cases} x & ' \ '\\text{for}\\: x < 1 \\\\x^{2} & \\text{for}\\: x < 2 \\end{cases}' def test_latex_Matrix(): M = Matrix([[1 + x, y], [y, x - 1]]) assert latex(M) == \ r'\left[\begin{matrix}x + 1 & y\\y & x - 1\end{matrix}\right]' assert latex(M, mode='inline') == \ r'$\left[\begin{smallmatrix}x + 1 & y\\' \ r'y & x - 1\end{smallmatrix}\right]$' assert latex(M, mat_str='array') == \ r'\left[\begin{array}{cc}x + 1 & y\\y & x - 1\end{array}\right]' assert latex(M, mat_str='bmatrix') == \ r'\left[\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}\right]' assert latex(M, mat_delim=None, mat_str='bmatrix') == \ r'\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}' M2 = Matrix(1, 11, range(11)) assert latex(M2) == \ r'\left[\begin{array}{ccccccccccc}' \ r'0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right]' def test_latex_matrix_with_functions(): t = symbols('t') theta1 = symbols('theta1', cls=Function) M = Matrix([[sin(theta1(t)), cos(theta1(t))], [cos(theta1(t).diff(t)), sin(theta1(t).diff(t))]]) expected = (r'\left[\begin{matrix}\sin{\left(' r'\theta_{1}{\left(t \right)} \right)} & ' r'\cos{\left(\theta_{1}{\left(t \right)} \right)' r'}\\\cos{\left(\frac{d}{d t} \theta_{1}{\left(t ' r'\right)} \right)} & \sin{\left(\frac{d}{d t} ' r'\theta_{1}{\left(t \right)} \right' r')}\end{matrix}\right]') assert latex(M) == expected def test_latex_NDimArray(): x, y, z, w = symbols("x y z w") for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray): # Basic: scalar array M = ArrayType(x) assert latex(M) == "x" M = ArrayType([[1 / x, y], [z, w]]) M1 = ArrayType([1 / x, y, z]) M2 = tensorproduct(M1, M) M3 = tensorproduct(M, M) assert latex(M) == \ '\\left[\\begin{matrix}\\frac{1}{x} & y\\\\z & w\\end{matrix}\\right]' assert latex(M1) == \ "\\left[\\begin{matrix}\\frac{1}{x} & y & z\\end{matrix}\\right]" assert latex(M2) == \ r"\left[\begin{matrix}" \ r"\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & " \ r"\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right] & " \ r"\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right]" \ r"\end{matrix}\right]" assert latex(M3) == \ r"""\left[\begin{matrix}"""\ r"""\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & """\ r"""\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right]\\"""\ r"""\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right] & """\ r"""\left[\begin{matrix}\frac{w}{x} & w y\\w z & w^{2}\end{matrix}\right]"""\ r"""\end{matrix}\right]""" Mrow = ArrayType([[x, y, 1/z]]) Mcolumn = ArrayType([[x], [y], [1/z]]) Mcol2 = ArrayType([Mcolumn.tolist()]) assert latex(Mrow) == \ r"\left[\left[\begin{matrix}x & y & \frac{1}{z}\end{matrix}\right]\right]" assert latex(Mcolumn) == \ r"\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]" assert latex(Mcol2) == \ r'\left[\begin{matrix}\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]\end{matrix}\right]' def test_latex_mul_symbol(): assert latex(4*4**x, mul_symbol='times') == "4 \\times 4^{x}" assert latex(4*4**x, mul_symbol='dot') == "4 \\cdot 4^{x}" assert latex(4*4**x, mul_symbol='ldot') == r"4 \,.\, 4^{x}" assert latex(4*x, mul_symbol='times') == "4 \\times x" assert latex(4*x, mul_symbol='dot') == "4 \\cdot x" assert latex(4*x, mul_symbol='ldot') == r"4 \,.\, x" def test_latex_issue_4381(): y = 4*4**log(2) assert latex(y) == r'4 \cdot 4^{\log{\left(2 \right)}}' assert latex(1/y) == r'\frac{1}{4 \cdot 4^{\log{\left(2 \right)}}}' def test_latex_issue_4576(): assert latex(Symbol("beta_13_2")) == r"\beta_{13 2}" assert latex(Symbol("beta_132_20")) == r"\beta_{132 20}" assert latex(Symbol("beta_13")) == r"\beta_{13}" assert latex(Symbol("x_a_b")) == r"x_{a b}" assert latex(Symbol("x_1_2_3")) == r"x_{1 2 3}" assert latex(Symbol("x_a_b1")) == r"x_{a b1}" assert latex(Symbol("x_a_1")) == r"x_{a 1}" assert latex(Symbol("x_1_a")) == r"x_{1 a}" assert latex(Symbol("x_1^aa")) == r"x^{aa}_{1}" assert latex(Symbol("x_1__aa")) == r"x^{aa}_{1}" assert latex(Symbol("x_11^a")) == r"x^{a}_{11}" assert latex(Symbol("x_11__a")) == r"x^{a}_{11}" assert latex(Symbol("x_a_a_a_a")) == r"x_{a a a a}" assert latex(Symbol("x_a_a^a^a")) == r"x^{a a}_{a a}" assert latex(Symbol("x_a_a__a__a")) == r"x^{a a}_{a a}" assert latex(Symbol("alpha_11")) == r"\alpha_{11}" assert latex(Symbol("alpha_11_11")) == r"\alpha_{11 11}" assert latex(Symbol("alpha_alpha")) == r"\alpha_{\alpha}" assert latex(Symbol("alpha^aleph")) == r"\alpha^{\aleph}" assert latex(Symbol("alpha__aleph")) == r"\alpha^{\aleph}" def test_latex_pow_fraction(): x = Symbol('x') # Testing exp assert 'e^{-x}' in latex(exp(-x)/2).replace(' ', '') # Remove Whitespace # Testing e^{-x} in case future changes alter behavior of muls or fracs # In particular current output is \frac{1}{2}e^{- x} but perhaps this will # change to \frac{e^{-x}}{2} # Testing general, non-exp, power assert '3^{-x}' in latex(3**-x/2).replace(' ', '') def test_noncommutative(): A, B, C = symbols('A,B,C', commutative=False) assert latex(A*B*C**-1) == "A B C^{-1}" assert latex(C**-1*A*B) == "C^{-1} A B" assert latex(A*C**-1*B) == "A C^{-1} B" def test_latex_order(): expr = x**3 + x**2*y + y**4 + 3*x*y**3 assert latex(expr, order='lex') == "x^{3} + x^{2} y + 3 x y^{3} + y^{4}" assert latex( expr, order='rev-lex') == "y^{4} + 3 x y^{3} + x^{2} y + x^{3}" assert latex(expr, order='none') == "x^{3} + y^{4} + y x^{2} + 3 x y^{3}" def test_latex_Lambda(): assert latex(Lambda(x, x + 1)) == \ r"\left( x \mapsto x + 1 \right)" assert latex(Lambda((x, y), x + 1)) == \ r"\left( \left( x, \ y\right) \mapsto x + 1 \right)" def test_latex_PolyElement(): Ruv, u, v = ring("u,v", ZZ) Rxyz, x, y, z = ring("x,y,z", Ruv) assert latex(x - x) == r"0" assert latex(x - 1) == r"x - 1" assert latex(x + 1) == r"x + 1" assert latex((u**2 + 3*u*v + 1)*x**2*y + u + 1) == \ r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + u + 1" assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == \ r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x" assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == \ r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x + 1" assert latex((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == \ r"-\left({u}^{2} - 3 u v + 1\right) {x}^{2} y - \left(u + 1\right) x - 1" assert latex(-(v**2 + v + 1)*x + 3*u*v + 1) == \ r"-\left({v}^{2} + v + 1\right) x + 3 u v + 1" assert latex(-(v**2 + v + 1)*x - 3*u*v + 1) == \ r"-\left({v}^{2} + v + 1\right) x - 3 u v + 1" def test_latex_FracElement(): Fuv, u, v = field("u,v", ZZ) Fxyzt, x, y, z, t = field("x,y,z,t", Fuv) assert latex(x - x) == r"0" assert latex(x - 1) == r"x - 1" assert latex(x + 1) == r"x + 1" assert latex(x/3) == r"\frac{x}{3}" assert latex(x/z) == r"\frac{x}{z}" assert latex(x*y/z) == r"\frac{x y}{z}" assert latex(x/(z*t)) == r"\frac{x}{z t}" assert latex(x*y/(z*t)) == r"\frac{x y}{z t}" assert latex((x - 1)/y) == r"\frac{x - 1}{y}" assert latex((x + 1)/y) == r"\frac{x + 1}{y}" assert latex((-x - 1)/y) == r"\frac{-x - 1}{y}" assert latex((x + 1)/(y*z)) == r"\frac{x + 1}{y z}" assert latex(-y/(x + 1)) == r"\frac{-y}{x + 1}" assert latex(y*z/(x + 1)) == r"\frac{y z}{x + 1}" assert latex(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == \ r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - 1}" assert latex(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == \ r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - u v t - 1}" def test_latex_Poly(): assert latex(Poly(x**2 + 2 * x, x)) == \ r"\operatorname{Poly}{\left( x^{2} + 2 x, x, domain=\mathbb{Z} \right)}" assert latex(Poly(x/y, x)) == \ r"\operatorname{Poly}{\left( \frac{1}{y} x, x, domain=\mathbb{Z}\left(y\right) \right)}" assert latex(Poly(2.0*x + y)) == \ r"\operatorname{Poly}{\left( 2.0 x + 1.0 y, x, y, domain=\mathbb{R} \right)}" def test_latex_Poly_order(): assert latex(Poly([a, 1, b, 2, c, 3], x)) == \ '\\operatorname{Poly}{\\left( a x^{5} + x^{4} + b x^{3} + 2 x^{2} + c'\ ' x + 3, x, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}' assert latex(Poly([a, 1, b+c, 2, 3], x)) == \ '\\operatorname{Poly}{\\left( a x^{4} + x^{3} + \\left(b + c\\right) '\ 'x^{2} + 2 x + 3, x, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}' assert latex(Poly(a*x**3 + x**2*y - x*y - c*y**3 - b*x*y**2 + y - a*x + b, (x, y))) == \ '\\operatorname{Poly}{\\left( a x^{3} + x^{2}y - b xy^{2} - xy - '\ 'a x - c y^{3} + y + b, x, y, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}' def test_latex_ComplexRootOf(): assert latex(rootof(x**5 + x + 3, 0)) == \ r"\operatorname{CRootOf} {\left(x^{5} + x + 3, 0\right)}" def test_latex_RootSum(): assert latex(RootSum(x**5 + x + 3, sin)) == \ r"\operatorname{RootSum} {\left(x^{5} + x + 3, \left( x \mapsto \sin{\left(x \right)} \right)\right)}" def test_settings(): raises(TypeError, lambda: latex(x*y, method="garbage")) def test_latex_numbers(): assert latex(catalan(n)) == r"C_{n}" assert latex(catalan(n)**2) == r"C_{n}^{2}" assert latex(bernoulli(n)) == r"B_{n}" assert latex(bernoulli(n, x)) == r"B_{n}\left(x\right)" assert latex(bernoulli(n)**2) == r"B_{n}^{2}" assert latex(bernoulli(n, x)**2) == r"B_{n}^{2}\left(x\right)" assert latex(bell(n)) == r"B_{n}" assert latex(bell(n, x)) == r"B_{n}\left(x\right)" assert latex(bell(n, m, (x, y))) == r"B_{n, m}\left(x, y\right)" assert latex(bell(n)**2) == r"B_{n}^{2}" assert latex(bell(n, x)**2) == r"B_{n}^{2}\left(x\right)" assert latex(bell(n, m, (x, y))**2) == r"B_{n, m}^{2}\left(x, y\right)" assert latex(fibonacci(n)) == r"F_{n}" assert latex(fibonacci(n, x)) == r"F_{n}\left(x\right)" assert latex(fibonacci(n)**2) == r"F_{n}^{2}" assert latex(fibonacci(n, x)**2) == r"F_{n}^{2}\left(x\right)" assert latex(lucas(n)) == r"L_{n}" assert latex(lucas(n)**2) == r"L_{n}^{2}" assert latex(tribonacci(n)) == r"T_{n}" assert latex(tribonacci(n, x)) == r"T_{n}\left(x\right)" assert latex(tribonacci(n)**2) == r"T_{n}^{2}" assert latex(tribonacci(n, x)**2) == r"T_{n}^{2}\left(x\right)" def test_latex_euler(): assert latex(euler(n)) == r"E_{n}" assert latex(euler(n, x)) == r"E_{n}\left(x\right)" assert latex(euler(n, x)**2) == r"E_{n}^{2}\left(x\right)" def test_lamda(): assert latex(Symbol('lamda')) == r"\lambda" assert latex(Symbol('Lamda')) == r"\Lambda" def test_custom_symbol_names(): x = Symbol('x') y = Symbol('y') assert latex(x) == "x" assert latex(x, symbol_names={x: "x_i"}) == "x_i" assert latex(x + y, symbol_names={x: "x_i"}) == "x_i + y" assert latex(x**2, symbol_names={x: "x_i"}) == "x_i^{2}" assert latex(x + y, symbol_names={x: "x_i", y: "y_j"}) == "x_i + y_j" def test_matAdd(): from sympy import MatrixSymbol from sympy.printing.latex import LatexPrinter C = MatrixSymbol('C', 5, 5) B = MatrixSymbol('B', 5, 5) l = LatexPrinter() assert l._print(C - 2*B) in ['- 2 B + C', 'C -2 B'] assert l._print(C + 2*B) in ['2 B + C', 'C + 2 B'] assert l._print(B - 2*C) in ['B - 2 C', '- 2 C + B'] assert l._print(B + 2*C) in ['B + 2 C', '2 C + B'] def test_matMul(): from sympy import MatrixSymbol from sympy.printing.latex import LatexPrinter A = MatrixSymbol('A', 5, 5) B = MatrixSymbol('B', 5, 5) x = Symbol('x') lp = LatexPrinter() assert lp._print_MatMul(2*A) == '2 A' assert lp._print_MatMul(2*x*A) == '2 x A' assert lp._print_MatMul(-2*A) == '- 2 A' assert lp._print_MatMul(1.5*A) == '1.5 A' assert lp._print_MatMul(sqrt(2)*A) == r'\sqrt{2} A' assert lp._print_MatMul(-sqrt(2)*A) == r'- \sqrt{2} A' assert lp._print_MatMul(2*sqrt(2)*x*A) == r'2 \sqrt{2} x A' assert lp._print_MatMul(-2*A*(A + 2*B)) in [r'- 2 A \left(A + 2 B\right)', r'- 2 A \left(2 B + A\right)'] def test_latex_MatrixSlice(): from sympy.matrices.expressions import MatrixSymbol assert latex(MatrixSymbol('X', 10, 10)[:5, 1:9:2]) == \ r'X\left[:5, 1:9:2\right]' assert latex(MatrixSymbol('X', 10, 10)[5, :5:2]) == \ r'X\left[5, :5:2\right]' def test_latex_RandomDomain(): from sympy.stats import Normal, Die, Exponential, pspace, where from sympy.stats.rv import RandomDomain X = Normal('x1', 0, 1) assert latex(where(X > 0)) == r"\text{Domain: }0 < x_{1} \wedge x_{1} < \infty" D = Die('d1', 6) assert latex(where(D > 4)) == r"\text{Domain: }d_{1} = 5 \vee d_{1} = 6" A = Exponential('a', 1) B = Exponential('b', 1) assert latex( pspace(Tuple(A, B)).domain) == \ r"\text{Domain: }0 \leq a \wedge 0 \leq b \wedge a < \infty \wedge b < \infty" assert latex(RandomDomain(FiniteSet(x), FiniteSet(1, 2))) == \ r'\text{Domain: }\left\{x\right\}\text{ in }\left\{1, 2\right\}' def test_PrettyPoly(): from sympy.polys.domains import QQ F = QQ.frac_field(x, y) R = QQ[x, y] assert latex(F.convert(x/(x + y))) == latex(x/(x + y)) assert latex(R.convert(x + y)) == latex(x + y) def test_integral_transforms(): x = Symbol("x") k = Symbol("k") f = Function("f") a = Symbol("a") b = Symbol("b") assert latex(MellinTransform(f(x), x, k)) == \ r"\mathcal{M}_{x}\left[f{\left(x \right)}\right]\left(k\right)" assert latex(InverseMellinTransform(f(k), k, x, a, b)) == \ r"\mathcal{M}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)" assert latex(LaplaceTransform(f(x), x, k)) == \ r"\mathcal{L}_{x}\left[f{\left(x \right)}\right]\left(k\right)" assert latex(InverseLaplaceTransform(f(k), k, x, (a, b))) == \ r"\mathcal{L}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)" assert latex(FourierTransform(f(x), x, k)) == \ r"\mathcal{F}_{x}\left[f{\left(x \right)}\right]\left(k\right)" assert latex(InverseFourierTransform(f(k), k, x)) == \ r"\mathcal{F}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)" assert latex(CosineTransform(f(x), x, k)) == \ r"\mathcal{COS}_{x}\left[f{\left(x \right)}\right]\left(k\right)" assert latex(InverseCosineTransform(f(k), k, x)) == \ r"\mathcal{COS}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)" assert latex(SineTransform(f(x), x, k)) == \ r"\mathcal{SIN}_{x}\left[f{\left(x \right)}\right]\left(k\right)" assert latex(InverseSineTransform(f(k), k, x)) == \ r"\mathcal{SIN}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)" def test_PolynomialRingBase(): from sympy.polys.domains import QQ assert latex(QQ.old_poly_ring(x, y)) == r"\mathbb{Q}\left[x, y\right]" assert latex(QQ.old_poly_ring(x, y, order="ilex")) == \ r"S_<^{-1}\mathbb{Q}\left[x, y\right]" def test_categories(): from sympy.categories import (Object, IdentityMorphism, NamedMorphism, Category, Diagram, DiagramGrid) A1 = Object("A1") A2 = Object("A2") A3 = Object("A3") f1 = NamedMorphism(A1, A2, "f1") f2 = NamedMorphism(A2, A3, "f2") id_A1 = IdentityMorphism(A1) K1 = Category("K1") assert latex(A1) == "A_{1}" assert latex(f1) == "f_{1}:A_{1}\\rightarrow A_{2}" assert latex(id_A1) == "id:A_{1}\\rightarrow A_{1}" assert latex(f2*f1) == "f_{2}\\circ f_{1}:A_{1}\\rightarrow A_{3}" assert latex(K1) == r"\mathbf{K_{1}}" d = Diagram() assert latex(d) == r"\emptyset" d = Diagram({f1: "unique", f2: S.EmptySet}) assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \ r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \ r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \ r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \ r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}, " \ r"\ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}" d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"}) assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \ r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \ r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \ r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \ r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}," \ r" \ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}" \ r"\Longrightarrow \left\{ f_{2}\circ f_{1}:A_{1}" \ r"\rightarrow A_{3} : \left\{unique\right\}\right\}" # A linear diagram. A = Object("A") B = Object("B") C = Object("C") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") d = Diagram([f, g]) grid = DiagramGrid(d) assert latex(grid) == "\\begin{array}{cc}\n" \ "A & B \\\\\n" \ " & C \n" \ "\\end{array}\n" def test_Modules(): from sympy.polys.domains import QQ from sympy.polys.agca import homomorphism R = QQ.old_poly_ring(x, y) F = R.free_module(2) M = F.submodule([x, y], [1, x**2]) assert latex(F) == r"{\mathbb{Q}\left[x, y\right]}^{2}" assert latex(M) == \ r"\left\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle" I = R.ideal(x**2, y) assert latex(I) == r"\left\langle {x^{2}},{y} \right\rangle" Q = F / M assert latex(Q) == \ r"\frac{{\mathbb{Q}\left[x, y\right]}^{2}}{\left\langle {\left[ {x},"\ r"{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}" assert latex(Q.submodule([1, x**3/2], [2, y])) == \ r"\left\langle {{\left[ {1},{\frac{x^{3}}{2}} \right]} + {\left"\ r"\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} "\ r"\right\rangle}},{{\left[ {2},{y} \right]} + {\left\langle {\left[ "\ r"{x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}} \right\rangle" h = homomorphism(QQ.old_poly_ring(x).free_module(2), QQ.old_poly_ring(x).free_module(2), [0, 0]) assert latex(h) == \ r"{\left[\begin{matrix}0 & 0\\0 & 0\end{matrix}\right]} : "\ r"{{\mathbb{Q}\left[x\right]}^{2}} \to {{\mathbb{Q}\left[x\right]}^{2}}" def test_QuotientRing(): from sympy.polys.domains import QQ R = QQ.old_poly_ring(x)/[x**2 + 1] assert latex(R) == \ r"\frac{\mathbb{Q}\left[x\right]}{\left\langle {x^{2} + 1} \right\rangle}" assert latex(R.one) == r"{1} + {\left\langle {x^{2} + 1} \right\rangle}" def test_Tr(): #TODO: Handle indices A, B = symbols('A B', commutative=False) t = Tr(A*B) assert latex(t) == r'\operatorname{tr}\left(A B\right)' def test_Adjoint(): from sympy.matrices import MatrixSymbol, Adjoint, Inverse, Transpose X = MatrixSymbol('X', 2, 2) Y = MatrixSymbol('Y', 2, 2) assert latex(Adjoint(X)) == r'X^{\dagger}' assert latex(Adjoint(X + Y)) == r'\left(X + Y\right)^{\dagger}' assert latex(Adjoint(X) + Adjoint(Y)) == r'X^{\dagger} + Y^{\dagger}' assert latex(Adjoint(X*Y)) == r'\left(X Y\right)^{\dagger}' assert latex(Adjoint(Y)*Adjoint(X)) == r'Y^{\dagger} X^{\dagger}' assert latex(Adjoint(X**2)) == r'\left(X^{2}\right)^{\dagger}' assert latex(Adjoint(X)**2) == r'\left(X^{\dagger}\right)^{2}' assert latex(Adjoint(Inverse(X))) == r'\left(X^{-1}\right)^{\dagger}' assert latex(Inverse(Adjoint(X))) == r'\left(X^{\dagger}\right)^{-1}' assert latex(Adjoint(Transpose(X))) == r'\left(X^{T}\right)^{\dagger}' assert latex(Transpose(Adjoint(X))) == r'\left(X^{\dagger}\right)^{T}' assert latex(Transpose(Adjoint(X) + Y)) == r'\left(X^{\dagger} + Y\right)^{T}' def test_Transpose(): from sympy.matrices import Transpose, MatPow, HadamardPower X = MatrixSymbol('X', 2, 2) Y = MatrixSymbol('Y', 2, 2) assert latex(Transpose(X)) == r'X^{T}' assert latex(Transpose(X + Y)) == r'\left(X + Y\right)^{T}' assert latex(Transpose(HadamardPower(X, 2))) == \ r'\left(X^{\circ {2}}\right)^{T}' assert latex(HadamardPower(Transpose(X), 2)) == \ r'\left(X^{T}\right)^{\circ {2}}' assert latex(Transpose(MatPow(X, 2))) == \ r'\left(X^{2}\right)^{T}' assert latex(MatPow(Transpose(X), 2)) == \ r'\left(X^{T}\right)^{2}' def test_Hadamard(): from sympy.matrices import MatrixSymbol, HadamardProduct, HadamardPower from sympy.matrices.expressions import MatAdd, MatMul, MatPow X = MatrixSymbol('X', 2, 2) Y = MatrixSymbol('Y', 2, 2) assert latex(HadamardProduct(X, Y*Y)) == r'X \circ Y^{2}' assert latex(HadamardProduct(X, Y)*Y) == r'\left(X \circ Y\right) Y' assert latex(HadamardPower(X, 2)) == r'X^{\circ {2}}' assert latex(HadamardPower(X, -1)) == r'X^{\circ \left({-1}\right)}' assert latex(HadamardPower(MatAdd(X, Y), 2)) == \ r'\left(X + Y\right)^{\circ {2}}' assert latex(HadamardPower(MatMul(X, Y), 2)) == \ r'\left(X Y\right)^{\circ {2}}' assert latex(HadamardPower(MatPow(X, -1), -1)) == \ r'\left(X^{-1}\right)^{\circ \left({-1}\right)}' assert latex(MatPow(HadamardPower(X, -1), -1)) == \ r'\left(X^{\circ \left({-1}\right)}\right)^{-1}' assert latex(HadamardPower(X, n+1)) == \ r'X^{\circ \left({n + 1}\right)}' def test_ElementwiseApplyFunction(): from sympy.matrices import MatrixSymbol X = MatrixSymbol('X', 2, 2) expr = (X.T*X).applyfunc(sin) assert latex(expr) == r"{\sin}_{\circ}\left({X^{T} X}\right)" expr = X.applyfunc(Lambda(x, 1/x)) assert latex(expr) == r'{\left( d \mapsto \frac{1}{d} \right)}_{\circ}\left({X}\right)' def test_ZeroMatrix(): from sympy import ZeroMatrix assert latex(ZeroMatrix(1, 1), mat_symbol_style='plain') == r"\mathbb{0}" assert latex(ZeroMatrix(1, 1), mat_symbol_style='bold') == r"\mathbf{0}" def test_OneMatrix(): from sympy import OneMatrix assert latex(OneMatrix(3, 4), mat_symbol_style='plain') == r"\mathbb{1}" assert latex(OneMatrix(3, 4), mat_symbol_style='bold') == r"\mathbf{1}" def test_Identity(): from sympy import Identity assert latex(Identity(1), mat_symbol_style='plain') == r"\mathbb{I}" assert latex(Identity(1), mat_symbol_style='bold') == r"\mathbf{I}" def test_boolean_args_order(): syms = symbols('a:f') expr = And(*syms) assert latex(expr) == 'a \\wedge b \\wedge c \\wedge d \\wedge e \\wedge f' expr = Or(*syms) assert latex(expr) == 'a \\vee b \\vee c \\vee d \\vee e \\vee f' expr = Equivalent(*syms) assert latex(expr) == \ 'a \\Leftrightarrow b \\Leftrightarrow c \\Leftrightarrow d \\Leftrightarrow e \\Leftrightarrow f' expr = Xor(*syms) assert latex(expr) == \ 'a \\veebar b \\veebar c \\veebar d \\veebar e \\veebar f' def test_imaginary(): i = sqrt(-1) assert latex(i) == r'i' def test_builtins_without_args(): assert latex(sin) == r'\sin' assert latex(cos) == r'\cos' assert latex(tan) == r'\tan' assert latex(log) == r'\log' assert latex(Ei) == r'\operatorname{Ei}' assert latex(zeta) == r'\zeta' def test_latex_greek_functions(): # bug because capital greeks that have roman equivalents should not use # \Alpha, \Beta, \Eta, etc. s = Function('Alpha') assert latex(s) == r'A' assert latex(s(x)) == r'A{\left(x \right)}' s = Function('Beta') assert latex(s) == r'B' s = Function('Eta') assert latex(s) == r'H' assert latex(s(x)) == r'H{\left(x \right)}' # bug because sympy.core.numbers.Pi is special p = Function('Pi') # assert latex(p(x)) == r'\Pi{\left(x \right)}' assert latex(p) == r'\Pi' # bug because not all greeks are included c = Function('chi') assert latex(c(x)) == r'\chi{\left(x \right)}' assert latex(c) == r'\chi' def test_translate(): s = 'Alpha' assert translate(s) == 'A' s = 'Beta' assert translate(s) == 'B' s = 'Eta' assert translate(s) == 'H' s = 'omicron' assert translate(s) == 'o' s = 'Pi' assert translate(s) == r'\Pi' s = 'pi' assert translate(s) == r'\pi' s = 'LamdaHatDOT' assert translate(s) == r'\dot{\hat{\Lambda}}' def test_other_symbols(): from sympy.printing.latex import other_symbols for s in other_symbols: assert latex(symbols(s)) == "\\"+s def test_modifiers(): # Test each modifier individually in the simplest case # (with funny capitalizations) assert latex(symbols("xMathring")) == r"\mathring{x}" assert latex(symbols("xCheck")) == r"\check{x}" assert latex(symbols("xBreve")) == r"\breve{x}" assert latex(symbols("xAcute")) == r"\acute{x}" assert latex(symbols("xGrave")) == r"\grave{x}" assert latex(symbols("xTilde")) == r"\tilde{x}" assert latex(symbols("xPrime")) == r"{x}'" assert latex(symbols("xddDDot")) == r"\ddddot{x}" assert latex(symbols("xDdDot")) == r"\dddot{x}" assert latex(symbols("xDDot")) == r"\ddot{x}" assert latex(symbols("xBold")) == r"\boldsymbol{x}" assert latex(symbols("xnOrM")) == r"\left\|{x}\right\|" assert latex(symbols("xAVG")) == r"\left\langle{x}\right\rangle" assert latex(symbols("xHat")) == r"\hat{x}" assert latex(symbols("xDot")) == r"\dot{x}" assert latex(symbols("xBar")) == r"\bar{x}" assert latex(symbols("xVec")) == r"\vec{x}" assert latex(symbols("xAbs")) == r"\left|{x}\right|" assert latex(symbols("xMag")) == r"\left|{x}\right|" assert latex(symbols("xPrM")) == r"{x}'" assert latex(symbols("xBM")) == r"\boldsymbol{x}" # Test strings that are *only* the names of modifiers assert latex(symbols("Mathring")) == r"Mathring" assert latex(symbols("Check")) == r"Check" assert latex(symbols("Breve")) == r"Breve" assert latex(symbols("Acute")) == r"Acute" assert latex(symbols("Grave")) == r"Grave" assert latex(symbols("Tilde")) == r"Tilde" assert latex(symbols("Prime")) == r"Prime" assert latex(symbols("DDot")) == r"\dot{D}" assert latex(symbols("Bold")) == r"Bold" assert latex(symbols("NORm")) == r"NORm" assert latex(symbols("AVG")) == r"AVG" assert latex(symbols("Hat")) == r"Hat" assert latex(symbols("Dot")) == r"Dot" assert latex(symbols("Bar")) == r"Bar" assert latex(symbols("Vec")) == r"Vec" assert latex(symbols("Abs")) == r"Abs" assert latex(symbols("Mag")) == r"Mag" assert latex(symbols("PrM")) == r"PrM" assert latex(symbols("BM")) == r"BM" assert latex(symbols("hbar")) == r"\hbar" # Check a few combinations assert latex(symbols("xvecdot")) == r"\dot{\vec{x}}" assert latex(symbols("xDotVec")) == r"\vec{\dot{x}}" assert latex(symbols("xHATNorm")) == r"\left\|{\hat{x}}\right\|" # Check a couple big, ugly combinations assert latex(symbols('xMathringBm_yCheckPRM__zbreveAbs')) == \ r"\boldsymbol{\mathring{x}}^{\left|{\breve{z}}\right|}_{{\check{y}}'}" assert latex(symbols('alphadothat_nVECDOT__tTildePrime')) == \ r"\hat{\dot{\alpha}}^{{\tilde{t}}'}_{\dot{\vec{n}}}" def test_greek_symbols(): assert latex(Symbol('alpha')) == r'\alpha' assert latex(Symbol('beta')) == r'\beta' assert latex(Symbol('gamma')) == r'\gamma' assert latex(Symbol('delta')) == r'\delta' assert latex(Symbol('epsilon')) == r'\epsilon' assert latex(Symbol('zeta')) == r'\zeta' assert latex(Symbol('eta')) == r'\eta' assert latex(Symbol('theta')) == r'\theta' assert latex(Symbol('iota')) == r'\iota' assert latex(Symbol('kappa')) == r'\kappa' assert latex(Symbol('lambda')) == r'\lambda' assert latex(Symbol('mu')) == r'\mu' assert latex(Symbol('nu')) == r'\nu' assert latex(Symbol('xi')) == r'\xi' assert latex(Symbol('omicron')) == r'o' assert latex(Symbol('pi')) == r'\pi' assert latex(Symbol('rho')) == r'\rho' assert latex(Symbol('sigma')) == r'\sigma' assert latex(Symbol('tau')) == r'\tau' assert latex(Symbol('upsilon')) == r'\upsilon' assert latex(Symbol('phi')) == r'\phi' assert latex(Symbol('chi')) == r'\chi' assert latex(Symbol('psi')) == r'\psi' assert latex(Symbol('omega')) == r'\omega' assert latex(Symbol('Alpha')) == r'A' assert latex(Symbol('Beta')) == r'B' assert latex(Symbol('Gamma')) == r'\Gamma' assert latex(Symbol('Delta')) == r'\Delta' assert latex(Symbol('Epsilon')) == r'E' assert latex(Symbol('Zeta')) == r'Z' assert latex(Symbol('Eta')) == r'H' assert latex(Symbol('Theta')) == r'\Theta' assert latex(Symbol('Iota')) == r'I' assert latex(Symbol('Kappa')) == r'K' assert latex(Symbol('Lambda')) == r'\Lambda' assert latex(Symbol('Mu')) == r'M' assert latex(Symbol('Nu')) == r'N' assert latex(Symbol('Xi')) == r'\Xi' assert latex(Symbol('Omicron')) == r'O' assert latex(Symbol('Pi')) == r'\Pi' assert latex(Symbol('Rho')) == r'P' assert latex(Symbol('Sigma')) == r'\Sigma' assert latex(Symbol('Tau')) == r'T' assert latex(Symbol('Upsilon')) == r'\Upsilon' assert latex(Symbol('Phi')) == r'\Phi' assert latex(Symbol('Chi')) == r'X' assert latex(Symbol('Psi')) == r'\Psi' assert latex(Symbol('Omega')) == r'\Omega' assert latex(Symbol('varepsilon')) == r'\varepsilon' assert latex(Symbol('varkappa')) == r'\varkappa' assert latex(Symbol('varphi')) == r'\varphi' assert latex(Symbol('varpi')) == r'\varpi' assert latex(Symbol('varrho')) == r'\varrho' assert latex(Symbol('varsigma')) == r'\varsigma' assert latex(Symbol('vartheta')) == r'\vartheta' def test_fancyset_symbols(): assert latex(S.Rationals) == '\\mathbb{Q}' assert latex(S.Naturals) == '\\mathbb{N}' assert latex(S.Naturals0) == '\\mathbb{N}_0' assert latex(S.Integers) == '\\mathbb{Z}' assert latex(S.Reals) == '\\mathbb{R}' assert latex(S.Complexes) == '\\mathbb{C}' @XFAIL def test_builtin_without_args_mismatched_names(): assert latex(CosineTransform) == r'\mathcal{COS}' def test_builtin_no_args(): assert latex(Chi) == r'\operatorname{Chi}' assert latex(beta) == r'\operatorname{B}' assert latex(gamma) == r'\Gamma' assert latex(KroneckerDelta) == r'\delta' assert latex(DiracDelta) == r'\delta' assert latex(lowergamma) == r'\gamma' def test_issue_6853(): p = Function('Pi') assert latex(p(x)) == r"\Pi{\left(x \right)}" def test_Mul(): e = Mul(-2, x + 1, evaluate=False) assert latex(e) == r'- 2 \left(x + 1\right)' e = Mul(2, x + 1, evaluate=False) assert latex(e) == r'2 \left(x + 1\right)' e = Mul(S.Half, x + 1, evaluate=False) assert latex(e) == r'\frac{x + 1}{2}' e = Mul(y, x + 1, evaluate=False) assert latex(e) == r'y \left(x + 1\right)' e = Mul(-y, x + 1, evaluate=False) assert latex(e) == r'- y \left(x + 1\right)' e = Mul(-2, x + 1) assert latex(e) == r'- 2 x - 2' e = Mul(2, x + 1) assert latex(e) == r'2 x + 2' def test_Pow(): e = Pow(2, 2, evaluate=False) assert latex(e) == r'2^{2}' assert latex(x**(Rational(-1, 3))) == r'\frac{1}{\sqrt[3]{x}}' x2 = Symbol(r'x^2') assert latex(x2**2) == r'\left(x^{2}\right)^{2}' def test_issue_7180(): assert latex(Equivalent(x, y)) == r"x \Leftrightarrow y" assert latex(Not(Equivalent(x, y))) == r"x \not\Leftrightarrow y" def test_issue_8409(): assert latex(S.Half**n) == r"\left(\frac{1}{2}\right)^{n}" def test_issue_8470(): from sympy.parsing.sympy_parser import parse_expr e = parse_expr("-B*A", evaluate=False) assert latex(e) == r"A \left(- B\right)" def test_issue_7117(): # See also issue #5031 (hence the evaluate=False in these). e = Eq(x + 1, 2*x) q = Mul(2, e, evaluate=False) assert latex(q) == r"2 \left(x + 1 = 2 x\right)" q = Add(6, e, evaluate=False) assert latex(q) == r"6 + \left(x + 1 = 2 x\right)" q = Pow(e, 2, evaluate=False) assert latex(q) == r"\left(x + 1 = 2 x\right)^{2}" def test_issue_15439(): x = MatrixSymbol('x', 2, 2) y = MatrixSymbol('y', 2, 2) assert latex((x * y).subs(y, -y)) == r"x \left(- y\right)" assert latex((x * y).subs(y, -2*y)) == r"x \left(- 2 y\right)" assert latex((x * y).subs(x, -x)) == r"- x y" def test_issue_2934(): assert latex(Symbol(r'\frac{a_1}{b_1}')) == '\\frac{a_1}{b_1}' def test_issue_10489(): latexSymbolWithBrace = 'C_{x_{0}}' s = Symbol(latexSymbolWithBrace) assert latex(s) == latexSymbolWithBrace assert latex(cos(s)) == r'\cos{\left(C_{x_{0}} \right)}' def test_issue_12886(): m__1, l__1 = symbols('m__1, l__1') assert latex(m__1**2 + l__1**2) == \ r'\left(l^{1}\right)^{2} + \left(m^{1}\right)^{2}' def test_issue_13559(): from sympy.parsing.sympy_parser import parse_expr expr = parse_expr('5/1', evaluate=False) assert latex(expr) == r"\frac{5}{1}" def test_issue_13651(): expr = c + Mul(-1, a + b, evaluate=False) assert latex(expr) == r"c - \left(a + b\right)" def test_latex_UnevaluatedExpr(): x = symbols("x") he = UnevaluatedExpr(1/x) assert latex(he) == latex(1/x) == r"\frac{1}{x}" assert latex(he**2) == r"\left(\frac{1}{x}\right)^{2}" assert latex(he + 1) == r"1 + \frac{1}{x}" assert latex(x*he) == r"x \frac{1}{x}" def test_MatrixElement_printing(): # test cases for issue #11821 A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) assert latex(A[0, 0]) == r"A_{0, 0}" assert latex(3 * A[0, 0]) == r"3 A_{0, 0}" F = C[0, 0].subs(C, A - B) assert latex(F) == r"\left(A - B\right)_{0, 0}" i, j, k = symbols("i j k") M = MatrixSymbol("M", k, k) N = MatrixSymbol("N", k, k) assert latex((M*N)[i, j]) == \ r'\sum_{i_{1}=0}^{k - 1} M_{i, i_{1}} N_{i_{1}, j}' def test_MatrixSymbol_printing(): # test cases for issue #14237 A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) C = MatrixSymbol("C", 3, 3) assert latex(-A) == r"- A" assert latex(A - A*B - B) == r"A - A B - B" assert latex(-A*B - A*B*C - B) == r"- A B - A B C - B" def test_KroneckerProduct_printing(): A = MatrixSymbol('A', 3, 3) B = MatrixSymbol('B', 2, 2) assert latex(KroneckerProduct(A, B)) == r'A \otimes B' def test_Quaternion_latex_printing(): q = Quaternion(x, y, z, t) assert latex(q) == "x + y i + z j + t k" q = Quaternion(x, y, z, x*t) assert latex(q) == "x + y i + z j + t x k" q = Quaternion(x, y, z, x + t) assert latex(q) == r"x + y i + z j + \left(t + x\right) k" def test_TensorProduct_printing(): from sympy.tensor.functions import TensorProduct A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) assert latex(TensorProduct(A, B)) == r"A \otimes B" def test_WedgeProduct_printing(): from sympy.diffgeom.rn import R2 from sympy.diffgeom import WedgeProduct wp = WedgeProduct(R2.dx, R2.dy) assert latex(wp) == r"\operatorname{d}x \wedge \operatorname{d}y" def test_issue_14041(): import sympy.physics.mechanics as me A_frame = me.ReferenceFrame('A') thetad, phid = me.dynamicsymbols('theta, phi', 1) L = Symbol('L') assert latex(L*(phid + thetad)**2*A_frame.x) == \ r"L \left(\dot{\phi} + \dot{\theta}\right)^{2}\mathbf{\hat{a}_x}" assert latex((phid + thetad)**2*A_frame.x) == \ r"\left(\dot{\phi} + \dot{\theta}\right)^{2}\mathbf{\hat{a}_x}" assert latex((phid*thetad)**a*A_frame.x) == \ r"\left(\dot{\phi} \dot{\theta}\right)^{a}\mathbf{\hat{a}_x}" def test_issue_9216(): expr_1 = Pow(1, -1, evaluate=False) assert latex(expr_1) == r"1^{-1}" expr_2 = Pow(1, Pow(1, -1, evaluate=False), evaluate=False) assert latex(expr_2) == r"1^{1^{-1}}" expr_3 = Pow(3, -2, evaluate=False) assert latex(expr_3) == r"\frac{1}{9}" expr_4 = Pow(1, -2, evaluate=False) assert latex(expr_4) == r"1^{-2}" def test_latex_printer_tensor(): from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, tensor_heads L = TensorIndexType("L") i, j, k, l = tensor_indices("i j k l", L) i0 = tensor_indices("i_0", L) A, B, C, D = tensor_heads("A B C D", [L]) H = TensorHead("H", [L, L]) K = TensorHead("K", [L, L, L, L]) assert latex(i) == "{}^{i}" assert latex(-i) == "{}_{i}" expr = A(i) assert latex(expr) == "A{}^{i}" expr = A(i0) assert latex(expr) == "A{}^{i_{0}}" expr = A(-i) assert latex(expr) == "A{}_{i}" expr = -3*A(i) assert latex(expr) == r"-3A{}^{i}" expr = K(i, j, -k, -i0) assert latex(expr) == "K{}^{ij}{}_{ki_{0}}" expr = K(i, -j, -k, i0) assert latex(expr) == "K{}^{i}{}_{jk}{}^{i_{0}}" expr = K(i, -j, k, -i0) assert latex(expr) == "K{}^{i}{}_{j}{}^{k}{}_{i_{0}}" expr = H(i, -j) assert latex(expr) == "H{}^{i}{}_{j}" expr = H(i, j) assert latex(expr) == "H{}^{ij}" expr = H(-i, -j) assert latex(expr) == "H{}_{ij}" expr = (1+x)*A(i) assert latex(expr) == r"\left(x + 1\right)A{}^{i}" expr = H(i, -i) assert latex(expr) == "H{}^{L_{0}}{}_{L_{0}}" expr = H(i, -j)*A(j)*B(k) assert latex(expr) == "H{}^{i}{}_{L_{0}}A{}^{L_{0}}B{}^{k}" expr = A(i) + 3*B(i) assert latex(expr) == "3B{}^{i} + A{}^{i}" # Test ``TensorElement``: from sympy.tensor.tensor import TensorElement expr = TensorElement(K(i, j, k, l), {i: 3, k: 2}) assert latex(expr) == 'K{}^{i=3,j,k=2,l}' expr = TensorElement(K(i, j, k, l), {i: 3}) assert latex(expr) == 'K{}^{i=3,jkl}' expr = TensorElement(K(i, -j, k, l), {i: 3, k: 2}) assert latex(expr) == 'K{}^{i=3}{}_{j}{}^{k=2,l}' expr = TensorElement(K(i, -j, k, -l), {i: 3, k: 2}) assert latex(expr) == 'K{}^{i=3}{}_{j}{}^{k=2}{}_{l}' expr = TensorElement(K(i, j, -k, -l), {i: 3, -k: 2}) assert latex(expr) == 'K{}^{i=3,j}{}_{k=2,l}' expr = TensorElement(K(i, j, -k, -l), {i: 3}) assert latex(expr) == 'K{}^{i=3,j}{}_{kl}' def test_multiline_latex(): a, b, c, d, e, f = symbols('a b c d e f') expr = -a + 2*b -3*c +4*d -5*e expected = r"\begin{eqnarray}" + "\n"\ r"f & = &- a \nonumber\\" + "\n"\ r"& & + 2 b \nonumber\\" + "\n"\ r"& & - 3 c \nonumber\\" + "\n"\ r"& & + 4 d \nonumber\\" + "\n"\ r"& & - 5 e " + "\n"\ r"\end{eqnarray}" assert multiline_latex(f, expr, environment="eqnarray") == expected expected2 = r'\begin{eqnarray}' + '\n'\ r'f & = &- a + 2 b \nonumber\\' + '\n'\ r'& & - 3 c + 4 d \nonumber\\' + '\n'\ r'& & - 5 e ' + '\n'\ r'\end{eqnarray}' assert multiline_latex(f, expr, 2, environment="eqnarray") == expected2 expected3 = r'\begin{eqnarray}' + '\n'\ r'f & = &- a + 2 b - 3 c \nonumber\\'+ '\n'\ r'& & + 4 d - 5 e ' + '\n'\ r'\end{eqnarray}' assert multiline_latex(f, expr, 3, environment="eqnarray") == expected3 expected3dots = r'\begin{eqnarray}' + '\n'\ r'f & = &- a + 2 b - 3 c \dots\nonumber\\'+ '\n'\ r'& & + 4 d - 5 e ' + '\n'\ r'\end{eqnarray}' assert multiline_latex(f, expr, 3, environment="eqnarray", use_dots=True) == expected3dots expected3align = r'\begin{align*}' + '\n'\ r'f = &- a + 2 b - 3 c \\'+ '\n'\ r'& + 4 d - 5 e ' + '\n'\ r'\end{align*}' assert multiline_latex(f, expr, 3) == expected3align assert multiline_latex(f, expr, 3, environment='align*') == expected3align expected2ieee = r'\begin{IEEEeqnarray}{rCl}' + '\n'\ r'f & = &- a + 2 b \nonumber\\' + '\n'\ r'& & - 3 c + 4 d \nonumber\\' + '\n'\ r'& & - 5 e ' + '\n'\ r'\end{IEEEeqnarray}' assert multiline_latex(f, expr, 2, environment="IEEEeqnarray") == expected2ieee raises(ValueError, lambda: multiline_latex(f, expr, environment="foo")) def test_issue_15353(): from sympy import ConditionSet, Tuple, FiniteSet, S, sin, cos a, x = symbols('a x') # Obtained from nonlinsolve([(sin(a*x)),cos(a*x)],[x,a]) sol = ConditionSet( Tuple(x, a), Eq(sin(a*x), 0) & Eq(cos(a*x), 0), S.Complexes**2) assert latex(sol) == \ r'\left\{\left( x, \ a\right) \mid \left( x, \ a\right) \in ' \ r'\mathbb{C}^{2} \wedge \sin{\left(a x \right)} = 0 \wedge ' \ r'\cos{\left(a x \right)} = 0 \right\}' def test_trace(): # Issue 15303 from sympy import trace A = MatrixSymbol("A", 2, 2) assert latex(trace(A)) == r"\operatorname{tr}\left(A \right)" assert latex(trace(A**2)) == r"\operatorname{tr}\left(A^{2} \right)" def test_print_basic(): # Issue 15303 from sympy import Basic, Expr # dummy class for testing printing where the function is not # implemented in latex.py class UnimplementedExpr(Expr): def __new__(cls, e): return Basic.__new__(cls, e) # dummy function for testing def unimplemented_expr(expr): return UnimplementedExpr(expr).doit() # override class name to use superscript / subscript def unimplemented_expr_sup_sub(expr): result = UnimplementedExpr(expr) result.__class__.__name__ = 'UnimplementedExpr_x^1' return result assert latex(unimplemented_expr(x)) == r'UnimplementedExpr\left(x\right)' assert latex(unimplemented_expr(x**2)) == \ r'UnimplementedExpr\left(x^{2}\right)' assert latex(unimplemented_expr_sup_sub(x)) == \ r'UnimplementedExpr^{1}_{x}\left(x\right)' def test_MatrixSymbol_bold(): # Issue #15871 from sympy import trace A = MatrixSymbol("A", 2, 2) assert latex(trace(A), mat_symbol_style='bold') == \ r"\operatorname{tr}\left(\mathbf{A} \right)" assert latex(trace(A), mat_symbol_style='plain') == \ r"\operatorname{tr}\left(A \right)" A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) C = MatrixSymbol("C", 3, 3) assert latex(-A, mat_symbol_style='bold') == r"- \mathbf{A}" assert latex(A - A*B - B, mat_symbol_style='bold') == \ r"\mathbf{A} - \mathbf{A} \mathbf{B} - \mathbf{B}" assert latex(-A*B - A*B*C - B, mat_symbol_style='bold') == \ r"- \mathbf{A} \mathbf{B} - \mathbf{A} \mathbf{B} \mathbf{C} - \mathbf{B}" A = MatrixSymbol("A_k", 3, 3) assert latex(A, mat_symbol_style='bold') == r"\mathbf{A_{k}}" def test_imaginary_unit(): assert latex(1 + I) == '1 + i' assert latex(1 + I, imaginary_unit='i') == '1 + i' assert latex(1 + I, imaginary_unit='j') == '1 + j' assert latex(1 + I, imaginary_unit='foo') == '1 + foo' assert latex(I, imaginary_unit="ti") == '\\text{i}' assert latex(I, imaginary_unit="tj") == '\\text{j}' def test_text_re_im(): assert latex(im(x), gothic_re_im=True) == r'\Im{\left(x\right)}' assert latex(im(x), gothic_re_im=False) == r'\operatorname{im}{\left(x\right)}' assert latex(re(x), gothic_re_im=True) == r'\Re{\left(x\right)}' assert latex(re(x), gothic_re_im=False) == r'\operatorname{re}{\left(x\right)}' def test_DiffGeomMethods(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential from sympy.diffgeom.rn import R2 m = Manifold('M', 2) assert latex(m) == r'\text{M}' p = Patch('P', m) assert latex(p) == r'\text{P}_{\text{M}}' rect = CoordSystem('rect', p) assert latex(rect) == r'\text{rect}^{\text{P}}_{\text{M}}' b = BaseScalarField(rect, 0) assert latex(b) == r'\mathbf{rect_{0}}' g = Function('g') s_field = g(R2.x, R2.y) assert latex(Differential(s_field)) == \ r'\operatorname{d}\left(g{\left(\mathbf{x},\mathbf{y} \right)}\right)' def test_unit_printing(): assert latex(5*meter) == r'5 \text{m}' assert latex(3*gibibyte) == r'3 \text{gibibyte}' assert latex(4*microgram/second) == r'\frac{4 \mu\text{g}}{\text{s}}' def test_issue_17092(): x_star = Symbol('x^*') assert latex(Derivative(x_star, x_star,2)) == r'\frac{d^{2}}{d \left(x^{*}\right)^{2}} x^{*}' def test_latex_decimal_separator(): x, y, z, t = symbols('x y z t') k, m, n = symbols('k m n', integer=True) f, g, h = symbols('f g h', cls=Function) # comma decimal_separator assert(latex([1, 2.3, 4.5], decimal_separator='comma') == r'\left[ 1; \ 2{,}3; \ 4{,}5\right]') assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='comma') == r'\left\{1; 2{,}3; 4{,}5\right\}') assert(latex((1, 2.3, 4.6), decimal_separator = 'comma') == r'\left( 1; \ 2{,}3; \ 4{,}6\right)') # period decimal_separator assert(latex([1, 2.3, 4.5], decimal_separator='period') == r'\left[ 1, \ 2.3, \ 4.5\right]' ) assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period') == r'\left\{1, 2.3, 4.5\right\}') assert(latex((1, 2.3, 4.6), decimal_separator = 'period') == r'\left( 1, \ 2.3, \ 4.6\right)') # default decimal_separator assert(latex([1, 2.3, 4.5]) == r'\left[ 1, \ 2.3, \ 4.5\right]') assert(latex(FiniteSet(1, 2.3, 4.5)) == r'\left\{1, 2.3, 4.5\right\}') assert(latex((1, 2.3, 4.6)) == r'\left( 1, \ 2.3, \ 4.6\right)') assert(latex(Mul(3.4,5.3), decimal_separator = 'comma') ==r'18{,}02') assert(latex(3.4*5.3, decimal_separator = 'comma')==r'18{,}02') x = symbols('x') y = symbols('y') z = symbols('z') assert(latex(x*5.3 + 2**y**3.4 + 4.5 + z, decimal_separator = 'comma')== r'2^{y^{3{,}4}} + 5{,}3 x + z + 4{,}5') assert(latex(0.987, decimal_separator='comma') == r'0{,}987') assert(latex(S(0.987), decimal_separator='comma')== r'0{,}987') assert(latex(.3, decimal_separator='comma')== r'0{,}3') assert(latex(S(.3), decimal_separator='comma')== r'0{,}3') assert(latex(5.8*10**(-7), decimal_separator='comma') ==r'5{,}8e-07') assert(latex(S(5.7)*10**(-7), decimal_separator='comma')==r'5{,}7 \cdot 10^{-7}') assert(latex(S(5.7*10**(-7)), decimal_separator='comma')==r'5{,}7 \cdot 10^{-7}') x = symbols('x') assert(latex(1.2*x+3.4, decimal_separator='comma')==r'1{,}2 x + 3{,}4') assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period')==r'\left\{1, 2.3, 4.5\right\}') # Error Handling tests raises(ValueError, lambda: latex([1,2.3,4.5], decimal_separator='non_existing_decimal_separator_in_list')) raises(ValueError, lambda: latex(FiniteSet(1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_set')) raises(ValueError, lambda: latex((1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_tuple')) def test_issue_17857(): assert latex(Range(-oo, oo)) == r'\left\{\ldots, -1, 0, 1, \ldots\right\}' assert latex(Range(oo, -oo, -1)) == r'\left\{\ldots, 1, 0, -1, \ldots\right\}'
4d7ce6306b714786e56ac01e7d5e6ec0b504b523e771edc800ae3cd80e0e2bcb
from sympy.printing.tree import tree from sympy.utilities.pytest import XFAIL # Remove this flag after making _assumptions cache deterministic. @XFAIL def test_print_tree_MatAdd(): from sympy.matrices.expressions import MatrixSymbol, MatAdd A = MatrixSymbol('A', 3, 3) B = MatrixSymbol('B', 3, 3) test_str = [ 'MatAdd: A + B\n', 'algebraic: False\n', 'commutative: False\n', 'complex: False\n', 'composite: False\n', 'even: False\n', 'extended_negative: False\n', 'extended_nonnegative: False\n', 'extended_nonpositive: False\n', 'extended_nonzero: False\n', 'extended_positive: False\n', 'extended_real: False\n', 'imaginary: False\n', 'integer: False\n', 'irrational: False\n', 'negative: False\n', 'noninteger: False\n', 'nonnegative: False\n', 'nonpositive: False\n', 'nonzero: False\n', 'odd: False\n', 'positive: False\n', 'prime: False\n', 'rational: False\n', 'real: False\n', 'transcendental: False\n', 'zero: False\n', '+-MatrixSymbol: A\n', '| algebraic: False\n', '| commutative: False\n', '| complex: False\n', '| composite: False\n', '| even: False\n', '| extended_negative: False\n', '| extended_nonnegative: False\n', '| extended_nonpositive: False\n', '| extended_nonzero: False\n', '| extended_positive: False\n', '| extended_real: False\n', '| imaginary: False\n', '| integer: False\n', '| irrational: False\n', '| negative: False\n', '| noninteger: False\n', '| nonnegative: False\n', '| nonpositive: False\n', '| nonzero: False\n', '| odd: False\n', '| positive: False\n', '| prime: False\n', '| rational: False\n', '| real: False\n', '| transcendental: False\n', '| zero: False\n', '| +-Symbol: A\n', '| | commutative: True\n', '| +-Integer: 3\n', '| | algebraic: True\n', '| | commutative: True\n', '| | complex: True\n', '| | extended_negative: False\n', '| | extended_nonnegative: True\n', '| | extended_real: True\n', '| | finite: True\n', '| | hermitian: True\n', '| | imaginary: False\n', '| | infinite: False\n', '| | integer: True\n', '| | irrational: False\n', '| | negative: False\n', '| | noninteger: False\n', '| | nonnegative: True\n', '| | rational: True\n', '| | real: True\n', '| | transcendental: False\n', '| +-Integer: 3\n', '| algebraic: True\n', '| commutative: True\n', '| complex: True\n', '| extended_negative: False\n', '| extended_nonnegative: True\n', '| extended_real: True\n', '| finite: True\n', '| hermitian: True\n', '| imaginary: False\n', '| infinite: False\n', '| integer: True\n', '| irrational: False\n', '| negative: False\n', '| noninteger: False\n', '| nonnegative: True\n', '| rational: True\n', '| real: True\n', '| transcendental: False\n', '+-MatrixSymbol: B\n', ' algebraic: False\n', ' commutative: False\n', ' complex: False\n', ' composite: False\n', ' even: False\n', ' extended_negative: False\n', ' extended_nonnegative: False\n', ' extended_nonpositive: False\n', ' extended_nonzero: False\n', ' extended_positive: False\n', ' extended_real: False\n', ' imaginary: False\n', ' integer: False\n', ' irrational: False\n', ' negative: False\n', ' noninteger: False\n', ' nonnegative: False\n', ' nonpositive: False\n', ' nonzero: False\n', ' odd: False\n', ' positive: False\n', ' prime: False\n', ' rational: False\n', ' real: False\n', ' transcendental: False\n', ' zero: False\n', ' +-Symbol: B\n', ' | commutative: True\n', ' +-Integer: 3\n', ' | algebraic: True\n', ' | commutative: True\n', ' | complex: True\n', ' | extended_negative: False\n', ' | extended_nonnegative: True\n', ' | extended_real: True\n', ' | finite: True\n', ' | hermitian: True\n', ' | imaginary: False\n', ' | infinite: False\n', ' | integer: True\n', ' | irrational: False\n', ' | negative: False\n', ' | noninteger: False\n', ' | nonnegative: True\n', ' | rational: True\n', ' | real: True\n', ' | transcendental: False\n', ' +-Integer: 3\n', ' algebraic: True\n', ' commutative: True\n', ' complex: True\n', ' extended_negative: False\n', ' extended_nonnegative: True\n', ' extended_real: True\n', ' finite: True\n', ' hermitian: True\n', ' imaginary: False\n', ' infinite: False\n', ' integer: True\n', ' irrational: False\n', ' negative: False\n', ' noninteger: False\n', ' nonnegative: True\n', ' rational: True\n', ' real: True\n', ' transcendental: False\n' ] assert tree(A + B) == "".join(test_str) def test_print_tree_MatAdd_noassumptions(): from sympy.matrices.expressions import MatrixSymbol, MatAdd A = MatrixSymbol('A', 3, 3) B = MatrixSymbol('B', 3, 3) test_str = \ """MatAdd: A + B +-MatrixSymbol: A | +-Symbol: A | +-Integer: 3 | +-Integer: 3 +-MatrixSymbol: B +-Symbol: B +-Integer: 3 +-Integer: 3 """ assert tree(A + B, assumptions=False) == test_str
d2d221a3978590c3133df72579c212833d60d3e9c20b4eb19a3de9a0dbbc6721
from sympy import diff, Integral, Limit, sin, Symbol, Integer, Rational, cos, \ tan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh, E, I, oo, \ pi, GoldenRatio, EulerGamma, Sum, Eq, Ne, Ge, Lt, Float, Matrix, Basic, \ S, MatrixSymbol, Function, Derivative, log, true, false, Range, Min, Max, \ Lambda, IndexedBase, symbols, zoo, elliptic_f, elliptic_e, elliptic_pi, Ei, \ expint, jacobi, gegenbauer, chebyshevt, chebyshevu, legendre, assoc_legendre, \ laguerre, assoc_laguerre, hermite, euler, stieltjes, mathieuc, mathieus, \ mathieucprime, mathieusprime, TribonacciConstant, Contains, LambertW, \ cot, coth, acot, acoth, csc, acsc, csch, acsch, sec, asec, sech, asech from sympy import elliptic_k, totient, reduced_totient, primenu, primeomega, \ fresnelc, fresnels, Heaviside from sympy.calculus.util import AccumBounds from sympy.core.containers import Tuple from sympy.functions.combinatorial.factorials import factorial, factorial2, \ binomial from sympy.functions.combinatorial.numbers import bernoulli, bell, lucas, \ fibonacci, tribonacci, catalan from sympy.functions.elementary.complexes import re, im, Abs, conjugate from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.integers import floor, ceiling from sympy.functions.special.gamma_functions import gamma, lowergamma, uppergamma from sympy.functions.special.singularity_functions import SingularityFunction from sympy.functions.special.zeta_functions import polylog, lerchphi, zeta, dirichlet_eta from sympy.logic.boolalg import And, Or, Implies, Equivalent, Xor, Not from sympy.matrices.expressions.determinant import Determinant from sympy.physics.quantum import ComplexSpace, HilbertSpace, FockSpace, hbar, Dagger from sympy.printing.mathml import mathml, MathMLContentPrinter, \ MathMLPresentationPrinter, MathMLPrinter from sympy.sets.sets import FiniteSet, Union, Intersection, Complement, \ SymmetricDifference, Interval, EmptySet, ProductSet from sympy.stats.rv import RandomSymbol from sympy.utilities.pytest import raises from sympy.vector import CoordSys3D, Cross, Curl, Dot, Divergence, Gradient, Laplacian x, y, z, a, b, c, d, e, n = symbols('x:z a:e n') mp = MathMLContentPrinter() mpp = MathMLPresentationPrinter() def test_mathml_printer(): m = MathMLPrinter() assert m.doprint(1+x) == mp.doprint(1+x) def test_content_printmethod(): assert mp.doprint(1 + x) == '<apply><plus/><ci>x</ci><cn>1</cn></apply>' def test_content_mathml_core(): mml_1 = mp._print(1 + x) assert mml_1.nodeName == 'apply' nodes = mml_1.childNodes assert len(nodes) == 3 assert nodes[0].nodeName == 'plus' assert nodes[0].hasChildNodes() is False assert nodes[0].nodeValue is None assert nodes[1].nodeName in ['cn', 'ci'] if nodes[1].nodeName == 'cn': assert nodes[1].childNodes[0].nodeValue == '1' assert nodes[2].childNodes[0].nodeValue == 'x' else: assert nodes[1].childNodes[0].nodeValue == 'x' assert nodes[2].childNodes[0].nodeValue == '1' mml_2 = mp._print(x**2) assert mml_2.nodeName == 'apply' nodes = mml_2.childNodes assert nodes[1].childNodes[0].nodeValue == 'x' assert nodes[2].childNodes[0].nodeValue == '2' mml_3 = mp._print(2*x) assert mml_3.nodeName == 'apply' nodes = mml_3.childNodes assert nodes[0].nodeName == 'times' assert nodes[1].childNodes[0].nodeValue == '2' assert nodes[2].childNodes[0].nodeValue == 'x' mml = mp._print(Float(1.0, 2)*x) assert mml.nodeName == 'apply' nodes = mml.childNodes assert nodes[0].nodeName == 'times' assert nodes[1].childNodes[0].nodeValue == '1.0' assert nodes[2].childNodes[0].nodeValue == 'x' def test_content_mathml_functions(): mml_1 = mp._print(sin(x)) assert mml_1.nodeName == 'apply' assert mml_1.childNodes[0].nodeName == 'sin' assert mml_1.childNodes[1].nodeName == 'ci' mml_2 = mp._print(diff(sin(x), x, evaluate=False)) assert mml_2.nodeName == 'apply' assert mml_2.childNodes[0].nodeName == 'diff' assert mml_2.childNodes[1].nodeName == 'bvar' assert mml_2.childNodes[1].childNodes[ 0].nodeName == 'ci' # below bvar there's <ci>x/ci> mml_3 = mp._print(diff(cos(x*y), x, evaluate=False)) assert mml_3.nodeName == 'apply' assert mml_3.childNodes[0].nodeName == 'partialdiff' assert mml_3.childNodes[1].nodeName == 'bvar' assert mml_3.childNodes[1].childNodes[ 0].nodeName == 'ci' # below bvar there's <ci>x/ci> def test_content_mathml_limits(): # XXX No unevaluated limits lim_fun = sin(x)/x mml_1 = mp._print(Limit(lim_fun, x, 0)) assert mml_1.childNodes[0].nodeName == 'limit' assert mml_1.childNodes[1].nodeName == 'bvar' assert mml_1.childNodes[2].nodeName == 'lowlimit' assert mml_1.childNodes[3].toxml() == mp._print(lim_fun).toxml() def test_content_mathml_integrals(): integrand = x mml_1 = mp._print(Integral(integrand, (x, 0, 1))) assert mml_1.childNodes[0].nodeName == 'int' assert mml_1.childNodes[1].nodeName == 'bvar' assert mml_1.childNodes[2].nodeName == 'lowlimit' assert mml_1.childNodes[3].nodeName == 'uplimit' assert mml_1.childNodes[4].toxml() == mp._print(integrand).toxml() def test_content_mathml_matrices(): A = Matrix([1, 2, 3]) B = Matrix([[0, 5, 4], [2, 3, 1], [9, 7, 9]]) mll_1 = mp._print(A) assert mll_1.childNodes[0].nodeName == 'matrixrow' assert mll_1.childNodes[0].childNodes[0].nodeName == 'cn' assert mll_1.childNodes[0].childNodes[0].childNodes[0].nodeValue == '1' assert mll_1.childNodes[1].nodeName == 'matrixrow' assert mll_1.childNodes[1].childNodes[0].nodeName == 'cn' assert mll_1.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2' assert mll_1.childNodes[2].nodeName == 'matrixrow' assert mll_1.childNodes[2].childNodes[0].nodeName == 'cn' assert mll_1.childNodes[2].childNodes[0].childNodes[0].nodeValue == '3' mll_2 = mp._print(B) assert mll_2.childNodes[0].nodeName == 'matrixrow' assert mll_2.childNodes[0].childNodes[0].nodeName == 'cn' assert mll_2.childNodes[0].childNodes[0].childNodes[0].nodeValue == '0' assert mll_2.childNodes[0].childNodes[1].nodeName == 'cn' assert mll_2.childNodes[0].childNodes[1].childNodes[0].nodeValue == '5' assert mll_2.childNodes[0].childNodes[2].nodeName == 'cn' assert mll_2.childNodes[0].childNodes[2].childNodes[0].nodeValue == '4' assert mll_2.childNodes[1].nodeName == 'matrixrow' assert mll_2.childNodes[1].childNodes[0].nodeName == 'cn' assert mll_2.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2' assert mll_2.childNodes[1].childNodes[1].nodeName == 'cn' assert mll_2.childNodes[1].childNodes[1].childNodes[0].nodeValue == '3' assert mll_2.childNodes[1].childNodes[2].nodeName == 'cn' assert mll_2.childNodes[1].childNodes[2].childNodes[0].nodeValue == '1' assert mll_2.childNodes[2].nodeName == 'matrixrow' assert mll_2.childNodes[2].childNodes[0].nodeName == 'cn' assert mll_2.childNodes[2].childNodes[0].childNodes[0].nodeValue == '9' assert mll_2.childNodes[2].childNodes[1].nodeName == 'cn' assert mll_2.childNodes[2].childNodes[1].childNodes[0].nodeValue == '7' assert mll_2.childNodes[2].childNodes[2].nodeName == 'cn' assert mll_2.childNodes[2].childNodes[2].childNodes[0].nodeValue == '9' def test_content_mathml_sums(): summand = x mml_1 = mp._print(Sum(summand, (x, 1, 10))) assert mml_1.childNodes[0].nodeName == 'sum' assert mml_1.childNodes[1].nodeName == 'bvar' assert mml_1.childNodes[2].nodeName == 'lowlimit' assert mml_1.childNodes[3].nodeName == 'uplimit' assert mml_1.childNodes[4].toxml() == mp._print(summand).toxml() def test_content_mathml_tuples(): mml_1 = mp._print([2]) assert mml_1.nodeName == 'list' assert mml_1.childNodes[0].nodeName == 'cn' assert len(mml_1.childNodes) == 1 mml_2 = mp._print([2, Integer(1)]) assert mml_2.nodeName == 'list' assert mml_2.childNodes[0].nodeName == 'cn' assert mml_2.childNodes[1].nodeName == 'cn' assert len(mml_2.childNodes) == 2 def test_content_mathml_add(): mml = mp._print(x**5 - x**4 + x) assert mml.childNodes[0].nodeName == 'plus' assert mml.childNodes[1].childNodes[0].nodeName == 'minus' assert mml.childNodes[1].childNodes[1].nodeName == 'apply' def test_content_mathml_Rational(): mml_1 = mp._print(Rational(1, 1)) """should just return a number""" assert mml_1.nodeName == 'cn' mml_2 = mp._print(Rational(2, 5)) assert mml_2.childNodes[0].nodeName == 'divide' def test_content_mathml_constants(): mml = mp._print(I) assert mml.nodeName == 'imaginaryi' mml = mp._print(E) assert mml.nodeName == 'exponentiale' mml = mp._print(oo) assert mml.nodeName == 'infinity' mml = mp._print(pi) assert mml.nodeName == 'pi' assert mathml(GoldenRatio) == '<cn>&#966;</cn>' mml = mathml(EulerGamma) assert mml == '<eulergamma/>' mml = mathml(EmptySet()) assert mml == '<emptyset/>' mml = mathml(S.true) assert mml == '<true/>' mml = mathml(S.false) assert mml == '<false/>' mml = mathml(S.NaN) assert mml == '<notanumber/>' def test_content_mathml_trig(): mml = mp._print(sin(x)) assert mml.childNodes[0].nodeName == 'sin' mml = mp._print(cos(x)) assert mml.childNodes[0].nodeName == 'cos' mml = mp._print(tan(x)) assert mml.childNodes[0].nodeName == 'tan' mml = mp._print(cot(x)) assert mml.childNodes[0].nodeName == 'cot' mml = mp._print(csc(x)) assert mml.childNodes[0].nodeName == 'csc' mml = mp._print(sec(x)) assert mml.childNodes[0].nodeName == 'sec' mml = mp._print(asin(x)) assert mml.childNodes[0].nodeName == 'arcsin' mml = mp._print(acos(x)) assert mml.childNodes[0].nodeName == 'arccos' mml = mp._print(atan(x)) assert mml.childNodes[0].nodeName == 'arctan' mml = mp._print(acot(x)) assert mml.childNodes[0].nodeName == 'arccot' mml = mp._print(acsc(x)) assert mml.childNodes[0].nodeName == 'arccsc' mml = mp._print(asec(x)) assert mml.childNodes[0].nodeName == 'arcsec' mml = mp._print(sinh(x)) assert mml.childNodes[0].nodeName == 'sinh' mml = mp._print(cosh(x)) assert mml.childNodes[0].nodeName == 'cosh' mml = mp._print(tanh(x)) assert mml.childNodes[0].nodeName == 'tanh' mml = mp._print(coth(x)) assert mml.childNodes[0].nodeName == 'coth' mml = mp._print(csch(x)) assert mml.childNodes[0].nodeName == 'csch' mml = mp._print(sech(x)) assert mml.childNodes[0].nodeName == 'sech' mml = mp._print(asinh(x)) assert mml.childNodes[0].nodeName == 'arcsinh' mml = mp._print(atanh(x)) assert mml.childNodes[0].nodeName == 'arctanh' mml = mp._print(acosh(x)) assert mml.childNodes[0].nodeName == 'arccosh' mml = mp._print(acoth(x)) assert mml.childNodes[0].nodeName == 'arccoth' mml = mp._print(acsch(x)) assert mml.childNodes[0].nodeName == 'arccsch' mml = mp._print(asech(x)) assert mml.childNodes[0].nodeName == 'arcsech' def test_content_mathml_relational(): mml_1 = mp._print(Eq(x, 1)) assert mml_1.nodeName == 'apply' assert mml_1.childNodes[0].nodeName == 'eq' assert mml_1.childNodes[1].nodeName == 'ci' assert mml_1.childNodes[1].childNodes[0].nodeValue == 'x' assert mml_1.childNodes[2].nodeName == 'cn' assert mml_1.childNodes[2].childNodes[0].nodeValue == '1' mml_2 = mp._print(Ne(1, x)) assert mml_2.nodeName == 'apply' assert mml_2.childNodes[0].nodeName == 'neq' assert mml_2.childNodes[1].nodeName == 'cn' assert mml_2.childNodes[1].childNodes[0].nodeValue == '1' assert mml_2.childNodes[2].nodeName == 'ci' assert mml_2.childNodes[2].childNodes[0].nodeValue == 'x' mml_3 = mp._print(Ge(1, x)) assert mml_3.nodeName == 'apply' assert mml_3.childNodes[0].nodeName == 'geq' assert mml_3.childNodes[1].nodeName == 'cn' assert mml_3.childNodes[1].childNodes[0].nodeValue == '1' assert mml_3.childNodes[2].nodeName == 'ci' assert mml_3.childNodes[2].childNodes[0].nodeValue == 'x' mml_4 = mp._print(Lt(1, x)) assert mml_4.nodeName == 'apply' assert mml_4.childNodes[0].nodeName == 'lt' assert mml_4.childNodes[1].nodeName == 'cn' assert mml_4.childNodes[1].childNodes[0].nodeValue == '1' assert mml_4.childNodes[2].nodeName == 'ci' assert mml_4.childNodes[2].childNodes[0].nodeValue == 'x' def test_content_symbol(): mml = mp._print(x) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeValue == 'x' del mml mml = mp._print(Symbol("x^2")) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeName == 'mml:msup' assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2' del mml mml = mp._print(Symbol("x__2")) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeName == 'mml:msup' assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2' del mml mml = mp._print(Symbol("x_2")) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeName == 'mml:msub' assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2' del mml mml = mp._print(Symbol("x^3_2")) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeName == 'mml:msubsup' assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2' assert mml.childNodes[0].childNodes[2].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[2].childNodes[0].nodeValue == '3' del mml mml = mp._print(Symbol("x__3_2")) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeName == 'mml:msubsup' assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2' assert mml.childNodes[0].childNodes[2].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[2].childNodes[0].nodeValue == '3' del mml mml = mp._print(Symbol("x_2_a")) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeName == 'mml:msub' assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[ 0].nodeValue == '2' assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo' assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[ 0].nodeValue == ' ' assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[ 0].nodeValue == 'a' del mml mml = mp._print(Symbol("x^2^a")) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeName == 'mml:msup' assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[ 0].nodeValue == '2' assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo' assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[ 0].nodeValue == ' ' assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[ 0].nodeValue == 'a' del mml mml = mp._print(Symbol("x__2__a")) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeName == 'mml:msup' assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[ 0].nodeValue == '2' assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo' assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[ 0].nodeValue == ' ' assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[ 0].nodeValue == 'a' del mml def test_content_mathml_greek(): mml = mp._print(Symbol('alpha')) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeValue == u'\N{GREEK SMALL LETTER ALPHA}' assert mp.doprint(Symbol('alpha')) == '<ci>&#945;</ci>' assert mp.doprint(Symbol('beta')) == '<ci>&#946;</ci>' assert mp.doprint(Symbol('gamma')) == '<ci>&#947;</ci>' assert mp.doprint(Symbol('delta')) == '<ci>&#948;</ci>' assert mp.doprint(Symbol('epsilon')) == '<ci>&#949;</ci>' assert mp.doprint(Symbol('zeta')) == '<ci>&#950;</ci>' assert mp.doprint(Symbol('eta')) == '<ci>&#951;</ci>' assert mp.doprint(Symbol('theta')) == '<ci>&#952;</ci>' assert mp.doprint(Symbol('iota')) == '<ci>&#953;</ci>' assert mp.doprint(Symbol('kappa')) == '<ci>&#954;</ci>' assert mp.doprint(Symbol('lambda')) == '<ci>&#955;</ci>' assert mp.doprint(Symbol('mu')) == '<ci>&#956;</ci>' assert mp.doprint(Symbol('nu')) == '<ci>&#957;</ci>' assert mp.doprint(Symbol('xi')) == '<ci>&#958;</ci>' assert mp.doprint(Symbol('omicron')) == '<ci>&#959;</ci>' assert mp.doprint(Symbol('pi')) == '<ci>&#960;</ci>' assert mp.doprint(Symbol('rho')) == '<ci>&#961;</ci>' assert mp.doprint(Symbol('varsigma')) == '<ci>&#962;</ci>' assert mp.doprint(Symbol('sigma')) == '<ci>&#963;</ci>' assert mp.doprint(Symbol('tau')) == '<ci>&#964;</ci>' assert mp.doprint(Symbol('upsilon')) == '<ci>&#965;</ci>' assert mp.doprint(Symbol('phi')) == '<ci>&#966;</ci>' assert mp.doprint(Symbol('chi')) == '<ci>&#967;</ci>' assert mp.doprint(Symbol('psi')) == '<ci>&#968;</ci>' assert mp.doprint(Symbol('omega')) == '<ci>&#969;</ci>' assert mp.doprint(Symbol('Alpha')) == '<ci>&#913;</ci>' assert mp.doprint(Symbol('Beta')) == '<ci>&#914;</ci>' assert mp.doprint(Symbol('Gamma')) == '<ci>&#915;</ci>' assert mp.doprint(Symbol('Delta')) == '<ci>&#916;</ci>' assert mp.doprint(Symbol('Epsilon')) == '<ci>&#917;</ci>' assert mp.doprint(Symbol('Zeta')) == '<ci>&#918;</ci>' assert mp.doprint(Symbol('Eta')) == '<ci>&#919;</ci>' assert mp.doprint(Symbol('Theta')) == '<ci>&#920;</ci>' assert mp.doprint(Symbol('Iota')) == '<ci>&#921;</ci>' assert mp.doprint(Symbol('Kappa')) == '<ci>&#922;</ci>' assert mp.doprint(Symbol('Lambda')) == '<ci>&#923;</ci>' assert mp.doprint(Symbol('Mu')) == '<ci>&#924;</ci>' assert mp.doprint(Symbol('Nu')) == '<ci>&#925;</ci>' assert mp.doprint(Symbol('Xi')) == '<ci>&#926;</ci>' assert mp.doprint(Symbol('Omicron')) == '<ci>&#927;</ci>' assert mp.doprint(Symbol('Pi')) == '<ci>&#928;</ci>' assert mp.doprint(Symbol('Rho')) == '<ci>&#929;</ci>' assert mp.doprint(Symbol('Sigma')) == '<ci>&#931;</ci>' assert mp.doprint(Symbol('Tau')) == '<ci>&#932;</ci>' assert mp.doprint(Symbol('Upsilon')) == '<ci>&#933;</ci>' assert mp.doprint(Symbol('Phi')) == '<ci>&#934;</ci>' assert mp.doprint(Symbol('Chi')) == '<ci>&#935;</ci>' assert mp.doprint(Symbol('Psi')) == '<ci>&#936;</ci>' assert mp.doprint(Symbol('Omega')) == '<ci>&#937;</ci>' def test_content_mathml_order(): expr = x**3 + x**2*y + 3*x*y**3 + y**4 mp = MathMLContentPrinter({'order': 'lex'}) mml = mp._print(expr) assert mml.childNodes[1].childNodes[0].nodeName == 'power' assert mml.childNodes[1].childNodes[1].childNodes[0].data == 'x' assert mml.childNodes[1].childNodes[2].childNodes[0].data == '3' assert mml.childNodes[4].childNodes[0].nodeName == 'power' assert mml.childNodes[4].childNodes[1].childNodes[0].data == 'y' assert mml.childNodes[4].childNodes[2].childNodes[0].data == '4' mp = MathMLContentPrinter({'order': 'rev-lex'}) mml = mp._print(expr) assert mml.childNodes[1].childNodes[0].nodeName == 'power' assert mml.childNodes[1].childNodes[1].childNodes[0].data == 'y' assert mml.childNodes[1].childNodes[2].childNodes[0].data == '4' assert mml.childNodes[4].childNodes[0].nodeName == 'power' assert mml.childNodes[4].childNodes[1].childNodes[0].data == 'x' assert mml.childNodes[4].childNodes[2].childNodes[0].data == '3' def test_content_settings(): raises(TypeError, lambda: mathml(x, method="garbage")) def test_content_mathml_logic(): assert mathml(And(x, y)) == '<apply><and/><ci>x</ci><ci>y</ci></apply>' assert mathml(Or(x, y)) == '<apply><or/><ci>x</ci><ci>y</ci></apply>' assert mathml(Xor(x, y)) == '<apply><xor/><ci>x</ci><ci>y</ci></apply>' assert mathml(Implies(x, y)) == '<apply><implies/><ci>x</ci><ci>y</ci></apply>' assert mathml(Not(x)) == '<apply><not/><ci>x</ci></apply>' def test_presentation_printmethod(): assert mpp.doprint(1 + x) == '<mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow>' assert mpp.doprint(x**2) == '<msup><mi>x</mi><mn>2</mn></msup>' assert mpp.doprint(x**-1) == '<mfrac><mn>1</mn><mi>x</mi></mfrac>' assert mpp.doprint(x**-2) == \ '<mfrac><mn>1</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac>' assert mpp.doprint(2*x) == \ '<mrow><mn>2</mn><mo>&InvisibleTimes;</mo><mi>x</mi></mrow>' def test_presentation_mathml_core(): mml_1 = mpp._print(1 + x) assert mml_1.nodeName == 'mrow' nodes = mml_1.childNodes assert len(nodes) == 3 assert nodes[0].nodeName in ['mi', 'mn'] assert nodes[1].nodeName == 'mo' if nodes[0].nodeName == 'mn': assert nodes[0].childNodes[0].nodeValue == '1' assert nodes[2].childNodes[0].nodeValue == 'x' else: assert nodes[0].childNodes[0].nodeValue == 'x' assert nodes[2].childNodes[0].nodeValue == '1' mml_2 = mpp._print(x**2) assert mml_2.nodeName == 'msup' nodes = mml_2.childNodes assert nodes[0].childNodes[0].nodeValue == 'x' assert nodes[1].childNodes[0].nodeValue == '2' mml_3 = mpp._print(2*x) assert mml_3.nodeName == 'mrow' nodes = mml_3.childNodes assert nodes[0].childNodes[0].nodeValue == '2' assert nodes[1].childNodes[0].nodeValue == '&InvisibleTimes;' assert nodes[2].childNodes[0].nodeValue == 'x' mml = mpp._print(Float(1.0, 2)*x) assert mml.nodeName == 'mrow' nodes = mml.childNodes assert nodes[0].childNodes[0].nodeValue == '1.0' assert nodes[1].childNodes[0].nodeValue == '&InvisibleTimes;' assert nodes[2].childNodes[0].nodeValue == 'x' def test_presentation_mathml_functions(): mml_1 = mpp._print(sin(x)) assert mml_1.childNodes[0].childNodes[0 ].nodeValue == 'sin' assert mml_1.childNodes[1].childNodes[0 ].childNodes[0].nodeValue == 'x' mml_2 = mpp._print(diff(sin(x), x, evaluate=False)) assert mml_2.nodeName == 'mrow' assert mml_2.childNodes[0].childNodes[0 ].childNodes[0].childNodes[0].nodeValue == '&dd;' assert mml_2.childNodes[1].childNodes[1 ].nodeName == 'mfenced' assert mml_2.childNodes[0].childNodes[1 ].childNodes[0].childNodes[0].nodeValue == '&dd;' mml_3 = mpp._print(diff(cos(x*y), x, evaluate=False)) assert mml_3.childNodes[0].nodeName == 'mfrac' assert mml_3.childNodes[0].childNodes[0 ].childNodes[0].childNodes[0].nodeValue == '&#x2202;' assert mml_3.childNodes[1].childNodes[0 ].childNodes[0].nodeValue == 'cos' def test_print_derivative(): f = Function('f') d = Derivative(f(x, y, z), x, z, x, z, z, y) assert mathml(d) == \ '<apply><partialdiff/><bvar><ci>y</ci><ci>z</ci><degree><cn>2</cn></degree><ci>x</ci><ci>z</ci><ci>x</ci></bvar><apply><f/><ci>x</ci><ci>y</ci><ci>z</ci></apply></apply>' assert mathml(d, printer='presentation') == \ '<mrow><mfrac><mrow><msup><mo>&#x2202;</mo><mn>6</mn></msup></mrow><mrow><mo>&#x2202;</mo><mi>y</mi><msup><mo>&#x2202;</mo><mn>2</mn></msup><mi>z</mi><mo>&#x2202;</mo><mi>x</mi><mo>&#x2202;</mo><mi>z</mi><mo>&#x2202;</mo><mi>x</mi></mrow></mfrac><mrow><mi>f</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow></mrow>' def test_presentation_mathml_limits(): lim_fun = sin(x)/x mml_1 = mpp._print(Limit(lim_fun, x, 0)) assert mml_1.childNodes[0].nodeName == 'munder' assert mml_1.childNodes[0].childNodes[0 ].childNodes[0].nodeValue == 'lim' assert mml_1.childNodes[0].childNodes[1 ].childNodes[0].childNodes[0 ].nodeValue == 'x' assert mml_1.childNodes[0].childNodes[1 ].childNodes[1].childNodes[0 ].nodeValue == '&#x2192;' assert mml_1.childNodes[0].childNodes[1 ].childNodes[2].childNodes[0 ].nodeValue == '0' def test_presentation_mathml_integrals(): assert mpp.doprint(Integral(x, (x, 0, 1))) == \ '<mrow><msubsup><mo>&#x222B;</mo><mn>0</mn><mn>1</mn></msubsup>'\ '<mi>x</mi><mo>&dd;</mo><mi>x</mi></mrow>' assert mpp.doprint(Integral(log(x), x)) == \ '<mrow><mo>&#x222B;</mo><mrow><mi>log</mi><mfenced><mi>x</mi>'\ '</mfenced></mrow><mo>&dd;</mo><mi>x</mi></mrow>' assert mpp.doprint(Integral(x*y, x, y)) == \ '<mrow><mo>&#x222C;</mo><mrow><mi>x</mi><mo>&InvisibleTimes;</mo>'\ '<mi>y</mi></mrow><mo>&dd;</mo><mi>y</mi><mo>&dd;</mo><mi>x</mi></mrow>' z, w = symbols('z w') assert mpp.doprint(Integral(x*y*z, x, y, z)) == \ '<mrow><mo>&#x222D;</mo><mrow><mi>x</mi><mo>&InvisibleTimes;</mo>'\ '<mi>y</mi><mo>&InvisibleTimes;</mo><mi>z</mi></mrow><mo>&dd;</mo>'\ '<mi>z</mi><mo>&dd;</mo><mi>y</mi><mo>&dd;</mo><mi>x</mi></mrow>' assert mpp.doprint(Integral(x*y*z*w, x, y, z, w)) == \ '<mrow><mo>&#x222B;</mo><mo>&#x222B;</mo><mo>&#x222B;</mo>'\ '<mo>&#x222B;</mo><mrow><mi>w</mi><mo>&InvisibleTimes;</mo>'\ '<mi>x</mi><mo>&InvisibleTimes;</mo><mi>y</mi>'\ '<mo>&InvisibleTimes;</mo><mi>z</mi></mrow><mo>&dd;</mo><mi>w</mi>'\ '<mo>&dd;</mo><mi>z</mi><mo>&dd;</mo><mi>y</mi><mo>&dd;</mo><mi>x</mi></mrow>' assert mpp.doprint(Integral(x, x, y, (z, 0, 1))) == \ '<mrow><msubsup><mo>&#x222B;</mo><mn>0</mn><mn>1</mn></msubsup>'\ '<mo>&#x222B;</mo><mo>&#x222B;</mo><mi>x</mi><mo>&dd;</mo><mi>z</mi>'\ '<mo>&dd;</mo><mi>y</mi><mo>&dd;</mo><mi>x</mi></mrow>' assert mpp.doprint(Integral(x, (x, 0))) == \ '<mrow><msup><mo>&#x222B;</mo><mn>0</mn></msup><mi>x</mi><mo>&dd;</mo>'\ '<mi>x</mi></mrow>' def test_presentation_mathml_matrices(): A = Matrix([1, 2, 3]) B = Matrix([[0, 5, 4], [2, 3, 1], [9, 7, 9]]) mll_1 = mpp._print(A) assert mll_1.childNodes[0].nodeName == 'mtable' assert mll_1.childNodes[0].childNodes[0].nodeName == 'mtr' assert len(mll_1.childNodes[0].childNodes) == 3 assert mll_1.childNodes[0].childNodes[0].childNodes[0].nodeName == 'mtd' assert len(mll_1.childNodes[0].childNodes[0].childNodes) == 1 assert mll_1.childNodes[0].childNodes[0].childNodes[0 ].childNodes[0].childNodes[0].nodeValue == '1' assert mll_1.childNodes[0].childNodes[1].childNodes[0 ].childNodes[0].childNodes[0].nodeValue == '2' assert mll_1.childNodes[0].childNodes[2].childNodes[0 ].childNodes[0].childNodes[0].nodeValue == '3' mll_2 = mpp._print(B) assert mll_2.childNodes[0].nodeName == 'mtable' assert mll_2.childNodes[0].childNodes[0].nodeName == 'mtr' assert len(mll_2.childNodes[0].childNodes) == 3 assert mll_2.childNodes[0].childNodes[0].childNodes[0].nodeName == 'mtd' assert len(mll_2.childNodes[0].childNodes[0].childNodes) == 3 assert mll_2.childNodes[0].childNodes[0].childNodes[0 ].childNodes[0].childNodes[0].nodeValue == '0' assert mll_2.childNodes[0].childNodes[0].childNodes[1 ].childNodes[0].childNodes[0].nodeValue == '5' assert mll_2.childNodes[0].childNodes[0].childNodes[2 ].childNodes[0].childNodes[0].nodeValue == '4' assert mll_2.childNodes[0].childNodes[1].childNodes[0 ].childNodes[0].childNodes[0].nodeValue == '2' assert mll_2.childNodes[0].childNodes[1].childNodes[1 ].childNodes[0].childNodes[0].nodeValue == '3' assert mll_2.childNodes[0].childNodes[1].childNodes[2 ].childNodes[0].childNodes[0].nodeValue == '1' assert mll_2.childNodes[0].childNodes[2].childNodes[0 ].childNodes[0].childNodes[0].nodeValue == '9' assert mll_2.childNodes[0].childNodes[2].childNodes[1 ].childNodes[0].childNodes[0].nodeValue == '7' assert mll_2.childNodes[0].childNodes[2].childNodes[2 ].childNodes[0].childNodes[0].nodeValue == '9' def test_presentation_mathml_sums(): summand = x mml_1 = mpp._print(Sum(summand, (x, 1, 10))) assert mml_1.childNodes[0].nodeName == 'munderover' assert len(mml_1.childNodes[0].childNodes) == 3 assert mml_1.childNodes[0].childNodes[0].childNodes[0 ].nodeValue == '&#x2211;' assert len(mml_1.childNodes[0].childNodes[1].childNodes) == 3 assert mml_1.childNodes[0].childNodes[2].childNodes[0 ].nodeValue == '10' assert mml_1.childNodes[1].childNodes[0].nodeValue == 'x' def test_presentation_mathml_add(): mml = mpp._print(x**5 - x**4 + x) assert len(mml.childNodes) == 5 assert mml.childNodes[0].childNodes[0].childNodes[0 ].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].childNodes[0 ].nodeValue == '5' assert mml.childNodes[1].childNodes[0].nodeValue == '-' assert mml.childNodes[2].childNodes[0].childNodes[0 ].nodeValue == 'x' assert mml.childNodes[2].childNodes[1].childNodes[0 ].nodeValue == '4' assert mml.childNodes[3].childNodes[0].nodeValue == '+' assert mml.childNodes[4].childNodes[0].nodeValue == 'x' def test_presentation_mathml_Rational(): mml_1 = mpp._print(Rational(1, 1)) assert mml_1.nodeName == 'mn' mml_2 = mpp._print(Rational(2, 5)) assert mml_2.nodeName == 'mfrac' assert mml_2.childNodes[0].childNodes[0].nodeValue == '2' assert mml_2.childNodes[1].childNodes[0].nodeValue == '5' def test_presentation_mathml_constants(): mml = mpp._print(I) assert mml.childNodes[0].nodeValue == '&ImaginaryI;' mml = mpp._print(E) assert mml.childNodes[0].nodeValue == '&ExponentialE;' mml = mpp._print(oo) assert mml.childNodes[0].nodeValue == '&#x221E;' mml = mpp._print(pi) assert mml.childNodes[0].nodeValue == '&pi;' assert mathml(GoldenRatio, printer='presentation') == '<mi>&#x3A6;</mi>' assert mathml(zoo, printer='presentation') == \ '<mover><mo>&#x221E;</mo><mo>~</mo></mover>' assert mathml(S.NaN, printer='presentation') == '<mi>NaN</mi>' def test_presentation_mathml_trig(): mml = mpp._print(sin(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'sin' mml = mpp._print(cos(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'cos' mml = mpp._print(tan(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'tan' mml = mpp._print(asin(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'arcsin' mml = mpp._print(acos(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'arccos' mml = mpp._print(atan(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'arctan' mml = mpp._print(sinh(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'sinh' mml = mpp._print(cosh(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'cosh' mml = mpp._print(tanh(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'tanh' mml = mpp._print(asinh(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'arcsinh' mml = mpp._print(atanh(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'arctanh' mml = mpp._print(acosh(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'arccosh' def test_presentation_mathml_relational(): mml_1 = mpp._print(Eq(x, 1)) assert len(mml_1.childNodes) == 3 assert mml_1.childNodes[0].nodeName == 'mi' assert mml_1.childNodes[0].childNodes[0].nodeValue == 'x' assert mml_1.childNodes[1].nodeName == 'mo' assert mml_1.childNodes[1].childNodes[0].nodeValue == '=' assert mml_1.childNodes[2].nodeName == 'mn' assert mml_1.childNodes[2].childNodes[0].nodeValue == '1' mml_2 = mpp._print(Ne(1, x)) assert len(mml_2.childNodes) == 3 assert mml_2.childNodes[0].nodeName == 'mn' assert mml_2.childNodes[0].childNodes[0].nodeValue == '1' assert mml_2.childNodes[1].nodeName == 'mo' assert mml_2.childNodes[1].childNodes[0].nodeValue == '&#x2260;' assert mml_2.childNodes[2].nodeName == 'mi' assert mml_2.childNodes[2].childNodes[0].nodeValue == 'x' mml_3 = mpp._print(Ge(1, x)) assert len(mml_3.childNodes) == 3 assert mml_3.childNodes[0].nodeName == 'mn' assert mml_3.childNodes[0].childNodes[0].nodeValue == '1' assert mml_3.childNodes[1].nodeName == 'mo' assert mml_3.childNodes[1].childNodes[0].nodeValue == '&#x2265;' assert mml_3.childNodes[2].nodeName == 'mi' assert mml_3.childNodes[2].childNodes[0].nodeValue == 'x' mml_4 = mpp._print(Lt(1, x)) assert len(mml_4.childNodes) == 3 assert mml_4.childNodes[0].nodeName == 'mn' assert mml_4.childNodes[0].childNodes[0].nodeValue == '1' assert mml_4.childNodes[1].nodeName == 'mo' assert mml_4.childNodes[1].childNodes[0].nodeValue == '<' assert mml_4.childNodes[2].nodeName == 'mi' assert mml_4.childNodes[2].childNodes[0].nodeValue == 'x' def test_presentation_symbol(): mml = mpp._print(x) assert mml.nodeName == 'mi' assert mml.childNodes[0].nodeValue == 'x' del mml mml = mpp._print(Symbol("x^2")) assert mml.nodeName == 'msup' assert mml.childNodes[0].nodeName == 'mi' assert mml.childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[1].nodeName == 'mi' assert mml.childNodes[1].childNodes[0].nodeValue == '2' del mml mml = mpp._print(Symbol("x__2")) assert mml.nodeName == 'msup' assert mml.childNodes[0].nodeName == 'mi' assert mml.childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[1].nodeName == 'mi' assert mml.childNodes[1].childNodes[0].nodeValue == '2' del mml mml = mpp._print(Symbol("x_2")) assert mml.nodeName == 'msub' assert mml.childNodes[0].nodeName == 'mi' assert mml.childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[1].nodeName == 'mi' assert mml.childNodes[1].childNodes[0].nodeValue == '2' del mml mml = mpp._print(Symbol("x^3_2")) assert mml.nodeName == 'msubsup' assert mml.childNodes[0].nodeName == 'mi' assert mml.childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[1].nodeName == 'mi' assert mml.childNodes[1].childNodes[0].nodeValue == '2' assert mml.childNodes[2].nodeName == 'mi' assert mml.childNodes[2].childNodes[0].nodeValue == '3' del mml mml = mpp._print(Symbol("x__3_2")) assert mml.nodeName == 'msubsup' assert mml.childNodes[0].nodeName == 'mi' assert mml.childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[1].nodeName == 'mi' assert mml.childNodes[1].childNodes[0].nodeValue == '2' assert mml.childNodes[2].nodeName == 'mi' assert mml.childNodes[2].childNodes[0].nodeValue == '3' del mml mml = mpp._print(Symbol("x_2_a")) assert mml.nodeName == 'msub' assert mml.childNodes[0].nodeName == 'mi' assert mml.childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[1].nodeName == 'mrow' assert mml.childNodes[1].childNodes[0].nodeName == 'mi' assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2' assert mml.childNodes[1].childNodes[1].nodeName == 'mo' assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' ' assert mml.childNodes[1].childNodes[2].nodeName == 'mi' assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a' del mml mml = mpp._print(Symbol("x^2^a")) assert mml.nodeName == 'msup' assert mml.childNodes[0].nodeName == 'mi' assert mml.childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[1].nodeName == 'mrow' assert mml.childNodes[1].childNodes[0].nodeName == 'mi' assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2' assert mml.childNodes[1].childNodes[1].nodeName == 'mo' assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' ' assert mml.childNodes[1].childNodes[2].nodeName == 'mi' assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a' del mml mml = mpp._print(Symbol("x__2__a")) assert mml.nodeName == 'msup' assert mml.childNodes[0].nodeName == 'mi' assert mml.childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[1].nodeName == 'mrow' assert mml.childNodes[1].childNodes[0].nodeName == 'mi' assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2' assert mml.childNodes[1].childNodes[1].nodeName == 'mo' assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' ' assert mml.childNodes[1].childNodes[2].nodeName == 'mi' assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a' del mml def test_presentation_mathml_greek(): mml = mpp._print(Symbol('alpha')) assert mml.nodeName == 'mi' assert mml.childNodes[0].nodeValue == u'\N{GREEK SMALL LETTER ALPHA}' assert mpp.doprint(Symbol('alpha')) == '<mi>&#945;</mi>' assert mpp.doprint(Symbol('beta')) == '<mi>&#946;</mi>' assert mpp.doprint(Symbol('gamma')) == '<mi>&#947;</mi>' assert mpp.doprint(Symbol('delta')) == '<mi>&#948;</mi>' assert mpp.doprint(Symbol('epsilon')) == '<mi>&#949;</mi>' assert mpp.doprint(Symbol('zeta')) == '<mi>&#950;</mi>' assert mpp.doprint(Symbol('eta')) == '<mi>&#951;</mi>' assert mpp.doprint(Symbol('theta')) == '<mi>&#952;</mi>' assert mpp.doprint(Symbol('iota')) == '<mi>&#953;</mi>' assert mpp.doprint(Symbol('kappa')) == '<mi>&#954;</mi>' assert mpp.doprint(Symbol('lambda')) == '<mi>&#955;</mi>' assert mpp.doprint(Symbol('mu')) == '<mi>&#956;</mi>' assert mpp.doprint(Symbol('nu')) == '<mi>&#957;</mi>' assert mpp.doprint(Symbol('xi')) == '<mi>&#958;</mi>' assert mpp.doprint(Symbol('omicron')) == '<mi>&#959;</mi>' assert mpp.doprint(Symbol('pi')) == '<mi>&#960;</mi>' assert mpp.doprint(Symbol('rho')) == '<mi>&#961;</mi>' assert mpp.doprint(Symbol('varsigma')) == '<mi>&#962;</mi>' assert mpp.doprint(Symbol('sigma')) == '<mi>&#963;</mi>' assert mpp.doprint(Symbol('tau')) == '<mi>&#964;</mi>' assert mpp.doprint(Symbol('upsilon')) == '<mi>&#965;</mi>' assert mpp.doprint(Symbol('phi')) == '<mi>&#966;</mi>' assert mpp.doprint(Symbol('chi')) == '<mi>&#967;</mi>' assert mpp.doprint(Symbol('psi')) == '<mi>&#968;</mi>' assert mpp.doprint(Symbol('omega')) == '<mi>&#969;</mi>' assert mpp.doprint(Symbol('Alpha')) == '<mi>&#913;</mi>' assert mpp.doprint(Symbol('Beta')) == '<mi>&#914;</mi>' assert mpp.doprint(Symbol('Gamma')) == '<mi>&#915;</mi>' assert mpp.doprint(Symbol('Delta')) == '<mi>&#916;</mi>' assert mpp.doprint(Symbol('Epsilon')) == '<mi>&#917;</mi>' assert mpp.doprint(Symbol('Zeta')) == '<mi>&#918;</mi>' assert mpp.doprint(Symbol('Eta')) == '<mi>&#919;</mi>' assert mpp.doprint(Symbol('Theta')) == '<mi>&#920;</mi>' assert mpp.doprint(Symbol('Iota')) == '<mi>&#921;</mi>' assert mpp.doprint(Symbol('Kappa')) == '<mi>&#922;</mi>' assert mpp.doprint(Symbol('Lambda')) == '<mi>&#923;</mi>' assert mpp.doprint(Symbol('Mu')) == '<mi>&#924;</mi>' assert mpp.doprint(Symbol('Nu')) == '<mi>&#925;</mi>' assert mpp.doprint(Symbol('Xi')) == '<mi>&#926;</mi>' assert mpp.doprint(Symbol('Omicron')) == '<mi>&#927;</mi>' assert mpp.doprint(Symbol('Pi')) == '<mi>&#928;</mi>' assert mpp.doprint(Symbol('Rho')) == '<mi>&#929;</mi>' assert mpp.doprint(Symbol('Sigma')) == '<mi>&#931;</mi>' assert mpp.doprint(Symbol('Tau')) == '<mi>&#932;</mi>' assert mpp.doprint(Symbol('Upsilon')) == '<mi>&#933;</mi>' assert mpp.doprint(Symbol('Phi')) == '<mi>&#934;</mi>' assert mpp.doprint(Symbol('Chi')) == '<mi>&#935;</mi>' assert mpp.doprint(Symbol('Psi')) == '<mi>&#936;</mi>' assert mpp.doprint(Symbol('Omega')) == '<mi>&#937;</mi>' def test_presentation_mathml_order(): expr = x**3 + x**2*y + 3*x*y**3 + y**4 mp = MathMLPresentationPrinter({'order': 'lex'}) mml = mp._print(expr) assert mml.childNodes[0].nodeName == 'msup' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '3' assert mml.childNodes[6].nodeName == 'msup' assert mml.childNodes[6].childNodes[0].childNodes[0].nodeValue == 'y' assert mml.childNodes[6].childNodes[1].childNodes[0].nodeValue == '4' mp = MathMLPresentationPrinter({'order': 'rev-lex'}) mml = mp._print(expr) assert mml.childNodes[0].nodeName == 'msup' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'y' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '4' assert mml.childNodes[6].nodeName == 'msup' assert mml.childNodes[6].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[6].childNodes[1].childNodes[0].nodeValue == '3' def test_print_intervals(): a = Symbol('a', real=True) assert mpp.doprint(Interval(0, a)) == \ '<mrow><mfenced close="]" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>' assert mpp.doprint(Interval(0, a, False, False)) == \ '<mrow><mfenced close="]" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>' assert mpp.doprint(Interval(0, a, True, False)) == \ '<mrow><mfenced close="]" open="("><mn>0</mn><mi>a</mi></mfenced></mrow>' assert mpp.doprint(Interval(0, a, False, True)) == \ '<mrow><mfenced close=")" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>' assert mpp.doprint(Interval(0, a, True, True)) == \ '<mrow><mfenced close=")" open="("><mn>0</mn><mi>a</mi></mfenced></mrow>' def test_print_tuples(): assert mpp.doprint(Tuple(0,)) == \ '<mrow><mfenced><mn>0</mn></mfenced></mrow>' assert mpp.doprint(Tuple(0, a)) == \ '<mrow><mfenced><mn>0</mn><mi>a</mi></mfenced></mrow>' assert mpp.doprint(Tuple(0, a, a)) == \ '<mrow><mfenced><mn>0</mn><mi>a</mi><mi>a</mi></mfenced></mrow>' assert mpp.doprint(Tuple(0, 1, 2, 3, 4)) == \ '<mrow><mfenced><mn>0</mn><mn>1</mn><mn>2</mn><mn>3</mn><mn>4</mn></mfenced></mrow>' assert mpp.doprint(Tuple(0, 1, Tuple(2, 3, 4))) == \ '<mrow><mfenced><mn>0</mn><mn>1</mn><mrow><mfenced><mn>2</mn><mn>3'\ '</mn><mn>4</mn></mfenced></mrow></mfenced></mrow>' def test_print_re_im(): assert mpp.doprint(re(x)) == \ '<mrow><mi mathvariant="fraktur">R</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(im(x)) == \ '<mrow><mi mathvariant="fraktur">I</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(re(x + 1)) == \ '<mrow><mrow><mi mathvariant="fraktur">R</mi><mfenced><mi>x</mi>'\ '</mfenced></mrow><mo>+</mo><mn>1</mn></mrow>' assert mpp.doprint(im(x + 1)) == \ '<mrow><mi mathvariant="fraktur">I</mi><mfenced><mi>x</mi></mfenced></mrow>' def test_print_Abs(): assert mpp.doprint(Abs(x)) == \ '<mrow><mfenced close="|" open="|"><mi>x</mi></mfenced></mrow>' assert mpp.doprint(Abs(x + 1)) == \ '<mrow><mfenced close="|" open="|"><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow>' def test_print_Determinant(): assert mpp.doprint(Determinant(Matrix([[1, 2], [3, 4]]))) == \ '<mrow><mfenced close="|" open="|"><mfenced close="]" open="["><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced></mfenced></mrow>' def test_presentation_settings(): raises(TypeError, lambda: mathml(x, printer='presentation', method="garbage")) def test_toprettyxml_hooking(): # test that the patch doesn't influence the behavior of the standard # library import xml.dom.minidom doc1 = xml.dom.minidom.parseString( "<apply><plus/><ci>x</ci><cn>1</cn></apply>") doc2 = xml.dom.minidom.parseString( "<mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow>") prettyxml_old1 = doc1.toprettyxml() prettyxml_old2 = doc2.toprettyxml() mp.apply_patch() mp.restore_patch() assert prettyxml_old1 == doc1.toprettyxml() assert prettyxml_old2 == doc2.toprettyxml() def test_print_domains(): from sympy import Complexes, Integers, Naturals, Naturals0, Reals assert mpp.doprint(Complexes) == '<mi mathvariant="normal">&#x2102;</mi>' assert mpp.doprint(Integers) == '<mi mathvariant="normal">&#x2124;</mi>' assert mpp.doprint(Naturals) == '<mi mathvariant="normal">&#x2115;</mi>' assert mpp.doprint(Naturals0) == \ '<msub><mi mathvariant="normal">&#x2115;</mi><mn>0</mn></msub>' assert mpp.doprint(Reals) == '<mi mathvariant="normal">&#x211D;</mi>' def test_print_expression_with_minus(): assert mpp.doprint(-x) == '<mrow><mo>-</mo><mi>x</mi></mrow>' assert mpp.doprint(-x/y) == \ '<mrow><mo>-</mo><mfrac><mi>x</mi><mi>y</mi></mfrac></mrow>' assert mpp.doprint(-Rational(1, 2)) == \ '<mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow>' def test_print_AssocOp(): from sympy.core.operations import AssocOp class TestAssocOp(AssocOp): identity = 0 expr = TestAssocOp(1, 2) mpp.doprint(expr) == \ '<mrow><mi>testassocop</mi><mn>2</mn><mn>1</mn></mrow>' def test_print_basic(): expr = Basic(1, 2) assert mpp.doprint(expr) == \ '<mrow><mi>basic</mi><mfenced><mn>1</mn><mn>2</mn></mfenced></mrow>' assert mp.doprint(expr) == '<basic><cn>1</cn><cn>2</cn></basic>' def test_mat_delim_print(): expr = Matrix([[1, 2], [3, 4]]) assert mathml(expr, printer='presentation', mat_delim='[') == \ '<mfenced close="]" open="["><mtable><mtr><mtd><mn>1</mn></mtd><mtd>'\ '<mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn>'\ '</mtd></mtr></mtable></mfenced>' assert mathml(expr, printer='presentation', mat_delim='(') == \ '<mfenced><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd>'\ '</mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced>' assert mathml(expr, printer='presentation', mat_delim='') == \ '<mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr>'\ '<mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable>' def test_ln_notation_print(): expr = log(x) assert mathml(expr, printer='presentation') == \ '<mrow><mi>log</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mathml(expr, printer='presentation', ln_notation=False) == \ '<mrow><mi>log</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mathml(expr, printer='presentation', ln_notation=True) == \ '<mrow><mi>ln</mi><mfenced><mi>x</mi></mfenced></mrow>' def test_mul_symbol_print(): expr = x * y assert mathml(expr, printer='presentation') == \ '<mrow><mi>x</mi><mo>&InvisibleTimes;</mo><mi>y</mi></mrow>' assert mathml(expr, printer='presentation', mul_symbol=None) == \ '<mrow><mi>x</mi><mo>&InvisibleTimes;</mo><mi>y</mi></mrow>' assert mathml(expr, printer='presentation', mul_symbol='dot') == \ '<mrow><mi>x</mi><mo>&#xB7;</mo><mi>y</mi></mrow>' assert mathml(expr, printer='presentation', mul_symbol='ldot') == \ '<mrow><mi>x</mi><mo>&#x2024;</mo><mi>y</mi></mrow>' assert mathml(expr, printer='presentation', mul_symbol='times') == \ '<mrow><mi>x</mi><mo>&#xD7;</mo><mi>y</mi></mrow>' def test_print_lerchphi(): assert mpp.doprint(lerchphi(1, 2, 3)) == \ '<mrow><mi>&#x3A6;</mi><mfenced><mn>1</mn><mn>2</mn><mn>3</mn></mfenced></mrow>' def test_print_polylog(): assert mp.doprint(polylog(x, y)) == \ '<apply><polylog/><ci>x</ci><ci>y</ci></apply>' assert mpp.doprint(polylog(x, y)) == \ '<mrow><msub><mi>Li</mi><mi>x</mi></msub><mfenced><mi>y</mi></mfenced></mrow>' def test_print_set_frozenset(): f = frozenset({1, 5, 3}) assert mpp.doprint(f) == \ '<mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mn>5</mn></mfenced>' s = set({1, 2, 3}) assert mpp.doprint(s) == \ '<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mn>3</mn></mfenced>' def test_print_FiniteSet(): f1 = FiniteSet(x, 1, 3) assert mpp.doprint(f1) == \ '<mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi></mfenced>' def test_print_LambertW(): assert mpp.doprint(LambertW(x)) == '<mrow><mi>W</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(LambertW(x, y)) == '<mrow><mi>W</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>' def test_print_EmptySet(): assert mpp.doprint(EmptySet()) == '<mo>&#x2205;</mo>' def test_print_UniversalSet(): assert mpp.doprint(S.UniversalSet) == '<mo>&#x1D54C;</mo>' def test_print_spaces(): assert mpp.doprint(HilbertSpace()) == '<mi>&#x210B;</mi>' assert mpp.doprint(ComplexSpace(2)) == '<msup>&#x1D49E;<mn>2</mn></msup>' assert mpp.doprint(FockSpace()) == '<mi>&#x2131;</mi>' def test_print_constants(): assert mpp.doprint(hbar) == '<mi>&#x210F;</mi>' assert mpp.doprint(TribonacciConstant) == '<mi>TribonacciConstant</mi>' assert mpp.doprint(EulerGamma) == '<mi>&#x3B3;</mi>' def test_print_Contains(): assert mpp.doprint(Contains(x, S.Naturals)) == \ '<mrow><mi>x</mi><mo>&#x2208;</mo><mi mathvariant="normal">&#x2115;</mi></mrow>' def test_print_Dagger(): assert mpp.doprint(Dagger(x)) == '<msup><mi>x</mi>&#x2020;</msup>' def test_print_SetOp(): f1 = FiniteSet(x, 1, 3) f2 = FiniteSet(y, 2, 4) prntr = lambda x: mathml(x, printer='presentation') assert prntr(Union(f1, f2, evaluate=False)) == \ '<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\ '</mfenced><mo>&#x222A;</mo><mfenced close="}" open="{"><mn>2</mn>'\ '<mn>4</mn><mi>y</mi></mfenced></mrow>' assert prntr(Intersection(f1, f2, evaluate=False)) == \ '<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\ '</mfenced><mo>&#x2229;</mo><mfenced close="}" open="{"><mn>2</mn>'\ '<mn>4</mn><mi>y</mi></mfenced></mrow>' assert prntr(Complement(f1, f2, evaluate=False)) == \ '<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\ '</mfenced><mo>&#x2216;</mo><mfenced close="}" open="{"><mn>2</mn>'\ '<mn>4</mn><mi>y</mi></mfenced></mrow>' assert prntr(SymmetricDifference(f1, f2, evaluate=False)) == \ '<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\ '</mfenced><mo>&#x2206;</mo><mfenced close="}" open="{"><mn>2</mn>'\ '<mn>4</mn><mi>y</mi></mfenced></mrow>' A = FiniteSet(a) C = FiniteSet(c) D = FiniteSet(d) U1 = Union(C, D, evaluate=False) I1 = Intersection(C, D, evaluate=False) C1 = Complement(C, D, evaluate=False) D1 = SymmetricDifference(C, D, evaluate=False) # XXX ProductSet does not support evaluate keyword P1 = ProductSet(C, D) assert prntr(Union(A, I1, evaluate=False)) == \ '<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \ '<mo>&#x222A;</mo><mfenced><mrow><mfenced close="}" open="{">' \ '<mi>c</mi></mfenced><mo>&#x2229;</mo><mfenced close="}" open="{">' \ '<mi>d</mi></mfenced></mrow></mfenced></mrow>' assert prntr(Intersection(A, C1, evaluate=False)) == \ '<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \ '<mo>&#x2229;</mo><mfenced><mrow><mfenced close="}" open="{">' \ '<mi>c</mi></mfenced><mo>&#x2216;</mo><mfenced close="}" open="{">' \ '<mi>d</mi></mfenced></mrow></mfenced></mrow>' assert prntr(Complement(A, D1, evaluate=False)) == \ '<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \ '<mo>&#x2216;</mo><mfenced><mrow><mfenced close="}" open="{">' \ '<mi>c</mi></mfenced><mo>&#x2206;</mo><mfenced close="}" open="{">' \ '<mi>d</mi></mfenced></mrow></mfenced></mrow>' assert prntr(SymmetricDifference(A, P1, evaluate=False)) == \ '<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \ '<mo>&#x2206;</mo><mfenced><mrow><mfenced close="}" open="{">' \ '<mi>c</mi></mfenced><mo>&#x00d7;</mo><mfenced close="}" open="{">' \ '<mi>d</mi></mfenced></mrow></mfenced></mrow>' assert prntr(ProductSet(A, U1)) == \ '<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \ '<mo>&#x00d7;</mo><mfenced><mrow><mfenced close="}" open="{">' \ '<mi>c</mi></mfenced><mo>&#x222A;</mo><mfenced close="}" open="{">' \ '<mi>d</mi></mfenced></mrow></mfenced></mrow>' def test_print_logic(): assert mpp.doprint(And(x, y)) == \ '<mrow><mi>x</mi><mo>&#x2227;</mo><mi>y</mi></mrow>' assert mpp.doprint(Or(x, y)) == \ '<mrow><mi>x</mi><mo>&#x2228;</mo><mi>y</mi></mrow>' assert mpp.doprint(Xor(x, y)) == \ '<mrow><mi>x</mi><mo>&#x22BB;</mo><mi>y</mi></mrow>' assert mpp.doprint(Implies(x, y)) == \ '<mrow><mi>x</mi><mo>&#x21D2;</mo><mi>y</mi></mrow>' assert mpp.doprint(Equivalent(x, y)) == \ '<mrow><mi>x</mi><mo>&#x21D4;</mo><mi>y</mi></mrow>' assert mpp.doprint(And(Eq(x, y), x > 4)) == \ '<mrow><mrow><mi>x</mi><mo>=</mo><mi>y</mi></mrow><mo>&#x2227;</mo>'\ '<mrow><mi>x</mi><mo>></mo><mn>4</mn></mrow></mrow>' assert mpp.doprint(And(Eq(x, 3), y < 3, x > y + 1)) == \ '<mrow><mrow><mi>x</mi><mo>=</mo><mn>3</mn></mrow><mo>&#x2227;</mo>'\ '<mrow><mi>x</mi><mo>></mo><mrow><mi>y</mi><mo>+</mo><mn>1</mn></mrow>'\ '</mrow><mo>&#x2227;</mo><mrow><mi>y</mi><mo><</mo><mn>3</mn></mrow></mrow>' assert mpp.doprint(Or(Eq(x, y), x > 4)) == \ '<mrow><mrow><mi>x</mi><mo>=</mo><mi>y</mi></mrow><mo>&#x2228;</mo>'\ '<mrow><mi>x</mi><mo>></mo><mn>4</mn></mrow></mrow>' assert mpp.doprint(And(Eq(x, 3), Or(y < 3, x > y + 1))) == \ '<mrow><mrow><mi>x</mi><mo>=</mo><mn>3</mn></mrow><mo>&#x2227;</mo>'\ '<mfenced><mrow><mrow><mi>x</mi><mo>></mo><mrow><mi>y</mi><mo>+</mo>'\ '<mn>1</mn></mrow></mrow><mo>&#x2228;</mo><mrow><mi>y</mi><mo><</mo>'\ '<mn>3</mn></mrow></mrow></mfenced></mrow>' assert mpp.doprint(Not(x)) == '<mrow><mo>&#xAC;</mo><mi>x</mi></mrow>' assert mpp.doprint(Not(And(x, y))) == \ '<mrow><mo>&#xAC;</mo><mfenced><mrow><mi>x</mi><mo>&#x2227;</mo>'\ '<mi>y</mi></mrow></mfenced></mrow>' def test_root_notation_print(): assert mathml(x**(S.One/3), printer='presentation') == \ '<mroot><mi>x</mi><mn>3</mn></mroot>' assert mathml(x**(S.One/3), printer='presentation', root_notation=False) ==\ '<msup><mi>x</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup>' assert mathml(x**(S.One/3), printer='content') == \ '<apply><root/><degree><ci>3</ci></degree><ci>x</ci></apply>' assert mathml(x**(S.One/3), printer='content', root_notation=False) == \ '<apply><power/><ci>x</ci><apply><divide/><cn>1</cn><cn>3</cn></apply></apply>' assert mathml(x**(Rational(-1, 3)), printer='presentation') == \ '<mfrac><mn>1</mn><mroot><mi>x</mi><mn>3</mn></mroot></mfrac>' assert mathml(x**(Rational(-1, 3)), printer='presentation', root_notation=False) \ == '<mfrac><mn>1</mn><msup><mi>x</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup></mfrac>' def test_fold_frac_powers_print(): expr = x ** Rational(5, 2) assert mathml(expr, printer='presentation') == \ '<msup><mi>x</mi><mfrac><mn>5</mn><mn>2</mn></mfrac></msup>' assert mathml(expr, printer='presentation', fold_frac_powers=True) == \ '<msup><mi>x</mi><mfrac bevelled="true"><mn>5</mn><mn>2</mn></mfrac></msup>' assert mathml(expr, printer='presentation', fold_frac_powers=False) == \ '<msup><mi>x</mi><mfrac><mn>5</mn><mn>2</mn></mfrac></msup>' def test_fold_short_frac_print(): expr = Rational(2, 5) assert mathml(expr, printer='presentation') == \ '<mfrac><mn>2</mn><mn>5</mn></mfrac>' assert mathml(expr, printer='presentation', fold_short_frac=True) == \ '<mfrac bevelled="true"><mn>2</mn><mn>5</mn></mfrac>' assert mathml(expr, printer='presentation', fold_short_frac=False) == \ '<mfrac><mn>2</mn><mn>5</mn></mfrac>' def test_print_factorials(): assert mpp.doprint(factorial(x)) == '<mrow><mi>x</mi><mo>!</mo></mrow>' assert mpp.doprint(factorial(x + 1)) == \ '<mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>!</mo></mrow>' assert mpp.doprint(factorial2(x)) == '<mrow><mi>x</mi><mo>!!</mo></mrow>' assert mpp.doprint(factorial2(x + 1)) == \ '<mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>!!</mo></mrow>' assert mpp.doprint(binomial(x, y)) == \ '<mfenced><mfrac linethickness="0"><mi>x</mi><mi>y</mi></mfrac></mfenced>' assert mpp.doprint(binomial(4, x + y)) == \ '<mfenced><mfrac linethickness="0"><mn>4</mn><mrow><mi>x</mi>'\ '<mo>+</mo><mi>y</mi></mrow></mfrac></mfenced>' def test_print_floor(): expr = floor(x) assert mathml(expr, printer='presentation') == \ '<mrow><mfenced close="&#8971;" open="&#8970;"><mi>x</mi></mfenced></mrow>' def test_print_ceiling(): expr = ceiling(x) assert mathml(expr, printer='presentation') == \ '<mrow><mfenced close="&#8969;" open="&#8968;"><mi>x</mi></mfenced></mrow>' def test_print_Lambda(): expr = Lambda(x, x+1) assert mathml(expr, printer='presentation') == \ '<mfenced><mrow><mi>x</mi><mo>&#x21A6;</mo><mrow><mi>x</mi><mo>+</mo>'\ '<mn>1</mn></mrow></mrow></mfenced>' expr = Lambda((x, y), x + y) assert mathml(expr, printer='presentation') == \ '<mfenced><mrow><mrow><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'\ '<mo>&#x21A6;</mo><mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mrow></mfenced>' def test_print_conjugate(): assert mpp.doprint(conjugate(x)) == \ '<menclose notation="top"><mi>x</mi></menclose>' assert mpp.doprint(conjugate(x + 1)) == \ '<mrow><menclose notation="top"><mi>x</mi></menclose><mo>+</mo><mn>1</mn></mrow>' def test_print_AccumBounds(): a = Symbol('a', real=True) assert mpp.doprint(AccumBounds(0, 1)) == '<mfenced close="&#10217;" open="&#10216;"><mn>0</mn><mn>1</mn></mfenced>' assert mpp.doprint(AccumBounds(0, a)) == '<mfenced close="&#10217;" open="&#10216;"><mn>0</mn><mi>a</mi></mfenced>' assert mpp.doprint(AccumBounds(a + 1, a + 2)) == '<mfenced close="&#10217;" open="&#10216;"><mrow><mi>a</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>a</mi><mo>+</mo><mn>2</mn></mrow></mfenced>' def test_print_Float(): assert mpp.doprint(Float(1e100)) == '<mrow><mn>1.0</mn><mo>&#xB7;</mo><msup><mn>10</mn><mn>100</mn></msup></mrow>' assert mpp.doprint(Float(1e-100)) == '<mrow><mn>1.0</mn><mo>&#xB7;</mo><msup><mn>10</mn><mn>-100</mn></msup></mrow>' assert mpp.doprint(Float(-1e100)) == '<mrow><mn>-1.0</mn><mo>&#xB7;</mo><msup><mn>10</mn><mn>100</mn></msup></mrow>' assert mpp.doprint(Float(1.0*oo)) == '<mi>&#x221E;</mi>' assert mpp.doprint(Float(-1.0*oo)) == '<mrow><mo>-</mo><mi>&#x221E;</mi></mrow>' def test_print_different_functions(): assert mpp.doprint(gamma(x)) == '<mrow><mi>&#x393;</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(lowergamma(x, y)) == '<mrow><mi>&#x3B3;</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>' assert mpp.doprint(uppergamma(x, y)) == '<mrow><mi>&#x393;</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>' assert mpp.doprint(zeta(x)) == '<mrow><mi>&#x3B6;</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(zeta(x, y)) == '<mrow><mi>&#x3B6;</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>' assert mpp.doprint(dirichlet_eta(x)) == '<mrow><mi>&#x3B7;</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(elliptic_k(x)) == '<mrow><mi>&#x39A;</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(totient(x)) == '<mrow><mi>&#x3D5;</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(reduced_totient(x)) == '<mrow><mi>&#x3BB;</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(primenu(x)) == '<mrow><mi>&#x3BD;</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(primeomega(x)) == '<mrow><mi>&#x3A9;</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(fresnels(x)) == '<mrow><mi>S</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(fresnelc(x)) == '<mrow><mi>C</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(Heaviside(x)) == '<mrow><mi>&#x398;</mi><mfenced><mi>x</mi></mfenced></mrow>' def test_mathml_builtins(): assert mpp.doprint(None) == '<mi>None</mi>' assert mpp.doprint(true) == '<mi>True</mi>' assert mpp.doprint(false) == '<mi>False</mi>' def test_mathml_Range(): assert mpp.doprint(Range(1, 51)) == \ '<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mi>&#8230;</mi><mn>50</mn></mfenced>' assert mpp.doprint(Range(1, 4)) == \ '<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mn>3</mn></mfenced>' assert mpp.doprint(Range(0, 3, 1)) == \ '<mfenced close="}" open="{"><mn>0</mn><mn>1</mn><mn>2</mn></mfenced>' assert mpp.doprint(Range(0, 30, 1)) == \ '<mfenced close="}" open="{"><mn>0</mn><mn>1</mn><mi>&#8230;</mi><mn>29</mn></mfenced>' assert mpp.doprint(Range(30, 1, -1)) == \ '<mfenced close="}" open="{"><mn>30</mn><mn>29</mn><mi>&#8230;</mi>'\ '<mn>2</mn></mfenced>' assert mpp.doprint(Range(0, oo, 2)) == \ '<mfenced close="}" open="{"><mn>0</mn><mn>2</mn><mi>&#8230;</mi></mfenced>' assert mpp.doprint(Range(oo, -2, -2)) == \ '<mfenced close="}" open="{"><mi>&#8230;</mi><mn>2</mn><mn>0</mn></mfenced>' assert mpp.doprint(Range(-2, -oo, -1)) == \ '<mfenced close="}" open="{"><mn>-2</mn><mn>-3</mn><mi>&#8230;</mi></mfenced>' def test_print_exp(): assert mpp.doprint(exp(x)) == \ '<msup><mi>&ExponentialE;</mi><mi>x</mi></msup>' assert mpp.doprint(exp(1) + exp(2)) == \ '<mrow><mi>&ExponentialE;</mi><mo>+</mo><msup><mi>&ExponentialE;</mi><mn>2</mn></msup></mrow>' def test_print_MinMax(): assert mpp.doprint(Min(x, y)) == \ '<mrow><mo>min</mo><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>' assert mpp.doprint(Min(x, 2, x**3)) == \ '<mrow><mo>min</mo><mfenced><mn>2</mn><mi>x</mi><msup><mi>x</mi>'\ '<mn>3</mn></msup></mfenced></mrow>' assert mpp.doprint(Max(x, y)) == \ '<mrow><mo>max</mo><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>' assert mpp.doprint(Max(x, 2, x**3)) == \ '<mrow><mo>max</mo><mfenced><mn>2</mn><mi>x</mi><msup><mi>x</mi>'\ '<mn>3</mn></msup></mfenced></mrow>' def test_mathml_presentation_numbers(): n = Symbol('n') assert mathml(catalan(n), printer='presentation') == \ '<msub><mi>C</mi><mi>n</mi></msub>' assert mathml(bernoulli(n), printer='presentation') == \ '<msub><mi>B</mi><mi>n</mi></msub>' assert mathml(bell(n), printer='presentation') == \ '<msub><mi>B</mi><mi>n</mi></msub>' assert mathml(euler(n), printer='presentation') == \ '<msub><mi>E</mi><mi>n</mi></msub>' assert mathml(fibonacci(n), printer='presentation') == \ '<msub><mi>F</mi><mi>n</mi></msub>' assert mathml(lucas(n), printer='presentation') == \ '<msub><mi>L</mi><mi>n</mi></msub>' assert mathml(tribonacci(n), printer='presentation') == \ '<msub><mi>T</mi><mi>n</mi></msub>' assert mathml(bernoulli(n, x), printer='presentation') == \ '<mrow><msub><mi>B</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' assert mathml(bell(n, x), printer='presentation') == \ '<mrow><msub><mi>B</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' assert mathml(euler(n, x), printer='presentation') == \ '<mrow><msub><mi>E</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' assert mathml(fibonacci(n, x), printer='presentation') == \ '<mrow><msub><mi>F</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' assert mathml(tribonacci(n, x), printer='presentation') == \ '<mrow><msub><mi>T</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' def test_mathml_presentation_mathieu(): assert mathml(mathieuc(x, y, z), printer='presentation') == \ '<mrow><mi>C</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>' assert mathml(mathieus(x, y, z), printer='presentation') == \ '<mrow><mi>S</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>' assert mathml(mathieucprime(x, y, z), printer='presentation') == \ '<mrow><mi>C&#x2032;</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>' assert mathml(mathieusprime(x, y, z), printer='presentation') == \ '<mrow><mi>S&#x2032;</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>' def test_mathml_presentation_stieltjes(): assert mathml(stieltjes(n), printer='presentation') == \ '<msub><mi>&#x03B3;</mi><mi>n</mi></msub>' assert mathml(stieltjes(n, x), printer='presentation') == \ '<mrow><msub><mi>&#x03B3;</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' def test_print_matrix_symbol(): A = MatrixSymbol('A', 1, 2) assert mpp.doprint(A) == '<mi>A</mi>' assert mp.doprint(A) == '<ci>A</ci>' assert mathml(A, printer='presentation', mat_symbol_style="bold") == \ '<mi mathvariant="bold">A</mi>' # No effect in content printer assert mathml(A, mat_symbol_style="bold") == '<ci>A</ci>' def test_print_hadamard(): from sympy.matrices.expressions import HadamardProduct from sympy.matrices.expressions import Transpose X = MatrixSymbol('X', 2, 2) Y = MatrixSymbol('Y', 2, 2) assert mathml(HadamardProduct(X, Y*Y), printer="presentation") == \ '<mrow>' \ '<mi>X</mi>' \ '<mo>&#x2218;</mo>' \ '<msup><mi>Y</mi><mn>2</mn></msup>' \ '</mrow>' assert mathml(HadamardProduct(X, Y)*Y, printer="presentation") == \ '<mrow>' \ '<mfenced>' \ '<mrow><mi>X</mi><mo>&#x2218;</mo><mi>Y</mi></mrow>' \ '</mfenced>' \ '<mo>&InvisibleTimes;</mo><mi>Y</mi>' \ '</mrow>' assert mathml(HadamardProduct(X, Y, Y), printer="presentation") == \ '<mrow>' \ '<mi>X</mi><mo>&#x2218;</mo>' \ '<mi>Y</mi><mo>&#x2218;</mo>' \ '<mi>Y</mi>' \ '</mrow>' assert mathml( Transpose(HadamardProduct(X, Y)), printer="presentation") == \ '<msup>' \ '<mfenced>' \ '<mrow><mi>X</mi><mo>&#x2218;</mo><mi>Y</mi></mrow>' \ '</mfenced>' \ '<mo>T</mo>' \ '</msup>' def test_print_random_symbol(): R = RandomSymbol(Symbol('R')) assert mpp.doprint(R) == '<mi>R</mi>' assert mp.doprint(R) == '<ci>R</ci>' def test_print_IndexedBase(): assert mathml(IndexedBase(a)[b], printer='presentation') == \ '<msub><mi>a</mi><mi>b</mi></msub>' assert mathml(IndexedBase(a)[b, c, d], printer='presentation') == \ '<msub><mi>a</mi><mfenced><mi>b</mi><mi>c</mi><mi>d</mi></mfenced></msub>' assert mathml(IndexedBase(a)[b]*IndexedBase(c)[d]*IndexedBase(e), printer='presentation') == \ '<mrow><msub><mi>a</mi><mi>b</mi></msub><mo>&InvisibleTimes;'\ '</mo><msub><mi>c</mi><mi>d</mi></msub><mo>&InvisibleTimes;</mo><mi>e</mi></mrow>' def test_print_Indexed(): assert mathml(IndexedBase(a), printer='presentation') == '<mi>a</mi>' assert mathml(IndexedBase(a/b), printer='presentation') == \ '<mrow><mfrac><mi>a</mi><mi>b</mi></mfrac></mrow>' assert mathml(IndexedBase((a, b)), printer='presentation') == \ '<mrow><mfenced><mi>a</mi><mi>b</mi></mfenced></mrow>' def test_print_MatrixElement(): i, j = symbols('i j') A = MatrixSymbol('A', i, j) assert mathml(A[0,0],printer = 'presentation') == \ '<msub><mi>A</mi><mfenced close="" open=""><mn>0</mn><mn>0</mn></mfenced></msub>' assert mathml(A[i,j], printer = 'presentation') == \ '<msub><mi>A</mi><mfenced close="" open=""><mi>i</mi><mi>j</mi></mfenced></msub>' assert mathml(A[i*j,0], printer = 'presentation') == \ '<msub><mi>A</mi><mfenced close="" open=""><mrow><mi>i</mi><mo>&InvisibleTimes;</mo><mi>j</mi></mrow><mn>0</mn></mfenced></msub>' def test_print_Vector(): ACS = CoordSys3D('A') assert mathml(Cross(ACS.i, ACS.j*ACS.x*3 + ACS.k), printer='presentation') == \ '<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>&#xD7;</mo><mfenced><mrow>'\ '<mfenced><mrow><mn>3</mn><mo>&InvisibleTimes;</mo><msub>'\ '<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\ '</mrow></mfenced><mo>&InvisibleTimes;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>+</mo><msub><mover>'\ '<mi mathvariant="bold">k</mi><mo>^</mo></mover><mi mathvariant="bold">'\ 'A</mi></msub></mrow></mfenced></mrow>' assert mathml(Cross(ACS.i, ACS.j), printer='presentation') == \ '<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>&#xD7;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow>' assert mathml(x*Cross(ACS.i, ACS.j), printer='presentation') == \ '<mrow><mi>x</mi><mo>&InvisibleTimes;</mo><mfenced><mrow><msub><mover>'\ '<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>&#xD7;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(Cross(x*ACS.i, ACS.j), printer='presentation') == \ '<mrow><mo>-</mo><mrow><msub><mover><mi mathvariant="bold">j</mi>'\ '<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub>'\ '<mo>&#xD7;</mo><mfenced><mrow><mfenced><mi>x</mi></mfenced>'\ '<mo>&InvisibleTimes;</mo><msub><mover><mi mathvariant="bold">i</mi>'\ '<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\ '</mfenced></mrow></mrow>' assert mathml(Curl(3*ACS.x*ACS.j), printer='presentation') == \ '<mrow><mo>&#x2207;</mo><mo>&#xD7;</mo><mfenced><mrow><mfenced><mrow>'\ '<mn>3</mn><mo>&InvisibleTimes;</mo><msub>'\ '<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\ '</mrow></mfenced><mo>&InvisibleTimes;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(Curl(3*x*ACS.x*ACS.j), printer='presentation') == \ '<mrow><mo>&#x2207;</mo><mo>&#xD7;</mo><mfenced><mrow><mfenced><mrow>'\ '<mn>3</mn><mo>&InvisibleTimes;</mo><msub><mi mathvariant="bold">x'\ '</mi><mi mathvariant="bold">A</mi></msub><mo>&InvisibleTimes;</mo>'\ '<mi>x</mi></mrow></mfenced><mo>&InvisibleTimes;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(x*Curl(3*ACS.x*ACS.j), printer='presentation') == \ '<mrow><mi>x</mi><mo>&InvisibleTimes;</mo><mfenced><mrow><mo>&#x2207;</mo>'\ '<mo>&#xD7;</mo><mfenced><mrow><mfenced><mrow><mn>3</mn>'\ '<mo>&InvisibleTimes;</mo><msub><mi mathvariant="bold">x</mi>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\ '<mo>&InvisibleTimes;</mo><msub><mover><mi mathvariant="bold">j</mi>'\ '<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\ '</mfenced></mrow></mfenced></mrow>' assert mathml(Curl(3*x*ACS.x*ACS.j + ACS.i), printer='presentation') == \ '<mrow><mo>&#x2207;</mo><mo>&#xD7;</mo><mfenced><mrow><msub><mover>'\ '<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>+</mo><mfenced><mrow>'\ '<mn>3</mn><mo>&InvisibleTimes;</mo><msub><mi mathvariant="bold">x'\ '</mi><mi mathvariant="bold">A</mi></msub><mo>&InvisibleTimes;</mo>'\ '<mi>x</mi></mrow></mfenced><mo>&InvisibleTimes;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(Divergence(3*ACS.x*ACS.j), printer='presentation') == \ '<mrow><mo>&#x2207;</mo><mo>&#xB7;</mo><mfenced><mrow><mfenced><mrow>'\ '<mn>3</mn><mo>&InvisibleTimes;</mo><msub><mi mathvariant="bold">x'\ '</mi><mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\ '<mo>&InvisibleTimes;</mo><msub><mover><mi mathvariant="bold">j</mi>'\ '<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(x*Divergence(3*ACS.x*ACS.j), printer='presentation') == \ '<mrow><mi>x</mi><mo>&InvisibleTimes;</mo><mfenced><mrow><mo>&#x2207;</mo>'\ '<mo>&#xB7;</mo><mfenced><mrow><mfenced><mrow><mn>3</mn>'\ '<mo>&InvisibleTimes;</mo><msub><mi mathvariant="bold">x</mi>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\ '<mo>&InvisibleTimes;</mo><msub><mover><mi mathvariant="bold">j</mi>'\ '<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\ '</mfenced></mrow></mfenced></mrow>' assert mathml(Divergence(3*x*ACS.x*ACS.j + ACS.i), printer='presentation') == \ '<mrow><mo>&#x2207;</mo><mo>&#xB7;</mo><mfenced><mrow><msub><mover>'\ '<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>+</mo><mfenced><mrow>'\ '<mn>3</mn><mo>&InvisibleTimes;</mo><msub>'\ '<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\ '<mo>&InvisibleTimes;</mo><mi>x</mi></mrow></mfenced>'\ '<mo>&InvisibleTimes;</mo><msub><mover><mi mathvariant="bold">j</mi>'\ '<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(Dot(ACS.i, ACS.j*ACS.x*3+ACS.k), printer='presentation') == \ '<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>&#xB7;</mo><mfenced><mrow>'\ '<mfenced><mrow><mn>3</mn><mo>&InvisibleTimes;</mo><msub>'\ '<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\ '</mrow></mfenced><mo>&InvisibleTimes;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>+</mo><msub><mover>'\ '<mi mathvariant="bold">k</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(Dot(ACS.i, ACS.j), printer='presentation') == \ '<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>&#xB7;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow>' assert mathml(Dot(x*ACS.i, ACS.j), printer='presentation') == \ '<mrow><msub><mover><mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>&#xB7;</mo><mfenced><mrow>'\ '<mfenced><mi>x</mi></mfenced><mo>&InvisibleTimes;</mo><msub><mover>'\ '<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(x*Dot(ACS.i, ACS.j), printer='presentation') == \ '<mrow><mi>x</mi><mo>&InvisibleTimes;</mo><mfenced><mrow><msub><mover>'\ '<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>&#xB7;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(Gradient(ACS.x), printer='presentation') == \ '<mrow><mo>&#x2207;</mo><msub><mi mathvariant="bold">x</mi>'\ '<mi mathvariant="bold">A</mi></msub></mrow>' assert mathml(Gradient(ACS.x + 3*ACS.y), printer='presentation') == \ '<mrow><mo>&#x2207;</mo><mfenced><mrow><msub><mi mathvariant="bold">'\ 'x</mi><mi mathvariant="bold">A</mi></msub><mo>+</mo><mrow><mn>3</mn>'\ '<mo>&InvisibleTimes;</mo><msub><mi mathvariant="bold">y</mi>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mrow></mfenced></mrow>' assert mathml(x*Gradient(ACS.x), printer='presentation') == \ '<mrow><mi>x</mi><mo>&InvisibleTimes;</mo><mfenced><mrow><mo>&#x2207;</mo>'\ '<msub><mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi>'\ '</msub></mrow></mfenced></mrow>' assert mathml(Gradient(x*ACS.x), printer='presentation') == \ '<mrow><mo>&#x2207;</mo><mfenced><mrow><msub><mi mathvariant="bold">'\ 'x</mi><mi mathvariant="bold">A</mi></msub><mo>&InvisibleTimes;</mo>'\ '<mi>x</mi></mrow></mfenced></mrow>' assert mathml(Cross(ACS.x, ACS.z) + Cross(ACS.z, ACS.x), printer='presentation') == \ '<mover><mi mathvariant="bold">0</mi><mo>^</mo></mover>' assert mathml(Cross(ACS.z, ACS.x), printer='presentation') == \ '<mrow><mo>-</mo><mrow><msub><mi mathvariant="bold">x</mi>'\ '<mi mathvariant="bold">A</mi></msub><mo>&#xD7;</mo><msub>'\ '<mi mathvariant="bold">z</mi><mi mathvariant="bold">A</mi></msub></mrow></mrow>' assert mathml(Laplacian(ACS.x), printer='presentation') == \ '<mrow><mo>&#x2206;</mo><msub><mi mathvariant="bold">x</mi>'\ '<mi mathvariant="bold">A</mi></msub></mrow>' assert mathml(Laplacian(ACS.x + 3*ACS.y), printer='presentation') == \ '<mrow><mo>&#x2206;</mo><mfenced><mrow><msub><mi mathvariant="bold">'\ 'x</mi><mi mathvariant="bold">A</mi></msub><mo>+</mo><mrow><mn>3</mn>'\ '<mo>&InvisibleTimes;</mo><msub><mi mathvariant="bold">y</mi>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mrow></mfenced></mrow>' assert mathml(x*Laplacian(ACS.x), printer='presentation') == \ '<mrow><mi>x</mi><mo>&InvisibleTimes;</mo><mfenced><mrow><mo>&#x2206;</mo>'\ '<msub><mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi>'\ '</msub></mrow></mfenced></mrow>' assert mathml(Laplacian(x*ACS.x), printer='presentation') == \ '<mrow><mo>&#x2206;</mo><mfenced><mrow><msub><mi mathvariant="bold">'\ 'x</mi><mi mathvariant="bold">A</mi></msub><mo>&InvisibleTimes;</mo>'\ '<mi>x</mi></mrow></mfenced></mrow>' def test_print_elliptic_f(): assert mathml(elliptic_f(x, y), printer = 'presentation') == \ '<mrow><mi>&#x1d5a5;</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>' assert mathml(elliptic_f(x/y, y), printer = 'presentation') == \ '<mrow><mi>&#x1d5a5;</mi><mfenced separators="|"><mrow><mfrac><mi>x</mi><mi>y</mi></mfrac></mrow><mi>y</mi></mfenced></mrow>' def test_print_elliptic_e(): assert mathml(elliptic_e(x), printer = 'presentation') == \ '<mrow><mi>&#x1d5a4;</mi><mfenced separators="|"><mi>x</mi></mfenced></mrow>' assert mathml(elliptic_e(x, y), printer = 'presentation') == \ '<mrow><mi>&#x1d5a4;</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>' def test_print_elliptic_pi(): assert mathml(elliptic_pi(x, y), printer = 'presentation') == \ '<mrow><mi>&#x1d6f1;</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>' assert mathml(elliptic_pi(x, y, z), printer = 'presentation') == \ '<mrow><mi>&#x1d6f1;</mi><mfenced separators=";|"><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>' def test_print_Ei(): assert mathml(Ei(x), printer = 'presentation') == \ '<mrow><mi>Ei</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mathml(Ei(x**y), printer = 'presentation') == \ '<mrow><mi>Ei</mi><mfenced><msup><mi>x</mi><mi>y</mi></msup></mfenced></mrow>' def test_print_expint(): assert mathml(expint(x, y), printer = 'presentation') == \ '<mrow><msub><mo>E</mo><mi>x</mi></msub><mfenced><mi>y</mi></mfenced></mrow>' assert mathml(expint(IndexedBase(x)[1], IndexedBase(x)[2]), printer = 'presentation') == \ '<mrow><msub><mo>E</mo><msub><mi>x</mi><mn>1</mn></msub></msub><mfenced><msub><mi>x</mi><mn>2</mn></msub></mfenced></mrow>' def test_print_jacobi(): assert mathml(jacobi(n, a, b, x), printer = 'presentation') == \ '<mrow><msubsup><mo>P</mo><mi>n</mi><mfenced><mi>a</mi><mi>b</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>' def test_print_gegenbauer(): assert mathml(gegenbauer(n, a, x), printer = 'presentation') == \ '<mrow><msubsup><mo>C</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>' def test_print_chebyshevt(): assert mathml(chebyshevt(n, x), printer = 'presentation') == \ '<mrow><msub><mo>T</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' def test_print_chebyshevu(): assert mathml(chebyshevu(n, x), printer = 'presentation') == \ '<mrow><msub><mo>U</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' def test_print_legendre(): assert mathml(legendre(n, x), printer = 'presentation') == \ '<mrow><msub><mo>P</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' def test_print_assoc_legendre(): assert mathml(assoc_legendre(n, a, x), printer = 'presentation') == \ '<mrow><msubsup><mo>P</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>' def test_print_laguerre(): assert mathml(laguerre(n, x), printer = 'presentation') == \ '<mrow><msub><mo>L</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' def test_print_assoc_laguerre(): assert mathml(assoc_laguerre(n, a, x), printer = 'presentation') == \ '<mrow><msubsup><mo>L</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>' def test_print_hermite(): assert mathml(hermite(n, x), printer = 'presentation') == \ '<mrow><msub><mo>H</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' def test_mathml_SingularityFunction(): assert mathml(SingularityFunction(x, 4, 5), printer='presentation') == \ '<msup><mfenced close="&#10217;" open="&#10216;"><mrow><mi>x</mi>' \ '<mo>-</mo><mn>4</mn></mrow></mfenced><mn>5</mn></msup>' assert mathml(SingularityFunction(x, -3, 4), printer='presentation') == \ '<msup><mfenced close="&#10217;" open="&#10216;"><mrow><mi>x</mi>' \ '<mo>+</mo><mn>3</mn></mrow></mfenced><mn>4</mn></msup>' assert mathml(SingularityFunction(x, 0, 4), printer='presentation') == \ '<msup><mfenced close="&#10217;" open="&#10216;"><mi>x</mi></mfenced>' \ '<mn>4</mn></msup>' assert mathml(SingularityFunction(x, a, n), printer='presentation') == \ '<msup><mfenced close="&#10217;" open="&#10216;"><mrow><mrow>' \ '<mo>-</mo><mi>a</mi></mrow><mo>+</mo><mi>x</mi></mrow></mfenced>' \ '<mi>n</mi></msup>' assert mathml(SingularityFunction(x, 4, -2), printer='presentation') == \ '<msup><mfenced close="&#10217;" open="&#10216;"><mrow><mi>x</mi>' \ '<mo>-</mo><mn>4</mn></mrow></mfenced><mn>-2</mn></msup>' assert mathml(SingularityFunction(x, 4, -1), printer='presentation') == \ '<msup><mfenced close="&#10217;" open="&#10216;"><mrow><mi>x</mi>' \ '<mo>-</mo><mn>4</mn></mrow></mfenced><mn>-1</mn></msup>' def test_mathml_matrix_functions(): from sympy.matrices import MatrixSymbol, Adjoint, Inverse, Transpose X = MatrixSymbol('X', 2, 2) Y = MatrixSymbol('Y', 2, 2) assert mathml(Adjoint(X), printer='presentation') == \ '<msup><mi>X</mi><mo>&#x2020;</mo></msup>' assert mathml(Adjoint(X + Y), printer='presentation') == \ '<msup><mfenced><mrow><mi>X</mi><mo>+</mo><mi>Y</mi></mrow></mfenced><mo>&#x2020;</mo></msup>' assert mathml(Adjoint(X) + Adjoint(Y), printer='presentation') == \ '<mrow><msup><mi>X</mi><mo>&#x2020;</mo></msup><mo>+</mo><msup>' \ '<mi>Y</mi><mo>&#x2020;</mo></msup></mrow>' assert mathml(Adjoint(X*Y), printer='presentation') == \ '<msup><mfenced><mrow><mi>X</mi><mo>&InvisibleTimes;</mo>' \ '<mi>Y</mi></mrow></mfenced><mo>&#x2020;</mo></msup>' assert mathml(Adjoint(Y)*Adjoint(X), printer='presentation') == \ '<mrow><msup><mi>Y</mi><mo>&#x2020;</mo></msup><mo>&InvisibleTimes;' \ '</mo><msup><mi>X</mi><mo>&#x2020;</mo></msup></mrow>' assert mathml(Adjoint(X**2), printer='presentation') == \ '<msup><mfenced><msup><mi>X</mi><mn>2</mn></msup></mfenced><mo>&#x2020;</mo></msup>' assert mathml(Adjoint(X)**2, printer='presentation') == \ '<msup><mfenced><msup><mi>X</mi><mo>&#x2020;</mo></msup></mfenced><mn>2</mn></msup>' assert mathml(Adjoint(Inverse(X)), printer='presentation') == \ '<msup><mfenced><msup><mi>X</mi><mn>-1</mn></msup></mfenced><mo>&#x2020;</mo></msup>' assert mathml(Inverse(Adjoint(X)), printer='presentation') == \ '<msup><mfenced><msup><mi>X</mi><mo>&#x2020;</mo></msup></mfenced><mn>-1</mn></msup>' assert mathml(Adjoint(Transpose(X)), printer='presentation') == \ '<msup><mfenced><msup><mi>X</mi><mo>T</mo></msup></mfenced><mo>&#x2020;</mo></msup>' assert mathml(Transpose(Adjoint(X)), printer='presentation') == \ '<msup><mfenced><msup><mi>X</mi><mo>&#x2020;</mo></msup></mfenced><mo>T</mo></msup>' assert mathml(Transpose(Adjoint(X) + Y), printer='presentation') == \ '<msup><mfenced><mrow><msup><mi>X</mi><mo>&#x2020;</mo></msup>' \ '<mo>+</mo><mi>Y</mi></mrow></mfenced><mo>T</mo></msup>' assert mathml(Transpose(X), printer='presentation') == \ '<msup><mi>X</mi><mo>T</mo></msup>' assert mathml(Transpose(X + Y), printer='presentation') == \ '<msup><mfenced><mrow><mi>X</mi><mo>+</mo><mi>Y</mi></mrow></mfenced><mo>T</mo></msup>' def test_mathml_special_matrices(): from sympy.matrices import Identity, ZeroMatrix, OneMatrix assert mathml(Identity(4), printer='presentation') == '<mi>&#x1D540;</mi>' assert mathml(ZeroMatrix(2, 2), printer='presentation') == '<mn>&#x1D7D8</mn>' assert mathml(OneMatrix(2, 2), printer='presentation') == '<mn>&#x1D7D9</mn>' def test_mathml_piecewise(): from sympy import Piecewise # Content MathML assert mathml(Piecewise((x, x <= 1), (x**2, True))) == \ '<piecewise><piece><ci>x</ci><apply><leq/><ci>x</ci><cn>1</cn></apply></piece><otherwise><apply><power/><ci>x</ci><cn>2</cn></apply></otherwise></piecewise>' raises(ValueError, lambda: mathml(Piecewise((x, x <= 1)))) def test_issue_17857(): assert mathml(Range(-oo, oo), printer='presentation') == \ '<mfenced close="}" open="{"><mi>&#8230;</mi><mn>-1</mn><mn>0</mn><mn>1</mn><mi>&#8230;</mi></mfenced>' assert mathml(Range(oo, -oo, -1), printer='presentation') == \ '<mfenced close="}" open="{"><mi>&#8230;</mi><mn>1</mn><mn>0</mn><mn>-1</mn><mi>&#8230;</mi></mfenced>'
99433943e3476985efa0a94f9d5507b8643a27a4d6fc88fdfdab56dd44fe7fc8
import random from sympy import symbols, Symbol, Function, Derivative from sympy.codegen.array_utils import (CodegenArrayContraction, CodegenArrayTensorProduct, CodegenArrayElementwiseAdd, CodegenArrayPermuteDims, CodegenArrayDiagonal) from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt from sympy.external import import_module from sympy.functions import \ Abs, Max, Min, ceiling, exp, floor, sign, sin, asin, sqrt, cos, \ acos, tan, atan, atan2, cosh, acosh, sinh, asinh, tanh, atanh, \ re, im, arg, erf, loggamma, log from sympy.matrices import Matrix, MatrixBase, eye, randMatrix from sympy.matrices.expressions import \ Determinant, HadamardProduct, Inverse, MatrixSymbol, Trace from sympy.printing.tensorflow import TensorflowPrinter, tensorflow_code from sympy.utilities.lambdify import lambdify from sympy.utilities.pytest import skip tf = tensorflow = import_module("tensorflow") if tensorflow: # Hide Tensorflow warnings import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' M = MatrixSymbol("M", 3, 3) N = MatrixSymbol("N", 3, 3) P = MatrixSymbol("P", 3, 3) Q = MatrixSymbol("Q", 3, 3) x, y, z, t = symbols("x y z t") if tf is not None: llo = [[j for j in range(i, i+3)] for i in range(0, 9, 3)] m3x3 = tf.constant(llo) m3x3sympy = Matrix(llo) def _compare_tensorflow_matrix(variables, expr, use_float=False): f = lambdify(variables, expr, 'tensorflow') if not use_float: random_matrices = [randMatrix(v.rows, v.cols) for v in variables] else: random_matrices = [randMatrix(v.rows, v.cols)/100. for v in variables] graph = tf.Graph() r = None with graph.as_default(): random_variables = [eval(tensorflow_code(i)) for i in random_matrices] session = tf.compat.v1.Session(graph=graph) r = session.run(f(*random_variables)) e = expr.subs({k: v for k, v in zip(variables, random_matrices)}) e = e.doit() if e.is_Matrix: if not isinstance(e, MatrixBase): e = e.as_explicit() e = e.tolist() if not use_float: assert (r == e).all() else: r = [i for row in r for i in row] e = [i for row in e for i in row] assert all( abs(a-b) < 10**-(4-int(log(abs(a), 10))) for a, b in zip(r, e)) def _compare_tensorflow_matrix_scalar(variables, expr): f = lambdify(variables, expr, 'tensorflow') random_matrices = [ randMatrix(v.rows, v.cols).evalf() / 100 for v in variables] graph = tf.Graph() r = None with graph.as_default(): random_variables = [eval(tensorflow_code(i)) for i in random_matrices] session = tf.compat.v1.Session(graph=graph) r = session.run(f(*random_variables)) e = expr.subs({k: v for k, v in zip(variables, random_matrices)}) e = e.doit() assert abs(r-e) < 10**-6 def _compare_tensorflow_scalar( variables, expr, rng=lambda: random.randint(0, 10)): f = lambdify(variables, expr, 'tensorflow') rvs = [rng() for v in variables] graph = tf.Graph() r = None with graph.as_default(): tf_rvs = [eval(tensorflow_code(i)) for i in rvs] session = tf.compat.v1.Session(graph=graph) r = session.run(f(*tf_rvs)) e = expr.subs({k: v for k, v in zip(variables, rvs)}).evalf().doit() assert abs(r-e) < 10**-6 def _compare_tensorflow_relational( variables, expr, rng=lambda: random.randint(0, 10)): f = lambdify(variables, expr, 'tensorflow') rvs = [rng() for v in variables] graph = tf.Graph() r = None with graph.as_default(): tf_rvs = [eval(tensorflow_code(i)) for i in rvs] session = tf.compat.v1.Session(graph=graph) r = session.run(f(*tf_rvs)) e = expr.subs({k: v for k, v in zip(variables, rvs)}).doit() assert r == e def test_tensorflow_printing(): assert tensorflow_code(eye(3)) == \ "tensorflow.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]])" expr = Matrix([[x, sin(y)], [exp(z), -t]]) assert tensorflow_code(expr) == \ "tensorflow.Variable(" \ "[[x, tensorflow.math.sin(y)]," \ " [tensorflow.math.exp(z), -t]])" def test_tensorflow_math(): if not tf: skip("TensorFlow not installed") expr = Abs(x) assert tensorflow_code(expr) == "tensorflow.math.abs(x)" _compare_tensorflow_scalar((x,), expr) expr = sign(x) assert tensorflow_code(expr) == "tensorflow.math.sign(x)" _compare_tensorflow_scalar((x,), expr) expr = ceiling(x) assert tensorflow_code(expr) == "tensorflow.math.ceil(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = floor(x) assert tensorflow_code(expr) == "tensorflow.math.floor(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = exp(x) assert tensorflow_code(expr) == "tensorflow.math.exp(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = sqrt(x) assert tensorflow_code(expr) == "tensorflow.math.sqrt(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = x ** 4 assert tensorflow_code(expr) == "tensorflow.math.pow(x, 4)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = cos(x) assert tensorflow_code(expr) == "tensorflow.math.cos(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = acos(x) assert tensorflow_code(expr) == "tensorflow.math.acos(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = sin(x) assert tensorflow_code(expr) == "tensorflow.math.sin(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = asin(x) assert tensorflow_code(expr) == "tensorflow.math.asin(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = tan(x) assert tensorflow_code(expr) == "tensorflow.math.tan(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = atan(x) assert tensorflow_code(expr) == "tensorflow.math.atan(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = atan2(y, x) assert tensorflow_code(expr) == "tensorflow.math.atan2(y, x)" _compare_tensorflow_scalar((y, x), expr, rng=lambda: random.random()) expr = cosh(x) assert tensorflow_code(expr) == "tensorflow.math.cosh(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = acosh(x) assert tensorflow_code(expr) == "tensorflow.math.acosh(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2)) expr = sinh(x) assert tensorflow_code(expr) == "tensorflow.math.sinh(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2)) expr = asinh(x) assert tensorflow_code(expr) == "tensorflow.math.asinh(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2)) expr = tanh(x) assert tensorflow_code(expr) == "tensorflow.math.tanh(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2)) expr = atanh(x) assert tensorflow_code(expr) == "tensorflow.math.atanh(x)" _compare_tensorflow_scalar( (x,), expr, rng=lambda: random.uniform(-.5, .5)) expr = erf(x) assert tensorflow_code(expr) == "tensorflow.math.erf(x)" _compare_tensorflow_scalar( (x,), expr, rng=lambda: random.random()) expr = loggamma(x) assert tensorflow_code(expr) == "tensorflow.math.lgamma(x)" _compare_tensorflow_scalar( (x,), expr, rng=lambda: random.random()) def test_tensorflow_complexes(): assert tensorflow_code(re(x)) == "tensorflow.math.real(x)" assert tensorflow_code(im(x)) == "tensorflow.math.imag(x)" assert tensorflow_code(arg(x)) == "tensorflow.math.angle(x)" def test_tensorflow_relational(): if not tf: skip("TensorFlow not installed") expr = Eq(x, y) assert tensorflow_code(expr) == "tensorflow.math.equal(x, y)" _compare_tensorflow_relational((x, y), expr) expr = Ne(x, y) assert tensorflow_code(expr) == "tensorflow.math.not_equal(x, y)" _compare_tensorflow_relational((x, y), expr) expr = Ge(x, y) assert tensorflow_code(expr) == "tensorflow.math.greater_equal(x, y)" _compare_tensorflow_relational((x, y), expr) expr = Gt(x, y) assert tensorflow_code(expr) == "tensorflow.math.greater(x, y)" _compare_tensorflow_relational((x, y), expr) expr = Le(x, y) assert tensorflow_code(expr) == "tensorflow.math.less_equal(x, y)" _compare_tensorflow_relational((x, y), expr) expr = Lt(x, y) assert tensorflow_code(expr) == "tensorflow.math.less(x, y)" _compare_tensorflow_relational((x, y), expr) def test_tensorflow_matrices(): if not tf: skip("TensorFlow not installed") expr = M assert tensorflow_code(expr) == "M" _compare_tensorflow_matrix((M,), expr) expr = M + N assert tensorflow_code(expr) == "tensorflow.math.add(M, N)" _compare_tensorflow_matrix((M, N), expr) expr = M * N assert tensorflow_code(expr) == "tensorflow.linalg.matmul(M, N)" _compare_tensorflow_matrix((M, N), expr) expr = HadamardProduct(M, N) assert tensorflow_code(expr) == "tensorflow.math.multiply(M, N)" _compare_tensorflow_matrix((M, N), expr) expr = M*N*P*Q assert tensorflow_code(expr) == \ "tensorflow.linalg.matmul(" \ "tensorflow.linalg.matmul(" \ "tensorflow.linalg.matmul(M, N), P), Q)" _compare_tensorflow_matrix((M, N, P, Q), expr) expr = M**3 assert tensorflow_code(expr) == \ "tensorflow.linalg.matmul(tensorflow.linalg.matmul(M, M), M)" _compare_tensorflow_matrix((M,), expr) expr = Trace(M) assert tensorflow_code(expr) == "tensorflow.linalg.trace(M)" _compare_tensorflow_matrix((M,), expr) expr = Determinant(M) assert tensorflow_code(expr) == "tensorflow.linalg.det(M)" _compare_tensorflow_matrix_scalar((M,), expr) expr = Inverse(M) assert tensorflow_code(expr) == "tensorflow.linalg.inv(M)" _compare_tensorflow_matrix((M,), expr, use_float=True) expr = M.T assert tensorflow_code(expr, tensorflow_version='1.14') == \ "tensorflow.linalg.matrix_transpose(M)" assert tensorflow_code(expr, tensorflow_version='1.13') == \ "tensorflow.matrix_transpose(M)" _compare_tensorflow_matrix((M,), expr) def test_codegen_einsum(): if not tf: skip("TensorFlow not installed") graph = tf.Graph() with graph.as_default(): session = tf.compat.v1.Session(graph=graph) M = MatrixSymbol("M", 2, 2) N = MatrixSymbol("N", 2, 2) cg = CodegenArrayContraction.from_MatMul(M*N) f = lambdify((M, N), cg, 'tensorflow') ma = tf.constant([[1, 2], [3, 4]]) mb = tf.constant([[1,-2], [-1, 3]]) y = session.run(f(ma, mb)) c = session.run(tf.matmul(ma, mb)) assert (y == c).all() def test_codegen_extra(): if not tf: skip("TensorFlow not installed") graph = tf.Graph() with graph.as_default(): session = tf.compat.v1.Session() M = MatrixSymbol("M", 2, 2) N = MatrixSymbol("N", 2, 2) P = MatrixSymbol("P", 2, 2) Q = MatrixSymbol("Q", 2, 2) ma = tf.constant([[1, 2], [3, 4]]) mb = tf.constant([[1,-2], [-1, 3]]) mc = tf.constant([[2, 0], [1, 2]]) md = tf.constant([[1,-1], [4, 7]]) cg = CodegenArrayTensorProduct(M, N) assert tensorflow_code(cg) == \ 'tensorflow.linalg.einsum("ab,cd", M, N)' f = lambdify((M, N), cg, 'tensorflow') y = session.run(f(ma, mb)) c = session.run(tf.einsum("ij,kl", ma, mb)) assert (y == c).all() cg = CodegenArrayElementwiseAdd(M, N) assert tensorflow_code(cg) == 'tensorflow.math.add(M, N)' f = lambdify((M, N), cg, 'tensorflow') y = session.run(f(ma, mb)) c = session.run(ma + mb) assert (y == c).all() cg = CodegenArrayElementwiseAdd(M, N, P) assert tensorflow_code(cg) == \ 'tensorflow.math.add(tensorflow.math.add(M, N), P)' f = lambdify((M, N, P), cg, 'tensorflow') y = session.run(f(ma, mb, mc)) c = session.run(ma + mb + mc) assert (y == c).all() cg = CodegenArrayElementwiseAdd(M, N, P, Q) assert tensorflow_code(cg) == \ 'tensorflow.math.add(' \ 'tensorflow.math.add(tensorflow.math.add(M, N), P), Q)' f = lambdify((M, N, P, Q), cg, 'tensorflow') y = session.run(f(ma, mb, mc, md)) c = session.run(ma + mb + mc + md) assert (y == c).all() cg = CodegenArrayPermuteDims(M, [1, 0]) assert tensorflow_code(cg) == 'tensorflow.transpose(M, [1, 0])' f = lambdify((M,), cg, 'tensorflow') y = session.run(f(ma)) c = session.run(tf.transpose(ma)) assert (y == c).all() cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 2, 3, 0]) assert tensorflow_code(cg) == \ 'tensorflow.transpose(' \ 'tensorflow.linalg.einsum("ab,cd", M, N), [1, 2, 3, 0])' f = lambdify((M, N), cg, 'tensorflow') y = session.run(f(ma, mb)) c = session.run(tf.transpose(tf.einsum("ab,cd", ma, mb), [1, 2, 3, 0])) assert (y == c).all() cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (1, 2)) assert tensorflow_code(cg) == \ 'tensorflow.linalg.einsum("ab,bc->acb", M, N)' f = lambdify((M, N), cg, 'tensorflow') y = session.run(f(ma, mb)) c = session.run(tf.einsum("ab,bc->acb", ma, mb)) assert (y == c).all() def test_MatrixElement_printing(): A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) assert tensorflow_code(A[0, 0]) == "A[0, 0]" assert tensorflow_code(3 * A[0, 0]) == "3*A[0, 0]" F = C[0, 0].subs(C, A - B) assert tensorflow_code(F) == "(tensorflow.math.add((-1)*B, A))[0, 0]" def test_tensorflow_Derivative(): expr = Derivative(sin(x), x) assert tensorflow_code(expr) == \ "tensorflow.gradients(tensorflow.math.sin(x), x)[0]"
145e4b400556277e7cfcb8406b35146ab8b8ab512f3af4e45c3e80cb63972e9e
from sympy import ( Piecewise, lambdify, Equality, Unequality, Sum, Mod, cbrt, sqrt, MatrixSymbol, BlockMatrix, Identity ) from sympy import eye from sympy.abc import x, i, j, a, b, c, d from sympy.codegen.matrix_nodes import MatrixSolve from sympy.codegen.cfunctions import log1p, expm1, hypot, log10, exp2, log2, Cbrt, Sqrt from sympy.codegen.array_utils import (CodegenArrayContraction, CodegenArrayTensorProduct, CodegenArrayDiagonal, CodegenArrayPermuteDims, CodegenArrayElementwiseAdd) from sympy.printing.lambdarepr import NumPyPrinter from sympy.utilities.pytest import warns_deprecated_sympy from sympy.utilities.pytest import skip, raises from sympy.external import import_module np = import_module('numpy') def test_numpy_piecewise_regression(): """ NumPyPrinter needs to print Piecewise()'s choicelist as a list to avoid breaking compatibility with numpy 1.8. This is not necessary in numpy 1.9+. See gh-9747 and gh-9749 for details. """ printer = NumPyPrinter() p = Piecewise((1, x < 0), (0, True)) assert printer.doprint(p) == \ 'numpy.select([numpy.less(x, 0),True], [1,0], default=numpy.nan)' assert printer.module_imports == {'numpy': {'select', 'less', 'nan'}} def test_sum(): if not np: skip("NumPy not installed") s = Sum(x ** i, (i, a, b)) f = lambdify((a, b, x), s, 'numpy') a_, b_ = 0, 10 x_ = np.linspace(-1, +1, 10) assert np.allclose(f(a_, b_, x_), sum(x_ ** i_ for i_ in range(a_, b_ + 1))) s = Sum(i * x, (i, a, b)) f = lambdify((a, b, x), s, 'numpy') a_, b_ = 0, 10 x_ = np.linspace(-1, +1, 10) assert np.allclose(f(a_, b_, x_), sum(i_ * x_ for i_ in range(a_, b_ + 1))) def test_multiple_sums(): if not np: skip("NumPy not installed") s = Sum((x + j) * i, (i, a, b), (j, c, d)) f = lambdify((a, b, c, d, x), s, 'numpy') a_, b_ = 0, 10 c_, d_ = 11, 21 x_ = np.linspace(-1, +1, 10) assert np.allclose(f(a_, b_, c_, d_, x_), sum((x_ + j_) * i_ for i_ in range(a_, b_ + 1) for j_ in range(c_, d_ + 1))) def test_codegen_einsum(): if not np: skip("NumPy not installed") M = MatrixSymbol("M", 2, 2) N = MatrixSymbol("N", 2, 2) cg = CodegenArrayContraction.from_MatMul(M*N) f = lambdify((M, N), cg, 'numpy') ma = np.matrix([[1, 2], [3, 4]]) mb = np.matrix([[1,-2], [-1, 3]]) assert (f(ma, mb) == ma*mb).all() def test_codegen_extra(): if not np: skip("NumPy not installed") M = MatrixSymbol("M", 2, 2) N = MatrixSymbol("N", 2, 2) P = MatrixSymbol("P", 2, 2) Q = MatrixSymbol("Q", 2, 2) ma = np.matrix([[1, 2], [3, 4]]) mb = np.matrix([[1,-2], [-1, 3]]) mc = np.matrix([[2, 0], [1, 2]]) md = np.matrix([[1,-1], [4, 7]]) cg = CodegenArrayTensorProduct(M, N) f = lambdify((M, N), cg, 'numpy') assert (f(ma, mb) == np.einsum(ma, [0, 1], mb, [2, 3])).all() cg = CodegenArrayElementwiseAdd(M, N) f = lambdify((M, N), cg, 'numpy') assert (f(ma, mb) == ma+mb).all() cg = CodegenArrayElementwiseAdd(M, N, P) f = lambdify((M, N, P), cg, 'numpy') assert (f(ma, mb, mc) == ma+mb+mc).all() cg = CodegenArrayElementwiseAdd(M, N, P, Q) f = lambdify((M, N, P, Q), cg, 'numpy') assert (f(ma, mb, mc, md) == ma+mb+mc+md).all() cg = CodegenArrayPermuteDims(M, [1, 0]) f = lambdify((M,), cg, 'numpy') assert (f(ma) == ma.T).all() cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 2, 3, 0]) f = lambdify((M, N), cg, 'numpy') assert (f(ma, mb) == np.transpose(np.einsum(ma, [0, 1], mb, [2, 3]), (1, 2, 3, 0))).all() cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (1, 2)) f = lambdify((M, N), cg, 'numpy') assert (f(ma, mb) == np.diagonal(np.einsum(ma, [0, 1], mb, [2, 3]), axis1=1, axis2=2)).all() def test_relational(): if not np: skip("NumPy not installed") e = Equality(x, 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [False, True, False]) e = Unequality(x, 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [True, False, True]) e = (x < 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [True, False, False]) e = (x <= 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [True, True, False]) e = (x > 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [False, False, True]) e = (x >= 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [False, True, True]) def test_mod(): if not np: skip("NumPy not installed") e = Mod(a, b) f = lambdify((a, b), e) a_ = np.array([0, 1, 2, 3]) b_ = 2 assert np.array_equal(f(a_, b_), [0, 1, 0, 1]) a_ = np.array([0, 1, 2, 3]) b_ = np.array([2, 2, 2, 2]) assert np.array_equal(f(a_, b_), [0, 1, 0, 1]) a_ = np.array([2, 3, 4, 5]) b_ = np.array([2, 3, 4, 5]) assert np.array_equal(f(a_, b_), [0, 0, 0, 0]) def test_expm1(): if not np: skip("NumPy not installed") f = lambdify((a,), expm1(a), 'numpy') assert abs(f(1e-10) - 1e-10 - 5e-21) < 1e-22 def test_log1p(): if not np: skip("NumPy not installed") f = lambdify((a,), log1p(a), 'numpy') assert abs(f(1e-99) - 1e-99) < 1e-100 def test_hypot(): if not np: skip("NumPy not installed") assert abs(lambdify((a, b), hypot(a, b), 'numpy')(3, 4) - 5) < 1e-16 def test_log10(): if not np: skip("NumPy not installed") assert abs(lambdify((a,), log10(a), 'numpy')(100) - 2) < 1e-16 def test_exp2(): if not np: skip("NumPy not installed") assert abs(lambdify((a,), exp2(a), 'numpy')(5) - 32) < 1e-16 def test_log2(): if not np: skip("NumPy not installed") assert abs(lambdify((a,), log2(a), 'numpy')(256) - 8) < 1e-16 def test_Sqrt(): if not np: skip("NumPy not installed") assert abs(lambdify((a,), Sqrt(a), 'numpy')(4) - 2) < 1e-16 def test_sqrt(): if not np: skip("NumPy not installed") assert abs(lambdify((a,), sqrt(a), 'numpy')(4) - 2) < 1e-16 def test_matsolve(): if not np: skip("NumPy not installed") M = MatrixSymbol("M", 3, 3) x = MatrixSymbol("x", 3, 1) expr = M**(-1) * x + x matsolve_expr = MatrixSolve(M, x) + x f = lambdify((M, x), expr) f_matsolve = lambdify((M, x), matsolve_expr) m0 = np.array([[1, 2, 3], [3, 2, 5], [5, 6, 7]]) assert np.linalg.matrix_rank(m0) == 3 x0 = np.array([3, 4, 5]) assert np.allclose(f_matsolve(m0, x0), f(m0, x0)) def test_issue_15601(): if not np: skip("Numpy not installed") M = MatrixSymbol("M", 3, 3) N = MatrixSymbol("N", 3, 3) expr = M*N f = lambdify((M, N), expr, "numpy") with warns_deprecated_sympy(): ans = f(eye(3), eye(3)) assert np.array_equal(ans, np.array([1, 0, 0, 0, 1, 0, 0, 0, 1])) def test_16857(): if not np: skip("NumPy not installed") a_1 = MatrixSymbol('a_1', 10, 3) a_2 = MatrixSymbol('a_2', 10, 3) a_3 = MatrixSymbol('a_3', 10, 3) a_4 = MatrixSymbol('a_4', 10, 3) A = BlockMatrix([[a_1, a_2], [a_3, a_4]]) assert A.shape == (20, 6) printer = NumPyPrinter() assert printer.doprint(A) == 'numpy.block([[a_1, a_2], [a_3, a_4]])' def test_issue_17006(): if not np: skip("NumPy not installed") M = MatrixSymbol("M", 2, 2) f = lambdify(M, M + Identity(2)) ma = np.array([[1, 2], [3, 4]]) mr = np.array([[2, 2], [3, 5]]) assert (f(ma) == mr).all() from sympy import symbols n = symbols('n', integer=True) N = MatrixSymbol("M", n, n) raises(NotImplementedError, lambda: lambdify(N, N + Identity(n)))
086a5fd256cb46542dbc39cb8c4112004807ca52d9c553a5fdda43471a0b2a3b
# -*- coding: utf-8 -*- from sympy import ( Add, And, Basic, Derivative, Dict, Eq, Equivalent, FF, FiniteSet, Function, Ge, Gt, I, Implies, Integral, SingularityFunction, Lambda, Le, Limit, Lt, Matrix, Mul, Nand, Ne, Nor, Not, O, Or, Pow, Product, QQ, RR, Rational, Ray, rootof, RootSum, S, Segment, Subs, Sum, Symbol, Tuple, Trace, Xor, ZZ, conjugate, groebner, oo, pi, symbols, ilex, grlex, Range, Contains, SeqPer, SeqFormula, SeqAdd, SeqMul, fourier_series, fps, ITE, Complement, Interval, Intersection, Union, EulerGamma, GoldenRatio, LambertW, airyai, airybi, airyaiprime, airybiprime, fresnelc, fresnels, Heaviside, dirichlet_eta, diag) from sympy.codegen.ast import (Assignment, AddAugmentedAssignment, SubAugmentedAssignment, MulAugmentedAssignment, DivAugmentedAssignment, ModAugmentedAssignment) from sympy.core.compatibility import range, u_decode as u, unicode, PY3 from sympy.core.expr import UnevaluatedExpr from sympy.core.trace import Tr from sympy.functions import (Abs, Chi, Ci, Ei, KroneckerDelta, Piecewise, Shi, Si, atan2, beta, binomial, catalan, ceiling, cos, euler, exp, expint, factorial, factorial2, floor, gamma, hyper, log, meijerg, sin, sqrt, subfactorial, tan, uppergamma, lerchphi, elliptic_k, elliptic_f, elliptic_e, elliptic_pi, DiracDelta, bell, bernoulli, fibonacci, tribonacci, lucas, stieltjes, mathieuc, mathieus, mathieusprime, mathieucprime) from sympy.matrices import Adjoint, Inverse, MatrixSymbol, Transpose, KroneckerProduct from sympy.matrices.expressions import hadamard_power from sympy.physics import mechanics from sympy.physics.units import joule, degree from sympy.printing.pretty import pprint, pretty as xpretty from sympy.printing.pretty.pretty_symbology import center_accent, is_combining from sympy.sets import ImageSet, ProductSet from sympy.sets.setexpr import SetExpr from sympy.tensor.array import (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray, tensorproduct) from sympy.tensor.functions import TensorProduct from sympy.tensor.tensor import (TensorIndexType, tensor_indices, TensorHead, TensorElement, tensor_heads) from sympy.utilities.pytest import raises, XFAIL from sympy.vector import CoordSys3D, Gradient, Curl, Divergence, Dot, Cross, Laplacian import sympy as sym class lowergamma(sym.lowergamma): pass # testing notation inheritance by a subclass with same name a, b, c, d, x, y, z, k, n = symbols('a,b,c,d,x,y,z,k,n') f = Function("f") th = Symbol('theta') ph = Symbol('phi') """ Expressions whose pretty-printing is tested here: (A '#' to the right of an expression indicates that its various acceptable orderings are accounted for by the tests.) BASIC EXPRESSIONS: oo (x**2) 1/x y*x**-2 x**Rational(-5,2) (-2)**x Pow(3, 1, evaluate=False) (x**2 + x + 1) # 1-x # 1-2*x # x/y -x/y (x+2)/y # (1+x)*y #3 -5*x/(x+10) # correct placement of negative sign 1 - Rational(3,2)*(x+1) -(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5) # issue 5524 ORDERING: x**2 + x + 1 1 - x 1 - 2*x 2*x**4 + y**2 - x**2 + y**3 RELATIONAL: Eq(x, y) Lt(x, y) Gt(x, y) Le(x, y) Ge(x, y) Ne(x/(y+1), y**2) # RATIONAL NUMBERS: y*x**-2 y**Rational(3,2) * x**Rational(-5,2) sin(x)**3/tan(x)**2 FUNCTIONS (ABS, CONJ, EXP, FUNCTION BRACES, FACTORIAL, FLOOR, CEILING): (2*x + exp(x)) # Abs(x) Abs(x/(x**2+1)) # Abs(1 / (y - Abs(x))) factorial(n) factorial(2*n) subfactorial(n) subfactorial(2*n) factorial(factorial(factorial(n))) factorial(n+1) # conjugate(x) conjugate(f(x+1)) # f(x) f(x, y) f(x/(y+1), y) # f(x**x**x**x**x**x) sin(x)**2 conjugate(a+b*I) conjugate(exp(a+b*I)) conjugate( f(1 + conjugate(f(x))) ) # f(x/(y+1), y) # denom of first arg floor(1 / (y - floor(x))) ceiling(1 / (y - ceiling(x))) SQRT: sqrt(2) 2**Rational(1,3) 2**Rational(1,1000) sqrt(x**2 + 1) (1 + sqrt(5))**Rational(1,3) 2**(1/x) sqrt(2+pi) (2+(1+x**2)/(2+x))**Rational(1,4)+(1+x**Rational(1,1000))/sqrt(3+x**2) DERIVATIVES: Derivative(log(x), x, evaluate=False) Derivative(log(x), x, evaluate=False) + x # Derivative(log(x) + x**2, x, y, evaluate=False) Derivative(2*x*y, y, x, evaluate=False) + x**2 # beta(alpha).diff(alpha) INTEGRALS: Integral(log(x), x) Integral(x**2, x) Integral((sin(x))**2 / (tan(x))**2) Integral(x**(2**x), x) Integral(x**2, (x,1,2)) Integral(x**2, (x,Rational(1,2),10)) Integral(x**2*y**2, x,y) Integral(x**2, (x, None, 1)) Integral(x**2, (x, 1, None)) Integral(sin(th)/cos(ph), (th,0,pi), (ph, 0, 2*pi)) MATRICES: Matrix([[x**2+1, 1], [y, x+y]]) # Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]]) PIECEWISE: Piecewise((x,x<1),(x**2,True)) ITE: ITE(x, y, z) SEQUENCES (TUPLES, LISTS, DICTIONARIES): () [] {} (1/x,) [x**2, 1/x, x, y, sin(th)**2/cos(ph)**2] (x**2, 1/x, x, y, sin(th)**2/cos(ph)**2) {x: sin(x)} {1/x: 1/y, x: sin(x)**2} # [x**2] (x**2,) {x**2: 1} LIMITS: Limit(x, x, oo) Limit(x**2, x, 0) Limit(1/x, x, 0) Limit(sin(x)/x, x, 0) UNITS: joule => kg*m**2/s SUBS: Subs(f(x), x, ph**2) Subs(f(x).diff(x), x, 0) Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2))) ORDER: O(1) O(1/x) O(x**2 + y**2) """ def pretty(expr, order=None): """ASCII pretty-printing""" return xpretty(expr, order=order, use_unicode=False, wrap_line=False) def upretty(expr, order=None): """Unicode pretty-printing""" return xpretty(expr, order=order, use_unicode=True, wrap_line=False) def test_pretty_ascii_str(): assert pretty( 'xxx' ) == 'xxx' assert pretty( "xxx" ) == 'xxx' assert pretty( 'xxx\'xxx' ) == 'xxx\'xxx' assert pretty( 'xxx"xxx' ) == 'xxx\"xxx' assert pretty( 'xxx\"xxx' ) == 'xxx\"xxx' assert pretty( "xxx'xxx" ) == 'xxx\'xxx' assert pretty( "xxx\'xxx" ) == 'xxx\'xxx' assert pretty( "xxx\"xxx" ) == 'xxx\"xxx' assert pretty( "xxx\"xxx\'xxx" ) == 'xxx"xxx\'xxx' assert pretty( "xxx\nxxx" ) == 'xxx\nxxx' def test_pretty_unicode_str(): assert pretty( u'xxx' ) == u'xxx' assert pretty( u'xxx' ) == u'xxx' assert pretty( u'xxx\'xxx' ) == u'xxx\'xxx' assert pretty( u'xxx"xxx' ) == u'xxx\"xxx' assert pretty( u'xxx\"xxx' ) == u'xxx\"xxx' assert pretty( u"xxx'xxx" ) == u'xxx\'xxx' assert pretty( u"xxx\'xxx" ) == u'xxx\'xxx' assert pretty( u"xxx\"xxx" ) == u'xxx\"xxx' assert pretty( u"xxx\"xxx\'xxx" ) == u'xxx"xxx\'xxx' assert pretty( u"xxx\nxxx" ) == u'xxx\nxxx' def test_upretty_greek(): assert upretty( oo ) == u'∞' assert upretty( Symbol('alpha^+_1') ) == u'α⁺₁' assert upretty( Symbol('beta') ) == u'β' assert upretty(Symbol('lambda')) == u'λ' def test_upretty_multiindex(): assert upretty( Symbol('beta12') ) == u'β₁₂' assert upretty( Symbol('Y00') ) == u'Y₀₀' assert upretty( Symbol('Y_00') ) == u'Y₀₀' assert upretty( Symbol('F^+-') ) == u'F⁺⁻' def test_upretty_sub_super(): assert upretty( Symbol('beta_1_2') ) == u'β₁ ₂' assert upretty( Symbol('beta^1^2') ) == u'β¹ ²' assert upretty( Symbol('beta_1^2') ) == u'β²₁' assert upretty( Symbol('beta_10_20') ) == u'β₁₀ ₂₀' assert upretty( Symbol('beta_ax_gamma^i') ) == u'βⁱₐₓ ᵧ' assert upretty( Symbol("F^1^2_3_4") ) == u'F¹ ²₃ ₄' assert upretty( Symbol("F_1_2^3^4") ) == u'F³ ⁴₁ ₂' assert upretty( Symbol("F_1_2_3_4") ) == u'F₁ ₂ ₃ ₄' assert upretty( Symbol("F^1^2^3^4") ) == u'F¹ ² ³ ⁴' def test_upretty_subs_missing_in_24(): assert upretty( Symbol('F_beta') ) == u'Fᵦ' assert upretty( Symbol('F_gamma') ) == u'Fᵧ' assert upretty( Symbol('F_rho') ) == u'Fᵨ' assert upretty( Symbol('F_phi') ) == u'Fᵩ' assert upretty( Symbol('F_chi') ) == u'Fᵪ' assert upretty( Symbol('F_a') ) == u'Fₐ' assert upretty( Symbol('F_e') ) == u'Fₑ' assert upretty( Symbol('F_i') ) == u'Fᵢ' assert upretty( Symbol('F_o') ) == u'Fₒ' assert upretty( Symbol('F_u') ) == u'Fᵤ' assert upretty( Symbol('F_r') ) == u'Fᵣ' assert upretty( Symbol('F_v') ) == u'Fᵥ' assert upretty( Symbol('F_x') ) == u'Fₓ' def test_missing_in_2X_issue_9047(): if PY3: assert upretty( Symbol('F_h') ) == u'Fₕ' assert upretty( Symbol('F_k') ) == u'Fₖ' assert upretty( Symbol('F_l') ) == u'Fₗ' assert upretty( Symbol('F_m') ) == u'Fₘ' assert upretty( Symbol('F_n') ) == u'Fₙ' assert upretty( Symbol('F_p') ) == u'Fₚ' assert upretty( Symbol('F_s') ) == u'Fₛ' assert upretty( Symbol('F_t') ) == u'Fₜ' def test_upretty_modifiers(): # Accents assert upretty( Symbol('Fmathring') ) == u'F̊' assert upretty( Symbol('Fddddot') ) == u'F⃜' assert upretty( Symbol('Fdddot') ) == u'F⃛' assert upretty( Symbol('Fddot') ) == u'F̈' assert upretty( Symbol('Fdot') ) == u'Ḟ' assert upretty( Symbol('Fcheck') ) == u'F̌' assert upretty( Symbol('Fbreve') ) == u'F̆' assert upretty( Symbol('Facute') ) == u'F́' assert upretty( Symbol('Fgrave') ) == u'F̀' assert upretty( Symbol('Ftilde') ) == u'F̃' assert upretty( Symbol('Fhat') ) == u'F̂' assert upretty( Symbol('Fbar') ) == u'F̅' assert upretty( Symbol('Fvec') ) == u'F⃗' assert upretty( Symbol('Fprime') ) == u'F′' assert upretty( Symbol('Fprm') ) == u'F′' # No faces are actually implemented, but test to make sure the modifiers are stripped assert upretty( Symbol('Fbold') ) == u'Fbold' assert upretty( Symbol('Fbm') ) == u'Fbm' assert upretty( Symbol('Fcal') ) == u'Fcal' assert upretty( Symbol('Fscr') ) == u'Fscr' assert upretty( Symbol('Ffrak') ) == u'Ffrak' # Brackets assert upretty( Symbol('Fnorm') ) == u'‖F‖' assert upretty( Symbol('Favg') ) == u'⟨F⟩' assert upretty( Symbol('Fabs') ) == u'|F|' assert upretty( Symbol('Fmag') ) == u'|F|' # Combinations assert upretty( Symbol('xvecdot') ) == u'x⃗̇' assert upretty( Symbol('xDotVec') ) == u'ẋ⃗' assert upretty( Symbol('xHATNorm') ) == u'‖x̂‖' assert upretty( Symbol('xMathring_yCheckPRM__zbreveAbs') ) == u'x̊_y̌′__|z̆|' assert upretty( Symbol('alphadothat_nVECDOT__tTildePrime') ) == u'α̇̂_n⃗̇__t̃′' assert upretty( Symbol('x_dot') ) == u'x_dot' assert upretty( Symbol('x__dot') ) == u'x__dot' def test_pretty_Cycle(): from sympy.combinatorics.permutations import Cycle assert pretty(Cycle(1, 2)) == '(1 2)' assert pretty(Cycle(2)) == '(2)' assert pretty(Cycle(1, 3)(4, 5)) == '(1 3)(4 5)' assert pretty(Cycle()) == '()' def test_pretty_basic(): assert pretty( -Rational(1)/2 ) == '-1/2' assert pretty( -Rational(13)/22 ) == \ """\ -13 \n\ ----\n\ 22 \ """ expr = oo ascii_str = \ """\ oo\ """ ucode_str = \ u("""\ ∞\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x**2) ascii_str = \ """\ 2\n\ x \ """ ucode_str = \ u("""\ 2\n\ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 1/x ascii_str = \ """\ 1\n\ -\n\ x\ """ ucode_str = \ u("""\ 1\n\ ─\n\ x\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # not the same as 1/x expr = x**-1.0 ascii_str = \ """\ -1.0\n\ x \ """ ucode_str = \ ("""\ -1.0\n\ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # see issue #2860 expr = Pow(S(2), -1.0, evaluate=False) ascii_str = \ """\ -1.0\n\ 2 \ """ ucode_str = \ ("""\ -1.0\n\ 2 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = y*x**-2 ascii_str = \ """\ y \n\ --\n\ 2\n\ x \ """ ucode_str = \ u("""\ y \n\ ──\n\ 2\n\ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str #see issue #14033 expr = x**Rational(1, 3) ascii_str = \ """\ 1/3\n\ x \ """ ucode_str = \ u("""\ 1/3\n\ x \ """) assert xpretty(expr, use_unicode=False, wrap_line=False,\ root_notation = False) == ascii_str assert xpretty(expr, use_unicode=True, wrap_line=False,\ root_notation = False) == ucode_str expr = x**Rational(-5, 2) ascii_str = \ """\ 1 \n\ ----\n\ 5/2\n\ x \ """ ucode_str = \ u("""\ 1 \n\ ────\n\ 5/2\n\ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (-2)**x ascii_str = \ """\ x\n\ (-2) \ """ ucode_str = \ u("""\ x\n\ (-2) \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # See issue 4923 expr = Pow(3, 1, evaluate=False) ascii_str = \ """\ 1\n\ 3 \ """ ucode_str = \ u("""\ 1\n\ 3 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x**2 + x + 1) ascii_str_1 = \ """\ 2\n\ 1 + x + x \ """ ascii_str_2 = \ """\ 2 \n\ x + x + 1\ """ ascii_str_3 = \ """\ 2 \n\ x + 1 + x\ """ ucode_str_1 = \ u("""\ 2\n\ 1 + x + x \ """) ucode_str_2 = \ u("""\ 2 \n\ x + x + 1\ """) ucode_str_3 = \ u("""\ 2 \n\ x + 1 + x\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3] assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3] expr = 1 - x ascii_str_1 = \ """\ 1 - x\ """ ascii_str_2 = \ """\ -x + 1\ """ ucode_str_1 = \ u("""\ 1 - x\ """) ucode_str_2 = \ u("""\ -x + 1\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = 1 - 2*x ascii_str_1 = \ """\ 1 - 2*x\ """ ascii_str_2 = \ """\ -2*x + 1\ """ ucode_str_1 = \ u("""\ 1 - 2⋅x\ """) ucode_str_2 = \ u("""\ -2⋅x + 1\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = x/y ascii_str = \ """\ x\n\ -\n\ y\ """ ucode_str = \ u("""\ x\n\ ─\n\ y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -x/y ascii_str = \ """\ -x \n\ ---\n\ y \ """ ucode_str = \ u("""\ -x \n\ ───\n\ y \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x + 2)/y ascii_str_1 = \ """\ 2 + x\n\ -----\n\ y \ """ ascii_str_2 = \ """\ x + 2\n\ -----\n\ y \ """ ucode_str_1 = \ u("""\ 2 + x\n\ ─────\n\ y \ """) ucode_str_2 = \ u("""\ x + 2\n\ ─────\n\ y \ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = (1 + x)*y ascii_str_1 = \ """\ y*(1 + x)\ """ ascii_str_2 = \ """\ (1 + x)*y\ """ ascii_str_3 = \ """\ y*(x + 1)\ """ ucode_str_1 = \ u("""\ y⋅(1 + x)\ """) ucode_str_2 = \ u("""\ (1 + x)⋅y\ """) ucode_str_3 = \ u("""\ y⋅(x + 1)\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3] assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3] # Test for correct placement of the negative sign expr = -5*x/(x + 10) ascii_str_1 = \ """\ -5*x \n\ ------\n\ 10 + x\ """ ascii_str_2 = \ """\ -5*x \n\ ------\n\ x + 10\ """ ucode_str_1 = \ u("""\ -5⋅x \n\ ──────\n\ 10 + x\ """) ucode_str_2 = \ u("""\ -5⋅x \n\ ──────\n\ x + 10\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = -S.Half - 3*x ascii_str = \ """\ -3*x - 1/2\ """ ucode_str = \ u("""\ -3⋅x - 1/2\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = S.Half - 3*x ascii_str = \ """\ 1/2 - 3*x\ """ ucode_str = \ u("""\ 1/2 - 3⋅x\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -S.Half - 3*x/2 ascii_str = \ """\ 3*x 1\n\ - --- - -\n\ 2 2\ """ ucode_str = \ u("""\ 3⋅x 1\n\ - ─── - ─\n\ 2 2\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = S.Half - 3*x/2 ascii_str = \ """\ 1 3*x\n\ - - ---\n\ 2 2 \ """ ucode_str = \ u("""\ 1 3⋅x\n\ ─ - ───\n\ 2 2 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_negative_fractions(): expr = -x/y ascii_str =\ """\ -x \n\ ---\n\ y \ """ ucode_str =\ u("""\ -x \n\ ───\n\ y \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -x*z/y ascii_str =\ """\ -x*z \n\ -----\n\ y \ """ ucode_str =\ u("""\ -x⋅z \n\ ─────\n\ y \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = x**2/y ascii_str =\ """\ 2\n\ x \n\ --\n\ y \ """ ucode_str =\ u("""\ 2\n\ x \n\ ──\n\ y \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -x**2/y ascii_str =\ """\ 2 \n\ -x \n\ ----\n\ y \ """ ucode_str =\ u("""\ 2 \n\ -x \n\ ────\n\ y \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -x/(y*z) ascii_str =\ """\ -x \n\ ---\n\ y*z\ """ ucode_str =\ u("""\ -x \n\ ───\n\ y⋅z\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -a/y**2 ascii_str =\ """\ -a \n\ ---\n\ 2\n\ y \ """ ucode_str =\ u("""\ -a \n\ ───\n\ 2\n\ y \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = y**(-a/b) ascii_str =\ """\ -a \n\ ---\n\ b \n\ y \ """ ucode_str =\ u("""\ -a \n\ ───\n\ b \n\ y \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -1/y**2 ascii_str =\ """\ -1 \n\ ---\n\ 2\n\ y \ """ ucode_str =\ u("""\ -1 \n\ ───\n\ 2\n\ y \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -10/b**2 ascii_str =\ """\ -10 \n\ ----\n\ 2 \n\ b \ """ ucode_str =\ u("""\ -10 \n\ ────\n\ 2 \n\ b \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Rational(-200, 37) ascii_str =\ """\ -200 \n\ -----\n\ 37 \ """ ucode_str =\ u("""\ -200 \n\ ─────\n\ 37 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_issue_5524(): assert pretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \ """\ 2 / ___ \\\n\ - (5 - y) + (x - 5)*\\-x - 2*\\/ 2 + 5/\ """ assert upretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \ u("""\ 2 \n\ - (5 - y) + (x - 5)⋅(-x - 2⋅√2 + 5)\ """) def test_pretty_ordering(): assert pretty(x**2 + x + 1, order='lex') == \ """\ 2 \n\ x + x + 1\ """ assert pretty(x**2 + x + 1, order='rev-lex') == \ """\ 2\n\ 1 + x + x \ """ assert pretty(1 - x, order='lex') == '-x + 1' assert pretty(1 - x, order='rev-lex') == '1 - x' assert pretty(1 - 2*x, order='lex') == '-2*x + 1' assert pretty(1 - 2*x, order='rev-lex') == '1 - 2*x' f = 2*x**4 + y**2 - x**2 + y**3 assert pretty(f, order=None) == \ """\ 4 2 3 2\n\ 2*x - x + y + y \ """ assert pretty(f, order='lex') == \ """\ 4 2 3 2\n\ 2*x - x + y + y \ """ assert pretty(f, order='rev-lex') == \ """\ 2 3 2 4\n\ y + y - x + 2*x \ """ expr = x - x**3/6 + x**5/120 + O(x**6) ascii_str = \ """\ 3 5 \n\ x x / 6\\\n\ x - -- + --- + O\\x /\n\ 6 120 \ """ ucode_str = \ u("""\ 3 5 \n\ x x ⎛ 6⎞\n\ x - ── + ─── + O⎝x ⎠\n\ 6 120 \ """) assert pretty(expr, order=None) == ascii_str assert upretty(expr, order=None) == ucode_str assert pretty(expr, order='lex') == ascii_str assert upretty(expr, order='lex') == ucode_str assert pretty(expr, order='rev-lex') == ascii_str assert upretty(expr, order='rev-lex') == ucode_str def test_EulerGamma(): assert pretty(EulerGamma) == str(EulerGamma) == "EulerGamma" assert upretty(EulerGamma) == u"γ" def test_GoldenRatio(): assert pretty(GoldenRatio) == str(GoldenRatio) == "GoldenRatio" assert upretty(GoldenRatio) == u"φ" def test_pretty_relational(): expr = Eq(x, y) ascii_str = \ """\ x = y\ """ ucode_str = \ u("""\ x = y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lt(x, y) ascii_str = \ """\ x < y\ """ ucode_str = \ u("""\ x < y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Gt(x, y) ascii_str = \ """\ x > y\ """ ucode_str = \ u("""\ x > y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Le(x, y) ascii_str = \ """\ x <= y\ """ ucode_str = \ u("""\ x ≤ y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Ge(x, y) ascii_str = \ """\ x >= y\ """ ucode_str = \ u("""\ x ≥ y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Ne(x/(y + 1), y**2) ascii_str_1 = \ """\ x 2\n\ ----- != y \n\ 1 + y \ """ ascii_str_2 = \ """\ x 2\n\ ----- != y \n\ y + 1 \ """ ucode_str_1 = \ u("""\ x 2\n\ ───── ≠ y \n\ 1 + y \ """) ucode_str_2 = \ u("""\ x 2\n\ ───── ≠ y \n\ y + 1 \ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] def test_Assignment(): expr = Assignment(x, y) ascii_str = \ """\ x := y\ """ ucode_str = \ u("""\ x := y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_AugmentedAssignment(): expr = AddAugmentedAssignment(x, y) ascii_str = \ """\ x += y\ """ ucode_str = \ u("""\ x += y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = SubAugmentedAssignment(x, y) ascii_str = \ """\ x -= y\ """ ucode_str = \ u("""\ x -= y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = MulAugmentedAssignment(x, y) ascii_str = \ """\ x *= y\ """ ucode_str = \ u("""\ x *= y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = DivAugmentedAssignment(x, y) ascii_str = \ """\ x /= y\ """ ucode_str = \ u("""\ x /= y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = ModAugmentedAssignment(x, y) ascii_str = \ """\ x %= y\ """ ucode_str = \ u("""\ x %= y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_issue_7117(): # See also issue #5031 (hence the evaluate=False in these). e = Eq(x + 1, x/2) q = Mul(2, e, evaluate=False) assert upretty(q) == u("""\ ⎛ x⎞\n\ 2⋅⎜x + 1 = ─⎟\n\ ⎝ 2⎠\ """) q = Add(e, 6, evaluate=False) assert upretty(q) == u("""\ ⎛ x⎞\n\ 6 + ⎜x + 1 = ─⎟\n\ ⎝ 2⎠\ """) q = Pow(e, 2, evaluate=False) assert upretty(q) == u("""\ 2\n\ ⎛ x⎞ \n\ ⎜x + 1 = ─⎟ \n\ ⎝ 2⎠ \ """) e2 = Eq(x, 2) q = Mul(e, e2, evaluate=False) assert upretty(q) == u("""\ ⎛ x⎞ \n\ ⎜x + 1 = ─⎟⋅(x = 2)\n\ ⎝ 2⎠ \ """) def test_pretty_rational(): expr = y*x**-2 ascii_str = \ """\ y \n\ --\n\ 2\n\ x \ """ ucode_str = \ u("""\ y \n\ ──\n\ 2\n\ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = y**Rational(3, 2) * x**Rational(-5, 2) ascii_str = \ """\ 3/2\n\ y \n\ ----\n\ 5/2\n\ x \ """ ucode_str = \ u("""\ 3/2\n\ y \n\ ────\n\ 5/2\n\ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = sin(x)**3/tan(x)**2 ascii_str = \ """\ 3 \n\ sin (x)\n\ -------\n\ 2 \n\ tan (x)\ """ ucode_str = \ u("""\ 3 \n\ sin (x)\n\ ───────\n\ 2 \n\ tan (x)\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_functions(): """Tests for Abs, conjugate, exp, function braces, and factorial.""" expr = (2*x + exp(x)) ascii_str_1 = \ """\ x\n\ 2*x + e \ """ ascii_str_2 = \ """\ x \n\ e + 2*x\ """ ucode_str_1 = \ u("""\ x\n\ 2⋅x + ℯ \ """) ucode_str_2 = \ u("""\ x \n\ ℯ + 2⋅x\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Abs(x) ascii_str = \ """\ |x|\ """ ucode_str = \ u("""\ │x│\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Abs(x/(x**2 + 1)) ascii_str_1 = \ """\ | x |\n\ |------|\n\ | 2|\n\ |1 + x |\ """ ascii_str_2 = \ """\ | x |\n\ |------|\n\ | 2 |\n\ |x + 1|\ """ ucode_str_1 = \ u("""\ │ x │\n\ │──────│\n\ │ 2│\n\ │1 + x │\ """) ucode_str_2 = \ u("""\ │ x │\n\ │──────│\n\ │ 2 │\n\ │x + 1│\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Abs(1 / (y - Abs(x))) ascii_str = \ """\ 1 \n\ ---------\n\ |y - |x||\ """ ucode_str = \ u("""\ 1 \n\ ─────────\n\ │y - │x││\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str n = Symbol('n', integer=True) expr = factorial(n) ascii_str = \ """\ n!\ """ ucode_str = \ u("""\ n!\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial(2*n) ascii_str = \ """\ (2*n)!\ """ ucode_str = \ u("""\ (2⋅n)!\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial(factorial(factorial(n))) ascii_str = \ """\ ((n!)!)!\ """ ucode_str = \ u("""\ ((n!)!)!\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial(n + 1) ascii_str_1 = \ """\ (1 + n)!\ """ ascii_str_2 = \ """\ (n + 1)!\ """ ucode_str_1 = \ u("""\ (1 + n)!\ """) ucode_str_2 = \ u("""\ (n + 1)!\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = subfactorial(n) ascii_str = \ """\ !n\ """ ucode_str = \ u("""\ !n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = subfactorial(2*n) ascii_str = \ """\ !(2*n)\ """ ucode_str = \ u("""\ !(2⋅n)\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str n = Symbol('n', integer=True) expr = factorial2(n) ascii_str = \ """\ n!!\ """ ucode_str = \ u("""\ n!!\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial2(2*n) ascii_str = \ """\ (2*n)!!\ """ ucode_str = \ u("""\ (2⋅n)!!\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial2(factorial2(factorial2(n))) ascii_str = \ """\ ((n!!)!!)!!\ """ ucode_str = \ u("""\ ((n!!)!!)!!\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial2(n + 1) ascii_str_1 = \ """\ (1 + n)!!\ """ ascii_str_2 = \ """\ (n + 1)!!\ """ ucode_str_1 = \ u("""\ (1 + n)!!\ """) ucode_str_2 = \ u("""\ (n + 1)!!\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = 2*binomial(n, k) ascii_str = \ """\ /n\\\n\ 2*| |\n\ \\k/\ """ ucode_str = \ u("""\ ⎛n⎞\n\ 2⋅⎜ ⎟\n\ ⎝k⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2*binomial(2*n, k) ascii_str = \ """\ /2*n\\\n\ 2*| |\n\ \\ k /\ """ ucode_str = \ u("""\ ⎛2⋅n⎞\n\ 2⋅⎜ ⎟\n\ ⎝ k ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2*binomial(n**2, k) ascii_str = \ """\ / 2\\\n\ |n |\n\ 2*| |\n\ \\k /\ """ ucode_str = \ u("""\ ⎛ 2⎞\n\ ⎜n ⎟\n\ 2⋅⎜ ⎟\n\ ⎝k ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = catalan(n) ascii_str = \ """\ C \n\ n\ """ ucode_str = \ u("""\ C \n\ n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = catalan(n) ascii_str = \ """\ C \n\ n\ """ ucode_str = \ u("""\ C \n\ n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = bell(n) ascii_str = \ """\ B \n\ n\ """ ucode_str = \ u("""\ B \n\ n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = bernoulli(n) ascii_str = \ """\ B \n\ n\ """ ucode_str = \ u("""\ B \n\ n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = bernoulli(n, x) ascii_str = \ """\ B (x)\n\ n \ """ ucode_str = \ u("""\ B (x)\n\ n \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = fibonacci(n) ascii_str = \ """\ F \n\ n\ """ ucode_str = \ u("""\ F \n\ n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = lucas(n) ascii_str = \ """\ L \n\ n\ """ ucode_str = \ u("""\ L \n\ n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = tribonacci(n) ascii_str = \ """\ T \n\ n\ """ ucode_str = \ u("""\ T \n\ n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = stieltjes(n) ascii_str = \ """\ stieltjes \n\ n\ """ ucode_str = \ u("""\ γ \n\ n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = stieltjes(n, x) ascii_str = \ """\ stieltjes (x)\n\ n \ """ ucode_str = \ u("""\ γ (x)\n\ n \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = mathieuc(x, y, z) ascii_str = 'C(x, y, z)' ucode_str = u('C(x, y, z)') assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = mathieus(x, y, z) ascii_str = 'S(x, y, z)' ucode_str = u('S(x, y, z)') assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = mathieucprime(x, y, z) ascii_str = "C'(x, y, z)" ucode_str = u("C'(x, y, z)") assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = mathieusprime(x, y, z) ascii_str = "S'(x, y, z)" ucode_str = u("S'(x, y, z)") assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = conjugate(x) ascii_str = \ """\ _\n\ x\ """ ucode_str = \ u("""\ _\n\ x\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str f = Function('f') expr = conjugate(f(x + 1)) ascii_str_1 = \ """\ ________\n\ f(1 + x)\ """ ascii_str_2 = \ """\ ________\n\ f(x + 1)\ """ ucode_str_1 = \ u("""\ ________\n\ f(1 + x)\ """) ucode_str_2 = \ u("""\ ________\n\ f(x + 1)\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = f(x) ascii_str = \ """\ f(x)\ """ ucode_str = \ u("""\ f(x)\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = f(x, y) ascii_str = \ """\ f(x, y)\ """ ucode_str = \ u("""\ f(x, y)\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = f(x/(y + 1), y) ascii_str_1 = \ """\ / x \\\n\ f|-----, y|\n\ \\1 + y /\ """ ascii_str_2 = \ """\ / x \\\n\ f|-----, y|\n\ \\y + 1 /\ """ ucode_str_1 = \ u("""\ ⎛ x ⎞\n\ f⎜─────, y⎟\n\ ⎝1 + y ⎠\ """) ucode_str_2 = \ u("""\ ⎛ x ⎞\n\ f⎜─────, y⎟\n\ ⎝y + 1 ⎠\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = f(x**x**x**x**x**x) ascii_str = \ """\ / / / / / x\\\\\\\\\\ | | | | \\x /|||| | | | \\x /||| | | \\x /|| | \\x /| f\\x /\ """ ucode_str = \ u("""\ ⎛ ⎛ ⎛ ⎛ ⎛ x⎞⎞⎞⎞⎞ ⎜ ⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟⎟ ⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟ ⎜ ⎜ ⎝x ⎠⎟⎟ ⎜ ⎝x ⎠⎟ f⎝x ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = sin(x)**2 ascii_str = \ """\ 2 \n\ sin (x)\ """ ucode_str = \ u("""\ 2 \n\ sin (x)\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = conjugate(a + b*I) ascii_str = \ """\ _ _\n\ a - I*b\ """ ucode_str = \ u("""\ _ _\n\ a - ⅈ⋅b\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = conjugate(exp(a + b*I)) ascii_str = \ """\ _ _\n\ a - I*b\n\ e \ """ ucode_str = \ u("""\ _ _\n\ a - ⅈ⋅b\n\ ℯ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = conjugate( f(1 + conjugate(f(x))) ) ascii_str_1 = \ """\ ___________\n\ / ____\\\n\ f\\1 + f(x)/\ """ ascii_str_2 = \ """\ ___________\n\ /____ \\\n\ f\\f(x) + 1/\ """ ucode_str_1 = \ u("""\ ___________\n\ ⎛ ____⎞\n\ f⎝1 + f(x)⎠\ """) ucode_str_2 = \ u("""\ ___________\n\ ⎛____ ⎞\n\ f⎝f(x) + 1⎠\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = f(x/(y + 1), y) ascii_str_1 = \ """\ / x \\\n\ f|-----, y|\n\ \\1 + y /\ """ ascii_str_2 = \ """\ / x \\\n\ f|-----, y|\n\ \\y + 1 /\ """ ucode_str_1 = \ u("""\ ⎛ x ⎞\n\ f⎜─────, y⎟\n\ ⎝1 + y ⎠\ """) ucode_str_2 = \ u("""\ ⎛ x ⎞\n\ f⎜─────, y⎟\n\ ⎝y + 1 ⎠\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = floor(1 / (y - floor(x))) ascii_str = \ """\ / 1 \\\n\ floor|------------|\n\ \\y - floor(x)/\ """ ucode_str = \ u("""\ ⎢ 1 ⎥\n\ ⎢───────⎥\n\ ⎣y - ⌊x⌋⎦\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = ceiling(1 / (y - ceiling(x))) ascii_str = \ """\ / 1 \\\n\ ceiling|--------------|\n\ \\y - ceiling(x)/\ """ ucode_str = \ u("""\ ⎡ 1 ⎤\n\ ⎢───────⎥\n\ ⎢y - ⌈x⌉⎥\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = euler(n) ascii_str = \ """\ E \n\ n\ """ ucode_str = \ u("""\ E \n\ n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = euler(1/(1 + 1/(1 + 1/n))) ascii_str = \ """\ E \n\ 1 \n\ ---------\n\ 1 \n\ 1 + -----\n\ 1\n\ 1 + -\n\ n\ """ ucode_str = \ u("""\ E \n\ 1 \n\ ─────────\n\ 1 \n\ 1 + ─────\n\ 1\n\ 1 + ─\n\ n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = euler(n, x) ascii_str = \ """\ E (x)\n\ n \ """ ucode_str = \ u("""\ E (x)\n\ n \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = euler(n, x/2) ascii_str = \ """\ /x\\\n\ E |-|\n\ n\\2/\ """ ucode_str = \ u("""\ ⎛x⎞\n\ E ⎜─⎟\n\ n⎝2⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_sqrt(): expr = sqrt(2) ascii_str = \ """\ ___\n\ \\/ 2 \ """ ucode_str = \ u"√2" assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2**Rational(1, 3) ascii_str = \ """\ 3 ___\n\ \\/ 2 \ """ ucode_str = \ u("""\ 3 ___\n\ ╲╱ 2 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2**Rational(1, 1000) ascii_str = \ """\ 1000___\n\ \\/ 2 \ """ ucode_str = \ u("""\ 1000___\n\ ╲╱ 2 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = sqrt(x**2 + 1) ascii_str = \ """\ ________\n\ / 2 \n\ \\/ x + 1 \ """ ucode_str = \ u("""\ ________\n\ ╱ 2 \n\ ╲╱ x + 1 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (1 + sqrt(5))**Rational(1, 3) ascii_str = \ """\ ___________\n\ 3 / ___ \n\ \\/ 1 + \\/ 5 \ """ ucode_str = \ u("""\ 3 ________\n\ ╲╱ 1 + √5 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2**(1/x) ascii_str = \ """\ x ___\n\ \\/ 2 \ """ ucode_str = \ u("""\ x ___\n\ ╲╱ 2 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = sqrt(2 + pi) ascii_str = \ """\ ________\n\ \\/ 2 + pi \ """ ucode_str = \ u("""\ _______\n\ ╲╱ 2 + π \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (2 + ( 1 + x**2)/(2 + x))**Rational(1, 4) + (1 + x**Rational(1, 1000))/sqrt(3 + x**2) ascii_str = \ """\ ____________ \n\ / 2 1000___ \n\ / x + 1 \\/ x + 1\n\ 4 / 2 + ------ + -----------\n\ \\/ x + 2 ________\n\ / 2 \n\ \\/ x + 3 \ """ ucode_str = \ u("""\ ____________ \n\ ╱ 2 1000___ \n\ ╱ x + 1 ╲╱ x + 1\n\ 4 ╱ 2 + ────── + ───────────\n\ ╲╱ x + 2 ________\n\ ╱ 2 \n\ ╲╱ x + 3 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_sqrt_char_knob(): # See PR #9234. expr = sqrt(2) ucode_str1 = \ u("""\ ___\n\ ╲╱ 2 \ """) ucode_str2 = \ u"√2" assert xpretty(expr, use_unicode=True, use_unicode_sqrt_char=False) == ucode_str1 assert xpretty(expr, use_unicode=True, use_unicode_sqrt_char=True) == ucode_str2 def test_pretty_sqrt_longsymbol_no_sqrt_char(): # Do not use unicode sqrt char for long symbols (see PR #9234). expr = sqrt(Symbol('C1')) ucode_str = \ u("""\ ____\n\ ╲╱ C₁ \ """) assert upretty(expr) == ucode_str def test_pretty_KroneckerDelta(): x, y = symbols("x, y") expr = KroneckerDelta(x, y) ascii_str = \ """\ d \n\ x,y\ """ ucode_str = \ u("""\ δ \n\ x,y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_product(): n, m, k, l = symbols('n m k l') f = symbols('f', cls=Function) expr = Product(f((n/3)**2), (n, k**2, l)) unicode_str = \ u("""\ l \n\ ─┬──────┬─ \n\ │ │ ⎛ 2⎞\n\ │ │ ⎜n ⎟\n\ │ │ f⎜──⎟\n\ │ │ ⎝9 ⎠\n\ │ │ \n\ 2 \n\ n = k """) ascii_str = \ """\ l \n\ __________ \n\ | | / 2\\\n\ | | |n |\n\ | | f|--|\n\ | | \\9 /\n\ | | \n\ 2 \n\ n = k """ expr = Product(f((n/3)**2), (n, k**2, l), (l, 1, m)) unicode_str = \ u("""\ m l \n\ ─┬──────┬─ ─┬──────┬─ \n\ │ │ │ │ ⎛ 2⎞\n\ │ │ │ │ ⎜n ⎟\n\ │ │ │ │ f⎜──⎟\n\ │ │ │ │ ⎝9 ⎠\n\ │ │ │ │ \n\ l = 1 2 \n\ n = k """) ascii_str = \ """\ m l \n\ __________ __________ \n\ | | | | / 2\\\n\ | | | | |n |\n\ | | | | f|--|\n\ | | | | \\9 /\n\ | | | | \n\ l = 1 2 \n\ n = k """ assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str def test_pretty_Lambda(): # S.IdentityFunction is a special case expr = Lambda(y, y) assert pretty(expr) == "x -> x" assert upretty(expr) == u"x ↦ x" expr = Lambda(x, x+1) assert pretty(expr) == "x -> x + 1" assert upretty(expr) == u"x ↦ x + 1" expr = Lambda(x, x**2) ascii_str = \ """\ 2\n\ x -> x \ """ ucode_str = \ u("""\ 2\n\ x ↦ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lambda(x, x**2)**2 ascii_str = \ """\ 2 / 2\\ \n\ \\x -> x / \ """ ucode_str = \ u("""\ 2 ⎛ 2⎞ \n\ ⎝x ↦ x ⎠ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lambda((x, y), x) ascii_str = "(x, y) -> x" ucode_str = u"(x, y) ↦ x" assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lambda((x, y), x**2) ascii_str = \ """\ 2\n\ (x, y) -> x \ """ ucode_str = \ u("""\ 2\n\ (x, y) ↦ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lambda(((x, y),), x**2) ascii_str = \ """\ 2\n\ ((x, y),) -> x \ """ ucode_str = \ u("""\ 2\n\ ((x, y),) ↦ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_order(): expr = O(1) ascii_str = \ """\ O(1)\ """ ucode_str = \ u("""\ O(1)\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(1/x) ascii_str = \ """\ /1\\\n\ O|-|\n\ \\x/\ """ ucode_str = \ u("""\ ⎛1⎞\n\ O⎜─⎟\n\ ⎝x⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(x**2 + y**2) ascii_str = \ """\ / 2 2 \\\n\ O\\x + y ; (x, y) -> (0, 0)/\ """ ucode_str = \ u("""\ ⎛ 2 2 ⎞\n\ O⎝x + y ; (x, y) → (0, 0)⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(1, (x, oo)) ascii_str = \ """\ O(1; x -> oo)\ """ ucode_str = \ u("""\ O(1; x → ∞)\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(1/x, (x, oo)) ascii_str = \ """\ /1 \\\n\ O|-; x -> oo|\n\ \\x /\ """ ucode_str = \ u("""\ ⎛1 ⎞\n\ O⎜─; x → ∞⎟\n\ ⎝x ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(x**2 + y**2, (x, oo), (y, oo)) ascii_str = \ """\ / 2 2 \\\n\ O\\x + y ; (x, y) -> (oo, oo)/\ """ ucode_str = \ u("""\ ⎛ 2 2 ⎞\n\ O⎝x + y ; (x, y) → (∞, ∞)⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_derivatives(): # Simple expr = Derivative(log(x), x, evaluate=False) ascii_str = \ """\ d \n\ --(log(x))\n\ dx \ """ ucode_str = \ u("""\ d \n\ ──(log(x))\n\ dx \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Derivative(log(x), x, evaluate=False) + x ascii_str_1 = \ """\ d \n\ x + --(log(x))\n\ dx \ """ ascii_str_2 = \ """\ d \n\ --(log(x)) + x\n\ dx \ """ ucode_str_1 = \ u("""\ d \n\ x + ──(log(x))\n\ dx \ """) ucode_str_2 = \ u("""\ d \n\ ──(log(x)) + x\n\ dx \ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] # basic partial derivatives expr = Derivative(log(x + y) + x, x) ascii_str_1 = \ """\ d \n\ --(log(x + y) + x)\n\ dx \ """ ascii_str_2 = \ """\ d \n\ --(x + log(x + y))\n\ dx \ """ ucode_str_1 = \ u("""\ ∂ \n\ ──(log(x + y) + x)\n\ ∂x \ """) ucode_str_2 = \ u("""\ ∂ \n\ ──(x + log(x + y))\n\ ∂x \ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2], upretty(expr) # Multiple symbols expr = Derivative(log(x) + x**2, x, y) ascii_str_1 = \ """\ 2 \n\ d / 2\\\n\ -----\\log(x) + x /\n\ dy dx \ """ ascii_str_2 = \ """\ 2 \n\ d / 2 \\\n\ -----\\x + log(x)/\n\ dy dx \ """ ucode_str_1 = \ u("""\ 2 \n\ d ⎛ 2⎞\n\ ─────⎝log(x) + x ⎠\n\ dy dx \ """) ucode_str_2 = \ u("""\ 2 \n\ d ⎛ 2 ⎞\n\ ─────⎝x + log(x)⎠\n\ dy dx \ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Derivative(2*x*y, y, x) + x**2 ascii_str_1 = \ """\ 2 \n\ d 2\n\ -----(2*x*y) + x \n\ dx dy \ """ ascii_str_2 = \ """\ 2 \n\ 2 d \n\ x + -----(2*x*y)\n\ dx dy \ """ ucode_str_1 = \ u("""\ 2 \n\ ∂ 2\n\ ─────(2⋅x⋅y) + x \n\ ∂x ∂y \ """) ucode_str_2 = \ u("""\ 2 \n\ 2 ∂ \n\ x + ─────(2⋅x⋅y)\n\ ∂x ∂y \ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Derivative(2*x*y, x, x) ascii_str = \ """\ 2 \n\ d \n\ ---(2*x*y)\n\ 2 \n\ dx \ """ ucode_str = \ u("""\ 2 \n\ ∂ \n\ ───(2⋅x⋅y)\n\ 2 \n\ ∂x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Derivative(2*x*y, x, 17) ascii_str = \ """\ 17 \n\ d \n\ ----(2*x*y)\n\ 17 \n\ dx \ """ ucode_str = \ u("""\ 17 \n\ ∂ \n\ ────(2⋅x⋅y)\n\ 17 \n\ ∂x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Derivative(2*x*y, x, x, y) ascii_str = \ """\ 3 \n\ d \n\ ------(2*x*y)\n\ 2 \n\ dy dx \ """ ucode_str = \ u("""\ 3 \n\ ∂ \n\ ──────(2⋅x⋅y)\n\ 2 \n\ ∂y ∂x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # Greek letters alpha = Symbol('alpha') beta = Function('beta') expr = beta(alpha).diff(alpha) ascii_str = \ """\ d \n\ ------(beta(alpha))\n\ dalpha \ """ ucode_str = \ u("""\ d \n\ ──(β(α))\n\ dα \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Derivative(f(x), (x, n)) ascii_str = \ """\ n \n\ d \n\ ---(f(x))\n\ n \n\ dx \ """ ucode_str = \ u("""\ n \n\ d \n\ ───(f(x))\n\ n \n\ dx \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_integrals(): expr = Integral(log(x), x) ascii_str = \ """\ / \n\ | \n\ | log(x) dx\n\ | \n\ / \ """ ucode_str = \ u("""\ ⌠ \n\ ⎮ log(x) dx\n\ ⌡ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**2, x) ascii_str = \ """\ / \n\ | \n\ | 2 \n\ | x dx\n\ | \n\ / \ """ ucode_str = \ u("""\ ⌠ \n\ ⎮ 2 \n\ ⎮ x dx\n\ ⌡ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral((sin(x))**2 / (tan(x))**2) ascii_str = \ """\ / \n\ | \n\ | 2 \n\ | sin (x) \n\ | ------- dx\n\ | 2 \n\ | tan (x) \n\ | \n\ / \ """ ucode_str = \ u("""\ ⌠ \n\ ⎮ 2 \n\ ⎮ sin (x) \n\ ⎮ ─────── dx\n\ ⎮ 2 \n\ ⎮ tan (x) \n\ ⌡ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**(2**x), x) ascii_str = \ """\ / \n\ | \n\ | / x\\ \n\ | \\2 / \n\ | x dx\n\ | \n\ / \ """ ucode_str = \ u("""\ ⌠ \n\ ⎮ ⎛ x⎞ \n\ ⎮ ⎝2 ⎠ \n\ ⎮ x dx\n\ ⌡ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**2, (x, 1, 2)) ascii_str = \ """\ 2 \n\ / \n\ | \n\ | 2 \n\ | x dx\n\ | \n\ / \n\ 1 \ """ ucode_str = \ u("""\ 2 \n\ ⌠ \n\ ⎮ 2 \n\ ⎮ x dx\n\ ⌡ \n\ 1 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**2, (x, Rational(1, 2), 10)) ascii_str = \ """\ 10 \n\ / \n\ | \n\ | 2 \n\ | x dx\n\ | \n\ / \n\ 1/2 \ """ ucode_str = \ u("""\ 10 \n\ ⌠ \n\ ⎮ 2 \n\ ⎮ x dx\n\ ⌡ \n\ 1/2 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**2*y**2, x, y) ascii_str = \ """\ / / \n\ | | \n\ | | 2 2 \n\ | | x *y dx dy\n\ | | \n\ / / \ """ ucode_str = \ u("""\ ⌠ ⌠ \n\ ⎮ ⎮ 2 2 \n\ ⎮ ⎮ x ⋅y dx dy\n\ ⌡ ⌡ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(sin(th)/cos(ph), (th, 0, pi), (ph, 0, 2*pi)) ascii_str = \ """\ 2*pi pi \n\ / / \n\ | | \n\ | | sin(theta) \n\ | | ---------- d(theta) d(phi)\n\ | | cos(phi) \n\ | | \n\ / / \n\ 0 0 \ """ ucode_str = \ u("""\ 2⋅π π \n\ ⌠ ⌠ \n\ ⎮ ⎮ sin(θ) \n\ ⎮ ⎮ ────── dθ dφ\n\ ⎮ ⎮ cos(φ) \n\ ⌡ ⌡ \n\ 0 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_matrix(): # Empty Matrix expr = Matrix() ascii_str = "[]" unicode_str = "[]" assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Matrix(2, 0, lambda i, j: 0) ascii_str = "[]" unicode_str = "[]" assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Matrix(0, 2, lambda i, j: 0) ascii_str = "[]" unicode_str = "[]" assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Matrix([[x**2 + 1, 1], [y, x + y]]) ascii_str_1 = \ """\ [ 2 ] [1 + x 1 ] [ ] [ y x + y]\ """ ascii_str_2 = \ """\ [ 2 ] [x + 1 1 ] [ ] [ y x + y]\ """ ucode_str_1 = \ u("""\ ⎡ 2 ⎤ ⎢1 + x 1 ⎥ ⎢ ⎥ ⎣ y x + y⎦\ """) ucode_str_2 = \ u("""\ ⎡ 2 ⎤ ⎢x + 1 1 ⎥ ⎢ ⎥ ⎣ y x + y⎦\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]]) ascii_str = \ """\ [x ] [- y theta] [y ] [ ] [ I*k*phi ] [0 e 1 ]\ """ ucode_str = \ u("""\ ⎡x ⎤ ⎢─ y θ⎥ ⎢y ⎥ ⎢ ⎥ ⎢ ⅈ⋅k⋅φ ⎥ ⎣0 ℯ 1⎦\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str unicode_str = \ u("""\ ⎡v̇_msc_00 0 0 ⎤ ⎢ ⎥ ⎢ 0 v̇_msc_01 0 ⎥ ⎢ ⎥ ⎣ 0 0 v̇_msc_02⎦\ """) expr = diag(*MatrixSymbol('vdot_msc',1,3)) assert upretty(expr) == unicode_str def test_pretty_ndim_arrays(): x, y, z, w = symbols("x y z w") for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray): # Basic: scalar array M = ArrayType(x) assert pretty(M) == "x" assert upretty(M) == "x" M = ArrayType([[1/x, y], [z, w]]) M1 = ArrayType([1/x, y, z]) M2 = tensorproduct(M1, M) M3 = tensorproduct(M, M) ascii_str = \ """\ [1 ]\n\ [- y]\n\ [x ]\n\ [ ]\n\ [z w]\ """ ucode_str = \ u("""\ ⎡1 ⎤\n\ ⎢─ y⎥\n\ ⎢x ⎥\n\ ⎢ ⎥\n\ ⎣z w⎦\ """) assert pretty(M) == ascii_str assert upretty(M) == ucode_str ascii_str = \ """\ [1 ]\n\ [- y z]\n\ [x ]\ """ ucode_str = \ u("""\ ⎡1 ⎤\n\ ⎢─ y z⎥\n\ ⎣x ⎦\ """) assert pretty(M1) == ascii_str assert upretty(M1) == ucode_str ascii_str = \ """\ [[1 y] ]\n\ [[-- -] [z ]]\n\ [[ 2 x] [ y 2 ] [- y*z]]\n\ [[x ] [ - y ] [x ]]\n\ [[ ] [ x ] [ ]]\n\ [[z w] [ ] [ 2 ]]\n\ [[- -] [y*z w*y] [z w*z]]\n\ [[x x] ]\ """ ucode_str = \ u("""\ ⎡⎡1 y⎤ ⎤\n\ ⎢⎢── ─⎥ ⎡z ⎤⎥\n\ ⎢⎢ 2 x⎥ ⎡ y 2 ⎤ ⎢─ y⋅z⎥⎥\n\ ⎢⎢x ⎥ ⎢ ─ y ⎥ ⎢x ⎥⎥\n\ ⎢⎢ ⎥ ⎢ x ⎥ ⎢ ⎥⎥\n\ ⎢⎢z w⎥ ⎢ ⎥ ⎢ 2 ⎥⎥\n\ ⎢⎢─ ─⎥ ⎣y⋅z w⋅y⎦ ⎣z w⋅z⎦⎥\n\ ⎣⎣x x⎦ ⎦\ """) assert pretty(M2) == ascii_str assert upretty(M2) == ucode_str ascii_str = \ """\ [ [1 y] ]\n\ [ [-- -] ]\n\ [ [ 2 x] [ y 2 ]]\n\ [ [x ] [ - y ]]\n\ [ [ ] [ x ]]\n\ [ [z w] [ ]]\n\ [ [- -] [y*z w*y]]\n\ [ [x x] ]\n\ [ ]\n\ [[z ] [ w ]]\n\ [[- y*z] [ - w*y]]\n\ [[x ] [ x ]]\n\ [[ ] [ ]]\n\ [[ 2 ] [ 2 ]]\n\ [[z w*z] [w*z w ]]\ """ ucode_str = \ u("""\ ⎡ ⎡1 y⎤ ⎤\n\ ⎢ ⎢── ─⎥ ⎥\n\ ⎢ ⎢ 2 x⎥ ⎡ y 2 ⎤⎥\n\ ⎢ ⎢x ⎥ ⎢ ─ y ⎥⎥\n\ ⎢ ⎢ ⎥ ⎢ x ⎥⎥\n\ ⎢ ⎢z w⎥ ⎢ ⎥⎥\n\ ⎢ ⎢─ ─⎥ ⎣y⋅z w⋅y⎦⎥\n\ ⎢ ⎣x x⎦ ⎥\n\ ⎢ ⎥\n\ ⎢⎡z ⎤ ⎡ w ⎤⎥\n\ ⎢⎢─ y⋅z⎥ ⎢ ─ w⋅y⎥⎥\n\ ⎢⎢x ⎥ ⎢ x ⎥⎥\n\ ⎢⎢ ⎥ ⎢ ⎥⎥\n\ ⎢⎢ 2 ⎥ ⎢ 2 ⎥⎥\n\ ⎣⎣z w⋅z⎦ ⎣w⋅z w ⎦⎦\ """) assert pretty(M3) == ascii_str assert upretty(M3) == ucode_str Mrow = ArrayType([[x, y, 1 / z]]) Mcolumn = ArrayType([[x], [y], [1 / z]]) Mcol2 = ArrayType([Mcolumn.tolist()]) ascii_str = \ """\ [[ 1]]\n\ [[x y -]]\n\ [[ z]]\ """ ucode_str = \ u("""\ ⎡⎡ 1⎤⎤\n\ ⎢⎢x y ─⎥⎥\n\ ⎣⎣ z⎦⎦\ """) assert pretty(Mrow) == ascii_str assert upretty(Mrow) == ucode_str ascii_str = \ """\ [x]\n\ [ ]\n\ [y]\n\ [ ]\n\ [1]\n\ [-]\n\ [z]\ """ ucode_str = \ u("""\ ⎡x⎤\n\ ⎢ ⎥\n\ ⎢y⎥\n\ ⎢ ⎥\n\ ⎢1⎥\n\ ⎢─⎥\n\ ⎣z⎦\ """) assert pretty(Mcolumn) == ascii_str assert upretty(Mcolumn) == ucode_str ascii_str = \ """\ [[x]]\n\ [[ ]]\n\ [[y]]\n\ [[ ]]\n\ [[1]]\n\ [[-]]\n\ [[z]]\ """ ucode_str = \ u("""\ ⎡⎡x⎤⎤\n\ ⎢⎢ ⎥⎥\n\ ⎢⎢y⎥⎥\n\ ⎢⎢ ⎥⎥\n\ ⎢⎢1⎥⎥\n\ ⎢⎢─⎥⎥\n\ ⎣⎣z⎦⎦\ """) assert pretty(Mcol2) == ascii_str assert upretty(Mcol2) == ucode_str def test_tensor_TensorProduct(): A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) assert upretty(TensorProduct(A, B)) == "A\u2297B" assert upretty(TensorProduct(A, B, A)) == "A\u2297B\u2297A" def test_diffgeom_print_WedgeProduct(): from sympy.diffgeom.rn import R2 from sympy.diffgeom import WedgeProduct wp = WedgeProduct(R2.dx, R2.dy) assert upretty(wp) == u("ⅆ x∧ⅆ y") def test_Adjoint(): X = MatrixSymbol('X', 2, 2) Y = MatrixSymbol('Y', 2, 2) assert pretty(Adjoint(X)) == " +\nX " assert pretty(Adjoint(X + Y)) == " +\n(X + Y) " assert pretty(Adjoint(X) + Adjoint(Y)) == " + +\nX + Y " assert pretty(Adjoint(X*Y)) == " +\n(X*Y) " assert pretty(Adjoint(Y)*Adjoint(X)) == " + +\nY *X " assert pretty(Adjoint(X**2)) == " +\n/ 2\\ \n\\X / " assert pretty(Adjoint(X)**2) == " 2\n/ +\\ \n\\X / " assert pretty(Adjoint(Inverse(X))) == " +\n/ -1\\ \n\\X / " assert pretty(Inverse(Adjoint(X))) == " -1\n/ +\\ \n\\X / " assert pretty(Adjoint(Transpose(X))) == " +\n/ T\\ \n\\X / " assert pretty(Transpose(Adjoint(X))) == " T\n/ +\\ \n\\X / " assert upretty(Adjoint(X)) == u" †\nX " assert upretty(Adjoint(X + Y)) == u" †\n(X + Y) " assert upretty(Adjoint(X) + Adjoint(Y)) == u" † †\nX + Y " assert upretty(Adjoint(X*Y)) == u" †\n(X⋅Y) " assert upretty(Adjoint(Y)*Adjoint(X)) == u" † †\nY ⋅X " assert upretty(Adjoint(X**2)) == \ u" †\n⎛ 2⎞ \n⎝X ⎠ " assert upretty(Adjoint(X)**2) == \ u" 2\n⎛ †⎞ \n⎝X ⎠ " assert upretty(Adjoint(Inverse(X))) == \ u" †\n⎛ -1⎞ \n⎝X ⎠ " assert upretty(Inverse(Adjoint(X))) == \ u" -1\n⎛ †⎞ \n⎝X ⎠ " assert upretty(Adjoint(Transpose(X))) == \ u" †\n⎛ T⎞ \n⎝X ⎠ " assert upretty(Transpose(Adjoint(X))) == \ u" T\n⎛ †⎞ \n⎝X ⎠ " def test_pretty_Trace_issue_9044(): X = Matrix([[1, 2], [3, 4]]) Y = Matrix([[2, 4], [6, 8]]) ascii_str_1 = \ """\ /[1 2]\\ tr|[ ]| \\[3 4]/\ """ ucode_str_1 = \ u("""\ ⎛⎡1 2⎤⎞ tr⎜⎢ ⎥⎟ ⎝⎣3 4⎦⎠\ """) ascii_str_2 = \ """\ /[1 2]\\ /[2 4]\\ tr|[ ]| + tr|[ ]| \\[3 4]/ \\[6 8]/\ """ ucode_str_2 = \ u("""\ ⎛⎡1 2⎤⎞ ⎛⎡2 4⎤⎞ tr⎜⎢ ⎥⎟ + tr⎜⎢ ⎥⎟ ⎝⎣3 4⎦⎠ ⎝⎣6 8⎦⎠\ """) assert pretty(Trace(X)) == ascii_str_1 assert upretty(Trace(X)) == ucode_str_1 assert pretty(Trace(X) + Trace(Y)) == ascii_str_2 assert upretty(Trace(X) + Trace(Y)) == ucode_str_2 def test_MatrixExpressions(): n = Symbol('n', integer=True) X = MatrixSymbol('X', n, n) assert pretty(X) == upretty(X) == "X" Y = X[1:2:3, 4:5:6] ascii_str = ucode_str = "X[1:3, 4:6]" assert pretty(Y) == ascii_str assert upretty(Y) == ucode_str Z = X[1:10:2] ascii_str = ucode_str = "X[1:10:2, :n]" assert pretty(Z) == ascii_str assert upretty(Z) == ucode_str # Apply function elementwise (`ElementwiseApplyFunc`): expr = (X.T*X).applyfunc(sin) ascii_str = """\ / T \\\n\ sin.\\X *X/\ """ ucode_str = u("""\ ⎛ T ⎞\n\ sin˳⎝X ⋅X⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str lamda = Lambda(x, 1/x) expr = (n*X).applyfunc(lamda) ascii_str = """\ / 1\\ \n\ |d -> -|.(n*X)\n\ \\ d/ \ """ ucode_str = u("""\ ⎛ 1⎞ \n\ ⎜d ↦ ─⎟˳(n⋅X)\n\ ⎝ d⎠ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_dotproduct(): from sympy.matrices import Matrix, MatrixSymbol from sympy.matrices.expressions.dotproduct import DotProduct n = symbols("n", integer=True) A = MatrixSymbol('A', n, 1) B = MatrixSymbol('B', n, 1) C = Matrix(1, 3, [1, 2, 3]) D = Matrix(1, 3, [1, 3, 4]) assert pretty(DotProduct(A, B)) == u"A*B" assert pretty(DotProduct(C, D)) == u"[1 2 3]*[1 3 4]" assert upretty(DotProduct(A, B)) == u"A⋅B" assert upretty(DotProduct(C, D)) == u"[1 2 3]⋅[1 3 4]" def test_pretty_piecewise(): expr = Piecewise((x, x < 1), (x**2, True)) ascii_str = \ """\ /x for x < 1\n\ | \n\ < 2 \n\ |x otherwise\n\ \\ \ """ ucode_str = \ u("""\ ⎧x for x < 1\n\ ⎪ \n\ ⎨ 2 \n\ ⎪x otherwise\n\ ⎩ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -Piecewise((x, x < 1), (x**2, True)) ascii_str = \ """\ //x for x < 1\\\n\ || |\n\ -|< 2 |\n\ ||x otherwise|\n\ \\\\ /\ """ ucode_str = \ u("""\ ⎛⎧x for x < 1⎞\n\ ⎜⎪ ⎟\n\ -⎜⎨ 2 ⎟\n\ ⎜⎪x otherwise⎟\n\ ⎝⎩ ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = x + Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2), (y**2, x > 2), (1, True)) + 1 ascii_str = \ """\ //x \\ \n\ ||- for x < 2| \n\ ||y | \n\ //x for x > 0\\ || | \n\ x + |< | + |< 2 | + 1\n\ \\\\y otherwise/ ||y for x > 2| \n\ || | \n\ ||1 otherwise| \n\ \\\\ / \ """ ucode_str = \ u("""\ ⎛⎧x ⎞ \n\ ⎜⎪─ for x < 2⎟ \n\ ⎜⎪y ⎟ \n\ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\ x + ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\ ⎜⎪ ⎟ \n\ ⎜⎪1 otherwise⎟ \n\ ⎝⎩ ⎠ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = x - Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2), (y**2, x > 2), (1, True)) + 1 ascii_str = \ """\ //x \\ \n\ ||- for x < 2| \n\ ||y | \n\ //x for x > 0\\ || | \n\ x - |< | + |< 2 | + 1\n\ \\\\y otherwise/ ||y for x > 2| \n\ || | \n\ ||1 otherwise| \n\ \\\\ / \ """ ucode_str = \ u("""\ ⎛⎧x ⎞ \n\ ⎜⎪─ for x < 2⎟ \n\ ⎜⎪y ⎟ \n\ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\ x - ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\ ⎜⎪ ⎟ \n\ ⎜⎪1 otherwise⎟ \n\ ⎝⎩ ⎠ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = x*Piecewise((x, x > 0), (y, True)) ascii_str = \ """\ //x for x > 0\\\n\ x*|< |\n\ \\\\y otherwise/\ """ ucode_str = \ u("""\ ⎛⎧x for x > 0⎞\n\ x⋅⎜⎨ ⎟\n\ ⎝⎩y otherwise⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x > 2), (1, True)) ascii_str = \ """\ //x \\\n\ ||- for x < 2|\n\ ||y |\n\ //x for x > 0\\ || |\n\ |< |*|< 2 |\n\ \\\\y otherwise/ ||y for x > 2|\n\ || |\n\ ||1 otherwise|\n\ \\\\ /\ """ ucode_str = \ u("""\ ⎛⎧x ⎞\n\ ⎜⎪─ for x < 2⎟\n\ ⎜⎪y ⎟\n\ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\ ⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\ ⎜⎪ ⎟\n\ ⎜⎪1 otherwise⎟\n\ ⎝⎩ ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x > 2), (1, True)) ascii_str = \ """\ //x \\\n\ ||- for x < 2|\n\ ||y |\n\ //x for x > 0\\ || |\n\ -|< |*|< 2 |\n\ \\\\y otherwise/ ||y for x > 2|\n\ || |\n\ ||1 otherwise|\n\ \\\\ /\ """ ucode_str = \ u("""\ ⎛⎧x ⎞\n\ ⎜⎪─ for x < 2⎟\n\ ⎜⎪y ⎟\n\ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\ -⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\ ⎜⎪ ⎟\n\ ⎜⎪1 otherwise⎟\n\ ⎝⎩ ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Piecewise((0, Abs(1/y) < 1), (1, Abs(y) < 1), (y*meijerg(((2, 1), ()), ((), (1, 0)), 1/y), True)) ascii_str = \ """\ / 1 \n\ | 0 for --- < 1\n\ | |y| \n\ | \n\ < 1 for |y| < 1\n\ | \n\ | __0, 2 /2, 1 | 1\\ \n\ |y*/__ | | -| otherwise \n\ \\ \\_|2, 2 \\ 1, 0 | y/ \ """ ucode_str = \ u("""\ ⎧ 1 \n\ ⎪ 0 for ─── < 1\n\ ⎪ │y│ \n\ ⎪ \n\ ⎨ 1 for │y│ < 1\n\ ⎪ \n\ ⎪ ╭─╮0, 2 ⎛2, 1 │ 1⎞ \n\ ⎪y⋅│╶┐ ⎜ │ ─⎟ otherwise \n\ ⎩ ╰─╯2, 2 ⎝ 1, 0 │ y⎠ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # XXX: We have to use evaluate=False here because Piecewise._eval_power # denests the power. expr = Pow(Piecewise((x, x > 0), (y, True)), 2, evaluate=False) ascii_str = \ """\ 2\n\ //x for x > 0\\ \n\ |< | \n\ \\\\y otherwise/ \ """ ucode_str = \ u("""\ 2\n\ ⎛⎧x for x > 0⎞ \n\ ⎜⎨ ⎟ \n\ ⎝⎩y otherwise⎠ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_ITE(): expr = ITE(x, y, z) assert pretty(expr) == ( '/y for x \n' '< \n' '\\z otherwise' ) assert upretty(expr) == u("""\ ⎧y for x \n\ ⎨ \n\ ⎩z otherwise\ """) def test_pretty_seq(): expr = () ascii_str = \ """\ ()\ """ ucode_str = \ u("""\ ()\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = [] ascii_str = \ """\ []\ """ ucode_str = \ u("""\ []\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = {} expr_2 = {} ascii_str = \ """\ {}\ """ ucode_str = \ u("""\ {}\ """) assert pretty(expr) == ascii_str assert pretty(expr_2) == ascii_str assert upretty(expr) == ucode_str assert upretty(expr_2) == ucode_str expr = (1/x,) ascii_str = \ """\ 1 \n\ (-,)\n\ x \ """ ucode_str = \ u("""\ ⎛1 ⎞\n\ ⎜─,⎟\n\ ⎝x ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = [x**2, 1/x, x, y, sin(th)**2/cos(ph)**2] ascii_str = \ """\ 2 \n\ 2 1 sin (theta) \n\ [x , -, x, y, -----------]\n\ x 2 \n\ cos (phi) \ """ ucode_str = \ u("""\ ⎡ 2 ⎤\n\ ⎢ 2 1 sin (θ)⎥\n\ ⎢x , ─, x, y, ───────⎥\n\ ⎢ x 2 ⎥\n\ ⎣ cos (φ)⎦\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x**2, 1/x, x, y, sin(th)**2/cos(ph)**2) ascii_str = \ """\ 2 \n\ 2 1 sin (theta) \n\ (x , -, x, y, -----------)\n\ x 2 \n\ cos (phi) \ """ ucode_str = \ u("""\ ⎛ 2 ⎞\n\ ⎜ 2 1 sin (θ)⎟\n\ ⎜x , ─, x, y, ───────⎟\n\ ⎜ x 2 ⎟\n\ ⎝ cos (φ)⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Tuple(x**2, 1/x, x, y, sin(th)**2/cos(ph)**2) ascii_str = \ """\ 2 \n\ 2 1 sin (theta) \n\ (x , -, x, y, -----------)\n\ x 2 \n\ cos (phi) \ """ ucode_str = \ u("""\ ⎛ 2 ⎞\n\ ⎜ 2 1 sin (θ)⎟\n\ ⎜x , ─, x, y, ───────⎟\n\ ⎜ x 2 ⎟\n\ ⎝ cos (φ)⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = {x: sin(x)} expr_2 = Dict({x: sin(x)}) ascii_str = \ """\ {x: sin(x)}\ """ ucode_str = \ u("""\ {x: sin(x)}\ """) assert pretty(expr) == ascii_str assert pretty(expr_2) == ascii_str assert upretty(expr) == ucode_str assert upretty(expr_2) == ucode_str expr = {1/x: 1/y, x: sin(x)**2} expr_2 = Dict({1/x: 1/y, x: sin(x)**2}) ascii_str = \ """\ 1 1 2 \n\ {-: -, x: sin (x)}\n\ x y \ """ ucode_str = \ u("""\ ⎧1 1 2 ⎫\n\ ⎨─: ─, x: sin (x)⎬\n\ ⎩x y ⎭\ """) assert pretty(expr) == ascii_str assert pretty(expr_2) == ascii_str assert upretty(expr) == ucode_str assert upretty(expr_2) == ucode_str # There used to be a bug with pretty-printing sequences of even height. expr = [x**2] ascii_str = \ """\ 2 \n\ [x ]\ """ ucode_str = \ u("""\ ⎡ 2⎤\n\ ⎣x ⎦\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x**2,) ascii_str = \ """\ 2 \n\ (x ,)\ """ ucode_str = \ u("""\ ⎛ 2 ⎞\n\ ⎝x ,⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Tuple(x**2) ascii_str = \ """\ 2 \n\ (x ,)\ """ ucode_str = \ u("""\ ⎛ 2 ⎞\n\ ⎝x ,⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = {x**2: 1} expr_2 = Dict({x**2: 1}) ascii_str = \ """\ 2 \n\ {x : 1}\ """ ucode_str = \ u("""\ ⎧ 2 ⎫\n\ ⎨x : 1⎬\n\ ⎩ ⎭\ """) assert pretty(expr) == ascii_str assert pretty(expr_2) == ascii_str assert upretty(expr) == ucode_str assert upretty(expr_2) == ucode_str def test_any_object_in_sequence(): # Cf. issue 5306 b1 = Basic() b2 = Basic(Basic()) expr = [b2, b1] assert pretty(expr) == "[Basic(Basic()), Basic()]" assert upretty(expr) == u"[Basic(Basic()), Basic()]" expr = {b2, b1} assert pretty(expr) == "{Basic(), Basic(Basic())}" assert upretty(expr) == u"{Basic(), Basic(Basic())}" expr = {b2: b1, b1: b2} expr2 = Dict({b2: b1, b1: b2}) assert pretty(expr) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" assert pretty( expr2) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" assert upretty( expr) == u"{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" assert upretty( expr2) == u"{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" def test_print_builtin_set(): assert pretty(set()) == 'set()' assert upretty(set()) == u'set()' assert pretty(frozenset()) == 'frozenset()' assert upretty(frozenset()) == u'frozenset()' s1 = {1/x, x} s2 = frozenset(s1) assert pretty(s1) == \ """\ 1 \n\ {-, x} x \ """ assert upretty(s1) == \ u"""\ ⎧1 ⎫ ⎨─, x⎬ ⎩x ⎭\ """ assert pretty(s2) == \ """\ 1 \n\ frozenset({-, x}) x \ """ assert upretty(s2) == \ u"""\ ⎛⎧1 ⎫⎞ frozenset⎜⎨─, x⎬⎟ ⎝⎩x ⎭⎠\ """ def test_pretty_sets(): s = FiniteSet assert pretty(s(*[x*y, x**2])) == \ """\ 2 \n\ {x , x*y}\ """ assert pretty(s(*range(1, 6))) == "{1, 2, 3, 4, 5}" assert pretty(s(*range(1, 13))) == "{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}" assert pretty(set([x*y, x**2])) == \ """\ 2 \n\ {x , x*y}\ """ assert pretty(set(range(1, 6))) == "{1, 2, 3, 4, 5}" assert pretty(set(range(1, 13))) == \ "{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}" assert pretty(frozenset([x*y, x**2])) == \ """\ 2 \n\ frozenset({x , x*y})\ """ assert pretty(frozenset(range(1, 6))) == "frozenset({1, 2, 3, 4, 5})" assert pretty(frozenset(range(1, 13))) == \ "frozenset({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12})" assert pretty(Range(0, 3, 1)) == '{0, 1, 2}' ascii_str = '{0, 1, ..., 29}' ucode_str = u'{0, 1, …, 29}' assert pretty(Range(0, 30, 1)) == ascii_str assert upretty(Range(0, 30, 1)) == ucode_str ascii_str = '{30, 29, ..., 2}' ucode_str = u('{30, 29, …, 2}') assert pretty(Range(30, 1, -1)) == ascii_str assert upretty(Range(30, 1, -1)) == ucode_str ascii_str = '{0, 2, ...}' ucode_str = u'{0, 2, …}' assert pretty(Range(0, oo, 2)) == ascii_str assert upretty(Range(0, oo, 2)) == ucode_str ascii_str = '{..., 2, 0}' ucode_str = u('{…, 2, 0}') assert pretty(Range(oo, -2, -2)) == ascii_str assert upretty(Range(oo, -2, -2)) == ucode_str ascii_str = '{-2, -3, ...}' ucode_str = u('{-2, -3, …}') assert pretty(Range(-2, -oo, -1)) == ascii_str assert upretty(Range(-2, -oo, -1)) == ucode_str def test_pretty_SetExpr(): iv = Interval(1, 3) se = SetExpr(iv) ascii_str = "SetExpr([1, 3])" ucode_str = u("SetExpr([1, 3])") assert pretty(se) == ascii_str assert upretty(se) == ucode_str def test_pretty_ImageSet(): imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4}) ascii_str = '{x + y | x in {1, 2, 3} , y in {3, 4}}' ucode_str = u('{x + y | x ∊ {1, 2, 3} , y ∊ {3, 4}}') assert pretty(imgset) == ascii_str assert upretty(imgset) == ucode_str imgset = ImageSet(Lambda(((x, y),), x + y), ProductSet({1, 2, 3}, {3, 4})) ascii_str = '{x + y | (x, y) in {1, 2, 3} x {3, 4}}' ucode_str = u('{x + y | (x, y) ∊ {1, 2, 3} × {3, 4}}') assert pretty(imgset) == ascii_str assert upretty(imgset) == ucode_str imgset = ImageSet(Lambda(x, x**2), S.Naturals) ascii_str = \ ' 2 \n'\ '{x | x in Naturals}' ucode_str = u('''\ ⎧ 2 ⎫\n\ ⎨x | x ∊ ℕ⎬\n\ ⎩ ⎭''') assert pretty(imgset) == ascii_str assert upretty(imgset) == ucode_str def test_pretty_ConditionSet(): from sympy import ConditionSet ascii_str = '{x | x in (-oo, oo) and sin(x) = 0}' ucode_str = u'{x | x ∊ ℝ ∧ sin(x) = 0}' assert pretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ascii_str assert upretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ucode_str assert pretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == '{1}' assert upretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == u'{1}' assert pretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == "EmptySet" assert upretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == u"∅" assert pretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == '{2}' assert upretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == u'{2}' def test_pretty_ComplexRegion(): from sympy import ComplexRegion ucode_str = u'{x + y⋅ⅈ | x, y ∊ [3, 5] × [4, 6]}' assert upretty(ComplexRegion(Interval(3, 5)*Interval(4, 6))) == ucode_str ucode_str = u'{r⋅(ⅈ⋅sin(θ) + cos(θ)) | r, θ ∊ [0, 1] × [0, 2⋅π)}' assert upretty(ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)) == ucode_str def test_pretty_Union_issue_10414(): a, b = Interval(2, 3), Interval(4, 7) ucode_str = u'[2, 3] ∪ [4, 7]' ascii_str = '[2, 3] U [4, 7]' assert upretty(Union(a, b)) == ucode_str assert pretty(Union(a, b)) == ascii_str def test_pretty_Intersection_issue_10414(): x, y, z, w = symbols('x, y, z, w') a, b = Interval(x, y), Interval(z, w) ucode_str = u'[x, y] ∩ [z, w]' ascii_str = '[x, y] n [z, w]' assert upretty(Intersection(a, b)) == ucode_str assert pretty(Intersection(a, b)) == ascii_str def test_ProductSet_exponent(): ucode_str = ' 1\n[0, 1] ' assert upretty(Interval(0, 1)**1) == ucode_str ucode_str = ' 2\n[0, 1] ' assert upretty(Interval(0, 1)**2) == ucode_str def test_ProductSet_parenthesis(): ucode_str = u'([4, 7] × {1, 2}) ∪ ([2, 3] × [4, 7])' a, b, c = Interval(2, 3), Interval(4, 7), Interval(1, 9) assert upretty(Union(a*b, b*FiniteSet(1, 2))) == ucode_str def test_ProductSet_prod_char_issue_10413(): ascii_str = '[2, 3] x [4, 7]' ucode_str = u'[2, 3] × [4, 7]' a, b = Interval(2, 3), Interval(4, 7) assert pretty(a*b) == ascii_str assert upretty(a*b) == ucode_str def test_pretty_sequences(): s1 = SeqFormula(a**2, (0, oo)) s2 = SeqPer((1, 2)) ascii_str = '[0, 1, 4, 9, ...]' ucode_str = u'[0, 1, 4, 9, …]' assert pretty(s1) == ascii_str assert upretty(s1) == ucode_str ascii_str = '[1, 2, 1, 2, ...]' ucode_str = u'[1, 2, 1, 2, …]' assert pretty(s2) == ascii_str assert upretty(s2) == ucode_str s3 = SeqFormula(a**2, (0, 2)) s4 = SeqPer((1, 2), (0, 2)) ascii_str = '[0, 1, 4]' ucode_str = u'[0, 1, 4]' assert pretty(s3) == ascii_str assert upretty(s3) == ucode_str ascii_str = '[1, 2, 1]' ucode_str = u'[1, 2, 1]' assert pretty(s4) == ascii_str assert upretty(s4) == ucode_str s5 = SeqFormula(a**2, (-oo, 0)) s6 = SeqPer((1, 2), (-oo, 0)) ascii_str = '[..., 9, 4, 1, 0]' ucode_str = u'[…, 9, 4, 1, 0]' assert pretty(s5) == ascii_str assert upretty(s5) == ucode_str ascii_str = '[..., 2, 1, 2, 1]' ucode_str = u'[…, 2, 1, 2, 1]' assert pretty(s6) == ascii_str assert upretty(s6) == ucode_str ascii_str = '[1, 3, 5, 11, ...]' ucode_str = u'[1, 3, 5, 11, …]' assert pretty(SeqAdd(s1, s2)) == ascii_str assert upretty(SeqAdd(s1, s2)) == ucode_str ascii_str = '[1, 3, 5]' ucode_str = u'[1, 3, 5]' assert pretty(SeqAdd(s3, s4)) == ascii_str assert upretty(SeqAdd(s3, s4)) == ucode_str ascii_str = '[..., 11, 5, 3, 1]' ucode_str = u'[…, 11, 5, 3, 1]' assert pretty(SeqAdd(s5, s6)) == ascii_str assert upretty(SeqAdd(s5, s6)) == ucode_str ascii_str = '[0, 2, 4, 18, ...]' ucode_str = u'[0, 2, 4, 18, …]' assert pretty(SeqMul(s1, s2)) == ascii_str assert upretty(SeqMul(s1, s2)) == ucode_str ascii_str = '[0, 2, 4]' ucode_str = u'[0, 2, 4]' assert pretty(SeqMul(s3, s4)) == ascii_str assert upretty(SeqMul(s3, s4)) == ucode_str ascii_str = '[..., 18, 4, 2, 0]' ucode_str = u'[…, 18, 4, 2, 0]' assert pretty(SeqMul(s5, s6)) == ascii_str assert upretty(SeqMul(s5, s6)) == ucode_str # Sequences with symbolic limits, issue 12629 s7 = SeqFormula(a**2, (a, 0, x)) raises(NotImplementedError, lambda: pretty(s7)) raises(NotImplementedError, lambda: upretty(s7)) b = Symbol('b') s8 = SeqFormula(b*a**2, (a, 0, 2)) ascii_str = u'[0, b, 4*b]' ucode_str = u'[0, b, 4⋅b]' assert pretty(s8) == ascii_str assert upretty(s8) == ucode_str def test_pretty_FourierSeries(): f = fourier_series(x, (x, -pi, pi)) ascii_str = \ """\ 2*sin(3*x) \n\ 2*sin(x) - sin(2*x) + ---------- + ...\n\ 3 \ """ ucode_str = \ u("""\ 2⋅sin(3⋅x) \n\ 2⋅sin(x) - sin(2⋅x) + ────────── + …\n\ 3 \ """) assert pretty(f) == ascii_str assert upretty(f) == ucode_str def test_pretty_FormalPowerSeries(): f = fps(log(1 + x)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ -k k \n\ \\ -(-1) *x \n\ / -----------\n\ / k \n\ /___, \n\ k = 1 \ """ ucode_str = \ u("""\ ∞ \n\ ____ \n\ ╲ \n\ ╲ -k k \n\ ╲ -(-1) ⋅x \n\ ╱ ───────────\n\ ╱ k \n\ ╱ \n\ ‾‾‾‾ \n\ k = 1 \ """) assert pretty(f) == ascii_str assert upretty(f) == ucode_str def test_pretty_limits(): expr = Limit(x, x, oo) ascii_str = \ """\ lim x\n\ x->oo \ """ ucode_str = \ u("""\ lim x\n\ x─→∞ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(x**2, x, 0) ascii_str = \ """\ 2\n\ lim x \n\ x->0+ \ """ ucode_str = \ u("""\ 2\n\ lim x \n\ x─→0⁺ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(1/x, x, 0) ascii_str = \ """\ 1\n\ lim -\n\ x->0+x\ """ ucode_str = \ u("""\ 1\n\ lim ─\n\ x─→0⁺x\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(sin(x)/x, x, 0) ascii_str = \ """\ /sin(x)\\\n\ lim |------|\n\ x->0+\\ x /\ """ ucode_str = \ u("""\ ⎛sin(x)⎞\n\ lim ⎜──────⎟\n\ x─→0⁺⎝ x ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(sin(x)/x, x, 0, "-") ascii_str = \ """\ /sin(x)\\\n\ lim |------|\n\ x->0-\\ x /\ """ ucode_str = \ u("""\ ⎛sin(x)⎞\n\ lim ⎜──────⎟\n\ x─→0⁻⎝ x ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(x + sin(x), x, 0) ascii_str = \ """\ lim (x + sin(x))\n\ x->0+ \ """ ucode_str = \ u("""\ lim (x + sin(x))\n\ x─→0⁺ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(x, x, 0)**2 ascii_str = \ """\ 2\n\ / lim x\\ \n\ \\x->0+ / \ """ ucode_str = \ u("""\ 2\n\ ⎛ lim x⎞ \n\ ⎝x─→0⁺ ⎠ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(x*Limit(y/2,y,0), x, 0) ascii_str = \ """\ / /y\\\\\n\ lim |x* lim |-||\n\ x->0+\\ y->0+\\2//\ """ ucode_str = \ u("""\ ⎛ ⎛y⎞⎞\n\ lim ⎜x⋅ lim ⎜─⎟⎟\n\ x─→0⁺⎝ y─→0⁺⎝2⎠⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2*Limit(x*Limit(y/2,y,0), x, 0) ascii_str = \ """\ / /y\\\\\n\ 2* lim |x* lim |-||\n\ x->0+\\ y->0+\\2//\ """ ucode_str = \ u("""\ ⎛ ⎛y⎞⎞\n\ 2⋅ lim ⎜x⋅ lim ⎜─⎟⎟\n\ x─→0⁺⎝ y─→0⁺⎝2⎠⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(sin(x), x, 0, dir='+-') ascii_str = \ """\ lim sin(x)\n\ x->0 \ """ ucode_str = \ u("""\ lim sin(x)\n\ x─→0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_ComplexRootOf(): expr = rootof(x**5 + 11*x - 2, 0) ascii_str = \ """\ / 5 \\\n\ CRootOf\\x + 11*x - 2, 0/\ """ ucode_str = \ u("""\ ⎛ 5 ⎞\n\ CRootOf⎝x + 11⋅x - 2, 0⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_RootSum(): expr = RootSum(x**5 + 11*x - 2, auto=False) ascii_str = \ """\ / 5 \\\n\ RootSum\\x + 11*x - 2/\ """ ucode_str = \ u("""\ ⎛ 5 ⎞\n\ RootSum⎝x + 11⋅x - 2⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = RootSum(x**5 + 11*x - 2, Lambda(z, exp(z))) ascii_str = \ """\ / 5 z\\\n\ RootSum\\x + 11*x - 2, z -> e /\ """ ucode_str = \ u("""\ ⎛ 5 z⎞\n\ RootSum⎝x + 11⋅x - 2, z ↦ ℯ ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_GroebnerBasis(): expr = groebner([], x, y) ascii_str = \ """\ GroebnerBasis([], x, y, domain=ZZ, order=lex)\ """ ucode_str = \ u("""\ GroebnerBasis([], x, y, domain=ℤ, order=lex)\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1] expr = groebner(F, x, y, order='grlex') ascii_str = \ """\ /[ 2 2 ] \\\n\ GroebnerBasis\\[x - x - 3*y + 1, y - 2*x + y - 1], x, y, domain=ZZ, order=grlex/\ """ ucode_str = \ u("""\ ⎛⎡ 2 2 ⎤ ⎞\n\ GroebnerBasis⎝⎣x - x - 3⋅y + 1, y - 2⋅x + y - 1⎦, x, y, domain=ℤ, order=grlex⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = expr.fglm('lex') ascii_str = \ """\ /[ 2 4 3 2 ] \\\n\ GroebnerBasis\\[2*x - y - y + 1, y + 2*y - 3*y - 16*y + 7], x, y, domain=ZZ, order=lex/\ """ ucode_str = \ u("""\ ⎛⎡ 2 4 3 2 ⎤ ⎞\n\ GroebnerBasis⎝⎣2⋅x - y - y + 1, y + 2⋅y - 3⋅y - 16⋅y + 7⎦, x, y, domain=ℤ, order=lex⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_UniversalSet(): assert pretty(S.UniversalSet) == "UniversalSet" assert upretty(S.UniversalSet) == u'𝕌' def test_pretty_Boolean(): expr = Not(x, evaluate=False) assert pretty(expr) == "Not(x)" assert upretty(expr) == u"¬x" expr = And(x, y) assert pretty(expr) == "And(x, y)" assert upretty(expr) == u"x ∧ y" expr = Or(x, y) assert pretty(expr) == "Or(x, y)" assert upretty(expr) == u"x ∨ y" syms = symbols('a:f') expr = And(*syms) assert pretty(expr) == "And(a, b, c, d, e, f)" assert upretty(expr) == u"a ∧ b ∧ c ∧ d ∧ e ∧ f" expr = Or(*syms) assert pretty(expr) == "Or(a, b, c, d, e, f)" assert upretty(expr) == u"a ∨ b ∨ c ∨ d ∨ e ∨ f" expr = Xor(x, y, evaluate=False) assert pretty(expr) == "Xor(x, y)" assert upretty(expr) == u"x ⊻ y" expr = Nand(x, y, evaluate=False) assert pretty(expr) == "Nand(x, y)" assert upretty(expr) == u"x ⊼ y" expr = Nor(x, y, evaluate=False) assert pretty(expr) == "Nor(x, y)" assert upretty(expr) == u"x ⊽ y" expr = Implies(x, y, evaluate=False) assert pretty(expr) == "Implies(x, y)" assert upretty(expr) == u"x → y" # don't sort args expr = Implies(y, x, evaluate=False) assert pretty(expr) == "Implies(y, x)" assert upretty(expr) == u"y → x" expr = Equivalent(x, y, evaluate=False) assert pretty(expr) == "Equivalent(x, y)" assert upretty(expr) == u"x ⇔ y" expr = Equivalent(y, x, evaluate=False) assert pretty(expr) == "Equivalent(x, y)" assert upretty(expr) == u"x ⇔ y" def test_pretty_Domain(): expr = FF(23) assert pretty(expr) == "GF(23)" assert upretty(expr) == u"ℤ₂₃" expr = ZZ assert pretty(expr) == "ZZ" assert upretty(expr) == u"ℤ" expr = QQ assert pretty(expr) == "QQ" assert upretty(expr) == u"ℚ" expr = RR assert pretty(expr) == "RR" assert upretty(expr) == u"ℝ" expr = QQ[x] assert pretty(expr) == "QQ[x]" assert upretty(expr) == u"ℚ[x]" expr = QQ[x, y] assert pretty(expr) == "QQ[x, y]" assert upretty(expr) == u"ℚ[x, y]" expr = ZZ.frac_field(x) assert pretty(expr) == "ZZ(x)" assert upretty(expr) == u"ℤ(x)" expr = ZZ.frac_field(x, y) assert pretty(expr) == "ZZ(x, y)" assert upretty(expr) == u"ℤ(x, y)" expr = QQ.poly_ring(x, y, order=grlex) assert pretty(expr) == "QQ[x, y, order=grlex]" assert upretty(expr) == u"ℚ[x, y, order=grlex]" expr = QQ.poly_ring(x, y, order=ilex) assert pretty(expr) == "QQ[x, y, order=ilex]" assert upretty(expr) == u"ℚ[x, y, order=ilex]" def test_pretty_prec(): assert xpretty(S("0.3"), full_prec=True, wrap_line=False) == "0.300000000000000" assert xpretty(S("0.3"), full_prec="auto", wrap_line=False) == "0.300000000000000" assert xpretty(S("0.3"), full_prec=False, wrap_line=False) == "0.3" assert xpretty(S("0.3")*x, full_prec=True, use_unicode=False, wrap_line=False) in [ "0.300000000000000*x", "x*0.300000000000000" ] assert xpretty(S("0.3")*x, full_prec="auto", use_unicode=False, wrap_line=False) in [ "0.3*x", "x*0.3" ] assert xpretty(S("0.3")*x, full_prec=False, use_unicode=False, wrap_line=False) in [ "0.3*x", "x*0.3" ] def test_pprint(): import sys from sympy.core.compatibility import StringIO fd = StringIO() sso = sys.stdout sys.stdout = fd try: pprint(pi, use_unicode=False, wrap_line=False) finally: sys.stdout = sso assert fd.getvalue() == 'pi\n' def test_pretty_class(): """Test that the printer dispatcher correctly handles classes.""" class C: pass # C has no .__class__ and this was causing problems class D(object): pass assert pretty( C ) == str( C ) assert pretty( D ) == str( D ) def test_pretty_no_wrap_line(): huge_expr = 0 for i in range(20): huge_expr += i*sin(i + x) assert xpretty(huge_expr ).find('\n') != -1 assert xpretty(huge_expr, wrap_line=False).find('\n') == -1 def test_settings(): raises(TypeError, lambda: pretty(S(4), method="garbage")) def test_pretty_sum(): from sympy.abc import x, a, b, k, m, n expr = Sum(k**k, (k, 0, n)) ascii_str = \ """\ n \n\ ___ \n\ \\ ` \n\ \\ k\n\ / k \n\ /__, \n\ k = 0 \ """ ucode_str = \ u("""\ n \n\ ___ \n\ ╲ \n\ ╲ k\n\ ╱ k \n\ ╱ \n\ ‾‾‾ \n\ k = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**k, (k, oo, n)) ascii_str = \ """\ n \n\ ___ \n\ \\ ` \n\ \\ k\n\ / k \n\ /__, \n\ k = oo \ """ ucode_str = \ u("""\ n \n\ ___ \n\ ╲ \n\ ╲ k\n\ ╱ k \n\ ╱ \n\ ‾‾‾ \n\ k = ∞ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**(Integral(x**n, (x, -oo, oo))), (k, 0, n**n)) ascii_str = \ """\ n \n\ n \n\ ______ \n\ \\ ` \n\ \\ oo \n\ \\ / \n\ \\ | \n\ \\ | n \n\ ) | x dx\n\ / | \n\ / / \n\ / -oo \n\ / k \n\ /_____, \n\ k = 0 \ """ ucode_str = \ u("""\ n \n\ n \n\ ______ \n\ ╲ \n\ ╲ \n\ ╲ ∞ \n\ ╲ ⌠ \n\ ╲ ⎮ n \n\ ╱ ⎮ x dx\n\ ╱ ⌡ \n\ ╱ -∞ \n\ ╱ k \n\ ╱ \n\ ‾‾‾‾‾‾ \n\ k = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**( Integral(x**n, (x, -oo, oo))), (k, 0, Integral(x**x, (x, -oo, oo)))) ascii_str = \ """\ oo \n\ / \n\ | \n\ | x \n\ | x dx \n\ | \n\ / \n\ -oo \n\ ______ \n\ \\ ` \n\ \\ oo \n\ \\ / \n\ \\ | \n\ \\ | n \n\ ) | x dx\n\ / | \n\ / / \n\ / -oo \n\ / k \n\ /_____, \n\ k = 0 \ """ ucode_str = \ u("""\ ∞ \n\ ⌠ \n\ ⎮ x \n\ ⎮ x dx \n\ ⌡ \n\ -∞ \n\ ______ \n\ ╲ \n\ ╲ \n\ ╲ ∞ \n\ ╲ ⌠ \n\ ╲ ⎮ n \n\ ╱ ⎮ x dx\n\ ╱ ⌡ \n\ ╱ -∞ \n\ ╱ k \n\ ╱ \n\ ‾‾‾‾‾‾ \n\ k = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**(Integral(x**n, (x, -oo, oo))), ( k, x + n + x**2 + n**2 + (x/n) + (1/x), Integral(x**x, (x, -oo, oo)))) ascii_str = \ """\ oo \n\ / \n\ | \n\ | x \n\ | x dx \n\ | \n\ / \n\ -oo \n\ ______ \n\ \\ ` \n\ \\ oo \n\ \\ / \n\ \\ | \n\ \\ | n \n\ ) | x dx\n\ / | \n\ / / \n\ / -oo \n\ / k \n\ /_____, \n\ 2 2 1 x \n\ k = n + n + x + x + - + - \n\ x n \ """ ucode_str = \ u("""\ ∞ \n\ ⌠ \n\ ⎮ x \n\ ⎮ x dx \n\ ⌡ \n\ -∞ \n\ ______ \n\ ╲ \n\ ╲ \n\ ╲ ∞ \n\ ╲ ⌠ \n\ ╲ ⎮ n \n\ ╱ ⎮ x dx\n\ ╱ ⌡ \n\ ╱ -∞ \n\ ╱ k \n\ ╱ \n\ ‾‾‾‾‾‾ \n\ 2 2 1 x \n\ k = n + n + x + x + ─ + ─ \n\ x n \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**( Integral(x**n, (x, -oo, oo))), (k, 0, x + n + x**2 + n**2 + (x/n) + (1/x))) ascii_str = \ """\ 2 2 1 x \n\ n + n + x + x + - + - \n\ x n \n\ ______ \n\ \\ ` \n\ \\ oo \n\ \\ / \n\ \\ | \n\ \\ | n \n\ ) | x dx\n\ / | \n\ / / \n\ / -oo \n\ / k \n\ /_____, \n\ k = 0 \ """ ucode_str = \ u("""\ 2 2 1 x \n\ n + n + x + x + ─ + ─ \n\ x n \n\ ______ \n\ ╲ \n\ ╲ \n\ ╲ ∞ \n\ ╲ ⌠ \n\ ╲ ⎮ n \n\ ╱ ⎮ x dx\n\ ╱ ⌡ \n\ ╱ -∞ \n\ ╱ k \n\ ╱ \n\ ‾‾‾‾‾‾ \n\ k = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(x, (x, 0, oo)) ascii_str = \ """\ oo \n\ __ \n\ \\ ` \n\ ) x\n\ /_, \n\ x = 0 \ """ ucode_str = \ u("""\ ∞ \n\ ___ \n\ ╲ \n\ ╲ \n\ ╱ x\n\ ╱ \n\ ‾‾‾ \n\ x = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(x**2, (x, 0, oo)) ascii_str = \ u("""\ oo \n\ ___ \n\ \\ ` \n\ \\ 2\n\ / x \n\ /__, \n\ x = 0 \ """) ucode_str = \ u("""\ ∞ \n\ ___ \n\ ╲ \n\ ╲ 2\n\ ╱ x \n\ ╱ \n\ ‾‾‾ \n\ x = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(x/2, (x, 0, oo)) ascii_str = \ """\ oo \n\ ___ \n\ \\ ` \n\ \\ x\n\ ) -\n\ / 2\n\ /__, \n\ x = 0 \ """ ucode_str = \ u("""\ ∞ \n\ ____ \n\ ╲ \n\ ╲ \n\ ╲ x\n\ ╱ ─\n\ ╱ 2\n\ ╱ \n\ ‾‾‾‾ \n\ x = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(x**3/2, (x, 0, oo)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ 3\n\ \\ x \n\ / --\n\ / 2 \n\ /___, \n\ x = 0 \ """ ucode_str = \ u("""\ ∞ \n\ ____ \n\ ╲ \n\ ╲ 3\n\ ╲ x \n\ ╱ ──\n\ ╱ 2 \n\ ╱ \n\ ‾‾‾‾ \n\ x = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum((x**3*y**(x/2))**n, (x, 0, oo)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ n\n\ \\ / x\\ \n\ ) | -| \n\ / | 3 2| \n\ / \\x *y / \n\ /___, \n\ x = 0 \ """ ucode_str = \ u("""\ ∞ \n\ _____ \n\ ╲ \n\ ╲ \n\ ╲ n\n\ ╲ ⎛ x⎞ \n\ ╱ ⎜ ─⎟ \n\ ╱ ⎜ 3 2⎟ \n\ ╱ ⎝x ⋅y ⎠ \n\ ╱ \n\ ‾‾‾‾‾ \n\ x = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(1/x**2, (x, 0, oo)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ 1 \n\ \\ --\n\ / 2\n\ / x \n\ /___, \n\ x = 0 \ """ ucode_str = \ u("""\ ∞ \n\ ____ \n\ ╲ \n\ ╲ 1 \n\ ╲ ──\n\ ╱ 2\n\ ╱ x \n\ ╱ \n\ ‾‾‾‾ \n\ x = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(1/y**(a/b), (x, 0, oo)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ -a \n\ \\ ---\n\ / b \n\ / y \n\ /___, \n\ x = 0 \ """ ucode_str = \ u("""\ ∞ \n\ ____ \n\ ╲ \n\ ╲ -a \n\ ╲ ───\n\ ╱ b \n\ ╱ y \n\ ╱ \n\ ‾‾‾‾ \n\ x = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(1/y**(a/b), (x, 0, oo), (y, 1, 2)) ascii_str = \ """\ 2 oo \n\ ____ ____ \n\ \\ ` \\ ` \n\ \\ \\ -a\n\ \\ \\ --\n\ / / b \n\ / / y \n\ /___, /___, \n\ y = 1 x = 0 \ """ ucode_str = \ u("""\ 2 ∞ \n\ ____ ____ \n\ ╲ ╲ \n\ ╲ ╲ -a\n\ ╲ ╲ ──\n\ ╱ ╱ b \n\ ╱ ╱ y \n\ ╱ ╱ \n\ ‾‾‾‾ ‾‾‾‾ \n\ y = 1 x = 0 \ """) expr = Sum(1/(1 + 1/( 1 + 1/k)) + 1, (k, 111, 1 + 1/n), (k, 1/(1 + m), oo)) + 1/(1 + 1/k) ascii_str = \ """\ 1 \n\ 1 + - \n\ oo n \n\ _____ _____ \n\ \\ ` \\ ` \n\ \\ \\ / 1 \\ \n\ \\ \\ |1 + ---------| \n\ \\ \\ | 1 | 1 \n\ ) ) | 1 + -----| + -----\n\ / / | 1| 1\n\ / / | 1 + -| 1 + -\n\ / / \\ k/ k\n\ /____, /____, \n\ 1 k = 111 \n\ k = ----- \n\ m + 1 \ """ ucode_str = \ u("""\ 1 \n\ 1 + ─ \n\ ∞ n \n\ ______ ______ \n\ ╲ ╲ \n\ ╲ ╲ \n\ ╲ ╲ ⎛ 1 ⎞ \n\ ╲ ╲ ⎜1 + ─────────⎟ \n\ ╲ ╲ ⎜ 1 ⎟ 1 \n\ ╱ ╱ ⎜ 1 + ─────⎟ + ─────\n\ ╱ ╱ ⎜ 1⎟ 1\n\ ╱ ╱ ⎜ 1 + ─⎟ 1 + ─\n\ ╱ ╱ ⎝ k⎠ k\n\ ╱ ╱ \n\ ‾‾‾‾‾‾ ‾‾‾‾‾‾ \n\ 1 k = 111 \n\ k = ───── \n\ m + 1 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_units(): expr = joule ascii_str1 = \ """\ 2\n\ kilogram*meter \n\ ---------------\n\ 2 \n\ second \ """ unicode_str1 = \ u("""\ 2\n\ kilogram⋅meter \n\ ───────────────\n\ 2 \n\ second \ """) ascii_str2 = \ """\ 2\n\ 3*x*y*kilogram*meter \n\ ---------------------\n\ 2 \n\ second \ """ unicode_str2 = \ u("""\ 2\n\ 3⋅x⋅y⋅kilogram⋅meter \n\ ─────────────────────\n\ 2 \n\ second \ """) from sympy.physics.units import kg, m, s assert upretty(expr) == u("joule") assert pretty(expr) == "joule" assert upretty(expr.convert_to(kg*m**2/s**2)) == unicode_str1 assert pretty(expr.convert_to(kg*m**2/s**2)) == ascii_str1 assert upretty(3*kg*x*m**2*y/s**2) == unicode_str2 assert pretty(3*kg*x*m**2*y/s**2) == ascii_str2 def test_pretty_Subs(): f = Function('f') expr = Subs(f(x), x, ph**2) ascii_str = \ """\ (f(x))| 2\n\ |x=phi \ """ unicode_str = \ u("""\ (f(x))│ 2\n\ │x=φ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Subs(f(x).diff(x), x, 0) ascii_str = \ """\ /d \\| \n\ |--(f(x))|| \n\ \\dx /|x=0\ """ unicode_str = \ u("""\ ⎛d ⎞│ \n\ ⎜──(f(x))⎟│ \n\ ⎝dx ⎠│x=0\ """) assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2))) ascii_str = \ """\ /d \\| \n\ |--(f(x))|| \n\ |dx || \n\ |--------|| \n\ \\ y /|x=0, y=1/2\ """ unicode_str = \ u("""\ ⎛d ⎞│ \n\ ⎜──(f(x))⎟│ \n\ ⎜dx ⎟│ \n\ ⎜────────⎟│ \n\ ⎝ y ⎠│x=0, y=1/2\ """) assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str def test_gammas(): assert upretty(lowergamma(x, y)) == u"γ(x, y)" assert upretty(uppergamma(x, y)) == u"Γ(x, y)" assert xpretty(gamma(x), use_unicode=True) == u'Γ(x)' assert xpretty(gamma, use_unicode=True) == u'Γ' assert xpretty(symbols('gamma', cls=Function)(x), use_unicode=True) == u'γ(x)' assert xpretty(symbols('gamma', cls=Function), use_unicode=True) == u'γ' def test_beta(): assert xpretty(beta(x,y), use_unicode=True) == u'Β(x, y)' assert xpretty(beta(x,y), use_unicode=False) == u'B(x, y)' assert xpretty(beta, use_unicode=True) == u'Β' assert xpretty(beta, use_unicode=False) == u'B' mybeta = Function('beta') assert xpretty(mybeta(x), use_unicode=True) == u'β(x)' assert xpretty(mybeta(x, y, z), use_unicode=False) == u'beta(x, y, z)' assert xpretty(mybeta, use_unicode=True) == u'β' # test that notation passes to subclasses of the same name only def test_function_subclass_different_name(): class mygamma(gamma): pass assert xpretty(mygamma, use_unicode=True) == r"mygamma" assert xpretty(mygamma(x), use_unicode=True) == r"mygamma(x)" def test_SingularityFunction(): assert xpretty(SingularityFunction(x, 0, n), use_unicode=True) == ( """\ n\n\ <x> \ """) assert xpretty(SingularityFunction(x, 1, n), use_unicode=True) == ( """\ n\n\ <x - 1> \ """) assert xpretty(SingularityFunction(x, -1, n), use_unicode=True) == ( """\ n\n\ <x + 1> \ """) assert xpretty(SingularityFunction(x, a, n), use_unicode=True) == ( """\ n\n\ <-a + x> \ """) assert xpretty(SingularityFunction(x, y, n), use_unicode=True) == ( """\ n\n\ <x - y> \ """) assert xpretty(SingularityFunction(x, 0, n), use_unicode=False) == ( """\ n\n\ <x> \ """) assert xpretty(SingularityFunction(x, 1, n), use_unicode=False) == ( """\ n\n\ <x - 1> \ """) assert xpretty(SingularityFunction(x, -1, n), use_unicode=False) == ( """\ n\n\ <x + 1> \ """) assert xpretty(SingularityFunction(x, a, n), use_unicode=False) == ( """\ n\n\ <-a + x> \ """) assert xpretty(SingularityFunction(x, y, n), use_unicode=False) == ( """\ n\n\ <x - y> \ """) def test_deltas(): assert xpretty(DiracDelta(x), use_unicode=True) == u'δ(x)' assert xpretty(DiracDelta(x, 1), use_unicode=True) == \ u("""\ (1) \n\ δ (x)\ """) assert xpretty(x*DiracDelta(x, 1), use_unicode=True) == \ u("""\ (1) \n\ x⋅δ (x)\ """) def test_hyper(): expr = hyper((), (), z) ucode_str = \ u("""\ ┌─ ⎛ │ ⎞\n\ ├─ ⎜ │ z⎟\n\ 0╵ 0 ⎝ │ ⎠\ """) ascii_str = \ """\ _ \n\ |_ / | \\\n\ | | | z|\n\ 0 0 \\ | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper((), (1,), x) ucode_str = \ u("""\ ┌─ ⎛ │ ⎞\n\ ├─ ⎜ │ x⎟\n\ 0╵ 1 ⎝1 │ ⎠\ """) ascii_str = \ """\ _ \n\ |_ / | \\\n\ | | | x|\n\ 0 1 \\1 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper([2], [1], x) ucode_str = \ u("""\ ┌─ ⎛2 │ ⎞\n\ ├─ ⎜ │ x⎟\n\ 1╵ 1 ⎝1 │ ⎠\ """) ascii_str = \ """\ _ \n\ |_ /2 | \\\n\ | | | x|\n\ 1 1 \\1 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper((pi/3, -2*k), (3, 4, 5, -3), x) ucode_str = \ u("""\ ⎛ π │ ⎞\n\ ┌─ ⎜ ─, -2⋅k │ ⎟\n\ ├─ ⎜ 3 │ x⎟\n\ 2╵ 4 ⎜ │ ⎟\n\ ⎝3, 4, 5, -3 │ ⎠\ """) ascii_str = \ """\ \n\ _ / pi | \\\n\ |_ | --, -2*k | |\n\ | | 3 | x|\n\ 2 4 | | |\n\ \\3, 4, 5, -3 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper((pi, S('2/3'), -2*k), (3, 4, 5, -3), x**2) ucode_str = \ u("""\ ┌─ ⎛π, 2/3, -2⋅k │ 2⎞\n\ ├─ ⎜ │ x ⎟\n\ 3╵ 4 ⎝3, 4, 5, -3 │ ⎠\ """) ascii_str = \ """\ _ \n\ |_ /pi, 2/3, -2*k | 2\\\n\ | | | x |\n\ 3 4 \\ 3, 4, 5, -3 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper([1, 2], [3, 4], 1/(1/(1/(1/x + 1) + 1) + 1)) ucode_str = \ u("""\ ⎛ │ 1 ⎞\n\ ⎜ │ ─────────────⎟\n\ ⎜ │ 1 ⎟\n\ ┌─ ⎜1, 2 │ 1 + ─────────⎟\n\ ├─ ⎜ │ 1 ⎟\n\ 2╵ 2 ⎜3, 4 │ 1 + ─────⎟\n\ ⎜ │ 1⎟\n\ ⎜ │ 1 + ─⎟\n\ ⎝ │ x⎠\ """) ascii_str = \ """\ \n\ / | 1 \\\n\ | | -------------|\n\ _ | | 1 |\n\ |_ |1, 2 | 1 + ---------|\n\ | | | 1 |\n\ 2 2 |3, 4 | 1 + -----|\n\ | | 1|\n\ | | 1 + -|\n\ \\ | x/\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_meijerg(): expr = meijerg([pi, pi, x], [1], [0, 1], [1, 2, 3], z) ucode_str = \ u("""\ ╭─╮2, 3 ⎛π, π, x 1 │ ⎞\n\ │╶┐ ⎜ │ z⎟\n\ ╰─╯4, 5 ⎝ 0, 1 1, 2, 3 │ ⎠\ """) ascii_str = \ """\ __2, 3 /pi, pi, x 1 | \\\n\ /__ | | z|\n\ \\_|4, 5 \\ 0, 1 1, 2, 3 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = meijerg([1, pi/7], [2, pi, 5], [], [], z**2) ucode_str = \ u("""\ ⎛ π │ ⎞\n\ ╭─╮0, 2 ⎜1, ─ 2, π, 5 │ 2⎟\n\ │╶┐ ⎜ 7 │ z ⎟\n\ ╰─╯5, 0 ⎜ │ ⎟\n\ ⎝ │ ⎠\ """) ascii_str = \ """\ / pi | \\\n\ __0, 2 |1, -- 2, pi, 5 | 2|\n\ /__ | 7 | z |\n\ \\_|5, 0 | | |\n\ \\ | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ucode_str = \ u("""\ ╭─╮ 1, 10 ⎛1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 │ ⎞\n\ │╶┐ ⎜ │ z⎟\n\ ╰─╯11, 2 ⎝ 1 1 │ ⎠\ """) ascii_str = \ """\ __ 1, 10 /1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 | \\\n\ /__ | | z|\n\ \\_|11, 2 \\ 1 1 | /\ """ expr = meijerg([1]*10, [1], [1], [1], z) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = meijerg([1, 2, ], [4, 3], [3], [4, 5], 1/(1/(1/(1/x + 1) + 1) + 1)) ucode_str = \ u("""\ ⎛ │ 1 ⎞\n\ ⎜ │ ─────────────⎟\n\ ⎜ │ 1 ⎟\n\ ╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟\n\ │╶┐ ⎜ │ 1 ⎟\n\ ╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟\n\ ⎜ │ 1⎟\n\ ⎜ │ 1 + ─⎟\n\ ⎝ │ x⎠\ """) ascii_str = \ """\ / | 1 \\\n\ | | -------------|\n\ | | 1 |\n\ __1, 2 |1, 2 4, 3 | 1 + ---------|\n\ /__ | | 1 |\n\ \\_|4, 3 | 3 4, 5 | 1 + -----|\n\ | | 1|\n\ | | 1 + -|\n\ \\ | x/\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(expr, x) ucode_str = \ u("""\ ⌠ \n\ ⎮ ⎛ │ 1 ⎞ \n\ ⎮ ⎜ │ ─────────────⎟ \n\ ⎮ ⎜ │ 1 ⎟ \n\ ⎮ ╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟ \n\ ⎮ │╶┐ ⎜ │ 1 ⎟ dx\n\ ⎮ ╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟ \n\ ⎮ ⎜ │ 1⎟ \n\ ⎮ ⎜ │ 1 + ─⎟ \n\ ⎮ ⎝ │ x⎠ \n\ ⌡ \ """) ascii_str = \ """\ / \n\ | \n\ | / | 1 \\ \n\ | | | -------------| \n\ | | | 1 | \n\ | __1, 2 |1, 2 4, 3 | 1 + ---------| \n\ | /__ | | 1 | dx\n\ | \\_|4, 3 | 3 4, 5 | 1 + -----| \n\ | | | 1| \n\ | | | 1 + -| \n\ | \\ | x/ \n\ | \n\ / \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_noncommutative(): A, B, C = symbols('A,B,C', commutative=False) expr = A*B*C**-1 ascii_str = \ """\ -1\n\ A*B*C \ """ ucode_str = \ u("""\ -1\n\ A⋅B⋅C \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = C**-1*A*B ascii_str = \ """\ -1 \n\ C *A*B\ """ ucode_str = \ u("""\ -1 \n\ C ⋅A⋅B\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A*C**-1*B ascii_str = \ """\ -1 \n\ A*C *B\ """ ucode_str = \ u("""\ -1 \n\ A⋅C ⋅B\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A*C**-1*B/x ascii_str = \ """\ -1 \n\ A*C *B\n\ -------\n\ x \ """ ucode_str = \ u("""\ -1 \n\ A⋅C ⋅B\n\ ───────\n\ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_special_functions(): x, y = symbols("x y") # atan2 expr = atan2(y/sqrt(200), sqrt(x)) ascii_str = \ """\ / ___ \\\n\ |\\/ 2 *y ___|\n\ atan2|-------, \\/ x |\n\ \\ 20 /\ """ ucode_str = \ u("""\ ⎛√2⋅y ⎞\n\ atan2⎜────, √x⎟\n\ ⎝ 20 ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_geometry(): e = Segment((0, 1), (0, 2)) assert pretty(e) == 'Segment2D(Point2D(0, 1), Point2D(0, 2))' e = Ray((1, 1), angle=4.02*pi) assert pretty(e) == 'Ray2D(Point2D(1, 1), Point2D(2, tan(pi/50) + 1))' def test_expint(): expr = Ei(x) string = 'Ei(x)' assert pretty(expr) == string assert upretty(expr) == string expr = expint(1, z) ucode_str = u"E₁(z)" ascii_str = "expint(1, z)" assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str assert pretty(Shi(x)) == 'Shi(x)' assert pretty(Si(x)) == 'Si(x)' assert pretty(Ci(x)) == 'Ci(x)' assert pretty(Chi(x)) == 'Chi(x)' assert upretty(Shi(x)) == 'Shi(x)' assert upretty(Si(x)) == 'Si(x)' assert upretty(Ci(x)) == 'Ci(x)' assert upretty(Chi(x)) == 'Chi(x)' def test_elliptic_functions(): ascii_str = \ """\ / 1 \\\n\ K|-----|\n\ \\z + 1/\ """ ucode_str = \ u("""\ ⎛ 1 ⎞\n\ K⎜─────⎟\n\ ⎝z + 1⎠\ """) expr = elliptic_k(1/(z + 1)) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / | 1 \\\n\ F|1|-----|\n\ \\ |z + 1/\ """ ucode_str = \ u("""\ ⎛ │ 1 ⎞\n\ F⎜1│─────⎟\n\ ⎝ │z + 1⎠\ """) expr = elliptic_f(1, 1/(1 + z)) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / 1 \\\n\ E|-----|\n\ \\z + 1/\ """ ucode_str = \ u("""\ ⎛ 1 ⎞\n\ E⎜─────⎟\n\ ⎝z + 1⎠\ """) expr = elliptic_e(1/(z + 1)) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / | 1 \\\n\ E|1|-----|\n\ \\ |z + 1/\ """ ucode_str = \ u("""\ ⎛ │ 1 ⎞\n\ E⎜1│─────⎟\n\ ⎝ │z + 1⎠\ """) expr = elliptic_e(1, 1/(1 + z)) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / |4\\\n\ Pi|3|-|\n\ \\ |x/\ """ ucode_str = \ u("""\ ⎛ │4⎞\n\ Π⎜3│─⎟\n\ ⎝ │x⎠\ """) expr = elliptic_pi(3, 4/x) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / 4| \\\n\ Pi|3; -|6|\n\ \\ x| /\ """ ucode_str = \ u("""\ ⎛ 4│ ⎞\n\ Π⎜3; ─│6⎟\n\ ⎝ x│ ⎠\ """) expr = elliptic_pi(3, 4/x, 6) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_RandomDomain(): from sympy.stats import Normal, Die, Exponential, pspace, where X = Normal('x1', 0, 1) assert upretty(where(X > 0)) == u"Domain: 0 < x₁ ∧ x₁ < ∞" D = Die('d1', 6) assert upretty(where(D > 4)) == u'Domain: d₁ = 5 ∨ d₁ = 6' A = Exponential('a', 1) B = Exponential('b', 1) assert upretty(pspace(Tuple(A, B)).domain) == \ u'Domain: 0 ≤ a ∧ 0 ≤ b ∧ a < ∞ ∧ b < ∞' def test_PrettyPoly(): F = QQ.frac_field(x, y) R = QQ.poly_ring(x, y) expr = F.convert(x/(x + y)) assert pretty(expr) == "x/(x + y)" assert upretty(expr) == u"x/(x + y)" expr = R.convert(x + y) assert pretty(expr) == "x + y" assert upretty(expr) == u"x + y" def test_issue_6285(): assert pretty(Pow(2, -5, evaluate=False)) == '1 \n--\n 5\n2 ' assert pretty(Pow(x, (1/pi))) == 'pi___\n\\/ x ' def test_issue_6359(): assert pretty(Integral(x**2, x)**2) == \ """\ 2 / / \\ \n\ | | | \n\ | | 2 | \n\ | | x dx| \n\ | | | \n\ \\/ / \ """ assert upretty(Integral(x**2, x)**2) == \ u("""\ 2 ⎛⌠ ⎞ \n\ ⎜⎮ 2 ⎟ \n\ ⎜⎮ x dx⎟ \n\ ⎝⌡ ⎠ \ """) assert pretty(Sum(x**2, (x, 0, 1))**2) == \ """\ 2 / 1 \\ \n\ | ___ | \n\ | \\ ` | \n\ | \\ 2| \n\ | / x | \n\ | /__, | \n\ \\x = 0 / \ """ assert upretty(Sum(x**2, (x, 0, 1))**2) == \ u("""\ 2 ⎛ 1 ⎞ \n\ ⎜ ___ ⎟ \n\ ⎜ ╲ ⎟ \n\ ⎜ ╲ 2⎟ \n\ ⎜ ╱ x ⎟ \n\ ⎜ ╱ ⎟ \n\ ⎜ ‾‾‾ ⎟ \n\ ⎝x = 0 ⎠ \ """) assert pretty(Product(x**2, (x, 1, 2))**2) == \ """\ 2 / 2 \\ \n\ |______ | \n\ | | | 2| \n\ | | | x | \n\ | | | | \n\ \\x = 1 / \ """ assert upretty(Product(x**2, (x, 1, 2))**2) == \ u("""\ 2 ⎛ 2 ⎞ \n\ ⎜─┬──┬─ ⎟ \n\ ⎜ │ │ 2⎟ \n\ ⎜ │ │ x ⎟ \n\ ⎜ │ │ ⎟ \n\ ⎝x = 1 ⎠ \ """) f = Function('f') assert pretty(Derivative(f(x), x)**2) == \ """\ 2 /d \\ \n\ |--(f(x))| \n\ \\dx / \ """ assert upretty(Derivative(f(x), x)**2) == \ u("""\ 2 ⎛d ⎞ \n\ ⎜──(f(x))⎟ \n\ ⎝dx ⎠ \ """) def test_issue_6739(): ascii_str = \ """\ 1 \n\ -----\n\ ___\n\ \\/ x \ """ ucode_str = \ u("""\ 1 \n\ ──\n\ √x\ """) assert pretty(1/sqrt(x)) == ascii_str assert upretty(1/sqrt(x)) == ucode_str def test_complicated_symbol_unchanged(): for symb_name in ["dexpr2_d1tau", "dexpr2^d1tau"]: assert pretty(Symbol(symb_name)) == symb_name def test_categories(): from sympy.categories import (Object, IdentityMorphism, NamedMorphism, Category, Diagram, DiagramGrid) A1 = Object("A1") A2 = Object("A2") A3 = Object("A3") f1 = NamedMorphism(A1, A2, "f1") f2 = NamedMorphism(A2, A3, "f2") id_A1 = IdentityMorphism(A1) K1 = Category("K1") assert pretty(A1) == "A1" assert upretty(A1) == u"A₁" assert pretty(f1) == "f1:A1-->A2" assert upretty(f1) == u"f₁:A₁——▶A₂" assert pretty(id_A1) == "id:A1-->A1" assert upretty(id_A1) == u"id:A₁——▶A₁" assert pretty(f2*f1) == "f2*f1:A1-->A3" assert upretty(f2*f1) == u"f₂∘f₁:A₁——▶A₃" assert pretty(K1) == "K1" assert upretty(K1) == u"K₁" # Test how diagrams are printed. d = Diagram() assert pretty(d) == "EmptySet" assert upretty(d) == u"∅" d = Diagram({f1: "unique", f2: S.EmptySet}) assert pretty(d) == "{f2*f1:A1-->A3: EmptySet, id:A1-->A1: " \ "EmptySet, id:A2-->A2: EmptySet, id:A3-->A3: " \ "EmptySet, f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet}" assert upretty(d) == u("{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, " \ "id:A₂——▶A₂: ∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}") d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"}) assert pretty(d) == "{f2*f1:A1-->A3: EmptySet, id:A1-->A1: " \ "EmptySet, id:A2-->A2: EmptySet, id:A3-->A3: " \ "EmptySet, f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet}" \ " ==> {f2*f1:A1-->A3: {unique}}" assert upretty(d) == u("{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, id:A₂——▶A₂: " \ "∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}" \ " ══▶ {f₂∘f₁:A₁——▶A₃: {unique}}") grid = DiagramGrid(d) assert pretty(grid) == "A1 A2\n \nA3 " assert upretty(grid) == u"A₁ A₂\n \nA₃ " def test_PrettyModules(): R = QQ.old_poly_ring(x, y) F = R.free_module(2) M = F.submodule([x, y], [1, x**2]) ucode_str = \ u("""\ 2\n\ ℚ[x, y] \ """) ascii_str = \ """\ 2\n\ QQ[x, y] \ """ assert upretty(F) == ucode_str assert pretty(F) == ascii_str ucode_str = \ u("""\ ╱ ⎡ 2⎤╲\n\ ╲[x, y], ⎣1, x ⎦╱\ """) ascii_str = \ """\ 2 \n\ <[x, y], [1, x ]>\ """ assert upretty(M) == ucode_str assert pretty(M) == ascii_str I = R.ideal(x**2, y) ucode_str = \ u("""\ ╱ 2 ╲\n\ ╲x , y╱\ """) ascii_str = \ """\ 2 \n\ <x , y>\ """ assert upretty(I) == ucode_str assert pretty(I) == ascii_str Q = F / M ucode_str = \ u("""\ 2 \n\ ℚ[x, y] \n\ ─────────────────\n\ ╱ ⎡ 2⎤╲\n\ ╲[x, y], ⎣1, x ⎦╱\ """) ascii_str = \ """\ 2 \n\ QQ[x, y] \n\ -----------------\n\ 2 \n\ <[x, y], [1, x ]>\ """ assert upretty(Q) == ucode_str assert pretty(Q) == ascii_str ucode_str = \ u("""\ ╱⎡ 3⎤ ╲\n\ │⎢ x ⎥ ╱ ⎡ 2⎤╲ ╱ ⎡ 2⎤╲│\n\ │⎢1, ──⎥ + ╲[x, y], ⎣1, x ⎦╱, [2, y] + ╲[x, y], ⎣1, x ⎦╱│\n\ ╲⎣ 2 ⎦ ╱\ """) ascii_str = \ """\ 3 \n\ x 2 2 \n\ <[1, --] + <[x, y], [1, x ]>, [2, y] + <[x, y], [1, x ]>>\n\ 2 \ """ def test_QuotientRing(): R = QQ.old_poly_ring(x)/[x**2 + 1] ucode_str = \ u("""\ ℚ[x] \n\ ────────\n\ ╱ 2 ╲\n\ ╲x + 1╱\ """) ascii_str = \ """\ QQ[x] \n\ --------\n\ 2 \n\ <x + 1>\ """ assert upretty(R) == ucode_str assert pretty(R) == ascii_str ucode_str = \ u("""\ ╱ 2 ╲\n\ 1 + ╲x + 1╱\ """) ascii_str = \ """\ 2 \n\ 1 + <x + 1>\ """ assert upretty(R.one) == ucode_str assert pretty(R.one) == ascii_str def test_Homomorphism(): from sympy.polys.agca import homomorphism R = QQ.old_poly_ring(x) expr = homomorphism(R.free_module(1), R.free_module(1), [0]) ucode_str = \ u("""\ 1 1\n\ [0] : ℚ[x] ──> ℚ[x] \ """) ascii_str = \ """\ 1 1\n\ [0] : QQ[x] --> QQ[x] \ """ assert upretty(expr) == ucode_str assert pretty(expr) == ascii_str expr = homomorphism(R.free_module(2), R.free_module(2), [0, 0]) ucode_str = \ u("""\ ⎡0 0⎤ 2 2\n\ ⎢ ⎥ : ℚ[x] ──> ℚ[x] \n\ ⎣0 0⎦ \ """) ascii_str = \ """\ [0 0] 2 2\n\ [ ] : QQ[x] --> QQ[x] \n\ [0 0] \ """ assert upretty(expr) == ucode_str assert pretty(expr) == ascii_str expr = homomorphism(R.free_module(1), R.free_module(1) / [[x]], [0]) ucode_str = \ u("""\ 1\n\ 1 ℚ[x] \n\ [0] : ℚ[x] ──> ─────\n\ <[x]>\ """) ascii_str = \ """\ 1\n\ 1 QQ[x] \n\ [0] : QQ[x] --> ------\n\ <[x]> \ """ assert upretty(expr) == ucode_str assert pretty(expr) == ascii_str def test_Tr(): A, B = symbols('A B', commutative=False) t = Tr(A*B) assert pretty(t) == r'Tr(A*B)' assert upretty(t) == u'Tr(A⋅B)' def test_pretty_Add(): eq = Mul(-2, x - 2, evaluate=False) + 5 assert pretty(eq) == '5 - 2*(x - 2)' def test_issue_7179(): assert upretty(Not(Equivalent(x, y))) == u'x ⇎ y' assert upretty(Not(Implies(x, y))) == u'x ↛ y' def test_issue_7180(): assert upretty(Equivalent(x, y)) == u'x ⇔ y' def test_pretty_Complement(): assert pretty(S.Reals - S.Naturals) == '(-oo, oo) \\ Naturals' assert upretty(S.Reals - S.Naturals) == u'ℝ \\ ℕ' assert pretty(S.Reals - S.Naturals0) == '(-oo, oo) \\ Naturals0' assert upretty(S.Reals - S.Naturals0) == u'ℝ \\ ℕ₀' def test_pretty_SymmetricDifference(): from sympy import SymmetricDifference, Interval from sympy.utilities.pytest import raises assert upretty(SymmetricDifference(Interval(2,3), Interval(3,5), \ evaluate = False)) == u'[2, 3] ∆ [3, 5]' with raises(NotImplementedError): pretty(SymmetricDifference(Interval(2,3), Interval(3,5), evaluate = False)) def test_pretty_Contains(): assert pretty(Contains(x, S.Integers)) == 'Contains(x, Integers)' assert upretty(Contains(x, S.Integers)) == u'x ∈ ℤ' def test_issue_8292(): from sympy.core import sympify e = sympify('((x+x**4)/(x-1))-(2*(x-1)**4/(x-1)**4)', evaluate=False) ucode_str = \ u("""\ 4 4 \n\ 2⋅(x - 1) x + x\n\ - ────────── + ──────\n\ 4 x - 1 \n\ (x - 1) \ """) ascii_str = \ """\ 4 4 \n\ 2*(x - 1) x + x\n\ - ---------- + ------\n\ 4 x - 1 \n\ (x - 1) \ """ assert pretty(e) == ascii_str assert upretty(e) == ucode_str def test_issue_4335(): y = Function('y') expr = -y(x).diff(x) ucode_str = \ u("""\ d \n\ -──(y(x))\n\ dx \ """) ascii_str = \ """\ d \n\ - --(y(x))\n\ dx \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_issue_8344(): from sympy.core import sympify e = sympify('2*x*y**2/1**2 + 1', evaluate=False) ucode_str = \ u("""\ 2 \n\ 2⋅x⋅y \n\ ────── + 1\n\ 2 \n\ 1 \ """) assert upretty(e) == ucode_str def test_issue_6324(): x = Pow(2, 3, evaluate=False) y = Pow(10, -2, evaluate=False) e = Mul(x, y, evaluate=False) ucode_str = \ u("""\ 3\n\ 2 \n\ ───\n\ 2\n\ 10 \ """) assert upretty(e) == ucode_str def test_issue_7927(): e = sin(x/2)**cos(x/2) ucode_str = \ u("""\ ⎛x⎞\n\ cos⎜─⎟\n\ ⎝2⎠\n\ ⎛ ⎛x⎞⎞ \n\ ⎜sin⎜─⎟⎟ \n\ ⎝ ⎝2⎠⎠ \ """) assert upretty(e) == ucode_str e = sin(x)**(S(11)/13) ucode_str = \ u("""\ 11\n\ ──\n\ 13\n\ (sin(x)) \ """) assert upretty(e) == ucode_str def test_issue_6134(): from sympy.abc import lamda, t phi = Function('phi') e = lamda*x*Integral(phi(t)*pi*sin(pi*t), (t, 0, 1)) + lamda*x**2*Integral(phi(t)*2*pi*sin(2*pi*t), (t, 0, 1)) ucode_str = \ u("""\ 1 1 \n\ 2 ⌠ ⌠ \n\ λ⋅x ⋅⎮ 2⋅π⋅φ(t)⋅sin(2⋅π⋅t) dt + λ⋅x⋅⎮ π⋅φ(t)⋅sin(π⋅t) dt\n\ ⌡ ⌡ \n\ 0 0 \ """) assert upretty(e) == ucode_str def test_issue_9877(): ucode_str1 = u'(2, 3) ∪ ([1, 2] \\ {x})' a, b, c = Interval(2, 3, True, True), Interval(1, 2), FiniteSet(x) assert upretty(Union(a, Complement(b, c))) == ucode_str1 ucode_str2 = u'{x} ∩ {y} ∩ ({z} \\ [1, 2])' d, e, f, g = FiniteSet(x), FiniteSet(y), FiniteSet(z), Interval(1, 2) assert upretty(Intersection(d, e, Complement(f, g))) == ucode_str2 def test_issue_13651(): expr1 = c + Mul(-1, a + b, evaluate=False) assert pretty(expr1) == 'c - (a + b)' expr2 = c + Mul(-1, a - b + d, evaluate=False) assert pretty(expr2) == 'c - (a - b + d)' def test_pretty_primenu(): from sympy.ntheory.factor_ import primenu ascii_str1 = "nu(n)" ucode_str1 = u("ν(n)") n = symbols('n', integer=True) assert pretty(primenu(n)) == ascii_str1 assert upretty(primenu(n)) == ucode_str1 def test_pretty_primeomega(): from sympy.ntheory.factor_ import primeomega ascii_str1 = "Omega(n)" ucode_str1 = u("Ω(n)") n = symbols('n', integer=True) assert pretty(primeomega(n)) == ascii_str1 assert upretty(primeomega(n)) == ucode_str1 def test_pretty_Mod(): from sympy.core import Mod ascii_str1 = "x mod 7" ucode_str1 = u("x mod 7") ascii_str2 = "(x + 1) mod 7" ucode_str2 = u("(x + 1) mod 7") ascii_str3 = "2*x mod 7" ucode_str3 = u("2⋅x mod 7") ascii_str4 = "(x mod 7) + 1" ucode_str4 = u("(x mod 7) + 1") ascii_str5 = "2*(x mod 7)" ucode_str5 = u("2⋅(x mod 7)") x = symbols('x', integer=True) assert pretty(Mod(x, 7)) == ascii_str1 assert upretty(Mod(x, 7)) == ucode_str1 assert pretty(Mod(x + 1, 7)) == ascii_str2 assert upretty(Mod(x + 1, 7)) == ucode_str2 assert pretty(Mod(2 * x, 7)) == ascii_str3 assert upretty(Mod(2 * x, 7)) == ucode_str3 assert pretty(Mod(x, 7) + 1) == ascii_str4 assert upretty(Mod(x, 7) + 1) == ucode_str4 assert pretty(2 * Mod(x, 7)) == ascii_str5 assert upretty(2 * Mod(x, 7)) == ucode_str5 def test_issue_11801(): assert pretty(Symbol("")) == "" assert upretty(Symbol("")) == "" def test_pretty_UnevaluatedExpr(): x = symbols('x') he = UnevaluatedExpr(1/x) ucode_str = \ u("""\ 1\n\ ─\n\ x\ """) assert upretty(he) == ucode_str ucode_str = \ u("""\ 2\n\ ⎛1⎞ \n\ ⎜─⎟ \n\ ⎝x⎠ \ """) assert upretty(he**2) == ucode_str ucode_str = \ u("""\ 1\n\ 1 + ─\n\ x\ """) assert upretty(he + 1) == ucode_str ucode_str = \ u('''\ 1\n\ x⋅─\n\ x\ ''') assert upretty(x*he) == ucode_str def test_issue_10472(): M = (Matrix([[0, 0], [0, 0]]), Matrix([0, 0])) ucode_str = \ u("""\ ⎛⎡0 0⎤ ⎡0⎤⎞ ⎜⎢ ⎥, ⎢ ⎥⎟ ⎝⎣0 0⎦ ⎣0⎦⎠\ """) assert upretty(M) == ucode_str def test_MatrixElement_printing(): # test cases for issue #11821 A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) ascii_str1 = "A_00" ucode_str1 = u("A₀₀") assert pretty(A[0, 0]) == ascii_str1 assert upretty(A[0, 0]) == ucode_str1 ascii_str1 = "3*A_00" ucode_str1 = u("3⋅A₀₀") assert pretty(3*A[0, 0]) == ascii_str1 assert upretty(3*A[0, 0]) == ucode_str1 ascii_str1 = "(-B + A)[0, 0]" ucode_str1 = u("(-B + A)[0, 0]") F = C[0, 0].subs(C, A - B) assert pretty(F) == ascii_str1 assert upretty(F) == ucode_str1 def test_issue_12675(): from sympy.vector import CoordSys3D x, y, t, j = symbols('x y t j') e = CoordSys3D('e') ucode_str = \ u("""\ ⎛ t⎞ \n\ ⎜⎛x⎞ ⎟ j_e\n\ ⎜⎜─⎟ ⎟ \n\ ⎝⎝y⎠ ⎠ \ """) assert upretty((x/y)**t*e.j) == ucode_str ucode_str = \ u("""\ ⎛1⎞ \n\ ⎜─⎟ j_e\n\ ⎝y⎠ \ """) assert upretty((1/y)*e.j) == ucode_str def test_MatrixSymbol_printing(): # test cases for issue #14237 A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) C = MatrixSymbol("C", 3, 3) assert pretty(-A*B*C) == "-A*B*C" assert pretty(A - B) == "-B + A" assert pretty(A*B*C - A*B - B*C) == "-A*B -B*C + A*B*C" # issue #14814 x = MatrixSymbol('x', n, n) y = MatrixSymbol('y*', n, n) assert pretty(x + y) == "x + y*" ascii_str = \ """\ 2 \n\ -2*y* -a*x\ """ assert pretty(-a*x + -2*y*y) == ascii_str def test_degree_printing(): expr1 = 90*degree assert pretty(expr1) == u'90°' expr2 = x*degree assert pretty(expr2) == u'x°' expr3 = cos(x*degree + 90*degree) assert pretty(expr3) == u'cos(x° + 90°)' def test_vector_expr_pretty_printing(): A = CoordSys3D('A') assert upretty(Cross(A.i, A.x*A.i+3*A.y*A.j)) == u("(i_A)×((x_A) i_A + (3⋅y_A) j_A)") assert upretty(x*Cross(A.i, A.j)) == u('x⋅(i_A)×(j_A)') assert upretty(Curl(A.x*A.i + 3*A.y*A.j)) == u("∇×((x_A) i_A + (3⋅y_A) j_A)") assert upretty(Divergence(A.x*A.i + 3*A.y*A.j)) == u("∇⋅((x_A) i_A + (3⋅y_A) j_A)") assert upretty(Dot(A.i, A.x*A.i+3*A.y*A.j)) == u("(i_A)⋅((x_A) i_A + (3⋅y_A) j_A)") assert upretty(Gradient(A.x+3*A.y)) == u("∇(x_A + 3⋅y_A)") assert upretty(Laplacian(A.x+3*A.y)) == u("∆(x_A + 3⋅y_A)") # TODO: add support for ASCII pretty. def test_pretty_print_tensor_expr(): L = TensorIndexType("L") i, j, k = tensor_indices("i j k", L) i0 = tensor_indices("i_0", L) A, B, C, D = tensor_heads("A B C D", [L]) H = TensorHead("H", [L, L]) expr = -i ascii_str = \ """\ -i\ """ ucode_str = \ u("""\ -i\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i) ascii_str = \ """\ i\n\ A \n\ \ """ ucode_str = \ u("""\ i\n\ A \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i0) ascii_str = \ """\ i_0\n\ A \n\ \ """ ucode_str = \ u("""\ i₀\n\ A \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(-i) ascii_str = \ """\ \n\ A \n\ i\ """ ucode_str = \ u("""\ \n\ A \n\ i\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -3*A(-i) ascii_str = \ """\ \n\ -3*A \n\ i\ """ ucode_str = \ u("""\ \n\ -3⋅A \n\ i\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = H(i, -j) ascii_str = \ """\ i \n\ H \n\ j\ """ ucode_str = \ u("""\ i \n\ H \n\ j\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = H(i, -i) ascii_str = \ """\ L_0 \n\ H \n\ L_0\ """ ucode_str = \ u("""\ L₀ \n\ H \n\ L₀\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = H(i, -j)*A(j)*B(k) ascii_str = \ """\ i L_0 k\n\ H *A *B \n\ L_0 \ """ ucode_str = \ u("""\ i L₀ k\n\ H ⋅A ⋅B \n\ L₀ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (1+x)*A(i) ascii_str = \ """\ i\n\ (x + 1)*A \n\ \ """ ucode_str = \ u("""\ i\n\ (x + 1)⋅A \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i) + 3*B(i) ascii_str = \ """\ i i\n\ A + 3*B \n\ \ """ ucode_str = \ u("""\ i i\n\ A + 3⋅B \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_print_tensor_partial_deriv(): from sympy.tensor.toperators import PartialDerivative from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, tensor_heads L = TensorIndexType("L") i, j, k = tensor_indices("i j k", L) i0 = tensor_indices("i0", L) A, B, C, D = tensor_heads("A B C D", [L]) H = TensorHead("H", [L, L]) expr = PartialDerivative(A(i), A(j)) ascii_str = \ """\ d / i\\\n\ ---|A |\n\ j\\ /\n\ dA \n\ \ """ ucode_str = \ u("""\ ∂ ⎛ i⎞\n\ ───⎜A ⎟\n\ j⎝ ⎠\n\ ∂A \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i)*PartialDerivative(H(k, -i), A(j)) ascii_str = \ """\ L_0 d / k \\\n\ A *---|H |\n\ j\\ L_0/\n\ dA \n\ \ """ ucode_str = \ u("""\ L₀ ∂ ⎛ k ⎞\n\ A ⋅───⎜H ⎟\n\ j⎝ L₀⎠\n\ ∂A \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i)*PartialDerivative(B(k)*C(-i) + 3*H(k, -i), A(j)) ascii_str = \ """\ L_0 d / k k \\\n\ A *---|B *C + 3*H |\n\ j\\ L_0 L_0/\n\ dA \n\ \ """ ucode_str = \ u("""\ L₀ ∂ ⎛ k k ⎞\n\ A ⋅───⎜B ⋅C + 3⋅H ⎟\n\ j⎝ L₀ L₀⎠\n\ ∂A \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (A(i) + B(i))*PartialDerivative(C(-j), D(j)) ascii_str = \ """\ / i i\\ d / \\\n\ |A + B |*-----|C |\n\ \\ / L_0\\ L_0/\n\ dD \n\ \ """ ucode_str = \ u("""\ ⎛ i i⎞ ∂ ⎛ ⎞\n\ ⎜A + B ⎟⋅────⎜C ⎟\n\ ⎝ ⎠ L₀⎝ L₀⎠\n\ ∂D \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (A(i) + B(i))*PartialDerivative(C(-i), D(j)) ascii_str = \ """\ / L_0 L_0\\ d / \\\n\ |A + B |*---|C |\n\ \\ / j\\ L_0/\n\ dD \n\ \ """ ucode_str = \ u("""\ ⎛ L₀ L₀⎞ ∂ ⎛ ⎞\n\ ⎜A + B ⎟⋅───⎜C ⎟\n\ ⎝ ⎠ j⎝ L₀⎠\n\ ∂D \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = TensorElement(H(i, j), {i:1}) ascii_str = \ """\ i=1,j\n\ H \n\ \ """ ucode_str = ascii_str assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = TensorElement(H(i, j), {i:1, j:1}) ascii_str = \ """\ i=1,j=1\n\ H \n\ \ """ ucode_str = ascii_str assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = TensorElement(H(i, j), {j:1}) ascii_str = \ """\ i,j=1\n\ H \n\ \ """ ucode_str = ascii_str expr = TensorElement(H(-i, j), {-i:1}) ascii_str = \ """\ j\n\ H \n\ i=1 \ """ ucode_str = ascii_str assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_issue_15560(): a = MatrixSymbol('a', 1, 1) e = pretty(a*(KroneckerProduct(a, a))) result = 'a*(a x a)' assert e == result def test_print_lerchphi(): # Part of issue 6013 a = Symbol('a') pretty(lerchphi(a, 1, 2)) uresult = u'Φ(a, 1, 2)' aresult = 'lerchphi(a, 1, 2)' assert pretty(lerchphi(a, 1, 2)) == aresult assert upretty(lerchphi(a, 1, 2)) == uresult def test_issue_15583(): N = mechanics.ReferenceFrame('N') result = '(n_x, n_y, n_z)' e = pretty((N.x, N.y, N.z)) assert e == result def test_matrixSymbolBold(): # Issue 15871 def boldpretty(expr): return xpretty(expr, use_unicode=True, wrap_line=False, mat_symbol_style="bold") from sympy import trace A = MatrixSymbol("A", 2, 2) assert boldpretty(trace(A)) == u'tr(𝐀)' A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) C = MatrixSymbol("C", 3, 3) assert boldpretty(-A) == u'-𝐀' assert boldpretty(A - A*B - B) == u'-𝐁 -𝐀⋅𝐁 + 𝐀' assert boldpretty(-A*B - A*B*C - B) == u'-𝐁 -𝐀⋅𝐁 -𝐀⋅𝐁⋅𝐂' A = MatrixSymbol("Addot", 3, 3) assert boldpretty(A) == u'𝐀̈' omega = MatrixSymbol("omega", 3, 3) assert boldpretty(omega) == u'ω' omega = MatrixSymbol("omeganorm", 3, 3) assert boldpretty(omega) == u'‖ω‖' a = Symbol('alpha') b = Symbol('b') c = MatrixSymbol("c", 3, 1) d = MatrixSymbol("d", 3, 1) assert boldpretty(a*B*c+b*d) == u'b⋅𝐝 + α⋅𝐁⋅𝐜' d = MatrixSymbol("delta", 3, 1) B = MatrixSymbol("Beta", 3, 3) assert boldpretty(a*B*c+b*d) == u'b⋅δ + α⋅Β⋅𝐜' A = MatrixSymbol("A_2", 3, 3) assert boldpretty(A) == u'𝐀₂' def test_center_accent(): assert center_accent('a', u'\N{COMBINING TILDE}') == u'ã' assert center_accent('aa', u'\N{COMBINING TILDE}') == u'aã' assert center_accent('aaa', u'\N{COMBINING TILDE}') == u'aãa' assert center_accent('aaaa', u'\N{COMBINING TILDE}') == u'aaãa' assert center_accent('aaaaa', u'\N{COMBINING TILDE}') == u'aaãaa' assert center_accent('abcdefg', u'\N{COMBINING FOUR DOTS ABOVE}') == u'abcd⃜efg' def test_imaginary_unit(): from sympy import pretty # As it is redefined above assert pretty(1 + I, use_unicode=False) == '1 + I' assert pretty(1 + I, use_unicode=True) == u'1 + ⅈ' assert pretty(1 + I, use_unicode=False, imaginary_unit='j') == '1 + I' assert pretty(1 + I, use_unicode=True, imaginary_unit='j') == u'1 + ⅉ' raises(TypeError, lambda: pretty(I, imaginary_unit=I)) raises(ValueError, lambda: pretty(I, imaginary_unit="kkk")) def test_str_special_matrices(): from sympy.matrices import Identity, ZeroMatrix, OneMatrix assert pretty(Identity(4)) == 'I' assert upretty(Identity(4)) == u'𝕀' assert pretty(ZeroMatrix(2, 2)) == '0' assert upretty(ZeroMatrix(2, 2)) == u'𝟘' assert pretty(OneMatrix(2, 2)) == '1' assert upretty(OneMatrix(2, 2)) == u'𝟙' def test_pretty_misc_functions(): assert pretty(LambertW(x)) == 'W(x)' assert upretty(LambertW(x)) == u'W(x)' assert pretty(LambertW(x, y)) == 'W(x, y)' assert upretty(LambertW(x, y)) == u'W(x, y)' assert pretty(airyai(x)) == 'Ai(x)' assert upretty(airyai(x)) == u'Ai(x)' assert pretty(airybi(x)) == 'Bi(x)' assert upretty(airybi(x)) == u'Bi(x)' assert pretty(airyaiprime(x)) == "Ai'(x)" assert upretty(airyaiprime(x)) == u"Ai'(x)" assert pretty(airybiprime(x)) == "Bi'(x)" assert upretty(airybiprime(x)) == u"Bi'(x)" assert pretty(fresnelc(x)) == 'C(x)' assert upretty(fresnelc(x)) == u'C(x)' assert pretty(fresnels(x)) == 'S(x)' assert upretty(fresnels(x)) == u'S(x)' assert pretty(Heaviside(x)) == 'Heaviside(x)' assert upretty(Heaviside(x)) == u'θ(x)' assert pretty(Heaviside(x, y)) == 'Heaviside(x, y)' assert upretty(Heaviside(x, y)) == u'θ(x, y)' assert pretty(dirichlet_eta(x)) == 'dirichlet_eta(x)' assert upretty(dirichlet_eta(x)) == u'η(x)' def test_hadamard_power(): m, n, p = symbols('m, n, p', integer=True) A = MatrixSymbol('A', m, n) B = MatrixSymbol('B', m, n) C = MatrixSymbol('C', m, p) # Testing printer: expr = hadamard_power(A, n) ascii_str = \ """\ .n\n\ A \ """ ucode_str = \ u("""\ ∘n\n\ A \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hadamard_power(A, 1+n) ascii_str = \ """\ .(n + 1)\n\ A \ """ ucode_str = \ u("""\ ∘(n + 1)\n\ A \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hadamard_power(A*B.T, 1+n) ascii_str = \ """\ .(n + 1)\n\ / T\\ \n\ \\A*B / \ """ ucode_str = \ u("""\ ∘(n + 1)\n\ ⎛ T⎞ \n\ ⎝A⋅B ⎠ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_issue_17258(): n = Symbol('n', integer=True) assert pretty(Sum(n, (n, -oo, 1))) == \ ' 1 \n'\ ' __ \n'\ ' \\ ` \n'\ ' ) n\n'\ ' /_, \n'\ 'n = -oo ' assert upretty(Sum(n, (n, -oo, 1))) == \ u("""\ 1 \n\ ___ \n\ ╲ \n\ ╲ \n\ ╱ n\n\ ╱ \n\ ‾‾‾ \n\ n = -∞ \ """) def test_is_combining(): line = u("v̇_m") assert [is_combining(sym) for sym in line] == \ [False, True, False, False] def test_issue_17857(): assert pretty(Range(-oo, oo)) == '{..., -1, 0, 1, ...}' assert pretty(Range(oo, -oo, -1)) == '{..., 1, 0, -1, ...}'
6a89daf53b023bb731e99c744c407d2362f32bcf5b055782b7382a84999e7fa6
from sympy import ( Abs, acos, acosh, Add, And, asin, asinh, atan, Ci, cos, sinh, cosh, tanh, Derivative, diff, DiracDelta, E, Ei, Eq, exp, erf, erfc, erfi, EulerGamma, Expr, factor, Function, gamma, gammasimp, I, Idx, im, IndexedBase, integrate, Interval, Lambda, LambertW, log, Matrix, Max, meijerg, Min, nan, Ne, O, oo, pi, Piecewise, polar_lift, Poly, polygamma, Rational, re, S, Si, sign, simplify, sin, sinc, SingularityFunction, sqrt, sstr, Sum, Symbol, symbols, sympify, tan, trigsimp, Tuple, lerchphi, exp_polar, li, hyper ) from sympy.core.compatibility import range from sympy.core.expr import unchanged from sympy.functions.elementary.complexes import periodic_argument from sympy.functions.elementary.integers import floor from sympy.integrals.integrals import Integral from sympy.integrals.risch import NonElementaryIntegral from sympy.physics import units from sympy.utilities.pytest import raises, slow, skip, ON_TRAVIS from sympy.utilities.randtest import verify_numerically x, y, a, t, x_1, x_2, z, s, b = symbols('x y a t x_1 x_2 z s b') n = Symbol('n', integer=True) f = Function('f') def NS(e, n=15, **options): return sstr(sympify(e).evalf(n, **options), full_prec=True) def test_principal_value(): g = 1 / x assert Integral(g, (x, -oo, oo)).principal_value() == 0 assert Integral(g, (y, -oo, oo)).principal_value() == oo * sign(1 / x) raises(ValueError, lambda: Integral(g, (x)).principal_value()) raises(ValueError, lambda: Integral(g).principal_value()) l = 1 / ((x ** 3) - 1) assert Integral(l, (x, -oo, oo)).principal_value() == -sqrt(3)*pi/3 raises(ValueError, lambda: Integral(l, (x, -oo, 1)).principal_value()) d = 1 / (x ** 2 - 1) assert Integral(d, (x, -oo, oo)).principal_value() == 0 assert Integral(d, (x, -2, 2)).principal_value() == -log(3) v = x / (x ** 2 - 1) assert Integral(v, (x, -oo, oo)).principal_value() == 0 assert Integral(v, (x, -2, 2)).principal_value() == 0 s = x ** 2 / (x ** 2 - 1) assert Integral(s, (x, -oo, oo)).principal_value() is oo assert Integral(s, (x, -2, 2)).principal_value() == -log(3) + 4 f = 1 / ((x ** 2 - 1) * (1 + x ** 2)) assert Integral(f, (x, -oo, oo)).principal_value() == -pi / 2 assert Integral(f, (x, -2, 2)).principal_value() == -atan(2) - log(3) / 2 def diff_test(i): """Return the set of symbols, s, which were used in testing that i.diff(s) agrees with i.doit().diff(s). If there is an error then the assertion will fail, causing the test to fail.""" syms = i.free_symbols for s in syms: assert (i.diff(s).doit() - i.doit().diff(s)).expand() == 0 return syms def test_improper_integral(): assert integrate(log(x), (x, 0, 1)) == -1 assert integrate(x**(-2), (x, 1, oo)) == 1 assert integrate(1/(1 + exp(x)), (x, 0, oo)) == log(2) def test_constructor(): # this is shared by Sum, so testing Integral's constructor # is equivalent to testing Sum's s1 = Integral(n, n) assert s1.limits == (Tuple(n),) s2 = Integral(n, (n,)) assert s2.limits == (Tuple(n),) s3 = Integral(Sum(x, (x, 1, y))) assert s3.limits == (Tuple(y),) s4 = Integral(n, Tuple(n,)) assert s4.limits == (Tuple(n),) s5 = Integral(n, (n, Interval(1, 2))) assert s5.limits == (Tuple(n, 1, 2),) # Testing constructor with inequalities: s6 = Integral(n, n > 10) assert s6.limits == (Tuple(n, 10, oo),) s7 = Integral(n, (n > 2) & (n < 5)) assert s7.limits == (Tuple(n, 2, 5),) def test_basics(): assert Integral(0, x) != 0 assert Integral(x, (x, 1, 1)) != 0 assert Integral(oo, x) != oo assert Integral(S.NaN, x) is S.NaN assert diff(Integral(y, y), x) == 0 assert diff(Integral(x, (x, 0, 1)), x) == 0 assert diff(Integral(x, x), x) == x assert diff(Integral(t, (t, 0, x)), x) == x e = (t + 1)**2 assert diff(integrate(e, (t, 0, x)), x) == \ diff(Integral(e, (t, 0, x)), x).doit().expand() == \ ((1 + x)**2).expand() assert diff(integrate(e, (t, 0, x)), t) == \ diff(Integral(e, (t, 0, x)), t) == 0 assert diff(integrate(e, (t, 0, x)), a) == \ diff(Integral(e, (t, 0, x)), a) == 0 assert diff(integrate(e, t), a) == diff(Integral(e, t), a) == 0 assert integrate(e, (t, a, x)).diff(x) == \ Integral(e, (t, a, x)).diff(x).doit().expand() assert Integral(e, (t, a, x)).diff(x).doit() == ((1 + x)**2) assert integrate(e, (t, x, a)).diff(x).doit() == (-(1 + x)**2).expand() assert integrate(t**2, (t, x, 2*x)).diff(x) == 7*x**2 assert Integral(x, x).atoms() == {x} assert Integral(f(x), (x, 0, 1)).atoms() == {S.Zero, S.One, x} assert diff_test(Integral(x, (x, 3*y))) == {y} assert diff_test(Integral(x, (a, 3*y))) == {x, y} assert integrate(x, (x, oo, oo)) == 0 #issue 8171 assert integrate(x, (x, -oo, -oo)) == 0 # sum integral of terms assert integrate(y + x + exp(x), x) == x*y + x**2/2 + exp(x) assert Integral(x).is_commutative n = Symbol('n', commutative=False) assert Integral(n + x, x).is_commutative is False def test_diff_wrt(): class Test(Expr): _diff_wrt = True is_commutative = True t = Test() assert integrate(t + 1, t) == t**2/2 + t assert integrate(t + 1, (t, 0, 1)) == Rational(3, 2) raises(ValueError, lambda: integrate(x + 1, x + 1)) raises(ValueError, lambda: integrate(x + 1, (x + 1, 0, 1))) def test_basics_multiple(): assert diff_test(Integral(x, (x, 3*x, 5*y), (y, x, 2*x))) == {x} assert diff_test(Integral(x, (x, 5*y), (y, x, 2*x))) == {x} assert diff_test(Integral(x, (x, 5*y), (y, y, 2*x))) == {x, y} assert diff_test(Integral(y, y, x)) == {x, y} assert diff_test(Integral(y*x, x, y)) == {x, y} assert diff_test(Integral(x + y, y, (y, 1, x))) == {x} assert diff_test(Integral(x + y, (x, x, y), (y, y, x))) == {x, y} def test_conjugate_transpose(): A, B = symbols("A B", commutative=False) x = Symbol("x", complex=True) p = Integral(A*B, (x,)) assert p.adjoint().doit() == p.doit().adjoint() assert p.conjugate().doit() == p.doit().conjugate() assert p.transpose().doit() == p.doit().transpose() x = Symbol("x", real=True) p = Integral(A*B, (x,)) assert p.adjoint().doit() == p.doit().adjoint() assert p.conjugate().doit() == p.doit().conjugate() assert p.transpose().doit() == p.doit().transpose() def test_integration(): assert integrate(0, (t, 0, x)) == 0 assert integrate(3, (t, 0, x)) == 3*x assert integrate(t, (t, 0, x)) == x**2/2 assert integrate(3*t, (t, 0, x)) == 3*x**2/2 assert integrate(3*t**2, (t, 0, x)) == x**3 assert integrate(1/t, (t, 1, x)) == log(x) assert integrate(-1/t**2, (t, 1, x)) == 1/x - 1 assert integrate(t**2 + 5*t - 8, (t, 0, x)) == x**3/3 + 5*x**2/2 - 8*x assert integrate(x**2, x) == x**3/3 assert integrate((3*t*x)**5, x) == (3*t)**5 * x**6 / 6 b = Symbol("b") c = Symbol("c") assert integrate(a*t, (t, 0, x)) == a*x**2/2 assert integrate(a*t**4, (t, 0, x)) == a*x**5/5 assert integrate(a*t**2 + b*t + c, (t, 0, x)) == a*x**3/3 + b*x**2/2 + c*x def test_multiple_integration(): assert integrate((x**2)*(y**2), (x, 0, 1), (y, -1, 2)) == Rational(1) assert integrate((y**2)*(x**2), x, y) == Rational(1, 9)*(x**3)*(y**3) assert integrate(1/(x + 3)/(1 + x)**3, x) == \ log(3 + x)*Rational(-1, 8) + log(1 + x)*Rational(1, 8) + x/(4 + 8*x + 4*x**2) assert integrate(sin(x*y)*y, (x, 0, 1), (y, 0, 1)) == -sin(1) + 1 def test_issue_3532(): assert integrate(exp(-x), (x, 0, oo)) == 1 def test_issue_3560(): assert integrate(sqrt(x)**3, x) == 2*sqrt(x)**5/5 assert integrate(sqrt(x), x) == 2*sqrt(x)**3/3 assert integrate(1/sqrt(x)**3, x) == -2/sqrt(x) def test_integrate_poly(): p = Poly(x + x**2*y + y**3, x, y) qx = integrate(p, x) qy = integrate(p, y) assert isinstance(qx, Poly) is True assert isinstance(qy, Poly) is True assert qx.gens == (x, y) assert qy.gens == (x, y) assert qx.as_expr() == x**2/2 + x**3*y/3 + x*y**3 assert qy.as_expr() == x*y + x**2*y**2/2 + y**4/4 def test_integrate_poly_defined(): p = Poly(x + x**2*y + y**3, x, y) Qx = integrate(p, (x, 0, 1)) Qy = integrate(p, (y, 0, pi)) assert isinstance(Qx, Poly) is True assert isinstance(Qy, Poly) is True assert Qx.gens == (y,) assert Qy.gens == (x,) assert Qx.as_expr() == S.Half + y/3 + y**3 assert Qy.as_expr() == pi**4/4 + pi*x + pi**2*x**2/2 def test_integrate_omit_var(): y = Symbol('y') assert integrate(x) == x**2/2 raises(ValueError, lambda: integrate(2)) raises(ValueError, lambda: integrate(x*y)) def test_integrate_poly_accurately(): y = Symbol('y') assert integrate(x*sin(y), x) == x**2*sin(y)/2 # when passed to risch_norman, this will be a CPU hog, so this really # checks, that integrated function is recognized as polynomial assert integrate(x**1000*sin(y), x) == x**1001*sin(y)/1001 def test_issue_3635(): y = Symbol('y') assert integrate(x**2, y) == x**2*y assert integrate(x**2, (y, -1, 1)) == 2*x**2 # works in sympy and py.test but hangs in `setup.py test` def test_integrate_linearterm_pow(): # check integrate((a*x+b)^c, x) -- issue 3499 y = Symbol('y', positive=True) # TODO: Remove conds='none' below, let the assumption take care of it. assert integrate(x**y, x, conds='none') == x**(y + 1)/(y + 1) assert integrate((exp(y)*x + 1/y)**(1 + sin(y)), x, conds='none') == \ exp(-y)*(exp(y)*x + 1/y)**(2 + sin(y)) / (2 + sin(y)) def test_issue_3618(): assert integrate(pi*sqrt(x), x) == 2*pi*sqrt(x)**3/3 assert integrate(pi*sqrt(x) + E*sqrt(x)**3, x) == \ 2*pi*sqrt(x)**3/3 + 2*E *sqrt(x)**5/5 def test_issue_3623(): assert integrate(cos((n + 1)*x), x) == Piecewise( (sin(x*(n + 1))/(n + 1), Ne(n + 1, 0)), (x, True)) assert integrate(cos((n - 1)*x), x) == Piecewise( (sin(x*(n - 1))/(n - 1), Ne(n - 1, 0)), (x, True)) assert integrate(cos((n + 1)*x) + cos((n - 1)*x), x) == \ Piecewise((sin(x*(n - 1))/(n - 1), Ne(n - 1, 0)), (x, True)) + \ Piecewise((sin(x*(n + 1))/(n + 1), Ne(n + 1, 0)), (x, True)) def test_issue_3664(): n = Symbol('n', integer=True, nonzero=True) assert integrate(-1./2 * x * sin(n * pi * x/2), [x, -2, 0]) == \ 2.0*cos(pi*n)/(pi*n) assert integrate(x * sin(n * pi * x/2) * Rational(-1, 2), [x, -2, 0]) == \ 2*cos(pi*n)/(pi*n) def test_issue_3679(): # definite integration of rational functions gives wrong answers assert NS(Integral(1/(x**2 - 8*x + 17), (x, 2, 4))) == '1.10714871779409' def test_issue_3686(): # remove this when fresnel itegrals are implemented from sympy import expand_func, fresnels assert expand_func(integrate(sin(x**2), x)) == \ sqrt(2)*sqrt(pi)*fresnels(sqrt(2)*x/sqrt(pi))/2 def test_integrate_units(): m = units.m s = units.s assert integrate(x * m/s, (x, 1*s, 5*s)) == 12*m*s def test_transcendental_functions(): assert integrate(LambertW(2*x), x) == \ -x + x*LambertW(2*x) + x/LambertW(2*x) def test_log_polylog(): assert integrate(log(1 - x)/x, (x, 0, 1)) == -pi**2/6 assert integrate(log(x)*(1 - x)**(-1), (x, 0, 1)) == -pi**2/6 def test_issue_3740(): f = 4*log(x) - 2*log(x)**2 fid = diff(integrate(f, x), x) assert abs(f.subs(x, 42).evalf() - fid.subs(x, 42).evalf()) < 1e-10 def test_issue_3788(): assert integrate(1/(1 + x**2), x) == atan(x) def test_issue_3952(): f = sin(x) assert integrate(f, x) == -cos(x) raises(ValueError, lambda: integrate(f, 2*x)) def test_issue_4516(): assert integrate(2**x - 2*x, x) == 2**x/log(2) - x**2 def test_issue_7450(): ans = integrate(exp(-(1 + I)*x), (x, 0, oo)) assert re(ans) == S.Half and im(ans) == Rational(-1, 2) def test_issue_8623(): assert integrate((1 + cos(2*x)) / (3 - 2*cos(2*x)), (x, 0, pi)) == -pi/2 + sqrt(5)*pi/2 assert integrate((1 + cos(2*x))/(3 - 2*cos(2*x))) == -x/2 + sqrt(5)*(atan(sqrt(5)*tan(x)) + \ pi*floor((x - pi/2)/pi))/2 def test_issue_9569(): assert integrate(1 / (2 - cos(x)), (x, 0, pi)) == pi/sqrt(3) assert integrate(1/(2 - cos(x))) == 2*sqrt(3)*(atan(sqrt(3)*tan(x/2)) + pi*floor((x/2 - pi/2)/pi))/3 def test_issue_13749(): assert integrate(1 / (2 + cos(x)), (x, 0, pi)) == pi/sqrt(3) assert integrate(1/(2 + cos(x))) == 2*sqrt(3)*(atan(sqrt(3)*tan(x/2)/3) + pi*floor((x/2 - pi/2)/pi))/3 def test_matrices(): M = Matrix(2, 2, lambda i, j: (i + j + 1)*sin((i + j + 1)*x)) assert integrate(M, x) == Matrix([ [-cos(x), -cos(2*x)], [-cos(2*x), -cos(3*x)], ]) def test_integrate_functions(): # issue 4111 assert integrate(f(x), x) == Integral(f(x), x) assert integrate(f(x), (x, 0, 1)) == Integral(f(x), (x, 0, 1)) assert integrate(f(x)*diff(f(x), x), x) == f(x)**2/2 assert integrate(diff(f(x), x) / f(x), x) == log(f(x)) def test_integrate_derivatives(): assert integrate(Derivative(f(x), x), x) == f(x) assert integrate(Derivative(f(y), y), x) == x*Derivative(f(y), y) assert integrate(Derivative(f(x), x)**2, x) == \ Integral(Derivative(f(x), x)**2, x) def test_transform(): a = Integral(x**2 + 1, (x, -1, 2)) fx = x fy = 3*y + 1 assert a.doit() == a.transform(fx, fy).doit() assert a.transform(fx, fy).transform(fy, fx) == a fx = 3*x + 1 fy = y assert a.transform(fx, fy).transform(fy, fx) == a a = Integral(sin(1/x), (x, 0, 1)) assert a.transform(x, 1/y) == Integral(sin(y)/y**2, (y, 1, oo)) assert a.transform(x, 1/y).transform(y, 1/x) == a a = Integral(exp(-x**2), (x, -oo, oo)) assert a.transform(x, 2*y) == Integral(2*exp(-4*y**2), (y, -oo, oo)) # < 3 arg limit handled properly assert Integral(x, x).transform(x, a*y).doit() == \ Integral(y*a**2, y).doit() _3 = S(3) assert Integral(x, (x, 0, -_3)).transform(x, 1/y).doit() == \ Integral(-1/x**3, (x, -oo, -1/_3)).doit() assert Integral(x, (x, 0, _3)).transform(x, 1/y) == \ Integral(y**(-3), (y, 1/_3, oo)) # issue 8400 i = Integral(x + y, (x, 1, 2), (y, 1, 2)) assert i.transform(x, (x + 2*y, x)).doit() == \ i.transform(x, (x + 2*z, x)).doit() == 3 i = Integral(x, (x, a, b)) assert i.transform(x, 2*s) == Integral(4*s, (s, a/2, b/2)) raises(ValueError, lambda: i.transform(x, 1)) raises(ValueError, lambda: i.transform(x, s*t)) raises(ValueError, lambda: i.transform(x, -s)) raises(ValueError, lambda: i.transform(x, (s, t))) raises(ValueError, lambda: i.transform(2*x, 2*s)) i = Integral(x**2, (x, 1, 2)) raises(ValueError, lambda: i.transform(x**2, s)) am = Symbol('a', negative=True) bp = Symbol('b', positive=True) i = Integral(x, (x, bp, am)) i.transform(x, 2*s) assert i.transform(x, 2*s) == Integral(-4*s, (s, am/2, bp/2)) i = Integral(x, (x, a)) assert i.transform(x, 2*s) == Integral(4*s, (s, a/2)) def test_issue_4052(): f = S.Half*asin(x) + x*sqrt(1 - x**2)/2 assert integrate(cos(asin(x)), x) == f assert integrate(sin(acos(x)), x) == f @slow def test_evalf_integrals(): assert NS(Integral(x, (x, 2, 5)), 15) == '10.5000000000000' gauss = Integral(exp(-x**2), (x, -oo, oo)) assert NS(gauss, 15) == '1.77245385090552' assert NS(gauss**2 - pi + E*Rational( 1, 10**20), 15) in ('2.71828182845904e-20', '2.71828182845905e-20') # A monster of an integral from http://mathworld.wolfram.com/DefiniteIntegral.html t = Symbol('t') a = 8*sqrt(3)/(1 + 3*t**2) b = 16*sqrt(2)*(3*t + 1)*sqrt(4*t**2 + t + 1)**3 c = (3*t**2 + 1)*(11*t**2 + 2*t + 3)**2 d = sqrt(2)*(249*t**2 + 54*t + 65)/(11*t**2 + 2*t + 3)**2 f = a - b/c - d assert NS(Integral(f, (t, 0, 1)), 50) == \ NS((3*sqrt(2) - 49*pi + 162*atan(sqrt(2)))/12, 50) # http://mathworld.wolfram.com/VardisIntegral.html assert NS(Integral(log(log(1/x))/(1 + x + x**2), (x, 0, 1)), 15) == \ NS('pi/sqrt(3) * log(2*pi**(5/6) / gamma(1/6))', 15) # http://mathworld.wolfram.com/AhmedsIntegral.html assert NS(Integral(atan(sqrt(x**2 + 2))/(sqrt(x**2 + 2)*(x**2 + 1)), (x, 0, 1)), 15) == NS(5*pi**2/96, 15) # http://mathworld.wolfram.com/AbelsIntegral.html assert NS(Integral(x/((exp(pi*x) - exp( -pi*x))*(x**2 + 1)), (x, 0, oo)), 15) == NS('log(2)/2-1/4', 15) # Complex part trimming # http://mathworld.wolfram.com/VardisIntegral.html assert NS(Integral(log(log(sin(x)/cos(x))), (x, pi/4, pi/2)), 15, chop=True) == \ NS('pi/4*log(4*pi**3/gamma(1/4)**4)', 15) # # Endpoints causing trouble (rounding error in integration points -> complex log) assert NS( 2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 17, chop=True) == NS(2, 17) assert NS( 2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 20, chop=True) == NS(2, 20) assert NS( 2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 22, chop=True) == NS(2, 22) # Needs zero handling assert NS(pi - 4*Integral( 'sqrt(1-x**2)', (x, 0, 1)), 15, maxn=30, chop=True) in ('0.0', '0') # Oscillatory quadrature a = Integral(sin(x)/x**2, (x, 1, oo)).evalf(maxn=15) assert 0.49 < a < 0.51 assert NS( Integral(sin(x)/x**2, (x, 1, oo)), quad='osc') == '0.504067061906928' assert NS(Integral( cos(pi*x + 1)/x, (x, -oo, -1)), quad='osc') == '0.276374705640365' # indefinite integrals aren't evaluated assert NS(Integral(x, x)) == 'Integral(x, x)' assert NS(Integral(x, (x, y))) == 'Integral(x, (x, y))' def test_evalf_issue_939(): # https://github.com/sympy/sympy/issues/4038 # The output form of an integral may differ by a step function between # revisions, making this test a bit useless. This can't be said about # other two tests. For now, all values of this evaluation are used here, # but in future this should be reconsidered. assert NS(integrate(1/(x**5 + 1), x).subs(x, 4), chop=True) in \ ['-0.000976138910649103', '0.965906660135753', '1.93278945918216'] assert NS(Integral(1/(x**5 + 1), (x, 2, 4))) == '0.0144361088886740' assert NS( integrate(1/(x**5 + 1), (x, 2, 4)), chop=True) == '0.0144361088886740' def test_double_previously_failing_integrals(): # Double integrals not implemented <- Sure it is! res = integrate(sqrt(x) + x*y, (x, 1, 2), (y, -1, 1)) # Old numerical test assert NS(res, 15) == '2.43790283299492' # Symbolic test assert res == Rational(-4, 3) + 8*sqrt(2)/3 # double integral + zero detection assert integrate(sin(x + x*y), (x, -1, 1), (y, -1, 1)) is S.Zero def test_integrate_SingularityFunction(): in_1 = SingularityFunction(x, a, 3) + SingularityFunction(x, 5, -1) out_1 = SingularityFunction(x, a, 4)/4 + SingularityFunction(x, 5, 0) assert integrate(in_1, x) == out_1 in_2 = 10*SingularityFunction(x, 4, 0) - 5*SingularityFunction(x, -6, -2) out_2 = 10*SingularityFunction(x, 4, 1) - 5*SingularityFunction(x, -6, -1) assert integrate(in_2, x) == out_2 in_3 = 2*x**2*y -10*SingularityFunction(x, -4, 7) - 2*SingularityFunction(y, 10, -2) out_3_1 = 2*x**3*y/3 - 2*x*SingularityFunction(y, 10, -2) - 5*SingularityFunction(x, -4, 8)/4 out_3_2 = x**2*y**2 - 10*y*SingularityFunction(x, -4, 7) - 2*SingularityFunction(y, 10, -1) assert integrate(in_3, x) == out_3_1 assert integrate(in_3, y) == out_3_2 assert unchanged(Integral, in_3, (x,)) assert Integral(in_3, x) == Integral(in_3, (x,)) assert Integral(in_3, x).doit() == out_3_1 in_4 = 10*SingularityFunction(x, -4, 7) - 2*SingularityFunction(x, 10, -2) out_4 = 5*SingularityFunction(x, -4, 8)/4 - 2*SingularityFunction(x, 10, -1) assert integrate(in_4, (x, -oo, x)) == out_4 assert integrate(SingularityFunction(x, 5, -1), x) == SingularityFunction(x, 5, 0) assert integrate(SingularityFunction(x, 0, -1), (x, -oo, oo)) == 1 assert integrate(5*SingularityFunction(x, 5, -1), (x, -oo, oo)) == 5 assert integrate(SingularityFunction(x, 5, -1) * f(x), (x, -oo, oo)) == f(5) def test_integrate_DiracDelta(): # This is here to check that deltaintegrate is being called, but also # to test definite integrals. More tests are in test_deltafunctions.py assert integrate(DiracDelta(x) * f(x), (x, -oo, oo)) == f(0) assert integrate(DiracDelta(x)**2, (x, -oo, oo)) == DiracDelta(0) # issue 4522 assert integrate(integrate((4 - 4*x + x*y - 4*y) * \ DiracDelta(x)*DiracDelta(y - 1), (x, 0, 1)), (y, 0, 1)) == 0 # issue 5729 p = exp(-(x**2 + y**2))/pi assert integrate(p*DiracDelta(x - 10*y), (x, -oo, oo), (y, -oo, oo)) == \ integrate(p*DiracDelta(x - 10*y), (y, -oo, oo), (x, -oo, oo)) == \ integrate(p*DiracDelta(10*x - y), (x, -oo, oo), (y, -oo, oo)) == \ integrate(p*DiracDelta(10*x - y), (y, -oo, oo), (x, -oo, oo)) == \ 1/sqrt(101*pi) def test_integrate_returns_piecewise(): assert integrate(x**y, x) == Piecewise( (x**(y + 1)/(y + 1), Ne(y, -1)), (log(x), True)) assert integrate(x**y, y) == Piecewise( (x**y/log(x), Ne(log(x), 0)), (y, True)) assert integrate(exp(n*x), x) == Piecewise( (exp(n*x)/n, Ne(n, 0)), (x, True)) assert integrate(x*exp(n*x), x) == Piecewise( ((n*x - 1)*exp(n*x)/n**2, Ne(n**2, 0)), (x**2/2, True)) assert integrate(x**(n*y), x) == Piecewise( (x**(n*y + 1)/(n*y + 1), Ne(n*y, -1)), (log(x), True)) assert integrate(x**(n*y), y) == Piecewise( (x**(n*y)/(n*log(x)), Ne(n*log(x), 0)), (y, True)) assert integrate(cos(n*x), x) == Piecewise( (sin(n*x)/n, Ne(n, 0)), (x, True)) assert integrate(cos(n*x)**2, x) == Piecewise( ((n*x/2 + sin(n*x)*cos(n*x)/2)/n, Ne(n, 0)), (x, True)) assert integrate(x*cos(n*x), x) == Piecewise( (x*sin(n*x)/n + cos(n*x)/n**2, Ne(n, 0)), (x**2/2, True)) assert integrate(sin(n*x), x) == Piecewise( (-cos(n*x)/n, Ne(n, 0)), (0, True)) assert integrate(sin(n*x)**2, x) == Piecewise( ((n*x/2 - sin(n*x)*cos(n*x)/2)/n, Ne(n, 0)), (0, True)) assert integrate(x*sin(n*x), x) == Piecewise( (-x*cos(n*x)/n + sin(n*x)/n**2, Ne(n, 0)), (0, True)) assert integrate(exp(x*y), (x, 0, z)) == Piecewise( (exp(y*z)/y - 1/y, (y > -oo) & (y < oo) & Ne(y, 0)), (z, True)) def test_integrate_max_min(): x = symbols('x', real=True) assert integrate(Min(x, 2), (x, 0, 3)) == 4 assert integrate(Max(x**2, x**3), (x, 0, 2)) == Rational(49, 12) assert integrate(Min(exp(x), exp(-x))**2, x) == Piecewise( \ (exp(2*x)/2, x <= 0), (1 - exp(-2*x)/2, True)) # issue 7907 c = symbols('c', extended_real=True) int1 = integrate(Max(c, x)*exp(-x**2), (x, -oo, oo)) int2 = integrate(c*exp(-x**2), (x, -oo, c)) int3 = integrate(x*exp(-x**2), (x, c, oo)) assert int1 == int2 + int3 == sqrt(pi)*c*erf(c)/2 + \ sqrt(pi)*c/2 + exp(-c**2)/2 def test_integrate_Abs_sign(): assert integrate(Abs(x), (x, -2, 1)) == Rational(5, 2) assert integrate(Abs(x), (x, 0, 1)) == S.Half assert integrate(Abs(x + 1), (x, 0, 1)) == Rational(3, 2) assert integrate(Abs(x**2 - 1), (x, -2, 2)) == 4 assert integrate(Abs(x**2 - 3*x), (x, -15, 15)) == 2259 assert integrate(sign(x), (x, -1, 2)) == 1 assert integrate(sign(x)*sin(x), (x, -pi, pi)) == 4 assert integrate(sign(x - 2) * x**2, (x, 0, 3)) == Rational(11, 3) t, s = symbols('t s', real=True) assert integrate(Abs(t), t) == Piecewise( (-t**2/2, t <= 0), (t**2/2, True)) assert integrate(Abs(2*t - 6), t) == Piecewise( (-t**2 + 6*t, t <= 3), (t**2 - 6*t + 18, True)) assert (integrate(abs(t - s**2), (t, 0, 2)) == 2*s**2*Min(2, s**2) - 2*s**2 - Min(2, s**2)**2 + 2) assert integrate(exp(-Abs(t)), t) == Piecewise( (exp(t), t <= 0), (2 - exp(-t), True)) assert integrate(sign(2*t - 6), t) == Piecewise( (-t, t < 3), (t - 6, True)) assert integrate(2*t*sign(t**2 - 1), t) == Piecewise( (t**2, t < -1), (-t**2 + 2, t < 1), (t**2, True)) assert integrate(sign(t), (t, s + 1)) == Piecewise( (s + 1, s + 1 > 0), (-s - 1, s + 1 < 0), (0, True)) def test_subs1(): e = Integral(exp(x - y), x) assert e.subs(y, 3) == Integral(exp(x - 3), x) e = Integral(exp(x - y), (x, 0, 1)) assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 1)) f = Lambda(x, exp(-x**2)) conv = Integral(f(x - y)*f(y), (y, -oo, oo)) assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo)) def test_subs2(): e = Integral(exp(x - y), x, t) assert e.subs(y, 3) == Integral(exp(x - 3), x, t) e = Integral(exp(x - y), (x, 0, 1), (t, 0, 1)) assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 1), (t, 0, 1)) f = Lambda(x, exp(-x**2)) conv = Integral(f(x - y)*f(y), (y, -oo, oo), (t, 0, 1)) assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1)) def test_subs3(): e = Integral(exp(x - y), (x, 0, y), (t, y, 1)) assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 3), (t, 3, 1)) f = Lambda(x, exp(-x**2)) conv = Integral(f(x - y)*f(y), (y, -oo, oo), (t, x, 1)) assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1)) def test_subs4(): e = Integral(exp(x), (x, 0, y), (t, y, 1)) assert e.subs(y, 3) == Integral(exp(x), (x, 0, 3), (t, 3, 1)) f = Lambda(x, exp(-x**2)) conv = Integral(f(y)*f(y), (y, -oo, oo), (t, x, 1)) assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1)) def test_subs5(): e = Integral(exp(-x**2), (x, -oo, oo)) assert e.subs(x, 5) == e e = Integral(exp(-x**2 + y), x) assert e.subs(y, 5) == Integral(exp(-x**2 + 5), x) e = Integral(exp(-x**2 + y), (x, x)) assert e.subs(x, 5) == Integral(exp(y - x**2), (x, 5)) assert e.subs(y, 5) == Integral(exp(-x**2 + 5), x) e = Integral(exp(-x**2 + y), (y, -oo, oo), (x, -oo, oo)) assert e.subs(x, 5) == e assert e.subs(y, 5) == e # Test evaluation of antiderivatives e = Integral(exp(-x**2), (x, x)) assert e.subs(x, 5) == Integral(exp(-x**2), (x, 5)) e = Integral(exp(x), x) assert (e.subs(x,1) - e.subs(x,0) - Integral(exp(x), (x, 0, 1)) ).doit().is_zero def test_subs6(): a, b = symbols('a b') e = Integral(x*y, (x, f(x), f(y))) assert e.subs(x, 1) == Integral(x*y, (x, f(1), f(y))) assert e.subs(y, 1) == Integral(x, (x, f(x), f(1))) e = Integral(x*y, (x, f(x), f(y)), (y, f(x), f(y))) assert e.subs(x, 1) == Integral(x*y, (x, f(1), f(y)), (y, f(1), f(y))) assert e.subs(y, 1) == Integral(x*y, (x, f(x), f(y)), (y, f(x), f(1))) e = Integral(x*y, (x, f(x), f(a)), (y, f(x), f(a))) assert e.subs(a, 1) == Integral(x*y, (x, f(x), f(1)), (y, f(x), f(1))) def test_subs7(): e = Integral(x, (x, 1, y), (y, 1, 2)) assert e.subs({x: 1, y: 2}) == e e = Integral(sin(x) + sin(y), (x, sin(x), sin(y)), (y, 1, 2)) assert e.subs(sin(y), 1) == e assert e.subs(sin(x), 1) == Integral(sin(x) + sin(y), (x, 1, sin(y)), (y, 1, 2)) def test_expand(): e = Integral(f(x)+f(x**2), (x, 1, y)) assert e.expand() == Integral(f(x), (x, 1, y)) + Integral(f(x**2), (x, 1, y)) def test_integration_variable(): raises(ValueError, lambda: Integral(exp(-x**2), 3)) raises(ValueError, lambda: Integral(exp(-x**2), (3, -oo, oo))) def test_expand_integral(): assert Integral(cos(x**2)*(sin(x**2) + 1), (x, 0, 1)).expand() == \ Integral(cos(x**2)*sin(x**2), (x, 0, 1)) + \ Integral(cos(x**2), (x, 0, 1)) assert Integral(cos(x**2)*(sin(x**2) + 1), x).expand() == \ Integral(cos(x**2)*sin(x**2), x) + \ Integral(cos(x**2), x) def test_as_sum_midpoint1(): e = Integral(sqrt(x**3 + 1), (x, 2, 10)) assert e.as_sum(1, method="midpoint") == 8*sqrt(217) assert e.as_sum(2, method="midpoint") == 4*sqrt(65) + 12*sqrt(57) assert e.as_sum(3, method="midpoint") == 8*sqrt(217)/3 + \ 8*sqrt(3081)/27 + 8*sqrt(52809)/27 assert e.as_sum(4, method="midpoint") == 2*sqrt(730) + \ 4*sqrt(7) + 4*sqrt(86) + 6*sqrt(14) assert abs(e.as_sum(4, method="midpoint").n() - e.n()) < 0.5 e = Integral(sqrt(x**3 + y**3), (x, 2, 10), (y, 0, 10)) raises(NotImplementedError, lambda: e.as_sum(4)) def test_as_sum_midpoint2(): e = Integral((x + y)**2, (x, 0, 1)) n = Symbol('n', positive=True, integer=True) assert e.as_sum(1, method="midpoint").expand() == Rational(1, 4) + y + y**2 assert e.as_sum(2, method="midpoint").expand() == Rational(5, 16) + y + y**2 assert e.as_sum(3, method="midpoint").expand() == Rational(35, 108) + y + y**2 assert e.as_sum(4, method="midpoint").expand() == Rational(21, 64) + y + y**2 assert e.as_sum(n, method="midpoint").expand() == \ y**2 + y + Rational(1, 3) - 1/(12*n**2) def test_as_sum_left(): e = Integral((x + y)**2, (x, 0, 1)) assert e.as_sum(1, method="left").expand() == y**2 assert e.as_sum(2, method="left").expand() == Rational(1, 8) + y/2 + y**2 assert e.as_sum(3, method="left").expand() == Rational(5, 27) + y*Rational(2, 3) + y**2 assert e.as_sum(4, method="left").expand() == Rational(7, 32) + y*Rational(3, 4) + y**2 assert e.as_sum(n, method="left").expand() == \ y**2 + y + Rational(1, 3) - y/n - 1/(2*n) + 1/(6*n**2) assert e.as_sum(10, method="left", evaluate=False).has(Sum) def test_as_sum_right(): e = Integral((x + y)**2, (x, 0, 1)) assert e.as_sum(1, method="right").expand() == 1 + 2*y + y**2 assert e.as_sum(2, method="right").expand() == Rational(5, 8) + y*Rational(3, 2) + y**2 assert e.as_sum(3, method="right").expand() == Rational(14, 27) + y*Rational(4, 3) + y**2 assert e.as_sum(4, method="right").expand() == Rational(15, 32) + y*Rational(5, 4) + y**2 assert e.as_sum(n, method="right").expand() == \ y**2 + y + Rational(1, 3) + y/n + 1/(2*n) + 1/(6*n**2) def test_as_sum_trapezoid(): e = Integral((x + y)**2, (x, 0, 1)) assert e.as_sum(1, method="trapezoid").expand() == y**2 + y + S.Half assert e.as_sum(2, method="trapezoid").expand() == y**2 + y + Rational(3, 8) assert e.as_sum(3, method="trapezoid").expand() == y**2 + y + Rational(19, 54) assert e.as_sum(4, method="trapezoid").expand() == y**2 + y + Rational(11, 32) assert e.as_sum(n, method="trapezoid").expand() == \ y**2 + y + Rational(1, 3) + 1/(6*n**2) assert Integral(sign(x), (x, 0, 1)).as_sum(1, 'trapezoid') == S.Half def test_as_sum_raises(): e = Integral((x + y)**2, (x, 0, 1)) raises(ValueError, lambda: e.as_sum(-1)) raises(ValueError, lambda: e.as_sum(0)) raises(ValueError, lambda: Integral(x).as_sum(3)) raises(ValueError, lambda: e.as_sum(oo)) raises(ValueError, lambda: e.as_sum(3, method='xxxx2')) def test_nested_doit(): e = Integral(Integral(x, x), x) f = Integral(x, x, x) assert e.doit() == f.doit() def test_issue_4665(): # Allow only upper or lower limit evaluation e = Integral(x**2, (x, None, 1)) f = Integral(x**2, (x, 1, None)) assert e.doit() == Rational(1, 3) assert f.doit() == Rational(-1, 3) assert Integral(x*y, (x, None, y)).subs(y, t) == Integral(x*t, (x, None, t)) assert Integral(x*y, (x, y, None)).subs(y, t) == Integral(x*t, (x, t, None)) assert integrate(x**2, (x, None, 1)) == Rational(1, 3) assert integrate(x**2, (x, 1, None)) == Rational(-1, 3) assert integrate("x**2", ("x", "1", None)) == Rational(-1, 3) def test_integral_reconstruct(): e = Integral(x**2, (x, -1, 1)) assert e == Integral(*e.args) def test_doit_integrals(): e = Integral(Integral(2*x), (x, 0, 1)) assert e.doit() == Rational(1, 3) assert e.doit(deep=False) == Rational(1, 3) f = Function('f') # doesn't matter if the integral can't be performed assert Integral(f(x), (x, 1, 1)).doit() == 0 # doesn't matter if the limits can't be evaluated assert Integral(0, (x, 1, Integral(f(x), x))).doit() == 0 assert Integral(x, (a, 0)).doit() == 0 limits = ((a, 1, exp(x)), (x, 0)) assert Integral(a, *limits).doit() == Rational(1, 4) assert Integral(a, *list(reversed(limits))).doit() == 0 def test_issue_4884(): assert integrate(sqrt(x)*(1 + x)) == \ Piecewise( (2*sqrt(x)*(x + 1)**2/5 - 2*sqrt(x)*(x + 1)/15 - 4*sqrt(x)/15, Abs(x + 1) > 1), (2*I*sqrt(-x)*(x + 1)**2/5 - 2*I*sqrt(-x)*(x + 1)/15 - 4*I*sqrt(-x)/15, True)) assert integrate(x**x*(1 + log(x))) == x**x def test_is_number(): from sympy.abc import x, y, z from sympy import cos, sin assert Integral(x).is_number is False assert Integral(1, x).is_number is False assert Integral(1, (x, 1)).is_number is True assert Integral(1, (x, 1, 2)).is_number is True assert Integral(1, (x, 1, y)).is_number is False assert Integral(1, (x, y)).is_number is False assert Integral(x, y).is_number is False assert Integral(x, (y, 1, x)).is_number is False assert Integral(x, (y, 1, 2)).is_number is False assert Integral(x, (x, 1, 2)).is_number is True # `foo.is_number` should always be equivalent to `not foo.free_symbols` # in each of these cases, there are pseudo-free symbols i = Integral(x, (y, 1, 1)) assert i.is_number is False and i.n() == 0 i = Integral(x, (y, z, z)) assert i.is_number is False and i.n() == 0 i = Integral(1, (y, z, z + 2)) assert i.is_number is False and i.n() == 2 assert Integral(x*y, (x, 1, 2), (y, 1, 3)).is_number is True assert Integral(x*y, (x, 1, 2), (y, 1, z)).is_number is False assert Integral(x, (x, 1)).is_number is True assert Integral(x, (x, 1, Integral(y, (y, 1, 2)))).is_number is True assert Integral(Sum(z, (z, 1, 2)), (x, 1, 2)).is_number is True # it is possible to get a false negative if the integrand is # actually an unsimplified zero, but this is true of is_number in general. assert Integral(sin(x)**2 + cos(x)**2 - 1, x).is_number is False assert Integral(f(x), (x, 0, 1)).is_number is True def test_symbols(): from sympy.abc import x, y, z assert Integral(0, x).free_symbols == {x} assert Integral(x).free_symbols == {x} assert Integral(x, (x, None, y)).free_symbols == {y} assert Integral(x, (x, y, None)).free_symbols == {y} assert Integral(x, (x, 1, y)).free_symbols == {y} assert Integral(x, (x, y, 1)).free_symbols == {y} assert Integral(x, (x, x, y)).free_symbols == {x, y} assert Integral(x, x, y).free_symbols == {x, y} assert Integral(x, (x, 1, 2)).free_symbols == set() assert Integral(x, (y, 1, 2)).free_symbols == {x} # pseudo-free in this case assert Integral(x, (y, z, z)).free_symbols == {x, z} assert Integral(x, (y, 1, 2), (y, None, None)).free_symbols == {x, y} assert Integral(x, (y, 1, 2), (x, 1, y)).free_symbols == {y} assert Integral(2, (y, 1, 2), (y, 1, x), (x, 1, 2)).free_symbols == set() assert Integral(2, (y, x, 2), (y, 1, x), (x, 1, 2)).free_symbols == set() assert Integral(2, (x, 1, 2), (y, x, 2), (y, 1, 2)).free_symbols == \ {x} def test_is_zero(): from sympy.abc import x, m assert Integral(0, (x, 1, x)).is_zero assert Integral(1, (x, 1, 1)).is_zero assert Integral(1, (x, 1, 2), (y, 2)).is_zero is False assert Integral(x, (m, 0)).is_zero assert Integral(x + m, (m, 0)).is_zero is None i = Integral(m, (m, 1, exp(x)), (x, 0)) assert i.is_zero is None assert Integral(m, (x, 0), (m, 1, exp(x))).is_zero is True assert Integral(x, (x, oo, oo)).is_zero # issue 8171 assert Integral(x, (x, -oo, -oo)).is_zero # this is zero but is beyond the scope of what is_zero # should be doing assert Integral(sin(x), (x, 0, 2*pi)).is_zero is None def test_series(): from sympy.abc import x i = Integral(cos(x), (x, x)) e = i.lseries(x) assert i.nseries(x, n=8).removeO() == Add(*[next(e) for j in range(4)]) def test_trig_nonelementary_integrals(): x = Symbol('x') assert integrate((1 + sin(x))/x, x) == log(x) + Si(x) # next one comes out as log(x) + log(x**2)/2 + Ci(x) # so not hardcoding this log ugliness assert integrate((cos(x) + 2)/x, x).has(Ci) def test_issue_4403(): x = Symbol('x') y = Symbol('y') z = Symbol('z', positive=True) assert integrate(sqrt(x**2 + z**2), x) == \ z**2*asinh(x/z)/2 + x*sqrt(x**2 + z**2)/2 assert integrate(sqrt(x**2 - z**2), x) == \ -z**2*acosh(x/z)/2 + x*sqrt(x**2 - z**2)/2 x = Symbol('x', real=True) y = Symbol('y', positive=True) assert integrate(1/(x**2 + y**2)**S('3/2'), x) == \ x/(y**2*sqrt(x**2 + y**2)) # If y is real and nonzero, we get x*Abs(y)/(y**3*sqrt(x**2 + y**2)), # which results from sqrt(1 + x**2/y**2) = sqrt(x**2 + y**2)/|y|. def test_issue_4403_2(): assert integrate(sqrt(-x**2 - 4), x) == \ -2*atan(x/sqrt(-4 - x**2)) + x*sqrt(-4 - x**2)/2 def test_issue_4100(): R = Symbol('R', positive=True) assert integrate(sqrt(R**2 - x**2), (x, 0, R)) == pi*R**2/4 def test_issue_5167(): from sympy.abc import w, x, y, z f = Function('f') assert Integral(Integral(f(x), x), x) == Integral(f(x), x, x) assert Integral(f(x)).args == (f(x), Tuple(x)) assert Integral(Integral(f(x))).args == (f(x), Tuple(x), Tuple(x)) assert Integral(Integral(f(x)), y).args == (f(x), Tuple(x), Tuple(y)) assert Integral(Integral(f(x), z), y).args == (f(x), Tuple(z), Tuple(y)) assert Integral(Integral(Integral(f(x), x), y), z).args == \ (f(x), Tuple(x), Tuple(y), Tuple(z)) assert integrate(Integral(f(x), x), x) == Integral(f(x), x, x) assert integrate(Integral(f(x), y), x) == y*Integral(f(x), x) assert integrate(Integral(f(x), x), y) in [Integral(y*f(x), x), y*Integral(f(x), x)] assert integrate(Integral(2, x), x) == x**2 assert integrate(Integral(2, x), y) == 2*x*y # don't re-order given limits assert Integral(1, x, y).args != Integral(1, y, x).args # do as many as possible assert Integral(f(x), y, x, y, x).doit() == y**2*Integral(f(x), x, x)/2 assert Integral(f(x), (x, 1, 2), (w, 1, x), (z, 1, y)).doit() == \ y*(x - 1)*Integral(f(x), (x, 1, 2)) - (x - 1)*Integral(f(x), (x, 1, 2)) def test_issue_4890(): z = Symbol('z', positive=True) assert integrate(exp(-log(x)**2), x) == \ sqrt(pi)*exp(Rational(1, 4))*erf(log(x) - S.Half)/2 assert integrate(exp(log(x)**2), x) == \ sqrt(pi)*exp(Rational(-1, 4))*erfi(log(x)+S.Half)/2 assert integrate(exp(-z*log(x)**2), x) == \ sqrt(pi)*exp(1/(4*z))*erf(sqrt(z)*log(x) - 1/(2*sqrt(z)))/(2*sqrt(z)) def test_issue_4551(): assert not integrate(1/(x*sqrt(1 - x**2)), x).has(Integral) def test_issue_4376(): n = Symbol('n', integer=True, positive=True) assert simplify(integrate(n*(x**(1/n) - 1), (x, 0, S.Half)) - (n**2 - 2**(1/n)*n**2 - n*2**(1/n))/(2**(1 + 1/n) + n*2**(1 + 1/n))) == 0 def test_issue_4517(): assert integrate((sqrt(x) - x**3)/x**Rational(1, 3), x) == \ 6*x**Rational(7, 6)/7 - 3*x**Rational(11, 3)/11 def test_issue_4527(): k, m = symbols('k m', integer=True) assert integrate(sin(k*x)*sin(m*x), (x, 0, pi)).simplify() == \ Piecewise((0, Eq(k, 0) | Eq(m, 0)), (-pi/2, Eq(k, -m) | (Eq(k, 0) & Eq(m, 0))), (pi/2, Eq(k, m) | (Eq(k, 0) & Eq(m, 0))), (0, True)) # Should be possible to further simplify to: # Piecewise( # (0, Eq(k, 0) | Eq(m, 0)), # (-pi/2, Eq(k, -m)), # (pi/2, Eq(k, m)), # (0, True)) assert integrate(sin(k*x)*sin(m*x), (x,)) == Piecewise( (0, And(Eq(k, 0), Eq(m, 0))), (-x*sin(m*x)**2/2 - x*cos(m*x)**2/2 + sin(m*x)*cos(m*x)/(2*m), Eq(k, -m)), (x*sin(m*x)**2/2 + x*cos(m*x)**2/2 - sin(m*x)*cos(m*x)/(2*m), Eq(k, m)), (m*sin(k*x)*cos(m*x)/(k**2 - m**2) - k*sin(m*x)*cos(k*x)/(k**2 - m**2), True)) def test_issue_4199(): ypos = Symbol('y', positive=True) # TODO: Remove conds='none' below, let the assumption take care of it. assert integrate(exp(-I*2*pi*ypos*x)*x, (x, -oo, oo), conds='none') == \ Integral(exp(-I*2*pi*ypos*x)*x, (x, -oo, oo)) @slow def test_issue_3940(): a, b, c, d = symbols('a:d', positive=True, finite=True) assert integrate(exp(-x**2 + I*c*x), x) == \ -sqrt(pi)*exp(-c**2/4)*erf(I*c/2 - x)/2 assert integrate(exp(a*x**2 + b*x + c), x) == \ sqrt(pi)*exp(c)*exp(-b**2/(4*a))*erfi(sqrt(a)*x + b/(2*sqrt(a)))/(2*sqrt(a)) from sympy import expand_mul from sympy.abc import k assert expand_mul(integrate(exp(-x**2)*exp(I*k*x), (x, -oo, oo))) == \ sqrt(pi)*exp(-k**2/4) a, d = symbols('a d', positive=True) assert expand_mul(integrate(exp(-a*x**2 + 2*d*x), (x, -oo, oo))) == \ sqrt(pi)*exp(d**2/a)/sqrt(a) def test_issue_5413(): # Note that this is not the same as testing ratint() because integrate() # pulls out the coefficient. assert integrate(-a/(a**2 + x**2), x) == I*log(-I*a + x)/2 - I*log(I*a + x)/2 def test_issue_4892a(): A, z = symbols('A z') c = Symbol('c', nonzero=True) P1 = -A*exp(-z) P2 = -A/(c*t)*(sin(x)**2 + cos(y)**2) h1 = -sin(x)**2 - cos(y)**2 h2 = -sin(x)**2 + sin(y)**2 - 1 # there is still some non-deterministic behavior in integrate # or trigsimp which permits one of the following assert integrate(c*(P2 - P1), t) in [ c*(-A*(-h1)*log(c*t)/c + A*t*exp(-z)), c*(-A*(-h2)*log(c*t)/c + A*t*exp(-z)), c*( A* h1 *log(c*t)/c + A*t*exp(-z)), c*( A* h2 *log(c*t)/c + A*t*exp(-z)), (A*c*t - A*(-h1)*log(t)*exp(z))*exp(-z), (A*c*t - A*(-h2)*log(t)*exp(z))*exp(-z), ] def test_issue_4892b(): # Issues relating to issue 4596 are making the actual result of this hard # to test. The answer should be something like # # (-sin(y) + sqrt(-72 + 48*cos(y) - 8*cos(y)**2)/2)*log(x + sqrt(-72 + # 48*cos(y) - 8*cos(y)**2)/(2*(3 - cos(y)))) + (-sin(y) - sqrt(-72 + # 48*cos(y) - 8*cos(y)**2)/2)*log(x - sqrt(-72 + 48*cos(y) - # 8*cos(y)**2)/(2*(3 - cos(y)))) + x**2*sin(y)/2 + 2*x*cos(y) expr = (sin(y)*x**3 + 2*cos(y)*x**2 + 12)/(x**2 + 2) assert trigsimp(factor(integrate(expr, x).diff(x) - expr)) == 0 def test_issue_5178(): assert integrate(sin(x)*f(y, z), (x, 0, pi), (y, 0, pi), (z, 0, pi)) == \ 2*Integral(f(y, z), (y, 0, pi), (z, 0, pi)) def test_integrate_series(): f = sin(x).series(x, 0, 10) g = x**2/2 - x**4/24 + x**6/720 - x**8/40320 + x**10/3628800 + O(x**11) assert integrate(f, x) == g assert diff(integrate(f, x), x) == f assert integrate(O(x**5), x) == O(x**6) def test_atom_bug(): from sympy import meijerg from sympy.integrals.heurisch import heurisch assert heurisch(meijerg([], [], [1], [], x), x) is None def test_limit_bug(): z = Symbol('z', zero=False) assert integrate(sin(x*y*z), (x, 0, pi), (y, 0, pi)) == \ (log(z) + EulerGamma + log(pi))/z - Ci(pi**2*z)/z + log(pi)/z def test_issue_4703(): g = Function('g') assert integrate(exp(x)*g(x), x).has(Integral) def test_issue_1888(): f = Function('f') assert integrate(f(x).diff(x)**2, x).has(Integral) # The following tests work using meijerint. def test_issue_3558(): from sympy import Si assert integrate(cos(x*y), (x, -pi/2, pi/2), (y, 0, pi)) == 2*Si(pi**2/2) def test_issue_4422(): assert integrate(1/sqrt(16 + 4*x**2), x) == asinh(x/2) / 2 def test_issue_4493(): from sympy import simplify assert simplify(integrate(x*sqrt(1 + 2*x), x)) == \ sqrt(2*x + 1)*(6*x**2 + x - 1)/15 def test_issue_4737(): assert integrate(sin(x)/x, (x, -oo, oo)) == pi assert integrate(sin(x)/x, (x, 0, oo)) == pi/2 assert integrate(sin(x)/x, x) == Si(x) def test_issue_4992(): # Note: psi in _check_antecedents becomes NaN. from sympy import simplify, expand_func, polygamma, gamma a = Symbol('a', positive=True) assert simplify(expand_func(integrate(exp(-x)*log(x)*x**a, (x, 0, oo)))) == \ (a*polygamma(0, a) + 1)*gamma(a) def test_issue_4487(): from sympy import lowergamma, simplify assert simplify(integrate(exp(-x)*x**y, x)) == lowergamma(y + 1, x) def test_issue_4215(): x = Symbol("x") assert integrate(1/(x**2), (x, -1, 1)) is oo def test_issue_4400(): n = Symbol('n', integer=True, positive=True) assert integrate((x**n)*log(x), x) == \ n*x*x**n*log(x)/(n**2 + 2*n + 1) + x*x**n*log(x)/(n**2 + 2*n + 1) - \ x*x**n/(n**2 + 2*n + 1) def test_issue_6253(): # Note: this used to raise NotImplementedError # Note: psi in _check_antecedents becomes NaN. assert integrate((sqrt(1 - x) + sqrt(1 + x))**2/x, x, meijerg=True) == \ Integral((sqrt(-x + 1) + sqrt(x + 1))**2/x, x) def test_issue_4153(): assert integrate(1/(1 + x + y + z), (x, 0, 1), (y, 0, 1), (z, 0, 1)) in [ -12*log(3) - 3*log(6)/2 + 3*log(8)/2 + 5*log(2) + 7*log(4), 6*log(2) + 8*log(4) - 27*log(3)/2, 22*log(2) - 27*log(3)/2, -12*log(3) - 3*log(6)/2 + 47*log(2)/2] def test_issue_4326(): R, b, h = symbols('R b h') # It doesn't matter if we can do the integral. Just make sure the result # doesn't contain nan. This is really a test against _eval_interval. e = integrate(((h*(x - R + b))/b)*sqrt(R**2 - x**2), (x, R - b, R)) assert not e.has(nan) # See that it evaluates assert not e.has(Integral) def test_powers(): assert integrate(2**x + 3**x, x) == 2**x/log(2) + 3**x/log(3) def test_manual_option(): raises(ValueError, lambda: integrate(1/x, x, manual=True, meijerg=True)) # an example of a function that manual integration cannot handle assert integrate(log(1+x)/x, (x, 0, 1), manual=True).has(Integral) def test_meijerg_option(): raises(ValueError, lambda: integrate(1/x, x, meijerg=True, risch=True)) # an example of a function that meijerg integration cannot handle assert integrate(tan(x), x, meijerg=True) == Integral(tan(x), x) def test_risch_option(): # risch=True only allowed on indefinite integrals raises(ValueError, lambda: integrate(1/log(x), (x, 0, oo), risch=True)) assert integrate(exp(-x**2), x, risch=True) == NonElementaryIntegral(exp(-x**2), x) assert integrate(log(1/x)*y, x, y, risch=True) == y**2*(x*log(1/x)/2 + x/2) assert integrate(erf(x), x, risch=True) == Integral(erf(x), x) # TODO: How to test risch=False? def test_heurisch_option(): raises(ValueError, lambda: integrate(1/x, x, risch=True, heurisch=True)) # an integral that heurisch can handle assert integrate(exp(x**2), x, heurisch=True) == sqrt(pi)*erfi(x)/2 # an integral that heurisch currently cannot handle assert integrate(exp(x)/x, x, heurisch=True) == Integral(exp(x)/x, x) # an integral where heurisch currently hangs, issue 15471 assert integrate(log(x)*cos(log(x))/x**Rational(3, 4), x, heurisch=False) == ( -128*x**Rational(1, 4)*sin(log(x))/289 + 240*x**Rational(1, 4)*cos(log(x))/289 + (16*x**Rational(1, 4)*sin(log(x))/17 + 4*x**Rational(1, 4)*cos(log(x))/17)*log(x)) def test_issue_6828(): f = 1/(1.08*x**2 - 4.3) g = integrate(f, x).diff(x) assert verify_numerically(f, g, tol=1e-12) def test_issue_4803(): x_max = Symbol("x_max") assert integrate(y/pi*exp(-(x_max - x)/cos(a)), x) == \ y*exp((x - x_max)/cos(a))*cos(a)/pi def test_issue_4234(): assert integrate(1/sqrt(1 + tan(x)**2)) == tan(x)/sqrt(1 + tan(x)**2) def test_issue_4492(): assert simplify(integrate(x**2 * sqrt(5 - x**2), x)) == Piecewise( (I*(2*x**5 - 15*x**3 + 25*x - 25*sqrt(x**2 - 5)*acosh(sqrt(5)*x/5)) / (8*sqrt(x**2 - 5)), 1 < Abs(x**2)/5), ((-2*x**5 + 15*x**3 - 25*x + 25*sqrt(-x**2 + 5)*asin(sqrt(5)*x/5)) / (8*sqrt(-x**2 + 5)), True)) def test_issue_2708(): # This test needs to use an integration function that can # not be evaluated in closed form. Update as needed. f = 1/(a + z + log(z)) integral_f = NonElementaryIntegral(f, (z, 2, 3)) assert Integral(f, (z, 2, 3)).doit() == integral_f assert integrate(f + exp(z), (z, 2, 3)) == integral_f - exp(2) + exp(3) assert integrate(2*f + exp(z), (z, 2, 3)) == \ 2*integral_f - exp(2) + exp(3) assert integrate(exp(1.2*n*s*z*(-t + z)/t), (z, 0, x)) == \ NonElementaryIntegral(exp(-1.2*n*s*z)*exp(1.2*n*s*z**2/t), (z, 0, x)) def test_issue_2884(): f = (4.000002016020*x + 4.000002016020*y + 4.000006024032)*exp(10.0*x) e = integrate(f, (x, 0.1, 0.2)) assert str(e) == '1.86831064982608*y + 2.16387491480008' def test_issue_8368(): assert integrate(exp(-s*x)*cosh(x), (x, 0, oo)) == \ Piecewise( ( pi*Piecewise( ( -s/(pi*(-s**2 + 1)), Abs(s**2) < 1), ( 1/(pi*s*(1 - 1/s**2)), Abs(s**(-2)) < 1), ( meijerg( ((S.Half,), (0, 0)), ((0, S.Half), (0,)), polar_lift(s)**2), True) ), And( Abs(periodic_argument(polar_lift(s)**2, oo)) < pi, cos(Abs(periodic_argument(polar_lift(s)**2, oo))/2)*sqrt(Abs(s**2)) - 1 > 0, Ne(s**2, 1)) ), ( Integral(exp(-s*x)*cosh(x), (x, 0, oo)), True)) assert integrate(exp(-s*x)*sinh(x), (x, 0, oo)) == \ Piecewise( ( -1/(s + 1)/2 - 1/(-s + 1)/2, And( Ne(1/s, 1), Abs(periodic_argument(s, oo)) < pi/2, Abs(periodic_argument(s, oo)) <= pi/2, cos(Abs(periodic_argument(s, oo)))*Abs(s) - 1 > 0)), ( Integral(exp(-s*x)*sinh(x), (x, 0, oo)), True)) def test_issue_8901(): assert integrate(sinh(1.0*x)) == 1.0*cosh(1.0*x) assert integrate(tanh(1.0*x)) == 1.0*x - 1.0*log(tanh(1.0*x) + 1) assert integrate(tanh(x)) == x - log(tanh(x) + 1) @slow def test_issue_8945(): assert integrate(sin(x)**3/x, (x, 0, 1)) == -Si(3)/4 + 3*Si(1)/4 assert integrate(sin(x)**3/x, (x, 0, oo)) == pi/4 assert integrate(cos(x)**2/x**2, x) == -Si(2*x) - cos(2*x)/(2*x) - 1/(2*x) @slow def test_issue_7130(): if ON_TRAVIS: skip("Too slow for travis.") i, L, a, b = symbols('i L a b') integrand = (cos(pi*i*x/L)**2 / (a + b*x)).rewrite(exp) assert x not in integrate(integrand, (x, 0, L)).free_symbols def test_issue_10567(): a, b, c, t = symbols('a b c t') vt = Matrix([a*t, b, c]) assert integrate(vt, t) == Integral(vt, t).doit() assert integrate(vt, t) == Matrix([[a*t**2/2], [b*t], [c*t]]) def test_issue_11856(): t = symbols('t') assert integrate(sinc(pi*t), t) == Si(pi*t)/pi @slow def test_issue_11876(): assert integrate(sqrt(log(1/x)), (x, 0, 1)) == sqrt(pi)/2 def test_issue_4950(): assert integrate((-60*exp(x) - 19.2*exp(4*x))*exp(4*x), x) ==\ -2.4*exp(8*x) - 12.0*exp(5*x) def test_issue_4968(): assert integrate(sin(log(x**2))) == x*sin(2*log(x))/5 - 2*x*cos(2*log(x))/5 def test_singularities(): assert integrate(1/x**2, (x, -oo, oo)) is oo assert integrate(1/x**2, (x, -1, 1)) is oo assert integrate(1/(x - 1)**2, (x, -2, 2)) is oo assert integrate(1/x**2, (x, 1, -1)) is -oo assert integrate(1/(x - 1)**2, (x, 2, -2)) is -oo def test_issue_12645(): x, y = symbols('x y', real=True) assert (integrate(sin(x*x*x + y*y), (x, -sqrt(pi - y*y), sqrt(pi - y*y)), (y, -sqrt(pi), sqrt(pi))) == Integral(sin(x**3 + y**2), (x, -sqrt(-y**2 + pi), sqrt(-y**2 + pi)), (y, -sqrt(pi), sqrt(pi)))) def test_issue_12677(): assert integrate(sin(x) / (cos(x)**3) , (x, 0, pi/6)) == Rational(1,6) def test_issue_14078(): assert integrate((cos(3*x)-cos(x))/x, (x, 0, oo)) == -log(3) def test_issue_14064(): assert integrate(1/cosh(x), (x, 0, oo)) == pi/2 def test_issue_14027(): assert integrate(1/(1 + exp(x - S.Half)/(1 + exp(x))), x) == \ x - exp(S.Half)*log(exp(x) + exp(S.Half)/(1 + exp(S.Half)))/(exp(S.Half) + E) def test_issue_8170(): assert integrate(tan(x), (x, 0, pi/2)) is S.Infinity def test_issue_8440_14040(): assert integrate(1/x, (x, -1, 1)) is S.NaN assert integrate(1/(x + 1), (x, -2, 3)) is S.NaN def test_issue_14096(): assert integrate(1/(x + y)**2, (x, 0, 1)) == -1/(y + 1) + 1/y assert integrate(1/(1 + x + y + z)**2, (x, 0, 1), (y, 0, 1), (z, 0, 1)) == \ -4*log(4) - 6*log(2) + 9*log(3) def test_issue_14144(): assert Abs(integrate(1/sqrt(1 - x**3), (x, 0, 1)).n() - 1.402182) < 1e-6 assert Abs(integrate(sqrt(1 - x**3), (x, 0, 1)).n() - 0.841309) < 1e-6 def test_issue_14375(): # This raised a TypeError. The antiderivative has exp_polar, which # may be possible to unpolarify, so the exact output is not asserted here. assert integrate(exp(I*x)*log(x), x).has(Ei) def test_issue_14437(): f = Function('f')(x, y, z) assert integrate(f, (x, 0, 1), (y, 0, 2), (z, 0, 3)) == \ Integral(f, (x, 0, 1), (y, 0, 2), (z, 0, 3)) def test_issue_14470(): assert integrate(1/sqrt(exp(x) + 1), x) == \ log(-1 + 1/sqrt(exp(x) + 1)) - log(1 + 1/sqrt(exp(x) + 1)) def test_issue_14877(): f = exp(1 - exp(x**2)*x + 2*x**2)*(2*x**3 + x)/(1 - exp(x**2)*x)**2 assert integrate(f, x) == \ -exp(2*x**2 - x*exp(x**2) + 1)/(x*exp(3*x**2) - exp(2*x**2)) def test_issue_14782(): f = sqrt(-x**2 + 1)*(-x**2 + x) assert integrate(f, [x, -1, 1]) == - pi / 8 @slow def test_issue_14782_slow(): f = sqrt(-x**2 + 1)*(-x**2 + x) assert integrate(f, [x, 0, 1]) == S.One / 3 - pi / 16 def test_issue_12081(): f = x**(Rational(-3, 2))*exp(-x) assert integrate(f, [x, 0, oo]) is oo def test_issue_15285(): y = 1/x - 1 f = 4*y*exp(-2*y)/x**2 assert integrate(f, [x, 0, 1]) == 1 def test_issue_15432(): assert integrate(x**n * exp(-x) * log(x), (x, 0, oo)).gammasimp() == Piecewise( (gamma(n + 1)*polygamma(0, n) + gamma(n + 1)/n, re(n) + 1 > 0), (Integral(x**n*exp(-x)*log(x), (x, 0, oo)), True)) def test_issue_15124(): omega = IndexedBase('omega') m, p = symbols('m p', cls=Idx) assert integrate(exp(x*I*(omega[m] + omega[p])), x, conds='none') == \ -I*exp(I*x*omega[m])*exp(I*x*omega[p])/(omega[m] + omega[p]) def test_issue_15218(): assert Eq(x, y).integrate(x) == Eq(x**2/2, x*y) assert Integral(Eq(x, y), x) == Eq(Integral(x, x), Integral(y, x)) assert Integral(Eq(x, y), x).doit() == Eq(x**2/2, x*y) def test_issue_15292(): res = integrate(exp(-x**2*cos(2*t)) * cos(x**2*sin(2*t)), (x, 0, oo)) assert isinstance(res, Piecewise) assert gammasimp((res - sqrt(pi)/2 * cos(t)).subs(t, pi/6)) == 0 def test_issue_4514(): assert integrate(sin(2*x)/sin(x), x) == 2*sin(x) def test_issue_15457(): x, a, b = symbols('x a b', real=True) definite = integrate(exp(Abs(x-2)), (x, a, b)) indefinite = integrate(exp(Abs(x-2)), x) assert definite.subs({a: 1, b: 3}) == -2 + 2*E assert indefinite.subs(x, 3) - indefinite.subs(x, 1) == -2 + 2*E assert definite.subs({a: -3, b: -1}) == -exp(3) + exp(5) assert indefinite.subs(x, -1) - indefinite.subs(x, -3) == -exp(3) + exp(5) def test_issue_15431(): assert integrate(x*exp(x)*log(x), x) == \ (x*exp(x) - exp(x))*log(x) - exp(x) + Ei(x) def test_issue_15640_log_substitutions(): f = x/log(x) F = Ei(2*log(x)) assert integrate(f, x) == F and F.diff(x) == f f = x**3/log(x)**2 F = -x**4/log(x) + 4*Ei(4*log(x)) assert integrate(f, x) == F and F.diff(x) == f f = sqrt(log(x))/x**2 F = -sqrt(pi)*erfc(sqrt(log(x)))/2 - sqrt(log(x))/x assert integrate(f, x) == F and F.diff(x) == f def test_issue_15509(): from sympy.vector import CoordSys3D N = CoordSys3D('N') x = N.x assert integrate(cos(a*x + b), (x, x_1, x_2), heurisch=True) == Piecewise( (-sin(a*x_1 + b)/a + sin(a*x_2 + b)/a, (a > -oo) & (a < oo) & Ne(a, 0)), \ (-x_1*cos(b) + x_2*cos(b), True)) def test_issue_4311_fast(): x = symbols('x', real=True) assert integrate(x*abs(9-x**2), x) == Piecewise( (x**4/4 - 9*x**2/2, x <= -3), (-x**4/4 + 9*x**2/2 - Rational(81, 2), x <= 3), (x**4/4 - 9*x**2/2, True)) def test_integrate_with_complex_constants(): K = Symbol('K', real=True, positive=True) x = Symbol('x', real=True) m = Symbol('m', real=True) assert integrate(exp(-I*K*x**2+m*x), x) == sqrt(I)*sqrt(pi)*exp(-I*m**2 /(4*K))*erfi((-2*I*K*x + m)/(2*sqrt(K)*sqrt(-I)))/(2*sqrt(K)) assert integrate(1/(1 + I*x**2), x) == -sqrt(I)*log(x - sqrt(I))/2 +\ sqrt(I)*log(x + sqrt(I))/2 assert integrate(exp(-I*x**2), x) == sqrt(pi)*erf(sqrt(I)*x)/(2*sqrt(I)) def test_issue_14241(): x = Symbol('x') n = Symbol('n', positive=True, integer=True) assert integrate(n * x ** (n - 1) / (x + 1), x) == \ n**2*x**n*lerchphi(x*exp_polar(I*pi), 1, n)*gamma(n)/gamma(n + 1) def test_issue_13112(): assert integrate(sin(t)**2 / (5 - 4*cos(t)), [t, 0, 2*pi]) == pi / 4 def test_issue_14709b(): h = Symbol('h', positive=True) i = integrate(x*acos(1 - 2*x/h), (x, 0, h)) assert i == 5*h**2*pi/16 def test_issue_8614(): x = Symbol('x') t = Symbol('t') assert integrate(exp(t)/t, (t, -oo, x)) == Ei(x) assert integrate((exp(-x) - exp(-2*x))/x, (x, 0, oo)) == log(2) def test_issue_15494(): s = symbols('s', real=True, positive=True) integrand = (exp(s/2) - 2*exp(1.6*s) + exp(s))*exp(s) solution = integrate(integrand, s) assert solution != S.NaN # Not sure how to test this properly as it is a symbolic expression with floats # assert str(solution) == '0.666666666666667*exp(1.5*s) + 0.5*exp(2.0*s) - 0.769230769230769*exp(2.6*s)' # Maybe assert abs(solution.subs(s, 1) - (-3.67440080236188)) <= 1e-8 integrand = (exp(s/2) - 2*exp(S(8)/5*s) + exp(s))*exp(s) assert integrate(integrand, s) == -10*exp(13*s/5)/13 + 2*exp(3*s/2)/3 + exp(2*s)/2 def test_li_integral(): y = Symbol('y') assert Integral(li(y*x**2), x).doit() == Piecewise( (x*li(x**2*y) - x*Ei(3*log(x) + 3*log(y)/2)/(sqrt(y)*sqrt(x**2)), Ne(y, 0)), (0, True)) def test_issue_17473(): x = Symbol('x') n = Symbol('n') assert integrate(sin(x**n), x) == \ x*x**n*gamma(S(1)/2 + 1/(2*n))*hyper((S(1)/2 + 1/(2*n),), (S(3)/2, S(3)/2 + 1/(2*n)), -x**(2*n)/4)/(2*n*gamma(S(3)/2 + 1/(2*n))) def test_issue_17671(): assert integrate(log(log(x)) / x**2, [x, 1, oo]) == -EulerGamma assert integrate(log(log(x)) / x**3, [x, 1, oo]) == -log(2)/2 - EulerGamma/2 assert integrate(log(log(x)) / x**10, [x, 1, oo]) == -2*log(3)/9 - EulerGamma/9
5baee02e0c5c1ce5600823e10e903b631ae74cc2e01ad7bf56e4e9c5be2c0d68
from sympy import ( Symbol, Wild, sin, cos, exp, sqrt, pi, Function, Derivative, Integer, Eq, symbols, Add, I, Float, log, Rational, Lambda, atan2, cse, cot, tan, S, Tuple, Basic, Dict, Piecewise, oo, Mul, factor, nsimplify, zoo, Subs, RootOf, AccumBounds, Matrix, zeros, ZeroMatrix) from sympy.core.basic import _aresame from sympy.utilities.pytest import XFAIL from sympy.abc import a, x, y, z def test_subs(): n3 = Rational(3) e = x e = e.subs(x, n3) assert e == Rational(3) e = 2*x assert e == 2*x e = e.subs(x, n3) assert e == Rational(6) def test_subs_Matrix(): z = zeros(2) z1 = ZeroMatrix(2, 2) assert (x*y).subs({x:z, y:0}) in [z, z1] assert (x*y).subs({y:z, x:0}) == 0 assert (x*y).subs({y:z, x:0}, simultaneous=True) in [z, z1] assert (x + y).subs({x: z, y: z}, simultaneous=True) in [z, z1] assert (x + y).subs({x: z, y: z}) in [z, z1] # Issue #15528 assert Mul(Matrix([[3]]), x).subs(x, 2.0) == Matrix([[6.0]]) # Does not raise a TypeError, see comment on the MatAdd postprocessor assert Add(Matrix([[3]]), x).subs(x, 2.0) == Add(Matrix([[3]]), 2.0) def test_subs_AccumBounds(): e = x e = e.subs(x, AccumBounds(1, 3)) assert e == AccumBounds(1, 3) e = 2*x e = e.subs(x, AccumBounds(1, 3)) assert e == AccumBounds(2, 6) e = x + x**2 e = e.subs(x, AccumBounds(-1, 1)) assert e == AccumBounds(-1, 2) def test_trigonometric(): n3 = Rational(3) e = (sin(x)**2).diff(x) assert e == 2*sin(x)*cos(x) e = e.subs(x, n3) assert e == 2*cos(n3)*sin(n3) e = (sin(x)**2).diff(x) assert e == 2*sin(x)*cos(x) e = e.subs(sin(x), cos(x)) assert e == 2*cos(x)**2 assert exp(pi).subs(exp, sin) == 0 assert cos(exp(pi)).subs(exp, sin) == 1 i = Symbol('i', integer=True) zoo = S.ComplexInfinity assert tan(x).subs(x, pi/2) is zoo assert cot(x).subs(x, pi) is zoo assert cot(i*x).subs(x, pi) is zoo assert tan(i*x).subs(x, pi/2) == tan(i*pi/2) assert tan(i*x).subs(x, pi/2).subs(i, 1) is zoo o = Symbol('o', odd=True) assert tan(o*x).subs(x, pi/2) == tan(o*pi/2) def test_powers(): assert sqrt(1 - sqrt(x)).subs(x, 4) == I assert (sqrt(1 - x**2)**3).subs(x, 2) == - 3*I*sqrt(3) assert (x**Rational(1, 3)).subs(x, 27) == 3 assert (x**Rational(1, 3)).subs(x, -27) == 3*(-1)**Rational(1, 3) assert ((-x)**Rational(1, 3)).subs(x, 27) == 3*(-1)**Rational(1, 3) n = Symbol('n', negative=True) assert (x**n).subs(x, 0) is S.ComplexInfinity assert exp(-1).subs(S.Exp1, 0) is S.ComplexInfinity assert (x**(4.0*y)).subs(x**(2.0*y), n) == n**2.0 assert (2**(x + 2)).subs(2, 3) == 3**(x + 3) def test_logexppow(): # no eval() x = Symbol('x', real=True) w = Symbol('w') e = (3**(1 + x) + 2**(1 + x))/(3**x + 2**x) assert e.subs(2**x, w) != e assert e.subs(exp(x*log(Rational(2))), w) != e def test_bug(): x1 = Symbol('x1') x2 = Symbol('x2') y = x1*x2 assert y.subs(x1, Float(3.0)) == Float(3.0)*x2 def test_subbug1(): # see that they don't fail (x**x).subs(x, 1) (x**x).subs(x, 1.0) def test_subbug2(): # Ensure this does not cause infinite recursion assert Float(7.7).epsilon_eq(abs(x).subs(x, -7.7)) def test_dict_set(): a, b, c = map(Wild, 'abc') f = 3*cos(4*x) r = f.match(a*cos(b*x)) assert r == {a: 3, b: 4} e = a/b*sin(b*x) assert e.subs(r) == r[a]/r[b]*sin(r[b]*x) assert e.subs(r) == 3*sin(4*x) / 4 s = set(r.items()) assert e.subs(s) == r[a]/r[b]*sin(r[b]*x) assert e.subs(s) == 3*sin(4*x) / 4 assert e.subs(r) == r[a]/r[b]*sin(r[b]*x) assert e.subs(r) == 3*sin(4*x) / 4 assert x.subs(Dict((x, 1))) == 1 def test_dict_ambigous(): # see issue 3566 f = x*exp(x) g = z*exp(z) df = {x: y, exp(x): y} dg = {z: y, exp(z): y} assert f.subs(df) == y**2 assert g.subs(dg) == y**2 # and this is how order can affect the result assert f.subs(x, y).subs(exp(x), y) == y*exp(y) assert f.subs(exp(x), y).subs(x, y) == y**2 # length of args and count_ops are the same so # default_sort_key resolves ordering...if one # doesn't want this result then an unordered # sequence should not be used. e = 1 + x*y assert e.subs({x: y, y: 2}) == 5 # here, there are no obviously clashing keys or values # but the results depend on the order assert exp(x/2 + y).subs({exp(y + 1): 2, x: 2}) == exp(y + 1) def test_deriv_sub_bug3(): f = Function('f') pat = Derivative(f(x), x, x) assert pat.subs(y, y**2) == Derivative(f(x), x, x) assert pat.subs(y, y**2) != Derivative(f(x), x) def test_equality_subs1(): f = Function('f') eq = Eq(f(x)**2, x) res = Eq(Integer(16), x) assert eq.subs(f(x), 4) == res def test_equality_subs2(): f = Function('f') eq = Eq(f(x)**2, 16) assert bool(eq.subs(f(x), 3)) is False assert bool(eq.subs(f(x), 4)) is True def test_issue_3742(): e = sqrt(x)*exp(y) assert e.subs(sqrt(x), 1) == exp(y) def test_subs_dict1(): assert (1 + x*y).subs(x, pi) == 1 + pi*y assert (1 + x*y).subs({x: pi, y: 2}) == 1 + 2*pi c2, c3, q1p, q2p, c1, s1, s2, s3 = symbols('c2 c3 q1p q2p c1 s1 s2 s3') test = (c2**2*q2p*c3 + c1**2*s2**2*q2p*c3 + s1**2*s2**2*q2p*c3 - c1**2*q1p*c2*s3 - s1**2*q1p*c2*s3) assert (test.subs({c1**2: 1 - s1**2, c2**2: 1 - s2**2, c3**3: 1 - s3**2}) == c3*q2p*(1 - s2**2) + c3*q2p*s2**2*(1 - s1**2) - c2*q1p*s3*(1 - s1**2) + c3*q2p*s1**2*s2**2 - c2*q1p*s3*s1**2) def test_mul(): x, y, z, a, b, c = symbols('x y z a b c') A, B, C = symbols('A B C', commutative=0) assert (x*y*z).subs(z*x, y) == y**2 assert (z*x).subs(1/x, z) == 1 assert (x*y/z).subs(1/z, a) == a*x*y assert (x*y/z).subs(x/z, a) == a*y assert (x*y/z).subs(y/z, a) == a*x assert (x*y/z).subs(x/z, 1/a) == y/a assert (x*y/z).subs(x, 1/a) == y/(z*a) assert (2*x*y).subs(5*x*y, z) != z*Rational(2, 5) assert (x*y*A).subs(x*y, a) == a*A assert (x**2*y**(x*Rational(3, 2))).subs(x*y**(x/2), 2) == 4*y**(x/2) assert (x*exp(x*2)).subs(x*exp(x), 2) == 2*exp(x) assert ((x**(2*y))**3).subs(x**y, 2) == 64 assert (x*A*B).subs(x*A, y) == y*B assert (x*y*(1 + x)*(1 + x*y)).subs(x*y, 2) == 6*(1 + x) assert ((1 + A*B)*A*B).subs(A*B, x*A*B) assert (x*a/z).subs(x/z, A) == a*A assert (x**3*A).subs(x**2*A, a) == a*x assert (x**2*A*B).subs(x**2*B, a) == a*A assert (x**2*A*B).subs(x**2*A, a) == a*B assert (b*A**3/(a**3*c**3)).subs(a**4*c**3*A**3/b**4, z) == \ b*A**3/(a**3*c**3) assert (6*x).subs(2*x, y) == 3*y assert (y*exp(x*Rational(3, 2))).subs(y*exp(x), 2) == 2*exp(x/2) assert (y*exp(x*Rational(3, 2))).subs(y*exp(x), 2) == 2*exp(x/2) assert (A**2*B*A**2*B*A**2).subs(A*B*A, C) == A*C**2*A assert (x*A**3).subs(x*A, y) == y*A**2 assert (x**2*A**3).subs(x*A, y) == y**2*A assert (x*A**3).subs(x*A, B) == B*A**2 assert (x*A*B*A*exp(x*A*B)).subs(x*A, B) == B**2*A*exp(B*B) assert (x**2*A*B*A*exp(x*A*B)).subs(x*A, B) == B**3*exp(B**2) assert (x**3*A*exp(x*A*B)*A*exp(x*A*B)).subs(x*A, B) == \ x*B*exp(B**2)*B*exp(B**2) assert (x*A*B*C*A*B).subs(x*A*B, C) == C**2*A*B assert (-I*a*b).subs(a*b, 2) == -2*I # issue 6361 assert (-8*I*a).subs(-2*a, 1) == 4*I assert (-I*a).subs(-a, 1) == I # issue 6441 assert (4*x**2).subs(2*x, y) == y**2 assert (2*4*x**2).subs(2*x, y) == 2*y**2 assert (-x**3/9).subs(-x/3, z) == -z**2*x assert (-x**3/9).subs(x/3, z) == -z**2*x assert (-2*x**3/9).subs(x/3, z) == -2*x*z**2 assert (-2*x**3/9).subs(-x/3, z) == -2*x*z**2 assert (-2*x**3/9).subs(-2*x, z) == z*x**2/9 assert (-2*x**3/9).subs(2*x, z) == -z*x**2/9 assert (2*(3*x/5/7)**2).subs(3*x/5, z) == 2*(Rational(1, 7))**2*z**2 assert (4*x).subs(-2*x, z) == 4*x # try keep subs literal def test_subs_simple(): a = symbols('a', commutative=True) x = symbols('x', commutative=False) assert (2*a).subs(1, 3) == 2*a assert (2*a).subs(2, 3) == 3*a assert (2*a).subs(a, 3) == 6 assert sin(2).subs(1, 3) == sin(2) assert sin(2).subs(2, 3) == sin(3) assert sin(a).subs(a, 3) == sin(3) assert (2*x).subs(1, 3) == 2*x assert (2*x).subs(2, 3) == 3*x assert (2*x).subs(x, 3) == 6 assert sin(x).subs(x, 3) == sin(3) def test_subs_constants(): a, b = symbols('a b', commutative=True) x, y = symbols('x y', commutative=False) assert (a*b).subs(2*a, 1) == a*b assert (1.5*a*b).subs(a, 1) == 1.5*b assert (2*a*b).subs(2*a, 1) == b assert (2*a*b).subs(4*a, 1) == 2*a*b assert (x*y).subs(2*x, 1) == x*y assert (1.5*x*y).subs(x, 1) == 1.5*y assert (2*x*y).subs(2*x, 1) == y assert (2*x*y).subs(4*x, 1) == 2*x*y def test_subs_commutative(): a, b, c, d, K = symbols('a b c d K', commutative=True) assert (a*b).subs(a*b, K) == K assert (a*b*a*b).subs(a*b, K) == K**2 assert (a*a*b*b).subs(a*b, K) == K**2 assert (a*b*c*d).subs(a*b*c, K) == d*K assert (a*b**c).subs(a, K) == K*b**c assert (a*b**c).subs(b, K) == a*K**c assert (a*b**c).subs(c, K) == a*b**K assert (a*b*c*b*a).subs(a*b, K) == c*K**2 assert (a**3*b**2*a).subs(a*b, K) == a**2*K**2 def test_subs_noncommutative(): w, x, y, z, L = symbols('w x y z L', commutative=False) alpha = symbols('alpha', commutative=True) someint = symbols('someint', commutative=True, integer=True) assert (x*y).subs(x*y, L) == L assert (w*y*x).subs(x*y, L) == w*y*x assert (w*x*y*z).subs(x*y, L) == w*L*z assert (x*y*x*y).subs(x*y, L) == L**2 assert (x*x*y).subs(x*y, L) == x*L assert (x*x*y*y).subs(x*y, L) == x*L*y assert (w*x*y).subs(x*y*z, L) == w*x*y assert (x*y**z).subs(x, L) == L*y**z assert (x*y**z).subs(y, L) == x*L**z assert (x*y**z).subs(z, L) == x*y**L assert (w*x*y*z*x*y).subs(x*y*z, L) == w*L*x*y assert (w*x*y*y*w*x*x*y*x*y*y*x*y).subs(x*y, L) == w*L*y*w*x*L**2*y*L # Check fractional power substitutions. It should not do # substitutions that choose a value for noncommutative log, # or inverses that don't already appear in the expressions. assert (x*x*x).subs(x*x, L) == L*x assert (x*x*x*y*x*x*x*x).subs(x*x, L) == L*x*y*L**2 for p in range(1, 5): for k in range(10): assert (y * x**k).subs(x**p, L) == y * L**(k//p) * x**(k % p) assert (x**Rational(3, 2)).subs(x**S.Half, L) == x**Rational(3, 2) assert (x**S.Half).subs(x**S.Half, L) == L assert (x**Rational(-1, 2)).subs(x**S.Half, L) == x**Rational(-1, 2) assert (x**Rational(-1, 2)).subs(x**Rational(-1, 2), L) == L assert (x**(2*someint)).subs(x**someint, L) == L**2 assert (x**(2*someint + 3)).subs(x**someint, L) == L**2*x**3 assert (x**(3*someint + 3)).subs(x**someint, L) == L**3*x**3 assert (x**(3*someint)).subs(x**(2*someint), L) == L * x**someint assert (x**(4*someint)).subs(x**(2*someint), L) == L**2 assert (x**(4*someint + 1)).subs(x**(2*someint), L) == L**2 * x assert (x**(4*someint)).subs(x**(3*someint), L) == L * x**someint assert (x**(4*someint + 1)).subs(x**(3*someint), L) == L * x**(someint + 1) assert (x**(2*alpha)).subs(x**alpha, L) == x**(2*alpha) assert (x**(2*alpha + 2)).subs(x**2, L) == x**(2*alpha + 2) assert ((2*z)**alpha).subs(z**alpha, y) == (2*z)**alpha assert (x**(2*someint*alpha)).subs(x**someint, L) == x**(2*someint*alpha) assert (x**(2*someint + alpha)).subs(x**someint, L) == x**(2*someint + alpha) # This could in principle be substituted, but is not currently # because it requires recognizing that someint**2 is divisible by # someint. assert (x**(someint**2 + 3)).subs(x**someint, L) == x**(someint**2 + 3) # alpha**z := exp(log(alpha) z) is usually well-defined assert (4**z).subs(2**z, y) == y**2 # Negative powers assert (x**(-1)).subs(x**3, L) == x**(-1) assert (x**(-2)).subs(x**3, L) == x**(-2) assert (x**(-3)).subs(x**3, L) == L**(-1) assert (x**(-4)).subs(x**3, L) == L**(-1) * x**(-1) assert (x**(-5)).subs(x**3, L) == L**(-1) * x**(-2) assert (x**(-1)).subs(x**(-3), L) == x**(-1) assert (x**(-2)).subs(x**(-3), L) == x**(-2) assert (x**(-3)).subs(x**(-3), L) == L assert (x**(-4)).subs(x**(-3), L) == L * x**(-1) assert (x**(-5)).subs(x**(-3), L) == L * x**(-2) assert (x**1).subs(x**(-3), L) == x assert (x**2).subs(x**(-3), L) == x**2 assert (x**3).subs(x**(-3), L) == L**(-1) assert (x**4).subs(x**(-3), L) == L**(-1) * x assert (x**5).subs(x**(-3), L) == L**(-1) * x**2 def test_subs_basic_funcs(): a, b, c, d, K = symbols('a b c d K', commutative=True) w, x, y, z, L = symbols('w x y z L', commutative=False) assert (x + y).subs(x + y, L) == L assert (x - y).subs(x - y, L) == L assert (x/y).subs(x, L) == L/y assert (x**y).subs(x, L) == L**y assert (x**y).subs(y, L) == x**L assert ((a - c)/b).subs(b, K) == (a - c)/K assert (exp(x*y - z)).subs(x*y, L) == exp(L - z) assert (a*exp(x*y - w*z) + b*exp(x*y + w*z)).subs(z, 0) == \ a*exp(x*y) + b*exp(x*y) assert ((a - b)/(c*d - a*b)).subs(c*d - a*b, K) == (a - b)/K assert (w*exp(a*b - c)*x*y/4).subs(x*y, L) == w*exp(a*b - c)*L/4 def test_subs_wild(): R, S, T, U = symbols('R S T U', cls=Wild) assert (R*S).subs(R*S, T) == T assert (S*R).subs(R*S, T) == T assert (R + S).subs(R + S, T) == T assert (R**S).subs(R, T) == T**S assert (R**S).subs(S, T) == R**T assert (R*S**T).subs(R, U) == U*S**T assert (R*S**T).subs(S, U) == R*U**T assert (R*S**T).subs(T, U) == R*S**U def test_subs_mixed(): a, b, c, d, K = symbols('a b c d K', commutative=True) w, x, y, z, L = symbols('w x y z L', commutative=False) R, S, T, U = symbols('R S T U', cls=Wild) assert (a*x*y).subs(x*y, L) == a*L assert (a*b*x*y*x).subs(x*y, L) == a*b*L*x assert (R*x*y*exp(x*y)).subs(x*y, L) == R*L*exp(L) assert (a*x*y*y*x - x*y*z*exp(a*b)).subs(x*y, L) == a*L*y*x - L*z*exp(a*b) e = c*y*x*y*x**(R*S - a*b) - T*(a*R*b*S) assert e.subs(x*y, L).subs(a*b, K).subs(R*S, U) == \ c*y*L*x**(U - K) - T*(U*K) def test_division(): a, b, c = symbols('a b c', commutative=True) x, y, z = symbols('x y z', commutative=True) assert (1/a).subs(a, c) == 1/c assert (1/a**2).subs(a, c) == 1/c**2 assert (1/a**2).subs(a, -2) == Rational(1, 4) assert (-(1/a**2)).subs(a, -2) == Rational(-1, 4) assert (1/x).subs(x, z) == 1/z assert (1/x**2).subs(x, z) == 1/z**2 assert (1/x**2).subs(x, -2) == Rational(1, 4) assert (-(1/x**2)).subs(x, -2) == Rational(-1, 4) #issue 5360 assert (1/x).subs(x, 0) == 1/S.Zero def test_add(): a, b, c, d, x, y, t = symbols('a b c d x y t') assert (a**2 - b - c).subs(a**2 - b, d) in [d - c, a**2 - b - c] assert (a**2 - c).subs(a**2 - c, d) == d assert (a**2 - b - c).subs(a**2 - c, d) in [d - b, a**2 - b - c] assert (a**2 - x - c).subs(a**2 - c, d) in [d - x, a**2 - x - c] assert (a**2 - b - sqrt(a)).subs(a**2 - sqrt(a), c) == c - b assert (a + b + exp(a + b)).subs(a + b, c) == c + exp(c) assert (c + b + exp(c + b)).subs(c + b, a) == a + exp(a) assert (a + b + c + d).subs(b + c, x) == a + d + x assert (a + b + c + d).subs(-b - c, x) == a + d - x assert ((x + 1)*y).subs(x + 1, t) == t*y assert ((-x - 1)*y).subs(x + 1, t) == -t*y assert ((x - 1)*y).subs(x + 1, t) == y*(t - 2) assert ((-x + 1)*y).subs(x + 1, t) == y*(-t + 2) # this should work every time: e = a**2 - b - c assert e.subs(Add(*e.args[:2]), d) == d + e.args[2] assert e.subs(a**2 - c, d) == d - b # the fallback should recognize when a change has # been made; while .1 == Rational(1, 10) they are not the same # and the change should be made assert (0.1 + a).subs(0.1, Rational(1, 10)) == Rational(1, 10) + a e = (-x*(-y + 1) - y*(y - 1)) ans = (-x*(x) - y*(-x)).expand() assert e.subs(-y + 1, x) == ans def test_subs_issue_4009(): assert (I*Symbol('a')).subs(1, 2) == I*Symbol('a') def test_functions_subs(): f, g = symbols('f g', cls=Function) l = Lambda((x, y), sin(x) + y) assert (g(y, x) + cos(x)).subs(g, l) == sin(y) + x + cos(x) assert (f(x)**2).subs(f, sin) == sin(x)**2 assert (f(x, y)).subs(f, log) == log(x, y) assert (f(x, y)).subs(f, sin) == f(x, y) assert (sin(x) + atan2(x, y)).subs([[atan2, f], [sin, g]]) == \ f(x, y) + g(x) assert (g(f(x + y, x))).subs([[f, l], [g, exp]]) == exp(x + sin(x + y)) def test_derivative_subs(): f = Function('f') g = Function('g') assert Derivative(f(x), x).subs(f(x), y) != 0 # need xreplace to put the function back, see #13803 assert Derivative(f(x), x).subs(f(x), y).xreplace({y: f(x)}) == \ Derivative(f(x), x) # issues 5085, 5037 assert cse(Derivative(f(x), x) + f(x))[1][0].has(Derivative) assert cse(Derivative(f(x, y), x) + Derivative(f(x, y), y))[1][0].has(Derivative) eq = Derivative(g(x), g(x)) assert eq.subs(g, f) == Derivative(f(x), f(x)) assert eq.subs(g(x), f(x)) == Derivative(f(x), f(x)) assert eq.subs(g, cos) == Subs(Derivative(y, y), y, cos(x)) def test_derivative_subs2(): f_func, g_func = symbols('f g', cls=Function) f, g = f_func(x, y, z), g_func(x, y, z) assert Derivative(f, x, y).subs(Derivative(f, x, y), g) == g assert Derivative(f, y, x).subs(Derivative(f, x, y), g) == g assert Derivative(f, x, y).subs(Derivative(f, x), g) == Derivative(g, y) assert Derivative(f, x, y).subs(Derivative(f, y), g) == Derivative(g, x) assert (Derivative(f, x, y, z).subs( Derivative(f, x, z), g) == Derivative(g, y)) assert (Derivative(f, x, y, z).subs( Derivative(f, z, y), g) == Derivative(g, x)) assert (Derivative(f, x, y, z).subs( Derivative(f, z, y, x), g) == g) # Issue 9135 assert (Derivative(f, x, x, y).subs( Derivative(f, y, y), g) == Derivative(f, x, x, y)) assert (Derivative(f, x, y, y, z).subs( Derivative(f, x, y, y, y), g) == Derivative(f, x, y, y, z)) assert Derivative(f, x, y).subs(Derivative(f_func(x), x, y), g) == Derivative(f, x, y) def test_derivative_subs3(): dex = Derivative(exp(x), x) assert Derivative(dex, x).subs(dex, exp(x)) == dex assert dex.subs(exp(x), dex) == Derivative(exp(x), x, x) def test_issue_5284(): A, B = symbols('A B', commutative=False) assert (x*A).subs(x**2*A, B) == x*A assert (A**2).subs(A**3, B) == A**2 assert (A**6).subs(A**3, B) == B**2 def test_subs_iter(): assert x.subs(reversed([[x, y]])) == y it = iter([[x, y]]) assert x.subs(it) == y assert x.subs(Tuple((x, y))) == y def test_subs_dict(): a, b, c, d, e = symbols('a b c d e') assert (2*x + y + z).subs(dict(x=1, y=2)) == 4 + z l = [(sin(x), 2), (x, 1)] assert (sin(x)).subs(l) == \ (sin(x)).subs(dict(l)) == 2 assert sin(x).subs(reversed(l)) == sin(1) expr = sin(2*x) + sqrt(sin(2*x))*cos(2*x)*sin(exp(x)*x) reps = dict([ (sin(2*x), c), (sqrt(sin(2*x)), a), (cos(2*x), b), (exp(x), e), (x, d), ]) assert expr.subs(reps) == c + a*b*sin(d*e) l = [(x, 3), (y, x**2)] assert (x + y).subs(l) == 3 + x**2 assert (x + y).subs(reversed(l)) == 12 # If changes are made to convert lists into dictionaries and do # a dictionary-lookup replacement, these tests will help to catch # some logical errors that might occur l = [(y, z + 2), (1 + z, 5), (z, 2)] assert (y - 1 + 3*x).subs(l) == 5 + 3*x l = [(y, z + 2), (z, 3)] assert (y - 2).subs(l) == 3 def test_no_arith_subs_on_floats(): assert (x + 3).subs(x + 3, a) == a assert (x + 3).subs(x + 2, a) == a + 1 assert (x + y + 3).subs(x + 3, a) == a + y assert (x + y + 3).subs(x + 2, a) == a + y + 1 assert (x + 3.0).subs(x + 3.0, a) == a assert (x + 3.0).subs(x + 2.0, a) == x + 3.0 assert (x + y + 3.0).subs(x + 3.0, a) == a + y assert (x + y + 3.0).subs(x + 2.0, a) == x + y + 3.0 def test_issue_5651(): a, b, c, K = symbols('a b c K', commutative=True) assert (a/(b*c)).subs(b*c, K) == a/K assert (a/(b**2*c**3)).subs(b*c, K) == a/(c*K**2) assert (1/(x*y)).subs(x*y, 2) == S.Half assert ((1 + x*y)/(x*y)).subs(x*y, 1) == 2 assert (x*y*z).subs(x*y, 2) == 2*z assert ((1 + x*y)/(x*y)/z).subs(x*y, 1) == 2/z def test_issue_6075(): assert Tuple(1, True).subs(1, 2) == Tuple(2, True) def test_issue_6079(): # since x + 2.0 == x + 2 we can't do a simple equality test assert _aresame((x + 2.0).subs(2, 3), x + 2.0) assert _aresame((x + 2.0).subs(2.0, 3), x + 3) assert not _aresame(x + 2, x + 2.0) assert not _aresame(Basic(cos, 1), Basic(cos, 1.)) assert _aresame(cos, cos) assert not _aresame(1, S.One) assert not _aresame(x, symbols('x', positive=True)) def test_issue_4680(): N = Symbol('N') assert N.subs(dict(N=3)) == 3 def test_issue_6158(): assert (x - 1).subs(1, y) == x - y assert (x - 1).subs(-1, y) == x + y assert (x - oo).subs(oo, y) == x - y assert (x - oo).subs(-oo, y) == x + y def test_Function_subs(): f, g, h, i = symbols('f g h i', cls=Function) p = Piecewise((g(f(x, y)), x < -1), (g(x), x <= 1)) assert p.subs(g, h) == Piecewise((h(f(x, y)), x < -1), (h(x), x <= 1)) assert (f(y) + g(x)).subs({f: h, g: i}) == i(x) + h(y) def test_simultaneous_subs(): reps = {x: 0, y: 0} assert (x/y).subs(reps) != (y/x).subs(reps) assert (x/y).subs(reps, simultaneous=True) == \ (y/x).subs(reps, simultaneous=True) reps = reps.items() assert (x/y).subs(reps) != (y/x).subs(reps) assert (x/y).subs(reps, simultaneous=True) == \ (y/x).subs(reps, simultaneous=True) assert Derivative(x, y, z).subs(reps, simultaneous=True) == \ Subs(Derivative(0, y, z), y, 0) def test_issue_6419_6421(): assert (1/(1 + x/y)).subs(x/y, x) == 1/(1 + x) assert (-2*I).subs(2*I, x) == -x assert (-I*x).subs(I*x, x) == -x assert (-3*I*y**4).subs(3*I*y**2, x) == -x*y**2 def test_issue_6559(): assert (-12*x + y).subs(-x, 1) == 12 + y # though this involves cse it generated a failure in Mul._eval_subs x0, x1 = symbols('x0 x1') e = -log(-12*sqrt(2) + 17)/24 - log(-2*sqrt(2) + 3)/12 + sqrt(2)/3 # XXX modify cse so x1 is eliminated and x0 = -sqrt(2)? assert cse(e) == ( [(x0, sqrt(2))], [x0/3 - log(-12*x0 + 17)/24 - log(-2*x0 + 3)/12]) def test_issue_5261(): x = symbols('x', real=True) e = I*x assert exp(e).subs(exp(x), y) == y**I assert (2**e).subs(2**x, y) == y**I eq = (-2)**e assert eq.subs((-2)**x, y) == eq def test_issue_6923(): assert (-2*x*sqrt(2)).subs(2*x, y) == -sqrt(2)*y def test_2arg_hack(): N = Symbol('N', commutative=False) ans = Mul(2, y + 1, evaluate=False) assert (2*x*(y + 1)).subs(x, 1, hack2=True) == ans assert (2*(y + 1 + N)).subs(N, 0, hack2=True) == ans @XFAIL def test_mul2(): """When this fails, remove things labelled "2-arg hack" 1) remove special handling in the fallback of subs that was added in the same commit as this test 2) remove the special handling in Mul.flatten """ assert (2*(x + 1)).is_Mul def test_noncommutative_subs(): x,y = symbols('x,y', commutative=False) assert (x*y*x).subs([(x, x*y), (y, x)], simultaneous=True) == (x*y*x**2*y) def test_issue_2877(): f = Float(2.0) assert (x + f).subs({f: 2}) == x + 2 def r(a, b, c): return factor(a*x**2 + b*x + c) e = r(5.0/6, 10, 5) assert nsimplify(e) == 5*x**2/6 + 10*x + 5 def test_issue_5910(): t = Symbol('t') assert (1/(1 - t)).subs(t, 1) is zoo n = t d = t - 1 assert (n/d).subs(t, 1) is zoo assert (-n/-d).subs(t, 1) is zoo def test_issue_5217(): s = Symbol('s') z = (1 - 2*x*x) w = (1 + 2*x*x) q = 2*x*x*2*y*y sub = {2*x*x: s} assert w.subs(sub) == 1 + s assert z.subs(sub) == 1 - s assert q == 4*x**2*y**2 assert q.subs(sub) == 2*y**2*s def test_issue_10829(): assert (4**x).subs(2**x, y) == y**2 assert (9**x).subs(3**x, y) == y**2 def test_pow_eval_subs_no_cache(): # Tests pull request 9376 is working from sympy.core.cache import clear_cache s = 1/sqrt(x**2) # This bug only appeared when the cache was turned off. # We need to approximate running this test without the cache. # This creates approximately the same situation. clear_cache() # This used to fail with a wrong result. # It incorrectly returned 1/sqrt(x**2) before this pull request. result = s.subs(sqrt(x**2), y) assert result == 1/y def test_RootOf_issue_10092(): x = Symbol('x', real=True) eq = x**3 - 17*x**2 + 81*x - 118 r = RootOf(eq, 0) assert (x < r).subs(x, r) is S.false def test_issue_8886(): from sympy.physics.mechanics import ReferenceFrame as R # if something can't be sympified we assume that it # doesn't play well with SymPy and disallow the # substitution v = R('A').x assert x.subs(x, v) == x assert v.subs(v, x) == v assert v.__eq__(x) is False def test_issue_12657(): # treat -oo like the atom that it is reps = [(-oo, 1), (oo, 2)] assert (x < -oo).subs(reps) == (x < 1) assert (x < -oo).subs(list(reversed(reps))) == (x < 1) reps = [(-oo, 2), (oo, 1)] assert (x < oo).subs(reps) == (x < 1) assert (x < oo).subs(list(reversed(reps))) == (x < 1) def test_recurse_Application_args(): F = Lambda((x, y), exp(2*x + 3*y)) f = Function('f') A = f(x, f(x, x)) C = F(x, F(x, x)) assert A.subs(f, F) == A.replace(f, F) == C def test_Subs_subs(): assert Subs(x*y, x, x).subs(x, y) == Subs(x*y, x, y) assert Subs(x*y, x, x + 1).subs(x, y) == \ Subs(x*y, x, y + 1) assert Subs(x*y, y, x + 1).subs(x, y) == \ Subs(y**2, y, y + 1) a = Subs(x*y*z, (y, x, z), (x + 1, x + z, x)) b = Subs(x*y*z, (y, x, z), (x + 1, y + z, y)) assert a.subs(x, y) == b and \ a.doit().subs(x, y) == a.subs(x, y).doit() f = Function('f') g = Function('g') assert Subs(2*f(x, y) + g(x), f(x, y), 1).subs(y, 2) == Subs( 2*f(x, y) + g(x), (f(x, y), y), (1, 2)) def test_issue_13333(): eq = 1/x assert eq.subs(dict(x='1/2')) == 2 assert eq.subs(dict(x='(1/2)')) == 2 def test_issue_15234(): x, y = symbols('x y', real=True) p = 6*x**5 + x**4 - 4*x**3 + 4*x**2 - 2*x + 3 p_subbed = 6*x**5 - 4*x**3 - 2*x + y**4 + 4*y**2 + 3 assert p.subs([(x**i, y**i) for i in [2, 4]]) == p_subbed x, y = symbols('x y', complex=True) p = 6*x**5 + x**4 - 4*x**3 + 4*x**2 - 2*x + 3 p_subbed = 6*x**5 - 4*x**3 - 2*x + y**4 + 4*y**2 + 3 assert p.subs([(x**i, y**i) for i in [2, 4]]) == p_subbed def test_issue_6976(): x, y = symbols('x y') assert (sqrt(x)**3 + sqrt(x) + x + x**2).subs(sqrt(x), y) == \ y**4 + y**3 + y**2 + y assert (x**4 + x**3 + x**2 + x + sqrt(x)).subs(x**2, y) == \ sqrt(x) + x**3 + x + y**2 + y assert x.subs(x**3, y) == x assert x.subs(x**Rational(1, 3), y) == y**3 # More substitutions are possible with nonnegative symbols x, y = symbols('x y', nonnegative=True) assert (x**4 + x**3 + x**2 + x + sqrt(x)).subs(x**2, y) == \ y**Rational(1, 4) + y**Rational(3, 2) + sqrt(y) + y**2 + y assert x.subs(x**3, y) == y**Rational(1, 3)
e39aa56e5567a51626b8620079937f01bda2a8522bc3ade159a38d524a4e78af
from sympy import (Add, Basic, Expr, S, Symbol, Wild, Float, Integer, Rational, I, sin, cos, tan, exp, log, nan, oo, sqrt, symbols, Integral, sympify, WildFunction, Poly, Function, Derivative, Number, pi, NumberSymbol, zoo, Piecewise, Mul, Pow, nsimplify, ratsimp, trigsimp, radsimp, powsimp, simplify, together, collect, factorial, apart, combsimp, factor, refine, cancel, Tuple, default_sort_key, DiracDelta, gamma, Dummy, Sum, E, exp_polar, expand, diff, O, Heaviside, Si, Max, UnevaluatedExpr, integrate, gammasimp, Gt) from sympy.core.expr import ExprBuilder, unchanged from sympy.core.function import AppliedUndef from sympy.core.compatibility import range, round, PY3 from sympy.physics.secondquant import FockState from sympy.physics.units import meter from sympy.utilities.pytest import raises, XFAIL from sympy.abc import a, b, c, n, t, u, x, y, z # replace 3 instances with int when PY2 is dropped and # delete this line _rint = int if PY3 else float class DummyNumber(object): """ Minimal implementation of a number that works with SymPy. If one has a Number class (e.g. Sage Integer, or some other custom class) that one wants to work well with SymPy, one has to implement at least the methods of this class DummyNumber, resp. its subclasses I5 and F1_1. Basically, one just needs to implement either __int__() or __float__() and then one needs to make sure that the class works with Python integers and with itself. """ def __radd__(self, a): if isinstance(a, (int, float)): return a + self.number return NotImplemented def __truediv__(a, b): return a.__div__(b) def __rtruediv__(a, b): return a.__rdiv__(b) def __add__(self, a): if isinstance(a, (int, float, DummyNumber)): return self.number + a return NotImplemented def __rsub__(self, a): if isinstance(a, (int, float)): return a - self.number return NotImplemented def __sub__(self, a): if isinstance(a, (int, float, DummyNumber)): return self.number - a return NotImplemented def __rmul__(self, a): if isinstance(a, (int, float)): return a * self.number return NotImplemented def __mul__(self, a): if isinstance(a, (int, float, DummyNumber)): return self.number * a return NotImplemented def __rdiv__(self, a): if isinstance(a, (int, float)): return a / self.number return NotImplemented def __div__(self, a): if isinstance(a, (int, float, DummyNumber)): return self.number / a return NotImplemented def __rpow__(self, a): if isinstance(a, (int, float)): return a ** self.number return NotImplemented def __pow__(self, a): if isinstance(a, (int, float, DummyNumber)): return self.number ** a return NotImplemented def __pos__(self): return self.number def __neg__(self): return - self.number class I5(DummyNumber): number = 5 def __int__(self): return self.number class F1_1(DummyNumber): number = 1.1 def __float__(self): return self.number i5 = I5() f1_1 = F1_1() # basic sympy objects basic_objs = [ Rational(2), Float("1.3"), x, y, pow(x, y)*y, ] # all supported objects all_objs = basic_objs + [ 5, 5.5, i5, f1_1 ] def dotest(s): for xo in all_objs: for yo in all_objs: s(xo, yo) return True def test_basic(): def j(a, b): x = a x = +a x = -a x = a + b x = a - b x = a*b x = a/b x = a**b del x assert dotest(j) def test_ibasic(): def s(a, b): x = a x += b x = a x -= b x = a x *= b x = a x /= b assert dotest(s) def test_relational(): from sympy import Lt assert (pi < 3) is S.false assert (pi <= 3) is S.false assert (pi > 3) is S.true assert (pi >= 3) is S.true assert (-pi < 3) is S.true assert (-pi <= 3) is S.true assert (-pi > 3) is S.false assert (-pi >= 3) is S.false r = Symbol('r', real=True) assert (r - 2 < r - 3) is S.false assert Lt(x + I, x + I + 2).func == Lt # issue 8288 def test_relational_assumptions(): from sympy import Lt, Gt, Le, Ge m1 = Symbol("m1", nonnegative=False) m2 = Symbol("m2", positive=False) m3 = Symbol("m3", nonpositive=False) m4 = Symbol("m4", negative=False) assert (m1 < 0) == Lt(m1, 0) assert (m2 <= 0) == Le(m2, 0) assert (m3 > 0) == Gt(m3, 0) assert (m4 >= 0) == Ge(m4, 0) m1 = Symbol("m1", nonnegative=False, real=True) m2 = Symbol("m2", positive=False, real=True) m3 = Symbol("m3", nonpositive=False, real=True) m4 = Symbol("m4", negative=False, real=True) assert (m1 < 0) is S.true assert (m2 <= 0) is S.true assert (m3 > 0) is S.true assert (m4 >= 0) is S.true m1 = Symbol("m1", negative=True) m2 = Symbol("m2", nonpositive=True) m3 = Symbol("m3", positive=True) m4 = Symbol("m4", nonnegative=True) assert (m1 < 0) is S.true assert (m2 <= 0) is S.true assert (m3 > 0) is S.true assert (m4 >= 0) is S.true m1 = Symbol("m1", negative=False, real=True) m2 = Symbol("m2", nonpositive=False, real=True) m3 = Symbol("m3", positive=False, real=True) m4 = Symbol("m4", nonnegative=False, real=True) assert (m1 < 0) is S.false assert (m2 <= 0) is S.false assert (m3 > 0) is S.false assert (m4 >= 0) is S.false # See https://github.com/sympy/sympy/issues/17708 #def test_relational_noncommutative(): # from sympy import Lt, Gt, Le, Ge # A, B = symbols('A,B', commutative=False) # assert (A < B) == Lt(A, B) # assert (A <= B) == Le(A, B) # assert (A > B) == Gt(A, B) # assert (A >= B) == Ge(A, B) def test_basic_nostr(): for obj in basic_objs: raises(TypeError, lambda: obj + '1') raises(TypeError, lambda: obj - '1') if obj == 2: assert obj * '1' == '11' else: raises(TypeError, lambda: obj * '1') raises(TypeError, lambda: obj / '1') raises(TypeError, lambda: obj ** '1') def test_series_expansion_for_uniform_order(): assert (1/x + y + x).series(x, 0, 0) == 1/x + O(1, x) assert (1/x + y + x).series(x, 0, 1) == 1/x + y + O(x) assert (1/x + 1 + x).series(x, 0, 0) == 1/x + O(1, x) assert (1/x + 1 + x).series(x, 0, 1) == 1/x + 1 + O(x) assert (1/x + x).series(x, 0, 0) == 1/x + O(1, x) assert (1/x + y + y*x + x).series(x, 0, 0) == 1/x + O(1, x) assert (1/x + y + y*x + x).series(x, 0, 1) == 1/x + y + O(x) def test_leadterm(): assert (3 + 2*x**(log(3)/log(2) - 1)).leadterm(x) == (3, 0) assert (1/x**2 + 1 + x + x**2).leadterm(x)[1] == -2 assert (1/x + 1 + x + x**2).leadterm(x)[1] == -1 assert (x**2 + 1/x).leadterm(x)[1] == -1 assert (1 + x**2).leadterm(x)[1] == 0 assert (x + 1).leadterm(x)[1] == 0 assert (x + x**2).leadterm(x)[1] == 1 assert (x**2).leadterm(x)[1] == 2 def test_as_leading_term(): assert (3 + 2*x**(log(3)/log(2) - 1)).as_leading_term(x) == 3 assert (1/x**2 + 1 + x + x**2).as_leading_term(x) == 1/x**2 assert (1/x + 1 + x + x**2).as_leading_term(x) == 1/x assert (x**2 + 1/x).as_leading_term(x) == 1/x assert (1 + x**2).as_leading_term(x) == 1 assert (x + 1).as_leading_term(x) == 1 assert (x + x**2).as_leading_term(x) == x assert (x**2).as_leading_term(x) == x**2 assert (x + oo).as_leading_term(x) is oo raises(ValueError, lambda: (x + 1).as_leading_term(1)) def test_leadterm2(): assert (x*cos(1)*cos(1 + sin(1)) + sin(1 + sin(1))).leadterm(x) == \ (sin(1 + sin(1)), 0) def test_leadterm3(): assert (y + z + x).leadterm(x) == (y + z, 0) def test_as_leading_term2(): assert (x*cos(1)*cos(1 + sin(1)) + sin(1 + sin(1))).as_leading_term(x) == \ sin(1 + sin(1)) def test_as_leading_term3(): assert (2 + pi + x).as_leading_term(x) == 2 + pi assert (2*x + pi*x + x**2).as_leading_term(x) == (2 + pi)*x def test_as_leading_term4(): # see issue 6843 n = Symbol('n', integer=True, positive=True) r = -n**3/(2*n**2 + 4*n + 2) - n**2/(n**2 + 2*n + 1) + \ n**2/(n + 1) - n/(2*n**2 + 4*n + 2) + n/(n*x + x) + 2*n/(n + 1) - \ 1 + 1/(n*x + x) + 1/(n + 1) - 1/x assert r.as_leading_term(x).cancel() == n/2 def test_as_leading_term_stub(): class foo(Function): pass assert foo(1/x).as_leading_term(x) == foo(1/x) assert foo(1).as_leading_term(x) == foo(1) raises(NotImplementedError, lambda: foo(x).as_leading_term(x)) def test_as_leading_term_deriv_integral(): # related to issue 11313 assert Derivative(x ** 3, x).as_leading_term(x) == 3*x**2 assert Derivative(x ** 3, y).as_leading_term(x) == 0 assert Integral(x ** 3, x).as_leading_term(x) == x**4/4 assert Integral(x ** 3, y).as_leading_term(x) == y*x**3 assert Derivative(exp(x), x).as_leading_term(x) == 1 assert Derivative(log(x), x).as_leading_term(x) == (1/x).as_leading_term(x) def test_atoms(): assert x.atoms() == {x} assert (1 + x).atoms() == {x, S.One} assert (1 + 2*cos(x)).atoms(Symbol) == {x} assert (1 + 2*cos(x)).atoms(Symbol, Number) == {S.One, S(2), x} assert (2*(x**(y**x))).atoms() == {S(2), x, y} assert S.Half.atoms() == {S.Half} assert S.Half.atoms(Symbol) == set([]) assert sin(oo).atoms(oo) == set() assert Poly(0, x).atoms() == {S.Zero} assert Poly(1, x).atoms() == {S.One} assert Poly(x, x).atoms() == {x} assert Poly(x, x, y).atoms() == {x} assert Poly(x + y, x, y).atoms() == {x, y} assert Poly(x + y, x, y, z).atoms() == {x, y} assert Poly(x + y*t, x, y, z).atoms() == {t, x, y} assert (I*pi).atoms(NumberSymbol) == {pi} assert (I*pi).atoms(NumberSymbol, I) == \ (I*pi).atoms(I, NumberSymbol) == {pi, I} assert exp(exp(x)).atoms(exp) == {exp(exp(x)), exp(x)} assert (1 + x*(2 + y) + exp(3 + z)).atoms(Add) == \ {1 + x*(2 + y) + exp(3 + z), 2 + y, 3 + z} # issue 6132 f = Function('f') e = (f(x) + sin(x) + 2) assert e.atoms(AppliedUndef) == \ {f(x)} assert e.atoms(AppliedUndef, Function) == \ {f(x), sin(x)} assert e.atoms(Function) == \ {f(x), sin(x)} assert e.atoms(AppliedUndef, Number) == \ {f(x), S(2)} assert e.atoms(Function, Number) == \ {S(2), sin(x), f(x)} def test_is_polynomial(): k = Symbol('k', nonnegative=True, integer=True) assert Rational(2).is_polynomial(x, y, z) is True assert (S.Pi).is_polynomial(x, y, z) is True assert x.is_polynomial(x) is True assert x.is_polynomial(y) is True assert (x**2).is_polynomial(x) is True assert (x**2).is_polynomial(y) is True assert (x**(-2)).is_polynomial(x) is False assert (x**(-2)).is_polynomial(y) is True assert (2**x).is_polynomial(x) is False assert (2**x).is_polynomial(y) is True assert (x**k).is_polynomial(x) is False assert (x**k).is_polynomial(k) is False assert (x**x).is_polynomial(x) is False assert (k**k).is_polynomial(k) is False assert (k**x).is_polynomial(k) is False assert (x**(-k)).is_polynomial(x) is False assert ((2*x)**k).is_polynomial(x) is False assert (x**2 + 3*x - 8).is_polynomial(x) is True assert (x**2 + 3*x - 8).is_polynomial(y) is True assert (x**2 + 3*x - 8).is_polynomial() is True assert sqrt(x).is_polynomial(x) is False assert (sqrt(x)**3).is_polynomial(x) is False assert (x**2 + 3*x*sqrt(y) - 8).is_polynomial(x) is True assert (x**2 + 3*x*sqrt(y) - 8).is_polynomial(y) is False assert ((x**2)*(y**2) + x*(y**2) + y*x + exp(2)).is_polynomial() is True assert ((x**2)*(y**2) + x*(y**2) + y*x + exp(x)).is_polynomial() is False assert ( (x**2)*(y**2) + x*(y**2) + y*x + exp(2)).is_polynomial(x, y) is True assert ( (x**2)*(y**2) + x*(y**2) + y*x + exp(x)).is_polynomial(x, y) is False def test_is_rational_function(): assert Integer(1).is_rational_function() is True assert Integer(1).is_rational_function(x) is True assert Rational(17, 54).is_rational_function() is True assert Rational(17, 54).is_rational_function(x) is True assert (12/x).is_rational_function() is True assert (12/x).is_rational_function(x) is True assert (x/y).is_rational_function() is True assert (x/y).is_rational_function(x) is True assert (x/y).is_rational_function(x, y) is True assert (x**2 + 1/x/y).is_rational_function() is True assert (x**2 + 1/x/y).is_rational_function(x) is True assert (x**2 + 1/x/y).is_rational_function(x, y) is True assert (sin(y)/x).is_rational_function() is False assert (sin(y)/x).is_rational_function(y) is False assert (sin(y)/x).is_rational_function(x) is True assert (sin(y)/x).is_rational_function(x, y) is False assert (S.NaN).is_rational_function() is False assert (S.Infinity).is_rational_function() is False assert (S.NegativeInfinity).is_rational_function() is False assert (S.ComplexInfinity).is_rational_function() is False def test_is_algebraic_expr(): assert sqrt(3).is_algebraic_expr(x) is True assert sqrt(3).is_algebraic_expr() is True eq = ((1 + x**2)/(1 - y**2))**(S.One/3) assert eq.is_algebraic_expr(x) is True assert eq.is_algebraic_expr(y) is True assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr(x) is True assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr(y) is True assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr() is True assert (cos(y)/sqrt(x)).is_algebraic_expr() is False assert (cos(y)/sqrt(x)).is_algebraic_expr(x) is True assert (cos(y)/sqrt(x)).is_algebraic_expr(y) is False assert (cos(y)/sqrt(x)).is_algebraic_expr(x, y) is False def test_SAGE1(): #see https://github.com/sympy/sympy/issues/3346 class MyInt: def _sympy_(self): return Integer(5) m = MyInt() e = Rational(2)*m assert e == 10 raises(TypeError, lambda: Rational(2)*MyInt) def test_SAGE2(): class MyInt(object): def __int__(self): return 5 assert sympify(MyInt()) == 5 e = Rational(2)*MyInt() assert e == 10 raises(TypeError, lambda: Rational(2)*MyInt) def test_SAGE3(): class MySymbol: def __rmul__(self, other): return ('mys', other, self) o = MySymbol() e = x*o assert e == ('mys', x, o) def test_len(): e = x*y assert len(e.args) == 2 e = x + y + z assert len(e.args) == 3 def test_doit(): a = Integral(x**2, x) assert isinstance(a.doit(), Integral) is False assert isinstance(a.doit(integrals=True), Integral) is False assert isinstance(a.doit(integrals=False), Integral) is True assert (2*Integral(x, x)).doit() == x**2 def test_attribute_error(): raises(AttributeError, lambda: x.cos()) raises(AttributeError, lambda: x.sin()) raises(AttributeError, lambda: x.exp()) def test_args(): assert (x*y).args in ((x, y), (y, x)) assert (x + y).args in ((x, y), (y, x)) assert (x*y + 1).args in ((x*y, 1), (1, x*y)) assert sin(x*y).args == (x*y,) assert sin(x*y).args[0] == x*y assert (x**y).args == (x, y) assert (x**y).args[0] == x assert (x**y).args[1] == y def test_noncommutative_expand_issue_3757(): A, B, C = symbols('A,B,C', commutative=False) assert A*B - B*A != 0 assert (A*(A + B)*B).expand() == A**2*B + A*B**2 assert (A*(A + B + C)*B).expand() == A**2*B + A*B**2 + A*C*B def test_as_numer_denom(): a, b, c = symbols('a, b, c') assert nan.as_numer_denom() == (nan, 1) assert oo.as_numer_denom() == (oo, 1) assert (-oo).as_numer_denom() == (-oo, 1) assert zoo.as_numer_denom() == (zoo, 1) assert (-zoo).as_numer_denom() == (zoo, 1) assert x.as_numer_denom() == (x, 1) assert (1/x).as_numer_denom() == (1, x) assert (x/y).as_numer_denom() == (x, y) assert (x/2).as_numer_denom() == (x, 2) assert (x*y/z).as_numer_denom() == (x*y, z) assert (x/(y*z)).as_numer_denom() == (x, y*z) assert S.Half.as_numer_denom() == (1, 2) assert (1/y**2).as_numer_denom() == (1, y**2) assert (x/y**2).as_numer_denom() == (x, y**2) assert ((x**2 + 1)/y).as_numer_denom() == (x**2 + 1, y) assert (x*(y + 1)/y**7).as_numer_denom() == (x*(y + 1), y**7) assert (x**-2).as_numer_denom() == (1, x**2) assert (a/x + b/2/x + c/3/x).as_numer_denom() == \ (6*a + 3*b + 2*c, 6*x) assert (a/x + b/2/x + c/3/y).as_numer_denom() == \ (2*c*x + y*(6*a + 3*b), 6*x*y) assert (a/x + b/2/x + c/.5/x).as_numer_denom() == \ (2*a + b + 4.0*c, 2*x) # this should take no more than a few seconds assert int(log(Add(*[Dummy()/i/x for i in range(1, 705)] ).as_numer_denom()[1]/x).n(4)) == 705 for i in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]: assert (i + x/3).as_numer_denom() == \ (x + i, 3) assert (S.Infinity + x/3 + y/4).as_numer_denom() == \ (4*x + 3*y + S.Infinity, 12) assert (oo*x + zoo*y).as_numer_denom() == \ (zoo*y + oo*x, 1) A, B, C = symbols('A,B,C', commutative=False) assert (A*B*C**-1).as_numer_denom() == (A*B*C**-1, 1) assert (A*B*C**-1/x).as_numer_denom() == (A*B*C**-1, x) assert (C**-1*A*B).as_numer_denom() == (C**-1*A*B, 1) assert (C**-1*A*B/x).as_numer_denom() == (C**-1*A*B, x) assert ((A*B*C)**-1).as_numer_denom() == ((A*B*C)**-1, 1) assert ((A*B*C)**-1/x).as_numer_denom() == ((A*B*C)**-1, x) def test_trunc(): import math x, y = symbols('x y') assert math.trunc(2) == 2 assert math.trunc(4.57) == 4 assert math.trunc(-5.79) == -5 assert math.trunc(pi) == 3 assert math.trunc(log(7)) == 1 assert math.trunc(exp(5)) == 148 assert math.trunc(cos(pi)) == -1 assert math.trunc(sin(5)) == 0 raises(TypeError, lambda: math.trunc(x)) raises(TypeError, lambda: math.trunc(x + y**2)) raises(TypeError, lambda: math.trunc(oo)) def test_as_independent(): assert S.Zero.as_independent(x, as_Add=True) == (0, 0) assert S.Zero.as_independent(x, as_Add=False) == (0, 0) assert (2*x*sin(x) + y + x).as_independent(x) == (y, x + 2*x*sin(x)) assert (2*x*sin(x) + y + x).as_independent(y) == (x + 2*x*sin(x), y) assert (2*x*sin(x) + y + x).as_independent(x, y) == (0, y + x + 2*x*sin(x)) assert (x*sin(x)*cos(y)).as_independent(x) == (cos(y), x*sin(x)) assert (x*sin(x)*cos(y)).as_independent(y) == (x*sin(x), cos(y)) assert (x*sin(x)*cos(y)).as_independent(x, y) == (1, x*sin(x)*cos(y)) assert (sin(x)).as_independent(x) == (1, sin(x)) assert (sin(x)).as_independent(y) == (sin(x), 1) assert (2*sin(x)).as_independent(x) == (2, sin(x)) assert (2*sin(x)).as_independent(y) == (2*sin(x), 1) # issue 4903 = 1766b n1, n2, n3 = symbols('n1 n2 n3', commutative=False) assert (n1 + n1*n2).as_independent(n2) == (n1, n1*n2) assert (n2*n1 + n1*n2).as_independent(n2) == (0, n1*n2 + n2*n1) assert (n1*n2*n1).as_independent(n2) == (n1, n2*n1) assert (n1*n2*n1).as_independent(n1) == (1, n1*n2*n1) assert (3*x).as_independent(x, as_Add=True) == (0, 3*x) assert (3*x).as_independent(x, as_Add=False) == (3, x) assert (3 + x).as_independent(x, as_Add=True) == (3, x) assert (3 + x).as_independent(x, as_Add=False) == (1, 3 + x) # issue 5479 assert (3*x).as_independent(Symbol) == (3, x) # issue 5648 assert (n1*x*y).as_independent(x) == (n1*y, x) assert ((x + n1)*(x - y)).as_independent(x) == (1, (x + n1)*(x - y)) assert ((x + n1)*(x - y)).as_independent(y) == (x + n1, x - y) assert (DiracDelta(x - n1)*DiracDelta(x - y)).as_independent(x) \ == (1, DiracDelta(x - n1)*DiracDelta(x - y)) assert (x*y*n1*n2*n3).as_independent(n2) == (x*y*n1, n2*n3) assert (x*y*n1*n2*n3).as_independent(n1) == (x*y, n1*n2*n3) assert (x*y*n1*n2*n3).as_independent(n3) == (x*y*n1*n2, n3) assert (DiracDelta(x - n1)*DiracDelta(y - n1)*DiracDelta(x - n2)).as_independent(y) == \ (DiracDelta(x - n1)*DiracDelta(x - n2), DiracDelta(y - n1)) # issue 5784 assert (x + Integral(x, (x, 1, 2))).as_independent(x, strict=True) == \ (Integral(x, (x, 1, 2)), x) eq = Add(x, -x, 2, -3, evaluate=False) assert eq.as_independent(x) == (-1, Add(x, -x, evaluate=False)) eq = Mul(x, 1/x, 2, -3, evaluate=False) eq.as_independent(x) == (-6, Mul(x, 1/x, evaluate=False)) assert (x*y).as_independent(z, as_Add=True) == (x*y, 0) @XFAIL def test_call_2(): # TODO UndefinedFunction does not subclass Expr f = Function('f') assert (2*f)(x) == 2*f(x) def test_replace(): f = log(sin(x)) + tan(sin(x**2)) assert f.replace(sin, cos) == log(cos(x)) + tan(cos(x**2)) assert f.replace( sin, lambda a: sin(2*a)) == log(sin(2*x)) + tan(sin(2*x**2)) a = Wild('a') b = Wild('b') assert f.replace(sin(a), cos(a)) == log(cos(x)) + tan(cos(x**2)) assert f.replace( sin(a), lambda a: sin(2*a)) == log(sin(2*x)) + tan(sin(2*x**2)) # test exact assert (2*x).replace(a*x + b, b - a, exact=True) == 2*x assert (2*x).replace(a*x + b, b - a) == 2*x assert (2*x).replace(a*x + b, b - a, exact=False) == 2/x assert (2*x).replace(a*x + b, lambda a, b: b - a, exact=True) == 2*x assert (2*x).replace(a*x + b, lambda a, b: b - a) == 2*x assert (2*x).replace(a*x + b, lambda a, b: b - a, exact=False) == 2/x g = 2*sin(x**3) assert g.replace( lambda expr: expr.is_Number, lambda expr: expr**2) == 4*sin(x**9) assert cos(x).replace(cos, sin, map=True) == (sin(x), {cos(x): sin(x)}) assert sin(x).replace(cos, sin) == sin(x) cond, func = lambda x: x.is_Mul, lambda x: 2*x assert (x*y).replace(cond, func, map=True) == (2*x*y, {x*y: 2*x*y}) assert (x*(1 + x*y)).replace(cond, func, map=True) == \ (2*x*(2*x*y + 1), {x*(2*x*y + 1): 2*x*(2*x*y + 1), x*y: 2*x*y}) assert (y*sin(x)).replace(sin, lambda expr: sin(expr)/y, map=True) == \ (sin(x), {sin(x): sin(x)/y}) # if not simultaneous then y*sin(x) -> y*sin(x)/y = sin(x) -> sin(x)/y assert (y*sin(x)).replace(sin, lambda expr: sin(expr)/y, simultaneous=False) == sin(x)/y assert (x**2 + O(x**3)).replace(Pow, lambda b, e: b**e/e) == O(1, x) assert (x**2 + O(x**3)).replace(Pow, lambda b, e: b**e/e, simultaneous=False) == x**2/2 + O(x**3) assert (x*(x*y + 3)).replace(lambda x: x.is_Mul, lambda x: 2 + x) == \ x*(x*y + 5) + 2 e = (x*y + 1)*(2*x*y + 1) + 1 assert e.replace(cond, func, map=True) == ( 2*((2*x*y + 1)*(4*x*y + 1)) + 1, {2*x*y: 4*x*y, x*y: 2*x*y, (2*x*y + 1)*(4*x*y + 1): 2*((2*x*y + 1)*(4*x*y + 1))}) assert x.replace(x, y) == y assert (x + 1).replace(1, 2) == x + 2 # https://groups.google.com/forum/#!topic/sympy/8wCgeC95tz0 n1, n2, n3 = symbols('n1:4', commutative=False) f = Function('f') assert (n1*f(n2)).replace(f, lambda x: x) == n1*n2 assert (n3*f(n2)).replace(f, lambda x: x) == n3*n2 # issue 16725 assert S.Zero.replace(Wild('x'), 1) == 1 # let the user override the default decision of False assert S.Zero.replace(Wild('x'), 1, exact=True) == 0 def test_find(): expr = (x + y + 2 + sin(3*x)) assert expr.find(lambda u: u.is_Integer) == {S(2), S(3)} assert expr.find(lambda u: u.is_Symbol) == {x, y} assert expr.find(lambda u: u.is_Integer, group=True) == {S(2): 1, S(3): 1} assert expr.find(lambda u: u.is_Symbol, group=True) == {x: 2, y: 1} assert expr.find(Integer) == {S(2), S(3)} assert expr.find(Symbol) == {x, y} assert expr.find(Integer, group=True) == {S(2): 1, S(3): 1} assert expr.find(Symbol, group=True) == {x: 2, y: 1} a = Wild('a') expr = sin(sin(x)) + sin(x) + cos(x) + x assert expr.find(lambda u: type(u) is sin) == {sin(x), sin(sin(x))} assert expr.find( lambda u: type(u) is sin, group=True) == {sin(x): 2, sin(sin(x)): 1} assert expr.find(sin(a)) == {sin(x), sin(sin(x))} assert expr.find(sin(a), group=True) == {sin(x): 2, sin(sin(x)): 1} assert expr.find(sin) == {sin(x), sin(sin(x))} assert expr.find(sin, group=True) == {sin(x): 2, sin(sin(x)): 1} def test_count(): expr = (x + y + 2 + sin(3*x)) assert expr.count(lambda u: u.is_Integer) == 2 assert expr.count(lambda u: u.is_Symbol) == 3 assert expr.count(Integer) == 2 assert expr.count(Symbol) == 3 assert expr.count(2) == 1 a = Wild('a') assert expr.count(sin) == 1 assert expr.count(sin(a)) == 1 assert expr.count(lambda u: type(u) is sin) == 1 f = Function('f') assert f(x).count(f(x)) == 1 assert f(x).diff(x).count(f(x)) == 1 assert f(x).diff(x).count(x) == 2 def test_has_basics(): f = Function('f') g = Function('g') p = Wild('p') assert sin(x).has(x) assert sin(x).has(sin) assert not sin(x).has(y) assert not sin(x).has(cos) assert f(x).has(x) assert f(x).has(f) assert not f(x).has(y) assert not f(x).has(g) assert f(x).diff(x).has(x) assert f(x).diff(x).has(f) assert f(x).diff(x).has(Derivative) assert not f(x).diff(x).has(y) assert not f(x).diff(x).has(g) assert not f(x).diff(x).has(sin) assert (x**2).has(Symbol) assert not (x**2).has(Wild) assert (2*p).has(Wild) assert not x.has() def test_has_multiple(): f = x**2*y + sin(2**t + log(z)) assert f.has(x) assert f.has(y) assert f.has(z) assert f.has(t) assert not f.has(u) assert f.has(x, y, z, t) assert f.has(x, y, z, t, u) i = Integer(4400) assert not i.has(x) assert (i*x**i).has(x) assert not (i*y**i).has(x) assert (i*y**i).has(x, y) assert not (i*y**i).has(x, z) def test_has_piecewise(): f = (x*y + 3/y)**(3 + 2) g = Function('g') h = Function('h') p = Piecewise((g(x), x < -1), (1, x <= 1), (f, True)) assert p.has(x) assert p.has(y) assert not p.has(z) assert p.has(1) assert p.has(3) assert not p.has(4) assert p.has(f) assert p.has(g) assert not p.has(h) def test_has_iterative(): A, B, C = symbols('A,B,C', commutative=False) f = x*gamma(x)*sin(x)*exp(x*y)*A*B*C*cos(x*A*B) assert f.has(x) assert f.has(x*y) assert f.has(x*sin(x)) assert not f.has(x*sin(y)) assert f.has(x*A) assert f.has(x*A*B) assert not f.has(x*A*C) assert f.has(x*A*B*C) assert not f.has(x*A*C*B) assert f.has(x*sin(x)*A*B*C) assert not f.has(x*sin(x)*A*C*B) assert not f.has(x*sin(y)*A*B*C) assert f.has(x*gamma(x)) assert not f.has(x + sin(x)) assert (x & y & z).has(x & z) def test_has_integrals(): f = Integral(x**2 + sin(x*y*z), (x, 0, x + y + z)) assert f.has(x + y) assert f.has(x + z) assert f.has(y + z) assert f.has(x*y) assert f.has(x*z) assert f.has(y*z) assert not f.has(2*x + y) assert not f.has(2*x*y) def test_has_tuple(): f = Function('f') g = Function('g') h = Function('h') assert Tuple(x, y).has(x) assert not Tuple(x, y).has(z) assert Tuple(f(x), g(x)).has(x) assert not Tuple(f(x), g(x)).has(y) assert Tuple(f(x), g(x)).has(f) assert Tuple(f(x), g(x)).has(f(x)) assert not Tuple(f, g).has(x) assert Tuple(f, g).has(f) assert not Tuple(f, g).has(h) assert Tuple(True).has(True) is True # .has(1) will also be True def test_has_units(): from sympy.physics.units import m, s assert (x*m/s).has(x) assert (x*m/s).has(y, z) is False def test_has_polys(): poly = Poly(x**2 + x*y*sin(z), x, y, t) assert poly.has(x) assert poly.has(x, y, z) assert poly.has(x, y, z, t) def test_has_physics(): assert FockState((x, y)).has(x) def test_as_poly_as_expr(): f = x**2 + 2*x*y assert f.as_poly().as_expr() == f assert f.as_poly(x, y).as_expr() == f assert (f + sin(x)).as_poly(x, y) is None p = Poly(f, x, y) assert p.as_poly() == p def test_nonzero(): assert bool(S.Zero) is False assert bool(S.One) is True assert bool(x) is True assert bool(x + y) is True assert bool(x - x) is False assert bool(x*y) is True assert bool(x*1) is True assert bool(x*0) is False def test_is_number(): assert Float(3.14).is_number is True assert Integer(737).is_number is True assert Rational(3, 2).is_number is True assert Rational(8).is_number is True assert x.is_number is False assert (2*x).is_number is False assert (x + y).is_number is False assert log(2).is_number is True assert log(x).is_number is False assert (2 + log(2)).is_number is True assert (8 + log(2)).is_number is True assert (2 + log(x)).is_number is False assert (8 + log(2) + x).is_number is False assert (1 + x**2/x - x).is_number is True assert Tuple(Integer(1)).is_number is False assert Add(2, x).is_number is False assert Mul(3, 4).is_number is True assert Pow(log(2), 2).is_number is True assert oo.is_number is True g = WildFunction('g') assert g.is_number is False assert (2*g).is_number is False assert (x**2).subs(x, 3).is_number is True # test extensibility of .is_number # on subinstances of Basic class A(Basic): pass a = A() assert a.is_number is False def test_as_coeff_add(): assert S(2).as_coeff_add() == (2, ()) assert S(3.0).as_coeff_add() == (0, (S(3.0),)) assert S(-3.0).as_coeff_add() == (0, (S(-3.0),)) assert x.as_coeff_add() == (0, (x,)) assert (x - 1).as_coeff_add() == (-1, (x,)) assert (x + 1).as_coeff_add() == (1, (x,)) assert (x + 2).as_coeff_add() == (2, (x,)) assert (x + y).as_coeff_add(y) == (x, (y,)) assert (3*x).as_coeff_add(y) == (3*x, ()) # don't do expansion e = (x + y)**2 assert e.as_coeff_add(y) == (0, (e,)) def test_as_coeff_mul(): assert S(2).as_coeff_mul() == (2, ()) assert S(3.0).as_coeff_mul() == (1, (S(3.0),)) assert S(-3.0).as_coeff_mul() == (-1, (S(3.0),)) assert S(-3.0).as_coeff_mul(rational=False) == (-S(3.0), ()) assert x.as_coeff_mul() == (1, (x,)) assert (-x).as_coeff_mul() == (-1, (x,)) assert (2*x).as_coeff_mul() == (2, (x,)) assert (x*y).as_coeff_mul(y) == (x, (y,)) assert (3 + x).as_coeff_mul() == (1, (3 + x,)) assert (3 + x).as_coeff_mul(y) == (3 + x, ()) # don't do expansion e = exp(x + y) assert e.as_coeff_mul(y) == (1, (e,)) e = 2**(x + y) assert e.as_coeff_mul(y) == (1, (e,)) assert (1.1*x).as_coeff_mul(rational=False) == (1.1, (x,)) assert (1.1*x).as_coeff_mul() == (1, (1.1, x)) assert (-oo*x).as_coeff_mul(rational=True) == (-1, (oo, x)) def test_as_coeff_exponent(): assert (3*x**4).as_coeff_exponent(x) == (3, 4) assert (2*x**3).as_coeff_exponent(x) == (2, 3) assert (4*x**2).as_coeff_exponent(x) == (4, 2) assert (6*x**1).as_coeff_exponent(x) == (6, 1) assert (3*x**0).as_coeff_exponent(x) == (3, 0) assert (2*x**0).as_coeff_exponent(x) == (2, 0) assert (1*x**0).as_coeff_exponent(x) == (1, 0) assert (0*x**0).as_coeff_exponent(x) == (0, 0) assert (-1*x**0).as_coeff_exponent(x) == (-1, 0) assert (-2*x**0).as_coeff_exponent(x) == (-2, 0) assert (2*x**3 + pi*x**3).as_coeff_exponent(x) == (2 + pi, 3) assert (x*log(2)/(2*x + pi*x)).as_coeff_exponent(x) == \ (log(2)/(2 + pi), 0) # issue 4784 D = Derivative f = Function('f') fx = D(f(x), x) assert fx.as_coeff_exponent(f(x)) == (fx, 0) def test_extractions(): assert ((x*y)**3).extract_multiplicatively(x**2 * y) == x*y**2 assert ((x*y)**3).extract_multiplicatively(x**4 * y) is None assert (2*x).extract_multiplicatively(2) == x assert (2*x).extract_multiplicatively(3) is None assert (2*x).extract_multiplicatively(-1) is None assert (S.Half*x).extract_multiplicatively(3) == x/6 assert (sqrt(x)).extract_multiplicatively(x) is None assert (sqrt(x)).extract_multiplicatively(1/x) is None assert x.extract_multiplicatively(-x) is None assert (-2 - 4*I).extract_multiplicatively(-2) == 1 + 2*I assert (-2 - 4*I).extract_multiplicatively(3) is None assert (-2*x - 4*y - 8).extract_multiplicatively(-2) == x + 2*y + 4 assert (-2*x*y - 4*x**2*y).extract_multiplicatively(-2*y) == 2*x**2 + x assert (2*x*y + 4*x**2*y).extract_multiplicatively(2*y) == 2*x**2 + x assert (-4*y**2*x).extract_multiplicatively(-3*y) is None assert (2*x).extract_multiplicatively(1) == 2*x assert (-oo).extract_multiplicatively(5) is -oo assert (oo).extract_multiplicatively(5) is oo assert ((x*y)**3).extract_additively(1) is None assert (x + 1).extract_additively(x) == 1 assert (x + 1).extract_additively(2*x) is None assert (x + 1).extract_additively(-x) is None assert (-x + 1).extract_additively(2*x) is None assert (2*x + 3).extract_additively(x) == x + 3 assert (2*x + 3).extract_additively(2) == 2*x + 1 assert (2*x + 3).extract_additively(3) == 2*x assert (2*x + 3).extract_additively(-2) is None assert (2*x + 3).extract_additively(3*x) is None assert (2*x + 3).extract_additively(2*x) == 3 assert x.extract_additively(0) == x assert S(2).extract_additively(x) is None assert S(2.).extract_additively(2) is S.Zero assert S(2*x + 3).extract_additively(x + 1) == x + 2 assert S(2*x + 3).extract_additively(y + 1) is None assert S(2*x - 3).extract_additively(x + 1) is None assert S(2*x - 3).extract_additively(y + z) is None assert ((a + 1)*x*4 + y).extract_additively(x).expand() == \ 4*a*x + 3*x + y assert ((a + 1)*x*4 + 3*y).extract_additively(x + 2*y).expand() == \ 4*a*x + 3*x + y assert (y*(x + 1)).extract_additively(x + 1) is None assert ((y + 1)*(x + 1) + 3).extract_additively(x + 1) == \ y*(x + 1) + 3 assert ((x + y)*(x + 1) + x + y + 3).extract_additively(x + y) == \ x*(x + y) + 3 assert (x + y + 2*((x + y)*(x + 1)) + 3).extract_additively((x + y)*(x + 1)) == \ x + y + (x + 1)*(x + y) + 3 assert ((y + 1)*(x + 2*y + 1) + 3).extract_additively(y + 1) == \ (x + 2*y)*(y + 1) + 3 n = Symbol("n", integer=True) assert (Integer(-3)).could_extract_minus_sign() is True assert (-n*x + x).could_extract_minus_sign() != \ (n*x - x).could_extract_minus_sign() assert (x - y).could_extract_minus_sign() != \ (-x + y).could_extract_minus_sign() assert (1 - x - y).could_extract_minus_sign() is True assert (1 - x + y).could_extract_minus_sign() is False assert ((-x - x*y)/y).could_extract_minus_sign() is True assert (-(x + x*y)/y).could_extract_minus_sign() is True assert ((x + x*y)/(-y)).could_extract_minus_sign() is True assert ((x + x*y)/y).could_extract_minus_sign() is False assert (x*(-x - x**3)).could_extract_minus_sign() is True assert ((-x - y)/(x + y)).could_extract_minus_sign() is True class sign_invariant(Function, Expr): nargs = 1 def __neg__(self): return self foo = sign_invariant(x) assert foo == -foo assert foo.could_extract_minus_sign() is False # The results of each of these will vary on different machines, e.g. # the first one might be False and the other (then) is true or vice versa, # so both are included. assert ((-x - y)/(x - y)).could_extract_minus_sign() is False or \ ((-x - y)/(y - x)).could_extract_minus_sign() is False assert (x - y).could_extract_minus_sign() is False assert (-x + y).could_extract_minus_sign() is True # check that result is canonical eq = (3*x + 15*y).extract_multiplicatively(3) assert eq.args == eq.func(*eq.args).args def test_nan_extractions(): for r in (1, 0, I, nan): assert nan.extract_additively(r) is None assert nan.extract_multiplicatively(r) is None def test_coeff(): assert (x + 1).coeff(x + 1) == 1 assert (3*x).coeff(0) == 0 assert (z*(1 + x)*x**2).coeff(1 + x) == z*x**2 assert (1 + 2*x*x**(1 + x)).coeff(x*x**(1 + x)) == 2 assert (1 + 2*x**(y + z)).coeff(x**(y + z)) == 2 assert (3 + 2*x + 4*x**2).coeff(1) == 0 assert (3 + 2*x + 4*x**2).coeff(-1) == 0 assert (3 + 2*x + 4*x**2).coeff(x) == 2 assert (3 + 2*x + 4*x**2).coeff(x**2) == 4 assert (3 + 2*x + 4*x**2).coeff(x**3) == 0 assert (-x/8 + x*y).coeff(x) == Rational(-1, 8) + y assert (-x/8 + x*y).coeff(-x) == S.One/8 assert (4*x).coeff(2*x) == 0 assert (2*x).coeff(2*x) == 1 assert (-oo*x).coeff(x*oo) == -1 assert (10*x).coeff(x, 0) == 0 assert (10*x).coeff(10*x, 0) == 0 n1, n2 = symbols('n1 n2', commutative=False) assert (n1*n2).coeff(n1) == 1 assert (n1*n2).coeff(n2) == n1 assert (n1*n2 + x*n1).coeff(n1) == 1 # 1*n1*(n2+x) assert (n2*n1 + x*n1).coeff(n1) == n2 + x assert (n2*n1 + x*n1**2).coeff(n1) == n2 assert (n1**x).coeff(n1) == 0 assert (n1*n2 + n2*n1).coeff(n1) == 0 assert (2*(n1 + n2)*n2).coeff(n1 + n2, right=1) == n2 assert (2*(n1 + n2)*n2).coeff(n1 + n2, right=0) == 2 f = Function('f') assert (2*f(x) + 3*f(x).diff(x)).coeff(f(x)) == 2 expr = z*(x + y)**2 expr2 = z*(x + y)**2 + z*(2*x + 2*y)**2 assert expr.coeff(z) == (x + y)**2 assert expr.coeff(x + y) == 0 assert expr2.coeff(z) == (x + y)**2 + (2*x + 2*y)**2 assert (x + y + 3*z).coeff(1) == x + y assert (-x + 2*y).coeff(-1) == x assert (x - 2*y).coeff(-1) == 2*y assert (3 + 2*x + 4*x**2).coeff(1) == 0 assert (-x - 2*y).coeff(2) == -y assert (x + sqrt(2)*x).coeff(sqrt(2)) == x assert (3 + 2*x + 4*x**2).coeff(x) == 2 assert (3 + 2*x + 4*x**2).coeff(x**2) == 4 assert (3 + 2*x + 4*x**2).coeff(x**3) == 0 assert (z*(x + y)**2).coeff((x + y)**2) == z assert (z*(x + y)**2).coeff(x + y) == 0 assert (2 + 2*x + (x + 1)*y).coeff(x + 1) == y assert (x + 2*y + 3).coeff(1) == x assert (x + 2*y + 3).coeff(x, 0) == 2*y + 3 assert (x**2 + 2*y + 3*x).coeff(x**2, 0) == 2*y + 3*x assert x.coeff(0, 0) == 0 assert x.coeff(x, 0) == 0 n, m, o, l = symbols('n m o l', commutative=False) assert n.coeff(n) == 1 assert y.coeff(n) == 0 assert (3*n).coeff(n) == 3 assert (2 + n).coeff(x*m) == 0 assert (2*x*n*m).coeff(x) == 2*n*m assert (2 + n).coeff(x*m*n + y) == 0 assert (2*x*n*m).coeff(3*n) == 0 assert (n*m + m*n*m).coeff(n) == 1 + m assert (n*m + m*n*m).coeff(n, right=True) == m # = (1 + m)*n*m assert (n*m + m*n).coeff(n) == 0 assert (n*m + o*m*n).coeff(m*n) == o assert (n*m + o*m*n).coeff(m*n, right=1) == 1 assert (n*m + n*m*n).coeff(n*m, right=1) == 1 + n # = n*m*(n + 1) assert (x*y).coeff(z, 0) == x*y def test_coeff2(): r, kappa = symbols('r, kappa') psi = Function("psi") g = 1/r**2 * (2*r*psi(r).diff(r, 1) + r**2 * psi(r).diff(r, 2)) g = g.expand() assert g.coeff((psi(r).diff(r))) == 2/r def test_coeff2_0(): r, kappa = symbols('r, kappa') psi = Function("psi") g = 1/r**2 * (2*r*psi(r).diff(r, 1) + r**2 * psi(r).diff(r, 2)) g = g.expand() assert g.coeff(psi(r).diff(r, 2)) == 1 def test_coeff_expand(): expr = z*(x + y)**2 expr2 = z*(x + y)**2 + z*(2*x + 2*y)**2 assert expr.coeff(z) == (x + y)**2 assert expr2.coeff(z) == (x + y)**2 + (2*x + 2*y)**2 def test_integrate(): assert x.integrate(x) == x**2/2 assert x.integrate((x, 0, 1)) == S.Half def test_as_base_exp(): assert x.as_base_exp() == (x, S.One) assert (x*y*z).as_base_exp() == (x*y*z, S.One) assert (x + y + z).as_base_exp() == (x + y + z, S.One) assert ((x + y)**z).as_base_exp() == (x + y, z) def test_issue_4963(): assert hasattr(Mul(x, y), "is_commutative") assert hasattr(Mul(x, y, evaluate=False), "is_commutative") assert hasattr(Pow(x, y), "is_commutative") assert hasattr(Pow(x, y, evaluate=False), "is_commutative") expr = Mul(Pow(2, 2, evaluate=False), 3, evaluate=False) + 1 assert hasattr(expr, "is_commutative") def test_action_verbs(): assert nsimplify((1/(exp(3*pi*x/5) + 1))) == \ (1/(exp(3*pi*x/5) + 1)).nsimplify() assert ratsimp(1/x + 1/y) == (1/x + 1/y).ratsimp() assert trigsimp(log(x), deep=True) == (log(x)).trigsimp(deep=True) assert radsimp(1/(2 + sqrt(2))) == (1/(2 + sqrt(2))).radsimp() assert radsimp(1/(a + b*sqrt(c)), symbolic=False) == \ (1/(a + b*sqrt(c))).radsimp(symbolic=False) assert powsimp(x**y*x**z*y**z, combine='all') == \ (x**y*x**z*y**z).powsimp(combine='all') assert (x**t*y**t).powsimp(force=True) == (x*y)**t assert simplify(x**y*x**z*y**z) == (x**y*x**z*y**z).simplify() assert together(1/x + 1/y) == (1/x + 1/y).together() assert collect(a*x**2 + b*x**2 + a*x - b*x + c, x) == \ (a*x**2 + b*x**2 + a*x - b*x + c).collect(x) assert apart(y/(y + 2)/(y + 1), y) == (y/(y + 2)/(y + 1)).apart(y) assert combsimp(y/(x + 2)/(x + 1)) == (y/(x + 2)/(x + 1)).combsimp() assert gammasimp(gamma(x)/gamma(x-5)) == (gamma(x)/gamma(x-5)).gammasimp() assert factor(x**2 + 5*x + 6) == (x**2 + 5*x + 6).factor() assert refine(sqrt(x**2)) == sqrt(x**2).refine() assert cancel((x**2 + 5*x + 6)/(x + 2)) == ((x**2 + 5*x + 6)/(x + 2)).cancel() def test_as_powers_dict(): assert x.as_powers_dict() == {x: 1} assert (x**y*z).as_powers_dict() == {x: y, z: 1} assert Mul(2, 2, evaluate=False).as_powers_dict() == {S(2): S(2)} assert (x*y).as_powers_dict()[z] == 0 assert (x + y).as_powers_dict()[z] == 0 def test_as_coefficients_dict(): check = [S.One, x, y, x*y, 1] assert [Add(3*x, 2*x, y, 3).as_coefficients_dict()[i] for i in check] == \ [3, 5, 1, 0, 3] assert [Add(3*x, 2*x, y, 3, evaluate=False).as_coefficients_dict()[i] for i in check] == [3, 5, 1, 0, 3] assert [(3*x*y).as_coefficients_dict()[i] for i in check] == \ [0, 0, 0, 3, 0] assert [(3.0*x*y).as_coefficients_dict()[i] for i in check] == \ [0, 0, 0, 3.0, 0] assert (3.0*x*y).as_coefficients_dict()[3.0*x*y] == 0 def test_args_cnc(): A = symbols('A', commutative=False) assert (x + A).args_cnc() == \ [[], [x + A]] assert (x + a).args_cnc() == \ [[a + x], []] assert (x*a).args_cnc() == \ [[a, x], []] assert (x*y*A*(A + 1)).args_cnc(cset=True) == \ [{x, y}, [A, 1 + A]] assert Mul(x, x, evaluate=False).args_cnc(cset=True, warn=False) == \ [{x}, []] assert Mul(x, x**2, evaluate=False).args_cnc(cset=True, warn=False) == \ [{x, x**2}, []] raises(ValueError, lambda: Mul(x, x, evaluate=False).args_cnc(cset=True)) assert Mul(x, y, x, evaluate=False).args_cnc() == \ [[x, y, x], []] # always split -1 from leading number assert (-1.*x).args_cnc() == [[-1, 1.0, x], []] def test_new_rawargs(): n = Symbol('n', commutative=False) a = x + n assert a.is_commutative is False assert a._new_rawargs(x).is_commutative assert a._new_rawargs(x, y).is_commutative assert a._new_rawargs(x, n).is_commutative is False assert a._new_rawargs(x, y, n).is_commutative is False m = x*n assert m.is_commutative is False assert m._new_rawargs(x).is_commutative assert m._new_rawargs(n).is_commutative is False assert m._new_rawargs(x, y).is_commutative assert m._new_rawargs(x, n).is_commutative is False assert m._new_rawargs(x, y, n).is_commutative is False assert m._new_rawargs(x, n, reeval=False).is_commutative is False assert m._new_rawargs(S.One) is S.One def test_issue_5226(): assert Add(evaluate=False) == 0 assert Mul(evaluate=False) == 1 assert Mul(x + y, evaluate=False).is_Add def test_free_symbols(): # free_symbols should return the free symbols of an object assert S.One.free_symbols == set() assert x.free_symbols == {x} assert Integral(x, (x, 1, y)).free_symbols == {y} assert (-Integral(x, (x, 1, y))).free_symbols == {y} assert meter.free_symbols == set() assert (meter**x).free_symbols == {x} def test_issue_5300(): x = Symbol('x', commutative=False) assert x*sqrt(2)/sqrt(6) == x*sqrt(3)/3 def test_floordiv(): from sympy.functions.elementary.integers import floor assert x // y == floor(x / y) def test_as_coeff_Mul(): assert S.Zero.as_coeff_Mul() == (S.One, S.Zero) assert Integer(3).as_coeff_Mul() == (Integer(3), Integer(1)) assert Rational(3, 4).as_coeff_Mul() == (Rational(3, 4), Integer(1)) assert Float(5.0).as_coeff_Mul() == (Float(5.0), Integer(1)) assert (Integer(3)*x).as_coeff_Mul() == (Integer(3), x) assert (Rational(3, 4)*x).as_coeff_Mul() == (Rational(3, 4), x) assert (Float(5.0)*x).as_coeff_Mul() == (Float(5.0), x) assert (Integer(3)*x*y).as_coeff_Mul() == (Integer(3), x*y) assert (Rational(3, 4)*x*y).as_coeff_Mul() == (Rational(3, 4), x*y) assert (Float(5.0)*x*y).as_coeff_Mul() == (Float(5.0), x*y) assert (x).as_coeff_Mul() == (S.One, x) assert (x*y).as_coeff_Mul() == (S.One, x*y) assert (-oo*x).as_coeff_Mul(rational=True) == (-1, oo*x) def test_as_coeff_Add(): assert Integer(3).as_coeff_Add() == (Integer(3), Integer(0)) assert Rational(3, 4).as_coeff_Add() == (Rational(3, 4), Integer(0)) assert Float(5.0).as_coeff_Add() == (Float(5.0), Integer(0)) assert (Integer(3) + x).as_coeff_Add() == (Integer(3), x) assert (Rational(3, 4) + x).as_coeff_Add() == (Rational(3, 4), x) assert (Float(5.0) + x).as_coeff_Add() == (Float(5.0), x) assert (Float(5.0) + x).as_coeff_Add(rational=True) == (0, Float(5.0) + x) assert (Integer(3) + x + y).as_coeff_Add() == (Integer(3), x + y) assert (Rational(3, 4) + x + y).as_coeff_Add() == (Rational(3, 4), x + y) assert (Float(5.0) + x + y).as_coeff_Add() == (Float(5.0), x + y) assert (x).as_coeff_Add() == (S.Zero, x) assert (x*y).as_coeff_Add() == (S.Zero, x*y) def test_expr_sorting(): f, g = symbols('f,g', cls=Function) exprs = [1/x**2, 1/x, sqrt(sqrt(x)), sqrt(x), x, sqrt(x)**3, x**2] assert sorted(exprs, key=default_sort_key) == exprs exprs = [x, 2*x, 2*x**2, 2*x**3, x**n, 2*x**n, sin(x), sin(x)**n, sin(x**2), cos(x), cos(x**2), tan(x)] assert sorted(exprs, key=default_sort_key) == exprs exprs = [x + 1, x**2 + x + 1, x**3 + x**2 + x + 1] assert sorted(exprs, key=default_sort_key) == exprs exprs = [S(4), x - 3*I/2, x + 3*I/2, x - 4*I + 1, x + 4*I + 1] assert sorted(exprs, key=default_sort_key) == exprs exprs = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)] assert sorted(exprs, key=default_sort_key) == exprs exprs = [f(x), g(x), exp(x), sin(x), cos(x), factorial(x)] assert sorted(exprs, key=default_sort_key) == exprs exprs = [Tuple(x, y), Tuple(x, z), Tuple(x, y, z)] assert sorted(exprs, key=default_sort_key) == exprs exprs = [[3], [1, 2]] assert sorted(exprs, key=default_sort_key) == exprs exprs = [[1, 2], [2, 3]] assert sorted(exprs, key=default_sort_key) == exprs exprs = [[1, 2], [1, 2, 3]] assert sorted(exprs, key=default_sort_key) == exprs exprs = [{x: -y}, {x: y}] assert sorted(exprs, key=default_sort_key) == exprs exprs = [{1}, {1, 2}] assert sorted(exprs, key=default_sort_key) == exprs a, b = exprs = [Dummy('x'), Dummy('x')] assert sorted([b, a], key=default_sort_key) == exprs def test_as_ordered_factors(): f, g = symbols('f,g', cls=Function) assert x.as_ordered_factors() == [x] assert (2*x*x**n*sin(x)*cos(x)).as_ordered_factors() \ == [Integer(2), x, x**n, sin(x), cos(x)] args = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)] expr = Mul(*args) assert expr.as_ordered_factors() == args A, B = symbols('A,B', commutative=False) assert (A*B).as_ordered_factors() == [A, B] assert (B*A).as_ordered_factors() == [B, A] def test_as_ordered_terms(): f, g = symbols('f,g', cls=Function) assert x.as_ordered_terms() == [x] assert (sin(x)**2*cos(x) + sin(x)*cos(x)**2 + 1).as_ordered_terms() \ == [sin(x)**2*cos(x), sin(x)*cos(x)**2, 1] args = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)] expr = Add(*args) assert expr.as_ordered_terms() == args assert (1 + 4*sqrt(3)*pi*x).as_ordered_terms() == [4*pi*x*sqrt(3), 1] assert ( 2 + 3*I).as_ordered_terms() == [2, 3*I] assert (-2 + 3*I).as_ordered_terms() == [-2, 3*I] assert ( 2 - 3*I).as_ordered_terms() == [2, -3*I] assert (-2 - 3*I).as_ordered_terms() == [-2, -3*I] assert ( 4 + 3*I).as_ordered_terms() == [4, 3*I] assert (-4 + 3*I).as_ordered_terms() == [-4, 3*I] assert ( 4 - 3*I).as_ordered_terms() == [4, -3*I] assert (-4 - 3*I).as_ordered_terms() == [-4, -3*I] f = x**2*y**2 + x*y**4 + y + 2 assert f.as_ordered_terms(order="lex") == [x**2*y**2, x*y**4, y, 2] assert f.as_ordered_terms(order="grlex") == [x*y**4, x**2*y**2, y, 2] assert f.as_ordered_terms(order="rev-lex") == [2, y, x*y**4, x**2*y**2] assert f.as_ordered_terms(order="rev-grlex") == [2, y, x**2*y**2, x*y**4] k = symbols('k') assert k.as_ordered_terms(data=True) == ([(k, ((1.0, 0.0), (1,), ()))], [k]) def test_sort_key_atomic_expr(): from sympy.physics.units import m, s assert sorted([-m, s], key=lambda arg: arg.sort_key()) == [-m, s] def test_eval_interval(): assert exp(x)._eval_interval(*Tuple(x, 0, 1)) == exp(1) - exp(0) # issue 4199 # first subs and limit gives NaN a = x/y assert a._eval_interval(x, S.Zero, oo)._eval_interval(y, oo, S.Zero) is S.NaN # second subs and limit gives NaN assert a._eval_interval(x, S.Zero, oo)._eval_interval(y, S.Zero, oo) is S.NaN # difference gives S.NaN a = x - y assert a._eval_interval(x, S.One, oo)._eval_interval(y, oo, S.One) is S.NaN raises(ValueError, lambda: x._eval_interval(x, None, None)) a = -y*Heaviside(x - y) assert a._eval_interval(x, -oo, oo) == -y assert a._eval_interval(x, oo, -oo) == y def test_eval_interval_zoo(): # Test that limit is used when zoo is returned assert Si(1/x)._eval_interval(x, S.Zero, S.One) == -pi/2 + Si(1) def test_primitive(): assert (3*(x + 1)**2).primitive() == (3, (x + 1)**2) assert (6*x + 2).primitive() == (2, 3*x + 1) assert (x/2 + 3).primitive() == (S.Half, x + 6) eq = (6*x + 2)*(x/2 + 3) assert eq.primitive()[0] == 1 eq = (2 + 2*x)**2 assert eq.primitive()[0] == 1 assert (4.0*x).primitive() == (1, 4.0*x) assert (4.0*x + y/2).primitive() == (S.Half, 8.0*x + y) assert (-2*x).primitive() == (2, -x) assert Add(5*z/7, 0.5*x, 3*y/2, evaluate=False).primitive() == \ (S.One/14, 7.0*x + 21*y + 10*z) for i in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]: assert (i + x/3).primitive() == \ (S.One/3, i + x) assert (S.Infinity + 2*x/3 + 4*y/7).primitive() == \ (S.One/21, 14*x + 12*y + oo) assert S.Zero.primitive() == (S.One, S.Zero) def test_issue_5843(): a = 1 + x assert (2*a).extract_multiplicatively(a) == 2 assert (4*a).extract_multiplicatively(2*a) == 2 assert ((3*a)*(2*a)).extract_multiplicatively(a) == 6*a def test_is_constant(): from sympy.solvers.solvers import checksol Sum(x, (x, 1, 10)).is_constant() is True Sum(x, (x, 1, n)).is_constant() is False Sum(x, (x, 1, n)).is_constant(y) is True Sum(x, (x, 1, n)).is_constant(n) is False Sum(x, (x, 1, n)).is_constant(x) is True eq = a*cos(x)**2 + a*sin(x)**2 - a eq.is_constant() is True assert eq.subs({x: pi, a: 2}) == eq.subs({x: pi, a: 3}) == 0 assert x.is_constant() is False assert x.is_constant(y) is True assert checksol(x, x, Sum(x, (x, 1, n))) is False assert checksol(x, x, Sum(x, (x, 1, n))) is False f = Function('f') assert f(1).is_constant assert checksol(x, x, f(x)) is False assert Pow(x, S.Zero, evaluate=False).is_constant() is True # == 1 assert Pow(S.Zero, x, evaluate=False).is_constant() is False # == 0 or 1 assert (2**x).is_constant() is False assert Pow(S(2), S(3), evaluate=False).is_constant() is True z1, z2 = symbols('z1 z2', zero=True) assert (z1 + 2*z2).is_constant() is True assert meter.is_constant() is True assert (3*meter).is_constant() is True assert (x*meter).is_constant() is False assert Poly(3, x).is_constant() is True def test_equals(): assert (-3 - sqrt(5) + (-sqrt(10)/2 - sqrt(2)/2)**2).equals(0) assert (x**2 - 1).equals((x + 1)*(x - 1)) assert (cos(x)**2 + sin(x)**2).equals(1) assert (a*cos(x)**2 + a*sin(x)**2).equals(a) r = sqrt(2) assert (-1/(r + r*x) + 1/r/(1 + x)).equals(0) assert factorial(x + 1).equals((x + 1)*factorial(x)) assert sqrt(3).equals(2*sqrt(3)) is False assert (sqrt(5)*sqrt(3)).equals(sqrt(3)) is False assert (sqrt(5) + sqrt(3)).equals(0) is False assert (sqrt(5) + pi).equals(0) is False assert meter.equals(0) is False assert (3*meter**2).equals(0) is False eq = -(-1)**(S(3)/4)*6**(S.One/4) + (-6)**(S.One/4)*I if eq != 0: # if canonicalization makes this zero, skip the test assert eq.equals(0) assert sqrt(x).equals(0) is False # from integrate(x*sqrt(1 + 2*x), x); # diff is zero only when assumptions allow i = 2*sqrt(2)*x**(S(5)/2)*(1 + 1/(2*x))**(S(5)/2)/5 + \ 2*sqrt(2)*x**(S(3)/2)*(1 + 1/(2*x))**(S(5)/2)/(-6 - 3/x) ans = sqrt(2*x + 1)*(6*x**2 + x - 1)/15 diff = i - ans assert diff.equals(0) is False assert diff.subs(x, Rational(-1, 2)/2) == 7*sqrt(2)/120 # there are regions for x for which the expression is True, for # example, when x < -1/2 or x > 0 the expression is zero p = Symbol('p', positive=True) assert diff.subs(x, p).equals(0) is True assert diff.subs(x, -1).equals(0) is True # prove via minimal_polynomial or self-consistency eq = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3)) assert eq.equals(0) q = 3**Rational(1, 3) + 3 p = expand(q**3)**Rational(1, 3) assert (p - q).equals(0) # issue 6829 # eq = q*x + q/4 + x**4 + x**3 + 2*x**2 - S.One/3 # z = eq.subs(x, solve(eq, x)[0]) q = symbols('q') z = (q*(-sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12)/2 - sqrt((2*q - S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/6)/2 - S.One/4) + q/4 + (-sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12)/2 - sqrt((2*q - S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/6)/2 - S.One/4)**4 + (-sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12)/2 - sqrt((2*q - S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/6)/2 - S.One/4)**3 + 2*(-sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12)/2 - sqrt((2*q - S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/6)/2 - S.One/4)**2 - Rational(1, 3)) assert z.equals(0) def test_random(): from sympy import posify, lucas assert posify(x)[0]._random() is not None assert lucas(n)._random(2, -2, 0, -1, 1) is None # issue 8662 assert Piecewise((Max(x, y), z))._random() is None def test_round(): from sympy.abc import x assert str(Float('0.1249999').round(2)) == '0.12' d20 = 12345678901234567890 ans = S(d20).round(2) assert ans.is_Integer and ans == d20 ans = S(d20).round(-2) assert ans.is_Integer and ans == 12345678901234567900 assert str(S('1/7').round(4)) == '0.1429' assert str(S('.[12345]').round(4)) == '0.1235' assert str(S('.1349').round(2)) == '0.13' n = S(12345) ans = n.round() assert ans.is_Integer assert ans == n ans = n.round(1) assert ans.is_Integer assert ans == n ans = n.round(4) assert ans.is_Integer assert ans == n assert n.round(-1) == 12340 r = Float(str(n)).round(-4) assert r == 10000 assert n.round(-5) == 0 assert str((pi + sqrt(2)).round(2)) == '4.56' assert (10*(pi + sqrt(2))).round(-1) == 50 raises(TypeError, lambda: round(x + 2, 2)) assert str(S(2.3).round(1)) == '2.3' # rounding in SymPy (as in Decimal) should be # exact for the given precision; we check here # that when a 5 follows the last digit that # the rounded digit will be even. for i in range(-99, 100): # construct a decimal that ends in 5, e.g. 123 -> 0.1235 s = str(abs(i)) p = len(s) # we are going to round to the last digit of i n = '0.%s5' % s # put a 5 after i's digits j = p + 2 # 2 for '0.' if i < 0: # 1 for '-' j += 1 n = '-' + n v = str(Float(n).round(p))[:j] # pertinent digits if v.endswith('.'): continue # it ends with 0 which is even L = int(v[-1]) # last digit assert L % 2 == 0, (n, '->', v) assert (Float(.3, 3) + 2*pi).round() == 7 assert (Float(.3, 3) + 2*pi*100).round() == 629 assert (pi + 2*E*I).round() == 3 + 5*I # don't let request for extra precision give more than # what is known (in this case, only 3 digits) assert str((Float(.03, 3) + 2*pi/100).round(5)) == '0.0928' assert str((Float(.03, 3) + 2*pi/100).round(4)) == '0.0928' assert S.Zero.round() == 0 a = (Add(1, Float('1.' + '9'*27, ''), evaluate=0)) assert a.round(10) == Float('3.0000000000', '') assert a.round(25) == Float('3.0000000000000000000000000', '') assert a.round(26) == Float('3.00000000000000000000000000', '') assert a.round(27) == Float('2.999999999999999999999999999', '') assert a.round(30) == Float('2.999999999999999999999999999', '') raises(TypeError, lambda: x.round()) f = Function('f') raises(TypeError, lambda: f(1).round()) # exact magnitude of 10 assert str(S.One.round()) == '1' assert str(S(100).round()) == '100' # applied to real and imaginary portions assert (2*pi + E*I).round() == 6 + 3*I assert (2*pi + I/10).round() == 6 assert (pi/10 + 2*I).round() == 2*I # the lhs re and im parts are Float with dps of 2 # and those on the right have dps of 15 so they won't compare # equal unless we use string or compare components (which will # then coerce the floats to the same precision) or re-create # the floats assert str((pi/10 + E*I).round(2)) == '0.31 + 2.72*I' assert str((pi/10 + E*I).round(2).as_real_imag()) == '(0.31, 2.72)' assert str((pi/10 + E*I).round(2)) == '0.31 + 2.72*I' # issue 6914 assert (I**(I + 3)).round(3) == Float('-0.208', '')*I # issue 8720 assert S(-123.6).round() == -124 assert S(-1.5).round() == -2 assert S(-100.5).round() == -100 assert S(-1.5 - 10.5*I).round() == -2 - 10*I # issue 7961 assert str(S(0.006).round(2)) == '0.01' assert str(S(0.00106).round(4)) == '0.0011' # issue 8147 assert S.NaN.round() is S.NaN assert S.Infinity.round() is S.Infinity assert S.NegativeInfinity.round() is S.NegativeInfinity assert S.ComplexInfinity.round() is S.ComplexInfinity # check that types match for i in range(2): f = float(i) # 2 args assert all(type(round(i, p)) is _rint for p in (-1, 0, 1)) assert all(S(i).round(p).is_Integer for p in (-1, 0, 1)) assert all(type(round(f, p)) is float for p in (-1, 0, 1)) assert all(S(f).round(p).is_Float for p in (-1, 0, 1)) # 1 arg (p is None) assert type(round(i)) is _rint assert S(i).round().is_Integer assert type(round(f)) is _rint assert S(f).round().is_Integer def test_held_expression_UnevaluatedExpr(): x = symbols("x") he = UnevaluatedExpr(1/x) e1 = x*he assert isinstance(e1, Mul) assert e1.args == (x, he) assert e1.doit() == 1 assert UnevaluatedExpr(Derivative(x, x)).doit(deep=False ) == Derivative(x, x) assert UnevaluatedExpr(Derivative(x, x)).doit() == 1 xx = Mul(x, x, evaluate=False) assert xx != x**2 ue2 = UnevaluatedExpr(xx) assert isinstance(ue2, UnevaluatedExpr) assert ue2.args == (xx,) assert ue2.doit() == x**2 assert ue2.doit(deep=False) == xx x2 = UnevaluatedExpr(2)*2 assert type(x2) is Mul assert x2.args == (2, UnevaluatedExpr(2)) def test_round_exception_nostr(): # Don't use the string form of the expression in the round exception, as # it's too slow s = Symbol('bad') try: s.round() except TypeError as e: assert 'bad' not in str(e) else: # Did not raise raise AssertionError("Did not raise") def test_extract_branch_factor(): assert exp_polar(2.0*I*pi).extract_branch_factor() == (1, 1) def test_identity_removal(): assert Add.make_args(x + 0) == (x,) assert Mul.make_args(x*1) == (x,) def test_float_0(): assert Float(0.0) + 1 == Float(1.0) @XFAIL def test_float_0_fail(): assert Float(0.0)*x == Float(0.0) assert (x + Float(0.0)).is_Add def test_issue_6325(): ans = (b**2 + z**2 - (b*(a + b*t) + z*(c + t*z))**2/( (a + b*t)**2 + (c + t*z)**2))/sqrt((a + b*t)**2 + (c + t*z)**2) e = sqrt((a + b*t)**2 + (c + z*t)**2) assert diff(e, t, 2) == ans e.diff(t, 2) == ans assert diff(e, t, 2, simplify=False) != ans def test_issue_7426(): f1 = a % c f2 = x % z assert f1.equals(f2) is None def test_issue_11122(): x = Symbol('x', extended_positive=False) assert unchanged(Gt, x, 0) # (x > 0) # (x > 0) should remain unevaluated after PR #16956 x = Symbol('x', positive=False, real=True) assert (x > 0) is S.false def test_issue_10651(): x = Symbol('x', real=True) e1 = (-1 + x)/(1 - x) e3 = (4*x**2 - 4)/((1 - x)*(1 + x)) e4 = 1/(cos(x)**2) - (tan(x))**2 x = Symbol('x', positive=True) e5 = (1 + x)/x assert e1.is_constant() is None assert e3.is_constant() is None assert e4.is_constant() is None assert e5.is_constant() is False def test_issue_10161(): x = symbols('x', real=True) assert x*abs(x)*abs(x) == x**3 def test_issue_10755(): x = symbols('x') raises(TypeError, lambda: int(log(x))) raises(TypeError, lambda: log(x).round(2)) def test_issue_11877(): x = symbols('x') assert integrate(log(S.Half - x), (x, 0, S.Half)) == Rational(-1, 2) -log(2)/2 def test_normal(): x = symbols('x') e = Mul(S.Half, 1 + x, evaluate=False) assert e.normal() == e def test_expr(): x = symbols('x') raises(TypeError, lambda: tan(x).series(x, 2, oo, "+")) def test_ExprBuilder(): eb = ExprBuilder(Mul) eb.args.extend([x, x]) assert eb.build() == x**2 def test_non_string_equality(): # Expressions should not compare equal to strings x = symbols('x') one = sympify(1) assert (x == 'x') is False assert (x != 'x') is True assert (one == '1') is False assert (one != '1') is True assert (x + 1 == 'x + 1') is False assert (x + 1 != 'x + 1') is True # Make sure == doesn't try to convert the resulting expression to a string # (e.g., by calling sympify() instead of _sympify()) class BadRepr(object): def __repr__(self): raise RuntimeError assert (x == BadRepr()) is False assert (x != BadRepr()) is True
3b9cbf08674b52c8a9d93ef6d9ef3ec80ce7c0575dfa584eb54ac9249cb7cf27
"""Test whether all elements of cls.args are instances of Basic. """ # NOTE: keep tests sorted by (module, class name) key. If a class can't # be instantiated, add it here anyway with @SKIP("abstract class) (see # e.g. Function). import os import re import io from sympy import (Basic, S, symbols, sqrt, sin, oo, Interval, exp, Lambda, pi, Eq, log, Function, Rational) from sympy.core.compatibility import range from sympy.utilities.pytest import XFAIL, SKIP x, y, z = symbols('x,y,z') def test_all_classes_are_tested(): this = os.path.split(__file__)[0] path = os.path.join(this, os.pardir, os.pardir) sympy_path = os.path.abspath(path) prefix = os.path.split(sympy_path)[0] + os.sep re_cls = re.compile(r"^class ([A-Za-z][A-Za-z0-9_]*)\s*\(", re.MULTILINE) modules = {} for root, dirs, files in os.walk(sympy_path): module = root.replace(prefix, "").replace(os.sep, ".") for file in files: if file.startswith(("_", "test_", "bench_")): continue if not file.endswith(".py"): continue with io.open(os.path.join(root, file), "r", encoding='utf-8') as f: text = f.read() submodule = module + '.' + file[:-3] names = re_cls.findall(text) if not names: continue try: mod = __import__(submodule, fromlist=names) except ImportError: continue def is_Basic(name): cls = getattr(mod, name) if hasattr(cls, '_sympy_deprecated_func'): cls = cls._sympy_deprecated_func return issubclass(cls, Basic) names = list(filter(is_Basic, names)) if names: modules[submodule] = names ns = globals() failed = [] for module, names in modules.items(): mod = module.replace('.', '__') for name in names: test = 'test_' + mod + '__' + name if test not in ns: failed.append(module + '.' + name) assert not failed, "Missing classes: %s. Please add tests for these to sympy/core/tests/test_args.py." % ", ".join(failed) def _test_args(obj): return all(isinstance(arg, Basic) for arg in obj.args) def test_sympy__assumptions__assume__AppliedPredicate(): from sympy.assumptions.assume import AppliedPredicate, Predicate from sympy import Q assert _test_args(AppliedPredicate(Predicate("test"), 2)) assert _test_args(Q.is_true(True)) def test_sympy__assumptions__assume__Predicate(): from sympy.assumptions.assume import Predicate assert _test_args(Predicate("test")) def test_sympy__assumptions__sathandlers__UnevaluatedOnFree(): from sympy.assumptions.sathandlers import UnevaluatedOnFree from sympy import Q assert _test_args(UnevaluatedOnFree(Q.positive)) def test_sympy__assumptions__sathandlers__AllArgs(): from sympy.assumptions.sathandlers import AllArgs from sympy import Q assert _test_args(AllArgs(Q.positive)) def test_sympy__assumptions__sathandlers__AnyArgs(): from sympy.assumptions.sathandlers import AnyArgs from sympy import Q assert _test_args(AnyArgs(Q.positive)) def test_sympy__assumptions__sathandlers__ExactlyOneArg(): from sympy.assumptions.sathandlers import ExactlyOneArg from sympy import Q assert _test_args(ExactlyOneArg(Q.positive)) def test_sympy__assumptions__sathandlers__CheckOldAssump(): from sympy.assumptions.sathandlers import CheckOldAssump from sympy import Q assert _test_args(CheckOldAssump(Q.positive)) def test_sympy__assumptions__sathandlers__CheckIsPrime(): from sympy.assumptions.sathandlers import CheckIsPrime from sympy import Q # Input must be a number assert _test_args(CheckIsPrime(Q.positive)) @SKIP("abstract Class") def test_sympy__codegen__ast__AssignmentBase(): from sympy.codegen.ast import AssignmentBase assert _test_args(AssignmentBase(x, 1)) @SKIP("abstract Class") def test_sympy__codegen__ast__AugmentedAssignment(): from sympy.codegen.ast import AugmentedAssignment assert _test_args(AugmentedAssignment(x, 1)) def test_sympy__codegen__ast__AddAugmentedAssignment(): from sympy.codegen.ast import AddAugmentedAssignment assert _test_args(AddAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__SubAugmentedAssignment(): from sympy.codegen.ast import SubAugmentedAssignment assert _test_args(SubAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__MulAugmentedAssignment(): from sympy.codegen.ast import MulAugmentedAssignment assert _test_args(MulAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__DivAugmentedAssignment(): from sympy.codegen.ast import DivAugmentedAssignment assert _test_args(DivAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__ModAugmentedAssignment(): from sympy.codegen.ast import ModAugmentedAssignment assert _test_args(ModAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__CodeBlock(): from sympy.codegen.ast import CodeBlock, Assignment assert _test_args(CodeBlock(Assignment(x, 1), Assignment(y, 2))) def test_sympy__codegen__ast__For(): from sympy.codegen.ast import For, CodeBlock, AddAugmentedAssignment from sympy import Range assert _test_args(For(x, Range(10), CodeBlock(AddAugmentedAssignment(y, 1)))) def test_sympy__codegen__ast__Token(): from sympy.codegen.ast import Token assert _test_args(Token()) def test_sympy__codegen__ast__ContinueToken(): from sympy.codegen.ast import ContinueToken assert _test_args(ContinueToken()) def test_sympy__codegen__ast__BreakToken(): from sympy.codegen.ast import BreakToken assert _test_args(BreakToken()) def test_sympy__codegen__ast__NoneToken(): from sympy.codegen.ast import NoneToken assert _test_args(NoneToken()) def test_sympy__codegen__ast__String(): from sympy.codegen.ast import String assert _test_args(String('foobar')) def test_sympy__codegen__ast__QuotedString(): from sympy.codegen.ast import QuotedString assert _test_args(QuotedString('foobar')) def test_sympy__codegen__ast__Comment(): from sympy.codegen.ast import Comment assert _test_args(Comment('this is a comment')) def test_sympy__codegen__ast__Node(): from sympy.codegen.ast import Node assert _test_args(Node()) assert _test_args(Node(attrs={1, 2, 3})) def test_sympy__codegen__ast__Type(): from sympy.codegen.ast import Type assert _test_args(Type('float128')) def test_sympy__codegen__ast__IntBaseType(): from sympy.codegen.ast import IntBaseType assert _test_args(IntBaseType('bigint')) def test_sympy__codegen__ast___SizedIntType(): from sympy.codegen.ast import _SizedIntType assert _test_args(_SizedIntType('int128', 128)) def test_sympy__codegen__ast__SignedIntType(): from sympy.codegen.ast import SignedIntType assert _test_args(SignedIntType('int128_with_sign', 128)) def test_sympy__codegen__ast__UnsignedIntType(): from sympy.codegen.ast import UnsignedIntType assert _test_args(UnsignedIntType('unt128', 128)) def test_sympy__codegen__ast__FloatBaseType(): from sympy.codegen.ast import FloatBaseType assert _test_args(FloatBaseType('positive_real')) def test_sympy__codegen__ast__FloatType(): from sympy.codegen.ast import FloatType assert _test_args(FloatType('float242', 242, nmant=142, nexp=99)) def test_sympy__codegen__ast__ComplexBaseType(): from sympy.codegen.ast import ComplexBaseType assert _test_args(ComplexBaseType('positive_cmplx')) def test_sympy__codegen__ast__ComplexType(): from sympy.codegen.ast import ComplexType assert _test_args(ComplexType('complex42', 42, nmant=15, nexp=5)) def test_sympy__codegen__ast__Attribute(): from sympy.codegen.ast import Attribute assert _test_args(Attribute('noexcept')) def test_sympy__codegen__ast__Variable(): from sympy.codegen.ast import Variable, Type, value_const assert _test_args(Variable(x)) assert _test_args(Variable(y, Type('float32'), {value_const})) assert _test_args(Variable(z, type=Type('float64'))) def test_sympy__codegen__ast__Pointer(): from sympy.codegen.ast import Pointer, Type, pointer_const assert _test_args(Pointer(x)) assert _test_args(Pointer(y, type=Type('float32'))) assert _test_args(Pointer(z, Type('float64'), {pointer_const})) def test_sympy__codegen__ast__Declaration(): from sympy.codegen.ast import Declaration, Variable, Type vx = Variable(x, type=Type('float')) assert _test_args(Declaration(vx)) def test_sympy__codegen__ast__While(): from sympy.codegen.ast import While, AddAugmentedAssignment assert _test_args(While(abs(x) < 1, [AddAugmentedAssignment(x, -1)])) def test_sympy__codegen__ast__Scope(): from sympy.codegen.ast import Scope, AddAugmentedAssignment assert _test_args(Scope([AddAugmentedAssignment(x, -1)])) def test_sympy__codegen__ast__Stream(): from sympy.codegen.ast import Stream assert _test_args(Stream('stdin')) def test_sympy__codegen__ast__Print(): from sympy.codegen.ast import Print assert _test_args(Print([x, y])) assert _test_args(Print([x, y], "%d %d")) def test_sympy__codegen__ast__FunctionPrototype(): from sympy.codegen.ast import FunctionPrototype, real, Declaration, Variable inp_x = Declaration(Variable(x, type=real)) assert _test_args(FunctionPrototype(real, 'pwer', [inp_x])) def test_sympy__codegen__ast__FunctionDefinition(): from sympy.codegen.ast import FunctionDefinition, real, Declaration, Variable, Assignment inp_x = Declaration(Variable(x, type=real)) assert _test_args(FunctionDefinition(real, 'pwer', [inp_x], [Assignment(x, x**2)])) def test_sympy__codegen__ast__Return(): from sympy.codegen.ast import Return assert _test_args(Return(x)) def test_sympy__codegen__ast__FunctionCall(): from sympy.codegen.ast import FunctionCall assert _test_args(FunctionCall('pwer', [x])) def test_sympy__codegen__ast__Element(): from sympy.codegen.ast import Element assert _test_args(Element('x', range(3))) def test_sympy__codegen__cnodes__CommaOperator(): from sympy.codegen.cnodes import CommaOperator assert _test_args(CommaOperator(1, 2)) def test_sympy__codegen__cnodes__goto(): from sympy.codegen.cnodes import goto assert _test_args(goto('early_exit')) def test_sympy__codegen__cnodes__Label(): from sympy.codegen.cnodes import Label assert _test_args(Label('early_exit')) def test_sympy__codegen__cnodes__PreDecrement(): from sympy.codegen.cnodes import PreDecrement assert _test_args(PreDecrement(x)) def test_sympy__codegen__cnodes__PostDecrement(): from sympy.codegen.cnodes import PostDecrement assert _test_args(PostDecrement(x)) def test_sympy__codegen__cnodes__PreIncrement(): from sympy.codegen.cnodes import PreIncrement assert _test_args(PreIncrement(x)) def test_sympy__codegen__cnodes__PostIncrement(): from sympy.codegen.cnodes import PostIncrement assert _test_args(PostIncrement(x)) def test_sympy__codegen__cnodes__struct(): from sympy.codegen.ast import real, Variable from sympy.codegen.cnodes import struct assert _test_args(struct(declarations=[ Variable(x, type=real), Variable(y, type=real) ])) def test_sympy__codegen__cnodes__union(): from sympy.codegen.ast import float32, int32, Variable from sympy.codegen.cnodes import union assert _test_args(union(declarations=[ Variable(x, type=float32), Variable(y, type=int32) ])) def test_sympy__codegen__cxxnodes__using(): from sympy.codegen.cxxnodes import using assert _test_args(using('std::vector')) assert _test_args(using('std::vector', 'vec')) def test_sympy__codegen__fnodes__Program(): from sympy.codegen.fnodes import Program assert _test_args(Program('foobar', [])) def test_sympy__codegen__fnodes__Module(): from sympy.codegen.fnodes import Module assert _test_args(Module('foobar', [], [])) def test_sympy__codegen__fnodes__Subroutine(): from sympy.codegen.fnodes import Subroutine x = symbols('x', real=True) assert _test_args(Subroutine('foo', [x], [])) def test_sympy__codegen__fnodes__GoTo(): from sympy.codegen.fnodes import GoTo assert _test_args(GoTo([10])) assert _test_args(GoTo([10, 20], x > 1)) def test_sympy__codegen__fnodes__FortranReturn(): from sympy.codegen.fnodes import FortranReturn assert _test_args(FortranReturn(10)) def test_sympy__codegen__fnodes__Extent(): from sympy.codegen.fnodes import Extent assert _test_args(Extent()) assert _test_args(Extent(None)) assert _test_args(Extent(':')) assert _test_args(Extent(-3, 4)) assert _test_args(Extent(x, y)) def test_sympy__codegen__fnodes__use_rename(): from sympy.codegen.fnodes import use_rename assert _test_args(use_rename('loc', 'glob')) def test_sympy__codegen__fnodes__use(): from sympy.codegen.fnodes import use assert _test_args(use('modfoo', only='bar')) def test_sympy__codegen__fnodes__SubroutineCall(): from sympy.codegen.fnodes import SubroutineCall assert _test_args(SubroutineCall('foo', ['bar', 'baz'])) def test_sympy__codegen__fnodes__Do(): from sympy.codegen.fnodes import Do assert _test_args(Do([], 'i', 1, 42)) def test_sympy__codegen__fnodes__ImpliedDoLoop(): from sympy.codegen.fnodes import ImpliedDoLoop assert _test_args(ImpliedDoLoop('i', 'i', 1, 42)) def test_sympy__codegen__fnodes__ArrayConstructor(): from sympy.codegen.fnodes import ArrayConstructor assert _test_args(ArrayConstructor([1, 2, 3])) from sympy.codegen.fnodes import ImpliedDoLoop idl = ImpliedDoLoop('i', 'i', 1, 42) assert _test_args(ArrayConstructor([1, idl, 3])) def test_sympy__codegen__fnodes__sum_(): from sympy.codegen.fnodes import sum_ assert _test_args(sum_('arr')) def test_sympy__codegen__fnodes__product_(): from sympy.codegen.fnodes import product_ assert _test_args(product_('arr')) @XFAIL def test_sympy__combinatorics__graycode__GrayCode(): from sympy.combinatorics.graycode import GrayCode # an integer is given and returned from GrayCode as the arg assert _test_args(GrayCode(3, start='100')) assert _test_args(GrayCode(3, rank=1)) def test_sympy__combinatorics__subsets__Subset(): from sympy.combinatorics.subsets import Subset assert _test_args(Subset([0, 1], [0, 1, 2, 3])) assert _test_args(Subset(['c', 'd'], ['a', 'b', 'c', 'd'])) def test_sympy__combinatorics__permutations__Permutation(): from sympy.combinatorics.permutations import Permutation assert _test_args(Permutation([0, 1, 2, 3])) def test_sympy__combinatorics__perm_groups__PermutationGroup(): from sympy.combinatorics.permutations import Permutation from sympy.combinatorics.perm_groups import PermutationGroup assert _test_args(PermutationGroup([Permutation([0, 1])])) def test_sympy__combinatorics__polyhedron__Polyhedron(): from sympy.combinatorics.permutations import Permutation from sympy.combinatorics.polyhedron import Polyhedron from sympy.abc import w, x, y, z pgroup = [Permutation([[0, 1, 2], [3]]), Permutation([[0, 1, 3], [2]]), Permutation([[0, 2, 3], [1]]), Permutation([[1, 2, 3], [0]]), Permutation([[0, 1], [2, 3]]), Permutation([[0, 2], [1, 3]]), Permutation([[0, 3], [1, 2]]), Permutation([[0, 1, 2, 3]])] corners = [w, x, y, z] faces = [(w, x, y), (w, y, z), (w, z, x), (x, y, z)] assert _test_args(Polyhedron(corners, faces, pgroup)) @XFAIL def test_sympy__combinatorics__prufer__Prufer(): from sympy.combinatorics.prufer import Prufer assert _test_args(Prufer([[0, 1], [0, 2], [0, 3]], 4)) def test_sympy__combinatorics__partitions__Partition(): from sympy.combinatorics.partitions import Partition assert _test_args(Partition([1])) @XFAIL def test_sympy__combinatorics__partitions__IntegerPartition(): from sympy.combinatorics.partitions import IntegerPartition assert _test_args(IntegerPartition([1])) def test_sympy__concrete__products__Product(): from sympy.concrete.products import Product assert _test_args(Product(x, (x, 0, 10))) assert _test_args(Product(x, (x, 0, y), (y, 0, 10))) @SKIP("abstract Class") def test_sympy__concrete__expr_with_limits__ExprWithLimits(): from sympy.concrete.expr_with_limits import ExprWithLimits assert _test_args(ExprWithLimits(x, (x, 0, 10))) assert _test_args(ExprWithLimits(x*y, (x, 0, 10.),(y,1.,3))) @SKIP("abstract Class") def test_sympy__concrete__expr_with_limits__AddWithLimits(): from sympy.concrete.expr_with_limits import AddWithLimits assert _test_args(AddWithLimits(x, (x, 0, 10))) assert _test_args(AddWithLimits(x*y, (x, 0, 10),(y,1,3))) @SKIP("abstract Class") def test_sympy__concrete__expr_with_intlimits__ExprWithIntLimits(): from sympy.concrete.expr_with_intlimits import ExprWithIntLimits assert _test_args(ExprWithIntLimits(x, (x, 0, 10))) assert _test_args(ExprWithIntLimits(x*y, (x, 0, 10),(y,1,3))) def test_sympy__concrete__summations__Sum(): from sympy.concrete.summations import Sum assert _test_args(Sum(x, (x, 0, 10))) assert _test_args(Sum(x, (x, 0, y), (y, 0, 10))) def test_sympy__core__add__Add(): from sympy.core.add import Add assert _test_args(Add(x, y, z, 2)) def test_sympy__core__basic__Atom(): from sympy.core.basic import Atom assert _test_args(Atom()) def test_sympy__core__basic__Basic(): from sympy.core.basic import Basic assert _test_args(Basic()) def test_sympy__core__containers__Dict(): from sympy.core.containers import Dict assert _test_args(Dict({x: y, y: z})) def test_sympy__core__containers__Tuple(): from sympy.core.containers import Tuple assert _test_args(Tuple(x, y, z, 2)) def test_sympy__core__expr__AtomicExpr(): from sympy.core.expr import AtomicExpr assert _test_args(AtomicExpr()) def test_sympy__core__expr__Expr(): from sympy.core.expr import Expr assert _test_args(Expr()) def test_sympy__core__expr__UnevaluatedExpr(): from sympy.core.expr import UnevaluatedExpr from sympy.abc import x assert _test_args(UnevaluatedExpr(x)) def test_sympy__core__function__Application(): from sympy.core.function import Application assert _test_args(Application(1, 2, 3)) def test_sympy__core__function__AppliedUndef(): from sympy.core.function import AppliedUndef assert _test_args(AppliedUndef(1, 2, 3)) def test_sympy__core__function__Derivative(): from sympy.core.function import Derivative assert _test_args(Derivative(2, x, y, 3)) @SKIP("abstract class") def test_sympy__core__function__Function(): pass def test_sympy__core__function__Lambda(): assert _test_args(Lambda((x, y), x + y + z)) def test_sympy__core__function__Subs(): from sympy.core.function import Subs assert _test_args(Subs(x + y, x, 2)) def test_sympy__core__function__WildFunction(): from sympy.core.function import WildFunction assert _test_args(WildFunction('f')) def test_sympy__core__mod__Mod(): from sympy.core.mod import Mod assert _test_args(Mod(x, 2)) def test_sympy__core__mul__Mul(): from sympy.core.mul import Mul assert _test_args(Mul(2, x, y, z)) def test_sympy__core__numbers__Catalan(): from sympy.core.numbers import Catalan assert _test_args(Catalan()) def test_sympy__core__numbers__ComplexInfinity(): from sympy.core.numbers import ComplexInfinity assert _test_args(ComplexInfinity()) def test_sympy__core__numbers__EulerGamma(): from sympy.core.numbers import EulerGamma assert _test_args(EulerGamma()) def test_sympy__core__numbers__Exp1(): from sympy.core.numbers import Exp1 assert _test_args(Exp1()) def test_sympy__core__numbers__Float(): from sympy.core.numbers import Float assert _test_args(Float(1.23)) def test_sympy__core__numbers__GoldenRatio(): from sympy.core.numbers import GoldenRatio assert _test_args(GoldenRatio()) def test_sympy__core__numbers__TribonacciConstant(): from sympy.core.numbers import TribonacciConstant assert _test_args(TribonacciConstant()) def test_sympy__core__numbers__Half(): from sympy.core.numbers import Half assert _test_args(Half()) def test_sympy__core__numbers__ImaginaryUnit(): from sympy.core.numbers import ImaginaryUnit assert _test_args(ImaginaryUnit()) def test_sympy__core__numbers__Infinity(): from sympy.core.numbers import Infinity assert _test_args(Infinity()) def test_sympy__core__numbers__Integer(): from sympy.core.numbers import Integer assert _test_args(Integer(7)) @SKIP("abstract class") def test_sympy__core__numbers__IntegerConstant(): pass def test_sympy__core__numbers__NaN(): from sympy.core.numbers import NaN assert _test_args(NaN()) def test_sympy__core__numbers__NegativeInfinity(): from sympy.core.numbers import NegativeInfinity assert _test_args(NegativeInfinity()) def test_sympy__core__numbers__NegativeOne(): from sympy.core.numbers import NegativeOne assert _test_args(NegativeOne()) def test_sympy__core__numbers__Number(): from sympy.core.numbers import Number assert _test_args(Number(1, 7)) def test_sympy__core__numbers__NumberSymbol(): from sympy.core.numbers import NumberSymbol assert _test_args(NumberSymbol()) def test_sympy__core__numbers__One(): from sympy.core.numbers import One assert _test_args(One()) def test_sympy__core__numbers__Pi(): from sympy.core.numbers import Pi assert _test_args(Pi()) def test_sympy__core__numbers__Rational(): from sympy.core.numbers import Rational assert _test_args(Rational(1, 7)) @SKIP("abstract class") def test_sympy__core__numbers__RationalConstant(): pass def test_sympy__core__numbers__Zero(): from sympy.core.numbers import Zero assert _test_args(Zero()) @SKIP("abstract class") def test_sympy__core__operations__AssocOp(): pass @SKIP("abstract class") def test_sympy__core__operations__LatticeOp(): pass def test_sympy__core__power__Pow(): from sympy.core.power import Pow assert _test_args(Pow(x, 2)) def test_sympy__algebras__quaternion__Quaternion(): from sympy.algebras.quaternion import Quaternion assert _test_args(Quaternion(x, 1, 2, 3)) def test_sympy__core__relational__Equality(): from sympy.core.relational import Equality assert _test_args(Equality(x, 2)) def test_sympy__core__relational__GreaterThan(): from sympy.core.relational import GreaterThan assert _test_args(GreaterThan(x, 2)) def test_sympy__core__relational__LessThan(): from sympy.core.relational import LessThan assert _test_args(LessThan(x, 2)) @SKIP("abstract class") def test_sympy__core__relational__Relational(): pass def test_sympy__core__relational__StrictGreaterThan(): from sympy.core.relational import StrictGreaterThan assert _test_args(StrictGreaterThan(x, 2)) def test_sympy__core__relational__StrictLessThan(): from sympy.core.relational import StrictLessThan assert _test_args(StrictLessThan(x, 2)) def test_sympy__core__relational__Unequality(): from sympy.core.relational import Unequality assert _test_args(Unequality(x, 2)) def test_sympy__sandbox__indexed_integrals__IndexedIntegral(): from sympy.tensor import IndexedBase, Idx from sympy.sandbox.indexed_integrals import IndexedIntegral A = IndexedBase('A') i, j = symbols('i j', integer=True) a1, a2 = symbols('a1:3', cls=Idx) assert _test_args(IndexedIntegral(A[a1], A[a2])) assert _test_args(IndexedIntegral(A[i], A[j])) def test_sympy__calculus__util__AccumulationBounds(): from sympy.calculus.util import AccumulationBounds assert _test_args(AccumulationBounds(0, 1)) def test_sympy__sets__ordinals__OmegaPower(): from sympy.sets.ordinals import OmegaPower assert _test_args(OmegaPower(1, 1)) def test_sympy__sets__ordinals__Ordinal(): from sympy.sets.ordinals import Ordinal, OmegaPower assert _test_args(Ordinal(OmegaPower(2, 1))) def test_sympy__sets__ordinals__OrdinalOmega(): from sympy.sets.ordinals import OrdinalOmega assert _test_args(OrdinalOmega()) def test_sympy__sets__ordinals__OrdinalZero(): from sympy.sets.ordinals import OrdinalZero assert _test_args(OrdinalZero()) def test_sympy__sets__powerset__PowerSet(): from sympy.sets.powerset import PowerSet from sympy.core.singleton import S assert _test_args(PowerSet(S.EmptySet)) def test_sympy__sets__sets__EmptySet(): from sympy.sets.sets import EmptySet assert _test_args(EmptySet()) def test_sympy__sets__sets__UniversalSet(): from sympy.sets.sets import UniversalSet assert _test_args(UniversalSet()) def test_sympy__sets__sets__FiniteSet(): from sympy.sets.sets import FiniteSet assert _test_args(FiniteSet(x, y, z)) def test_sympy__sets__sets__Interval(): from sympy.sets.sets import Interval assert _test_args(Interval(0, 1)) def test_sympy__sets__sets__ProductSet(): from sympy.sets.sets import ProductSet, Interval assert _test_args(ProductSet(Interval(0, 1), Interval(0, 1))) @SKIP("does it make sense to test this?") def test_sympy__sets__sets__Set(): from sympy.sets.sets import Set assert _test_args(Set()) def test_sympy__sets__sets__Intersection(): from sympy.sets.sets import Intersection, Interval assert _test_args(Intersection(Interval(0, 3), Interval(2, 4), evaluate=False)) def test_sympy__sets__sets__Union(): from sympy.sets.sets import Union, Interval assert _test_args(Union(Interval(0, 1), Interval(2, 3))) def test_sympy__sets__sets__Complement(): from sympy.sets.sets import Complement assert _test_args(Complement(Interval(0, 2), Interval(0, 1))) def test_sympy__sets__sets__SymmetricDifference(): from sympy.sets.sets import FiniteSet, SymmetricDifference assert _test_args(SymmetricDifference(FiniteSet(1, 2, 3), \ FiniteSet(2, 3, 4))) def test_sympy__core__trace__Tr(): from sympy.core.trace import Tr a, b = symbols('a b') assert _test_args(Tr(a + b)) def test_sympy__sets__setexpr__SetExpr(): from sympy.sets.setexpr import SetExpr assert _test_args(SetExpr(Interval(0, 1))) def test_sympy__sets__fancysets__Rationals(): from sympy.sets.fancysets import Rationals assert _test_args(Rationals()) def test_sympy__sets__fancysets__Naturals(): from sympy.sets.fancysets import Naturals assert _test_args(Naturals()) def test_sympy__sets__fancysets__Naturals0(): from sympy.sets.fancysets import Naturals0 assert _test_args(Naturals0()) def test_sympy__sets__fancysets__Integers(): from sympy.sets.fancysets import Integers assert _test_args(Integers()) def test_sympy__sets__fancysets__Reals(): from sympy.sets.fancysets import Reals assert _test_args(Reals()) def test_sympy__sets__fancysets__Complexes(): from sympy.sets.fancysets import Complexes assert _test_args(Complexes()) def test_sympy__sets__fancysets__ComplexRegion(): from sympy.sets.fancysets import ComplexRegion from sympy import S from sympy.sets import Interval a = Interval(0, 1) b = Interval(2, 3) theta = Interval(0, 2*S.Pi) assert _test_args(ComplexRegion(a*b)) assert _test_args(ComplexRegion(a*theta, polar=True)) def test_sympy__sets__fancysets__CartesianComplexRegion(): from sympy.sets.fancysets import CartesianComplexRegion from sympy.sets import Interval a = Interval(0, 1) b = Interval(2, 3) assert _test_args(CartesianComplexRegion(a*b)) def test_sympy__sets__fancysets__PolarComplexRegion(): from sympy.sets.fancysets import PolarComplexRegion from sympy import S from sympy.sets import Interval a = Interval(0, 1) theta = Interval(0, 2*S.Pi) assert _test_args(PolarComplexRegion(a*theta)) def test_sympy__sets__fancysets__ImageSet(): from sympy.sets.fancysets import ImageSet from sympy import S, Symbol x = Symbol('x') assert _test_args(ImageSet(Lambda(x, x**2), S.Naturals)) def test_sympy__sets__fancysets__Range(): from sympy.sets.fancysets import Range assert _test_args(Range(1, 5, 1)) def test_sympy__sets__conditionset__ConditionSet(): from sympy.sets.conditionset import ConditionSet from sympy import S, Symbol x = Symbol('x') assert _test_args(ConditionSet(x, Eq(x**2, 1), S.Reals)) def test_sympy__sets__contains__Contains(): from sympy.sets.fancysets import Range from sympy.sets.contains import Contains assert _test_args(Contains(x, Range(0, 10, 2))) # STATS from sympy.stats.crv_types import NormalDistribution nd = NormalDistribution(0, 1) from sympy.stats.frv_types import DieDistribution die = DieDistribution(6) def test_sympy__stats__crv__ContinuousDomain(): from sympy.stats.crv import ContinuousDomain assert _test_args(ContinuousDomain({x}, Interval(-oo, oo))) def test_sympy__stats__crv__SingleContinuousDomain(): from sympy.stats.crv import SingleContinuousDomain assert _test_args(SingleContinuousDomain(x, Interval(-oo, oo))) def test_sympy__stats__crv__ProductContinuousDomain(): from sympy.stats.crv import SingleContinuousDomain, ProductContinuousDomain D = SingleContinuousDomain(x, Interval(-oo, oo)) E = SingleContinuousDomain(y, Interval(0, oo)) assert _test_args(ProductContinuousDomain(D, E)) def test_sympy__stats__crv__ConditionalContinuousDomain(): from sympy.stats.crv import (SingleContinuousDomain, ConditionalContinuousDomain) D = SingleContinuousDomain(x, Interval(-oo, oo)) assert _test_args(ConditionalContinuousDomain(D, x > 0)) def test_sympy__stats__crv__ContinuousPSpace(): from sympy.stats.crv import ContinuousPSpace, SingleContinuousDomain D = SingleContinuousDomain(x, Interval(-oo, oo)) assert _test_args(ContinuousPSpace(D, nd)) def test_sympy__stats__crv__SingleContinuousPSpace(): from sympy.stats.crv import SingleContinuousPSpace assert _test_args(SingleContinuousPSpace(x, nd)) @SKIP("abstract class") def test_sympy__stats__crv__SingleContinuousDistribution(): pass def test_sympy__stats__drv__SingleDiscreteDomain(): from sympy.stats.drv import SingleDiscreteDomain assert _test_args(SingleDiscreteDomain(x, S.Naturals)) def test_sympy__stats__drv__ProductDiscreteDomain(): from sympy.stats.drv import SingleDiscreteDomain, ProductDiscreteDomain X = SingleDiscreteDomain(x, S.Naturals) Y = SingleDiscreteDomain(y, S.Integers) assert _test_args(ProductDiscreteDomain(X, Y)) def test_sympy__stats__drv__SingleDiscretePSpace(): from sympy.stats.drv import SingleDiscretePSpace from sympy.stats.drv_types import PoissonDistribution assert _test_args(SingleDiscretePSpace(x, PoissonDistribution(1))) def test_sympy__stats__drv__DiscretePSpace(): from sympy.stats.drv import DiscretePSpace, SingleDiscreteDomain density = Lambda(x, 2**(-x)) domain = SingleDiscreteDomain(x, S.Naturals) assert _test_args(DiscretePSpace(domain, density)) def test_sympy__stats__drv__ConditionalDiscreteDomain(): from sympy.stats.drv import ConditionalDiscreteDomain, SingleDiscreteDomain X = SingleDiscreteDomain(x, S.Naturals0) assert _test_args(ConditionalDiscreteDomain(X, x > 2)) def test_sympy__stats__joint_rv__JointPSpace(): from sympy.stats.joint_rv import JointPSpace, JointDistribution assert _test_args(JointPSpace('X', JointDistribution(1))) def test_sympy__stats__joint_rv__JointRandomSymbol(): from sympy.stats.joint_rv import JointRandomSymbol assert _test_args(JointRandomSymbol(x)) def test_sympy__stats__joint_rv__JointDistributionHandmade(): from sympy import Indexed from sympy.stats.joint_rv import JointDistributionHandmade x1, x2 = (Indexed('x', i) for i in (1, 2)) assert _test_args(JointDistributionHandmade(x1 + x2, S.Reals**2)) def test_sympy__stats__joint_rv__MarginalDistribution(): from sympy.stats.rv import RandomSymbol from sympy.stats.joint_rv import MarginalDistribution r = RandomSymbol(S('r')) assert _test_args(MarginalDistribution(r, (r,))) def test_sympy__stats__joint_rv__CompoundDistribution(): from sympy.stats.joint_rv import CompoundDistribution from sympy.stats.drv_types import PoissonDistribution r = PoissonDistribution(x) assert _test_args(CompoundDistribution(PoissonDistribution(r))) @SKIP("abstract class") def test_sympy__stats__drv__SingleDiscreteDistribution(): pass @SKIP("abstract class") def test_sympy__stats__drv__DiscreteDistribution(): pass @SKIP("abstract class") def test_sympy__stats__drv__DiscreteDomain(): pass def test_sympy__stats__rv__RandomDomain(): from sympy.stats.rv import RandomDomain from sympy.sets.sets import FiniteSet assert _test_args(RandomDomain(FiniteSet(x), FiniteSet(1, 2, 3))) def test_sympy__stats__rv__SingleDomain(): from sympy.stats.rv import SingleDomain from sympy.sets.sets import FiniteSet assert _test_args(SingleDomain(x, FiniteSet(1, 2, 3))) def test_sympy__stats__rv__ConditionalDomain(): from sympy.stats.rv import ConditionalDomain, RandomDomain from sympy.sets.sets import FiniteSet D = RandomDomain(FiniteSet(x), FiniteSet(1, 2)) assert _test_args(ConditionalDomain(D, x > 1)) def test_sympy__stats__rv__PSpace(): from sympy.stats.rv import PSpace, RandomDomain from sympy import FiniteSet D = RandomDomain(FiniteSet(x), FiniteSet(1, 2, 3, 4, 5, 6)) assert _test_args(PSpace(D, die)) @SKIP("abstract Class") def test_sympy__stats__rv__SinglePSpace(): pass def test_sympy__stats__rv__RandomSymbol(): from sympy.stats.rv import RandomSymbol from sympy.stats.crv import SingleContinuousPSpace A = SingleContinuousPSpace(x, nd) assert _test_args(RandomSymbol(x, A)) @SKIP("abstract Class") def test_sympy__stats__rv__ProductPSpace(): pass def test_sympy__stats__rv__IndependentProductPSpace(): from sympy.stats.rv import IndependentProductPSpace from sympy.stats.crv import SingleContinuousPSpace A = SingleContinuousPSpace(x, nd) B = SingleContinuousPSpace(y, nd) assert _test_args(IndependentProductPSpace(A, B)) def test_sympy__stats__rv__ProductDomain(): from sympy.stats.rv import ProductDomain, SingleDomain D = SingleDomain(x, Interval(-oo, oo)) E = SingleDomain(y, Interval(0, oo)) assert _test_args(ProductDomain(D, E)) def test_sympy__stats__symbolic_probability__Probability(): from sympy.stats.symbolic_probability import Probability from sympy.stats import Normal X = Normal('X', 0, 1) assert _test_args(Probability(X > 0)) def test_sympy__stats__symbolic_probability__Expectation(): from sympy.stats.symbolic_probability import Expectation from sympy.stats import Normal X = Normal('X', 0, 1) assert _test_args(Expectation(X > 0)) def test_sympy__stats__symbolic_probability__Covariance(): from sympy.stats.symbolic_probability import Covariance from sympy.stats import Normal X = Normal('X', 0, 1) Y = Normal('Y', 0, 3) assert _test_args(Covariance(X, Y)) def test_sympy__stats__symbolic_probability__Variance(): from sympy.stats.symbolic_probability import Variance from sympy.stats import Normal X = Normal('X', 0, 1) assert _test_args(Variance(X)) def test_sympy__stats__frv_types__DiscreteUniformDistribution(): from sympy.stats.frv_types import DiscreteUniformDistribution from sympy.core.containers import Tuple assert _test_args(DiscreteUniformDistribution(Tuple(*list(range(6))))) def test_sympy__stats__frv_types__DieDistribution(): assert _test_args(die) def test_sympy__stats__frv_types__BernoulliDistribution(): from sympy.stats.frv_types import BernoulliDistribution assert _test_args(BernoulliDistribution(S.Half, 0, 1)) def test_sympy__stats__frv_types__BinomialDistribution(): from sympy.stats.frv_types import BinomialDistribution assert _test_args(BinomialDistribution(5, S.Half, 1, 0)) def test_sympy__stats__frv_types__BetaBinomialDistribution(): from sympy.stats.frv_types import BetaBinomialDistribution assert _test_args(BetaBinomialDistribution(5, 1, 1)) def test_sympy__stats__frv_types__HypergeometricDistribution(): from sympy.stats.frv_types import HypergeometricDistribution assert _test_args(HypergeometricDistribution(10, 5, 3)) def test_sympy__stats__frv_types__RademacherDistribution(): from sympy.stats.frv_types import RademacherDistribution assert _test_args(RademacherDistribution()) def test_sympy__stats__frv__FiniteDomain(): from sympy.stats.frv import FiniteDomain assert _test_args(FiniteDomain({(x, 1), (x, 2)})) # x can be 1 or 2 def test_sympy__stats__frv__SingleFiniteDomain(): from sympy.stats.frv import SingleFiniteDomain assert _test_args(SingleFiniteDomain(x, {1, 2})) # x can be 1 or 2 def test_sympy__stats__frv__ProductFiniteDomain(): from sympy.stats.frv import SingleFiniteDomain, ProductFiniteDomain xd = SingleFiniteDomain(x, {1, 2}) yd = SingleFiniteDomain(y, {1, 2}) assert _test_args(ProductFiniteDomain(xd, yd)) def test_sympy__stats__frv__ConditionalFiniteDomain(): from sympy.stats.frv import SingleFiniteDomain, ConditionalFiniteDomain xd = SingleFiniteDomain(x, {1, 2}) assert _test_args(ConditionalFiniteDomain(xd, x > 1)) def test_sympy__stats__frv__FinitePSpace(): from sympy.stats.frv import FinitePSpace, SingleFiniteDomain xd = SingleFiniteDomain(x, {1, 2, 3, 4, 5, 6}) assert _test_args(FinitePSpace(xd, {(x, 1): S.Half, (x, 2): S.Half})) xd = SingleFiniteDomain(x, {1, 2}) assert _test_args(FinitePSpace(xd, {(x, 1): S.Half, (x, 2): S.Half})) def test_sympy__stats__frv__SingleFinitePSpace(): from sympy.stats.frv import SingleFinitePSpace from sympy import Symbol assert _test_args(SingleFinitePSpace(Symbol('x'), die)) def test_sympy__stats__frv__ProductFinitePSpace(): from sympy.stats.frv import SingleFinitePSpace, ProductFinitePSpace from sympy import Symbol xp = SingleFinitePSpace(Symbol('x'), die) yp = SingleFinitePSpace(Symbol('y'), die) assert _test_args(ProductFinitePSpace(xp, yp)) @SKIP("abstract class") def test_sympy__stats__frv__SingleFiniteDistribution(): pass @SKIP("abstract class") def test_sympy__stats__crv__ContinuousDistribution(): pass def test_sympy__stats__frv_types__FiniteDistributionHandmade(): from sympy.stats.frv_types import FiniteDistributionHandmade from sympy import Dict assert _test_args(FiniteDistributionHandmade(Dict({1: 1}))) def test_sympy__stats__crv__ContinuousDistributionHandmade(): from sympy.stats.crv import ContinuousDistributionHandmade from sympy import Symbol, Interval assert _test_args(ContinuousDistributionHandmade(Symbol('x'), Interval(0, 2))) def test_sympy__stats__drv__DiscreteDistributionHandmade(): from sympy.stats.drv import DiscreteDistributionHandmade assert _test_args(DiscreteDistributionHandmade(x, S.Naturals)) def test_sympy__stats__rv__Density(): from sympy.stats.rv import Density from sympy.stats.crv_types import Normal assert _test_args(Density(Normal('x', 0, 1))) def test_sympy__stats__crv_types__ArcsinDistribution(): from sympy.stats.crv_types import ArcsinDistribution assert _test_args(ArcsinDistribution(0, 1)) def test_sympy__stats__crv_types__BeniniDistribution(): from sympy.stats.crv_types import BeniniDistribution assert _test_args(BeniniDistribution(1, 1, 1)) def test_sympy__stats__crv_types__BetaDistribution(): from sympy.stats.crv_types import BetaDistribution assert _test_args(BetaDistribution(1, 1)) def test_sympy__stats__crv_types__BetaNoncentralDistribution(): from sympy.stats.crv_types import BetaNoncentralDistribution assert _test_args(BetaNoncentralDistribution(1, 1, 1)) def test_sympy__stats__crv_types__BetaPrimeDistribution(): from sympy.stats.crv_types import BetaPrimeDistribution assert _test_args(BetaPrimeDistribution(1, 1)) def test_sympy__stats__crv_types__CauchyDistribution(): from sympy.stats.crv_types import CauchyDistribution assert _test_args(CauchyDistribution(0, 1)) def test_sympy__stats__crv_types__ChiDistribution(): from sympy.stats.crv_types import ChiDistribution assert _test_args(ChiDistribution(1)) def test_sympy__stats__crv_types__ChiNoncentralDistribution(): from sympy.stats.crv_types import ChiNoncentralDistribution assert _test_args(ChiNoncentralDistribution(1,1)) def test_sympy__stats__crv_types__ChiSquaredDistribution(): from sympy.stats.crv_types import ChiSquaredDistribution assert _test_args(ChiSquaredDistribution(1)) def test_sympy__stats__crv_types__DagumDistribution(): from sympy.stats.crv_types import DagumDistribution assert _test_args(DagumDistribution(1, 1, 1)) def test_sympy__stats__crv_types__ExGaussianDistribution(): from sympy.stats.crv_types import ExGaussianDistribution assert _test_args(ExGaussianDistribution(1, 1, 1)) def test_sympy__stats__crv_types__ExponentialDistribution(): from sympy.stats.crv_types import ExponentialDistribution assert _test_args(ExponentialDistribution(1)) def test_sympy__stats__crv_types__ExponentialPowerDistribution(): from sympy.stats.crv_types import ExponentialPowerDistribution assert _test_args(ExponentialPowerDistribution(0, 1, 1)) def test_sympy__stats__crv_types__FDistributionDistribution(): from sympy.stats.crv_types import FDistributionDistribution assert _test_args(FDistributionDistribution(1, 1)) def test_sympy__stats__crv_types__FisherZDistribution(): from sympy.stats.crv_types import FisherZDistribution assert _test_args(FisherZDistribution(1, 1)) def test_sympy__stats__crv_types__FrechetDistribution(): from sympy.stats.crv_types import FrechetDistribution assert _test_args(FrechetDistribution(1, 1, 1)) def test_sympy__stats__crv_types__GammaInverseDistribution(): from sympy.stats.crv_types import GammaInverseDistribution assert _test_args(GammaInverseDistribution(1, 1)) def test_sympy__stats__crv_types__GammaDistribution(): from sympy.stats.crv_types import GammaDistribution assert _test_args(GammaDistribution(1, 1)) def test_sympy__stats__crv_types__GumbelDistribution(): from sympy.stats.crv_types import GumbelDistribution assert _test_args(GumbelDistribution(1, 1, False)) def test_sympy__stats__crv_types__GompertzDistribution(): from sympy.stats.crv_types import GompertzDistribution assert _test_args(GompertzDistribution(1, 1)) def test_sympy__stats__crv_types__KumaraswamyDistribution(): from sympy.stats.crv_types import KumaraswamyDistribution assert _test_args(KumaraswamyDistribution(1, 1)) def test_sympy__stats__crv_types__LaplaceDistribution(): from sympy.stats.crv_types import LaplaceDistribution assert _test_args(LaplaceDistribution(0, 1)) def test_sympy__stats__crv_types__LogisticDistribution(): from sympy.stats.crv_types import LogisticDistribution assert _test_args(LogisticDistribution(0, 1)) def test_sympy__stats__crv_types__LogLogisticDistribution(): from sympy.stats.crv_types import LogLogisticDistribution assert _test_args(LogLogisticDistribution(1, 1)) def test_sympy__stats__crv_types__LogNormalDistribution(): from sympy.stats.crv_types import LogNormalDistribution assert _test_args(LogNormalDistribution(0, 1)) def test_sympy__stats__crv_types__MaxwellDistribution(): from sympy.stats.crv_types import MaxwellDistribution assert _test_args(MaxwellDistribution(1)) def test_sympy__stats__crv_types__NakagamiDistribution(): from sympy.stats.crv_types import NakagamiDistribution assert _test_args(NakagamiDistribution(1, 1)) def test_sympy__stats__crv_types__NormalDistribution(): from sympy.stats.crv_types import NormalDistribution assert _test_args(NormalDistribution(0, 1)) def test_sympy__stats__crv_types__GaussianInverseDistribution(): from sympy.stats.crv_types import GaussianInverseDistribution assert _test_args(GaussianInverseDistribution(1, 1)) def test_sympy__stats__crv_types__ParetoDistribution(): from sympy.stats.crv_types import ParetoDistribution assert _test_args(ParetoDistribution(1, 1)) def test_sympy__stats__crv_types__QuadraticUDistribution(): from sympy.stats.crv_types import QuadraticUDistribution assert _test_args(QuadraticUDistribution(1, 2)) def test_sympy__stats__crv_types__RaisedCosineDistribution(): from sympy.stats.crv_types import RaisedCosineDistribution assert _test_args(RaisedCosineDistribution(1, 1)) def test_sympy__stats__crv_types__RayleighDistribution(): from sympy.stats.crv_types import RayleighDistribution assert _test_args(RayleighDistribution(1)) def test_sympy__stats__crv_types__ShiftedGompertzDistribution(): from sympy.stats.crv_types import ShiftedGompertzDistribution assert _test_args(ShiftedGompertzDistribution(1, 1)) def test_sympy__stats__crv_types__StudentTDistribution(): from sympy.stats.crv_types import StudentTDistribution assert _test_args(StudentTDistribution(1)) def test_sympy__stats__crv_types__TrapezoidalDistribution(): from sympy.stats.crv_types import TrapezoidalDistribution assert _test_args(TrapezoidalDistribution(1, 2, 3, 4)) def test_sympy__stats__crv_types__TriangularDistribution(): from sympy.stats.crv_types import TriangularDistribution assert _test_args(TriangularDistribution(-1, 0, 1)) def test_sympy__stats__crv_types__UniformDistribution(): from sympy.stats.crv_types import UniformDistribution assert _test_args(UniformDistribution(0, 1)) def test_sympy__stats__crv_types__UniformSumDistribution(): from sympy.stats.crv_types import UniformSumDistribution assert _test_args(UniformSumDistribution(1)) def test_sympy__stats__crv_types__VonMisesDistribution(): from sympy.stats.crv_types import VonMisesDistribution assert _test_args(VonMisesDistribution(1, 1)) def test_sympy__stats__crv_types__WeibullDistribution(): from sympy.stats.crv_types import WeibullDistribution assert _test_args(WeibullDistribution(1, 1)) def test_sympy__stats__crv_types__WignerSemicircleDistribution(): from sympy.stats.crv_types import WignerSemicircleDistribution assert _test_args(WignerSemicircleDistribution(1)) def test_sympy__stats__drv_types__GeometricDistribution(): from sympy.stats.drv_types import GeometricDistribution assert _test_args(GeometricDistribution(.5)) def test_sympy__stats__drv_types__LogarithmicDistribution(): from sympy.stats.drv_types import LogarithmicDistribution assert _test_args(LogarithmicDistribution(.5)) def test_sympy__stats__drv_types__NegativeBinomialDistribution(): from sympy.stats.drv_types import NegativeBinomialDistribution assert _test_args(NegativeBinomialDistribution(.5, .5)) def test_sympy__stats__drv_types__PoissonDistribution(): from sympy.stats.drv_types import PoissonDistribution assert _test_args(PoissonDistribution(1)) def test_sympy__stats__drv_types__SkellamDistribution(): from sympy.stats.drv_types import SkellamDistribution assert _test_args(SkellamDistribution(1, 1)) def test_sympy__stats__drv_types__YuleSimonDistribution(): from sympy.stats.drv_types import YuleSimonDistribution assert _test_args(YuleSimonDistribution(.5)) def test_sympy__stats__drv_types__ZetaDistribution(): from sympy.stats.drv_types import ZetaDistribution assert _test_args(ZetaDistribution(1.5)) def test_sympy__stats__joint_rv__JointDistribution(): from sympy.stats.joint_rv import JointDistribution assert _test_args(JointDistribution(1, 2, 3, 4)) def test_sympy__stats__joint_rv_types__MultivariateNormalDistribution(): from sympy.stats.joint_rv_types import MultivariateNormalDistribution assert _test_args( MultivariateNormalDistribution([0, 1], [[1, 0],[0, 1]])) def test_sympy__stats__joint_rv_types__MultivariateLaplaceDistribution(): from sympy.stats.joint_rv_types import MultivariateLaplaceDistribution assert _test_args(MultivariateLaplaceDistribution([0, 1], [[1, 0],[0, 1]])) def test_sympy__stats__joint_rv_types__MultivariateTDistribution(): from sympy.stats.joint_rv_types import MultivariateTDistribution assert _test_args(MultivariateTDistribution([0, 1], [[1, 0],[0, 1]], 1)) def test_sympy__stats__joint_rv_types__NormalGammaDistribution(): from sympy.stats.joint_rv_types import NormalGammaDistribution assert _test_args(NormalGammaDistribution(1, 2, 3, 4)) def test_sympy__stats__joint_rv_types__GeneralizedMultivariateLogGammaDistribution(): from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGammaDistribution v, l, mu = (4, [1, 2, 3, 4], [1, 2, 3, 4]) assert _test_args(GeneralizedMultivariateLogGammaDistribution(S.Half, v, l, mu)) def test_sympy__stats__joint_rv_types__MultivariateBetaDistribution(): from sympy.stats.joint_rv_types import MultivariateBetaDistribution assert _test_args(MultivariateBetaDistribution([1, 2, 3])) def test_sympy__stats__joint_rv_types__MultivariateEwensDistribution(): from sympy.stats.joint_rv_types import MultivariateEwensDistribution assert _test_args(MultivariateEwensDistribution(5, 1)) def test_sympy__stats__joint_rv_types__MultinomialDistribution(): from sympy.stats.joint_rv_types import MultinomialDistribution assert _test_args(MultinomialDistribution(5, [0.5, 0.1, 0.3])) def test_sympy__stats__joint_rv_types__NegativeMultinomialDistribution(): from sympy.stats.joint_rv_types import NegativeMultinomialDistribution assert _test_args(NegativeMultinomialDistribution(5, [0.5, 0.1, 0.3])) def test_sympy__stats__rv__RandomIndexedSymbol(): from sympy.stats.rv import RandomIndexedSymbol, pspace from sympy.stats.stochastic_process_types import DiscreteMarkovChain X = DiscreteMarkovChain("X") assert _test_args(RandomIndexedSymbol(X[0].symbol, pspace(X[0]))) def test_sympy__stats__rv__RandomMatrixSymbol(): from sympy.stats.rv import RandomMatrixSymbol from sympy.stats.random_matrix import RandomMatrixPSpace pspace = RandomMatrixPSpace('P') assert _test_args(RandomMatrixSymbol('M', 3, 3, pspace)) def test_sympy__stats__stochastic_process__StochasticPSpace(): from sympy.stats.stochastic_process import StochasticPSpace from sympy.stats.stochastic_process_types import StochasticProcess from sympy.stats.frv_types import BernoulliDistribution assert _test_args(StochasticPSpace("Y", StochasticProcess("Y", [1, 2, 3]), BernoulliDistribution(S.Half, 1, 0))) def test_sympy__stats__stochastic_process_types__StochasticProcess(): from sympy.stats.stochastic_process_types import StochasticProcess assert _test_args(StochasticProcess("Y", [1, 2, 3])) def test_sympy__stats__stochastic_process_types__MarkovProcess(): from sympy.stats.stochastic_process_types import MarkovProcess assert _test_args(MarkovProcess("Y", [1, 2, 3])) def test_sympy__stats__stochastic_process_types__DiscreteTimeStochasticProcess(): from sympy.stats.stochastic_process_types import DiscreteTimeStochasticProcess assert _test_args(DiscreteTimeStochasticProcess("Y", [1, 2, 3])) def test_sympy__stats__stochastic_process_types__ContinuousTimeStochasticProcess(): from sympy.stats.stochastic_process_types import ContinuousTimeStochasticProcess assert _test_args(ContinuousTimeStochasticProcess("Y", [1, 2, 3])) def test_sympy__stats__stochastic_process_types__TransitionMatrixOf(): from sympy.stats.stochastic_process_types import TransitionMatrixOf, DiscreteMarkovChain from sympy import MatrixSymbol DMC = DiscreteMarkovChain("Y") assert _test_args(TransitionMatrixOf(DMC, MatrixSymbol('T', 3, 3))) def test_sympy__stats__stochastic_process_types__GeneratorMatrixOf(): from sympy.stats.stochastic_process_types import GeneratorMatrixOf, ContinuousMarkovChain from sympy import MatrixSymbol DMC = ContinuousMarkovChain("Y") assert _test_args(GeneratorMatrixOf(DMC, MatrixSymbol('T', 3, 3))) def test_sympy__stats__stochastic_process_types__StochasticStateSpaceOf(): from sympy.stats.stochastic_process_types import StochasticStateSpaceOf, DiscreteMarkovChain DMC = DiscreteMarkovChain("Y") assert _test_args(StochasticStateSpaceOf(DMC, [0, 1, 2])) def test_sympy__stats__stochastic_process_types__DiscreteMarkovChain(): from sympy.stats.stochastic_process_types import DiscreteMarkovChain from sympy import MatrixSymbol assert _test_args(DiscreteMarkovChain("Y", [0, 1, 2], MatrixSymbol('T', 3, 3))) def test_sympy__stats__stochastic_process_types__ContinuousMarkovChain(): from sympy.stats.stochastic_process_types import ContinuousMarkovChain from sympy import MatrixSymbol assert _test_args(ContinuousMarkovChain("Y", [0, 1, 2], MatrixSymbol('T', 3, 3))) def test_sympy__stats__random_matrix__RandomMatrixPSpace(): from sympy.stats.random_matrix import RandomMatrixPSpace from sympy.stats.random_matrix_models import RandomMatrixEnsemble assert _test_args(RandomMatrixPSpace('P', RandomMatrixEnsemble('R', 3))) def test_sympy__stats__random_matrix_models__RandomMatrixEnsemble(): from sympy.stats.random_matrix_models import RandomMatrixEnsemble assert _test_args(RandomMatrixEnsemble('R', 3)) def test_sympy__stats__random_matrix_models__GaussianEnsemble(): from sympy.stats.random_matrix_models import GaussianEnsemble assert _test_args(GaussianEnsemble('G', 3)) def test_sympy__stats__random_matrix_models__GaussianUnitaryEnsemble(): from sympy.stats import GaussianUnitaryEnsemble assert _test_args(GaussianUnitaryEnsemble('U', 3)) def test_sympy__stats__random_matrix_models__GaussianOrthogonalEnsemble(): from sympy.stats import GaussianOrthogonalEnsemble assert _test_args(GaussianOrthogonalEnsemble('U', 3)) def test_sympy__stats__random_matrix_models__GaussianSymplecticEnsemble(): from sympy.stats import GaussianSymplecticEnsemble assert _test_args(GaussianSymplecticEnsemble('U', 3)) def test_sympy__stats__random_matrix_models__CircularEnsemble(): from sympy.stats import CircularEnsemble assert _test_args(CircularEnsemble('C', 3)) def test_sympy__stats__random_matrix_models__CircularUnitaryEnsemble(): from sympy.stats import CircularUnitaryEnsemble assert _test_args(CircularUnitaryEnsemble('U', 3)) def test_sympy__stats__random_matrix_models__CircularOrthogonalEnsemble(): from sympy.stats import CircularOrthogonalEnsemble assert _test_args(CircularOrthogonalEnsemble('O', 3)) def test_sympy__stats__random_matrix_models__CircularSymplecticEnsemble(): from sympy.stats import CircularSymplecticEnsemble assert _test_args(CircularSymplecticEnsemble('S', 3)) def test_sympy__core__symbol__Dummy(): from sympy.core.symbol import Dummy assert _test_args(Dummy('t')) def test_sympy__core__symbol__Symbol(): from sympy.core.symbol import Symbol assert _test_args(Symbol('t')) def test_sympy__core__symbol__Wild(): from sympy.core.symbol import Wild assert _test_args(Wild('x', exclude=[x])) @SKIP("abstract class") def test_sympy__functions__combinatorial__factorials__CombinatorialFunction(): pass def test_sympy__functions__combinatorial__factorials__FallingFactorial(): from sympy.functions.combinatorial.factorials import FallingFactorial assert _test_args(FallingFactorial(2, x)) def test_sympy__functions__combinatorial__factorials__MultiFactorial(): from sympy.functions.combinatorial.factorials import MultiFactorial assert _test_args(MultiFactorial(x)) def test_sympy__functions__combinatorial__factorials__RisingFactorial(): from sympy.functions.combinatorial.factorials import RisingFactorial assert _test_args(RisingFactorial(2, x)) def test_sympy__functions__combinatorial__factorials__binomial(): from sympy.functions.combinatorial.factorials import binomial assert _test_args(binomial(2, x)) def test_sympy__functions__combinatorial__factorials__subfactorial(): from sympy.functions.combinatorial.factorials import subfactorial assert _test_args(subfactorial(1)) def test_sympy__functions__combinatorial__factorials__factorial(): from sympy.functions.combinatorial.factorials import factorial assert _test_args(factorial(x)) def test_sympy__functions__combinatorial__factorials__factorial2(): from sympy.functions.combinatorial.factorials import factorial2 assert _test_args(factorial2(x)) def test_sympy__functions__combinatorial__numbers__bell(): from sympy.functions.combinatorial.numbers import bell assert _test_args(bell(x, y)) def test_sympy__functions__combinatorial__numbers__bernoulli(): from sympy.functions.combinatorial.numbers import bernoulli assert _test_args(bernoulli(x)) def test_sympy__functions__combinatorial__numbers__catalan(): from sympy.functions.combinatorial.numbers import catalan assert _test_args(catalan(x)) def test_sympy__functions__combinatorial__numbers__genocchi(): from sympy.functions.combinatorial.numbers import genocchi assert _test_args(genocchi(x)) def test_sympy__functions__combinatorial__numbers__euler(): from sympy.functions.combinatorial.numbers import euler assert _test_args(euler(x)) def test_sympy__functions__combinatorial__numbers__carmichael(): from sympy.functions.combinatorial.numbers import carmichael assert _test_args(carmichael(x)) def test_sympy__functions__combinatorial__numbers__fibonacci(): from sympy.functions.combinatorial.numbers import fibonacci assert _test_args(fibonacci(x)) def test_sympy__functions__combinatorial__numbers__tribonacci(): from sympy.functions.combinatorial.numbers import tribonacci assert _test_args(tribonacci(x)) def test_sympy__functions__combinatorial__numbers__harmonic(): from sympy.functions.combinatorial.numbers import harmonic assert _test_args(harmonic(x, 2)) def test_sympy__functions__combinatorial__numbers__lucas(): from sympy.functions.combinatorial.numbers import lucas assert _test_args(lucas(x)) def test_sympy__functions__combinatorial__numbers__partition(): from sympy.core.symbol import Symbol from sympy.functions.combinatorial.numbers import partition assert _test_args(partition(Symbol('a', integer=True))) def test_sympy__functions__elementary__complexes__Abs(): from sympy.functions.elementary.complexes import Abs assert _test_args(Abs(x)) def test_sympy__functions__elementary__complexes__adjoint(): from sympy.functions.elementary.complexes import adjoint assert _test_args(adjoint(x)) def test_sympy__functions__elementary__complexes__arg(): from sympy.functions.elementary.complexes import arg assert _test_args(arg(x)) def test_sympy__functions__elementary__complexes__conjugate(): from sympy.functions.elementary.complexes import conjugate assert _test_args(conjugate(x)) def test_sympy__functions__elementary__complexes__im(): from sympy.functions.elementary.complexes import im assert _test_args(im(x)) def test_sympy__functions__elementary__complexes__re(): from sympy.functions.elementary.complexes import re assert _test_args(re(x)) def test_sympy__functions__elementary__complexes__sign(): from sympy.functions.elementary.complexes import sign assert _test_args(sign(x)) def test_sympy__functions__elementary__complexes__polar_lift(): from sympy.functions.elementary.complexes import polar_lift assert _test_args(polar_lift(x)) def test_sympy__functions__elementary__complexes__periodic_argument(): from sympy.functions.elementary.complexes import periodic_argument assert _test_args(periodic_argument(x, y)) def test_sympy__functions__elementary__complexes__principal_branch(): from sympy.functions.elementary.complexes import principal_branch assert _test_args(principal_branch(x, y)) def test_sympy__functions__elementary__complexes__transpose(): from sympy.functions.elementary.complexes import transpose assert _test_args(transpose(x)) def test_sympy__functions__elementary__exponential__LambertW(): from sympy.functions.elementary.exponential import LambertW assert _test_args(LambertW(2)) @SKIP("abstract class") def test_sympy__functions__elementary__exponential__ExpBase(): pass def test_sympy__functions__elementary__exponential__exp(): from sympy.functions.elementary.exponential import exp assert _test_args(exp(2)) def test_sympy__functions__elementary__exponential__exp_polar(): from sympy.functions.elementary.exponential import exp_polar assert _test_args(exp_polar(2)) def test_sympy__functions__elementary__exponential__log(): from sympy.functions.elementary.exponential import log assert _test_args(log(2)) @SKIP("abstract class") def test_sympy__functions__elementary__hyperbolic__HyperbolicFunction(): pass @SKIP("abstract class") def test_sympy__functions__elementary__hyperbolic__ReciprocalHyperbolicFunction(): pass @SKIP("abstract class") def test_sympy__functions__elementary__hyperbolic__InverseHyperbolicFunction(): pass def test_sympy__functions__elementary__hyperbolic__acosh(): from sympy.functions.elementary.hyperbolic import acosh assert _test_args(acosh(2)) def test_sympy__functions__elementary__hyperbolic__acoth(): from sympy.functions.elementary.hyperbolic import acoth assert _test_args(acoth(2)) def test_sympy__functions__elementary__hyperbolic__asinh(): from sympy.functions.elementary.hyperbolic import asinh assert _test_args(asinh(2)) def test_sympy__functions__elementary__hyperbolic__atanh(): from sympy.functions.elementary.hyperbolic import atanh assert _test_args(atanh(2)) def test_sympy__functions__elementary__hyperbolic__asech(): from sympy.functions.elementary.hyperbolic import asech assert _test_args(asech(2)) def test_sympy__functions__elementary__hyperbolic__acsch(): from sympy.functions.elementary.hyperbolic import acsch assert _test_args(acsch(2)) def test_sympy__functions__elementary__hyperbolic__cosh(): from sympy.functions.elementary.hyperbolic import cosh assert _test_args(cosh(2)) def test_sympy__functions__elementary__hyperbolic__coth(): from sympy.functions.elementary.hyperbolic import coth assert _test_args(coth(2)) def test_sympy__functions__elementary__hyperbolic__csch(): from sympy.functions.elementary.hyperbolic import csch assert _test_args(csch(2)) def test_sympy__functions__elementary__hyperbolic__sech(): from sympy.functions.elementary.hyperbolic import sech assert _test_args(sech(2)) def test_sympy__functions__elementary__hyperbolic__sinh(): from sympy.functions.elementary.hyperbolic import sinh assert _test_args(sinh(2)) def test_sympy__functions__elementary__hyperbolic__tanh(): from sympy.functions.elementary.hyperbolic import tanh assert _test_args(tanh(2)) @SKIP("does this work at all?") def test_sympy__functions__elementary__integers__RoundFunction(): from sympy.functions.elementary.integers import RoundFunction assert _test_args(RoundFunction()) def test_sympy__functions__elementary__integers__ceiling(): from sympy.functions.elementary.integers import ceiling assert _test_args(ceiling(x)) def test_sympy__functions__elementary__integers__floor(): from sympy.functions.elementary.integers import floor assert _test_args(floor(x)) def test_sympy__functions__elementary__integers__frac(): from sympy.functions.elementary.integers import frac assert _test_args(frac(x)) def test_sympy__functions__elementary__miscellaneous__IdentityFunction(): from sympy.functions.elementary.miscellaneous import IdentityFunction assert _test_args(IdentityFunction()) def test_sympy__functions__elementary__miscellaneous__Max(): from sympy.functions.elementary.miscellaneous import Max assert _test_args(Max(x, 2)) def test_sympy__functions__elementary__miscellaneous__Min(): from sympy.functions.elementary.miscellaneous import Min assert _test_args(Min(x, 2)) @SKIP("abstract class") def test_sympy__functions__elementary__miscellaneous__MinMaxBase(): pass def test_sympy__functions__elementary__piecewise__ExprCondPair(): from sympy.functions.elementary.piecewise import ExprCondPair assert _test_args(ExprCondPair(1, True)) def test_sympy__functions__elementary__piecewise__Piecewise(): from sympy.functions.elementary.piecewise import Piecewise assert _test_args(Piecewise((1, x >= 0), (0, True))) @SKIP("abstract class") def test_sympy__functions__elementary__trigonometric__TrigonometricFunction(): pass @SKIP("abstract class") def test_sympy__functions__elementary__trigonometric__ReciprocalTrigonometricFunction(): pass @SKIP("abstract class") def test_sympy__functions__elementary__trigonometric__InverseTrigonometricFunction(): pass def test_sympy__functions__elementary__trigonometric__acos(): from sympy.functions.elementary.trigonometric import acos assert _test_args(acos(2)) def test_sympy__functions__elementary__trigonometric__acot(): from sympy.functions.elementary.trigonometric import acot assert _test_args(acot(2)) def test_sympy__functions__elementary__trigonometric__asin(): from sympy.functions.elementary.trigonometric import asin assert _test_args(asin(2)) def test_sympy__functions__elementary__trigonometric__asec(): from sympy.functions.elementary.trigonometric import asec assert _test_args(asec(2)) def test_sympy__functions__elementary__trigonometric__acsc(): from sympy.functions.elementary.trigonometric import acsc assert _test_args(acsc(2)) def test_sympy__functions__elementary__trigonometric__atan(): from sympy.functions.elementary.trigonometric import atan assert _test_args(atan(2)) def test_sympy__functions__elementary__trigonometric__atan2(): from sympy.functions.elementary.trigonometric import atan2 assert _test_args(atan2(2, 3)) def test_sympy__functions__elementary__trigonometric__cos(): from sympy.functions.elementary.trigonometric import cos assert _test_args(cos(2)) def test_sympy__functions__elementary__trigonometric__csc(): from sympy.functions.elementary.trigonometric import csc assert _test_args(csc(2)) def test_sympy__functions__elementary__trigonometric__cot(): from sympy.functions.elementary.trigonometric import cot assert _test_args(cot(2)) def test_sympy__functions__elementary__trigonometric__sin(): assert _test_args(sin(2)) def test_sympy__functions__elementary__trigonometric__sinc(): from sympy.functions.elementary.trigonometric import sinc assert _test_args(sinc(2)) def test_sympy__functions__elementary__trigonometric__sec(): from sympy.functions.elementary.trigonometric import sec assert _test_args(sec(2)) def test_sympy__functions__elementary__trigonometric__tan(): from sympy.functions.elementary.trigonometric import tan assert _test_args(tan(2)) @SKIP("abstract class") def test_sympy__functions__special__bessel__BesselBase(): pass @SKIP("abstract class") def test_sympy__functions__special__bessel__SphericalBesselBase(): pass @SKIP("abstract class") def test_sympy__functions__special__bessel__SphericalHankelBase(): pass def test_sympy__functions__special__bessel__besseli(): from sympy.functions.special.bessel import besseli assert _test_args(besseli(x, 1)) def test_sympy__functions__special__bessel__besselj(): from sympy.functions.special.bessel import besselj assert _test_args(besselj(x, 1)) def test_sympy__functions__special__bessel__besselk(): from sympy.functions.special.bessel import besselk assert _test_args(besselk(x, 1)) def test_sympy__functions__special__bessel__bessely(): from sympy.functions.special.bessel import bessely assert _test_args(bessely(x, 1)) def test_sympy__functions__special__bessel__hankel1(): from sympy.functions.special.bessel import hankel1 assert _test_args(hankel1(x, 1)) def test_sympy__functions__special__bessel__hankel2(): from sympy.functions.special.bessel import hankel2 assert _test_args(hankel2(x, 1)) def test_sympy__functions__special__bessel__jn(): from sympy.functions.special.bessel import jn assert _test_args(jn(0, x)) def test_sympy__functions__special__bessel__yn(): from sympy.functions.special.bessel import yn assert _test_args(yn(0, x)) def test_sympy__functions__special__bessel__hn1(): from sympy.functions.special.bessel import hn1 assert _test_args(hn1(0, x)) def test_sympy__functions__special__bessel__hn2(): from sympy.functions.special.bessel import hn2 assert _test_args(hn2(0, x)) def test_sympy__functions__special__bessel__AiryBase(): pass def test_sympy__functions__special__bessel__airyai(): from sympy.functions.special.bessel import airyai assert _test_args(airyai(2)) def test_sympy__functions__special__bessel__airybi(): from sympy.functions.special.bessel import airybi assert _test_args(airybi(2)) def test_sympy__functions__special__bessel__airyaiprime(): from sympy.functions.special.bessel import airyaiprime assert _test_args(airyaiprime(2)) def test_sympy__functions__special__bessel__airybiprime(): from sympy.functions.special.bessel import airybiprime assert _test_args(airybiprime(2)) def test_sympy__functions__special__bessel__marcumq(): from sympy.functions.special.bessel import marcumq assert _test_args(marcumq(x, y, z)) def test_sympy__functions__special__elliptic_integrals__elliptic_k(): from sympy.functions.special.elliptic_integrals import elliptic_k as K assert _test_args(K(x)) def test_sympy__functions__special__elliptic_integrals__elliptic_f(): from sympy.functions.special.elliptic_integrals import elliptic_f as F assert _test_args(F(x, y)) def test_sympy__functions__special__elliptic_integrals__elliptic_e(): from sympy.functions.special.elliptic_integrals import elliptic_e as E assert _test_args(E(x)) assert _test_args(E(x, y)) def test_sympy__functions__special__elliptic_integrals__elliptic_pi(): from sympy.functions.special.elliptic_integrals import elliptic_pi as P assert _test_args(P(x, y)) assert _test_args(P(x, y, z)) def test_sympy__functions__special__delta_functions__DiracDelta(): from sympy.functions.special.delta_functions import DiracDelta assert _test_args(DiracDelta(x, 1)) def test_sympy__functions__special__singularity_functions__SingularityFunction(): from sympy.functions.special.singularity_functions import SingularityFunction assert _test_args(SingularityFunction(x, y, z)) def test_sympy__functions__special__delta_functions__Heaviside(): from sympy.functions.special.delta_functions import Heaviside assert _test_args(Heaviside(x)) def test_sympy__functions__special__error_functions__erf(): from sympy.functions.special.error_functions import erf assert _test_args(erf(2)) def test_sympy__functions__special__error_functions__erfc(): from sympy.functions.special.error_functions import erfc assert _test_args(erfc(2)) def test_sympy__functions__special__error_functions__erfi(): from sympy.functions.special.error_functions import erfi assert _test_args(erfi(2)) def test_sympy__functions__special__error_functions__erf2(): from sympy.functions.special.error_functions import erf2 assert _test_args(erf2(2, 3)) def test_sympy__functions__special__error_functions__erfinv(): from sympy.functions.special.error_functions import erfinv assert _test_args(erfinv(2)) def test_sympy__functions__special__error_functions__erfcinv(): from sympy.functions.special.error_functions import erfcinv assert _test_args(erfcinv(2)) def test_sympy__functions__special__error_functions__erf2inv(): from sympy.functions.special.error_functions import erf2inv assert _test_args(erf2inv(2, 3)) @SKIP("abstract class") def test_sympy__functions__special__error_functions__FresnelIntegral(): pass def test_sympy__functions__special__error_functions__fresnels(): from sympy.functions.special.error_functions import fresnels assert _test_args(fresnels(2)) def test_sympy__functions__special__error_functions__fresnelc(): from sympy.functions.special.error_functions import fresnelc assert _test_args(fresnelc(2)) def test_sympy__functions__special__error_functions__erfs(): from sympy.functions.special.error_functions import _erfs assert _test_args(_erfs(2)) def test_sympy__functions__special__error_functions__Ei(): from sympy.functions.special.error_functions import Ei assert _test_args(Ei(2)) def test_sympy__functions__special__error_functions__li(): from sympy.functions.special.error_functions import li assert _test_args(li(2)) def test_sympy__functions__special__error_functions__Li(): from sympy.functions.special.error_functions import Li assert _test_args(Li(2)) @SKIP("abstract class") def test_sympy__functions__special__error_functions__TrigonometricIntegral(): pass def test_sympy__functions__special__error_functions__Si(): from sympy.functions.special.error_functions import Si assert _test_args(Si(2)) def test_sympy__functions__special__error_functions__Ci(): from sympy.functions.special.error_functions import Ci assert _test_args(Ci(2)) def test_sympy__functions__special__error_functions__Shi(): from sympy.functions.special.error_functions import Shi assert _test_args(Shi(2)) def test_sympy__functions__special__error_functions__Chi(): from sympy.functions.special.error_functions import Chi assert _test_args(Chi(2)) def test_sympy__functions__special__error_functions__expint(): from sympy.functions.special.error_functions import expint assert _test_args(expint(y, x)) def test_sympy__functions__special__gamma_functions__gamma(): from sympy.functions.special.gamma_functions import gamma assert _test_args(gamma(x)) def test_sympy__functions__special__gamma_functions__loggamma(): from sympy.functions.special.gamma_functions import loggamma assert _test_args(loggamma(2)) def test_sympy__functions__special__gamma_functions__lowergamma(): from sympy.functions.special.gamma_functions import lowergamma assert _test_args(lowergamma(x, 2)) def test_sympy__functions__special__gamma_functions__polygamma(): from sympy.functions.special.gamma_functions import polygamma assert _test_args(polygamma(x, 2)) def test_sympy__functions__special__gamma_functions__digamma(): from sympy.functions.special.gamma_functions import digamma assert _test_args(digamma(x)) def test_sympy__functions__special__gamma_functions__trigamma(): from sympy.functions.special.gamma_functions import trigamma assert _test_args(trigamma(x)) def test_sympy__functions__special__gamma_functions__uppergamma(): from sympy.functions.special.gamma_functions import uppergamma assert _test_args(uppergamma(x, 2)) def test_sympy__functions__special__gamma_functions__multigamma(): from sympy.functions.special.gamma_functions import multigamma assert _test_args(multigamma(x, 1)) def test_sympy__functions__special__beta_functions__beta(): from sympy.functions.special.beta_functions import beta assert _test_args(beta(x, x)) def test_sympy__functions__special__mathieu_functions__MathieuBase(): pass def test_sympy__functions__special__mathieu_functions__mathieus(): from sympy.functions.special.mathieu_functions import mathieus assert _test_args(mathieus(1, 1, 1)) def test_sympy__functions__special__mathieu_functions__mathieuc(): from sympy.functions.special.mathieu_functions import mathieuc assert _test_args(mathieuc(1, 1, 1)) def test_sympy__functions__special__mathieu_functions__mathieusprime(): from sympy.functions.special.mathieu_functions import mathieusprime assert _test_args(mathieusprime(1, 1, 1)) def test_sympy__functions__special__mathieu_functions__mathieucprime(): from sympy.functions.special.mathieu_functions import mathieucprime assert _test_args(mathieucprime(1, 1, 1)) @SKIP("abstract class") def test_sympy__functions__special__hyper__TupleParametersBase(): pass @SKIP("abstract class") def test_sympy__functions__special__hyper__TupleArg(): pass def test_sympy__functions__special__hyper__hyper(): from sympy.functions.special.hyper import hyper assert _test_args(hyper([1, 2, 3], [4, 5], x)) def test_sympy__functions__special__hyper__meijerg(): from sympy.functions.special.hyper import meijerg assert _test_args(meijerg([1, 2, 3], [4, 5], [6], [], x)) @SKIP("abstract class") def test_sympy__functions__special__hyper__HyperRep(): pass def test_sympy__functions__special__hyper__HyperRep_power1(): from sympy.functions.special.hyper import HyperRep_power1 assert _test_args(HyperRep_power1(x, y)) def test_sympy__functions__special__hyper__HyperRep_power2(): from sympy.functions.special.hyper import HyperRep_power2 assert _test_args(HyperRep_power2(x, y)) def test_sympy__functions__special__hyper__HyperRep_log1(): from sympy.functions.special.hyper import HyperRep_log1 assert _test_args(HyperRep_log1(x)) def test_sympy__functions__special__hyper__HyperRep_atanh(): from sympy.functions.special.hyper import HyperRep_atanh assert _test_args(HyperRep_atanh(x)) def test_sympy__functions__special__hyper__HyperRep_asin1(): from sympy.functions.special.hyper import HyperRep_asin1 assert _test_args(HyperRep_asin1(x)) def test_sympy__functions__special__hyper__HyperRep_asin2(): from sympy.functions.special.hyper import HyperRep_asin2 assert _test_args(HyperRep_asin2(x)) def test_sympy__functions__special__hyper__HyperRep_sqrts1(): from sympy.functions.special.hyper import HyperRep_sqrts1 assert _test_args(HyperRep_sqrts1(x, y)) def test_sympy__functions__special__hyper__HyperRep_sqrts2(): from sympy.functions.special.hyper import HyperRep_sqrts2 assert _test_args(HyperRep_sqrts2(x, y)) def test_sympy__functions__special__hyper__HyperRep_log2(): from sympy.functions.special.hyper import HyperRep_log2 assert _test_args(HyperRep_log2(x)) def test_sympy__functions__special__hyper__HyperRep_cosasin(): from sympy.functions.special.hyper import HyperRep_cosasin assert _test_args(HyperRep_cosasin(x, y)) def test_sympy__functions__special__hyper__HyperRep_sinasin(): from sympy.functions.special.hyper import HyperRep_sinasin assert _test_args(HyperRep_sinasin(x, y)) def test_sympy__functions__special__hyper__appellf1(): from sympy.functions.special.hyper import appellf1 a, b1, b2, c, x, y = symbols('a b1 b2 c x y') assert _test_args(appellf1(a, b1, b2, c, x, y)) @SKIP("abstract class") def test_sympy__functions__special__polynomials__OrthogonalPolynomial(): pass def test_sympy__functions__special__polynomials__jacobi(): from sympy.functions.special.polynomials import jacobi assert _test_args(jacobi(x, 2, 2, 2)) def test_sympy__functions__special__polynomials__gegenbauer(): from sympy.functions.special.polynomials import gegenbauer assert _test_args(gegenbauer(x, 2, 2)) def test_sympy__functions__special__polynomials__chebyshevt(): from sympy.functions.special.polynomials import chebyshevt assert _test_args(chebyshevt(x, 2)) def test_sympy__functions__special__polynomials__chebyshevt_root(): from sympy.functions.special.polynomials import chebyshevt_root assert _test_args(chebyshevt_root(3, 2)) def test_sympy__functions__special__polynomials__chebyshevu(): from sympy.functions.special.polynomials import chebyshevu assert _test_args(chebyshevu(x, 2)) def test_sympy__functions__special__polynomials__chebyshevu_root(): from sympy.functions.special.polynomials import chebyshevu_root assert _test_args(chebyshevu_root(3, 2)) def test_sympy__functions__special__polynomials__hermite(): from sympy.functions.special.polynomials import hermite assert _test_args(hermite(x, 2)) def test_sympy__functions__special__polynomials__legendre(): from sympy.functions.special.polynomials import legendre assert _test_args(legendre(x, 2)) def test_sympy__functions__special__polynomials__assoc_legendre(): from sympy.functions.special.polynomials import assoc_legendre assert _test_args(assoc_legendre(x, 0, y)) def test_sympy__functions__special__polynomials__laguerre(): from sympy.functions.special.polynomials import laguerre assert _test_args(laguerre(x, 2)) def test_sympy__functions__special__polynomials__assoc_laguerre(): from sympy.functions.special.polynomials import assoc_laguerre assert _test_args(assoc_laguerre(x, 0, y)) def test_sympy__functions__special__spherical_harmonics__Ynm(): from sympy.functions.special.spherical_harmonics import Ynm assert _test_args(Ynm(1, 1, x, y)) def test_sympy__functions__special__spherical_harmonics__Znm(): from sympy.functions.special.spherical_harmonics import Znm assert _test_args(Znm(1, 1, x, y)) def test_sympy__functions__special__tensor_functions__LeviCivita(): from sympy.functions.special.tensor_functions import LeviCivita assert _test_args(LeviCivita(x, y, 2)) def test_sympy__functions__special__tensor_functions__KroneckerDelta(): from sympy.functions.special.tensor_functions import KroneckerDelta assert _test_args(KroneckerDelta(x, y)) def test_sympy__functions__special__zeta_functions__dirichlet_eta(): from sympy.functions.special.zeta_functions import dirichlet_eta assert _test_args(dirichlet_eta(x)) def test_sympy__functions__special__zeta_functions__zeta(): from sympy.functions.special.zeta_functions import zeta assert _test_args(zeta(101)) def test_sympy__functions__special__zeta_functions__lerchphi(): from sympy.functions.special.zeta_functions import lerchphi assert _test_args(lerchphi(x, y, z)) def test_sympy__functions__special__zeta_functions__polylog(): from sympy.functions.special.zeta_functions import polylog assert _test_args(polylog(x, y)) def test_sympy__functions__special__zeta_functions__stieltjes(): from sympy.functions.special.zeta_functions import stieltjes assert _test_args(stieltjes(x, y)) def test_sympy__integrals__integrals__Integral(): from sympy.integrals.integrals import Integral assert _test_args(Integral(2, (x, 0, 1))) def test_sympy__integrals__risch__NonElementaryIntegral(): from sympy.integrals.risch import NonElementaryIntegral assert _test_args(NonElementaryIntegral(exp(-x**2), x)) @SKIP("abstract class") def test_sympy__integrals__transforms__IntegralTransform(): pass def test_sympy__integrals__transforms__MellinTransform(): from sympy.integrals.transforms import MellinTransform assert _test_args(MellinTransform(2, x, y)) def test_sympy__integrals__transforms__InverseMellinTransform(): from sympy.integrals.transforms import InverseMellinTransform assert _test_args(InverseMellinTransform(2, x, y, 0, 1)) def test_sympy__integrals__transforms__LaplaceTransform(): from sympy.integrals.transforms import LaplaceTransform assert _test_args(LaplaceTransform(2, x, y)) def test_sympy__integrals__transforms__InverseLaplaceTransform(): from sympy.integrals.transforms import InverseLaplaceTransform assert _test_args(InverseLaplaceTransform(2, x, y, 0)) @SKIP("abstract class") def test_sympy__integrals__transforms__FourierTypeTransform(): pass def test_sympy__integrals__transforms__InverseFourierTransform(): from sympy.integrals.transforms import InverseFourierTransform assert _test_args(InverseFourierTransform(2, x, y)) def test_sympy__integrals__transforms__FourierTransform(): from sympy.integrals.transforms import FourierTransform assert _test_args(FourierTransform(2, x, y)) @SKIP("abstract class") def test_sympy__integrals__transforms__SineCosineTypeTransform(): pass def test_sympy__integrals__transforms__InverseSineTransform(): from sympy.integrals.transforms import InverseSineTransform assert _test_args(InverseSineTransform(2, x, y)) def test_sympy__integrals__transforms__SineTransform(): from sympy.integrals.transforms import SineTransform assert _test_args(SineTransform(2, x, y)) def test_sympy__integrals__transforms__InverseCosineTransform(): from sympy.integrals.transforms import InverseCosineTransform assert _test_args(InverseCosineTransform(2, x, y)) def test_sympy__integrals__transforms__CosineTransform(): from sympy.integrals.transforms import CosineTransform assert _test_args(CosineTransform(2, x, y)) @SKIP("abstract class") def test_sympy__integrals__transforms__HankelTypeTransform(): pass def test_sympy__integrals__transforms__InverseHankelTransform(): from sympy.integrals.transforms import InverseHankelTransform assert _test_args(InverseHankelTransform(2, x, y, 0)) def test_sympy__integrals__transforms__HankelTransform(): from sympy.integrals.transforms import HankelTransform assert _test_args(HankelTransform(2, x, y, 0)) @XFAIL def test_sympy__liealgebras__cartan_type__CartanType_generator(): from sympy.liealgebras.cartan_type import CartanType_generator assert _test_args(CartanType_generator("A2")) @XFAIL def test_sympy__liealgebras__cartan_type__Standard_Cartan(): from sympy.liealgebras.cartan_type import Standard_Cartan assert _test_args(Standard_Cartan("A", 2)) @XFAIL def test_sympy__liealgebras__weyl_group__WeylGroup(): from sympy.liealgebras.weyl_group import WeylGroup assert _test_args(WeylGroup("B4")) @XFAIL def test_sympy__liealgebras__root_system__RootSystem(): from sympy.liealgebras.root_system import RootSystem assert _test_args(RootSystem("A2")) @XFAIL def test_sympy__liealgebras__type_a__TypeA(): from sympy.liealgebras.type_a import TypeA assert _test_args(TypeA(2)) @XFAIL def test_sympy__liealgebras__type_b__TypeB(): from sympy.liealgebras.type_b import TypeB assert _test_args(TypeB(4)) @XFAIL def test_sympy__liealgebras__type_c__TypeC(): from sympy.liealgebras.type_c import TypeC assert _test_args(TypeC(4)) @XFAIL def test_sympy__liealgebras__type_d__TypeD(): from sympy.liealgebras.type_d import TypeD assert _test_args(TypeD(4)) @XFAIL def test_sympy__liealgebras__type_e__TypeE(): from sympy.liealgebras.type_e import TypeE assert _test_args(TypeE(6)) @XFAIL def test_sympy__liealgebras__type_f__TypeF(): from sympy.liealgebras.type_f import TypeF assert _test_args(TypeF(4)) @XFAIL def test_sympy__liealgebras__type_g__TypeG(): from sympy.liealgebras.type_g import TypeG assert _test_args(TypeG(2)) def test_sympy__logic__boolalg__And(): from sympy.logic.boolalg import And assert _test_args(And(x, y, 1)) @SKIP("abstract class") def test_sympy__logic__boolalg__Boolean(): pass def test_sympy__logic__boolalg__BooleanFunction(): from sympy.logic.boolalg import BooleanFunction assert _test_args(BooleanFunction(1, 2, 3)) @SKIP("abstract class") def test_sympy__logic__boolalg__BooleanAtom(): pass def test_sympy__logic__boolalg__BooleanTrue(): from sympy.logic.boolalg import true assert _test_args(true) def test_sympy__logic__boolalg__BooleanFalse(): from sympy.logic.boolalg import false assert _test_args(false) def test_sympy__logic__boolalg__Equivalent(): from sympy.logic.boolalg import Equivalent assert _test_args(Equivalent(x, 2)) def test_sympy__logic__boolalg__ITE(): from sympy.logic.boolalg import ITE assert _test_args(ITE(x, y, 1)) def test_sympy__logic__boolalg__Implies(): from sympy.logic.boolalg import Implies assert _test_args(Implies(x, y)) def test_sympy__logic__boolalg__Nand(): from sympy.logic.boolalg import Nand assert _test_args(Nand(x, y, 1)) def test_sympy__logic__boolalg__Nor(): from sympy.logic.boolalg import Nor assert _test_args(Nor(x, y)) def test_sympy__logic__boolalg__Not(): from sympy.logic.boolalg import Not assert _test_args(Not(x)) def test_sympy__logic__boolalg__Or(): from sympy.logic.boolalg import Or assert _test_args(Or(x, y)) def test_sympy__logic__boolalg__Xor(): from sympy.logic.boolalg import Xor assert _test_args(Xor(x, y, 2)) def test_sympy__logic__boolalg__Xnor(): from sympy.logic.boolalg import Xnor assert _test_args(Xnor(x, y, 2)) def test_sympy__matrices__matrices__DeferredVector(): from sympy.matrices.matrices import DeferredVector assert _test_args(DeferredVector("X")) @SKIP("abstract class") def test_sympy__matrices__expressions__matexpr__MatrixBase(): pass def test_sympy__matrices__immutable__ImmutableDenseMatrix(): from sympy.matrices.immutable import ImmutableDenseMatrix m = ImmutableDenseMatrix([[1, 2], [3, 4]]) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableDenseMatrix(1, 1, [1]) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableDenseMatrix(2, 2, lambda i, j: 1) assert m[0, 0] is S.One m = ImmutableDenseMatrix(2, 2, lambda i, j: 1/(1 + i) + 1/(1 + j)) assert m[1, 1] is S.One # true div. will give 1.0 if i,j not sympified assert _test_args(m) assert _test_args(Basic(*list(m))) def test_sympy__matrices__immutable__ImmutableSparseMatrix(): from sympy.matrices.immutable import ImmutableSparseMatrix m = ImmutableSparseMatrix([[1, 2], [3, 4]]) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableSparseMatrix(1, 1, {(0, 0): 1}) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableSparseMatrix(1, 1, [1]) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableSparseMatrix(2, 2, lambda i, j: 1) assert m[0, 0] is S.One m = ImmutableSparseMatrix(2, 2, lambda i, j: 1/(1 + i) + 1/(1 + j)) assert m[1, 1] is S.One # true div. will give 1.0 if i,j not sympified assert _test_args(m) assert _test_args(Basic(*list(m))) def test_sympy__matrices__expressions__slice__MatrixSlice(): from sympy.matrices.expressions.slice import MatrixSlice from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', 4, 4) assert _test_args(MatrixSlice(X, (0, 2), (0, 2))) def test_sympy__matrices__expressions__applyfunc__ElementwiseApplyFunction(): from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol("X", x, x) func = Lambda(x, x**2) assert _test_args(ElementwiseApplyFunction(func, X)) def test_sympy__matrices__expressions__blockmatrix__BlockDiagMatrix(): from sympy.matrices.expressions.blockmatrix import BlockDiagMatrix from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, x) Y = MatrixSymbol('Y', y, y) assert _test_args(BlockDiagMatrix(X, Y)) def test_sympy__matrices__expressions__blockmatrix__BlockMatrix(): from sympy.matrices.expressions.blockmatrix import BlockMatrix from sympy.matrices.expressions import MatrixSymbol, ZeroMatrix X = MatrixSymbol('X', x, x) Y = MatrixSymbol('Y', y, y) Z = MatrixSymbol('Z', x, y) O = ZeroMatrix(y, x) assert _test_args(BlockMatrix([[X, Z], [O, Y]])) def test_sympy__matrices__expressions__inverse__Inverse(): from sympy.matrices.expressions.inverse import Inverse from sympy.matrices.expressions import MatrixSymbol assert _test_args(Inverse(MatrixSymbol('A', 3, 3))) def test_sympy__matrices__expressions__matadd__MatAdd(): from sympy.matrices.expressions.matadd import MatAdd from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, y) Y = MatrixSymbol('Y', x, y) assert _test_args(MatAdd(X, Y)) def test_sympy__matrices__expressions__matexpr__Identity(): from sympy.matrices.expressions.matexpr import Identity assert _test_args(Identity(3)) def test_sympy__matrices__expressions__matexpr__GenericIdentity(): from sympy.matrices.expressions.matexpr import GenericIdentity assert _test_args(GenericIdentity()) @SKIP("abstract class") def test_sympy__matrices__expressions__matexpr__MatrixExpr(): pass def test_sympy__matrices__expressions__matexpr__MatrixElement(): from sympy.matrices.expressions.matexpr import MatrixSymbol, MatrixElement from sympy import S assert _test_args(MatrixElement(MatrixSymbol('A', 3, 5), S(2), S(3))) def test_sympy__matrices__expressions__matexpr__MatrixSymbol(): from sympy.matrices.expressions.matexpr import MatrixSymbol assert _test_args(MatrixSymbol('A', 3, 5)) def test_sympy__matrices__expressions__matexpr__ZeroMatrix(): from sympy.matrices.expressions.matexpr import ZeroMatrix assert _test_args(ZeroMatrix(3, 5)) def test_sympy__matrices__expressions__matexpr__OneMatrix(): from sympy.matrices.expressions.matexpr import OneMatrix assert _test_args(OneMatrix(3, 5)) def test_sympy__matrices__expressions__matexpr__GenericZeroMatrix(): from sympy.matrices.expressions.matexpr import GenericZeroMatrix assert _test_args(GenericZeroMatrix()) def test_sympy__matrices__expressions__matmul__MatMul(): from sympy.matrices.expressions.matmul import MatMul from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, y) Y = MatrixSymbol('Y', y, x) assert _test_args(MatMul(X, Y)) def test_sympy__matrices__expressions__dotproduct__DotProduct(): from sympy.matrices.expressions.dotproduct import DotProduct from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, 1) Y = MatrixSymbol('Y', x, 1) assert _test_args(DotProduct(X, Y)) def test_sympy__matrices__expressions__diagonal__DiagonalMatrix(): from sympy.matrices.expressions.diagonal import DiagonalMatrix from sympy.matrices.expressions import MatrixSymbol x = MatrixSymbol('x', 10, 1) assert _test_args(DiagonalMatrix(x)) def test_sympy__matrices__expressions__diagonal__DiagonalOf(): from sympy.matrices.expressions.diagonal import DiagonalOf from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('x', 10, 10) assert _test_args(DiagonalOf(X)) def test_sympy__matrices__expressions__diagonal__DiagMatrix(): from sympy.matrices.expressions.diagonal import DiagMatrix from sympy.matrices.expressions import MatrixSymbol x = MatrixSymbol('x', 10, 1) assert _test_args(DiagMatrix(x)) def test_sympy__matrices__expressions__hadamard__HadamardProduct(): from sympy.matrices.expressions.hadamard import HadamardProduct from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, y) Y = MatrixSymbol('Y', x, y) assert _test_args(HadamardProduct(X, Y)) def test_sympy__matrices__expressions__hadamard__HadamardPower(): from sympy.matrices.expressions.hadamard import HadamardPower from sympy.matrices.expressions import MatrixSymbol from sympy import Symbol X = MatrixSymbol('X', x, y) n = Symbol("n") assert _test_args(HadamardPower(X, n)) def test_sympy__matrices__expressions__kronecker__KroneckerProduct(): from sympy.matrices.expressions.kronecker import KroneckerProduct from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, y) Y = MatrixSymbol('Y', x, y) assert _test_args(KroneckerProduct(X, Y)) def test_sympy__matrices__expressions__matpow__MatPow(): from sympy.matrices.expressions.matpow import MatPow from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, x) assert _test_args(MatPow(X, 2)) def test_sympy__matrices__expressions__transpose__Transpose(): from sympy.matrices.expressions.transpose import Transpose from sympy.matrices.expressions import MatrixSymbol assert _test_args(Transpose(MatrixSymbol('A', 3, 5))) def test_sympy__matrices__expressions__adjoint__Adjoint(): from sympy.matrices.expressions.adjoint import Adjoint from sympy.matrices.expressions import MatrixSymbol assert _test_args(Adjoint(MatrixSymbol('A', 3, 5))) def test_sympy__matrices__expressions__trace__Trace(): from sympy.matrices.expressions.trace import Trace from sympy.matrices.expressions import MatrixSymbol assert _test_args(Trace(MatrixSymbol('A', 3, 3))) def test_sympy__matrices__expressions__determinant__Determinant(): from sympy.matrices.expressions.determinant import Determinant from sympy.matrices.expressions import MatrixSymbol assert _test_args(Determinant(MatrixSymbol('A', 3, 3))) def test_sympy__matrices__expressions__funcmatrix__FunctionMatrix(): from sympy.matrices.expressions.funcmatrix import FunctionMatrix from sympy import symbols i, j = symbols('i,j') assert _test_args(FunctionMatrix(3, 3, Lambda((i, j), i - j) )) def test_sympy__matrices__expressions__fourier__DFT(): from sympy.matrices.expressions.fourier import DFT from sympy import S assert _test_args(DFT(S(2))) def test_sympy__matrices__expressions__fourier__IDFT(): from sympy.matrices.expressions.fourier import IDFT from sympy import S assert _test_args(IDFT(S(2))) from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', 10, 10) def test_sympy__matrices__expressions__factorizations__LofLU(): from sympy.matrices.expressions.factorizations import LofLU assert _test_args(LofLU(X)) def test_sympy__matrices__expressions__factorizations__UofLU(): from sympy.matrices.expressions.factorizations import UofLU assert _test_args(UofLU(X)) def test_sympy__matrices__expressions__factorizations__QofQR(): from sympy.matrices.expressions.factorizations import QofQR assert _test_args(QofQR(X)) def test_sympy__matrices__expressions__factorizations__RofQR(): from sympy.matrices.expressions.factorizations import RofQR assert _test_args(RofQR(X)) def test_sympy__matrices__expressions__factorizations__LofCholesky(): from sympy.matrices.expressions.factorizations import LofCholesky assert _test_args(LofCholesky(X)) def test_sympy__matrices__expressions__factorizations__UofCholesky(): from sympy.matrices.expressions.factorizations import UofCholesky assert _test_args(UofCholesky(X)) def test_sympy__matrices__expressions__factorizations__EigenVectors(): from sympy.matrices.expressions.factorizations import EigenVectors assert _test_args(EigenVectors(X)) def test_sympy__matrices__expressions__factorizations__EigenValues(): from sympy.matrices.expressions.factorizations import EigenValues assert _test_args(EigenValues(X)) def test_sympy__matrices__expressions__factorizations__UofSVD(): from sympy.matrices.expressions.factorizations import UofSVD assert _test_args(UofSVD(X)) def test_sympy__matrices__expressions__factorizations__VofSVD(): from sympy.matrices.expressions.factorizations import VofSVD assert _test_args(VofSVD(X)) def test_sympy__matrices__expressions__factorizations__SofSVD(): from sympy.matrices.expressions.factorizations import SofSVD assert _test_args(SofSVD(X)) @SKIP("abstract class") def test_sympy__matrices__expressions__factorizations__Factorization(): pass def test_sympy__physics__vector__frame__CoordinateSym(): from sympy.physics.vector import CoordinateSym from sympy.physics.vector import ReferenceFrame assert _test_args(CoordinateSym('R_x', ReferenceFrame('R'), 0)) def test_sympy__physics__paulialgebra__Pauli(): from sympy.physics.paulialgebra import Pauli assert _test_args(Pauli(1)) def test_sympy__physics__quantum__anticommutator__AntiCommutator(): from sympy.physics.quantum.anticommutator import AntiCommutator assert _test_args(AntiCommutator(x, y)) def test_sympy__physics__quantum__cartesian__PositionBra3D(): from sympy.physics.quantum.cartesian import PositionBra3D assert _test_args(PositionBra3D(x, y, z)) def test_sympy__physics__quantum__cartesian__PositionKet3D(): from sympy.physics.quantum.cartesian import PositionKet3D assert _test_args(PositionKet3D(x, y, z)) def test_sympy__physics__quantum__cartesian__PositionState3D(): from sympy.physics.quantum.cartesian import PositionState3D assert _test_args(PositionState3D(x, y, z)) def test_sympy__physics__quantum__cartesian__PxBra(): from sympy.physics.quantum.cartesian import PxBra assert _test_args(PxBra(x, y, z)) def test_sympy__physics__quantum__cartesian__PxKet(): from sympy.physics.quantum.cartesian import PxKet assert _test_args(PxKet(x, y, z)) def test_sympy__physics__quantum__cartesian__PxOp(): from sympy.physics.quantum.cartesian import PxOp assert _test_args(PxOp(x, y, z)) def test_sympy__physics__quantum__cartesian__XBra(): from sympy.physics.quantum.cartesian import XBra assert _test_args(XBra(x)) def test_sympy__physics__quantum__cartesian__XKet(): from sympy.physics.quantum.cartesian import XKet assert _test_args(XKet(x)) def test_sympy__physics__quantum__cartesian__XOp(): from sympy.physics.quantum.cartesian import XOp assert _test_args(XOp(x)) def test_sympy__physics__quantum__cartesian__YOp(): from sympy.physics.quantum.cartesian import YOp assert _test_args(YOp(x)) def test_sympy__physics__quantum__cartesian__ZOp(): from sympy.physics.quantum.cartesian import ZOp assert _test_args(ZOp(x)) def test_sympy__physics__quantum__cg__CG(): from sympy.physics.quantum.cg import CG from sympy import S assert _test_args(CG(Rational(3, 2), Rational(3, 2), S.Half, Rational(-1, 2), 1, 1)) def test_sympy__physics__quantum__cg__Wigner3j(): from sympy.physics.quantum.cg import Wigner3j assert _test_args(Wigner3j(6, 0, 4, 0, 2, 0)) def test_sympy__physics__quantum__cg__Wigner6j(): from sympy.physics.quantum.cg import Wigner6j assert _test_args(Wigner6j(1, 2, 3, 2, 1, 2)) def test_sympy__physics__quantum__cg__Wigner9j(): from sympy.physics.quantum.cg import Wigner9j assert _test_args(Wigner9j(2, 1, 1, Rational(3, 2), S.Half, 1, S.Half, S.Half, 0)) def test_sympy__physics__quantum__circuitplot__Mz(): from sympy.physics.quantum.circuitplot import Mz assert _test_args(Mz(0)) def test_sympy__physics__quantum__circuitplot__Mx(): from sympy.physics.quantum.circuitplot import Mx assert _test_args(Mx(0)) def test_sympy__physics__quantum__commutator__Commutator(): from sympy.physics.quantum.commutator import Commutator A, B = symbols('A,B', commutative=False) assert _test_args(Commutator(A, B)) def test_sympy__physics__quantum__constants__HBar(): from sympy.physics.quantum.constants import HBar assert _test_args(HBar()) def test_sympy__physics__quantum__dagger__Dagger(): from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.state import Ket assert _test_args(Dagger(Dagger(Ket('psi')))) def test_sympy__physics__quantum__gate__CGate(): from sympy.physics.quantum.gate import CGate, Gate assert _test_args(CGate((0, 1), Gate(2))) def test_sympy__physics__quantum__gate__CGateS(): from sympy.physics.quantum.gate import CGateS, Gate assert _test_args(CGateS((0, 1), Gate(2))) def test_sympy__physics__quantum__gate__CNotGate(): from sympy.physics.quantum.gate import CNotGate assert _test_args(CNotGate(0, 1)) def test_sympy__physics__quantum__gate__Gate(): from sympy.physics.quantum.gate import Gate assert _test_args(Gate(0)) def test_sympy__physics__quantum__gate__HadamardGate(): from sympy.physics.quantum.gate import HadamardGate assert _test_args(HadamardGate(0)) def test_sympy__physics__quantum__gate__IdentityGate(): from sympy.physics.quantum.gate import IdentityGate assert _test_args(IdentityGate(0)) def test_sympy__physics__quantum__gate__OneQubitGate(): from sympy.physics.quantum.gate import OneQubitGate assert _test_args(OneQubitGate(0)) def test_sympy__physics__quantum__gate__PhaseGate(): from sympy.physics.quantum.gate import PhaseGate assert _test_args(PhaseGate(0)) def test_sympy__physics__quantum__gate__SwapGate(): from sympy.physics.quantum.gate import SwapGate assert _test_args(SwapGate(0, 1)) def test_sympy__physics__quantum__gate__TGate(): from sympy.physics.quantum.gate import TGate assert _test_args(TGate(0)) def test_sympy__physics__quantum__gate__TwoQubitGate(): from sympy.physics.quantum.gate import TwoQubitGate assert _test_args(TwoQubitGate(0)) def test_sympy__physics__quantum__gate__UGate(): from sympy.physics.quantum.gate import UGate from sympy.matrices.immutable import ImmutableDenseMatrix from sympy import Integer, Tuple assert _test_args( UGate(Tuple(Integer(1)), ImmutableDenseMatrix([[1, 0], [0, 2]]))) def test_sympy__physics__quantum__gate__XGate(): from sympy.physics.quantum.gate import XGate assert _test_args(XGate(0)) def test_sympy__physics__quantum__gate__YGate(): from sympy.physics.quantum.gate import YGate assert _test_args(YGate(0)) def test_sympy__physics__quantum__gate__ZGate(): from sympy.physics.quantum.gate import ZGate assert _test_args(ZGate(0)) @SKIP("TODO: sympy.physics") def test_sympy__physics__quantum__grover__OracleGate(): from sympy.physics.quantum.grover import OracleGate assert _test_args(OracleGate()) def test_sympy__physics__quantum__grover__WGate(): from sympy.physics.quantum.grover import WGate assert _test_args(WGate(1)) def test_sympy__physics__quantum__hilbert__ComplexSpace(): from sympy.physics.quantum.hilbert import ComplexSpace assert _test_args(ComplexSpace(x)) def test_sympy__physics__quantum__hilbert__DirectSumHilbertSpace(): from sympy.physics.quantum.hilbert import DirectSumHilbertSpace, ComplexSpace, FockSpace c = ComplexSpace(2) f = FockSpace() assert _test_args(DirectSumHilbertSpace(c, f)) def test_sympy__physics__quantum__hilbert__FockSpace(): from sympy.physics.quantum.hilbert import FockSpace assert _test_args(FockSpace()) def test_sympy__physics__quantum__hilbert__HilbertSpace(): from sympy.physics.quantum.hilbert import HilbertSpace assert _test_args(HilbertSpace()) def test_sympy__physics__quantum__hilbert__L2(): from sympy.physics.quantum.hilbert import L2 from sympy import oo, Interval assert _test_args(L2(Interval(0, oo))) def test_sympy__physics__quantum__hilbert__TensorPowerHilbertSpace(): from sympy.physics.quantum.hilbert import TensorPowerHilbertSpace, FockSpace f = FockSpace() assert _test_args(TensorPowerHilbertSpace(f, 2)) def test_sympy__physics__quantum__hilbert__TensorProductHilbertSpace(): from sympy.physics.quantum.hilbert import TensorProductHilbertSpace, FockSpace, ComplexSpace c = ComplexSpace(2) f = FockSpace() assert _test_args(TensorProductHilbertSpace(f, c)) def test_sympy__physics__quantum__innerproduct__InnerProduct(): from sympy.physics.quantum import Bra, Ket, InnerProduct b = Bra('b') k = Ket('k') assert _test_args(InnerProduct(b, k)) def test_sympy__physics__quantum__operator__DifferentialOperator(): from sympy.physics.quantum.operator import DifferentialOperator from sympy import Derivative, Function f = Function('f') assert _test_args(DifferentialOperator(1/x*Derivative(f(x), x), f(x))) def test_sympy__physics__quantum__operator__HermitianOperator(): from sympy.physics.quantum.operator import HermitianOperator assert _test_args(HermitianOperator('H')) def test_sympy__physics__quantum__operator__IdentityOperator(): from sympy.physics.quantum.operator import IdentityOperator assert _test_args(IdentityOperator(5)) def test_sympy__physics__quantum__operator__Operator(): from sympy.physics.quantum.operator import Operator assert _test_args(Operator('A')) def test_sympy__physics__quantum__operator__OuterProduct(): from sympy.physics.quantum.operator import OuterProduct from sympy.physics.quantum import Ket, Bra b = Bra('b') k = Ket('k') assert _test_args(OuterProduct(k, b)) def test_sympy__physics__quantum__operator__UnitaryOperator(): from sympy.physics.quantum.operator import UnitaryOperator assert _test_args(UnitaryOperator('U')) def test_sympy__physics__quantum__piab__PIABBra(): from sympy.physics.quantum.piab import PIABBra assert _test_args(PIABBra('B')) def test_sympy__physics__quantum__boson__BosonOp(): from sympy.physics.quantum.boson import BosonOp assert _test_args(BosonOp('a')) assert _test_args(BosonOp('a', False)) def test_sympy__physics__quantum__boson__BosonFockKet(): from sympy.physics.quantum.boson import BosonFockKet assert _test_args(BosonFockKet(1)) def test_sympy__physics__quantum__boson__BosonFockBra(): from sympy.physics.quantum.boson import BosonFockBra assert _test_args(BosonFockBra(1)) def test_sympy__physics__quantum__boson__BosonCoherentKet(): from sympy.physics.quantum.boson import BosonCoherentKet assert _test_args(BosonCoherentKet(1)) def test_sympy__physics__quantum__boson__BosonCoherentBra(): from sympy.physics.quantum.boson import BosonCoherentBra assert _test_args(BosonCoherentBra(1)) def test_sympy__physics__quantum__fermion__FermionOp(): from sympy.physics.quantum.fermion import FermionOp assert _test_args(FermionOp('c')) assert _test_args(FermionOp('c', False)) def test_sympy__physics__quantum__fermion__FermionFockKet(): from sympy.physics.quantum.fermion import FermionFockKet assert _test_args(FermionFockKet(1)) def test_sympy__physics__quantum__fermion__FermionFockBra(): from sympy.physics.quantum.fermion import FermionFockBra assert _test_args(FermionFockBra(1)) def test_sympy__physics__quantum__pauli__SigmaOpBase(): from sympy.physics.quantum.pauli import SigmaOpBase assert _test_args(SigmaOpBase()) def test_sympy__physics__quantum__pauli__SigmaX(): from sympy.physics.quantum.pauli import SigmaX assert _test_args(SigmaX()) def test_sympy__physics__quantum__pauli__SigmaY(): from sympy.physics.quantum.pauli import SigmaY assert _test_args(SigmaY()) def test_sympy__physics__quantum__pauli__SigmaZ(): from sympy.physics.quantum.pauli import SigmaZ assert _test_args(SigmaZ()) def test_sympy__physics__quantum__pauli__SigmaMinus(): from sympy.physics.quantum.pauli import SigmaMinus assert _test_args(SigmaMinus()) def test_sympy__physics__quantum__pauli__SigmaPlus(): from sympy.physics.quantum.pauli import SigmaPlus assert _test_args(SigmaPlus()) def test_sympy__physics__quantum__pauli__SigmaZKet(): from sympy.physics.quantum.pauli import SigmaZKet assert _test_args(SigmaZKet(0)) def test_sympy__physics__quantum__pauli__SigmaZBra(): from sympy.physics.quantum.pauli import SigmaZBra assert _test_args(SigmaZBra(0)) def test_sympy__physics__quantum__piab__PIABHamiltonian(): from sympy.physics.quantum.piab import PIABHamiltonian assert _test_args(PIABHamiltonian('P')) def test_sympy__physics__quantum__piab__PIABKet(): from sympy.physics.quantum.piab import PIABKet assert _test_args(PIABKet('K')) def test_sympy__physics__quantum__qexpr__QExpr(): from sympy.physics.quantum.qexpr import QExpr assert _test_args(QExpr(0)) def test_sympy__physics__quantum__qft__Fourier(): from sympy.physics.quantum.qft import Fourier assert _test_args(Fourier(0, 1)) def test_sympy__physics__quantum__qft__IQFT(): from sympy.physics.quantum.qft import IQFT assert _test_args(IQFT(0, 1)) def test_sympy__physics__quantum__qft__QFT(): from sympy.physics.quantum.qft import QFT assert _test_args(QFT(0, 1)) def test_sympy__physics__quantum__qft__RkGate(): from sympy.physics.quantum.qft import RkGate assert _test_args(RkGate(0, 1)) def test_sympy__physics__quantum__qubit__IntQubit(): from sympy.physics.quantum.qubit import IntQubit assert _test_args(IntQubit(0)) def test_sympy__physics__quantum__qubit__IntQubitBra(): from sympy.physics.quantum.qubit import IntQubitBra assert _test_args(IntQubitBra(0)) def test_sympy__physics__quantum__qubit__IntQubitState(): from sympy.physics.quantum.qubit import IntQubitState, QubitState assert _test_args(IntQubitState(QubitState(0, 1))) def test_sympy__physics__quantum__qubit__Qubit(): from sympy.physics.quantum.qubit import Qubit assert _test_args(Qubit(0, 0, 0)) def test_sympy__physics__quantum__qubit__QubitBra(): from sympy.physics.quantum.qubit import QubitBra assert _test_args(QubitBra('1', 0)) def test_sympy__physics__quantum__qubit__QubitState(): from sympy.physics.quantum.qubit import QubitState assert _test_args(QubitState(0, 1)) def test_sympy__physics__quantum__density__Density(): from sympy.physics.quantum.density import Density from sympy.physics.quantum.state import Ket assert _test_args(Density([Ket(0), 0.5], [Ket(1), 0.5])) @SKIP("TODO: sympy.physics.quantum.shor: Cmod Not Implemented") def test_sympy__physics__quantum__shor__CMod(): from sympy.physics.quantum.shor import CMod assert _test_args(CMod()) def test_sympy__physics__quantum__spin__CoupledSpinState(): from sympy.physics.quantum.spin import CoupledSpinState assert _test_args(CoupledSpinState(1, 0, (1, 1))) assert _test_args(CoupledSpinState(1, 0, (1, S.Half, S.Half))) assert _test_args(CoupledSpinState( 1, 0, (1, S.Half, S.Half), ((2, 3, S.Half), (1, 2, 1)) )) j, m, j1, j2, j3, j12, x = symbols('j m j1:4 j12 x') assert CoupledSpinState( j, m, (j1, j2, j3)).subs(j2, x) == CoupledSpinState(j, m, (j1, x, j3)) assert CoupledSpinState(j, m, (j1, j2, j3), ((1, 3, j12), (1, 2, j)) ).subs(j12, x) == \ CoupledSpinState(j, m, (j1, j2, j3), ((1, 3, x), (1, 2, j)) ) def test_sympy__physics__quantum__spin__J2Op(): from sympy.physics.quantum.spin import J2Op assert _test_args(J2Op('J')) def test_sympy__physics__quantum__spin__JminusOp(): from sympy.physics.quantum.spin import JminusOp assert _test_args(JminusOp('J')) def test_sympy__physics__quantum__spin__JplusOp(): from sympy.physics.quantum.spin import JplusOp assert _test_args(JplusOp('J')) def test_sympy__physics__quantum__spin__JxBra(): from sympy.physics.quantum.spin import JxBra assert _test_args(JxBra(1, 0)) def test_sympy__physics__quantum__spin__JxBraCoupled(): from sympy.physics.quantum.spin import JxBraCoupled assert _test_args(JxBraCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JxKet(): from sympy.physics.quantum.spin import JxKet assert _test_args(JxKet(1, 0)) def test_sympy__physics__quantum__spin__JxKetCoupled(): from sympy.physics.quantum.spin import JxKetCoupled assert _test_args(JxKetCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JxOp(): from sympy.physics.quantum.spin import JxOp assert _test_args(JxOp('J')) def test_sympy__physics__quantum__spin__JyBra(): from sympy.physics.quantum.spin import JyBra assert _test_args(JyBra(1, 0)) def test_sympy__physics__quantum__spin__JyBraCoupled(): from sympy.physics.quantum.spin import JyBraCoupled assert _test_args(JyBraCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JyKet(): from sympy.physics.quantum.spin import JyKet assert _test_args(JyKet(1, 0)) def test_sympy__physics__quantum__spin__JyKetCoupled(): from sympy.physics.quantum.spin import JyKetCoupled assert _test_args(JyKetCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JyOp(): from sympy.physics.quantum.spin import JyOp assert _test_args(JyOp('J')) def test_sympy__physics__quantum__spin__JzBra(): from sympy.physics.quantum.spin import JzBra assert _test_args(JzBra(1, 0)) def test_sympy__physics__quantum__spin__JzBraCoupled(): from sympy.physics.quantum.spin import JzBraCoupled assert _test_args(JzBraCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JzKet(): from sympy.physics.quantum.spin import JzKet assert _test_args(JzKet(1, 0)) def test_sympy__physics__quantum__spin__JzKetCoupled(): from sympy.physics.quantum.spin import JzKetCoupled assert _test_args(JzKetCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JzOp(): from sympy.physics.quantum.spin import JzOp assert _test_args(JzOp('J')) def test_sympy__physics__quantum__spin__Rotation(): from sympy.physics.quantum.spin import Rotation assert _test_args(Rotation(pi, 0, pi/2)) def test_sympy__physics__quantum__spin__SpinState(): from sympy.physics.quantum.spin import SpinState assert _test_args(SpinState(1, 0)) def test_sympy__physics__quantum__spin__WignerD(): from sympy.physics.quantum.spin import WignerD assert _test_args(WignerD(0, 1, 2, 3, 4, 5)) def test_sympy__physics__quantum__state__Bra(): from sympy.physics.quantum.state import Bra assert _test_args(Bra(0)) def test_sympy__physics__quantum__state__BraBase(): from sympy.physics.quantum.state import BraBase assert _test_args(BraBase(0)) def test_sympy__physics__quantum__state__Ket(): from sympy.physics.quantum.state import Ket assert _test_args(Ket(0)) def test_sympy__physics__quantum__state__KetBase(): from sympy.physics.quantum.state import KetBase assert _test_args(KetBase(0)) def test_sympy__physics__quantum__state__State(): from sympy.physics.quantum.state import State assert _test_args(State(0)) def test_sympy__physics__quantum__state__StateBase(): from sympy.physics.quantum.state import StateBase assert _test_args(StateBase(0)) def test_sympy__physics__quantum__state__TimeDepBra(): from sympy.physics.quantum.state import TimeDepBra assert _test_args(TimeDepBra('psi', 't')) def test_sympy__physics__quantum__state__TimeDepKet(): from sympy.physics.quantum.state import TimeDepKet assert _test_args(TimeDepKet('psi', 't')) def test_sympy__physics__quantum__state__TimeDepState(): from sympy.physics.quantum.state import TimeDepState assert _test_args(TimeDepState('psi', 't')) def test_sympy__physics__quantum__state__Wavefunction(): from sympy.physics.quantum.state import Wavefunction from sympy.functions import sin from sympy import Piecewise n = 1 L = 1 g = Piecewise((0, x < 0), (0, x > L), (sqrt(2//L)*sin(n*pi*x/L), True)) assert _test_args(Wavefunction(g, x)) def test_sympy__physics__quantum__tensorproduct__TensorProduct(): from sympy.physics.quantum.tensorproduct import TensorProduct assert _test_args(TensorProduct(x, y)) def test_sympy__physics__quantum__identitysearch__GateIdentity(): from sympy.physics.quantum.gate import X from sympy.physics.quantum.identitysearch import GateIdentity assert _test_args(GateIdentity(X(0), X(0))) def test_sympy__physics__quantum__sho1d__SHOOp(): from sympy.physics.quantum.sho1d import SHOOp assert _test_args(SHOOp('a')) def test_sympy__physics__quantum__sho1d__RaisingOp(): from sympy.physics.quantum.sho1d import RaisingOp assert _test_args(RaisingOp('a')) def test_sympy__physics__quantum__sho1d__LoweringOp(): from sympy.physics.quantum.sho1d import LoweringOp assert _test_args(LoweringOp('a')) def test_sympy__physics__quantum__sho1d__NumberOp(): from sympy.physics.quantum.sho1d import NumberOp assert _test_args(NumberOp('N')) def test_sympy__physics__quantum__sho1d__Hamiltonian(): from sympy.physics.quantum.sho1d import Hamiltonian assert _test_args(Hamiltonian('H')) def test_sympy__physics__quantum__sho1d__SHOState(): from sympy.physics.quantum.sho1d import SHOState assert _test_args(SHOState(0)) def test_sympy__physics__quantum__sho1d__SHOKet(): from sympy.physics.quantum.sho1d import SHOKet assert _test_args(SHOKet(0)) def test_sympy__physics__quantum__sho1d__SHOBra(): from sympy.physics.quantum.sho1d import SHOBra assert _test_args(SHOBra(0)) def test_sympy__physics__secondquant__AnnihilateBoson(): from sympy.physics.secondquant import AnnihilateBoson assert _test_args(AnnihilateBoson(0)) def test_sympy__physics__secondquant__AnnihilateFermion(): from sympy.physics.secondquant import AnnihilateFermion assert _test_args(AnnihilateFermion(0)) @SKIP("abstract class") def test_sympy__physics__secondquant__Annihilator(): pass def test_sympy__physics__secondquant__AntiSymmetricTensor(): from sympy.physics.secondquant import AntiSymmetricTensor i, j = symbols('i j', below_fermi=True) a, b = symbols('a b', above_fermi=True) assert _test_args(AntiSymmetricTensor('v', (a, i), (b, j))) def test_sympy__physics__secondquant__BosonState(): from sympy.physics.secondquant import BosonState assert _test_args(BosonState((0, 1))) @SKIP("abstract class") def test_sympy__physics__secondquant__BosonicOperator(): pass def test_sympy__physics__secondquant__Commutator(): from sympy.physics.secondquant import Commutator assert _test_args(Commutator(x, y)) def test_sympy__physics__secondquant__CreateBoson(): from sympy.physics.secondquant import CreateBoson assert _test_args(CreateBoson(0)) def test_sympy__physics__secondquant__CreateFermion(): from sympy.physics.secondquant import CreateFermion assert _test_args(CreateFermion(0)) @SKIP("abstract class") def test_sympy__physics__secondquant__Creator(): pass def test_sympy__physics__secondquant__Dagger(): from sympy.physics.secondquant import Dagger from sympy import I assert _test_args(Dagger(2*I)) def test_sympy__physics__secondquant__FermionState(): from sympy.physics.secondquant import FermionState assert _test_args(FermionState((0, 1))) def test_sympy__physics__secondquant__FermionicOperator(): from sympy.physics.secondquant import FermionicOperator assert _test_args(FermionicOperator(0)) def test_sympy__physics__secondquant__FockState(): from sympy.physics.secondquant import FockState assert _test_args(FockState((0, 1))) def test_sympy__physics__secondquant__FockStateBosonBra(): from sympy.physics.secondquant import FockStateBosonBra assert _test_args(FockStateBosonBra((0, 1))) def test_sympy__physics__secondquant__FockStateBosonKet(): from sympy.physics.secondquant import FockStateBosonKet assert _test_args(FockStateBosonKet((0, 1))) def test_sympy__physics__secondquant__FockStateBra(): from sympy.physics.secondquant import FockStateBra assert _test_args(FockStateBra((0, 1))) def test_sympy__physics__secondquant__FockStateFermionBra(): from sympy.physics.secondquant import FockStateFermionBra assert _test_args(FockStateFermionBra((0, 1))) def test_sympy__physics__secondquant__FockStateFermionKet(): from sympy.physics.secondquant import FockStateFermionKet assert _test_args(FockStateFermionKet((0, 1))) def test_sympy__physics__secondquant__FockStateKet(): from sympy.physics.secondquant import FockStateKet assert _test_args(FockStateKet((0, 1))) def test_sympy__physics__secondquant__InnerProduct(): from sympy.physics.secondquant import InnerProduct from sympy.physics.secondquant import FockStateKet, FockStateBra assert _test_args(InnerProduct(FockStateBra((0, 1)), FockStateKet((0, 1)))) def test_sympy__physics__secondquant__NO(): from sympy.physics.secondquant import NO, F, Fd assert _test_args(NO(Fd(x)*F(y))) def test_sympy__physics__secondquant__PermutationOperator(): from sympy.physics.secondquant import PermutationOperator assert _test_args(PermutationOperator(0, 1)) def test_sympy__physics__secondquant__SqOperator(): from sympy.physics.secondquant import SqOperator assert _test_args(SqOperator(0)) def test_sympy__physics__secondquant__TensorSymbol(): from sympy.physics.secondquant import TensorSymbol assert _test_args(TensorSymbol(x)) def test_sympy__physics__units__dimensions__Dimension(): from sympy.physics.units.dimensions import Dimension assert _test_args(Dimension("length", "L")) def test_sympy__physics__units__dimensions__DimensionSystem(): from sympy.physics.units.dimensions import DimensionSystem from sympy.physics.units.definitions.dimension_definitions import length, time, velocity assert _test_args(DimensionSystem((length, time), (velocity,))) def test_sympy__physics__units__quantities__Quantity(): from sympy.physics.units.quantities import Quantity assert _test_args(Quantity("dam")) def test_sympy__physics__units__prefixes__Prefix(): from sympy.physics.units.prefixes import Prefix assert _test_args(Prefix('kilo', 'k', 3)) def test_sympy__core__numbers__AlgebraicNumber(): from sympy.core.numbers import AlgebraicNumber assert _test_args(AlgebraicNumber(sqrt(2), [1, 2, 3])) def test_sympy__polys__polytools__GroebnerBasis(): from sympy.polys.polytools import GroebnerBasis assert _test_args(GroebnerBasis([x, y, z], x, y, z)) def test_sympy__polys__polytools__Poly(): from sympy.polys.polytools import Poly assert _test_args(Poly(2, x, y)) def test_sympy__polys__polytools__PurePoly(): from sympy.polys.polytools import PurePoly assert _test_args(PurePoly(2, x, y)) @SKIP('abstract class') def test_sympy__polys__rootoftools__RootOf(): pass def test_sympy__polys__rootoftools__ComplexRootOf(): from sympy.polys.rootoftools import ComplexRootOf assert _test_args(ComplexRootOf(x**3 + x + 1, 0)) def test_sympy__polys__rootoftools__RootSum(): from sympy.polys.rootoftools import RootSum assert _test_args(RootSum(x**3 + x + 1, sin)) def test_sympy__series__limits__Limit(): from sympy.series.limits import Limit assert _test_args(Limit(x, x, 0, dir='-')) def test_sympy__series__order__Order(): from sympy.series.order import Order assert _test_args(Order(1, x, y)) @SKIP('Abstract Class') def test_sympy__series__sequences__SeqBase(): pass def test_sympy__series__sequences__EmptySequence(): # Need to imort the instance from series not the class from # series.sequence from sympy.series import EmptySequence assert _test_args(EmptySequence) @SKIP('Abstract Class') def test_sympy__series__sequences__SeqExpr(): pass def test_sympy__series__sequences__SeqPer(): from sympy.series.sequences import SeqPer assert _test_args(SeqPer((1, 2, 3), (0, 10))) def test_sympy__series__sequences__SeqFormula(): from sympy.series.sequences import SeqFormula assert _test_args(SeqFormula(x**2, (0, 10))) def test_sympy__series__sequences__RecursiveSeq(): from sympy.series.sequences import RecursiveSeq y = Function("y") n = symbols("n") assert _test_args(RecursiveSeq(y(n - 1) + y(n - 2), y, n, (0, 1))) assert _test_args(RecursiveSeq(y(n - 1) + y(n - 2), y, n)) def test_sympy__series__sequences__SeqExprOp(): from sympy.series.sequences import SeqExprOp, sequence s1 = sequence((1, 2, 3)) s2 = sequence(x**2) assert _test_args(SeqExprOp(s1, s2)) def test_sympy__series__sequences__SeqAdd(): from sympy.series.sequences import SeqAdd, sequence s1 = sequence((1, 2, 3)) s2 = sequence(x**2) assert _test_args(SeqAdd(s1, s2)) def test_sympy__series__sequences__SeqMul(): from sympy.series.sequences import SeqMul, sequence s1 = sequence((1, 2, 3)) s2 = sequence(x**2) assert _test_args(SeqMul(s1, s2)) @SKIP('Abstract Class') def test_sympy__series__series_class__SeriesBase(): pass def test_sympy__series__fourier__FourierSeries(): from sympy.series.fourier import fourier_series assert _test_args(fourier_series(x, (x, -pi, pi))) def test_sympy__series__fourier__FiniteFourierSeries(): from sympy.series.fourier import fourier_series assert _test_args(fourier_series(sin(pi*x), (x, -1, 1))) def test_sympy__series__formal__FormalPowerSeries(): from sympy.series.formal import fps assert _test_args(fps(log(1 + x), x)) def test_sympy__series__formal__Coeff(): from sympy.series.formal import fps assert _test_args(fps(x**2 + x + 1, x)) @SKIP('Abstract Class') def test_sympy__series__formal__FiniteFormalPowerSeries(): pass def test_sympy__series__formal__FormalPowerSeriesProduct(): from sympy.series.formal import fps f1, f2 = fps(sin(x)), fps(exp(x)) assert _test_args(f1.product(f2, x)) def test_sympy__series__formal__FormalPowerSeriesCompose(): from sympy.series.formal import fps f1, f2 = fps(exp(x)), fps(sin(x)) assert _test_args(f1.compose(f2, x)) def test_sympy__series__formal__FormalPowerSeriesInverse(): from sympy.series.formal import fps f1 = fps(exp(x)) assert _test_args(f1.inverse(x)) def test_sympy__simplify__hyperexpand__Hyper_Function(): from sympy.simplify.hyperexpand import Hyper_Function assert _test_args(Hyper_Function([2], [1])) def test_sympy__simplify__hyperexpand__G_Function(): from sympy.simplify.hyperexpand import G_Function assert _test_args(G_Function([2], [1], [], [])) @SKIP("abstract class") def test_sympy__tensor__array__ndim_array__ImmutableNDimArray(): pass def test_sympy__tensor__array__dense_ndim_array__ImmutableDenseNDimArray(): from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray densarr = ImmutableDenseNDimArray(range(10, 34), (2, 3, 4)) assert _test_args(densarr) def test_sympy__tensor__array__sparse_ndim_array__ImmutableSparseNDimArray(): from sympy.tensor.array.sparse_ndim_array import ImmutableSparseNDimArray sparr = ImmutableSparseNDimArray(range(10, 34), (2, 3, 4)) assert _test_args(sparr) def test_sympy__tensor__array__array_comprehension__ArrayComprehension(): from sympy.tensor.array.array_comprehension import ArrayComprehension arrcom = ArrayComprehension(x, (x, 1, 5)) assert _test_args(arrcom) def test_sympy__tensor__array__array_comprehension__ArrayComprehensionMap(): from sympy.tensor.array.array_comprehension import ArrayComprehensionMap arrcomma = ArrayComprehensionMap(lambda: 0, (x, 1, 5)) assert _test_args(arrcomma) def test_sympy__tensor__array__arrayop__Flatten(): from sympy.tensor.array.arrayop import Flatten from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray fla = Flatten(ImmutableDenseNDimArray(range(24)).reshape(2, 3, 4)) assert _test_args(fla) def test_sympy__tensor__functions__TensorProduct(): from sympy.tensor.functions import TensorProduct tp = TensorProduct(3, 4, evaluate=False) assert _test_args(tp) def test_sympy__tensor__indexed__Idx(): from sympy.tensor.indexed import Idx assert _test_args(Idx('test')) assert _test_args(Idx(1, (0, 10))) def test_sympy__tensor__indexed__Indexed(): from sympy.tensor.indexed import Indexed, Idx assert _test_args(Indexed('A', Idx('i'), Idx('j'))) def test_sympy__tensor__indexed__IndexedBase(): from sympy.tensor.indexed import IndexedBase assert _test_args(IndexedBase('A', shape=(x, y))) assert _test_args(IndexedBase('A', 1)) assert _test_args(IndexedBase('A')[0, 1]) def test_sympy__tensor__tensor__TensorIndexType(): from sympy.tensor.tensor import TensorIndexType assert _test_args(TensorIndexType('Lorentz', metric=False)) @SKIP("deprecated class") def test_sympy__tensor__tensor__TensorType(): pass def test_sympy__tensor__tensor__TensorSymmetry(): from sympy.tensor.tensor import TensorSymmetry, get_symmetric_group_sgs assert _test_args(TensorSymmetry(get_symmetric_group_sgs(2))) def test_sympy__tensor__tensor__TensorHead(): from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, TensorHead Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') sym = TensorSymmetry(get_symmetric_group_sgs(1)) assert _test_args(TensorHead('p', [Lorentz], sym, 0)) def test_sympy__tensor__tensor__TensorIndex(): from sympy.tensor.tensor import TensorIndexType, TensorIndex Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') assert _test_args(TensorIndex('i', Lorentz)) @SKIP("abstract class") def test_sympy__tensor__tensor__TensExpr(): pass def test_sympy__tensor__tensor__TensAdd(): from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, tensor_indices, TensAdd, tensor_heads Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') a, b = tensor_indices('a,b', Lorentz) sym = TensorSymmetry(get_symmetric_group_sgs(1)) p, q = tensor_heads('p,q', [Lorentz], sym) t1 = p(a) t2 = q(a) assert _test_args(TensAdd(t1, t2)) def test_sympy__tensor__tensor__Tensor(): from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, tensor_indices, TensorHead Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') a, b = tensor_indices('a,b', Lorentz) sym = TensorSymmetry(get_symmetric_group_sgs(1)) p = TensorHead('p', [Lorentz], sym) assert _test_args(p(a)) def test_sympy__tensor__tensor__TensMul(): from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, tensor_indices, tensor_heads Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') a, b = tensor_indices('a,b', Lorentz) sym = TensorSymmetry(get_symmetric_group_sgs(1)) p, q = tensor_heads('p, q', [Lorentz], sym) assert _test_args(3*p(a)*q(b)) def test_sympy__tensor__tensor__TensorElement(): from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorElement L = TensorIndexType("L") A = TensorHead("A", [L, L]) telem = TensorElement(A(x, y), {x: 1}) assert _test_args(telem) def test_sympy__tensor__toperators__PartialDerivative(): from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead from sympy.tensor.toperators import PartialDerivative Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') a, b = tensor_indices('a,b', Lorentz) A = TensorHead("A", [Lorentz]) assert _test_args(PartialDerivative(A(a), A(b))) def test_as_coeff_add(): assert (7, (3*x, 4*x**2)) == (7 + 3*x + 4*x**2).as_coeff_add() def test_sympy__geometry__curve__Curve(): from sympy.geometry.curve import Curve assert _test_args(Curve((x, 1), (x, 0, 1))) def test_sympy__geometry__point__Point(): from sympy.geometry.point import Point assert _test_args(Point(0, 1)) def test_sympy__geometry__point__Point2D(): from sympy.geometry.point import Point2D assert _test_args(Point2D(0, 1)) def test_sympy__geometry__point__Point3D(): from sympy.geometry.point import Point3D assert _test_args(Point3D(0, 1, 2)) def test_sympy__geometry__ellipse__Ellipse(): from sympy.geometry.ellipse import Ellipse assert _test_args(Ellipse((0, 1), 2, 3)) def test_sympy__geometry__ellipse__Circle(): from sympy.geometry.ellipse import Circle assert _test_args(Circle((0, 1), 2)) def test_sympy__geometry__parabola__Parabola(): from sympy.geometry.parabola import Parabola from sympy.geometry.line import Line assert _test_args(Parabola((0, 0), Line((2, 3), (4, 3)))) @SKIP("abstract class") def test_sympy__geometry__line__LinearEntity(): pass def test_sympy__geometry__line__Line(): from sympy.geometry.line import Line assert _test_args(Line((0, 1), (2, 3))) def test_sympy__geometry__line__Ray(): from sympy.geometry.line import Ray assert _test_args(Ray((0, 1), (2, 3))) def test_sympy__geometry__line__Segment(): from sympy.geometry.line import Segment assert _test_args(Segment((0, 1), (2, 3))) @SKIP("abstract class") def test_sympy__geometry__line__LinearEntity2D(): pass def test_sympy__geometry__line__Line2D(): from sympy.geometry.line import Line2D assert _test_args(Line2D((0, 1), (2, 3))) def test_sympy__geometry__line__Ray2D(): from sympy.geometry.line import Ray2D assert _test_args(Ray2D((0, 1), (2, 3))) def test_sympy__geometry__line__Segment2D(): from sympy.geometry.line import Segment2D assert _test_args(Segment2D((0, 1), (2, 3))) @SKIP("abstract class") def test_sympy__geometry__line__LinearEntity3D(): pass def test_sympy__geometry__line__Line3D(): from sympy.geometry.line import Line3D assert _test_args(Line3D((0, 1, 1), (2, 3, 4))) def test_sympy__geometry__line__Segment3D(): from sympy.geometry.line import Segment3D assert _test_args(Segment3D((0, 1, 1), (2, 3, 4))) def test_sympy__geometry__line__Ray3D(): from sympy.geometry.line import Ray3D assert _test_args(Ray3D((0, 1, 1), (2, 3, 4))) def test_sympy__geometry__plane__Plane(): from sympy.geometry.plane import Plane assert _test_args(Plane((1, 1, 1), (-3, 4, -2), (1, 2, 3))) def test_sympy__geometry__polygon__Polygon(): from sympy.geometry.polygon import Polygon assert _test_args(Polygon((0, 1), (2, 3), (4, 5), (6, 7))) def test_sympy__geometry__polygon__RegularPolygon(): from sympy.geometry.polygon import RegularPolygon assert _test_args(RegularPolygon((0, 1), 2, 3, 4)) def test_sympy__geometry__polygon__Triangle(): from sympy.geometry.polygon import Triangle assert _test_args(Triangle((0, 1), (2, 3), (4, 5))) def test_sympy__geometry__entity__GeometryEntity(): from sympy.geometry.entity import GeometryEntity from sympy.geometry.point import Point assert _test_args(GeometryEntity(Point(1, 0), 1, [1, 2])) @SKIP("abstract class") def test_sympy__geometry__entity__GeometrySet(): pass def test_sympy__diffgeom__diffgeom__Manifold(): from sympy.diffgeom import Manifold assert _test_args(Manifold('name', 3)) def test_sympy__diffgeom__diffgeom__Patch(): from sympy.diffgeom import Manifold, Patch assert _test_args(Patch('name', Manifold('name', 3))) def test_sympy__diffgeom__diffgeom__CoordSystem(): from sympy.diffgeom import Manifold, Patch, CoordSystem assert _test_args(CoordSystem('name', Patch('name', Manifold('name', 3)))) @XFAIL def test_sympy__diffgeom__diffgeom__Point(): from sympy.diffgeom import Manifold, Patch, CoordSystem, Point assert _test_args(Point( CoordSystem('name', Patch('name', Manifold('name', 3))), [x, y])) def test_sympy__diffgeom__diffgeom__BaseScalarField(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField cs = CoordSystem('name', Patch('name', Manifold('name', 3))) assert _test_args(BaseScalarField(cs, 0)) def test_sympy__diffgeom__diffgeom__BaseVectorField(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField cs = CoordSystem('name', Patch('name', Manifold('name', 3))) assert _test_args(BaseVectorField(cs, 0)) def test_sympy__diffgeom__diffgeom__Differential(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential cs = CoordSystem('name', Patch('name', Manifold('name', 3))) assert _test_args(Differential(BaseScalarField(cs, 0))) def test_sympy__diffgeom__diffgeom__Commutator(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField, Commutator cs = CoordSystem('name', Patch('name', Manifold('name', 3))) cs1 = CoordSystem('name1', Patch('name', Manifold('name', 3))) v = BaseVectorField(cs, 0) v1 = BaseVectorField(cs1, 0) assert _test_args(Commutator(v, v1)) def test_sympy__diffgeom__diffgeom__TensorProduct(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, TensorProduct cs = CoordSystem('name', Patch('name', Manifold('name', 3))) d = Differential(BaseScalarField(cs, 0)) assert _test_args(TensorProduct(d, d)) def test_sympy__diffgeom__diffgeom__WedgeProduct(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, WedgeProduct cs = CoordSystem('name', Patch('name', Manifold('name', 3))) d = Differential(BaseScalarField(cs, 0)) d1 = Differential(BaseScalarField(cs, 1)) assert _test_args(WedgeProduct(d, d1)) def test_sympy__diffgeom__diffgeom__LieDerivative(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, BaseVectorField, LieDerivative cs = CoordSystem('name', Patch('name', Manifold('name', 3))) d = Differential(BaseScalarField(cs, 0)) v = BaseVectorField(cs, 0) assert _test_args(LieDerivative(v, d)) @XFAIL def test_sympy__diffgeom__diffgeom__BaseCovarDerivativeOp(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseCovarDerivativeOp cs = CoordSystem('name', Patch('name', Manifold('name', 3))) assert _test_args(BaseCovarDerivativeOp(cs, 0, [[[0, ]*3, ]*3, ]*3)) def test_sympy__diffgeom__diffgeom__CovarDerivativeOp(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField, CovarDerivativeOp cs = CoordSystem('name', Patch('name', Manifold('name', 3))) v = BaseVectorField(cs, 0) _test_args(CovarDerivativeOp(v, [[[0, ]*3, ]*3, ]*3)) def test_sympy__categories__baseclasses__Class(): from sympy.categories.baseclasses import Class assert _test_args(Class()) def test_sympy__categories__baseclasses__Object(): from sympy.categories import Object assert _test_args(Object("A")) @XFAIL def test_sympy__categories__baseclasses__Morphism(): from sympy.categories import Object, Morphism assert _test_args(Morphism(Object("A"), Object("B"))) def test_sympy__categories__baseclasses__IdentityMorphism(): from sympy.categories import Object, IdentityMorphism assert _test_args(IdentityMorphism(Object("A"))) def test_sympy__categories__baseclasses__NamedMorphism(): from sympy.categories import Object, NamedMorphism assert _test_args(NamedMorphism(Object("A"), Object("B"), "f")) def test_sympy__categories__baseclasses__CompositeMorphism(): from sympy.categories import Object, NamedMorphism, CompositeMorphism A = Object("A") B = Object("B") C = Object("C") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") assert _test_args(CompositeMorphism(f, g)) def test_sympy__categories__baseclasses__Diagram(): from sympy.categories import Object, NamedMorphism, Diagram A = Object("A") B = Object("B") f = NamedMorphism(A, B, "f") d = Diagram([f]) assert _test_args(d) def test_sympy__categories__baseclasses__Category(): from sympy.categories import Object, NamedMorphism, Diagram, Category A = Object("A") B = Object("B") C = Object("C") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") d1 = Diagram([f, g]) d2 = Diagram([f]) K = Category("K", commutative_diagrams=[d1, d2]) assert _test_args(K) def test_sympy__ntheory__factor___totient(): from sympy.ntheory.factor_ import totient k = symbols('k', integer=True) t = totient(k) assert _test_args(t) def test_sympy__ntheory__factor___reduced_totient(): from sympy.ntheory.factor_ import reduced_totient k = symbols('k', integer=True) t = reduced_totient(k) assert _test_args(t) def test_sympy__ntheory__factor___divisor_sigma(): from sympy.ntheory.factor_ import divisor_sigma k = symbols('k', integer=True) n = symbols('n', integer=True) t = divisor_sigma(n, k) assert _test_args(t) def test_sympy__ntheory__factor___udivisor_sigma(): from sympy.ntheory.factor_ import udivisor_sigma k = symbols('k', integer=True) n = symbols('n', integer=True) t = udivisor_sigma(n, k) assert _test_args(t) def test_sympy__ntheory__factor___primenu(): from sympy.ntheory.factor_ import primenu n = symbols('n', integer=True) t = primenu(n) assert _test_args(t) def test_sympy__ntheory__factor___primeomega(): from sympy.ntheory.factor_ import primeomega n = symbols('n', integer=True) t = primeomega(n) assert _test_args(t) def test_sympy__ntheory__residue_ntheory__mobius(): from sympy.ntheory import mobius assert _test_args(mobius(2)) def test_sympy__ntheory__generate__primepi(): from sympy.ntheory import primepi n = symbols('n') t = primepi(n) assert _test_args(t) def test_sympy__physics__optics__waves__TWave(): from sympy.physics.optics import TWave A, f, phi = symbols('A, f, phi') assert _test_args(TWave(A, f, phi)) def test_sympy__physics__optics__gaussopt__BeamParameter(): from sympy.physics.optics import BeamParameter assert _test_args(BeamParameter(530e-9, 1, w=1e-3)) def test_sympy__physics__optics__medium__Medium(): from sympy.physics.optics import Medium assert _test_args(Medium('m')) def test_sympy__codegen__array_utils__CodegenArrayContraction(): from sympy.codegen.array_utils import CodegenArrayContraction from sympy import IndexedBase A = symbols("A", cls=IndexedBase) assert _test_args(CodegenArrayContraction(A, (0, 1))) def test_sympy__codegen__array_utils__CodegenArrayDiagonal(): from sympy.codegen.array_utils import CodegenArrayDiagonal from sympy import IndexedBase A = symbols("A", cls=IndexedBase) assert _test_args(CodegenArrayDiagonal(A, (0, 1))) def test_sympy__codegen__array_utils__CodegenArrayTensorProduct(): from sympy.codegen.array_utils import CodegenArrayTensorProduct from sympy import IndexedBase A, B = symbols("A B", cls=IndexedBase) assert _test_args(CodegenArrayTensorProduct(A, B)) def test_sympy__codegen__array_utils__CodegenArrayElementwiseAdd(): from sympy.codegen.array_utils import CodegenArrayElementwiseAdd from sympy import IndexedBase A, B = symbols("A B", cls=IndexedBase) assert _test_args(CodegenArrayElementwiseAdd(A, B)) def test_sympy__codegen__array_utils__CodegenArrayPermuteDims(): from sympy.codegen.array_utils import CodegenArrayPermuteDims from sympy import IndexedBase A = symbols("A", cls=IndexedBase) assert _test_args(CodegenArrayPermuteDims(A, (1, 0))) def test_sympy__codegen__ast__Assignment(): from sympy.codegen.ast import Assignment assert _test_args(Assignment(x, y)) def test_sympy__codegen__cfunctions__expm1(): from sympy.codegen.cfunctions import expm1 assert _test_args(expm1(x)) def test_sympy__codegen__cfunctions__log1p(): from sympy.codegen.cfunctions import log1p assert _test_args(log1p(x)) def test_sympy__codegen__cfunctions__exp2(): from sympy.codegen.cfunctions import exp2 assert _test_args(exp2(x)) def test_sympy__codegen__cfunctions__log2(): from sympy.codegen.cfunctions import log2 assert _test_args(log2(x)) def test_sympy__codegen__cfunctions__fma(): from sympy.codegen.cfunctions import fma assert _test_args(fma(x, y, z)) def test_sympy__codegen__cfunctions__log10(): from sympy.codegen.cfunctions import log10 assert _test_args(log10(x)) def test_sympy__codegen__cfunctions__Sqrt(): from sympy.codegen.cfunctions import Sqrt assert _test_args(Sqrt(x)) def test_sympy__codegen__cfunctions__Cbrt(): from sympy.codegen.cfunctions import Cbrt assert _test_args(Cbrt(x)) def test_sympy__codegen__cfunctions__hypot(): from sympy.codegen.cfunctions import hypot assert _test_args(hypot(x, y)) def test_sympy__codegen__fnodes__FFunction(): from sympy.codegen.fnodes import FFunction assert _test_args(FFunction('f')) def test_sympy__codegen__fnodes__F95Function(): from sympy.codegen.fnodes import F95Function assert _test_args(F95Function('f')) def test_sympy__codegen__fnodes__isign(): from sympy.codegen.fnodes import isign assert _test_args(isign(1, x)) def test_sympy__codegen__fnodes__dsign(): from sympy.codegen.fnodes import dsign assert _test_args(dsign(1, x)) def test_sympy__codegen__fnodes__cmplx(): from sympy.codegen.fnodes import cmplx assert _test_args(cmplx(x, y)) def test_sympy__codegen__fnodes__kind(): from sympy.codegen.fnodes import kind assert _test_args(kind(x)) def test_sympy__codegen__fnodes__merge(): from sympy.codegen.fnodes import merge assert _test_args(merge(1, 2, Eq(x, 0))) def test_sympy__codegen__fnodes___literal(): from sympy.codegen.fnodes import _literal assert _test_args(_literal(1)) def test_sympy__codegen__fnodes__literal_sp(): from sympy.codegen.fnodes import literal_sp assert _test_args(literal_sp(1)) def test_sympy__codegen__fnodes__literal_dp(): from sympy.codegen.fnodes import literal_dp assert _test_args(literal_dp(1)) def test_sympy__codegen__matrix_nodes__MatrixSolve(): from sympy.matrices import MatrixSymbol from sympy.codegen.matrix_nodes import MatrixSolve A = MatrixSymbol('A', 3, 3) v = MatrixSymbol('x', 3, 1) assert _test_args(MatrixSolve(A, v)) def test_sympy__vector__coordsysrect__CoordSys3D(): from sympy.vector.coordsysrect import CoordSys3D assert _test_args(CoordSys3D('C')) def test_sympy__vector__point__Point(): from sympy.vector.point import Point assert _test_args(Point('P')) def test_sympy__vector__basisdependent__BasisDependent(): from sympy.vector.basisdependent import BasisDependent #These classes have been created to maintain an OOP hierarchy #for Vectors and Dyadics. Are NOT meant to be initialized def test_sympy__vector__basisdependent__BasisDependentMul(): from sympy.vector.basisdependent import BasisDependentMul #These classes have been created to maintain an OOP hierarchy #for Vectors and Dyadics. Are NOT meant to be initialized def test_sympy__vector__basisdependent__BasisDependentAdd(): from sympy.vector.basisdependent import BasisDependentAdd #These classes have been created to maintain an OOP hierarchy #for Vectors and Dyadics. Are NOT meant to be initialized def test_sympy__vector__basisdependent__BasisDependentZero(): from sympy.vector.basisdependent import BasisDependentZero #These classes have been created to maintain an OOP hierarchy #for Vectors and Dyadics. Are NOT meant to be initialized def test_sympy__vector__vector__BaseVector(): from sympy.vector.vector import BaseVector from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(BaseVector(0, C, ' ', ' ')) def test_sympy__vector__vector__VectorAdd(): from sympy.vector.vector import VectorAdd, VectorMul from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') from sympy.abc import a, b, c, x, y, z v1 = a*C.i + b*C.j + c*C.k v2 = x*C.i + y*C.j + z*C.k assert _test_args(VectorAdd(v1, v2)) assert _test_args(VectorMul(x, v1)) def test_sympy__vector__vector__VectorMul(): from sympy.vector.vector import VectorMul from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') from sympy.abc import a assert _test_args(VectorMul(a, C.i)) def test_sympy__vector__vector__VectorZero(): from sympy.vector.vector import VectorZero assert _test_args(VectorZero()) def test_sympy__vector__vector__Vector(): from sympy.vector.vector import Vector #Vector is never to be initialized using args pass def test_sympy__vector__vector__Cross(): from sympy.vector.vector import Cross from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') _test_args(Cross(C.i, C.j)) def test_sympy__vector__vector__Dot(): from sympy.vector.vector import Dot from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') _test_args(Dot(C.i, C.j)) def test_sympy__vector__dyadic__Dyadic(): from sympy.vector.dyadic import Dyadic #Dyadic is never to be initialized using args pass def test_sympy__vector__dyadic__BaseDyadic(): from sympy.vector.dyadic import BaseDyadic from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(BaseDyadic(C.i, C.j)) def test_sympy__vector__dyadic__DyadicMul(): from sympy.vector.dyadic import BaseDyadic, DyadicMul from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(DyadicMul(3, BaseDyadic(C.i, C.j))) def test_sympy__vector__dyadic__DyadicAdd(): from sympy.vector.dyadic import BaseDyadic, DyadicAdd from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(2 * DyadicAdd(BaseDyadic(C.i, C.i), BaseDyadic(C.i, C.j))) def test_sympy__vector__dyadic__DyadicZero(): from sympy.vector.dyadic import DyadicZero assert _test_args(DyadicZero()) def test_sympy__vector__deloperator__Del(): from sympy.vector.deloperator import Del assert _test_args(Del()) def test_sympy__vector__operators__Curl(): from sympy.vector.operators import Curl from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(Curl(C.i)) def test_sympy__vector__operators__Laplacian(): from sympy.vector.operators import Laplacian from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(Laplacian(C.i)) def test_sympy__vector__operators__Divergence(): from sympy.vector.operators import Divergence from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(Divergence(C.i)) def test_sympy__vector__operators__Gradient(): from sympy.vector.operators import Gradient from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(Gradient(C.x)) def test_sympy__vector__orienters__Orienter(): from sympy.vector.orienters import Orienter #Not to be initialized def test_sympy__vector__orienters__ThreeAngleOrienter(): from sympy.vector.orienters import ThreeAngleOrienter #Not to be initialized def test_sympy__vector__orienters__AxisOrienter(): from sympy.vector.orienters import AxisOrienter from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(AxisOrienter(x, C.i)) def test_sympy__vector__orienters__BodyOrienter(): from sympy.vector.orienters import BodyOrienter assert _test_args(BodyOrienter(x, y, z, '123')) def test_sympy__vector__orienters__SpaceOrienter(): from sympy.vector.orienters import SpaceOrienter assert _test_args(SpaceOrienter(x, y, z, '123')) def test_sympy__vector__orienters__QuaternionOrienter(): from sympy.vector.orienters import QuaternionOrienter a, b, c, d = symbols('a b c d') assert _test_args(QuaternionOrienter(a, b, c, d)) def test_sympy__vector__scalar__BaseScalar(): from sympy.vector.scalar import BaseScalar from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(BaseScalar(0, C, ' ', ' ')) def test_sympy__physics__wigner__Wigner3j(): from sympy.physics.wigner import Wigner3j assert _test_args(Wigner3j(0, 0, 0, 0, 0, 0)) def test_sympy__integrals__rubi__symbol__matchpyWC(): from sympy.integrals.rubi.symbol import matchpyWC assert _test_args(matchpyWC(1, True, 'a')) def test_sympy__integrals__rubi__utility_function__rubi_unevaluated_expr(): from sympy.integrals.rubi.utility_function import rubi_unevaluated_expr a = symbols('a') assert _test_args(rubi_unevaluated_expr(a)) def test_sympy__integrals__rubi__utility_function__rubi_exp(): from sympy.integrals.rubi.utility_function import rubi_exp assert _test_args(rubi_exp(5)) def test_sympy__integrals__rubi__utility_function__rubi_log(): from sympy.integrals.rubi.utility_function import rubi_log assert _test_args(rubi_log(5)) def test_sympy__integrals__rubi__utility_function__Int(): from sympy.integrals.rubi.utility_function import Int assert _test_args(Int(5, x)) def test_sympy__integrals__rubi__utility_function__Util_Coefficient(): from sympy.integrals.rubi.utility_function import Util_Coefficient a, x = symbols('a x') assert _test_args(Util_Coefficient(a, x)) def test_sympy__integrals__rubi__utility_function__Gamma(): from sympy.integrals.rubi.utility_function import Gamma assert _test_args(Gamma(5)) def test_sympy__integrals__rubi__utility_function__Util_Part(): from sympy.integrals.rubi.utility_function import Util_Part a, b = symbols('a b') assert _test_args(Util_Part(a + b, 0)) def test_sympy__integrals__rubi__utility_function__PolyGamma(): from sympy.integrals.rubi.utility_function import PolyGamma assert _test_args(PolyGamma(1, 1)) def test_sympy__integrals__rubi__utility_function__ProductLog(): from sympy.integrals.rubi.utility_function import ProductLog assert _test_args(ProductLog(1))
68bd3494326e1730382851a1281554ff5e765aea85c56a2ccd35620930b77d0c
from __future__ import absolute_import import numbers as nums import decimal from sympy import (Rational, Symbol, Float, I, sqrt, cbrt, oo, nan, pi, E, Integer, S, factorial, Catalan, EulerGamma, GoldenRatio, TribonacciConstant, cos, exp, Number, zoo, log, Mul, Pow, Tuple, latex, Gt, Lt, Ge, Le, AlgebraicNumber, simplify, sin, fibonacci, RealField, sympify, srepr, Dummy, Sum) from sympy.core.compatibility import long from sympy.core.logic import fuzzy_not from sympy.core.numbers import (igcd, ilcm, igcdex, seterr, igcd2, igcd_lehmer, mpf_norm, comp, mod_inverse) from sympy.core.power import integer_nthroot, isqrt, integer_log from sympy.polys.domains.groundtypes import PythonRational from sympy.utilities.decorator import conserve_mpmath_dps from sympy.utilities.iterables import permutations from sympy.utilities.pytest import XFAIL, raises from mpmath import mpf from mpmath.rational import mpq import mpmath from sympy import numbers t = Symbol('t', real=False) _ninf = float(-oo) _inf = float(oo) def same_and_same_prec(a, b): # stricter matching for Floats return a == b and a._prec == b._prec def test_seterr(): seterr(divide=True) raises(ValueError, lambda: S.Zero/S.Zero) seterr(divide=False) assert S.Zero / S.Zero is S.NaN def test_mod(): x = S.Half y = Rational(3, 4) z = Rational(5, 18043) assert x % x == 0 assert x % y == S.Half assert x % z == Rational(3, 36086) assert y % x == Rational(1, 4) assert y % y == 0 assert y % z == Rational(9, 72172) assert z % x == Rational(5, 18043) assert z % y == Rational(5, 18043) assert z % z == 0 a = Float(2.6) assert (a % .2) == 0.0 assert (a % 2).round(15) == 0.6 assert (a % 0.5).round(15) == 0.1 p = Symbol('p', infinite=True) assert oo % oo is nan assert zoo % oo is nan assert 5 % oo is nan assert p % 5 is nan # In these two tests, if the precision of m does # not match the precision of the ans, then it is # likely that the change made now gives an answer # with degraded accuracy. r = Rational(500, 41) f = Float('.36', 3) m = r % f ans = Float(r % Rational(f), 3) assert m == ans and m._prec == ans._prec f = Float('8.36', 3) m = f % r ans = Float(Rational(f) % r, 3) assert m == ans and m._prec == ans._prec s = S.Zero assert s % float(1) == 0.0 # No rounding required since these numbers can be represented # exactly. assert Rational(3, 4) % Float(1.1) == 0.75 assert Float(1.5) % Rational(5, 4) == 0.25 assert Rational(5, 4).__rmod__(Float('1.5')) == 0.25 assert Float('1.5').__rmod__(Float('2.75')) == Float('1.25') assert 2.75 % Float('1.5') == Float('1.25') a = Integer(7) b = Integer(4) assert type(a % b) == Integer assert a % b == Integer(3) assert Integer(1) % Rational(2, 3) == Rational(1, 3) assert Rational(7, 5) % Integer(1) == Rational(2, 5) assert Integer(2) % 1.5 == 0.5 assert Integer(3).__rmod__(Integer(10)) == Integer(1) assert Integer(10) % 4 == Integer(2) assert 15 % Integer(4) == Integer(3) def test_divmod(): assert divmod(S(12), S(8)) == Tuple(1, 4) assert divmod(-S(12), S(8)) == Tuple(-2, 4) assert divmod(S.Zero, S.One) == Tuple(0, 0) raises(ZeroDivisionError, lambda: divmod(S.Zero, S.Zero)) raises(ZeroDivisionError, lambda: divmod(S.One, S.Zero)) assert divmod(S(12), 8) == Tuple(1, 4) assert divmod(12, S(8)) == Tuple(1, 4) assert divmod(S("2"), S("3/2")) == Tuple(S("1"), S("1/2")) assert divmod(S("3/2"), S("2")) == Tuple(S("0"), S("3/2")) assert divmod(S("2"), S("3.5")) == Tuple(S("0"), S("2")) assert divmod(S("3.5"), S("2")) == Tuple(S("1"), S("1.5")) assert divmod(S("2"), S("1/3")) == Tuple(S("6"), S("0")) assert divmod(S("1/3"), S("2")) == Tuple(S("0"), S("1/3")) assert divmod(S("2"), S("1/10")) == Tuple(S("20"), S("0")) assert divmod(S("2"), S(".1"))[0] == 19 assert divmod(S("0.1"), S("2")) == Tuple(S("0"), S("0.1")) assert divmod(S("2"), 2) == Tuple(S("1"), S("0")) assert divmod(2, S("2")) == Tuple(S("1"), S("0")) assert divmod(S("2"), 1.5) == Tuple(S("1"), S("0.5")) assert divmod(1.5, S("2")) == Tuple(S("0"), S("1.5")) assert divmod(0.3, S("2")) == Tuple(S("0"), S("0.3")) assert divmod(S("3/2"), S("3.5")) == Tuple(S("0"), S("3/2")) assert divmod(S("3.5"), S("3/2")) == Tuple(S("2"), S("0.5")) assert divmod(S("3/2"), S("1/3")) == Tuple(S("4"), S("1/6")) assert divmod(S("1/3"), S("3/2")) == Tuple(S("0"), S("1/3")) assert divmod(S("3/2"), S("0.1"))[0] == 14 assert divmod(S("0.1"), S("3/2")) == Tuple(S("0"), S("0.1")) assert divmod(S("3/2"), 2) == Tuple(S("0"), S("3/2")) assert divmod(2, S("3/2")) == Tuple(S("1"), S("1/2")) assert divmod(S("3/2"), 1.5) == Tuple(S("1"), S("0")) assert divmod(1.5, S("3/2")) == Tuple(S("1"), S("0")) assert divmod(S("3/2"), 0.3) == Tuple(S("5"), S("0")) assert divmod(0.3, S("3/2")) == Tuple(S("0"), S("0.3")) assert divmod(S("1/3"), S("3.5")) == Tuple(S("0"), S("1/3")) assert divmod(S("3.5"), S("0.1")) == Tuple(S("35"), S("0")) assert divmod(S("0.1"), S("3.5")) == Tuple(S("0"), S("0.1")) assert divmod(S("3.5"), 2) == Tuple(S("1"), S("1.5")) assert divmod(2, S("3.5")) == Tuple(S("0"), S("2")) assert divmod(S("3.5"), 1.5) == Tuple(S("2"), S("0.5")) assert divmod(1.5, S("3.5")) == Tuple(S("0"), S("1.5")) assert divmod(0.3, S("3.5")) == Tuple(S("0"), S("0.3")) assert divmod(S("0.1"), S("1/3")) == Tuple(S("0"), S("0.1")) assert divmod(S("1/3"), 2) == Tuple(S("0"), S("1/3")) assert divmod(2, S("1/3")) == Tuple(S("6"), S("0")) assert divmod(S("1/3"), 1.5) == Tuple(S("0"), S("1/3")) assert divmod(0.3, S("1/3")) == Tuple(S("0"), S("0.3")) assert divmod(S("0.1"), 2) == Tuple(S("0"), S("0.1")) assert divmod(2, S("0.1"))[0] == 19 assert divmod(S("0.1"), 1.5) == Tuple(S("0"), S("0.1")) assert divmod(1.5, S("0.1")) == Tuple(S("15"), S("0")) assert divmod(S("0.1"), 0.3) == Tuple(S("0"), S("0.1")) assert str(divmod(S("2"), 0.3)) == '(6, 0.2)' assert str(divmod(S("3.5"), S("1/3"))) == '(10, 0.166666666666667)' assert str(divmod(S("3.5"), 0.3)) == '(11, 0.2)' assert str(divmod(S("1/3"), S("0.1"))) == '(3, 0.0333333333333333)' assert str(divmod(1.5, S("1/3"))) == '(4, 0.166666666666667)' assert str(divmod(S("1/3"), 0.3)) == '(1, 0.0333333333333333)' assert str(divmod(0.3, S("0.1"))) == '(2, 0.1)' assert divmod(-3, S(2)) == (-2, 1) assert divmod(S(-3), S(2)) == (-2, 1) assert divmod(S(-3), 2) == (-2, 1) assert divmod(S(4), S(-3.1)) == Tuple(-2, -2.2) assert divmod(S(4), S(-2.1)) == divmod(4, -2.1) assert divmod(S(-8), S(-2.5) ) == Tuple(3 , -0.5) assert divmod(oo, 1) == (S.NaN, S.NaN) assert divmod(S.NaN, 1) == (S.NaN, S.NaN) assert divmod(1, S.NaN) == (S.NaN, S.NaN) ans = [(-1, oo), (-1, oo), (0, 0), (0, 1), (0, 2)] OO = float('inf') ANS = [tuple(map(float, i)) for i in ans] assert [divmod(i, oo) for i in range(-2, 3)] == ans ans = [(0, -2), (0, -1), (0, 0), (-1, -oo), (-1, -oo)] ANS = [tuple(map(float, i)) for i in ans] assert [divmod(i, -oo) for i in range(-2, 3)] == ans assert [divmod(i, -OO) for i in range(-2, 3)] == ANS assert divmod(S(3.5), S(-2)) == divmod(3.5, -2) assert divmod(-S(3.5), S(-2)) == divmod(-3.5, -2) def test_igcd(): assert igcd(0, 0) == 0 assert igcd(0, 1) == 1 assert igcd(1, 0) == 1 assert igcd(0, 7) == 7 assert igcd(7, 0) == 7 assert igcd(7, 1) == 1 assert igcd(1, 7) == 1 assert igcd(-1, 0) == 1 assert igcd(0, -1) == 1 assert igcd(-1, -1) == 1 assert igcd(-1, 7) == 1 assert igcd(7, -1) == 1 assert igcd(8, 2) == 2 assert igcd(4, 8) == 4 assert igcd(8, 16) == 8 assert igcd(7, -3) == 1 assert igcd(-7, 3) == 1 assert igcd(-7, -3) == 1 assert igcd(*[10, 20, 30]) == 10 raises(TypeError, lambda: igcd()) raises(TypeError, lambda: igcd(2)) raises(ValueError, lambda: igcd(0, None)) raises(ValueError, lambda: igcd(1, 2.2)) for args in permutations((45.1, 1, 30)): raises(ValueError, lambda: igcd(*args)) for args in permutations((1, 2, None)): raises(ValueError, lambda: igcd(*args)) def test_igcd_lehmer(): a, b = fibonacci(10001), fibonacci(10000) # len(str(a)) == 2090 # small divisors, long Euclidean sequence assert igcd_lehmer(a, b) == 1 c = fibonacci(100) assert igcd_lehmer(a*c, b*c) == c # big divisor assert igcd_lehmer(a, 10**1000) == 1 # swapping argmument assert igcd_lehmer(1, 2) == igcd_lehmer(2, 1) def test_igcd2(): # short loop assert igcd2(2**100 - 1, 2**99 - 1) == 1 # Lehmer's algorithm a, b = int(fibonacci(10001)), int(fibonacci(10000)) assert igcd2(a, b) == 1 def test_ilcm(): assert ilcm(0, 0) == 0 assert ilcm(1, 0) == 0 assert ilcm(0, 1) == 0 assert ilcm(1, 1) == 1 assert ilcm(2, 1) == 2 assert ilcm(8, 2) == 8 assert ilcm(8, 6) == 24 assert ilcm(8, 7) == 56 assert ilcm(*[10, 20, 30]) == 60 raises(ValueError, lambda: ilcm(8.1, 7)) raises(ValueError, lambda: ilcm(8, 7.1)) raises(TypeError, lambda: ilcm(8)) def test_igcdex(): assert igcdex(2, 3) == (-1, 1, 1) assert igcdex(10, 12) == (-1, 1, 2) assert igcdex(100, 2004) == (-20, 1, 4) assert igcdex(0, 0) == (0, 1, 0) assert igcdex(1, 0) == (1, 0, 1) def _strictly_equal(a, b): return (a.p, a.q, type(a.p), type(a.q)) == \ (b.p, b.q, type(b.p), type(b.q)) def _test_rational_new(cls): """ Tests that are common between Integer and Rational. """ assert cls(0) is S.Zero assert cls(1) is S.One assert cls(-1) is S.NegativeOne # These look odd, but are similar to int(): assert cls('1') is S.One assert cls(u'-1') is S.NegativeOne i = Integer(10) assert _strictly_equal(i, cls('10')) assert _strictly_equal(i, cls(u'10')) assert _strictly_equal(i, cls(long(10))) assert _strictly_equal(i, cls(i)) raises(TypeError, lambda: cls(Symbol('x'))) def test_Integer_new(): """ Test for Integer constructor """ _test_rational_new(Integer) assert _strictly_equal(Integer(0.9), S.Zero) assert _strictly_equal(Integer(10.5), Integer(10)) raises(ValueError, lambda: Integer("10.5")) assert Integer(Rational('1.' + '9'*20)) == 1 def test_Rational_new(): """" Test for Rational constructor """ _test_rational_new(Rational) n1 = S.Half assert n1 == Rational(Integer(1), 2) assert n1 == Rational(Integer(1), Integer(2)) assert n1 == Rational(1, Integer(2)) assert n1 == Rational(S.Half) assert 1 == Rational(n1, n1) assert Rational(3, 2) == Rational(S.Half, Rational(1, 3)) assert Rational(3, 1) == Rational(1, Rational(1, 3)) n3_4 = Rational(3, 4) assert Rational('3/4') == n3_4 assert -Rational('-3/4') == n3_4 assert Rational('.76').limit_denominator(4) == n3_4 assert Rational(19, 25).limit_denominator(4) == n3_4 assert Rational('19/25').limit_denominator(4) == n3_4 assert Rational(1.0, 3) == Rational(1, 3) assert Rational(1, 3.0) == Rational(1, 3) assert Rational(Float(0.5)) == S.Half assert Rational('1e2/1e-2') == Rational(10000) assert Rational('1 234') == Rational(1234) assert Rational('1/1 234') == Rational(1, 1234) assert Rational(-1, 0) is S.ComplexInfinity assert Rational(1, 0) is S.ComplexInfinity # Make sure Rational doesn't lose precision on Floats assert Rational(pi.evalf(100)).evalf(100) == pi.evalf(100) raises(TypeError, lambda: Rational('3**3')) raises(TypeError, lambda: Rational('1/2 + 2/3')) # handle fractions.Fraction instances try: import fractions assert Rational(fractions.Fraction(1, 2)) == S.Half except ImportError: pass assert Rational(mpq(2, 6)) == Rational(1, 3) assert Rational(PythonRational(2, 6)) == Rational(1, 3) def test_Number_new(): """" Test for Number constructor """ # Expected behavior on numbers and strings assert Number(1) is S.One assert Number(2).__class__ is Integer assert Number(-622).__class__ is Integer assert Number(5, 3).__class__ is Rational assert Number(5.3).__class__ is Float assert Number('1') is S.One assert Number('2').__class__ is Integer assert Number('-622').__class__ is Integer assert Number('5/3').__class__ is Rational assert Number('5.3').__class__ is Float raises(ValueError, lambda: Number('cos')) raises(TypeError, lambda: Number(cos)) a = Rational(3, 5) assert Number(a) is a # Check idempotence on Numbers u = ['inf', '-inf', 'nan', 'iNF', '+inf'] v = [oo, -oo, nan, oo, oo] for i, a in zip(u, v): assert Number(i) is a, (i, Number(i), a) def test_Number_cmp(): n1 = Number(1) n2 = Number(2) n3 = Number(-3) assert n1 < n2 assert n1 <= n2 assert n3 < n1 assert n2 > n3 assert n2 >= n3 raises(TypeError, lambda: n1 < S.NaN) raises(TypeError, lambda: n1 <= S.NaN) raises(TypeError, lambda: n1 > S.NaN) raises(TypeError, lambda: n1 >= S.NaN) def test_Rational_cmp(): n1 = Rational(1, 4) n2 = Rational(1, 3) n3 = Rational(2, 4) n4 = Rational(2, -4) n5 = Rational(0) n6 = Rational(1) n7 = Rational(3) n8 = Rational(-3) assert n8 < n5 assert n5 < n6 assert n6 < n7 assert n8 < n7 assert n7 > n8 assert (n1 + 1)**n2 < 2 assert ((n1 + n6)/n7) < 1 assert n4 < n3 assert n2 < n3 assert n1 < n2 assert n3 > n1 assert not n3 < n1 assert not (Rational(-1) > 0) assert Rational(-1) < 0 raises(TypeError, lambda: n1 < S.NaN) raises(TypeError, lambda: n1 <= S.NaN) raises(TypeError, lambda: n1 > S.NaN) raises(TypeError, lambda: n1 >= S.NaN) def test_Float(): def eq(a, b): t = Float("1.0E-15") return (-t < a - b < t) zeros = (0, S.Zero, 0., Float(0)) for i, j in permutations(zeros, 2): assert i == j for z in zeros: assert z in zeros assert S.Zero.is_zero a = Float(2) ** Float(3) assert eq(a.evalf(), Float(8)) assert eq((pi ** -1).evalf(), Float("0.31830988618379067")) a = Float(2) ** Float(4) assert eq(a.evalf(), Float(16)) assert (S(.3) == S(.5)) is False mpf = (0, 5404319552844595, -52, 53) x_str = Float((0, '13333333333333', -52, 53)) x2_str = Float((0, '26666666666666', -53, 54)) x_hex = Float((0, long(0x13333333333333), -52, 53)) x_dec = Float(mpf) assert x_str == x_hex == x_dec == Float(1.2) # x2_str was entered slightly malformed in that the mantissa # was even -- it should be odd and the even part should be # included with the exponent, but this is resolved by normalization # ONLY IF REQUIREMENTS of mpf_norm are met: the bitcount must # be exact: double the mantissa ==> increase bc by 1 assert Float(1.2)._mpf_ == mpf assert x2_str._mpf_ == mpf assert Float((0, long(0), -123, -1)) is S.NaN assert Float((0, long(0), -456, -2)) is S.Infinity assert Float((1, long(0), -789, -3)) is S.NegativeInfinity # if you don't give the full signature, it's not special assert Float((0, long(0), -123)) == Float(0) assert Float((0, long(0), -456)) == Float(0) assert Float((1, long(0), -789)) == Float(0) raises(ValueError, lambda: Float((0, 7, 1, 3), '')) assert Float('0.0').is_finite is True assert Float('0.0').is_negative is False assert Float('0.0').is_positive is False assert Float('0.0').is_infinite is False assert Float('0.0').is_zero is True # rationality properties # if the integer test fails then the use of intlike # should be removed from gamma_functions.py assert Float(1).is_integer is False assert Float(1).is_rational is None assert Float(1).is_irrational is None assert sqrt(2).n(15).is_rational is None assert sqrt(2).n(15).is_irrational is None # do not automatically evalf def teq(a): assert (a.evalf() == a) is False assert (a.evalf() != a) is True assert (a == a.evalf()) is False assert (a != a.evalf()) is True teq(pi) teq(2*pi) teq(cos(0.1, evaluate=False)) # long integer i = 12345678901234567890 assert same_and_same_prec(Float(12, ''), Float('12', '')) assert same_and_same_prec(Float(Integer(i), ''), Float(i, '')) assert same_and_same_prec(Float(i, ''), Float(str(i), 20)) assert same_and_same_prec(Float(str(i)), Float(i, '')) assert same_and_same_prec(Float(i), Float(i, '')) # inexact floats (repeating binary = denom not multiple of 2) # cannot have precision greater than 15 assert Float(.125, 22) == .125 assert Float(2.0, 22) == 2 assert float(Float('.12500000000000001', '')) == .125 raises(ValueError, lambda: Float(.12500000000000001, '')) # allow spaces Float('123 456.123 456') == Float('123456.123456') Integer('123 456') == Integer('123456') Rational('123 456.123 456') == Rational('123456.123456') assert Float(' .3e2') == Float('0.3e2') # allow underscore assert Float('1_23.4_56') == Float('123.456') assert Float('1_23.4_5_6', 12) == Float('123.456', 12) # ...but not in all cases (per Py 3.6) raises(ValueError, lambda: Float('_1')) raises(ValueError, lambda: Float('1_')) raises(ValueError, lambda: Float('1_.')) raises(ValueError, lambda: Float('1._')) raises(ValueError, lambda: Float('1__2')) raises(ValueError, lambda: Float('_inf')) # allow auto precision detection assert Float('.1', '') == Float(.1, 1) assert Float('.125', '') == Float(.125, 3) assert Float('.100', '') == Float(.1, 3) assert Float('2.0', '') == Float('2', 2) raises(ValueError, lambda: Float("12.3d-4", "")) raises(ValueError, lambda: Float(12.3, "")) raises(ValueError, lambda: Float('.')) raises(ValueError, lambda: Float('-.')) zero = Float('0.0') assert Float('-0') == zero assert Float('.0') == zero assert Float('-.0') == zero assert Float('-0.0') == zero assert Float(0.0) == zero assert Float(0) == zero assert Float(0, '') == Float('0', '') assert Float(1) == Float(1.0) assert Float(S.Zero) == zero assert Float(S.One) == Float(1.0) assert Float(decimal.Decimal('0.1'), 3) == Float('.1', 3) assert Float(decimal.Decimal('nan')) is S.NaN assert Float(decimal.Decimal('Infinity')) is S.Infinity assert Float(decimal.Decimal('-Infinity')) is S.NegativeInfinity assert '{0:.3f}'.format(Float(4.236622)) == '4.237' assert '{0:.35f}'.format(Float(pi.n(40), 40)) == \ '3.14159265358979323846264338327950288' # unicode assert Float(u'0.73908513321516064100000000') == \ Float('0.73908513321516064100000000') assert Float(u'0.73908513321516064100000000', 28) == \ Float('0.73908513321516064100000000', 28) # binary precision # Decimal value 0.1 cannot be expressed precisely as a base 2 fraction a = Float(S.One/10, dps=15) b = Float(S.One/10, dps=16) p = Float(S.One/10, precision=53) q = Float(S.One/10, precision=54) assert a._mpf_ == p._mpf_ assert not a._mpf_ == q._mpf_ assert not b._mpf_ == q._mpf_ # Precision specifying errors raises(ValueError, lambda: Float("1.23", dps=3, precision=10)) raises(ValueError, lambda: Float("1.23", dps="", precision=10)) raises(ValueError, lambda: Float("1.23", dps=3, precision="")) raises(ValueError, lambda: Float("1.23", dps="", precision="")) # from NumberSymbol assert same_and_same_prec(Float(pi, 32), pi.evalf(32)) assert same_and_same_prec(Float(Catalan), Catalan.evalf()) # oo and nan u = ['inf', '-inf', 'nan', 'iNF', '+inf'] v = [oo, -oo, nan, oo, oo] for i, a in zip(u, v): assert Float(i) is a @conserve_mpmath_dps def test_float_mpf(): import mpmath mpmath.mp.dps = 100 mp_pi = mpmath.pi() assert Float(mp_pi, 100) == Float(mp_pi._mpf_, 100) == pi.evalf(100) mpmath.mp.dps = 15 assert Float(mp_pi, 100) == Float(mp_pi._mpf_, 100) == pi.evalf(100) def test_Float_RealElement(): repi = RealField(dps=100)(pi.evalf(100)) # We still have to pass the precision because Float doesn't know what # RealElement is, but make sure it keeps full precision from the result. assert Float(repi, 100) == pi.evalf(100) def test_Float_default_to_highprec_from_str(): s = str(pi.evalf(128)) assert same_and_same_prec(Float(s), Float(s, '')) def test_Float_eval(): a = Float(3.2) assert (a**2).is_Float def test_Float_issue_2107(): a = Float(0.1, 10) b = Float("0.1", 10) assert a - a == 0 assert a + (-a) == 0 assert S.Zero + a - a == 0 assert S.Zero + a + (-a) == 0 assert b - b == 0 assert b + (-b) == 0 assert S.Zero + b - b == 0 assert S.Zero + b + (-b) == 0 def test_issue_14289(): from sympy.polys.numberfields import to_number_field a = 1 - sqrt(2) b = to_number_field(a) assert b.as_expr() == a assert b.minpoly(a).expand() == 0 def test_Float_from_tuple(): a = Float((0, '1L', 0, 1)) b = Float((0, '1', 0, 1)) assert a == b def test_Infinity(): assert oo != 1 assert 1*oo is oo assert 1 != oo assert oo != -oo assert oo != Symbol("x")**3 assert oo + 1 is oo assert 2 + oo is oo assert 3*oo + 2 is oo assert S.Half**oo == 0 assert S.Half**(-oo) is oo assert -oo*3 is -oo assert oo + oo is oo assert -oo + oo*(-5) is -oo assert 1/oo == 0 assert 1/(-oo) == 0 assert 8/oo == 0 assert oo % 2 is nan assert 2 % oo is nan assert oo/oo is nan assert oo/-oo is nan assert -oo/oo is nan assert -oo/-oo is nan assert oo - oo is nan assert oo - -oo is oo assert -oo - oo is -oo assert -oo - -oo is nan assert oo + -oo is nan assert -oo + oo is nan assert oo + oo is oo assert -oo + oo is nan assert oo + -oo is nan assert -oo + -oo is -oo assert oo*oo is oo assert -oo*oo is -oo assert oo*-oo is -oo assert -oo*-oo is oo assert oo/0 is oo assert -oo/0 is -oo assert 0/oo == 0 assert 0/-oo == 0 assert oo*0 is nan assert -oo*0 is nan assert 0*oo is nan assert 0*-oo is nan assert oo + 0 is oo assert -oo + 0 is -oo assert 0 + oo is oo assert 0 + -oo is -oo assert oo - 0 is oo assert -oo - 0 is -oo assert 0 - oo is -oo assert 0 - -oo is oo assert oo/2 is oo assert -oo/2 is -oo assert oo/-2 is -oo assert -oo/-2 is oo assert oo*2 is oo assert -oo*2 is -oo assert oo*-2 is -oo assert 2/oo == 0 assert 2/-oo == 0 assert -2/oo == 0 assert -2/-oo == 0 assert 2*oo is oo assert 2*-oo is -oo assert -2*oo is -oo assert -2*-oo is oo assert 2 + oo is oo assert 2 - oo is -oo assert -2 + oo is oo assert -2 - oo is -oo assert 2 + -oo is -oo assert 2 - -oo is oo assert -2 + -oo is -oo assert -2 - -oo is oo assert S(2) + oo is oo assert S(2) - oo is -oo assert oo/I == -oo*I assert -oo/I == oo*I assert oo*float(1) == _inf and (oo*float(1)) is oo assert -oo*float(1) == _ninf and (-oo*float(1)) is -oo assert oo/float(1) == _inf and (oo/float(1)) is oo assert -oo/float(1) == _ninf and (-oo/float(1)) is -oo assert oo*float(-1) == _ninf and (oo*float(-1)) is -oo assert -oo*float(-1) == _inf and (-oo*float(-1)) is oo assert oo/float(-1) == _ninf and (oo/float(-1)) is -oo assert -oo/float(-1) == _inf and (-oo/float(-1)) is oo assert oo + float(1) == _inf and (oo + float(1)) is oo assert -oo + float(1) == _ninf and (-oo + float(1)) is -oo assert oo - float(1) == _inf and (oo - float(1)) is oo assert -oo - float(1) == _ninf and (-oo - float(1)) is -oo assert float(1)*oo == _inf and (float(1)*oo) is oo assert float(1)*-oo == _ninf and (float(1)*-oo) is -oo assert float(1)/oo == 0 assert float(1)/-oo == 0 assert float(-1)*oo == _ninf and (float(-1)*oo) is -oo assert float(-1)*-oo == _inf and (float(-1)*-oo) is oo assert float(-1)/oo == 0 assert float(-1)/-oo == 0 assert float(1) + oo is oo assert float(1) + -oo is -oo assert float(1) - oo is -oo assert float(1) - -oo is oo assert oo == float(oo) assert (oo != float(oo)) is False assert type(float(oo)) is float assert -oo == float(-oo) assert (-oo != float(-oo)) is False assert type(float(-oo)) is float assert Float('nan') is nan assert nan*1.0 is nan assert -1.0*nan is nan assert nan*oo is nan assert nan*-oo is nan assert nan/oo is nan assert nan/-oo is nan assert nan + oo is nan assert nan + -oo is nan assert nan - oo is nan assert nan - -oo is nan assert -oo * S.Zero is nan assert oo*nan is nan assert -oo*nan is nan assert oo/nan is nan assert -oo/nan is nan assert oo + nan is nan assert -oo + nan is nan assert oo - nan is nan assert -oo - nan is nan assert S.Zero * oo is nan assert oo.is_Rational is False assert isinstance(oo, Rational) is False assert S.One/oo == 0 assert -S.One/oo == 0 assert S.One/-oo == 0 assert -S.One/-oo == 0 assert S.One*oo is oo assert -S.One*oo is -oo assert S.One*-oo is -oo assert -S.One*-oo is oo assert S.One/nan is nan assert S.One - -oo is oo assert S.One + nan is nan assert S.One - nan is nan assert nan - S.One is nan assert nan/S.One is nan assert -oo - S.One is -oo def test_Infinity_2(): x = Symbol('x') assert oo*x != oo assert oo*(pi - 1) is oo assert oo*(1 - pi) is -oo assert (-oo)*x != -oo assert (-oo)*(pi - 1) is -oo assert (-oo)*(1 - pi) is oo assert (-1)**S.NaN is S.NaN assert oo - _inf is S.NaN assert oo + _ninf is S.NaN assert oo*0 is S.NaN assert oo/_inf is S.NaN assert oo/_ninf is S.NaN assert oo**S.NaN is S.NaN assert -oo + _inf is S.NaN assert -oo - _ninf is S.NaN assert -oo*S.NaN is S.NaN assert -oo*0 is S.NaN assert -oo/_inf is S.NaN assert -oo/_ninf is S.NaN assert -oo/S.NaN is S.NaN assert abs(-oo) is oo assert all((-oo)**i is S.NaN for i in (oo, -oo, S.NaN)) assert (-oo)**3 is -oo assert (-oo)**2 is oo assert abs(S.ComplexInfinity) is oo def test_Mul_Infinity_Zero(): assert Float(0)*_inf is nan assert Float(0)*_ninf is nan assert Float(0)*_inf is nan assert Float(0)*_ninf is nan assert _inf*Float(0) is nan assert _ninf*Float(0) is nan assert _inf*Float(0) is nan assert _ninf*Float(0) is nan def test_Div_By_Zero(): assert 1/S.Zero is zoo assert 1/Float(0) is zoo assert 0/S.Zero is nan assert 0/Float(0) is nan assert S.Zero/0 is nan assert Float(0)/0 is nan assert -1/S.Zero is zoo assert -1/Float(0) is zoo def test_Infinity_inequations(): assert oo > pi assert not (oo < pi) assert exp(-3) < oo assert _inf > pi assert not (_inf < pi) assert exp(-3) < _inf raises(TypeError, lambda: oo < I) raises(TypeError, lambda: oo <= I) raises(TypeError, lambda: oo > I) raises(TypeError, lambda: oo >= I) raises(TypeError, lambda: -oo < I) raises(TypeError, lambda: -oo <= I) raises(TypeError, lambda: -oo > I) raises(TypeError, lambda: -oo >= I) raises(TypeError, lambda: I < oo) raises(TypeError, lambda: I <= oo) raises(TypeError, lambda: I > oo) raises(TypeError, lambda: I >= oo) raises(TypeError, lambda: I < -oo) raises(TypeError, lambda: I <= -oo) raises(TypeError, lambda: I > -oo) raises(TypeError, lambda: I >= -oo) assert oo > -oo and oo >= -oo assert (oo < -oo) == False and (oo <= -oo) == False assert -oo < oo and -oo <= oo assert (-oo > oo) == False and (-oo >= oo) == False assert (oo < oo) == False # issue 7775 assert (oo > oo) == False assert (-oo > -oo) == False and (-oo < -oo) == False assert oo >= oo and oo <= oo and -oo >= -oo and -oo <= -oo assert (-oo < -_inf) == False assert (oo > _inf) == False assert -oo >= -_inf assert oo <= _inf x = Symbol('x') b = Symbol('b', finite=True, real=True) assert (x < oo) == Lt(x, oo) # issue 7775 assert b < oo and b > -oo and b <= oo and b >= -oo assert oo > b and oo >= b and (oo < b) == False and (oo <= b) == False assert (-oo > b) == False and (-oo >= b) == False and -oo < b and -oo <= b assert (oo < x) == Lt(oo, x) and (oo > x) == Gt(oo, x) assert (oo <= x) == Le(oo, x) and (oo >= x) == Ge(oo, x) assert (-oo < x) == Lt(-oo, x) and (-oo > x) == Gt(-oo, x) assert (-oo <= x) == Le(-oo, x) and (-oo >= x) == Ge(-oo, x) def test_NaN(): assert nan is nan assert nan != 1 assert 1*nan is nan assert 1 != nan assert -nan is nan assert oo != Symbol("x")**3 assert 2 + nan is nan assert 3*nan + 2 is nan assert -nan*3 is nan assert nan + nan is nan assert -nan + nan*(-5) is nan assert 8/nan is nan raises(TypeError, lambda: nan > 0) raises(TypeError, lambda: nan < 0) raises(TypeError, lambda: nan >= 0) raises(TypeError, lambda: nan <= 0) raises(TypeError, lambda: 0 < nan) raises(TypeError, lambda: 0 > nan) raises(TypeError, lambda: 0 <= nan) raises(TypeError, lambda: 0 >= nan) assert nan**0 == 1 # as per IEEE 754 assert 1**nan is nan # IEEE 754 is not the best choice for symbolic work # test Pow._eval_power's handling of NaN assert Pow(nan, 0, evaluate=False)**2 == 1 for n in (1, 1., S.One, S.NegativeOne, Float(1)): assert n + nan is nan assert n - nan is nan assert nan + n is nan assert nan - n is nan assert n/nan is nan assert nan/n is nan def test_special_numbers(): assert isinstance(S.NaN, Number) is True assert isinstance(S.Infinity, Number) is True assert isinstance(S.NegativeInfinity, Number) is True assert S.NaN.is_number is True assert S.Infinity.is_number is True assert S.NegativeInfinity.is_number is True assert S.ComplexInfinity.is_number is True assert isinstance(S.NaN, Rational) is False assert isinstance(S.Infinity, Rational) is False assert isinstance(S.NegativeInfinity, Rational) is False assert S.NaN.is_rational is not True assert S.Infinity.is_rational is not True assert S.NegativeInfinity.is_rational is not True def test_powers(): assert integer_nthroot(1, 2) == (1, True) assert integer_nthroot(1, 5) == (1, True) assert integer_nthroot(2, 1) == (2, True) assert integer_nthroot(2, 2) == (1, False) assert integer_nthroot(2, 5) == (1, False) assert integer_nthroot(4, 2) == (2, True) assert integer_nthroot(123**25, 25) == (123, True) assert integer_nthroot(123**25 + 1, 25) == (123, False) assert integer_nthroot(123**25 - 1, 25) == (122, False) assert integer_nthroot(1, 1) == (1, True) assert integer_nthroot(0, 1) == (0, True) assert integer_nthroot(0, 3) == (0, True) assert integer_nthroot(10000, 1) == (10000, True) assert integer_nthroot(4, 2) == (2, True) assert integer_nthroot(16, 2) == (4, True) assert integer_nthroot(26, 2) == (5, False) assert integer_nthroot(1234567**7, 7) == (1234567, True) assert integer_nthroot(1234567**7 + 1, 7) == (1234567, False) assert integer_nthroot(1234567**7 - 1, 7) == (1234566, False) b = 25**1000 assert integer_nthroot(b, 1000) == (25, True) assert integer_nthroot(b + 1, 1000) == (25, False) assert integer_nthroot(b - 1, 1000) == (24, False) c = 10**400 c2 = c**2 assert integer_nthroot(c2, 2) == (c, True) assert integer_nthroot(c2 + 1, 2) == (c, False) assert integer_nthroot(c2 - 1, 2) == (c - 1, False) assert integer_nthroot(2, 10**10) == (1, False) p, r = integer_nthroot(int(factorial(10000)), 100) assert p % (10**10) == 5322420655 assert not r # Test that this is fast assert integer_nthroot(2, 10**10) == (1, False) # output should be int if possible assert type(integer_nthroot(2**61, 2)[0]) is int def test_integer_nthroot_overflow(): assert integer_nthroot(10**(50*50), 50) == (10**50, True) assert integer_nthroot(10**100000, 10000) == (10**10, True) def test_integer_log(): raises(ValueError, lambda: integer_log(2, 1)) raises(ValueError, lambda: integer_log(0, 2)) raises(ValueError, lambda: integer_log(1.1, 2)) raises(ValueError, lambda: integer_log(1, 2.2)) assert integer_log(1, 2) == (0, True) assert integer_log(1, 3) == (0, True) assert integer_log(2, 3) == (0, False) assert integer_log(3, 3) == (1, True) assert integer_log(3*2, 3) == (1, False) assert integer_log(3**2, 3) == (2, True) assert integer_log(3*4, 3) == (2, False) assert integer_log(3**3, 3) == (3, True) assert integer_log(27, 5) == (2, False) assert integer_log(2, 3) == (0, False) assert integer_log(-4, -2) == (2, False) assert integer_log(27, -3) == (3, False) assert integer_log(-49, 7) == (0, False) assert integer_log(-49, -7) == (2, False) def test_isqrt(): from math import sqrt as _sqrt limit = 4503599761588223 assert int(_sqrt(limit)) == integer_nthroot(limit, 2)[0] assert int(_sqrt(limit + 1)) != integer_nthroot(limit + 1, 2)[0] assert isqrt(limit + 1) == integer_nthroot(limit + 1, 2)[0] assert isqrt(limit + S.Half) == integer_nthroot(limit, 2)[0] assert isqrt(limit + 1 + S.Half) == integer_nthroot(limit + 1, 2)[0] assert isqrt(limit + 2 + S.Half) == integer_nthroot(limit + 2, 2)[0] # Regression tests for https://github.com/sympy/sympy/issues/17034 assert isqrt(4503599761588224) == 67108864 assert isqrt(9999999999999999) == 99999999 # Other corner cases, especially involving non-integers. raises(ValueError, lambda: isqrt(-1)) raises(ValueError, lambda: isqrt(-10**1000)) raises(ValueError, lambda: isqrt(Rational(-1, 2))) tiny = Rational(1, 10**1000) raises(ValueError, lambda: isqrt(-tiny)) assert isqrt(1-tiny) == 0 assert isqrt(4503599761588224-tiny) == 67108864 assert isqrt(10**100 - tiny) == 10**50 - 1 # Check that using an inaccurate math.sqrt doesn't affect the results. from sympy.core import power old_sqrt = power._sqrt power._sqrt = lambda x: 2.999999999 try: assert isqrt(9) == 3 assert isqrt(10000) == 100 finally: power._sqrt = old_sqrt def test_powers_Integer(): """Test Integer._eval_power""" # check infinity assert S.One ** S.Infinity is S.NaN assert S.NegativeOne** S.Infinity is S.NaN assert S(2) ** S.Infinity is S.Infinity assert S(-2)** S.Infinity == S.Infinity + S.Infinity * S.ImaginaryUnit assert S(0) ** S.Infinity is S.Zero # check Nan assert S.One ** S.NaN is S.NaN assert S.NegativeOne ** S.NaN is S.NaN # check for exact roots assert S.NegativeOne ** Rational(6, 5) == - (-1)**(S.One/5) assert sqrt(S(4)) == 2 assert sqrt(S(-4)) == I * 2 assert S(16) ** Rational(1, 4) == 2 assert S(-16) ** Rational(1, 4) == 2 * (-1)**Rational(1, 4) assert S(9) ** Rational(3, 2) == 27 assert S(-9) ** Rational(3, 2) == -27*I assert S(27) ** Rational(2, 3) == 9 assert S(-27) ** Rational(2, 3) == 9 * (S.NegativeOne ** Rational(2, 3)) assert (-2) ** Rational(-2, 1) == Rational(1, 4) # not exact roots assert sqrt(-3) == I*sqrt(3) assert (3) ** (Rational(3, 2)) == 3 * sqrt(3) assert (-3) ** (Rational(3, 2)) == - 3 * sqrt(-3) assert (-3) ** (Rational(5, 2)) == 9 * I * sqrt(3) assert (-3) ** (Rational(7, 2)) == - I * 27 * sqrt(3) assert (2) ** (Rational(3, 2)) == 2 * sqrt(2) assert (2) ** (Rational(-3, 2)) == sqrt(2) / 4 assert (81) ** (Rational(2, 3)) == 9 * (S(3) ** (Rational(2, 3))) assert (-81) ** (Rational(2, 3)) == 9 * (S(-3) ** (Rational(2, 3))) assert (-3) ** Rational(-7, 3) == \ -(-1)**Rational(2, 3)*3**Rational(2, 3)/27 assert (-3) ** Rational(-2, 3) == \ -(-1)**Rational(1, 3)*3**Rational(1, 3)/3 # join roots assert sqrt(6) + sqrt(24) == 3*sqrt(6) assert sqrt(2) * sqrt(3) == sqrt(6) # separate symbols & constansts x = Symbol("x") assert sqrt(49 * x) == 7 * sqrt(x) assert sqrt((3 - sqrt(pi)) ** 2) == 3 - sqrt(pi) # check that it is fast for big numbers assert (2**64 + 1) ** Rational(4, 3) assert (2**64 + 1) ** Rational(17, 25) # negative rational power and negative base assert (-3) ** Rational(-7, 3) == \ -(-1)**Rational(2, 3)*3**Rational(2, 3)/27 assert (-3) ** Rational(-2, 3) == \ -(-1)**Rational(1, 3)*3**Rational(1, 3)/3 assert (-2) ** Rational(-10, 3) == \ (-1)**Rational(2, 3)*2**Rational(2, 3)/16 assert abs(Pow(-2, Rational(-10, 3)).n() - Pow(-2, Rational(-10, 3), evaluate=False).n()) < 1e-16 # negative base and rational power with some simplification assert (-8) ** Rational(2, 5) == \ 2*(-1)**Rational(2, 5)*2**Rational(1, 5) assert (-4) ** Rational(9, 5) == \ -8*(-1)**Rational(4, 5)*2**Rational(3, 5) assert S(1234).factors() == {617: 1, 2: 1} assert Rational(2*3, 3*5*7).factors() == {2: 1, 5: -1, 7: -1} # test that eval_power factors numbers bigger than # the current limit in factor_trial_division (2**15) from sympy import nextprime n = nextprime(2**15) assert sqrt(n**2) == n assert sqrt(n**3) == n*sqrt(n) assert sqrt(4*n) == 2*sqrt(n) # check that factors of base with powers sharing gcd with power are removed assert (2**4*3)**Rational(1, 6) == 2**Rational(2, 3)*3**Rational(1, 6) assert (2**4*3)**Rational(5, 6) == 8*2**Rational(1, 3)*3**Rational(5, 6) # check that bases sharing a gcd are exptracted assert 2**Rational(1, 3)*3**Rational(1, 4)*6**Rational(1, 5) == \ 2**Rational(8, 15)*3**Rational(9, 20) assert sqrt(8)*24**Rational(1, 3)*6**Rational(1, 5) == \ 4*2**Rational(7, 10)*3**Rational(8, 15) assert sqrt(8)*(-24)**Rational(1, 3)*(-6)**Rational(1, 5) == \ 4*(-3)**Rational(8, 15)*2**Rational(7, 10) assert 2**Rational(1, 3)*2**Rational(8, 9) == 2*2**Rational(2, 9) assert 2**Rational(2, 3)*6**Rational(1, 3) == 2*3**Rational(1, 3) assert 2**Rational(2, 3)*6**Rational(8, 9) == \ 2*2**Rational(5, 9)*3**Rational(8, 9) assert (-2)**Rational(2, S(3))*(-4)**Rational(1, S(3)) == -2*2**Rational(1, 3) assert 3*Pow(3, 2, evaluate=False) == 3**3 assert 3*Pow(3, Rational(-1, 3), evaluate=False) == 3**Rational(2, 3) assert (-2)**Rational(1, 3)*(-3)**Rational(1, 4)*(-5)**Rational(5, 6) == \ -(-1)**Rational(5, 12)*2**Rational(1, 3)*3**Rational(1, 4) * \ 5**Rational(5, 6) assert Integer(-2)**Symbol('', even=True) == \ Integer(2)**Symbol('', even=True) assert (-1)**Float(.5) == 1.0*I def test_powers_Rational(): """Test Rational._eval_power""" # check infinity assert S.Half ** S.Infinity == 0 assert Rational(3, 2) ** S.Infinity is S.Infinity assert Rational(-1, 2) ** S.Infinity == 0 assert Rational(-3, 2) ** S.Infinity == \ S.Infinity + S.Infinity * S.ImaginaryUnit # check Nan assert Rational(3, 4) ** S.NaN is S.NaN assert Rational(-2, 3) ** S.NaN is S.NaN # exact roots on numerator assert sqrt(Rational(4, 3)) == 2 * sqrt(3) / 3 assert Rational(4, 3) ** Rational(3, 2) == 8 * sqrt(3) / 9 assert sqrt(Rational(-4, 3)) == I * 2 * sqrt(3) / 3 assert Rational(-4, 3) ** Rational(3, 2) == - I * 8 * sqrt(3) / 9 assert Rational(27, 2) ** Rational(1, 3) == 3 * (2 ** Rational(2, 3)) / 2 assert Rational(5**3, 8**3) ** Rational(4, 3) == Rational(5**4, 8**4) # exact root on denominator assert sqrt(Rational(1, 4)) == S.Half assert sqrt(Rational(1, -4)) == I * S.Half assert sqrt(Rational(3, 4)) == sqrt(3) / 2 assert sqrt(Rational(3, -4)) == I * sqrt(3) / 2 assert Rational(5, 27) ** Rational(1, 3) == (5 ** Rational(1, 3)) / 3 # not exact roots assert sqrt(S.Half) == sqrt(2) / 2 assert sqrt(Rational(-4, 7)) == I * sqrt(Rational(4, 7)) assert Rational(-3, 2)**Rational(-7, 3) == \ -4*(-1)**Rational(2, 3)*2**Rational(1, 3)*3**Rational(2, 3)/27 assert Rational(-3, 2)**Rational(-2, 3) == \ -(-1)**Rational(1, 3)*2**Rational(2, 3)*3**Rational(1, 3)/3 assert Rational(-3, 2)**Rational(-10, 3) == \ 8*(-1)**Rational(2, 3)*2**Rational(1, 3)*3**Rational(2, 3)/81 assert abs(Pow(Rational(-2, 3), Rational(-7, 4)).n() - Pow(Rational(-2, 3), Rational(-7, 4), evaluate=False).n()) < 1e-16 # negative integer power and negative rational base assert Rational(-2, 3) ** Rational(-2, 1) == Rational(9, 4) a = Rational(1, 10) assert a**Float(a, 2) == Float(a, 2)**Float(a, 2) assert Rational(-2, 3)**Symbol('', even=True) == \ Rational(2, 3)**Symbol('', even=True) def test_powers_Float(): assert str((S('-1/10')**S('3/10')).n()) == str(Float(-.1)**(.3)) def test_abs1(): assert Rational(1, 6) != Rational(-1, 6) assert abs(Rational(1, 6)) == abs(Rational(-1, 6)) def test_accept_int(): assert Float(4) == 4 def test_dont_accept_str(): assert Float("0.2") != "0.2" assert not (Float("0.2") == "0.2") def test_int(): a = Rational(5) assert int(a) == 5 a = Rational(9, 10) assert int(a) == int(-a) == 0 assert 1/(-1)**Rational(2, 3) == -(-1)**Rational(1, 3) assert int(pi) == 3 assert int(E) == 2 assert int(GoldenRatio) == 1 assert int(TribonacciConstant) == 2 # issue 10368 a = Rational(32442016954, 78058255275) assert type(int(a)) is type(int(-a)) is int def test_long(): a = Rational(5) assert long(a) == 5 a = Rational(9, 10) assert long(a) == long(-a) == 0 a = Integer(2**100) assert long(a) == a assert long(pi) == 3 assert long(E) == 2 assert long(GoldenRatio) == 1 assert long(TribonacciConstant) == 2 def test_real_bug(): x = Symbol("x") assert str(2.0*x*x) in ["(2.0*x)*x", "2.0*x**2", "2.00000000000000*x**2"] assert str(2.1*x*x) != "(2.0*x)*x" def test_bug_sqrt(): assert ((sqrt(Rational(2)) + 1)*(sqrt(Rational(2)) - 1)).expand() == 1 def test_pi_Pi(): "Test that pi (instance) is imported, but Pi (class) is not" from sympy import pi # noqa with raises(ImportError): from sympy import Pi # noqa def test_no_len(): # there should be no len for numbers raises(TypeError, lambda: len(Rational(2))) raises(TypeError, lambda: len(Rational(2, 3))) raises(TypeError, lambda: len(Integer(2))) def test_issue_3321(): assert sqrt(Rational(1, 5)) == Rational(1, 5)**S.Half assert 5 * sqrt(Rational(1, 5)) == sqrt(5) def test_issue_3692(): assert ((-1)**Rational(1, 6)).expand(complex=True) == I/2 + sqrt(3)/2 assert ((-5)**Rational(1, 6)).expand(complex=True) == \ 5**Rational(1, 6)*I/2 + 5**Rational(1, 6)*sqrt(3)/2 assert ((-64)**Rational(1, 6)).expand(complex=True) == I + sqrt(3) def test_issue_3423(): x = Symbol("x") assert sqrt(x - 1).as_base_exp() == (x - 1, S.Half) assert sqrt(x - 1) != I*sqrt(1 - x) def test_issue_3449(): x = Symbol("x") assert sqrt(x - 1).subs(x, 5) == 2 def test_issue_13890(): x = Symbol("x") e = (-x/4 - S.One/12)**x - 1 f = simplify(e) a = Rational(9, 5) assert abs(e.subs(x,a).evalf() - f.subs(x,a).evalf()) < 1e-15 def test_Integer_factors(): def F(i): return Integer(i).factors() assert F(1) == {} assert F(2) == {2: 1} assert F(3) == {3: 1} assert F(4) == {2: 2} assert F(5) == {5: 1} assert F(6) == {2: 1, 3: 1} assert F(7) == {7: 1} assert F(8) == {2: 3} assert F(9) == {3: 2} assert F(10) == {2: 1, 5: 1} assert F(11) == {11: 1} assert F(12) == {2: 2, 3: 1} assert F(13) == {13: 1} assert F(14) == {2: 1, 7: 1} assert F(15) == {3: 1, 5: 1} assert F(16) == {2: 4} assert F(17) == {17: 1} assert F(18) == {2: 1, 3: 2} assert F(19) == {19: 1} assert F(20) == {2: 2, 5: 1} assert F(21) == {3: 1, 7: 1} assert F(22) == {2: 1, 11: 1} assert F(23) == {23: 1} assert F(24) == {2: 3, 3: 1} assert F(25) == {5: 2} assert F(26) == {2: 1, 13: 1} assert F(27) == {3: 3} assert F(28) == {2: 2, 7: 1} assert F(29) == {29: 1} assert F(30) == {2: 1, 3: 1, 5: 1} assert F(31) == {31: 1} assert F(32) == {2: 5} assert F(33) == {3: 1, 11: 1} assert F(34) == {2: 1, 17: 1} assert F(35) == {5: 1, 7: 1} assert F(36) == {2: 2, 3: 2} assert F(37) == {37: 1} assert F(38) == {2: 1, 19: 1} assert F(39) == {3: 1, 13: 1} assert F(40) == {2: 3, 5: 1} assert F(41) == {41: 1} assert F(42) == {2: 1, 3: 1, 7: 1} assert F(43) == {43: 1} assert F(44) == {2: 2, 11: 1} assert F(45) == {3: 2, 5: 1} assert F(46) == {2: 1, 23: 1} assert F(47) == {47: 1} assert F(48) == {2: 4, 3: 1} assert F(49) == {7: 2} assert F(50) == {2: 1, 5: 2} assert F(51) == {3: 1, 17: 1} def test_Rational_factors(): def F(p, q, visual=None): return Rational(p, q).factors(visual=visual) assert F(2, 3) == {2: 1, 3: -1} assert F(2, 9) == {2: 1, 3: -2} assert F(2, 15) == {2: 1, 3: -1, 5: -1} assert F(6, 10) == {3: 1, 5: -1} def test_issue_4107(): assert pi*(E + 10) + pi*(-E - 10) != 0 assert pi*(E + 10**10) + pi*(-E - 10**10) != 0 assert pi*(E + 10**20) + pi*(-E - 10**20) != 0 assert pi*(E + 10**80) + pi*(-E - 10**80) != 0 assert (pi*(E + 10) + pi*(-E - 10)).expand() == 0 assert (pi*(E + 10**10) + pi*(-E - 10**10)).expand() == 0 assert (pi*(E + 10**20) + pi*(-E - 10**20)).expand() == 0 assert (pi*(E + 10**80) + pi*(-E - 10**80)).expand() == 0 def test_IntegerInteger(): a = Integer(4) b = Integer(a) assert a == b def test_Rational_gcd_lcm_cofactors(): assert Integer(4).gcd(2) == Integer(2) assert Integer(4).lcm(2) == Integer(4) assert Integer(4).gcd(Integer(2)) == Integer(2) assert Integer(4).lcm(Integer(2)) == Integer(4) a, b = 720**99911, 480**12342 assert Integer(a).lcm(b) == a*b/Integer(a).gcd(b) assert Integer(4).gcd(3) == Integer(1) assert Integer(4).lcm(3) == Integer(12) assert Integer(4).gcd(Integer(3)) == Integer(1) assert Integer(4).lcm(Integer(3)) == Integer(12) assert Rational(4, 3).gcd(2) == Rational(2, 3) assert Rational(4, 3).lcm(2) == Integer(4) assert Rational(4, 3).gcd(Integer(2)) == Rational(2, 3) assert Rational(4, 3).lcm(Integer(2)) == Integer(4) assert Integer(4).gcd(Rational(2, 9)) == Rational(2, 9) assert Integer(4).lcm(Rational(2, 9)) == Integer(4) assert Rational(4, 3).gcd(Rational(2, 9)) == Rational(2, 9) assert Rational(4, 3).lcm(Rational(2, 9)) == Rational(4, 3) assert Rational(4, 5).gcd(Rational(2, 9)) == Rational(2, 45) assert Rational(4, 5).lcm(Rational(2, 9)) == Integer(4) assert Rational(5, 9).lcm(Rational(3, 7)) == Rational(Integer(5).lcm(3),Integer(9).gcd(7)) assert Integer(4).cofactors(2) == (Integer(2), Integer(2), Integer(1)) assert Integer(4).cofactors(Integer(2)) == \ (Integer(2), Integer(2), Integer(1)) assert Integer(4).gcd(Float(2.0)) == S.One assert Integer(4).lcm(Float(2.0)) == Float(8.0) assert Integer(4).cofactors(Float(2.0)) == (S.One, Integer(4), Float(2.0)) assert S.Half.gcd(Float(2.0)) == S.One assert S.Half.lcm(Float(2.0)) == Float(1.0) assert S.Half.cofactors(Float(2.0)) == \ (S.One, S.Half, Float(2.0)) def test_Float_gcd_lcm_cofactors(): assert Float(2.0).gcd(Integer(4)) == S.One assert Float(2.0).lcm(Integer(4)) == Float(8.0) assert Float(2.0).cofactors(Integer(4)) == (S.One, Float(2.0), Integer(4)) assert Float(2.0).gcd(S.Half) == S.One assert Float(2.0).lcm(S.Half) == Float(1.0) assert Float(2.0).cofactors(S.Half) == \ (S.One, Float(2.0), S.Half) def test_issue_4611(): assert abs(pi._evalf(50) - 3.14159265358979) < 1e-10 assert abs(E._evalf(50) - 2.71828182845905) < 1e-10 assert abs(Catalan._evalf(50) - 0.915965594177219) < 1e-10 assert abs(EulerGamma._evalf(50) - 0.577215664901533) < 1e-10 assert abs(GoldenRatio._evalf(50) - 1.61803398874989) < 1e-10 assert abs(TribonacciConstant._evalf(50) - 1.83928675521416) < 1e-10 x = Symbol("x") assert (pi + x).evalf() == pi.evalf() + x assert (E + x).evalf() == E.evalf() + x assert (Catalan + x).evalf() == Catalan.evalf() + x assert (EulerGamma + x).evalf() == EulerGamma.evalf() + x assert (GoldenRatio + x).evalf() == GoldenRatio.evalf() + x assert (TribonacciConstant + x).evalf() == TribonacciConstant.evalf() + x @conserve_mpmath_dps def test_conversion_to_mpmath(): assert mpmath.mpmathify(Integer(1)) == mpmath.mpf(1) assert mpmath.mpmathify(S.Half) == mpmath.mpf(0.5) assert mpmath.mpmathify(Float('1.23', 15)) == mpmath.mpf('1.23') assert mpmath.mpmathify(I) == mpmath.mpc(1j) assert mpmath.mpmathify(1 + 2*I) == mpmath.mpc(1 + 2j) assert mpmath.mpmathify(1.0 + 2*I) == mpmath.mpc(1 + 2j) assert mpmath.mpmathify(1 + 2.0*I) == mpmath.mpc(1 + 2j) assert mpmath.mpmathify(1.0 + 2.0*I) == mpmath.mpc(1 + 2j) assert mpmath.mpmathify(S.Half + S.Half*I) == mpmath.mpc(0.5 + 0.5j) assert mpmath.mpmathify(2*I) == mpmath.mpc(2j) assert mpmath.mpmathify(2.0*I) == mpmath.mpc(2j) assert mpmath.mpmathify(S.Half*I) == mpmath.mpc(0.5j) mpmath.mp.dps = 100 assert mpmath.mpmathify(pi.evalf(100) + pi.evalf(100)*I) == mpmath.pi + mpmath.pi*mpmath.j assert mpmath.mpmathify(pi.evalf(100)*I) == mpmath.pi*mpmath.j def test_relational(): # real x = S(.1) assert (x != cos) is True assert (x == cos) is False # rational x = Rational(1, 3) assert (x != cos) is True assert (x == cos) is False # integer defers to rational so these tests are omitted # number symbol x = pi assert (x != cos) is True assert (x == cos) is False def test_Integer_as_index(): assert 'hello'[Integer(2):] == 'llo' def test_Rational_int(): assert int( Rational(7, 5)) == 1 assert int( S.Half) == 0 assert int(Rational(-1, 2)) == 0 assert int(-Rational(7, 5)) == -1 def test_zoo(): b = Symbol('b', finite=True) nz = Symbol('nz', nonzero=True) p = Symbol('p', positive=True) n = Symbol('n', negative=True) im = Symbol('i', imaginary=True) c = Symbol('c', complex=True) pb = Symbol('pb', positive=True, finite=True) nb = Symbol('nb', negative=True, finite=True) imb = Symbol('ib', imaginary=True, finite=True) for i in [I, S.Infinity, S.NegativeInfinity, S.Zero, S.One, S.Pi, S.Half, S(3), log(3), b, nz, p, n, im, pb, nb, imb, c]: if i.is_finite and (i.is_real or i.is_imaginary): assert i + zoo is zoo assert i - zoo is zoo assert zoo + i is zoo assert zoo - i is zoo elif i.is_finite is not False: assert (i + zoo).is_Add assert (i - zoo).is_Add assert (zoo + i).is_Add assert (zoo - i).is_Add else: assert (i + zoo) is S.NaN assert (i - zoo) is S.NaN assert (zoo + i) is S.NaN assert (zoo - i) is S.NaN if fuzzy_not(i.is_zero) and (i.is_extended_real or i.is_imaginary): assert i*zoo is zoo assert zoo*i is zoo elif i.is_zero: assert i*zoo is S.NaN assert zoo*i is S.NaN else: assert (i*zoo).is_Mul assert (zoo*i).is_Mul if fuzzy_not((1/i).is_zero) and (i.is_real or i.is_imaginary): assert zoo/i is zoo elif (1/i).is_zero: assert zoo/i is S.NaN elif i.is_zero: assert zoo/i is zoo else: assert (zoo/i).is_Mul assert (I*oo).is_Mul # allow directed infinity assert zoo + zoo is S.NaN assert zoo * zoo is zoo assert zoo - zoo is S.NaN assert zoo/zoo is S.NaN assert zoo**zoo is S.NaN assert zoo**0 is S.One assert zoo**2 is zoo assert 1/zoo is S.Zero assert Mul.flatten([S.NegativeOne, oo, S(0)]) == ([S.NaN], [], None) def test_issue_4122(): x = Symbol('x', nonpositive=True) assert oo + x is oo x = Symbol('x', extended_nonpositive=True) assert (oo + x).is_Add x = Symbol('x', finite=True) assert (oo + x).is_Add # x could be imaginary x = Symbol('x', nonnegative=True) assert oo + x is oo x = Symbol('x', extended_nonnegative=True) assert oo + x is oo x = Symbol('x', finite=True, real=True) assert oo + x is oo # similarly for negative infinity x = Symbol('x', nonnegative=True) assert -oo + x is -oo x = Symbol('x', extended_nonnegative=True) assert (-oo + x).is_Add x = Symbol('x', finite=True) assert (-oo + x).is_Add x = Symbol('x', nonpositive=True) assert -oo + x is -oo x = Symbol('x', extended_nonpositive=True) assert -oo + x is -oo x = Symbol('x', finite=True, real=True) assert -oo + x is -oo def test_GoldenRatio_expand(): assert GoldenRatio.expand(func=True) == S.Half + sqrt(5)/2 def test_TribonacciConstant_expand(): assert TribonacciConstant.expand(func=True) == \ (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3 def test_as_content_primitive(): assert S.Zero.as_content_primitive() == (1, 0) assert S.Half.as_content_primitive() == (S.Half, 1) assert (Rational(-1, 2)).as_content_primitive() == (S.Half, -1) assert S(3).as_content_primitive() == (3, 1) assert S(3.1).as_content_primitive() == (1, 3.1) def test_hashing_sympy_integers(): # Test for issue 5072 assert set([Integer(3)]) == set([int(3)]) assert hash(Integer(4)) == hash(int(4)) def test_rounding_issue_4172(): assert int((E**100).round()) == \ 26881171418161354484126255515800135873611119 assert int((pi**100).round()) == \ 51878483143196131920862615246303013562686760680406 assert int((Rational(1)/EulerGamma**100).round()) == \ 734833795660954410469466 @XFAIL def test_mpmath_issues(): from mpmath.libmp.libmpf import _normalize import mpmath.libmp as mlib rnd = mlib.round_nearest mpf = (0, long(0), -123, -1, 53, rnd) # nan assert _normalize(mpf, 53) != (0, long(0), 0, 0) mpf = (0, long(0), -456, -2, 53, rnd) # +inf assert _normalize(mpf, 53) != (0, long(0), 0, 0) mpf = (1, long(0), -789, -3, 53, rnd) # -inf assert _normalize(mpf, 53) != (0, long(0), 0, 0) from mpmath.libmp.libmpf import fnan assert mlib.mpf_eq(fnan, fnan) def test_Catalan_EulerGamma_prec(): n = GoldenRatio f = Float(n.n(), 5) assert f._mpf_ == (0, long(212079), -17, 18) assert f._prec == 20 assert n._as_mpf_val(20) == f._mpf_ n = EulerGamma f = Float(n.n(), 5) assert f._mpf_ == (0, long(302627), -19, 19) assert f._prec == 20 assert n._as_mpf_val(20) == f._mpf_ def test_Catalan_rewrite(): k = Dummy('k', integer=True, nonnegative=True) assert Catalan.rewrite(Sum).dummy_eq( Sum((-1)**k/(2*k + 1)**2, (k, 0, oo))) assert Catalan.rewrite() == Catalan def test_bool_eq(): assert 0 == False assert S(0) == False assert S(0) != S.false assert 1 == True assert S.One == True assert S.One != S.true def test_Float_eq(): # all .5 values are the same assert Float(.5, 10) == Float(.5, 11) == Float(.5, 1) # but floats that aren't exact in base-2 still # don't compare the same because they have different # underlying mpf values assert Float(.12, 3) != Float(.12, 4) assert Float(.12, 3) != .12 assert 0.12 != Float(.12, 3) assert Float('.12', 22) != .12 # issue 11707 # but Float/Rational -- except for 0 -- # are exact so Rational(x) = Float(y) only if # Rational(x) == Rational(Float(y)) assert Float('1.1') != Rational(11, 10) assert Rational(11, 10) != Float('1.1') # coverage assert not Float(3) == 2 assert not Float(2**2) == S.Half assert Float(2**2) == 4 assert not Float(2**-2) == 1 assert Float(2**-1) == S.Half assert not Float(2*3) == 3 assert not Float(2*3) == S.Half assert Float(2*3) == 6 assert not Float(2*3) == 8 assert Float(.75) == Rational(3, 4) assert Float(5/18) == 5/18 # 4473 assert Float(2.) != 3 assert Float((0,1,-3)) == S.One/8 assert Float((0,1,-3)) != S.One/9 # 16196 assert 2 == Float(2) # as per Python # but in a computation... assert t**2 != t**2.0 def test_int_NumberSymbols(): assert [int(i) for i in [pi, EulerGamma, E, GoldenRatio, Catalan]] == \ [3, 0, 2, 1, 0] def test_issue_6640(): from mpmath.libmp.libmpf import finf, fninf # fnan is not included because Float no longer returns fnan, # but otherwise, the same sort of test could apply assert Float(finf).is_zero is False assert Float(fninf).is_zero is False assert bool(Float(0)) is False def test_issue_6349(): assert Float('23.e3', '')._prec == 10 assert Float('23e3', '')._prec == 20 assert Float('23000', '')._prec == 20 assert Float('-23000', '')._prec == 20 def test_mpf_norm(): assert mpf_norm((1, 0, 1, 0), 10) == mpf('0')._mpf_ assert Float._new((1, 0, 1, 0), 10)._mpf_ == mpf('0')._mpf_ def test_latex(): assert latex(pi) == r"\pi" assert latex(E) == r"e" assert latex(GoldenRatio) == r"\phi" assert latex(TribonacciConstant) == r"\text{TribonacciConstant}" assert latex(EulerGamma) == r"\gamma" assert latex(oo) == r"\infty" assert latex(-oo) == r"-\infty" assert latex(zoo) == r"\tilde{\infty}" assert latex(nan) == r"\text{NaN}" assert latex(I) == r"i" def test_issue_7742(): assert -oo % 1 is nan def test_simplify_AlgebraicNumber(): A = AlgebraicNumber e = 3**(S.One/6)*(3 + (135 + 78*sqrt(3))**Rational(2, 3))/(45 + 26*sqrt(3))**(S.One/3) assert simplify(A(e)) == A(12) # wester test_C20 e = (41 + 29*sqrt(2))**(S.One/5) assert simplify(A(e)) == A(1 + sqrt(2)) # wester test_C21 e = (3 + 4*I)**Rational(3, 2) assert simplify(A(e)) == A(2 + 11*I) # issue 4401 def test_Float_idempotence(): x = Float('1.23', '') y = Float(x) z = Float(x, 15) assert same_and_same_prec(y, x) assert not same_and_same_prec(z, x) x = Float(10**20) y = Float(x) z = Float(x, 15) assert same_and_same_prec(y, x) assert not same_and_same_prec(z, x) def test_comp1(): # sqrt(2) = 1.414213 5623730950... a = sqrt(2).n(7) assert comp(a, 1.4142129) is False assert comp(a, 1.4142130) # ... assert comp(a, 1.4142141) assert comp(a, 1.4142142) is False assert comp(sqrt(2).n(2), '1.4') assert comp(sqrt(2).n(2), Float(1.4, 2), '') assert comp(sqrt(2).n(2), 1.4, '') assert comp(sqrt(2).n(2), Float(1.4, 3), '') is False assert comp(sqrt(2) + sqrt(3)*I, 1.4 + 1.7*I, .1) assert not comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*0.89, .1) assert comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*0.90, .1) assert comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*1.07, .1) assert not comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*1.08, .1) assert [(i, j) for i in range(130, 150) for j in range(170, 180) if comp((sqrt(2)+ I*sqrt(3)).n(3), i/100. + I*j/100.)] == [ (141, 173), (142, 173)] raises(ValueError, lambda: comp(t, '1')) raises(ValueError, lambda: comp(t, 1)) assert comp(0, 0.0) assert comp(.5, S.Half) assert comp(2 + sqrt(2), 2.0 + sqrt(2)) assert not comp(0, 1) assert not comp(2, sqrt(2)) assert not comp(2 + I, 2.0 + sqrt(2)) assert not comp(2.0 + sqrt(2), 2 + I) assert not comp(2.0 + sqrt(2), sqrt(3)) assert comp(1/pi.n(4), 0.3183, 1e-5) assert not comp(1/pi.n(4), 0.3183, 8e-6) def test_issue_9491(): assert oo**zoo is nan def test_issue_10063(): assert 2**Float(3) == Float(8) def test_issue_10020(): assert oo**I is S.NaN assert oo**(1 + I) is S.ComplexInfinity assert oo**(-1 + I) is S.Zero assert (-oo)**I is S.NaN assert (-oo)**(-1 + I) is S.Zero assert oo**t == Pow(oo, t, evaluate=False) assert (-oo)**t == Pow(-oo, t, evaluate=False) def test_invert_numbers(): assert S(2).invert(5) == 3 assert S(2).invert(Rational(5, 2)) == S.Half assert S(2).invert(5.) == 0.5 assert S(2).invert(S(5)) == 3 assert S(2.).invert(5) == 0.5 assert S(sqrt(2)).invert(5) == 1/sqrt(2) assert S(sqrt(2)).invert(sqrt(3)) == 1/sqrt(2) def test_mod_inverse(): assert mod_inverse(3, 11) == 4 assert mod_inverse(5, 11) == 9 assert mod_inverse(21124921, 521512) == 7713 assert mod_inverse(124215421, 5125) == 2981 assert mod_inverse(214, 12515) == 1579 assert mod_inverse(5823991, 3299) == 1442 assert mod_inverse(123, 44) == 39 assert mod_inverse(2, 5) == 3 assert mod_inverse(-2, 5) == 2 assert mod_inverse(2, -5) == -2 assert mod_inverse(-2, -5) == -3 assert mod_inverse(-3, -7) == -5 x = Symbol('x') assert S(2).invert(x) == S.Half raises(TypeError, lambda: mod_inverse(2, x)) raises(ValueError, lambda: mod_inverse(2, S.Half)) raises(ValueError, lambda: mod_inverse(2, cos(1)**2 + sin(1)**2)) def test_golden_ratio_rewrite_as_sqrt(): assert GoldenRatio.rewrite(sqrt) == S.Half + sqrt(5)*S.Half def test_tribonacci_constant_rewrite_as_sqrt(): assert TribonacciConstant.rewrite(sqrt) == \ (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3 def test_comparisons_with_unknown_type(): class Foo(object): """ Class that is unaware of Basic, and relies on both classes returning the NotImplemented singleton for equivalence to evaluate to False. """ ni, nf, nr = Integer(3), Float(1.0), Rational(1, 3) foo = Foo() for n in ni, nf, nr, oo, -oo, zoo, nan: assert n != foo assert foo != n assert not n == foo assert not foo == n raises(TypeError, lambda: n < foo) raises(TypeError, lambda: foo > n) raises(TypeError, lambda: n > foo) raises(TypeError, lambda: foo < n) raises(TypeError, lambda: n <= foo) raises(TypeError, lambda: foo >= n) raises(TypeError, lambda: n >= foo) raises(TypeError, lambda: foo <= n) class Bar(object): """ Class that considers itself equal to any instance of Number except infinities and nans, and relies on sympy types returning the NotImplemented singleton for symmetric equality relations. """ def __eq__(self, other): if other in (oo, -oo, zoo, nan): return False if isinstance(other, Number): return True return NotImplemented def __ne__(self, other): return not self == other bar = Bar() for n in ni, nf, nr: assert n == bar assert bar == n assert not n != bar assert not bar != n for n in oo, -oo, zoo, nan: assert n != bar assert bar != n assert not n == bar assert not bar == n for n in ni, nf, nr, oo, -oo, zoo, nan: raises(TypeError, lambda: n < bar) raises(TypeError, lambda: bar > n) raises(TypeError, lambda: n > bar) raises(TypeError, lambda: bar < n) raises(TypeError, lambda: n <= bar) raises(TypeError, lambda: bar >= n) raises(TypeError, lambda: n >= bar) raises(TypeError, lambda: bar <= n) def test_NumberSymbol_comparison(): from sympy.core.tests.test_relational import rel_check rpi = Rational('905502432259640373/288230376151711744') fpi = Float(float(pi)) assert rel_check(rpi, fpi) def test_Integer_precision(): # Make sure Integer inputs for keyword args work assert Float('1.0', dps=Integer(15))._prec == 53 assert Float('1.0', precision=Integer(15))._prec == 15 assert type(Float('1.0', precision=Integer(15))._prec) == int assert sympify(srepr(Float('1.0', precision=15))) == Float('1.0', precision=15) def test_numpy_to_float(): from sympy.utilities.pytest import skip from sympy.external import import_module np = import_module('numpy') if not np: skip('numpy not installed. Abort numpy tests.') def check_prec_and_relerr(npval, ratval): prec = np.finfo(npval).nmant + 1 x = Float(npval) assert x._prec == prec y = Float(ratval, precision=prec) assert abs((x - y)/y) < 2**(-(prec + 1)) check_prec_and_relerr(np.float16(2.0/3), Rational(2, 3)) check_prec_and_relerr(np.float32(2.0/3), Rational(2, 3)) check_prec_and_relerr(np.float64(2.0/3), Rational(2, 3)) # extended precision, on some arch/compilers: x = np.longdouble(2)/3 check_prec_and_relerr(x, Rational(2, 3)) y = Float(x, precision=10) assert same_and_same_prec(y, Float(Rational(2, 3), precision=10)) raises(TypeError, lambda: Float(np.complex64(1+2j))) raises(TypeError, lambda: Float(np.complex128(1+2j))) def test_Integer_ceiling_floor(): a = Integer(4) assert a.floor() == a assert a.ceiling() == a def test_ComplexInfinity(): assert zoo.floor() is zoo assert zoo.ceiling() is zoo assert zoo**zoo is S.NaN def test_Infinity_floor_ceiling_power(): assert oo.floor() is oo assert oo.ceiling() is oo assert oo**S.NaN is S.NaN assert oo**zoo is S.NaN def test_One_power(): assert S.One**12 is S.One assert S.NegativeOne**S.NaN is S.NaN def test_NegativeInfinity(): assert (-oo).floor() is -oo assert (-oo).ceiling() is -oo assert (-oo)**11 is -oo assert (-oo)**12 is oo def test_issue_6133(): raises(TypeError, lambda: (-oo < None)) raises(TypeError, lambda: (S(-2) < None)) raises(TypeError, lambda: (oo < None)) raises(TypeError, lambda: (oo > None)) raises(TypeError, lambda: (S(2) < None)) def test_abc(): x = numbers.Float(5) assert(isinstance(x, nums.Number)) assert(isinstance(x, numbers.Number)) assert(isinstance(x, nums.Real)) y = numbers.Rational(1, 3) assert(isinstance(y, nums.Number)) assert(y.numerator() == 1) assert(y.denominator() == 3) assert(isinstance(y, nums.Rational)) z = numbers.Integer(3) assert(isinstance(z, nums.Number)) def test_floordiv(): assert S(2)//S.Half == 4
840f33f0ee8e3d9166e93bbb5ce984aef634bc0f5d8a9145f1b7d79fc6f61281
from sympy.utilities.pytest import XFAIL, raises, warns_deprecated_sympy from sympy import (S, Symbol, symbols, nan, oo, I, pi, Float, And, Or, Not, Implies, Xor, zoo, sqrt, Rational, simplify, Function, log, cos, sin, Add, floor, ceiling, trigsimp) from sympy.core.compatibility import range from sympy.core.relational import (Relational, Equality, Unequality, GreaterThan, LessThan, StrictGreaterThan, StrictLessThan, Rel, Eq, Lt, Le, Gt, Ge, Ne) from sympy.sets.sets import Interval, FiniteSet from itertools import combinations x, y, z, t = symbols('x,y,z,t') def rel_check(a, b): from sympy.utilities.pytest import raises assert a.is_number and b.is_number for do in range(len(set([type(a), type(b)]))): if S.NaN in (a, b): v = [(a == b), (a != b)] assert len(set(v)) == 1 and v[0] == False assert not (a != b) and not (a == b) assert raises(TypeError, lambda: a < b) assert raises(TypeError, lambda: a <= b) assert raises(TypeError, lambda: a > b) assert raises(TypeError, lambda: a >= b) else: E = [(a == b), (a != b)] assert len(set(E)) == 2 v = [ (a < b), (a <= b), (a > b), (a >= b)] i = [ [True, True, False, False], [False, True, False, True], # <-- i == 1 [False, False, True, True]].index(v) if i == 1: assert E[0] or (a.is_Float != b.is_Float) # ugh else: assert E[1] a, b = b, a return True def test_rel_ne(): assert Relational(x, y, '!=') == Ne(x, y) # issue 6116 p = Symbol('p', positive=True) assert Ne(p, 0) is S.true def test_rel_subs(): e = Relational(x, y, '==') e = e.subs(x, z) assert isinstance(e, Equality) assert e.lhs == z assert e.rhs == y e = Relational(x, y, '>=') e = e.subs(x, z) assert isinstance(e, GreaterThan) assert e.lhs == z assert e.rhs == y e = Relational(x, y, '<=') e = e.subs(x, z) assert isinstance(e, LessThan) assert e.lhs == z assert e.rhs == y e = Relational(x, y, '>') e = e.subs(x, z) assert isinstance(e, StrictGreaterThan) assert e.lhs == z assert e.rhs == y e = Relational(x, y, '<') e = e.subs(x, z) assert isinstance(e, StrictLessThan) assert e.lhs == z assert e.rhs == y e = Eq(x, 0) assert e.subs(x, 0) is S.true assert e.subs(x, 1) is S.false def test_wrappers(): e = x + x**2 res = Relational(y, e, '==') assert Rel(y, x + x**2, '==') == res assert Eq(y, x + x**2) == res res = Relational(y, e, '<') assert Lt(y, x + x**2) == res res = Relational(y, e, '<=') assert Le(y, x + x**2) == res res = Relational(y, e, '>') assert Gt(y, x + x**2) == res res = Relational(y, e, '>=') assert Ge(y, x + x**2) == res res = Relational(y, e, '!=') assert Ne(y, x + x**2) == res def test_Eq(): assert Eq(x, x) # issue 5719 with warns_deprecated_sympy(): assert Eq(x) == Eq(x, 0) # issue 6116 p = Symbol('p', positive=True) assert Eq(p, 0) is S.false # issue 13348 assert Eq(True, 1) is S.false assert Eq((), 1) is S.false def test_rel_Infinity(): # NOTE: All of these are actually handled by sympy.core.Number, and do # not create Relational objects. assert (oo > oo) is S.false assert (oo > -oo) is S.true assert (oo > 1) is S.true assert (oo < oo) is S.false assert (oo < -oo) is S.false assert (oo < 1) is S.false assert (oo >= oo) is S.true assert (oo >= -oo) is S.true assert (oo >= 1) is S.true assert (oo <= oo) is S.true assert (oo <= -oo) is S.false assert (oo <= 1) is S.false assert (-oo > oo) is S.false assert (-oo > -oo) is S.false assert (-oo > 1) is S.false assert (-oo < oo) is S.true assert (-oo < -oo) is S.false assert (-oo < 1) is S.true assert (-oo >= oo) is S.false assert (-oo >= -oo) is S.true assert (-oo >= 1) is S.false assert (-oo <= oo) is S.true assert (-oo <= -oo) is S.true assert (-oo <= 1) is S.true def test_infinite_symbol_inequalities(): x = Symbol('x', extended_positive=True, infinite=True) y = Symbol('y', extended_positive=True, infinite=True) z = Symbol('z', extended_negative=True, infinite=True) w = Symbol('w', extended_negative=True, infinite=True) inf_set = (x, y, oo) ninf_set = (z, w, -oo) for inf1 in inf_set: assert (inf1 < 1) is S.false assert (inf1 > 1) is S.true assert (inf1 <= 1) is S.false assert (inf1 >= 1) is S.true for inf2 in inf_set: assert (inf1 < inf2) is S.false assert (inf1 > inf2) is S.false assert (inf1 <= inf2) is S.true assert (inf1 >= inf2) is S.true for ninf1 in ninf_set: assert (inf1 < ninf1) is S.false assert (inf1 > ninf1) is S.true assert (inf1 <= ninf1) is S.false assert (inf1 >= ninf1) is S.true assert (ninf1 < inf1) is S.true assert (ninf1 > inf1) is S.false assert (ninf1 <= inf1) is S.true assert (ninf1 >= inf1) is S.false for ninf1 in ninf_set: assert (ninf1 < 1) is S.true assert (ninf1 > 1) is S.false assert (ninf1 <= 1) is S.true assert (ninf1 >= 1) is S.false for ninf2 in ninf_set: assert (ninf1 < ninf2) is S.false assert (ninf1 > ninf2) is S.false assert (ninf1 <= ninf2) is S.true assert (ninf1 >= ninf2) is S.true def test_bool(): assert Eq(0, 0) is S.true assert Eq(1, 0) is S.false assert Ne(0, 0) is S.false assert Ne(1, 0) is S.true assert Lt(0, 1) is S.true assert Lt(1, 0) is S.false assert Le(0, 1) is S.true assert Le(1, 0) is S.false assert Le(0, 0) is S.true assert Gt(1, 0) is S.true assert Gt(0, 1) is S.false assert Ge(1, 0) is S.true assert Ge(0, 1) is S.false assert Ge(1, 1) is S.true assert Eq(I, 2) is S.false assert Ne(I, 2) is S.true raises(TypeError, lambda: Gt(I, 2)) raises(TypeError, lambda: Ge(I, 2)) raises(TypeError, lambda: Lt(I, 2)) raises(TypeError, lambda: Le(I, 2)) a = Float('.000000000000000000001', '') b = Float('.0000000000000000000001', '') assert Eq(pi + a, pi + b) is S.false def test_rich_cmp(): assert (x < y) == Lt(x, y) assert (x <= y) == Le(x, y) assert (x > y) == Gt(x, y) assert (x >= y) == Ge(x, y) def test_doit(): from sympy import Symbol p = Symbol('p', positive=True) n = Symbol('n', negative=True) np = Symbol('np', nonpositive=True) nn = Symbol('nn', nonnegative=True) assert Gt(p, 0).doit() is S.true assert Gt(p, 1).doit() == Gt(p, 1) assert Ge(p, 0).doit() is S.true assert Le(p, 0).doit() is S.false assert Lt(n, 0).doit() is S.true assert Le(np, 0).doit() is S.true assert Gt(nn, 0).doit() == Gt(nn, 0) assert Lt(nn, 0).doit() is S.false assert Eq(x, 0).doit() == Eq(x, 0) def test_new_relational(): x = Symbol('x') assert Eq(x, 0) == Relational(x, 0) # None ==> Equality assert Eq(x, 0) == Relational(x, 0, '==') assert Eq(x, 0) == Relational(x, 0, 'eq') assert Eq(x, 0) == Equality(x, 0) assert Eq(x, 0) != Relational(x, 1) # None ==> Equality assert Eq(x, 0) != Relational(x, 1, '==') assert Eq(x, 0) != Relational(x, 1, 'eq') assert Eq(x, 0) != Equality(x, 1) assert Eq(x, -1) == Relational(x, -1) # None ==> Equality assert Eq(x, -1) == Relational(x, -1, '==') assert Eq(x, -1) == Relational(x, -1, 'eq') assert Eq(x, -1) == Equality(x, -1) assert Eq(x, -1) != Relational(x, 1) # None ==> Equality assert Eq(x, -1) != Relational(x, 1, '==') assert Eq(x, -1) != Relational(x, 1, 'eq') assert Eq(x, -1) != Equality(x, 1) assert Ne(x, 0) == Relational(x, 0, '!=') assert Ne(x, 0) == Relational(x, 0, '<>') assert Ne(x, 0) == Relational(x, 0, 'ne') assert Ne(x, 0) == Unequality(x, 0) assert Ne(x, 0) != Relational(x, 1, '!=') assert Ne(x, 0) != Relational(x, 1, '<>') assert Ne(x, 0) != Relational(x, 1, 'ne') assert Ne(x, 0) != Unequality(x, 1) assert Ge(x, 0) == Relational(x, 0, '>=') assert Ge(x, 0) == Relational(x, 0, 'ge') assert Ge(x, 0) == GreaterThan(x, 0) assert Ge(x, 1) != Relational(x, 0, '>=') assert Ge(x, 1) != Relational(x, 0, 'ge') assert Ge(x, 1) != GreaterThan(x, 0) assert (x >= 1) == Relational(x, 1, '>=') assert (x >= 1) == Relational(x, 1, 'ge') assert (x >= 1) == GreaterThan(x, 1) assert (x >= 0) != Relational(x, 1, '>=') assert (x >= 0) != Relational(x, 1, 'ge') assert (x >= 0) != GreaterThan(x, 1) assert Le(x, 0) == Relational(x, 0, '<=') assert Le(x, 0) == Relational(x, 0, 'le') assert Le(x, 0) == LessThan(x, 0) assert Le(x, 1) != Relational(x, 0, '<=') assert Le(x, 1) != Relational(x, 0, 'le') assert Le(x, 1) != LessThan(x, 0) assert (x <= 1) == Relational(x, 1, '<=') assert (x <= 1) == Relational(x, 1, 'le') assert (x <= 1) == LessThan(x, 1) assert (x <= 0) != Relational(x, 1, '<=') assert (x <= 0) != Relational(x, 1, 'le') assert (x <= 0) != LessThan(x, 1) assert Gt(x, 0) == Relational(x, 0, '>') assert Gt(x, 0) == Relational(x, 0, 'gt') assert Gt(x, 0) == StrictGreaterThan(x, 0) assert Gt(x, 1) != Relational(x, 0, '>') assert Gt(x, 1) != Relational(x, 0, 'gt') assert Gt(x, 1) != StrictGreaterThan(x, 0) assert (x > 1) == Relational(x, 1, '>') assert (x > 1) == Relational(x, 1, 'gt') assert (x > 1) == StrictGreaterThan(x, 1) assert (x > 0) != Relational(x, 1, '>') assert (x > 0) != Relational(x, 1, 'gt') assert (x > 0) != StrictGreaterThan(x, 1) assert Lt(x, 0) == Relational(x, 0, '<') assert Lt(x, 0) == Relational(x, 0, 'lt') assert Lt(x, 0) == StrictLessThan(x, 0) assert Lt(x, 1) != Relational(x, 0, '<') assert Lt(x, 1) != Relational(x, 0, 'lt') assert Lt(x, 1) != StrictLessThan(x, 0) assert (x < 1) == Relational(x, 1, '<') assert (x < 1) == Relational(x, 1, 'lt') assert (x < 1) == StrictLessThan(x, 1) assert (x < 0) != Relational(x, 1, '<') assert (x < 0) != Relational(x, 1, 'lt') assert (x < 0) != StrictLessThan(x, 1) # finally, some fuzz testing from random import randint from sympy.core.compatibility import unichr for i in range(100): while 1: strtype, length = (unichr, 65535) if randint(0, 1) else (chr, 255) relation_type = strtype(randint(0, length)) if randint(0, 1): relation_type += strtype(randint(0, length)) if relation_type not in ('==', 'eq', '!=', '<>', 'ne', '>=', 'ge', '<=', 'le', '>', 'gt', '<', 'lt', ':=', '+=', '-=', '*=', '/=', '%='): break raises(ValueError, lambda: Relational(x, 1, relation_type)) assert all(Relational(x, 0, op).rel_op == '==' for op in ('eq', '==')) assert all(Relational(x, 0, op).rel_op == '!=' for op in ('ne', '<>', '!=')) assert all(Relational(x, 0, op).rel_op == '>' for op in ('gt', '>')) assert all(Relational(x, 0, op).rel_op == '<' for op in ('lt', '<')) assert all(Relational(x, 0, op).rel_op == '>=' for op in ('ge', '>=')) assert all(Relational(x, 0, op).rel_op == '<=' for op in ('le', '<=')) def test_relational_bool_output(): # https://github.com/sympy/sympy/issues/5931 raises(TypeError, lambda: bool(x > 3)) raises(TypeError, lambda: bool(x >= 3)) raises(TypeError, lambda: bool(x < 3)) raises(TypeError, lambda: bool(x <= 3)) raises(TypeError, lambda: bool(Eq(x, 3))) raises(TypeError, lambda: bool(Ne(x, 3))) def test_relational_logic_symbols(): # See issue 6204 assert (x < y) & (z < t) == And(x < y, z < t) assert (x < y) | (z < t) == Or(x < y, z < t) assert ~(x < y) == Not(x < y) assert (x < y) >> (z < t) == Implies(x < y, z < t) assert (x < y) << (z < t) == Implies(z < t, x < y) assert (x < y) ^ (z < t) == Xor(x < y, z < t) assert isinstance((x < y) & (z < t), And) assert isinstance((x < y) | (z < t), Or) assert isinstance(~(x < y), GreaterThan) assert isinstance((x < y) >> (z < t), Implies) assert isinstance((x < y) << (z < t), Implies) assert isinstance((x < y) ^ (z < t), (Or, Xor)) def test_univariate_relational_as_set(): assert (x > 0).as_set() == Interval(0, oo, True, True) assert (x >= 0).as_set() == Interval(0, oo) assert (x < 0).as_set() == Interval(-oo, 0, True, True) assert (x <= 0).as_set() == Interval(-oo, 0) assert Eq(x, 0).as_set() == FiniteSet(0) assert Ne(x, 0).as_set() == Interval(-oo, 0, True, True) + \ Interval(0, oo, True, True) assert (x**2 >= 4).as_set() == Interval(-oo, -2) + Interval(2, oo) @XFAIL def test_multivariate_relational_as_set(): assert (x*y >= 0).as_set() == Interval(0, oo)*Interval(0, oo) + \ Interval(-oo, 0)*Interval(-oo, 0) def test_Not(): assert Not(Equality(x, y)) == Unequality(x, y) assert Not(Unequality(x, y)) == Equality(x, y) assert Not(StrictGreaterThan(x, y)) == LessThan(x, y) assert Not(StrictLessThan(x, y)) == GreaterThan(x, y) assert Not(GreaterThan(x, y)) == StrictLessThan(x, y) assert Not(LessThan(x, y)) == StrictGreaterThan(x, y) def test_evaluate(): assert str(Eq(x, x, evaluate=False)) == 'Eq(x, x)' assert Eq(x, x, evaluate=False).doit() == S.true assert str(Ne(x, x, evaluate=False)) == 'Ne(x, x)' assert Ne(x, x, evaluate=False).doit() == S.false assert str(Ge(x, x, evaluate=False)) == 'x >= x' assert str(Le(x, x, evaluate=False)) == 'x <= x' assert str(Gt(x, x, evaluate=False)) == 'x > x' assert str(Lt(x, x, evaluate=False)) == 'x < x' def assert_all_ineq_raise_TypeError(a, b): raises(TypeError, lambda: a > b) raises(TypeError, lambda: a >= b) raises(TypeError, lambda: a < b) raises(TypeError, lambda: a <= b) raises(TypeError, lambda: b > a) raises(TypeError, lambda: b >= a) raises(TypeError, lambda: b < a) raises(TypeError, lambda: b <= a) def assert_all_ineq_give_class_Inequality(a, b): """All inequality operations on `a` and `b` result in class Inequality.""" from sympy.core.relational import _Inequality as Inequality assert isinstance(a > b, Inequality) assert isinstance(a >= b, Inequality) assert isinstance(a < b, Inequality) assert isinstance(a <= b, Inequality) assert isinstance(b > a, Inequality) assert isinstance(b >= a, Inequality) assert isinstance(b < a, Inequality) assert isinstance(b <= a, Inequality) def test_imaginary_compare_raises_TypeError(): # See issue #5724 assert_all_ineq_raise_TypeError(I, x) def test_complex_compare_not_real(): # two cases which are not real y = Symbol('y', imaginary=True) z = Symbol('z', complex=True, extended_real=False) for w in (y, z): assert_all_ineq_raise_TypeError(2, w) # some cases which should remain un-evaluated t = Symbol('t') x = Symbol('x', real=True) z = Symbol('z', complex=True) for w in (x, z, t): assert_all_ineq_give_class_Inequality(2, w) def test_imaginary_and_inf_compare_raises_TypeError(): # See pull request #7835 y = Symbol('y', imaginary=True) assert_all_ineq_raise_TypeError(oo, y) assert_all_ineq_raise_TypeError(-oo, y) def test_complex_pure_imag_not_ordered(): raises(TypeError, lambda: 2*I < 3*I) # more generally x = Symbol('x', real=True, nonzero=True) y = Symbol('y', imaginary=True) z = Symbol('z', complex=True) assert_all_ineq_raise_TypeError(I, y) t = I*x # an imaginary number, should raise errors assert_all_ineq_raise_TypeError(2, t) t = -I*y # a real number, so no errors assert_all_ineq_give_class_Inequality(2, t) t = I*z # unknown, should be unevaluated assert_all_ineq_give_class_Inequality(2, t) def test_x_minus_y_not_same_as_x_lt_y(): """ A consequence of pull request #7792 is that `x - y < 0` and `x < y` are not synonymous. """ x = I + 2 y = I + 3 raises(TypeError, lambda: x < y) assert x - y < 0 ineq = Lt(x, y, evaluate=False) raises(TypeError, lambda: ineq.doit()) assert ineq.lhs - ineq.rhs < 0 t = Symbol('t', imaginary=True) x = 2 + t y = 3 + t ineq = Lt(x, y, evaluate=False) raises(TypeError, lambda: ineq.doit()) assert ineq.lhs - ineq.rhs < 0 # this one should give error either way x = I + 2 y = 2*I + 3 raises(TypeError, lambda: x < y) raises(TypeError, lambda: x - y < 0) def test_nan_equality_exceptions(): # See issue #7774 import random assert Equality(nan, nan) is S.false assert Unequality(nan, nan) is S.true # See issue #7773 A = (x, S.Zero, S.One/3, pi, oo, -oo) assert Equality(nan, random.choice(A)) is S.false assert Equality(random.choice(A), nan) is S.false assert Unequality(nan, random.choice(A)) is S.true assert Unequality(random.choice(A), nan) is S.true def test_nan_inequality_raise_errors(): # See discussion in pull request #7776. We test inequalities with # a set including examples of various classes. for q in (x, S.Zero, S(10), S.One/3, pi, S(1.3), oo, -oo, nan): assert_all_ineq_raise_TypeError(q, nan) def test_nan_complex_inequalities(): # Comparisons of NaN with non-real raise errors, we're not too # fussy whether its the NaN error or complex error. for r in (I, zoo, Symbol('z', imaginary=True)): assert_all_ineq_raise_TypeError(r, nan) def test_complex_infinity_inequalities(): raises(TypeError, lambda: zoo > 0) raises(TypeError, lambda: zoo >= 0) raises(TypeError, lambda: zoo < 0) raises(TypeError, lambda: zoo <= 0) def test_inequalities_symbol_name_same(): """Using the operator and functional forms should give same results.""" # We test all combinations from a set # FIXME: could replace with random selection after test passes A = (x, y, S.Zero, S.One/3, pi, oo, -oo) for a in A: for b in A: assert Gt(a, b) == (a > b) assert Lt(a, b) == (a < b) assert Ge(a, b) == (a >= b) assert Le(a, b) == (a <= b) for b in (y, S.Zero, S.One/3, pi, oo, -oo): assert Gt(x, b, evaluate=False) == (x > b) assert Lt(x, b, evaluate=False) == (x < b) assert Ge(x, b, evaluate=False) == (x >= b) assert Le(x, b, evaluate=False) == (x <= b) for b in (y, S.Zero, S.One/3, pi, oo, -oo): assert Gt(b, x, evaluate=False) == (b > x) assert Lt(b, x, evaluate=False) == (b < x) assert Ge(b, x, evaluate=False) == (b >= x) assert Le(b, x, evaluate=False) == (b <= x) def test_inequalities_symbol_name_same_complex(): """Using the operator and functional forms should give same results. With complex non-real numbers, both should raise errors. """ # FIXME: could replace with random selection after test passes for a in (x, S.Zero, S.One/3, pi, oo, Rational(1, 3)): raises(TypeError, lambda: Gt(a, I)) raises(TypeError, lambda: a > I) raises(TypeError, lambda: Lt(a, I)) raises(TypeError, lambda: a < I) raises(TypeError, lambda: Ge(a, I)) raises(TypeError, lambda: a >= I) raises(TypeError, lambda: Le(a, I)) raises(TypeError, lambda: a <= I) def test_inequalities_cant_sympify_other(): # see issue 7833 from operator import gt, lt, ge, le bar = "foo" for a in (x, S.Zero, S.One/3, pi, I, zoo, oo, -oo, nan, Rational(1, 3)): for op in (lt, gt, le, ge): raises(TypeError, lambda: op(a, bar)) def test_ineq_avoid_wild_symbol_flip(): # see issue #7951, we try to avoid this internally, e.g., by using # __lt__ instead of "<". from sympy.core.symbol import Wild p = symbols('p', cls=Wild) # x > p might flip, but Gt should not: assert Gt(x, p) == Gt(x, p, evaluate=False) # Previously failed as 'p > x': e = Lt(x, y).subs({y: p}) assert e == Lt(x, p, evaluate=False) # Previously failed as 'p <= x': e = Ge(x, p).doit() assert e == Ge(x, p, evaluate=False) def test_issue_8245(): a = S("6506833320952669167898688709329/5070602400912917605986812821504") assert rel_check(a, a.n(10)) assert rel_check(a, a.n(20)) assert rel_check(a, a.n()) # prec of 30 is enough to fully capture a as mpf assert Float(a, 30) == Float(str(a.p), '')/Float(str(a.q), '') for i in range(31): r = Rational(Float(a, i)) f = Float(r) assert (f < a) == (Rational(f) < a) # test sign handling assert (-f < -a) == (Rational(-f) < -a) # test equivalence handling isa = Float(a.p,'')/Float(a.q,'') assert isa <= a assert not isa < a assert isa >= a assert not isa > a assert isa > 0 a = sqrt(2) r = Rational(str(a.n(30))) assert rel_check(a, r) a = sqrt(2) r = Rational(str(a.n(29))) assert rel_check(a, r) assert Eq(log(cos(2)**2 + sin(2)**2), 0) == True def test_issue_8449(): p = Symbol('p', nonnegative=True) assert Lt(-oo, p) assert Ge(-oo, p) is S.false assert Gt(oo, -p) assert Le(oo, -p) is S.false def test_simplify_relational(): assert simplify(x*(y + 1) - x*y - x + 1 < x) == (x > 1) assert simplify(x*(y + 1) - x*y - x - 1 < x) == (x > -1) assert simplify(x < x*(y + 1) - x*y - x + 1) == (x < 1) r = S.One < x # canonical operations are not the same as simplification, # so if there is no simplification, canonicalization will # be done unless the measure forbids it assert simplify(r) == r.canonical assert simplify(r, ratio=0) != r.canonical # this is not a random test; in _eval_simplify # this will simplify to S.false and that is the # reason for the 'if r.is_Relational' in Relational's # _eval_simplify routine assert simplify(-(2**(pi*Rational(3, 2)) + 6**pi)**(1/pi) + 2*(2**(pi/2) + 3**pi)**(1/pi) < 0) is S.false # canonical at least assert Eq(y, x).simplify() == Eq(x, y) assert Eq(x - 1, 0).simplify() == Eq(x, 1) assert Eq(x - 1, x).simplify() == S.false assert Eq(2*x - 1, x).simplify() == Eq(x, 1) assert Eq(2*x, 4).simplify() == Eq(x, 2) z = cos(1)**2 + sin(1)**2 - 1 # z.is_zero is None assert Eq(z*x, 0).simplify() == S.true assert Ne(y, x).simplify() == Ne(x, y) assert Ne(x - 1, 0).simplify() == Ne(x, 1) assert Ne(x - 1, x).simplify() == S.true assert Ne(2*x - 1, x).simplify() == Ne(x, 1) assert Ne(2*x, 4).simplify() == Ne(x, 2) assert Ne(z*x, 0).simplify() == S.false # No real-valued assumptions assert Ge(y, x).simplify() == Le(x, y) assert Ge(x - 1, 0).simplify() == Ge(x, 1) assert Ge(x - 1, x).simplify() == S.false assert Ge(2*x - 1, x).simplify() == Ge(x, 1) assert Ge(2*x, 4).simplify() == Ge(x, 2) assert Ge(z*x, 0).simplify() == S.true assert Ge(x, -2).simplify() == Ge(x, -2) assert Ge(-x, -2).simplify() == Le(x, 2) assert Ge(x, 2).simplify() == Ge(x, 2) assert Ge(-x, 2).simplify() == Le(x, -2) assert Le(y, x).simplify() == Ge(x, y) assert Le(x - 1, 0).simplify() == Le(x, 1) assert Le(x - 1, x).simplify() == S.true assert Le(2*x - 1, x).simplify() == Le(x, 1) assert Le(2*x, 4).simplify() == Le(x, 2) assert Le(z*x, 0).simplify() == S.true assert Le(x, -2).simplify() == Le(x, -2) assert Le(-x, -2).simplify() == Ge(x, 2) assert Le(x, 2).simplify() == Le(x, 2) assert Le(-x, 2).simplify() == Ge(x, -2) assert Gt(y, x).simplify() == Lt(x, y) assert Gt(x - 1, 0).simplify() == Gt(x, 1) assert Gt(x - 1, x).simplify() == S.false assert Gt(2*x - 1, x).simplify() == Gt(x, 1) assert Gt(2*x, 4).simplify() == Gt(x, 2) assert Gt(z*x, 0).simplify() == S.false assert Gt(x, -2).simplify() == Gt(x, -2) assert Gt(-x, -2).simplify() == Lt(x, 2) assert Gt(x, 2).simplify() == Gt(x, 2) assert Gt(-x, 2).simplify() == Lt(x, -2) assert Lt(y, x).simplify() == Gt(x, y) assert Lt(x - 1, 0).simplify() == Lt(x, 1) assert Lt(x - 1, x).simplify() == S.true assert Lt(2*x - 1, x).simplify() == Lt(x, 1) assert Lt(2*x, 4).simplify() == Lt(x, 2) assert Lt(z*x, 0).simplify() == S.false assert Lt(x, -2).simplify() == Lt(x, -2) assert Lt(-x, -2).simplify() == Gt(x, 2) assert Lt(x, 2).simplify() == Lt(x, 2) assert Lt(-x, 2).simplify() == Gt(x, -2) def test_equals(): w, x, y, z = symbols('w:z') f = Function('f') assert Eq(x, 1).equals(Eq(x*(y + 1) - x*y - x + 1, x)) assert Eq(x, y).equals(x < y, True) == False assert Eq(x, f(1)).equals(Eq(x, f(2)), True) == f(1) - f(2) assert Eq(f(1), y).equals(Eq(f(2), y), True) == f(1) - f(2) assert Eq(x, f(1)).equals(Eq(f(2), x), True) == f(1) - f(2) assert Eq(f(1), x).equals(Eq(x, f(2)), True) == f(1) - f(2) assert Eq(w, x).equals(Eq(y, z), True) == False assert Eq(f(1), f(2)).equals(Eq(f(3), f(4)), True) == f(1) - f(3) assert (x < y).equals(y > x, True) == True assert (x < y).equals(y >= x, True) == False assert (x < y).equals(z < y, True) == False assert (x < y).equals(x < z, True) == False assert (x < f(1)).equals(x < f(2), True) == f(1) - f(2) assert (f(1) < x).equals(f(2) < x, True) == f(1) - f(2) def test_reversed(): assert (x < y).reversed == (y > x) assert (x <= y).reversed == (y >= x) assert Eq(x, y, evaluate=False).reversed == Eq(y, x, evaluate=False) assert Ne(x, y, evaluate=False).reversed == Ne(y, x, evaluate=False) assert (x >= y).reversed == (y <= x) assert (x > y).reversed == (y < x) def test_canonical(): c = [i.canonical for i in ( x + y < z, x + 2 > 3, x < 2, S(2) > x, x**2 > -x/y, Gt(3, 2, evaluate=False) )] assert [i.canonical for i in c] == c assert [i.reversed.canonical for i in c] == c assert not any(i.lhs.is_Number and not i.rhs.is_Number for i in c) c = [i.reversed.func(i.rhs, i.lhs, evaluate=False).canonical for i in c] assert [i.canonical for i in c] == c assert [i.reversed.canonical for i in c] == c assert not any(i.lhs.is_Number and not i.rhs.is_Number for i in c) @XFAIL def test_issue_8444_nonworkingtests(): x = symbols('x', real=True) assert (x <= oo) == (x >= -oo) == True x = symbols('x') assert x >= floor(x) assert (x < floor(x)) == False assert x <= ceiling(x) assert (x > ceiling(x)) == False def test_issue_8444_workingtests(): x = symbols('x') assert Gt(x, floor(x)) == Gt(x, floor(x), evaluate=False) assert Ge(x, floor(x)) == Ge(x, floor(x), evaluate=False) assert Lt(x, ceiling(x)) == Lt(x, ceiling(x), evaluate=False) assert Le(x, ceiling(x)) == Le(x, ceiling(x), evaluate=False) i = symbols('i', integer=True) assert (i > floor(i)) == False assert (i < ceiling(i)) == False def test_issue_10304(): d = cos(1)**2 + sin(1)**2 - 1 assert d.is_comparable is False # if this fails, find a new d e = 1 + d*I assert simplify(Eq(e, 0)) is S.false def test_issue_10401(): x = symbols('x') fin = symbols('inf', finite=True) inf = symbols('inf', infinite=True) inf2 = symbols('inf2', infinite=True) infx = symbols('infx', infinite=True, extended_real=True) # Used in the commented tests below: #infx2 = symbols('infx2', infinite=True, extended_real=True) infnx = symbols('inf~x', infinite=True, extended_real=False) infnx2 = symbols('inf~x2', infinite=True, extended_real=False) infp = symbols('infp', infinite=True, extended_positive=True) infp1 = symbols('infp1', infinite=True, extended_positive=True) infn = symbols('infn', infinite=True, extended_negative=True) zero = symbols('z', zero=True) nonzero = symbols('nz', zero=False, finite=True) assert Eq(1/(1/x + 1), 1).func is Eq assert Eq(1/(1/x + 1), 1).subs(x, S.ComplexInfinity) is S.true assert Eq(1/(1/fin + 1), 1) is S.false T, F = S.true, S.false assert Eq(fin, inf) is F assert Eq(inf, inf2) not in (T, F) and inf != inf2 assert Eq(1 + inf, 2 + inf2) not in (T, F) and inf != inf2 assert Eq(infp, infp1) is T assert Eq(infp, infn) is F assert Eq(1 + I*oo, I*oo) is F assert Eq(I*oo, 1 + I*oo) is F assert Eq(1 + I*oo, 2 + I*oo) is F assert Eq(1 + I*oo, 2 + I*infx) is F assert Eq(1 + I*oo, 2 + infx) is F # FIXME: The test below fails because (-infx).is_extended_positive is True # (should be None) #assert Eq(1 + I*infx, 1 + I*infx2) not in (T, F) and infx != infx2 # assert Eq(zoo, sqrt(2) + I*oo) is F assert Eq(zoo, oo) is F r = Symbol('r', real=True) i = Symbol('i', imaginary=True) assert Eq(i*I, r) not in (T, F) assert Eq(infx, infnx) is F assert Eq(infnx, infnx2) not in (T, F) and infnx != infnx2 assert Eq(zoo, oo) is F assert Eq(inf/inf2, 0) is F assert Eq(inf/fin, 0) is F assert Eq(fin/inf, 0) is T assert Eq(zero/nonzero, 0) is T and ((zero/nonzero) != 0) # The commented out test below is incorrect because: assert zoo == -zoo assert Eq(zoo, -zoo) is T assert Eq(oo, -oo) is F assert Eq(inf, -inf) not in (T, F) assert Eq(fin/(fin + 1), 1) is S.false o = symbols('o', odd=True) assert Eq(o, 2*o) is S.false p = symbols('p', positive=True) assert Eq(p/(p - 1), 1) is F def test_issue_10633(): assert Eq(True, False) == False assert Eq(False, True) == False assert Eq(True, True) == True assert Eq(False, False) == True def test_issue_10927(): x = symbols('x') assert str(Eq(x, oo)) == 'Eq(x, oo)' assert str(Eq(x, -oo)) == 'Eq(x, -oo)' def test_issues_13081_12583_12534(): # 13081 r = Rational('905502432259640373/288230376151711744') assert (r < pi) is S.false assert (r > pi) is S.true # 12583 v = sqrt(2) u = sqrt(v) + 2/sqrt(10 - 8/sqrt(2 - v) + 4*v*(1/sqrt(2 - v) - 1)) assert (u >= 0) is S.true # 12534; Rational vs NumberSymbol # here are some precisions for which Rational forms # at a lower and higher precision bracket the value of pi # e.g. for p = 20: # Rational(pi.n(p + 1)).n(25) = 3.14159265358979323846 2834 # pi.n(25) = 3.14159265358979323846 2643 # Rational(pi.n(p )).n(25) = 3.14159265358979323846 1987 assert [p for p in range(20, 50) if (Rational(pi.n(p)) < pi) and (pi < Rational(pi.n(p + 1)))] == [20, 24, 27, 33, 37, 43, 48] # pick one such precision and affirm that the reversed operation # gives the opposite result, i.e. if x < y is true then x > y # must be false for i in (20, 21): v = pi.n(i) assert rel_check(Rational(v), pi) assert rel_check(v, pi) assert rel_check(pi.n(20), pi.n(21)) # Float vs Rational # the rational form is less than the floating representation # at the same precision assert [i for i in range(15, 50) if Rational(pi.n(i)) > pi.n(i)] == [] # this should be the same if we reverse the relational assert [i for i in range(15, 50) if pi.n(i) < Rational(pi.n(i))] == [] def test_binary_symbols(): ans = set([x]) for f in Eq, Ne: for t in S.true, S.false: eq = f(x, S.true) assert eq.binary_symbols == ans assert eq.reversed.binary_symbols == ans assert f(x, 1).binary_symbols == set() def test_rel_args(): # can't have Boolean args; this is automatic with Python 3 # so this test and the __lt__, etc..., definitions in # relational.py and boolalg.py which are marked with /// # can be removed. for op in ['<', '<=', '>', '>=']: for b in (S.true, x < 1, And(x, y)): for v in (0.1, 1, 2**32, t, S.One): raises(TypeError, lambda: Relational(b, v, op)) def test_Equality_rewrite_as_Add(): eq = Eq(x + y, y - x) assert eq.rewrite(Add) == 2*x assert eq.rewrite(Add, evaluate=None).args == (x, x, y, -y) assert eq.rewrite(Add, evaluate=False).args == (x, y, x, -y) def test_issue_15847(): a = Ne(x*(x+y), x**2 + x*y) assert simplify(a) == False def test_negated_property(): eq = Eq(x, y) assert eq.negated == Ne(x, y) eq = Ne(x, y) assert eq.negated == Eq(x, y) eq = Ge(x + y, y - x) assert eq.negated == Lt(x + y, y - x) for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(x, y).negated.negated == f(x, y) def test_reversedsign_property(): eq = Eq(x, y) assert eq.reversedsign == Eq(-x, -y) eq = Ne(x, y) assert eq.reversedsign == Ne(-x, -y) eq = Ge(x + y, y - x) assert eq.reversedsign == Le(-x - y, x - y) for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(x, y).reversedsign.reversedsign == f(x, y) for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(-x, y).reversedsign.reversedsign == f(-x, y) for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(x, -y).reversedsign.reversedsign == f(x, -y) for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(-x, -y).reversedsign.reversedsign == f(-x, -y) def test_reversed_reversedsign_property(): for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(x, y).reversed.reversedsign == f(x, y).reversedsign.reversed for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(-x, y).reversed.reversedsign == f(-x, y).reversedsign.reversed for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(x, -y).reversed.reversedsign == f(x, -y).reversedsign.reversed for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(-x, -y).reversed.reversedsign == \ f(-x, -y).reversedsign.reversed def test_improved_canonical(): def test_different_forms(listofforms): for form1, form2 in combinations(listofforms, 2): assert form1.canonical == form2.canonical def generate_forms(expr): return [expr, expr.reversed, expr.reversedsign, expr.reversed.reversedsign] test_different_forms(generate_forms(x > -y)) test_different_forms(generate_forms(x >= -y)) test_different_forms(generate_forms(Eq(x, -y))) test_different_forms(generate_forms(Ne(x, -y))) test_different_forms(generate_forms(pi < x)) test_different_forms(generate_forms(pi - 5*y < -x + 2*y**2 - 7)) assert (pi >= x).canonical == (x <= pi) def test_set_equality_canonical(): a, b, c = symbols('a b c') A = Eq(FiniteSet(a, b, c), FiniteSet(1, 2, 3)) B = Ne(FiniteSet(a, b, c), FiniteSet(4, 5, 6)) assert A.canonical == A.reversed assert B.canonical == B.reversed def test_trigsimp(): # issue 16736 s, c = sin(2*x), cos(2*x) eq = Eq(s, c) assert trigsimp(eq) == eq # no rearrangement of sides # simplification of sides might result in # an unevaluated Eq changed = trigsimp(Eq(s + c, sqrt(2))) assert isinstance(changed, Eq) assert changed.subs(x, pi/8) is S.true # or an evaluated one assert trigsimp(Eq(cos(x)**2 + sin(x)**2, 1)) is S.true def test_polynomial_relation_simplification(): assert Ge(3*x*(x + 1) + 4, 3*x).simplify() in [Ge(x**2, -Rational(4,3)), Le(-x**2, Rational(4, 3))] assert Le(-(3*x*(x + 1) + 4), -3*x).simplify() in [Ge(x**2, -Rational(4,3)), Le(-x**2, Rational(4, 3))] assert ((x**2+3)*(x**2-1)+3*x >= 2*x**2).simplify() in [(x**4 + 3*x >= 3), (-x**4 - 3*x <= -3)] def test_multivariate_linear_function_simplification(): assert Ge(x + y, x - y).simplify() == Ge(y, 0) assert Le(-x + y, -x - y).simplify() == Le(y, 0) assert Eq(2*x + y, 2*x + y - 3).simplify() == False assert (2*x + y > 2*x + y - 3).simplify() == True assert (2*x + y < 2*x + y - 3).simplify() == False assert (2*x + y < 2*x + y + 3).simplify() == True a, b, c, d, e, f, g = symbols('a b c d e f g') assert Lt(a + b + c + 2*d, 3*d - f + g). simplify() == Lt(a, -b - c + d - f + g) def test_nonpolymonial_relations(): assert Eq(cos(x), 0).simplify() == Eq(cos(x), 0)
f8f35ebffc87e6b81a7ed265cb5562ef5c7e12646b3445f186d8985a5454e537
"""Tests for Dixon's and Macaulay's classes. """ from sympy import Matrix from sympy.core import symbols from sympy.tensor.indexed import IndexedBase from sympy.polys.multivariate_resultants import (DixonResultant, MacaulayResultant) c, d = symbols("a, b") x, y = symbols("x, y") p = c * x + y q = x + d * y dixon = DixonResultant(polynomials=[p, q], variables=[x, y]) macaulay = MacaulayResultant(polynomials=[p, q], variables=[x, y]) def test_dixon_resultant_init(): """Test init method of DixonResultant.""" a = IndexedBase("alpha") assert dixon.polynomials == [p, q] assert dixon.variables == [x, y] assert dixon.n == 2 assert dixon.m == 2 assert dixon.dummy_variables == [a[0], a[1]] def test_get_dixon_polynomial_numerical(): """Test Dixon's polynomial for a numerical example.""" a = IndexedBase("alpha") p = x + y q = x ** 2 + y **3 h = x ** 2 + y dixon = DixonResultant([p, q, h], [x, y]) polynomial = -x * y ** 2 * a[0] - x * y ** 2 * a[1] - x * y * a[0] \ * a[1] - x * y * a[1] ** 2 - x * a[0] * a[1] ** 2 + x * a[0] - \ y ** 2 * a[0] * a[1] + y ** 2 * a[1] - y * a[0] * a[1] ** 2 + y * \ a[1] ** 2 assert dixon.get_dixon_polynomial().factor() == polynomial def test_get_max_degrees(): """Tests max degrees function.""" p = x + y q = x ** 2 + y **3 h = x ** 2 + y dixon = DixonResultant(polynomials=[p, q, h], variables=[x, y]) dixon_polynomial = dixon.get_dixon_polynomial() assert dixon.get_max_degrees(dixon_polynomial) == [1, 2] def test_get_dixon_matrix_example_two(): """Test Dixon's matrix for example from [Palancz08]_.""" x, y, z = symbols('x, y, z') f = x ** 2 + y ** 2 - 1 + z * 0 g = x ** 2 + z ** 2 - 1 + y * 0 h = y ** 2 + z ** 2 - 1 example_two = DixonResultant([f, g, h], [y, z]) poly = example_two.get_dixon_polynomial() matrix = example_two.get_dixon_matrix(poly) expr = 1 - 8 * x ** 2 + 24 * x ** 4 - 32 * x ** 6 + 16 * x ** 8 assert (matrix.det() - expr).expand() == 0 def test_get_dixon_matrix(): """Test Dixon's resultant for a numerical example.""" x, y = symbols('x, y') p = x + y q = x ** 2 + y ** 3 h = x ** 2 + y dixon = DixonResultant([p, q, h], [x, y]) polynomial = dixon.get_dixon_polynomial() assert dixon.get_dixon_matrix(polynomial).det() == 0 def test_macaulay_resultant_init(): """Test init method of MacaulayResultant.""" assert macaulay.polynomials == [p, q] assert macaulay.variables == [x, y] assert macaulay.n == 2 assert macaulay.degrees == [1, 1] assert macaulay.degree_m == 1 assert macaulay.monomials_size == 2 def test_get_degree_m(): assert macaulay._get_degree_m() == 1 def test_get_size(): assert macaulay.get_size() == 2 def test_macaulay_example_one(): """Tests the Macaulay for example from [Bruce97]_""" x, y, z = symbols('x, y, z') a_1_1, a_1_2, a_1_3 = symbols('a_1_1, a_1_2, a_1_3') a_2_2, a_2_3, a_3_3 = symbols('a_2_2, a_2_3, a_3_3') b_1_1, b_1_2, b_1_3 = symbols('b_1_1, b_1_2, b_1_3') b_2_2, b_2_3, b_3_3 = symbols('b_2_2, b_2_3, b_3_3') c_1, c_2, c_3 = symbols('c_1, c_2, c_3') f_1 = a_1_1 * x ** 2 + a_1_2 * x * y + a_1_3 * x * z + \ a_2_2 * y ** 2 + a_2_3 * y * z + a_3_3 * z ** 2 f_2 = b_1_1 * x ** 2 + b_1_2 * x * y + b_1_3 * x * z + \ b_2_2 * y ** 2 + b_2_3 * y * z + b_3_3 * z ** 2 f_3 = c_1 * x + c_2 * y + c_3 * z mac = MacaulayResultant([f_1, f_2, f_3], [x, y, z]) assert mac.degrees == [2, 2, 1] assert mac.degree_m == 3 assert mac.monomial_set == [x ** 3, x ** 2 * y, x ** 2 * z, x * y ** 2, x * y * z, x * z ** 2, y ** 3, y ** 2 *z, y * z ** 2, z ** 3] assert mac.monomials_size == 10 assert mac.get_row_coefficients() == [[x, y, z], [x, y, z], [x * y, x * z, y * z, z ** 2]] matrix = mac.get_matrix() assert matrix.shape == (mac.monomials_size, mac.monomials_size) assert mac.get_submatrix(matrix) == Matrix([[a_1_1, a_2_2], [b_1_1, b_2_2]]) def test_macaulay_example_two(): """Tests the Macaulay formulation for example from [Stiller96]_.""" x, y, z = symbols('x, y, z') a_0, a_1, a_2 = symbols('a_0, a_1, a_2') b_0, b_1, b_2 = symbols('b_0, b_1, b_2') c_0, c_1, c_2, c_3, c_4 = symbols('c_0, c_1, c_2, c_3, c_4') f = a_0 * y - a_1 * x + a_2 * z g = b_1 * x ** 2 + b_0 * y ** 2 - b_2 * z ** 2 h = c_0 * y - c_1 * x ** 3 + c_2 * x ** 2 * z - c_3 * x * z ** 2 + \ c_4 * z ** 3 mac = MacaulayResultant([f, g, h], [x, y, z]) assert mac.degrees == [1, 2, 3] assert mac.degree_m == 4 assert mac.monomials_size == 15 assert len(mac.get_row_coefficients()) == mac.n matrix = mac.get_matrix() assert matrix.shape == (mac.monomials_size, mac.monomials_size) assert mac.get_submatrix(matrix) == Matrix([[-a_1, a_0, a_2, 0], [0, -a_1, 0, 0], [0, 0, -a_1, 0], [0, 0, 0, -a_1]])
18ff1b3203302c8a588649f697206688f5ea68ced1e04324e52b67f0df12050e
"""Tests for user-friendly public interface to polynomial functions. """ from sympy.polys.polytools import ( Poly, PurePoly, poly, parallel_poly_from_expr, degree, degree_list, total_degree, LC, LM, LT, pdiv, prem, pquo, pexquo, div, rem, quo, exquo, half_gcdex, gcdex, invert, subresultants, resultant, discriminant, terms_gcd, cofactors, gcd, gcd_list, lcm, lcm_list, trunc, monic, content, primitive, compose, decompose, sturm, gff_list, gff, sqf_norm, sqf_part, sqf_list, sqf, factor_list, factor, intervals, refine_root, count_roots, real_roots, nroots, ground_roots, nth_power_roots_poly, cancel, reduced, groebner, GroebnerBasis, is_zero_dimensional, _torational_factor_list, to_rational_coeffs) from sympy.polys.polyerrors import ( MultivariatePolynomialError, ExactQuotientFailed, PolificationFailed, ComputationFailed, UnificationFailed, RefinementFailed, GeneratorsNeeded, GeneratorsError, PolynomialError, CoercionFailed, DomainError, OptionError, FlagError) from sympy.polys.polyclasses import DMP from sympy.polys.fields import field from sympy.polys.domains import FF, ZZ, QQ, RR, EX from sympy.polys.domains.realfield import RealField from sympy.polys.orderings import lex, grlex, grevlex from sympy import ( S, Integer, Rational, Float, Mul, Symbol, sqrt, Piecewise, Derivative, exp, sin, tanh, expand, oo, I, pi, re, im, rootof, Eq, Tuple, Expr, diff) from sympy.core.basic import _aresame from sympy.core.compatibility import iterable, PY3 from sympy.core.mul import _keep_coeff from sympy.utilities.pytest import raises, XFAIL from sympy.abc import a, b, c, d, p, q, t, w, x, y, z from sympy import MatrixSymbol def _epsilon_eq(a, b): for u, v in zip(a, b): if abs(u - v) > 1e-10: return False return True def _strict_eq(a, b): if type(a) == type(b): if iterable(a): if len(a) == len(b): return all(_strict_eq(c, d) for c, d in zip(a, b)) else: return False else: return isinstance(a, Poly) and a.eq(b, strict=True) else: return False def test_Poly_from_dict(): K = FF(3) assert Poly.from_dict( {0: 1, 1: 2}, gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_dict( {0: 1, 1: 5}, gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_dict( {(0,): 1, (1,): 2}, gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_dict( {(0,): 1, (1,): 5}, gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_dict({(0, 0): 1, (1, 1): 2}, gens=( x, y), domain=K).rep == DMP([[K(2), K(0)], [K(1)]], K) assert Poly.from_dict({0: 1, 1: 2}, gens=x).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_dict( {0: 1, 1: 2}, gens=x, field=True).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_dict( {0: 1, 1: 2}, gens=x, domain=ZZ).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_dict( {0: 1, 1: 2}, gens=x, domain=QQ).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_dict( {(0,): 1, (1,): 2}, gens=x).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_dict( {(0,): 1, (1,): 2}, gens=x, field=True).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_dict( {(0,): 1, (1,): 2}, gens=x, domain=ZZ).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_dict( {(0,): 1, (1,): 2}, gens=x, domain=QQ).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_dict({(1,): sin(y)}, gens=x, composite=False) == \ Poly(sin(y)*x, x, domain='EX') assert Poly.from_dict({(1,): y}, gens=x, composite=False) == \ Poly(y*x, x, domain='EX') assert Poly.from_dict({(1, 1): 1}, gens=(x, y), composite=False) == \ Poly(x*y, x, y, domain='ZZ') assert Poly.from_dict({(1, 0): y}, gens=(x, z), composite=False) == \ Poly(y*x, x, z, domain='EX') def test_Poly_from_list(): K = FF(3) assert Poly.from_list([2, 1], gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_list([5, 1], gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_list([2, 1], gens=x).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_list([2, 1], gens=x, field=True).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_list([2, 1], gens=x, domain=ZZ).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_list([2, 1], gens=x, domain=QQ).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_list([0, 1.0], gens=x).rep == DMP([RR(1.0)], RR) assert Poly.from_list([1.0, 0], gens=x).rep == DMP([RR(1.0), RR(0.0)], RR) raises(MultivariatePolynomialError, lambda: Poly.from_list([[]], gens=(x, y))) def test_Poly_from_poly(): f = Poly(x + 7, x, domain=ZZ) g = Poly(x + 2, x, modulus=3) h = Poly(x + y, x, y, domain=ZZ) K = FF(3) assert Poly.from_poly(f) == f assert Poly.from_poly(f, domain=K).rep == DMP([K(1), K(1)], K) assert Poly.from_poly(f, domain=ZZ).rep == DMP([1, 7], ZZ) assert Poly.from_poly(f, domain=QQ).rep == DMP([1, 7], QQ) assert Poly.from_poly(f, gens=x) == f assert Poly.from_poly(f, gens=x, domain=K).rep == DMP([K(1), K(1)], K) assert Poly.from_poly(f, gens=x, domain=ZZ).rep == DMP([1, 7], ZZ) assert Poly.from_poly(f, gens=x, domain=QQ).rep == DMP([1, 7], QQ) assert Poly.from_poly(f, gens=y) == Poly(x + 7, y, domain='ZZ[x]') raises(CoercionFailed, lambda: Poly.from_poly(f, gens=y, domain=K)) raises(CoercionFailed, lambda: Poly.from_poly(f, gens=y, domain=ZZ)) raises(CoercionFailed, lambda: Poly.from_poly(f, gens=y, domain=QQ)) assert Poly.from_poly(f, gens=(x, y)) == Poly(x + 7, x, y, domain='ZZ') assert Poly.from_poly( f, gens=(x, y), domain=ZZ) == Poly(x + 7, x, y, domain='ZZ') assert Poly.from_poly( f, gens=(x, y), domain=QQ) == Poly(x + 7, x, y, domain='QQ') assert Poly.from_poly( f, gens=(x, y), modulus=3) == Poly(x + 7, x, y, domain='FF(3)') K = FF(2) assert Poly.from_poly(g) == g assert Poly.from_poly(g, domain=ZZ).rep == DMP([1, -1], ZZ) raises(CoercionFailed, lambda: Poly.from_poly(g, domain=QQ)) assert Poly.from_poly(g, domain=K).rep == DMP([K(1), K(0)], K) assert Poly.from_poly(g, gens=x) == g assert Poly.from_poly(g, gens=x, domain=ZZ).rep == DMP([1, -1], ZZ) raises(CoercionFailed, lambda: Poly.from_poly(g, gens=x, domain=QQ)) assert Poly.from_poly(g, gens=x, domain=K).rep == DMP([K(1), K(0)], K) K = FF(3) assert Poly.from_poly(h) == h assert Poly.from_poly( h, domain=ZZ).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) assert Poly.from_poly( h, domain=QQ).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ) assert Poly.from_poly(h, domain=K).rep == DMP([[K(1)], [K(1), K(0)]], K) assert Poly.from_poly(h, gens=x) == Poly(x + y, x, domain=ZZ[y]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=x, domain=ZZ)) assert Poly.from_poly( h, gens=x, domain=ZZ[y]) == Poly(x + y, x, domain=ZZ[y]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=x, domain=QQ)) assert Poly.from_poly( h, gens=x, domain=QQ[y]) == Poly(x + y, x, domain=QQ[y]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=x, modulus=3)) assert Poly.from_poly(h, gens=y) == Poly(x + y, y, domain=ZZ[x]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=y, domain=ZZ)) assert Poly.from_poly( h, gens=y, domain=ZZ[x]) == Poly(x + y, y, domain=ZZ[x]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=y, domain=QQ)) assert Poly.from_poly( h, gens=y, domain=QQ[x]) == Poly(x + y, y, domain=QQ[x]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=y, modulus=3)) assert Poly.from_poly(h, gens=(x, y)) == h assert Poly.from_poly( h, gens=(x, y), domain=ZZ).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) assert Poly.from_poly( h, gens=(x, y), domain=QQ).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ) assert Poly.from_poly( h, gens=(x, y), domain=K).rep == DMP([[K(1)], [K(1), K(0)]], K) assert Poly.from_poly( h, gens=(y, x)).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) assert Poly.from_poly( h, gens=(y, x), domain=ZZ).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) assert Poly.from_poly( h, gens=(y, x), domain=QQ).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ) assert Poly.from_poly( h, gens=(y, x), domain=K).rep == DMP([[K(1)], [K(1), K(0)]], K) assert Poly.from_poly( h, gens=(x, y), field=True).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ) assert Poly.from_poly( h, gens=(x, y), field=True).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ) def test_Poly_from_expr(): raises(GeneratorsNeeded, lambda: Poly.from_expr(S.Zero)) raises(GeneratorsNeeded, lambda: Poly.from_expr(S(7))) F3 = FF(3) assert Poly.from_expr(x + 5, domain=F3).rep == DMP([F3(1), F3(2)], F3) assert Poly.from_expr(y + 5, domain=F3).rep == DMP([F3(1), F3(2)], F3) assert Poly.from_expr(x + 5, x, domain=F3).rep == DMP([F3(1), F3(2)], F3) assert Poly.from_expr(y + 5, y, domain=F3).rep == DMP([F3(1), F3(2)], F3) assert Poly.from_expr(x + y, domain=F3).rep == DMP([[F3(1)], [F3(1), F3(0)]], F3) assert Poly.from_expr(x + y, x, y, domain=F3).rep == DMP([[F3(1)], [F3(1), F3(0)]], F3) assert Poly.from_expr(x + 5).rep == DMP([1, 5], ZZ) assert Poly.from_expr(y + 5).rep == DMP([1, 5], ZZ) assert Poly.from_expr(x + 5, x).rep == DMP([1, 5], ZZ) assert Poly.from_expr(y + 5, y).rep == DMP([1, 5], ZZ) assert Poly.from_expr(x + 5, domain=ZZ).rep == DMP([1, 5], ZZ) assert Poly.from_expr(y + 5, domain=ZZ).rep == DMP([1, 5], ZZ) assert Poly.from_expr(x + 5, x, domain=ZZ).rep == DMP([1, 5], ZZ) assert Poly.from_expr(y + 5, y, domain=ZZ).rep == DMP([1, 5], ZZ) assert Poly.from_expr(x + 5, x, y, domain=ZZ).rep == DMP([[1], [5]], ZZ) assert Poly.from_expr(y + 5, x, y, domain=ZZ).rep == DMP([[1, 5]], ZZ) def test_Poly__new__(): raises(GeneratorsError, lambda: Poly(x + 1, x, x)) raises(GeneratorsError, lambda: Poly(x + y, x, y, domain=ZZ[x])) raises(GeneratorsError, lambda: Poly(x + y, x, y, domain=ZZ[y])) raises(OptionError, lambda: Poly(x, x, symmetric=True)) raises(OptionError, lambda: Poly(x + 2, x, modulus=3, domain=QQ)) raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, gaussian=True)) raises(OptionError, lambda: Poly(x + 2, x, modulus=3, gaussian=True)) raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, extension=[sqrt(3)])) raises(OptionError, lambda: Poly(x + 2, x, modulus=3, extension=[sqrt(3)])) raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, extension=True)) raises(OptionError, lambda: Poly(x + 2, x, modulus=3, extension=True)) raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, greedy=True)) raises(OptionError, lambda: Poly(x + 2, x, domain=QQ, field=True)) raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, greedy=False)) raises(OptionError, lambda: Poly(x + 2, x, domain=QQ, field=False)) raises(NotImplementedError, lambda: Poly(x + 1, x, modulus=3, order='grlex')) raises(NotImplementedError, lambda: Poly(x + 1, x, order='grlex')) raises(GeneratorsNeeded, lambda: Poly({1: 2, 0: 1})) raises(GeneratorsNeeded, lambda: Poly([2, 1])) raises(GeneratorsNeeded, lambda: Poly((2, 1))) raises(GeneratorsNeeded, lambda: Poly(1)) f = a*x**2 + b*x + c assert Poly({2: a, 1: b, 0: c}, x) == f assert Poly(iter([a, b, c]), x) == f assert Poly([a, b, c], x) == f assert Poly((a, b, c), x) == f f = Poly({}, x, y, z) assert f.gens == (x, y, z) and f.as_expr() == 0 assert Poly(Poly(a*x + b*y, x, y), x) == Poly(a*x + b*y, x) assert Poly(3*x**2 + 2*x + 1, domain='ZZ').all_coeffs() == [3, 2, 1] assert Poly(3*x**2 + 2*x + 1, domain='QQ').all_coeffs() == [3, 2, 1] assert Poly(3*x**2 + 2*x + 1, domain='RR').all_coeffs() == [3.0, 2.0, 1.0] raises(CoercionFailed, lambda: Poly(3*x**2/5 + x*Rational(2, 5) + 1, domain='ZZ')) assert Poly( 3*x**2/5 + x*Rational(2, 5) + 1, domain='QQ').all_coeffs() == [Rational(3, 5), Rational(2, 5), 1] assert _epsilon_eq( Poly(3*x**2/5 + x*Rational(2, 5) + 1, domain='RR').all_coeffs(), [0.6, 0.4, 1.0]) assert Poly(3.0*x**2 + 2.0*x + 1, domain='ZZ').all_coeffs() == [3, 2, 1] assert Poly(3.0*x**2 + 2.0*x + 1, domain='QQ').all_coeffs() == [3, 2, 1] assert Poly( 3.0*x**2 + 2.0*x + 1, domain='RR').all_coeffs() == [3.0, 2.0, 1.0] raises(CoercionFailed, lambda: Poly(3.1*x**2 + 2.1*x + 1, domain='ZZ')) assert Poly(3.1*x**2 + 2.1*x + 1, domain='QQ').all_coeffs() == [Rational(31, 10), Rational(21, 10), 1] assert Poly(3.1*x**2 + 2.1*x + 1, domain='RR').all_coeffs() == [3.1, 2.1, 1.0] assert Poly({(2, 1): 1, (1, 2): 2, (1, 1): 3}, x, y) == \ Poly(x**2*y + 2*x*y**2 + 3*x*y, x, y) assert Poly(x**2 + 1, extension=I).get_domain() == QQ.algebraic_field(I) f = 3*x**5 - x**4 + x**3 - x** 2 + 65538 assert Poly(f, x, modulus=65537, symmetric=True) == \ Poly(3*x**5 - x**4 + x**3 - x** 2 + 1, x, modulus=65537, symmetric=True) assert Poly(f, x, modulus=65537, symmetric=False) == \ Poly(3*x**5 + 65536*x**4 + x**3 + 65536*x** 2 + 1, x, modulus=65537, symmetric=False) assert isinstance(Poly(x**2 + x + 1.0).get_domain(), RealField) def test_Poly__args(): assert Poly(x**2 + 1).args == (x**2 + 1,) def test_Poly__gens(): assert Poly((x - p)*(x - q), x).gens == (x,) assert Poly((x - p)*(x - q), p).gens == (p,) assert Poly((x - p)*(x - q), q).gens == (q,) assert Poly((x - p)*(x - q), x, p).gens == (x, p) assert Poly((x - p)*(x - q), x, q).gens == (x, q) assert Poly((x - p)*(x - q), x, p, q).gens == (x, p, q) assert Poly((x - p)*(x - q), p, x, q).gens == (p, x, q) assert Poly((x - p)*(x - q), p, q, x).gens == (p, q, x) assert Poly((x - p)*(x - q)).gens == (x, p, q) assert Poly((x - p)*(x - q), sort='x > p > q').gens == (x, p, q) assert Poly((x - p)*(x - q), sort='p > x > q').gens == (p, x, q) assert Poly((x - p)*(x - q), sort='p > q > x').gens == (p, q, x) assert Poly((x - p)*(x - q), x, p, q, sort='p > q > x').gens == (x, p, q) assert Poly((x - p)*(x - q), wrt='x').gens == (x, p, q) assert Poly((x - p)*(x - q), wrt='p').gens == (p, x, q) assert Poly((x - p)*(x - q), wrt='q').gens == (q, x, p) assert Poly((x - p)*(x - q), wrt=x).gens == (x, p, q) assert Poly((x - p)*(x - q), wrt=p).gens == (p, x, q) assert Poly((x - p)*(x - q), wrt=q).gens == (q, x, p) assert Poly((x - p)*(x - q), x, p, q, wrt='p').gens == (x, p, q) assert Poly((x - p)*(x - q), wrt='p', sort='q > x').gens == (p, q, x) assert Poly((x - p)*(x - q), wrt='q', sort='p > x').gens == (q, p, x) def test_Poly_zero(): assert Poly(x).zero == Poly(0, x, domain=ZZ) assert Poly(x/2).zero == Poly(0, x, domain=QQ) def test_Poly_one(): assert Poly(x).one == Poly(1, x, domain=ZZ) assert Poly(x/2).one == Poly(1, x, domain=QQ) def test_Poly__unify(): raises(UnificationFailed, lambda: Poly(x)._unify(y)) F3 = FF(3) F5 = FF(5) assert Poly(x, x, modulus=3)._unify(Poly(y, y, modulus=3))[2:] == ( DMP([[F3(1)], []], F3), DMP([[F3(1), F3(0)]], F3)) assert Poly(x, x, modulus=3)._unify(Poly(y, y, modulus=5))[2:] == ( DMP([[F5(1)], []], F5), DMP([[F5(1), F5(0)]], F5)) assert Poly(y, x, y)._unify(Poly(x, x, modulus=3))[2:] == (DMP([[F3(1), F3(0)]], F3), DMP([[F3(1)], []], F3)) assert Poly(x, x, modulus=3)._unify(Poly(y, x, y))[2:] == (DMP([[F3(1)], []], F3), DMP([[F3(1), F3(0)]], F3)) assert Poly(x + 1, x)._unify(Poly(x + 2, x))[2:] == (DMP([1, 1], ZZ), DMP([1, 2], ZZ)) assert Poly(x + 1, x, domain='QQ')._unify(Poly(x + 2, x))[2:] == (DMP([1, 1], QQ), DMP([1, 2], QQ)) assert Poly(x + 1, x)._unify(Poly(x + 2, x, domain='QQ'))[2:] == (DMP([1, 1], QQ), DMP([1, 2], QQ)) assert Poly(x + 1, x)._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ)) assert Poly(x + 1, x, domain='QQ')._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x)._unify(Poly(x + 2, x, y, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, x))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ)) assert Poly(x + 1, x, y, domain='QQ')._unify(Poly(x + 2, x))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, x, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ)) assert Poly(x + 1, x, y, domain='QQ')._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, x, y, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x)._unify(Poly(x + 2, y, x))[2:] == (DMP([[1, 1]], ZZ), DMP([[1, 2]], ZZ)) assert Poly(x + 1, x, domain='QQ')._unify(Poly(x + 2, y, x))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x + 1, x)._unify(Poly(x + 2, y, x, domain='QQ'))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x + 1, y, x)._unify(Poly(x + 2, x))[2:] == (DMP([[1, 1]], ZZ), DMP([[1, 2]], ZZ)) assert Poly(x + 1, y, x, domain='QQ')._unify(Poly(x + 2, x))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x + 1, y, x)._unify(Poly(x + 2, x, domain='QQ'))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, y, x))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ)) assert Poly(x + 1, x, y, domain='QQ')._unify(Poly(x + 2, y, x))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, y, x, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, y, x)._unify(Poly(x + 2, x, y))[2:] == (DMP([[1, 1]], ZZ), DMP([[1, 2]], ZZ)) assert Poly(x + 1, y, x, domain='QQ')._unify(Poly(x + 2, x, y))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x + 1, y, x)._unify(Poly(x + 2, x, y, domain='QQ'))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) F, A, B = field("a,b", ZZ) assert Poly(a*x, x, domain='ZZ[a]')._unify(Poly(a*b*x, x, domain='ZZ(a,b)'))[2:] == \ (DMP([A, F(0)], F.to_domain()), DMP([A*B, F(0)], F.to_domain())) assert Poly(a*x, x, domain='ZZ(a)')._unify(Poly(a*b*x, x, domain='ZZ(a,b)'))[2:] == \ (DMP([A, F(0)], F.to_domain()), DMP([A*B, F(0)], F.to_domain())) raises(CoercionFailed, lambda: Poly(Poly(x**2 + x**2*z, y, field=True), domain='ZZ(x)')) f = Poly(t**2 + t/3 + x, t, domain='QQ(x)') g = Poly(t**2 + t/3 + x, t, domain='QQ[x]') assert f._unify(g)[2:] == (f.rep, f.rep) def test_Poly_free_symbols(): assert Poly(x**2 + 1).free_symbols == {x} assert Poly(x**2 + y*z).free_symbols == {x, y, z} assert Poly(x**2 + y*z, x).free_symbols == {x, y, z} assert Poly(x**2 + sin(y*z)).free_symbols == {x, y, z} assert Poly(x**2 + sin(y*z), x).free_symbols == {x, y, z} assert Poly(x**2 + sin(y*z), x, domain=EX).free_symbols == {x, y, z} assert Poly(1 + x + x**2, x, y, z).free_symbols == {x} assert Poly(x + sin(y), z).free_symbols == {x, y} def test_PurePoly_free_symbols(): assert PurePoly(x**2 + 1).free_symbols == set([]) assert PurePoly(x**2 + y*z).free_symbols == set([]) assert PurePoly(x**2 + y*z, x).free_symbols == {y, z} assert PurePoly(x**2 + sin(y*z)).free_symbols == set([]) assert PurePoly(x**2 + sin(y*z), x).free_symbols == {y, z} assert PurePoly(x**2 + sin(y*z), x, domain=EX).free_symbols == {y, z} def test_Poly__eq__(): assert (Poly(x, x) == Poly(x, x)) is True assert (Poly(x, x, domain=QQ) == Poly(x, x)) is True assert (Poly(x, x) == Poly(x, x, domain=QQ)) is True assert (Poly(x, x, domain=ZZ[a]) == Poly(x, x)) is True assert (Poly(x, x) == Poly(x, x, domain=ZZ[a])) is True assert (Poly(x*y, x, y) == Poly(x, x)) is False assert (Poly(x, x, y) == Poly(x, x)) is False assert (Poly(x, x) == Poly(x, x, y)) is False assert (Poly(x**2 + 1, x) == Poly(y**2 + 1, y)) is False assert (Poly(y**2 + 1, y) == Poly(x**2 + 1, x)) is False f = Poly(x, x, domain=ZZ) g = Poly(x, x, domain=QQ) assert f.eq(g) is True assert f.ne(g) is False assert f.eq(g, strict=True) is False assert f.ne(g, strict=True) is True t0 = Symbol('t0') f = Poly((t0/2 + x**2)*t**2 - x**2*t, t, domain='QQ[x,t0]') g = Poly((t0/2 + x**2)*t**2 - x**2*t, t, domain='ZZ(x,t0)') assert (f == g) is True def test_PurePoly__eq__(): assert (PurePoly(x, x) == PurePoly(x, x)) is True assert (PurePoly(x, x, domain=QQ) == PurePoly(x, x)) is True assert (PurePoly(x, x) == PurePoly(x, x, domain=QQ)) is True assert (PurePoly(x, x, domain=ZZ[a]) == PurePoly(x, x)) is True assert (PurePoly(x, x) == PurePoly(x, x, domain=ZZ[a])) is True assert (PurePoly(x*y, x, y) == PurePoly(x, x)) is False assert (PurePoly(x, x, y) == PurePoly(x, x)) is False assert (PurePoly(x, x) == PurePoly(x, x, y)) is False assert (PurePoly(x**2 + 1, x) == PurePoly(y**2 + 1, y)) is True assert (PurePoly(y**2 + 1, y) == PurePoly(x**2 + 1, x)) is True f = PurePoly(x, x, domain=ZZ) g = PurePoly(x, x, domain=QQ) assert f.eq(g) is True assert f.ne(g) is False assert f.eq(g, strict=True) is False assert f.ne(g, strict=True) is True f = PurePoly(x, x, domain=ZZ) g = PurePoly(y, y, domain=QQ) assert f.eq(g) is True assert f.ne(g) is False assert f.eq(g, strict=True) is False assert f.ne(g, strict=True) is True def test_PurePoly_Poly(): assert isinstance(PurePoly(Poly(x**2 + 1)), PurePoly) is True assert isinstance(Poly(PurePoly(x**2 + 1)), Poly) is True def test_Poly_get_domain(): assert Poly(2*x).get_domain() == ZZ assert Poly(2*x, domain='ZZ').get_domain() == ZZ assert Poly(2*x, domain='QQ').get_domain() == QQ assert Poly(x/2).get_domain() == QQ raises(CoercionFailed, lambda: Poly(x/2, domain='ZZ')) assert Poly(x/2, domain='QQ').get_domain() == QQ assert isinstance(Poly(0.2*x).get_domain(), RealField) def test_Poly_set_domain(): assert Poly(2*x + 1).set_domain(ZZ) == Poly(2*x + 1) assert Poly(2*x + 1).set_domain('ZZ') == Poly(2*x + 1) assert Poly(2*x + 1).set_domain(QQ) == Poly(2*x + 1, domain='QQ') assert Poly(2*x + 1).set_domain('QQ') == Poly(2*x + 1, domain='QQ') assert Poly(Rational(2, 10)*x + Rational(1, 10)).set_domain('RR') == Poly(0.2*x + 0.1) assert Poly(0.2*x + 0.1).set_domain('QQ') == Poly(Rational(2, 10)*x + Rational(1, 10)) raises(CoercionFailed, lambda: Poly(x/2 + 1).set_domain(ZZ)) raises(CoercionFailed, lambda: Poly(x + 1, modulus=2).set_domain(QQ)) raises(GeneratorsError, lambda: Poly(x*y, x, y).set_domain(ZZ[y])) def test_Poly_get_modulus(): assert Poly(x**2 + 1, modulus=2).get_modulus() == 2 raises(PolynomialError, lambda: Poly(x**2 + 1).get_modulus()) def test_Poly_set_modulus(): assert Poly( x**2 + 1, modulus=2).set_modulus(7) == Poly(x**2 + 1, modulus=7) assert Poly( x**2 + 5, modulus=7).set_modulus(2) == Poly(x**2 + 1, modulus=2) assert Poly(x**2 + 1).set_modulus(2) == Poly(x**2 + 1, modulus=2) raises(CoercionFailed, lambda: Poly(x/2 + 1).set_modulus(2)) def test_Poly_add_ground(): assert Poly(x + 1).add_ground(2) == Poly(x + 3) def test_Poly_sub_ground(): assert Poly(x + 1).sub_ground(2) == Poly(x - 1) def test_Poly_mul_ground(): assert Poly(x + 1).mul_ground(2) == Poly(2*x + 2) def test_Poly_quo_ground(): assert Poly(2*x + 4).quo_ground(2) == Poly(x + 2) assert Poly(2*x + 3).quo_ground(2) == Poly(x + 1) def test_Poly_exquo_ground(): assert Poly(2*x + 4).exquo_ground(2) == Poly(x + 2) raises(ExactQuotientFailed, lambda: Poly(2*x + 3).exquo_ground(2)) def test_Poly_abs(): assert Poly(-x + 1, x).abs() == abs(Poly(-x + 1, x)) == Poly(x + 1, x) def test_Poly_neg(): assert Poly(-x + 1, x).neg() == -Poly(-x + 1, x) == Poly(x - 1, x) def test_Poly_add(): assert Poly(0, x).add(Poly(0, x)) == Poly(0, x) assert Poly(0, x) + Poly(0, x) == Poly(0, x) assert Poly(1, x).add(Poly(0, x)) == Poly(1, x) assert Poly(1, x, y) + Poly(0, x) == Poly(1, x, y) assert Poly(0, x).add(Poly(1, x, y)) == Poly(1, x, y) assert Poly(0, x, y) + Poly(1, x, y) == Poly(1, x, y) assert Poly(1, x) + x == Poly(x + 1, x) assert Poly(1, x) + sin(x) == 1 + sin(x) assert Poly(x, x) + 1 == Poly(x + 1, x) assert 1 + Poly(x, x) == Poly(x + 1, x) def test_Poly_sub(): assert Poly(0, x).sub(Poly(0, x)) == Poly(0, x) assert Poly(0, x) - Poly(0, x) == Poly(0, x) assert Poly(1, x).sub(Poly(0, x)) == Poly(1, x) assert Poly(1, x, y) - Poly(0, x) == Poly(1, x, y) assert Poly(0, x).sub(Poly(1, x, y)) == Poly(-1, x, y) assert Poly(0, x, y) - Poly(1, x, y) == Poly(-1, x, y) assert Poly(1, x) - x == Poly(1 - x, x) assert Poly(1, x) - sin(x) == 1 - sin(x) assert Poly(x, x) - 1 == Poly(x - 1, x) assert 1 - Poly(x, x) == Poly(1 - x, x) def test_Poly_mul(): assert Poly(0, x).mul(Poly(0, x)) == Poly(0, x) assert Poly(0, x) * Poly(0, x) == Poly(0, x) assert Poly(2, x).mul(Poly(4, x)) == Poly(8, x) assert Poly(2, x, y) * Poly(4, x) == Poly(8, x, y) assert Poly(4, x).mul(Poly(2, x, y)) == Poly(8, x, y) assert Poly(4, x, y) * Poly(2, x, y) == Poly(8, x, y) assert Poly(1, x) * x == Poly(x, x) assert Poly(1, x) * sin(x) == sin(x) assert Poly(x, x) * 2 == Poly(2*x, x) assert 2 * Poly(x, x) == Poly(2*x, x) def test_issue_13079(): assert Poly(x)*x == Poly(x**2, x, domain='ZZ') assert x*Poly(x) == Poly(x**2, x, domain='ZZ') assert -2*Poly(x) == Poly(-2*x, x, domain='ZZ') assert S(-2)*Poly(x) == Poly(-2*x, x, domain='ZZ') assert Poly(x)*S(-2) == Poly(-2*x, x, domain='ZZ') def test_Poly_sqr(): assert Poly(x*y, x, y).sqr() == Poly(x**2*y**2, x, y) def test_Poly_pow(): assert Poly(x, x).pow(10) == Poly(x**10, x) assert Poly(x, x).pow(Integer(10)) == Poly(x**10, x) assert Poly(2*y, x, y).pow(4) == Poly(16*y**4, x, y) assert Poly(2*y, x, y).pow(Integer(4)) == Poly(16*y**4, x, y) assert Poly(7*x*y, x, y)**3 == Poly(343*x**3*y**3, x, y) assert Poly(x*y + 1, x, y)**(-1) == (x*y + 1)**(-1) assert Poly(x*y + 1, x, y)**x == (x*y + 1)**x def test_Poly_divmod(): f, g = Poly(x**2), Poly(x) q, r = g, Poly(0, x) assert divmod(f, g) == (q, r) assert f // g == q assert f % g == r assert divmod(f, x) == (q, r) assert f // x == q assert f % x == r q, r = Poly(0, x), Poly(2, x) assert divmod(2, g) == (q, r) assert 2 // g == q assert 2 % g == r assert Poly(x)/Poly(x) == 1 assert Poly(x**2)/Poly(x) == x assert Poly(x)/Poly(x**2) == 1/x def test_Poly_eq_ne(): assert (Poly(x + y, x, y) == Poly(x + y, x, y)) is True assert (Poly(x + y, x) == Poly(x + y, x, y)) is False assert (Poly(x + y, x, y) == Poly(x + y, x)) is False assert (Poly(x + y, x) == Poly(x + y, x)) is True assert (Poly(x + y, y) == Poly(x + y, y)) is True assert (Poly(x + y, x, y) == x + y) is True assert (Poly(x + y, x) == x + y) is True assert (Poly(x + y, x, y) == x + y) is True assert (Poly(x + y, x) == x + y) is True assert (Poly(x + y, y) == x + y) is True assert (Poly(x + y, x, y) != Poly(x + y, x, y)) is False assert (Poly(x + y, x) != Poly(x + y, x, y)) is True assert (Poly(x + y, x, y) != Poly(x + y, x)) is True assert (Poly(x + y, x) != Poly(x + y, x)) is False assert (Poly(x + y, y) != Poly(x + y, y)) is False assert (Poly(x + y, x, y) != x + y) is False assert (Poly(x + y, x) != x + y) is False assert (Poly(x + y, x, y) != x + y) is False assert (Poly(x + y, x) != x + y) is False assert (Poly(x + y, y) != x + y) is False assert (Poly(x, x) == sin(x)) is False assert (Poly(x, x) != sin(x)) is True def test_Poly_nonzero(): assert not bool(Poly(0, x)) is True assert not bool(Poly(1, x)) is False def test_Poly_properties(): assert Poly(0, x).is_zero is True assert Poly(1, x).is_zero is False assert Poly(1, x).is_one is True assert Poly(2, x).is_one is False assert Poly(x - 1, x).is_sqf is True assert Poly((x - 1)**2, x).is_sqf is False assert Poly(x - 1, x).is_monic is True assert Poly(2*x - 1, x).is_monic is False assert Poly(3*x + 2, x).is_primitive is True assert Poly(4*x + 2, x).is_primitive is False assert Poly(1, x).is_ground is True assert Poly(x, x).is_ground is False assert Poly(x + y + z + 1).is_linear is True assert Poly(x*y*z + 1).is_linear is False assert Poly(x*y + z + 1).is_quadratic is True assert Poly(x*y*z + 1).is_quadratic is False assert Poly(x*y).is_monomial is True assert Poly(x*y + 1).is_monomial is False assert Poly(x**2 + x*y).is_homogeneous is True assert Poly(x**3 + x*y).is_homogeneous is False assert Poly(x).is_univariate is True assert Poly(x*y).is_univariate is False assert Poly(x*y).is_multivariate is True assert Poly(x).is_multivariate is False assert Poly( x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1).is_cyclotomic is False assert Poly( x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1).is_cyclotomic is True def test_Poly_is_irreducible(): assert Poly(x**2 + x + 1).is_irreducible is True assert Poly(x**2 + 2*x + 1).is_irreducible is False assert Poly(7*x + 3, modulus=11).is_irreducible is True assert Poly(7*x**2 + 3*x + 1, modulus=11).is_irreducible is False def test_Poly_subs(): assert Poly(x + 1).subs(x, 0) == 1 assert Poly(x + 1).subs(x, x) == Poly(x + 1) assert Poly(x + 1).subs(x, y) == Poly(y + 1) assert Poly(x*y, x).subs(y, x) == x**2 assert Poly(x*y, x).subs(x, y) == y**2 def test_Poly_replace(): assert Poly(x + 1).replace(x) == Poly(x + 1) assert Poly(x + 1).replace(y) == Poly(y + 1) raises(PolynomialError, lambda: Poly(x + y).replace(z)) assert Poly(x + 1).replace(x, x) == Poly(x + 1) assert Poly(x + 1).replace(x, y) == Poly(y + 1) assert Poly(x + y).replace(x, x) == Poly(x + y) assert Poly(x + y).replace(x, z) == Poly(z + y, z, y) assert Poly(x + y).replace(y, y) == Poly(x + y) assert Poly(x + y).replace(y, z) == Poly(x + z, x, z) assert Poly(x + y).replace(z, t) == Poly(x + y) raises(PolynomialError, lambda: Poly(x + y).replace(x, y)) assert Poly(x + y, x).replace(x, z) == Poly(z + y, z) assert Poly(x + y, y).replace(y, z) == Poly(x + z, z) raises(PolynomialError, lambda: Poly(x + y, x).replace(x, y)) raises(PolynomialError, lambda: Poly(x + y, y).replace(y, x)) def test_Poly_reorder(): raises(PolynomialError, lambda: Poly(x + y).reorder(x, z)) assert Poly(x + y, x, y).reorder(x, y) == Poly(x + y, x, y) assert Poly(x + y, x, y).reorder(y, x) == Poly(x + y, y, x) assert Poly(x + y, y, x).reorder(x, y) == Poly(x + y, x, y) assert Poly(x + y, y, x).reorder(y, x) == Poly(x + y, y, x) assert Poly(x + y, x, y).reorder(wrt=x) == Poly(x + y, x, y) assert Poly(x + y, x, y).reorder(wrt=y) == Poly(x + y, y, x) def test_Poly_ltrim(): f = Poly(y**2 + y*z**2, x, y, z).ltrim(y) assert f.as_expr() == y**2 + y*z**2 and f.gens == (y, z) assert Poly(x*y - x, z, x, y).ltrim(1) == Poly(x*y - x, x, y) raises(PolynomialError, lambda: Poly(x*y**2 + y**2, x, y).ltrim(y)) raises(PolynomialError, lambda: Poly(x*y - x, x, y).ltrim(-1)) def test_Poly_has_only_gens(): assert Poly(x*y + 1, x, y, z).has_only_gens(x, y) is True assert Poly(x*y + z, x, y, z).has_only_gens(x, y) is False raises(GeneratorsError, lambda: Poly(x*y**2 + y**2, x, y).has_only_gens(t)) def test_Poly_to_ring(): assert Poly(2*x + 1, domain='ZZ').to_ring() == Poly(2*x + 1, domain='ZZ') assert Poly(2*x + 1, domain='QQ').to_ring() == Poly(2*x + 1, domain='ZZ') raises(CoercionFailed, lambda: Poly(x/2 + 1).to_ring()) raises(DomainError, lambda: Poly(2*x + 1, modulus=3).to_ring()) def test_Poly_to_field(): assert Poly(2*x + 1, domain='ZZ').to_field() == Poly(2*x + 1, domain='QQ') assert Poly(2*x + 1, domain='QQ').to_field() == Poly(2*x + 1, domain='QQ') assert Poly(x/2 + 1, domain='QQ').to_field() == Poly(x/2 + 1, domain='QQ') assert Poly(2*x + 1, modulus=3).to_field() == Poly(2*x + 1, modulus=3) assert Poly(2.0*x + 1.0).to_field() == Poly(2.0*x + 1.0) def test_Poly_to_exact(): assert Poly(2*x).to_exact() == Poly(2*x) assert Poly(x/2).to_exact() == Poly(x/2) assert Poly(0.1*x).to_exact() == Poly(x/10) def test_Poly_retract(): f = Poly(x**2 + 1, x, domain=QQ[y]) assert f.retract() == Poly(x**2 + 1, x, domain='ZZ') assert f.retract(field=True) == Poly(x**2 + 1, x, domain='QQ') assert Poly(0, x, y).retract() == Poly(0, x, y) def test_Poly_slice(): f = Poly(x**3 + 2*x**2 + 3*x + 4) assert f.slice(0, 0) == Poly(0, x) assert f.slice(0, 1) == Poly(4, x) assert f.slice(0, 2) == Poly(3*x + 4, x) assert f.slice(0, 3) == Poly(2*x**2 + 3*x + 4, x) assert f.slice(0, 4) == Poly(x**3 + 2*x**2 + 3*x + 4, x) assert f.slice(x, 0, 0) == Poly(0, x) assert f.slice(x, 0, 1) == Poly(4, x) assert f.slice(x, 0, 2) == Poly(3*x + 4, x) assert f.slice(x, 0, 3) == Poly(2*x**2 + 3*x + 4, x) assert f.slice(x, 0, 4) == Poly(x**3 + 2*x**2 + 3*x + 4, x) def test_Poly_coeffs(): assert Poly(0, x).coeffs() == [0] assert Poly(1, x).coeffs() == [1] assert Poly(2*x + 1, x).coeffs() == [2, 1] assert Poly(7*x**2 + 2*x + 1, x).coeffs() == [7, 2, 1] assert Poly(7*x**4 + 2*x + 1, x).coeffs() == [7, 2, 1] assert Poly(x*y**7 + 2*x**2*y**3).coeffs('lex') == [2, 1] assert Poly(x*y**7 + 2*x**2*y**3).coeffs('grlex') == [1, 2] def test_Poly_monoms(): assert Poly(0, x).monoms() == [(0,)] assert Poly(1, x).monoms() == [(0,)] assert Poly(2*x + 1, x).monoms() == [(1,), (0,)] assert Poly(7*x**2 + 2*x + 1, x).monoms() == [(2,), (1,), (0,)] assert Poly(7*x**4 + 2*x + 1, x).monoms() == [(4,), (1,), (0,)] assert Poly(x*y**7 + 2*x**2*y**3).monoms('lex') == [(2, 3), (1, 7)] assert Poly(x*y**7 + 2*x**2*y**3).monoms('grlex') == [(1, 7), (2, 3)] def test_Poly_terms(): assert Poly(0, x).terms() == [((0,), 0)] assert Poly(1, x).terms() == [((0,), 1)] assert Poly(2*x + 1, x).terms() == [((1,), 2), ((0,), 1)] assert Poly(7*x**2 + 2*x + 1, x).terms() == [((2,), 7), ((1,), 2), ((0,), 1)] assert Poly(7*x**4 + 2*x + 1, x).terms() == [((4,), 7), ((1,), 2), ((0,), 1)] assert Poly( x*y**7 + 2*x**2*y**3).terms('lex') == [((2, 3), 2), ((1, 7), 1)] assert Poly( x*y**7 + 2*x**2*y**3).terms('grlex') == [((1, 7), 1), ((2, 3), 2)] def test_Poly_all_coeffs(): assert Poly(0, x).all_coeffs() == [0] assert Poly(1, x).all_coeffs() == [1] assert Poly(2*x + 1, x).all_coeffs() == [2, 1] assert Poly(7*x**2 + 2*x + 1, x).all_coeffs() == [7, 2, 1] assert Poly(7*x**4 + 2*x + 1, x).all_coeffs() == [7, 0, 0, 2, 1] def test_Poly_all_monoms(): assert Poly(0, x).all_monoms() == [(0,)] assert Poly(1, x).all_monoms() == [(0,)] assert Poly(2*x + 1, x).all_monoms() == [(1,), (0,)] assert Poly(7*x**2 + 2*x + 1, x).all_monoms() == [(2,), (1,), (0,)] assert Poly(7*x**4 + 2*x + 1, x).all_monoms() == [(4,), (3,), (2,), (1,), (0,)] def test_Poly_all_terms(): assert Poly(0, x).all_terms() == [((0,), 0)] assert Poly(1, x).all_terms() == [((0,), 1)] assert Poly(2*x + 1, x).all_terms() == [((1,), 2), ((0,), 1)] assert Poly(7*x**2 + 2*x + 1, x).all_terms() == \ [((2,), 7), ((1,), 2), ((0,), 1)] assert Poly(7*x**4 + 2*x + 1, x).all_terms() == \ [((4,), 7), ((3,), 0), ((2,), 0), ((1,), 2), ((0,), 1)] def test_Poly_termwise(): f = Poly(x**2 + 20*x + 400) g = Poly(x**2 + 2*x + 4) def func(monom, coeff): (k,) = monom return coeff//10**(2 - k) assert f.termwise(func) == g def func(monom, coeff): (k,) = monom return (k,), coeff//10**(2 - k) assert f.termwise(func) == g def test_Poly_length(): assert Poly(0, x).length() == 0 assert Poly(1, x).length() == 1 assert Poly(x, x).length() == 1 assert Poly(x + 1, x).length() == 2 assert Poly(x**2 + 1, x).length() == 2 assert Poly(x**2 + x + 1, x).length() == 3 def test_Poly_as_dict(): assert Poly(0, x).as_dict() == {} assert Poly(0, x, y, z).as_dict() == {} assert Poly(1, x).as_dict() == {(0,): 1} assert Poly(1, x, y, z).as_dict() == {(0, 0, 0): 1} assert Poly(x**2 + 3, x).as_dict() == {(2,): 1, (0,): 3} assert Poly(x**2 + 3, x, y, z).as_dict() == {(2, 0, 0): 1, (0, 0, 0): 3} assert Poly(3*x**2*y*z**3 + 4*x*y + 5*x*z).as_dict() == {(2, 1, 3): 3, (1, 1, 0): 4, (1, 0, 1): 5} def test_Poly_as_expr(): assert Poly(0, x).as_expr() == 0 assert Poly(0, x, y, z).as_expr() == 0 assert Poly(1, x).as_expr() == 1 assert Poly(1, x, y, z).as_expr() == 1 assert Poly(x**2 + 3, x).as_expr() == x**2 + 3 assert Poly(x**2 + 3, x, y, z).as_expr() == x**2 + 3 assert Poly( 3*x**2*y*z**3 + 4*x*y + 5*x*z).as_expr() == 3*x**2*y*z**3 + 4*x*y + 5*x*z f = Poly(x**2 + 2*x*y**2 - y, x, y) assert f.as_expr() == -y + x**2 + 2*x*y**2 assert f.as_expr({x: 5}) == 25 - y + 10*y**2 assert f.as_expr({y: 6}) == -6 + 72*x + x**2 assert f.as_expr({x: 5, y: 6}) == 379 assert f.as_expr(5, 6) == 379 raises(GeneratorsError, lambda: f.as_expr({z: 7})) def test_Poly_lift(): assert Poly(x**4 - I*x + 17*I, x, gaussian=True).lift() == \ Poly(x**16 + 2*x**10 + 578*x**8 + x**4 - 578*x**2 + 83521, x, domain='QQ') def test_Poly_deflate(): assert Poly(0, x).deflate() == ((1,), Poly(0, x)) assert Poly(1, x).deflate() == ((1,), Poly(1, x)) assert Poly(x, x).deflate() == ((1,), Poly(x, x)) assert Poly(x**2, x).deflate() == ((2,), Poly(x, x)) assert Poly(x**17, x).deflate() == ((17,), Poly(x, x)) assert Poly( x**2*y*z**11 + x**4*z**11).deflate() == ((2, 1, 11), Poly(x*y*z + x**2*z)) def test_Poly_inject(): f = Poly(x**2*y + x*y**3 + x*y + 1, x) assert f.inject() == Poly(x**2*y + x*y**3 + x*y + 1, x, y) assert f.inject(front=True) == Poly(y**3*x + y*x**2 + y*x + 1, y, x) def test_Poly_eject(): f = Poly(x**2*y + x*y**3 + x*y + 1, x, y) assert f.eject(x) == Poly(x*y**3 + (x**2 + x)*y + 1, y, domain='ZZ[x]') assert f.eject(y) == Poly(y*x**2 + (y**3 + y)*x + 1, x, domain='ZZ[y]') ex = x + y + z + t + w g = Poly(ex, x, y, z, t, w) assert g.eject(x) == Poly(ex, y, z, t, w, domain='ZZ[x]') assert g.eject(x, y) == Poly(ex, z, t, w, domain='ZZ[x, y]') assert g.eject(x, y, z) == Poly(ex, t, w, domain='ZZ[x, y, z]') assert g.eject(w) == Poly(ex, x, y, z, t, domain='ZZ[w]') assert g.eject(t, w) == Poly(ex, x, y, z, domain='ZZ[w, t]') assert g.eject(z, t, w) == Poly(ex, x, y, domain='ZZ[w, t, z]') raises(DomainError, lambda: Poly(x*y, x, y, domain=ZZ[z]).eject(y)) raises(NotImplementedError, lambda: Poly(x*y, x, y, z).eject(y)) def test_Poly_exclude(): assert Poly(x, x, y).exclude() == Poly(x, x) assert Poly(x*y, x, y).exclude() == Poly(x*y, x, y) assert Poly(1, x, y).exclude() == Poly(1, x, y) def test_Poly__gen_to_level(): assert Poly(1, x, y)._gen_to_level(-2) == 0 assert Poly(1, x, y)._gen_to_level(-1) == 1 assert Poly(1, x, y)._gen_to_level( 0) == 0 assert Poly(1, x, y)._gen_to_level( 1) == 1 raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level(-3)) raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level( 2)) assert Poly(1, x, y)._gen_to_level(x) == 0 assert Poly(1, x, y)._gen_to_level(y) == 1 assert Poly(1, x, y)._gen_to_level('x') == 0 assert Poly(1, x, y)._gen_to_level('y') == 1 raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level(z)) raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level('z')) def test_Poly_degree(): assert Poly(0, x).degree() is -oo assert Poly(1, x).degree() == 0 assert Poly(x, x).degree() == 1 assert Poly(0, x).degree(gen=0) is -oo assert Poly(1, x).degree(gen=0) == 0 assert Poly(x, x).degree(gen=0) == 1 assert Poly(0, x).degree(gen=x) is -oo assert Poly(1, x).degree(gen=x) == 0 assert Poly(x, x).degree(gen=x) == 1 assert Poly(0, x).degree(gen='x') is -oo assert Poly(1, x).degree(gen='x') == 0 assert Poly(x, x).degree(gen='x') == 1 raises(PolynomialError, lambda: Poly(1, x).degree(gen=1)) raises(PolynomialError, lambda: Poly(1, x).degree(gen=y)) raises(PolynomialError, lambda: Poly(1, x).degree(gen='y')) assert Poly(1, x, y).degree() == 0 assert Poly(2*y, x, y).degree() == 0 assert Poly(x*y, x, y).degree() == 1 assert Poly(1, x, y).degree(gen=x) == 0 assert Poly(2*y, x, y).degree(gen=x) == 0 assert Poly(x*y, x, y).degree(gen=x) == 1 assert Poly(1, x, y).degree(gen=y) == 0 assert Poly(2*y, x, y).degree(gen=y) == 1 assert Poly(x*y, x, y).degree(gen=y) == 1 assert degree(0, x) is -oo assert degree(1, x) == 0 assert degree(x, x) == 1 assert degree(x*y**2, x) == 1 assert degree(x*y**2, y) == 2 assert degree(x*y**2, z) == 0 assert degree(pi) == 1 raises(TypeError, lambda: degree(y**2 + x**3)) raises(TypeError, lambda: degree(y**2 + x**3, 1)) raises(PolynomialError, lambda: degree(x, 1.1)) raises(PolynomialError, lambda: degree(x**2/(x**3 + 1), x)) assert degree(Poly(0,x),z) is -oo assert degree(Poly(1,x),z) == 0 assert degree(Poly(x**2+y**3,y)) == 3 assert degree(Poly(y**2 + x**3, y, x), 1) == 3 assert degree(Poly(y**2 + x**3, x), z) == 0 assert degree(Poly(y**2 + x**3 + z**4, x), z) == 4 def test_Poly_degree_list(): assert Poly(0, x).degree_list() == (-oo,) assert Poly(0, x, y).degree_list() == (-oo, -oo) assert Poly(0, x, y, z).degree_list() == (-oo, -oo, -oo) assert Poly(1, x).degree_list() == (0,) assert Poly(1, x, y).degree_list() == (0, 0) assert Poly(1, x, y, z).degree_list() == (0, 0, 0) assert Poly(x**2*y + x**3*z**2 + 1).degree_list() == (3, 1, 2) assert degree_list(1, x) == (0,) assert degree_list(x, x) == (1,) assert degree_list(x*y**2) == (1, 2) raises(ComputationFailed, lambda: degree_list(1)) def test_Poly_total_degree(): assert Poly(x**2*y + x**3*z**2 + 1).total_degree() == 5 assert Poly(x**2 + z**3).total_degree() == 3 assert Poly(x*y*z + z**4).total_degree() == 4 assert Poly(x**3 + x + 1).total_degree() == 3 assert total_degree(x*y + z**3) == 3 assert total_degree(x*y + z**3, x, y) == 2 assert total_degree(1) == 0 assert total_degree(Poly(y**2 + x**3 + z**4)) == 4 assert total_degree(Poly(y**2 + x**3 + z**4, x)) == 3 assert total_degree(Poly(y**2 + x**3 + z**4, x), z) == 4 assert total_degree(Poly(x**9 + x*z*y + x**3*z**2 + z**7,x), z) == 7 def test_Poly_homogenize(): assert Poly(x**2+y).homogenize(z) == Poly(x**2+y*z) assert Poly(x+y).homogenize(z) == Poly(x+y, x, y, z) assert Poly(x+y**2).homogenize(y) == Poly(x*y+y**2) def test_Poly_homogeneous_order(): assert Poly(0, x, y).homogeneous_order() is -oo assert Poly(1, x, y).homogeneous_order() == 0 assert Poly(x, x, y).homogeneous_order() == 1 assert Poly(x*y, x, y).homogeneous_order() == 2 assert Poly(x + 1, x, y).homogeneous_order() is None assert Poly(x*y + x, x, y).homogeneous_order() is None assert Poly(x**5 + 2*x**3*y**2 + 9*x*y**4).homogeneous_order() == 5 assert Poly(x**5 + 2*x**3*y**3 + 9*x*y**4).homogeneous_order() is None def test_Poly_LC(): assert Poly(0, x).LC() == 0 assert Poly(1, x).LC() == 1 assert Poly(2*x**2 + x, x).LC() == 2 assert Poly(x*y**7 + 2*x**2*y**3).LC('lex') == 2 assert Poly(x*y**7 + 2*x**2*y**3).LC('grlex') == 1 assert LC(x*y**7 + 2*x**2*y**3, order='lex') == 2 assert LC(x*y**7 + 2*x**2*y**3, order='grlex') == 1 def test_Poly_TC(): assert Poly(0, x).TC() == 0 assert Poly(1, x).TC() == 1 assert Poly(2*x**2 + x, x).TC() == 0 def test_Poly_EC(): assert Poly(0, x).EC() == 0 assert Poly(1, x).EC() == 1 assert Poly(2*x**2 + x, x).EC() == 1 assert Poly(x*y**7 + 2*x**2*y**3).EC('lex') == 1 assert Poly(x*y**7 + 2*x**2*y**3).EC('grlex') == 2 def test_Poly_coeff(): assert Poly(0, x).coeff_monomial(1) == 0 assert Poly(0, x).coeff_monomial(x) == 0 assert Poly(1, x).coeff_monomial(1) == 1 assert Poly(1, x).coeff_monomial(x) == 0 assert Poly(x**8, x).coeff_monomial(1) == 0 assert Poly(x**8, x).coeff_monomial(x**7) == 0 assert Poly(x**8, x).coeff_monomial(x**8) == 1 assert Poly(x**8, x).coeff_monomial(x**9) == 0 assert Poly(3*x*y**2 + 1, x, y).coeff_monomial(1) == 1 assert Poly(3*x*y**2 + 1, x, y).coeff_monomial(x*y**2) == 3 p = Poly(24*x*y*exp(8) + 23*x, x, y) assert p.coeff_monomial(x) == 23 assert p.coeff_monomial(y) == 0 assert p.coeff_monomial(x*y) == 24*exp(8) assert p.as_expr().coeff(x) == 24*y*exp(8) + 23 raises(NotImplementedError, lambda: p.coeff(x)) raises(ValueError, lambda: Poly(x + 1).coeff_monomial(0)) raises(ValueError, lambda: Poly(x + 1).coeff_monomial(3*x)) raises(ValueError, lambda: Poly(x + 1).coeff_monomial(3*x*y)) def test_Poly_nth(): assert Poly(0, x).nth(0) == 0 assert Poly(0, x).nth(1) == 0 assert Poly(1, x).nth(0) == 1 assert Poly(1, x).nth(1) == 0 assert Poly(x**8, x).nth(0) == 0 assert Poly(x**8, x).nth(7) == 0 assert Poly(x**8, x).nth(8) == 1 assert Poly(x**8, x).nth(9) == 0 assert Poly(3*x*y**2 + 1, x, y).nth(0, 0) == 1 assert Poly(3*x*y**2 + 1, x, y).nth(1, 2) == 3 raises(ValueError, lambda: Poly(x*y + 1, x, y).nth(1)) def test_Poly_LM(): assert Poly(0, x).LM() == (0,) assert Poly(1, x).LM() == (0,) assert Poly(2*x**2 + x, x).LM() == (2,) assert Poly(x*y**7 + 2*x**2*y**3).LM('lex') == (2, 3) assert Poly(x*y**7 + 2*x**2*y**3).LM('grlex') == (1, 7) assert LM(x*y**7 + 2*x**2*y**3, order='lex') == x**2*y**3 assert LM(x*y**7 + 2*x**2*y**3, order='grlex') == x*y**7 def test_Poly_LM_custom_order(): f = Poly(x**2*y**3*z + x**2*y*z**3 + x*y*z + 1) rev_lex = lambda monom: tuple(reversed(monom)) assert f.LM(order='lex') == (2, 3, 1) assert f.LM(order=rev_lex) == (2, 1, 3) def test_Poly_EM(): assert Poly(0, x).EM() == (0,) assert Poly(1, x).EM() == (0,) assert Poly(2*x**2 + x, x).EM() == (1,) assert Poly(x*y**7 + 2*x**2*y**3).EM('lex') == (1, 7) assert Poly(x*y**7 + 2*x**2*y**3).EM('grlex') == (2, 3) def test_Poly_LT(): assert Poly(0, x).LT() == ((0,), 0) assert Poly(1, x).LT() == ((0,), 1) assert Poly(2*x**2 + x, x).LT() == ((2,), 2) assert Poly(x*y**7 + 2*x**2*y**3).LT('lex') == ((2, 3), 2) assert Poly(x*y**7 + 2*x**2*y**3).LT('grlex') == ((1, 7), 1) assert LT(x*y**7 + 2*x**2*y**3, order='lex') == 2*x**2*y**3 assert LT(x*y**7 + 2*x**2*y**3, order='grlex') == x*y**7 def test_Poly_ET(): assert Poly(0, x).ET() == ((0,), 0) assert Poly(1, x).ET() == ((0,), 1) assert Poly(2*x**2 + x, x).ET() == ((1,), 1) assert Poly(x*y**7 + 2*x**2*y**3).ET('lex') == ((1, 7), 1) assert Poly(x*y**7 + 2*x**2*y**3).ET('grlex') == ((2, 3), 2) def test_Poly_max_norm(): assert Poly(-1, x).max_norm() == 1 assert Poly( 0, x).max_norm() == 0 assert Poly( 1, x).max_norm() == 1 def test_Poly_l1_norm(): assert Poly(-1, x).l1_norm() == 1 assert Poly( 0, x).l1_norm() == 0 assert Poly( 1, x).l1_norm() == 1 def test_Poly_clear_denoms(): coeff, poly = Poly(x + 2, x).clear_denoms() assert coeff == 1 and poly == Poly( x + 2, x, domain='ZZ') and poly.get_domain() == ZZ coeff, poly = Poly(x/2 + 1, x).clear_denoms() assert coeff == 2 and poly == Poly( x + 2, x, domain='QQ') and poly.get_domain() == QQ coeff, poly = Poly(x/2 + 1, x).clear_denoms(convert=True) assert coeff == 2 and poly == Poly( x + 2, x, domain='ZZ') and poly.get_domain() == ZZ coeff, poly = Poly(x/y + 1, x).clear_denoms(convert=True) assert coeff == y and poly == Poly( x + y, x, domain='ZZ[y]') and poly.get_domain() == ZZ[y] coeff, poly = Poly(x/3 + sqrt(2), x, domain='EX').clear_denoms() assert coeff == 3 and poly == Poly( x + 3*sqrt(2), x, domain='EX') and poly.get_domain() == EX coeff, poly = Poly( x/3 + sqrt(2), x, domain='EX').clear_denoms(convert=True) assert coeff == 3 and poly == Poly( x + 3*sqrt(2), x, domain='EX') and poly.get_domain() == EX def test_Poly_rat_clear_denoms(): f = Poly(x**2/y + 1, x) g = Poly(x**3 + y, x) assert f.rat_clear_denoms(g) == \ (Poly(x**2 + y, x), Poly(y*x**3 + y**2, x)) f = f.set_domain(EX) g = g.set_domain(EX) assert f.rat_clear_denoms(g) == (f, g) def test_Poly_integrate(): assert Poly(x + 1).integrate() == Poly(x**2/2 + x) assert Poly(x + 1).integrate(x) == Poly(x**2/2 + x) assert Poly(x + 1).integrate((x, 1)) == Poly(x**2/2 + x) assert Poly(x*y + 1).integrate(x) == Poly(x**2*y/2 + x) assert Poly(x*y + 1).integrate(y) == Poly(x*y**2/2 + y) assert Poly(x*y + 1).integrate(x, x) == Poly(x**3*y/6 + x**2/2) assert Poly(x*y + 1).integrate(y, y) == Poly(x*y**3/6 + y**2/2) assert Poly(x*y + 1).integrate((x, 2)) == Poly(x**3*y/6 + x**2/2) assert Poly(x*y + 1).integrate((y, 2)) == Poly(x*y**3/6 + y**2/2) assert Poly(x*y + 1).integrate(x, y) == Poly(x**2*y**2/4 + x*y) assert Poly(x*y + 1).integrate(y, x) == Poly(x**2*y**2/4 + x*y) def test_Poly_diff(): assert Poly(x**2 + x).diff() == Poly(2*x + 1) assert Poly(x**2 + x).diff(x) == Poly(2*x + 1) assert Poly(x**2 + x).diff((x, 1)) == Poly(2*x + 1) assert Poly(x**2*y**2 + x*y).diff(x) == Poly(2*x*y**2 + y) assert Poly(x**2*y**2 + x*y).diff(y) == Poly(2*x**2*y + x) assert Poly(x**2*y**2 + x*y).diff(x, x) == Poly(2*y**2, x, y) assert Poly(x**2*y**2 + x*y).diff(y, y) == Poly(2*x**2, x, y) assert Poly(x**2*y**2 + x*y).diff((x, 2)) == Poly(2*y**2, x, y) assert Poly(x**2*y**2 + x*y).diff((y, 2)) == Poly(2*x**2, x, y) assert Poly(x**2*y**2 + x*y).diff(x, y) == Poly(4*x*y + 1) assert Poly(x**2*y**2 + x*y).diff(y, x) == Poly(4*x*y + 1) def test_issue_9585(): assert diff(Poly(x**2 + x)) == Poly(2*x + 1) assert diff(Poly(x**2 + x), x, evaluate=False) == \ Derivative(Poly(x**2 + x), x) assert Derivative(Poly(x**2 + x), x).doit() == Poly(2*x + 1) def test_Poly_eval(): assert Poly(0, x).eval(7) == 0 assert Poly(1, x).eval(7) == 1 assert Poly(x, x).eval(7) == 7 assert Poly(0, x).eval(0, 7) == 0 assert Poly(1, x).eval(0, 7) == 1 assert Poly(x, x).eval(0, 7) == 7 assert Poly(0, x).eval(x, 7) == 0 assert Poly(1, x).eval(x, 7) == 1 assert Poly(x, x).eval(x, 7) == 7 assert Poly(0, x).eval('x', 7) == 0 assert Poly(1, x).eval('x', 7) == 1 assert Poly(x, x).eval('x', 7) == 7 raises(PolynomialError, lambda: Poly(1, x).eval(1, 7)) raises(PolynomialError, lambda: Poly(1, x).eval(y, 7)) raises(PolynomialError, lambda: Poly(1, x).eval('y', 7)) assert Poly(123, x, y).eval(7) == Poly(123, y) assert Poly(2*y, x, y).eval(7) == Poly(2*y, y) assert Poly(x*y, x, y).eval(7) == Poly(7*y, y) assert Poly(123, x, y).eval(x, 7) == Poly(123, y) assert Poly(2*y, x, y).eval(x, 7) == Poly(2*y, y) assert Poly(x*y, x, y).eval(x, 7) == Poly(7*y, y) assert Poly(123, x, y).eval(y, 7) == Poly(123, x) assert Poly(2*y, x, y).eval(y, 7) == Poly(14, x) assert Poly(x*y, x, y).eval(y, 7) == Poly(7*x, x) assert Poly(x*y + y, x, y).eval({x: 7}) == Poly(8*y, y) assert Poly(x*y + y, x, y).eval({y: 7}) == Poly(7*x + 7, x) assert Poly(x*y + y, x, y).eval({x: 6, y: 7}) == 49 assert Poly(x*y + y, x, y).eval({x: 7, y: 6}) == 48 assert Poly(x*y + y, x, y).eval((6, 7)) == 49 assert Poly(x*y + y, x, y).eval([6, 7]) == 49 assert Poly(x + 1, domain='ZZ').eval(S.Half) == Rational(3, 2) assert Poly(x + 1, domain='ZZ').eval(sqrt(2)) == sqrt(2) + 1 raises(ValueError, lambda: Poly(x*y + y, x, y).eval((6, 7, 8))) raises(DomainError, lambda: Poly(x + 1, domain='ZZ').eval(S.Half, auto=False)) # issue 6344 alpha = Symbol('alpha') result = (2*alpha*z - 2*alpha + z**2 + 3)/(z**2 - 2*z + 1) f = Poly(x**2 + (alpha - 1)*x - alpha + 1, x, domain='ZZ[alpha]') assert f.eval((z + 1)/(z - 1)) == result g = Poly(x**2 + (alpha - 1)*x - alpha + 1, x, y, domain='ZZ[alpha]') assert g.eval((z + 1)/(z - 1)) == Poly(result, y, domain='ZZ(alpha,z)') def test_Poly___call__(): f = Poly(2*x*y + 3*x + y + 2*z) assert f(2) == Poly(5*y + 2*z + 6) assert f(2, 5) == Poly(2*z + 31) assert f(2, 5, 7) == 45 def test_parallel_poly_from_expr(): assert parallel_poly_from_expr( [x - 1, x**2 - 1], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [Poly(x - 1, x), x**2 - 1], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [x - 1, Poly(x**2 - 1, x)], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr([Poly( x - 1, x), Poly(x**2 - 1, x)], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [x - 1, x**2 - 1], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)] assert parallel_poly_from_expr([Poly( x - 1, x), x**2 - 1], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)] assert parallel_poly_from_expr([x - 1, Poly( x**2 - 1, x)], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)] assert parallel_poly_from_expr([Poly(x - 1, x), Poly( x**2 - 1, x)], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)] assert parallel_poly_from_expr( [x - 1, x**2 - 1])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [Poly(x - 1, x), x**2 - 1])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [x - 1, Poly(x**2 - 1, x)])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [Poly(x - 1, x), Poly(x**2 - 1, x)])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [1, x**2 - 1])[0] == [Poly(1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [1, x**2 - 1])[0] == [Poly(1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [1, Poly(x**2 - 1, x)])[0] == [Poly(1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [1, Poly(x**2 - 1, x)])[0] == [Poly(1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [x**2 - 1, 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)] assert parallel_poly_from_expr( [x**2 - 1, 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)] assert parallel_poly_from_expr( [Poly(x**2 - 1, x), 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)] assert parallel_poly_from_expr( [Poly(x**2 - 1, x), 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)] assert parallel_poly_from_expr([Poly(x, x, y), Poly(y, x, y)], x, y, order='lex')[0] == \ [Poly(x, x, y, domain='ZZ'), Poly(y, x, y, domain='ZZ')] raises(PolificationFailed, lambda: parallel_poly_from_expr([0, 1])) def test_pdiv(): f, g = x**2 - y**2, x - y q, r = x + y, 0 F, G, Q, R = [ Poly(h, x, y) for h in (f, g, q, r) ] assert F.pdiv(G) == (Q, R) assert F.prem(G) == R assert F.pquo(G) == Q assert F.pexquo(G) == Q assert pdiv(f, g) == (q, r) assert prem(f, g) == r assert pquo(f, g) == q assert pexquo(f, g) == q assert pdiv(f, g, x, y) == (q, r) assert prem(f, g, x, y) == r assert pquo(f, g, x, y) == q assert pexquo(f, g, x, y) == q assert pdiv(f, g, (x, y)) == (q, r) assert prem(f, g, (x, y)) == r assert pquo(f, g, (x, y)) == q assert pexquo(f, g, (x, y)) == q assert pdiv(F, G) == (Q, R) assert prem(F, G) == R assert pquo(F, G) == Q assert pexquo(F, G) == Q assert pdiv(f, g, polys=True) == (Q, R) assert prem(f, g, polys=True) == R assert pquo(f, g, polys=True) == Q assert pexquo(f, g, polys=True) == Q assert pdiv(F, G, polys=False) == (q, r) assert prem(F, G, polys=False) == r assert pquo(F, G, polys=False) == q assert pexquo(F, G, polys=False) == q raises(ComputationFailed, lambda: pdiv(4, 2)) raises(ComputationFailed, lambda: prem(4, 2)) raises(ComputationFailed, lambda: pquo(4, 2)) raises(ComputationFailed, lambda: pexquo(4, 2)) def test_div(): f, g = x**2 - y**2, x - y q, r = x + y, 0 F, G, Q, R = [ Poly(h, x, y) for h in (f, g, q, r) ] assert F.div(G) == (Q, R) assert F.rem(G) == R assert F.quo(G) == Q assert F.exquo(G) == Q assert div(f, g) == (q, r) assert rem(f, g) == r assert quo(f, g) == q assert exquo(f, g) == q assert div(f, g, x, y) == (q, r) assert rem(f, g, x, y) == r assert quo(f, g, x, y) == q assert exquo(f, g, x, y) == q assert div(f, g, (x, y)) == (q, r) assert rem(f, g, (x, y)) == r assert quo(f, g, (x, y)) == q assert exquo(f, g, (x, y)) == q assert div(F, G) == (Q, R) assert rem(F, G) == R assert quo(F, G) == Q assert exquo(F, G) == Q assert div(f, g, polys=True) == (Q, R) assert rem(f, g, polys=True) == R assert quo(f, g, polys=True) == Q assert exquo(f, g, polys=True) == Q assert div(F, G, polys=False) == (q, r) assert rem(F, G, polys=False) == r assert quo(F, G, polys=False) == q assert exquo(F, G, polys=False) == q raises(ComputationFailed, lambda: div(4, 2)) raises(ComputationFailed, lambda: rem(4, 2)) raises(ComputationFailed, lambda: quo(4, 2)) raises(ComputationFailed, lambda: exquo(4, 2)) f, g = x**2 + 1, 2*x - 4 qz, rz = 0, x**2 + 1 qq, rq = x/2 + 1, 5 assert div(f, g) == (qq, rq) assert div(f, g, auto=True) == (qq, rq) assert div(f, g, auto=False) == (qz, rz) assert div(f, g, domain=ZZ) == (qz, rz) assert div(f, g, domain=QQ) == (qq, rq) assert div(f, g, domain=ZZ, auto=True) == (qq, rq) assert div(f, g, domain=ZZ, auto=False) == (qz, rz) assert div(f, g, domain=QQ, auto=True) == (qq, rq) assert div(f, g, domain=QQ, auto=False) == (qq, rq) assert rem(f, g) == rq assert rem(f, g, auto=True) == rq assert rem(f, g, auto=False) == rz assert rem(f, g, domain=ZZ) == rz assert rem(f, g, domain=QQ) == rq assert rem(f, g, domain=ZZ, auto=True) == rq assert rem(f, g, domain=ZZ, auto=False) == rz assert rem(f, g, domain=QQ, auto=True) == rq assert rem(f, g, domain=QQ, auto=False) == rq assert quo(f, g) == qq assert quo(f, g, auto=True) == qq assert quo(f, g, auto=False) == qz assert quo(f, g, domain=ZZ) == qz assert quo(f, g, domain=QQ) == qq assert quo(f, g, domain=ZZ, auto=True) == qq assert quo(f, g, domain=ZZ, auto=False) == qz assert quo(f, g, domain=QQ, auto=True) == qq assert quo(f, g, domain=QQ, auto=False) == qq f, g, q = x**2, 2*x, x/2 assert exquo(f, g) == q assert exquo(f, g, auto=True) == q raises(ExactQuotientFailed, lambda: exquo(f, g, auto=False)) raises(ExactQuotientFailed, lambda: exquo(f, g, domain=ZZ)) assert exquo(f, g, domain=QQ) == q assert exquo(f, g, domain=ZZ, auto=True) == q raises(ExactQuotientFailed, lambda: exquo(f, g, domain=ZZ, auto=False)) assert exquo(f, g, domain=QQ, auto=True) == q assert exquo(f, g, domain=QQ, auto=False) == q f, g = Poly(x**2), Poly(x) q, r = f.div(g) assert q.get_domain().is_ZZ and r.get_domain().is_ZZ r = f.rem(g) assert r.get_domain().is_ZZ q = f.quo(g) assert q.get_domain().is_ZZ q = f.exquo(g) assert q.get_domain().is_ZZ f, g = Poly(x+y, x), Poly(2*x+y, x) q, r = f.div(g) assert q.get_domain().is_Frac and r.get_domain().is_Frac def test_issue_7864(): q, r = div(a, .408248290463863*a) assert abs(q - 2.44948974278318) < 1e-14 assert r == 0 def test_gcdex(): f, g = 2*x, x**2 - 16 s, t, h = x/32, Rational(-1, 16), 1 F, G, S, T, H = [ Poly(u, x, domain='QQ') for u in (f, g, s, t, h) ] assert F.half_gcdex(G) == (S, H) assert F.gcdex(G) == (S, T, H) assert F.invert(G) == S assert half_gcdex(f, g) == (s, h) assert gcdex(f, g) == (s, t, h) assert invert(f, g) == s assert half_gcdex(f, g, x) == (s, h) assert gcdex(f, g, x) == (s, t, h) assert invert(f, g, x) == s assert half_gcdex(f, g, (x,)) == (s, h) assert gcdex(f, g, (x,)) == (s, t, h) assert invert(f, g, (x,)) == s assert half_gcdex(F, G) == (S, H) assert gcdex(F, G) == (S, T, H) assert invert(F, G) == S assert half_gcdex(f, g, polys=True) == (S, H) assert gcdex(f, g, polys=True) == (S, T, H) assert invert(f, g, polys=True) == S assert half_gcdex(F, G, polys=False) == (s, h) assert gcdex(F, G, polys=False) == (s, t, h) assert invert(F, G, polys=False) == s assert half_gcdex(100, 2004) == (-20, 4) assert gcdex(100, 2004) == (-20, 1, 4) assert invert(3, 7) == 5 raises(DomainError, lambda: half_gcdex(x + 1, 2*x + 1, auto=False)) raises(DomainError, lambda: gcdex(x + 1, 2*x + 1, auto=False)) raises(DomainError, lambda: invert(x + 1, 2*x + 1, auto=False)) def test_revert(): f = Poly(1 - x**2/2 + x**4/24 - x**6/720) g = Poly(61*x**6/720 + 5*x**4/24 + x**2/2 + 1) assert f.revert(8) == g def test_subresultants(): f, g, h = x**2 - 2*x + 1, x**2 - 1, 2*x - 2 F, G, H = Poly(f), Poly(g), Poly(h) assert F.subresultants(G) == [F, G, H] assert subresultants(f, g) == [f, g, h] assert subresultants(f, g, x) == [f, g, h] assert subresultants(f, g, (x,)) == [f, g, h] assert subresultants(F, G) == [F, G, H] assert subresultants(f, g, polys=True) == [F, G, H] assert subresultants(F, G, polys=False) == [f, g, h] raises(ComputationFailed, lambda: subresultants(4, 2)) def test_resultant(): f, g, h = x**2 - 2*x + 1, x**2 - 1, 0 F, G = Poly(f), Poly(g) assert F.resultant(G) == h assert resultant(f, g) == h assert resultant(f, g, x) == h assert resultant(f, g, (x,)) == h assert resultant(F, G) == h assert resultant(f, g, polys=True) == h assert resultant(F, G, polys=False) == h assert resultant(f, g, includePRS=True) == (h, [f, g, 2*x - 2]) f, g, h = x - a, x - b, a - b F, G, H = Poly(f), Poly(g), Poly(h) assert F.resultant(G) == H assert resultant(f, g) == h assert resultant(f, g, x) == h assert resultant(f, g, (x,)) == h assert resultant(F, G) == H assert resultant(f, g, polys=True) == H assert resultant(F, G, polys=False) == h raises(ComputationFailed, lambda: resultant(4, 2)) def test_discriminant(): f, g = x**3 + 3*x**2 + 9*x - 13, -11664 F = Poly(f) assert F.discriminant() == g assert discriminant(f) == g assert discriminant(f, x) == g assert discriminant(f, (x,)) == g assert discriminant(F) == g assert discriminant(f, polys=True) == g assert discriminant(F, polys=False) == g f, g = a*x**2 + b*x + c, b**2 - 4*a*c F, G = Poly(f), Poly(g) assert F.discriminant() == G assert discriminant(f) == g assert discriminant(f, x, a, b, c) == g assert discriminant(f, (x, a, b, c)) == g assert discriminant(F) == G assert discriminant(f, polys=True) == G assert discriminant(F, polys=False) == g raises(ComputationFailed, lambda: discriminant(4)) def test_dispersion(): # We test only the API here. For more mathematical # tests see the dedicated test file. fp = poly((x + 1)*(x + 2), x) assert sorted(fp.dispersionset()) == [0, 1] assert fp.dispersion() == 1 fp = poly(x**4 - 3*x**2 + 1, x) gp = fp.shift(-3) assert sorted(fp.dispersionset(gp)) == [2, 3, 4] assert fp.dispersion(gp) == 4 def test_gcd_list(): F = [x**3 - 1, x**2 - 1, x**2 - 3*x + 2] assert gcd_list(F) == x - 1 assert gcd_list(F, polys=True) == Poly(x - 1) assert gcd_list([]) == 0 assert gcd_list([1, 2]) == 1 assert gcd_list([4, 6, 8]) == 2 assert gcd_list([x*(y + 42) - x*y - x*42]) == 0 gcd = gcd_list([], x) assert gcd.is_Number and gcd is S.Zero gcd = gcd_list([], x, polys=True) assert gcd.is_Poly and gcd.is_zero raises(ComputationFailed, lambda: gcd_list([], polys=True)) def test_lcm_list(): F = [x**3 - 1, x**2 - 1, x**2 - 3*x + 2] assert lcm_list(F) == x**5 - x**4 - 2*x**3 - x**2 + x + 2 assert lcm_list(F, polys=True) == Poly(x**5 - x**4 - 2*x**3 - x**2 + x + 2) assert lcm_list([]) == 1 assert lcm_list([1, 2]) == 2 assert lcm_list([4, 6, 8]) == 24 assert lcm_list([x*(y + 42) - x*y - x*42]) == 0 lcm = lcm_list([], x) assert lcm.is_Number and lcm is S.One lcm = lcm_list([], x, polys=True) assert lcm.is_Poly and lcm.is_one raises(ComputationFailed, lambda: lcm_list([], polys=True)) def test_gcd(): f, g = x**3 - 1, x**2 - 1 s, t = x**2 + x + 1, x + 1 h, r = x - 1, x**4 + x**3 - x - 1 F, G, S, T, H, R = [ Poly(u) for u in (f, g, s, t, h, r) ] assert F.cofactors(G) == (H, S, T) assert F.gcd(G) == H assert F.lcm(G) == R assert cofactors(f, g) == (h, s, t) assert gcd(f, g) == h assert lcm(f, g) == r assert cofactors(f, g, x) == (h, s, t) assert gcd(f, g, x) == h assert lcm(f, g, x) == r assert cofactors(f, g, (x,)) == (h, s, t) assert gcd(f, g, (x,)) == h assert lcm(f, g, (x,)) == r assert cofactors(F, G) == (H, S, T) assert gcd(F, G) == H assert lcm(F, G) == R assert cofactors(f, g, polys=True) == (H, S, T) assert gcd(f, g, polys=True) == H assert lcm(f, g, polys=True) == R assert cofactors(F, G, polys=False) == (h, s, t) assert gcd(F, G, polys=False) == h assert lcm(F, G, polys=False) == r f, g = 1.0*x**2 - 1.0, 1.0*x - 1.0 h, s, t = g, 1.0*x + 1.0, 1.0 assert cofactors(f, g) == (h, s, t) assert gcd(f, g) == h assert lcm(f, g) == f f, g = 1.0*x**2 - 1.0, 1.0*x - 1.0 h, s, t = g, 1.0*x + 1.0, 1.0 assert cofactors(f, g) == (h, s, t) assert gcd(f, g) == h assert lcm(f, g) == f assert cofactors(8, 6) == (2, 4, 3) assert gcd(8, 6) == 2 assert lcm(8, 6) == 24 f, g = x**2 - 3*x - 4, x**3 - 4*x**2 + x - 4 l = x**4 - 3*x**3 - 3*x**2 - 3*x - 4 h, s, t = x - 4, x + 1, x**2 + 1 assert cofactors(f, g, modulus=11) == (h, s, t) assert gcd(f, g, modulus=11) == h assert lcm(f, g, modulus=11) == l f, g = x**2 + 8*x + 7, x**3 + 7*x**2 + x + 7 l = x**4 + 8*x**3 + 8*x**2 + 8*x + 7 h, s, t = x + 7, x + 1, x**2 + 1 assert cofactors(f, g, modulus=11, symmetric=False) == (h, s, t) assert gcd(f, g, modulus=11, symmetric=False) == h assert lcm(f, g, modulus=11, symmetric=False) == l raises(TypeError, lambda: gcd(x)) raises(TypeError, lambda: lcm(x)) def test_gcd_numbers_vs_polys(): assert isinstance(gcd(3, 9), Integer) assert isinstance(gcd(3*x, 9), Integer) assert gcd(3, 9) == 3 assert gcd(3*x, 9) == 3 assert isinstance(gcd(Rational(3, 2), Rational(9, 4)), Rational) assert isinstance(gcd(Rational(3, 2)*x, Rational(9, 4)), Rational) assert gcd(Rational(3, 2), Rational(9, 4)) == Rational(3, 4) assert gcd(Rational(3, 2)*x, Rational(9, 4)) == 1 assert isinstance(gcd(3.0, 9.0), Float) assert isinstance(gcd(3.0*x, 9.0), Float) assert gcd(3.0, 9.0) == 1.0 assert gcd(3.0*x, 9.0) == 1.0 def test_terms_gcd(): assert terms_gcd(1) == 1 assert terms_gcd(1, x) == 1 assert terms_gcd(x - 1) == x - 1 assert terms_gcd(-x - 1) == -x - 1 assert terms_gcd(2*x + 3) == 2*x + 3 assert terms_gcd(6*x + 4) == Mul(2, 3*x + 2, evaluate=False) assert terms_gcd(x**3*y + x*y**3) == x*y*(x**2 + y**2) assert terms_gcd(2*x**3*y + 2*x*y**3) == 2*x*y*(x**2 + y**2) assert terms_gcd(x**3*y/2 + x*y**3/2) == x*y/2*(x**2 + y**2) assert terms_gcd(x**3*y + 2*x*y**3) == x*y*(x**2 + 2*y**2) assert terms_gcd(2*x**3*y + 4*x*y**3) == 2*x*y*(x**2 + 2*y**2) assert terms_gcd(2*x**3*y/3 + 4*x*y**3/5) == x*y*Rational(2, 15)*(5*x**2 + 6*y**2) assert terms_gcd(2.0*x**3*y + 4.1*x*y**3) == x*y*(2.0*x**2 + 4.1*y**2) assert _aresame(terms_gcd(2.0*x + 3), 2.0*x + 3) assert terms_gcd((3 + 3*x)*(x + x*y), expand=False) == \ (3*x + 3)*(x*y + x) assert terms_gcd((3 + 3*x)*(x + x*sin(3 + 3*y)), expand=False, deep=True) == \ 3*x*(x + 1)*(sin(Mul(3, y + 1, evaluate=False)) + 1) assert terms_gcd(sin(x + x*y), deep=True) == \ sin(x*(y + 1)) eq = Eq(2*x, 2*y + 2*z*y) assert terms_gcd(eq) == eq assert terms_gcd(eq, deep=True) == Eq(2*x, 2*y*(z + 1)) def test_trunc(): f, g = x**5 + 2*x**4 + 3*x**3 + 4*x**2 + 5*x + 6, x**5 - x**4 + x**2 - x F, G = Poly(f), Poly(g) assert F.trunc(3) == G assert trunc(f, 3) == g assert trunc(f, 3, x) == g assert trunc(f, 3, (x,)) == g assert trunc(F, 3) == G assert trunc(f, 3, polys=True) == G assert trunc(F, 3, polys=False) == g f, g = 6*x**5 + 5*x**4 + 4*x**3 + 3*x**2 + 2*x + 1, -x**4 + x**3 - x + 1 F, G = Poly(f), Poly(g) assert F.trunc(3) == G assert trunc(f, 3) == g assert trunc(f, 3, x) == g assert trunc(f, 3, (x,)) == g assert trunc(F, 3) == G assert trunc(f, 3, polys=True) == G assert trunc(F, 3, polys=False) == g f = Poly(x**2 + 2*x + 3, modulus=5) assert f.trunc(2) == Poly(x**2 + 1, modulus=5) def test_monic(): f, g = 2*x - 1, x - S.Half F, G = Poly(f, domain='QQ'), Poly(g) assert F.monic() == G assert monic(f) == g assert monic(f, x) == g assert monic(f, (x,)) == g assert monic(F) == G assert monic(f, polys=True) == G assert monic(F, polys=False) == g raises(ComputationFailed, lambda: monic(4)) assert monic(2*x**2 + 6*x + 4, auto=False) == x**2 + 3*x + 2 raises(ExactQuotientFailed, lambda: monic(2*x + 6*x + 1, auto=False)) assert monic(2.0*x**2 + 6.0*x + 4.0) == 1.0*x**2 + 3.0*x + 2.0 assert monic(2*x**2 + 3*x + 4, modulus=5) == x**2 - x + 2 def test_content(): f, F = 4*x + 2, Poly(4*x + 2) assert F.content() == 2 assert content(f) == 2 raises(ComputationFailed, lambda: content(4)) f = Poly(2*x, modulus=3) assert f.content() == 1 def test_primitive(): f, g = 4*x + 2, 2*x + 1 F, G = Poly(f), Poly(g) assert F.primitive() == (2, G) assert primitive(f) == (2, g) assert primitive(f, x) == (2, g) assert primitive(f, (x,)) == (2, g) assert primitive(F) == (2, G) assert primitive(f, polys=True) == (2, G) assert primitive(F, polys=False) == (2, g) raises(ComputationFailed, lambda: primitive(4)) f = Poly(2*x, modulus=3) g = Poly(2.0*x, domain=RR) assert f.primitive() == (1, f) assert g.primitive() == (1.0, g) assert primitive(S('-3*x/4 + y + 11/8')) == \ S('(1/8, -6*x + 8*y + 11)') def test_compose(): f = x**12 + 20*x**10 + 150*x**8 + 500*x**6 + 625*x**4 - 2*x**3 - 10*x + 9 g = x**4 - 2*x + 9 h = x**3 + 5*x F, G, H = map(Poly, (f, g, h)) assert G.compose(H) == F assert compose(g, h) == f assert compose(g, h, x) == f assert compose(g, h, (x,)) == f assert compose(G, H) == F assert compose(g, h, polys=True) == F assert compose(G, H, polys=False) == f assert F.decompose() == [G, H] assert decompose(f) == [g, h] assert decompose(f, x) == [g, h] assert decompose(f, (x,)) == [g, h] assert decompose(F) == [G, H] assert decompose(f, polys=True) == [G, H] assert decompose(F, polys=False) == [g, h] raises(ComputationFailed, lambda: compose(4, 2)) raises(ComputationFailed, lambda: decompose(4)) assert compose(x**2 - y**2, x - y, x, y) == x**2 - 2*x*y assert compose(x**2 - y**2, x - y, y, x) == -y**2 + 2*x*y def test_shift(): assert Poly(x**2 - 2*x + 1, x).shift(2) == Poly(x**2 + 2*x + 1, x) def test_transform(): # Also test that 3-way unification is done correctly assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1), Poly(x - 1)) == \ Poly(4, x) == \ cancel((x - 1)**2*(x**2 - 2*x + 1).subs(x, (x + 1)/(x - 1))) assert Poly(x**2 - x/2 + 1, x).transform(Poly(x + 1), Poly(x - 1)) == \ Poly(3*x**2/2 + Rational(5, 2), x) == \ cancel((x - 1)**2*(x**2 - x/2 + 1).subs(x, (x + 1)/(x - 1))) assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + S.Half), Poly(x - 1)) == \ Poly(Rational(9, 4), x) == \ cancel((x - 1)**2*(x**2 - 2*x + 1).subs(x, (x + S.Half)/(x - 1))) assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1), Poly(x - S.Half)) == \ Poly(Rational(9, 4), x) == \ cancel((x - S.Half)**2*(x**2 - 2*x + 1).subs(x, (x + 1)/(x - S.Half))) # Unify ZZ, QQ, and RR assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1.0), Poly(x - S.Half)) == \ Poly(Rational(9, 4), x) == \ cancel((x - S.Half)**2*(x**2 - 2*x + 1).subs(x, (x + 1.0)/(x - S.Half))) raises(ValueError, lambda: Poly(x*y).transform(Poly(x + 1), Poly(x - 1))) raises(ValueError, lambda: Poly(x).transform(Poly(y + 1), Poly(x - 1))) raises(ValueError, lambda: Poly(x).transform(Poly(x + 1), Poly(y - 1))) raises(ValueError, lambda: Poly(x).transform(Poly(x*y + 1), Poly(x - 1))) raises(ValueError, lambda: Poly(x).transform(Poly(x + 1), Poly(x*y - 1))) def test_sturm(): f, F = x, Poly(x, domain='QQ') g, G = 1, Poly(1, x, domain='QQ') assert F.sturm() == [F, G] assert sturm(f) == [f, g] assert sturm(f, x) == [f, g] assert sturm(f, (x,)) == [f, g] assert sturm(F) == [F, G] assert sturm(f, polys=True) == [F, G] assert sturm(F, polys=False) == [f, g] raises(ComputationFailed, lambda: sturm(4)) raises(DomainError, lambda: sturm(f, auto=False)) f = Poly(S(1024)/(15625*pi**8)*x**5 - S(4096)/(625*pi**8)*x**4 + S(32)/(15625*pi**4)*x**3 - S(128)/(625*pi**4)*x**2 + Rational(1, 62500)*x - Rational(1, 625), x, domain='ZZ(pi)') assert sturm(f) == \ [Poly(x**3 - 100*x**2 + pi**4/64*x - 25*pi**4/16, x, domain='ZZ(pi)'), Poly(3*x**2 - 200*x + pi**4/64, x, domain='ZZ(pi)'), Poly((Rational(20000, 9) - pi**4/96)*x + 25*pi**4/18, x, domain='ZZ(pi)'), Poly((-3686400000000*pi**4 - 11520000*pi**8 - 9*pi**12)/(26214400000000 - 245760000*pi**4 + 576*pi**8), x, domain='ZZ(pi)')] def test_gff(): f = x**5 + 2*x**4 - x**3 - 2*x**2 assert Poly(f).gff_list() == [(Poly(x), 1), (Poly(x + 2), 4)] assert gff_list(f) == [(x, 1), (x + 2, 4)] raises(NotImplementedError, lambda: gff(f)) f = x*(x - 1)**3*(x - 2)**2*(x - 4)**2*(x - 5) assert Poly(f).gff_list() == [( Poly(x**2 - 5*x + 4), 1), (Poly(x**2 - 5*x + 4), 2), (Poly(x), 3)] assert gff_list(f) == [(x**2 - 5*x + 4, 1), (x**2 - 5*x + 4, 2), (x, 3)] raises(NotImplementedError, lambda: gff(f)) def test_norm(): a, b = sqrt(2), sqrt(3) f = Poly(a*x + b*y, x, y, extension=(a, b)) assert f.norm() == Poly(4*x**4 - 12*x**2*y**2 + 9*y**4, x, y, domain='QQ') def test_sqf_norm(): assert sqf_norm(x**2 - 2, extension=sqrt(3)) == \ (1, x**2 - 2*sqrt(3)*x + 1, x**4 - 10*x**2 + 1) assert sqf_norm(x**2 - 3, extension=sqrt(2)) == \ (1, x**2 - 2*sqrt(2)*x - 1, x**4 - 10*x**2 + 1) assert Poly(x**2 - 2, extension=sqrt(3)).sqf_norm() == \ (1, Poly(x**2 - 2*sqrt(3)*x + 1, x, extension=sqrt(3)), Poly(x**4 - 10*x**2 + 1, x, domain='QQ')) assert Poly(x**2 - 3, extension=sqrt(2)).sqf_norm() == \ (1, Poly(x**2 - 2*sqrt(2)*x - 1, x, extension=sqrt(2)), Poly(x**4 - 10*x**2 + 1, x, domain='QQ')) def test_sqf(): f = x**5 - x**3 - x**2 + 1 g = x**3 + 2*x**2 + 2*x + 1 h = x - 1 p = x**4 + x**3 - x - 1 F, G, H, P = map(Poly, (f, g, h, p)) assert F.sqf_part() == P assert sqf_part(f) == p assert sqf_part(f, x) == p assert sqf_part(f, (x,)) == p assert sqf_part(F) == P assert sqf_part(f, polys=True) == P assert sqf_part(F, polys=False) == p assert F.sqf_list() == (1, [(G, 1), (H, 2)]) assert sqf_list(f) == (1, [(g, 1), (h, 2)]) assert sqf_list(f, x) == (1, [(g, 1), (h, 2)]) assert sqf_list(f, (x,)) == (1, [(g, 1), (h, 2)]) assert sqf_list(F) == (1, [(G, 1), (H, 2)]) assert sqf_list(f, polys=True) == (1, [(G, 1), (H, 2)]) assert sqf_list(F, polys=False) == (1, [(g, 1), (h, 2)]) assert F.sqf_list_include() == [(G, 1), (H, 2)] raises(ComputationFailed, lambda: sqf_part(4)) assert sqf(1) == 1 assert sqf_list(1) == (1, []) assert sqf((2*x**2 + 2)**7) == 128*(x**2 + 1)**7 assert sqf(f) == g*h**2 assert sqf(f, x) == g*h**2 assert sqf(f, (x,)) == g*h**2 d = x**2 + y**2 assert sqf(f/d) == (g*h**2)/d assert sqf(f/d, x) == (g*h**2)/d assert sqf(f/d, (x,)) == (g*h**2)/d assert sqf(x - 1) == x - 1 assert sqf(-x - 1) == -x - 1 assert sqf(x - 1) == x - 1 assert sqf(6*x - 10) == Mul(2, 3*x - 5, evaluate=False) assert sqf((6*x - 10)/(3*x - 6)) == Rational(2, 3)*((3*x - 5)/(x - 2)) assert sqf(Poly(x**2 - 2*x + 1)) == (x - 1)**2 f = 3 + x - x*(1 + x) + x**2 assert sqf(f) == 3 f = (x**2 + 2*x + 1)**20000000000 assert sqf(f) == (x + 1)**40000000000 assert sqf_list(f) == (1, [(x + 1, 40000000000)]) def test_factor(): f = x**5 - x**3 - x**2 + 1 u = x + 1 v = x - 1 w = x**2 + x + 1 F, U, V, W = map(Poly, (f, u, v, w)) assert F.factor_list() == (1, [(U, 1), (V, 2), (W, 1)]) assert factor_list(f) == (1, [(u, 1), (v, 2), (w, 1)]) assert factor_list(f, x) == (1, [(u, 1), (v, 2), (w, 1)]) assert factor_list(f, (x,)) == (1, [(u, 1), (v, 2), (w, 1)]) assert factor_list(F) == (1, [(U, 1), (V, 2), (W, 1)]) assert factor_list(f, polys=True) == (1, [(U, 1), (V, 2), (W, 1)]) assert factor_list(F, polys=False) == (1, [(u, 1), (v, 2), (w, 1)]) assert F.factor_list_include() == [(U, 1), (V, 2), (W, 1)] assert factor_list(1) == (1, []) assert factor_list(6) == (6, []) assert factor_list(sqrt(3), x) == (sqrt(3), []) assert factor_list((-1)**x, x) == (1, [(-1, x)]) assert factor_list((2*x)**y, x) == (1, [(2, y), (x, y)]) assert factor_list(sqrt(x*y), x) == (1, [(x*y, S.Half)]) assert factor(6) == 6 and factor(6).is_Integer assert factor_list(3*x) == (3, [(x, 1)]) assert factor_list(3*x**2) == (3, [(x, 2)]) assert factor(3*x) == 3*x assert factor(3*x**2) == 3*x**2 assert factor((2*x**2 + 2)**7) == 128*(x**2 + 1)**7 assert factor(f) == u*v**2*w assert factor(f, x) == u*v**2*w assert factor(f, (x,)) == u*v**2*w g, p, q, r = x**2 - y**2, x - y, x + y, x**2 + 1 assert factor(f/g) == (u*v**2*w)/(p*q) assert factor(f/g, x) == (u*v**2*w)/(p*q) assert factor(f/g, (x,)) == (u*v**2*w)/(p*q) p = Symbol('p', positive=True) i = Symbol('i', integer=True) r = Symbol('r', real=True) assert factor(sqrt(x*y)).is_Pow is True assert factor(sqrt(3*x**2 - 3)) == sqrt(3)*sqrt((x - 1)*(x + 1)) assert factor(sqrt(3*x**2 + 3)) == sqrt(3)*sqrt(x**2 + 1) assert factor((y*x**2 - y)**i) == y**i*(x - 1)**i*(x + 1)**i assert factor((y*x**2 + y)**i) == y**i*(x**2 + 1)**i assert factor((y*x**2 - y)**t) == (y*(x - 1)*(x + 1))**t assert factor((y*x**2 + y)**t) == (y*(x**2 + 1))**t f = sqrt(expand((r**2 + 1)*(p + 1)*(p - 1)*(p - 2)**3)) g = sqrt((p - 2)**3*(p - 1))*sqrt(p + 1)*sqrt(r**2 + 1) assert factor(f) == g assert factor(g) == g g = (x - 1)**5*(r**2 + 1) f = sqrt(expand(g)) assert factor(f) == sqrt(g) f = Poly(sin(1)*x + 1, x, domain=EX) assert f.factor_list() == (1, [(f, 1)]) f = x**4 + 1 assert factor(f) == f assert factor(f, extension=I) == (x**2 - I)*(x**2 + I) assert factor(f, gaussian=True) == (x**2 - I)*(x**2 + I) assert factor( f, extension=sqrt(2)) == (x**2 + sqrt(2)*x + 1)*(x**2 - sqrt(2)*x + 1) f = x**2 + 2*sqrt(2)*x + 2 assert factor(f, extension=sqrt(2)) == (x + sqrt(2))**2 assert factor(f**3, extension=sqrt(2)) == (x + sqrt(2))**6 assert factor(x**2 - 2*y**2, extension=sqrt(2)) == \ (x + sqrt(2)*y)*(x - sqrt(2)*y) assert factor(2*x**2 - 4*y**2, extension=sqrt(2)) == \ 2*((x + sqrt(2)*y)*(x - sqrt(2)*y)) assert factor(x - 1) == x - 1 assert factor(-x - 1) == -x - 1 assert factor(x - 1) == x - 1 assert factor(6*x - 10) == Mul(2, 3*x - 5, evaluate=False) assert factor(x**11 + x + 1, modulus=65537, symmetric=True) == \ (x**2 + x + 1)*(x**9 - x**8 + x**6 - x**5 + x**3 - x** 2 + 1) assert factor(x**11 + x + 1, modulus=65537, symmetric=False) == \ (x**2 + x + 1)*(x**9 + 65536*x**8 + x**6 + 65536*x**5 + x**3 + 65536*x** 2 + 1) f = x/pi + x*sin(x)/pi g = y/(pi**2 + 2*pi + 1) + y*sin(x)/(pi**2 + 2*pi + 1) assert factor(f) == x*(sin(x) + 1)/pi assert factor(g) == y*(sin(x) + 1)/(pi + 1)**2 assert factor(Eq( x**2 + 2*x + 1, x**3 + 1)) == Eq((x + 1)**2, (x + 1)*(x**2 - x + 1)) f = (x**2 - 1)/(x**2 + 4*x + 4) assert factor(f) == (x + 1)*(x - 1)/(x + 2)**2 assert factor(f, x) == (x + 1)*(x - 1)/(x + 2)**2 f = 3 + x - x*(1 + x) + x**2 assert factor(f) == 3 assert factor(f, x) == 3 assert factor(1/(x**2 + 2*x + 1/x) - 1) == -((1 - x + 2*x**2 + x**3)/(1 + 2*x**2 + x**3)) assert factor(f, expand=False) == f raises(PolynomialError, lambda: factor(f, x, expand=False)) raises(FlagError, lambda: factor(x**2 - 1, polys=True)) assert factor([x, Eq(x**2 - y**2, Tuple(x**2 - z**2, 1/x + 1/y))]) == \ [x, Eq((x - y)*(x + y), Tuple((x - z)*(x + z), (x + y)/x/y))] assert not isinstance( Poly(x**3 + x + 1).factor_list()[1][0][0], PurePoly) is True assert isinstance( PurePoly(x**3 + x + 1).factor_list()[1][0][0], PurePoly) is True assert factor(sqrt(-x)) == sqrt(-x) # issue 5917 e = (-2*x*(-x + 1)*(x - 1)*(-x*(-x + 1)*(x - 1) - x*(x - 1)**2)*(x**2*(x - 1) - x*(x - 1) - x) - (-2*x**2*(x - 1)**2 - x*(-x + 1)*(-x*(-x + 1) + x*(x - 1)))*(x**2*(x - 1)**4 - x*(-x*(-x + 1)*(x - 1) - x*(x - 1)**2))) assert factor(e) == 0 # deep option assert factor(sin(x**2 + x) + x, deep=True) == sin(x*(x + 1)) + x assert factor(sin(x**2 + x)*x, deep=True) == sin(x*(x + 1))*x assert factor(sqrt(x**2)) == sqrt(x**2) # issue 13149 assert factor(expand((0.5*x+1)*(0.5*y+1))) == Mul(1.0, 0.5*x + 1.0, 0.5*y + 1.0, evaluate = False) assert factor(expand((0.5*x+0.5)**2)) == 0.25*(1.0*x + 1.0)**2 eq = x**2*y**2 + 11*x**2*y + 30*x**2 + 7*x*y**2 + 77*x*y + 210*x + 12*y**2 + 132*y + 360 assert factor(eq, x) == (x + 3)*(x + 4)*(y**2 + 11*y + 30) assert factor(eq, x, deep=True) == (x + 3)*(x + 4)*(y**2 + 11*y + 30) assert factor(eq, y, deep=True) == (y + 5)*(y + 6)*(x**2 + 7*x + 12) # fraction option f = 5*x + 3*exp(2 - 7*x) assert factor(f, deep=True) == factor(f, deep=True, fraction=True) assert factor(f, deep=True, fraction=False) == 5*x + 3*exp(2)*exp(-7*x) def test_factor_large(): f = (x**2 + 4*x + 4)**10000000*(x**2 + 1)*(x**2 + 2*x + 1)**1234567 g = ((x**2 + 2*x + 1)**3000*y**2 + (x**2 + 2*x + 1)**3000*2*y + ( x**2 + 2*x + 1)**3000) assert factor(f) == (x + 2)**20000000*(x**2 + 1)*(x + 1)**2469134 assert factor(g) == (x + 1)**6000*(y + 1)**2 assert factor_list( f) == (1, [(x + 1, 2469134), (x + 2, 20000000), (x**2 + 1, 1)]) assert factor_list(g) == (1, [(y + 1, 2), (x + 1, 6000)]) f = (x**2 - y**2)**200000*(x**7 + 1) g = (x**2 + y**2)**200000*(x**7 + 1) assert factor(f) == \ (x + 1)*(x - y)**200000*(x + y)**200000*(x**6 - x**5 + x**4 - x**3 + x**2 - x + 1) assert factor(g, gaussian=True) == \ (x + 1)*(x - I*y)**200000*(x + I*y)**200000*(x**6 - x**5 + x**4 - x**3 + x**2 - x + 1) assert factor_list(f) == \ (1, [(x + 1, 1), (x - y, 200000), (x + y, 200000), (x**6 - x**5 + x**4 - x**3 + x**2 - x + 1, 1)]) assert factor_list(g, gaussian=True) == \ (1, [(x + 1, 1), (x - I*y, 200000), (x + I*y, 200000), ( x**6 - x**5 + x**4 - x**3 + x**2 - x + 1, 1)]) def test_factor_noeval(): assert factor(6*x - 10) == Mul(2, 3*x - 5, evaluate=False) assert factor((6*x - 10)/(3*x - 6)) == Mul(Rational(2, 3), 3*x - 5, 1/(x - 2)) def test_intervals(): assert intervals(0) == [] assert intervals(1) == [] assert intervals(x, sqf=True) == [(0, 0)] assert intervals(x) == [((0, 0), 1)] assert intervals(x**128) == [((0, 0), 128)] assert intervals([x**2, x**4]) == [((0, 0), {0: 2, 1: 4})] f = Poly((x*Rational(2, 5) - Rational(17, 3))*(4*x + Rational(1, 257))) assert f.intervals(sqf=True) == [(-1, 0), (14, 15)] assert f.intervals() == [((-1, 0), 1), ((14, 15), 1)] assert f.intervals(fast=True, sqf=True) == [(-1, 0), (14, 15)] assert f.intervals(fast=True) == [((-1, 0), 1), ((14, 15), 1)] assert f.intervals(eps=Rational(1, 10)) == f.intervals(eps=0.1) == \ [((Rational(-1, 258), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)] assert f.intervals(eps=Rational(1, 100)) == f.intervals(eps=0.01) == \ [((Rational(-1, 258), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)] assert f.intervals(eps=Rational(1, 1000)) == f.intervals(eps=0.001) == \ [((Rational(-1, 1002), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)] assert f.intervals(eps=Rational(1, 10000)) == f.intervals(eps=0.0001) == \ [((Rational(-1, 1028), Rational(-1, 1028)), 1), ((Rational(85, 6), Rational(85, 6)), 1)] f = (x*Rational(2, 5) - Rational(17, 3))*(4*x + Rational(1, 257)) assert intervals(f, sqf=True) == [(-1, 0), (14, 15)] assert intervals(f) == [((-1, 0), 1), ((14, 15), 1)] assert intervals(f, eps=Rational(1, 10)) == intervals(f, eps=0.1) == \ [((Rational(-1, 258), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)] assert intervals(f, eps=Rational(1, 100)) == intervals(f, eps=0.01) == \ [((Rational(-1, 258), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)] assert intervals(f, eps=Rational(1, 1000)) == intervals(f, eps=0.001) == \ [((Rational(-1, 1002), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)] assert intervals(f, eps=Rational(1, 10000)) == intervals(f, eps=0.0001) == \ [((Rational(-1, 1028), Rational(-1, 1028)), 1), ((Rational(85, 6), Rational(85, 6)), 1)] f = Poly((x**2 - 2)*(x**2 - 3)**7*(x + 1)*(7*x + 3)**3) assert f.intervals() == \ [((-2, Rational(-3, 2)), 7), ((Rational(-3, 2), -1), 1), ((-1, -1), 1), ((-1, 0), 3), ((1, Rational(3, 2)), 1), ((Rational(3, 2), 2), 7)] assert intervals([x**5 - 200, x**5 - 201]) == \ [((Rational(75, 26), Rational(101, 35)), {0: 1}), ((Rational(309, 107), Rational(26, 9)), {1: 1})] assert intervals([x**5 - 200, x**5 - 201], fast=True) == \ [((Rational(75, 26), Rational(101, 35)), {0: 1}), ((Rational(309, 107), Rational(26, 9)), {1: 1})] assert intervals([x**2 - 200, x**2 - 201]) == \ [((Rational(-71, 5), Rational(-85, 6)), {1: 1}), ((Rational(-85, 6), -14), {0: 1}), ((14, Rational(85, 6)), {0: 1}), ((Rational(85, 6), Rational(71, 5)), {1: 1})] assert intervals([x + 1, x + 2, x - 1, x + 1, 1, x - 1, x - 1, (x - 2)**2]) == \ [((-2, -2), {1: 1}), ((-1, -1), {0: 1, 3: 1}), ((1, 1), {2: 1, 5: 1, 6: 1}), ((2, 2), {7: 2})] f, g, h = x**2 - 2, x**4 - 4*x**2 + 4, x - 1 assert intervals(f, inf=Rational(7, 4), sqf=True) == [] assert intervals(f, inf=Rational(7, 5), sqf=True) == [(Rational(7, 5), Rational(3, 2))] assert intervals(f, sup=Rational(7, 4), sqf=True) == [(-2, -1), (1, Rational(3, 2))] assert intervals(f, sup=Rational(7, 5), sqf=True) == [(-2, -1)] assert intervals(g, inf=Rational(7, 4)) == [] assert intervals(g, inf=Rational(7, 5)) == [((Rational(7, 5), Rational(3, 2)), 2)] assert intervals(g, sup=Rational(7, 4)) == [((-2, -1), 2), ((1, Rational(3, 2)), 2)] assert intervals(g, sup=Rational(7, 5)) == [((-2, -1), 2)] assert intervals([g, h], inf=Rational(7, 4)) == [] assert intervals([g, h], inf=Rational(7, 5)) == [((Rational(7, 5), Rational(3, 2)), {0: 2})] assert intervals([g, h], sup=S( 7)/4) == [((-2, -1), {0: 2}), ((1, 1), {1: 1}), ((1, Rational(3, 2)), {0: 2})] assert intervals( [g, h], sup=Rational(7, 5)) == [((-2, -1), {0: 2}), ((1, 1), {1: 1})] assert intervals([x + 2, x**2 - 2]) == \ [((-2, -2), {0: 1}), ((-2, -1), {1: 1}), ((1, 2), {1: 1})] assert intervals([x + 2, x**2 - 2], strict=True) == \ [((-2, -2), {0: 1}), ((Rational(-3, 2), -1), {1: 1}), ((1, 2), {1: 1})] f = 7*z**4 - 19*z**3 + 20*z**2 + 17*z + 20 assert intervals(f) == [] real_part, complex_part = intervals(f, all=True, sqf=True) assert real_part == [] assert all(re(a) < re(r) < re(b) and im( a) < im(r) < im(b) for (a, b), r in zip(complex_part, nroots(f))) assert complex_part == [(Rational(-40, 7) - I*Rational(40, 7), 0), (Rational(-40, 7), I*Rational(40, 7)), (I*Rational(-40, 7), Rational(40, 7)), (0, Rational(40, 7) + I*Rational(40, 7))] real_part, complex_part = intervals(f, all=True, sqf=True, eps=Rational(1, 10)) assert real_part == [] assert all(re(a) < re(r) < re(b) and im( a) < im(r) < im(b) for (a, b), r in zip(complex_part, nroots(f))) raises(ValueError, lambda: intervals(x**2 - 2, eps=10**-100000)) raises(ValueError, lambda: Poly(x**2 - 2).intervals(eps=10**-100000)) raises( ValueError, lambda: intervals([x**2 - 2, x**2 - 3], eps=10**-100000)) def test_refine_root(): f = Poly(x**2 - 2) assert f.refine_root(1, 2, steps=0) == (1, 2) assert f.refine_root(-2, -1, steps=0) == (-2, -1) assert f.refine_root(1, 2, steps=None) == (1, Rational(3, 2)) assert f.refine_root(-2, -1, steps=None) == (Rational(-3, 2), -1) assert f.refine_root(1, 2, steps=1) == (1, Rational(3, 2)) assert f.refine_root(-2, -1, steps=1) == (Rational(-3, 2), -1) assert f.refine_root(1, 2, steps=1, fast=True) == (1, Rational(3, 2)) assert f.refine_root(-2, -1, steps=1, fast=True) == (Rational(-3, 2), -1) assert f.refine_root(1, 2, eps=Rational(1, 100)) == (Rational(24, 17), Rational(17, 12)) assert f.refine_root(1, 2, eps=1e-2) == (Rational(24, 17), Rational(17, 12)) raises(PolynomialError, lambda: (f**2).refine_root(1, 2, check_sqf=True)) raises(RefinementFailed, lambda: (f**2).refine_root(1, 2)) raises(RefinementFailed, lambda: (f**2).refine_root(2, 3)) f = x**2 - 2 assert refine_root(f, 1, 2, steps=1) == (1, Rational(3, 2)) assert refine_root(f, -2, -1, steps=1) == (Rational(-3, 2), -1) assert refine_root(f, 1, 2, steps=1, fast=True) == (1, Rational(3, 2)) assert refine_root(f, -2, -1, steps=1, fast=True) == (Rational(-3, 2), -1) assert refine_root(f, 1, 2, eps=Rational(1, 100)) == (Rational(24, 17), Rational(17, 12)) assert refine_root(f, 1, 2, eps=1e-2) == (Rational(24, 17), Rational(17, 12)) raises(PolynomialError, lambda: refine_root(1, 7, 8, eps=Rational(1, 100))) raises(ValueError, lambda: Poly(f).refine_root(1, 2, eps=10**-100000)) raises(ValueError, lambda: refine_root(f, 1, 2, eps=10**-100000)) def test_count_roots(): assert count_roots(x**2 - 2) == 2 assert count_roots(x**2 - 2, inf=-oo) == 2 assert count_roots(x**2 - 2, sup=+oo) == 2 assert count_roots(x**2 - 2, inf=-oo, sup=+oo) == 2 assert count_roots(x**2 - 2, inf=-2) == 2 assert count_roots(x**2 - 2, inf=-1) == 1 assert count_roots(x**2 - 2, sup=1) == 1 assert count_roots(x**2 - 2, sup=2) == 2 assert count_roots(x**2 - 2, inf=-1, sup=1) == 0 assert count_roots(x**2 - 2, inf=-2, sup=2) == 2 assert count_roots(x**2 - 2, inf=-1, sup=1) == 0 assert count_roots(x**2 - 2, inf=-2, sup=2) == 2 assert count_roots(x**2 + 2) == 0 assert count_roots(x**2 + 2, inf=-2*I) == 2 assert count_roots(x**2 + 2, sup=+2*I) == 2 assert count_roots(x**2 + 2, inf=-2*I, sup=+2*I) == 2 assert count_roots(x**2 + 2, inf=0) == 0 assert count_roots(x**2 + 2, sup=0) == 0 assert count_roots(x**2 + 2, inf=-I) == 1 assert count_roots(x**2 + 2, sup=+I) == 1 assert count_roots(x**2 + 2, inf=+I/2, sup=+I) == 0 assert count_roots(x**2 + 2, inf=-I, sup=-I/2) == 0 raises(PolynomialError, lambda: count_roots(1)) def test_Poly_root(): f = Poly(2*x**3 - 7*x**2 + 4*x + 4) assert f.root(0) == Rational(-1, 2) assert f.root(1) == 2 assert f.root(2) == 2 raises(IndexError, lambda: f.root(3)) assert Poly(x**5 + x + 1).root(0) == rootof(x**3 - x**2 + 1, 0) def test_real_roots(): assert real_roots(x) == [0] assert real_roots(x, multiple=False) == [(0, 1)] assert real_roots(x**3) == [0, 0, 0] assert real_roots(x**3, multiple=False) == [(0, 3)] assert real_roots(x*(x**3 + x + 3)) == [rootof(x**3 + x + 3, 0), 0] assert real_roots(x*(x**3 + x + 3), multiple=False) == [(rootof( x**3 + x + 3, 0), 1), (0, 1)] assert real_roots( x**3*(x**3 + x + 3)) == [rootof(x**3 + x + 3, 0), 0, 0, 0] assert real_roots(x**3*(x**3 + x + 3), multiple=False) == [(rootof( x**3 + x + 3, 0), 1), (0, 3)] f = 2*x**3 - 7*x**2 + 4*x + 4 g = x**3 + x + 1 assert Poly(f).real_roots() == [Rational(-1, 2), 2, 2] assert Poly(g).real_roots() == [rootof(g, 0)] def test_all_roots(): f = 2*x**3 - 7*x**2 + 4*x + 4 g = x**3 + x + 1 assert Poly(f).all_roots() == [Rational(-1, 2), 2, 2] assert Poly(g).all_roots() == [rootof(g, 0), rootof(g, 1), rootof(g, 2)] def test_nroots(): assert Poly(0, x).nroots() == [] assert Poly(1, x).nroots() == [] assert Poly(x**2 - 1, x).nroots() == [-1.0, 1.0] assert Poly(x**2 + 1, x).nroots() == [-1.0*I, 1.0*I] roots = Poly(x**2 - 1, x).nroots() assert roots == [-1.0, 1.0] roots = Poly(x**2 + 1, x).nroots() assert roots == [-1.0*I, 1.0*I] roots = Poly(x**2/3 - Rational(1, 3), x).nroots() assert roots == [-1.0, 1.0] roots = Poly(x**2/3 + Rational(1, 3), x).nroots() assert roots == [-1.0*I, 1.0*I] assert Poly(x**2 + 2*I, x).nroots() == [-1.0 + 1.0*I, 1.0 - 1.0*I] assert Poly( x**2 + 2*I, x, extension=I).nroots() == [-1.0 + 1.0*I, 1.0 - 1.0*I] assert Poly(0.2*x + 0.1).nroots() == [-0.5] roots = nroots(x**5 + x + 1, n=5) eps = Float("1e-5") assert re(roots[0]).epsilon_eq(-0.75487, eps) is S.true assert im(roots[0]) == 0.0 assert re(roots[1]) == -0.5 assert im(roots[1]).epsilon_eq(-0.86602, eps) is S.true assert re(roots[2]) == -0.5 assert im(roots[2]).epsilon_eq(+0.86602, eps) is S.true assert re(roots[3]).epsilon_eq(+0.87743, eps) is S.true assert im(roots[3]).epsilon_eq(-0.74486, eps) is S.true assert re(roots[4]).epsilon_eq(+0.87743, eps) is S.true assert im(roots[4]).epsilon_eq(+0.74486, eps) is S.true eps = Float("1e-6") assert re(roots[0]).epsilon_eq(-0.75487, eps) is S.false assert im(roots[0]) == 0.0 assert re(roots[1]) == -0.5 assert im(roots[1]).epsilon_eq(-0.86602, eps) is S.false assert re(roots[2]) == -0.5 assert im(roots[2]).epsilon_eq(+0.86602, eps) is S.false assert re(roots[3]).epsilon_eq(+0.87743, eps) is S.false assert im(roots[3]).epsilon_eq(-0.74486, eps) is S.false assert re(roots[4]).epsilon_eq(+0.87743, eps) is S.false assert im(roots[4]).epsilon_eq(+0.74486, eps) is S.false raises(DomainError, lambda: Poly(x + y, x).nroots()) raises(MultivariatePolynomialError, lambda: Poly(x + y).nroots()) assert nroots(x**2 - 1) == [-1.0, 1.0] roots = nroots(x**2 - 1) assert roots == [-1.0, 1.0] assert nroots(x + I) == [-1.0*I] assert nroots(x + 2*I) == [-2.0*I] raises(PolynomialError, lambda: nroots(0)) # issue 8296 f = Poly(x**4 - 1) assert f.nroots(2) == [w.n(2) for w in f.all_roots()] assert str(Poly(x**16 + 32*x**14 + 508*x**12 + 5440*x**10 + 39510*x**8 + 204320*x**6 + 755548*x**4 + 1434496*x**2 + 877969).nroots(2)) == ('[-1.7 - 1.9*I, -1.7 + 1.9*I, -1.7 ' '- 2.5*I, -1.7 + 2.5*I, -1.0*I, 1.0*I, -1.7*I, 1.7*I, -2.8*I, ' '2.8*I, -3.4*I, 3.4*I, 1.7 - 1.9*I, 1.7 + 1.9*I, 1.7 - 2.5*I, ' '1.7 + 2.5*I]') def test_ground_roots(): f = x**6 - 4*x**4 + 4*x**3 - x**2 assert Poly(f).ground_roots() == {S.One: 2, S.Zero: 2} assert ground_roots(f) == {S.One: 2, S.Zero: 2} def test_nth_power_roots_poly(): f = x**4 - x**2 + 1 f_2 = (x**2 - x + 1)**2 f_3 = (x**2 + 1)**2 f_4 = (x**2 + x + 1)**2 f_12 = (x - 1)**4 assert nth_power_roots_poly(f, 1) == f raises(ValueError, lambda: nth_power_roots_poly(f, 0)) raises(ValueError, lambda: nth_power_roots_poly(f, x)) assert factor(nth_power_roots_poly(f, 2)) == f_2 assert factor(nth_power_roots_poly(f, 3)) == f_3 assert factor(nth_power_roots_poly(f, 4)) == f_4 assert factor(nth_power_roots_poly(f, 12)) == f_12 raises(MultivariatePolynomialError, lambda: nth_power_roots_poly( x + y, 2, x, y)) def test_torational_factor_list(): p = expand(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))})) assert _torational_factor_list(p, x) == (-2, [ (-x*(1 + sqrt(2))/2 + 1, 1), (-x*(1 + sqrt(2)) - 1, 1), (-x*(1 + sqrt(2)) + 1, 1)]) p = expand(((x**2-1)*(x-2)).subs({x:x*(1 + 2**Rational(1, 4))})) assert _torational_factor_list(p, x) is None def test_cancel(): assert cancel(0) == 0 assert cancel(7) == 7 assert cancel(x) == x assert cancel(oo) is oo assert cancel((2, 3)) == (1, 2, 3) assert cancel((1, 0), x) == (1, 1, 0) assert cancel((0, 1), x) == (1, 0, 1) f, g, p, q = 4*x**2 - 4, 2*x - 2, 2*x + 2, 1 F, G, P, Q = [ Poly(u, x) for u in (f, g, p, q) ] assert F.cancel(G) == (1, P, Q) assert cancel((f, g)) == (1, p, q) assert cancel((f, g), x) == (1, p, q) assert cancel((f, g), (x,)) == (1, p, q) assert cancel((F, G)) == (1, P, Q) assert cancel((f, g), polys=True) == (1, P, Q) assert cancel((F, G), polys=False) == (1, p, q) f = (x**2 - 2)/(x + sqrt(2)) assert cancel(f) == f assert cancel(f, greedy=False) == x - sqrt(2) f = (x**2 - 2)/(x - sqrt(2)) assert cancel(f) == f assert cancel(f, greedy=False) == x + sqrt(2) assert cancel((x**2/4 - 1, x/2 - 1)) == (S.Half, x + 2, 1) assert cancel((x**2 - y)/(x - y)) == 1/(x - y)*(x**2 - y) assert cancel((x**2 - y**2)/(x - y), x) == x + y assert cancel((x**2 - y**2)/(x - y), y) == x + y assert cancel((x**2 - y**2)/(x - y)) == x + y assert cancel((x**3 - 1)/(x**2 - 1)) == (x**2 + x + 1)/(x + 1) assert cancel((x**3/2 - S.Half)/(x**2 - 1)) == (x**2 + x + 1)/(2*x + 2) assert cancel((exp(2*x) + 2*exp(x) + 1)/(exp(x) + 1)) == exp(x) + 1 f = Poly(x**2 - a**2, x) g = Poly(x - a, x) F = Poly(x + a, x) G = Poly(1, x) assert cancel((f, g)) == (1, F, G) f = x**3 + (sqrt(2) - 2)*x**2 - (2*sqrt(2) + 3)*x - 3*sqrt(2) g = x**2 - 2 assert cancel((f, g), extension=True) == (1, x**2 - 2*x - 3, x - sqrt(2)) f = Poly(-2*x + 3, x) g = Poly(-x**9 + x**8 + x**6 - x**5 + 2*x**2 - 3*x + 1, x) assert cancel((f, g)) == (1, -f, -g) f = Poly(y, y, domain='ZZ(x)') g = Poly(1, y, domain='ZZ[x]') assert f.cancel( g) == (1, Poly(y, y, domain='ZZ(x)'), Poly(1, y, domain='ZZ(x)')) assert f.cancel(g, include=True) == ( Poly(y, y, domain='ZZ(x)'), Poly(1, y, domain='ZZ(x)')) f = Poly(5*x*y + x, y, domain='ZZ(x)') g = Poly(2*x**2*y, y, domain='ZZ(x)') assert f.cancel(g, include=True) == ( Poly(5*y + 1, y, domain='ZZ(x)'), Poly(2*x*y, y, domain='ZZ(x)')) f = -(-2*x - 4*y + 0.005*(z - y)**2)/((z - y)*(-z + y + 2)) assert cancel(f).is_Mul == True P = tanh(x - 3.0) Q = tanh(x + 3.0) f = ((-2*P**2 + 2)*(-P**2 + 1)*Q**2/2 + (-2*P**2 + 2)*(-2*Q**2 + 2)*P*Q - (-2*P**2 + 2)*P**2*Q**2 + (-2*Q**2 + 2)*(-Q**2 + 1)*P**2/2 - (-2*Q**2 + 2)*P**2*Q**2)/(2*sqrt(P**2*Q**2 + 0.0001)) \ + (-(-2*P**2 + 2)*P*Q**2/2 - (-2*Q**2 + 2)*P**2*Q/2)*((-2*P**2 + 2)*P*Q**2/2 + (-2*Q**2 + 2)*P**2*Q/2)/(2*(P**2*Q**2 + 0.0001)**Rational(3, 2)) assert cancel(f).is_Mul == True # issue 7022 A = Symbol('A', commutative=False) p1 = Piecewise((A*(x**2 - 1)/(x + 1), x > 1), ((x + 2)/(x**2 + 2*x), True)) p2 = Piecewise((A*(x - 1), x > 1), (1/x, True)) assert cancel(p1) == p2 assert cancel(2*p1) == 2*p2 assert cancel(1 + p1) == 1 + p2 assert cancel((x**2 - 1)/(x + 1)*p1) == (x - 1)*p2 assert cancel((x**2 - 1)/(x + 1) + p1) == (x - 1) + p2 p3 = Piecewise(((x**2 - 1)/(x + 1), x > 1), ((x + 2)/(x**2 + 2*x), True)) p4 = Piecewise(((x - 1), x > 1), (1/x, True)) assert cancel(p3) == p4 assert cancel(2*p3) == 2*p4 assert cancel(1 + p3) == 1 + p4 assert cancel((x**2 - 1)/(x + 1)*p3) == (x - 1)*p4 assert cancel((x**2 - 1)/(x + 1) + p3) == (x - 1) + p4 # issue 9363 M = MatrixSymbol('M', 5, 5) assert cancel(M[0,0] + 7) == M[0,0] + 7 expr = sin(M[1, 4] + M[2, 1] * 5 * M[4, 0]) - 5 * M[1, 2] / z assert cancel(expr) == (z*sin(M[1, 4] + M[2, 1] * 5 * M[4, 0]) - 5 * M[1, 2]) / z def test_reduced(): f = 2*x**4 + y**2 - x**2 + y**3 G = [x**3 - x, y**3 - y] Q = [2*x, 1] r = x**2 + y**2 + y assert reduced(f, G) == (Q, r) assert reduced(f, G, x, y) == (Q, r) H = groebner(G) assert H.reduce(f) == (Q, r) Q = [Poly(2*x, x, y), Poly(1, x, y)] r = Poly(x**2 + y**2 + y, x, y) assert _strict_eq(reduced(f, G, polys=True), (Q, r)) assert _strict_eq(reduced(f, G, x, y, polys=True), (Q, r)) H = groebner(G, polys=True) assert _strict_eq(H.reduce(f), (Q, r)) f = 2*x**3 + y**3 + 3*y G = groebner([x**2 + y**2 - 1, x*y - 2]) Q = [x**2 - x*y**3/2 + x*y/2 + y**6/4 - y**4/2 + y**2/4, -y**5/4 + y**3/2 + y*Rational(3, 4)] r = 0 assert reduced(f, G) == (Q, r) assert G.reduce(f) == (Q, r) assert reduced(f, G, auto=False)[1] != 0 assert G.reduce(f, auto=False)[1] != 0 assert G.contains(f) is True assert G.contains(f + 1) is False assert reduced(1, [1], x) == ([1], 0) raises(ComputationFailed, lambda: reduced(1, [1])) def test_groebner(): assert groebner([], x, y, z) == [] assert groebner([x**2 + 1, y**4*x + x**3], x, y, order='lex') == [1 + x**2, -1 + y**4] assert groebner([x**2 + 1, y**4*x + x**3, x*y*z**3], x, y, z, order='grevlex') == [-1 + y**4, z**3, 1 + x**2] assert groebner([x**2 + 1, y**4*x + x**3], x, y, order='lex', polys=True) == \ [Poly(1 + x**2, x, y), Poly(-1 + y**4, x, y)] assert groebner([x**2 + 1, y**4*x + x**3, x*y*z**3], x, y, z, order='grevlex', polys=True) == \ [Poly(-1 + y**4, x, y, z), Poly(z**3, x, y, z), Poly(1 + x**2, x, y, z)] assert groebner([x**3 - 1, x**2 - 1]) == [x - 1] assert groebner([Eq(x**3, 1), Eq(x**2, 1)]) == [x - 1] F = [3*x**2 + y*z - 5*x - 1, 2*x + 3*x*y + y**2, x - 3*y + x*z - 2*z**2] f = z**9 - x**2*y**3 - 3*x*y**2*z + 11*y*z**2 + x**2*z**2 - 5 G = groebner(F, x, y, z, modulus=7, symmetric=False) assert G == [1 + x + y + 3*z + 2*z**2 + 2*z**3 + 6*z**4 + z**5, 1 + 3*y + y**2 + 6*z**2 + 3*z**3 + 3*z**4 + 3*z**5 + 4*z**6, 1 + 4*y + 4*z + y*z + 4*z**3 + z**4 + z**6, 6 + 6*z + z**2 + 4*z**3 + 3*z**4 + 6*z**5 + 3*z**6 + z**7] Q, r = reduced(f, G, x, y, z, modulus=7, symmetric=False, polys=True) assert sum([ q*g for q, g in zip(Q, G.polys)], r) == Poly(f, modulus=7) F = [x*y - 2*y, 2*y**2 - x**2] assert groebner(F, x, y, order='grevlex') == \ [y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y] assert groebner(F, y, x, order='grevlex') == \ [x**3 - 2*x**2, -x**2 + 2*y**2, x*y - 2*y] assert groebner(F, order='grevlex', field=True) == \ [y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y] assert groebner([1], x) == [1] assert groebner([x**2 + 2.0*y], x, y) == [1.0*x**2 + 2.0*y] raises(ComputationFailed, lambda: groebner([1])) assert groebner([x**2 - 1, x**3 + 1], method='buchberger') == [x + 1] assert groebner([x**2 - 1, x**3 + 1], method='f5b') == [x + 1] raises(ValueError, lambda: groebner([x, y], method='unknown')) def test_fglm(): F = [a + b + c + d, a*b + a*d + b*c + b*d, a*b*c + a*b*d + a*c*d + b*c*d, a*b*c*d - 1] G = groebner(F, a, b, c, d, order=grlex) B = [ 4*a + 3*d**9 - 4*d**5 - 3*d, 4*b + 4*c - 3*d**9 + 4*d**5 + 7*d, 4*c**2 + 3*d**10 - 4*d**6 - 3*d**2, 4*c*d**4 + 4*c - d**9 + 4*d**5 + 5*d, d**12 - d**8 - d**4 + 1, ] assert groebner(F, a, b, c, d, order=lex) == B assert G.fglm(lex) == B F = [9*x**8 + 36*x**7 - 32*x**6 - 252*x**5 - 78*x**4 + 468*x**3 + 288*x**2 - 108*x + 9, -72*t*x**7 - 252*t*x**6 + 192*t*x**5 + 1260*t*x**4 + 312*t*x**3 - 404*t*x**2 - 576*t*x + \ 108*t - 72*x**7 - 256*x**6 + 192*x**5 + 1280*x**4 + 312*x**3 - 576*x + 96] G = groebner(F, t, x, order=grlex) B = [ 203577793572507451707*t + 627982239411707112*x**7 - 666924143779443762*x**6 - \ 10874593056632447619*x**5 + 5119998792707079562*x**4 + 72917161949456066376*x**3 + \ 20362663855832380362*x**2 - 142079311455258371571*x + 183756699868981873194, 9*x**8 + 36*x**7 - 32*x**6 - 252*x**5 - 78*x**4 + 468*x**3 + 288*x**2 - 108*x + 9, ] assert groebner(F, t, x, order=lex) == B assert G.fglm(lex) == B F = [x**2 - x - 3*y + 1, -2*x + y**2 + y - 1] G = groebner(F, x, y, order=lex) B = [ x**2 - x - 3*y + 1, y**2 - 2*x + y - 1, ] assert groebner(F, x, y, order=grlex) == B assert G.fglm(grlex) == B def test_is_zero_dimensional(): assert is_zero_dimensional([x, y], x, y) is True assert is_zero_dimensional([x**3 + y**2], x, y) is False assert is_zero_dimensional([x, y, z], x, y, z) is True assert is_zero_dimensional([x, y, z], x, y, z, t) is False F = [x*y - z, y*z - x, x*y - y] assert is_zero_dimensional(F, x, y, z) is True F = [x**2 - 2*x*z + 5, x*y**2 + y*z**3, 3*y**2 - 8*z**2] assert is_zero_dimensional(F, x, y, z) is True def test_GroebnerBasis(): F = [x*y - 2*y, 2*y**2 - x**2] G = groebner(F, x, y, order='grevlex') H = [y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y] P = [ Poly(h, x, y) for h in H ] assert groebner(F + [0], x, y, order='grevlex') == G assert isinstance(G, GroebnerBasis) is True assert len(G) == 3 assert G[0] == H[0] and not G[0].is_Poly assert G[1] == H[1] and not G[1].is_Poly assert G[2] == H[2] and not G[2].is_Poly assert G[1:] == H[1:] and not any(g.is_Poly for g in G[1:]) assert G[:2] == H[:2] and not any(g.is_Poly for g in G[1:]) assert G.exprs == H assert G.polys == P assert G.gens == (x, y) assert G.domain == ZZ assert G.order == grevlex assert G == H assert G == tuple(H) assert G == P assert G == tuple(P) assert G != [] G = groebner(F, x, y, order='grevlex', polys=True) assert G[0] == P[0] and G[0].is_Poly assert G[1] == P[1] and G[1].is_Poly assert G[2] == P[2] and G[2].is_Poly assert G[1:] == P[1:] and all(g.is_Poly for g in G[1:]) assert G[:2] == P[:2] and all(g.is_Poly for g in G[1:]) def test_poly(): assert poly(x) == Poly(x, x) assert poly(y) == Poly(y, y) assert poly(x + y) == Poly(x + y, x, y) assert poly(x + sin(x)) == Poly(x + sin(x), x, sin(x)) assert poly(x + y, wrt=y) == Poly(x + y, y, x) assert poly(x + sin(x), wrt=sin(x)) == Poly(x + sin(x), sin(x), x) assert poly(x*y + 2*x*z**2 + 17) == Poly(x*y + 2*x*z**2 + 17, x, y, z) assert poly(2*(y + z)**2 - 1) == Poly(2*y**2 + 4*y*z + 2*z**2 - 1, y, z) assert poly( x*(y + z)**2 - 1) == Poly(x*y**2 + 2*x*y*z + x*z**2 - 1, x, y, z) assert poly(2*x*( y + z)**2 - 1) == Poly(2*x*y**2 + 4*x*y*z + 2*x*z**2 - 1, x, y, z) assert poly(2*( y + z)**2 - x - 1) == Poly(2*y**2 + 4*y*z + 2*z**2 - x - 1, x, y, z) assert poly(x*( y + z)**2 - x - 1) == Poly(x*y**2 + 2*x*y*z + x*z**2 - x - 1, x, y, z) assert poly(2*x*(y + z)**2 - x - 1) == Poly(2*x*y**2 + 4*x*y*z + 2* x*z**2 - x - 1, x, y, z) assert poly(x*y + (x + y)**2 + (x + z)**2) == \ Poly(2*x*z + 3*x*y + y**2 + z**2 + 2*x**2, x, y, z) assert poly(x*y*(x + y)*(x + z)**2) == \ Poly(x**3*y**2 + x*y**2*z**2 + y*x**2*z**2 + 2*z*x**2* y**2 + 2*y*z*x**3 + y*x**4, x, y, z) assert poly(Poly(x + y + z, y, x, z)) == Poly(x + y + z, y, x, z) assert poly((x + y)**2, x) == Poly(x**2 + 2*x*y + y**2, x, domain=ZZ[y]) assert poly((x + y)**2, y) == Poly(x**2 + 2*x*y + y**2, y, domain=ZZ[x]) assert poly(1, x) == Poly(1, x) raises(GeneratorsNeeded, lambda: poly(1)) # issue 6184 assert poly(x + y, x, y) == Poly(x + y, x, y) assert poly(x + y, y, x) == Poly(x + y, y, x) def test_keep_coeff(): u = Mul(2, x + 1, evaluate=False) assert _keep_coeff(S.One, x) == x assert _keep_coeff(S.NegativeOne, x) == -x assert _keep_coeff(S(1.0), x) == 1.0*x assert _keep_coeff(S(-1.0), x) == -1.0*x assert _keep_coeff(S.One, 2*x) == 2*x assert _keep_coeff(S(2), x/2) == x assert _keep_coeff(S(2), sin(x)) == 2*sin(x) assert _keep_coeff(S(2), x + 1) == u assert _keep_coeff(x, 1/x) == 1 assert _keep_coeff(x + 1, S(2)) == u # @XFAIL # Seems to pass on Python 3.X, but not on Python 2.7 def test_poly_matching_consistency(): # Test for this issue: # https://github.com/sympy/sympy/issues/5514 assert I * Poly(x, x) == Poly(I*x, x) assert Poly(x, x) * I == Poly(I*x, x) if not PY3: test_poly_matching_consistency = XFAIL(test_poly_matching_consistency) @XFAIL def test_issue_5786(): assert expand(factor(expand( (x - I*y)*(z - I*t)), extension=[I])) == -I*t*x - t*y + x*z - I*y*z def test_noncommutative(): class foo(Expr): is_commutative=False e = x/(x + x*y) c = 1/( 1 + y) assert cancel(foo(e)) == foo(c) assert cancel(e + foo(e)) == c + foo(c) assert cancel(e*foo(c)) == c*foo(c) def test_to_rational_coeffs(): assert to_rational_coeffs( Poly(x**3 + y*x**2 + sqrt(y), x, domain='EX')) is None def test_factor_terms(): # issue 7067 assert factor_list(x*(x + y)) == (1, [(x, 1), (x + y, 1)]) assert sqf_list(x*(x + y)) == (1, [(x, 1), (x + y, 1)]) def test_as_list(): # issue 14496 assert Poly(x**3 + 2, x, domain='ZZ').as_list() == [1, 0, 0, 2] assert Poly(x**2 + y + 1, x, y, domain='ZZ').as_list() == [[1], [], [1, 1]] assert Poly(x**2 + y + 1, x, y, z, domain='ZZ').as_list() == \ [[[1]], [[]], [[1], [1]]] def test_issue_11198(): assert factor_list(sqrt(2)*x) == (sqrt(2), [(x, 1)]) assert factor_list(sqrt(2)*sin(x), sin(x)) == (sqrt(2), [(sin(x), 1)]) def test_Poly_precision(): # Make sure Poly doesn't lose precision p = Poly(pi.evalf(100)*x) assert p.as_expr() == pi.evalf(100)*x def test_issue_12400(): # Correction of check for negative exponents assert poly(1/(1+sqrt(2)), x) == \ Poly(1/(1+sqrt(2)), x , domain='EX') def test_issue_14364(): assert gcd(S(6)*(1 + sqrt(3))/5, S(3)*(1 + sqrt(3))/10) == Rational(3, 10) * (1 + sqrt(3)) assert gcd(sqrt(5)*Rational(4, 7), sqrt(5)*Rational(2, 3)) == sqrt(5)*Rational(2, 21) assert lcm(Rational(2, 3)*sqrt(3), Rational(5, 6)*sqrt(3)) == S(10)*sqrt(3)/3 assert lcm(3*sqrt(3), 4/sqrt(3)) == 12*sqrt(3) assert lcm(S(5)*(1 + 2**Rational(1, 3))/6, S(3)*(1 + 2**Rational(1, 3))/8) == Rational(15, 2) * (1 + 2**Rational(1, 3)) assert gcd(Rational(2, 3)*sqrt(3), Rational(5, 6)/sqrt(3)) == sqrt(3)/18 assert gcd(S(4)*sqrt(13)/7, S(3)*sqrt(13)/14) == sqrt(13)/14 # gcd_list and lcm_list assert gcd([S(2)*sqrt(47)/7, S(6)*sqrt(47)/5, S(8)*sqrt(47)/5]) == sqrt(47)*Rational(2, 35) assert gcd([S(6)*(1 + sqrt(7))/5, S(2)*(1 + sqrt(7))/7, S(4)*(1 + sqrt(7))/13]) == (1 + sqrt(7))*Rational(2, 455) assert lcm((Rational(7, 2)/sqrt(15), Rational(5, 6)/sqrt(15), Rational(5, 8)/sqrt(15))) == Rational(35, 2)/sqrt(15) assert lcm([S(5)*(2 + 2**Rational(5, 7))/6, S(7)*(2 + 2**Rational(5, 7))/2, S(13)*(2 + 2**Rational(5, 7))/4]) == Rational(455, 2) * (2 + 2**Rational(5, 7)) def test_issue_15669(): x = Symbol("x", positive=True) expr = (16*x**3/(-x**2 + sqrt(8*x**2 + (x**2 - 2)**2) + 2)**2 - 2*2**Rational(4, 5)*x*(-x**2 + sqrt(8*x**2 + (x**2 - 2)**2) + 2)**Rational(3, 5) + 10*x) assert factor(expr, deep=True) == x*(x**2 + 2)
598c114523622239c67f6fcf4fa50770010de40c3ce1dcd195d61b0e8c80f9af
# isort:skip_file """ Dimensional analysis and unit systems. This module defines dimension/unit systems and physical quantities. It is based on a group-theoretical construction where dimensions are represented as vectors (coefficients being the exponents), and units are defined as a dimension to which we added a scale. Quantities are built from a factor and a unit, and are the basic objects that one will use when doing computations. All objects except systems and prefixes can be used in sympy expressions. Note that as part of a CAS, various objects do not combine automatically under operations. Details about the implementation can be found in the documentation, and we will not repeat all the explanations we gave there concerning our approach. Ideas about future developments can be found on the `Github wiki <https://github.com/sympy/sympy/wiki/Unit-systems>`_, and you should consult this page if you are willing to help. Useful functions: - ``find_unit``: easily lookup pre-defined units. - ``convert_to(expr, newunit)``: converts an expression into the same expression expressed in another unit. """ from sympy.core.compatibility import string_types from .dimensions import Dimension, DimensionSystem from .unitsystem import UnitSystem from .util import convert_to from .quantities import Quantity from .definitions.dimension_definitions import ( amount_of_substance, acceleration, action, capacitance, charge, conductance, current, energy, force, frequency, impedance, inductance, length, luminous_intensity, magnetic_density, magnetic_flux, mass, momentum, power, pressure, temperature, time, velocity, voltage, volume ) Unit = Quantity speed = velocity luminosity = luminous_intensity magnetic_flux_density = magnetic_density amount = amount_of_substance from .prefixes import ( # 10-power based: yotta, zetta, exa, peta, tera, giga, mega, kilo, hecto, deca, deci, centi, milli, micro, nano, pico, femto, atto, zepto, yocto, # 2-power based: kibi, mebi, gibi, tebi, pebi, exbi, ) from .definitions import ( percent, percents, permille, rad, radian, radians, deg, degree, degrees, sr, steradian, steradians, mil, angular_mil, angular_mils, m, meter, meters, kg, kilogram, kilograms, s, second, seconds, A, ampere, amperes, K, kelvin, kelvins, mol, mole, moles, cd, candela, candelas, g, gram, grams, mg, milligram, milligrams, ug, microgram, micrograms, newton, newtons, N, joule, joules, J, watt, watts, W, pascal, pascals, Pa, pa, hertz, hz, Hz, coulomb, coulombs, C, volt, volts, v, V, ohm, ohms, siemens, S, mho, mhos, farad, farads, F, henry, henrys, H, tesla, teslas, T, weber, webers, Wb, wb, optical_power, dioptre, D, lux, lx, katal, kat, gray, Gy, becquerel, Bq, km, kilometer, kilometers, dm, decimeter, decimeters, cm, centimeter, centimeters, mm, millimeter, millimeters, um, micrometer, micrometers, micron, microns, nm, nanometer, nanometers, pm, picometer, picometers, ft, foot, feet, inch, inches, yd, yard, yards, mi, mile, miles, nmi, nautical_mile, nautical_miles, l, liter, liters, dl, deciliter, deciliters, cl, centiliter, centiliters, ml, milliliter, milliliters, ms, millisecond, milliseconds, us, microsecond, microseconds, ns, nanosecond, nanoseconds, ps, picosecond, picoseconds, minute, minutes, h, hour, hours, day, days, anomalistic_year, anomalistic_years, sidereal_year, sidereal_years, tropical_year, tropical_years, common_year, common_years, julian_year, julian_years, draconic_year, draconic_years, gaussian_year, gaussian_years, full_moon_cycle, full_moon_cycles, year, years, tropical_year, G, gravitational_constant, c, speed_of_light, elementary_charge, Z0, hbar, planck, eV, electronvolt, electronvolts, avogadro_number, avogadro, avogadro_constant, boltzmann, boltzmann_constant, stefan, stefan_boltzmann_constant, R, molar_gas_constant, faraday_constant, josephson_constant, von_klitzing_constant, amu, amus, atomic_mass_unit, atomic_mass_constant, gee, gees, acceleration_due_to_gravity, u0, magnetic_constant, vacuum_permeability, e0, electric_constant, vacuum_permittivity, Z0, vacuum_impedance, coulomb_constant, electric_force_constant, atmosphere, atmospheres, atm, kPa, bar, bars, pound, pounds, psi, dHg0, mmHg, torr, mmu, mmus, milli_mass_unit, quart, quarts, ly, lightyear, lightyears, au, astronomical_unit, astronomical_units, planck_mass, planck_time, planck_temperature, planck_length, planck_charge, planck_area, planck_volume, planck_momentum, planck_energy, planck_force, planck_power, planck_density, planck_energy_density, planck_intensity, planck_angular_frequency, planck_pressure, planck_current, planck_voltage, planck_impedance, planck_acceleration, bit, bits, byte, kibibyte, kibibytes, mebibyte, mebibytes, gibibyte, gibibytes, tebibyte, tebibytes, pebibyte, pebibytes, exbibyte, exbibytes, ) from .systems import ( mks, mksa, si ) def find_unit(quantity, unit_system="SI"): """ Return a list of matching units or dimension names. - If ``quantity`` is a string -- units/dimensions containing the string `quantity`. - If ``quantity`` is a unit or dimension -- units having matching base units or dimensions. Examples ======== >>> from sympy.physics import units as u >>> u.find_unit('charge') ['C', 'coulomb', 'coulombs', 'planck_charge', 'elementary_charge'] >>> u.find_unit(u.charge) ['C', 'coulomb', 'coulombs', 'planck_charge', 'elementary_charge'] >>> u.find_unit("ampere") ['ampere', 'amperes'] >>> u.find_unit('volt') ['volt', 'volts', 'electronvolt', 'electronvolts', 'planck_voltage'] >>> u.find_unit(u.inch**3)[:5] ['l', 'cl', 'dl', 'ml', 'liter'] """ unit_system = UnitSystem.get_unit_system(unit_system) import sympy.physics.units as u rv = [] if isinstance(quantity, string_types): rv = [i for i in dir(u) if quantity in i and isinstance(getattr(u, i), Quantity)] dim = getattr(u, quantity) if isinstance(dim, Dimension): rv.extend(find_unit(dim)) else: for i in sorted(dir(u)): other = getattr(u, i) if not isinstance(other, Quantity): continue if isinstance(quantity, Quantity): if quantity.dimension == other.dimension: rv.append(str(i)) elif isinstance(quantity, Dimension): if other.dimension == quantity: rv.append(str(i)) elif other.dimension == Dimension(unit_system.get_dimensional_expr(quantity)): rv.append(str(i)) return sorted(set(rv), key=lambda x: (len(x), x)) # NOTE: the old units module had additional variables: # 'density', 'illuminance', 'resistance'. # They were not dimensions, but units (old Unit class).
1c2842918f983ca657bfc89eeff80e9b17851ae317fb26381e852ae256cddf76
""" Unit system for physical quantities; include definition of constants. """ from __future__ import division from sympy.core.sympify import _sympify, sympify from sympy import S, Number, Mul, Pow, Add, Function, Derivative from sympy.physics.units.dimensions import _QuantityMapper from sympy.utilities.exceptions import SymPyDeprecationWarning from .dimensions import Dimension class UnitSystem(_QuantityMapper): """ UnitSystem represents a coherent set of units. A unit system is basically a dimension system with notions of scales. Many of the methods are defined in the same way. It is much better if all base units have a symbol. """ _unit_systems = {} def __init__(self, base_units, units=(), name="", descr="", dimension_system=None): UnitSystem._unit_systems[name] = self self.name = name self.descr = descr self._base_units = base_units self._dimension_system = dimension_system self._units = tuple(set(base_units) | set(units)) self._base_units = tuple(base_units) super(UnitSystem, self).__init__() def __str__(self): """ Return the name of the system. If it does not exist, then it makes a list of symbols (or names) of the base dimensions. """ if self.name != "": return self.name else: return "UnitSystem((%s))" % ", ".join( str(d) for d in self._base_units) def __repr__(self): return '<UnitSystem: %s>' % repr(self._base_units) def extend(self, base, units=(), name="", description="", dimension_system=None): """Extend the current system into a new one. Take the base and normal units of the current system to merge them to the base and normal units given in argument. If not provided, name and description are overridden by empty strings. """ base = self._base_units + tuple(base) units = self._units + tuple(units) return UnitSystem(base, units, name, description, dimension_system) def print_unit_base(self, unit): """ Useless method. DO NOT USE, use instead ``convert_to``. Give the string expression of a unit in term of the basis. Units are displayed by decreasing power. """ SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="print_unit_base", useinstead="convert_to", ).warn() from sympy.physics.units import convert_to return convert_to(unit, self._base_units) def get_dimension_system(self): return self._dimension_system def get_quantity_dimension(self, unit): qdm = self.get_dimension_system()._quantity_dimension_map if unit in qdm: return qdm[unit] return super(UnitSystem, self).get_quantity_dimension(unit) def get_quantity_scale_factor(self, unit): qsfm = self.get_dimension_system()._quantity_scale_factors if unit in qsfm: return qsfm[unit] return super(UnitSystem, self).get_quantity_scale_factor(unit) @staticmethod def get_unit_system(unit_system): if isinstance(unit_system, UnitSystem): return unit_system if unit_system not in UnitSystem._unit_systems: raise ValueError( "Unit system is not supported. Currently" "supported unit systems are {}".format( ", ".join(sorted(UnitSystem._unit_systems)) ) ) return UnitSystem._unit_systems[unit_system] @staticmethod def get_default_unit_system(): return UnitSystem._unit_systems["SI"] @property def dim(self): """ Give the dimension of the system. That is return the number of units forming the basis. """ return len(self._base_units) def get_dimension_system(self): return self._dimension_system @property def is_consistent(self): """ Check if the underlying dimension system is consistent. """ # test is performed in DimensionSystem return self.get_dimension_system().is_consistent def get_dimensional_expr(self, expr): from sympy import Mul, Add, Pow, Derivative from sympy import Function from sympy.physics.units import Quantity if isinstance(expr, Mul): return Mul(*[self.get_dimensional_expr(i) for i in expr.args]) elif isinstance(expr, Pow): return self.get_dimensional_expr(expr.base) ** expr.exp elif isinstance(expr, Add): return self.get_dimensional_expr(expr.args[0]) elif isinstance(expr, Derivative): dim = self.get_dimensional_expr(expr.expr) for independent, count in expr.variable_count: dim /= self.get_dimensional_expr(independent)**count return dim elif isinstance(expr, Function): args = [self.get_dimensional_expr(arg) for arg in expr.args] if all(i == 1 for i in args): return S.One return expr.func(*args) elif isinstance(expr, Quantity): return self.get_quantity_dimension(expr).name return S.One def _collect_factor_and_dimension(self, expr): """ Return tuple with scale factor expression and dimension expression. """ from sympy.physics.units import Quantity if isinstance(expr, Quantity): return expr.scale_factor, expr.dimension elif isinstance(expr, Mul): factor = 1 dimension = Dimension(1) for arg in expr.args: arg_factor, arg_dim = self._collect_factor_and_dimension(arg) factor *= arg_factor dimension *= arg_dim return factor, dimension elif isinstance(expr, Pow): factor, dim = self._collect_factor_and_dimension(expr.base) exp_factor, exp_dim = self._collect_factor_and_dimension(expr.exp) if exp_dim.is_dimensionless: exp_dim = 1 return factor ** exp_factor, dim ** (exp_factor * exp_dim) elif isinstance(expr, Add): factor, dim = self._collect_factor_and_dimension(expr.args[0]) for addend in expr.args[1:]: addend_factor, addend_dim = \ self._collect_factor_and_dimension(addend) if dim != addend_dim: raise ValueError( 'Dimension of "{0}" is {1}, ' 'but it should be {2}'.format( addend, addend_dim, dim)) factor += addend_factor return factor, dim elif isinstance(expr, Derivative): factor, dim = self._collect_factor_and_dimension(expr.args[0]) for independent, count in expr.variable_count: ifactor, idim = self._collect_factor_and_dimension(independent) factor /= ifactor**count dim /= idim**count return factor, dim elif isinstance(expr, Function): fds = [self._collect_factor_and_dimension( arg) for arg in expr.args] return (expr.func(*(f[0] for f in fds)), expr.func(*(d[1] for d in fds))) elif isinstance(expr, Dimension): return 1, expr else: return expr, Dimension(1)
4f88f341322c0d31484540ef52c2b975f5394ea5066d310d0626eddb98575755
""" Definition of physical dimensions. Unit systems will be constructed on top of these dimensions. Most of the examples in the doc use MKS system and are presented from the computer point of view: from a human point, adding length to time is not legal in MKS but it is in natural system; for a computer in natural system there is no time dimension (but a velocity dimension instead) - in the basis - so the question of adding time to length has no meaning. """ from __future__ import division import collections from sympy import Integer, Matrix, S, Symbol, sympify, Basic, Tuple, Dict, default_sort_key from sympy.core.compatibility import reduce, string_types from sympy.core.expr import Expr from sympy.core.power import Pow from sympy.utilities.exceptions import SymPyDeprecationWarning class _QuantityMapper(object): _quantity_scale_factors_global = {} _quantity_dimensional_equivalence_map_global = {} _quantity_dimension_global = {} def __init__(self, *args, **kwargs): self._quantity_dimension_map = {} self._quantity_scale_factors = {} def set_quantity_dimension(self, unit, dimension): from sympy.physics.units import Quantity dimension = sympify(dimension) if not isinstance(dimension, Dimension): if dimension == 1: dimension = Dimension(1) else: raise ValueError("expected dimension or 1") elif isinstance(dimension, Quantity): dimension = self.get_quantity_dimension(dimension) self._quantity_dimension_map[unit] = dimension def set_quantity_scale_factor(self, unit, scale_factor): from sympy.physics.units import Quantity from sympy.physics.units.prefixes import Prefix scale_factor = sympify(scale_factor) # replace all prefixes by their ratio to canonical units: scale_factor = scale_factor.replace( lambda x: isinstance(x, Prefix), lambda x: x.scale_factor ) # replace all quantities by their ratio to canonical units: scale_factor = scale_factor.replace( lambda x: isinstance(x, Quantity), lambda x: self.get_quantity_scale_factor(x) ) self._quantity_scale_factors[unit] = scale_factor def get_quantity_dimension(self, unit): from sympy.physics.units import Quantity # First look-up the local dimension map, then the global one: if unit in self._quantity_dimension_map: return self._quantity_dimension_map[unit] if unit in self._quantity_dimension_global: return self._quantity_dimension_global[unit] if unit in self._quantity_dimensional_equivalence_map_global: dep_unit = self._quantity_dimensional_equivalence_map_global[unit] if isinstance(dep_unit, Quantity): return self.get_quantity_dimension(dep_unit) else: return Dimension(self.get_dimensional_expr(dep_unit)) if isinstance(unit, Quantity): return Dimension(unit.name) else: return Dimension(1) def get_quantity_scale_factor(self, unit): if unit in self._quantity_scale_factors: return self._quantity_scale_factors[unit] if unit in self._quantity_scale_factors_global: mul_factor, other_unit = self._quantity_scale_factors_global[unit] return mul_factor*self.get_quantity_scale_factor(other_unit) return S.One class Dimension(Expr): """ This class represent the dimension of a physical quantities. The ``Dimension`` constructor takes as parameters a name and an optional symbol. For example, in classical mechanics we know that time is different from temperature and dimensions make this difference (but they do not provide any measure of these quantites. >>> from sympy.physics.units import Dimension >>> length = Dimension('length') >>> length Dimension(length) >>> time = Dimension('time') >>> time Dimension(time) Dimensions can be composed using multiplication, division and exponentiation (by a number) to give new dimensions. Addition and subtraction is defined only when the two objects are the same dimension. >>> velocity = length / time >>> velocity Dimension(length/time) It is possible to use a dimension system object to get the dimensionsal dependencies of a dimension, for example the dimension system used by the SI units convention can be used: >>> from sympy.physics.units.systems.si import dimsys_SI >>> dimsys_SI.get_dimensional_dependencies(velocity) {'length': 1, 'time': -1} >>> length + length Dimension(length) >>> l2 = length**2 >>> l2 Dimension(length**2) >>> dimsys_SI.get_dimensional_dependencies(l2) {'length': 2} """ _op_priority = 13.0 _dimensional_dependencies = dict() is_commutative = True is_number = False # make sqrt(M**2) --> M is_positive = True is_real = True def __new__(cls, name, symbol=None): if isinstance(name, string_types): name = Symbol(name) else: name = sympify(name) if not isinstance(name, Expr): raise TypeError("Dimension name needs to be a valid math expression") if isinstance(symbol, string_types): symbol = Symbol(symbol) elif symbol is not None: assert isinstance(symbol, Symbol) if symbol is not None: obj = Expr.__new__(cls, name, symbol) else: obj = Expr.__new__(cls, name) obj._name = name obj._symbol = symbol return obj @property def name(self): return self._name @property def symbol(self): return self._symbol def __hash__(self): return Expr.__hash__(self) def __eq__(self, other): if isinstance(other, Dimension): return self.name == other.name return False def __str__(self): """ Display the string representation of the dimension. """ if self.symbol is None: return "Dimension(%s)" % (self.name) else: return "Dimension(%s, %s)" % (self.name, self.symbol) def __repr__(self): return self.__str__() def __neg__(self): return self def __add__(self, other): from sympy.physics.units.quantities import Quantity other = sympify(other) if isinstance(other, Basic): if other.has(Quantity): raise TypeError("cannot sum dimension and quantity") if isinstance(other, Dimension) and self == other: return self return super(Dimension, self).__add__(other) return self def __radd__(self, other): return self.__add__(other) def __sub__(self, other): # there is no notion of ordering (or magnitude) among dimension, # subtraction is equivalent to addition when the operation is legal return self + other def __rsub__(self, other): # there is no notion of ordering (or magnitude) among dimension, # subtraction is equivalent to addition when the operation is legal return self + other def __pow__(self, other): return self._eval_power(other) def _eval_power(self, other): other = sympify(other) return Dimension(self.name**other) def __mul__(self, other): from sympy.physics.units.quantities import Quantity if isinstance(other, Basic): if other.has(Quantity): raise TypeError("cannot sum dimension and quantity") if isinstance(other, Dimension): return Dimension(self.name*other.name) if not other.free_symbols: # other.is_number cannot be used return self return super(Dimension, self).__mul__(other) return self def __rmul__(self, other): return self.__mul__(other) def __div__(self, other): return self*Pow(other, -1) def __rdiv__(self, other): return other * pow(self, -1) __truediv__ = __div__ __rtruediv__ = __rdiv__ @classmethod def _from_dimensional_dependencies(cls, dependencies): return reduce(lambda x, y: x * y, ( Dimension(d)**e for d, e in dependencies.items() )) @classmethod def _get_dimensional_dependencies_for_name(cls, name): SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="do not call from `Dimension` objects.", useinstead="DimensionSystem" ).warn() return dimsys_default.get_dimensional_dependencies(name) @property def is_dimensionless(self, dimensional_dependencies=None): """ Check if the dimension object really has a dimension. A dimension should have at least one component with non-zero power. """ if self.name == 1: return True if dimensional_dependencies is None: SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="wrong class", ).warn() dimensional_dependencies=dimsys_default return dimensional_dependencies.get_dimensional_dependencies(self) == {} def has_integer_powers(self, dim_sys): """ Check if the dimension object has only integer powers. All the dimension powers should be integers, but rational powers may appear in intermediate steps. This method may be used to check that the final result is well-defined. """ for dpow in dim_sys.get_dimensional_dependencies(self).values(): if not isinstance(dpow, (int, Integer)): return False return True # Create dimensions according the the base units in MKSA. # For other unit systems, they can be derived by transforming the base # dimensional dependency dictionary. class DimensionSystem(Basic, _QuantityMapper): r""" DimensionSystem represents a coherent set of dimensions. The constructor takes three parameters: - base dimensions; - derived dimensions: these are defined in terms of the base dimensions (for example velocity is defined from the division of length by time); - dependency of dimensions: how the derived dimensions depend on the base dimensions. Optionally either the ``derived_dims`` or the ``dimensional_dependencies`` may be omitted. """ def __new__(cls, base_dims, derived_dims=[], dimensional_dependencies={}, name=None, descr=None): dimensional_dependencies = dict(dimensional_dependencies) if (name is not None) or (descr is not None): SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, useinstead="do not define a `name` or `descr`", ).warn() def parse_dim(dim): if isinstance(dim, string_types): dim = Dimension(Symbol(dim)) elif isinstance(dim, Dimension): pass elif isinstance(dim, Symbol): dim = Dimension(dim) else: raise TypeError("%s wrong type" % dim) return dim base_dims = [parse_dim(i) for i in base_dims] derived_dims = [parse_dim(i) for i in derived_dims] for dim in base_dims: dim = dim.name if (dim in dimensional_dependencies and (len(dimensional_dependencies[dim]) != 1 or dimensional_dependencies[dim].get(dim, None) != 1)): raise IndexError("Repeated value in base dimensions") dimensional_dependencies[dim] = Dict({dim: 1}) def parse_dim_name(dim): if isinstance(dim, Dimension): return dim.name elif isinstance(dim, string_types): return Symbol(dim) elif isinstance(dim, Symbol): return dim else: raise TypeError("unrecognized type %s for %s" % (type(dim), dim)) for dim in dimensional_dependencies.keys(): dim = parse_dim(dim) if (dim not in derived_dims) and (dim not in base_dims): derived_dims.append(dim) def parse_dict(d): return Dict({parse_dim_name(i): j for i, j in d.items()}) # Make sure everything is a SymPy type: dimensional_dependencies = {parse_dim_name(i): parse_dict(j) for i, j in dimensional_dependencies.items()} for dim in derived_dims: if dim in base_dims: raise ValueError("Dimension %s both in base and derived" % dim) if dim.name not in dimensional_dependencies: # TODO: should this raise a warning? dimensional_dependencies[dim] = Dict({dim.name: 1}) base_dims.sort(key=default_sort_key) derived_dims.sort(key=default_sort_key) base_dims = Tuple(*base_dims) derived_dims = Tuple(*derived_dims) dimensional_dependencies = Dict({i: Dict(j) for i, j in dimensional_dependencies.items()}) obj = Basic.__new__(cls, base_dims, derived_dims, dimensional_dependencies) return obj @property def base_dims(self): return self.args[0] @property def derived_dims(self): return self.args[1] @property def dimensional_dependencies(self): return self.args[2] def _get_dimensional_dependencies_for_name(self, name): if name.is_Symbol: # Dimensions not included in the dependencies are considered # as base dimensions: return dict(self.dimensional_dependencies.get(name, {name: 1})) if name.is_Number: return {} get_for_name = self._get_dimensional_dependencies_for_name if name.is_Mul: ret = collections.defaultdict(int) dicts = [get_for_name(i) for i in name.args] for d in dicts: for k, v in d.items(): ret[k] += v return {k: v for (k, v) in ret.items() if v != 0} if name.is_Pow: dim = get_for_name(name.base) return {k: v*name.exp for (k, v) in dim.items()} if name.is_Function: args = (Dimension._from_dimensional_dependencies( get_for_name(arg)) for arg in name.args) result = name.func(*args) if isinstance(result, Dimension): return self.get_dimensional_dependencies(result) elif result.func == name.func: return {} else: return get_for_name(result) def get_dimensional_dependencies(self, name, mark_dimensionless=False): if isinstance(name, Dimension): name = name.name if isinstance(name, string_types): name = Symbol(name) dimdep = self._get_dimensional_dependencies_for_name(name) if mark_dimensionless and dimdep == {}: return {'dimensionless': 1} return {str(i): j for i, j in dimdep.items()} def equivalent_dims(self, dim1, dim2): deps1 = self.get_dimensional_dependencies(dim1) deps2 = self.get_dimensional_dependencies(dim2) return deps1 == deps2 def extend(self, new_base_dims, new_derived_dims=[], new_dim_deps={}, name=None, description=None): if (name is not None) or (description is not None): SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="name and descriptions of DimensionSystem", useinstead="do not specify `name` or `description`", ).warn() deps = dict(self.dimensional_dependencies) deps.update(new_dim_deps) new_dim_sys = DimensionSystem( tuple(self.base_dims) + tuple(new_base_dims), tuple(self.derived_dims) + tuple(new_derived_dims), deps ) new_dim_sys._quantity_dimension_map.update(self._quantity_dimension_map) new_dim_sys._quantity_scale_factors.update(self._quantity_scale_factors) return new_dim_sys @staticmethod def sort_dims(dims): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Sort dimensions given in argument using their str function. This function will ensure that we get always the same tuple for a given set of dimensions. """ SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="sort_dims", useinstead="sorted(..., key=default_sort_key)", ).warn() return tuple(sorted(dims, key=str)) def __getitem__(self, key): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Shortcut to the get_dim method, using key access. """ SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="the get [ ] operator", useinstead="the dimension definition", ).warn() d = self.get_dim(key) #TODO: really want to raise an error? if d is None: raise KeyError(key) return d def __call__(self, unit): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Wrapper to the method print_dim_base """ SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="call DimensionSystem", useinstead="the dimension definition", ).warn() return self.print_dim_base(unit) def is_dimensionless(self, dimension): """ Check if the dimension object really has a dimension. A dimension should have at least one component with non-zero power. """ if dimension.name == 1: return True return self.get_dimensional_dependencies(dimension) == {} @property def list_can_dims(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. List all canonical dimension names. """ dimset = set([]) for i in self.base_dims: dimset.update(set(self.get_dimensional_dependencies(i).keys())) return tuple(sorted(dimset, key=str)) @property def inv_can_transf_matrix(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Compute the inverse transformation matrix from the base to the canonical dimension basis. It corresponds to the matrix where columns are the vector of base dimensions in canonical basis. This matrix will almost never be used because dimensions are always defined with respect to the canonical basis, so no work has to be done to get them in this basis. Nonetheless if this matrix is not square (or not invertible) it means that we have chosen a bad basis. """ matrix = reduce(lambda x, y: x.row_join(y), [self.dim_can_vector(d) for d in self.base_dims]) return matrix @property def can_transf_matrix(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Return the canonical transformation matrix from the canonical to the base dimension basis. It is the inverse of the matrix computed with inv_can_transf_matrix(). """ #TODO: the inversion will fail if the system is inconsistent, for # example if the matrix is not a square return reduce(lambda x, y: x.row_join(y), [self.dim_can_vector(d) for d in sorted(self.base_dims, key=str)] ).inv() def dim_can_vector(self, dim): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Dimensional representation in terms of the canonical base dimensions. """ vec = [] for d in self.list_can_dims: vec.append(self.get_dimensional_dependencies(dim).get(d, 0)) return Matrix(vec) def dim_vector(self, dim): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Vector representation in terms of the base dimensions. """ return self.can_transf_matrix * Matrix(self.dim_can_vector(dim)) def print_dim_base(self, dim): """ Give the string expression of a dimension in term of the basis symbols. """ dims = self.dim_vector(dim) symbols = [i.symbol if i.symbol is not None else i.name for i in self.base_dims] res = S.One for (s, p) in zip(symbols, dims): res *= s**p return res @property def dim(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Give the dimension of the system. That is return the number of dimensions forming the basis. """ return len(self.base_dims) @property def is_consistent(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Check if the system is well defined. """ # not enough or too many base dimensions compared to independent # dimensions # in vector language: the set of vectors do not form a basis return self.inv_can_transf_matrix.is_square
70ae8c3caa56eb2205df062aae05989ba10566bb6a5e409abf04b54f3315c81a
""" Several methods to simplify expressions involving unit objects. """ from __future__ import division from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy import Add, Mul, Pow, Tuple, sympify, default_sort_key from sympy.core.compatibility import reduce, Iterable, ordered from sympy.physics.units.dimensions import Dimension from sympy.physics.units.prefixes import Prefix from sympy.physics.units.quantities import Quantity from sympy.utilities.iterables import sift def _get_conversion_matrix_for_expr(expr, target_units, unit_system): from sympy import Matrix dimension_system = unit_system.get_dimension_system() expr_dim = Dimension(unit_system.get_dimensional_expr(expr)) dim_dependencies = dimension_system.get_dimensional_dependencies(expr_dim, mark_dimensionless=True) target_dims = [Dimension(unit_system.get_dimensional_expr(x)) for x in target_units] canon_dim_units = [i for x in target_dims for i in dimension_system.get_dimensional_dependencies(x, mark_dimensionless=True)] canon_expr_units = {i for i in dim_dependencies} if not canon_expr_units.issubset(set(canon_dim_units)): return None seen = set([]) canon_dim_units = [i for i in canon_dim_units if not (i in seen or seen.add(i))] camat = Matrix([[dimension_system.get_dimensional_dependencies(i, mark_dimensionless=True).get(j, 0) for i in target_dims] for j in canon_dim_units]) exprmat = Matrix([dim_dependencies.get(k, 0) for k in canon_dim_units]) res_exponents = camat.solve_least_squares(exprmat, method=None) return res_exponents def convert_to(expr, target_units, unit_system="SI"): """ Convert ``expr`` to the same expression with all of its units and quantities represented as factors of ``target_units``, whenever the dimension is compatible. ``target_units`` may be a single unit/quantity, or a collection of units/quantities. Examples ======== >>> from sympy.physics.units import speed_of_light, meter, gram, second, day >>> from sympy.physics.units import mile, newton, kilogram, atomic_mass_constant >>> from sympy.physics.units import kilometer, centimeter >>> from sympy.physics.units import gravitational_constant, hbar >>> from sympy.physics.units import convert_to >>> convert_to(mile, kilometer) 25146*kilometer/15625 >>> convert_to(mile, kilometer).n() 1.609344*kilometer >>> convert_to(speed_of_light, meter/second) 299792458*meter/second >>> convert_to(day, second) 86400*second >>> 3*newton 3*newton >>> convert_to(3*newton, kilogram*meter/second**2) 3*kilogram*meter/second**2 >>> convert_to(atomic_mass_constant, gram) 1.660539060e-24*gram Conversion to multiple units: >>> convert_to(speed_of_light, [meter, second]) 299792458*meter/second >>> convert_to(3*newton, [centimeter, gram, second]) 300000*centimeter*gram/second**2 Conversion to Planck units: >>> from sympy.physics.units import gravitational_constant, hbar >>> convert_to(atomic_mass_constant, [gravitational_constant, speed_of_light, hbar]).n() 7.62963085040767e-20*gravitational_constant**(-0.5)*hbar**0.5*speed_of_light**0.5 """ from sympy.physics.units import UnitSystem unit_system = UnitSystem.get_unit_system(unit_system) if not isinstance(target_units, (Iterable, Tuple)): target_units = [target_units] if isinstance(expr, Add): return Add.fromiter(convert_to(i, target_units, unit_system) for i in expr.args) expr = sympify(expr) if not isinstance(expr, Quantity) and expr.has(Quantity): expr = expr.replace(lambda x: isinstance(x, Quantity), lambda x: x.convert_to(target_units, unit_system)) def get_total_scale_factor(expr): if isinstance(expr, Mul): return reduce(lambda x, y: x * y, [get_total_scale_factor(i) for i in expr.args]) elif isinstance(expr, Pow): return get_total_scale_factor(expr.base) ** expr.exp elif isinstance(expr, Quantity): return unit_system.get_quantity_scale_factor(expr) return expr depmat = _get_conversion_matrix_for_expr(expr, target_units, unit_system) if depmat is None: return expr expr_scale_factor = get_total_scale_factor(expr) return expr_scale_factor * Mul.fromiter((1/get_total_scale_factor(u) * u) ** p for u, p in zip(target_units, depmat)) def quantity_simplify(expr): """Return an equivalent expression in which prefixes are replaced with numerical values and all units of a given dimension are the unified in a canonical manner. Examples ======== >>> from sympy.physics.units.util import quantity_simplify >>> from sympy.physics.units.prefixes import kilo >>> from sympy.physics.units import foot, inch >>> quantity_simplify(kilo*foot*inch) 250*foot**2/3 >>> quantity_simplify(foot - 6*inch) foot/2 """ if expr.is_Atom or not expr.has(Prefix, Quantity): return expr # replace all prefixes with numerical values p = expr.atoms(Prefix) expr = expr.xreplace({p: p.scale_factor for p in p}) # replace all quantities of given dimension with a canonical # quantity, chosen from those in the expression d = sift(expr.atoms(Quantity), lambda i: i.dimension) for k in d: if len(d[k]) == 1: continue v = list(ordered(d[k])) ref = v[0]/v[0].scale_factor expr = expr.xreplace({vi: ref*vi.scale_factor for vi in v[1:]}) return expr def check_dimensions(expr, unit_system="SI"): """Return expr if there are not unitless values added to dimensional quantities, else raise a ValueError.""" # the case of adding a number to a dimensional quantity # is ignored for the sake of SymPy core routines, so this # function will raise an error now if such an addend is # found. # Also, when doing substitutions, multiplicative constants # might be introduced, so remove those now from sympy.physics.units import UnitSystem unit_system = UnitSystem.get_unit_system(unit_system) adds = expr.atoms(Add) DIM_OF = unit_system.get_dimension_system().get_dimensional_dependencies for a in adds: deset = set() for ai in a.args: if ai.is_number: deset.add(()) continue dims = [] skip = False for i in Mul.make_args(ai): if i.has(Quantity): i = Dimension(unit_system.get_dimensional_expr(i)) if i.has(Dimension): dims.extend(DIM_OF(i).items()) elif i.free_symbols: skip = True break if not skip: deset.add(tuple(sorted(dims))) if len(deset) > 1: raise ValueError( "addends have incompatible dimensions") # clear multiplicative constants on Dimensions which may be # left after substitution reps = {} for m in expr.atoms(Mul): if any(isinstance(i, Dimension) for i in m.args): reps[m] = m.func(*[ i for i in m.args if not i.is_number]) return expr.xreplace(reps)
1678c63967176e47b3af149a9aa449a8d0d48f5434191c32160ef0edb11edc29
""" Physical quantities. """ from __future__ import division from sympy import (Abs, Add, AtomicExpr, Derivative, Function, Mul, Pow, S, Symbol, sympify, deprecated) from sympy.core.compatibility import string_types from sympy.physics.units import Dimension, dimensions from sympy.physics.units.dimensions import _QuantityMapper from sympy.physics.units.prefixes import Prefix from sympy.utilities.exceptions import SymPyDeprecationWarning class Quantity(AtomicExpr): """ Physical quantity: can be a unit of measure, a constant or a generic quantity. """ is_commutative = True is_real = True is_number = False is_nonzero = True _diff_wrt = True def __new__(cls, name, abbrev=None, dimension=None, scale_factor=None, latex_repr=None, pretty_unicode_repr=None, pretty_ascii_repr=None, mathml_presentation_repr=None, **assumptions): if not isinstance(name, Symbol): name = Symbol(name) # For Quantity(name, dim, scale, abbrev) to work like in the # old version of Sympy: if not isinstance(abbrev, string_types) and not \ isinstance(abbrev, Symbol): dimension, scale_factor, abbrev = abbrev, dimension, scale_factor if dimension is not None: SymPyDeprecationWarning( deprecated_since_version="1.3", issue=14319, feature="Quantity arguments", useinstead="unit_system.set_quantity_dimension_map", ).warn() if scale_factor is not None: SymPyDeprecationWarning( deprecated_since_version="1.3", issue=14319, feature="Quantity arguments", useinstead="SI_quantity_scale_factors", ).warn() if abbrev is None: abbrev = name elif isinstance(abbrev, string_types): abbrev = Symbol(abbrev) obj = AtomicExpr.__new__(cls, name, abbrev) obj._name = name obj._abbrev = abbrev obj._latex_repr = latex_repr obj._unicode_repr = pretty_unicode_repr obj._ascii_repr = pretty_ascii_repr obj._mathml_repr = mathml_presentation_repr if dimension is not None: # TODO: remove after deprecation: obj.set_dimension(dimension) if scale_factor is not None: # TODO: remove after deprecation: obj.set_scale_factor(scale_factor) return obj def set_dimension(self, dimension, unit_system="SI"): SymPyDeprecationWarning( deprecated_since_version="1.5", issue=17765, feature="Moving method to UnitSystem class", useinstead="unit_system.set_quantity_dimension or {}.set_global_relative_scale_factor".format(self), ).warn() from sympy.physics.units import UnitSystem unit_system = UnitSystem.get_unit_system(unit_system) unit_system.set_quantity_dimension(self, dimension) def set_scale_factor(self, scale_factor, unit_system="SI"): SymPyDeprecationWarning( deprecated_since_version="1.5", issue=17765, feature="Moving method to UnitSystem class", useinstead="unit_system.set_quantity_scale_factor or {}.set_global_relative_scale_factor".format(self), ).warn() from sympy.physics.units import UnitSystem unit_system = UnitSystem.get_unit_system(unit_system) unit_system.set_quantity_scale_factor(self, scale_factor) def set_global_dimension(self, dimension): _QuantityMapper._quantity_dimension_global[self] = dimension def set_global_relative_scale_factor(self, scale_factor, reference_quantity): """ Setting a scale factor that is valid across all unit system. """ from sympy.physics.units.prefixes import Prefix from sympy.physics.units import UnitSystem scale_factor = sympify(scale_factor) # replace all prefixes by their ratio to canonical units: scale_factor = scale_factor.replace( lambda x: isinstance(x, Prefix), lambda x: x.scale_factor ) scale_factor = sympify(scale_factor) UnitSystem._quantity_scale_factors_global[self] = (scale_factor, reference_quantity) UnitSystem._quantity_dimensional_equivalence_map_global[self] = reference_quantity @property def name(self): return self._name @property def dimension(self, unit_system=None): from sympy.physics.units import UnitSystem if unit_system is None: unit_system = UnitSystem.get_default_unit_system() return unit_system.get_quantity_dimension(self) @property def abbrev(self): """ Symbol representing the unit name. Prepend the abbreviation with the prefix symbol if it is defines. """ return self._abbrev @property def scale_factor(self, unit_system=None): """ Overall magnitude of the quantity as compared to the canonical units. """ from sympy.physics.units import UnitSystem if unit_system is None: unit_system = UnitSystem.get_default_unit_system() return unit_system.get_quantity_scale_factor(self) def _eval_is_positive(self): return True def _eval_is_constant(self): return True def _eval_Abs(self): return self def _eval_subs(self, old, new): if isinstance(new, Quantity) and self != old: return self @staticmethod def get_dimensional_expr(expr, unit_system="SI"): SymPyDeprecationWarning( deprecated_since_version="1.5", issue=17765, feature="get_dimensional_expr() is now associated with UnitSystem objects. " \ "The dimensional relations depend on the unit system used.", useinstead="unit_system.get_dimensional_expr" ).warn() from sympy.physics.units import UnitSystem unit_system = UnitSystem.get_unit_system(unit_system) return unit_system.get_dimensional_expr(expr) @staticmethod def _collect_factor_and_dimension(expr, unit_system="SI"): """Return tuple with scale factor expression and dimension expression.""" SymPyDeprecationWarning( deprecated_since_version="1.5", issue=17765, feature="This method has been moved to the UnitSystem class.", useinstead="unit_system._collect_factor_and_dimension", ).warn() from sympy.physics.units import UnitSystem unit_system = UnitSystem.get_unit_system(unit_system) return unit_system._collect_factor_and_dimension(expr) def _latex(self, printer): if self._latex_repr: return self._latex_repr else: return r'\text{{{}}}'.format(self.args[1] \ if len(self.args) >= 2 else self.args[0]) def convert_to(self, other, unit_system="SI"): """ Convert the quantity to another quantity of same dimensions. Examples ======== >>> from sympy.physics.units import speed_of_light, meter, second >>> speed_of_light speed_of_light >>> speed_of_light.convert_to(meter/second) 299792458*meter/second >>> from sympy.physics.units import liter >>> liter.convert_to(meter**3) meter**3/1000 """ from .util import convert_to return convert_to(self, other, unit_system) @property def free_symbols(self): """Return free symbols from quantity.""" return set([])
ffc5f7df6790f82b7bdded82582621f2e5f7d5e6ce182383a2ccd966db8984be
from sympy.core.backend import (diff, expand, sin, cos, sympify, eye, symbols, ImmutableMatrix as Matrix, MatrixBase) from sympy import (trigsimp, solve, Symbol, Dummy) from sympy.core.compatibility import string_types, range from sympy.physics.vector.vector import Vector, _check_vector from sympy.utilities.misc import translate __all__ = ['CoordinateSym', 'ReferenceFrame'] class CoordinateSym(Symbol): """ A coordinate symbol/base scalar associated wrt a Reference Frame. Ideally, users should not instantiate this class. Instances of this class must only be accessed through the corresponding frame as 'frame[index]'. CoordinateSyms having the same frame and index parameters are equal (even though they may be instantiated separately). Parameters ========== name : string The display name of the CoordinateSym frame : ReferenceFrame The reference frame this base scalar belongs to index : 0, 1 or 2 The index of the dimension denoted by this coordinate variable Examples ======== >>> from sympy.physics.vector import ReferenceFrame, CoordinateSym >>> A = ReferenceFrame('A') >>> A[1] A_y >>> type(A[0]) <class 'sympy.physics.vector.frame.CoordinateSym'> >>> a_y = CoordinateSym('a_y', A, 1) >>> a_y == A[1] True """ def __new__(cls, name, frame, index): # We can't use the cached Symbol.__new__ because this class depends on # frame and index, which are not passed to Symbol.__xnew__. assumptions = {} super(CoordinateSym, cls)._sanitize(assumptions, cls) obj = super(CoordinateSym, cls).__xnew__(cls, name, **assumptions) _check_frame(frame) if index not in range(0, 3): raise ValueError("Invalid index specified") obj._id = (frame, index) return obj @property def frame(self): return self._id[0] def __eq__(self, other): #Check if the other object is a CoordinateSym of the same frame #and same index if isinstance(other, CoordinateSym): if other._id == self._id: return True return False def __ne__(self, other): return not self == other def __hash__(self): return tuple((self._id[0].__hash__(), self._id[1])).__hash__() class ReferenceFrame(object): """A reference frame in classical mechanics. ReferenceFrame is a class used to represent a reference frame in classical mechanics. It has a standard basis of three unit vectors in the frame's x, y, and z directions. It also can have a rotation relative to a parent frame; this rotation is defined by a direction cosine matrix relating this frame's basis vectors to the parent frame's basis vectors. It can also have an angular velocity vector, defined in another frame. """ _count = 0 def __init__(self, name, indices=None, latexs=None, variables=None): """ReferenceFrame initialization method. A ReferenceFrame has a set of orthonormal basis vectors, along with orientations relative to other ReferenceFrames and angular velocities relative to other ReferenceFrames. Parameters ========== indices : tuple of str Enables the reference frame's basis unit vectors to be accessed by Python's square bracket indexing notation using the provided three indice strings and alters the printing of the unit vectors to reflect this choice. latexs : tuple of str Alters the LaTeX printing of the reference frame's basis unit vectors to the provided three valid LaTeX strings. Examples ======== >>> from sympy.physics.vector import ReferenceFrame, vlatex >>> N = ReferenceFrame('N') >>> N.x N.x >>> O = ReferenceFrame('O', indices=('1', '2', '3')) >>> O.x O['1'] >>> O['1'] O['1'] >>> P = ReferenceFrame('P', latexs=('A1', 'A2', 'A3')) >>> vlatex(P.x) 'A1' symbols() can be used to create multiple Reference Frames in one step, for example: >>> from sympy.physics.vector import ReferenceFrame >>> from sympy import symbols >>> A, B, C = symbols('A B C', cls=ReferenceFrame) >>> D, E = symbols('D E', cls=ReferenceFrame, indices=('1', '2', '3')) >>> A[0] A_x >>> D.x D['1'] >>> E.y E['2'] >>> type(A) == type(D) True """ if not isinstance(name, string_types): raise TypeError('Need to supply a valid name') # The if statements below are for custom printing of basis-vectors for # each frame. # First case, when custom indices are supplied if indices is not None: if not isinstance(indices, (tuple, list)): raise TypeError('Supply the indices as a list') if len(indices) != 3: raise ValueError('Supply 3 indices') for i in indices: if not isinstance(i, string_types): raise TypeError('Indices must be strings') self.str_vecs = [(name + '[\'' + indices[0] + '\']'), (name + '[\'' + indices[1] + '\']'), (name + '[\'' + indices[2] + '\']')] self.pretty_vecs = [(name.lower() + u"_" + indices[0]), (name.lower() + u"_" + indices[1]), (name.lower() + u"_" + indices[2])] self.latex_vecs = [(r"\mathbf{\hat{%s}_{%s}}" % (name.lower(), indices[0])), (r"\mathbf{\hat{%s}_{%s}}" % (name.lower(), indices[1])), (r"\mathbf{\hat{%s}_{%s}}" % (name.lower(), indices[2]))] self.indices = indices # Second case, when no custom indices are supplied else: self.str_vecs = [(name + '.x'), (name + '.y'), (name + '.z')] self.pretty_vecs = [name.lower() + u"_x", name.lower() + u"_y", name.lower() + u"_z"] self.latex_vecs = [(r"\mathbf{\hat{%s}_x}" % name.lower()), (r"\mathbf{\hat{%s}_y}" % name.lower()), (r"\mathbf{\hat{%s}_z}" % name.lower())] self.indices = ['x', 'y', 'z'] # Different step, for custom latex basis vectors if latexs is not None: if not isinstance(latexs, (tuple, list)): raise TypeError('Supply the indices as a list') if len(latexs) != 3: raise ValueError('Supply 3 indices') for i in latexs: if not isinstance(i, string_types): raise TypeError('Latex entries must be strings') self.latex_vecs = latexs self.name = name self._var_dict = {} #The _dcm_dict dictionary will only store the dcms of parent-child #relationships. The _dcm_cache dictionary will work as the dcm #cache. self._dcm_dict = {} self._dcm_cache = {} self._ang_vel_dict = {} self._ang_acc_dict = {} self._dlist = [self._dcm_dict, self._ang_vel_dict, self._ang_acc_dict] self._cur = 0 self._x = Vector([(Matrix([1, 0, 0]), self)]) self._y = Vector([(Matrix([0, 1, 0]), self)]) self._z = Vector([(Matrix([0, 0, 1]), self)]) #Associate coordinate symbols wrt this frame if variables is not None: if not isinstance(variables, (tuple, list)): raise TypeError('Supply the variable names as a list/tuple') if len(variables) != 3: raise ValueError('Supply 3 variable names') for i in variables: if not isinstance(i, string_types): raise TypeError('Variable names must be strings') else: variables = [name + '_x', name + '_y', name + '_z'] self.varlist = (CoordinateSym(variables[0], self, 0), \ CoordinateSym(variables[1], self, 1), \ CoordinateSym(variables[2], self, 2)) ReferenceFrame._count += 1 self.index = ReferenceFrame._count def __getitem__(self, ind): """ Returns basis vector for the provided index, if the index is a string. If the index is a number, returns the coordinate variable correspon- -ding to that index. """ if not isinstance(ind, string_types): if ind < 3: return self.varlist[ind] else: raise ValueError("Invalid index provided") if self.indices[0] == ind: return self.x if self.indices[1] == ind: return self.y if self.indices[2] == ind: return self.z else: raise ValueError('Not a defined index') def __iter__(self): return iter([self.x, self.y, self.z]) def __str__(self): """Returns the name of the frame. """ return self.name __repr__ = __str__ def _dict_list(self, other, num): """Creates a list from self to other using _dcm_dict. """ outlist = [[self]] oldlist = [[]] while outlist != oldlist: oldlist = outlist[:] for i, v in enumerate(outlist): templist = v[-1]._dlist[num].keys() for i2, v2 in enumerate(templist): if not v.__contains__(v2): littletemplist = v + [v2] if not outlist.__contains__(littletemplist): outlist.append(littletemplist) for i, v in enumerate(oldlist): if v[-1] != other: outlist.remove(v) outlist.sort(key=len) if len(outlist) != 0: return outlist[0] raise ValueError('No Connecting Path found between ' + self.name + ' and ' + other.name) def _w_diff_dcm(self, otherframe): """Angular velocity from time differentiating the DCM. """ from sympy.physics.vector.functions import dynamicsymbols dcm2diff = otherframe.dcm(self) diffed = dcm2diff.diff(dynamicsymbols._t) angvelmat = diffed * dcm2diff.T w1 = trigsimp(expand(angvelmat[7]), recursive=True) w2 = trigsimp(expand(angvelmat[2]), recursive=True) w3 = trigsimp(expand(angvelmat[3]), recursive=True) return Vector([(Matrix([w1, w2, w3]), otherframe)]) def variable_map(self, otherframe): """ Returns a dictionary which expresses the coordinate variables of this frame in terms of the variables of otherframe. If Vector.simp is True, returns a simplified version of the mapped values. Else, returns them without simplification. Simplification of the expressions may take time. Parameters ========== otherframe : ReferenceFrame The other frame to map the variables to Examples ======== >>> from sympy.physics.vector import ReferenceFrame, dynamicsymbols >>> A = ReferenceFrame('A') >>> q = dynamicsymbols('q') >>> B = A.orientnew('B', 'Axis', [q, A.z]) >>> A.variable_map(B) {A_x: B_x*cos(q(t)) - B_y*sin(q(t)), A_y: B_x*sin(q(t)) + B_y*cos(q(t)), A_z: B_z} """ _check_frame(otherframe) if (otherframe, Vector.simp) in self._var_dict: return self._var_dict[(otherframe, Vector.simp)] else: vars_matrix = self.dcm(otherframe) * Matrix(otherframe.varlist) mapping = {} for i, x in enumerate(self): if Vector.simp: mapping[self.varlist[i]] = trigsimp(vars_matrix[i], method='fu') else: mapping[self.varlist[i]] = vars_matrix[i] self._var_dict[(otherframe, Vector.simp)] = mapping return mapping def ang_acc_in(self, otherframe): """Returns the angular acceleration Vector of the ReferenceFrame. Effectively returns the Vector: ^N alpha ^B which represent the angular acceleration of B in N, where B is self, and N is otherframe. Parameters ========== otherframe : ReferenceFrame The ReferenceFrame which the angular acceleration is returned in. Examples ======== >>> from sympy.physics.vector import ReferenceFrame, Vector >>> N = ReferenceFrame('N') >>> A = ReferenceFrame('A') >>> V = 10 * N.x >>> A.set_ang_acc(N, V) >>> A.ang_acc_in(N) 10*N.x """ _check_frame(otherframe) if otherframe in self._ang_acc_dict: return self._ang_acc_dict[otherframe] else: return self.ang_vel_in(otherframe).dt(otherframe) def ang_vel_in(self, otherframe): """Returns the angular velocity Vector of the ReferenceFrame. Effectively returns the Vector: ^N omega ^B which represent the angular velocity of B in N, where B is self, and N is otherframe. Parameters ========== otherframe : ReferenceFrame The ReferenceFrame which the angular velocity is returned in. Examples ======== >>> from sympy.physics.vector import ReferenceFrame, Vector >>> N = ReferenceFrame('N') >>> A = ReferenceFrame('A') >>> V = 10 * N.x >>> A.set_ang_vel(N, V) >>> A.ang_vel_in(N) 10*N.x """ _check_frame(otherframe) flist = self._dict_list(otherframe, 1) outvec = Vector(0) for i in range(len(flist) - 1): outvec += flist[i]._ang_vel_dict[flist[i + 1]] return outvec def dcm(self, otherframe): """The direction cosine matrix between frames. This gives the DCM between this frame and the otherframe. The format is N.xyz = N.dcm(B) * B.xyz A SymPy Matrix is returned. Parameters ========== otherframe : ReferenceFrame The otherframe which the DCM is generated to. Examples ======== >>> from sympy.physics.vector import ReferenceFrame, Vector >>> from sympy import symbols >>> q1 = symbols('q1') >>> N = ReferenceFrame('N') >>> A = N.orientnew('A', 'Axis', [q1, N.x]) >>> N.dcm(A) Matrix([ [1, 0, 0], [0, cos(q1), -sin(q1)], [0, sin(q1), cos(q1)]]) """ _check_frame(otherframe) #Check if the dcm wrt that frame has already been calculated if otherframe in self._dcm_cache: return self._dcm_cache[otherframe] flist = self._dict_list(otherframe, 0) outdcm = eye(3) for i in range(len(flist) - 1): outdcm = outdcm * flist[i]._dcm_dict[flist[i + 1]] #After calculation, store the dcm in dcm cache for faster #future retrieval self._dcm_cache[otherframe] = outdcm otherframe._dcm_cache[self] = outdcm.T return outdcm def orient(self, parent, rot_type, amounts, rot_order=''): """Sets the orientation of this reference frame relative to another (parent) reference frame. Parameters ========== parent : ReferenceFrame Reference frame that this reference frame will be rotated relative to. rot_type : str The method used to generate the direction cosine matrix. Supported methods are: - ``'Axis'``: simple rotations about a single common axis - ``'DCM'``: for setting the direction cosine matrix directly - ``'Body'``: three successive rotations about new intermediate axes, also called "Euler and Tait-Bryan angles" - ``'Space'``: three successive rotations about the parent frames' unit vectors - ``'Quaternion'``: rotations defined by four parameters which result in a singularity free direction cosine matrix amounts : Expressions defining the rotation angles or direction cosine matrix. These must match the ``rot_type``. See examples below for details. The input types are: - ``'Axis'``: 2-tuple (expr/sym/func, Vector) - ``'DCM'``: Matrix, shape(3,3) - ``'Body'``: 3-tuple of expressions, symbols, or functions - ``'Space'``: 3-tuple of expressions, symbols, or functions - ``'Quaternion'``: 4-tuple of expressions, symbols, or functions rot_order : str or int, optional If applicable, the order of the successive of rotations. The string ``'123'`` and integer ``123`` are equivalent, for example. Required for ``'Body'`` and ``'Space'``. Examples ======== Setup variables for the examples: >>> from sympy import symbols >>> from sympy.physics.vector import ReferenceFrame >>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3') >>> N = ReferenceFrame('N') >>> B = ReferenceFrame('B') >>> B1 = ReferenceFrame('B') >>> B2 = ReferenceFrame('B2') Axis ---- ``rot_type='Axis'`` creates a direction cosine matrix defined by a simple rotation about a single axis fixed in both reference frames. This is a rotation about an arbitrary, non-time-varying axis by some angle. The axis is supplied as a Vector. This is how simple rotations are defined. >>> B.orient(N, 'Axis', (q1, N.x)) The ``orient()`` method generates a direction cosine matrix and its transpose which defines the orientation of B relative to N and vice versa. Once orient is called, ``dcm()`` outputs the appropriate direction cosine matrix. >>> B.dcm(N) Matrix([ [1, 0, 0], [0, cos(q1), sin(q1)], [0, -sin(q1), cos(q1)]]) The following two lines show how the sense of the rotation can be defined. Both lines produce the same result. >>> B.orient(N, 'Axis', (q1, -N.x)) >>> B.orient(N, 'Axis', (-q1, N.x)) The axis does not have to be defined by a unit vector, it can be any vector in the parent frame. >>> B.orient(N, 'Axis', (q1, N.x + 2 * N.y)) DCM --- The direction cosine matrix can be set directly. The orientation of a frame A can be set to be the same as the frame B above like so: >>> B.orient(N, 'Axis', (q1, N.x)) >>> A = ReferenceFrame('A') >>> A.orient(N, 'DCM', N.dcm(B)) >>> A.dcm(N) Matrix([ [1, 0, 0], [0, cos(q1), sin(q1)], [0, -sin(q1), cos(q1)]]) **Note carefully that** ``N.dcm(B)`` **was passed into** ``orient()`` **for** ``A.dcm(N)`` **to match** ``B.dcm(N)``. Body ---- ``rot_type='Body'`` rotates this reference frame relative to the provided reference frame by rotating through three successive simple rotations. Each subsequent axis of rotation is about the "body fixed" unit vectors of the new intermediate reference frame. This type of rotation is also referred to rotating through the `Euler and Tait-Bryan Angles <https://en.wikipedia.org/wiki/Euler_angles>`_. For example, the classic Euler Angle rotation can be done by: >>> B.orient(N, 'Body', (q1, q2, q3), 'XYX') >>> B.dcm(N) Matrix([ [ cos(q2), sin(q1)*sin(q2), -sin(q2)*cos(q1)], [sin(q2)*sin(q3), -sin(q1)*sin(q3)*cos(q2) + cos(q1)*cos(q3), sin(q1)*cos(q3) + sin(q3)*cos(q1)*cos(q2)], [sin(q2)*cos(q3), -sin(q1)*cos(q2)*cos(q3) - sin(q3)*cos(q1), -sin(q1)*sin(q3) + cos(q1)*cos(q2)*cos(q3)]]) This rotates B relative to N through ``q1`` about ``N.x``, then rotates B again through q2 about B.y, and finally through q3 about B.x. It is equivalent to: >>> B1.orient(N, 'Axis', (q1, N.x)) >>> B2.orient(B1, 'Axis', (q2, B1.y)) >>> B.orient(B2, 'Axis', (q3, B2.x)) >>> B.dcm(N) Matrix([ [ cos(q2), sin(q1)*sin(q2), -sin(q2)*cos(q1)], [sin(q2)*sin(q3), -sin(q1)*sin(q3)*cos(q2) + cos(q1)*cos(q3), sin(q1)*cos(q3) + sin(q3)*cos(q1)*cos(q2)], [sin(q2)*cos(q3), -sin(q1)*cos(q2)*cos(q3) - sin(q3)*cos(q1), -sin(q1)*sin(q3) + cos(q1)*cos(q2)*cos(q3)]]) Acceptable rotation orders are of length 3, expressed in as a string ``'XYZ'`` or ``'123'`` or integer ``123``. Rotations about an axis twice in a row are prohibited. >>> B.orient(N, 'Body', (q1, q2, 0), 'ZXZ') >>> B.orient(N, 'Body', (q1, q2, 0), '121') >>> B.orient(N, 'Body', (q1, q2, q3), 123) Space ----- ``rot_type='Space'`` also rotates the reference frame in three successive simple rotations but the axes of rotation are the "Space-fixed" axes. For example: >>> B.orient(N, 'Space', (q1, q2, q3), '312') >>> B.dcm(N) Matrix([ [ sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3), sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1)], [-sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1), cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3)], [ sin(q3)*cos(q2), -sin(q2), cos(q2)*cos(q3)]]) is equivalent to: >>> B1.orient(N, 'Axis', (q1, N.z)) >>> B2.orient(B1, 'Axis', (q2, N.x)) >>> B.orient(B2, 'Axis', (q3, N.y)) >>> B.dcm(N).simplify() # doctest: +SKIP Matrix([ [ sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3), sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1)], [-sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1), cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3)], [ sin(q3)*cos(q2), -sin(q2), cos(q2)*cos(q3)]]) It is worth noting that space-fixed and body-fixed rotations are related by the order of the rotations, i.e. the reverse order of body fixed will give space fixed and vice versa. >>> B.orient(N, 'Space', (q1, q2, q3), '231') >>> B.dcm(N) Matrix([ [cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3), -sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1)], [ -sin(q2), cos(q2)*cos(q3), sin(q3)*cos(q2)], [sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1), sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3)]]) >>> B.orient(N, 'Body', (q3, q2, q1), '132') >>> B.dcm(N) Matrix([ [cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3), -sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1)], [ -sin(q2), cos(q2)*cos(q3), sin(q3)*cos(q2)], [sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1), sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3)]]) Quaternion ---------- ``rot_type='Quaternion'`` orients the reference frame using quaternions. Quaternion rotation is defined as a finite rotation about lambda, a unit vector, by an amount theta. This orientation is described by four parameters: - ``q0 = cos(theta/2)`` - ``q1 = lambda_x sin(theta/2)`` - ``q2 = lambda_y sin(theta/2)`` - ``q3 = lambda_z sin(theta/2)`` This type does not need a ``rot_order``. >>> B.orient(N, 'Quaternion', (q0, q1, q2, q3)) >>> B.dcm(N) Matrix([ [q0**2 + q1**2 - q2**2 - q3**2, 2*q0*q3 + 2*q1*q2, -2*q0*q2 + 2*q1*q3], [ -2*q0*q3 + 2*q1*q2, q0**2 - q1**2 + q2**2 - q3**2, 2*q0*q1 + 2*q2*q3], [ 2*q0*q2 + 2*q1*q3, -2*q0*q1 + 2*q2*q3, q0**2 - q1**2 - q2**2 + q3**2]]) """ from sympy.physics.vector.functions import dynamicsymbols _check_frame(parent) # Allow passing a rotation matrix manually. if rot_type == 'DCM': # When rot_type == 'DCM', then amounts must be a Matrix type object # (e.g. sympy.matrices.dense.MutableDenseMatrix). if not isinstance(amounts, MatrixBase): raise TypeError("Amounts must be a sympy Matrix type object.") else: amounts = list(amounts) for i, v in enumerate(amounts): if not isinstance(v, Vector): amounts[i] = sympify(v) def _rot(axis, angle): """DCM for simple axis 1,2,or 3 rotations. """ if axis == 1: return Matrix([[1, 0, 0], [0, cos(angle), -sin(angle)], [0, sin(angle), cos(angle)]]) elif axis == 2: return Matrix([[cos(angle), 0, sin(angle)], [0, 1, 0], [-sin(angle), 0, cos(angle)]]) elif axis == 3: return Matrix([[cos(angle), -sin(angle), 0], [sin(angle), cos(angle), 0], [0, 0, 1]]) approved_orders = ('123', '231', '312', '132', '213', '321', '121', '131', '212', '232', '313', '323', '') # make sure XYZ => 123 and rot_type is in upper case rot_order = translate(str(rot_order), 'XYZxyz', '123123') rot_type = rot_type.upper() if rot_order not in approved_orders: raise TypeError('The supplied order is not an approved type') parent_orient = [] if rot_type == 'AXIS': if not rot_order == '': raise TypeError('Axis orientation takes no rotation order') if not (isinstance(amounts, (list, tuple)) & (len(amounts) == 2)): raise TypeError('Amounts are a list or tuple of length 2') theta = amounts[0] axis = amounts[1] axis = _check_vector(axis) if not axis.dt(parent) == 0: raise ValueError('Axis cannot be time-varying') axis = axis.express(parent).normalize() axis = axis.args[0][0] parent_orient = ((eye(3) - axis * axis.T) * cos(theta) + Matrix([[0, -axis[2], axis[1]], [axis[2], 0, -axis[0]], [-axis[1], axis[0], 0]]) * sin(theta) + axis * axis.T) elif rot_type == 'QUATERNION': if not rot_order == '': raise TypeError( 'Quaternion orientation takes no rotation order') if not (isinstance(amounts, (list, tuple)) & (len(amounts) == 4)): raise TypeError('Amounts are a list or tuple of length 4') q0, q1, q2, q3 = amounts parent_orient = (Matrix([[q0**2 + q1**2 - q2**2 - q3**2, 2 * (q1 * q2 - q0 * q3), 2 * (q0 * q2 + q1 * q3)], [2 * (q1 * q2 + q0 * q3), q0**2 - q1**2 + q2**2 - q3**2, 2 * (q2 * q3 - q0 * q1)], [2 * (q1 * q3 - q0 * q2), 2 * (q0 * q1 + q2 * q3), q0**2 - q1**2 - q2**2 + q3**2]])) elif rot_type == 'BODY': if not (len(amounts) == 3 & len(rot_order) == 3): raise TypeError('Body orientation takes 3 values & 3 orders') a1 = int(rot_order[0]) a2 = int(rot_order[1]) a3 = int(rot_order[2]) parent_orient = (_rot(a1, amounts[0]) * _rot(a2, amounts[1]) * _rot(a3, amounts[2])) elif rot_type == 'SPACE': if not (len(amounts) == 3 & len(rot_order) == 3): raise TypeError('Space orientation takes 3 values & 3 orders') a1 = int(rot_order[0]) a2 = int(rot_order[1]) a3 = int(rot_order[2]) parent_orient = (_rot(a3, amounts[2]) * _rot(a2, amounts[1]) * _rot(a1, amounts[0])) elif rot_type == 'DCM': parent_orient = amounts else: raise NotImplementedError('That is not an implemented rotation') # Reset the _dcm_cache of this frame, and remove it from the # _dcm_caches of the frames it is linked to. Also remove it from the # _dcm_dict of its parent frames = self._dcm_cache.keys() dcm_dict_del = [] dcm_cache_del = [] for frame in frames: if frame in self._dcm_dict: dcm_dict_del += [frame] dcm_cache_del += [frame] for frame in dcm_dict_del: del frame._dcm_dict[self] for frame in dcm_cache_del: del frame._dcm_cache[self] # Add the dcm relationship to _dcm_dict self._dcm_dict = self._dlist[0] = {} self._dcm_dict.update({parent: parent_orient.T}) parent._dcm_dict.update({self: parent_orient}) # Also update the dcm cache after resetting it self._dcm_cache = {} self._dcm_cache.update({parent: parent_orient.T}) parent._dcm_cache.update({self: parent_orient}) if rot_type == 'QUATERNION': t = dynamicsymbols._t q0, q1, q2, q3 = amounts q0d = diff(q0, t) q1d = diff(q1, t) q2d = diff(q2, t) q3d = diff(q3, t) w1 = 2 * (q1d * q0 + q2d * q3 - q3d * q2 - q0d * q1) w2 = 2 * (q2d * q0 + q3d * q1 - q1d * q3 - q0d * q2) w3 = 2 * (q3d * q0 + q1d * q2 - q2d * q1 - q0d * q3) wvec = Vector([(Matrix([w1, w2, w3]), self)]) elif rot_type == 'AXIS': thetad = (amounts[0]).diff(dynamicsymbols._t) wvec = thetad * amounts[1].express(parent).normalize() elif rot_type == 'DCM': wvec = self._w_diff_dcm(parent) else: try: from sympy.polys.polyerrors import CoercionFailed from sympy.physics.vector.functions import kinematic_equations q1, q2, q3 = amounts u1, u2, u3 = symbols('u1, u2, u3', cls=Dummy) templist = kinematic_equations([u1, u2, u3], [q1, q2, q3], rot_type, rot_order) templist = [expand(i) for i in templist] td = solve(templist, [u1, u2, u3]) u1 = expand(td[u1]) u2 = expand(td[u2]) u3 = expand(td[u3]) wvec = u1 * self.x + u2 * self.y + u3 * self.z except (CoercionFailed, AssertionError): wvec = self._w_diff_dcm(parent) self._ang_vel_dict.update({parent: wvec}) parent._ang_vel_dict.update({self: -wvec}) self._var_dict = {} def orientnew(self, newname, rot_type, amounts, rot_order='', variables=None, indices=None, latexs=None): r"""Returns a new reference frame oriented with respect to this reference frame. See ``ReferenceFrame.orient()`` for detailed examples of how to orient reference frames. Parameters ========== newname : str Name for the new reference frame. rot_type : str The method used to generate the direction cosine matrix. Supported methods are: - ``'Axis'``: simple rotations about a single common axis - ``'DCM'``: for setting the direction cosine matrix directly - ``'Body'``: three successive rotations about new intermediate axes, also called "Euler and Tait-Bryan angles" - ``'Space'``: three successive rotations about the parent frames' unit vectors - ``'Quaternion'``: rotations defined by four parameters which result in a singularity free direction cosine matrix amounts : Expressions defining the rotation angles or direction cosine matrix. These must match the ``rot_type``. See examples below for details. The input types are: - ``'Axis'``: 2-tuple (expr/sym/func, Vector) - ``'DCM'``: Matrix, shape(3,3) - ``'Body'``: 3-tuple of expressions, symbols, or functions - ``'Space'``: 3-tuple of expressions, symbols, or functions - ``'Quaternion'``: 4-tuple of expressions, symbols, or functions rot_order : str or int, optional If applicable, the order of the successive of rotations. The string ``'123'`` and integer ``123`` are equivalent, for example. Required for ``'Body'`` and ``'Space'``. indices : tuple of str Enables the reference frame's basis unit vectors to be accessed by Python's square bracket indexing notation using the provided three indice strings and alters the printing of the unit vectors to reflect this choice. latexs : tuple of str Alters the LaTeX printing of the reference frame's basis unit vectors to the provided three valid LaTeX strings. Examples ======== >>> from sympy import symbols >>> from sympy.physics.vector import ReferenceFrame, vlatex >>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3') >>> N = ReferenceFrame('N') Create a new reference frame A rotated relative to N through a simple rotation. >>> A = N.orientnew('A', 'Axis', (q0, N.x)) Create a new reference frame B rotated relative to N through body-fixed rotations. >>> B = N.orientnew('B', 'Body', (q1, q2, q3), '123') Create a new reference frame C rotated relative to N through a simple rotation with unique indices and LaTeX printing. >>> C = N.orientnew('C', 'Axis', (q0, N.x), indices=('1', '2', '3'), ... latexs=(r'\hat{\mathbf{c}}_1',r'\hat{\mathbf{c}}_2', ... r'\hat{\mathbf{c}}_3')) >>> C['1'] C['1'] >>> print(vlatex(C['1'])) \hat{\mathbf{c}}_1 """ newframe = self.__class__(newname, variables=variables, indices=indices, latexs=latexs) newframe.orient(self, rot_type, amounts, rot_order) return newframe def set_ang_acc(self, otherframe, value): """Define the angular acceleration Vector in a ReferenceFrame. Defines the angular acceleration of this ReferenceFrame, in another. Angular acceleration can be defined with respect to multiple different ReferenceFrames. Care must be taken to not create loops which are inconsistent. Parameters ========== otherframe : ReferenceFrame A ReferenceFrame to define the angular acceleration in value : Vector The Vector representing angular acceleration Examples ======== >>> from sympy.physics.vector import ReferenceFrame, Vector >>> N = ReferenceFrame('N') >>> A = ReferenceFrame('A') >>> V = 10 * N.x >>> A.set_ang_acc(N, V) >>> A.ang_acc_in(N) 10*N.x """ if value == 0: value = Vector(0) value = _check_vector(value) _check_frame(otherframe) self._ang_acc_dict.update({otherframe: value}) otherframe._ang_acc_dict.update({self: -value}) def set_ang_vel(self, otherframe, value): """Define the angular velocity vector in a ReferenceFrame. Defines the angular velocity of this ReferenceFrame, in another. Angular velocity can be defined with respect to multiple different ReferenceFrames. Care must be taken to not create loops which are inconsistent. Parameters ========== otherframe : ReferenceFrame A ReferenceFrame to define the angular velocity in value : Vector The Vector representing angular velocity Examples ======== >>> from sympy.physics.vector import ReferenceFrame, Vector >>> N = ReferenceFrame('N') >>> A = ReferenceFrame('A') >>> V = 10 * N.x >>> A.set_ang_vel(N, V) >>> A.ang_vel_in(N) 10*N.x """ if value == 0: value = Vector(0) value = _check_vector(value) _check_frame(otherframe) self._ang_vel_dict.update({otherframe: value}) otherframe._ang_vel_dict.update({self: -value}) @property def x(self): """The basis Vector for the ReferenceFrame, in the x direction. """ return self._x @property def y(self): """The basis Vector for the ReferenceFrame, in the y direction. """ return self._y @property def z(self): """The basis Vector for the ReferenceFrame, in the z direction. """ return self._z def partial_velocity(self, frame, *gen_speeds): """Returns the partial angular velocities of this frame in the given frame with respect to one or more provided generalized speeds. Parameters ========== frame : ReferenceFrame The frame with which the angular velocity is defined in. gen_speeds : functions of time The generalized speeds. Returns ======= partial_velocities : tuple of Vector The partial angular velocity vectors corresponding to the provided generalized speeds. Examples ======== >>> from sympy.physics.vector import ReferenceFrame, dynamicsymbols >>> N = ReferenceFrame('N') >>> A = ReferenceFrame('A') >>> u1, u2 = dynamicsymbols('u1, u2') >>> A.set_ang_vel(N, u1 * A.x + u2 * N.y) >>> A.partial_velocity(N, u1) A.x >>> A.partial_velocity(N, u1, u2) (A.x, N.y) """ partials = [self.ang_vel_in(frame).diff(speed, frame, var_in_dcm=False) for speed in gen_speeds] if len(partials) == 1: return partials[0] else: return tuple(partials) def _check_frame(other): from .vector import VectorTypeError if not isinstance(other, ReferenceFrame): raise VectorTypeError(other, ReferenceFrame('A'))
509a5d0009fc52916b58c4a371989d7add481186026a535093ee65a1d19a07d1
from sympy import (S, sqrt, pi, Dummy, Sum, Ynm, symbols, exp, sin, cos, I, Matrix) from sympy.physics.wigner import (clebsch_gordan, wigner_9j, wigner_6j, gaunt, racah, dot_rot_grad_Ynm, Wigner3j, wigner_3j, wigner_d_small, wigner_d) from sympy.core.numbers import Rational # for test cases, refer : https://en.wikipedia.org/wiki/Table_of_Clebsch%E2%80%93Gordan_coefficients def test_clebsch_gordan_docs(): assert clebsch_gordan(Rational(3, 2), S.Half, 2, Rational(3, 2), S.Half, 2) == 1 assert clebsch_gordan(Rational(3, 2), S.Half, 1, Rational(3, 2), Rational(-1, 2), 1) == sqrt(3)/2 assert clebsch_gordan(Rational(3, 2), S.Half, 1, Rational(-1, 2), S.Half, 0) == -sqrt(2)/2 def test_clebsch_gordan1(): j_1 = S.Half j_2 = S.Half m = 1 j = 1 m_1 = S.Half m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1 j_1 = S.Half j_2 = S.Half m = -1 j = 1 m_1 = Rational(-1, 2) m_2 = Rational(-1, 2) assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1 j_1 = S.Half j_2 = S.Half m = 0 j = 1 m_1 = S.Half m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 0 j_1 = S.Half j_2 = S.Half m = 0 j = 1 m_1 = S.Half m_2 = Rational(-1, 2) assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == sqrt(2)/2 j_1 = S.Half j_2 = S.Half m = 0 j = 0 m_1 = S.Half m_2 = Rational(-1, 2) assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == sqrt(2)/2 j_1 = S.Half j_2 = S.Half m = 0 j = 1 m_1 = Rational(-1, 2) m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == sqrt(2)/2 j_1 = S.Half j_2 = S.Half m = 0 j = 0 m_1 = Rational(-1, 2) m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == -sqrt(2)/2 def test_clebsch_gordan2(): j_1 = S.One j_2 = S.Half m = Rational(3, 2) j = Rational(3, 2) m_1 = 1 m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1 j_1 = S.One j_2 = S.Half m = S.Half j = Rational(3, 2) m_1 = 1 m_2 = Rational(-1, 2) assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(3) j_1 = S.One j_2 = S.Half m = S.Half j = S.Half m_1 = 1 m_2 = Rational(-1, 2) assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == sqrt(2)/sqrt(3) j_1 = S.One j_2 = S.Half m = S.Half j = S.Half m_1 = 0 m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == -1/sqrt(3) j_1 = S.One j_2 = S.Half m = S.Half j = Rational(3, 2) m_1 = 0 m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == sqrt(2)/sqrt(3) j_1 = S.One j_2 = S.One m = S(2) j = S(2) m_1 = 1 m_2 = 1 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1 j_1 = S.One j_2 = S.One m = 1 j = S(2) m_1 = 1 m_2 = 0 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(2) j_1 = S.One j_2 = S.One m = 1 j = S(2) m_1 = 0 m_2 = 1 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(2) j_1 = S.One j_2 = S.One m = 1 j = 1 m_1 = 1 m_2 = 0 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(2) j_1 = S.One j_2 = S.One m = 1 j = 1 m_1 = 0 m_2 = 1 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == -1/sqrt(2) def test_clebsch_gordan3(): j_1 = Rational(3, 2) j_2 = Rational(3, 2) m = S(3) j = S(3) m_1 = Rational(3, 2) m_2 = Rational(3, 2) assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1 j_1 = Rational(3, 2) j_2 = Rational(3, 2) m = S(2) j = S(2) m_1 = Rational(3, 2) m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(2) j_1 = Rational(3, 2) j_2 = Rational(3, 2) m = S(2) j = S(3) m_1 = Rational(3, 2) m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(2) def test_clebsch_gordan4(): j_1 = S(2) j_2 = S(2) m = S(4) j = S(4) m_1 = S(2) m_2 = S(2) assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1 j_1 = S(2) j_2 = S(2) m = S(3) j = S(3) m_1 = S(2) m_2 = 1 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(2) j_1 = S(2) j_2 = S(2) m = S(2) j = S(3) m_1 = 1 m_2 = 1 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 0 def test_clebsch_gordan5(): j_1 = Rational(5, 2) j_2 = S.One m = Rational(7, 2) j = Rational(7, 2) m_1 = Rational(5, 2) m_2 = 1 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1 j_1 = Rational(5, 2) j_2 = S.One m = Rational(5, 2) j = Rational(5, 2) m_1 = Rational(5, 2) m_2 = 0 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == sqrt(5)/sqrt(7) j_1 = Rational(5, 2) j_2 = S.One m = Rational(3, 2) j = Rational(3, 2) m_1 = S.Half m_2 = 1 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(15) def test_wigner(): def tn(a, b): return (a - b).n(64) < S('1e-64') assert tn(wigner_9j(1, 1, 1, 1, 1, 1, 1, 1, 0, prec=64), Rational(1, 18)) assert wigner_9j(3, 3, 2, 3, 3, 2, 3, 3, 2) == 3221*sqrt( 70)/(246960*sqrt(105)) - 365/(3528*sqrt(70)*sqrt(105)) assert wigner_6j(5, 5, 5, 5, 5, 5) == Rational(1, 52) assert tn(wigner_6j(8, 8, 8, 8, 8, 8, prec=64), Rational(-12219, 965770)) # regression test for #8747 half = S.Half assert wigner_9j(0, 0, 0, 0, half, half, 0, half, half) == half assert (wigner_9j(3, 5, 4, 7 * half, 5 * half, 4, 9 * half, 9 * half, 0) == -sqrt(Rational(361, 205821000))) assert (wigner_9j(1, 4, 3, 5 * half, 4, 5 * half, 5 * half, 2, 7 * half) == -sqrt(Rational(3971, 373403520))) assert (wigner_9j(4, 9 * half, 5 * half, 2, 4, 4, 5, 7 * half, 7 * half) == -sqrt(Rational(3481, 5042614500))) def test_gaunt(): def tn(a, b): return (a - b).n(64) < S('1e-64') assert gaunt(1, 0, 1, 1, 0, -1) == -1/(2*sqrt(pi)) assert isinstance(gaunt(1, 1, 0, -1, 1, 0).args[0], Rational) assert isinstance(gaunt(0, 1, 1, 0, -1, 1).args[0], Rational) assert tn(gaunt( 10, 10, 12, 9, 3, -12, prec=64), (Rational(-98, 62031)) * sqrt(6279)/sqrt(pi)) def gaunt_ref(l1, l2, l3, m1, m2, m3): return ( sqrt((2 * l1 + 1) * (2 * l2 + 1) * (2 * l3 + 1) / (4 * pi)) * wigner_3j(l1, l2, l3, 0, 0, 0) * wigner_3j(l1, l2, l3, m1, m2, m3) ) threshold = 1e-10 l_max = 3 l3_max = 24 for l1 in range(l_max + 1): for l2 in range(l_max + 1): for l3 in range(l3_max + 1): for m1 in range(-l1, l1 + 1): for m2 in range(-l2, l2 + 1): for m3 in range(-l3, l3 + 1): args = l1, l2, l3, m1, m2, m3 g = gaunt(*args) g0 = gaunt_ref(*args) assert abs(g - g0) < threshold if m1 + m2 + m3 != 0: assert abs(g) < threshold if (l1 + l2 + l3) % 2: assert abs(g) < threshold def test_racah(): assert racah(3,3,3,3,3,3) == Rational(-1,14) assert racah(2,2,2,2,2,2) == Rational(-3,70) assert racah(7,8,7,1,7,7, prec=4).is_Float assert racah(5.5,7.5,9.5,6.5,8,9) == -719*sqrt(598)/1158924 assert abs(racah(5.5,7.5,9.5,6.5,8,9, prec=4) - (-0.01517)) < S('1e-4') def test_dot_rota_grad_SH(): theta, phi = symbols("theta phi") assert dot_rot_grad_Ynm(1, 1, 1, 1, 1, 0) != \ sqrt(30)*Ynm(2, 2, 1, 0)/(10*sqrt(pi)) assert dot_rot_grad_Ynm(1, 1, 1, 1, 1, 0).doit() == \ sqrt(30)*Ynm(2, 2, 1, 0)/(10*sqrt(pi)) assert dot_rot_grad_Ynm(1, 5, 1, 1, 1, 2) != \ 0 assert dot_rot_grad_Ynm(1, 5, 1, 1, 1, 2).doit() == \ 0 assert dot_rot_grad_Ynm(3, 3, 3, 3, theta, phi).doit() == \ 15*sqrt(3003)*Ynm(6, 6, theta, phi)/(143*sqrt(pi)) assert dot_rot_grad_Ynm(3, 3, 1, 1, theta, phi).doit() == \ sqrt(3)*Ynm(4, 4, theta, phi)/sqrt(pi) assert dot_rot_grad_Ynm(3, 2, 2, 0, theta, phi).doit() == \ 3*sqrt(55)*Ynm(5, 2, theta, phi)/(11*sqrt(pi)) assert dot_rot_grad_Ynm(3, 2, 3, 2, theta, phi).doit().expand() == \ -sqrt(70)*Ynm(4, 4, theta, phi)/(11*sqrt(pi)) + \ 45*sqrt(182)*Ynm(6, 4, theta, phi)/(143*sqrt(pi)) def test_wigner_d(): half = S(1)/2 alpha, beta, gamma = symbols("alpha, beta, gamma", real=True) d = wigner_d_small(half, beta).subs({beta: pi/2}) d_ = Matrix([[1, 1], [-1, 1]])/sqrt(2) assert d == d_ D = wigner_d(half, alpha, beta, gamma) assert D[0, 0] == exp(I*alpha/2)*exp(I*gamma/2)*cos(beta/2) assert D[0, 1] == exp(I*alpha/2)*exp(-I*gamma/2)*sin(beta/2) assert D[1, 0] == -exp(-I*alpha/2)*exp(I*gamma/2)*sin(beta/2) assert D[1, 1] == exp(-I*alpha/2)*exp(-I*gamma/2)*cos(beta/2)
d9faeb2636132bc076e769835a8e2f4cb518cc7bc6309deb287b3ed1de87381c
__all__ = [] # The following pattern is used below for importing sub-modules: # # 1. "from foo import *". This imports all the names from foo.__all__ into # this module. But, this does not put those names into the __all__ of # this module. This enables "from sympy.physics.optics import TWave" to # work. # 2. "import foo; __all__.extend(foo.__all__)". This adds all the names in # foo.__all__ to the __all__ of this module. The names in __all__ # determine which names are imported when # "from sympy.physics.optics import *" is done. from . import waves from .waves import TWave __all__.extend(waves.__all__) from . import gaussopt from .gaussopt import (RayTransferMatrix, FreeSpace, FlatRefraction, CurvedRefraction, FlatMirror, CurvedMirror, ThinLens, GeometricRay, BeamParameter, waist2rayleigh, rayleigh2waist, geometric_conj_ab, geometric_conj_af, geometric_conj_bf, gaussian_conj, conjugate_gauss_beams) __all__.extend(gaussopt.__all__) from . import medium from .medium import Medium __all__.extend(medium.__all__) from . import utils from .utils import (refraction_angle, fresnel_coefficients, deviation, brewster_angle, critical_angle, lens_makers_formula, mirror_formula, lens_formula, hyperfocal_distance, transverse_magnification) __all__.extend(utils.__all__) from . import polarization from .polarization import (jones_vector, stokes_vector, jones_2_stokes, linear_polarizer, phase_retarder, half_wave_retarder, quarter_wave_retarder, transmissive_filter, reflective_filter, mueller_matrix, polarizing_beam_splitter)
4ad40835ac8b6cc3e0401da521f86857bd02ed53ec56b95796ef31719d1b1753
from sympy.core.backend import symbols, Matrix, cos, sin, atan, sqrt, S, Rational from sympy import solve, simplify, sympify from sympy.physics.mechanics import dynamicsymbols, ReferenceFrame, Point,\ dot, cross, inertia, KanesMethod, Particle, RigidBody, Lagrangian,\ LagrangesMethod from sympy.utilities.pytest import slow, warns_deprecated_sympy @slow def test_linearize_rolling_disc_kane(): # Symbols for time and constant parameters t, r, m, g, v = symbols('t r m g v') # Configuration variables and their time derivatives q1, q2, q3, q4, q5, q6 = q = dynamicsymbols('q1:7') q1d, q2d, q3d, q4d, q5d, q6d = qd = [qi.diff(t) for qi in q] # Generalized speeds and their time derivatives u = dynamicsymbols('u:6') u1, u2, u3, u4, u5, u6 = u = dynamicsymbols('u1:7') u1d, u2d, u3d, u4d, u5d, u6d = [ui.diff(t) for ui in u] # Reference frames N = ReferenceFrame('N') # Inertial frame NO = Point('NO') # Inertial origin A = N.orientnew('A', 'Axis', [q1, N.z]) # Yaw intermediate frame B = A.orientnew('B', 'Axis', [q2, A.x]) # Lean intermediate frame C = B.orientnew('C', 'Axis', [q3, B.y]) # Disc fixed frame CO = NO.locatenew('CO', q4*N.x + q5*N.y + q6*N.z) # Disc center # Disc angular velocity in N expressed using time derivatives of coordinates w_c_n_qd = C.ang_vel_in(N) w_b_n_qd = B.ang_vel_in(N) # Inertial angular velocity and angular acceleration of disc fixed frame C.set_ang_vel(N, u1*B.x + u2*B.y + u3*B.z) # Disc center velocity in N expressed using time derivatives of coordinates v_co_n_qd = CO.pos_from(NO).dt(N) # Disc center velocity in N expressed using generalized speeds CO.set_vel(N, u4*C.x + u5*C.y + u6*C.z) # Disc Ground Contact Point P = CO.locatenew('P', r*B.z) P.v2pt_theory(CO, N, C) # Configuration constraint f_c = Matrix([q6 - dot(CO.pos_from(P), N.z)]) # Velocity level constraints f_v = Matrix([dot(P.vel(N), uv) for uv in C]) # Kinematic differential equations kindiffs = Matrix([dot(w_c_n_qd - C.ang_vel_in(N), uv) for uv in B] + [dot(v_co_n_qd - CO.vel(N), uv) for uv in N]) qdots = solve(kindiffs, qd) # Set angular velocity of remaining frames B.set_ang_vel(N, w_b_n_qd.subs(qdots)) C.set_ang_acc(N, C.ang_vel_in(N).dt(B) + cross(B.ang_vel_in(N), C.ang_vel_in(N))) # Active forces F_CO = m*g*A.z # Create inertia dyadic of disc C about point CO I = (m * r**2) / 4 J = (m * r**2) / 2 I_C_CO = inertia(C, I, J, I) Disc = RigidBody('Disc', CO, C, m, (I_C_CO, CO)) BL = [Disc] FL = [(CO, F_CO)] KM = KanesMethod(N, [q1, q2, q3, q4, q5], [u1, u2, u3], kd_eqs=kindiffs, q_dependent=[q6], configuration_constraints=f_c, u_dependent=[u4, u5, u6], velocity_constraints=f_v) with warns_deprecated_sympy(): (fr, fr_star) = KM.kanes_equations(FL, BL) # Test generalized form equations linearizer = KM.to_linearizer() assert linearizer.f_c == f_c assert linearizer.f_v == f_v assert linearizer.f_a == f_v.diff(t) sol = solve(linearizer.f_0 + linearizer.f_1, qd) for qi in qdots.keys(): assert sol[qi] == qdots[qi] assert simplify(linearizer.f_2 + linearizer.f_3 - fr - fr_star) == Matrix([0, 0, 0]) # Perform the linearization # Precomputed operating point q_op = {q6: -r*cos(q2)} u_op = {u1: 0, u2: sin(q2)*q1d + q3d, u3: cos(q2)*q1d, u4: -r*(sin(q2)*q1d + q3d)*cos(q3), u5: 0, u6: -r*(sin(q2)*q1d + q3d)*sin(q3)} qd_op = {q2d: 0, q4d: -r*(sin(q2)*q1d + q3d)*cos(q1), q5d: -r*(sin(q2)*q1d + q3d)*sin(q1), q6d: 0} ud_op = {u1d: 4*g*sin(q2)/(5*r) + sin(2*q2)*q1d**2/2 + 6*cos(q2)*q1d*q3d/5, u2d: 0, u3d: 0, u4d: r*(sin(q2)*sin(q3)*q1d*q3d + sin(q3)*q3d**2), u5d: r*(4*g*sin(q2)/(5*r) + sin(2*q2)*q1d**2/2 + 6*cos(q2)*q1d*q3d/5), u6d: -r*(sin(q2)*cos(q3)*q1d*q3d + cos(q3)*q3d**2)} A, B = linearizer.linearize(op_point=[q_op, u_op, qd_op, ud_op], A_and_B=True, simplify=True) upright_nominal = {q1d: 0, q2: 0, m: 1, r: 1, g: 1} # Precomputed solution A_sol = Matrix([[0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [sin(q1)*q3d, 0, 0, 0, 0, -sin(q1), -cos(q1), 0], [-cos(q1)*q3d, 0, 0, 0, 0, cos(q1), -sin(q1), 0], [0, Rational(4, 5), 0, 0, 0, 0, 0, 6*q3d/5], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -2*q3d, 0, 0]]) B_sol = Matrix([]) # Check that linearization is correct assert A.subs(upright_nominal) == A_sol assert B.subs(upright_nominal) == B_sol # Check eigenvalues at critical speed are all zero: assert sympify(A.subs(upright_nominal).subs(q3d, 1/sqrt(3))).eigenvals() == {0: 8} def test_linearize_pendulum_kane_minimal(): q1 = dynamicsymbols('q1') # angle of pendulum u1 = dynamicsymbols('u1') # Angular velocity q1d = dynamicsymbols('q1', 1) # Angular velocity L, m, t = symbols('L, m, t') g = 9.8 # Compose world frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # A.x is along the pendulum A = N.orientnew('A', 'axis', [q1, N.z]) A.set_ang_vel(N, u1*N.z) # Locate point P relative to the origin N* P = pN.locatenew('P', L*A.x) P.v2pt_theory(pN, N, A) pP = Particle('pP', P, m) # Create Kinematic Differential Equations kde = Matrix([q1d - u1]) # Input the force resultant at P R = m*g*N.x # Solve for eom with kanes method KM = KanesMethod(N, q_ind=[q1], u_ind=[u1], kd_eqs=kde) with warns_deprecated_sympy(): (fr, frstar) = KM.kanes_equations([(P, R)], [pP]) # Linearize A, B, inp_vec = KM.linearize(A_and_B=True, simplify=True) assert A == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]]) assert B == Matrix([]) def test_linearize_pendulum_kane_nonminimal(): # Create generalized coordinates and speeds for this non-minimal realization # q1, q2 = N.x and N.y coordinates of pendulum # u1, u2 = N.x and N.y velocities of pendulum q1, q2 = dynamicsymbols('q1:3') q1d, q2d = dynamicsymbols('q1:3', level=1) u1, u2 = dynamicsymbols('u1:3') u1d, u2d = dynamicsymbols('u1:3', level=1) L, m, t = symbols('L, m, t') g = 9.8 # Compose world frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # A.x is along the pendulum theta1 = atan(q2/q1) A = N.orientnew('A', 'axis', [theta1, N.z]) # Locate the pendulum mass P = pN.locatenew('P1', q1*N.x + q2*N.y) pP = Particle('pP', P, m) # Calculate the kinematic differential equations kde = Matrix([q1d - u1, q2d - u2]) dq_dict = solve(kde, [q1d, q2d]) # Set velocity of point P P.set_vel(N, P.pos_from(pN).dt(N).subs(dq_dict)) # Configuration constraint is length of pendulum f_c = Matrix([P.pos_from(pN).magnitude() - L]) # Velocity constraint is that the velocity in the A.x direction is # always zero (the pendulum is never getting longer). f_v = Matrix([P.vel(N).express(A).dot(A.x)]) f_v.simplify() # Acceleration constraints is the time derivative of the velocity constraint f_a = f_v.diff(t) f_a.simplify() # Input the force resultant at P R = m*g*N.x # Derive the equations of motion using the KanesMethod class. KM = KanesMethod(N, q_ind=[q2], u_ind=[u2], q_dependent=[q1], u_dependent=[u1], configuration_constraints=f_c, velocity_constraints=f_v, acceleration_constraints=f_a, kd_eqs=kde) with warns_deprecated_sympy(): (fr, frstar) = KM.kanes_equations([(P, R)], [pP]) # Set the operating point to be straight down, and non-moving q_op = {q1: L, q2: 0} u_op = {u1: 0, u2: 0} ud_op = {u1d: 0, u2d: 0} A, B, inp_vec = KM.linearize(op_point=[q_op, u_op, ud_op], A_and_B=True, simplify=True) assert A.expand() == Matrix([[0, 1], [-9.8/L, 0]]) assert B == Matrix([]) def test_linearize_pendulum_lagrange_minimal(): q1 = dynamicsymbols('q1') # angle of pendulum q1d = dynamicsymbols('q1', 1) # Angular velocity L, m, t = symbols('L, m, t') g = 9.8 # Compose world frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # A.x is along the pendulum A = N.orientnew('A', 'axis', [q1, N.z]) A.set_ang_vel(N, q1d*N.z) # Locate point P relative to the origin N* P = pN.locatenew('P', L*A.x) P.v2pt_theory(pN, N, A) pP = Particle('pP', P, m) # Solve for eom with Lagranges method Lag = Lagrangian(N, pP) LM = LagrangesMethod(Lag, [q1], forcelist=[(P, m*g*N.x)], frame=N) LM.form_lagranges_equations() # Linearize A, B, inp_vec = LM.linearize([q1], [q1d], A_and_B=True) assert A == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]]) assert B == Matrix([]) def test_linearize_pendulum_lagrange_nonminimal(): q1, q2 = dynamicsymbols('q1:3') q1d, q2d = dynamicsymbols('q1:3', level=1) L, m, t = symbols('L, m, t') g = 9.8 # Compose World Frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # A.x is along the pendulum theta1 = atan(q2/q1) A = N.orientnew('A', 'axis', [theta1, N.z]) # Create point P, the pendulum mass P = pN.locatenew('P1', q1*N.x + q2*N.y) P.set_vel(N, P.pos_from(pN).dt(N)) pP = Particle('pP', P, m) # Constraint Equations f_c = Matrix([q1**2 + q2**2 - L**2]) # Calculate the lagrangian, and form the equations of motion Lag = Lagrangian(N, pP) LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c, forcelist=[(P, m*g*N.x)], frame=N) LM.form_lagranges_equations() # Compose operating point op_point = {q1: L, q2: 0, q1d: 0, q2d: 0, q1d.diff(t): 0, q2d.diff(t): 0} # Solve for multiplier operating point lam_op = LM.solve_multipliers(op_point=op_point) op_point.update(lam_op) # Perform the Linearization A, B, inp_vec = LM.linearize([q2], [q2d], [q1], [q1d], op_point=op_point, A_and_B=True) assert A == Matrix([[0, 1], [-9.8/L, 0]]) assert B == Matrix([]) def test_linearize_rolling_disc_lagrange(): q1, q2, q3 = q = dynamicsymbols('q1 q2 q3') q1d, q2d, q3d = qd = dynamicsymbols('q1 q2 q3', 1) r, m, g = symbols('r m g') N = ReferenceFrame('N') Y = N.orientnew('Y', 'Axis', [q1, N.z]) L = Y.orientnew('L', 'Axis', [q2, Y.x]) R = L.orientnew('R', 'Axis', [q3, L.y]) C = Point('C') C.set_vel(N, 0) Dmc = C.locatenew('Dmc', r * L.z) Dmc.v2pt_theory(C, N, R) I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2) BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc)) BodyD.potential_energy = - m * g * r * cos(q2) Lag = Lagrangian(N, BodyD) l = LagrangesMethod(Lag, q) l.form_lagranges_equations() # Linearize about steady-state upright rolling op_point = {q1: 0, q2: 0, q3: 0, q1d: 0, q2d: 0, q1d.diff(): 0, q2d.diff(): 0, q3d.diff(): 0} A = l.linearize(q_ind=q, qd_ind=qd, op_point=op_point, A_and_B=True)[0] sol = Matrix([[0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, -6*q3d, 0], [0, -4*g/(5*r), 0, 6*q3d/5, 0, 0], [0, 0, 0, 0, 0, 0]]) assert A == sol
1e4c936db9db77c773b8bbf508920744c7254edb8a4ecc739cede83788e35b22
from .unit_definitions import ( percent, percents, permille, rad, radian, radians, deg, degree, degrees, sr, steradian, steradians, mil, angular_mil, angular_mils, m, meter, meters, kg, kilogram, kilograms, s, second, seconds, A, ampere, amperes, K, kelvin, kelvins, mol, mole, moles, cd, candela, candelas, g, gram, grams, mg, milligram, milligrams, ug, microgram, micrograms, newton, newtons, N, joule, joules, J, watt, watts, W, pascal, pascals, Pa, pa, hertz, hz, Hz, coulomb, coulombs, C, volt, volts, v, V, ohm, ohms, siemens, S, mho, mhos, farad, farads, F, henry, henrys, H, tesla, teslas, T, weber, webers, Wb, wb, optical_power, dioptre, D, lux, lx, katal, kat, gray, Gy, becquerel, Bq, km, kilometer, kilometers, dm, decimeter, decimeters, cm, centimeter, centimeters, mm, millimeter, millimeters, um, micrometer, micrometers, micron, microns, nm, nanometer, nanometers, pm, picometer, picometers, ft, foot, feet, inch, inches, yd, yard, yards, mi, mile, miles, nmi, nautical_mile, nautical_miles, l, liter, liters, dl, deciliter, deciliters, cl, centiliter, centiliters, ml, milliliter, milliliters, ms, millisecond, milliseconds, us, microsecond, microseconds, ns, nanosecond, nanoseconds, ps, picosecond, picoseconds, minute, minutes, h, hour, hours, day, days, anomalistic_year, anomalistic_years, sidereal_year, sidereal_years, tropical_year, tropical_years, common_year, common_years, julian_year, julian_years, draconic_year, draconic_years, gaussian_year, gaussian_years, full_moon_cycle, full_moon_cycles, year, years, tropical_year, G, gravitational_constant, c, speed_of_light, elementary_charge, Z0, hbar, planck, eV, electronvolt, electronvolts, avogadro_number, avogadro, avogadro_constant, boltzmann, boltzmann_constant, stefan, stefan_boltzmann_constant, R, molar_gas_constant, faraday_constant, josephson_constant, von_klitzing_constant, amu, amus, atomic_mass_unit, atomic_mass_constant, gee, gees, acceleration_due_to_gravity, u0, magnetic_constant, vacuum_permeability, e0, electric_constant, vacuum_permittivity, Z0, vacuum_impedance, coulomb_constant, coulombs_constant, electric_force_constant, atmosphere, atmospheres, atm, kPa, kilopascal, bar, bars, pound, pounds, psi, dHg0, mmHg, torr, mmu, mmus, milli_mass_unit, quart, quarts, ly, lightyear, lightyears, au, astronomical_unit, astronomical_units, planck_mass, planck_time, planck_temperature, planck_length, planck_charge, planck_area, planck_volume, planck_momentum, planck_energy, planck_force, planck_power, planck_density, planck_energy_density, planck_intensity, planck_angular_frequency, planck_pressure, planck_current, planck_voltage, planck_impedance, planck_acceleration, bit, bits, byte, kibibyte, kibibytes, mebibyte, mebibytes, gibibyte, gibibytes, tebibyte, tebibytes, pebibyte, pebibytes, exbibyte, exbibytes, curie, rutherford )
987ecf5d816e895934819d0a07ba7e5233840e1e2128206af608e4ac7af37c13
""" MKS unit system. MKS stands for "meter, kilogram, second". """ from __future__ import division from sympy.physics.units import UnitSystem, DimensionSystem from sympy.physics.units.definitions import G, Hz, J, N, Pa, W, c, g, kg, m, s from sympy.physics.units.definitions.dimension_definitions import ( acceleration, action, energy, force, frequency, momentum, power, pressure, velocity, length, mass, time) from sympy.physics.units.prefixes import PREFIXES, prefix_unit from sympy.physics.units.systems.length_weight_time import dimsys_length_weight_time dims = (velocity, acceleration, momentum, force, energy, power, pressure, frequency, action) units = [m, g, s, J, N, W, Pa, Hz] all_units = [] # Prefixes of units like g, J, N etc get added using `prefix_unit` # in the for loop, but the actual units have to be added manually. all_units.extend([g, J, N, W, Pa, Hz]) for u in units: all_units.extend(prefix_unit(u, PREFIXES)) all_units.extend([G, c]) # unit system MKS = UnitSystem(base_units=(m, kg, s), units=all_units, name="MKS", dimension_system=dimsys_length_weight_time)