hash
stringlengths
64
64
content
stringlengths
0
1.51M
dadad15164b93d3aa54fb4ff2922246d43000284fed709a3e79ea6a33497fa69
""" A MathML printer. """ from typing import Any, Dict from sympy import sympify, S, Mul from sympy.core.compatibility import default_sort_key from sympy.core.function import _coeff_isneg from sympy.printing.conventions import split_super_sub, requires_partial from sympy.printing.precedence import \ precedence_traditional, PRECEDENCE, PRECEDENCE_TRADITIONAL from sympy.printing.pretty.pretty_symbology import greek_unicode from sympy.printing.printer import Printer, print_function import mpmath.libmp as mlib from mpmath.libmp import prec_to_dps, repr_dps, to_str as mlib_to_str class MathMLPrinterBase(Printer): """Contains common code required for MathMLContentPrinter and MathMLPresentationPrinter. """ _default_settings = { "order": None, "encoding": "utf-8", "fold_frac_powers": False, "fold_func_brackets": False, "fold_short_frac": None, "inv_trig_style": "abbreviated", "ln_notation": False, "long_frac_ratio": None, "mat_delim": "[", "mat_symbol_style": "plain", "mul_symbol": None, "root_notation": True, "symbol_names": {}, "mul_symbol_mathml_numbers": '&#xB7;', } # type: Dict[str, Any] def __init__(self, settings=None): Printer.__init__(self, settings) from xml.dom.minidom import Document, Text self.dom = Document() # Workaround to allow strings to remain unescaped # Based on # https://stackoverflow.com/questions/38015864/python-xml-dom-minidom-\ # please-dont-escape-my-strings/38041194 class RawText(Text): def writexml(self, writer, indent='', addindent='', newl=''): if self.data: writer.write('{}{}{}'.format(indent, self.data, newl)) def createRawTextNode(data): r = RawText() r.data = data r.ownerDocument = self.dom return r self.dom.createTextNode = createRawTextNode def doprint(self, expr): """ Prints the expression as MathML. """ mathML = Printer._print(self, expr) unistr = mathML.toxml() xmlbstr = unistr.encode('ascii', 'xmlcharrefreplace') res = xmlbstr.decode() return res def apply_patch(self): # Applying the patch of xml.dom.minidom bug # Date: 2011-11-18 # Description: http://ronrothman.com/public/leftbraned/xml-dom-minidom\ # -toprettyxml-and-silly-whitespace/#best-solution # Issue: http://bugs.python.org/issue4147 # Patch: http://hg.python.org/cpython/rev/7262f8f276ff/ from xml.dom.minidom import Element, Text, Node, _write_data def writexml(self, writer, indent="", addindent="", newl=""): # indent = current indentation # addindent = indentation to add to higher levels # newl = newline string writer.write(indent + "<" + self.tagName) attrs = self._get_attributes() a_names = list(attrs.keys()) a_names.sort() for a_name in a_names: writer.write(" %s=\"" % a_name) _write_data(writer, attrs[a_name].value) writer.write("\"") if self.childNodes: writer.write(">") if (len(self.childNodes) == 1 and self.childNodes[0].nodeType == Node.TEXT_NODE): self.childNodes[0].writexml(writer, '', '', '') else: writer.write(newl) for node in self.childNodes: node.writexml( writer, indent + addindent, addindent, newl) writer.write(indent) writer.write("</%s>%s" % (self.tagName, newl)) else: writer.write("/>%s" % (newl)) self._Element_writexml_old = Element.writexml Element.writexml = writexml def writexml(self, writer, indent="", addindent="", newl=""): _write_data(writer, "%s%s%s" % (indent, self.data, newl)) self._Text_writexml_old = Text.writexml Text.writexml = writexml def restore_patch(self): from xml.dom.minidom import Element, Text Element.writexml = self._Element_writexml_old Text.writexml = self._Text_writexml_old class MathMLContentPrinter(MathMLPrinterBase): """Prints an expression to the Content MathML markup language. References: https://www.w3.org/TR/MathML2/chapter4.html """ printmethod = "_mathml_content" def mathml_tag(self, e): """Returns the MathML tag for an expression.""" translate = { 'Add': 'plus', 'Mul': 'times', 'Derivative': 'diff', 'Number': 'cn', 'int': 'cn', 'Pow': 'power', 'Max': 'max', 'Min': 'min', 'Abs': 'abs', 'And': 'and', 'Or': 'or', 'Xor': 'xor', 'Not': 'not', 'Implies': 'implies', 'Symbol': 'ci', 'MatrixSymbol': 'ci', 'RandomSymbol': 'ci', 'Integral': 'int', 'Sum': 'sum', 'sin': 'sin', 'cos': 'cos', 'tan': 'tan', 'cot': 'cot', 'csc': 'csc', 'sec': 'sec', 'sinh': 'sinh', 'cosh': 'cosh', 'tanh': 'tanh', 'coth': 'coth', 'csch': 'csch', 'sech': 'sech', 'asin': 'arcsin', 'asinh': 'arcsinh', 'acos': 'arccos', 'acosh': 'arccosh', 'atan': 'arctan', 'atanh': 'arctanh', 'atan2': 'arctan', 'acot': 'arccot', 'acoth': 'arccoth', 'asec': 'arcsec', 'asech': 'arcsech', 'acsc': 'arccsc', 'acsch': 'arccsch', 'log': 'ln', 'Equality': 'eq', 'Unequality': 'neq', 'GreaterThan': 'geq', 'LessThan': 'leq', 'StrictGreaterThan': 'gt', 'StrictLessThan': 'lt', 'Union': 'union', 'Intersection': 'intersect', } for cls in e.__class__.__mro__: n = cls.__name__ if n in translate: return translate[n] # Not found in the MRO set n = e.__class__.__name__ return n.lower() def _print_Mul(self, expr): if _coeff_isneg(expr): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('minus')) x.appendChild(self._print_Mul(-expr)) return x from sympy.simplify import fraction numer, denom = fraction(expr) if denom is not S.One: x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('divide')) x.appendChild(self._print(numer)) x.appendChild(self._print(denom)) return x coeff, terms = expr.as_coeff_mul() if coeff is S.One and len(terms) == 1: # XXX since the negative coefficient has been handled, I don't # think a coeff of 1 can remain return self._print(terms[0]) if self.order != 'old': terms = Mul._from_args(terms).as_ordered_factors() x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('times')) if coeff != 1: x.appendChild(self._print(coeff)) for term in terms: x.appendChild(self._print(term)) return x def _print_Add(self, expr, order=None): args = self._as_ordered_terms(expr, order=order) lastProcessed = self._print(args[0]) plusNodes = [] for arg in args[1:]: if _coeff_isneg(arg): # use minus x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('minus')) x.appendChild(lastProcessed) x.appendChild(self._print(-arg)) # invert expression since this is now minused lastProcessed = x if arg == args[-1]: plusNodes.append(lastProcessed) else: plusNodes.append(lastProcessed) lastProcessed = self._print(arg) if arg == args[-1]: plusNodes.append(self._print(arg)) if len(plusNodes) == 1: return lastProcessed x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('plus')) while plusNodes: x.appendChild(plusNodes.pop(0)) return x def _print_Piecewise(self, expr): if expr.args[-1].cond != True: # We need the last conditional to be a True, otherwise the resulting # function may not return a result. raise ValueError("All Piecewise expressions must contain an " "(expr, True) statement to be used as a default " "condition. Without one, the generated " "expression may not evaluate to anything under " "some condition.") root = self.dom.createElement('piecewise') for i, (e, c) in enumerate(expr.args): if i == len(expr.args) - 1 and c == True: piece = self.dom.createElement('otherwise') piece.appendChild(self._print(e)) else: piece = self.dom.createElement('piece') piece.appendChild(self._print(e)) piece.appendChild(self._print(c)) root.appendChild(piece) return root def _print_MatrixBase(self, m): x = self.dom.createElement('matrix') for i in range(m.rows): x_r = self.dom.createElement('matrixrow') for j in range(m.cols): x_r.appendChild(self._print(m[i, j])) x.appendChild(x_r) return x def _print_Rational(self, e): if e.q == 1: # don't divide x = self.dom.createElement('cn') x.appendChild(self.dom.createTextNode(str(e.p))) return x x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('divide')) # numerator xnum = self.dom.createElement('cn') xnum.appendChild(self.dom.createTextNode(str(e.p))) # denominator xdenom = self.dom.createElement('cn') xdenom.appendChild(self.dom.createTextNode(str(e.q))) x.appendChild(xnum) x.appendChild(xdenom) return x def _print_Limit(self, e): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement(self.mathml_tag(e))) x_1 = self.dom.createElement('bvar') x_2 = self.dom.createElement('lowlimit') x_1.appendChild(self._print(e.args[1])) x_2.appendChild(self._print(e.args[2])) x.appendChild(x_1) x.appendChild(x_2) x.appendChild(self._print(e.args[0])) return x def _print_ImaginaryUnit(self, e): return self.dom.createElement('imaginaryi') def _print_EulerGamma(self, e): return self.dom.createElement('eulergamma') def _print_GoldenRatio(self, e): """We use unicode #x3c6 for Greek letter phi as defined here http://www.w3.org/2003/entities/2007doc/isogrk1.html""" x = self.dom.createElement('cn') x.appendChild(self.dom.createTextNode("\N{GREEK SMALL LETTER PHI}")) return x def _print_Exp1(self, e): return self.dom.createElement('exponentiale') def _print_Pi(self, e): return self.dom.createElement('pi') def _print_Infinity(self, e): return self.dom.createElement('infinity') def _print_NaN(self, e): return self.dom.createElement('notanumber') def _print_EmptySet(self, e): return self.dom.createElement('emptyset') def _print_BooleanTrue(self, e): return self.dom.createElement('true') def _print_BooleanFalse(self, e): return self.dom.createElement('false') def _print_NegativeInfinity(self, e): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('minus')) x.appendChild(self.dom.createElement('infinity')) return x def _print_Integral(self, e): def lime_recur(limits): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement(self.mathml_tag(e))) bvar_elem = self.dom.createElement('bvar') bvar_elem.appendChild(self._print(limits[0][0])) x.appendChild(bvar_elem) if len(limits[0]) == 3: low_elem = self.dom.createElement('lowlimit') low_elem.appendChild(self._print(limits[0][1])) x.appendChild(low_elem) up_elem = self.dom.createElement('uplimit') up_elem.appendChild(self._print(limits[0][2])) x.appendChild(up_elem) if len(limits[0]) == 2: up_elem = self.dom.createElement('uplimit') up_elem.appendChild(self._print(limits[0][1])) x.appendChild(up_elem) if len(limits) == 1: x.appendChild(self._print(e.function)) else: x.appendChild(lime_recur(limits[1:])) return x limits = list(e.limits) limits.reverse() return lime_recur(limits) def _print_Sum(self, e): # Printer can be shared because Sum and Integral have the # same internal representation. return self._print_Integral(e) def _print_Symbol(self, sym): ci = self.dom.createElement(self.mathml_tag(sym)) def join(items): if len(items) > 1: mrow = self.dom.createElement('mml:mrow') for i, item in enumerate(items): if i > 0: mo = self.dom.createElement('mml:mo') mo.appendChild(self.dom.createTextNode(" ")) mrow.appendChild(mo) mi = self.dom.createElement('mml:mi') mi.appendChild(self.dom.createTextNode(item)) mrow.appendChild(mi) return mrow else: mi = self.dom.createElement('mml:mi') mi.appendChild(self.dom.createTextNode(items[0])) return mi # translate name, supers and subs to unicode characters def translate(s): if s in greek_unicode: return greek_unicode.get(s) else: return s name, supers, subs = split_super_sub(sym.name) name = translate(name) supers = [translate(sup) for sup in supers] subs = [translate(sub) for sub in subs] mname = self.dom.createElement('mml:mi') mname.appendChild(self.dom.createTextNode(name)) if not supers: if not subs: ci.appendChild(self.dom.createTextNode(name)) else: msub = self.dom.createElement('mml:msub') msub.appendChild(mname) msub.appendChild(join(subs)) ci.appendChild(msub) else: if not subs: msup = self.dom.createElement('mml:msup') msup.appendChild(mname) msup.appendChild(join(supers)) ci.appendChild(msup) else: msubsup = self.dom.createElement('mml:msubsup') msubsup.appendChild(mname) msubsup.appendChild(join(subs)) msubsup.appendChild(join(supers)) ci.appendChild(msubsup) return ci _print_MatrixSymbol = _print_Symbol _print_RandomSymbol = _print_Symbol def _print_Pow(self, e): # Here we use root instead of power if the exponent is the reciprocal # of an integer if (self._settings['root_notation'] and e.exp.is_Rational and e.exp.p == 1): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('root')) if e.exp.q != 2: xmldeg = self.dom.createElement('degree') xmlcn = self.dom.createElement('cn') xmlcn.appendChild(self.dom.createTextNode(str(e.exp.q))) xmldeg.appendChild(xmlcn) x.appendChild(xmldeg) x.appendChild(self._print(e.base)) return x x = self.dom.createElement('apply') x_1 = self.dom.createElement(self.mathml_tag(e)) x.appendChild(x_1) x.appendChild(self._print(e.base)) x.appendChild(self._print(e.exp)) return x def _print_Number(self, e): x = self.dom.createElement(self.mathml_tag(e)) x.appendChild(self.dom.createTextNode(str(e))) return x def _print_Float(self, e): x = self.dom.createElement(self.mathml_tag(e)) repr_e = mlib_to_str(e._mpf_, repr_dps(e._prec)) x.appendChild(self.dom.createTextNode(repr_e)) return x def _print_Derivative(self, e): x = self.dom.createElement('apply') diff_symbol = self.mathml_tag(e) if requires_partial(e.expr): diff_symbol = 'partialdiff' x.appendChild(self.dom.createElement(diff_symbol)) x_1 = self.dom.createElement('bvar') for sym, times in reversed(e.variable_count): x_1.appendChild(self._print(sym)) if times > 1: degree = self.dom.createElement('degree') degree.appendChild(self._print(sympify(times))) x_1.appendChild(degree) x.appendChild(x_1) x.appendChild(self._print(e.expr)) return x def _print_Function(self, e): x = self.dom.createElement("apply") x.appendChild(self.dom.createElement(self.mathml_tag(e))) for arg in e.args: x.appendChild(self._print(arg)) return x def _print_Basic(self, e): x = self.dom.createElement(self.mathml_tag(e)) for arg in e.args: x.appendChild(self._print(arg)) return x def _print_AssocOp(self, e): x = self.dom.createElement('apply') x_1 = self.dom.createElement(self.mathml_tag(e)) x.appendChild(x_1) for arg in e.args: x.appendChild(self._print(arg)) return x def _print_Relational(self, e): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement(self.mathml_tag(e))) x.appendChild(self._print(e.lhs)) x.appendChild(self._print(e.rhs)) return x def _print_list(self, seq): """MathML reference for the <list> element: http://www.w3.org/TR/MathML2/chapter4.html#contm.list""" dom_element = self.dom.createElement('list') for item in seq: dom_element.appendChild(self._print(item)) return dom_element def _print_int(self, p): dom_element = self.dom.createElement(self.mathml_tag(p)) dom_element.appendChild(self.dom.createTextNode(str(p))) return dom_element _print_Implies = _print_AssocOp _print_Not = _print_AssocOp _print_Xor = _print_AssocOp def _print_FiniteSet(self, e): x = self.dom.createElement('set') for arg in e.args: x.appendChild(self._print(arg)) return x def _print_Complement(self, e): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('setdiff')) for arg in e.args: x.appendChild(self._print(arg)) return x def _print_ProductSet(self, e): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('cartesianproduct')) for arg in e.args: x.appendChild(self._print(arg)) return x # XXX Symmetric difference is not supported for MathML content printers. class MathMLPresentationPrinter(MathMLPrinterBase): """Prints an expression to the Presentation MathML markup language. References: https://www.w3.org/TR/MathML2/chapter3.html """ printmethod = "_mathml_presentation" def mathml_tag(self, e): """Returns the MathML tag for an expression.""" translate = { 'Number': 'mn', 'Limit': '&#x2192;', 'Derivative': '&dd;', 'int': 'mn', 'Symbol': 'mi', 'Integral': '&int;', 'Sum': '&#x2211;', 'sin': 'sin', 'cos': 'cos', 'tan': 'tan', 'cot': 'cot', 'asin': 'arcsin', 'asinh': 'arcsinh', 'acos': 'arccos', 'acosh': 'arccosh', 'atan': 'arctan', 'atanh': 'arctanh', 'acot': 'arccot', 'atan2': 'arctan', 'Equality': '=', 'Unequality': '&#x2260;', 'GreaterThan': '&#x2265;', 'LessThan': '&#x2264;', 'StrictGreaterThan': '>', 'StrictLessThan': '<', 'lerchphi': '&#x3A6;', 'zeta': '&#x3B6;', 'dirichlet_eta': '&#x3B7;', 'elliptic_k': '&#x39A;', 'lowergamma': '&#x3B3;', 'uppergamma': '&#x393;', 'gamma': '&#x393;', 'totient': '&#x3D5;', 'reduced_totient': '&#x3BB;', 'primenu': '&#x3BD;', 'primeomega': '&#x3A9;', 'fresnels': 'S', 'fresnelc': 'C', 'LambertW': 'W', 'Heaviside': '&#x398;', 'BooleanTrue': 'True', 'BooleanFalse': 'False', 'NoneType': 'None', 'mathieus': 'S', 'mathieuc': 'C', 'mathieusprime': 'S&#x2032;', 'mathieucprime': 'C&#x2032;', } def mul_symbol_selection(): if (self._settings["mul_symbol"] is None or self._settings["mul_symbol"] == 'None'): return '&InvisibleTimes;' elif self._settings["mul_symbol"] == 'times': return '&#xD7;' elif self._settings["mul_symbol"] == 'dot': return '&#xB7;' elif self._settings["mul_symbol"] == 'ldot': return '&#x2024;' elif not isinstance(self._settings["mul_symbol"], str): raise TypeError else: return self._settings["mul_symbol"] for cls in e.__class__.__mro__: n = cls.__name__ if n in translate: return translate[n] # Not found in the MRO set if e.__class__.__name__ == "Mul": return mul_symbol_selection() n = e.__class__.__name__ return n.lower() def parenthesize(self, item, level, strict=False): prec_val = precedence_traditional(item) if (prec_val < level) or ((not strict) and prec_val <= level): brac = self.dom.createElement('mfenced') brac.appendChild(self._print(item)) return brac else: return self._print(item) def _print_Mul(self, expr): def multiply(expr, mrow): from sympy.simplify import fraction numer, denom = fraction(expr) if denom is not S.One: frac = self.dom.createElement('mfrac') if self._settings["fold_short_frac"] and len(str(expr)) < 7: frac.setAttribute('bevelled', 'true') xnum = self._print(numer) xden = self._print(denom) frac.appendChild(xnum) frac.appendChild(xden) mrow.appendChild(frac) return mrow coeff, terms = expr.as_coeff_mul() if coeff is S.One and len(terms) == 1: mrow.appendChild(self._print(terms[0])) return mrow if self.order != 'old': terms = Mul._from_args(terms).as_ordered_factors() if coeff != 1: x = self._print(coeff) y = self.dom.createElement('mo') y.appendChild(self.dom.createTextNode(self.mathml_tag(expr))) mrow.appendChild(x) mrow.appendChild(y) for term in terms: mrow.appendChild(self.parenthesize(term, PRECEDENCE['Mul'])) if not term == terms[-1]: y = self.dom.createElement('mo') y.appendChild(self.dom.createTextNode(self.mathml_tag(expr))) mrow.appendChild(y) return mrow mrow = self.dom.createElement('mrow') if _coeff_isneg(expr): x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode('-')) mrow.appendChild(x) mrow = multiply(-expr, mrow) else: mrow = multiply(expr, mrow) return mrow def _print_Add(self, expr, order=None): mrow = self.dom.createElement('mrow') args = self._as_ordered_terms(expr, order=order) mrow.appendChild(self._print(args[0])) for arg in args[1:]: if _coeff_isneg(arg): # use minus x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode('-')) y = self._print(-arg) # invert expression since this is now minused else: x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode('+')) y = self._print(arg) mrow.appendChild(x) mrow.appendChild(y) return mrow def _print_MatrixBase(self, m): table = self.dom.createElement('mtable') for i in range(m.rows): x = self.dom.createElement('mtr') for j in range(m.cols): y = self.dom.createElement('mtd') y.appendChild(self._print(m[i, j])) x.appendChild(y) table.appendChild(x) if self._settings["mat_delim"] == '': return table brac = self.dom.createElement('mfenced') if self._settings["mat_delim"] == "[": brac.setAttribute('close', ']') brac.setAttribute('open', '[') brac.appendChild(table) return brac def _get_printed_Rational(self, e, folded=None): if e.p < 0: p = -e.p else: p = e.p x = self.dom.createElement('mfrac') if folded or self._settings["fold_short_frac"]: x.setAttribute('bevelled', 'true') x.appendChild(self._print(p)) x.appendChild(self._print(e.q)) if e.p < 0: mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('-')) mrow.appendChild(mo) mrow.appendChild(x) return mrow else: return x def _print_Rational(self, e): if e.q == 1: # don't divide return self._print(e.p) return self._get_printed_Rational(e, self._settings["fold_short_frac"]) def _print_Limit(self, e): mrow = self.dom.createElement('mrow') munder = self.dom.createElement('munder') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('lim')) x = self.dom.createElement('mrow') x_1 = self._print(e.args[1]) arrow = self.dom.createElement('mo') arrow.appendChild(self.dom.createTextNode(self.mathml_tag(e))) x_2 = self._print(e.args[2]) x.appendChild(x_1) x.appendChild(arrow) x.appendChild(x_2) munder.appendChild(mi) munder.appendChild(x) mrow.appendChild(munder) mrow.appendChild(self._print(e.args[0])) return mrow def _print_ImaginaryUnit(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&ImaginaryI;')) return x def _print_GoldenRatio(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&#x3A6;')) return x def _print_Exp1(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&ExponentialE;')) return x def _print_Pi(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&pi;')) return x def _print_Infinity(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&#x221E;')) return x def _print_NegativeInfinity(self, e): mrow = self.dom.createElement('mrow') y = self.dom.createElement('mo') y.appendChild(self.dom.createTextNode('-')) x = self._print_Infinity(e) mrow.appendChild(y) mrow.appendChild(x) return mrow def _print_HBar(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&#x210F;')) return x def _print_EulerGamma(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&#x3B3;')) return x def _print_TribonacciConstant(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('TribonacciConstant')) return x def _print_Dagger(self, e): msup = self.dom.createElement('msup') msup.appendChild(self._print(e.args[0])) msup.appendChild(self.dom.createTextNode('&#x2020;')) return msup def _print_Contains(self, e): mrow = self.dom.createElement('mrow') mrow.appendChild(self._print(e.args[0])) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2208;')) mrow.appendChild(mo) mrow.appendChild(self._print(e.args[1])) return mrow def _print_HilbertSpace(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&#x210B;')) return x def _print_ComplexSpace(self, e): msup = self.dom.createElement('msup') msup.appendChild(self.dom.createTextNode('&#x1D49E;')) msup.appendChild(self._print(e.args[0])) return msup def _print_FockSpace(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&#x2131;')) return x def _print_Integral(self, expr): intsymbols = {1: "&#x222B;", 2: "&#x222C;", 3: "&#x222D;"} mrow = self.dom.createElement('mrow') if len(expr.limits) <= 3 and all(len(lim) == 1 for lim in expr.limits): # Only up to three-integral signs exists mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode(intsymbols[len(expr.limits)])) mrow.appendChild(mo) else: # Either more than three or limits provided for lim in reversed(expr.limits): mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode(intsymbols[1])) if len(lim) == 1: mrow.appendChild(mo) if len(lim) == 2: msup = self.dom.createElement('msup') msup.appendChild(mo) msup.appendChild(self._print(lim[1])) mrow.appendChild(msup) if len(lim) == 3: msubsup = self.dom.createElement('msubsup') msubsup.appendChild(mo) msubsup.appendChild(self._print(lim[1])) msubsup.appendChild(self._print(lim[2])) mrow.appendChild(msubsup) # print function mrow.appendChild(self.parenthesize(expr.function, PRECEDENCE["Mul"], strict=True)) # print integration variables for lim in reversed(expr.limits): d = self.dom.createElement('mo') d.appendChild(self.dom.createTextNode('&dd;')) mrow.appendChild(d) mrow.appendChild(self._print(lim[0])) return mrow def _print_Sum(self, e): limits = list(e.limits) subsup = self.dom.createElement('munderover') low_elem = self._print(limits[0][1]) up_elem = self._print(limits[0][2]) summand = self.dom.createElement('mo') summand.appendChild(self.dom.createTextNode(self.mathml_tag(e))) low = self.dom.createElement('mrow') var = self._print(limits[0][0]) equal = self.dom.createElement('mo') equal.appendChild(self.dom.createTextNode('=')) low.appendChild(var) low.appendChild(equal) low.appendChild(low_elem) subsup.appendChild(summand) subsup.appendChild(low) subsup.appendChild(up_elem) mrow = self.dom.createElement('mrow') mrow.appendChild(subsup) if len(str(e.function)) == 1: mrow.appendChild(self._print(e.function)) else: fence = self.dom.createElement('mfenced') fence.appendChild(self._print(e.function)) mrow.appendChild(fence) return mrow def _print_Symbol(self, sym, style='plain'): def join(items): if len(items) > 1: mrow = self.dom.createElement('mrow') for i, item in enumerate(items): if i > 0: mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode(" ")) mrow.appendChild(mo) mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(item)) mrow.appendChild(mi) return mrow else: mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(items[0])) return mi # translate name, supers and subs to unicode characters def translate(s): if s in greek_unicode: return greek_unicode.get(s) else: return s name, supers, subs = split_super_sub(sym.name) name = translate(name) supers = [translate(sup) for sup in supers] subs = [translate(sub) for sub in subs] mname = self.dom.createElement('mi') mname.appendChild(self.dom.createTextNode(name)) if len(supers) == 0: if len(subs) == 0: x = mname else: x = self.dom.createElement('msub') x.appendChild(mname) x.appendChild(join(subs)) else: if len(subs) == 0: x = self.dom.createElement('msup') x.appendChild(mname) x.appendChild(join(supers)) else: x = self.dom.createElement('msubsup') x.appendChild(mname) x.appendChild(join(subs)) x.appendChild(join(supers)) # Set bold font? if style == 'bold': x.setAttribute('mathvariant', 'bold') return x def _print_MatrixSymbol(self, sym): return self._print_Symbol(sym, style=self._settings['mat_symbol_style']) _print_RandomSymbol = _print_Symbol def _print_conjugate(self, expr): enc = self.dom.createElement('menclose') enc.setAttribute('notation', 'top') enc.appendChild(self._print(expr.args[0])) return enc def _print_operator_after(self, op, expr): row = self.dom.createElement('mrow') row.appendChild(self.parenthesize(expr, PRECEDENCE["Func"])) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode(op)) row.appendChild(mo) return row def _print_factorial(self, expr): return self._print_operator_after('!', expr.args[0]) def _print_factorial2(self, expr): return self._print_operator_after('!!', expr.args[0]) def _print_binomial(self, expr): brac = self.dom.createElement('mfenced') frac = self.dom.createElement('mfrac') frac.setAttribute('linethickness', '0') frac.appendChild(self._print(expr.args[0])) frac.appendChild(self._print(expr.args[1])) brac.appendChild(frac) return brac def _print_Pow(self, e): # Here we use root instead of power if the exponent is the # reciprocal of an integer if (e.exp.is_Rational and abs(e.exp.p) == 1 and e.exp.q != 1 and self._settings['root_notation']): if e.exp.q == 2: x = self.dom.createElement('msqrt') x.appendChild(self._print(e.base)) if e.exp.q != 2: x = self.dom.createElement('mroot') x.appendChild(self._print(e.base)) x.appendChild(self._print(e.exp.q)) if e.exp.p == -1: frac = self.dom.createElement('mfrac') frac.appendChild(self._print(1)) frac.appendChild(x) return frac else: return x if e.exp.is_Rational and e.exp.q != 1: if e.exp.is_negative: top = self.dom.createElement('mfrac') top.appendChild(self._print(1)) x = self.dom.createElement('msup') x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow'])) x.appendChild(self._get_printed_Rational(-e.exp, self._settings['fold_frac_powers'])) top.appendChild(x) return top else: x = self.dom.createElement('msup') x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow'])) x.appendChild(self._get_printed_Rational(e.exp, self._settings['fold_frac_powers'])) return x if e.exp.is_negative: top = self.dom.createElement('mfrac') top.appendChild(self._print(1)) if e.exp == -1: top.appendChild(self._print(e.base)) else: x = self.dom.createElement('msup') x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow'])) x.appendChild(self._print(-e.exp)) top.appendChild(x) return top x = self.dom.createElement('msup') x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow'])) x.appendChild(self._print(e.exp)) return x def _print_Number(self, e): x = self.dom.createElement(self.mathml_tag(e)) x.appendChild(self.dom.createTextNode(str(e))) return x def _print_AccumulationBounds(self, i): brac = self.dom.createElement('mfenced') brac.setAttribute('close', '\u27e9') brac.setAttribute('open', '\u27e8') brac.appendChild(self._print(i.min)) brac.appendChild(self._print(i.max)) return brac def _print_Derivative(self, e): if requires_partial(e.expr): d = '&#x2202;' else: d = self.mathml_tag(e) # Determine denominator m = self.dom.createElement('mrow') dim = 0 # Total diff dimension, for numerator for sym, num in reversed(e.variable_count): dim += num if num >= 2: x = self.dom.createElement('msup') xx = self.dom.createElement('mo') xx.appendChild(self.dom.createTextNode(d)) x.appendChild(xx) x.appendChild(self._print(num)) else: x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode(d)) m.appendChild(x) y = self._print(sym) m.appendChild(y) mnum = self.dom.createElement('mrow') if dim >= 2: x = self.dom.createElement('msup') xx = self.dom.createElement('mo') xx.appendChild(self.dom.createTextNode(d)) x.appendChild(xx) x.appendChild(self._print(dim)) else: x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode(d)) mnum.appendChild(x) mrow = self.dom.createElement('mrow') frac = self.dom.createElement('mfrac') frac.appendChild(mnum) frac.appendChild(m) mrow.appendChild(frac) # Print function mrow.appendChild(self._print(e.expr)) return mrow def _print_Function(self, e): mrow = self.dom.createElement('mrow') x = self.dom.createElement('mi') if self.mathml_tag(e) == 'log' and self._settings["ln_notation"]: x.appendChild(self.dom.createTextNode('ln')) else: x.appendChild(self.dom.createTextNode(self.mathml_tag(e))) y = self.dom.createElement('mfenced') for arg in e.args: y.appendChild(self._print(arg)) mrow.appendChild(x) mrow.appendChild(y) return mrow def _print_Float(self, expr): # Based off of that in StrPrinter dps = prec_to_dps(expr._prec) str_real = mlib.to_str(expr._mpf_, dps, strip_zeros=True) # Must always have a mul symbol (as 2.5 10^{20} just looks odd) # thus we use the number separator separator = self._settings['mul_symbol_mathml_numbers'] mrow = self.dom.createElement('mrow') if 'e' in str_real: (mant, exp) = str_real.split('e') if exp[0] == '+': exp = exp[1:] mn = self.dom.createElement('mn') mn.appendChild(self.dom.createTextNode(mant)) mrow.appendChild(mn) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode(separator)) mrow.appendChild(mo) msup = self.dom.createElement('msup') mn = self.dom.createElement('mn') mn.appendChild(self.dom.createTextNode("10")) msup.appendChild(mn) mn = self.dom.createElement('mn') mn.appendChild(self.dom.createTextNode(exp)) msup.appendChild(mn) mrow.appendChild(msup) return mrow elif str_real == "+inf": return self._print_Infinity(None) elif str_real == "-inf": return self._print_NegativeInfinity(None) else: mn = self.dom.createElement('mn') mn.appendChild(self.dom.createTextNode(str_real)) return mn def _print_polylog(self, expr): mrow = self.dom.createElement('mrow') m = self.dom.createElement('msub') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('Li')) m.appendChild(mi) m.appendChild(self._print(expr.args[0])) mrow.appendChild(m) brac = self.dom.createElement('mfenced') brac.appendChild(self._print(expr.args[1])) mrow.appendChild(brac) return mrow def _print_Basic(self, e): mrow = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(self.mathml_tag(e))) mrow.appendChild(mi) brac = self.dom.createElement('mfenced') for arg in e.args: brac.appendChild(self._print(arg)) mrow.appendChild(brac) return mrow def _print_Tuple(self, e): mrow = self.dom.createElement('mrow') x = self.dom.createElement('mfenced') for arg in e.args: x.appendChild(self._print(arg)) mrow.appendChild(x) return mrow def _print_Interval(self, i): mrow = self.dom.createElement('mrow') brac = self.dom.createElement('mfenced') if i.start == i.end: # Most often, this type of Interval is converted to a FiniteSet brac.setAttribute('close', '}') brac.setAttribute('open', '{') brac.appendChild(self._print(i.start)) else: if i.right_open: brac.setAttribute('close', ')') else: brac.setAttribute('close', ']') if i.left_open: brac.setAttribute('open', '(') else: brac.setAttribute('open', '[') brac.appendChild(self._print(i.start)) brac.appendChild(self._print(i.end)) mrow.appendChild(brac) return mrow def _print_Abs(self, expr, exp=None): mrow = self.dom.createElement('mrow') x = self.dom.createElement('mfenced') x.setAttribute('close', '|') x.setAttribute('open', '|') x.appendChild(self._print(expr.args[0])) mrow.appendChild(x) return mrow _print_Determinant = _print_Abs def _print_re_im(self, c, expr): mrow = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.setAttribute('mathvariant', 'fraktur') mi.appendChild(self.dom.createTextNode(c)) mrow.appendChild(mi) brac = self.dom.createElement('mfenced') brac.appendChild(self._print(expr)) mrow.appendChild(brac) return mrow def _print_re(self, expr, exp=None): return self._print_re_im('R', expr.args[0]) def _print_im(self, expr, exp=None): return self._print_re_im('I', expr.args[0]) def _print_AssocOp(self, e): mrow = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(self.mathml_tag(e))) mrow.appendChild(mi) for arg in e.args: mrow.appendChild(self._print(arg)) return mrow def _print_SetOp(self, expr, symbol, prec): mrow = self.dom.createElement('mrow') mrow.appendChild(self.parenthesize(expr.args[0], prec)) for arg in expr.args[1:]: x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode(symbol)) y = self.parenthesize(arg, prec) mrow.appendChild(x) mrow.appendChild(y) return mrow def _print_Union(self, expr): prec = PRECEDENCE_TRADITIONAL['Union'] return self._print_SetOp(expr, '&#x222A;', prec) def _print_Intersection(self, expr): prec = PRECEDENCE_TRADITIONAL['Intersection'] return self._print_SetOp(expr, '&#x2229;', prec) def _print_Complement(self, expr): prec = PRECEDENCE_TRADITIONAL['Complement'] return self._print_SetOp(expr, '&#x2216;', prec) def _print_SymmetricDifference(self, expr): prec = PRECEDENCE_TRADITIONAL['SymmetricDifference'] return self._print_SetOp(expr, '&#x2206;', prec) def _print_ProductSet(self, expr): prec = PRECEDENCE_TRADITIONAL['ProductSet'] return self._print_SetOp(expr, '&#x00d7;', prec) def _print_FiniteSet(self, s): return self._print_set(s.args) def _print_set(self, s): items = sorted(s, key=default_sort_key) brac = self.dom.createElement('mfenced') brac.setAttribute('close', '}') brac.setAttribute('open', '{') for item in items: brac.appendChild(self._print(item)) return brac _print_frozenset = _print_set def _print_LogOp(self, args, symbol): mrow = self.dom.createElement('mrow') if args[0].is_Boolean and not args[0].is_Not: brac = self.dom.createElement('mfenced') brac.appendChild(self._print(args[0])) mrow.appendChild(brac) else: mrow.appendChild(self._print(args[0])) for arg in args[1:]: x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode(symbol)) if arg.is_Boolean and not arg.is_Not: y = self.dom.createElement('mfenced') y.appendChild(self._print(arg)) else: y = self._print(arg) mrow.appendChild(x) mrow.appendChild(y) return mrow def _print_BasisDependent(self, expr): from sympy.vector import Vector if expr == expr.zero: # Not clear if this is ever called return self._print(expr.zero) if isinstance(expr, Vector): items = expr.separate().items() else: items = [(0, expr)] mrow = self.dom.createElement('mrow') for system, vect in items: inneritems = list(vect.components.items()) inneritems.sort(key = lambda x:x[0].__str__()) for i, (k, v) in enumerate(inneritems): if v == 1: if i: # No + for first item mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('+')) mrow.appendChild(mo) mrow.appendChild(self._print(k)) elif v == -1: mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('-')) mrow.appendChild(mo) mrow.appendChild(self._print(k)) else: if i: # No + for first item mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('+')) mrow.appendChild(mo) mbrac = self.dom.createElement('mfenced') mbrac.appendChild(self._print(v)) mrow.appendChild(mbrac) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&InvisibleTimes;')) mrow.appendChild(mo) mrow.appendChild(self._print(k)) return mrow def _print_And(self, expr): args = sorted(expr.args, key=default_sort_key) return self._print_LogOp(args, '&#x2227;') def _print_Or(self, expr): args = sorted(expr.args, key=default_sort_key) return self._print_LogOp(args, '&#x2228;') def _print_Xor(self, expr): args = sorted(expr.args, key=default_sort_key) return self._print_LogOp(args, '&#x22BB;') def _print_Implies(self, expr): return self._print_LogOp(expr.args, '&#x21D2;') def _print_Equivalent(self, expr): args = sorted(expr.args, key=default_sort_key) return self._print_LogOp(args, '&#x21D4;') def _print_Not(self, e): mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#xAC;')) mrow.appendChild(mo) if (e.args[0].is_Boolean): x = self.dom.createElement('mfenced') x.appendChild(self._print(e.args[0])) else: x = self._print(e.args[0]) mrow.appendChild(x) return mrow def _print_bool(self, e): mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(self.mathml_tag(e))) return mi _print_BooleanTrue = _print_bool _print_BooleanFalse = _print_bool def _print_NoneType(self, e): mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(self.mathml_tag(e))) return mi def _print_Range(self, s): dots = "\u2026" brac = self.dom.createElement('mfenced') brac.setAttribute('close', '}') brac.setAttribute('open', '{') if s.start.is_infinite and s.stop.is_infinite: if s.step.is_positive: printset = dots, -1, 0, 1, dots else: printset = dots, 1, 0, -1, dots elif s.start.is_infinite: printset = dots, s[-1] - s.step, s[-1] elif s.stop.is_infinite: it = iter(s) printset = next(it), next(it), dots elif len(s) > 4: it = iter(s) printset = next(it), next(it), dots, s[-1] else: printset = tuple(s) for el in printset: if el == dots: mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(dots)) brac.appendChild(mi) else: brac.appendChild(self._print(el)) return brac def _hprint_variadic_function(self, expr): args = sorted(expr.args, key=default_sort_key) mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode((str(expr.func)).lower())) mrow.appendChild(mo) brac = self.dom.createElement('mfenced') for symbol in args: brac.appendChild(self._print(symbol)) mrow.appendChild(brac) return mrow _print_Min = _print_Max = _hprint_variadic_function def _print_exp(self, expr): msup = self.dom.createElement('msup') msup.appendChild(self._print_Exp1(None)) msup.appendChild(self._print(expr.args[0])) return msup def _print_Relational(self, e): mrow = self.dom.createElement('mrow') mrow.appendChild(self._print(e.lhs)) x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode(self.mathml_tag(e))) mrow.appendChild(x) mrow.appendChild(self._print(e.rhs)) return mrow def _print_int(self, p): dom_element = self.dom.createElement(self.mathml_tag(p)) dom_element.appendChild(self.dom.createTextNode(str(p))) return dom_element def _print_BaseScalar(self, e): msub = self.dom.createElement('msub') index, system = e._id mi = self.dom.createElement('mi') mi.setAttribute('mathvariant', 'bold') mi.appendChild(self.dom.createTextNode(system._variable_names[index])) msub.appendChild(mi) mi = self.dom.createElement('mi') mi.setAttribute('mathvariant', 'bold') mi.appendChild(self.dom.createTextNode(system._name)) msub.appendChild(mi) return msub def _print_BaseVector(self, e): msub = self.dom.createElement('msub') index, system = e._id mover = self.dom.createElement('mover') mi = self.dom.createElement('mi') mi.setAttribute('mathvariant', 'bold') mi.appendChild(self.dom.createTextNode(system._vector_names[index])) mover.appendChild(mi) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('^')) mover.appendChild(mo) msub.appendChild(mover) mi = self.dom.createElement('mi') mi.setAttribute('mathvariant', 'bold') mi.appendChild(self.dom.createTextNode(system._name)) msub.appendChild(mi) return msub def _print_VectorZero(self, e): mover = self.dom.createElement('mover') mi = self.dom.createElement('mi') mi.setAttribute('mathvariant', 'bold') mi.appendChild(self.dom.createTextNode("0")) mover.appendChild(mi) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('^')) mover.appendChild(mo) return mover def _print_Cross(self, expr): mrow = self.dom.createElement('mrow') vec1 = expr._expr1 vec2 = expr._expr2 mrow.appendChild(self.parenthesize(vec1, PRECEDENCE['Mul'])) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#xD7;')) mrow.appendChild(mo) mrow.appendChild(self.parenthesize(vec2, PRECEDENCE['Mul'])) return mrow def _print_Curl(self, expr): mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2207;')) mrow.appendChild(mo) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#xD7;')) mrow.appendChild(mo) mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul'])) return mrow def _print_Divergence(self, expr): mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2207;')) mrow.appendChild(mo) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#xB7;')) mrow.appendChild(mo) mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul'])) return mrow def _print_Dot(self, expr): mrow = self.dom.createElement('mrow') vec1 = expr._expr1 vec2 = expr._expr2 mrow.appendChild(self.parenthesize(vec1, PRECEDENCE['Mul'])) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#xB7;')) mrow.appendChild(mo) mrow.appendChild(self.parenthesize(vec2, PRECEDENCE['Mul'])) return mrow def _print_Gradient(self, expr): mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2207;')) mrow.appendChild(mo) mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul'])) return mrow def _print_Laplacian(self, expr): mrow = self.dom.createElement('mrow') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2206;')) mrow.appendChild(mo) mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul'])) return mrow def _print_Integers(self, e): x = self.dom.createElement('mi') x.setAttribute('mathvariant', 'normal') x.appendChild(self.dom.createTextNode('&#x2124;')) return x def _print_Complexes(self, e): x = self.dom.createElement('mi') x.setAttribute('mathvariant', 'normal') x.appendChild(self.dom.createTextNode('&#x2102;')) return x def _print_Reals(self, e): x = self.dom.createElement('mi') x.setAttribute('mathvariant', 'normal') x.appendChild(self.dom.createTextNode('&#x211D;')) return x def _print_Naturals(self, e): x = self.dom.createElement('mi') x.setAttribute('mathvariant', 'normal') x.appendChild(self.dom.createTextNode('&#x2115;')) return x def _print_Naturals0(self, e): sub = self.dom.createElement('msub') x = self.dom.createElement('mi') x.setAttribute('mathvariant', 'normal') x.appendChild(self.dom.createTextNode('&#x2115;')) sub.appendChild(x) sub.appendChild(self._print(S.Zero)) return sub def _print_SingularityFunction(self, expr): shift = expr.args[0] - expr.args[1] power = expr.args[2] sup = self.dom.createElement('msup') brac = self.dom.createElement('mfenced') brac.setAttribute('close', '\u27e9') brac.setAttribute('open', '\u27e8') brac.appendChild(self._print(shift)) sup.appendChild(brac) sup.appendChild(self._print(power)) return sup def _print_NaN(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('NaN')) return x def _print_number_function(self, e, name): # Print name_arg[0] for one argument or name_arg[0](arg[1]) # for more than one argument sub = self.dom.createElement('msub') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(name)) sub.appendChild(mi) sub.appendChild(self._print(e.args[0])) if len(e.args) == 1: return sub # TODO: copy-pasted from _print_Function: can we do better? mrow = self.dom.createElement('mrow') y = self.dom.createElement('mfenced') for arg in e.args[1:]: y.appendChild(self._print(arg)) mrow.appendChild(sub) mrow.appendChild(y) return mrow def _print_bernoulli(self, e): return self._print_number_function(e, 'B') _print_bell = _print_bernoulli def _print_catalan(self, e): return self._print_number_function(e, 'C') def _print_euler(self, e): return self._print_number_function(e, 'E') def _print_fibonacci(self, e): return self._print_number_function(e, 'F') def _print_lucas(self, e): return self._print_number_function(e, 'L') def _print_stieltjes(self, e): return self._print_number_function(e, '&#x03B3;') def _print_tribonacci(self, e): return self._print_number_function(e, 'T') def _print_ComplexInfinity(self, e): x = self.dom.createElement('mover') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x221E;')) x.appendChild(mo) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('~')) x.appendChild(mo) return x def _print_EmptySet(self, e): x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode('&#x2205;')) return x def _print_UniversalSet(self, e): x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode('&#x1D54C;')) return x def _print_Adjoint(self, expr): from sympy.matrices import MatrixSymbol mat = expr.arg sup = self.dom.createElement('msup') if not isinstance(mat, MatrixSymbol): brac = self.dom.createElement('mfenced') brac.appendChild(self._print(mat)) sup.appendChild(brac) else: sup.appendChild(self._print(mat)) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2020;')) sup.appendChild(mo) return sup def _print_Transpose(self, expr): from sympy.matrices import MatrixSymbol mat = expr.arg sup = self.dom.createElement('msup') if not isinstance(mat, MatrixSymbol): brac = self.dom.createElement('mfenced') brac.appendChild(self._print(mat)) sup.appendChild(brac) else: sup.appendChild(self._print(mat)) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('T')) sup.appendChild(mo) return sup def _print_Inverse(self, expr): from sympy.matrices import MatrixSymbol mat = expr.arg sup = self.dom.createElement('msup') if not isinstance(mat, MatrixSymbol): brac = self.dom.createElement('mfenced') brac.appendChild(self._print(mat)) sup.appendChild(brac) else: sup.appendChild(self._print(mat)) sup.appendChild(self._print(-1)) return sup def _print_MatMul(self, expr): from sympy import MatMul x = self.dom.createElement('mrow') args = expr.args if isinstance(args[0], Mul): args = args[0].as_ordered_factors() + list(args[1:]) else: args = list(args) if isinstance(expr, MatMul) and _coeff_isneg(expr): if args[0] == -1: args = args[1:] else: args[0] = -args[0] mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('-')) x.appendChild(mo) for arg in args[:-1]: x.appendChild(self.parenthesize(arg, precedence_traditional(expr), False)) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&InvisibleTimes;')) x.appendChild(mo) x.appendChild(self.parenthesize(args[-1], precedence_traditional(expr), False)) return x def _print_MatPow(self, expr): from sympy.matrices import MatrixSymbol base, exp = expr.base, expr.exp sup = self.dom.createElement('msup') if not isinstance(base, MatrixSymbol): brac = self.dom.createElement('mfenced') brac.appendChild(self._print(base)) sup.appendChild(brac) else: sup.appendChild(self._print(base)) sup.appendChild(self._print(exp)) return sup def _print_HadamardProduct(self, expr): x = self.dom.createElement('mrow') args = expr.args for arg in args[:-1]: x.appendChild( self.parenthesize(arg, precedence_traditional(expr), False)) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x2218;')) x.appendChild(mo) x.appendChild( self.parenthesize(args[-1], precedence_traditional(expr), False)) return x def _print_ZeroMatrix(self, Z): x = self.dom.createElement('mn') x.appendChild(self.dom.createTextNode('&#x1D7D8')) return x def _print_OneMatrix(self, Z): x = self.dom.createElement('mn') x.appendChild(self.dom.createTextNode('&#x1D7D9')) return x def _print_Identity(self, I): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&#x1D540;')) return x def _print_floor(self, e): mrow = self.dom.createElement('mrow') x = self.dom.createElement('mfenced') x.setAttribute('close', '\u230B') x.setAttribute('open', '\u230A') x.appendChild(self._print(e.args[0])) mrow.appendChild(x) return mrow def _print_ceiling(self, e): mrow = self.dom.createElement('mrow') x = self.dom.createElement('mfenced') x.setAttribute('close', '\u2309') x.setAttribute('open', '\u2308') x.appendChild(self._print(e.args[0])) mrow.appendChild(x) return mrow def _print_Lambda(self, e): x = self.dom.createElement('mfenced') mrow = self.dom.createElement('mrow') symbols = e.args[0] if len(symbols) == 1: symbols = self._print(symbols[0]) else: symbols = self._print(symbols) mrow.appendChild(symbols) mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('&#x21A6;')) mrow.appendChild(mo) mrow.appendChild(self._print(e.args[1])) x.appendChild(mrow) return x def _print_tuple(self, e): x = self.dom.createElement('mfenced') for i in e: x.appendChild(self._print(i)) return x def _print_IndexedBase(self, e): return self._print(e.label) def _print_Indexed(self, e): x = self.dom.createElement('msub') x.appendChild(self._print(e.base)) if len(e.indices) == 1: x.appendChild(self._print(e.indices[0])) return x x.appendChild(self._print(e.indices)) return x def _print_MatrixElement(self, e): x = self.dom.createElement('msub') x.appendChild(self.parenthesize(e.parent, PRECEDENCE["Atom"], strict = True)) brac = self.dom.createElement('mfenced') brac.setAttribute("close", "") brac.setAttribute("open", "") for i in e.indices: brac.appendChild(self._print(i)) x.appendChild(brac) return x def _print_elliptic_f(self, e): x = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('&#x1d5a5;')) x.appendChild(mi) y = self.dom.createElement('mfenced') y.setAttribute("separators", "|") for i in e.args: y.appendChild(self._print(i)) x.appendChild(y) return x def _print_elliptic_e(self, e): x = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('&#x1d5a4;')) x.appendChild(mi) y = self.dom.createElement('mfenced') y.setAttribute("separators", "|") for i in e.args: y.appendChild(self._print(i)) x.appendChild(y) return x def _print_elliptic_pi(self, e): x = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('&#x1d6f1;')) x.appendChild(mi) y = self.dom.createElement('mfenced') if len(e.args) == 2: y.setAttribute("separators", "|") else: y.setAttribute("separators", ";|") for i in e.args: y.appendChild(self._print(i)) x.appendChild(y) return x def _print_Ei(self, e): x = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('Ei')) x.appendChild(mi) x.appendChild(self._print(e.args)) return x def _print_expint(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msub') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('E')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) x.appendChild(y) x.appendChild(self._print(e.args[1:])) return x def _print_jacobi(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msubsup') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('P')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) y.appendChild(self._print(e.args[1:3])) x.appendChild(y) x.appendChild(self._print(e.args[3:])) return x def _print_gegenbauer(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msubsup') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('C')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) y.appendChild(self._print(e.args[1:2])) x.appendChild(y) x.appendChild(self._print(e.args[2:])) return x def _print_chebyshevt(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msub') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('T')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) x.appendChild(y) x.appendChild(self._print(e.args[1:])) return x def _print_chebyshevu(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msub') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('U')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) x.appendChild(y) x.appendChild(self._print(e.args[1:])) return x def _print_legendre(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msub') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('P')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) x.appendChild(y) x.appendChild(self._print(e.args[1:])) return x def _print_assoc_legendre(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msubsup') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('P')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) y.appendChild(self._print(e.args[1:2])) x.appendChild(y) x.appendChild(self._print(e.args[2:])) return x def _print_laguerre(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msub') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('L')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) x.appendChild(y) x.appendChild(self._print(e.args[1:])) return x def _print_assoc_laguerre(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msubsup') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('L')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) y.appendChild(self._print(e.args[1:2])) x.appendChild(y) x.appendChild(self._print(e.args[2:])) return x def _print_hermite(self, e): x = self.dom.createElement('mrow') y = self.dom.createElement('msub') mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode('H')) y.appendChild(mo) y.appendChild(self._print(e.args[0])) x.appendChild(y) x.appendChild(self._print(e.args[1:])) return x @print_function(MathMLPrinterBase) def mathml(expr, printer='content', **settings): """Returns the MathML representation of expr. If printer is presentation then prints Presentation MathML else prints content MathML. """ if printer == 'presentation': return MathMLPresentationPrinter(settings).doprint(expr) else: return MathMLContentPrinter(settings).doprint(expr) def print_mathml(expr, printer='content', **settings): """ Prints a pretty representation of the MathML code for expr. If printer is presentation then prints Presentation MathML else prints content MathML. Examples ======== >>> ## >>> from sympy.printing.mathml import print_mathml >>> from sympy.abc import x >>> print_mathml(x+1) #doctest: +NORMALIZE_WHITESPACE <apply> <plus/> <ci>x</ci> <cn>1</cn> </apply> >>> print_mathml(x+1, printer='presentation') <mrow> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> """ if printer == 'presentation': s = MathMLPresentationPrinter(settings) else: s = MathMLContentPrinter(settings) xml = s._print(sympify(expr)) s.apply_patch() pretty_xml = xml.toprettyxml() s.restore_patch() print(pretty_xml) # For backward compatibility MathMLPrinter = MathMLContentPrinter
744e2eb51c6cb1b8a0336da549fb9f7ff3f4b3274074e36b8b2b4e80f96f79da
from typing import Any, Dict, Set, Tuple from functools import wraps from sympy.core import Add, Expr, Mul, Pow, S, sympify, Float from sympy.core.basic import Basic from sympy.core.compatibility import default_sort_key from sympy.core.function import Lambda from sympy.core.mul import _keep_coeff from sympy.core.symbol import Symbol from sympy.printing.str import StrPrinter from sympy.printing.precedence import precedence class requires: """ Decorator for registering requirements on print methods. """ def __init__(self, **kwargs): self._req = kwargs def __call__(self, method): def _method_wrapper(self_, *args, **kwargs): for k, v in self._req.items(): getattr(self_, k).update(v) return method(self_, *args, **kwargs) return wraps(method)(_method_wrapper) class AssignmentError(Exception): """ Raised if an assignment variable for a loop is missing. """ pass class CodePrinter(StrPrinter): """ The base class for code-printing subclasses. """ _operators = { 'and': '&&', 'or': '||', 'not': '!', } _default_settings = { 'order': None, 'full_prec': 'auto', 'error_on_reserved': False, 'reserved_word_suffix': '_', 'human': True, 'inline': False, 'allow_unknown_functions': False, } # type: Dict[str, Any] # Functions which are "simple" to rewrite to other functions that # may be supported _rewriteable_functions = { 'erf2': 'erf', 'Li': 'li', 'beta': 'gamma' } def __init__(self, settings=None): super().__init__(settings=settings) if not hasattr(self, 'reserved_words'): self.reserved_words = set() def doprint(self, expr, assign_to=None): """ Print the expression as code. Parameters ---------- expr : Expression The expression to be printed. assign_to : Symbol, string, MatrixSymbol, list of strings or Symbols (optional) If provided, the printed code will set the expression to a variable or multiple variables with the name or names given in ``assign_to``. """ from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.codegen.ast import CodeBlock, Assignment def _handle_assign_to(expr, assign_to): if assign_to is None: return sympify(expr) if isinstance(assign_to, (list, tuple)): if len(expr) != len(assign_to): raise ValueError('Failed to assign an expression of length {} to {} variables'.format(len(expr), len(assign_to))) return CodeBlock(*[_handle_assign_to(lhs, rhs) for lhs, rhs in zip(expr, assign_to)]) if isinstance(assign_to, str): if expr.is_Matrix: assign_to = MatrixSymbol(assign_to, *expr.shape) else: assign_to = Symbol(assign_to) elif not isinstance(assign_to, Basic): raise TypeError("{} cannot assign to object of type {}".format( type(self).__name__, type(assign_to))) return Assignment(assign_to, expr) expr = _handle_assign_to(expr, assign_to) # keep a set of expressions that are not strictly translatable to Code # and number constants that must be declared and initialized self._not_supported = set() self._number_symbols = set() # type: Set[Tuple[Expr, Float]] lines = self._print(expr).splitlines() # format the output if self._settings["human"]: frontlines = [] if self._not_supported: frontlines.append(self._get_comment( "Not supported in {}:".format(self.language))) for expr in sorted(self._not_supported, key=str): frontlines.append(self._get_comment(type(expr).__name__)) for name, value in sorted(self._number_symbols, key=str): frontlines.append(self._declare_number_const(name, value)) lines = frontlines + lines lines = self._format_code(lines) result = "\n".join(lines) else: lines = self._format_code(lines) num_syms = {(k, self._print(v)) for k, v in self._number_symbols} result = (num_syms, self._not_supported, "\n".join(lines)) self._not_supported = set() self._number_symbols = set() return result def _doprint_loops(self, expr, assign_to=None): # Here we print an expression that contains Indexed objects, they # correspond to arrays in the generated code. The low-level implementation # involves looping over array elements and possibly storing results in temporary # variables or accumulate it in the assign_to object. if self._settings.get('contract', True): from sympy.tensor import get_contraction_structure # Setup loops over non-dummy indices -- all terms need these indices = self._get_expression_indices(expr, assign_to) # Setup loops over dummy indices -- each term needs separate treatment dummies = get_contraction_structure(expr) else: indices = [] dummies = {None: (expr,)} openloop, closeloop = self._get_loop_opening_ending(indices) # terms with no summations first if None in dummies: text = StrPrinter.doprint(self, Add(*dummies[None])) else: # If all terms have summations we must initialize array to Zero text = StrPrinter.doprint(self, 0) # skip redundant assignments (where lhs == rhs) lhs_printed = self._print(assign_to) lines = [] if text != lhs_printed: lines.extend(openloop) if assign_to is not None: text = self._get_statement("%s = %s" % (lhs_printed, text)) lines.append(text) lines.extend(closeloop) # then terms with summations for d in dummies: if isinstance(d, tuple): indices = self._sort_optimized(d, expr) openloop_d, closeloop_d = self._get_loop_opening_ending( indices) for term in dummies[d]: if term in dummies and not ([list(f.keys()) for f in dummies[term]] == [[None] for f in dummies[term]]): # If one factor in the term has it's own internal # contractions, those must be computed first. # (temporary variables?) raise NotImplementedError( "FIXME: no support for contractions in factor yet") else: # We need the lhs expression as an accumulator for # the loops, i.e # # for (int d=0; d < dim; d++){ # lhs[] = lhs[] + term[][d] # } ^.................. the accumulator # # We check if the expression already contains the # lhs, and raise an exception if it does, as that # syntax is currently undefined. FIXME: What would be # a good interpretation? if assign_to is None: raise AssignmentError( "need assignment variable for loops") if term.has(assign_to): raise ValueError("FIXME: lhs present in rhs,\ this is undefined in CodePrinter") lines.extend(openloop) lines.extend(openloop_d) text = "%s = %s" % (lhs_printed, StrPrinter.doprint( self, assign_to + term)) lines.append(self._get_statement(text)) lines.extend(closeloop_d) lines.extend(closeloop) return "\n".join(lines) def _get_expression_indices(self, expr, assign_to): from sympy.tensor import get_indices rinds, junk = get_indices(expr) linds, junk = get_indices(assign_to) # support broadcast of scalar if linds and not rinds: rinds = linds if rinds != linds: raise ValueError("lhs indices must match non-dummy" " rhs indices in %s" % expr) return self._sort_optimized(rinds, assign_to) def _sort_optimized(self, indices, expr): from sympy.tensor.indexed import Indexed if not indices: return [] # determine optimized loop order by giving a score to each index # the index with the highest score are put in the innermost loop. score_table = {} for i in indices: score_table[i] = 0 arrays = expr.atoms(Indexed) for arr in arrays: for p, ind in enumerate(arr.indices): try: score_table[ind] += self._rate_index_position(p) except KeyError: pass return sorted(indices, key=lambda x: score_table[x]) def _rate_index_position(self, p): """function to calculate score based on position among indices This method is used to sort loops in an optimized order, see CodePrinter._sort_optimized() """ raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _get_statement(self, codestring): """Formats a codestring with the proper line ending.""" raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _get_comment(self, text): """Formats a text string as a comment.""" raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _declare_number_const(self, name, value): """Declare a numeric constant at the top of a function""" raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _format_code(self, lines): """Take in a list of lines of code, and format them accordingly. This may include indenting, wrapping long lines, etc...""" raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _get_loop_opening_ending(self, indices): """Returns a tuple (open_lines, close_lines) containing lists of codelines""" raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _print_Dummy(self, expr): if expr.name.startswith('Dummy_'): return '_' + expr.name else: return '%s_%d' % (expr.name, expr.dummy_index) def _print_CodeBlock(self, expr): return '\n'.join([self._print(i) for i in expr.args]) def _print_String(self, string): return str(string) def _print_QuotedString(self, arg): return '"%s"' % arg.text def _print_Comment(self, string): return self._get_comment(str(string)) def _print_Assignment(self, expr): from sympy.codegen.ast import Assignment from sympy.functions.elementary.piecewise import Piecewise from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.tensor.indexed import IndexedBase lhs = expr.lhs rhs = expr.rhs # We special case assignments that take multiple lines if isinstance(expr.rhs, Piecewise): # Here we modify Piecewise so each expression is now # an Assignment, and then continue on the print. expressions = [] conditions = [] for (e, c) in rhs.args: expressions.append(Assignment(lhs, e)) conditions.append(c) temp = Piecewise(*zip(expressions, conditions)) return self._print(temp) elif isinstance(lhs, MatrixSymbol): # Here we form an Assignment for each element in the array, # printing each one. lines = [] for (i, j) in self._traverse_matrix_indices(lhs): temp = Assignment(lhs[i, j], rhs[i, j]) code0 = self._print(temp) lines.append(code0) return "\n".join(lines) elif self._settings.get("contract", False) and (lhs.has(IndexedBase) or rhs.has(IndexedBase)): # Here we check if there is looping to be done, and if so # print the required loops. return self._doprint_loops(rhs, lhs) else: lhs_code = self._print(lhs) rhs_code = self._print(rhs) return self._get_statement("%s = %s" % (lhs_code, rhs_code)) def _print_AugmentedAssignment(self, expr): lhs_code = self._print(expr.lhs) rhs_code = self._print(expr.rhs) return self._get_statement("{} {} {}".format( *map(lambda arg: self._print(arg), [lhs_code, expr.op, rhs_code]))) def _print_FunctionCall(self, expr): return '%s(%s)' % ( expr.name, ', '.join(map(lambda arg: self._print(arg), expr.function_args))) def _print_Variable(self, expr): return self._print(expr.symbol) def _print_Statement(self, expr): arg, = expr.args return self._get_statement(self._print(arg)) def _print_Symbol(self, expr): name = super()._print_Symbol(expr) if name in self.reserved_words: if self._settings['error_on_reserved']: msg = ('This expression includes the symbol "{}" which is a ' 'reserved keyword in this language.') raise ValueError(msg.format(name)) return name + self._settings['reserved_word_suffix'] else: return name def _print_Function(self, expr): if expr.func.__name__ in self.known_functions: cond_func = self.known_functions[expr.func.__name__] func = None if isinstance(cond_func, str): func = cond_func else: for cond, func in cond_func: if cond(*expr.args): break if func is not None: try: return func(*[self.parenthesize(item, 0) for item in expr.args]) except TypeError: return "%s(%s)" % (func, self.stringify(expr.args, ", ")) elif hasattr(expr, '_imp_') and isinstance(expr._imp_, Lambda): # inlined function return self._print(expr._imp_(*expr.args)) elif (expr.func.__name__ in self._rewriteable_functions and self._rewriteable_functions[expr.func.__name__] in self.known_functions): # Simple rewrite to supported function possible return self._print(expr.rewrite(self._rewriteable_functions[expr.func.__name__])) elif expr.is_Function and self._settings.get('allow_unknown_functions', False): return '%s(%s)' % (self._print(expr.func), ', '.join(map(self._print, expr.args))) else: return self._print_not_supported(expr) _print_Expr = _print_Function def _print_NumberSymbol(self, expr): if self._settings.get("inline", False): return self._print(Float(expr.evalf(self._settings["precision"]))) else: # A Number symbol that is not implemented here or with _printmethod # is registered and evaluated self._number_symbols.add((expr, Float(expr.evalf(self._settings["precision"])))) return str(expr) def _print_Catalan(self, expr): return self._print_NumberSymbol(expr) def _print_EulerGamma(self, expr): return self._print_NumberSymbol(expr) def _print_GoldenRatio(self, expr): return self._print_NumberSymbol(expr) def _print_TribonacciConstant(self, expr): return self._print_NumberSymbol(expr) def _print_Exp1(self, expr): return self._print_NumberSymbol(expr) def _print_Pi(self, expr): return self._print_NumberSymbol(expr) def _print_And(self, expr): PREC = precedence(expr) return (" %s " % self._operators['and']).join(self.parenthesize(a, PREC) for a in sorted(expr.args, key=default_sort_key)) def _print_Or(self, expr): PREC = precedence(expr) return (" %s " % self._operators['or']).join(self.parenthesize(a, PREC) for a in sorted(expr.args, key=default_sort_key)) def _print_Xor(self, expr): if self._operators.get('xor') is None: return self._print_not_supported(expr) PREC = precedence(expr) return (" %s " % self._operators['xor']).join(self.parenthesize(a, PREC) for a in expr.args) def _print_Equivalent(self, expr): if self._operators.get('equivalent') is None: return self._print_not_supported(expr) PREC = precedence(expr) return (" %s " % self._operators['equivalent']).join(self.parenthesize(a, PREC) for a in expr.args) def _print_Not(self, expr): PREC = precedence(expr) return self._operators['not'] + self.parenthesize(expr.args[0], PREC) def _print_Mul(self, expr): prec = precedence(expr) c, e = expr.as_coeff_Mul() if c < 0: expr = _keep_coeff(-c, e) sign = "-" else: sign = "" a = [] # items in the numerator b = [] # items that are in the denominator (if any) pow_paren = [] # Will collect all pow with more than one base element and exp = -1 if self.order not in ('old', 'none'): args = expr.as_ordered_factors() else: # use make_args in case expr was something like -x -> x args = Mul.make_args(expr) # Gather args for numerator/denominator for item in args: if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative: if item.exp != -1: b.append(Pow(item.base, -item.exp, evaluate=False)) else: if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160 pow_paren.append(item) b.append(Pow(item.base, -item.exp)) else: a.append(item) a = a or [S.One] a_str = [self.parenthesize(x, prec) for x in a] b_str = [self.parenthesize(x, prec) for x in b] # To parenthesize Pow with exp = -1 and having more than one Symbol for item in pow_paren: if item.base in b: b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)] if not b: return sign + '*'.join(a_str) elif len(b) == 1: return sign + '*'.join(a_str) + "/" + b_str[0] else: return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str) def _print_not_supported(self, expr): try: self._not_supported.add(expr) except TypeError: # not hashable pass return self.emptyPrinter(expr) # The following can not be simply translated into C or Fortran _print_Basic = _print_not_supported _print_ComplexInfinity = _print_not_supported _print_Derivative = _print_not_supported _print_ExprCondPair = _print_not_supported _print_GeometryEntity = _print_not_supported _print_Infinity = _print_not_supported _print_Integral = _print_not_supported _print_Interval = _print_not_supported _print_AccumulationBounds = _print_not_supported _print_Limit = _print_not_supported _print_MatrixBase = _print_not_supported _print_DeferredVector = _print_not_supported _print_NaN = _print_not_supported _print_NegativeInfinity = _print_not_supported _print_Order = _print_not_supported _print_RootOf = _print_not_supported _print_RootsOf = _print_not_supported _print_RootSum = _print_not_supported _print_Uniform = _print_not_supported _print_Unit = _print_not_supported _print_Wild = _print_not_supported _print_WildFunction = _print_not_supported _print_Relational = _print_not_supported # Code printer functions. These are included in this file so that they can be # imported in the top-level __init__.py without importing the sympy.codegen # module. def ccode(expr, assign_to=None, standard='c99', **settings): """Converts an expr to a string of c code Parameters ========== expr : Expr A sympy expression to be converted. assign_to : optional When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, ``Symbol``, ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements. standard : str, optional String specifying the standard. If your compiler supports a more modern standard you may set this to 'c99' to allow the printer to use more math functions. [default='c89']. precision : integer, optional The precision for numbers such as pi [default=17]. user_functions : dict, optional A dictionary where the keys are string representations of either ``FunctionClass`` or ``UndefinedFunction`` instances and the values are their desired C string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)] or [(argument_test, cfunction_formater)]. See below for examples. dereference : iterable, optional An iterable of symbols that should be dereferenced in the printed code expression. These would be values passed by address to the function. For example, if ``dereference=[a]``, the resulting code would print ``(*a)`` instead of ``a``. human : bool, optional If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True]. contract: bool, optional If True, ``Indexed`` instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True]. Examples ======== >>> from sympy import ccode, symbols, Rational, sin, ceiling, Abs, Function >>> x, tau = symbols("x, tau") >>> expr = (2*tau)**Rational(7, 2) >>> ccode(expr) '8*M_SQRT2*pow(tau, 7.0/2.0)' >>> ccode(expr, math_macros={}) '8*sqrt(2)*pow(tau, 7.0/2.0)' >>> ccode(sin(x), assign_to="s") 's = sin(x);' >>> from sympy.codegen.ast import real, float80 >>> ccode(expr, type_aliases={real: float80}) '8*M_SQRT2l*powl(tau, 7.0L/2.0L)' Simple custom printing can be defined for certain types by passing a dictionary of {"type" : "function"} to the ``user_functions`` kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. >>> custom_functions = { ... "ceiling": "CEIL", ... "Abs": [(lambda x: not x.is_integer, "fabs"), ... (lambda x: x.is_integer, "ABS")], ... "func": "f" ... } >>> func = Function('func') >>> ccode(func(Abs(x) + ceiling(x)), standard='C89', user_functions=custom_functions) 'f(fabs(x) + CEIL(x))' or if the C-function takes a subset of the original arguments: >>> ccode(2**x + 3**x, standard='C99', user_functions={'Pow': [ ... (lambda b, e: b == 2, lambda b, e: 'exp2(%s)' % e), ... (lambda b, e: b != 2, 'pow')]}) 'exp2(x) + pow(3, x)' ``Piecewise`` expressions are converted into conditionals. If an ``assign_to`` variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the ``Piecewise`` lacks a default term, represented by ``(expr, True)`` then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. >>> from sympy import Piecewise >>> expr = Piecewise((x + 1, x > 0), (x, True)) >>> print(ccode(expr, tau, standard='C89')) if (x > 0) { tau = x + 1; } else { tau = x; } Support for loops is provided through ``Indexed`` types. With ``contract=True`` these expressions will be turned into loops, whereas ``contract=False`` will just print the assignment expression that should be looped over: >>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> ccode(e.rhs, assign_to=e.lhs, contract=False, standard='C89') 'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);' Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions must be provided to ``assign_to``. Note that any expression that can be generated normally can also exist inside a Matrix: >>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) >>> A = MatrixSymbol('A', 3, 1) >>> print(ccode(mat, A, standard='C89')) A[0] = pow(x, 2); if (x > 0) { A[1] = x + 1; } else { A[1] = x; } A[2] = sin(x); """ from sympy.printing.c import c_code_printers return c_code_printers[standard.lower()](settings).doprint(expr, assign_to) def print_ccode(expr, **settings): """Prints C representation of the given expression.""" print(ccode(expr, **settings)) def fcode(expr, assign_to=None, **settings): """Converts an expr to a string of fortran code Parameters ========== expr : Expr A sympy expression to be converted. assign_to : optional When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, ``Symbol``, ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements. precision : integer, optional DEPRECATED. Use type_mappings instead. The precision for numbers such as pi [default=17]. user_functions : dict, optional A dictionary where keys are ``FunctionClass`` instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. See below for examples. human : bool, optional If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True]. contract: bool, optional If True, ``Indexed`` instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True]. source_format : optional The source format can be either 'fixed' or 'free'. [default='fixed'] standard : integer, optional The Fortran standard to be followed. This is specified as an integer. Acceptable standards are 66, 77, 90, 95, 2003, and 2008. Default is 77. Note that currently the only distinction internally is between standards before 95, and those 95 and after. This may change later as more features are added. name_mangling : bool, optional If True, then the variables that would become identical in case-insensitive Fortran are mangled by appending different number of ``_`` at the end. If False, SymPy won't interfere with naming of variables. [default=True] Examples ======== >>> from sympy import fcode, symbols, Rational, sin, ceiling, floor >>> x, tau = symbols("x, tau") >>> fcode((2*tau)**Rational(7, 2)) ' 8*sqrt(2.0d0)*tau**(7.0d0/2.0d0)' >>> fcode(sin(x), assign_to="s") ' s = sin(x)' Custom printing can be defined for certain types by passing a dictionary of "type" : "function" to the ``user_functions`` kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. >>> custom_functions = { ... "ceiling": "CEIL", ... "floor": [(lambda x: not x.is_integer, "FLOOR1"), ... (lambda x: x.is_integer, "FLOOR2")] ... } >>> fcode(floor(x) + ceiling(x), user_functions=custom_functions) ' CEIL(x) + FLOOR1(x)' ``Piecewise`` expressions are converted into conditionals. If an ``assign_to`` variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the ``Piecewise`` lacks a default term, represented by ``(expr, True)`` then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. >>> from sympy import Piecewise >>> expr = Piecewise((x + 1, x > 0), (x, True)) >>> print(fcode(expr, tau)) if (x > 0) then tau = x + 1 else tau = x end if Support for loops is provided through ``Indexed`` types. With ``contract=True`` these expressions will be turned into loops, whereas ``contract=False`` will just print the assignment expression that should be looped over: >>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> fcode(e.rhs, assign_to=e.lhs, contract=False) ' Dy(i) = (y(i + 1) - y(i))/(t(i + 1) - t(i))' Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions must be provided to ``assign_to``. Note that any expression that can be generated normally can also exist inside a Matrix: >>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) >>> A = MatrixSymbol('A', 3, 1) >>> print(fcode(mat, A)) A(1, 1) = x**2 if (x > 0) then A(2, 1) = x + 1 else A(2, 1) = x end if A(3, 1) = sin(x) """ from sympy.printing.fortran import FCodePrinter return FCodePrinter(settings).doprint(expr, assign_to) def print_fcode(expr, **settings): """Prints the Fortran representation of the given expression. See fcode for the meaning of the optional arguments. """ print(fcode(expr, **settings)) def cxxcode(expr, assign_to=None, standard='c++11', **settings): """ C++ equivalent of :func:`~.ccode`. """ from sympy.printing.cxx import cxx_code_printers return cxx_code_printers[standard.lower()](settings).doprint(expr, assign_to)
abab6d09ec82cbc4a60f8c1100402805e2bc08316b032c33fcf3ec4e6a7dc06e
""" A Printer for generating executable code. The most important function here is srepr that returns a string so that the relation eval(srepr(expr))=expr holds in an appropriate environment. """ from typing import Any, Dict from sympy.core.function import AppliedUndef from sympy.core.mul import Mul from mpmath.libmp import repr_dps, to_str as mlib_to_str from .printer import Printer, print_function class ReprPrinter(Printer): printmethod = "_sympyrepr" _default_settings = { "order": None, "perm_cyclic" : True, } # type: Dict[str, Any] def reprify(self, args, sep): """ Prints each item in `args` and joins them with `sep`. """ return sep.join([self.doprint(item) for item in args]) def emptyPrinter(self, expr): """ The fallback printer. """ if isinstance(expr, str): return expr elif hasattr(expr, "__srepr__"): return expr.__srepr__() elif hasattr(expr, "args") and hasattr(expr.args, "__iter__"): l = [] for o in expr.args: l.append(self._print(o)) return expr.__class__.__name__ + '(%s)' % ', '.join(l) elif hasattr(expr, "__module__") and hasattr(expr, "__name__"): return "<'%s.%s'>" % (expr.__module__, expr.__name__) else: return str(expr) def _print_Add(self, expr, order=None): args = self._as_ordered_terms(expr, order=order) nargs = len(args) args = map(self._print, args) clsname = type(expr).__name__ if nargs > 255: # Issue #10259, Python < 3.7 return clsname + "(*[%s])" % ", ".join(args) return clsname + "(%s)" % ", ".join(args) def _print_Cycle(self, expr): return expr.__repr__() def _print_Permutation(self, expr): from sympy.combinatorics.permutations import Permutation, Cycle from sympy.utilities.exceptions import SymPyDeprecationWarning perm_cyclic = Permutation.print_cyclic if perm_cyclic is not None: SymPyDeprecationWarning( feature="Permutation.print_cyclic = {}".format(perm_cyclic), useinstead="init_printing(perm_cyclic={})" .format(perm_cyclic), issue=15201, deprecated_since_version="1.6").warn() else: perm_cyclic = self._settings.get("perm_cyclic", True) if perm_cyclic: if not expr.size: return 'Permutation()' # before taking Cycle notation, see if the last element is # a singleton and move it to the head of the string s = Cycle(expr)(expr.size - 1).__repr__()[len('Cycle'):] last = s.rfind('(') if not last == 0 and ',' not in s[last:]: s = s[last:] + s[:last] return 'Permutation%s' %s else: s = expr.support() if not s: if expr.size < 5: return 'Permutation(%s)' % str(expr.array_form) return 'Permutation([], size=%s)' % expr.size trim = str(expr.array_form[:s[-1] + 1]) + ', size=%s' % expr.size use = full = str(expr.array_form) if len(trim) < len(full): use = trim return 'Permutation(%s)' % use def _print_Function(self, expr): r = self._print(expr.func) r += '(%s)' % ', '.join([self._print(a) for a in expr.args]) return r def _print_FunctionClass(self, expr): if issubclass(expr, AppliedUndef): return 'Function(%r)' % (expr.__name__) else: return expr.__name__ def _print_Half(self, expr): return 'Rational(1, 2)' def _print_RationalConstant(self, expr): return str(expr) def _print_AtomicExpr(self, expr): return str(expr) def _print_NumberSymbol(self, expr): return str(expr) def _print_Integer(self, expr): return 'Integer(%i)' % expr.p def _print_Integers(self, expr): return 'Integers' def _print_Naturals(self, expr): return 'Naturals' def _print_Naturals0(self, expr): return 'Naturals0' def _print_Reals(self, expr): return 'Reals' def _print_EmptySet(self, expr): return 'EmptySet' def _print_EmptySequence(self, expr): return 'EmptySequence' def _print_list(self, expr): return "[%s]" % self.reprify(expr, ", ") def _print_dict(self, expr): sep = ", " dict_kvs = ["%s: %s" % (self.doprint(key), self.doprint(value)) for key, value in expr.items()] return "{%s}" % sep.join(dict_kvs) def _print_set(self, expr): if not expr: return "set()" return "{%s}" % self.reprify(expr, ", ") def _print_MatrixBase(self, expr): # special case for some empty matrices if (expr.rows == 0) ^ (expr.cols == 0): return '%s(%s, %s, %s)' % (expr.__class__.__name__, self._print(expr.rows), self._print(expr.cols), self._print([])) l = [] for i in range(expr.rows): l.append([]) for j in range(expr.cols): l[-1].append(expr[i, j]) return '%s(%s)' % (expr.__class__.__name__, self._print(l)) def _print_BooleanTrue(self, expr): return "true" def _print_BooleanFalse(self, expr): return "false" def _print_NaN(self, expr): return "nan" def _print_Mul(self, expr, order=None): if self.order not in ('old', 'none'): args = expr.as_ordered_factors() else: # use make_args in case expr was something like -x -> x args = Mul.make_args(expr) nargs = len(args) args = map(self._print, args) clsname = type(expr).__name__ if nargs > 255: # Issue #10259, Python < 3.7 return clsname + "(*[%s])" % ", ".join(args) return clsname + "(%s)" % ", ".join(args) def _print_Rational(self, expr): return 'Rational(%s, %s)' % (self._print(expr.p), self._print(expr.q)) def _print_PythonRational(self, expr): return "%s(%d, %d)" % (expr.__class__.__name__, expr.p, expr.q) def _print_Fraction(self, expr): return 'Fraction(%s, %s)' % (self._print(expr.numerator), self._print(expr.denominator)) def _print_Float(self, expr): r = mlib_to_str(expr._mpf_, repr_dps(expr._prec)) return "%s('%s', precision=%i)" % (expr.__class__.__name__, r, expr._prec) def _print_Sum2(self, expr): return "Sum2(%s, (%s, %s, %s))" % (self._print(expr.f), self._print(expr.i), self._print(expr.a), self._print(expr.b)) def _print_Str(self, s): return "%s(%s)" % (s.__class__.__name__, self._print(s.name)) def _print_Symbol(self, expr): d = expr._assumptions.generator # print the dummy_index like it was an assumption if expr.is_Dummy: d['dummy_index'] = expr.dummy_index if d == {}: return "%s(%s)" % (expr.__class__.__name__, self._print(expr.name)) else: attr = ['%s=%s' % (k, v) for k, v in d.items()] return "%s(%s, %s)" % (expr.__class__.__name__, self._print(expr.name), ', '.join(attr)) def _print_CoordinateSymbol(self, expr): d = expr._assumptions.generator if d == {}: return "%s(%s, %s)" % ( expr.__class__.__name__, self._print(expr.coordinate_system), self._print(expr.index) ) else: attr = ['%s=%s' % (k, v) for k, v in d.items()] return "%s(%s, %s, %s)" % ( expr.__class__.__name__, self._print(expr.coordinate_system), self._print(expr.index), ', '.join(attr) ) def _print_Predicate(self, expr): return "Q.%s" % expr.name def _print_AppliedPredicate(self, expr): # will be changed to just expr.args when args overriding is removed args = expr._args return "%s(%s)" % (expr.__class__.__name__, self.reprify(args, ", ")) def _print_str(self, expr): return repr(expr) def _print_tuple(self, expr): if len(expr) == 1: return "(%s,)" % self._print(expr[0]) else: return "(%s)" % self.reprify(expr, ", ") def _print_WildFunction(self, expr): return "%s('%s')" % (expr.__class__.__name__, expr.name) def _print_AlgebraicNumber(self, expr): return "%s(%s, %s)" % (expr.__class__.__name__, self._print(expr.root), self._print(expr.coeffs())) def _print_PolyRing(self, ring): return "%s(%s, %s, %s)" % (ring.__class__.__name__, self._print(ring.symbols), self._print(ring.domain), self._print(ring.order)) def _print_FracField(self, field): return "%s(%s, %s, %s)" % (field.__class__.__name__, self._print(field.symbols), self._print(field.domain), self._print(field.order)) def _print_PolyElement(self, poly): terms = list(poly.terms()) terms.sort(key=poly.ring.order, reverse=True) return "%s(%s, %s)" % (poly.__class__.__name__, self._print(poly.ring), self._print(terms)) def _print_FracElement(self, frac): numer_terms = list(frac.numer.terms()) numer_terms.sort(key=frac.field.order, reverse=True) denom_terms = list(frac.denom.terms()) denom_terms.sort(key=frac.field.order, reverse=True) numer = self._print(numer_terms) denom = self._print(denom_terms) return "%s(%s, %s, %s)" % (frac.__class__.__name__, self._print(frac.field), numer, denom) def _print_FractionField(self, domain): cls = domain.__class__.__name__ field = self._print(domain.field) return "%s(%s)" % (cls, field) def _print_PolynomialRingBase(self, ring): cls = ring.__class__.__name__ dom = self._print(ring.domain) gens = ', '.join(map(self._print, ring.gens)) order = str(ring.order) if order != ring.default_order: orderstr = ", order=" + order else: orderstr = "" return "%s(%s, %s%s)" % (cls, dom, gens, orderstr) def _print_DMP(self, p): cls = p.__class__.__name__ rep = self._print(p.rep) dom = self._print(p.dom) if p.ring is not None: ringstr = ", ring=" + self._print(p.ring) else: ringstr = "" return "%s(%s, %s%s)" % (cls, rep, dom, ringstr) def _print_MonogenicFiniteExtension(self, ext): # The expanded tree shown by srepr(ext.modulus) # is not practical. return "FiniteExtension(%s)" % str(ext.modulus) def _print_ExtensionElement(self, f): rep = self._print(f.rep) ext = self._print(f.ext) return "ExtElem(%s, %s)" % (rep, ext) @print_function(ReprPrinter) def srepr(expr, **settings): """return expr in repr form""" return ReprPrinter(settings).doprint(expr)
238adaa8748f7104b821b936c71e9b4c3bd6f20ae19231f020ad59bc12aab594
from typing import Set from sympy.core import Basic, S from sympy.core.function import _coeff_isneg, Lambda from sympy.printing.codeprinter import CodePrinter from sympy.printing.precedence import precedence from functools import reduce known_functions = { 'Abs': 'abs', 'sin': 'sin', 'cos': 'cos', 'tan': 'tan', 'acos': 'acos', 'asin': 'asin', 'atan': 'atan', 'atan2': 'atan', 'ceiling': 'ceil', 'floor': 'floor', 'sign': 'sign', 'exp': 'exp', 'log': 'log', 'add': 'add', 'sub': 'sub', 'mul': 'mul', 'pow': 'pow' } class GLSLPrinter(CodePrinter): """ Rudimentary, generic GLSL printing tools. Additional settings: 'use_operators': Boolean (should the printer use operators for +,-,*, or functions?) """ _not_supported = set() # type: Set[Basic] printmethod = "_glsl" language = "GLSL" _default_settings = { 'use_operators': True, 'zero': 0, 'mat_nested': False, 'mat_separator': ',\n', 'mat_transpose': False, 'array_type': 'float', 'glsl_types': True, 'order': None, 'full_prec': 'auto', 'precision': 9, 'user_functions': {}, 'human': True, 'allow_unknown_functions': False, 'contract': True, 'error_on_reserved': False, 'reserved_word_suffix': '_', } def __init__(self, settings={}): CodePrinter.__init__(self, settings) self.known_functions = dict(known_functions) userfuncs = settings.get('user_functions', {}) self.known_functions.update(userfuncs) def _rate_index_position(self, p): return p*5 def _get_statement(self, codestring): return "%s;" % codestring def _get_comment(self, text): return "// {}".format(text) def _declare_number_const(self, name, value): return "float {} = {};".format(name, value) def _format_code(self, lines): return self.indent_code(lines) def indent_code(self, code): """Accepts a string of code or a list of code lines""" if isinstance(code, str): code_lines = self.indent_code(code.splitlines(True)) return ''.join(code_lines) tab = " " inc_token = ('{', '(', '{\n', '(\n') dec_token = ('}', ')') code = [line.lstrip(' \t') for line in code] increase = [int(any(map(line.endswith, inc_token))) for line in code] decrease = [int(any(map(line.startswith, dec_token))) for line in code] pretty = [] level = 0 for n, line in enumerate(code): if line == '' or line == '\n': pretty.append(line) continue level -= decrease[n] pretty.append("%s%s" % (tab*level, line)) level += increase[n] return pretty def _print_MatrixBase(self, mat): mat_separator = self._settings['mat_separator'] mat_transpose = self._settings['mat_transpose'] column_vector = (mat.rows == 1) if mat_transpose else (mat.cols == 1) A = mat.transpose() if mat_transpose != column_vector else mat glsl_types = self._settings['glsl_types'] array_type = self._settings['array_type'] array_size = A.cols*A.rows array_constructor = "{}[{}]".format(array_type, array_size) if A.cols == 1: return self._print(A[0]); if A.rows <= 4 and A.cols <= 4 and glsl_types: if A.rows == 1: return "vec{}{}".format( A.cols, A.table(self,rowstart='(',rowend=')') ) elif A.rows == A.cols: return "mat{}({})".format( A.rows, A.table(self,rowsep=', ', rowstart='',rowend='') ) else: return "mat{}x{}({})".format( A.cols, A.rows, A.table(self,rowsep=', ', rowstart='',rowend='') ) elif A.cols == 1 or A.rows == 1: return "{}({})".format( array_constructor, A.table(self,rowsep=mat_separator,rowstart='',rowend='') ) elif not self._settings['mat_nested']: return "{}(\n{}\n) /* a {}x{} matrix */".format( array_constructor, A.table(self,rowsep=mat_separator,rowstart='',rowend=''), A.rows, A.cols ) elif self._settings['mat_nested']: return "{}[{}][{}](\n{}\n)".format( array_type, A.rows, A.cols, A.table(self,rowsep=mat_separator,rowstart='float[](',rowend=')') ) def _print_SparseMatrix(self, mat): # do not allow sparse matrices to be made dense return self._print_not_supported(mat) def _traverse_matrix_indices(self, mat): mat_transpose = self._settings['mat_transpose'] if mat_transpose: rows,cols = mat.shape else: cols,rows = mat.shape return ((i, j) for i in range(cols) for j in range(rows)) def _print_MatrixElement(self, expr): # print('begin _print_MatrixElement') nest = self._settings['mat_nested']; glsl_types = self._settings['glsl_types']; mat_transpose = self._settings['mat_transpose']; if mat_transpose: cols,rows = expr.parent.shape i,j = expr.j,expr.i else: rows,cols = expr.parent.shape i,j = expr.i,expr.j pnt = self._print(expr.parent) if glsl_types and ((rows <= 4 and cols <=4) or nest): return "{}[{}][{}]".format(pnt, i, j) else: return "{}[{}]".format(pnt, i + j*rows) def _print_list(self, expr): l = ', '.join(self._print(item) for item in expr) glsl_types = self._settings['glsl_types'] array_type = self._settings['array_type'] array_size = len(expr) array_constructor = '{}[{}]'.format(array_type, array_size) if array_size <= 4 and glsl_types: return 'vec{}({})'.format(array_size, l) else: return '{}({})'.format(array_constructor, l) _print_tuple = _print_list _print_Tuple = _print_list def _get_loop_opening_ending(self, indices): open_lines = [] close_lines = [] loopstart = "for (int %(varble)s=%(start)s; %(varble)s<%(end)s; %(varble)s++){" for i in indices: # GLSL arrays start at 0 and end at dimension-1 open_lines.append(loopstart % { 'varble': self._print(i.label), 'start': self._print(i.lower), 'end': self._print(i.upper + 1)}) close_lines.append("}") return open_lines, close_lines def _print_Function_with_args(self, func, func_args): if func in self.known_functions: cond_func = self.known_functions[func] func = None if isinstance(cond_func, str): func = cond_func else: for cond, func in cond_func: if cond(func_args): break if func is not None: try: return func(*[self.parenthesize(item, 0) for item in func_args]) except TypeError: return '{}({})'.format(func, self.stringify(func_args, ", ")) elif isinstance(func, Lambda): # inlined function return self._print(func(*func_args)) else: return self._print_not_supported(func) def _print_Piecewise(self, expr): from sympy.codegen.ast import Assignment if expr.args[-1].cond != True: # We need the last conditional to be a True, otherwise the resulting # function may not return a result. raise ValueError("All Piecewise expressions must contain an " "(expr, True) statement to be used as a default " "condition. Without one, the generated " "expression may not evaluate to anything under " "some condition.") lines = [] if expr.has(Assignment): for i, (e, c) in enumerate(expr.args): if i == 0: lines.append("if (%s) {" % self._print(c)) elif i == len(expr.args) - 1 and c == True: lines.append("else {") else: lines.append("else if (%s) {" % self._print(c)) code0 = self._print(e) lines.append(code0) lines.append("}") return "\n".join(lines) else: # The piecewise was used in an expression, need to do inline # operators. This has the downside that inline operators will # not work for statements that span multiple lines (Matrix or # Indexed expressions). ecpairs = ["((%s) ? (\n%s\n)\n" % (self._print(c), self._print(e)) for e, c in expr.args[:-1]] last_line = ": (\n%s\n)" % self._print(expr.args[-1].expr) return ": ".join(ecpairs) + last_line + " ".join([")"*len(ecpairs)]) def _print_Idx(self, expr): return self._print(expr.label) def _print_Indexed(self, expr): # calculate index for 1d array dims = expr.shape elem = S.Zero offset = S.One for i in reversed(range(expr.rank)): elem += expr.indices[i]*offset offset *= dims[i] return "{}[{}]".format( self._print(expr.base.label), self._print(elem) ) def _print_Pow(self, expr): PREC = precedence(expr) if expr.exp == -1: return '1.0/%s' % (self.parenthesize(expr.base, PREC)) elif expr.exp == 0.5: return 'sqrt(%s)' % self._print(expr.base) else: try: e = self._print(float(expr.exp)) except TypeError: e = self._print(expr.exp) return self._print_Function_with_args('pow', ( self._print(expr.base), e )) def _print_int(self, expr): return str(float(expr)) def _print_Rational(self, expr): return "{}.0/{}.0".format(expr.p, expr.q) def _print_Relational(self, expr): lhs_code = self._print(expr.lhs) rhs_code = self._print(expr.rhs) op = expr.rel_op return "{} {} {}".format(lhs_code, op, rhs_code) def _print_Add(self, expr, order=None): if self._settings['use_operators']: return CodePrinter._print_Add(self, expr, order=order) terms = expr.as_ordered_terms() def partition(p,l): return reduce(lambda x, y: (x[0]+[y], x[1]) if p(y) else (x[0], x[1]+[y]), l, ([], [])) def add(a,b): return self._print_Function_with_args('add', (a, b)) # return self.known_functions['add']+'(%s, %s)' % (a,b) neg, pos = partition(lambda arg: _coeff_isneg(arg), terms) if pos: s = pos = reduce(lambda a,b: add(a,b), map(lambda t: self._print(t),pos)) else: s = pos = self._print(self._settings['zero']) if neg: # sum the absolute values of the negative terms neg = reduce(lambda a,b: add(a,b), map(lambda n: self._print(-n),neg)) # then subtract them from the positive terms s = self._print_Function_with_args('sub', (pos,neg)) # s = self.known_functions['sub']+'(%s, %s)' % (pos,neg) return s def _print_Mul(self, expr, **kwargs): if self._settings['use_operators']: return CodePrinter._print_Mul(self, expr, **kwargs) terms = expr.as_ordered_factors() def mul(a,b): # return self.known_functions['mul']+'(%s, %s)' % (a,b) return self._print_Function_with_args('mul', (a,b)) s = reduce(lambda a,b: mul(a,b), map(lambda t: self._print(t), terms)) return s def glsl_code(expr,assign_to=None,**settings): """Converts an expr to a string of GLSL code Parameters ========== expr : Expr A sympy expression to be converted. assign_to : optional When given, the argument is used for naming the variable or variables to which the expression is assigned. Can be a string, ``Symbol``, ``MatrixSymbol`` or ``Indexed`` type object. In cases where ``expr`` would be printed as an array, a list of string or ``Symbol`` objects can also be passed. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements. It can also be used to spread an array-like expression into multiple assignments. use_operators: bool, optional If set to False, then *,/,+,- operators will be replaced with functions mul, add, and sub, which must be implemented by the user, e.g. for implementing non-standard rings or emulated quad/octal precision. [default=True] glsl_types: bool, optional Set this argument to ``False`` in order to avoid using the ``vec`` and ``mat`` types. The printer will instead use arrays (or nested arrays). [default=True] mat_nested: bool, optional GLSL version 4.3 and above support nested arrays (arrays of arrays). Set this to ``True`` to render matrices as nested arrays. [default=False] mat_separator: str, optional By default, matrices are rendered with newlines using this separator, making them easier to read, but less compact. By removing the newline this option can be used to make them more vertically compact. [default=',\n'] mat_transpose: bool, optional GLSL's matrix multiplication implementation assumes column-major indexing. By default, this printer ignores that convention. Setting this option to ``True`` transposes all matrix output. [default=False] array_type: str, optional The GLSL array constructor type. [default='float'] precision : integer, optional The precision for numbers such as pi [default=15]. user_functions : dict, optional A dictionary where keys are ``FunctionClass`` instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, js_function_string)]. See below for examples. human : bool, optional If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True]. contract: bool, optional If True, ``Indexed`` instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True]. Examples ======== >>> from sympy import glsl_code, symbols, Rational, sin, ceiling, Abs >>> x, tau = symbols("x, tau") >>> glsl_code((2*tau)**Rational(7, 2)) '8*sqrt(2)*pow(tau, 3.5)' >>> glsl_code(sin(x), assign_to="float y") 'float y = sin(x);' Various GLSL types are supported: >>> from sympy import Matrix, glsl_code >>> glsl_code(Matrix([1,2,3])) 'vec3(1, 2, 3)' >>> glsl_code(Matrix([[1, 2],[3, 4]])) 'mat2(1, 2, 3, 4)' Pass ``mat_transpose = True`` to switch to column-major indexing: >>> glsl_code(Matrix([[1, 2],[3, 4]]), mat_transpose = True) 'mat2(1, 3, 2, 4)' By default, larger matrices get collapsed into float arrays: >>> print(glsl_code( Matrix([[1,2,3,4,5],[6,7,8,9,10]]) )) float[10]( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ) /* a 2x5 matrix */ The type of array constructor used to print GLSL arrays can be controlled via the ``array_type`` parameter: >>> glsl_code(Matrix([1,2,3,4,5]), array_type='int') 'int[5](1, 2, 3, 4, 5)' Passing a list of strings or ``symbols`` to the ``assign_to`` parameter will yield a multi-line assignment for each item in an array-like expression: >>> x_struct_members = symbols('x.a x.b x.c x.d') >>> print(glsl_code(Matrix([1,2,3,4]), assign_to=x_struct_members)) x.a = 1; x.b = 2; x.c = 3; x.d = 4; This could be useful in cases where it's desirable to modify members of a GLSL ``Struct``. It could also be used to spread items from an array-like expression into various miscellaneous assignments: >>> misc_assignments = ('x[0]', 'x[1]', 'float y', 'float z') >>> print(glsl_code(Matrix([1,2,3,4]), assign_to=misc_assignments)) x[0] = 1; x[1] = 2; float y = 3; float z = 4; Passing ``mat_nested = True`` instead prints out nested float arrays, which are supported in GLSL 4.3 and above. >>> mat = Matrix([ ... [ 0, 1, 2], ... [ 3, 4, 5], ... [ 6, 7, 8], ... [ 9, 10, 11], ... [12, 13, 14]]) >>> print(glsl_code( mat, mat_nested = True )) float[5][3]( float[]( 0, 1, 2), float[]( 3, 4, 5), float[]( 6, 7, 8), float[]( 9, 10, 11), float[](12, 13, 14) ) Custom printing can be defined for certain types by passing a dictionary of "type" : "function" to the ``user_functions`` kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, js_function_string)]. >>> custom_functions = { ... "ceiling": "CEIL", ... "Abs": [(lambda x: not x.is_integer, "fabs"), ... (lambda x: x.is_integer, "ABS")] ... } >>> glsl_code(Abs(x) + ceiling(x), user_functions=custom_functions) 'fabs(x) + CEIL(x)' If further control is needed, addition, subtraction, multiplication and division operators can be replaced with ``add``, ``sub``, and ``mul`` functions. This is done by passing ``use_operators = False``: >>> x,y,z = symbols('x,y,z') >>> glsl_code(x*(y+z), use_operators = False) 'mul(x, add(y, z))' >>> glsl_code(x*(y+z*(x-y)**z), use_operators = False) 'mul(x, add(y, mul(z, pow(sub(x, y), z))))' ``Piecewise`` expressions are converted into conditionals. If an ``assign_to`` variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the ``Piecewise`` lacks a default term, represented by ``(expr, True)`` then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. >>> from sympy import Piecewise >>> expr = Piecewise((x + 1, x > 0), (x, True)) >>> print(glsl_code(expr, tau)) if (x > 0) { tau = x + 1; } else { tau = x; } Support for loops is provided through ``Indexed`` types. With ``contract=True`` these expressions will be turned into loops, whereas ``contract=False`` will just print the assignment expression that should be looped over: >>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> glsl_code(e.rhs, assign_to=e.lhs, contract=False) 'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);' >>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) >>> A = MatrixSymbol('A', 3, 1) >>> print(glsl_code(mat, A)) A[0][0] = pow(x, 2.0); if (x > 0) { A[1][0] = x + 1; } else { A[1][0] = x; } A[2][0] = sin(x); """ return GLSLPrinter(settings).doprint(expr,assign_to) def print_glsl(expr, **settings): """Prints the GLSL representation of the given expression. See GLSLPrinter init function for settings. """ print(glsl_code(expr, **settings))
31bf64f6367e1c03547364bb637188af87c1f4f5a73c82eb8ddc5a58cb2ca649
"""Base class for all the objects in SymPy""" from collections import defaultdict from collections.abc import Mapping from itertools import chain, zip_longest from .assumptions import BasicMeta, ManagedProperties from .cache import cacheit from .sympify import _sympify, sympify, SympifyError from .compatibility import iterable, ordered from .singleton import S from .kind import UndefinedKind from ._print_helpers import Printable from inspect import getmro def as_Basic(expr): """Return expr as a Basic instance using strict sympify or raise a TypeError; this is just a wrapper to _sympify, raising a TypeError instead of a SympifyError.""" from sympy.utilities.misc import func_name try: return _sympify(expr) except SympifyError: raise TypeError( 'Argument must be a Basic object, not `%s`' % func_name( expr)) class Basic(Printable, metaclass=ManagedProperties): """ Base class for all SymPy objects. Notes and conventions ===================== 1) Always use ``.args``, when accessing parameters of some instance: >>> from sympy import cot >>> from sympy.abc import x, y >>> cot(x).args (x,) >>> cot(x).args[0] x >>> (x*y).args (x, y) >>> (x*y).args[1] y 2) Never use internal methods or variables (the ones prefixed with ``_``): >>> cot(x)._args # do not use this, use cot(x).args instead (x,) 3) By "SymPy object" we mean something that can be returned by ``sympify``. But not all objects one encounters using SymPy are subclasses of Basic. For example, mutable objects are not: >>> from sympy import Basic, Matrix, sympify >>> A = Matrix([[1, 2], [3, 4]]).as_mutable() >>> isinstance(A, Basic) False >>> B = sympify(A) >>> isinstance(B, Basic) True """ __slots__ = ('_mhash', # hash value '_args', # arguments '_assumptions' ) # To be overridden with True in the appropriate subclasses is_number = False is_Atom = False is_Symbol = False is_symbol = False is_Indexed = False is_Dummy = False is_Wild = False is_Function = False is_Add = False is_Mul = False is_Pow = False is_Number = False is_Float = False is_Rational = False is_Integer = False is_NumberSymbol = False is_Order = False is_Derivative = False is_Piecewise = False is_Poly = False is_AlgebraicNumber = False is_Relational = False is_Equality = False is_Boolean = False is_Not = False is_Matrix = False is_Vector = False is_Point = False is_MatAdd = False is_MatMul = False kind = UndefinedKind def __new__(cls, *args): obj = object.__new__(cls) obj._assumptions = cls.default_assumptions obj._mhash = None # will be set by __hash__ method. obj._args = args # all items in args must be Basic objects return obj def copy(self): return self.func(*self.args) def __reduce_ex__(self, proto): """ Pickling support.""" return type(self), self.__getnewargs__(), self.__getstate__() def __getnewargs__(self): return self.args def __getstate__(self): return {} def __setstate__(self, state): for k, v in state.items(): setattr(self, k, v) def __hash__(self): # hash cannot be cached using cache_it because infinite recurrence # occurs as hash is needed for setting cache dictionary keys h = self._mhash if h is None: h = hash((type(self).__name__,) + self._hashable_content()) self._mhash = h return h def _hashable_content(self): """Return a tuple of information about self that can be used to compute the hash. If a class defines additional attributes, like ``name`` in Symbol, then this method should be updated accordingly to return such relevant attributes. Defining more than _hashable_content is necessary if __eq__ has been defined by a class. See note about this in Basic.__eq__.""" return self._args @property def assumptions0(self): """ Return object `type` assumptions. For example: Symbol('x', real=True) Symbol('x', integer=True) are different objects. In other words, besides Python type (Symbol in this case), the initial assumptions are also forming their typeinfo. Examples ======== >>> from sympy import Symbol >>> from sympy.abc import x >>> x.assumptions0 {'commutative': True} >>> x = Symbol("x", positive=True) >>> x.assumptions0 {'commutative': True, 'complex': True, 'extended_negative': False, 'extended_nonnegative': True, 'extended_nonpositive': False, 'extended_nonzero': True, 'extended_positive': True, 'extended_real': True, 'finite': True, 'hermitian': True, 'imaginary': False, 'infinite': False, 'negative': False, 'nonnegative': True, 'nonpositive': False, 'nonzero': True, 'positive': True, 'real': True, 'zero': False} """ return {} def compare(self, other): """ Return -1, 0, 1 if the object is smaller, equal, or greater than other. Not in the mathematical sense. If the object is of a different type from the "other" then their classes are ordered according to the sorted_classes list. Examples ======== >>> from sympy.abc import x, y >>> x.compare(y) -1 >>> x.compare(x) 0 >>> y.compare(x) 1 """ # all redefinitions of __cmp__ method should start with the # following lines: if self is other: return 0 n1 = self.__class__ n2 = other.__class__ c = (n1 > n2) - (n1 < n2) if c: return c # st = self._hashable_content() ot = other._hashable_content() c = (len(st) > len(ot)) - (len(st) < len(ot)) if c: return c for l, r in zip(st, ot): l = Basic(*l) if isinstance(l, frozenset) else l r = Basic(*r) if isinstance(r, frozenset) else r if isinstance(l, Basic): c = l.compare(r) else: c = (l > r) - (l < r) if c: return c return 0 @staticmethod def _compare_pretty(a, b): from sympy.series.order import Order if isinstance(a, Order) and not isinstance(b, Order): return 1 if not isinstance(a, Order) and isinstance(b, Order): return -1 if a.is_Rational and b.is_Rational: l = a.p * b.q r = b.p * a.q return (l > r) - (l < r) else: from sympy.core.symbol import Wild p1, p2, p3 = Wild("p1"), Wild("p2"), Wild("p3") r_a = a.match(p1 * p2**p3) if r_a and p3 in r_a: a3 = r_a[p3] r_b = b.match(p1 * p2**p3) if r_b and p3 in r_b: b3 = r_b[p3] c = Basic.compare(a3, b3) if c != 0: return c return Basic.compare(a, b) @classmethod def fromiter(cls, args, **assumptions): """ Create a new object from an iterable. This is a convenience function that allows one to create objects from any iterable, without having to convert to a list or tuple first. Examples ======== >>> from sympy import Tuple >>> Tuple.fromiter(i for i in range(5)) (0, 1, 2, 3, 4) """ return cls(*tuple(args), **assumptions) @classmethod def class_key(cls): """Nice order of classes. """ return 5, 0, cls.__name__ @cacheit def sort_key(self, order=None): """ Return a sort key. Examples ======== >>> from sympy.core import S, I >>> sorted([S(1)/2, I, -I], key=lambda x: x.sort_key()) [1/2, -I, I] >>> S("[x, 1/x, 1/x**2, x**2, x**(1/2), x**(1/4), x**(3/2)]") [x, 1/x, x**(-2), x**2, sqrt(x), x**(1/4), x**(3/2)] >>> sorted(_, key=lambda x: x.sort_key()) [x**(-2), 1/x, x**(1/4), sqrt(x), x, x**(3/2), x**2] """ # XXX: remove this when issue 5169 is fixed def inner_key(arg): if isinstance(arg, Basic): return arg.sort_key(order) else: return arg args = self._sorted_args args = len(args), tuple([inner_key(arg) for arg in args]) return self.class_key(), args, S.One.sort_key(), S.One def __eq__(self, other): """Return a boolean indicating whether a == b on the basis of their symbolic trees. This is the same as a.compare(b) == 0 but faster. Notes ===== If a class that overrides __eq__() needs to retain the implementation of __hash__() from a parent class, the interpreter must be told this explicitly by setting __hash__ = <ParentClass>.__hash__. Otherwise the inheritance of __hash__() will be blocked, just as if __hash__ had been explicitly set to None. References ========== from http://docs.python.org/dev/reference/datamodel.html#object.__hash__ """ if self is other: return True tself = type(self) tother = type(other) if tself is not tother: try: other = _sympify(other) tother = type(other) except SympifyError: return NotImplemented # As long as we have the ordering of classes (sympy.core), # comparing types will be slow in Python 2, because it uses # __cmp__. Until we can remove it # (https://github.com/sympy/sympy/issues/4269), we only compare # types in Python 2 directly if they actually have __ne__. if type(tself).__ne__ is not type.__ne__: if tself != tother: return False elif tself is not tother: return False return self._hashable_content() == other._hashable_content() def __ne__(self, other): """``a != b`` -> Compare two symbolic trees and see whether they are different this is the same as: ``a.compare(b) != 0`` but faster """ return not self == other def dummy_eq(self, other, symbol=None): """ Compare two expressions and handle dummy symbols. Examples ======== >>> from sympy import Dummy >>> from sympy.abc import x, y >>> u = Dummy('u') >>> (u**2 + 1).dummy_eq(x**2 + 1) True >>> (u**2 + 1) == (x**2 + 1) False >>> (u**2 + y).dummy_eq(x**2 + y, x) True >>> (u**2 + y).dummy_eq(x**2 + y, y) False """ s = self.as_dummy() o = _sympify(other) o = o.as_dummy() dummy_symbols = [i for i in s.free_symbols if i.is_Dummy] if len(dummy_symbols) == 1: dummy = dummy_symbols.pop() else: return s == o if symbol is None: symbols = o.free_symbols if len(symbols) == 1: symbol = symbols.pop() else: return s == o tmp = dummy.__class__() return s.xreplace({dummy: tmp}) == o.xreplace({symbol: tmp}) def atoms(self, *types): """Returns the atoms that form the current object. By default, only objects that are truly atomic and can't be divided into smaller pieces are returned: symbols, numbers, and number symbols like I and pi. It is possible to request atoms of any type, however, as demonstrated below. Examples ======== >>> from sympy import I, pi, sin >>> from sympy.abc import x, y >>> (1 + x + 2*sin(y + I*pi)).atoms() {1, 2, I, pi, x, y} If one or more types are given, the results will contain only those types of atoms. >>> from sympy import Number, NumberSymbol, Symbol >>> (1 + x + 2*sin(y + I*pi)).atoms(Symbol) {x, y} >>> (1 + x + 2*sin(y + I*pi)).atoms(Number) {1, 2} >>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol) {1, 2, pi} >>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol, I) {1, 2, I, pi} Note that I (imaginary unit) and zoo (complex infinity) are special types of number symbols and are not part of the NumberSymbol class. The type can be given implicitly, too: >>> (1 + x + 2*sin(y + I*pi)).atoms(x) # x is a Symbol {x, y} Be careful to check your assumptions when using the implicit option since ``S(1).is_Integer = True`` but ``type(S(1))`` is ``One``, a special type of sympy atom, while ``type(S(2))`` is type ``Integer`` and will find all integers in an expression: >>> from sympy import S >>> (1 + x + 2*sin(y + I*pi)).atoms(S(1)) {1} >>> (1 + x + 2*sin(y + I*pi)).atoms(S(2)) {1, 2} Finally, arguments to atoms() can select more than atomic atoms: any sympy type (loaded in core/__init__.py) can be listed as an argument and those types of "atoms" as found in scanning the arguments of the expression recursively: >>> from sympy import Function, Mul >>> from sympy.core.function import AppliedUndef >>> f = Function('f') >>> (1 + f(x) + 2*sin(y + I*pi)).atoms(Function) {f(x), sin(y + I*pi)} >>> (1 + f(x) + 2*sin(y + I*pi)).atoms(AppliedUndef) {f(x)} >>> (1 + x + 2*sin(y + I*pi)).atoms(Mul) {I*pi, 2*sin(y + I*pi)} """ if types: types = tuple( [t if isinstance(t, type) else type(t) for t in types]) nodes = preorder_traversal(self) if types: result = {node for node in nodes if isinstance(node, types)} else: result = {node for node in nodes if not node.args} return result @property def free_symbols(self): """Return from the atoms of self those which are free symbols. For most expressions, all symbols are free symbols. For some classes this is not true. e.g. Integrals use Symbols for the dummy variables which are bound variables, so Integral has a method to return all symbols except those. Derivative keeps track of symbols with respect to which it will perform a derivative; those are bound variables, too, so it has its own free_symbols method. Any other method that uses bound variables should implement a free_symbols method.""" return set().union(*[a.free_symbols for a in self.args]) @property def expr_free_symbols(self): return set() def as_dummy(self): """Return the expression with any objects having structurally bound symbols replaced with unique, canonical symbols within the object in which they appear and having only the default assumption for commutativity being True. When applied to a symbol a new symbol having only the same commutativity will be returned. Examples ======== >>> from sympy import Integral, Symbol >>> from sympy.abc import x >>> r = Symbol('r', real=True) >>> Integral(r, (r, x)).as_dummy() Integral(_0, (_0, x)) >>> _.variables[0].is_real is None True >>> r.as_dummy() _r Notes ===== Any object that has structurally bound variables should have a property, `bound_symbols` that returns those symbols appearing in the object. """ from sympy.core.symbol import Dummy, Symbol def can(x): # mask free that shadow bound free = x.free_symbols bound = set(x.bound_symbols) d = {i: Dummy() for i in bound & free} x = x.subs(d) # replace bound with canonical names x = x.xreplace(x.canonical_variables) # return after undoing masking return x.xreplace({v: k for k, v in d.items()}) if not self.has(Symbol): return self return self.replace( lambda x: hasattr(x, 'bound_symbols'), lambda x: can(x), simultaneous=False) @property def canonical_variables(self): """Return a dictionary mapping any variable defined in ``self.bound_symbols`` to Symbols that do not clash with any free symbols in the expression. Examples ======== >>> from sympy import Lambda >>> from sympy.abc import x >>> Lambda(x, 2*x).canonical_variables {x: _0} """ from sympy.utilities.iterables import numbered_symbols if not hasattr(self, 'bound_symbols'): return {} dums = numbered_symbols('_') reps = {} # watch out for free symbol that are not in bound symbols; # those that are in bound symbols are about to get changed bound = self.bound_symbols names = {i.name for i in self.free_symbols - set(bound)} for b in bound: d = next(dums) if b.is_Symbol: while d.name in names: d = next(dums) reps[b] = d return reps def rcall(self, *args): """Apply on the argument recursively through the expression tree. This method is used to simulate a common abuse of notation for operators. For instance in SymPy the the following will not work: ``(x+Lambda(y, 2*y))(z) == x+2*z``, however you can use >>> from sympy import Lambda >>> from sympy.abc import x, y, z >>> (x + Lambda(y, 2*y)).rcall(z) x + 2*z """ return Basic._recursive_call(self, args) @staticmethod def _recursive_call(expr_to_call, on_args): """Helper for rcall method.""" from sympy import Symbol def the_call_method_is_overridden(expr): for cls in getmro(type(expr)): if '__call__' in cls.__dict__: return cls != Basic if callable(expr_to_call) and the_call_method_is_overridden(expr_to_call): if isinstance(expr_to_call, Symbol): # XXX When you call a Symbol it is return expr_to_call # transformed into an UndefFunction else: return expr_to_call(*on_args) elif expr_to_call.args: args = [Basic._recursive_call( sub, on_args) for sub in expr_to_call.args] return type(expr_to_call)(*args) else: return expr_to_call def is_hypergeometric(self, k): from sympy.simplify import hypersimp from sympy.functions import Piecewise if self.has(Piecewise): return None return hypersimp(self, k) is not None @property def is_comparable(self): """Return True if self can be computed to a real number (or already is a real number) with precision, else False. Examples ======== >>> from sympy import exp_polar, pi, I >>> (I*exp_polar(I*pi/2)).is_comparable True >>> (I*exp_polar(I*pi*2)).is_comparable False A False result does not mean that `self` cannot be rewritten into a form that would be comparable. For example, the difference computed below is zero but without simplification it does not evaluate to a zero with precision: >>> e = 2**pi*(1 + 2**pi) >>> dif = e - e.expand() >>> dif.is_comparable False >>> dif.n(2)._prec 1 """ is_extended_real = self.is_extended_real if is_extended_real is False: return False if not self.is_number: return False # don't re-eval numbers that are already evaluated since # this will create spurious precision n, i = [p.evalf(2) if not p.is_Number else p for p in self.as_real_imag()] if not (i.is_Number and n.is_Number): return False if i: # if _prec = 1 we can't decide and if not, # the answer is False because numbers with # imaginary parts can't be compared # so return False return False else: return n._prec != 1 @property def func(self): """ The top-level function in an expression. The following should hold for all objects:: >> x == x.func(*x.args) Examples ======== >>> from sympy.abc import x >>> a = 2*x >>> a.func <class 'sympy.core.mul.Mul'> >>> a.args (2, x) >>> a.func(*a.args) 2*x >>> a == a.func(*a.args) True """ return self.__class__ @property def args(self): """Returns a tuple of arguments of 'self'. Examples ======== >>> from sympy import cot >>> from sympy.abc import x, y >>> cot(x).args (x,) >>> cot(x).args[0] x >>> (x*y).args (x, y) >>> (x*y).args[1] y Notes ===== Never use self._args, always use self.args. Only use _args in __new__ when creating a new function. Don't override .args() from Basic (so that it's easy to change the interface in the future if needed). """ return self._args @property def _sorted_args(self): """ The same as ``args``. Derived classes which don't fix an order on their arguments should override this method to produce the sorted representation. """ return self.args def as_content_primitive(self, radical=False, clear=True): """A stub to allow Basic args (like Tuple) to be skipped when computing the content and primitive components of an expression. See Also ======== sympy.core.expr.Expr.as_content_primitive """ return S.One, self def subs(self, *args, **kwargs): """ Substitutes old for new in an expression after sympifying args. `args` is either: - two arguments, e.g. foo.subs(old, new) - one iterable argument, e.g. foo.subs(iterable). The iterable may be o an iterable container with (old, new) pairs. In this case the replacements are processed in the order given with successive patterns possibly affecting replacements already made. o a dict or set whose key/value items correspond to old/new pairs. In this case the old/new pairs will be sorted by op count and in case of a tie, by number of args and the default_sort_key. The resulting sorted list is then processed as an iterable container (see previous). If the keyword ``simultaneous`` is True, the subexpressions will not be evaluated until all the substitutions have been made. Examples ======== >>> from sympy import pi, exp, limit, oo >>> from sympy.abc import x, y >>> (1 + x*y).subs(x, pi) pi*y + 1 >>> (1 + x*y).subs({x:pi, y:2}) 1 + 2*pi >>> (1 + x*y).subs([(x, pi), (y, 2)]) 1 + 2*pi >>> reps = [(y, x**2), (x, 2)] >>> (x + y).subs(reps) 6 >>> (x + y).subs(reversed(reps)) x**2 + 2 >>> (x**2 + x**4).subs(x**2, y) y**2 + y To replace only the x**2 but not the x**4, use xreplace: >>> (x**2 + x**4).xreplace({x**2: y}) x**4 + y To delay evaluation until all substitutions have been made, set the keyword ``simultaneous`` to True: >>> (x/y).subs([(x, 0), (y, 0)]) 0 >>> (x/y).subs([(x, 0), (y, 0)], simultaneous=True) nan This has the added feature of not allowing subsequent substitutions to affect those already made: >>> ((x + y)/y).subs({x + y: y, y: x + y}) 1 >>> ((x + y)/y).subs({x + y: y, y: x + y}, simultaneous=True) y/(x + y) In order to obtain a canonical result, unordered iterables are sorted by count_op length, number of arguments and by the default_sort_key to break any ties. All other iterables are left unsorted. >>> from sympy import sqrt, sin, cos >>> from sympy.abc import a, b, c, d, e >>> A = (sqrt(sin(2*x)), a) >>> B = (sin(2*x), b) >>> C = (cos(2*x), c) >>> D = (x, d) >>> E = (exp(x), e) >>> expr = sqrt(sin(2*x))*sin(exp(x)*x)*cos(2*x) + sin(2*x) >>> expr.subs(dict([A, B, C, D, E])) a*c*sin(d*e) + b The resulting expression represents a literal replacement of the old arguments with the new arguments. This may not reflect the limiting behavior of the expression: >>> (x**3 - 3*x).subs({x: oo}) nan >>> limit(x**3 - 3*x, x, oo) oo If the substitution will be followed by numerical evaluation, it is better to pass the substitution to evalf as >>> (1/x).evalf(subs={x: 3.0}, n=21) 0.333333333333333333333 rather than >>> (1/x).subs({x: 3.0}).evalf(21) 0.333333333333333314830 as the former will ensure that the desired level of precision is obtained. See Also ======== replace: replacement capable of doing wildcard-like matching, parsing of match, and conditional replacements xreplace: exact node replacement in expr tree; also capable of using matching rules sympy.core.evalf.EvalfMixin.evalf: calculates the given formula to a desired level of precision """ from sympy.core.compatibility import _nodes, default_sort_key from sympy.core.containers import Dict from sympy.core.symbol import Dummy, Symbol from sympy.utilities.misc import filldedent unordered = False if len(args) == 1: sequence = args[0] if isinstance(sequence, set): unordered = True elif isinstance(sequence, (Dict, Mapping)): unordered = True sequence = sequence.items() elif not iterable(sequence): raise ValueError(filldedent(""" When a single argument is passed to subs it should be a dictionary of old: new pairs or an iterable of (old, new) tuples.""")) elif len(args) == 2: sequence = [args] else: raise ValueError("subs accepts either 1 or 2 arguments") sequence = list(sequence) for i, s in enumerate(sequence): if isinstance(s[0], str): # when old is a string we prefer Symbol s = Symbol(s[0]), s[1] try: s = [sympify(_, strict=not isinstance(_, (str, type))) for _ in s] except SympifyError: # if it can't be sympified, skip it sequence[i] = None continue # skip if there is no change sequence[i] = None if _aresame(*s) else tuple(s) sequence = list(filter(None, sequence)) if unordered: sequence = dict(sequence) # order so more complex items are first and items # of identical complexity are ordered so # f(x) < f(y) < x < y # \___ 2 __/ \_1_/ <- number of nodes # # For more complex ordering use an unordered sequence. k = list(ordered(sequence, default=False, keys=( lambda x: -_nodes(x), lambda x: default_sort_key(x), ))) sequence = [(k, sequence[k]) for k in k] if kwargs.pop('simultaneous', False): # XXX should this be the default for dict subs? reps = {} rv = self kwargs['hack2'] = True m = Dummy('subs_m') for old, new in sequence: com = new.is_commutative if com is None: com = True d = Dummy('subs_d', commutative=com) # using d*m so Subs will be used on dummy variables # in things like Derivative(f(x, y), x) in which x # is both free and bound rv = rv._subs(old, d*m, **kwargs) if not isinstance(rv, Basic): break reps[d] = new reps[m] = S.One # get rid of m return rv.xreplace(reps) else: rv = self for old, new in sequence: rv = rv._subs(old, new, **kwargs) if not isinstance(rv, Basic): break return rv @cacheit def _subs(self, old, new, **hints): """Substitutes an expression old -> new. If self is not equal to old then _eval_subs is called. If _eval_subs doesn't want to make any special replacement then a None is received which indicates that the fallback should be applied wherein a search for replacements is made amongst the arguments of self. >>> from sympy import Add >>> from sympy.abc import x, y, z Examples ======== Add's _eval_subs knows how to target x + y in the following so it makes the change: >>> (x + y + z).subs(x + y, 1) z + 1 Add's _eval_subs doesn't need to know how to find x + y in the following: >>> Add._eval_subs(z*(x + y) + 3, x + y, 1) is None True The returned None will cause the fallback routine to traverse the args and pass the z*(x + y) arg to Mul where the change will take place and the substitution will succeed: >>> (z*(x + y) + 3).subs(x + y, 1) z + 3 ** Developers Notes ** An _eval_subs routine for a class should be written if: 1) any arguments are not instances of Basic (e.g. bool, tuple); 2) some arguments should not be targeted (as in integration variables); 3) if there is something other than a literal replacement that should be attempted (as in Piecewise where the condition may be updated without doing a replacement). If it is overridden, here are some special cases that might arise: 1) If it turns out that no special change was made and all the original sub-arguments should be checked for replacements then None should be returned. 2) If it is necessary to do substitutions on a portion of the expression then _subs should be called. _subs will handle the case of any sub-expression being equal to old (which usually would not be the case) while its fallback will handle the recursion into the sub-arguments. For example, after Add's _eval_subs removes some matching terms it must process the remaining terms so it calls _subs on each of the un-matched terms and then adds them onto the terms previously obtained. 3) If the initial expression should remain unchanged then the original expression should be returned. (Whenever an expression is returned, modified or not, no further substitution of old -> new is attempted.) Sum's _eval_subs routine uses this strategy when a substitution is attempted on any of its summation variables. """ def fallback(self, old, new): """ Try to replace old with new in any of self's arguments. """ hit = False args = list(self.args) for i, arg in enumerate(args): if not hasattr(arg, '_eval_subs'): continue arg = arg._subs(old, new, **hints) if not _aresame(arg, args[i]): hit = True args[i] = arg if hit: rv = self.func(*args) hack2 = hints.get('hack2', False) if hack2 and self.is_Mul and not rv.is_Mul: # 2-arg hack coeff = S.One nonnumber = [] for i in args: if i.is_Number: coeff *= i else: nonnumber.append(i) nonnumber = self.func(*nonnumber) if coeff is S.One: return nonnumber else: return self.func(coeff, nonnumber, evaluate=False) return rv return self if _aresame(self, old): return new rv = self._eval_subs(old, new) if rv is None: rv = fallback(self, old, new) return rv def _eval_subs(self, old, new): """Override this stub if you want to do anything more than attempt a replacement of old with new in the arguments of self. See also ======== _subs """ return None def xreplace(self, rule): """ Replace occurrences of objects within the expression. Parameters ========== rule : dict-like Expresses a replacement rule Returns ======= xreplace : the result of the replacement Examples ======== >>> from sympy import symbols, pi, exp >>> x, y, z = symbols('x y z') >>> (1 + x*y).xreplace({x: pi}) pi*y + 1 >>> (1 + x*y).xreplace({x: pi, y: 2}) 1 + 2*pi Replacements occur only if an entire node in the expression tree is matched: >>> (x*y + z).xreplace({x*y: pi}) z + pi >>> (x*y*z).xreplace({x*y: pi}) x*y*z >>> (2*x).xreplace({2*x: y, x: z}) y >>> (2*2*x).xreplace({2*x: y, x: z}) 4*z >>> (x + y + 2).xreplace({x + y: 2}) x + y + 2 >>> (x + 2 + exp(x + 2)).xreplace({x + 2: y}) x + exp(y) + 2 xreplace doesn't differentiate between free and bound symbols. In the following, subs(x, y) would not change x since it is a bound symbol, but xreplace does: >>> from sympy import Integral >>> Integral(x, (x, 1, 2*x)).xreplace({x: y}) Integral(y, (y, 1, 2*y)) Trying to replace x with an expression raises an error: >>> Integral(x, (x, 1, 2*x)).xreplace({x: 2*y}) # doctest: +SKIP ValueError: Invalid limits given: ((2*y, 1, 4*y),) See Also ======== replace: replacement capable of doing wildcard-like matching, parsing of match, and conditional replacements subs: substitution of subexpressions as defined by the objects themselves. """ value, _ = self._xreplace(rule) return value def _xreplace(self, rule): """ Helper for xreplace. Tracks whether a replacement actually occurred. """ if self in rule: return rule[self], True elif rule: args = [] changed = False for a in self.args: _xreplace = getattr(a, '_xreplace', None) if _xreplace is not None: a_xr = _xreplace(rule) args.append(a_xr[0]) changed |= a_xr[1] else: args.append(a) args = tuple(args) if changed: return self.func(*args), True return self, False @cacheit def has(self, *patterns): """ Test whether any subexpression matches any of the patterns. Examples ======== >>> from sympy import sin >>> from sympy.abc import x, y, z >>> (x**2 + sin(x*y)).has(z) False >>> (x**2 + sin(x*y)).has(x, y, z) True >>> x.has(x) True Note ``has`` is a structural algorithm with no knowledge of mathematics. Consider the following half-open interval: >>> from sympy.sets import Interval >>> i = Interval.Lopen(0, 5); i Interval.Lopen(0, 5) >>> i.args (0, 5, True, False) >>> i.has(4) # there is no "4" in the arguments False >>> i.has(0) # there *is* a "0" in the arguments True Instead, use ``contains`` to determine whether a number is in the interval or not: >>> i.contains(4) True >>> i.contains(0) False Note that ``expr.has(*patterns)`` is exactly equivalent to ``any(expr.has(p) for p in patterns)``. In particular, ``False`` is returned when the list of patterns is empty. >>> x.has() False """ return any(self._has(pattern) for pattern in patterns) def _has(self, pattern): """Helper for .has()""" from sympy.core.function import UndefinedFunction, Function if isinstance(pattern, UndefinedFunction): return any(f.func == pattern or f == pattern for f in self.atoms(Function, UndefinedFunction)) if isinstance(pattern, BasicMeta): subtrees = preorder_traversal(self) return any(isinstance(arg, pattern) for arg in subtrees) pattern = _sympify(pattern) _has_matcher = getattr(pattern, '_has_matcher', None) if _has_matcher is not None: match = _has_matcher() return any(match(arg) for arg in preorder_traversal(self)) else: return any(arg == pattern for arg in preorder_traversal(self)) def _has_matcher(self): """Helper for .has()""" return lambda other: self == other def replace(self, query, value, map=False, simultaneous=True, exact=None): """ Replace matching subexpressions of ``self`` with ``value``. If ``map = True`` then also return the mapping {old: new} where ``old`` was a sub-expression found with query and ``new`` is the replacement value for it. If the expression itself doesn't match the query, then the returned value will be ``self.xreplace(map)`` otherwise it should be ``self.subs(ordered(map.items()))``. Traverses an expression tree and performs replacement of matching subexpressions from the bottom to the top of the tree. The default approach is to do the replacement in a simultaneous fashion so changes made are targeted only once. If this is not desired or causes problems, ``simultaneous`` can be set to False. In addition, if an expression containing more than one Wild symbol is being used to match subexpressions and the ``exact`` flag is None it will be set to True so the match will only succeed if all non-zero values are received for each Wild that appears in the match pattern. Setting this to False accepts a match of 0; while setting it True accepts all matches that have a 0 in them. See example below for cautions. The list of possible combinations of queries and replacement values is listed below: Examples ======== Initial setup >>> from sympy import log, sin, cos, tan, Wild, Mul, Add >>> from sympy.abc import x, y >>> f = log(sin(x)) + tan(sin(x**2)) 1.1. type -> type obj.replace(type, newtype) When object of type ``type`` is found, replace it with the result of passing its argument(s) to ``newtype``. >>> f.replace(sin, cos) log(cos(x)) + tan(cos(x**2)) >>> sin(x).replace(sin, cos, map=True) (cos(x), {sin(x): cos(x)}) >>> (x*y).replace(Mul, Add) x + y 1.2. type -> func obj.replace(type, func) When object of type ``type`` is found, apply ``func`` to its argument(s). ``func`` must be written to handle the number of arguments of ``type``. >>> f.replace(sin, lambda arg: sin(2*arg)) log(sin(2*x)) + tan(sin(2*x**2)) >>> (x*y).replace(Mul, lambda *args: sin(2*Mul(*args))) sin(2*x*y) 2.1. pattern -> expr obj.replace(pattern(wild), expr(wild)) Replace subexpressions matching ``pattern`` with the expression written in terms of the Wild symbols in ``pattern``. >>> a, b = map(Wild, 'ab') >>> f.replace(sin(a), tan(a)) log(tan(x)) + tan(tan(x**2)) >>> f.replace(sin(a), tan(a/2)) log(tan(x/2)) + tan(tan(x**2/2)) >>> f.replace(sin(a), a) log(x) + tan(x**2) >>> (x*y).replace(a*x, a) y Matching is exact by default when more than one Wild symbol is used: matching fails unless the match gives non-zero values for all Wild symbols: >>> (2*x + y).replace(a*x + b, b - a) y - 2 >>> (2*x).replace(a*x + b, b - a) 2*x When set to False, the results may be non-intuitive: >>> (2*x).replace(a*x + b, b - a, exact=False) 2/x 2.2. pattern -> func obj.replace(pattern(wild), lambda wild: expr(wild)) All behavior is the same as in 2.1 but now a function in terms of pattern variables is used rather than an expression: >>> f.replace(sin(a), lambda a: sin(2*a)) log(sin(2*x)) + tan(sin(2*x**2)) 3.1. func -> func obj.replace(filter, func) Replace subexpression ``e`` with ``func(e)`` if ``filter(e)`` is True. >>> g = 2*sin(x**3) >>> g.replace(lambda expr: expr.is_Number, lambda expr: expr**2) 4*sin(x**9) The expression itself is also targeted by the query but is done in such a fashion that changes are not made twice. >>> e = x*(x*y + 1) >>> e.replace(lambda x: x.is_Mul, lambda x: 2*x) 2*x*(2*x*y + 1) When matching a single symbol, `exact` will default to True, but this may or may not be the behavior that is desired: Here, we want `exact=False`: >>> from sympy import Function >>> f = Function('f') >>> e = f(1) + f(0) >>> q = f(a), lambda a: f(a + 1) >>> e.replace(*q, exact=False) f(1) + f(2) >>> e.replace(*q, exact=True) f(0) + f(2) But here, the nature of matching makes selecting the right setting tricky: >>> e = x**(1 + y) >>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=False) x >>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=True) x**(-x - y + 1) >>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=False) x >>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=True) x**(1 - y) It is probably better to use a different form of the query that describes the target expression more precisely: >>> (1 + x**(1 + y)).replace( ... lambda x: x.is_Pow and x.exp.is_Add and x.exp.args[0] == 1, ... lambda x: x.base**(1 - (x.exp - 1))) ... x**(1 - y) + 1 See Also ======== subs: substitution of subexpressions as defined by the objects themselves. xreplace: exact node replacement in expr tree; also capable of using matching rules """ from sympy.core.symbol import Wild try: query = _sympify(query) except SympifyError: pass try: value = _sympify(value) except SympifyError: pass if isinstance(query, type): _query = lambda expr: isinstance(expr, query) if isinstance(value, type): _value = lambda expr, result: value(*expr.args) elif callable(value): _value = lambda expr, result: value(*expr.args) else: raise TypeError( "given a type, replace() expects another " "type or a callable") elif isinstance(query, Basic): _query = lambda expr: expr.match(query) if exact is None: exact = (len(query.atoms(Wild)) > 1) if isinstance(value, Basic): if exact: _value = lambda expr, result: (value.subs(result) if all(result.values()) else expr) else: _value = lambda expr, result: value.subs(result) elif callable(value): # match dictionary keys get the trailing underscore stripped # from them and are then passed as keywords to the callable; # if ``exact`` is True, only accept match if there are no null # values amongst those matched. if exact: _value = lambda expr, result: (value(** {str(k)[:-1]: v for k, v in result.items()}) if all(val for val in result.values()) else expr) else: _value = lambda expr, result: value(** {str(k)[:-1]: v for k, v in result.items()}) else: raise TypeError( "given an expression, replace() expects " "another expression or a callable") elif callable(query): _query = query if callable(value): _value = lambda expr, result: value(expr) else: raise TypeError( "given a callable, replace() expects " "another callable") else: raise TypeError( "first argument to replace() must be a " "type, an expression or a callable") def walk(rv, F): """Apply ``F`` to args and then to result. """ args = getattr(rv, 'args', None) if args is not None: if args: newargs = tuple([walk(a, F) for a in args]) if args != newargs: rv = rv.func(*newargs) if simultaneous: # if rv is something that was already # matched (that was changed) then skip # applying F again for i, e in enumerate(args): if rv == e and e != newargs[i]: return rv rv = F(rv) return rv mapping = {} # changes that took place def rec_replace(expr): result = _query(expr) if result or result == {}: v = _value(expr, result) if v is not None and v != expr: if map: mapping[expr] = v expr = v return expr rv = walk(self, rec_replace) return (rv, mapping) if map else rv def find(self, query, group=False): """Find all subexpressions matching a query. """ query = _make_find_query(query) results = list(filter(query, preorder_traversal(self))) if not group: return set(results) else: groups = {} for result in results: if result in groups: groups[result] += 1 else: groups[result] = 1 return groups def count(self, query): """Count the number of matching subexpressions. """ query = _make_find_query(query) return sum(bool(query(sub)) for sub in preorder_traversal(self)) def matches(self, expr, repl_dict={}, old=False): """ Helper method for match() that looks for a match between Wild symbols in self and expressions in expr. Examples ======== >>> from sympy import symbols, Wild, Basic >>> a, b, c = symbols('a b c') >>> x = Wild('x') >>> Basic(a + x, x).matches(Basic(a + b, c)) is None True >>> Basic(a + x, x).matches(Basic(a + b + c, b + c)) {x_: b + c} """ repl_dict = repl_dict.copy() expr = sympify(expr) if not isinstance(expr, self.__class__): return None if self == expr: return repl_dict if len(self.args) != len(expr.args): return None d = repl_dict.copy() for arg, other_arg in zip(self.args, expr.args): if arg == other_arg: continue d = arg.xreplace(d).matches(other_arg, d, old=old) if d is None: return None return d def match(self, pattern, old=False): """ Pattern matching. Wild symbols match all. Return ``None`` when expression (self) does not match with pattern. Otherwise return a dictionary such that:: pattern.xreplace(self.match(pattern)) == self Examples ======== >>> from sympy import Wild, Sum >>> from sympy.abc import x, y >>> p = Wild("p") >>> q = Wild("q") >>> r = Wild("r") >>> e = (x+y)**(x+y) >>> e.match(p**p) {p_: x + y} >>> e.match(p**q) {p_: x + y, q_: x + y} >>> e = (2*x)**2 >>> e.match(p*q**r) {p_: 4, q_: x, r_: 2} >>> (p*q**r).xreplace(e.match(p*q**r)) 4*x**2 Structurally bound symbols are ignored during matching: >>> Sum(x, (x, 1, 2)).match(Sum(y, (y, 1, p))) {p_: 2} But they can be identified if desired: >>> Sum(x, (x, 1, 2)).match(Sum(q, (q, 1, p))) {p_: 2, q_: x} The ``old`` flag will give the old-style pattern matching where expressions and patterns are essentially solved to give the match. Both of the following give None unless ``old=True``: >>> (x - 2).match(p - x, old=True) {p_: 2*x - 2} >>> (2/x).match(p*x, old=True) {p_: 2/x**2} """ from sympy.core.symbol import Wild from sympy.core.function import WildFunction from sympy.utilities.misc import filldedent pattern = sympify(pattern) # match non-bound symbols canonical = lambda x: x if x.is_Symbol else x.as_dummy() m = canonical(pattern).matches(canonical(self), old=old) if m is None: return m wild = pattern.atoms(Wild, WildFunction) # sanity check if set(m) - wild: raise ValueError(filldedent(''' Some `matches` routine did not use a copy of repl_dict and injected unexpected symbols. Report this as an error at https://github.com/sympy/sympy/issues''')) # now see if bound symbols were requested bwild = wild - set(m) if not bwild: return m # replace free-Wild symbols in pattern with match result # so they will match but not be in the next match wpat = pattern.xreplace(m) # identify remaining bound wild w = wpat.matches(self, old=old) # add them to m if w: m.update(w) # done return m def count_ops(self, visual=None): """wrapper for count_ops that returns the operation count.""" from sympy import count_ops return count_ops(self, visual) def doit(self, **hints): """Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via 'hints' or unless the 'deep' hint was set to 'False'. >>> from sympy import Integral >>> from sympy.abc import x >>> 2*Integral(x, x) 2*Integral(x, x) >>> (2*Integral(x, x)).doit() x**2 >>> (2*Integral(x, x)).doit(deep=False) 2*Integral(x, x) """ if hints.get('deep', True): terms = [term.doit(**hints) if isinstance(term, Basic) else term for term in self.args] return self.func(*terms) else: return self def simplify(self, **kwargs): """See the simplify function in sympy.simplify""" from sympy.simplify import simplify return simplify(self, **kwargs) def _eval_rewrite(self, pattern, rule, **hints): if self.is_Atom: if hasattr(self, rule): return getattr(self, rule)() return self if hints.get('deep', True): args = [a._eval_rewrite(pattern, rule, **hints) if isinstance(a, Basic) else a for a in self.args] else: args = self.args if pattern is None or isinstance(self, pattern): if hasattr(self, rule): rewritten = getattr(self, rule)(*args, **hints) if rewritten is not None: return rewritten return self.func(*args) if hints.get('evaluate', True) else self def _eval_derivative_n_times(self, s, n): # This is the default evaluator for derivatives (as called by `diff` # and `Derivative`), it will attempt a loop to derive the expression # `n` times by calling the corresponding `_eval_derivative` method, # while leaving the derivative unevaluated if `n` is symbolic. This # method should be overridden if the object has a closed form for its # symbolic n-th derivative. from sympy import Integer if isinstance(n, (int, Integer)): obj = self for i in range(n): obj2 = obj._eval_derivative(s) if obj == obj2 or obj2 is None: break obj = obj2 return obj2 else: return None def rewrite(self, *args, **hints): """ Rewrite functions in terms of other functions. Rewrites expression containing applications of functions of one kind in terms of functions of different kind. For example you can rewrite trigonometric functions as complex exponentials or combinatorial functions as gamma function. As a pattern this function accepts a list of functions to to rewrite (instances of DefinedFunction class). As rule you can use string or a destination function instance (in this case rewrite() will use the str() function). There is also the possibility to pass hints on how to rewrite the given expressions. For now there is only one such hint defined called 'deep'. When 'deep' is set to False it will forbid functions to rewrite their contents. Examples ======== >>> from sympy import sin, exp >>> from sympy.abc import x Unspecified pattern: >>> sin(x).rewrite(exp) -I*(exp(I*x) - exp(-I*x))/2 Pattern as a single function: >>> sin(x).rewrite(sin, exp) -I*(exp(I*x) - exp(-I*x))/2 Pattern as a list of functions: >>> sin(x).rewrite([sin, ], exp) -I*(exp(I*x) - exp(-I*x))/2 """ if not args: return self else: pattern = args[:-1] if isinstance(args[-1], str): rule = '_eval_rewrite_as_' + args[-1] else: # rewrite arg is usually a class but can also be a # singleton (e.g. GoldenRatio) so we check # __name__ or __class__.__name__ clsname = getattr(args[-1], "__name__", None) if clsname is None: clsname = args[-1].__class__.__name__ rule = '_eval_rewrite_as_' + clsname if not pattern: return self._eval_rewrite(None, rule, **hints) else: if iterable(pattern[0]): pattern = pattern[0] pattern = [p for p in pattern if self.has(p)] if pattern: return self._eval_rewrite(tuple(pattern), rule, **hints) else: return self _constructor_postprocessor_mapping = {} # type: ignore @classmethod def _exec_constructor_postprocessors(cls, obj): # WARNING: This API is experimental. # This is an experimental API that introduces constructor # postprosessors for SymPy Core elements. If an argument of a SymPy # expression has a `_constructor_postprocessor_mapping` attribute, it will # be interpreted as a dictionary containing lists of postprocessing # functions for matching expression node names. clsname = obj.__class__.__name__ postprocessors = defaultdict(list) for i in obj.args: try: postprocessor_mappings = ( Basic._constructor_postprocessor_mapping[cls].items() for cls in type(i).mro() if cls in Basic._constructor_postprocessor_mapping ) for k, v in chain.from_iterable(postprocessor_mappings): postprocessors[k].extend([j for j in v if j not in postprocessors[k]]) except TypeError: pass for f in postprocessors.get(clsname, []): obj = f(obj) return obj class Atom(Basic): """ A parent class for atomic things. An atom is an expression with no subexpressions. Examples ======== Symbol, Number, Rational, Integer, ... But not: Add, Mul, Pow, ... """ is_Atom = True __slots__ = () def matches(self, expr, repl_dict={}, old=False): if self == expr: return repl_dict.copy() def xreplace(self, rule, hack2=False): return rule.get(self, self) def doit(self, **hints): return self @classmethod def class_key(cls): return 2, 0, cls.__name__ @cacheit def sort_key(self, order=None): return self.class_key(), (1, (str(self),)), S.One.sort_key(), S.One def _eval_simplify(self, **kwargs): return self @property def _sorted_args(self): # this is here as a safeguard against accidentally using _sorted_args # on Atoms -- they cannot be rebuilt as atom.func(*atom._sorted_args) # since there are no args. So the calling routine should be checking # to see that this property is not called for Atoms. raise AttributeError('Atoms have no args. It might be necessary' ' to make a check for Atoms in the calling code.') def _aresame(a, b): """Return True if a and b are structurally the same, else False. Examples ======== In SymPy (as in Python) two numbers compare the same if they have the same underlying base-2 representation even though they may not be the same type: >>> from sympy import S >>> 2.0 == S(2) True >>> 0.5 == S.Half True This routine was written to provide a query for such cases that would give false when the types do not match: >>> from sympy.core.basic import _aresame >>> _aresame(S(2.0), S(2)) False """ from .numbers import Number from .function import AppliedUndef, UndefinedFunction as UndefFunc if isinstance(a, Number) and isinstance(b, Number): return a == b and a.__class__ == b.__class__ for i, j in zip_longest(preorder_traversal(a), preorder_traversal(b)): if i != j or type(i) != type(j): if ((isinstance(i, UndefFunc) and isinstance(j, UndefFunc)) or (isinstance(i, AppliedUndef) and isinstance(j, AppliedUndef))): if i.class_key() != j.class_key(): return False else: return False return True def _atomic(e, recursive=False): """Return atom-like quantities as far as substitution is concerned: Derivatives, Functions and Symbols. Don't return any 'atoms' that are inside such quantities unless they also appear outside, too, unless `recursive` is True. Examples ======== >>> from sympy import Derivative, Function, cos >>> from sympy.abc import x, y >>> from sympy.core.basic import _atomic >>> f = Function('f') >>> _atomic(x + y) {x, y} >>> _atomic(x + f(y)) {x, f(y)} >>> _atomic(Derivative(f(x), x) + cos(x) + y) {y, cos(x), Derivative(f(x), x)} """ from sympy import Derivative, Function, Symbol pot = preorder_traversal(e) seen = set() if isinstance(e, Basic): free = getattr(e, "free_symbols", None) if free is None: return {e} else: return set() atoms = set() for p in pot: if p in seen: pot.skip() continue seen.add(p) if isinstance(p, Symbol) and p in free: atoms.add(p) elif isinstance(p, (Derivative, Function)): if not recursive: pot.skip() atoms.add(p) return atoms class preorder_traversal: """ Do a pre-order traversal of a tree. This iterator recursively yields nodes that it has visited in a pre-order fashion. That is, it yields the current node then descends through the tree breadth-first to yield all of a node's children's pre-order traversal. For an expression, the order of the traversal depends on the order of .args, which in many cases can be arbitrary. Parameters ========== node : sympy expression The expression to traverse. keys : (default None) sort key(s) The key(s) used to sort args of Basic objects. When None, args of Basic objects are processed in arbitrary order. If key is defined, it will be passed along to ordered() as the only key(s) to use to sort the arguments; if ``key`` is simply True then the default keys of ordered will be used. Yields ====== subtree : sympy expression All of the subtrees in the tree. Examples ======== >>> from sympy import symbols >>> from sympy.core.basic import preorder_traversal >>> x, y, z = symbols('x y z') The nodes are returned in the order that they are encountered unless key is given; simply passing key=True will guarantee that the traversal is unique. >>> list(preorder_traversal((x + y)*z, keys=None)) # doctest: +SKIP [z*(x + y), z, x + y, y, x] >>> list(preorder_traversal((x + y)*z, keys=True)) [z*(x + y), z, x + y, x, y] """ def __init__(self, node, keys=None): self._skip_flag = False self._pt = self._preorder_traversal(node, keys) def _preorder_traversal(self, node, keys): yield node if self._skip_flag: self._skip_flag = False return if isinstance(node, Basic): if not keys and hasattr(node, '_argset'): # LatticeOp keeps args as a set. We should use this if we # don't care about the order, to prevent unnecessary sorting. args = node._argset else: args = node.args if keys: if keys != True: args = ordered(args, keys, default=False) else: args = ordered(args) for arg in args: yield from self._preorder_traversal(arg, keys) elif iterable(node): for item in node: yield from self._preorder_traversal(item, keys) def skip(self): """ Skip yielding current node's (last yielded node's) subtrees. Examples ======== >>> from sympy.core import symbols >>> from sympy.core.basic import preorder_traversal >>> x, y, z = symbols('x y z') >>> pt = preorder_traversal((x+y*z)*z) >>> for i in pt: ... print(i) ... if i == x+y*z: ... pt.skip() z*(x + y*z) z x + y*z """ self._skip_flag = True def __next__(self): return next(self._pt) def __iter__(self): return self def _make_find_query(query): """Convert the argument of Basic.find() into a callable""" try: query = _sympify(query) except SympifyError: pass if isinstance(query, type): return lambda expr: isinstance(expr, query) elif isinstance(query, Basic): return lambda expr: expr.match(query) is not None return query
6c2059aa49b735b2f125f7d710593127b881119cf423472c9f1221eb0ae033cf
from math import log as _log from .sympify import _sympify from .cache import cacheit from .singleton import S from .expr import Expr from .evalf import PrecisionExhausted from .function import (_coeff_isneg, expand_complex, expand_multinomial, expand_mul) from .logic import fuzzy_bool, fuzzy_not, fuzzy_and from .compatibility import as_int, HAS_GMPY, gmpy from .parameters import global_parameters from sympy.utilities.iterables import sift from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.multipledispatch import Dispatcher from mpmath.libmp import sqrtrem as mpmath_sqrtrem from math import sqrt as _sqrt def isqrt(n): """Return the largest integer less than or equal to sqrt(n).""" if n < 0: raise ValueError("n must be nonnegative") n = int(n) # Fast path: with IEEE 754 binary64 floats and a correctly-rounded # math.sqrt, int(math.sqrt(n)) works for any integer n satisfying 0 <= n < # 4503599761588224 = 2**52 + 2**27. But Python doesn't guarantee either # IEEE 754 format floats *or* correct rounding of math.sqrt, so check the # answer and fall back to the slow method if necessary. if n < 4503599761588224: s = int(_sqrt(n)) if 0 <= n - s*s <= 2*s: return s return integer_nthroot(n, 2)[0] def integer_nthroot(y, n): """ Return a tuple containing x = floor(y**(1/n)) and a boolean indicating whether the result is exact (that is, whether x**n == y). Examples ======== >>> from sympy import integer_nthroot >>> integer_nthroot(16, 2) (4, True) >>> integer_nthroot(26, 2) (5, False) To simply determine if a number is a perfect square, the is_square function should be used: >>> from sympy.ntheory.primetest import is_square >>> is_square(26) False See Also ======== sympy.ntheory.primetest.is_square integer_log """ y, n = as_int(y), as_int(n) if y < 0: raise ValueError("y must be nonnegative") if n < 1: raise ValueError("n must be positive") if HAS_GMPY and n < 2**63: # Currently it works only for n < 2**63, else it produces TypeError # sympy issue: https://github.com/sympy/sympy/issues/18374 # gmpy2 issue: https://github.com/aleaxit/gmpy/issues/257 if HAS_GMPY >= 2: x, t = gmpy.iroot(y, n) else: x, t = gmpy.root(y, n) return as_int(x), bool(t) return _integer_nthroot_python(y, n) def _integer_nthroot_python(y, n): if y in (0, 1): return y, True if n == 1: return y, True if n == 2: x, rem = mpmath_sqrtrem(y) return int(x), not rem if n > y: return 1, False # Get initial estimate for Newton's method. Care must be taken to # avoid overflow try: guess = int(y**(1./n) + 0.5) except OverflowError: exp = _log(y, 2)/n if exp > 53: shift = int(exp - 53) guess = int(2.0**(exp - shift) + 1) << shift else: guess = int(2.0**exp) if guess > 2**50: # Newton iteration xprev, x = -1, guess while 1: t = x**(n - 1) xprev, x = x, ((n - 1)*x + y//t)//n if abs(x - xprev) < 2: break else: x = guess # Compensate t = x**n while t < y: x += 1 t = x**n while t > y: x -= 1 t = x**n return int(x), t == y # int converts long to int if possible def integer_log(y, x): r""" Returns ``(e, bool)`` where e is the largest nonnegative integer such that :math:`|y| \geq |x^e|` and ``bool`` is True if $y = x^e$. Examples ======== >>> from sympy import integer_log >>> integer_log(125, 5) (3, True) >>> integer_log(17, 9) (1, False) >>> integer_log(4, -2) (2, True) >>> integer_log(-125,-5) (3, True) See Also ======== integer_nthroot sympy.ntheory.primetest.is_square sympy.ntheory.factor_.multiplicity sympy.ntheory.factor_.perfect_power """ if x == 1: raise ValueError('x cannot take value as 1') if y == 0: raise ValueError('y cannot take value as 0') if x in (-2, 2): x = int(x) y = as_int(y) e = y.bit_length() - 1 return e, x**e == y if x < 0: n, b = integer_log(y if y > 0 else -y, -x) return n, b and bool(n % 2 if y < 0 else not n % 2) x = as_int(x) y = as_int(y) r = e = 0 while y >= x: d = x m = 1 while y >= d: y, rem = divmod(y, d) r = r or rem e += m if y > d: d *= d m *= 2 return e, r == 0 and y == 1 class Pow(Expr): """ Defines the expression x**y as "x raised to a power y" Singleton definitions involving (0, 1, -1, oo, -oo, I, -I): +--------------+---------+-----------------------------------------------+ | expr | value | reason | +==============+=========+===============================================+ | z**0 | 1 | Although arguments over 0**0 exist, see [2]. | +--------------+---------+-----------------------------------------------+ | z**1 | z | | +--------------+---------+-----------------------------------------------+ | (-oo)**(-1) | 0 | | +--------------+---------+-----------------------------------------------+ | (-1)**-1 | -1 | | +--------------+---------+-----------------------------------------------+ | S.Zero**-1 | zoo | This is not strictly true, as 0**-1 may be | | | | undefined, but is convenient in some contexts | | | | where the base is assumed to be positive. | +--------------+---------+-----------------------------------------------+ | 1**-1 | 1 | | +--------------+---------+-----------------------------------------------+ | oo**-1 | 0 | | +--------------+---------+-----------------------------------------------+ | 0**oo | 0 | Because for all complex numbers z near | | | | 0, z**oo -> 0. | +--------------+---------+-----------------------------------------------+ | 0**-oo | zoo | This is not strictly true, as 0**oo may be | | | | oscillating between positive and negative | | | | values or rotating in the complex plane. | | | | It is convenient, however, when the base | | | | is positive. | +--------------+---------+-----------------------------------------------+ | 1**oo | nan | Because there are various cases where | | 1**-oo | | lim(x(t),t)=1, lim(y(t),t)=oo (or -oo), | | | | but lim( x(t)**y(t), t) != 1. See [3]. | +--------------+---------+-----------------------------------------------+ | b**zoo | nan | Because b**z has no limit as z -> zoo | +--------------+---------+-----------------------------------------------+ | (-1)**oo | nan | Because of oscillations in the limit. | | (-1)**(-oo) | | | +--------------+---------+-----------------------------------------------+ | oo**oo | oo | | +--------------+---------+-----------------------------------------------+ | oo**-oo | 0 | | +--------------+---------+-----------------------------------------------+ | (-oo)**oo | nan | | | (-oo)**-oo | | | +--------------+---------+-----------------------------------------------+ | oo**I | nan | oo**e could probably be best thought of as | | (-oo)**I | | the limit of x**e for real x as x tends to | | | | oo. If e is I, then the limit does not exist | | | | and nan is used to indicate that. | +--------------+---------+-----------------------------------------------+ | oo**(1+I) | zoo | If the real part of e is positive, then the | | (-oo)**(1+I) | | limit of abs(x**e) is oo. So the limit value | | | | is zoo. | +--------------+---------+-----------------------------------------------+ | oo**(-1+I) | 0 | If the real part of e is negative, then the | | -oo**(-1+I) | | limit is 0. | +--------------+---------+-----------------------------------------------+ Because symbolic computations are more flexible that floating point calculations and we prefer to never return an incorrect answer, we choose not to conform to all IEEE 754 conventions. This helps us avoid extra test-case code in the calculation of limits. See Also ======== sympy.core.numbers.Infinity sympy.core.numbers.NegativeInfinity sympy.core.numbers.NaN References ========== .. [1] https://en.wikipedia.org/wiki/Exponentiation .. [2] https://en.wikipedia.org/wiki/Exponentiation#Zero_to_the_power_of_zero .. [3] https://en.wikipedia.org/wiki/Indeterminate_forms """ is_Pow = True __slots__ = ('is_commutative',) @cacheit def __new__(cls, b, e, evaluate=None): if evaluate is None: evaluate = global_parameters.evaluate from sympy.functions.elementary.exponential import exp_polar b = _sympify(b) e = _sympify(e) # XXX: This can be removed when non-Expr args are disallowed rather # than deprecated. from sympy.core.relational import Relational if isinstance(b, Relational) or isinstance(e, Relational): raise TypeError('Relational can not be used in Pow') # XXX: This should raise TypeError once deprecation period is over: if not (isinstance(b, Expr) and isinstance(e, Expr)): SymPyDeprecationWarning( feature="Pow with non-Expr args", useinstead="Expr args", issue=19445, deprecated_since_version="1.7" ).warn() if evaluate: if b is S.Zero and e is S.NegativeInfinity: return S.ComplexInfinity if e is S.ComplexInfinity: return S.NaN if e is S.Zero: return S.One elif e is S.One: return b elif e == -1 and not b: return S.ComplexInfinity # Only perform autosimplification if exponent or base is a Symbol or number elif (b.is_Symbol or b.is_number) and (e.is_Symbol or e.is_number) and\ e.is_integer and _coeff_isneg(b): if e.is_even: b = -b elif e.is_odd: return -Pow(-b, e) if S.NaN in (b, e): # XXX S.NaN**x -> S.NaN under assumption that x != 0 return S.NaN elif b is S.One: if abs(e).is_infinite: return S.NaN return S.One else: # recognize base as E if not e.is_Atom and b is not S.Exp1 and not isinstance(b, exp_polar): from sympy import numer, denom, log, sign, im, factor_terms c, ex = factor_terms(e, sign=False).as_coeff_Mul() den = denom(ex) if isinstance(den, log) and den.args[0] == b: return S.Exp1**(c*numer(ex)) elif den.is_Add: s = sign(im(b)) if s.is_Number and s and den == \ log(-factor_terms(b, sign=False)) + s*S.ImaginaryUnit*S.Pi: return S.Exp1**(c*numer(ex)) obj = b._eval_power(e) if obj is not None: return obj obj = Expr.__new__(cls, b, e) obj = cls._exec_constructor_postprocessors(obj) if not isinstance(obj, Pow): return obj obj.is_commutative = (b.is_commutative and e.is_commutative) return obj @property def base(self): return self._args[0] @property def exp(self): return self._args[1] @classmethod def class_key(cls): return 3, 2, cls.__name__ def _eval_refine(self, assumptions): from sympy.assumptions.ask import ask, Q b, e = self.as_base_exp() if ask(Q.integer(e), assumptions) and _coeff_isneg(b): if ask(Q.even(e), assumptions): return Pow(-b, e) elif ask(Q.odd(e), assumptions): return -Pow(-b, e) def _eval_power(self, other): from sympy import arg, exp, floor, im, log, re, sign b, e = self.as_base_exp() if b is S.NaN: return (b**e)**other # let __new__ handle it s = None if other.is_integer: s = 1 elif b.is_polar: # e.g. exp_polar, besselj, var('p', polar=True)... s = 1 elif e.is_extended_real is not None: # helper functions =========================== def _half(e): """Return True if the exponent has a literal 2 as the denominator, else None.""" if getattr(e, 'q', None) == 2: return True n, d = e.as_numer_denom() if n.is_integer and d == 2: return True def _n2(e): """Return ``e`` evaluated to a Number with 2 significant digits, else None.""" try: rv = e.evalf(2, strict=True) if rv.is_Number: return rv except PrecisionExhausted: pass # =================================================== if e.is_extended_real: # we need _half(other) with constant floor or # floor(S.Half - e*arg(b)/2/pi) == 0 # handle -1 as special case if e == -1: # floor arg. is 1/2 + arg(b)/2/pi if _half(other): if b.is_negative is True: return S.NegativeOne**other*Pow(-b, e*other) elif b.is_negative is False: return Pow(b, -other) elif e.is_even: if b.is_extended_real: b = abs(b) if b.is_imaginary: b = abs(im(b))*S.ImaginaryUnit if (abs(e) < 1) == True or e == 1: s = 1 # floor = 0 elif b.is_extended_nonnegative: s = 1 # floor = 0 elif re(b).is_extended_nonnegative and (abs(e) < 2) == True: s = 1 # floor = 0 elif fuzzy_not(im(b).is_zero) and abs(e) == 2: s = 1 # floor = 0 elif _half(other): s = exp(2*S.Pi*S.ImaginaryUnit*other*floor( S.Half - e*arg(b)/(2*S.Pi))) if s.is_extended_real and _n2(sign(s) - s) == 0: s = sign(s) else: s = None else: # e.is_extended_real is False requires: # _half(other) with constant floor or # floor(S.Half - im(e*log(b))/2/pi) == 0 try: s = exp(2*S.ImaginaryUnit*S.Pi*other* floor(S.Half - im(e*log(b))/2/S.Pi)) # be careful to test that s is -1 or 1 b/c sign(I) == I: # so check that s is real if s.is_extended_real and _n2(sign(s) - s) == 0: s = sign(s) else: s = None except PrecisionExhausted: s = None if s is not None: return s*Pow(b, e*other) def _eval_Mod(self, q): r"""A dispatched function to compute `b^e \bmod q`, dispatched by ``Mod``. Notes ===== Algorithms: 1. For unevaluated integer power, use built-in ``pow`` function with 3 arguments, if powers are not too large wrt base. 2. For very large powers, use totient reduction if e >= lg(m). Bound on m, is for safe factorization memory wise ie m^(1/4). For pollard-rho to be faster than built-in pow lg(e) > m^(1/4) check is added. 3. For any unevaluated power found in `b` or `e`, the step 2 will be recursed down to the base and the exponent such that the `b \bmod q` becomes the new base and ``\phi(q) + e \bmod \phi(q)`` becomes the new exponent, and then the computation for the reduced expression can be done. """ from sympy.ntheory import totient from .mod import Mod base, exp = self.base, self.exp if exp.is_integer and exp.is_positive: if q.is_integer and base % q == 0: return S.Zero if base.is_Integer and exp.is_Integer and q.is_Integer: b, e, m = int(base), int(exp), int(q) mb = m.bit_length() if mb <= 80 and e >= mb and e.bit_length()**4 >= m: phi = totient(m) return Integer(pow(b, phi + e%phi, m)) return Integer(pow(b, e, m)) if isinstance(base, Pow) and base.is_integer and base.is_number: base = Mod(base, q) return Mod(Pow(base, exp, evaluate=False), q) if isinstance(exp, Pow) and exp.is_integer and exp.is_number: bit_length = int(q).bit_length() # XXX Mod-Pow actually attempts to do a hanging evaluation # if this dispatched function returns None. # May need some fixes in the dispatcher itself. if bit_length <= 80: phi = totient(q) exp = phi + Mod(exp, phi) return Mod(Pow(base, exp, evaluate=False), q) def _eval_is_even(self): if self.exp.is_integer and self.exp.is_positive: return self.base.is_even def _eval_is_negative(self): ext_neg = Pow._eval_is_extended_negative(self) if ext_neg is True: return self.is_finite return ext_neg def _eval_is_positive(self): ext_pos = Pow._eval_is_extended_positive(self) if ext_pos is True: return self.is_finite return ext_pos def _eval_is_extended_positive(self): from sympy import log if self.base == self.exp: if self.base.is_extended_nonnegative: return True elif self.base.is_positive: if self.exp.is_real: return True elif self.base.is_extended_negative: if self.exp.is_even: return True if self.exp.is_odd: return False elif self.base.is_zero: if self.exp.is_extended_real: return self.exp.is_zero elif self.base.is_extended_nonpositive: if self.exp.is_odd: return False elif self.base.is_imaginary: if self.exp.is_integer: m = self.exp % 4 if m.is_zero: return True if m.is_integer and m.is_zero is False: return False if self.exp.is_imaginary: return log(self.base).is_imaginary def _eval_is_extended_negative(self): if self.exp is S(1)/2: if self.base.is_complex or self.base.is_extended_real: return False if self.base.is_extended_negative: if self.exp.is_odd and self.base.is_finite: return True if self.exp.is_even: return False elif self.base.is_extended_positive: if self.exp.is_extended_real: return False elif self.base.is_zero: if self.exp.is_extended_real: return False elif self.base.is_extended_nonnegative: if self.exp.is_extended_nonnegative: return False elif self.base.is_extended_nonpositive: if self.exp.is_even: return False elif self.base.is_extended_real: if self.exp.is_even: return False def _eval_is_zero(self): if self.base.is_zero: if self.exp.is_extended_positive: return True elif self.exp.is_extended_nonpositive: return False elif self.base.is_zero is False: if self.base.is_finite and self.exp.is_finite: return False elif self.exp.is_negative: return self.base.is_infinite elif self.exp.is_nonnegative: return False elif self.exp.is_infinite and self.exp.is_extended_real: if (1 - abs(self.base)).is_extended_positive: return self.exp.is_extended_positive elif (1 - abs(self.base)).is_extended_negative: return self.exp.is_extended_negative else: # when self.base.is_zero is None if self.base.is_finite and self.exp.is_negative: return False def _eval_is_integer(self): b, e = self.args if b.is_rational: if b.is_integer is False and e.is_positive: return False # rat**nonneg if b.is_integer and e.is_integer: if b is S.NegativeOne: return True if e.is_nonnegative or e.is_positive: return True if b.is_integer and e.is_negative and (e.is_finite or e.is_integer): if fuzzy_not((b - 1).is_zero) and fuzzy_not((b + 1).is_zero): return False if b.is_Number and e.is_Number: check = self.func(*self.args) return check.is_Integer if e.is_negative and b.is_positive and (b - 1).is_positive: return False if e.is_negative and b.is_negative and (b + 1).is_negative: return False def _eval_is_extended_real(self): from sympy import arg, exp, log, Mul real_b = self.base.is_extended_real if real_b is None: if self.base.func == exp and self.base.args[0].is_imaginary: return self.exp.is_imaginary return real_e = self.exp.is_extended_real if real_e is None: return if real_b and real_e: if self.base.is_extended_positive: return True elif self.base.is_extended_nonnegative and self.exp.is_extended_nonnegative: return True elif self.exp.is_integer and self.base.is_extended_nonzero: return True elif self.exp.is_integer and self.exp.is_nonnegative: return True elif self.base.is_extended_negative: if self.exp.is_Rational: return False if real_e and self.exp.is_extended_negative and self.base.is_zero is False: return Pow(self.base, -self.exp).is_extended_real im_b = self.base.is_imaginary im_e = self.exp.is_imaginary if im_b: if self.exp.is_integer: if self.exp.is_even: return True elif self.exp.is_odd: return False elif im_e and log(self.base).is_imaginary: return True elif self.exp.is_Add: c, a = self.exp.as_coeff_Add() if c and c.is_Integer: return Mul( self.base**c, self.base**a, evaluate=False).is_extended_real elif self.base in (-S.ImaginaryUnit, S.ImaginaryUnit): if (self.exp/2).is_integer is False: return False if real_b and im_e: if self.base is S.NegativeOne: return True c = self.exp.coeff(S.ImaginaryUnit) if c: if self.base.is_rational and c.is_rational: if self.base.is_nonzero and (self.base - 1).is_nonzero and c.is_nonzero: return False ok = (c*log(self.base)/S.Pi).is_integer if ok is not None: return ok if real_b is False: # we already know it's not imag i = arg(self.base)*self.exp/S.Pi if i.is_complex: # finite return i.is_integer def _eval_is_complex(self): if all(a.is_complex for a in self.args) and self._eval_is_finite(): return True def _eval_is_imaginary(self): from sympy import arg, log if self.base.is_imaginary: if self.exp.is_integer: odd = self.exp.is_odd if odd is not None: return odd return if self.exp.is_imaginary: imlog = log(self.base).is_imaginary if imlog is not None: return False # I**i -> real; (2*I)**i -> complex ==> not imaginary if self.base.is_extended_real and self.exp.is_extended_real: if self.base.is_positive: return False else: rat = self.exp.is_rational if not rat: return rat if self.exp.is_integer: return False else: half = (2*self.exp).is_integer if half: return self.base.is_negative return half if self.base.is_extended_real is False: # we already know it's not imag i = arg(self.base)*self.exp/S.Pi isodd = (2*i).is_odd if isodd is not None: return isodd def _eval_is_odd(self): if self.exp.is_integer: if self.exp.is_positive: return self.base.is_odd elif self.exp.is_nonnegative and self.base.is_odd: return True elif self.base is S.NegativeOne: return True def _eval_is_finite(self): if self.exp.is_negative: if self.base.is_zero: return False if self.base.is_infinite or self.base.is_nonzero: return True c1 = self.base.is_finite if c1 is None: return c2 = self.exp.is_finite if c2 is None: return if c1 and c2: if self.exp.is_nonnegative or fuzzy_not(self.base.is_zero): return True def _eval_is_prime(self): ''' An integer raised to the n(>=2)-th power cannot be a prime. ''' if self.base.is_integer and self.exp.is_integer and (self.exp - 1).is_positive: return False def _eval_is_composite(self): """ A power is composite if both base and exponent are greater than 1 """ if (self.base.is_integer and self.exp.is_integer and ((self.base - 1).is_positive and (self.exp - 1).is_positive or (self.base + 1).is_negative and self.exp.is_positive and self.exp.is_even)): return True def _eval_is_polar(self): return self.base.is_polar def _eval_subs(self, old, new): from sympy import exp, log, Symbol def _check(ct1, ct2, old): """Return (bool, pow, remainder_pow) where, if bool is True, then the exponent of Pow `old` will combine with `pow` so the substitution is valid, otherwise bool will be False. For noncommutative objects, `pow` will be an integer, and a factor `Pow(old.base, remainder_pow)` needs to be included. If there is no such factor, None is returned. For commutative objects, remainder_pow is always None. cti are the coefficient and terms of an exponent of self or old In this _eval_subs routine a change like (b**(2*x)).subs(b**x, y) will give y**2 since (b**x)**2 == b**(2*x); if that equality does not hold then the substitution should not occur so `bool` will be False. """ coeff1, terms1 = ct1 coeff2, terms2 = ct2 if terms1 == terms2: if old.is_commutative: # Allow fractional powers for commutative objects pow = coeff1/coeff2 try: as_int(pow, strict=False) combines = True except ValueError: combines = isinstance(Pow._eval_power( Pow(*old.as_base_exp(), evaluate=False), pow), (Pow, exp, Symbol)) return combines, pow, None else: # With noncommutative symbols, substitute only integer powers if not isinstance(terms1, tuple): terms1 = (terms1,) if not all(term.is_integer for term in terms1): return False, None, None try: # Round pow toward zero pow, remainder = divmod(as_int(coeff1), as_int(coeff2)) if pow < 0 and remainder != 0: pow += 1 remainder -= as_int(coeff2) if remainder == 0: remainder_pow = None else: remainder_pow = Mul(remainder, *terms1) return True, pow, remainder_pow except ValueError: # Can't substitute pass return False, None, None if old == self.base: return new**self.exp._subs(old, new) # issue 10829: (4**x - 3*y + 2).subs(2**x, y) -> y**2 - 3*y + 2 if isinstance(old, self.func) and self.exp == old.exp: l = log(self.base, old.base) if l.is_Number: return Pow(new, l) if isinstance(old, self.func) and self.base == old.base: if self.exp.is_Add is False: ct1 = self.exp.as_independent(Symbol, as_Add=False) ct2 = old.exp.as_independent(Symbol, as_Add=False) ok, pow, remainder_pow = _check(ct1, ct2, old) if ok: # issue 5180: (x**(6*y)).subs(x**(3*y),z)->z**2 result = self.func(new, pow) if remainder_pow is not None: result = Mul(result, Pow(old.base, remainder_pow)) return result else: # b**(6*x + a).subs(b**(3*x), y) -> y**2 * b**a # exp(exp(x) + exp(x**2)).subs(exp(exp(x)), w) -> w * exp(exp(x**2)) oarg = old.exp new_l = [] o_al = [] ct2 = oarg.as_coeff_mul() for a in self.exp.args: newa = a._subs(old, new) ct1 = newa.as_coeff_mul() ok, pow, remainder_pow = _check(ct1, ct2, old) if ok: new_l.append(new**pow) if remainder_pow is not None: o_al.append(remainder_pow) continue elif not old.is_commutative and not newa.is_integer: # If any term in the exponent is non-integer, # we do not do any substitutions in the noncommutative case return o_al.append(newa) if new_l: expo = Add(*o_al) new_l.append(Pow(self.base, expo, evaluate=False) if expo != 1 else self.base) return Mul(*new_l) if isinstance(old, exp) and self.exp.is_extended_real and self.base.is_positive: ct1 = old.args[0].as_independent(Symbol, as_Add=False) ct2 = (self.exp*log(self.base)).as_independent( Symbol, as_Add=False) ok, pow, remainder_pow = _check(ct1, ct2, old) if ok: result = self.func(new, pow) # (2**x).subs(exp(x*log(2)), z) -> z if remainder_pow is not None: result = Mul(result, Pow(old.base, remainder_pow)) return result def as_base_exp(self): """Return base and exp of self. Explnation ========== If base is 1/Integer, then return Integer, -exp. If this extra processing is not needed, the base and exp properties will give the raw arguments Examples ======== >>> from sympy import Pow, S >>> p = Pow(S.Half, 2, evaluate=False) >>> p.as_base_exp() (2, -2) >>> p.args (1/2, 2) """ b, e = self.args if b.is_Rational and b.p == 1 and b.q != 1: return Integer(b.q), -e return b, e def _eval_adjoint(self): from sympy.functions.elementary.complexes import adjoint i, p = self.exp.is_integer, self.base.is_positive if i: return adjoint(self.base)**self.exp if p: return self.base**adjoint(self.exp) if i is False and p is False: expanded = expand_complex(self) if expanded != self: return adjoint(expanded) def _eval_conjugate(self): from sympy.functions.elementary.complexes import conjugate as c i, p = self.exp.is_integer, self.base.is_positive if i: return c(self.base)**self.exp if p: return self.base**c(self.exp) if i is False and p is False: expanded = expand_complex(self) if expanded != self: return c(expanded) if self.is_extended_real: return self def _eval_transpose(self): from sympy.functions.elementary.complexes import transpose i, p = self.exp.is_integer, (self.base.is_complex or self.base.is_infinite) if p: return self.base**self.exp if i: return transpose(self.base)**self.exp if i is False and p is False: expanded = expand_complex(self) if expanded != self: return transpose(expanded) def _eval_expand_power_exp(self, **hints): """a**(n + m) -> a**n*a**m""" b = self.base e = self.exp if e.is_Add and e.is_commutative: expr = [] for x in e.args: expr.append(self.func(self.base, x)) return Mul(*expr) return self.func(b, e) def _eval_expand_power_base(self, **hints): """(a*b)**n -> a**n * b**n""" force = hints.get('force', False) b = self.base e = self.exp if not b.is_Mul: return self cargs, nc = b.args_cnc(split_1=False) # expand each term - this is top-level-only # expansion but we have to watch out for things # that don't have an _eval_expand method if nc: nc = [i._eval_expand_power_base(**hints) if hasattr(i, '_eval_expand_power_base') else i for i in nc] if e.is_Integer: if e.is_positive: rv = Mul(*nc*e) else: rv = Mul(*[i**-1 for i in nc[::-1]]*-e) if cargs: rv *= Mul(*cargs)**e return rv if not cargs: return self.func(Mul(*nc), e, evaluate=False) nc = [Mul(*nc)] # sift the commutative bases other, maybe_real = sift(cargs, lambda x: x.is_extended_real is False, binary=True) def pred(x): if x is S.ImaginaryUnit: return S.ImaginaryUnit polar = x.is_polar if polar: return True if polar is None: return fuzzy_bool(x.is_extended_nonnegative) sifted = sift(maybe_real, pred) nonneg = sifted[True] other += sifted[None] neg = sifted[False] imag = sifted[S.ImaginaryUnit] if imag: I = S.ImaginaryUnit i = len(imag) % 4 if i == 0: pass elif i == 1: other.append(I) elif i == 2: if neg: nonn = -neg.pop() if nonn is not S.One: nonneg.append(nonn) else: neg.append(S.NegativeOne) else: if neg: nonn = -neg.pop() if nonn is not S.One: nonneg.append(nonn) else: neg.append(S.NegativeOne) other.append(I) del imag # bring out the bases that can be separated from the base if force or e.is_integer: # treat all commutatives the same and put nc in other cargs = nonneg + neg + other other = nc else: # this is just like what is happening automatically, except # that now we are doing it for an arbitrary exponent for which # no automatic expansion is done assert not e.is_Integer # handle negatives by making them all positive and putting # the residual -1 in other if len(neg) > 1: o = S.One if not other and neg[0].is_Number: o *= neg.pop(0) if len(neg) % 2: o = -o for n in neg: nonneg.append(-n) if o is not S.One: other.append(o) elif neg and other: if neg[0].is_Number and neg[0] is not S.NegativeOne: other.append(S.NegativeOne) nonneg.append(-neg[0]) else: other.extend(neg) else: other.extend(neg) del neg cargs = nonneg other += nc rv = S.One if cargs: if e.is_Rational: npow, cargs = sift(cargs, lambda x: x.is_Pow and x.exp.is_Rational and x.base.is_number, binary=True) rv = Mul(*[self.func(b.func(*b.args), e) for b in npow]) rv *= Mul(*[self.func(b, e, evaluate=False) for b in cargs]) if other: rv *= self.func(Mul(*other), e, evaluate=False) return rv def _eval_expand_multinomial(self, **hints): """(a + b + ..)**n -> a**n + n*a**(n-1)*b + .., n is nonzero integer""" base, exp = self.args result = self if exp.is_Rational and exp.p > 0 and base.is_Add: if not exp.is_Integer: n = Integer(exp.p // exp.q) if not n: return result else: radical, result = self.func(base, exp - n), [] expanded_base_n = self.func(base, n) if expanded_base_n.is_Pow: expanded_base_n = \ expanded_base_n._eval_expand_multinomial() for term in Add.make_args(expanded_base_n): result.append(term*radical) return Add(*result) n = int(exp) if base.is_commutative: order_terms, other_terms = [], [] for b in base.args: if b.is_Order: order_terms.append(b) else: other_terms.append(b) if order_terms: # (f(x) + O(x^n))^m -> f(x)^m + m*f(x)^{m-1} *O(x^n) f = Add(*other_terms) o = Add(*order_terms) if n == 2: return expand_multinomial(f**n, deep=False) + n*f*o else: g = expand_multinomial(f**(n - 1), deep=False) return expand_mul(f*g, deep=False) + n*g*o if base.is_number: # Efficiently expand expressions of the form (a + b*I)**n # where 'a' and 'b' are real numbers and 'n' is integer. a, b = base.as_real_imag() if a.is_Rational and b.is_Rational: if not a.is_Integer: if not b.is_Integer: k = self.func(a.q * b.q, n) a, b = a.p*b.q, a.q*b.p else: k = self.func(a.q, n) a, b = a.p, a.q*b elif not b.is_Integer: k = self.func(b.q, n) a, b = a*b.q, b.p else: k = 1 a, b, c, d = int(a), int(b), 1, 0 while n: if n & 1: c, d = a*c - b*d, b*c + a*d n -= 1 a, b = a*a - b*b, 2*a*b n //= 2 I = S.ImaginaryUnit if k == 1: return c + I*d else: return Integer(c)/k + I*d/k p = other_terms # (x + y)**3 -> x**3 + 3*x**2*y + 3*x*y**2 + y**3 # in this particular example: # p = [x,y]; n = 3 # so now it's easy to get the correct result -- we get the # coefficients first: from sympy import multinomial_coefficients from sympy.polys.polyutils import basic_from_dict expansion_dict = multinomial_coefficients(len(p), n) # in our example: {(3, 0): 1, (1, 2): 3, (0, 3): 1, (2, 1): 3} # and now construct the expression. return basic_from_dict(expansion_dict, *p) else: if n == 2: return Add(*[f*g for f in base.args for g in base.args]) else: multi = (base**(n - 1))._eval_expand_multinomial() if multi.is_Add: return Add(*[f*g for f in base.args for g in multi.args]) else: # XXX can this ever happen if base was an Add? return Add(*[f*multi for f in base.args]) elif (exp.is_Rational and exp.p < 0 and base.is_Add and abs(exp.p) > exp.q): return 1 / self.func(base, -exp)._eval_expand_multinomial() elif exp.is_Add and base.is_Number: # a + b a b # n --> n n , where n, a, b are Numbers coeff, tail = S.One, S.Zero for term in exp.args: if term.is_Number: coeff *= self.func(base, term) else: tail += term return coeff * self.func(base, tail) else: return result def as_real_imag(self, deep=True, **hints): from sympy import atan2, cos, im, re, sin from sympy.polys.polytools import poly if self.exp.is_Integer: exp = self.exp re_e, im_e = self.base.as_real_imag(deep=deep) if not im_e: return self, S.Zero a, b = symbols('a b', cls=Dummy) if exp >= 0: if re_e.is_Number and im_e.is_Number: # We can be more efficient in this case expr = expand_multinomial(self.base**exp) if expr != self: return expr.as_real_imag() expr = poly( (a + b)**exp) # a = re, b = im; expr = (a + b*I)**exp else: mag = re_e**2 + im_e**2 re_e, im_e = re_e/mag, -im_e/mag if re_e.is_Number and im_e.is_Number: # We can be more efficient in this case expr = expand_multinomial((re_e + im_e*S.ImaginaryUnit)**-exp) if expr != self: return expr.as_real_imag() expr = poly((a + b)**-exp) # Terms with even b powers will be real r = [i for i in expr.terms() if not i[0][1] % 2] re_part = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r]) # Terms with odd b powers will be imaginary r = [i for i in expr.terms() if i[0][1] % 4 == 1] im_part1 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r]) r = [i for i in expr.terms() if i[0][1] % 4 == 3] im_part3 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r]) return (re_part.subs({a: re_e, b: S.ImaginaryUnit*im_e}), im_part1.subs({a: re_e, b: im_e}) + im_part3.subs({a: re_e, b: -im_e})) elif self.exp.is_Rational: re_e, im_e = self.base.as_real_imag(deep=deep) if im_e.is_zero and self.exp is S.Half: if re_e.is_extended_nonnegative: return self, S.Zero if re_e.is_extended_nonpositive: return S.Zero, (-self.base)**self.exp # XXX: This is not totally correct since for x**(p/q) with # x being imaginary there are actually q roots, but # only a single one is returned from here. r = self.func(self.func(re_e, 2) + self.func(im_e, 2), S.Half) t = atan2(im_e, re_e) rp, tp = self.func(r, self.exp), t*self.exp return (rp*cos(tp), rp*sin(tp)) else: if deep: hints['complex'] = False expanded = self.expand(deep, **hints) if hints.get('ignore') == expanded: return None else: return (re(expanded), im(expanded)) else: return (re(self), im(self)) def _eval_derivative(self, s): from sympy import log dbase = self.base.diff(s) dexp = self.exp.diff(s) return self * (dexp * log(self.base) + dbase * self.exp/self.base) def _eval_evalf(self, prec): base, exp = self.as_base_exp() base = base._evalf(prec) if not exp.is_Integer: exp = exp._evalf(prec) if exp.is_negative and base.is_number and base.is_extended_real is False: base = base.conjugate() / (base * base.conjugate())._evalf(prec) exp = -exp return self.func(base, exp).expand() return self.func(base, exp) def _eval_is_polynomial(self, syms): if self.exp.has(*syms): return False if self.base.has(*syms): return bool(self.base._eval_is_polynomial(syms) and self.exp.is_Integer and (self.exp >= 0)) else: return True def _eval_is_rational(self): # The evaluation of self.func below can be very expensive in the case # of integer**integer if the exponent is large. We should try to exit # before that if possible: if (self.exp.is_integer and self.base.is_rational and fuzzy_not(fuzzy_and([self.exp.is_negative, self.base.is_zero]))): return True p = self.func(*self.as_base_exp()) # in case it's unevaluated if not p.is_Pow: return p.is_rational b, e = p.as_base_exp() if e.is_Rational and b.is_Rational: # we didn't check that e is not an Integer # because Rational**Integer autosimplifies return False if e.is_integer: if b.is_rational: if fuzzy_not(b.is_zero) or e.is_nonnegative: return True if b == e: # always rational, even for 0**0 return True elif b.is_irrational: return e.is_zero def _eval_is_algebraic(self): def _is_one(expr): try: return (expr - 1).is_zero except ValueError: # when the operation is not allowed return False if self.base.is_zero or _is_one(self.base): return True elif self.exp.is_rational: if self.base.is_algebraic is False: return self.exp.is_zero if self.base.is_zero is False: if self.exp.is_nonzero: return self.base.is_algebraic elif self.base.is_algebraic: return True if self.exp.is_positive: return self.base.is_algebraic elif self.base.is_algebraic and self.exp.is_algebraic: if ((fuzzy_not(self.base.is_zero) and fuzzy_not(_is_one(self.base))) or self.base.is_integer is False or self.base.is_irrational): return self.exp.is_rational def _eval_is_rational_function(self, syms): if self.exp.has(*syms): return False if self.base.has(*syms): return self.base._eval_is_rational_function(syms) and \ self.exp.is_Integer else: return True def _eval_is_meromorphic(self, x, a): # f**g is meromorphic if g is an integer and f is meromorphic. # E**(log(f)*g) is meromorphic if log(f)*g is meromorphic # and finite. base_merom = self.base._eval_is_meromorphic(x, a) exp_integer = self.exp.is_Integer if exp_integer: return base_merom exp_merom = self.exp._eval_is_meromorphic(x, a) if base_merom is False: # f**g = E**(log(f)*g) may be meromorphic if the # singularities of log(f) and g cancel each other, # for example, if g = 1/log(f). Hence, return False if exp_merom else None elif base_merom is None: return None b = self.base.subs(x, a) # b is extended complex as base is meromorphic. # log(base) is finite and meromorphic when b != 0, zoo. b_zero = b.is_zero if b_zero: log_defined = False else: log_defined = fuzzy_and((b.is_finite, fuzzy_not(b_zero))) if log_defined is False: # zero or pole of base return exp_integer # False or None elif log_defined is None: return None if not exp_merom: return exp_merom # False or None return self.exp.subs(x, a).is_finite def _eval_is_algebraic_expr(self, syms): if self.exp.has(*syms): return False if self.base.has(*syms): return self.base._eval_is_algebraic_expr(syms) and \ self.exp.is_Rational else: return True def _eval_rewrite_as_exp(self, base, expo, **kwargs): from sympy import exp, log, I, arg if base.is_zero or base.has(exp) or expo.has(exp): return base**expo if base.has(Symbol): # delay evaluation if expo is non symbolic # (as exp(x*log(5)) automatically reduces to x**5) return exp(log(base)*expo, evaluate=expo.has(Symbol)) else: return exp((log(abs(base)) + I*arg(base))*expo) def as_numer_denom(self): if not self.is_commutative: return self, S.One base, exp = self.as_base_exp() n, d = base.as_numer_denom() # this should be the same as ExpBase.as_numer_denom wrt # exponent handling neg_exp = exp.is_negative if not neg_exp and not (-exp).is_negative: neg_exp = _coeff_isneg(exp) int_exp = exp.is_integer # the denominator cannot be separated from the numerator if # its sign is unknown unless the exponent is an integer, e.g. # sqrt(a/b) != sqrt(a)/sqrt(b) when a=1 and b=-1. But if the # denominator is negative the numerator and denominator can # be negated and the denominator (now positive) separated. if not (d.is_extended_real or int_exp): n = base d = S.One dnonpos = d.is_nonpositive if dnonpos: n, d = -n, -d elif dnonpos is None and not int_exp: n = base d = S.One if neg_exp: n, d = d, n exp = -exp if exp.is_infinite: if n is S.One and d is not S.One: return n, self.func(d, exp) if n is not S.One and d is S.One: return self.func(n, exp), d return self.func(n, exp), self.func(d, exp) def matches(self, expr, repl_dict={}, old=False): expr = _sympify(expr) repl_dict = repl_dict.copy() # special case, pattern = 1 and expr.exp can match to 0 if expr is S.One: d = self.exp.matches(S.Zero, repl_dict) if d is not None: return d # make sure the expression to be matched is an Expr if not isinstance(expr, Expr): return None b, e = expr.as_base_exp() # special case number sb, se = self.as_base_exp() if sb.is_Symbol and se.is_Integer and expr: if e.is_rational: return sb.matches(b**(e/se), repl_dict) return sb.matches(expr**(1/se), repl_dict) d = repl_dict.copy() d = self.base.matches(b, d) if d is None: return None d = self.exp.xreplace(d).matches(e, d) if d is None: return Expr.matches(self, expr, repl_dict) return d def _eval_nseries(self, x, n, logx, cdir=0): # NOTE! This function is an important part of the gruntz algorithm # for computing limits. It has to return a generalized power # series with coefficients in C(log, log(x)). In more detail: # It has to return an expression # c_0*x**e_0 + c_1*x**e_1 + ... (finitely many terms) # where e_i are numbers (not necessarily integers) and c_i are # expressions involving only numbers, the log function, and log(x). # The series expansion of b**e is computed as follows: # 1) We express b as f*(1 + g) where f is the leading term of b. # g has order O(x**d) where d is strictly positive. # 2) Then b**e = (f**e)*((1 + g)**e). # (1 + g)**e is computed using binomial series. from sympy import im, I, ceiling, polygamma, limit, logcombine, EulerGamma, exp, nan, zoo, log, factorial, ff, PoleError, O, powdenest, Wild from itertools import product self = powdenest(self, force=True).trigsimp() b, e = self.as_base_exp() if e.has(S.Infinity, S.NegativeInfinity, S.ComplexInfinity, S.NaN): raise PoleError() if e.has(x): return exp(e*log(b))._eval_nseries(x, n=n, logx=logx, cdir=cdir) if logx is not None and b.has(log): c, ex = symbols('c, ex', cls=Wild, exclude=[x]) b = b.replace(log(c*x**ex), log(c) + ex*logx) self = b**e b = b.removeO() try: if b.has(polygamma, EulerGamma) and logx is not None: raise ValueError() _, m = b.leadterm(x) except (ValueError, NotImplementedError): b = b._eval_nseries(x, n=max(2, n), logx=logx, cdir=cdir).removeO() if b.has(nan, zoo): raise NotImplementedError() _, m = b.leadterm(x) if e.has(log): e = logcombine(e).cancel() if not (m.is_zero or e.is_number and e.is_real): return exp(e*log(b))._eval_nseries(x, n=n, logx=logx, cdir=cdir) f = b.as_leading_term(x) g = (b/f - S.One).cancel() maxpow = n - m*e if maxpow < S.Zero: return O(x**(m*e), x) if g.is_zero: return f**e def coeff_exp(term, x): coeff, exp = S.One, S.Zero for factor in Mul.make_args(term): if factor.has(x): base, exp = factor.as_base_exp() if base != x: try: return term.leadterm(x) except ValueError: return term, S.Zero else: coeff *= factor return coeff, exp def mul(d1, d2): res = {} for e1, e2 in product(d1, d2): ex = e1 + e2 if ex < maxpow: res[ex] = res.get(ex, S.Zero) + d1[e1]*d2[e2] return res try: _, d = g.leadterm(x) except (ValueError, NotImplementedError): if limit(g/x**maxpow, x, 0) == 0: # g has higher order zero return f**e + e*f**e*g # first term of binomial series else: raise NotImplementedError() if not d.is_positive: g = (b - f).simplify()/f _, d = g.leadterm(x) if not d.is_positive: raise NotImplementedError() gpoly = g._eval_nseries(x, n=ceiling(maxpow), logx=logx, cdir=cdir).removeO() gterms = {} for term in Add.make_args(gpoly): co1, e1 = coeff_exp(term, x) gterms[e1] = gterms.get(e1, S.Zero) + co1 k = S.One terms = {S.Zero: S.One} tk = gterms while k*d < maxpow: coeff = ff(e, k)/factorial(k) for ex in tk: terms[ex] = terms.get(ex, S.Zero) + coeff*tk[ex] tk = mul(tk, gterms) k += S.One if (not e.is_integer and m.is_zero and f.is_real and f.is_negative and im((b - f).dir(x, cdir)) < 0): inco, inex = coeff_exp(f**e*exp(-2*e*S.Pi*I), x) else: inco, inex = coeff_exp(f**e, x) res = S.Zero for e1 in terms: ex = e1 + inex res += terms[e1]*inco*x**(ex) for i in (1, 2, 3): if (res - self).subs(x, i) is not S.Zero: res += O(x**n, x) break return res def _eval_as_leading_term(self, x, cdir=0): from sympy import exp, I, im, log e = self.exp b = self.base if e.has(x): return exp(e * log(b)).as_leading_term(x, cdir=cdir) f = b.as_leading_term(x, cdir=cdir) if (not e.is_integer and f.is_constant() and f.is_real and f.is_negative and im((b - f).dir(x, cdir)) < 0): return self.func(f, e)*exp(-2*e*S.Pi*I) return self.func(f, e) @cacheit def _taylor_term(self, n, x, *previous_terms): # of (1 + x)**e from sympy import binomial return binomial(self.exp, n) * self.func(x, n) def _sage_(self): return self.args[0]._sage_()**self.args[1]._sage_() def as_content_primitive(self, radical=False, clear=True): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. Examples ======== >>> from sympy import sqrt >>> sqrt(4 + 4*sqrt(2)).as_content_primitive() (2, sqrt(1 + sqrt(2))) >>> sqrt(3 + 3*sqrt(2)).as_content_primitive() (1, sqrt(3)*sqrt(1 + sqrt(2))) >>> from sympy import expand_power_base, powsimp, Mul >>> from sympy.abc import x, y >>> ((2*x + 2)**2).as_content_primitive() (4, (x + 1)**2) >>> (4**((1 + y)/2)).as_content_primitive() (2, 4**(y/2)) >>> (3**((1 + y)/2)).as_content_primitive() (1, 3**((y + 1)/2)) >>> (3**((5 + y)/2)).as_content_primitive() (9, 3**((y + 1)/2)) >>> eq = 3**(2 + 2*x) >>> powsimp(eq) == eq True >>> eq.as_content_primitive() (9, 3**(2*x)) >>> powsimp(Mul(*_)) 3**(2*x + 2) >>> eq = (2 + 2*x)**y >>> s = expand_power_base(eq); s.is_Mul, s (False, (2*x + 2)**y) >>> eq.as_content_primitive() (1, (2*(x + 1))**y) >>> s = expand_power_base(_[1]); s.is_Mul, s (True, 2**y*(x + 1)**y) See docstring of Expr.as_content_primitive for more examples. """ b, e = self.as_base_exp() b = _keep_coeff(*b.as_content_primitive(radical=radical, clear=clear)) ce, pe = e.as_content_primitive(radical=radical, clear=clear) if b.is_Rational: #e #= ce*pe #= ce*(h + t) #= ce*h + ce*t #=> self #= b**(ce*h)*b**(ce*t) #= b**(cehp/cehq)*b**(ce*t) #= b**(iceh + r/cehq)*b**(ce*t) #= b**(iceh)*b**(r/cehq)*b**(ce*t) #= b**(iceh)*b**(ce*t + r/cehq) h, t = pe.as_coeff_Add() if h.is_Rational: ceh = ce*h c = self.func(b, ceh) r = S.Zero if not c.is_Rational: iceh, r = divmod(ceh.p, ceh.q) c = self.func(b, iceh) return c, self.func(b, _keep_coeff(ce, t + r/ce/ceh.q)) e = _keep_coeff(ce, pe) # b**e = (h*t)**e = h**e*t**e = c*m*t**e if e.is_Rational and b.is_Mul: h, t = b.as_content_primitive(radical=radical, clear=clear) # h is positive c, m = self.func(h, e).as_coeff_Mul() # so c is positive m, me = m.as_base_exp() if m is S.One or me == e: # probably always true # return the following, not return c, m*Pow(t, e) # which would change Pow into Mul; we let sympy # decide what to do by using the unevaluated Mul, e.g # should it stay as sqrt(2 + 2*sqrt(5)) or become # sqrt(2)*sqrt(1 + sqrt(5)) return c, self.func(_keep_coeff(m, t), e) return S.One, self.func(b, e) def is_constant(self, *wrt, **flags): expr = self if flags.get('simplify', True): expr = expr.simplify() b, e = expr.as_base_exp() bz = b.equals(0) if bz: # recalculate with assumptions in case it's unevaluated new = b**e if new != expr: return new.is_constant() econ = e.is_constant(*wrt) bcon = b.is_constant(*wrt) if bcon: if econ: return True bz = b.equals(0) if bz is False: return False elif bcon is None: return None return e.equals(0) def _eval_difference_delta(self, n, step): b, e = self.args if e.has(n) and not b.has(n): new_e = e.subs(n, n + step) return (b**(new_e - e) - 1) * self power = Dispatcher('power') power.add((object, object), Pow) from .add import Add from .numbers import Integer from .mul import Mul, _keep_coeff from .symbol import Symbol, Dummy, symbols
855aa8c2e2db73cf08b2f86278362eab3c2f7b8224c5d9f3e482fe2b407ba100
""" There are three types of functions implemented in SymPy: 1) defined functions (in the sense that they can be evaluated) like exp or sin; they have a name and a body: f = exp 2) undefined function which have a name but no body. Undefined functions can be defined using a Function class as follows: f = Function('f') (the result will be a Function instance) 3) anonymous function (or lambda function) which have a body (defined with dummy variables) but have no name: f = Lambda(x, exp(x)*x) f = Lambda((x, y), exp(x)*y) The fourth type of functions are composites, like (sin + cos)(x); these work in SymPy core, but are not yet part of SymPy. Examples ======== >>> import sympy >>> f = sympy.Function("f") >>> from sympy.abc import x >>> f(x) f(x) >>> print(sympy.srepr(f(x).func)) Function('f') >>> f(x).args (x,) """ from typing import Any, Dict as tDict, Optional, Set as tSet, Tuple as tTuple, Union from .add import Add from .assumptions import ManagedProperties from .basic import Basic, _atomic from .cache import cacheit from .compatibility import iterable, is_sequence, as_int, ordered, Iterable from .decorators import _sympifyit from .expr import Expr, AtomicExpr from .numbers import Rational, Float from .operations import LatticeOp from .rules import Transform from .singleton import S from .sympify import sympify from sympy.core.containers import Tuple, Dict from sympy.core.parameters import global_parameters from sympy.core.logic import fuzzy_and, fuzzy_or, fuzzy_not, FuzzyBool from sympy.utilities import default_sort_key from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import has_dups, sift from sympy.utilities.misc import filldedent import mpmath import mpmath.libmp as mlib import inspect from collections import Counter def _coeff_isneg(a): """Return True if the leading Number is negative. Examples ======== >>> from sympy.core.function import _coeff_isneg >>> from sympy import S, Symbol, oo, pi >>> _coeff_isneg(-3*pi) True >>> _coeff_isneg(S(3)) False >>> _coeff_isneg(-oo) True >>> _coeff_isneg(Symbol('n', negative=True)) # coeff is 1 False For matrix expressions: >>> from sympy import MatrixSymbol, sqrt >>> A = MatrixSymbol("A", 3, 3) >>> _coeff_isneg(-sqrt(2)*A) True >>> _coeff_isneg(sqrt(2)*A) False """ if a.is_MatMul: a = a.args[0] if a.is_Mul: a = a.args[0] return a.is_Number and a.is_extended_negative class PoleError(Exception): pass class ArgumentIndexError(ValueError): def __str__(self): return ("Invalid operation with argument number %s for Function %s" % (self.args[1], self.args[0])) class BadSignatureError(TypeError): '''Raised when a Lambda is created with an invalid signature''' pass class BadArgumentsError(TypeError): '''Raised when a Lambda is called with an incorrect number of arguments''' pass # Python 2/3 version that does not raise a Deprecation warning def arity(cls): """Return the arity of the function if it is known, else None. Explanation =========== When default values are specified for some arguments, they are optional and the arity is reported as a tuple of possible values. Examples ======== >>> from sympy.core.function import arity >>> from sympy import log >>> arity(lambda x: x) 1 >>> arity(log) (1, 2) >>> arity(lambda *x: sum(x)) is None True """ eval_ = getattr(cls, 'eval', cls) parameters = inspect.signature(eval_).parameters.items() if [p for _, p in parameters if p.kind == p.VAR_POSITIONAL]: return p_or_k = [p for _, p in parameters if p.kind == p.POSITIONAL_OR_KEYWORD] # how many have no default and how many have a default value no, yes = map(len, sift(p_or_k, lambda p:p.default == p.empty, binary=True)) return no if not yes else tuple(range(no, no + yes + 1)) class FunctionClass(ManagedProperties): """ Base class for function classes. FunctionClass is a subclass of type. Use Function('<function name>' [ , signature ]) to create undefined function classes. """ _new = type.__new__ def __init__(cls, *args, **kwargs): # honor kwarg value or class-defined value before using # the number of arguments in the eval function (if present) nargs = kwargs.pop('nargs', cls.__dict__.get('nargs', arity(cls))) if nargs is None and 'nargs' not in cls.__dict__: for supcls in cls.__mro__: if hasattr(supcls, '_nargs'): nargs = supcls._nargs break else: continue # Canonicalize nargs here; change to set in nargs. if is_sequence(nargs): if not nargs: raise ValueError(filldedent(''' Incorrectly specified nargs as %s: if there are no arguments, it should be `nargs = 0`; if there are any number of arguments, it should be `nargs = None`''' % str(nargs))) nargs = tuple(ordered(set(nargs))) elif nargs is not None: nargs = (as_int(nargs),) cls._nargs = nargs super().__init__(*args, **kwargs) @property def __signature__(self): """ Allow Python 3's inspect.signature to give a useful signature for Function subclasses. """ # Python 3 only, but backports (like the one in IPython) still might # call this. try: from inspect import signature except ImportError: return None # TODO: Look at nargs return signature(self.eval) @property def free_symbols(self): return set() @property def xreplace(self): # Function needs args so we define a property that returns # a function that takes args...and then use that function # to return the right value return lambda rule, **_: rule.get(self, self) @property def nargs(self): """Return a set of the allowed number of arguments for the function. Examples ======== >>> from sympy.core.function import Function >>> f = Function('f') If the function can take any number of arguments, the set of whole numbers is returned: >>> Function('f').nargs Naturals0 If the function was initialized to accept one or more arguments, a corresponding set will be returned: >>> Function('f', nargs=1).nargs FiniteSet(1) >>> Function('f', nargs=(2, 1)).nargs FiniteSet(1, 2) The undefined function, after application, also has the nargs attribute; the actual number of arguments is always available by checking the ``args`` attribute: >>> f = Function('f') >>> f(1).nargs Naturals0 >>> len(f(1).args) 1 """ from sympy.sets.sets import FiniteSet # XXX it would be nice to handle this in __init__ but there are import # problems with trying to import FiniteSet there return FiniteSet(*self._nargs) if self._nargs else S.Naturals0 def __repr__(cls): return cls.__name__ class Application(Basic, metaclass=FunctionClass): """ Base class for applied functions. Explanation =========== Instances of Application represent the result of applying an application of any type to any object. """ is_Function = True @cacheit def __new__(cls, *args, **options): from sympy.sets.fancysets import Naturals0 from sympy.sets.sets import FiniteSet args = list(map(sympify, args)) evaluate = options.pop('evaluate', global_parameters.evaluate) # WildFunction (and anything else like it) may have nargs defined # and we throw that value away here options.pop('nargs', None) if options: raise ValueError("Unknown options: %s" % options) if evaluate: evaluated = cls.eval(*args) if evaluated is not None: return evaluated obj = super().__new__(cls, *args, **options) # make nargs uniform here sentinel = object() objnargs = getattr(obj, "nargs", sentinel) if objnargs is not sentinel: # things passing through here: # - functions subclassed from Function (e.g. myfunc(1).nargs) # - functions like cos(1).nargs # - AppliedUndef with given nargs like Function('f', nargs=1)(1).nargs # Canonicalize nargs here if is_sequence(objnargs): nargs = tuple(ordered(set(objnargs))) elif objnargs is not None: nargs = (as_int(objnargs),) else: nargs = None else: # things passing through here: # - WildFunction('f').nargs # - AppliedUndef with no nargs like Function('f')(1).nargs nargs = obj._nargs # note the underscore here # convert to FiniteSet obj.nargs = FiniteSet(*nargs) if nargs else Naturals0() return obj @classmethod def eval(cls, *args): """ Returns a canonical form of cls applied to arguments args. Explanation =========== The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None. Examples of eval() for the function "sign" --------------------------------------------- .. code-block:: python @classmethod def eval(cls, arg): if arg is S.NaN: return S.NaN if arg.is_zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul): coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One: return cls(coeff) * cls(terms) """ return @property def func(self): return self.__class__ def _eval_subs(self, old, new): if (old.is_Function and new.is_Function and callable(old) and callable(new) and old == self.func and len(self.args) in new.nargs): return new(*[i._subs(old, new) for i in self.args]) class Function(Application, Expr): """ Base class for applied mathematical functions. It also serves as a constructor for undefined function classes. Examples ======== First example shows how to use Function as a constructor for undefined function classes: >>> from sympy import Function, Symbol >>> x = Symbol('x') >>> f = Function('f') >>> g = Function('g')(x) >>> f f >>> f(x) f(x) >>> g g(x) >>> f(x).diff(x) Derivative(f(x), x) >>> g.diff(x) Derivative(g(x), x) Assumptions can be passed to Function, and if function is initialized with a Symbol, the function inherits the name and assumptions associated with the Symbol: >>> f_real = Function('f', real=True) >>> f_real(x).is_real True >>> f_real_inherit = Function(Symbol('f', real=True)) >>> f_real_inherit(x).is_real True Note that assumptions on a function are unrelated to the assumptions on the variable it is called on. If you want to add a relationship, subclass Function and define the appropriate ``_eval_is_assumption`` methods. In the following example Function is used as a base class for ``my_func`` that represents a mathematical function *my_func*. Suppose that it is well known, that *my_func(0)* is *1* and *my_func* at infinity goes to *0*, so we want those two simplifications to occur automatically. Suppose also that *my_func(x)* is real exactly when *x* is real. Here is an implementation that honours those requirements: >>> from sympy import Function, S, oo, I, sin >>> class my_func(Function): ... ... @classmethod ... def eval(cls, x): ... if x.is_Number: ... if x.is_zero: ... return S.One ... elif x is S.Infinity: ... return S.Zero ... ... def _eval_is_real(self): ... return self.args[0].is_real ... >>> x = S('x') >>> my_func(0) + sin(0) 1 >>> my_func(oo) 0 >>> my_func(3.54).n() # Not yet implemented for my_func. my_func(3.54) >>> my_func(I).is_real False In order for ``my_func`` to become useful, several other methods would need to be implemented. See source code of some of the already implemented functions for more complete examples. Also, if the function can take more than one argument, then ``nargs`` must be defined, e.g. if ``my_func`` can take one or two arguments then, >>> class my_func(Function): ... nargs = (1, 2) ... >>> """ @property def _diff_wrt(self): return False @cacheit def __new__(cls, *args, **options): # Handle calls like Function('f') if cls is Function: return UndefinedFunction(*args, **options) n = len(args) if n not in cls.nargs: # XXX: exception message must be in exactly this format to # make it work with NumPy's functions like vectorize(). See, # for example, https://github.com/numpy/numpy/issues/1697. # The ideal solution would be just to attach metadata to # the exception and change NumPy to take advantage of this. temp = ('%(name)s takes %(qual)s %(args)s ' 'argument%(plural)s (%(given)s given)') raise TypeError(temp % { 'name': cls, 'qual': 'exactly' if len(cls.nargs) == 1 else 'at least', 'args': min(cls.nargs), 'plural': 's'*(min(cls.nargs) != 1), 'given': n}) evaluate = options.get('evaluate', global_parameters.evaluate) result = super().__new__(cls, *args, **options) if evaluate and isinstance(result, cls) and result.args: pr2 = min(cls._should_evalf(a) for a in result.args) if pr2 > 0: pr = max(cls._should_evalf(a) for a in result.args) result = result.evalf(mlib.libmpf.prec_to_dps(pr)) return result @classmethod def _should_evalf(cls, arg): """ Decide if the function should automatically evalf(). Explanation =========== By default (in this implementation), this happens if (and only if) the ARG is a floating point number. This function is used by __new__. Returns the precision to evalf to, or -1 if it shouldn't evalf. """ from sympy.core.evalf import pure_complex if arg.is_Float: return arg._prec if not arg.is_Add: return -1 m = pure_complex(arg) if m is None or not (m[0].is_Float or m[1].is_Float): return -1 l = [i._prec for i in m if i.is_Float] l.append(-1) return max(l) @classmethod def class_key(cls): from sympy.sets.fancysets import Naturals0 funcs = { 'exp': 10, 'log': 11, 'sin': 20, 'cos': 21, 'tan': 22, 'cot': 23, 'sinh': 30, 'cosh': 31, 'tanh': 32, 'coth': 33, 'conjugate': 40, 're': 41, 'im': 42, 'arg': 43, } name = cls.__name__ try: i = funcs[name] except KeyError: i = 0 if isinstance(cls.nargs, Naturals0) else 10000 return 4, i, name def _eval_evalf(self, prec): def _get_mpmath_func(fname): """Lookup mpmath function based on name""" if isinstance(self, AppliedUndef): # Shouldn't lookup in mpmath but might have ._imp_ return None if not hasattr(mpmath, fname): from sympy.utilities.lambdify import MPMATH_TRANSLATIONS fname = MPMATH_TRANSLATIONS.get(fname, None) if fname is None: return None return getattr(mpmath, fname) func = _get_mpmath_func(self.func.__name__) # Fall-back evaluation if func is None: imp = getattr(self, '_imp_', None) if imp is None: return None try: return Float(imp(*[i.evalf(prec) for i in self.args]), prec) except (TypeError, ValueError): return None # Convert all args to mpf or mpc # Convert the arguments to *higher* precision than requested for the # final result. # XXX + 5 is a guess, it is similar to what is used in evalf.py. Should # we be more intelligent about it? try: args = [arg._to_mpmath(prec + 5) for arg in self.args] def bad(m): from mpmath import mpf, mpc # the precision of an mpf value is the last element # if that is 1 (and m[1] is not 1 which would indicate a # power of 2), then the eval failed; so check that none of # the arguments failed to compute to a finite precision. # Note: An mpc value has two parts, the re and imag tuple; # check each of those parts, too. Anything else is allowed to # pass if isinstance(m, mpf): m = m._mpf_ return m[1] !=1 and m[-1] == 1 elif isinstance(m, mpc): m, n = m._mpc_ return m[1] !=1 and m[-1] == 1 and \ n[1] !=1 and n[-1] == 1 else: return False if any(bad(a) for a in args): raise ValueError # one or more args failed to compute with significance except ValueError: return with mpmath.workprec(prec): v = func(*args) return Expr._from_mpmath(v, prec) def _eval_derivative(self, s): # f(x).diff(s) -> x.diff(s) * f.fdiff(1)(s) i = 0 l = [] for a in self.args: i += 1 da = a.diff(s) if da.is_zero: continue try: df = self.fdiff(i) except ArgumentIndexError: df = Function.fdiff(self, i) l.append(df * da) return Add(*l) def _eval_is_commutative(self): return fuzzy_and(a.is_commutative for a in self.args) def _eval_is_meromorphic(self, x, a): if not self.args: return True if any(arg.has(x) for arg in self.args[1:]): return False arg = self.args[0] if not arg._eval_is_meromorphic(x, a): return None return fuzzy_not(type(self).is_singular(arg.subs(x, a))) _singularities = None # type: Union[FuzzyBool, tTuple[Expr, ...]] @classmethod def is_singular(cls, a): """ Tests whether the argument is an essential singularity or a branch point, or the functions is non-holomorphic. """ ss = cls._singularities if ss in (True, None, False): return ss return fuzzy_or(a.is_infinite if s is S.ComplexInfinity else (a - s).is_zero for s in ss) def as_base_exp(self): """ Returns the method as the 2-tuple (base, exponent). """ return self, S.One def _eval_aseries(self, n, args0, x, logx): """ Compute an asymptotic expansion around args0, in terms of self.args. This function is only used internally by _eval_nseries and should not be called directly; derived classes can overwrite this to implement asymptotic expansions. """ from sympy.utilities.misc import filldedent raise PoleError(filldedent(''' Asymptotic expansion of %s around %s is not implemented.''' % (type(self), args0))) def _eval_nseries(self, x, n, logx, cdir=0): """ This function does compute series for multivariate functions, but the expansion is always in terms of *one* variable. Examples ======== >>> from sympy import atan2 >>> from sympy.abc import x, y >>> atan2(x, y).series(x, n=2) atan2(0, y) + x/y + O(x**2) >>> atan2(x, y).series(y, n=2) -y/x + atan2(x, 0) + O(y**2) This function also computes asymptotic expansions, if necessary and possible: >>> from sympy import loggamma >>> loggamma(1/x)._eval_nseries(x,0,None) -1/x - log(x)/x + log(x)/2 + O(1) """ from sympy import Order from sympy.core.symbol import uniquely_named_symbol from sympy.sets.sets import FiniteSet args = self.args args0 = [t.limit(x, 0) for t in args] if any(t.is_finite is False for t in args0): from sympy import oo, zoo, nan # XXX could use t.as_leading_term(x) here but it's a little # slower a = [t.compute_leading_term(x, logx=logx) for t in args] a0 = [t.limit(x, 0) for t in a] if any([t.has(oo, -oo, zoo, nan) for t in a0]): return self._eval_aseries(n, args0, x, logx) # Careful: the argument goes to oo, but only logarithmically so. We # are supposed to do a power series expansion "around the # logarithmic term". e.g. # f(1+x+log(x)) # -> f(1+logx) + x*f'(1+logx) + O(x**2) # where 'logx' is given in the argument a = [t._eval_nseries(x, n, logx) for t in args] z = [r - r0 for (r, r0) in zip(a, a0)] p = [Dummy() for _ in z] q = [] v = None for ai, zi, pi in zip(a0, z, p): if zi.has(x): if v is not None: raise NotImplementedError q.append(ai + pi) v = pi else: q.append(ai) e1 = self.func(*q) if v is None: return e1 s = e1._eval_nseries(v, n, logx) o = s.getO() s = s.removeO() s = s.subs(v, zi).expand() + Order(o.expr.subs(v, zi), x) return s if (self.func.nargs is S.Naturals0 or (self.func.nargs == FiniteSet(1) and args0[0]) or any(c > 1 for c in self.func.nargs)): e = self e1 = e.expand() if e == e1: #for example when e = sin(x+1) or e = sin(cos(x)) #let's try the general algorithm if len(e.args) == 1: # issue 14411 e = e.func(e.args[0].cancel()) term = e.subs(x, S.Zero) if term.is_finite is False or term is S.NaN: raise PoleError("Cannot expand %s around 0" % (self)) series = term fact = S.One _x = uniquely_named_symbol('xi', self) e = e.subs(x, _x) for i in range(n - 1): i += 1 fact *= Rational(i) e = e.diff(_x) subs = e.subs(_x, S.Zero) if subs is S.NaN: # try to evaluate a limit if we have to subs = e.limit(_x, S.Zero) if subs.is_finite is False: raise PoleError("Cannot expand %s around 0" % (self)) term = subs*(x**i)/fact term = term.expand() series += term return series + Order(x**n, x) return e1.nseries(x, n=n, logx=logx) arg = self.args[0] l = [] g = None # try to predict a number of terms needed nterms = n + 2 cf = Order(arg.as_leading_term(x), x).getn() if cf != 0: nterms = (n/cf).ceiling() for i in range(nterms): g = self.taylor_term(i, arg, g) g = g.nseries(x, n=n, logx=logx) l.append(g) return Add(*l) + Order(x**n, x) def fdiff(self, argindex=1): """ Returns the first derivative of the function. """ if not (1 <= argindex <= len(self.args)): raise ArgumentIndexError(self, argindex) ix = argindex - 1 A = self.args[ix] if A._diff_wrt: if len(self.args) == 1 or not A.is_Symbol: return _derivative_dispatch(self, A) for i, v in enumerate(self.args): if i != ix and A in v.free_symbols: # it can't be in any other argument's free symbols # issue 8510 break else: return _derivative_dispatch(self, A) # See issue 4624 and issue 4719, 5600 and 8510 D = Dummy('xi_%i' % argindex, dummy_index=hash(A)) args = self.args[:ix] + (D,) + self.args[ix + 1:] return Subs(Derivative(self.func(*args), D), D, A) def _eval_as_leading_term(self, x, cdir=0): """Stub that should be overridden by new Functions to return the first non-zero term in a series if ever an x-dependent argument whose leading term vanishes as x -> 0 might be encountered. See, for example, cos._eval_as_leading_term. """ from sympy import Order args = [a.as_leading_term(x) for a in self.args] o = Order(1, x) if any(x in a.free_symbols and o.contains(a) for a in args): # Whereas x and any finite number are contained in O(1, x), # expressions like 1/x are not. If any arg simplified to a # vanishing expression as x -> 0 (like x or x**2, but not # 3, 1/x, etc...) then the _eval_as_leading_term is needed # to supply the first non-zero term of the series, # # e.g. expression leading term # ---------- ------------ # cos(1/x) cos(1/x) # cos(cos(x)) cos(1) # cos(x) 1 <- _eval_as_leading_term needed # sin(x) x <- _eval_as_leading_term needed # raise NotImplementedError( '%s has no _eval_as_leading_term routine' % self.func) else: return self.func(*args) def _sage_(self): import sage.all as sage fname = self.func.__name__ func = getattr(sage, fname, None) args = [arg._sage_() for arg in self.args] # In the case the function is not known in sage: if func is None: import sympy if getattr(sympy, fname, None) is None: # abstract function return sage.function(fname)(*args) else: # the function defined in sympy is not known in sage # this exception is caught in sage raise AttributeError return func(*args) class AppliedUndef(Function): """ Base class for expressions resulting from the application of an undefined function. """ is_number = False def __new__(cls, *args, **options): args = list(map(sympify, args)) u = [a.name for a in args if isinstance(a, UndefinedFunction)] if u: raise TypeError('Invalid argument: expecting an expression, not UndefinedFunction%s: %s' % ( 's'*(len(u) > 1), ', '.join(u))) obj = super().__new__(cls, *args, **options) return obj def _eval_as_leading_term(self, x, cdir=0): return self def _sage_(self): import sage.all as sage fname = str(self.func) args = [arg._sage_() for arg in self.args] func = sage.function(fname)(*args) return func @property def _diff_wrt(self): """ Allow derivatives wrt to undefined functions. Examples ======== >>> from sympy import Function, Symbol >>> f = Function('f') >>> x = Symbol('x') >>> f(x)._diff_wrt True >>> f(x).diff(x) Derivative(f(x), x) """ return True class UndefSageHelper: """ Helper to facilitate Sage conversion. """ def __get__(self, ins, typ): import sage.all as sage if ins is None: return lambda: sage.function(typ.__name__) else: args = [arg._sage_() for arg in ins.args] return lambda : sage.function(ins.__class__.__name__)(*args) _undef_sage_helper = UndefSageHelper() class UndefinedFunction(FunctionClass): """ The (meta)class of undefined functions. """ def __new__(mcl, name, bases=(AppliedUndef,), __dict__=None, **kwargs): from .symbol import _filter_assumptions # Allow Function('f', real=True) # and/or Function(Symbol('f', real=True)) assumptions, kwargs = _filter_assumptions(kwargs) if isinstance(name, Symbol): assumptions = name._merge(assumptions) name = name.name elif not isinstance(name, str): raise TypeError('expecting string or Symbol for name') else: commutative = assumptions.get('commutative', None) assumptions = Symbol(name, **assumptions).assumptions0 if commutative is None: assumptions.pop('commutative') __dict__ = __dict__ or {} # put the `is_*` for into __dict__ __dict__.update({'is_%s' % k: v for k, v in assumptions.items()}) # You can add other attributes, although they do have to be hashable # (but seriously, if you want to add anything other than assumptions, # just subclass Function) __dict__.update(kwargs) # add back the sanitized assumptions without the is_ prefix kwargs.update(assumptions) # Save these for __eq__ __dict__.update({'_kwargs': kwargs}) # do this for pickling __dict__['__module__'] = None obj = super().__new__(mcl, name, bases, __dict__) obj.name = name obj._sage_ = _undef_sage_helper return obj def __instancecheck__(cls, instance): return cls in type(instance).__mro__ _kwargs = {} # type: tDict[str, Optional[bool]] def __hash__(self): return hash((self.class_key(), frozenset(self._kwargs.items()))) def __eq__(self, other): return (isinstance(other, self.__class__) and self.class_key() == other.class_key() and self._kwargs == other._kwargs) def __ne__(self, other): return not self == other @property def _diff_wrt(self): return False # XXX: The type: ignore on WildFunction is because mypy complains: # # sympy/core/function.py:939: error: Cannot determine type of 'sort_key' in # base class 'Expr' # # Somehow this is because of the @cacheit decorator but it is not clear how to # fix it. class WildFunction(Function, AtomicExpr): # type: ignore """ A WildFunction function matches any function (with its arguments). Examples ======== >>> from sympy import WildFunction, Function, cos >>> from sympy.abc import x, y >>> F = WildFunction('F') >>> f = Function('f') >>> F.nargs Naturals0 >>> x.match(F) >>> F.match(F) {F_: F_} >>> f(x).match(F) {F_: f(x)} >>> cos(x).match(F) {F_: cos(x)} >>> f(x, y).match(F) {F_: f(x, y)} To match functions with a given number of arguments, set ``nargs`` to the desired value at instantiation: >>> F = WildFunction('F', nargs=2) >>> F.nargs FiniteSet(2) >>> f(x).match(F) >>> f(x, y).match(F) {F_: f(x, y)} To match functions with a range of arguments, set ``nargs`` to a tuple containing the desired number of arguments, e.g. if ``nargs = (1, 2)`` then functions with 1 or 2 arguments will be matched. >>> F = WildFunction('F', nargs=(1, 2)) >>> F.nargs FiniteSet(1, 2) >>> f(x).match(F) {F_: f(x)} >>> f(x, y).match(F) {F_: f(x, y)} >>> f(x, y, 1).match(F) """ # XXX: What is this class attribute used for? include = set() # type: tSet[Any] def __init__(cls, name, **assumptions): from sympy.sets.sets import Set, FiniteSet cls.name = name nargs = assumptions.pop('nargs', S.Naturals0) if not isinstance(nargs, Set): # Canonicalize nargs here. See also FunctionClass. if is_sequence(nargs): nargs = tuple(ordered(set(nargs))) elif nargs is not None: nargs = (as_int(nargs),) nargs = FiniteSet(*nargs) cls.nargs = nargs def matches(self, expr, repl_dict={}, old=False): if not isinstance(expr, (AppliedUndef, Function)): return None if len(expr.args) not in self.nargs: return None repl_dict = repl_dict.copy() repl_dict[self] = expr return repl_dict class Derivative(Expr): """ Carries out differentiation of the given expression with respect to symbols. Examples ======== >>> from sympy import Derivative, Function, symbols, Subs >>> from sympy.abc import x, y >>> f, g = symbols('f g', cls=Function) >>> Derivative(x**2, x, evaluate=True) 2*x Denesting of derivatives retains the ordering of variables: >>> Derivative(Derivative(f(x, y), y), x) Derivative(f(x, y), y, x) Contiguously identical symbols are merged into a tuple giving the symbol and the count: >>> Derivative(f(x), x, x, y, x) Derivative(f(x), (x, 2), y, x) If the derivative cannot be performed, and evaluate is True, the order of the variables of differentiation will be made canonical: >>> Derivative(f(x, y), y, x, evaluate=True) Derivative(f(x, y), x, y) Derivatives with respect to undefined functions can be calculated: >>> Derivative(f(x)**2, f(x), evaluate=True) 2*f(x) Such derivatives will show up when the chain rule is used to evalulate a derivative: >>> f(g(x)).diff(x) Derivative(f(g(x)), g(x))*Derivative(g(x), x) Substitution is used to represent derivatives of functions with arguments that are not symbols or functions: >>> f(2*x + 3).diff(x) == 2*Subs(f(y).diff(y), y, 2*x + 3) True Notes ===== Simplification of high-order derivatives: Because there can be a significant amount of simplification that can be done when multiple differentiations are performed, results will be automatically simplified in a fairly conservative fashion unless the keyword ``simplify`` is set to False. >>> from sympy import sqrt, diff, Function, symbols >>> from sympy.abc import x, y, z >>> f, g = symbols('f,g', cls=Function) >>> e = sqrt((x + 1)**2 + x) >>> diff(e, (x, 5), simplify=False).count_ops() 136 >>> diff(e, (x, 5)).count_ops() 30 Ordering of variables: If evaluate is set to True and the expression cannot be evaluated, the list of differentiation symbols will be sorted, that is, the expression is assumed to have continuous derivatives up to the order asked. Derivative wrt non-Symbols: For the most part, one may not differentiate wrt non-symbols. For example, we do not allow differentiation wrt `x*y` because there are multiple ways of structurally defining where x*y appears in an expression: a very strict definition would make (x*y*z).diff(x*y) == 0. Derivatives wrt defined functions (like cos(x)) are not allowed, either: >>> (x*y*z).diff(x*y) Traceback (most recent call last): ... ValueError: Can't calculate derivative wrt x*y. To make it easier to work with variational calculus, however, derivatives wrt AppliedUndef and Derivatives are allowed. For example, in the Euler-Lagrange method one may write F(t, u, v) where u = f(t) and v = f'(t). These variables can be written explicitly as functions of time:: >>> from sympy.abc import t >>> F = Function('F') >>> U = f(t) >>> V = U.diff(t) The derivative wrt f(t) can be obtained directly: >>> direct = F(t, U, V).diff(U) When differentiation wrt a non-Symbol is attempted, the non-Symbol is temporarily converted to a Symbol while the differentiation is performed and the same answer is obtained: >>> indirect = F(t, U, V).subs(U, x).diff(x).subs(x, U) >>> assert direct == indirect The implication of this non-symbol replacement is that all functions are treated as independent of other functions and the symbols are independent of the functions that contain them:: >>> x.diff(f(x)) 0 >>> g(x).diff(f(x)) 0 It also means that derivatives are assumed to depend only on the variables of differentiation, not on anything contained within the expression being differentiated:: >>> F = f(x) >>> Fx = F.diff(x) >>> Fx.diff(F) # derivative depends on x, not F 0 >>> Fxx = Fx.diff(x) >>> Fxx.diff(Fx) # derivative depends on x, not Fx 0 The last example can be made explicit by showing the replacement of Fx in Fxx with y: >>> Fxx.subs(Fx, y) Derivative(y, x) Since that in itself will evaluate to zero, differentiating wrt Fx will also be zero: >>> _.doit() 0 Replacing undefined functions with concrete expressions One must be careful to replace undefined functions with expressions that contain variables consistent with the function definition and the variables of differentiation or else insconsistent result will be obtained. Consider the following example: >>> eq = f(x)*g(y) >>> eq.subs(f(x), x*y).diff(x, y).doit() y*Derivative(g(y), y) + g(y) >>> eq.diff(x, y).subs(f(x), x*y).doit() y*Derivative(g(y), y) The results differ because `f(x)` was replaced with an expression that involved both variables of differentiation. In the abstract case, differentiation of `f(x)` by `y` is 0; in the concrete case, the presence of `y` made that derivative nonvanishing and produced the extra `g(y)` term. Defining differentiation for an object An object must define ._eval_derivative(symbol) method that returns the differentiation result. This function only needs to consider the non-trivial case where expr contains symbol and it should call the diff() method internally (not _eval_derivative); Derivative should be the only one to call _eval_derivative. Any class can allow derivatives to be taken with respect to itself (while indicating its scalar nature). See the docstring of Expr._diff_wrt. See Also ======== _sort_variable_count """ is_Derivative = True @property def _diff_wrt(self): """An expression may be differentiated wrt a Derivative if it is in elementary form. Examples ======== >>> from sympy import Function, Derivative, cos >>> from sympy.abc import x >>> f = Function('f') >>> Derivative(f(x), x)._diff_wrt True >>> Derivative(cos(x), x)._diff_wrt False >>> Derivative(x + 1, x)._diff_wrt False A Derivative might be an unevaluated form of what will not be a valid variable of differentiation if evaluated. For example, >>> Derivative(f(f(x)), x).doit() Derivative(f(x), x)*Derivative(f(f(x)), f(x)) Such an expression will present the same ambiguities as arise when dealing with any other product, like ``2*x``, so ``_diff_wrt`` is False: >>> Derivative(f(f(x)), x)._diff_wrt False """ return self.expr._diff_wrt and isinstance(self.doit(), Derivative) def __new__(cls, expr, *variables, **kwargs): from sympy.matrices.common import MatrixCommon from sympy import Integer, MatrixExpr from sympy.tensor.array import Array, NDimArray from sympy.utilities.misc import filldedent expr = sympify(expr) symbols_or_none = getattr(expr, "free_symbols", None) has_symbol_set = isinstance(symbols_or_none, set) if not has_symbol_set: raise ValueError(filldedent(''' Since there are no variables in the expression %s, it cannot be differentiated.''' % expr)) # determine value for variables if it wasn't given if not variables: variables = expr.free_symbols if len(variables) != 1: if expr.is_number: return S.Zero if len(variables) == 0: raise ValueError(filldedent(''' Since there are no variables in the expression, the variable(s) of differentiation must be supplied to differentiate %s''' % expr)) else: raise ValueError(filldedent(''' Since there is more than one variable in the expression, the variable(s) of differentiation must be supplied to differentiate %s''' % expr)) # Standardize the variables by sympifying them: variables = list(sympify(variables)) # Split the list of variables into a list of the variables we are diff # wrt, where each element of the list has the form (s, count) where # s is the entity to diff wrt and count is the order of the # derivative. variable_count = [] array_likes = (tuple, list, Tuple) for i, v in enumerate(variables): if isinstance(v, Integer): if i == 0: raise ValueError("First variable cannot be a number: %i" % v) count = v prev, prevcount = variable_count[-1] if prevcount != 1: raise TypeError("tuple {} followed by number {}".format((prev, prevcount), v)) if count == 0: variable_count.pop() else: variable_count[-1] = Tuple(prev, count) else: if isinstance(v, array_likes): if len(v) == 0: # Ignore empty tuples: Derivative(expr, ... , (), ... ) continue if isinstance(v[0], array_likes): # Derive by array: Derivative(expr, ... , [[x, y, z]], ... ) if len(v) == 1: v = Array(v[0]) count = 1 else: v, count = v v = Array(v) else: v, count = v if count == 0: continue elif isinstance(v, UndefinedFunction): raise TypeError( "cannot differentiate wrt " "UndefinedFunction: %s" % v) else: count = 1 variable_count.append(Tuple(v, count)) # light evaluation of contiguous, identical # items: (x, 1), (x, 1) -> (x, 2) merged = [] for t in variable_count: v, c = t if c.is_negative: raise ValueError( 'order of differentiation must be nonnegative') if merged and merged[-1][0] == v: c += merged[-1][1] if not c: merged.pop() else: merged[-1] = Tuple(v, c) else: merged.append(t) variable_count = merged # sanity check of variables of differentation; we waited # until the counts were computed since some variables may # have been removed because the count was 0 for v, c in variable_count: # v must have _diff_wrt True if not v._diff_wrt: __ = '' # filler to make error message neater raise ValueError(filldedent(''' Can't calculate derivative wrt %s.%s''' % (v, __))) # We make a special case for 0th derivative, because there is no # good way to unambiguously print this. if len(variable_count) == 0: return expr evaluate = kwargs.get('evaluate', False) if evaluate: if isinstance(expr, Derivative): expr = expr.canonical variable_count = [ (v.canonical if isinstance(v, Derivative) else v, c) for v, c in variable_count] # Look for a quick exit if there are symbols that don't appear in # expression at all. Note, this cannot check non-symbols like # Derivatives as those can be created by intermediate # derivatives. zero = False free = expr.free_symbols for v, c in variable_count: vfree = v.free_symbols if c.is_positive and vfree: if isinstance(v, AppliedUndef): # these match exactly since # x.diff(f(x)) == g(x).diff(f(x)) == 0 # and are not created by differentiation D = Dummy() if not expr.xreplace({v: D}).has(D): zero = True break elif isinstance(v, MatrixExpr): zero = False break elif isinstance(v, Symbol) and v not in free: zero = True break else: if not free & vfree: # e.g. v is IndexedBase or Matrix zero = True break if zero: return cls._get_zero_with_shape_like(expr) # make the order of symbols canonical #TODO: check if assumption of discontinuous derivatives exist variable_count = cls._sort_variable_count(variable_count) # denest if isinstance(expr, Derivative): variable_count = list(expr.variable_count) + variable_count expr = expr.expr return _derivative_dispatch(expr, *variable_count, **kwargs) # we return here if evaluate is False or if there is no # _eval_derivative method if not evaluate or not hasattr(expr, '_eval_derivative'): # return an unevaluated Derivative if evaluate and variable_count == [(expr, 1)] and expr.is_scalar: # special hack providing evaluation for classes # that have defined is_scalar=True but have no # _eval_derivative defined return S.One return Expr.__new__(cls, expr, *variable_count) # evaluate the derivative by calling _eval_derivative method # of expr for each variable # ------------------------------------------------------------- nderivs = 0 # how many derivatives were performed unhandled = [] for i, (v, count) in enumerate(variable_count): old_expr = expr old_v = None is_symbol = v.is_symbol or isinstance(v, (Iterable, Tuple, MatrixCommon, NDimArray)) if not is_symbol: old_v = v v = Dummy('xi') expr = expr.xreplace({old_v: v}) # Derivatives and UndefinedFunctions are independent # of all others clashing = not (isinstance(old_v, Derivative) or \ isinstance(old_v, AppliedUndef)) if not v in expr.free_symbols and not clashing: return expr.diff(v) # expr's version of 0 if not old_v.is_scalar and not hasattr( old_v, '_eval_derivative'): # special hack providing evaluation for classes # that have defined is_scalar=True but have no # _eval_derivative defined expr *= old_v.diff(old_v) obj = cls._dispatch_eval_derivative_n_times(expr, v, count) if obj is not None and obj.is_zero: return obj nderivs += count if old_v is not None: if obj is not None: # remove the dummy that was used obj = obj.subs(v, old_v) # restore expr expr = old_expr if obj is None: # we've already checked for quick-exit conditions # that give 0 so the remaining variables # are contained in the expression but the expression # did not compute a derivative so we stop taking # derivatives unhandled = variable_count[i:] break expr = obj # what we have so far can be made canonical expr = expr.replace( lambda x: isinstance(x, Derivative), lambda x: x.canonical) if unhandled: if isinstance(expr, Derivative): unhandled = list(expr.variable_count) + unhandled expr = expr.expr expr = Expr.__new__(cls, expr, *unhandled) if (nderivs > 1) == True and kwargs.get('simplify', True): from sympy.core.exprtools import factor_terms from sympy.simplify.simplify import signsimp expr = factor_terms(signsimp(expr)) return expr @property def canonical(cls): return cls.func(cls.expr, *Derivative._sort_variable_count(cls.variable_count)) @classmethod def _sort_variable_count(cls, vc): """ Sort (variable, count) pairs into canonical order while retaining order of variables that do not commute during differentiation: * symbols and functions commute with each other * derivatives commute with each other * a derivative doesn't commute with anything it contains * any other object is not allowed to commute if it has free symbols in common with another object Examples ======== >>> from sympy import Derivative, Function, symbols >>> vsort = Derivative._sort_variable_count >>> x, y, z = symbols('x y z') >>> f, g, h = symbols('f g h', cls=Function) Contiguous items are collapsed into one pair: >>> vsort([(x, 1), (x, 1)]) [(x, 2)] >>> vsort([(y, 1), (f(x), 1), (y, 1), (f(x), 1)]) [(y, 2), (f(x), 2)] Ordering is canonical. >>> def vsort0(*v): ... # docstring helper to ... # change vi -> (vi, 0), sort, and return vi vals ... return [i[0] for i in vsort([(i, 0) for i in v])] >>> vsort0(y, x) [x, y] >>> vsort0(g(y), g(x), f(y)) [f(y), g(x), g(y)] Symbols are sorted as far to the left as possible but never move to the left of a derivative having the same symbol in its variables; the same applies to AppliedUndef which are always sorted after Symbols: >>> dfx = f(x).diff(x) >>> assert vsort0(dfx, y) == [y, dfx] >>> assert vsort0(dfx, x) == [dfx, x] """ from sympy.utilities.iterables import uniq, topological_sort if not vc: return [] vc = list(vc) if len(vc) == 1: return [Tuple(*vc[0])] V = list(range(len(vc))) E = [] v = lambda i: vc[i][0] D = Dummy() def _block(d, v, wrt=False): # return True if v should not come before d else False if d == v: return wrt if d.is_Symbol: return False if isinstance(d, Derivative): # a derivative blocks if any of it's variables contain # v; the wrt flag will return True for an exact match # and will cause an AppliedUndef to block if v is in # the arguments if any(_block(k, v, wrt=True) for k in d._wrt_variables): return True return False if not wrt and isinstance(d, AppliedUndef): return False if v.is_Symbol: return v in d.free_symbols if isinstance(v, AppliedUndef): return _block(d.xreplace({v: D}), D) return d.free_symbols & v.free_symbols for i in range(len(vc)): for j in range(i): if _block(v(j), v(i)): E.append((j,i)) # this is the default ordering to use in case of ties O = dict(zip(ordered(uniq([i for i, c in vc])), range(len(vc)))) ix = topological_sort((V, E), key=lambda i: O[v(i)]) # merge counts of contiguously identical items merged = [] for v, c in [vc[i] for i in ix]: if merged and merged[-1][0] == v: merged[-1][1] += c else: merged.append([v, c]) return [Tuple(*i) for i in merged] def _eval_is_commutative(self): return self.expr.is_commutative def _eval_derivative(self, v): # If v (the variable of differentiation) is not in # self.variables, we might be able to take the derivative. if v not in self._wrt_variables: dedv = self.expr.diff(v) if isinstance(dedv, Derivative): return dedv.func(dedv.expr, *(self.variable_count + dedv.variable_count)) # dedv (d(self.expr)/dv) could have simplified things such that the # derivative wrt things in self.variables can now be done. Thus, # we set evaluate=True to see if there are any other derivatives # that can be done. The most common case is when dedv is a simple # number so that the derivative wrt anything else will vanish. return self.func(dedv, *self.variables, evaluate=True) # In this case v was in self.variables so the derivative wrt v has # already been attempted and was not computed, either because it # couldn't be or evaluate=False originally. variable_count = list(self.variable_count) variable_count.append((v, 1)) return self.func(self.expr, *variable_count, evaluate=False) def doit(self, **hints): expr = self.expr if hints.get('deep', True): expr = expr.doit(**hints) hints['evaluate'] = True rv = self.func(expr, *self.variable_count, **hints) if rv!= self and rv.has(Derivative): rv = rv.doit(**hints) return rv @_sympifyit('z0', NotImplementedError) def doit_numerically(self, z0): """ Evaluate the derivative at z numerically. When we can represent derivatives at a point, this should be folded into the normal evalf. For now, we need a special method. """ if len(self.free_symbols) != 1 or len(self.variables) != 1: raise NotImplementedError('partials and higher order derivatives') z = list(self.free_symbols)[0] def eval(x): f0 = self.expr.subs(z, Expr._from_mpmath(x, prec=mpmath.mp.prec)) f0 = f0.evalf(mlib.libmpf.prec_to_dps(mpmath.mp.prec)) return f0._to_mpmath(mpmath.mp.prec) return Expr._from_mpmath(mpmath.diff(eval, z0._to_mpmath(mpmath.mp.prec)), mpmath.mp.prec) @property def expr(self): return self._args[0] @property def _wrt_variables(self): # return the variables of differentiation without # respect to the type of count (int or symbolic) return [i[0] for i in self.variable_count] @property def variables(self): # TODO: deprecate? YES, make this 'enumerated_variables' and # name _wrt_variables as variables # TODO: support for `d^n`? rv = [] for v, count in self.variable_count: if not count.is_Integer: raise TypeError(filldedent(''' Cannot give expansion for symbolic count. If you just want a list of all variables of differentiation, use _wrt_variables.''')) rv.extend([v]*count) return tuple(rv) @property def variable_count(self): return self._args[1:] @property def derivative_count(self): return sum([count for var, count in self.variable_count], 0) @property def free_symbols(self): ret = self.expr.free_symbols # Add symbolic counts to free_symbols for var, count in self.variable_count: ret.update(count.free_symbols) return ret def _eval_subs(self, old, new): # The substitution (old, new) cannot be done inside # Derivative(expr, vars) for a variety of reasons # as handled below. if old in self._wrt_variables: # first handle the counts expr = self.func(self.expr, *[(v, c.subs(old, new)) for v, c in self.variable_count]) if expr != self: return expr._eval_subs(old, new) # quick exit case if not getattr(new, '_diff_wrt', False): # case (0): new is not a valid variable of # differentiation if isinstance(old, Symbol): # don't introduce a new symbol if the old will do return Subs(self, old, new) else: xi = Dummy('xi') return Subs(self.xreplace({old: xi}), xi, new) # If both are Derivatives with the same expr, check if old is # equivalent to self or if old is a subderivative of self. if old.is_Derivative and old.expr == self.expr: if self.canonical == old.canonical: return new # collections.Counter doesn't have __le__ def _subset(a, b): return all((a[i] <= b[i]) == True for i in a) old_vars = Counter(dict(reversed(old.variable_count))) self_vars = Counter(dict(reversed(self.variable_count))) if _subset(old_vars, self_vars): return _derivative_dispatch(new, *(self_vars - old_vars).items()).canonical args = list(self.args) newargs = list(x._subs(old, new) for x in args) if args[0] == old: # complete replacement of self.expr # we already checked that the new is valid so we know # it won't be a problem should it appear in variables return _derivative_dispatch(*newargs) if newargs[0] != args[0]: # case (1) can't change expr by introducing something that is in # the _wrt_variables if it was already in the expr # e.g. # for Derivative(f(x, g(y)), y), x cannot be replaced with # anything that has y in it; for f(g(x), g(y)).diff(g(y)) # g(x) cannot be replaced with anything that has g(y) syms = {vi: Dummy() for vi in self._wrt_variables if not vi.is_Symbol} wrt = {syms.get(vi, vi) for vi in self._wrt_variables} forbidden = args[0].xreplace(syms).free_symbols & wrt nfree = new.xreplace(syms).free_symbols ofree = old.xreplace(syms).free_symbols if (nfree - ofree) & forbidden: return Subs(self, old, new) viter = ((i, j) for ((i, _), (j, _)) in zip(newargs[1:], args[1:])) if any(i != j for i, j in viter): # a wrt-variable change # case (2) can't change vars by introducing a variable # that is contained in expr, e.g. # for Derivative(f(z, g(h(x), y)), y), y cannot be changed to # x, h(x), or g(h(x), y) for a in _atomic(self.expr, recursive=True): for i in range(1, len(newargs)): vi, _ = newargs[i] if a == vi and vi != args[i][0]: return Subs(self, old, new) # more arg-wise checks vc = newargs[1:] oldv = self._wrt_variables newe = self.expr subs = [] for i, (vi, ci) in enumerate(vc): if not vi._diff_wrt: # case (3) invalid differentiation expression so # create a replacement dummy xi = Dummy('xi_%i' % i) # replace the old valid variable with the dummy # in the expression newe = newe.xreplace({oldv[i]: xi}) # and replace the bad variable with the dummy vc[i] = (xi, ci) # and record the dummy with the new (invalid) # differentiation expression subs.append((xi, vi)) if subs: # handle any residual substitution in the expression newe = newe._subs(old, new) # return the Subs-wrapped derivative return Subs(Derivative(newe, *vc), *zip(*subs)) # everything was ok return _derivative_dispatch(*newargs) def _eval_lseries(self, x, logx, cdir=0): dx = self.variables for term in self.expr.lseries(x, logx=logx, cdir=cdir): yield self.func(term, *dx) def _eval_nseries(self, x, n, logx, cdir=0): arg = self.expr.nseries(x, n=n, logx=logx) o = arg.getO() dx = self.variables rv = [self.func(a, *dx) for a in Add.make_args(arg.removeO())] if o: rv.append(o/x) return Add(*rv) def _eval_as_leading_term(self, x, cdir=0): series_gen = self.expr.lseries(x) d = S.Zero for leading_term in series_gen: d = diff(leading_term, *self.variables) if d != 0: break return d def _sage_(self): import sage.all as sage args = [arg._sage_() for arg in self.args] return sage.derivative(*args) def as_finite_difference(self, points=1, x0=None, wrt=None): """ Expresses a Derivative instance as a finite difference. Parameters ========== points : sequence or coefficient, optional If sequence: discrete values (length >= order+1) of the independent variable used for generating the finite difference weights. If it is a coefficient, it will be used as the step-size for generating an equidistant sequence of length order+1 centered around ``x0``. Default: 1 (step-size 1) x0 : number or Symbol, optional the value of the independent variable (``wrt``) at which the derivative is to be approximated. Default: same as ``wrt``. wrt : Symbol, optional "with respect to" the variable for which the (partial) derivative is to be approximated for. If not provided it is required that the derivative is ordinary. Default: ``None``. Examples ======== >>> from sympy import symbols, Function, exp, sqrt, Symbol >>> x, h = symbols('x h') >>> f = Function('f') >>> f(x).diff(x).as_finite_difference() -f(x - 1/2) + f(x + 1/2) The default step size and number of points are 1 and ``order + 1`` respectively. We can change the step size by passing a symbol as a parameter: >>> f(x).diff(x).as_finite_difference(h) -f(-h/2 + x)/h + f(h/2 + x)/h We can also specify the discretized values to be used in a sequence: >>> f(x).diff(x).as_finite_difference([x, x+h, x+2*h]) -3*f(x)/(2*h) + 2*f(h + x)/h - f(2*h + x)/(2*h) The algorithm is not restricted to use equidistant spacing, nor do we need to make the approximation around ``x0``, but we can get an expression estimating the derivative at an offset: >>> e, sq2 = exp(1), sqrt(2) >>> xl = [x-h, x+h, x+e*h] >>> f(x).diff(x, 1).as_finite_difference(xl, x+h*sq2) # doctest: +ELLIPSIS 2*h*((h + sqrt(2)*h)/(2*h) - (-sqrt(2)*h + h)/(2*h))*f(E*h + x)/... To approximate ``Derivative`` around ``x0`` using a non-equidistant spacing step, the algorithm supports assignment of undefined functions to ``points``: >>> dx = Function('dx') >>> f(x).diff(x).as_finite_difference(points=dx(x), x0=x-h) -f(-h + x - dx(-h + x)/2)/dx(-h + x) + f(-h + x + dx(-h + x)/2)/dx(-h + x) Partial derivatives are also supported: >>> y = Symbol('y') >>> d2fdxdy=f(x,y).diff(x,y) >>> d2fdxdy.as_finite_difference(wrt=x) -Derivative(f(x - 1/2, y), y) + Derivative(f(x + 1/2, y), y) We can apply ``as_finite_difference`` to ``Derivative`` instances in compound expressions using ``replace``: >>> (1 + 42**f(x).diff(x)).replace(lambda arg: arg.is_Derivative, ... lambda arg: arg.as_finite_difference()) 42**(-f(x - 1/2) + f(x + 1/2)) + 1 See also ======== sympy.calculus.finite_diff.apply_finite_diff sympy.calculus.finite_diff.differentiate_finite sympy.calculus.finite_diff.finite_diff_weights """ from ..calculus.finite_diff import _as_finite_diff return _as_finite_diff(self, points, x0, wrt) @classmethod def _get_zero_with_shape_like(cls, expr): return S.Zero @classmethod def _dispatch_eval_derivative_n_times(cls, expr, v, count): # Evaluate the derivative `n` times. If # `_eval_derivative_n_times` is not overridden by the current # object, the default in `Basic` will call a loop over # `_eval_derivative`: return expr._eval_derivative_n_times(v, count) def _derivative_dispatch(expr, *variables, **kwargs): from sympy.matrices.common import MatrixCommon from sympy import MatrixExpr from sympy import NDimArray array_types = (MatrixCommon, MatrixExpr, NDimArray, list, tuple, Tuple) if isinstance(expr, array_types) or any(isinstance(i[0], array_types) if isinstance(i, (tuple, list, Tuple)) else isinstance(i, array_types) for i in variables): from sympy.tensor.array.array_derivatives import ArrayDerivative return ArrayDerivative(expr, *variables, **kwargs) return Derivative(expr, *variables, **kwargs) class Lambda(Expr): """ Lambda(x, expr) represents a lambda function similar to Python's 'lambda x: expr'. A function of several variables is written as Lambda((x, y, ...), expr). Examples ======== A simple example: >>> from sympy import Lambda >>> from sympy.abc import x >>> f = Lambda(x, x**2) >>> f(4) 16 For multivariate functions, use: >>> from sympy.abc import y, z, t >>> f2 = Lambda((x, y, z, t), x + y**z + t**z) >>> f2(1, 2, 3, 4) 73 It is also possible to unpack tuple arguments: >>> f = Lambda( ((x, y), z) , x + y + z) >>> f((1, 2), 3) 6 A handy shortcut for lots of arguments: >>> p = x, y, z >>> f = Lambda(p, x + y*z) >>> f(*p) x + y*z """ is_Function = True def __new__(cls, signature, expr): if iterable(signature) and not isinstance(signature, (tuple, Tuple)): SymPyDeprecationWarning( feature="non tuple iterable of argument symbols to Lambda", useinstead="tuple of argument symbols", issue=17474, deprecated_since_version="1.5").warn() signature = tuple(signature) sig = signature if iterable(signature) else (signature,) sig = sympify(sig) cls._check_signature(sig) if len(sig) == 1 and sig[0] == expr: return S.IdentityFunction return Expr.__new__(cls, sig, sympify(expr)) @classmethod def _check_signature(cls, sig): syms = set() def rcheck(args): for a in args: if a.is_symbol: if a in syms: raise BadSignatureError("Duplicate symbol %s" % a) syms.add(a) elif isinstance(a, Tuple): rcheck(a) else: raise BadSignatureError("Lambda signature should be only tuples" " and symbols, not %s" % a) if not isinstance(sig, Tuple): raise BadSignatureError("Lambda signature should be a tuple not %s" % sig) # Recurse through the signature: rcheck(sig) @property def signature(self): """The expected form of the arguments to be unpacked into variables""" return self._args[0] @property def expr(self): """The return value of the function""" return self._args[1] @property def variables(self): """The variables used in the internal representation of the function""" def _variables(args): if isinstance(args, Tuple): for arg in args: yield from _variables(arg) else: yield args return tuple(_variables(self.signature)) @property def nargs(self): from sympy.sets.sets import FiniteSet return FiniteSet(len(self.signature)) bound_symbols = variables @property def free_symbols(self): return self.expr.free_symbols - set(self.variables) def __call__(self, *args): n = len(args) if n not in self.nargs: # Lambda only ever has 1 value in nargs # XXX: exception message must be in exactly this format to # make it work with NumPy's functions like vectorize(). See, # for example, https://github.com/numpy/numpy/issues/1697. # The ideal solution would be just to attach metadata to # the exception and change NumPy to take advantage of this. ## XXX does this apply to Lambda? If not, remove this comment. temp = ('%(name)s takes exactly %(args)s ' 'argument%(plural)s (%(given)s given)') raise BadArgumentsError(temp % { 'name': self, 'args': list(self.nargs)[0], 'plural': 's'*(list(self.nargs)[0] != 1), 'given': n}) d = self._match_signature(self.signature, args) return self.expr.xreplace(d) def _match_signature(self, sig, args): symargmap = {} def rmatch(pars, args): for par, arg in zip(pars, args): if par.is_symbol: symargmap[par] = arg elif isinstance(par, Tuple): if not isinstance(arg, (tuple, Tuple)) or len(args) != len(pars): raise BadArgumentsError("Can't match %s and %s" % (args, pars)) rmatch(par, arg) rmatch(sig, args) return symargmap @property def is_identity(self): """Return ``True`` if this ``Lambda`` is an identity function. """ return self.signature == self.expr class Subs(Expr): """ Represents unevaluated substitutions of an expression. ``Subs(expr, x, x0)`` represents the expression resulting from substituting x with x0 in expr. Parameters ========== expr : Expr An expression. x : tuple, variable A variable or list of distinct variables. x0 : tuple or list of tuples A point or list of evaluation points corresponding to those variables. Notes ===== ``Subs`` objects are generally useful to represent unevaluated derivatives calculated at a point. The variables may be expressions, but they are subjected to the limitations of subs(), so it is usually a good practice to use only symbols for variables, since in that case there can be no ambiguity. There's no automatic expansion - use the method .doit() to effect all possible substitutions of the object and also of objects inside the expression. When evaluating derivatives at a point that is not a symbol, a Subs object is returned. One is also able to calculate derivatives of Subs objects - in this case the expression is always expanded (for the unevaluated form, use Derivative()). Examples ======== >>> from sympy import Subs, Function, sin, cos >>> from sympy.abc import x, y, z >>> f = Function('f') Subs are created when a particular substitution cannot be made. The x in the derivative cannot be replaced with 0 because 0 is not a valid variables of differentiation: >>> f(x).diff(x).subs(x, 0) Subs(Derivative(f(x), x), x, 0) Once f is known, the derivative and evaluation at 0 can be done: >>> _.subs(f, sin).doit() == sin(x).diff(x).subs(x, 0) == cos(0) True Subs can also be created directly with one or more variables: >>> Subs(f(x)*sin(y) + z, (x, y), (0, 1)) Subs(z + f(x)*sin(y), (x, y), (0, 1)) >>> _.doit() z + f(0)*sin(1) Notes ===== In order to allow expressions to combine before doit is done, a representation of the Subs expression is used internally to make expressions that are superficially different compare the same: >>> a, b = Subs(x, x, 0), Subs(y, y, 0) >>> a + b 2*Subs(x, x, 0) This can lead to unexpected consequences when using methods like `has` that are cached: >>> s = Subs(x, x, 0) >>> s.has(x), s.has(y) (True, False) >>> ss = s.subs(x, y) >>> ss.has(x), ss.has(y) (True, False) >>> s, ss (Subs(x, x, 0), Subs(y, y, 0)) """ def __new__(cls, expr, variables, point, **assumptions): from sympy import Symbol if not is_sequence(variables, Tuple): variables = [variables] variables = Tuple(*variables) if has_dups(variables): repeated = [str(v) for v, i in Counter(variables).items() if i > 1] __ = ', '.join(repeated) raise ValueError(filldedent(''' The following expressions appear more than once: %s ''' % __)) point = Tuple(*(point if is_sequence(point, Tuple) else [point])) if len(point) != len(variables): raise ValueError('Number of point values must be the same as ' 'the number of variables.') if not point: return sympify(expr) # denest if isinstance(expr, Subs): variables = expr.variables + variables point = expr.point + point expr = expr.expr else: expr = sympify(expr) # use symbols with names equal to the point value (with prepended _) # to give a variable-independent expression pre = "_" pts = sorted(set(point), key=default_sort_key) from sympy.printing import StrPrinter class CustomStrPrinter(StrPrinter): def _print_Dummy(self, expr): return str(expr) + str(expr.dummy_index) def mystr(expr, **settings): p = CustomStrPrinter(settings) return p.doprint(expr) while 1: s_pts = {p: Symbol(pre + mystr(p)) for p in pts} reps = [(v, s_pts[p]) for v, p in zip(variables, point)] # if any underscore-prepended symbol is already a free symbol # and is a variable with a different point value, then there # is a clash, e.g. _0 clashes in Subs(_0 + _1, (_0, _1), (1, 0)) # because the new symbol that would be created is _1 but _1 # is already mapped to 0 so __0 and __1 are used for the new # symbols if any(r in expr.free_symbols and r in variables and Symbol(pre + mystr(point[variables.index(r)])) != r for _, r in reps): pre += "_" continue break obj = Expr.__new__(cls, expr, Tuple(*variables), point) obj._expr = expr.xreplace(dict(reps)) return obj def _eval_is_commutative(self): return self.expr.is_commutative def doit(self, **hints): e, v, p = self.args # remove self mappings for i, (vi, pi) in enumerate(zip(v, p)): if vi == pi: v = v[:i] + v[i + 1:] p = p[:i] + p[i + 1:] if not v: return self.expr if isinstance(e, Derivative): # apply functions first, e.g. f -> cos undone = [] for i, vi in enumerate(v): if isinstance(vi, FunctionClass): e = e.subs(vi, p[i]) else: undone.append((vi, p[i])) if not isinstance(e, Derivative): e = e.doit() if isinstance(e, Derivative): # do Subs that aren't related to differentiation undone2 = [] D = Dummy() arg = e.args[0] for vi, pi in undone: if D not in e.xreplace({vi: D}).free_symbols: if arg.has(vi): e = e.subs(vi, pi) else: undone2.append((vi, pi)) undone = undone2 # differentiate wrt variables that are present wrt = [] D = Dummy() expr = e.expr free = expr.free_symbols for vi, ci in e.variable_count: if isinstance(vi, Symbol) and vi in free: expr = expr.diff((vi, ci)) elif D in expr.subs(vi, D).free_symbols: expr = expr.diff((vi, ci)) else: wrt.append((vi, ci)) # inject remaining subs rv = expr.subs(undone) # do remaining differentiation *in order given* for vc in wrt: rv = rv.diff(vc) else: # inject remaining subs rv = e.subs(undone) else: rv = e.doit(**hints).subs(list(zip(v, p))) if hints.get('deep', True) and rv != self: rv = rv.doit(**hints) return rv def evalf(self, prec=None, **options): return self.doit().evalf(prec, **options) n = evalf @property def variables(self): """The variables to be evaluated""" return self._args[1] bound_symbols = variables @property def expr(self): """The expression on which the substitution operates""" return self._args[0] @property def point(self): """The values for which the variables are to be substituted""" return self._args[2] @property def free_symbols(self): return (self.expr.free_symbols - set(self.variables) | set(self.point.free_symbols)) @property def expr_free_symbols(self): return (self.expr.expr_free_symbols - set(self.variables) | set(self.point.expr_free_symbols)) def __eq__(self, other): if not isinstance(other, Subs): return False return self._hashable_content() == other._hashable_content() def __ne__(self, other): return not(self == other) def __hash__(self): return super().__hash__() def _hashable_content(self): return (self._expr.xreplace(self.canonical_variables), ) + tuple(ordered([(v, p) for v, p in zip(self.variables, self.point) if not self.expr.has(v)])) def _eval_subs(self, old, new): # Subs doit will do the variables in order; the semantics # of subs for Subs is have the following invariant for # Subs object foo: # foo.doit().subs(reps) == foo.subs(reps).doit() pt = list(self.point) if old in self.variables: if _atomic(new) == {new} and not any( i.has(new) for i in self.args): # the substitution is neutral return self.xreplace({old: new}) # any occurrence of old before this point will get # handled by replacements from here on i = self.variables.index(old) for j in range(i, len(self.variables)): pt[j] = pt[j]._subs(old, new) return self.func(self.expr, self.variables, pt) v = [i._subs(old, new) for i in self.variables] if v != list(self.variables): return self.func(self.expr, self.variables + (old,), pt + [new]) expr = self.expr._subs(old, new) pt = [i._subs(old, new) for i in self.point] return self.func(expr, v, pt) def _eval_derivative(self, s): # Apply the chain rule of the derivative on the substitution variables: val = Add.fromiter(p.diff(s) * Subs(self.expr.diff(v), self.variables, self.point).doit() for v, p in zip(self.variables, self.point)) # Check if there are free symbols in `self.expr`: # First get the `expr_free_symbols`, which returns the free symbols # that are directly contained in an expression node (i.e. stop # searching if the node isn't an expression). At this point turn the # expressions into `free_symbols` and check if there are common free # symbols in `self.expr` and the deriving factor. fs1 = {j for i in self.expr_free_symbols for j in i.free_symbols} if len(fs1 & s.free_symbols) > 0: val += Subs(self.expr.diff(s), self.variables, self.point).doit() return val def _eval_nseries(self, x, n, logx, cdir=0): if x in self.point: # x is the variable being substituted into apos = self.point.index(x) other = self.variables[apos] else: other = x arg = self.expr.nseries(other, n=n, logx=logx) o = arg.getO() terms = Add.make_args(arg.removeO()) rv = Add(*[self.func(a, *self.args[1:]) for a in terms]) if o: rv += o.subs(other, x) return rv def _eval_as_leading_term(self, x, cdir=0): if x in self.point: ipos = self.point.index(x) xvar = self.variables[ipos] return self.expr.as_leading_term(xvar) if x in self.variables: # if `x` is a dummy variable, it means it won't exist after the # substitution has been performed: return self # The variable is independent of the substitution: return self.expr.as_leading_term(x) def diff(f, *symbols, **kwargs): """ Differentiate f with respect to symbols. Explanation =========== This is just a wrapper to unify .diff() and the Derivative class; its interface is similar to that of integrate(). You can use the same shortcuts for multiple variables as with Derivative. For example, diff(f(x), x, x, x) and diff(f(x), x, 3) both return the third derivative of f(x). You can pass evaluate=False to get an unevaluated Derivative class. Note that if there are 0 symbols (such as diff(f(x), x, 0), then the result will be the function (the zeroth derivative), even if evaluate=False. Examples ======== >>> from sympy import sin, cos, Function, diff >>> from sympy.abc import x, y >>> f = Function('f') >>> diff(sin(x), x) cos(x) >>> diff(f(x), x, x, x) Derivative(f(x), (x, 3)) >>> diff(f(x), x, 3) Derivative(f(x), (x, 3)) >>> diff(sin(x)*cos(y), x, 2, y, 2) sin(x)*cos(y) >>> type(diff(sin(x), x)) cos >>> type(diff(sin(x), x, evaluate=False)) <class 'sympy.core.function.Derivative'> >>> type(diff(sin(x), x, 0)) sin >>> type(diff(sin(x), x, 0, evaluate=False)) sin >>> diff(sin(x)) cos(x) >>> diff(sin(x*y)) Traceback (most recent call last): ... ValueError: specify differentiation variables to differentiate sin(x*y) Note that ``diff(sin(x))`` syntax is meant only for convenience in interactive sessions and should be avoided in library code. References ========== http://reference.wolfram.com/legacy/v5_2/Built-inFunctions/AlgebraicComputation/Calculus/D.html See Also ======== Derivative idiff: computes the derivative implicitly """ if hasattr(f, 'diff'): return f.diff(*symbols, **kwargs) kwargs.setdefault('evaluate', True) return _derivative_dispatch(f, *symbols, **kwargs) def expand(e, deep=True, modulus=None, power_base=True, power_exp=True, mul=True, log=True, multinomial=True, basic=True, **hints): r""" Expand an expression using methods given as hints. Explanation =========== Hints evaluated unless explicitly set to False are: ``basic``, ``log``, ``multinomial``, ``mul``, ``power_base``, and ``power_exp`` The following hints are supported but not applied unless set to True: ``complex``, ``func``, and ``trig``. In addition, the following meta-hints are supported by some or all of the other hints: ``frac``, ``numer``, ``denom``, ``modulus``, and ``force``. ``deep`` is supported by all hints. Additionally, subclasses of Expr may define their own hints or meta-hints. The ``basic`` hint is used for any special rewriting of an object that should be done automatically (along with the other hints like ``mul``) when expand is called. This is a catch-all hint to handle any sort of expansion that may not be described by the existing hint names. To use this hint an object should override the ``_eval_expand_basic`` method. Objects may also define their own expand methods, which are not run by default. See the API section below. If ``deep`` is set to ``True`` (the default), things like arguments of functions are recursively expanded. Use ``deep=False`` to only expand on the top level. If the ``force`` hint is used, assumptions about variables will be ignored in making the expansion. Hints ===== These hints are run by default mul --- Distributes multiplication over addition: >>> from sympy import cos, exp, sin >>> from sympy.abc import x, y, z >>> (y*(x + z)).expand(mul=True) x*y + y*z multinomial ----------- Expand (x + y + ...)**n where n is a positive integer. >>> ((x + y + z)**2).expand(multinomial=True) x**2 + 2*x*y + 2*x*z + y**2 + 2*y*z + z**2 power_exp --------- Expand addition in exponents into multiplied bases. >>> exp(x + y).expand(power_exp=True) exp(x)*exp(y) >>> (2**(x + y)).expand(power_exp=True) 2**x*2**y power_base ---------- Split powers of multiplied bases. This only happens by default if assumptions allow, or if the ``force`` meta-hint is used: >>> ((x*y)**z).expand(power_base=True) (x*y)**z >>> ((x*y)**z).expand(power_base=True, force=True) x**z*y**z >>> ((2*y)**z).expand(power_base=True) 2**z*y**z Note that in some cases where this expansion always holds, SymPy performs it automatically: >>> (x*y)**2 x**2*y**2 log --- Pull out power of an argument as a coefficient and split logs products into sums of logs. Note that these only work if the arguments of the log function have the proper assumptions--the arguments must be positive and the exponents must be real--or else the ``force`` hint must be True: >>> from sympy import log, symbols >>> log(x**2*y).expand(log=True) log(x**2*y) >>> log(x**2*y).expand(log=True, force=True) 2*log(x) + log(y) >>> x, y = symbols('x,y', positive=True) >>> log(x**2*y).expand(log=True) 2*log(x) + log(y) basic ----- This hint is intended primarily as a way for custom subclasses to enable expansion by default. These hints are not run by default: complex ------- Split an expression into real and imaginary parts. >>> x, y = symbols('x,y') >>> (x + y).expand(complex=True) re(x) + re(y) + I*im(x) + I*im(y) >>> cos(x).expand(complex=True) -I*sin(re(x))*sinh(im(x)) + cos(re(x))*cosh(im(x)) Note that this is just a wrapper around ``as_real_imag()``. Most objects that wish to redefine ``_eval_expand_complex()`` should consider redefining ``as_real_imag()`` instead. func ---- Expand other functions. >>> from sympy import gamma >>> gamma(x + 1).expand(func=True) x*gamma(x) trig ---- Do trigonometric expansions. >>> cos(x + y).expand(trig=True) -sin(x)*sin(y) + cos(x)*cos(y) >>> sin(2*x).expand(trig=True) 2*sin(x)*cos(x) Note that the forms of ``sin(n*x)`` and ``cos(n*x)`` in terms of ``sin(x)`` and ``cos(x)`` are not unique, due to the identity `\sin^2(x) + \cos^2(x) = 1`. The current implementation uses the form obtained from Chebyshev polynomials, but this may change. See `this MathWorld article <http://mathworld.wolfram.com/Multiple-AngleFormulas.html>`_ for more information. Notes ===== - You can shut off unwanted methods:: >>> (exp(x + y)*(x + y)).expand() x*exp(x)*exp(y) + y*exp(x)*exp(y) >>> (exp(x + y)*(x + y)).expand(power_exp=False) x*exp(x + y) + y*exp(x + y) >>> (exp(x + y)*(x + y)).expand(mul=False) (x + y)*exp(x)*exp(y) - Use deep=False to only expand on the top level:: >>> exp(x + exp(x + y)).expand() exp(x)*exp(exp(x)*exp(y)) >>> exp(x + exp(x + y)).expand(deep=False) exp(x)*exp(exp(x + y)) - Hints are applied in an arbitrary, but consistent order (in the current implementation, they are applied in alphabetical order, except multinomial comes before mul, but this may change). Because of this, some hints may prevent expansion by other hints if they are applied first. For example, ``mul`` may distribute multiplications and prevent ``log`` and ``power_base`` from expanding them. Also, if ``mul`` is applied before ``multinomial`, the expression might not be fully distributed. The solution is to use the various ``expand_hint`` helper functions or to use ``hint=False`` to this function to finely control which hints are applied. Here are some examples:: >>> from sympy import expand, expand_mul, expand_power_base >>> x, y, z = symbols('x,y,z', positive=True) >>> expand(log(x*(y + z))) log(x) + log(y + z) Here, we see that ``log`` was applied before ``mul``. To get the mul expanded form, either of the following will work:: >>> expand_mul(log(x*(y + z))) log(x*y + x*z) >>> expand(log(x*(y + z)), log=False) log(x*y + x*z) A similar thing can happen with the ``power_base`` hint:: >>> expand((x*(y + z))**x) (x*y + x*z)**x To get the ``power_base`` expanded form, either of the following will work:: >>> expand((x*(y + z))**x, mul=False) x**x*(y + z)**x >>> expand_power_base((x*(y + z))**x) x**x*(y + z)**x >>> expand((x + y)*y/x) y + y**2/x The parts of a rational expression can be targeted:: >>> expand((x + y)*y/x/(x + 1), frac=True) (x*y + y**2)/(x**2 + x) >>> expand((x + y)*y/x/(x + 1), numer=True) (x*y + y**2)/(x*(x + 1)) >>> expand((x + y)*y/x/(x + 1), denom=True) y*(x + y)/(x**2 + x) - The ``modulus`` meta-hint can be used to reduce the coefficients of an expression post-expansion:: >>> expand((3*x + 1)**2) 9*x**2 + 6*x + 1 >>> expand((3*x + 1)**2, modulus=5) 4*x**2 + x + 1 - Either ``expand()`` the function or ``.expand()`` the method can be used. Both are equivalent:: >>> expand((x + 1)**2) x**2 + 2*x + 1 >>> ((x + 1)**2).expand() x**2 + 2*x + 1 API === Objects can define their own expand hints by defining ``_eval_expand_hint()``. The function should take the form:: def _eval_expand_hint(self, **hints): # Only apply the method to the top-level expression ... See also the example below. Objects should define ``_eval_expand_hint()`` methods only if ``hint`` applies to that specific object. The generic ``_eval_expand_hint()`` method defined in Expr will handle the no-op case. Each hint should be responsible for expanding that hint only. Furthermore, the expansion should be applied to the top-level expression only. ``expand()`` takes care of the recursion that happens when ``deep=True``. You should only call ``_eval_expand_hint()`` methods directly if you are 100% sure that the object has the method, as otherwise you are liable to get unexpected ``AttributeError``s. Note, again, that you do not need to recursively apply the hint to args of your object: this is handled automatically by ``expand()``. ``_eval_expand_hint()`` should generally not be used at all outside of an ``_eval_expand_hint()`` method. If you want to apply a specific expansion from within another method, use the public ``expand()`` function, method, or ``expand_hint()`` functions. In order for expand to work, objects must be rebuildable by their args, i.e., ``obj.func(*obj.args) == obj`` must hold. Expand methods are passed ``**hints`` so that expand hints may use 'metahints'--hints that control how different expand methods are applied. For example, the ``force=True`` hint described above that causes ``expand(log=True)`` to ignore assumptions is such a metahint. The ``deep`` meta-hint is handled exclusively by ``expand()`` and is not passed to ``_eval_expand_hint()`` methods. Note that expansion hints should generally be methods that perform some kind of 'expansion'. For hints that simply rewrite an expression, use the .rewrite() API. Examples ======== >>> from sympy import Expr, sympify >>> class MyClass(Expr): ... def __new__(cls, *args): ... args = sympify(args) ... return Expr.__new__(cls, *args) ... ... def _eval_expand_double(self, *, force=False, **hints): ... ''' ... Doubles the args of MyClass. ... ... If there more than four args, doubling is not performed, ... unless force=True is also used (False by default). ... ''' ... if not force and len(self.args) > 4: ... return self ... return self.func(*(self.args + self.args)) ... >>> a = MyClass(1, 2, MyClass(3, 4)) >>> a MyClass(1, 2, MyClass(3, 4)) >>> a.expand(double=True) MyClass(1, 2, MyClass(3, 4, 3, 4), 1, 2, MyClass(3, 4, 3, 4)) >>> a.expand(double=True, deep=False) MyClass(1, 2, MyClass(3, 4), 1, 2, MyClass(3, 4)) >>> b = MyClass(1, 2, 3, 4, 5) >>> b.expand(double=True) MyClass(1, 2, 3, 4, 5) >>> b.expand(double=True, force=True) MyClass(1, 2, 3, 4, 5, 1, 2, 3, 4, 5) See Also ======== expand_log, expand_mul, expand_multinomial, expand_complex, expand_trig, expand_power_base, expand_power_exp, expand_func, sympy.simplify.hyperexpand.hyperexpand """ # don't modify this; modify the Expr.expand method hints['power_base'] = power_base hints['power_exp'] = power_exp hints['mul'] = mul hints['log'] = log hints['multinomial'] = multinomial hints['basic'] = basic return sympify(e).expand(deep=deep, modulus=modulus, **hints) # This is a special application of two hints def _mexpand(expr, recursive=False): # expand multinomials and then expand products; this may not always # be sufficient to give a fully expanded expression (see # test_issue_8247_8354 in test_arit) if expr is None: return was = None while was != expr: was, expr = expr, expand_mul(expand_multinomial(expr)) if not recursive: break return expr # These are simple wrappers around single hints. def expand_mul(expr, deep=True): """ Wrapper around expand that only uses the mul hint. See the expand docstring for more information. Examples ======== >>> from sympy import symbols, expand_mul, exp, log >>> x, y = symbols('x,y', positive=True) >>> expand_mul(exp(x+y)*(x+y)*log(x*y**2)) x*exp(x + y)*log(x*y**2) + y*exp(x + y)*log(x*y**2) """ return sympify(expr).expand(deep=deep, mul=True, power_exp=False, power_base=False, basic=False, multinomial=False, log=False) def expand_multinomial(expr, deep=True): """ Wrapper around expand that only uses the multinomial hint. See the expand docstring for more information. Examples ======== >>> from sympy import symbols, expand_multinomial, exp >>> x, y = symbols('x y', positive=True) >>> expand_multinomial((x + exp(x + 1))**2) x**2 + 2*x*exp(x + 1) + exp(2*x + 2) """ return sympify(expr).expand(deep=deep, mul=False, power_exp=False, power_base=False, basic=False, multinomial=True, log=False) def expand_log(expr, deep=True, force=False, factor=False): """ Wrapper around expand that only uses the log hint. See the expand docstring for more information. Examples ======== >>> from sympy import symbols, expand_log, exp, log >>> x, y = symbols('x,y', positive=True) >>> expand_log(exp(x+y)*(x+y)*log(x*y**2)) (x + y)*(log(x) + 2*log(y))*exp(x + y) """ from sympy import Mul, log if factor is False: def _handle(x): x1 = expand_mul(expand_log(x, deep=deep, force=force, factor=True)) if x1.count(log) <= x.count(log): return x1 return x expr = expr.replace( lambda x: x.is_Mul and all(any(isinstance(i, log) and i.args[0].is_Rational for i in Mul.make_args(j)) for j in x.as_numer_denom()), lambda x: _handle(x)) return sympify(expr).expand(deep=deep, log=True, mul=False, power_exp=False, power_base=False, multinomial=False, basic=False, force=force, factor=factor) def expand_func(expr, deep=True): """ Wrapper around expand that only uses the func hint. See the expand docstring for more information. Examples ======== >>> from sympy import expand_func, gamma >>> from sympy.abc import x >>> expand_func(gamma(x + 2)) x*(x + 1)*gamma(x) """ return sympify(expr).expand(deep=deep, func=True, basic=False, log=False, mul=False, power_exp=False, power_base=False, multinomial=False) def expand_trig(expr, deep=True): """ Wrapper around expand that only uses the trig hint. See the expand docstring for more information. Examples ======== >>> from sympy import expand_trig, sin >>> from sympy.abc import x, y >>> expand_trig(sin(x+y)*(x+y)) (x + y)*(sin(x)*cos(y) + sin(y)*cos(x)) """ return sympify(expr).expand(deep=deep, trig=True, basic=False, log=False, mul=False, power_exp=False, power_base=False, multinomial=False) def expand_complex(expr, deep=True): """ Wrapper around expand that only uses the complex hint. See the expand docstring for more information. Examples ======== >>> from sympy import expand_complex, exp, sqrt, I >>> from sympy.abc import z >>> expand_complex(exp(z)) I*exp(re(z))*sin(im(z)) + exp(re(z))*cos(im(z)) >>> expand_complex(sqrt(I)) sqrt(2)/2 + sqrt(2)*I/2 See Also ======== sympy.core.expr.Expr.as_real_imag """ return sympify(expr).expand(deep=deep, complex=True, basic=False, log=False, mul=False, power_exp=False, power_base=False, multinomial=False) def expand_power_base(expr, deep=True, force=False): """ Wrapper around expand that only uses the power_base hint. A wrapper to expand(power_base=True) which separates a power with a base that is a Mul into a product of powers, without performing any other expansions, provided that assumptions about the power's base and exponent allow. deep=False (default is True) will only apply to the top-level expression. force=True (default is False) will cause the expansion to ignore assumptions about the base and exponent. When False, the expansion will only happen if the base is non-negative or the exponent is an integer. >>> from sympy.abc import x, y, z >>> from sympy import expand_power_base, sin, cos, exp >>> (x*y)**2 x**2*y**2 >>> (2*x)**y (2*x)**y >>> expand_power_base(_) 2**y*x**y >>> expand_power_base((x*y)**z) (x*y)**z >>> expand_power_base((x*y)**z, force=True) x**z*y**z >>> expand_power_base(sin((x*y)**z), deep=False) sin((x*y)**z) >>> expand_power_base(sin((x*y)**z), force=True) sin(x**z*y**z) >>> expand_power_base((2*sin(x))**y + (2*cos(x))**y) 2**y*sin(x)**y + 2**y*cos(x)**y >>> expand_power_base((2*exp(y))**x) 2**x*exp(y)**x >>> expand_power_base((2*cos(x))**y) 2**y*cos(x)**y Notice that sums are left untouched. If this is not the desired behavior, apply full ``expand()`` to the expression: >>> expand_power_base(((x+y)*z)**2) z**2*(x + y)**2 >>> (((x+y)*z)**2).expand() x**2*z**2 + 2*x*y*z**2 + y**2*z**2 >>> expand_power_base((2*y)**(1+z)) 2**(z + 1)*y**(z + 1) >>> ((2*y)**(1+z)).expand() 2*2**z*y*y**z See Also ======== expand """ return sympify(expr).expand(deep=deep, log=False, mul=False, power_exp=False, power_base=True, multinomial=False, basic=False, force=force) def expand_power_exp(expr, deep=True): """ Wrapper around expand that only uses the power_exp hint. See the expand docstring for more information. Examples ======== >>> from sympy import expand_power_exp >>> from sympy.abc import x, y >>> expand_power_exp(x**(y + 2)) x**2*x**y """ return sympify(expr).expand(deep=deep, complex=False, basic=False, log=False, mul=False, power_exp=True, power_base=False, multinomial=False) def count_ops(expr, visual=False): """ Return a representation (integer or expression) of the operations in expr. Parameters ========== expr : Expr If expr is an iterable, the sum of the op counts of the items will be returned. visual : bool, optional If ``False`` (default) then the sum of the coefficients of the visual expression will be returned. If ``True`` then the number of each type of operation is shown with the core class types (or their virtual equivalent) multiplied by the number of times they occur. Examples ======== >>> from sympy.abc import a, b, x, y >>> from sympy import sin, count_ops Although there isn't a SUB object, minus signs are interpreted as either negations or subtractions: >>> (x - y).count_ops(visual=True) SUB >>> (-x).count_ops(visual=True) NEG Here, there are two Adds and a Pow: >>> (1 + a + b**2).count_ops(visual=True) 2*ADD + POW In the following, an Add, Mul, Pow and two functions: >>> (sin(x)*x + sin(x)**2).count_ops(visual=True) ADD + MUL + POW + 2*SIN for a total of 5: >>> (sin(x)*x + sin(x)**2).count_ops(visual=False) 5 Note that "what you type" is not always what you get. The expression 1/x/y is translated by sympy into 1/(x*y) so it gives a DIV and MUL rather than two DIVs: >>> (1/x/y).count_ops(visual=True) DIV + MUL The visual option can be used to demonstrate the difference in operations for expressions in different forms. Here, the Horner representation is compared with the expanded form of a polynomial: >>> eq=x*(1 + x*(2 + x*(3 + x))) >>> count_ops(eq.expand(), visual=True) - count_ops(eq, visual=True) -MUL + 3*POW The count_ops function also handles iterables: >>> count_ops([x, sin(x), None, True, x + 2], visual=False) 2 >>> count_ops([x, sin(x), None, True, x + 2], visual=True) ADD + SIN >>> count_ops({x: sin(x), x + 2: y + 1}, visual=True) 2*ADD + SIN """ from sympy import Integral, Sum, Symbol from sympy.core.relational import Relational from sympy.simplify.radsimp import fraction from sympy.logic.boolalg import BooleanFunction from sympy.utilities.misc import func_name expr = sympify(expr) if isinstance(expr, Expr) and not expr.is_Relational: ops = [] args = [expr] NEG = Symbol('NEG') DIV = Symbol('DIV') SUB = Symbol('SUB') ADD = Symbol('ADD') while args: a = args.pop() if a.is_Rational: #-1/3 = NEG + DIV if a is not S.One: if a.p < 0: ops.append(NEG) if a.q != 1: ops.append(DIV) continue elif a.is_Mul or a.is_MatMul: if _coeff_isneg(a): ops.append(NEG) if a.args[0] is S.NegativeOne: a = a.as_two_terms()[1] else: a = -a n, d = fraction(a) if n.is_Integer: ops.append(DIV) if n < 0: ops.append(NEG) args.append(d) continue # won't be -Mul but could be Add elif d is not S.One: if not d.is_Integer: args.append(d) ops.append(DIV) args.append(n) continue # could be -Mul elif a.is_Add or a.is_MatAdd: aargs = list(a.args) negs = 0 for i, ai in enumerate(aargs): if _coeff_isneg(ai): negs += 1 args.append(-ai) if i > 0: ops.append(SUB) else: args.append(ai) if i > 0: ops.append(ADD) if negs == len(aargs): # -x - y = NEG + SUB ops.append(NEG) elif _coeff_isneg(aargs[0]): # -x + y = SUB, but already recorded ADD ops.append(SUB - ADD) continue if a.is_Pow and a.exp is S.NegativeOne: ops.append(DIV) args.append(a.base) # won't be -Mul but could be Add continue if a.is_Mul or isinstance(a, LatticeOp): o = Symbol(a.func.__name__.upper()) # count the args ops.append(o*(len(a.args) - 1)) elif a.args and ( a.is_Pow or a.is_Function or isinstance(a, Derivative) or isinstance(a, Integral) or isinstance(a, Sum)): # if it's not in the list above we don't # consider a.func something to count, e.g. # Tuple, MatrixSymbol, etc... o = Symbol(a.func.__name__.upper()) ops.append(o) if not a.is_Symbol: args.extend(a.args) elif isinstance(expr, Dict): ops = [count_ops(k, visual=visual) + count_ops(v, visual=visual) for k, v in expr.items()] elif iterable(expr): ops = [count_ops(i, visual=visual) for i in expr] elif isinstance(expr, (Relational, BooleanFunction)): ops = [] for arg in expr.args: ops.append(count_ops(arg, visual=True)) o = Symbol(func_name(expr, short=True).upper()) ops.append(o) elif not isinstance(expr, Basic): ops = [] else: # it's Basic not isinstance(expr, Expr): if not isinstance(expr, Basic): raise TypeError("Invalid type of expr") else: ops = [] args = [expr] while args: a = args.pop() if a.args: o = Symbol(a.func.__name__.upper()) if a.is_Boolean: ops.append(o*(len(a.args)-1)) else: ops.append(o) args.extend(a.args) if not ops: if visual: return S.Zero return 0 ops = Add(*ops) if visual: return ops if ops.is_Number: return int(ops) return sum(int((a.args or [1])[0]) for a in Add.make_args(ops)) def nfloat(expr, n=15, exponent=False, dkeys=False): """Make all Rationals in expr Floats except those in exponents (unless the exponents flag is set to True). When processing dictionaries, don't modify the keys unless ``dkeys=True``. Examples ======== >>> from sympy.core.function import nfloat >>> from sympy.abc import x, y >>> from sympy import cos, pi, sqrt >>> nfloat(x**4 + x/2 + cos(pi/3) + 1 + sqrt(y)) x**4 + 0.5*x + sqrt(y) + 1.5 >>> nfloat(x**4 + sqrt(y), exponent=True) x**4.0 + y**0.5 Container types are not modified: >>> type(nfloat((1, 2))) is tuple True """ from sympy.core.power import Pow from sympy.polys.rootoftools import RootOf from sympy import MatrixBase kw = dict(n=n, exponent=exponent, dkeys=dkeys) if isinstance(expr, MatrixBase): return expr.applyfunc(lambda e: nfloat(e, **kw)) # handling of iterable containers if iterable(expr, exclude=str): if isinstance(expr, (dict, Dict)): if dkeys: args = [tuple(map(lambda i: nfloat(i, **kw), a)) for a in expr.items()] else: args = [(k, nfloat(v, **kw)) for k, v in expr.items()] if isinstance(expr, dict): return type(expr)(args) else: return expr.func(*args) elif isinstance(expr, Basic): return expr.func(*[nfloat(a, **kw) for a in expr.args]) return type(expr)([nfloat(a, **kw) for a in expr]) rv = sympify(expr) if rv.is_Number: return Float(rv, n) elif rv.is_number: # evalf doesn't always set the precision rv = rv.n(n) if rv.is_Number: rv = Float(rv.n(n), n) else: pass # pure_complex(rv) is likely True return rv elif rv.is_Atom: return rv elif rv.is_Relational: args_nfloat = (nfloat(arg, **kw) for arg in rv.args) return rv.func(*args_nfloat) # watch out for RootOf instances that don't like to have # their exponents replaced with Dummies and also sometimes have # problems with evaluating at low precision (issue 6393) rv = rv.xreplace({ro: ro.n(n) for ro in rv.atoms(RootOf)}) if not exponent: reps = [(p, Pow(p.base, Dummy())) for p in rv.atoms(Pow)] rv = rv.xreplace(dict(reps)) rv = rv.n(n) if not exponent: rv = rv.xreplace({d.exp: p.exp for p, d in reps}) else: # Pow._eval_evalf special cases Integer exponents so if # exponent is suppose to be handled we have to do so here rv = rv.xreplace(Transform( lambda x: Pow(x.base, Float(x.exp, n)), lambda x: x.is_Pow and x.exp.is_Integer)) return rv.xreplace(Transform( lambda x: x.func(*nfloat(x.args, n, exponent)), lambda x: isinstance(x, Function))) from sympy.core.symbol import Dummy, Symbol
a4cb023809d54f9ede64cea6f8c44376aaba741f886278a9805b7eb408c003f9
"""Core module. Provides the basic operations needed in sympy. """ from .sympify import sympify, SympifyError from .cache import cacheit from .assumptions import assumptions, check_assumptions, failing_assumptions, common_assumptions from .basic import Basic, Atom, preorder_traversal from .singleton import S from .expr import Expr, AtomicExpr, UnevaluatedExpr from .symbol import Symbol, Wild, Dummy, symbols, var from .numbers import Number, Float, Rational, Integer, NumberSymbol, \ RealNumber, igcd, ilcm, seterr, E, I, nan, oo, pi, zoo, \ AlgebraicNumber, comp, mod_inverse from .power import Pow, integer_nthroot, integer_log from .mul import Mul, prod from .add import Add from .mod import Mod from .relational import ( Rel, Eq, Ne, Lt, Le, Gt, Ge, Equality, GreaterThan, LessThan, Unequality, StrictGreaterThan, StrictLessThan ) from .multidimensional import vectorize from .function import Lambda, WildFunction, Derivative, diff, FunctionClass, \ Function, Subs, expand, PoleError, count_ops, \ expand_mul, expand_log, expand_func, \ expand_trig, expand_complex, expand_multinomial, nfloat, \ expand_power_base, expand_power_exp, arity from .evalf import PrecisionExhausted, N from .containers import Tuple, Dict from .exprtools import gcd_terms, factor_terms, factor_nc from .parameters import evaluate from .kind import UndefinedKind, NumberKind, BooleanKind # expose singletons Catalan = S.Catalan EulerGamma = S.EulerGamma GoldenRatio = S.GoldenRatio TribonacciConstant = S.TribonacciConstant __all__ = [ 'sympify', 'SympifyError', 'cacheit', 'assumptions', 'check_assumptions', 'failing_assumptions', 'common_assumptions', 'Basic', 'Atom', 'preorder_traversal', 'S', 'Expr', 'AtomicExpr', 'UnevaluatedExpr', 'Symbol', 'Wild', 'Dummy', 'symbols', 'var', 'Number', 'Float', 'Rational', 'Integer', 'NumberSymbol', 'RealNumber', 'igcd', 'ilcm', 'seterr', 'E', 'I', 'nan', 'oo', 'pi', 'zoo', 'AlgebraicNumber', 'comp', 'mod_inverse', 'Pow', 'integer_nthroot', 'integer_log', 'Mul', 'prod', 'Add', 'Mod', 'Rel', 'Eq', 'Ne', 'Lt', 'Le', 'Gt', 'Ge', 'Equality', 'GreaterThan', 'LessThan', 'Unequality', 'StrictGreaterThan', 'StrictLessThan', 'vectorize', 'Lambda', 'WildFunction', 'Derivative', 'diff', 'FunctionClass', 'Function', 'Subs', 'expand', 'PoleError', 'count_ops', 'expand_mul', 'expand_log', 'expand_func', 'expand_trig', 'expand_complex', 'expand_multinomial', 'nfloat', 'expand_power_base', 'expand_power_exp', 'arity', 'PrecisionExhausted', 'N', 'evalf', # The module? 'Tuple', 'Dict', 'gcd_terms', 'factor_terms', 'factor_nc', 'evaluate', 'Catalan', 'EulerGamma', 'GoldenRatio', 'TribonacciConstant', 'UndefinedKind', 'NumberKind', 'BooleanKind', ]
d301d8dddf363fcf4338986b9d55e9c00dc75d7e12c06c60ba55a2478fa1e1c4
""" Module to efficiently partition SymPy objects. This system is introduced because class of SymPy object does not always represent the mathematical classification of the entity. For example, ``Integral(1, x)`` and ``Integral(Matrix([1,2]), x)`` are both instance of ``Integral`` class. However the former is number and the latter is matrix. One way to resolve this is defining subclass for each mathematical type, such as ``MatAdd`` for the addition between matrices. Basic algebraic operation such as addition or multiplication take this approach, but defining every class for every mathematical object is not scalable. Therefore, we define the "kind" of the object and let the expression infer the kind of itself from its arguments. Function and class can filter the arguments by their kind, and behave differently according to the type of itself. This module defines basic kinds for core objects. Other kinds such as ``ArrayKind`` or ``MatrixKind`` can be found in corresponding modules. .. notes:: This approach is experimental, and can be replaced or deleted in the future. See https://github.com/sympy/sympy/pull/20549. """ from collections import defaultdict from sympy.core.cache import cacheit from sympy.multipledispatch.dispatcher import (Dispatcher, ambiguity_warn, ambiguity_register_error_ignore_dup, str_signature, RaiseNotImplementedError) class KindMeta(type): """ Metaclass for ``Kind``. Assigns empty ``dict`` as class attribute ``_inst`` for every class, in order to endow singleton-like behavior. """ def __new__(cls, clsname, bases, dct): dct['_inst'] = {} return super().__new__(cls, clsname, bases, dct) class Kind(object, metaclass=KindMeta): """ Base class for kinds. Kind of the object represents the mathematical classification that the entity falls into. It is expected that functions and classes recognize and filter the argument by its kind. Kind of every object must be carefully selected so that it shows the intention of design. Expressions may have different kind according to the kind of its arguements. For example, arguements of ``Add`` must have common kind since addition is group operator, and the resulting ``Add()`` has the same kind. For the performance, each kind is as broad as possible and is not based on set theory. For example, ``NumberKind`` includes not only complex number but expression containing ``S.Infinity`` or ``S.NaN`` which are not strictly number. Kind may have arguments as parameter. For example, ``MatrixKind()`` may be constructed with one element which represents the kind of its elements. ``Kind`` behaves in singleton-like fashion. Same signature will return the same object. """ def __new__(cls, *args): if args in cls._inst: inst = cls._inst[args] else: inst = super().__new__(cls) cls._inst[args] = inst return inst class _UndefinedKind(Kind): """ Default kind for all SymPy object. If the kind is not defined for the object, or if the object cannot infer the kind from its arguments, this will be returned. Examples ======== >>> from sympy import Expr >>> Expr().kind UndefinedKind """ def __new__(cls): return super().__new__(cls) def __repr__(self): return "UndefinedKind" UndefinedKind = _UndefinedKind() class _NumberKind(Kind): """ Kind for all numeric object. This kind represents every number, including complex numbers, infinity and ``S.NaN``. Other objects such as quaternions do not have this kind. Most ``Expr`` are initially designed to represent the number, so this will be the most common kind in SymPy core. For example ``Symbol()``, which represents a scalar, has this kind as long as it is commutative. Numbers form a field. Any operation between number-kind objects will result this kind as well. Examples ======== >>> from sympy import S, oo, Symbol >>> S.One.kind NumberKind >>> (-oo).kind NumberKind >>> S.NaN.kind NumberKind Commutative symbol are treated as number. >>> x = Symbol('x') >>> x.kind NumberKind >>> Symbol('y', commutative=False).kind UndefinedKind Operation between numbers results number. >>> (x+1).kind NumberKind See Also ======== sympy.core.expr.Expr.is_Number : check if the object is strictly subclass of ``Number`` class. sympy.core.expr.Expr.is_number : check if the object is number without any free symbol. """ def __new__(cls): return super().__new__(cls) def __repr__(self): return "NumberKind" NumberKind = _NumberKind() class _BooleanKind(Kind): """ Kind for boolean objects. SymPy's ``S.true``, ``S.false``, and built-in ``True`` and ``False`` have this kind. Boolean number ``1`` and ``0`` are not relevent. Examples ======== >>> from sympy import S, Q >>> S.true.kind BooleanKind >>> Q.even(3).kind BooleanKind """ def __new__(cls): return super().__new__(cls) def __repr__(self): return "BooleanKind" BooleanKind = _BooleanKind() class KindDispatcher: """ Dispatcher to select a kind from multiple kinds by binary dispatching. .. notes:: This approach is experimental, and can be replaced or deleted in the future. Explanation =========== SymPy object's :obj:`sympy.core.kind.Kind()` vaguely represents the algebraic structure where the object belongs to. Therefore, with given operation, we can always find a dominating kind among the different kinds. This class selects the kind by recursive binary dispatching. If the result cannot be determined, ``UndefinedKind`` is returned. Examples ======== Multiplication between numbers return number. >>> from sympy import Mul >>> from sympy.core import NumberKind >>> Mul._kind_dispatcher(NumberKind, NumberKind) NumberKind Multiplication between number and unknown-kind object returns unknown kind. >>> from sympy.core import UndefinedKind >>> Mul._kind_dispatcher(NumberKind, UndefinedKind) UndefinedKind Any number and order of kinds is allowed. >>> Mul._kind_dispatcher(UndefinedKind, NumberKind) UndefinedKind >>> Mul._kind_dispatcher(NumberKind, UndefinedKind, NumberKind) UndefinedKind Since matrix forms a vector space over scalar field, multiplication between matrix with numeric element and number returns matrix with numeric element. >>> from sympy.matrices import MatrixKind >>> Mul._kind_dispatcher(MatrixKind(NumberKind), NumberKind) MatrixKind(NumberKind) If a matrix with number element and another matrix with unknown-kind element are multiplied, we know that the result is matrix but the kind of its elements is unknown. >>> Mul._kind_dispatcher(MatrixKind(NumberKind), MatrixKind(UndefinedKind)) MatrixKind(UndefinedKind) Parameters ========== name : str commutative : bool, optional If True, binary dispatch will be automatically registered in reversed order as well. doc : str, optional """ def __init__(self, name, commutative=False, doc=None): self.name = name self.doc = doc self.commutative = commutative self._dispatcher = Dispatcher(name) def __repr__(self): return "<dispatched %s>" % self.name def register(self, *types, **kwargs): """ Register the binary dispatcher for two kind classes. If *self.commutative* is ``True``, signature in reversed order is automatically registered as well. """ on_ambiguity = kwargs.pop("on_ambiguity", None) if not on_ambiguity: if self.commutative: on_ambiguity = ambiguity_register_error_ignore_dup else: on_ambiguity = ambiguity_warn kwargs.update(on_ambiguity=on_ambiguity) if not len(types) == 2: raise RuntimeError( "Only binary dispatch is supported, but got %s types: <%s>." % ( len(types), str_signature(types) )) def _(func): self._dispatcher.add(types, func, **kwargs) if self.commutative: self._dispatcher.add(tuple(reversed(types)), func, **kwargs) return _ def __call__(self, *args, **kwargs): if self.commutative: kinds = frozenset(args) else: kinds = [] prev = None for a in args: if prev is not a: kinds.append(a) prev = a return self.dispatch_kinds(kinds, **kwargs) @cacheit def dispatch_kinds(self, kinds, **kwargs): # Quick exit for the case where all kinds are same if len(kinds) == 1: result, = kinds if not isinstance(result, Kind): raise RuntimeError("%s is not a kind." % result) return result for i,kind in enumerate(kinds): if not isinstance(kind, Kind): raise RuntimeError("%s is not a kind." % kind) if i == 0: result = kind else: prev_kind = result t1, t2 = type(prev_kind), type(kind) func = self._dispatcher.dispatch(t1, t2) if func is None and self.commutative: # try reversed order func = self._dispatcher.dispatch(t2, t1) if func is None: # unregistered kind relation result = UndefinedKind else: result = func(prev_kind, kind) if not isinstance(result, Kind): raise RuntimeError( "Dispatcher for {!r} and {!r} must return a Kind, but got {!r}".format( prev_kind, kind, result )) return result @property def __doc__(self): docs = [ "Kind dispatcher : %s" % self.name, "Note that support for this is experimental. See the docs for :class:`KindDispatcher` for details" ] if self.doc: docs.append(self.doc) s = "Registered kind classes\n" s += '=' * len(s) docs.append(s) amb_sigs = [] typ_sigs = defaultdict(list) for sigs in self._dispatcher.ordering[::-1]: key = self._dispatcher.funcs[sigs] typ_sigs[key].append(sigs) for func, sigs in typ_sigs.items(): sigs_str = ', '.join('<%s>' % str_signature(sig) for sig in sigs) if isinstance(func, RaiseNotImplementedError): amb_sigs.append(sigs_str) continue s = 'Inputs: %s\n' % sigs_str s += '-' * len(s) + '\n' if func.__doc__: s += func.__doc__.strip() else: s += func.__name__ docs.append(s) if amb_sigs: s = "Ambiguous kind classes\n" s += '=' * len(s) docs.append(s) s = '\n'.join(amb_sigs) docs.append(s) return '\n\n'.join(docs)
87d8105b602c3def672def2ac8b45254b69f4197567342a57ad72a1cb2397121
from collections import defaultdict from functools import cmp_to_key, reduce from operator import attrgetter from .basic import Basic from .compatibility import is_sequence from .parameters import global_parameters from .logic import _fuzzy_group, fuzzy_or, fuzzy_not from .singleton import S from .operations import AssocOp, AssocOpDispatcher from .cache import cacheit from .numbers import ilcm, igcd from .expr import Expr from .kind import UndefinedKind # Key for sorting commutative args in canonical order _args_sortkey = cmp_to_key(Basic.compare) def _addsort(args): # in-place sorting of args args.sort(key=_args_sortkey) def _unevaluated_Add(*args): """Return a well-formed unevaluated Add: Numbers are collected and put in slot 0 and args are sorted. Use this when args have changed but you still want to return an unevaluated Add. Examples ======== >>> from sympy.core.add import _unevaluated_Add as uAdd >>> from sympy import S, Add >>> from sympy.abc import x, y >>> a = uAdd(*[S(1.0), x, S(2)]) >>> a.args[0] 3.00000000000000 >>> a.args[1] x Beyond the Number being in slot 0, there is no other assurance of order for the arguments since they are hash sorted. So, for testing purposes, output produced by this in some other function can only be tested against the output of this function or as one of several options: >>> opts = (Add(x, y, evaluate=False), Add(y, x, evaluate=False)) >>> a = uAdd(x, y) >>> assert a in opts and a == uAdd(x, y) >>> uAdd(x + 1, x + 2) x + x + 3 """ args = list(args) newargs = [] co = S.Zero while args: a = args.pop() if a.is_Add: # this will keep nesting from building up # so that x + (x + 1) -> x + x + 1 (3 args) args.extend(a.args) elif a.is_Number: co += a else: newargs.append(a) _addsort(newargs) if co: newargs.insert(0, co) return Add._from_args(newargs) class Add(Expr, AssocOp): """ Expression representing addition operation for algebraic group. Every argument of ``Add()`` must be ``Expr``. Infix operator ``+`` on most scalar objects in SymPy calls this class. Another use of ``Add()`` is to represent the structure of abstract addition so that its arguments can be substituted to return different class. Refer to examples section for this. ``Add()`` evaluates the argument unless ``evaluate=False`` is passed. The evaluation logic includes: 1. Flattening ``Add(x, Add(y, z))`` -> ``Add(x, y, z)`` 2. Identity removing ``Add(x, 0, y)`` -> ``Add(x, y)`` 3. Coefficient collecting by ``.as_coeff_Mul()`` ``Add(x, 2*x)`` -> ``Mul(3, x)`` 4. Term sorting ``Add(y, x, 2)`` -> ``Add(2, x, y)`` If no argument is passed, identity element 0 is returned. If single element is passed, that element is returned. Note that ``Add(*args)`` is more efficient than ``sum(args)`` because it flattens the arguments. ``sum(a, b, c, ...)`` recursively adds the arguments as ``a + (b + (c + ...))``, which has quadratic complexity. On the other hand, ``Add(a, b, c, d)`` does not assume nested structure, making the complexity linear. Since addition is group operation, every argument should have the same :obj:`sympy.core.kind.Kind()`. Examples ======== >>> from sympy import Add, I >>> from sympy.abc import x, y >>> Add(x, 1) x + 1 >>> Add(x, x) 2*x >>> 2*x**2 + 3*x + I*y + 2*y + 2*x/5 + 1.0*y + 1 2*x**2 + 17*x/5 + 3.0*y + I*y + 1 If ``evaluate=False`` is passed, result is not evaluated. >>> Add(1, 2, evaluate=False) 1 + 2 >>> Add(x, x, evaluate=False) x + x ``Add()`` also represents the general structure of addition operation. >>> from sympy import MatrixSymbol >>> A,B = MatrixSymbol('A', 2,2), MatrixSymbol('B', 2,2) >>> expr = Add(x,y).subs({x:A, y:B}) >>> expr A + B >>> type(expr) <class 'sympy.matrices.expressions.matadd.MatAdd'> Note that the printers don't display in args order. >>> Add(x, 1) x + 1 >>> Add(x, 1).args (1, x) See Also ======== MatAdd """ __slots__ = () is_Add = True _args_type = Expr @classmethod def flatten(cls, seq): """ Takes the sequence "seq" of nested Adds and returns a flatten list. Returns: (commutative_part, noncommutative_part, order_symbols) Applies associativity, all terms are commutable with respect to addition. NB: the removal of 0 is already handled by AssocOp.__new__ See also ======== sympy.core.mul.Mul.flatten """ from sympy.calculus.util import AccumBounds from sympy.matrices.expressions import MatrixExpr from sympy.tensor.tensor import TensExpr rv = None if len(seq) == 2: a, b = seq if b.is_Rational: a, b = b, a if a.is_Rational: if b.is_Mul: rv = [a, b], [], None if rv: if all(s.is_commutative for s in rv[0]): return rv return [], rv[0], None terms = {} # term -> coeff # e.g. x**2 -> 5 for ... + 5*x**2 + ... coeff = S.Zero # coefficient (Number or zoo) to always be in slot 0 # e.g. 3 + ... order_factors = [] extra = [] for o in seq: # O(x) if o.is_Order: if o.expr.is_zero: continue for o1 in order_factors: if o1.contains(o): o = None break if o is None: continue order_factors = [o] + [ o1 for o1 in order_factors if not o.contains(o1)] continue # 3 or NaN elif o.is_Number: if (o is S.NaN or coeff is S.ComplexInfinity and o.is_finite is False) and not extra: # we know for sure the result will be nan return [S.NaN], [], None if coeff.is_Number or isinstance(coeff, AccumBounds): coeff += o if coeff is S.NaN and not extra: # we know for sure the result will be nan return [S.NaN], [], None continue elif isinstance(o, AccumBounds): coeff = o.__add__(coeff) continue elif isinstance(o, MatrixExpr): # can't add 0 to Matrix so make sure coeff is not 0 extra.append(o) continue elif isinstance(o, TensExpr): coeff = o.__add__(coeff) if coeff else o continue elif o is S.ComplexInfinity: if coeff.is_finite is False and not extra: # we know for sure the result will be nan return [S.NaN], [], None coeff = S.ComplexInfinity continue # Add([...]) elif o.is_Add: # NB: here we assume Add is always commutative seq.extend(o.args) # TODO zerocopy? continue # Mul([...]) elif o.is_Mul: c, s = o.as_coeff_Mul() # check for unevaluated Pow, e.g. 2**3 or 2**(-1/2) elif o.is_Pow: b, e = o.as_base_exp() if b.is_Number and (e.is_Integer or (e.is_Rational and e.is_negative)): seq.append(b**e) continue c, s = S.One, o else: # everything else c = S.One s = o # now we have: # o = c*s, where # # c is a Number # s is an expression with number factor extracted # let's collect terms with the same s, so e.g. # 2*x**2 + 3*x**2 -> 5*x**2 if s in terms: terms[s] += c if terms[s] is S.NaN and not extra: # we know for sure the result will be nan return [S.NaN], [], None else: terms[s] = c # now let's construct new args: # [2*x**2, x**3, 7*x**4, pi, ...] newseq = [] noncommutative = False for s, c in terms.items(): # 0*s if c.is_zero: continue # 1*s elif c is S.One: newseq.append(s) # c*s else: if s.is_Mul: # Mul, already keeps its arguments in perfect order. # so we can simply put c in slot0 and go the fast way. cs = s._new_rawargs(*((c,) + s.args)) newseq.append(cs) elif s.is_Add: # we just re-create the unevaluated Mul newseq.append(Mul(c, s, evaluate=False)) else: # alternatively we have to call all Mul's machinery (slow) newseq.append(Mul(c, s)) noncommutative = noncommutative or not s.is_commutative # oo, -oo if coeff is S.Infinity: newseq = [f for f in newseq if not (f.is_extended_nonnegative or f.is_real)] elif coeff is S.NegativeInfinity: newseq = [f for f in newseq if not (f.is_extended_nonpositive or f.is_real)] if coeff is S.ComplexInfinity: # zoo might be # infinite_real + finite_im # finite_real + infinite_im # infinite_real + infinite_im # addition of a finite real or imaginary number won't be able to # change the zoo nature; adding an infinite qualtity would result # in a NaN condition if it had sign opposite of the infinite # portion of zoo, e.g., infinite_real - infinite_real. newseq = [c for c in newseq if not (c.is_finite and c.is_extended_real is not None)] # process O(x) if order_factors: newseq2 = [] for t in newseq: for o in order_factors: # x + O(x) -> O(x) if o.contains(t): t = None break # x + O(x**2) -> x + O(x**2) if t is not None: newseq2.append(t) newseq = newseq2 + order_factors # 1 + O(1) -> O(1) for o in order_factors: if o.contains(coeff): coeff = S.Zero break # order args canonically _addsort(newseq) # current code expects coeff to be first if coeff is not S.Zero: newseq.insert(0, coeff) if extra: newseq += extra noncommutative = True # we are done if noncommutative: return [], newseq, None else: return newseq, [], None @classmethod def class_key(cls): """Nice order of classes""" return 3, 1, cls.__name__ @property def kind(self): k = attrgetter('kind') kinds = map(k, self.args) kinds = frozenset(kinds) if len(kinds) != 1: # Since addition is group operator, kind must be same. # We know that this is unexpected signature, so return this. result = UndefinedKind else: result, = kinds return result def as_coefficients_dict(a): """Return a dictionary mapping terms to their Rational coefficient. Since the dictionary is a defaultdict, inquiries about terms which were not present will return a coefficient of 0. If an expression is not an Add it is considered to have a single term. Examples ======== >>> from sympy.abc import a, x >>> (3*x + a*x + 4).as_coefficients_dict() {1: 4, x: 3, a*x: 1} >>> _[a] 0 >>> (3*a*x).as_coefficients_dict() {a*x: 3} """ d = defaultdict(list) for ai in a.args: c, m = ai.as_coeff_Mul() d[m].append(c) for k, v in d.items(): if len(v) == 1: d[k] = v[0] else: d[k] = Add(*v) di = defaultdict(int) di.update(d) return di @cacheit def as_coeff_add(self, *deps): """ Returns a tuple (coeff, args) where self is treated as an Add and coeff is the Number term and args is a tuple of all other terms. Examples ======== >>> from sympy.abc import x >>> (7 + 3*x).as_coeff_add() (7, (3*x,)) >>> (7*x).as_coeff_add() (0, (7*x,)) """ if deps: from sympy.utilities.iterables import sift l1, l2 = sift(self.args, lambda x: x.has(*deps), binary=True) return self._new_rawargs(*l2), tuple(l1) coeff, notrat = self.args[0].as_coeff_add() if coeff is not S.Zero: return coeff, notrat + self.args[1:] return S.Zero, self.args def as_coeff_Add(self, rational=False, deps=None): """ Efficiently extract the coefficient of a summation. """ coeff, args = self.args[0], self.args[1:] if coeff.is_Number and not rational or coeff.is_Rational: return coeff, self._new_rawargs(*args) return S.Zero, self # Note, we intentionally do not implement Add.as_coeff_mul(). Rather, we # let Expr.as_coeff_mul() just always return (S.One, self) for an Add. See # issue 5524. def _eval_power(self, e): if e.is_Rational and self.is_number: from sympy.core.evalf import pure_complex from sympy.core.mul import _unevaluated_Mul from sympy.core.exprtools import factor_terms from sympy.core.function import expand_multinomial from sympy.functions.elementary.complexes import sign from sympy.functions.elementary.miscellaneous import sqrt ri = pure_complex(self) if ri: r, i = ri if e.q == 2: D = sqrt(r**2 + i**2) if D.is_Rational: # (r, i, D) is a Pythagorean triple root = sqrt(factor_terms((D - r)/2))**e.p return root*expand_multinomial(( # principle value (D + r)/abs(i) + sign(i)*S.ImaginaryUnit)**e.p) elif e == -1: return _unevaluated_Mul( r - i*S.ImaginaryUnit, 1/(r**2 + i**2)) elif e.is_Number and abs(e) != 1: # handle the Float case: (2.0 + 4*x)**e -> 4**e*(0.5 + x)**e c, m = zip(*[i.as_coeff_Mul() for i in self.args]) if any(i.is_Float for i in c): # XXX should this always be done? big = -1 for i in c: if abs(i) >= big: big = abs(i) if big > 0 and big != 1: from sympy.functions.elementary.complexes import sign bigs = (big, -big) c = [sign(i) if i in bigs else i/big for i in c] addpow = Add(*[c*m for c, m in zip(c, m)])**e return big**e*addpow @cacheit def _eval_derivative(self, s): return self.func(*[a.diff(s) for a in self.args]) def _eval_nseries(self, x, n, logx, cdir=0): terms = [t.nseries(x, n=n, logx=logx, cdir=cdir) for t in self.args] return self.func(*terms) def _matches_simple(self, expr, repl_dict): # handle (w+3).matches('x+5') -> {w: x+2} coeff, terms = self.as_coeff_add() if len(terms) == 1: return terms[0].matches(expr - coeff, repl_dict) return def matches(self, expr, repl_dict={}, old=False): return self._matches_commutative(expr, repl_dict, old) @staticmethod def _combine_inverse(lhs, rhs): """ Returns lhs - rhs, but treats oo like a symbol so oo - oo returns 0, instead of a nan. """ from sympy.simplify.simplify import signsimp from sympy.core.symbol import Dummy inf = (S.Infinity, S.NegativeInfinity) if lhs.has(*inf) or rhs.has(*inf): oo = Dummy('oo') reps = { S.Infinity: oo, S.NegativeInfinity: -oo} ireps = {v: k for k, v in reps.items()} eq = signsimp(lhs.xreplace(reps) - rhs.xreplace(reps)) if eq.has(oo): eq = eq.replace( lambda x: x.is_Pow and x.base is oo, lambda x: x.base) return eq.xreplace(ireps) else: return signsimp(lhs - rhs) @cacheit def as_two_terms(self): """Return head and tail of self. This is the most efficient way to get the head and tail of an expression. - if you want only the head, use self.args[0]; - if you want to process the arguments of the tail then use self.as_coef_add() which gives the head and a tuple containing the arguments of the tail when treated as an Add. - if you want the coefficient when self is treated as a Mul then use self.as_coeff_mul()[0] >>> from sympy.abc import x, y >>> (3*x - 2*y + 5).as_two_terms() (5, 3*x - 2*y) """ return self.args[0], self._new_rawargs(*self.args[1:]) def as_numer_denom(self): """ Decomposes an expression to its numerator part and its denominator part. Examples ======== >>> from sympy.abc import x, y, z >>> (x*y/z).as_numer_denom() (x*y, z) >>> (x*(y + 1)/y**7).as_numer_denom() (x*(y + 1), y**7) See Also ======== sympy.core.expr.Expr.as_numer_denom """ # clear rational denominator content, expr = self.primitive() ncon, dcon = content.as_numer_denom() # collect numerators and denominators of the terms nd = defaultdict(list) for f in expr.args: ni, di = f.as_numer_denom() nd[di].append(ni) # check for quick exit if len(nd) == 1: d, n = nd.popitem() return self.func( *[_keep_coeff(ncon, ni) for ni in n]), _keep_coeff(dcon, d) # sum up the terms having a common denominator for d, n in nd.items(): if len(n) == 1: nd[d] = n[0] else: nd[d] = self.func(*n) # assemble single numerator and denominator denoms, numers = [list(i) for i in zip(*iter(nd.items()))] n, d = self.func(*[Mul(*(denoms[:i] + [numers[i]] + denoms[i + 1:])) for i in range(len(numers))]), Mul(*denoms) return _keep_coeff(ncon, n), _keep_coeff(dcon, d) def _eval_is_polynomial(self, syms): return all(term._eval_is_polynomial(syms) for term in self.args) def _eval_is_rational_function(self, syms): return all(term._eval_is_rational_function(syms) for term in self.args) def _eval_is_meromorphic(self, x, a): return _fuzzy_group((arg.is_meromorphic(x, a) for arg in self.args), quick_exit=True) def _eval_is_algebraic_expr(self, syms): return all(term._eval_is_algebraic_expr(syms) for term in self.args) # assumption methods _eval_is_real = lambda self: _fuzzy_group( (a.is_real for a in self.args), quick_exit=True) _eval_is_extended_real = lambda self: _fuzzy_group( (a.is_extended_real for a in self.args), quick_exit=True) _eval_is_complex = lambda self: _fuzzy_group( (a.is_complex for a in self.args), quick_exit=True) _eval_is_antihermitian = lambda self: _fuzzy_group( (a.is_antihermitian for a in self.args), quick_exit=True) _eval_is_finite = lambda self: _fuzzy_group( (a.is_finite for a in self.args), quick_exit=True) _eval_is_hermitian = lambda self: _fuzzy_group( (a.is_hermitian for a in self.args), quick_exit=True) _eval_is_integer = lambda self: _fuzzy_group( (a.is_integer for a in self.args), quick_exit=True) _eval_is_rational = lambda self: _fuzzy_group( (a.is_rational for a in self.args), quick_exit=True) _eval_is_algebraic = lambda self: _fuzzy_group( (a.is_algebraic for a in self.args), quick_exit=True) _eval_is_commutative = lambda self: _fuzzy_group( a.is_commutative for a in self.args) def _eval_is_infinite(self): sawinf = False for a in self.args: ainf = a.is_infinite if ainf is None: return None elif ainf is True: # infinite+infinite might not be infinite if sawinf is True: return None sawinf = True return sawinf def _eval_is_imaginary(self): nz = [] im_I = [] for a in self.args: if a.is_extended_real: if a.is_zero: pass elif a.is_zero is False: nz.append(a) else: return elif a.is_imaginary: im_I.append(a*S.ImaginaryUnit) elif (S.ImaginaryUnit*a).is_extended_real: im_I.append(a*S.ImaginaryUnit) else: return b = self.func(*nz) if b.is_zero: return fuzzy_not(self.func(*im_I).is_zero) elif b.is_zero is False: return False def _eval_is_zero(self): if self.is_commutative is False: # issue 10528: there is no way to know if a nc symbol # is zero or not return nz = [] z = 0 im_or_z = False im = 0 for a in self.args: if a.is_extended_real: if a.is_zero: z += 1 elif a.is_zero is False: nz.append(a) else: return elif a.is_imaginary: im += 1 elif (S.ImaginaryUnit*a).is_extended_real: im_or_z = True else: return if z == len(self.args): return True if len(nz) == 0 or len(nz) == len(self.args): return None b = self.func(*nz) if b.is_zero: if not im_or_z: if im == 0: return True elif im == 1: return False if b.is_zero is False: return False def _eval_is_odd(self): l = [f for f in self.args if not (f.is_even is True)] if not l: return False if l[0].is_odd: return self._new_rawargs(*l[1:]).is_even def _eval_is_irrational(self): for t in self.args: a = t.is_irrational if a: others = list(self.args) others.remove(t) if all(x.is_rational is True for x in others): return True return None if a is None: return return False def _eval_is_extended_positive(self): from sympy.core.exprtools import _monotonic_sign if self.is_number: return super()._eval_is_extended_positive() c, a = self.as_coeff_Add() if not c.is_zero: v = _monotonic_sign(a) if v is not None: s = v + c if s != self and s.is_extended_positive and a.is_extended_nonnegative: return True if len(self.free_symbols) == 1: v = _monotonic_sign(self) if v is not None and v != self and v.is_extended_positive: return True pos = nonneg = nonpos = unknown_sign = False saw_INF = set() args = [a for a in self.args if not a.is_zero] if not args: return False for a in args: ispos = a.is_extended_positive infinite = a.is_infinite if infinite: saw_INF.add(fuzzy_or((ispos, a.is_extended_nonnegative))) if True in saw_INF and False in saw_INF: return if ispos: pos = True continue elif a.is_extended_nonnegative: nonneg = True continue elif a.is_extended_nonpositive: nonpos = True continue if infinite is None: return unknown_sign = True if saw_INF: if len(saw_INF) > 1: return return saw_INF.pop() elif unknown_sign: return elif not nonpos and not nonneg and pos: return True elif not nonpos and pos: return True elif not pos and not nonneg: return False def _eval_is_extended_nonnegative(self): from sympy.core.exprtools import _monotonic_sign if not self.is_number: c, a = self.as_coeff_Add() if not c.is_zero and a.is_extended_nonnegative: v = _monotonic_sign(a) if v is not None: s = v + c if s != self and s.is_extended_nonnegative: return True if len(self.free_symbols) == 1: v = _monotonic_sign(self) if v is not None and v != self and v.is_extended_nonnegative: return True def _eval_is_extended_nonpositive(self): from sympy.core.exprtools import _monotonic_sign if not self.is_number: c, a = self.as_coeff_Add() if not c.is_zero and a.is_extended_nonpositive: v = _monotonic_sign(a) if v is not None: s = v + c if s != self and s.is_extended_nonpositive: return True if len(self.free_symbols) == 1: v = _monotonic_sign(self) if v is not None and v != self and v.is_extended_nonpositive: return True def _eval_is_extended_negative(self): from sympy.core.exprtools import _monotonic_sign if self.is_number: return super()._eval_is_extended_negative() c, a = self.as_coeff_Add() if not c.is_zero: v = _monotonic_sign(a) if v is not None: s = v + c if s != self and s.is_extended_negative and a.is_extended_nonpositive: return True if len(self.free_symbols) == 1: v = _monotonic_sign(self) if v is not None and v != self and v.is_extended_negative: return True neg = nonpos = nonneg = unknown_sign = False saw_INF = set() args = [a for a in self.args if not a.is_zero] if not args: return False for a in args: isneg = a.is_extended_negative infinite = a.is_infinite if infinite: saw_INF.add(fuzzy_or((isneg, a.is_extended_nonpositive))) if True in saw_INF and False in saw_INF: return if isneg: neg = True continue elif a.is_extended_nonpositive: nonpos = True continue elif a.is_extended_nonnegative: nonneg = True continue if infinite is None: return unknown_sign = True if saw_INF: if len(saw_INF) > 1: return return saw_INF.pop() elif unknown_sign: return elif not nonneg and not nonpos and neg: return True elif not nonneg and neg: return True elif not neg and not nonpos: return False def _eval_subs(self, old, new): if not old.is_Add: if old is S.Infinity and -old in self.args: # foo - oo is foo + (-oo) internally return self.xreplace({-old: -new}) return None coeff_self, terms_self = self.as_coeff_Add() coeff_old, terms_old = old.as_coeff_Add() if coeff_self.is_Rational and coeff_old.is_Rational: if terms_self == terms_old: # (2 + a).subs( 3 + a, y) -> -1 + y return self.func(new, coeff_self, -coeff_old) if terms_self == -terms_old: # (2 + a).subs(-3 - a, y) -> -1 - y return self.func(-new, coeff_self, coeff_old) if coeff_self.is_Rational and coeff_old.is_Rational \ or coeff_self == coeff_old: args_old, args_self = self.func.make_args( terms_old), self.func.make_args(terms_self) if len(args_old) < len(args_self): # (a+b+c).subs(b+c,x) -> a+x self_set = set(args_self) old_set = set(args_old) if old_set < self_set: ret_set = self_set - old_set return self.func(new, coeff_self, -coeff_old, *[s._subs(old, new) for s in ret_set]) args_old = self.func.make_args( -terms_old) # (a+b+c+d).subs(-b-c,x) -> a-x+d old_set = set(args_old) if old_set < self_set: ret_set = self_set - old_set return self.func(-new, coeff_self, coeff_old, *[s._subs(old, new) for s in ret_set]) def removeO(self): args = [a for a in self.args if not a.is_Order] return self._new_rawargs(*args) def getO(self): args = [a for a in self.args if a.is_Order] if args: return self._new_rawargs(*args) @cacheit def extract_leading_order(self, symbols, point=None): """ Returns the leading term and its order. Examples ======== >>> from sympy.abc import x >>> (x + 1 + 1/x**5).extract_leading_order(x) ((x**(-5), O(x**(-5))),) >>> (1 + x).extract_leading_order(x) ((1, O(1)),) >>> (x + x**2).extract_leading_order(x) ((x, O(x)),) """ from sympy import Order lst = [] symbols = list(symbols if is_sequence(symbols) else [symbols]) if not point: point = [0]*len(symbols) seq = [(f, Order(f, *zip(symbols, point))) for f in self.args] for ef, of in seq: for e, o in lst: if o.contains(of) and o != of: of = None break if of is None: continue new_lst = [(ef, of)] for e, o in lst: if of.contains(o) and o != of: continue new_lst.append((e, o)) lst = new_lst return tuple(lst) def as_real_imag(self, deep=True, **hints): """ returns a tuple representing a complex number Examples ======== >>> from sympy import I >>> (7 + 9*I).as_real_imag() (7, 9) >>> ((1 + I)/(1 - I)).as_real_imag() (0, 1) >>> ((1 + 2*I)*(1 + 3*I)).as_real_imag() (-5, 5) """ sargs = self.args re_part, im_part = [], [] for term in sargs: re, im = term.as_real_imag(deep=deep) re_part.append(re) im_part.append(im) return (self.func(*re_part), self.func(*im_part)) def _eval_as_leading_term(self, x, cdir=0): from sympy import expand_mul, Order old = self expr = expand_mul(self) if not expr.is_Add: return expr.as_leading_term(x, cdir=cdir) infinite = [t for t in expr.args if t.is_infinite] leading_terms = [t.as_leading_term(x, cdir=cdir) for t in expr.args] min, new_expr = Order(0), 0 try: for term in leading_terms: order = Order(term, x) if not min or order not in min: min = order new_expr = term elif min in order: new_expr += term except TypeError: return expr new_expr=new_expr.together() if new_expr.is_Add: new_expr = new_expr.simplify() if not new_expr: # simple leading term analysis gave us cancelled terms but we have to send # back a term, so compute the leading term (via series) n0 = min.getn() res = Order(1) incr = S.One while res.is_Order: res = old._eval_nseries(x, n=n0+incr, logx=None, cdir=cdir).cancel().powsimp().trigsimp() incr *= 2 return res.as_leading_term(x, cdir=cdir) elif new_expr is S.NaN: return old.func._from_args(infinite) else: return new_expr def _eval_adjoint(self): return self.func(*[t.adjoint() for t in self.args]) def _eval_conjugate(self): return self.func(*[t.conjugate() for t in self.args]) def _eval_transpose(self): return self.func(*[t.transpose() for t in self.args]) def _sage_(self): s = 0 for x in self.args: s += x._sage_() return s def primitive(self): """ Return ``(R, self/R)`` where ``R``` is the Rational GCD of ``self```. ``R`` is collected only from the leading coefficient of each term. Examples ======== >>> from sympy.abc import x, y >>> (2*x + 4*y).primitive() (2, x + 2*y) >>> (2*x/3 + 4*y/9).primitive() (2/9, 3*x + 2*y) >>> (2*x/3 + 4.2*y).primitive() (1/3, 2*x + 12.6*y) No subprocessing of term factors is performed: >>> ((2 + 2*x)*x + 2).primitive() (1, x*(2*x + 2) + 2) Recursive processing can be done with the ``as_content_primitive()`` method: >>> ((2 + 2*x)*x + 2).as_content_primitive() (2, x*(x + 1) + 1) See also: primitive() function in polytools.py """ terms = [] inf = False for a in self.args: c, m = a.as_coeff_Mul() if not c.is_Rational: c = S.One m = a inf = inf or m is S.ComplexInfinity terms.append((c.p, c.q, m)) if not inf: ngcd = reduce(igcd, [t[0] for t in terms], 0) dlcm = reduce(ilcm, [t[1] for t in terms], 1) else: ngcd = reduce(igcd, [t[0] for t in terms if t[1]], 0) dlcm = reduce(ilcm, [t[1] for t in terms if t[1]], 1) if ngcd == dlcm == 1: return S.One, self if not inf: for i, (p, q, term) in enumerate(terms): terms[i] = _keep_coeff(Rational((p//ngcd)*(dlcm//q)), term) else: for i, (p, q, term) in enumerate(terms): if q: terms[i] = _keep_coeff(Rational((p//ngcd)*(dlcm//q)), term) else: terms[i] = _keep_coeff(Rational(p, q), term) # we don't need a complete re-flattening since no new terms will join # so we just use the same sort as is used in Add.flatten. When the # coefficient changes, the ordering of terms may change, e.g. # (3*x, 6*y) -> (2*y, x) # # We do need to make sure that term[0] stays in position 0, however. # if terms[0].is_Number or terms[0] is S.ComplexInfinity: c = terms.pop(0) else: c = None _addsort(terms) if c: terms.insert(0, c) return Rational(ngcd, dlcm), self._new_rawargs(*terms) def as_content_primitive(self, radical=False, clear=True): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. If radical is True (default is False) then common radicals will be removed and included as a factor of the primitive expression. Examples ======== >>> from sympy import sqrt >>> (3 + 3*sqrt(2)).as_content_primitive() (3, 1 + sqrt(2)) Radical content can also be factored out of the primitive: >>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True) (2, sqrt(2)*(1 + 2*sqrt(5))) See docstring of Expr.as_content_primitive for more examples. """ con, prim = self.func(*[_keep_coeff(*a.as_content_primitive( radical=radical, clear=clear)) for a in self.args]).primitive() if not clear and not con.is_Integer and prim.is_Add: con, d = con.as_numer_denom() _p = prim/d if any(a.as_coeff_Mul()[0].is_Integer for a in _p.args): prim = _p else: con /= d if radical and prim.is_Add: # look for common radicals that can be removed args = prim.args rads = [] common_q = None for m in args: term_rads = defaultdict(list) for ai in Mul.make_args(m): if ai.is_Pow: b, e = ai.as_base_exp() if e.is_Rational and b.is_Integer: term_rads[e.q].append(abs(int(b))**e.p) if not term_rads: break if common_q is None: common_q = set(term_rads.keys()) else: common_q = common_q & set(term_rads.keys()) if not common_q: break rads.append(term_rads) else: # process rads # keep only those in common_q for r in rads: for q in list(r.keys()): if q not in common_q: r.pop(q) for q in r: r[q] = prod(r[q]) # find the gcd of bases for each q G = [] for q in common_q: g = reduce(igcd, [r[q] for r in rads], 0) if g != 1: G.append(g**Rational(1, q)) if G: G = Mul(*G) args = [ai/G for ai in args] prim = G*prim.func(*args) return con, prim @property def _sorted_args(self): from sympy.core.compatibility import default_sort_key return tuple(sorted(self.args, key=default_sort_key)) def _eval_difference_delta(self, n, step): from sympy.series.limitseq import difference_delta as dd return self.func(*[dd(a, n, step) for a in self.args]) @property def _mpc_(self): """ Convert self to an mpmath mpc if possible """ from sympy.core.numbers import I, Float re_part, rest = self.as_coeff_Add() im_part, imag_unit = rest.as_coeff_Mul() if not imag_unit == I: # ValueError may seem more reasonable but since it's a @property, # we need to use AttributeError to keep from confusing things like # hasattr. raise AttributeError("Cannot convert Add to mpc. Must be of the form Number + Number*I") return (Float(re_part)._mpf_, Float(im_part)._mpf_) def __neg__(self): if not global_parameters.distribute: return super().__neg__() return Add(*[-i for i in self.args]) add = AssocOpDispatcher('add') from .mul import Mul, _keep_coeff, prod from sympy.core.numbers import Rational
2e7706c6903394c2e448253d4dfb7b837f2a11d386590f68f7fbaafdb8cf9937
from typing import Tuple as tTuple from collections.abc import Iterable from functools import reduce from .sympify import sympify, _sympify, SympifyError from .basic import Basic, Atom from .singleton import S from .evalf import EvalfMixin, pure_complex from .decorators import call_highest_priority, sympify_method_args, sympify_return from .cache import cacheit from .compatibility import as_int, default_sort_key from sympy.utilities.misc import func_name from mpmath.libmp import mpf_log, prec_to_dps from collections import defaultdict @sympify_method_args class Expr(Basic, EvalfMixin): """ Base class for algebraic expressions. Explanation =========== Everything that requires arithmetic operations to be defined should subclass this class, instead of Basic (which should be used only for argument storage and expression manipulation, i.e. pattern matching, substitutions, etc). If you want to override the comparisons of expressions: Should use _eval_is_ge for inequality, or _eval_is_eq, with multiple dispatch. _eval_is_ge return true if x >= y, false if x < y, and None if the two types are not comparable or the comparison is indeterminate See Also ======== sympy.core.basic.Basic """ __slots__ = () # type: tTuple[str, ...] is_scalar = True # self derivative is 1 @property def _diff_wrt(self): """Return True if one can differentiate with respect to this object, else False. Explanation =========== Subclasses such as Symbol, Function and Derivative return True to enable derivatives wrt them. The implementation in Derivative separates the Symbol and non-Symbol (_diff_wrt=True) variables and temporarily converts the non-Symbols into Symbols when performing the differentiation. By default, any object deriving from Expr will behave like a scalar with self.diff(self) == 1. If this is not desired then the object must also set `is_scalar = False` or else define an _eval_derivative routine. Note, see the docstring of Derivative for how this should work mathematically. In particular, note that expr.subs(yourclass, Symbol) should be well-defined on a structural level, or this will lead to inconsistent results. Examples ======== >>> from sympy import Expr >>> e = Expr() >>> e._diff_wrt False >>> class MyScalar(Expr): ... _diff_wrt = True ... >>> MyScalar().diff(MyScalar()) 1 >>> class MySymbol(Expr): ... _diff_wrt = True ... is_scalar = False ... >>> MySymbol().diff(MySymbol()) Derivative(MySymbol(), MySymbol()) """ return False @cacheit def sort_key(self, order=None): coeff, expr = self.as_coeff_Mul() if expr.is_Pow: expr, exp = expr.args else: expr, exp = expr, S.One if expr.is_Dummy: args = (expr.sort_key(),) elif expr.is_Atom: args = (str(expr),) else: if expr.is_Add: args = expr.as_ordered_terms(order=order) elif expr.is_Mul: args = expr.as_ordered_factors(order=order) else: args = expr.args args = tuple( [ default_sort_key(arg, order=order) for arg in args ]) args = (len(args), tuple(args)) exp = exp.sort_key(order=order) return expr.class_key(), args, exp, coeff def __hash__(self) -> int: # hash cannot be cached using cache_it because infinite recurrence # occurs as hash is needed for setting cache dictionary keys h = self._mhash if h is None: h = hash((type(self).__name__,) + self._hashable_content()) self._mhash = h return h def _hashable_content(self): """Return a tuple of information about self that can be used to compute the hash. If a class defines additional attributes, like ``name`` in Symbol, then this method should be updated accordingly to return such relevant attributes. Defining more than _hashable_content is necessary if __eq__ has been defined by a class. See note about this in Basic.__eq__.""" return self._args def __eq__(self, other): try: other = _sympify(other) if not isinstance(other, Expr): return False except (SympifyError, SyntaxError): return False # check for pure number expr if not (self.is_Number and other.is_Number) and ( type(self) != type(other)): return False a, b = self._hashable_content(), other._hashable_content() if a != b: return False # check number *in* an expression for a, b in zip(a, b): if not isinstance(a, Expr): continue if a.is_Number and type(a) != type(b): return False return True # *************** # * Arithmetics * # *************** # Expr and its sublcasses use _op_priority to determine which object # passed to a binary special method (__mul__, etc.) will handle the # operation. In general, the 'call_highest_priority' decorator will choose # the object with the highest _op_priority to handle the call. # Custom subclasses that want to define their own binary special methods # should set an _op_priority value that is higher than the default. # # **NOTE**: # This is a temporary fix, and will eventually be replaced with # something better and more powerful. See issue 5510. _op_priority = 10.0 @property def _add_handler(self): return Add @property def _mul_handler(self): return Mul def __pos__(self): return self def __neg__(self): # Mul has its own __neg__ routine, so we just # create a 2-args Mul with the -1 in the canonical # slot 0. c = self.is_commutative return Mul._from_args((S.NegativeOne, self), c) def __abs__(self): from sympy import Abs return Abs(self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__radd__') def __add__(self, other): return Add(self, other) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__add__') def __radd__(self, other): return Add(other, self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rsub__') def __sub__(self, other): return Add(self, -other) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__sub__') def __rsub__(self, other): return Add(other, -self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rmul__') def __mul__(self, other): return Mul(self, other) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__mul__') def __rmul__(self, other): return Mul(other, self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rpow__') def _pow(self, other): return Pow(self, other) def __pow__(self, other, mod=None): if mod is None: return self._pow(other) try: _self, other, mod = as_int(self), as_int(other), as_int(mod) if other >= 0: return pow(_self, other, mod) else: from sympy.core.numbers import mod_inverse return mod_inverse(pow(_self, -other, mod), mod) except ValueError: power = self._pow(other) try: return power%mod except TypeError: return NotImplemented @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__pow__') def __rpow__(self, other): return Pow(other, self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rtruediv__') def __truediv__(self, other): denom = Pow(other, S.NegativeOne) if self is S.One: return denom else: return Mul(self, denom) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__truediv__') def __rtruediv__(self, other): denom = Pow(self, S.NegativeOne) if other is S.One: return denom else: return Mul(other, denom) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rmod__') def __mod__(self, other): return Mod(self, other) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__mod__') def __rmod__(self, other): return Mod(other, self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rfloordiv__') def __floordiv__(self, other): from sympy.functions.elementary.integers import floor return floor(self / other) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__floordiv__') def __rfloordiv__(self, other): from sympy.functions.elementary.integers import floor return floor(other / self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rdivmod__') def __divmod__(self, other): from sympy.functions.elementary.integers import floor return floor(self / other), Mod(self, other) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__divmod__') def __rdivmod__(self, other): from sympy.functions.elementary.integers import floor return floor(other / self), Mod(other, self) def __int__(self): # Although we only need to round to the units position, we'll # get one more digit so the extra testing below can be avoided # unless the rounded value rounded to an integer, e.g. if an # expression were equal to 1.9 and we rounded to the unit position # we would get a 2 and would not know if this rounded up or not # without doing a test (as done below). But if we keep an extra # digit we know that 1.9 is not the same as 1 and there is no # need for further testing: our int value is correct. If the value # were 1.99, however, this would round to 2.0 and our int value is # off by one. So...if our round value is the same as the int value # (regardless of how much extra work we do to calculate extra decimal # places) we need to test whether we are off by one. from sympy import Dummy if not self.is_number: raise TypeError("can't convert symbols to int") r = self.round(2) if not r.is_Number: raise TypeError("can't convert complex to int") if r in (S.NaN, S.Infinity, S.NegativeInfinity): raise TypeError("can't convert %s to int" % r) i = int(r) if not i: return 0 # off-by-one check if i == r and not (self - i).equals(0): isign = 1 if i > 0 else -1 x = Dummy() # in the following (self - i).evalf(2) will not always work while # (self - r).evalf(2) and the use of subs does; if the test that # was added when this comment was added passes, it might be safe # to simply use sign to compute this rather than doing this by hand: diff_sign = 1 if (self - x).evalf(2, subs={x: i}) > 0 else -1 if diff_sign != isign: i -= isign return i def __float__(self): # Don't bother testing if it's a number; if it's not this is going # to fail, and if it is we still need to check that it evalf'ed to # a number. result = self.evalf() if result.is_Number: return float(result) if result.is_number and result.as_real_imag()[1]: raise TypeError("can't convert complex to float") raise TypeError("can't convert expression to float") def __complex__(self): result = self.evalf() re, im = result.as_real_imag() return complex(float(re), float(im)) @sympify_return([('other', 'Expr')], NotImplemented) def __ge__(self, other): from .relational import GreaterThan return GreaterThan(self, other) @sympify_return([('other', 'Expr')], NotImplemented) def __le__(self, other): from .relational import LessThan return LessThan(self, other) @sympify_return([('other', 'Expr')], NotImplemented) def __gt__(self, other): from .relational import StrictGreaterThan return StrictGreaterThan(self, other) @sympify_return([('other', 'Expr')], NotImplemented) def __lt__(self, other): from .relational import StrictLessThan return StrictLessThan(self, other) def __trunc__(self): if not self.is_number: raise TypeError("can't truncate symbols and expressions") else: return Integer(self) @staticmethod def _from_mpmath(x, prec): from sympy import Float if hasattr(x, "_mpf_"): return Float._new(x._mpf_, prec) elif hasattr(x, "_mpc_"): re, im = x._mpc_ re = Float._new(re, prec) im = Float._new(im, prec)*S.ImaginaryUnit return re + im else: raise TypeError("expected mpmath number (mpf or mpc)") @property def is_number(self): """Returns True if ``self`` has no free symbols and no undefined functions (AppliedUndef, to be precise). It will be faster than ``if not self.free_symbols``, however, since ``is_number`` will fail as soon as it hits a free symbol or undefined function. Examples ======== >>> from sympy import Integral, cos, sin, pi >>> from sympy.core.function import Function >>> from sympy.abc import x >>> f = Function('f') >>> x.is_number False >>> f(1).is_number False >>> (2*x).is_number False >>> (2 + Integral(2, x)).is_number False >>> (2 + Integral(2, (x, 1, 2))).is_number True Not all numbers are Numbers in the SymPy sense: >>> pi.is_number, pi.is_Number (True, False) If something is a number it should evaluate to a number with real and imaginary parts that are Numbers; the result may not be comparable, however, since the real and/or imaginary part of the result may not have precision. >>> cos(1).is_number and cos(1).is_comparable True >>> z = cos(1)**2 + sin(1)**2 - 1 >>> z.is_number True >>> z.is_comparable False See Also ======== sympy.core.basic.Basic.is_comparable """ return all(obj.is_number for obj in self.args) def _random(self, n=None, re_min=-1, im_min=-1, re_max=1, im_max=1): """Return self evaluated, if possible, replacing free symbols with random complex values, if necessary. Explanation =========== The random complex value for each free symbol is generated by the random_complex_number routine giving real and imaginary parts in the range given by the re_min, re_max, im_min, and im_max values. The returned value is evaluated to a precision of n (if given) else the maximum of 15 and the precision needed to get more than 1 digit of precision. If the expression could not be evaluated to a number, or could not be evaluated to more than 1 digit of precision, then None is returned. Examples ======== >>> from sympy import sqrt >>> from sympy.abc import x, y >>> x._random() # doctest: +SKIP 0.0392918155679172 + 0.916050214307199*I >>> x._random(2) # doctest: +SKIP -0.77 - 0.87*I >>> (x + y/2)._random(2) # doctest: +SKIP -0.57 + 0.16*I >>> sqrt(2)._random(2) 1.4 See Also ======== sympy.testing.randtest.random_complex_number """ free = self.free_symbols prec = 1 if free: from sympy.testing.randtest import random_complex_number a, c, b, d = re_min, re_max, im_min, im_max reps = dict(list(zip(free, [random_complex_number(a, b, c, d, rational=True) for zi in free]))) try: nmag = abs(self.evalf(2, subs=reps)) except (ValueError, TypeError): # if an out of range value resulted in evalf problems # then return None -- XXX is there a way to know how to # select a good random number for a given expression? # e.g. when calculating n! negative values for n should not # be used return None else: reps = {} nmag = abs(self.evalf(2)) if not hasattr(nmag, '_prec'): # e.g. exp_polar(2*I*pi) doesn't evaluate but is_number is True return None if nmag._prec == 1: # increase the precision up to the default maximum # precision to see if we can get any significance from mpmath.libmp.libintmath import giant_steps from sympy.core.evalf import DEFAULT_MAXPREC as target # evaluate for prec in giant_steps(2, target): nmag = abs(self.evalf(prec, subs=reps)) if nmag._prec != 1: break if nmag._prec != 1: if n is None: n = max(prec, 15) return self.evalf(n, subs=reps) # never got any significance return None def is_constant(self, *wrt, **flags): """Return True if self is constant, False if not, or None if the constancy could not be determined conclusively. Explanation =========== If an expression has no free symbols then it is a constant. If there are free symbols it is possible that the expression is a constant, perhaps (but not necessarily) zero. To test such expressions, a few strategies are tried: 1) numerical evaluation at two random points. If two such evaluations give two different values and the values have a precision greater than 1 then self is not constant. If the evaluations agree or could not be obtained with any precision, no decision is made. The numerical testing is done only if ``wrt`` is different than the free symbols. 2) differentiation with respect to variables in 'wrt' (or all free symbols if omitted) to see if the expression is constant or not. This will not always lead to an expression that is zero even though an expression is constant (see added test in test_expr.py). If all derivatives are zero then self is constant with respect to the given symbols. 3) finding out zeros of denominator expression with free_symbols. It won't be constant if there are zeros. It gives more negative answers for expression that are not constant. If neither evaluation nor differentiation can prove the expression is constant, None is returned unless two numerical values happened to be the same and the flag ``failing_number`` is True -- in that case the numerical value will be returned. If flag simplify=False is passed, self will not be simplified; the default is True since self should be simplified before testing. Examples ======== >>> from sympy import cos, sin, Sum, S, pi >>> from sympy.abc import a, n, x, y >>> x.is_constant() False >>> S(2).is_constant() True >>> Sum(x, (x, 1, 10)).is_constant() True >>> Sum(x, (x, 1, n)).is_constant() False >>> Sum(x, (x, 1, n)).is_constant(y) True >>> Sum(x, (x, 1, n)).is_constant(n) False >>> Sum(x, (x, 1, n)).is_constant(x) True >>> eq = a*cos(x)**2 + a*sin(x)**2 - a >>> eq.is_constant() True >>> eq.subs({x: pi, a: 2}) == eq.subs({x: pi, a: 3}) == 0 True >>> (0**x).is_constant() False >>> x.is_constant() False >>> (x**x).is_constant() False >>> one = cos(x)**2 + sin(x)**2 >>> one.is_constant() True >>> ((one - 1)**(x + 1)).is_constant() in (True, False) # could be 0 or 1 True """ def check_denominator_zeros(expression): from sympy.solvers.solvers import denoms retNone = False for den in denoms(expression): z = den.is_zero if z is True: return True if z is None: retNone = True if retNone: return None return False simplify = flags.get('simplify', True) if self.is_number: return True free = self.free_symbols if not free: return True # assume f(1) is some constant # if we are only interested in some symbols and they are not in the # free symbols then this expression is constant wrt those symbols wrt = set(wrt) if wrt and not wrt & free: return True wrt = wrt or free # simplify unless this has already been done expr = self if simplify: expr = expr.simplify() # is_zero should be a quick assumptions check; it can be wrong for # numbers (see test_is_not_constant test), giving False when it # shouldn't, but hopefully it will never give True unless it is sure. if expr.is_zero: return True # try numerical evaluation to see if we get two different values failing_number = None if wrt == free: # try 0 (for a) and 1 (for b) try: a = expr.subs(list(zip(free, [0]*len(free))), simultaneous=True) if a is S.NaN: # evaluation may succeed when substitution fails a = expr._random(None, 0, 0, 0, 0) except ZeroDivisionError: a = None if a is not None and a is not S.NaN: try: b = expr.subs(list(zip(free, [1]*len(free))), simultaneous=True) if b is S.NaN: # evaluation may succeed when substitution fails b = expr._random(None, 1, 0, 1, 0) except ZeroDivisionError: b = None if b is not None and b is not S.NaN and b.equals(a) is False: return False # try random real b = expr._random(None, -1, 0, 1, 0) if b is not None and b is not S.NaN and b.equals(a) is False: return False # try random complex b = expr._random() if b is not None and b is not S.NaN: if b.equals(a) is False: return False failing_number = a if a.is_number else b # now we will test each wrt symbol (or all free symbols) to see if the # expression depends on them or not using differentiation. This is # not sufficient for all expressions, however, so we don't return # False if we get a derivative other than 0 with free symbols. for w in wrt: deriv = expr.diff(w) if simplify: deriv = deriv.simplify() if deriv != 0: if not (pure_complex(deriv, or_real=True)): if flags.get('failing_number', False): return failing_number elif deriv.free_symbols: # dead line provided _random returns None in such cases return None return False cd = check_denominator_zeros(self) if cd is True: return False elif cd is None: return None return True def equals(self, other, failing_expression=False): """Return True if self == other, False if it doesn't, or None. If failing_expression is True then the expression which did not simplify to a 0 will be returned instead of None. Explanation =========== If ``self`` is a Number (or complex number) that is not zero, then the result is False. If ``self`` is a number and has not evaluated to zero, evalf will be used to test whether the expression evaluates to zero. If it does so and the result has significance (i.e. the precision is either -1, for a Rational result, or is greater than 1) then the evalf value will be used to return True or False. """ from sympy.simplify.simplify import nsimplify, simplify from sympy.solvers.solvers import solve from sympy.polys.polyerrors import NotAlgebraic from sympy.polys.numberfields import minimal_polynomial other = sympify(other) if self == other: return True # they aren't the same so see if we can make the difference 0; # don't worry about doing simplification steps one at a time # because if the expression ever goes to 0 then the subsequent # simplification steps that are done will be very fast. diff = factor_terms(simplify(self - other), radical=True) if not diff: return True if not diff.has(Add, Mod): # if there is no expanding to be done after simplifying # then this can't be a zero return False constant = diff.is_constant(simplify=False, failing_number=True) if constant is False: return False if not diff.is_number: if constant is None: # e.g. unless the right simplification is done, a symbolic # zero is possible (see expression of issue 6829: without # simplification constant will be None). return if constant is True: # this gives a number whether there are free symbols or not ndiff = diff._random() # is_comparable will work whether the result is real # or complex; it could be None, however. if ndiff and ndiff.is_comparable: return False # sometimes we can use a simplified result to give a clue as to # what the expression should be; if the expression is *not* zero # then we should have been able to compute that and so now # we can just consider the cases where the approximation appears # to be zero -- we try to prove it via minimal_polynomial. # # removed # ns = nsimplify(diff) # if diff.is_number and (not ns or ns == diff): # # The thought was that if it nsimplifies to 0 that's a sure sign # to try the following to prove it; or if it changed but wasn't # zero that might be a sign that it's not going to be easy to # prove. But tests seem to be working without that logic. # if diff.is_number: # try to prove via self-consistency surds = [s for s in diff.atoms(Pow) if s.args[0].is_Integer] # it seems to work better to try big ones first surds.sort(key=lambda x: -x.args[0]) for s in surds: try: # simplify is False here -- this expression has already # been identified as being hard to identify as zero; # we will handle the checking ourselves using nsimplify # to see if we are in the right ballpark or not and if so # *then* the simplification will be attempted. sol = solve(diff, s, simplify=False) if sol: if s in sol: # the self-consistent result is present return True if all(si.is_Integer for si in sol): # perfect powers are removed at instantiation # so surd s cannot be an integer return False if all(i.is_algebraic is False for i in sol): # a surd is algebraic return False if any(si in surds for si in sol): # it wasn't equal to s but it is in surds # and different surds are not equal return False if any(nsimplify(s - si) == 0 and simplify(s - si) == 0 for si in sol): return True if s.is_real: if any(nsimplify(si, [s]) == s and simplify(si) == s for si in sol): return True except NotImplementedError: pass # try to prove with minimal_polynomial but know when # *not* to use this or else it can take a long time. e.g. issue 8354 if True: # change True to condition that assures non-hang try: mp = minimal_polynomial(diff) if mp.is_Symbol: return True return False except (NotAlgebraic, NotImplementedError): pass # diff has not simplified to zero; constant is either None, True # or the number with significance (is_comparable) that was randomly # calculated twice as the same value. if constant not in (True, None) and constant != 0: return False if failing_expression: return diff return None def _eval_is_positive(self): finite = self.is_finite if finite is False: return False extended_positive = self.is_extended_positive if finite is True: return extended_positive if extended_positive is False: return False def _eval_is_negative(self): finite = self.is_finite if finite is False: return False extended_negative = self.is_extended_negative if finite is True: return extended_negative if extended_negative is False: return False def _eval_is_extended_positive_negative(self, positive): from sympy.core.numbers import pure_complex from sympy.polys.numberfields import minimal_polynomial from sympy.polys.polyerrors import NotAlgebraic if self.is_number: if self.is_extended_real is False: return False # check to see that we can get a value try: n2 = self._eval_evalf(2) # XXX: This shouldn't be caught here # Catches ValueError: hypsum() failed to converge to the requested # 34 bits of accuracy except ValueError: return None if n2 is None: return None if getattr(n2, '_prec', 1) == 1: # no significance return None if n2 is S.NaN: return None f = self.evalf(2) if f.is_Float: match = f, S.Zero else: match = pure_complex(f) if match is None: return False r, i = match if not (i.is_Number and r.is_Number): return False if r._prec != 1 and i._prec != 1: return bool(not i and ((r > 0) if positive else (r < 0))) elif r._prec == 1 and (not i or i._prec == 1) and \ self.is_algebraic and not self.has(Function): try: if minimal_polynomial(self).is_Symbol: return False except (NotAlgebraic, NotImplementedError): pass def _eval_is_extended_positive(self): return self._eval_is_extended_positive_negative(positive=True) def _eval_is_extended_negative(self): return self._eval_is_extended_positive_negative(positive=False) def _eval_interval(self, x, a, b): """ Returns evaluation over an interval. For most functions this is: self.subs(x, b) - self.subs(x, a), possibly using limit() if NaN is returned from subs, or if singularities are found between a and b. If b or a is None, it only evaluates -self.subs(x, a) or self.subs(b, x), respectively. """ from sympy.series import limit, Limit from sympy.solvers.solveset import solveset from sympy.sets.sets import Interval from sympy.functions.elementary.exponential import log from sympy.calculus.util import AccumBounds if (a is None and b is None): raise ValueError('Both interval ends cannot be None.') def _eval_endpoint(left): c = a if left else b if c is None: return 0 else: C = self.subs(x, c) if C.has(S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity, AccumBounds): if (a < b) != False: C = limit(self, x, c, "+" if left else "-") else: C = limit(self, x, c, "-" if left else "+") if isinstance(C, Limit): raise NotImplementedError("Could not compute limit") return C if a == b: return 0 A = _eval_endpoint(left=True) if A is S.NaN: return A B = _eval_endpoint(left=False) if (a and b) is None: return B - A value = B - A if a.is_comparable and b.is_comparable: if a < b: domain = Interval(a, b) else: domain = Interval(b, a) # check the singularities of self within the interval # if singularities is a ConditionSet (not iterable), catch the exception and pass singularities = solveset(self.cancel().as_numer_denom()[1], x, domain=domain) for logterm in self.atoms(log): singularities = singularities | solveset(logterm.args[0], x, domain=domain) try: for s in singularities: if value is S.NaN: # no need to keep adding, it will stay NaN break if not s.is_comparable: continue if (a < s) == (s < b) == True: value += -limit(self, x, s, "+") + limit(self, x, s, "-") elif (b < s) == (s < a) == True: value += limit(self, x, s, "+") - limit(self, x, s, "-") except TypeError: pass return value def _eval_power(self, other): # subclass to compute self**other for cases when # other is not NaN, 0, or 1 return None def _eval_conjugate(self): if self.is_extended_real: return self elif self.is_imaginary: return -self def conjugate(self): """Returns the complex conjugate of 'self'.""" from sympy.functions.elementary.complexes import conjugate as c return c(self) def dir(self, x, cdir): from sympy import log minexp = S.Zero if self.is_zero: return S.Zero arg = self while arg: minexp += S.One arg = arg.diff(x) coeff = arg.subs(x, 0) if coeff in (S.NaN, S.ComplexInfinity): try: coeff, _ = arg.leadterm(x) if coeff.has(log(x)): raise ValueError() except ValueError: coeff = arg.limit(x, 0) if coeff != S.Zero: break return coeff*cdir**minexp def _eval_transpose(self): from sympy.functions.elementary.complexes import conjugate if (self.is_complex or self.is_infinite): return self elif self.is_hermitian: return conjugate(self) elif self.is_antihermitian: return -conjugate(self) def transpose(self): from sympy.functions.elementary.complexes import transpose return transpose(self) def _eval_adjoint(self): from sympy.functions.elementary.complexes import conjugate, transpose if self.is_hermitian: return self elif self.is_antihermitian: return -self obj = self._eval_conjugate() if obj is not None: return transpose(obj) obj = self._eval_transpose() if obj is not None: return conjugate(obj) def adjoint(self): from sympy.functions.elementary.complexes import adjoint return adjoint(self) @classmethod def _parse_order(cls, order): """Parse and configure the ordering of terms. """ from sympy.polys.orderings import monomial_key startswith = getattr(order, "startswith", None) if startswith is None: reverse = False else: reverse = startswith('rev-') if reverse: order = order[4:] monom_key = monomial_key(order) def neg(monom): result = [] for m in monom: if isinstance(m, tuple): result.append(neg(m)) else: result.append(-m) return tuple(result) def key(term): _, ((re, im), monom, ncpart) = term monom = neg(monom_key(monom)) ncpart = tuple([e.sort_key(order=order) for e in ncpart]) coeff = ((bool(im), im), (re, im)) return monom, ncpart, coeff return key, reverse def as_ordered_factors(self, order=None): """Return list of ordered factors (if Mul) else [self].""" return [self] def as_poly(self, *gens, **args): """Converts ``self`` to a polynomial or returns ``None``. Explanation =========== >>> from sympy import sin >>> from sympy.abc import x, y >>> print((x**2 + x*y).as_poly()) Poly(x**2 + x*y, x, y, domain='ZZ') >>> print((x**2 + x*y).as_poly(x, y)) Poly(x**2 + x*y, x, y, domain='ZZ') >>> print((x**2 + sin(y)).as_poly(x, y)) None """ from sympy.polys import Poly, PolynomialError try: poly = Poly(self, *gens, **args) if not poly.is_Poly: return None else: return poly except PolynomialError: return None def as_ordered_terms(self, order=None, data=False): """ Transform an expression to an ordered list of terms. Examples ======== >>> from sympy import sin, cos >>> from sympy.abc import x >>> (sin(x)**2*cos(x) + sin(x)**2 + 1).as_ordered_terms() [sin(x)**2*cos(x), sin(x)**2, 1] """ from .numbers import Number, NumberSymbol if order is None and self.is_Add: # Spot the special case of Add(Number, Mul(Number, expr)) with the # first number positive and thhe second number nagative key = lambda x:not isinstance(x, (Number, NumberSymbol)) add_args = sorted(Add.make_args(self), key=key) if (len(add_args) == 2 and isinstance(add_args[0], (Number, NumberSymbol)) and isinstance(add_args[1], Mul)): mul_args = sorted(Mul.make_args(add_args[1]), key=key) if (len(mul_args) == 2 and isinstance(mul_args[0], Number) and add_args[0].is_positive and mul_args[0].is_negative): return add_args key, reverse = self._parse_order(order) terms, gens = self.as_terms() if not any(term.is_Order for term, _ in terms): ordered = sorted(terms, key=key, reverse=reverse) else: _terms, _order = [], [] for term, repr in terms: if not term.is_Order: _terms.append((term, repr)) else: _order.append((term, repr)) ordered = sorted(_terms, key=key, reverse=True) \ + sorted(_order, key=key, reverse=True) if data: return ordered, gens else: return [term for term, _ in ordered] def as_terms(self): """Transform an expression to a list of terms. """ from .add import Add from .mul import Mul from .exprtools import decompose_power gens, terms = set(), [] for term in Add.make_args(self): coeff, _term = term.as_coeff_Mul() coeff = complex(coeff) cpart, ncpart = {}, [] if _term is not S.One: for factor in Mul.make_args(_term): if factor.is_number: try: coeff *= complex(factor) except (TypeError, ValueError): pass else: continue if factor.is_commutative: base, exp = decompose_power(factor) cpart[base] = exp gens.add(base) else: ncpart.append(factor) coeff = coeff.real, coeff.imag ncpart = tuple(ncpart) terms.append((term, (coeff, cpart, ncpart))) gens = sorted(gens, key=default_sort_key) k, indices = len(gens), {} for i, g in enumerate(gens): indices[g] = i result = [] for term, (coeff, cpart, ncpart) in terms: monom = [0]*k for base, exp in cpart.items(): monom[indices[base]] = exp result.append((term, (coeff, tuple(monom), ncpart))) return result, gens def removeO(self): """Removes the additive O(..) symbol if there is one""" return self def getO(self): """Returns the additive O(..) symbol if there is one, else None.""" return None def getn(self): """ Returns the order of the expression. Explanation =========== The order is determined either from the O(...) term. If there is no O(...) term, it returns None. Examples ======== >>> from sympy import O >>> from sympy.abc import x >>> (1 + x + O(x**2)).getn() 2 >>> (1 + x).getn() """ from sympy import Dummy, Symbol o = self.getO() if o is None: return None elif o.is_Order: o = o.expr if o is S.One: return S.Zero if o.is_Symbol: return S.One if o.is_Pow: return o.args[1] if o.is_Mul: # x**n*log(x)**n or x**n/log(x)**n for oi in o.args: if oi.is_Symbol: return S.One if oi.is_Pow: syms = oi.atoms(Symbol) if len(syms) == 1: x = syms.pop() oi = oi.subs(x, Dummy('x', positive=True)) if oi.base.is_Symbol and oi.exp.is_Rational: return abs(oi.exp) raise NotImplementedError('not sure of order of %s' % o) def count_ops(self, visual=None): """wrapper for count_ops that returns the operation count.""" from .function import count_ops return count_ops(self, visual) def args_cnc(self, cset=False, warn=True, split_1=True): """Return [commutative factors, non-commutative factors] of self. Explanation =========== self is treated as a Mul and the ordering of the factors is maintained. If ``cset`` is True the commutative factors will be returned in a set. If there were repeated factors (as may happen with an unevaluated Mul) then an error will be raised unless it is explicitly suppressed by setting ``warn`` to False. Note: -1 is always separated from a Number unless split_1 is False. Examples ======== >>> from sympy import symbols, oo >>> A, B = symbols('A B', commutative=0) >>> x, y = symbols('x y') >>> (-2*x*y).args_cnc() [[-1, 2, x, y], []] >>> (-2.5*x).args_cnc() [[-1, 2.5, x], []] >>> (-2*x*A*B*y).args_cnc() [[-1, 2, x, y], [A, B]] >>> (-2*x*A*B*y).args_cnc(split_1=False) [[-2, x, y], [A, B]] >>> (-2*x*y).args_cnc(cset=True) [{-1, 2, x, y}, []] The arg is always treated as a Mul: >>> (-2 + x + A).args_cnc() [[], [x - 2 + A]] >>> (-oo).args_cnc() # -oo is a singleton [[-1, oo], []] """ if self.is_Mul: args = list(self.args) else: args = [self] for i, mi in enumerate(args): if not mi.is_commutative: c = args[:i] nc = args[i:] break else: c = args nc = [] if c and split_1 and ( c[0].is_Number and c[0].is_extended_negative and c[0] is not S.NegativeOne): c[:1] = [S.NegativeOne, -c[0]] if cset: clen = len(c) c = set(c) if clen and warn and len(c) != clen: raise ValueError('repeated commutative arguments: %s' % [ci for ci in c if list(self.args).count(ci) > 1]) return [c, nc] def coeff(self, x, n=1, right=False): """ Returns the coefficient from the term(s) containing ``x**n``. If ``n`` is zero then all terms independent of ``x`` will be returned. Explanation =========== When ``x`` is noncommutative, the coefficient to the left (default) or right of ``x`` can be returned. The keyword 'right' is ignored when ``x`` is commutative. Examples ======== >>> from sympy import symbols >>> from sympy.abc import x, y, z You can select terms that have an explicit negative in front of them: >>> (-x + 2*y).coeff(-1) x >>> (x - 2*y).coeff(-1) 2*y You can select terms with no Rational coefficient: >>> (x + 2*y).coeff(1) x >>> (3 + 2*x + 4*x**2).coeff(1) 0 You can select terms independent of x by making n=0; in this case expr.as_independent(x)[0] is returned (and 0 will be returned instead of None): >>> (3 + 2*x + 4*x**2).coeff(x, 0) 3 >>> eq = ((x + 1)**3).expand() + 1 >>> eq x**3 + 3*x**2 + 3*x + 2 >>> [eq.coeff(x, i) for i in reversed(range(4))] [1, 3, 3, 2] >>> eq -= 2 >>> [eq.coeff(x, i) for i in reversed(range(4))] [1, 3, 3, 0] You can select terms that have a numerical term in front of them: >>> (-x - 2*y).coeff(2) -y >>> from sympy import sqrt >>> (x + sqrt(2)*x).coeff(sqrt(2)) x The matching is exact: >>> (3 + 2*x + 4*x**2).coeff(x) 2 >>> (3 + 2*x + 4*x**2).coeff(x**2) 4 >>> (3 + 2*x + 4*x**2).coeff(x**3) 0 >>> (z*(x + y)**2).coeff((x + y)**2) z >>> (z*(x + y)**2).coeff(x + y) 0 In addition, no factoring is done, so 1 + z*(1 + y) is not obtained from the following: >>> (x + z*(x + x*y)).coeff(x) 1 If such factoring is desired, factor_terms can be used first: >>> from sympy import factor_terms >>> factor_terms(x + z*(x + x*y)).coeff(x) z*(y + 1) + 1 >>> n, m, o = symbols('n m o', commutative=False) >>> n.coeff(n) 1 >>> (3*n).coeff(n) 3 >>> (n*m + m*n*m).coeff(n) # = (1 + m)*n*m 1 + m >>> (n*m + m*n*m).coeff(n, right=True) # = (1 + m)*n*m m If there is more than one possible coefficient 0 is returned: >>> (n*m + m*n).coeff(n) 0 If there is only one possible coefficient, it is returned: >>> (n*m + x*m*n).coeff(m*n) x >>> (n*m + x*m*n).coeff(m*n, right=1) 1 See Also ======== as_coefficient: separate the expression into a coefficient and factor as_coeff_Add: separate the additive constant from an expression as_coeff_Mul: separate the multiplicative constant from an expression as_independent: separate x-dependent terms/factors from others sympy.polys.polytools.Poly.coeff_monomial: efficiently find the single coefficient of a monomial in Poly sympy.polys.polytools.Poly.nth: like coeff_monomial but powers of monomial terms are used """ x = sympify(x) if not isinstance(x, Basic): return S.Zero n = as_int(n) if not x: return S.Zero if x == self: if n == 1: return S.One return S.Zero if x is S.One: co = [a for a in Add.make_args(self) if a.as_coeff_Mul()[0] is S.One] if not co: return S.Zero return Add(*co) if n == 0: if x.is_Add and self.is_Add: c = self.coeff(x, right=right) if not c: return S.Zero if not right: return self - Add(*[a*x for a in Add.make_args(c)]) return self - Add(*[x*a for a in Add.make_args(c)]) return self.as_independent(x, as_Add=True)[0] # continue with the full method, looking for this power of x: x = x**n def incommon(l1, l2): if not l1 or not l2: return [] n = min(len(l1), len(l2)) for i in range(n): if l1[i] != l2[i]: return l1[:i] return l1[:] def find(l, sub, first=True): """ Find where list sub appears in list l. When ``first`` is True the first occurrence from the left is returned, else the last occurrence is returned. Return None if sub is not in l. Examples ======== >> l = range(5)*2 >> find(l, [2, 3]) 2 >> find(l, [2, 3], first=0) 7 >> find(l, [2, 4]) None """ if not sub or not l or len(sub) > len(l): return None n = len(sub) if not first: l.reverse() sub.reverse() for i in range(0, len(l) - n + 1): if all(l[i + j] == sub[j] for j in range(n)): break else: i = None if not first: l.reverse() sub.reverse() if i is not None and not first: i = len(l) - (i + n) return i co = [] args = Add.make_args(self) self_c = self.is_commutative x_c = x.is_commutative if self_c and not x_c: return S.Zero one_c = self_c or x_c xargs, nx = x.args_cnc(cset=True, warn=bool(not x_c)) # find the parts that pass the commutative terms for a in args: margs, nc = a.args_cnc(cset=True, warn=bool(not self_c)) if nc is None: nc = [] if len(xargs) > len(margs): continue resid = margs.difference(xargs) if len(resid) + len(xargs) == len(margs): if one_c: co.append(Mul(*(list(resid) + nc))) else: co.append((resid, nc)) if one_c: if co == []: return S.Zero elif co: return Add(*co) else: # both nc # now check the non-comm parts if not co: return S.Zero if all(n == co[0][1] for r, n in co): ii = find(co[0][1], nx, right) if ii is not None: if not right: return Mul(Add(*[Mul(*r) for r, c in co]), Mul(*co[0][1][:ii])) else: return Mul(*co[0][1][ii + len(nx):]) beg = reduce(incommon, (n[1] for n in co)) if beg: ii = find(beg, nx, right) if ii is not None: if not right: gcdc = co[0][0] for i in range(1, len(co)): gcdc = gcdc.intersection(co[i][0]) if not gcdc: break return Mul(*(list(gcdc) + beg[:ii])) else: m = ii + len(nx) return Add(*[Mul(*(list(r) + n[m:])) for r, n in co]) end = list(reversed( reduce(incommon, (list(reversed(n[1])) for n in co)))) if end: ii = find(end, nx, right) if ii is not None: if not right: return Add(*[Mul(*(list(r) + n[:-len(end) + ii])) for r, n in co]) else: return Mul(*end[ii + len(nx):]) # look for single match hit = None for i, (r, n) in enumerate(co): ii = find(n, nx, right) if ii is not None: if not hit: hit = ii, r, n else: break else: if hit: ii, r, n = hit if not right: return Mul(*(list(r) + n[:ii])) else: return Mul(*n[ii + len(nx):]) return S.Zero def as_expr(self, *gens): """ Convert a polynomial to a SymPy expression. Examples ======== >>> from sympy import sin >>> from sympy.abc import x, y >>> f = (x**2 + x*y).as_poly(x, y) >>> f.as_expr() x**2 + x*y >>> sin(x).as_expr() sin(x) """ return self def as_coefficient(self, expr): """ Extracts symbolic coefficient at the given expression. In other words, this functions separates 'self' into the product of 'expr' and 'expr'-free coefficient. If such separation is not possible it will return None. Examples ======== >>> from sympy import E, pi, sin, I, Poly >>> from sympy.abc import x >>> E.as_coefficient(E) 1 >>> (2*E).as_coefficient(E) 2 >>> (2*sin(E)*E).as_coefficient(E) Two terms have E in them so a sum is returned. (If one were desiring the coefficient of the term exactly matching E then the constant from the returned expression could be selected. Or, for greater precision, a method of Poly can be used to indicate the desired term from which the coefficient is desired.) >>> (2*E + x*E).as_coefficient(E) x + 2 >>> _.args[0] # just want the exact match 2 >>> p = Poly(2*E + x*E); p Poly(x*E + 2*E, x, E, domain='ZZ') >>> p.coeff_monomial(E) 2 >>> p.nth(0, 1) 2 Since the following cannot be written as a product containing E as a factor, None is returned. (If the coefficient ``2*x`` is desired then the ``coeff`` method should be used.) >>> (2*E*x + x).as_coefficient(E) >>> (2*E*x + x).coeff(E) 2*x >>> (E*(x + 1) + x).as_coefficient(E) >>> (2*pi*I).as_coefficient(pi*I) 2 >>> (2*I).as_coefficient(pi*I) See Also ======== coeff: return sum of terms have a given factor as_coeff_Add: separate the additive constant from an expression as_coeff_Mul: separate the multiplicative constant from an expression as_independent: separate x-dependent terms/factors from others sympy.polys.polytools.Poly.coeff_monomial: efficiently find the single coefficient of a monomial in Poly sympy.polys.polytools.Poly.nth: like coeff_monomial but powers of monomial terms are used """ r = self.extract_multiplicatively(expr) if r and not r.has(expr): return r def as_independent(self, *deps, **hint): """ A mostly naive separation of a Mul or Add into arguments that are not are dependent on deps. To obtain as complete a separation of variables as possible, use a separation method first, e.g.: * separatevars() to change Mul, Add and Pow (including exp) into Mul * .expand(mul=True) to change Add or Mul into Add * .expand(log=True) to change log expr into an Add The only non-naive thing that is done here is to respect noncommutative ordering of variables and to always return (0, 0) for `self` of zero regardless of hints. For nonzero `self`, the returned tuple (i, d) has the following interpretation: * i will has no variable that appears in deps * d will either have terms that contain variables that are in deps, or be equal to 0 (when self is an Add) or 1 (when self is a Mul) * if self is an Add then self = i + d * if self is a Mul then self = i*d * otherwise (self, S.One) or (S.One, self) is returned. To force the expression to be treated as an Add, use the hint as_Add=True Examples ======== -- self is an Add >>> from sympy import sin, cos, exp >>> from sympy.abc import x, y, z >>> (x + x*y).as_independent(x) (0, x*y + x) >>> (x + x*y).as_independent(y) (x, x*y) >>> (2*x*sin(x) + y + x + z).as_independent(x) (y + z, 2*x*sin(x) + x) >>> (2*x*sin(x) + y + x + z).as_independent(x, y) (z, 2*x*sin(x) + x + y) -- self is a Mul >>> (x*sin(x)*cos(y)).as_independent(x) (cos(y), x*sin(x)) non-commutative terms cannot always be separated out when self is a Mul >>> from sympy import symbols >>> n1, n2, n3 = symbols('n1 n2 n3', commutative=False) >>> (n1 + n1*n2).as_independent(n2) (n1, n1*n2) >>> (n2*n1 + n1*n2).as_independent(n2) (0, n1*n2 + n2*n1) >>> (n1*n2*n3).as_independent(n1) (1, n1*n2*n3) >>> (n1*n2*n3).as_independent(n2) (n1, n2*n3) >>> ((x-n1)*(x-y)).as_independent(x) (1, (x - y)*(x - n1)) -- self is anything else: >>> (sin(x)).as_independent(x) (1, sin(x)) >>> (sin(x)).as_independent(y) (sin(x), 1) >>> exp(x+y).as_independent(x) (1, exp(x + y)) -- force self to be treated as an Add: >>> (3*x).as_independent(x, as_Add=True) (0, 3*x) -- force self to be treated as a Mul: >>> (3+x).as_independent(x, as_Add=False) (1, x + 3) >>> (-3+x).as_independent(x, as_Add=False) (1, x - 3) Note how the below differs from the above in making the constant on the dep term positive. >>> (y*(-3+x)).as_independent(x) (y, x - 3) -- use .as_independent() for true independence testing instead of .has(). The former considers only symbols in the free symbols while the latter considers all symbols >>> from sympy import Integral >>> I = Integral(x, (x, 1, 2)) >>> I.has(x) True >>> x in I.free_symbols False >>> I.as_independent(x) == (I, 1) True >>> (I + x).as_independent(x) == (I, x) True Note: when trying to get independent terms, a separation method might need to be used first. In this case, it is important to keep track of what you send to this routine so you know how to interpret the returned values >>> from sympy import separatevars, log >>> separatevars(exp(x+y)).as_independent(x) (exp(y), exp(x)) >>> (x + x*y).as_independent(y) (x, x*y) >>> separatevars(x + x*y).as_independent(y) (x, y + 1) >>> (x*(1 + y)).as_independent(y) (x, y + 1) >>> (x*(1 + y)).expand(mul=True).as_independent(y) (x, x*y) >>> a, b=symbols('a b', positive=True) >>> (log(a*b).expand(log=True)).as_independent(b) (log(a), log(b)) See Also ======== .separatevars(), .expand(log=True), sympy.core.add.Add.as_two_terms(), sympy.core.mul.Mul.as_two_terms(), .as_coeff_add(), .as_coeff_mul() """ from .symbol import Symbol from .add import _unevaluated_Add from .mul import _unevaluated_Mul from sympy.utilities.iterables import sift if self.is_zero: return S.Zero, S.Zero func = self.func if hint.get('as_Add', isinstance(self, Add) ): want = Add else: want = Mul # sift out deps into symbolic and other and ignore # all symbols but those that are in the free symbols sym = set() other = [] for d in deps: if isinstance(d, Symbol): # Symbol.is_Symbol is True sym.add(d) else: other.append(d) def has(e): """return the standard has() if there are no literal symbols, else check to see that symbol-deps are in the free symbols.""" has_other = e.has(*other) if not sym: return has_other return has_other or e.has(*(e.free_symbols & sym)) if (want is not func or func is not Add and func is not Mul): if has(self): return (want.identity, self) else: return (self, want.identity) else: if func is Add: args = list(self.args) else: args, nc = self.args_cnc() d = sift(args, lambda x: has(x)) depend = d[True] indep = d[False] if func is Add: # all terms were treated as commutative return (Add(*indep), _unevaluated_Add(*depend)) else: # handle noncommutative by stopping at first dependent term for i, n in enumerate(nc): if has(n): depend.extend(nc[i:]) break indep.append(n) return Mul(*indep), ( Mul(*depend, evaluate=False) if nc else _unevaluated_Mul(*depend)) def as_real_imag(self, deep=True, **hints): """Performs complex expansion on 'self' and returns a tuple containing collected both real and imaginary parts. This method can't be confused with re() and im() functions, which does not perform complex expansion at evaluation. However it is possible to expand both re() and im() functions and get exactly the same results as with a single call to this function. >>> from sympy import symbols, I >>> x, y = symbols('x,y', real=True) >>> (x + y*I).as_real_imag() (x, y) >>> from sympy.abc import z, w >>> (z + w*I).as_real_imag() (re(z) - im(w), re(w) + im(z)) """ from sympy import im, re if hints.get('ignore') == self: return None else: return (re(self), im(self)) def as_powers_dict(self): """Return self as a dictionary of factors with each factor being treated as a power. The keys are the bases of the factors and the values, the corresponding exponents. The resulting dictionary should be used with caution if the expression is a Mul and contains non- commutative factors since the order that they appeared will be lost in the dictionary. See Also ======== as_ordered_factors: An alternative for noncommutative applications, returning an ordered list of factors. args_cnc: Similar to as_ordered_factors, but guarantees separation of commutative and noncommutative factors. """ d = defaultdict(int) d.update(dict([self.as_base_exp()])) return d def as_coefficients_dict(self): """Return a dictionary mapping terms to their Rational coefficient. Since the dictionary is a defaultdict, inquiries about terms which were not present will return a coefficient of 0. If an expression is not an Add it is considered to have a single term. Examples ======== >>> from sympy.abc import a, x >>> (3*x + a*x + 4).as_coefficients_dict() {1: 4, x: 3, a*x: 1} >>> _[a] 0 >>> (3*a*x).as_coefficients_dict() {a*x: 3} """ c, m = self.as_coeff_Mul() if not c.is_Rational: c = S.One m = self d = defaultdict(int) d.update({m: c}) return d def as_base_exp(self): # a -> b ** e return self, S.One def as_coeff_mul(self, *deps, **kwargs): """Return the tuple (c, args) where self is written as a Mul, ``m``. c should be a Rational multiplied by any factors of the Mul that are independent of deps. args should be a tuple of all other factors of m; args is empty if self is a Number or if self is independent of deps (when given). This should be used when you don't know if self is a Mul or not but you want to treat self as a Mul or if you want to process the individual arguments of the tail of self as a Mul. - if you know self is a Mul and want only the head, use self.args[0]; - if you don't want to process the arguments of the tail but need the tail then use self.as_two_terms() which gives the head and tail; - if you want to split self into an independent and dependent parts use ``self.as_independent(*deps)`` >>> from sympy import S >>> from sympy.abc import x, y >>> (S(3)).as_coeff_mul() (3, ()) >>> (3*x*y).as_coeff_mul() (3, (x, y)) >>> (3*x*y).as_coeff_mul(x) (3*y, (x,)) >>> (3*y).as_coeff_mul(x) (3*y, ()) """ if deps: if not self.has(*deps): return self, tuple() return S.One, (self,) def as_coeff_add(self, *deps): """Return the tuple (c, args) where self is written as an Add, ``a``. c should be a Rational added to any terms of the Add that are independent of deps. args should be a tuple of all other terms of ``a``; args is empty if self is a Number or if self is independent of deps (when given). This should be used when you don't know if self is an Add or not but you want to treat self as an Add or if you want to process the individual arguments of the tail of self as an Add. - if you know self is an Add and want only the head, use self.args[0]; - if you don't want to process the arguments of the tail but need the tail then use self.as_two_terms() which gives the head and tail. - if you want to split self into an independent and dependent parts use ``self.as_independent(*deps)`` >>> from sympy import S >>> from sympy.abc import x, y >>> (S(3)).as_coeff_add() (3, ()) >>> (3 + x).as_coeff_add() (3, (x,)) >>> (3 + x + y).as_coeff_add(x) (y + 3, (x,)) >>> (3 + y).as_coeff_add(x) (y + 3, ()) """ if deps: if not self.has(*deps): return self, tuple() return S.Zero, (self,) def primitive(self): """Return the positive Rational that can be extracted non-recursively from every term of self (i.e., self is treated like an Add). This is like the as_coeff_Mul() method but primitive always extracts a positive Rational (never a negative or a Float). Examples ======== >>> from sympy.abc import x >>> (3*(x + 1)**2).primitive() (3, (x + 1)**2) >>> a = (6*x + 2); a.primitive() (2, 3*x + 1) >>> b = (x/2 + 3); b.primitive() (1/2, x + 6) >>> (a*b).primitive() == (1, a*b) True """ if not self: return S.One, S.Zero c, r = self.as_coeff_Mul(rational=True) if c.is_negative: c, r = -c, -r return c, r def as_content_primitive(self, radical=False, clear=True): """This method should recursively remove a Rational from all arguments and return that (content) and the new self (primitive). The content should always be positive and ``Mul(*foo.as_content_primitive()) == foo``. The primitive need not be in canonical form and should try to preserve the underlying structure if possible (i.e. expand_mul should not be applied to self). Examples ======== >>> from sympy import sqrt >>> from sympy.abc import x, y, z >>> eq = 2 + 2*x + 2*y*(3 + 3*y) The as_content_primitive function is recursive and retains structure: >>> eq.as_content_primitive() (2, x + 3*y*(y + 1) + 1) Integer powers will have Rationals extracted from the base: >>> ((2 + 6*x)**2).as_content_primitive() (4, (3*x + 1)**2) >>> ((2 + 6*x)**(2*y)).as_content_primitive() (1, (2*(3*x + 1))**(2*y)) Terms may end up joining once their as_content_primitives are added: >>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive() (11, x*(y + 1)) >>> ((3*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive() (9, x*(y + 1)) >>> ((3*(z*(1 + y)) + 2.0*x*(3 + 3*y))).as_content_primitive() (1, 6.0*x*(y + 1) + 3*z*(y + 1)) >>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))**2).as_content_primitive() (121, x**2*(y + 1)**2) >>> ((x*(1 + y) + 0.4*x*(3 + 3*y))**2).as_content_primitive() (1, 4.84*x**2*(y + 1)**2) Radical content can also be factored out of the primitive: >>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True) (2, sqrt(2)*(1 + 2*sqrt(5))) If clear=False (default is True) then content will not be removed from an Add if it can be distributed to leave one or more terms with integer coefficients. >>> (x/2 + y).as_content_primitive() (1/2, x + 2*y) >>> (x/2 + y).as_content_primitive(clear=False) (1, x/2 + y) """ return S.One, self def as_numer_denom(self): """ expression -> a/b -> a, b This is just a stub that should be defined by an object's class methods to get anything else. See Also ======== normal: return a/b instead of a, b """ return self, S.One def normal(self): from .mul import _unevaluated_Mul n, d = self.as_numer_denom() if d is S.One: return n if d.is_Number: return _unevaluated_Mul(n, 1/d) else: return n/d def extract_multiplicatively(self, c): """Return None if it's not possible to make self in the form c * something in a nice way, i.e. preserving the properties of arguments of self. Examples ======== >>> from sympy import symbols, Rational >>> x, y = symbols('x,y', real=True) >>> ((x*y)**3).extract_multiplicatively(x**2 * y) x*y**2 >>> ((x*y)**3).extract_multiplicatively(x**4 * y) >>> (2*x).extract_multiplicatively(2) x >>> (2*x).extract_multiplicatively(3) >>> (Rational(1, 2)*x).extract_multiplicatively(3) x/6 """ from .add import _unevaluated_Add c = sympify(c) if self is S.NaN: return None if c is S.One: return self elif c == self: return S.One if c.is_Add: cc, pc = c.primitive() if cc is not S.One: c = Mul(cc, pc, evaluate=False) if c.is_Mul: a, b = c.as_two_terms() x = self.extract_multiplicatively(a) if x is not None: return x.extract_multiplicatively(b) else: return x quotient = self / c if self.is_Number: if self is S.Infinity: if c.is_positive: return S.Infinity elif self is S.NegativeInfinity: if c.is_negative: return S.Infinity elif c.is_positive: return S.NegativeInfinity elif self is S.ComplexInfinity: if not c.is_zero: return S.ComplexInfinity elif self.is_Integer: if not quotient.is_Integer: return None elif self.is_positive and quotient.is_negative: return None else: return quotient elif self.is_Rational: if not quotient.is_Rational: return None elif self.is_positive and quotient.is_negative: return None else: return quotient elif self.is_Float: if not quotient.is_Float: return None elif self.is_positive and quotient.is_negative: return None else: return quotient elif self.is_NumberSymbol or self.is_Symbol or self is S.ImaginaryUnit: if quotient.is_Mul and len(quotient.args) == 2: if quotient.args[0].is_Integer and quotient.args[0].is_positive and quotient.args[1] == self: return quotient elif quotient.is_Integer and c.is_Number: return quotient elif self.is_Add: cs, ps = self.primitive() # assert cs >= 1 if c.is_Number and c is not S.NegativeOne: # assert c != 1 (handled at top) if cs is not S.One: if c.is_negative: xc = -(cs.extract_multiplicatively(-c)) else: xc = cs.extract_multiplicatively(c) if xc is not None: return xc*ps # rely on 2-arg Mul to restore Add return # |c| != 1 can only be extracted from cs if c == ps: return cs # check args of ps newargs = [] for arg in ps.args: newarg = arg.extract_multiplicatively(c) if newarg is None: return # all or nothing newargs.append(newarg) if cs is not S.One: args = [cs*t for t in newargs] # args may be in different order return _unevaluated_Add(*args) else: return Add._from_args(newargs) elif self.is_Mul: args = list(self.args) for i, arg in enumerate(args): newarg = arg.extract_multiplicatively(c) if newarg is not None: args[i] = newarg return Mul(*args) elif self.is_Pow: if c.is_Pow and c.base == self.base: new_exp = self.exp.extract_additively(c.exp) if new_exp is not None: return self.base ** (new_exp) elif c == self.base: new_exp = self.exp.extract_additively(1) if new_exp is not None: return self.base ** (new_exp) def extract_additively(self, c): """Return self - c if it's possible to subtract c from self and make all matching coefficients move towards zero, else return None. Examples ======== >>> from sympy.abc import x, y >>> e = 2*x + 3 >>> e.extract_additively(x + 1) x + 2 >>> e.extract_additively(3*x) >>> e.extract_additively(4) >>> (y*(x + 1)).extract_additively(x + 1) >>> ((x + 1)*(x + 2*y + 1) + 3).extract_additively(x + 1) (x + 1)*(x + 2*y) + 3 Sometimes auto-expansion will return a less simplified result than desired; gcd_terms might be used in such cases: >>> from sympy import gcd_terms >>> (4*x*(y + 1) + y).extract_additively(x) 4*x*(y + 1) + x*(4*y + 3) - x*(4*y + 4) + y >>> gcd_terms(_) x*(4*y + 3) + y See Also ======== extract_multiplicatively coeff as_coefficient """ c = sympify(c) if self is S.NaN: return None if c.is_zero: return self elif c == self: return S.Zero elif self == S.Zero: return None if self.is_Number: if not c.is_Number: return None co = self diff = co - c # XXX should we match types? i.e should 3 - .1 succeed? if (co > 0 and diff > 0 and diff < co or co < 0 and diff < 0 and diff > co): return diff return None if c.is_Number: co, t = self.as_coeff_Add() xa = co.extract_additively(c) if xa is None: return None return xa + t # handle the args[0].is_Number case separately # since we will have trouble looking for the coeff of # a number. if c.is_Add and c.args[0].is_Number: # whole term as a term factor co = self.coeff(c) xa0 = (co.extract_additively(1) or 0)*c if xa0: diff = self - co*c return (xa0 + (diff.extract_additively(c) or diff)) or None # term-wise h, t = c.as_coeff_Add() sh, st = self.as_coeff_Add() xa = sh.extract_additively(h) if xa is None: return None xa2 = st.extract_additively(t) if xa2 is None: return None return xa + xa2 # whole term as a term factor co = self.coeff(c) xa0 = (co.extract_additively(1) or 0)*c if xa0: diff = self - co*c return (xa0 + (diff.extract_additively(c) or diff)) or None # term-wise coeffs = [] for a in Add.make_args(c): ac, at = a.as_coeff_Mul() co = self.coeff(at) if not co: return None coc, cot = co.as_coeff_Add() xa = coc.extract_additively(ac) if xa is None: return None self -= co*at coeffs.append((cot + xa)*at) coeffs.append(self) return Add(*coeffs) @property def expr_free_symbols(self): """ Like ``free_symbols``, but returns the free symbols only if they are contained in an expression node. Examples ======== >>> from sympy.abc import x, y >>> (x + y).expr_free_symbols {x, y} If the expression is contained in a non-expression object, don't return the free symbols. Compare: >>> from sympy import Tuple >>> t = Tuple(x + y) >>> t.expr_free_symbols set() >>> t.free_symbols {x, y} """ return {j for i in self.args for j in i.expr_free_symbols} def could_extract_minus_sign(self): """Return True if self is not in a canonical form with respect to its sign. For most expressions, e, there will be a difference in e and -e. When there is, True will be returned for one and False for the other; False will be returned if there is no difference. Examples ======== >>> from sympy.abc import x, y >>> e = x - y >>> {i.could_extract_minus_sign() for i in (e, -e)} {False, True} """ negative_self = -self if self == negative_self: return False # e.g. zoo*x == -zoo*x self_has_minus = (self.extract_multiplicatively(-1) is not None) negative_self_has_minus = ( (negative_self).extract_multiplicatively(-1) is not None) if self_has_minus != negative_self_has_minus: return self_has_minus else: if self.is_Add: # We choose the one with less arguments with minus signs all_args = len(self.args) negative_args = len([False for arg in self.args if arg.could_extract_minus_sign()]) positive_args = all_args - negative_args if positive_args > negative_args: return False elif positive_args < negative_args: return True elif self.is_Mul: # We choose the one with an odd number of minus signs num, den = self.as_numer_denom() args = Mul.make_args(num) + Mul.make_args(den) arg_signs = [arg.could_extract_minus_sign() for arg in args] negative_args = list(filter(None, arg_signs)) return len(negative_args) % 2 == 1 # As a last resort, we choose the one with greater value of .sort_key() return bool(self.sort_key() < negative_self.sort_key()) def extract_branch_factor(self, allow_half=False): """ Try to write self as ``exp_polar(2*pi*I*n)*z`` in a nice way. Return (z, n). >>> from sympy import exp_polar, I, pi >>> from sympy.abc import x, y >>> exp_polar(I*pi).extract_branch_factor() (exp_polar(I*pi), 0) >>> exp_polar(2*I*pi).extract_branch_factor() (1, 1) >>> exp_polar(-pi*I).extract_branch_factor() (exp_polar(I*pi), -1) >>> exp_polar(3*pi*I + x).extract_branch_factor() (exp_polar(x + I*pi), 1) >>> (y*exp_polar(-5*pi*I)*exp_polar(3*pi*I + 2*pi*x)).extract_branch_factor() (y*exp_polar(2*pi*x), -1) >>> exp_polar(-I*pi/2).extract_branch_factor() (exp_polar(-I*pi/2), 0) If allow_half is True, also extract exp_polar(I*pi): >>> exp_polar(I*pi).extract_branch_factor(allow_half=True) (1, 1/2) >>> exp_polar(2*I*pi).extract_branch_factor(allow_half=True) (1, 1) >>> exp_polar(3*I*pi).extract_branch_factor(allow_half=True) (1, 3/2) >>> exp_polar(-I*pi).extract_branch_factor(allow_half=True) (1, -1/2) """ from sympy import exp_polar, pi, I, ceiling, Add n = S.Zero res = S.One args = Mul.make_args(self) exps = [] for arg in args: if isinstance(arg, exp_polar): exps += [arg.exp] else: res *= arg piimult = S.Zero extras = [] while exps: exp = exps.pop() if exp.is_Add: exps += exp.args continue if exp.is_Mul: coeff = exp.as_coefficient(pi*I) if coeff is not None: piimult += coeff continue extras += [exp] if piimult.is_number: coeff = piimult tail = () else: coeff, tail = piimult.as_coeff_add(*piimult.free_symbols) # round down to nearest multiple of 2 branchfact = ceiling(coeff/2 - S.Half)*2 n += branchfact/2 c = coeff - branchfact if allow_half: nc = c.extract_additively(1) if nc is not None: n += S.Half c = nc newexp = pi*I*Add(*((c, ) + tail)) + Add(*extras) if newexp != 0: res *= exp_polar(newexp) return res, n def _eval_is_polynomial(self, syms): if self.free_symbols.intersection(syms) == set(): return True return False def is_polynomial(self, *syms): r""" Return True if self is a polynomial in syms and False otherwise. This checks if self is an exact polynomial in syms. This function returns False for expressions that are "polynomials" with symbolic exponents. Thus, you should be able to apply polynomial algorithms to expressions for which this returns True, and Poly(expr, \*syms) should work if and only if expr.is_polynomial(\*syms) returns True. The polynomial does not have to be in expanded form. If no symbols are given, all free symbols in the expression will be used. This is not part of the assumptions system. You cannot do Symbol('z', polynomial=True). Examples ======== >>> from sympy import Symbol >>> x = Symbol('x') >>> ((x**2 + 1)**4).is_polynomial(x) True >>> ((x**2 + 1)**4).is_polynomial() True >>> (2**x + 1).is_polynomial(x) False >>> n = Symbol('n', nonnegative=True, integer=True) >>> (x**n + 1).is_polynomial(x) False This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be a polynomial to become one. >>> from sympy import sqrt, factor, cancel >>> y = Symbol('y', positive=True) >>> a = sqrt(y**2 + 2*y + 1) >>> a.is_polynomial(y) False >>> factor(a) y + 1 >>> factor(a).is_polynomial(y) True >>> b = (y**2 + 2*y + 1)/(y + 1) >>> b.is_polynomial(y) False >>> cancel(b) y + 1 >>> cancel(b).is_polynomial(y) True See also .is_rational_function() """ if syms: syms = set(map(sympify, syms)) else: syms = self.free_symbols if syms.intersection(self.free_symbols) == set(): # constant polynomial return True else: return self._eval_is_polynomial(syms) def _eval_is_rational_function(self, syms): if self.free_symbols.intersection(syms) == set(): return True return False def is_rational_function(self, *syms): """ Test whether function is a ratio of two polynomials in the given symbols, syms. When syms is not given, all free symbols will be used. The rational function does not have to be in expanded or in any kind of canonical form. This function returns False for expressions that are "rational functions" with symbolic exponents. Thus, you should be able to call .as_numer_denom() and apply polynomial algorithms to the result for expressions for which this returns True. This is not part of the assumptions system. You cannot do Symbol('z', rational_function=True). Examples ======== >>> from sympy import Symbol, sin >>> from sympy.abc import x, y >>> (x/y).is_rational_function() True >>> (x**2).is_rational_function() True >>> (x/sin(y)).is_rational_function(y) False >>> n = Symbol('n', integer=True) >>> (x**n + 1).is_rational_function(x) False This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be a rational function to become one. >>> from sympy import sqrt, factor >>> y = Symbol('y', positive=True) >>> a = sqrt(y**2 + 2*y + 1)/y >>> a.is_rational_function(y) False >>> factor(a) (y + 1)/y >>> factor(a).is_rational_function(y) True See also is_algebraic_expr(). """ if self in [S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity]: return False if syms: syms = set(map(sympify, syms)) else: syms = self.free_symbols if syms.intersection(self.free_symbols) == set(): # constant rational function return True else: return self._eval_is_rational_function(syms) def _eval_is_meromorphic(self, x, a): # Default implementation, return True for constants. return None if self.has(x) else True def is_meromorphic(self, x, a): """ This tests whether an expression is meromorphic as a function of the given symbol ``x`` at the point ``a``. This method is intended as a quick test that will return None if no decision can be made without simplification or more detailed analysis. Examples ======== >>> from sympy import zoo, log, sin, sqrt >>> from sympy.abc import x >>> f = 1/x**2 + 1 - 2*x**3 >>> f.is_meromorphic(x, 0) True >>> f.is_meromorphic(x, 1) True >>> f.is_meromorphic(x, zoo) True >>> g = x**log(3) >>> g.is_meromorphic(x, 0) False >>> g.is_meromorphic(x, 1) True >>> g.is_meromorphic(x, zoo) False >>> h = sin(1/x)*x**2 >>> h.is_meromorphic(x, 0) False >>> h.is_meromorphic(x, 1) True >>> h.is_meromorphic(x, zoo) True Multivalued functions are considered meromorphic when their branches are meromorphic. Thus most functions are meromorphic everywhere except at essential singularities and branch points. In particular, they will be meromorphic also on branch cuts except at their endpoints. >>> log(x).is_meromorphic(x, -1) True >>> log(x).is_meromorphic(x, 0) False >>> sqrt(x).is_meromorphic(x, -1) True >>> sqrt(x).is_meromorphic(x, 0) False """ if not x.is_symbol: raise TypeError("{} should be of symbol type".format(x)) a = sympify(a) return self._eval_is_meromorphic(x, a) def _eval_is_algebraic_expr(self, syms): if self.free_symbols.intersection(syms) == set(): return True return False def is_algebraic_expr(self, *syms): """ This tests whether a given expression is algebraic or not, in the given symbols, syms. When syms is not given, all free symbols will be used. The rational function does not have to be in expanded or in any kind of canonical form. This function returns False for expressions that are "algebraic expressions" with symbolic exponents. This is a simple extension to the is_rational_function, including rational exponentiation. Examples ======== >>> from sympy import Symbol, sqrt >>> x = Symbol('x', real=True) >>> sqrt(1 + x).is_rational_function() False >>> sqrt(1 + x).is_algebraic_expr() True This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be an algebraic expression to become one. >>> from sympy import exp, factor >>> a = sqrt(exp(x)**2 + 2*exp(x) + 1)/(exp(x) + 1) >>> a.is_algebraic_expr(x) False >>> factor(a).is_algebraic_expr() True See Also ======== is_rational_function() References ========== - https://en.wikipedia.org/wiki/Algebraic_expression """ if syms: syms = set(map(sympify, syms)) else: syms = self.free_symbols if syms.intersection(self.free_symbols) == set(): # constant algebraic expression return True else: return self._eval_is_algebraic_expr(syms) ################################################################################### ##################### SERIES, LEADING TERM, LIMIT, ORDER METHODS ################## ################################################################################### def series(self, x=None, x0=0, n=6, dir="+", logx=None, cdir=0): """ Series expansion of "self" around ``x = x0`` yielding either terms of the series one by one (the lazy series given when n=None), else all the terms at once when n != None. Returns the series expansion of "self" around the point ``x = x0`` with respect to ``x`` up to ``O((x - x0)**n, x, x0)`` (default n is 6). If ``x=None`` and ``self`` is univariate, the univariate symbol will be supplied, otherwise an error will be raised. Parameters ========== expr : Expression The expression whose series is to be expanded. x : Symbol It is the variable of the expression to be calculated. x0 : Value The value around which ``x`` is calculated. Can be any value from ``-oo`` to ``oo``. n : Value The number of terms upto which the series is to be expanded. dir : String, optional The series-expansion can be bi-directional. If ``dir="+"``, then (x->x0+). If ``dir="-", then (x->x0-). For infinite ``x0`` (``oo`` or ``-oo``), the ``dir`` argument is determined from the direction of the infinity (i.e., ``dir="-"`` for ``oo``). logx : optional It is used to replace any log(x) in the returned series with a symbolic value rather than evaluating the actual value. cdir : optional It stands for complex direction, and indicates the direction from which the expansion needs to be evaluated. Examples ======== >>> from sympy import cos, exp, tan >>> from sympy.abc import x, y >>> cos(x).series() 1 - x**2/2 + x**4/24 + O(x**6) >>> cos(x).series(n=4) 1 - x**2/2 + O(x**4) >>> cos(x).series(x, x0=1, n=2) cos(1) - (x - 1)*sin(1) + O((x - 1)**2, (x, 1)) >>> e = cos(x + exp(y)) >>> e.series(y, n=2) cos(x + 1) - y*sin(x + 1) + O(y**2) >>> e.series(x, n=2) cos(exp(y)) - x*sin(exp(y)) + O(x**2) If ``n=None`` then a generator of the series terms will be returned. >>> term=cos(x).series(n=None) >>> [next(term) for i in range(2)] [1, -x**2/2] For ``dir=+`` (default) the series is calculated from the right and for ``dir=-`` the series from the left. For smooth functions this flag will not alter the results. >>> abs(x).series(dir="+") x >>> abs(x).series(dir="-") -x >>> f = tan(x) >>> f.series(x, 2, 6, "+") tan(2) + (1 + tan(2)**2)*(x - 2) + (x - 2)**2*(tan(2)**3 + tan(2)) + (x - 2)**3*(1/3 + 4*tan(2)**2/3 + tan(2)**4) + (x - 2)**4*(tan(2)**5 + 5*tan(2)**3/3 + 2*tan(2)/3) + (x - 2)**5*(2/15 + 17*tan(2)**2/15 + 2*tan(2)**4 + tan(2)**6) + O((x - 2)**6, (x, 2)) >>> f.series(x, 2, 3, "-") tan(2) + (2 - x)*(-tan(2)**2 - 1) + (2 - x)**2*(tan(2)**3 + tan(2)) + O((x - 2)**3, (x, 2)) Returns ======= Expr : Expression Series expansion of the expression about x0 Raises ====== TypeError If "n" and "x0" are infinity objects PoleError If "x0" is an infinity object """ from sympy import collect, Dummy, Order, Rational, Symbol, ceiling if x is None: syms = self.free_symbols if not syms: return self elif len(syms) > 1: raise ValueError('x must be given for multivariate functions.') x = syms.pop() if isinstance(x, Symbol): dep = x in self.free_symbols else: d = Dummy() dep = d in self.xreplace({x: d}).free_symbols if not dep: if n is None: return (s for s in [self]) else: return self if len(dir) != 1 or dir not in '+-': raise ValueError("Dir must be '+' or '-'") if x0 in [S.Infinity, S.NegativeInfinity]: sgn = 1 if x0 is S.Infinity else -1 s = self.subs(x, sgn/x).series(x, n=n, dir='+', cdir=cdir) if n is None: return (si.subs(x, sgn/x) for si in s) return s.subs(x, sgn/x) # use rep to shift origin to x0 and change sign (if dir is negative) # and undo the process with rep2 if x0 or dir == '-': if dir == '-': rep = -x + x0 rep2 = -x rep2b = x0 else: rep = x + x0 rep2 = x rep2b = -x0 s = self.subs(x, rep).series(x, x0=0, n=n, dir='+', logx=logx, cdir=cdir) if n is None: # lseries... return (si.subs(x, rep2 + rep2b) for si in s) return s.subs(x, rep2 + rep2b) # from here on it's x0=0 and dir='+' handling if x.is_positive is x.is_negative is None or x.is_Symbol is not True: # replace x with an x that has a positive assumption xpos = Dummy('x', positive=True, finite=True) rv = self.subs(x, xpos).series(xpos, x0, n, dir, logx=logx, cdir=cdir) if n is None: return (s.subs(xpos, x) for s in rv) else: return rv.subs(xpos, x) if n is not None: # nseries handling s1 = self._eval_nseries(x, n=n, logx=logx, cdir=cdir) o = s1.getO() or S.Zero if o: # make sure the requested order is returned ngot = o.getn() if ngot > n: # leave o in its current form (e.g. with x*log(x)) so # it eats terms properly, then replace it below if n != 0: s1 += o.subs(x, x**Rational(n, ngot)) else: s1 += Order(1, x) elif ngot < n: # increase the requested number of terms to get the desired # number keep increasing (up to 9) until the received order # is different than the original order and then predict how # many additional terms are needed for more in range(1, 9): s1 = self._eval_nseries(x, n=n + more, logx=logx, cdir=cdir) newn = s1.getn() if newn != ngot: ndo = n + ceiling((n - ngot)*more/(newn - ngot)) s1 = self._eval_nseries(x, n=ndo, logx=logx, cdir=cdir) while s1.getn() < n: s1 = self._eval_nseries(x, n=ndo, logx=logx, cdir=cdir) ndo += 1 break else: raise ValueError('Could not calculate %s terms for %s' % (str(n), self)) s1 += Order(x**n, x) o = s1.getO() s1 = s1.removeO() else: o = Order(x**n, x) s1done = s1.doit() if (s1done + o).removeO() == s1done: o = S.Zero try: return collect(s1, x) + o except NotImplementedError: return s1 + o else: # lseries handling def yield_lseries(s): """Return terms of lseries one at a time.""" for si in s: if not si.is_Add: yield si continue # yield terms 1 at a time if possible # by increasing order until all the # terms have been returned yielded = 0 o = Order(si, x)*x ndid = 0 ndo = len(si.args) while 1: do = (si - yielded + o).removeO() o *= x if not do or do.is_Order: continue if do.is_Add: ndid += len(do.args) else: ndid += 1 yield do if ndid == ndo: break yielded += do return yield_lseries(self.removeO()._eval_lseries(x, logx=logx, cdir=cdir)) def aseries(self, x=None, n=6, bound=0, hir=False): """Asymptotic Series expansion of self. This is equivalent to ``self.series(x, oo, n)``. Parameters ========== self : Expression The expression whose series is to be expanded. x : Symbol It is the variable of the expression to be calculated. n : Value The number of terms upto which the series is to be expanded. hir : Boolean Set this parameter to be True to produce hierarchical series. It stops the recursion at an early level and may provide nicer and more useful results. bound : Value, Integer Use the ``bound`` parameter to give limit on rewriting coefficients in its normalised form. Examples ======== >>> from sympy import sin, exp >>> from sympy.abc import x >>> e = sin(1/x + exp(-x)) - sin(1/x) >>> e.aseries(x) (1/(24*x**4) - 1/(2*x**2) + 1 + O(x**(-6), (x, oo)))*exp(-x) >>> e.aseries(x, n=3, hir=True) -exp(-2*x)*sin(1/x)/2 + exp(-x)*cos(1/x) + O(exp(-3*x), (x, oo)) >>> e = exp(exp(x)/(1 - 1/x)) >>> e.aseries(x) exp(exp(x)/(1 - 1/x)) >>> e.aseries(x, bound=3) exp(exp(x)/x**2)*exp(exp(x)/x)*exp(-exp(x) + exp(x)/(1 - 1/x) - exp(x)/x - exp(x)/x**2)*exp(exp(x)) Returns ======= Expr Asymptotic series expansion of the expression. Notes ===== This algorithm is directly induced from the limit computational algorithm provided by Gruntz. It majorly uses the mrv and rewrite sub-routines. The overall idea of this algorithm is first to look for the most rapidly varying subexpression w of a given expression f and then expands f in a series in w. Then same thing is recursively done on the leading coefficient till we get constant coefficients. If the most rapidly varying subexpression of a given expression f is f itself, the algorithm tries to find a normalised representation of the mrv set and rewrites f using this normalised representation. If the expansion contains an order term, it will be either ``O(x ** (-n))`` or ``O(w ** (-n))`` where ``w`` belongs to the most rapidly varying expression of ``self``. References ========== .. [1] A New Algorithm for Computing Asymptotic Series - Dominik Gruntz .. [2] Gruntz thesis - p90 .. [3] http://en.wikipedia.org/wiki/Asymptotic_expansion See Also ======== Expr.aseries: See the docstring of this function for complete details of this wrapper. """ from sympy import Order, Dummy from sympy.functions import exp, log from sympy.series.gruntz import mrv, rewrite if x.is_positive is x.is_negative is None: xpos = Dummy('x', positive=True) return self.subs(x, xpos).aseries(xpos, n, bound, hir).subs(xpos, x) om, exps = mrv(self, x) # We move one level up by replacing `x` by `exp(x)`, and then # computing the asymptotic series for f(exp(x)). Then asymptotic series # can be obtained by moving one-step back, by replacing x by ln(x). if x in om: s = self.subs(x, exp(x)).aseries(x, n, bound, hir).subs(x, log(x)) if s.getO(): return s + Order(1/x**n, (x, S.Infinity)) return s k = Dummy('k', positive=True) # f is rewritten in terms of omega func, logw = rewrite(exps, om, x, k) if self in om: if bound <= 0: return self s = (self.exp).aseries(x, n, bound=bound) s = s.func(*[t.removeO() for t in s.args]) res = exp(s.subs(x, 1/x).as_leading_term(x).subs(x, 1/x)) func = exp(self.args[0] - res.args[0]) / k logw = log(1/res) s = func.series(k, 0, n) # Hierarchical series if hir: return s.subs(k, exp(logw)) o = s.getO() terms = sorted(Add.make_args(s.removeO()), key=lambda i: int(i.as_coeff_exponent(k)[1])) s = S.Zero has_ord = False # Then we recursively expand these coefficients one by one into # their asymptotic series in terms of their most rapidly varying subexpressions. for t in terms: coeff, expo = t.as_coeff_exponent(k) if coeff.has(x): # Recursive step snew = coeff.aseries(x, n, bound=bound-1) if has_ord and snew.getO(): break elif snew.getO(): has_ord = True s += (snew * k**expo) else: s += t if not o or has_ord: return s.subs(k, exp(logw)) return (s + o).subs(k, exp(logw)) def taylor_term(self, n, x, *previous_terms): """General method for the taylor term. This method is slow, because it differentiates n-times. Subclasses can redefine it to make it faster by using the "previous_terms". """ from sympy import Dummy, factorial x = sympify(x) _x = Dummy('x') return self.subs(x, _x).diff(_x, n).subs(_x, x).subs(x, 0) * x**n / factorial(n) def lseries(self, x=None, x0=0, dir='+', logx=None, cdir=0): """ Wrapper for series yielding an iterator of the terms of the series. Note: an infinite series will yield an infinite iterator. The following, for exaxmple, will never terminate. It will just keep printing terms of the sin(x) series:: for term in sin(x).lseries(x): print term The advantage of lseries() over nseries() is that many times you are just interested in the next term in the series (i.e. the first term for example), but you don't know how many you should ask for in nseries() using the "n" parameter. See also nseries(). """ return self.series(x, x0, n=None, dir=dir, logx=logx, cdir=cdir) def _eval_lseries(self, x, logx=None, cdir=0): # default implementation of lseries is using nseries(), and adaptively # increasing the "n". As you can see, it is not very efficient, because # we are calculating the series over and over again. Subclasses should # override this method and implement much more efficient yielding of # terms. n = 0 series = self._eval_nseries(x, n=n, logx=logx, cdir=cdir) while series.is_Order: n += 1 series = self._eval_nseries(x, n=n, logx=logx, cdir=cdir) e = series.removeO() yield e if e is S.Zero: return while 1: while 1: n += 1 series = self._eval_nseries(x, n=n, logx=logx, cdir=cdir).removeO() if e != series: break if (series - self).cancel() is S.Zero: return yield series - e e = series def nseries(self, x=None, x0=0, n=6, dir='+', logx=None, cdir=0): """ Wrapper to _eval_nseries if assumptions allow, else to series. If x is given, x0 is 0, dir='+', and self has x, then _eval_nseries is called. This calculates "n" terms in the innermost expressions and then builds up the final series just by "cross-multiplying" everything out. The optional ``logx`` parameter can be used to replace any log(x) in the returned series with a symbolic value to avoid evaluating log(x) at 0. A symbol to use in place of log(x) should be provided. Advantage -- it's fast, because we don't have to determine how many terms we need to calculate in advance. Disadvantage -- you may end up with less terms than you may have expected, but the O(x**n) term appended will always be correct and so the result, though perhaps shorter, will also be correct. If any of those assumptions is not met, this is treated like a wrapper to series which will try harder to return the correct number of terms. See also lseries(). Examples ======== >>> from sympy import sin, log, Symbol >>> from sympy.abc import x, y >>> sin(x).nseries(x, 0, 6) x - x**3/6 + x**5/120 + O(x**6) >>> log(x+1).nseries(x, 0, 5) x - x**2/2 + x**3/3 - x**4/4 + O(x**5) Handling of the ``logx`` parameter --- in the following example the expansion fails since ``sin`` does not have an asymptotic expansion at -oo (the limit of log(x) as x approaches 0): >>> e = sin(log(x)) >>> e.nseries(x, 0, 6) Traceback (most recent call last): ... PoleError: ... ... >>> logx = Symbol('logx') >>> e.nseries(x, 0, 6, logx=logx) sin(logx) In the following example, the expansion works but gives only an Order term unless the ``logx`` parameter is used: >>> e = x**y >>> e.nseries(x, 0, 2) O(log(x)**2) >>> e.nseries(x, 0, 2, logx=logx) exp(logx*y) """ if x and not x in self.free_symbols: return self if x is None or x0 or dir != '+': # {see XPOS above} or (x.is_positive == x.is_negative == None): return self.series(x, x0, n, dir, cdir=cdir) else: return self._eval_nseries(x, n=n, logx=logx, cdir=cdir) def _eval_nseries(self, x, n, logx, cdir): """ Return terms of series for self up to O(x**n) at x=0 from the positive direction. This is a method that should be overridden in subclasses. Users should never call this method directly (use .nseries() instead), so you don't have to write docstrings for _eval_nseries(). """ from sympy.utilities.misc import filldedent raise NotImplementedError(filldedent(""" The _eval_nseries method should be added to %s to give terms up to O(x**n) at x=0 from the positive direction so it is available when nseries calls it.""" % self.func) ) def limit(self, x, xlim, dir='+'): """ Compute limit x->xlim. """ from sympy.series.limits import limit return limit(self, x, xlim, dir) def compute_leading_term(self, x, logx=None): """ as_leading_term is only allowed for results of .series() This is a wrapper to compute a series first. """ from sympy import Dummy, log, Piecewise, piecewise_fold from sympy.series.gruntz import calculate_series if self.has(Piecewise): expr = piecewise_fold(self) else: expr = self if self.removeO() == 0: return self if logx is None: d = Dummy('logx') s = calculate_series(expr, x, d).subs(d, log(x)) else: s = calculate_series(expr, x, logx) return s.as_leading_term(x) @cacheit def as_leading_term(self, *symbols, cdir=0): """ Returns the leading (nonzero) term of the series expansion of self. The _eval_as_leading_term routines are used to do this, and they must always return a non-zero value. Examples ======== >>> from sympy.abc import x >>> (1 + x + x**2).as_leading_term(x) 1 >>> (1/x**2 + x + x**2).as_leading_term(x) x**(-2) """ from sympy import powsimp if len(symbols) > 1: c = self for x in symbols: c = c.as_leading_term(x, cdir=cdir) return c elif not symbols: return self x = sympify(symbols[0]) if not x.is_symbol: raise ValueError('expecting a Symbol but got %s' % x) if x not in self.free_symbols: return self obj = self._eval_as_leading_term(x, cdir=cdir) if obj is not None: return powsimp(obj, deep=True, combine='exp') raise NotImplementedError('as_leading_term(%s, %s)' % (self, x)) def _eval_as_leading_term(self, x, cdir=0): return self def as_coeff_exponent(self, x): """ ``c*x**e -> c,e`` where x can be any symbolic expression. """ from sympy import collect s = collect(self, x) c, p = s.as_coeff_mul(x) if len(p) == 1: b, e = p[0].as_base_exp() if b == x: return c, e return s, S.Zero def leadterm(self, x, cdir=0): """ Returns the leading term a*x**b as a tuple (a, b). Examples ======== >>> from sympy.abc import x >>> (1+x+x**2).leadterm(x) (1, 0) >>> (1/x**2+x+x**2).leadterm(x) (1, -2) """ from sympy import Dummy, log l = self.as_leading_term(x, cdir=cdir) d = Dummy('logx') if l.has(log(x)): l = l.subs(log(x), d) c, e = l.as_coeff_exponent(x) if x in c.free_symbols: from sympy.utilities.misc import filldedent raise ValueError(filldedent(""" cannot compute leadterm(%s, %s). The coefficient should have been free of %s but got %s""" % (self, x, x, c))) c = c.subs(d, log(x)) return c, e def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ return S.One, self def as_coeff_Add(self, rational=False): """Efficiently extract the coefficient of a summation. """ return S.Zero, self def fps(self, x=None, x0=0, dir=1, hyper=True, order=4, rational=True, full=False): """ Compute formal power power series of self. See the docstring of the :func:`fps` function in sympy.series.formal for more information. """ from sympy.series.formal import fps return fps(self, x, x0, dir, hyper, order, rational, full) def fourier_series(self, limits=None): """Compute fourier sine/cosine series of self. See the docstring of the :func:`fourier_series` in sympy.series.fourier for more information. """ from sympy.series.fourier import fourier_series return fourier_series(self, limits) ################################################################################### ##################### DERIVATIVE, INTEGRAL, FUNCTIONAL METHODS #################### ################################################################################### def diff(self, *symbols, **assumptions): assumptions.setdefault("evaluate", True) return _derivative_dispatch(self, *symbols, **assumptions) ########################################################################### ###################### EXPRESSION EXPANSION METHODS ####################### ########################################################################### # Relevant subclasses should override _eval_expand_hint() methods. See # the docstring of expand() for more info. def _eval_expand_complex(self, **hints): real, imag = self.as_real_imag(**hints) return real + S.ImaginaryUnit*imag @staticmethod def _expand_hint(expr, hint, deep=True, **hints): """ Helper for ``expand()``. Recursively calls ``expr._eval_expand_hint()``. Returns ``(expr, hit)``, where expr is the (possibly) expanded ``expr`` and ``hit`` is ``True`` if ``expr`` was truly expanded and ``False`` otherwise. """ hit = False # XXX: Hack to support non-Basic args # | # V if deep and getattr(expr, 'args', ()) and not expr.is_Atom: sargs = [] for arg in expr.args: arg, arghit = Expr._expand_hint(arg, hint, **hints) hit |= arghit sargs.append(arg) if hit: expr = expr.func(*sargs) if hasattr(expr, hint): newexpr = getattr(expr, hint)(**hints) if newexpr != expr: return (newexpr, True) return (expr, hit) @cacheit def expand(self, deep=True, modulus=None, power_base=True, power_exp=True, mul=True, log=True, multinomial=True, basic=True, **hints): """ Expand an expression using hints. See the docstring of the expand() function in sympy.core.function for more information. """ from sympy.simplify.radsimp import fraction hints.update(power_base=power_base, power_exp=power_exp, mul=mul, log=log, multinomial=multinomial, basic=basic) expr = self if hints.pop('frac', False): n, d = [a.expand(deep=deep, modulus=modulus, **hints) for a in fraction(self)] return n/d elif hints.pop('denom', False): n, d = fraction(self) return n/d.expand(deep=deep, modulus=modulus, **hints) elif hints.pop('numer', False): n, d = fraction(self) return n.expand(deep=deep, modulus=modulus, **hints)/d # Although the hints are sorted here, an earlier hint may get applied # at a given node in the expression tree before another because of how # the hints are applied. e.g. expand(log(x*(y + z))) -> log(x*y + # x*z) because while applying log at the top level, log and mul are # applied at the deeper level in the tree so that when the log at the # upper level gets applied, the mul has already been applied at the # lower level. # Additionally, because hints are only applied once, the expression # may not be expanded all the way. For example, if mul is applied # before multinomial, x*(x + 1)**2 won't be expanded all the way. For # now, we just use a special case to make multinomial run before mul, # so that at least polynomials will be expanded all the way. In the # future, smarter heuristics should be applied. # TODO: Smarter heuristics def _expand_hint_key(hint): """Make multinomial come before mul""" if hint == 'mul': return 'mulz' return hint for hint in sorted(hints.keys(), key=_expand_hint_key): use_hint = hints[hint] if use_hint: hint = '_eval_expand_' + hint expr, hit = Expr._expand_hint(expr, hint, deep=deep, **hints) while True: was = expr if hints.get('multinomial', False): expr, _ = Expr._expand_hint( expr, '_eval_expand_multinomial', deep=deep, **hints) if hints.get('mul', False): expr, _ = Expr._expand_hint( expr, '_eval_expand_mul', deep=deep, **hints) if hints.get('log', False): expr, _ = Expr._expand_hint( expr, '_eval_expand_log', deep=deep, **hints) if expr == was: break if modulus is not None: modulus = sympify(modulus) if not modulus.is_Integer or modulus <= 0: raise ValueError( "modulus must be a positive integer, got %s" % modulus) terms = [] for term in Add.make_args(expr): coeff, tail = term.as_coeff_Mul(rational=True) coeff %= modulus if coeff: terms.append(coeff*tail) expr = Add(*terms) return expr ########################################################################### ################### GLOBAL ACTION VERB WRAPPER METHODS #################### ########################################################################### def integrate(self, *args, **kwargs): """See the integrate function in sympy.integrals""" from sympy.integrals import integrate return integrate(self, *args, **kwargs) def nsimplify(self, constants=[], tolerance=None, full=False): """See the nsimplify function in sympy.simplify""" from sympy.simplify import nsimplify return nsimplify(self, constants, tolerance, full) def separate(self, deep=False, force=False): """See the separate function in sympy.simplify""" from sympy.core.function import expand_power_base return expand_power_base(self, deep=deep, force=force) def collect(self, syms, func=None, evaluate=True, exact=False, distribute_order_term=True): """See the collect function in sympy.simplify""" from sympy.simplify import collect return collect(self, syms, func, evaluate, exact, distribute_order_term) def together(self, *args, **kwargs): """See the together function in sympy.polys""" from sympy.polys import together return together(self, *args, **kwargs) def apart(self, x=None, **args): """See the apart function in sympy.polys""" from sympy.polys import apart return apart(self, x, **args) def ratsimp(self): """See the ratsimp function in sympy.simplify""" from sympy.simplify import ratsimp return ratsimp(self) def trigsimp(self, **args): """See the trigsimp function in sympy.simplify""" from sympy.simplify import trigsimp return trigsimp(self, **args) def radsimp(self, **kwargs): """See the radsimp function in sympy.simplify""" from sympy.simplify import radsimp return radsimp(self, **kwargs) def powsimp(self, *args, **kwargs): """See the powsimp function in sympy.simplify""" from sympy.simplify import powsimp return powsimp(self, *args, **kwargs) def combsimp(self): """See the combsimp function in sympy.simplify""" from sympy.simplify import combsimp return combsimp(self) def gammasimp(self): """See the gammasimp function in sympy.simplify""" from sympy.simplify import gammasimp return gammasimp(self) def factor(self, *gens, **args): """See the factor() function in sympy.polys.polytools""" from sympy.polys import factor return factor(self, *gens, **args) def refine(self, assumption=True): """See the refine function in sympy.assumptions""" from sympy.assumptions import refine return refine(self, assumption) def cancel(self, *gens, **args): """See the cancel function in sympy.polys""" from sympy.polys import cancel return cancel(self, *gens, **args) def invert(self, g, *gens, **args): """Return the multiplicative inverse of ``self`` mod ``g`` where ``self`` (and ``g``) may be symbolic expressions). See Also ======== sympy.core.numbers.mod_inverse, sympy.polys.polytools.invert """ from sympy.polys.polytools import invert from sympy.core.numbers import mod_inverse if self.is_number and getattr(g, 'is_number', True): return mod_inverse(self, g) return invert(self, g, *gens, **args) def round(self, n=None): """Return x rounded to the given decimal place. If a complex number would results, apply round to the real and imaginary components of the number. Examples ======== >>> from sympy import pi, E, I, S, Number >>> pi.round() 3 >>> pi.round(2) 3.14 >>> (2*pi + E*I).round() 6 + 3*I The round method has a chopping effect: >>> (2*pi + I/10).round() 6 >>> (pi/10 + 2*I).round() 2*I >>> (pi/10 + E*I).round(2) 0.31 + 2.72*I Notes ===== The Python ``round`` function uses the SymPy ``round`` method so it will always return a SymPy number (not a Python float or int): >>> isinstance(round(S(123), -2), Number) True """ from sympy.core.numbers import Float x = self if not x.is_number: raise TypeError("can't round symbolic expression") if not x.is_Atom: if not pure_complex(x.n(2), or_real=True): raise TypeError( 'Expected a number but got %s:' % func_name(x)) elif x in (S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity): return x if not x.is_extended_real: r, i = x.as_real_imag() return r.round(n) + S.ImaginaryUnit*i.round(n) if not x: return S.Zero if n is None else x p = as_int(n or 0) if x.is_Integer: return Integer(round(int(x), p)) digits_to_decimal = _mag(x) # _mag(12) = 2, _mag(.012) = -1 allow = digits_to_decimal + p precs = [f._prec for f in x.atoms(Float)] dps = prec_to_dps(max(precs)) if precs else None if dps is None: # assume everything is exact so use the Python # float default or whatever was requested dps = max(15, allow) else: allow = min(allow, dps) # this will shift all digits to right of decimal # and give us dps to work with as an int shift = -digits_to_decimal + dps extra = 1 # how far we look past known digits # NOTE # mpmath will calculate the binary representation to # an arbitrary number of digits but we must base our # answer on a finite number of those digits, e.g. # .575 2589569785738035/2**52 in binary. # mpmath shows us that the first 18 digits are # >>> Float(.575).n(18) # 0.574999999999999956 # The default precision is 15 digits and if we ask # for 15 we get # >>> Float(.575).n(15) # 0.575000000000000 # mpmath handles rounding at the 15th digit. But we # need to be careful since the user might be asking # for rounding at the last digit and our semantics # are to round toward the even final digit when there # is a tie. So the extra digit will be used to make # that decision. In this case, the value is the same # to 15 digits: # >>> Float(.575).n(16) # 0.5750000000000000 # Now converting this to the 15 known digits gives # 575000000000000.0 # which rounds to integer # 5750000000000000 # And now we can round to the desired digt, e.g. at # the second from the left and we get # 5800000000000000 # and rescaling that gives # 0.58 # as the final result. # If the value is made slightly less than 0.575 we might # still obtain the same value: # >>> Float(.575-1e-16).n(16)*10**15 # 574999999999999.8 # What 15 digits best represents the known digits (which are # to the left of the decimal? 5750000000000000, the same as # before. The only way we will round down (in this case) is # if we declared that we had more than 15 digits of precision. # For example, if we use 16 digits of precision, the integer # we deal with is # >>> Float(.575-1e-16).n(17)*10**16 # 5749999999999998.4 # and this now rounds to 5749999999999998 and (if we round to # the 2nd digit from the left) we get 5700000000000000. # xf = x.n(dps + extra)*Pow(10, shift) xi = Integer(xf) # use the last digit to select the value of xi # nearest to x before rounding at the desired digit sign = 1 if x > 0 else -1 dif2 = sign*(xf - xi).n(extra) if dif2 < 0: raise NotImplementedError( 'not expecting int(x) to round away from 0') if dif2 > .5: xi += sign # round away from 0 elif dif2 == .5: xi += sign if xi%2 else -sign # round toward even # shift p to the new position ip = p - shift # let Python handle the int rounding then rescale xr = round(xi.p, ip) # restore scale rv = Rational(xr, Pow(10, shift)) # return Float or Integer if rv.is_Integer: if n is None: # the single-arg case return rv # use str or else it won't be a float return Float(str(rv), dps) # keep same precision else: if not allow and rv > self: allow += 1 return Float(rv, allow) __round__ = round def _eval_derivative_matrix_lines(self, x): from sympy.matrices.expressions.matexpr import _LeftRightArgs return [_LeftRightArgs([S.One, S.One], higher=self._eval_derivative(x))] class AtomicExpr(Atom, Expr): """ A parent class for object which are both atoms and Exprs. For example: Symbol, Number, Rational, Integer, ... But not: Add, Mul, Pow, ... """ is_number = False is_Atom = True __slots__ = () def _eval_derivative(self, s): if self == s: return S.One return S.Zero def _eval_derivative_n_times(self, s, n): from sympy import Piecewise, Eq from sympy import Tuple, MatrixExpr from sympy.matrices.common import MatrixCommon if isinstance(s, (MatrixCommon, Tuple, Iterable, MatrixExpr)): return super()._eval_derivative_n_times(s, n) if self == s: return Piecewise((self, Eq(n, 0)), (1, Eq(n, 1)), (0, True)) else: return Piecewise((self, Eq(n, 0)), (0, True)) def _eval_is_polynomial(self, syms): return True def _eval_is_rational_function(self, syms): return True def _eval_is_meromorphic(self, x, a): from sympy.calculus.util import AccumBounds return (not self.is_Number or self.is_finite) and not isinstance(self, AccumBounds) def _eval_is_algebraic_expr(self, syms): return True def _eval_nseries(self, x, n, logx, cdir=0): return self @property def expr_free_symbols(self): return {self} def _mag(x): """Return integer ``i`` such that .1 <= x/10**i < 1 Examples ======== >>> from sympy.core.expr import _mag >>> from sympy import Float >>> _mag(Float(.1)) 0 >>> _mag(Float(.01)) -1 >>> _mag(Float(1234)) 4 """ from math import log10, ceil, log from sympy import Float xpos = abs(x.n()) if not xpos: return S.Zero try: mag_first_dig = int(ceil(log10(xpos))) except (ValueError, OverflowError): mag_first_dig = int(ceil(Float(mpf_log(xpos._mpf_, 53))/log(10))) # check that we aren't off by 1 if (xpos/10**mag_first_dig) >= 1: assert 1 <= (xpos/10**mag_first_dig) < 10 mag_first_dig += 1 return mag_first_dig class UnevaluatedExpr(Expr): """ Expression that is not evaluated unless released. Examples ======== >>> from sympy import UnevaluatedExpr >>> from sympy.abc import x >>> x*(1/x) 1 >>> x*UnevaluatedExpr(1/x) x*1/x """ def __new__(cls, arg, **kwargs): arg = _sympify(arg) obj = Expr.__new__(cls, arg, **kwargs) return obj def doit(self, **kwargs): if kwargs.get("deep", True): return self.args[0].doit(**kwargs) else: return self.args[0] def unchanged(func, *args): """Return True if `func` applied to the `args` is unchanged. Can be used instead of `assert foo == foo`. Examples ======== >>> from sympy import Piecewise, cos, pi >>> from sympy.core.expr import unchanged >>> from sympy.abc import x >>> unchanged(cos, 1) # instead of assert cos(1) == cos(1) True >>> unchanged(cos, pi) False Comparison of args uses the builtin capabilities of the object's arguments to test for equality so args can be defined loosely. Here, the ExprCondPair arguments of Piecewise compare as equal to the tuples that can be used to create the Piecewise: >>> unchanged(Piecewise, (x, x > 1), (0, True)) True """ f = func(*args) return f.func == func and f.args == args class ExprBuilder: def __init__(self, op, args=[], validator=None, check=True): if not hasattr(op, "__call__"): raise TypeError("op {} needs to be callable".format(op)) self.op = op self.args = args self.validator = validator if (validator is not None) and check: self.validate() @staticmethod def _build_args(args): return [i.build() if isinstance(i, ExprBuilder) else i for i in args] def validate(self): if self.validator is None: return args = self._build_args(self.args) self.validator(*args) def build(self, check=True): args = self._build_args(self.args) if self.validator and check: self.validator(*args) return self.op(*args) def append_argument(self, arg, check=True): self.args.append(arg) if self.validator and check: self.validate(*self.args) def __getitem__(self, item): if item == 0: return self.op else: return self.args[item-1] def __repr__(self): return str(self.build()) def search_element(self, elem): for i, arg in enumerate(self.args): if isinstance(arg, ExprBuilder): ret = arg.search_index(elem) if ret is not None: return (i,) + ret elif id(arg) == id(elem): return (i,) return None from .mul import Mul from .add import Add from .power import Pow from .function import Function, _derivative_dispatch from .mod import Mod from .exprtools import factor_terms from .numbers import Integer, Rational
7a3331746d5811721cd022dc8d970ae374245b5d34aaae01189fcc6d7d9326ae
from typing import Dict, Union, Type from sympy.utilities.exceptions import SymPyDeprecationWarning from .basic import S, Atom from .compatibility import ordered from .basic import Basic from .evalf import EvalfMixin from .function import AppliedUndef from .sympify import _sympify, SympifyError from .parameters import global_parameters from sympy.core.logic import fuzzy_bool, fuzzy_xor, fuzzy_and, fuzzy_not from sympy.logic.boolalg import Boolean, BooleanAtom __all__ = ( 'Rel', 'Eq', 'Ne', 'Lt', 'Le', 'Gt', 'Ge', 'Relational', 'Equality', 'Unequality', 'StrictLessThan', 'LessThan', 'StrictGreaterThan', 'GreaterThan', ) from .expr import Expr from sympy.multipledispatch import dispatch from .containers import Tuple from .symbol import Symbol def _nontrivBool(side): return isinstance(side, Boolean) and \ not isinstance(side, Atom) # Note, see issue 4986. Ideally, we wouldn't want to subclass both Boolean # and Expr. # from .. import Expr def _canonical(cond): # return a condition in which all relationals are canonical reps = {r: r.canonical for r in cond.atoms(Relational)} return cond.xreplace(reps) # XXX: AttributeError was being caught here but it wasn't triggered by any of # the tests so I've removed it... class Relational(Boolean, EvalfMixin): """Base class for all relation types. Explanation =========== Subclasses of Relational should generally be instantiated directly, but Relational can be instantiated with a valid ``rop`` value to dispatch to the appropriate subclass. Parameters ========== rop : str or None Indicates what subclass to instantiate. Valid values can be found in the keys of Relational.ValidRelationOperator. Examples ======== >>> from sympy import Rel >>> from sympy.abc import x, y >>> Rel(y, x + x**2, '==') Eq(y, x**2 + x) """ __slots__ = () ValidRelationOperator = {} # type: Dict[Union[str, None], Type[Relational]] is_Relational = True # ValidRelationOperator - Defined below, because the necessary classes # have not yet been defined def __new__(cls, lhs, rhs, rop=None, **assumptions): # If called by a subclass, do nothing special and pass on to Basic. if cls is not Relational: return Basic.__new__(cls, lhs, rhs, **assumptions) # XXX: Why do this? There should be a separate function to make a # particular subclass of Relational from a string. # # If called directly with an operator, look up the subclass # corresponding to that operator and delegate to it cls = cls.ValidRelationOperator.get(rop, None) if cls is None: raise ValueError("Invalid relational operator symbol: %r" % rop) if not issubclass(cls, (Eq, Ne)): # validate that Booleans are not being used in a relational # other than Eq/Ne; # Note: Symbol is a subclass of Boolean but is considered # acceptable here. if any(map(_nontrivBool, (lhs, rhs))): from sympy.utilities.misc import filldedent raise TypeError(filldedent(''' A Boolean argument can only be used in Eq and Ne; all other relationals expect real expressions. ''')) return cls(lhs, rhs, **assumptions) @property def lhs(self): """The left-hand side of the relation.""" return self._args[0] @property def rhs(self): """The right-hand side of the relation.""" return self._args[1] @property def reversed(self): """Return the relationship with sides reversed. Examples ======== >>> from sympy import Eq >>> from sympy.abc import x >>> Eq(x, 1) Eq(x, 1) >>> _.reversed Eq(1, x) >>> x < 1 x < 1 >>> _.reversed 1 > x """ ops = {Eq: Eq, Gt: Lt, Ge: Le, Lt: Gt, Le: Ge, Ne: Ne} a, b = self.args return Relational.__new__(ops.get(self.func, self.func), b, a) @property def reversedsign(self): """Return the relationship with signs reversed. Examples ======== >>> from sympy import Eq >>> from sympy.abc import x >>> Eq(x, 1) Eq(x, 1) >>> _.reversedsign Eq(-x, -1) >>> x < 1 x < 1 >>> _.reversedsign -x > -1 """ a, b = self.args if not (isinstance(a, BooleanAtom) or isinstance(b, BooleanAtom)): ops = {Eq: Eq, Gt: Lt, Ge: Le, Lt: Gt, Le: Ge, Ne: Ne} return Relational.__new__(ops.get(self.func, self.func), -a, -b) else: return self @property def negated(self): """Return the negated relationship. Examples ======== >>> from sympy import Eq >>> from sympy.abc import x >>> Eq(x, 1) Eq(x, 1) >>> _.negated Ne(x, 1) >>> x < 1 x < 1 >>> _.negated x >= 1 Notes ===== This works more or less identical to ``~``/``Not``. The difference is that ``negated`` returns the relationship even if ``evaluate=False``. Hence, this is useful in code when checking for e.g. negated relations to existing ones as it will not be affected by the `evaluate` flag. """ ops = {Eq: Ne, Ge: Lt, Gt: Le, Le: Gt, Lt: Ge, Ne: Eq} # If there ever will be new Relational subclasses, the following line # will work until it is properly sorted out # return ops.get(self.func, lambda a, b, evaluate=False: ~(self.func(a, # b, evaluate=evaluate)))(*self.args, evaluate=False) return Relational.__new__(ops.get(self.func), *self.args) def _eval_evalf(self, prec): return self.func(*[s._evalf(prec) for s in self.args]) @property def canonical(self): """Return a canonical form of the relational by putting a number on the rhs, canonically removing a sign or else ordering the args canonically. No other simplification is attempted. Examples ======== >>> from sympy.abc import x, y >>> x < 2 x < 2 >>> _.reversed.canonical x < 2 >>> (-y < x).canonical x > -y >>> (-y > x).canonical x < -y >>> (-y < -x).canonical x < y """ args = self.args r = self if r.rhs.is_number: if r.rhs.is_Number and r.lhs.is_Number and r.lhs > r.rhs: r = r.reversed elif r.lhs.is_number: r = r.reversed elif tuple(ordered(args)) != args: r = r.reversed LHS_CEMS = getattr(r.lhs, 'could_extract_minus_sign', None) RHS_CEMS = getattr(r.rhs, 'could_extract_minus_sign', None) if isinstance(r.lhs, BooleanAtom) or isinstance(r.rhs, BooleanAtom): return r # Check if first value has negative sign if LHS_CEMS and LHS_CEMS(): return r.reversedsign elif not r.rhs.is_number and RHS_CEMS and RHS_CEMS(): # Right hand side has a minus, but not lhs. # How does the expression with reversed signs behave? # This is so that expressions of the type # Eq(x, -y) and Eq(-x, y) # have the same canonical representation expr1, _ = ordered([r.lhs, -r.rhs]) if expr1 != r.lhs: return r.reversed.reversedsign return r def equals(self, other, failing_expression=False): """Return True if the sides of the relationship are mathematically identical and the type of relationship is the same. If failing_expression is True, return the expression whose truth value was unknown.""" if isinstance(other, Relational): if self == other or self.reversed == other: return True a, b = self, other if a.func in (Eq, Ne) or b.func in (Eq, Ne): if a.func != b.func: return False left, right = [i.equals(j, failing_expression=failing_expression) for i, j in zip(a.args, b.args)] if left is True: return right if right is True: return left lr, rl = [i.equals(j, failing_expression=failing_expression) for i, j in zip(a.args, b.reversed.args)] if lr is True: return rl if rl is True: return lr e = (left, right, lr, rl) if all(i is False for i in e): return False for i in e: if i not in (True, False): return i else: if b.func != a.func: b = b.reversed if a.func != b.func: return False left = a.lhs.equals(b.lhs, failing_expression=failing_expression) if left is False: return False right = a.rhs.equals(b.rhs, failing_expression=failing_expression) if right is False: return False if left is True: return right return left def _eval_simplify(self, **kwargs): from .add import Add from sympy.core.expr import Expr r = self r = r.func(*[i.simplify(**kwargs) for i in r.args]) if r.is_Relational: if not isinstance(r.lhs, Expr) or not isinstance(r.rhs, Expr): return r dif = r.lhs - r.rhs # replace dif with a valid Number that will # allow a definitive comparison with 0 v = None if dif.is_comparable: v = dif.n(2) elif dif.equals(0): # XXX this is expensive v = S.Zero if v is not None: r = r.func._eval_relation(v, S.Zero) r = r.canonical # If there is only one symbol in the expression, # try to write it on a simplified form free = list(filter(lambda x: x.is_real is not False, r.free_symbols)) if len(free) == 1: try: from sympy.solvers.solveset import linear_coeffs x = free.pop() dif = r.lhs - r.rhs m, b = linear_coeffs(dif, x) if m.is_zero is False: if m.is_negative: # Dividing with a negative number, so change order of arguments # canonical will put the symbol back on the lhs later r = r.func(-b / m, x) else: r = r.func(x, -b / m) else: r = r.func(b, S.zero) except ValueError: # maybe not a linear function, try polynomial from sympy.polys import Poly, poly, PolynomialError, gcd try: p = poly(dif, x) c = p.all_coeffs() constant = c[-1] c[-1] = 0 scale = gcd(c) c = [ctmp / scale for ctmp in c] r = r.func(Poly.from_list(c, x).as_expr(), -constant / scale) except PolynomialError: pass elif len(free) >= 2: try: from sympy.solvers.solveset import linear_coeffs from sympy.polys import gcd free = list(ordered(free)) dif = r.lhs - r.rhs m = linear_coeffs(dif, *free) constant = m[-1] del m[-1] scale = gcd(m) m = [mtmp / scale for mtmp in m] nzm = list(filter(lambda f: f[0] != 0, list(zip(m, free)))) if scale.is_zero is False: if constant != 0: # lhs: expression, rhs: constant newexpr = Add(*[i * j for i, j in nzm]) r = r.func(newexpr, -constant / scale) else: # keep first term on lhs lhsterm = nzm[0][0] * nzm[0][1] del nzm[0] newexpr = Add(*[i * j for i, j in nzm]) r = r.func(lhsterm, -newexpr) else: r = r.func(constant, S.zero) except ValueError: pass # Did we get a simplified result? r = r.canonical measure = kwargs['measure'] if measure(r) < kwargs['ratio'] * measure(self): return r else: return self def _eval_trigsimp(self, **opts): from sympy.simplify import trigsimp return self.func(trigsimp(self.lhs, **opts), trigsimp(self.rhs, **opts)) def expand(self, **kwargs): args = (arg.expand(**kwargs) for arg in self.args) return self.func(*args) def __bool__(self): raise TypeError("cannot determine truth value of Relational") def _eval_as_set(self): # self is univariate and periodicity(self, x) in (0, None) from sympy.solvers.inequalities import solve_univariate_inequality from sympy.sets.conditionset import ConditionSet syms = self.free_symbols assert len(syms) == 1 x = syms.pop() try: xset = solve_univariate_inequality(self, x, relational=False) except NotImplementedError: # solve_univariate_inequality raises NotImplementedError for # unsolvable equations/inequalities. xset = ConditionSet(x, self, S.Reals) return xset @property def binary_symbols(self): # override where necessary return set() Rel = Relational class Equality(Relational): """An equal relation between two objects. Explanation =========== Represents that two objects are equal. If they can be easily shown to be definitively equal (or unequal), this will reduce to True (or False). Otherwise, the relation is maintained as an unevaluated Equality object. Use the ``simplify`` function on this object for more nontrivial evaluation of the equality relation. As usual, the keyword argument ``evaluate=False`` can be used to prevent any evaluation. Examples ======== >>> from sympy import Eq, simplify, exp, cos >>> from sympy.abc import x, y >>> Eq(y, x + x**2) Eq(y, x**2 + x) >>> Eq(2, 5) False >>> Eq(2, 5, evaluate=False) Eq(2, 5) >>> _.doit() False >>> Eq(exp(x), exp(x).rewrite(cos)) Eq(exp(x), sinh(x) + cosh(x)) >>> simplify(_) True See Also ======== sympy.logic.boolalg.Equivalent : for representing equality between two boolean expressions Notes ===== Python treats 1 and True (and 0 and False) as being equal; SymPy does not. And integer will always compare as unequal to a Boolean: >>> Eq(True, 1), True == 1 (False, True) This class is not the same as the == operator. The == operator tests for exact structural equality between two expressions; this class compares expressions mathematically. If either object defines an `_eval_Eq` method, it can be used in place of the default algorithm. If `lhs._eval_Eq(rhs)` or `rhs._eval_Eq(lhs)` returns anything other than None, that return value will be substituted for the Equality. If None is returned by `_eval_Eq`, an Equality object will be created as usual. Since this object is already an expression, it does not respond to the method `as_expr` if one tries to create `x - y` from Eq(x, y). This can be done with the `rewrite(Add)` method. """ rel_op = '==' __slots__ = () is_Equality = True def __new__(cls, lhs, rhs=None, **options): if rhs is None: SymPyDeprecationWarning( feature="Eq(expr) with rhs default to 0", useinstead="Eq(expr, 0)", issue=16587, deprecated_since_version="1.5" ).warn() rhs = 0 evaluate = options.pop('evaluate', global_parameters.evaluate) lhs = _sympify(lhs) rhs = _sympify(rhs) if evaluate: val = is_eq(lhs, rhs) if val is None: return cls(lhs, rhs, evaluate=False) else: return _sympify(val) return Relational.__new__(cls, lhs, rhs) @classmethod def _eval_relation(cls, lhs, rhs): return _sympify(lhs == rhs) def _eval_rewrite_as_Add(self, *args, **kwargs): """ return Eq(L, R) as L - R. To control the evaluation of the result set pass `evaluate=True` to give L - R; if `evaluate=None` then terms in L and R will not cancel but they will be listed in canonical order; otherwise non-canonical args will be returned. Examples ======== >>> from sympy import Eq, Add >>> from sympy.abc import b, x >>> eq = Eq(x + b, x - b) >>> eq.rewrite(Add) 2*b >>> eq.rewrite(Add, evaluate=None).args (b, b, x, -x) >>> eq.rewrite(Add, evaluate=False).args (b, x, b, -x) """ from .add import _unevaluated_Add, Add L, R = args evaluate = kwargs.get('evaluate', True) if evaluate: # allow cancellation of args return L - R args = Add.make_args(L) + Add.make_args(-R) if evaluate is None: # no cancellation, but canonical return _unevaluated_Add(*args) # no cancellation, not canonical return Add._from_args(args) @property def binary_symbols(self): if S.true in self.args or S.false in self.args: if self.lhs.is_Symbol: return {self.lhs} elif self.rhs.is_Symbol: return {self.rhs} return set() def _eval_simplify(self, **kwargs): from .add import Add from sympy.core.expr import Expr from sympy.solvers.solveset import linear_coeffs # standard simplify e = super()._eval_simplify(**kwargs) if not isinstance(e, Equality): return e if not isinstance(e.lhs, Expr) or not isinstance(e.rhs, Expr): return e free = self.free_symbols if len(free) == 1: try: x = free.pop() m, b = linear_coeffs( e.rewrite(Add, evaluate=False), x) if m.is_zero is False: enew = e.func(x, -b / m) else: enew = e.func(m * x, -b) measure = kwargs['measure'] if measure(enew) <= kwargs['ratio'] * measure(e): e = enew except ValueError: pass return e.canonical def integrate(self, *args, **kwargs): """See the integrate function in sympy.integrals""" from sympy.integrals import integrate return integrate(self, *args, **kwargs) def as_poly(self, *gens, **kwargs): '''Returns lhs-rhs as a Poly Examples ======== >>> from sympy import Eq >>> from sympy.abc import x >>> Eq(x**2, 1).as_poly(x) Poly(x**2 - 1, x, domain='ZZ') ''' return (self.lhs - self.rhs).as_poly(*gens, **kwargs) Eq = Equality class Unequality(Relational): """An unequal relation between two objects. Explanation =========== Represents that two objects are not equal. If they can be shown to be definitively equal, this will reduce to False; if definitively unequal, this will reduce to True. Otherwise, the relation is maintained as an Unequality object. Examples ======== >>> from sympy import Ne >>> from sympy.abc import x, y >>> Ne(y, x+x**2) Ne(y, x**2 + x) See Also ======== Equality Notes ===== This class is not the same as the != operator. The != operator tests for exact structural equality between two expressions; this class compares expressions mathematically. This class is effectively the inverse of Equality. As such, it uses the same algorithms, including any available `_eval_Eq` methods. """ rel_op = '!=' __slots__ = () def __new__(cls, lhs, rhs, **options): lhs = _sympify(lhs) rhs = _sympify(rhs) evaluate = options.pop('evaluate', global_parameters.evaluate) if evaluate: val = is_neq(lhs, rhs) if val is None: return cls(lhs, rhs, evaluate=False) else: return _sympify(val) return Relational.__new__(cls, lhs, rhs, **options) @classmethod def _eval_relation(cls, lhs, rhs): return _sympify(lhs != rhs) @property def binary_symbols(self): if S.true in self.args or S.false in self.args: if self.lhs.is_Symbol: return {self.lhs} elif self.rhs.is_Symbol: return {self.rhs} return set() def _eval_simplify(self, **kwargs): # simplify as an equality eq = Equality(*self.args)._eval_simplify(**kwargs) if isinstance(eq, Equality): # send back Ne with the new args return self.func(*eq.args) return eq.negated # result of Ne is the negated Eq Ne = Unequality class _Inequality(Relational): """Internal base class for all *Than types. Each subclass must implement _eval_relation to provide the method for comparing two real numbers. """ __slots__ = () def __new__(cls, lhs, rhs, **options): try: lhs = _sympify(lhs) rhs = _sympify(rhs) except SympifyError: return NotImplemented evaluate = options.pop('evaluate', global_parameters.evaluate) if evaluate: for me in (lhs, rhs): if me.is_extended_real is False: raise TypeError("Invalid comparison of non-real %s" % me) if me is S.NaN: raise TypeError("Invalid NaN comparison") # First we invoke the appropriate inequality method of `lhs` # (e.g., `lhs.__lt__`). That method will try to reduce to # boolean or raise an exception. It may keep calling # superclasses until it reaches `Expr` (e.g., `Expr.__lt__`). # In some cases, `Expr` will just invoke us again (if neither it # nor a subclass was able to reduce to boolean or raise an # exception). In that case, it must call us with # `evaluate=False` to prevent infinite recursion. return cls._eval_relation(lhs, rhs, **options) # make a "non-evaluated" Expr for the inequality return Relational.__new__(cls, lhs, rhs, **options) @classmethod def _eval_relation(cls, lhs, rhs, **options): val = cls._eval_fuzzy_relation(lhs, rhs) if val is None: return cls(lhs, rhs, evaluate=False) else: return _sympify(val) class _Greater(_Inequality): """Not intended for general use _Greater is only used so that GreaterThan and StrictGreaterThan may subclass it for the .gts and .lts properties. """ __slots__ = () @property def gts(self): return self._args[0] @property def lts(self): return self._args[1] class _Less(_Inequality): """Not intended for general use. _Less is only used so that LessThan and StrictLessThan may subclass it for the .gts and .lts properties. """ __slots__ = () @property def gts(self): return self._args[1] @property def lts(self): return self._args[0] class GreaterThan(_Greater): """Class representations of inequalities. Explanation =========== The ``*Than`` classes represent inequal relationships, where the left-hand side is generally bigger or smaller than the right-hand side. For example, the GreaterThan class represents an inequal relationship where the left-hand side is at least as big as the right side, if not bigger. In mathematical notation: lhs >= rhs In total, there are four ``*Than`` classes, to represent the four inequalities: +-----------------+--------+ |Class Name | Symbol | +=================+========+ |GreaterThan | (>=) | +-----------------+--------+ |LessThan | (<=) | +-----------------+--------+ |StrictGreaterThan| (>) | +-----------------+--------+ |StrictLessThan | (<) | +-----------------+--------+ All classes take two arguments, lhs and rhs. +----------------------------+-----------------+ |Signature Example | Math equivalent | +============================+=================+ |GreaterThan(lhs, rhs) | lhs >= rhs | +----------------------------+-----------------+ |LessThan(lhs, rhs) | lhs <= rhs | +----------------------------+-----------------+ |StrictGreaterThan(lhs, rhs) | lhs > rhs | +----------------------------+-----------------+ |StrictLessThan(lhs, rhs) | lhs < rhs | +----------------------------+-----------------+ In addition to the normal .lhs and .rhs of Relations, ``*Than`` inequality objects also have the .lts and .gts properties, which represent the "less than side" and "greater than side" of the operator. Use of .lts and .gts in an algorithm rather than .lhs and .rhs as an assumption of inequality direction will make more explicit the intent of a certain section of code, and will make it similarly more robust to client code changes: >>> from sympy import GreaterThan, StrictGreaterThan >>> from sympy import LessThan, StrictLessThan >>> from sympy import And, Ge, Gt, Le, Lt, Rel, S >>> from sympy.abc import x, y, z >>> from sympy.core.relational import Relational >>> e = GreaterThan(x, 1) >>> e x >= 1 >>> '%s >= %s is the same as %s <= %s' % (e.gts, e.lts, e.lts, e.gts) 'x >= 1 is the same as 1 <= x' Examples ======== One generally does not instantiate these classes directly, but uses various convenience methods: >>> for f in [Ge, Gt, Le, Lt]: # convenience wrappers ... print(f(x, 2)) x >= 2 x > 2 x <= 2 x < 2 Another option is to use the Python inequality operators (>=, >, <=, <) directly. Their main advantage over the Ge, Gt, Le, and Lt counterparts, is that one can write a more "mathematical looking" statement rather than littering the math with oddball function calls. However there are certain (minor) caveats of which to be aware (search for 'gotcha', below). >>> x >= 2 x >= 2 >>> _ == Ge(x, 2) True However, it is also perfectly valid to instantiate a ``*Than`` class less succinctly and less conveniently: >>> Rel(x, 1, ">") x > 1 >>> Relational(x, 1, ">") x > 1 >>> StrictGreaterThan(x, 1) x > 1 >>> GreaterThan(x, 1) x >= 1 >>> LessThan(x, 1) x <= 1 >>> StrictLessThan(x, 1) x < 1 Notes ===== There are a couple of "gotchas" to be aware of when using Python's operators. The first is that what your write is not always what you get: >>> 1 < x x > 1 Due to the order that Python parses a statement, it may not immediately find two objects comparable. When "1 < x" is evaluated, Python recognizes that the number 1 is a native number and that x is *not*. Because a native Python number does not know how to compare itself with a SymPy object Python will try the reflective operation, "x > 1" and that is the form that gets evaluated, hence returned. If the order of the statement is important (for visual output to the console, perhaps), one can work around this annoyance in a couple ways: (1) "sympify" the literal before comparison >>> S(1) < x 1 < x (2) use one of the wrappers or less succinct methods described above >>> Lt(1, x) 1 < x >>> Relational(1, x, "<") 1 < x The second gotcha involves writing equality tests between relationals when one or both sides of the test involve a literal relational: >>> e = x < 1; e x < 1 >>> e == e # neither side is a literal True >>> e == x < 1 # expecting True, too False >>> e != x < 1 # expecting False x < 1 >>> x < 1 != x < 1 # expecting False or the same thing as before Traceback (most recent call last): ... TypeError: cannot determine truth value of Relational The solution for this case is to wrap literal relationals in parentheses: >>> e == (x < 1) True >>> e != (x < 1) False >>> (x < 1) != (x < 1) False The third gotcha involves chained inequalities not involving '==' or '!='. Occasionally, one may be tempted to write: >>> e = x < y < z Traceback (most recent call last): ... TypeError: symbolic boolean expression has no truth value. Due to an implementation detail or decision of Python [1]_, there is no way for SymPy to create a chained inequality with that syntax so one must use And: >>> e = And(x < y, y < z) >>> type( e ) And >>> e (x < y) & (y < z) Although this can also be done with the '&' operator, it cannot be done with the 'and' operarator: >>> (x < y) & (y < z) (x < y) & (y < z) >>> (x < y) and (y < z) Traceback (most recent call last): ... TypeError: cannot determine truth value of Relational .. [1] This implementation detail is that Python provides no reliable method to determine that a chained inequality is being built. Chained comparison operators are evaluated pairwise, using "and" logic (see http://docs.python.org/2/reference/expressions.html#notin). This is done in an efficient way, so that each object being compared is only evaluated once and the comparison can short-circuit. For example, ``1 > 2 > 3`` is evaluated by Python as ``(1 > 2) and (2 > 3)``. The ``and`` operator coerces each side into a bool, returning the object itself when it short-circuits. The bool of the --Than operators will raise TypeError on purpose, because SymPy cannot determine the mathematical ordering of symbolic expressions. Thus, if we were to compute ``x > y > z``, with ``x``, ``y``, and ``z`` being Symbols, Python converts the statement (roughly) into these steps: (1) x > y > z (2) (x > y) and (y > z) (3) (GreaterThanObject) and (y > z) (4) (GreaterThanObject.__bool__()) and (y > z) (5) TypeError Because of the "and" added at step 2, the statement gets turned into a weak ternary statement, and the first object's __bool__ method will raise TypeError. Thus, creating a chained inequality is not possible. In Python, there is no way to override the ``and`` operator, or to control how it short circuits, so it is impossible to make something like ``x > y > z`` work. There was a PEP to change this, :pep:`335`, but it was officially closed in March, 2012. """ __slots__ = () rel_op = '>=' @classmethod def _eval_fuzzy_relation(cls, lhs, rhs): return is_ge(lhs, rhs) Ge = GreaterThan class LessThan(_Less): __doc__ = GreaterThan.__doc__ __slots__ = () rel_op = '<=' @classmethod def _eval_fuzzy_relation(cls, lhs, rhs): return is_le(lhs, rhs) Le = LessThan class StrictGreaterThan(_Greater): __doc__ = GreaterThan.__doc__ __slots__ = () rel_op = '>' @classmethod def _eval_fuzzy_relation(cls, lhs, rhs): return is_gt(lhs, rhs) Gt = StrictGreaterThan class StrictLessThan(_Less): __doc__ = GreaterThan.__doc__ __slots__ = () rel_op = '<' @classmethod def _eval_fuzzy_relation(cls, lhs, rhs): return is_lt(lhs, rhs) Lt = StrictLessThan # A class-specific (not object-specific) data item used for a minor speedup. # It is defined here, rather than directly in the class, because the classes # that it references have not been defined until now (e.g. StrictLessThan). Relational.ValidRelationOperator = { None: Equality, '==': Equality, 'eq': Equality, '!=': Unequality, '<>': Unequality, 'ne': Unequality, '>=': GreaterThan, 'ge': GreaterThan, '<=': LessThan, 'le': LessThan, '>': StrictGreaterThan, 'gt': StrictGreaterThan, '<': StrictLessThan, 'lt': StrictLessThan, } def _n2(a, b): """Return (a - b).evalf(2) if a and b are comparable, else None. This should only be used when a and b are already sympified. """ # /!\ it is very important (see issue 8245) not to # use a re-evaluated number in the calculation of dif if a.is_comparable and b.is_comparable: dif = (a - b).evalf(2) if dif.is_comparable: return dif @dispatch(Expr, Expr) def _eval_is_ge(lhs, rhs): return None @dispatch(Basic, Basic) def _eval_is_eq(lhs, rhs): return None @dispatch(Tuple, Expr) # type: ignore def _eval_is_eq(lhs, rhs): # noqa:F811 return False @dispatch(Tuple, AppliedUndef) # type: ignore def _eval_is_eq(lhs, rhs): # noqa:F811 return None @dispatch(Tuple, Symbol) # type: ignore def _eval_is_eq(lhs, rhs): # noqa:F811 return None @dispatch(Tuple, Tuple) # type: ignore def _eval_is_eq(lhs, rhs): # noqa:F811 if len(lhs) != len(rhs): return False return fuzzy_and(fuzzy_bool(is_eq(s, o)) for s, o in zip(lhs, rhs)) def is_lt(lhs, rhs): """Fuzzy bool for lhs is strictly less than rhs. See the docstring for is_ge for more """ return fuzzy_not(is_ge(lhs, rhs)) def is_gt(lhs, rhs): """Fuzzy bool for lhs is strictly greater than rhs. See the docstring for is_ge for more """ return fuzzy_not(is_le(lhs, rhs)) def is_le(lhs, rhs): """Fuzzy bool for lhs is less than or equal to rhs. is_gt calls is_lt See the docstring for is_ge for more """ return is_ge(rhs, lhs) def is_ge(lhs, rhs): """ Fuzzy bool for lhs is greater than or equal to rhs. Parameters ========== lhs: Expr The left-hand side of the expression, must be sympified, and an instance of expression. Throws an exception if lhs is not an instance of expression. rhs: Expr The right-hand side of the expression, must be sympified and an instance of expression. Throws an exception if lhs is not an instance of expression. Returns ======= Expr : True if lhs is greater than or equal to rhs, false is lhs is less than rhs, and None if the comparison between lhs and rhs is indeterminate. The four comparison functions ``is_le``, ``is_lt``, ``is_ge``, and ``is_gt`` are each implemented in terms of ``is_ge`` in the following way: is_ge(x, y) := is_ge(x, y) is_le(x, y) := is_ge(y, x) is_lt(x, y) := fuzzy_not(is_ge(x, y)) is_gt(x, y) = fuzzy_not(is_ge(y, x)) To maintain these equivalences in fuzzy logic it is important that in cases where either x or y is non-real all comparisons will give None. InEquality classes, such as Lt, Gt, etc. Use one of is_ge, is_le, etc. To implement comparisons with ``Gt(a, b)`` or ``a > b`` etc for an ``Expr`` subclass it is only necessary to define a dispatcher method for ``_eval_is_ge`` like >>> from sympy.core.relational import is_ge, is_lt, is_gt >>> from sympy.abc import x >>> from sympy import S, Expr, sympify >>> from sympy.multipledispatch import dispatch >>> class MyExpr(Expr): ... def __new__(cls, arg): ... return Expr.__new__(cls, sympify(arg)) ... @property ... def value(self): ... return self.args[0] ... >>> @dispatch(MyExpr, MyExpr) ... def _eval_is_ge(a, b): ... return is_ge(a.value, b.value) ... >>> a = MyExpr(1) >>> b = MyExpr(2) >>> a < b True >>> a <= b True >>> a > b False >>> is_lt(a, b) True Examples ======== >>> is_ge(S(2), S(0)) True >>> is_ge(S(0), S(2)) False >>> is_ge(S(0), x) >>> is_gt(S(2), S(0)) True >>> is_gt(S(0), S(2)) False >>> is_lt(S(0), S(2)) True >>> is_lt(S(2), S(0)) False """ if not (isinstance(lhs, Expr) and isinstance(rhs, Expr)): raise TypeError("Can only compare inequalities with Expr") retval = _eval_is_ge(lhs, rhs) if retval is not None: return retval else: n2 = _n2(lhs, rhs) if n2 is not None: # use float comparison for infinity. # otherwise get stuck in infinite recursion if n2 in (S.Infinity, S.NegativeInfinity): n2 = float(n2) return _sympify(n2 >= 0) if lhs.is_extended_real and rhs.is_extended_real: if (lhs.is_infinite and lhs.is_extended_positive) or (rhs.is_infinite and rhs.is_extended_negative): return True diff = lhs - rhs if diff is not S.NaN: rv = diff.is_extended_nonnegative if rv is not None: return rv def is_neq(lhs, rhs): """Fuzzy bool for lhs does not equal rhs. See the docstring for is_eq for more """ return fuzzy_not(is_eq(lhs, rhs)) def is_eq(lhs, rhs): """ Fuzzy bool representing mathematical equality between lhs and rhs. Parameters ========== lhs: Expr The left-hand side of the expression, must be sympified. rhs: Expr The right-hand side of the expression, must be sympified. Returns ======= True if lhs is equal to rhs, false is lhs is not equal to rhs, and None if the comparison between lhs and rhs is indeterminate. Explanation =========== This function is intended to give a relatively fast determination and deliberately does not attempt slow calculations that might help in obtaining a determination of True or False in more difficult cases. InEquality classes, such as Lt, Gt, etc. Use one of is_ge, is_le, etc. To implement comparisons with ``Gt(a, b)`` or ``a > b`` etc for an ``Expr`` subclass it is only necessary to define a dispatcher method for ``_eval_is_ge`` like >>> from sympy.core.relational import is_eq >>> from sympy.core.relational import is_neq >>> from sympy import S, Basic, Eq, sympify >>> from sympy.abc import x >>> from sympy.multipledispatch import dispatch >>> class MyBasic(Basic): ... def __new__(cls, arg): ... return Basic.__new__(cls, sympify(arg)) ... @property ... def value(self): ... return self.args[0] ... >>> @dispatch(MyBasic, MyBasic) ... def _eval_is_eq(a, b): ... return is_eq(a.value, b.value) ... >>> a = MyBasic(1) >>> b = MyBasic(1) >>> a == b True >>> Eq(a, b) True >>> a != b False >>> is_eq(a, b) True Examples ======== >>> is_eq(S(0), S(0)) True >>> Eq(0, 0) True >>> is_neq(S(0), S(0)) False >>> is_eq(S(0), S(2)) False >>> Eq(0, 2) False >>> is_neq(S(0), S(2)) True >>> is_eq(S(0), x) >>> Eq(S(0), x) Eq(0, x) """ from sympy.core.add import Add from sympy.functions.elementary.complexes import arg from sympy.simplify.simplify import clear_coefficients from sympy.utilities.iterables import sift # here, _eval_Eq is only called for backwards compatibility # new code should use is_eq with multiple dispatch as # outlined in the docstring for side1, side2 in (lhs, rhs), (rhs, lhs): eval_func = getattr(side1, '_eval_Eq', None) if eval_func is not None: retval = eval_func(side2) if retval is not None: return retval retval = _eval_is_eq(lhs, rhs) if retval is not None: return retval if dispatch(type(lhs), type(rhs)) != dispatch(type(rhs), type(lhs)): retval = _eval_is_eq(rhs, lhs) if retval is not None: return retval # retval is still None, so go through the equality logic # If expressions have the same structure, they must be equal. if lhs == rhs: return True # e.g. True == True elif all(isinstance(i, BooleanAtom) for i in (rhs, lhs)): return False # True != False elif not (lhs.is_Symbol or rhs.is_Symbol) and ( isinstance(lhs, Boolean) != isinstance(rhs, Boolean)): return False # only Booleans can equal Booleans if lhs.is_infinite or rhs.is_infinite: if fuzzy_xor([lhs.is_infinite, rhs.is_infinite]): return False if fuzzy_xor([lhs.is_extended_real, rhs.is_extended_real]): return False if fuzzy_and([lhs.is_extended_real, rhs.is_extended_real]): return fuzzy_xor([lhs.is_extended_positive, fuzzy_not(rhs.is_extended_positive)]) # Try to split real/imaginary parts and equate them I = S.ImaginaryUnit def split_real_imag(expr): real_imag = lambda t: ( 'real' if t.is_extended_real else 'imag' if (I * t).is_extended_real else None) return sift(Add.make_args(expr), real_imag) lhs_ri = split_real_imag(lhs) if not lhs_ri[None]: rhs_ri = split_real_imag(rhs) if not rhs_ri[None]: eq_real = Eq(Add(*lhs_ri['real']), Add(*rhs_ri['real'])) eq_imag = Eq(I * Add(*lhs_ri['imag']), I * Add(*rhs_ri['imag'])) return fuzzy_and(map(fuzzy_bool, [eq_real, eq_imag])) # Compare e.g. zoo with 1+I*oo by comparing args arglhs = arg(lhs) argrhs = arg(rhs) # Guard against Eq(nan, nan) -> Falsesymp if not (arglhs == S.NaN and argrhs == S.NaN): return fuzzy_bool(Eq(arglhs, argrhs)) if all(isinstance(i, Expr) for i in (lhs, rhs)): # see if the difference evaluates dif = lhs - rhs z = dif.is_zero if z is not None: if z is False and dif.is_commutative: # issue 10728 return False if z: return True n2 = _n2(lhs, rhs) if n2 is not None: return _sympify(n2 == 0) # see if the ratio evaluates n, d = dif.as_numer_denom() rv = None if n.is_zero: rv = d.is_nonzero elif n.is_finite: if d.is_infinite: rv = True elif n.is_zero is False: rv = d.is_infinite if rv is None: # if the condition that makes the denominator # infinite does not make the original expression # True then False can be returned l, r = clear_coefficients(d, S.Infinity) args = [_.subs(l, r) for _ in (lhs, rhs)] if args != [lhs, rhs]: rv = fuzzy_bool(Eq(*args)) if rv is True: rv = None elif any(a.is_infinite for a in Add.make_args(n)): # (inf or nan)/x != 0 rv = False if rv is not None: return rv
2d03fc0258ef7e9bcf884fead354b9288d641542c0aec6582a764997aacb9b4a
import numbers import decimal import fractions import math import re as regex import sys from .containers import Tuple from .sympify import (SympifyError, converter, sympify, _convert_numpy_types, _sympify, _is_numpy_instance) from .singleton import S, Singleton from .expr import Expr, AtomicExpr from .evalf import pure_complex from .decorators import _sympifyit from .cache import cacheit, clear_cache from .logic import fuzzy_not from sympy.core.compatibility import (as_int, HAS_GMPY, SYMPY_INTS, gmpy) from sympy.core.cache import lru_cache from .kind import NumberKind from sympy.multipledispatch import dispatch import mpmath import mpmath.libmp as mlib from mpmath.libmp import bitcount from mpmath.libmp.backend import MPZ from mpmath.libmp import mpf_pow, mpf_pi, mpf_e, phi_fixed from mpmath.ctx_mp import mpnumeric from mpmath.libmp.libmpf import ( finf as _mpf_inf, fninf as _mpf_ninf, fnan as _mpf_nan, fzero, _normalize as mpf_normalize, prec_to_dps) from sympy.utilities.misc import debug, filldedent from .parameters import global_parameters from sympy.utilities.exceptions import SymPyDeprecationWarning rnd = mlib.round_nearest _LOG2 = math.log(2) def comp(z1, z2, tol=None): """Return a bool indicating whether the error between z1 and z2 is <= tol. Examples ======== If ``tol`` is None then True will be returned if ``abs(z1 - z2)*10**p <= 5`` where ``p`` is minimum value of the decimal precision of each value. >>> from sympy.core.numbers import comp, pi >>> pi4 = pi.n(4); pi4 3.142 >>> comp(_, 3.142) True >>> comp(pi4, 3.141) False >>> comp(pi4, 3.143) False A comparison of strings will be made if ``z1`` is a Number and ``z2`` is a string or ``tol`` is ''. >>> comp(pi4, 3.1415) True >>> comp(pi4, 3.1415, '') False When ``tol`` is provided and ``z2`` is non-zero and ``|z1| > 1`` the error is normalized by ``|z1|``: >>> abs(pi4 - 3.14)/pi4 0.000509791731426756 >>> comp(pi4, 3.14, .001) # difference less than 0.1% True >>> comp(pi4, 3.14, .0005) # difference less than 0.1% False When ``|z1| <= 1`` the absolute error is used: >>> 1/pi4 0.3183 >>> abs(1/pi4 - 0.3183)/(1/pi4) 3.07371499106316e-5 >>> abs(1/pi4 - 0.3183) 9.78393554684764e-6 >>> comp(1/pi4, 0.3183, 1e-5) True To see if the absolute error between ``z1`` and ``z2`` is less than or equal to ``tol``, call this as ``comp(z1 - z2, 0, tol)`` or ``comp(z1 - z2, tol=tol)``: >>> abs(pi4 - 3.14) 0.00160156249999988 >>> comp(pi4 - 3.14, 0, .002) True >>> comp(pi4 - 3.14, 0, .001) False """ if type(z2) is str: if not pure_complex(z1, or_real=True): raise ValueError('when z2 is a str z1 must be a Number') return str(z1) == z2 if not z1: z1, z2 = z2, z1 if not z1: return True if not tol: a, b = z1, z2 if tol == '': return str(a) == str(b) if tol is None: a, b = sympify(a), sympify(b) if not all(i.is_number for i in (a, b)): raise ValueError('expecting 2 numbers') fa = a.atoms(Float) fb = b.atoms(Float) if not fa and not fb: # no floats -- compare exactly return a == b # get a to be pure_complex for do in range(2): ca = pure_complex(a, or_real=True) if not ca: if fa: a = a.n(prec_to_dps(min([i._prec for i in fa]))) ca = pure_complex(a, or_real=True) break else: fa, fb = fb, fa a, b = b, a cb = pure_complex(b) if not cb and fb: b = b.n(prec_to_dps(min([i._prec for i in fb]))) cb = pure_complex(b, or_real=True) if ca and cb and (ca[1] or cb[1]): return all(comp(i, j) for i, j in zip(ca, cb)) tol = 10**prec_to_dps(min(a._prec, getattr(b, '_prec', a._prec))) return int(abs(a - b)*tol) <= 5 diff = abs(z1 - z2) az1 = abs(z1) if z2 and az1 > 1: return diff/az1 <= tol else: return diff <= tol def mpf_norm(mpf, prec): """Return the mpf tuple normalized appropriately for the indicated precision after doing a check to see if zero should be returned or not when the mantissa is 0. ``mpf_normlize`` always assumes that this is zero, but it may not be since the mantissa for mpf's values "+inf", "-inf" and "nan" have a mantissa of zero, too. Note: this is not intended to validate a given mpf tuple, so sending mpf tuples that were not created by mpmath may produce bad results. This is only a wrapper to ``mpf_normalize`` which provides the check for non- zero mpfs that have a 0 for the mantissa. """ sign, man, expt, bc = mpf if not man: # hack for mpf_normalize which does not do this; # it assumes that if man is zero the result is 0 # (see issue 6639) if not bc: return fzero else: # don't change anything; this should already # be a well formed mpf tuple return mpf # Necessary if mpmath is using the gmpy backend from mpmath.libmp.backend import MPZ rv = mpf_normalize(sign, MPZ(man), expt, bc, prec, rnd) return rv # TODO: we should use the warnings module _errdict = {"divide": False} def seterr(divide=False): """ Should sympy raise an exception on 0/0 or return a nan? divide == True .... raise an exception divide == False ... return nan """ if _errdict["divide"] != divide: clear_cache() _errdict["divide"] = divide def _as_integer_ratio(p): neg_pow, man, expt, bc = getattr(p, '_mpf_', mpmath.mpf(p)._mpf_) p = [1, -1][neg_pow % 2]*man if expt < 0: q = 2**-expt else: q = 1 p *= 2**expt return int(p), int(q) def _decimal_to_Rational_prec(dec): """Convert an ordinary decimal instance to a Rational.""" if not dec.is_finite(): raise TypeError("dec must be finite, got %s." % dec) s, d, e = dec.as_tuple() prec = len(d) if e >= 0: # it's an integer rv = Integer(int(dec)) else: s = (-1)**s d = sum([di*10**i for i, di in enumerate(reversed(d))]) rv = Rational(s*d, 10**-e) return rv, prec _floatpat = regex.compile(r"[-+]?((\d*\.\d+)|(\d+\.?))") def _literal_float(f): """Return True if n starts like a floating point number.""" return bool(_floatpat.match(f)) # (a,b) -> gcd(a,b) # TODO caching with decorator, but not to degrade performance @lru_cache(1024) def igcd(*args): """Computes nonnegative integer greatest common divisor. Explanation =========== The algorithm is based on the well known Euclid's algorithm. To improve speed, igcd() has its own caching mechanism implemented. Examples ======== >>> from sympy.core.numbers import igcd >>> igcd(2, 4) 2 >>> igcd(5, 10, 15) 5 """ if len(args) < 2: raise TypeError( 'igcd() takes at least 2 arguments (%s given)' % len(args)) args_temp = [abs(as_int(i)) for i in args] if 1 in args_temp: return 1 a = args_temp.pop() if HAS_GMPY: # Using gmpy if present to speed up. for b in args_temp: a = gmpy.gcd(a, b) if b else a return as_int(a) for b in args_temp: a = math.gcd(a, b) return a igcd2 = math.gcd def igcd_lehmer(a, b): """Computes greatest common divisor of two integers. Explanation =========== Euclid's algorithm for the computation of the greatest common divisor gcd(a, b) of two (positive) integers a and b is based on the division identity a = q*b + r, where the quotient q and the remainder r are integers and 0 <= r < b. Then each common divisor of a and b divides r, and it follows that gcd(a, b) == gcd(b, r). The algorithm works by constructing the sequence r0, r1, r2, ..., where r0 = a, r1 = b, and each rn is the remainder from the division of the two preceding elements. In Python, q = a // b and r = a % b are obtained by the floor division and the remainder operations, respectively. These are the most expensive arithmetic operations, especially for large a and b. Lehmer's algorithm is based on the observation that the quotients qn = r(n-1) // rn are in general small integers even when a and b are very large. Hence the quotients can be usually determined from a relatively small number of most significant bits. The efficiency of the algorithm is further enhanced by not computing each long remainder in Euclid's sequence. The remainders are linear combinations of a and b with integer coefficients derived from the quotients. The coefficients can be computed as far as the quotients can be determined from the chosen most significant parts of a and b. Only then a new pair of consecutive remainders is computed and the algorithm starts anew with this pair. References ========== .. [1] https://en.wikipedia.org/wiki/Lehmer%27s_GCD_algorithm """ a, b = abs(as_int(a)), abs(as_int(b)) if a < b: a, b = b, a # The algorithm works by using one or two digit division # whenever possible. The outer loop will replace the # pair (a, b) with a pair of shorter consecutive elements # of the Euclidean gcd sequence until a and b # fit into two Python (long) int digits. nbits = 2*sys.int_info.bits_per_digit while a.bit_length() > nbits and b != 0: # Quotients are mostly small integers that can # be determined from most significant bits. n = a.bit_length() - nbits x, y = int(a >> n), int(b >> n) # most significant bits # Elements of the Euclidean gcd sequence are linear # combinations of a and b with integer coefficients. # Compute the coefficients of consecutive pairs # a' = A*a + B*b, b' = C*a + D*b # using small integer arithmetic as far as possible. A, B, C, D = 1, 0, 0, 1 # initial values while True: # The coefficients alternate in sign while looping. # The inner loop combines two steps to keep track # of the signs. # At this point we have # A > 0, B <= 0, C <= 0, D > 0, # x' = x + B <= x < x" = x + A, # y' = y + C <= y < y" = y + D, # and # x'*N <= a' < x"*N, y'*N <= b' < y"*N, # where N = 2**n. # Now, if y' > 0, and x"//y' and x'//y" agree, # then their common value is equal to q = a'//b'. # In addition, # x'%y" = x' - q*y" < x" - q*y' = x"%y', # and # (x'%y")*N < a'%b' < (x"%y')*N. # On the other hand, we also have x//y == q, # and therefore # x'%y" = x + B - q*(y + D) = x%y + B', # x"%y' = x + A - q*(y + C) = x%y + A', # where # B' = B - q*D < 0, A' = A - q*C > 0. if y + C <= 0: break q = (x + A) // (y + C) # Now x'//y" <= q, and equality holds if # x' - q*y" = (x - q*y) + (B - q*D) >= 0. # This is a minor optimization to avoid division. x_qy, B_qD = x - q*y, B - q*D if x_qy + B_qD < 0: break # Next step in the Euclidean sequence. x, y = y, x_qy A, B, C, D = C, D, A - q*C, B_qD # At this point the signs of the coefficients # change and their roles are interchanged. # A <= 0, B > 0, C > 0, D < 0, # x' = x + A <= x < x" = x + B, # y' = y + D < y < y" = y + C. if y + D <= 0: break q = (x + B) // (y + D) x_qy, A_qC = x - q*y, A - q*C if x_qy + A_qC < 0: break x, y = y, x_qy A, B, C, D = C, D, A_qC, B - q*D # Now the conditions on top of the loop # are again satisfied. # A > 0, B < 0, C < 0, D > 0. if B == 0: # This can only happen when y == 0 in the beginning # and the inner loop does nothing. # Long division is forced. a, b = b, a % b continue # Compute new long arguments using the coefficients. a, b = A*a + B*b, C*a + D*b # Small divisors. Finish with the standard algorithm. while b: a, b = b, a % b return a def ilcm(*args): """Computes integer least common multiple. Examples ======== >>> from sympy.core.numbers import ilcm >>> ilcm(5, 10) 10 >>> ilcm(7, 3) 21 >>> ilcm(5, 10, 15) 30 """ if len(args) < 2: raise TypeError( 'ilcm() takes at least 2 arguments (%s given)' % len(args)) if 0 in args: return 0 a = args[0] for b in args[1:]: a = a // igcd(a, b) * b # since gcd(a,b) | a return a def igcdex(a, b): """Returns x, y, g such that g = x*a + y*b = gcd(a, b). Examples ======== >>> from sympy.core.numbers import igcdex >>> igcdex(2, 3) (-1, 1, 1) >>> igcdex(10, 12) (-1, 1, 2) >>> x, y, g = igcdex(100, 2004) >>> x, y, g (-20, 1, 4) >>> x*100 + y*2004 4 """ if (not a) and (not b): return (0, 1, 0) if not a: return (0, b//abs(b), abs(b)) if not b: return (a//abs(a), 0, abs(a)) if a < 0: a, x_sign = -a, -1 else: x_sign = 1 if b < 0: b, y_sign = -b, -1 else: y_sign = 1 x, y, r, s = 1, 0, 0, 1 while b: (c, q) = (a % b, a // b) (a, b, r, s, x, y) = (b, c, x - q*r, y - q*s, r, s) return (x*x_sign, y*y_sign, a) def mod_inverse(a, m): """ Return the number c such that, (a * c) = 1 (mod m) where c has the same sign as m. If no such value exists, a ValueError is raised. Examples ======== >>> from sympy import S >>> from sympy.core.numbers import mod_inverse Suppose we wish to find multiplicative inverse x of 3 modulo 11. This is the same as finding x such that 3 * x = 1 (mod 11). One value of x that satisfies this congruence is 4. Because 3 * 4 = 12 and 12 = 1 (mod 11). This is the value returned by mod_inverse: >>> mod_inverse(3, 11) 4 >>> mod_inverse(-3, 11) 7 When there is a common factor between the numerators of ``a`` and ``m`` the inverse does not exist: >>> mod_inverse(2, 4) Traceback (most recent call last): ... ValueError: inverse of 2 mod 4 does not exist >>> mod_inverse(S(2)/7, S(5)/2) 7/2 References ========== .. [1] https://en.wikipedia.org/wiki/Modular_multiplicative_inverse .. [2] https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm """ c = None try: a, m = as_int(a), as_int(m) if m != 1 and m != -1: x, y, g = igcdex(a, m) if g == 1: c = x % m except ValueError: a, m = sympify(a), sympify(m) if not (a.is_number and m.is_number): raise TypeError(filldedent(''' Expected numbers for arguments; symbolic `mod_inverse` is not implemented but symbolic expressions can be handled with the similar function, sympy.polys.polytools.invert''')) big = (m > 1) if not (big is S.true or big is S.false): raise ValueError('m > 1 did not evaluate; try to simplify %s' % m) elif big: c = 1/a if c is None: raise ValueError('inverse of %s (mod %s) does not exist' % (a, m)) return c class Number(AtomicExpr): """Represents atomic numbers in SymPy. Explanation =========== Floating point numbers are represented by the Float class. Rational numbers (of any size) are represented by the Rational class. Integer numbers (of any size) are represented by the Integer class. Float and Rational are subclasses of Number; Integer is a subclass of Rational. For example, ``2/3`` is represented as ``Rational(2, 3)`` which is a different object from the floating point number obtained with Python division ``2/3``. Even for numbers that are exactly represented in binary, there is a difference between how two forms, such as ``Rational(1, 2)`` and ``Float(0.5)``, are used in SymPy. The rational form is to be preferred in symbolic computations. Other kinds of numbers, such as algebraic numbers ``sqrt(2)`` or complex numbers ``3 + 4*I``, are not instances of Number class as they are not atomic. See Also ======== Float, Integer, Rational """ is_commutative = True is_number = True is_Number = True __slots__ = () # Used to make max(x._prec, y._prec) return x._prec when only x is a float _prec = -1 kind = NumberKind def __new__(cls, *obj): if len(obj) == 1: obj = obj[0] if isinstance(obj, Number): return obj if isinstance(obj, SYMPY_INTS): return Integer(obj) if isinstance(obj, tuple) and len(obj) == 2: return Rational(*obj) if isinstance(obj, (float, mpmath.mpf, decimal.Decimal)): return Float(obj) if isinstance(obj, str): _obj = obj.lower() # float('INF') == float('inf') if _obj == 'nan': return S.NaN elif _obj == 'inf': return S.Infinity elif _obj == '+inf': return S.Infinity elif _obj == '-inf': return S.NegativeInfinity val = sympify(obj) if isinstance(val, Number): return val else: raise ValueError('String "%s" does not denote a Number' % obj) msg = "expected str|int|long|float|Decimal|Number object but got %r" raise TypeError(msg % type(obj).__name__) def invert(self, other, *gens, **args): from sympy.polys.polytools import invert if getattr(other, 'is_number', True): return mod_inverse(self, other) return invert(self, other, *gens, **args) def __divmod__(self, other): from .containers import Tuple from sympy.functions.elementary.complexes import sign try: other = Number(other) if self.is_infinite or S.NaN in (self, other): return (S.NaN, S.NaN) except TypeError: return NotImplemented if not other: raise ZeroDivisionError('modulo by zero') if self.is_Integer and other.is_Integer: return Tuple(*divmod(self.p, other.p)) elif isinstance(other, Float): rat = self/Rational(other) else: rat = self/other if other.is_finite: w = int(rat) if rat >= 0 else int(rat) - 1 r = self - other*w else: w = 0 if not self or (sign(self) == sign(other)) else -1 r = other if w else self return Tuple(w, r) def __rdivmod__(self, other): try: other = Number(other) except TypeError: return NotImplemented return divmod(other, self) def _as_mpf_val(self, prec): """Evaluation of mpf tuple accurate to at least prec bits.""" raise NotImplementedError('%s needs ._as_mpf_val() method' % (self.__class__.__name__)) def _eval_evalf(self, prec): return Float._new(self._as_mpf_val(prec), prec) def _as_mpf_op(self, prec): prec = max(prec, self._prec) return self._as_mpf_val(prec), prec def __float__(self): return mlib.to_float(self._as_mpf_val(53)) def floor(self): raise NotImplementedError('%s needs .floor() method' % (self.__class__.__name__)) def ceiling(self): raise NotImplementedError('%s needs .ceiling() method' % (self.__class__.__name__)) def __floor__(self): return self.floor() def __ceil__(self): return self.ceiling() def _eval_conjugate(self): return self def _eval_order(self, *symbols): from sympy import Order # Order(5, x, y) -> Order(1,x,y) return Order(S.One, *symbols) def _eval_subs(self, old, new): if old == -self: return -new return self # there is no other possibility def _eval_is_finite(self): return True @classmethod def class_key(cls): return 1, 0, 'Number' @cacheit def sort_key(self, order=None): return self.class_key(), (0, ()), (), self @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.NaN: return S.NaN elif other is S.Infinity: return S.Infinity elif other is S.NegativeInfinity: return S.NegativeInfinity return AtomicExpr.__add__(self, other) @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.NaN: return S.NaN elif other is S.Infinity: return S.NegativeInfinity elif other is S.NegativeInfinity: return S.Infinity return AtomicExpr.__sub__(self, other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.NaN: return S.NaN elif other is S.Infinity: if self.is_zero: return S.NaN elif self.is_positive: return S.Infinity else: return S.NegativeInfinity elif other is S.NegativeInfinity: if self.is_zero: return S.NaN elif self.is_positive: return S.NegativeInfinity else: return S.Infinity elif isinstance(other, Tuple): return NotImplemented return AtomicExpr.__mul__(self, other) @_sympifyit('other', NotImplemented) def __truediv__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.NaN: return S.NaN elif other is S.Infinity or other is S.NegativeInfinity: return S.Zero return AtomicExpr.__truediv__(self, other) def __eq__(self, other): raise NotImplementedError('%s needs .__eq__() method' % (self.__class__.__name__)) def __ne__(self, other): raise NotImplementedError('%s needs .__ne__() method' % (self.__class__.__name__)) def __lt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s < %s" % (self, other)) raise NotImplementedError('%s needs .__lt__() method' % (self.__class__.__name__)) def __le__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s <= %s" % (self, other)) raise NotImplementedError('%s needs .__le__() method' % (self.__class__.__name__)) def __gt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s > %s" % (self, other)) return _sympify(other).__lt__(self) def __ge__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s >= %s" % (self, other)) return _sympify(other).__le__(self) def __hash__(self): return super().__hash__() def is_constant(self, *wrt, **flags): return True def as_coeff_mul(self, *deps, rational=True, **kwargs): # a -> c*t if self.is_Rational or not rational: return self, tuple() elif self.is_negative: return S.NegativeOne, (-self,) return S.One, (self,) def as_coeff_add(self, *deps): # a -> c + t if self.is_Rational: return self, tuple() return S.Zero, (self,) def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ if rational and not self.is_Rational: return S.One, self return (self, S.One) if self else (S.One, self) def as_coeff_Add(self, rational=False): """Efficiently extract the coefficient of a summation. """ if not rational: return self, S.Zero return S.Zero, self def gcd(self, other): """Compute GCD of `self` and `other`. """ from sympy.polys import gcd return gcd(self, other) def lcm(self, other): """Compute LCM of `self` and `other`. """ from sympy.polys import lcm return lcm(self, other) def cofactors(self, other): """Compute GCD and cofactors of `self` and `other`. """ from sympy.polys import cofactors return cofactors(self, other) class Float(Number): """Represent a floating-point number of arbitrary precision. Examples ======== >>> from sympy import Float >>> Float(3.5) 3.50000000000000 >>> Float(3) 3.00000000000000 Creating Floats from strings (and Python ``int`` and ``long`` types) will give a minimum precision of 15 digits, but the precision will automatically increase to capture all digits entered. >>> Float(1) 1.00000000000000 >>> Float(10**20) 100000000000000000000. >>> Float('1e20') 100000000000000000000. However, *floating-point* numbers (Python ``float`` types) retain only 15 digits of precision: >>> Float(1e20) 1.00000000000000e+20 >>> Float(1.23456789123456789) 1.23456789123457 It may be preferable to enter high-precision decimal numbers as strings: >>> Float('1.23456789123456789') 1.23456789123456789 The desired number of digits can also be specified: >>> Float('1e-3', 3) 0.00100 >>> Float(100, 4) 100.0 Float can automatically count significant figures if a null string is sent for the precision; spaces or underscores are also allowed. (Auto- counting is only allowed for strings, ints and longs). >>> Float('123 456 789.123_456', '') 123456789.123456 >>> Float('12e-3', '') 0.012 >>> Float(3, '') 3. If a number is written in scientific notation, only the digits before the exponent are considered significant if a decimal appears, otherwise the "e" signifies only how to move the decimal: >>> Float('60.e2', '') # 2 digits significant 6.0e+3 >>> Float('60e2', '') # 4 digits significant 6000. >>> Float('600e-2', '') # 3 digits significant 6.00 Notes ===== Floats are inexact by their nature unless their value is a binary-exact value. >>> approx, exact = Float(.1, 1), Float(.125, 1) For calculation purposes, evalf needs to be able to change the precision but this will not increase the accuracy of the inexact value. The following is the most accurate 5-digit approximation of a value of 0.1 that had only 1 digit of precision: >>> approx.evalf(5) 0.099609 By contrast, 0.125 is exact in binary (as it is in base 10) and so it can be passed to Float or evalf to obtain an arbitrary precision with matching accuracy: >>> Float(exact, 5) 0.12500 >>> exact.evalf(20) 0.12500000000000000000 Trying to make a high-precision Float from a float is not disallowed, but one must keep in mind that the *underlying float* (not the apparent decimal value) is being obtained with high precision. For example, 0.3 does not have a finite binary representation. The closest rational is the fraction 5404319552844595/2**54. So if you try to obtain a Float of 0.3 to 20 digits of precision you will not see the same thing as 0.3 followed by 19 zeros: >>> Float(0.3, 20) 0.29999999999999998890 If you want a 20-digit value of the decimal 0.3 (not the floating point approximation of 0.3) you should send the 0.3 as a string. The underlying representation is still binary but a higher precision than Python's float is used: >>> Float('0.3', 20) 0.30000000000000000000 Although you can increase the precision of an existing Float using Float it will not increase the accuracy -- the underlying value is not changed: >>> def show(f): # binary rep of Float ... from sympy import Mul, Pow ... s, m, e, b = f._mpf_ ... v = Mul(int(m), Pow(2, int(e), evaluate=False), evaluate=False) ... print('%s at prec=%s' % (v, f._prec)) ... >>> t = Float('0.3', 3) >>> show(t) 4915/2**14 at prec=13 >>> show(Float(t, 20)) # higher prec, not higher accuracy 4915/2**14 at prec=70 >>> show(Float(t, 2)) # lower prec 307/2**10 at prec=10 The same thing happens when evalf is used on a Float: >>> show(t.evalf(20)) 4915/2**14 at prec=70 >>> show(t.evalf(2)) 307/2**10 at prec=10 Finally, Floats can be instantiated with an mpf tuple (n, c, p) to produce the number (-1)**n*c*2**p: >>> n, c, p = 1, 5, 0 >>> (-1)**n*c*2**p -5 >>> Float((1, 5, 0)) -5.00000000000000 An actual mpf tuple also contains the number of bits in c as the last element of the tuple: >>> _._mpf_ (1, 5, 0, 3) This is not needed for instantiation and is not the same thing as the precision. The mpf tuple and the precision are two separate quantities that Float tracks. In SymPy, a Float is a number that can be computed with arbitrary precision. Although floating point 'inf' and 'nan' are not such numbers, Float can create these numbers: >>> Float('-inf') -oo >>> _.is_Float False """ __slots__ = ('_mpf_', '_prec') # A Float represents many real numbers, # both rational and irrational. is_rational = None is_irrational = None is_number = True is_real = True is_extended_real = True is_Float = True def __new__(cls, num, dps=None, prec=None, precision=None): if prec is not None: SymPyDeprecationWarning( feature="Using 'prec=XX' to denote decimal precision", useinstead="'dps=XX' for decimal precision and 'precision=XX' "\ "for binary precision", issue=12820, deprecated_since_version="1.1").warn() dps = prec del prec # avoid using this deprecated kwarg if dps is not None and precision is not None: raise ValueError('Both decimal and binary precision supplied. ' 'Supply only one. ') if isinstance(num, str): # Float accepts spaces as digit separators num = num.replace(' ', '').lower() # in Py 3.6 # underscores are allowed. In anticipation of that, we ignore # legally placed underscores if '_' in num: parts = num.split('_') if not (all(parts) and all(parts[i][-1].isdigit() for i in range(0, len(parts), 2)) and all(parts[i][0].isdigit() for i in range(1, len(parts), 2))): # copy Py 3.6 error raise ValueError("could not convert string to float: '%s'" % num) num = ''.join(parts) if num.startswith('.') and len(num) > 1: num = '0' + num elif num.startswith('-.') and len(num) > 2: num = '-0.' + num[2:] elif num in ('inf', '+inf'): return S.Infinity elif num == '-inf': return S.NegativeInfinity elif isinstance(num, float) and num == 0: num = '0' elif isinstance(num, float) and num == float('inf'): return S.Infinity elif isinstance(num, float) and num == float('-inf'): return S.NegativeInfinity elif isinstance(num, float) and num == float('nan'): return S.NaN elif isinstance(num, (SYMPY_INTS, Integer)): num = str(num) elif num is S.Infinity: return num elif num is S.NegativeInfinity: return num elif num is S.NaN: return num elif _is_numpy_instance(num): # support for numpy datatypes num = _convert_numpy_types(num) elif isinstance(num, mpmath.mpf): if precision is None: if dps is None: precision = num.context.prec num = num._mpf_ if dps is None and precision is None: dps = 15 if isinstance(num, Float): return num if isinstance(num, str) and _literal_float(num): try: Num = decimal.Decimal(num) except decimal.InvalidOperation: pass else: isint = '.' not in num num, dps = _decimal_to_Rational_prec(Num) if num.is_Integer and isint: dps = max(dps, len(str(num).lstrip('-'))) dps = max(15, dps) precision = mlib.libmpf.dps_to_prec(dps) elif precision == '' and dps is None or precision is None and dps == '': if not isinstance(num, str): raise ValueError('The null string can only be used when ' 'the number to Float is passed as a string or an integer.') ok = None if _literal_float(num): try: Num = decimal.Decimal(num) except decimal.InvalidOperation: pass else: isint = '.' not in num num, dps = _decimal_to_Rational_prec(Num) if num.is_Integer and isint: dps = max(dps, len(str(num).lstrip('-'))) precision = mlib.libmpf.dps_to_prec(dps) ok = True if ok is None: raise ValueError('string-float not recognized: %s' % num) # decimal precision(dps) is set and maybe binary precision(precision) # as well.From here on binary precision is used to compute the Float. # Hence, if supplied use binary precision else translate from decimal # precision. if precision is None or precision == '': precision = mlib.libmpf.dps_to_prec(dps) precision = int(precision) if isinstance(num, float): _mpf_ = mlib.from_float(num, precision, rnd) elif isinstance(num, str): _mpf_ = mlib.from_str(num, precision, rnd) elif isinstance(num, decimal.Decimal): if num.is_finite(): _mpf_ = mlib.from_str(str(num), precision, rnd) elif num.is_nan(): return S.NaN elif num.is_infinite(): if num > 0: return S.Infinity return S.NegativeInfinity else: raise ValueError("unexpected decimal value %s" % str(num)) elif isinstance(num, tuple) and len(num) in (3, 4): if type(num[1]) is str: # it's a hexadecimal (coming from a pickled object) # assume that it is in standard form num = list(num) # If we're loading an object pickled in Python 2 into # Python 3, we may need to strip a tailing 'L' because # of a shim for int on Python 3, see issue #13470. if num[1].endswith('L'): num[1] = num[1][:-1] num[1] = MPZ(num[1], 16) _mpf_ = tuple(num) else: if len(num) == 4: # handle normalization hack return Float._new(num, precision) else: if not all(( num[0] in (0, 1), num[1] >= 0, all(type(i) in (int, int) for i in num) )): raise ValueError('malformed mpf: %s' % (num,)) # don't compute number or else it may # over/underflow return Float._new( (num[0], num[1], num[2], bitcount(num[1])), precision) else: try: _mpf_ = num._as_mpf_val(precision) except (NotImplementedError, AttributeError): _mpf_ = mpmath.mpf(num, prec=precision)._mpf_ return cls._new(_mpf_, precision, zero=False) @classmethod def _new(cls, _mpf_, _prec, zero=True): # special cases if zero and _mpf_ == fzero: return S.Zero # Float(0) -> 0.0; Float._new((0,0,0,0)) -> 0 elif _mpf_ == _mpf_nan: return S.NaN elif _mpf_ == _mpf_inf: return S.Infinity elif _mpf_ == _mpf_ninf: return S.NegativeInfinity obj = Expr.__new__(cls) obj._mpf_ = mpf_norm(_mpf_, _prec) obj._prec = _prec return obj # mpz can't be pickled def __getnewargs__(self): return (mlib.to_pickable(self._mpf_),) def __getstate__(self): return {'_prec': self._prec} def _hashable_content(self): return (self._mpf_, self._prec) def floor(self): return Integer(int(mlib.to_int( mlib.mpf_floor(self._mpf_, self._prec)))) def ceiling(self): return Integer(int(mlib.to_int( mlib.mpf_ceil(self._mpf_, self._prec)))) def __floor__(self): return self.floor() def __ceil__(self): return self.ceiling() @property def num(self): return mpmath.mpf(self._mpf_) def _as_mpf_val(self, prec): rv = mpf_norm(self._mpf_, prec) if rv != self._mpf_ and self._prec == prec: debug(self._mpf_, rv) return rv def _as_mpf_op(self, prec): return self._mpf_, max(prec, self._prec) def _eval_is_finite(self): if self._mpf_ in (_mpf_inf, _mpf_ninf): return False return True def _eval_is_infinite(self): if self._mpf_ in (_mpf_inf, _mpf_ninf): return True return False def _eval_is_integer(self): return self._mpf_ == fzero def _eval_is_negative(self): if self._mpf_ == _mpf_ninf or self._mpf_ == _mpf_inf: return False return self.num < 0 def _eval_is_positive(self): if self._mpf_ == _mpf_ninf or self._mpf_ == _mpf_inf: return False return self.num > 0 def _eval_is_extended_negative(self): if self._mpf_ == _mpf_ninf: return True if self._mpf_ == _mpf_inf: return False return self.num < 0 def _eval_is_extended_positive(self): if self._mpf_ == _mpf_inf: return True if self._mpf_ == _mpf_ninf: return False return self.num > 0 def _eval_is_zero(self): return self._mpf_ == fzero def __bool__(self): return self._mpf_ != fzero def __neg__(self): return Float._new(mlib.mpf_neg(self._mpf_), self._prec) @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number) and global_parameters.evaluate: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_add(self._mpf_, rhs, prec, rnd), prec) return Number.__add__(self, other) @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number) and global_parameters.evaluate: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_sub(self._mpf_, rhs, prec, rnd), prec) return Number.__sub__(self, other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number) and global_parameters.evaluate: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_mul(self._mpf_, rhs, prec, rnd), prec) return Number.__mul__(self, other) @_sympifyit('other', NotImplemented) def __truediv__(self, other): if isinstance(other, Number) and other != 0 and global_parameters.evaluate: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_div(self._mpf_, rhs, prec, rnd), prec) return Number.__truediv__(self, other) @_sympifyit('other', NotImplemented) def __mod__(self, other): if isinstance(other, Rational) and other.q != 1 and global_parameters.evaluate: # calculate mod with Rationals, *then* round the result return Float(Rational.__mod__(Rational(self), other), precision=self._prec) if isinstance(other, Float) and global_parameters.evaluate: r = self/other if r == int(r): return Float(0, precision=max(self._prec, other._prec)) if isinstance(other, Number) and global_parameters.evaluate: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_mod(self._mpf_, rhs, prec, rnd), prec) return Number.__mod__(self, other) @_sympifyit('other', NotImplemented) def __rmod__(self, other): if isinstance(other, Float) and global_parameters.evaluate: return other.__mod__(self) if isinstance(other, Number) and global_parameters.evaluate: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_mod(rhs, self._mpf_, prec, rnd), prec) return Number.__rmod__(self, other) def _eval_power(self, expt): """ expt is symbolic object but not equal to 0, 1 (-p)**r -> exp(r*log(-p)) -> exp(r*(log(p) + I*Pi)) -> -> p**r*(sin(Pi*r) + cos(Pi*r)*I) """ if self == 0: if expt.is_positive: return S.Zero if expt.is_negative: return S.Infinity if isinstance(expt, Number): if isinstance(expt, Integer): prec = self._prec return Float._new( mlib.mpf_pow_int(self._mpf_, expt.p, prec, rnd), prec) elif isinstance(expt, Rational) and \ expt.p == 1 and expt.q % 2 and self.is_negative: return Pow(S.NegativeOne, expt, evaluate=False)*( -self)._eval_power(expt) expt, prec = expt._as_mpf_op(self._prec) mpfself = self._mpf_ try: y = mpf_pow(mpfself, expt, prec, rnd) return Float._new(y, prec) except mlib.ComplexResult: re, im = mlib.mpc_pow( (mpfself, fzero), (expt, fzero), prec, rnd) return Float._new(re, prec) + \ Float._new(im, prec)*S.ImaginaryUnit def __abs__(self): return Float._new(mlib.mpf_abs(self._mpf_), self._prec) def __int__(self): if self._mpf_ == fzero: return 0 return int(mlib.to_int(self._mpf_)) # uses round_fast = round_down def __eq__(self, other): from sympy.logic.boolalg import Boolean try: other = _sympify(other) except SympifyError: return NotImplemented if not self: return not other if isinstance(other, Boolean): return False if other.is_NumberSymbol: if other.is_irrational: return False return other.__eq__(self) if other.is_Float: # comparison is exact # so Float(.1, 3) != Float(.1, 33) return self._mpf_ == other._mpf_ if other.is_Rational: return other.__eq__(self) if other.is_Number: # numbers should compare at the same precision; # all _as_mpf_val routines should be sure to abide # by the request to change the prec if necessary; if # they don't, the equality test will fail since it compares # the mpf tuples ompf = other._as_mpf_val(self._prec) return bool(mlib.mpf_eq(self._mpf_, ompf)) return False # Float != non-Number def __ne__(self, other): return not self == other def _Frel(self, other, op): from sympy.core.numbers import prec_to_dps try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_Rational: # test self*other.q <?> other.p without losing precision ''' >>> f = Float(.1,2) >>> i = 1234567890 >>> (f*i)._mpf_ (0, 471, 18, 9) >>> mlib.mpf_mul(f._mpf_, mlib.from_int(i)) (0, 505555550955, -12, 39) ''' smpf = mlib.mpf_mul(self._mpf_, mlib.from_int(other.q)) ompf = mlib.from_int(other.p) return _sympify(bool(op(smpf, ompf))) elif other.is_Float: return _sympify(bool( op(self._mpf_, other._mpf_))) elif other.is_comparable and other not in ( S.Infinity, S.NegativeInfinity): other = other.evalf(prec_to_dps(self._prec)) if other._prec > 1: if other.is_Number: return _sympify(bool( op(self._mpf_, other._as_mpf_val(self._prec)))) def __gt__(self, other): if isinstance(other, NumberSymbol): return other.__lt__(self) rv = self._Frel(other, mlib.mpf_gt) if rv is None: return Expr.__gt__(self, other) return rv def __ge__(self, other): if isinstance(other, NumberSymbol): return other.__le__(self) rv = self._Frel(other, mlib.mpf_ge) if rv is None: return Expr.__ge__(self, other) return rv def __lt__(self, other): if isinstance(other, NumberSymbol): return other.__gt__(self) rv = self._Frel(other, mlib.mpf_lt) if rv is None: return Expr.__lt__(self, other) return rv def __le__(self, other): if isinstance(other, NumberSymbol): return other.__ge__(self) rv = self._Frel(other, mlib.mpf_le) if rv is None: return Expr.__le__(self, other) return rv def __hash__(self): return super().__hash__() def epsilon_eq(self, other, epsilon="1e-15"): return abs(self - other) < Float(epsilon) def _sage_(self): import sage.all as sage return sage.RealNumber(str(self)) def __format__(self, format_spec): return format(decimal.Decimal(str(self)), format_spec) # Add sympify converters converter[float] = converter[decimal.Decimal] = Float # this is here to work nicely in Sage RealNumber = Float class Rational(Number): """Represents rational numbers (p/q) of any size. Examples ======== >>> from sympy import Rational, nsimplify, S, pi >>> Rational(1, 2) 1/2 Rational is unprejudiced in accepting input. If a float is passed, the underlying value of the binary representation will be returned: >>> Rational(.5) 1/2 >>> Rational(.2) 3602879701896397/18014398509481984 If the simpler representation of the float is desired then consider limiting the denominator to the desired value or convert the float to a string (which is roughly equivalent to limiting the denominator to 10**12): >>> Rational(str(.2)) 1/5 >>> Rational(.2).limit_denominator(10**12) 1/5 An arbitrarily precise Rational is obtained when a string literal is passed: >>> Rational("1.23") 123/100 >>> Rational('1e-2') 1/100 >>> Rational(".1") 1/10 >>> Rational('1e-2/3.2') 1/320 The conversion of other types of strings can be handled by the sympify() function, and conversion of floats to expressions or simple fractions can be handled with nsimplify: >>> S('.[3]') # repeating digits in brackets 1/3 >>> S('3**2/10') # general expressions 9/10 >>> nsimplify(.3) # numbers that have a simple form 3/10 But if the input does not reduce to a literal Rational, an error will be raised: >>> Rational(pi) Traceback (most recent call last): ... TypeError: invalid input: pi Low-level --------- Access numerator and denominator as .p and .q: >>> r = Rational(3, 4) >>> r 3/4 >>> r.p 3 >>> r.q 4 Note that p and q return integers (not SymPy Integers) so some care is needed when using them in expressions: >>> r.p/r.q 0.75 See Also ======== sympy.core.sympify.sympify, sympy.simplify.simplify.nsimplify """ is_real = True is_integer = False is_rational = True is_number = True __slots__ = ('p', 'q') is_Rational = True @cacheit def __new__(cls, p, q=None, gcd=None): if q is None: if isinstance(p, Rational): return p if isinstance(p, SYMPY_INTS): pass else: if isinstance(p, (float, Float)): return Rational(*_as_integer_ratio(p)) if not isinstance(p, str): try: p = sympify(p) except (SympifyError, SyntaxError): pass # error will raise below else: if p.count('/') > 1: raise TypeError('invalid input: %s' % p) p = p.replace(' ', '') pq = p.rsplit('/', 1) if len(pq) == 2: p, q = pq fp = fractions.Fraction(p) fq = fractions.Fraction(q) p = fp/fq try: p = fractions.Fraction(p) except ValueError: pass # error will raise below else: return Rational(p.numerator, p.denominator, 1) if not isinstance(p, Rational): raise TypeError('invalid input: %s' % p) q = 1 gcd = 1 else: p = Rational(p) q = Rational(q) if isinstance(q, Rational): p *= q.q q = q.p if isinstance(p, Rational): q *= p.q p = p.p # p and q are now integers if q == 0: if p == 0: if _errdict["divide"]: raise ValueError("Indeterminate 0/0") else: return S.NaN return S.ComplexInfinity if q < 0: q = -q p = -p if not gcd: gcd = igcd(abs(p), q) if gcd > 1: p //= gcd q //= gcd if q == 1: return Integer(p) if p == 1 and q == 2: return S.Half obj = Expr.__new__(cls) obj.p = p obj.q = q return obj def limit_denominator(self, max_denominator=1000000): """Closest Rational to self with denominator at most max_denominator. Examples ======== >>> from sympy import Rational >>> Rational('3.141592653589793').limit_denominator(10) 22/7 >>> Rational('3.141592653589793').limit_denominator(100) 311/99 """ f = fractions.Fraction(self.p, self.q) return Rational(f.limit_denominator(fractions.Fraction(int(max_denominator)))) def __getnewargs__(self): return (self.p, self.q) def _hashable_content(self): return (self.p, self.q) def _eval_is_positive(self): return self.p > 0 def _eval_is_zero(self): return self.p == 0 def __neg__(self): return Rational(-self.p, self.q) @_sympifyit('other', NotImplemented) def __add__(self, other): if global_parameters.evaluate: if isinstance(other, Integer): return Rational(self.p + self.q*other.p, self.q, 1) elif isinstance(other, Rational): #TODO: this can probably be optimized more return Rational(self.p*other.q + self.q*other.p, self.q*other.q) elif isinstance(other, Float): return other + self else: return Number.__add__(self, other) return Number.__add__(self, other) __radd__ = __add__ @_sympifyit('other', NotImplemented) def __sub__(self, other): if global_parameters.evaluate: if isinstance(other, Integer): return Rational(self.p - self.q*other.p, self.q, 1) elif isinstance(other, Rational): return Rational(self.p*other.q - self.q*other.p, self.q*other.q) elif isinstance(other, Float): return -other + self else: return Number.__sub__(self, other) return Number.__sub__(self, other) @_sympifyit('other', NotImplemented) def __rsub__(self, other): if global_parameters.evaluate: if isinstance(other, Integer): return Rational(self.q*other.p - self.p, self.q, 1) elif isinstance(other, Rational): return Rational(self.q*other.p - self.p*other.q, self.q*other.q) elif isinstance(other, Float): return -self + other else: return Number.__rsub__(self, other) return Number.__rsub__(self, other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if global_parameters.evaluate: if isinstance(other, Integer): return Rational(self.p*other.p, self.q, igcd(other.p, self.q)) elif isinstance(other, Rational): return Rational(self.p*other.p, self.q*other.q, igcd(self.p, other.q)*igcd(self.q, other.p)) elif isinstance(other, Float): return other*self else: return Number.__mul__(self, other) return Number.__mul__(self, other) __rmul__ = __mul__ @_sympifyit('other', NotImplemented) def __truediv__(self, other): if global_parameters.evaluate: if isinstance(other, Integer): if self.p and other.p == S.Zero: return S.ComplexInfinity else: return Rational(self.p, self.q*other.p, igcd(self.p, other.p)) elif isinstance(other, Rational): return Rational(self.p*other.q, self.q*other.p, igcd(self.p, other.p)*igcd(self.q, other.q)) elif isinstance(other, Float): return self*(1/other) else: return Number.__truediv__(self, other) return Number.__truediv__(self, other) @_sympifyit('other', NotImplemented) def __rtruediv__(self, other): if global_parameters.evaluate: if isinstance(other, Integer): return Rational(other.p*self.q, self.p, igcd(self.p, other.p)) elif isinstance(other, Rational): return Rational(other.p*self.q, other.q*self.p, igcd(self.p, other.p)*igcd(self.q, other.q)) elif isinstance(other, Float): return other*(1/self) else: return Number.__rtruediv__(self, other) return Number.__rtruediv__(self, other) @_sympifyit('other', NotImplemented) def __mod__(self, other): if global_parameters.evaluate: if isinstance(other, Rational): n = (self.p*other.q) // (other.p*self.q) return Rational(self.p*other.q - n*other.p*self.q, self.q*other.q) if isinstance(other, Float): # calculate mod with Rationals, *then* round the answer return Float(self.__mod__(Rational(other)), precision=other._prec) return Number.__mod__(self, other) return Number.__mod__(self, other) @_sympifyit('other', NotImplemented) def __rmod__(self, other): if isinstance(other, Rational): return Rational.__mod__(other, self) return Number.__rmod__(self, other) def _eval_power(self, expt): if isinstance(expt, Number): if isinstance(expt, Float): return self._eval_evalf(expt._prec)**expt if expt.is_extended_negative: # (3/4)**-2 -> (4/3)**2 ne = -expt if (ne is S.One): return Rational(self.q, self.p) if self.is_negative: return S.NegativeOne**expt*Rational(self.q, -self.p)**ne else: return Rational(self.q, self.p)**ne if expt is S.Infinity: # -oo already caught by test for negative if self.p > self.q: # (3/2)**oo -> oo return S.Infinity if self.p < -self.q: # (-3/2)**oo -> oo + I*oo return S.Infinity + S.Infinity*S.ImaginaryUnit return S.Zero if isinstance(expt, Integer): # (4/3)**2 -> 4**2 / 3**2 return Rational(self.p**expt.p, self.q**expt.p, 1) if isinstance(expt, Rational): if self.p != 1: # (4/3)**(5/6) -> 4**(5/6)*3**(-5/6) return Integer(self.p)**expt*Integer(self.q)**(-expt) # as the above caught negative self.p, now self is positive return Integer(self.q)**Rational( expt.p*(expt.q - 1), expt.q) / \ Integer(self.q)**Integer(expt.p) if self.is_extended_negative and expt.is_even: return (-self)**expt return def _as_mpf_val(self, prec): return mlib.from_rational(self.p, self.q, prec, rnd) def _mpmath_(self, prec, rnd): return mpmath.make_mpf(mlib.from_rational(self.p, self.q, prec, rnd)) def __abs__(self): return Rational(abs(self.p), self.q) def __int__(self): p, q = self.p, self.q if p < 0: return -int(-p//q) return int(p//q) def floor(self): return Integer(self.p // self.q) def ceiling(self): return -Integer(-self.p // self.q) def __floor__(self): return self.floor() def __ceil__(self): return self.ceiling() def __eq__(self, other): from sympy.core.power import integer_log try: other = _sympify(other) except SympifyError: return NotImplemented if not isinstance(other, Number): # S(0) == S.false is False # S(0) == False is True return False if not self: return not other if other.is_NumberSymbol: if other.is_irrational: return False return other.__eq__(self) if other.is_Rational: # a Rational is always in reduced form so will never be 2/4 # so we can just check equivalence of args return self.p == other.p and self.q == other.q if other.is_Float: # all Floats have a denominator that is a power of 2 # so if self doesn't, it can't be equal to other if self.q & (self.q - 1): return False s, m, t = other._mpf_[:3] if s: m = -m if not t: # other is an odd integer if not self.is_Integer or self.is_even: return False return m == self.p if t > 0: # other is an even integer if not self.is_Integer: return False # does m*2**t == self.p return self.p and not self.p % m and \ integer_log(self.p//m, 2) == (t, True) # does non-integer s*m/2**-t = p/q? if self.is_Integer: return False return m == self.p and integer_log(self.q, 2) == (-t, True) return False def __ne__(self, other): return not self == other def _Rrel(self, other, attr): # if you want self < other, pass self, other, __gt__ try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_Number: op = None s, o = self, other if other.is_NumberSymbol: op = getattr(o, attr) elif other.is_Float: op = getattr(o, attr) elif other.is_Rational: s, o = Integer(s.p*o.q), Integer(s.q*o.p) op = getattr(o, attr) if op: return op(s) if o.is_number and o.is_extended_real: return Integer(s.p), s.q*o def __gt__(self, other): rv = self._Rrel(other, '__lt__') if rv is None: rv = self, other elif not type(rv) is tuple: return rv return Expr.__gt__(*rv) def __ge__(self, other): rv = self._Rrel(other, '__le__') if rv is None: rv = self, other elif not type(rv) is tuple: return rv return Expr.__ge__(*rv) def __lt__(self, other): rv = self._Rrel(other, '__gt__') if rv is None: rv = self, other elif not type(rv) is tuple: return rv return Expr.__lt__(*rv) def __le__(self, other): rv = self._Rrel(other, '__ge__') if rv is None: rv = self, other elif not type(rv) is tuple: return rv return Expr.__le__(*rv) def __hash__(self): return super().__hash__() def factors(self, limit=None, use_trial=True, use_rho=False, use_pm1=False, verbose=False, visual=False): """A wrapper to factorint which return factors of self that are smaller than limit (or cheap to compute). Special methods of factoring are disabled by default so that only trial division is used. """ from sympy.ntheory import factorrat return factorrat(self, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose).copy() def numerator(self): return self.p def denominator(self): return self.q @_sympifyit('other', NotImplemented) def gcd(self, other): if isinstance(other, Rational): if other == S.Zero: return other return Rational( Integer(igcd(self.p, other.p)), Integer(ilcm(self.q, other.q))) return Number.gcd(self, other) @_sympifyit('other', NotImplemented) def lcm(self, other): if isinstance(other, Rational): return Rational( self.p // igcd(self.p, other.p) * other.p, igcd(self.q, other.q)) return Number.lcm(self, other) def as_numer_denom(self): return Integer(self.p), Integer(self.q) def _sage_(self): import sage.all as sage return sage.Integer(self.p)/sage.Integer(self.q) def as_content_primitive(self, radical=False, clear=True): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. Examples ======== >>> from sympy import S >>> (S(-3)/2).as_content_primitive() (3/2, -1) See docstring of Expr.as_content_primitive for more examples. """ if self: if self.is_positive: return self, S.One return -self, S.NegativeOne return S.One, self def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ return self, S.One def as_coeff_Add(self, rational=False): """Efficiently extract the coefficient of a summation. """ return self, S.Zero class Integer(Rational): """Represents integer numbers of any size. Examples ======== >>> from sympy import Integer >>> Integer(3) 3 If a float or a rational is passed to Integer, the fractional part will be discarded; the effect is of rounding toward zero. >>> Integer(3.8) 3 >>> Integer(-3.8) -3 A string is acceptable input if it can be parsed as an integer: >>> Integer("9" * 20) 99999999999999999999 It is rarely needed to explicitly instantiate an Integer, because Python integers are automatically converted to Integer when they are used in SymPy expressions. """ q = 1 is_integer = True is_number = True is_Integer = True __slots__ = ('p',) def _as_mpf_val(self, prec): return mlib.from_int(self.p, prec, rnd) def _mpmath_(self, prec, rnd): return mpmath.make_mpf(self._as_mpf_val(prec)) @cacheit def __new__(cls, i): if isinstance(i, str): i = i.replace(' ', '') # whereas we cannot, in general, make a Rational from an # arbitrary expression, we can make an Integer unambiguously # (except when a non-integer expression happens to round to # an integer). So we proceed by taking int() of the input and # let the int routines determine whether the expression can # be made into an int or whether an error should be raised. try: ival = int(i) except TypeError: raise TypeError( "Argument of Integer should be of numeric type, got %s." % i) # We only work with well-behaved integer types. This converts, for # example, numpy.int32 instances. if ival == 1: return S.One if ival == -1: return S.NegativeOne if ival == 0: return S.Zero obj = Expr.__new__(cls) obj.p = ival return obj def __getnewargs__(self): return (self.p,) # Arithmetic operations are here for efficiency def __int__(self): return self.p def floor(self): return Integer(self.p) def ceiling(self): return Integer(self.p) def __floor__(self): return self.floor() def __ceil__(self): return self.ceiling() def __neg__(self): return Integer(-self.p) def __abs__(self): if self.p >= 0: return self else: return Integer(-self.p) def __divmod__(self, other): from .containers import Tuple if isinstance(other, Integer) and global_parameters.evaluate: return Tuple(*(divmod(self.p, other.p))) else: return Number.__divmod__(self, other) def __rdivmod__(self, other): from .containers import Tuple if isinstance(other, int) and global_parameters.evaluate: return Tuple(*(divmod(other, self.p))) else: try: other = Number(other) except TypeError: msg = "unsupported operand type(s) for divmod(): '%s' and '%s'" oname = type(other).__name__ sname = type(self).__name__ raise TypeError(msg % (oname, sname)) return Number.__divmod__(other, self) # TODO make it decorator + bytecodehacks? def __add__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(self.p + other) elif isinstance(other, Integer): return Integer(self.p + other.p) elif isinstance(other, Rational): return Rational(self.p*other.q + other.p, other.q, 1) return Rational.__add__(self, other) else: return Add(self, other) def __radd__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(other + self.p) elif isinstance(other, Rational): return Rational(other.p + self.p*other.q, other.q, 1) return Rational.__radd__(self, other) return Rational.__radd__(self, other) def __sub__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(self.p - other) elif isinstance(other, Integer): return Integer(self.p - other.p) elif isinstance(other, Rational): return Rational(self.p*other.q - other.p, other.q, 1) return Rational.__sub__(self, other) return Rational.__sub__(self, other) def __rsub__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(other - self.p) elif isinstance(other, Rational): return Rational(other.p - self.p*other.q, other.q, 1) return Rational.__rsub__(self, other) return Rational.__rsub__(self, other) def __mul__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(self.p*other) elif isinstance(other, Integer): return Integer(self.p*other.p) elif isinstance(other, Rational): return Rational(self.p*other.p, other.q, igcd(self.p, other.q)) return Rational.__mul__(self, other) return Rational.__mul__(self, other) def __rmul__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(other*self.p) elif isinstance(other, Rational): return Rational(other.p*self.p, other.q, igcd(self.p, other.q)) return Rational.__rmul__(self, other) return Rational.__rmul__(self, other) def __mod__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(self.p % other) elif isinstance(other, Integer): return Integer(self.p % other.p) return Rational.__mod__(self, other) return Rational.__mod__(self, other) def __rmod__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(other % self.p) elif isinstance(other, Integer): return Integer(other.p % self.p) return Rational.__rmod__(self, other) return Rational.__rmod__(self, other) def __eq__(self, other): if isinstance(other, int): return (self.p == other) elif isinstance(other, Integer): return (self.p == other.p) return Rational.__eq__(self, other) def __ne__(self, other): return not self == other def __gt__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_Integer: return _sympify(self.p > other.p) return Rational.__gt__(self, other) def __lt__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_Integer: return _sympify(self.p < other.p) return Rational.__lt__(self, other) def __ge__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_Integer: return _sympify(self.p >= other.p) return Rational.__ge__(self, other) def __le__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_Integer: return _sympify(self.p <= other.p) return Rational.__le__(self, other) def __hash__(self): return hash(self.p) def __index__(self): return self.p ######################################## def _eval_is_odd(self): return bool(self.p % 2) def _eval_power(self, expt): """ Tries to do some simplifications on self**expt Returns None if no further simplifications can be done. Explanation =========== When exponent is a fraction (so we have for example a square root), we try to find a simpler representation by factoring the argument up to factors of 2**15, e.g. - sqrt(4) becomes 2 - sqrt(-4) becomes 2*I - (2**(3+7)*3**(6+7))**Rational(1,7) becomes 6*18**(3/7) Further simplification would require a special call to factorint on the argument which is not done here for sake of speed. """ from sympy.ntheory.factor_ import perfect_power if expt is S.Infinity: if self.p > S.One: return S.Infinity # cases -1, 0, 1 are done in their respective classes return S.Infinity + S.ImaginaryUnit*S.Infinity if expt is S.NegativeInfinity: return Rational(1, self)**S.Infinity if not isinstance(expt, Number): # simplify when expt is even # (-2)**k --> 2**k if self.is_negative and expt.is_even: return (-self)**expt if isinstance(expt, Float): # Rational knows how to exponentiate by a Float return super()._eval_power(expt) if not isinstance(expt, Rational): return if expt is S.Half and self.is_negative: # we extract I for this special case since everyone is doing so return S.ImaginaryUnit*Pow(-self, expt) if expt.is_negative: # invert base and change sign on exponent ne = -expt if self.is_negative: return S.NegativeOne**expt*Rational(1, -self)**ne else: return Rational(1, self.p)**ne # see if base is a perfect root, sqrt(4) --> 2 x, xexact = integer_nthroot(abs(self.p), expt.q) if xexact: # if it's a perfect root we've finished result = Integer(x**abs(expt.p)) if self.is_negative: result *= S.NegativeOne**expt return result # The following is an algorithm where we collect perfect roots # from the factors of base. # if it's not an nth root, it still might be a perfect power b_pos = int(abs(self.p)) p = perfect_power(b_pos) if p is not False: dict = {p[0]: p[1]} else: dict = Integer(b_pos).factors(limit=2**15) # now process the dict of factors out_int = 1 # integer part out_rad = 1 # extracted radicals sqr_int = 1 sqr_gcd = 0 sqr_dict = {} for prime, exponent in dict.items(): exponent *= expt.p # remove multiples of expt.q: (2**12)**(1/10) -> 2*(2**2)**(1/10) div_e, div_m = divmod(exponent, expt.q) if div_e > 0: out_int *= prime**div_e if div_m > 0: # see if the reduced exponent shares a gcd with e.q # (2**2)**(1/10) -> 2**(1/5) g = igcd(div_m, expt.q) if g != 1: out_rad *= Pow(prime, Rational(div_m//g, expt.q//g)) else: sqr_dict[prime] = div_m # identify gcd of remaining powers for p, ex in sqr_dict.items(): if sqr_gcd == 0: sqr_gcd = ex else: sqr_gcd = igcd(sqr_gcd, ex) if sqr_gcd == 1: break for k, v in sqr_dict.items(): sqr_int *= k**(v//sqr_gcd) if sqr_int == b_pos and out_int == 1 and out_rad == 1: result = None else: result = out_int*out_rad*Pow(sqr_int, Rational(sqr_gcd, expt.q)) if self.is_negative: result *= Pow(S.NegativeOne, expt) return result def _eval_is_prime(self): from sympy.ntheory import isprime return isprime(self) def _eval_is_composite(self): if self > 1: return fuzzy_not(self.is_prime) else: return False def as_numer_denom(self): return self, S.One @_sympifyit('other', NotImplemented) def __floordiv__(self, other): if not isinstance(other, Expr): return NotImplemented if isinstance(other, Integer): return Integer(self.p // other) return Integer(divmod(self, other)[0]) def __rfloordiv__(self, other): return Integer(Integer(other).p // self.p) # Add sympify converters converter[int] = Integer class AlgebraicNumber(Expr): """Class for representing algebraic numbers in SymPy. """ __slots__ = ('rep', 'root', 'alias', 'minpoly') is_AlgebraicNumber = True is_algebraic = True is_number = True kind = NumberKind # Optional alias symbol is not free. # Actually, alias should be a Str, but some methods # expect that it be an instance of Expr. free_symbols = set() def __new__(cls, expr, coeffs=None, alias=None, **args): """Construct a new algebraic number. """ from sympy import Poly from sympy.polys.polyclasses import ANP, DMP from sympy.polys.numberfields import minimal_polynomial from sympy.core.symbol import Symbol expr = sympify(expr) if isinstance(expr, (tuple, Tuple)): minpoly, root = expr if not minpoly.is_Poly: minpoly = Poly(minpoly) elif expr.is_AlgebraicNumber: minpoly, root = expr.minpoly, expr.root else: minpoly, root = minimal_polynomial( expr, args.get('gen'), polys=True), expr dom = minpoly.get_domain() if coeffs is not None: if not isinstance(coeffs, ANP): rep = DMP.from_sympy_list(sympify(coeffs), 0, dom) scoeffs = Tuple(*coeffs) else: rep = DMP.from_list(coeffs.to_list(), 0, dom) scoeffs = Tuple(*coeffs.to_list()) if rep.degree() >= minpoly.degree(): rep = rep.rem(minpoly.rep) else: rep = DMP.from_list([1, 0], 0, dom) scoeffs = Tuple(1, 0) sargs = (root, scoeffs) if alias is not None: if not isinstance(alias, Symbol): alias = Symbol(alias) sargs = sargs + (alias,) obj = Expr.__new__(cls, *sargs) obj.rep = rep obj.root = root obj.alias = alias obj.minpoly = minpoly return obj def __hash__(self): return super().__hash__() def _eval_evalf(self, prec): return self.as_expr()._evalf(prec) @property def is_aliased(self): """Returns ``True`` if ``alias`` was set. """ return self.alias is not None def as_poly(self, x=None): """Create a Poly instance from ``self``. """ from sympy import Dummy, Poly, PurePoly if x is not None: return Poly.new(self.rep, x) else: if self.alias is not None: return Poly.new(self.rep, self.alias) else: return PurePoly.new(self.rep, Dummy('x')) def as_expr(self, x=None): """Create a Basic expression from ``self``. """ return self.as_poly(x or self.root).as_expr().expand() def coeffs(self): """Returns all SymPy coefficients of an algebraic number. """ return [ self.rep.dom.to_sympy(c) for c in self.rep.all_coeffs() ] def native_coeffs(self): """Returns all native coefficients of an algebraic number. """ return self.rep.all_coeffs() def to_algebraic_integer(self): """Convert ``self`` to an algebraic integer. """ from sympy import Poly f = self.minpoly if f.LC() == 1: return self coeff = f.LC()**(f.degree() - 1) poly = f.compose(Poly(f.gen/f.LC())) minpoly = poly*coeff root = f.LC()*self.root return AlgebraicNumber((minpoly, root), self.coeffs()) def _eval_simplify(self, **kwargs): from sympy.polys import CRootOf, minpoly measure, ratio = kwargs['measure'], kwargs['ratio'] for r in [r for r in self.minpoly.all_roots() if r.func != CRootOf]: if minpoly(self.root - r).is_Symbol: # use the matching root if it's simpler if measure(r) < ratio*measure(self.root): return AlgebraicNumber(r) return self class RationalConstant(Rational): """ Abstract base class for rationals with specific behaviors Derived classes must define class attributes p and q and should probably all be singletons. """ __slots__ = () def __new__(cls): return AtomicExpr.__new__(cls) class IntegerConstant(Integer): __slots__ = () def __new__(cls): return AtomicExpr.__new__(cls) class Zero(IntegerConstant, metaclass=Singleton): """The number zero. Zero is a singleton, and can be accessed by ``S.Zero`` Examples ======== >>> from sympy import S, Integer >>> Integer(0) is S.Zero True >>> 1/S.Zero zoo References ========== .. [1] https://en.wikipedia.org/wiki/Zero """ p = 0 q = 1 is_positive = False is_negative = False is_zero = True is_number = True is_comparable = True __slots__ = () def __getnewargs__(self): return () @staticmethod def __abs__(): return S.Zero @staticmethod def __neg__(): return S.Zero def _eval_power(self, expt): if expt.is_positive: return self if expt.is_negative: return S.ComplexInfinity if expt.is_extended_real is False: return S.NaN # infinities are already handled with pos and neg # tests above; now throw away leading numbers on Mul # exponent coeff, terms = expt.as_coeff_Mul() if coeff.is_negative: return S.ComplexInfinity**terms if coeff is not S.One: # there is a Number to discard return self**terms def _eval_order(self, *symbols): # Order(0,x) -> 0 return self def __bool__(self): return False def as_coeff_Mul(self, rational=False): # XXX this routine should be deleted """Efficiently extract the coefficient of a summation. """ return S.One, self class One(IntegerConstant, metaclass=Singleton): """The number one. One is a singleton, and can be accessed by ``S.One``. Examples ======== >>> from sympy import S, Integer >>> Integer(1) is S.One True References ========== .. [1] https://en.wikipedia.org/wiki/1_%28number%29 """ is_number = True p = 1 q = 1 __slots__ = () def __getnewargs__(self): return () @staticmethod def __abs__(): return S.One @staticmethod def __neg__(): return S.NegativeOne def _eval_power(self, expt): return self def _eval_order(self, *symbols): return @staticmethod def factors(limit=None, use_trial=True, use_rho=False, use_pm1=False, verbose=False, visual=False): if visual: return S.One else: return {} class NegativeOne(IntegerConstant, metaclass=Singleton): """The number negative one. NegativeOne is a singleton, and can be accessed by ``S.NegativeOne``. Examples ======== >>> from sympy import S, Integer >>> Integer(-1) is S.NegativeOne True See Also ======== One References ========== .. [1] https://en.wikipedia.org/wiki/%E2%88%921_%28number%29 """ is_number = True p = -1 q = 1 __slots__ = () def __getnewargs__(self): return () @staticmethod def __abs__(): return S.One @staticmethod def __neg__(): return S.One def _eval_power(self, expt): if expt.is_odd: return S.NegativeOne if expt.is_even: return S.One if isinstance(expt, Number): if isinstance(expt, Float): return Float(-1.0)**expt if expt is S.NaN: return S.NaN if expt is S.Infinity or expt is S.NegativeInfinity: return S.NaN if expt is S.Half: return S.ImaginaryUnit if isinstance(expt, Rational): if expt.q == 2: return S.ImaginaryUnit**Integer(expt.p) i, r = divmod(expt.p, expt.q) if i: return self**i*self**Rational(r, expt.q) return class Half(RationalConstant, metaclass=Singleton): """The rational number 1/2. Half is a singleton, and can be accessed by ``S.Half``. Examples ======== >>> from sympy import S, Rational >>> Rational(1, 2) is S.Half True References ========== .. [1] https://en.wikipedia.org/wiki/One_half """ is_number = True p = 1 q = 2 __slots__ = () def __getnewargs__(self): return () @staticmethod def __abs__(): return S.Half class Infinity(Number, metaclass=Singleton): r"""Positive infinite quantity. Explanation =========== In real analysis the symbol `\infty` denotes an unbounded limit: `x\to\infty` means that `x` grows without bound. Infinity is often used not only to define a limit but as a value in the affinely extended real number system. Points labeled `+\infty` and `-\infty` can be added to the topological space of the real numbers, producing the two-point compactification of the real numbers. Adding algebraic properties to this gives us the extended real numbers. Infinity is a singleton, and can be accessed by ``S.Infinity``, or can be imported as ``oo``. Examples ======== >>> from sympy import oo, exp, limit, Symbol >>> 1 + oo oo >>> 42/oo 0 >>> x = Symbol('x') >>> limit(exp(x), x, oo) oo See Also ======== NegativeInfinity, NaN References ========== .. [1] https://en.wikipedia.org/wiki/Infinity """ is_commutative = True is_number = True is_complex = False is_extended_real = True is_infinite = True is_comparable = True is_extended_positive = True is_prime = False __slots__ = () def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"\infty" def _eval_subs(self, old, new): if self == old: return new def _eval_evalf(self, prec=None): return Float('inf') def evalf(self, prec=None, **options): return self._eval_evalf(prec) @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.NegativeInfinity or other is S.NaN: return S.NaN return self return Number.__add__(self, other) __radd__ = __add__ @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.Infinity or other is S.NaN: return S.NaN return self return Number.__sub__(self, other) @_sympifyit('other', NotImplemented) def __rsub__(self, other): return (-self).__add__(other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other.is_zero or other is S.NaN: return S.NaN if other.is_extended_positive: return self return S.NegativeInfinity return Number.__mul__(self, other) __rmul__ = __mul__ @_sympifyit('other', NotImplemented) def __truediv__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.Infinity or \ other is S.NegativeInfinity or \ other is S.NaN: return S.NaN if other.is_extended_nonnegative: return self return S.NegativeInfinity return Number.__truediv__(self, other) def __abs__(self): return S.Infinity def __neg__(self): return S.NegativeInfinity def _eval_power(self, expt): """ ``expt`` is symbolic object but not equal to 0 or 1. ================ ======= ============================== Expression Result Notes ================ ======= ============================== ``oo ** nan`` ``nan`` ``oo ** -p`` ``0`` ``p`` is number, ``oo`` ================ ======= ============================== See Also ======== Pow NaN NegativeInfinity """ from sympy.functions import re if expt.is_extended_positive: return S.Infinity if expt.is_extended_negative: return S.Zero if expt is S.NaN: return S.NaN if expt is S.ComplexInfinity: return S.NaN if expt.is_extended_real is False and expt.is_number: expt_real = re(expt) if expt_real.is_positive: return S.ComplexInfinity if expt_real.is_negative: return S.Zero if expt_real.is_zero: return S.NaN return self**expt.evalf() def _as_mpf_val(self, prec): return mlib.finf def _sage_(self): import sage.all as sage return sage.oo def __hash__(self): return super().__hash__() def __eq__(self, other): return other is S.Infinity or other == float('inf') def __ne__(self, other): return other is not S.Infinity and other != float('inf') __gt__ = Expr.__gt__ __ge__ = Expr.__ge__ __lt__ = Expr.__lt__ __le__ = Expr.__le__ @_sympifyit('other', NotImplemented) def __mod__(self, other): if not isinstance(other, Expr): return NotImplemented return S.NaN __rmod__ = __mod__ def floor(self): return self def ceiling(self): return self oo = S.Infinity class NegativeInfinity(Number, metaclass=Singleton): """Negative infinite quantity. NegativeInfinity is a singleton, and can be accessed by ``S.NegativeInfinity``. See Also ======== Infinity """ is_extended_real = True is_complex = False is_commutative = True is_infinite = True is_comparable = True is_extended_negative = True is_number = True is_prime = False __slots__ = () def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"-\infty" def _eval_subs(self, old, new): if self == old: return new def _eval_evalf(self, prec=None): return Float('-inf') def evalf(self, prec=None, **options): return self._eval_evalf(prec) @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.Infinity or other is S.NaN: return S.NaN return self return Number.__add__(self, other) __radd__ = __add__ @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.NegativeInfinity or other is S.NaN: return S.NaN return self return Number.__sub__(self, other) @_sympifyit('other', NotImplemented) def __rsub__(self, other): return (-self).__add__(other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other.is_zero or other is S.NaN: return S.NaN if other.is_extended_positive: return self return S.Infinity return Number.__mul__(self, other) __rmul__ = __mul__ @_sympifyit('other', NotImplemented) def __truediv__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.Infinity or \ other is S.NegativeInfinity or \ other is S.NaN: return S.NaN if other.is_extended_nonnegative: return self return S.Infinity return Number.__truediv__(self, other) def __abs__(self): return S.Infinity def __neg__(self): return S.Infinity def _eval_power(self, expt): """ ``expt`` is symbolic object but not equal to 0 or 1. ================ ======= ============================== Expression Result Notes ================ ======= ============================== ``(-oo) ** nan`` ``nan`` ``(-oo) ** oo`` ``nan`` ``(-oo) ** -oo`` ``nan`` ``(-oo) ** e`` ``oo`` ``e`` is positive even integer ``(-oo) ** o`` ``-oo`` ``o`` is positive odd integer ================ ======= ============================== See Also ======== Infinity Pow NaN """ if expt.is_number: if expt is S.NaN or \ expt is S.Infinity or \ expt is S.NegativeInfinity: return S.NaN if isinstance(expt, Integer) and expt.is_extended_positive: if expt.is_odd: return S.NegativeInfinity else: return S.Infinity return S.NegativeOne**expt*S.Infinity**expt def _as_mpf_val(self, prec): return mlib.fninf def _sage_(self): import sage.all as sage return -(sage.oo) def __hash__(self): return super().__hash__() def __eq__(self, other): return other is S.NegativeInfinity or other == float('-inf') def __ne__(self, other): return other is not S.NegativeInfinity and other != float('-inf') __gt__ = Expr.__gt__ __ge__ = Expr.__ge__ __lt__ = Expr.__lt__ __le__ = Expr.__le__ @_sympifyit('other', NotImplemented) def __mod__(self, other): if not isinstance(other, Expr): return NotImplemented return S.NaN __rmod__ = __mod__ def floor(self): return self def ceiling(self): return self def as_powers_dict(self): return {S.NegativeOne: 1, S.Infinity: 1} class NaN(Number, metaclass=Singleton): """ Not a Number. Explanation =========== This serves as a place holder for numeric values that are indeterminate. Most operations on NaN, produce another NaN. Most indeterminate forms, such as ``0/0`` or ``oo - oo` produce NaN. Two exceptions are ``0**0`` and ``oo**0``, which all produce ``1`` (this is consistent with Python's float). NaN is loosely related to floating point nan, which is defined in the IEEE 754 floating point standard, and corresponds to the Python ``float('nan')``. Differences are noted below. NaN is mathematically not equal to anything else, even NaN itself. This explains the initially counter-intuitive results with ``Eq`` and ``==`` in the examples below. NaN is not comparable so inequalities raise a TypeError. This is in contrast with floating point nan where all inequalities are false. NaN is a singleton, and can be accessed by ``S.NaN``, or can be imported as ``nan``. Examples ======== >>> from sympy import nan, S, oo, Eq >>> nan is S.NaN True >>> oo - oo nan >>> nan + 1 nan >>> Eq(nan, nan) # mathematical equality False >>> nan == nan # structural equality True References ========== .. [1] https://en.wikipedia.org/wiki/NaN """ is_commutative = True is_extended_real = None is_real = None is_rational = None is_algebraic = None is_transcendental = None is_integer = None is_comparable = False is_finite = None is_zero = None is_prime = None is_positive = None is_negative = None is_number = True __slots__ = () def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"\text{NaN}" def __neg__(self): return self @_sympifyit('other', NotImplemented) def __add__(self, other): return self @_sympifyit('other', NotImplemented) def __sub__(self, other): return self @_sympifyit('other', NotImplemented) def __mul__(self, other): return self @_sympifyit('other', NotImplemented) def __truediv__(self, other): return self def floor(self): return self def ceiling(self): return self def _as_mpf_val(self, prec): return _mpf_nan def _sage_(self): import sage.all as sage return sage.NaN def __hash__(self): return super().__hash__() def __eq__(self, other): # NaN is structurally equal to another NaN return other is S.NaN def __ne__(self, other): return other is not S.NaN # Expr will _sympify and raise TypeError __gt__ = Expr.__gt__ __ge__ = Expr.__ge__ __lt__ = Expr.__lt__ __le__ = Expr.__le__ nan = S.NaN @dispatch(NaN, Expr) # type:ignore def _eval_is_eq(a, b): # noqa:F811 return False class ComplexInfinity(AtomicExpr, metaclass=Singleton): r"""Complex infinity. Explanation =========== In complex analysis the symbol `\tilde\infty`, called "complex infinity", represents a quantity with infinite magnitude, but undetermined complex phase. ComplexInfinity is a singleton, and can be accessed by ``S.ComplexInfinity``, or can be imported as ``zoo``. Examples ======== >>> from sympy import zoo >>> zoo + 42 zoo >>> 42/zoo 0 >>> zoo + zoo nan >>> zoo*zoo zoo See Also ======== Infinity """ is_commutative = True is_infinite = True is_number = True is_prime = False is_complex = False is_extended_real = False kind = NumberKind __slots__ = () def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"\tilde{\infty}" @staticmethod def __abs__(): return S.Infinity def floor(self): return self def ceiling(self): return self @staticmethod def __neg__(): return S.ComplexInfinity def _eval_power(self, expt): if expt is S.ComplexInfinity: return S.NaN if isinstance(expt, Number): if expt.is_zero: return S.NaN else: if expt.is_positive: return S.ComplexInfinity else: return S.Zero def _sage_(self): import sage.all as sage return sage.UnsignedInfinityRing.gen() zoo = S.ComplexInfinity class NumberSymbol(AtomicExpr): is_commutative = True is_finite = True is_number = True __slots__ = () is_NumberSymbol = True kind = NumberKind def __new__(cls): return AtomicExpr.__new__(cls) def approximation(self, number_cls): """ Return an interval with number_cls endpoints that contains the value of NumberSymbol. If not implemented, then return None. """ def _eval_evalf(self, prec): return Float._new(self._as_mpf_val(prec), prec) def __eq__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if self is other: return True if other.is_Number and self.is_irrational: return False return False # NumberSymbol != non-(Number|self) def __ne__(self, other): return not self == other def __le__(self, other): if self is other: return S.true return Expr.__le__(self, other) def __ge__(self, other): if self is other: return S.true return Expr.__ge__(self, other) def __int__(self): # subclass with appropriate return value raise NotImplementedError def __hash__(self): return super().__hash__() class Exp1(NumberSymbol, metaclass=Singleton): r"""The `e` constant. Explanation =========== The transcendental number `e = 2.718281828\ldots` is the base of the natural logarithm and of the exponential function, `e = \exp(1)`. Sometimes called Euler's number or Napier's constant. Exp1 is a singleton, and can be accessed by ``S.Exp1``, or can be imported as ``E``. Examples ======== >>> from sympy import exp, log, E >>> E is exp(1) True >>> log(E) 1 References ========== .. [1] https://en.wikipedia.org/wiki/E_%28mathematical_constant%29 """ is_real = True is_positive = True is_negative = False # XXX Forces is_negative/is_nonnegative is_irrational = True is_number = True is_algebraic = False is_transcendental = True __slots__ = () def _latex(self, printer): return r"e" @staticmethod def __abs__(): return S.Exp1 def __int__(self): return 2 def _as_mpf_val(self, prec): return mpf_e(prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (Integer(2), Integer(3)) elif issubclass(number_cls, Rational): pass def _eval_power(self, expt): from sympy import exp return exp(expt) def _eval_rewrite_as_sin(self, **kwargs): from sympy import sin I = S.ImaginaryUnit return sin(I + S.Pi/2) - I*sin(I) def _eval_rewrite_as_cos(self, **kwargs): from sympy import cos I = S.ImaginaryUnit return cos(I) + I*cos(I + S.Pi/2) def _sage_(self): import sage.all as sage return sage.e E = S.Exp1 class Pi(NumberSymbol, metaclass=Singleton): r"""The `\pi` constant. Explanation =========== The transcendental number `\pi = 3.141592654\ldots` represents the ratio of a circle's circumference to its diameter, the area of the unit circle, the half-period of trigonometric functions, and many other things in mathematics. Pi is a singleton, and can be accessed by ``S.Pi``, or can be imported as ``pi``. Examples ======== >>> from sympy import S, pi, oo, sin, exp, integrate, Symbol >>> S.Pi pi >>> pi > 3 True >>> pi.is_irrational True >>> x = Symbol('x') >>> sin(x + 2*pi) sin(x) >>> integrate(exp(-x**2), (x, -oo, oo)) sqrt(pi) References ========== .. [1] https://en.wikipedia.org/wiki/Pi """ is_real = True is_positive = True is_negative = False is_irrational = True is_number = True is_algebraic = False is_transcendental = True __slots__ = () def _latex(self, printer): return r"\pi" @staticmethod def __abs__(): return S.Pi def __int__(self): return 3 def _as_mpf_val(self, prec): return mpf_pi(prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (Integer(3), Integer(4)) elif issubclass(number_cls, Rational): return (Rational(223, 71), Rational(22, 7)) def _sage_(self): import sage.all as sage return sage.pi pi = S.Pi class GoldenRatio(NumberSymbol, metaclass=Singleton): r"""The golden ratio, `\phi`. Explanation =========== `\phi = \frac{1 + \sqrt{5}}{2}` is algebraic number. Two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities, i.e. their maximum. GoldenRatio is a singleton, and can be accessed by ``S.GoldenRatio``. Examples ======== >>> from sympy import S >>> S.GoldenRatio > 1 True >>> S.GoldenRatio.expand(func=True) 1/2 + sqrt(5)/2 >>> S.GoldenRatio.is_irrational True References ========== .. [1] https://en.wikipedia.org/wiki/Golden_ratio """ is_real = True is_positive = True is_negative = False is_irrational = True is_number = True is_algebraic = True is_transcendental = False __slots__ = () def _latex(self, printer): return r"\phi" def __int__(self): return 1 def _as_mpf_val(self, prec): # XXX track down why this has to be increased rv = mlib.from_man_exp(phi_fixed(prec + 10), -prec - 10) return mpf_norm(rv, prec) def _eval_expand_func(self, **hints): from sympy import sqrt return S.Half + S.Half*sqrt(5) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.One, Rational(2)) elif issubclass(number_cls, Rational): pass def _sage_(self): import sage.all as sage return sage.golden_ratio _eval_rewrite_as_sqrt = _eval_expand_func class TribonacciConstant(NumberSymbol, metaclass=Singleton): r"""The tribonacci constant. Explanation =========== The tribonacci numbers are like the Fibonacci numbers, but instead of starting with two predetermined terms, the sequence starts with three predetermined terms and each term afterwards is the sum of the preceding three terms. The tribonacci constant is the ratio toward which adjacent tribonacci numbers tend. It is a root of the polynomial `x^3 - x^2 - x - 1 = 0`, and also satisfies the equation `x + x^{-3} = 2`. TribonacciConstant is a singleton, and can be accessed by ``S.TribonacciConstant``. Examples ======== >>> from sympy import S >>> S.TribonacciConstant > 1 True >>> S.TribonacciConstant.expand(func=True) 1/3 + (19 - 3*sqrt(33))**(1/3)/3 + (3*sqrt(33) + 19)**(1/3)/3 >>> S.TribonacciConstant.is_irrational True >>> S.TribonacciConstant.n(20) 1.8392867552141611326 References ========== .. [1] https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Tribonacci_numbers """ is_real = True is_positive = True is_negative = False is_irrational = True is_number = True is_algebraic = True is_transcendental = False __slots__ = () def _latex(self, printer): return r"\text{TribonacciConstant}" def __int__(self): return 2 def _eval_evalf(self, prec): rv = self._eval_expand_func(function=True)._eval_evalf(prec + 4) return Float(rv, precision=prec) def _eval_expand_func(self, **hints): from sympy import sqrt, cbrt return (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3 def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.One, Rational(2)) elif issubclass(number_cls, Rational): pass _eval_rewrite_as_sqrt = _eval_expand_func class EulerGamma(NumberSymbol, metaclass=Singleton): r"""The Euler-Mascheroni constant. Explanation =========== `\gamma = 0.5772157\ldots` (also called Euler's constant) is a mathematical constant recurring in analysis and number theory. It is defined as the limiting difference between the harmonic series and the natural logarithm: .. math:: \gamma = \lim\limits_{n\to\infty} \left(\sum\limits_{k=1}^n\frac{1}{k} - \ln n\right) EulerGamma is a singleton, and can be accessed by ``S.EulerGamma``. Examples ======== >>> from sympy import S >>> S.EulerGamma.is_irrational >>> S.EulerGamma > 0 True >>> S.EulerGamma > 1 False References ========== .. [1] https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant """ is_real = True is_positive = True is_negative = False is_irrational = None is_number = True __slots__ = () def _latex(self, printer): return r"\gamma" def __int__(self): return 0 def _as_mpf_val(self, prec): # XXX track down why this has to be increased v = mlib.libhyper.euler_fixed(prec + 10) rv = mlib.from_man_exp(v, -prec - 10) return mpf_norm(rv, prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.Zero, S.One) elif issubclass(number_cls, Rational): return (S.Half, Rational(3, 5)) def _sage_(self): import sage.all as sage return sage.euler_gamma class Catalan(NumberSymbol, metaclass=Singleton): r"""Catalan's constant. Explanation =========== `K = 0.91596559\ldots` is given by the infinite series .. math:: K = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2} Catalan is a singleton, and can be accessed by ``S.Catalan``. Examples ======== >>> from sympy import S >>> S.Catalan.is_irrational >>> S.Catalan > 0 True >>> S.Catalan > 1 False References ========== .. [1] https://en.wikipedia.org/wiki/Catalan%27s_constant """ is_real = True is_positive = True is_negative = False is_irrational = None is_number = True __slots__ = () def __int__(self): return 0 def _as_mpf_val(self, prec): # XXX track down why this has to be increased v = mlib.catalan_fixed(prec + 10) rv = mlib.from_man_exp(v, -prec - 10) return mpf_norm(rv, prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.Zero, S.One) elif issubclass(number_cls, Rational): return (Rational(9, 10), S.One) def _eval_rewrite_as_Sum(self, k_sym=None, symbols=None): from sympy import Sum, Dummy if (k_sym is not None) or (symbols is not None): return self k = Dummy('k', integer=True, nonnegative=True) return Sum((-1)**k / (2*k+1)**2, (k, 0, S.Infinity)) def _sage_(self): import sage.all as sage return sage.catalan class ImaginaryUnit(AtomicExpr, metaclass=Singleton): r"""The imaginary unit, `i = \sqrt{-1}`. I is a singleton, and can be accessed by ``S.I``, or can be imported as ``I``. Examples ======== >>> from sympy import I, sqrt >>> sqrt(-1) I >>> I*I -1 >>> 1/I -I References ========== .. [1] https://en.wikipedia.org/wiki/Imaginary_unit """ is_commutative = True is_imaginary = True is_finite = True is_number = True is_algebraic = True is_transcendental = False kind = NumberKind __slots__ = () def _latex(self, printer): return printer._settings['imaginary_unit_latex'] @staticmethod def __abs__(): return S.One def _eval_evalf(self, prec): return self def _eval_conjugate(self): return -S.ImaginaryUnit def _eval_power(self, expt): """ b is I = sqrt(-1) e is symbolic object but not equal to 0, 1 I**r -> (-1)**(r/2) -> exp(r/2*Pi*I) -> sin(Pi*r/2) + cos(Pi*r/2)*I, r is decimal I**0 mod 4 -> 1 I**1 mod 4 -> I I**2 mod 4 -> -1 I**3 mod 4 -> -I """ if isinstance(expt, Number): if isinstance(expt, Integer): expt = expt.p % 4 if expt == 0: return S.One if expt == 1: return S.ImaginaryUnit if expt == 2: return -S.One return -S.ImaginaryUnit return def as_base_exp(self): return S.NegativeOne, S.Half def _sage_(self): import sage.all as sage return sage.I @property def _mpc_(self): return (Float(0)._mpf_, Float(1)._mpf_) I = S.ImaginaryUnit @dispatch(Tuple, Number) # type:ignore def _eval_is_eq(self, other): # noqa: F811 return False def sympify_fractions(f): return Rational(f.numerator, f.denominator, 1) converter[fractions.Fraction] = sympify_fractions if HAS_GMPY: def sympify_mpz(x): return Integer(int(x)) # XXX: The sympify_mpq function here was never used because it is # overridden by the other sympify_mpq function below. Maybe it should just # be removed or maybe it should be used for something... def sympify_mpq(x): return Rational(int(x.numerator), int(x.denominator)) converter[type(gmpy.mpz(1))] = sympify_mpz converter[type(gmpy.mpq(1, 2))] = sympify_mpq def sympify_mpmath_mpq(x): p, q = x._mpq_ return Rational(p, q, 1) converter[type(mpmath.rational.mpq(1, 2))] = sympify_mpmath_mpq def sympify_mpmath(x): return Expr._from_mpmath(x, x.context.prec) converter[mpnumeric] = sympify_mpmath def sympify_complex(a): real, imag = list(map(sympify, (a.real, a.imag))) return real + S.ImaginaryUnit*imag converter[complex] = sympify_complex from .power import Pow, integer_nthroot from .mul import Mul Mul.identity = One() from .add import Add Add.identity = Zero() def _register_classes(): numbers.Number.register(Number) numbers.Real.register(Float) numbers.Rational.register(Rational) numbers.Rational.register(Integer) _register_classes()
95f63d0f7861a28e7fd511cb4839ba0a9981527fe1720ce60531343d41a89ae5
from sympy.core.numbers import nan from .function import Function from .kind import NumberKind class Mod(Function): """Represents a modulo operation on symbolic expressions. Parameters ========== p : Expr Dividend. q : Expr Divisor. Notes ===== The convention used is the same as Python's: the remainder always has the same sign as the divisor. Examples ======== >>> from sympy.abc import x, y >>> x**2 % y Mod(x**2, y) >>> _.subs({x: 5, y: 6}) 1 """ kind = NumberKind @classmethod def eval(cls, p, q): from sympy.core.add import Add from sympy.core.mul import Mul from sympy.core.singleton import S from sympy.core.exprtools import gcd_terms from sympy.polys.polytools import gcd def doit(p, q): """Try to return p % q if both are numbers or +/-p is known to be less than or equal q. """ if q.is_zero: raise ZeroDivisionError("Modulo by zero") if p.is_finite is False or q.is_finite is False or p is nan or q is nan: return nan if p is S.Zero or p == q or p == -q or (p.is_integer and q == 1): return S.Zero if q.is_Number: if p.is_Number: return p%q if q == 2: if p.is_even: return S.Zero elif p.is_odd: return S.One if hasattr(p, '_eval_Mod'): rv = getattr(p, '_eval_Mod')(q) if rv is not None: return rv # by ratio r = p/q if r.is_integer: return S.Zero try: d = int(r) except TypeError: pass else: if isinstance(d, int): rv = p - d*q if (rv*q < 0) == True: rv += q return rv # by difference # -2|q| < p < 2|q| d = abs(p) for _ in range(2): d -= abs(q) if d.is_negative: if q.is_positive: if p.is_positive: return d + q elif p.is_negative: return -d elif q.is_negative: if p.is_positive: return d elif p.is_negative: return -d + q break rv = doit(p, q) if rv is not None: return rv # denest if isinstance(p, cls): qinner = p.args[1] if qinner % q == 0: return cls(p.args[0], q) elif (qinner*(q - qinner)).is_nonnegative: # |qinner| < |q| and have same sign return p elif isinstance(-p, cls): qinner = (-p).args[1] if qinner % q == 0: return cls(-(-p).args[0], q) elif (qinner*(q + qinner)).is_nonpositive: # |qinner| < |q| and have different sign return p elif isinstance(p, Add): # separating into modulus and non modulus both_l = non_mod_l, mod_l = [], [] for arg in p.args: both_l[isinstance(arg, cls)].append(arg) # if q same for all if mod_l and all(inner.args[1] == q for inner in mod_l): net = Add(*non_mod_l) + Add(*[i.args[0] for i in mod_l]) return cls(net, q) elif isinstance(p, Mul): # separating into modulus and non modulus both_l = non_mod_l, mod_l = [], [] for arg in p.args: both_l[isinstance(arg, cls)].append(arg) if mod_l and all(inner.args[1] == q for inner in mod_l): # finding distributive term non_mod_l = [cls(x, q) for x in non_mod_l] mod = [] non_mod = [] for j in non_mod_l: if isinstance(j, cls): mod.append(j.args[0]) else: non_mod.append(j) prod_mod = Mul(*mod) prod_non_mod = Mul(*non_mod) prod_mod1 = Mul(*[i.args[0] for i in mod_l]) net = prod_mod1*prod_mod return prod_non_mod*cls(net, q) if q.is_Integer and q is not S.One: _ = [] for i in non_mod_l: if i.is_Integer and (i % q is not S.Zero): _.append(i%q) else: _.append(i) non_mod_l = _ p = Mul(*(non_mod_l + mod_l)) # XXX other possibilities? # extract gcd; any further simplification should be done by the user G = gcd(p, q) if G != 1: p, q = [ gcd_terms(i/G, clear=False, fraction=False) for i in (p, q)] pwas, qwas = p, q # simplify terms # (x + y + 2) % x -> Mod(y + 2, x) if p.is_Add: args = [] for i in p.args: a = cls(i, q) if a.count(cls) > i.count(cls): args.append(i) else: args.append(a) if args != list(p.args): p = Add(*args) else: # handle coefficients if they are not Rational # since those are not handled by factor_terms # e.g. Mod(.6*x, .3*y) -> 0.3*Mod(2*x, y) cp, p = p.as_coeff_Mul() cq, q = q.as_coeff_Mul() ok = False if not cp.is_Rational or not cq.is_Rational: r = cp % cq if r == 0: G *= cq p *= int(cp/cq) ok = True if not ok: p = cp*p q = cq*q # simple -1 extraction if p.could_extract_minus_sign() and q.could_extract_minus_sign(): G, p, q = [-i for i in (G, p, q)] # check again to see if p and q can now be handled as numbers rv = doit(p, q) if rv is not None: return rv*G # put 1.0 from G on inside if G.is_Float and G == 1: p *= G return cls(p, q, evaluate=False) elif G.is_Mul and G.args[0].is_Float and G.args[0] == 1: p = G.args[0]*p G = Mul._from_args(G.args[1:]) return G*cls(p, q, evaluate=(p, q) != (pwas, qwas)) def _eval_is_integer(self): from sympy.core.logic import fuzzy_and, fuzzy_not p, q = self.args if fuzzy_and([p.is_integer, q.is_integer, fuzzy_not(q.is_zero)]): return True def _eval_is_nonnegative(self): if self.args[1].is_positive: return True def _eval_is_nonpositive(self): if self.args[1].is_negative: return True def _eval_rewrite_as_floor(self, a, b, **kwargs): from sympy.functions.elementary.integers import floor return a - b*floor(a/b)
796f07c88999e655c542f3c66eafdb69b0c82ee338f5e8ec9fd9449684f9801d
from sympy.core.assumptions import StdFactKB, _assume_defined from sympy.core.compatibility import is_sequence, ordered from .basic import Basic, Atom from .sympify import sympify from .singleton import S from .expr import Expr, AtomicExpr from .cache import cacheit from .function import FunctionClass from .kind import NumberKind, UndefinedKind from sympy.core.logic import fuzzy_bool from sympy.logic.boolalg import Boolean from sympy.utilities.iterables import cartes, sift from sympy.core.containers import Tuple import string import re as _re import random class Str(Atom): """ Represents string in SymPy. Explanation =========== Previously, ``Symbol`` was used where string is needed in ``args`` of SymPy objects, e.g. denoting the name of the instance. However, since ``Symbol`` represents mathematical scalar, this class should be used instead. """ __slots__ = ('name',) def __new__(cls, name, **kwargs): if not isinstance(name, str): raise TypeError("name should be a string, not %s" % repr(type(name))) obj = Expr.__new__(cls, **kwargs) obj.name = name return obj def __getnewargs__(self): return (self.name,) def _hashable_content(self): return (self.name,) def _filter_assumptions(kwargs): """Split the given dict into assumptions and non-assumptions. Keys are taken as assumptions if they correspond to an entry in ``_assume_defined``. """ assumptions, nonassumptions = map(dict, sift(kwargs.items(), lambda i: i[0] in _assume_defined, binary=True)) Symbol._sanitize(assumptions) return assumptions, nonassumptions def _symbol(s, matching_symbol=None, **assumptions): """Return s if s is a Symbol, else if s is a string, return either the matching_symbol if the names are the same or else a new symbol with the same assumptions as the matching symbol (or the assumptions as provided). Examples ======== >>> from sympy import Symbol >>> from sympy.core.symbol import _symbol >>> _symbol('y') y >>> _.is_real is None True >>> _symbol('y', real=True).is_real True >>> x = Symbol('x') >>> _symbol(x, real=True) x >>> _.is_real is None # ignore attribute if s is a Symbol True Below, the variable sym has the name 'foo': >>> sym = Symbol('foo', real=True) Since 'x' is not the same as sym's name, a new symbol is created: >>> _symbol('x', sym).name 'x' It will acquire any assumptions give: >>> _symbol('x', sym, real=False).is_real False Since 'foo' is the same as sym's name, sym is returned >>> _symbol('foo', sym) foo Any assumptions given are ignored: >>> _symbol('foo', sym, real=False).is_real True NB: the symbol here may not be the same as a symbol with the same name defined elsewhere as a result of different assumptions. See Also ======== sympy.core.symbol.Symbol """ if isinstance(s, str): if matching_symbol and matching_symbol.name == s: return matching_symbol return Symbol(s, **assumptions) elif isinstance(s, Symbol): return s else: raise ValueError('symbol must be string for symbol name or Symbol') def uniquely_named_symbol(xname, exprs=(), compare=str, modify=None, **assumptions): """Return a symbol which, when printed, will have a name unique from any other already in the expressions given. The name is made unique by appending numbers (default) but this can be customized with the keyword 'modify'. Parameters ========== xname : a string or a Symbol (when symbol xname <- str(xname)) compare : a single arg function that takes a symbol and returns a string to be compared with xname (the default is the str function which indicates how the name will look when it is printed, e.g. this includes underscores that appear on Dummy symbols) modify : a single arg function that changes its string argument in some way (the default is to append numbers) Examples ======== >>> from sympy.core.symbol import uniquely_named_symbol >>> from sympy.abc import x >>> uniquely_named_symbol('x', x) x0 """ from sympy.core.function import AppliedUndef def numbered_string_incr(s, start=0): if not s: return str(start) i = len(s) - 1 while i != -1: if not s[i].isdigit(): break i -= 1 n = str(int(s[i + 1:] or start - 1) + 1) return s[:i + 1] + n default = None if is_sequence(xname): xname, default = xname x = str(xname) if not exprs: return _symbol(x, default, **assumptions) if not is_sequence(exprs): exprs = [exprs] names = set().union( [i.name for e in exprs for i in e.atoms(Symbol)] + [i.func.name for e in exprs for i in e.atoms(AppliedUndef)]) if modify is None: modify = numbered_string_incr while any(x == compare(s) for s in names): x = modify(x) return _symbol(x, default, **assumptions) _uniquely_named_symbol = uniquely_named_symbol class Symbol(AtomicExpr, Boolean): """ Assumptions: commutative = True You can override the default assumptions in the constructor. Examples ======== >>> from sympy import symbols >>> A,B = symbols('A,B', commutative = False) >>> bool(A*B != B*A) True >>> bool(A*B*2 == 2*A*B) == True # multiplication by scalars is commutative True """ is_comparable = False __slots__ = ('name',) is_Symbol = True is_symbol = True @property def kind(self): if self.is_commutative: return NumberKind return UndefinedKind @property def _diff_wrt(self): """Allow derivatives wrt Symbols. Examples ======== >>> from sympy import Symbol >>> x = Symbol('x') >>> x._diff_wrt True """ return True @staticmethod def _sanitize(assumptions, obj=None): """Remove None, covert values to bool, check commutativity *in place*. """ # be strict about commutativity: cannot be None is_commutative = fuzzy_bool(assumptions.get('commutative', True)) if is_commutative is None: whose = '%s ' % obj.__name__ if obj else '' raise ValueError( '%scommutativity must be True or False.' % whose) # sanitize other assumptions so 1 -> True and 0 -> False for key in list(assumptions.keys()): v = assumptions[key] if v is None: assumptions.pop(key) continue assumptions[key] = bool(v) def _merge(self, assumptions): base = self.assumptions0 for k in set(assumptions) & set(base): if assumptions[k] != base[k]: from sympy.utilities.misc import filldedent raise ValueError(filldedent(''' non-matching assumptions for %s: existing value is %s and new value is %s''' % ( k, base[k], assumptions[k]))) base.update(assumptions) return base def __new__(cls, name, **assumptions): """Symbols are identified by name and assumptions:: >>> from sympy import Symbol >>> Symbol("x") == Symbol("x") True >>> Symbol("x", real=True) == Symbol("x", real=False) False """ cls._sanitize(assumptions, cls) return Symbol.__xnew_cached_(cls, name, **assumptions) def __new_stage2__(cls, name, **assumptions): if not isinstance(name, str): raise TypeError("name should be a string, not %s" % repr(type(name))) obj = Expr.__new__(cls) obj.name = name # TODO: Issue #8873: Forcing the commutative assumption here means # later code such as ``srepr()`` cannot tell whether the user # specified ``commutative=True`` or omitted it. To workaround this, # we keep a copy of the assumptions dict, then create the StdFactKB, # and finally overwrite its ``._generator`` with the dict copy. This # is a bit of a hack because we assume StdFactKB merely copies the # given dict as ``._generator``, but future modification might, e.g., # compute a minimal equivalent assumption set. tmp_asm_copy = assumptions.copy() # be strict about commutativity is_commutative = fuzzy_bool(assumptions.get('commutative', True)) assumptions['commutative'] = is_commutative obj._assumptions = StdFactKB(assumptions) obj._assumptions._generator = tmp_asm_copy # Issue #8873 return obj __xnew__ = staticmethod( __new_stage2__) # never cached (e.g. dummy) __xnew_cached_ = staticmethod( cacheit(__new_stage2__)) # symbols are always cached def __getnewargs__(self): return (self.name,) def __getstate__(self): return {'_assumptions': self._assumptions} def _hashable_content(self): # Note: user-specified assumptions not hashed, just derived ones return (self.name,) + tuple(sorted(self.assumptions0.items())) def _eval_subs(self, old, new): from sympy.core.power import Pow if old.is_Pow: return Pow(self, S.One, evaluate=False)._eval_subs(old, new) @property def assumptions0(self): return {key: value for key, value in self._assumptions.items() if value is not None} @cacheit def sort_key(self, order=None): return self.class_key(), (1, (self.name,)), S.One.sort_key(), S.One def as_dummy(self): # only put commutativity in explicitly if it is False return Dummy(self.name) if self.is_commutative is not False \ else Dummy(self.name, commutative=self.is_commutative) def as_real_imag(self, deep=True, **hints): from sympy import im, re if hints.get('ignore') == self: return None else: return (re(self), im(self)) def _sage_(self): import sage.all as sage return sage.var(self.name) def is_constant(self, *wrt, **flags): if not wrt: return False return not self in wrt @property def free_symbols(self): return {self} binary_symbols = free_symbols # in this case, not always def as_set(self): return S.UniversalSet class Dummy(Symbol): """Dummy symbols are each unique, even if they have the same name: Examples ======== >>> from sympy import Dummy >>> Dummy("x") == Dummy("x") False If a name is not supplied then a string value of an internal count will be used. This is useful when a temporary variable is needed and the name of the variable used in the expression is not important. >>> Dummy() #doctest: +SKIP _Dummy_10 """ # In the rare event that a Dummy object needs to be recreated, both the # `name` and `dummy_index` should be passed. This is used by `srepr` for # example: # >>> d1 = Dummy() # >>> d2 = eval(srepr(d1)) # >>> d2 == d1 # True # # If a new session is started between `srepr` and `eval`, there is a very # small chance that `d2` will be equal to a previously-created Dummy. _count = 0 _prng = random.Random() _base_dummy_index = _prng.randint(10**6, 9*10**6) __slots__ = ('dummy_index',) is_Dummy = True def __new__(cls, name=None, dummy_index=None, **assumptions): if dummy_index is not None: assert name is not None, "If you specify a dummy_index, you must also provide a name" if name is None: name = "Dummy_" + str(Dummy._count) if dummy_index is None: dummy_index = Dummy._base_dummy_index + Dummy._count Dummy._count += 1 cls._sanitize(assumptions, cls) obj = Symbol.__xnew__(cls, name, **assumptions) obj.dummy_index = dummy_index return obj def __getstate__(self): return {'_assumptions': self._assumptions, 'dummy_index': self.dummy_index} @cacheit def sort_key(self, order=None): return self.class_key(), ( 2, (self.name, self.dummy_index)), S.One.sort_key(), S.One def _hashable_content(self): return Symbol._hashable_content(self) + (self.dummy_index,) class Wild(Symbol): """ A Wild symbol matches anything, or anything without whatever is explicitly excluded. Parameters ========== name : str Name of the Wild instance. exclude : iterable, optional Instances in ``exclude`` will not be matched. properties : iterable of functions, optional Functions, each taking an expressions as input and returns a ``bool``. All functions in ``properties`` need to return ``True`` in order for the Wild instance to match the expression. Examples ======== >>> from sympy import Wild, WildFunction, cos, pi >>> from sympy.abc import x, y, z >>> a = Wild('a') >>> x.match(a) {a_: x} >>> pi.match(a) {a_: pi} >>> (3*x**2).match(a*x) {a_: 3*x} >>> cos(x).match(a) {a_: cos(x)} >>> b = Wild('b', exclude=[x]) >>> (3*x**2).match(b*x) >>> b.match(a) {a_: b_} >>> A = WildFunction('A') >>> A.match(a) {a_: A_} Tips ==== When using Wild, be sure to use the exclude keyword to make the pattern more precise. Without the exclude pattern, you may get matches that are technically correct, but not what you wanted. For example, using the above without exclude: >>> from sympy import symbols >>> a, b = symbols('a b', cls=Wild) >>> (2 + 3*y).match(a*x + b*y) {a_: 2/x, b_: 3} This is technically correct, because (2/x)*x + 3*y == 2 + 3*y, but you probably wanted it to not match at all. The issue is that you really didn't want a and b to include x and y, and the exclude parameter lets you specify exactly this. With the exclude parameter, the pattern will not match. >>> a = Wild('a', exclude=[x, y]) >>> b = Wild('b', exclude=[x, y]) >>> (2 + 3*y).match(a*x + b*y) Exclude also helps remove ambiguity from matches. >>> E = 2*x**3*y*z >>> a, b = symbols('a b', cls=Wild) >>> E.match(a*b) {a_: 2*y*z, b_: x**3} >>> a = Wild('a', exclude=[x, y]) >>> E.match(a*b) {a_: z, b_: 2*x**3*y} >>> a = Wild('a', exclude=[x, y, z]) >>> E.match(a*b) {a_: 2, b_: x**3*y*z} Wild also accepts a ``properties`` parameter: >>> a = Wild('a', properties=[lambda k: k.is_Integer]) >>> E.match(a*b) {a_: 2, b_: x**3*y*z} """ is_Wild = True __slots__ = ('exclude', 'properties') def __new__(cls, name, exclude=(), properties=(), **assumptions): exclude = tuple([sympify(x) for x in exclude]) properties = tuple(properties) cls._sanitize(assumptions, cls) return Wild.__xnew__(cls, name, exclude, properties, **assumptions) def __getnewargs__(self): return (self.name, self.exclude, self.properties) @staticmethod @cacheit def __xnew__(cls, name, exclude, properties, **assumptions): obj = Symbol.__xnew__(cls, name, **assumptions) obj.exclude = exclude obj.properties = properties return obj def _hashable_content(self): return super()._hashable_content() + (self.exclude, self.properties) # TODO add check against another Wild def matches(self, expr, repl_dict={}, old=False): if any(expr.has(x) for x in self.exclude): return None if any(not f(expr) for f in self.properties): return None repl_dict = repl_dict.copy() repl_dict[self] = expr return repl_dict _range = _re.compile('([0-9]*:[0-9]+|[a-zA-Z]?:[a-zA-Z])') def symbols(names, *, cls=Symbol, **args): r""" Transform strings into instances of :class:`Symbol` class. :func:`symbols` function returns a sequence of symbols with names taken from ``names`` argument, which can be a comma or whitespace delimited string, or a sequence of strings:: >>> from sympy import symbols, Function >>> x, y, z = symbols('x,y,z') >>> a, b, c = symbols('a b c') The type of output is dependent on the properties of input arguments:: >>> symbols('x') x >>> symbols('x,') (x,) >>> symbols('x,y') (x, y) >>> symbols(('a', 'b', 'c')) (a, b, c) >>> symbols(['a', 'b', 'c']) [a, b, c] >>> symbols({'a', 'b', 'c'}) {a, b, c} If an iterable container is needed for a single symbol, set the ``seq`` argument to ``True`` or terminate the symbol name with a comma:: >>> symbols('x', seq=True) (x,) To reduce typing, range syntax is supported to create indexed symbols. Ranges are indicated by a colon and the type of range is determined by the character to the right of the colon. If the character is a digit then all contiguous digits to the left are taken as the nonnegative starting value (or 0 if there is no digit left of the colon) and all contiguous digits to the right are taken as 1 greater than the ending value:: >>> symbols('x:10') (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) >>> symbols('x5:10') (x5, x6, x7, x8, x9) >>> symbols('x5(:2)') (x50, x51) >>> symbols('x5:10,y:5') (x5, x6, x7, x8, x9, y0, y1, y2, y3, y4) >>> symbols(('x5:10', 'y:5')) ((x5, x6, x7, x8, x9), (y0, y1, y2, y3, y4)) If the character to the right of the colon is a letter, then the single letter to the left (or 'a' if there is none) is taken as the start and all characters in the lexicographic range *through* the letter to the right are used as the range:: >>> symbols('x:z') (x, y, z) >>> symbols('x:c') # null range () >>> symbols('x(:c)') (xa, xb, xc) >>> symbols(':c') (a, b, c) >>> symbols('a:d, x:z') (a, b, c, d, x, y, z) >>> symbols(('a:d', 'x:z')) ((a, b, c, d), (x, y, z)) Multiple ranges are supported; contiguous numerical ranges should be separated by parentheses to disambiguate the ending number of one range from the starting number of the next:: >>> symbols('x:2(1:3)') (x01, x02, x11, x12) >>> symbols(':3:2') # parsing is from left to right (00, 01, 10, 11, 20, 21) Only one pair of parentheses surrounding ranges are removed, so to include parentheses around ranges, double them. And to include spaces, commas, or colons, escape them with a backslash:: >>> symbols('x((a:b))') (x(a), x(b)) >>> symbols(r'x(:1\,:2)') # or r'x((:1)\,(:2))' (x(0,0), x(0,1)) All newly created symbols have assumptions set according to ``args``:: >>> a = symbols('a', integer=True) >>> a.is_integer True >>> x, y, z = symbols('x,y,z', real=True) >>> x.is_real and y.is_real and z.is_real True Despite its name, :func:`symbols` can create symbol-like objects like instances of Function or Wild classes. To achieve this, set ``cls`` keyword argument to the desired type:: >>> symbols('f,g,h', cls=Function) (f, g, h) >>> type(_[0]) <class 'sympy.core.function.UndefinedFunction'> """ result = [] if isinstance(names, str): marker = 0 literals = [r'\,', r'\:', r'\ '] for i in range(len(literals)): lit = literals.pop(0) if lit in names: while chr(marker) in names: marker += 1 lit_char = chr(marker) marker += 1 names = names.replace(lit, lit_char) literals.append((lit_char, lit[1:])) def literal(s): if literals: for c, l in literals: s = s.replace(c, l) return s names = names.strip() as_seq = names.endswith(',') if as_seq: names = names[:-1].rstrip() if not names: raise ValueError('no symbols given') # split on commas names = [n.strip() for n in names.split(',')] if not all(n for n in names): raise ValueError('missing symbol between commas') # split on spaces for i in range(len(names) - 1, -1, -1): names[i: i + 1] = names[i].split() seq = args.pop('seq', as_seq) for name in names: if not name: raise ValueError('missing symbol') if ':' not in name: symbol = cls(literal(name), **args) result.append(symbol) continue split = _range.split(name) # remove 1 layer of bounding parentheses around ranges for i in range(len(split) - 1): if i and ':' in split[i] and split[i] != ':' and \ split[i - 1].endswith('(') and \ split[i + 1].startswith(')'): split[i - 1] = split[i - 1][:-1] split[i + 1] = split[i + 1][1:] for i, s in enumerate(split): if ':' in s: if s[-1].endswith(':'): raise ValueError('missing end range') a, b = s.split(':') if b[-1] in string.digits: a = 0 if not a else int(a) b = int(b) split[i] = [str(c) for c in range(a, b)] else: a = a or 'a' split[i] = [string.ascii_letters[c] for c in range( string.ascii_letters.index(a), string.ascii_letters.index(b) + 1)] # inclusive if not split[i]: break else: split[i] = [s] else: seq = True if len(split) == 1: names = split[0] else: names = [''.join(s) for s in cartes(*split)] if literals: result.extend([cls(literal(s), **args) for s in names]) else: result.extend([cls(s, **args) for s in names]) if not seq and len(result) <= 1: if not result: return () return result[0] return tuple(result) else: for name in names: result.append(symbols(name, **args)) return type(names)(result) def var(names, **args): """ Create symbols and inject them into the global namespace. Explanation =========== This calls :func:`symbols` with the same arguments and puts the results into the *global* namespace. It's recommended not to use :func:`var` in library code, where :func:`symbols` has to be used:: Examples ======== >>> from sympy import var >>> var('x') x >>> x # noqa: F821 x >>> var('a,ab,abc') (a, ab, abc) >>> abc # noqa: F821 abc >>> var('x,y', real=True) (x, y) >>> x.is_real and y.is_real # noqa: F821 True See :func:`symbols` documentation for more details on what kinds of arguments can be passed to :func:`var`. """ def traverse(symbols, frame): """Recursively inject symbols to the global namespace. """ for symbol in symbols: if isinstance(symbol, Basic): frame.f_globals[symbol.name] = symbol elif isinstance(symbol, FunctionClass): frame.f_globals[symbol.__name__] = symbol else: traverse(symbol, frame) from inspect import currentframe frame = currentframe().f_back try: syms = symbols(names, **args) if syms is not None: if isinstance(syms, Basic): frame.f_globals[syms.name] = syms elif isinstance(syms, FunctionClass): frame.f_globals[syms.__name__] = syms else: traverse(syms, frame) finally: del frame # break cyclic dependencies as stated in inspect docs return syms def disambiguate(*iter): """ Return a Tuple containing the passed expressions with symbols that appear the same when printed replaced with numerically subscripted symbols, and all Dummy symbols replaced with Symbols. Parameters ========== iter: list of symbols or expressions. Examples ======== >>> from sympy.core.symbol import disambiguate >>> from sympy import Dummy, Symbol, Tuple >>> from sympy.abc import y >>> tup = Symbol('_x'), Dummy('x'), Dummy('x') >>> disambiguate(*tup) (x_2, x, x_1) >>> eqs = Tuple(Symbol('x')/y, Dummy('x')/y) >>> disambiguate(*eqs) (x_1/y, x/y) >>> ix = Symbol('x', integer=True) >>> vx = Symbol('x') >>> disambiguate(vx + ix) (x + x_1,) To make your own mapping of symbols to use, pass only the free symbols of the expressions and create a dictionary: >>> free = eqs.free_symbols >>> mapping = dict(zip(free, disambiguate(*free))) >>> eqs.xreplace(mapping) (x_1/y, x/y) """ new_iter = Tuple(*iter) key = lambda x:tuple(sorted(x.assumptions0.items())) syms = ordered(new_iter.free_symbols, keys=key) mapping = {} for s in syms: mapping.setdefault(str(s).lstrip('_'), []).append(s) reps = {} for k in mapping: # the first or only symbol doesn't get subscripted but make # sure that it's a Symbol, not a Dummy mapk0 = Symbol("%s" % (k), **mapping[k][0].assumptions0) if mapping[k][0] != mapk0: reps[mapping[k][0]] = mapk0 # the others get subscripts (and are made into Symbols) skip = 0 for i in range(1, len(mapping[k])): while True: name = "%s_%i" % (k, i + skip) if name not in mapping: break skip += 1 ki = mapping[k][i] reps[ki] = Symbol(name, **ki.assumptions0) return new_iter.xreplace(reps)
713d2dec519b0c899ba1baa6d4ba9d38a593c1d2db54cc189b961bbbe8856674
from sympy import Expr, Add, Mul, Pow, sympify, Matrix, Tuple from sympy.utilities import default_sort_key def _is_scalar(e): """ Helper method used in Tr""" # sympify to set proper attributes e = sympify(e) if isinstance(e, Expr): if (e.is_Integer or e.is_Float or e.is_Rational or e.is_Number or (e.is_Symbol and e.is_commutative) ): return True return False def _cycle_permute(l): """ Cyclic permutations based on canonical ordering Explanation =========== This method does the sort based ascii values while a better approach would be to used lexicographic sort. TODO: Handle condition such as symbols have subscripts/superscripts in case of lexicographic sort """ if len(l) == 1: return l min_item = min(l, key=default_sort_key) indices = [i for i, x in enumerate(l) if x == min_item] le = list(l) le.extend(l) # duplicate and extend string for easy processing # adding the first min_item index back for easier looping indices.append(len(l) + indices[0]) # create sublist of items with first item as min_item and last_item # in each of the sublist is item just before the next occurrence of # minitem in the cycle formed. sublist = [[le[indices[i]:indices[i + 1]]] for i in range(len(indices) - 1)] # we do comparison of strings by comparing elements # in each sublist idx = sublist.index(min(sublist)) ordered_l = le[indices[idx]:indices[idx] + len(l)] return ordered_l def _rearrange_args(l): """ this just moves the last arg to first position to enable expansion of args A,B,A ==> A**2,B """ if len(l) == 1: return l x = list(l[-1:]) x.extend(l[0:-1]) return Mul(*x).args class Tr(Expr): """ Generic Trace operation than can trace over: a) sympy matrix b) operators c) outer products Parameters ========== o : operator, matrix, expr i : tuple/list indices (optional) Examples ======== # TODO: Need to handle printing a) Trace(A+B) = Tr(A) + Tr(B) b) Trace(scalar*Operator) = scalar*Trace(Operator) >>> from sympy.core.trace import Tr >>> from sympy import symbols, Matrix >>> a, b = symbols('a b', commutative=True) >>> A, B = symbols('A B', commutative=False) >>> Tr(a*A,[2]) a*Tr(A) >>> m = Matrix([[1,2],[1,1]]) >>> Tr(m) 2 """ def __new__(cls, *args): """ Construct a Trace object. Parameters ========== args = sympy expression indices = tuple/list if indices, optional """ # expect no indices,int or a tuple/list/Tuple if (len(args) == 2): if not isinstance(args[1], (list, Tuple, tuple)): indices = Tuple(args[1]) else: indices = Tuple(*args[1]) expr = args[0] elif (len(args) == 1): indices = Tuple() expr = args[0] else: raise ValueError("Arguments to Tr should be of form " "(expr[, [indices]])") if isinstance(expr, Matrix): return expr.trace() elif hasattr(expr, 'trace') and callable(expr.trace): #for any objects that have trace() defined e.g numpy return expr.trace() elif isinstance(expr, Add): return Add(*[Tr(arg, indices) for arg in expr.args]) elif isinstance(expr, Mul): c_part, nc_part = expr.args_cnc() if len(nc_part) == 0: return Mul(*c_part) else: obj = Expr.__new__(cls, Mul(*nc_part), indices ) #this check is needed to prevent cached instances #being returned even if len(c_part)==0 return Mul(*c_part)*obj if len(c_part) > 0 else obj elif isinstance(expr, Pow): if (_is_scalar(expr.args[0]) and _is_scalar(expr.args[1])): return expr else: return Expr.__new__(cls, expr, indices) else: if (_is_scalar(expr)): return expr return Expr.__new__(cls, expr, indices) @property def kind(self): expr = self.args[0] expr_kind = expr.kind return expr_kind.element_kind def doit(self, **kwargs): """ Perform the trace operation. #TODO: Current version ignores the indices set for partial trace. >>> from sympy.core.trace import Tr >>> from sympy.physics.quantum.operator import OuterProduct >>> from sympy.physics.quantum.spin import JzKet, JzBra >>> t = Tr(OuterProduct(JzKet(1,1), JzBra(1,1))) >>> t.doit() 1 """ if hasattr(self.args[0], '_eval_trace'): return self.args[0]._eval_trace(indices=self.args[1]) return self @property def is_number(self): # TODO : improve this implementation return True #TODO: Review if the permute method is needed # and if it needs to return a new instance def permute(self, pos): """ Permute the arguments cyclically. Parameters ========== pos : integer, if positive, shift-right, else shift-left Examples ======== >>> from sympy.core.trace import Tr >>> from sympy import symbols >>> A, B, C, D = symbols('A B C D', commutative=False) >>> t = Tr(A*B*C*D) >>> t.permute(2) Tr(C*D*A*B) >>> t.permute(-2) Tr(C*D*A*B) """ if pos > 0: pos = pos % len(self.args[0].args) else: pos = -(abs(pos) % len(self.args[0].args)) args = list(self.args[0].args[-pos:] + self.args[0].args[0:-pos]) return Tr(Mul(*(args))) def _hashable_content(self): if isinstance(self.args[0], Mul): args = _cycle_permute(_rearrange_args(self.args[0].args)) else: args = [self.args[0]] return tuple(args) + (self.args[1], )
bad95522933ec7b1c5f5376429597fff7542339210eb758fad7856c927bdb36f
from collections import defaultdict from functools import cmp_to_key, reduce import operator from .sympify import sympify from .basic import Basic from .singleton import S from .operations import AssocOp, AssocOpDispatcher from .cache import cacheit from .logic import fuzzy_not, _fuzzy_group from .expr import Expr from .parameters import global_parameters from .kind import KindDispatcher # internal marker to indicate: # "there are still non-commutative objects -- don't forget to process them" class NC_Marker: is_Order = False is_Mul = False is_Number = False is_Poly = False is_commutative = False # Key for sorting commutative args in canonical order _args_sortkey = cmp_to_key(Basic.compare) def _mulsort(args): # in-place sorting of args args.sort(key=_args_sortkey) def _unevaluated_Mul(*args): """Return a well-formed unevaluated Mul: Numbers are collected and put in slot 0, any arguments that are Muls will be flattened, and args are sorted. Use this when args have changed but you still want to return an unevaluated Mul. Examples ======== >>> from sympy.core.mul import _unevaluated_Mul as uMul >>> from sympy import S, sqrt, Mul >>> from sympy.abc import x >>> a = uMul(*[S(3.0), x, S(2)]) >>> a.args[0] 6.00000000000000 >>> a.args[1] x Two unevaluated Muls with the same arguments will always compare as equal during testing: >>> m = uMul(sqrt(2), sqrt(3)) >>> m == uMul(sqrt(3), sqrt(2)) True >>> u = Mul(sqrt(3), sqrt(2), evaluate=False) >>> m == uMul(u) True >>> m == Mul(*m.args) False """ args = list(args) newargs = [] ncargs = [] co = S.One while args: a = args.pop() if a.is_Mul: c, nc = a.args_cnc() args.extend(c) if nc: ncargs.append(Mul._from_args(nc)) elif a.is_Number: co *= a else: newargs.append(a) _mulsort(newargs) if co is not S.One: newargs.insert(0, co) if ncargs: newargs.append(Mul._from_args(ncargs)) return Mul._from_args(newargs) class Mul(Expr, AssocOp): """ Expression representing multiplication operation for algebraic field. Every argument of ``Mul()`` must be ``Expr``. Infix operator ``*`` on most scalar objects in SymPy calls this class. Another use of ``Mul()`` is to represent the structure of abstract multiplication so that its arguments can be substituted to return different class. Refer to examples section for this. ``Mul()`` evaluates the argument unless ``evaluate=False`` is passed. The evaluation logic includes: 1. Flattening ``Mul(x, Mul(y, z))`` -> ``Mul(x, y, z)`` 2. Identity removing ``Mul(x, 1, y)`` -> ``Mul(x, y)`` 3. Exponent collecting by ``.as_base_exp()`` ``Mul(x, x**2)`` -> ``Pow(x, 3)`` 4. Term sorting ``Mul(y, x, 2)`` -> ``Mul(2, x, y)`` Since multiplication can be vector space operation, arguments may have the different :obj:`sympy.core.kind.Kind()`. Kind of the resulting object is automatically inferred. Examples ======== >>> from sympy import Mul >>> from sympy.abc import x, y >>> Mul(x, 1) x >>> Mul(x, x) x**2 If ``evaluate=False`` is passed, result is not evaluated. >>> Mul(1, 2, evaluate=False) 1*2 >>> Mul(x, x, evaluate=False) x*x ``Mul()`` also represents the general structure of multiplication operation. >>> from sympy import MatrixSymbol >>> A = MatrixSymbol('A', 2,2) >>> expr = Mul(x,y).subs({y:A}) >>> expr x*A >>> type(expr) <class 'sympy.matrices.expressions.matmul.MatMul'> See Also ======== MatMul """ __slots__ = () is_Mul = True _args_type = Expr _kind_dispatcher = KindDispatcher("Mul_kind_dispatcher", commutative=True) @property def kind(self): arg_kinds = (a.kind for a in self.args) return self._kind_dispatcher(*arg_kinds) def __neg__(self): c, args = self.as_coeff_mul() c = -c if c is not S.One: if args[0].is_Number: args = list(args) if c is S.NegativeOne: args[0] = -args[0] else: args[0] *= c else: args = (c,) + args return self._from_args(args, self.is_commutative) @classmethod def flatten(cls, seq): """Return commutative, noncommutative and order arguments by combining related terms. Notes ===== * In an expression like ``a*b*c``, python process this through sympy as ``Mul(Mul(a, b), c)``. This can have undesirable consequences. - Sometimes terms are not combined as one would like: {c.f. https://github.com/sympy/sympy/issues/4596} >>> from sympy import Mul, sqrt >>> from sympy.abc import x, y, z >>> 2*(x + 1) # this is the 2-arg Mul behavior 2*x + 2 >>> y*(x + 1)*2 2*y*(x + 1) >>> 2*(x + 1)*y # 2-arg result will be obtained first y*(2*x + 2) >>> Mul(2, x + 1, y) # all 3 args simultaneously processed 2*y*(x + 1) >>> 2*((x + 1)*y) # parentheses can control this behavior 2*y*(x + 1) Powers with compound bases may not find a single base to combine with unless all arguments are processed at once. Post-processing may be necessary in such cases. {c.f. https://github.com/sympy/sympy/issues/5728} >>> a = sqrt(x*sqrt(y)) >>> a**3 (x*sqrt(y))**(3/2) >>> Mul(a,a,a) (x*sqrt(y))**(3/2) >>> a*a*a x*sqrt(y)*sqrt(x*sqrt(y)) >>> _.subs(a.base, z).subs(z, a.base) (x*sqrt(y))**(3/2) - If more than two terms are being multiplied then all the previous terms will be re-processed for each new argument. So if each of ``a``, ``b`` and ``c`` were :class:`Mul` expression, then ``a*b*c`` (or building up the product with ``*=``) will process all the arguments of ``a`` and ``b`` twice: once when ``a*b`` is computed and again when ``c`` is multiplied. Using ``Mul(a, b, c)`` will process all arguments once. * The results of Mul are cached according to arguments, so flatten will only be called once for ``Mul(a, b, c)``. If you can structure a calculation so the arguments are most likely to be repeats then this can save time in computing the answer. For example, say you had a Mul, M, that you wished to divide by ``d[i]`` and multiply by ``n[i]`` and you suspect there are many repeats in ``n``. It would be better to compute ``M*n[i]/d[i]`` rather than ``M/d[i]*n[i]`` since every time n[i] is a repeat, the product, ``M*n[i]`` will be returned without flattening -- the cached value will be returned. If you divide by the ``d[i]`` first (and those are more unique than the ``n[i]``) then that will create a new Mul, ``M/d[i]`` the args of which will be traversed again when it is multiplied by ``n[i]``. {c.f. https://github.com/sympy/sympy/issues/5706} This consideration is moot if the cache is turned off. NB -- The validity of the above notes depends on the implementation details of Mul and flatten which may change at any time. Therefore, you should only consider them when your code is highly performance sensitive. Removal of 1 from the sequence is already handled by AssocOp.__new__. """ from sympy.calculus.util import AccumBounds from sympy.matrices.expressions import MatrixExpr rv = None if len(seq) == 2: a, b = seq if b.is_Rational: a, b = b, a seq = [a, b] assert not a is S.One if not a.is_zero and a.is_Rational: r, b = b.as_coeff_Mul() if b.is_Add: if r is not S.One: # 2-arg hack # leave the Mul as a Mul? ar = a*r if ar is S.One: arb = b else: arb = cls(a*r, b, evaluate=False) rv = [arb], [], None elif global_parameters.distribute and b.is_commutative: r, b = b.as_coeff_Add() bargs = [_keep_coeff(a, bi) for bi in Add.make_args(b)] _addsort(bargs) ar = a*r if ar: bargs.insert(0, ar) bargs = [Add._from_args(bargs)] rv = bargs, [], None if rv: return rv # apply associativity, separate commutative part of seq c_part = [] # out: commutative factors nc_part = [] # out: non-commutative factors nc_seq = [] coeff = S.One # standalone term # e.g. 3 * ... c_powers = [] # (base,exp) n # e.g. (x,n) for x num_exp = [] # (num-base, exp) y # e.g. (3, y) for ... * 3 * ... neg1e = S.Zero # exponent on -1 extracted from Number-based Pow and I pnum_rat = {} # (num-base, Rat-exp) 1/2 # e.g. (3, 1/2) for ... * 3 * ... order_symbols = None # --- PART 1 --- # # "collect powers and coeff": # # o coeff # o c_powers # o num_exp # o neg1e # o pnum_rat # # NOTE: this is optimized for all-objects-are-commutative case for o in seq: # O(x) if o.is_Order: o, order_symbols = o.as_expr_variables(order_symbols) # Mul([...]) if o.is_Mul: if o.is_commutative: seq.extend(o.args) # XXX zerocopy? else: # NCMul can have commutative parts as well for q in o.args: if q.is_commutative: seq.append(q) else: nc_seq.append(q) # append non-commutative marker, so we don't forget to # process scheduled non-commutative objects seq.append(NC_Marker) continue # 3 elif o.is_Number: if o is S.NaN or coeff is S.ComplexInfinity and o.is_zero: # we know for sure the result will be nan return [S.NaN], [], None elif coeff.is_Number or isinstance(coeff, AccumBounds): # it could be zoo coeff *= o if coeff is S.NaN: # we know for sure the result will be nan return [S.NaN], [], None continue elif isinstance(o, AccumBounds): coeff = o.__mul__(coeff) continue elif o is S.ComplexInfinity: if not coeff: # 0 * zoo = NaN return [S.NaN], [], None coeff = S.ComplexInfinity continue elif o is S.ImaginaryUnit: neg1e += S.Half continue elif o.is_commutative: # e # o = b b, e = o.as_base_exp() # y # 3 if o.is_Pow: if b.is_Number: # get all the factors with numeric base so they can be # combined below, but don't combine negatives unless # the exponent is an integer if e.is_Rational: if e.is_Integer: coeff *= Pow(b, e) # it is an unevaluated power continue elif e.is_negative: # also a sign of an unevaluated power seq.append(Pow(b, e)) continue elif b.is_negative: neg1e += e b = -b if b is not S.One: pnum_rat.setdefault(b, []).append(e) continue elif b.is_positive or e.is_integer: num_exp.append((b, e)) continue c_powers.append((b, e)) # NON-COMMUTATIVE # TODO: Make non-commutative exponents not combine automatically else: if o is not NC_Marker: nc_seq.append(o) # process nc_seq (if any) while nc_seq: o = nc_seq.pop(0) if not nc_part: nc_part.append(o) continue # b c b+c # try to combine last terms: a * a -> a o1 = nc_part.pop() b1, e1 = o1.as_base_exp() b2, e2 = o.as_base_exp() new_exp = e1 + e2 # Only allow powers to combine if the new exponent is # not an Add. This allow things like a**2*b**3 == a**5 # if a.is_commutative == False, but prohibits # a**x*a**y and x**a*x**b from combining (x,y commute). if b1 == b2 and (not new_exp.is_Add): o12 = b1 ** new_exp # now o12 could be a commutative object if o12.is_commutative: seq.append(o12) continue else: nc_seq.insert(0, o12) else: nc_part.append(o1) nc_part.append(o) # We do want a combined exponent if it would not be an Add, such as # y 2y 3y # x * x -> x # We determine if two exponents have the same term by using # as_coeff_Mul. # # Unfortunately, this isn't smart enough to consider combining into # exponents that might already be adds, so things like: # z - y y # x * x will be left alone. This is because checking every possible # combination can slow things down. # gather exponents of common bases... def _gather(c_powers): common_b = {} # b:e for b, e in c_powers: co = e.as_coeff_Mul() common_b.setdefault(b, {}).setdefault( co[1], []).append(co[0]) for b, d in common_b.items(): for di, li in d.items(): d[di] = Add(*li) new_c_powers = [] for b, e in common_b.items(): new_c_powers.extend([(b, c*t) for t, c in e.items()]) return new_c_powers # in c_powers c_powers = _gather(c_powers) # and in num_exp num_exp = _gather(num_exp) # --- PART 2 --- # # o process collected powers (x**0 -> 1; x**1 -> x; otherwise Pow) # o combine collected powers (2**x * 3**x -> 6**x) # with numeric base # ................................ # now we have: # - coeff: # - c_powers: (b, e) # - num_exp: (2, e) # - pnum_rat: {(1/3, [1/3, 2/3, 1/4])} # 0 1 # x -> 1 x -> x # this should only need to run twice; if it fails because # it needs to be run more times, perhaps this should be # changed to a "while True" loop -- the only reason it # isn't such now is to allow a less-than-perfect result to # be obtained rather than raising an error or entering an # infinite loop for i in range(2): new_c_powers = [] changed = False for b, e in c_powers: if e.is_zero: # canceling out infinities yields NaN if (b.is_Add or b.is_Mul) and any(infty in b.args for infty in (S.ComplexInfinity, S.Infinity, S.NegativeInfinity)): return [S.NaN], [], None continue if e is S.One: if b.is_Number: coeff *= b continue p = b if e is not S.One: p = Pow(b, e) # check to make sure that the base doesn't change # after exponentiation; to allow for unevaluated # Pow, we only do so if b is not already a Pow if p.is_Pow and not b.is_Pow: bi = b b, e = p.as_base_exp() if b != bi: changed = True c_part.append(p) new_c_powers.append((b, e)) # there might have been a change, but unless the base # matches some other base, there is nothing to do if changed and len({ b for b, e in new_c_powers}) != len(new_c_powers): # start over again c_part = [] c_powers = _gather(new_c_powers) else: break # x x x # 2 * 3 -> 6 inv_exp_dict = {} # exp:Mul(num-bases) x x # e.g. x:6 for ... * 2 * 3 * ... for b, e in num_exp: inv_exp_dict.setdefault(e, []).append(b) for e, b in inv_exp_dict.items(): inv_exp_dict[e] = cls(*b) c_part.extend([Pow(b, e) for e, b in inv_exp_dict.items() if e]) # b, e -> e' = sum(e), b # {(1/5, [1/3]), (1/2, [1/12, 1/4]} -> {(1/3, [1/5, 1/2])} comb_e = {} for b, e in pnum_rat.items(): comb_e.setdefault(Add(*e), []).append(b) del pnum_rat # process them, reducing exponents to values less than 1 # and updating coeff if necessary else adding them to # num_rat for further processing num_rat = [] for e, b in comb_e.items(): b = cls(*b) if e.q == 1: coeff *= Pow(b, e) continue if e.p > e.q: e_i, ep = divmod(e.p, e.q) coeff *= Pow(b, e_i) e = Rational(ep, e.q) num_rat.append((b, e)) del comb_e # extract gcd of bases in num_rat # 2**(1/3)*6**(1/4) -> 2**(1/3+1/4)*3**(1/4) pnew = defaultdict(list) i = 0 # steps through num_rat which may grow while i < len(num_rat): bi, ei = num_rat[i] grow = [] for j in range(i + 1, len(num_rat)): bj, ej = num_rat[j] g = bi.gcd(bj) if g is not S.One: # 4**r1*6**r2 -> 2**(r1+r2) * 2**r1 * 3**r2 # this might have a gcd with something else e = ei + ej if e.q == 1: coeff *= Pow(g, e) else: if e.p > e.q: e_i, ep = divmod(e.p, e.q) # change e in place coeff *= Pow(g, e_i) e = Rational(ep, e.q) grow.append((g, e)) # update the jth item num_rat[j] = (bj/g, ej) # update bi that we are checking with bi = bi/g if bi is S.One: break if bi is not S.One: obj = Pow(bi, ei) if obj.is_Number: coeff *= obj else: # changes like sqrt(12) -> 2*sqrt(3) for obj in Mul.make_args(obj): if obj.is_Number: coeff *= obj else: assert obj.is_Pow bi, ei = obj.args pnew[ei].append(bi) num_rat.extend(grow) i += 1 # combine bases of the new powers for e, b in pnew.items(): pnew[e] = cls(*b) # handle -1 and I if neg1e: # treat I as (-1)**(1/2) and compute -1's total exponent p, q = neg1e.as_numer_denom() # if the integer part is odd, extract -1 n, p = divmod(p, q) if n % 2: coeff = -coeff # if it's a multiple of 1/2 extract I if q == 2: c_part.append(S.ImaginaryUnit) elif p: # see if there is any positive base this power of # -1 can join neg1e = Rational(p, q) for e, b in pnew.items(): if e == neg1e and b.is_positive: pnew[e] = -b break else: # keep it separate; we've already evaluated it as # much as possible so evaluate=False c_part.append(Pow(S.NegativeOne, neg1e, evaluate=False)) # add all the pnew powers c_part.extend([Pow(b, e) for e, b in pnew.items()]) # oo, -oo if (coeff is S.Infinity) or (coeff is S.NegativeInfinity): def _handle_for_oo(c_part, coeff_sign): new_c_part = [] for t in c_part: if t.is_extended_positive: continue if t.is_extended_negative: coeff_sign *= -1 continue new_c_part.append(t) return new_c_part, coeff_sign c_part, coeff_sign = _handle_for_oo(c_part, 1) nc_part, coeff_sign = _handle_for_oo(nc_part, coeff_sign) coeff *= coeff_sign # zoo if coeff is S.ComplexInfinity: # zoo might be # infinite_real + bounded_im # bounded_real + infinite_im # infinite_real + infinite_im # and non-zero real or imaginary will not change that status. c_part = [c for c in c_part if not (fuzzy_not(c.is_zero) and c.is_extended_real is not None)] nc_part = [c for c in nc_part if not (fuzzy_not(c.is_zero) and c.is_extended_real is not None)] # 0 elif coeff.is_zero: # we know for sure the result will be 0 except the multiplicand # is infinity or a matrix if any(isinstance(c, MatrixExpr) for c in nc_part): return [coeff], nc_part, order_symbols if any(c.is_finite == False for c in c_part): return [S.NaN], [], order_symbols return [coeff], [], order_symbols # check for straggling Numbers that were produced _new = [] for i in c_part: if i.is_Number: coeff *= i else: _new.append(i) c_part = _new # order commutative part canonically _mulsort(c_part) # current code expects coeff to be always in slot-0 if coeff is not S.One: c_part.insert(0, coeff) # we are done if (global_parameters.distribute and not nc_part and len(c_part) == 2 and c_part[0].is_Number and c_part[0].is_finite and c_part[1].is_Add): # 2*(1+a) -> 2 + 2 * a coeff = c_part[0] c_part = [Add(*[coeff*f for f in c_part[1].args])] return c_part, nc_part, order_symbols def _eval_power(self, e): # don't break up NC terms: (A*B)**3 != A**3*B**3, it is A*B*A*B*A*B cargs, nc = self.args_cnc(split_1=False) if e.is_Integer: return Mul(*[Pow(b, e, evaluate=False) for b in cargs]) * \ Pow(Mul._from_args(nc), e, evaluate=False) if e.is_Rational and e.q == 2: from sympy.core.power import integer_nthroot from sympy.functions.elementary.complexes import sign if self.is_imaginary: a = self.as_real_imag()[1] if a.is_Rational: n, d = abs(a/2).as_numer_denom() n, t = integer_nthroot(n, 2) if t: d, t = integer_nthroot(d, 2) if t: r = sympify(n)/d return _unevaluated_Mul(r**e.p, (1 + sign(a)*S.ImaginaryUnit)**e.p) p = Pow(self, e, evaluate=False) if e.is_Rational or e.is_Float: return p._eval_expand_power_base() return p @classmethod def class_key(cls): return 3, 0, cls.__name__ def _eval_evalf(self, prec): c, m = self.as_coeff_Mul() if c is S.NegativeOne: if m.is_Mul: rv = -AssocOp._eval_evalf(m, prec) else: mnew = m._eval_evalf(prec) if mnew is not None: m = mnew rv = -m else: rv = AssocOp._eval_evalf(self, prec) if rv.is_number: return rv.expand() return rv @property def _mpc_(self): """ Convert self to an mpmath mpc if possible """ from sympy.core.numbers import I, Float im_part, imag_unit = self.as_coeff_Mul() if not imag_unit == I: # ValueError may seem more reasonable but since it's a @property, # we need to use AttributeError to keep from confusing things like # hasattr. raise AttributeError("Cannot convert Mul to mpc. Must be of the form Number*I") return (Float(0)._mpf_, Float(im_part)._mpf_) @cacheit def as_two_terms(self): """Return head and tail of self. This is the most efficient way to get the head and tail of an expression. - if you want only the head, use self.args[0]; - if you want to process the arguments of the tail then use self.as_coef_mul() which gives the head and a tuple containing the arguments of the tail when treated as a Mul. - if you want the coefficient when self is treated as an Add then use self.as_coeff_add()[0] Examples ======== >>> from sympy.abc import x, y >>> (3*x*y).as_two_terms() (3, x*y) """ args = self.args if len(args) == 1: return S.One, self elif len(args) == 2: return args else: return args[0], self._new_rawargs(*args[1:]) @cacheit def as_coefficients_dict(self): """Return a dictionary mapping terms to their coefficient. Since the dictionary is a defaultdict, inquiries about terms which were not present will return a coefficient of 0. The dictionary is considered to have a single term. Examples ======== >>> from sympy.abc import a, x >>> (3*a*x).as_coefficients_dict() {a*x: 3} >>> _[a] 0 """ d = defaultdict(int) args = self.args if len(args) == 1 or not args[0].is_Number: d[self] = S.One else: d[self._new_rawargs(*args[1:])] = args[0] return d @cacheit def as_coeff_mul(self, *deps, rational=True, **kwargs): if deps: from sympy.utilities.iterables import sift l1, l2 = sift(self.args, lambda x: x.has(*deps), binary=True) return self._new_rawargs(*l2), tuple(l1) args = self.args if args[0].is_Number: if not rational or args[0].is_Rational: return args[0], args[1:] elif args[0].is_extended_negative: return S.NegativeOne, (-args[0],) + args[1:] return S.One, args def as_coeff_Mul(self, rational=False): """ Efficiently extract the coefficient of a product. """ coeff, args = self.args[0], self.args[1:] if coeff.is_Number: if not rational or coeff.is_Rational: if len(args) == 1: return coeff, args[0] else: return coeff, self._new_rawargs(*args) elif coeff.is_extended_negative: return S.NegativeOne, self._new_rawargs(*((-coeff,) + args)) return S.One, self def as_real_imag(self, deep=True, **hints): from sympy import Abs, expand_mul, im, re other = [] coeffr = [] coeffi = [] addterms = S.One for a in self.args: r, i = a.as_real_imag() if i.is_zero: coeffr.append(r) elif r.is_zero: coeffi.append(i*S.ImaginaryUnit) elif a.is_commutative: # search for complex conjugate pairs: for i, x in enumerate(other): if x == a.conjugate(): coeffr.append(Abs(x)**2) del other[i] break else: if a.is_Add: addterms *= a else: other.append(a) else: other.append(a) m = self.func(*other) if hints.get('ignore') == m: return if len(coeffi) % 2: imco = im(coeffi.pop(0)) # all other pairs make a real factor; they will be # put into reco below else: imco = S.Zero reco = self.func(*(coeffr + coeffi)) r, i = (reco*re(m), reco*im(m)) if addterms == 1: if m == 1: if imco.is_zero: return (reco, S.Zero) else: return (S.Zero, reco*imco) if imco is S.Zero: return (r, i) return (-imco*i, imco*r) addre, addim = expand_mul(addterms, deep=False).as_real_imag() if imco is S.Zero: return (r*addre - i*addim, i*addre + r*addim) else: r, i = -imco*i, imco*r return (r*addre - i*addim, r*addim + i*addre) @staticmethod def _expandsums(sums): """ Helper function for _eval_expand_mul. sums must be a list of instances of Basic. """ L = len(sums) if L == 1: return sums[0].args terms = [] left = Mul._expandsums(sums[:L//2]) right = Mul._expandsums(sums[L//2:]) terms = [Mul(a, b) for a in left for b in right] added = Add(*terms) return Add.make_args(added) # it may have collapsed down to one term def _eval_expand_mul(self, **hints): from sympy import fraction # Handle things like 1/(x*(x + 1)), which are automatically converted # to 1/x*1/(x + 1) expr = self n, d = fraction(expr) if d.is_Mul: n, d = [i._eval_expand_mul(**hints) if i.is_Mul else i for i in (n, d)] expr = n/d if not expr.is_Mul: return expr plain, sums, rewrite = [], [], False for factor in expr.args: if factor.is_Add: sums.append(factor) rewrite = True else: if factor.is_commutative: plain.append(factor) else: sums.append(Basic(factor)) # Wrapper if not rewrite: return expr else: plain = self.func(*plain) if sums: deep = hints.get("deep", False) terms = self.func._expandsums(sums) args = [] for term in terms: t = self.func(plain, term) if t.is_Mul and any(a.is_Add for a in t.args) and deep: t = t._eval_expand_mul() args.append(t) return Add(*args) else: return plain @cacheit def _eval_derivative(self, s): args = list(self.args) terms = [] for i in range(len(args)): d = args[i].diff(s) if d: # Note: reduce is used in step of Mul as Mul is unable to # handle subtypes and operation priority: terms.append(reduce(lambda x, y: x*y, (args[:i] + [d] + args[i + 1:]), S.One)) return Add.fromiter(terms) @cacheit def _eval_derivative_n_times(self, s, n): from sympy import Integer, factorial, prod, Sum, Max from sympy.ntheory.multinomial import multinomial_coefficients_iterator from .function import AppliedUndef from .symbol import Symbol, symbols, Dummy if not isinstance(s, AppliedUndef) and not isinstance(s, Symbol): # other types of s may not be well behaved, e.g. # (cos(x)*sin(y)).diff([[x, y, z]]) return super()._eval_derivative_n_times(s, n) args = self.args m = len(args) if isinstance(n, (int, Integer)): # https://en.wikipedia.org/wiki/General_Leibniz_rule#More_than_two_factors terms = [] for kvals, c in multinomial_coefficients_iterator(m, n): p = prod([arg.diff((s, k)) for k, arg in zip(kvals, args)]) terms.append(c * p) return Add(*terms) kvals = symbols("k1:%i" % m, cls=Dummy) klast = n - sum(kvals) nfact = factorial(n) e, l = (# better to use the multinomial? nfact/prod(map(factorial, kvals))/factorial(klast)*\ prod([args[t].diff((s, kvals[t])) for t in range(m-1)])*\ args[-1].diff((s, Max(0, klast))), [(k, 0, n) for k in kvals]) return Sum(e, *l) def _eval_difference_delta(self, n, step): from sympy.series.limitseq import difference_delta as dd arg0 = self.args[0] rest = Mul(*self.args[1:]) return (arg0.subs(n, n + step) * dd(rest, n, step) + dd(arg0, n, step) * rest) def _matches_simple(self, expr, repl_dict): # handle (w*3).matches('x*5') -> {w: x*5/3} coeff, terms = self.as_coeff_Mul() terms = Mul.make_args(terms) if len(terms) == 1: newexpr = self.__class__._combine_inverse(expr, coeff) return terms[0].matches(newexpr, repl_dict) return def matches(self, expr, repl_dict={}, old=False): expr = sympify(expr) repl_dict = repl_dict.copy() if self.is_commutative and expr.is_commutative: return self._matches_commutative(expr, repl_dict, old) elif self.is_commutative is not expr.is_commutative: return None # Proceed only if both both expressions are non-commutative c1, nc1 = self.args_cnc() c2, nc2 = expr.args_cnc() c1, c2 = [c or [1] for c in [c1, c2]] # TODO: Should these be self.func? comm_mul_self = Mul(*c1) comm_mul_expr = Mul(*c2) repl_dict = comm_mul_self.matches(comm_mul_expr, repl_dict, old) # If the commutative arguments didn't match and aren't equal, then # then the expression as a whole doesn't match if repl_dict is None and c1 != c2: return None # Now match the non-commutative arguments, expanding powers to # multiplications nc1 = Mul._matches_expand_pows(nc1) nc2 = Mul._matches_expand_pows(nc2) repl_dict = Mul._matches_noncomm(nc1, nc2, repl_dict) return repl_dict or None @staticmethod def _matches_expand_pows(arg_list): new_args = [] for arg in arg_list: if arg.is_Pow and arg.exp > 0: new_args.extend([arg.base] * arg.exp) else: new_args.append(arg) return new_args @staticmethod def _matches_noncomm(nodes, targets, repl_dict={}): """Non-commutative multiplication matcher. `nodes` is a list of symbols within the matcher multiplication expression, while `targets` is a list of arguments in the multiplication expression being matched against. """ repl_dict = repl_dict.copy() # List of possible future states to be considered agenda = [] # The current matching state, storing index in nodes and targets state = (0, 0) node_ind, target_ind = state # Mapping between wildcard indices and the index ranges they match wildcard_dict = {} repl_dict = repl_dict.copy() while target_ind < len(targets) and node_ind < len(nodes): node = nodes[node_ind] if node.is_Wild: Mul._matches_add_wildcard(wildcard_dict, state) states_matches = Mul._matches_new_states(wildcard_dict, state, nodes, targets) if states_matches: new_states, new_matches = states_matches agenda.extend(new_states) if new_matches: for match in new_matches: repl_dict[match] = new_matches[match] if not agenda: return None else: state = agenda.pop() node_ind, target_ind = state return repl_dict @staticmethod def _matches_add_wildcard(dictionary, state): node_ind, target_ind = state if node_ind in dictionary: begin, end = dictionary[node_ind] dictionary[node_ind] = (begin, target_ind) else: dictionary[node_ind] = (target_ind, target_ind) @staticmethod def _matches_new_states(dictionary, state, nodes, targets): node_ind, target_ind = state node = nodes[node_ind] target = targets[target_ind] # Don't advance at all if we've exhausted the targets but not the nodes if target_ind >= len(targets) - 1 and node_ind < len(nodes) - 1: return None if node.is_Wild: match_attempt = Mul._matches_match_wilds(dictionary, node_ind, nodes, targets) if match_attempt: # If the same node has been matched before, don't return # anything if the current match is diverging from the previous # match other_node_inds = Mul._matches_get_other_nodes(dictionary, nodes, node_ind) for ind in other_node_inds: other_begin, other_end = dictionary[ind] curr_begin, curr_end = dictionary[node_ind] other_targets = targets[other_begin:other_end + 1] current_targets = targets[curr_begin:curr_end + 1] for curr, other in zip(current_targets, other_targets): if curr != other: return None # A wildcard node can match more than one target, so only the # target index is advanced new_state = [(node_ind, target_ind + 1)] # Only move on to the next node if there is one if node_ind < len(nodes) - 1: new_state.append((node_ind + 1, target_ind + 1)) return new_state, match_attempt else: # If we're not at a wildcard, then make sure we haven't exhausted # nodes but not targets, since in this case one node can only match # one target if node_ind >= len(nodes) - 1 and target_ind < len(targets) - 1: return None match_attempt = node.matches(target) if match_attempt: return [(node_ind + 1, target_ind + 1)], match_attempt elif node == target: return [(node_ind + 1, target_ind + 1)], None else: return None @staticmethod def _matches_match_wilds(dictionary, wildcard_ind, nodes, targets): """Determine matches of a wildcard with sub-expression in `target`.""" wildcard = nodes[wildcard_ind] begin, end = dictionary[wildcard_ind] terms = targets[begin:end + 1] # TODO: Should this be self.func? mul = Mul(*terms) if len(terms) > 1 else terms[0] return wildcard.matches(mul) @staticmethod def _matches_get_other_nodes(dictionary, nodes, node_ind): """Find other wildcards that may have already been matched.""" other_node_inds = [] for ind in dictionary: if nodes[ind] == nodes[node_ind]: other_node_inds.append(ind) return other_node_inds @staticmethod def _combine_inverse(lhs, rhs): """ Returns lhs/rhs, but treats arguments like symbols, so things like oo/oo return 1 (instead of a nan) and ``I`` behaves like a symbol instead of sqrt(-1). """ from .symbol import Dummy if lhs == rhs: return S.One def check(l, r): if l.is_Float and r.is_comparable: # if both objects are added to 0 they will share the same "normalization" # and are more likely to compare the same. Since Add(foo, 0) will not allow # the 0 to pass, we use __add__ directly. return l.__add__(0) == r.evalf().__add__(0) return False if check(lhs, rhs) or check(rhs, lhs): return S.One if any(i.is_Pow or i.is_Mul for i in (lhs, rhs)): # gruntz and limit wants a literal I to not combine # with a power of -1 d = Dummy('I') _i = {S.ImaginaryUnit: d} i_ = {d: S.ImaginaryUnit} a = lhs.xreplace(_i).as_powers_dict() b = rhs.xreplace(_i).as_powers_dict() blen = len(b) for bi in tuple(b.keys()): if bi in a: a[bi] -= b.pop(bi) if not a[bi]: a.pop(bi) if len(b) != blen: lhs = Mul(*[k**v for k, v in a.items()]).xreplace(i_) rhs = Mul(*[k**v for k, v in b.items()]).xreplace(i_) return lhs/rhs def as_powers_dict(self): d = defaultdict(int) for term in self.args: for b, e in term.as_powers_dict().items(): d[b] += e return d def as_numer_denom(self): # don't use _from_args to rebuild the numerators and denominators # as the order is not guaranteed to be the same once they have # been separated from each other numers, denoms = list(zip(*[f.as_numer_denom() for f in self.args])) return self.func(*numers), self.func(*denoms) def as_base_exp(self): e1 = None bases = [] nc = 0 for m in self.args: b, e = m.as_base_exp() if not b.is_commutative: nc += 1 if e1 is None: e1 = e elif e != e1 or nc > 1: return self, S.One bases.append(b) return self.func(*bases), e1 def _eval_is_polynomial(self, syms): return all(term._eval_is_polynomial(syms) for term in self.args) def _eval_is_rational_function(self, syms): return all(term._eval_is_rational_function(syms) for term in self.args) def _eval_is_meromorphic(self, x, a): return _fuzzy_group((arg.is_meromorphic(x, a) for arg in self.args), quick_exit=True) def _eval_is_algebraic_expr(self, syms): return all(term._eval_is_algebraic_expr(syms) for term in self.args) _eval_is_commutative = lambda self: _fuzzy_group( a.is_commutative for a in self.args) def _eval_is_complex(self): comp = _fuzzy_group(a.is_complex for a in self.args) if comp is False: if any(a.is_infinite for a in self.args): if any(a.is_zero is not False for a in self.args): return None return False return comp def _eval_is_finite(self): if all(a.is_finite for a in self.args): return True if any(a.is_infinite for a in self.args): if all(a.is_zero is False for a in self.args): return False def _eval_is_infinite(self): if any(a.is_infinite for a in self.args): if any(a.is_zero for a in self.args): return S.NaN.is_infinite if any(a.is_zero is None for a in self.args): return None return True def _eval_is_rational(self): r = _fuzzy_group((a.is_rational for a in self.args), quick_exit=True) if r: return r elif r is False: return self.is_zero def _eval_is_algebraic(self): r = _fuzzy_group((a.is_algebraic for a in self.args), quick_exit=True) if r: return r elif r is False: return self.is_zero def _eval_is_zero(self): zero = infinite = False for a in self.args: z = a.is_zero if z: if infinite: return # 0*oo is nan and nan.is_zero is None zero = True else: if not a.is_finite: if zero: return # 0*oo is nan and nan.is_zero is None infinite = True if zero is False and z is None: # trap None zero = None return zero # without involving odd/even checks this code would suffice: #_eval_is_integer = lambda self: _fuzzy_group( # (a.is_integer for a in self.args), quick_exit=True) def _eval_is_integer(self): is_rational = self._eval_is_rational() if is_rational is False: return False numerators = [] denominators = [] for a in self.args: if a.is_integer: numerators.append(a) elif a.is_Rational: n, d = a.as_numer_denom() numerators.append(n) denominators.append(d) elif a.is_Pow: b, e = a.as_base_exp() if not b.is_integer or not e.is_integer: return if e.is_negative: denominators.append(b) else: # for integer b and positive integer e: a = b**e would be integer assert not e.is_positive # for self being rational and e equal to zero: a = b**e would be 1 assert not e.is_zero return # sign of e unknown -> self.is_integer cannot be decided else: return if not denominators: return True odd = lambda ints: all(i.is_odd for i in ints) even = lambda ints: any(i.is_even for i in ints) if odd(numerators) and even(denominators): return False elif even(numerators) and denominators == [2]: return True def _eval_is_polar(self): has_polar = any(arg.is_polar for arg in self.args) return has_polar and \ all(arg.is_polar or arg.is_positive for arg in self.args) def _eval_is_extended_real(self): return self._eval_real_imag(True) def _eval_real_imag(self, real): zero = False t_not_re_im = None for t in self.args: if (t.is_complex or t.is_infinite) is False and t.is_extended_real is False: return False elif t.is_imaginary: # I real = not real elif t.is_extended_real: # 2 if not zero: z = t.is_zero if not z and zero is False: zero = z elif z: if all(a.is_finite for a in self.args): return True return elif t.is_extended_real is False: # symbolic or literal like `2 + I` or symbolic imaginary if t_not_re_im: return # complex terms might cancel t_not_re_im = t elif t.is_imaginary is False: # symbolic like `2` or `2 + I` if t_not_re_im: return # complex terms might cancel t_not_re_im = t else: return if t_not_re_im: if t_not_re_im.is_extended_real is False: if real: # like 3 return zero # 3*(smthng like 2 + I or i) is not real if t_not_re_im.is_imaginary is False: # symbolic 2 or 2 + I if not real: # like I return zero # I*(smthng like 2 or 2 + I) is not real elif zero is False: return real # can't be trumped by 0 elif real: return real # doesn't matter what zero is def _eval_is_imaginary(self): z = self.is_zero if z: return False if self.is_finite is False: return False elif z is False and self.is_finite is True: return self._eval_real_imag(False) def _eval_is_hermitian(self): return self._eval_herm_antiherm(True) def _eval_herm_antiherm(self, real): one_nc = zero = one_neither = False for t in self.args: if not t.is_commutative: if one_nc: return one_nc = True if t.is_antihermitian: real = not real elif t.is_hermitian: if not zero: z = t.is_zero if not z and zero is False: zero = z elif z: if all(a.is_finite for a in self.args): return True return elif t.is_hermitian is False: if one_neither: return one_neither = True else: return if one_neither: if real: return zero elif zero is False or real: return real def _eval_is_antihermitian(self): z = self.is_zero if z: return False elif z is False: return self._eval_herm_antiherm(False) def _eval_is_irrational(self): for t in self.args: a = t.is_irrational if a: others = list(self.args) others.remove(t) if all((x.is_rational and fuzzy_not(x.is_zero)) is True for x in others): return True return if a is None: return if all(x.is_real for x in self.args): return False def _eval_is_extended_positive(self): """Return True if self is positive, False if not, and None if it cannot be determined. Explanation =========== This algorithm is non-recursive and works by keeping track of the sign which changes when a negative or nonpositive is encountered. Whether a nonpositive or nonnegative is seen is also tracked since the presence of these makes it impossible to return True, but possible to return False if the end result is nonpositive. e.g. pos * neg * nonpositive -> pos or zero -> None is returned pos * neg * nonnegative -> neg or zero -> False is returned """ return self._eval_pos_neg(1) def _eval_pos_neg(self, sign): saw_NON = saw_NOT = False for t in self.args: if t.is_extended_positive: continue elif t.is_extended_negative: sign = -sign elif t.is_zero: if all(a.is_finite for a in self.args): return False return elif t.is_extended_nonpositive: sign = -sign saw_NON = True elif t.is_extended_nonnegative: saw_NON = True # FIXME: is_positive/is_negative is False doesn't take account of # Symbol('x', infinite=True, extended_real=True) which has # e.g. is_positive is False but has uncertain sign. elif t.is_positive is False: sign = -sign if saw_NOT: return saw_NOT = True elif t.is_negative is False: if saw_NOT: return saw_NOT = True else: return if sign == 1 and saw_NON is False and saw_NOT is False: return True if sign < 0: return False def _eval_is_extended_negative(self): return self._eval_pos_neg(-1) def _eval_is_odd(self): is_integer = self.is_integer if is_integer: r, acc = True, 1 for t in self.args: if not t.is_integer: return None elif t.is_even: r = False elif t.is_integer: if r is False: pass elif acc != 1 and (acc + t).is_odd: r = False elif t.is_odd is None: r = None acc = t return r # !integer -> !odd elif is_integer is False: return False def _eval_is_even(self): is_integer = self.is_integer if is_integer: return fuzzy_not(self.is_odd) elif is_integer is False: return False def _eval_is_composite(self): """ Here we count the number of arguments that have a minimum value greater than two. If there are more than one of such a symbol then the result is composite. Else, the result cannot be determined. """ number_of_args = 0 # count of symbols with minimum value greater than one for arg in self.args: if not (arg.is_integer and arg.is_positive): return None if (arg-1).is_positive: number_of_args += 1 if number_of_args > 1: return True def _eval_subs(self, old, new): from sympy.functions.elementary.complexes import sign from sympy.ntheory.factor_ import multiplicity from sympy.simplify.powsimp import powdenest from sympy.simplify.radsimp import fraction if not old.is_Mul: return None # try keep replacement literal so -2*x doesn't replace 4*x if old.args[0].is_Number and old.args[0] < 0: if self.args[0].is_Number: if self.args[0] < 0: return self._subs(-old, -new) return None def base_exp(a): # if I and -1 are in a Mul, they get both end up with # a -1 base (see issue 6421); all we want here are the # true Pow or exp separated into base and exponent from sympy import exp if a.is_Pow or isinstance(a, exp): return a.as_base_exp() return a, S.One def breakup(eq): """break up powers of eq when treated as a Mul: b**(Rational*e) -> b**e, Rational commutatives come back as a dictionary {b**e: Rational} noncommutatives come back as a list [(b**e, Rational)] """ (c, nc) = (defaultdict(int), list()) for a in Mul.make_args(eq): a = powdenest(a) (b, e) = base_exp(a) if e is not S.One: (co, _) = e.as_coeff_mul() b = Pow(b, e/co) e = co if a.is_commutative: c[b] += e else: nc.append([b, e]) return (c, nc) def rejoin(b, co): """ Put rational back with exponent; in general this is not ok, but since we took it from the exponent for analysis, it's ok to put it back. """ (b, e) = base_exp(b) return Pow(b, e*co) def ndiv(a, b): """if b divides a in an extractive way (like 1/4 divides 1/2 but not vice versa, and 2/5 does not divide 1/3) then return the integer number of times it divides, else return 0. """ if not b.q % a.q or not a.q % b.q: return int(a/b) return 0 # give Muls in the denominator a chance to be changed (see issue 5651) # rv will be the default return value rv = None n, d = fraction(self) self2 = self if d is not S.One: self2 = n._subs(old, new)/d._subs(old, new) if not self2.is_Mul: return self2._subs(old, new) if self2 != self: rv = self2 # Now continue with regular substitution. # handle the leading coefficient and use it to decide if anything # should even be started; we always know where to find the Rational # so it's a quick test co_self = self2.args[0] co_old = old.args[0] co_xmul = None if co_old.is_Rational and co_self.is_Rational: # if coeffs are the same there will be no updating to do # below after breakup() step; so skip (and keep co_xmul=None) if co_old != co_self: co_xmul = co_self.extract_multiplicatively(co_old) elif co_old.is_Rational: return rv # break self and old into factors (c, nc) = breakup(self2) (old_c, old_nc) = breakup(old) # update the coefficients if we had an extraction # e.g. if co_self were 2*(3/35*x)**2 and co_old = 3/5 # then co_self in c is replaced by (3/5)**2 and co_residual # is 2*(1/7)**2 if co_xmul and co_xmul.is_Rational and abs(co_old) != 1: mult = S(multiplicity(abs(co_old), co_self)) c.pop(co_self) if co_old in c: c[co_old] += mult else: c[co_old] = mult co_residual = co_self/co_old**mult else: co_residual = 1 # do quick tests to see if we can't succeed ok = True if len(old_nc) > len(nc): # more non-commutative terms ok = False elif len(old_c) > len(c): # more commutative terms ok = False elif {i[0] for i in old_nc}.difference({i[0] for i in nc}): # unmatched non-commutative bases ok = False elif set(old_c).difference(set(c)): # unmatched commutative terms ok = False elif any(sign(c[b]) != sign(old_c[b]) for b in old_c): # differences in sign ok = False if not ok: return rv if not old_c: cdid = None else: rat = [] for (b, old_e) in old_c.items(): c_e = c[b] rat.append(ndiv(c_e, old_e)) if not rat[-1]: return rv cdid = min(rat) if not old_nc: ncdid = None for i in range(len(nc)): nc[i] = rejoin(*nc[i]) else: ncdid = 0 # number of nc replacements we did take = len(old_nc) # how much to look at each time limit = cdid or S.Infinity # max number that we can take failed = [] # failed terms will need subs if other terms pass i = 0 while limit and i + take <= len(nc): hit = False # the bases must be equivalent in succession, and # the powers must be extractively compatible on the # first and last factor but equal in between. rat = [] for j in range(take): if nc[i + j][0] != old_nc[j][0]: break elif j == 0: rat.append(ndiv(nc[i + j][1], old_nc[j][1])) elif j == take - 1: rat.append(ndiv(nc[i + j][1], old_nc[j][1])) elif nc[i + j][1] != old_nc[j][1]: break else: rat.append(1) j += 1 else: ndo = min(rat) if ndo: if take == 1: if cdid: ndo = min(cdid, ndo) nc[i] = Pow(new, ndo)*rejoin(nc[i][0], nc[i][1] - ndo*old_nc[0][1]) else: ndo = 1 # the left residual l = rejoin(nc[i][0], nc[i][1] - ndo* old_nc[0][1]) # eliminate all middle terms mid = new # the right residual (which may be the same as the middle if take == 2) ir = i + take - 1 r = (nc[ir][0], nc[ir][1] - ndo* old_nc[-1][1]) if r[1]: if i + take < len(nc): nc[i:i + take] = [l*mid, r] else: r = rejoin(*r) nc[i:i + take] = [l*mid*r] else: # there was nothing left on the right nc[i:i + take] = [l*mid] limit -= ndo ncdid += ndo hit = True if not hit: # do the subs on this failing factor failed.append(i) i += 1 else: if not ncdid: return rv # although we didn't fail, certain nc terms may have # failed so we rebuild them after attempting a partial # subs on them failed.extend(range(i, len(nc))) for i in failed: nc[i] = rejoin(*nc[i]).subs(old, new) # rebuild the expression if cdid is None: do = ncdid elif ncdid is None: do = cdid else: do = min(ncdid, cdid) margs = [] for b in c: if b in old_c: # calculate the new exponent e = c[b] - old_c[b]*do margs.append(rejoin(b, e)) else: margs.append(rejoin(b.subs(old, new), c[b])) if cdid and not ncdid: # in case we are replacing commutative with non-commutative, # we want the new term to come at the front just like the # rest of this routine margs = [Pow(new, cdid)] + margs return co_residual*self2.func(*margs)*self2.func(*nc) def _eval_nseries(self, x, n, logx, cdir=0): from sympy import degree, Mul, Order, ceiling, powsimp, PolynomialError from itertools import product def coeff_exp(term, x): coeff, exp = S.One, S.Zero for factor in Mul.make_args(term): if factor.has(x): base, exp = factor.as_base_exp() if base != x: try: return term.leadterm(x) except ValueError: return term, S.Zero else: coeff *= factor return coeff, exp ords = [] try: for t in self.args: coeff, exp = t.leadterm(x) if not coeff.has(x): ords.append((t, exp)) else: raise ValueError n0 = sum(t[1] for t in ords) facs = [] for t, m in ords: n1 = ceiling(n - n0 + m) s = t.nseries(x, n=n1, logx=logx, cdir=cdir) ns = s.getn() if ns is not None: if ns < n1: # less than expected n -= n1 - ns # reduce n facs.append(s.removeO()) except (ValueError, NotImplementedError, TypeError, AttributeError): facs = [t.nseries(x, n=n, logx=logx, cdir=cdir) for t in self.args] res = powsimp(self.func(*facs).expand(), combine='exp', deep=True) if res.has(Order): res += Order(x**n, x) return res res = 0 ords2 = [Add.make_args(factor) for factor in facs] for fac in product(*ords2): ords3 = [coeff_exp(term, x) for term in fac] coeffs, powers = zip(*ords3) power = sum(powers) if power < n: res += Mul(*coeffs)*(x**power) if self.is_polynomial(x): try: if degree(self, x) != degree(res, x): res += Order(x**n, x) except PolynomialError: pass else: return res for i in (1, 2, 3): if (res - self).subs(x, i) is not S.Zero: res += Order(x**n, x) break return res def _eval_as_leading_term(self, x, cdir=0): return self.func(*[t.as_leading_term(x, cdir=cdir) for t in self.args]) def _eval_conjugate(self): return self.func(*[t.conjugate() for t in self.args]) def _eval_transpose(self): return self.func(*[t.transpose() for t in self.args[::-1]]) def _eval_adjoint(self): return self.func(*[t.adjoint() for t in self.args[::-1]]) def _sage_(self): s = 1 for x in self.args: s *= x._sage_() return s def as_content_primitive(self, radical=False, clear=True): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. Examples ======== >>> from sympy import sqrt >>> (-3*sqrt(2)*(2 - 2*sqrt(2))).as_content_primitive() (6, -sqrt(2)*(1 - sqrt(2))) See docstring of Expr.as_content_primitive for more examples. """ coef = S.One args = [] for i, a in enumerate(self.args): c, p = a.as_content_primitive(radical=radical, clear=clear) coef *= c if p is not S.One: args.append(p) # don't use self._from_args here to reconstruct args # since there may be identical args now that should be combined # e.g. (2+2*x)*(3+3*x) should be (6, (1 + x)**2) not (6, (1+x)*(1+x)) return coef, self.func(*args) def as_ordered_factors(self, order=None): """Transform an expression into an ordered list of factors. Examples ======== >>> from sympy import sin, cos >>> from sympy.abc import x, y >>> (2*x*y*sin(x)*cos(x)).as_ordered_factors() [2, x, y, sin(x), cos(x)] """ cpart, ncpart = self.args_cnc() cpart.sort(key=lambda expr: expr.sort_key(order=order)) return cpart + ncpart @property def _sorted_args(self): return tuple(self.as_ordered_factors()) mul = AssocOpDispatcher('mul') def prod(a, start=1): """Return product of elements of a. Start with int 1 so if only ints are included then an int result is returned. Examples ======== >>> from sympy import prod, S >>> prod(range(3)) 0 >>> type(_) is int True >>> prod([S(2), 3]) 6 >>> _.is_Integer True You can start the product at something other than 1: >>> prod([1, 2], 3) 6 """ return reduce(operator.mul, a, start) def _keep_coeff(coeff, factors, clear=True, sign=False): """Return ``coeff*factors`` unevaluated if necessary. If ``clear`` is False, do not keep the coefficient as a factor if it can be distributed on a single factor such that one or more terms will still have integer coefficients. If ``sign`` is True, allow a coefficient of -1 to remain factored out. Examples ======== >>> from sympy.core.mul import _keep_coeff >>> from sympy.abc import x, y >>> from sympy import S >>> _keep_coeff(S.Half, x + 2) (x + 2)/2 >>> _keep_coeff(S.Half, x + 2, clear=False) x/2 + 1 >>> _keep_coeff(S.Half, (x + 2)*y, clear=False) y*(x + 2)/2 >>> _keep_coeff(S(-1), x + y) -x - y >>> _keep_coeff(S(-1), x + y, sign=True) -(x + y) """ if not coeff.is_Number: if factors.is_Number: factors, coeff = coeff, factors else: return coeff*factors if coeff is S.One: return factors elif coeff is S.NegativeOne and not sign: return -factors elif factors.is_Add: if not clear and coeff.is_Rational and coeff.q != 1: q = S(coeff.q) for i in factors.args: c, t = i.as_coeff_Mul() r = c/q if r == int(r): return coeff*factors return Mul(coeff, factors, evaluate=False) elif factors.is_Mul: margs = list(factors.args) if margs[0].is_Number: margs[0] *= coeff if margs[0] == 1: margs.pop(0) else: margs.insert(0, coeff) return Mul._from_args(margs) else: return coeff*factors def expand_2arg(e): from sympy.simplify.simplify import bottom_up def do(e): if e.is_Mul: c, r = e.as_coeff_Mul() if c.is_Number and r.is_Add: return _unevaluated_Add(*[c*ri for ri in r.args]) return e return bottom_up(e, do) from .numbers import Rational from .power import Pow from .add import Add, _addsort, _unevaluated_Add
adb5aa06054d4fad0711b87551115d029b5eff1f31a86024fdf564f4afdfd795
"""User-friendly public interface to polynomial functions. """ from functools import wraps, reduce from operator import mul from sympy.core import ( S, Basic, Expr, I, Integer, Add, Mul, Dummy, Tuple ) from sympy.core.basic import preorder_traversal from sympy.core.compatibility import iterable, ordered from sympy.core.decorators import _sympifyit from sympy.core.evalf import pure_complex from sympy.core.function import Derivative from sympy.core.mul import _keep_coeff from sympy.core.relational import Relational from sympy.core.symbol import Symbol from sympy.core.sympify import sympify, _sympify from sympy.logic.boolalg import BooleanAtom from sympy.polys import polyoptions as options from sympy.polys.constructor import construct_domain from sympy.polys.domains import FF, QQ, ZZ from sympy.polys.domains.domainelement import DomainElement from sympy.polys.fglmtools import matrix_fglm from sympy.polys.groebnertools import groebner as _groebner from sympy.polys.monomials import Monomial from sympy.polys.orderings import monomial_key from sympy.polys.polyclasses import DMP, DMF, ANP from sympy.polys.polyerrors import ( OperationNotSupported, DomainError, CoercionFailed, UnificationFailed, GeneratorsNeeded, PolynomialError, MultivariatePolynomialError, ExactQuotientFailed, PolificationFailed, ComputationFailed, GeneratorsError, ) from sympy.polys.polyutils import ( basic_from_dict, _sort_gens, _unify_gens, _dict_reorder, _dict_from_expr, _parallel_dict_from_expr, ) from sympy.polys.rationaltools import together from sympy.polys.rootisolation import dup_isolate_real_roots_list from sympy.utilities import group, sift, public, filldedent from sympy.utilities.exceptions import SymPyDeprecationWarning # Required to avoid errors import sympy.polys import mpmath from mpmath.libmp.libhyper import NoConvergence def _polifyit(func): @wraps(func) def wrapper(f, g): g = _sympify(g) if isinstance(g, Poly): return func(f, g) elif isinstance(g, Expr): try: g = f.from_expr(g, *f.gens) except PolynomialError: if g.is_Matrix: return NotImplemented expr_method = getattr(f.as_expr(), func.__name__) result = expr_method(g) if result is not NotImplemented: SymPyDeprecationWarning( feature="Mixing Poly with non-polynomial expressions in binary operations", issue=18613, deprecated_since_version="1.6", useinstead="the as_expr or as_poly method to convert types").warn() return result else: return func(f, g) else: return NotImplemented return wrapper @public class Poly(Basic): """ Generic class for representing and operating on polynomial expressions. Poly is a subclass of Basic rather than Expr but instances can be converted to Expr with the ``as_expr`` method. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y Create a univariate polynomial: >>> Poly(x*(x**2 + x - 1)**2) Poly(x**5 + 2*x**4 - x**3 - 2*x**2 + x, x, domain='ZZ') Create a univariate polynomial with specific domain: >>> from sympy import sqrt >>> Poly(x**2 + 2*x + sqrt(3), domain='R') Poly(1.0*x**2 + 2.0*x + 1.73205080756888, x, domain='RR') Create a multivariate polynomial: >>> Poly(y*x**2 + x*y + 1) Poly(x**2*y + x*y + 1, x, y, domain='ZZ') Create a univariate polynomial, where y is a constant: >>> Poly(y*x**2 + x*y + 1,x) Poly(y*x**2 + y*x + 1, x, domain='ZZ[y]') You can evaluate the above polynomial as a function of y: >>> Poly(y*x**2 + x*y + 1,x).eval(2) 6*y + 1 See Also ======== sympy.core.expr.Expr """ __slots__ = ('rep', 'gens') is_commutative = True is_Poly = True _op_priority = 10.001 def __new__(cls, rep, *gens, **args): """Create a new polynomial instance out of something useful. """ opt = options.build_options(gens, args) if 'order' in opt: raise NotImplementedError("'order' keyword is not implemented yet") if isinstance(rep, (DMP, DMF, ANP, DomainElement)): return cls._from_domain_element(rep, opt) elif iterable(rep, exclude=str): if isinstance(rep, dict): return cls._from_dict(rep, opt) else: return cls._from_list(list(rep), opt) else: rep = sympify(rep) if rep.is_Poly: return cls._from_poly(rep, opt) else: return cls._from_expr(rep, opt) # Poly does not pass its args to Basic.__new__ to be stored in _args so we # have to emulate them here with an args property that derives from rep # and gens which are instance attributes. This also means we need to # define _hashable_content. The _hashable_content is rep and gens but args # uses expr instead of rep (expr is the Basic version of rep). Passing # expr in args means that Basic methods like subs should work. Using rep # otherwise means that Poly can remain more efficient than Basic by # avoiding creating a Basic instance just to be hashable. @classmethod def new(cls, rep, *gens): """Construct :class:`Poly` instance from raw representation. """ if not isinstance(rep, DMP): raise PolynomialError( "invalid polynomial representation: %s" % rep) elif rep.lev != len(gens) - 1: raise PolynomialError("invalid arguments: %s, %s" % (rep, gens)) obj = Basic.__new__(cls) obj.rep = rep obj.gens = gens return obj @property def expr(self): return basic_from_dict(self.rep.to_sympy_dict(), *self.gens) @property def args(self): return (self.expr,) + self.gens def _hashable_content(self): return (self.rep,) + self.gens @classmethod def from_dict(cls, rep, *gens, **args): """Construct a polynomial from a ``dict``. """ opt = options.build_options(gens, args) return cls._from_dict(rep, opt) @classmethod def from_list(cls, rep, *gens, **args): """Construct a polynomial from a ``list``. """ opt = options.build_options(gens, args) return cls._from_list(rep, opt) @classmethod def from_poly(cls, rep, *gens, **args): """Construct a polynomial from a polynomial. """ opt = options.build_options(gens, args) return cls._from_poly(rep, opt) @classmethod def from_expr(cls, rep, *gens, **args): """Construct a polynomial from an expression. """ opt = options.build_options(gens, args) return cls._from_expr(rep, opt) @classmethod def _from_dict(cls, rep, opt): """Construct a polynomial from a ``dict``. """ gens = opt.gens if not gens: raise GeneratorsNeeded( "can't initialize from 'dict' without generators") level = len(gens) - 1 domain = opt.domain if domain is None: domain, rep = construct_domain(rep, opt=opt) else: for monom, coeff in rep.items(): rep[monom] = domain.convert(coeff) return cls.new(DMP.from_dict(rep, level, domain), *gens) @classmethod def _from_list(cls, rep, opt): """Construct a polynomial from a ``list``. """ gens = opt.gens if not gens: raise GeneratorsNeeded( "can't initialize from 'list' without generators") elif len(gens) != 1: raise MultivariatePolynomialError( "'list' representation not supported") level = len(gens) - 1 domain = opt.domain if domain is None: domain, rep = construct_domain(rep, opt=opt) else: rep = list(map(domain.convert, rep)) return cls.new(DMP.from_list(rep, level, domain), *gens) @classmethod def _from_poly(cls, rep, opt): """Construct a polynomial from a polynomial. """ if cls != rep.__class__: rep = cls.new(rep.rep, *rep.gens) gens = opt.gens field = opt.field domain = opt.domain if gens and rep.gens != gens: if set(rep.gens) != set(gens): return cls._from_expr(rep.as_expr(), opt) else: rep = rep.reorder(*gens) if 'domain' in opt and domain: rep = rep.set_domain(domain) elif field is True: rep = rep.to_field() return rep @classmethod def _from_expr(cls, rep, opt): """Construct a polynomial from an expression. """ rep, opt = _dict_from_expr(rep, opt) return cls._from_dict(rep, opt) @classmethod def _from_domain_element(cls, rep, opt): gens = opt.gens domain = opt.domain level = len(gens) - 1 rep = [domain.convert(rep)] return cls.new(DMP.from_list(rep, level, domain), *gens) def __hash__(self): return super().__hash__() @property def free_symbols(self): """ Free symbols of a polynomial expression. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y, z >>> Poly(x**2 + 1).free_symbols {x} >>> Poly(x**2 + y).free_symbols {x, y} >>> Poly(x**2 + y, x).free_symbols {x, y} >>> Poly(x**2 + y, x, z).free_symbols {x, y} """ symbols = set() gens = self.gens for i in range(len(gens)): for monom in self.monoms(): if monom[i]: symbols |= gens[i].free_symbols break return symbols | self.free_symbols_in_domain @property def free_symbols_in_domain(self): """ Free symbols of the domain of ``self``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 1).free_symbols_in_domain set() >>> Poly(x**2 + y).free_symbols_in_domain set() >>> Poly(x**2 + y, x).free_symbols_in_domain {y} """ domain, symbols = self.rep.dom, set() if domain.is_Composite: for gen in domain.symbols: symbols |= gen.free_symbols elif domain.is_EX: for coeff in self.coeffs(): symbols |= coeff.free_symbols return symbols @property def gen(self): """ Return the principal generator. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).gen x """ return self.gens[0] @property def domain(self): """Get the ground domain of ``self``. """ return self.get_domain() @property def zero(self): """Return zero polynomial with ``self``'s properties. """ return self.new(self.rep.zero(self.rep.lev, self.rep.dom), *self.gens) @property def one(self): """Return one polynomial with ``self``'s properties. """ return self.new(self.rep.one(self.rep.lev, self.rep.dom), *self.gens) @property def unit(self): """Return unit polynomial with ``self``'s properties. """ return self.new(self.rep.unit(self.rep.lev, self.rep.dom), *self.gens) def unify(f, g): """ Make ``f`` and ``g`` belong to the same domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f, g = Poly(x/2 + 1), Poly(2*x + 1) >>> f Poly(1/2*x + 1, x, domain='QQ') >>> g Poly(2*x + 1, x, domain='ZZ') >>> F, G = f.unify(g) >>> F Poly(1/2*x + 1, x, domain='QQ') >>> G Poly(2*x + 1, x, domain='QQ') """ _, per, F, G = f._unify(g) return per(F), per(G) def _unify(f, g): g = sympify(g) if not g.is_Poly: try: return f.rep.dom, f.per, f.rep, f.rep.per(f.rep.dom.from_sympy(g)) except CoercionFailed: raise UnificationFailed("can't unify %s with %s" % (f, g)) if isinstance(f.rep, DMP) and isinstance(g.rep, DMP): gens = _unify_gens(f.gens, g.gens) dom, lev = f.rep.dom.unify(g.rep.dom, gens), len(gens) - 1 if f.gens != gens: f_monoms, f_coeffs = _dict_reorder( f.rep.to_dict(), f.gens, gens) if f.rep.dom != dom: f_coeffs = [dom.convert(c, f.rep.dom) for c in f_coeffs] F = DMP(dict(list(zip(f_monoms, f_coeffs))), dom, lev) else: F = f.rep.convert(dom) if g.gens != gens: g_monoms, g_coeffs = _dict_reorder( g.rep.to_dict(), g.gens, gens) if g.rep.dom != dom: g_coeffs = [dom.convert(c, g.rep.dom) for c in g_coeffs] G = DMP(dict(list(zip(g_monoms, g_coeffs))), dom, lev) else: G = g.rep.convert(dom) else: raise UnificationFailed("can't unify %s with %s" % (f, g)) cls = f.__class__ def per(rep, dom=dom, gens=gens, remove=None): if remove is not None: gens = gens[:remove] + gens[remove + 1:] if not gens: return dom.to_sympy(rep) return cls.new(rep, *gens) return dom, per, F, G def per(f, rep, gens=None, remove=None): """ Create a Poly out of the given representation. Examples ======== >>> from sympy import Poly, ZZ >>> from sympy.abc import x, y >>> from sympy.polys.polyclasses import DMP >>> a = Poly(x**2 + 1) >>> a.per(DMP([ZZ(1), ZZ(1)], ZZ), gens=[y]) Poly(y + 1, y, domain='ZZ') """ if gens is None: gens = f.gens if remove is not None: gens = gens[:remove] + gens[remove + 1:] if not gens: return f.rep.dom.to_sympy(rep) return f.__class__.new(rep, *gens) def set_domain(f, domain): """Set the ground domain of ``f``. """ opt = options.build_options(f.gens, {'domain': domain}) return f.per(f.rep.convert(opt.domain)) def get_domain(f): """Get the ground domain of ``f``. """ return f.rep.dom def set_modulus(f, modulus): """ Set the modulus of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(5*x**2 + 2*x - 1, x).set_modulus(2) Poly(x**2 + 1, x, modulus=2) """ modulus = options.Modulus.preprocess(modulus) return f.set_domain(FF(modulus)) def get_modulus(f): """ Get the modulus of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, modulus=2).get_modulus() 2 """ domain = f.get_domain() if domain.is_FiniteField: return Integer(domain.characteristic()) else: raise PolynomialError("not a polynomial over a Galois field") def _eval_subs(f, old, new): """Internal implementation of :func:`subs`. """ if old in f.gens: if new.is_number: return f.eval(old, new) else: try: return f.replace(old, new) except PolynomialError: pass return f.as_expr().subs(old, new) def exclude(f): """ Remove unnecessary generators from ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import a, b, c, d, x >>> Poly(a + x, a, b, c, d, x).exclude() Poly(a + x, a, x, domain='ZZ') """ J, new = f.rep.exclude() gens = [] for j in range(len(f.gens)): if j not in J: gens.append(f.gens[j]) return f.per(new, gens=gens) def replace(f, x, y=None, **_ignore): # XXX this does not match Basic's signature """ Replace ``x`` with ``y`` in generators list. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 1, x).replace(x, y) Poly(y**2 + 1, y, domain='ZZ') """ if y is None: if f.is_univariate: x, y = f.gen, x else: raise PolynomialError( "syntax supported only in univariate case") if x == y or x not in f.gens: return f if x in f.gens and y not in f.gens: dom = f.get_domain() if not dom.is_Composite or y not in dom.symbols: gens = list(f.gens) gens[gens.index(x)] = y return f.per(f.rep, gens=gens) raise PolynomialError("can't replace %s with %s in %s" % (x, y, f)) def match(f, *args, **kwargs): """Match expression from Poly. See Basic.match()""" return f.as_expr().match(*args, **kwargs) def reorder(f, *gens, **args): """ Efficiently apply new order of generators. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + x*y**2, x, y).reorder(y, x) Poly(y**2*x + x**2, y, x, domain='ZZ') """ opt = options.Options((), args) if not gens: gens = _sort_gens(f.gens, opt=opt) elif set(f.gens) != set(gens): raise PolynomialError( "generators list can differ only up to order of elements") rep = dict(list(zip(*_dict_reorder(f.rep.to_dict(), f.gens, gens)))) return f.per(DMP(rep, f.rep.dom, len(gens) - 1), gens=gens) def ltrim(f, gen): """ Remove dummy generators from ``f`` that are to the left of specified ``gen`` in the generators as ordered. When ``gen`` is an integer, it refers to the generator located at that position within the tuple of generators of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y, z >>> Poly(y**2 + y*z**2, x, y, z).ltrim(y) Poly(y**2 + y*z**2, y, z, domain='ZZ') >>> Poly(z, x, y, z).ltrim(-1) Poly(z, z, domain='ZZ') """ rep = f.as_dict(native=True) j = f._gen_to_level(gen) terms = {} for monom, coeff in rep.items(): if any(monom[:j]): # some generator is used in the portion to be trimmed raise PolynomialError("can't left trim %s" % f) terms[monom[j:]] = coeff gens = f.gens[j:] return f.new(DMP.from_dict(terms, len(gens) - 1, f.rep.dom), *gens) def has_only_gens(f, *gens): """ Return ``True`` if ``Poly(f, *gens)`` retains ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y, z >>> Poly(x*y + 1, x, y, z).has_only_gens(x, y) True >>> Poly(x*y + z, x, y, z).has_only_gens(x, y) False """ indices = set() for gen in gens: try: index = f.gens.index(gen) except ValueError: raise GeneratorsError( "%s doesn't have %s as generator" % (f, gen)) else: indices.add(index) for monom in f.monoms(): for i, elt in enumerate(monom): if i not in indices and elt: return False return True def to_ring(f): """ Make the ground domain a ring. Examples ======== >>> from sympy import Poly, QQ >>> from sympy.abc import x >>> Poly(x**2 + 1, domain=QQ).to_ring() Poly(x**2 + 1, x, domain='ZZ') """ if hasattr(f.rep, 'to_ring'): result = f.rep.to_ring() else: # pragma: no cover raise OperationNotSupported(f, 'to_ring') return f.per(result) def to_field(f): """ Make the ground domain a field. Examples ======== >>> from sympy import Poly, ZZ >>> from sympy.abc import x >>> Poly(x**2 + 1, x, domain=ZZ).to_field() Poly(x**2 + 1, x, domain='QQ') """ if hasattr(f.rep, 'to_field'): result = f.rep.to_field() else: # pragma: no cover raise OperationNotSupported(f, 'to_field') return f.per(result) def to_exact(f): """ Make the ground domain exact. Examples ======== >>> from sympy import Poly, RR >>> from sympy.abc import x >>> Poly(x**2 + 1.0, x, domain=RR).to_exact() Poly(x**2 + 1, x, domain='QQ') """ if hasattr(f.rep, 'to_exact'): result = f.rep.to_exact() else: # pragma: no cover raise OperationNotSupported(f, 'to_exact') return f.per(result) def retract(f, field=None): """ Recalculate the ground domain of a polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = Poly(x**2 + 1, x, domain='QQ[y]') >>> f Poly(x**2 + 1, x, domain='QQ[y]') >>> f.retract() Poly(x**2 + 1, x, domain='ZZ') >>> f.retract(field=True) Poly(x**2 + 1, x, domain='QQ') """ dom, rep = construct_domain(f.as_dict(zero=True), field=field, composite=f.domain.is_Composite or None) return f.from_dict(rep, f.gens, domain=dom) def slice(f, x, m, n=None): """Take a continuous subsequence of terms of ``f``. """ if n is None: j, m, n = 0, x, m else: j = f._gen_to_level(x) m, n = int(m), int(n) if hasattr(f.rep, 'slice'): result = f.rep.slice(m, n, j) else: # pragma: no cover raise OperationNotSupported(f, 'slice') return f.per(result) def coeffs(f, order=None): """ Returns all non-zero coefficients from ``f`` in lex order. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 + 2*x + 3, x).coeffs() [1, 2, 3] See Also ======== all_coeffs coeff_monomial nth """ return [f.rep.dom.to_sympy(c) for c in f.rep.coeffs(order=order)] def monoms(f, order=None): """ Returns all non-zero monomials from ``f`` in lex order. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 2*x*y**2 + x*y + 3*y, x, y).monoms() [(2, 0), (1, 2), (1, 1), (0, 1)] See Also ======== all_monoms """ return f.rep.monoms(order=order) def terms(f, order=None): """ Returns all non-zero terms from ``f`` in lex order. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 2*x*y**2 + x*y + 3*y, x, y).terms() [((2, 0), 1), ((1, 2), 2), ((1, 1), 1), ((0, 1), 3)] See Also ======== all_terms """ return [(m, f.rep.dom.to_sympy(c)) for m, c in f.rep.terms(order=order)] def all_coeffs(f): """ Returns all coefficients from a univariate polynomial ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 + 2*x - 1, x).all_coeffs() [1, 0, 2, -1] """ return [f.rep.dom.to_sympy(c) for c in f.rep.all_coeffs()] def all_monoms(f): """ Returns all monomials from a univariate polynomial ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 + 2*x - 1, x).all_monoms() [(3,), (2,), (1,), (0,)] See Also ======== all_terms """ return f.rep.all_monoms() def all_terms(f): """ Returns all terms from a univariate polynomial ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 + 2*x - 1, x).all_terms() [((3,), 1), ((2,), 0), ((1,), 2), ((0,), -1)] """ return [(m, f.rep.dom.to_sympy(c)) for m, c in f.rep.all_terms()] def termwise(f, func, *gens, **args): """ Apply a function to all terms of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> def func(k, coeff): ... k = k[0] ... return coeff//10**(2-k) >>> Poly(x**2 + 20*x + 400).termwise(func) Poly(x**2 + 2*x + 4, x, domain='ZZ') """ terms = {} for monom, coeff in f.terms(): result = func(monom, coeff) if isinstance(result, tuple): monom, coeff = result else: coeff = result if coeff: if monom not in terms: terms[monom] = coeff else: raise PolynomialError( "%s monomial was generated twice" % monom) return f.from_dict(terms, *(gens or f.gens), **args) def length(f): """ Returns the number of non-zero terms in ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 2*x - 1).length() 3 """ return len(f.as_dict()) def as_dict(f, native=False, zero=False): """ Switch to a ``dict`` representation. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 2*x*y**2 - y, x, y).as_dict() {(0, 1): -1, (1, 2): 2, (2, 0): 1} """ if native: return f.rep.to_dict(zero=zero) else: return f.rep.to_sympy_dict(zero=zero) def as_list(f, native=False): """Switch to a ``list`` representation. """ if native: return f.rep.to_list() else: return f.rep.to_sympy_list() def as_expr(f, *gens): """ Convert a Poly instance to an Expr instance. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = Poly(x**2 + 2*x*y**2 - y, x, y) >>> f.as_expr() x**2 + 2*x*y**2 - y >>> f.as_expr({x: 5}) 10*y**2 - y + 25 >>> f.as_expr(5, 6) 379 """ if not gens: return f.expr if len(gens) == 1 and isinstance(gens[0], dict): mapping = gens[0] gens = list(f.gens) for gen, value in mapping.items(): try: index = gens.index(gen) except ValueError: raise GeneratorsError( "%s doesn't have %s as generator" % (f, gen)) else: gens[index] = value return basic_from_dict(f.rep.to_sympy_dict(), *gens) def as_poly(self, *gens, **args): """Converts ``self`` to a polynomial or returns ``None``. >>> from sympy import sin >>> from sympy.abc import x, y >>> print((x**2 + x*y).as_poly()) Poly(x**2 + x*y, x, y, domain='ZZ') >>> print((x**2 + x*y).as_poly(x, y)) Poly(x**2 + x*y, x, y, domain='ZZ') >>> print((x**2 + sin(y)).as_poly(x, y)) None """ try: poly = Poly(self, *gens, **args) if not poly.is_Poly: return None else: return poly except PolynomialError: return None def lift(f): """ Convert algebraic coefficients to rationals. Examples ======== >>> from sympy import Poly, I >>> from sympy.abc import x >>> Poly(x**2 + I*x + 1, x, extension=I).lift() Poly(x**4 + 3*x**2 + 1, x, domain='QQ') """ if hasattr(f.rep, 'lift'): result = f.rep.lift() else: # pragma: no cover raise OperationNotSupported(f, 'lift') return f.per(result) def deflate(f): """ Reduce degree of ``f`` by mapping ``x_i**m`` to ``y_i``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**6*y**2 + x**3 + 1, x, y).deflate() ((3, 2), Poly(x**2*y + x + 1, x, y, domain='ZZ')) """ if hasattr(f.rep, 'deflate'): J, result = f.rep.deflate() else: # pragma: no cover raise OperationNotSupported(f, 'deflate') return J, f.per(result) def inject(f, front=False): """ Inject ground domain generators into ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = Poly(x**2*y + x*y**3 + x*y + 1, x) >>> f.inject() Poly(x**2*y + x*y**3 + x*y + 1, x, y, domain='ZZ') >>> f.inject(front=True) Poly(y**3*x + y*x**2 + y*x + 1, y, x, domain='ZZ') """ dom = f.rep.dom if dom.is_Numerical: return f elif not dom.is_Poly: raise DomainError("can't inject generators over %s" % dom) if hasattr(f.rep, 'inject'): result = f.rep.inject(front=front) else: # pragma: no cover raise OperationNotSupported(f, 'inject') if front: gens = dom.symbols + f.gens else: gens = f.gens + dom.symbols return f.new(result, *gens) def eject(f, *gens): """ Eject selected generators into the ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = Poly(x**2*y + x*y**3 + x*y + 1, x, y) >>> f.eject(x) Poly(x*y**3 + (x**2 + x)*y + 1, y, domain='ZZ[x]') >>> f.eject(y) Poly(y*x**2 + (y**3 + y)*x + 1, x, domain='ZZ[y]') """ dom = f.rep.dom if not dom.is_Numerical: raise DomainError("can't eject generators over %s" % dom) k = len(gens) if f.gens[:k] == gens: _gens, front = f.gens[k:], True elif f.gens[-k:] == gens: _gens, front = f.gens[:-k], False else: raise NotImplementedError( "can only eject front or back generators") dom = dom.inject(*gens) if hasattr(f.rep, 'eject'): result = f.rep.eject(dom, front=front) else: # pragma: no cover raise OperationNotSupported(f, 'eject') return f.new(result, *_gens) def terms_gcd(f): """ Remove GCD of terms from the polynomial ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**6*y**2 + x**3*y, x, y).terms_gcd() ((3, 1), Poly(x**3*y + 1, x, y, domain='ZZ')) """ if hasattr(f.rep, 'terms_gcd'): J, result = f.rep.terms_gcd() else: # pragma: no cover raise OperationNotSupported(f, 'terms_gcd') return J, f.per(result) def add_ground(f, coeff): """ Add an element of the ground domain to ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x + 1).add_ground(2) Poly(x + 3, x, domain='ZZ') """ if hasattr(f.rep, 'add_ground'): result = f.rep.add_ground(coeff) else: # pragma: no cover raise OperationNotSupported(f, 'add_ground') return f.per(result) def sub_ground(f, coeff): """ Subtract an element of the ground domain from ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x + 1).sub_ground(2) Poly(x - 1, x, domain='ZZ') """ if hasattr(f.rep, 'sub_ground'): result = f.rep.sub_ground(coeff) else: # pragma: no cover raise OperationNotSupported(f, 'sub_ground') return f.per(result) def mul_ground(f, coeff): """ Multiply ``f`` by a an element of the ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x + 1).mul_ground(2) Poly(2*x + 2, x, domain='ZZ') """ if hasattr(f.rep, 'mul_ground'): result = f.rep.mul_ground(coeff) else: # pragma: no cover raise OperationNotSupported(f, 'mul_ground') return f.per(result) def quo_ground(f, coeff): """ Quotient of ``f`` by a an element of the ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x + 4).quo_ground(2) Poly(x + 2, x, domain='ZZ') >>> Poly(2*x + 3).quo_ground(2) Poly(x + 1, x, domain='ZZ') """ if hasattr(f.rep, 'quo_ground'): result = f.rep.quo_ground(coeff) else: # pragma: no cover raise OperationNotSupported(f, 'quo_ground') return f.per(result) def exquo_ground(f, coeff): """ Exact quotient of ``f`` by a an element of the ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x + 4).exquo_ground(2) Poly(x + 2, x, domain='ZZ') >>> Poly(2*x + 3).exquo_ground(2) Traceback (most recent call last): ... ExactQuotientFailed: 2 does not divide 3 in ZZ """ if hasattr(f.rep, 'exquo_ground'): result = f.rep.exquo_ground(coeff) else: # pragma: no cover raise OperationNotSupported(f, 'exquo_ground') return f.per(result) def abs(f): """ Make all coefficients in ``f`` positive. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).abs() Poly(x**2 + 1, x, domain='ZZ') """ if hasattr(f.rep, 'abs'): result = f.rep.abs() else: # pragma: no cover raise OperationNotSupported(f, 'abs') return f.per(result) def neg(f): """ Negate all coefficients in ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).neg() Poly(-x**2 + 1, x, domain='ZZ') >>> -Poly(x**2 - 1, x) Poly(-x**2 + 1, x, domain='ZZ') """ if hasattr(f.rep, 'neg'): result = f.rep.neg() else: # pragma: no cover raise OperationNotSupported(f, 'neg') return f.per(result) def add(f, g): """ Add two polynomials ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).add(Poly(x - 2, x)) Poly(x**2 + x - 1, x, domain='ZZ') >>> Poly(x**2 + 1, x) + Poly(x - 2, x) Poly(x**2 + x - 1, x, domain='ZZ') """ g = sympify(g) if not g.is_Poly: return f.add_ground(g) _, per, F, G = f._unify(g) if hasattr(f.rep, 'add'): result = F.add(G) else: # pragma: no cover raise OperationNotSupported(f, 'add') return per(result) def sub(f, g): """ Subtract two polynomials ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).sub(Poly(x - 2, x)) Poly(x**2 - x + 3, x, domain='ZZ') >>> Poly(x**2 + 1, x) - Poly(x - 2, x) Poly(x**2 - x + 3, x, domain='ZZ') """ g = sympify(g) if not g.is_Poly: return f.sub_ground(g) _, per, F, G = f._unify(g) if hasattr(f.rep, 'sub'): result = F.sub(G) else: # pragma: no cover raise OperationNotSupported(f, 'sub') return per(result) def mul(f, g): """ Multiply two polynomials ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).mul(Poly(x - 2, x)) Poly(x**3 - 2*x**2 + x - 2, x, domain='ZZ') >>> Poly(x**2 + 1, x)*Poly(x - 2, x) Poly(x**3 - 2*x**2 + x - 2, x, domain='ZZ') """ g = sympify(g) if not g.is_Poly: return f.mul_ground(g) _, per, F, G = f._unify(g) if hasattr(f.rep, 'mul'): result = F.mul(G) else: # pragma: no cover raise OperationNotSupported(f, 'mul') return per(result) def sqr(f): """ Square a polynomial ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x - 2, x).sqr() Poly(x**2 - 4*x + 4, x, domain='ZZ') >>> Poly(x - 2, x)**2 Poly(x**2 - 4*x + 4, x, domain='ZZ') """ if hasattr(f.rep, 'sqr'): result = f.rep.sqr() else: # pragma: no cover raise OperationNotSupported(f, 'sqr') return f.per(result) def pow(f, n): """ Raise ``f`` to a non-negative power ``n``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x - 2, x).pow(3) Poly(x**3 - 6*x**2 + 12*x - 8, x, domain='ZZ') >>> Poly(x - 2, x)**3 Poly(x**3 - 6*x**2 + 12*x - 8, x, domain='ZZ') """ n = int(n) if hasattr(f.rep, 'pow'): result = f.rep.pow(n) else: # pragma: no cover raise OperationNotSupported(f, 'pow') return f.per(result) def pdiv(f, g): """ Polynomial pseudo-division of ``f`` by ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).pdiv(Poly(2*x - 4, x)) (Poly(2*x + 4, x, domain='ZZ'), Poly(20, x, domain='ZZ')) """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'pdiv'): q, r = F.pdiv(G) else: # pragma: no cover raise OperationNotSupported(f, 'pdiv') return per(q), per(r) def prem(f, g): """ Polynomial pseudo-remainder of ``f`` by ``g``. Caveat: The function prem(f, g, x) can be safely used to compute in Z[x] _only_ subresultant polynomial remainder sequences (prs's). To safely compute Euclidean and Sturmian prs's in Z[x] employ anyone of the corresponding functions found in the module sympy.polys.subresultants_qq_zz. The functions in the module with suffix _pg compute prs's in Z[x] employing rem(f, g, x), whereas the functions with suffix _amv compute prs's in Z[x] employing rem_z(f, g, x). The function rem_z(f, g, x) differs from prem(f, g, x) in that to compute the remainder polynomials in Z[x] it premultiplies the divident times the absolute value of the leading coefficient of the divisor raised to the power degree(f, x) - degree(g, x) + 1. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).prem(Poly(2*x - 4, x)) Poly(20, x, domain='ZZ') """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'prem'): result = F.prem(G) else: # pragma: no cover raise OperationNotSupported(f, 'prem') return per(result) def pquo(f, g): """ Polynomial pseudo-quotient of ``f`` by ``g``. See the Caveat note in the function prem(f, g). Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).pquo(Poly(2*x - 4, x)) Poly(2*x + 4, x, domain='ZZ') >>> Poly(x**2 - 1, x).pquo(Poly(2*x - 2, x)) Poly(2*x + 2, x, domain='ZZ') """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'pquo'): result = F.pquo(G) else: # pragma: no cover raise OperationNotSupported(f, 'pquo') return per(result) def pexquo(f, g): """ Polynomial exact pseudo-quotient of ``f`` by ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).pexquo(Poly(2*x - 2, x)) Poly(2*x + 2, x, domain='ZZ') >>> Poly(x**2 + 1, x).pexquo(Poly(2*x - 4, x)) Traceback (most recent call last): ... ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1 """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'pexquo'): try: result = F.pexquo(G) except ExactQuotientFailed as exc: raise exc.new(f.as_expr(), g.as_expr()) else: # pragma: no cover raise OperationNotSupported(f, 'pexquo') return per(result) def div(f, g, auto=True): """ Polynomial division with remainder of ``f`` by ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).div(Poly(2*x - 4, x)) (Poly(1/2*x + 1, x, domain='QQ'), Poly(5, x, domain='QQ')) >>> Poly(x**2 + 1, x).div(Poly(2*x - 4, x), auto=False) (Poly(0, x, domain='ZZ'), Poly(x**2 + 1, x, domain='ZZ')) """ dom, per, F, G = f._unify(g) retract = False if auto and dom.is_Ring and not dom.is_Field: F, G = F.to_field(), G.to_field() retract = True if hasattr(f.rep, 'div'): q, r = F.div(G) else: # pragma: no cover raise OperationNotSupported(f, 'div') if retract: try: Q, R = q.to_ring(), r.to_ring() except CoercionFailed: pass else: q, r = Q, R return per(q), per(r) def rem(f, g, auto=True): """ Computes the polynomial remainder of ``f`` by ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).rem(Poly(2*x - 4, x)) Poly(5, x, domain='ZZ') >>> Poly(x**2 + 1, x).rem(Poly(2*x - 4, x), auto=False) Poly(x**2 + 1, x, domain='ZZ') """ dom, per, F, G = f._unify(g) retract = False if auto and dom.is_Ring and not dom.is_Field: F, G = F.to_field(), G.to_field() retract = True if hasattr(f.rep, 'rem'): r = F.rem(G) else: # pragma: no cover raise OperationNotSupported(f, 'rem') if retract: try: r = r.to_ring() except CoercionFailed: pass return per(r) def quo(f, g, auto=True): """ Computes polynomial quotient of ``f`` by ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).quo(Poly(2*x - 4, x)) Poly(1/2*x + 1, x, domain='QQ') >>> Poly(x**2 - 1, x).quo(Poly(x - 1, x)) Poly(x + 1, x, domain='ZZ') """ dom, per, F, G = f._unify(g) retract = False if auto and dom.is_Ring and not dom.is_Field: F, G = F.to_field(), G.to_field() retract = True if hasattr(f.rep, 'quo'): q = F.quo(G) else: # pragma: no cover raise OperationNotSupported(f, 'quo') if retract: try: q = q.to_ring() except CoercionFailed: pass return per(q) def exquo(f, g, auto=True): """ Computes polynomial exact quotient of ``f`` by ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).exquo(Poly(x - 1, x)) Poly(x + 1, x, domain='ZZ') >>> Poly(x**2 + 1, x).exquo(Poly(2*x - 4, x)) Traceback (most recent call last): ... ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1 """ dom, per, F, G = f._unify(g) retract = False if auto and dom.is_Ring and not dom.is_Field: F, G = F.to_field(), G.to_field() retract = True if hasattr(f.rep, 'exquo'): try: q = F.exquo(G) except ExactQuotientFailed as exc: raise exc.new(f.as_expr(), g.as_expr()) else: # pragma: no cover raise OperationNotSupported(f, 'exquo') if retract: try: q = q.to_ring() except CoercionFailed: pass return per(q) def _gen_to_level(f, gen): """Returns level associated with the given generator. """ if isinstance(gen, int): length = len(f.gens) if -length <= gen < length: if gen < 0: return length + gen else: return gen else: raise PolynomialError("-%s <= gen < %s expected, got %s" % (length, length, gen)) else: try: return f.gens.index(sympify(gen)) except ValueError: raise PolynomialError( "a valid generator expected, got %s" % gen) def degree(f, gen=0): """ Returns degree of ``f`` in ``x_j``. The degree of 0 is negative infinity. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + y*x + 1, x, y).degree() 2 >>> Poly(x**2 + y*x + y, x, y).degree(y) 1 >>> Poly(0, x).degree() -oo """ j = f._gen_to_level(gen) if hasattr(f.rep, 'degree'): return f.rep.degree(j) else: # pragma: no cover raise OperationNotSupported(f, 'degree') def degree_list(f): """ Returns a list of degrees of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + y*x + 1, x, y).degree_list() (2, 1) """ if hasattr(f.rep, 'degree_list'): return f.rep.degree_list() else: # pragma: no cover raise OperationNotSupported(f, 'degree_list') def total_degree(f): """ Returns the total degree of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + y*x + 1, x, y).total_degree() 2 >>> Poly(x + y**5, x, y).total_degree() 5 """ if hasattr(f.rep, 'total_degree'): return f.rep.total_degree() else: # pragma: no cover raise OperationNotSupported(f, 'total_degree') def homogenize(f, s): """ Returns the homogeneous polynomial of ``f``. A homogeneous polynomial is a polynomial whose all monomials with non-zero coefficients have the same total degree. If you only want to check if a polynomial is homogeneous, then use :func:`Poly.is_homogeneous`. If you want not only to check if a polynomial is homogeneous but also compute its homogeneous order, then use :func:`Poly.homogeneous_order`. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y, z >>> f = Poly(x**5 + 2*x**2*y**2 + 9*x*y**3) >>> f.homogenize(z) Poly(x**5 + 2*x**2*y**2*z + 9*x*y**3*z, x, y, z, domain='ZZ') """ if not isinstance(s, Symbol): raise TypeError("``Symbol`` expected, got %s" % type(s)) if s in f.gens: i = f.gens.index(s) gens = f.gens else: i = len(f.gens) gens = f.gens + (s,) if hasattr(f.rep, 'homogenize'): return f.per(f.rep.homogenize(i), gens=gens) raise OperationNotSupported(f, 'homogeneous_order') def homogeneous_order(f): """ Returns the homogeneous order of ``f``. A homogeneous polynomial is a polynomial whose all monomials with non-zero coefficients have the same total degree. This degree is the homogeneous order of ``f``. If you only want to check if a polynomial is homogeneous, then use :func:`Poly.is_homogeneous`. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = Poly(x**5 + 2*x**3*y**2 + 9*x*y**4) >>> f.homogeneous_order() 5 """ if hasattr(f.rep, 'homogeneous_order'): return f.rep.homogeneous_order() else: # pragma: no cover raise OperationNotSupported(f, 'homogeneous_order') def LC(f, order=None): """ Returns the leading coefficient of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(4*x**3 + 2*x**2 + 3*x, x).LC() 4 """ if order is not None: return f.coeffs(order)[0] if hasattr(f.rep, 'LC'): result = f.rep.LC() else: # pragma: no cover raise OperationNotSupported(f, 'LC') return f.rep.dom.to_sympy(result) def TC(f): """ Returns the trailing coefficient of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 + 2*x**2 + 3*x, x).TC() 0 """ if hasattr(f.rep, 'TC'): result = f.rep.TC() else: # pragma: no cover raise OperationNotSupported(f, 'TC') return f.rep.dom.to_sympy(result) def EC(f, order=None): """ Returns the last non-zero coefficient of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 + 2*x**2 + 3*x, x).EC() 3 """ if hasattr(f.rep, 'coeffs'): return f.coeffs(order)[-1] else: # pragma: no cover raise OperationNotSupported(f, 'EC') def coeff_monomial(f, monom): """ Returns the coefficient of ``monom`` in ``f`` if there, else None. Examples ======== >>> from sympy import Poly, exp >>> from sympy.abc import x, y >>> p = Poly(24*x*y*exp(8) + 23*x, x, y) >>> p.coeff_monomial(x) 23 >>> p.coeff_monomial(y) 0 >>> p.coeff_monomial(x*y) 24*exp(8) Note that ``Expr.coeff()`` behaves differently, collecting terms if possible; the Poly must be converted to an Expr to use that method, however: >>> p.as_expr().coeff(x) 24*y*exp(8) + 23 >>> p.as_expr().coeff(y) 24*x*exp(8) >>> p.as_expr().coeff(x*y) 24*exp(8) See Also ======== nth: more efficient query using exponents of the monomial's generators """ return f.nth(*Monomial(monom, f.gens).exponents) def nth(f, *N): """ Returns the ``n``-th coefficient of ``f`` where ``N`` are the exponents of the generators in the term of interest. Examples ======== >>> from sympy import Poly, sqrt >>> from sympy.abc import x, y >>> Poly(x**3 + 2*x**2 + 3*x, x).nth(2) 2 >>> Poly(x**3 + 2*x*y**2 + y**2, x, y).nth(1, 2) 2 >>> Poly(4*sqrt(x)*y) Poly(4*y*(sqrt(x)), y, sqrt(x), domain='ZZ') >>> _.nth(1, 1) 4 See Also ======== coeff_monomial """ if hasattr(f.rep, 'nth'): if len(N) != len(f.gens): raise ValueError('exponent of each generator must be specified') result = f.rep.nth(*list(map(int, N))) else: # pragma: no cover raise OperationNotSupported(f, 'nth') return f.rep.dom.to_sympy(result) def coeff(f, x, n=1, right=False): # the semantics of coeff_monomial and Expr.coeff are different; # if someone is working with a Poly, they should be aware of the # differences and chose the method best suited for the query. # Alternatively, a pure-polys method could be written here but # at this time the ``right`` keyword would be ignored because Poly # doesn't work with non-commutatives. raise NotImplementedError( 'Either convert to Expr with `as_expr` method ' 'to use Expr\'s coeff method or else use the ' '`coeff_monomial` method of Polys.') def LM(f, order=None): """ Returns the leading monomial of ``f``. The Leading monomial signifies the monomial having the highest power of the principal generator in the expression f. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).LM() x**2*y**0 """ return Monomial(f.monoms(order)[0], f.gens) def EM(f, order=None): """ Returns the last non-zero monomial of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).EM() x**0*y**1 """ return Monomial(f.monoms(order)[-1], f.gens) def LT(f, order=None): """ Returns the leading term of ``f``. The Leading term signifies the term having the highest power of the principal generator in the expression f along with its coefficient. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).LT() (x**2*y**0, 4) """ monom, coeff = f.terms(order)[0] return Monomial(monom, f.gens), coeff def ET(f, order=None): """ Returns the last non-zero term of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).ET() (x**0*y**1, 3) """ monom, coeff = f.terms(order)[-1] return Monomial(monom, f.gens), coeff def max_norm(f): """ Returns maximum norm of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(-x**2 + 2*x - 3, x).max_norm() 3 """ if hasattr(f.rep, 'max_norm'): result = f.rep.max_norm() else: # pragma: no cover raise OperationNotSupported(f, 'max_norm') return f.rep.dom.to_sympy(result) def l1_norm(f): """ Returns l1 norm of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(-x**2 + 2*x - 3, x).l1_norm() 6 """ if hasattr(f.rep, 'l1_norm'): result = f.rep.l1_norm() else: # pragma: no cover raise OperationNotSupported(f, 'l1_norm') return f.rep.dom.to_sympy(result) def clear_denoms(self, convert=False): """ Clear denominators, but keep the ground domain. Examples ======== >>> from sympy import Poly, S, QQ >>> from sympy.abc import x >>> f = Poly(x/2 + S(1)/3, x, domain=QQ) >>> f.clear_denoms() (6, Poly(3*x + 2, x, domain='QQ')) >>> f.clear_denoms(convert=True) (6, Poly(3*x + 2, x, domain='ZZ')) """ f = self if not f.rep.dom.is_Field: return S.One, f dom = f.get_domain() if dom.has_assoc_Ring: dom = f.rep.dom.get_ring() if hasattr(f.rep, 'clear_denoms'): coeff, result = f.rep.clear_denoms() else: # pragma: no cover raise OperationNotSupported(f, 'clear_denoms') coeff, f = dom.to_sympy(coeff), f.per(result) if not convert or not dom.has_assoc_Ring: return coeff, f else: return coeff, f.to_ring() def rat_clear_denoms(self, g): """ Clear denominators in a rational function ``f/g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = Poly(x**2/y + 1, x) >>> g = Poly(x**3 + y, x) >>> p, q = f.rat_clear_denoms(g) >>> p Poly(x**2 + y, x, domain='ZZ[y]') >>> q Poly(y*x**3 + y**2, x, domain='ZZ[y]') """ f = self dom, per, f, g = f._unify(g) f = per(f) g = per(g) if not (dom.is_Field and dom.has_assoc_Ring): return f, g a, f = f.clear_denoms(convert=True) b, g = g.clear_denoms(convert=True) f = f.mul_ground(b) g = g.mul_ground(a) return f, g def integrate(self, *specs, **args): """ Computes indefinite integral of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 2*x + 1, x).integrate() Poly(1/3*x**3 + x**2 + x, x, domain='QQ') >>> Poly(x*y**2 + x, x, y).integrate((0, 1), (1, 0)) Poly(1/2*x**2*y**2 + 1/2*x**2, x, y, domain='QQ') """ f = self if args.get('auto', True) and f.rep.dom.is_Ring: f = f.to_field() if hasattr(f.rep, 'integrate'): if not specs: return f.per(f.rep.integrate(m=1)) rep = f.rep for spec in specs: if type(spec) is tuple: gen, m = spec else: gen, m = spec, 1 rep = rep.integrate(int(m), f._gen_to_level(gen)) return f.per(rep) else: # pragma: no cover raise OperationNotSupported(f, 'integrate') def diff(f, *specs, **kwargs): """ Computes partial derivative of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 2*x + 1, x).diff() Poly(2*x + 2, x, domain='ZZ') >>> Poly(x*y**2 + x, x, y).diff((0, 0), (1, 1)) Poly(2*x*y, x, y, domain='ZZ') """ if not kwargs.get('evaluate', True): return Derivative(f, *specs, **kwargs) if hasattr(f.rep, 'diff'): if not specs: return f.per(f.rep.diff(m=1)) rep = f.rep for spec in specs: if type(spec) is tuple: gen, m = spec else: gen, m = spec, 1 rep = rep.diff(int(m), f._gen_to_level(gen)) return f.per(rep) else: # pragma: no cover raise OperationNotSupported(f, 'diff') _eval_derivative = diff def eval(self, x, a=None, auto=True): """ Evaluate ``f`` at ``a`` in the given variable. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y, z >>> Poly(x**2 + 2*x + 3, x).eval(2) 11 >>> Poly(2*x*y + 3*x + y + 2, x, y).eval(x, 2) Poly(5*y + 8, y, domain='ZZ') >>> f = Poly(2*x*y + 3*x + y + 2*z, x, y, z) >>> f.eval({x: 2}) Poly(5*y + 2*z + 6, y, z, domain='ZZ') >>> f.eval({x: 2, y: 5}) Poly(2*z + 31, z, domain='ZZ') >>> f.eval({x: 2, y: 5, z: 7}) 45 >>> f.eval((2, 5)) Poly(2*z + 31, z, domain='ZZ') >>> f(2, 5) Poly(2*z + 31, z, domain='ZZ') """ f = self if a is None: if isinstance(x, dict): mapping = x for gen, value in mapping.items(): f = f.eval(gen, value) return f elif isinstance(x, (tuple, list)): values = x if len(values) > len(f.gens): raise ValueError("too many values provided") for gen, value in zip(f.gens, values): f = f.eval(gen, value) return f else: j, a = 0, x else: j = f._gen_to_level(x) if not hasattr(f.rep, 'eval'): # pragma: no cover raise OperationNotSupported(f, 'eval') try: result = f.rep.eval(a, j) except CoercionFailed: if not auto: raise DomainError("can't evaluate at %s in %s" % (a, f.rep.dom)) else: a_domain, [a] = construct_domain([a]) new_domain = f.get_domain().unify_with_symbols(a_domain, f.gens) f = f.set_domain(new_domain) a = new_domain.convert(a, a_domain) result = f.rep.eval(a, j) return f.per(result, remove=j) def __call__(f, *values): """ Evaluate ``f`` at the give values. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y, z >>> f = Poly(2*x*y + 3*x + y + 2*z, x, y, z) >>> f(2) Poly(5*y + 2*z + 6, y, z, domain='ZZ') >>> f(2, 5) Poly(2*z + 31, z, domain='ZZ') >>> f(2, 5, 7) 45 """ return f.eval(values) def half_gcdex(f, g, auto=True): """ Half extended Euclidean algorithm of ``f`` and ``g``. Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15 >>> g = x**3 + x**2 - 4*x - 4 >>> Poly(f).half_gcdex(Poly(g)) (Poly(-1/5*x + 3/5, x, domain='QQ'), Poly(x + 1, x, domain='QQ')) """ dom, per, F, G = f._unify(g) if auto and dom.is_Ring: F, G = F.to_field(), G.to_field() if hasattr(f.rep, 'half_gcdex'): s, h = F.half_gcdex(G) else: # pragma: no cover raise OperationNotSupported(f, 'half_gcdex') return per(s), per(h) def gcdex(f, g, auto=True): """ Extended Euclidean algorithm of ``f`` and ``g``. Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15 >>> g = x**3 + x**2 - 4*x - 4 >>> Poly(f).gcdex(Poly(g)) (Poly(-1/5*x + 3/5, x, domain='QQ'), Poly(1/5*x**2 - 6/5*x + 2, x, domain='QQ'), Poly(x + 1, x, domain='QQ')) """ dom, per, F, G = f._unify(g) if auto and dom.is_Ring: F, G = F.to_field(), G.to_field() if hasattr(f.rep, 'gcdex'): s, t, h = F.gcdex(G) else: # pragma: no cover raise OperationNotSupported(f, 'gcdex') return per(s), per(t), per(h) def invert(f, g, auto=True): """ Invert ``f`` modulo ``g`` when possible. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).invert(Poly(2*x - 1, x)) Poly(-4/3, x, domain='QQ') >>> Poly(x**2 - 1, x).invert(Poly(x - 1, x)) Traceback (most recent call last): ... NotInvertible: zero divisor """ dom, per, F, G = f._unify(g) if auto and dom.is_Ring: F, G = F.to_field(), G.to_field() if hasattr(f.rep, 'invert'): result = F.invert(G) else: # pragma: no cover raise OperationNotSupported(f, 'invert') return per(result) def revert(f, n): """ Compute ``f**(-1)`` mod ``x**n``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(1, x).revert(2) Poly(1, x, domain='ZZ') >>> Poly(1 + x, x).revert(1) Poly(1, x, domain='ZZ') >>> Poly(x**2 - 2, x).revert(2) Traceback (most recent call last): ... NotReversible: only units are reversible in a ring >>> Poly(1/x, x).revert(1) Traceback (most recent call last): ... PolynomialError: 1/x contains an element of the generators set """ if hasattr(f.rep, 'revert'): result = f.rep.revert(int(n)) else: # pragma: no cover raise OperationNotSupported(f, 'revert') return f.per(result) def subresultants(f, g): """ Computes the subresultant PRS of ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).subresultants(Poly(x**2 - 1, x)) [Poly(x**2 + 1, x, domain='ZZ'), Poly(x**2 - 1, x, domain='ZZ'), Poly(-2, x, domain='ZZ')] """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'subresultants'): result = F.subresultants(G) else: # pragma: no cover raise OperationNotSupported(f, 'subresultants') return list(map(per, result)) def resultant(f, g, includePRS=False): """ Computes the resultant of ``f`` and ``g`` via PRS. If includePRS=True, it includes the subresultant PRS in the result. Because the PRS is used to calculate the resultant, this is more efficient than calling :func:`subresultants` separately. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = Poly(x**2 + 1, x) >>> f.resultant(Poly(x**2 - 1, x)) 4 >>> f.resultant(Poly(x**2 - 1, x), includePRS=True) (4, [Poly(x**2 + 1, x, domain='ZZ'), Poly(x**2 - 1, x, domain='ZZ'), Poly(-2, x, domain='ZZ')]) """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'resultant'): if includePRS: result, R = F.resultant(G, includePRS=includePRS) else: result = F.resultant(G) else: # pragma: no cover raise OperationNotSupported(f, 'resultant') if includePRS: return (per(result, remove=0), list(map(per, R))) return per(result, remove=0) def discriminant(f): """ Computes the discriminant of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 2*x + 3, x).discriminant() -8 """ if hasattr(f.rep, 'discriminant'): result = f.rep.discriminant() else: # pragma: no cover raise OperationNotSupported(f, 'discriminant') return f.per(result, remove=0) def dispersionset(f, g=None): r"""Compute the *dispersion set* of two polynomials. For two polynomials `f(x)` and `g(x)` with `\deg f > 0` and `\deg g > 0` the dispersion set `\operatorname{J}(f, g)` is defined as: .. math:: \operatorname{J}(f, g) & := \{a \in \mathbb{N}_0 | \gcd(f(x), g(x+a)) \neq 1\} \\ & = \{a \in \mathbb{N}_0 | \deg \gcd(f(x), g(x+a)) \geq 1\} For a single polynomial one defines `\operatorname{J}(f) := \operatorname{J}(f, f)`. Examples ======== >>> from sympy import poly >>> from sympy.polys.dispersion import dispersion, dispersionset >>> from sympy.abc import x Dispersion set and dispersion of a simple polynomial: >>> fp = poly((x - 3)*(x + 3), x) >>> sorted(dispersionset(fp)) [0, 6] >>> dispersion(fp) 6 Note that the definition of the dispersion is not symmetric: >>> fp = poly(x**4 - 3*x**2 + 1, x) >>> gp = fp.shift(-3) >>> sorted(dispersionset(fp, gp)) [2, 3, 4] >>> dispersion(fp, gp) 4 >>> sorted(dispersionset(gp, fp)) [] >>> dispersion(gp, fp) -oo Computing the dispersion also works over field extensions: >>> from sympy import sqrt >>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>') >>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>') >>> sorted(dispersionset(fp, gp)) [2] >>> sorted(dispersionset(gp, fp)) [1, 4] We can even perform the computations for polynomials having symbolic coefficients: >>> from sympy.abc import a >>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x) >>> sorted(dispersionset(fp)) [0, 1] See Also ======== dispersion References ========== 1. [ManWright94]_ 2. [Koepf98]_ 3. [Abramov71]_ 4. [Man93]_ """ from sympy.polys.dispersion import dispersionset return dispersionset(f, g) def dispersion(f, g=None): r"""Compute the *dispersion* of polynomials. For two polynomials `f(x)` and `g(x)` with `\deg f > 0` and `\deg g > 0` the dispersion `\operatorname{dis}(f, g)` is defined as: .. math:: \operatorname{dis}(f, g) & := \max\{ J(f,g) \cup \{0\} \} \\ & = \max\{ \{a \in \mathbb{N} | \gcd(f(x), g(x+a)) \neq 1\} \cup \{0\} \} and for a single polynomial `\operatorname{dis}(f) := \operatorname{dis}(f, f)`. Examples ======== >>> from sympy import poly >>> from sympy.polys.dispersion import dispersion, dispersionset >>> from sympy.abc import x Dispersion set and dispersion of a simple polynomial: >>> fp = poly((x - 3)*(x + 3), x) >>> sorted(dispersionset(fp)) [0, 6] >>> dispersion(fp) 6 Note that the definition of the dispersion is not symmetric: >>> fp = poly(x**4 - 3*x**2 + 1, x) >>> gp = fp.shift(-3) >>> sorted(dispersionset(fp, gp)) [2, 3, 4] >>> dispersion(fp, gp) 4 >>> sorted(dispersionset(gp, fp)) [] >>> dispersion(gp, fp) -oo Computing the dispersion also works over field extensions: >>> from sympy import sqrt >>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>') >>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>') >>> sorted(dispersionset(fp, gp)) [2] >>> sorted(dispersionset(gp, fp)) [1, 4] We can even perform the computations for polynomials having symbolic coefficients: >>> from sympy.abc import a >>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x) >>> sorted(dispersionset(fp)) [0, 1] See Also ======== dispersionset References ========== 1. [ManWright94]_ 2. [Koepf98]_ 3. [Abramov71]_ 4. [Man93]_ """ from sympy.polys.dispersion import dispersion return dispersion(f, g) def cofactors(f, g): """ Returns the GCD of ``f`` and ``g`` and their cofactors. Returns polynomials ``(h, cff, cfg)`` such that ``h = gcd(f, g)``, and ``cff = quo(f, h)`` and ``cfg = quo(g, h)`` are, so called, cofactors of ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).cofactors(Poly(x**2 - 3*x + 2, x)) (Poly(x - 1, x, domain='ZZ'), Poly(x + 1, x, domain='ZZ'), Poly(x - 2, x, domain='ZZ')) """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'cofactors'): h, cff, cfg = F.cofactors(G) else: # pragma: no cover raise OperationNotSupported(f, 'cofactors') return per(h), per(cff), per(cfg) def gcd(f, g): """ Returns the polynomial GCD of ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).gcd(Poly(x**2 - 3*x + 2, x)) Poly(x - 1, x, domain='ZZ') """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'gcd'): result = F.gcd(G) else: # pragma: no cover raise OperationNotSupported(f, 'gcd') return per(result) def lcm(f, g): """ Returns polynomial LCM of ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).lcm(Poly(x**2 - 3*x + 2, x)) Poly(x**3 - 2*x**2 - x + 2, x, domain='ZZ') """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'lcm'): result = F.lcm(G) else: # pragma: no cover raise OperationNotSupported(f, 'lcm') return per(result) def trunc(f, p): """ Reduce ``f`` modulo a constant ``p``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x**3 + 3*x**2 + 5*x + 7, x).trunc(3) Poly(-x**3 - x + 1, x, domain='ZZ') """ p = f.rep.dom.convert(p) if hasattr(f.rep, 'trunc'): result = f.rep.trunc(p) else: # pragma: no cover raise OperationNotSupported(f, 'trunc') return f.per(result) def monic(self, auto=True): """ Divides all coefficients by ``LC(f)``. Examples ======== >>> from sympy import Poly, ZZ >>> from sympy.abc import x >>> Poly(3*x**2 + 6*x + 9, x, domain=ZZ).monic() Poly(x**2 + 2*x + 3, x, domain='QQ') >>> Poly(3*x**2 + 4*x + 2, x, domain=ZZ).monic() Poly(x**2 + 4/3*x + 2/3, x, domain='QQ') """ f = self if auto and f.rep.dom.is_Ring: f = f.to_field() if hasattr(f.rep, 'monic'): result = f.rep.monic() else: # pragma: no cover raise OperationNotSupported(f, 'monic') return f.per(result) def content(f): """ Returns the GCD of polynomial coefficients. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(6*x**2 + 8*x + 12, x).content() 2 """ if hasattr(f.rep, 'content'): result = f.rep.content() else: # pragma: no cover raise OperationNotSupported(f, 'content') return f.rep.dom.to_sympy(result) def primitive(f): """ Returns the content and a primitive form of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x**2 + 8*x + 12, x).primitive() (2, Poly(x**2 + 4*x + 6, x, domain='ZZ')) """ if hasattr(f.rep, 'primitive'): cont, result = f.rep.primitive() else: # pragma: no cover raise OperationNotSupported(f, 'primitive') return f.rep.dom.to_sympy(cont), f.per(result) def compose(f, g): """ Computes the functional composition of ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + x, x).compose(Poly(x - 1, x)) Poly(x**2 - x, x, domain='ZZ') """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'compose'): result = F.compose(G) else: # pragma: no cover raise OperationNotSupported(f, 'compose') return per(result) def decompose(f): """ Computes a functional decomposition of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**4 + 2*x**3 - x - 1, x, domain='ZZ').decompose() [Poly(x**2 - x - 1, x, domain='ZZ'), Poly(x**2 + x, x, domain='ZZ')] """ if hasattr(f.rep, 'decompose'): result = f.rep.decompose() else: # pragma: no cover raise OperationNotSupported(f, 'decompose') return list(map(f.per, result)) def shift(f, a): """ Efficiently compute Taylor shift ``f(x + a)``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 2*x + 1, x).shift(2) Poly(x**2 + 2*x + 1, x, domain='ZZ') """ if hasattr(f.rep, 'shift'): result = f.rep.shift(a) else: # pragma: no cover raise OperationNotSupported(f, 'shift') return f.per(result) def transform(f, p, q): """ Efficiently evaluate the functional transformation ``q**n * f(p/q)``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1, x), Poly(x - 1, x)) Poly(4, x, domain='ZZ') """ P, Q = p.unify(q) F, P = f.unify(P) F, Q = F.unify(Q) if hasattr(F.rep, 'transform'): result = F.rep.transform(P.rep, Q.rep) else: # pragma: no cover raise OperationNotSupported(F, 'transform') return F.per(result) def sturm(self, auto=True): """ Computes the Sturm sequence of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 - 2*x**2 + x - 3, x).sturm() [Poly(x**3 - 2*x**2 + x - 3, x, domain='QQ'), Poly(3*x**2 - 4*x + 1, x, domain='QQ'), Poly(2/9*x + 25/9, x, domain='QQ'), Poly(-2079/4, x, domain='QQ')] """ f = self if auto and f.rep.dom.is_Ring: f = f.to_field() if hasattr(f.rep, 'sturm'): result = f.rep.sturm() else: # pragma: no cover raise OperationNotSupported(f, 'sturm') return list(map(f.per, result)) def gff_list(f): """ Computes greatest factorial factorization of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = x**5 + 2*x**4 - x**3 - 2*x**2 >>> Poly(f).gff_list() [(Poly(x, x, domain='ZZ'), 1), (Poly(x + 2, x, domain='ZZ'), 4)] """ if hasattr(f.rep, 'gff_list'): result = f.rep.gff_list() else: # pragma: no cover raise OperationNotSupported(f, 'gff_list') return [(f.per(g), k) for g, k in result] def norm(f): """ Computes the product, ``Norm(f)``, of the conjugates of a polynomial ``f`` defined over a number field ``K``. Examples ======== >>> from sympy import Poly, sqrt >>> from sympy.abc import x >>> a, b = sqrt(2), sqrt(3) A polynomial over a quadratic extension. Two conjugates x - a and x + a. >>> f = Poly(x - a, x, extension=a) >>> f.norm() Poly(x**2 - 2, x, domain='QQ') A polynomial over a quartic extension. Four conjugates x - a, x - a, x + a and x + a. >>> f = Poly(x - a, x, extension=(a, b)) >>> f.norm() Poly(x**4 - 4*x**2 + 4, x, domain='QQ') """ if hasattr(f.rep, 'norm'): r = f.rep.norm() else: # pragma: no cover raise OperationNotSupported(f, 'norm') return f.per(r) def sqf_norm(f): """ Computes square-free norm of ``f``. Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))`` is a square-free polynomial over ``K``, where ``a`` is the algebraic extension of the ground domain. Examples ======== >>> from sympy import Poly, sqrt >>> from sympy.abc import x >>> s, f, r = Poly(x**2 + 1, x, extension=[sqrt(3)]).sqf_norm() >>> s 1 >>> f Poly(x**2 - 2*sqrt(3)*x + 4, x, domain='QQ<sqrt(3)>') >>> r Poly(x**4 - 4*x**2 + 16, x, domain='QQ') """ if hasattr(f.rep, 'sqf_norm'): s, g, r = f.rep.sqf_norm() else: # pragma: no cover raise OperationNotSupported(f, 'sqf_norm') return s, f.per(g), f.per(r) def sqf_part(f): """ Computes square-free part of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 - 3*x - 2, x).sqf_part() Poly(x**2 - x - 2, x, domain='ZZ') """ if hasattr(f.rep, 'sqf_part'): result = f.rep.sqf_part() else: # pragma: no cover raise OperationNotSupported(f, 'sqf_part') return f.per(result) def sqf_list(f, all=False): """ Returns a list of square-free factors of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16 >>> Poly(f).sqf_list() (2, [(Poly(x + 1, x, domain='ZZ'), 2), (Poly(x + 2, x, domain='ZZ'), 3)]) >>> Poly(f).sqf_list(all=True) (2, [(Poly(1, x, domain='ZZ'), 1), (Poly(x + 1, x, domain='ZZ'), 2), (Poly(x + 2, x, domain='ZZ'), 3)]) """ if hasattr(f.rep, 'sqf_list'): coeff, factors = f.rep.sqf_list(all) else: # pragma: no cover raise OperationNotSupported(f, 'sqf_list') return f.rep.dom.to_sympy(coeff), [(f.per(g), k) for g, k in factors] def sqf_list_include(f, all=False): """ Returns a list of square-free factors of ``f``. Examples ======== >>> from sympy import Poly, expand >>> from sympy.abc import x >>> f = expand(2*(x + 1)**3*x**4) >>> f 2*x**7 + 6*x**6 + 6*x**5 + 2*x**4 >>> Poly(f).sqf_list_include() [(Poly(2, x, domain='ZZ'), 1), (Poly(x + 1, x, domain='ZZ'), 3), (Poly(x, x, domain='ZZ'), 4)] >>> Poly(f).sqf_list_include(all=True) [(Poly(2, x, domain='ZZ'), 1), (Poly(1, x, domain='ZZ'), 2), (Poly(x + 1, x, domain='ZZ'), 3), (Poly(x, x, domain='ZZ'), 4)] """ if hasattr(f.rep, 'sqf_list_include'): factors = f.rep.sqf_list_include(all) else: # pragma: no cover raise OperationNotSupported(f, 'sqf_list_include') return [(f.per(g), k) for g, k in factors] def factor_list(f): """ Returns a list of irreducible factors of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = 2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y >>> Poly(f).factor_list() (2, [(Poly(x + y, x, y, domain='ZZ'), 1), (Poly(x**2 + 1, x, y, domain='ZZ'), 2)]) """ if hasattr(f.rep, 'factor_list'): try: coeff, factors = f.rep.factor_list() except DomainError: return S.One, [(f, 1)] else: # pragma: no cover raise OperationNotSupported(f, 'factor_list') return f.rep.dom.to_sympy(coeff), [(f.per(g), k) for g, k in factors] def factor_list_include(f): """ Returns a list of irreducible factors of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = 2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y >>> Poly(f).factor_list_include() [(Poly(2*x + 2*y, x, y, domain='ZZ'), 1), (Poly(x**2 + 1, x, y, domain='ZZ'), 2)] """ if hasattr(f.rep, 'factor_list_include'): try: factors = f.rep.factor_list_include() except DomainError: return [(f, 1)] else: # pragma: no cover raise OperationNotSupported(f, 'factor_list_include') return [(f.per(g), k) for g, k in factors] def intervals(f, all=False, eps=None, inf=None, sup=None, fast=False, sqf=False): """ Compute isolating intervals for roots of ``f``. For real roots the Vincent-Akritas-Strzebonski (VAS) continued fractions method is used. References ========== .. [#] Alkiviadis G. Akritas and Adam W. Strzebonski: A Comparative Study of Two Real Root Isolation Methods . Nonlinear Analysis: Modelling and Control, Vol. 10, No. 4, 297-304, 2005. .. [#] Alkiviadis G. Akritas, Adam W. Strzebonski and Panagiotis S. Vigklas: Improving the Performance of the Continued Fractions Method Using new Bounds of Positive Roots. Nonlinear Analysis: Modelling and Control, Vol. 13, No. 3, 265-279, 2008. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 3, x).intervals() [((-2, -1), 1), ((1, 2), 1)] >>> Poly(x**2 - 3, x).intervals(eps=1e-2) [((-26/15, -19/11), 1), ((19/11, 26/15), 1)] """ if eps is not None: eps = QQ.convert(eps) if eps <= 0: raise ValueError("'eps' must be a positive rational") if inf is not None: inf = QQ.convert(inf) if sup is not None: sup = QQ.convert(sup) if hasattr(f.rep, 'intervals'): result = f.rep.intervals( all=all, eps=eps, inf=inf, sup=sup, fast=fast, sqf=sqf) else: # pragma: no cover raise OperationNotSupported(f, 'intervals') if sqf: def _real(interval): s, t = interval return (QQ.to_sympy(s), QQ.to_sympy(t)) if not all: return list(map(_real, result)) def _complex(rectangle): (u, v), (s, t) = rectangle return (QQ.to_sympy(u) + I*QQ.to_sympy(v), QQ.to_sympy(s) + I*QQ.to_sympy(t)) real_part, complex_part = result return list(map(_real, real_part)), list(map(_complex, complex_part)) else: def _real(interval): (s, t), k = interval return ((QQ.to_sympy(s), QQ.to_sympy(t)), k) if not all: return list(map(_real, result)) def _complex(rectangle): ((u, v), (s, t)), k = rectangle return ((QQ.to_sympy(u) + I*QQ.to_sympy(v), QQ.to_sympy(s) + I*QQ.to_sympy(t)), k) real_part, complex_part = result return list(map(_real, real_part)), list(map(_complex, complex_part)) def refine_root(f, s, t, eps=None, steps=None, fast=False, check_sqf=False): """ Refine an isolating interval of a root to the given precision. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 3, x).refine_root(1, 2, eps=1e-2) (19/11, 26/15) """ if check_sqf and not f.is_sqf: raise PolynomialError("only square-free polynomials supported") s, t = QQ.convert(s), QQ.convert(t) if eps is not None: eps = QQ.convert(eps) if eps <= 0: raise ValueError("'eps' must be a positive rational") if steps is not None: steps = int(steps) elif eps is None: steps = 1 if hasattr(f.rep, 'refine_root'): S, T = f.rep.refine_root(s, t, eps=eps, steps=steps, fast=fast) else: # pragma: no cover raise OperationNotSupported(f, 'refine_root') return QQ.to_sympy(S), QQ.to_sympy(T) def count_roots(f, inf=None, sup=None): """ Return the number of roots of ``f`` in ``[inf, sup]`` interval. Examples ======== >>> from sympy import Poly, I >>> from sympy.abc import x >>> Poly(x**4 - 4, x).count_roots(-3, 3) 2 >>> Poly(x**4 - 4, x).count_roots(0, 1 + 3*I) 1 """ inf_real, sup_real = True, True if inf is not None: inf = sympify(inf) if inf is S.NegativeInfinity: inf = None else: re, im = inf.as_real_imag() if not im: inf = QQ.convert(inf) else: inf, inf_real = list(map(QQ.convert, (re, im))), False if sup is not None: sup = sympify(sup) if sup is S.Infinity: sup = None else: re, im = sup.as_real_imag() if not im: sup = QQ.convert(sup) else: sup, sup_real = list(map(QQ.convert, (re, im))), False if inf_real and sup_real: if hasattr(f.rep, 'count_real_roots'): count = f.rep.count_real_roots(inf=inf, sup=sup) else: # pragma: no cover raise OperationNotSupported(f, 'count_real_roots') else: if inf_real and inf is not None: inf = (inf, QQ.zero) if sup_real and sup is not None: sup = (sup, QQ.zero) if hasattr(f.rep, 'count_complex_roots'): count = f.rep.count_complex_roots(inf=inf, sup=sup) else: # pragma: no cover raise OperationNotSupported(f, 'count_complex_roots') return Integer(count) def root(f, index, radicals=True): """ Get an indexed root of a polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = Poly(2*x**3 - 7*x**2 + 4*x + 4) >>> f.root(0) -1/2 >>> f.root(1) 2 >>> f.root(2) 2 >>> f.root(3) Traceback (most recent call last): ... IndexError: root index out of [-3, 2] range, got 3 >>> Poly(x**5 + x + 1).root(0) CRootOf(x**3 - x**2 + 1, 0) """ return sympy.polys.rootoftools.rootof(f, index, radicals=radicals) def real_roots(f, multiple=True, radicals=True): """ Return a list of real roots with multiplicities. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x**3 - 7*x**2 + 4*x + 4).real_roots() [-1/2, 2, 2] >>> Poly(x**3 + x + 1).real_roots() [CRootOf(x**3 + x + 1, 0)] """ reals = sympy.polys.rootoftools.CRootOf.real_roots(f, radicals=radicals) if multiple: return reals else: return group(reals, multiple=False) def all_roots(f, multiple=True, radicals=True): """ Return a list of real and complex roots with multiplicities. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x**3 - 7*x**2 + 4*x + 4).all_roots() [-1/2, 2, 2] >>> Poly(x**3 + x + 1).all_roots() [CRootOf(x**3 + x + 1, 0), CRootOf(x**3 + x + 1, 1), CRootOf(x**3 + x + 1, 2)] """ roots = sympy.polys.rootoftools.CRootOf.all_roots(f, radicals=radicals) if multiple: return roots else: return group(roots, multiple=False) def nroots(f, n=15, maxsteps=50, cleanup=True): """ Compute numerical approximations of roots of ``f``. Parameters ========== n ... the number of digits to calculate maxsteps ... the maximum number of iterations to do If the accuracy `n` cannot be reached in `maxsteps`, it will raise an exception. You need to rerun with higher maxsteps. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 3).nroots(n=15) [-1.73205080756888, 1.73205080756888] >>> Poly(x**2 - 3).nroots(n=30) [-1.73205080756887729352744634151, 1.73205080756887729352744634151] """ from sympy.functions.elementary.complexes import sign if f.is_multivariate: raise MultivariatePolynomialError( "can't compute numerical roots of %s" % f) if f.degree() <= 0: return [] # For integer and rational coefficients, convert them to integers only # (for accuracy). Otherwise just try to convert the coefficients to # mpmath.mpc and raise an exception if the conversion fails. if f.rep.dom is ZZ: coeffs = [int(coeff) for coeff in f.all_coeffs()] elif f.rep.dom is QQ: denoms = [coeff.q for coeff in f.all_coeffs()] from sympy.core.numbers import ilcm fac = ilcm(*denoms) coeffs = [int(coeff*fac) for coeff in f.all_coeffs()] else: coeffs = [coeff.evalf(n=n).as_real_imag() for coeff in f.all_coeffs()] try: coeffs = [mpmath.mpc(*coeff) for coeff in coeffs] except TypeError: raise DomainError("Numerical domain expected, got %s" % \ f.rep.dom) dps = mpmath.mp.dps mpmath.mp.dps = n try: # We need to add extra precision to guard against losing accuracy. # 10 times the degree of the polynomial seems to work well. roots = mpmath.polyroots(coeffs, maxsteps=maxsteps, cleanup=cleanup, error=False, extraprec=f.degree()*10) # Mpmath puts real roots first, then complex ones (as does all_roots) # so we make sure this convention holds here, too. roots = list(map(sympify, sorted(roots, key=lambda r: (1 if r.imag else 0, r.real, abs(r.imag), sign(r.imag))))) except NoConvergence: raise NoConvergence( 'convergence to root failed; try n < %s or maxsteps > %s' % ( n, maxsteps)) finally: mpmath.mp.dps = dps return roots def ground_roots(f): """ Compute roots of ``f`` by factorization in the ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**6 - 4*x**4 + 4*x**3 - x**2).ground_roots() {0: 2, 1: 2} """ if f.is_multivariate: raise MultivariatePolynomialError( "can't compute ground roots of %s" % f) roots = {} for factor, k in f.factor_list()[1]: if factor.is_linear: a, b = factor.all_coeffs() roots[-b/a] = k return roots def nth_power_roots_poly(f, n): """ Construct a polynomial with n-th powers of roots of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = Poly(x**4 - x**2 + 1) >>> f.nth_power_roots_poly(2) Poly(x**4 - 2*x**3 + 3*x**2 - 2*x + 1, x, domain='ZZ') >>> f.nth_power_roots_poly(3) Poly(x**4 + 2*x**2 + 1, x, domain='ZZ') >>> f.nth_power_roots_poly(4) Poly(x**4 + 2*x**3 + 3*x**2 + 2*x + 1, x, domain='ZZ') >>> f.nth_power_roots_poly(12) Poly(x**4 - 4*x**3 + 6*x**2 - 4*x + 1, x, domain='ZZ') """ if f.is_multivariate: raise MultivariatePolynomialError( "must be a univariate polynomial") N = sympify(n) if N.is_Integer and N >= 1: n = int(N) else: raise ValueError("'n' must an integer and n >= 1, got %s" % n) x = f.gen t = Dummy('t') r = f.resultant(f.__class__.from_expr(x**n - t, x, t)) return r.replace(t, x) def cancel(f, g, include=False): """ Cancel common factors in a rational function ``f/g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x**2 - 2, x).cancel(Poly(x**2 - 2*x + 1, x)) (1, Poly(2*x + 2, x, domain='ZZ'), Poly(x - 1, x, domain='ZZ')) >>> Poly(2*x**2 - 2, x).cancel(Poly(x**2 - 2*x + 1, x), include=True) (Poly(2*x + 2, x, domain='ZZ'), Poly(x - 1, x, domain='ZZ')) """ dom, per, F, G = f._unify(g) if hasattr(F, 'cancel'): result = F.cancel(G, include=include) else: # pragma: no cover raise OperationNotSupported(f, 'cancel') if not include: if dom.has_assoc_Ring: dom = dom.get_ring() cp, cq, p, q = result cp = dom.to_sympy(cp) cq = dom.to_sympy(cq) return cp/cq, per(p), per(q) else: return tuple(map(per, result)) @property def is_zero(f): """ Returns ``True`` if ``f`` is a zero polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(0, x).is_zero True >>> Poly(1, x).is_zero False """ return f.rep.is_zero @property def is_one(f): """ Returns ``True`` if ``f`` is a unit polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(0, x).is_one False >>> Poly(1, x).is_one True """ return f.rep.is_one @property def is_sqf(f): """ Returns ``True`` if ``f`` is a square-free polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 2*x + 1, x).is_sqf False >>> Poly(x**2 - 1, x).is_sqf True """ return f.rep.is_sqf @property def is_monic(f): """ Returns ``True`` if the leading coefficient of ``f`` is one. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x + 2, x).is_monic True >>> Poly(2*x + 2, x).is_monic False """ return f.rep.is_monic @property def is_primitive(f): """ Returns ``True`` if GCD of the coefficients of ``f`` is one. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x**2 + 6*x + 12, x).is_primitive False >>> Poly(x**2 + 3*x + 6, x).is_primitive True """ return f.rep.is_primitive @property def is_ground(f): """ Returns ``True`` if ``f`` is an element of the ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x, x).is_ground False >>> Poly(2, x).is_ground True >>> Poly(y, x).is_ground True """ return f.rep.is_ground @property def is_linear(f): """ Returns ``True`` if ``f`` is linear in all its variables. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x + y + 2, x, y).is_linear True >>> Poly(x*y + 2, x, y).is_linear False """ return f.rep.is_linear @property def is_quadratic(f): """ Returns ``True`` if ``f`` is quadratic in all its variables. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x*y + 2, x, y).is_quadratic True >>> Poly(x*y**2 + 2, x, y).is_quadratic False """ return f.rep.is_quadratic @property def is_monomial(f): """ Returns ``True`` if ``f`` is zero or has only one term. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(3*x**2, x).is_monomial True >>> Poly(3*x**2 + 1, x).is_monomial False """ return f.rep.is_monomial @property def is_homogeneous(f): """ Returns ``True`` if ``f`` is a homogeneous polynomial. A homogeneous polynomial is a polynomial whose all monomials with non-zero coefficients have the same total degree. If you want not only to check if a polynomial is homogeneous but also compute its homogeneous order, then use :func:`Poly.homogeneous_order`. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + x*y, x, y).is_homogeneous True >>> Poly(x**3 + x*y, x, y).is_homogeneous False """ return f.rep.is_homogeneous @property def is_irreducible(f): """ Returns ``True`` if ``f`` has no factors over its domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + x + 1, x, modulus=2).is_irreducible True >>> Poly(x**2 + 1, x, modulus=2).is_irreducible False """ return f.rep.is_irreducible @property def is_univariate(f): """ Returns ``True`` if ``f`` is a univariate polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + x + 1, x).is_univariate True >>> Poly(x*y**2 + x*y + 1, x, y).is_univariate False >>> Poly(x*y**2 + x*y + 1, x).is_univariate True >>> Poly(x**2 + x + 1, x, y).is_univariate False """ return len(f.gens) == 1 @property def is_multivariate(f): """ Returns ``True`` if ``f`` is a multivariate polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + x + 1, x).is_multivariate False >>> Poly(x*y**2 + x*y + 1, x, y).is_multivariate True >>> Poly(x*y**2 + x*y + 1, x).is_multivariate False >>> Poly(x**2 + x + 1, x, y).is_multivariate True """ return len(f.gens) != 1 @property def is_cyclotomic(f): """ Returns ``True`` if ``f`` is a cyclotomic polnomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1 >>> Poly(f).is_cyclotomic False >>> g = x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1 >>> Poly(g).is_cyclotomic True """ return f.rep.is_cyclotomic def __abs__(f): return f.abs() def __neg__(f): return f.neg() @_polifyit def __add__(f, g): return f.add(g) @_polifyit def __radd__(f, g): return g.add(f) @_polifyit def __sub__(f, g): return f.sub(g) @_polifyit def __rsub__(f, g): return g.sub(f) @_polifyit def __mul__(f, g): return f.mul(g) @_polifyit def __rmul__(f, g): return g.mul(f) @_sympifyit('n', NotImplemented) def __pow__(f, n): if n.is_Integer and n >= 0: return f.pow(n) else: return NotImplemented @_polifyit def __divmod__(f, g): return f.div(g) @_polifyit def __rdivmod__(f, g): return g.div(f) @_polifyit def __mod__(f, g): return f.rem(g) @_polifyit def __rmod__(f, g): return g.rem(f) @_polifyit def __floordiv__(f, g): return f.quo(g) @_polifyit def __rfloordiv__(f, g): return g.quo(f) @_sympifyit('g', NotImplemented) def __truediv__(f, g): return f.as_expr()/g.as_expr() @_sympifyit('g', NotImplemented) def __rtruediv__(f, g): return g.as_expr()/f.as_expr() @_sympifyit('other', NotImplemented) def __eq__(self, other): f, g = self, other if not g.is_Poly: try: g = f.__class__(g, f.gens, domain=f.get_domain()) except (PolynomialError, DomainError, CoercionFailed): return False if f.gens != g.gens: return False if f.rep.dom != g.rep.dom: return False return f.rep == g.rep @_sympifyit('g', NotImplemented) def __ne__(f, g): return not f == g def __bool__(f): return not f.is_zero def eq(f, g, strict=False): if not strict: return f == g else: return f._strict_eq(sympify(g)) def ne(f, g, strict=False): return not f.eq(g, strict=strict) def _strict_eq(f, g): return isinstance(g, f.__class__) and f.gens == g.gens and f.rep.eq(g.rep, strict=True) @public class PurePoly(Poly): """Class for representing pure polynomials. """ def _hashable_content(self): """Allow SymPy to hash Poly instances. """ return (self.rep,) def __hash__(self): return super().__hash__() @property def free_symbols(self): """ Free symbols of a polynomial. Examples ======== >>> from sympy import PurePoly >>> from sympy.abc import x, y >>> PurePoly(x**2 + 1).free_symbols set() >>> PurePoly(x**2 + y).free_symbols set() >>> PurePoly(x**2 + y, x).free_symbols {y} """ return self.free_symbols_in_domain @_sympifyit('other', NotImplemented) def __eq__(self, other): f, g = self, other if not g.is_Poly: try: g = f.__class__(g, f.gens, domain=f.get_domain()) except (PolynomialError, DomainError, CoercionFailed): return False if len(f.gens) != len(g.gens): return False if f.rep.dom != g.rep.dom: try: dom = f.rep.dom.unify(g.rep.dom, f.gens) except UnificationFailed: return False f = f.set_domain(dom) g = g.set_domain(dom) return f.rep == g.rep def _strict_eq(f, g): return isinstance(g, f.__class__) and f.rep.eq(g.rep, strict=True) def _unify(f, g): g = sympify(g) if not g.is_Poly: try: return f.rep.dom, f.per, f.rep, f.rep.per(f.rep.dom.from_sympy(g)) except CoercionFailed: raise UnificationFailed("can't unify %s with %s" % (f, g)) if len(f.gens) != len(g.gens): raise UnificationFailed("can't unify %s with %s" % (f, g)) if not (isinstance(f.rep, DMP) and isinstance(g.rep, DMP)): raise UnificationFailed("can't unify %s with %s" % (f, g)) cls = f.__class__ gens = f.gens dom = f.rep.dom.unify(g.rep.dom, gens) F = f.rep.convert(dom) G = g.rep.convert(dom) def per(rep, dom=dom, gens=gens, remove=None): if remove is not None: gens = gens[:remove] + gens[remove + 1:] if not gens: return dom.to_sympy(rep) return cls.new(rep, *gens) return dom, per, F, G @public def poly_from_expr(expr, *gens, **args): """Construct a polynomial from an expression. """ opt = options.build_options(gens, args) return _poly_from_expr(expr, opt) def _poly_from_expr(expr, opt): """Construct a polynomial from an expression. """ orig, expr = expr, sympify(expr) if not isinstance(expr, Basic): raise PolificationFailed(opt, orig, expr) elif expr.is_Poly: poly = expr.__class__._from_poly(expr, opt) opt.gens = poly.gens opt.domain = poly.domain if opt.polys is None: opt.polys = True return poly, opt elif opt.expand: expr = expr.expand() rep, opt = _dict_from_expr(expr, opt) if not opt.gens: raise PolificationFailed(opt, orig, expr) monoms, coeffs = list(zip(*list(rep.items()))) domain = opt.domain if domain is None: opt.domain, coeffs = construct_domain(coeffs, opt=opt) else: coeffs = list(map(domain.from_sympy, coeffs)) rep = dict(list(zip(monoms, coeffs))) poly = Poly._from_dict(rep, opt) if opt.polys is None: opt.polys = False return poly, opt @public def parallel_poly_from_expr(exprs, *gens, **args): """Construct polynomials from expressions. """ opt = options.build_options(gens, args) return _parallel_poly_from_expr(exprs, opt) def _parallel_poly_from_expr(exprs, opt): """Construct polynomials from expressions. """ from sympy.functions.elementary.piecewise import Piecewise if len(exprs) == 2: f, g = exprs if isinstance(f, Poly) and isinstance(g, Poly): f = f.__class__._from_poly(f, opt) g = g.__class__._from_poly(g, opt) f, g = f.unify(g) opt.gens = f.gens opt.domain = f.domain if opt.polys is None: opt.polys = True return [f, g], opt origs, exprs = list(exprs), [] _exprs, _polys = [], [] failed = False for i, expr in enumerate(origs): expr = sympify(expr) if isinstance(expr, Basic): if expr.is_Poly: _polys.append(i) else: _exprs.append(i) if opt.expand: expr = expr.expand() else: failed = True exprs.append(expr) if failed: raise PolificationFailed(opt, origs, exprs, True) if _polys: # XXX: this is a temporary solution for i in _polys: exprs[i] = exprs[i].as_expr() reps, opt = _parallel_dict_from_expr(exprs, opt) if not opt.gens: raise PolificationFailed(opt, origs, exprs, True) for k in opt.gens: if isinstance(k, Piecewise): raise PolynomialError("Piecewise generators do not make sense") coeffs_list, lengths = [], [] all_monoms = [] all_coeffs = [] for rep in reps: monoms, coeffs = list(zip(*list(rep.items()))) coeffs_list.extend(coeffs) all_monoms.append(monoms) lengths.append(len(coeffs)) domain = opt.domain if domain is None: opt.domain, coeffs_list = construct_domain(coeffs_list, opt=opt) else: coeffs_list = list(map(domain.from_sympy, coeffs_list)) for k in lengths: all_coeffs.append(coeffs_list[:k]) coeffs_list = coeffs_list[k:] polys = [] for monoms, coeffs in zip(all_monoms, all_coeffs): rep = dict(list(zip(monoms, coeffs))) poly = Poly._from_dict(rep, opt) polys.append(poly) if opt.polys is None: opt.polys = bool(_polys) return polys, opt def _update_args(args, key, value): """Add a new ``(key, value)`` pair to arguments ``dict``. """ args = dict(args) if key not in args: args[key] = value return args @public def degree(f, gen=0): """ Return the degree of ``f`` in the given variable. The degree of 0 is negative infinity. Examples ======== >>> from sympy import degree >>> from sympy.abc import x, y >>> degree(x**2 + y*x + 1, gen=x) 2 >>> degree(x**2 + y*x + 1, gen=y) 1 >>> degree(0, x) -oo See also ======== sympy.polys.polytools.Poly.total_degree degree_list """ f = sympify(f, strict=True) gen_is_Num = sympify(gen, strict=True).is_Number if f.is_Poly: p = f isNum = p.as_expr().is_Number else: isNum = f.is_Number if not isNum: if gen_is_Num: p, _ = poly_from_expr(f) else: p, _ = poly_from_expr(f, gen) if isNum: return S.Zero if f else S.NegativeInfinity if not gen_is_Num: if f.is_Poly and gen not in p.gens: # try recast without explicit gens p, _ = poly_from_expr(f.as_expr()) if gen not in p.gens: return S.Zero elif not f.is_Poly and len(f.free_symbols) > 1: raise TypeError(filldedent(''' A symbolic generator of interest is required for a multivariate expression like func = %s, e.g. degree(func, gen = %s) instead of degree(func, gen = %s). ''' % (f, next(ordered(f.free_symbols)), gen))) result = p.degree(gen) return Integer(result) if isinstance(result, int) else S.NegativeInfinity @public def total_degree(f, *gens): """ Return the total_degree of ``f`` in the given variables. Examples ======== >>> from sympy import total_degree, Poly >>> from sympy.abc import x, y >>> total_degree(1) 0 >>> total_degree(x + x*y) 2 >>> total_degree(x + x*y, x) 1 If the expression is a Poly and no variables are given then the generators of the Poly will be used: >>> p = Poly(x + x*y, y) >>> total_degree(p) 1 To deal with the underlying expression of the Poly, convert it to an Expr: >>> total_degree(p.as_expr()) 2 This is done automatically if any variables are given: >>> total_degree(p, x) 1 See also ======== degree """ p = sympify(f) if p.is_Poly: p = p.as_expr() if p.is_Number: rv = 0 else: if f.is_Poly: gens = gens or f.gens rv = Poly(p, gens).total_degree() return Integer(rv) @public def degree_list(f, *gens, **args): """ Return a list of degrees of ``f`` in all variables. Examples ======== >>> from sympy import degree_list >>> from sympy.abc import x, y >>> degree_list(x**2 + y*x + 1) (2, 1) """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('degree_list', 1, exc) degrees = F.degree_list() return tuple(map(Integer, degrees)) @public def LC(f, *gens, **args): """ Return the leading coefficient of ``f``. Examples ======== >>> from sympy import LC >>> from sympy.abc import x, y >>> LC(4*x**2 + 2*x*y**2 + x*y + 3*y) 4 """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('LC', 1, exc) return F.LC(order=opt.order) @public def LM(f, *gens, **args): """ Return the leading monomial of ``f``. Examples ======== >>> from sympy import LM >>> from sympy.abc import x, y >>> LM(4*x**2 + 2*x*y**2 + x*y + 3*y) x**2 """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('LM', 1, exc) monom = F.LM(order=opt.order) return monom.as_expr() @public def LT(f, *gens, **args): """ Return the leading term of ``f``. Examples ======== >>> from sympy import LT >>> from sympy.abc import x, y >>> LT(4*x**2 + 2*x*y**2 + x*y + 3*y) 4*x**2 """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('LT', 1, exc) monom, coeff = F.LT(order=opt.order) return coeff*monom.as_expr() @public def pdiv(f, g, *gens, **args): """ Compute polynomial pseudo-division of ``f`` and ``g``. Examples ======== >>> from sympy import pdiv >>> from sympy.abc import x >>> pdiv(x**2 + 1, 2*x - 4) (2*x + 4, 20) """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('pdiv', 2, exc) q, r = F.pdiv(G) if not opt.polys: return q.as_expr(), r.as_expr() else: return q, r @public def prem(f, g, *gens, **args): """ Compute polynomial pseudo-remainder of ``f`` and ``g``. Examples ======== >>> from sympy import prem >>> from sympy.abc import x >>> prem(x**2 + 1, 2*x - 4) 20 """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('prem', 2, exc) r = F.prem(G) if not opt.polys: return r.as_expr() else: return r @public def pquo(f, g, *gens, **args): """ Compute polynomial pseudo-quotient of ``f`` and ``g``. Examples ======== >>> from sympy import pquo >>> from sympy.abc import x >>> pquo(x**2 + 1, 2*x - 4) 2*x + 4 >>> pquo(x**2 - 1, 2*x - 1) 2*x + 1 """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('pquo', 2, exc) try: q = F.pquo(G) except ExactQuotientFailed: raise ExactQuotientFailed(f, g) if not opt.polys: return q.as_expr() else: return q @public def pexquo(f, g, *gens, **args): """ Compute polynomial exact pseudo-quotient of ``f`` and ``g``. Examples ======== >>> from sympy import pexquo >>> from sympy.abc import x >>> pexquo(x**2 - 1, 2*x - 2) 2*x + 2 >>> pexquo(x**2 + 1, 2*x - 4) Traceback (most recent call last): ... ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1 """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('pexquo', 2, exc) q = F.pexquo(G) if not opt.polys: return q.as_expr() else: return q @public def div(f, g, *gens, **args): """ Compute polynomial division of ``f`` and ``g``. Examples ======== >>> from sympy import div, ZZ, QQ >>> from sympy.abc import x >>> div(x**2 + 1, 2*x - 4, domain=ZZ) (0, x**2 + 1) >>> div(x**2 + 1, 2*x - 4, domain=QQ) (x/2 + 1, 5) """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('div', 2, exc) q, r = F.div(G, auto=opt.auto) if not opt.polys: return q.as_expr(), r.as_expr() else: return q, r @public def rem(f, g, *gens, **args): """ Compute polynomial remainder of ``f`` and ``g``. Examples ======== >>> from sympy import rem, ZZ, QQ >>> from sympy.abc import x >>> rem(x**2 + 1, 2*x - 4, domain=ZZ) x**2 + 1 >>> rem(x**2 + 1, 2*x - 4, domain=QQ) 5 """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('rem', 2, exc) r = F.rem(G, auto=opt.auto) if not opt.polys: return r.as_expr() else: return r @public def quo(f, g, *gens, **args): """ Compute polynomial quotient of ``f`` and ``g``. Examples ======== >>> from sympy import quo >>> from sympy.abc import x >>> quo(x**2 + 1, 2*x - 4) x/2 + 1 >>> quo(x**2 - 1, x - 1) x + 1 """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('quo', 2, exc) q = F.quo(G, auto=opt.auto) if not opt.polys: return q.as_expr() else: return q @public def exquo(f, g, *gens, **args): """ Compute polynomial exact quotient of ``f`` and ``g``. Examples ======== >>> from sympy import exquo >>> from sympy.abc import x >>> exquo(x**2 - 1, x - 1) x + 1 >>> exquo(x**2 + 1, 2*x - 4) Traceback (most recent call last): ... ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1 """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('exquo', 2, exc) q = F.exquo(G, auto=opt.auto) if not opt.polys: return q.as_expr() else: return q @public def half_gcdex(f, g, *gens, **args): """ Half extended Euclidean algorithm of ``f`` and ``g``. Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``. Examples ======== >>> from sympy import half_gcdex >>> from sympy.abc import x >>> half_gcdex(x**4 - 2*x**3 - 6*x**2 + 12*x + 15, x**3 + x**2 - 4*x - 4) (3/5 - x/5, x + 1) """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: domain, (a, b) = construct_domain(exc.exprs) try: s, h = domain.half_gcdex(a, b) except NotImplementedError: raise ComputationFailed('half_gcdex', 2, exc) else: return domain.to_sympy(s), domain.to_sympy(h) s, h = F.half_gcdex(G, auto=opt.auto) if not opt.polys: return s.as_expr(), h.as_expr() else: return s, h @public def gcdex(f, g, *gens, **args): """ Extended Euclidean algorithm of ``f`` and ``g``. Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``. Examples ======== >>> from sympy import gcdex >>> from sympy.abc import x >>> gcdex(x**4 - 2*x**3 - 6*x**2 + 12*x + 15, x**3 + x**2 - 4*x - 4) (3/5 - x/5, x**2/5 - 6*x/5 + 2, x + 1) """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: domain, (a, b) = construct_domain(exc.exprs) try: s, t, h = domain.gcdex(a, b) except NotImplementedError: raise ComputationFailed('gcdex', 2, exc) else: return domain.to_sympy(s), domain.to_sympy(t), domain.to_sympy(h) s, t, h = F.gcdex(G, auto=opt.auto) if not opt.polys: return s.as_expr(), t.as_expr(), h.as_expr() else: return s, t, h @public def invert(f, g, *gens, **args): """ Invert ``f`` modulo ``g`` when possible. Examples ======== >>> from sympy import invert, S >>> from sympy.core.numbers import mod_inverse >>> from sympy.abc import x >>> invert(x**2 - 1, 2*x - 1) -4/3 >>> invert(x**2 - 1, x - 1) Traceback (most recent call last): ... NotInvertible: zero divisor For more efficient inversion of Rationals, use the :obj:`~.mod_inverse` function: >>> mod_inverse(3, 5) 2 >>> (S(2)/5).invert(S(7)/3) 5/2 See Also ======== sympy.core.numbers.mod_inverse """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: domain, (a, b) = construct_domain(exc.exprs) try: return domain.to_sympy(domain.invert(a, b)) except NotImplementedError: raise ComputationFailed('invert', 2, exc) h = F.invert(G, auto=opt.auto) if not opt.polys: return h.as_expr() else: return h @public def subresultants(f, g, *gens, **args): """ Compute subresultant PRS of ``f`` and ``g``. Examples ======== >>> from sympy import subresultants >>> from sympy.abc import x >>> subresultants(x**2 + 1, x**2 - 1) [x**2 + 1, x**2 - 1, -2] """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('subresultants', 2, exc) result = F.subresultants(G) if not opt.polys: return [r.as_expr() for r in result] else: return result @public def resultant(f, g, *gens, includePRS=False, **args): """ Compute resultant of ``f`` and ``g``. Examples ======== >>> from sympy import resultant >>> from sympy.abc import x >>> resultant(x**2 + 1, x**2 - 1) 4 """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('resultant', 2, exc) if includePRS: result, R = F.resultant(G, includePRS=includePRS) else: result = F.resultant(G) if not opt.polys: if includePRS: return result.as_expr(), [r.as_expr() for r in R] return result.as_expr() else: if includePRS: return result, R return result @public def discriminant(f, *gens, **args): """ Compute discriminant of ``f``. Examples ======== >>> from sympy import discriminant >>> from sympy.abc import x >>> discriminant(x**2 + 2*x + 3) -8 """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('discriminant', 1, exc) result = F.discriminant() if not opt.polys: return result.as_expr() else: return result @public def cofactors(f, g, *gens, **args): """ Compute GCD and cofactors of ``f`` and ``g``. Returns polynomials ``(h, cff, cfg)`` such that ``h = gcd(f, g)``, and ``cff = quo(f, h)`` and ``cfg = quo(g, h)`` are, so called, cofactors of ``f`` and ``g``. Examples ======== >>> from sympy import cofactors >>> from sympy.abc import x >>> cofactors(x**2 - 1, x**2 - 3*x + 2) (x - 1, x + 1, x - 2) """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: domain, (a, b) = construct_domain(exc.exprs) try: h, cff, cfg = domain.cofactors(a, b) except NotImplementedError: raise ComputationFailed('cofactors', 2, exc) else: return domain.to_sympy(h), domain.to_sympy(cff), domain.to_sympy(cfg) h, cff, cfg = F.cofactors(G) if not opt.polys: return h.as_expr(), cff.as_expr(), cfg.as_expr() else: return h, cff, cfg @public def gcd_list(seq, *gens, **args): """ Compute GCD of a list of polynomials. Examples ======== >>> from sympy import gcd_list >>> from sympy.abc import x >>> gcd_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2]) x - 1 """ seq = sympify(seq) def try_non_polynomial_gcd(seq): if not gens and not args: domain, numbers = construct_domain(seq) if not numbers: return domain.zero elif domain.is_Numerical: result, numbers = numbers[0], numbers[1:] for number in numbers: result = domain.gcd(result, number) if domain.is_one(result): break return domain.to_sympy(result) return None result = try_non_polynomial_gcd(seq) if result is not None: return result options.allowed_flags(args, ['polys']) try: polys, opt = parallel_poly_from_expr(seq, *gens, **args) # gcd for domain Q[irrational] (purely algebraic irrational) if len(seq) > 1 and all(elt.is_algebraic and elt.is_irrational for elt in seq): a = seq[-1] lst = [ (a/elt).ratsimp() for elt in seq[:-1] ] if all(frc.is_rational for frc in lst): lc = 1 for frc in lst: lc = lcm(lc, frc.as_numer_denom()[0]) # abs ensures that the gcd is always non-negative return abs(a/lc) except PolificationFailed as exc: result = try_non_polynomial_gcd(exc.exprs) if result is not None: return result else: raise ComputationFailed('gcd_list', len(seq), exc) if not polys: if not opt.polys: return S.Zero else: return Poly(0, opt=opt) result, polys = polys[0], polys[1:] for poly in polys: result = result.gcd(poly) if result.is_one: break if not opt.polys: return result.as_expr() else: return result @public def gcd(f, g=None, *gens, **args): """ Compute GCD of ``f`` and ``g``. Examples ======== >>> from sympy import gcd >>> from sympy.abc import x >>> gcd(x**2 - 1, x**2 - 3*x + 2) x - 1 """ if hasattr(f, '__iter__'): if g is not None: gens = (g,) + gens return gcd_list(f, *gens, **args) elif g is None: raise TypeError("gcd() takes 2 arguments or a sequence of arguments") options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) # gcd for domain Q[irrational] (purely algebraic irrational) a, b = map(sympify, (f, g)) if a.is_algebraic and a.is_irrational and b.is_algebraic and b.is_irrational: frc = (a/b).ratsimp() if frc.is_rational: # abs ensures that the returned gcd is always non-negative return abs(a/frc.as_numer_denom()[0]) except PolificationFailed as exc: domain, (a, b) = construct_domain(exc.exprs) try: return domain.to_sympy(domain.gcd(a, b)) except NotImplementedError: raise ComputationFailed('gcd', 2, exc) result = F.gcd(G) if not opt.polys: return result.as_expr() else: return result @public def lcm_list(seq, *gens, **args): """ Compute LCM of a list of polynomials. Examples ======== >>> from sympy import lcm_list >>> from sympy.abc import x >>> lcm_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2]) x**5 - x**4 - 2*x**3 - x**2 + x + 2 """ seq = sympify(seq) def try_non_polynomial_lcm(seq): if not gens and not args: domain, numbers = construct_domain(seq) if not numbers: return domain.one elif domain.is_Numerical: result, numbers = numbers[0], numbers[1:] for number in numbers: result = domain.lcm(result, number) return domain.to_sympy(result) return None result = try_non_polynomial_lcm(seq) if result is not None: return result options.allowed_flags(args, ['polys']) try: polys, opt = parallel_poly_from_expr(seq, *gens, **args) # lcm for domain Q[irrational] (purely algebraic irrational) if len(seq) > 1 and all(elt.is_algebraic and elt.is_irrational for elt in seq): a = seq[-1] lst = [ (a/elt).ratsimp() for elt in seq[:-1] ] if all(frc.is_rational for frc in lst): lc = 1 for frc in lst: lc = lcm(lc, frc.as_numer_denom()[1]) return a*lc except PolificationFailed as exc: result = try_non_polynomial_lcm(exc.exprs) if result is not None: return result else: raise ComputationFailed('lcm_list', len(seq), exc) if not polys: if not opt.polys: return S.One else: return Poly(1, opt=opt) result, polys = polys[0], polys[1:] for poly in polys: result = result.lcm(poly) if not opt.polys: return result.as_expr() else: return result @public def lcm(f, g=None, *gens, **args): """ Compute LCM of ``f`` and ``g``. Examples ======== >>> from sympy import lcm >>> from sympy.abc import x >>> lcm(x**2 - 1, x**2 - 3*x + 2) x**3 - 2*x**2 - x + 2 """ if hasattr(f, '__iter__'): if g is not None: gens = (g,) + gens return lcm_list(f, *gens, **args) elif g is None: raise TypeError("lcm() takes 2 arguments or a sequence of arguments") options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) # lcm for domain Q[irrational] (purely algebraic irrational) a, b = map(sympify, (f, g)) if a.is_algebraic and a.is_irrational and b.is_algebraic and b.is_irrational: frc = (a/b).ratsimp() if frc.is_rational: return a*frc.as_numer_denom()[1] except PolificationFailed as exc: domain, (a, b) = construct_domain(exc.exprs) try: return domain.to_sympy(domain.lcm(a, b)) except NotImplementedError: raise ComputationFailed('lcm', 2, exc) result = F.lcm(G) if not opt.polys: return result.as_expr() else: return result @public def terms_gcd(f, *gens, **args): """ Remove GCD of terms from ``f``. If the ``deep`` flag is True, then the arguments of ``f`` will have terms_gcd applied to them. If a fraction is factored out of ``f`` and ``f`` is an Add, then an unevaluated Mul will be returned so that automatic simplification does not redistribute it. The hint ``clear``, when set to False, can be used to prevent such factoring when all coefficients are not fractions. Examples ======== >>> from sympy import terms_gcd, cos >>> from sympy.abc import x, y >>> terms_gcd(x**6*y**2 + x**3*y, x, y) x**3*y*(x**3*y + 1) The default action of polys routines is to expand the expression given to them. terms_gcd follows this behavior: >>> terms_gcd((3+3*x)*(x+x*y)) 3*x*(x*y + x + y + 1) If this is not desired then the hint ``expand`` can be set to False. In this case the expression will be treated as though it were comprised of one or more terms: >>> terms_gcd((3+3*x)*(x+x*y), expand=False) (3*x + 3)*(x*y + x) In order to traverse factors of a Mul or the arguments of other functions, the ``deep`` hint can be used: >>> terms_gcd((3 + 3*x)*(x + x*y), expand=False, deep=True) 3*x*(x + 1)*(y + 1) >>> terms_gcd(cos(x + x*y), deep=True) cos(x*(y + 1)) Rationals are factored out by default: >>> terms_gcd(x + y/2) (2*x + y)/2 Only the y-term had a coefficient that was a fraction; if one does not want to factor out the 1/2 in cases like this, the flag ``clear`` can be set to False: >>> terms_gcd(x + y/2, clear=False) x + y/2 >>> terms_gcd(x*y/2 + y**2, clear=False) y*(x/2 + y) The ``clear`` flag is ignored if all coefficients are fractions: >>> terms_gcd(x/3 + y/2, clear=False) (2*x + 3*y)/6 See Also ======== sympy.core.exprtools.gcd_terms, sympy.core.exprtools.factor_terms """ from sympy.core.relational import Equality orig = sympify(f) if isinstance(f, Equality): return Equality(*(terms_gcd(s, *gens, **args) for s in [f.lhs, f.rhs])) elif isinstance(f, Relational): raise TypeError("Inequalities can not be used with terms_gcd. Found: %s" %(f,)) if not isinstance(f, Expr) or f.is_Atom: return orig if args.get('deep', False): new = f.func(*[terms_gcd(a, *gens, **args) for a in f.args]) args.pop('deep') args['expand'] = False return terms_gcd(new, *gens, **args) clear = args.pop('clear', True) options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: return exc.expr J, f = F.terms_gcd() if opt.domain.is_Ring: if opt.domain.is_Field: denom, f = f.clear_denoms(convert=True) coeff, f = f.primitive() if opt.domain.is_Field: coeff /= denom else: coeff = S.One term = Mul(*[x**j for x, j in zip(f.gens, J)]) if coeff == 1: coeff = S.One if term == 1: return orig if clear: return _keep_coeff(coeff, term*f.as_expr()) # base the clearing on the form of the original expression, not # the (perhaps) Mul that we have now coeff, f = _keep_coeff(coeff, f.as_expr(), clear=False).as_coeff_Mul() return _keep_coeff(coeff, term*f, clear=False) @public def trunc(f, p, *gens, **args): """ Reduce ``f`` modulo a constant ``p``. Examples ======== >>> from sympy import trunc >>> from sympy.abc import x >>> trunc(2*x**3 + 3*x**2 + 5*x + 7, 3) -x**3 - x + 1 """ options.allowed_flags(args, ['auto', 'polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('trunc', 1, exc) result = F.trunc(sympify(p)) if not opt.polys: return result.as_expr() else: return result @public def monic(f, *gens, **args): """ Divide all coefficients of ``f`` by ``LC(f)``. Examples ======== >>> from sympy import monic >>> from sympy.abc import x >>> monic(3*x**2 + 4*x + 2) x**2 + 4*x/3 + 2/3 """ options.allowed_flags(args, ['auto', 'polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('monic', 1, exc) result = F.monic(auto=opt.auto) if not opt.polys: return result.as_expr() else: return result @public def content(f, *gens, **args): """ Compute GCD of coefficients of ``f``. Examples ======== >>> from sympy import content >>> from sympy.abc import x >>> content(6*x**2 + 8*x + 12) 2 """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('content', 1, exc) return F.content() @public def primitive(f, *gens, **args): """ Compute content and the primitive form of ``f``. Examples ======== >>> from sympy.polys.polytools import primitive >>> from sympy.abc import x >>> primitive(6*x**2 + 8*x + 12) (2, 3*x**2 + 4*x + 6) >>> eq = (2 + 2*x)*x + 2 Expansion is performed by default: >>> primitive(eq) (2, x**2 + x + 1) Set ``expand`` to False to shut this off. Note that the extraction will not be recursive; use the as_content_primitive method for recursive, non-destructive Rational extraction. >>> primitive(eq, expand=False) (1, x*(2*x + 2) + 2) >>> eq.as_content_primitive() (2, x*(x + 1) + 1) """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('primitive', 1, exc) cont, result = F.primitive() if not opt.polys: return cont, result.as_expr() else: return cont, result @public def compose(f, g, *gens, **args): """ Compute functional composition ``f(g)``. Examples ======== >>> from sympy import compose >>> from sympy.abc import x >>> compose(x**2 + x, x - 1) x**2 - x """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('compose', 2, exc) result = F.compose(G) if not opt.polys: return result.as_expr() else: return result @public def decompose(f, *gens, **args): """ Compute functional decomposition of ``f``. Examples ======== >>> from sympy import decompose >>> from sympy.abc import x >>> decompose(x**4 + 2*x**3 - x - 1) [x**2 - x - 1, x**2 + x] """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('decompose', 1, exc) result = F.decompose() if not opt.polys: return [r.as_expr() for r in result] else: return result @public def sturm(f, *gens, **args): """ Compute Sturm sequence of ``f``. Examples ======== >>> from sympy import sturm >>> from sympy.abc import x >>> sturm(x**3 - 2*x**2 + x - 3) [x**3 - 2*x**2 + x - 3, 3*x**2 - 4*x + 1, 2*x/9 + 25/9, -2079/4] """ options.allowed_flags(args, ['auto', 'polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('sturm', 1, exc) result = F.sturm(auto=opt.auto) if not opt.polys: return [r.as_expr() for r in result] else: return result @public def gff_list(f, *gens, **args): """ Compute a list of greatest factorial factors of ``f``. Note that the input to ff() and rf() should be Poly instances to use the definitions here. Examples ======== >>> from sympy import gff_list, ff, Poly >>> from sympy.abc import x >>> f = Poly(x**5 + 2*x**4 - x**3 - 2*x**2, x) >>> gff_list(f) [(Poly(x, x, domain='ZZ'), 1), (Poly(x + 2, x, domain='ZZ'), 4)] >>> (ff(Poly(x), 1)*ff(Poly(x + 2), 4)) == f True >>> f = Poly(x**12 + 6*x**11 - 11*x**10 - 56*x**9 + 220*x**8 + 208*x**7 - \ 1401*x**6 + 1090*x**5 + 2715*x**4 - 6720*x**3 - 1092*x**2 + 5040*x, x) >>> gff_list(f) [(Poly(x**3 + 7, x, domain='ZZ'), 2), (Poly(x**2 + 5*x, x, domain='ZZ'), 3)] >>> ff(Poly(x**3 + 7, x), 2)*ff(Poly(x**2 + 5*x, x), 3) == f True """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('gff_list', 1, exc) factors = F.gff_list() if not opt.polys: return [(g.as_expr(), k) for g, k in factors] else: return factors @public def gff(f, *gens, **args): """Compute greatest factorial factorization of ``f``. """ raise NotImplementedError('symbolic falling factorial') @public def sqf_norm(f, *gens, **args): """ Compute square-free norm of ``f``. Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))`` is a square-free polynomial over ``K``, where ``a`` is the algebraic extension of the ground domain. Examples ======== >>> from sympy import sqf_norm, sqrt >>> from sympy.abc import x >>> sqf_norm(x**2 + 1, extension=[sqrt(3)]) (1, x**2 - 2*sqrt(3)*x + 4, x**4 - 4*x**2 + 16) """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('sqf_norm', 1, exc) s, g, r = F.sqf_norm() if not opt.polys: return Integer(s), g.as_expr(), r.as_expr() else: return Integer(s), g, r @public def sqf_part(f, *gens, **args): """ Compute square-free part of ``f``. Examples ======== >>> from sympy import sqf_part >>> from sympy.abc import x >>> sqf_part(x**3 - 3*x - 2) x**2 - x - 2 """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('sqf_part', 1, exc) result = F.sqf_part() if not opt.polys: return result.as_expr() else: return result def _sorted_factors(factors, method): """Sort a list of ``(expr, exp)`` pairs. """ if method == 'sqf': def key(obj): poly, exp = obj rep = poly.rep.rep return (exp, len(rep), len(poly.gens), rep) else: def key(obj): poly, exp = obj rep = poly.rep.rep return (len(rep), len(poly.gens), exp, rep) return sorted(factors, key=key) def _factors_product(factors): """Multiply a list of ``(expr, exp)`` pairs. """ return Mul(*[f.as_expr()**k for f, k in factors]) def _symbolic_factor_list(expr, opt, method): """Helper function for :func:`_symbolic_factor`. """ coeff, factors = S.One, [] args = [i._eval_factor() if hasattr(i, '_eval_factor') else i for i in Mul.make_args(expr)] for arg in args: if arg.is_Number or (isinstance(arg, Expr) and pure_complex(arg)): coeff *= arg continue elif arg.is_Pow: base, exp = arg.args if base.is_Number and exp.is_Number: coeff *= arg continue if base.is_Number: factors.append((base, exp)) continue else: base, exp = arg, S.One try: poly, _ = _poly_from_expr(base, opt) except PolificationFailed as exc: factors.append((exc.expr, exp)) else: func = getattr(poly, method + '_list') _coeff, _factors = func() if _coeff is not S.One: if exp.is_Integer: coeff *= _coeff**exp elif _coeff.is_positive: factors.append((_coeff, exp)) else: _factors.append((_coeff, S.One)) if exp is S.One: factors.extend(_factors) elif exp.is_integer: factors.extend([(f, k*exp) for f, k in _factors]) else: other = [] for f, k in _factors: if f.as_expr().is_positive: factors.append((f, k*exp)) else: other.append((f, k)) factors.append((_factors_product(other), exp)) if method == 'sqf': factors = [(reduce(mul, (f for f, _ in factors if _ == k)), k) for k in {i for _, i in factors}] return coeff, factors def _symbolic_factor(expr, opt, method): """Helper function for :func:`_factor`. """ if isinstance(expr, Expr): if hasattr(expr,'_eval_factor'): return expr._eval_factor() coeff, factors = _symbolic_factor_list(together(expr, fraction=opt['fraction']), opt, method) return _keep_coeff(coeff, _factors_product(factors)) elif hasattr(expr, 'args'): return expr.func(*[_symbolic_factor(arg, opt, method) for arg in expr.args]) elif hasattr(expr, '__iter__'): return expr.__class__([_symbolic_factor(arg, opt, method) for arg in expr]) else: return expr def _generic_factor_list(expr, gens, args, method): """Helper function for :func:`sqf_list` and :func:`factor_list`. """ options.allowed_flags(args, ['frac', 'polys']) opt = options.build_options(gens, args) expr = sympify(expr) if isinstance(expr, (Expr, Poly)): if isinstance(expr, Poly): numer, denom = expr, 1 else: numer, denom = together(expr).as_numer_denom() cp, fp = _symbolic_factor_list(numer, opt, method) cq, fq = _symbolic_factor_list(denom, opt, method) if fq and not opt.frac: raise PolynomialError("a polynomial expected, got %s" % expr) _opt = opt.clone(dict(expand=True)) for factors in (fp, fq): for i, (f, k) in enumerate(factors): if not f.is_Poly: f, _ = _poly_from_expr(f, _opt) factors[i] = (f, k) fp = _sorted_factors(fp, method) fq = _sorted_factors(fq, method) if not opt.polys: fp = [(f.as_expr(), k) for f, k in fp] fq = [(f.as_expr(), k) for f, k in fq] coeff = cp/cq if not opt.frac: return coeff, fp else: return coeff, fp, fq else: raise PolynomialError("a polynomial expected, got %s" % expr) def _generic_factor(expr, gens, args, method): """Helper function for :func:`sqf` and :func:`factor`. """ fraction = args.pop('fraction', True) options.allowed_flags(args, []) opt = options.build_options(gens, args) opt['fraction'] = fraction return _symbolic_factor(sympify(expr), opt, method) def to_rational_coeffs(f): """ try to transform a polynomial to have rational coefficients try to find a transformation ``x = alpha*y`` ``f(x) = lc*alpha**n * g(y)`` where ``g`` is a polynomial with rational coefficients, ``lc`` the leading coefficient. If this fails, try ``x = y + beta`` ``f(x) = g(y)`` Returns ``None`` if ``g`` not found; ``(lc, alpha, None, g)`` in case of rescaling ``(None, None, beta, g)`` in case of translation Notes ===== Currently it transforms only polynomials without roots larger than 2. Examples ======== >>> from sympy import sqrt, Poly, simplify >>> from sympy.polys.polytools import to_rational_coeffs >>> from sympy.abc import x >>> p = Poly(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))}), x, domain='EX') >>> lc, r, _, g = to_rational_coeffs(p) >>> lc, r (7 + 5*sqrt(2), 2 - 2*sqrt(2)) >>> g Poly(x**3 + x**2 - 1/4*x - 1/4, x, domain='QQ') >>> r1 = simplify(1/r) >>> Poly(lc*r**3*(g.as_expr()).subs({x:x*r1}), x, domain='EX') == p True """ from sympy.simplify.simplify import simplify def _try_rescale(f, f1=None): """ try rescaling ``x -> alpha*x`` to convert f to a polynomial with rational coefficients. Returns ``alpha, f``; if the rescaling is successful, ``alpha`` is the rescaling factor, and ``f`` is the rescaled polynomial; else ``alpha`` is ``None``. """ from sympy.core.add import Add if not len(f.gens) == 1 or not (f.gens[0]).is_Atom: return None, f n = f.degree() lc = f.LC() f1 = f1 or f1.monic() coeffs = f1.all_coeffs()[1:] coeffs = [simplify(coeffx) for coeffx in coeffs] if coeffs[-2]: rescale1_x = simplify(coeffs[-2]/coeffs[-1]) coeffs1 = [] for i in range(len(coeffs)): coeffx = simplify(coeffs[i]*rescale1_x**(i + 1)) if not coeffx.is_rational: break coeffs1.append(coeffx) else: rescale_x = simplify(1/rescale1_x) x = f.gens[0] v = [x**n] for i in range(1, n + 1): v.append(coeffs1[i - 1]*x**(n - i)) f = Add(*v) f = Poly(f) return lc, rescale_x, f return None def _try_translate(f, f1=None): """ try translating ``x -> x + alpha`` to convert f to a polynomial with rational coefficients. Returns ``alpha, f``; if the translating is successful, ``alpha`` is the translating factor, and ``f`` is the shifted polynomial; else ``alpha`` is ``None``. """ from sympy.core.add import Add if not len(f.gens) == 1 or not (f.gens[0]).is_Atom: return None, f n = f.degree() f1 = f1 or f1.monic() coeffs = f1.all_coeffs()[1:] c = simplify(coeffs[0]) if c and not c.is_rational: func = Add if c.is_Add: args = c.args func = c.func else: args = [c] c1, c2 = sift(args, lambda z: z.is_rational, binary=True) alpha = -func(*c2)/n f2 = f1.shift(alpha) return alpha, f2 return None def _has_square_roots(p): """ Return True if ``f`` is a sum with square roots but no other root """ from sympy.core.exprtools import Factors coeffs = p.coeffs() has_sq = False for y in coeffs: for x in Add.make_args(y): f = Factors(x).factors r = [wx.q for b, wx in f.items() if b.is_number and wx.is_Rational and wx.q >= 2] if not r: continue if min(r) == 2: has_sq = True if max(r) > 2: return False return has_sq if f.get_domain().is_EX and _has_square_roots(f): f1 = f.monic() r = _try_rescale(f, f1) if r: return r[0], r[1], None, r[2] else: r = _try_translate(f, f1) if r: return None, None, r[0], r[1] return None def _torational_factor_list(p, x): """ helper function to factor polynomial using to_rational_coeffs Examples ======== >>> from sympy.polys.polytools import _torational_factor_list >>> from sympy.abc import x >>> from sympy import sqrt, expand, Mul >>> p = expand(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))})) >>> factors = _torational_factor_list(p, x); factors (-2, [(-x*(1 + sqrt(2))/2 + 1, 1), (-x*(1 + sqrt(2)) - 1, 1), (-x*(1 + sqrt(2)) + 1, 1)]) >>> expand(factors[0]*Mul(*[z[0] for z in factors[1]])) == p True >>> p = expand(((x**2-1)*(x-2)).subs({x:x + sqrt(2)})) >>> factors = _torational_factor_list(p, x); factors (1, [(x - 2 + sqrt(2), 1), (x - 1 + sqrt(2), 1), (x + 1 + sqrt(2), 1)]) >>> expand(factors[0]*Mul(*[z[0] for z in factors[1]])) == p True """ from sympy.simplify.simplify import simplify p1 = Poly(p, x, domain='EX') n = p1.degree() res = to_rational_coeffs(p1) if not res: return None lc, r, t, g = res factors = factor_list(g.as_expr()) if lc: c = simplify(factors[0]*lc*r**n) r1 = simplify(1/r) a = [] for z in factors[1:][0]: a.append((simplify(z[0].subs({x: x*r1})), z[1])) else: c = factors[0] a = [] for z in factors[1:][0]: a.append((z[0].subs({x: x - t}), z[1])) return (c, a) @public def sqf_list(f, *gens, **args): """ Compute a list of square-free factors of ``f``. Examples ======== >>> from sympy import sqf_list >>> from sympy.abc import x >>> sqf_list(2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16) (2, [(x + 1, 2), (x + 2, 3)]) """ return _generic_factor_list(f, gens, args, method='sqf') @public def sqf(f, *gens, **args): """ Compute square-free factorization of ``f``. Examples ======== >>> from sympy import sqf >>> from sympy.abc import x >>> sqf(2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16) 2*(x + 1)**2*(x + 2)**3 """ return _generic_factor(f, gens, args, method='sqf') @public def factor_list(f, *gens, **args): """ Compute a list of irreducible factors of ``f``. Examples ======== >>> from sympy import factor_list >>> from sympy.abc import x, y >>> factor_list(2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y) (2, [(x + y, 1), (x**2 + 1, 2)]) """ return _generic_factor_list(f, gens, args, method='factor') @public def factor(f, *gens, deep=False, **args): """ Compute the factorization of expression, ``f``, into irreducibles. (To factor an integer into primes, use ``factorint``.) There two modes implemented: symbolic and formal. If ``f`` is not an instance of :class:`Poly` and generators are not specified, then the former mode is used. Otherwise, the formal mode is used. In symbolic mode, :func:`factor` will traverse the expression tree and factor its components without any prior expansion, unless an instance of :class:`~.Add` is encountered (in this case formal factorization is used). This way :func:`factor` can handle large or symbolic exponents. By default, the factorization is computed over the rationals. To factor over other domain, e.g. an algebraic or finite field, use appropriate options: ``extension``, ``modulus`` or ``domain``. Examples ======== >>> from sympy import factor, sqrt, exp >>> from sympy.abc import x, y >>> factor(2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y) 2*(x + y)*(x**2 + 1)**2 >>> factor(x**2 + 1) x**2 + 1 >>> factor(x**2 + 1, modulus=2) (x + 1)**2 >>> factor(x**2 + 1, gaussian=True) (x - I)*(x + I) >>> factor(x**2 - 2, extension=sqrt(2)) (x - sqrt(2))*(x + sqrt(2)) >>> factor((x**2 - 1)/(x**2 + 4*x + 4)) (x - 1)*(x + 1)/(x + 2)**2 >>> factor((x**2 + 4*x + 4)**10000000*(x**2 + 1)) (x + 2)**20000000*(x**2 + 1) By default, factor deals with an expression as a whole: >>> eq = 2**(x**2 + 2*x + 1) >>> factor(eq) 2**(x**2 + 2*x + 1) If the ``deep`` flag is True then subexpressions will be factored: >>> factor(eq, deep=True) 2**((x + 1)**2) If the ``fraction`` flag is False then rational expressions won't be combined. By default it is True. >>> factor(5*x + 3*exp(2 - 7*x), deep=True) (5*x*exp(7*x) + 3*exp(2))*exp(-7*x) >>> factor(5*x + 3*exp(2 - 7*x), deep=True, fraction=False) 5*x + 3*exp(2)*exp(-7*x) See Also ======== sympy.ntheory.factor_.factorint """ f = sympify(f) if deep: from sympy.simplify.simplify import bottom_up def _try_factor(expr): """ Factor, but avoid changing the expression when unable to. """ fac = factor(expr, *gens, **args) if fac.is_Mul or fac.is_Pow: return fac return expr f = bottom_up(f, _try_factor) # clean up any subexpressions that may have been expanded # while factoring out a larger expression partials = {} muladd = f.atoms(Mul, Add) for p in muladd: fac = factor(p, *gens, **args) if (fac.is_Mul or fac.is_Pow) and fac != p: partials[p] = fac return f.xreplace(partials) try: return _generic_factor(f, gens, args, method='factor') except PolynomialError as msg: if not f.is_commutative: from sympy.core.exprtools import factor_nc return factor_nc(f) else: raise PolynomialError(msg) @public def intervals(F, all=False, eps=None, inf=None, sup=None, strict=False, fast=False, sqf=False): """ Compute isolating intervals for roots of ``f``. Examples ======== >>> from sympy import intervals >>> from sympy.abc import x >>> intervals(x**2 - 3) [((-2, -1), 1), ((1, 2), 1)] >>> intervals(x**2 - 3, eps=1e-2) [((-26/15, -19/11), 1), ((19/11, 26/15), 1)] """ if not hasattr(F, '__iter__'): try: F = Poly(F) except GeneratorsNeeded: return [] return F.intervals(all=all, eps=eps, inf=inf, sup=sup, fast=fast, sqf=sqf) else: polys, opt = parallel_poly_from_expr(F, domain='QQ') if len(opt.gens) > 1: raise MultivariatePolynomialError for i, poly in enumerate(polys): polys[i] = poly.rep.rep if eps is not None: eps = opt.domain.convert(eps) if eps <= 0: raise ValueError("'eps' must be a positive rational") if inf is not None: inf = opt.domain.convert(inf) if sup is not None: sup = opt.domain.convert(sup) intervals = dup_isolate_real_roots_list(polys, opt.domain, eps=eps, inf=inf, sup=sup, strict=strict, fast=fast) result = [] for (s, t), indices in intervals: s, t = opt.domain.to_sympy(s), opt.domain.to_sympy(t) result.append(((s, t), indices)) return result @public def refine_root(f, s, t, eps=None, steps=None, fast=False, check_sqf=False): """ Refine an isolating interval of a root to the given precision. Examples ======== >>> from sympy import refine_root >>> from sympy.abc import x >>> refine_root(x**2 - 3, 1, 2, eps=1e-2) (19/11, 26/15) """ try: F = Poly(f) if not isinstance(f, Poly) and not F.gen.is_Symbol: # root of sin(x) + 1 is -1 but when someone # passes an Expr instead of Poly they may not expect # that the generator will be sin(x), not x raise PolynomialError("generator must be a Symbol") except GeneratorsNeeded: raise PolynomialError( "can't refine a root of %s, not a polynomial" % f) return F.refine_root(s, t, eps=eps, steps=steps, fast=fast, check_sqf=check_sqf) @public def count_roots(f, inf=None, sup=None): """ Return the number of roots of ``f`` in ``[inf, sup]`` interval. If one of ``inf`` or ``sup`` is complex, it will return the number of roots in the complex rectangle with corners at ``inf`` and ``sup``. Examples ======== >>> from sympy import count_roots, I >>> from sympy.abc import x >>> count_roots(x**4 - 4, -3, 3) 2 >>> count_roots(x**4 - 4, 0, 1 + 3*I) 1 """ try: F = Poly(f, greedy=False) if not isinstance(f, Poly) and not F.gen.is_Symbol: # root of sin(x) + 1 is -1 but when someone # passes an Expr instead of Poly they may not expect # that the generator will be sin(x), not x raise PolynomialError("generator must be a Symbol") except GeneratorsNeeded: raise PolynomialError("can't count roots of %s, not a polynomial" % f) return F.count_roots(inf=inf, sup=sup) @public def real_roots(f, multiple=True): """ Return a list of real roots with multiplicities of ``f``. Examples ======== >>> from sympy import real_roots >>> from sympy.abc import x >>> real_roots(2*x**3 - 7*x**2 + 4*x + 4) [-1/2, 2, 2] """ try: F = Poly(f, greedy=False) if not isinstance(f, Poly) and not F.gen.is_Symbol: # root of sin(x) + 1 is -1 but when someone # passes an Expr instead of Poly they may not expect # that the generator will be sin(x), not x raise PolynomialError("generator must be a Symbol") except GeneratorsNeeded: raise PolynomialError( "can't compute real roots of %s, not a polynomial" % f) return F.real_roots(multiple=multiple) @public def nroots(f, n=15, maxsteps=50, cleanup=True): """ Compute numerical approximations of roots of ``f``. Examples ======== >>> from sympy import nroots >>> from sympy.abc import x >>> nroots(x**2 - 3, n=15) [-1.73205080756888, 1.73205080756888] >>> nroots(x**2 - 3, n=30) [-1.73205080756887729352744634151, 1.73205080756887729352744634151] """ try: F = Poly(f, greedy=False) if not isinstance(f, Poly) and not F.gen.is_Symbol: # root of sin(x) + 1 is -1 but when someone # passes an Expr instead of Poly they may not expect # that the generator will be sin(x), not x raise PolynomialError("generator must be a Symbol") except GeneratorsNeeded: raise PolynomialError( "can't compute numerical roots of %s, not a polynomial" % f) return F.nroots(n=n, maxsteps=maxsteps, cleanup=cleanup) @public def ground_roots(f, *gens, **args): """ Compute roots of ``f`` by factorization in the ground domain. Examples ======== >>> from sympy import ground_roots >>> from sympy.abc import x >>> ground_roots(x**6 - 4*x**4 + 4*x**3 - x**2) {0: 2, 1: 2} """ options.allowed_flags(args, []) try: F, opt = poly_from_expr(f, *gens, **args) if not isinstance(f, Poly) and not F.gen.is_Symbol: # root of sin(x) + 1 is -1 but when someone # passes an Expr instead of Poly they may not expect # that the generator will be sin(x), not x raise PolynomialError("generator must be a Symbol") except PolificationFailed as exc: raise ComputationFailed('ground_roots', 1, exc) return F.ground_roots() @public def nth_power_roots_poly(f, n, *gens, **args): """ Construct a polynomial with n-th powers of roots of ``f``. Examples ======== >>> from sympy import nth_power_roots_poly, factor, roots >>> from sympy.abc import x >>> f = x**4 - x**2 + 1 >>> g = factor(nth_power_roots_poly(f, 2)) >>> g (x**2 - x + 1)**2 >>> R_f = [ (r**2).expand() for r in roots(f) ] >>> R_g = roots(g).keys() >>> set(R_f) == set(R_g) True """ options.allowed_flags(args, []) try: F, opt = poly_from_expr(f, *gens, **args) if not isinstance(f, Poly) and not F.gen.is_Symbol: # root of sin(x) + 1 is -1 but when someone # passes an Expr instead of Poly they may not expect # that the generator will be sin(x), not x raise PolynomialError("generator must be a Symbol") except PolificationFailed as exc: raise ComputationFailed('nth_power_roots_poly', 1, exc) result = F.nth_power_roots_poly(n) if not opt.polys: return result.as_expr() else: return result @public def cancel(f, *gens, **args): """ Cancel common factors in a rational function ``f``. Examples ======== >>> from sympy import cancel, sqrt, Symbol, together >>> from sympy.abc import x >>> A = Symbol('A', commutative=False) >>> cancel((2*x**2 - 2)/(x**2 - 2*x + 1)) (2*x + 2)/(x - 1) >>> cancel((sqrt(3) + sqrt(15)*A)/(sqrt(2) + sqrt(10)*A)) sqrt(6)/2 Note: due to automatic distribution of Rationals, a sum divided by an integer will appear as a sum. To recover a rational form use `together` on the result: >>> cancel(x/2 + 1) x/2 + 1 >>> together(_) (x + 2)/2 """ from sympy.core.exprtools import factor_terms from sympy.functions.elementary.piecewise import Piecewise from sympy.polys.rings import sring options.allowed_flags(args, ['polys']) f = sympify(f) opt = {} if 'polys' in args: opt['polys'] = args['polys'] if not isinstance(f, (tuple, Tuple)): if f.is_Number or isinstance(f, Relational) or not isinstance(f, Expr): return f f = factor_terms(f, radical=True) p, q = f.as_numer_denom() elif len(f) == 2: p, q = f if isinstance(p, Poly) and isinstance(q, Poly): opt['gens'] = p.gens opt['domain'] = p.domain opt['polys'] = opt.get('polys', True) p, q = p.as_expr(), q.as_expr() elif isinstance(f, Tuple): return factor_terms(f) else: raise ValueError('unexpected argument: %s' % f) try: if f.has(Piecewise): raise PolynomialError() R, (F, G) = sring((p, q), *gens, **args) if not R.ngens: if not isinstance(f, (tuple, Tuple)): return f.expand() else: return S.One, p, q except PolynomialError as msg: if f.is_commutative and not f.has(Piecewise): raise PolynomialError(msg) # Handling of noncommutative and/or piecewise expressions if f.is_Add or f.is_Mul: c, nc = sift(f.args, lambda x: x.is_commutative is True and not x.has(Piecewise), binary=True) nc = [cancel(i) for i in nc] return f.func(cancel(f.func(*c)), *nc) else: reps = [] pot = preorder_traversal(f) next(pot) for e in pot: # XXX: This should really skip anything that's not Expr. if isinstance(e, (tuple, Tuple, BooleanAtom)): continue try: reps.append((e, cancel(e))) pot.skip() # this was handled successfully except NotImplementedError: pass return f.xreplace(dict(reps)) c, (P, Q) = 1, F.cancel(G) if opt.get('polys', False) and not 'gens' in opt: opt['gens'] = R.symbols if not isinstance(f, (tuple, Tuple)): return c*(P.as_expr()/Q.as_expr()) else: P, Q = P.as_expr(), Q.as_expr() if not opt.get('polys', False): return c, P, Q else: return c, Poly(P, *gens, **opt), Poly(Q, *gens, **opt) @public def reduced(f, G, *gens, **args): """ Reduces a polynomial ``f`` modulo a set of polynomials ``G``. Given a polynomial ``f`` and a set of polynomials ``G = (g_1, ..., g_n)``, computes a set of quotients ``q = (q_1, ..., q_n)`` and the remainder ``r`` such that ``f = q_1*g_1 + ... + q_n*g_n + r``, where ``r`` vanishes or ``r`` is a completely reduced polynomial with respect to ``G``. Examples ======== >>> from sympy import reduced >>> from sympy.abc import x, y >>> reduced(2*x**4 + y**2 - x**2 + y**3, [x**3 - x, y**3 - y]) ([2*x, 1], x**2 + y**2 + y) """ options.allowed_flags(args, ['polys', 'auto']) try: polys, opt = parallel_poly_from_expr([f] + list(G), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('reduced', 0, exc) domain = opt.domain retract = False if opt.auto and domain.is_Ring and not domain.is_Field: opt = opt.clone(dict(domain=domain.get_field())) retract = True from sympy.polys.rings import xring _ring, _ = xring(opt.gens, opt.domain, opt.order) for i, poly in enumerate(polys): poly = poly.set_domain(opt.domain).rep.to_dict() polys[i] = _ring.from_dict(poly) Q, r = polys[0].div(polys[1:]) Q = [Poly._from_dict(dict(q), opt) for q in Q] r = Poly._from_dict(dict(r), opt) if retract: try: _Q, _r = [q.to_ring() for q in Q], r.to_ring() except CoercionFailed: pass else: Q, r = _Q, _r if not opt.polys: return [q.as_expr() for q in Q], r.as_expr() else: return Q, r @public def groebner(F, *gens, **args): """ Computes the reduced Groebner basis for a set of polynomials. Use the ``order`` argument to set the monomial ordering that will be used to compute the basis. Allowed orders are ``lex``, ``grlex`` and ``grevlex``. If no order is specified, it defaults to ``lex``. For more information on Groebner bases, see the references and the docstring of :func:`~.solve_poly_system`. Examples ======== Example taken from [1]. >>> from sympy import groebner >>> from sympy.abc import x, y >>> F = [x*y - 2*y, 2*y**2 - x**2] >>> groebner(F, x, y, order='lex') GroebnerBasis([x**2 - 2*y**2, x*y - 2*y, y**3 - 2*y], x, y, domain='ZZ', order='lex') >>> groebner(F, x, y, order='grlex') GroebnerBasis([y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y], x, y, domain='ZZ', order='grlex') >>> groebner(F, x, y, order='grevlex') GroebnerBasis([y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y], x, y, domain='ZZ', order='grevlex') By default, an improved implementation of the Buchberger algorithm is used. Optionally, an implementation of the F5B algorithm can be used. The algorithm can be set using the ``method`` flag or with the :func:`sympy.polys.polyconfig.setup` function. >>> F = [x**2 - x - 1, (2*x - 1) * y - (x**10 - (1 - x)**10)] >>> groebner(F, x, y, method='buchberger') GroebnerBasis([x**2 - x - 1, y - 55], x, y, domain='ZZ', order='lex') >>> groebner(F, x, y, method='f5b') GroebnerBasis([x**2 - x - 1, y - 55], x, y, domain='ZZ', order='lex') References ========== 1. [Buchberger01]_ 2. [Cox97]_ """ return GroebnerBasis(F, *gens, **args) @public def is_zero_dimensional(F, *gens, **args): """ Checks if the ideal generated by a Groebner basis is zero-dimensional. The algorithm checks if the set of monomials not divisible by the leading monomial of any element of ``F`` is bounded. References ========== David A. Cox, John B. Little, Donal O'Shea. Ideals, Varieties and Algorithms, 3rd edition, p. 230 """ return GroebnerBasis(F, *gens, **args).is_zero_dimensional @public class GroebnerBasis(Basic): """Represents a reduced Groebner basis. """ def __new__(cls, F, *gens, **args): """Compute a reduced Groebner basis for a system of polynomials. """ options.allowed_flags(args, ['polys', 'method']) try: polys, opt = parallel_poly_from_expr(F, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('groebner', len(F), exc) from sympy.polys.rings import PolyRing ring = PolyRing(opt.gens, opt.domain, opt.order) polys = [ring.from_dict(poly.rep.to_dict()) for poly in polys if poly] G = _groebner(polys, ring, method=opt.method) G = [Poly._from_dict(g, opt) for g in G] return cls._new(G, opt) @classmethod def _new(cls, basis, options): obj = Basic.__new__(cls) obj._basis = tuple(basis) obj._options = options return obj @property def args(self): basis = (p.as_expr() for p in self._basis) return (Tuple(*basis), Tuple(*self._options.gens)) @property def exprs(self): return [poly.as_expr() for poly in self._basis] @property def polys(self): return list(self._basis) @property def gens(self): return self._options.gens @property def domain(self): return self._options.domain @property def order(self): return self._options.order def __len__(self): return len(self._basis) def __iter__(self): if self._options.polys: return iter(self.polys) else: return iter(self.exprs) def __getitem__(self, item): if self._options.polys: basis = self.polys else: basis = self.exprs return basis[item] def __hash__(self): return hash((self._basis, tuple(self._options.items()))) def __eq__(self, other): if isinstance(other, self.__class__): return self._basis == other._basis and self._options == other._options elif iterable(other): return self.polys == list(other) or self.exprs == list(other) else: return False def __ne__(self, other): return not self == other @property def is_zero_dimensional(self): """ Checks if the ideal generated by a Groebner basis is zero-dimensional. The algorithm checks if the set of monomials not divisible by the leading monomial of any element of ``F`` is bounded. References ========== David A. Cox, John B. Little, Donal O'Shea. Ideals, Varieties and Algorithms, 3rd edition, p. 230 """ def single_var(monomial): return sum(map(bool, monomial)) == 1 exponents = Monomial([0]*len(self.gens)) order = self._options.order for poly in self.polys: monomial = poly.LM(order=order) if single_var(monomial): exponents *= monomial # If any element of the exponents vector is zero, then there's # a variable for which there's no degree bound and the ideal # generated by this Groebner basis isn't zero-dimensional. return all(exponents) def fglm(self, order): """ Convert a Groebner basis from one ordering to another. The FGLM algorithm converts reduced Groebner bases of zero-dimensional ideals from one ordering to another. This method is often used when it is infeasible to compute a Groebner basis with respect to a particular ordering directly. Examples ======== >>> from sympy.abc import x, y >>> from sympy import groebner >>> F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1] >>> G = groebner(F, x, y, order='grlex') >>> list(G.fglm('lex')) [2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7] >>> list(groebner(F, x, y, order='lex')) [2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7] References ========== .. [1] J.C. Faugere, P. Gianni, D. Lazard, T. Mora (1994). Efficient Computation of Zero-dimensional Groebner Bases by Change of Ordering """ opt = self._options src_order = opt.order dst_order = monomial_key(order) if src_order == dst_order: return self if not self.is_zero_dimensional: raise NotImplementedError("can't convert Groebner bases of ideals with positive dimension") polys = list(self._basis) domain = opt.domain opt = opt.clone(dict( domain=domain.get_field(), order=dst_order, )) from sympy.polys.rings import xring _ring, _ = xring(opt.gens, opt.domain, src_order) for i, poly in enumerate(polys): poly = poly.set_domain(opt.domain).rep.to_dict() polys[i] = _ring.from_dict(poly) G = matrix_fglm(polys, _ring, dst_order) G = [Poly._from_dict(dict(g), opt) for g in G] if not domain.is_Field: G = [g.clear_denoms(convert=True)[1] for g in G] opt.domain = domain return self._new(G, opt) def reduce(self, expr, auto=True): """ Reduces a polynomial modulo a Groebner basis. Given a polynomial ``f`` and a set of polynomials ``G = (g_1, ..., g_n)``, computes a set of quotients ``q = (q_1, ..., q_n)`` and the remainder ``r`` such that ``f = q_1*f_1 + ... + q_n*f_n + r``, where ``r`` vanishes or ``r`` is a completely reduced polynomial with respect to ``G``. Examples ======== >>> from sympy import groebner, expand >>> from sympy.abc import x, y >>> f = 2*x**4 - x**2 + y**3 + y**2 >>> G = groebner([x**3 - x, y**3 - y]) >>> G.reduce(f) ([2*x, 1], x**2 + y**2 + y) >>> Q, r = _ >>> expand(sum(q*g for q, g in zip(Q, G)) + r) 2*x**4 - x**2 + y**3 + y**2 >>> _ == f True """ poly = Poly._from_expr(expr, self._options) polys = [poly] + list(self._basis) opt = self._options domain = opt.domain retract = False if auto and domain.is_Ring and not domain.is_Field: opt = opt.clone(dict(domain=domain.get_field())) retract = True from sympy.polys.rings import xring _ring, _ = xring(opt.gens, opt.domain, opt.order) for i, poly in enumerate(polys): poly = poly.set_domain(opt.domain).rep.to_dict() polys[i] = _ring.from_dict(poly) Q, r = polys[0].div(polys[1:]) Q = [Poly._from_dict(dict(q), opt) for q in Q] r = Poly._from_dict(dict(r), opt) if retract: try: _Q, _r = [q.to_ring() for q in Q], r.to_ring() except CoercionFailed: pass else: Q, r = _Q, _r if not opt.polys: return [q.as_expr() for q in Q], r.as_expr() else: return Q, r def contains(self, poly): """ Check if ``poly`` belongs the ideal generated by ``self``. Examples ======== >>> from sympy import groebner >>> from sympy.abc import x, y >>> f = 2*x**3 + y**3 + 3*y >>> G = groebner([x**2 + y**2 - 1, x*y - 2]) >>> G.contains(f) True >>> G.contains(f + 1) False """ return self.reduce(poly)[1] == 0 @public def poly(expr, *gens, **args): """ Efficiently transform an expression into a polynomial. Examples ======== >>> from sympy import poly >>> from sympy.abc import x >>> poly(x*(x**2 + x - 1)**2) Poly(x**5 + 2*x**4 - x**3 - 2*x**2 + x, x, domain='ZZ') """ options.allowed_flags(args, []) def _poly(expr, opt): terms, poly_terms = [], [] for term in Add.make_args(expr): factors, poly_factors = [], [] for factor in Mul.make_args(term): if factor.is_Add: poly_factors.append(_poly(factor, opt)) elif factor.is_Pow and factor.base.is_Add and \ factor.exp.is_Integer and factor.exp >= 0: poly_factors.append( _poly(factor.base, opt).pow(factor.exp)) else: factors.append(factor) if not poly_factors: terms.append(term) else: product = poly_factors[0] for factor in poly_factors[1:]: product = product.mul(factor) if factors: factor = Mul(*factors) if factor.is_Number: product = product.mul(factor) else: product = product.mul(Poly._from_expr(factor, opt)) poly_terms.append(product) if not poly_terms: result = Poly._from_expr(expr, opt) else: result = poly_terms[0] for term in poly_terms[1:]: result = result.add(term) if terms: term = Add(*terms) if term.is_Number: result = result.add(term) else: result = result.add(Poly._from_expr(term, opt)) return result.reorder(*opt.get('gens', ()), **args) expr = sympify(expr) if expr.is_Poly: return Poly(expr, *gens, **args) if 'expand' not in args: args['expand'] = False opt = options.build_options(gens, args) return _poly(expr, opt)
16636a925345411d56ad062d3f6afb8f2a70d8841a74d2863f5e046946b152a2
""" Stub module to expose DomainMatrix which has now moved to sympy.polys.matrices package. It should now be imported as: >>> from sympy.polys.matrices import DomainMatrix This module might be removed in future. """ from sympy.polys.matrices.domainmatrix import DomainMatrix __all__ = ['DomainMatrix']
2a844cd98e596d289d58c5de4547892920486c962fc366e54cd4df918da4ad38
"""Sparse polynomial rings. """ from typing import Any, Dict from operator import add, mul, lt, le, gt, ge from functools import reduce from types import GeneratorType from sympy.core.compatibility import is_sequence from sympy.core.expr import Expr from sympy.core.numbers import igcd, oo from sympy.core.symbol import Symbol, symbols as _symbols from sympy.core.sympify import CantSympify, sympify from sympy.ntheory.multinomial import multinomial_coefficients from sympy.polys.compatibility import IPolys from sympy.polys.constructor import construct_domain from sympy.polys.densebasic import dmp_to_dict, dmp_from_dict from sympy.polys.domains.domainelement import DomainElement from sympy.polys.domains.polynomialring import PolynomialRing from sympy.polys.heuristicgcd import heugcd from sympy.polys.monomials import MonomialOps from sympy.polys.orderings import lex from sympy.polys.polyerrors import ( CoercionFailed, GeneratorsError, ExactQuotientFailed, MultivariatePolynomialError) from sympy.polys.polyoptions import (Domain as DomainOpt, Order as OrderOpt, build_options) from sympy.polys.polyutils import (expr_from_dict, _dict_reorder, _parallel_dict_from_expr) from sympy.printing.defaults import DefaultPrinting from sympy.utilities import public from sympy.utilities.magic import pollute @public def ring(symbols, domain, order=lex): """Construct a polynomial ring returning ``(ring, x_1, ..., x_n)``. Parameters ========== symbols : str Symbol/Expr or sequence of str, Symbol/Expr (non-empty) domain : :class:`~.Domain` or coercible order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex`` Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> from sympy.polys.orderings import lex >>> R, x, y, z = ring("x,y,z", ZZ, lex) >>> R Polynomial ring in x, y, z over ZZ with lex order >>> x + y + z x + y + z >>> type(_) <class 'sympy.polys.rings.PolyElement'> """ _ring = PolyRing(symbols, domain, order) return (_ring,) + _ring.gens @public def xring(symbols, domain, order=lex): """Construct a polynomial ring returning ``(ring, (x_1, ..., x_n))``. Parameters ========== symbols : str Symbol/Expr or sequence of str, Symbol/Expr (non-empty) domain : :class:`~.Domain` or coercible order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex`` Examples ======== >>> from sympy.polys.rings import xring >>> from sympy.polys.domains import ZZ >>> from sympy.polys.orderings import lex >>> R, (x, y, z) = xring("x,y,z", ZZ, lex) >>> R Polynomial ring in x, y, z over ZZ with lex order >>> x + y + z x + y + z >>> type(_) <class 'sympy.polys.rings.PolyElement'> """ _ring = PolyRing(symbols, domain, order) return (_ring, _ring.gens) @public def vring(symbols, domain, order=lex): """Construct a polynomial ring and inject ``x_1, ..., x_n`` into the global namespace. Parameters ========== symbols : str Symbol/Expr or sequence of str, Symbol/Expr (non-empty) domain : :class:`~.Domain` or coercible order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex`` Examples ======== >>> from sympy.polys.rings import vring >>> from sympy.polys.domains import ZZ >>> from sympy.polys.orderings import lex >>> vring("x,y,z", ZZ, lex) Polynomial ring in x, y, z over ZZ with lex order >>> x + y + z # noqa: x + y + z >>> type(_) <class 'sympy.polys.rings.PolyElement'> """ _ring = PolyRing(symbols, domain, order) pollute([ sym.name for sym in _ring.symbols ], _ring.gens) return _ring @public def sring(exprs, *symbols, **options): """Construct a ring deriving generators and domain from options and input expressions. Parameters ========== exprs : :class:`~.Expr` or sequence of :class:`~.Expr` (sympifiable) symbols : sequence of :class:`~.Symbol`/:class:`~.Expr` options : keyword arguments understood by :class:`~.Options` Examples ======== >>> from sympy.core import symbols >>> from sympy.polys.rings import sring >>> x, y, z = symbols("x,y,z") >>> R, f = sring(x + 2*y + 3*z) >>> R Polynomial ring in x, y, z over ZZ with lex order >>> f x + 2*y + 3*z >>> type(_) <class 'sympy.polys.rings.PolyElement'> """ single = False if not is_sequence(exprs): exprs, single = [exprs], True exprs = list(map(sympify, exprs)) opt = build_options(symbols, options) # TODO: rewrite this so that it doesn't use expand() (see poly()). reps, opt = _parallel_dict_from_expr(exprs, opt) if opt.domain is None: coeffs = sum([ list(rep.values()) for rep in reps ], []) opt.domain, coeffs_dom = construct_domain(coeffs, opt=opt) coeff_map = dict(zip(coeffs, coeffs_dom)) reps = [{m: coeff_map[c] for m, c in rep.items()} for rep in reps] _ring = PolyRing(opt.gens, opt.domain, opt.order) polys = list(map(_ring.from_dict, reps)) if single: return (_ring, polys[0]) else: return (_ring, polys) def _parse_symbols(symbols): if isinstance(symbols, str): return _symbols(symbols, seq=True) if symbols else () elif isinstance(symbols, Expr): return (symbols,) elif is_sequence(symbols): if all(isinstance(s, str) for s in symbols): return _symbols(symbols) elif all(isinstance(s, Expr) for s in symbols): return symbols raise GeneratorsError("expected a string, Symbol or expression or a non-empty sequence of strings, Symbols or expressions") _ring_cache = {} # type: Dict[Any, Any] class PolyRing(DefaultPrinting, IPolys): """Multivariate distributed polynomial ring. """ def __new__(cls, symbols, domain, order=lex): symbols = tuple(_parse_symbols(symbols)) ngens = len(symbols) domain = DomainOpt.preprocess(domain) order = OrderOpt.preprocess(order) _hash_tuple = (cls.__name__, symbols, ngens, domain, order) obj = _ring_cache.get(_hash_tuple) if obj is None: if domain.is_Composite and set(symbols) & set(domain.symbols): raise GeneratorsError("polynomial ring and it's ground domain share generators") obj = object.__new__(cls) obj._hash_tuple = _hash_tuple obj._hash = hash(_hash_tuple) obj.dtype = type("PolyElement", (PolyElement,), {"ring": obj}) obj.symbols = symbols obj.ngens = ngens obj.domain = domain obj.order = order obj.zero_monom = (0,)*ngens obj.gens = obj._gens() obj._gens_set = set(obj.gens) obj._one = [(obj.zero_monom, domain.one)] if ngens: # These expect monomials in at least one variable codegen = MonomialOps(ngens) obj.monomial_mul = codegen.mul() obj.monomial_pow = codegen.pow() obj.monomial_mulpow = codegen.mulpow() obj.monomial_ldiv = codegen.ldiv() obj.monomial_div = codegen.div() obj.monomial_lcm = codegen.lcm() obj.monomial_gcd = codegen.gcd() else: monunit = lambda a, b: () obj.monomial_mul = monunit obj.monomial_pow = monunit obj.monomial_mulpow = lambda a, b, c: () obj.monomial_ldiv = monunit obj.monomial_div = monunit obj.monomial_lcm = monunit obj.monomial_gcd = monunit if order is lex: obj.leading_expv = lambda f: max(f) else: obj.leading_expv = lambda f: max(f, key=order) for symbol, generator in zip(obj.symbols, obj.gens): if isinstance(symbol, Symbol): name = symbol.name if not hasattr(obj, name): setattr(obj, name, generator) _ring_cache[_hash_tuple] = obj return obj def _gens(self): """Return a list of polynomial generators. """ one = self.domain.one _gens = [] for i in range(self.ngens): expv = self.monomial_basis(i) poly = self.zero poly[expv] = one _gens.append(poly) return tuple(_gens) def __getnewargs__(self): return (self.symbols, self.domain, self.order) def __getstate__(self): state = self.__dict__.copy() del state["leading_expv"] for key, value in state.items(): if key.startswith("monomial_"): del state[key] return state def __hash__(self): return self._hash def __eq__(self, other): return isinstance(other, PolyRing) and \ (self.symbols, self.domain, self.ngens, self.order) == \ (other.symbols, other.domain, other.ngens, other.order) def __ne__(self, other): return not self == other def clone(self, symbols=None, domain=None, order=None): return self.__class__(symbols or self.symbols, domain or self.domain, order or self.order) def monomial_basis(self, i): """Return the ith-basis element. """ basis = [0]*self.ngens basis[i] = 1 return tuple(basis) @property def zero(self): return self.dtype() @property def one(self): return self.dtype(self._one) def domain_new(self, element, orig_domain=None): return self.domain.convert(element, orig_domain) def ground_new(self, coeff): return self.term_new(self.zero_monom, coeff) def term_new(self, monom, coeff): coeff = self.domain_new(coeff) poly = self.zero if coeff: poly[monom] = coeff return poly def ring_new(self, element): if isinstance(element, PolyElement): if self == element.ring: return element elif isinstance(self.domain, PolynomialRing) and self.domain.ring == element.ring: return self.ground_new(element) else: raise NotImplementedError("conversion") elif isinstance(element, str): raise NotImplementedError("parsing") elif isinstance(element, dict): return self.from_dict(element) elif isinstance(element, list): try: return self.from_terms(element) except ValueError: return self.from_list(element) elif isinstance(element, Expr): return self.from_expr(element) else: return self.ground_new(element) __call__ = ring_new def from_dict(self, element): domain_new = self.domain_new poly = self.zero for monom, coeff in element.items(): coeff = domain_new(coeff) if coeff: poly[monom] = coeff return poly def from_terms(self, element): return self.from_dict(dict(element)) def from_list(self, element): return self.from_dict(dmp_to_dict(element, self.ngens-1, self.domain)) def _rebuild_expr(self, expr, mapping): domain = self.domain def _rebuild(expr): generator = mapping.get(expr) if generator is not None: return generator elif expr.is_Add: return reduce(add, list(map(_rebuild, expr.args))) elif expr.is_Mul: return reduce(mul, list(map(_rebuild, expr.args))) elif expr.is_Pow and expr.exp.is_Integer and expr.exp >= 0: return _rebuild(expr.base)**int(expr.exp) else: return self.ground_new(domain.convert(expr)) return _rebuild(sympify(expr)) def from_expr(self, expr): mapping = dict(list(zip(self.symbols, self.gens))) try: poly = self._rebuild_expr(expr, mapping) except CoercionFailed: raise ValueError("expected an expression convertible to a polynomial in %s, got %s" % (self, expr)) else: return self.ring_new(poly) def index(self, gen): """Compute index of ``gen`` in ``self.gens``. """ if gen is None: if self.ngens: i = 0 else: i = -1 # indicate impossible choice elif isinstance(gen, int): i = gen if 0 <= i and i < self.ngens: pass elif -self.ngens <= i and i <= -1: i = -i - 1 else: raise ValueError("invalid generator index: %s" % gen) elif isinstance(gen, self.dtype): try: i = self.gens.index(gen) except ValueError: raise ValueError("invalid generator: %s" % gen) elif isinstance(gen, str): try: i = self.symbols.index(gen) except ValueError: raise ValueError("invalid generator: %s" % gen) else: raise ValueError("expected a polynomial generator, an integer, a string or None, got %s" % gen) return i def drop(self, *gens): """Remove specified generators from this ring. """ indices = set(map(self.index, gens)) symbols = [ s for i, s in enumerate(self.symbols) if i not in indices ] if not symbols: return self.domain else: return self.clone(symbols=symbols) def __getitem__(self, key): symbols = self.symbols[key] if not symbols: return self.domain else: return self.clone(symbols=symbols) def to_ground(self): # TODO: should AlgebraicField be a Composite domain? if self.domain.is_Composite or hasattr(self.domain, 'domain'): return self.clone(domain=self.domain.domain) else: raise ValueError("%s is not a composite domain" % self.domain) def to_domain(self): return PolynomialRing(self) def to_field(self): from sympy.polys.fields import FracField return FracField(self.symbols, self.domain, self.order) @property def is_univariate(self): return len(self.gens) == 1 @property def is_multivariate(self): return len(self.gens) > 1 def add(self, *objs): """ Add a sequence of polynomials or containers of polynomials. Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> R, x = ring("x", ZZ) >>> R.add([ x**2 + 2*i + 3 for i in range(4) ]) 4*x**2 + 24 >>> _.factor_list() (4, [(x**2 + 6, 1)]) """ p = self.zero for obj in objs: if is_sequence(obj, include=GeneratorType): p += self.add(*obj) else: p += obj return p def mul(self, *objs): """ Multiply a sequence of polynomials or containers of polynomials. Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> R, x = ring("x", ZZ) >>> R.mul([ x**2 + 2*i + 3 for i in range(4) ]) x**8 + 24*x**6 + 206*x**4 + 744*x**2 + 945 >>> _.factor_list() (1, [(x**2 + 3, 1), (x**2 + 5, 1), (x**2 + 7, 1), (x**2 + 9, 1)]) """ p = self.one for obj in objs: if is_sequence(obj, include=GeneratorType): p *= self.mul(*obj) else: p *= obj return p def drop_to_ground(self, *gens): r""" Remove specified generators from the ring and inject them into its domain. """ indices = set(map(self.index, gens)) symbols = [s for i, s in enumerate(self.symbols) if i not in indices] gens = [gen for i, gen in enumerate(self.gens) if i not in indices] if not symbols: return self else: return self.clone(symbols=symbols, domain=self.drop(*gens)) def compose(self, other): """Add the generators of ``other`` to ``self``""" if self != other: syms = set(self.symbols).union(set(other.symbols)) return self.clone(symbols=list(syms)) else: return self def add_gens(self, symbols): """Add the elements of ``symbols`` as generators to ``self``""" syms = set(self.symbols).union(set(symbols)) return self.clone(symbols=list(syms)) class PolyElement(DomainElement, DefaultPrinting, CantSympify, dict): """Element of multivariate distributed polynomial ring. """ def new(self, init): return self.__class__(init) def parent(self): return self.ring.to_domain() def __getnewargs__(self): return (self.ring, list(self.iterterms())) _hash = None def __hash__(self): # XXX: This computes a hash of a dictionary, but currently we don't # protect dictionary from being changed so any use site modifications # will make hashing go wrong. Use this feature with caution until we # figure out how to make a safe API without compromising speed of this # low-level class. _hash = self._hash if _hash is None: self._hash = _hash = hash((self.ring, frozenset(self.items()))) return _hash def copy(self): """Return a copy of polynomial self. Polynomials are mutable; if one is interested in preserving a polynomial, and one plans to use inplace operations, one can copy the polynomial. This method makes a shallow copy. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.rings import ring >>> R, x, y = ring('x, y', ZZ) >>> p = (x + y)**2 >>> p1 = p.copy() >>> p2 = p >>> p[R.zero_monom] = 3 >>> p x**2 + 2*x*y + y**2 + 3 >>> p1 x**2 + 2*x*y + y**2 >>> p2 x**2 + 2*x*y + y**2 + 3 """ return self.new(self) def set_ring(self, new_ring): if self.ring == new_ring: return self elif self.ring.symbols != new_ring.symbols: terms = list(zip(*_dict_reorder(self, self.ring.symbols, new_ring.symbols))) return new_ring.from_terms(terms) else: return new_ring.from_dict(self) def as_expr(self, *symbols): if symbols and len(symbols) != self.ring.ngens: raise ValueError("not enough symbols, expected %s got %s" % (self.ring.ngens, len(symbols))) else: symbols = self.ring.symbols return expr_from_dict(self.as_expr_dict(), *symbols) def as_expr_dict(self): to_sympy = self.ring.domain.to_sympy return {monom: to_sympy(coeff) for monom, coeff in self.iterterms()} def clear_denoms(self): domain = self.ring.domain if not domain.is_Field or not domain.has_assoc_Ring: return domain.one, self ground_ring = domain.get_ring() common = ground_ring.one lcm = ground_ring.lcm denom = domain.denom for coeff in self.values(): common = lcm(common, denom(coeff)) poly = self.new([ (k, v*common) for k, v in self.items() ]) return common, poly def strip_zero(self): """Eliminate monomials with zero coefficient. """ for k, v in list(self.items()): if not v: del self[k] def __eq__(p1, p2): """Equality test for polynomials. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.rings import ring >>> _, x, y = ring('x, y', ZZ) >>> p1 = (x + y)**2 + (x - y)**2 >>> p1 == 4*x*y False >>> p1 == 2*(x**2 + y**2) True """ if not p2: return not p1 elif isinstance(p2, PolyElement) and p2.ring == p1.ring: return dict.__eq__(p1, p2) elif len(p1) > 1: return False else: return p1.get(p1.ring.zero_monom) == p2 def __ne__(p1, p2): return not p1 == p2 def almosteq(p1, p2, tolerance=None): """Approximate equality test for polynomials. """ ring = p1.ring if isinstance(p2, ring.dtype): if set(p1.keys()) != set(p2.keys()): return False almosteq = ring.domain.almosteq for k in p1.keys(): if not almosteq(p1[k], p2[k], tolerance): return False return True elif len(p1) > 1: return False else: try: p2 = ring.domain.convert(p2) except CoercionFailed: return False else: return ring.domain.almosteq(p1.const(), p2, tolerance) def sort_key(self): return (len(self), self.terms()) def _cmp(p1, p2, op): if isinstance(p2, p1.ring.dtype): return op(p1.sort_key(), p2.sort_key()) else: return NotImplemented def __lt__(p1, p2): return p1._cmp(p2, lt) def __le__(p1, p2): return p1._cmp(p2, le) def __gt__(p1, p2): return p1._cmp(p2, gt) def __ge__(p1, p2): return p1._cmp(p2, ge) def _drop(self, gen): ring = self.ring i = ring.index(gen) if ring.ngens == 1: return i, ring.domain else: symbols = list(ring.symbols) del symbols[i] return i, ring.clone(symbols=symbols) def drop(self, gen): i, ring = self._drop(gen) if self.ring.ngens == 1: if self.is_ground: return self.coeff(1) else: raise ValueError("can't drop %s" % gen) else: poly = ring.zero for k, v in self.items(): if k[i] == 0: K = list(k) del K[i] poly[tuple(K)] = v else: raise ValueError("can't drop %s" % gen) return poly def _drop_to_ground(self, gen): ring = self.ring i = ring.index(gen) symbols = list(ring.symbols) del symbols[i] return i, ring.clone(symbols=symbols, domain=ring[i]) def drop_to_ground(self, gen): if self.ring.ngens == 1: raise ValueError("can't drop only generator to ground") i, ring = self._drop_to_ground(gen) poly = ring.zero gen = ring.domain.gens[0] for monom, coeff in self.iterterms(): mon = monom[:i] + monom[i+1:] if not mon in poly: poly[mon] = (gen**monom[i]).mul_ground(coeff) else: poly[mon] += (gen**monom[i]).mul_ground(coeff) return poly def to_dense(self): return dmp_from_dict(self, self.ring.ngens-1, self.ring.domain) def to_dict(self): return dict(self) def str(self, printer, precedence, exp_pattern, mul_symbol): if not self: return printer._print(self.ring.domain.zero) prec_mul = precedence["Mul"] prec_atom = precedence["Atom"] ring = self.ring symbols = ring.symbols ngens = ring.ngens zm = ring.zero_monom sexpvs = [] for expv, coeff in self.terms(): negative = ring.domain.is_negative(coeff) sign = " - " if negative else " + " sexpvs.append(sign) if expv == zm: scoeff = printer._print(coeff) if negative and scoeff.startswith("-"): scoeff = scoeff[1:] else: if negative: coeff = -coeff if coeff != self.ring.one: scoeff = printer.parenthesize(coeff, prec_mul, strict=True) else: scoeff = '' sexpv = [] for i in range(ngens): exp = expv[i] if not exp: continue symbol = printer.parenthesize(symbols[i], prec_atom, strict=True) if exp != 1: if exp != int(exp) or exp < 0: sexp = printer.parenthesize(exp, prec_atom, strict=False) else: sexp = exp sexpv.append(exp_pattern % (symbol, sexp)) else: sexpv.append('%s' % symbol) if scoeff: sexpv = [scoeff] + sexpv sexpvs.append(mul_symbol.join(sexpv)) if sexpvs[0] in [" + ", " - "]: head = sexpvs.pop(0) if head == " - ": sexpvs.insert(0, "-") return "".join(sexpvs) @property def is_generator(self): return self in self.ring._gens_set @property def is_ground(self): return not self or (len(self) == 1 and self.ring.zero_monom in self) @property def is_monomial(self): return not self or (len(self) == 1 and self.LC == 1) @property def is_term(self): return len(self) <= 1 @property def is_negative(self): return self.ring.domain.is_negative(self.LC) @property def is_positive(self): return self.ring.domain.is_positive(self.LC) @property def is_nonnegative(self): return self.ring.domain.is_nonnegative(self.LC) @property def is_nonpositive(self): return self.ring.domain.is_nonpositive(self.LC) @property def is_zero(f): return not f @property def is_one(f): return f == f.ring.one @property def is_monic(f): return f.ring.domain.is_one(f.LC) @property def is_primitive(f): return f.ring.domain.is_one(f.content()) @property def is_linear(f): return all(sum(monom) <= 1 for monom in f.itermonoms()) @property def is_quadratic(f): return all(sum(monom) <= 2 for monom in f.itermonoms()) @property def is_squarefree(f): if not f.ring.ngens: return True return f.ring.dmp_sqf_p(f) @property def is_irreducible(f): if not f.ring.ngens: return True return f.ring.dmp_irreducible_p(f) @property def is_cyclotomic(f): if f.ring.is_univariate: return f.ring.dup_cyclotomic_p(f) else: raise MultivariatePolynomialError("cyclotomic polynomial") def __neg__(self): return self.new([ (monom, -coeff) for monom, coeff in self.iterterms() ]) def __pos__(self): return self def __add__(p1, p2): """Add two polynomials. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.rings import ring >>> _, x, y = ring('x, y', ZZ) >>> (x + y)**2 + (x - y)**2 2*x**2 + 2*y**2 """ if not p2: return p1.copy() ring = p1.ring if isinstance(p2, ring.dtype): p = p1.copy() get = p.get zero = ring.domain.zero for k, v in p2.items(): v = get(k, zero) + v if v: p[k] = v else: del p[k] return p elif isinstance(p2, PolyElement): if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring: pass elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring: return p2.__radd__(p1) else: return NotImplemented try: cp2 = ring.domain_new(p2) except CoercionFailed: return NotImplemented else: p = p1.copy() if not cp2: return p zm = ring.zero_monom if zm not in p1.keys(): p[zm] = cp2 else: if p2 == -p[zm]: del p[zm] else: p[zm] += cp2 return p def __radd__(p1, n): p = p1.copy() if not n: return p ring = p1.ring try: n = ring.domain_new(n) except CoercionFailed: return NotImplemented else: zm = ring.zero_monom if zm not in p1.keys(): p[zm] = n else: if n == -p[zm]: del p[zm] else: p[zm] += n return p def __sub__(p1, p2): """Subtract polynomial p2 from p1. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.rings import ring >>> _, x, y = ring('x, y', ZZ) >>> p1 = x + y**2 >>> p2 = x*y + y**2 >>> p1 - p2 -x*y + x """ if not p2: return p1.copy() ring = p1.ring if isinstance(p2, ring.dtype): p = p1.copy() get = p.get zero = ring.domain.zero for k, v in p2.items(): v = get(k, zero) - v if v: p[k] = v else: del p[k] return p elif isinstance(p2, PolyElement): if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring: pass elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring: return p2.__rsub__(p1) else: return NotImplemented try: p2 = ring.domain_new(p2) except CoercionFailed: return NotImplemented else: p = p1.copy() zm = ring.zero_monom if zm not in p1.keys(): p[zm] = -p2 else: if p2 == p[zm]: del p[zm] else: p[zm] -= p2 return p def __rsub__(p1, n): """n - p1 with n convertible to the coefficient domain. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.rings import ring >>> _, x, y = ring('x, y', ZZ) >>> p = x + y >>> 4 - p -x - y + 4 """ ring = p1.ring try: n = ring.domain_new(n) except CoercionFailed: return NotImplemented else: p = ring.zero for expv in p1: p[expv] = -p1[expv] p += n return p def __mul__(p1, p2): """Multiply two polynomials. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> _, x, y = ring('x, y', QQ) >>> p1 = x + y >>> p2 = x - y >>> p1*p2 x**2 - y**2 """ ring = p1.ring p = ring.zero if not p1 or not p2: return p elif isinstance(p2, ring.dtype): get = p.get zero = ring.domain.zero monomial_mul = ring.monomial_mul p2it = list(p2.items()) for exp1, v1 in p1.items(): for exp2, v2 in p2it: exp = monomial_mul(exp1, exp2) p[exp] = get(exp, zero) + v1*v2 p.strip_zero() return p elif isinstance(p2, PolyElement): if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring: pass elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring: return p2.__rmul__(p1) else: return NotImplemented try: p2 = ring.domain_new(p2) except CoercionFailed: return NotImplemented else: for exp1, v1 in p1.items(): v = v1*p2 if v: p[exp1] = v return p def __rmul__(p1, p2): """p2 * p1 with p2 in the coefficient domain of p1. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.rings import ring >>> _, x, y = ring('x, y', ZZ) >>> p = x + y >>> 4 * p 4*x + 4*y """ p = p1.ring.zero if not p2: return p try: p2 = p.ring.domain_new(p2) except CoercionFailed: return NotImplemented else: for exp1, v1 in p1.items(): v = p2*v1 if v: p[exp1] = v return p def __pow__(self, n): """raise polynomial to power `n` Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.rings import ring >>> _, x, y = ring('x, y', ZZ) >>> p = x + y**2 >>> p**3 x**3 + 3*x**2*y**2 + 3*x*y**4 + y**6 """ ring = self.ring if not n: if self: return ring.one else: raise ValueError("0**0") elif len(self) == 1: monom, coeff = list(self.items())[0] p = ring.zero if coeff == 1: p[ring.monomial_pow(monom, n)] = coeff else: p[ring.monomial_pow(monom, n)] = coeff**n return p # For ring series, we need negative and rational exponent support only # with monomials. n = int(n) if n < 0: raise ValueError("Negative exponent") elif n == 1: return self.copy() elif n == 2: return self.square() elif n == 3: return self*self.square() elif len(self) <= 5: # TODO: use an actual density measure return self._pow_multinomial(n) else: return self._pow_generic(n) def _pow_generic(self, n): p = self.ring.one c = self while True: if n & 1: p = p*c n -= 1 if not n: break c = c.square() n = n // 2 return p def _pow_multinomial(self, n): multinomials = list(multinomial_coefficients(len(self), n).items()) monomial_mulpow = self.ring.monomial_mulpow zero_monom = self.ring.zero_monom terms = list(self.iterterms()) zero = self.ring.domain.zero poly = self.ring.zero for multinomial, multinomial_coeff in multinomials: product_monom = zero_monom product_coeff = multinomial_coeff for exp, (monom, coeff) in zip(multinomial, terms): if exp: product_monom = monomial_mulpow(product_monom, monom, exp) product_coeff *= coeff**exp monom = tuple(product_monom) coeff = product_coeff coeff = poly.get(monom, zero) + coeff if coeff: poly[monom] = coeff else: del poly[monom] return poly def square(self): """square of a polynomial Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y = ring('x, y', ZZ) >>> p = x + y**2 >>> p.square() x**2 + 2*x*y**2 + y**4 """ ring = self.ring p = ring.zero get = p.get keys = list(self.keys()) zero = ring.domain.zero monomial_mul = ring.monomial_mul for i in range(len(keys)): k1 = keys[i] pk = self[k1] for j in range(i): k2 = keys[j] exp = monomial_mul(k1, k2) p[exp] = get(exp, zero) + pk*self[k2] p = p.imul_num(2) get = p.get for k, v in self.items(): k2 = monomial_mul(k, k) p[k2] = get(k2, zero) + v**2 p.strip_zero() return p def __divmod__(p1, p2): ring = p1.ring if not p2: raise ZeroDivisionError("polynomial division") elif isinstance(p2, ring.dtype): return p1.div(p2) elif isinstance(p2, PolyElement): if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring: pass elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring: return p2.__rdivmod__(p1) else: return NotImplemented try: p2 = ring.domain_new(p2) except CoercionFailed: return NotImplemented else: return (p1.quo_ground(p2), p1.rem_ground(p2)) def __rdivmod__(p1, p2): return NotImplemented def __mod__(p1, p2): ring = p1.ring if not p2: raise ZeroDivisionError("polynomial division") elif isinstance(p2, ring.dtype): return p1.rem(p2) elif isinstance(p2, PolyElement): if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring: pass elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring: return p2.__rmod__(p1) else: return NotImplemented try: p2 = ring.domain_new(p2) except CoercionFailed: return NotImplemented else: return p1.rem_ground(p2) def __rmod__(p1, p2): return NotImplemented def __truediv__(p1, p2): ring = p1.ring if not p2: raise ZeroDivisionError("polynomial division") elif isinstance(p2, ring.dtype): if p2.is_monomial: return p1*(p2**(-1)) else: return p1.quo(p2) elif isinstance(p2, PolyElement): if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring: pass elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring: return p2.__rtruediv__(p1) else: return NotImplemented try: p2 = ring.domain_new(p2) except CoercionFailed: return NotImplemented else: return p1.quo_ground(p2) def __rtruediv__(p1, p2): return NotImplemented __floordiv__ = __truediv__ __rfloordiv__ = __rtruediv__ # TODO: use // (__floordiv__) for exquo()? def _term_div(self): zm = self.ring.zero_monom domain = self.ring.domain domain_quo = domain.quo monomial_div = self.ring.monomial_div if domain.is_Field: def term_div(a_lm_a_lc, b_lm_b_lc): a_lm, a_lc = a_lm_a_lc b_lm, b_lc = b_lm_b_lc if b_lm == zm: # apparently this is a very common case monom = a_lm else: monom = monomial_div(a_lm, b_lm) if monom is not None: return monom, domain_quo(a_lc, b_lc) else: return None else: def term_div(a_lm_a_lc, b_lm_b_lc): a_lm, a_lc = a_lm_a_lc b_lm, b_lc = b_lm_b_lc if b_lm == zm: # apparently this is a very common case monom = a_lm else: monom = monomial_div(a_lm, b_lm) if not (monom is None or a_lc % b_lc): return monom, domain_quo(a_lc, b_lc) else: return None return term_div def div(self, fv): """Division algorithm, see [CLO] p64. fv array of polynomials return qv, r such that self = sum(fv[i]*qv[i]) + r All polynomials are required not to be Laurent polynomials. Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y = ring('x, y', ZZ) >>> f = x**3 >>> f0 = x - y**2 >>> f1 = x - y >>> qv, r = f.div((f0, f1)) >>> qv[0] x**2 + x*y**2 + y**4 >>> qv[1] 0 >>> r y**6 """ ring = self.ring ret_single = False if isinstance(fv, PolyElement): ret_single = True fv = [fv] if any(not f for f in fv): raise ZeroDivisionError("polynomial division") if not self: if ret_single: return ring.zero, ring.zero else: return [], ring.zero for f in fv: if f.ring != ring: raise ValueError('self and f must have the same ring') s = len(fv) qv = [ring.zero for i in range(s)] p = self.copy() r = ring.zero term_div = self._term_div() expvs = [fx.leading_expv() for fx in fv] while p: i = 0 divoccurred = 0 while i < s and divoccurred == 0: expv = p.leading_expv() term = term_div((expv, p[expv]), (expvs[i], fv[i][expvs[i]])) if term is not None: expv1, c = term qv[i] = qv[i]._iadd_monom((expv1, c)) p = p._iadd_poly_monom(fv[i], (expv1, -c)) divoccurred = 1 else: i += 1 if not divoccurred: expv = p.leading_expv() r = r._iadd_monom((expv, p[expv])) del p[expv] if expv == ring.zero_monom: r += p if ret_single: if not qv: return ring.zero, r else: return qv[0], r else: return qv, r def rem(self, G): f = self if isinstance(G, PolyElement): G = [G] if any(not g for g in G): raise ZeroDivisionError("polynomial division") ring = f.ring domain = ring.domain zero = domain.zero monomial_mul = ring.monomial_mul r = ring.zero term_div = f._term_div() ltf = f.LT f = f.copy() get = f.get while f: for g in G: tq = term_div(ltf, g.LT) if tq is not None: m, c = tq for mg, cg in g.iterterms(): m1 = monomial_mul(mg, m) c1 = get(m1, zero) - c*cg if not c1: del f[m1] else: f[m1] = c1 ltm = f.leading_expv() if ltm is not None: ltf = ltm, f[ltm] break else: ltm, ltc = ltf if ltm in r: r[ltm] += ltc else: r[ltm] = ltc del f[ltm] ltm = f.leading_expv() if ltm is not None: ltf = ltm, f[ltm] return r def quo(f, G): return f.div(G)[0] def exquo(f, G): q, r = f.div(G) if not r: return q else: raise ExactQuotientFailed(f, G) def _iadd_monom(self, mc): """add to self the monomial coeff*x0**i0*x1**i1*... unless self is a generator -- then just return the sum of the two. mc is a tuple, (monom, coeff), where monomial is (i0, i1, ...) Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y = ring('x, y', ZZ) >>> p = x**4 + 2*y >>> m = (1, 2) >>> p1 = p._iadd_monom((m, 5)) >>> p1 x**4 + 5*x*y**2 + 2*y >>> p1 is p True >>> p = x >>> p1 = p._iadd_monom((m, 5)) >>> p1 5*x*y**2 + x >>> p1 is p False """ if self in self.ring._gens_set: cpself = self.copy() else: cpself = self expv, coeff = mc c = cpself.get(expv) if c is None: cpself[expv] = coeff else: c += coeff if c: cpself[expv] = c else: del cpself[expv] return cpself def _iadd_poly_monom(self, p2, mc): """add to self the product of (p)*(coeff*x0**i0*x1**i1*...) unless self is a generator -- then just return the sum of the two. mc is a tuple, (monom, coeff), where monomial is (i0, i1, ...) Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y, z = ring('x, y, z', ZZ) >>> p1 = x**4 + 2*y >>> p2 = y + z >>> m = (1, 2, 3) >>> p1 = p1._iadd_poly_monom(p2, (m, 3)) >>> p1 x**4 + 3*x*y**3*z**3 + 3*x*y**2*z**4 + 2*y """ p1 = self if p1 in p1.ring._gens_set: p1 = p1.copy() (m, c) = mc get = p1.get zero = p1.ring.domain.zero monomial_mul = p1.ring.monomial_mul for k, v in p2.items(): ka = monomial_mul(k, m) coeff = get(ka, zero) + v*c if coeff: p1[ka] = coeff else: del p1[ka] return p1 def degree(f, x=None): """ The leading degree in ``x`` or the main variable. Note that the degree of 0 is negative infinity (the SymPy object -oo). """ i = f.ring.index(x) if not f: return -oo elif i < 0: return 0 else: return max([ monom[i] for monom in f.itermonoms() ]) def degrees(f): """ A tuple containing leading degrees in all variables. Note that the degree of 0 is negative infinity (the SymPy object -oo) """ if not f: return (-oo,)*f.ring.ngens else: return tuple(map(max, list(zip(*f.itermonoms())))) def tail_degree(f, x=None): """ The tail degree in ``x`` or the main variable. Note that the degree of 0 is negative infinity (the SymPy object -oo) """ i = f.ring.index(x) if not f: return -oo elif i < 0: return 0 else: return min([ monom[i] for monom in f.itermonoms() ]) def tail_degrees(f): """ A tuple containing tail degrees in all variables. Note that the degree of 0 is negative infinity (the SymPy object -oo) """ if not f: return (-oo,)*f.ring.ngens else: return tuple(map(min, list(zip(*f.itermonoms())))) def leading_expv(self): """Leading monomial tuple according to the monomial ordering. Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y, z = ring('x, y, z', ZZ) >>> p = x**4 + x**3*y + x**2*z**2 + z**7 >>> p.leading_expv() (4, 0, 0) """ if self: return self.ring.leading_expv(self) else: return None def _get_coeff(self, expv): return self.get(expv, self.ring.domain.zero) def coeff(self, element): """ Returns the coefficient that stands next to the given monomial. Parameters ========== element : PolyElement (with ``is_monomial = True``) or 1 Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y, z = ring("x,y,z", ZZ) >>> f = 3*x**2*y - x*y*z + 7*z**3 + 23 >>> f.coeff(x**2*y) 3 >>> f.coeff(x*y) 0 >>> f.coeff(1) 23 """ if element == 1: return self._get_coeff(self.ring.zero_monom) elif isinstance(element, self.ring.dtype): terms = list(element.iterterms()) if len(terms) == 1: monom, coeff = terms[0] if coeff == self.ring.domain.one: return self._get_coeff(monom) raise ValueError("expected a monomial, got %s" % element) def const(self): """Returns the constant coeffcient. """ return self._get_coeff(self.ring.zero_monom) @property def LC(self): return self._get_coeff(self.leading_expv()) @property def LM(self): expv = self.leading_expv() if expv is None: return self.ring.zero_monom else: return expv def leading_monom(self): """ Leading monomial as a polynomial element. Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y = ring('x, y', ZZ) >>> (3*x*y + y**2).leading_monom() x*y """ p = self.ring.zero expv = self.leading_expv() if expv: p[expv] = self.ring.domain.one return p @property def LT(self): expv = self.leading_expv() if expv is None: return (self.ring.zero_monom, self.ring.domain.zero) else: return (expv, self._get_coeff(expv)) def leading_term(self): """Leading term as a polynomial element. Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y = ring('x, y', ZZ) >>> (3*x*y + y**2).leading_term() 3*x*y """ p = self.ring.zero expv = self.leading_expv() if expv is not None: p[expv] = self[expv] return p def _sorted(self, seq, order): if order is None: order = self.ring.order else: order = OrderOpt.preprocess(order) if order is lex: return sorted(seq, key=lambda monom: monom[0], reverse=True) else: return sorted(seq, key=lambda monom: order(monom[0]), reverse=True) def coeffs(self, order=None): """Ordered list of polynomial coefficients. Parameters ========== order : :class:`~.MonomialOrder` or coercible, optional Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> from sympy.polys.orderings import lex, grlex >>> _, x, y = ring("x, y", ZZ, lex) >>> f = x*y**7 + 2*x**2*y**3 >>> f.coeffs() [2, 1] >>> f.coeffs(grlex) [1, 2] """ return [ coeff for _, coeff in self.terms(order) ] def monoms(self, order=None): """Ordered list of polynomial monomials. Parameters ========== order : :class:`~.MonomialOrder` or coercible, optional Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> from sympy.polys.orderings import lex, grlex >>> _, x, y = ring("x, y", ZZ, lex) >>> f = x*y**7 + 2*x**2*y**3 >>> f.monoms() [(2, 3), (1, 7)] >>> f.monoms(grlex) [(1, 7), (2, 3)] """ return [ monom for monom, _ in self.terms(order) ] def terms(self, order=None): """Ordered list of polynomial terms. Parameters ========== order : :class:`~.MonomialOrder` or coercible, optional Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> from sympy.polys.orderings import lex, grlex >>> _, x, y = ring("x, y", ZZ, lex) >>> f = x*y**7 + 2*x**2*y**3 >>> f.terms() [((2, 3), 2), ((1, 7), 1)] >>> f.terms(grlex) [((1, 7), 1), ((2, 3), 2)] """ return self._sorted(list(self.items()), order) def itercoeffs(self): """Iterator over coefficients of a polynomial. """ return iter(self.values()) def itermonoms(self): """Iterator over monomials of a polynomial. """ return iter(self.keys()) def iterterms(self): """Iterator over terms of a polynomial. """ return iter(self.items()) def listcoeffs(self): """Unordered list of polynomial coefficients. """ return list(self.values()) def listmonoms(self): """Unordered list of polynomial monomials. """ return list(self.keys()) def listterms(self): """Unordered list of polynomial terms. """ return list(self.items()) def imul_num(p, c): """multiply inplace the polynomial p by an element in the coefficient ring, provided p is not one of the generators; else multiply not inplace Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y = ring('x, y', ZZ) >>> p = x + y**2 >>> p1 = p.imul_num(3) >>> p1 3*x + 3*y**2 >>> p1 is p True >>> p = x >>> p1 = p.imul_num(3) >>> p1 3*x >>> p1 is p False """ if p in p.ring._gens_set: return p*c if not c: p.clear() return for exp in p: p[exp] *= c return p def content(f): """Returns GCD of polynomial's coefficients. """ domain = f.ring.domain cont = domain.zero gcd = domain.gcd for coeff in f.itercoeffs(): cont = gcd(cont, coeff) return cont def primitive(f): """Returns content and a primitive polynomial. """ cont = f.content() return cont, f.quo_ground(cont) def monic(f): """Divides all coefficients by the leading coefficient. """ if not f: return f else: return f.quo_ground(f.LC) def mul_ground(f, x): if not x: return f.ring.zero terms = [ (monom, coeff*x) for monom, coeff in f.iterterms() ] return f.new(terms) def mul_monom(f, monom): monomial_mul = f.ring.monomial_mul terms = [ (monomial_mul(f_monom, monom), f_coeff) for f_monom, f_coeff in f.items() ] return f.new(terms) def mul_term(f, term): monom, coeff = term if not f or not coeff: return f.ring.zero elif monom == f.ring.zero_monom: return f.mul_ground(coeff) monomial_mul = f.ring.monomial_mul terms = [ (monomial_mul(f_monom, monom), f_coeff*coeff) for f_monom, f_coeff in f.items() ] return f.new(terms) def quo_ground(f, x): domain = f.ring.domain if not x: raise ZeroDivisionError('polynomial division') if not f or x == domain.one: return f if domain.is_Field: quo = domain.quo terms = [ (monom, quo(coeff, x)) for monom, coeff in f.iterterms() ] else: terms = [ (monom, coeff // x) for monom, coeff in f.iterterms() if not (coeff % x) ] return f.new(terms) def quo_term(f, term): monom, coeff = term if not coeff: raise ZeroDivisionError("polynomial division") elif not f: return f.ring.zero elif monom == f.ring.zero_monom: return f.quo_ground(coeff) term_div = f._term_div() terms = [ term_div(t, term) for t in f.iterterms() ] return f.new([ t for t in terms if t is not None ]) def trunc_ground(f, p): if f.ring.domain.is_ZZ: terms = [] for monom, coeff in f.iterterms(): coeff = coeff % p if coeff > p // 2: coeff = coeff - p terms.append((monom, coeff)) else: terms = [ (monom, coeff % p) for monom, coeff in f.iterterms() ] poly = f.new(terms) poly.strip_zero() return poly rem_ground = trunc_ground def extract_ground(self, g): f = self fc = f.content() gc = g.content() gcd = f.ring.domain.gcd(fc, gc) f = f.quo_ground(gcd) g = g.quo_ground(gcd) return gcd, f, g def _norm(f, norm_func): if not f: return f.ring.domain.zero else: ground_abs = f.ring.domain.abs return norm_func([ ground_abs(coeff) for coeff in f.itercoeffs() ]) def max_norm(f): return f._norm(max) def l1_norm(f): return f._norm(sum) def deflate(f, *G): ring = f.ring polys = [f] + list(G) J = [0]*ring.ngens for p in polys: for monom in p.itermonoms(): for i, m in enumerate(monom): J[i] = igcd(J[i], m) for i, b in enumerate(J): if not b: J[i] = 1 J = tuple(J) if all(b == 1 for b in J): return J, polys H = [] for p in polys: h = ring.zero for I, coeff in p.iterterms(): N = [ i // j for i, j in zip(I, J) ] h[tuple(N)] = coeff H.append(h) return J, H def inflate(f, J): poly = f.ring.zero for I, coeff in f.iterterms(): N = [ i*j for i, j in zip(I, J) ] poly[tuple(N)] = coeff return poly def lcm(self, g): f = self domain = f.ring.domain if not domain.is_Field: fc, f = f.primitive() gc, g = g.primitive() c = domain.lcm(fc, gc) h = (f*g).quo(f.gcd(g)) if not domain.is_Field: return h.mul_ground(c) else: return h.monic() def gcd(f, g): return f.cofactors(g)[0] def cofactors(f, g): if not f and not g: zero = f.ring.zero return zero, zero, zero elif not f: h, cff, cfg = f._gcd_zero(g) return h, cff, cfg elif not g: h, cfg, cff = g._gcd_zero(f) return h, cff, cfg elif len(f) == 1: h, cff, cfg = f._gcd_monom(g) return h, cff, cfg elif len(g) == 1: h, cfg, cff = g._gcd_monom(f) return h, cff, cfg J, (f, g) = f.deflate(g) h, cff, cfg = f._gcd(g) return (h.inflate(J), cff.inflate(J), cfg.inflate(J)) def _gcd_zero(f, g): one, zero = f.ring.one, f.ring.zero if g.is_nonnegative: return g, zero, one else: return -g, zero, -one def _gcd_monom(f, g): ring = f.ring ground_gcd = ring.domain.gcd ground_quo = ring.domain.quo monomial_gcd = ring.monomial_gcd monomial_ldiv = ring.monomial_ldiv mf, cf = list(f.iterterms())[0] _mgcd, _cgcd = mf, cf for mg, cg in g.iterterms(): _mgcd = monomial_gcd(_mgcd, mg) _cgcd = ground_gcd(_cgcd, cg) h = f.new([(_mgcd, _cgcd)]) cff = f.new([(monomial_ldiv(mf, _mgcd), ground_quo(cf, _cgcd))]) cfg = f.new([(monomial_ldiv(mg, _mgcd), ground_quo(cg, _cgcd)) for mg, cg in g.iterterms()]) return h, cff, cfg def _gcd(f, g): ring = f.ring if ring.domain.is_QQ: return f._gcd_QQ(g) elif ring.domain.is_ZZ: return f._gcd_ZZ(g) else: # TODO: don't use dense representation (port PRS algorithms) return ring.dmp_inner_gcd(f, g) def _gcd_ZZ(f, g): return heugcd(f, g) def _gcd_QQ(self, g): f = self ring = f.ring new_ring = ring.clone(domain=ring.domain.get_ring()) cf, f = f.clear_denoms() cg, g = g.clear_denoms() f = f.set_ring(new_ring) g = g.set_ring(new_ring) h, cff, cfg = f._gcd_ZZ(g) h = h.set_ring(ring) c, h = h.LC, h.monic() cff = cff.set_ring(ring).mul_ground(ring.domain.quo(c, cf)) cfg = cfg.set_ring(ring).mul_ground(ring.domain.quo(c, cg)) return h, cff, cfg def cancel(self, g): """ Cancel common factors in a rational function ``f/g``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) >>> (2*x**2 - 2).cancel(x**2 - 2*x + 1) (2*x + 2, x - 1) """ f = self ring = f.ring if not f: return f, ring.one domain = ring.domain if not (domain.is_Field and domain.has_assoc_Ring): _, p, q = f.cofactors(g) if q.is_negative: p, q = -p, -q else: new_ring = ring.clone(domain=domain.get_ring()) cq, f = f.clear_denoms() cp, g = g.clear_denoms() f = f.set_ring(new_ring) g = g.set_ring(new_ring) _, p, q = f.cofactors(g) _, cp, cq = new_ring.domain.cofactors(cp, cq) p = p.set_ring(ring) q = q.set_ring(ring) p_neg = p.is_negative q_neg = q.is_negative if p_neg and q_neg: p, q = -p, -q elif p_neg: cp, p = -cp, -p elif q_neg: cp, q = -cp, -q p = p.mul_ground(cp) q = q.mul_ground(cq) return p, q def diff(f, x): """Computes partial derivative in ``x``. Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y = ring("x,y", ZZ) >>> p = x + x**2*y**3 >>> p.diff(x) 2*x*y**3 + 1 """ ring = f.ring i = ring.index(x) m = ring.monomial_basis(i) g = ring.zero for expv, coeff in f.iterterms(): if expv[i]: e = ring.monomial_ldiv(expv, m) g[e] = ring.domain_new(coeff*expv[i]) return g def __call__(f, *values): if 0 < len(values) <= f.ring.ngens: return f.evaluate(list(zip(f.ring.gens, values))) else: raise ValueError("expected at least 1 and at most %s values, got %s" % (f.ring.ngens, len(values))) def evaluate(self, x, a=None): f = self if isinstance(x, list) and a is None: (X, a), x = x[0], x[1:] f = f.evaluate(X, a) if not x: return f else: x = [ (Y.drop(X), a) for (Y, a) in x ] return f.evaluate(x) ring = f.ring i = ring.index(x) a = ring.domain.convert(a) if ring.ngens == 1: result = ring.domain.zero for (n,), coeff in f.iterterms(): result += coeff*a**n return result else: poly = ring.drop(x).zero for monom, coeff in f.iterterms(): n, monom = monom[i], monom[:i] + monom[i+1:] coeff = coeff*a**n if monom in poly: coeff = coeff + poly[monom] if coeff: poly[monom] = coeff else: del poly[monom] else: if coeff: poly[monom] = coeff return poly def subs(self, x, a=None): f = self if isinstance(x, list) and a is None: for X, a in x: f = f.subs(X, a) return f ring = f.ring i = ring.index(x) a = ring.domain.convert(a) if ring.ngens == 1: result = ring.domain.zero for (n,), coeff in f.iterterms(): result += coeff*a**n return ring.ground_new(result) else: poly = ring.zero for monom, coeff in f.iterterms(): n, monom = monom[i], monom[:i] + (0,) + monom[i+1:] coeff = coeff*a**n if monom in poly: coeff = coeff + poly[monom] if coeff: poly[monom] = coeff else: del poly[monom] else: if coeff: poly[monom] = coeff return poly def compose(f, x, a=None): ring = f.ring poly = ring.zero gens_map = dict(list(zip(ring.gens, list(range(ring.ngens))))) if a is not None: replacements = [(x, a)] else: if isinstance(x, list): replacements = list(x) elif isinstance(x, dict): replacements = sorted(list(x.items()), key=lambda k: gens_map[k[0]]) else: raise ValueError("expected a generator, value pair a sequence of such pairs") for k, (x, g) in enumerate(replacements): replacements[k] = (gens_map[x], ring.ring_new(g)) for monom, coeff in f.iterterms(): monom = list(monom) subpoly = ring.one for i, g in replacements: n, monom[i] = monom[i], 0 if n: subpoly *= g**n subpoly = subpoly.mul_term((tuple(monom), coeff)) poly += subpoly return poly # TODO: following methods should point to polynomial # representation independent algorithm implementations. def pdiv(f, g): return f.ring.dmp_pdiv(f, g) def prem(f, g): return f.ring.dmp_prem(f, g) def pquo(f, g): return f.ring.dmp_quo(f, g) def pexquo(f, g): return f.ring.dmp_exquo(f, g) def half_gcdex(f, g): return f.ring.dmp_half_gcdex(f, g) def gcdex(f, g): return f.ring.dmp_gcdex(f, g) def subresultants(f, g): return f.ring.dmp_subresultants(f, g) def resultant(f, g): return f.ring.dmp_resultant(f, g) def discriminant(f): return f.ring.dmp_discriminant(f) def decompose(f): if f.ring.is_univariate: return f.ring.dup_decompose(f) else: raise MultivariatePolynomialError("polynomial decomposition") def shift(f, a): if f.ring.is_univariate: return f.ring.dup_shift(f, a) else: raise MultivariatePolynomialError("polynomial shift") def sturm(f): if f.ring.is_univariate: return f.ring.dup_sturm(f) else: raise MultivariatePolynomialError("sturm sequence") def gff_list(f): return f.ring.dmp_gff_list(f) def sqf_norm(f): return f.ring.dmp_sqf_norm(f) def sqf_part(f): return f.ring.dmp_sqf_part(f) def sqf_list(f, all=False): return f.ring.dmp_sqf_list(f, all=all) def factor_list(f): return f.ring.dmp_factor_list(f)
017cc8599fb68934b58d40ccd135fd8395037d4909f50c3b09be15e1121ee1ba
""" Generic Unification algorithm for expression trees with lists of children This implementation is a direct translation of Artificial Intelligence: A Modern Approach by Stuart Russel and Peter Norvig Second edition, section 9.2, page 276 It is modified in the following ways: 1. We allow associative and commutative Compound expressions. This results in combinatorial blowup. 2. We explore the tree lazily. 3. We provide generic interfaces to symbolic algebra libraries in Python. A more traditional version can be found here http://aima.cs.berkeley.edu/python/logic.html """ from sympy.utilities.iterables import kbins class Compound: """ A little class to represent an interior node in the tree This is analogous to SymPy.Basic for non-Atoms """ def __init__(self, op, args): self.op = op self.args = args def __eq__(self, other): return (type(self) == type(other) and self.op == other.op and self.args == other.args) def __hash__(self): return hash((type(self), self.op, self.args)) def __str__(self): return "%s[%s]" % (str(self.op), ', '.join(map(str, self.args))) class Variable: """ A Wild token """ def __init__(self, arg): self.arg = arg def __eq__(self, other): return type(self) == type(other) and self.arg == other.arg def __hash__(self): return hash((type(self), self.arg)) def __str__(self): return "Variable(%s)" % str(self.arg) class CondVariable: """ A wild token that matches conditionally. arg - a wild token. valid - an additional constraining function on a match. """ def __init__(self, arg, valid): self.arg = arg self.valid = valid def __eq__(self, other): return (type(self) == type(other) and self.arg == other.arg and self.valid == other.valid) def __hash__(self): return hash((type(self), self.arg, self.valid)) def __str__(self): return "CondVariable(%s)" % str(self.arg) def unify(x, y, s=None, **fns): """ Unify two expressions. Parameters ========== x, y - expression trees containing leaves, Compounds and Variables. s - a mapping of variables to subtrees. Returns ======= lazy sequence of mappings {Variable: subtree} Examples ======== >>> from sympy.unify.core import unify, Compound, Variable >>> expr = Compound("Add", ("x", "y")) >>> pattern = Compound("Add", ("x", Variable("a"))) >>> next(unify(expr, pattern, {})) {Variable(a): 'y'} """ s = s or {} if x == y: yield s elif isinstance(x, (Variable, CondVariable)): yield from unify_var(x, y, s, **fns) elif isinstance(y, (Variable, CondVariable)): yield from unify_var(y, x, s, **fns) elif isinstance(x, Compound) and isinstance(y, Compound): is_commutative = fns.get('is_commutative', lambda x: False) is_associative = fns.get('is_associative', lambda x: False) for sop in unify(x.op, y.op, s, **fns): if is_associative(x) and is_associative(y): a, b = (x, y) if len(x.args) < len(y.args) else (y, x) if is_commutative(x) and is_commutative(y): combs = allcombinations(a.args, b.args, 'commutative') else: combs = allcombinations(a.args, b.args, 'associative') for aaargs, bbargs in combs: aa = [unpack(Compound(a.op, arg)) for arg in aaargs] bb = [unpack(Compound(b.op, arg)) for arg in bbargs] yield from unify(aa, bb, sop, **fns) elif len(x.args) == len(y.args): yield from unify(x.args, y.args, sop, **fns) elif is_args(x) and is_args(y) and len(x) == len(y): if len(x) == 0: yield s else: for shead in unify(x[0], y[0], s, **fns): yield from unify(x[1:], y[1:], shead, **fns) def unify_var(var, x, s, **fns): if var in s: yield from unify(s[var], x, s, **fns) elif occur_check(var, x): pass elif isinstance(var, CondVariable) and var.valid(x): yield assoc(s, var, x) elif isinstance(var, Variable): yield assoc(s, var, x) def occur_check(var, x): """ var occurs in subtree owned by x? """ if var == x: return True elif isinstance(x, Compound): return occur_check(var, x.args) elif is_args(x): if any(occur_check(var, xi) for xi in x): return True return False def assoc(d, key, val): """ Return copy of d with key associated to val """ d = d.copy() d[key] = val return d def is_args(x): """ Is x a traditional iterable? """ return type(x) in (tuple, list, set) def unpack(x): if isinstance(x, Compound) and len(x.args) == 1: return x.args[0] else: return x def allcombinations(A, B, ordered): """ Restructure A and B to have the same number of elements. Parameters ========== ordered must be either 'commutative' or 'associative'. A and B can be rearranged so that the larger of the two lists is reorganized into smaller sublists. Examples ======== >>> from sympy.unify.core import allcombinations >>> for x in allcombinations((1, 2, 3), (5, 6), 'associative'): print(x) (((1,), (2, 3)), ((5,), (6,))) (((1, 2), (3,)), ((5,), (6,))) >>> for x in allcombinations((1, 2, 3), (5, 6), 'commutative'): print(x) (((1,), (2, 3)), ((5,), (6,))) (((1, 2), (3,)), ((5,), (6,))) (((1,), (3, 2)), ((5,), (6,))) (((1, 3), (2,)), ((5,), (6,))) (((2,), (1, 3)), ((5,), (6,))) (((2, 1), (3,)), ((5,), (6,))) (((2,), (3, 1)), ((5,), (6,))) (((2, 3), (1,)), ((5,), (6,))) (((3,), (1, 2)), ((5,), (6,))) (((3, 1), (2,)), ((5,), (6,))) (((3,), (2, 1)), ((5,), (6,))) (((3, 2), (1,)), ((5,), (6,))) """ if ordered == "commutative": ordered = 11 if ordered == "associative": ordered = None sm, bg = (A, B) if len(A) < len(B) else (B, A) for part in kbins(list(range(len(bg))), len(sm), ordered=ordered): if bg == B: yield tuple((a,) for a in A), partition(B, part) else: yield partition(A, part), tuple((b,) for b in B) def partition(it, part): """ Partition a tuple/list into pieces defined by indices. Examples ======== >>> from sympy.unify.core import partition >>> partition((10, 20, 30, 40), [[0, 1, 2], [3]]) ((10, 20, 30), (40,)) """ return type(it)([index(it, ind) for ind in part]) def index(it, ind): """ Fancy indexing into an indexable iterable (tuple, list). Examples ======== >>> from sympy.unify.core import index >>> index([10, 20, 30], (1, 2, 0)) [20, 30, 10] """ return type(it)([it[i] for i in ind])
429a5149bc0629772e67cf9660a64f5a57dd22ca2974cc09d698dfbfdd88a466
""" SymPy interface to Unification engine See sympy.unify for module level docstring See sympy.unify.core for algorithmic docstring """ from sympy.core import Basic, Add, Mul, Pow from sympy.core.operations import AssocOp, LatticeOp from sympy.matrices import MatAdd, MatMul, MatrixExpr from sympy.sets.sets import Union, Intersection, FiniteSet from sympy.unify.core import Compound, Variable, CondVariable from sympy.unify import core basic_new_legal = [MatrixExpr] eval_false_legal = [AssocOp, Pow, FiniteSet] illegal = [LatticeOp] def sympy_associative(op): assoc_ops = (AssocOp, MatAdd, MatMul, Union, Intersection, FiniteSet) return any(issubclass(op, aop) for aop in assoc_ops) def sympy_commutative(op): comm_ops = (Add, MatAdd, Union, Intersection, FiniteSet) return any(issubclass(op, cop) for cop in comm_ops) def is_associative(x): return isinstance(x, Compound) and sympy_associative(x.op) def is_commutative(x): if not isinstance(x, Compound): return False if sympy_commutative(x.op): return True if issubclass(x.op, Mul): return all(construct(arg).is_commutative for arg in x.args) def mk_matchtype(typ): def matchtype(x): return (isinstance(x, typ) or isinstance(x, Compound) and issubclass(x.op, typ)) return matchtype def deconstruct(s, variables=()): """ Turn a SymPy object into a Compound """ if s in variables: return Variable(s) if isinstance(s, (Variable, CondVariable)): return s if not isinstance(s, Basic) or s.is_Atom: return s return Compound(s.__class__, tuple(deconstruct(arg, variables) for arg in s.args)) def construct(t): """ Turn a Compound into a SymPy object """ if isinstance(t, (Variable, CondVariable)): return t.arg if not isinstance(t, Compound): return t if any(issubclass(t.op, cls) for cls in eval_false_legal): return t.op(*map(construct, t.args), evaluate=False) elif any(issubclass(t.op, cls) for cls in basic_new_legal): return Basic.__new__(t.op, *map(construct, t.args)) else: return t.op(*map(construct, t.args)) def rebuild(s): """ Rebuild a SymPy expression. This removes harm caused by Expr-Rules interactions. """ return construct(deconstruct(s)) def unify(x, y, s=None, variables=(), **kwargs): """ Structural unification of two expressions/patterns. Examples ======== >>> from sympy.unify.usympy import unify >>> from sympy import Basic >>> from sympy.abc import x, y, z, p, q >>> next(unify(Basic(1, 2), Basic(1, x), variables=[x])) {x: 2} >>> expr = 2*x + y + z >>> pattern = 2*p + q >>> next(unify(expr, pattern, {}, variables=(p, q))) {p: x, q: y + z} Unification supports commutative and associative matching >>> expr = x + y + z >>> pattern = p + q >>> len(list(unify(expr, pattern, {}, variables=(p, q)))) 12 Symbols not indicated to be variables are treated as literal, else they are wild-like and match anything in a sub-expression. >>> expr = x*y*z + 3 >>> pattern = x*y + 3 >>> next(unify(expr, pattern, {}, variables=[x, y])) {x: y, y: x*z} The x and y of the pattern above were in a Mul and matched factors in the Mul of expr. Here, a single symbol matches an entire term: >>> expr = x*y + 3 >>> pattern = p + 3 >>> next(unify(expr, pattern, {}, variables=[p])) {p: x*y} """ decons = lambda x: deconstruct(x, variables) s = s or {} s = {decons(k): decons(v) for k, v in s.items()} ds = core.unify(decons(x), decons(y), s, is_associative=is_associative, is_commutative=is_commutative, **kwargs) for d in ds: yield {construct(k): construct(v) for k, v in d.items()}
e436ef312069509a68aea164bf401666e792f0c619134a4470bcf0e4511500f8
""" Functions to support rewriting of SymPy expressions """ from sympy import Expr from sympy.assumptions import ask from sympy.strategies.tools import subs from sympy.unify.usympy import rebuild, unify def rewriterule(source, target, variables=(), condition=None, assume=None): """ Rewrite rule. Transform expressions that match source into expressions that match target treating all ``variables`` as wilds. Examples ======== >>> from sympy.abc import w, x, y, z >>> from sympy.unify.rewrite import rewriterule >>> from sympy.utilities import default_sort_key >>> rl = rewriterule(x + y, x**y, [x, y]) >>> sorted(rl(z + 3), key=default_sort_key) [3**z, z**3] Use ``condition`` to specify additional requirements. Inputs are taken in the same order as is found in variables. >>> rl = rewriterule(x + y, x**y, [x, y], lambda x, y: x.is_integer) >>> list(rl(z + 3)) [3**z] Use ``assume`` to specify additional requirements using new assumptions. >>> from sympy.assumptions import Q >>> rl = rewriterule(x + y, x**y, [x, y], assume=Q.integer(x)) >>> list(rl(z + 3)) [3**z] Assumptions for the local context are provided at rule runtime >>> list(rl(w + z, Q.integer(z))) [z**w] """ def rewrite_rl(expr, assumptions=True): for match in unify(source, expr, {}, variables=variables): if (condition and not condition(*[match.get(var, var) for var in variables])): continue if (assume and not ask(assume.xreplace(match), assumptions)): continue expr2 = subs(match)(target) if isinstance(expr2, Expr): expr2 = rebuild(expr2) yield expr2 return rewrite_rl
c7422f2de48b8ff659bf0e6376ca3dc4237c4fb6e2b04c7e35d1b31092a3c071
""" This module defines tensors with abstract index notation. The abstract index notation has been first formalized by Penrose. Tensor indices are formal objects, with a tensor type; there is no notion of index range, it is only possible to assign the dimension, used to trace the Kronecker delta; the dimension can be a Symbol. The Einstein summation convention is used. The covariant indices are indicated with a minus sign in front of the index. For instance the tensor ``t = p(a)*A(b,c)*q(-c)`` has the index ``c`` contracted. A tensor expression ``t`` can be called; called with its indices in sorted order it is equal to itself: in the above example ``t(a, b) == t``; one can call ``t`` with different indices; ``t(c, d) == p(c)*A(d,a)*q(-a)``. The contracted indices are dummy indices, internally they have no name, the indices being represented by a graph-like structure. Tensors are put in canonical form using ``canon_bp``, which uses the Butler-Portugal algorithm for canonicalization using the monoterm symmetries of the tensors. If there is a (anti)symmetric metric, the indices can be raised and lowered when the tensor is put in canonical form. """ from typing import Any, Dict as tDict, List, Set from functools import reduce from abc import abstractmethod, ABCMeta from collections import defaultdict import operator import itertools from sympy import Rational, prod, Integer, default_sort_key from sympy.combinatorics import Permutation from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, \ bsgs_direct_product, canonicalize, riemann_bsgs from sympy.core import Basic, Expr, sympify, Add, Mul, S from sympy.core.assumptions import ManagedProperties from sympy.core.compatibility import SYMPY_INTS from sympy.core.containers import Tuple, Dict from sympy.core.decorators import deprecated from sympy.core.symbol import Symbol, symbols from sympy.core.sympify import CantSympify, _sympify from sympy.core.operations import AssocOp from sympy.matrices import eye from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.decorator import memoize_property import warnings @deprecated(useinstead=".replace_with_arrays", issue=15276, deprecated_since_version="1.4") def deprecate_data(): pass @deprecated(useinstead=".substitute_indices()", issue=17515, deprecated_since_version="1.5") def deprecate_fun_eval(): pass @deprecated(useinstead="tensor_heads()", issue=17108, deprecated_since_version="1.5") def deprecate_TensorType(): pass class _IndexStructure(CantSympify): """ This class handles the indices (free and dummy ones). It contains the algorithms to manage the dummy indices replacements and contractions of free indices under multiplications of tensor expressions, as well as stuff related to canonicalization sorting, getting the permutation of the expression and so on. It also includes tools to get the ``TensorIndex`` objects corresponding to the given index structure. """ def __init__(self, free, dum, index_types, indices, canon_bp=False): self.free = free self.dum = dum self.index_types = index_types self.indices = indices self._ext_rank = len(self.free) + 2*len(self.dum) self.dum.sort(key=lambda x: x[0]) @staticmethod def from_indices(*indices): """ Create a new ``_IndexStructure`` object from a list of ``indices``. Explanation =========== ``indices`` ``TensorIndex`` objects, the indices. Contractions are detected upon construction. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, _IndexStructure >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz) >>> _IndexStructure.from_indices(m0, m1, -m1, m3) _IndexStructure([(m0, 0), (m3, 3)], [(1, 2)], [Lorentz, Lorentz, Lorentz, Lorentz]) """ free, dum = _IndexStructure._free_dum_from_indices(*indices) index_types = [i.tensor_index_type for i in indices] indices = _IndexStructure._replace_dummy_names(indices, free, dum) return _IndexStructure(free, dum, index_types, indices) @staticmethod def from_components_free_dum(components, free, dum): index_types = [] for component in components: index_types.extend(component.index_types) indices = _IndexStructure.generate_indices_from_free_dum_index_types(free, dum, index_types) return _IndexStructure(free, dum, index_types, indices) @staticmethod def _free_dum_from_indices(*indices): """ Convert ``indices`` into ``free``, ``dum`` for single component tensor. Explanation =========== ``free`` list of tuples ``(index, pos, 0)``, where ``pos`` is the position of index in the list of indices formed by the component tensors ``dum`` list of tuples ``(pos_contr, pos_cov, 0, 0)`` Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, \ _IndexStructure >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz) >>> _IndexStructure._free_dum_from_indices(m0, m1, -m1, m3) ([(m0, 0), (m3, 3)], [(1, 2)]) """ n = len(indices) if n == 1: return [(indices[0], 0)], [] # find the positions of the free indices and of the dummy indices free = [True]*len(indices) index_dict = {} dum = [] for i, index in enumerate(indices): name = index.name typ = index.tensor_index_type contr = index.is_up if (name, typ) in index_dict: # found a pair of dummy indices is_contr, pos = index_dict[(name, typ)] # check consistency and update free if is_contr: if contr: raise ValueError('two equal contravariant indices in slots %d and %d' %(pos, i)) else: free[pos] = False free[i] = False else: if contr: free[pos] = False free[i] = False else: raise ValueError('two equal covariant indices in slots %d and %d' %(pos, i)) if contr: dum.append((i, pos)) else: dum.append((pos, i)) else: index_dict[(name, typ)] = index.is_up, i free = [(index, i) for i, index in enumerate(indices) if free[i]] free.sort() return free, dum def get_indices(self): """ Get a list of indices, creating new tensor indices to complete dummy indices. """ return self.indices[:] @staticmethod def generate_indices_from_free_dum_index_types(free, dum, index_types): indices = [None]*(len(free)+2*len(dum)) for idx, pos in free: indices[pos] = idx generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free) for pos1, pos2 in dum: typ1 = index_types[pos1] indname = generate_dummy_name(typ1) indices[pos1] = TensorIndex(indname, typ1, True) indices[pos2] = TensorIndex(indname, typ1, False) return _IndexStructure._replace_dummy_names(indices, free, dum) @staticmethod def _get_generator_for_dummy_indices(free): cdt = defaultdict(int) # if the free indices have names with dummy_name, start with an # index higher than those for the dummy indices # to avoid name collisions for indx, ipos in free: if indx.name.split('_')[0] == indx.tensor_index_type.dummy_name: cdt[indx.tensor_index_type] = max(cdt[indx.tensor_index_type], int(indx.name.split('_')[1]) + 1) def dummy_name_gen(tensor_index_type): nd = str(cdt[tensor_index_type]) cdt[tensor_index_type] += 1 return tensor_index_type.dummy_name + '_' + nd return dummy_name_gen @staticmethod def _replace_dummy_names(indices, free, dum): dum.sort(key=lambda x: x[0]) new_indices = [ind for ind in indices] assert len(indices) == len(free) + 2*len(dum) generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free) for ipos1, ipos2 in dum: typ1 = new_indices[ipos1].tensor_index_type indname = generate_dummy_name(typ1) new_indices[ipos1] = TensorIndex(indname, typ1, True) new_indices[ipos2] = TensorIndex(indname, typ1, False) return new_indices def get_free_indices(self): # type: () -> List[TensorIndex] """ Get a list of free indices. """ # get sorted indices according to their position: free = sorted(self.free, key=lambda x: x[1]) return [i[0] for i in free] def __str__(self): return "_IndexStructure({}, {}, {})".format(self.free, self.dum, self.index_types) def __repr__(self): return self.__str__() def _get_sorted_free_indices_for_canon(self): sorted_free = self.free[:] sorted_free.sort(key=lambda x: x[0]) return sorted_free def _get_sorted_dum_indices_for_canon(self): return sorted(self.dum, key=lambda x: x[0]) def _get_lexicographically_sorted_index_types(self): permutation = self.indices_canon_args()[0] index_types = [None]*self._ext_rank for i, it in enumerate(self.index_types): index_types[permutation(i)] = it return index_types def _get_lexicographically_sorted_indices(self): permutation = self.indices_canon_args()[0] indices = [None]*self._ext_rank for i, it in enumerate(self.indices): indices[permutation(i)] = it return indices def perm2tensor(self, g, is_canon_bp=False): """ Returns a ``_IndexStructure`` instance corresponding to the permutation ``g``. Explanation =========== ``g`` permutation corresponding to the tensor in the representation used in canonicalization ``is_canon_bp`` if True, then ``g`` is the permutation corresponding to the canonical form of the tensor """ sorted_free = [i[0] for i in self._get_sorted_free_indices_for_canon()] lex_index_types = self._get_lexicographically_sorted_index_types() lex_indices = self._get_lexicographically_sorted_indices() nfree = len(sorted_free) rank = self._ext_rank dum = [[None]*2 for i in range((rank - nfree)//2)] free = [] index_types = [None]*rank indices = [None]*rank for i in range(rank): gi = g[i] index_types[i] = lex_index_types[gi] indices[i] = lex_indices[gi] if gi < nfree: ind = sorted_free[gi] assert index_types[i] == sorted_free[gi].tensor_index_type free.append((ind, i)) else: j = gi - nfree idum, cov = divmod(j, 2) if cov: dum[idum][1] = i else: dum[idum][0] = i dum = [tuple(x) for x in dum] return _IndexStructure(free, dum, index_types, indices) def indices_canon_args(self): """ Returns ``(g, dummies, msym, v)``, the entries of ``canonicalize`` See ``canonicalize`` in ``tensor_can.py`` in combinatorics module. """ # to be called after sorted_components from sympy.combinatorics.permutations import _af_new n = self._ext_rank g = [None]*n + [n, n+1] # Converts the symmetry of the metric into msym from .canonicalize() # method in the combinatorics module def metric_symmetry_to_msym(metric): if metric is None: return None sym = metric.symmetry if sym == TensorSymmetry.fully_symmetric(2): return 0 if sym == TensorSymmetry.fully_symmetric(-2): return 1 return None # ordered indices: first the free indices, ordered by types # then the dummy indices, ordered by types and contravariant before # covariant # g[position in tensor] = position in ordered indices for i, (indx, ipos) in enumerate(self._get_sorted_free_indices_for_canon()): g[ipos] = i pos = len(self.free) j = len(self.free) dummies = [] prev = None a = [] msym = [] for ipos1, ipos2 in self._get_sorted_dum_indices_for_canon(): g[ipos1] = j g[ipos2] = j + 1 j += 2 typ = self.index_types[ipos1] if typ != prev: if a: dummies.append(a) a = [pos, pos + 1] prev = typ msym.append(metric_symmetry_to_msym(typ.metric)) else: a.extend([pos, pos + 1]) pos += 2 if a: dummies.append(a) return _af_new(g), dummies, msym def components_canon_args(components): numtyp = [] prev = None for t in components: if t == prev: numtyp[-1][1] += 1 else: prev = t numtyp.append([prev, 1]) v = [] for h, n in numtyp: if h.comm == 0 or h.comm == 1: comm = h.comm else: comm = TensorManager.get_comm(h.comm, h.comm) v.append((h.symmetry.base, h.symmetry.generators, n, comm)) return v class _TensorDataLazyEvaluator(CantSympify): """ EXPERIMENTAL: do not rely on this class, it may change without deprecation warnings in future versions of SymPy. Explanation =========== This object contains the logic to associate components data to a tensor expression. Components data are set via the ``.data`` property of tensor expressions, is stored inside this class as a mapping between the tensor expression and the ``ndarray``. Computations are executed lazily: whereas the tensor expressions can have contractions, tensor products, and additions, components data are not computed until they are accessed by reading the ``.data`` property associated to the tensor expression. """ _substitutions_dict = dict() # type: tDict[Any, Any] _substitutions_dict_tensmul = dict() # type: tDict[Any, Any] def __getitem__(self, key): dat = self._get(key) if dat is None: return None from .array import NDimArray if not isinstance(dat, NDimArray): return dat if dat.rank() == 0: return dat[()] elif dat.rank() == 1 and len(dat) == 1: return dat[0] return dat def _get(self, key): """ Retrieve ``data`` associated with ``key``. Explanation =========== This algorithm looks into ``self._substitutions_dict`` for all ``TensorHead`` in the ``TensExpr`` (or just ``TensorHead`` if key is a TensorHead instance). It reconstructs the components data that the tensor expression should have by performing on components data the operations that correspond to the abstract tensor operations applied. Metric tensor is handled in a different manner: it is pre-computed in ``self._substitutions_dict_tensmul``. """ if key in self._substitutions_dict: return self._substitutions_dict[key] if isinstance(key, TensorHead): return None if isinstance(key, Tensor): # special case to handle metrics. Metric tensors cannot be # constructed through contraction by the metric, their # components show if they are a matrix or its inverse. signature = tuple([i.is_up for i in key.get_indices()]) srch = (key.component,) + signature if srch in self._substitutions_dict_tensmul: return self._substitutions_dict_tensmul[srch] array_list = [self.data_from_tensor(key)] return self.data_contract_dum(array_list, key.dum, key.ext_rank) if isinstance(key, TensMul): tensmul_args = key.args if len(tensmul_args) == 1 and len(tensmul_args[0].components) == 1: # special case to handle metrics. Metric tensors cannot be # constructed through contraction by the metric, their # components show if they are a matrix or its inverse. signature = tuple([i.is_up for i in tensmul_args[0].get_indices()]) srch = (tensmul_args[0].components[0],) + signature if srch in self._substitutions_dict_tensmul: return self._substitutions_dict_tensmul[srch] #data_list = [self.data_from_tensor(i) for i in tensmul_args if isinstance(i, TensExpr)] data_list = [self.data_from_tensor(i) if isinstance(i, Tensor) else i.data for i in tensmul_args if isinstance(i, TensExpr)] coeff = prod([i for i in tensmul_args if not isinstance(i, TensExpr)]) if all([i is None for i in data_list]): return None if any([i is None for i in data_list]): raise ValueError("Mixing tensors with associated components "\ "data with tensors without components data") data_result = self.data_contract_dum(data_list, key.dum, key.ext_rank) return coeff*data_result if isinstance(key, TensAdd): data_list = [] free_args_list = [] for arg in key.args: if isinstance(arg, TensExpr): data_list.append(arg.data) free_args_list.append([x[0] for x in arg.free]) else: data_list.append(arg) free_args_list.append([]) if all([i is None for i in data_list]): return None if any([i is None for i in data_list]): raise ValueError("Mixing tensors with associated components "\ "data with tensors without components data") sum_list = [] from .array import permutedims for data, free_args in zip(data_list, free_args_list): if len(free_args) < 2: sum_list.append(data) else: free_args_pos = {y: x for x, y in enumerate(free_args)} axes = [free_args_pos[arg] for arg in key.free_args] sum_list.append(permutedims(data, axes)) return reduce(lambda x, y: x+y, sum_list) return None @staticmethod def data_contract_dum(ndarray_list, dum, ext_rank): from .array import tensorproduct, tensorcontraction, MutableDenseNDimArray arrays = list(map(MutableDenseNDimArray, ndarray_list)) prodarr = tensorproduct(*arrays) return tensorcontraction(prodarr, *dum) def data_tensorhead_from_tensmul(self, data, tensmul, tensorhead): """ This method is used when assigning components data to a ``TensMul`` object, it converts components data to a fully contravariant ndarray, which is then stored according to the ``TensorHead`` key. """ if data is None: return None return self._correct_signature_from_indices( data, tensmul.get_indices(), tensmul.free, tensmul.dum, True) def data_from_tensor(self, tensor): """ This method corrects the components data to the right signature (covariant/contravariant) using the metric associated with each ``TensorIndexType``. """ tensorhead = tensor.component if tensorhead.data is None: return None return self._correct_signature_from_indices( tensorhead.data, tensor.get_indices(), tensor.free, tensor.dum) def _assign_data_to_tensor_expr(self, key, data): if isinstance(key, TensAdd): raise ValueError('cannot assign data to TensAdd') # here it is assumed that `key` is a `TensMul` instance. if len(key.components) != 1: raise ValueError('cannot assign data to TensMul with multiple components') tensorhead = key.components[0] newdata = self.data_tensorhead_from_tensmul(data, key, tensorhead) return tensorhead, newdata def _check_permutations_on_data(self, tens, data): from .array import permutedims from .array.arrayop import Flatten if isinstance(tens, TensorHead): rank = tens.rank generators = tens.symmetry.generators elif isinstance(tens, Tensor): rank = tens.rank generators = tens.components[0].symmetry.generators elif isinstance(tens, TensorIndexType): rank = tens.metric.rank generators = tens.metric.symmetry.generators # Every generator is a permutation, check that by permuting the array # by that permutation, the array will be the same, except for a # possible sign change if the permutation admits it. for gener in generators: sign_change = +1 if (gener(rank) == rank) else -1 data_swapped = data last_data = data permute_axes = list(map(gener, list(range(rank)))) # the order of a permutation is the number of times to get the # identity by applying that permutation. for i in range(gener.order()-1): data_swapped = permutedims(data_swapped, permute_axes) # if any value in the difference array is non-zero, raise an error: if any(Flatten(last_data - sign_change*data_swapped)): raise ValueError("Component data symmetry structure error") last_data = data_swapped def __setitem__(self, key, value): """ Set the components data of a tensor object/expression. Explanation =========== Components data are transformed to the all-contravariant form and stored with the corresponding ``TensorHead`` object. If a ``TensorHead`` object cannot be uniquely identified, it will raise an error. """ data = _TensorDataLazyEvaluator.parse_data(value) self._check_permutations_on_data(key, data) # TensorHead and TensorIndexType can be assigned data directly, while # TensMul must first convert data to a fully contravariant form, and # assign it to its corresponding TensorHead single component. if not isinstance(key, (TensorHead, TensorIndexType)): key, data = self._assign_data_to_tensor_expr(key, data) if isinstance(key, TensorHead): for dim, indextype in zip(data.shape, key.index_types): if indextype.data is None: raise ValueError("index type {} has no components data"\ " associated (needed to raise/lower index)".format(indextype)) if not indextype.dim.is_number: continue if dim != indextype.dim: raise ValueError("wrong dimension of ndarray") self._substitutions_dict[key] = data def __delitem__(self, key): del self._substitutions_dict[key] def __contains__(self, key): return key in self._substitutions_dict def add_metric_data(self, metric, data): """ Assign data to the ``metric`` tensor. The metric tensor behaves in an anomalous way when raising and lowering indices. Explanation =========== A fully covariant metric is the inverse transpose of the fully contravariant metric (it is meant matrix inverse). If the metric is symmetric, the transpose is not necessary and mixed covariant/contravariant metrics are Kronecker deltas. """ # hard assignment, data should not be added to `TensorHead` for metric: # the problem with `TensorHead` is that the metric is anomalous, i.e. # raising and lowering the index means considering the metric or its # inverse, this is not the case for other tensors. self._substitutions_dict_tensmul[metric, True, True] = data inverse_transpose = self.inverse_transpose_matrix(data) # in symmetric spaces, the transpose is the same as the original matrix, # the full covariant metric tensor is the inverse transpose, so this # code will be able to handle non-symmetric metrics. self._substitutions_dict_tensmul[metric, False, False] = inverse_transpose # now mixed cases, these are identical to the unit matrix if the metric # is symmetric. m = data.tomatrix() invt = inverse_transpose.tomatrix() self._substitutions_dict_tensmul[metric, True, False] = m * invt self._substitutions_dict_tensmul[metric, False, True] = invt * m @staticmethod def _flip_index_by_metric(data, metric, pos): from .array import tensorproduct, tensorcontraction mdim = metric.rank() ddim = data.rank() if pos == 0: data = tensorcontraction( tensorproduct( metric, data ), (1, mdim+pos) ) else: data = tensorcontraction( tensorproduct( data, metric ), (pos, ddim) ) return data @staticmethod def inverse_matrix(ndarray): m = ndarray.tomatrix().inv() return _TensorDataLazyEvaluator.parse_data(m) @staticmethod def inverse_transpose_matrix(ndarray): m = ndarray.tomatrix().inv().T return _TensorDataLazyEvaluator.parse_data(m) @staticmethod def _correct_signature_from_indices(data, indices, free, dum, inverse=False): """ Utility function to correct the values inside the components data ndarray according to whether indices are covariant or contravariant. It uses the metric matrix to lower values of covariant indices. """ # change the ndarray values according covariantness/contravariantness of the indices # use the metric for i, indx in enumerate(indices): if not indx.is_up and not inverse: data = _TensorDataLazyEvaluator._flip_index_by_metric(data, indx.tensor_index_type.data, i) elif not indx.is_up and inverse: data = _TensorDataLazyEvaluator._flip_index_by_metric( data, _TensorDataLazyEvaluator.inverse_matrix(indx.tensor_index_type.data), i ) return data @staticmethod def _sort_data_axes(old, new): from .array import permutedims new_data = old.data.copy() old_free = [i[0] for i in old.free] new_free = [i[0] for i in new.free] for i in range(len(new_free)): for j in range(i, len(old_free)): if old_free[j] == new_free[i]: old_free[i], old_free[j] = old_free[j], old_free[i] new_data = permutedims(new_data, (i, j)) break return new_data @staticmethod def add_rearrange_tensmul_parts(new_tensmul, old_tensmul): def sorted_compo(): return _TensorDataLazyEvaluator._sort_data_axes(old_tensmul, new_tensmul) _TensorDataLazyEvaluator._substitutions_dict[new_tensmul] = sorted_compo() @staticmethod def parse_data(data): """ Transform ``data`` to array. The parameter ``data`` may contain data in various formats, e.g. nested lists, sympy ``Matrix``, and so on. Examples ======== >>> from sympy.tensor.tensor import _TensorDataLazyEvaluator >>> _TensorDataLazyEvaluator.parse_data([1, 3, -6, 12]) [1, 3, -6, 12] >>> _TensorDataLazyEvaluator.parse_data([[1, 2], [4, 7]]) [[1, 2], [4, 7]] """ from .array import MutableDenseNDimArray if not isinstance(data, MutableDenseNDimArray): if len(data) == 2 and hasattr(data[0], '__call__'): data = MutableDenseNDimArray(data[0], data[1]) else: data = MutableDenseNDimArray(data) return data _tensor_data_substitution_dict = _TensorDataLazyEvaluator() class _TensorManager: """ Class to manage tensor properties. Notes ===== Tensors belong to tensor commutation groups; each group has a label ``comm``; there are predefined labels: ``0`` tensors commuting with any other tensor ``1`` tensors anticommuting among themselves ``2`` tensors not commuting, apart with those with ``comm=0`` Other groups can be defined using ``set_comm``; tensors in those groups commute with those with ``comm=0``; by default they do not commute with any other group. """ def __init__(self): self._comm_init() def _comm_init(self): self._comm = [{} for i in range(3)] for i in range(3): self._comm[0][i] = 0 self._comm[i][0] = 0 self._comm[1][1] = 1 self._comm[2][1] = None self._comm[1][2] = None self._comm_symbols2i = {0:0, 1:1, 2:2} self._comm_i2symbol = {0:0, 1:1, 2:2} @property def comm(self): return self._comm def comm_symbols2i(self, i): """ Get the commutation group number corresponding to ``i``. ``i`` can be a symbol or a number or a string. If ``i`` is not already defined its commutation group number is set. """ if i not in self._comm_symbols2i: n = len(self._comm) self._comm.append({}) self._comm[n][0] = 0 self._comm[0][n] = 0 self._comm_symbols2i[i] = n self._comm_i2symbol[n] = i return n return self._comm_symbols2i[i] def comm_i2symbol(self, i): """ Returns the symbol corresponding to the commutation group number. """ return self._comm_i2symbol[i] def set_comm(self, i, j, c): """ Set the commutation parameter ``c`` for commutation groups ``i, j``. Parameters ========== i, j : symbols representing commutation groups c : group commutation number Notes ===== ``i, j`` can be symbols, strings or numbers, apart from ``0, 1`` and ``2`` which are reserved respectively for commuting, anticommuting tensors and tensors not commuting with any other group apart with the commuting tensors. For the remaining cases, use this method to set the commutation rules; by default ``c=None``. The group commutation number ``c`` is assigned in correspondence to the group commutation symbols; it can be 0 commuting 1 anticommuting None no commutation property Examples ======== ``G`` and ``GH`` do not commute with themselves and commute with each other; A is commuting. >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, TensorManager, TensorSymmetry >>> Lorentz = TensorIndexType('Lorentz') >>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz) >>> A = TensorHead('A', [Lorentz]) >>> G = TensorHead('G', [Lorentz], TensorSymmetry.no_symmetry(1), 'Gcomm') >>> GH = TensorHead('GH', [Lorentz], TensorSymmetry.no_symmetry(1), 'GHcomm') >>> TensorManager.set_comm('Gcomm', 'GHcomm', 0) >>> (GH(i1)*G(i0)).canon_bp() G(i0)*GH(i1) >>> (G(i1)*G(i0)).canon_bp() G(i1)*G(i0) >>> (G(i1)*A(i0)).canon_bp() A(i0)*G(i1) """ if c not in (0, 1, None): raise ValueError('`c` can assume only the values 0, 1 or None') if i not in self._comm_symbols2i: n = len(self._comm) self._comm.append({}) self._comm[n][0] = 0 self._comm[0][n] = 0 self._comm_symbols2i[i] = n self._comm_i2symbol[n] = i if j not in self._comm_symbols2i: n = len(self._comm) self._comm.append({}) self._comm[0][n] = 0 self._comm[n][0] = 0 self._comm_symbols2i[j] = n self._comm_i2symbol[n] = j ni = self._comm_symbols2i[i] nj = self._comm_symbols2i[j] self._comm[ni][nj] = c self._comm[nj][ni] = c def set_comms(self, *args): """ Set the commutation group numbers ``c`` for symbols ``i, j``. Parameters ========== args : sequence of ``(i, j, c)`` """ for i, j, c in args: self.set_comm(i, j, c) def get_comm(self, i, j): """ Return the commutation parameter for commutation group numbers ``i, j`` see ``_TensorManager.set_comm`` """ return self._comm[i].get(j, 0 if i == 0 or j == 0 else None) def clear(self): """ Clear the TensorManager. """ self._comm_init() TensorManager = _TensorManager() class TensorIndexType(Basic): """ A TensorIndexType is characterized by its name and its metric. Parameters ========== name : name of the tensor type dummy_name : name of the head of dummy indices dim : dimension, it can be a symbol or an integer or ``None`` eps_dim : dimension of the epsilon tensor metric_symmetry : integer that denotes metric symmetry or ``None`` for no metirc metric_name : string with the name of the metric tensor Attributes ========== ``metric`` : the metric tensor ``delta`` : ``Kronecker delta`` ``epsilon`` : the ``Levi-Civita epsilon`` tensor ``data`` : (deprecated) a property to add ``ndarray`` values, to work in a specified basis. Notes ===== The possible values of the ``metric_symmetry`` parameter are: ``1`` : metric tensor is fully symmetric ``0`` : metric tensor possesses no index symmetry ``-1`` : metric tensor is fully antisymmetric ``None``: there is no metric tensor (metric equals to ``None``) The metric is assumed to be symmetric by default. It can also be set to a custom tensor by the ``.set_metric()`` method. If there is a metric the metric is used to raise and lower indices. In the case of non-symmetric metric, the following raising and lowering conventions will be adopted: ``psi(a) = g(a, b)*psi(-b); chi(-a) = chi(b)*g(-b, -a)`` From these it is easy to find: ``g(-a, b) = delta(-a, b)`` where ``delta(-a, b) = delta(b, -a)`` is the ``Kronecker delta`` (see ``TensorIndex`` for the conventions on indices). For antisymmetric metrics there is also the following equality: ``g(a, -b) = -delta(a, -b)`` If there is no metric it is not possible to raise or lower indices; e.g. the index of the defining representation of ``SU(N)`` is 'covariant' and the conjugate representation is 'contravariant'; for ``N > 2`` they are linearly independent. ``eps_dim`` is by default equal to ``dim``, if the latter is an integer; else it can be assigned (for use in naive dimensional regularization); if ``eps_dim`` is not an integer ``epsilon`` is ``None``. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> Lorentz.metric metric(Lorentz,Lorentz) """ def __new__(cls, name, dummy_name=None, dim=None, eps_dim=None, metric_symmetry=1, metric_name='metric', **kwargs): if 'dummy_fmt' in kwargs: SymPyDeprecationWarning(useinstead="dummy_name", feature="dummy_fmt", issue=17517, deprecated_since_version="1.5").warn() dummy_name = kwargs.get('dummy_fmt') if isinstance(name, str): name = Symbol(name) if dummy_name is None: dummy_name = str(name)[0] if isinstance(dummy_name, str): dummy_name = Symbol(dummy_name) if dim is None: dim = Symbol("dim_" + dummy_name.name) else: dim = sympify(dim) if eps_dim is None: eps_dim = dim else: eps_dim = sympify(eps_dim) metric_symmetry = sympify(metric_symmetry) if isinstance(metric_name, str): metric_name = Symbol(metric_name) if 'metric' in kwargs: SymPyDeprecationWarning(useinstead="metric_symmetry or .set_metric()", feature="metric argument", issue=17517, deprecated_since_version="1.5").warn() metric = kwargs.get('metric') if metric is not None: if metric in (True, False, 0, 1): metric_name = 'metric' #metric_antisym = metric else: metric_name = metric.name #metric_antisym = metric.antisym if metric: metric_symmetry = -1 else: metric_symmetry = 1 obj = Basic.__new__(cls, name, dummy_name, dim, eps_dim, metric_symmetry, metric_name) obj._autogenerated = [] return obj @property def name(self): return self.args[0].name @property def dummy_name(self): return self.args[1].name @property def dim(self): return self.args[2] @property def eps_dim(self): return self.args[3] @memoize_property def metric(self): metric_symmetry = self.args[4] metric_name = self.args[5] if metric_symmetry is None: return None if metric_symmetry == 0: symmetry = TensorSymmetry.no_symmetry(2) elif metric_symmetry == 1: symmetry = TensorSymmetry.fully_symmetric(2) elif metric_symmetry == -1: symmetry = TensorSymmetry.fully_symmetric(-2) return TensorHead(metric_name, [self]*2, symmetry) @memoize_property def delta(self): return TensorHead('KD', [self]*2, TensorSymmetry.fully_symmetric(2)) @memoize_property def epsilon(self): if not isinstance(self.eps_dim, (SYMPY_INTS, Integer)): return None symmetry = TensorSymmetry.fully_symmetric(-self.eps_dim) return TensorHead('Eps', [self]*self.eps_dim, symmetry) def set_metric(self, tensor): self._metric = tensor def __lt__(self, other): return self.name < other.name def __str__(self): return self.name __repr__ = __str__ # Everything below this line is deprecated @property def data(self): deprecate_data() return _tensor_data_substitution_dict[self] @data.setter def data(self, data): deprecate_data() # This assignment is a bit controversial, should metric components be assigned # to the metric only or also to the TensorIndexType object? The advantage here # is the ability to assign a 1D array and transform it to a 2D diagonal array. from .array import MutableDenseNDimArray data = _TensorDataLazyEvaluator.parse_data(data) if data.rank() > 2: raise ValueError("data have to be of rank 1 (diagonal metric) or 2.") if data.rank() == 1: if self.dim.is_number: nda_dim = data.shape[0] if nda_dim != self.dim: raise ValueError("Dimension mismatch") dim = data.shape[0] newndarray = MutableDenseNDimArray.zeros(dim, dim) for i, val in enumerate(data): newndarray[i, i] = val data = newndarray dim1, dim2 = data.shape if dim1 != dim2: raise ValueError("Non-square matrix tensor.") if self.dim.is_number: if self.dim != dim1: raise ValueError("Dimension mismatch") _tensor_data_substitution_dict[self] = data _tensor_data_substitution_dict.add_metric_data(self.metric, data) delta = self.get_kronecker_delta() i1 = TensorIndex('i1', self) i2 = TensorIndex('i2', self) delta(i1, -i2).data = _TensorDataLazyEvaluator.parse_data(eye(dim1)) @data.deleter def data(self): deprecate_data() if self in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self] if self.metric in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self.metric] @deprecated(useinstead=".delta", issue=17517, deprecated_since_version="1.5") def get_kronecker_delta(self): sym2 = TensorSymmetry(get_symmetric_group_sgs(2)) delta = TensorHead('KD', [self]*2, sym2) return delta @deprecated(useinstead=".delta", issue=17517, deprecated_since_version="1.5") def get_epsilon(self): if not isinstance(self._eps_dim, (SYMPY_INTS, Integer)): return None sym = TensorSymmetry(get_symmetric_group_sgs(self._eps_dim, 1)) epsilon = TensorHead('Eps', [self]*self._eps_dim, sym) return epsilon def _components_data_full_destroy(self): """ EXPERIMENTAL: do not rely on this API method. This destroys components data associated to the ``TensorIndexType``, if any, specifically: * metric tensor data * Kronecker tensor data """ if self in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self] def delete_tensmul_data(key): if key in _tensor_data_substitution_dict._substitutions_dict_tensmul: del _tensor_data_substitution_dict._substitutions_dict_tensmul[key] # delete metric data: delete_tensmul_data((self.metric, True, True)) delete_tensmul_data((self.metric, True, False)) delete_tensmul_data((self.metric, False, True)) delete_tensmul_data((self.metric, False, False)) # delete delta tensor data: delta = self.get_kronecker_delta() if delta in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[delta] class TensorIndex(Basic): """ Represents a tensor index Parameters ========== name : name of the index, or ``True`` if you want it to be automatically assigned tensor_index_type : ``TensorIndexType`` of the index is_up : flag for contravariant index (is_up=True by default) Attributes ========== ``name`` ``tensor_index_type`` ``is_up`` Notes ===== Tensor indices are contracted with the Einstein summation convention. An index can be in contravariant or in covariant form; in the latter case it is represented prepending a ``-`` to the index name. Adding ``-`` to a covariant (is_up=False) index makes it contravariant. Dummy indices have a name with head given by ``tensor_inde_type.dummy_name`` with underscore and a number. Similar to ``symbols`` multiple contravariant indices can be created at once using ``tensor_indices(s, typ)``, where ``s`` is a string of names. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, TensorIndex, TensorHead, tensor_indices >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> mu = TensorIndex('mu', Lorentz, is_up=False) >>> nu, rho = tensor_indices('nu, rho', Lorentz) >>> A = TensorHead('A', [Lorentz, Lorentz]) >>> A(mu, nu) A(-mu, nu) >>> A(-mu, -rho) A(mu, -rho) >>> A(mu, -mu) A(-L_0, L_0) """ def __new__(cls, name, tensor_index_type, is_up=True): if isinstance(name, str): name_symbol = Symbol(name) elif isinstance(name, Symbol): name_symbol = name elif name is True: name = "_i{}".format(len(tensor_index_type._autogenerated)) name_symbol = Symbol(name) tensor_index_type._autogenerated.append(name_symbol) else: raise ValueError("invalid name") is_up = sympify(is_up) return Basic.__new__(cls, name_symbol, tensor_index_type, is_up) @property def name(self): return self.args[0].name @property def tensor_index_type(self): return self.args[1] @property def is_up(self): return self.args[2] def _print(self): s = self.name if not self.is_up: s = '-%s' % s return s def __lt__(self, other): return ((self.tensor_index_type, self.name) < (other.tensor_index_type, other.name)) def __neg__(self): t1 = TensorIndex(self.name, self.tensor_index_type, (not self.is_up)) return t1 def tensor_indices(s, typ): """ Returns list of tensor indices given their names and their types. Parameters ========== s : string of comma separated names of indices typ : ``TensorIndexType`` of the indices Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz) """ if isinstance(s, str): a = [x.name for x in symbols(s, seq=True)] else: raise ValueError('expecting a string') tilist = [TensorIndex(i, typ) for i in a] if len(tilist) == 1: return tilist[0] return tilist class TensorSymmetry(Basic): """ Monoterm symmetry of a tensor (i.e. any symmetric or anti-symmetric index permutation). For the relevant terminology see ``tensor_can.py`` section of the combinatorics module. Parameters ========== bsgs : tuple ``(base, sgs)`` BSGS of the symmetry of the tensor Attributes ========== ``base`` : base of the BSGS ``generators`` : generators of the BSGS ``rank`` : rank of the tensor Notes ===== A tensor can have an arbitrary monoterm symmetry provided by its BSGS. Multiterm symmetries, like the cyclic symmetry of the Riemann tensor (i.e., Bianchi identity), are not covered. See combinatorics module for information on how to generate BSGS for a general index permutation group. Simple symmetries can be generated using built-in methods. See Also ======== sympy.combinatorics.tensor_can.get_symmetric_group_sgs Examples ======== Define a symmetric tensor of rank 2 >>> from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, TensorHead >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> sym = TensorSymmetry(get_symmetric_group_sgs(2)) >>> T = TensorHead('T', [Lorentz]*2, sym) Note, that the same can also be done using built-in TensorSymmetry methods >>> sym2 = TensorSymmetry.fully_symmetric(2) >>> sym == sym2 True """ def __new__(cls, *args, **kw_args): if len(args) == 1: base, generators = args[0] elif len(args) == 2: base, generators = args else: raise TypeError("bsgs required, either two separate parameters or one tuple") if not isinstance(base, Tuple): base = Tuple(*base) if not isinstance(generators, Tuple): generators = Tuple(*generators) return Basic.__new__(cls, base, generators, **kw_args) @property def base(self): return self.args[0] @property def generators(self): return self.args[1] @property def rank(self): return self.generators[0].size - 2 @classmethod def fully_symmetric(cls, rank): """ Returns a fully symmetric (antisymmetric if ``rank``<0) TensorSymmetry object for ``abs(rank)`` indices. """ if rank > 0: bsgs = get_symmetric_group_sgs(rank, False) elif rank < 0: bsgs = get_symmetric_group_sgs(-rank, True) elif rank == 0: bsgs = ([], [Permutation(1)]) return TensorSymmetry(bsgs) @classmethod def direct_product(cls, *args): """ Returns a TensorSymmetry object that is being a direct product of fully (anti-)symmetric index permutation groups. Notes ===== Some examples for different values of ``(*args)``: ``(1)`` vector, equivalent to ``TensorSymmetry.fully_symmetric(1)`` ``(2)`` tensor with 2 symmetric indices, equivalent to ``.fully_symmetric(2)`` ``(-2)`` tensor with 2 antisymmetric indices, equivalent to ``.fully_symmetric(-2)`` ``(2, -2)`` tensor with the first 2 indices commuting and the last 2 anticommuting ``(1, 1, 1)`` tensor with 3 indices without any symmetry """ base, sgs = [], [Permutation(1)] for arg in args: if arg > 0: bsgs2 = get_symmetric_group_sgs(arg, False) elif arg < 0: bsgs2 = get_symmetric_group_sgs(-arg, True) else: continue base, sgs = bsgs_direct_product(base, sgs, *bsgs2) return TensorSymmetry(base, sgs) @classmethod def riemann(cls): """ Returns a monotorem symmetry of the Riemann tensor """ return TensorSymmetry(riemann_bsgs) @classmethod def no_symmetry(cls, rank): """ TensorSymmetry object for ``rank`` indices with no symmetry """ return TensorSymmetry([], [Permutation(rank+1)]) @deprecated(useinstead="TensorSymmetry class constructor and methods", issue=17108, deprecated_since_version="1.5") def tensorsymmetry(*args): """ Returns a ``TensorSymmetry`` object. This method is deprecated, use ``TensorSymmetry.direct_product()`` or ``.riemann()`` instead. Explanation =========== One can represent a tensor with any monoterm slot symmetry group using a BSGS. ``args`` can be a BSGS ``args[0]`` base ``args[1]`` sgs Usually tensors are in (direct products of) representations of the symmetric group; ``args`` can be a list of lists representing the shapes of Young tableaux Notes ===== For instance: ``[[1]]`` vector ``[[1]*n]`` symmetric tensor of rank ``n`` ``[[n]]`` antisymmetric tensor of rank ``n`` ``[[2, 2]]`` monoterm slot symmetry of the Riemann tensor ``[[1],[1]]`` vector*vector ``[[2],[1],[1]`` (antisymmetric tensor)*vector*vector Notice that with the shape ``[2, 2]`` we associate only the monoterm symmetries of the Riemann tensor; this is an abuse of notation, since the shape ``[2, 2]`` corresponds usually to the irreducible representation characterized by the monoterm symmetries and by the cyclic symmetry. """ from sympy.combinatorics import Permutation def tableau2bsgs(a): if len(a) == 1: # antisymmetric vector n = a[0] bsgs = get_symmetric_group_sgs(n, 1) else: if all(x == 1 for x in a): # symmetric vector n = len(a) bsgs = get_symmetric_group_sgs(n) elif a == [2, 2]: bsgs = riemann_bsgs else: raise NotImplementedError return bsgs if not args: return TensorSymmetry(Tuple(), Tuple(Permutation(1))) if len(args) == 2 and isinstance(args[1][0], Permutation): return TensorSymmetry(args) base, sgs = tableau2bsgs(args[0]) for a in args[1:]: basex, sgsx = tableau2bsgs(a) base, sgs = bsgs_direct_product(base, sgs, basex, sgsx) return TensorSymmetry(Tuple(base, sgs)) class TensorType(Basic): """ Class of tensor types. Deprecated, use tensor_heads() instead. Parameters ========== index_types : list of ``TensorIndexType`` of the tensor indices symmetry : ``TensorSymmetry`` of the tensor Attributes ========== ``index_types`` ``symmetry`` ``types`` : list of ``TensorIndexType`` without repetitions """ is_commutative = False def __new__(cls, index_types, symmetry, **kw_args): deprecate_TensorType() assert symmetry.rank == len(index_types) obj = Basic.__new__(cls, Tuple(*index_types), symmetry, **kw_args) return obj @property def index_types(self): return self.args[0] @property def symmetry(self): return self.args[1] @property def types(self): return sorted(set(self.index_types), key=lambda x: x.name) def __str__(self): return 'TensorType(%s)' % ([str(x) for x in self.index_types]) def __call__(self, s, comm=0): """ Return a TensorHead object or a list of TensorHead objects. Parameters ========== s : name or string of names. comm : Commutation group. see ``_TensorManager.set_comm`` """ if isinstance(s, str): names = [x.name for x in symbols(s, seq=True)] else: raise ValueError('expecting a string') if len(names) == 1: return TensorHead(names[0], self.index_types, self.symmetry, comm) else: return [TensorHead(name, self.index_types, self.symmetry, comm) for name in names] @deprecated(useinstead="TensorHead class constructor or tensor_heads()", issue=17108, deprecated_since_version="1.5") def tensorhead(name, typ, sym=None, comm=0): """ Function generating tensorhead(s). This method is deprecated, use TensorHead constructor or tensor_heads() instead. Parameters ========== name : name or sequence of names (as in ``symbols``) typ : index types sym : same as ``*args`` in ``tensorsymmetry`` comm : commutation group number see ``_TensorManager.set_comm`` """ if sym is None: sym = [[1] for i in range(len(typ))] sym = tensorsymmetry(*sym) return TensorHead(name, typ, sym, comm) class TensorHead(Basic): """ Tensor head of the tensor. Parameters ========== name : name of the tensor index_types : list of TensorIndexType symmetry : TensorSymmetry of the tensor comm : commutation group number Attributes ========== ``name`` ``index_types`` ``rank`` : total number of indices ``symmetry`` ``comm`` : commutation group Notes ===== Similar to ``symbols`` multiple TensorHeads can be created using ``tensorhead(s, typ, sym=None, comm=0)`` function, where ``s`` is the string of names and ``sym`` is the monoterm tensor symmetry (see ``tensorsymmetry``). A ``TensorHead`` belongs to a commutation group, defined by a symbol on number ``comm`` (see ``_TensorManager.set_comm``); tensors in a commutation group have the same commutation properties; by default ``comm`` is ``0``, the group of the commuting tensors. Examples ======== Define a fully antisymmetric tensor of rank 2: >>> from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorSymmetry >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> asym2 = TensorSymmetry.fully_symmetric(-2) >>> A = TensorHead('A', [Lorentz, Lorentz], asym2) Examples with ndarray values, the components data assigned to the ``TensorHead`` object are assumed to be in a fully-contravariant representation. In case it is necessary to assign components data which represents the values of a non-fully covariant tensor, see the other examples. >>> from sympy.tensor.tensor import tensor_indices >>> from sympy import diag >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> i0, i1 = tensor_indices('i0:2', Lorentz) Specify a replacement dictionary to keep track of the arrays to use for replacements in the tensorial expression. The ``TensorIndexType`` is associated to the metric used for contractions (in fully covariant form): >>> repl = {Lorentz: diag(1, -1, -1, -1)} Let's see some examples of working with components with the electromagnetic tensor: >>> from sympy import symbols >>> Ex, Ey, Ez, Bx, By, Bz = symbols('E_x E_y E_z B_x B_y B_z') >>> c = symbols('c', positive=True) Let's define `F`, an antisymmetric tensor: >>> F = TensorHead('F', [Lorentz, Lorentz], asym2) Let's update the dictionary to contain the matrix to use in the replacements: >>> repl.update({F(-i0, -i1): [ ... [0, Ex/c, Ey/c, Ez/c], ... [-Ex/c, 0, -Bz, By], ... [-Ey/c, Bz, 0, -Bx], ... [-Ez/c, -By, Bx, 0]]}) Now it is possible to retrieve the contravariant form of the Electromagnetic tensor: >>> F(i0, i1).replace_with_arrays(repl, [i0, i1]) [[0, -E_x/c, -E_y/c, -E_z/c], [E_x/c, 0, -B_z, B_y], [E_y/c, B_z, 0, -B_x], [E_z/c, -B_y, B_x, 0]] and the mixed contravariant-covariant form: >>> F(i0, -i1).replace_with_arrays(repl, [i0, -i1]) [[0, E_x/c, E_y/c, E_z/c], [E_x/c, 0, B_z, -B_y], [E_y/c, -B_z, 0, B_x], [E_z/c, B_y, -B_x, 0]] Energy-momentum of a particle may be represented as: >>> from sympy import symbols >>> P = TensorHead('P', [Lorentz], TensorSymmetry.no_symmetry(1)) >>> E, px, py, pz = symbols('E p_x p_y p_z', positive=True) >>> repl.update({P(i0): [E, px, py, pz]}) The contravariant and covariant components are, respectively: >>> P(i0).replace_with_arrays(repl, [i0]) [E, p_x, p_y, p_z] >>> P(-i0).replace_with_arrays(repl, [-i0]) [E, -p_x, -p_y, -p_z] The contraction of a 1-index tensor by itself: >>> expr = P(i0)*P(-i0) >>> expr.replace_with_arrays(repl, []) E**2 - p_x**2 - p_y**2 - p_z**2 """ is_commutative = False def __new__(cls, name, index_types, symmetry=None, comm=0): if isinstance(name, str): name_symbol = Symbol(name) elif isinstance(name, Symbol): name_symbol = name else: raise ValueError("invalid name") if symmetry is None: symmetry = TensorSymmetry.no_symmetry(len(index_types)) else: assert symmetry.rank == len(index_types) obj = Basic.__new__(cls, name_symbol, Tuple(*index_types), symmetry) obj.comm = TensorManager.comm_symbols2i(comm) return obj @property def name(self): return self.args[0].name @property def index_types(self): return list(self.args[1]) @property def symmetry(self): return self.args[2] @property def rank(self): return len(self.index_types) def __lt__(self, other): return (self.name, self.index_types) < (other.name, other.index_types) def commutes_with(self, other): """ Returns ``0`` if ``self`` and ``other`` commute, ``1`` if they anticommute. Returns ``None`` if ``self`` and ``other`` neither commute nor anticommute. """ r = TensorManager.get_comm(self.comm, other.comm) return r def _print(self): return '%s(%s)' %(self.name, ','.join([str(x) for x in self.index_types])) def __call__(self, *indices, **kw_args): """ Returns a tensor with indices. Explanation =========== There is a special behavior in case of indices denoted by ``True``, they are considered auto-matrix indices, their slots are automatically filled, and confer to the tensor the behavior of a matrix or vector upon multiplication with another tensor containing auto-matrix indices of the same ``TensorIndexType``. This means indices get summed over the same way as in matrix multiplication. For matrix behavior, define two auto-matrix indices, for vector behavior define just one. Indices can also be strings, in which case the attribute ``index_types`` is used to convert them to proper ``TensorIndex``. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorSymmetry, TensorHead >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> a, b = tensor_indices('a,b', Lorentz) >>> A = TensorHead('A', [Lorentz]*2, TensorSymmetry.no_symmetry(2)) >>> t = A(a, -b) >>> t A(a, -b) """ updated_indices = [] for idx, typ in zip(indices, self.index_types): if isinstance(idx, str): idx = idx.strip().replace(" ", "") if idx.startswith('-'): updated_indices.append(TensorIndex(idx[1:], typ, is_up=False)) else: updated_indices.append(TensorIndex(idx, typ)) else: updated_indices.append(idx) updated_indices += indices[len(updated_indices):] tensor = Tensor(self, updated_indices, **kw_args) return tensor.doit() # Everything below this line is deprecated def __pow__(self, other): with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=SymPyDeprecationWarning) if self.data is None: raise ValueError("No power on abstract tensors.") deprecate_data() from .array import tensorproduct, tensorcontraction metrics = [_.data for _ in self.index_types] marray = self.data marraydim = marray.rank() for metric in metrics: marray = tensorproduct(marray, metric, marray) marray = tensorcontraction(marray, (0, marraydim), (marraydim+1, marraydim+2)) return marray ** (other * S.Half) @property def data(self): deprecate_data() return _tensor_data_substitution_dict[self] @data.setter def data(self, data): deprecate_data() _tensor_data_substitution_dict[self] = data @data.deleter def data(self): deprecate_data() if self in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self] def __iter__(self): deprecate_data() return self.data.__iter__() def _components_data_full_destroy(self): """ EXPERIMENTAL: do not rely on this API method. Destroy components data associated to the ``TensorHead`` object, this checks for attached components data, and destroys components data too. """ # do not garbage collect Kronecker tensor (it should be done by # ``TensorIndexType`` garbage collection) deprecate_data() if self.name == "KD": return # the data attached to a tensor must be deleted only by the TensorHead # destructor. If the TensorHead is deleted, it means that there are no # more instances of that tensor anywhere. if self in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self] def tensor_heads(s, index_types, symmetry=None, comm=0): """ Returns a sequence of TensorHeads from a string `s` """ if isinstance(s, str): names = [x.name for x in symbols(s, seq=True)] else: raise ValueError('expecting a string') thlist = [TensorHead(name, index_types, symmetry, comm) for name in names] if len(thlist) == 1: return thlist[0] return thlist class _TensorMetaclass(ManagedProperties, ABCMeta): pass class TensExpr(Expr, metaclass=_TensorMetaclass): """ Abstract base class for tensor expressions Notes ===== A tensor expression is an expression formed by tensors; currently the sums of tensors are distributed. A ``TensExpr`` can be a ``TensAdd`` or a ``TensMul``. ``TensMul`` objects are formed by products of component tensors, and include a coefficient, which is a SymPy expression. In the internal representation contracted indices are represented by ``(ipos1, ipos2, icomp1, icomp2)``, where ``icomp1`` is the position of the component tensor with contravariant index, ``ipos1`` is the slot which the index occupies in that component tensor. Contracted indices are therefore nameless in the internal representation. """ _op_priority = 12.0 is_commutative = False def __neg__(self): return self*S.NegativeOne def __abs__(self): raise NotImplementedError def __add__(self, other): return TensAdd(self, other).doit() def __radd__(self, other): return TensAdd(other, self).doit() def __sub__(self, other): return TensAdd(self, -other).doit() def __rsub__(self, other): return TensAdd(other, -self).doit() def __mul__(self, other): """ Multiply two tensors using Einstein summation convention. Explanation =========== If the two tensors have an index in common, one contravariant and the other covariant, in their product the indices are summed Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz) >>> g = Lorentz.metric >>> p, q = tensor_heads('p,q', [Lorentz]) >>> t1 = p(m0) >>> t2 = q(-m0) >>> t1*t2 p(L_0)*q(-L_0) """ return TensMul(self, other).doit() def __rmul__(self, other): return TensMul(other, self).doit() def __truediv__(self, other): other = _sympify(other) if isinstance(other, TensExpr): raise ValueError('cannot divide by a tensor') return TensMul(self, S.One/other).doit() def __rtruediv__(self, other): raise ValueError('cannot divide by a tensor') def __pow__(self, other): with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=SymPyDeprecationWarning) if self.data is None: raise ValueError("No power without ndarray data.") deprecate_data() from .array import tensorproduct, tensorcontraction free = self.free marray = self.data mdim = marray.rank() for metric in free: marray = tensorcontraction( tensorproduct( marray, metric[0].tensor_index_type.data, marray), (0, mdim), (mdim+1, mdim+2) ) return marray ** (other * S.Half) def __rpow__(self, other): raise NotImplementedError @property @abstractmethod def nocoeff(self): raise NotImplementedError("abstract method") @property @abstractmethod def coeff(self): raise NotImplementedError("abstract method") @abstractmethod def get_indices(self): raise NotImplementedError("abstract method") @abstractmethod def get_free_indices(self): # type: () -> List[TensorIndex] raise NotImplementedError("abstract method") @abstractmethod def _replace_indices(self, repl): # type: (tDict[TensorIndex, TensorIndex]) -> TensExpr raise NotImplementedError("abstract method") def fun_eval(self, *index_tuples): deprecate_fun_eval() return self.substitute_indices(*index_tuples) def get_matrix(self): """ DEPRECATED: do not use. Returns ndarray components data as a matrix, if components data are available and ndarray dimension does not exceed 2. """ from sympy import Matrix deprecate_data() if 0 < self.rank <= 2: rows = self.data.shape[0] columns = self.data.shape[1] if self.rank == 2 else 1 if self.rank == 2: mat_list = [] * rows for i in range(rows): mat_list.append([]) for j in range(columns): mat_list[i].append(self[i, j]) else: mat_list = [None] * rows for i in range(rows): mat_list[i] = self[i] return Matrix(mat_list) else: raise NotImplementedError( "missing multidimensional reduction to matrix.") @staticmethod def _get_indices_permutation(indices1, indices2): return [indices1.index(i) for i in indices2] def expand(self, **hints): return _expand(self, **hints).doit() def _expand(self, **kwargs): return self def _get_free_indices_set(self): indset = set() for arg in self.args: if isinstance(arg, TensExpr): indset.update(arg._get_free_indices_set()) return indset def _get_dummy_indices_set(self): indset = set() for arg in self.args: if isinstance(arg, TensExpr): indset.update(arg._get_dummy_indices_set()) return indset def _get_indices_set(self): indset = set() for arg in self.args: if isinstance(arg, TensExpr): indset.update(arg._get_indices_set()) return indset @property def _iterate_dummy_indices(self): dummy_set = self._get_dummy_indices_set() def recursor(expr, pos): if isinstance(expr, TensorIndex): if expr in dummy_set: yield (expr, pos) elif isinstance(expr, (Tuple, TensExpr)): for p, arg in enumerate(expr.args): yield from recursor(arg, pos+(p,)) return recursor(self, ()) @property def _iterate_free_indices(self): free_set = self._get_free_indices_set() def recursor(expr, pos): if isinstance(expr, TensorIndex): if expr in free_set: yield (expr, pos) elif isinstance(expr, (Tuple, TensExpr)): for p, arg in enumerate(expr.args): yield from recursor(arg, pos+(p,)) return recursor(self, ()) @property def _iterate_indices(self): def recursor(expr, pos): if isinstance(expr, TensorIndex): yield (expr, pos) elif isinstance(expr, (Tuple, TensExpr)): for p, arg in enumerate(expr.args): yield from recursor(arg, pos+(p,)) return recursor(self, ()) @staticmethod def _contract_and_permute_with_metric(metric, array, pos, dim): # TODO: add possibility of metric after (spinors) from .array import tensorcontraction, tensorproduct, permutedims array = tensorcontraction(tensorproduct(metric, array), (1, 2+pos)) permu = list(range(dim)) permu[0], permu[pos] = permu[pos], permu[0] return permutedims(array, permu) @staticmethod def _match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict): from .array import permutedims index_types1 = [i.tensor_index_type for i in free_ind1] # Check if variance of indices needs to be fixed: pos2up = [] pos2down = [] free2remaining = free_ind2[:] for pos1, index1 in enumerate(free_ind1): if index1 in free2remaining: pos2 = free2remaining.index(index1) free2remaining[pos2] = None continue if -index1 in free2remaining: pos2 = free2remaining.index(-index1) free2remaining[pos2] = None free_ind2[pos2] = index1 if index1.is_up: pos2up.append(pos2) else: pos2down.append(pos2) else: index2 = free2remaining[pos1] if index2 is None: raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2)) free2remaining[pos1] = None free_ind2[pos1] = index1 if index1.is_up ^ index2.is_up: if index1.is_up: pos2up.append(pos1) else: pos2down.append(pos1) if len(set(free_ind1) & set(free_ind2)) < len(free_ind1): raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2)) # Raise indices: for pos in pos2up: index_type_pos = index_types1[pos] # type: TensorIndexType if index_type_pos not in replacement_dict: raise ValueError("No metric provided to lower index") metric = replacement_dict[index_type_pos] metric_inverse = _TensorDataLazyEvaluator.inverse_matrix(metric) array = TensExpr._contract_and_permute_with_metric(metric_inverse, array, pos, len(free_ind1)) # Lower indices: for pos in pos2down: index_type_pos = index_types1[pos] # type: TensorIndexType if index_type_pos not in replacement_dict: raise ValueError("No metric provided to lower index") metric = replacement_dict[index_type_pos] array = TensExpr._contract_and_permute_with_metric(metric, array, pos, len(free_ind1)) if free_ind1: permutation = TensExpr._get_indices_permutation(free_ind2, free_ind1) array = permutedims(array, permutation) if hasattr(array, "rank") and array.rank() == 0: array = array[()] return free_ind2, array def replace_with_arrays(self, replacement_dict, indices=None): """ Replace the tensorial expressions with arrays. The final array will correspond to the N-dimensional array with indices arranged according to ``indices``. Parameters ========== replacement_dict dictionary containing the replacement rules for tensors. indices the index order with respect to which the array is read. The original index order will be used if no value is passed. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices >>> from sympy.tensor.tensor import TensorHead >>> from sympy import symbols, diag >>> L = TensorIndexType("L") >>> i, j = tensor_indices("i j", L) >>> A = TensorHead("A", [L]) >>> A(i).replace_with_arrays({A(i): [1, 2]}, [i]) [1, 2] Since 'indices' is optional, we can also call replace_with_arrays by this way if no specific index order is needed: >>> A(i).replace_with_arrays({A(i): [1, 2]}) [1, 2] >>> expr = A(i)*A(j) >>> expr.replace_with_arrays({A(i): [1, 2]}) [[1, 2], [2, 4]] For contractions, specify the metric of the ``TensorIndexType``, which in this case is ``L``, in its covariant form: >>> expr = A(i)*A(-i) >>> expr.replace_with_arrays({A(i): [1, 2], L: diag(1, -1)}) -3 Symmetrization of an array: >>> H = TensorHead("H", [L, L]) >>> a, b, c, d = symbols("a b c d") >>> expr = H(i, j)/2 + H(j, i)/2 >>> expr.replace_with_arrays({H(i, j): [[a, b], [c, d]]}) [[a, b/2 + c/2], [b/2 + c/2, d]] Anti-symmetrization of an array: >>> expr = H(i, j)/2 - H(j, i)/2 >>> repl = {H(i, j): [[a, b], [c, d]]} >>> expr.replace_with_arrays(repl) [[0, b/2 - c/2], [-b/2 + c/2, 0]] The same expression can be read as the transpose by inverting ``i`` and ``j``: >>> expr.replace_with_arrays(repl, [j, i]) [[0, -b/2 + c/2], [b/2 - c/2, 0]] """ from .array import Array indices = indices or [] replacement_dict = {tensor: Array(array) for tensor, array in replacement_dict.items()} # Check dimensions of replaced arrays: for tensor, array in replacement_dict.items(): if isinstance(tensor, TensorIndexType): expected_shape = [tensor.dim for i in range(2)] else: expected_shape = [index_type.dim for index_type in tensor.index_types] if len(expected_shape) != array.rank() or (not all([dim1 == dim2 if dim1.is_number else True for dim1, dim2 in zip(expected_shape, array.shape)])): raise ValueError("shapes for tensor %s expected to be %s, "\ "replacement array shape is %s" % (tensor, expected_shape, array.shape)) ret_indices, array = self._extract_data(replacement_dict) last_indices, array = self._match_indices_with_other_tensor(array, indices, ret_indices, replacement_dict) return array def _check_add_Sum(self, expr, index_symbols): from sympy import Sum indices = self.get_indices() dum = self.dum sum_indices = [ (index_symbols[i], 0, indices[i].tensor_index_type.dim-1) for i, j in dum] if sum_indices: expr = Sum(expr, *sum_indices) return expr def _expand_partial_derivative(self): # simply delegate the _expand_partial_derivative() to # its arguments to expand a possibly found PartialDerivative return self.func(*[ a._expand_partial_derivative() if isinstance(a, TensExpr) else a for a in self.args]) class TensAdd(TensExpr, AssocOp): """ Sum of tensors. Parameters ========== free_args : list of the free indices Attributes ========== ``args`` : tuple of addends ``rank`` : rank of the tensor ``free_args`` : list of the free indices in sorted order Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_heads, tensor_indices >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> a, b = tensor_indices('a,b', Lorentz) >>> p, q = tensor_heads('p,q', [Lorentz]) >>> t = p(a) + q(a); t p(a) + q(a) Examples with components data added to the tensor expression: >>> from sympy import symbols, diag >>> x, y, z, t = symbols("x y z t") >>> repl = {} >>> repl[Lorentz] = diag(1, -1, -1, -1) >>> repl[p(a)] = [1, 2, 3, 4] >>> repl[q(a)] = [x, y, z, t] The following are: 2**2 - 3**2 - 2**2 - 7**2 ==> -58 >>> expr = p(a) + q(a) >>> expr.replace_with_arrays(repl, [a]) [x + 1, y + 2, z + 3, t + 4] """ def __new__(cls, *args, **kw_args): args = [_sympify(x) for x in args if x] args = TensAdd._tensAdd_flatten(args) args.sort(key=default_sort_key) if not args: return S.Zero if len(args) == 1: return args[0] return Basic.__new__(cls, *args, **kw_args) @property def coeff(self): return S.One @property def nocoeff(self): return self def get_free_indices(self): # type: () -> List[TensorIndex] return self.free_indices def _replace_indices(self, repl): # type: (tDict[TensorIndex, TensorIndex]) -> TensExpr newargs = [arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg for arg in self.args] return self.func(*newargs) @memoize_property def rank(self): if isinstance(self.args[0], TensExpr): return self.args[0].rank else: return 0 @memoize_property def free_args(self): if isinstance(self.args[0], TensExpr): return self.args[0].free_args else: return [] @memoize_property def free_indices(self): if isinstance(self.args[0], TensExpr): return self.args[0].get_free_indices() else: return set() def doit(self, **kwargs): deep = kwargs.get('deep', True) if deep: args = [arg.doit(**kwargs) for arg in self.args] else: args = self.args if not args: return S.Zero if len(args) == 1 and not isinstance(args[0], TensExpr): return args[0] # now check that all addends have the same indices: TensAdd._tensAdd_check(args) # if TensAdd has only 1 element in its `args`: if len(args) == 1: # and isinstance(args[0], TensMul): return args[0] # Remove zeros: args = [x for x in args if x] # if there are no more args (i.e. have cancelled out), # just return zero: if not args: return S.Zero if len(args) == 1: return args[0] # Collect terms appearing more than once, differing by their coefficients: args = TensAdd._tensAdd_collect_terms(args) # collect canonicalized terms def sort_key(t): if not isinstance(t, TensExpr): return [], [], [] if hasattr(t, "_index_structure") and hasattr(t, "components"): x = get_index_structure(t) return t.components, x.free, x.dum return [], [], [] args.sort(key=sort_key) if not args: return S.Zero # it there is only a component tensor return it if len(args) == 1: return args[0] obj = self.func(*args) return obj @staticmethod def _tensAdd_flatten(args): # flatten TensAdd, coerce terms which are not tensors to tensors a = [] for x in args: if isinstance(x, (Add, TensAdd)): a.extend(list(x.args)) else: a.append(x) args = [x for x in a if x.coeff] return args @staticmethod def _tensAdd_check(args): # check that all addends have the same free indices def get_indices_set(x): # type: (Expr) -> Set[TensorIndex] if isinstance(x, TensExpr): return set(x.get_free_indices()) return set() indices0 = get_indices_set(args[0]) # type: Set[TensorIndex] list_indices = [get_indices_set(arg) for arg in args[1:]] # type: List[Set[TensorIndex]] if not all(x == indices0 for x in list_indices): raise ValueError('all tensors must have the same indices') @staticmethod def _tensAdd_collect_terms(args): # collect TensMul terms differing at most by their coefficient terms_dict = defaultdict(list) scalars = S.Zero if isinstance(args[0], TensExpr): free_indices = set(args[0].get_free_indices()) else: free_indices = set() for arg in args: if not isinstance(arg, TensExpr): if free_indices != set(): raise ValueError("wrong valence") scalars += arg continue if free_indices != set(arg.get_free_indices()): raise ValueError("wrong valence") # TODO: what is the part which is not a coeff? # needs an implementation similar to .as_coeff_Mul() terms_dict[arg.nocoeff].append(arg.coeff) new_args = [TensMul(Add(*coeff), t).doit() for t, coeff in terms_dict.items() if Add(*coeff) != 0] if isinstance(scalars, Add): new_args = list(scalars.args) + new_args elif scalars != 0: new_args = [scalars] + new_args return new_args def get_indices(self): indices = [] for arg in self.args: indices.extend([i for i in get_indices(arg) if i not in indices]) return indices def _expand(self, **hints): return TensAdd(*[_expand(i, **hints) for i in self.args]) def __call__(self, *indices): deprecate_fun_eval() free_args = self.free_args indices = list(indices) if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]: raise ValueError('incompatible types') if indices == free_args: return self index_tuples = list(zip(free_args, indices)) a = [x.func(*x.substitute_indices(*index_tuples).args) for x in self.args] res = TensAdd(*a).doit() return res def canon_bp(self): """ Canonicalize using the Butler-Portugal algorithm for canonicalization under monoterm symmetries. """ expr = self.expand() args = [canon_bp(x) for x in expr.args] res = TensAdd(*args).doit() return res def equals(self, other): other = _sympify(other) if isinstance(other, TensMul) and other.coeff == 0: return all(x.coeff == 0 for x in self.args) if isinstance(other, TensExpr): if self.rank != other.rank: return False if isinstance(other, TensAdd): if set(self.args) != set(other.args): return False else: return True t = self - other if not isinstance(t, TensExpr): return t == 0 else: if isinstance(t, TensMul): return t.coeff == 0 else: return all(x.coeff == 0 for x in t.args) def __getitem__(self, item): deprecate_data() return self.data[item] def contract_delta(self, delta): args = [x.contract_delta(delta) for x in self.args] t = TensAdd(*args).doit() return canon_bp(t) def contract_metric(self, g): """ Raise or lower indices with the metric ``g``. Parameters ========== g : metric contract_all : if True, eliminate all ``g`` which are contracted Notes ===== see the ``TensorIndexType`` docstring for the contraction conventions """ args = [contract_metric(x, g) for x in self.args] t = TensAdd(*args).doit() return canon_bp(t) def substitute_indices(self, *index_tuples): new_args = [] for arg in self.args: if isinstance(arg, TensExpr): arg = arg.substitute_indices(*index_tuples) new_args.append(arg) return TensAdd(*new_args).doit() def _print(self): a = [] args = self.args for x in args: a.append(str(x)) s = ' + '.join(a) s = s.replace('+ -', '- ') return s def _extract_data(self, replacement_dict): from sympy.tensor.array import Array, permutedims args_indices, arrays = zip(*[ arg._extract_data(replacement_dict) if isinstance(arg, TensExpr) else ([], arg) for arg in self.args ]) arrays = [Array(i) for i in arrays] ref_indices = args_indices[0] for i in range(1, len(args_indices)): indices = args_indices[i] array = arrays[i] permutation = TensMul._get_indices_permutation(indices, ref_indices) arrays[i] = permutedims(array, permutation) return ref_indices, sum(arrays, Array.zeros(*array.shape)) @property def data(self): deprecate_data() return _tensor_data_substitution_dict[self.expand()] @data.setter def data(self, data): deprecate_data() _tensor_data_substitution_dict[self] = data @data.deleter def data(self): deprecate_data() if self in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self] def __iter__(self): deprecate_data() if not self.data: raise ValueError("No iteration on abstract tensors") return self.data.flatten().__iter__() def _eval_rewrite_as_Indexed(self, *args): return Add.fromiter(args) def _eval_partial_derivative(self, s): # Evaluation like Add list_addends = [] for a in self.args: if isinstance(a, TensExpr): list_addends.append(a._eval_partial_derivative(s)) # do not call diff if s is no symbol elif s._diff_wrt: list_addends.append(a._eval_derivative(s)) return self.func(*list_addends) class Tensor(TensExpr): """ Base tensor class, i.e. this represents a tensor, the single unit to be put into an expression. Explanation =========== This object is usually created from a ``TensorHead``, by attaching indices to it. Indices preceded by a minus sign are considered contravariant, otherwise covariant. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead >>> Lorentz = TensorIndexType("Lorentz", dummy_name="L") >>> mu, nu = tensor_indices('mu nu', Lorentz) >>> A = TensorHead("A", [Lorentz, Lorentz]) >>> A(mu, -nu) A(mu, -nu) >>> A(mu, -mu) A(L_0, -L_0) It is also possible to use symbols instead of inidices (appropriate indices are then generated automatically). >>> from sympy import Symbol >>> x = Symbol('x') >>> A(x, mu) A(x, mu) >>> A(x, -x) A(L_0, -L_0) """ is_commutative = False _index_structure = None # type: _IndexStructure def __new__(cls, tensor_head, indices, *, is_canon_bp=False, **kw_args): indices = cls._parse_indices(tensor_head, indices) obj = Basic.__new__(cls, tensor_head, Tuple(*indices), **kw_args) obj._index_structure = _IndexStructure.from_indices(*indices) obj._free = obj._index_structure.free[:] obj._dum = obj._index_structure.dum[:] obj._ext_rank = obj._index_structure._ext_rank obj._coeff = S.One obj._nocoeff = obj obj._component = tensor_head obj._components = [tensor_head] if tensor_head.rank != len(indices): raise ValueError("wrong number of indices") obj.is_canon_bp = is_canon_bp obj._index_map = Tensor._build_index_map(indices, obj._index_structure) return obj @property def free(self): return self._free @property def dum(self): return self._dum @property def ext_rank(self): return self._ext_rank @property def coeff(self): return self._coeff @property def nocoeff(self): return self._nocoeff @property def component(self): return self._component @property def components(self): return self._components @property def head(self): return self.args[0] @property def indices(self): return self.args[1] @property def free_indices(self): return set(self._index_structure.get_free_indices()) @property def index_types(self): return self.head.index_types @property def rank(self): return len(self.free_indices) @staticmethod def _build_index_map(indices, index_structure): index_map = {} for idx in indices: index_map[idx] = (indices.index(idx),) return index_map def doit(self, **kwargs): args, indices, free, dum = TensMul._tensMul_contract_indices([self]) return args[0] @staticmethod def _parse_indices(tensor_head, indices): if not isinstance(indices, (tuple, list, Tuple)): raise TypeError("indices should be an array, got %s" % type(indices)) indices = list(indices) for i, index in enumerate(indices): if isinstance(index, Symbol): indices[i] = TensorIndex(index, tensor_head.index_types[i], True) elif isinstance(index, Mul): c, e = index.as_coeff_Mul() if c == -1 and isinstance(e, Symbol): indices[i] = TensorIndex(e, tensor_head.index_types[i], False) else: raise ValueError("index not understood: %s" % index) elif not isinstance(index, TensorIndex): raise TypeError("wrong type for index: %s is %s" % (index, type(index))) return indices def _set_new_index_structure(self, im, is_canon_bp=False): indices = im.get_indices() return self._set_indices(*indices, is_canon_bp=is_canon_bp) def _set_indices(self, *indices, is_canon_bp=False, **kw_args): if len(indices) != self.ext_rank: raise ValueError("indices length mismatch") return self.func(self.args[0], indices, is_canon_bp=is_canon_bp).doit() def _get_free_indices_set(self): return {i[0] for i in self._index_structure.free} def _get_dummy_indices_set(self): dummy_pos = set(itertools.chain(*self._index_structure.dum)) return {idx for i, idx in enumerate(self.args[1]) if i in dummy_pos} def _get_indices_set(self): return set(self.args[1].args) @property def free_in_args(self): return [(ind, pos, 0) for ind, pos in self.free] @property def dum_in_args(self): return [(p1, p2, 0, 0) for p1, p2 in self.dum] @property def free_args(self): return sorted([x[0] for x in self.free]) def commutes_with(self, other): """ :param other: :return: 0 commute 1 anticommute None neither commute nor anticommute """ if not isinstance(other, TensExpr): return 0 elif isinstance(other, Tensor): return self.component.commutes_with(other.component) return NotImplementedError def perm2tensor(self, g, is_canon_bp=False): """ Returns the tensor corresponding to the permutation ``g``. For further details, see the method in ``TIDS`` with the same name. """ return perm2tensor(self, g, is_canon_bp) def canon_bp(self): if self.is_canon_bp: return self expr = self.expand() g, dummies, msym = expr._index_structure.indices_canon_args() v = components_canon_args([expr.component]) can = canonicalize(g, dummies, msym, *v) if can == 0: return S.Zero tensor = self.perm2tensor(can, True) return tensor def split(self): return [self] def _expand(self, **kwargs): return self def sorted_components(self): return self def get_indices(self): # type: () -> List[TensorIndex] """ Get a list of indices, corresponding to those of the tensor. """ return list(self.args[1]) def get_free_indices(self): # type: () -> List[TensorIndex] """ Get a list of free indices, corresponding to those of the tensor. """ return self._index_structure.get_free_indices() def _replace_indices(self, repl): # type: (tDict[TensorIndex, TensorIndex]) -> Tensor # TODO: this could be optimized by only swapping the indices # instead of visiting the whole expression tree: return self.xreplace(repl) def as_base_exp(self): return self, S.One def substitute_indices(self, *index_tuples): """ Return a tensor with free indices substituted according to ``index_tuples``. ``index_types`` list of tuples ``(old_index, new_index)``. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads, TensorSymmetry >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz) >>> A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) >>> t = A(i, k)*B(-k, -j); t A(i, L_0)*B(-L_0, -j) >>> t.substitute_indices((i, k),(-j, l)) A(k, L_0)*B(-L_0, l) """ indices = [] for index in self.indices: for ind_old, ind_new in index_tuples: if (index.name == ind_old.name and index.tensor_index_type == ind_old.tensor_index_type): if index.is_up == ind_old.is_up: indices.append(ind_new) else: indices.append(-ind_new) break else: indices.append(index) return self.head(*indices) def __call__(self, *indices): deprecate_fun_eval() free_args = self.free_args indices = list(indices) if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]: raise ValueError('incompatible types') if indices == free_args: return self t = self.substitute_indices(*list(zip(free_args, indices))) # object is rebuilt in order to make sure that all contracted indices # get recognized as dummies, but only if there are contracted indices. if len({i if i.is_up else -i for i in indices}) != len(indices): return t.func(*t.args) return t # TODO: put this into TensExpr? def __iter__(self): deprecate_data() return self.data.__iter__() # TODO: put this into TensExpr? def __getitem__(self, item): deprecate_data() return self.data[item] def _extract_data(self, replacement_dict): from .array import Array for k, v in replacement_dict.items(): if isinstance(k, Tensor) and k.args[0] == self.args[0]: other = k array = v break else: raise ValueError("%s not found in %s" % (self, replacement_dict)) # TODO: inefficient, this should be done at root level only: replacement_dict = {k: Array(v) for k, v in replacement_dict.items()} array = Array(array) dum1 = self.dum dum2 = other.dum if len(dum2) > 0: for pair in dum2: # allow `dum2` if the contained values are also in `dum1`. if pair not in dum1: raise NotImplementedError("%s with contractions is not implemented" % other) # Remove elements in `dum2` from `dum1`: dum1 = [pair for pair in dum1 if pair not in dum2] if len(dum1) > 0: indices1 = self.get_indices() indices2 = other.get_indices() repl = {} for p1, p2 in dum1: repl[indices2[p2]] = -indices2[p1] for pos in (p1, p2): if indices1[pos].is_up ^ indices2[pos].is_up: metric = replacement_dict[indices1[pos].tensor_index_type] if indices1[pos].is_up: metric = _TensorDataLazyEvaluator.inverse_matrix(metric) array = self._contract_and_permute_with_metric(metric, array, pos, len(indices2)) other = other.xreplace(repl).doit() array = _TensorDataLazyEvaluator.data_contract_dum([array], dum1, len(indices2)) free_ind1 = self.get_free_indices() free_ind2 = other.get_free_indices() return self._match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict) @property def data(self): deprecate_data() return _tensor_data_substitution_dict[self] @data.setter def data(self, data): deprecate_data() # TODO: check data compatibility with properties of tensor. _tensor_data_substitution_dict[self] = data @data.deleter def data(self): deprecate_data() if self in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self] if self.metric in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self.metric] def _print(self): indices = [str(ind) for ind in self.indices] component = self.component if component.rank > 0: return ('%s(%s)' % (component.name, ', '.join(indices))) else: return ('%s' % component.name) def equals(self, other): if other == 0: return self.coeff == 0 other = _sympify(other) if not isinstance(other, TensExpr): assert not self.components return S.One == other def _get_compar_comp(self): t = self.canon_bp() r = (t.coeff, tuple(t.components), \ tuple(sorted(t.free)), tuple(sorted(t.dum))) return r return _get_compar_comp(self) == _get_compar_comp(other) def contract_metric(self, g): # if metric is not the same, ignore this step: if self.component != g: return self # in case there are free components, do not perform anything: if len(self.free) != 0: return self #antisym = g.index_types[0].metric_antisym if g.symmetry == TensorSymmetry.fully_symmetric(-2): antisym = 1 elif g.symmetry == TensorSymmetry.fully_symmetric(2): antisym = 0 elif g.symmetry == TensorSymmetry.no_symmetry(2): antisym = None else: raise NotImplementedError sign = S.One typ = g.index_types[0] if not antisym: # g(i, -i) sign = sign*typ.dim else: # g(i, -i) sign = sign*typ.dim dp0, dp1 = self.dum[0] if dp0 < dp1: # g(i, -i) = -D with antisymmetric metric sign = -sign return sign def contract_delta(self, metric): return self.contract_metric(metric) def _eval_rewrite_as_Indexed(self, tens, indices): from sympy import Indexed # TODO: replace .args[0] with .name: index_symbols = [i.args[0] for i in self.get_indices()] expr = Indexed(tens.args[0], *index_symbols) return self._check_add_Sum(expr, index_symbols) def _eval_partial_derivative(self, s): # type: (Tensor) -> Expr if not isinstance(s, Tensor): return S.Zero else: # @a_i/@a_k = delta_i^k # @a_i/@a^k = g_ij delta^j_k # @a^i/@a^k = delta^i_k # @a^i/@a_k = g^ij delta_j^k # TODO: if there is no metric present, the derivative should be zero? if self.head != s.head: return S.Zero # if heads are the same, provide delta and/or metric products # for every free index pair in the appropriate tensor # assumed that the free indices are in proper order # A contravariante index in the derivative becomes covariant # after performing the derivative and vice versa kronecker_delta_list = [1] # not guarantee a correct index order for (count, (iself, iother)) in enumerate(zip(self.get_free_indices(), s.get_free_indices())): if iself.tensor_index_type != iother.tensor_index_type: raise ValueError("index types not compatible") else: tensor_index_type = iself.tensor_index_type tensor_metric = tensor_index_type.metric dummy = TensorIndex("d_" + str(count), tensor_index_type, is_up=iself.is_up) if iself.is_up == iother.is_up: kroneckerdelta = tensor_index_type.delta(iself, -iother) else: kroneckerdelta = ( TensMul(tensor_metric(iself, dummy), tensor_index_type.delta(-dummy, -iother)) ) kronecker_delta_list.append(kroneckerdelta) return TensMul.fromiter(kronecker_delta_list).doit() # doit necessary to rename dummy indices accordingly class TensMul(TensExpr, AssocOp): """ Product of tensors. Parameters ========== coeff : SymPy coefficient of the tensor args Attributes ========== ``components`` : list of ``TensorHead`` of the component tensors ``types`` : list of nonrepeated ``TensorIndexType`` ``free`` : list of ``(ind, ipos, icomp)``, see Notes ``dum`` : list of ``(ipos1, ipos2, icomp1, icomp2)``, see Notes ``ext_rank`` : rank of the tensor counting the dummy indices ``rank`` : rank of the tensor ``coeff`` : SymPy coefficient of the tensor ``free_args`` : list of the free indices in sorted order ``is_canon_bp`` : ``True`` if the tensor in in canonical form Notes ===== ``args[0]`` list of ``TensorHead`` of the component tensors. ``args[1]`` list of ``(ind, ipos, icomp)`` where ``ind`` is a free index, ``ipos`` is the slot position of ``ind`` in the ``icomp``-th component tensor. ``args[2]`` list of tuples representing dummy indices. ``(ipos1, ipos2, icomp1, icomp2)`` indicates that the contravariant dummy index is the ``ipos1``-th slot position in the ``icomp1``-th component tensor; the corresponding covariant index is in the ``ipos2`` slot position in the ``icomp2``-th component tensor. """ identity = S.One _index_structure = None # type: _IndexStructure def __new__(cls, *args, **kw_args): is_canon_bp = kw_args.get('is_canon_bp', False) args = list(map(_sympify, args)) # Flatten: args = [i for arg in args for i in (arg.args if isinstance(arg, (TensMul, Mul)) else [arg])] args, indices, free, dum = TensMul._tensMul_contract_indices(args, replace_indices=False) # Data for indices: index_types = [i.tensor_index_type for i in indices] index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp) obj = TensExpr.__new__(cls, *args) obj._indices = indices obj._index_types = index_types[:] obj._index_structure = index_structure obj._free = index_structure.free[:] obj._dum = index_structure.dum[:] obj._free_indices = {x[0] for x in obj.free} obj._rank = len(obj.free) obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum) obj._coeff = S.One obj._is_canon_bp = is_canon_bp return obj index_types = property(lambda self: self._index_types) free = property(lambda self: self._free) dum = property(lambda self: self._dum) free_indices = property(lambda self: self._free_indices) rank = property(lambda self: self._rank) ext_rank = property(lambda self: self._ext_rank) @staticmethod def _indices_to_free_dum(args_indices): free2pos1 = {} free2pos2 = {} dummy_data = [] indices = [] # Notation for positions (to better understand the code): # `pos1`: position in the `args`. # `pos2`: position in the indices. # Example: # A(i, j)*B(k, m, n)*C(p) # `pos1` of `n` is 1 because it's in `B` (second `args` of TensMul). # `pos2` of `n` is 4 because it's the fifth overall index. # Counter for the index position wrt the whole expression: pos2 = 0 for pos1, arg_indices in enumerate(args_indices): for index_pos, index in enumerate(arg_indices): if not isinstance(index, TensorIndex): raise TypeError("expected TensorIndex") if -index in free2pos1: # Dummy index detected: other_pos1 = free2pos1.pop(-index) other_pos2 = free2pos2.pop(-index) if index.is_up: dummy_data.append((index, pos1, other_pos1, pos2, other_pos2)) else: dummy_data.append((-index, other_pos1, pos1, other_pos2, pos2)) indices.append(index) elif index in free2pos1: raise ValueError("Repeated index: %s" % index) else: free2pos1[index] = pos1 free2pos2[index] = pos2 indices.append(index) pos2 += 1 free = [(i, p) for (i, p) in free2pos2.items()] free_names = [i.name for i in free2pos2.keys()] dummy_data.sort(key=lambda x: x[3]) return indices, free, free_names, dummy_data @staticmethod def _dummy_data_to_dum(dummy_data): return [(p2a, p2b) for (i, p1a, p1b, p2a, p2b) in dummy_data] @staticmethod def _tensMul_contract_indices(args, replace_indices=True): replacements = [{} for _ in args] #_index_order = all([_has_index_order(arg) for arg in args]) args_indices = [get_indices(arg) for arg in args] indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices) cdt = defaultdict(int) def dummy_name_gen(tensor_index_type): nd = str(cdt[tensor_index_type]) cdt[tensor_index_type] += 1 return tensor_index_type.dummy_name + '_' + nd if replace_indices: for old_index, pos1cov, pos1contra, pos2cov, pos2contra in dummy_data: index_type = old_index.tensor_index_type while True: dummy_name = dummy_name_gen(index_type) if dummy_name not in free_names: break dummy = TensorIndex(dummy_name, index_type, True) replacements[pos1cov][old_index] = dummy replacements[pos1contra][-old_index] = -dummy indices[pos2cov] = dummy indices[pos2contra] = -dummy args = [ arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg for arg, repl in zip(args, replacements)] dum = TensMul._dummy_data_to_dum(dummy_data) return args, indices, free, dum @staticmethod def _get_components_from_args(args): """ Get a list of ``Tensor`` objects having the same ``TIDS`` if multiplied by one another. """ components = [] for arg in args: if not isinstance(arg, TensExpr): continue if isinstance(arg, TensAdd): continue components.extend(arg.components) return components @staticmethod def _rebuild_tensors_list(args, index_structure): indices = index_structure.get_indices() #tensors = [None for i in components] # pre-allocate list ind_pos = 0 for i, arg in enumerate(args): if not isinstance(arg, TensExpr): continue prev_pos = ind_pos ind_pos += arg.ext_rank args[i] = Tensor(arg.component, indices[prev_pos:ind_pos]) def doit(self, **kwargs): is_canon_bp = self._is_canon_bp deep = kwargs.get('deep', True) if deep: args = [arg.doit(**kwargs) for arg in self.args] else: args = self.args args = [arg for arg in args if arg != self.identity] # Extract non-tensor coefficients: coeff = reduce(lambda a, b: a*b, [arg for arg in args if not isinstance(arg, TensExpr)], S.One) args = [arg for arg in args if isinstance(arg, TensExpr)] if len(args) == 0: return coeff if coeff != self.identity: args = [coeff] + args if coeff == 0: return S.Zero if len(args) == 1: return args[0] args, indices, free, dum = TensMul._tensMul_contract_indices(args) # Data for indices: index_types = [i.tensor_index_type for i in indices] index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp) obj = self.func(*args) obj._index_types = index_types obj._index_structure = index_structure obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum) obj._coeff = coeff obj._is_canon_bp = is_canon_bp return obj # TODO: this method should be private # TODO: should this method be renamed _from_components_free_dum ? @staticmethod def from_data(coeff, components, free, dum, **kw_args): return TensMul(coeff, *TensMul._get_tensors_from_components_free_dum(components, free, dum), **kw_args).doit() @staticmethod def _get_tensors_from_components_free_dum(components, free, dum): """ Get a list of ``Tensor`` objects by distributing ``free`` and ``dum`` indices on the ``components``. """ index_structure = _IndexStructure.from_components_free_dum(components, free, dum) indices = index_structure.get_indices() tensors = [None for i in components] # pre-allocate list # distribute indices on components to build a list of tensors: ind_pos = 0 for i, component in enumerate(components): prev_pos = ind_pos ind_pos += component.rank tensors[i] = Tensor(component, indices[prev_pos:ind_pos]) return tensors def _get_free_indices_set(self): return {i[0] for i in self.free} def _get_dummy_indices_set(self): dummy_pos = set(itertools.chain(*self.dum)) return {idx for i, idx in enumerate(self._index_structure.get_indices()) if i in dummy_pos} def _get_position_offset_for_indices(self): arg_offset = [None for i in range(self.ext_rank)] counter = 0 for i, arg in enumerate(self.args): if not isinstance(arg, TensExpr): continue for j in range(arg.ext_rank): arg_offset[j + counter] = counter counter += arg.ext_rank return arg_offset @property def free_args(self): return sorted([x[0] for x in self.free]) @property def components(self): return self._get_components_from_args(self.args) @property def free_in_args(self): arg_offset = self._get_position_offset_for_indices() argpos = self._get_indices_to_args_pos() return [(ind, pos-arg_offset[pos], argpos[pos]) for (ind, pos) in self.free] @property def coeff(self): # return Mul.fromiter([c for c in self.args if not isinstance(c, TensExpr)]) return self._coeff @property def nocoeff(self): return self.func(*[t for t in self.args if isinstance(t, TensExpr)]).doit() @property def dum_in_args(self): arg_offset = self._get_position_offset_for_indices() argpos = self._get_indices_to_args_pos() return [(p1-arg_offset[p1], p2-arg_offset[p2], argpos[p1], argpos[p2]) for p1, p2 in self.dum] def equals(self, other): if other == 0: return self.coeff == 0 other = _sympify(other) if not isinstance(other, TensExpr): assert not self.components return self.coeff == other return self.canon_bp() == other.canon_bp() def get_indices(self): """ Returns the list of indices of the tensor. Explanation =========== The indices are listed in the order in which they appear in the component tensors. The dummy indices are given a name which does not collide with the names of the free indices. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz) >>> g = Lorentz.metric >>> p, q = tensor_heads('p,q', [Lorentz]) >>> t = p(m1)*g(m0,m2) >>> t.get_indices() [m1, m0, m2] >>> t2 = p(m1)*g(-m1, m2) >>> t2.get_indices() [L_0, -L_0, m2] """ return self._indices def get_free_indices(self): # type: () -> List[TensorIndex] """ Returns the list of free indices of the tensor. Explanation =========== The indices are listed in the order in which they appear in the component tensors. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz) >>> g = Lorentz.metric >>> p, q = tensor_heads('p,q', [Lorentz]) >>> t = p(m1)*g(m0,m2) >>> t.get_free_indices() [m1, m0, m2] >>> t2 = p(m1)*g(-m1, m2) >>> t2.get_free_indices() [m2] """ return self._index_structure.get_free_indices() def _replace_indices(self, repl): # type: (tDict[TensorIndex, TensorIndex]) -> TensExpr return self.func(*[arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg for arg in self.args]) def split(self): """ Returns a list of tensors, whose product is ``self``. Explanation =========== Dummy indices contracted among different tensor components become free indices with the same name as the one used to represent the dummy indices. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads, TensorSymmetry >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz) >>> A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) >>> t = A(a,b)*B(-b,c) >>> t A(a, L_0)*B(-L_0, c) >>> t.split() [A(a, L_0), B(-L_0, c)] """ if self.args == (): return [self] splitp = [] res = 1 for arg in self.args: if isinstance(arg, Tensor): splitp.append(res*arg) res = 1 else: res *= arg return splitp def _expand(self, **hints): # TODO: temporary solution, in the future this should be linked to # `Expr.expand`. args = [_expand(arg, **hints) for arg in self.args] args1 = [arg.args if isinstance(arg, (Add, TensAdd)) else (arg,) for arg in args] return TensAdd(*[ TensMul(*i) for i in itertools.product(*args1)] ) def __neg__(self): return TensMul(S.NegativeOne, self, is_canon_bp=self._is_canon_bp).doit() def __getitem__(self, item): deprecate_data() return self.data[item] def _get_args_for_traditional_printer(self): args = list(self.args) if (self.coeff < 0) == True: # expressions like "-A(a)" sign = "-" if self.coeff == S.NegativeOne: args = args[1:] else: args[0] = -args[0] else: sign = "" return sign, args def _sort_args_for_sorted_components(self): """ Returns the ``args`` sorted according to the components commutation properties. Explanation =========== The sorting is done taking into account the commutation group of the component tensors. """ cv = [arg for arg in self.args if isinstance(arg, TensExpr)] sign = 1 n = len(cv) - 1 for i in range(n): for j in range(n, i, -1): c = cv[j-1].commutes_with(cv[j]) # if `c` is `None`, it does neither commute nor anticommute, skip: if c not in [0, 1]: continue typ1 = sorted(set(cv[j-1].component.index_types), key=lambda x: x.name) typ2 = sorted(set(cv[j].component.index_types), key=lambda x: x.name) if (typ1, cv[j-1].component.name) > (typ2, cv[j].component.name): cv[j-1], cv[j] = cv[j], cv[j-1] # if `c` is 1, the anticommute, so change sign: if c: sign = -sign coeff = sign * self.coeff if coeff != 1: return [coeff] + cv return cv def sorted_components(self): """ Returns a tensor product with sorted components. """ return TensMul(*self._sort_args_for_sorted_components()).doit() def perm2tensor(self, g, is_canon_bp=False): """ Returns the tensor corresponding to the permutation ``g`` For further details, see the method in ``TIDS`` with the same name. """ return perm2tensor(self, g, is_canon_bp=is_canon_bp) def canon_bp(self): """ Canonicalize using the Butler-Portugal algorithm for canonicalization under monoterm symmetries. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, TensorSymmetry >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz) >>> A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2)) >>> t = A(m0,-m1)*A(m1,-m0) >>> t.canon_bp() -A(L_0, L_1)*A(-L_0, -L_1) >>> t = A(m0,-m1)*A(m1,-m2)*A(m2,-m0) >>> t.canon_bp() 0 """ if self._is_canon_bp: return self expr = self.expand() if isinstance(expr, TensAdd): return expr.canon_bp() if not expr.components: return expr t = expr.sorted_components() g, dummies, msym = t._index_structure.indices_canon_args() v = components_canon_args(t.components) can = canonicalize(g, dummies, msym, *v) if can == 0: return S.Zero tmul = t.perm2tensor(can, True) return tmul def contract_delta(self, delta): t = self.contract_metric(delta) return t def _get_indices_to_args_pos(self): """ Get a dict mapping the index position to TensMul's argument number. """ pos_map = dict() pos_counter = 0 for arg_i, arg in enumerate(self.args): if not isinstance(arg, TensExpr): continue assert isinstance(arg, Tensor) for i in range(arg.ext_rank): pos_map[pos_counter] = arg_i pos_counter += 1 return pos_map def contract_metric(self, g): """ Raise or lower indices with the metric ``g``. Parameters ========== g : metric Notes ===== See the ``TensorIndexType`` docstring for the contraction conventions. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz) >>> g = Lorentz.metric >>> p, q = tensor_heads('p,q', [Lorentz]) >>> t = p(m0)*q(m1)*g(-m0, -m1) >>> t.canon_bp() metric(L_0, L_1)*p(-L_0)*q(-L_1) >>> t.contract_metric(g).canon_bp() p(L_0)*q(-L_0) """ expr = self.expand() if self != expr: expr = expr.canon_bp() return expr.contract_metric(g) pos_map = self._get_indices_to_args_pos() args = list(self.args) #antisym = g.index_types[0].metric_antisym if g.symmetry == TensorSymmetry.fully_symmetric(-2): antisym = 1 elif g.symmetry == TensorSymmetry.fully_symmetric(2): antisym = 0 elif g.symmetry == TensorSymmetry.no_symmetry(2): antisym = None else: raise NotImplementedError # list of positions of the metric ``g`` inside ``args`` gpos = [i for i, x in enumerate(self.args) if isinstance(x, Tensor) and x.component == g] if not gpos: return self # Sign is either 1 or -1, to correct the sign after metric contraction # (for spinor indices). sign = 1 dum = self.dum[:] free = self.free[:] elim = set() for gposx in gpos: if gposx in elim: continue free1 = [x for x in free if pos_map[x[1]] == gposx] dum1 = [x for x in dum if pos_map[x[0]] == gposx or pos_map[x[1]] == gposx] if not dum1: continue elim.add(gposx) # subs with the multiplication neutral element, that is, remove it: args[gposx] = 1 if len(dum1) == 2: if not antisym: dum10, dum11 = dum1 if pos_map[dum10[1]] == gposx: # the index with pos p0 contravariant p0 = dum10[0] else: # the index with pos p0 is covariant p0 = dum10[1] if pos_map[dum11[1]] == gposx: # the index with pos p1 is contravariant p1 = dum11[0] else: # the index with pos p1 is covariant p1 = dum11[1] dum.append((p0, p1)) else: dum10, dum11 = dum1 # change the sign to bring the indices of the metric to contravariant # form; change the sign if dum10 has the metric index in position 0 if pos_map[dum10[1]] == gposx: # the index with pos p0 is contravariant p0 = dum10[0] if dum10[1] == 1: sign = -sign else: # the index with pos p0 is covariant p0 = dum10[1] if dum10[0] == 0: sign = -sign if pos_map[dum11[1]] == gposx: # the index with pos p1 is contravariant p1 = dum11[0] sign = -sign else: # the index with pos p1 is covariant p1 = dum11[1] dum.append((p0, p1)) elif len(dum1) == 1: if not antisym: dp0, dp1 = dum1[0] if pos_map[dp0] == pos_map[dp1]: # g(i, -i) typ = g.index_types[0] sign = sign*typ.dim else: # g(i0, i1)*p(-i1) if pos_map[dp0] == gposx: p1 = dp1 else: p1 = dp0 ind, p = free1[0] free.append((ind, p1)) else: dp0, dp1 = dum1[0] if pos_map[dp0] == pos_map[dp1]: # g(i, -i) typ = g.index_types[0] sign = sign*typ.dim if dp0 < dp1: # g(i, -i) = -D with antisymmetric metric sign = -sign else: # g(i0, i1)*p(-i1) if pos_map[dp0] == gposx: p1 = dp1 if dp0 == 0: sign = -sign else: p1 = dp0 ind, p = free1[0] free.append((ind, p1)) dum = [x for x in dum if x not in dum1] free = [x for x in free if x not in free1] # shift positions: shift = 0 shifts = [0]*len(args) for i in range(len(args)): if i in elim: shift += 2 continue shifts[i] = shift free = [(ind, p - shifts[pos_map[p]]) for (ind, p) in free if pos_map[p] not in elim] dum = [(p0 - shifts[pos_map[p0]], p1 - shifts[pos_map[p1]]) for i, (p0, p1) in enumerate(dum) if pos_map[p0] not in elim and pos_map[p1] not in elim] res = sign*TensMul(*args).doit() if not isinstance(res, TensExpr): return res im = _IndexStructure.from_components_free_dum(res.components, free, dum) return res._set_new_index_structure(im) def _set_new_index_structure(self, im, is_canon_bp=False): indices = im.get_indices() return self._set_indices(*indices, is_canon_bp=is_canon_bp) def _set_indices(self, *indices, is_canon_bp=False, **kw_args): if len(indices) != self.ext_rank: raise ValueError("indices length mismatch") args = list(self.args)[:] pos = 0 for i, arg in enumerate(args): if not isinstance(arg, TensExpr): continue assert isinstance(arg, Tensor) ext_rank = arg.ext_rank args[i] = arg._set_indices(*indices[pos:pos+ext_rank]) pos += ext_rank return TensMul(*args, is_canon_bp=is_canon_bp).doit() @staticmethod def _index_replacement_for_contract_metric(args, free, dum): for arg in args: if not isinstance(arg, TensExpr): continue assert isinstance(arg, Tensor) def substitute_indices(self, *index_tuples): new_args = [] for arg in self.args: if isinstance(arg, TensExpr): arg = arg.substitute_indices(*index_tuples) new_args.append(arg) return TensMul(*new_args).doit() def __call__(self, *indices): deprecate_fun_eval() free_args = self.free_args indices = list(indices) if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]: raise ValueError('incompatible types') if indices == free_args: return self t = self.substitute_indices(*list(zip(free_args, indices))) # object is rebuilt in order to make sure that all contracted indices # get recognized as dummies, but only if there are contracted indices. if len({i if i.is_up else -i for i in indices}) != len(indices): return t.func(*t.args) return t def _extract_data(self, replacement_dict): args_indices, arrays = zip(*[arg._extract_data(replacement_dict) for arg in self.args if isinstance(arg, TensExpr)]) coeff = reduce(operator.mul, [a for a in self.args if not isinstance(a, TensExpr)], S.One) indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices) dum = TensMul._dummy_data_to_dum(dummy_data) ext_rank = self.ext_rank free.sort(key=lambda x: x[1]) free_indices = [i[0] for i in free] return free_indices, coeff*_TensorDataLazyEvaluator.data_contract_dum(arrays, dum, ext_rank) @property def data(self): deprecate_data() dat = _tensor_data_substitution_dict[self.expand()] return dat @data.setter def data(self, data): deprecate_data() raise ValueError("Not possible to set component data to a tensor expression") @data.deleter def data(self): deprecate_data() raise ValueError("Not possible to delete component data to a tensor expression") def __iter__(self): deprecate_data() if self.data is None: raise ValueError("No iteration on abstract tensors") return self.data.__iter__() def _eval_rewrite_as_Indexed(self, *args): from sympy import Sum index_symbols = [i.args[0] for i in self.get_indices()] args = [arg.args[0] if isinstance(arg, Sum) else arg for arg in args] expr = Mul.fromiter(args) return self._check_add_Sum(expr, index_symbols) def _eval_partial_derivative(self, s): # Evaluation like Mul terms = [] for i, arg in enumerate(self.args): # checking whether some tensor instance is differentiated # or some other thing is necessary, but ugly if isinstance(arg, TensExpr): d = arg._eval_partial_derivative(s) else: # do not call diff is s is no symbol if s._diff_wrt: d = arg._eval_derivative(s) else: d = S.Zero if d: terms.append(TensMul.fromiter(self.args[:i] + (d,) + self.args[i + 1:])) return TensAdd.fromiter(terms) class TensorElement(TensExpr): """ Tensor with evaluated components. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorSymmetry >>> from sympy import symbols >>> L = TensorIndexType("L") >>> i, j, k = symbols("i j k") >>> A = TensorHead("A", [L, L], TensorSymmetry.fully_symmetric(2)) >>> A(i, j).get_free_indices() [i, j] If we want to set component ``i`` to a specific value, use the ``TensorElement`` class: >>> from sympy.tensor.tensor import TensorElement >>> te = TensorElement(A(i, j), {i: 2}) As index ``i`` has been accessed (``{i: 2}`` is the evaluation of its 3rd element), the free indices will only contain ``j``: >>> te.get_free_indices() [j] """ def __new__(cls, expr, index_map): if not isinstance(expr, Tensor): # remap if not isinstance(expr, TensExpr): raise TypeError("%s is not a tensor expression" % expr) return expr.func(*[TensorElement(arg, index_map) for arg in expr.args]) expr_free_indices = expr.get_free_indices() name_translation = {i.args[0]: i for i in expr_free_indices} index_map = {name_translation.get(index, index): value for index, value in index_map.items()} index_map = {index: value for index, value in index_map.items() if index in expr_free_indices} if len(index_map) == 0: return expr free_indices = [i for i in expr_free_indices if i not in index_map.keys()] index_map = Dict(index_map) obj = TensExpr.__new__(cls, expr, index_map) obj._free_indices = free_indices return obj @property def free(self): return [(index, i) for i, index in enumerate(self.get_free_indices())] @property def dum(self): # TODO: inherit dummies from expr return [] @property def expr(self): return self._args[0] @property def index_map(self): return self._args[1] @property def coeff(self): return S.One @property def nocoeff(self): return self def get_free_indices(self): return self._free_indices def _replace_indices(self, repl): # type: (tDict[TensorIndex, TensorIndex]) -> TensExpr # TODO: can be improved: return self.xreplace(repl) def get_indices(self): return self.get_free_indices() def _extract_data(self, replacement_dict): ret_indices, array = self.expr._extract_data(replacement_dict) index_map = self.index_map slice_tuple = tuple(index_map.get(i, slice(None)) for i in ret_indices) ret_indices = [i for i in ret_indices if i not in index_map] array = array.__getitem__(slice_tuple) return ret_indices, array def canon_bp(p): """ Butler-Portugal canonicalization. See ``tensor_can.py`` from the combinatorics module for the details. """ if isinstance(p, TensExpr): return p.canon_bp() return p def tensor_mul(*a): """ product of tensors """ if not a: return TensMul.from_data(S.One, [], [], []) t = a[0] for tx in a[1:]: t = t*tx return t def riemann_cyclic_replace(t_r): """ replace Riemann tensor with an equivalent expression ``R(m,n,p,q) -> 2/3*R(m,n,p,q) - 1/3*R(m,q,n,p) + 1/3*R(m,p,n,q)`` """ free = sorted(t_r.free, key=lambda x: x[1]) m, n, p, q = [x[0] for x in free] t0 = t_r*Rational(2, 3) t1 = -t_r.substitute_indices((m,m),(n,q),(p,n),(q,p))*Rational(1, 3) t2 = t_r.substitute_indices((m,m),(n,p),(p,n),(q,q))*Rational(1, 3) t3 = t0 + t1 + t2 return t3 def riemann_cyclic(t2): """ Replace each Riemann tensor with an equivalent expression satisfying the cyclic identity. This trick is discussed in the reference guide to Cadabra. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, riemann_cyclic, TensorSymmetry >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz) >>> R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann()) >>> t = R(i,j,k,l)*(R(-i,-j,-k,-l) - 2*R(-i,-k,-j,-l)) >>> riemann_cyclic(t) 0 """ t2 = t2.expand() if isinstance(t2, (TensMul, Tensor)): args = [t2] else: args = t2.args a1 = [x.split() for x in args] a2 = [[riemann_cyclic_replace(tx) for tx in y] for y in a1] a3 = [tensor_mul(*v) for v in a2] t3 = TensAdd(*a3).doit() if not t3: return t3 else: return canon_bp(t3) def get_lines(ex, index_type): """ Returns ``(lines, traces, rest)`` for an index type, where ``lines`` is the list of list of positions of a matrix line, ``traces`` is the list of list of traced matrix lines, ``rest`` is the rest of the elements ot the tensor. """ def _join_lines(a): i = 0 while i < len(a): x = a[i] xend = x[-1] xstart = x[0] hit = True while hit: hit = False for j in range(i + 1, len(a)): if j >= len(a): break if a[j][0] == xend: hit = True x.extend(a[j][1:]) xend = x[-1] a.pop(j) continue if a[j][0] == xstart: hit = True a[i] = reversed(a[j][1:]) + x x = a[i] xstart = a[i][0] a.pop(j) continue if a[j][-1] == xend: hit = True x.extend(reversed(a[j][:-1])) xend = x[-1] a.pop(j) continue if a[j][-1] == xstart: hit = True a[i] = a[j][:-1] + x x = a[i] xstart = x[0] a.pop(j) continue i += 1 return a arguments = ex.args dt = {} for c in ex.args: if not isinstance(c, TensExpr): continue if c in dt: continue index_types = c.index_types a = [] for i in range(len(index_types)): if index_types[i] is index_type: a.append(i) if len(a) > 2: raise ValueError('at most two indices of type %s allowed' % index_type) if len(a) == 2: dt[c] = a #dum = ex.dum lines = [] traces = [] traces1 = [] #indices_to_args_pos = ex._get_indices_to_args_pos() # TODO: add a dum_to_components_map ? for p0, p1, c0, c1 in ex.dum_in_args: if arguments[c0] not in dt: continue if c0 == c1: traces.append([c0]) continue ta0 = dt[arguments[c0]] ta1 = dt[arguments[c1]] if p0 not in ta0: continue if ta0.index(p0) == ta1.index(p1): # case gamma(i,s0,-s1) in c0, gamma(j,-s0,s2) in c1; # to deal with this case one could add to the position # a flag for transposition; # one could write [(c0, False), (c1, True)] raise NotImplementedError # if p0 == ta0[1] then G in pos c0 is mult on the right by G in c1 # if p0 == ta0[0] then G in pos c1 is mult on the right by G in c0 ta0 = dt[arguments[c0]] b0, b1 = (c0, c1) if p0 == ta0[1] else (c1, c0) lines1 = lines[:] for line in lines: if line[-1] == b0: if line[0] == b1: n = line.index(min(line)) traces1.append(line) traces.append(line[n:] + line[:n]) else: line.append(b1) break elif line[0] == b1: line.insert(0, b0) break else: lines1.append([b0, b1]) lines = [x for x in lines1 if x not in traces1] lines = _join_lines(lines) rest = [] for line in lines: for y in line: rest.append(y) for line in traces: for y in line: rest.append(y) rest = [x for x in range(len(arguments)) if x not in rest] return lines, traces, rest def get_free_indices(t): if not isinstance(t, TensExpr): return () return t.get_free_indices() def get_indices(t): if not isinstance(t, TensExpr): return () return t.get_indices() def get_index_structure(t): if isinstance(t, TensExpr): return t._index_structure return _IndexStructure([], [], [], []) def get_coeff(t): if isinstance(t, Tensor): return S.One if isinstance(t, TensMul): return t.coeff if isinstance(t, TensExpr): raise ValueError("no coefficient associated to this tensor expression") return t def contract_metric(t, g): if isinstance(t, TensExpr): return t.contract_metric(g) return t def perm2tensor(t, g, is_canon_bp=False): """ Returns the tensor corresponding to the permutation ``g`` For further details, see the method in ``TIDS`` with the same name. """ if not isinstance(t, TensExpr): return t elif isinstance(t, (Tensor, TensMul)): nim = get_index_structure(t).perm2tensor(g, is_canon_bp=is_canon_bp) res = t._set_new_index_structure(nim, is_canon_bp=is_canon_bp) if g[-1] != len(g) - 1: return -res return res raise NotImplementedError() def substitute_indices(t, *index_tuples): if not isinstance(t, TensExpr): return t return t.substitute_indices(*index_tuples) def _expand(expr, **kwargs): if isinstance(expr, TensExpr): return expr._expand(**kwargs) else: return expr.expand(**kwargs)
e4629fa57636669fad79fae9b52d5f35745e1f96d796643f3525b1945d2127a5
""" Boolean algebra module for SymPy """ from collections import defaultdict from itertools import chain, combinations, product from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.cache import cacheit from sympy.core.compatibility import ordered, as_int from sympy.core.decorators import sympify_method_args, sympify_return from sympy.core.function import Application, Derivative from sympy.core.numbers import Number from sympy.core.operations import LatticeOp from sympy.core.singleton import Singleton, S from sympy.core.sympify import converter, _sympify, sympify from sympy.core.kind import BooleanKind from sympy.utilities.iterables import sift, ibin from sympy.utilities.misc import filldedent def as_Boolean(e): """Like bool, return the Boolean value of an expression, e, which can be any instance of Boolean or bool. Examples ======== >>> from sympy import true, false, nan >>> from sympy.logic.boolalg import as_Boolean >>> from sympy.abc import x >>> as_Boolean(0) is false True >>> as_Boolean(1) is true True >>> as_Boolean(x) x >>> as_Boolean(2) Traceback (most recent call last): ... TypeError: expecting bool or Boolean, not `2`. >>> as_Boolean(nan) Traceback (most recent call last): ... TypeError: expecting bool or Boolean, not `nan`. """ from sympy.core.symbol import Symbol if e == True: return S.true if e == False: return S.false if isinstance(e, Symbol): z = e.is_zero if z is None: return e return S.false if z else S.true if isinstance(e, Boolean): return e raise TypeError('expecting bool or Boolean, not `%s`.' % e) @sympify_method_args class Boolean(Basic): """A boolean object is an object for which logic operations make sense.""" __slots__ = () kind = BooleanKind @sympify_return([('other', 'Boolean')], NotImplemented) def __and__(self, other): return And(self, other) __rand__ = __and__ @sympify_return([('other', 'Boolean')], NotImplemented) def __or__(self, other): return Or(self, other) __ror__ = __or__ def __invert__(self): """Overloading for ~""" return Not(self) @sympify_return([('other', 'Boolean')], NotImplemented) def __rshift__(self, other): return Implies(self, other) @sympify_return([('other', 'Boolean')], NotImplemented) def __lshift__(self, other): return Implies(other, self) __rrshift__ = __lshift__ __rlshift__ = __rshift__ @sympify_return([('other', 'Boolean')], NotImplemented) def __xor__(self, other): return Xor(self, other) __rxor__ = __xor__ def equals(self, other): """ Returns True if the given formulas have the same truth table. For two formulas to be equal they must have the same literals. Examples ======== >>> from sympy.abc import A, B, C >>> from sympy.logic.boolalg import And, Or, Not >>> (A >> B).equals(~B >> ~A) True >>> Not(And(A, B, C)).equals(And(Not(A), Not(B), Not(C))) False >>> Not(And(A, Not(A))).equals(Or(B, Not(B))) False """ from sympy.logic.inference import satisfiable from sympy.core.relational import Relational if self.has(Relational) or other.has(Relational): raise NotImplementedError('handling of relationals') return self.atoms() == other.atoms() and \ not satisfiable(Not(Equivalent(self, other))) def to_nnf(self, simplify=True): # override where necessary return self def as_set(self): """ Rewrites Boolean expression in terms of real sets. Examples ======== >>> from sympy import Symbol, Eq, Or, And >>> x = Symbol('x', real=True) >>> Eq(x, 0).as_set() FiniteSet(0) >>> (x > 0).as_set() Interval.open(0, oo) >>> And(-2 < x, x < 2).as_set() Interval.open(-2, 2) >>> Or(x < -2, 2 < x).as_set() Union(Interval.open(-oo, -2), Interval.open(2, oo)) """ from sympy.calculus.util import periodicity from sympy.core.relational import Relational free = self.free_symbols if len(free) == 1: x = free.pop() reps = {} for r in self.atoms(Relational): if periodicity(r, x) not in (0, None): s = r._eval_as_set() if s in (S.EmptySet, S.UniversalSet, S.Reals): reps[r] = s.as_relational(x) continue raise NotImplementedError(filldedent(''' as_set is not implemented for relationals with periodic solutions ''')) return self.subs(reps)._eval_as_set() else: raise NotImplementedError("Sorry, as_set has not yet been" " implemented for multivariate" " expressions") @property def binary_symbols(self): from sympy.core.relational import Eq, Ne return set().union(*[i.binary_symbols for i in self.args if i.is_Boolean or i.is_Symbol or isinstance(i, (Eq, Ne))]) class BooleanAtom(Boolean): """ Base class of BooleanTrue and BooleanFalse. """ is_Boolean = True is_Atom = True _op_priority = 11 # higher than Expr def simplify(self, *a, **kw): return self def expand(self, *a, **kw): return self @property def canonical(self): return self def _noop(self, other=None): raise TypeError('BooleanAtom not allowed in this context.') __add__ = _noop __radd__ = _noop __sub__ = _noop __rsub__ = _noop __mul__ = _noop __rmul__ = _noop __pow__ = _noop __rpow__ = _noop __truediv__ = _noop __rtruediv__ = _noop __mod__ = _noop __rmod__ = _noop _eval_power = _noop # /// drop when Py2 is no longer supported def __lt__(self, other): from sympy.utilities.misc import filldedent raise TypeError(filldedent(''' A Boolean argument can only be used in Eq and Ne; all other relationals expect real expressions. ''')) __le__ = __lt__ __gt__ = __lt__ __ge__ = __lt__ # \\\ class BooleanTrue(BooleanAtom, metaclass=Singleton): """ SymPy version of True, a singleton that can be accessed via S.true. This is the SymPy version of True, for use in the logic module. The primary advantage of using true instead of True is that shorthand boolean operations like ~ and >> will work as expected on this class, whereas with True they act bitwise on 1. Functions in the logic module will return this class when they evaluate to true. Notes ===== There is liable to be some confusion as to when ``True`` should be used and when ``S.true`` should be used in various contexts throughout SymPy. An important thing to remember is that ``sympify(True)`` returns ``S.true``. This means that for the most part, you can just use ``True`` and it will automatically be converted to ``S.true`` when necessary, similar to how you can generally use 1 instead of ``S.One``. The rule of thumb is: "If the boolean in question can be replaced by an arbitrary symbolic ``Boolean``, like ``Or(x, y)`` or ``x > 1``, use ``S.true``. Otherwise, use ``True``" In other words, use ``S.true`` only on those contexts where the boolean is being used as a symbolic representation of truth. For example, if the object ends up in the ``.args`` of any expression, then it must necessarily be ``S.true`` instead of ``True``, as elements of ``.args`` must be ``Basic``. On the other hand, ``==`` is not a symbolic operation in SymPy, since it always returns ``True`` or ``False``, and does so in terms of structural equality rather than mathematical, so it should return ``True``. The assumptions system should use ``True`` and ``False``. Aside from not satisfying the above rule of thumb, the assumptions system uses a three-valued logic (``True``, ``False``, ``None``), whereas ``S.true`` and ``S.false`` represent a two-valued logic. When in doubt, use ``True``. "``S.true == True is True``." While "``S.true is True``" is ``False``, "``S.true == True``" is ``True``, so if there is any doubt over whether a function or expression will return ``S.true`` or ``True``, just use ``==`` instead of ``is`` to do the comparison, and it will work in either case. Finally, for boolean flags, it's better to just use ``if x`` instead of ``if x is True``. To quote PEP 8: Don't compare boolean values to ``True`` or ``False`` using ``==``. * Yes: ``if greeting:`` * No: ``if greeting == True:`` * Worse: ``if greeting is True:`` Examples ======== >>> from sympy import sympify, true, false, Or >>> sympify(True) True >>> _ is True, _ is true (False, True) >>> Or(true, false) True >>> _ is true True Python operators give a boolean result for true but a bitwise result for True >>> ~true, ~True (False, -2) >>> true >> true, True >> True (True, 0) Python operators give a boolean result for true but a bitwise result for True >>> ~true, ~True (False, -2) >>> true >> true, True >> True (True, 0) See Also ======== sympy.logic.boolalg.BooleanFalse """ def __bool__(self): return True def __hash__(self): return hash(True) @property def negated(self): return S.false def as_set(self): """ Rewrite logic operators and relationals in terms of real sets. Examples ======== >>> from sympy import true >>> true.as_set() UniversalSet """ return S.UniversalSet class BooleanFalse(BooleanAtom, metaclass=Singleton): """ SymPy version of False, a singleton that can be accessed via S.false. This is the SymPy version of False, for use in the logic module. The primary advantage of using false instead of False is that shorthand boolean operations like ~ and >> will work as expected on this class, whereas with False they act bitwise on 0. Functions in the logic module will return this class when they evaluate to false. Notes ====== See note in :py:class`sympy.logic.boolalg.BooleanTrue` Examples ======== >>> from sympy import sympify, true, false, Or >>> sympify(False) False >>> _ is False, _ is false (False, True) >>> Or(true, false) True >>> _ is true True Python operators give a boolean result for false but a bitwise result for False >>> ~false, ~False (True, -1) >>> false >> false, False >> False (True, 0) See Also ======== sympy.logic.boolalg.BooleanTrue """ def __bool__(self): return False def __hash__(self): return hash(False) @property def negated(self): return S.true def as_set(self): """ Rewrite logic operators and relationals in terms of real sets. Examples ======== >>> from sympy import false >>> false.as_set() EmptySet """ return S.EmptySet true = BooleanTrue() false = BooleanFalse() # We want S.true and S.false to work, rather than S.BooleanTrue and # S.BooleanFalse, but making the class and instance names the same causes some # major issues (like the inability to import the class directly from this # file). S.true = true S.false = false converter[bool] = lambda x: S.true if x else S.false class BooleanFunction(Application, Boolean): """Boolean function is a function that lives in a boolean space It is used as base class for And, Or, Not, etc. """ is_Boolean = True def _eval_simplify(self, **kwargs): rv = self.func(*[ a._eval_simplify(**kwargs) for a in self.args]) return simplify_logic(rv) def simplify(self, **kwargs): from sympy.simplify.simplify import simplify return simplify(self, **kwargs) def __lt__(self, other): from sympy.utilities.misc import filldedent raise TypeError(filldedent(''' A Boolean argument can only be used in Eq and Ne; all other relationals expect real expressions. ''')) __le__ = __lt__ __ge__ = __lt__ __gt__ = __lt__ @classmethod def binary_check_and_simplify(self, *args): from sympy.core.relational import Relational, Eq, Ne args = [as_Boolean(i) for i in args] bin = set().union(*[i.binary_symbols for i in args]) rel = set().union(*[i.atoms(Relational) for i in args]) reps = {} for x in bin: for r in rel: if x in bin and x in r.free_symbols: if isinstance(r, (Eq, Ne)): if not ( S.true in r.args or S.false in r.args): reps[r] = S.false else: raise TypeError(filldedent(''' Incompatible use of binary symbol `%s` as a real variable in `%s` ''' % (x, r))) return [i.subs(reps) for i in args] def to_nnf(self, simplify=True): return self._to_nnf(*self.args, simplify=simplify) def to_anf(self, deep=True): return self._to_anf(*self.args, deep=deep) @classmethod def _to_nnf(cls, *args, **kwargs): simplify = kwargs.get('simplify', True) argset = set() for arg in args: if not is_literal(arg): arg = arg.to_nnf(simplify) if simplify: if isinstance(arg, cls): arg = arg.args else: arg = (arg,) for a in arg: if Not(a) in argset: return cls.zero argset.add(a) else: argset.add(arg) return cls(*argset) @classmethod def _to_anf(cls, *args, **kwargs): deep = kwargs.get('deep', True) argset = set() for arg in args: if deep: if not is_literal(arg) or isinstance(arg, Not): arg = arg.to_anf(deep=deep) argset.add(arg) else: argset.add(arg) return cls(*argset, remove_true=False) # the diff method below is copied from Expr class def diff(self, *symbols, **assumptions): assumptions.setdefault("evaluate", True) return Derivative(self, *symbols, **assumptions) def _eval_derivative(self, x): from sympy.core.relational import Eq from sympy.functions.elementary.piecewise import Piecewise if x in self.binary_symbols: return Piecewise( (0, Eq(self.subs(x, 0), self.subs(x, 1))), (1, True)) elif x in self.free_symbols: # not implemented, see https://www.encyclopediaofmath.org/ # index.php/Boolean_differential_calculus pass else: return S.Zero def _apply_patternbased_simplification(self, rv, patterns, measure, dominatingvalue, replacementvalue=None): """ Replace patterns of Relational Parameters ========== rv : Expr Boolean expression patterns : tuple Tuple of tuples, with (pattern to simplify, simplified pattern) measure : function Simplification measure dominatingvalue : boolean or None The dominating value for the function of consideration. For example, for And S.false is dominating. As soon as one expression is S.false in And, the whole expression is S.false. replacementvalue : boolean or None, optional The resulting value for the whole expression if one argument evaluates to dominatingvalue. For example, for Nand S.false is dominating, but in this case the resulting value is S.true. Default is None. If replacementvalue is None and dominatingvalue is not None, replacementvalue = dominatingvalue """ from sympy.core.relational import Relational, _canonical if replacementvalue is None and dominatingvalue is not None: replacementvalue = dominatingvalue # Use replacement patterns for Relationals changed = True Rel, nonRel = sift(rv.args, lambda i: isinstance(i, Relational), binary=True) if len(Rel) <= 1: return rv Rel, nonRealRel = sift(Rel, lambda i: all(s.is_real is not False for s in i.free_symbols), binary=True) Rel = [i.canonical for i in Rel] while changed and len(Rel) >= 2: changed = False # Sort based on ordered Rel = list(ordered(Rel)) # Create a list of possible replacements results = [] # Try all combinations for ((i, pi), (j, pj)) in combinations(enumerate(Rel), 2): for k, (pattern, simp) in enumerate(patterns): res = [] # use SymPy matching oldexpr = rv.func(pi, pj) tmpres = oldexpr.match(pattern) if tmpres: res.append((tmpres, oldexpr)) # Try reversing first relational # This and the rest should not be required with a better # canonical oldexpr = rv.func(pi.reversed, pj) tmpres = oldexpr.match(pattern) if tmpres: res.append((tmpres, oldexpr)) # Try reversing second relational oldexpr = rv.func(pi, pj.reversed) tmpres = oldexpr.match(pattern) if tmpres: res.append((tmpres, oldexpr)) # Try reversing both relationals oldexpr = rv.func(pi.reversed, pj.reversed) tmpres = oldexpr.match(pattern) if tmpres: res.append((tmpres, oldexpr)) if res: for tmpres, oldexpr in res: # we have a matching, compute replacement np = simp.subs(tmpres) if np == dominatingvalue: # if dominatingvalue, the whole expression # will be replacementvalue return replacementvalue # add replacement if not isinstance(np, ITE): # We only want to use ITE replacements if # they simplify to a relational costsaving = measure(oldexpr) - measure(np) if costsaving > 0: results.append((costsaving, (i, j, np))) if results: # Sort results based on complexity results = list(reversed(sorted(results, key=lambda pair: pair[0]))) # Replace the one providing most simplification cost, replacement = results[0] i, j, newrel = replacement # Remove the old relationals del Rel[j] del Rel[i] if dominatingvalue is None or newrel != ~dominatingvalue: # Insert the new one (no need to insert a value that will # not affect the result) Rel.append(newrel) # We did change something so try again changed = True rv = rv.func(*([_canonical(i) for i in ordered(Rel)] + nonRel + nonRealRel)) return rv class And(LatticeOp, BooleanFunction): """ Logical AND function. It evaluates its arguments in order, giving False immediately if any of them are False, and True if they are all True. Examples ======== >>> from sympy.abc import x, y >>> from sympy.logic.boolalg import And >>> x & y x & y Notes ===== The ``&`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise and. Hence, ``And(a, b)`` and ``a & b`` will return different things if ``a`` and ``b`` are integers. >>> And(x, y).subs(x, 1) y """ zero = false identity = true nargs = None @classmethod def _new_args_filter(cls, args): args = BooleanFunction.binary_check_and_simplify(*args) args = LatticeOp._new_args_filter(args, And) newargs = [] rel = set() for x in ordered(args): if x.is_Relational: c = x.canonical if c in rel: continue elif c.negated.canonical in rel: return [S.false] else: rel.add(c) newargs.append(x) return newargs def _eval_subs(self, old, new): args = [] bad = None for i in self.args: try: i = i.subs(old, new) except TypeError: # store TypeError if bad is None: bad = i continue if i == False: return S.false elif i != True: args.append(i) if bad is not None: # let it raise bad.subs(old, new) return self.func(*args) def _eval_simplify(self, **kwargs): from sympy.core.relational import Equality, Relational from sympy.solvers.solveset import linear_coeffs # standard simplify rv = super()._eval_simplify(**kwargs) if not isinstance(rv, And): return rv # simplify args that are equalities involving # symbols so x == 0 & x == y -> x==0 & y == 0 Rel, nonRel = sift(rv.args, lambda i: isinstance(i, Relational), binary=True) if not Rel: return rv eqs, other = sift(Rel, lambda i: isinstance(i, Equality), binary=True) if not eqs: return rv measure, ratio = kwargs['measure'], kwargs['ratio'] reps = {} sifted = {} if eqs: # group by length of free symbols sifted = sift(ordered([ (i.free_symbols, i) for i in eqs]), lambda x: len(x[0])) eqs = [] while 1 in sifted: for free, e in sifted.pop(1): x = free.pop() if e.lhs != x or x in e.rhs.free_symbols: try: m, b = linear_coeffs( e.rewrite(Add, evaluate=False), x) enew = e.func(x, -b/m) if measure(enew) <= ratio*measure(e): e = enew else: eqs.append(e) continue except ValueError: pass if x in reps: eqs.append(e.func(e.rhs, reps[x])) else: reps[x] = e.rhs eqs.append(e) resifted = defaultdict(list) for k in sifted: for f, e in sifted[k]: e = e.subs(reps) f = e.free_symbols resifted[len(f)].append((f, e)) sifted = resifted for k in sifted: eqs.extend([e for f, e in sifted[k]]) other = [ei.subs(reps) for ei in other] rv = rv.func(*([i.canonical for i in (eqs + other)] + nonRel)) patterns = simplify_patterns_and() return self._apply_patternbased_simplification(rv, patterns, measure, False) def _eval_as_set(self): from sympy.sets.sets import Intersection return Intersection(*[arg.as_set() for arg in self.args]) def _eval_rewrite_as_Nor(self, *args, **kwargs): return Nor(*[Not(arg) for arg in self.args]) def to_anf(self, deep=True): if deep: result = And._to_anf(*self.args, deep=deep) return distribute_xor_over_and(result) return self class Or(LatticeOp, BooleanFunction): """ Logical OR function It evaluates its arguments in order, giving True immediately if any of them are True, and False if they are all False. Examples ======== >>> from sympy.abc import x, y >>> from sympy.logic.boolalg import Or >>> x | y x | y Notes ===== The ``|`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise or. Hence, ``Or(a, b)`` and ``a | b`` will return different things if ``a`` and ``b`` are integers. >>> Or(x, y).subs(x, 0) y """ zero = true identity = false @classmethod def _new_args_filter(cls, args): newargs = [] rel = [] args = BooleanFunction.binary_check_and_simplify(*args) for x in args: if x.is_Relational: c = x.canonical if c in rel: continue nc = c.negated.canonical if any(r == nc for r in rel): return [S.true] rel.append(c) newargs.append(x) return LatticeOp._new_args_filter(newargs, Or) def _eval_subs(self, old, new): args = [] bad = None for i in self.args: try: i = i.subs(old, new) except TypeError: # store TypeError if bad is None: bad = i continue if i == True: return S.true elif i != False: args.append(i) if bad is not None: # let it raise bad.subs(old, new) return self.func(*args) def _eval_as_set(self): from sympy.sets.sets import Union return Union(*[arg.as_set() for arg in self.args]) def _eval_rewrite_as_Nand(self, *args, **kwargs): return Nand(*[Not(arg) for arg in self.args]) def _eval_simplify(self, **kwargs): # standard simplify rv = super()._eval_simplify(**kwargs) if not isinstance(rv, Or): return rv patterns = simplify_patterns_or() return self._apply_patternbased_simplification(rv, patterns, kwargs['measure'], S.true) def to_anf(self, deep=True): args = range(1, len(self.args) + 1) args = (combinations(self.args, j) for j in args) args = chain.from_iterable(args) # powerset args = (And(*arg) for arg in args) args = map(lambda x: to_anf(x, deep=deep) if deep else x, args) return Xor(*list(args), remove_true=False) class Not(BooleanFunction): """ Logical Not function (negation) Returns True if the statement is False Returns False if the statement is True Examples ======== >>> from sympy.logic.boolalg import Not, And, Or >>> from sympy.abc import x, A, B >>> Not(True) False >>> Not(False) True >>> Not(And(True, False)) True >>> Not(Or(True, False)) False >>> Not(And(And(True, x), Or(x, False))) ~x >>> ~x ~x >>> Not(And(Or(A, B), Or(~A, ~B))) ~((A | B) & (~A | ~B)) Notes ===== - The ``~`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise not. In particular, ``~a`` and ``Not(a)`` will be different if ``a`` is an integer. Furthermore, since bools in Python subclass from ``int``, ``~True`` is the same as ``~1`` which is ``-2``, which has a boolean value of True. To avoid this issue, use the SymPy boolean types ``true`` and ``false``. >>> from sympy import true >>> ~True -2 >>> ~true False """ is_Not = True @classmethod def eval(cls, arg): from sympy import ( Equality, GreaterThan, LessThan, StrictGreaterThan, StrictLessThan, Unequality) if isinstance(arg, Number) or arg in (True, False): return false if arg else true if arg.is_Not: return arg.args[0] # Simplify Relational objects. if isinstance(arg, Equality): return Unequality(*arg.args) if isinstance(arg, Unequality): return Equality(*arg.args) if isinstance(arg, StrictLessThan): return GreaterThan(*arg.args) if isinstance(arg, StrictGreaterThan): return LessThan(*arg.args) if isinstance(arg, LessThan): return StrictGreaterThan(*arg.args) if isinstance(arg, GreaterThan): return StrictLessThan(*arg.args) def _eval_as_set(self): """ Rewrite logic operators and relationals in terms of real sets. Examples ======== >>> from sympy import Not, Symbol >>> x = Symbol('x') >>> Not(x > 0).as_set() Interval(-oo, 0) """ return self.args[0].as_set().complement(S.Reals) def to_nnf(self, simplify=True): if is_literal(self): return self expr = self.args[0] func, args = expr.func, expr.args if func == And: return Or._to_nnf(*[~arg for arg in args], simplify=simplify) if func == Or: return And._to_nnf(*[~arg for arg in args], simplify=simplify) if func == Implies: a, b = args return And._to_nnf(a, ~b, simplify=simplify) if func == Equivalent: return And._to_nnf(Or(*args), Or(*[~arg for arg in args]), simplify=simplify) if func == Xor: result = [] for i in range(1, len(args)+1, 2): for neg in combinations(args, i): clause = [~s if s in neg else s for s in args] result.append(Or(*clause)) return And._to_nnf(*result, simplify=simplify) if func == ITE: a, b, c = args return And._to_nnf(Or(a, ~c), Or(~a, ~b), simplify=simplify) raise ValueError("Illegal operator %s in expression" % func) def to_anf(self, deep=True): return Xor._to_anf(true, self.args[0], deep=deep) class Xor(BooleanFunction): """ Logical XOR (exclusive OR) function. Returns True if an odd number of the arguments are True and the rest are False. Returns False if an even number of the arguments are True and the rest are False. Examples ======== >>> from sympy.logic.boolalg import Xor >>> from sympy import symbols >>> x, y = symbols('x y') >>> Xor(True, False) True >>> Xor(True, True) False >>> Xor(True, False, True, True, False) True >>> Xor(True, False, True, False) False >>> x ^ y x ^ y Notes ===== The ``^`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise xor. In particular, ``a ^ b`` and ``Xor(a, b)`` will be different if ``a`` and ``b`` are integers. >>> Xor(x, y).subs(y, 0) x """ def __new__(cls, *args, remove_true=True, **kwargs): argset = set() obj = super().__new__(cls, *args, **kwargs) for arg in obj._args: if isinstance(arg, Number) or arg in (True, False): if arg: arg = true else: continue if isinstance(arg, Xor): for a in arg.args: argset.remove(a) if a in argset else argset.add(a) elif arg in argset: argset.remove(arg) else: argset.add(arg) rel = [(r, r.canonical, r.negated.canonical) for r in argset if r.is_Relational] odd = False # is number of complimentary pairs odd? start 0 -> False remove = [] for i, (r, c, nc) in enumerate(rel): for j in range(i + 1, len(rel)): rj, cj = rel[j][:2] if cj == nc: odd = ~odd break elif cj == c: break else: continue remove.append((r, rj)) if odd: argset.remove(true) if true in argset else argset.add(true) for a, b in remove: argset.remove(a) argset.remove(b) if len(argset) == 0: return false elif len(argset) == 1: return argset.pop() elif True in argset and remove_true: argset.remove(True) return Not(Xor(*argset)) else: obj._args = tuple(ordered(argset)) obj._argset = frozenset(argset) return obj # XXX: This should be cached on the object rather than using cacheit # Maybe it can be computed in __new__? @property # type: ignore @cacheit def args(self): return tuple(ordered(self._argset)) def to_nnf(self, simplify=True): args = [] for i in range(0, len(self.args)+1, 2): for neg in combinations(self.args, i): clause = [~s if s in neg else s for s in self.args] args.append(Or(*clause)) return And._to_nnf(*args, simplify=simplify) def _eval_rewrite_as_Or(self, *args, **kwargs): a = self.args return Or(*[_convert_to_varsSOP(x, self.args) for x in _get_odd_parity_terms(len(a))]) def _eval_rewrite_as_And(self, *args, **kwargs): a = self.args return And(*[_convert_to_varsPOS(x, self.args) for x in _get_even_parity_terms(len(a))]) def _eval_simplify(self, **kwargs): # as standard simplify uses simplify_logic which writes things as # And and Or, we only simplify the partial expressions before using # patterns rv = self.func(*[a._eval_simplify(**kwargs) for a in self.args]) if not isinstance(rv, Xor): # This shouldn't really happen here return rv patterns = simplify_patterns_xor() return self._apply_patternbased_simplification(rv, patterns, kwargs['measure'], None) class Nand(BooleanFunction): """ Logical NAND function. It evaluates its arguments in order, giving True immediately if any of them are False, and False if they are all True. Returns True if any of the arguments are False Returns False if all arguments are True Examples ======== >>> from sympy.logic.boolalg import Nand >>> from sympy import symbols >>> x, y = symbols('x y') >>> Nand(False, True) True >>> Nand(True, True) False >>> Nand(x, y) ~(x & y) """ @classmethod def eval(cls, *args): return Not(And(*args)) class Nor(BooleanFunction): """ Logical NOR function. It evaluates its arguments in order, giving False immediately if any of them are True, and True if they are all False. Returns False if any argument is True Returns True if all arguments are False Examples ======== >>> from sympy.logic.boolalg import Nor >>> from sympy import symbols >>> x, y = symbols('x y') >>> Nor(True, False) False >>> Nor(True, True) False >>> Nor(False, True) False >>> Nor(False, False) True >>> Nor(x, y) ~(x | y) """ @classmethod def eval(cls, *args): return Not(Or(*args)) class Xnor(BooleanFunction): """ Logical XNOR function. Returns False if an odd number of the arguments are True and the rest are False. Returns True if an even number of the arguments are True and the rest are False. Examples ======== >>> from sympy.logic.boolalg import Xnor >>> from sympy import symbols >>> x, y = symbols('x y') >>> Xnor(True, False) False >>> Xnor(True, True) True >>> Xnor(True, False, True, True, False) False >>> Xnor(True, False, True, False) True """ @classmethod def eval(cls, *args): return Not(Xor(*args)) class Implies(BooleanFunction): """ Logical implication. A implies B is equivalent to !A v B Accepts two Boolean arguments; A and B. Returns False if A is True and B is False Returns True otherwise. Examples ======== >>> from sympy.logic.boolalg import Implies >>> from sympy import symbols >>> x, y = symbols('x y') >>> Implies(True, False) False >>> Implies(False, False) True >>> Implies(True, True) True >>> Implies(False, True) True >>> x >> y Implies(x, y) >>> y << x Implies(x, y) Notes ===== The ``>>`` and ``<<`` operators are provided as a convenience, but note that their use here is different from their normal use in Python, which is bit shifts. Hence, ``Implies(a, b)`` and ``a >> b`` will return different things if ``a`` and ``b`` are integers. In particular, since Python considers ``True`` and ``False`` to be integers, ``True >> True`` will be the same as ``1 >> 1``, i.e., 0, which has a truth value of False. To avoid this issue, use the SymPy objects ``true`` and ``false``. >>> from sympy import true, false >>> True >> False 1 >>> true >> false False """ @classmethod def eval(cls, *args): try: newargs = [] for x in args: if isinstance(x, Number) or x in (0, 1): newargs.append(True if x else False) else: newargs.append(x) A, B = newargs except ValueError: raise ValueError( "%d operand(s) used for an Implies " "(pairs are required): %s" % (len(args), str(args))) if A == True or A == False or B == True or B == False: return Or(Not(A), B) elif A == B: return S.true elif A.is_Relational and B.is_Relational: if A.canonical == B.canonical: return S.true if A.negated.canonical == B.canonical: return B else: return Basic.__new__(cls, *args) def to_nnf(self, simplify=True): a, b = self.args return Or._to_nnf(~a, b, simplify=simplify) def to_anf(self, deep=True): a, b = self.args return Xor._to_anf(true, a, And(a, b), deep=deep) class Equivalent(BooleanFunction): """ Equivalence relation. Equivalent(A, B) is True iff A and B are both True or both False Returns True if all of the arguments are logically equivalent. Returns False otherwise. Examples ======== >>> from sympy.logic.boolalg import Equivalent, And >>> from sympy.abc import x >>> Equivalent(False, False, False) True >>> Equivalent(True, False, False) False >>> Equivalent(x, And(x, True)) True """ def __new__(cls, *args, **options): from sympy.core.relational import Relational args = [_sympify(arg) for arg in args] argset = set(args) for x in args: if isinstance(x, Number) or x in [True, False]: # Includes 0, 1 argset.discard(x) argset.add(True if x else False) rel = [] for r in argset: if isinstance(r, Relational): rel.append((r, r.canonical, r.negated.canonical)) remove = [] for i, (r, c, nc) in enumerate(rel): for j in range(i + 1, len(rel)): rj, cj = rel[j][:2] if cj == nc: return false elif cj == c: remove.append((r, rj)) break for a, b in remove: argset.remove(a) argset.remove(b) argset.add(True) if len(argset) <= 1: return true if True in argset: argset.discard(True) return And(*argset) if False in argset: argset.discard(False) return And(*[~arg for arg in argset]) _args = frozenset(argset) obj = super().__new__(cls, _args) obj._argset = _args return obj # XXX: This should be cached on the object rather than using cacheit # Maybe it can be computed in __new__? @property # type: ignore @cacheit def args(self): return tuple(ordered(self._argset)) def to_nnf(self, simplify=True): args = [] for a, b in zip(self.args, self.args[1:]): args.append(Or(~a, b)) args.append(Or(~self.args[-1], self.args[0])) return And._to_nnf(*args, simplify=simplify) def to_anf(self, deep=True): a = And(*self.args) b = And(*[to_anf(Not(arg), deep=False) for arg in self.args]) b = distribute_xor_over_and(b) return Xor._to_anf(a, b, deep=deep) class ITE(BooleanFunction): """ If then else clause. ITE(A, B, C) evaluates and returns the result of B if A is true else it returns the result of C. All args must be Booleans. Examples ======== >>> from sympy.logic.boolalg import ITE, And, Xor, Or >>> from sympy.abc import x, y, z >>> ITE(True, False, True) False >>> ITE(Or(True, False), And(True, True), Xor(True, True)) True >>> ITE(x, y, z) ITE(x, y, z) >>> ITE(True, x, y) x >>> ITE(False, x, y) y >>> ITE(x, y, y) y Trying to use non-Boolean args will generate a TypeError: >>> ITE(True, [], ()) Traceback (most recent call last): ... TypeError: expecting bool, Boolean or ITE, not `[]` """ def __new__(cls, *args, **kwargs): from sympy.core.relational import Eq, Ne if len(args) != 3: raise ValueError('expecting exactly 3 args') a, b, c = args # check use of binary symbols if isinstance(a, (Eq, Ne)): # in this context, we can evaluate the Eq/Ne # if one arg is a binary symbol and the other # is true/false b, c = map(as_Boolean, (b, c)) bin = set().union(*[i.binary_symbols for i in (b, c)]) if len(set(a.args) - bin) == 1: # one arg is a binary_symbols _a = a if a.lhs is S.true: a = a.rhs elif a.rhs is S.true: a = a.lhs elif a.lhs is S.false: a = ~a.rhs elif a.rhs is S.false: a = ~a.lhs else: # binary can only equal True or False a = S.false if isinstance(_a, Ne): a = ~a else: a, b, c = BooleanFunction.binary_check_and_simplify( a, b, c) rv = None if kwargs.get('evaluate', True): rv = cls.eval(a, b, c) if rv is None: rv = BooleanFunction.__new__(cls, a, b, c, evaluate=False) return rv @classmethod def eval(cls, *args): from sympy.core.relational import Eq, Ne # do the args give a singular result? a, b, c = args if isinstance(a, (Ne, Eq)): _a = a if S.true in a.args: a = a.lhs if a.rhs is S.true else a.rhs elif S.false in a.args: a = ~a.lhs if a.rhs is S.false else ~a.rhs else: _a = None if _a is not None and isinstance(_a, Ne): a = ~a if a is S.true: return b if a is S.false: return c if b == c: return b else: # or maybe the results allow the answer to be expressed # in terms of the condition if b is S.true and c is S.false: return a if b is S.false and c is S.true: return Not(a) if [a, b, c] != args: return cls(a, b, c, evaluate=False) def to_nnf(self, simplify=True): a, b, c = self.args return And._to_nnf(Or(~a, b), Or(a, c), simplify=simplify) def _eval_as_set(self): return self.to_nnf().as_set() def _eval_rewrite_as_Piecewise(self, *args, **kwargs): from sympy.functions import Piecewise return Piecewise((args[1], args[0]), (args[2], True)) # end class definitions. Some useful methods def conjuncts(expr): """Return a list of the conjuncts in the expr s. Examples ======== >>> from sympy.logic.boolalg import conjuncts >>> from sympy.abc import A, B >>> conjuncts(A & B) frozenset({A, B}) >>> conjuncts(A | B) frozenset({A | B}) """ return And.make_args(expr) def disjuncts(expr): """Return a list of the disjuncts in the sentence s. Examples ======== >>> from sympy.logic.boolalg import disjuncts >>> from sympy.abc import A, B >>> disjuncts(A | B) frozenset({A, B}) >>> disjuncts(A & B) frozenset({A & B}) """ return Or.make_args(expr) def distribute_and_over_or(expr): """ Given a sentence s consisting of conjunctions and disjunctions of literals, return an equivalent sentence in CNF. Examples ======== >>> from sympy.logic.boolalg import distribute_and_over_or, And, Or, Not >>> from sympy.abc import A, B, C >>> distribute_and_over_or(Or(A, And(Not(B), Not(C)))) (A | ~B) & (A | ~C) """ return _distribute((expr, And, Or)) def distribute_or_over_and(expr): """ Given a sentence s consisting of conjunctions and disjunctions of literals, return an equivalent sentence in DNF. Note that the output is NOT simplified. Examples ======== >>> from sympy.logic.boolalg import distribute_or_over_and, And, Or, Not >>> from sympy.abc import A, B, C >>> distribute_or_over_and(And(Or(Not(A), B), C)) (B & C) | (C & ~A) """ return _distribute((expr, Or, And)) def distribute_xor_over_and(expr): """ Given a sentence s consisting of conjunction and exclusive disjunctions of literals, return an equivalent exclusive disjunction. Note that the output is NOT simplified. Examples ======== >>> from sympy.logic.boolalg import distribute_xor_over_and, And, Xor, Not >>> from sympy.abc import A, B, C >>> distribute_xor_over_and(And(Xor(Not(A), B), C)) (B & C) ^ (C & ~A) """ return _distribute((expr, Xor, And)) def _distribute(info): """ Distributes info[1] over info[2] with respect to info[0]. """ if isinstance(info[0], info[2]): for arg in info[0].args: if isinstance(arg, info[1]): conj = arg break else: return info[0] rest = info[2](*[a for a in info[0].args if a is not conj]) return info[1](*list(map(_distribute, [(info[2](c, rest), info[1], info[2]) for c in conj.args])), remove_true=False) elif isinstance(info[0], info[1]): return info[1](*list(map(_distribute, [(x, info[1], info[2]) for x in info[0].args])), remove_true=False) else: return info[0] def to_anf(expr, deep=True): r""" Converts expr to Algebraic Normal Form (ANF). ANF is a canonical normal form, which means that two equivalent formulas will convert to the same ANF. A logical expression is in ANF if it has the form .. math:: 1 \oplus a \oplus b \oplus ab \oplus abc i.e. it can be: - purely true, - purely false, - conjunction of variables, - exclusive disjunction. The exclusive disjunction can only contain true, variables or conjunction of variables. No negations are permitted. If ``deep`` is ``False``, arguments of the boolean expression are considered variables, i.e. only the top-level expression is converted to ANF. Examples ======== >>> from sympy.logic.boolalg import And, Or, Not, Implies, Equivalent >>> from sympy.logic.boolalg import to_anf >>> from sympy.abc import A, B, C >>> to_anf(Not(A)) A ^ True >>> to_anf(And(Or(A, B), Not(C))) A ^ B ^ (A & B) ^ (A & C) ^ (B & C) ^ (A & B & C) >>> to_anf(Implies(Not(A), Equivalent(B, C)), deep=False) True ^ ~A ^ (~A & (Equivalent(B, C))) """ expr = sympify(expr) if is_anf(expr): return expr return expr.to_anf(deep=deep) def to_nnf(expr, simplify=True): """ Converts expr to Negation Normal Form. A logical expression is in Negation Normal Form (NNF) if it contains only And, Or and Not, and Not is applied only to literals. If simplify is True, the result contains no redundant clauses. Examples ======== >>> from sympy.abc import A, B, C, D >>> from sympy.logic.boolalg import Not, Equivalent, to_nnf >>> to_nnf(Not((~A & ~B) | (C & D))) (A | B) & (~C | ~D) >>> to_nnf(Equivalent(A >> B, B >> A)) (A | ~B | (A & ~B)) & (B | ~A | (B & ~A)) """ if is_nnf(expr, simplify): return expr return expr.to_nnf(simplify) def to_cnf(expr, simplify=False, force=False): """ Convert a propositional logical sentence s to conjunctive normal form: ((A | ~B | ...) & (B | C | ...) & ...). If simplify is True, the expr is evaluated to its simplest CNF form using the Quine-McCluskey algorithm; this may take a long time if there are more than 8 variables and requires that the ``force`` flag be set to True (default is False). Examples ======== >>> from sympy.logic.boolalg import to_cnf >>> from sympy.abc import A, B, D >>> to_cnf(~(A | B) | D) (D | ~A) & (D | ~B) >>> to_cnf((A | B) & (A | ~A), True) A | B """ expr = sympify(expr) if not isinstance(expr, BooleanFunction): return expr if simplify: if not force and len(_find_predicates(expr)) > 8: raise ValueError(filldedent(''' To simplify a logical expression with more than 8 variables may take a long time and requires the use of `force=True`.''')) return simplify_logic(expr, 'cnf', True, force=force) # Don't convert unless we have to if is_cnf(expr): return expr expr = eliminate_implications(expr) res = distribute_and_over_or(expr) return res def to_dnf(expr, simplify=False, force=False): """ Convert a propositional logical sentence s to disjunctive normal form: ((A & ~B & ...) | (B & C & ...) | ...). If simplify is True, the expr is evaluated to its simplest DNF form using the Quine-McCluskey algorithm; this may take a long time if there are more than 8 variables and requires that the ``force`` flag be set to True (default is False). Examples ======== >>> from sympy.logic.boolalg import to_dnf >>> from sympy.abc import A, B, C >>> to_dnf(B & (A | C)) (A & B) | (B & C) >>> to_dnf((A & B) | (A & ~B) | (B & C) | (~B & C), True) A | C """ expr = sympify(expr) if not isinstance(expr, BooleanFunction): return expr if simplify: if not force and len(_find_predicates(expr)) > 8: raise ValueError(filldedent(''' To simplify a logical expression with more than 8 variables may take a long time and requires the use of `force=True`.''')) return simplify_logic(expr, 'dnf', True, force=force) # Don't convert unless we have to if is_dnf(expr): return expr expr = eliminate_implications(expr) return distribute_or_over_and(expr) def is_anf(expr): r""" Checks if expr is in Algebraic Normal Form (ANF). A logical expression is in ANF if it has the form .. math:: 1 \oplus a \oplus b \oplus ab \oplus abc i.e. it is purely true, purely false, conjunction of variables or exclusive disjunction. The exclusive disjunction can only contain true, variables or conjunction of variables. No negations are permitted. Examples ======== >>> from sympy.logic.boolalg import And, Not, Xor, true, is_anf >>> from sympy.abc import A, B, C >>> is_anf(true) True >>> is_anf(A) True >>> is_anf(And(A, B, C)) True >>> is_anf(Xor(A, Not(B))) False """ expr = sympify(expr) if is_literal(expr) and not isinstance(expr, Not): return True if isinstance(expr, And): for arg in expr.args: if not arg.is_Symbol: return False return True elif isinstance(expr, Xor): for arg in expr.args: if isinstance(arg, And): for a in arg.args: if not a.is_Symbol: return False elif is_literal(arg): if isinstance(arg, Not): return False else: return False return True else: return False def is_nnf(expr, simplified=True): """ Checks if expr is in Negation Normal Form. A logical expression is in Negation Normal Form (NNF) if it contains only And, Or and Not, and Not is applied only to literals. If simplified is True, checks if result contains no redundant clauses. Examples ======== >>> from sympy.abc import A, B, C >>> from sympy.logic.boolalg import Not, is_nnf >>> is_nnf(A & B | ~C) True >>> is_nnf((A | ~A) & (B | C)) False >>> is_nnf((A | ~A) & (B | C), False) True >>> is_nnf(Not(A & B) | C) False >>> is_nnf((A >> B) & (B >> A)) False """ expr = sympify(expr) if is_literal(expr): return True stack = [expr] while stack: expr = stack.pop() if expr.func in (And, Or): if simplified: args = expr.args for arg in args: if Not(arg) in args: return False stack.extend(expr.args) elif not is_literal(expr): return False return True def is_cnf(expr): """ Test whether or not an expression is in conjunctive normal form. Examples ======== >>> from sympy.logic.boolalg import is_cnf >>> from sympy.abc import A, B, C >>> is_cnf(A | B | C) True >>> is_cnf(A & B & C) True >>> is_cnf((A & B) | C) False """ return _is_form(expr, And, Or) def is_dnf(expr): """ Test whether or not an expression is in disjunctive normal form. Examples ======== >>> from sympy.logic.boolalg import is_dnf >>> from sympy.abc import A, B, C >>> is_dnf(A | B | C) True >>> is_dnf(A & B & C) True >>> is_dnf((A & B) | C) True >>> is_dnf(A & (B | C)) False """ return _is_form(expr, Or, And) def _is_form(expr, function1, function2): """ Test whether or not an expression is of the required form. """ expr = sympify(expr) vals = function1.make_args(expr) if isinstance(expr, function1) else [expr] for lit in vals: if isinstance(lit, function2): vals2 = function2.make_args(lit) if isinstance(lit, function2) else [lit] for l in vals2: if is_literal(l) is False: return False elif is_literal(lit) is False: return False return True def eliminate_implications(expr): """ Change >>, <<, and Equivalent into &, |, and ~. That is, return an expression that is equivalent to s, but has only &, |, and ~ as logical operators. Examples ======== >>> from sympy.logic.boolalg import Implies, Equivalent, \ eliminate_implications >>> from sympy.abc import A, B, C >>> eliminate_implications(Implies(A, B)) B | ~A >>> eliminate_implications(Equivalent(A, B)) (A | ~B) & (B | ~A) >>> eliminate_implications(Equivalent(A, B, C)) (A | ~C) & (B | ~A) & (C | ~B) """ return to_nnf(expr, simplify=False) def is_literal(expr): """ Returns True if expr is a literal, else False. Examples ======== >>> from sympy import Or, Q >>> from sympy.abc import A, B >>> from sympy.logic.boolalg import is_literal >>> is_literal(A) True >>> is_literal(~A) True >>> is_literal(Q.zero(A)) True >>> is_literal(A + B) True >>> is_literal(Or(A, B)) False """ if isinstance(expr, Not): return is_literal(expr.args[0]) elif expr in (True, False) or expr.is_Atom: return True elif not isinstance(expr, BooleanFunction) and all( a.is_Atom for a in expr.args): return True return False def to_int_repr(clauses, symbols): """ Takes clauses in CNF format and puts them into an integer representation. Examples ======== >>> from sympy.logic.boolalg import to_int_repr >>> from sympy.abc import x, y >>> to_int_repr([x | y, y], [x, y]) == [{1, 2}, {2}] True """ # Convert the symbol list into a dict symbols = dict(list(zip(symbols, list(range(1, len(symbols) + 1))))) def append_symbol(arg, symbols): if isinstance(arg, Not): return -symbols[arg.args[0]] else: return symbols[arg] return [{append_symbol(arg, symbols) for arg in Or.make_args(c)} for c in clauses] def term_to_integer(term): """ Return an integer corresponding to the base-2 digits given by ``term``. Parameters ========== term : a string or list of ones and zeros Examples ======== >>> from sympy.logic.boolalg import term_to_integer >>> term_to_integer([1, 0, 0]) 4 >>> term_to_integer('100') 4 """ return int(''.join(list(map(str, list(term)))), 2) def integer_to_term(k, n_bits=None): """ Return a list of the base-2 digits in the integer, ``k``. Parameters ========== k : int n_bits : int If ``n_bits`` is given and the number of digits in the binary representation of ``k`` is smaller than ``n_bits`` then left-pad the list with 0s. Examples ======== >>> from sympy.logic.boolalg import integer_to_term >>> integer_to_term(4) [1, 0, 0] >>> integer_to_term(4, 6) [0, 0, 0, 1, 0, 0] """ s = '{0:0{1}b}'.format(abs(as_int(k)), as_int(abs(n_bits or 0))) return list(map(int, s)) def truth_table(expr, variables, input=True): """ Return a generator of all possible configurations of the input variables, and the result of the boolean expression for those values. Parameters ========== expr : string or boolean expression variables : list of variables input : boolean (default True) indicates whether to return the input combinations. Examples ======== >>> from sympy.logic.boolalg import truth_table >>> from sympy.abc import x,y >>> table = truth_table(x >> y, [x, y]) >>> for t in table: ... print('{0} -> {1}'.format(*t)) [0, 0] -> True [0, 1] -> True [1, 0] -> False [1, 1] -> True >>> table = truth_table(x | y, [x, y]) >>> list(table) [([0, 0], False), ([0, 1], True), ([1, 0], True), ([1, 1], True)] If input is false, truth_table returns only a list of truth values. In this case, the corresponding input values of variables can be deduced from the index of a given output. >>> from sympy.logic.boolalg import integer_to_term >>> vars = [y, x] >>> values = truth_table(x >> y, vars, input=False) >>> values = list(values) >>> values [True, False, True, True] >>> for i, value in enumerate(values): ... print('{0} -> {1}'.format(list(zip( ... vars, integer_to_term(i, len(vars)))), value)) [(y, 0), (x, 0)] -> True [(y, 0), (x, 1)] -> False [(y, 1), (x, 0)] -> True [(y, 1), (x, 1)] -> True """ variables = [sympify(v) for v in variables] expr = sympify(expr) if not isinstance(expr, BooleanFunction) and not is_literal(expr): return table = product([0, 1], repeat=len(variables)) for term in table: term = list(term) value = expr.xreplace(dict(zip(variables, term))) if input: yield term, value else: yield value def _check_pair(minterm1, minterm2): """ Checks if a pair of minterms differs by only one bit. If yes, returns index, else returns -1. """ index = -1 for x, (i, j) in enumerate(zip(minterm1, minterm2)): if i != j: if index == -1: index = x else: return -1 return index def _convert_to_varsSOP(minterm, variables): """ Converts a term in the expansion of a function from binary to its variable form (for SOP). """ temp = [] for i, m in enumerate(minterm): if m == 0: temp.append(Not(variables[i])) elif m == 1: temp.append(variables[i]) else: pass # ignore the 3s return And(*temp) def _convert_to_varsPOS(maxterm, variables): """ Converts a term in the expansion of a function from binary to its variable form (for POS). """ temp = [] for i, m in enumerate(maxterm): if m == 1: temp.append(Not(variables[i])) elif m == 0: temp.append(variables[i]) else: pass # ignore the 3s return Or(*temp) def _convert_to_varsANF(term, variables): """ Converts a term in the expansion of a function from binary to it's variable form (for ANF). Parameters ========== term : list of 1's and 0's (complementation patter) variables : list of variables """ temp = [] for i, m in enumerate(term): if m == 1: temp.append(variables[i]) else: pass # ignore 0s if temp == []: return BooleanTrue() return And(*temp) def _get_odd_parity_terms(n): """ Returns a list of lists, with all possible combinations of n zeros and ones with an odd number of ones. """ op = [] for i in range(1, 2**n): e = ibin(i, n) if sum(e) % 2 == 1: op.append(e) return op def _get_even_parity_terms(n): """ Returns a list of lists, with all possible combinations of n zeros and ones with an even number of ones. """ op = [] for i in range(2**n): e = ibin(i, n) if sum(e) % 2 == 0: op.append(e) return op def _simplified_pairs(terms): """ Reduces a set of minterms, if possible, to a simplified set of minterms with one less variable in the terms using QM method. """ simplified_terms = [] todo = list(range(len(terms))) for i, ti in enumerate(terms[:-1]): for j_i, tj in enumerate(terms[(i + 1):]): index = _check_pair(ti, tj) if index != -1: todo[i] = todo[j_i + i + 1] = None newterm = ti[:] newterm[index] = 3 if newterm not in simplified_terms: simplified_terms.append(newterm) simplified_terms.extend( [terms[i] for i in [_ for _ in todo if _ is not None]]) return simplified_terms def _compare_term(minterm, term): """ Return True if a binary term is satisfied by the given term. Used for recognizing prime implicants. """ for i, x in enumerate(term): if x != 3 and x != minterm[i]: return False return True def _rem_redundancy(l1, terms): """ After the truth table has been sufficiently simplified, use the prime implicant table method to recognize and eliminate redundant pairs, and return the essential arguments. """ if len(terms): # Create dominating matrix dommatrix = [[0]*len(l1) for n in range(len(terms))] for primei, prime in enumerate(l1): for termi, term in enumerate(terms): if _compare_term(term, prime): dommatrix[termi][primei] = 1 # Non-dominated prime implicants, dominated set to None ndprimeimplicants = list(range(len(l1))) # Non-dominated terms, dominated set to None ndterms = list(range(len(terms))) # Mark dominated rows and columns oldndterms = None oldndprimeimplicants = None while ndterms != oldndterms or \ ndprimeimplicants != oldndprimeimplicants: oldndterms = ndterms[:] oldndprimeimplicants = ndprimeimplicants[:] for rowi, row in enumerate(dommatrix): if ndterms[rowi] is not None: row = [row[i] for i in [_ for _ in ndprimeimplicants if _ is not None]] for row2i, row2 in enumerate(dommatrix): if rowi != row2i and ndterms[row2i] is not None: row2 = [row2[i] for i in [_ for _ in ndprimeimplicants if _ is not None]] if all(a >= b for (a, b) in zip(row2, row)): # row2 dominating row, keep row ndterms[row2i] = None for coli in range(len(l1)): if ndprimeimplicants[coli] is not None: col = [dommatrix[a][coli] for a in range(len(terms))] col = [col[i] for i in [_ for _ in oldndterms if _ is not None]] for col2i in range(len(l1)): if coli != col2i and \ ndprimeimplicants[col2i] is not None: col2 = [dommatrix[a][col2i] for a in range(len(terms))] col2 = [col2[i] for i in [_ for _ in oldndterms if _ is not None]] if all(a >= b for (a, b) in zip(col, col2)): # col dominating col2, keep col ndprimeimplicants[col2i] = None l1 = [l1[i] for i in [_ for _ in ndprimeimplicants if _ is not None]] return l1 else: return [] def _input_to_binlist(inputlist, variables): binlist = [] bits = len(variables) for val in inputlist: if isinstance(val, int): binlist.append(ibin(val, bits)) elif isinstance(val, dict): nonspecvars = list(variables) for key in val.keys(): nonspecvars.remove(key) for t in product([0, 1], repeat=len(nonspecvars)): d = dict(zip(nonspecvars, t)) d.update(val) binlist.append([d[v] for v in variables]) elif isinstance(val, (list, tuple)): if len(val) != bits: raise ValueError("Each term must contain {} bits as there are" "\n{} variables (or be an integer)." "".format(bits, bits)) binlist.append(list(val)) else: raise TypeError("A term list can only contain lists," " ints or dicts.") return binlist def SOPform(variables, minterms, dontcares=None): """ The SOPform function uses simplified_pairs and a redundant group- eliminating algorithm to convert the list of all input combos that generate '1' (the minterms) into the smallest Sum of Products form. The variables must be given as the first argument. Return a logical Or function (i.e., the "sum of products" or "SOP" form) that gives the desired outcome. If there are inputs that can be ignored, pass them as a list, too. The result will be one of the (perhaps many) functions that satisfy the conditions. Examples ======== >>> from sympy.logic import SOPform >>> from sympy import symbols >>> w, x, y, z = symbols('w x y z') >>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], ... [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]] >>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]] >>> SOPform([w, x, y, z], minterms, dontcares) (y & z) | (z & ~w) The terms can also be represented as integers: >>> minterms = [1, 3, 7, 11, 15] >>> dontcares = [0, 2, 5] >>> SOPform([w, x, y, z], minterms, dontcares) (y & z) | (z & ~w) They can also be specified using dicts, which does not have to be fully specified: >>> minterms = [{w: 0, x: 1}, {y: 1, z: 1, x: 0}] >>> SOPform([w, x, y, z], minterms) (x & ~w) | (y & z & ~x) Or a combination: >>> minterms = [4, 7, 11, [1, 1, 1, 1]] >>> dontcares = [{w : 0, x : 0, y: 0}, 5] >>> SOPform([w, x, y, z], minterms, dontcares) (w & y & z) | (x & y & z) | (~w & ~y) References ========== .. [1] https://en.wikipedia.org/wiki/Quine-McCluskey_algorithm """ variables = [sympify(v) for v in variables] if minterms == []: return false minterms = _input_to_binlist(minterms, variables) dontcares = _input_to_binlist((dontcares or []), variables) for d in dontcares: if d in minterms: raise ValueError('%s in minterms is also in dontcares' % d) old = None new = minterms + dontcares while new != old: old = new new = _simplified_pairs(old) essential = _rem_redundancy(new, minterms) return Or(*[_convert_to_varsSOP(x, variables) for x in essential]) def POSform(variables, minterms, dontcares=None): """ The POSform function uses simplified_pairs and a redundant-group eliminating algorithm to convert the list of all input combinations that generate '1' (the minterms) into the smallest Product of Sums form. The variables must be given as the first argument. Return a logical And function (i.e., the "product of sums" or "POS" form) that gives the desired outcome. If there are inputs that can be ignored, pass them as a list, too. The result will be one of the (perhaps many) functions that satisfy the conditions. Examples ======== >>> from sympy.logic import POSform >>> from sympy import symbols >>> w, x, y, z = symbols('w x y z') >>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], ... [1, 0, 1, 1], [1, 1, 1, 1]] >>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]] >>> POSform([w, x, y, z], minterms, dontcares) z & (y | ~w) The terms can also be represented as integers: >>> minterms = [1, 3, 7, 11, 15] >>> dontcares = [0, 2, 5] >>> POSform([w, x, y, z], minterms, dontcares) z & (y | ~w) They can also be specified using dicts, which does not have to be fully specified: >>> minterms = [{w: 0, x: 1}, {y: 1, z: 1, x: 0}] >>> POSform([w, x, y, z], minterms) (x | y) & (x | z) & (~w | ~x) Or a combination: >>> minterms = [4, 7, 11, [1, 1, 1, 1]] >>> dontcares = [{w : 0, x : 0, y: 0}, 5] >>> POSform([w, x, y, z], minterms, dontcares) (w | x) & (y | ~w) & (z | ~y) References ========== .. [1] https://en.wikipedia.org/wiki/Quine-McCluskey_algorithm """ variables = [sympify(v) for v in variables] if minterms == []: return false minterms = _input_to_binlist(minterms, variables) dontcares = _input_to_binlist((dontcares or []), variables) for d in dontcares: if d in minterms: raise ValueError('%s in minterms is also in dontcares' % d) maxterms = [] for t in product([0, 1], repeat=len(variables)): t = list(t) if (t not in minterms) and (t not in dontcares): maxterms.append(t) old = None new = maxterms + dontcares while new != old: old = new new = _simplified_pairs(old) essential = _rem_redundancy(new, maxterms) return And(*[_convert_to_varsPOS(x, variables) for x in essential]) def ANFform(variables, truthvalues): """ The ANFform function converts the list of truth values to Algebraic Normal Form (ANF). The variables must be given as the first argument. Return True, False, logical And funciton (i.e., the "Zhegalkin monomial") or logical Xor function (i.e., the "Zhegalkin polynomial"). When True and False are represented by 1 and 0, respectively, then And is multiplication and Xor is addition. Formally a "Zhegalkin monomial" is the product (logical And) of a finite set of distinct variables, including the empty set whose product is denoted 1 (True). A "Zhegalkin polynomial" is the sum (logical Xor) of a set of Zhegalkin monomials, with the empty set denoted by 0 (False). Parameters ========== variables : list of variables truthvalues : list of 1's and 0's (result column of truth table) Examples ======== >>> from sympy.logic.boolalg import ANFform >>> from sympy.abc import x, y >>> ANFform([x], [1, 0]) x ^ True >>> ANFform([x, y], [0, 1, 1, 1]) x ^ y ^ (x & y) References ========== .. [2] https://en.wikipedia.org/wiki/Zhegalkin_polynomial """ n_vars = len(variables) n_values = len(truthvalues) if n_values != 2 ** n_vars: raise ValueError("The number of truth values must be equal to 2^%d, " "got %d" % (n_vars, n_values)) variables = [sympify(v) for v in variables] coeffs = anf_coeffs(truthvalues) terms = [] for i, t in enumerate(product([0, 1], repeat=n_vars)): if coeffs[i] == 1: terms.append(t) return Xor(*[_convert_to_varsANF(x, variables) for x in terms], remove_true=False) def anf_coeffs(truthvalues): """ Convert a list of truth values of some boolean expression to the list of coefficients of the polynomial mod 2 (exclusive disjunction) representing the boolean expression in ANF (i.e., the "Zhegalkin polynomial"). There are 2^n possible Zhegalkin monomials in n variables, since each monomial is fully specified by the presence or absence of each variable. We can enumerate all the monomials. For example, boolean function with four variables (a, b, c, d) can contain up to 2^4 = 16 monomials. The 13-th monomial is the product a & b & d, because 13 in binary is 1, 1, 0, 1. A given monomial's presence or absence in a polynomial corresponds to that monomial's coefficient being 1 or 0 respectively. Examples ======== >>> from sympy.logic.boolalg import anf_coeffs, bool_monomial, Xor >>> from sympy.abc import a, b, c >>> truthvalues = [0, 1, 1, 0, 0, 1, 0, 1] >>> coeffs = anf_coeffs(truthvalues) >>> coeffs [0, 1, 1, 0, 0, 0, 1, 0] >>> polynomial = Xor(*[ ... bool_monomial(k, [a, b, c]) ... for k, coeff in enumerate(coeffs) if coeff == 1 ... ]) >>> polynomial b ^ c ^ (a & b) """ s = '{:b}'.format(len(truthvalues)) n = len(s) - 1 if len(truthvalues) != 2**n: raise ValueError("The number of truth values must be a power of two, " "got %d" % len(truthvalues)) coeffs = [[v] for v in truthvalues] for i in range(n): tmp = [] for j in range(2 ** (n-i-1)): tmp.append(coeffs[2*j] + list(map(lambda x, y: x^y, coeffs[2*j], coeffs[2*j+1]))) coeffs = tmp return coeffs[0] def bool_minterm(k, variables): """ Return the k-th minterm. Minterms are numbered by a binary encoding of the complementation pattern of the variables. This convention assigns the value 1 to the direct form and 0 to the complemented form. Parameters ========== k : int or list of 1's and 0's (complementation patter) variables : list of variables Examples ======== >>> from sympy.logic.boolalg import bool_minterm >>> from sympy.abc import x, y, z >>> bool_minterm([1, 0, 1], [x, y, z]) x & z & ~y >>> bool_minterm(6, [x, y, z]) x & y & ~z References ========== .. [3] https://en.wikipedia.org/wiki/Canonical_normal_form#Indexing_minterms """ if isinstance(k, int): k = integer_to_term(k, len(variables)) variables = list(map(sympify, variables)) return _convert_to_varsSOP(k, variables) def bool_maxterm(k, variables): """ Return the k-th maxterm. Each maxterm is assigned an index based on the opposite conventional binary encoding used for minterms. The maxterm convention assigns the value 0 to the direct form and 1 to the complemented form. Parameters ========== k : int or list of 1's and 0's (complementation pattern) variables : list of variables Examples ======== >>> from sympy.logic.boolalg import bool_maxterm >>> from sympy.abc import x, y, z >>> bool_maxterm([1, 0, 1], [x, y, z]) y | ~x | ~z >>> bool_maxterm(6, [x, y, z]) z | ~x | ~y References ========== .. [4] https://en.wikipedia.org/wiki/Canonical_normal_form#Indexing_maxterms """ if isinstance(k, int): k = integer_to_term(k, len(variables)) variables = list(map(sympify, variables)) return _convert_to_varsPOS(k, variables) def bool_monomial(k, variables): """ Return the k-th monomial. Monomials are numbered by a binary encoding of the presence and absences of the variables. This convention assigns the value 1 to the presence of variable and 0 to the absence of variable. Each boolean function can be uniquely represented by a Zhegalkin Polynomial (Algebraic Normal Form). The Zhegalkin Polynomial of the boolean function with n variables can contain up to 2^n monomials. We can enumarate all the monomials. Each monomial is fully specified by the presence or absence of each variable. For example, boolean function with four variables (a, b, c, d) can contain up to 2^4 = 16 monomials. The 13-th monomial is the product a & b & d, because 13 in binary is 1, 1, 0, 1. Parameters ========== k : int or list of 1's and 0's variables : list of variables Examples ======== >>> from sympy.logic.boolalg import bool_monomial >>> from sympy.abc import x, y, z >>> bool_monomial([1, 0, 1], [x, y, z]) x & z >>> bool_monomial(6, [x, y, z]) x & y """ if isinstance(k, int): k = integer_to_term(k, len(variables)) variables = list(map(sympify, variables)) return _convert_to_varsANF(k, variables) def _find_predicates(expr): """Helper to find logical predicates in BooleanFunctions. A logical predicate is defined here as anything within a BooleanFunction that is not a BooleanFunction itself. """ if not isinstance(expr, BooleanFunction): return {expr} return set().union(*(_find_predicates(i) for i in expr.args)) def simplify_logic(expr, form=None, deep=True, force=False): """ This function simplifies a boolean function to its simplified version in SOP or POS form. The return type is an Or or And object in SymPy. Parameters ========== expr : string or boolean expression form : string ('cnf' or 'dnf') or None (default). If 'cnf' or 'dnf', the simplest expression in the corresponding normal form is returned; if None, the answer is returned according to the form with fewest args (in CNF by default). deep : boolean (default True) Indicates whether to recursively simplify any non-boolean functions contained within the input. force : boolean (default False) As the simplifications require exponential time in the number of variables, there is by default a limit on expressions with 8 variables. When the expression has more than 8 variables only symbolical simplification (controlled by ``deep``) is made. By setting force to ``True``, this limit is removed. Be aware that this can lead to very long simplification times. Examples ======== >>> from sympy.logic import simplify_logic >>> from sympy.abc import x, y, z >>> from sympy import S >>> b = (~x & ~y & ~z) | ( ~x & ~y & z) >>> simplify_logic(b) ~x & ~y >>> S(b) (z & ~x & ~y) | (~x & ~y & ~z) >>> simplify_logic(_) ~x & ~y """ if form not in (None, 'cnf', 'dnf'): raise ValueError("form can be cnf or dnf only") expr = sympify(expr) # check for quick exit: right form and all args are # literal and do not involve Not isc = is_cnf(expr) isd = is_dnf(expr) form_ok = ( isc and form == 'cnf' or isd and form == 'dnf') if form_ok and all(is_literal(a) for a in expr.args): return expr if deep: variables = _find_predicates(expr) from sympy.simplify.simplify import simplify s = [simplify(v) for v in variables] expr = expr.xreplace(dict(zip(variables, s))) if not isinstance(expr, BooleanFunction): return expr # get variables in case not deep or after doing # deep simplification since they may have changed variables = _find_predicates(expr) if not force and len(variables) > 8: return expr # group into constants and variable values c, v = sift(variables, lambda x: x in (True, False), binary=True) variables = c + v truthtable = [] # standardize constants to be 1 or 0 in keeping with truthtable c = [1 if i == True else 0 for i in c] for t in product([0, 1], repeat=len(v)): if expr.xreplace(dict(zip(v, t))) == True: truthtable.append(c + list(t)) big = len(truthtable) >= (2 ** (len(variables) - 1)) if form == 'dnf' or form is None and big: return SOPform(variables, truthtable) return POSform(variables, truthtable) def _finger(eq): """ Assign a 5-item fingerprint to each symbol in the equation: [ # of times it appeared as a Symbol; # of times it appeared as a Not(symbol); # of times it appeared as a Symbol in an And or Or; # of times it appeared as a Not(Symbol) in an And or Or; a sorted tuple of tuples, (i, j, k), where i is the number of arguments in an And or Or with which it appeared as a Symbol, and j is the number of arguments that were Not(Symbol); k is the number of times that (i, j) was seen. ] Examples ======== >>> from sympy.logic.boolalg import _finger as finger >>> from sympy import And, Or, Not, Xor, to_cnf, symbols >>> from sympy.abc import a, b, x, y >>> eq = Or(And(Not(y), a), And(Not(y), b), And(x, y)) >>> dict(finger(eq)) {(0, 0, 1, 0, ((2, 0, 1),)): [x], (0, 0, 1, 0, ((2, 1, 1),)): [a, b], (0, 0, 1, 2, ((2, 0, 1),)): [y]} >>> dict(finger(x & ~y)) {(0, 1, 0, 0, ()): [y], (1, 0, 0, 0, ()): [x]} In the following, the (5, 2, 6) means that there were 6 Or functions in which a symbol appeared as itself amongst 5 arguments in which there were also 2 negated symbols, e.g. ``(a0 | a1 | a2 | ~a3 | ~a4)`` is counted once for a0, a1 and a2. >>> dict(finger(to_cnf(Xor(*symbols('a:5'))))) {(0, 0, 8, 8, ((5, 0, 1), (5, 2, 6), (5, 4, 1))): [a0, a1, a2, a3, a4]} The equation must not have more than one level of nesting: >>> dict(finger(And(Or(x, y), y))) {(0, 0, 1, 0, ((2, 0, 1),)): [x], (1, 0, 1, 0, ((2, 0, 1),)): [y]} >>> dict(finger(And(Or(x, And(a, x)), y))) Traceback (most recent call last): ... NotImplementedError: unexpected level of nesting So y and x have unique fingerprints, but a and b do not. """ f = eq.free_symbols d = dict(list(zip(f, [[0]*4 + [defaultdict(int)] for fi in f]))) for a in eq.args: if a.is_Symbol: d[a][0] += 1 elif a.is_Not: d[a.args[0]][1] += 1 else: o = len(a.args), sum(isinstance(ai, Not) for ai in a.args) for ai in a.args: if ai.is_Symbol: d[ai][2] += 1 d[ai][-1][o] += 1 elif ai.is_Not: d[ai.args[0]][3] += 1 else: raise NotImplementedError('unexpected level of nesting') inv = defaultdict(list) for k, v in ordered(iter(d.items())): v[-1] = tuple(sorted([i + (j,) for i, j in v[-1].items()])) inv[tuple(v)].append(k) return inv def bool_map(bool1, bool2): """ Return the simplified version of bool1, and the mapping of variables that makes the two expressions bool1 and bool2 represent the same logical behaviour for some correspondence between the variables of each. If more than one mappings of this sort exist, one of them is returned. For example, And(x, y) is logically equivalent to And(a, b) for the mapping {x: a, y:b} or {x: b, y:a}. If no such mapping exists, return False. Examples ======== >>> from sympy import SOPform, bool_map, Or, And, Not, Xor >>> from sympy.abc import w, x, y, z, a, b, c, d >>> function1 = SOPform([x, z, y],[[1, 0, 1], [0, 0, 1]]) >>> function2 = SOPform([a, b, c],[[1, 0, 1], [1, 0, 0]]) >>> bool_map(function1, function2) (y & ~z, {y: a, z: b}) The results are not necessarily unique, but they are canonical. Here, ``(w, z)`` could be ``(a, d)`` or ``(d, a)``: >>> eq = Or(And(Not(y), w), And(Not(y), z), And(x, y)) >>> eq2 = Or(And(Not(c), a), And(Not(c), d), And(b, c)) >>> bool_map(eq, eq2) ((x & y) | (w & ~y) | (z & ~y), {w: a, x: b, y: c, z: d}) >>> eq = And(Xor(a, b), c, And(c,d)) >>> bool_map(eq, eq.subs(c, x)) (c & d & (a | b) & (~a | ~b), {a: a, b: b, c: d, d: x}) """ def match(function1, function2): """Return the mapping that equates variables between two simplified boolean expressions if possible. By "simplified" we mean that a function has been denested and is either an And (or an Or) whose arguments are either symbols (x), negated symbols (Not(x)), or Or (or an And) whose arguments are only symbols or negated symbols. For example, And(x, Not(y), Or(w, Not(z))). Basic.match is not robust enough (see issue 4835) so this is a workaround that is valid for simplified boolean expressions """ # do some quick checks if function1.__class__ != function2.__class__: return None # maybe simplification makes them the same? if len(function1.args) != len(function2.args): return None # maybe simplification makes them the same? if function1.is_Symbol: return {function1: function2} # get the fingerprint dictionaries f1 = _finger(function1) f2 = _finger(function2) # more quick checks if len(f1) != len(f2): return False # assemble the match dictionary if possible matchdict = {} for k in f1.keys(): if k not in f2: return False if len(f1[k]) != len(f2[k]): return False for i, x in enumerate(f1[k]): matchdict[x] = f2[k][i] return matchdict a = simplify_logic(bool1) b = simplify_logic(bool2) m = match(a, b) if m: return a, m return m def simplify_patterns_and(): from sympy.functions.elementary.miscellaneous import Min, Max from sympy.core import Wild from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt a = Wild('a') b = Wild('b') c = Wild('c') # With a better canonical fewer results are required _matchers_and = ((And(Eq(a, b), Ge(a, b)), Eq(a, b)), (And(Eq(a, b), Gt(a, b)), S.false), (And(Eq(a, b), Le(a, b)), Eq(a, b)), (And(Eq(a, b), Lt(a, b)), S.false), (And(Ge(a, b), Gt(a, b)), Gt(a, b)), (And(Ge(a, b), Le(a, b)), Eq(a, b)), (And(Ge(a, b), Lt(a, b)), S.false), (And(Ge(a, b), Ne(a, b)), Gt(a, b)), (And(Gt(a, b), Le(a, b)), S.false), (And(Gt(a, b), Lt(a, b)), S.false), (And(Gt(a, b), Ne(a, b)), Gt(a, b)), (And(Le(a, b), Lt(a, b)), Lt(a, b)), (And(Le(a, b), Ne(a, b)), Lt(a, b)), (And(Lt(a, b), Ne(a, b)), Lt(a, b)), # Min/max (And(Ge(a, b), Ge(a, c)), Ge(a, Max(b, c))), (And(Ge(a, b), Gt(a, c)), ITE(b > c, Ge(a, b), Gt(a, c))), (And(Gt(a, b), Gt(a, c)), Gt(a, Max(b, c))), (And(Le(a, b), Le(a, c)), Le(a, Min(b, c))), (And(Le(a, b), Lt(a, c)), ITE(b < c, Le(a, b), Lt(a, c))), (And(Lt(a, b), Lt(a, c)), Lt(a, Min(b, c))), # Sign (And(Eq(a, b), Eq(a, -b)), And(Eq(a, S.Zero), Eq(b, S.Zero))), ) return _matchers_and def simplify_patterns_or(): from sympy.functions.elementary.miscellaneous import Min, Max from sympy.core import Wild from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt a = Wild('a') b = Wild('b') c = Wild('c') _matchers_or = ((Or(Eq(a, b), Ge(a, b)), Ge(a, b)), (Or(Eq(a, b), Gt(a, b)), Ge(a, b)), (Or(Eq(a, b), Le(a, b)), Le(a, b)), (Or(Eq(a, b), Lt(a, b)), Le(a, b)), (Or(Ge(a, b), Gt(a, b)), Ge(a, b)), (Or(Ge(a, b), Le(a, b)), S.true), (Or(Ge(a, b), Lt(a, b)), S.true), (Or(Ge(a, b), Ne(a, b)), S.true), (Or(Gt(a, b), Le(a, b)), S.true), (Or(Gt(a, b), Lt(a, b)), Ne(a, b)), (Or(Gt(a, b), Ne(a, b)), Ne(a, b)), (Or(Le(a, b), Lt(a, b)), Le(a, b)), (Or(Le(a, b), Ne(a, b)), S.true), (Or(Lt(a, b), Ne(a, b)), Ne(a, b)), # Min/max (Or(Ge(a, b), Ge(a, c)), Ge(a, Min(b, c))), (Or(Ge(a, b), Gt(a, c)), ITE(b > c, Gt(a, c), Ge(a, b))), (Or(Gt(a, b), Gt(a, c)), Gt(a, Min(b, c))), (Or(Le(a, b), Le(a, c)), Le(a, Max(b, c))), (Or(Le(a, b), Lt(a, c)), ITE(b >= c, Le(a, b), Lt(a, c))), (Or(Lt(a, b), Lt(a, c)), Lt(a, Max(b, c))), ) return _matchers_or def simplify_patterns_xor(): from sympy.functions.elementary.miscellaneous import Min, Max from sympy.core import Wild from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt a = Wild('a') b = Wild('b') c = Wild('c') _matchers_xor = ((Xor(Eq(a, b), Ge(a, b)), Gt(a, b)), (Xor(Eq(a, b), Gt(a, b)), Ge(a, b)), (Xor(Eq(a, b), Le(a, b)), Lt(a, b)), (Xor(Eq(a, b), Lt(a, b)), Le(a, b)), (Xor(Ge(a, b), Gt(a, b)), Eq(a, b)), (Xor(Ge(a, b), Le(a, b)), Ne(a, b)), (Xor(Ge(a, b), Lt(a, b)), S.true), (Xor(Ge(a, b), Ne(a, b)), Le(a, b)), (Xor(Gt(a, b), Le(a, b)), S.true), (Xor(Gt(a, b), Lt(a, b)), Ne(a, b)), (Xor(Gt(a, b), Ne(a, b)), Lt(a, b)), (Xor(Le(a, b), Lt(a, b)), Eq(a, b)), (Xor(Le(a, b), Ne(a, b)), Ge(a, b)), (Xor(Lt(a, b), Ne(a, b)), Gt(a, b)), # Min/max (Xor(Ge(a, b), Ge(a, c)), And(Ge(a, Min(b, c)), Lt(a, Max(b, c)))), (Xor(Ge(a, b), Gt(a, c)), ITE(b > c, And(Gt(a, c), Lt(a, b)), And(Ge(a, b), Le(a, c)))), (Xor(Gt(a, b), Gt(a, c)), And(Gt(a, Min(b, c)), Le(a, Max(b, c)))), (Xor(Le(a, b), Le(a, c)), And(Le(a, Max(b, c)), Gt(a, Min(b, c)))), (Xor(Le(a, b), Lt(a, c)), ITE(b < c, And(Lt(a, c), Gt(a, b)), And(Le(a, b), Ge(a, c)))), (Xor(Lt(a, b), Lt(a, c)), And(Lt(a, Max(b, c)), Ge(a, Min(b, c)))), ) return _matchers_xor
baf9badb169f815211bcdb8d79e973eb9ed67127e4699623d35b9924dbcacb00
import copy from sympy.core.function import expand_mul from sympy.functions.elementary.miscellaneous import Min, sqrt from .common import NonSquareMatrixError, NonPositiveDefiniteMatrixError from .utilities import _get_intermediate_simp, _iszero from .determinant import _find_reasonable_pivot_naive def _rank_decomposition(M, iszerofunc=_iszero, simplify=False): r"""Returns a pair of matrices (`C`, `F`) with matching rank such that `A = C F`. Parameters ========== iszerofunc : Function, optional A function used for detecting whether an element can act as a pivot. ``lambda x: x.is_zero`` is used by default. simplify : Bool or Function, optional A function used to simplify elements when looking for a pivot. By default SymPy's ``simplify`` is used. Returns ======= (C, F) : Matrices `C` and `F` are full-rank matrices with rank as same as `A`, whose product gives `A`. See Notes for additional mathematical details. Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix([ ... [1, 3, 1, 4], ... [2, 7, 3, 9], ... [1, 5, 3, 1], ... [1, 2, 0, 8] ... ]) >>> C, F = A.rank_decomposition() >>> C Matrix([ [1, 3, 4], [2, 7, 9], [1, 5, 1], [1, 2, 8]]) >>> F Matrix([ [1, 0, -2, 0], [0, 1, 1, 0], [0, 0, 0, 1]]) >>> C * F == A True Notes ===== Obtaining `F`, an RREF of `A`, is equivalent to creating a product .. math:: E_n E_{n-1} ... E_1 A = F where `E_n, E_{n-1}, ... , E_1` are the elimination matrices or permutation matrices equivalent to each row-reduction step. The inverse of the same product of elimination matrices gives `C`: .. math:: C = (E_n E_{n-1} ... E_1)^{-1} It is not necessary, however, to actually compute the inverse: the columns of `C` are those from the original matrix with the same column indices as the indices of the pivot columns of `F`. References ========== .. [1] https://en.wikipedia.org/wiki/Rank_factorization .. [2] Piziak, R.; Odell, P. L. (1 June 1999). "Full Rank Factorization of Matrices". Mathematics Magazine. 72 (3): 193. doi:10.2307/2690882 See Also ======== rref """ F, pivot_cols = M.rref(simplify=simplify, iszerofunc=iszerofunc, pivots=True) rank = len(pivot_cols) C = M.extract(range(M.rows), pivot_cols) F = F[:rank, :] return C, F def _liupc(M): """Liu's algorithm, for pre-determination of the Elimination Tree of the given matrix, used in row-based symbolic Cholesky factorization. Examples ======== >>> from sympy.matrices import SparseMatrix >>> S = SparseMatrix([ ... [1, 0, 3, 2], ... [0, 0, 1, 0], ... [4, 0, 0, 5], ... [0, 6, 7, 0]]) >>> S.liupc() ([[0], [], [0], [1, 2]], [4, 3, 4, 4]) References ========== Symbolic Sparse Cholesky Factorization using Elimination Trees, Jeroen Van Grondelle (1999) http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582 """ # Algorithm 2.4, p 17 of reference # get the indices of the elements that are non-zero on or below diag R = [[] for r in range(M.rows)] for r, c, _ in M.row_list(): if c <= r: R[r].append(c) inf = len(R) # nothing will be this large parent = [inf]*M.rows virtual = [inf]*M.rows for r in range(M.rows): for c in R[r][:-1]: while virtual[c] < r: t = virtual[c] virtual[c] = r c = t if virtual[c] == inf: parent[c] = virtual[c] = r return R, parent def _row_structure_symbolic_cholesky(M): """Symbolic cholesky factorization, for pre-determination of the non-zero structure of the Cholesky factororization. Examples ======== >>> from sympy.matrices import SparseMatrix >>> S = SparseMatrix([ ... [1, 0, 3, 2], ... [0, 0, 1, 0], ... [4, 0, 0, 5], ... [0, 6, 7, 0]]) >>> S.row_structure_symbolic_cholesky() [[0], [], [0], [1, 2]] References ========== Symbolic Sparse Cholesky Factorization using Elimination Trees, Jeroen Van Grondelle (1999) http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582 """ R, parent = M.liupc() inf = len(R) # this acts as infinity Lrow = copy.deepcopy(R) for k in range(M.rows): for j in R[k]: while j != inf and j != k: Lrow[k].append(j) j = parent[j] Lrow[k] = list(sorted(set(Lrow[k]))) return Lrow def _cholesky(M, hermitian=True): """Returns the Cholesky-type decomposition L of a matrix A such that L * L.H == A if hermitian flag is True, or L * L.T == A if hermitian is False. A must be a Hermitian positive-definite matrix if hermitian is True, or a symmetric matrix if it is False. Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) >>> A.cholesky() Matrix([ [ 5, 0, 0], [ 3, 3, 0], [-1, 1, 3]]) >>> A.cholesky() * A.cholesky().T Matrix([ [25, 15, -5], [15, 18, 0], [-5, 0, 11]]) The matrix can have complex entries: >>> from sympy import I >>> A = Matrix(((9, 3*I), (-3*I, 5))) >>> A.cholesky() Matrix([ [ 3, 0], [-I, 2]]) >>> A.cholesky() * A.cholesky().H Matrix([ [ 9, 3*I], [-3*I, 5]]) Non-hermitian Cholesky-type decomposition may be useful when the matrix is not positive-definite. >>> A = Matrix([[1, 2], [2, 1]]) >>> L = A.cholesky(hermitian=False) >>> L Matrix([ [1, 0], [2, sqrt(3)*I]]) >>> L*L.T == A True See Also ======== sympy.matrices.dense.DenseMatrix.LDLdecomposition sympy.matrices.matrices.MatrixBase.LUdecomposition QRdecomposition """ from .dense import MutableDenseMatrix if not M.is_square: raise NonSquareMatrixError("Matrix must be square.") if hermitian and not M.is_hermitian: raise ValueError("Matrix must be Hermitian.") if not hermitian and not M.is_symmetric(): raise ValueError("Matrix must be symmetric.") L = MutableDenseMatrix.zeros(M.rows, M.rows) if hermitian: for i in range(M.rows): for j in range(i): L[i, j] = ((1 / L[j, j])*(M[i, j] - sum(L[i, k]*L[j, k].conjugate() for k in range(j)))) Lii2 = (M[i, i] - sum(L[i, k]*L[i, k].conjugate() for k in range(i))) if Lii2.is_positive is False: raise NonPositiveDefiniteMatrixError( "Matrix must be positive-definite") L[i, i] = sqrt(Lii2) else: for i in range(M.rows): for j in range(i): L[i, j] = ((1 / L[j, j])*(M[i, j] - sum(L[i, k]*L[j, k] for k in range(j)))) L[i, i] = sqrt(M[i, i] - sum(L[i, k]**2 for k in range(i))) return M._new(L) def _cholesky_sparse(M, hermitian=True): """ Returns the Cholesky decomposition L of a matrix A such that L * L.T = A A must be a square, symmetric, positive-definite and non-singular matrix Examples ======== >>> from sympy.matrices import SparseMatrix >>> A = SparseMatrix(((25,15,-5),(15,18,0),(-5,0,11))) >>> A.cholesky() Matrix([ [ 5, 0, 0], [ 3, 3, 0], [-1, 1, 3]]) >>> A.cholesky() * A.cholesky().T == A True The matrix can have complex entries: >>> from sympy import I >>> A = SparseMatrix(((9, 3*I), (-3*I, 5))) >>> A.cholesky() Matrix([ [ 3, 0], [-I, 2]]) >>> A.cholesky() * A.cholesky().H Matrix([ [ 9, 3*I], [-3*I, 5]]) Non-hermitian Cholesky-type decomposition may be useful when the matrix is not positive-definite. >>> A = SparseMatrix([[1, 2], [2, 1]]) >>> L = A.cholesky(hermitian=False) >>> L Matrix([ [1, 0], [2, sqrt(3)*I]]) >>> L*L.T == A True See Also ======== sympy.matrices.sparse.SparseMatrix.LDLdecomposition sympy.matrices.matrices.MatrixBase.LUdecomposition QRdecomposition """ from .dense import MutableDenseMatrix if not M.is_square: raise NonSquareMatrixError("Matrix must be square.") if hermitian and not M.is_hermitian: raise ValueError("Matrix must be Hermitian.") if not hermitian and not M.is_symmetric(): raise ValueError("Matrix must be symmetric.") dps = _get_intermediate_simp(expand_mul, expand_mul) Crowstruc = M.row_structure_symbolic_cholesky() C = MutableDenseMatrix.zeros(M.rows) for i in range(len(Crowstruc)): for j in Crowstruc[i]: if i != j: C[i, j] = M[i, j] summ = 0 for p1 in Crowstruc[i]: if p1 < j: for p2 in Crowstruc[j]: if p2 < j: if p1 == p2: if hermitian: summ += C[i, p1]*C[j, p1].conjugate() else: summ += C[i, p1]*C[j, p1] else: break else: break C[i, j] = dps((C[i, j] - summ) / C[j, j]) else: # i == j C[j, j] = M[j, j] summ = 0 for k in Crowstruc[j]: if k < j: if hermitian: summ += C[j, k]*C[j, k].conjugate() else: summ += C[j, k]**2 else: break Cjj2 = dps(C[j, j] - summ) if hermitian and Cjj2.is_positive is False: raise NonPositiveDefiniteMatrixError( "Matrix must be positive-definite") C[j, j] = sqrt(Cjj2) return M._new(C) def _LDLdecomposition(M, hermitian=True): """Returns the LDL Decomposition (L, D) of matrix A, such that L * D * L.H == A if hermitian flag is True, or L * D * L.T == A if hermitian is False. This method eliminates the use of square root. Further this ensures that all the diagonal entries of L are 1. A must be a Hermitian positive-definite matrix if hermitian is True, or a symmetric matrix otherwise. Examples ======== >>> from sympy.matrices import Matrix, eye >>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) >>> L, D = A.LDLdecomposition() >>> L Matrix([ [ 1, 0, 0], [ 3/5, 1, 0], [-1/5, 1/3, 1]]) >>> D Matrix([ [25, 0, 0], [ 0, 9, 0], [ 0, 0, 9]]) >>> L * D * L.T * A.inv() == eye(A.rows) True The matrix can have complex entries: >>> from sympy import I >>> A = Matrix(((9, 3*I), (-3*I, 5))) >>> L, D = A.LDLdecomposition() >>> L Matrix([ [ 1, 0], [-I/3, 1]]) >>> D Matrix([ [9, 0], [0, 4]]) >>> L*D*L.H == A True See Also ======== sympy.matrices.dense.DenseMatrix.cholesky sympy.matrices.matrices.MatrixBase.LUdecomposition QRdecomposition """ from .dense import MutableDenseMatrix if not M.is_square: raise NonSquareMatrixError("Matrix must be square.") if hermitian and not M.is_hermitian: raise ValueError("Matrix must be Hermitian.") if not hermitian and not M.is_symmetric(): raise ValueError("Matrix must be symmetric.") D = MutableDenseMatrix.zeros(M.rows, M.rows) L = MutableDenseMatrix.eye(M.rows) if hermitian: for i in range(M.rows): for j in range(i): L[i, j] = (1 / D[j, j])*(M[i, j] - sum( L[i, k]*L[j, k].conjugate()*D[k, k] for k in range(j))) D[i, i] = (M[i, i] - sum(L[i, k]*L[i, k].conjugate()*D[k, k] for k in range(i))) if D[i, i].is_positive is False: raise NonPositiveDefiniteMatrixError( "Matrix must be positive-definite") else: for i in range(M.rows): for j in range(i): L[i, j] = (1 / D[j, j])*(M[i, j] - sum( L[i, k]*L[j, k]*D[k, k] for k in range(j))) D[i, i] = M[i, i] - sum(L[i, k]**2*D[k, k] for k in range(i)) return M._new(L), M._new(D) def _LDLdecomposition_sparse(M, hermitian=True): """ Returns the LDL Decomposition (matrices ``L`` and ``D``) of matrix ``A``, such that ``L * D * L.T == A``. ``A`` must be a square, symmetric, positive-definite and non-singular. This method eliminates the use of square root and ensures that all the diagonal entries of L are 1. Examples ======== >>> from sympy.matrices import SparseMatrix >>> A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) >>> L, D = A.LDLdecomposition() >>> L Matrix([ [ 1, 0, 0], [ 3/5, 1, 0], [-1/5, 1/3, 1]]) >>> D Matrix([ [25, 0, 0], [ 0, 9, 0], [ 0, 0, 9]]) >>> L * D * L.T == A True """ from .dense import MutableDenseMatrix if not M.is_square: raise NonSquareMatrixError("Matrix must be square.") if hermitian and not M.is_hermitian: raise ValueError("Matrix must be Hermitian.") if not hermitian and not M.is_symmetric(): raise ValueError("Matrix must be symmetric.") dps = _get_intermediate_simp(expand_mul, expand_mul) Lrowstruc = M.row_structure_symbolic_cholesky() L = MutableDenseMatrix.eye(M.rows) D = MutableDenseMatrix.zeros(M.rows, M.cols) for i in range(len(Lrowstruc)): for j in Lrowstruc[i]: if i != j: L[i, j] = M[i, j] summ = 0 for p1 in Lrowstruc[i]: if p1 < j: for p2 in Lrowstruc[j]: if p2 < j: if p1 == p2: if hermitian: summ += L[i, p1]*L[j, p1].conjugate()*D[p1, p1] else: summ += L[i, p1]*L[j, p1]*D[p1, p1] else: break else: break L[i, j] = dps((L[i, j] - summ) / D[j, j]) else: # i == j D[i, i] = M[i, i] summ = 0 for k in Lrowstruc[i]: if k < i: if hermitian: summ += L[i, k]*L[i, k].conjugate()*D[k, k] else: summ += L[i, k]**2*D[k, k] else: break D[i, i] = dps(D[i, i] - summ) if hermitian and D[i, i].is_positive is False: raise NonPositiveDefiniteMatrixError( "Matrix must be positive-definite") return M._new(L), M._new(D) def _LUdecomposition(M, iszerofunc=_iszero, simpfunc=None, rankcheck=False): """Returns (L, U, perm) where L is a lower triangular matrix with unit diagonal, U is an upper triangular matrix, and perm is a list of row swap index pairs. If A is the original matrix, then ``A = (L*U).permuteBkwd(perm)``, and the row permutation matrix P such that $P A = L U$ can be computed by ``P = eye(A.rows).permuteFwd(perm)``. See documentation for LUCombined for details about the keyword argument rankcheck, iszerofunc, and simpfunc. Parameters ========== rankcheck : bool, optional Determines if this function should detect the rank deficiency of the matrixis and should raise a ``ValueError``. iszerofunc : function, optional A function which determines if a given expression is zero. The function should be a callable that takes a single sympy expression and returns a 3-valued boolean value ``True``, ``False``, or ``None``. It is internally used by the pivot searching algorithm. See the notes section for a more information about the pivot searching algorithm. simpfunc : function or None, optional A function that simplifies the input. If this is specified as a function, this function should be a callable that takes a single sympy expression and returns an another sympy expression that is algebraically equivalent. If ``None``, it indicates that the pivot search algorithm should not attempt to simplify any candidate pivots. It is internally used by the pivot searching algorithm. See the notes section for a more information about the pivot searching algorithm. Examples ======== >>> from sympy import Matrix >>> a = Matrix([[4, 3], [6, 3]]) >>> L, U, _ = a.LUdecomposition() >>> L Matrix([ [ 1, 0], [3/2, 1]]) >>> U Matrix([ [4, 3], [0, -3/2]]) See Also ======== sympy.matrices.dense.DenseMatrix.cholesky sympy.matrices.dense.DenseMatrix.LDLdecomposition QRdecomposition LUdecomposition_Simple LUdecompositionFF LUsolve """ combined, p = M.LUdecomposition_Simple(iszerofunc=iszerofunc, simpfunc=simpfunc, rankcheck=rankcheck) # L is lower triangular ``M.rows x M.rows`` # U is upper triangular ``M.rows x M.cols`` # L has unit diagonal. For each column in combined, the subcolumn # below the diagonal of combined is shared by L. # If L has more columns than combined, then the remaining subcolumns # below the diagonal of L are zero. # The upper triangular portion of L and combined are equal. def entry_L(i, j): if i < j: # Super diagonal entry return M.zero elif i == j: return M.one elif j < combined.cols: return combined[i, j] # Subdiagonal entry of L with no corresponding # entry in combined return M.zero def entry_U(i, j): return M.zero if i > j else combined[i, j] L = M._new(combined.rows, combined.rows, entry_L) U = M._new(combined.rows, combined.cols, entry_U) return L, U, p def _LUdecomposition_Simple(M, iszerofunc=_iszero, simpfunc=None, rankcheck=False): r"""Compute the PLU decomposition of the matrix. Parameters ========== rankcheck : bool, optional Determines if this function should detect the rank deficiency of the matrixis and should raise a ``ValueError``. iszerofunc : function, optional A function which determines if a given expression is zero. The function should be a callable that takes a single sympy expression and returns a 3-valued boolean value ``True``, ``False``, or ``None``. It is internally used by the pivot searching algorithm. See the notes section for a more information about the pivot searching algorithm. simpfunc : function or None, optional A function that simplifies the input. If this is specified as a function, this function should be a callable that takes a single sympy expression and returns an another sympy expression that is algebraically equivalent. If ``None``, it indicates that the pivot search algorithm should not attempt to simplify any candidate pivots. It is internally used by the pivot searching algorithm. See the notes section for a more information about the pivot searching algorithm. Returns ======= (lu, row_swaps) : (Matrix, list) If the original matrix is a $m, n$ matrix: *lu* is a $m, n$ matrix, which contains result of the decomposition in a compresed form. See the notes section to see how the matrix is compressed. *row_swaps* is a $m$-element list where each element is a pair of row exchange indices. ``A = (L*U).permute_backward(perm)``, and the row permutation matrix $P$ from the formula $P A = L U$ can be computed by ``P=eye(A.row).permute_forward(perm)``. Raises ====== ValueError Raised if ``rankcheck=True`` and the matrix is found to be rank deficient during the computation. Notes ===== About the PLU decomposition: PLU decomposition is a generalization of a LU decomposition which can be extended for rank-deficient matrices. It can further be generalized for non-square matrices, and this is the notation that SymPy is using. PLU decomposition is a decomposition of a $m, n$ matrix $A$ in the form of $P A = L U$ where * $L$ is a $m, m$ lower triangular matrix with unit diagonal entries. * $U$ is a $m, n$ upper triangular matrix. * $P$ is a $m, m$ permutation matrix. So, for a square matrix, the decomposition would look like: .. math:: L = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ L_{1, 0} & 1 & 0 & \cdots & 0 \\ L_{2, 0} & L_{2, 1} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & 1 \end{bmatrix} .. math:: U = \begin{bmatrix} U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\ 0 & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\ 0 & 0 & U_{2, 2} & \cdots & U_{2, n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & U_{n-1, n-1} \end{bmatrix} And for a matrix with more rows than the columns, the decomposition would look like: .. math:: L = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ L_{1, 0} & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ L_{2, 0} & L_{2, 1} & 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & 1 & 0 & \cdots & 0 \\ L_{n, 0} & L_{n, 1} & L_{n, 2} & \cdots & L_{n, n-1} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & L_{m-1, n-1} & 0 & \cdots & 1 \\ \end{bmatrix} .. math:: U = \begin{bmatrix} U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\ 0 & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\ 0 & 0 & U_{2, 2} & \cdots & U_{2, n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & U_{n-1, n-1} \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} Finally, for a matrix with more columns than the rows, the decomposition would look like: .. math:: L = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ L_{1, 0} & 1 & 0 & \cdots & 0 \\ L_{2, 0} & L_{2, 1} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & 1 \end{bmatrix} .. math:: U = \begin{bmatrix} U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, m-1} & \cdots & U_{0, n-1} \\ 0 & U_{1, 1} & U_{1, 2} & \cdots & U_{1, m-1} & \cdots & U_{1, n-1} \\ 0 & 0 & U_{2, 2} & \cdots & U_{2, m-1} & \cdots & U_{2, n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & U_{m-1, m-1} & \cdots & U_{m-1, n-1} \\ \end{bmatrix} About the compressed LU storage: The results of the decomposition are often stored in compressed forms rather than returning $L$ and $U$ matrices individually. It may be less intiuitive, but it is commonly used for a lot of numeric libraries because of the efficiency. The storage matrix is defined as following for this specific method: * The subdiagonal elements of $L$ are stored in the subdiagonal portion of $LU$, that is $LU_{i, j} = L_{i, j}$ whenever $i > j$. * The elements on the diagonal of $L$ are all 1, and are not explicitly stored. * $U$ is stored in the upper triangular portion of $LU$, that is $LU_{i, j} = U_{i, j}$ whenever $i <= j$. * For a case of $m > n$, the right side of the $L$ matrix is trivial to store. * For a case of $m < n$, the below side of the $U$ matrix is trivial to store. So, for a square matrix, the compressed output matrix would be: .. math:: LU = \begin{bmatrix} U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\ L_{1, 0} & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\ L_{2, 0} & L_{2, 1} & U_{2, 2} & \cdots & U_{2, n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & U_{n-1, n-1} \end{bmatrix} For a matrix with more rows than the columns, the compressed output matrix would be: .. math:: LU = \begin{bmatrix} U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\ L_{1, 0} & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\ L_{2, 0} & L_{2, 1} & U_{2, 2} & \cdots & U_{2, n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & U_{n-1, n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & L_{m-1, n-1} \\ \end{bmatrix} For a matrix with more columns than the rows, the compressed output matrix would be: .. math:: LU = \begin{bmatrix} U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, m-1} & \cdots & U_{0, n-1} \\ L_{1, 0} & U_{1, 1} & U_{1, 2} & \cdots & U_{1, m-1} & \cdots & U_{1, n-1} \\ L_{2, 0} & L_{2, 1} & U_{2, 2} & \cdots & U_{2, m-1} & \cdots & U_{2, n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \cdots & \vdots \\ L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & U_{m-1, m-1} & \cdots & U_{m-1, n-1} \\ \end{bmatrix} About the pivot searching algorithm: When a matrix contains symbolic entries, the pivot search algorithm differs from the case where every entry can be categorized as zero or nonzero. The algorithm searches column by column through the submatrix whose top left entry coincides with the pivot position. If it exists, the pivot is the first entry in the current search column that iszerofunc guarantees is nonzero. If no such candidate exists, then each candidate pivot is simplified if simpfunc is not None. The search is repeated, with the difference that a candidate may be the pivot if ``iszerofunc()`` cannot guarantee that it is nonzero. In the second search the pivot is the first candidate that iszerofunc can guarantee is nonzero. If no such candidate exists, then the pivot is the first candidate for which iszerofunc returns None. If no such candidate exists, then the search is repeated in the next column to the right. The pivot search algorithm differs from the one in ``rref()``, which relies on ``_find_reasonable_pivot()``. Future versions of ``LUdecomposition_simple()`` may use ``_find_reasonable_pivot()``. See Also ======== sympy.matrices.matrices.MatrixBase.LUdecomposition LUdecompositionFF LUsolve """ if rankcheck: # https://github.com/sympy/sympy/issues/9796 pass if M.rows == 0 or M.cols == 0: # Define LU decomposition of a matrix with no entries as a matrix # of the same dimensions with all zero entries. return M.zeros(M.rows, M.cols), [] dps = _get_intermediate_simp() lu = M.as_mutable() row_swaps = [] pivot_col = 0 for pivot_row in range(0, lu.rows - 1): # Search for pivot. Prefer entry that iszeropivot determines # is nonzero, over entry that iszeropivot cannot guarantee # is zero. # XXX ``_find_reasonable_pivot`` uses slow zero testing. Blocked by bug #10279 # Future versions of LUdecomposition_simple can pass iszerofunc and simpfunc # to _find_reasonable_pivot(). # In pass 3 of _find_reasonable_pivot(), the predicate in ``if x.equals(S.Zero):`` # calls sympy.simplify(), and not the simplification function passed in via # the keyword argument simpfunc. iszeropivot = True while pivot_col != M.cols and iszeropivot: sub_col = (lu[r, pivot_col] for r in range(pivot_row, M.rows)) pivot_row_offset, pivot_value, is_assumed_non_zero, ind_simplified_pairs =\ _find_reasonable_pivot_naive(sub_col, iszerofunc, simpfunc) iszeropivot = pivot_value is None if iszeropivot: # All candidate pivots in this column are zero. # Proceed to next column. pivot_col += 1 if rankcheck and pivot_col != pivot_row: # All entries including and below the pivot position are # zero, which indicates that the rank of the matrix is # strictly less than min(num rows, num cols) # Mimic behavior of previous implementation, by throwing a # ValueError. raise ValueError("Rank of matrix is strictly less than" " number of rows or columns." " Pass keyword argument" " rankcheck=False to compute" " the LU decomposition of this matrix.") candidate_pivot_row = None if pivot_row_offset is None else pivot_row + pivot_row_offset if candidate_pivot_row is None and iszeropivot: # If candidate_pivot_row is None and iszeropivot is True # after pivot search has completed, then the submatrix # below and to the right of (pivot_row, pivot_col) is # all zeros, indicating that Gaussian elimination is # complete. return lu, row_swaps # Update entries simplified during pivot search. for offset, val in ind_simplified_pairs: lu[pivot_row + offset, pivot_col] = val if pivot_row != candidate_pivot_row: # Row swap book keeping: # Record which rows were swapped. # Update stored portion of L factor by multiplying L on the # left and right with the current permutation. # Swap rows of U. row_swaps.append([pivot_row, candidate_pivot_row]) # Update L. lu[pivot_row, 0:pivot_row], lu[candidate_pivot_row, 0:pivot_row] = \ lu[candidate_pivot_row, 0:pivot_row], lu[pivot_row, 0:pivot_row] # Swap pivot row of U with candidate pivot row. lu[pivot_row, pivot_col:lu.cols], lu[candidate_pivot_row, pivot_col:lu.cols] = \ lu[candidate_pivot_row, pivot_col:lu.cols], lu[pivot_row, pivot_col:lu.cols] # Introduce zeros below the pivot by adding a multiple of the # pivot row to a row under it, and store the result in the # row under it. # Only entries in the target row whose index is greater than # start_col may be nonzero. start_col = pivot_col + 1 for row in range(pivot_row + 1, lu.rows): # Store factors of L in the subcolumn below # (pivot_row, pivot_row). lu[row, pivot_row] = \ dps(lu[row, pivot_col]/lu[pivot_row, pivot_col]) # Form the linear combination of the pivot row and the current # row below the pivot row that zeros the entries below the pivot. # Employing slicing instead of a loop here raises # NotImplementedError: Cannot add Zero to MutableSparseMatrix # in sympy/matrices/tests/test_sparse.py. # c = pivot_row + 1 if pivot_row == pivot_col else pivot_col for c in range(start_col, lu.cols): lu[row, c] = dps(lu[row, c] - lu[row, pivot_row]*lu[pivot_row, c]) if pivot_row != pivot_col: # matrix rank < min(num rows, num cols), # so factors of L are not stored directly below the pivot. # These entries are zero by construction, so don't bother # computing them. for row in range(pivot_row + 1, lu.rows): lu[row, pivot_col] = M.zero pivot_col += 1 if pivot_col == lu.cols: # All candidate pivots are zero implies that Gaussian # elimination is complete. return lu, row_swaps if rankcheck: if iszerofunc( lu[Min(lu.rows, lu.cols) - 1, Min(lu.rows, lu.cols) - 1]): raise ValueError("Rank of matrix is strictly less than" " number of rows or columns." " Pass keyword argument" " rankcheck=False to compute" " the LU decomposition of this matrix.") return lu, row_swaps def _LUdecompositionFF(M): """Compute a fraction-free LU decomposition. Returns 4 matrices P, L, D, U such that PA = L D**-1 U. If the elements of the matrix belong to some integral domain I, then all elements of L, D and U are guaranteed to belong to I. See Also ======== sympy.matrices.matrices.MatrixBase.LUdecomposition LUdecomposition_Simple LUsolve References ========== .. [1] W. Zhou & D.J. Jeffrey, "Fraction-free matrix factors: new forms for LU and QR factors". Frontiers in Computer Science in China, Vol 2, no. 1, pp. 67-80, 2008. """ from sympy.matrices import SparseMatrix zeros = SparseMatrix.zeros eye = SparseMatrix.eye n, m = M.rows, M.cols U, L, P = M.as_mutable(), eye(n), eye(n) DD = zeros(n, n) oldpivot = 1 for k in range(n - 1): if U[k, k] == 0: for kpivot in range(k + 1, n): if U[kpivot, k]: break else: raise ValueError("Matrix is not full rank") U[k, k:], U[kpivot, k:] = U[kpivot, k:], U[k, k:] L[k, :k], L[kpivot, :k] = L[kpivot, :k], L[k, :k] P[k, :], P[kpivot, :] = P[kpivot, :], P[k, :] L [k, k] = Ukk = U[k, k] DD[k, k] = oldpivot * Ukk for i in range(k + 1, n): L[i, k] = Uik = U[i, k] for j in range(k + 1, m): U[i, j] = (Ukk * U[i, j] - U[k, j] * Uik) / oldpivot U[i, k] = 0 oldpivot = Ukk DD[n - 1, n - 1] = oldpivot return P, L, DD, U def _QRdecomposition_optional(M, normalize=True): def dot(u, v): return u.dot(v, hermitian=True) dps = _get_intermediate_simp(expand_mul, expand_mul) A = M.as_mutable() ranked = list() Q = A R = A.zeros(A.cols) for j in range(A.cols): for i in range(j): if Q[:, i].is_zero_matrix: continue R[i, j] = dot(Q[:, i], Q[:, j]) / dot(Q[:, i], Q[:, i]) R[i, j] = dps(R[i, j]) Q[:, j] -= Q[:, i] * R[i, j] Q[:, j] = dps(Q[:, j]) if Q[:, j].is_zero_matrix is False: ranked.append(j) R[j, j] = M.one Q = Q.extract(range(Q.rows), ranked) R = R.extract(ranked, range(R.cols)) if normalize: # Normalization for i in range(Q.cols): norm = Q[:, i].norm() Q[:, i] /= norm R[i, :] *= norm return M.__class__(Q), M.__class__(R) def _QRdecomposition(M): r"""Returns a QR decomposition. Explanation =========== A QR decomposition is a decomposition in the form $A = Q R$ where - $Q$ is a column orthogonal matrix. - $R$ is a upper triangular (trapezoidal) matrix. A column orthogonal matrix satisfies $\mathbb{I} = Q^H Q$ while a full orthogonal matrix satisfies relation $\mathbb{I} = Q Q^H = Q^H Q$ where $I$ is an identity matrix with matching dimensions. For matrices which are not square or are rank-deficient, it is sufficient to return a column orthogonal matrix because augmenting them may introduce redundant computations. And an another advantage of this is that you can easily inspect the matrix rank by counting the number of columns of $Q$. If you want to augment the results to return a full orthogonal decomposition, you should use the following procedures. - Augment the $Q$ matrix with columns that are orthogonal to every other columns and make it square. - Augument the $R$ matrix with zero rows to make it have the same shape as the original matrix. The procedure will be illustrated in the examples section. Examples ======== A full rank matrix example: >>> from sympy import Matrix >>> A = Matrix([[12, -51, 4], [6, 167, -68], [-4, 24, -41]]) >>> Q, R = A.QRdecomposition() >>> Q Matrix([ [ 6/7, -69/175, -58/175], [ 3/7, 158/175, 6/175], [-2/7, 6/35, -33/35]]) >>> R Matrix([ [14, 21, -14], [ 0, 175, -70], [ 0, 0, 35]]) If the matrix is square and full rank, the $Q$ matrix becomes orthogonal in both directions, and needs no augmentation. >>> Q * Q.H Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> Q.H * Q Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> A == Q*R True A rank deficient matrix example: >>> A = Matrix([[12, -51, 0], [6, 167, 0], [-4, 24, 0]]) >>> Q, R = A.QRdecomposition() >>> Q Matrix([ [ 6/7, -69/175], [ 3/7, 158/175], [-2/7, 6/35]]) >>> R Matrix([ [14, 21, 0], [ 0, 175, 0]]) QRdecomposition might return a matrix Q that is rectangular. In this case the orthogonality condition might be satisfied as $\mathbb{I} = Q.H*Q$ but not in the reversed product $\mathbb{I} = Q * Q.H$. >>> Q.H * Q Matrix([ [1, 0], [0, 1]]) >>> Q * Q.H Matrix([ [27261/30625, 348/30625, -1914/6125], [ 348/30625, 30589/30625, 198/6125], [ -1914/6125, 198/6125, 136/1225]]) If you want to augment the results to be a full orthogonal decomposition, you should augment $Q$ with an another orthogonal column. You are able to append an arbitrary standard basis that are linearly independent to every other columns and you can run the Gram-Schmidt process to make them augmented as orthogonal basis. >>> Q_aug = Q.row_join(Matrix([0, 0, 1])) >>> Q_aug = Q_aug.QRdecomposition()[0] >>> Q_aug Matrix([ [ 6/7, -69/175, 58/175], [ 3/7, 158/175, -6/175], [-2/7, 6/35, 33/35]]) >>> Q_aug.H * Q_aug Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> Q_aug * Q_aug.H Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) Augmenting the $R$ matrix with zero row is straightforward. >>> R_aug = R.col_join(Matrix([[0, 0, 0]])) >>> R_aug Matrix([ [14, 21, 0], [ 0, 175, 0], [ 0, 0, 0]]) >>> Q_aug * R_aug == A True A zero matrix example: >>> from sympy import Matrix >>> A = Matrix.zeros(3, 4) >>> Q, R = A.QRdecomposition() They may return matrices with zero rows and columns. >>> Q Matrix(3, 0, []) >>> R Matrix(0, 4, []) >>> Q*R Matrix([ [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]) As the same augmentation rule described above, $Q$ can be augmented with columns of an identity matrix and $R$ can be augmented with rows of a zero matrix. >>> Q_aug = Q.row_join(Matrix.eye(3)) >>> R_aug = R.col_join(Matrix.zeros(3, 4)) >>> Q_aug * Q_aug.T Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> R_aug Matrix([ [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]) >>> Q_aug * R_aug == A True See Also ======== sympy.matrices.dense.DenseMatrix.cholesky sympy.matrices.dense.DenseMatrix.LDLdecomposition sympy.matrices.matrices.MatrixBase.LUdecomposition QRsolve """ return _QRdecomposition_optional(M, normalize=True)
8e99861306866ecda8020e27736f034b157f8ec7b1965712ffd0f9bb47c1f1fc
"""A module that handles matrices. Includes functions for fast creating matrices like zero, one/eye, random matrix, etc. """ from .common import ShapeError, NonSquareMatrixError from .dense import ( GramSchmidt, casoratian, diag, eye, hessian, jordan_cell, list2numpy, matrix2numpy, matrix_multiply_elementwise, ones, randMatrix, rot_axis1, rot_axis2, rot_axis3, symarray, wronskian, zeros) from .dense import MutableDenseMatrix from .matrices import DeferredVector, MatrixBase, MatrixKind Matrix = MutableMatrix = MutableDenseMatrix from .sparse import MutableSparseMatrix from .sparsetools import banded from .immutable import ImmutableDenseMatrix, ImmutableSparseMatrix ImmutableMatrix = ImmutableDenseMatrix SparseMatrix = MutableSparseMatrix from .expressions import ( MatrixSlice, BlockDiagMatrix, BlockMatrix, FunctionMatrix, Identity, Inverse, MatAdd, MatMul, MatPow, MatrixExpr, MatrixSymbol, Trace, Transpose, ZeroMatrix, OneMatrix, blockcut, block_collapse, matrix_symbols, Adjoint, hadamard_product, HadamardProduct, HadamardPower, Determinant, det, diagonalize_vector, DiagMatrix, DiagonalMatrix, DiagonalOf, trace, DotProduct, kronecker_product, KroneckerProduct, PermutationMatrix, MatrixPermute, MatrixSet, Permanent, per) from .utilities import dotprodsimp __all__ = [ 'ShapeError', 'NonSquareMatrixError', 'GramSchmidt', 'casoratian', 'diag', 'eye', 'hessian', 'jordan_cell', 'list2numpy', 'matrix2numpy', 'matrix_multiply_elementwise', 'ones', 'randMatrix', 'rot_axis1', 'rot_axis2', 'rot_axis3', 'symarray', 'wronskian', 'zeros', 'MutableDenseMatrix', 'DeferredVector', 'MatrixBase', 'MatrixKind', 'Matrix', 'MutableMatrix', 'MutableSparseMatrix', 'banded', 'ImmutableDenseMatrix', 'ImmutableSparseMatrix', 'ImmutableMatrix', 'SparseMatrix', 'MatrixSlice', 'BlockDiagMatrix', 'BlockMatrix', 'FunctionMatrix', 'Identity', 'Inverse', 'MatAdd', 'MatMul', 'MatPow', 'MatrixExpr', 'MatrixSymbol', 'Trace', 'Transpose', 'ZeroMatrix', 'OneMatrix', 'blockcut', 'block_collapse', 'matrix_symbols', 'Adjoint', 'hadamard_product', 'HadamardProduct', 'HadamardPower', 'Determinant', 'det', 'diagonalize_vector', 'DiagMatrix', 'DiagonalMatrix', 'DiagonalOf', 'trace', 'DotProduct', 'kronecker_product', 'KroneckerProduct', 'PermutationMatrix', 'MatrixPermute', 'MatrixSet', 'Permanent', 'per', 'dotprodsimp', ]
909e6731f3d0da795d2c6b454fe398ee46f042f9029df60fe0f3e40efdf4aa90
import mpmath as mp from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.compatibility import ( Callable, NotIterable, as_int, is_sequence) from sympy.core.decorators import deprecated from sympy.core.expr import Expr from sympy.core.mul import Mul from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import Dummy, Symbol, uniquely_named_symbol from sympy.core.sympify import sympify from sympy.core.sympify import _sympify from sympy.functions import exp, factorial, log from sympy.functions.elementary.miscellaneous import Max, Min, sqrt from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.polys import cancel from sympy.printing import sstr from sympy.printing.defaults import Printable from sympy.simplify import simplify as _simplify from sympy.core.kind import Kind, NumberKind, _NumberKind from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import flatten from sympy.utilities.misc import filldedent from .common import ( MatrixCommon, MatrixError, NonSquareMatrixError, NonInvertibleMatrixError, ShapeError) from .utilities import _iszero, _is_zero_after_expand_mul from .determinant import ( _find_reasonable_pivot, _find_reasonable_pivot_naive, _adjugate, _charpoly, _cofactor, _cofactor_matrix, _per, _det, _det_bareiss, _det_berkowitz, _det_LU, _minor, _minor_submatrix) from .reductions import _is_echelon, _echelon_form, _rank, _rref from .subspaces import _columnspace, _nullspace, _rowspace, _orthogonalize from .eigen import ( _eigenvals, _eigenvects, _bidiagonalize, _bidiagonal_decomposition, _is_diagonalizable, _diagonalize, _is_positive_definite, _is_positive_semidefinite, _is_negative_definite, _is_negative_semidefinite, _is_indefinite, _jordan_form, _left_eigenvects, _singular_values) from .decompositions import ( _rank_decomposition, _cholesky, _LDLdecomposition, _LUdecomposition, _LUdecomposition_Simple, _LUdecompositionFF, _QRdecomposition) from .graph import _connected_components, _connected_components_decomposition from .solvers import ( _diagonal_solve, _lower_triangular_solve, _upper_triangular_solve, _cholesky_solve, _LDLsolve, _LUsolve, _QRsolve, _gauss_jordan_solve, _pinv_solve, _solve, _solve_least_squares) from .inverse import ( _pinv, _inv_mod, _inv_ADJ, _inv_GE, _inv_LU, _inv_CH, _inv_LDL, _inv_QR, _inv, _inv_block) class DeferredVector(Symbol, NotIterable): """A vector whose components are deferred (e.g. for use with lambdify) Examples ======== >>> from sympy import DeferredVector, lambdify >>> X = DeferredVector( 'X' ) >>> X X >>> expr = (X[0] + 2, X[2] + 3) >>> func = lambdify( X, expr) >>> func( [1, 2, 3] ) (3, 6) """ def __getitem__(self, i): if i == -0: i = 0 if i < 0: raise IndexError('DeferredVector index out of range') component_name = '%s[%d]' % (self.name, i) return Symbol(component_name) def __str__(self): return sstr(self) def __repr__(self): return "DeferredVector('%s')" % self.name class MatrixDeterminant(MatrixCommon): """Provides basic matrix determinant operations. Should not be instantiated directly. See ``determinant.py`` for their implementations.""" def _eval_det_bareiss(self, iszerofunc=_is_zero_after_expand_mul): return _det_bareiss(self, iszerofunc=iszerofunc) def _eval_det_berkowitz(self): return _det_berkowitz(self) def _eval_det_lu(self, iszerofunc=_iszero, simpfunc=None): return _det_LU(self, iszerofunc=iszerofunc, simpfunc=simpfunc) def _eval_determinant(self): # for expressions.determinant.Determinant return _det(self) def adjugate(self, method="berkowitz"): return _adjugate(self, method=method) def charpoly(self, x='lambda', simplify=_simplify): return _charpoly(self, x=x, simplify=simplify) def cofactor(self, i, j, method="berkowitz"): return _cofactor(self, i, j, method=method) def cofactor_matrix(self, method="berkowitz"): return _cofactor_matrix(self, method=method) def det(self, method="bareiss", iszerofunc=None): return _det(self, method=method, iszerofunc=iszerofunc) def per(self): return _per(self) def minor(self, i, j, method="berkowitz"): return _minor(self, i, j, method=method) def minor_submatrix(self, i, j): return _minor_submatrix(self, i, j) _find_reasonable_pivot.__doc__ = _find_reasonable_pivot.__doc__ _find_reasonable_pivot_naive.__doc__ = _find_reasonable_pivot_naive.__doc__ _eval_det_bareiss.__doc__ = _det_bareiss.__doc__ _eval_det_berkowitz.__doc__ = _det_berkowitz.__doc__ _eval_det_lu.__doc__ = _det_LU.__doc__ _eval_determinant.__doc__ = _det.__doc__ adjugate.__doc__ = _adjugate.__doc__ charpoly.__doc__ = _charpoly.__doc__ cofactor.__doc__ = _cofactor.__doc__ cofactor_matrix.__doc__ = _cofactor_matrix.__doc__ det.__doc__ = _det.__doc__ per.__doc__ = _per.__doc__ minor.__doc__ = _minor.__doc__ minor_submatrix.__doc__ = _minor_submatrix.__doc__ class MatrixReductions(MatrixDeterminant): """Provides basic matrix row/column operations. Should not be instantiated directly. See ``reductions.py`` for some of their implementations.""" def echelon_form(self, iszerofunc=_iszero, simplify=False, with_pivots=False): return _echelon_form(self, iszerofunc=iszerofunc, simplify=simplify, with_pivots=with_pivots) @property def is_echelon(self): return _is_echelon(self) def rank(self, iszerofunc=_iszero, simplify=False): return _rank(self, iszerofunc=iszerofunc, simplify=simplify) def rref(self, iszerofunc=_iszero, simplify=False, pivots=True, normalize_last=True): return _rref(self, iszerofunc=iszerofunc, simplify=simplify, pivots=pivots, normalize_last=normalize_last) echelon_form.__doc__ = _echelon_form.__doc__ is_echelon.__doc__ = _is_echelon.__doc__ rank.__doc__ = _rank.__doc__ rref.__doc__ = _rref.__doc__ def _normalize_op_args(self, op, col, k, col1, col2, error_str="col"): """Validate the arguments for a row/column operation. ``error_str`` can be one of "row" or "col" depending on the arguments being parsed.""" if op not in ["n->kn", "n<->m", "n->n+km"]: raise ValueError("Unknown {} operation '{}'. Valid col operations " "are 'n->kn', 'n<->m', 'n->n+km'".format(error_str, op)) # define self_col according to error_str self_cols = self.cols if error_str == 'col' else self.rows # normalize and validate the arguments if op == "n->kn": col = col if col is not None else col1 if col is None or k is None: raise ValueError("For a {0} operation 'n->kn' you must provide the " "kwargs `{0}` and `k`".format(error_str)) if not 0 <= col < self_cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col)) elif op == "n<->m": # we need two cols to swap. It doesn't matter # how they were specified, so gather them together and # remove `None` cols = {col, k, col1, col2}.difference([None]) if len(cols) > 2: # maybe the user left `k` by mistake? cols = {col, col1, col2}.difference([None]) if len(cols) != 2: raise ValueError("For a {0} operation 'n<->m' you must provide the " "kwargs `{0}1` and `{0}2`".format(error_str)) col1, col2 = cols if not 0 <= col1 < self_cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col1)) if not 0 <= col2 < self_cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col2)) elif op == "n->n+km": col = col1 if col is None else col col2 = col1 if col2 is None else col2 if col is None or col2 is None or k is None: raise ValueError("For a {0} operation 'n->n+km' you must provide the " "kwargs `{0}`, `k`, and `{0}2`".format(error_str)) if col == col2: raise ValueError("For a {0} operation 'n->n+km' `{0}` and `{0}2` must " "be different.".format(error_str)) if not 0 <= col < self_cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col)) if not 0 <= col2 < self_cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col2)) else: raise ValueError('invalid operation %s' % repr(op)) return op, col, k, col1, col2 def _eval_col_op_multiply_col_by_const(self, col, k): def entry(i, j): if j == col: return k * self[i, j] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_col_op_swap(self, col1, col2): def entry(i, j): if j == col1: return self[i, col2] elif j == col2: return self[i, col1] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_col_op_add_multiple_to_other_col(self, col, k, col2): def entry(i, j): if j == col: return self[i, j] + k * self[i, col2] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_row_op_swap(self, row1, row2): def entry(i, j): if i == row1: return self[row2, j] elif i == row2: return self[row1, j] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_row_op_multiply_row_by_const(self, row, k): def entry(i, j): if i == row: return k * self[i, j] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_row_op_add_multiple_to_other_row(self, row, k, row2): def entry(i, j): if i == row: return self[i, j] + k * self[row2, j] return self[i, j] return self._new(self.rows, self.cols, entry) def elementary_col_op(self, op="n->kn", col=None, k=None, col1=None, col2=None): """Performs the elementary column operation `op`. `op` may be one of * "n->kn" (column n goes to k*n) * "n<->m" (swap column n and column m) * "n->n+km" (column n goes to column n + k*column m) Parameters ========== op : string; the elementary row operation col : the column to apply the column operation k : the multiple to apply in the column operation col1 : one column of a column swap col2 : second column of a column swap or column "m" in the column operation "n->n+km" """ op, col, k, col1, col2 = self._normalize_op_args(op, col, k, col1, col2, "col") # now that we've validated, we're all good to dispatch if op == "n->kn": return self._eval_col_op_multiply_col_by_const(col, k) if op == "n<->m": return self._eval_col_op_swap(col1, col2) if op == "n->n+km": return self._eval_col_op_add_multiple_to_other_col(col, k, col2) def elementary_row_op(self, op="n->kn", row=None, k=None, row1=None, row2=None): """Performs the elementary row operation `op`. `op` may be one of * "n->kn" (row n goes to k*n) * "n<->m" (swap row n and row m) * "n->n+km" (row n goes to row n + k*row m) Parameters ========== op : string; the elementary row operation row : the row to apply the row operation k : the multiple to apply in the row operation row1 : one row of a row swap row2 : second row of a row swap or row "m" in the row operation "n->n+km" """ op, row, k, row1, row2 = self._normalize_op_args(op, row, k, row1, row2, "row") # now that we've validated, we're all good to dispatch if op == "n->kn": return self._eval_row_op_multiply_row_by_const(row, k) if op == "n<->m": return self._eval_row_op_swap(row1, row2) if op == "n->n+km": return self._eval_row_op_add_multiple_to_other_row(row, k, row2) class MatrixSubspaces(MatrixReductions): """Provides methods relating to the fundamental subspaces of a matrix. Should not be instantiated directly. See ``subspaces.py`` for their implementations.""" def columnspace(self, simplify=False): return _columnspace(self, simplify=simplify) def nullspace(self, simplify=False, iszerofunc=_iszero): return _nullspace(self, simplify=simplify, iszerofunc=iszerofunc) def rowspace(self, simplify=False): return _rowspace(self, simplify=simplify) # This is a classmethod but is converted to such later in order to allow # assignment of __doc__ since that does not work for already wrapped # classmethods in Python 3.6. def orthogonalize(cls, *vecs, **kwargs): return _orthogonalize(cls, *vecs, **kwargs) columnspace.__doc__ = _columnspace.__doc__ nullspace.__doc__ = _nullspace.__doc__ rowspace.__doc__ = _rowspace.__doc__ orthogonalize.__doc__ = _orthogonalize.__doc__ orthogonalize = classmethod(orthogonalize) # type:ignore class MatrixEigen(MatrixSubspaces): """Provides basic matrix eigenvalue/vector operations. Should not be instantiated directly. See ``eigen.py`` for their implementations.""" def eigenvals(self, error_when_incomplete=True, **flags): return _eigenvals(self, error_when_incomplete=error_when_incomplete, **flags) def eigenvects(self, error_when_incomplete=True, iszerofunc=_iszero, **flags): return _eigenvects(self, error_when_incomplete=error_when_incomplete, iszerofunc=iszerofunc, **flags) def is_diagonalizable(self, reals_only=False, **kwargs): return _is_diagonalizable(self, reals_only=reals_only, **kwargs) def diagonalize(self, reals_only=False, sort=False, normalize=False): return _diagonalize(self, reals_only=reals_only, sort=sort, normalize=normalize) def bidiagonalize(self, upper=True): return _bidiagonalize(self, upper=upper) def bidiagonal_decomposition(self, upper=True): return _bidiagonal_decomposition(self, upper=upper) @property def is_positive_definite(self): return _is_positive_definite(self) @property def is_positive_semidefinite(self): return _is_positive_semidefinite(self) @property def is_negative_definite(self): return _is_negative_definite(self) @property def is_negative_semidefinite(self): return _is_negative_semidefinite(self) @property def is_indefinite(self): return _is_indefinite(self) def jordan_form(self, calc_transform=True, **kwargs): return _jordan_form(self, calc_transform=calc_transform, **kwargs) def left_eigenvects(self, **flags): return _left_eigenvects(self, **flags) def singular_values(self): return _singular_values(self) eigenvals.__doc__ = _eigenvals.__doc__ eigenvects.__doc__ = _eigenvects.__doc__ is_diagonalizable.__doc__ = _is_diagonalizable.__doc__ diagonalize.__doc__ = _diagonalize.__doc__ is_positive_definite.__doc__ = _is_positive_definite.__doc__ is_positive_semidefinite.__doc__ = _is_positive_semidefinite.__doc__ is_negative_definite.__doc__ = _is_negative_definite.__doc__ is_negative_semidefinite.__doc__ = _is_negative_semidefinite.__doc__ is_indefinite.__doc__ = _is_indefinite.__doc__ jordan_form.__doc__ = _jordan_form.__doc__ left_eigenvects.__doc__ = _left_eigenvects.__doc__ singular_values.__doc__ = _singular_values.__doc__ bidiagonalize.__doc__ = _bidiagonalize.__doc__ bidiagonal_decomposition.__doc__ = _bidiagonal_decomposition.__doc__ class MatrixCalculus(MatrixCommon): """Provides calculus-related matrix operations.""" def diff(self, *args, **kwargs): """Calculate the derivative of each element in the matrix. ``args`` will be passed to the ``integrate`` function. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.diff(x) Matrix([ [1, 0], [0, 0]]) See Also ======== integrate limit """ # XXX this should be handled here rather than in Derivative from sympy.tensor.array.array_derivatives import ArrayDerivative kwargs.setdefault('evaluate', True) deriv = ArrayDerivative(self, *args, evaluate=True) if not isinstance(self, Basic): return deriv.as_mutable() else: return deriv def _eval_derivative(self, arg): return self.applyfunc(lambda x: x.diff(arg)) def integrate(self, *args, **kwargs): """Integrate each element of the matrix. ``args`` will be passed to the ``integrate`` function. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.integrate((x, )) Matrix([ [x**2/2, x*y], [ x, 0]]) >>> M.integrate((x, 0, 2)) Matrix([ [2, 2*y], [2, 0]]) See Also ======== limit diff """ return self.applyfunc(lambda x: x.integrate(*args, **kwargs)) def jacobian(self, X): """Calculates the Jacobian matrix (derivative of a vector-valued function). Parameters ========== ``self`` : vector of expressions representing functions f_i(x_1, ..., x_n). X : set of x_i's in order, it can be a list or a Matrix Both ``self`` and X can be a row or a column matrix in any order (i.e., jacobian() should always work). Examples ======== >>> from sympy import sin, cos, Matrix >>> from sympy.abc import rho, phi >>> X = Matrix([rho*cos(phi), rho*sin(phi), rho**2]) >>> Y = Matrix([rho, phi]) >>> X.jacobian(Y) Matrix([ [cos(phi), -rho*sin(phi)], [sin(phi), rho*cos(phi)], [ 2*rho, 0]]) >>> X = Matrix([rho*cos(phi), rho*sin(phi)]) >>> X.jacobian(Y) Matrix([ [cos(phi), -rho*sin(phi)], [sin(phi), rho*cos(phi)]]) See Also ======== hessian wronskian """ if not isinstance(X, MatrixBase): X = self._new(X) # Both X and ``self`` can be a row or a column matrix, so we need to make # sure all valid combinations work, but everything else fails: if self.shape[0] == 1: m = self.shape[1] elif self.shape[1] == 1: m = self.shape[0] else: raise TypeError("``self`` must be a row or a column matrix") if X.shape[0] == 1: n = X.shape[1] elif X.shape[1] == 1: n = X.shape[0] else: raise TypeError("X must be a row or a column matrix") # m is the number of functions and n is the number of variables # computing the Jacobian is now easy: return self._new(m, n, lambda j, i: self[j].diff(X[i])) def limit(self, *args): """Calculate the limit of each element in the matrix. ``args`` will be passed to the ``limit`` function. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.limit(x, 2) Matrix([ [2, y], [1, 0]]) See Also ======== integrate diff """ return self.applyfunc(lambda x: x.limit(*args)) # https://github.com/sympy/sympy/pull/12854 class MatrixDeprecated(MatrixCommon): """A class to house deprecated matrix methods.""" def _legacy_array_dot(self, b): """Compatibility function for deprecated behavior of ``matrix.dot(vector)`` """ from .dense import Matrix if not isinstance(b, MatrixBase): if is_sequence(b): if len(b) != self.cols and len(b) != self.rows: raise ShapeError( "Dimensions incorrect for dot product: %s, %s" % ( self.shape, len(b))) return self.dot(Matrix(b)) else: raise TypeError( "`b` must be an ordered iterable or Matrix, not %s." % type(b)) mat = self if mat.cols == b.rows: if b.cols != 1: mat = mat.T b = b.T prod = flatten((mat * b).tolist()) return prod if mat.cols == b.cols: return mat.dot(b.T) elif mat.rows == b.rows: return mat.T.dot(b) else: raise ShapeError("Dimensions incorrect for dot product: %s, %s" % ( self.shape, b.shape)) def berkowitz_charpoly(self, x=Dummy('lambda'), simplify=_simplify): return self.charpoly(x=x) def berkowitz_det(self): """Computes determinant using Berkowitz method. See Also ======== det berkowitz """ return self.det(method='berkowitz') def berkowitz_eigenvals(self, **flags): """Computes eigenvalues of a Matrix using Berkowitz method. See Also ======== berkowitz """ return self.eigenvals(**flags) def berkowitz_minors(self): """Computes principal minors using Berkowitz method. See Also ======== berkowitz """ sign, minors = self.one, [] for poly in self.berkowitz(): minors.append(sign * poly[-1]) sign = -sign return tuple(minors) def berkowitz(self): from sympy.matrices import zeros berk = ((1,),) if not self: return berk if not self.is_square: raise NonSquareMatrixError() A, N = self, self.rows transforms = [0] * (N - 1) for n in range(N, 1, -1): T, k = zeros(n + 1, n), n - 1 R, C = -A[k, :k], A[:k, k] A, a = A[:k, :k], -A[k, k] items = [C] for i in range(0, n - 2): items.append(A * items[i]) for i, B in enumerate(items): items[i] = (R * B)[0, 0] items = [self.one, a] + items for i in range(n): T[i:, i] = items[:n - i + 1] transforms[k - 1] = T polys = [self._new([self.one, -A[0, 0]])] for i, T in enumerate(transforms): polys.append(T * polys[i]) return berk + tuple(map(tuple, polys)) def cofactorMatrix(self, method="berkowitz"): return self.cofactor_matrix(method=method) def det_bareis(self): return _det_bareiss(self) def det_LU_decomposition(self): """Compute matrix determinant using LU decomposition Note that this method fails if the LU decomposition itself fails. In particular, if the matrix has no inverse this method will fail. TODO: Implement algorithm for sparse matrices (SFF), http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps. See Also ======== det det_bareiss berkowitz_det """ return self.det(method='lu') def jordan_cell(self, eigenval, n): return self.jordan_block(size=n, eigenvalue=eigenval) def jordan_cells(self, calc_transformation=True): P, J = self.jordan_form() return P, J.get_diag_blocks() def minorEntry(self, i, j, method="berkowitz"): return self.minor(i, j, method=method) def minorMatrix(self, i, j): return self.minor_submatrix(i, j) def permuteBkwd(self, perm): """Permute the rows of the matrix with the given permutation in reverse.""" return self.permute_rows(perm, direction='backward') def permuteFwd(self, perm): """Permute the rows of the matrix with the given permutation.""" return self.permute_rows(perm, direction='forward') class MatrixKind(Kind): """ Kind for all matrices in SymPy. Basic class for this kind is ``MatrixBase`` and ``MatrixExpr``, but any expression representing the matrix can have this. Parameters ========== element_kind : Kind Kind of the element. Default is ``NumberKind``, which means that the matrix contains only numbers. Examples ======== >>> from sympy import MatrixSymbol, Integral >>> from sympy.abc import x >>> A = MatrixSymbol('A', 2,2) >>> A.kind MatrixKind(NumberKind) >>> Integral(A,x).kind MatrixKind(NumberKind) See Also ======== sympy.tensor.ArrayKind : Kind for N-dimensional arrays. """ def __new__(cls, element_kind=NumberKind): obj = super().__new__(cls, element_kind) obj.element_kind = element_kind return obj def __repr__(self): return "MatrixKind(%s)" % self.element_kind @Mul._kind_dispatcher.register(_NumberKind, MatrixKind) def num_mat_mul(k1, k2): """ Return MatrixKind. The element kind is selected by recursive dispatching. Do not need to dispatch in reversed order because KindDispatcher searches for this automatically. """ # Deal with Mul._kind_dispatcher's commutativity elemk = Mul._kind_dispatcher(NumberKind, k2.element_kind) return MatrixKind(elemk) @Mul._kind_dispatcher.register(MatrixKind, MatrixKind) def mat_mat_mul(k1, k2): """ Return MatrixKind. The element kind is selected by recursive dispatching. """ elemk = Mul._kind_dispatcher(k1.element_kind, k2.element_kind) return MatrixKind(elemk) class MatrixBase(MatrixDeprecated, MatrixCalculus, MatrixEigen, MatrixCommon, Printable): """Base class for matrix objects.""" # Added just for numpy compatibility __array_priority__ = 11 is_Matrix = True _class_priority = 3 _sympify = staticmethod(sympify) zero = S.Zero one = S.One kind = MatrixKind() def __array__(self, dtype=object): from .dense import matrix2numpy return matrix2numpy(self, dtype=dtype) def __len__(self): """Return the number of elements of ``self``. Implemented mainly so bool(Matrix()) == False. """ return self.rows * self.cols def _matrix_pow_by_jordan_blocks(self, num): from sympy.matrices import diag, MutableMatrix from sympy import binomial def jordan_cell_power(jc, n): N = jc.shape[0] l = jc[0,0] if l.is_zero: if N == 1 and n.is_nonnegative: jc[0,0] = l**n elif not (n.is_integer and n.is_nonnegative): raise NonInvertibleMatrixError("Non-invertible matrix can only be raised to a nonnegative integer") else: for i in range(N): jc[0,i] = KroneckerDelta(i, n) else: for i in range(N): bn = binomial(n, i) if isinstance(bn, binomial): bn = bn._eval_expand_func() jc[0,i] = l**(n-i)*bn for i in range(N): for j in range(1, N-i): jc[j,i+j] = jc [j-1,i+j-1] P, J = self.jordan_form() jordan_cells = J.get_diag_blocks() # Make sure jordan_cells matrices are mutable: jordan_cells = [MutableMatrix(j) for j in jordan_cells] for j in jordan_cells: jordan_cell_power(j, num) return self._new(P.multiply(diag(*jordan_cells)) .multiply(P.inv())) def __str__(self): if self.rows == 0 or self.cols == 0: return 'Matrix(%s, %s, [])' % (self.rows, self.cols) return "Matrix(%s)" % str(self.tolist()) def _format_str(self, printer=None): if not printer: from sympy.printing.str import StrPrinter printer = StrPrinter() # Handle zero dimensions: if self.rows == 0 or self.cols == 0: return 'Matrix(%s, %s, [])' % (self.rows, self.cols) if self.rows == 1: return "Matrix([%s])" % self.table(printer, rowsep=',\n') return "Matrix([\n%s])" % self.table(printer, rowsep=',\n') @classmethod def irregular(cls, ntop, *matrices, **kwargs): """Return a matrix filled by the given matrices which are listed in order of appearance from left to right, top to bottom as they first appear in the matrix. They must fill the matrix completely. Examples ======== >>> from sympy import ones, Matrix >>> Matrix.irregular(3, ones(2,1), ones(3,3)*2, ones(2,2)*3, ... ones(1,1)*4, ones(2,2)*5, ones(1,2)*6, ones(1,2)*7) Matrix([ [1, 2, 2, 2, 3, 3], [1, 2, 2, 2, 3, 3], [4, 2, 2, 2, 5, 5], [6, 6, 7, 7, 5, 5]]) """ from sympy.core.compatibility import as_int ntop = as_int(ntop) # make sure we are working with explicit matrices b = [i.as_explicit() if hasattr(i, 'as_explicit') else i for i in matrices] q = list(range(len(b))) dat = [i.rows for i in b] active = [q.pop(0) for _ in range(ntop)] cols = sum([b[i].cols for i in active]) rows = [] while any(dat): r = [] for a, j in enumerate(active): r.extend(b[j][-dat[j], :]) dat[j] -= 1 if dat[j] == 0 and q: active[a] = q.pop(0) if len(r) != cols: raise ValueError(filldedent(''' Matrices provided do not appear to fill the space completely.''')) rows.append(r) return cls._new(rows) @classmethod def _handle_ndarray(cls, arg): # NumPy array or matrix or some other object that implements # __array__. So let's first use this method to get a # numpy.array() and then make a python list out of it. arr = arg.__array__() if len(arr.shape) == 2: rows, cols = arr.shape[0], arr.shape[1] flat_list = [cls._sympify(i) for i in arr.ravel()] return rows, cols, flat_list elif len(arr.shape) == 1: flat_list = [cls._sympify(i) for i in arr] return arr.shape[0], 1, flat_list else: raise NotImplementedError( "SymPy supports just 1D and 2D matrices") @classmethod def _handle_creation_inputs(cls, *args, **kwargs): """Return the number of rows, cols and flat matrix elements. Examples ======== >>> from sympy import Matrix, I Matrix can be constructed as follows: * from a nested list of iterables >>> Matrix( ((1, 2+I), (3, 4)) ) Matrix([ [1, 2 + I], [3, 4]]) * from un-nested iterable (interpreted as a column) >>> Matrix( [1, 2] ) Matrix([ [1], [2]]) * from un-nested iterable with dimensions >>> Matrix(1, 2, [1, 2] ) Matrix([[1, 2]]) * from no arguments (a 0 x 0 matrix) >>> Matrix() Matrix(0, 0, []) * from a rule >>> Matrix(2, 2, lambda i, j: i/(j + 1) ) Matrix([ [0, 0], [1, 1/2]]) See Also ======== irregular - filling a matrix with irregular blocks """ from sympy.matrices.sparse import SparseMatrix from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.matrices.expressions.blockmatrix import BlockMatrix from sympy.utilities.iterables import reshape flat_list = None if len(args) == 1: # Matrix(SparseMatrix(...)) if isinstance(args[0], SparseMatrix): return args[0].rows, args[0].cols, flatten(args[0].tolist()) # Matrix(Matrix(...)) elif isinstance(args[0], MatrixBase): return args[0].rows, args[0].cols, args[0]._mat # Matrix(MatrixSymbol('X', 2, 2)) elif isinstance(args[0], Basic) and args[0].is_Matrix: return args[0].rows, args[0].cols, args[0].as_explicit()._mat elif isinstance(args[0], mp.matrix): M = args[0] flat_list = [cls._sympify(x) for x in M] return M.rows, M.cols, flat_list # Matrix(numpy.ones((2, 2))) elif hasattr(args[0], "__array__"): return cls._handle_ndarray(args[0]) # Matrix([1, 2, 3]) or Matrix([[1, 2], [3, 4]]) elif is_sequence(args[0]) \ and not isinstance(args[0], DeferredVector): dat = list(args[0]) ismat = lambda i: isinstance(i, MatrixBase) and ( evaluate or isinstance(i, BlockMatrix) or isinstance(i, MatrixSymbol)) raw = lambda i: is_sequence(i) and not ismat(i) evaluate = kwargs.get('evaluate', True) if evaluate: def do(x): # make Block and Symbol explicit if isinstance(x, (list, tuple)): return type(x)([do(i) for i in x]) if isinstance(x, BlockMatrix) or \ isinstance(x, MatrixSymbol) and \ all(_.is_Integer for _ in x.shape): return x.as_explicit() return x dat = do(dat) if dat == [] or dat == [[]]: rows = cols = 0 flat_list = [] elif not any(raw(i) or ismat(i) for i in dat): # a column as a list of values flat_list = [cls._sympify(i) for i in dat] rows = len(flat_list) cols = 1 if rows else 0 elif evaluate and all(ismat(i) for i in dat): # a column as a list of matrices ncol = {i.cols for i in dat if any(i.shape)} if ncol: if len(ncol) != 1: raise ValueError('mismatched dimensions') flat_list = [_ for i in dat for r in i.tolist() for _ in r] cols = ncol.pop() rows = len(flat_list)//cols else: rows = cols = 0 flat_list = [] elif evaluate and any(ismat(i) for i in dat): ncol = set() flat_list = [] for i in dat: if ismat(i): flat_list.extend( [k for j in i.tolist() for k in j]) if any(i.shape): ncol.add(i.cols) elif raw(i): if i: ncol.add(len(i)) flat_list.extend(i) else: ncol.add(1) flat_list.append(i) if len(ncol) > 1: raise ValueError('mismatched dimensions') cols = ncol.pop() rows = len(flat_list)//cols else: # list of lists; each sublist is a logical row # which might consist of many rows if the values in # the row are matrices flat_list = [] ncol = set() rows = cols = 0 for row in dat: if not is_sequence(row) and \ not getattr(row, 'is_Matrix', False): raise ValueError('expecting list of lists') if hasattr(row, '__array__'): if 0 in row.shape: continue elif not row: continue if evaluate and all(ismat(i) for i in row): r, c, flatT = cls._handle_creation_inputs( [i.T for i in row]) T = reshape(flatT, [c]) flat = \ [T[i][j] for j in range(c) for i in range(r)] r, c = c, r else: r = 1 if getattr(row, 'is_Matrix', False): c = 1 flat = [row] else: c = len(row) flat = [cls._sympify(i) for i in row] ncol.add(c) if len(ncol) > 1: raise ValueError('mismatched dimensions') flat_list.extend(flat) rows += r cols = ncol.pop() if ncol else 0 elif len(args) == 3: rows = as_int(args[0]) cols = as_int(args[1]) if rows < 0 or cols < 0: raise ValueError("Cannot create a {} x {} matrix. " "Both dimensions must be positive".format(rows, cols)) # Matrix(2, 2, lambda i, j: i+j) if len(args) == 3 and isinstance(args[2], Callable): op = args[2] flat_list = [] for i in range(rows): flat_list.extend( [cls._sympify(op(cls._sympify(i), cls._sympify(j))) for j in range(cols)]) # Matrix(2, 2, [1, 2, 3, 4]) elif len(args) == 3 and is_sequence(args[2]): flat_list = args[2] if len(flat_list) != rows * cols: raise ValueError( 'List length should be equal to rows*columns') flat_list = [cls._sympify(i) for i in flat_list] # Matrix() elif len(args) == 0: # Empty Matrix rows = cols = 0 flat_list = [] if flat_list is None: raise TypeError(filldedent(''' Data type not understood; expecting list of lists or lists of values.''')) return rows, cols, flat_list def _setitem(self, key, value): """Helper to set value at location given by key. Examples ======== >>> from sympy import Matrix, I, zeros, ones >>> m = Matrix(((1, 2+I), (3, 4))) >>> m Matrix([ [1, 2 + I], [3, 4]]) >>> m[1, 0] = 9 >>> m Matrix([ [1, 2 + I], [9, 4]]) >>> m[1, 0] = [[0, 1]] To replace row r you assign to position r*m where m is the number of columns: >>> M = zeros(4) >>> m = M.cols >>> M[3*m] = ones(1, m)*2; M Matrix([ [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [2, 2, 2, 2]]) And to replace column c you can assign to position c: >>> M[2] = ones(m, 1)*4; M Matrix([ [0, 0, 4, 0], [0, 0, 4, 0], [0, 0, 4, 0], [2, 2, 4, 2]]) """ from .dense import Matrix is_slice = isinstance(key, slice) i, j = key = self.key2ij(key) is_mat = isinstance(value, MatrixBase) if type(i) is slice or type(j) is slice: if is_mat: self.copyin_matrix(key, value) return if not isinstance(value, Expr) and is_sequence(value): self.copyin_list(key, value) return raise ValueError('unexpected value: %s' % value) else: if (not is_mat and not isinstance(value, Basic) and is_sequence(value)): value = Matrix(value) is_mat = True if is_mat: if is_slice: key = (slice(*divmod(i, self.cols)), slice(*divmod(j, self.cols))) else: key = (slice(i, i + value.rows), slice(j, j + value.cols)) self.copyin_matrix(key, value) else: return i, j, self._sympify(value) return def add(self, b): """Return self + b """ return self + b def condition_number(self): """Returns the condition number of a matrix. This is the maximum singular value divided by the minimum singular value Examples ======== >>> from sympy import Matrix, S >>> A = Matrix([[1, 0, 0], [0, 10, 0], [0, 0, S.One/10]]) >>> A.condition_number() 100 See Also ======== singular_values """ if not self: return self.zero singularvalues = self.singular_values() return Max(*singularvalues) / Min(*singularvalues) def copy(self): """ Returns the copy of a matrix. Examples ======== >>> from sympy import Matrix >>> A = Matrix(2, 2, [1, 2, 3, 4]) >>> A.copy() Matrix([ [1, 2], [3, 4]]) """ return self._new(self.rows, self.cols, self._mat) def cross(self, b): r""" Return the cross product of ``self`` and ``b`` relaxing the condition of compatible dimensions: if each has 3 elements, a matrix of the same type and shape as ``self`` will be returned. If ``b`` has the same shape as ``self`` then common identities for the cross product (like `a \times b = - b \times a`) will hold. Parameters ========== b : 3x1 or 1x3 Matrix See Also ======== dot multiply multiply_elementwise """ from sympy.matrices.expressions.matexpr import MatrixExpr if not isinstance(b, MatrixBase) and not isinstance(b, MatrixExpr): raise TypeError( "{} must be a Matrix, not {}.".format(b, type(b))) if not (self.rows * self.cols == b.rows * b.cols == 3): raise ShapeError("Dimensions incorrect for cross product: %s x %s" % ((self.rows, self.cols), (b.rows, b.cols))) else: return self._new(self.rows, self.cols, ( (self[1] * b[2] - self[2] * b[1]), (self[2] * b[0] - self[0] * b[2]), (self[0] * b[1] - self[1] * b[0]))) @property def D(self): """Return Dirac conjugate (if ``self.rows == 4``). Examples ======== >>> from sympy import Matrix, I, eye >>> m = Matrix((0, 1 + I, 2, 3)) >>> m.D Matrix([[0, 1 - I, -2, -3]]) >>> m = (eye(4) + I*eye(4)) >>> m[0, 3] = 2 >>> m.D Matrix([ [1 - I, 0, 0, 0], [ 0, 1 - I, 0, 0], [ 0, 0, -1 + I, 0], [ 2, 0, 0, -1 + I]]) If the matrix does not have 4 rows an AttributeError will be raised because this property is only defined for matrices with 4 rows. >>> Matrix(eye(2)).D Traceback (most recent call last): ... AttributeError: Matrix has no attribute D. See Also ======== sympy.matrices.common.MatrixCommon.conjugate: By-element conjugation sympy.matrices.common.MatrixCommon.H: Hermite conjugation """ from sympy.physics.matrices import mgamma if self.rows != 4: # In Python 3.2, properties can only return an AttributeError # so we can't raise a ShapeError -- see commit which added the # first line of this inline comment. Also, there is no need # for a message since MatrixBase will raise the AttributeError raise AttributeError return self.H * mgamma(0) def dot(self, b, hermitian=None, conjugate_convention=None): """Return the dot or inner product of two vectors of equal length. Here ``self`` must be a ``Matrix`` of size 1 x n or n x 1, and ``b`` must be either a matrix of size 1 x n, n x 1, or a list/tuple of length n. A scalar is returned. By default, ``dot`` does not conjugate ``self`` or ``b``, even if there are complex entries. Set ``hermitian=True`` (and optionally a ``conjugate_convention``) to compute the hermitian inner product. Possible kwargs are ``hermitian`` and ``conjugate_convention``. If ``conjugate_convention`` is ``"left"``, ``"math"`` or ``"maths"``, the conjugate of the first vector (``self``) is used. If ``"right"`` or ``"physics"`` is specified, the conjugate of the second vector ``b`` is used. Examples ======== >>> from sympy import Matrix >>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> v = Matrix([1, 1, 1]) >>> M.row(0).dot(v) 6 >>> M.col(0).dot(v) 12 >>> v = [3, 2, 1] >>> M.row(0).dot(v) 10 >>> from sympy import I >>> q = Matrix([1*I, 1*I, 1*I]) >>> q.dot(q, hermitian=False) -3 >>> q.dot(q, hermitian=True) 3 >>> q1 = Matrix([1, 1, 1*I]) >>> q.dot(q1, hermitian=True, conjugate_convention="maths") 1 - 2*I >>> q.dot(q1, hermitian=True, conjugate_convention="physics") 1 + 2*I See Also ======== cross multiply multiply_elementwise """ from .dense import Matrix if not isinstance(b, MatrixBase): if is_sequence(b): if len(b) != self.cols and len(b) != self.rows: raise ShapeError( "Dimensions incorrect for dot product: %s, %s" % ( self.shape, len(b))) return self.dot(Matrix(b)) else: raise TypeError( "`b` must be an ordered iterable or Matrix, not %s." % type(b)) mat = self if (1 not in mat.shape) or (1 not in b.shape) : SymPyDeprecationWarning( feature="Dot product of non row/column vectors", issue=13815, deprecated_since_version="1.2", useinstead="* to take matrix products").warn() return mat._legacy_array_dot(b) if len(mat) != len(b): raise ShapeError("Dimensions incorrect for dot product: %s, %s" % (self.shape, b.shape)) n = len(mat) if mat.shape != (1, n): mat = mat.reshape(1, n) if b.shape != (n, 1): b = b.reshape(n, 1) # Now ``mat`` is a row vector and ``b`` is a column vector. # If it so happens that only conjugate_convention is passed # then automatically set hermitian to True. If only hermitian # is true but no conjugate_convention is not passed then # automatically set it to ``"maths"`` if conjugate_convention is not None and hermitian is None: hermitian = True if hermitian and conjugate_convention is None: conjugate_convention = "maths" if hermitian == True: if conjugate_convention in ("maths", "left", "math"): mat = mat.conjugate() elif conjugate_convention in ("physics", "right"): b = b.conjugate() else: raise ValueError("Unknown conjugate_convention was entered." " conjugate_convention must be one of the" " following: math, maths, left, physics or right.") return (mat * b)[0] def dual(self): """Returns the dual of a matrix, which is: ``(1/2)*levicivita(i, j, k, l)*M(k, l)`` summed over indices `k` and `l` Since the levicivita method is anti_symmetric for any pairwise exchange of indices, the dual of a symmetric matrix is the zero matrix. Strictly speaking the dual defined here assumes that the 'matrix' `M` is a contravariant anti_symmetric second rank tensor, so that the dual is a covariant second rank tensor. """ from sympy import LeviCivita from sympy.matrices import zeros M, n = self[:, :], self.rows work = zeros(n) if self.is_symmetric(): return work for i in range(1, n): for j in range(1, n): acum = 0 for k in range(1, n): acum += LeviCivita(i, j, 0, k) * M[0, k] work[i, j] = acum work[j, i] = -acum for l in range(1, n): acum = 0 for a in range(1, n): for b in range(1, n): acum += LeviCivita(0, l, a, b) * M[a, b] acum /= 2 work[0, l] = -acum work[l, 0] = acum return work def _eval_matrix_exp_jblock(self): """A helper function to compute an exponential of a Jordan block matrix Examples ======== >>> from sympy import Symbol, Matrix >>> l = Symbol('lamda') A trivial example of 1*1 Jordan block: >>> m = Matrix.jordan_block(1, l) >>> m._eval_matrix_exp_jblock() Matrix([[exp(lamda)]]) An example of 3*3 Jordan block: >>> m = Matrix.jordan_block(3, l) >>> m._eval_matrix_exp_jblock() Matrix([ [exp(lamda), exp(lamda), exp(lamda)/2], [ 0, exp(lamda), exp(lamda)], [ 0, 0, exp(lamda)]]) References ========== .. [1] https://en.wikipedia.org/wiki/Matrix_function#Jordan_decomposition """ size = self.rows l = self[0, 0] exp_l = exp(l) bands = {i: exp_l / factorial(i) for i in range(size)} from .sparsetools import banded return self.__class__(banded(size, bands)) def analytic_func(self, f, x): """ Computes f(A) where A is a Square Matrix and f is an analytic function. Examples ======== >>> from sympy import Symbol, Matrix, S, log >>> x = Symbol('x') >>> m = Matrix([[S(5)/4, S(3)/4], [S(3)/4, S(5)/4]]) >>> f = log(x) >>> m.analytic_func(f, x) Matrix([ [ 0, log(2)], [log(2), 0]]) Parameters ========== f : Expr Analytic Function x : Symbol parameter of f """ from sympy import diff f, x = _sympify(f), _sympify(x) if not self.is_square: raise NonSquareMatrixError if not x.is_symbol: raise ValueError("{} must be a symbol.".format(x)) if x not in f.free_symbols: raise ValueError( "{} must be a parameter of {}.".format(x, f)) if x in self.free_symbols: raise ValueError( "{} must not be a parameter of {}.".format(x, self)) eigen = self.eigenvals() max_mul = max(eigen.values()) derivative = {} dd = f for i in range(max_mul - 1): dd = diff(dd, x) derivative[i + 1] = dd n = self.shape[0] r = self.zeros(n) f_val = self.zeros(n, 1) row = 0 for i in eigen: mul = eigen[i] f_val[row] = f.subs(x, i) if f_val[row].is_number and not f_val[row].is_complex: raise ValueError( "Cannot evaluate the function because the " "function {} is not analytic at the given " "eigenvalue {}".format(f, f_val[row])) val = 1 for a in range(n): r[row, a] = val val *= i if mul > 1: coe = [1 for ii in range(n)] deri = 1 while mul > 1: row = row + 1 mul -= 1 d_i = derivative[deri].subs(x, i) if d_i.is_number and not d_i.is_complex: raise ValueError( "Cannot evaluate the function because the " "derivative {} is not analytic at the given " "eigenvalue {}".format(derivative[deri], d_i)) f_val[row] = d_i for a in range(n): if a - deri + 1 <= 0: r[row, a] = 0 coe[a] = 0 continue coe[a] = coe[a]*(a - deri + 1) r[row, a] = coe[a]*pow(i, a - deri) deri += 1 row += 1 c = r.solve(f_val) ans = self.zeros(n) pre = self.eye(n) for i in range(n): ans = ans + c[i]*pre pre *= self return ans def exp(self): """Return the exponential of a square matrix Examples ======== >>> from sympy import Symbol, Matrix >>> t = Symbol('t') >>> m = Matrix([[0, 1], [-1, 0]]) * t >>> m.exp() Matrix([ [ exp(I*t)/2 + exp(-I*t)/2, -I*exp(I*t)/2 + I*exp(-I*t)/2], [I*exp(I*t)/2 - I*exp(-I*t)/2, exp(I*t)/2 + exp(-I*t)/2]]) """ if not self.is_square: raise NonSquareMatrixError( "Exponentiation is valid only for square matrices") try: P, J = self.jordan_form() cells = J.get_diag_blocks() except MatrixError: raise NotImplementedError( "Exponentiation is implemented only for matrices for which the Jordan normal form can be computed") blocks = [cell._eval_matrix_exp_jblock() for cell in cells] from sympy.matrices import diag from sympy import re eJ = diag(*blocks) # n = self.rows ret = P.multiply(eJ, dotprodsimp=None).multiply(P.inv(), dotprodsimp=None) if all(value.is_real for value in self.values()): return type(self)(re(ret)) else: return type(self)(ret) def _eval_matrix_log_jblock(self): """Helper function to compute logarithm of a jordan block. Examples ======== >>> from sympy import Symbol, Matrix >>> l = Symbol('lamda') A trivial example of 1*1 Jordan block: >>> m = Matrix.jordan_block(1, l) >>> m._eval_matrix_log_jblock() Matrix([[log(lamda)]]) An example of 3*3 Jordan block: >>> m = Matrix.jordan_block(3, l) >>> m._eval_matrix_log_jblock() Matrix([ [log(lamda), 1/lamda, -1/(2*lamda**2)], [ 0, log(lamda), 1/lamda], [ 0, 0, log(lamda)]]) """ size = self.rows l = self[0, 0] if l.is_zero: raise MatrixError( 'Could not take logarithm or reciprocal for the given ' 'eigenvalue {}'.format(l)) bands = {0: log(l)} for i in range(1, size): bands[i] = -((-l) ** -i) / i from .sparsetools import banded return self.__class__(banded(size, bands)) def log(self, simplify=cancel): """Return the logarithm of a square matrix Parameters ========== simplify : function, bool The function to simplify the result with. Default is ``cancel``, which is effective to reduce the expression growing for taking reciprocals and inverses for symbolic matrices. Examples ======== >>> from sympy import S, Matrix Examples for positive-definite matrices: >>> m = Matrix([[1, 1], [0, 1]]) >>> m.log() Matrix([ [0, 1], [0, 0]]) >>> m = Matrix([[S(5)/4, S(3)/4], [S(3)/4, S(5)/4]]) >>> m.log() Matrix([ [ 0, log(2)], [log(2), 0]]) Examples for non positive-definite matrices: >>> m = Matrix([[S(3)/4, S(5)/4], [S(5)/4, S(3)/4]]) >>> m.log() Matrix([ [ I*pi/2, log(2) - I*pi/2], [log(2) - I*pi/2, I*pi/2]]) >>> m = Matrix( ... [[0, 0, 0, 1], ... [0, 0, 1, 0], ... [0, 1, 0, 0], ... [1, 0, 0, 0]]) >>> m.log() Matrix([ [ I*pi/2, 0, 0, -I*pi/2], [ 0, I*pi/2, -I*pi/2, 0], [ 0, -I*pi/2, I*pi/2, 0], [-I*pi/2, 0, 0, I*pi/2]]) """ if not self.is_square: raise NonSquareMatrixError( "Logarithm is valid only for square matrices") try: if simplify: P, J = simplify(self).jordan_form() else: P, J = self.jordan_form() cells = J.get_diag_blocks() except MatrixError: raise NotImplementedError( "Logarithm is implemented only for matrices for which " "the Jordan normal form can be computed") blocks = [ cell._eval_matrix_log_jblock() for cell in cells] from sympy.matrices import diag eJ = diag(*blocks) if simplify: ret = simplify(P * eJ * simplify(P.inv())) ret = self.__class__(ret) else: ret = P * eJ * P.inv() return ret def is_nilpotent(self): """Checks if a matrix is nilpotent. A matrix B is nilpotent if for some integer k, B**k is a zero matrix. Examples ======== >>> from sympy import Matrix >>> a = Matrix([[0, 0, 0], [1, 0, 0], [1, 1, 0]]) >>> a.is_nilpotent() True >>> a = Matrix([[1, 0, 1], [1, 0, 0], [1, 1, 0]]) >>> a.is_nilpotent() False """ if not self: return True if not self.is_square: raise NonSquareMatrixError( "Nilpotency is valid only for square matrices") x = uniquely_named_symbol('x', self, modify=lambda s: '_' + s) p = self.charpoly(x) if p.args[0] == x ** self.rows: return True return False def key2bounds(self, keys): """Converts a key with potentially mixed types of keys (integer and slice) into a tuple of ranges and raises an error if any index is out of ``self``'s range. See Also ======== key2ij """ from sympy.matrices.common import a2idx as a2idx_ # Remove this line after deprecation of a2idx from matrices.py islice, jslice = [isinstance(k, slice) for k in keys] if islice: if not self.rows: rlo = rhi = 0 else: rlo, rhi = keys[0].indices(self.rows)[:2] else: rlo = a2idx_(keys[0], self.rows) rhi = rlo + 1 if jslice: if not self.cols: clo = chi = 0 else: clo, chi = keys[1].indices(self.cols)[:2] else: clo = a2idx_(keys[1], self.cols) chi = clo + 1 return rlo, rhi, clo, chi def key2ij(self, key): """Converts key into canonical form, converting integers or indexable items into valid integers for ``self``'s range or returning slices unchanged. See Also ======== key2bounds """ from sympy.matrices.common import a2idx as a2idx_ # Remove this line after deprecation of a2idx from matrices.py if is_sequence(key): if not len(key) == 2: raise TypeError('key must be a sequence of length 2') return [a2idx_(i, n) if not isinstance(i, slice) else i for i, n in zip(key, self.shape)] elif isinstance(key, slice): return key.indices(len(self))[:2] else: return divmod(a2idx_(key, len(self)), self.cols) def normalized(self, iszerofunc=_iszero): """Return the normalized version of ``self``. Parameters ========== iszerofunc : Function, optional A function to determine whether ``self`` is a zero vector. The default ``_iszero`` tests to see if each element is exactly zero. Returns ======= Matrix Normalized vector form of ``self``. It has the same length as a unit vector. However, a zero vector will be returned for a vector with norm 0. Raises ====== ShapeError If the matrix is not in a vector form. See Also ======== norm """ if self.rows != 1 and self.cols != 1: raise ShapeError("A Matrix must be a vector to normalize.") norm = self.norm() if iszerofunc(norm): out = self.zeros(self.rows, self.cols) else: out = self.applyfunc(lambda i: i / norm) return out def norm(self, ord=None): """Return the Norm of a Matrix or Vector. In the simplest case this is the geometric size of the vector Other norms can be specified by the ord parameter ===== ============================ ========================== ord norm for matrices norm for vectors ===== ============================ ========================== None Frobenius norm 2-norm 'fro' Frobenius norm - does not exist inf maximum row sum max(abs(x)) -inf -- min(abs(x)) 1 maximum column sum as below -1 -- as below 2 2-norm (largest sing. value) as below -2 smallest singular value as below other - does not exist sum(abs(x)**ord)**(1./ord) ===== ============================ ========================== Examples ======== >>> from sympy import Matrix, Symbol, trigsimp, cos, sin, oo >>> x = Symbol('x', real=True) >>> v = Matrix([cos(x), sin(x)]) >>> trigsimp( v.norm() ) 1 >>> v.norm(10) (sin(x)**10 + cos(x)**10)**(1/10) >>> A = Matrix([[1, 1], [1, 1]]) >>> A.norm(1) # maximum sum of absolute values of A is 2 2 >>> A.norm(2) # Spectral norm (max of |Ax|/|x| under 2-vector-norm) 2 >>> A.norm(-2) # Inverse spectral norm (smallest singular value) 0 >>> A.norm() # Frobenius Norm 2 >>> A.norm(oo) # Infinity Norm 2 >>> Matrix([1, -2]).norm(oo) 2 >>> Matrix([-1, 2]).norm(-oo) 1 See Also ======== normalized """ # Row or Column Vector Norms vals = list(self.values()) or [0] if self.rows == 1 or self.cols == 1: if ord == 2 or ord is None: # Common case sqrt(<x, x>) return sqrt(Add(*(abs(i) ** 2 for i in vals))) elif ord == 1: # sum(abs(x)) return Add(*(abs(i) for i in vals)) elif ord is S.Infinity: # max(abs(x)) return Max(*[abs(i) for i in vals]) elif ord is S.NegativeInfinity: # min(abs(x)) return Min(*[abs(i) for i in vals]) # Otherwise generalize the 2-norm, Sum(x_i**ord)**(1/ord) # Note that while useful this is not mathematically a norm try: return Pow(Add(*(abs(i) ** ord for i in vals)), S.One / ord) except (NotImplementedError, TypeError): raise ValueError("Expected order to be Number, Symbol, oo") # Matrix Norms else: if ord == 1: # Maximum column sum m = self.applyfunc(abs) return Max(*[sum(m.col(i)) for i in range(m.cols)]) elif ord == 2: # Spectral Norm # Maximum singular value return Max(*self.singular_values()) elif ord == -2: # Minimum singular value return Min(*self.singular_values()) elif ord is S.Infinity: # Infinity Norm - Maximum row sum m = self.applyfunc(abs) return Max(*[sum(m.row(i)) for i in range(m.rows)]) elif (ord is None or isinstance(ord, str) and ord.lower() in ['f', 'fro', 'frobenius', 'vector']): # Reshape as vector and send back to norm function return self.vec().norm(ord=2) else: raise NotImplementedError("Matrix Norms under development") def print_nonzero(self, symb="X"): """Shows location of non-zero entries for fast shape lookup. Examples ======== >>> from sympy.matrices import Matrix, eye >>> m = Matrix(2, 3, lambda i, j: i*3+j) >>> m Matrix([ [0, 1, 2], [3, 4, 5]]) >>> m.print_nonzero() [ XX] [XXX] >>> m = eye(4) >>> m.print_nonzero("x") [x ] [ x ] [ x ] [ x] """ s = [] for i in range(self.rows): line = [] for j in range(self.cols): if self[i, j] == 0: line.append(" ") else: line.append(str(symb)) s.append("[%s]" % ''.join(line)) print('\n'.join(s)) def project(self, v): """Return the projection of ``self`` onto the line containing ``v``. Examples ======== >>> from sympy import Matrix, S, sqrt >>> V = Matrix([sqrt(3)/2, S.Half]) >>> x = Matrix([[1, 0]]) >>> V.project(x) Matrix([[sqrt(3)/2, 0]]) >>> V.project(-x) Matrix([[sqrt(3)/2, 0]]) """ return v * (self.dot(v) / v.dot(v)) def table(self, printer, rowstart='[', rowend=']', rowsep='\n', colsep=', ', align='right'): r""" String form of Matrix as a table. ``printer`` is the printer to use for on the elements (generally something like StrPrinter()) ``rowstart`` is the string used to start each row (by default '['). ``rowend`` is the string used to end each row (by default ']'). ``rowsep`` is the string used to separate rows (by default a newline). ``colsep`` is the string used to separate columns (by default ', '). ``align`` defines how the elements are aligned. Must be one of 'left', 'right', or 'center'. You can also use '<', '>', and '^' to mean the same thing, respectively. This is used by the string printer for Matrix. Examples ======== >>> from sympy import Matrix >>> from sympy.printing.str import StrPrinter >>> M = Matrix([[1, 2], [-33, 4]]) >>> printer = StrPrinter() >>> M.table(printer) '[ 1, 2]\n[-33, 4]' >>> print(M.table(printer)) [ 1, 2] [-33, 4] >>> print(M.table(printer, rowsep=',\n')) [ 1, 2], [-33, 4] >>> print('[%s]' % M.table(printer, rowsep=',\n')) [[ 1, 2], [-33, 4]] >>> print(M.table(printer, colsep=' ')) [ 1 2] [-33 4] >>> print(M.table(printer, align='center')) [ 1 , 2] [-33, 4] >>> print(M.table(printer, rowstart='{', rowend='}')) { 1, 2} {-33, 4} """ # Handle zero dimensions: if self.rows == 0 or self.cols == 0: return '[]' # Build table of string representations of the elements res = [] # Track per-column max lengths for pretty alignment maxlen = [0] * self.cols for i in range(self.rows): res.append([]) for j in range(self.cols): s = printer._print(self[i, j]) res[-1].append(s) maxlen[j] = max(len(s), maxlen[j]) # Patch strings together align = { 'left': 'ljust', 'right': 'rjust', 'center': 'center', '<': 'ljust', '>': 'rjust', '^': 'center', }[align] for i, row in enumerate(res): for j, elem in enumerate(row): row[j] = getattr(elem, align)(maxlen[j]) res[i] = rowstart + colsep.join(row) + rowend return rowsep.join(res) def rank_decomposition(self, iszerofunc=_iszero, simplify=False): return _rank_decomposition(self, iszerofunc=iszerofunc, simplify=simplify) def cholesky(self, hermitian=True): raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix') def LDLdecomposition(self, hermitian=True): raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix') def LUdecomposition(self, iszerofunc=_iszero, simpfunc=None, rankcheck=False): return _LUdecomposition(self, iszerofunc=iszerofunc, simpfunc=simpfunc, rankcheck=rankcheck) def LUdecomposition_Simple(self, iszerofunc=_iszero, simpfunc=None, rankcheck=False): return _LUdecomposition_Simple(self, iszerofunc=iszerofunc, simpfunc=simpfunc, rankcheck=rankcheck) def LUdecompositionFF(self): return _LUdecompositionFF(self) def QRdecomposition(self): return _QRdecomposition(self) def diagonal_solve(self, rhs): return _diagonal_solve(self, rhs) def lower_triangular_solve(self, rhs): raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix') def upper_triangular_solve(self, rhs): raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix') def cholesky_solve(self, rhs): return _cholesky_solve(self, rhs) def LDLsolve(self, rhs): return _LDLsolve(self, rhs) def LUsolve(self, rhs, iszerofunc=_iszero): return _LUsolve(self, rhs, iszerofunc=iszerofunc) def QRsolve(self, b): return _QRsolve(self, b) def gauss_jordan_solve(self, B, freevar=False): return _gauss_jordan_solve(self, B, freevar=freevar) def pinv_solve(self, B, arbitrary_matrix=None): return _pinv_solve(self, B, arbitrary_matrix=arbitrary_matrix) def solve(self, rhs, method='GJ'): return _solve(self, rhs, method=method) def solve_least_squares(self, rhs, method='CH'): return _solve_least_squares(self, rhs, method=method) def pinv(self, method='RD'): return _pinv(self, method=method) def inv_mod(self, m): return _inv_mod(self, m) def inverse_ADJ(self, iszerofunc=_iszero): return _inv_ADJ(self, iszerofunc=iszerofunc) def inverse_BLOCK(self, iszerofunc=_iszero): return _inv_block(self, iszerofunc=iszerofunc) def inverse_GE(self, iszerofunc=_iszero): return _inv_GE(self, iszerofunc=iszerofunc) def inverse_LU(self, iszerofunc=_iszero): return _inv_LU(self, iszerofunc=iszerofunc) def inverse_CH(self, iszerofunc=_iszero): return _inv_CH(self, iszerofunc=iszerofunc) def inverse_LDL(self, iszerofunc=_iszero): return _inv_LDL(self, iszerofunc=iszerofunc) def inverse_QR(self, iszerofunc=_iszero): return _inv_QR(self, iszerofunc=iszerofunc) def inv(self, method=None, iszerofunc=_iszero, try_block_diag=False): return _inv(self, method=method, iszerofunc=iszerofunc, try_block_diag=try_block_diag) def connected_components(self): return _connected_components(self) def connected_components_decomposition(self): return _connected_components_decomposition(self) rank_decomposition.__doc__ = _rank_decomposition.__doc__ cholesky.__doc__ = _cholesky.__doc__ LDLdecomposition.__doc__ = _LDLdecomposition.__doc__ LUdecomposition.__doc__ = _LUdecomposition.__doc__ LUdecomposition_Simple.__doc__ = _LUdecomposition_Simple.__doc__ LUdecompositionFF.__doc__ = _LUdecompositionFF.__doc__ QRdecomposition.__doc__ = _QRdecomposition.__doc__ diagonal_solve.__doc__ = _diagonal_solve.__doc__ lower_triangular_solve.__doc__ = _lower_triangular_solve.__doc__ upper_triangular_solve.__doc__ = _upper_triangular_solve.__doc__ cholesky_solve.__doc__ = _cholesky_solve.__doc__ LDLsolve.__doc__ = _LDLsolve.__doc__ LUsolve.__doc__ = _LUsolve.__doc__ QRsolve.__doc__ = _QRsolve.__doc__ gauss_jordan_solve.__doc__ = _gauss_jordan_solve.__doc__ pinv_solve.__doc__ = _pinv_solve.__doc__ solve.__doc__ = _solve.__doc__ solve_least_squares.__doc__ = _solve_least_squares.__doc__ pinv.__doc__ = _pinv.__doc__ inv_mod.__doc__ = _inv_mod.__doc__ inverse_ADJ.__doc__ = _inv_ADJ.__doc__ inverse_GE.__doc__ = _inv_GE.__doc__ inverse_LU.__doc__ = _inv_LU.__doc__ inverse_CH.__doc__ = _inv_CH.__doc__ inverse_LDL.__doc__ = _inv_LDL.__doc__ inverse_QR.__doc__ = _inv_QR.__doc__ inverse_BLOCK.__doc__ = _inv_block.__doc__ inv.__doc__ = _inv.__doc__ connected_components.__doc__ = _connected_components.__doc__ connected_components_decomposition.__doc__ = \ _connected_components_decomposition.__doc__ @deprecated( issue=15109, useinstead="from sympy.matrices.common import classof", deprecated_since_version="1.3") def classof(A, B): from sympy.matrices.common import classof as classof_ return classof_(A, B) @deprecated( issue=15109, deprecated_since_version="1.3", useinstead="from sympy.matrices.common import a2idx") def a2idx(j, n=None): from sympy.matrices.common import a2idx as a2idx_ return a2idx_(j, n)
804858ebc6434b971df2117f6407309b36bfd47cb4bfddae00f0babffd84a8f1
from types import FunctionType from collections import Counter from mpmath import mp, workprec from mpmath.libmp.libmpf import prec_to_dps from sympy.core.compatibility import default_sort_key from sympy.core.evalf import DEFAULT_MAXPREC, PrecisionExhausted from sympy.core.logic import fuzzy_and, fuzzy_or from sympy.core.numbers import Float from sympy.core.sympify import _sympify from sympy.functions.elementary.miscellaneous import sqrt from sympy.polys import roots, CRootOf, EX from sympy.polys.matrices import DomainMatrix from sympy.polys.matrices.eigen import dom_eigenvects, dom_eigenvects_to_sympy from sympy.simplify import nsimplify, simplify as _simplify from sympy.utilities.exceptions import SymPyDeprecationWarning from .common import MatrixError, NonSquareMatrixError from .determinant import _find_reasonable_pivot from .utilities import _iszero def _eigenvals_triangular(M, multiple=False): """A fast decision for eigenvalues of an upper or a lower triangular matrix. """ diagonal_entries = [M[i, i] for i in range(M.rows)] if multiple: return diagonal_entries return dict(Counter(diagonal_entries)) def _eigenvals_eigenvects_mpmath(M): norm2 = lambda v: mp.sqrt(sum(i**2 for i in v)) v1 = None prec = max([x._prec for x in M.atoms(Float)]) eps = 2**-prec while prec < DEFAULT_MAXPREC: with workprec(prec): A = mp.matrix(M.evalf(n=prec_to_dps(prec))) E, ER = mp.eig(A) v2 = norm2([i for e in E for i in (mp.re(e), mp.im(e))]) if v1 is not None and mp.fabs(v1 - v2) < eps: return E, ER v1 = v2 prec *= 2 # we get here because the next step would have taken us # past MAXPREC or because we never took a step; in case # of the latter, we refuse to send back a solution since # it would not have been verified; we also resist taking # a small step to arrive exactly at MAXPREC since then # the two calculations might be artificially close. raise PrecisionExhausted def _eigenvals_mpmath(M, multiple=False): """Compute eigenvalues using mpmath""" E, _ = _eigenvals_eigenvects_mpmath(M) result = [_sympify(x) for x in E] if multiple: return result return dict(Counter(result)) def _eigenvects_mpmath(M): E, ER = _eigenvals_eigenvects_mpmath(M) result = [] for i in range(M.rows): eigenval = _sympify(E[i]) eigenvect = _sympify(ER[:, i]) result.append((eigenval, 1, [eigenvect])) return result # This functions is a candidate for caching if it gets implemented for matrices. def _eigenvals( M, error_when_incomplete=True, *, simplify=False, multiple=False, rational=False, **flags): r"""Compute eigenvalues of the matrix. Parameters ========== error_when_incomplete : bool, optional If it is set to ``True``, it will raise an error if not all eigenvalues are computed. This is caused by ``roots`` not returning a full list of eigenvalues. simplify : bool or function, optional If it is set to ``True``, it attempts to return the most simplified form of expressions returned by applying default simplification method in every routine. If it is set to ``False``, it will skip simplification in this particular routine to save computation resources. If a function is passed to, it will attempt to apply the particular function as simplification method. rational : bool, optional If it is set to ``True``, every floating point numbers would be replaced with rationals before computation. It can solve some issues of ``roots`` routine not working well with floats. multiple : bool, optional If it is set to ``True``, the result will be in the form of a list. If it is set to ``False``, the result will be in the form of a dictionary. Returns ======= eigs : list or dict Eigenvalues of a matrix. The return format would be specified by the key ``multiple``. Raises ====== MatrixError If not enough roots had got computed. NonSquareMatrixError If attempted to compute eigenvalues from a non-square matrix. Examples ======== >>> from sympy.matrices import Matrix >>> M = Matrix(3, 3, [0, 1, 1, 1, 0, 0, 1, 1, 1]) >>> M.eigenvals() {-1: 1, 0: 1, 2: 1} See Also ======== MatrixDeterminant.charpoly eigenvects Notes ===== Eigenvalues of a matrix $A$ can be computed by solving a matrix equation $\det(A - \lambda I) = 0$ It's not always possible to return radical solutions for eigenvalues for matrices larger than $4, 4$ shape due to Abel-Ruffini theorem. If there is no radical solution is found for the eigenvalue, it may return eigenvalues in the form of :class:`sympy.polys.rootoftools.ComplexRootOf`. """ if not M: if multiple: return [] return {} if not M.is_square: raise NonSquareMatrixError("{} must be a square matrix.".format(M)) if M.is_upper or M.is_lower: return _eigenvals_triangular(M, multiple=multiple) if all(x.is_number for x in M) and M.has(Float): return _eigenvals_mpmath(M, multiple=multiple) if rational: M = M.applyfunc( lambda x: nsimplify(x, rational=True) if x.has(Float) else x) if multiple: return _eigenvals_list( M, error_when_incomplete=error_when_incomplete, simplify=simplify, **flags) return _eigenvals_dict( M, error_when_incomplete=error_when_incomplete, simplify=simplify, **flags) def _eigenvals_list( M, error_when_incomplete=True, simplify=False, **flags): iblocks = M.connected_components() all_eigs = [] for b in iblocks: block = M[b, b] if isinstance(simplify, FunctionType): charpoly = block.charpoly(simplify=simplify) else: charpoly = block.charpoly() eigs = roots(charpoly, multiple=True, **flags) if len(eigs) != block.rows: degree = int(charpoly.degree()) f = charpoly.as_expr() x = charpoly.gen try: eigs = [CRootOf(f, x, idx) for idx in range(degree)] except NotImplementedError: if error_when_incomplete: raise MatrixError else: eigs = [] all_eigs += eigs if not simplify: return all_eigs if not isinstance(simplify, FunctionType): simplify = _simplify return [simplify(value) for value in all_eigs] def _eigenvals_dict( M, error_when_incomplete=True, simplify=False, **flags): iblocks = M.connected_components() all_eigs = {} for b in iblocks: block = M[b, b] if isinstance(simplify, FunctionType): charpoly = block.charpoly(simplify=simplify) else: charpoly = block.charpoly() eigs = roots(charpoly, multiple=False, **flags) if sum(eigs.values()) != block.rows: degree = int(charpoly.degree()) f = charpoly.as_expr() x = charpoly.gen try: eigs = {CRootOf(f, x, idx): 1 for idx in range(degree)} except NotImplementedError: if error_when_incomplete: raise MatrixError else: eigs = {} for k, v in eigs.items(): if k in all_eigs: all_eigs[k] += v else: all_eigs[k] = v if not simplify: return all_eigs if not isinstance(simplify, FunctionType): simplify = _simplify return {simplify(key): value for key, value in all_eigs.items()} def _eigenspace(M, eigenval, iszerofunc=_iszero, simplify=False): """Get a basis for the eigenspace for a particular eigenvalue""" m = M - M.eye(M.rows) * eigenval ret = m.nullspace(iszerofunc=iszerofunc) # The nullspace for a real eigenvalue should be non-trivial. # If we didn't find an eigenvector, try once more a little harder if len(ret) == 0 and simplify: ret = m.nullspace(iszerofunc=iszerofunc, simplify=True) if len(ret) == 0: raise NotImplementedError( "Can't evaluate eigenvector for eigenvalue {}".format(eigenval)) return ret def _eigenvects_DOM(M, **kwargs): DOM = DomainMatrix.from_Matrix(M, field=True, extension=True) if DOM.domain != EX: rational, algebraic = dom_eigenvects(DOM) eigenvects = dom_eigenvects_to_sympy( rational, algebraic, M.__class__, **kwargs) eigenvects = sorted(eigenvects, key=lambda x: default_sort_key(x[0])) return eigenvects return None def _eigenvects_sympy(M, iszerofunc, simplify=True, **flags): eigenvals = M.eigenvals(rational=False, **flags) # Make sure that we have all roots in radical form for x in eigenvals: if x.has(CRootOf): raise MatrixError( "Eigenvector computation is not implemented if the matrix have " "eigenvalues in CRootOf form") eigenvals = sorted(eigenvals.items(), key=default_sort_key) ret = [] for val, mult in eigenvals: vects = _eigenspace(M, val, iszerofunc=iszerofunc, simplify=simplify) ret.append((val, mult, vects)) return ret # This functions is a candidate for caching if it gets implemented for matrices. def _eigenvects(M, error_when_incomplete=True, iszerofunc=_iszero, *, chop=False, **flags): """Compute eigenvectors of the matrix. Parameters ========== error_when_incomplete : bool, optional Raise an error when not all eigenvalues are computed. This is caused by ``roots`` not returning a full list of eigenvalues. iszerofunc : function, optional Specifies a zero testing function to be used in ``rref``. Default value is ``_iszero``, which uses SymPy's naive and fast default assumption handler. It can also accept any user-specified zero testing function, if it is formatted as a function which accepts a single symbolic argument and returns ``True`` if it is tested as zero and ``False`` if it is tested as non-zero, and ``None`` if it is undecidable. simplify : bool or function, optional If ``True``, ``as_content_primitive()`` will be used to tidy up normalization artifacts. It will also be used by the ``nullspace`` routine. chop : bool or positive number, optional If the matrix contains any Floats, they will be changed to Rationals for computation purposes, but the answers will be returned after being evaluated with evalf. The ``chop`` flag is passed to ``evalf``. When ``chop=True`` a default precision will be used; a number will be interpreted as the desired level of precision. Returns ======= ret : [(eigenval, multiplicity, eigenspace), ...] A ragged list containing tuples of data obtained by ``eigenvals`` and ``nullspace``. ``eigenspace`` is a list containing the ``eigenvector`` for each eigenvalue. ``eigenvector`` is a vector in the form of a ``Matrix``. e.g. a vector of length 3 is returned as ``Matrix([a_1, a_2, a_3])``. Raises ====== NotImplementedError If failed to compute nullspace. Examples ======== >>> from sympy.matrices import Matrix >>> M = Matrix(3, 3, [0, 1, 1, 1, 0, 0, 1, 1, 1]) >>> M.eigenvects() [(-1, 1, [Matrix([ [-1], [ 1], [ 0]])]), (0, 1, [Matrix([ [ 0], [-1], [ 1]])]), (2, 1, [Matrix([ [2/3], [1/3], [ 1]])])] See Also ======== eigenvals MatrixSubspaces.nullspace """ simplify = flags.get('simplify', True) primitive = flags.get('simplify', False) flags.pop('simplify', None) # remove this if it's there flags.pop('multiple', None) # remove this if it's there if not isinstance(simplify, FunctionType): simpfunc = _simplify if simplify else lambda x: x has_floats = M.has(Float) if has_floats: if all(x.is_number for x in M): return _eigenvects_mpmath(M) M = M.applyfunc(lambda x: nsimplify(x, rational=True)) ret = _eigenvects_DOM(M) if ret is None: ret = _eigenvects_sympy(M, iszerofunc, simplify=simplify, **flags) if primitive: # if the primitive flag is set, get rid of any common # integer denominators def denom_clean(l): from sympy import gcd return [(v / gcd(list(v))).applyfunc(simpfunc) for v in l] ret = [(val, mult, denom_clean(es)) for val, mult, es in ret] if has_floats: # if we had floats to start with, turn the eigenvectors to floats ret = [(val.evalf(chop=chop), mult, [v.evalf(chop=chop) for v in es]) for val, mult, es in ret] return ret def _is_diagonalizable_with_eigen(M, reals_only=False): """See _is_diagonalizable. This function returns the bool along with the eigenvectors to avoid calculating them again in functions like ``diagonalize``.""" if not M.is_square: return False, [] eigenvecs = M.eigenvects(simplify=True) for val, mult, basis in eigenvecs: if reals_only and not val.is_real: # if we have a complex eigenvalue return False, eigenvecs if mult != len(basis): # if the geometric multiplicity doesn't equal the algebraic return False, eigenvecs return True, eigenvecs def _is_diagonalizable(M, reals_only=False, **kwargs): """Returns ``True`` if a matrix is diagonalizable. Parameters ========== reals_only : bool, optional If ``True``, it tests whether the matrix can be diagonalized to contain only real numbers on the diagonal. If ``False``, it tests whether the matrix can be diagonalized at all, even with numbers that may not be real. Examples ======== Example of a diagonalizable matrix: >>> from sympy import Matrix >>> M = Matrix([[1, 2, 0], [0, 3, 0], [2, -4, 2]]) >>> M.is_diagonalizable() True Example of a non-diagonalizable matrix: >>> M = Matrix([[0, 1], [0, 0]]) >>> M.is_diagonalizable() False Example of a matrix that is diagonalized in terms of non-real entries: >>> M = Matrix([[0, 1], [-1, 0]]) >>> M.is_diagonalizable(reals_only=False) True >>> M.is_diagonalizable(reals_only=True) False See Also ======== is_diagonal diagonalize """ if 'clear_cache' in kwargs: SymPyDeprecationWarning( feature='clear_cache', deprecated_since_version=1.4, issue=15887 ).warn() if 'clear_subproducts' in kwargs: SymPyDeprecationWarning( feature='clear_subproducts', deprecated_since_version=1.4, issue=15887 ).warn() if not M.is_square: return False if all(e.is_real for e in M) and M.is_symmetric(): return True if all(e.is_complex for e in M) and M.is_hermitian: return True return _is_diagonalizable_with_eigen(M, reals_only=reals_only)[0] #G&VL, Matrix Computations, Algo 5.4.2 def _householder_vector(x): if not x.cols == 1: raise ValueError("Input must be a column matrix") v = x.copy() v_plus = x.copy() v_minus = x.copy() q = x[0, 0] / abs(x[0, 0]) norm_x = x.norm() v_plus[0, 0] = x[0, 0] + q * norm_x v_minus[0, 0] = x[0, 0] - q * norm_x if x[1:, 0].norm() == 0: bet = 0 v[0, 0] = 1 else: if v_plus.norm() <= v_minus.norm(): v = v_plus else: v = v_minus v = v / v[0] bet = 2 / (v.norm() ** 2) return v, bet def _bidiagonal_decmp_hholder(M): m = M.rows n = M.cols A = M.as_mutable() U, V = A.eye(m), A.eye(n) for i in range(min(m, n)): v, bet = _householder_vector(A[i:, i]) hh_mat = A.eye(m - i) - bet * v * v.H A[i:, i:] = hh_mat * A[i:, i:] temp = A.eye(m) temp[i:, i:] = hh_mat U = U * temp if i + 1 <= n - 2: v, bet = _householder_vector(A[i, i+1:].T) hh_mat = A.eye(n - i - 1) - bet * v * v.H A[i:, i+1:] = A[i:, i+1:] * hh_mat temp = A.eye(n) temp[i+1:, i+1:] = hh_mat V = temp * V return U, A, V def _eval_bidiag_hholder(M): m = M.rows n = M.cols A = M.as_mutable() for i in range(min(m, n)): v, bet = _householder_vector(A[i:, i]) hh_mat = A.eye(m-i) - bet * v * v.H A[i:, i:] = hh_mat * A[i:, i:] if i + 1 <= n - 2: v, bet = _householder_vector(A[i, i+1:].T) hh_mat = A.eye(n - i - 1) - bet * v * v.H A[i:, i+1:] = A[i:, i+1:] * hh_mat return A def _bidiagonal_decomposition(M, upper=True): """ Returns (U,B,V.H) $A = UBV^{H}$ where A is the input matrix, and B is its Bidiagonalized form Note: Bidiagonal Computation can hang for symbolic matrices. Parameters ========== upper : bool. Whether to do upper bidiagnalization or lower. True for upper and False for lower. References ========== 1. Algorith 5.4.2, Matrix computations by Golub and Van Loan, 4th edition 2. Complex Matrix Bidiagonalization : https://github.com/vslobody/Householder-Bidiagonalization """ if type(upper) is not bool: raise ValueError("upper must be a boolean") if not upper: X = _bidiagonal_decmp_hholder(M.H) return X[2].H, X[1].H, X[0].H return _bidiagonal_decmp_hholder(M) def _bidiagonalize(M, upper=True): """ Returns $B$, the Bidiagonalized form of the input matrix. Note: Bidiagonal Computation can hang for symbolic matrices. Parameters ========== upper : bool. Whether to do upper bidiagnalization or lower. True for upper and False for lower. References ========== 1. Algorith 5.4.2, Matrix computations by Golub and Van Loan, 4th edition 2. Complex Matrix Bidiagonalization : https://github.com/vslobody/Householder-Bidiagonalization """ if type(upper) is not bool: raise ValueError("upper must be a boolean") if not upper: return _eval_bidiag_hholder(M.H).H return _eval_bidiag_hholder(M) def _diagonalize(M, reals_only=False, sort=False, normalize=False): """ Return (P, D), where D is diagonal and D = P^-1 * M * P where M is current matrix. Parameters ========== reals_only : bool. Whether to throw an error if complex numbers are need to diagonalize. (Default: False) sort : bool. Sort the eigenvalues along the diagonal. (Default: False) normalize : bool. If True, normalize the columns of P. (Default: False) Examples ======== >>> from sympy.matrices import Matrix >>> M = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2]) >>> M Matrix([ [1, 2, 0], [0, 3, 0], [2, -4, 2]]) >>> (P, D) = M.diagonalize() >>> D Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> P Matrix([ [-1, 0, -1], [ 0, 0, -1], [ 2, 1, 2]]) >>> P.inv() * M * P Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) See Also ======== is_diagonal is_diagonalizable """ if not M.is_square: raise NonSquareMatrixError() is_diagonalizable, eigenvecs = _is_diagonalizable_with_eigen(M, reals_only=reals_only) if not is_diagonalizable: raise MatrixError("Matrix is not diagonalizable") if sort: eigenvecs = sorted(eigenvecs, key=default_sort_key) p_cols, diag = [], [] for val, mult, basis in eigenvecs: diag += [val] * mult p_cols += basis if normalize: p_cols = [v / v.norm() for v in p_cols] return M.hstack(*p_cols), M.diag(*diag) def _fuzzy_positive_definite(M): positive_diagonals = M._has_positive_diagonals() if positive_diagonals is False: return False if positive_diagonals and M.is_strongly_diagonally_dominant: return True return None def _fuzzy_positive_semidefinite(M): nonnegative_diagonals = M._has_nonnegative_diagonals() if nonnegative_diagonals is False: return False if nonnegative_diagonals and M.is_weakly_diagonally_dominant: return True return None def _is_positive_definite(M): if not M.is_hermitian: if not M.is_square: return False M = M + M.H fuzzy = _fuzzy_positive_definite(M) if fuzzy is not None: return fuzzy return _is_positive_definite_GE(M) def _is_positive_semidefinite(M): if not M.is_hermitian: if not M.is_square: return False M = M + M.H fuzzy = _fuzzy_positive_semidefinite(M) if fuzzy is not None: return fuzzy return _is_positive_semidefinite_cholesky(M) def _is_negative_definite(M): return _is_positive_definite(-M) def _is_negative_semidefinite(M): return _is_positive_semidefinite(-M) def _is_indefinite(M): if M.is_hermitian: eigen = M.eigenvals() args1 = [x.is_positive for x in eigen.keys()] any_positive = fuzzy_or(args1) args2 = [x.is_negative for x in eigen.keys()] any_negative = fuzzy_or(args2) return fuzzy_and([any_positive, any_negative]) elif M.is_square: return (M + M.H).is_indefinite return False def _is_positive_definite_GE(M): """A division-free gaussian elimination method for testing positive-definiteness.""" M = M.as_mutable() size = M.rows for i in range(size): is_positive = M[i, i].is_positive if is_positive is not True: return is_positive for j in range(i+1, size): M[j, i+1:] = M[i, i] * M[j, i+1:] - M[j, i] * M[i, i+1:] return True def _is_positive_semidefinite_cholesky(M): """Uses Cholesky factorization with complete pivoting References ========== .. [1] http://eprints.ma.man.ac.uk/1199/1/covered/MIMS_ep2008_116.pdf .. [2] https://www.value-at-risk.net/cholesky-factorization/ """ M = M.as_mutable() for k in range(M.rows): diags = [M[i, i] for i in range(k, M.rows)] pivot, pivot_val, nonzero, _ = _find_reasonable_pivot(diags) if nonzero: return None if pivot is None: for i in range(k+1, M.rows): for j in range(k, M.cols): iszero = M[i, j].is_zero if iszero is None: return None elif iszero is False: return False return True if M[k, k].is_negative or pivot_val.is_negative: return False if pivot > 0: M.col_swap(k, k+pivot) M.row_swap(k, k+pivot) M[k, k] = sqrt(M[k, k]) M[k, k+1:] /= M[k, k] M[k+1:, k+1:] -= M[k, k+1:].H * M[k, k+1:] return M[-1, -1].is_nonnegative _doc_positive_definite = \ r"""Finds out the definiteness of a matrix. Explanation =========== A square real matrix $A$ is: - A positive definite matrix if $x^T A x > 0$ for all non-zero real vectors $x$. - A positive semidefinite matrix if $x^T A x \geq 0$ for all non-zero real vectors $x$. - A negative definite matrix if $x^T A x < 0$ for all non-zero real vectors $x$. - A negative semidefinite matrix if $x^T A x \leq 0$ for all non-zero real vectors $x$. - An indefinite matrix if there exists non-zero real vectors $x, y$ with $x^T A x > 0 > y^T A y$. A square complex matrix $A$ is: - A positive definite matrix if $\text{re}(x^H A x) > 0$ for all non-zero complex vectors $x$. - A positive semidefinite matrix if $\text{re}(x^H A x) \geq 0$ for all non-zero complex vectors $x$. - A negative definite matrix if $\text{re}(x^H A x) < 0$ for all non-zero complex vectors $x$. - A negative semidefinite matrix if $\text{re}(x^H A x) \leq 0$ for all non-zero complex vectors $x$. - An indefinite matrix if there exists non-zero complex vectors $x, y$ with $\text{re}(x^H A x) > 0 > \text{re}(y^H A y)$. A matrix need not be symmetric or hermitian to be positive definite. - A real non-symmetric matrix is positive definite if and only if $\frac{A + A^T}{2}$ is positive definite. - A complex non-hermitian matrix is positive definite if and only if $\frac{A + A^H}{2}$ is positive definite. And this extension can apply for all the definitions above. However, for complex cases, you can restrict the definition of $\text{re}(x^H A x) > 0$ to $x^H A x > 0$ and require the matrix to be hermitian. But we do not present this restriction for computation because you can check ``M.is_hermitian`` independently with this and use the same procedure. Examples ======== An example of symmetric positive definite matrix: .. plot:: :context: reset :format: doctest :include-source: True >>> from sympy import Matrix, symbols >>> from sympy.plotting import plot3d >>> a, b = symbols('a b') >>> x = Matrix([a, b]) >>> A = Matrix([[1, 0], [0, 1]]) >>> A.is_positive_definite True >>> A.is_positive_semidefinite True >>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1)) An example of symmetric positive semidefinite matrix: .. plot:: :context: close-figs :format: doctest :include-source: True >>> A = Matrix([[1, -1], [-1, 1]]) >>> A.is_positive_definite False >>> A.is_positive_semidefinite True >>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1)) An example of symmetric negative definite matrix: .. plot:: :context: close-figs :format: doctest :include-source: True >>> A = Matrix([[-1, 0], [0, -1]]) >>> A.is_negative_definite True >>> A.is_negative_semidefinite True >>> A.is_indefinite False >>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1)) An example of symmetric indefinite matrix: .. plot:: :context: close-figs :format: doctest :include-source: True >>> A = Matrix([[1, 2], [2, -1]]) >>> A.is_indefinite True >>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1)) An example of non-symmetric positive definite matrix. .. plot:: :context: close-figs :format: doctest :include-source: True >>> A = Matrix([[1, 2], [-2, 1]]) >>> A.is_positive_definite True >>> A.is_positive_semidefinite True >>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1)) Notes ===== Although some people trivialize the definition of positive definite matrices only for symmetric or hermitian matrices, this restriction is not correct because it does not classify all instances of positive definite matrices from the definition $x^T A x > 0$ or $\text{re}(x^H A x) > 0$. For instance, ``Matrix([[1, 2], [-2, 1]])`` presented in the example above is an example of real positive definite matrix that is not symmetric. However, since the following formula holds true; .. math:: \text{re}(x^H A x) > 0 \iff \text{re}(x^H \frac{A + A^H}{2} x) > 0 We can classify all positive definite matrices that may or may not be symmetric or hermitian by transforming the matrix to $\frac{A + A^T}{2}$ or $\frac{A + A^H}{2}$ (which is guaranteed to be always real symmetric or complex hermitian) and we can defer most of the studies to symmetric or hermitian positive definite matrices. But it is a different problem for the existance of Cholesky decomposition. Because even though a non symmetric or a non hermitian matrix can be positive definite, Cholesky or LDL decomposition does not exist because the decompositions require the matrix to be symmetric or hermitian. References ========== .. [1] https://en.wikipedia.org/wiki/Definiteness_of_a_matrix#Eigenvalues .. [2] http://mathworld.wolfram.com/PositiveDefiniteMatrix.html .. [3] Johnson, C. R. "Positive Definite Matrices." Amer. Math. Monthly 77, 259-264 1970. """ _is_positive_definite.__doc__ = _doc_positive_definite _is_positive_semidefinite.__doc__ = _doc_positive_definite _is_negative_definite.__doc__ = _doc_positive_definite _is_negative_semidefinite.__doc__ = _doc_positive_definite _is_indefinite.__doc__ = _doc_positive_definite def _jordan_form(M, calc_transform=True, *, chop=False): """Return $(P, J)$ where $J$ is a Jordan block matrix and $P$ is a matrix such that $M = P J P^{-1}$ Parameters ========== calc_transform : bool If ``False``, then only $J$ is returned. chop : bool All matrices are converted to exact types when computing eigenvalues and eigenvectors. As a result, there may be approximation errors. If ``chop==True``, these errors will be truncated. Examples ======== >>> from sympy.matrices import Matrix >>> M = Matrix([[ 6, 5, -2, -3], [-3, -1, 3, 3], [ 2, 1, -2, -3], [-1, 1, 5, 5]]) >>> P, J = M.jordan_form() >>> J Matrix([ [2, 1, 0, 0], [0, 2, 0, 0], [0, 0, 2, 1], [0, 0, 0, 2]]) See Also ======== jordan_block """ if not M.is_square: raise NonSquareMatrixError("Only square matrices have Jordan forms") mat = M has_floats = M.has(Float) if has_floats: try: max_prec = max(term._prec for term in M._mat if isinstance(term, Float)) except ValueError: # if no term in the matrix is explicitly a Float calling max() # will throw a error so setting max_prec to default value of 53 max_prec = 53 # setting minimum max_dps to 15 to prevent loss of precision in # matrix containing non evaluated expressions max_dps = max(prec_to_dps(max_prec), 15) def restore_floats(*args): """If ``has_floats`` is `True`, cast all ``args`` as matrices of floats.""" if has_floats: args = [m.evalf(n=max_dps, chop=chop) for m in args] if len(args) == 1: return args[0] return args # cache calculations for some speedup mat_cache = {} def eig_mat(val, pow): """Cache computations of ``(M - val*I)**pow`` for quick retrieval""" if (val, pow) in mat_cache: return mat_cache[(val, pow)] if (val, pow - 1) in mat_cache: mat_cache[(val, pow)] = mat_cache[(val, pow - 1)].multiply( mat_cache[(val, 1)], dotprodsimp=None) else: mat_cache[(val, pow)] = (mat - val*M.eye(M.rows)).pow(pow) return mat_cache[(val, pow)] # helper functions def nullity_chain(val, algebraic_multiplicity): """Calculate the sequence [0, nullity(E), nullity(E**2), ...] until it is constant where ``E = M - val*I``""" # mat.rank() is faster than computing the null space, # so use the rank-nullity theorem cols = M.cols ret = [0] nullity = cols - eig_mat(val, 1).rank() i = 2 while nullity != ret[-1]: ret.append(nullity) if nullity == algebraic_multiplicity: break nullity = cols - eig_mat(val, i).rank() i += 1 # Due to issues like #7146 and #15872, SymPy sometimes # gives the wrong rank. In this case, raise an error # instead of returning an incorrect matrix if nullity < ret[-1] or nullity > algebraic_multiplicity: raise MatrixError( "SymPy had encountered an inconsistent " "result while computing Jordan block: " "{}".format(M)) return ret def blocks_from_nullity_chain(d): """Return a list of the size of each Jordan block. If d_n is the nullity of E**n, then the number of Jordan blocks of size n is 2*d_n - d_(n-1) - d_(n+1)""" # d[0] is always the number of columns, so skip past it mid = [2*d[n] - d[n - 1] - d[n + 1] for n in range(1, len(d) - 1)] # d is assumed to plateau with "d[ len(d) ] == d[-1]", so # 2*d_n - d_(n-1) - d_(n+1) == d_n - d_(n-1) end = [d[-1] - d[-2]] if len(d) > 1 else [d[0]] return mid + end def pick_vec(small_basis, big_basis): """Picks a vector from big_basis that isn't in the subspace spanned by small_basis""" if len(small_basis) == 0: return big_basis[0] for v in big_basis: _, pivots = M.hstack(*(small_basis + [v])).echelon_form( with_pivots=True) if pivots[-1] == len(small_basis): return v # roots doesn't like Floats, so replace them with Rationals if has_floats: mat = mat.applyfunc(lambda x: nsimplify(x, rational=True)) # first calculate the jordan block structure eigs = mat.eigenvals() # Make sure that we have all roots in radical form for x in eigs: if x.has(CRootOf): raise MatrixError( "Jordan normal form is not implemented if the matrix have " "eigenvalues in CRootOf form") # most matrices have distinct eigenvalues # and so are diagonalizable. In this case, don't # do extra work! if len(eigs.keys()) == mat.cols: blocks = list(sorted(eigs.keys(), key=default_sort_key)) jordan_mat = mat.diag(*blocks) if not calc_transform: return restore_floats(jordan_mat) jordan_basis = [eig_mat(eig, 1).nullspace()[0] for eig in blocks] basis_mat = mat.hstack(*jordan_basis) return restore_floats(basis_mat, jordan_mat) block_structure = [] for eig in sorted(eigs.keys(), key=default_sort_key): algebraic_multiplicity = eigs[eig] chain = nullity_chain(eig, algebraic_multiplicity) block_sizes = blocks_from_nullity_chain(chain) # if block_sizes = = [a, b, c, ...], then the number of # Jordan blocks of size 1 is a, of size 2 is b, etc. # create an array that has (eig, block_size) with one # entry for each block size_nums = [(i+1, num) for i, num in enumerate(block_sizes)] # we expect larger Jordan blocks to come earlier size_nums.reverse() block_structure.extend( (eig, size) for size, num in size_nums for _ in range(num)) jordan_form_size = sum(size for eig, size in block_structure) if jordan_form_size != M.rows: raise MatrixError( "SymPy had encountered an inconsistent result while " "computing Jordan block. : {}".format(M)) blocks = (mat.jordan_block(size=size, eigenvalue=eig) for eig, size in block_structure) jordan_mat = mat.diag(*blocks) if not calc_transform: return restore_floats(jordan_mat) # For each generalized eigenspace, calculate a basis. # We start by looking for a vector in null( (A - eig*I)**n ) # which isn't in null( (A - eig*I)**(n-1) ) where n is # the size of the Jordan block # # Ideally we'd just loop through block_structure and # compute each generalized eigenspace. However, this # causes a lot of unneeded computation. Instead, we # go through the eigenvalues separately, since we know # their generalized eigenspaces must have bases that # are linearly independent. jordan_basis = [] for eig in sorted(eigs.keys(), key=default_sort_key): eig_basis = [] for block_eig, size in block_structure: if block_eig != eig: continue null_big = (eig_mat(eig, size)).nullspace() null_small = (eig_mat(eig, size - 1)).nullspace() # we want to pick something that is in the big basis # and not the small, but also something that is independent # of any other generalized eigenvectors from a different # generalized eigenspace sharing the same eigenvalue. vec = pick_vec(null_small + eig_basis, null_big) new_vecs = [eig_mat(eig, i).multiply(vec, dotprodsimp=None) for i in range(size)] eig_basis.extend(new_vecs) jordan_basis.extend(reversed(new_vecs)) basis_mat = mat.hstack(*jordan_basis) return restore_floats(basis_mat, jordan_mat) def _left_eigenvects(M, **flags): """Returns left eigenvectors and eigenvalues. This function returns the list of triples (eigenval, multiplicity, basis) for the left eigenvectors. Options are the same as for eigenvects(), i.e. the ``**flags`` arguments gets passed directly to eigenvects(). Examples ======== >>> from sympy.matrices import Matrix >>> M = Matrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]]) >>> M.eigenvects() [(-1, 1, [Matrix([ [-1], [ 1], [ 0]])]), (0, 1, [Matrix([ [ 0], [-1], [ 1]])]), (2, 1, [Matrix([ [2/3], [1/3], [ 1]])])] >>> M.left_eigenvects() [(-1, 1, [Matrix([[-2, 1, 1]])]), (0, 1, [Matrix([[-1, -1, 1]])]), (2, 1, [Matrix([[1, 1, 1]])])] """ eigs = M.transpose().eigenvects(**flags) return [(val, mult, [l.transpose() for l in basis]) for val, mult, basis in eigs] def _singular_values(M): """Compute the singular values of a Matrix Examples ======== >>> from sympy import Matrix, Symbol >>> x = Symbol('x', real=True) >>> M = Matrix([[0, 1, 0], [0, x, 0], [-1, 0, 0]]) >>> M.singular_values() [sqrt(x**2 + 1), 1, 0] See Also ======== condition_number """ if M.rows >= M.cols: valmultpairs = M.H.multiply(M).eigenvals() else: valmultpairs = M.multiply(M.H).eigenvals() # Expands result from eigenvals into a simple list vals = [] for k, v in valmultpairs.items(): vals += [sqrt(k)] * v # dangerous! same k in several spots! # Pad with zeros if singular values are computed in reverse way, # to give consistent format. if len(vals) < M.cols: vals += [M.zero] * (M.cols - len(vals)) # sort them in descending order vals.sort(reverse=True, key=default_sort_key) return vals
446410fe8ff3a980ee87956a101ca201a9d655cbe900e5983311e490c9a3b84b
from typing import Optional from collections import defaultdict import inspect from sympy.core.basic import Basic from sympy.core.compatibility import iterable, ordered, reduce from sympy.core.containers import Tuple from sympy.core.decorators import (deprecated, sympify_method_args, sympify_return) from sympy.core.evalf import EvalfMixin, prec_to_dps from sympy.core.parameters import global_parameters from sympy.core.expr import Expr from sympy.core.logic import (FuzzyBool, fuzzy_bool, fuzzy_or, fuzzy_and, fuzzy_not) from sympy.core.numbers import Float from sympy.core.operations import LatticeOp from sympy.core.relational import Eq, Ne, is_lt from sympy.core.singleton import Singleton, S from sympy.core.symbol import Symbol, Dummy, uniquely_named_symbol from sympy.core.sympify import _sympify, sympify, converter from sympy.logic.boolalg import And, Or, Not, Xor, true, false from sympy.sets.contains import Contains from sympy.utilities import subsets from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import iproduct, sift, roundrobin from sympy.utilities.misc import func_name, filldedent from mpmath import mpi, mpf tfn = defaultdict(lambda: None, { True: S.true, S.true: S.true, False: S.false, S.false: S.false}) @sympify_method_args class Set(Basic): """ The base class for any kind of set. Explanation =========== This is not meant to be used directly as a container of items. It does not behave like the builtin ``set``; see :class:`FiniteSet` for that. Real intervals are represented by the :class:`Interval` class and unions of sets by the :class:`Union` class. The empty set is represented by the :class:`EmptySet` class and available as a singleton as ``S.EmptySet``. """ is_number = False is_iterable = False is_interval = False is_FiniteSet = False is_Interval = False is_ProductSet = False is_Union = False is_Intersection = None # type: Optional[bool] is_UniversalSet = None # type: Optional[bool] is_Complement = None # type: Optional[bool] is_ComplexRegion = False is_empty = None # type: FuzzyBool is_finite_set = None # type: FuzzyBool @property # type: ignore @deprecated(useinstead="is S.EmptySet or is_empty", issue=16946, deprecated_since_version="1.5") def is_EmptySet(self): return None @staticmethod def _infimum_key(expr): """ Return infimum (if possible) else S.Infinity. """ try: infimum = expr.inf assert infimum.is_comparable infimum = infimum.evalf() # issue #18505 except (NotImplementedError, AttributeError, AssertionError, ValueError): infimum = S.Infinity return infimum def union(self, other): """ Returns the union of ``self`` and ``other``. Examples ======== As a shortcut it is possible to use the '+' operator: >>> from sympy import Interval, FiniteSet >>> Interval(0, 1).union(Interval(2, 3)) Union(Interval(0, 1), Interval(2, 3)) >>> Interval(0, 1) + Interval(2, 3) Union(Interval(0, 1), Interval(2, 3)) >>> Interval(1, 2, True, True) + FiniteSet(2, 3) Union(FiniteSet(3), Interval.Lopen(1, 2)) Similarly it is possible to use the '-' operator for set differences: >>> Interval(0, 2) - Interval(0, 1) Interval.Lopen(1, 2) >>> Interval(1, 3) - FiniteSet(2) Union(Interval.Ropen(1, 2), Interval.Lopen(2, 3)) """ return Union(self, other) def intersect(self, other): """ Returns the intersection of 'self' and 'other'. Examples ======== >>> from sympy import Interval >>> Interval(1, 3).intersect(Interval(1, 2)) Interval(1, 2) >>> from sympy import imageset, Lambda, symbols, S >>> n, m = symbols('n m') >>> a = imageset(Lambda(n, 2*n), S.Integers) >>> a.intersect(imageset(Lambda(m, 2*m + 1), S.Integers)) EmptySet """ return Intersection(self, other) def intersection(self, other): """ Alias for :meth:`intersect()` """ return self.intersect(other) def is_disjoint(self, other): """ Returns True if ``self`` and ``other`` are disjoint. Examples ======== >>> from sympy import Interval >>> Interval(0, 2).is_disjoint(Interval(1, 2)) False >>> Interval(0, 2).is_disjoint(Interval(3, 4)) True References ========== .. [1] https://en.wikipedia.org/wiki/Disjoint_sets """ return self.intersect(other) == S.EmptySet def isdisjoint(self, other): """ Alias for :meth:`is_disjoint()` """ return self.is_disjoint(other) def complement(self, universe): r""" The complement of 'self' w.r.t the given universe. Examples ======== >>> from sympy import Interval, S >>> Interval(0, 1).complement(S.Reals) Union(Interval.open(-oo, 0), Interval.open(1, oo)) >>> Interval(0, 1).complement(S.UniversalSet) Complement(UniversalSet, Interval(0, 1)) """ return Complement(universe, self) def _complement(self, other): # this behaves as other - self if isinstance(self, ProductSet) and isinstance(other, ProductSet): # If self and other are disjoint then other - self == self if len(self.sets) != len(other.sets): return other # There can be other ways to represent this but this gives: # (A x B) - (C x D) = ((A - C) x B) U (A x (B - D)) overlaps = [] pairs = list(zip(self.sets, other.sets)) for n in range(len(pairs)): sets = (o if i != n else o-s for i, (s, o) in enumerate(pairs)) overlaps.append(ProductSet(*sets)) return Union(*overlaps) elif isinstance(other, Interval): if isinstance(self, Interval) or isinstance(self, FiniteSet): return Intersection(other, self.complement(S.Reals)) elif isinstance(other, Union): return Union(*(o - self for o in other.args)) elif isinstance(other, Complement): return Complement(other.args[0], Union(other.args[1], self), evaluate=False) elif isinstance(other, EmptySet): return S.EmptySet elif isinstance(other, FiniteSet): from sympy.utilities.iterables import sift sifted = sift(other, lambda x: fuzzy_bool(self.contains(x))) # ignore those that are contained in self return Union(FiniteSet(*(sifted[False])), Complement(FiniteSet(*(sifted[None])), self, evaluate=False) if sifted[None] else S.EmptySet) def symmetric_difference(self, other): """ Returns symmetric difference of ``self`` and ``other``. Examples ======== >>> from sympy import Interval, S >>> Interval(1, 3).symmetric_difference(S.Reals) Union(Interval.open(-oo, 1), Interval.open(3, oo)) >>> Interval(1, 10).symmetric_difference(S.Reals) Union(Interval.open(-oo, 1), Interval.open(10, oo)) >>> from sympy import S, EmptySet >>> S.Reals.symmetric_difference(EmptySet) Reals References ========== .. [1] https://en.wikipedia.org/wiki/Symmetric_difference """ return SymmetricDifference(self, other) def _symmetric_difference(self, other): return Union(Complement(self, other), Complement(other, self)) @property def inf(self): """ The infimum of ``self``. Examples ======== >>> from sympy import Interval, Union >>> Interval(0, 1).inf 0 >>> Union(Interval(0, 1), Interval(2, 3)).inf 0 """ return self._inf @property def _inf(self): raise NotImplementedError("(%s)._inf" % self) @property def sup(self): """ The supremum of ``self``. Examples ======== >>> from sympy import Interval, Union >>> Interval(0, 1).sup 1 >>> Union(Interval(0, 1), Interval(2, 3)).sup 3 """ return self._sup @property def _sup(self): raise NotImplementedError("(%s)._sup" % self) def contains(self, other): """ Returns a SymPy value indicating whether ``other`` is contained in ``self``: ``true`` if it is, ``false`` if it isn't, else an unevaluated ``Contains`` expression (or, as in the case of ConditionSet and a union of FiniteSet/Intervals, an expression indicating the conditions for containment). Examples ======== >>> from sympy import Interval, S >>> from sympy.abc import x >>> Interval(0, 1).contains(0.5) True As a shortcut it is possible to use the 'in' operator, but that will raise an error unless an affirmative true or false is not obtained. >>> Interval(0, 1).contains(x) (0 <= x) & (x <= 1) >>> x in Interval(0, 1) Traceback (most recent call last): ... TypeError: did not evaluate to a bool: None The result of 'in' is a bool, not a SymPy value >>> 1 in Interval(0, 2) True >>> _ is S.true False """ other = sympify(other, strict=True) c = self._contains(other) if isinstance(c, Contains): return c if c is None: return Contains(other, self, evaluate=False) b = tfn[c] if b is None: return c return b def _contains(self, other): raise NotImplementedError(filldedent(''' (%s)._contains(%s) is not defined. This method, when defined, will receive a sympified object. The method should return True, False, None or something that expresses what must be true for the containment of that object in self to be evaluated. If None is returned then a generic Contains object will be returned by the ``contains`` method.''' % (self, other))) def is_subset(self, other): """ Returns True if ``self`` is a subset of ``other``. Examples ======== >>> from sympy import Interval >>> Interval(0, 0.5).is_subset(Interval(0, 1)) True >>> Interval(0, 1).is_subset(Interval(0, 1, left_open=True)) False """ if not isinstance(other, Set): raise ValueError("Unknown argument '%s'" % other) # Handle the trivial cases if self == other: return True is_empty = self.is_empty if is_empty is True: return True elif fuzzy_not(is_empty) and other.is_empty: return False if self.is_finite_set is False and other.is_finite_set: return False # Dispatch on subclass rules ret = self._eval_is_subset(other) if ret is not None: return ret ret = other._eval_is_superset(self) if ret is not None: return ret # Use pairwise rules from multiple dispatch from sympy.sets.handlers.issubset import is_subset_sets ret = is_subset_sets(self, other) if ret is not None: return ret # Fall back on computing the intersection # XXX: We shouldn't do this. A query like this should be handled # without evaluating new Set objects. It should be the other way round # so that the intersect method uses is_subset for evaluation. if self.intersect(other) == self: return True def _eval_is_subset(self, other): '''Returns a fuzzy bool for whether self is a subset of other.''' return None def _eval_is_superset(self, other): '''Returns a fuzzy bool for whether self is a subset of other.''' return None # This should be deprecated: def issubset(self, other): """ Alias for :meth:`is_subset()` """ return self.is_subset(other) def is_proper_subset(self, other): """ Returns True if ``self`` is a proper subset of ``other``. Examples ======== >>> from sympy import Interval >>> Interval(0, 0.5).is_proper_subset(Interval(0, 1)) True >>> Interval(0, 1).is_proper_subset(Interval(0, 1)) False """ if isinstance(other, Set): return self != other and self.is_subset(other) else: raise ValueError("Unknown argument '%s'" % other) def is_superset(self, other): """ Returns True if ``self`` is a superset of ``other``. Examples ======== >>> from sympy import Interval >>> Interval(0, 0.5).is_superset(Interval(0, 1)) False >>> Interval(0, 1).is_superset(Interval(0, 1, left_open=True)) True """ if isinstance(other, Set): return other.is_subset(self) else: raise ValueError("Unknown argument '%s'" % other) # This should be deprecated: def issuperset(self, other): """ Alias for :meth:`is_superset()` """ return self.is_superset(other) def is_proper_superset(self, other): """ Returns True if ``self`` is a proper superset of ``other``. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).is_proper_superset(Interval(0, 0.5)) True >>> Interval(0, 1).is_proper_superset(Interval(0, 1)) False """ if isinstance(other, Set): return self != other and self.is_superset(other) else: raise ValueError("Unknown argument '%s'" % other) def _eval_powerset(self): from .powerset import PowerSet return PowerSet(self) def powerset(self): """ Find the Power set of ``self``. Examples ======== >>> from sympy import EmptySet, FiniteSet, Interval A power set of an empty set: >>> A = EmptySet >>> A.powerset() FiniteSet(EmptySet) A power set of a finite set: >>> A = FiniteSet(1, 2) >>> a, b, c = FiniteSet(1), FiniteSet(2), FiniteSet(1, 2) >>> A.powerset() == FiniteSet(a, b, c, EmptySet) True A power set of an interval: >>> Interval(1, 2).powerset() PowerSet(Interval(1, 2)) References ========== .. [1] https://en.wikipedia.org/wiki/Power_set """ return self._eval_powerset() @property def measure(self): """ The (Lebesgue) measure of ``self``. Examples ======== >>> from sympy import Interval, Union >>> Interval(0, 1).measure 1 >>> Union(Interval(0, 1), Interval(2, 3)).measure 2 """ return self._measure @property def boundary(self): """ The boundary or frontier of a set. Explanation =========== A point x is on the boundary of a set S if 1. x is in the closure of S. I.e. Every neighborhood of x contains a point in S. 2. x is not in the interior of S. I.e. There does not exist an open set centered on x contained entirely within S. There are the points on the outer rim of S. If S is open then these points need not actually be contained within S. For example, the boundary of an interval is its start and end points. This is true regardless of whether or not the interval is open. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).boundary FiniteSet(0, 1) >>> Interval(0, 1, True, False).boundary FiniteSet(0, 1) """ return self._boundary @property def is_open(self): """ Property method to check whether a set is open. Explanation =========== A set is open if and only if it has an empty intersection with its boundary. In particular, a subset A of the reals is open if and only if each one of its points is contained in an open interval that is a subset of A. Examples ======== >>> from sympy import S >>> S.Reals.is_open True >>> S.Rationals.is_open False """ return Intersection(self, self.boundary).is_empty @property def is_closed(self): """ A property method to check whether a set is closed. Explanation =========== A set is closed if its complement is an open set. The closedness of a subset of the reals is determined with respect to R and its standard topology. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).is_closed True """ return self.boundary.is_subset(self) @property def closure(self): """ Property method which returns the closure of a set. The closure is defined as the union of the set itself and its boundary. Examples ======== >>> from sympy import S, Interval >>> S.Reals.closure Reals >>> Interval(0, 1).closure Interval(0, 1) """ return self + self.boundary @property def interior(self): """ Property method which returns the interior of a set. The interior of a set S consists all points of S that do not belong to the boundary of S. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).interior Interval.open(0, 1) >>> Interval(0, 1).boundary.interior EmptySet """ return self - self.boundary @property def _boundary(self): raise NotImplementedError() @property def _measure(self): raise NotImplementedError("(%s)._measure" % self) @sympify_return([('other', 'Set')], NotImplemented) def __add__(self, other): return self.union(other) @sympify_return([('other', 'Set')], NotImplemented) def __or__(self, other): return self.union(other) @sympify_return([('other', 'Set')], NotImplemented) def __and__(self, other): return self.intersect(other) @sympify_return([('other', 'Set')], NotImplemented) def __mul__(self, other): return ProductSet(self, other) @sympify_return([('other', 'Set')], NotImplemented) def __xor__(self, other): return SymmetricDifference(self, other) @sympify_return([('exp', Expr)], NotImplemented) def __pow__(self, exp): if not (exp.is_Integer and exp >= 0): raise ValueError("%s: Exponent must be a positive Integer" % exp) return ProductSet(*[self]*exp) @sympify_return([('other', 'Set')], NotImplemented) def __sub__(self, other): return Complement(self, other) def __contains__(self, other): other = _sympify(other) c = self._contains(other) b = tfn[c] if b is None: # x in y must evaluate to T or F; to entertain a None # result with Set use y.contains(x) raise TypeError('did not evaluate to a bool: %r' % c) return b class ProductSet(Set): """ Represents a Cartesian Product of Sets. Explanation =========== Returns a Cartesian product given several sets as either an iterable or individual arguments. Can use '*' operator on any sets for convenient shorthand. Examples ======== >>> from sympy import Interval, FiniteSet, ProductSet >>> I = Interval(0, 5); S = FiniteSet(1, 2, 3) >>> ProductSet(I, S) ProductSet(Interval(0, 5), FiniteSet(1, 2, 3)) >>> (2, 2) in ProductSet(I, S) True >>> Interval(0, 1) * Interval(0, 1) # The unit square ProductSet(Interval(0, 1), Interval(0, 1)) >>> coin = FiniteSet('H', 'T') >>> set(coin**2) {(H, H), (H, T), (T, H), (T, T)} The Cartesian product is not commutative or associative e.g.: >>> I*S == S*I False >>> (I*I)*I == I*(I*I) False Notes ===== - Passes most operations down to the argument sets References ========== .. [1] https://en.wikipedia.org/wiki/Cartesian_product """ is_ProductSet = True def __new__(cls, *sets, **assumptions): if len(sets) == 1 and iterable(sets[0]) and not isinstance(sets[0], (Set, set)): SymPyDeprecationWarning( feature="ProductSet(iterable)", useinstead="ProductSet(*iterable)", issue=17557, deprecated_since_version="1.5" ).warn() sets = tuple(sets[0]) sets = [sympify(s) for s in sets] if not all(isinstance(s, Set) for s in sets): raise TypeError("Arguments to ProductSet should be of type Set") # Nullary product of sets is *not* the empty set if len(sets) == 0: return FiniteSet(()) if S.EmptySet in sets: return S.EmptySet return Basic.__new__(cls, *sets, **assumptions) @property def sets(self): return self.args def flatten(self): def _flatten(sets): for s in sets: if s.is_ProductSet: yield from _flatten(s.sets) else: yield s return ProductSet(*_flatten(self.sets)) def _contains(self, element): """ 'in' operator for ProductSets. Examples ======== >>> from sympy import Interval >>> (2, 3) in Interval(0, 5) * Interval(0, 5) True >>> (10, 10) in Interval(0, 5) * Interval(0, 5) False Passes operation on to constituent sets """ if element.is_Symbol: return None if not isinstance(element, Tuple) or len(element) != len(self.sets): return False return fuzzy_and(s._contains(e) for s, e in zip(self.sets, element)) def as_relational(self, *symbols): symbols = [_sympify(s) for s in symbols] if len(symbols) != len(self.sets) or not all( i.is_Symbol for i in symbols): raise ValueError( 'number of symbols must match the number of sets') return And(*[s.as_relational(i) for s, i in zip(self.sets, symbols)]) @property def _boundary(self): return Union(*(ProductSet(*(b + b.boundary if i != j else b.boundary for j, b in enumerate(self.sets))) for i, a in enumerate(self.sets))) @property def is_iterable(self): """ A property method which tests whether a set is iterable or not. Returns True if set is iterable, otherwise returns False. Examples ======== >>> from sympy import FiniteSet, Interval >>> I = Interval(0, 1) >>> A = FiniteSet(1, 2, 3, 4, 5) >>> I.is_iterable False >>> A.is_iterable True """ return all(set.is_iterable for set in self.sets) def __iter__(self): """ A method which implements is_iterable property method. If self.is_iterable returns True (both constituent sets are iterable), then return the Cartesian Product. Otherwise, raise TypeError. """ return iproduct(*self.sets) @property def is_empty(self): return fuzzy_or(s.is_empty for s in self.sets) @property def is_finite_set(self): all_finite = fuzzy_and(s.is_finite_set for s in self.sets) return fuzzy_or([self.is_empty, all_finite]) @property def _measure(self): measure = 1 for s in self.sets: measure *= s.measure return measure def __len__(self): return reduce(lambda a, b: a*b, (len(s) for s in self.args)) def __bool__(self): return all([bool(s) for s in self.sets]) class Interval(Set, EvalfMixin): """ Represents a real interval as a Set. Usage: Returns an interval with end points "start" and "end". For left_open=True (default left_open is False) the interval will be open on the left. Similarly, for right_open=True the interval will be open on the right. Examples ======== >>> from sympy import Symbol, Interval >>> Interval(0, 1) Interval(0, 1) >>> Interval.Ropen(0, 1) Interval.Ropen(0, 1) >>> Interval.Ropen(0, 1) Interval.Ropen(0, 1) >>> Interval.Lopen(0, 1) Interval.Lopen(0, 1) >>> Interval.open(0, 1) Interval.open(0, 1) >>> a = Symbol('a', real=True) >>> Interval(0, a) Interval(0, a) Notes ===== - Only real end points are supported - Interval(a, b) with a > b will return the empty set - Use the evalf() method to turn an Interval into an mpmath 'mpi' interval instance References ========== .. [1] https://en.wikipedia.org/wiki/Interval_%28mathematics%29 """ is_Interval = True def __new__(cls, start, end, left_open=False, right_open=False): start = _sympify(start) end = _sympify(end) left_open = _sympify(left_open) right_open = _sympify(right_open) if not all(isinstance(a, (type(true), type(false))) for a in [left_open, right_open]): raise NotImplementedError( "left_open and right_open can have only true/false values, " "got %s and %s" % (left_open, right_open)) # Only allow real intervals if fuzzy_not(fuzzy_and(i.is_extended_real for i in (start, end, end-start))): raise ValueError("Non-real intervals are not supported") # evaluate if possible if is_lt(end, start): return S.EmptySet elif (end - start).is_negative: return S.EmptySet if end == start and (left_open or right_open): return S.EmptySet if end == start and not (left_open or right_open): if start is S.Infinity or start is S.NegativeInfinity: return S.EmptySet return FiniteSet(end) # Make sure infinite interval end points are open. if start is S.NegativeInfinity: left_open = true if end is S.Infinity: right_open = true if start == S.Infinity or end == S.NegativeInfinity: return S.EmptySet return Basic.__new__(cls, start, end, left_open, right_open) @property def start(self): """ The left end point of ``self``. This property takes the same value as the 'inf' property. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).start 0 """ return self._args[0] _inf = left = start @classmethod def open(cls, a, b): """Return an interval including neither boundary.""" return cls(a, b, True, True) @classmethod def Lopen(cls, a, b): """Return an interval not including the left boundary.""" return cls(a, b, True, False) @classmethod def Ropen(cls, a, b): """Return an interval not including the right boundary.""" return cls(a, b, False, True) @property def end(self): """ The right end point of 'self'. This property takes the same value as the 'sup' property. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).end 1 """ return self._args[1] _sup = right = end @property def left_open(self): """ True if ``self`` is left-open. Examples ======== >>> from sympy import Interval >>> Interval(0, 1, left_open=True).left_open True >>> Interval(0, 1, left_open=False).left_open False """ return self._args[2] @property def right_open(self): """ True if ``self`` is right-open. Examples ======== >>> from sympy import Interval >>> Interval(0, 1, right_open=True).right_open True >>> Interval(0, 1, right_open=False).right_open False """ return self._args[3] @property def is_empty(self): if self.left_open or self.right_open: cond = self.start >= self.end # One/both bounds open else: cond = self.start > self.end # Both bounds closed return fuzzy_bool(cond) @property def is_finite_set(self): return self.measure.is_zero def _complement(self, other): if other == S.Reals: a = Interval(S.NegativeInfinity, self.start, True, not self.left_open) b = Interval(self.end, S.Infinity, not self.right_open, True) return Union(a, b) if isinstance(other, FiniteSet): nums = [m for m in other.args if m.is_number] if nums == []: return None return Set._complement(self, other) @property def _boundary(self): finite_points = [p for p in (self.start, self.end) if abs(p) != S.Infinity] return FiniteSet(*finite_points) def _contains(self, other): if (not isinstance(other, Expr) or other is S.NaN or other.is_real is False): return false if self.start is S.NegativeInfinity and self.end is S.Infinity: if other.is_real is not None: return other.is_real d = Dummy() return self.as_relational(d).subs(d, other) def as_relational(self, x): """Rewrite an interval in terms of inequalities and logic operators.""" x = sympify(x) if self.right_open: right = x < self.end else: right = x <= self.end if self.left_open: left = self.start < x else: left = self.start <= x return And(left, right) @property def _measure(self): return self.end - self.start def to_mpi(self, prec=53): return mpi(mpf(self.start._eval_evalf(prec)), mpf(self.end._eval_evalf(prec))) def _eval_evalf(self, prec): return Interval(self.left._evalf(prec), self.right._evalf(prec), left_open=self.left_open, right_open=self.right_open) def _is_comparable(self, other): is_comparable = self.start.is_comparable is_comparable &= self.end.is_comparable is_comparable &= other.start.is_comparable is_comparable &= other.end.is_comparable return is_comparable @property def is_left_unbounded(self): """Return ``True`` if the left endpoint is negative infinity. """ return self.left is S.NegativeInfinity or self.left == Float("-inf") @property def is_right_unbounded(self): """Return ``True`` if the right endpoint is positive infinity. """ return self.right is S.Infinity or self.right == Float("+inf") def _eval_Eq(self, other): if not isinstance(other, Interval): if isinstance(other, FiniteSet): return false elif isinstance(other, Set): return None return false class Union(Set, LatticeOp, EvalfMixin): """ Represents a union of sets as a :class:`Set`. Examples ======== >>> from sympy import Union, Interval >>> Union(Interval(1, 2), Interval(3, 4)) Union(Interval(1, 2), Interval(3, 4)) The Union constructor will always try to merge overlapping intervals, if possible. For example: >>> Union(Interval(1, 2), Interval(2, 3)) Interval(1, 3) See Also ======== Intersection References ========== .. [1] https://en.wikipedia.org/wiki/Union_%28set_theory%29 """ is_Union = True @property def identity(self): return S.EmptySet @property def zero(self): return S.UniversalSet def __new__(cls, *args, **kwargs): evaluate = kwargs.get('evaluate', global_parameters.evaluate) # flatten inputs to merge intersections and iterables args = _sympify(args) # Reduce sets using known rules if evaluate: args = list(cls._new_args_filter(args)) return simplify_union(args) args = list(ordered(args, Set._infimum_key)) obj = Basic.__new__(cls, *args) obj._argset = frozenset(args) return obj @property def args(self): return self._args def _complement(self, universe): # DeMorgan's Law return Intersection(s.complement(universe) for s in self.args) @property def _inf(self): # We use Min so that sup is meaningful in combination with symbolic # interval end points. from sympy.functions.elementary.miscellaneous import Min return Min(*[set.inf for set in self.args]) @property def _sup(self): # We use Max so that sup is meaningful in combination with symbolic # end points. from sympy.functions.elementary.miscellaneous import Max return Max(*[set.sup for set in self.args]) @property def is_empty(self): return fuzzy_and(set.is_empty for set in self.args) @property def is_finite_set(self): return fuzzy_and(set.is_finite_set for set in self.args) @property def _measure(self): # Measure of a union is the sum of the measures of the sets minus # the sum of their pairwise intersections plus the sum of their # triple-wise intersections minus ... etc... # Sets is a collection of intersections and a set of elementary # sets which made up those intersections (called "sos" for set of sets) # An example element might of this list might be: # ( {A,B,C}, A.intersect(B).intersect(C) ) # Start with just elementary sets ( ({A}, A), ({B}, B), ... ) # Then get and subtract ( ({A,B}, (A int B), ... ) while non-zero sets = [(FiniteSet(s), s) for s in self.args] measure = 0 parity = 1 while sets: # Add up the measure of these sets and add or subtract it to total measure += parity * sum(inter.measure for sos, inter in sets) # For each intersection in sets, compute the intersection with every # other set not already part of the intersection. sets = ((sos + FiniteSet(newset), newset.intersect(intersection)) for sos, intersection in sets for newset in self.args if newset not in sos) # Clear out sets with no measure sets = [(sos, inter) for sos, inter in sets if inter.measure != 0] # Clear out duplicates sos_list = [] sets_list = [] for set in sets: if set[0] in sos_list: continue else: sos_list.append(set[0]) sets_list.append(set) sets = sets_list # Flip Parity - next time subtract/add if we added/subtracted here parity *= -1 return measure @property def _boundary(self): def boundary_of_set(i): """ The boundary of set i minus interior of all other sets """ b = self.args[i].boundary for j, a in enumerate(self.args): if j != i: b = b - a.interior return b return Union(*map(boundary_of_set, range(len(self.args)))) def _contains(self, other): return Or(*[s.contains(other) for s in self.args]) def is_subset(self, other): return fuzzy_and(s.is_subset(other) for s in self.args) def as_relational(self, symbol): """Rewrite a Union in terms of equalities and logic operators. """ if all(isinstance(i, (FiniteSet, Interval)) for i in self.args): if len(self.args) == 2: a, b = self.args if (a.sup == b.inf and a.inf is S.NegativeInfinity and b.sup is S.Infinity): return And(Ne(symbol, a.sup), symbol < b.sup, symbol > a.inf) return Or(*[set.as_relational(symbol) for set in self.args]) raise NotImplementedError('relational of Union with non-Intervals') @property def is_iterable(self): return all(arg.is_iterable for arg in self.args) def _eval_evalf(self, prec): try: return Union(*(set._eval_evalf(prec) for set in self.args)) except (TypeError, ValueError, NotImplementedError): import sys raise (TypeError("Not all sets are evalf-able"), None, sys.exc_info()[2]) def __iter__(self): return roundrobin(*(iter(arg) for arg in self.args)) class Intersection(Set, LatticeOp): """ Represents an intersection of sets as a :class:`Set`. Examples ======== >>> from sympy import Intersection, Interval >>> Intersection(Interval(1, 3), Interval(2, 4)) Interval(2, 3) We often use the .intersect method >>> Interval(1,3).intersect(Interval(2,4)) Interval(2, 3) See Also ======== Union References ========== .. [1] https://en.wikipedia.org/wiki/Intersection_%28set_theory%29 """ is_Intersection = True @property def identity(self): return S.UniversalSet @property def zero(self): return S.EmptySet def __new__(cls, *args, **kwargs): evaluate = kwargs.get('evaluate', global_parameters.evaluate) # flatten inputs to merge intersections and iterables args = list(ordered(set(_sympify(args)))) # Reduce sets using known rules if evaluate: args = list(cls._new_args_filter(args)) return simplify_intersection(args) args = list(ordered(args, Set._infimum_key)) obj = Basic.__new__(cls, *args) obj._argset = frozenset(args) return obj @property def args(self): return self._args @property def is_iterable(self): return any(arg.is_iterable for arg in self.args) @property def is_finite_set(self): if fuzzy_or(arg.is_finite_set for arg in self.args): return True @property def _inf(self): raise NotImplementedError() @property def _sup(self): raise NotImplementedError() def _contains(self, other): return And(*[set.contains(other) for set in self.args]) def __iter__(self): sets_sift = sift(self.args, lambda x: x.is_iterable) completed = False candidates = sets_sift[True] + sets_sift[None] finite_candidates, others = [], [] for candidate in candidates: length = None try: length = len(candidate) except TypeError: others.append(candidate) if length is not None: finite_candidates.append(candidate) finite_candidates.sort(key=len) for s in finite_candidates + others: other_sets = set(self.args) - {s} other = Intersection(*other_sets, evaluate=False) completed = True for x in s: try: if x in other: yield x except TypeError: completed = False if completed: return if not completed: if not candidates: raise TypeError("None of the constituent sets are iterable") raise TypeError( "The computation had not completed because of the " "undecidable set membership is found in every candidates.") @staticmethod def _handle_finite_sets(args): '''Simplify intersection of one or more FiniteSets and other sets''' # First separate the FiniteSets from the others fs_args, others = sift(args, lambda x: x.is_FiniteSet, binary=True) # Let the caller handle intersection of non-FiniteSets if not fs_args: return # Convert to Python sets and build the set of all elements fs_sets = [set(fs) for fs in fs_args] all_elements = reduce(lambda a, b: a | b, fs_sets, set()) # Extract elements that are definitely in or definitely not in the # intersection. Here we check contains for all of args. definite = set() for e in all_elements: inall = fuzzy_and(s.contains(e) for s in args) if inall is True: definite.add(e) if inall is not None: for s in fs_sets: s.discard(e) # At this point all elements in all of fs_sets are possibly in the # intersection. In some cases this is because they are definitely in # the intersection of the finite sets but it's not clear if they are # members of others. We might have {m, n}, {m}, and Reals where we # don't know if m or n is real. We want to remove n here but it is # possibly in because it might be equal to m. So what we do now is # extract the elements that are definitely in the remaining finite # sets iteratively until we end up with {n}, {}. At that point if we # get any empty set all remaining elements are discarded. fs_elements = reduce(lambda a, b: a | b, fs_sets, set()) # Need fuzzy containment testing fs_symsets = [FiniteSet(*s) for s in fs_sets] while fs_elements: for e in fs_elements: infs = fuzzy_and(s.contains(e) for s in fs_symsets) if infs is True: definite.add(e) if infs is not None: for n, s in enumerate(fs_sets): # Update Python set and FiniteSet if e in s: s.remove(e) fs_symsets[n] = FiniteSet(*s) fs_elements.remove(e) break # If we completed the for loop without removing anything we are # done so quit the outer while loop else: break # If any of the sets of remainder elements is empty then we discard # all of them for the intersection. if not all(fs_sets): fs_sets = [set()] # Here we fold back the definitely included elements into each fs. # Since they are definitely included they must have been members of # each FiniteSet to begin with. We could instead fold these in with a # Union at the end to get e.g. {3}|({x}&{y}) rather than {3,x}&{3,y}. if definite: fs_sets = [fs | definite for fs in fs_sets] if fs_sets == [set()]: return S.EmptySet sets = [FiniteSet(*s) for s in fs_sets] # Any set in others is redundant if it contains all the elements that # are in the finite sets so we don't need it in the Intersection all_elements = reduce(lambda a, b: a | b, fs_sets, set()) is_redundant = lambda o: all(fuzzy_bool(o.contains(e)) for e in all_elements) others = [o for o in others if not is_redundant(o)] if others: rest = Intersection(*others) # XXX: Maybe this shortcut should be at the beginning. For large # FiniteSets it could much more efficient to process the other # sets first... if rest is S.EmptySet: return S.EmptySet # Flatten the Intersection if rest.is_Intersection: sets.extend(rest.args) else: sets.append(rest) if len(sets) == 1: return sets[0] else: return Intersection(*sets, evaluate=False) def as_relational(self, symbol): """Rewrite an Intersection in terms of equalities and logic operators""" return And(*[set.as_relational(symbol) for set in self.args]) class Complement(Set, EvalfMixin): r"""Represents the set difference or relative complement of a set with another set. `A - B = \{x \in A \mid x \notin B\}` Examples ======== >>> from sympy import Complement, FiniteSet >>> Complement(FiniteSet(0, 1, 2), FiniteSet(1)) FiniteSet(0, 2) See Also ========= Intersection, Union References ========== .. [1] http://mathworld.wolfram.com/ComplementSet.html """ is_Complement = True def __new__(cls, a, b, evaluate=True): if evaluate: return Complement.reduce(a, b) return Basic.__new__(cls, a, b) @staticmethod def reduce(A, B): """ Simplify a :class:`Complement`. """ if B == S.UniversalSet or A.is_subset(B): return S.EmptySet if isinstance(B, Union): return Intersection(*(s.complement(A) for s in B.args)) result = B._complement(A) if result is not None: return result else: return Complement(A, B, evaluate=False) def _contains(self, other): A = self.args[0] B = self.args[1] return And(A.contains(other), Not(B.contains(other))) def as_relational(self, symbol): """Rewrite a complement in terms of equalities and logic operators""" A, B = self.args A_rel = A.as_relational(symbol) B_rel = Not(B.as_relational(symbol)) return And(A_rel, B_rel) @property def is_iterable(self): if self.args[0].is_iterable: return True @property def is_finite_set(self): A, B = self.args a_finite = A.is_finite_set if a_finite is True: return True elif a_finite is False and B.is_finite_set: return False def __iter__(self): A, B = self.args for a in A: if a not in B: yield a else: continue class EmptySet(Set, metaclass=Singleton): """ Represents the empty set. The empty set is available as a singleton as S.EmptySet. Examples ======== >>> from sympy import S, Interval >>> S.EmptySet EmptySet >>> Interval(1, 2).intersect(S.EmptySet) EmptySet See Also ======== UniversalSet References ========== .. [1] https://en.wikipedia.org/wiki/Empty_set """ is_empty = True is_finite_set = True is_FiniteSet = True @property # type: ignore @deprecated(useinstead="is S.EmptySet or is_empty", issue=16946, deprecated_since_version="1.5") def is_EmptySet(self): return True @property def _measure(self): return 0 def _contains(self, other): return false def as_relational(self, symbol): return false def __len__(self): return 0 def __iter__(self): return iter([]) def _eval_powerset(self): return FiniteSet(self) @property def _boundary(self): return self def _complement(self, other): return other def _symmetric_difference(self, other): return other class UniversalSet(Set, metaclass=Singleton): """ Represents the set of all things. The universal set is available as a singleton as S.UniversalSet. Examples ======== >>> from sympy import S, Interval >>> S.UniversalSet UniversalSet >>> Interval(1, 2).intersect(S.UniversalSet) Interval(1, 2) See Also ======== EmptySet References ========== .. [1] https://en.wikipedia.org/wiki/Universal_set """ is_UniversalSet = True is_empty = False is_finite_set = False def _complement(self, other): return S.EmptySet def _symmetric_difference(self, other): return other @property def _measure(self): return S.Infinity def _contains(self, other): return true def as_relational(self, symbol): return true @property def _boundary(self): return S.EmptySet class FiniteSet(Set, EvalfMixin): """ Represents a finite set of discrete numbers. Examples ======== >>> from sympy import FiniteSet >>> FiniteSet(1, 2, 3, 4) FiniteSet(1, 2, 3, 4) >>> 3 in FiniteSet(1, 2, 3, 4) True >>> members = [1, 2, 3, 4] >>> f = FiniteSet(*members) >>> f FiniteSet(1, 2, 3, 4) >>> f - FiniteSet(2) FiniteSet(1, 3, 4) >>> f + FiniteSet(2, 5) FiniteSet(1, 2, 3, 4, 5) References ========== .. [1] https://en.wikipedia.org/wiki/Finite_set """ is_FiniteSet = True is_iterable = True is_empty = False is_finite_set = True def __new__(cls, *args, **kwargs): evaluate = kwargs.get('evaluate', global_parameters.evaluate) if evaluate: args = list(map(sympify, args)) if len(args) == 0: return S.EmptySet else: args = list(map(sympify, args)) # keep the form of the first canonical arg dargs = {} for i in reversed(list(ordered(args))): if i.is_Symbol: dargs[i] = i else: try: dargs[i.as_dummy()] = i except TypeError: # e.g. i = class without args like `Interval` dargs[i] = i _args_set = set(dargs.values()) args = list(ordered(_args_set, Set._infimum_key)) obj = Basic.__new__(cls, *args) obj._args_set = _args_set return obj def __iter__(self): return iter(self.args) def _complement(self, other): if isinstance(other, Interval): # Splitting in sub-intervals is only done for S.Reals; # other cases that need splitting will first pass through # Set._complement(). nums, syms = [], [] for m in self.args: if m.is_number and m.is_real: nums.append(m) elif m.is_real == False: pass # drop non-reals else: syms.append(m) # various symbolic expressions if other == S.Reals and nums != []: nums.sort() intervals = [] # Build up a list of intervals between the elements intervals += [Interval(S.NegativeInfinity, nums[0], True, True)] for a, b in zip(nums[:-1], nums[1:]): intervals.append(Interval(a, b, True, True)) # both open intervals.append(Interval(nums[-1], S.Infinity, True, True)) if syms != []: return Complement(Union(*intervals, evaluate=False), FiniteSet(*syms), evaluate=False) else: return Union(*intervals, evaluate=False) elif nums == []: # no splitting necessary or possible: if syms: return Complement(other, FiniteSet(*syms), evaluate=False) else: return other elif isinstance(other, FiniteSet): unk = [] for i in self: c = sympify(other.contains(i)) if c is not S.true and c is not S.false: unk.append(i) unk = FiniteSet(*unk) if unk == self: return not_true = [] for i in other: c = sympify(self.contains(i)) if c is not S.true: not_true.append(i) return Complement(FiniteSet(*not_true), unk) return Set._complement(self, other) def _contains(self, other): """ Tests whether an element, other, is in the set. Explanation =========== The actual test is for mathematical equality (as opposed to syntactical equality). In the worst case all elements of the set must be checked. Examples ======== >>> from sympy import FiniteSet >>> 1 in FiniteSet(1, 2) True >>> 5 in FiniteSet(1, 2) False """ if other in self._args_set: return True else: # evaluate=True is needed to override evaluate=False context; # we need Eq to do the evaluation return fuzzy_or(fuzzy_bool(Eq(e, other, evaluate=True)) for e in self.args) def _eval_is_subset(self, other): return fuzzy_and(other._contains(e) for e in self.args) @property def _boundary(self): return self @property def _inf(self): from sympy.functions.elementary.miscellaneous import Min return Min(*self) @property def _sup(self): from sympy.functions.elementary.miscellaneous import Max return Max(*self) @property def measure(self): return 0 def __len__(self): return len(self.args) def as_relational(self, symbol): """Rewrite a FiniteSet in terms of equalities and logic operators. """ from sympy.core.relational import Eq return Or(*[Eq(symbol, elem) for elem in self]) def compare(self, other): return (hash(self) - hash(other)) def _eval_evalf(self, prec): return FiniteSet(*[elem.evalf(n=prec_to_dps(prec)) for elem in self]) def _eval_simplify(self, **kwargs): from sympy.simplify import simplify return FiniteSet(*[simplify(elem, **kwargs) for elem in self]) @property def _sorted_args(self): return self.args def _eval_powerset(self): return self.func(*[self.func(*s) for s in subsets(self.args)]) def _eval_rewrite_as_PowerSet(self, *args, **kwargs): """Rewriting method for a finite set to a power set.""" from .powerset import PowerSet is2pow = lambda n: bool(n and not n & (n - 1)) if not is2pow(len(self)): return None fs_test = lambda arg: isinstance(arg, Set) and arg.is_FiniteSet if not all(fs_test(arg) for arg in args): return None biggest = max(args, key=len) for arg in subsets(biggest.args): arg_set = FiniteSet(*arg) if arg_set not in args: return None return PowerSet(biggest) def __ge__(self, other): if not isinstance(other, Set): raise TypeError("Invalid comparison of set with %s" % func_name(other)) return other.is_subset(self) def __gt__(self, other): if not isinstance(other, Set): raise TypeError("Invalid comparison of set with %s" % func_name(other)) return self.is_proper_superset(other) def __le__(self, other): if not isinstance(other, Set): raise TypeError("Invalid comparison of set with %s" % func_name(other)) return self.is_subset(other) def __lt__(self, other): if not isinstance(other, Set): raise TypeError("Invalid comparison of set with %s" % func_name(other)) return self.is_proper_subset(other) converter[set] = lambda x: FiniteSet(*x) converter[frozenset] = lambda x: FiniteSet(*x) class SymmetricDifference(Set): """Represents the set of elements which are in either of the sets and not in their intersection. Examples ======== >>> from sympy import SymmetricDifference, FiniteSet >>> SymmetricDifference(FiniteSet(1, 2, 3), FiniteSet(3, 4, 5)) FiniteSet(1, 2, 4, 5) See Also ======== Complement, Union References ========== .. [1] https://en.wikipedia.org/wiki/Symmetric_difference """ is_SymmetricDifference = True def __new__(cls, a, b, evaluate=True): if evaluate: return SymmetricDifference.reduce(a, b) return Basic.__new__(cls, a, b) @staticmethod def reduce(A, B): result = B._symmetric_difference(A) if result is not None: return result else: return SymmetricDifference(A, B, evaluate=False) def as_relational(self, symbol): """Rewrite a symmetric_difference in terms of equalities and logic operators""" A, B = self.args A_rel = A.as_relational(symbol) B_rel = B.as_relational(symbol) return Xor(A_rel, B_rel) @property def is_iterable(self): if all(arg.is_iterable for arg in self.args): return True def __iter__(self): args = self.args union = roundrobin(*(iter(arg) for arg in args)) for item in union: count = 0 for s in args: if item in s: count += 1 if count % 2 == 1: yield item class DisjointUnion(Set): """ Represents the disjoint union (also known as the external disjoint union) of a finite number of sets. Examples ======== >>> from sympy import DisjointUnion, FiniteSet, Interval, Union, Symbol >>> A = FiniteSet(1, 2, 3) >>> B = Interval(0, 5) >>> DisjointUnion(A, B) DisjointUnion(FiniteSet(1, 2, 3), Interval(0, 5)) >>> DisjointUnion(A, B).rewrite(Union) Union(ProductSet(FiniteSet(1, 2, 3), FiniteSet(0)), ProductSet(Interval(0, 5), FiniteSet(1))) >>> C = FiniteSet(Symbol('x'), Symbol('y'), Symbol('z')) >>> DisjointUnion(C, C) DisjointUnion(FiniteSet(x, y, z), FiniteSet(x, y, z)) >>> DisjointUnion(C, C).rewrite(Union) ProductSet(FiniteSet(x, y, z), FiniteSet(0, 1)) References ========== https://en.wikipedia.org/wiki/Disjoint_union """ def __new__(cls, *sets): dj_collection = [] for set_i in sets: if isinstance(set_i, Set): dj_collection.append(set_i) else: raise TypeError("Invalid input: '%s', input args \ to DisjointUnion must be Sets" % set_i) obj = Basic.__new__(cls, *dj_collection) return obj @property def sets(self): return self.args @property def is_empty(self): return fuzzy_and(s.is_empty for s in self.sets) @property def is_finite_set(self): all_finite = fuzzy_and(s.is_finite_set for s in self.sets) return fuzzy_or([self.is_empty, all_finite]) @property def is_iterable(self): if self.is_empty: return False iter_flag = True for set_i in self.sets: if not set_i.is_empty: iter_flag = iter_flag and set_i.is_iterable return iter_flag def _eval_rewrite_as_Union(self, *sets): """ Rewrites the disjoint union as the union of (``set`` x {``i``}) where ``set`` is the element in ``sets`` at index = ``i`` """ dj_union = EmptySet() index = 0 for set_i in sets: if isinstance(set_i, Set): cross = ProductSet(set_i, FiniteSet(index)) dj_union = Union(dj_union, cross) index = index + 1 return dj_union def _contains(self, element): """ 'in' operator for DisjointUnion Examples ======== >>> from sympy import Interval, DisjointUnion >>> D = DisjointUnion(Interval(0, 1), Interval(0, 2)) >>> (0.5, 0) in D True >>> (0.5, 1) in D True >>> (1.5, 0) in D False >>> (1.5, 1) in D True Passes operation on to constituent sets """ if not isinstance(element, Tuple) or len(element) != 2: return False if not element[1].is_Integer: return False if element[1] >= len(self.sets) or element[1] < 0: return False return element[0] in self.sets[element[1]] def __iter__(self): if self.is_iterable: from sympy.core.numbers import Integer iters = [] for i, s in enumerate(self.sets): iters.append(iproduct(s, {Integer(i)})) return iter(roundrobin(*iters)) else: raise ValueError("'%s' is not iterable." % self) def __len__(self): """ Returns the length of the disjoint union, i.e., the number of elements in the set. Examples ======== >>> from sympy import FiniteSet, DisjointUnion, EmptySet >>> D1 = DisjointUnion(FiniteSet(1, 2, 3, 4), EmptySet, FiniteSet(3, 4, 5)) >>> len(D1) 7 >>> D2 = DisjointUnion(FiniteSet(3, 5, 7), EmptySet, FiniteSet(3, 5, 7)) >>> len(D2) 6 >>> D3 = DisjointUnion(EmptySet, EmptySet) >>> len(D3) 0 Adds up the lengths of the constituent sets. """ if self.is_finite_set: size = 0 for set in self.sets: size += len(set) return size else: raise ValueError("'%s' is not a finite set." % self) def imageset(*args): r""" Return an image of the set under transformation ``f``. Explanation =========== If this function can't compute the image, it returns an unevaluated ImageSet object. .. math:: \{ f(x) \mid x \in \mathrm{self} \} Examples ======== >>> from sympy import S, Interval, imageset, sin, Lambda >>> from sympy.abc import x >>> imageset(x, 2*x, Interval(0, 2)) Interval(0, 4) >>> imageset(lambda x: 2*x, Interval(0, 2)) Interval(0, 4) >>> imageset(Lambda(x, sin(x)), Interval(-2, 1)) ImageSet(Lambda(x, sin(x)), Interval(-2, 1)) >>> imageset(sin, Interval(-2, 1)) ImageSet(Lambda(x, sin(x)), Interval(-2, 1)) >>> imageset(lambda y: x + y, Interval(-2, 1)) ImageSet(Lambda(y, x + y), Interval(-2, 1)) Expressions applied to the set of Integers are simplified to show as few negatives as possible and linear expressions are converted to a canonical form. If this is not desirable then the unevaluated ImageSet should be used. >>> imageset(x, -2*x + 5, S.Integers) ImageSet(Lambda(x, 2*x + 1), Integers) See Also ======== sympy.sets.fancysets.ImageSet """ from sympy.core import Lambda from sympy.sets.fancysets import ImageSet from sympy.sets.setexpr import set_function if len(args) < 2: raise ValueError('imageset expects at least 2 args, got: %s' % len(args)) if isinstance(args[0], (Symbol, tuple)) and len(args) > 2: f = Lambda(args[0], args[1]) set_list = args[2:] else: f = args[0] set_list = args[1:] if isinstance(f, Lambda): pass elif callable(f): nargs = getattr(f, 'nargs', {}) if nargs: if len(nargs) != 1: raise NotImplementedError(filldedent(''' This function can take more than 1 arg but the potentially complicated set input has not been analyzed at this point to know its dimensions. TODO ''')) N = nargs.args[0] if N == 1: s = 'x' else: s = [Symbol('x%i' % i) for i in range(1, N + 1)] else: s = inspect.signature(f).parameters dexpr = _sympify(f(*[Dummy() for i in s])) var = tuple(uniquely_named_symbol( Symbol(i), dexpr) for i in s) f = Lambda(var, f(*var)) else: raise TypeError(filldedent(''' expecting lambda, Lambda, or FunctionClass, not \'%s\'.''' % func_name(f))) if any(not isinstance(s, Set) for s in set_list): name = [func_name(s) for s in set_list] raise ValueError( 'arguments after mapping should be sets, not %s' % name) if len(set_list) == 1: set = set_list[0] try: # TypeError if arg count != set dimensions r = set_function(f, set) if r is None: raise TypeError if not r: return r except TypeError: r = ImageSet(f, set) if isinstance(r, ImageSet): f, set = r.args if f.variables[0] == f.expr: return set if isinstance(set, ImageSet): # XXX: Maybe this should just be: # f2 = set.lambda # fun = Lambda(f2.signature, f(*f2.expr)) # return imageset(fun, *set.base_sets) if len(set.lamda.variables) == 1 and len(f.variables) == 1: x = set.lamda.variables[0] y = f.variables[0] return imageset( Lambda(x, f.expr.subs(y, set.lamda.expr)), *set.base_sets) if r is not None: return r return ImageSet(f, *set_list) def is_function_invertible_in_set(func, setv): """ Checks whether function ``func`` is invertible when the domain is restricted to set ``setv``. """ from sympy import exp, log # Functions known to always be invertible: if func in (exp, log): return True u = Dummy("u") fdiff = func(u).diff(u) # monotonous functions: # TODO: check subsets (`func` in `setv`) if (fdiff > 0) == True or (fdiff < 0) == True: return True # TODO: support more return None def simplify_union(args): """ Simplify a :class:`Union` using known rules. Explanation =========== We first start with global rules like 'Merge all FiniteSets' Then we iterate through all pairs and ask the constituent sets if they can simplify themselves with any other constituent. This process depends on ``union_sets(a, b)`` functions. """ from sympy.sets.handlers.union import union_sets # ===== Global Rules ===== if not args: return S.EmptySet for arg in args: if not isinstance(arg, Set): raise TypeError("Input args to Union must be Sets") # Merge all finite sets finite_sets = [x for x in args if x.is_FiniteSet] if len(finite_sets) > 1: a = (x for set in finite_sets for x in set) finite_set = FiniteSet(*a) args = [finite_set] + [x for x in args if not x.is_FiniteSet] # ===== Pair-wise Rules ===== # Here we depend on rules built into the constituent sets args = set(args) new_args = True while new_args: for s in args: new_args = False for t in args - {s}: new_set = union_sets(s, t) # This returns None if s does not know how to intersect # with t. Returns the newly intersected set otherwise if new_set is not None: if not isinstance(new_set, set): new_set = {new_set} new_args = (args - {s, t}).union(new_set) break if new_args: args = new_args break if len(args) == 1: return args.pop() else: return Union(*args, evaluate=False) def simplify_intersection(args): """ Simplify an intersection using known rules. Explanation =========== We first start with global rules like 'if any empty sets return empty set' and 'distribute any unions' Then we iterate through all pairs and ask the constituent sets if they can simplify themselves with any other constituent """ # ===== Global Rules ===== if not args: return S.UniversalSet for arg in args: if not isinstance(arg, Set): raise TypeError("Input args to Union must be Sets") # If any EmptySets return EmptySet if S.EmptySet in args: return S.EmptySet # Handle Finite sets rv = Intersection._handle_finite_sets(args) if rv is not None: return rv # If any of the sets are unions, return a Union of Intersections for s in args: if s.is_Union: other_sets = set(args) - {s} if len(other_sets) > 0: other = Intersection(*other_sets) return Union(*(Intersection(arg, other) for arg in s.args)) else: return Union(*[arg for arg in s.args]) for s in args: if s.is_Complement: args.remove(s) other_sets = args + [s.args[0]] return Complement(Intersection(*other_sets), s.args[1]) from sympy.sets.handlers.intersection import intersection_sets # At this stage we are guaranteed not to have any # EmptySets, FiniteSets, or Unions in the intersection # ===== Pair-wise Rules ===== # Here we depend on rules built into the constituent sets args = set(args) new_args = True while new_args: for s in args: new_args = False for t in args - {s}: new_set = intersection_sets(s, t) # This returns None if s does not know how to intersect # with t. Returns the newly intersected set otherwise if new_set is not None: new_args = (args - {s, t}).union({new_set}) break if new_args: args = new_args break if len(args) == 1: return args.pop() else: return Intersection(*args, evaluate=False) def _handle_finite_sets(op, x, y, commutative): # Handle finite sets: fs_args, other = sift([x, y], lambda x: isinstance(x, FiniteSet), binary=True) if len(fs_args) == 2: return FiniteSet(*[op(i, j) for i in fs_args[0] for j in fs_args[1]]) elif len(fs_args) == 1: sets = [_apply_operation(op, other[0], i, commutative) for i in fs_args[0]] return Union(*sets) else: return None def _apply_operation(op, x, y, commutative): from sympy.sets import ImageSet from sympy import symbols,Lambda d = Dummy('d') out = _handle_finite_sets(op, x, y, commutative) if out is None: out = op(x, y) if out is None and commutative: out = op(y, x) if out is None: _x, _y = symbols("x y") if isinstance(x, Set) and not isinstance(y, Set): out = ImageSet(Lambda(d, op(d, y)), x).doit() elif not isinstance(x, Set) and isinstance(y, Set): out = ImageSet(Lambda(d, op(x, d)), y).doit() else: out = ImageSet(Lambda((_x, _y), op(_x, _y)), x, y) return out def set_add(x, y): from sympy.sets.handlers.add import _set_add return _apply_operation(_set_add, x, y, commutative=True) def set_sub(x, y): from sympy.sets.handlers.add import _set_sub return _apply_operation(_set_sub, x, y, commutative=False) def set_mul(x, y): from sympy.sets.handlers.mul import _set_mul return _apply_operation(_set_mul, x, y, commutative=True) def set_div(x, y): from sympy.sets.handlers.mul import _set_div return _apply_operation(_set_div, x, y, commutative=False) def set_pow(x, y): from sympy.sets.handlers.power import _set_pow return _apply_operation(_set_pow, x, y, commutative=False) def set_function(f, x): from sympy.sets.handlers.functions import _set_function return _set_function(f, x)
6660ef6070daed01446cbf5e737f63e79d42bcfa7843723aa754dbec08fe975a
from sympy import (FiniteSet, S, Symbol, sqrt, nan, beta, Rational, symbols, simplify, Eq, cos, And, Tuple, Or, Dict, sympify, binomial, cancel, exp, I, Piecewise, Sum, Dummy, harmonic, Function) from sympy.external import import_module from sympy.matrices import Matrix from sympy.stats import (DiscreteUniform, Die, Bernoulli, Coin, Binomial, BetaBinomial, Hypergeometric, Rademacher, IdealSoliton, RobustSoliton, P, E, variance, covariance, skewness, sample, density, where, FiniteRV, pspace, cdf, correlation, moment, cmoment, smoment, characteristic_function, moment_generating_function, quantile, kurtosis, median, coskewness) from sympy.stats.frv_types import DieDistribution, BinomialDistribution, \ HypergeometricDistribution from sympy.stats.rv import Density from sympy.testing.pytest import raises, skip, ignore_warnings def BayesTest(A, B): assert P(A, B) == P(And(A, B)) / P(B) assert P(A, B) == P(B, A) * P(A) / P(B) def test_discreteuniform(): # Symbolic a, b, c, t = symbols('a b c t') X = DiscreteUniform('X', [a, b, c]) assert E(X) == (a + b + c)/3 assert simplify(variance(X) - ((a**2 + b**2 + c**2)/3 - (a/3 + b/3 + c/3)**2)) == 0 assert P(Eq(X, a)) == P(Eq(X, b)) == P(Eq(X, c)) == S('1/3') Y = DiscreteUniform('Y', range(-5, 5)) # Numeric assert E(Y) == S('-1/2') assert variance(Y) == S('33/4') assert median(Y) == FiniteSet(-1, 0) for x in range(-5, 5): assert P(Eq(Y, x)) == S('1/10') assert P(Y <= x) == S(x + 6)/10 assert P(Y >= x) == S(5 - x)/10 assert dict(density(Die('D', 6)).items()) == \ dict(density(DiscreteUniform('U', range(1, 7))).items()) assert characteristic_function(X)(t) == exp(I*a*t)/3 + exp(I*b*t)/3 + exp(I*c*t)/3 assert moment_generating_function(X)(t) == exp(a*t)/3 + exp(b*t)/3 + exp(c*t)/3 # issue 18611 raises(ValueError, lambda: DiscreteUniform('Z', [a, a, a, b, b, c])) def test_dice(): # TODO: Make iid method! X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6) a, b, t, p = symbols('a b t p') assert E(X) == 3 + S.Half assert variance(X) == Rational(35, 12) assert E(X + Y) == 7 assert E(X + X) == 7 assert E(a*X + b) == a*E(X) + b assert variance(X + Y) == variance(X) + variance(Y) == cmoment(X + Y, 2) assert variance(X + X) == 4 * variance(X) == cmoment(X + X, 2) assert cmoment(X, 0) == 1 assert cmoment(4*X, 3) == 64*cmoment(X, 3) assert covariance(X, Y) is S.Zero assert covariance(X, X + Y) == variance(X) assert density(Eq(cos(X*S.Pi), 1))[True] == S.Half assert correlation(X, Y) == 0 assert correlation(X, Y) == correlation(Y, X) assert smoment(X + Y, 3) == skewness(X + Y) assert smoment(X + Y, 4) == kurtosis(X + Y) assert smoment(X, 0) == 1 assert P(X > 3) == S.Half assert P(2*X > 6) == S.Half assert P(X > Y) == Rational(5, 12) assert P(Eq(X, Y)) == P(Eq(X, 1)) assert E(X, X > 3) == 5 == moment(X, 1, 0, X > 3) assert E(X, Y > 3) == E(X) == moment(X, 1, 0, Y > 3) assert E(X + Y, Eq(X, Y)) == E(2*X) assert moment(X, 0) == 1 assert moment(5*X, 2) == 25*moment(X, 2) assert quantile(X)(p) == Piecewise((nan, (p > 1) | (p < 0)),\ (S.One, p <= Rational(1, 6)), (S(2), p <= Rational(1, 3)), (S(3), p <= S.Half),\ (S(4), p <= Rational(2, 3)), (S(5), p <= Rational(5, 6)), (S(6), p <= 1)) assert P(X > 3, X > 3) is S.One assert P(X > Y, Eq(Y, 6)) is S.Zero assert P(Eq(X + Y, 12)) == Rational(1, 36) assert P(Eq(X + Y, 12), Eq(X, 6)) == Rational(1, 6) assert density(X + Y) == density(Y + Z) != density(X + X) d = density(2*X + Y**Z) assert d[S(22)] == Rational(1, 108) and d[S(4100)] == Rational(1, 216) and S(3130) not in d assert pspace(X).domain.as_boolean() == Or( *[Eq(X.symbol, i) for i in [1, 2, 3, 4, 5, 6]]) assert where(X > 3).set == FiniteSet(4, 5, 6) assert characteristic_function(X)(t) == exp(6*I*t)/6 + exp(5*I*t)/6 + exp(4*I*t)/6 + exp(3*I*t)/6 + exp(2*I*t)/6 + exp(I*t)/6 assert moment_generating_function(X)(t) == exp(6*t)/6 + exp(5*t)/6 + exp(4*t)/6 + exp(3*t)/6 + exp(2*t)/6 + exp(t)/6 assert median(X) == FiniteSet(3, 4) D = Die('D', 7) assert median(D) == FiniteSet(4) # Bayes test for die BayesTest(X > 3, X + Y < 5) BayesTest(Eq(X - Y, Z), Z > Y) BayesTest(X > 3, X > 2) # arg test for die raises(ValueError, lambda: Die('X', -1)) # issue 8105: negative sides. raises(ValueError, lambda: Die('X', 0)) raises(ValueError, lambda: Die('X', 1.5)) # issue 8103: non integer sides. # symbolic test for die n, k = symbols('n, k', positive=True) D = Die('D', n) dens = density(D).dict assert dens == Density(DieDistribution(n)) assert set(dens.subs(n, 4).doit().keys()) == {1, 2, 3, 4} assert set(dens.subs(n, 4).doit().values()) == {Rational(1, 4)} k = Dummy('k', integer=True) assert E(D).dummy_eq( Sum(Piecewise((k/n, k <= n), (0, True)), (k, 1, n))) assert variance(D).subs(n, 6).doit() == Rational(35, 12) ki = Dummy('ki') cumuf = cdf(D)(k) assert cumuf.dummy_eq( Sum(Piecewise((1/n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, k))) assert cumuf.subs({n: 6, k: 2}).doit() == Rational(1, 3) t = Dummy('t') cf = characteristic_function(D)(t) assert cf.dummy_eq( Sum(Piecewise((exp(ki*I*t)/n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, n))) assert cf.subs(n, 3).doit() == exp(3*I*t)/3 + exp(2*I*t)/3 + exp(I*t)/3 mgf = moment_generating_function(D)(t) assert mgf.dummy_eq( Sum(Piecewise((exp(ki*t)/n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, n))) assert mgf.subs(n, 3).doit() == exp(3*t)/3 + exp(2*t)/3 + exp(t)/3 def test_given(): X = Die('X', 6) assert density(X, X > 5) == {S(6): S.One} assert where(X > 2, X > 5).as_boolean() == Eq(X.symbol, 6) scipy = import_module('scipy') if not scipy: skip('Scipy is not installed. Abort tests') with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert next(sample(X, X > 5)) == 6 def test_domains(): X, Y = Die('x', 6), Die('y', 6) x, y = X.symbol, Y.symbol # Domains d = where(X > Y) assert d.condition == (x > y) d = where(And(X > Y, Y > 3)) assert d.as_boolean() == Or(And(Eq(x, 5), Eq(y, 4)), And(Eq(x, 6), Eq(y, 5)), And(Eq(x, 6), Eq(y, 4))) assert len(d.elements) == 3 assert len(pspace(X + Y).domain.elements) == 36 Z = Die('x', 4) raises(ValueError, lambda: P(X > Z)) # Two domains with same internal symbol assert pspace(X + Y).domain.set == FiniteSet(1, 2, 3, 4, 5, 6)**2 assert where(X > 3).set == FiniteSet(4, 5, 6) assert X.pspace.domain.dict == FiniteSet( *[Dict({X.symbol: i}) for i in range(1, 7)]) assert where(X > Y).dict == FiniteSet(*[Dict({X.symbol: i, Y.symbol: j}) for i in range(1, 7) for j in range(1, 7) if i > j]) def test_bernoulli(): p, a, b, t = symbols('p a b t') X = Bernoulli('B', p, a, b) assert E(X) == a*p + b*(-p + 1) assert density(X)[a] == p assert density(X)[b] == 1 - p assert characteristic_function(X)(t) == p * exp(I * a * t) + (-p + 1) * exp(I * b * t) assert moment_generating_function(X)(t) == p * exp(a * t) + (-p + 1) * exp(b * t) X = Bernoulli('B', p, 1, 0) z = Symbol("z") assert E(X) == p assert simplify(variance(X)) == p*(1 - p) assert E(a*X + b) == a*E(X) + b assert simplify(variance(a*X + b)) == simplify(a**2 * variance(X)) assert quantile(X)(z) == Piecewise((nan, (z > 1) | (z < 0)), (0, z <= 1 - p), (1, z <= 1)) Y = Bernoulli('Y', Rational(1, 2)) assert median(Y) == FiniteSet(0, 1) Z = Bernoulli('Z', Rational(2, 3)) assert median(Z) == FiniteSet(1) raises(ValueError, lambda: Bernoulli('B', 1.5)) raises(ValueError, lambda: Bernoulli('B', -0.5)) #issue 8248 assert X.pspace.compute_expectation(1) == 1 p = Rational(1, 5) X = Binomial('X', 5, p) Y = Binomial('Y', 7, 2*p) Z = Binomial('Z', 9, 3*p) assert coskewness(Y + Z, X + Y, X + Z).simplify() == 0 assert coskewness(Y + 2*X + Z, X + 2*Y + Z, X + 2*Z + Y).simplify() == \ sqrt(1529)*Rational(12, 16819) assert coskewness(Y + 2*X + Z, X + 2*Y + Z, X + 2*Z + Y, X < 2).simplify() \ == -sqrt(357451121)*Rational(2812, 4646864573) def test_cdf(): D = Die('D', 6) o = S.One assert cdf( D) == sympify({1: o/6, 2: o/3, 3: o/2, 4: 2*o/3, 5: 5*o/6, 6: o}) def test_coins(): C, D = Coin('C'), Coin('D') H, T = symbols('H, T') assert P(Eq(C, D)) == S.Half assert density(Tuple(C, D)) == {(H, H): Rational(1, 4), (H, T): Rational(1, 4), (T, H): Rational(1, 4), (T, T): Rational(1, 4)} assert dict(density(C).items()) == {H: S.Half, T: S.Half} F = Coin('F', Rational(1, 10)) assert P(Eq(F, H)) == Rational(1, 10) d = pspace(C).domain assert d.as_boolean() == Or(Eq(C.symbol, H), Eq(C.symbol, T)) raises(ValueError, lambda: P(C > D)) # Can't intelligently compare H to T def test_binomial_verify_parameters(): raises(ValueError, lambda: Binomial('b', .2, .5)) raises(ValueError, lambda: Binomial('b', 3, 1.5)) def test_binomial_numeric(): nvals = range(5) pvals = [0, Rational(1, 4), S.Half, Rational(3, 4), 1] for n in nvals: for p in pvals: X = Binomial('X', n, p) assert E(X) == n*p assert variance(X) == n*p*(1 - p) if n > 0 and 0 < p < 1: assert skewness(X) == (1 - 2*p)/sqrt(n*p*(1 - p)) assert kurtosis(X) == 3 + (1 - 6*p*(1 - p))/(n*p*(1 - p)) for k in range(n + 1): assert P(Eq(X, k)) == binomial(n, k)*p**k*(1 - p)**(n - k) def test_binomial_quantile(): X = Binomial('X', 50, S.Half) assert quantile(X)(0.95) == S(31) assert median(X) == FiniteSet(25) X = Binomial('X', 5, S.Half) p = Symbol("p", positive=True) assert quantile(X)(p) == Piecewise((nan, p > S.One), (S.Zero, p <= Rational(1, 32)),\ (S.One, p <= Rational(3, 16)), (S(2), p <= S.Half), (S(3), p <= Rational(13, 16)),\ (S(4), p <= Rational(31, 32)), (S(5), p <= S.One)) assert median(X) == FiniteSet(2, 3) def test_binomial_symbolic(): n = 2 p = symbols('p', positive=True) X = Binomial('X', n, p) t = Symbol('t') assert simplify(E(X)) == n*p == simplify(moment(X, 1)) assert simplify(variance(X)) == n*p*(1 - p) == simplify(cmoment(X, 2)) assert cancel(skewness(X) - (1 - 2*p)/sqrt(n*p*(1 - p))) == 0 assert cancel((kurtosis(X)) - (3 + (1 - 6*p*(1 - p))/(n*p*(1 - p)))) == 0 assert characteristic_function(X)(t) == p ** 2 * exp(2 * I * t) + 2 * p * (-p + 1) * exp(I * t) + (-p + 1) ** 2 assert moment_generating_function(X)(t) == p ** 2 * exp(2 * t) + 2 * p * (-p + 1) * exp(t) + (-p + 1) ** 2 # Test ability to change success/failure winnings H, T = symbols('H T') Y = Binomial('Y', n, p, succ=H, fail=T) assert simplify(E(Y) - (n*(H*p + T*(1 - p)))) == 0 # test symbolic dimensions n = symbols('n') B = Binomial('B', n, p) raises(NotImplementedError, lambda: P(B > 2)) assert density(B).dict == Density(BinomialDistribution(n, p, 1, 0)) assert set(density(B).dict.subs(n, 4).doit().keys()) == \ {S.Zero, S.One, S(2), S(3), S(4)} assert set(density(B).dict.subs(n, 4).doit().values()) == \ {(1 - p)**4, 4*p*(1 - p)**3, 6*p**2*(1 - p)**2, 4*p**3*(1 - p), p**4} k = Dummy('k', integer=True) assert E(B > 2).dummy_eq( Sum(Piecewise((k*p**k*(1 - p)**(-k + n)*binomial(n, k), (k >= 0) & (k <= n) & (k > 2)), (0, True)), (k, 0, n))) def test_beta_binomial(): # verify parameters raises(ValueError, lambda: BetaBinomial('b', .2, 1, 2)) raises(ValueError, lambda: BetaBinomial('b', 2, -1, 2)) raises(ValueError, lambda: BetaBinomial('b', 2, 1, -2)) assert BetaBinomial('b', 2, 1, 1) # test numeric values nvals = range(1,5) alphavals = [Rational(1, 4), S.Half, Rational(3, 4), 1, 10] betavals = [Rational(1, 4), S.Half, Rational(3, 4), 1, 10] for n in nvals: for a in alphavals: for b in betavals: X = BetaBinomial('X', n, a, b) assert E(X) == moment(X, 1) assert variance(X) == cmoment(X, 2) # test symbolic n, a, b = symbols('a b n') assert BetaBinomial('x', n, a, b) n = 2 # Because we're using for loops, can't do symbolic n a, b = symbols('a b', positive=True) X = BetaBinomial('X', n, a, b) t = Symbol('t') assert E(X).expand() == moment(X, 1).expand() assert variance(X).expand() == cmoment(X, 2).expand() assert skewness(X) == smoment(X, 3) assert characteristic_function(X)(t) == exp(2*I*t)*beta(a + 2, b)/beta(a, b) +\ 2*exp(I*t)*beta(a + 1, b + 1)/beta(a, b) + beta(a, b + 2)/beta(a, b) assert moment_generating_function(X)(t) == exp(2*t)*beta(a + 2, b)/beta(a, b) +\ 2*exp(t)*beta(a + 1, b + 1)/beta(a, b) + beta(a, b + 2)/beta(a, b) def test_hypergeometric_numeric(): for N in range(1, 5): for m in range(0, N + 1): for n in range(1, N + 1): X = Hypergeometric('X', N, m, n) N, m, n = map(sympify, (N, m, n)) assert sum(density(X).values()) == 1 assert E(X) == n * m / N if N > 1: assert variance(X) == n*(m/N)*(N - m)/N*(N - n)/(N - 1) # Only test for skewness when defined if N > 2 and 0 < m < N and n < N: assert skewness(X) == simplify((N - 2*m)*sqrt(N - 1)*(N - 2*n) / (sqrt(n*m*(N - m)*(N - n))*(N - 2))) def test_hypergeometric_symbolic(): N, m, n = symbols('N, m, n') H = Hypergeometric('H', N, m, n) dens = density(H).dict expec = E(H > 2) assert dens == Density(HypergeometricDistribution(N, m, n)) assert dens.subs(N, 5).doit() == Density(HypergeometricDistribution(5, m, n)) assert set(dens.subs({N: 3, m: 2, n: 1}).doit().keys()) == {S.Zero, S.One} assert set(dens.subs({N: 3, m: 2, n: 1}).doit().values()) == {Rational(1, 3), Rational(2, 3)} k = Dummy('k', integer=True) assert expec.dummy_eq( Sum(Piecewise((k*binomial(m, k)*binomial(N - m, -k + n) /binomial(N, n), k > 2), (0, True)), (k, 0, n))) def test_rademacher(): X = Rademacher('X') t = Symbol('t') assert E(X) == 0 assert variance(X) == 1 assert density(X)[-1] == S.Half assert density(X)[1] == S.Half assert characteristic_function(X)(t) == exp(I*t)/2 + exp(-I*t)/2 assert moment_generating_function(X)(t) == exp(t) / 2 + exp(-t) / 2 def test_ideal_soliton(): raises(ValueError, lambda : IdealSoliton('sol', -12)) raises(ValueError, lambda : IdealSoliton('sol', 13.2)) raises(ValueError, lambda : IdealSoliton('sol', 0)) f = Function('f') raises(ValueError, lambda : density(IdealSoliton('sol', 10)).pmf(f)) k = Symbol('k', integer=True, positive=True) x = Symbol('x', integer=True, positive=True) t = Symbol('t') sol = IdealSoliton('sol', k) assert density(sol).low == S.One assert density(sol).high == k assert density(sol).dict == Density(density(sol)) assert density(sol).pmf(x) == Piecewise((1/k, Eq(x, 1)), (1/(x*(x - 1)), k >= x), (0, True)) k_vals = [5, 20, 50, 100, 1000] for i in k_vals: assert E(sol.subs(k, i)) == harmonic(i) == moment(sol.subs(k, i), 1) assert variance(sol.subs(k, i)) == (i - 1) + harmonic(i) - harmonic(i)**2 == cmoment(sol.subs(k, i),2) assert skewness(sol.subs(k, i)) == smoment(sol.subs(k, i), 3) assert kurtosis(sol.subs(k, i)) == smoment(sol.subs(k, i), 4) assert exp(I*t)/10 + Sum(exp(I*t*x)/(x*x - x), (x, 2, k)).subs(k, 10).doit() == characteristic_function(sol.subs(k, 10))(t) assert exp(t)/10 + Sum(exp(t*x)/(x*x - x), (x, 2, k)).subs(k, 10).doit() == moment_generating_function(sol.subs(k, 10))(t) def test_robust_soliton(): raises(ValueError, lambda : RobustSoliton('robSol', -12, 0.1, 0.02)) raises(ValueError, lambda : RobustSoliton('robSol', 13, 1.89, 0.1)) raises(ValueError, lambda : RobustSoliton('robSol', 15, 0.6, -2.31)) f = Function('f') raises(ValueError, lambda : density(RobustSoliton('robSol', 15, 0.6, 0.1)).pmf(f)) k = Symbol('k', integer=True, positive=True) delta = Symbol('delta', positive=True) c = Symbol('c', positive=True) robSol = RobustSoliton('robSol', k, delta, c) assert density(robSol).low == 1 assert density(robSol).high == k k_vals = [10, 20, 50] delta_vals = [0.2, 0.4, 0.6] c_vals = [0.01, 0.03, 0.05] for x in k_vals: for y in delta_vals: for z in c_vals: assert E(robSol.subs({k: x, delta: y, c: z})) == moment(robSol.subs({k: x, delta: y, c: z}), 1) assert variance(robSol.subs({k: x, delta: y, c: z})) == cmoment(robSol.subs({k: x, delta: y, c: z}), 2) assert skewness(robSol.subs({k: x, delta: y, c: z})) == smoment(robSol.subs({k: x, delta: y, c: z}), 3) assert kurtosis(robSol.subs({k: x, delta: y, c: z})) == smoment(robSol.subs({k: x, delta: y, c: z}), 4) def test_FiniteRV(): F = FiniteRV('F', {1: S.Half, 2: Rational(1, 4), 3: Rational(1, 4)}, check=True) p = Symbol("p", positive=True) assert dict(density(F).items()) == {S.One: S.Half, S(2): Rational(1, 4), S(3): Rational(1, 4)} assert P(F >= 2) == S.Half assert quantile(F)(p) == Piecewise((nan, p > S.One), (S.One, p <= S.Half),\ (S(2), p <= Rational(3, 4)),(S(3), True)) assert pspace(F).domain.as_boolean() == Or( *[Eq(F.symbol, i) for i in [1, 2, 3]]) assert F.pspace.domain.set == FiniteSet(1, 2, 3) raises(ValueError, lambda: FiniteRV('F', {1: S.Half, 2: S.Half, 3: S.Half}, check=True)) raises(ValueError, lambda: FiniteRV('F', {1: S.Half, 2: Rational(-1, 2), 3: S.One}, check=True)) raises(ValueError, lambda: FiniteRV('F', {1: S.One, 2: Rational(3, 2), 3: S.Zero,\ 4: Rational(-1, 2), 5: Rational(-3, 4), 6: Rational(-1, 4)}, check=True)) # purposeful invalid pmf but it should not raise since check=False # see test_drv_types.test_ContinuousRV for explanation X = FiniteRV('X', {1: 1, 2: 2}) assert E(X) == 5 assert P(X <= 2) + P(X > 2) != 1 def test_density_call(): from sympy.abc import p x = Bernoulli('x', p) d = density(x) assert d(0) == 1 - p assert d(S.Zero) == 1 - p assert d(5) == 0 assert 0 in d assert 5 not in d assert d(S.Zero) == d[S.Zero] def test_DieDistribution(): from sympy.abc import x X = DieDistribution(6) assert X.pmf(S.Half) is S.Zero assert X.pmf(x).subs({x: 1}).doit() == Rational(1, 6) assert X.pmf(x).subs({x: 7}).doit() == 0 assert X.pmf(x).subs({x: -1}).doit() == 0 assert X.pmf(x).subs({x: Rational(1, 3)}).doit() == 0 raises(ValueError, lambda: X.pmf(Matrix([0, 0]))) raises(ValueError, lambda: X.pmf(x**2 - 1)) def test_FinitePSpace(): X = Die('X', 6) space = pspace(X) assert space.density == DieDistribution(6) def test_symbolic_conditions(): B = Bernoulli('B', Rational(1, 4)) D = Die('D', 4) b, n = symbols('b, n') Y = P(Eq(B, b)) Z = E(D > n) assert Y == \ Piecewise((Rational(1, 4), Eq(b, 1)), (0, True)) + \ Piecewise((Rational(3, 4), Eq(b, 0)), (0, True)) assert Z == \ Piecewise((Rational(1, 4), n < 1), (0, True)) + Piecewise((S.Half, n < 2), (0, True)) + \ Piecewise((Rational(3, 4), n < 3), (0, True)) + Piecewise((S.One, n < 4), (0, True)) def test_sample_numpy(): distribs_numpy = [ Binomial("B", 5, 0.4), ] size = 3 numpy = import_module('numpy') if not numpy: skip('Numpy is not installed. Abort tests for _sample_numpy.') else: with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed for X in distribs_numpy: samps = next(sample(X, size=size, library='numpy')) for sam in samps: assert sam in X.pspace.domain.set raises(NotImplementedError, lambda: next(sample(Die("D"), library='numpy'))) raises(NotImplementedError, lambda: Die("D").pspace.sample(library='tensorflow')) def test_sample_scipy(): distribs_scipy = [ FiniteRV('F', {1: S.Half, 2: Rational(1, 4), 3: Rational(1, 4)}), DiscreteUniform("Y", list(range(5))), Die("D"), Bernoulli("Be", 0.3), Binomial("Bi", 5, 0.4), BetaBinomial("Bb", 2, 1, 1), Hypergeometric("H", 1, 1, 1), Rademacher("R") ] size = 3 numsamples = 5 scipy = import_module('scipy') if not scipy: skip('Scipy not installed. Abort tests for _sample_scipy.') else: with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed h_sample = list(sample(Hypergeometric("H", 1, 1, 1), size=size, numsamples=numsamples)) assert len(h_sample) == numsamples for X in distribs_scipy: samps = next(sample(X, size=size)) samps2 = next(sample(X, size=(2, 2))) for sam in samps: assert sam in X.pspace.domain.set for i in range(2): for j in range(2): assert samps2[i][j] in X.pspace.domain.set def test_sample_pymc3(): distribs_pymc3 = [ Bernoulli('B', 0.2), Binomial('N', 5, 0.4) ] size = 3 pymc3 = import_module('pymc3') if not pymc3: skip('PyMC3 is not installed. Abort tests for _sample_pymc3.') else: with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed for X in distribs_pymc3: samps = next(sample(X, size=size, library='pymc3')) for sam in samps: assert sam in X.pspace.domain.set raises(NotImplementedError, lambda: next(sample(Die("D"), library='pymc3'))) def test_sample_seed(): F = FiniteRV('F', {1: S.Half, 2: Rational(1, 4), 3: Rational(1, 4)}) libraries = ['scipy', 'numpy', 'pymc3'] for lib in libraries: try: imported_lib = import_module(lib) if imported_lib: s0, s1, s2 = [], [], [] s0 = list(sample(F, numsamples=10, library=lib, seed=0)) s1 = list(sample(F, numsamples=10, library=lib, seed=0)) s2 = list(sample(F, numsamples=10, library=lib, seed=1)) assert s0 == s1 assert s1 != s2 except NotImplementedError: continue
3469a54c0ed804e946dc201698452642b0c3f5eaa643db25629d168704f01bff
from sympy import (symbols, pi, oo, S, exp, sqrt, besselk, Indexed, Sum, simplify, Rational, factorial, gamma, Piecewise, Eq, Product, Interval, IndexedBase, RisingFactorial, polar_lift, ProductSet, Range) from sympy.core.numbers import comp from sympy.integrals.integrals import integrate from sympy.matrices import Matrix, MatrixSymbol from sympy.stats import density, median, marginal_distribution, Normal, Laplace, E, sample from sympy.stats.joint_rv_types import (JointRV, MultivariateNormalDistribution, JointDistributionHandmade, MultivariateT, NormalGamma, GeneralizedMultivariateLogGammaOmega as GMVLGO, MultivariateBeta, GeneralizedMultivariateLogGamma as GMVLG, MultivariateEwens, Multinomial, NegativeMultinomial, MultivariateNormal, MultivariateLaplace) from sympy.testing.pytest import raises, XFAIL, ignore_warnings, skip from sympy.external import import_module x, y, z, a, b = symbols('x y z a b') def test_Normal(): m = Normal('A', [1, 2], [[1, 0], [0, 1]]) A = MultivariateNormal('A', [1, 2], [[1, 0], [0, 1]]) assert m == A assert density(m)(1, 2) == 1/(2*pi) assert m.pspace.distribution.set == ProductSet(S.Reals, S.Reals) raises (ValueError, lambda:m[2]) raises (ValueError,\ lambda: Normal('M',[1, 2], [[0, 0], [0, 1]])) n = Normal('B', [1, 2, 3], [[1, 0, 0], [0, 1, 0], [0, 0, 1]]) p = Normal('C', Matrix([1, 2]), Matrix([[1, 0], [0, 1]])) assert density(m)(x, y) == density(p)(x, y) assert marginal_distribution(n, 0, 1)(1, 2) == 1/(2*pi) raises(ValueError, lambda: marginal_distribution(m)) assert integrate(density(m)(x, y), (x, -oo, oo), (y, -oo, oo)).evalf() == 1 N = Normal('N', [1, 2], [[x, 0], [0, y]]) assert density(N)(0, 0) == exp(-2/y - 1/(2*x))/(2*pi*sqrt(x*y)) raises (ValueError, lambda: Normal('M', [1, 2], [[1, 1], [1, -1]])) # symbolic n = symbols('n', natural=True) mu = MatrixSymbol('mu', n, 1) sigma = MatrixSymbol('sigma', n, n) X = Normal('X', mu, sigma) assert density(X) == MultivariateNormalDistribution(mu, sigma) raises (NotImplementedError, lambda: median(m)) # Below tests should work after issue #17267 is resolved # assert E(X) == mu # assert variance(X) == sigma def test_MultivariateTDist(): t1 = MultivariateT('T', [0, 0], [[1, 0], [0, 1]], 2) assert(density(t1))(1, 1) == 1/(8*pi) assert t1.pspace.distribution.set == ProductSet(S.Reals, S.Reals) assert integrate(density(t1)(x, y), (x, -oo, oo), \ (y, -oo, oo)).evalf() == 1 raises(ValueError, lambda: MultivariateT('T', [1, 2], [[1, 1], [1, -1]], 1)) t2 = MultivariateT('t2', [1, 2], [[x, 0], [0, y]], 1) assert density(t2)(1, 2) == 1/(2*pi*sqrt(x*y)) def test_multivariate_laplace(): raises(ValueError, lambda: Laplace('T', [1, 2], [[1, 2], [2, 1]])) L = Laplace('L', [1, 0], [[1, 0], [0, 1]]) L2 = MultivariateLaplace('L2', [1, 0], [[1, 0], [0, 1]]) assert density(L)(2, 3) == exp(2)*besselk(0, sqrt(39))/pi L1 = Laplace('L1', [1, 2], [[x, 0], [0, y]]) assert density(L1)(0, 1) == \ exp(2/y)*besselk(0, sqrt((2 + 4/y + 1/x)/y))/(pi*sqrt(x*y)) assert L.pspace.distribution.set == ProductSet(S.Reals, S.Reals) assert L.pspace.distribution == L2.pspace.distribution def test_NormalGamma(): ng = NormalGamma('G', 1, 2, 3, 4) assert density(ng)(1, 1) == 32*exp(-4)/sqrt(pi) assert ng.pspace.distribution.set == ProductSet(S.Reals, Interval(0, oo)) raises(ValueError, lambda:NormalGamma('G', 1, 2, 3, -1)) assert marginal_distribution(ng, 0)(1) == \ 3*sqrt(10)*gamma(Rational(7, 4))/(10*sqrt(pi)*gamma(Rational(5, 4))) assert marginal_distribution(ng, y)(1) == exp(Rational(-1, 4))/128 assert marginal_distribution(ng,[0,1])(x) == x**2*exp(-x/4)/128 def test_GeneralizedMultivariateLogGammaDistribution(): h = S.Half omega = Matrix([[1, h, h, h], [h, 1, h, h], [h, h, 1, h], [h, h, h, 1]]) v, l, mu = (4, [1, 2, 3, 4], [1, 2, 3, 4]) y_1, y_2, y_3, y_4 = symbols('y_1:5', real=True) delta = symbols('d', positive=True) G = GMVLGO('G', omega, v, l, mu) Gd = GMVLG('Gd', delta, v, l, mu) dend = ("d**4*Sum(4*24**(-n - 4)*(1 - d)**n*exp((n + 4)*(y_1 + 2*y_2 + 3*y_3 " "+ 4*y_4) - exp(y_1) - exp(2*y_2)/2 - exp(3*y_3)/3 - exp(4*y_4)/4)/" "(gamma(n + 1)*gamma(n + 4)**3), (n, 0, oo))") assert str(density(Gd)(y_1, y_2, y_3, y_4)) == dend den = ("5*2**(2/3)*5**(1/3)*Sum(4*24**(-n - 4)*(-2**(2/3)*5**(1/3)/4 + 1)**n*" "exp((n + 4)*(y_1 + 2*y_2 + 3*y_3 + 4*y_4) - exp(y_1) - exp(2*y_2)/2 - " "exp(3*y_3)/3 - exp(4*y_4)/4)/(gamma(n + 1)*gamma(n + 4)**3), (n, 0, oo))/64") assert str(density(G)(y_1, y_2, y_3, y_4)) == den marg = ("5*2**(2/3)*5**(1/3)*exp(4*y_1)*exp(-exp(y_1))*Integral(exp(-exp(4*G[3])" "/4)*exp(16*G[3])*Integral(exp(-exp(3*G[2])/3)*exp(12*G[2])*Integral(exp(" "-exp(2*G[1])/2)*exp(8*G[1])*Sum((-1/4)**n*24**(-n)*(-4 + 2**(2/3)*5**(1/3" "))**n*exp(n*y_1)*exp(2*n*G[1])*exp(3*n*G[2])*exp(4*n*G[3])/(gamma(n + 1)" "*gamma(n + 4)**3), (n, 0, oo)), (G[1], -oo, oo)), (G[2], -oo, oo)), (G[3]" ", -oo, oo))/5308416") assert str(marginal_distribution(G, G[0])(y_1)) == marg omega_f1 = Matrix([[1, h, h]]) omega_f2 = Matrix([[1, h, h, h], [h, 1, 2, h], [h, h, 1, h], [h, h, h, 1]]) omega_f3 = Matrix([[6, h, h, h], [h, 1, 2, h], [h, h, 1, h], [h, h, h, 1]]) v_f = symbols("v_f", positive=False, real=True) l_f = [1, 2, v_f, 4] m_f = [v_f, 2, 3, 4] omega_f4 = Matrix([[1, h, h, h, h], [h, 1, h, h, h], [h, h, 1, h, h], [h, h, h, 1, h], [h, h, h, h, 1]]) l_f1 = [1, 2, 3, 4, 5] omega_f5 = Matrix([[1]]) mu_f5 = l_f5 = [1] raises(ValueError, lambda: GMVLGO('G', omega_f1, v, l, mu)) raises(ValueError, lambda: GMVLGO('G', omega_f2, v, l, mu)) raises(ValueError, lambda: GMVLGO('G', omega_f3, v, l, mu)) raises(ValueError, lambda: GMVLGO('G', omega, v_f, l, mu)) raises(ValueError, lambda: GMVLGO('G', omega, v, l_f, mu)) raises(ValueError, lambda: GMVLGO('G', omega, v, l, m_f)) raises(ValueError, lambda: GMVLGO('G', omega_f4, v, l, mu)) raises(ValueError, lambda: GMVLGO('G', omega, v, l_f1, mu)) raises(ValueError, lambda: GMVLGO('G', omega_f5, v, l_f5, mu_f5)) raises(ValueError, lambda: GMVLG('G', Rational(3, 2), v, l, mu)) def test_MultivariateBeta(): a1, a2 = symbols('a1, a2', positive=True) a1_f, a2_f = symbols('a1, a2', positive=False, real=True) mb = MultivariateBeta('B', [a1, a2]) mb_c = MultivariateBeta('C', a1, a2) assert density(mb)(1, 2) == S(2)**(a2 - 1)*gamma(a1 + a2)/\ (gamma(a1)*gamma(a2)) assert marginal_distribution(mb_c, 0)(3) == S(3)**(a1 - 1)*gamma(a1 + a2)/\ (a2*gamma(a1)*gamma(a2)) raises(ValueError, lambda: MultivariateBeta('b1', [a1_f, a2])) raises(ValueError, lambda: MultivariateBeta('b2', [a1, a2_f])) raises(ValueError, lambda: MultivariateBeta('b3', [0, 0])) raises(ValueError, lambda: MultivariateBeta('b4', [a1_f, a2_f])) assert mb.pspace.distribution.set == ProductSet(Interval(0, 1), Interval(0, 1)) def test_MultivariateEwens(): n, theta, i = symbols('n theta i', positive=True) # tests for integer dimensions theta_f = symbols('t_f', negative=True) a = symbols('a_1:4', positive = True, integer = True) ed = MultivariateEwens('E', 3, theta) assert density(ed)(a[0], a[1], a[2]) == Piecewise((6*2**(-a[1])*3**(-a[2])* theta**a[0]*theta**a[1]*theta**a[2]/ (theta*(theta + 1)*(theta + 2)* factorial(a[0])*factorial(a[1])* factorial(a[2])), Eq(a[0] + 2*a[1] + 3*a[2], 3)), (0, True)) assert marginal_distribution(ed, ed[1])(a[1]) == Piecewise((6*2**(-a[1])* theta**a[1]/((theta + 1)* (theta + 2)*factorial(a[1])), Eq(2*a[1] + 1, 3)), (0, True)) raises(ValueError, lambda: MultivariateEwens('e1', 5, theta_f)) assert ed.pspace.distribution.set == ProductSet(Range(0, 4, 1), Range(0, 2, 1), Range(0, 2, 1)) # tests for symbolic dimensions eds = MultivariateEwens('E', n, theta) a = IndexedBase('a') j, k = symbols('j, k') den = Piecewise((factorial(n)*Product(theta**a[j]*(j + 1)**(-a[j])/ factorial(a[j]), (j, 0, n - 1))/RisingFactorial(theta, n), Eq(n, Sum((k + 1)*a[k], (k, 0, n - 1)))), (0, True)) assert density(eds)(a).dummy_eq(den) def test_Multinomial(): n, x1, x2, x3, x4 = symbols('n, x1, x2, x3, x4', nonnegative=True, integer=True) p1, p2, p3, p4 = symbols('p1, p2, p3, p4', positive=True) p1_f, n_f = symbols('p1_f, n_f', negative=True) M = Multinomial('M', n, [p1, p2, p3, p4]) C = Multinomial('C', 3, p1, p2, p3) f = factorial assert density(M)(x1, x2, x3, x4) == Piecewise((p1**x1*p2**x2*p3**x3*p4**x4* f(n)/(f(x1)*f(x2)*f(x3)*f(x4)), Eq(n, x1 + x2 + x3 + x4)), (0, True)) assert marginal_distribution(C, C[0])(x1).subs(x1, 1) ==\ 3*p1*p2**2 +\ 6*p1*p2*p3 +\ 3*p1*p3**2 raises(ValueError, lambda: Multinomial('b1', 5, [p1, p2, p3, p1_f])) raises(ValueError, lambda: Multinomial('b2', n_f, [p1, p2, p3, p4])) raises(ValueError, lambda: Multinomial('b3', n, 0.5, 0.4, 0.3, 0.1)) def test_NegativeMultinomial(): k0, x1, x2, x3, x4 = symbols('k0, x1, x2, x3, x4', nonnegative=True, integer=True) p1, p2, p3, p4 = symbols('p1, p2, p3, p4', positive=True) p1_f = symbols('p1_f', negative=True) N = NegativeMultinomial('N', 4, [p1, p2, p3, p4]) C = NegativeMultinomial('C', 4, 0.1, 0.2, 0.3) g = gamma f = factorial assert simplify(density(N)(x1, x2, x3, x4) - p1**x1*p2**x2*p3**x3*p4**x4*(-p1 - p2 - p3 - p4 + 1)**4*g(x1 + x2 + x3 + x4 + 4)/(6*f(x1)*f(x2)*f(x3)*f(x4))) is S.Zero assert comp(marginal_distribution(C, C[0])(1).evalf(), 0.33, .01) raises(ValueError, lambda: NegativeMultinomial('b1', 5, [p1, p2, p3, p1_f])) raises(ValueError, lambda: NegativeMultinomial('b2', k0, 0.5, 0.4, 0.3, 0.4)) assert N.pspace.distribution.set == ProductSet(Range(0, oo, 1), Range(0, oo, 1), Range(0, oo, 1), Range(0, oo, 1)) def test_JointPSpace_marginal_distribution(): T = MultivariateT('T', [0, 0], [[1, 0], [0, 1]], 2) assert marginal_distribution(T, T[1])(x) == sqrt(2)*(x**2 + 2)/( 8*polar_lift(x**2/2 + 1)**Rational(5, 2)) assert integrate(marginal_distribution(T, 1)(x), (x, -oo, oo)) == 1 t = MultivariateT('T', [0, 0, 0], [[1, 0, 0], [0, 1, 0], [0, 0, 1]], 3) assert comp(marginal_distribution(t, 0)(1).evalf(), 0.2, .01) def test_JointRV(): x1, x2 = (Indexed('x', i) for i in (1, 2)) pdf = exp(-x1**2/2 + x1 - x2**2/2 - S.Half)/(2*pi) X = JointRV('x', pdf) assert density(X)(1, 2) == exp(-2)/(2*pi) assert isinstance(X.pspace.distribution, JointDistributionHandmade) assert marginal_distribution(X, 0)(2) == sqrt(2)*exp(Rational(-1, 2))/(2*sqrt(pi)) def test_expectation(): m = Normal('A', [x, y], [[1, 0], [0, 1]]) assert simplify(E(m[1])) == y @XFAIL def test_joint_vector_expectation(): m = Normal('A', [x, y], [[1, 0], [0, 1]]) assert E(m) == (x, y) def test_sample_numpy(): distribs_numpy = [ MultivariateNormal("M", [3, 4], [[2, 1], [1, 2]]), MultivariateBeta("B", [0.4, 5, 15, 50, 203]), Multinomial("N", 50, [0.3, 0.2, 0.1, 0.25, 0.15]) ] size = 3 numpy = import_module('numpy') if not numpy: skip('Numpy is not installed. Abort tests for _sample_numpy.') else: with ignore_warnings(UserWarning): for X in distribs_numpy: samps = next(sample(X, size=size, library='numpy')) for sam in samps: assert tuple(sam) in X.pspace.distribution.set N_c = NegativeMultinomial('N', 3, 0.1, 0.1, 0.1) raises(NotImplementedError, lambda: next(sample(N_c, library='numpy'))) def test_sample_scipy(): distribs_scipy = [ MultivariateNormal("M", [0, 0], [[0.1, 0.025], [0.025, 0.1]]), MultivariateBeta("B", [0.4, 5, 15]), Multinomial("N", 8, [0.3, 0.2, 0.1, 0.4]) ] size = 3 scipy = import_module('scipy') if not scipy: skip('Scipy not installed. Abort tests for _sample_scipy.') else: with ignore_warnings(UserWarning): for X in distribs_scipy: samps = next(sample(X, size=size)) samps2 = next(sample(X, size=(2, 2))) for sam in samps: assert tuple(sam) in X.pspace.distribution.set for i in range(2): for j in range(2): assert tuple(samps2[i][j]) in X.pspace.distribution.set N_c = NegativeMultinomial('N', 3, 0.1, 0.1, 0.1) raises(NotImplementedError, lambda: next(sample(N_c))) def test_sample_pymc3(): distribs_pymc3 = [ MultivariateNormal("M", [5, 2], [[1, 0], [0, 1]]), MultivariateBeta("B", [0.4, 5, 15]), Multinomial("N", 4, [0.3, 0.2, 0.1, 0.4]) ] size = 3 pymc3 = import_module('pymc3') if not pymc3: skip('PyMC3 is not installed. Abort tests for _sample_pymc3.') else: with ignore_warnings(UserWarning): for X in distribs_pymc3: samps = next(sample(X, size=size, library='pymc3')) for sam in samps: assert tuple(sam.flatten()) in X.pspace.distribution.set N_c = NegativeMultinomial('N', 3, 0.1, 0.1, 0.1) raises(NotImplementedError, lambda: next(sample(N_c, library='pymc3'))) def test_sample_seed(): x1, x2 = (Indexed('x', i) for i in (1, 2)) pdf = exp(-x1**2/2 + x1 - x2**2/2 - S.Half)/(2*pi) X = JointRV('x', pdf) libraries = ['scipy', 'numpy', 'pymc3'] for lib in libraries: try: imported_lib = import_module(lib) if imported_lib: s0, s1, s2 = [], [], [] s0 = list(sample(X, numsamples=10, library=lib, seed=0)) s1 = list(sample(X, numsamples=10, library=lib, seed=0)) s2 = list(sample(X, numsamples=10, library=lib, seed=1)) assert s0 == s1 assert s1 != s2 except NotImplementedError: continue
8694737098f9ff9d05b18646058018151b9718a6a43e6ac624b6123830490951
from sympy import (S, symbols, FiniteSet, Eq, Matrix, MatrixSymbol, Float, And, ImmutableMatrix, Ne, Lt, Le, Gt, Ge, exp, Not, Rational, Lambda, erf, Piecewise, factorial, Interval, oo, Contains, sqrt, pi, ceiling, gamma, lowergamma, Sum, Range, Tuple, ImmutableDenseMatrix, Symbol) from sympy.stats import (DiscreteMarkovChain, P, TransitionMatrixOf, E, StochasticStateSpaceOf, variance, ContinuousMarkovChain, BernoulliProcess, PoissonProcess, WienerProcess, GammaProcess, sample_stochastic_process) from sympy.stats.joint_rv import JointDistribution from sympy.stats.joint_rv_types import JointDistributionHandmade from sympy.stats.rv import RandomIndexedSymbol from sympy.stats.symbolic_probability import Probability, Expectation from sympy.testing.pytest import raises, skip, ignore_warnings from sympy.external import import_module from sympy.stats.frv_types import BernoulliDistribution from sympy.stats.drv_types import PoissonDistribution from sympy.stats.crv_types import NormalDistribution, GammaDistribution from sympy.core.symbol import Str def test_DiscreteMarkovChain(): # pass only the name X = DiscreteMarkovChain("X") assert isinstance(X.state_space, Range) assert X.index_set == S.Naturals0 assert isinstance(X.transition_probabilities, MatrixSymbol) t = symbols('t', positive=True, integer=True) assert isinstance(X[t], RandomIndexedSymbol) assert E(X[0]) == Expectation(X[0]) raises(TypeError, lambda: DiscreteMarkovChain(1)) raises(NotImplementedError, lambda: X(t)) raises(NotImplementedError, lambda: X.communication_classes()) raises(NotImplementedError, lambda: X.canonical_form()) raises(NotImplementedError, lambda: X.decompose()) nz = Symbol('n', integer=True) TZ = MatrixSymbol('M', nz, nz) SZ = Range(nz) YZ = DiscreteMarkovChain('Y', SZ, TZ) assert P(Eq(YZ[2], 1), Eq(YZ[1], 0)) == TZ[0, 1] raises(ValueError, lambda: sample_stochastic_process(t)) raises(ValueError, lambda: next(sample_stochastic_process(X))) # pass name and state_space # any hashable object should be a valid state # states should be valid as a tuple/set/list/Tuple/Range sym, rainy, cloudy, sunny = symbols('a Rainy Cloudy Sunny', real=True) state_spaces = [(1, 2, 3), [Str('Hello'), sym, DiscreteMarkovChain], Tuple(1, exp(sym), Str('World'), sympify=False), Range(-1, 5, 2), [rainy, cloudy, sunny]] chains = [DiscreteMarkovChain("Y", state_space) for state_space in state_spaces] for i, Y in enumerate(chains): assert isinstance(Y.transition_probabilities, MatrixSymbol) assert Y.state_space == state_spaces[i] or Y.state_space == FiniteSet(*state_spaces[i]) assert Y.number_of_states == 3 with ignore_warnings(UserWarning): # TODO: Restore tests once warnings are removed assert P(Eq(Y[2], 1), Eq(Y[0], 2), evaluate=False) == Probability(Eq(Y[2], 1), Eq(Y[0], 2)) assert E(Y[0]) == Expectation(Y[0]) raises(ValueError, lambda: next(sample_stochastic_process(Y))) raises(TypeError, lambda: DiscreteMarkovChain("Y", dict((1, 1)))) Y = DiscreteMarkovChain("Y", Range(1, t, 2)) assert Y.number_of_states == ceiling((t-1)/2) # pass name and transition_probabilities chains = [DiscreteMarkovChain("Y", trans_probs=Matrix([[]])), DiscreteMarkovChain("Y", trans_probs=Matrix([[0, 1], [1, 0]])), DiscreteMarkovChain("Y", trans_probs=Matrix([[pi, 1-pi], [sym, 1-sym]]))] for Z in chains: assert Z.number_of_states == Z.transition_probabilities.shape[0] assert isinstance(Z.transition_probabilities, ImmutableDenseMatrix) # pass name, state_space and transition_probabilities T = Matrix([[0.5, 0.2, 0.3],[0.2, 0.5, 0.3],[0.2, 0.3, 0.5]]) TS = MatrixSymbol('T', 3, 3) Y = DiscreteMarkovChain("Y", [0, 1, 2], T) YS = DiscreteMarkovChain("Y", ['One', 'Two', 3], TS) assert Y.joint_distribution(1, Y[2], 3) == JointDistribution(Y[1], Y[2], Y[3]) raises(ValueError, lambda: Y.joint_distribution(Y[1].symbol, Y[2].symbol)) assert P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2) == Float(0.36, 2) assert (P(Eq(YS[3], 2), Eq(YS[1], 1)) - (TS[0, 2]*TS[1, 0] + TS[1, 1]*TS[1, 2] + TS[1, 2]*TS[2, 2])).simplify() == 0 assert P(Eq(YS[1], 1), Eq(YS[2], 2)) == Probability(Eq(YS[1], 1)) assert P(Eq(YS[3], 3), Eq(YS[1], 1)) == TS[0, 2]*TS[1, 0] + TS[1, 1]*TS[1, 2] + TS[1, 2]*TS[2, 2] TO = Matrix([[0.25, 0.75, 0],[0, 0.25, 0.75],[0.75, 0, 0.25]]) assert P(Eq(Y[3], 2), Eq(Y[1], 1) & TransitionMatrixOf(Y, TO)).round(3) == Float(0.375, 3) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert E(Y[3], evaluate=False) == Expectation(Y[3]) assert E(Y[3], Eq(Y[2], 1)).round(2) == Float(1.1, 3) TSO = MatrixSymbol('T', 4, 4) raises(ValueError, lambda: str(P(Eq(YS[3], 2), Eq(YS[1], 1) & TransitionMatrixOf(YS, TSO)))) raises(TypeError, lambda: DiscreteMarkovChain("Z", [0, 1, 2], symbols('M'))) raises(ValueError, lambda: DiscreteMarkovChain("Z", [0, 1, 2], MatrixSymbol('T', 3, 4))) raises(ValueError, lambda: E(Y[3], Eq(Y[2], 6))) raises(ValueError, lambda: E(Y[2], Eq(Y[3], 1))) # extended tests for probability queries TO1 = Matrix([[Rational(1, 4), Rational(3, 4), 0],[Rational(1, 3), Rational(1, 3), Rational(1, 3)],[0, Rational(1, 4), Rational(3, 4)]]) assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)), Eq(Probability(Eq(Y[0], 0)), Rational(1, 4)) & TransitionMatrixOf(Y, TO1)) == Rational(1, 16) assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)), TransitionMatrixOf(Y, TO1)) == \ Probability(Eq(Y[0], 0))/4 assert P(Lt(X[1], 2) & Gt(X[1], 0), Eq(X[0], 2) & StochasticStateSpaceOf(X, [0, 1, 2]) & TransitionMatrixOf(X, TO1)) == Rational(1, 4) assert P(Lt(X[1], 2) & Gt(X[1], 0), Eq(X[0], 2) & StochasticStateSpaceOf(X, [None, 'None', 1]) & TransitionMatrixOf(X, TO1)) == Rational(1, 4) assert P(Ne(X[1], 2) & Ne(X[1], 1), Eq(X[0], 2) & StochasticStateSpaceOf(X, [0, 1, 2]) & TransitionMatrixOf(X, TO1)) is S.Zero assert P(Ne(X[1], 2) & Ne(X[1], 1), Eq(X[0], 2) & StochasticStateSpaceOf(X, [None, 'None', 1]) & TransitionMatrixOf(X, TO1)) is S.Zero assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)), Eq(Y[1], 1)) == 0.1*Probability(Eq(Y[0], 0)) # testing properties of Markov chain TO2 = Matrix([[S.One, 0, 0],[Rational(1, 3), Rational(1, 3), Rational(1, 3)],[0, Rational(1, 4), Rational(3, 4)]]) TO3 = Matrix([[Rational(1, 4), Rational(3, 4), 0],[Rational(1, 3), Rational(1, 3), Rational(1, 3)], [0, Rational(1, 4), Rational(3, 4)]]) Y2 = DiscreteMarkovChain('Y', trans_probs=TO2) Y3 = DiscreteMarkovChain('Y', trans_probs=TO3) assert Y3.fundamental_matrix() == ImmutableMatrix([[176, 81, -132], [36, 141, -52], [-44, -39, 208]])/125 assert Y2.is_absorbing_chain() == True assert Y3.is_absorbing_chain() == False assert Y2.canonical_form() == ([0, 1, 2], TO2) assert Y3.canonical_form() == ([0, 1, 2], TO3) assert Y2.decompose() == ([0, 1, 2], TO2[0:1, 0:1], TO2[1:3, 0:1], TO2[1:3, 1:3]) assert Y3.decompose() == ([0, 1, 2], TO3, Matrix(0, 3, []), Matrix(0, 0, [])) TO4 = Matrix([[Rational(1, 5), Rational(2, 5), Rational(2, 5)], [Rational(1, 10), S.Half, Rational(2, 5)], [Rational(3, 5), Rational(3, 10), Rational(1, 10)]]) Y4 = DiscreteMarkovChain('Y', trans_probs=TO4) w = ImmutableMatrix([[Rational(11, 39), Rational(16, 39), Rational(4, 13)]]) assert Y4.limiting_distribution == w assert Y4.is_regular() == True assert Y4.is_ergodic() == True TS1 = MatrixSymbol('T', 3, 3) Y5 = DiscreteMarkovChain('Y', trans_probs=TS1) assert Y5.limiting_distribution(w, TO4).doit() == True assert Y5.stationary_distribution(condition_set=True).subs(TS1, TO4).contains(w).doit() == S.true TO6 = Matrix([[S.One, 0, 0, 0, 0],[S.Half, 0, S.Half, 0, 0],[0, S.Half, 0, S.Half, 0], [0, 0, S.Half, 0, S.Half], [0, 0, 0, 0, 1]]) Y6 = DiscreteMarkovChain('Y', trans_probs=TO6) assert Y6.fundamental_matrix() == ImmutableMatrix([[Rational(3, 2), S.One, S.Half], [S.One, S(2), S.One], [S.Half, S.One, Rational(3, 2)]]) assert Y6.absorbing_probabilities() == ImmutableMatrix([[Rational(3, 4), Rational(1, 4)], [S.Half, S.Half], [Rational(1, 4), Rational(3, 4)]]) TO7 = Matrix([[Rational(1, 2), Rational(1, 4), Rational(1, 4)], [Rational(1, 2), 0, Rational(1, 2)], [Rational(1, 4), Rational(1, 4), Rational(1, 2)]]) Y7 = DiscreteMarkovChain('Y', trans_probs=TO7) assert Y7.is_absorbing_chain() == False assert Y7.fundamental_matrix() == ImmutableDenseMatrix([[Rational(86, 75), Rational(1, 25), Rational(-14, 75)], [Rational(2, 25), Rational(21, 25), Rational(2, 25)], [Rational(-14, 75), Rational(1, 25), Rational(86, 75)]]) # test for zero-sized matrix functionality X = DiscreteMarkovChain('X', trans_probs=Matrix([[]])) assert X.number_of_states == 0 assert X.stationary_distribution() == Matrix([[]]) assert X.communication_classes() == [] assert X.canonical_form() == ([], Matrix([[]])) assert X.decompose() == ([], Matrix([[]]), Matrix([[]]), Matrix([[]])) assert X.is_regular() == False assert X.is_ergodic() == False # test communication_class # see https://drive.google.com/drive/folders/1HbxLlwwn2b3U8Lj7eb_ASIUb5vYaNIjg?usp=sharing # tutorial 2.pdf TO7 = Matrix([[0, 5, 5, 0, 0], [0, 0, 0, 10, 0], [5, 0, 5, 0, 0], [0, 10, 0, 0, 0], [0, 3, 0, 3, 4]])/10 Y7 = DiscreteMarkovChain('Y', trans_probs=TO7) tuples = Y7.communication_classes() classes, recurrence, periods = list(zip(*tuples)) assert classes == ([1, 3], [0, 2], [4]) assert recurrence == (True, False, False) assert periods == (2, 1, 1) TO8 = Matrix([[0, 0, 0, 10, 0, 0], [5, 0, 5, 0, 0, 0], [0, 4, 0, 0, 0, 6], [10, 0, 0, 0, 0, 0], [0, 10, 0, 0, 0, 0], [0, 0, 0, 5, 5, 0]])/10 Y8 = DiscreteMarkovChain('Y', trans_probs=TO8) tuples = Y8.communication_classes() classes, recurrence, periods = list(zip(*tuples)) assert classes == ([0, 3], [1, 2, 5, 4]) assert recurrence == (True, False) assert periods == (2, 2) TO9 = Matrix([[2, 0, 0, 3, 0, 0, 3, 2, 0, 0], [0, 10, 0, 0, 0, 0, 0, 0, 0, 0], [0, 2, 2, 0, 0, 0, 0, 0, 3, 3], [0, 0, 0, 3, 0, 0, 6, 1, 0, 0], [0, 0, 0, 0, 5, 5, 0, 0, 0, 0], [0, 0, 0, 0, 0, 10, 0, 0, 0, 0], [4, 0, 0, 5, 0, 0, 1, 0, 0, 0], [2, 0, 0, 4, 0, 0, 2, 2, 0, 0], [3, 0, 1, 0, 0, 0, 0, 0, 4, 2], [0, 0, 4, 0, 0, 0, 0, 0, 3, 3]])/10 Y9 = DiscreteMarkovChain('Y', trans_probs=TO9) tuples = Y9.communication_classes() classes, recurrence, periods = list(zip(*tuples)) assert classes == ([0, 3, 6, 7], [1], [2, 8, 9], [5], [4]) assert recurrence == (True, True, False, True, False) assert periods == (1, 1, 1, 1, 1) # test canonical form # see https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf # example 11.13 T = Matrix([[1, 0, 0, 0, 0], [S(1) / 2, 0, S(1) / 2, 0, 0], [0, S(1) / 2, 0, S(1) / 2, 0], [0, 0, S(1) / 2, 0, S(1) / 2], [0, 0, 0, 0, S(1)]]) DW = DiscreteMarkovChain('DW', [0, 1, 2, 3, 4], T) states, A, B, C = DW.decompose() assert states == [0, 4, 1, 2, 3] assert A == Matrix([[1, 0], [0, 1]]) assert B == Matrix([[S(1)/2, 0], [0, 0], [0, S(1)/2]]) assert C == Matrix([[0, S(1)/2, 0], [S(1)/2, 0, S(1)/2], [0, S(1)/2, 0]]) states, new_matrix = DW.canonical_form() assert states == [0, 4, 1, 2, 3] assert new_matrix == Matrix([[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [S(1)/2, 0, 0, S(1)/2, 0], [0, 0, S(1)/2, 0, S(1)/2], [0, S(1)/2, 0, S(1)/2, 0]]) # test regular and ergodic # https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf T = Matrix([[0, 4, 0, 0, 0], [1, 0, 3, 0, 0], [0, 2, 0, 2, 0], [0, 0, 3, 0, 1], [0, 0, 0, 4, 0]])/4 X = DiscreteMarkovChain('X', trans_probs=T) assert not X.is_regular() assert X.is_ergodic() T = Matrix([[0, 1], [1, 0]]) X = DiscreteMarkovChain('X', trans_probs=T) assert not X.is_regular() assert X.is_ergodic() # http://www.math.wisc.edu/~valko/courses/331/MC2.pdf T = Matrix([[2, 1, 1], [2, 0, 2], [1, 1, 2]])/4 X = DiscreteMarkovChain('X', trans_probs=T) assert X.is_regular() assert X.is_ergodic() # https://docs.ufpr.br/~lucambio/CE222/1S2014/Kemeny-Snell1976.pdf T = Matrix([[1, 1], [1, 1]])/2 X = DiscreteMarkovChain('X', trans_probs=T) assert X.is_regular() assert X.is_ergodic() # test is_absorbing_chain T = Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) X = DiscreteMarkovChain('X', trans_probs=T) assert not X.is_absorbing_chain() # https://en.wikipedia.org/wiki/Absorbing_Markov_chain T = Matrix([[1, 1, 0, 0], [0, 1, 1, 0], [1, 0, 0, 1], [0, 0, 0, 2]])/2 X = DiscreteMarkovChain('X', trans_probs=T) assert X.is_absorbing_chain() T = Matrix([[2, 0, 0, 0, 0], [1, 0, 1, 0, 0], [0, 1, 0, 1, 0], [0, 0, 1, 0, 1], [0, 0, 0, 0, 2]])/2 X = DiscreteMarkovChain('X', trans_probs=T) assert X.is_absorbing_chain() # test custom state space Y10 = DiscreteMarkovChain('Y', [1, 2, 3], TO2) tuples = Y10.communication_classes() classes, recurrence, periods = list(zip(*tuples)) assert classes == ([1], [2, 3]) assert recurrence == (True, False) assert periods == (1, 1) assert Y10.canonical_form() == ([1, 2, 3], TO2) assert Y10.decompose() == ([1, 2, 3], TO2[0:1, 0:1], TO2[1:3, 0:1], TO2[1:3, 1:3]) # testing miscellaneous queries T = Matrix([[S.Half, Rational(1, 4), Rational(1, 4)], [Rational(1, 3), 0, Rational(2, 3)], [S.Half, S.Half, 0]]) X = DiscreteMarkovChain('X', [0, 1, 2], T) assert P(Eq(X[1], 2) & Eq(X[2], 1) & Eq(X[3], 0), Eq(P(Eq(X[1], 0)), Rational(1, 4)) & Eq(P(Eq(X[1], 1)), Rational(1, 4))) == Rational(1, 12) assert P(Eq(X[2], 1) | Eq(X[2], 2), Eq(X[1], 1)) == Rational(2, 3) assert P(Eq(X[2], 1) & Eq(X[2], 2), Eq(X[1], 1)) is S.Zero assert P(Ne(X[2], 2), Eq(X[1], 1)) == Rational(1, 3) assert E(X[1]**2, Eq(X[0], 1)) == Rational(8, 3) assert variance(X[1], Eq(X[0], 1)) == Rational(8, 9) raises(ValueError, lambda: E(X[1], Eq(X[2], 1))) raises(ValueError, lambda: DiscreteMarkovChain('X', [0, 1], T)) # testing miscellaneous queries with different state space X = DiscreteMarkovChain('X', ['A', 'B', 'C'], T) assert P(Eq(X[1], 2) & Eq(X[2], 1) & Eq(X[3], 0), Eq(P(Eq(X[1], 0)), Rational(1, 4)) & Eq(P(Eq(X[1], 1)), Rational(1, 4))) == Rational(1, 12) assert P(Eq(X[2], 1) | Eq(X[2], 2), Eq(X[1], 1)) == Rational(2, 3) assert P(Eq(X[2], 1) & Eq(X[2], 2), Eq(X[1], 1)) is S.Zero assert P(Ne(X[2], 2), Eq(X[1], 1)) == Rational(1, 3) a = X.state_space.args[0] c = X.state_space.args[2] assert (E(X[1] ** 2, Eq(X[0], 1)) - (a**2/3 + 2*c**2/3)).simplify() == 0 assert (variance(X[1], Eq(X[0], 1)) - (2*(-a/3 + c/3)**2/3 + (2*a/3 - 2*c/3)**2/3)).simplify() == 0 raises(ValueError, lambda: E(X[1], Eq(X[2], 1))) #testing queries with multiple RandomIndexedSymbols T = Matrix([[Rational(5, 10), Rational(3, 10), Rational(2, 10)], [Rational(2, 10), Rational(7, 10), Rational(1, 10)], [Rational(3, 10), Rational(3, 10), Rational(4, 10)]]) Y = DiscreteMarkovChain("Y", [0, 1, 2], T) assert P(Eq(Y[7], Y[5]), Eq(Y[2], 0)).round(5) == Float(0.44428, 5) assert P(Gt(Y[3], Y[1]), Eq(Y[0], 0)).round(2) == Float(0.36, 2) assert P(Le(Y[5], Y[10]), Eq(Y[4], 2)).round(6) == Float(0.583120, 6) assert Float(P(Eq(Y[10], Y[5]), Eq(Y[4], 1)), 14) == Float(1 - P(Ne(Y[10], Y[5]), Eq(Y[4], 1)), 14) assert Float(P(Gt(Y[8], Y[9]), Eq(Y[3], 2)), 14) == Float(1 - P(Le(Y[8], Y[9]), Eq(Y[3], 2)), 14) assert Float(P(Lt(Y[1], Y[4]), Eq(Y[0], 0)), 14) == Float(1 - P(Ge(Y[1], Y[4]), Eq(Y[0], 0)), 14) assert P(Eq(Y[5], Y[10]), Eq(Y[2], 1)) == P(Eq(Y[10], Y[5]), Eq(Y[2], 1)) assert P(Gt(Y[1], Y[2]), Eq(Y[0], 1)) == P(Lt(Y[2], Y[1]), Eq(Y[0], 1)) assert P(Ge(Y[7], Y[6]), Eq(Y[4], 1)) == P(Le(Y[6], Y[7]), Eq(Y[4], 1)) #test symbolic queries a, b, c, d = symbols('a b c d') T = Matrix([[Rational(1, 10), Rational(4, 10), Rational(5, 10)], [Rational(3, 10), Rational(4, 10), Rational(3, 10)], [Rational(7, 10), Rational(2, 10), Rational(1, 10)]]) Y = DiscreteMarkovChain("Y", [0, 1, 2], T) query = P(Eq(Y[a], b), Eq(Y[c], d)) assert query.subs({a:10, b:2, c:5, d:1}).evalf().round(4) == P(Eq(Y[10], 2), Eq(Y[5], 1)).round(4) assert query.subs({a:15, b:0, c:10, d:1}).evalf().round(4) == P(Eq(Y[15], 0), Eq(Y[10], 1)).round(4) query_gt = P(Gt(Y[a], b), Eq(Y[c], d)) query_le = P(Le(Y[a], b), Eq(Y[c], d)) assert query_gt.subs({a:5, b:2, c:1, d:0}).evalf() + query_le.subs({a:5, b:2, c:1, d:0}).evalf() == 1 query_ge = P(Ge(Y[a], b), Eq(Y[c], d)) query_lt = P(Lt(Y[a], b), Eq(Y[c], d)) assert query_ge.subs({a:4, b:1, c:0, d:2}).evalf() + query_lt.subs({a:4, b:1, c:0, d:2}).evalf() == 1 #test issue 20078 assert (2*Y[1] + 3*Y[1]).simplify() == 5*Y[1] assert (2*Y[1] - 3*Y[1]).simplify() == -Y[1] assert (2*(0.25*Y[1])).simplify() == 0.5*Y[1] assert ((2*Y[1]) * (0.25*Y[1])).simplify() == 0.5*Y[1]**2 assert (Y[1]**2 + Y[1]**3).simplify() == (Y[1] + 1)*Y[1]**2 def test_sample_stochastic_process(): if not import_module('scipy'): skip('SciPy Not installed. Skip sampling tests') import random random.seed(0) numpy = import_module('numpy') if numpy: numpy.random.seed(0) # scipy uses numpy to sample so to set its seed T = Matrix([[0.5, 0.2, 0.3],[0.2, 0.5, 0.3],[0.2, 0.3, 0.5]]) Y = DiscreteMarkovChain("Y", [0, 1, 2], T) for samps in range(10): assert next(sample_stochastic_process(Y)) in Y.state_space Z = DiscreteMarkovChain("Z", ['1', 1, 0], T) for samps in range(10): assert next(sample_stochastic_process(Z)) in Z.state_space T = Matrix([[S.Half, Rational(1, 4), Rational(1, 4)], [Rational(1, 3), 0, Rational(2, 3)], [S.Half, S.Half, 0]]) X = DiscreteMarkovChain('X', [0, 1, 2], T) for samps in range(10): assert next(sample_stochastic_process(X)) in X.state_space W = DiscreteMarkovChain('W', [1, pi, oo], T) for samps in range(10): assert next(sample_stochastic_process(W)) in W.state_space def test_ContinuousMarkovChain(): T1 = Matrix([[S(-2), S(2), S.Zero], [S.Zero, S.NegativeOne, S.One], [Rational(3, 2), Rational(3, 2), S(-3)]]) C1 = ContinuousMarkovChain('C', [0, 1, 2], T1) assert C1.limiting_distribution() == ImmutableMatrix([[Rational(3, 19), Rational(12, 19), Rational(4, 19)]]) T2 = Matrix([[-S.One, S.One, S.Zero], [S.One, -S.One, S.Zero], [S.Zero, S.One, -S.One]]) C2 = ContinuousMarkovChain('C', [0, 1, 2], T2) A, t = C2.generator_matrix, symbols('t', positive=True) assert C2.transition_probabilities(A)(t) == Matrix([[S.Half + exp(-2*t)/2, S.Half - exp(-2*t)/2, 0], [S.Half - exp(-2*t)/2, S.Half + exp(-2*t)/2, 0], [S.Half - exp(-t) + exp(-2*t)/2, S.Half - exp(-2*t)/2, exp(-t)]]) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert P(Eq(C2(1), 1), Eq(C2(0), 1), evaluate=False) == Probability(Eq(C2(1), 1), Eq(C2(0), 1)) assert P(Eq(C2(1), 1), Eq(C2(0), 1)) == exp(-2)/2 + S.Half assert P(Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 1), Eq(P(Eq(C2(1), 0)), S.Half)) == (Rational(1, 4) - exp(-2)/4)*(exp(-2)/2 + S.Half) assert P(Not(Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 2)) | (Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 2)), Eq(P(Eq(C2(1), 0)), Rational(1, 4)) & Eq(P(Eq(C2(1), 1)), Rational(1, 4))) is S.One assert E(C2(Rational(3, 2)), Eq(C2(0), 2)) == -exp(-3)/2 + 2*exp(Rational(-3, 2)) + S.Half assert variance(C2(Rational(3, 2)), Eq(C2(0), 1)) == ((S.Half - exp(-3)/2)**2*(exp(-3)/2 + S.Half) + (Rational(-1, 2) - exp(-3)/2)**2*(S.Half - exp(-3)/2)) raises(KeyError, lambda: P(Eq(C2(1), 0), Eq(P(Eq(C2(1), 1)), S.Half))) assert P(Eq(C2(1), 0), Eq(P(Eq(C2(5), 1)), S.Half)) == Probability(Eq(C2(1), 0)) TS1 = MatrixSymbol('G', 3, 3) CS1 = ContinuousMarkovChain('C', [0, 1, 2], TS1) A = CS1.generator_matrix assert CS1.transition_probabilities(A)(t) == exp(t*A) C3 = ContinuousMarkovChain('C', [Symbol('0'), Symbol('1'), Symbol('2')], T2) assert P(Eq(C3(1), 1), Eq(C3(0), 1)) == exp(-2)/2 + S.Half assert P(Eq(C3(1), Symbol('1')), Eq(C3(0), Symbol('1'))) == exp(-2)/2 + S.Half #test probability queries G = Matrix([[-S(1), Rational(1, 10), Rational(9, 10)], [Rational(2, 5), -S(1), Rational(3, 5)], [Rational(1, 2), Rational(1, 2), -S(1)]]) C = ContinuousMarkovChain('C', state_space=[0, 1, 2], gen_mat=G) assert P(Eq(C(7.385), C(3.19)), Eq(C(0.862), 0)).round(5) == Float(0.35469, 5) assert P(Gt(C(98.715), C(19.807)), Eq(C(11.314), 2)).round(5) == Float(0.32452, 5) assert P(Le(C(5.9), C(10.112)), Eq(C(4), 1)).round(6) == Float(0.675214, 6) assert Float(P(Eq(C(7.32), C(2.91)), Eq(C(2.63), 1)), 14) == Float(1 - P(Ne(C(7.32), C(2.91)), Eq(C(2.63), 1)), 14) assert Float(P(Gt(C(3.36), C(1.101)), Eq(C(0.8), 2)), 14) == Float(1 - P(Le(C(3.36), C(1.101)), Eq(C(0.8), 2)), 14) assert Float(P(Lt(C(4.9), C(2.79)), Eq(C(1.61), 0)), 14) == Float(1 - P(Ge(C(4.9), C(2.79)), Eq(C(1.61), 0)), 14) assert P(Eq(C(5.243), C(10.912)), Eq(C(2.174), 1)) == P(Eq(C(10.912), C(5.243)), Eq(C(2.174), 1)) assert P(Gt(C(2.344), C(9.9)), Eq(C(1.102), 1)) == P(Lt(C(9.9), C(2.344)), Eq(C(1.102), 1)) assert P(Ge(C(7.87), C(1.008)), Eq(C(0.153), 1)) == P(Le(C(1.008), C(7.87)), Eq(C(0.153), 1)) #test symbolic queries a, b, c, d = symbols('a b c d') query = P(Eq(C(a), b), Eq(C(c), d)) assert query.subs({a:3.65, b:2, c:1.78, d:1}).evalf().round(10) == P(Eq(C(3.65), 2), Eq(C(1.78), 1)).round(10) query_gt = P(Gt(C(a), b), Eq(C(c), d)) query_le = P(Le(C(a), b), Eq(C(c), d)) assert query_gt.subs({a:13.2, b:0, c:3.29, d:2}).evalf() + query_le.subs({a:13.2, b:0, c:3.29, d:2}).evalf() == 1 query_ge = P(Ge(C(a), b), Eq(C(c), d)) query_lt = P(Lt(C(a), b), Eq(C(c), d)) assert query_ge.subs({a:7.43, b:1, c:1.45, d:0}).evalf() + query_lt.subs({a:7.43, b:1, c:1.45, d:0}).evalf() == 1 #test issue 20078 assert (2*C(1) + 3*C(1)).simplify() == 5*C(1) assert (2*C(1) - 3*C(1)).simplify() == -C(1) assert (2*(0.25*C(1))).simplify() == 0.5*C(1) assert (2*C(1) * 0.25*C(1)).simplify() == 0.5*C(1)**2 assert (C(1)**2 + C(1)**3).simplify() == (C(1) + 1)*C(1)**2 def test_BernoulliProcess(): B = BernoulliProcess("B", p=0.6, success=1, failure=0) assert B.state_space == FiniteSet(0, 1) assert B.index_set == S.Naturals0 assert B.success == 1 assert B.failure == 0 X = BernoulliProcess("X", p=Rational(1,3), success='H', failure='T') assert X.state_space == FiniteSet('H', 'T') H, T = symbols("H,T") assert E(X[1]+X[2]*X[3]) == H**2/9 + 4*H*T/9 + H/3 + 4*T**2/9 + 2*T/3 t, x = symbols('t, x', positive=True, integer=True) assert isinstance(B[t], RandomIndexedSymbol) raises(ValueError, lambda: BernoulliProcess("X", p=1.1, success=1, failure=0)) raises(NotImplementedError, lambda: B(t)) raises(IndexError, lambda: B[-3]) assert B.joint_distribution(B[3], B[9]) == JointDistributionHandmade(Lambda((B[3], B[9]), Piecewise((0.6, Eq(B[3], 1)), (0.4, Eq(B[3], 0)), (0, True)) *Piecewise((0.6, Eq(B[9], 1)), (0.4, Eq(B[9], 0)), (0, True)))) assert B.joint_distribution(2, B[4]) == JointDistributionHandmade(Lambda((B[2], B[4]), Piecewise((0.6, Eq(B[2], 1)), (0.4, Eq(B[2], 0)), (0, True)) *Piecewise((0.6, Eq(B[4], 1)), (0.4, Eq(B[4], 0)), (0, True)))) # Test for the sum distribution of Bernoulli Process RVs Y = B[1] + B[2] + B[3] assert P(Eq(Y, 0)).round(2) == Float(0.06, 1) assert P(Eq(Y, 2)).round(2) == Float(0.43, 2) assert P(Eq(Y, 4)).round(2) == 0 assert P(Gt(Y, 1)).round(2) == Float(0.65, 2) # Test for independency of each Random Indexed variable assert P(Eq(B[1], 0) & Eq(B[2], 1) & Eq(B[3], 0) & Eq(B[4], 1)).round(2) == Float(0.06, 1) assert E(2 * B[1] + B[2]).round(2) == Float(1.80, 3) assert E(2 * B[1] + B[2] + 5).round(2) == Float(6.80, 3) assert E(B[2] * B[4] + B[10]).round(2) == Float(0.96, 2) assert E(B[2] > 0, Eq(B[1],1) & Eq(B[2],1)).round(2) == Float(0.60,2) assert E(B[1]) == 0.6 assert P(B[1] > 0).round(2) == Float(0.60, 2) assert P(B[1] < 1).round(2) == Float(0.40, 2) assert P(B[1] > 0, B[2] <= 1).round(2) == Float(0.60, 2) assert P(B[12] * B[5] > 0).round(2) == Float(0.36, 2) assert P(B[12] * B[5] > 0, B[4] < 1).round(2) == Float(0.36, 2) assert P(Eq(B[2], 1), B[2] > 0) == 1 assert P(Eq(B[5], 3)) == 0 assert P(Eq(B[1], 1), B[1] < 0) == 0 assert P(B[2] > 0, Eq(B[2], 1)) == 1 assert P(B[2] < 0, Eq(B[2], 1)) == 0 assert P(B[2] > 0, B[2]==7) == 0 assert P(B[5] > 0, B[5]) == BernoulliDistribution(0.6, 0, 1) raises(ValueError, lambda: P(3)) raises(ValueError, lambda: P(B[3] > 0, 3)) # test issue 19456 expr = Sum(B[t], (t, 0, 4)) expr2 = Sum(B[t], (t, 1, 3)) expr3 = Sum(B[t]**2, (t, 1, 3)) assert expr.doit() == B[0] + B[1] + B[2] + B[3] + B[4] assert expr2.doit() == Y assert expr3.doit() == B[1]**2 + B[2]**2 + B[3]**2 assert B[2*t].free_symbols == {B[2*t], t} assert B[4].free_symbols == {B[4]} assert B[x*t].free_symbols == {B[x*t], x, t} #test issue 20078 assert (2*B[t] + 3*B[t]).simplify() == 5*B[t] assert (2*B[t] - 3*B[t]).simplify() == -B[t] assert (2*(0.25*B[t])).simplify() == 0.5*B[t] assert (2*B[t] * 0.25*B[t]).simplify() == 0.5*B[t]**2 assert (B[t]**2 + B[t]**3).simplify() == (B[t] + 1)*B[t]**2 def test_PoissonProcess(): X = PoissonProcess("X", 3) assert X.state_space == S.Naturals0 assert X.index_set == Interval(0, oo) assert X.lamda == 3 t, d, x, y = symbols('t d x y', positive=True) assert isinstance(X(t), RandomIndexedSymbol) assert X.distribution(t) == PoissonDistribution(3*t) raises(ValueError, lambda: PoissonProcess("X", -1)) raises(NotImplementedError, lambda: X[t]) raises(IndexError, lambda: X(-5)) assert X.joint_distribution(X(2), X(3)) == JointDistributionHandmade(Lambda((X(2), X(3)), 6**X(2)*9**X(3)*exp(-15)/(factorial(X(2))*factorial(X(3))))) assert X.joint_distribution(4, 6) == JointDistributionHandmade(Lambda((X(4), X(6)), 12**X(4)*18**X(6)*exp(-30)/(factorial(X(4))*factorial(X(6))))) assert P(X(t) < 1) == exp(-3*t) assert P(Eq(X(t), 0), Contains(t, Interval.Lopen(3, 5))) == exp(-6) # exp(-2*lamda) res = P(Eq(X(t), 1), Contains(t, Interval.Lopen(3, 4))) assert res == 3*exp(-3) # Equivalent to P(Eq(X(t), 1))**4 because of non-overlapping intervals assert P(Eq(X(t), 1) & Eq(X(d), 1) & Eq(X(x), 1) & Eq(X(y), 1), Contains(t, Interval.Lopen(0, 1)) & Contains(d, Interval.Lopen(1, 2)) & Contains(x, Interval.Lopen(2, 3)) & Contains(y, Interval.Lopen(3, 4))) == res**4 # Return Probability because of overlapping intervals assert P(Eq(X(t), 2) & Eq(X(d), 3), Contains(t, Interval.Lopen(0, 2)) & Contains(d, Interval.Ropen(2, 4))) == \ Probability(Eq(X(d), 3) & Eq(X(t), 2), Contains(t, Interval.Lopen(0, 2)) & Contains(d, Interval.Ropen(2, 4))) raises(ValueError, lambda: P(Eq(X(t), 2) & Eq(X(d), 3), Contains(t, Interval.Lopen(0, 4)) & Contains(d, Interval.Lopen(3, oo)))) # no bound on d assert P(Eq(X(3), 2)) == 81*exp(-9)/2 assert P(Eq(X(t), 2), Contains(t, Interval.Lopen(0, 5))) == 225*exp(-15)/2 # Check that probability works correctly by adding it to 1 res1 = P(X(t) <= 3, Contains(t, Interval.Lopen(0, 5))) res2 = P(X(t) > 3, Contains(t, Interval.Lopen(0, 5))) assert res1 == 691*exp(-15) assert (res1 + res2).simplify() == 1 # Check Not and Or assert P(Not(Eq(X(t), 2) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) & \ Contains(d, Interval.Lopen(7, 8))).simplify() == -18*exp(-6) + 234*exp(-9) + 1 assert P(Eq(X(t), 2) | Ne(X(t), 4), Contains(t, Interval.Ropen(2, 4))) == 1 - 36*exp(-6) raises(ValueError, lambda: P(X(t) > 2, X(t) + X(d))) assert E(X(t)) == 3*t # property of the distribution at a given timestamp assert E(X(t)**2 + X(d)*2 + X(y)**3, Contains(t, Interval.Lopen(0, 1)) & Contains(d, Interval.Lopen(1, 2)) & Contains(y, Interval.Ropen(3, 4))) == 75 assert E(X(t)**2, Contains(t, Interval.Lopen(0, 1))) == 12 assert E(x*(X(t) + X(d))*(X(t)**2+X(d)**2), Contains(t, Interval.Lopen(0, 1)) & Contains(d, Interval.Ropen(1, 2))) == \ Expectation(x*(X(d) + X(t))*(X(d)**2 + X(t)**2), Contains(t, Interval.Lopen(0, 1)) & Contains(d, Interval.Ropen(1, 2))) # Value Error because of infinite time bound raises(ValueError, lambda: E(X(t)**3, Contains(t, Interval.Lopen(1, oo)))) # Equivalent to E(X(t)**2) - E(X(d)**2) == E(X(1)**2) - E(X(1)**2) == 0 assert E((X(t) + X(d))*(X(t) - X(d)), Contains(t, Interval.Lopen(0, 1)) & Contains(d, Interval.Lopen(1, 2))) == 0 assert E(X(2) + x*E(X(5))) == 15*x + 6 assert E(x*X(1) + y) == 3*x + y assert P(Eq(X(1), 2) & Eq(X(t), 3), Contains(t, Interval.Lopen(1, 2))) == 81*exp(-6)/4 Y = PoissonProcess("Y", 6) Z = X + Y assert Z.lamda == X.lamda + Y.lamda == 9 raises(ValueError, lambda: X + 5) # should be added be only PoissonProcess instance N, M = Z.split(4, 5) assert N.lamda == 4 assert M.lamda == 5 raises(ValueError, lambda: Z.split(3, 2)) # 2+3 != 9 raises(ValueError, lambda :P(Eq(X(t), 0), Contains(t, Interval.Lopen(1, 3)) & Eq(X(1), 0))) # check if it handles queries with two random variables in one args res1 = P(Eq(N(3), N(5))) assert res1 == P(Eq(N(t), 0), Contains(t, Interval(3, 5))) res2 = P(N(3) > N(1)) assert res2 == P((N(t) > 0), Contains(t, Interval(1, 3))) assert P(N(3) < N(1)) == 0 # condition is not possible res3 = P(N(3) <= N(1)) # holds only for Eq(N(3), N(1)) assert res3 == P(Eq(N(t), 0), Contains(t, Interval(1, 3))) # tests from https://www.probabilitycourse.com/chapter11/11_1_2_basic_concepts_of_the_poisson_process.php X = PoissonProcess('X', 10) # 11.1 assert P(Eq(X(S(1)/3), 3) & Eq(X(1), 10)) == exp(-10)*Rational(8000000000, 11160261) assert P(Eq(X(1), 1), Eq(X(S(1)/3), 3)) == 0 assert P(Eq(X(1), 10), Eq(X(S(1)/3), 3)) == P(Eq(X(S(2)/3), 7)) X = PoissonProcess('X', 2) # 11.2 assert P(X(S(1)/2) < 1) == exp(-1) assert P(X(3) < 1, Eq(X(1), 0)) == exp(-4) assert P(Eq(X(4), 3), Eq(X(2), 3)) == exp(-4) X = PoissonProcess('X', 3) assert P(Eq(X(2), 5) & Eq(X(1), 2)) == Rational(81, 4)*exp(-6) # check few properties assert P(X(2) <= 3, X(1)>=1) == 3*P(Eq(X(1), 0)) + 2*P(Eq(X(1), 1)) + P(Eq(X(1), 2)) assert P(X(2) <= 3, X(1) > 1) == 2*P(Eq(X(1), 0)) + 1*P(Eq(X(1), 1)) assert P(Eq(X(2), 5) & Eq(X(1), 2)) == P(Eq(X(1), 3))*P(Eq(X(1), 2)) assert P(Eq(X(3), 4), Eq(X(1), 3)) == P(Eq(X(2), 1)) #test issue 20078 assert (2*X(t) + 3*X(t)).simplify() == 5*X(t) assert (2*X(t) - 3*X(t)).simplify() == -X(t) assert (2*(0.25*X(t))).simplify() == 0.5*X(t) assert (2*X(t) * 0.25*X(t)).simplify() == 0.5*X(t)**2 assert (X(t)**2 + X(t)**3).simplify() == (X(t) + 1)*X(t)**2 def test_WienerProcess(): X = WienerProcess("X") assert X.state_space == S.Reals assert X.index_set == Interval(0, oo) t, d, x, y = symbols('t d x y', positive=True) assert isinstance(X(t), RandomIndexedSymbol) assert X.distribution(t) == NormalDistribution(0, sqrt(t)) raises(ValueError, lambda: PoissonProcess("X", -1)) raises(NotImplementedError, lambda: X[t]) raises(IndexError, lambda: X(-2)) assert X.joint_distribution(X(2), X(3)) == JointDistributionHandmade( Lambda((X(2), X(3)), sqrt(6)*exp(-X(2)**2/4)*exp(-X(3)**2/6)/(12*pi))) assert X.joint_distribution(4, 6) == JointDistributionHandmade( Lambda((X(4), X(6)), sqrt(6)*exp(-X(4)**2/8)*exp(-X(6)**2/12)/(24*pi))) assert P(X(t) < 3).simplify() == erf(3*sqrt(2)/(2*sqrt(t)))/2 + S(1)/2 assert P(X(t) > 2, Contains(t, Interval.Lopen(3, 7))).simplify() == S(1)/2 -\ erf(sqrt(2)/2)/2 # Equivalent to P(X(1)>1)**4 assert P((X(t) > 4) & (X(d) > 3) & (X(x) > 2) & (X(y) > 1), Contains(t, Interval.Lopen(0, 1)) & Contains(d, Interval.Lopen(1, 2)) & Contains(x, Interval.Lopen(2, 3)) & Contains(y, Interval.Lopen(3, 4))).simplify() ==\ (1 - erf(sqrt(2)/2))*(1 - erf(sqrt(2)))*(1 - erf(3*sqrt(2)/2))*(1 - erf(2*sqrt(2)))/16 # Contains an overlapping interval so, return Probability assert P((X(t)< 2) & (X(d)> 3), Contains(t, Interval.Lopen(0, 2)) & Contains(d, Interval.Ropen(2, 4))) == Probability((X(d) > 3) & (X(t) < 2), Contains(d, Interval.Ropen(2, 4)) & Contains(t, Interval.Lopen(0, 2))) assert str(P(Not((X(t) < 5) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) & Contains(d, Interval.Lopen(7, 8))).simplify()) == \ '-(1 - erf(3*sqrt(2)/2))*(2 - erfc(5/2))/4 + 1' # Distribution has mean 0 at each timestamp assert E(X(t)) == 0 assert E(x*(X(t) + X(d))*(X(t)**2+X(d)**2), Contains(t, Interval.Lopen(0, 1)) & Contains(d, Interval.Ropen(1, 2))) == Expectation(x*(X(d) + X(t))*(X(d)**2 + X(t)**2), Contains(d, Interval.Ropen(1, 2)) & Contains(t, Interval.Lopen(0, 1))) assert E(X(t) + x*E(X(3))) == 0 #test issue 20078 assert (2*X(t) + 3*X(t)).simplify() == 5*X(t) assert (2*X(t) - 3*X(t)).simplify() == -X(t) assert (2*(0.25*X(t))).simplify() == 0.5*X(t) assert (2*X(t) * 0.25*X(t)).simplify() == 0.5*X(t)**2 assert (X(t)**2 + X(t)**3).simplify() == (X(t) + 1)*X(t)**2 def test_GammaProcess_symbolic(): t, d, x, y, g, l = symbols('t d x y g l', positive=True) X = GammaProcess("X", l, g) raises(NotImplementedError, lambda: X[t]) raises(IndexError, lambda: X(-1)) assert isinstance(X(t), RandomIndexedSymbol) assert X.state_space == Interval(0, oo) assert X.distribution(t) == GammaDistribution(g*t, 1/l) assert X.joint_distribution(5, X(3)) == JointDistributionHandmade(Lambda( (X(5), X(3)), l**(8*g)*exp(-l*X(3))*exp(-l*X(5))*X(3)**(3*g - 1)*X(5)**(5*g - 1)/(gamma(3*g)*gamma(5*g)))) # property of the gamma process at any given timestamp assert E(X(t)) == g*t/l assert variance(X(t)).simplify() == g*t/l**2 # Equivalent to E(2*X(1)) + E(X(1)**2) + E(X(1)**3), where E(X(1)) == g/l assert E(X(t)**2 + X(d)*2 + X(y)**3, Contains(t, Interval.Lopen(0, 1)) & Contains(d, Interval.Lopen(1, 2)) & Contains(y, Interval.Ropen(3, 4))) == \ 2*g/l + (g**2 + g)/l**2 + (g**3 + 3*g**2 + 2*g)/l**3 assert P(X(t) > 3, Contains(t, Interval.Lopen(3, 4))).simplify() == \ 1 - lowergamma(g, 3*l)/gamma(g) # equivalent to P(X(1)>3) #test issue 20078 assert (2*X(t) + 3*X(t)).simplify() == 5*X(t) assert (2*X(t) - 3*X(t)).simplify() == -X(t) assert (2*(0.25*X(t))).simplify() == 0.5*X(t) assert (2*X(t) * 0.25*X(t)).simplify() == 0.5*X(t)**2 assert (X(t)**2 + X(t)**3).simplify() == (X(t) + 1)*X(t)**2 def test_GammaProcess_numeric(): t, d, x, y = symbols('t d x y', positive=True) X = GammaProcess("X", 1, 2) assert X.state_space == Interval(0, oo) assert X.index_set == Interval(0, oo) assert X.lamda == 1 assert X.gamma == 2 raises(ValueError, lambda: GammaProcess("X", -1, 2)) raises(ValueError, lambda: GammaProcess("X", 0, -2)) raises(ValueError, lambda: GammaProcess("X", -1, -2)) # all are independent because of non-overlapping intervals assert P((X(t) > 4) & (X(d) > 3) & (X(x) > 2) & (X(y) > 1), Contains(t, Interval.Lopen(0, 1)) & Contains(d, Interval.Lopen(1, 2)) & Contains(x, Interval.Lopen(2, 3)) & Contains(y, Interval.Lopen(3, 4))).simplify() == \ 120*exp(-10) # Check working with Not and Or assert P(Not((X(t) < 5) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) & Contains(d, Interval.Lopen(7, 8))).simplify() == -4*exp(-3) + 472*exp(-8)/3 + 1 assert P((X(t) > 2) | (X(t) < 4), Contains(t, Interval.Ropen(1, 4))).simplify() == \ -643*exp(-4)/15 + 109*exp(-2)/15 + 1 assert E(X(t)) == 2*t # E(X(t)) == gamma*t/l assert E(X(2) + x*E(X(5))) == 10*x + 4
a34e962dd82d5f1faeaf7adb855e14261afd21dac7dafb34f56dd534b5521996
from sympy import exp, S, sqrt, pi, symbols, Product, gamma, Dummy from sympy.matrices import Determinant, Matrix, Trace, MatrixSymbol, MatrixSet from sympy.stats import density, sample from sympy.stats.matrix_distributions import (MatrixGammaDistribution, MatrixGamma, MatrixPSpace, Wishart, MatrixNormal, MatrixStudentT) from sympy.testing.pytest import raises, skip, ignore_warnings from sympy.external import import_module def test_MatrixPSpace(): M = MatrixGammaDistribution(1, 2, [[2, 1], [1, 2]]) MP = MatrixPSpace('M', M, 2, 2) assert MP.distribution == M raises(ValueError, lambda: MatrixPSpace('M', M, 1.2, 2)) def test_MatrixGamma(): M = MatrixGamma('M', 1, 2, [[1, 0], [0, 1]]) assert M.pspace.distribution.set == MatrixSet(2, 2, S.Reals) assert isinstance(density(M), MatrixGammaDistribution) X = MatrixSymbol('X', 2, 2) num = exp(Trace(Matrix([[-S(1)/2, 0], [0, -S(1)/2]])*X)) assert density(M)(X).doit() == num/(4*pi*sqrt(Determinant(X))) assert density(M)([[2, 1], [1, 2]]).doit() == sqrt(3)*exp(-2)/(12*pi) X = MatrixSymbol('X', 1, 2) Y = MatrixSymbol('Y', 1, 2) assert density(M)([X, Y]).doit() == exp(-X[0, 0]/2 - Y[0, 1]/2)/(4*pi*sqrt( X[0, 0]*Y[0, 1] - X[0, 1]*Y[0, 0])) # symbolic a, b = symbols('a b', positive=True) d = symbols('d', positive=True, integer=True) Y = MatrixSymbol('Y', d, d) Z = MatrixSymbol('Z', 2, 2) SM = MatrixSymbol('SM', d, d) M2 = MatrixGamma('M2', a, b, SM) M3 = MatrixGamma('M3', 2, 3, [[2, 1], [1, 2]]) k = Dummy('k') exprd = pi**(-d*(d - 1)/4)*b**(-a*d)*exp(Trace((-1/b)*SM**(-1)*Y) )*Determinant(SM)**(-a)*Determinant(Y)**(a - d/2 - S(1)/2)/Product( gamma(-k/2 + a + S(1)/2), (k, 1, d)) assert density(M2)(Y).dummy_eq(exprd) raises(NotImplementedError, lambda: density(M3 + M)(Z)) raises(ValueError, lambda: density(M)(1)) raises(ValueError, lambda: MatrixGamma('M', -1, 2, [[1, 0], [0, 1]])) raises(ValueError, lambda: MatrixGamma('M', -1, -2, [[1, 0], [0, 1]])) raises(ValueError, lambda: MatrixGamma('M', -1, 2, [[1, 0], [2, 1]])) raises(ValueError, lambda: MatrixGamma('M', -1, 2, [[1, 0], [0]])) def test_Wishart(): W = Wishart('W', 5, [[1, 0], [0, 1]]) assert W.pspace.distribution.set == MatrixSet(2, 2, S.Reals) X = MatrixSymbol('X', 2, 2) term1 = exp(Trace(Matrix([[-S(1)/2, 0], [0, -S(1)/2]])*X)) assert density(W)(X).doit() == term1 * Determinant(X)/(24*pi) assert density(W)([[2, 1], [1, 2]]).doit() == exp(-2)/(8*pi) n = symbols('n', positive=True) d = symbols('d', positive=True, integer=True) Y = MatrixSymbol('Y', d, d) SM = MatrixSymbol('SM', d, d) W = Wishart('W', n, SM) k = Dummy('k') exprd = 2**(-d*n/2)*pi**(-d*(d - 1)/4)*exp(Trace(-(S(1)/2)*SM**(-1)*Y) )*Determinant(SM)**(-n/2)*Determinant(Y)**( -d/2 + n/2 - S(1)/2)/Product(gamma(-k/2 + n/2 + S(1)/2), (k, 1, d)) assert density(W)(Y).dummy_eq(exprd) raises(ValueError, lambda: density(W)(1)) raises(ValueError, lambda: Wishart('W', -1, [[1, 0], [0, 1]])) raises(ValueError, lambda: Wishart('W', -1, [[1, 0], [2, 1]])) raises(ValueError, lambda: Wishart('W', 2, [[1, 0], [0]])) def test_MatrixNormal(): M = MatrixNormal('M', [[5, 6]], [4], [[2, 1], [1, 2]]) assert M.pspace.distribution.set == MatrixSet(1, 2, S.Reals) X = MatrixSymbol('X', 1, 2) term1 = exp(-Trace(Matrix([[ S(2)/3, -S(1)/3], [-S(1)/3, S(2)/3]])*( Matrix([[-5], [-6]]) + X.T)*Matrix([[1/4]])*(Matrix([[-5, -6]]) + X))/2) assert density(M)(X).doit() == term1/(24*pi) assert density(M)([[7, 8]]).doit() == exp(-S(1)/3)/(24*pi) d, n = symbols('d n', positive=True, integer=True) SM2 = MatrixSymbol('SM2', d, d) SM1 = MatrixSymbol('SM1', n, n) LM = MatrixSymbol('LM', n, d) Y = MatrixSymbol('Y', n, d) M = MatrixNormal('M', LM, SM1, SM2) exprd = 4*(2*pi)**(-d*n/2)*exp(-Trace(SM2**(-1)*(-LM.T + Y.T)*SM1**(-1)*(-LM + Y) )/2)*Determinant(SM1)**(-d)*Determinant(SM2)**(-n) assert density(M)(Y).doit() == exprd raises(ValueError, lambda: density(M)(1)) raises(ValueError, lambda: MatrixNormal('M', [1, 2], [[1, 0], [0, 1]], [[1, 0], [2, 1]])) raises(ValueError, lambda: MatrixNormal('M', [1, 2], [[1, 0], [2, 1]], [[1, 0], [0, 1]])) raises(ValueError, lambda: MatrixNormal('M', [1, 2], [[1, 0], [0, 1]], [[1, 0], [0, 1]])) raises(ValueError, lambda: MatrixNormal('M', [1, 2], [[1, 0], [2]], [[1, 0], [0, 1]])) raises(ValueError, lambda: MatrixNormal('M', [1, 2], [[1, 0], [2, 1]], [[1, 0], [0]])) raises(ValueError, lambda: MatrixNormal('M', [[1, 2]], [[1, 0], [0, 1]], [[1, 0]])) raises(ValueError, lambda: MatrixNormal('M', [[1, 2]], [1], [[1, 0]])) def test_MatrixStudentT(): M = MatrixStudentT('M', 2, [[5, 6]], [[2, 1], [1, 2]], [4]) assert M.pspace.distribution.set == MatrixSet(1, 2, S.Reals) X = MatrixSymbol('X', 1, 2) D = pi ** (-1.0) * Determinant(Matrix([[4]])) ** (-1.0) * Determinant(Matrix([[2, 1], [1, 2]])) \ ** (-0.5) / Determinant(Matrix([[S(1) / 4]]) * (Matrix([[-5, -6]]) + X) * Matrix([[S(2) / 3, -S(1) / 3], [-S(1) / 3, S(2) / 3]]) * ( Matrix([[-5], [-6]]) + X.T) + Matrix([[1]])) ** 2 assert density(M)(X) == D v = symbols('v', positive=True) n, p = 1, 2 Omega = MatrixSymbol('Omega', p, p) Sigma = MatrixSymbol('Sigma', n, n) Location = MatrixSymbol('Location', n, p) Y = MatrixSymbol('Y', n, p) M = MatrixStudentT('M', v, Location, Omega, Sigma) exprd = gamma(v/2 + 1)*Determinant(Matrix([[1]]) + Sigma**(-1)*(-Location + Y)*Omega**(-1)*(-Location.T + Y.T))**(-v/2 - 1) / \ (pi*gamma(v/2)*sqrt(Determinant(Omega))*Determinant(Sigma)) assert density(M)(Y) == exprd raises(ValueError, lambda: density(M)(1)) raises(ValueError, lambda: MatrixStudentT('M', 1, [1, 2], [[1, 0], [0, 1]], [[1, 0], [2, 1]])) raises(ValueError, lambda: MatrixStudentT('M', 1, [1, 2], [[1, 0], [2, 1]], [[1, 0], [0, 1]])) raises(ValueError, lambda: MatrixStudentT('M', 1, [1, 2], [[1, 0], [0, 1]], [[1, 0], [0, 1]])) raises(ValueError, lambda: MatrixStudentT('M', 1, [1, 2], [[1, 0], [2]], [[1, 0], [0, 1]])) raises(ValueError, lambda: MatrixStudentT('M', 1, [1, 2], [[1, 0], [2, 1]], [[1], [2]])) raises(ValueError, lambda: MatrixStudentT('M', 1, [[1, 2]], [[1, 0], [0, 1]], [[1, 0]])) raises(ValueError, lambda: MatrixStudentT('M', 1, [[1, 2]], [1], [[1, 0]])) raises(ValueError, lambda: MatrixStudentT('M', -1, [1, 2], [[1, 0], [0, 1]], [4])) def test_sample_scipy(): distribs_scipy = [ MatrixNormal('M', [[5, 6]], [4], [[2, 1], [1, 2]]), Wishart('W', 5, [[1, 0], [0, 1]]) ] size = 5 scipy = import_module('scipy') if not scipy: skip('Scipy not installed. Abort tests for _sample_scipy.') else: with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed for X in distribs_scipy: samps = next(sample(X, size=size)) for sam in samps: assert Matrix(sam) in X.pspace.distribution.set M = MatrixGamma('M', 1, 2, [[1, 0], [0, 1]]) raises(NotImplementedError, lambda: next(sample(M, size=3))) def test_sample_pymc3(): distribs_pymc3 = [ MatrixNormal('M', [[5, 6], [3, 4]], [[1, 0], [0, 1]], [[2, 1], [1, 2]]), Wishart('W', 7, [[2, 1], [1, 2]]) ] size = 3 pymc3 = import_module('pymc3') if not pymc3: skip('PyMC3 is not installed. Abort tests for _sample_pymc3.') else: with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed for X in distribs_pymc3: samps = next(sample(X, size=size, library='pymc3')) for sam in samps: assert Matrix(sam) in X.pspace.distribution.set M = MatrixGamma('M', 1, 2, [[1, 0], [0, 1]]) raises(NotImplementedError, lambda: next(sample(M, size=3))) def test_sample_seed(): X = MatrixNormal('M', [[5, 6], [3, 4]], [[1, 0], [0, 1]], [[2, 1], [1, 2]]) libraries = ['scipy', 'numpy', 'pymc3'] for lib in libraries: try: imported_lib = import_module(lib) if imported_lib: s0, s1, s2 = [], [], [] s0 = list(sample(X, numsamples=10, library=lib, seed=0)) s1 = list(sample(X, numsamples=10, library=lib, seed=0)) s2 = list(sample(X, numsamples=10, library=lib, seed=1)) assert all((s0[i] == s1[i]).all() for i in range(10)) assert all((s1[i] != s2[i]).all() for i in range(10)) except NotImplementedError: continue
fd7171db4b27a0a857c0ae942fc0fa8a79a965e743039ab1293274aeef3aeaf2
from sympy import (S, Symbol, Sum, I, lambdify, re, im, log, simplify, sqrt, zeta, pi, besseli, Dummy, oo, Piecewise, Rational, beta, floor, FiniteSet) from sympy.core.relational import Eq, Ne from sympy.functions.elementary.exponential import exp from sympy.logic.boolalg import Or from sympy.sets.fancysets import Range from sympy.stats import (P, E, variance, density, characteristic_function, where, moment_generating_function, skewness, cdf, kurtosis, coskewness) from sympy.stats.drv_types import (PoissonDistribution, GeometricDistribution, FlorySchulz, Poisson, Geometric, Hermite, Logarithmic, NegativeBinomial, Skellam, YuleSimon, Zeta, DiscreteRV) from sympy.stats.rv import sample from sympy.testing.pytest import slow, nocache_fail, raises, skip, ignore_warnings from sympy.external import import_module from sympy.stats.symbolic_probability import Expectation x = Symbol('x') def test_PoissonDistribution(): l = 3 p = PoissonDistribution(l) assert abs(p.cdf(10).evalf() - 1) < .001 assert abs(p.cdf(10.4).evalf() - 1) < .001 assert p.expectation(x, x) == l assert p.expectation(x**2, x) - p.expectation(x, x)**2 == l def test_Poisson(): l = 3 x = Poisson('x', l) assert E(x) == l assert variance(x) == l assert density(x) == PoissonDistribution(l) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert isinstance(E(x, evaluate=False), Expectation) assert isinstance(E(2*x, evaluate=False), Expectation) # issue 8248 assert x.pspace.compute_expectation(1) == 1 def test_FlorySchulz(): a = Symbol("a") z = Symbol("z") x = FlorySchulz('x' , a) assert E(x) == (2 - a)/a assert (variance(x) - 2*(1 - a)/a**2).simplify() == S(0) assert density(x)(z) == a**2*z*(1 - a)**(z - 1) @slow def test_GeometricDistribution(): p = S.One / 5 d = GeometricDistribution(p) assert d.expectation(x, x) == 1/p assert d.expectation(x**2, x) - d.expectation(x, x)**2 == (1-p)/p**2 assert abs(d.cdf(20000).evalf() - 1) < .001 assert abs(d.cdf(20000.8).evalf() - 1) < .001 G = Geometric('G', p=S(1)/4) assert cdf(G)(S(7)/2) == P(G <= S(7)/2) X = Geometric('X', Rational(1, 5)) Y = Geometric('Y', Rational(3, 10)) assert coskewness(X, X + Y, X + 2*Y).simplify() == sqrt(230)*Rational(81, 1150) def test_Hermite(): a1 = Symbol("a1", positive=True) a2 = Symbol("a2", negative=True) raises(ValueError, lambda: Hermite("H", a1, a2)) a1 = Symbol("a1", negative=True) a2 = Symbol("a2", positive=True) raises(ValueError, lambda: Hermite("H", a1, a2)) a1 = Symbol("a1", positive=True) x = Symbol("x") H = Hermite("H", a1, a2) assert moment_generating_function(H)(x) == exp(a1*(exp(x) - 1) + a2*(exp(2*x) - 1)) assert characteristic_function(H)(x) == exp(a1*(exp(I*x) - 1) + a2*(exp(2*I*x) - 1)) assert E(H) == a1 + 2*a2 H = Hermite("H", a1=5, a2=4) assert density(H)(2) == 33*exp(-9)/2 assert E(H) == 13 assert variance(H) == 21 assert kurtosis(H) == Rational(464,147) assert skewness(H) == 37*sqrt(21)/441 def test_Logarithmic(): p = S.Half x = Logarithmic('x', p) assert E(x) == -p / ((1 - p) * log(1 - p)) assert variance(x) == -1/log(2)**2 + 2/log(2) assert E(2*x**2 + 3*x + 4) == 4 + 7 / log(2) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert isinstance(E(x, evaluate=False), Expectation) @nocache_fail def test_negative_binomial(): r = 5 p = S.One / 3 x = NegativeBinomial('x', r, p) assert E(x) == p*r / (1-p) # This hangs when run with the cache disabled: assert variance(x) == p*r / (1-p)**2 assert E(x**5 + 2*x + 3) == Rational(9207, 4) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert isinstance(E(x, evaluate=False), Expectation) def test_skellam(): mu1 = Symbol('mu1') mu2 = Symbol('mu2') z = Symbol('z') X = Skellam('x', mu1, mu2) assert density(X)(z) == (mu1/mu2)**(z/2) * \ exp(-mu1 - mu2)*besseli(z, 2*sqrt(mu1*mu2)) assert skewness(X).expand() == mu1/(mu1*sqrt(mu1 + mu2) + mu2 * sqrt(mu1 + mu2)) - mu2/(mu1*sqrt(mu1 + mu2) + mu2*sqrt(mu1 + mu2)) assert variance(X).expand() == mu1 + mu2 assert E(X) == mu1 - mu2 assert characteristic_function(X)(z) == exp( mu1*exp(I*z) - mu1 - mu2 + mu2*exp(-I*z)) assert moment_generating_function(X)(z) == exp( mu1*exp(z) - mu1 - mu2 + mu2*exp(-z)) def test_yule_simon(): from sympy import S rho = S(3) x = YuleSimon('x', rho) assert simplify(E(x)) == rho / (rho - 1) assert simplify(variance(x)) == rho**2 / ((rho - 1)**2 * (rho - 2)) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert isinstance(E(x, evaluate=False), Expectation) # To test the cdf function assert cdf(x)(x) == Piecewise((-beta(floor(x), 4)*floor(x) + 1, x >= 1), (0, True)) def test_zeta(): s = S(5) x = Zeta('x', s) assert E(x) == zeta(s-1) / zeta(s) assert simplify(variance(x)) == ( zeta(s) * zeta(s-2) - zeta(s-1)**2) / zeta(s)**2 @slow def test_sample_discrete(): X = Geometric('X', S.Half) scipy = import_module('scipy') if not scipy: skip('Scipy not installed. Abort tests') with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert next(sample(X)) in X.pspace.domain.set samps = next(sample(X, size=2)) # This takes long time if ran without scipy for samp in samps: assert samp in X.pspace.domain.set libraries = ['scipy', 'numpy', 'pymc3'] for lib in libraries: try: imported_lib = import_module(lib) if imported_lib: s0, s1, s2 = [], [], [] s0 = list(sample(X, numsamples=10, library=lib, seed=0)) s1 = list(sample(X, numsamples=10, library=lib, seed=0)) s2 = list(sample(X, numsamples=10, library=lib, seed=1)) assert s0 == s1 assert s1 != s2 except NotImplementedError: continue def test_discrete_probability(): X = Geometric('X', Rational(1, 5)) Y = Poisson('Y', 4) G = Geometric('e', x) assert P(Eq(X, 3)) == Rational(16, 125) assert P(X < 3) == Rational(9, 25) assert P(X > 3) == Rational(64, 125) assert P(X >= 3) == Rational(16, 25) assert P(X <= 3) == Rational(61, 125) assert P(Ne(X, 3)) == Rational(109, 125) assert P(Eq(Y, 3)) == 32*exp(-4)/3 assert P(Y < 3) == 13*exp(-4) assert P(Y > 3).equals(32*(Rational(-71, 32) + 3*exp(4)/32)*exp(-4)/3) assert P(Y >= 3).equals(32*(Rational(-39, 32) + 3*exp(4)/32)*exp(-4)/3) assert P(Y <= 3) == 71*exp(-4)/3 assert P(Ne(Y, 3)).equals( 13*exp(-4) + 32*(Rational(-71, 32) + 3*exp(4)/32)*exp(-4)/3) assert P(X < S.Infinity) is S.One assert P(X > S.Infinity) is S.Zero assert P(G < 3) == x*(2-x) assert P(Eq(G, 3)) == x*(-x + 1)**2 def test_DiscreteRV(): p = S(1)/2 x = Symbol('x', integer=True, positive=True) pdf = p*(1 - p)**(x - 1) # pdf of Geometric Distribution D = DiscreteRV(x, pdf, set=S.Naturals, check=True) assert E(D) == E(Geometric('G', S(1)/2)) == 2 assert P(D > 3) == S(1)/8 assert D.pspace.domain.set == S.Naturals raises(ValueError, lambda: DiscreteRV(x, x, FiniteSet(*range(4)), check=True)) # purposeful invalid pmf but it should not raise since check=False # see test_drv_types.test_ContinuousRV for explanation X = DiscreteRV(x, 1/x, S.Naturals) assert P(X < 2) == 1 assert E(X) == oo def test_precomputed_characteristic_functions(): import mpmath def test_cf(dist, support_lower_limit, support_upper_limit): pdf = density(dist) t = S('t') x = S('x') # first function is the hardcoded CF of the distribution cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath') # second function is the Fourier transform of the density function f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath') cf2 = lambda t: mpmath.nsum(lambda x: f(x, t), [ support_lower_limit, support_upper_limit], maxdegree=10) # compare the two functions at various points for test_point in [2, 5, 8, 11]: n1 = cf1(test_point) n2 = cf2(test_point) assert abs(re(n1) - re(n2)) < 1e-12 assert abs(im(n1) - im(n2)) < 1e-12 test_cf(Geometric('g', Rational(1, 3)), 1, mpmath.inf) test_cf(Logarithmic('l', Rational(1, 5)), 1, mpmath.inf) test_cf(NegativeBinomial('n', 5, Rational(1, 7)), 0, mpmath.inf) test_cf(Poisson('p', 5), 0, mpmath.inf) test_cf(YuleSimon('y', 5), 1, mpmath.inf) test_cf(Zeta('z', 5), 1, mpmath.inf) def test_moment_generating_functions(): t = S('t') geometric_mgf = moment_generating_function(Geometric('g', S.Half))(t) assert geometric_mgf.diff(t).subs(t, 0) == 2 logarithmic_mgf = moment_generating_function(Logarithmic('l', S.Half))(t) assert logarithmic_mgf.diff(t).subs(t, 0) == 1/log(2) negative_binomial_mgf = moment_generating_function( NegativeBinomial('n', 5, Rational(1, 3)))(t) assert negative_binomial_mgf.diff(t).subs(t, 0) == Rational(5, 2) poisson_mgf = moment_generating_function(Poisson('p', 5))(t) assert poisson_mgf.diff(t).subs(t, 0) == 5 skellam_mgf = moment_generating_function(Skellam('s', 1, 1))(t) assert skellam_mgf.diff(t).subs( t, 2) == (-exp(-2) + exp(2))*exp(-2 + exp(-2) + exp(2)) yule_simon_mgf = moment_generating_function(YuleSimon('y', 3))(t) assert simplify(yule_simon_mgf.diff(t).subs(t, 0)) == Rational(3, 2) zeta_mgf = moment_generating_function(Zeta('z', 5))(t) assert zeta_mgf.diff(t).subs(t, 0) == pi**4/(90*zeta(5)) def test_Or(): X = Geometric('X', S.Half) P(Or(X < 3, X > 4)) == Rational(13, 16) P(Or(X > 2, X > 1)) == P(X > 1) P(Or(X >= 3, X < 3)) == 1 def test_where(): X = Geometric('X', Rational(1, 5)) Y = Poisson('Y', 4) assert where(X**2 > 4).set == Range(3, S.Infinity, 1) assert where(X**2 >= 4).set == Range(2, S.Infinity, 1) assert where(Y**2 < 9).set == Range(0, 3, 1) assert where(Y**2 <= 9).set == Range(0, 4, 1) def test_conditional(): X = Geometric('X', Rational(2, 3)) Y = Poisson('Y', 3) assert P(X > 2, X > 3) == 1 assert P(X > 3, X > 2) == Rational(1, 3) assert P(Y > 2, Y < 2) == 0 assert P(Eq(Y, 3), Y >= 0) == 9*exp(-3)/2 assert P(Eq(Y, 3), Eq(Y, 2)) == 0 assert P(X < 2, Eq(X, 2)) == 0 assert P(X > 2, Eq(X, 3)) == 1 def test_product_spaces(): X1 = Geometric('X1', S.Half) X2 = Geometric('X2', Rational(1, 3)) #assert str(P(X1 + X2 < 3, evaluate=False)) == """Sum(Piecewise((2**(X2 - n - 2)*(2/3)**(X2 - 1)/6, """\ # + """(-X2 + n + 3 >= 1) & (-X2 + n + 3 < oo)), (0, True)), (X2, 1, oo), (n, -oo, -1))""" n = Dummy('n') with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert P(X1 + X2 < 3, evaluate=False).rewrite(Sum).dummy_eq(Sum(Piecewise((2**(-n)/4, n + 2 >= 1), (0, True)), (n, -oo, -1))/3) #assert str(P(X1 + X2 > 3)) == """Sum(Piecewise((2**(X2 - n - 2)*(2/3)**(X2 - 1)/6, """ +\ # """(-X2 + n + 3 >= 1) & (-X2 + n + 3 < oo)), (0, True)), (X2, 1, oo), (n, 1, oo))""" assert P(X1 + X2 > 3).dummy_eq(Sum(Piecewise((2**(X2 - n - 2)*(Rational(2, 3))**(X2 - 1)/6, -X2 + n + 3 >= 1), (0, True)), (X2, 1, oo), (n, 1, oo))) # assert str(P(Eq(X1 + X2, 3))) == """Sum(Piecewise((2**(X2 - 2)*(2/3)**(X2 - 1)/6, """ +\ # """X2 <= 2), (0, True)), (X2, 1, oo))""" assert P(Eq(X1 + X2, 3)) == Rational(1, 12) def test_sample_numpy(): distribs_numpy = [ Geometric('G', 0.5), Poisson('P', 1), Zeta('Z', 2) ] size = 3 numpy = import_module('numpy') if not numpy: skip('Numpy is not installed. Abort tests for _sample_numpy.') else: with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed for X in distribs_numpy: samps = next(sample(X, size=size, library='numpy')) for sam in samps: assert sam in X.pspace.domain.set raises(NotImplementedError, lambda: next(sample(Skellam('S', 1, 1), library='numpy'))) raises(NotImplementedError, lambda: Skellam('S', 1, 1).pspace.distribution.sample(library='tensorflow')) def test_sample_scipy(): p = S(2)/3 x = Symbol('x', integer=True, positive=True) pdf = p*(1 - p)**(x - 1) # pdf of Geometric Distribution distribs_scipy = [ DiscreteRV(x, pdf, set=S.Naturals), Geometric('G', 0.5), Logarithmic('L', 0.5), NegativeBinomial('N', 5, 0.4), Poisson('P', 1), Skellam('S', 1, 1), YuleSimon('Y', 1), Zeta('Z', 2) ] size = 3 numsamples = 5 scipy = import_module('scipy') if not scipy: skip('Scipy is not installed. Abort tests for _sample_scipy.') else: with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed z_sample = list(sample(Zeta("G", 7), size=size, numsamples=numsamples)) assert len(z_sample) == numsamples for X in distribs_scipy: samps = next(sample(X, size=size, library='scipy')) samps2 = next(sample(X, size=(2, 2), library='scipy')) for sam in samps: assert sam in X.pspace.domain.set for i in range(2): for j in range(2): assert samps2[i][j] in X.pspace.domain.set def test_sample_pymc3(): distribs_pymc3 = [ Geometric('G', 0.5), Poisson('P', 1), NegativeBinomial('N', 5, 0.4) ] size = 3 pymc3 = import_module('pymc3') if not pymc3: skip('PyMC3 is not installed. Abort tests for _sample_pymc3.') else: with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed for X in distribs_pymc3: samps = next(sample(X, size=size, library='pymc3')) for sam in samps: assert sam in X.pspace.domain.set raises(NotImplementedError, lambda: next(sample(Skellam('S', 1, 1), library='pymc3')))
174556b023b6954bb375e7abcd90b145ab21b4f27dfa4ff127d1d23c0df03d26
from sympy import E as e from sympy import (Symbol, Abs, exp, expint, S, pi, simplify, Interval, erf, erfc, Ne, EulerGamma, Eq, log, lowergamma, uppergamma, symbols, sqrt, And, gamma, beta, Piecewise, Integral, sin, cos, tan, atan, sinh, cosh, besseli, floor, expand_func, Rational, I, re, Lambda, asin, im, lambdify, hyper, diff, Or, Mul, sign, Dummy, Sum, factorial, binomial, erfi, besselj, besselk) from sympy.external import import_module from sympy.functions.special.error_functions import erfinv from sympy.functions.special.hyper import meijerg from sympy.sets.sets import Intersection, FiniteSet from sympy.stats import (P, E, where, density, variance, covariance, skewness, kurtosis, median, given, pspace, cdf, characteristic_function, moment_generating_function, ContinuousRV, sample, Arcsin, Benini, Beta, BetaNoncentral, BetaPrime, Cauchy, Chi, ChiSquared, ChiNoncentral, Dagum, Erlang, ExGaussian, Exponential, ExponentialPower, FDistribution, FisherZ, Frechet, Gamma, GammaInverse, Gompertz, Gumbel, Kumaraswamy, Laplace, Levy, Logistic, LogCauchy, LogLogistic, LogitNormal, LogNormal, Maxwell, Moyal, Nakagami, Normal, GaussianInverse, Pareto, PowerFunction, QuadraticU, RaisedCosine, Rayleigh, Reciprocal, ShiftedGompertz, StudentT, Trapezoidal, Triangular, Uniform, UniformSum, VonMises, Weibull, coskewness, WignerSemicircle, Wald, correlation, moment, cmoment, smoment, quantile, Lomax, BoundedPareto) from sympy.stats.crv_types import NormalDistribution, ExponentialDistribution, ContinuousDistributionHandmade from sympy.stats.joint_rv_types import MultivariateLaplaceDistribution, MultivariateNormalDistribution from sympy.stats.crv import SingleContinuousPSpace, SingleContinuousDomain from sympy.stats.compound_rv import CompoundPSpace from sympy.stats.symbolic_probability import Probability from sympy.testing.pytest import raises, XFAIL, slow, skip, ignore_warnings from sympy.testing.randtest import verify_numerically as tn oo = S.Infinity x, y, z = map(Symbol, 'xyz') def test_single_normal(): mu = Symbol('mu', real=True) sigma = Symbol('sigma', positive=True) X = Normal('x', 0, 1) Y = X*sigma + mu assert E(Y) == mu assert variance(Y) == sigma**2 pdf = density(Y) x = Symbol('x', real=True) assert (pdf(x) == 2**S.Half*exp(-(x - mu)**2/(2*sigma**2))/(2*pi**S.Half*sigma)) assert P(X**2 < 1) == erf(2**S.Half/2) assert quantile(Y)(x) == Intersection(S.Reals, FiniteSet(sqrt(2)*sigma*(sqrt(2)*mu/(2*sigma) + erfinv(2*x - 1)))) assert E(X, Eq(X, mu)) == mu assert median(X) == FiniteSet(0) # issue 8248 assert X.pspace.compute_expectation(1).doit() == 1 def test_conditional_1d(): X = Normal('x', 0, 1) Y = given(X, X >= 0) z = Symbol('z') assert density(Y)(z) == 2 * density(X)(z) assert Y.pspace.domain.set == Interval(0, oo) assert E(Y) == sqrt(2) / sqrt(pi) assert E(X**2) == E(Y**2) def test_ContinuousDomain(): X = Normal('x', 0, 1) assert where(X**2 <= 1).set == Interval(-1, 1) assert where(X**2 <= 1).symbol == X.symbol where(And(X**2 <= 1, X >= 0)).set == Interval(0, 1) raises(ValueError, lambda: where(sin(X) > 1)) Y = given(X, X >= 0) assert Y.pspace.domain.set == Interval(0, oo) @slow def test_multiple_normal(): X, Y = Normal('x', 0, 1), Normal('y', 0, 1) p = Symbol("p", positive=True) assert E(X + Y) == 0 assert variance(X + Y) == 2 assert variance(X + X) == 4 assert covariance(X, Y) == 0 assert covariance(2*X + Y, -X) == -2*variance(X) assert skewness(X) == 0 assert skewness(X + Y) == 0 assert kurtosis(X) == 3 assert kurtosis(X+Y) == 3 assert correlation(X, Y) == 0 assert correlation(X, X + Y) == correlation(X, X - Y) assert moment(X, 2) == 1 assert cmoment(X, 3) == 0 assert moment(X + Y, 4) == 12 assert cmoment(X, 2) == variance(X) assert smoment(X*X, 2) == 1 assert smoment(X + Y, 3) == skewness(X + Y) assert smoment(X + Y, 4) == kurtosis(X + Y) assert E(X, Eq(X + Y, 0)) == 0 assert variance(X, Eq(X + Y, 0)) == S.Half assert quantile(X)(p) == sqrt(2)*erfinv(2*p - S.One) def test_symbolic(): mu1, mu2 = symbols('mu1 mu2', real=True) s1, s2 = symbols('sigma1 sigma2', positive=True) rate = Symbol('lambda', positive=True) X = Normal('x', mu1, s1) Y = Normal('y', mu2, s2) Z = Exponential('z', rate) a, b, c = symbols('a b c', real=True) assert E(X) == mu1 assert E(X + Y) == mu1 + mu2 assert E(a*X + b) == a*E(X) + b assert variance(X) == s1**2 assert variance(X + a*Y + b) == variance(X) + a**2*variance(Y) assert E(Z) == 1/rate assert E(a*Z + b) == a*E(Z) + b assert E(X + a*Z + b) == mu1 + a/rate + b assert median(X) == FiniteSet(mu1) def test_cdf(): X = Normal('x', 0, 1) d = cdf(X) assert P(X < 1) == d(1).rewrite(erfc) assert d(0) == S.Half d = cdf(X, X > 0) # given X>0 assert d(0) == 0 Y = Exponential('y', 10) d = cdf(Y) assert d(-5) == 0 assert P(Y > 3) == 1 - d(3) raises(ValueError, lambda: cdf(X + Y)) Z = Exponential('z', 1) f = cdf(Z) assert f(z) == Piecewise((1 - exp(-z), z >= 0), (0, True)) def test_characteristic_function(): X = Uniform('x', 0, 1) cf = characteristic_function(X) assert cf(1) == -I*(-1 + exp(I)) Y = Normal('y', 1, 1) cf = characteristic_function(Y) assert cf(0) == 1 assert cf(1) == exp(I - S.Half) Z = Exponential('z', 5) cf = characteristic_function(Z) assert cf(0) == 1 assert cf(1).expand() == Rational(25, 26) + I*Rational(5, 26) X = GaussianInverse('x', 1, 1) cf = characteristic_function(X) assert cf(0) == 1 assert cf(1) == exp(1 - sqrt(1 - 2*I)) X = ExGaussian('x', 0, 1, 1) cf = characteristic_function(X) assert cf(0) == 1 assert cf(1) == (1 + I)*exp(Rational(-1, 2))/2 L = Levy('x', 0, 1) cf = characteristic_function(L) assert cf(0) == 1 assert cf(1) == exp(-sqrt(2)*sqrt(-I)) def test_moment_generating_function(): t = symbols('t', positive=True) # Symbolic tests a, b, c = symbols('a b c') mgf = moment_generating_function(Beta('x', a, b))(t) assert mgf == hyper((a,), (a + b,), t) mgf = moment_generating_function(Chi('x', a))(t) assert mgf == sqrt(2)*t*gamma(a/2 + S.Half)*\ hyper((a/2 + S.Half,), (Rational(3, 2),), t**2/2)/gamma(a/2) +\ hyper((a/2,), (S.Half,), t**2/2) mgf = moment_generating_function(ChiSquared('x', a))(t) assert mgf == (1 - 2*t)**(-a/2) mgf = moment_generating_function(Erlang('x', a, b))(t) assert mgf == (1 - t/b)**(-a) mgf = moment_generating_function(ExGaussian("x", a, b, c))(t) assert mgf == exp(a*t + b**2*t**2/2)/(1 - t/c) mgf = moment_generating_function(Exponential('x', a))(t) assert mgf == a/(a - t) mgf = moment_generating_function(Gamma('x', a, b))(t) assert mgf == (-b*t + 1)**(-a) mgf = moment_generating_function(Gumbel('x', a, b))(t) assert mgf == exp(b*t)*gamma(-a*t + 1) mgf = moment_generating_function(Gompertz('x', a, b))(t) assert mgf == b*exp(b)*expint(t/a, b) mgf = moment_generating_function(Laplace('x', a, b))(t) assert mgf == exp(a*t)/(-b**2*t**2 + 1) mgf = moment_generating_function(Logistic('x', a, b))(t) assert mgf == exp(a*t)*beta(-b*t + 1, b*t + 1) mgf = moment_generating_function(Normal('x', a, b))(t) assert mgf == exp(a*t + b**2*t**2/2) mgf = moment_generating_function(Pareto('x', a, b))(t) assert mgf == b*(-a*t)**b*uppergamma(-b, -a*t) mgf = moment_generating_function(QuadraticU('x', a, b))(t) assert str(mgf) == ("(3*(t*(-4*b + (a + b)**2) + 4)*exp(b*t) - " "3*(t*(a**2 + 2*a*(b - 2) + b**2) + 4)*exp(a*t))/(t**2*(a - b)**3)") mgf = moment_generating_function(RaisedCosine('x', a, b))(t) assert mgf == pi**2*exp(a*t)*sinh(b*t)/(b*t*(b**2*t**2 + pi**2)) mgf = moment_generating_function(Rayleigh('x', a))(t) assert mgf == sqrt(2)*sqrt(pi)*a*t*(erf(sqrt(2)*a*t/2) + 1)\ *exp(a**2*t**2/2)/2 + 1 mgf = moment_generating_function(Triangular('x', a, b, c))(t) assert str(mgf) == ("(-2*(-a + b)*exp(c*t) + 2*(-a + c)*exp(b*t) + " "2*(b - c)*exp(a*t))/(t**2*(-a + b)*(-a + c)*(b - c))") mgf = moment_generating_function(Uniform('x', a, b))(t) assert mgf == (-exp(a*t) + exp(b*t))/(t*(-a + b)) mgf = moment_generating_function(UniformSum('x', a))(t) assert mgf == ((exp(t) - 1)/t)**a mgf = moment_generating_function(WignerSemicircle('x', a))(t) assert mgf == 2*besseli(1, a*t)/(a*t) # Numeric tests mgf = moment_generating_function(Beta('x', 1, 1))(t) assert mgf.diff(t).subs(t, 1) == hyper((2,), (3,), 1)/2 mgf = moment_generating_function(Chi('x', 1))(t) assert mgf.diff(t).subs(t, 1) == sqrt(2)*hyper((1,), (Rational(3, 2),), S.Half )/sqrt(pi) + hyper((Rational(3, 2),), (Rational(3, 2),), S.Half) + 2*sqrt(2)*hyper((2,), (Rational(5, 2),), S.Half)/(3*sqrt(pi)) mgf = moment_generating_function(ChiSquared('x', 1))(t) assert mgf.diff(t).subs(t, 1) == I mgf = moment_generating_function(Erlang('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == 1 mgf = moment_generating_function(ExGaussian("x", 0, 1, 1))(t) assert mgf.diff(t).subs(t, 2) == -exp(2) mgf = moment_generating_function(Exponential('x', 1))(t) assert mgf.diff(t).subs(t, 0) == 1 mgf = moment_generating_function(Gamma('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == 1 mgf = moment_generating_function(Gumbel('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == EulerGamma + 1 mgf = moment_generating_function(Gompertz('x', 1, 1))(t) assert mgf.diff(t).subs(t, 1) == -e*meijerg(((), (1, 1)), ((0, 0, 0), ()), 1) mgf = moment_generating_function(Laplace('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == 1 mgf = moment_generating_function(Logistic('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == beta(1, 1) mgf = moment_generating_function(Normal('x', 0, 1))(t) assert mgf.diff(t).subs(t, 1) == exp(S.Half) mgf = moment_generating_function(Pareto('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == expint(1, 0) mgf = moment_generating_function(QuadraticU('x', 1, 2))(t) assert mgf.diff(t).subs(t, 1) == -12*e - 3*exp(2) mgf = moment_generating_function(RaisedCosine('x', 1, 1))(t) assert mgf.diff(t).subs(t, 1) == -2*e*pi**2*sinh(1)/\ (1 + pi**2)**2 + e*pi**2*cosh(1)/(1 + pi**2) mgf = moment_generating_function(Rayleigh('x', 1))(t) assert mgf.diff(t).subs(t, 0) == sqrt(2)*sqrt(pi)/2 mgf = moment_generating_function(Triangular('x', 1, 3, 2))(t) assert mgf.diff(t).subs(t, 1) == -e + exp(3) mgf = moment_generating_function(Uniform('x', 0, 1))(t) assert mgf.diff(t).subs(t, 1) == 1 mgf = moment_generating_function(UniformSum('x', 1))(t) assert mgf.diff(t).subs(t, 1) == 1 mgf = moment_generating_function(WignerSemicircle('x', 1))(t) assert mgf.diff(t).subs(t, 1) == -2*besseli(1, 1) + besseli(2, 1) +\ besseli(0, 1) def test_sample_continuous(): Z = ContinuousRV(z, exp(-z), set=Interval(0, oo)) assert density(Z)(-1) == 0 scipy = import_module('scipy') if not scipy: skip('Scipy is not installed. Abort tests') with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert next(sample(Z)) in Z.pspace.domain.set sym, val = list(Z.pspace.sample().items())[0] assert sym == Z and val in Interval(0, oo) libraries = ['scipy', 'numpy', 'pymc3'] for lib in libraries: try: imported_lib = import_module(lib) if imported_lib: s0, s1, s2 = [], [], [] s0 = list(sample(Z, numsamples=10, library=lib, seed=0)) s1 = list(sample(Z, numsamples=10, library=lib, seed=0)) s2 = list(sample(Z, numsamples=10, library=lib, seed=1)) assert s0 == s1 assert s1 != s2 except NotImplementedError: continue def test_ContinuousRV(): pdf = sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)) # Normal distribution # X and Y should be equivalent X = ContinuousRV(x, pdf, check=True) Y = Normal('y', 0, 1) assert variance(X) == variance(Y) assert P(X > 0) == P(Y > 0) Z = ContinuousRV(z, exp(-z), set=Interval(0, oo)) assert Z.pspace.domain.set == Interval(0, oo) assert E(Z) == 1 assert P(Z > 5) == exp(-5) raises(ValueError, lambda: ContinuousRV(z, exp(-z), set=Interval(0, 10), check=True)) # the correct pdf for Gamma(k, theta) but the integral in `check` # integrates to something equivalent to 1 and not to 1 exactly _x, k, theta = symbols("x k theta", positive=True) pdf = 1/(gamma(k)*theta**k)*_x**(k-1)*exp(-_x/theta) X = ContinuousRV(_x, pdf, set=Interval(0, oo)) Y = Gamma('y', k, theta) assert (E(X) - E(Y)).simplify() == 0 assert (variance(X) - variance(Y)).simplify() == 0 def test_arcsin(): a = Symbol("a", real=True) b = Symbol("b", real=True) X = Arcsin('x', a, b) assert density(X)(x) == 1/(pi*sqrt((-x + b)*(x - a))) assert cdf(X)(x) == Piecewise((0, a > x), (2*asin(sqrt((-a + x)/(-a + b)))/pi, b >= x), (1, True)) assert pspace(X).domain.set == Interval(a, b) def test_benini(): alpha = Symbol("alpha", positive=True) beta = Symbol("beta", positive=True) sigma = Symbol("sigma", positive=True) X = Benini('x', alpha, beta, sigma) assert density(X)(x) == ((alpha/x + 2*beta*log(x/sigma)/x) *exp(-alpha*log(x/sigma) - beta*log(x/sigma)**2)) assert pspace(X).domain.set == Interval(sigma, oo) raises(NotImplementedError, lambda: moment_generating_function(X)) alpha = Symbol("alpha", nonpositive=True) raises(ValueError, lambda: Benini('x', alpha, beta, sigma)) beta = Symbol("beta", nonpositive=True) raises(ValueError, lambda: Benini('x', alpha, beta, sigma)) alpha = Symbol("alpha", positive=True) raises(ValueError, lambda: Benini('x', alpha, beta, sigma)) beta = Symbol("beta", positive=True) sigma = Symbol("sigma", nonpositive=True) raises(ValueError, lambda: Benini('x', alpha, beta, sigma)) def test_beta(): a, b = symbols('alpha beta', positive=True) B = Beta('x', a, b) assert pspace(B).domain.set == Interval(0, 1) assert characteristic_function(B)(x) == hyper((a,), (a + b,), I*x) assert density(B)(x) == x**(a - 1)*(1 - x)**(b - 1)/beta(a, b) assert simplify(E(B)) == a / (a + b) assert simplify(variance(B)) == a*b / (a**3 + 3*a**2*b + a**2 + 3*a*b**2 + 2*a*b + b**3 + b**2) # Full symbolic solution is too much, test with numeric version a, b = 1, 2 B = Beta('x', a, b) assert expand_func(E(B)) == a / S(a + b) assert expand_func(variance(B)) == (a*b) / S((a + b)**2 * (a + b + 1)) assert median(B) == FiniteSet(1 - 1/sqrt(2)) def test_beta_noncentral(): a, b = symbols('a b', positive=True) c = Symbol('c', nonnegative=True) _k = Dummy('k') X = BetaNoncentral('x', a, b, c) assert pspace(X).domain.set == Interval(0, 1) dens = density(X) z = Symbol('z') res = Sum( z**(_k + a - 1)*(c/2)**_k*(1 - z)**(b - 1)*exp(-c/2)/ (beta(_k + a, b)*factorial(_k)), (_k, 0, oo)) assert dens(z).dummy_eq(res) # BetaCentral should not raise if the assumptions # on the symbols can not be determined a, b, c = symbols('a b c') assert BetaNoncentral('x', a, b, c) a = Symbol('a', positive=False, real=True) raises(ValueError, lambda: BetaNoncentral('x', a, b, c)) a = Symbol('a', positive=True) b = Symbol('b', positive=False, real=True) raises(ValueError, lambda: BetaNoncentral('x', a, b, c)) a = Symbol('a', positive=True) b = Symbol('b', positive=True) c = Symbol('c', nonnegative=False, real=True) raises(ValueError, lambda: BetaNoncentral('x', a, b, c)) def test_betaprime(): alpha = Symbol("alpha", positive=True) betap = Symbol("beta", positive=True) X = BetaPrime('x', alpha, betap) assert density(X)(x) == x**(alpha - 1)*(x + 1)**(-alpha - betap)/beta(alpha, betap) alpha = Symbol("alpha", nonpositive=True) raises(ValueError, lambda: BetaPrime('x', alpha, betap)) alpha = Symbol("alpha", positive=True) betap = Symbol("beta", nonpositive=True) raises(ValueError, lambda: BetaPrime('x', alpha, betap)) X = BetaPrime('x', 1, 1) assert median(X) == FiniteSet(1) def test_BoundedPareto(): L, H = symbols('L, H', negative=True) raises(ValueError, lambda: BoundedPareto('X', 1, L, H)) L, H = symbols('L, H', real=False) raises(ValueError, lambda: BoundedPareto('X', 1, L, H)) L, H = symbols('L, H', positive=True) raises(ValueError, lambda: BoundedPareto('X', -1, L, H)) X = BoundedPareto('X', 2, L, H) assert X.pspace.domain.set == Interval(L, H) assert density(X)(x) == 2*L**2/(x**3*(1 - L**2/H**2)) assert cdf(X)(x) == Piecewise((-H**2*L**2/(x**2*(H**2 - L**2)) \ + H**2/(H**2 - L**2), L <= x), (0, True)) assert E(X).simplify() == 2*H*L/(H + L) X = BoundedPareto('X', 1, 2, 4) assert E(X).simplify() == log(16) assert median(X) == FiniteSet(Rational(8, 3)) assert variance(X).simplify() == 8 - 16*log(2)**2 def test_cauchy(): x0 = Symbol("x0", real=True) gamma = Symbol("gamma", positive=True) p = Symbol("p", positive=True) X = Cauchy('x', x0, gamma) # Tests the characteristic function assert characteristic_function(X)(x) == exp(-gamma*Abs(x) + I*x*x0) raises(NotImplementedError, lambda: moment_generating_function(X)) assert density(X)(x) == 1/(pi*gamma*(1 + (x - x0)**2/gamma**2)) assert diff(cdf(X)(x), x) == density(X)(x) assert quantile(X)(p) == gamma*tan(pi*(p - S.Half)) + x0 x1 = Symbol("x1", real=False) raises(ValueError, lambda: Cauchy('x', x1, gamma)) gamma = Symbol("gamma", nonpositive=True) raises(ValueError, lambda: Cauchy('x', x0, gamma)) assert median(X) == FiniteSet(x0) def test_chi(): from sympy import I k = Symbol("k", integer=True) X = Chi('x', k) assert density(X)(x) == 2**(-k/2 + 1)*x**(k - 1)*exp(-x**2/2)/gamma(k/2) # Tests the characteristic function assert characteristic_function(X)(x) == sqrt(2)*I*x*gamma(k/2 + S(1)/2)*hyper((k/2 + S(1)/2,), (S(3)/2,), -x**2/2)/gamma(k/2) + hyper((k/2,), (S(1)/2,), -x**2/2) # Tests the moment generating function assert moment_generating_function(X)(x) == sqrt(2)*x*gamma(k/2 + S(1)/2)*hyper((k/2 + S(1)/2,), (S(3)/2,), x**2/2)/gamma(k/2) + hyper((k/2,), (S(1)/2,), x**2/2) k = Symbol("k", integer=True, positive=False) raises(ValueError, lambda: Chi('x', k)) k = Symbol("k", integer=False, positive=True) raises(ValueError, lambda: Chi('x', k)) def test_chi_noncentral(): k = Symbol("k", integer=True) l = Symbol("l") X = ChiNoncentral("x", k, l) assert density(X)(x) == (x**k*l*(x*l)**(-k/2)* exp(-x**2/2 - l**2/2)*besseli(k/2 - 1, x*l)) k = Symbol("k", integer=True, positive=False) raises(ValueError, lambda: ChiNoncentral('x', k, l)) k = Symbol("k", integer=True, positive=True) l = Symbol("l", nonpositive=True) raises(ValueError, lambda: ChiNoncentral('x', k, l)) k = Symbol("k", integer=False) l = Symbol("l", positive=True) raises(ValueError, lambda: ChiNoncentral('x', k, l)) def test_chi_squared(): k = Symbol("k", integer=True) X = ChiSquared('x', k) # Tests the characteristic function assert characteristic_function(X)(x) == ((-2*I*x + 1)**(-k/2)) assert density(X)(x) == 2**(-k/2)*x**(k/2 - 1)*exp(-x/2)/gamma(k/2) assert cdf(X)(x) == Piecewise((lowergamma(k/2, x/2)/gamma(k/2), x >= 0), (0, True)) assert E(X) == k assert variance(X) == 2*k X = ChiSquared('x', 15) assert cdf(X)(3) == -14873*sqrt(6)*exp(Rational(-3, 2))/(5005*sqrt(pi)) + erf(sqrt(6)/2) k = Symbol("k", integer=True, positive=False) raises(ValueError, lambda: ChiSquared('x', k)) k = Symbol("k", integer=False, positive=True) raises(ValueError, lambda: ChiSquared('x', k)) def test_dagum(): p = Symbol("p", positive=True) b = Symbol("b", positive=True) a = Symbol("a", positive=True) X = Dagum('x', p, a, b) assert density(X)(x) == a*p*(x/b)**(a*p)*((x/b)**a + 1)**(-p - 1)/x assert cdf(X)(x) == Piecewise(((1 + (x/b)**(-a))**(-p), x >= 0), (0, True)) p = Symbol("p", nonpositive=True) raises(ValueError, lambda: Dagum('x', p, a, b)) p = Symbol("p", positive=True) b = Symbol("b", nonpositive=True) raises(ValueError, lambda: Dagum('x', p, a, b)) b = Symbol("b", positive=True) a = Symbol("a", nonpositive=True) raises(ValueError, lambda: Dagum('x', p, a, b)) X = Dagum('x', 1 , 1, 1) assert median(X) == FiniteSet(1) def test_erlang(): k = Symbol("k", integer=True, positive=True) l = Symbol("l", positive=True) X = Erlang("x", k, l) assert density(X)(x) == x**(k - 1)*l**k*exp(-x*l)/gamma(k) assert cdf(X)(x) == Piecewise((lowergamma(k, l*x)/gamma(k), x > 0), (0, True)) def test_exgaussian(): m, z = symbols("m, z") s, l = symbols("s, l", positive=True) X = ExGaussian("x", m, s, l) assert density(X)(z) == l*exp(l*(l*s**2 + 2*m - 2*z)/2) *\ erfc(sqrt(2)*(l*s**2 + m - z)/(2*s))/2 # Note: actual_output simplifies to expected_output. # Ideally cdf(X)(z) would return expected_output # expected_output = (erf(sqrt(2)*(l*s**2 + m - z)/(2*s)) - 1)*exp(l*(l*s**2 + 2*m - 2*z)/2)/2 - erf(sqrt(2)*(m - z)/(2*s))/2 + S.Half u = l*(z - m) v = l*s GaussianCDF1 = cdf(Normal('x', 0, v))(u) GaussianCDF2 = cdf(Normal('x', v**2, v))(u) actual_output = GaussianCDF1 - exp(-u + (v**2/2) + log(GaussianCDF2)) assert cdf(X)(z) == actual_output # assert simplify(actual_output) == expected_output assert variance(X).expand() == s**2 + l**(-2) assert skewness(X).expand() == 2/(l**3*s**2*sqrt(s**2 + l**(-2)) + l * sqrt(s**2 + l**(-2))) def test_exponential(): rate = Symbol('lambda', positive=True) X = Exponential('x', rate) p = Symbol("p", positive=True, real=True, finite=True) assert E(X) == 1/rate assert variance(X) == 1/rate**2 assert skewness(X) == 2 assert skewness(X) == smoment(X, 3) assert kurtosis(X) == 9 assert kurtosis(X) == smoment(X, 4) assert smoment(2*X, 4) == smoment(X, 4) assert moment(X, 3) == 3*2*1/rate**3 assert P(X > 0) is S.One assert P(X > 1) == exp(-rate) assert P(X > 10) == exp(-10*rate) assert quantile(X)(p) == -log(1-p)/rate assert where(X <= 1).set == Interval(0, 1) Y = Exponential('y', 1) assert median(Y) == FiniteSet(log(2)) #Test issue 9970 z = Dummy('z') assert P(X > z) == exp(-z*rate) assert P(X < z) == 0 #Test issue 10076 (Distribution with interval(0,oo)) x = Symbol('x') _z = Dummy('_z') b = SingleContinuousPSpace(x, ExponentialDistribution(2)) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed expected1 = Integral(2*exp(-2*_z), (_z, 3, oo)) assert b.probability(x > 3, evaluate=False).rewrite(Integral).dummy_eq(expected1) expected2 = Integral(2*exp(-2*_z), (_z, 0, 4)) assert b.probability(x < 4, evaluate=False).rewrite(Integral).dummy_eq(expected2) Y = Exponential('y', 2*rate) assert coskewness(X, X, X) == skewness(X) assert coskewness(X, Y + rate*X, Y + 2*rate*X) == \ 4/(sqrt(1 + 1/(4*rate**2))*sqrt(4 + 1/(4*rate**2))) assert coskewness(X + 2*Y, Y + X, Y + 2*X, X > 3) == \ sqrt(170)*Rational(9, 85) def test_exponential_power(): mu = Symbol('mu') z = Symbol('z') alpha = Symbol('alpha', positive=True) beta = Symbol('beta', positive=True) X = ExponentialPower('x', mu, alpha, beta) assert density(X)(z) == beta*exp(-(Abs(mu - z)/alpha) ** beta)/(2*alpha*gamma(1/beta)) assert cdf(X)(z) == S.Half + lowergamma(1/beta, (Abs(mu - z)/alpha)**beta)*sign(-mu + z)/\ (2*gamma(1/beta)) def test_f_distribution(): d1 = Symbol("d1", positive=True) d2 = Symbol("d2", positive=True) X = FDistribution("x", d1, d2) assert density(X)(x) == (d2**(d2/2)*sqrt((d1*x)**d1*(d1*x + d2)**(-d1 - d2)) /(x*beta(d1/2, d2/2))) raises(NotImplementedError, lambda: moment_generating_function(X)) d1 = Symbol("d1", nonpositive=True) raises(ValueError, lambda: FDistribution('x', d1, d1)) d1 = Symbol("d1", positive=True, integer=False) raises(ValueError, lambda: FDistribution('x', d1, d1)) d1 = Symbol("d1", positive=True) d2 = Symbol("d2", nonpositive=True) raises(ValueError, lambda: FDistribution('x', d1, d2)) d2 = Symbol("d2", positive=True, integer=False) raises(ValueError, lambda: FDistribution('x', d1, d2)) def test_fisher_z(): d1 = Symbol("d1", positive=True) d2 = Symbol("d2", positive=True) X = FisherZ("x", d1, d2) assert density(X)(x) == (2*d1**(d1/2)*d2**(d2/2)*(d1*exp(2*x) + d2) **(-d1/2 - d2/2)*exp(d1*x)/beta(d1/2, d2/2)) def test_frechet(): a = Symbol("a", positive=True) s = Symbol("s", positive=True) m = Symbol("m", real=True) X = Frechet("x", a, s=s, m=m) assert density(X)(x) == a*((x - m)/s)**(-a - 1)*exp(-((x - m)/s)**(-a))/s assert cdf(X)(x) == Piecewise((exp(-((-m + x)/s)**(-a)), m <= x), (0, True)) @slow def test_gamma(): k = Symbol("k", positive=True) theta = Symbol("theta", positive=True) X = Gamma('x', k, theta) # Tests characteristic function assert characteristic_function(X)(x) == ((-I*theta*x + 1)**(-k)) assert density(X)(x) == x**(k - 1)*theta**(-k)*exp(-x/theta)/gamma(k) assert cdf(X, meijerg=True)(z) == Piecewise( (-k*lowergamma(k, 0)/gamma(k + 1) + k*lowergamma(k, z/theta)/gamma(k + 1), z >= 0), (0, True)) # assert simplify(variance(X)) == k*theta**2 # handled numerically below assert E(X) == moment(X, 1) k, theta = symbols('k theta', positive=True) X = Gamma('x', k, theta) assert E(X) == k*theta assert variance(X) == k*theta**2 assert skewness(X).expand() == 2/sqrt(k) assert kurtosis(X).expand() == 3 + 6/k Y = Gamma('y', 2*k, 3*theta) assert coskewness(X, theta*X + Y, k*X + Y).simplify() == \ 2*531441**(-k)*sqrt(k)*theta*(3*3**(12*k) - 2*531441**k) \ /(sqrt(k**2 + 18)*sqrt(theta**2 + 18)) def test_gamma_inverse(): a = Symbol("a", positive=True) b = Symbol("b", positive=True) X = GammaInverse("x", a, b) assert density(X)(x) == x**(-a - 1)*b**a*exp(-b/x)/gamma(a) assert cdf(X)(x) == Piecewise((uppergamma(a, b/x)/gamma(a), x > 0), (0, True)) assert characteristic_function(X)(x) == 2 * (-I*b*x)**(a/2) \ * besselk(a, 2*sqrt(b)*sqrt(-I*x))/gamma(a) raises(NotImplementedError, lambda: moment_generating_function(X)) def test_sampling_gamma_inverse(): scipy = import_module('scipy') if not scipy: skip('Scipy not installed. Abort tests for sampling of gamma inverse.') X = GammaInverse("x", 1, 1) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert next(sample(X)) in X.pspace.domain.set def test_gompertz(): b = Symbol("b", positive=True) eta = Symbol("eta", positive=True) X = Gompertz("x", b, eta) assert density(X)(x) == b*eta*exp(eta)*exp(b*x)*exp(-eta*exp(b*x)) assert cdf(X)(x) == 1 - exp(eta)*exp(-eta*exp(b*x)) assert diff(cdf(X)(x), x) == density(X)(x) def test_gumbel(): beta = Symbol("beta", positive=True) mu = Symbol("mu") x = Symbol("x") y = Symbol("y") X = Gumbel("x", beta, mu) Y = Gumbel("y", beta, mu, minimum=True) assert density(X)(x).expand() == \ exp(mu/beta)*exp(-x/beta)*exp(-exp(mu/beta)*exp(-x/beta))/beta assert density(Y)(y).expand() == \ exp(-mu/beta)*exp(y/beta)*exp(-exp(-mu/beta)*exp(y/beta))/beta assert cdf(X)(x).expand() == \ exp(-exp(mu/beta)*exp(-x/beta)) assert characteristic_function(X)(x) == exp(I*mu*x)*gamma(-I*beta*x + 1) def test_kumaraswamy(): a = Symbol("a", positive=True) b = Symbol("b", positive=True) X = Kumaraswamy("x", a, b) assert density(X)(x) == x**(a - 1)*a*b*(-x**a + 1)**(b - 1) assert cdf(X)(x) == Piecewise((0, x < 0), (-(-x**a + 1)**b + 1, x <= 1), (1, True)) def test_laplace(): mu = Symbol("mu") b = Symbol("b", positive=True) X = Laplace('x', mu, b) #Tests characteristic_function assert characteristic_function(X)(x) == (exp(I*mu*x)/(b**2*x**2 + 1)) assert density(X)(x) == exp(-Abs(x - mu)/b)/(2*b) assert cdf(X)(x) == Piecewise((exp((-mu + x)/b)/2, mu > x), (-exp((mu - x)/b)/2 + 1, True)) X = Laplace('x', [1, 2], [[1, 0], [0, 1]]) assert isinstance(pspace(X).distribution, MultivariateLaplaceDistribution) def test_levy(): mu = Symbol("mu", real=True) c = Symbol("c", positive=True) X = Levy('x', mu, c) assert X.pspace.domain.set == Interval(mu, oo) assert density(X)(x) == sqrt(c/(2*pi))*exp(-c/(2*(x - mu)))/((x - mu)**(S.One + S.Half)) assert cdf(X)(x) == erfc(sqrt(c/(2*(x - mu)))) raises(NotImplementedError, lambda: moment_generating_function(X)) mu = Symbol("mu", real=False) raises(ValueError, lambda: Levy('x',mu,c)) c = Symbol("c", nonpositive=True) raises(ValueError, lambda: Levy('x',mu,c)) mu = Symbol("mu", real=True) raises(ValueError, lambda: Levy('x',mu,c)) def test_logcauchy(): mu = Symbol("mu" , positive=True) sigma = Symbol("sigma" , positive=True) X = LogCauchy("x", mu, sigma) assert density(X)(x) == sigma/(x*pi*(sigma**2 + (-mu + log(x))**2)) assert cdf(X)(x) == atan((log(x) - mu)/sigma)/pi + S.Half def test_logistic(): mu = Symbol("mu", real=True) s = Symbol("s", positive=True) p = Symbol("p", positive=True) X = Logistic('x', mu, s) #Tests characteristics_function assert characteristic_function(X)(x) == \ (Piecewise((pi*s*x*exp(I*mu*x)/sinh(pi*s*x), Ne(x, 0)), (1, True))) assert density(X)(x) == exp((-x + mu)/s)/(s*(exp((-x + mu)/s) + 1)**2) assert cdf(X)(x) == 1/(exp((mu - x)/s) + 1) assert quantile(X)(p) == mu - s*log(-S.One + 1/p) def test_loglogistic(): a, b = symbols('a b') assert LogLogistic('x', a, b) a = Symbol('a', negative=True) b = Symbol('b', positive=True) raises(ValueError, lambda: LogLogistic('x', a, b)) a = Symbol('a', positive=True) b = Symbol('b', negative=True) raises(ValueError, lambda: LogLogistic('x', a, b)) a, b, z, p = symbols('a b z p', positive=True) X = LogLogistic('x', a, b) assert density(X)(z) == b*(z/a)**(b - 1)/(a*((z/a)**b + 1)**2) assert cdf(X)(z) == 1/(1 + (z/a)**(-b)) assert quantile(X)(p) == a*(p/(1 - p))**(1/b) # Expectation assert E(X) == Piecewise((S.NaN, b <= 1), (pi*a/(b*sin(pi/b)), True)) b = symbols('b', prime=True) # b > 1 X = LogLogistic('x', a, b) assert E(X) == pi*a/(b*sin(pi/b)) X = LogLogistic('x', 1, 2) assert median(X) == FiniteSet(1) def test_logitnormal(): mu = Symbol('mu', real=True) s = Symbol('s', positive=True) X = LogitNormal('x', mu, s) x = Symbol('x') assert density(X)(x) == sqrt(2)*exp(-(-mu + log(x/(1 - x)))**2/(2*s**2))/(2*sqrt(pi)*s*x*(1 - x)) assert cdf(X)(x) == erf(sqrt(2)*(-mu + log(x/(1 - x)))/(2*s))/2 + S(1)/2 def test_lognormal(): mean = Symbol('mu', real=True) std = Symbol('sigma', positive=True) X = LogNormal('x', mean, std) # The sympy integrator can't do this too well #assert E(X) == exp(mean+std**2/2) #assert variance(X) == (exp(std**2)-1) * exp(2*mean + std**2) # Right now, only density function and sampling works scipy = import_module('scipy') if not scipy: skip('Scipy is not installed. Abort tests') with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed for i in range(3): X = LogNormal('x', i, 1) assert next(sample(X)) in X.pspace.domain.set size = 5 with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed samps = next(sample(X, size=size)) for samp in samps: assert samp in X.pspace.domain.set # The sympy integrator can't do this too well #assert E(X) == raises(NotImplementedError, lambda: moment_generating_function(X)) mu = Symbol("mu", real=True) sigma = Symbol("sigma", positive=True) X = LogNormal('x', mu, sigma) assert density(X)(x) == (sqrt(2)*exp(-(-mu + log(x))**2 /(2*sigma**2))/(2*x*sqrt(pi)*sigma)) # Tests cdf assert cdf(X)(x) == Piecewise( (erf(sqrt(2)*(-mu + log(x))/(2*sigma))/2 + S(1)/2, x > 0), (0, True)) X = LogNormal('x', 0, 1) # Mean 0, standard deviation 1 assert density(X)(x) == sqrt(2)*exp(-log(x)**2/2)/(2*x*sqrt(pi)) def test_Lomax(): a, l = symbols('a, l', negative=True) raises(ValueError, lambda: Lomax('X', a , l)) a, l = symbols('a, l', real=False) raises(ValueError, lambda: Lomax('X', a , l)) a, l = symbols('a, l', positive=True) X = Lomax('X', a, l) assert X.pspace.domain.set == Interval(0, oo) assert density(X)(x) == a*(1 + x/l)**(-a - 1)/l assert cdf(X)(x) == Piecewise((1 - (1 + x/l)**(-a), x >= 0), (0, True)) a = 3 X = Lomax('X', a, l) assert E(X) == l/2 assert median(X) == FiniteSet(l*(-1 + 2**Rational(1, 3))) assert variance(X) == 3*l**2/4 def test_maxwell(): a = Symbol("a", positive=True) X = Maxwell('x', a) assert density(X)(x) == (sqrt(2)*x**2*exp(-x**2/(2*a**2))/ (sqrt(pi)*a**3)) assert E(X) == 2*sqrt(2)*a/sqrt(pi) assert variance(X) == -8*a**2/pi + 3*a**2 assert cdf(X)(x) == erf(sqrt(2)*x/(2*a)) - sqrt(2)*x*exp(-x**2/(2*a**2))/(sqrt(pi)*a) assert diff(cdf(X)(x), x) == density(X)(x) def test_Moyal(): mu = Symbol('mu',real=False) sigma = Symbol('sigma', real=True, positive=True) raises(ValueError, lambda: Moyal('M',mu, sigma)) mu = Symbol('mu', real=True) sigma = Symbol('sigma', real=True, negative=True) raises(ValueError, lambda: Moyal('M',mu, sigma)) sigma = Symbol('sigma', real=True, positive=True) M = Moyal('M', mu, sigma) assert density(M)(z) == sqrt(2)*exp(-exp((mu - z)/sigma)/2 - (-mu + z)/(2*sigma))/(2*sqrt(pi)*sigma) assert cdf(M)(z).simplify() == 1 - erf(sqrt(2)*exp((mu - z)/(2*sigma))/2) assert characteristic_function(M)(z) == 2**(-I*sigma*z)*exp(I*mu*z) \ *gamma(-I*sigma*z + Rational(1, 2))/sqrt(pi) assert E(M) == mu + EulerGamma*sigma + sigma*log(2) assert moment_generating_function(M)(z) == 2**(-sigma*z)*exp(mu*z) \ *gamma(-sigma*z + Rational(1, 2))/sqrt(pi) def test_nakagami(): mu = Symbol("mu", positive=True) omega = Symbol("omega", positive=True) X = Nakagami('x', mu, omega) assert density(X)(x) == (2*x**(2*mu - 1)*mu**mu*omega**(-mu) *exp(-x**2*mu/omega)/gamma(mu)) assert simplify(E(X)) == (sqrt(mu)*sqrt(omega) *gamma(mu + S.Half)/gamma(mu + 1)) assert simplify(variance(X)) == ( omega - omega*gamma(mu + S.Half)**2/(gamma(mu)*gamma(mu + 1))) assert cdf(X)(x) == Piecewise( (lowergamma(mu, mu*x**2/omega)/gamma(mu), x > 0), (0, True)) X = Nakagami('x',1 ,1) assert median(X) == FiniteSet(sqrt(log(2))) def test_gaussian_inverse(): # test for symbolic parameters a, b = symbols('a b') assert GaussianInverse('x', a, b) # Inverse Gaussian distribution is also known as Wald distribution # `GaussianInverse` can also be referred by the name `Wald` a, b, z = symbols('a b z') X = Wald('x', a, b) assert density(X)(z) == sqrt(2)*sqrt(b/z**3)*exp(-b*(-a + z)**2/(2*a**2*z))/(2*sqrt(pi)) a, b = symbols('a b', positive=True) z = Symbol('z', positive=True) X = GaussianInverse('x', a, b) assert density(X)(z) == sqrt(2)*sqrt(b)*sqrt(z**(-3))*exp(-b*(-a + z)**2/(2*a**2*z))/(2*sqrt(pi)) assert E(X) == a assert variance(X).expand() == a**3/b assert cdf(X)(z) == (S.Half - erf(sqrt(2)*sqrt(b)*(1 + z/a)/(2*sqrt(z)))/2)*exp(2*b/a) +\ erf(sqrt(2)*sqrt(b)*(-1 + z/a)/(2*sqrt(z)))/2 + S.Half a = symbols('a', nonpositive=True) raises(ValueError, lambda: GaussianInverse('x', a, b)) a = symbols('a', positive=True) b = symbols('b', nonpositive=True) raises(ValueError, lambda: GaussianInverse('x', a, b)) def test_sampling_gaussian_inverse(): scipy = import_module('scipy') if not scipy: skip('Scipy not installed. Abort tests for sampling of Gaussian inverse.') X = GaussianInverse("x", 1, 1) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert next(sample(X, library='scipy')) in X.pspace.domain.set def test_pareto(): xm, beta = symbols('xm beta', positive=True) alpha = beta + 5 X = Pareto('x', xm, alpha) dens = density(X) #Tests cdf function assert cdf(X)(x) == \ Piecewise((-x**(-beta - 5)*xm**(beta + 5) + 1, x >= xm), (0, True)) #Tests characteristic_function assert characteristic_function(X)(x) == \ ((-I*x*xm)**(beta + 5)*(beta + 5)*uppergamma(-beta - 5, -I*x*xm)) assert dens(x) == x**(-(alpha + 1))*xm**(alpha)*(alpha) assert simplify(E(X)) == alpha*xm/(alpha-1) # computation of taylor series for MGF still too slow #assert simplify(variance(X)) == xm**2*alpha / ((alpha-1)**2*(alpha-2)) def test_pareto_numeric(): xm, beta = 3, 2 alpha = beta + 5 X = Pareto('x', xm, alpha) assert E(X) == alpha*xm/S(alpha - 1) assert variance(X) == xm**2*alpha / S((alpha - 1)**2*(alpha - 2)) assert median(X) == FiniteSet(3*2**Rational(1, 7)) # Skewness tests too slow. Try shortcutting function? def test_PowerFunction(): alpha = Symbol("alpha", nonpositive=True) a, b = symbols('a, b', real=True) raises (ValueError, lambda: PowerFunction('x', alpha, a, b)) a, b = symbols('a, b', real=False) raises (ValueError, lambda: PowerFunction('x', alpha, a, b)) alpha = Symbol("alpha", positive=True) a, b = symbols('a, b', real=True) raises (ValueError, lambda: PowerFunction('x', alpha, 5, 2)) X = PowerFunction('X', 2, a, b) assert density(X)(z) == (-2*a + 2*z)/(-a + b)**2 assert cdf(X)(z) == Piecewise((a**2/(a**2 - 2*a*b + b**2) - 2*a*z/(a**2 - 2*a*b + b**2) + z**2/(a**2 - 2*a*b + b**2), a <= z), (0, True)) X = PowerFunction('X', 2, 0, 1) assert density(X)(z) == 2*z assert cdf(X)(z) == Piecewise((z**2, z >= 0), (0,True)) assert E(X) == Rational(2,3) assert P(X < 0) == 0 assert P(X < 1) == 1 assert median(X) == FiniteSet(1/sqrt(2)) def test_raised_cosine(): mu = Symbol("mu", real=True) s = Symbol("s", positive=True) X = RaisedCosine("x", mu, s) assert pspace(X).domain.set == Interval(mu - s, mu + s) #Tests characteristics_function assert characteristic_function(X)(x) == \ Piecewise((exp(-I*pi*mu/s)/2, Eq(x, -pi/s)), (exp(I*pi*mu/s)/2, Eq(x, pi/s)), (pi**2*exp(I*mu*x)*sin(s*x)/(s*x*(-s**2*x**2 + pi**2)), True)) assert density(X)(x) == (Piecewise(((cos(pi*(x - mu)/s) + 1)/(2*s), And(x <= mu + s, mu - s <= x)), (0, True))) def test_rayleigh(): sigma = Symbol("sigma", positive=True) X = Rayleigh('x', sigma) #Tests characteristic_function assert characteristic_function(X)(x) == (-sqrt(2)*sqrt(pi)*sigma*x*(erfi(sqrt(2)*sigma*x/2) - I)*exp(-sigma**2*x**2/2)/2 + 1) assert density(X)(x) == x*exp(-x**2/(2*sigma**2))/sigma**2 assert E(X) == sqrt(2)*sqrt(pi)*sigma/2 assert variance(X) == -pi*sigma**2/2 + 2*sigma**2 assert cdf(X)(x) == 1 - exp(-x**2/(2*sigma**2)) assert diff(cdf(X)(x), x) == density(X)(x) def test_reciprocal(): a = Symbol("a", real=True) b = Symbol("b", real=True) X = Reciprocal('x', a, b) assert density(X)(x) == 1/(x*(-log(a) + log(b))) assert cdf(X)(x) == Piecewise((log(a)/(log(a) - log(b)) - log(x)/(log(a) - log(b)), a <= x), (0, True)) X = Reciprocal('x', 5, 30) assert E(X) == 25/(log(30) - log(5)) assert P(X < 4) == S.Zero assert P(X < 20) == log(20) / (log(30) - log(5)) - log(5) / (log(30) - log(5)) assert cdf(X)(10) == log(10) / (log(30) - log(5)) - log(5) / (log(30) - log(5)) a = symbols('a', nonpositive=True) raises(ValueError, lambda: Reciprocal('x', a, b)) a = symbols('a', positive=True) b = symbols('b', positive=True) raises(ValueError, lambda: Reciprocal('x', a + b, a)) def test_shiftedgompertz(): b = Symbol("b", positive=True) eta = Symbol("eta", positive=True) X = ShiftedGompertz("x", b, eta) assert density(X)(x) == b*(eta*(1 - exp(-b*x)) + 1)*exp(-b*x)*exp(-eta*exp(-b*x)) def test_studentt(): nu = Symbol("nu", positive=True) X = StudentT('x', nu) assert density(X)(x) == (1 + x**2/nu)**(-nu/2 - S.Half)/(sqrt(nu)*beta(S.Half, nu/2)) assert cdf(X)(x) == S.Half + x*gamma(nu/2 + S.Half)*hyper((S.Half, nu/2 + S.Half), (Rational(3, 2),), -x**2/nu)/(sqrt(pi)*sqrt(nu)*gamma(nu/2)) raises(NotImplementedError, lambda: moment_generating_function(X)) def test_trapezoidal(): a = Symbol("a", real=True) b = Symbol("b", real=True) c = Symbol("c", real=True) d = Symbol("d", real=True) X = Trapezoidal('x', a, b, c, d) assert density(X)(x) == Piecewise(((-2*a + 2*x)/((-a + b)*(-a - b + c + d)), (a <= x) & (x < b)), (2/(-a - b + c + d), (b <= x) & (x < c)), ((2*d - 2*x)/((-c + d)*(-a - b + c + d)), (c <= x) & (x <= d)), (0, True)) X = Trapezoidal('x', 0, 1, 2, 3) assert E(X) == Rational(3, 2) assert variance(X) == Rational(5, 12) assert P(X < 2) == Rational(3, 4) assert median(X) == FiniteSet(Rational(3, 2)) def test_triangular(): a = Symbol("a") b = Symbol("b") c = Symbol("c") X = Triangular('x', a, b, c) assert pspace(X).domain.set == Interval(a, b) assert str(density(X)(x)) == ("Piecewise(((-2*a + 2*x)/((-a + b)*(-a + c)), (a <= x) & (c > x)), " "(2/(-a + b), Eq(c, x)), ((2*b - 2*x)/((-a + b)*(b - c)), (b >= x) & (c < x)), (0, True))") #Tests moment_generating_function assert moment_generating_function(X)(x).expand() == \ ((-2*(-a + b)*exp(c*x) + 2*(-a + c)*exp(b*x) + 2*(b - c)*exp(a*x))/(x**2*(-a + b)*(-a + c)*(b - c))).expand() assert str(characteristic_function(X)(x)) == \ '(2*(-a + b)*exp(I*c*x) - 2*(-a + c)*exp(I*b*x) - 2*(b - c)*exp(I*a*x))/(x**2*(-a + b)*(-a + c)*(b - c))' def test_quadratic_u(): a = Symbol("a", real=True) b = Symbol("b", real=True) X = QuadraticU("x", a, b) Y = QuadraticU("x", 1, 2) assert pspace(X).domain.set == Interval(a, b) # Tests _moment_generating_function assert moment_generating_function(Y)(1) == -15*exp(2) + 27*exp(1) assert moment_generating_function(Y)(2) == -9*exp(4)/2 + 21*exp(2)/2 assert characteristic_function(Y)(1) == 3*I*(-1 + 4*I)*exp(I*exp(2*I)) assert density(X)(x) == (Piecewise((12*(x - a/2 - b/2)**2/(-a + b)**3, And(x <= b, a <= x)), (0, True))) def test_uniform(): l = Symbol('l', real=True) w = Symbol('w', positive=True) X = Uniform('x', l, l + w) assert E(X) == l + w/2 assert variance(X).expand() == w**2/12 # With numbers all is well X = Uniform('x', 3, 5) assert P(X < 3) == 0 and P(X > 5) == 0 assert P(X < 4) == P(X > 4) == S.Half assert median(X) == FiniteSet(4) z = Symbol('z') p = density(X)(z) assert p.subs(z, 3.7) == S.Half assert p.subs(z, -1) == 0 assert p.subs(z, 6) == 0 c = cdf(X) assert c(2) == 0 and c(3) == 0 assert c(Rational(7, 2)) == Rational(1, 4) assert c(5) == 1 and c(6) == 1 @XFAIL def test_uniform_P(): """ This stopped working because SingleContinuousPSpace.compute_density no longer calls integrate on a DiracDelta but rather just solves directly. integrate used to call UniformDistribution.expectation which special-cased subsed out the Min and Max terms that Uniform produces I decided to regress on this class for general cleanliness (and I suspect speed) of the algorithm. """ l = Symbol('l', real=True) w = Symbol('w', positive=True) X = Uniform('x', l, l + w) assert P(X < l) == 0 and P(X > l + w) == 0 def test_uniformsum(): n = Symbol("n", integer=True) _k = Dummy("k") x = Symbol("x") X = UniformSum('x', n) res = Sum((-1)**_k*(-_k + x)**(n - 1)*binomial(n, _k), (_k, 0, floor(x)))/factorial(n - 1) assert density(X)(x).dummy_eq(res) #Tests set functions assert X.pspace.domain.set == Interval(0, n) #Tests the characteristic_function assert characteristic_function(X)(x) == (-I*(exp(I*x) - 1)/x)**n #Tests the moment_generating_function assert moment_generating_function(X)(x) == ((exp(x) - 1)/x)**n def test_von_mises(): mu = Symbol("mu") k = Symbol("k", positive=True) X = VonMises("x", mu, k) assert density(X)(x) == exp(k*cos(x - mu))/(2*pi*besseli(0, k)) def test_weibull(): a, b = symbols('a b', positive=True) # FIXME: simplify(E(X)) seems to hang without extended_positive=True # On a Linux machine this had a rapid memory leak... # a, b = symbols('a b', positive=True) X = Weibull('x', a, b) assert E(X).expand() == a * gamma(1 + 1/b) assert variance(X).expand() == (a**2 * gamma(1 + 2/b) - E(X)**2).expand() assert simplify(skewness(X)) == (2*gamma(1 + 1/b)**3 - 3*gamma(1 + 1/b)*gamma(1 + 2/b) + gamma(1 + 3/b))/(-gamma(1 + 1/b)**2 + gamma(1 + 2/b))**Rational(3, 2) assert simplify(kurtosis(X)) == (-3*gamma(1 + 1/b)**4 +\ 6*gamma(1 + 1/b)**2*gamma(1 + 2/b) - 4*gamma(1 + 1/b)*gamma(1 + 3/b) + gamma(1 + 4/b))/(gamma(1 + 1/b)**2 - gamma(1 + 2/b))**2 def test_weibull_numeric(): # Test for integers and rationals a = 1 bvals = [S.Half, 1, Rational(3, 2), 5] for b in bvals: X = Weibull('x', a, b) assert simplify(E(X)) == expand_func(a * gamma(1 + 1/S(b))) assert simplify(variance(X)) == simplify( a**2 * gamma(1 + 2/S(b)) - E(X)**2) # Not testing Skew... it's slow with int/frac values > 3/2 def test_wignersemicircle(): R = Symbol("R", positive=True) X = WignerSemicircle('x', R) assert pspace(X).domain.set == Interval(-R, R) assert density(X)(x) == 2*sqrt(-x**2 + R**2)/(pi*R**2) assert E(X) == 0 #Tests ChiNoncentralDistribution assert characteristic_function(X)(x) == \ Piecewise((2*besselj(1, R*x)/(R*x), Ne(x, 0)), (1, True)) def test_prefab_sampling(): scipy = import_module('scipy') if not scipy: skip('Scipy is not installed. Abort tests') N = Normal('X', 0, 1) L = LogNormal('L', 0, 1) E = Exponential('Ex', 1) P = Pareto('P', 1, 3) W = Weibull('W', 1, 1) U = Uniform('U', 0, 1) B = Beta('B', 2, 5) G = Gamma('G', 1, 3) variables = [N, L, E, P, W, U, B, G] niter = 10 size = 5 with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed for var in variables: for _ in range(niter): assert next(sample(var)) in var.pspace.domain.set samps = next(sample(var, size=size)) for samp in samps: assert samp in var.pspace.domain.set def test_input_value_assertions(): a, b = symbols('a b') p, q = symbols('p q', positive=True) m, n = symbols('m n', positive=False, real=True) raises(ValueError, lambda: Normal('x', 3, 0)) raises(ValueError, lambda: Normal('x', m, n)) Normal('X', a, p) # No error raised raises(ValueError, lambda: Exponential('x', m)) Exponential('Ex', p) # No error raised for fn in [Pareto, Weibull, Beta, Gamma]: raises(ValueError, lambda: fn('x', m, p)) raises(ValueError, lambda: fn('x', p, n)) fn('x', p, q) # No error raised def test_unevaluated(): X = Normal('x', 0, 1) k = Dummy('k') expr1 = Integral(sqrt(2)*k*exp(-k**2/2)/(2*sqrt(pi)), (k, -oo, oo)) expr2 = Integral(sqrt(2)*exp(-k**2/2)/(2*sqrt(pi)), (k, 0, oo)) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert E(X, evaluate=False).rewrite(Integral).dummy_eq(expr1) assert E(X + 1, evaluate=False).rewrite(Integral).dummy_eq(expr1 + 1) assert P(X > 0, evaluate=False).rewrite(Integral).dummy_eq(expr2) assert P(X > 0, X**2 < 1) == S.Half def test_probability_unevaluated(): T = Normal('T', 30, 3) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert type(P(T > 33, evaluate=False)) == Probability def test_density_unevaluated(): X = Normal('X', 0, 1) Y = Normal('Y', 0, 2) assert isinstance(density(X+Y, evaluate=False)(z), Integral) def test_NormalDistribution(): nd = NormalDistribution(0, 1) x = Symbol('x') assert nd.cdf(x) == erf(sqrt(2)*x/2)/2 + S.Half assert nd.expectation(1, x) == 1 assert nd.expectation(x, x) == 0 assert nd.expectation(x**2, x) == 1 #Test issue 10076 a = SingleContinuousPSpace(x, NormalDistribution(2, 4)) _z = Dummy('_z') expected1 = Integral(sqrt(2)*exp(-(_z - 2)**2/32)/(8*sqrt(pi)),(_z, -oo, 1)) assert a.probability(x < 1, evaluate=False).dummy_eq(expected1) is True expected2 = Integral(sqrt(2)*exp(-(_z - 2)**2/32)/(8*sqrt(pi)),(_z, 1, oo)) assert a.probability(x > 1, evaluate=False).dummy_eq(expected2) is True b = SingleContinuousPSpace(x, NormalDistribution(1, 9)) expected3 = Integral(sqrt(2)*exp(-(_z - 1)**2/162)/(18*sqrt(pi)),(_z, 6, oo)) assert b.probability(x > 6, evaluate=False).dummy_eq(expected3) is True expected4 = Integral(sqrt(2)*exp(-(_z - 1)**2/162)/(18*sqrt(pi)),(_z, -oo, 6)) assert b.probability(x < 6, evaluate=False).dummy_eq(expected4) is True def test_random_parameters(): mu = Normal('mu', 2, 3) meas = Normal('T', mu, 1) assert density(meas, evaluate=False)(z) assert isinstance(pspace(meas), CompoundPSpace) X = Normal('x', [1, 2], [[1, 0], [0, 1]]) assert isinstance(pspace(X).distribution, MultivariateNormalDistribution) assert density(meas)(z).simplify() == sqrt(5)*exp(-z**2/20 + z/5 - S(1)/5)/(10*sqrt(pi)) def test_random_parameters_given(): mu = Normal('mu', 2, 3) meas = Normal('T', mu, 1) assert given(meas, Eq(mu, 5)) == Normal('T', 5, 1) def test_conjugate_priors(): mu = Normal('mu', 2, 3) x = Normal('x', mu, 1) assert isinstance(simplify(density(mu, Eq(x, y), evaluate=False)(z)), Mul) def test_difficult_univariate(): """ Since using solve in place of deltaintegrate we're able to perform substantially more complex density computations on single continuous random variables """ x = Normal('x', 0, 1) assert density(x**3) assert density(exp(x**2)) assert density(log(x)) def test_issue_10003(): X = Exponential('x', 3) G = Gamma('g', 1, 2) assert P(X < -1) is S.Zero assert P(G < -1) is S.Zero @slow def test_precomputed_cdf(): x = symbols("x", real=True) mu = symbols("mu", real=True) sigma, xm, alpha = symbols("sigma xm alpha", positive=True) n = symbols("n", integer=True, positive=True) distribs = [ Normal("X", mu, sigma), Pareto("P", xm, alpha), ChiSquared("C", n), Exponential("E", sigma), # LogNormal("L", mu, sigma), ] for X in distribs: compdiff = cdf(X)(x) - simplify(X.pspace.density.compute_cdf()(x)) compdiff = simplify(compdiff.rewrite(erfc)) assert compdiff == 0 @slow def test_precomputed_characteristic_functions(): import mpmath def test_cf(dist, support_lower_limit, support_upper_limit): pdf = density(dist) t = Symbol('t') # first function is the hardcoded CF of the distribution cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath') # second function is the Fourier transform of the density function f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath') cf2 = lambda t: mpmath.quad(lambda x: f(x, t), [support_lower_limit, support_upper_limit], maxdegree=10) # compare the two functions at various points for test_point in [2, 5, 8, 11]: n1 = cf1(test_point) n2 = cf2(test_point) assert abs(re(n1) - re(n2)) < 1e-12 assert abs(im(n1) - im(n2)) < 1e-12 test_cf(Beta('b', 1, 2), 0, 1) test_cf(Chi('c', 3), 0, mpmath.inf) test_cf(ChiSquared('c', 2), 0, mpmath.inf) test_cf(Exponential('e', 6), 0, mpmath.inf) test_cf(Logistic('l', 1, 2), -mpmath.inf, mpmath.inf) test_cf(Normal('n', -1, 5), -mpmath.inf, mpmath.inf) test_cf(RaisedCosine('r', 3, 1), 2, 4) test_cf(Rayleigh('r', 0.5), 0, mpmath.inf) test_cf(Uniform('u', -1, 1), -1, 1) test_cf(WignerSemicircle('w', 3), -3, 3) def test_long_precomputed_cdf(): x = symbols("x", real=True) distribs = [ Arcsin("A", -5, 9), Dagum("D", 4, 10, 3), Erlang("E", 14, 5), Frechet("F", 2, 6, -3), Gamma("G", 2, 7), GammaInverse("GI", 3, 5), Kumaraswamy("K", 6, 8), Laplace("LA", -5, 4), Logistic("L", -6, 7), Nakagami("N", 2, 7), StudentT("S", 4) ] for distr in distribs: for _ in range(5): assert tn(diff(cdf(distr)(x), x), density(distr)(x), x, a=0, b=0, c=1, d=0) US = UniformSum("US", 5) pdf01 = density(US)(x).subs(floor(x), 0).doit() # pdf on (0, 1) cdf01 = cdf(US, evaluate=False)(x).subs(floor(x), 0).doit() # cdf on (0, 1) assert tn(diff(cdf01, x), pdf01, x, a=0, b=0, c=1, d=0) def test_issue_13324(): X = Uniform('X', 0, 1) assert E(X, X > S.Half) == Rational(3, 4) assert E(X, X > 0) == S.Half def test_issue_20756(): X = Uniform('X', -1, +1) Y = Uniform('Y', -1, +1) assert E(X * Y) == S.Zero assert E(X * ((Y + 1) - 1)) == S.Zero assert E(Y * (X*(X + 1) - X*X)) == S.Zero def test_FiniteSet_prob(): E = Exponential('E', 3) N = Normal('N', 5, 7) assert P(Eq(E, 1)) is S.Zero assert P(Eq(N, 2)) is S.Zero assert P(Eq(N, x)) is S.Zero def test_prob_neq(): E = Exponential('E', 4) X = ChiSquared('X', 4) assert P(Ne(E, 2)) == 1 assert P(Ne(X, 4)) == 1 assert P(Ne(X, 4)) == 1 assert P(Ne(X, 5)) == 1 assert P(Ne(E, x)) == 1 def test_union(): N = Normal('N', 3, 2) assert simplify(P(N**2 - N > 2)) == \ -erf(sqrt(2))/2 - erfc(sqrt(2)/4)/2 + Rational(3, 2) assert simplify(P(N**2 - 4 > 0)) == \ -erf(5*sqrt(2)/4)/2 - erfc(sqrt(2)/4)/2 + Rational(3, 2) def test_Or(): N = Normal('N', 0, 1) assert simplify(P(Or(N > 2, N < 1))) == \ -erf(sqrt(2))/2 - erfc(sqrt(2)/2)/2 + Rational(3, 2) assert P(Or(N < 0, N < 1)) == P(N < 1) assert P(Or(N > 0, N < 0)) == 1 def test_conditional_eq(): E = Exponential('E', 1) assert P(Eq(E, 1), Eq(E, 1)) == 1 assert P(Eq(E, 1), Eq(E, 2)) == 0 assert P(E > 1, Eq(E, 2)) == 1 assert P(E < 1, Eq(E, 2)) == 0 def test_ContinuousDistributionHandmade(): x = Symbol('x') z = Dummy('z') dens = Lambda(x, Piecewise((S.Half, (0<=x)&(x<1)), (0, (x>=1)&(x<2)), (S.Half, (x>=2)&(x<3)), (0, True))) dens = ContinuousDistributionHandmade(dens, set=Interval(0, 3)) space = SingleContinuousPSpace(z, dens) assert dens.pdf == Lambda(x, Piecewise((1/2, (x >= 0) & (x < 1)), (0, (x >= 1) & (x < 2)), (1/2, (x >= 2) & (x < 3)), (0, True))) assert median(space.value) == Interval(1, 2) assert E(space.value) == Rational(3, 2) assert variance(space.value) == Rational(13, 12) def test_sample_numpy(): distribs_numpy = [ Beta("B", 1, 1), Normal("N", 0, 1), Gamma("G", 2, 7), Exponential("E", 2), LogNormal("LN", 0, 1), Pareto("P", 1, 1), ChiSquared("CS", 2), Uniform("U", 0, 1) ] size = 3 numpy = import_module('numpy') if not numpy: skip('Numpy is not installed. Abort tests for _sample_numpy.') else: with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed for X in distribs_numpy: samps = next(sample(X, size=size, library='numpy')) for sam in samps: assert sam in X.pspace.domain.set raises(NotImplementedError, lambda: next(sample(Chi("C", 1), library='numpy'))) raises(NotImplementedError, lambda: Chi("C", 1).pspace.distribution.sample(library='tensorflow')) def test_sample_scipy(): distribs_scipy = [ Beta("B", 1, 1), BetaPrime("BP", 1, 1), Cauchy("C", 1, 1), Chi("C", 1), Normal("N", 0, 1), Gamma("G", 2, 7), GammaInverse("GI", 1, 1), GaussianInverse("GUI", 1, 1), Exponential("E", 2), LogNormal("LN", 0, 1), Pareto("P", 1, 1), StudentT("S", 2), ChiSquared("CS", 2), Uniform("U", 0, 1) ] size = 3 numsamples = 5 scipy = import_module('scipy') if not scipy: skip('Scipy is not installed. Abort tests for _sample_scipy.') else: with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed g_sample = list(sample(Gamma("G", 2, 7), size=size, numsamples=numsamples)) assert len(g_sample) == numsamples for X in distribs_scipy: samps = next(sample(X, size=size, library='scipy')) samps2 = next(sample(X, size=(2, 2), library='scipy')) for sam in samps: assert sam in X.pspace.domain.set for i in range(2): for j in range(2): assert samps2[i][j] in X.pspace.domain.set def test_sample_pymc3(): distribs_pymc3 = [ Beta("B", 1, 1), Cauchy("C", 1, 1), Normal("N", 0, 1), Gamma("G", 2, 7), GaussianInverse("GI", 1, 1), Exponential("E", 2), LogNormal("LN", 0, 1), Pareto("P", 1, 1), ChiSquared("CS", 2), Uniform("U", 0, 1) ] size = 3 pymc3 = import_module('pymc3') if not pymc3: skip('PyMC3 is not installed. Abort tests for _sample_pymc3.') else: with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed for X in distribs_pymc3: samps = next(sample(X, size=size, library='pymc3')) for sam in samps: assert sam in X.pspace.domain.set raises(NotImplementedError, lambda: next(sample(Chi("C", 1), library='pymc3'))) def test_issue_16318(): #test compute_expectation function of the SingleContinuousDomain N = SingleContinuousDomain(x, Interval(0, 1)) raises (ValueError, lambda: SingleContinuousDomain.compute_expectation(N, x+1, {x, y}))
56ccf593d35cb21d6147726c46478c16b99c21a8a633068e683caf2b5382f8d4
from sympy import ( Abs, And, binomial, Catalan, combsimp, cos, Derivative, E, Eq, exp, EulerGamma, factorial, Function, harmonic, I, Integral, KroneckerDelta, log, nan, oo, pi, Piecewise, Product, product, Rational, S, simplify, Identity, sin, sqrt, Sum, summation, Symbol, symbols, sympify, zeta, gamma, Indexed, Idx, IndexedBase, prod, Dummy, lowergamma, Range, floor, rf, MatrixSymbol) from sympy.abc import a, b, c, d, k, m, x, y, z from sympy.concrete.summations import telescopic, _dummy_with_inherited_properties_concrete from sympy.concrete.expr_with_intlimits import ReorderError from sympy.core.facts import InconsistentAssumptions from sympy.testing.pytest import XFAIL, raises, slow from sympy.matrices import \ Matrix, SparseMatrix, ImmutableDenseMatrix, ImmutableSparseMatrix from sympy.core.mod import Mod n = Symbol('n', integer=True) def test_karr_convention(): # Test the Karr summation convention that we want to hold. # See his paper "Summation in Finite Terms" for a detailed # reasoning why we really want exactly this definition. # The convention is described on page 309 and essentially # in section 1.4, definition 3: # # \sum_{m <= i < n} f(i) 'has the obvious meaning' for m < n # \sum_{m <= i < n} f(i) = 0 for m = n # \sum_{m <= i < n} f(i) = - \sum_{n <= i < m} f(i) for m > n # # It is important to note that he defines all sums with # the upper limit being *exclusive*. # In contrast, sympy and the usual mathematical notation has: # # sum_{i = a}^b f(i) = f(a) + f(a+1) + ... + f(b-1) + f(b) # # with the upper limit *inclusive*. So translating between # the two we find that: # # \sum_{m <= i < n} f(i) = \sum_{i = m}^{n-1} f(i) # # where we intentionally used two different ways to typeset the # sum and its limits. i = Symbol("i", integer=True) k = Symbol("k", integer=True) j = Symbol("j", integer=True) # A simple example with a concrete summand and symbolic limits. # The normal sum: m = k and n = k + j and therefore m < n: m = k n = k + j a = m b = n - 1 S1 = Sum(i**2, (i, a, b)).doit() # The reversed sum: m = k + j and n = k and therefore m > n: m = k + j n = k a = m b = n - 1 S2 = Sum(i**2, (i, a, b)).doit() assert simplify(S1 + S2) == 0 # Test the empty sum: m = k and n = k and therefore m = n: m = k n = k a = m b = n - 1 Sz = Sum(i**2, (i, a, b)).doit() assert Sz == 0 # Another example this time with an unspecified summand and # numeric limits. (We can not do both tests in the same example.) f = Function("f") # The normal sum with m < n: m = 2 n = 11 a = m b = n - 1 S1 = Sum(f(i), (i, a, b)).doit() # The reversed sum with m > n: m = 11 n = 2 a = m b = n - 1 S2 = Sum(f(i), (i, a, b)).doit() assert simplify(S1 + S2) == 0 # Test the empty sum with m = n: m = 5 n = 5 a = m b = n - 1 Sz = Sum(f(i), (i, a, b)).doit() assert Sz == 0 e = Piecewise((exp(-i), Mod(i, 2) > 0), (0, True)) s = Sum(e, (i, 0, 11)) assert s.n(3) == s.doit().n(3) def test_karr_proposition_2a(): # Test Karr, page 309, proposition 2, part a i = Symbol("i", integer=True) u = Symbol("u", integer=True) v = Symbol("v", integer=True) def test_the_sum(m, n): # g g = i**3 + 2*i**2 - 3*i # f = Delta g f = simplify(g.subs(i, i+1) - g) # The sum a = m b = n - 1 S = Sum(f, (i, a, b)).doit() # Test if Sum_{m <= i < n} f(i) = g(n) - g(m) assert simplify(S - (g.subs(i, n) - g.subs(i, m))) == 0 # m < n test_the_sum(u, u+v) # m = n test_the_sum(u, u ) # m > n test_the_sum(u+v, u ) def test_karr_proposition_2b(): # Test Karr, page 309, proposition 2, part b i = Symbol("i", integer=True) u = Symbol("u", integer=True) v = Symbol("v", integer=True) w = Symbol("w", integer=True) def test_the_sum(l, n, m): # Summand s = i**3 # First sum a = l b = n - 1 S1 = Sum(s, (i, a, b)).doit() # Second sum a = l b = m - 1 S2 = Sum(s, (i, a, b)).doit() # Third sum a = m b = n - 1 S3 = Sum(s, (i, a, b)).doit() # Test if S1 = S2 + S3 as required assert S1 - (S2 + S3) == 0 # l < m < n test_the_sum(u, u+v, u+v+w) # l < m = n test_the_sum(u, u+v, u+v ) # l < m > n test_the_sum(u, u+v+w, v ) # l = m < n test_the_sum(u, u, u+v ) # l = m = n test_the_sum(u, u, u ) # l = m > n test_the_sum(u+v, u+v, u ) # l > m < n test_the_sum(u+v, u, u+w ) # l > m = n test_the_sum(u+v, u, u ) # l > m > n test_the_sum(u+v+w, u+v, u ) def test_arithmetic_sums(): assert summation(1, (n, a, b)) == b - a + 1 assert Sum(S.NaN, (n, a, b)) is S.NaN assert Sum(x, (n, a, a)).doit() == x assert Sum(x, (x, a, a)).doit() == a assert Sum(x, (n, 1, a)).doit() == a*x assert Sum(x, (x, Range(1, 11))).doit() == 55 assert Sum(x, (x, Range(1, 11, 2))).doit() == 25 assert Sum(x, (x, Range(1, 10, 2))) == Sum(x, (x, Range(9, 0, -2))) lo, hi = 1, 2 s1 = Sum(n, (n, lo, hi)) s2 = Sum(n, (n, hi, lo)) assert s1 != s2 assert s1.doit() == 3 and s2.doit() == 0 lo, hi = x, x + 1 s1 = Sum(n, (n, lo, hi)) s2 = Sum(n, (n, hi, lo)) assert s1 != s2 assert s1.doit() == 2*x + 1 and s2.doit() == 0 assert Sum(Integral(x, (x, 1, y)) + x, (x, 1, 2)).doit() == \ y**2 + 2 assert summation(1, (n, 1, 10)) == 10 assert summation(2*n, (n, 0, 10**10)) == 100000000010000000000 assert summation(4*n*m, (n, a, 1), (m, 1, d)).expand() == \ 2*d + 2*d**2 + a*d + a*d**2 - d*a**2 - a**2*d**2 assert summation(cos(n), (n, -2, 1)) == cos(-2) + cos(-1) + cos(0) + cos(1) assert summation(cos(n), (n, x, x + 2)) == cos(x) + cos(x + 1) + cos(x + 2) assert isinstance(summation(cos(n), (n, x, x + S.Half)), Sum) assert summation(k, (k, 0, oo)) is oo assert summation(k, (k, Range(1, 11))) == 55 def test_polynomial_sums(): assert summation(n**2, (n, 3, 8)) == 199 assert summation(n, (n, a, b)) == \ ((a + b)*(b - a + 1)/2).expand() assert summation(n**2, (n, 1, b)) == \ ((2*b**3 + 3*b**2 + b)/6).expand() assert summation(n**3, (n, 1, b)) == \ ((b**4 + 2*b**3 + b**2)/4).expand() assert summation(n**6, (n, 1, b)) == \ ((6*b**7 + 21*b**6 + 21*b**5 - 7*b**3 + b)/42).expand() def test_geometric_sums(): assert summation(pi**n, (n, 0, b)) == (1 - pi**(b + 1)) / (1 - pi) assert summation(2 * 3**n, (n, 0, b)) == 3**(b + 1) - 1 assert summation(S.Half**n, (n, 1, oo)) == 1 assert summation(2**n, (n, 0, b)) == 2**(b + 1) - 1 assert summation(2**n, (n, 1, oo)) is oo assert summation(2**(-n), (n, 1, oo)) == 1 assert summation(3**(-n), (n, 4, oo)) == Rational(1, 54) assert summation(2**(-4*n + 3), (n, 1, oo)) == Rational(8, 15) assert summation(2**(n + 1), (n, 1, b)).expand() == 4*(2**b - 1) # issue 6664: assert summation(x**n, (n, 0, oo)) == \ Piecewise((1/(-x + 1), Abs(x) < 1), (Sum(x**n, (n, 0, oo)), True)) assert summation(-2**n, (n, 0, oo)) is -oo assert summation(I**n, (n, 0, oo)) == Sum(I**n, (n, 0, oo)) # issue 6802: assert summation((-1)**(2*x + 2), (x, 0, n)) == n + 1 assert summation((-2)**(2*x + 2), (x, 0, n)) == 4*4**(n + 1)/S(3) - Rational(4, 3) assert summation((-1)**x, (x, 0, n)) == -(-1)**(n + 1)/S(2) + S.Half assert summation(y**x, (x, a, b)) == \ Piecewise((-a + b + 1, Eq(y, 1)), ((y**a - y**(b + 1))/(-y + 1), True)) assert summation((-2)**(y*x + 2), (x, 0, n)) == \ 4*Piecewise((n + 1, Eq((-2)**y, 1)), ((-(-2)**(y*(n + 1)) + 1)/(-(-2)**y + 1), True)) # issue 8251: assert summation((1/(n + 1)**2)*n**2, (n, 0, oo)) is oo #issue 9908: assert Sum(1/(n**3 - 1), (n, -oo, -2)).doit() == summation(1/(n**3 - 1), (n, -oo, -2)) #issue 11642: result = Sum(0.5**n, (n, 1, oo)).doit() assert result == 1 assert result.is_Float result = Sum(0.25**n, (n, 1, oo)).doit() assert result == 1/3. assert result.is_Float result = Sum(0.99999**n, (n, 1, oo)).doit() assert result == 99999 assert result.is_Float result = Sum(S.Half**n, (n, 1, oo)).doit() assert result == 1 assert not result.is_Float result = Sum(Rational(3, 5)**n, (n, 1, oo)).doit() assert result == Rational(3, 2) assert not result.is_Float assert Sum(1.0**n, (n, 1, oo)).doit() is oo assert Sum(2.43**n, (n, 1, oo)).doit() is oo # Issue 13979 i, k, q = symbols('i k q', integer=True) result = summation( exp(-2*I*pi*k*i/n) * exp(2*I*pi*q*i/n) / n, (i, 0, n - 1) ) assert result.simplify() == Piecewise( (1, Eq(exp(-2*I*pi*(k - q)/n), 1)), (0, True) ) def test_harmonic_sums(): assert summation(1/k, (k, 0, n)) == Sum(1/k, (k, 0, n)) assert summation(1/k, (k, 1, n)) == harmonic(n) assert summation(n/k, (k, 1, n)) == n*harmonic(n) assert summation(1/k, (k, 5, n)) == harmonic(n) - harmonic(4) def test_composite_sums(): f = S.Half*(7 - 6*n + Rational(1, 7)*n**3) s = summation(f, (n, a, b)) assert not isinstance(s, Sum) A = 0 for i in range(-3, 5): A += f.subs(n, i) B = s.subs(a, -3).subs(b, 4) assert A == B def test_hypergeometric_sums(): assert summation( binomial(2*k, k)/4**k, (k, 0, n)) == (1 + 2*n)*binomial(2*n, n)/4**n assert summation(binomial(2*k, k)/5**k, (k, -oo, oo)) == sqrt(5) def test_other_sums(): f = m**2 + m*exp(m) g = 3*exp(Rational(3, 2))/2 + exp(S.Half)/2 - exp(Rational(-1, 2))/2 - 3*exp(Rational(-3, 2))/2 + 5 assert summation(f, (m, Rational(-3, 2), Rational(3, 2))) == g assert summation(f, (m, -1.5, 1.5)).evalf().epsilon_eq(g.evalf(), 1e-10) fac = factorial def NS(e, n=15, **options): return str(sympify(e).evalf(n, **options)) def test_evalf_fast_series(): # Euler transformed series for sqrt(1+x) assert NS(Sum( fac(2*n + 1)/fac(n)**2/2**(3*n + 1), (n, 0, oo)), 100) == NS(sqrt(2), 100) # Some series for exp(1) estr = NS(E, 100) assert NS(Sum(1/fac(n), (n, 0, oo)), 100) == estr assert NS(1/Sum((1 - 2*n)/fac(2*n), (n, 0, oo)), 100) == estr assert NS(Sum((2*n + 1)/fac(2*n), (n, 0, oo)), 100) == estr assert NS(Sum((4*n + 3)/2**(2*n + 1)/fac(2*n + 1), (n, 0, oo))**2, 100) == estr pistr = NS(pi, 100) # Ramanujan series for pi assert NS(9801/sqrt(8)/Sum(fac( 4*n)*(1103 + 26390*n)/fac(n)**4/396**(4*n), (n, 0, oo)), 100) == pistr assert NS(1/Sum( binomial(2*n, n)**3 * (42*n + 5)/2**(12*n + 4), (n, 0, oo)), 100) == pistr # Machin's formula for pi assert NS(16*Sum((-1)**n/(2*n + 1)/5**(2*n + 1), (n, 0, oo)) - 4*Sum((-1)**n/(2*n + 1)/239**(2*n + 1), (n, 0, oo)), 100) == pistr # Apery's constant astr = NS(zeta(3), 100) P = 126392*n**5 + 412708*n**4 + 531578*n**3 + 336367*n**2 + 104000* \ n + 12463 assert NS(Sum((-1)**n * P / 24 * (fac(2*n + 1)*fac(2*n)*fac( n))**3 / fac(3*n + 2) / fac(4*n + 3)**3, (n, 0, oo)), 100) == astr assert NS(Sum((-1)**n * (205*n**2 + 250*n + 77)/64 * fac(n)**10 / fac(2*n + 1)**5, (n, 0, oo)), 100) == astr def test_evalf_fast_series_issue_4021(): # Catalan's constant assert NS(Sum((-1)**(n - 1)*2**(8*n)*(40*n**2 - 24*n + 3)*fac(2*n)**3* fac(n)**2/n**3/(2*n - 1)/fac(4*n)**2, (n, 1, oo))/64, 100) == \ NS(Catalan, 100) astr = NS(zeta(3), 100) assert NS(5*Sum( (-1)**(n - 1)*fac(n)**2 / n**3 / fac(2*n), (n, 1, oo))/2, 100) == astr assert NS(Sum((-1)**(n - 1)*(56*n**2 - 32*n + 5) / (2*n - 1)**2 * fac(n - 1) **3 / fac(3*n), (n, 1, oo))/4, 100) == astr def test_evalf_slow_series(): assert NS(Sum((-1)**n / n, (n, 1, oo)), 15) == NS(-log(2), 15) assert NS(Sum((-1)**n / n, (n, 1, oo)), 50) == NS(-log(2), 50) assert NS(Sum(1/n**2, (n, 1, oo)), 15) == NS(pi**2/6, 15) assert NS(Sum(1/n**2, (n, 1, oo)), 100) == NS(pi**2/6, 100) assert NS(Sum(1/n**2, (n, 1, oo)), 500) == NS(pi**2/6, 500) assert NS(Sum((-1)**n / (2*n + 1)**3, (n, 0, oo)), 15) == NS(pi**3/32, 15) assert NS(Sum((-1)**n / (2*n + 1)**3, (n, 0, oo)), 50) == NS(pi**3/32, 50) def test_euler_maclaurin(): # Exact polynomial sums with E-M def check_exact(f, a, b, m, n): A = Sum(f, (k, a, b)) s, e = A.euler_maclaurin(m, n) assert (e == 0) and (s.expand() == A.doit()) check_exact(k**4, a, b, 0, 2) check_exact(k**4 + 2*k, a, b, 1, 2) check_exact(k**4 + k**2, a, b, 1, 5) check_exact(k**5, 2, 6, 1, 2) check_exact(k**5, 2, 6, 1, 3) assert Sum(x-1, (x, 0, 2)).euler_maclaurin(m=30, n=30, eps=2**-15) == (0, 0) # Not exact assert Sum(k**6, (k, a, b)).euler_maclaurin(0, 2)[1] != 0 # Numerical test for mi, ni in [(2, 4), (2, 20), (10, 20), (18, 20)]: A = Sum(1/k**3, (k, 1, oo)) s, e = A.euler_maclaurin(mi, ni) assert abs((s - zeta(3)).evalf()) < e.evalf() raises(ValueError, lambda: Sum(1, (x, 0, 1), (k, 0, 1)).euler_maclaurin()) @slow def test_evalf_euler_maclaurin(): assert NS(Sum(1/k**k, (k, 1, oo)), 15) == '1.29128599706266' assert NS(Sum(1/k**k, (k, 1, oo)), 50) == '1.2912859970626635404072825905956005414986193682745' assert NS(Sum(1/k - log(1 + 1/k), (k, 1, oo)), 15) == NS(EulerGamma, 15) assert NS(Sum(1/k - log(1 + 1/k), (k, 1, oo)), 50) == NS(EulerGamma, 50) assert NS(Sum(log(k)/k**2, (k, 1, oo)), 15) == '0.937548254315844' assert NS(Sum(log(k)/k**2, (k, 1, oo)), 50) == '0.93754825431584375370257409456786497789786028861483' assert NS(Sum(1/k, (k, 1000000, 2000000)), 15) == '0.693147930560008' assert NS(Sum(1/k, (k, 1000000, 2000000)), 50) == '0.69314793056000780941723211364567656807940638436025' def test_evalf_symbolic(): f, g = symbols('f g', cls=Function) # issue 6328 expr = Sum(f(x), (x, 1, 3)) + Sum(g(x), (x, 1, 3)) assert expr.evalf() == expr def test_evalf_issue_3273(): assert Sum(0, (k, 1, oo)).evalf() == 0 def test_simple_products(): assert Product(S.NaN, (x, 1, 3)) is S.NaN assert product(S.NaN, (x, 1, 3)) is S.NaN assert Product(x, (n, a, a)).doit() == x assert Product(x, (x, a, a)).doit() == a assert Product(x, (y, 1, a)).doit() == x**a lo, hi = 1, 2 s1 = Product(n, (n, lo, hi)) s2 = Product(n, (n, hi, lo)) assert s1 != s2 # This IS correct according to Karr product convention assert s1.doit() == 2 assert s2.doit() == 1 lo, hi = x, x + 1 s1 = Product(n, (n, lo, hi)) s2 = Product(n, (n, hi, lo)) s3 = 1 / Product(n, (n, hi + 1, lo - 1)) assert s1 != s2 # This IS correct according to Karr product convention assert s1.doit() == x*(x + 1) assert s2.doit() == 1 assert s3.doit() == x*(x + 1) assert Product(Integral(2*x, (x, 1, y)) + 2*x, (x, 1, 2)).doit() == \ (y**2 + 1)*(y**2 + 3) assert product(2, (n, a, b)) == 2**(b - a + 1) assert product(n, (n, 1, b)) == factorial(b) assert product(n**3, (n, 1, b)) == factorial(b)**3 assert product(3**(2 + n), (n, a, b)) \ == 3**(2*(1 - a + b) + b/2 + (b**2)/2 + a/2 - (a**2)/2) assert product(cos(n), (n, 3, 5)) == cos(3)*cos(4)*cos(5) assert product(cos(n), (n, x, x + 2)) == cos(x)*cos(x + 1)*cos(x + 2) assert isinstance(product(cos(n), (n, x, x + S.Half)), Product) # If Product managed to evaluate this one, it most likely got it wrong! assert isinstance(Product(n**n, (n, 1, b)), Product) def test_rational_products(): assert combsimp(product(1 + 1/n, (n, a, b))) == (1 + b)/a assert combsimp(product(n + 1, (n, a, b))) == gamma(2 + b)/gamma(1 + a) assert combsimp(product((n + 1)/(n - 1), (n, a, b))) == b*(1 + b)/(a*(a - 1)) assert combsimp(product(n/(n + 1)/(n + 2), (n, a, b))) == \ a*gamma(a + 2)/(b + 1)/gamma(b + 3) assert combsimp(product(n*(n + 1)/(n - 1)/(n - 2), (n, a, b))) == \ b**2*(b - 1)*(1 + b)/(a - 1)**2/(a*(a - 2)) def test_wallis_product(): # Wallis product, given in two different forms to ensure that Product # can factor simple rational expressions A = Product(4*n**2 / (4*n**2 - 1), (n, 1, b)) B = Product((2*n)*(2*n)/(2*n - 1)/(2*n + 1), (n, 1, b)) R = pi*gamma(b + 1)**2/(2*gamma(b + S.Half)*gamma(b + Rational(3, 2))) assert simplify(A.doit()) == R assert simplify(B.doit()) == R # This one should eventually also be doable (Euler's product formula for sin) # assert Product(1+x/n**2, (n, 1, b)) == ... def test_telescopic_sums(): #checks also input 2 of comment 1 issue 4127 assert Sum(1/k - 1/(k + 1), (k, 1, n)).doit() == 1 - 1/(1 + n) f = Function("f") assert Sum( f(k) - f(k + 2), (k, m, n)).doit() == -f(1 + n) - f(2 + n) + f(m) + f(1 + m) assert Sum(cos(k) - cos(k + 3), (k, 1, n)).doit() == -cos(1 + n) - \ cos(2 + n) - cos(3 + n) + cos(1) + cos(2) + cos(3) # dummy variable shouldn't matter assert telescopic(1/m, -m/(1 + m), (m, n - 1, n)) == \ telescopic(1/k, -k/(1 + k), (k, n - 1, n)) assert Sum(1/x/(x - 1), (x, a, b)).doit() == -((a - b - 1)/(b*(a - 1))) def test_sum_reconstruct(): s = Sum(n**2, (n, -1, 1)) assert s == Sum(*s.args) raises(ValueError, lambda: Sum(x, x)) raises(ValueError, lambda: Sum(x, (x, 1))) def test_limit_subs(): for F in (Sum, Product, Integral): assert F(a*exp(a), (a, -2, 2)) == F(a*exp(a), (a, -b, b)).subs(b, 2) assert F(a, (a, F(b, (b, 1, 2)), 4)).subs(F(b, (b, 1, 2)), c) == \ F(a, (a, c, 4)) assert F(x, (x, 1, x + y)).subs(x, 1) == F(x, (x, 1, y + 1)) def test_function_subs(): f = Function("f") S = Sum(x*f(y),(x,0,oo),(y,0,oo)) assert S.subs(f(y),y) == Sum(x*y,(x,0,oo),(y,0,oo)) assert S.subs(f(x),x) == S raises(ValueError, lambda: S.subs(f(y),x+y) ) S = Sum(x*log(y),(x,0,oo),(y,0,oo)) assert S.subs(log(y),y) == S S = Sum(x*f(y),(x,0,oo),(y,0,oo)) assert S.subs(f(y),y) == Sum(x*y,(x,0,oo),(y,0,oo)) def test_equality(): # if this fails remove special handling below raises(ValueError, lambda: Sum(x, x)) r = symbols('x', real=True) for F in (Sum, Product, Integral): try: assert F(x, x) != F(y, y) assert F(x, (x, 1, 2)) != F(x, x) assert F(x, (x, x)) != F(x, x) # or else they print the same assert F(1, x) != F(1, y) except ValueError: pass assert F(a, (x, 1, 2)) != F(a, (x, 1, 3)) # diff limit assert F(a, (x, 1, x)) != F(a, (y, 1, y)) assert F(a, (x, 1, 2)) != F(b, (x, 1, 2)) # diff expression assert F(x, (x, 1, 2)) != F(r, (r, 1, 2)) # diff assumptions assert F(1, (x, 1, x)) != F(1, (y, 1, x)) # only dummy is diff assert F(1, (x, 1, x)).dummy_eq(F(1, (y, 1, x))) # issue 5265 assert Sum(x, (x, 1, x)).subs(x, a) == Sum(x, (x, 1, a)) def test_Sum_doit(): f = Function('f') assert Sum(n*Integral(a**2), (n, 0, 2)).doit() == a**3 assert Sum(n*Integral(a**2), (n, 0, 2)).doit(deep=False) == \ 3*Integral(a**2) assert summation(n*Integral(a**2), (n, 0, 2)) == 3*Integral(a**2) # test nested sum evaluation s = Sum( Sum( Sum(2,(z,1,n+1)), (y,x+1,n)), (x,1,n)) assert 0 == (s.doit() - n*(n+1)*(n-1)).factor() # Integer assumes finite assert Sum(KroneckerDelta(x, y), (x, -oo, oo)).doit() == Piecewise((1, And(-oo <= y, y < oo)), (0, True)) assert Sum(KroneckerDelta(m, n), (m, -oo, oo)).doit() == 1 assert Sum(m*KroneckerDelta(x, y), (x, -oo, oo)).doit() == Piecewise((m, And(-oo <= y, y < oo)), (0, True)) assert Sum(x*KroneckerDelta(m, n), (m, -oo, oo)).doit() == x assert Sum(Sum(KroneckerDelta(m, n), (m, 1, 3)), (n, 1, 3)).doit() == 3 assert Sum(Sum(KroneckerDelta(k, m), (m, 1, 3)), (n, 1, 3)).doit() == \ 3 * Piecewise((1, And(1 <= k, k <= 3)), (0, True)) assert Sum(f(n) * Sum(KroneckerDelta(m, n), (m, 0, oo)), (n, 1, 3)).doit() == \ f(1) + f(2) + f(3) assert Sum(f(n) * Sum(KroneckerDelta(m, n), (m, 0, oo)), (n, 1, oo)).doit() == \ Sum(f(n), (n, 1, oo)) # issue 2597 nmax = symbols('N', integer=True, positive=True) pw = Piecewise((1, And(1 <= n, n <= nmax)), (0, True)) assert Sum(pw, (n, 1, nmax)).doit() == Sum(Piecewise((1, nmax >= n), (0, True)), (n, 1, nmax)) q, s = symbols('q, s') assert summation(1/n**(2*s), (n, 1, oo)) == Piecewise((zeta(2*s), 2*s > 1), (Sum(n**(-2*s), (n, 1, oo)), True)) assert summation(1/(n+1)**s, (n, 0, oo)) == Piecewise((zeta(s), s > 1), (Sum((n + 1)**(-s), (n, 0, oo)), True)) assert summation(1/(n+q)**s, (n, 0, oo)) == Piecewise( (zeta(s, q), And(q > 0, s > 1)), (Sum((n + q)**(-s), (n, 0, oo)), True)) assert summation(1/(n+q)**s, (n, q, oo)) == Piecewise( (zeta(s, 2*q), And(2*q > 0, s > 1)), (Sum((n + q)**(-s), (n, q, oo)), True)) assert summation(1/n**2, (n, 1, oo)) == zeta(2) assert summation(1/n**s, (n, 0, oo)) == Sum(n**(-s), (n, 0, oo)) def test_Product_doit(): assert Product(n*Integral(a**2), (n, 1, 3)).doit() == 2 * a**9 / 9 assert Product(n*Integral(a**2), (n, 1, 3)).doit(deep=False) == \ 6*Integral(a**2)**3 assert product(n*Integral(a**2), (n, 1, 3)) == 6*Integral(a**2)**3 def test_Sum_interface(): assert isinstance(Sum(0, (n, 0, 2)), Sum) assert Sum(nan, (n, 0, 2)) is nan assert Sum(nan, (n, 0, oo)) is nan assert Sum(0, (n, 0, 2)).doit() == 0 assert isinstance(Sum(0, (n, 0, oo)), Sum) assert Sum(0, (n, 0, oo)).doit() == 0 raises(ValueError, lambda: Sum(1)) raises(ValueError, lambda: summation(1)) def test_diff(): assert Sum(x, (x, 1, 2)).diff(x) == 0 assert Sum(x*y, (x, 1, 2)).diff(x) == 0 assert Sum(x*y, (y, 1, 2)).diff(x) == Sum(y, (y, 1, 2)) e = Sum(x*y, (x, 1, a)) assert e.diff(a) == Derivative(e, a) assert Sum(x*y, (x, 1, 3), (a, 2, 5)).diff(y).doit() == \ Sum(x*y, (x, 1, 3), (a, 2, 5)).doit().diff(y) == 24 assert Sum(x, (x, 1, 2)).diff(y) == 0 def test_hypersum(): from sympy import sin assert simplify(summation(x**n/fac(n), (n, 1, oo))) == -1 + exp(x) assert summation((-1)**n * x**(2*n) / fac(2*n), (n, 0, oo)) == cos(x) assert simplify(summation((-1)**n*x**(2*n + 1) / factorial(2*n + 1), (n, 3, oo))) == -x + sin(x) + x**3/6 - x**5/120 assert summation(1/(n + 2)**3, (n, 1, oo)) == Rational(-9, 8) + zeta(3) assert summation(1/n**4, (n, 1, oo)) == pi**4/90 s = summation(x**n*n, (n, -oo, 0)) assert s.is_Piecewise assert s.args[0].args[0] == -1/(x*(1 - 1/x)**2) assert s.args[0].args[1] == (abs(1/x) < 1) m = Symbol('n', integer=True, positive=True) assert summation(binomial(m, k), (k, 0, m)) == 2**m def test_issue_4170(): assert summation(1/factorial(k), (k, 0, oo)) == E def test_is_commutative(): from sympy.physics.secondquant import NO, F, Fd m = Symbol('m', commutative=False) for f in (Sum, Product, Integral): assert f(z, (z, 1, 1)).is_commutative is True assert f(z*y, (z, 1, 6)).is_commutative is True assert f(m*x, (x, 1, 2)).is_commutative is False assert f(NO(Fd(x)*F(y))*z, (z, 1, 2)).is_commutative is False def test_is_zero(): for func in [Sum, Product]: assert func(0, (x, 1, 1)).is_zero is True assert func(x, (x, 1, 1)).is_zero is None assert Sum(0, (x, 1, 0)).is_zero is True assert Product(0, (x, 1, 0)).is_zero is False def test_is_number(): # is number should not rely on evaluation or assumptions, # it should be equivalent to `not foo.free_symbols` assert Sum(1, (x, 1, 1)).is_number is True assert Sum(1, (x, 1, x)).is_number is False assert Sum(0, (x, y, z)).is_number is False assert Sum(x, (y, 1, 2)).is_number is False assert Sum(x, (y, 1, 1)).is_number is False assert Sum(x, (x, 1, 2)).is_number is True assert Sum(x*y, (x, 1, 2), (y, 1, 3)).is_number is True assert Product(2, (x, 1, 1)).is_number is True assert Product(2, (x, 1, y)).is_number is False assert Product(0, (x, y, z)).is_number is False assert Product(1, (x, y, z)).is_number is False assert Product(x, (y, 1, x)).is_number is False assert Product(x, (y, 1, 2)).is_number is False assert Product(x, (y, 1, 1)).is_number is False assert Product(x, (x, 1, 2)).is_number is True def test_free_symbols(): for func in [Sum, Product]: assert func(1, (x, 1, 2)).free_symbols == set() assert func(0, (x, 1, y)).free_symbols == {y} assert func(2, (x, 1, y)).free_symbols == {y} assert func(x, (x, 1, 2)).free_symbols == set() assert func(x, (x, 1, y)).free_symbols == {y} assert func(x, (y, 1, y)).free_symbols == {x, y} assert func(x, (y, 1, 2)).free_symbols == {x} assert func(x, (y, 1, 1)).free_symbols == {x} assert func(x, (y, 1, z)).free_symbols == {x, z} assert func(x, (x, 1, y), (y, 1, 2)).free_symbols == set() assert func(x, (x, 1, y), (y, 1, z)).free_symbols == {z} assert func(x, (x, 1, y), (y, 1, y)).free_symbols == {y} assert func(x, (y, 1, y), (y, 1, z)).free_symbols == {x, z} assert Sum(1, (x, 1, y)).free_symbols == {y} # free_symbols answers whether the object *as written* has free symbols, # not whether the evaluated expression has free symbols assert Product(1, (x, 1, y)).free_symbols == {y} def test_conjugate_transpose(): A, B = symbols("A B", commutative=False) p = Sum(A*B**n, (n, 1, 3)) assert p.adjoint().doit() == p.doit().adjoint() assert p.conjugate().doit() == p.doit().conjugate() assert p.transpose().doit() == p.doit().transpose() p = Sum(B**n*A, (n, 1, 3)) assert p.adjoint().doit() == p.doit().adjoint() assert p.conjugate().doit() == p.doit().conjugate() assert p.transpose().doit() == p.doit().transpose() def test_noncommutativity_honoured(): A, B = symbols("A B", commutative=False) M = symbols('M', integer=True, positive=True) p = Sum(A*B**n, (n, 1, M)) assert p.doit() == A*Piecewise((M, Eq(B, 1)), ((B - B**(M + 1))*(1 - B)**(-1), True)) p = Sum(B**n*A, (n, 1, M)) assert p.doit() == Piecewise((M, Eq(B, 1)), ((B - B**(M + 1))*(1 - B)**(-1), True))*A p = Sum(B**n*A*B**n, (n, 1, M)) assert p.doit() == p def test_issue_4171(): assert summation(factorial(2*k + 1)/factorial(2*k), (k, 0, oo)) is oo assert summation(2*k + 1, (k, 0, oo)) is oo def test_issue_6273(): assert Sum(x, (x, 1, n)).n(2, subs={n: 1}) == 1 def test_issue_6274(): assert Sum(x, (x, 1, 0)).doit() == 0 assert NS(Sum(x, (x, 1, 0))) == '0' assert Sum(n, (n, 10, 5)).doit() == -30 assert NS(Sum(n, (n, 10, 5))) == '-30.0000000000000' def test_simplify_sum(): y, t, v = symbols('y, t, v') _simplify = lambda e: simplify(e, doit=False) assert _simplify(Sum(x*y, (x, n, m), (y, a, k)) + \ Sum(y, (x, n, m), (y, a, k))) == Sum(y * (x + 1), (x, n, m), (y, a, k)) assert _simplify(Sum(x, (x, n, m)) + Sum(x, (x, m + 1, a))) == \ Sum(x, (x, n, a)) assert _simplify(Sum(x, (x, k + 1, a)) + Sum(x, (x, n, k))) == \ Sum(x, (x, n, a)) assert _simplify(Sum(x, (x, k + 1, a)) + Sum(x + 1, (x, n, k))) == \ Sum(x, (x, n, a)) + Sum(1, (x, n, k)) assert _simplify(Sum(x, (x, 0, 3)) * 3 + 3 * Sum(x, (x, 4, 6)) + \ 4 * Sum(z, (z, 0, 1))) == 4*Sum(z, (z, 0, 1)) + 3*Sum(x, (x, 0, 6)) assert _simplify(3*Sum(x**2, (x, a, b)) + Sum(x, (x, a, b))) == \ Sum(x*(3*x + 1), (x, a, b)) assert _simplify(Sum(x**3, (x, n, k)) * 3 + 3 * Sum(x, (x, n, k)) + \ 4 * y * Sum(z, (z, n, k))) + 1 == \ 4*y*Sum(z, (z, n, k)) + 3*Sum(x**3 + x, (x, n, k)) + 1 assert _simplify(Sum(x, (x, a, b)) + 1 + Sum(x, (x, b + 1, c))) == \ 1 + Sum(x, (x, a, c)) assert _simplify(Sum(x, (t, a, b)) + Sum(y, (t, a, b)) + \ Sum(x, (t, b+1, c))) == x * Sum(1, (t, a, c)) + y * Sum(1, (t, a, b)) assert _simplify(Sum(x, (t, a, b)) + Sum(x, (t, b+1, c)) + \ Sum(y, (t, a, b))) == x * Sum(1, (t, a, c)) + y * Sum(1, (t, a, b)) assert _simplify(Sum(x, (t, a, b)) + 2 * Sum(x, (t, b+1, c))) == \ _simplify(Sum(x, (t, a, b)) + Sum(x, (t, b+1, c)) + Sum(x, (t, b+1, c))) assert _simplify(Sum(x, (x, a, b))*Sum(x**2, (x, a, b))) == \ Sum(x, (x, a, b)) * Sum(x**2, (x, a, b)) assert _simplify(Sum(x, (t, a, b)) + Sum(y, (t, a, b)) + Sum(z, (t, a, b))) \ == (x + y + z) * Sum(1, (t, a, b)) # issue 8596 assert _simplify(Sum(x, (t, a, b)) + Sum(y, (t, a, b)) + Sum(z, (t, a, b)) + \ Sum(v, (t, a, b))) == (x + y + z + v) * Sum(1, (t, a, b)) # issue 8596 assert _simplify(Sum(x * y, (x, a, b)) / (3 * y)) == \ (Sum(x, (x, a, b)) / 3) assert _simplify(Sum(Function('f')(x) * y * z, (x, a, b)) / (y * z)) \ == Sum(Function('f')(x), (x, a, b)) assert _simplify(Sum(c * x, (x, a, b)) - c * Sum(x, (x, a, b))) == 0 assert _simplify(c * (Sum(x, (x, a, b)) + y)) == c * (y + Sum(x, (x, a, b))) assert _simplify(c * (Sum(x, (x, a, b)) + y * Sum(x, (x, a, b)))) == \ c * (y + 1) * Sum(x, (x, a, b)) assert _simplify(Sum(Sum(c * x, (x, a, b)), (y, a, b))) == \ c * Sum(x, (x, a, b), (y, a, b)) assert _simplify(Sum((3 + y) * Sum(c * x, (x, a, b)), (y, a, b))) == \ c * Sum((3 + y), (y, a, b)) * Sum(x, (x, a, b)) assert _simplify(Sum((3 + t) * Sum(c * t, (x, a, b)), (y, a, b))) == \ c*t*(t + 3)*Sum(1, (x, a, b))*Sum(1, (y, a, b)) assert _simplify(Sum(Sum(d * t, (x, a, b - 1)) + \ Sum(d * t, (x, b, c)), (t, a, b))) == \ d * Sum(1, (x, a, c)) * Sum(t, (t, a, b)) def test_change_index(): b, v, w = symbols('b, v, w', integer = True) assert Sum(x, (x, a, b)).change_index(x, x + 1, y) == \ Sum(y - 1, (y, a + 1, b + 1)) assert Sum(x**2, (x, a, b)).change_index( x, x - 1) == \ Sum((x+1)**2, (x, a - 1, b - 1)) assert Sum(x**2, (x, a, b)).change_index( x, -x, y) == \ Sum((-y)**2, (y, -b, -a)) assert Sum(x, (x, a, b)).change_index( x, -x - 1) == \ Sum(-x - 1, (x, -b - 1, -a - 1)) assert Sum(x*y, (x, a, b), (y, c, d)).change_index( x, x - 1, z) == \ Sum((z + 1)*y, (z, a - 1, b - 1), (y, c, d)) assert Sum(x, (x, a, b)).change_index( x, x + v) == \ Sum(-v + x, (x, a + v, b + v)) assert Sum(x, (x, a, b)).change_index( x, -x - v) == \ Sum(-v - x, (x, -b - v, -a - v)) assert Sum(x, (x, a, b)).change_index(x, w*x, v) == \ Sum(v/w, (v, b*w, a*w)) raises(ValueError, lambda: Sum(x, (x, a, b)).change_index(x, 2*x)) def test_reorder(): b, y, c, d, z = symbols('b, y, c, d, z', integer = True) assert Sum(x*y, (x, a, b), (y, c, d)).reorder((0, 1)) == \ Sum(x*y, (y, c, d), (x, a, b)) assert Sum(x, (x, a, b), (x, c, d)).reorder((0, 1)) == \ Sum(x, (x, c, d), (x, a, b)) assert Sum(x*y + z, (x, a, b), (z, m, n), (y, c, d)).reorder(\ (2, 0), (0, 1)) == Sum(x*y + z, (z, m, n), (y, c, d), (x, a, b)) assert Sum(x*y*z, (x, a, b), (y, c, d), (z, m, n)).reorder(\ (0, 1), (1, 2), (0, 2)) == Sum(x*y*z, (x, a, b), (z, m, n), (y, c, d)) assert Sum(x*y*z, (x, a, b), (y, c, d), (z, m, n)).reorder(\ (x, y), (y, z), (x, z)) == Sum(x*y*z, (x, a, b), (z, m, n), (y, c, d)) assert Sum(x*y, (x, a, b), (y, c, d)).reorder((x, 1)) == \ Sum(x*y, (y, c, d), (x, a, b)) assert Sum(x*y, (x, a, b), (y, c, d)).reorder((y, x)) == \ Sum(x*y, (y, c, d), (x, a, b)) def test_reverse_order(): assert Sum(x, (x, 0, 3)).reverse_order(0) == Sum(-x, (x, 4, -1)) assert Sum(x*y, (x, 1, 5), (y, 0, 6)).reverse_order(0, 1) == \ Sum(x*y, (x, 6, 0), (y, 7, -1)) assert Sum(x, (x, 1, 2)).reverse_order(0) == Sum(-x, (x, 3, 0)) assert Sum(x, (x, 1, 3)).reverse_order(0) == Sum(-x, (x, 4, 0)) assert Sum(x, (x, 1, a)).reverse_order(0) == Sum(-x, (x, a + 1, 0)) assert Sum(x, (x, a, 5)).reverse_order(0) == Sum(-x, (x, 6, a - 1)) assert Sum(x, (x, a + 1, a + 5)).reverse_order(0) == \ Sum(-x, (x, a + 6, a)) assert Sum(x, (x, a + 1, a + 2)).reverse_order(0) == \ Sum(-x, (x, a + 3, a)) assert Sum(x, (x, a + 1, a + 1)).reverse_order(0) == \ Sum(-x, (x, a + 2, a)) assert Sum(x, (x, a, b)).reverse_order(0) == Sum(-x, (x, b + 1, a - 1)) assert Sum(x, (x, a, b)).reverse_order(x) == Sum(-x, (x, b + 1, a - 1)) assert Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1) == \ Sum(x*y, (x, b + 1, a - 1), (y, 6, 1)) assert Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x) == \ Sum(x*y, (x, b + 1, a - 1), (y, 6, 1)) def test_issue_7097(): assert sum(x**n/n for n in range(1, 401)) == summation(x**n/n, (n, 1, 400)) def test_factor_expand_subs(): # test factoring assert Sum(4 * x, (x, 1, y)).factor() == 4 * Sum(x, (x, 1, y)) assert Sum(x * a, (x, 1, y)).factor() == a * Sum(x, (x, 1, y)) assert Sum(4 * x * a, (x, 1, y)).factor() == 4 * a * Sum(x, (x, 1, y)) assert Sum(4 * x * y, (x, 1, y)).factor() == 4 * y * Sum(x, (x, 1, y)) # test expand assert Sum(x+1,(x,1,y)).expand() == Sum(x,(x,1,y)) + Sum(1,(x,1,y)) assert Sum(x+a*x**2,(x,1,y)).expand() == Sum(x,(x,1,y)) + Sum(a*x**2,(x,1,y)) assert Sum(x**(n + 1)*(n + 1), (n, -1, oo)).expand() \ == Sum(x*x**n, (n, -1, oo)) + Sum(n*x*x**n, (n, -1, oo)) assert Sum(x**(n + 1)*(n + 1), (n, -1, oo)).expand(power_exp=False) \ == Sum(n*x**(n+1), (n, -1, oo)) + Sum(x**(n+1), (n, -1, oo)) assert Sum(a*n+a*n**2,(n,0,4)).expand() \ == Sum(a*n,(n,0,4)) + Sum(a*n**2,(n,0,4)) assert Sum(x**a*x**n,(x,0,3)) \ == Sum(x**(a+n),(x,0,3)).expand(power_exp=True) assert Sum(x**(a+n),(x,0,3)) \ == Sum(x**(a+n),(x,0,3)).expand(power_exp=False) # test subs assert Sum(1/(1+a*x**2),(x,0,3)).subs([(a,3)]) == Sum(1/(1+3*x**2),(x,0,3)) assert Sum(x*y,(x,0,y),(y,0,x)).subs([(x,3)]) == Sum(x*y,(x,0,y),(y,0,3)) assert Sum(x,(x,1,10)).subs([(x,y-2)]) == Sum(x,(x,1,10)) assert Sum(1/x,(x,1,10)).subs([(x,(3+n)**3)]) == Sum(1/x,(x,1,10)) assert Sum(1/x,(x,1,10)).subs([(x,3*x-2)]) == Sum(1/x,(x,1,10)) def test_distribution_over_equality(): f = Function('f') assert Product(Eq(x*2, f(x)), (x, 1, 3)).doit() == Eq(48, f(1)*f(2)*f(3)) assert Sum(Eq(f(x), x**2), (x, 0, y)) == \ Eq(Sum(f(x), (x, 0, y)), Sum(x**2, (x, 0, y))) def test_issue_2787(): n, k = symbols('n k', positive=True, integer=True) p = symbols('p', positive=True) binomial_dist = binomial(n, k)*p**k*(1 - p)**(n - k) s = Sum(binomial_dist*k, (k, 0, n)) res = s.doit().simplify() assert res == Piecewise( (n*p, p/Abs(p - 1) <= 1), ((-p + 1)**n*Sum(k*p**k*(-p + 1)**(-k)*binomial(n, k), (k, 0, n)), True)) # Issue #17165: make sure that another simplify does not change/increase # the result assert res == res.simplify() def test_issue_4668(): assert summation(1/n, (n, 2, oo)) is oo def test_matrix_sum(): A = Matrix([[0, 1], [n, 0]]) result = Sum(A, (n, 0, 3)).doit() assert result == Matrix([[0, 4], [6, 0]]) assert result.__class__ == ImmutableDenseMatrix A = SparseMatrix([[0, 1], [n, 0]]) result = Sum(A, (n, 0, 3)).doit() assert result.__class__ == ImmutableSparseMatrix def test_failing_matrix_sum(): n = Symbol('n') # TODO Implement matrix geometric series summation. A = Matrix([[0, 1, 0], [-1, 0, 0], [0, 0, 0]]) assert Sum(A ** n, (n, 1, 4)).doit() == \ Matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0]]) # issue sympy/sympy#16989 assert summation(A**n, (n, 1, 1)) == A def test_indexed_idx_sum(): i = symbols('i', cls=Idx) r = Indexed('r', i) assert Sum(r, (i, 0, 3)).doit() == sum([r.xreplace({i: j}) for j in range(4)]) assert Product(r, (i, 0, 3)).doit() == prod([r.xreplace({i: j}) for j in range(4)]) j = symbols('j', integer=True) assert Sum(r, (i, j, j+2)).doit() == sum([r.xreplace({i: j+k}) for k in range(3)]) assert Product(r, (i, j, j+2)).doit() == prod([r.xreplace({i: j+k}) for k in range(3)]) k = Idx('k', range=(1, 3)) A = IndexedBase('A') assert Sum(A[k], k).doit() == sum([A[Idx(j, (1, 3))] for j in range(1, 4)]) assert Product(A[k], k).doit() == prod([A[Idx(j, (1, 3))] for j in range(1, 4)]) raises(ValueError, lambda: Sum(A[k], (k, 1, 4))) raises(ValueError, lambda: Sum(A[k], (k, 0, 3))) raises(ValueError, lambda: Sum(A[k], (k, 2, oo))) raises(ValueError, lambda: Product(A[k], (k, 1, 4))) raises(ValueError, lambda: Product(A[k], (k, 0, 3))) raises(ValueError, lambda: Product(A[k], (k, 2, oo))) def test_is_convergent(): # divergence tests -- assert Sum(n/(2*n + 1), (n, 1, oo)).is_convergent() is S.false assert Sum(factorial(n)/5**n, (n, 1, oo)).is_convergent() is S.false assert Sum(3**(-2*n - 1)*n**n, (n, 1, oo)).is_convergent() is S.false assert Sum((-1)**n*n, (n, 3, oo)).is_convergent() is S.false assert Sum((-1)**n, (n, 1, oo)).is_convergent() is S.false assert Sum(log(1/n), (n, 2, oo)).is_convergent() is S.false # Raabe's test -- assert Sum(Product((3*m),(m,1,n))/Product((3*m+4),(m,1,n)),(n,1,oo)).is_convergent() is S.true # root test -- assert Sum((-12)**n/n, (n, 1, oo)).is_convergent() is S.false # integral test -- # p-series test -- assert Sum(1/(n**2 + 1), (n, 1, oo)).is_convergent() is S.true assert Sum(1/n**Rational(6, 5), (n, 1, oo)).is_convergent() is S.true assert Sum(2/(n*sqrt(n - 1)), (n, 2, oo)).is_convergent() is S.true assert Sum(1/(sqrt(n)*sqrt(n)), (n, 2, oo)).is_convergent() is S.false assert Sum(factorial(n) / factorial(n+2), (n, 1, oo)).is_convergent() is S.true assert Sum(rf(5,n)/rf(7,n),(n,1,oo)).is_convergent() is S.true assert Sum((rf(1, n)*rf(2, n))/(rf(3, n)*factorial(n)),(n,1,oo)).is_convergent() is S.false # comparison test -- assert Sum(1/(n + log(n)), (n, 1, oo)).is_convergent() is S.false assert Sum(1/(n**2*log(n)), (n, 2, oo)).is_convergent() is S.true assert Sum(1/(n*log(n)), (n, 2, oo)).is_convergent() is S.false assert Sum(2/(n*log(n)*log(log(n))**2), (n, 5, oo)).is_convergent() is S.true assert Sum(2/(n*log(n)**2), (n, 2, oo)).is_convergent() is S.true assert Sum((n - 1)/(n**2*log(n)**3), (n, 2, oo)).is_convergent() is S.true assert Sum(1/(n*log(n)*log(log(n))), (n, 5, oo)).is_convergent() is S.false assert Sum((n - 1)/(n*log(n)**3), (n, 3, oo)).is_convergent() is S.false assert Sum(2/(n**2*log(n)), (n, 2, oo)).is_convergent() is S.true assert Sum(1/(n*sqrt(log(n))*log(log(n))), (n, 100, oo)).is_convergent() is S.false assert Sum(log(log(n))/(n*log(n)**2), (n, 100, oo)).is_convergent() is S.true assert Sum(log(n)/n**2, (n, 5, oo)).is_convergent() is S.true # alternating series tests -- assert Sum((-1)**(n - 1)/(n**2 - 1), (n, 3, oo)).is_convergent() is S.true # with -negativeInfinite Limits assert Sum(1/(n**2 + 1), (n, -oo, 1)).is_convergent() is S.true assert Sum(1/(n - 1), (n, -oo, -1)).is_convergent() is S.false assert Sum(1/(n**2 - 1), (n, -oo, -5)).is_convergent() is S.true assert Sum(1/(n**2 - 1), (n, -oo, 2)).is_convergent() is S.true assert Sum(1/(n**2 - 1), (n, -oo, oo)).is_convergent() is S.true # piecewise functions f = Piecewise((n**(-2), n <= 1), (n**2, n > 1)) assert Sum(f, (n, 1, oo)).is_convergent() is S.false assert Sum(f, (n, -oo, oo)).is_convergent() is S.false assert Sum(f, (n, 1, 100)).is_convergent() is S.true #assert Sum(f, (n, -oo, 1)).is_convergent() is S.true # integral test assert Sum(log(n)/n**3, (n, 1, oo)).is_convergent() is S.true assert Sum(-log(n)/n**3, (n, 1, oo)).is_convergent() is S.true # the following function has maxima located at (x, y) = # (1.2, 0.43), (3.0, -0.25) and (6.8, 0.050) eq = (x - 2)*(x**2 - 6*x + 4)*exp(-x) assert Sum(eq, (x, 1, oo)).is_convergent() is S.true assert Sum(eq, (x, 1, 2)).is_convergent() is S.true assert Sum(1/(x**3), (x, 1, oo)).is_convergent() is S.true assert Sum(1/(x**S.Half), (x, 1, oo)).is_convergent() is S.false # issue 19545 assert Sum(1/n - 3/(3*n +2), (n, 1, oo)).is_convergent() is S.true # issue 19836 assert Sum(4/(n + 2) - 5/(n + 1) + 1/n,(n, 7, oo)).is_convergent() is S.true def test_is_absolutely_convergent(): assert Sum((-1)**n, (n, 1, oo)).is_absolutely_convergent() is S.false assert Sum((-1)**n/n**2, (n, 1, oo)).is_absolutely_convergent() is S.true @XFAIL def test_convergent_failing(): # dirichlet tests assert Sum(sin(n)/n, (n, 1, oo)).is_convergent() is S.true assert Sum(sin(2*n)/n, (n, 1, oo)).is_convergent() is S.true def test_issue_6966(): i, k, m = symbols('i k m', integer=True) z_i, q_i = symbols('z_i q_i') a_k = Sum(-q_i*z_i/k,(i,1,m)) b_k = a_k.diff(z_i) assert isinstance(b_k, Sum) assert b_k == Sum(-q_i/k,(i,1,m)) def test_issue_10156(): cx = Sum(2*y**2*x, (x, 1,3)) e = 2*y*Sum(2*cx*x**2, (x, 1, 9)) assert e.factor() == \ 8*y**3*Sum(x, (x, 1, 3))*Sum(x**2, (x, 1, 9)) def test_issue_10973(): assert Sum((-n + (n**3 + 1)**(S(1)/3))/log(n), (n, 1, oo)).is_convergent() is S.true def test_issue_14129(): assert Sum( k*x**k, (k, 0, n-1)).doit() == \ Piecewise((n**2/2 - n/2, Eq(x, 1)), ((n*x*x**n - n*x**n - x*x**n + x)/(x - 1)**2, True)) assert Sum( x**k, (k, 0, n-1)).doit() == \ Piecewise((n, Eq(x, 1)), ((-x**n + 1)/(-x + 1), True)) assert Sum( k*(x/y+x)**k, (k, 0, n-1)).doit() == \ Piecewise((n*(n - 1)/2, Eq(x, y/(y + 1))), (x*(y + 1)*(n*x*y*(x + x/y)**n/(x + x/y) + n*x*(x + x/y)**n/(x + x/y) - n*y*(x + x/y)**n/(x + x/y) - x*y*(x + x/y)**n/(x + x/y) - x*(x + x/y)**n/(x + x/y) + y)/(x*y + x - y)**2, True)) def test_issue_14112(): assert Sum((-1)**n/sqrt(n), (n, 1, oo)).is_absolutely_convergent() is S.false assert Sum((-1)**(2*n)/n, (n, 1, oo)).is_convergent() is S.false assert Sum((-2)**n + (-3)**n, (n, 1, oo)).is_convergent() is S.false def test_sin_times_absolutely_convergent(): assert Sum(sin(n) / n**3, (n, 1, oo)).is_convergent() is S.true assert Sum(sin(n) * log(n) / n**3, (n, 1, oo)).is_convergent() is S.true def test_issue_14111(): assert Sum(1/log(log(n)), (n, 22, oo)).is_convergent() is S.false def test_issue_14484(): raises(NotImplementedError, lambda: Sum(sin(n)/log(log(n)), (n, 22, oo)).is_convergent()) def test_issue_14640(): i, n = symbols("i n", integer=True) a, b, c = symbols("a b c") assert Sum(a**-i/(a - b), (i, 0, n)).doit() == Sum( 1/(a*a**i - a**i*b), (i, 0, n)).doit() == Piecewise( (n + 1, Eq(1/a, 1)), ((-a**(-n - 1) + 1)/(1 - 1/a), True))/(a - b) assert Sum((b*a**i - c*a**i)**-2, (i, 0, n)).doit() == Piecewise( (n + 1, Eq(a**(-2), 1)), ((-a**(-2*n - 2) + 1)/(1 - 1/a**2), True))/(b - c)**2 s = Sum(i*(a**(n - i) - b**(n - i))/(a - b), (i, 0, n)).doit() assert not s.has(Sum) assert s.subs({a: 2, b: 3, n: 5}) == 122 def test_issue_15943(): s = Sum(binomial(n, k)*factorial(n - k), (k, 0, n)).doit().rewrite(gamma) assert s == -E*(n + 1)*gamma(n + 1)*lowergamma(n + 1, 1)/gamma(n + 2 ) + E*gamma(n + 1) assert s.simplify() == E*(factorial(n) - lowergamma(n + 1, 1)) def test_Sum_dummy_eq(): assert not Sum(x, (x, a, b)).dummy_eq(1) assert not Sum(x, (x, a, b)).dummy_eq(Sum(x, (x, a, b), (a, 1, 2))) assert not Sum(x, (x, a, b)).dummy_eq(Sum(x, (x, a, c))) assert Sum(x, (x, a, b)).dummy_eq(Sum(x, (x, a, b))) d = Dummy() assert Sum(x, (x, a, d)).dummy_eq(Sum(x, (x, a, c)), c) assert not Sum(x, (x, a, d)).dummy_eq(Sum(x, (x, a, c))) assert Sum(x, (x, a, c)).dummy_eq(Sum(y, (y, a, c))) assert Sum(x, (x, a, d)).dummy_eq(Sum(y, (y, a, c)), c) assert not Sum(x, (x, a, d)).dummy_eq(Sum(y, (y, a, c))) def test_issue_15852(): assert summation(x**y*y, (y, -oo, oo)).doit() == Sum(x**y*y, (y, -oo, oo)) def test_exceptions(): S = Sum(x, (x, a, b)) raises(ValueError, lambda: S.change_index(x, x**2, y)) S = Sum(x, (x, a, b), (x, 1, 4)) raises(ValueError, lambda: S.index(x)) S = Sum(x, (x, a, b), (y, 1, 4)) raises(ValueError, lambda: S.reorder([x])) S = Sum(x, (x, y, b), (y, 1, 4)) raises(ReorderError, lambda: S.reorder_limit(0, 1)) S = Sum(x*y, (x, a, b), (y, 1, 4)) raises(NotImplementedError, lambda: S.is_convergent()) def test_sumproducts_assumptions(): M = Symbol('M', integer=True, positive=True) m = Symbol('m', integer=True) for func in [Sum, Product]: assert func(m, (m, -M, M)).is_positive is None assert func(m, (m, -M, M)).is_nonpositive is None assert func(m, (m, -M, M)).is_negative is None assert func(m, (m, -M, M)).is_nonnegative is None assert func(m, (m, -M, M)).is_finite is True m = Symbol('m', integer=True, nonnegative=True) for func in [Sum, Product]: assert func(m, (m, 0, M)).is_positive is None assert func(m, (m, 0, M)).is_nonpositive is None assert func(m, (m, 0, M)).is_negative is False assert func(m, (m, 0, M)).is_nonnegative is True assert func(m, (m, 0, M)).is_finite is True m = Symbol('m', integer=True, positive=True) for func in [Sum, Product]: assert func(m, (m, 1, M)).is_positive is True assert func(m, (m, 1, M)).is_nonpositive is False assert func(m, (m, 1, M)).is_negative is False assert func(m, (m, 1, M)).is_nonnegative is True assert func(m, (m, 1, M)).is_finite is True m = Symbol('m', integer=True, negative=True) assert Sum(m, (m, -M, -1)).is_positive is False assert Sum(m, (m, -M, -1)).is_nonpositive is True assert Sum(m, (m, -M, -1)).is_negative is True assert Sum(m, (m, -M, -1)).is_nonnegative is False assert Sum(m, (m, -M, -1)).is_finite is True assert Product(m, (m, -M, -1)).is_positive is None assert Product(m, (m, -M, -1)).is_nonpositive is None assert Product(m, (m, -M, -1)).is_negative is None assert Product(m, (m, -M, -1)).is_nonnegative is None assert Product(m, (m, -M, -1)).is_finite is True m = Symbol('m', integer=True, nonpositive=True) assert Sum(m, (m, -M, 0)).is_positive is False assert Sum(m, (m, -M, 0)).is_nonpositive is True assert Sum(m, (m, -M, 0)).is_negative is None assert Sum(m, (m, -M, 0)).is_nonnegative is None assert Sum(m, (m, -M, 0)).is_finite is True assert Product(m, (m, -M, 0)).is_positive is None assert Product(m, (m, -M, 0)).is_nonpositive is None assert Product(m, (m, -M, 0)).is_negative is None assert Product(m, (m, -M, 0)).is_nonnegative is None assert Product(m, (m, -M, 0)).is_finite is True m = Symbol('m', integer=True) assert Sum(2, (m, 0, oo)).is_positive is None assert Sum(2, (m, 0, oo)).is_nonpositive is None assert Sum(2, (m, 0, oo)).is_negative is None assert Sum(2, (m, 0, oo)).is_nonnegative is None assert Sum(2, (m, 0, oo)).is_finite is None assert Product(2, (m, 0, oo)).is_positive is None assert Product(2, (m, 0, oo)).is_nonpositive is None assert Product(2, (m, 0, oo)).is_negative is False assert Product(2, (m, 0, oo)).is_nonnegative is None assert Product(2, (m, 0, oo)).is_finite is None assert Product(0, (x, M, M-1)).is_positive is True assert Product(0, (x, M, M-1)).is_finite is True def test_expand_with_assumptions(): M = Symbol('M', integer=True, positive=True) x = Symbol('x', positive=True) m = Symbol('m', nonnegative=True) assert log(Product(x**m, (m, 0, M))).expand() == Sum(m*log(x), (m, 0, M)) assert log(Product(exp(x**m), (m, 0, M))).expand() == Sum(x**m, (m, 0, M)) assert log(Product(x**m, (m, 0, M))).rewrite(Sum).expand() == Sum(m*log(x), (m, 0, M)) assert log(Product(exp(x**m), (m, 0, M))).rewrite(Sum).expand() == Sum(x**m, (m, 0, M)) n = Symbol('n', nonnegative=True) i, j = symbols('i,j', positive=True, integer=True) x, y = symbols('x,y', positive=True) assert log(Product(x**i*y**j, (i, 1, n), (j, 1, m))).expand() \ == Sum(i*log(x) + j*log(y), (i, 1, n), (j, 1, m)) def test_has_finite_limits(): x = Symbol('x') assert Sum(1, (x, 1, 9)).has_finite_limits is True assert Sum(1, (x, 1, oo)).has_finite_limits is False M = Symbol('M') assert Sum(1, (x, 1, M)).has_finite_limits is None M = Symbol('M', positive=True) assert Sum(1, (x, 1, M)).has_finite_limits is True x = Symbol('x', positive=True) M = Symbol('M') assert Sum(1, (x, 1, M)).has_finite_limits is True assert Sum(1, (x, 1, M), (y, -oo, oo)).has_finite_limits is False def test_has_reversed_limits(): assert Sum(1, (x, 1, 1)).has_reversed_limits is False assert Sum(1, (x, 1, 9)).has_reversed_limits is False assert Sum(1, (x, 1, -9)).has_reversed_limits is True assert Sum(1, (x, 1, 0)).has_reversed_limits is True assert Sum(1, (x, 1, oo)).has_reversed_limits is False M = Symbol('M') assert Sum(1, (x, 1, M)).has_reversed_limits is None M = Symbol('M', positive=True, integer=True) assert Sum(1, (x, 1, M)).has_reversed_limits is False assert Sum(1, (x, 1, M), (y, -oo, oo)).has_reversed_limits is False M = Symbol('M', negative=True) assert Sum(1, (x, 1, M)).has_reversed_limits is True assert Sum(1, (x, 1, M), (y, -oo, oo)).has_reversed_limits is True assert Sum(1, (x, oo, oo)).has_reversed_limits is None def test_has_empty_sequence(): assert Sum(1, (x, 1, 1)).has_empty_sequence is False assert Sum(1, (x, 1, 9)).has_empty_sequence is False assert Sum(1, (x, 1, -9)).has_empty_sequence is False assert Sum(1, (x, 1, 0)).has_empty_sequence is True assert Sum(1, (x, y, y - 1)).has_empty_sequence is True assert Sum(1, (x, 3, 2), (y, -oo, oo)).has_empty_sequence is True assert Sum(1, (y, -oo, oo), (x, 3, 2)).has_empty_sequence is True assert Sum(1, (x, oo, oo)).has_empty_sequence is False def test_empty_sequence(): assert Product(x*y, (x, -oo, oo), (y, 1, 0)).doit() == 1 assert Product(x*y, (y, 1, 0), (x, -oo, oo)).doit() == 1 assert Sum(x, (x, -oo, oo), (y, 1, 0)).doit() == 0 assert Sum(x, (y, 1, 0), (x, -oo, oo)).doit() == 0 def test_issue_8016(): k = Symbol('k', integer=True) n, m = symbols('n, m', integer=True, positive=True) s = Sum(binomial(m, k)*binomial(m, n - k)*(-1)**k, (k, 0, n)) assert s.doit().simplify() == \ cos(pi*n/2)*gamma(m + 1)/gamma(n/2 + 1)/gamma(m - n/2 + 1) @XFAIL def test_issue_14313(): assert Sum(S.Half**floor(n/2), (n, 1, oo)).is_convergent() def test_issue_16735(): assert Sum(5**n/gamma(n+1), (n, 1, oo)).is_convergent() is S.true def test_issue_14871(): assert Sum((Rational(1, 10))**n*rf(0, n)/factorial(n), (n, 0, oo)).rewrite(factorial).doit() == 1 def test_issue_17165(): n = symbols("n", integer=True) x = symbols('x') s = (x*Sum(x**n, (n, -1, oo))) ssimp = s.doit().simplify() assert ssimp == Piecewise((-1/(x - 1), Abs(x) < 1), (x*Sum(x**n, (n, -1, oo)), True)) assert ssimp == ssimp.simplify() def test_issue_19379(): assert Sum(factorial(n)/factorial(n + 2), (n, 1, oo)).is_convergent() is S.true def test_issue_20777(): assert Sum(exp(x*sin(n/m)), (n, 1, m)).doit() == Sum(exp(x*sin(n/m)), (n, 1, m)) def test__dummy_with_inherited_properties_concrete(): x = Symbol('x') from sympy import Tuple d = _dummy_with_inherited_properties_concrete(Tuple(x, 0, 5)) assert d.is_real assert d.is_integer assert d.is_nonnegative assert d.is_extended_nonnegative d = _dummy_with_inherited_properties_concrete(Tuple(x, 1, 9)) assert d.is_real assert d.is_integer assert d.is_positive assert d.is_odd is None d = _dummy_with_inherited_properties_concrete(Tuple(x, -5, 5)) assert d.is_real assert d.is_integer assert d.is_positive is None assert d.is_extended_nonnegative is None assert d.is_odd is None d = _dummy_with_inherited_properties_concrete(Tuple(x, -1.5, 1.5)) assert d.is_real assert d.is_integer is None assert d.is_positive is None assert d.is_extended_nonnegative is None N = Symbol('N', integer=True, positive=True) d = _dummy_with_inherited_properties_concrete(Tuple(x, 2, N)) assert d.is_real assert d.is_positive assert d.is_integer # Return None if no assumptions are added N = Symbol('N', integer=True, positive=True) d = _dummy_with_inherited_properties_concrete(Tuple(N, 2, 4)) assert d is None x = Symbol('x', negative=True) raises(InconsistentAssumptions, lambda: _dummy_with_inherited_properties_concrete(Tuple(x, 1, 5))) def test_matrixsymbol_summation_numerical_limits(): A = MatrixSymbol('A', 3, 3) n = Symbol('n', integer=True) assert Sum(A**n, (n, 0, 2)).doit() == Identity(3) + A + A**2 assert Sum(A, (n, 0, 2)).doit() == 3*A assert Sum(n*A, (n, 0, 2)).doit() == 3*A B = Matrix([[0, n, 0], [-1, 0, 0], [0, 0, 2]]) ans = Matrix([[0, 6, 0], [-4, 0, 0], [0, 0, 8]]) + 4*A assert Sum(A+B, (n, 0, 3)).doit() == ans ans = A*Matrix([[0, 6, 0], [-4, 0, 0], [0, 0, 8]]) assert Sum(A*B, (n, 0, 3)).doit() == ans ans = (A**2*Matrix([[-2, 0, 0], [0,-2, 0], [0, 0, 4]]) + A**3*Matrix([[0, -9, 0], [3, 0, 0], [0, 0, 8]]) + A*Matrix([[0, 1, 0], [-1, 0, 0], [0, 0, 2]])) assert Sum(A**n*B**n, (n, 1, 3)).doit() == ans @XFAIL def test_matrixsymbol_summation_symbolic_limits(): N = Symbol('N', integer=True, positive=True) A = MatrixSymbol('A', 3, 3) n = Symbol('n', integer=True) assert Sum(A, (n, 0, N)).doit() == (N+1)*A assert Sum(n*A, (n, 0, N)).doit() == (N**2/2+N/2)*A
c2b6f593d045e4fd2c2f76dbd53195a43e3443e55eb02047f85123f1e7e21b12
from itertools import product as cartes from sympy import ( limit, exp, oo, log, sqrt, Limit, sin, floor, cos, ceiling, atan, Abs, gamma, Symbol, S, pi, Integral, Rational, I, tan, cot, integrate, Sum, sign, Function, subfactorial, symbols, binomial, simplify, frac, Float, sec, zoo, fresnelc, fresnels, acos, erf, erfc, erfi, LambertW, factorial, digamma, uppergamma, Ei, EulerGamma, asin, atanh, acot, acoth, asec, acsc, cbrt, besselk) from sympy.calculus.util import AccumBounds from sympy.core.add import Add from sympy.core.mul import Mul from sympy.series.limits import heuristics from sympy.series.order import Order from sympy.testing.pytest import XFAIL, raises from sympy.abc import x, y, z, k n = Symbol('n', integer=True, positive=True) def test_basic1(): assert limit(x, x, oo) is oo assert limit(x, x, -oo) is -oo assert limit(-x, x, oo) is -oo assert limit(x**2, x, -oo) is oo assert limit(-x**2, x, oo) is -oo assert limit(x*log(x), x, 0, dir="+") == 0 assert limit(1/x, x, oo) == 0 assert limit(exp(x), x, oo) is oo assert limit(-exp(x), x, oo) is -oo assert limit(exp(x)/x, x, oo) is oo assert limit(1/x - exp(-x), x, oo) == 0 assert limit(x + 1/x, x, oo) is oo assert limit(x - x**2, x, oo) is -oo assert limit((1 + x)**(1 + sqrt(2)), x, 0) == 1 assert limit((1 + x)**oo, x, 0) == Limit((x + 1)**oo, x, 0) assert limit((1 + x)**oo, x, 0, dir='-') == Limit((x + 1)**oo, x, 0, dir='-') assert limit((1 + x + y)**oo, x, 0, dir='-') == Limit((x + y + 1)**oo, x, 0, dir='-') assert limit(y/x/log(x), x, 0) == -oo*sign(y) assert limit(cos(x + y)/x, x, 0) == sign(cos(y))*oo assert limit(gamma(1/x + 3), x, oo) == 2 assert limit(S.NaN, x, -oo) is S.NaN assert limit(Order(2)*x, x, S.NaN) is S.NaN assert limit(1/(x - 1), x, 1, dir="+") is oo assert limit(1/(x - 1), x, 1, dir="-") is -oo assert limit(1/(5 - x)**3, x, 5, dir="+") is -oo assert limit(1/(5 - x)**3, x, 5, dir="-") is oo assert limit(1/sin(x), x, pi, dir="+") is -oo assert limit(1/sin(x), x, pi, dir="-") is oo assert limit(1/cos(x), x, pi/2, dir="+") is -oo assert limit(1/cos(x), x, pi/2, dir="-") is oo assert limit(1/tan(x**3), x, (2*pi)**Rational(1, 3), dir="+") is oo assert limit(1/tan(x**3), x, (2*pi)**Rational(1, 3), dir="-") is -oo assert limit(1/cot(x)**3, x, (pi*Rational(3, 2)), dir="+") is -oo assert limit(1/cot(x)**3, x, (pi*Rational(3, 2)), dir="-") is oo # test bi-directional limits assert limit(sin(x)/x, x, 0, dir="+-") == 1 assert limit(x**2, x, 0, dir="+-") == 0 assert limit(1/x**2, x, 0, dir="+-") is oo # test failing bi-directional limits assert limit(1/x, x, 0, dir="+-") is zoo # approaching 0 # from dir="+" assert limit(1 + 1/x, x, 0) is oo # from dir='-' # Add assert limit(1 + 1/x, x, 0, dir='-') is -oo # Pow assert limit(x**(-2), x, 0, dir='-') is oo assert limit(x**(-3), x, 0, dir='-') is -oo assert limit(1/sqrt(x), x, 0, dir='-') == (-oo)*I assert limit(x**2, x, 0, dir='-') == 0 assert limit(sqrt(x), x, 0, dir='-') == 0 assert limit(x**-pi, x, 0, dir='-') == oo*sign((-1)**(-pi)) assert limit((1 + cos(x))**oo, x, 0) == Limit((cos(x) + 1)**oo, x, 0) def test_basic2(): assert limit(x**x, x, 0, dir="+") == 1 assert limit((exp(x) - 1)/x, x, 0) == 1 assert limit(1 + 1/x, x, oo) == 1 assert limit(-exp(1/x), x, oo) == -1 assert limit(x + exp(-x), x, oo) is oo assert limit(x + exp(-x**2), x, oo) is oo assert limit(x + exp(-exp(x)), x, oo) is oo assert limit(13 + 1/x - exp(-x), x, oo) == 13 def test_basic3(): assert limit(1/x, x, 0, dir="+") is oo assert limit(1/x, x, 0, dir="-") is -oo def test_basic4(): assert limit(2*x + y*x, x, 0) == 0 assert limit(2*x + y*x, x, 1) == 2 + y assert limit(2*x**8 + y*x**(-3), x, -2) == 512 - y/8 assert limit(sqrt(x + 1) - sqrt(x), x, oo) == 0 assert integrate(1/(x**3 + 1), (x, 0, oo)) == 2*pi*sqrt(3)/9 def test_basic5(): class my(Function): @classmethod def eval(cls, arg): if arg is S.Infinity: return S.NaN assert limit(my(x), x, oo) == Limit(my(x), x, oo) def test_issue_3885(): assert limit(x*y + x*z, z, 2) == x*(y + 2) def test_Limit(): assert Limit(sin(x)/x, x, 0) != 1 assert Limit(sin(x)/x, x, 0).doit() == 1 assert Limit(x, x, 0, dir='+-').args == (x, x, 0, Symbol('+-')) def test_floor(): assert limit(floor(x), x, -2, "+") == -2 assert limit(floor(x), x, -2, "-") == -3 assert limit(floor(x), x, -1, "+") == -1 assert limit(floor(x), x, -1, "-") == -2 assert limit(floor(x), x, 0, "+") == 0 assert limit(floor(x), x, 0, "-") == -1 assert limit(floor(x), x, 1, "+") == 1 assert limit(floor(x), x, 1, "-") == 0 assert limit(floor(x), x, 2, "+") == 2 assert limit(floor(x), x, 2, "-") == 1 assert limit(floor(x), x, 248, "+") == 248 assert limit(floor(x), x, 248, "-") == 247 def test_floor_requires_robust_assumptions(): assert limit(floor(sin(x)), x, 0, "+") == 0 assert limit(floor(sin(x)), x, 0, "-") == -1 assert limit(floor(cos(x)), x, 0, "+") == 0 assert limit(floor(cos(x)), x, 0, "-") == 0 assert limit(floor(5 + sin(x)), x, 0, "+") == 5 assert limit(floor(5 + sin(x)), x, 0, "-") == 4 assert limit(floor(5 + cos(x)), x, 0, "+") == 5 assert limit(floor(5 + cos(x)), x, 0, "-") == 5 def test_ceiling(): assert limit(ceiling(x), x, -2, "+") == -1 assert limit(ceiling(x), x, -2, "-") == -2 assert limit(ceiling(x), x, -1, "+") == 0 assert limit(ceiling(x), x, -1, "-") == -1 assert limit(ceiling(x), x, 0, "+") == 1 assert limit(ceiling(x), x, 0, "-") == 0 assert limit(ceiling(x), x, 1, "+") == 2 assert limit(ceiling(x), x, 1, "-") == 1 assert limit(ceiling(x), x, 2, "+") == 3 assert limit(ceiling(x), x, 2, "-") == 2 assert limit(ceiling(x), x, 248, "+") == 249 assert limit(ceiling(x), x, 248, "-") == 248 def test_ceiling_requires_robust_assumptions(): assert limit(ceiling(sin(x)), x, 0, "+") == 1 assert limit(ceiling(sin(x)), x, 0, "-") == 0 assert limit(ceiling(cos(x)), x, 0, "+") == 1 assert limit(ceiling(cos(x)), x, 0, "-") == 1 assert limit(ceiling(5 + sin(x)), x, 0, "+") == 6 assert limit(ceiling(5 + sin(x)), x, 0, "-") == 5 assert limit(ceiling(5 + cos(x)), x, 0, "+") == 6 assert limit(ceiling(5 + cos(x)), x, 0, "-") == 6 def test_atan(): x = Symbol("x", real=True) assert limit(atan(x)*sin(1/x), x, 0) == 0 assert limit(atan(x) + sqrt(x + 1) - sqrt(x), x, oo) == pi/2 def test_abs(): assert limit(abs(x), x, 0) == 0 assert limit(abs(sin(x)), x, 0) == 0 assert limit(abs(cos(x)), x, 0) == 1 assert limit(abs(sin(x + 1)), x, 0) == sin(1) def test_heuristic(): x = Symbol("x", real=True) assert heuristics(sin(1/x) + atan(x), x, 0, '+') == AccumBounds(-1, 1) assert limit(log(2 + sqrt(atan(x))*sqrt(sin(1/x))), x, 0) == log(2) def test_issue_3871(): z = Symbol("z", positive=True) f = -1/z*exp(-z*x) assert limit(f, x, oo) == 0 assert f.limit(x, oo) == 0 def test_exponential(): n = Symbol('n') x = Symbol('x', real=True) assert limit((1 + x/n)**n, n, oo) == exp(x) assert limit((1 + x/(2*n))**n, n, oo) == exp(x/2) assert limit((1 + x/(2*n + 1))**n, n, oo) == exp(x/2) assert limit(((x - 1)/(x + 1))**x, x, oo) == exp(-2) assert limit(1 + (1 + 1/x)**x, x, oo) == 1 + S.Exp1 assert limit((2 + 6*x)**x/(6*x)**x, x, oo) == exp(S('1/3')) def test_exponential2(): n = Symbol('n') assert limit((1 + x/(n + sin(n)))**n, n, oo) == exp(x) def test_doit(): f = Integral(2 * x, x) l = Limit(f, x, oo) assert l.doit() is oo def test_AccumBounds(): assert limit(sin(k) - sin(k + 1), k, oo) == AccumBounds(-2, 2) assert limit(cos(k) - cos(k + 1) + 1, k, oo) == AccumBounds(-1, 3) # not the exact bound assert limit(sin(k) - sin(k)*cos(k), k, oo) == AccumBounds(-2, 2) # test for issue #9934 t1 = Mul(S.Half, 1/(-1 + cos(1)), Add(AccumBounds(-3, 1), cos(1))) assert limit(simplify(Sum(cos(n).rewrite(exp), (n, 0, k)).doit().rewrite(sin)), k, oo) == t1 t2 = Mul(S.Half, Add(AccumBounds(-2, 2), sin(1)), 1/(-cos(1) + 1)) assert limit(simplify(Sum(sin(n).rewrite(exp), (n, 0, k)).doit().rewrite(sin)), k, oo) == t2 assert limit(frac(x)**x, x, oo) == AccumBounds(0, oo) assert limit(((sin(x) + 1)/2)**x, x, oo) == AccumBounds(0, oo) # Possible improvement: AccumBounds(0, 1) @XFAIL def test_doit2(): f = Integral(2 * x, x) l = Limit(f, x, oo) # limit() breaks on the contained Integral. assert l.doit(deep=False) == l def test_issue_2929(): assert limit((x * exp(x))/(exp(x) - 1), x, -oo) == 0 def test_issue_3792(): assert limit((1 - cos(x))/x**2, x, S.Half) == 4 - 4*cos(S.Half) assert limit(sin(sin(x + 1) + 1), x, 0) == sin(1 + sin(1)) assert limit(abs(sin(x + 1) + 1), x, 0) == 1 + sin(1) def test_issue_4090(): assert limit(1/(x + 3), x, 2) == Rational(1, 5) assert limit(1/(x + pi), x, 2) == S.One/(2 + pi) assert limit(log(x)/(x**2 + 3), x, 2) == log(2)/7 assert limit(log(x)/(x**2 + pi), x, 2) == log(2)/(4 + pi) def test_issue_4547(): assert limit(cot(x), x, 0, dir='+') is oo assert limit(cot(x), x, pi/2, dir='+') == 0 def test_issue_5164(): assert limit(x**0.5, x, oo) == oo**0.5 is oo assert limit(x**0.5, x, 16) == S(16)**0.5 assert limit(x**0.5, x, 0) == 0 assert limit(x**(-0.5), x, oo) == 0 assert limit(x**(-0.5), x, 4) == S(4)**(-0.5) def test_issue_14793(): expr = ((x + S(1)/2) * log(x) - x + log(2*pi)/2 - \ log(factorial(x)) + S(1)/(12*x))*x**3 assert limit(expr, x, oo) == S(1)/360 def test_issue_5183(): # using list(...) so py.test can recalculate values tests = list(cartes([x, -x], [-1, 1], [2, 3, S.Half, Rational(2, 3)], ['-', '+'])) results = (oo, oo, -oo, oo, -oo*I, oo, -oo*(-1)**Rational(1, 3), oo, 0, 0, 0, 0, 0, 0, 0, 0, oo, oo, oo, -oo, oo, -oo*I, oo, -oo*(-1)**Rational(1, 3), 0, 0, 0, 0, 0, 0, 0, 0) assert len(tests) == len(results) for i, (args, res) in enumerate(zip(tests, results)): y, s, e, d = args eq = y**(s*e) try: assert limit(eq, x, 0, dir=d) == res except AssertionError: if 0: # change to 1 if you want to see the failing tests print() print(i, res, eq, d, limit(eq, x, 0, dir=d)) else: assert None def test_issue_5184(): assert limit(sin(x)/x, x, oo) == 0 assert limit(atan(x), x, oo) == pi/2 assert limit(gamma(x), x, oo) is oo assert limit(cos(x)/x, x, oo) == 0 assert limit(gamma(x), x, S.Half) == sqrt(pi) r = Symbol('r', real=True) assert limit(r*sin(1/r), r, 0) == 0 def test_issue_5229(): assert limit((1 + y)**(1/y) - S.Exp1, y, 0) == 0 def test_issue_4546(): # using list(...) so py.test can recalculate values tests = list(cartes([cot, tan], [-pi/2, 0, pi/2, pi, pi*Rational(3, 2)], ['-', '+'])) results = (0, 0, -oo, oo, 0, 0, -oo, oo, 0, 0, oo, -oo, 0, 0, oo, -oo, 0, 0, oo, -oo) assert len(tests) == len(results) for i, (args, res) in enumerate(zip(tests, results)): f, l, d = args eq = f(x) try: assert limit(eq, x, l, dir=d) == res except AssertionError: if 0: # change to 1 if you want to see the failing tests print() print(i, res, eq, l, d, limit(eq, x, l, dir=d)) else: assert None def test_issue_3934(): assert limit((1 + x**log(3))**(1/x), x, 0) == 1 assert limit((5**(1/x) + 3**(1/x))**x, x, 0) == 5 def test_calculate_series(): # needs gruntz calculate_series to go to n = 32 assert limit(x**Rational(77, 3)/(1 + x**Rational(77, 3)), x, oo) == 1 # needs gruntz calculate_series to go to n = 128 assert limit(x**101.1/(1 + x**101.1), x, oo) == 1 def test_issue_5955(): assert limit((x**16)/(1 + x**16), x, oo) == 1 assert limit((x**100)/(1 + x**100), x, oo) == 1 assert limit((x**1885)/(1 + x**1885), x, oo) == 1 assert limit((x**1000/((x + 1)**1000 + exp(-x))), x, oo) == 1 def test_newissue(): assert limit(exp(1/sin(x))/exp(cot(x)), x, 0) == 1 def test_extended_real_line(): assert limit(x - oo, x, oo) is -oo assert limit(oo - x, x, -oo) is oo assert limit(x**2/(x - 5) - oo, x, oo) is -oo assert limit(1/(x + sin(x)) - oo, x, 0) is -oo assert limit(oo/x, x, oo) is oo assert limit(x - oo + 1/x, x, oo) is -oo assert limit(x - oo + 1/x, x, 0) is -oo @XFAIL def test_order_oo(): x = Symbol('x', positive=True) assert Order(x)*oo != Order(1, x) assert limit(oo/(x**2 - 4), x, oo) is oo def test_issue_5436(): raises(NotImplementedError, lambda: limit(exp(x*y), x, oo)) raises(NotImplementedError, lambda: limit(exp(-x*y), x, oo)) def test_Limit_dir(): raises(TypeError, lambda: Limit(x, x, 0, dir=0)) raises(ValueError, lambda: Limit(x, x, 0, dir='0')) def test_polynomial(): assert limit((x + 1)**1000/((x + 1)**1000 + 1), x, oo) == 1 assert limit((x + 1)**1000/((x + 1)**1000 + 1), x, -oo) == 1 def test_rational(): assert limit(1/y - (1/(y + x) + x/(y + x)/y)/z, x, oo) == (z - 1)/(y*z) assert limit(1/y - (1/(y + x) + x/(y + x)/y)/z, x, -oo) == (z - 1)/(y*z) def test_issue_5740(): assert limit(log(x)*z - log(2*x)*y, x, 0) == oo*sign(y - z) def test_issue_6366(): n = Symbol('n', integer=True, positive=True) r = (n + 1)*x**(n + 1)/(x**(n + 1) - 1) - x/(x - 1) assert limit(r, x, 1) == n/2 def test_factorial(): from sympy import factorial, E f = factorial(x) assert limit(f, x, oo) is oo assert limit(x/f, x, oo) == 0 # see Stirling's approximation: # https://en.wikipedia.org/wiki/Stirling's_approximation assert limit(f/(sqrt(2*pi*x)*(x/E)**x), x, oo) == 1 assert limit(f, x, -oo) == factorial(-oo) assert limit(f, x, x**2) == factorial(x**2) assert limit(f, x, -x**2) == factorial(-x**2) def test_issue_6560(): e = (5*x**3/4 - x*Rational(3, 4) + (y*(3*x**2/2 - S.Half) + 35*x**4/8 - 15*x**2/4 + Rational(3, 8))/(2*(y + 1))) assert limit(e, y, oo) == (5*x**3 + 3*x**2 - 3*x - 1)/4 @XFAIL def test_issue_5172(): n = Symbol('n') r = Symbol('r', positive=True) c = Symbol('c') p = Symbol('p', positive=True) m = Symbol('m', negative=True) expr = ((2*n*(n - r + 1)/(n + r*(n - r + 1)))**c + (r - 1)*(n*(n - r + 2)/(n + r*(n - r + 1)))**c - n)/(n**c - n) expr = expr.subs(c, c + 1) raises(NotImplementedError, lambda: limit(expr, n, oo)) assert limit(expr.subs(c, m), n, oo) == 1 assert limit(expr.subs(c, p), n, oo).simplify() == \ (2**(p + 1) + r - 1)/(r + 1)**(p + 1) def test_issue_7088(): a = Symbol('a') assert limit(sqrt(x/(x + a)), x, oo) == 1 def test_branch_cuts(): assert limit(asin(I*x + 2), x, 0) == pi - asin(2) assert limit(asin(I*x + 2), x, 0, '-') == asin(2) assert limit(asin(I*x - 2), x, 0) == -asin(2) assert limit(asin(I*x - 2), x, 0, '-') == -pi + asin(2) assert limit(acos(I*x + 2), x, 0) == -acos(2) assert limit(acos(I*x + 2), x, 0, '-') == acos(2) assert limit(acos(I*x - 2), x, 0) == acos(-2) assert limit(acos(I*x - 2), x, 0, '-') == 2*pi - acos(-2) assert limit(atan(x + 2*I), x, 0) == I*atanh(2) assert limit(atan(x + 2*I), x, 0, '-') == -pi + I*atanh(2) assert limit(atan(x - 2*I), x, 0) == pi - I*atanh(2) assert limit(atan(x - 2*I), x, 0, '-') == -I*atanh(2) assert limit(atan(1/x), x, 0) == pi/2 assert limit(atan(1/x), x, 0, '-') == -pi/2 assert limit(atan(x), x, oo) == pi/2 assert limit(atan(x), x, -oo) == -pi/2 assert limit(acot(x + S(1)/2*I), x, 0) == pi - I*acoth(S(1)/2) assert limit(acot(x + S(1)/2*I), x, 0, '-') == -I*acoth(S(1)/2) assert limit(acot(x - S(1)/2*I), x, 0) == I*acoth(S(1)/2) assert limit(acot(x - S(1)/2*I), x, 0, '-') == -pi + I*acoth(S(1)/2) assert limit(acot(x), x, 0) == pi/2 assert limit(acot(x), x, 0, '-') == -pi/2 assert limit(asec(I*x + S(1)/2), x, 0) == asec(S(1)/2) assert limit(asec(I*x + S(1)/2), x, 0, '-') == -asec(S(1)/2) assert limit(asec(I*x - S(1)/2), x, 0) == 2*pi - asec(-S(1)/2) assert limit(asec(I*x - S(1)/2), x, 0, '-') == asec(-S(1)/2) assert limit(acsc(I*x + S(1)/2), x, 0) == acsc(S(1)/2) assert limit(acsc(I*x + S(1)/2), x, 0, '-') == pi - acsc(S(1)/2) assert limit(acsc(I*x - S(1)/2), x, 0) == -pi + acsc(S(1)/2) assert limit(acsc(I*x - S(1)/2), x, 0, '-') == -acsc(S(1)/2) assert limit(log(I*x - 1), x, 0) == I*pi assert limit(log(I*x - 1), x, 0, '-') == -I*pi assert limit(log(-I*x - 1), x, 0) == -I*pi assert limit(log(-I*x - 1), x, 0, '-') == I*pi assert limit(sqrt(I*x - 1), x, 0) == I assert limit(sqrt(I*x - 1), x, 0, '-') == -I assert limit(sqrt(-I*x - 1), x, 0) == -I assert limit(sqrt(-I*x - 1), x, 0, '-') == I assert limit(cbrt(I*x - 1), x, 0) == (-1)**(S(1)/3) assert limit(cbrt(I*x - 1), x, 0, '-') == -(-1)**(S(2)/3) assert limit(cbrt(-I*x - 1), x, 0) == -(-1)**(S(2)/3) assert limit(cbrt(-I*x - 1), x, 0, '-') == (-1)**(S(1)/3) def test_issue_6364(): a = Symbol('a') e = z/(1 - sqrt(1 + z)*sin(a)**2 - sqrt(1 - z)*cos(a)**2) assert limit(e, z, 0).simplify() == 2/cos(2*a) def test_issue_4099(): a = Symbol('a') assert limit(a/x, x, 0) == oo*sign(a) assert limit(-a/x, x, 0) == -oo*sign(a) assert limit(-a*x, x, oo) == -oo*sign(a) assert limit(a*x, x, oo) == oo*sign(a) def test_issue_4503(): dx = Symbol('dx') assert limit((sqrt(1 + exp(x + dx)) - sqrt(1 + exp(x)))/dx, dx, 0) == \ exp(x)/(2*sqrt(exp(x) + 1)) def test_issue_8208(): assert limit(n**(Rational(1, 1e9) - 1), n, oo) == 0 def test_issue_8229(): assert limit((x**Rational(1, 4) - 2)/(sqrt(x) - 4)**Rational(2, 3), x, 16) == 0 def test_issue_8433(): d, t = symbols('d t', positive=True) assert limit(erf(1 - t/d), t, oo) == -1 def test_issue_8481(): k = Symbol('k', integer=True, nonnegative=True) lamda = Symbol('lamda', real=True, positive=True) limit(lamda**k * exp(-lamda) / factorial(k), k, oo) == 0 def test_issue_8730(): assert limit(subfactorial(x), x, oo) is oo def test_issue_9558(): assert limit(sin(x)**15, x, 0, '-') == 0 def test_issue_10801(): # make sure limits work with binomial assert limit(16**k / (k * binomial(2*k, k)**2), k, oo) == pi def test_issue_10976(): s, x = symbols('s x', real=True) assert limit(erf(s*x)/erf(s), s, 0) == x def test_issue_9041(): assert limit(factorial(n) / ((n/exp(1))**n * sqrt(2*pi*n)), n, oo) == 1 def test_issue_9205(): x, y, a = symbols('x, y, a') assert Limit(x, x, a).free_symbols == {a} assert Limit(x, x, a, '-').free_symbols == {a} assert Limit(x + y, x + y, a).free_symbols == {a} assert Limit(-x**2 + y, x**2, a).free_symbols == {y, a} def test_issue_9471(): assert limit(((27**(log(n,3)))/n**3),n,oo) == 1 assert limit(((27**(log(n,3)+1))/n**3),n,oo) == 27 def test_issue_11496(): assert limit(erfc(log(1/x)), x, oo) == 2 def test_issue_11879(): assert simplify(limit(((x+y)**n-x**n)/y, y, 0)) == n*x**(n-1) def test_limit_with_Float(): k = symbols("k") assert limit(1.0 ** k, k, oo) == 1 assert limit(0.3*1.0**k, k, oo) == Float(0.3) def test_issue_10610(): assert limit(3**x*3**(-x - 1)*(x + 1)**2/x**2, x, oo) == Rational(1, 3) def test_issue_6599(): assert limit((n + cos(n))/n, n, oo) == 1 def test_issue_12398(): assert limit(Abs(log(x)/x**3), x, oo) == 0 assert limit(x*(Abs(log(x)/x**3)/Abs(log(x + 1)/(x + 1)**3) - 1), x, oo) == 3 def test_issue_12555(): assert limit((3**x + 2* x**10) / (x**10 + exp(x)), x, -oo) == 2 assert limit((3**x + 2* x**10) / (x**10 + exp(x)), x, oo) is oo def test_issue_12769(): r, z, x = symbols('r z x', real=True) a, b, s0, K, F0, s, T = symbols('a b s0 K F0 s T', positive=True, real=True) fx = (F0**b*K**b*r*s0 - sqrt((F0**2*K**(2*b)*a**2*(b - 1) + \ F0**(2*b)*K**2*a**2*(b - 1) + F0**(2*b)*K**(2*b)*s0**2*(b - 1)*(b**2 - 2*b + 1) - \ 2*F0**(2*b)*K**(b + 1)*a*r*s0*(b**2 - 2*b + 1) + \ 2*F0**(b + 1)*K**(2*b)*a*r*s0*(b**2 - 2*b + 1) - \ 2*F0**(b + 1)*K**(b + 1)*a**2*(b - 1))/((b - 1)*(b**2 - 2*b + 1))))*(b*r - b - r + 1) assert fx.subs(K, F0).cancel().together() == limit(fx, K, F0).together() def test_issue_13332(): assert limit(sqrt(30)*5**(-5*x - 1)*(46656*x)**x*(5*x + 2)**(5*x + 5*S.Half) * (6*x + 2)**(-6*x - 5*S.Half), x, oo) == Rational(25, 36) def test_issue_12564(): assert limit(x**2 + x*sin(x) + cos(x), x, -oo) is oo assert limit(x**2 + x*sin(x) + cos(x), x, oo) is oo assert limit(((x + cos(x))**2).expand(), x, oo) is oo assert limit(((x + sin(x))**2).expand(), x, oo) is oo assert limit(((x + cos(x))**2).expand(), x, -oo) is oo assert limit(((x + sin(x))**2).expand(), x, -oo) is oo def test_issue_14456(): raises(NotImplementedError, lambda: Limit(exp(x), x, zoo).doit()) raises(NotImplementedError, lambda: Limit(x**2/(x+1), x, zoo).doit()) def test_issue_14411(): assert limit(3*sec(4*pi*x - x/3), x, 3*pi/(24*pi - 2)) is -oo def test_issue_13382(): assert limit(x*(((x + 1)**2 + 1)/(x**2 + 1) - 1), x, oo) == 2 def test_issue_13403(): assert limit(x*(-1 + (x + log(x + 1) + 1)/(x + log(x))), x ,oo) == 1 def test_issue_13416(): assert limit((-x**3*log(x)**3 + (x - 1)*(x + 1)**2*log(x + 1)**3)/(x**2*log(x)**3), x ,oo) == 1 def test_issue_13462(): assert limit(n**2*(2*n*(-(1 - 1/(2*n))**x + 1) - x - (-x**2/4 + x/4)/n), n, oo) == x*(x - 2)*(x - 1)/24 def test_issue_13750(): a = Symbol('a') assert limit(erf(a - x), x, oo) == -1 assert limit(erf(sqrt(x) - x), x, oo) == -1 def test_issue_14514(): assert limit((1/(log(x)**log(x)))**(1/x), x, oo) == 1 def test_issue_14574(): assert limit(sqrt(x)*cos(x - x**2) / (x + 1), x, oo) == 0 def test_issue_10102(): assert limit(fresnels(x), x, oo) == S.Half assert limit(3 + fresnels(x), x, oo) == 3 + S.Half assert limit(5*fresnels(x), x, oo) == Rational(5, 2) assert limit(fresnelc(x), x, oo) == S.Half assert limit(fresnels(x), x, -oo) == Rational(-1, 2) assert limit(4*fresnelc(x), x, -oo) == -2 def test_issue_14377(): raises(NotImplementedError, lambda: limit(exp(I*x)*sin(pi*x), x, oo)) def test_issue_15146(): e = (x/2) * (-2*x**3 - 2*(x**3 - 1) * x**2 * digamma(x**3 + 1) + \ 2*(x**3 - 1) * x**2 * digamma(x**3 + x + 1) + x + 3) assert limit(e, x, oo) == S(1)/3 def test_issue_15202(): e = (2**x*(2 + 2**(-x)*(-2*2**x + x + 2))/(x + 1))**(x + 1) assert limit(e, x, oo) == exp(1) e = (log(x, 2)**7 + 10*x*factorial(x) + 5**x) / (factorial(x + 1) + 3*factorial(x) + 10**x) assert limit(e, x, oo) == 10 def test_issue_15282(): assert limit((x**2000 - (x + 1)**2000) / x**1999, x, oo) == -2000 def test_issue_15984(): assert limit((-x + log(exp(x) + 1))/x, x, oo, dir='-').doit() == 0 def test_issue_13571(): assert limit(uppergamma(x, 1) / gamma(x), x, oo) == 1 def test_issue_13575(): assert limit(acos(erfi(x)), x, 1).cancel() == acos(-I*erf(I)) def test_issue_17325(): assert Limit(sin(x)/x, x, 0, dir="+-").doit() == 1 assert Limit(x**2, x, 0, dir="+-").doit() == 0 assert Limit(1/x**2, x, 0, dir="+-").doit() is oo assert Limit(1/x, x, 0, dir="+-").doit() is zoo def test_issue_10978(): assert LambertW(x).limit(x, 0) == 0 @XFAIL def test_issue_14313_comment(): assert limit(floor(n/2), n, oo) is oo @XFAIL def test_issue_15323(): d = ((1 - 1/x)**x).diff(x) assert limit(d, x, 1, dir='+') == 1 def test_issue_12571(): assert limit(-LambertW(-log(x))/log(x), x, 1) == 1 def test_issue_14590(): assert limit((x**3*((x + 1)/x)**x)/((x + 1)*(x + 2)*(x + 3)), x, oo) == exp(1) def test_issue_14393(): a, b = symbols('a b') assert limit((x**b - y**b)/(x**a - y**a), x, y) == b*y**(-a)*y**b/a def test_issue_14556(): assert limit(factorial(n + 1)**(1/(n + 1)) - factorial(n)**(1/n), n, oo) == exp(-1) def test_issue_14811(): assert limit(((1 + ((S(2)/3)**(x + 1)))**(2**x))/(2**((S(4)/3)**(x - 1))), x, oo) == oo def test_issue_14874(): assert limit(besselk(0, x), x, oo) == 0 def test_issue_16222(): assert limit(exp(x), x, 1000000000) == exp(1000000000) def test_issue_16714(): assert limit(((x**(x + 1) + (x + 1)**x) / x**(x + 1))**x, x, oo) == exp(exp(1)) def test_issue_16722(): z = symbols('z', positive=True) assert limit(binomial(n + z, n)*n**-z, n, oo) == 1/gamma(z + 1) z = symbols('z', positive=True, integer=True) assert limit(binomial(n + z, n)*n**-z, n, oo) == 1/gamma(z + 1) def test_issue_17431(): assert limit(((n + 1) + 1) / (((n + 1) + 2) * factorial(n + 1)) * (n + 2) * factorial(n) / (n + 1), n, oo) == 0 assert limit((n + 2)**2*factorial(n)/((n + 1)*(n + 3)*factorial(n + 1)) , n, oo) == 0 assert limit((n + 1) * factorial(n) / (n * factorial(n + 1)), n, oo) == 0 def test_issue_17671(): assert limit(Ei(-log(x)) - log(log(x))/x, x, 1) == EulerGamma def test_issue_17751(): a, b, c, x = symbols('a b c x', positive=True) assert limit((a + 1)*x - sqrt((a + 1)**2*x**2 + b*x + c), x, oo) == -b/(2*a + 2) def test_issue_17792(): assert limit(factorial(n)/sqrt(n)*(exp(1)/n)**n, n, oo) == sqrt(2)*sqrt(pi) def test_issue_18118(): assert limit(sign(sin(x)), x, 0, "-") == -1 assert limit(sign(sin(x)), x, 0, "+") == 1 def test_issue_18306(): assert limit(sin(sqrt(x))/sqrt(sin(x)), x, 0, '+') == 1 def test_issue_18378(): assert limit(log(exp(3*x) + x)/log(exp(x) + x**100), x, oo) == 3 def test_issue_18399(): assert limit((1 - S(1)/2*x)**(3*x), x, oo) is zoo assert limit((-x)**x, x, oo) is zoo def test_issue_18442(): assert limit(tan(x)**(2**(sqrt(pi))), x, oo, dir='-') == Limit(tan(x)**(2**(sqrt(pi))), x, oo, dir='-') def test_issue_18452(): assert limit(abs(log(x))**x, x, 0) == 1 assert limit(abs(log(x))**x, x, 0, "-") == 1 def test_issue_18482(): assert limit((2*exp(3*x)/(exp(2*x) + 1))**(1/x), x, oo) == exp(1) def test_issue_18501(): assert limit(Abs(log(x - 1)**3 - 1), x, 1, '+') == oo def test_issue_18508(): assert limit(sin(x)/sqrt(1-cos(x)), x, 0) == sqrt(2) assert limit(sin(x)/sqrt(1-cos(x)), x, 0, dir='+') == sqrt(2) assert limit(sin(x)/sqrt(1-cos(x)), x, 0, dir='-') == -sqrt(2) def test_issue_18969(): a, b = symbols('a b', positive=True) assert limit(LambertW(a), a, b) == LambertW(b) assert limit(exp(LambertW(a)), a, b) == exp(LambertW(b)) def test_issue_18992(): assert limit(n/(factorial(n)**(1/n)), n, oo) == exp(1) def test_issue_18997(): assert limit(Abs(log(x)), x, 0) == oo assert limit(Abs(log(Abs(x))), x, 0) == oo def test_issue_19026(): x = Symbol('x', positive=True) assert limit(Abs(log(x) + 1)/log(x), x, oo) == 1 def test_issue_19067(): x = Symbol('x') assert limit(gamma(x)/(gamma(x - 1)*gamma(x + 2)), x, 0) == -1 def test_issue_19586(): assert limit(x**(2**x*3**(-x)), x, oo) == 1 def test_issue_13715(): n = Symbol('n') p = Symbol('p', zero=True) assert limit(n + p, n, 0) == p def test_issue_15055(): assert limit(n**3*((-n - 1)*sin(1/n) + (n + 2)*sin(1/(n + 1)))/(-n + 1), n, oo) == 1 def test_issue_16708(): m, vi = symbols('m vi', positive=True) B, ti, d = symbols('B ti d') assert limit((B*ti*vi - sqrt(m)*sqrt(-2*B*d*vi + m*(vi)**2) + m*vi)/(B*vi), B, 0) == (d + ti*vi)/vi def test_issue_19739(): assert limit((-S(1)/4)**x, x, oo) == 0 def test_issue_19766(): assert limit(2**(-x)*sqrt(4**(x + 1) + 1), x, oo) == 2 def test_issue_19770(): m = Symbol('m') # the result is not 0 for non-real m assert limit(cos(m*x)/x, x, oo) == Limit(cos(m*x)/x, x, oo, dir='-') m = Symbol('m', real=True) # can be improved to give the correct result 0 assert limit(cos(m*x)/x, x, oo) == Limit(cos(m*x)/x, x, oo, dir='-') m = Symbol('m', nonzero=True) assert limit(cos(m*x), x, oo) == AccumBounds(-1, 1) assert limit(cos(m*x)/x, x, oo) == 0 def test_issue_7535(): assert limit(tan(x)/sin(tan(x)), x, pi/2) == Limit(tan(x)/sin(tan(x)), x, pi/2, dir='+') assert limit(tan(x)/sin(tan(x)), x, pi/2, dir='-') == Limit(tan(x)/sin(tan(x)), x, pi/2, dir='-') assert limit(tan(x)/sin(tan(x)), x, pi/2, dir='+-') == Limit(tan(x)/sin(tan(x)), x, pi/2, dir='+-') assert limit(sin(tan(x)),x,pi/2) == AccumBounds(-1, 1) assert -oo*(1/sin(-oo)) == AccumBounds(-oo, oo) assert oo*(1/sin(oo)) == AccumBounds(-oo, oo) assert oo*(1/sin(-oo)) == AccumBounds(-oo, oo) assert -oo*(1/sin(oo)) == AccumBounds(-oo, oo)
d0830604cf262431c77551037125e41cb86b1bf63c18888c99c8f24c3cb89257
from sympy import ( Abs, acos, Add, asin, atan, Basic, binomial, besselsimp, cos, cosh, count_ops, csch, diff, E, Eq, erf, exp, exp_polar, expand, expand_multinomial, factor, factorial, Float, Function, gamma, GoldenRatio, hyper, hypersimp, I, Integral, integrate, KroneckerDelta, log, logcombine, Lt, Matrix, MatrixSymbol, Mul, nsimplify, oo, pi, Piecewise, Poly, posify, rad, Rational, S, separatevars, signsimp, simplify, sign, sin, sinc, sinh, solve, sqrt, Sum, Symbol, symbols, sympify, tan, zoo) from sympy.core.mul import _keep_coeff from sympy.core.expr import unchanged from sympy.simplify.simplify import nthroot, inversecombine from sympy.testing.pytest import XFAIL, slow from sympy.abc import x, y, z, t, a, b, c, d, e, f, g, h, i def test_issue_7263(): assert abs((simplify(30.8**2 - 82.5**2 * sin(rad(11.6))**2)).evalf() - \ 673.447451402970) < 1e-12 def test_factorial_simplify(): # There are more tests in test_factorials.py. x = Symbol('x') assert simplify(factorial(x)/x) == gamma(x) assert simplify(factorial(factorial(x))) == factorial(factorial(x)) def test_simplify_expr(): x, y, z, k, n, m, w, s, A = symbols('x,y,z,k,n,m,w,s,A') f = Function('f') assert all(simplify(tmp) == tmp for tmp in [I, E, oo, x, -x, -oo, -E, -I]) e = 1/x + 1/y assert e != (x + y)/(x*y) assert simplify(e) == (x + y)/(x*y) e = A**2*s**4/(4*pi*k*m**3) assert simplify(e) == e e = (4 + 4*x - 2*(2 + 2*x))/(2 + 2*x) assert simplify(e) == 0 e = (-4*x*y**2 - 2*y**3 - 2*x**2*y)/(x + y)**2 assert simplify(e) == -2*y e = -x - y - (x + y)**(-1)*y**2 + (x + y)**(-1)*x**2 assert simplify(e) == -2*y e = (x + x*y)/x assert simplify(e) == 1 + y e = (f(x) + y*f(x))/f(x) assert simplify(e) == 1 + y e = (2 * (1/n - cos(n * pi)/n))/pi assert simplify(e) == (-cos(pi*n) + 1)/(pi*n)*2 e = integrate(1/(x**3 + 1), x).diff(x) assert simplify(e) == 1/(x**3 + 1) e = integrate(x/(x**2 + 3*x + 1), x).diff(x) assert simplify(e) == x/(x**2 + 3*x + 1) f = Symbol('f') A = Matrix([[2*k - m*w**2, -k], [-k, k - m*w**2]]).inv() assert simplify((A*Matrix([0, f]))[1] - (-f*(2*k - m*w**2)/(k**2 - (k - m*w**2)*(2*k - m*w**2)))) == 0 f = -x + y/(z + t) + z*x/(z + t) + z*a/(z + t) + t*x/(z + t) assert simplify(f) == (y + a*z)/(z + t) # issue 10347 expr = -x*(y**2 - 1)*(2*y**2*(x**2 - 1)/(a*(x**2 - y**2)**2) + (x**2 - 1) /(a*(x**2 - y**2)))/(a*(x**2 - y**2)) + x*(-2*x**2*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(a*(x**2 - y**2)**2) - x**2*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(a*(x**2 - 1)*(x**2 - y**2)) + (x**2*sqrt((-x**2 + 1)* (y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(x**2 - 1) + sqrt( (-x**2 + 1)*(y**2 - 1))*(x*(-x*y**2 + x)/sqrt(-x**2*y**2 + x**2 + y**2 - 1) + sqrt(-x**2*y**2 + x**2 + y**2 - 1))*sin(z))/(a*sqrt((-x**2 + 1)*( y**2 - 1))*(x**2 - y**2)))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(a* (x**2 - y**2)) + x*(-2*x**2*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a* (x**2 - y**2)**2) - x**2*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a* (x**2 - 1)*(x**2 - y**2)) + (x**2*sqrt((-x**2 + 1)*(y**2 - 1))*sqrt(-x**2 *y**2 + x**2 + y**2 - 1)*cos(z)/(x**2 - 1) + x*sqrt((-x**2 + 1)*(y**2 - 1))*(-x*y**2 + x)*cos(z)/sqrt(-x**2*y**2 + x**2 + y**2 - 1) + sqrt((-x**2 + 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z))/(a*sqrt((-x**2 + 1)*(y**2 - 1))*(x**2 - y**2)))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos( z)/(a*(x**2 - y**2)) - y*sqrt((-x**2 + 1)*(y**2 - 1))*(-x*y*sqrt(-x**2* y**2 + x**2 + y**2 - 1)*sin(z)/(a*(x**2 - y**2)*(y**2 - 1)) + 2*x*y*sqrt( -x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(a*(x**2 - y**2)**2) + (x*y*sqrt(( -x**2 + 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(y**2 - 1) + x*sqrt((-x**2 + 1)*(y**2 - 1))*(-x**2*y + y)*sin(z)/sqrt(-x**2*y**2 + x**2 + y**2 - 1))/(a*sqrt((-x**2 + 1)*(y**2 - 1))*(x**2 - y**2)))*sin( z)/(a*(x**2 - y**2)) + y*(x**2 - 1)*(-2*x*y*(x**2 - 1)/(a*(x**2 - y**2) **2) + 2*x*y/(a*(x**2 - y**2)))/(a*(x**2 - y**2)) + y*(x**2 - 1)*(y**2 - 1)*(-x*y*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a*(x**2 - y**2)*(y**2 - 1)) + 2*x*y*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a*(x**2 - y**2) **2) + (x*y*sqrt((-x**2 + 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(y**2 - 1) + x*sqrt((-x**2 + 1)*(y**2 - 1))*(-x**2*y + y)*cos( z)/sqrt(-x**2*y**2 + x**2 + y**2 - 1))/(a*sqrt((-x**2 + 1)*(y**2 - 1) )*(x**2 - y**2)))*cos(z)/(a*sqrt((-x**2 + 1)*(y**2 - 1))*(x**2 - y**2) ) - x*sqrt((-x**2 + 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin( z)**2/(a**2*(x**2 - 1)*(x**2 - y**2)*(y**2 - 1)) - x*sqrt((-x**2 + 1)*( y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)**2/(a**2*(x**2 - 1)*( x**2 - y**2)*(y**2 - 1)) assert simplify(expr) == 2*x/(a**2*(x**2 - y**2)) #issue 17631 assert simplify('((-1/2)*Boole(True)*Boole(False)-1)*Boole(True)') == \ Mul(sympify('(2 + Boole(True)*Boole(False))'), sympify('-Boole(True)/2')) A, B = symbols('A,B', commutative=False) assert simplify(A*B - B*A) == A*B - B*A assert simplify(A/(1 + y/x)) == x*A/(x + y) assert simplify(A*(1/x + 1/y)) == A/x + A/y #(x + y)*A/(x*y) assert simplify(log(2) + log(3)) == log(6) assert simplify(log(2*x) - log(2)) == log(x) assert simplify(hyper([], [], x)) == exp(x) def test_issue_3557(): f_1 = x*a + y*b + z*c - 1 f_2 = x*d + y*e + z*f - 1 f_3 = x*g + y*h + z*i - 1 solutions = solve([f_1, f_2, f_3], x, y, z, simplify=False) assert simplify(solutions[y]) == \ (a*i + c*d + f*g - a*f - c*g - d*i)/ \ (a*e*i + b*f*g + c*d*h - a*f*h - b*d*i - c*e*g) def test_simplify_other(): assert simplify(sin(x)**2 + cos(x)**2) == 1 assert simplify(gamma(x + 1)/gamma(x)) == x assert simplify(sin(x)**2 + cos(x)**2 + factorial(x)/gamma(x)) == 1 + x assert simplify( Eq(sin(x)**2 + cos(x)**2, factorial(x)/gamma(x))) == Eq(x, 1) nc = symbols('nc', commutative=False) assert simplify(x + x*nc) == x*(1 + nc) # issue 6123 # f = exp(-I*(k*sqrt(t) + x/(2*sqrt(t)))**2) # ans = integrate(f, (k, -oo, oo), conds='none') ans = I*(-pi*x*exp(I*pi*Rational(-3, 4) + I*x**2/(4*t))*erf(x*exp(I*pi*Rational(-3, 4))/ (2*sqrt(t)))/(2*sqrt(t)) + pi*x*exp(I*pi*Rational(-3, 4) + I*x**2/(4*t))/ (2*sqrt(t)))*exp(-I*x**2/(4*t))/(sqrt(pi)*x) - I*sqrt(pi) * \ (-erf(x*exp(I*pi/4)/(2*sqrt(t))) + 1)*exp(I*pi/4)/(2*sqrt(t)) assert simplify(ans) == -(-1)**Rational(3, 4)*sqrt(pi)/sqrt(t) # issue 6370 assert simplify(2**(2 + x)/4) == 2**x def test_simplify_complex(): cosAsExp = cos(x)._eval_rewrite_as_exp(x) tanAsExp = tan(x)._eval_rewrite_as_exp(x) assert simplify(cosAsExp*tanAsExp) == sin(x) # issue 4341 # issue 10124 assert simplify(exp(Matrix([[0, -1], [1, 0]]))) == Matrix([[cos(1), -sin(1)], [sin(1), cos(1)]]) def test_simplify_ratio(): # roots of x**3-3*x+5 roots = ['(1/2 - sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3) + 1/((1/2 - ' 'sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3))', '1/((1/2 + sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3)) + ' '(1/2 + sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3)', '-(sqrt(21)/2 + 5/2)**(1/3) - 1/(sqrt(21)/2 + 5/2)**(1/3)'] for r in roots: r = S(r) assert count_ops(simplify(r, ratio=1)) <= count_ops(r) # If ratio=oo, simplify() is always applied: assert simplify(r, ratio=oo) is not r def test_simplify_measure(): measure1 = lambda expr: len(str(expr)) measure2 = lambda expr: -count_ops(expr) # Return the most complicated result expr = (x + 1)/(x + sin(x)**2 + cos(x)**2) assert measure1(simplify(expr, measure=measure1)) <= measure1(expr) assert measure2(simplify(expr, measure=measure2)) <= measure2(expr) expr2 = Eq(sin(x)**2 + cos(x)**2, 1) assert measure1(simplify(expr2, measure=measure1)) <= measure1(expr2) assert measure2(simplify(expr2, measure=measure2)) <= measure2(expr2) def test_simplify_rational(): expr = 2**x*2.**y assert simplify(expr, rational = True) == 2**(x+y) assert simplify(expr, rational = None) == 2.0**(x+y) assert simplify(expr, rational = False) == expr def test_simplify_issue_1308(): assert simplify(exp(Rational(-1, 2)) + exp(Rational(-3, 2))) == \ (1 + E)*exp(Rational(-3, 2)) def test_issue_5652(): assert simplify(E + exp(-E)) == exp(-E) + E n = symbols('n', commutative=False) assert simplify(n + n**(-n)) == n + n**(-n) def test_simplify_fail1(): x = Symbol('x') y = Symbol('y') e = (x + y)**2/(-4*x*y**2 - 2*y**3 - 2*x**2*y) assert simplify(e) == 1 / (-2*y) def test_nthroot(): assert nthroot(90 + 34*sqrt(7), 3) == sqrt(7) + 3 q = 1 + sqrt(2) - 2*sqrt(3) + sqrt(6) + sqrt(7) assert nthroot(expand_multinomial(q**3), 3) == q assert nthroot(41 + 29*sqrt(2), 5) == 1 + sqrt(2) assert nthroot(-41 - 29*sqrt(2), 5) == -1 - sqrt(2) expr = 1320*sqrt(10) + 4216 + 2576*sqrt(6) + 1640*sqrt(15) assert nthroot(expr, 5) == 1 + sqrt(6) + sqrt(15) q = 1 + sqrt(2) + sqrt(3) + sqrt(5) assert expand_multinomial(nthroot(expand_multinomial(q**5), 5)) == q q = 1 + sqrt(2) + 7*sqrt(6) + 2*sqrt(10) assert nthroot(expand_multinomial(q**5), 5, 8) == q q = 1 + sqrt(2) - 2*sqrt(3) + 1171*sqrt(6) assert nthroot(expand_multinomial(q**3), 3) == q assert nthroot(expand_multinomial(q**6), 6) == q def test_nthroot1(): q = 1 + sqrt(2) + sqrt(3) + S.One/10**20 p = expand_multinomial(q**5) assert nthroot(p, 5) == q q = 1 + sqrt(2) + sqrt(3) + S.One/10**30 p = expand_multinomial(q**5) assert nthroot(p, 5) == q def test_separatevars(): x, y, z, n = symbols('x,y,z,n') assert separatevars(2*n*x*z + 2*x*y*z) == 2*x*z*(n + y) assert separatevars(x*z + x*y*z) == x*z*(1 + y) assert separatevars(pi*x*z + pi*x*y*z) == pi*x*z*(1 + y) assert separatevars(x*y**2*sin(x) + x*sin(x)*sin(y)) == \ x*(sin(y) + y**2)*sin(x) assert separatevars(x*exp(x + y) + x*exp(x)) == x*(1 + exp(y))*exp(x) assert separatevars((x*(y + 1))**z).is_Pow # != x**z*(1 + y)**z assert separatevars(1 + x + y + x*y) == (x + 1)*(y + 1) assert separatevars(y/pi*exp(-(z - x)/cos(n))) == \ y*exp(x/cos(n))*exp(-z/cos(n))/pi assert separatevars((x + y)*(x - y) + y**2 + 2*x + 1) == (x + 1)**2 # issue 4858 p = Symbol('p', positive=True) assert separatevars(sqrt(p**2 + x*p**2)) == p*sqrt(1 + x) assert separatevars(sqrt(y*(p**2 + x*p**2))) == p*sqrt(y*(1 + x)) assert separatevars(sqrt(y*(p**2 + x*p**2)), force=True) == \ p*sqrt(y)*sqrt(1 + x) # issue 4865 assert separatevars(sqrt(x*y)).is_Pow assert separatevars(sqrt(x*y), force=True) == sqrt(x)*sqrt(y) # issue 4957 # any type sequence for symbols is fine assert separatevars(((2*x + 2)*y), dict=True, symbols=()) == \ {'coeff': 1, x: 2*x + 2, y: y} # separable assert separatevars(((2*x + 2)*y), dict=True, symbols=[x]) == \ {'coeff': y, x: 2*x + 2} assert separatevars(((2*x + 2)*y), dict=True, symbols=[]) == \ {'coeff': 1, x: 2*x + 2, y: y} assert separatevars(((2*x + 2)*y), dict=True) == \ {'coeff': 1, x: 2*x + 2, y: y} assert separatevars(((2*x + 2)*y), dict=True, symbols=None) == \ {'coeff': y*(2*x + 2)} # not separable assert separatevars(3, dict=True) is None assert separatevars(2*x + y, dict=True, symbols=()) is None assert separatevars(2*x + y, dict=True) is None assert separatevars(2*x + y, dict=True, symbols=None) == {'coeff': 2*x + y} # issue 4808 n, m = symbols('n,m', commutative=False) assert separatevars(m + n*m) == (1 + n)*m assert separatevars(x + x*n) == x*(1 + n) # issue 4910 f = Function('f') assert separatevars(f(x) + x*f(x)) == f(x) + x*f(x) # a noncommutable object present eq = x*(1 + hyper((), (), y*z)) assert separatevars(eq) == eq s = separatevars(abs(x*y)) assert s == abs(x)*abs(y) and s.is_Mul z = cos(1)**2 + sin(1)**2 - 1 a = abs(x*z) s = separatevars(a) assert not a.is_Mul and s.is_Mul and s == abs(x)*abs(z) s = separatevars(abs(x*y*z)) assert s == abs(x)*abs(y)*abs(z) # abs(x+y)/abs(z) would be better but we test this here to # see that it doesn't raise assert separatevars(abs((x+y)/z)) == abs((x+y)/z) def test_separatevars_advanced_factor(): x, y, z = symbols('x,y,z') assert separatevars(1 + log(x)*log(y) + log(x) + log(y)) == \ (log(x) + 1)*(log(y) + 1) assert separatevars(1 + x - log(z) - x*log(z) - exp(y)*log(z) - x*exp(y)*log(z) + x*exp(y) + exp(y)) == \ -((x + 1)*(log(z) - 1)*(exp(y) + 1)) x, y = symbols('x,y', positive=True) assert separatevars(1 + log(x**log(y)) + log(x*y)) == \ (log(x) + 1)*(log(y) + 1) def test_hypersimp(): n, k = symbols('n,k', integer=True) assert hypersimp(factorial(k), k) == k + 1 assert hypersimp(factorial(k**2), k) is None assert hypersimp(1/factorial(k), k) == 1/(k + 1) assert hypersimp(2**k/factorial(k)**2, k) == 2/(k + 1)**2 assert hypersimp(binomial(n, k), k) == (n - k)/(k + 1) assert hypersimp(binomial(n + 1, k), k) == (n - k + 1)/(k + 1) term = (4*k + 1)*factorial(k)/factorial(2*k + 1) assert hypersimp(term, k) == S.Half*((4*k + 5)/(3 + 14*k + 8*k**2)) term = 1/((2*k - 1)*factorial(2*k + 1)) assert hypersimp(term, k) == (k - S.Half)/((k + 1)*(2*k + 1)*(2*k + 3)) term = binomial(n, k)*(-1)**k/factorial(k) assert hypersimp(term, k) == (k - n)/(k + 1)**2 def test_nsimplify(): x = Symbol("x") assert nsimplify(0) == 0 assert nsimplify(-1) == -1 assert nsimplify(1) == 1 assert nsimplify(1 + x) == 1 + x assert nsimplify(2.7) == Rational(27, 10) assert nsimplify(1 - GoldenRatio) == (1 - sqrt(5))/2 assert nsimplify((1 + sqrt(5))/4, [GoldenRatio]) == GoldenRatio/2 assert nsimplify(2/GoldenRatio, [GoldenRatio]) == 2*GoldenRatio - 2 assert nsimplify(exp(pi*I*Rational(5, 3), evaluate=False)) == \ sympify('1/2 - sqrt(3)*I/2') assert nsimplify(sin(pi*Rational(3, 5), evaluate=False)) == \ sympify('sqrt(sqrt(5)/8 + 5/8)') assert nsimplify(sqrt(atan('1', evaluate=False))*(2 + I), [pi]) == \ sqrt(pi) + sqrt(pi)/2*I assert nsimplify(2 + exp(2*atan('1/4')*I)) == sympify('49/17 + 8*I/17') assert nsimplify(pi, tolerance=0.01) == Rational(22, 7) assert nsimplify(pi, tolerance=0.001) == Rational(355, 113) assert nsimplify(0.33333, tolerance=1e-4) == Rational(1, 3) assert nsimplify(2.0**(1/3.), tolerance=0.001) == Rational(635, 504) assert nsimplify(2.0**(1/3.), tolerance=0.001, full=True) == \ 2**Rational(1, 3) assert nsimplify(x + .5, rational=True) == S.Half + x assert nsimplify(1/.3 + x, rational=True) == Rational(10, 3) + x assert nsimplify(log(3).n(), rational=True) == \ sympify('109861228866811/100000000000000') assert nsimplify(Float(0.272198261287950), [pi, log(2)]) == pi*log(2)/8 assert nsimplify(Float(0.272198261287950).n(3), [pi, log(2)]) == \ -pi/4 - log(2) + Rational(7, 4) assert nsimplify(x/7.0) == x/7 assert nsimplify(pi/1e2) == pi/100 assert nsimplify(pi/1e2, rational=False) == pi/100.0 assert nsimplify(pi/1e-7) == 10000000*pi assert not nsimplify( factor(-3.0*z**2*(z**2)**(-2.5) + 3*(z**2)**(-1.5))).atoms(Float) e = x**0.0 assert e.is_Pow and nsimplify(x**0.0) == 1 assert nsimplify(3.333333, tolerance=0.1, rational=True) == Rational(10, 3) assert nsimplify(3.333333, tolerance=0.01, rational=True) == Rational(10, 3) assert nsimplify(3.666666, tolerance=0.1, rational=True) == Rational(11, 3) assert nsimplify(3.666666, tolerance=0.01, rational=True) == Rational(11, 3) assert nsimplify(33, tolerance=10, rational=True) == Rational(33) assert nsimplify(33.33, tolerance=10, rational=True) == Rational(30) assert nsimplify(37.76, tolerance=10, rational=True) == Rational(40) assert nsimplify(-203.1) == Rational(-2031, 10) assert nsimplify(.2, tolerance=0) == Rational(1, 5) assert nsimplify(-.2, tolerance=0) == Rational(-1, 5) assert nsimplify(.2222, tolerance=0) == Rational(1111, 5000) assert nsimplify(-.2222, tolerance=0) == Rational(-1111, 5000) # issue 7211, PR 4112 assert nsimplify(S(2e-8)) == Rational(1, 50000000) # issue 7322 direct test assert nsimplify(1e-42, rational=True) != 0 # issue 10336 inf = Float('inf') infs = (-oo, oo, inf, -inf) for zi in infs: ans = sign(zi)*oo assert nsimplify(zi) == ans assert nsimplify(zi + x) == x + ans assert nsimplify(0.33333333, rational=True, rational_conversion='exact') == Rational(0.33333333) # Make sure nsimplify on expressions uses full precision assert nsimplify(pi.evalf(100)*x, rational_conversion='exact').evalf(100) == pi.evalf(100)*x def test_issue_9448(): tmp = sympify("1/(1 - (-1)**(2/3) - (-1)**(1/3)) + 1/(1 + (-1)**(2/3) + (-1)**(1/3))") assert nsimplify(tmp) == S.Half def test_extract_minus_sign(): x = Symbol("x") y = Symbol("y") a = Symbol("a") b = Symbol("b") assert simplify(-x/-y) == x/y assert simplify(-x/y) == -x/y assert simplify(x/y) == x/y assert simplify(x/-y) == -x/y assert simplify(-x/0) == zoo*x assert simplify(Rational(-5, 0)) is zoo assert simplify(-a*x/(-y - b)) == a*x/(b + y) def test_diff(): x = Symbol("x") y = Symbol("y") f = Function("f") g = Function("g") assert simplify(g(x).diff(x)*f(x).diff(x) - f(x).diff(x)*g(x).diff(x)) == 0 assert simplify(2*f(x)*f(x).diff(x) - diff(f(x)**2, x)) == 0 assert simplify(diff(1/f(x), x) + f(x).diff(x)/f(x)**2) == 0 assert simplify(f(x).diff(x, y) - f(x).diff(y, x)) == 0 def test_logcombine_1(): x, y = symbols("x,y") a = Symbol("a") z, w = symbols("z,w", positive=True) b = Symbol("b", real=True) assert logcombine(log(x) + 2*log(y)) == log(x) + 2*log(y) assert logcombine(log(x) + 2*log(y), force=True) == log(x*y**2) assert logcombine(a*log(w) + log(z)) == a*log(w) + log(z) assert logcombine(b*log(z) + b*log(x)) == log(z**b) + b*log(x) assert logcombine(b*log(z) - log(w)) == log(z**b/w) assert logcombine(log(x)*log(z)) == log(x)*log(z) assert logcombine(log(w)*log(x)) == log(w)*log(x) assert logcombine(cos(-2*log(z) + b*log(w))) in [cos(log(w**b/z**2)), cos(log(z**2/w**b))] assert logcombine(log(log(x) - log(y)) - log(z), force=True) == \ log(log(x/y)/z) assert logcombine((2 + I)*log(x), force=True) == (2 + I)*log(x) assert logcombine((x**2 + log(x) - log(y))/(x*y), force=True) == \ (x**2 + log(x/y))/(x*y) # the following could also give log(z*x**log(y**2)), what we # are testing is that a canonical result is obtained assert logcombine(log(x)*2*log(y) + log(z), force=True) == \ log(z*y**log(x**2)) assert logcombine((x*y + sqrt(x**4 + y**4) + log(x) - log(y))/(pi*x**Rational(2, 3)* sqrt(y)**3), force=True) == ( x*y + sqrt(x**4 + y**4) + log(x/y))/(pi*x**Rational(2, 3)*y**Rational(3, 2)) assert logcombine(gamma(-log(x/y))*acos(-log(x/y)), force=True) == \ acos(-log(x/y))*gamma(-log(x/y)) assert logcombine(2*log(z)*log(w)*log(x) + log(z) + log(w)) == \ log(z**log(w**2))*log(x) + log(w*z) assert logcombine(3*log(w) + 3*log(z)) == log(w**3*z**3) assert logcombine(x*(y + 1) + log(2) + log(3)) == x*(y + 1) + log(6) assert logcombine((x + y)*log(w) + (-x - y)*log(3)) == (x + y)*log(w/3) # a single unknown can combine assert logcombine(log(x) + log(2)) == log(2*x) eq = log(abs(x)) + log(abs(y)) assert logcombine(eq) == eq reps = {x: 0, y: 0} assert log(abs(x)*abs(y)).subs(reps) != eq.subs(reps) def test_logcombine_complex_coeff(): i = Integral((sin(x**2) + cos(x**3))/x, x) assert logcombine(i, force=True) == i assert logcombine(i + 2*log(x), force=True) == \ i + log(x**2) def test_issue_5950(): x, y = symbols("x,y", positive=True) assert logcombine(log(3) - log(2)) == log(Rational(3,2), evaluate=False) assert logcombine(log(x) - log(y)) == log(x/y) assert logcombine(log(Rational(3,2), evaluate=False) - log(2)) == \ log(Rational(3,4), evaluate=False) def test_posify(): from sympy.abc import x assert str(posify( x + Symbol('p', positive=True) + Symbol('n', negative=True))) == '(_x + n + p, {_x: x})' eq, rep = posify(1/x) assert log(eq).expand().subs(rep) == -log(x) assert str(posify([x, 1 + x])) == '([_x, _x + 1], {_x: x})' x = symbols('x') p = symbols('p', positive=True) n = symbols('n', negative=True) orig = [x, n, p] modified, reps = posify(orig) assert str(modified) == '[_x, n, p]' assert [w.subs(reps) for w in modified] == orig assert str(Integral(posify(1/x + y)[0], (y, 1, 3)).expand()) == \ 'Integral(1/_x, (y, 1, 3)) + Integral(_y, (y, 1, 3))' assert str(Sum(posify(1/x**n)[0], (n,1,3)).expand()) == \ 'Sum(_x**(-n), (n, 1, 3))' # issue 16438 k = Symbol('k', finite=True) eq, rep = posify(k) assert eq.assumptions0 == {'positive': True, 'zero': False, 'imaginary': False, 'nonpositive': False, 'commutative': True, 'hermitian': True, 'real': True, 'nonzero': True, 'nonnegative': True, 'negative': False, 'complex': True, 'finite': True, 'infinite': False, 'extended_real':True, 'extended_negative': False, 'extended_nonnegative': True, 'extended_nonpositive': False, 'extended_nonzero': True, 'extended_positive': True} def test_issue_4194(): # simplify should call cancel from sympy.abc import x, y f = Function('f') assert simplify((4*x + 6*f(y))/(2*x + 3*f(y))) == 2 @XFAIL def test_simplify_float_vs_integer(): # Test for issue 4473: # https://github.com/sympy/sympy/issues/4473 assert simplify(x**2.0 - x**2) == 0 assert simplify(x**2 - x**2.0) == 0 def test_as_content_primitive(): assert (x/2 + y).as_content_primitive() == (S.Half, x + 2*y) assert (x/2 + y).as_content_primitive(clear=False) == (S.One, x/2 + y) assert (y*(x/2 + y)).as_content_primitive() == (S.Half, y*(x + 2*y)) assert (y*(x/2 + y)).as_content_primitive(clear=False) == (S.One, y*(x/2 + y)) # although the _as_content_primitive methods do not alter the underlying structure, # the as_content_primitive function will touch up the expression and join # bases that would otherwise have not been joined. assert (x*(2 + 2*x)*(3*x + 3)**2).as_content_primitive() == \ (18, x*(x + 1)**3) assert (2 + 2*x + 2*y*(3 + 3*y)).as_content_primitive() == \ (2, x + 3*y*(y + 1) + 1) assert ((2 + 6*x)**2).as_content_primitive() == \ (4, (3*x + 1)**2) assert ((2 + 6*x)**(2*y)).as_content_primitive() == \ (1, (_keep_coeff(S(2), (3*x + 1)))**(2*y)) assert (5 + 10*x + 2*y*(3 + 3*y)).as_content_primitive() == \ (1, 10*x + 6*y*(y + 1) + 5) assert (5*(x*(1 + y)) + 2*x*(3 + 3*y)).as_content_primitive() == \ (11, x*(y + 1)) assert ((5*(x*(1 + y)) + 2*x*(3 + 3*y))**2).as_content_primitive() == \ (121, x**2*(y + 1)**2) assert (y**2).as_content_primitive() == \ (1, y**2) assert (S.Infinity).as_content_primitive() == (1, oo) eq = x**(2 + y) assert (eq).as_content_primitive() == (1, eq) assert (S.Half**(2 + x)).as_content_primitive() == (Rational(1, 4), 2**-x) assert (Rational(-1, 2)**(2 + x)).as_content_primitive() == \ (Rational(1, 4), (Rational(-1, 2))**x) assert (Rational(-1, 2)**(2 + x)).as_content_primitive() == \ (Rational(1, 4), Rational(-1, 2)**x) assert (4**((1 + y)/2)).as_content_primitive() == (2, 4**(y/2)) assert (3**((1 + y)/2)).as_content_primitive() == \ (1, 3**(Mul(S.Half, 1 + y, evaluate=False))) assert (5**Rational(3, 4)).as_content_primitive() == (1, 5**Rational(3, 4)) assert (5**Rational(7, 4)).as_content_primitive() == (5, 5**Rational(3, 4)) assert Add(z*Rational(5, 7), 0.5*x, y*Rational(3, 2), evaluate=False).as_content_primitive() == \ (Rational(1, 14), 7.0*x + 21*y + 10*z) assert (2**Rational(3, 4) + 2**Rational(1, 4)*sqrt(3)).as_content_primitive(radical=True) == \ (1, 2**Rational(1, 4)*(sqrt(2) + sqrt(3))) def test_signsimp(): e = x*(-x + 1) + x*(x - 1) assert signsimp(Eq(e, 0)) is S.true assert Abs(x - 1) == Abs(1 - x) assert signsimp(y - x) == y - x assert signsimp(y - x, evaluate=False) == Mul(-1, x - y, evaluate=False) def test_besselsimp(): from sympy import besselj, besseli, cosh, cosine_transform, bessely assert besselsimp(exp(-I*pi*y/2)*besseli(y, z*exp_polar(I*pi/2))) == \ besselj(y, z) assert besselsimp(exp(-I*pi*a/2)*besseli(a, 2*sqrt(x)*exp_polar(I*pi/2))) == \ besselj(a, 2*sqrt(x)) assert besselsimp(sqrt(2)*sqrt(pi)*x**Rational(1, 4)*exp(I*pi/4)*exp(-I*pi*a/2) * besseli(Rational(-1, 2), sqrt(x)*exp_polar(I*pi/2)) * besseli(a, sqrt(x)*exp_polar(I*pi/2))/2) == \ besselj(a, sqrt(x)) * cos(sqrt(x)) assert besselsimp(besseli(Rational(-1, 2), z)) == \ sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z)) assert besselsimp(besseli(a, z*exp_polar(-I*pi/2))) == \ exp(-I*pi*a/2)*besselj(a, z) assert cosine_transform(1/t*sin(a/t), t, y) == \ sqrt(2)*sqrt(pi)*besselj(0, 2*sqrt(a)*sqrt(y))/2 assert besselsimp(x**2*(a*(-2*besselj(5*I, x) + besselj(-2 + 5*I, x) + besselj(2 + 5*I, x)) + b*(-2*bessely(5*I, x) + bessely(-2 + 5*I, x) + bessely(2 + 5*I, x)))/4 + x*(a*(besselj(-1 + 5*I, x)/2 - besselj(1 + 5*I, x)/2) + b*(bessely(-1 + 5*I, x)/2 - bessely(1 + 5*I, x)/2)) + (x**2 + 25)*(a*besselj(5*I, x) + b*bessely(5*I, x))) == 0 assert besselsimp(81*x**2*(a*(besselj(Rational(-5, 3), 9*x) - 2*besselj(Rational(1, 3), 9*x) + besselj(Rational(7, 3), 9*x)) + b*(bessely(Rational(-5, 3), 9*x) - 2*bessely(Rational(1, 3), 9*x) + bessely(Rational(7, 3), 9*x)))/4 + x*(a*(9*besselj(Rational(-2, 3), 9*x)/2 - 9*besselj(Rational(4, 3), 9*x)/2) + b*(9*bessely(Rational(-2, 3), 9*x)/2 - 9*bessely(Rational(4, 3), 9*x)/2)) + (81*x**2 - Rational(1, 9))*(a*besselj(Rational(1, 3), 9*x) + b*bessely(Rational(1, 3), 9*x))) == 0 assert besselsimp(besselj(a-1,x) + besselj(a+1, x) - 2*a*besselj(a, x)/x) == 0 assert besselsimp(besselj(a-1,x) + besselj(a+1, x) + besselj(a, x)) == (2*a + x)*besselj(a, x)/x assert besselsimp(x**2* besselj(a,x) + x**3*besselj(a+1, x) + besselj(a+2, x)) == \ 2*a*x*besselj(a + 1, x) + x**3*besselj(a + 1, x) - x**2*besselj(a + 2, x) + 2*x*besselj(a + 1, x) + besselj(a + 2, x) def test_Piecewise(): e1 = x*(x + y) - y*(x + y) e2 = sin(x)**2 + cos(x)**2 e3 = expand((x + y)*y/x) s1 = simplify(e1) s2 = simplify(e2) s3 = simplify(e3) assert simplify(Piecewise((e1, x < e2), (e3, True))) == \ Piecewise((s1, x < s2), (s3, True)) def test_polymorphism(): class A(Basic): def _eval_simplify(x, **kwargs): return S.One a = A(5, 2) assert simplify(a) == 1 def test_issue_from_PR1599(): n1, n2, n3, n4 = symbols('n1 n2 n3 n4', negative=True) assert simplify(I*sqrt(n1)) == -sqrt(-n1) def test_issue_6811(): eq = (x + 2*y)*(2*x + 2) assert simplify(eq) == (x + 1)*(x + 2*y)*2 # reject the 2-arg Mul -- these are a headache for test writing assert simplify(eq.expand()) == \ 2*x**2 + 4*x*y + 2*x + 4*y def test_issue_6920(): e = [cos(x) + I*sin(x), cos(x) - I*sin(x), cosh(x) - sinh(x), cosh(x) + sinh(x)] ok = [exp(I*x), exp(-I*x), exp(-x), exp(x)] # wrap in f to show that the change happens wherever ei occurs f = Function('f') assert [simplify(f(ei)).args[0] for ei in e] == ok def test_issue_7001(): from sympy.abc import r, R assert simplify(-(r*Piecewise((pi*Rational(4, 3), r <= R), (-8*pi*R**3/(3*r**3), True)) + 2*Piecewise((pi*r*Rational(4, 3), r <= R), (4*pi*R**3/(3*r**2), True)))/(4*pi*r)) == \ Piecewise((-1, r <= R), (0, True)) def test_inequality_no_auto_simplify(): # no simplify on creation but can be simplified lhs = cos(x)**2 + sin(x)**2 rhs = 2 e = Lt(lhs, rhs, evaluate=False) assert e is not S.true assert simplify(e) def test_issue_9398(): from sympy import Number, cancel assert cancel(1e-14) != 0 assert cancel(1e-14*I) != 0 assert simplify(1e-14) != 0 assert simplify(1e-14*I) != 0 assert (I*Number(1.)*Number(10)**Number(-14)).simplify() != 0 assert cancel(1e-20) != 0 assert cancel(1e-20*I) != 0 assert simplify(1e-20) != 0 assert simplify(1e-20*I) != 0 assert cancel(1e-100) != 0 assert cancel(1e-100*I) != 0 assert simplify(1e-100) != 0 assert simplify(1e-100*I) != 0 f = Float("1e-1000") assert cancel(f) != 0 assert cancel(f*I) != 0 assert simplify(f) != 0 assert simplify(f*I) != 0 def test_issue_9324_simplify(): M = MatrixSymbol('M', 10, 10) e = M[0, 0] + M[5, 4] + 1304 assert simplify(e) == e def test_issue_9817_simplify(): # simplify on trace of substituted explicit quadratic form of matrix # expressions (a scalar) should return without errors (AttributeError) # See issue #9817 and #9190 for the original bug more discussion on this from sympy.matrices.expressions import Identity, trace v = MatrixSymbol('v', 3, 1) A = MatrixSymbol('A', 3, 3) x = Matrix([i + 1 for i in range(3)]) X = Identity(3) quadratic = v.T * A * v assert simplify((trace(quadratic.as_explicit())).xreplace({v:x, A:X})) == 14 def test_issue_13474(): x = Symbol('x') assert simplify(x + csch(sinc(1))) == x + csch(sinc(1)) def test_simplify_function_inverse(): # "inverse" attribute does not guarantee that f(g(x)) is x # so this simplification should not happen automatically. # See issue #12140 x, y = symbols('x, y') g = Function('g') class f(Function): def inverse(self, argindex=1): return g assert simplify(f(g(x))) == f(g(x)) assert inversecombine(f(g(x))) == x assert simplify(f(g(x)), inverse=True) == x assert simplify(f(g(sin(x)**2 + cos(x)**2)), inverse=True) == 1 assert simplify(f(g(x, y)), inverse=True) == f(g(x, y)) assert unchanged(asin, sin(x)) assert simplify(asin(sin(x))) == asin(sin(x)) assert simplify(2*asin(sin(3*x)), inverse=True) == 6*x assert simplify(log(exp(x))) == log(exp(x)) assert simplify(log(exp(x)), inverse=True) == x assert simplify(log(exp(x), 2), inverse=True) == x/log(2) assert simplify(log(exp(x), 2, evaluate=False), inverse=True) == x/log(2) def test_clear_coefficients(): from sympy.simplify.simplify import clear_coefficients assert clear_coefficients(4*y*(6*x + 3)) == (y*(2*x + 1), 0) assert clear_coefficients(4*y*(6*x + 3) - 2) == (y*(2*x + 1), Rational(1, 6)) assert clear_coefficients(4*y*(6*x + 3) - 2, x) == (y*(2*x + 1), x/12 + Rational(1, 6)) assert clear_coefficients(sqrt(2) - 2) == (sqrt(2), 2) assert clear_coefficients(4*sqrt(2) - 2) == (sqrt(2), S.Half) assert clear_coefficients(S(3), x) == (0, x - 3) assert clear_coefficients(S.Infinity, x) == (S.Infinity, x) assert clear_coefficients(-S.Pi, x) == (S.Pi, -x) assert clear_coefficients(2 - S.Pi/3, x) == (pi, -3*x + 6) def test_nc_simplify(): from sympy.simplify.simplify import nc_simplify from sympy.matrices.expressions import MatPow, Identity from sympy.core import Pow from functools import reduce a, b, c, d = symbols('a b c d', commutative = False) x = Symbol('x') A = MatrixSymbol("A", x, x) B = MatrixSymbol("B", x, x) C = MatrixSymbol("C", x, x) D = MatrixSymbol("D", x, x) subst = {a: A, b: B, c: C, d:D} funcs = {Add: lambda x,y: x+y, Mul: lambda x,y: x*y } def _to_matrix(expr): if expr in subst: return subst[expr] if isinstance(expr, Pow): return MatPow(_to_matrix(expr.args[0]), expr.args[1]) elif isinstance(expr, (Add, Mul)): return reduce(funcs[expr.func],[_to_matrix(a) for a in expr.args]) else: return expr*Identity(x) def _check(expr, simplified, deep=True, matrix=True): assert nc_simplify(expr, deep=deep) == simplified assert expand(expr) == expand(simplified) if matrix: m_simp = _to_matrix(simplified).doit(inv_expand=False) assert nc_simplify(_to_matrix(expr), deep=deep) == m_simp _check(a*b*a*b*a*b*c*(a*b)**3*c, ((a*b)**3*c)**2) _check(a*b*(a*b)**-2*a*b, 1) _check(a**2*b*a*b*a*b*(a*b)**-1, a*(a*b)**2, matrix=False) _check(b*a*b**2*a*b**2*a*b**2, b*(a*b**2)**3) _check(a*b*a**2*b*a**2*b*a**3, (a*b*a)**3*a**2) _check(a**2*b*a**4*b*a**4*b*a**2, (a**2*b*a**2)**3) _check(a**3*b*a**4*b*a**4*b*a, a**3*(b*a**4)**3*a**-3) _check(a*b*a*b + a*b*c*x*a*b*c, (a*b)**2 + x*(a*b*c)**2) _check(a*b*a*b*c*a*b*a*b*c, ((a*b)**2*c)**2) _check(b**-1*a**-1*(a*b)**2, a*b) _check(a**-1*b*c**-1, (c*b**-1*a)**-1) expr = a**3*b*a**4*b*a**4*b*a**2*b*a**2*(b*a**2)**2*b*a**2*b*a**2 for _ in range(10): expr *= a*b _check(expr, a**3*(b*a**4)**2*(b*a**2)**6*(a*b)**10) _check((a*b*a*b)**2, (a*b*a*b)**2, deep=False) _check(a*b*(c*d)**2, a*b*(c*d)**2) expr = b**-1*(a**-1*b**-1 - a**-1*c*b**-1)**-1*a**-1 assert nc_simplify(expr) == (1-c)**-1 # commutative expressions should be returned without an error assert nc_simplify(2*x**2) == 2*x**2 def test_issue_15965(): A = Sum(z*x**y, (x, 1, a)) anew = z*Sum(x**y, (x, 1, a)) B = Integral(x*y, x) bdo = x**2*y/2 assert simplify(A + B) == anew + bdo assert simplify(A) == anew assert simplify(B) == bdo assert simplify(B, doit=False) == y*Integral(x, x) def test_issue_17137(): assert simplify(cos(x)**I) == cos(x)**I assert simplify(cos(x)**(2 + 3*I)) == cos(x)**(2 + 3*I) def test_issue_7971(): z = Integral(x, (x, 1, 1)) assert z != 0 assert simplify(z) is S.Zero @slow def test_issue_17141_slow(): # Should not give RecursionError assert simplify((2**acos(I+1)**2).rewrite('log')) == 2**((pi + 2*I*log(-1 + sqrt(1 - 2*I) + I))**2/4) def test_issue_17141(): # Check that there is no RecursionError assert simplify(x**(1 / acos(I))) == x**(2/(pi - 2*I*log(1 + sqrt(2)))) assert simplify(acos(-I)**2*acos(I)**2) == \ log(1 + sqrt(2))**4 + pi**2*log(1 + sqrt(2))**2/2 + pi**4/16 assert simplify(2**acos(I)**2) == 2**((pi - 2*I*log(1 + sqrt(2)))**2/4) p = 2**acos(I+1)**2 assert simplify(p) == p def test_simplify_kroneckerdelta(): i, j = symbols("i j") K = KroneckerDelta assert simplify(K(i, j)) == K(i, j) assert simplify(K(0, j)) == K(0, j) assert simplify(K(i, 0)) == K(i, 0) assert simplify(K(0, j).rewrite(Piecewise) * K(1, j)) == 0 assert simplify(K(1, i) + Piecewise((1, Eq(j, 2)), (0, True))) == K(1, i) + K(2, j) # issue 17214 assert simplify(K(0, j) * K(1, j)) == 0 n = Symbol('n', integer=True) assert simplify(K(0, n) * K(1, n)) == 0 M = Matrix(4, 4, lambda i, j: K(j - i, n) if i <= j else 0) assert simplify(M**2) == Matrix([[K(0, n), 0, K(1, n), 0], [0, K(0, n), 0, K(1, n)], [0, 0, K(0, n), 0], [0, 0, 0, K(0, n)]]) def test_issue_17292(): assert simplify(abs(x)/abs(x**2)) == 1/abs(x) # this is bigger than the issue: check that deep processing works assert simplify(5*abs((x**2 - 1)/(x - 1))) == 5*Abs(x + 1) def test_issue_19484(): assert simplify(sign(x) * Abs(x)) == x e = x + sign(x + x**3) assert simplify(Abs(x + x**3)*e) == x**3 + x*Abs(x**3 + x) + x e = x**2 + sign(x**3 + 1) assert simplify(Abs(x**3 + 1) * e) == x**3 + x**2*Abs(x**3 + 1) + 1 f = Function('f') e = x + sign(x + f(x)**3) assert simplify(Abs(x + f(x)**3) * e) == x*Abs(x + f(x)**3) + x + f(x)**3 def test_issue_19161(): polynomial = Poly('x**2').simplify() assert (polynomial-x**2).simplify() == 0
ab50bb896a6f743ca611464dcb326f64bb0bb60c12918b428b1304f9f632203c
""" Module to implement predicate classes. Class of every predicate registered to ``Q`` is defined here. """
75961a67c02ebc9ea812d3e18609bf8723affca1632c9dc2f5f6d561a7297fa1
from sympy.assumptions import Predicate from sympy.multipledispatch import Dispatcher class FinitePredicate(Predicate): """ Finite predicate. Explanation =========== ``Q.finite(x)`` is true if ``x`` is neither an infinity nor a ``NaN``. In other words, ``ask(Q.finite(x))`` is true for all ``x`` having a bounded absolute value. Examples ======== >>> from sympy import Q, ask, Symbol, S, oo, I >>> x = Symbol('x') >>> ask(Q.finite(S.NaN)) False >>> ask(Q.finite(oo)) False >>> ask(Q.finite(1)) True >>> ask(Q.finite(2 + 3*I)) True >>> print(ask(Q.finite(x), Q.positive(x))) None References ========== .. [1] https://en.wikipedia.org/wiki/Finite """ name = 'finite' handler = Dispatcher( "FiniteHandler", doc=("Handler for Q.finite. Test that an expression is bounded respect" " to all its variables.") ) class InfinitePredicate(Predicate): """ Infinite number predicate. ``Q.infinite(x)`` is true iff the absolute value of ``x`` is infinity. """ # TODO: Add examples name = 'infinite' handler = Dispatcher( "InfiniteHandler", doc="""Handler for Q.infinite key.""" )
35037fb93b4cff43064c6c5860568bb9298761cd038655d8521fc8e3a96bd7a2
from sympy.assumptions import Predicate from sympy.multipledispatch import Dispatcher class IntegerPredicate(Predicate): """ Integer predicate. Explanation =========== ``Q.integer(x)`` is true iff ``x`` belongs to the set of integer numbers. Examples ======== >>> from sympy import Q, ask, S >>> ask(Q.integer(5)) True >>> ask(Q.integer(S(1)/2)) False References ========== .. [1] https://en.wikipedia.org/wiki/Integer """ name = 'integer' handler = Dispatcher( "IntegerHandler", doc=("Handler for Q.integer.\n\n" "Test that an expression belongs to the field of integer numbers.") ) class RationalPredicate(Predicate): """ Rational number predicate. Explanation =========== ``Q.rational(x)`` is true iff ``x`` belongs to the set of rational numbers. Examples ======== >>> from sympy import ask, Q, pi, S >>> ask(Q.rational(0)) True >>> ask(Q.rational(S(1)/2)) True >>> ask(Q.rational(pi)) False References ========== https://en.wikipedia.org/wiki/Rational_number """ name = 'rational' handler = Dispatcher( "RationalHandler", doc=("Handler for Q.rational.\n\n" "Test that an expression belongs to the field of rational numbers.") ) class IrrationalPredicate(Predicate): """ Irrational number predicate. Explanation =========== ``Q.irrational(x)`` is true iff ``x`` is any real number that cannot be expressed as a ratio of integers. Examples ======== >>> from sympy import ask, Q, pi, S, I >>> ask(Q.irrational(0)) False >>> ask(Q.irrational(S(1)/2)) False >>> ask(Q.irrational(pi)) True >>> ask(Q.irrational(I)) False References ========== .. [1] https://en.wikipedia.org/wiki/Irrational_number """ name = 'irrational' handler = Dispatcher( "IrrationalHandler", doc=("Handler for Q.irrational.\n\n" "Test that an expression is irrational numbers.") ) class RealPredicate(Predicate): r""" Real number predicate. Explanation =========== ``Q.real(x)`` is true iff ``x`` is a real number, i.e., it is in the interval `(-\infty, \infty)`. Note that, in particular the infinities are not real. Use ``Q.extended_real`` if you want to consider those as well. A few important facts about reals: - Every real number is positive, negative, or zero. Furthermore, because these sets are pairwise disjoint, each real number is exactly one of those three. - Every real number is also complex. - Every real number is finite. - Every real number is either rational or irrational. - Every real number is either algebraic or transcendental. - The facts ``Q.negative``, ``Q.zero``, ``Q.positive``, ``Q.nonnegative``, ``Q.nonpositive``, ``Q.nonzero``, ``Q.integer``, ``Q.rational``, and ``Q.irrational`` all imply ``Q.real``, as do all facts that imply those facts. - The facts ``Q.algebraic``, and ``Q.transcendental`` do not imply ``Q.real``; they imply ``Q.complex``. An algebraic or transcendental number may or may not be real. - The "non" facts (i.e., ``Q.nonnegative``, ``Q.nonzero``, ``Q.nonpositive`` and ``Q.noninteger``) are not equivalent to not the fact, but rather, not the fact *and* ``Q.real``. For example, ``Q.nonnegative`` means ``~Q.negative & Q.real``. So for example, ``I`` is not nonnegative, nonzero, or nonpositive. Examples ======== >>> from sympy import Q, ask, symbols >>> x = symbols('x') >>> ask(Q.real(x), Q.positive(x)) True >>> ask(Q.real(0)) True References ========== .. [1] https://en.wikipedia.org/wiki/Real_number """ name = 'real' handler = Dispatcher( "RealHandler", doc=("Handler for Q.real.\n\n" "Test that an expression belongs to the field of real numbers.") ) class ExtendedRealPredicate(Predicate): r""" Extended real predicate. Explanation =========== ``Q.extended_real(x)`` is true iff ``x`` is a real number or `\{-\infty, \infty\}`. See documentation of ``Q.real`` for more information about related facts. Examples ======== >>> from sympy import ask, Q, oo, I >>> ask(Q.extended_real(1)) True >>> ask(Q.extended_real(I)) False >>> ask(Q.extended_real(oo)) True """ name = 'extended_real' handler = Dispatcher( "ExtendedRealHandler", doc=("Handler for Q.extended_real.\n\n" "Test that an expression belongs to the field of extended real\n" "numbers, that is real numbers union {Infinity, -Infinity}.") ) class HermitianPredicate(Predicate): """ Hermitian predicate. Explanation =========== ``ask(Q.hermitian(x))`` is true iff ``x`` belongs to the set of Hermitian operators. References ========== .. [1] http://mathworld.wolfram.com/HermitianOperator.html """ # TODO: Add examples name = 'hermitian' handler = Dispatcher( "HermitianHandler", doc=("Handler for Q.hermitian.\n\n" "Test that an expression belongs to the field of Hermitian operators.") ) class ComplexPredicate(Predicate): """ Complex number predicate. Explanation =========== ``Q.complex(x)`` is true iff ``x`` belongs to the set of complex numbers. Note that every complex number is finite. Examples ======== >>> from sympy import Q, Symbol, ask, I, oo >>> x = Symbol('x') >>> ask(Q.complex(0)) True >>> ask(Q.complex(2 + 3*I)) True >>> ask(Q.complex(oo)) False References ========== .. [1] https://en.wikipedia.org/wiki/Complex_number """ name = 'complex' handler = Dispatcher( "ComplexHandler", doc=("Handler for Q.complex.\n\n" "Test that an expression belongs to the field of complex numbers.") ) class ImaginaryPredicate(Predicate): """ Imaginary number predicate. Explanation =========== ``Q.imaginary(x)`` is true iff ``x`` can be written as a real number multiplied by the imaginary unit ``I``. Please note that ``0`` is not considered to be an imaginary number. Examples ======== >>> from sympy import Q, ask, I >>> ask(Q.imaginary(3*I)) True >>> ask(Q.imaginary(2 + 3*I)) False >>> ask(Q.imaginary(0)) False References ========== .. [1] https://en.wikipedia.org/wiki/Imaginary_number """ name = 'imaginary' handler = Dispatcher( "ImaginaryHandler", doc=("Handler for Q.imaginary.\n\n" "Test that an expression belongs to the field of imaginary numbers,\n" "that is, numbers in the form x*I, where x is real.") ) class AntihermitianPredicate(Predicate): """ Antihermitian predicate. Explanation =========== ``Q.antihermitian(x)`` is true iff ``x`` belongs to the field of antihermitian operators, i.e., operators in the form ``x*I``, where ``x`` is Hermitian. References ========== .. [1] http://mathworld.wolfram.com/HermitianOperator.html """ # TODO: Add examples name = 'antihermitian' handler = Dispatcher( "AntiHermitianHandler", doc=("Handler for Q.antihermitian.\n\n" "Test that an expression belongs to the field of anti-Hermitian\n" "operators, that is, operators in the form x*I, where x is Hermitian.") ) class AlgebraicPredicate(Predicate): r""" Algebraic number predicate. Explanation =========== ``Q.algebraic(x)`` is true iff ``x`` belongs to the set of algebraic numbers. ``x`` is algebraic if there is some polynomial in ``p(x)\in \mathbb\{Q\}[x]`` such that ``p(x) = 0``. Examples ======== >>> from sympy import ask, Q, sqrt, I, pi >>> ask(Q.algebraic(sqrt(2))) True >>> ask(Q.algebraic(I)) True >>> ask(Q.algebraic(pi)) False References ========== .. [1] https://en.wikipedia.org/wiki/Algebraic_number """ name = 'algebraic' AlgebraicHandler = Dispatcher( "AlgebraicHandler", doc="""Handler for Q.algebraic key.""" ) class TranscendentalPredicate(Predicate): """ Transcedental number predicate. Explanation =========== ``Q.transcendental(x)`` is true iff ``x`` belongs to the set of transcendental numbers. A transcendental number is a real or complex number that is not algebraic. """ # TODO: Add examples name = 'transcendental' handler = Dispatcher( "Transcendental", doc="""Handler for Q.transcendental key.""" )
0dc3385a77767ac27faa4b2bbef491e1b5c36a5c9dc01f61f192bf643ef19978
""" Multipledispatch handlers for ``Predicate`` are implemented here. Handlers in this module are not directly imported to other modules in order to avoid circular import problem. """ from .common import (AskHandler, CommonHandler, AskCommutativeHandler, TautologicalHandler, test_closed_group) __all__ = [ 'AskHandler', 'CommonHandler', 'AskCommutativeHandler', 'TautologicalHandler', 'test_closed_group' ]
b35255e7ba36d05d6898a313f078bc16feb18fa4141ecc6c46232a48453d25ce
""" This module contains query handlers responsible for calculus queries: infinitesimal, finite, etc. """ from sympy.assumptions import Q, ask from sympy.core import Add, Mul, Pow, Symbol from sympy.core.numbers import (Exp1, GoldenRatio, ImaginaryUnit, Infinity, NaN, NegativeInfinity, Number, Pi, TribonacciConstant) from sympy.functions import cos, exp, log, sign, sin from sympy.logic.boolalg import conjuncts from ..predicates.calculus import FinitePredicate # FinitePredicate @FinitePredicate.register(Symbol) def _(expr, assumptions): """ Handles Symbol. """ if expr.is_finite is not None: return expr.is_finite if Q.finite(expr) in conjuncts(assumptions): return True return None @FinitePredicate.register(Add) def _(expr, assumptions): """ Return True if expr is bounded, False if not and None if unknown. Truth Table: +-------+-----+-----------+-----------+ | | | | | | | B | U | ? | | | | | | +-------+-----+---+---+---+---+---+---+ | | | | | | | | | | | |'+'|'-'|'x'|'+'|'-'|'x'| | | | | | | | | | +-------+-----+---+---+---+---+---+---+ | | | | | | B | B | U | ? | | | | | | +---+---+-----+---+---+---+---+---+---+ | | | | | | | | | | | |'+'| | U | ? | ? | U | ? | ? | | | | | | | | | | | | +---+-----+---+---+---+---+---+---+ | | | | | | | | | | | U |'-'| | ? | U | ? | ? | U | ? | | | | | | | | | | | | +---+-----+---+---+---+---+---+---+ | | | | | | | |'x'| | ? | ? | | | | | | | +---+---+-----+---+---+---+---+---+---+ | | | | | | ? | | | ? | | | | | | +-------+-----+-----------+---+---+---+ * 'B' = Bounded * 'U' = Unbounded * '?' = unknown boundedness * '+' = positive sign * '-' = negative sign * 'x' = sign unknown * All Bounded -> True * 1 Unbounded and the rest Bounded -> False * >1 Unbounded, all with same known sign -> False * Any Unknown and unknown sign -> None * Else -> None When the signs are not the same you can have an undefined result as in oo - oo, hence 'bounded' is also undefined. """ sign = -1 # sign of unknown or infinite result = True for arg in expr.args: _bounded = ask(Q.finite(arg), assumptions) if _bounded: continue s = ask(Q.positive(arg), assumptions) # if there has been more than one sign or if the sign of this arg # is None and Bounded is None or there was already # an unknown sign, return None if sign != -1 and s != sign or \ s is None and (s == _bounded or s == sign): return None else: sign = s # once False, do not change if result is not False: result = _bounded return result @FinitePredicate.register(Mul) def _(expr, assumptions): """ Return True if expr is bounded, False if not and None if unknown. Truth Table: +---+---+---+--------+ | | | | | | | B | U | ? | | | | | | +---+---+---+---+----+ | | | | | | | | | | s | /s | | | | | | | +---+---+---+---+----+ | | | | | | B | B | U | ? | | | | | | +---+---+---+---+----+ | | | | | | | U | | U | U | ? | | | | | | | +---+---+---+---+----+ | | | | | | ? | | | ? | | | | | | +---+---+---+---+----+ * B = Bounded * U = Unbounded * ? = unknown boundedness * s = signed (hence nonzero) * /s = not signed """ result = True for arg in expr.args: _bounded = ask(Q.finite(arg), assumptions) if _bounded: continue elif _bounded is None: if result is None: return None if ask(Q.nonzero(arg), assumptions) is None: return None if result is not False: result = None else: result = False return result @FinitePredicate.register(Pow) def _(expr, assumptions): """ * Unbounded ** NonZero -> Unbounded * Bounded ** Bounded -> Bounded * Abs()<=1 ** Positive -> Bounded * Abs()>=1 ** Negative -> Bounded * Otherwise unknown """ base_bounded = ask(Q.finite(expr.base), assumptions) exp_bounded = ask(Q.finite(expr.exp), assumptions) if base_bounded is None and exp_bounded is None: # Common Case return None if base_bounded is False and ask(Q.nonzero(expr.exp), assumptions): return False if base_bounded and exp_bounded: return True if (abs(expr.base) <= 1) == True and ask(Q.positive(expr.exp), assumptions): return True if (abs(expr.base) >= 1) == True and ask(Q.negative(expr.exp), assumptions): return True if (abs(expr.base) >= 1) == True and exp_bounded is False: return False return None @FinitePredicate.register(exp) def _(expr, assumptions): return ask(Q.finite(expr.args[0]), assumptions) @FinitePredicate.register(log) def _(expr, assumptions): # After complex -> finite fact is registered to new assumption system, # querying Q.infinite may be removed. if ask(Q.infinite(expr.args[0]), assumptions): return False return ask(Q.nonzero(expr.args[0]), assumptions) @FinitePredicate.register_many(cos, sin, Number, Pi, Exp1, GoldenRatio, TribonacciConstant, ImaginaryUnit, sign) def _(expr, assumptions): return True @FinitePredicate.register_many(Infinity, NegativeInfinity, NaN) def _(expr, assumptions): return False
92aec40e10947eb8bbeb1d587ce8a0a6363f1556e812d42cbf544f93e7649bfb
""" This module defines base class for handlers and some core handlers: ``Q.commutative`` and ``Q.is_true``. """ from sympy.assumptions import Q, ask from sympy.core.logic import _fuzzy_group from sympy.logic.boolalg import conjuncts class AskHandler: """Base class that all Ask Handlers must inherit.""" pass class CommonHandler(AskHandler): """Defines some useful methods common to most Handlers. """ @staticmethod def AlwaysTrue(expr, assumptions): return True @staticmethod def AlwaysFalse(expr, assumptions): return False @staticmethod def AlwaysNone(expr, assumptions): return None NaN = AlwaysFalse class AskCommutativeHandler(CommonHandler): """ Handler for key 'commutative' """ @staticmethod def Symbol(expr, assumptions): """Objects are expected to be commutative unless otherwise stated""" assumps = conjuncts(assumptions) if expr.is_commutative is not None: return expr.is_commutative and not ~Q.commutative(expr) in assumps if Q.commutative(expr) in assumps: return True elif ~Q.commutative(expr) in assumps: return False return True @staticmethod def Basic(expr, assumptions): for arg in expr.args: if not ask(Q.commutative(arg), assumptions): return False return True @staticmethod def Number(expr, assumptions): return True @staticmethod def NaN(expr, assumptions): return True class TautologicalHandler(AskHandler): """Wrapper allowing to query the truth value of a boolean expression.""" @staticmethod def bool(expr, assumptions): return expr BooleanTrue = staticmethod(CommonHandler.AlwaysTrue) BooleanFalse = staticmethod(CommonHandler.AlwaysFalse) @staticmethod def AppliedPredicate(expr, assumptions): return ask(expr, assumptions) @staticmethod def Not(expr, assumptions): value = ask(expr.args[0], assumptions=assumptions) if value in (True, False): return not value else: return None @staticmethod def Or(expr, assumptions): result = False for arg in expr.args: p = ask(arg, assumptions=assumptions) if p is True: return True if p is None: result = None return result @staticmethod def And(expr, assumptions): result = True for arg in expr.args: p = ask(arg, assumptions=assumptions) if p is False: return False if p is None: result = None return result @staticmethod def Implies(expr, assumptions): p, q = expr.args return ask(~p | q, assumptions=assumptions) @staticmethod def Equivalent(expr, assumptions): p, q = expr.args pt = ask(p, assumptions=assumptions) if pt is None: return None qt = ask(q, assumptions=assumptions) if qt is None: return None return pt == qt #### Helper methods def test_closed_group(expr, assumptions, key): """ Test for membership in a group with respect to the current operation. """ return _fuzzy_group( (ask(key(a), assumptions) for a in expr.args), quick_exit=True)
5ad18b3050afd4e8a9e7395f2821de73938cc8f016a1fdcd6c4097bffef31e64
""" This module contains query handlers responsible for Matrices queries: Square, Symmetric, Invertible etc. """ from sympy.logic.boolalg import conjuncts from sympy.assumptions import Q, ask from sympy.assumptions.handlers import CommonHandler, test_closed_group from sympy.matrices.expressions import MatMul, MatrixExpr from sympy.core.logic import fuzzy_and from sympy.utilities.iterables import sift from sympy.core import Basic from functools import partial def _Factorization(predicate, expr, assumptions): if predicate in expr.predicates: return True class AskSquareHandler(CommonHandler): """ Handler for key 'square'. """ @staticmethod def MatrixExpr(expr, assumptions): return expr.shape[0] == expr.shape[1] class AskSymmetricHandler(CommonHandler): """ Handler for key 'symmetric'. """ @staticmethod def MatMul(expr, assumptions): factor, mmul = expr.as_coeff_mmul() if all(ask(Q.symmetric(arg), assumptions) for arg in mmul.args): return True # TODO: implement sathandlers system for the matrices. # Now it duplicates the general fact: Implies(Q.diagonal, Q.symmetric). if ask(Q.diagonal(expr), assumptions): return True if len(mmul.args) >= 2 and mmul.args[0] == mmul.args[-1].T: if len(mmul.args) == 2: return True return ask(Q.symmetric(MatMul(*mmul.args[1:-1])), assumptions) @staticmethod def MatPow(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if not int_exp: return None non_negative = ask(~Q.negative(exp), assumptions) if (non_negative or non_negative == False and ask(Q.invertible(base), assumptions)): return ask(Q.symmetric(base), assumptions) return None @staticmethod def MatAdd(expr, assumptions): return all(ask(Q.symmetric(arg), assumptions) for arg in expr.args) @staticmethod def MatrixSymbol(expr, assumptions): if not expr.is_square: return False # TODO: implement sathandlers system for the matrices. # Now it duplicates the general fact: Implies(Q.diagonal, Q.symmetric). if ask(Q.diagonal(expr), assumptions): return True if Q.symmetric(expr) in conjuncts(assumptions): return True @staticmethod def ZeroMatrix(expr, assumptions): return ask(Q.square(expr), assumptions) OneMatrix = ZeroMatrix @staticmethod def Transpose(expr, assumptions): return ask(Q.symmetric(expr.arg), assumptions) Inverse = Transpose @staticmethod def MatrixSlice(expr, assumptions): # TODO: implement sathandlers system for the matrices. # Now it duplicates the general fact: Implies(Q.diagonal, Q.symmetric). if ask(Q.diagonal(expr), assumptions): return True if not expr.on_diag: return None else: return ask(Q.symmetric(expr.parent), assumptions) Identity = staticmethod(CommonHandler.AlwaysTrue) class AskInvertibleHandler(CommonHandler): """ Handler for key 'invertible'. """ @staticmethod def MatMul(expr, assumptions): factor, mmul = expr.as_coeff_mmul() if all(ask(Q.invertible(arg), assumptions) for arg in mmul.args): return True if any(ask(Q.invertible(arg), assumptions) is False for arg in mmul.args): return False @staticmethod def MatPow(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if not int_exp: return None if exp.is_negative == False: return ask(Q.invertible(base), assumptions) return None @staticmethod def MatAdd(expr, assumptions): return None @staticmethod def MatrixSymbol(expr, assumptions): if not expr.is_square: return False if Q.invertible(expr) in conjuncts(assumptions): return True Identity, Inverse = [staticmethod(CommonHandler.AlwaysTrue)]*2 ZeroMatrix = staticmethod(CommonHandler.AlwaysFalse) @staticmethod def OneMatrix(expr, assumptions): return expr.shape[0] == 1 and expr.shape[1] == 1 @staticmethod def Transpose(expr, assumptions): return ask(Q.invertible(expr.arg), assumptions) @staticmethod def MatrixSlice(expr, assumptions): if not expr.on_diag: return None else: return ask(Q.invertible(expr.parent), assumptions) @staticmethod def MatrixBase(expr, assumptions): if not expr.is_square: return False return expr.rank() == expr.rows @staticmethod def MatrixExpr(expr, assumptions): if not expr.is_square: return False return None @staticmethod def BlockMatrix(expr, assumptions): from sympy.matrices.expressions.blockmatrix import reblock_2x2 if not expr.is_square: return False if expr.blockshape == (1, 1): return ask(Q.invertible(expr.blocks[0, 0]), assumptions) expr = reblock_2x2(expr) if expr.blockshape == (2, 2): [[A, B], [C, D]] = expr.blocks.tolist() if ask(Q.invertible(A), assumptions) == True: invertible = ask(Q.invertible(D - C * A.I * B), assumptions) if invertible is not None: return invertible if ask(Q.invertible(B), assumptions) == True: invertible = ask(Q.invertible(C - D * B.I * A), assumptions) if invertible is not None: return invertible if ask(Q.invertible(C), assumptions) == True: invertible = ask(Q.invertible(B - A * C.I * D), assumptions) if invertible is not None: return invertible if ask(Q.invertible(D), assumptions) == True: invertible = ask(Q.invertible(A - B * D.I * C), assumptions) if invertible is not None: return invertible return None @staticmethod def BlockDiagMatrix(expr, assumptions): if expr.rowblocksizes != expr.colblocksizes: return None return fuzzy_and([ask(Q.invertible(a), assumptions) for a in expr.diag]) class AskOrthogonalHandler(CommonHandler): """ Handler for key 'orthogonal'. """ predicate = Q.orthogonal @staticmethod def MatMul(expr, assumptions): factor, mmul = expr.as_coeff_mmul() if (all(ask(Q.orthogonal(arg), assumptions) for arg in mmul.args) and factor == 1): return True if any(ask(Q.invertible(arg), assumptions) is False for arg in mmul.args): return False @staticmethod def MatPow(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if int_exp: return ask(Q.orthogonal(base), assumptions) return None @staticmethod def MatAdd(expr, assumptions): if (len(expr.args) == 1 and ask(Q.orthogonal(expr.args[0]), assumptions)): return True @staticmethod def MatrixSymbol(expr, assumptions): if (not expr.is_square or ask(Q.invertible(expr), assumptions) is False): return False if Q.orthogonal(expr) in conjuncts(assumptions): return True Identity = staticmethod(CommonHandler.AlwaysTrue) ZeroMatrix = staticmethod(CommonHandler.AlwaysFalse) @staticmethod def Transpose(expr, assumptions): return ask(Q.orthogonal(expr.arg), assumptions) Inverse = Transpose @staticmethod def MatrixSlice(expr, assumptions): if not expr.on_diag: return None else: return ask(Q.orthogonal(expr.parent), assumptions) Factorization = staticmethod(partial(_Factorization, Q.orthogonal)) class AskUnitaryHandler(CommonHandler): """ Handler for key 'unitary'. """ predicate = Q.unitary @staticmethod def MatMul(expr, assumptions): factor, mmul = expr.as_coeff_mmul() if (all(ask(Q.unitary(arg), assumptions) for arg in mmul.args) and abs(factor) == 1): return True if any(ask(Q.invertible(arg), assumptions) is False for arg in mmul.args): return False @staticmethod def MatPow(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if int_exp: return ask(Q.unitary(base), assumptions) return None @staticmethod def MatrixSymbol(expr, assumptions): if (not expr.is_square or ask(Q.invertible(expr), assumptions) is False): return False if Q.unitary(expr) in conjuncts(assumptions): return True @staticmethod def Transpose(expr, assumptions): return ask(Q.unitary(expr.arg), assumptions) Inverse = Transpose @staticmethod def MatrixSlice(expr, assumptions): if not expr.on_diag: return None else: return ask(Q.unitary(expr.parent), assumptions) @staticmethod def DFT(expr, assumptions): return True Factorization = staticmethod(partial(_Factorization, Q.unitary)) Identity = staticmethod(CommonHandler.AlwaysTrue) ZeroMatrix = staticmethod(CommonHandler.AlwaysFalse) class AskFullRankHandler(CommonHandler): """ Handler for key 'fullrank'. """ @staticmethod def MatMul(expr, assumptions): if all(ask(Q.fullrank(arg), assumptions) for arg in expr.args): return True @staticmethod def MatPow(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if int_exp and ask(~Q.negative(exp), assumptions): return ask(Q.fullrank(base), assumptions) return None Identity = staticmethod(CommonHandler.AlwaysTrue) ZeroMatrix = staticmethod(CommonHandler.AlwaysFalse) @staticmethod def OneMatrix(expr, assumptions): return expr.shape[0] == 1 and expr.shape[1] == 1 @staticmethod def Transpose(expr, assumptions): return ask(Q.fullrank(expr.arg), assumptions) Inverse = Transpose @staticmethod def MatrixSlice(expr, assumptions): if ask(Q.orthogonal(expr.parent), assumptions): return True class AskPositiveDefiniteHandler(CommonHandler): """ Handler for key 'positive_definite'. """ @staticmethod def MatMul(expr, assumptions): factor, mmul = expr.as_coeff_mmul() if (all(ask(Q.positive_definite(arg), assumptions) for arg in mmul.args) and factor > 0): return True if (len(mmul.args) >= 2 and mmul.args[0] == mmul.args[-1].T and ask(Q.fullrank(mmul.args[0]), assumptions)): return ask(Q.positive_definite( MatMul(*mmul.args[1:-1])), assumptions) @staticmethod def MatPow(expr, assumptions): # a power of a positive definite matrix is positive definite if ask(Q.positive_definite(expr.args[0]), assumptions): return True @staticmethod def MatAdd(expr, assumptions): if all(ask(Q.positive_definite(arg), assumptions) for arg in expr.args): return True @staticmethod def MatrixSymbol(expr, assumptions): if not expr.is_square: return False if Q.positive_definite(expr) in conjuncts(assumptions): return True Identity = staticmethod(CommonHandler.AlwaysTrue) ZeroMatrix = staticmethod(CommonHandler.AlwaysFalse) @staticmethod def OneMatrix(expr, assumptions): return expr.shape[0] == 1 and expr.shape[1] == 1 @staticmethod def Transpose(expr, assumptions): return ask(Q.positive_definite(expr.arg), assumptions) Inverse = Transpose @staticmethod def MatrixSlice(expr, assumptions): if not expr.on_diag: return None else: return ask(Q.positive_definite(expr.parent), assumptions) class AskUpperTriangularHandler(CommonHandler): """ Handler for key 'upper_triangular'. """ @staticmethod def MatMul(expr, assumptions): factor, matrices = expr.as_coeff_matrices() if all(ask(Q.upper_triangular(m), assumptions) for m in matrices): return True @staticmethod def MatAdd(expr, assumptions): if all(ask(Q.upper_triangular(arg), assumptions) for arg in expr.args): return True @staticmethod def MatPow(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if not int_exp: return None non_negative = ask(~Q.negative(exp), assumptions) if (non_negative or non_negative == False and ask(Q.invertible(base), assumptions)): return ask(Q.upper_triangular(base), assumptions) return None @staticmethod def MatrixSymbol(expr, assumptions): if Q.upper_triangular(expr) in conjuncts(assumptions): return True Identity, ZeroMatrix = [staticmethod(CommonHandler.AlwaysTrue)]*2 @staticmethod def OneMatrix(expr, assumptions): return expr.shape[0] == 1 and expr.shape[1] == 1 @staticmethod def Transpose(expr, assumptions): return ask(Q.lower_triangular(expr.arg), assumptions) @staticmethod def Inverse(expr, assumptions): return ask(Q.upper_triangular(expr.arg), assumptions) @staticmethod def MatrixSlice(expr, assumptions): if not expr.on_diag: return None else: return ask(Q.upper_triangular(expr.parent), assumptions) Factorization = staticmethod(partial(_Factorization, Q.upper_triangular)) class AskLowerTriangularHandler(CommonHandler): """ Handler for key 'lower_triangular'. """ @staticmethod def MatMul(expr, assumptions): factor, matrices = expr.as_coeff_matrices() if all(ask(Q.lower_triangular(m), assumptions) for m in matrices): return True @staticmethod def MatAdd(expr, assumptions): if all(ask(Q.lower_triangular(arg), assumptions) for arg in expr.args): return True @staticmethod def MatPow(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if not int_exp: return None non_negative = ask(~Q.negative(exp), assumptions) if (non_negative or non_negative == False and ask(Q.invertible(base), assumptions)): return ask(Q.lower_triangular(base), assumptions) return None @staticmethod def MatrixSymbol(expr, assumptions): if Q.lower_triangular(expr) in conjuncts(assumptions): return True Identity, ZeroMatrix = [staticmethod(CommonHandler.AlwaysTrue)]*2 @staticmethod def OneMatrix(expr, assumptions): return expr.shape[0] == 1 and expr.shape[1] == 1 @staticmethod def Transpose(expr, assumptions): return ask(Q.upper_triangular(expr.arg), assumptions) @staticmethod def Inverse(expr, assumptions): return ask(Q.lower_triangular(expr.arg), assumptions) @staticmethod def MatrixSlice(expr, assumptions): if not expr.on_diag: return None else: return ask(Q.lower_triangular(expr.parent), assumptions) Factorization = staticmethod(partial(_Factorization, Q.lower_triangular)) class AskDiagonalHandler(CommonHandler): """ Handler for key 'diagonal'. """ @staticmethod def _is_empty_or_1x1(expr): return expr.shape == (0, 0) or expr.shape == (1, 1) @staticmethod def MatMul(expr, assumptions): if AskDiagonalHandler._is_empty_or_1x1(expr): return True factor, matrices = expr.as_coeff_matrices() if all(ask(Q.diagonal(m), assumptions) for m in matrices): return True @staticmethod def MatPow(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if not int_exp: return None non_negative = ask(~Q.negative(exp), assumptions) if (non_negative or non_negative == False and ask(Q.invertible(base), assumptions)): return ask(Q.diagonal(base), assumptions) return None @staticmethod def MatAdd(expr, assumptions): if all(ask(Q.diagonal(arg), assumptions) for arg in expr.args): return True @staticmethod def MatrixSymbol(expr, assumptions): if AskDiagonalHandler._is_empty_or_1x1(expr): return True if Q.diagonal(expr) in conjuncts(assumptions): return True @staticmethod def ZeroMatrix(expr, assumptions): return True @staticmethod def OneMatrix(expr, assumptions): return expr.shape[0] == 1 and expr.shape[1] == 1 @staticmethod def Transpose(expr, assumptions): return ask(Q.diagonal(expr.arg), assumptions) @staticmethod def Inverse(expr, assumptions): return ask(Q.diagonal(expr.arg), assumptions) @staticmethod def MatrixSlice(expr, assumptions): if AskDiagonalHandler._is_empty_or_1x1(expr): return True if not expr.on_diag: return None else: return ask(Q.diagonal(expr.parent), assumptions) @staticmethod def DiagonalMatrix(expr, assumptions): return True @staticmethod def DiagMatrix(expr, assumptions): return True @staticmethod def Identity(expr, assumptions): return True Factorization = staticmethod(partial(_Factorization, Q.diagonal)) def BM_elements(predicate, expr, assumptions): """ Block Matrix elements. """ return all(ask(predicate(b), assumptions) for b in expr.blocks) def MS_elements(predicate, expr, assumptions): """ Matrix Slice elements. """ return ask(predicate(expr.parent), assumptions) def MatMul_elements(matrix_predicate, scalar_predicate, expr, assumptions): d = sift(expr.args, lambda x: isinstance(x, MatrixExpr)) factors, matrices = d[False], d[True] return fuzzy_and([ test_closed_group(Basic(*factors), assumptions, scalar_predicate), test_closed_group(Basic(*matrices), assumptions, matrix_predicate)]) class AskIntegerElementsHandler(CommonHandler): @staticmethod def MatAdd(expr, assumptions): return test_closed_group(expr, assumptions, Q.integer_elements) @staticmethod def MatPow(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if not int_exp: return None if exp.is_negative == False: return ask(Q.integer_elements(base), assumptions) return None HadamardProduct, Determinant, Trace, Transpose = [MatAdd]*4 ZeroMatrix, OneMatrix, Identity = [staticmethod(CommonHandler.AlwaysTrue)]*3 MatMul = staticmethod(partial(MatMul_elements, Q.integer_elements, Q.integer)) MatrixSlice = staticmethod(partial(MS_elements, Q.integer_elements)) BlockMatrix = staticmethod(partial(BM_elements, Q.integer_elements)) class AskRealElementsHandler(CommonHandler): @staticmethod def MatAdd(expr, assumptions): return test_closed_group(expr, assumptions, Q.real_elements) @staticmethod def MatPow(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if not int_exp: return None non_negative = ask(~Q.negative(exp), assumptions) if (non_negative or non_negative == False and ask(Q.invertible(base), assumptions)): return ask(Q.real_elements(base), assumptions) return None HadamardProduct, Determinant, Trace, Transpose, \ Factorization = [MatAdd]*5 MatMul = staticmethod(partial(MatMul_elements, Q.real_elements, Q.real)) MatrixSlice = staticmethod(partial(MS_elements, Q.real_elements)) BlockMatrix = staticmethod(partial(BM_elements, Q.real_elements)) class AskComplexElementsHandler(CommonHandler): @staticmethod def MatAdd(expr, assumptions): return test_closed_group(expr, assumptions, Q.complex_elements) @staticmethod def MatPow(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if not int_exp: return None non_negative = ask(~Q.negative(exp), assumptions) if (non_negative or non_negative == False and ask(Q.invertible(base), assumptions)): return ask(Q.complex_elements(base), assumptions) return None HadamardProduct, Determinant, Trace, Transpose, Inverse, \ Factorization = [MatAdd]*6 MatMul = staticmethod(partial(MatMul_elements, Q.complex_elements, Q.complex)) MatrixSlice = staticmethod(partial(MS_elements, Q.complex_elements)) BlockMatrix = staticmethod(partial(BM_elements, Q.complex_elements)) DFT = staticmethod(CommonHandler.AlwaysTrue)
9bd0271e046b3dc1071f2a526d38fd9e8456f42737a0d11b61e5ca894454148b
""" Predicates for predicates related to set membership: integer, rational, etc. """ from sympy.assumptions import Q, ask from sympy.core import Add, Basic, Expr, Mul, Pow from sympy.core.numbers import (AlgebraicNumber, ComplexInfinity, Exp1, Float, GoldenRatio, ImaginaryUnit, Infinity, Integer, NaN, NegativeInfinity, Number, NumberSymbol, Pi, pi, Rational, TribonacciConstant) from sympy.core.logic import fuzzy_bool from sympy.functions import (Abs, acos, acot, asin, atan, cos, cot, exp, im, log, re, sin, tan) from sympy import I, Eq, conjugate from sympy.matrices import Determinant, MatrixBase, Trace from sympy.matrices.expressions.matexpr import MatrixElement from .common import test_closed_group from ..predicates.sets import (IntegerPredicate, RationalPredicate, IrrationalPredicate, RealPredicate, ExtendedRealPredicate, HermitianPredicate, ComplexPredicate, ImaginaryPredicate, AntihermitianPredicate, AlgebraicPredicate) # IntegerPredicate def _IntegerPredicate_number(expr, assumptions): # helper function try: i = int(expr.round()) if not (expr - i).equals(0): raise TypeError return True except TypeError: return False @IntegerPredicate.register_many(int, Integer) def _(expr, assumptions): return True @IntegerPredicate.register_many(Exp1, GoldenRatio, ImaginaryUnit, Infinity, NaN, NegativeInfinity, Pi, Rational, TribonacciConstant) def _(expr, assumptions): return False @IntegerPredicate.register(Expr) def _(expr, assumptions): return expr.is_integer @IntegerPredicate.register_many(Add, Pow) def _(expr, assumptions): """ * Integer + Integer -> Integer * Integer + !Integer -> !Integer * !Integer + !Integer -> ? """ if expr.is_number: return _IntegerPredicate_number(expr, assumptions) return test_closed_group(expr, assumptions, Q.integer) @IntegerPredicate.register(Mul) def _(expr, assumptions): """ * Integer*Integer -> Integer * Integer*Irrational -> !Integer * Odd/Even -> !Integer * Integer*Rational -> ? """ if expr.is_number: return _IntegerPredicate_number(expr, assumptions) _output = True for arg in expr.args: if not ask(Q.integer(arg), assumptions): if arg.is_Rational: if arg.q == 2: return ask(Q.even(2*expr), assumptions) if ~(arg.q & 1): return None elif ask(Q.irrational(arg), assumptions): if _output: _output = False else: return else: return return _output @IntegerPredicate.register(Abs) def _(expr, assumptions): return ask(Q.integer(expr.args[0]), assumptions) @IntegerPredicate.register_many(Determinant, MatrixElement, Trace) def _(expr, assumptions): return ask(Q.integer_elements(expr.args[0]), assumptions) # RationalPredicate @RationalPredicate.register(Rational) def _(expr, assumptions): return True @RationalPredicate.register(Float) def _(expr, assumptions): return None @RationalPredicate.register_many(Exp1, GoldenRatio, ImaginaryUnit, Infinity, NaN, NegativeInfinity, Pi, TribonacciConstant) def _(expr, assumptions): return False @RationalPredicate.register(Expr) def _(expr, assumptions): return expr.is_rational @RationalPredicate.register_many(Add, Mul) def _(expr, assumptions): """ * Rational + Rational -> Rational * Rational + !Rational -> !Rational * !Rational + !Rational -> ? """ if expr.is_number: if expr.as_real_imag()[1]: return False return test_closed_group(expr, assumptions, Q.rational) @RationalPredicate.register(Pow) def _(expr, assumptions): """ * Rational ** Integer -> Rational * Irrational ** Rational -> Irrational * Rational ** Irrational -> ? """ if ask(Q.integer(expr.exp), assumptions): return ask(Q.rational(expr.base), assumptions) elif ask(Q.rational(expr.exp), assumptions): if ask(Q.prime(expr.base), assumptions): return False @RationalPredicate.register_many(asin, atan, cos, exp, sin, tan) def _(expr, assumptions): x = expr.args[0] if ask(Q.rational(x), assumptions): return ask(~Q.nonzero(x), assumptions) @RationalPredicate.register_many(acot, cot) def _(expr, assumptions): x = expr.args[0] if ask(Q.rational(x), assumptions): return False @RationalPredicate.register_many(acos, log) def _(expr, assumptions): x = expr.args[0] if ask(Q.rational(x), assumptions): return ask(~Q.nonzero(x - 1), assumptions) # IrrationalPredicate @IrrationalPredicate.register(NaN) def _(expr, assumptions): return False @IrrationalPredicate.register(Expr) def _(expr, assumptions): return expr.is_irrational @IrrationalPredicate.register(Basic) def _(expr, assumptions): _real = ask(Q.real(expr), assumptions) if _real: _rational = ask(Q.rational(expr), assumptions) if _rational is None: return None return not _rational else: return _real # RealPredicate def _RealPredicate_number(expr, assumptions): # let as_real_imag() work first since the expression may # be simpler to evaluate i = expr.as_real_imag()[1].evalf(2) if i._prec != 1: return not i # allow None to be returned if we couldn't show for sure # that i was 0 @RealPredicate.register_many(Abs, Exp1, Float, GoldenRatio, im, Pi, Rational, re, TribonacciConstant) def _(expr, assumptions): return True @RealPredicate.register_many(ImaginaryUnit, Infinity, NaN, NegativeInfinity) def _(expr, assumptions): return False @RealPredicate.register(Expr) def _(expr, assumptions): return expr.is_real @RealPredicate.register(Add) def _(expr, assumptions): """ * Real + Real -> Real * Real + (Complex & !Real) -> !Real """ if expr.is_number: return _RealPredicate_number(expr, assumptions) return test_closed_group(expr, assumptions, Q.real) @RealPredicate.register(Mul) def _(expr, assumptions): """ * Real*Real -> Real * Real*Imaginary -> !Real * Imaginary*Imaginary -> Real """ if expr.is_number: return _RealPredicate_number(expr, assumptions) result = True for arg in expr.args: if ask(Q.real(arg), assumptions): pass elif ask(Q.imaginary(arg), assumptions): result = result ^ True else: break else: return result @RealPredicate.register(Pow) def _(expr, assumptions): """ * Real**Integer -> Real * Positive**Real -> Real * Real**(Integer/Even) -> Real if base is nonnegative * Real**(Integer/Odd) -> Real * Imaginary**(Integer/Even) -> Real * Imaginary**(Integer/Odd) -> not Real * Imaginary**Real -> ? since Real could be 0 (giving real) or 1 (giving imaginary) * b**Imaginary -> Real if log(b) is imaginary and b != 0 and exponent != integer multiple of I*pi/log(b) * Real**Real -> ? e.g. sqrt(-1) is imaginary and sqrt(2) is not """ if expr.is_number: return _RealPredicate_number(expr, assumptions) if expr.base.func == exp: if ask(Q.imaginary(expr.base.args[0]), assumptions): if ask(Q.imaginary(expr.exp), assumptions): return True # If the i = (exp's arg)/(I*pi) is an integer or half-integer # multiple of I*pi then 2*i will be an integer. In addition, # exp(i*I*pi) = (-1)**i so the overall realness of the expr # can be determined by replacing exp(i*I*pi) with (-1)**i. i = expr.base.args[0]/I/pi if ask(Q.integer(2*i), assumptions): return ask(Q.real(((-1)**i)**expr.exp), assumptions) return if ask(Q.imaginary(expr.base), assumptions): if ask(Q.integer(expr.exp), assumptions): odd = ask(Q.odd(expr.exp), assumptions) if odd is not None: return not odd return if ask(Q.imaginary(expr.exp), assumptions): imlog = ask(Q.imaginary(log(expr.base)), assumptions) if imlog is not None: # I**i -> real, log(I) is imag; # (2*I)**i -> complex, log(2*I) is not imag return imlog if ask(Q.real(expr.base), assumptions): if ask(Q.real(expr.exp), assumptions): if expr.exp.is_Rational and \ ask(Q.even(expr.exp.q), assumptions): return ask(Q.positive(expr.base), assumptions) elif ask(Q.integer(expr.exp), assumptions): return True elif ask(Q.positive(expr.base), assumptions): return True elif ask(Q.negative(expr.base), assumptions): return False @RealPredicate.register_many(cos, sin) def _(expr, assumptions): if ask(Q.real(expr.args[0]), assumptions): return True @RealPredicate.register(exp) def _(expr, assumptions): return ask( Q.integer(expr.args[0]/I/pi) | Q.real(expr.args[0]), assumptions ) @RealPredicate.register(log) def _(expr, assumptions): return ask(Q.positive(expr.args[0]), assumptions) @RealPredicate.register_many(Determinant, MatrixElement, Trace) def _(expr, assumptions): return ask(Q.real_elements(expr.args[0]), assumptions) # ExtendedRealPredicate @ExtendedRealPredicate.register(object) def _(expr, assumptions): return ask(Q.real(expr), assumptions) @ExtendedRealPredicate.register_many(Infinity, NegativeInfinity) def _(expr, assumptions): return True @ExtendedRealPredicate.register(NaN) def _(expr, assumptions): return False @ExtendedRealPredicate.register_many(Add, Mul, Pow) def _(expr, assumptions): return test_closed_group(expr, assumptions, Q.extended_real) # HermitianPredicate @HermitianPredicate.register(NaN) def _(expr, assumptions): return False @HermitianPredicate.register(object) def _(expr, assumptions): if isinstance(expr, MatrixBase): return None return ask(Q.real(expr), assumptions) @HermitianPredicate.register(Add) def _(expr, assumptions): """ * Hermitian + Hermitian -> Hermitian * Hermitian + !Hermitian -> !Hermitian """ if expr.is_number: return None return test_closed_group(expr, assumptions, Q.hermitian) @HermitianPredicate.register(Mul) def _(expr, assumptions): """ As long as there is at most only one noncommutative term: * Hermitian*Hermitian -> Hermitian * Hermitian*Antihermitian -> !Hermitian * Antihermitian*Antihermitian -> Hermitian """ if expr.is_number: return None nccount = 0 result = True for arg in expr.args: if ask(Q.antihermitian(arg), assumptions): result = result ^ True elif not ask(Q.hermitian(arg), assumptions): break if ask(~Q.commutative(arg), assumptions): nccount += 1 if nccount > 1: break else: return result @HermitianPredicate.register(Pow) def _(expr, assumptions): """ * Hermitian**Integer -> Hermitian """ if expr.is_number: return None if ask(Q.hermitian(expr.base), assumptions): if ask(Q.integer(expr.exp), assumptions): return True @HermitianPredicate.register_many(cos, exp, sin) def _(expr, assumptions): if ask(Q.hermitian(expr.args[0]), assumptions): return True @HermitianPredicate.register(MatrixBase) def _(mat, assumptions): rows, cols = mat.shape ret_val = True for i in range(rows): for j in range(i, cols): cond = fuzzy_bool(Eq(mat[i, j], conjugate(mat[j, i]))) if cond == None: ret_val = None if cond == False: return False return ret_val # ComplexPredicate @ComplexPredicate.register_many(Abs, cos, exp, im, ImaginaryUnit, log, Number, NumberSymbol, re, sin) def _(expr, assumptions): return True @ComplexPredicate.register_many(Infinity, NaN, NegativeInfinity) def _(expr, assumptions): return False @ComplexPredicate.register(Expr) def _(expr, assumptions): return expr.is_complex @ComplexPredicate.register_many(Add, Mul, Pow) def _(expr, assumptions): return test_closed_group(expr, assumptions, Q.complex) @ComplexPredicate.register_many(Determinant, MatrixElement, Trace) def _(expr, assumptions): return ask(Q.complex_elements(expr.args[0]), assumptions) # ImaginaryPredicate def _Imaginary_number(expr, assumptions): # let as_real_imag() work first since the expression may # be simpler to evaluate r = expr.as_real_imag()[0].evalf(2) if r._prec != 1: return not r # allow None to be returned if we couldn't show for sure # that r was 0 @ImaginaryPredicate.register(ImaginaryUnit) def _(expr, assumptions): return True @ImaginaryPredicate.register(NaN) def _(expr, assumptions): return False @ImaginaryPredicate.register(Expr) def _(expr, assumptions): return expr.is_imaginary @ImaginaryPredicate.register(Add) def _(expr, assumptions): """ * Imaginary + Imaginary -> Imaginary * Imaginary + Complex -> ? * Imaginary + Real -> !Imaginary """ if expr.is_number: return _Imaginary_number(expr, assumptions) reals = 0 for arg in expr.args: if ask(Q.imaginary(arg), assumptions): pass elif ask(Q.real(arg), assumptions): reals += 1 else: break else: if reals == 0: return True if reals == 1 or (len(expr.args) == reals): # two reals could sum 0 thus giving an imaginary return False @ImaginaryPredicate.register(Mul) def _(expr, assumptions): """ * Real*Imaginary -> Imaginary * Imaginary*Imaginary -> Real """ if expr.is_number: return _Imaginary_number(expr, assumptions) result = False reals = 0 for arg in expr.args: if ask(Q.imaginary(arg), assumptions): result = result ^ True elif not ask(Q.real(arg), assumptions): break else: if reals == len(expr.args): return False return result @ImaginaryPredicate.register(Pow) def _(expr, assumptions): """ * Imaginary**Odd -> Imaginary * Imaginary**Even -> Real * b**Imaginary -> !Imaginary if exponent is an integer multiple of I*pi/log(b) * Imaginary**Real -> ? * Positive**Real -> Real * Negative**Integer -> Real * Negative**(Integer/2) -> Imaginary * Negative**Real -> not Imaginary if exponent is not Rational """ if expr.is_number: return _Imaginary_number(expr, assumptions) if expr.base.func == exp: if ask(Q.imaginary(expr.base.args[0]), assumptions): if ask(Q.imaginary(expr.exp), assumptions): return False i = expr.base.args[0]/I/pi if ask(Q.integer(2*i), assumptions): return ask(Q.imaginary(((-1)**i)**expr.exp), assumptions) if ask(Q.imaginary(expr.base), assumptions): if ask(Q.integer(expr.exp), assumptions): odd = ask(Q.odd(expr.exp), assumptions) if odd is not None: return odd return if ask(Q.imaginary(expr.exp), assumptions): imlog = ask(Q.imaginary(log(expr.base)), assumptions) if imlog is not None: # I**i -> real; (2*I)**i -> complex ==> not imaginary return False if ask(Q.real(expr.base) & Q.real(expr.exp), assumptions): if ask(Q.positive(expr.base), assumptions): return False else: rat = ask(Q.rational(expr.exp), assumptions) if not rat: return rat if ask(Q.integer(expr.exp), assumptions): return False else: half = ask(Q.integer(2*expr.exp), assumptions) if half: return ask(Q.negative(expr.base), assumptions) return half @ImaginaryPredicate.register(log) def _(expr, assumptions): if ask(Q.real(expr.args[0]), assumptions): if ask(Q.positive(expr.args[0]), assumptions): return False return # XXX it should be enough to do # return ask(Q.nonpositive(expr.args[0]), assumptions) # but ask(Q.nonpositive(exp(x)), Q.imaginary(x)) -> None; # it should return True since exp(x) will be either 0 or complex if expr.args[0].func == exp: if expr.args[0].args[0] in [I, -I]: return True im = ask(Q.imaginary(expr.args[0]), assumptions) if im is False: return False @ImaginaryPredicate.register(exp) def _(expr, assumptions): a = expr.args[0]/I/pi return ask(Q.integer(2*a) & ~Q.integer(a), assumptions) @ImaginaryPredicate.register_many(Number, NumberSymbol) def _(expr, assumptions): return not (expr.as_real_imag()[1] == 0) # AntihermitianPredicate @AntihermitianPredicate.register(NaN) def _(expr, assumptions): return False @AntihermitianPredicate.register(object) def _(expr, assumptions): if isinstance(expr, MatrixBase): return None return ask(Q.imaginary(expr), assumptions) @AntihermitianPredicate.register(Add) def _(expr, assumptions): """ * Antihermitian + Antihermitian -> Antihermitian * Antihermitian + !Antihermitian -> !Antihermitian """ if expr.is_number: return None return test_closed_group(expr, assumptions, Q.antihermitian) @AntihermitianPredicate.register(Mul) def _(expr, assumptions): """ As long as there is at most only one noncommutative term: * Hermitian*Hermitian -> !Antihermitian * Hermitian*Antihermitian -> Antihermitian * Antihermitian*Antihermitian -> !Antihermitian """ if expr.is_number: return None nccount = 0 result = False for arg in expr.args: if ask(Q.antihermitian(arg), assumptions): result = result ^ True elif not ask(Q.hermitian(arg), assumptions): break if ask(~Q.commutative(arg), assumptions): nccount += 1 if nccount > 1: break else: return result @AntihermitianPredicate.register(Pow) def _(expr, assumptions): """ * Hermitian**Integer -> !Antihermitian * Antihermitian**Even -> !Antihermitian * Antihermitian**Odd -> Antihermitian """ if expr.is_number: return None if ask(Q.hermitian(expr.base), assumptions): if ask(Q.integer(expr.exp), assumptions): return False elif ask(Q.antihermitian(expr.base), assumptions): if ask(Q.even(expr.exp), assumptions): return False elif ask(Q.odd(expr.exp), assumptions): return True @AntihermitianPredicate.register(MatrixBase) def _(mat, assumptions): rows, cols = mat.shape ret_val = True for i in range(rows): for j in range(i, cols): cond = fuzzy_bool(Eq(mat[i, j], -conjugate(mat[j, i]))) if cond == None: ret_val = None if cond == False: return False return ret_val # AlgebraicPredicate @AlgebraicPredicate.register_many(AlgebraicNumber, Float, GoldenRatio, ImaginaryUnit, TribonacciConstant) def _(expr, assumptions): return True @AlgebraicPredicate.register_many(ComplexInfinity, Exp1, Infinity, NaN, NegativeInfinity, Pi) def _(expr, assumptions): return False @AlgebraicPredicate.register_many(Add, Mul) def _(expr, assumptions): return test_closed_group(expr, assumptions, Q.algebraic) @AlgebraicPredicate.register(Pow) def _(expr, assumptions): return expr.exp.is_Rational and ask(Q.algebraic(expr.base), assumptions) @AlgebraicPredicate.register(Rational) def _(expr, assumptions): return expr.q != 0 @AlgebraicPredicate.register_many(asin, atan, cos, exp, sin, tan) def _(expr, assumptions): x = expr.args[0] if ask(Q.algebraic(x), assumptions): return ask(~Q.nonzero(x), assumptions) @AlgebraicPredicate.register_many(acot, cot) def _(expr, assumptions): x = expr.args[0] if ask(Q.algebraic(x), assumptions): return False @AlgebraicPredicate.register_many(acos, log) def _(expr, assumptions): x = expr.args[0] if ask(Q.algebraic(x), assumptions): return ask(~Q.nonzero(x - 1), assumptions)
8ec7cc33c2407cdd9a9c5684fc743854d5e94ac14e8d09440f371f394aa69dc2
from sympy.abc import t, w, x, y, z, n, k, m, p, i from sympy.assumptions import (ask, AssumptionsContext, Q, register_handler, remove_handler) from sympy.assumptions.assume import global_assumptions, Predicate from sympy.assumptions.ask import compute_known_facts, single_fact_lookup from sympy.assumptions.handlers import AskHandler from sympy.core.add import Add from sympy.core.numbers import (I, Integer, Rational, oo, pi) from sympy.core.singleton import S from sympy.core.power import Pow from sympy.core.symbol import symbols, Symbol from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.complexes import (Abs, im, re, sign) from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import ( acos, acot, asin, atan, cos, cot, sin, tan) from sympy.logic.boolalg import Equivalent, Implies, Xor, And, to_cnf from sympy.matrices import Matrix, SparseMatrix from sympy.testing.pytest import XFAIL, slow, raises from sympy.assumptions.assume import assuming import math def test_int_1(): z = 1 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is True assert ask(Q.rational(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is True assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_int_11(): z = 11 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is True assert ask(Q.rational(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is True assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is True assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_int_12(): z = 12 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is True assert ask(Q.rational(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is True assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is True assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_float_1(): z = 1.0 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is None assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is None assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False z = 7.2123 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is None assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is None assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False # test for issue #12168 assert ask(Q.rational(math.pi)) is None def test_zero_0(): z = Integer(0) assert ask(Q.nonzero(z)) is False assert ask(Q.zero(z)) is True assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is True assert ask(Q.rational(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is False assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is True assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_negativeone(): z = Integer(-1) assert ask(Q.nonzero(z)) is True assert ask(Q.zero(z)) is False assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is True assert ask(Q.rational(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is False assert ask(Q.negative(z)) is True assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is True assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_infinity(): assert ask(Q.commutative(oo)) is True assert ask(Q.integer(oo)) is False assert ask(Q.rational(oo)) is False assert ask(Q.algebraic(oo)) is False assert ask(Q.real(oo)) is False assert ask(Q.extended_real(oo)) is True assert ask(Q.complex(oo)) is False assert ask(Q.irrational(oo)) is False assert ask(Q.imaginary(oo)) is False assert ask(Q.positive(oo)) is False #assert ask(Q.extended_positive(oo)) is True assert ask(Q.negative(oo)) is False assert ask(Q.even(oo)) is False assert ask(Q.odd(oo)) is False assert ask(Q.finite(oo)) is False assert ask(Q.prime(oo)) is False assert ask(Q.composite(oo)) is False assert ask(Q.hermitian(oo)) is False assert ask(Q.antihermitian(oo)) is False def test_neg_infinity(): mm = S.NegativeInfinity assert ask(Q.commutative(mm)) is True assert ask(Q.integer(mm)) is False assert ask(Q.rational(mm)) is False assert ask(Q.algebraic(mm)) is False assert ask(Q.real(mm)) is False assert ask(Q.extended_real(mm)) is True assert ask(Q.complex(mm)) is False assert ask(Q.irrational(mm)) is False assert ask(Q.imaginary(mm)) is False assert ask(Q.positive(mm)) is False assert ask(Q.negative(mm)) is False #assert ask(Q.extended_negative(mm)) is True assert ask(Q.even(mm)) is False assert ask(Q.odd(mm)) is False assert ask(Q.finite(mm)) is False assert ask(Q.prime(mm)) is False assert ask(Q.composite(mm)) is False assert ask(Q.hermitian(mm)) is False assert ask(Q.antihermitian(mm)) is False def test_nan(): nan = S.NaN assert ask(Q.commutative(nan)) is True assert ask(Q.integer(nan)) is False assert ask(Q.rational(nan)) is False assert ask(Q.algebraic(nan)) is False assert ask(Q.real(nan)) is False assert ask(Q.extended_real(nan)) is False assert ask(Q.complex(nan)) is False assert ask(Q.irrational(nan)) is False assert ask(Q.imaginary(nan)) is False assert ask(Q.positive(nan)) is False assert ask(Q.nonzero(nan)) is True assert ask(Q.zero(nan)) is False assert ask(Q.even(nan)) is False assert ask(Q.odd(nan)) is False assert ask(Q.finite(nan)) is False assert ask(Q.prime(nan)) is False assert ask(Q.composite(nan)) is False assert ask(Q.hermitian(nan)) is False assert ask(Q.antihermitian(nan)) is False def test_Rational_number(): r = Rational(3, 4) assert ask(Q.commutative(r)) is True assert ask(Q.integer(r)) is False assert ask(Q.rational(r)) is True assert ask(Q.real(r)) is True assert ask(Q.complex(r)) is True assert ask(Q.irrational(r)) is False assert ask(Q.imaginary(r)) is False assert ask(Q.positive(r)) is True assert ask(Q.negative(r)) is False assert ask(Q.even(r)) is False assert ask(Q.odd(r)) is False assert ask(Q.finite(r)) is True assert ask(Q.prime(r)) is False assert ask(Q.composite(r)) is False assert ask(Q.hermitian(r)) is True assert ask(Q.antihermitian(r)) is False r = Rational(1, 4) assert ask(Q.positive(r)) is True assert ask(Q.negative(r)) is False r = Rational(5, 4) assert ask(Q.negative(r)) is False assert ask(Q.positive(r)) is True r = Rational(5, 3) assert ask(Q.positive(r)) is True assert ask(Q.negative(r)) is False r = Rational(-3, 4) assert ask(Q.positive(r)) is False assert ask(Q.negative(r)) is True r = Rational(-1, 4) assert ask(Q.positive(r)) is False assert ask(Q.negative(r)) is True r = Rational(-5, 4) assert ask(Q.negative(r)) is True assert ask(Q.positive(r)) is False r = Rational(-5, 3) assert ask(Q.positive(r)) is False assert ask(Q.negative(r)) is True def test_sqrt_2(): z = sqrt(2) assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_pi(): z = S.Pi assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False z = S.Pi + 1 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False z = 2*S.Pi assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False z = S.Pi ** 2 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False z = (1 + S.Pi) ** 2 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_E(): z = S.Exp1 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_GoldenRatio(): z = S.GoldenRatio assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_TribonacciConstant(): z = S.TribonacciConstant assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_I(): z = I assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is True assert ask(Q.real(z)) is False assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is True assert ask(Q.positive(z)) is False assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is False assert ask(Q.antihermitian(z)) is True z = 1 + I assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is True assert ask(Q.real(z)) is False assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is False assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is False assert ask(Q.antihermitian(z)) is False z = I*(1 + I) assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is True assert ask(Q.real(z)) is False assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is False assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is False assert ask(Q.antihermitian(z)) is False z = I**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True z = (-I)**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True z = (3*I)**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is False z = (1)**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True z = (-1)**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True z = (1+I)**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is False z = (I)**(I+3) assert ask(Q.imaginary(z)) is True assert ask(Q.real(z)) is False z = (I)**(I+2) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True z = (I)**(2) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True z = (I)**(3) assert ask(Q.imaginary(z)) is True assert ask(Q.real(z)) is False z = (3)**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is False z = (I)**(0) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True def test_bounded(): x, y, z = symbols('x,y,z') assert ask(Q.finite(x)) is None assert ask(Q.finite(x), Q.finite(x)) is True assert ask(Q.finite(x), Q.finite(y)) is None assert ask(Q.finite(x), Q.complex(x)) is None assert ask(Q.finite(x + 1)) is None assert ask(Q.finite(x + 1), Q.finite(x)) is True a = x + y x, y = a.args # B + B assert ask(Q.finite(a), Q.finite(x) & Q.finite(y)) is True assert ask( Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive(x)) is True assert ask( Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive(y)) is True assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive(x) & Q.positive(y)) is True assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive(x) & ~Q.positive(y)) is True assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & ~Q.positive(x) & Q.positive(y)) is True assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & ~Q.positive(x) & ~Q.positive(y)) is True # B + U assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y)) is False assert ask( Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.positive(x)) is False assert ask( Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.positive(y)) is False assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.positive(x) & Q.positive(y)) is False assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.positive(x) & ~Q.positive(y)) is False assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y) & ~Q.positive(x) & Q.positive(y)) is False assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y) & ~Q.positive(x) & ~Q.positive(y)) is False # B + ? assert ask(Q.finite(a), Q.finite(x)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive(x)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive(y)) is None assert ask( Q.finite(a), Q.finite(x) & Q.positive(x) & Q.positive(y)) is None assert ask( Q.finite(a), Q.finite(x) & Q.positive(x) & ~Q.positive(y)) is None assert ask( Q.finite(a), Q.finite(x) & ~Q.positive(x) & Q.positive(y)) is None assert ask( Q.finite(a), Q.finite(x) & ~Q.positive(x) & ~Q.positive(y)) is None # U + U assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y)) is None assert ask( Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.positive(x)) is None assert ask( Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.positive(y)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.positive(x) & Q.positive(y)) is False assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.positive(x) & ~Q.positive(y)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & ~Q.positive(x) & Q.positive(y)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & ~Q.positive(x) & ~Q.positive(y)) is False # U + ? assert ask(Q.finite(a), ~Q.finite(y)) is None assert ask(Q.finite(a), ~Q.finite(y) & Q.positive(x)) is None assert ask(Q.finite(a), ~Q.finite(y) & Q.positive(y)) is None assert ask( Q.finite(a), ~Q.finite(y) & Q.positive(x) & Q.positive(y)) is False assert ask( Q.finite(a), ~Q.finite(y) & Q.positive(x) & ~Q.positive(y)) is None assert ask( Q.finite(a), ~Q.finite(y) & ~Q.positive(x) & Q.positive(y)) is None assert ask( Q.finite(a), ~Q.finite(y) & ~Q.positive(x) & ~Q.positive(y)) is False # ? + ? assert ask(Q.finite(a),) is None assert ask(Q.finite(a), Q.positive(x)) is None assert ask(Q.finite(a), Q.positive(y)) is None assert ask(Q.finite(a), Q.positive(x) & Q.positive(y)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.positive(y)) is None assert ask(Q.finite(a), ~Q.positive(x) & Q.positive(y)) is None assert ask(Q.finite(a), ~Q.positive(x) & ~Q.positive(y)) is None x, y, z = symbols('x,y,z') a = x + y + z x, y, z = a.args assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y) & Q.negative(z) & Q.finite(z)) is True assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y) & Q.finite(z)) is True assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y) & Q.positive(z) & Q.finite(z)) is True assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.finite(y) & Q.finite(z)) is True assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.finite(y) & Q.positive(z) & Q.finite(z)) is True assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.finite(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.negative(x) & Q.finite(x) & Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z) & Q.finite(z)) is True assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.negative(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & ~Q.finite(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.negative(x) & Q.finite(x) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x)) is None assert ask( Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & Q.positive(z)) is None assert ask( Q.finite(a), Q.finite(x) & Q.finite(y) & Q.finite(z)) is True assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive(z) & Q.finite(z)) is True assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask( Q.finite(a), Q.finite(x) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask( Q.finite(a), Q.finite(x) & Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.finite(y)) is None assert ask( Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z) & Q.finite(z)) is True assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.finite(x) & Q.positive(y) & Q.finite(y)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.negative(y) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.negative(z)) is False assert ask( Q.finite(a), Q.finite(x) & Q.negative(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.positive(z)) is None assert ask( Q.finite(a), Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask( Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y)) is None assert ask( Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.finite(x) & Q.positive(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z)) is False assert ask( Q.finite(a), Q.finite(x) & Q.negative(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.negative(y)) is None assert ask( Q.finite(a), Q.finite(x) & Q.negative(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.finite(x)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive(z)) is None assert ask( Q.finite(a), Q.finite(x) & Q.positive(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z) & Q.finite(z)) is True assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & Q.finite(y)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.negative(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & ~Q.finite(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.positive(x) & Q.finite(x) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x)) is None assert ask( Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.negative(z)) is False assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & ~Q.finite(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.negative(x) & ~Q.finite(x) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.positive(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) & Q.negative(z)) is False assert ask( Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x)) is None assert ask( Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.positive(y) & Q.positive(z)) is None assert ask( Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask( Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y)) is None assert ask( Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.negative(z)) is None assert ask( Q.finite(a), ~Q.finite(x) & Q.positive(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z)) is None assert ask( Q.finite(a), ~Q.finite(x) & Q.negative(y) & Q.negative(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.negative(y)) is None assert ask( Q.finite(a), ~Q.finite(x) & Q.negative(y) & Q.positive(z)) is None assert ask(Q.finite(a), ~Q.finite(x)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.positive(z)) is None assert ask( Q.finite(a), ~Q.finite(x) & Q.positive(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.positive(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z)) is False assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.negative(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.negative(y)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.negative(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x)) is None assert ask( Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.positive(y) & Q.positive(z)) is False assert ask( Q.finite(a), Q.negative(x) & Q.negative(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.negative(y)) is None assert ask( Q.finite(a), Q.negative(x) & Q.negative(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x)) is None assert ask(Q.finite(a), Q.negative(x) & Q.positive(z)) is None assert ask( Q.finite(a), Q.negative(x) & Q.positive(y) & Q.positive(z)) is None assert ask(Q.finite(a)) is None assert ask(Q.finite(a), Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(y) & Q.positive(z)) is None assert ask( Q.finite(a), Q.positive(x) & Q.positive(y) & Q.positive(z)) is None assert ask(Q.finite(2*x)) is None assert ask(Q.finite(2*x), Q.finite(x)) is True x, y, z = symbols('x,y,z') a = x*y x, y = a.args assert ask(Q.finite(a), Q.finite(x) & Q.finite(y)) is True assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y)) is False assert ask(Q.finite(a), Q.finite(x)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.finite(y)) is False assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y)) is False assert ask(Q.finite(a), ~Q.finite(x)) is None assert ask(Q.finite(a), Q.finite(y)) is None assert ask(Q.finite(a), ~Q.finite(y)) is None assert ask(Q.finite(a)) is None a = x*y*z x, y, z = a.args assert ask( Q.finite(a), Q.finite(x) & Q.finite(y) & Q.finite(z)) is True assert ask( Q.finite(a), Q.finite(x) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.finite(y)) is None assert ask( Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.finite(z)) is False assert ask( Q.finite(a), Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.finite(x) & Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(x)) is None assert ask( Q.finite(a), ~Q.finite(x) & Q.finite(y) & Q.finite(z)) is False assert ask( Q.finite(a), ~Q.finite(x) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), ~Q.finite(x) & Q.finite(y)) is None assert ask( Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.finite(z)) is False assert ask( Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(x)) is None assert ask(Q.finite(a), Q.finite(y) & Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(y)) is None assert ask(Q.finite(a), ~Q.finite(y) & Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(y)) is None assert ask(Q.finite(a), Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(z) & Q.nonzero(x) & Q.nonzero(y) & Q.nonzero(z)) is None assert ask(Q.finite(a), ~Q.finite(y) & ~Q.finite(z) & Q.nonzero(x) & Q.nonzero(y) & Q.nonzero(z)) is False x, y, z = symbols('x,y,z') assert ask(Q.finite(x**2)) is None assert ask(Q.finite(2**x)) is None assert ask(Q.finite(2**x), Q.finite(x)) is True assert ask(Q.finite(x**x)) is None assert ask(Q.finite(S.Half ** x)) is None assert ask(Q.finite(S.Half ** x), Q.positive(x)) is True assert ask(Q.finite(S.Half ** x), Q.negative(x)) is None assert ask(Q.finite(2**x), Q.negative(x)) is True assert ask(Q.finite(sqrt(x))) is None assert ask(Q.finite(2**x), ~Q.finite(x)) is False assert ask(Q.finite(x**2), ~Q.finite(x)) is False # sign function assert ask(Q.finite(sign(x))) is True assert ask(Q.finite(sign(x)), ~Q.finite(x)) is True # exponential functions assert ask(Q.finite(log(x))) is None assert ask(Q.finite(log(x)), Q.finite(x)) is None assert ask(Q.finite(log(x)), Q.nonzero(x)) is True assert ask(Q.finite(log(x)), Q.infinite(x)) is False assert ask(Q.finite(log(x)), Q.zero(x)) is False assert ask(Q.finite(exp(x))) is None assert ask(Q.finite(exp(x)), Q.finite(x)) is True assert ask(Q.finite(exp(2))) is True # trigonometric functions assert ask(Q.finite(sin(x))) is True assert ask(Q.finite(sin(x)), ~Q.finite(x)) is True assert ask(Q.finite(cos(x))) is True assert ask(Q.finite(cos(x)), ~Q.finite(x)) is True assert ask(Q.finite(2*sin(x))) is True assert ask(Q.finite(sin(x)**2)) is True assert ask(Q.finite(cos(x)**2)) is True assert ask(Q.finite(cos(x) + sin(x))) is True @XFAIL def test_bounded_xfail(): """We need to support relations in ask for this to work""" assert ask(Q.finite(sin(x)**x)) is True assert ask(Q.finite(cos(x)**x)) is True def test_commutative(): """By default objects are Q.commutative that is why it returns True for both key=True and key=False""" assert ask(Q.commutative(x)) is True assert ask(Q.commutative(x), ~Q.commutative(x)) is False assert ask(Q.commutative(x), Q.complex(x)) is True assert ask(Q.commutative(x), Q.imaginary(x)) is True assert ask(Q.commutative(x), Q.real(x)) is True assert ask(Q.commutative(x), Q.positive(x)) is True assert ask(Q.commutative(x), ~Q.commutative(y)) is True assert ask(Q.commutative(2*x)) is True assert ask(Q.commutative(2*x), ~Q.commutative(x)) is False assert ask(Q.commutative(x + 1)) is True assert ask(Q.commutative(x + 1), ~Q.commutative(x)) is False assert ask(Q.commutative(x**2)) is True assert ask(Q.commutative(x**2), ~Q.commutative(x)) is False assert ask(Q.commutative(log(x))) is True def test_complex(): assert ask(Q.complex(x)) is None assert ask(Q.complex(x), Q.complex(x)) is True assert ask(Q.complex(x), Q.complex(y)) is None assert ask(Q.complex(x), ~Q.complex(x)) is False assert ask(Q.complex(x), Q.real(x)) is True assert ask(Q.complex(x), ~Q.real(x)) is None assert ask(Q.complex(x), Q.rational(x)) is True assert ask(Q.complex(x), Q.irrational(x)) is True assert ask(Q.complex(x), Q.positive(x)) is True assert ask(Q.complex(x), Q.imaginary(x)) is True assert ask(Q.complex(x), Q.algebraic(x)) is True # a+b assert ask(Q.complex(x + 1), Q.complex(x)) is True assert ask(Q.complex(x + 1), Q.real(x)) is True assert ask(Q.complex(x + 1), Q.rational(x)) is True assert ask(Q.complex(x + 1), Q.irrational(x)) is True assert ask(Q.complex(x + 1), Q.imaginary(x)) is True assert ask(Q.complex(x + 1), Q.integer(x)) is True assert ask(Q.complex(x + 1), Q.even(x)) is True assert ask(Q.complex(x + 1), Q.odd(x)) is True assert ask(Q.complex(x + y), Q.complex(x) & Q.complex(y)) is True assert ask(Q.complex(x + y), Q.real(x) & Q.imaginary(y)) is True # a*x +b assert ask(Q.complex(2*x + 1), Q.complex(x)) is True assert ask(Q.complex(2*x + 1), Q.real(x)) is True assert ask(Q.complex(2*x + 1), Q.positive(x)) is True assert ask(Q.complex(2*x + 1), Q.rational(x)) is True assert ask(Q.complex(2*x + 1), Q.irrational(x)) is True assert ask(Q.complex(2*x + 1), Q.imaginary(x)) is True assert ask(Q.complex(2*x + 1), Q.integer(x)) is True assert ask(Q.complex(2*x + 1), Q.even(x)) is True assert ask(Q.complex(2*x + 1), Q.odd(x)) is True # x**2 assert ask(Q.complex(x**2), Q.complex(x)) is True assert ask(Q.complex(x**2), Q.real(x)) is True assert ask(Q.complex(x**2), Q.positive(x)) is True assert ask(Q.complex(x**2), Q.rational(x)) is True assert ask(Q.complex(x**2), Q.irrational(x)) is True assert ask(Q.complex(x**2), Q.imaginary(x)) is True assert ask(Q.complex(x**2), Q.integer(x)) is True assert ask(Q.complex(x**2), Q.even(x)) is True assert ask(Q.complex(x**2), Q.odd(x)) is True # 2**x assert ask(Q.complex(2**x), Q.complex(x)) is True assert ask(Q.complex(2**x), Q.real(x)) is True assert ask(Q.complex(2**x), Q.positive(x)) is True assert ask(Q.complex(2**x), Q.rational(x)) is True assert ask(Q.complex(2**x), Q.irrational(x)) is True assert ask(Q.complex(2**x), Q.imaginary(x)) is True assert ask(Q.complex(2**x), Q.integer(x)) is True assert ask(Q.complex(2**x), Q.even(x)) is True assert ask(Q.complex(2**x), Q.odd(x)) is True assert ask(Q.complex(x**y), Q.complex(x) & Q.complex(y)) is True # trigonometric expressions assert ask(Q.complex(sin(x))) is True assert ask(Q.complex(sin(2*x + 1))) is True assert ask(Q.complex(cos(x))) is True assert ask(Q.complex(cos(2*x + 1))) is True # exponential assert ask(Q.complex(exp(x))) is True assert ask(Q.complex(exp(x))) is True # Q.complexes assert ask(Q.complex(Abs(x))) is True assert ask(Q.complex(re(x))) is True assert ask(Q.complex(im(x))) is True def test_even_query(): assert ask(Q.even(x)) is None assert ask(Q.even(x), Q.integer(x)) is None assert ask(Q.even(x), ~Q.integer(x)) is False assert ask(Q.even(x), Q.rational(x)) is None assert ask(Q.even(x), Q.positive(x)) is None assert ask(Q.even(2*x)) is None assert ask(Q.even(2*x), Q.integer(x)) is True assert ask(Q.even(2*x), Q.even(x)) is True assert ask(Q.even(2*x), Q.irrational(x)) is False assert ask(Q.even(2*x), Q.odd(x)) is True assert ask(Q.even(2*x), ~Q.integer(x)) is None assert ask(Q.even(3*x), Q.integer(x)) is None assert ask(Q.even(3*x), Q.even(x)) is True assert ask(Q.even(3*x), Q.odd(x)) is False assert ask(Q.even(x + 1), Q.odd(x)) is True assert ask(Q.even(x + 1), Q.even(x)) is False assert ask(Q.even(x + 2), Q.odd(x)) is False assert ask(Q.even(x + 2), Q.even(x)) is True assert ask(Q.even(7 - x), Q.odd(x)) is True assert ask(Q.even(7 + x), Q.odd(x)) is True assert ask(Q.even(x + y), Q.odd(x) & Q.odd(y)) is True assert ask(Q.even(x + y), Q.odd(x) & Q.even(y)) is False assert ask(Q.even(x + y), Q.even(x) & Q.even(y)) is True assert ask(Q.even(2*x + 1), Q.integer(x)) is False assert ask(Q.even(2*x*y), Q.rational(x) & Q.rational(x)) is None assert ask(Q.even(2*x*y), Q.irrational(x) & Q.irrational(x)) is None assert ask(Q.even(x + y + z), Q.odd(x) & Q.odd(y) & Q.even(z)) is True assert ask(Q.even(x + y + z + t), Q.odd(x) & Q.odd(y) & Q.even(z) & Q.integer(t)) is None assert ask(Q.even(Abs(x)), Q.even(x)) is True assert ask(Q.even(Abs(x)), ~Q.even(x)) is None assert ask(Q.even(re(x)), Q.even(x)) is True assert ask(Q.even(re(x)), ~Q.even(x)) is None assert ask(Q.even(im(x)), Q.even(x)) is True assert ask(Q.even(im(x)), Q.real(x)) is True assert ask(Q.even((-1)**n), Q.integer(n)) is False assert ask(Q.even(k**2), Q.even(k)) is True assert ask(Q.even(n**2), Q.odd(n)) is False assert ask(Q.even(2**k), Q.even(k)) is None assert ask(Q.even(x**2)) is None assert ask(Q.even(k**m), Q.even(k) & Q.integer(m) & ~Q.negative(m)) is None assert ask(Q.even(n**m), Q.odd(n) & Q.integer(m) & ~Q.negative(m)) is False assert ask(Q.even(k**p), Q.even(k) & Q.integer(p) & Q.positive(p)) is True assert ask(Q.even(n**p), Q.odd(n) & Q.integer(p) & Q.positive(p)) is False assert ask(Q.even(m**k), Q.even(k) & Q.integer(m) & ~Q.negative(m)) is None assert ask(Q.even(p**k), Q.even(k) & Q.integer(p) & Q.positive(p)) is None assert ask(Q.even(m**n), Q.odd(n) & Q.integer(m) & ~Q.negative(m)) is None assert ask(Q.even(p**n), Q.odd(n) & Q.integer(p) & Q.positive(p)) is None assert ask(Q.even(k**x), Q.even(k)) is None assert ask(Q.even(n**x), Q.odd(n)) is None assert ask(Q.even(x*y), Q.integer(x) & Q.integer(y)) is None assert ask(Q.even(x*x), Q.integer(x)) is None assert ask(Q.even(x*(x + y)), Q.integer(x) & Q.odd(y)) is True assert ask(Q.even(x*(x + y)), Q.integer(x) & Q.even(y)) is None @XFAIL def test_evenness_in_ternary_integer_product_with_odd(): # Tests that oddness inference is independent of term ordering. # Term ordering at the point of testing depends on SymPy's symbol order, so # we try to force a different order by modifying symbol names. assert ask(Q.even(x*y*(y + z)), Q.integer(x) & Q.integer(y) & Q.odd(z)) is True assert ask(Q.even(y*x*(x + z)), Q.integer(x) & Q.integer(y) & Q.odd(z)) is True def test_evenness_in_ternary_integer_product_with_even(): assert ask(Q.even(x*y*(y + z)), Q.integer(x) & Q.integer(y) & Q.even(z)) is None def test_extended_real(): assert ask(Q.extended_real(x), Q.positive(x)) is True assert ask(Q.extended_real(-x), Q.positive(x)) is True assert ask(Q.extended_real(-x), Q.negative(x)) is True assert ask(Q.extended_real(x + S.Infinity), Q.real(x)) is True def test_rational(): assert ask(Q.rational(x), Q.integer(x)) is True assert ask(Q.rational(x), Q.irrational(x)) is False assert ask(Q.rational(x), Q.real(x)) is None assert ask(Q.rational(x), Q.positive(x)) is None assert ask(Q.rational(x), Q.negative(x)) is None assert ask(Q.rational(x), Q.nonzero(x)) is None assert ask(Q.rational(x), ~Q.algebraic(x)) is False assert ask(Q.rational(2*x), Q.rational(x)) is True assert ask(Q.rational(2*x), Q.integer(x)) is True assert ask(Q.rational(2*x), Q.even(x)) is True assert ask(Q.rational(2*x), Q.odd(x)) is True assert ask(Q.rational(2*x), Q.irrational(x)) is False assert ask(Q.rational(x/2), Q.rational(x)) is True assert ask(Q.rational(x/2), Q.integer(x)) is True assert ask(Q.rational(x/2), Q.even(x)) is True assert ask(Q.rational(x/2), Q.odd(x)) is True assert ask(Q.rational(x/2), Q.irrational(x)) is False assert ask(Q.rational(1/x), Q.rational(x)) is True assert ask(Q.rational(1/x), Q.integer(x)) is True assert ask(Q.rational(1/x), Q.even(x)) is True assert ask(Q.rational(1/x), Q.odd(x)) is True assert ask(Q.rational(1/x), Q.irrational(x)) is False assert ask(Q.rational(2/x), Q.rational(x)) is True assert ask(Q.rational(2/x), Q.integer(x)) is True assert ask(Q.rational(2/x), Q.even(x)) is True assert ask(Q.rational(2/x), Q.odd(x)) is True assert ask(Q.rational(2/x), Q.irrational(x)) is False assert ask(Q.rational(x), ~Q.algebraic(x)) is False # with multiple symbols assert ask(Q.rational(x*y), Q.irrational(x) & Q.irrational(y)) is None assert ask(Q.rational(y/x), Q.rational(x) & Q.rational(y)) is True assert ask(Q.rational(y/x), Q.integer(x) & Q.rational(y)) is True assert ask(Q.rational(y/x), Q.even(x) & Q.rational(y)) is True assert ask(Q.rational(y/x), Q.odd(x) & Q.rational(y)) is True assert ask(Q.rational(y/x), Q.irrational(x) & Q.rational(y)) is False for f in [exp, sin, tan, asin, atan, cos]: assert ask(Q.rational(f(7))) is False assert ask(Q.rational(f(7, evaluate=False))) is False assert ask(Q.rational(f(0, evaluate=False))) is True assert ask(Q.rational(f(x)), Q.rational(x)) is None assert ask(Q.rational(f(x)), Q.rational(x) & Q.nonzero(x)) is False for g in [log, acos]: assert ask(Q.rational(g(7))) is False assert ask(Q.rational(g(7, evaluate=False))) is False assert ask(Q.rational(g(1, evaluate=False))) is True assert ask(Q.rational(g(x)), Q.rational(x)) is None assert ask(Q.rational(g(x)), Q.rational(x) & Q.nonzero(x - 1)) is False for h in [cot, acot]: assert ask(Q.rational(h(7))) is False assert ask(Q.rational(h(7, evaluate=False))) is False assert ask(Q.rational(h(x)), Q.rational(x)) is False def test_hermitian(): assert ask(Q.hermitian(x)) is None assert ask(Q.hermitian(x), Q.antihermitian(x)) is False assert ask(Q.hermitian(x), Q.imaginary(x)) is False assert ask(Q.hermitian(x), Q.prime(x)) is True assert ask(Q.hermitian(x), Q.real(x)) is True assert ask(Q.hermitian(x + 1), Q.antihermitian(x)) is False assert ask(Q.hermitian(x + 1), Q.complex(x)) is None assert ask(Q.hermitian(x + 1), Q.hermitian(x)) is True assert ask(Q.hermitian(x + 1), Q.imaginary(x)) is False assert ask(Q.hermitian(x + 1), Q.real(x)) is True assert ask(Q.hermitian(x + I), Q.antihermitian(x)) is None assert ask(Q.hermitian(x + I), Q.complex(x)) is None assert ask(Q.hermitian(x + I), Q.hermitian(x)) is False assert ask(Q.hermitian(x + I), Q.imaginary(x)) is None assert ask(Q.hermitian(x + I), Q.real(x)) is False assert ask( Q.hermitian(x + y), Q.antihermitian(x) & Q.antihermitian(y)) is None assert ask(Q.hermitian(x + y), Q.antihermitian(x) & Q.complex(y)) is None assert ask( Q.hermitian(x + y), Q.antihermitian(x) & Q.hermitian(y)) is False assert ask(Q.hermitian(x + y), Q.antihermitian(x) & Q.imaginary(y)) is None assert ask(Q.hermitian(x + y), Q.antihermitian(x) & Q.real(y)) is False assert ask(Q.hermitian(x + y), Q.hermitian(x) & Q.complex(y)) is None assert ask(Q.hermitian(x + y), Q.hermitian(x) & Q.hermitian(y)) is True assert ask(Q.hermitian(x + y), Q.hermitian(x) & Q.imaginary(y)) is False assert ask(Q.hermitian(x + y), Q.hermitian(x) & Q.real(y)) is True assert ask(Q.hermitian(x + y), Q.imaginary(x) & Q.complex(y)) is None assert ask(Q.hermitian(x + y), Q.imaginary(x) & Q.imaginary(y)) is None assert ask(Q.hermitian(x + y), Q.imaginary(x) & Q.real(y)) is False assert ask(Q.hermitian(x + y), Q.real(x) & Q.complex(y)) is None assert ask(Q.hermitian(x + y), Q.real(x) & Q.real(y)) is True assert ask(Q.hermitian(I*x), Q.antihermitian(x)) is True assert ask(Q.hermitian(I*x), Q.complex(x)) is None assert ask(Q.hermitian(I*x), Q.hermitian(x)) is False assert ask(Q.hermitian(I*x), Q.imaginary(x)) is True assert ask(Q.hermitian(I*x), Q.real(x)) is False assert ask(Q.hermitian(x*y), Q.hermitian(x) & Q.real(y)) is True assert ask( Q.hermitian(x + y + z), Q.real(x) & Q.real(y) & Q.real(z)) is True assert ask(Q.hermitian(x + y + z), Q.real(x) & Q.real(y) & Q.imaginary(z)) is False assert ask(Q.hermitian(x + y + z), Q.real(x) & Q.imaginary(y) & Q.imaginary(z)) is None assert ask(Q.hermitian(x + y + z), Q.imaginary(x) & Q.imaginary(y) & Q.imaginary(z)) is None assert ask(Q.antihermitian(x)) is None assert ask(Q.antihermitian(x), Q.real(x)) is False assert ask(Q.antihermitian(x), Q.prime(x)) is False assert ask(Q.antihermitian(x + 1), Q.antihermitian(x)) is False assert ask(Q.antihermitian(x + 1), Q.complex(x)) is None assert ask(Q.antihermitian(x + 1), Q.hermitian(x)) is None assert ask(Q.antihermitian(x + 1), Q.imaginary(x)) is False assert ask(Q.antihermitian(x + 1), Q.real(x)) is False assert ask(Q.antihermitian(x + I), Q.antihermitian(x)) is True assert ask(Q.antihermitian(x + I), Q.complex(x)) is None assert ask(Q.antihermitian(x + I), Q.hermitian(x)) is False assert ask(Q.antihermitian(x + I), Q.imaginary(x)) is True assert ask(Q.antihermitian(x + I), Q.real(x)) is False assert ask( Q.antihermitian(x + y), Q.antihermitian(x) & Q.antihermitian(y) ) is True assert ask( Q.antihermitian(x + y), Q.antihermitian(x) & Q.complex(y)) is None assert ask( Q.antihermitian(x + y), Q.antihermitian(x) & Q.hermitian(y)) is False assert ask( Q.antihermitian(x + y), Q.antihermitian(x) & Q.imaginary(y)) is True assert ask(Q.antihermitian(x + y), Q.antihermitian(x) & Q.real(y) ) is False assert ask(Q.antihermitian(x + y), Q.hermitian(x) & Q.complex(y)) is None assert ask(Q.antihermitian(x + y), Q.hermitian(x) & Q.hermitian(y) ) is None assert ask( Q.antihermitian(x + y), Q.hermitian(x) & Q.imaginary(y)) is False assert ask(Q.antihermitian(x + y), Q.hermitian(x) & Q.real(y)) is None assert ask(Q.antihermitian(x + y), Q.imaginary(x) & Q.complex(y)) is None assert ask(Q.antihermitian(x + y), Q.imaginary(x) & Q.imaginary(y)) is True assert ask(Q.antihermitian(x + y), Q.imaginary(x) & Q.real(y)) is False assert ask(Q.antihermitian(x + y), Q.real(x) & Q.complex(y)) is None assert ask(Q.antihermitian(x + y), Q.real(x) & Q.real(y)) is False assert ask(Q.antihermitian(I*x), Q.real(x)) is True assert ask(Q.antihermitian(I*x), Q.antihermitian(x)) is False assert ask(Q.antihermitian(I*x), Q.complex(x)) is None assert ask(Q.antihermitian(x*y), Q.antihermitian(x) & Q.real(y)) is True assert ask(Q.antihermitian(x + y + z), Q.real(x) & Q.real(y) & Q.real(z)) is False assert ask(Q.antihermitian(x + y + z), Q.real(x) & Q.real(y) & Q.imaginary(z)) is None assert ask(Q.antihermitian(x + y + z), Q.real(x) & Q.imaginary(y) & Q.imaginary(z)) is False assert ask(Q.antihermitian(x + y + z), Q.imaginary(x) & Q.imaginary(y) & Q.imaginary(z)) is True def test_imaginary(): assert ask(Q.imaginary(x)) is None assert ask(Q.imaginary(x), Q.real(x)) is False assert ask(Q.imaginary(x), Q.prime(x)) is False assert ask(Q.imaginary(x + 1), Q.real(x)) is False assert ask(Q.imaginary(x + 1), Q.imaginary(x)) is False assert ask(Q.imaginary(x + I), Q.real(x)) is False assert ask(Q.imaginary(x + I), Q.imaginary(x)) is True assert ask(Q.imaginary(x + y), Q.imaginary(x) & Q.imaginary(y)) is True assert ask(Q.imaginary(x + y), Q.real(x) & Q.real(y)) is False assert ask(Q.imaginary(x + y), Q.imaginary(x) & Q.real(y)) is False assert ask(Q.imaginary(x + y), Q.complex(x) & Q.real(y)) is None assert ask( Q.imaginary(x + y + z), Q.real(x) & Q.real(y) & Q.real(z)) is False assert ask(Q.imaginary(x + y + z), Q.real(x) & Q.real(y) & Q.imaginary(z)) is None assert ask(Q.imaginary(x + y + z), Q.real(x) & Q.imaginary(y) & Q.imaginary(z)) is False assert ask(Q.imaginary(I*x), Q.real(x)) is True assert ask(Q.imaginary(I*x), Q.imaginary(x)) is False assert ask(Q.imaginary(I*x), Q.complex(x)) is None assert ask(Q.imaginary(x*y), Q.imaginary(x) & Q.real(y)) is True assert ask(Q.imaginary(x*y), Q.real(x) & Q.real(y)) is False assert ask(Q.imaginary(I**x), Q.negative(x)) is None assert ask(Q.imaginary(I**x), Q.positive(x)) is None assert ask(Q.imaginary(I**x), Q.even(x)) is False assert ask(Q.imaginary(I**x), Q.odd(x)) is True assert ask(Q.imaginary(I**x), Q.imaginary(x)) is False assert ask(Q.imaginary((2*I)**x), Q.imaginary(x)) is False assert ask(Q.imaginary(x**0), Q.imaginary(x)) is False assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.imaginary(y)) is None assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.real(y)) is None assert ask(Q.imaginary(x**y), Q.real(x) & Q.imaginary(y)) is None assert ask(Q.imaginary(x**y), Q.real(x) & Q.real(y)) is None assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.integer(y)) is None assert ask(Q.imaginary(x**y), Q.imaginary(y) & Q.integer(x)) is None assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.odd(y)) is True assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.rational(y)) is None assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.even(y)) is False assert ask(Q.imaginary(x**y), Q.real(x) & Q.integer(y)) is False assert ask(Q.imaginary(x**y), Q.positive(x) & Q.real(y)) is False assert ask(Q.imaginary(x**y), Q.negative(x) & Q.real(y)) is None assert ask(Q.imaginary(x**y), Q.negative(x) & Q.real(y) & ~Q.rational(y)) is False assert ask(Q.imaginary(x**y), Q.integer(x) & Q.imaginary(y)) is None assert ask(Q.imaginary(x**y), Q.negative(x) & Q.rational(y) & Q.integer(2*y)) is True assert ask(Q.imaginary(x**y), Q.negative(x) & Q.rational(y) & ~Q.integer(2*y)) is False assert ask(Q.imaginary(x**y), Q.negative(x) & Q.rational(y)) is None assert ask(Q.imaginary(x**y), Q.real(x) & Q.rational(y) & ~Q.integer(2*y)) is False assert ask(Q.imaginary(x**y), Q.real(x) & Q.rational(y) & Q.integer(2*y)) is None # logarithm assert ask(Q.imaginary(log(I))) is True assert ask(Q.imaginary(log(2*I))) is False assert ask(Q.imaginary(log(I + 1))) is False assert ask(Q.imaginary(log(x)), Q.complex(x)) is None assert ask(Q.imaginary(log(x)), Q.imaginary(x)) is None assert ask(Q.imaginary(log(x)), Q.positive(x)) is False assert ask(Q.imaginary(log(exp(x))), Q.complex(x)) is None assert ask(Q.imaginary(log(exp(x))), Q.imaginary(x)) is None # zoo/I/a+I*b assert ask(Q.imaginary(log(exp(I)))) is True # exponential assert ask(Q.imaginary(exp(x)**x), Q.imaginary(x)) is False eq = Pow(exp(pi*I*x, evaluate=False), x, evaluate=False) assert ask(Q.imaginary(eq), Q.even(x)) is False eq = Pow(exp(pi*I*x/2, evaluate=False), x, evaluate=False) assert ask(Q.imaginary(eq), Q.odd(x)) is True assert ask(Q.imaginary(exp(3*I*pi*x)**x), Q.integer(x)) is False assert ask(Q.imaginary(exp(2*pi*I, evaluate=False))) is False assert ask(Q.imaginary(exp(pi*I/2, evaluate=False))) is True # issue 7886 assert ask(Q.imaginary(Pow(x, Rational(1, 4))), Q.real(x) & Q.negative(x)) is False def test_integer(): assert ask(Q.integer(x)) is None assert ask(Q.integer(x), Q.integer(x)) is True assert ask(Q.integer(x), ~Q.integer(x)) is False assert ask(Q.integer(x), ~Q.real(x)) is False assert ask(Q.integer(x), ~Q.positive(x)) is None assert ask(Q.integer(x), Q.even(x) | Q.odd(x)) is True assert ask(Q.integer(2*x), Q.integer(x)) is True assert ask(Q.integer(2*x), Q.even(x)) is True assert ask(Q.integer(2*x), Q.prime(x)) is True assert ask(Q.integer(2*x), Q.rational(x)) is None assert ask(Q.integer(2*x), Q.real(x)) is None assert ask(Q.integer(sqrt(2)*x), Q.integer(x)) is False assert ask(Q.integer(sqrt(2)*x), Q.irrational(x)) is None assert ask(Q.integer(x/2), Q.odd(x)) is False assert ask(Q.integer(x/2), Q.even(x)) is True assert ask(Q.integer(x/3), Q.odd(x)) is None assert ask(Q.integer(x/3), Q.even(x)) is None def test_negative(): assert ask(Q.negative(x), Q.negative(x)) is True assert ask(Q.negative(x), Q.positive(x)) is False assert ask(Q.negative(x), ~Q.real(x)) is False assert ask(Q.negative(x), Q.prime(x)) is False assert ask(Q.negative(x), ~Q.prime(x)) is None assert ask(Q.negative(-x), Q.positive(x)) is True assert ask(Q.negative(-x), ~Q.positive(x)) is None assert ask(Q.negative(-x), Q.negative(x)) is False assert ask(Q.negative(-x), Q.positive(x)) is True assert ask(Q.negative(x - 1), Q.negative(x)) is True assert ask(Q.negative(x + y)) is None assert ask(Q.negative(x + y), Q.negative(x)) is None assert ask(Q.negative(x + y), Q.negative(x) & Q.negative(y)) is True assert ask(Q.negative(x + y), Q.negative(x) & Q.nonpositive(y)) is True assert ask(Q.negative(2 + I)) is False # although this could be False, it is representative of expressions # that don't evaluate to a zero with precision assert ask(Q.negative(cos(I)**2 + sin(I)**2 - 1)) is None assert ask(Q.negative(-I + I*(cos(2)**2 + sin(2)**2))) is None assert ask(Q.negative(x**2)) is None assert ask(Q.negative(x**2), Q.real(x)) is False assert ask(Q.negative(x**1.4), Q.real(x)) is None assert ask(Q.negative(x**I), Q.positive(x)) is None assert ask(Q.negative(x*y)) is None assert ask(Q.negative(x*y), Q.positive(x) & Q.positive(y)) is False assert ask(Q.negative(x*y), Q.positive(x) & Q.negative(y)) is True assert ask(Q.negative(x*y), Q.complex(x) & Q.complex(y)) is None assert ask(Q.negative(x**y)) is None assert ask(Q.negative(x**y), Q.negative(x) & Q.even(y)) is False assert ask(Q.negative(x**y), Q.negative(x) & Q.odd(y)) is True assert ask(Q.negative(x**y), Q.positive(x) & Q.integer(y)) is False assert ask(Q.negative(Abs(x))) is False def test_nonzero(): assert ask(Q.nonzero(x)) is None assert ask(Q.nonzero(x), Q.real(x)) is None assert ask(Q.nonzero(x), Q.positive(x)) is True assert ask(Q.nonzero(x), Q.negative(x)) is True assert ask(Q.nonzero(x), Q.negative(x) | Q.positive(x)) is True assert ask(Q.nonzero(x + y)) is None assert ask(Q.nonzero(x + y), Q.positive(x) & Q.positive(y)) is True assert ask(Q.nonzero(x + y), Q.positive(x) & Q.negative(y)) is None assert ask(Q.nonzero(x + y), Q.negative(x) & Q.negative(y)) is True assert ask(Q.nonzero(2*x)) is None assert ask(Q.nonzero(2*x), Q.positive(x)) is True assert ask(Q.nonzero(2*x), Q.negative(x)) is True assert ask(Q.nonzero(x*y), Q.nonzero(x)) is None assert ask(Q.nonzero(x*y), Q.nonzero(x) & Q.nonzero(y)) is True assert ask(Q.nonzero(x**y), Q.nonzero(x)) is True assert ask(Q.nonzero(Abs(x))) is None assert ask(Q.nonzero(Abs(x)), Q.nonzero(x)) is True assert ask(Q.nonzero(log(exp(2*I)))) is False # although this could be False, it is representative of expressions # that don't evaluate to a zero with precision assert ask(Q.nonzero(cos(1)**2 + sin(1)**2 - 1)) is None def test_zero(): assert ask(Q.zero(x)) is None assert ask(Q.zero(x), Q.real(x)) is None assert ask(Q.zero(x), Q.positive(x)) is False assert ask(Q.zero(x), Q.negative(x)) is False assert ask(Q.zero(x), Q.negative(x) | Q.positive(x)) is False assert ask(Q.zero(x), Q.nonnegative(x) & Q.nonpositive(x)) is True assert ask(Q.zero(x + y)) is None assert ask(Q.zero(x + y), Q.positive(x) & Q.positive(y)) is False assert ask(Q.zero(x + y), Q.positive(x) & Q.negative(y)) is None assert ask(Q.zero(x + y), Q.negative(x) & Q.negative(y)) is False assert ask(Q.zero(2*x)) is None assert ask(Q.zero(2*x), Q.positive(x)) is False assert ask(Q.zero(2*x), Q.negative(x)) is False assert ask(Q.zero(x*y), Q.nonzero(x)) is None assert ask(Q.zero(Abs(x))) is None assert ask(Q.zero(Abs(x)), Q.zero(x)) is True assert ask(Q.integer(x), Q.zero(x)) is True assert ask(Q.even(x), Q.zero(x)) is True assert ask(Q.odd(x), Q.zero(x)) is False assert ask(Q.zero(x), Q.even(x)) is None assert ask(Q.zero(x), Q.odd(x)) is False assert ask(Q.zero(x) | Q.zero(y), Q.zero(x*y)) is True def test_odd_query(): assert ask(Q.odd(x)) is None assert ask(Q.odd(x), Q.odd(x)) is True assert ask(Q.odd(x), Q.integer(x)) is None assert ask(Q.odd(x), ~Q.integer(x)) is False assert ask(Q.odd(x), Q.rational(x)) is None assert ask(Q.odd(x), Q.positive(x)) is None assert ask(Q.odd(-x), Q.odd(x)) is True assert ask(Q.odd(2*x)) is None assert ask(Q.odd(2*x), Q.integer(x)) is False assert ask(Q.odd(2*x), Q.odd(x)) is False assert ask(Q.odd(2*x), Q.irrational(x)) is False assert ask(Q.odd(2*x), ~Q.integer(x)) is None assert ask(Q.odd(3*x), Q.integer(x)) is None assert ask(Q.odd(x/3), Q.odd(x)) is None assert ask(Q.odd(x/3), Q.even(x)) is None assert ask(Q.odd(x + 1), Q.even(x)) is True assert ask(Q.odd(x + 2), Q.even(x)) is False assert ask(Q.odd(x + 2), Q.odd(x)) is True assert ask(Q.odd(3 - x), Q.odd(x)) is False assert ask(Q.odd(3 - x), Q.even(x)) is True assert ask(Q.odd(3 + x), Q.odd(x)) is False assert ask(Q.odd(3 + x), Q.even(x)) is True assert ask(Q.odd(x + y), Q.odd(x) & Q.odd(y)) is False assert ask(Q.odd(x + y), Q.odd(x) & Q.even(y)) is True assert ask(Q.odd(x - y), Q.even(x) & Q.odd(y)) is True assert ask(Q.odd(x - y), Q.odd(x) & Q.odd(y)) is False assert ask(Q.odd(x + y + z), Q.odd(x) & Q.odd(y) & Q.even(z)) is False assert ask(Q.odd(x + y + z + t), Q.odd(x) & Q.odd(y) & Q.even(z) & Q.integer(t)) is None assert ask(Q.odd(2*x + 1), Q.integer(x)) is True assert ask(Q.odd(2*x + y), Q.integer(x) & Q.odd(y)) is True assert ask(Q.odd(2*x + y), Q.integer(x) & Q.even(y)) is False assert ask(Q.odd(2*x + y), Q.integer(x) & Q.integer(y)) is None assert ask(Q.odd(x*y), Q.odd(x) & Q.even(y)) is False assert ask(Q.odd(x*y), Q.odd(x) & Q.odd(y)) is True assert ask(Q.odd(2*x*y), Q.rational(x) & Q.rational(x)) is None assert ask(Q.odd(2*x*y), Q.irrational(x) & Q.irrational(x)) is None assert ask(Q.odd(Abs(x)), Q.odd(x)) is True assert ask(Q.odd((-1)**n), Q.integer(n)) is True assert ask(Q.odd(k**2), Q.even(k)) is False assert ask(Q.odd(n**2), Q.odd(n)) is True assert ask(Q.odd(3**k), Q.even(k)) is None assert ask(Q.odd(k**m), Q.even(k) & Q.integer(m) & ~Q.negative(m)) is None assert ask(Q.odd(n**m), Q.odd(n) & Q.integer(m) & ~Q.negative(m)) is True assert ask(Q.odd(k**p), Q.even(k) & Q.integer(p) & Q.positive(p)) is False assert ask(Q.odd(n**p), Q.odd(n) & Q.integer(p) & Q.positive(p)) is True assert ask(Q.odd(m**k), Q.even(k) & Q.integer(m) & ~Q.negative(m)) is None assert ask(Q.odd(p**k), Q.even(k) & Q.integer(p) & Q.positive(p)) is None assert ask(Q.odd(m**n), Q.odd(n) & Q.integer(m) & ~Q.negative(m)) is None assert ask(Q.odd(p**n), Q.odd(n) & Q.integer(p) & Q.positive(p)) is None assert ask(Q.odd(k**x), Q.even(k)) is None assert ask(Q.odd(n**x), Q.odd(n)) is None assert ask(Q.odd(x*y), Q.integer(x) & Q.integer(y)) is None assert ask(Q.odd(x*x), Q.integer(x)) is None assert ask(Q.odd(x*(x + y)), Q.integer(x) & Q.odd(y)) is False assert ask(Q.odd(x*(x + y)), Q.integer(x) & Q.even(y)) is None @XFAIL def test_oddness_in_ternary_integer_product_with_odd(): # Tests that oddness inference is independent of term ordering. # Term ordering at the point of testing depends on SymPy's symbol order, so # we try to force a different order by modifying symbol names. assert ask(Q.odd(x*y*(y + z)), Q.integer(x) & Q.integer(y) & Q.odd(z)) is False assert ask(Q.odd(y*x*(x + z)), Q.integer(x) & Q.integer(y) & Q.odd(z)) is False def test_oddness_in_ternary_integer_product_with_even(): assert ask(Q.odd(x*y*(y + z)), Q.integer(x) & Q.integer(y) & Q.even(z)) is None def test_prime(): assert ask(Q.prime(x), Q.prime(x)) is True assert ask(Q.prime(x), ~Q.prime(x)) is False assert ask(Q.prime(x), Q.integer(x)) is None assert ask(Q.prime(x), ~Q.integer(x)) is False assert ask(Q.prime(2*x), Q.integer(x)) is None assert ask(Q.prime(x*y)) is None assert ask(Q.prime(x*y), Q.prime(x)) is None assert ask(Q.prime(x*y), Q.integer(x) & Q.integer(y)) is None assert ask(Q.prime(4*x), Q.integer(x)) is False assert ask(Q.prime(4*x)) is None assert ask(Q.prime(x**2), Q.integer(x)) is False assert ask(Q.prime(x**2), Q.prime(x)) is False assert ask(Q.prime(x**y), Q.integer(x) & Q.integer(y)) is False def test_positive(): assert ask(Q.positive(x), Q.positive(x)) is True assert ask(Q.positive(x), Q.negative(x)) is False assert ask(Q.positive(x), Q.nonzero(x)) is None assert ask(Q.positive(-x), Q.positive(x)) is False assert ask(Q.positive(-x), Q.negative(x)) is True assert ask(Q.positive(x + y), Q.positive(x) & Q.positive(y)) is True assert ask(Q.positive(x + y), Q.positive(x) & Q.nonnegative(y)) is True assert ask(Q.positive(x + y), Q.positive(x) & Q.negative(y)) is None assert ask(Q.positive(x + y), Q.positive(x) & Q.imaginary(y)) is False assert ask(Q.positive(2*x), Q.positive(x)) is True assumptions = Q.positive(x) & Q.negative(y) & Q.negative(z) & Q.positive(w) assert ask(Q.positive(x*y*z)) is None assert ask(Q.positive(x*y*z), assumptions) is True assert ask(Q.positive(-x*y*z), assumptions) is False assert ask(Q.positive(x**I), Q.positive(x)) is None assert ask(Q.positive(x**2), Q.positive(x)) is True assert ask(Q.positive(x**2), Q.negative(x)) is True assert ask(Q.positive(x**3), Q.negative(x)) is False assert ask(Q.positive(1/(1 + x**2)), Q.real(x)) is True assert ask(Q.positive(2**I)) is False assert ask(Q.positive(2 + I)) is False # although this could be False, it is representative of expressions # that don't evaluate to a zero with precision assert ask(Q.positive(cos(I)**2 + sin(I)**2 - 1)) is None assert ask(Q.positive(-I + I*(cos(2)**2 + sin(2)**2))) is None #exponential assert ask(Q.positive(exp(x)), Q.real(x)) is True assert ask(~Q.negative(exp(x)), Q.real(x)) is True assert ask(Q.positive(x + exp(x)), Q.real(x)) is None assert ask(Q.positive(exp(x)), Q.imaginary(x)) is None assert ask(Q.positive(exp(2*pi*I, evaluate=False)), Q.imaginary(x)) is True assert ask(Q.negative(exp(pi*I, evaluate=False)), Q.imaginary(x)) is True assert ask(Q.positive(exp(x*pi*I)), Q.even(x)) is True assert ask(Q.positive(exp(x*pi*I)), Q.odd(x)) is False assert ask(Q.positive(exp(x*pi*I)), Q.real(x)) is None # logarithm assert ask(Q.positive(log(x)), Q.imaginary(x)) is False assert ask(Q.positive(log(x)), Q.negative(x)) is False assert ask(Q.positive(log(x)), Q.positive(x)) is None assert ask(Q.positive(log(x + 2)), Q.positive(x)) is True # factorial assert ask(Q.positive(factorial(x)), Q.integer(x) & Q.positive(x)) assert ask(Q.positive(factorial(x)), Q.integer(x)) is None #absolute value assert ask(Q.positive(Abs(x))) is None # Abs(0) = 0 assert ask(Q.positive(Abs(x)), Q.positive(x)) is True def test_nonpositive(): assert ask(Q.nonpositive(-1)) assert ask(Q.nonpositive(0)) assert ask(Q.nonpositive(1)) is False assert ask(~Q.positive(x), Q.nonpositive(x)) assert ask(Q.nonpositive(x), Q.positive(x)) is False assert ask(Q.nonpositive(sqrt(-1))) is False assert ask(Q.nonpositive(x), Q.imaginary(x)) is False def test_nonnegative(): assert ask(Q.nonnegative(-1)) is False assert ask(Q.nonnegative(0)) assert ask(Q.nonnegative(1)) assert ask(~Q.negative(x), Q.nonnegative(x)) assert ask(Q.nonnegative(x), Q.negative(x)) is False assert ask(Q.nonnegative(sqrt(-1))) is False assert ask(Q.nonnegative(x), Q.imaginary(x)) is False def test_real_basic(): assert ask(Q.real(x)) is None assert ask(Q.real(x), Q.real(x)) is True assert ask(Q.real(x), Q.nonzero(x)) is True assert ask(Q.real(x), Q.positive(x)) is True assert ask(Q.real(x), Q.negative(x)) is True assert ask(Q.real(x), Q.integer(x)) is True assert ask(Q.real(x), Q.even(x)) is True assert ask(Q.real(x), Q.prime(x)) is True assert ask(Q.real(x/sqrt(2)), Q.real(x)) is True assert ask(Q.real(x/sqrt(-2)), Q.real(x)) is False assert ask(Q.real(x + 1), Q.real(x)) is True assert ask(Q.real(x + I), Q.real(x)) is False assert ask(Q.real(x + I), Q.complex(x)) is None assert ask(Q.real(2*x), Q.real(x)) is True assert ask(Q.real(I*x), Q.real(x)) is False assert ask(Q.real(I*x), Q.imaginary(x)) is True assert ask(Q.real(I*x), Q.complex(x)) is None def test_real_pow(): assert ask(Q.real(x**2), Q.real(x)) is True assert ask(Q.real(sqrt(x)), Q.negative(x)) is False assert ask(Q.real(x**y), Q.real(x) & Q.integer(y)) is True assert ask(Q.real(x**y), Q.real(x) & Q.real(y)) is None assert ask(Q.real(x**y), Q.positive(x) & Q.real(y)) is True assert ask(Q.real(x**y), Q.imaginary(x) & Q.imaginary(y)) is None # I**I or (2*I)**I assert ask(Q.real(x**y), Q.imaginary(x) & Q.real(y)) is None # I**1 or I**0 assert ask(Q.real(x**y), Q.real(x) & Q.imaginary(y)) is None # could be exp(2*pi*I) or 2**I assert ask(Q.real(x**0), Q.imaginary(x)) is True assert ask(Q.real(x**y), Q.real(x) & Q.integer(y)) is True assert ask(Q.real(x**y), Q.positive(x) & Q.real(y)) is True assert ask(Q.real(x**y), Q.real(x) & Q.rational(y)) is None assert ask(Q.real(x**y), Q.imaginary(x) & Q.integer(y)) is None assert ask(Q.real(x**y), Q.imaginary(x) & Q.odd(y)) is False assert ask(Q.real(x**y), Q.imaginary(x) & Q.even(y)) is True assert ask(Q.real(x**(y/z)), Q.real(x) & Q.real(y/z) & Q.rational(y/z) & Q.even(z) & Q.positive(x)) is True assert ask(Q.real(x**(y/z)), Q.real(x) & Q.rational(y/z) & Q.even(z) & Q.negative(x)) is False assert ask(Q.real(x**(y/z)), Q.real(x) & Q.integer(y/z)) is True assert ask(Q.real(x**(y/z)), Q.real(x) & Q.real(y/z) & Q.positive(x)) is True assert ask(Q.real(x**(y/z)), Q.real(x) & Q.real(y/z) & Q.negative(x)) is False assert ask(Q.real((-I)**i), Q.imaginary(i)) is True assert ask(Q.real(I**i), Q.imaginary(i)) is True assert ask(Q.real(i**i), Q.imaginary(i)) is None # i might be 2*I assert ask(Q.real(x**i), Q.imaginary(i)) is None # x could be 0 assert ask(Q.real(x**(I*pi/log(x))), Q.real(x)) is True def test_real_functions(): # trigonometric functions assert ask(Q.real(sin(x))) is None assert ask(Q.real(cos(x))) is None assert ask(Q.real(sin(x)), Q.real(x)) is True assert ask(Q.real(cos(x)), Q.real(x)) is True # exponential function assert ask(Q.real(exp(x))) is None assert ask(Q.real(exp(x)), Q.real(x)) is True assert ask(Q.real(x + exp(x)), Q.real(x)) is True assert ask(Q.real(exp(2*pi*I, evaluate=False))) is True assert ask(Q.real(exp(pi*I, evaluate=False))) is True assert ask(Q.real(exp(pi*I/2, evaluate=False))) is False # logarithm assert ask(Q.real(log(I))) is False assert ask(Q.real(log(2*I))) is False assert ask(Q.real(log(I + 1))) is False assert ask(Q.real(log(x)), Q.complex(x)) is None assert ask(Q.real(log(x)), Q.imaginary(x)) is False assert ask(Q.real(log(exp(x))), Q.imaginary(x)) is None # exp(2*pi*I) is 1, log(exp(pi*I)) is pi*I (disregarding periodicity) assert ask(Q.real(log(exp(x))), Q.complex(x)) is None eq = Pow(exp(2*pi*I*x, evaluate=False), x, evaluate=False) assert ask(Q.real(eq), Q.integer(x)) is True assert ask(Q.real(exp(x)**x), Q.imaginary(x)) is True assert ask(Q.real(exp(x)**x), Q.complex(x)) is None # Q.complexes assert ask(Q.real(re(x))) is True assert ask(Q.real(im(x))) is True def test_matrix(): # hermitian assert ask(Q.hermitian(Matrix([[2, 2 + I, 4], [2 - I, 3, I], [4, -I, 1]]))) == True assert ask(Q.hermitian(Matrix([[2, 2 + I, 4], [2 + I, 3, I], [4, -I, 1]]))) == False z = symbols('z', complex=True) assert ask(Q.hermitian(Matrix([[2, 2 + I, z], [2 - I, 3, I], [4, -I, 1]]))) == None assert ask(Q.hermitian(SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))))) == True assert ask(Q.hermitian(SparseMatrix(((25, 15, -5), (15, I, 0), (-5, 0, 11))))) == False assert ask(Q.hermitian(SparseMatrix(((25, 15, -5), (15, z, 0), (-5, 0, 11))))) == None # antihermitian A = Matrix([[0, -2 - I, 0], [2 - I, 0, -I], [0, -I, 0]]) B = Matrix([[-I, 2 + I, 0], [-2 + I, 0, 2 + I], [0, -2 + I, -I]]) assert ask(Q.antihermitian(A)) is True assert ask(Q.antihermitian(B)) is True assert ask(Q.antihermitian(A**2)) is False C = (B**3) C.simplify() assert ask(Q.antihermitian(C)) is True _A = Matrix([[0, -2 - I, 0], [z, 0, -I], [0, -I, 0]]) assert ask(Q.antihermitian(_A)) is None def test_algebraic(): assert ask(Q.algebraic(x)) is None assert ask(Q.algebraic(I)) is True assert ask(Q.algebraic(2*I)) is True assert ask(Q.algebraic(I/3)) is True assert ask(Q.algebraic(sqrt(7))) is True assert ask(Q.algebraic(2*sqrt(7))) is True assert ask(Q.algebraic(sqrt(7)/3)) is True assert ask(Q.algebraic(I*sqrt(3))) is True assert ask(Q.algebraic(sqrt(1 + I*sqrt(3)))) is True assert ask(Q.algebraic(1 + I*sqrt(3)**Rational(17, 31))) is True assert ask(Q.algebraic(1 + I*sqrt(3)**(17/pi))) is False for f in [exp, sin, tan, asin, atan, cos]: assert ask(Q.algebraic(f(7))) is False assert ask(Q.algebraic(f(7, evaluate=False))) is False assert ask(Q.algebraic(f(0, evaluate=False))) is True assert ask(Q.algebraic(f(x)), Q.algebraic(x)) is None assert ask(Q.algebraic(f(x)), Q.algebraic(x) & Q.nonzero(x)) is False for g in [log, acos]: assert ask(Q.algebraic(g(7))) is False assert ask(Q.algebraic(g(7, evaluate=False))) is False assert ask(Q.algebraic(g(1, evaluate=False))) is True assert ask(Q.algebraic(g(x)), Q.algebraic(x)) is None assert ask(Q.algebraic(g(x)), Q.algebraic(x) & Q.nonzero(x - 1)) is False for h in [cot, acot]: assert ask(Q.algebraic(h(7))) is False assert ask(Q.algebraic(h(7, evaluate=False))) is False assert ask(Q.algebraic(h(x)), Q.algebraic(x)) is False assert ask(Q.algebraic(sqrt(sin(7)))) is False assert ask(Q.algebraic(sqrt(y + I*sqrt(7)))) is None assert ask(Q.algebraic(2.47)) is True assert ask(Q.algebraic(x), Q.transcendental(x)) is False assert ask(Q.transcendental(x), Q.algebraic(x)) is False def test_global(): """Test ask with global assumptions""" assert ask(Q.integer(x)) is None global_assumptions.add(Q.integer(x)) assert ask(Q.integer(x)) is True global_assumptions.clear() assert ask(Q.integer(x)) is None def test_custom_context(): """Test ask with custom assumptions context""" assert ask(Q.integer(x)) is None local_context = AssumptionsContext() local_context.add(Q.integer(x)) assert ask(Q.integer(x), context=local_context) is True assert ask(Q.integer(x)) is None def test_functions_in_assumptions(): assert ask(Q.negative(x), Q.real(x) >> Q.positive(x)) is False assert ask(Q.negative(x), Equivalent(Q.real(x), Q.positive(x))) is False assert ask(Q.negative(x), Xor(Q.real(x), Q.negative(x))) is False def test_composite_ask(): assert ask(Q.negative(x) & Q.integer(x), assumptions=Q.real(x) >> Q.positive(x)) is False def test_composite_proposition(): assert ask(True) is True assert ask(False) is False assert ask(~Q.negative(x), Q.positive(x)) is True assert ask(~Q.real(x), Q.commutative(x)) is None assert ask(Q.negative(x) & Q.integer(x), Q.positive(x)) is False assert ask(Q.negative(x) & Q.integer(x)) is None assert ask(Q.real(x) | Q.integer(x), Q.positive(x)) is True assert ask(Q.real(x) | Q.integer(x)) is None assert ask(Q.real(x) >> Q.positive(x), Q.negative(x)) is False assert ask(Implies( Q.real(x), Q.positive(x), evaluate=False), Q.negative(x)) is False assert ask(Implies(Q.real(x), Q.positive(x), evaluate=False)) is None assert ask(Equivalent(Q.integer(x), Q.even(x)), Q.even(x)) is True assert ask(Equivalent(Q.integer(x), Q.even(x))) is None assert ask(Equivalent(Q.positive(x), Q.integer(x)), Q.integer(x)) is None assert ask(Q.real(x) | Q.integer(x), Q.real(x) | Q.integer(x)) is True def test_tautology(): assert ask(Q.real(x) | ~Q.real(x)) is True assert ask(Q.real(x) & ~Q.real(x)) is False def test_composite_assumptions(): assert ask(Q.real(x), Q.real(x) & Q.real(y)) is True assert ask(Q.positive(x), Q.positive(x) | Q.positive(y)) is None assert ask(Q.positive(x), Q.real(x) >> Q.positive(y)) is None assert ask(Q.real(x), ~(Q.real(x) >> Q.real(y))) is True def test_incompatible_resolutors(): class Prime2AskHandler(AskHandler): @staticmethod def Number(expr, assumptions): return True register_handler('prime', Prime2AskHandler) raises(ValueError, lambda: ask(Q.prime(4))) remove_handler('prime', Prime2AskHandler) class InconclusiveHandler(AskHandler): @staticmethod def Number(expr, assumptions): return None register_handler('prime', InconclusiveHandler) assert ask(Q.prime(3)) is True remove_handler('prime', InconclusiveHandler) def test_key_extensibility(): """test that you can add keys to the ask system at runtime""" # make sure the key is not defined raises(AttributeError, lambda: ask(Q.my_key(x))) # Old handler system class MyAskHandler(AskHandler): @staticmethod def Symbol(expr, assumptions): return True try: register_handler('my_key', MyAskHandler) assert ask(Q.my_key(x)) is True assert ask(Q.my_key(x + 1)) is None finally: remove_handler('my_key', MyAskHandler) del Q.my_key raises(AttributeError, lambda: ask(Q.my_key(x))) # New handler system class MyPredicate(Predicate): pass try: Q.my_key = MyPredicate() @Q.my_key.register(Symbol) def _(expr, assumptions): return True assert ask(Q.my_key(x)) is True assert ask(Q.my_key(x+1)) is None finally: del Q.my_key raises(AttributeError, lambda: ask(Q.my_key(x))) def test_type_extensibility(): """test that new types can be added to the ask system at runtime """ from sympy.core import Basic class MyType(Basic): pass # Old handler system class MyAskHandler(AskHandler): @staticmethod def MyType(expr, assumptions): return True a = MyType() register_handler(Q.prime, MyAskHandler) assert ask(Q.prime(a)) is True #TODO: add test for new handler system after predicates are migrated def test_single_fact_lookup(): known_facts = And(Implies(Q.integer, Q.rational), Implies(Q.rational, Q.real), Implies(Q.real, Q.complex)) known_facts_keys = {Q.integer, Q.rational, Q.real, Q.complex} known_facts_cnf = to_cnf(known_facts) mapping = single_fact_lookup(known_facts_keys, known_facts_cnf) assert mapping[Q.rational] == {Q.real, Q.rational, Q.complex} def test_compute_known_facts(): known_facts = And(Implies(Q.integer, Q.rational), Implies(Q.rational, Q.real), Implies(Q.real, Q.complex)) known_facts_keys = {Q.integer, Q.rational, Q.real, Q.complex} compute_known_facts(known_facts, known_facts_keys) @slow def test_known_facts_consistent(): """"Test that ask_generated.py is up-to-date""" from sympy.assumptions.ask import get_known_facts, get_known_facts_keys from os.path import abspath, dirname, join filename = join(dirname(dirname(abspath(__file__))), 'ask_generated.py') with open(filename) as f: assert f.read() == \ compute_known_facts(get_known_facts(), get_known_facts_keys()) def test_Add_queries(): assert ask(Q.prime(12345678901234567890 + (cos(1)**2 + sin(1)**2))) is True assert ask(Q.even(Add(S(2), S(2), evaluate=0))) is True assert ask(Q.prime(Add(S(2), S(2), evaluate=0))) is False assert ask(Q.integer(Add(S(2), S(2), evaluate=0))) is True def test_positive_assuming(): with assuming(Q.positive(x + 1)): assert not ask(Q.positive(x)) def test_issue_5421(): raises(TypeError, lambda: ask(pi/log(x), Q.real)) def test_issue_3906(): raises(TypeError, lambda: ask(Q.positive)) def test_issue_5833(): assert ask(Q.positive(log(x)**2), Q.positive(x)) is None assert ask(~Q.negative(log(x)**2), Q.positive(x)) is True def test_issue_6732(): raises(ValueError, lambda: ask(Q.positive(x), Q.positive(x) & Q.negative(x))) raises(ValueError, lambda: ask(Q.negative(x), Q.positive(x) & Q.negative(x))) def test_issue_7246(): assert ask(Q.positive(atan(p)), Q.positive(p)) is True assert ask(Q.positive(atan(p)), Q.negative(p)) is False assert ask(Q.positive(atan(p)), Q.zero(p)) is False assert ask(Q.positive(atan(x))) is None assert ask(Q.positive(asin(p)), Q.positive(p)) is None assert ask(Q.positive(asin(p)), Q.zero(p)) is None assert ask(Q.positive(asin(Rational(1, 7)))) is True assert ask(Q.positive(asin(x)), Q.positive(x) & Q.nonpositive(x - 1)) is True assert ask(Q.positive(asin(x)), Q.negative(x) & Q.nonnegative(x + 1)) is False assert ask(Q.positive(acos(p)), Q.positive(p)) is None assert ask(Q.positive(acos(Rational(1, 7)))) is True assert ask(Q.positive(acos(x)), Q.nonnegative(x + 1) & Q.nonpositive(x - 1)) is True assert ask(Q.positive(acos(x)), Q.nonnegative(x - 1)) is None assert ask(Q.positive(acot(x)), Q.positive(x)) is True assert ask(Q.positive(acot(x)), Q.real(x)) is True assert ask(Q.positive(acot(x)), Q.imaginary(x)) is False assert ask(Q.positive(acot(x))) is None @XFAIL def test_issue_7246_failing(): #Move this test to test_issue_7246 once #the new assumptions module is improved. assert ask(Q.positive(acos(x)), Q.zero(x)) is True def test_check_old_assumption(): x = symbols('x', real=True) assert ask(Q.real(x)) is True assert ask(Q.imaginary(x)) is False assert ask(Q.complex(x)) is True x = symbols('x', imaginary=True) assert ask(Q.real(x)) is False assert ask(Q.imaginary(x)) is True assert ask(Q.complex(x)) is True x = symbols('x', complex=True) assert ask(Q.real(x)) is None assert ask(Q.complex(x)) is True x = symbols('x', positive=True, finite=True) assert ask(Q.positive(x)) is True assert ask(Q.negative(x)) is False assert ask(Q.real(x)) is True x = symbols('x', commutative=False) assert ask(Q.commutative(x)) is False x = symbols('x', negative=True) assert ask(Q.positive(x)) is False assert ask(Q.negative(x)) is True x = symbols('x', nonnegative=True) assert ask(Q.negative(x)) is False assert ask(Q.positive(x)) is None assert ask(Q.zero(x)) is None x = symbols('x', finite=True) assert ask(Q.finite(x)) is True x = symbols('x', prime=True) assert ask(Q.prime(x)) is True assert ask(Q.composite(x)) is False x = symbols('x', composite=True) assert ask(Q.prime(x)) is False assert ask(Q.composite(x)) is True x = symbols('x', even=True) assert ask(Q.even(x)) is True assert ask(Q.odd(x)) is False x = symbols('x', odd=True) assert ask(Q.even(x)) is False assert ask(Q.odd(x)) is True x = symbols('x', nonzero=True) assert ask(Q.nonzero(x)) is True assert ask(Q.zero(x)) is False x = symbols('x', zero=True) assert ask(Q.zero(x)) is True x = symbols('x', integer=True) assert ask(Q.integer(x)) is True x = symbols('x', rational=True) assert ask(Q.rational(x)) is True assert ask(Q.irrational(x)) is False x = symbols('x', irrational=True) assert ask(Q.irrational(x)) is True assert ask(Q.rational(x)) is False def test_issue_9636(): assert ask(Q.integer(1.0)) is False assert ask(Q.prime(3.0)) is False assert ask(Q.composite(4.0)) is False assert ask(Q.even(2.0)) is False assert ask(Q.odd(3.0)) is False def test_autosimp_used_to_fail(): # See issue #9807 assert ask(Q.imaginary(0**I)) is False assert ask(Q.imaginary(0**(-I))) is False assert ask(Q.real(0**I)) is False assert ask(Q.real(0**(-I))) is False def test_custom_AskHandler(): from sympy.logic.boolalg import conjuncts # Old handler system class MersenneHandler(AskHandler): @staticmethod def Integer(expr, assumptions): from sympy import log if ask(Q.integer(log(expr + 1, 2))): return True @staticmethod def Symbol(expr, assumptions): if expr in conjuncts(assumptions): return True try: register_handler('mersenne', MersenneHandler) n = Symbol('n', integer=True) assert ask(Q.mersenne(7)) assert ask(Q.mersenne(n), Q.mersenne(n)) finally: del Q.mersenne # New handler system class MersennePredicate(Predicate): pass try: Q.mersenne = MersennePredicate() @Q.mersenne.register(Integer) def _(expr, assumptions): from sympy import log if ask(Q.integer(log(expr + 1, 2))): return True @Q.mersenne.register(Symbol) def _(expr, assumptions): if expr in conjuncts(assumptions): return True assert ask(Q.mersenne(7)) assert ask(Q.mersenne(n), Q.mersenne(n)) finally: del Q.mersenne def test_polyadic_predicate(): class SexyPredicate(Predicate): pass try: Q.sexyprime = SexyPredicate() @Q.sexyprime.register(Integer, Integer) def _(int1, int2, assumptions): args = sorted([int1, int2]) if not all(ask(Q.prime(a), assumptions) for a in args): return False return args[1] - args[0] == 6 @Q.sexyprime.register(Integer, Integer, Integer) def _(int1, int2, int3, assumptions): args = sorted([int1, int2, int3]) if not all(ask(Q.prime(a), assumptions) for a in args): return False return args[2] - args[1] == 6 and args[1] - args[0] == 6 assert ask(Q.sexyprime(5, 11)) assert ask(Q.sexyprime(7, 13, 19)) finally: del Q.sexyprime def test_Predicate_handler_is_unique(): # Undefined predicate does not have a handler assert Predicate('mypredicate').handler is None # Handler of defined predicate is unique to the class class MyPredicate(Predicate): pass mp1 = MyPredicate('mp1') mp2 = MyPredicate('mp2') assert mp1.handler is mp2.handler
f05fc76fe940bb84e61bc4bdad4490971e2bfd04b1f73ba4633a7b902f66a4a3
from sympy.core import S, Add, Mul, sympify, Symbol, Dummy, Basic from sympy.core.expr import Expr from sympy.core.exprtools import factor_terms from sympy.core.function import (Function, Derivative, ArgumentIndexError, AppliedUndef) from sympy.core.logic import fuzzy_not, fuzzy_or from sympy.core.numbers import pi, I, oo from sympy.core.relational import Eq from sympy.functions.elementary.exponential import exp, exp_polar, log from sympy.functions.elementary.integers import ceiling from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import atan, atan2 ############################################################################### ######################### REAL and IMAGINARY PARTS ############################ ############################################################################### class re(Function): """ Returns real part of expression. This function performs only elementary analysis and so it will fail to decompose properly more complicated expressions. If completely simplified result is needed then use Basic.as_real_imag() or perform complex expansion on instance of this function. Examples ======== >>> from sympy import re, im, I, E, symbols >>> x, y = symbols('x y', real=True) >>> re(2*E) 2*E >>> re(2*I + 17) 17 >>> re(2*I) 0 >>> re(im(x) + x*I + 2) 2 >>> re(5 + I + 2) 7 Parameters ========== arg : Expr Real or complex expression. Returns ======= expr : Expr Real part of expression. See Also ======== im """ is_extended_real = True unbranched = True # implicitly works on the projection to C _singularities = True # non-holomorphic @classmethod def eval(cls, arg): if arg is S.NaN: return S.NaN elif arg is S.ComplexInfinity: return S.NaN elif arg.is_extended_real: return arg elif arg.is_imaginary or (S.ImaginaryUnit*arg).is_extended_real: return S.Zero elif arg.is_Matrix: return arg.as_real_imag()[0] elif arg.is_Function and isinstance(arg, conjugate): return re(arg.args[0]) else: included, reverted, excluded = [], [], [] args = Add.make_args(arg) for term in args: coeff = term.as_coefficient(S.ImaginaryUnit) if coeff is not None: if not coeff.is_extended_real: reverted.append(coeff) elif not term.has(S.ImaginaryUnit) and term.is_extended_real: excluded.append(term) else: # Try to do some advanced expansion. If # impossible, don't try to do re(arg) again # (because this is what we are trying to do now). real_imag = term.as_real_imag(ignore=arg) if real_imag: excluded.append(real_imag[0]) else: included.append(term) if len(args) != len(included): a, b, c = (Add(*xs) for xs in [included, reverted, excluded]) return cls(a) - im(b) + c def as_real_imag(self, deep=True, **hints): """ Returns the real number with a zero imaginary part. """ return (self, S.Zero) def _eval_derivative(self, x): if x.is_extended_real or self.args[0].is_extended_real: return re(Derivative(self.args[0], x, evaluate=True)) if x.is_imaginary or self.args[0].is_imaginary: return -S.ImaginaryUnit \ * im(Derivative(self.args[0], x, evaluate=True)) def _eval_rewrite_as_im(self, arg, **kwargs): return self.args[0] - S.ImaginaryUnit*im(self.args[0]) def _eval_is_algebraic(self): return self.args[0].is_algebraic def _eval_is_zero(self): # is_imaginary implies nonzero return fuzzy_or([self.args[0].is_imaginary, self.args[0].is_zero]) def _eval_is_finite(self): if self.args[0].is_finite: return True def _eval_is_complex(self): if self.args[0].is_finite: return True def _sage_(self): import sage.all as sage return sage.real_part(self.args[0]._sage_()) class im(Function): """ Returns imaginary part of expression. This function performs only elementary analysis and so it will fail to decompose properly more complicated expressions. If completely simplified result is needed then use Basic.as_real_imag() or perform complex expansion on instance of this function. Examples ======== >>> from sympy import re, im, E, I >>> from sympy.abc import x, y >>> im(2*E) 0 >>> im(2*I + 17) 2 >>> im(x*I) re(x) >>> im(re(x) + y) im(y) >>> im(2 + 3*I) 3 Parameters ========== arg : Expr Real or complex expression. Returns ======= expr : Expr Imaginary part of expression. See Also ======== re """ is_extended_real = True unbranched = True # implicitly works on the projection to C _singularities = True # non-holomorphic @classmethod def eval(cls, arg): if arg is S.NaN: return S.NaN elif arg is S.ComplexInfinity: return S.NaN elif arg.is_extended_real: return S.Zero elif arg.is_imaginary or (S.ImaginaryUnit*arg).is_extended_real: return -S.ImaginaryUnit * arg elif arg.is_Matrix: return arg.as_real_imag()[1] elif arg.is_Function and isinstance(arg, conjugate): return -im(arg.args[0]) else: included, reverted, excluded = [], [], [] args = Add.make_args(arg) for term in args: coeff = term.as_coefficient(S.ImaginaryUnit) if coeff is not None: if not coeff.is_extended_real: reverted.append(coeff) else: excluded.append(coeff) elif term.has(S.ImaginaryUnit) or not term.is_extended_real: # Try to do some advanced expansion. If # impossible, don't try to do im(arg) again # (because this is what we are trying to do now). real_imag = term.as_real_imag(ignore=arg) if real_imag: excluded.append(real_imag[1]) else: included.append(term) if len(args) != len(included): a, b, c = (Add(*xs) for xs in [included, reverted, excluded]) return cls(a) + re(b) + c def as_real_imag(self, deep=True, **hints): """ Return the imaginary part with a zero real part. """ return (self, S.Zero) def _eval_derivative(self, x): if x.is_extended_real or self.args[0].is_extended_real: return im(Derivative(self.args[0], x, evaluate=True)) if x.is_imaginary or self.args[0].is_imaginary: return -S.ImaginaryUnit \ * re(Derivative(self.args[0], x, evaluate=True)) def _sage_(self): import sage.all as sage return sage.imag_part(self.args[0]._sage_()) def _eval_rewrite_as_re(self, arg, **kwargs): return -S.ImaginaryUnit*(self.args[0] - re(self.args[0])) def _eval_is_algebraic(self): return self.args[0].is_algebraic def _eval_is_zero(self): return self.args[0].is_extended_real def _eval_is_finite(self): if self.args[0].is_finite: return True def _eval_is_complex(self): if self.args[0].is_finite: return True ############################################################################### ############### SIGN, ABSOLUTE VALUE, ARGUMENT and CONJUGATION ################ ############################################################################### class sign(Function): """ Returns the complex sign of an expression: Explanation =========== If the expression is real the sign will be: * 1 if expression is positive * 0 if expression is equal to zero * -1 if expression is negative If the expression is imaginary the sign will be: * I if im(expression) is positive * -I if im(expression) is negative Otherwise an unevaluated expression will be returned. When evaluated, the result (in general) will be ``cos(arg(expr)) + I*sin(arg(expr))``. Examples ======== >>> from sympy.functions import sign >>> from sympy.core.numbers import I >>> sign(-1) -1 >>> sign(0) 0 >>> sign(-3*I) -I >>> sign(1 + I) sign(1 + I) >>> _.evalf() 0.707106781186548 + 0.707106781186548*I Parameters ========== arg : Expr Real or imaginary expression. Returns ======= expr : Expr Complex sign of expression. See Also ======== Abs, conjugate """ is_complex = True _singularities = True def doit(self, **hints): if self.args[0].is_zero is False: return self.args[0] / Abs(self.args[0]) return self @classmethod def eval(cls, arg): # handle what we can if arg.is_Mul: c, args = arg.as_coeff_mul() unk = [] s = sign(c) for a in args: if a.is_extended_negative: s = -s elif a.is_extended_positive: pass else: if a.is_imaginary: ai = im(a) if ai.is_comparable: # i.e. a = I*real s *= S.ImaginaryUnit if ai.is_extended_negative: # can't use sign(ai) here since ai might not be # a Number s = -s else: unk.append(a) else: unk.append(a) if c is S.One and len(unk) == len(args): return None return s * cls(arg._new_rawargs(*unk)) if arg is S.NaN: return S.NaN if arg.is_zero: # it may be an Expr that is zero return S.Zero if arg.is_extended_positive: return S.One if arg.is_extended_negative: return S.NegativeOne if arg.is_Function: if isinstance(arg, sign): return arg if arg.is_imaginary: if arg.is_Pow and arg.exp is S.Half: # we catch this because non-trivial sqrt args are not expanded # e.g. sqrt(1-sqrt(2)) --x--> to I*sqrt(sqrt(2) - 1) return S.ImaginaryUnit arg2 = -S.ImaginaryUnit * arg if arg2.is_extended_positive: return S.ImaginaryUnit if arg2.is_extended_negative: return -S.ImaginaryUnit def _eval_Abs(self): if fuzzy_not(self.args[0].is_zero): return S.One def _eval_conjugate(self): return sign(conjugate(self.args[0])) def _eval_derivative(self, x): if self.args[0].is_extended_real: from sympy.functions.special.delta_functions import DiracDelta return 2 * Derivative(self.args[0], x, evaluate=True) \ * DiracDelta(self.args[0]) elif self.args[0].is_imaginary: from sympy.functions.special.delta_functions import DiracDelta return 2 * Derivative(self.args[0], x, evaluate=True) \ * DiracDelta(-S.ImaginaryUnit * self.args[0]) def _eval_is_nonnegative(self): if self.args[0].is_nonnegative: return True def _eval_is_nonpositive(self): if self.args[0].is_nonpositive: return True def _eval_is_imaginary(self): return self.args[0].is_imaginary def _eval_is_integer(self): return self.args[0].is_extended_real def _eval_is_zero(self): return self.args[0].is_zero def _eval_power(self, other): if ( fuzzy_not(self.args[0].is_zero) and other.is_integer and other.is_even ): return S.One def _eval_nseries(self, x, n, logx, cdir=0): arg0 = self.args[0] x0 = arg0.subs(x, 0) if x0 != 0: return self.func(x0) if cdir != 0: cdir = arg0.dir(x, cdir) return -S.One if re(cdir) < 0 else S.One def _sage_(self): import sage.all as sage return sage.sgn(self.args[0]._sage_()) def _eval_rewrite_as_Piecewise(self, arg, **kwargs): if arg.is_extended_real: return Piecewise((1, arg > 0), (-1, arg < 0), (0, True)) def _eval_rewrite_as_Heaviside(self, arg, **kwargs): from sympy.functions.special.delta_functions import Heaviside if arg.is_extended_real: return Heaviside(arg, H0=S(1)/2) * 2 - 1 def _eval_rewrite_as_Abs(self, arg, **kwargs): return Piecewise((0, Eq(arg, 0)), (arg / Abs(arg), True)) def _eval_simplify(self, **kwargs): return self.func(factor_terms(self.args[0])) # XXX include doit? class Abs(Function): """ Return the absolute value of the argument. Explanation =========== This is an extension of the built-in function abs() to accept symbolic values. If you pass a SymPy expression to the built-in abs(), it will pass it automatically to Abs(). Examples ======== >>> from sympy import Abs, Symbol, S, I >>> Abs(-1) 1 >>> x = Symbol('x', real=True) >>> Abs(-x) Abs(x) >>> Abs(x**2) x**2 >>> abs(-x) # The Python built-in Abs(x) >>> Abs(3*x + 2*I) sqrt(9*x**2 + 4) >>> Abs(8*I) 8 Note that the Python built-in will return either an Expr or int depending on the argument:: >>> type(abs(-1)) <... 'int'> >>> type(abs(S.NegativeOne)) <class 'sympy.core.numbers.One'> Abs will always return a sympy object. Parameters ========== arg : Expr Real or complex expression. Returns ======= expr : Expr Absolute value returned can be an expression or integer depending on input arg. See Also ======== sign, conjugate """ is_extended_real = True is_extended_negative = False is_extended_nonnegative = True unbranched = True _singularities = True # non-holomorphic def fdiff(self, argindex=1): """ Get the first derivative of the argument to Abs(). """ if argindex == 1: return sign(self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy.simplify.simplify import signsimp from sympy.core.function import expand_mul from sympy.core.power import Pow if hasattr(arg, '_eval_Abs'): obj = arg._eval_Abs() if obj is not None: return obj if not isinstance(arg, Expr): raise TypeError("Bad argument type for Abs(): %s" % type(arg)) # handle what we can arg = signsimp(arg, evaluate=False) n, d = arg.as_numer_denom() if d.free_symbols and not n.free_symbols: return cls(n)/cls(d) if arg.is_Mul: known = [] unk = [] for t in arg.args: if t.is_Pow and t.exp.is_integer and t.exp.is_negative: bnew = cls(t.base) if isinstance(bnew, cls): unk.append(t) else: known.append(Pow(bnew, t.exp)) else: tnew = cls(t) if isinstance(tnew, cls): unk.append(t) else: known.append(tnew) known = Mul(*known) unk = cls(Mul(*unk), evaluate=False) if unk else S.One return known*unk if arg is S.NaN: return S.NaN if arg is S.ComplexInfinity: return S.Infinity if arg.is_Pow: base, exponent = arg.as_base_exp() if base.is_extended_real: if exponent.is_integer: if exponent.is_even: return arg if base is S.NegativeOne: return S.One return Abs(base)**exponent if base.is_extended_nonnegative: return base**re(exponent) if base.is_extended_negative: return (-base)**re(exponent)*exp(-S.Pi*im(exponent)) return elif not base.has(Symbol): # complex base # express base**exponent as exp(exponent*log(base)) a, b = log(base).as_real_imag() z = a + I*b return exp(re(exponent*z)) if isinstance(arg, exp): return exp(re(arg.args[0])) if isinstance(arg, AppliedUndef): return if arg.is_Add and arg.has(S.Infinity, S.NegativeInfinity): if any(a.is_infinite for a in arg.as_real_imag()): return S.Infinity if arg.is_zero: return S.Zero if arg.is_extended_nonnegative: return arg if arg.is_extended_nonpositive: return -arg if arg.is_imaginary: arg2 = -S.ImaginaryUnit * arg if arg2.is_extended_nonnegative: return arg2 # reject result if all new conjugates are just wrappers around # an expression that was already in the arg conj = signsimp(arg.conjugate(), evaluate=False) new_conj = conj.atoms(conjugate) - arg.atoms(conjugate) if new_conj and all(arg.has(i.args[0]) for i in new_conj): return if arg != conj and arg != -conj: ignore = arg.atoms(Abs) abs_free_arg = arg.xreplace({i: Dummy(real=True) for i in ignore}) unk = [a for a in abs_free_arg.free_symbols if a.is_extended_real is None] if not unk or not all(conj.has(conjugate(u)) for u in unk): return sqrt(expand_mul(arg*conj)) def _eval_is_real(self): if self.args[0].is_finite: return True def _eval_is_integer(self): if self.args[0].is_extended_real: return self.args[0].is_integer def _eval_is_extended_nonzero(self): return fuzzy_not(self._args[0].is_zero) def _eval_is_zero(self): return self._args[0].is_zero def _eval_is_extended_positive(self): is_z = self.is_zero if is_z is not None: return not is_z def _eval_is_rational(self): if self.args[0].is_extended_real: return self.args[0].is_rational def _eval_is_even(self): if self.args[0].is_extended_real: return self.args[0].is_even def _eval_is_odd(self): if self.args[0].is_extended_real: return self.args[0].is_odd def _eval_is_algebraic(self): return self.args[0].is_algebraic def _eval_power(self, exponent): if self.args[0].is_extended_real and exponent.is_integer: if exponent.is_even: return self.args[0]**exponent elif exponent is not S.NegativeOne and exponent.is_Integer: return self.args[0]**(exponent - 1)*self return def _eval_nseries(self, x, n, logx, cdir=0): direction = self.args[0].leadterm(x)[0] if direction.has(log(x)): direction = direction.subs(log(x), logx) s = self.args[0]._eval_nseries(x, n=n, logx=logx) when = Eq(direction, 0) return Piecewise( ((s.subs(direction, 0)), when), (sign(direction)*s, True), ) def _sage_(self): import sage.all as sage return sage.abs_symbolic(self.args[0]._sage_()) def _eval_derivative(self, x): if self.args[0].is_extended_real or self.args[0].is_imaginary: return Derivative(self.args[0], x, evaluate=True) \ * sign(conjugate(self.args[0])) rv = (re(self.args[0]) * Derivative(re(self.args[0]), x, evaluate=True) + im(self.args[0]) * Derivative(im(self.args[0]), x, evaluate=True)) / Abs(self.args[0]) return rv.rewrite(sign) def _eval_rewrite_as_Heaviside(self, arg, **kwargs): # Note this only holds for real arg (since Heaviside is not defined # for complex arguments). from sympy.functions.special.delta_functions import Heaviside if arg.is_extended_real: return arg*(Heaviside(arg) - Heaviside(-arg)) def _eval_rewrite_as_Piecewise(self, arg, **kwargs): if arg.is_extended_real: return Piecewise((arg, arg >= 0), (-arg, True)) elif arg.is_imaginary: return Piecewise((I*arg, I*arg >= 0), (-I*arg, True)) def _eval_rewrite_as_sign(self, arg, **kwargs): return arg/sign(arg) def _eval_rewrite_as_conjugate(self, arg, **kwargs): return (arg*conjugate(arg))**S.Half class arg(Function): """ Returns the argument (in radians) of a complex number. For a positive number, the argument is always 0. Examples ======== >>> from sympy.functions import arg >>> from sympy import I, sqrt >>> arg(2.0) 0 >>> arg(I) pi/2 >>> arg(sqrt(2) + I*sqrt(2)) pi/4 >>> arg(sqrt(3)/2 + I/2) pi/6 >>> arg(4 + 3*I) atan(3/4) >>> arg(0.8 + 0.6*I) 0.643501108793284 Parameters ========== arg : Expr Real or complex expression. Returns ======= value : Expr Returns arc tangent of arg measured in radians. """ is_extended_real = True is_real = True is_finite = True _singularities = True # non-holomorphic @classmethod def eval(cls, arg): if isinstance(arg, exp_polar): return periodic_argument(arg, oo) if not arg.is_Atom: c, arg_ = factor_terms(arg).as_coeff_Mul() if arg_.is_Mul: arg_ = Mul(*[a if (sign(a) not in (-1, 1)) else sign(a) for a in arg_.args]) arg_ = sign(c)*arg_ else: arg_ = arg if arg_.atoms(AppliedUndef): return x, y = arg_.as_real_imag() rv = atan2(y, x) if rv.is_number: return rv if arg_ != arg: return cls(arg_, evaluate=False) def _eval_derivative(self, t): x, y = self.args[0].as_real_imag() return (x * Derivative(y, t, evaluate=True) - y * Derivative(x, t, evaluate=True)) / (x**2 + y**2) def _eval_rewrite_as_atan2(self, arg, **kwargs): x, y = self.args[0].as_real_imag() return atan2(y, x) class conjugate(Function): """ Returns the `complex conjugate` Ref[1] of an argument. In mathematics, the complex conjugate of a complex number is given by changing the sign of the imaginary part. Thus, the conjugate of the complex number :math:`a + ib` (where a and b are real numbers) is :math:`a - ib` Examples ======== >>> from sympy import conjugate, I >>> conjugate(2) 2 >>> conjugate(I) -I >>> conjugate(3 + 2*I) 3 - 2*I >>> conjugate(5 - I) 5 + I Parameters ========== arg : Expr Real or complex expression. Returns ======= arg : Expr Complex conjugate of arg as real, imaginary or mixed expression. See Also ======== sign, Abs References ========== .. [1] https://en.wikipedia.org/wiki/Complex_conjugation """ _singularities = True # non-holomorphic @classmethod def eval(cls, arg): obj = arg._eval_conjugate() if obj is not None: return obj def _eval_Abs(self): return Abs(self.args[0], evaluate=True) def _eval_adjoint(self): return transpose(self.args[0]) def _eval_conjugate(self): return self.args[0] def _eval_derivative(self, x): if x.is_real: return conjugate(Derivative(self.args[0], x, evaluate=True)) elif x.is_imaginary: return -conjugate(Derivative(self.args[0], x, evaluate=True)) def _eval_transpose(self): return adjoint(self.args[0]) def _eval_is_algebraic(self): return self.args[0].is_algebraic class transpose(Function): """ Linear map transposition. Examples ======== >>> from sympy.functions import transpose >>> from sympy.matrices import MatrixSymbol >>> from sympy import Matrix >>> A = MatrixSymbol('A', 25, 9) >>> transpose(A) A.T >>> B = MatrixSymbol('B', 9, 22) >>> transpose(B) B.T >>> transpose(A*B) B.T*A.T >>> M = Matrix([[4, 5], [2, 1], [90, 12]]) >>> M Matrix([ [ 4, 5], [ 2, 1], [90, 12]]) >>> transpose(M) Matrix([ [4, 2, 90], [5, 1, 12]]) Parameters ========== arg : Matrix Matrix or matrix expression to take the transpose of. Returns ======= value : Matrix Transpose of arg. """ @classmethod def eval(cls, arg): obj = arg._eval_transpose() if obj is not None: return obj def _eval_adjoint(self): return conjugate(self.args[0]) def _eval_conjugate(self): return adjoint(self.args[0]) def _eval_transpose(self): return self.args[0] class adjoint(Function): """ Conjugate transpose or Hermite conjugation. Examples ======== >>> from sympy import adjoint >>> from sympy.matrices import MatrixSymbol >>> A = MatrixSymbol('A', 10, 5) >>> adjoint(A) Adjoint(A) Parameters ========== arg : Matrix Matrix or matrix expression to take the adjoint of. Returns ======= value : Matrix Represents the conjugate transpose or Hermite conjugation of arg. """ @classmethod def eval(cls, arg): obj = arg._eval_adjoint() if obj is not None: return obj obj = arg._eval_transpose() if obj is not None: return conjugate(obj) def _eval_adjoint(self): return self.args[0] def _eval_conjugate(self): return transpose(self.args[0]) def _eval_transpose(self): return conjugate(self.args[0]) def _latex(self, printer, exp=None, *args): arg = printer._print(self.args[0]) tex = r'%s^{\dagger}' % arg if exp: tex = r'\left(%s\right)^{%s}' % (tex, exp) return tex def _pretty(self, printer, *args): from sympy.printing.pretty.stringpict import prettyForm pform = printer._print(self.args[0], *args) if printer._use_unicode: pform = pform**prettyForm('\N{DAGGER}') else: pform = pform**prettyForm('+') return pform ############################################################################### ############### HANDLING OF POLAR NUMBERS ##################################### ############################################################################### class polar_lift(Function): """ Lift argument to the Riemann surface of the logarithm, using the standard branch. Examples ======== >>> from sympy import Symbol, polar_lift, I >>> p = Symbol('p', polar=True) >>> x = Symbol('x') >>> polar_lift(4) 4*exp_polar(0) >>> polar_lift(-4) 4*exp_polar(I*pi) >>> polar_lift(-I) exp_polar(-I*pi/2) >>> polar_lift(I + 2) polar_lift(2 + I) >>> polar_lift(4*x) 4*polar_lift(x) >>> polar_lift(4*p) 4*p Parameters ========== arg : Expr Real or complex expression. See Also ======== sympy.functions.elementary.exponential.exp_polar periodic_argument """ is_polar = True is_comparable = False # Cannot be evalf'd. @classmethod def eval(cls, arg): from sympy.functions.elementary.complexes import arg as argument if arg.is_number: ar = argument(arg) # In general we want to affirm that something is known, # e.g. `not ar.has(argument) and not ar.has(atan)` # but for now we will just be more restrictive and # see that it has evaluated to one of the known values. if ar in (0, pi/2, -pi/2, pi): return exp_polar(I*ar)*abs(arg) if arg.is_Mul: args = arg.args else: args = [arg] included = [] excluded = [] positive = [] for arg in args: if arg.is_polar: included += [arg] elif arg.is_positive: positive += [arg] else: excluded += [arg] if len(excluded) < len(args): if excluded: return Mul(*(included + positive))*polar_lift(Mul(*excluded)) elif included: return Mul(*(included + positive)) else: return Mul(*positive)*exp_polar(0) def _eval_evalf(self, prec): """ Careful! any evalf of polar numbers is flaky """ return self.args[0]._eval_evalf(prec) def _eval_Abs(self): return Abs(self.args[0], evaluate=True) class periodic_argument(Function): """ Represent the argument on a quotient of the Riemann surface of the logarithm. That is, given a period $P$, always return a value in (-P/2, P/2], by using exp(P*I) == 1. Examples ======== >>> from sympy import exp_polar, periodic_argument >>> from sympy import I, pi >>> periodic_argument(exp_polar(10*I*pi), 2*pi) 0 >>> periodic_argument(exp_polar(5*I*pi), 4*pi) pi >>> from sympy import exp_polar, periodic_argument >>> from sympy import I, pi >>> periodic_argument(exp_polar(5*I*pi), 2*pi) pi >>> periodic_argument(exp_polar(5*I*pi), 3*pi) -pi >>> periodic_argument(exp_polar(5*I*pi), pi) 0 Parameters ========== ar : Expr A polar number. period : ExprT The period $P$. See Also ======== sympy.functions.elementary.exponential.exp_polar polar_lift : Lift argument to the Riemann surface of the logarithm principal_branch """ @classmethod def _getunbranched(cls, ar): if ar.is_Mul: args = ar.args else: args = [ar] unbranched = 0 for a in args: if not a.is_polar: unbranched += arg(a) elif isinstance(a, exp_polar): unbranched += a.exp.as_real_imag()[1] elif a.is_Pow: re, im = a.exp.as_real_imag() unbranched += re*unbranched_argument( a.base) + im*log(abs(a.base)) elif isinstance(a, polar_lift): unbranched += arg(a.args[0]) else: return None return unbranched @classmethod def eval(cls, ar, period): # Our strategy is to evaluate the argument on the Riemann surface of the # logarithm, and then reduce. # NOTE evidently this means it is a rather bad idea to use this with # period != 2*pi and non-polar numbers. if not period.is_extended_positive: return None if period == oo and isinstance(ar, principal_branch): return periodic_argument(*ar.args) if isinstance(ar, polar_lift) and period >= 2*pi: return periodic_argument(ar.args[0], period) if ar.is_Mul: newargs = [x for x in ar.args if not x.is_positive] if len(newargs) != len(ar.args): return periodic_argument(Mul(*newargs), period) unbranched = cls._getunbranched(ar) if unbranched is None: return None if unbranched.has(periodic_argument, atan2, atan): return None if period == oo: return unbranched if period != oo: n = ceiling(unbranched/period - S.Half)*period if not n.has(ceiling): return unbranched - n def _eval_evalf(self, prec): z, period = self.args if period == oo: unbranched = periodic_argument._getunbranched(z) if unbranched is None: return self return unbranched._eval_evalf(prec) ub = periodic_argument(z, oo)._eval_evalf(prec) return (ub - ceiling(ub/period - S.Half)*period)._eval_evalf(prec) def unbranched_argument(arg): ''' Returns periodic argument of arg with period as infinity. Examples ======== >>> from sympy import exp_polar, unbranched_argument >>> from sympy import I, pi >>> unbranched_argument(exp_polar(15*I*pi)) 15*pi >>> unbranched_argument(exp_polar(7*I*pi)) 7*pi See also ======== periodic_argument ''' return periodic_argument(arg, oo) class principal_branch(Function): """ Represent a polar number reduced to its principal branch on a quotient of the Riemann surface of the logarithm. Explanation =========== This is a function of two arguments. The first argument is a polar number `z`, and the second one a positive real number or infinity, `p`. The result is "z mod exp_polar(I*p)". Examples ======== >>> from sympy import exp_polar, principal_branch, oo, I, pi >>> from sympy.abc import z >>> principal_branch(z, oo) z >>> principal_branch(exp_polar(2*pi*I)*3, 2*pi) 3*exp_polar(0) >>> principal_branch(exp_polar(2*pi*I)*3*z, 2*pi) 3*principal_branch(z, 2*pi) Parameters ========== x : Expr A polar number. period : Expr Positive real number or infinity. See Also ======== sympy.functions.elementary.exponential.exp_polar polar_lift : Lift argument to the Riemann surface of the logarithm periodic_argument """ is_polar = True is_comparable = False # cannot always be evalf'd @classmethod def eval(self, x, period): from sympy import oo, exp_polar, I, Mul, polar_lift, Symbol if isinstance(x, polar_lift): return principal_branch(x.args[0], period) if period == oo: return x ub = periodic_argument(x, oo) barg = periodic_argument(x, period) if ub != barg and not ub.has(periodic_argument) \ and not barg.has(periodic_argument): pl = polar_lift(x) def mr(expr): if not isinstance(expr, Symbol): return polar_lift(expr) return expr pl = pl.replace(polar_lift, mr) # Recompute unbranched argument ub = periodic_argument(pl, oo) if not pl.has(polar_lift): if ub != barg: res = exp_polar(I*(barg - ub))*pl else: res = pl if not res.is_polar and not res.has(exp_polar): res *= exp_polar(0) return res if not x.free_symbols: c, m = x, () else: c, m = x.as_coeff_mul(*x.free_symbols) others = [] for y in m: if y.is_positive: c *= y else: others += [y] m = tuple(others) arg = periodic_argument(c, period) if arg.has(periodic_argument): return None if arg.is_number and (unbranched_argument(c) != arg or (arg == 0 and m != () and c != 1)): if arg == 0: return abs(c)*principal_branch(Mul(*m), period) return principal_branch(exp_polar(I*arg)*Mul(*m), period)*abs(c) if arg.is_number and ((abs(arg) < period/2) == True or arg == period/2) \ and m == (): return exp_polar(arg*I)*abs(c) def _eval_evalf(self, prec): from sympy import exp, pi, I z, period = self.args p = periodic_argument(z, period)._eval_evalf(prec) if abs(p) > pi or p == -pi: return self # Cannot evalf for this argument. return (abs(z)*exp(I*p))._eval_evalf(prec) def _polarify(eq, lift, pause=False): from sympy import Integral if eq.is_polar: return eq if eq.is_number and not pause: return polar_lift(eq) if isinstance(eq, Symbol) and not pause and lift: return polar_lift(eq) elif eq.is_Atom: return eq elif eq.is_Add: r = eq.func(*[_polarify(arg, lift, pause=True) for arg in eq.args]) if lift: return polar_lift(r) return r elif eq.is_Function: return eq.func(*[_polarify(arg, lift, pause=False) for arg in eq.args]) elif isinstance(eq, Integral): # Don't lift the integration variable func = _polarify(eq.function, lift, pause=pause) limits = [] for limit in eq.args[1:]: var = _polarify(limit[0], lift=False, pause=pause) rest = _polarify(limit[1:], lift=lift, pause=pause) limits.append((var,) + rest) return Integral(*((func,) + tuple(limits))) else: return eq.func(*[_polarify(arg, lift, pause=pause) if isinstance(arg, Expr) else arg for arg in eq.args]) def polarify(eq, subs=True, lift=False): """ Turn all numbers in eq into their polar equivalents (under the standard choice of argument). Note that no attempt is made to guess a formal convention of adding polar numbers, expressions like 1 + x will generally not be altered. Note also that this function does not promote exp(x) to exp_polar(x). If ``subs`` is True, all symbols which are not already polar will be substituted for polar dummies; in this case the function behaves much like posify. If ``lift`` is True, both addition statements and non-polar symbols are changed to their polar_lift()ed versions. Note that lift=True implies subs=False. Examples ======== >>> from sympy import polarify, sin, I >>> from sympy.abc import x, y >>> expr = (-x)**y >>> expr.expand() (-x)**y >>> polarify(expr) ((_x*exp_polar(I*pi))**_y, {_x: x, _y: y}) >>> polarify(expr)[0].expand() _x**_y*exp_polar(_y*I*pi) >>> polarify(x, lift=True) polar_lift(x) >>> polarify(x*(1+y), lift=True) polar_lift(x)*polar_lift(y + 1) Adds are treated carefully: >>> polarify(1 + sin((1 + I)*x)) (sin(_x*polar_lift(1 + I)) + 1, {_x: x}) """ if lift: subs = False eq = _polarify(sympify(eq), lift) if not subs: return eq reps = {s: Dummy(s.name, polar=True) for s in eq.free_symbols} eq = eq.subs(reps) return eq, {r: s for s, r in reps.items()} def _unpolarify(eq, exponents_only, pause=False): if not isinstance(eq, Basic) or eq.is_Atom: return eq if not pause: if isinstance(eq, exp_polar): return exp(_unpolarify(eq.exp, exponents_only)) if isinstance(eq, principal_branch) and eq.args[1] == 2*pi: return _unpolarify(eq.args[0], exponents_only) if ( eq.is_Add or eq.is_Mul or eq.is_Boolean or eq.is_Relational and ( eq.rel_op in ('==', '!=') and 0 in eq.args or eq.rel_op not in ('==', '!=')) ): return eq.func(*[_unpolarify(x, exponents_only) for x in eq.args]) if isinstance(eq, polar_lift): return _unpolarify(eq.args[0], exponents_only) if eq.is_Pow: expo = _unpolarify(eq.exp, exponents_only) base = _unpolarify(eq.base, exponents_only, not (expo.is_integer and not pause)) return base**expo if eq.is_Function and getattr(eq.func, 'unbranched', False): return eq.func(*[_unpolarify(x, exponents_only, exponents_only) for x in eq.args]) return eq.func(*[_unpolarify(x, exponents_only, True) for x in eq.args]) def unpolarify(eq, subs={}, exponents_only=False): """ If p denotes the projection from the Riemann surface of the logarithm to the complex line, return a simplified version eq' of `eq` such that p(eq') == p(eq). Also apply the substitution subs in the end. (This is a convenience, since ``unpolarify``, in a certain sense, undoes polarify.) Examples ======== >>> from sympy import unpolarify, polar_lift, sin, I >>> unpolarify(polar_lift(I + 2)) 2 + I >>> unpolarify(sin(polar_lift(I + 7))) sin(7 + I) """ if isinstance(eq, bool): return eq eq = sympify(eq) if subs != {}: return unpolarify(eq.subs(subs)) changed = True pause = False if exponents_only: pause = True while changed: changed = False res = _unpolarify(eq, exponents_only, pause) if res != eq: changed = True eq = res if isinstance(res, bool): return res # Finally, replacing Exp(0) by 1 is always correct. # So is polar_lift(0) -> 0. return res.subs({exp_polar(0): 1, polar_lift(0): 0})
8f88ef93ec283947ee18378f551ab308cd4cf51a391269e83fc50950b3cae864
""" Elliptic Integrals. """ from sympy.core import S, pi, I, Rational from sympy.core.function import Function, ArgumentIndexError from sympy.functions.elementary.complexes import sign from sympy.functions.elementary.hyperbolic import atanh from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import sin, tan from sympy.functions.special.gamma_functions import gamma from sympy.functions.special.hyper import hyper, meijerg class elliptic_k(Function): r""" The complete elliptic integral of the first kind, defined by .. math:: K(m) = F\left(\tfrac{\pi}{2}\middle| m\right) where $F\left(z\middle| m\right)$ is the Legendre incomplete elliptic integral of the first kind. Explanation =========== The function $K(m)$ is a single-valued function on the complex plane with branch cut along the interval $(1, \infty)$. Note that our notation defines the incomplete elliptic integral in terms of the parameter $m$ instead of the elliptic modulus (eccentricity) $k$. In this case, the parameter $m$ is defined as $m=k^2$. Examples ======== >>> from sympy import elliptic_k, I >>> from sympy.abc import m >>> elliptic_k(0) pi/2 >>> elliptic_k(1.0 + I) 1.50923695405127 + 0.625146415202697*I >>> elliptic_k(m).series(n=3) pi/2 + pi*m/8 + 9*pi*m**2/128 + O(m**3) See Also ======== elliptic_f References ========== .. [1] https://en.wikipedia.org/wiki/Elliptic_integrals .. [2] http://functions.wolfram.com/EllipticIntegrals/EllipticK """ @classmethod def eval(cls, m): if m.is_zero: return pi*S.Half elif m is S.Half: return 8*pi**Rational(3, 2)/gamma(Rational(-1, 4))**2 elif m is S.One: return S.ComplexInfinity elif m is S.NegativeOne: return gamma(Rational(1, 4))**2/(4*sqrt(2*pi)) elif m in (S.Infinity, S.NegativeInfinity, I*S.Infinity, I*S.NegativeInfinity, S.ComplexInfinity): return S.Zero def fdiff(self, argindex=1): m = self.args[0] return (elliptic_e(m) - (1 - m)*elliptic_k(m))/(2*m*(1 - m)) def _eval_conjugate(self): m = self.args[0] if (m.is_real and (m - 1).is_positive) is False: return self.func(m.conjugate()) def _eval_nseries(self, x, n, logx, cdir=0): from sympy.simplify import hyperexpand return hyperexpand(self.rewrite(hyper)._eval_nseries(x, n=n, logx=logx)) def _eval_rewrite_as_hyper(self, m, **kwargs): return pi*S.Half*hyper((S.Half, S.Half), (S.One,), m) def _eval_rewrite_as_meijerg(self, m, **kwargs): return meijerg(((S.Half, S.Half), []), ((S.Zero,), (S.Zero,)), -m)/2 def _eval_is_zero(self): m = self.args[0] if m.is_infinite: return True def _eval_rewrite_as_Integral(self, *args): from sympy import Integral, Dummy t = Dummy('t') m = self.args[0] return Integral(1/sqrt(1 - m*sin(t)**2), (t, 0, pi/2)) def _sage_(self): import sage.all as sage return sage.elliptic_kc(self.args[0]._sage_()) class elliptic_f(Function): r""" The Legendre incomplete elliptic integral of the first kind, defined by .. math:: F\left(z\middle| m\right) = \int_0^z \frac{dt}{\sqrt{1 - m \sin^2 t}} Explanation =========== This function reduces to a complete elliptic integral of the first kind, $K(m)$, when $z = \pi/2$. Note that our notation defines the incomplete elliptic integral in terms of the parameter $m$ instead of the elliptic modulus (eccentricity) $k$. In this case, the parameter $m$ is defined as $m=k^2$. Examples ======== >>> from sympy import elliptic_f, I >>> from sympy.abc import z, m >>> elliptic_f(z, m).series(z) z + z**5*(3*m**2/40 - m/30) + m*z**3/6 + O(z**6) >>> elliptic_f(3.0 + I/2, 1.0 + I) 2.909449841483 + 1.74720545502474*I See Also ======== elliptic_k References ========== .. [1] https://en.wikipedia.org/wiki/Elliptic_integrals .. [2] http://functions.wolfram.com/EllipticIntegrals/EllipticF """ @classmethod def eval(cls, z, m): if z.is_zero: return S.Zero if m.is_zero: return z k = 2*z/pi if k.is_integer: return k*elliptic_k(m) elif m in (S.Infinity, S.NegativeInfinity): return S.Zero elif z.could_extract_minus_sign(): return -elliptic_f(-z, m) def fdiff(self, argindex=1): z, m = self.args fm = sqrt(1 - m*sin(z)**2) if argindex == 1: return 1/fm elif argindex == 2: return (elliptic_e(z, m)/(2*m*(1 - m)) - elliptic_f(z, m)/(2*m) - sin(2*z)/(4*(1 - m)*fm)) raise ArgumentIndexError(self, argindex) def _eval_conjugate(self): z, m = self.args if (m.is_real and (m - 1).is_positive) is False: return self.func(z.conjugate(), m.conjugate()) def _eval_rewrite_as_Integral(self, *args): from sympy import Integral, Dummy t = Dummy('t') z, m = self.args[0], self.args[1] return Integral(1/(sqrt(1 - m*sin(t)**2)), (t, 0, z)) def _eval_is_zero(self): z, m = self.args if z.is_zero: return True if m.is_extended_real and m.is_infinite: return True class elliptic_e(Function): r""" Called with two arguments $z$ and $m$, evaluates the incomplete elliptic integral of the second kind, defined by .. math:: E\left(z\middle| m\right) = \int_0^z \sqrt{1 - m \sin^2 t} dt Called with a single argument $m$, evaluates the Legendre complete elliptic integral of the second kind .. math:: E(m) = E\left(\tfrac{\pi}{2}\middle| m\right) Explanation =========== The function $E(m)$ is a single-valued function on the complex plane with branch cut along the interval $(1, \infty)$. Note that our notation defines the incomplete elliptic integral in terms of the parameter $m$ instead of the elliptic modulus (eccentricity) $k$. In this case, the parameter $m$ is defined as $m=k^2$. Examples ======== >>> from sympy import elliptic_e, I >>> from sympy.abc import z, m >>> elliptic_e(z, m).series(z) z + z**5*(-m**2/40 + m/30) - m*z**3/6 + O(z**6) >>> elliptic_e(m).series(n=4) pi/2 - pi*m/8 - 3*pi*m**2/128 - 5*pi*m**3/512 + O(m**4) >>> elliptic_e(1 + I, 2 - I/2).n() 1.55203744279187 + 0.290764986058437*I >>> elliptic_e(0) pi/2 >>> elliptic_e(2.0 - I) 0.991052601328069 + 0.81879421395609*I References ========== .. [1] https://en.wikipedia.org/wiki/Elliptic_integrals .. [2] http://functions.wolfram.com/EllipticIntegrals/EllipticE2 .. [3] http://functions.wolfram.com/EllipticIntegrals/EllipticE """ @classmethod def eval(cls, m, z=None): if z is not None: z, m = m, z k = 2*z/pi if m.is_zero: return z if z.is_zero: return S.Zero elif k.is_integer: return k*elliptic_e(m) elif m in (S.Infinity, S.NegativeInfinity): return S.ComplexInfinity elif z.could_extract_minus_sign(): return -elliptic_e(-z, m) else: if m.is_zero: return pi/2 elif m is S.One: return S.One elif m is S.Infinity: return I*S.Infinity elif m is S.NegativeInfinity: return S.Infinity elif m is S.ComplexInfinity: return S.ComplexInfinity def fdiff(self, argindex=1): if len(self.args) == 2: z, m = self.args if argindex == 1: return sqrt(1 - m*sin(z)**2) elif argindex == 2: return (elliptic_e(z, m) - elliptic_f(z, m))/(2*m) else: m = self.args[0] if argindex == 1: return (elliptic_e(m) - elliptic_k(m))/(2*m) raise ArgumentIndexError(self, argindex) def _eval_conjugate(self): if len(self.args) == 2: z, m = self.args if (m.is_real and (m - 1).is_positive) is False: return self.func(z.conjugate(), m.conjugate()) else: m = self.args[0] if (m.is_real and (m - 1).is_positive) is False: return self.func(m.conjugate()) def _eval_nseries(self, x, n, logx, cdir=0): from sympy.simplify import hyperexpand if len(self.args) == 1: return hyperexpand(self.rewrite(hyper)._eval_nseries(x, n=n, logx=logx)) return super()._eval_nseries(x, n=n, logx=logx) def _eval_rewrite_as_hyper(self, *args, **kwargs): if len(args) == 1: m = args[0] return (pi/2)*hyper((Rational(-1, 2), S.Half), (S.One,), m) def _eval_rewrite_as_meijerg(self, *args, **kwargs): if len(args) == 1: m = args[0] return -meijerg(((S.Half, Rational(3, 2)), []), \ ((S.Zero,), (S.Zero,)), -m)/4 def _eval_rewrite_as_Integral(self, *args): from sympy import Integral, Dummy z, m = (pi/2, self.args[0]) if len(self.args) == 1 else self.args t = Dummy('t') return Integral(sqrt(1 - m*sin(t)**2), (t, 0, z)) class elliptic_pi(Function): r""" Called with three arguments $n$, $z$ and $m$, evaluates the Legendre incomplete elliptic integral of the third kind, defined by .. math:: \Pi\left(n; z\middle| m\right) = \int_0^z \frac{dt} {\left(1 - n \sin^2 t\right) \sqrt{1 - m \sin^2 t}} Called with two arguments $n$ and $m$, evaluates the complete elliptic integral of the third kind: .. math:: \Pi\left(n\middle| m\right) = \Pi\left(n; \tfrac{\pi}{2}\middle| m\right) Explanation =========== Note that our notation defines the incomplete elliptic integral in terms of the parameter $m$ instead of the elliptic modulus (eccentricity) $k$. In this case, the parameter $m$ is defined as $m=k^2$. Examples ======== >>> from sympy import elliptic_pi, I >>> from sympy.abc import z, n, m >>> elliptic_pi(n, z, m).series(z, n=4) z + z**3*(m/6 + n/3) + O(z**4) >>> elliptic_pi(0.5 + I, 1.0 - I, 1.2) 2.50232379629182 - 0.760939574180767*I >>> elliptic_pi(0, 0) pi/2 >>> elliptic_pi(1.0 - I/3, 2.0 + I) 3.29136443417283 + 0.32555634906645*I References ========== .. [1] https://en.wikipedia.org/wiki/Elliptic_integrals .. [2] http://functions.wolfram.com/EllipticIntegrals/EllipticPi3 .. [3] http://functions.wolfram.com/EllipticIntegrals/EllipticPi """ @classmethod def eval(cls, n, m, z=None): if z is not None: n, z, m = n, m, z if n.is_zero: return elliptic_f(z, m) elif n is S.One: return (elliptic_f(z, m) + (sqrt(1 - m*sin(z)**2)*tan(z) - elliptic_e(z, m))/(1 - m)) k = 2*z/pi if k.is_integer: return k*elliptic_pi(n, m) elif m.is_zero: return atanh(sqrt(n - 1)*tan(z))/sqrt(n - 1) elif n == m: return (elliptic_f(z, n) - elliptic_pi(1, z, n) + tan(z)/sqrt(1 - n*sin(z)**2)) elif n in (S.Infinity, S.NegativeInfinity): return S.Zero elif m in (S.Infinity, S.NegativeInfinity): return S.Zero elif z.could_extract_minus_sign(): return -elliptic_pi(n, -z, m) if n.is_zero: return elliptic_f(z, m) if m.is_extended_real and m.is_infinite or \ n.is_extended_real and n.is_infinite: return S.Zero else: if n.is_zero: return elliptic_k(m) elif n is S.One: return S.ComplexInfinity elif m.is_zero: return pi/(2*sqrt(1 - n)) elif m == S.One: return S.NegativeInfinity/sign(n - 1) elif n == m: return elliptic_e(n)/(1 - n) elif n in (S.Infinity, S.NegativeInfinity): return S.Zero elif m in (S.Infinity, S.NegativeInfinity): return S.Zero if n.is_zero: return elliptic_k(m) if m.is_extended_real and m.is_infinite or \ n.is_extended_real and n.is_infinite: return S.Zero def _eval_conjugate(self): if len(self.args) == 3: n, z, m = self.args if (n.is_real and (n - 1).is_positive) is False and \ (m.is_real and (m - 1).is_positive) is False: return self.func(n.conjugate(), z.conjugate(), m.conjugate()) else: n, m = self.args return self.func(n.conjugate(), m.conjugate()) def fdiff(self, argindex=1): if len(self.args) == 3: n, z, m = self.args fm, fn = sqrt(1 - m*sin(z)**2), 1 - n*sin(z)**2 if argindex == 1: return (elliptic_e(z, m) + (m - n)*elliptic_f(z, m)/n + (n**2 - m)*elliptic_pi(n, z, m)/n - n*fm*sin(2*z)/(2*fn))/(2*(m - n)*(n - 1)) elif argindex == 2: return 1/(fm*fn) elif argindex == 3: return (elliptic_e(z, m)/(m - 1) + elliptic_pi(n, z, m) - m*sin(2*z)/(2*(m - 1)*fm))/(2*(n - m)) else: n, m = self.args if argindex == 1: return (elliptic_e(m) + (m - n)*elliptic_k(m)/n + (n**2 - m)*elliptic_pi(n, m)/n)/(2*(m - n)*(n - 1)) elif argindex == 2: return (elliptic_e(m)/(m - 1) + elliptic_pi(n, m))/(2*(n - m)) raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_Integral(self, *args): from sympy import Integral, Dummy if len(self.args) == 2: n, m, z = self.args[0], self.args[1], pi/2 else: n, z, m = self.args t = Dummy('t') return Integral(1/((1 - n*sin(t)**2)*sqrt(1 - m*sin(t)**2)), (t, 0, z))
235a77ba3de4150bf6d1c6ec677e0ae6b342c75fe90d2ec9c0750216cb69060b
from .diophantine import diophantine, classify_diop, diop_solve __all__ = [ 'diophantine', 'classify_diop', 'diop_solve' ]
2904ef49168e9520e93e251c1b2084273e96e1c04c003439559af151d18d2de6
from sympy.core.add import Add from sympy.core.assumptions import check_assumptions from sympy.core.containers import Tuple from sympy.core.compatibility import as_int, is_sequence, ordered from sympy.core.exprtools import factor_terms from sympy.core.function import _mexpand from sympy.core.mul import Mul from sympy.core.numbers import Rational from sympy.core.numbers import igcdex, ilcm, igcd from sympy.core.power import integer_nthroot, isqrt from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.symbol import Symbol, symbols from sympy.core.sympify import _sympify from sympy.functions.elementary.complexes import sign from sympy.functions.elementary.integers import floor from sympy.functions.elementary.miscellaneous import sqrt from sympy.matrices.dense import MutableDenseMatrix as Matrix from sympy.ntheory.factor_ import ( divisors, factorint, multiplicity, perfect_power) from sympy.ntheory.generate import nextprime from sympy.ntheory.primetest import is_square, isprime from sympy.ntheory.residue_ntheory import sqrt_mod from sympy.polys.polyerrors import GeneratorsNeeded from sympy.polys.polytools import Poly, factor_list from sympy.simplify.simplify import signsimp from sympy.solvers.solveset import solveset_real from sympy.utilities import default_sort_key, numbered_symbols from sympy.utilities.misc import filldedent # these are imported with 'from sympy.solvers.diophantine import * __all__ = ['diophantine', 'classify_diop'] class DiophantineSolutionSet(set): """ Container for a set of solutions to a particular diophantine equation. The base representation is a set of tuples representing each of the solutions. Parameters ========== symbols : list List of free symbols in the original equation. parameters: list List of parameters to be used in the solution. Examples ======== Adding solutions: >>> from sympy.solvers.diophantine.diophantine import DiophantineSolutionSet >>> from sympy.abc import x, y, t, u >>> s1 = DiophantineSolutionSet([x, y], [t, u]) >>> s1 set() >>> s1.add((2, 3)) >>> s1.add((-1, u)) >>> s1 {(-1, u), (2, 3)} >>> s2 = DiophantineSolutionSet([x, y], [t, u]) >>> s2.add((3, 4)) >>> s1.update(*s2) >>> s1 {(-1, u), (2, 3), (3, 4)} Conversion of solutions into dicts: >>> list(s1.dict_iterator()) [{x: -1, y: u}, {x: 2, y: 3}, {x: 3, y: 4}] Substituting values: >>> s3 = DiophantineSolutionSet([x, y], [t, u]) >>> s3.add((t**2, t + u)) >>> s3 {(t**2, t + u)} >>> s3.subs({t: 2, u: 3}) {(4, 5)} >>> s3.subs(t, -1) {(1, u - 1)} >>> s3.subs(t, 3) {(9, u + 3)} Evaluation at specific values. Positional arguments are given in the same order as the parameters: >>> s3(-2, 3) {(4, 1)} >>> s3(5) {(25, u + 5)} >>> s3(None, 2) {(t**2, t + 2)} """ def __init__(self, symbols_seq, parameters): super().__init__() if not is_sequence(symbols_seq): raise ValueError("Symbols must be given as a sequence.") if not is_sequence(parameters): raise ValueError("Parameters must be given as a sequence.") self.symbols = tuple(symbols_seq) self.parameters = tuple(parameters) def add(self, solution): if len(solution) != len(self.symbols): raise ValueError("Solution should have a length of %s, not %s" % (len(self.symbols), len(solution))) super().add(Tuple(*solution)) def update(self, *solutions): for solution in solutions: self.add(solution) def dict_iterator(self): for solution in ordered(self): yield dict(zip(self.symbols, solution)) def subs(self, *args, **kwargs): result = DiophantineSolutionSet(self.symbols, self.parameters) for solution in self: result.add(solution.subs(*args, **kwargs)) return result def __call__(self, *args): if len(args) > len(self.parameters): raise ValueError("Evaluation should have at most %s values, not %s" % (len(self.parameters), len(args))) return self.subs(list(zip(self.parameters, args))) class DiophantineEquationType: """ Internal representation of a particular diophantine equation type. Parameters ========== equation : The diophantine equation that is being solved. free_symbols : list (optional) The symbols being solved for. Attributes ========== total_degree : The maximum of the degrees of all terms in the equation homogeneous : Does the equation contain a term of degree 0 homogeneous_order : Does the equation contain any coefficient that is in the symbols being solved for dimension : The number of symbols being solved for """ name = None # type: str def __init__(self, equation, free_symbols=None): self.equation = _sympify(equation).expand(force=True) if free_symbols is not None: self.free_symbols = free_symbols else: self.free_symbols = list(self.equation.free_symbols) self.free_symbols.sort(key=default_sort_key) if not self.free_symbols: raise ValueError('equation should have 1 or more free symbols') self.coeff = self.equation.as_coefficients_dict() if not all(_is_int(c) for c in self.coeff.values()): raise TypeError("Coefficients should be Integers") self.total_degree = Poly(self.equation).total_degree() self.homogeneous = 1 not in self.coeff self.homogeneous_order = not (set(self.coeff) & set(self.free_symbols)) self.dimension = len(self.free_symbols) self._parameters = None def matches(self): """ Determine whether the given equation can be matched to the particular equation type. """ return False @property def n_parameters(self): return self.dimension @property def parameters(self): if self._parameters is None: self._parameters = symbols('t_:%i' % (self.n_parameters,), integer=True) return self._parameters def solve(self, parameters=None, limit=None) -> DiophantineSolutionSet: raise NotImplementedError('No solver has been written for %s.' % self.name) def pre_solve(self, parameters=None): if not self.matches(): raise ValueError("This equation does not match the %s equation type." % self.name) if parameters is not None: if len(parameters) != self.n_parameters: raise ValueError("Expected %s parameter(s) but got %s" % (self.n_parameters, len(parameters))) self._parameters = parameters class Univariate(DiophantineEquationType): """ Representation of a univariate diophantine equation. A univariate diophantine equation is an equation of the form `a_{0} + a_{1}x + a_{2}x^2 + .. + a_{n}x^n = 0` where `a_{1}, a_{2}, ..a_{n}` are integer constants and `x` is an integer variable. Examples ======== >>> from sympy.solvers.diophantine.diophantine import Univariate >>> from sympy.abc import x >>> Univariate((x - 2)*(x - 3)**2).solve() # solves equation (x - 2)*(x - 3)**2 == 0 {(2,), (3,)} """ name = 'univariate' def matches(self): return self.dimension == 1 def solve(self, parameters=None, limit=None): self.pre_solve(parameters) result = DiophantineSolutionSet(self.free_symbols, parameters=self.parameters) for i in solveset_real(self.equation, self.free_symbols[0]).intersect(S.Integers): result.add((i,)) return result class Linear(DiophantineEquationType): """ Representation of a linear diophantine equation. A linear diophantine equation is an equation of the form `a_{1}x_{1} + a_{2}x_{2} + .. + a_{n}x_{n} = 0` where `a_{1}, a_{2}, ..a_{n}` are integer constants and `x_{1}, x_{2}, ..x_{n}` are integer variables. Examples ======== >>> from sympy.solvers.diophantine.diophantine import Linear >>> from sympy.abc import x, y, z >>> l1 = Linear(2*x - 3*y - 5) >>> l1.matches() # is this equation linear True >>> l1.solve() # solves equation 2*x - 3*y - 5 == 0 {(3*t_0 - 5, 2*t_0 - 5)} Here x = -3*t_0 - 5 and y = -2*t_0 - 5 >>> Linear(2*x - 3*y - 4*z -3).solve() {(t_0, 2*t_0 + 4*t_1 + 3, -t_0 - 3*t_1 - 3)} """ name = 'linear' def matches(self): return self.total_degree == 1 def solve(self, parameters=None, limit=None): self.pre_solve(parameters) coeff = self.coeff var = self.free_symbols if 1 in coeff: # negate coeff[] because input is of the form: ax + by + c == 0 # but is used as: ax + by == -c c = -coeff[1] else: c = 0 result = DiophantineSolutionSet(var, parameters=self.parameters) params = result.parameters if len(var) == 1: q, r = divmod(c, coeff[var[0]]) if not r: result.add((q,)) return result else: return result ''' base_solution_linear() can solve diophantine equations of the form: a*x + b*y == c We break down multivariate linear diophantine equations into a series of bivariate linear diophantine equations which can then be solved individually by base_solution_linear(). Consider the following: a_0*x_0 + a_1*x_1 + a_2*x_2 == c which can be re-written as: a_0*x_0 + g_0*y_0 == c where g_0 == gcd(a_1, a_2) and y == (a_1*x_1)/g_0 + (a_2*x_2)/g_0 This leaves us with two binary linear diophantine equations. For the first equation: a == a_0 b == g_0 c == c For the second: a == a_1/g_0 b == a_2/g_0 c == the solution we find for y_0 in the first equation. The arrays A and B are the arrays of integers used for 'a' and 'b' in each of the n-1 bivariate equations we solve. ''' A = [coeff[v] for v in var] B = [] if len(var) > 2: B.append(igcd(A[-2], A[-1])) A[-2] = A[-2] // B[0] A[-1] = A[-1] // B[0] for i in range(len(A) - 3, 0, -1): gcd = igcd(B[0], A[i]) B[0] = B[0] // gcd A[i] = A[i] // gcd B.insert(0, gcd) B.append(A[-1]) ''' Consider the trivariate linear equation: 4*x_0 + 6*x_1 + 3*x_2 == 2 This can be re-written as: 4*x_0 + 3*y_0 == 2 where y_0 == 2*x_1 + x_2 (Note that gcd(3, 6) == 3) The complete integral solution to this equation is: x_0 == 2 + 3*t_0 y_0 == -2 - 4*t_0 where 't_0' is any integer. Now that we have a solution for 'x_0', find 'x_1' and 'x_2': 2*x_1 + x_2 == -2 - 4*t_0 We can then solve for '-2' and '-4' independently, and combine the results: 2*x_1a + x_2a == -2 x_1a == 0 + t_0 x_2a == -2 - 2*t_0 2*x_1b + x_2b == -4*t_0 x_1b == 0*t_0 + t_1 x_2b == -4*t_0 - 2*t_1 ==> x_1 == t_0 + t_1 x_2 == -2 - 6*t_0 - 2*t_1 where 't_0' and 't_1' are any integers. Note that: 4*(2 + 3*t_0) + 6*(t_0 + t_1) + 3*(-2 - 6*t_0 - 2*t_1) == 2 for any integral values of 't_0', 't_1'; as required. This method is generalised for many variables, below. ''' solutions = [] for i in range(len(B)): tot_x, tot_y = [], [] for j, arg in enumerate(Add.make_args(c)): if arg.is_Integer: # example: 5 -> k = 5 k, p = arg, S.One pnew = params[0] else: # arg is a Mul or Symbol # example: 3*t_1 -> k = 3 # example: t_0 -> k = 1 k, p = arg.as_coeff_Mul() pnew = params[params.index(p) + 1] sol = sol_x, sol_y = base_solution_linear(k, A[i], B[i], pnew) if p is S.One: if None in sol: return result else: # convert a + b*pnew -> a*p + b*pnew if isinstance(sol_x, Add): sol_x = sol_x.args[0]*p + sol_x.args[1] if isinstance(sol_y, Add): sol_y = sol_y.args[0]*p + sol_y.args[1] tot_x.append(sol_x) tot_y.append(sol_y) solutions.append(Add(*tot_x)) c = Add(*tot_y) solutions.append(c) result.add(solutions) return result class BinaryQuadratic(DiophantineEquationType): """ Representation of a binary quadratic diophantine equation. A binary quadratic diophantine equation is an equation of the form `Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0`, where `A, B, C, D, E, F` are integer constants and `x` and `y` are integer variables. Examples ======== >>> from sympy.abc import x, y >>> from sympy.solvers.diophantine.diophantine import BinaryQuadratic >>> b1 = BinaryQuadratic(x**3 + y**2 + 1) >>> b1.matches() False >>> b2 = BinaryQuadratic(x**2 + y**2 + 2*x + 2*y + 2) >>> b2.matches() True >>> b2.solve() {(-1, -1)} References ========== .. [1] Methods to solve Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, [online], Available: http://www.alpertron.com.ar/METHODS.HTM .. [2] Solving the equation ax^2+ bxy + cy^2 + dx + ey + f= 0, [online], Available: http://www.jpr2718.org/ax2p.pdf """ name = 'binary_quadratic' def matches(self): return self.total_degree == 2 and self.dimension == 2 def solve(self, parameters=None, limit=None) -> DiophantineSolutionSet: self.pre_solve(parameters) var = self.free_symbols coeff = self.coeff x, y = var A = coeff[x**2] B = coeff[x*y] C = coeff[y**2] D = coeff[x] E = coeff[y] F = coeff[S.One] A, B, C, D, E, F = [as_int(i) for i in _remove_gcd(A, B, C, D, E, F)] # (1) Simple-Hyperbolic case: A = C = 0, B != 0 # In this case equation can be converted to (Bx + E)(By + D) = DE - BF # We consider two cases; DE - BF = 0 and DE - BF != 0 # More details, http://www.alpertron.com.ar/METHODS.HTM#SHyperb result = DiophantineSolutionSet(var, self.parameters) t, u = result.parameters discr = B**2 - 4*A*C if A == 0 and C == 0 and B != 0: if D*E - B*F == 0: q, r = divmod(E, B) if not r: result.add((-q, t)) q, r = divmod(D, B) if not r: result.add((t, -q)) else: div = divisors(D*E - B*F) div = div + [-term for term in div] for d in div: x0, r = divmod(d - E, B) if not r: q, r = divmod(D*E - B*F, d) if not r: y0, r = divmod(q - D, B) if not r: result.add((x0, y0)) # (2) Parabolic case: B**2 - 4*A*C = 0 # There are two subcases to be considered in this case. # sqrt(c)D - sqrt(a)E = 0 and sqrt(c)D - sqrt(a)E != 0 # More Details, http://www.alpertron.com.ar/METHODS.HTM#Parabol elif discr == 0: if A == 0: s = BinaryQuadratic(self.equation, free_symbols=[y, x]).solve(parameters=[t, u]) for soln in s: result.add((soln[1], soln[0])) else: g = sign(A)*igcd(A, C) a = A // g c = C // g e = sign(B / A) sqa = isqrt(a) sqc = isqrt(c) _c = e*sqc*D - sqa*E if not _c: z = symbols("z", real=True) eq = sqa*g*z**2 + D*z + sqa*F roots = solveset_real(eq, z).intersect(S.Integers) for root in roots: ans = diop_solve(sqa*x + e*sqc*y - root) result.add((ans[0], ans[1])) elif _is_int(c): solve_x = lambda u: -e*sqc*g*_c*t**2 - (E + 2*e*sqc*g*u)*t \ - (e*sqc*g*u**2 + E*u + e*sqc*F) // _c solve_y = lambda u: sqa*g*_c*t**2 + (D + 2*sqa*g*u)*t \ + (sqa*g*u**2 + D*u + sqa*F) // _c for z0 in range(0, abs(_c)): # Check if the coefficients of y and x obtained are integers or not if (divisible(sqa*g*z0**2 + D*z0 + sqa*F, _c) and divisible(e*sqc*g*z0**2 + E*z0 + e*sqc*F, _c)): result.add((solve_x(z0), solve_y(z0))) # (3) Method used when B**2 - 4*A*C is a square, is described in p. 6 of the below paper # by John P. Robertson. # http://www.jpr2718.org/ax2p.pdf elif is_square(discr): if A != 0: r = sqrt(discr) u, v = symbols("u, v", integer=True) eq = _mexpand( 4*A*r*u*v + 4*A*D*(B*v + r*u + r*v - B*u) + 2*A*4*A*E*(u - v) + 4*A*r*4*A*F) solution = diop_solve(eq, t) for s0, t0 in solution: num = B*t0 + r*s0 + r*t0 - B*s0 x_0 = S(num) / (4*A*r) y_0 = S(s0 - t0) / (2*r) if isinstance(s0, Symbol) or isinstance(t0, Symbol): if len(check_param(x_0, y_0, 4*A*r, parameters)) > 0: ans = check_param(x_0, y_0, 4*A*r, parameters) result.update(*ans) elif x_0.is_Integer and y_0.is_Integer: if is_solution_quad(var, coeff, x_0, y_0): result.add((x_0, y_0)) else: s = BinaryQuadratic(self.equation, free_symbols=var[::-1]).solve(parameters=[t, u]) # Interchange x and y while s: result.add(s.pop()[::-1]) # and solution <--------+ # (4) B**2 - 4*A*C > 0 and B**2 - 4*A*C not a square or B**2 - 4*A*C < 0 else: P, Q = _transformation_to_DN(var, coeff) D, N = _find_DN(var, coeff) solns_pell = diop_DN(D, N) if D < 0: for x0, y0 in solns_pell: for x in [-x0, x0]: for y in [-y0, y0]: s = P*Matrix([x, y]) + Q try: result.add([as_int(_) for _ in s]) except ValueError: pass else: # In this case equation can be transformed into a Pell equation solns_pell = set(solns_pell) for X, Y in list(solns_pell): solns_pell.add((-X, -Y)) a = diop_DN(D, 1) T = a[0][0] U = a[0][1] if all(_is_int(_) for _ in P[:4] + Q[:2]): for r, s in solns_pell: _a = (r + s*sqrt(D))*(T + U*sqrt(D))**t _b = (r - s*sqrt(D))*(T - U*sqrt(D))**t x_n = _mexpand(S(_a + _b) / 2) y_n = _mexpand(S(_a - _b) / (2*sqrt(D))) s = P*Matrix([x_n, y_n]) + Q result.add(s) else: L = ilcm(*[_.q for _ in P[:4] + Q[:2]]) k = 1 T_k = T U_k = U while (T_k - 1) % L != 0 or U_k % L != 0: T_k, U_k = T_k*T + D*U_k*U, T_k*U + U_k*T k += 1 for X, Y in solns_pell: for i in range(k): if all(_is_int(_) for _ in P*Matrix([X, Y]) + Q): _a = (X + sqrt(D)*Y)*(T_k + sqrt(D)*U_k)**t _b = (X - sqrt(D)*Y)*(T_k - sqrt(D)*U_k)**t Xt = S(_a + _b) / 2 Yt = S(_a - _b) / (2*sqrt(D)) s = P*Matrix([Xt, Yt]) + Q result.add(s) X, Y = X*T + D*U*Y, X*U + Y*T return result class InhomogeneousTernaryQuadratic(DiophantineEquationType): """ Representation of an inhomogeneous ternary quadratic. No solver is currently implemented for this equation type. """ name = 'inhomogeneous_ternary_quadratic' def matches(self): if not (self.total_degree == 2 and self.dimension == 3): return False if not self.homogeneous: return False return not self.homogeneous_order class HomogeneousTernaryQuadraticNormal(DiophantineEquationType): """ Representation of a homogeneous ternary quadratic normal diophantine equation. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy.solvers.diophantine.diophantine import HomogeneousTernaryQuadraticNormal >>> HomogeneousTernaryQuadraticNormal(4*x**2 - 5*y**2 + z**2).solve() {(1, 2, 4)} """ name = 'homogeneous_ternary_quadratic_normal' def matches(self): if not (self.total_degree == 2 and self.dimension == 3): return False if not self.homogeneous: return False if not self.homogeneous_order: return False nonzero = [k for k in self.coeff if self.coeff[k]] return len(nonzero) == 3 and all(i**2 in nonzero for i in self.free_symbols) def solve(self, parameters=None, limit=None) -> DiophantineSolutionSet: self.pre_solve(parameters) var = self.free_symbols coeff = self.coeff x, y, z = var a = coeff[x**2] b = coeff[y**2] c = coeff[z**2] (sqf_of_a, sqf_of_b, sqf_of_c), (a_1, b_1, c_1), (a_2, b_2, c_2) = \ sqf_normal(a, b, c, steps=True) A = -a_2*c_2 B = -b_2*c_2 result = DiophantineSolutionSet(var, parameters=self.parameters) # If following two conditions are satisfied then there are no solutions if A < 0 and B < 0: return result if ( sqrt_mod(-b_2*c_2, a_2) is None or sqrt_mod(-c_2*a_2, b_2) is None or sqrt_mod(-a_2*b_2, c_2) is None): return result z_0, x_0, y_0 = descent(A, B) z_0, q = _rational_pq(z_0, abs(c_2)) x_0 *= q y_0 *= q x_0, y_0, z_0 = _remove_gcd(x_0, y_0, z_0) # Holzer reduction if sign(a) == sign(b): x_0, y_0, z_0 = holzer(x_0, y_0, z_0, abs(a_2), abs(b_2), abs(c_2)) elif sign(a) == sign(c): x_0, z_0, y_0 = holzer(x_0, z_0, y_0, abs(a_2), abs(c_2), abs(b_2)) else: y_0, z_0, x_0 = holzer(y_0, z_0, x_0, abs(b_2), abs(c_2), abs(a_2)) x_0 = reconstruct(b_1, c_1, x_0) y_0 = reconstruct(a_1, c_1, y_0) z_0 = reconstruct(a_1, b_1, z_0) sq_lcm = ilcm(sqf_of_a, sqf_of_b, sqf_of_c) x_0 = abs(x_0*sq_lcm // sqf_of_a) y_0 = abs(y_0*sq_lcm // sqf_of_b) z_0 = abs(z_0*sq_lcm // sqf_of_c) result.add(_remove_gcd(x_0, y_0, z_0)) return result class HomogeneousTernaryQuadratic(DiophantineEquationType): """ Representation of a homogeneous ternary quadratic diophantine equation. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy.solvers.diophantine.diophantine import HomogeneousTernaryQuadratic >>> HomogeneousTernaryQuadratic(x**2 + y**2 - 3*z**2 + x*y).solve() {(-1, 2, 1)} >>> HomogeneousTernaryQuadratic(3*x**2 + y**2 - 3*z**2 + 5*x*y + y*z).solve() {(3, 12, 13)} """ name = 'homogeneous_ternary_quadratic' def matches(self): if not (self.total_degree == 2 and self.dimension == 3): return False if not self.homogeneous: return False if not self.homogeneous_order: return False nonzero = [k for k in self.coeff if self.coeff[k]] return not (len(nonzero) == 3 and all(i**2 in nonzero for i in self.free_symbols)) def solve(self, parameters=None, limit=None): self.pre_solve(parameters) _var = self.free_symbols coeff = self.coeff x, y, z = _var var = [x, y, z] # Equations of the form B*x*y + C*z*x + E*y*z = 0 and At least two of the # coefficients A, B, C are non-zero. # There are infinitely many solutions for the equation. # Ex: (0, 0, t), (0, t, 0), (t, 0, 0) # Equation can be re-written as y*(B*x + E*z) = -C*x*z and we can find rather # unobvious solutions. Set y = -C and B*x + E*z = x*z. The latter can be solved by # using methods for binary quadratic diophantine equations. Let's select the # solution which minimizes |x| + |z| result = DiophantineSolutionSet(var, parameters=self.parameters) def unpack_sol(sol): if len(sol) > 0: return list(sol)[0] return None, None, None if not any(coeff[i**2] for i in var): if coeff[x*z]: sols = diophantine(coeff[x*y]*x + coeff[y*z]*z - x*z) s = sols.pop() min_sum = abs(s[0]) + abs(s[1]) for r in sols: m = abs(r[0]) + abs(r[1]) if m < min_sum: s = r min_sum = m result.add(_remove_gcd(s[0], -coeff[x*z], s[1])) return result else: var[0], var[1] = _var[1], _var[0] y_0, x_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, coeff)) if x_0 is not None: result.add((x_0, y_0, z_0)) return result if coeff[x**2] == 0: # If the coefficient of x is zero change the variables if coeff[y**2] == 0: var[0], var[2] = _var[2], _var[0] z_0, y_0, x_0 = unpack_sol(_diop_ternary_quadratic(var, coeff)) else: var[0], var[1] = _var[1], _var[0] y_0, x_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, coeff)) else: if coeff[x*y] or coeff[x*z]: # Apply the transformation x --> X - (B*y + C*z)/(2*A) A = coeff[x**2] B = coeff[x*y] C = coeff[x*z] D = coeff[y**2] E = coeff[y*z] F = coeff[z**2] _coeff = dict() _coeff[x**2] = 4*A**2 _coeff[y**2] = 4*A*D - B**2 _coeff[z**2] = 4*A*F - C**2 _coeff[y*z] = 4*A*E - 2*B*C _coeff[x*y] = 0 _coeff[x*z] = 0 x_0, y_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, _coeff)) if x_0 is None: return result p, q = _rational_pq(B*y_0 + C*z_0, 2*A) x_0, y_0, z_0 = x_0*q - p, y_0*q, z_0*q elif coeff[z*y] != 0: if coeff[y**2] == 0: if coeff[z**2] == 0: # Equations of the form A*x**2 + E*yz = 0. A = coeff[x**2] E = coeff[y*z] b, a = _rational_pq(-E, A) x_0, y_0, z_0 = b, a, b else: # Ax**2 + E*y*z + F*z**2 = 0 var[0], var[2] = _var[2], _var[0] z_0, y_0, x_0 = unpack_sol(_diop_ternary_quadratic(var, coeff)) else: # A*x**2 + D*y**2 + E*y*z + F*z**2 = 0, C may be zero var[0], var[1] = _var[1], _var[0] y_0, x_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, coeff)) else: # Ax**2 + D*y**2 + F*z**2 = 0, C may be zero x_0, y_0, z_0 = unpack_sol(_diop_ternary_quadratic_normal(var, coeff)) if x_0 is None: return result result.add(_remove_gcd(x_0, y_0, z_0)) return result class InhomogeneousGeneralQuadratic(DiophantineEquationType): """ Representation of an inhomogeneous general quadratic. No solver is currently implemented for this equation type. """ name = 'inhomogeneous_general_quadratic' def matches(self): if not (self.total_degree == 2 and self.dimension >= 3): return False if not self.homogeneous_order: return True else: # there may be Pow keys like x**2 or Mul keys like x*y if any(k.is_Mul for k in self.coeff): # cross terms return not self.homogeneous return False class HomogeneousGeneralQuadratic(DiophantineEquationType): """ Representation of a homogeneous general quadratic. No solver is currently implemented for this equation type. """ name = 'homogeneous_general_quadratic' def matches(self): if not (self.total_degree == 2 and self.dimension >= 3): return False if not self.homogeneous_order: return False else: # there may be Pow keys like x**2 or Mul keys like x*y if any(k.is_Mul for k in self.coeff): # cross terms return self.homogeneous return False class GeneralSumOfSquares(DiophantineEquationType): r""" Representation of the diophantine equation `x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`. Details ======= When `n = 3` if `k = 4^a(8m + 7)` for some `a, m \in Z` then there will be no solutions. Refer [1]_ for more details. Examples ======== >>> from sympy.solvers.diophantine.diophantine import GeneralSumOfSquares >>> from sympy.abc import a, b, c, d, e >>> GeneralSumOfSquares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345).solve() {(15, 22, 22, 24, 24)} By default only 1 solution is returned. Use the `limit` keyword for more: >>> sorted(GeneralSumOfSquares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345).solve(limit=3)) [(15, 22, 22, 24, 24), (16, 19, 24, 24, 24), (16, 20, 22, 23, 26)] References ========== .. [1] Representing an integer as a sum of three squares, [online], Available: http://www.proofwiki.org/wiki/Integer_as_Sum_of_Three_Squares """ name = 'general_sum_of_squares' def matches(self): if not (self.total_degree == 2 and self.dimension >= 3): return False if not self.homogeneous_order: return False if any(k.is_Mul for k in self.coeff): return False return all(self.coeff[k] == 1 for k in self.coeff if k != 1) def solve(self, parameters=None, limit=1): self.pre_solve(parameters) var = self.free_symbols k = -int(self.coeff[1]) n = self.dimension result = DiophantineSolutionSet(var, parameters=self.parameters) if k < 0 or limit < 1: return result signs = [-1 if x.is_nonpositive else 1 for x in var] negs = signs.count(-1) != 0 took = 0 for t in sum_of_squares(k, n, zeros=True): if negs: result.add([signs[i]*j for i, j in enumerate(t)]) else: result.add(t) took += 1 if took == limit: break return result class GeneralPythagorean(DiophantineEquationType): """ Representation of the general pythagorean equation, `a_{1}^2x_{1}^2 + a_{2}^2x_{2}^2 + . . . + a_{n}^2x_{n}^2 - a_{n + 1}^2x_{n + 1}^2 = 0`. Examples ======== >>> from sympy.solvers.diophantine.diophantine import GeneralPythagorean >>> from sympy.abc import a, b, c, d, e, x, y, z, t >>> GeneralPythagorean(a**2 + b**2 + c**2 - d**2).solve() {(t_0**2 + t_1**2 - t_2**2, 2*t_0*t_2, 2*t_1*t_2, t_0**2 + t_1**2 + t_2**2)} >>> GeneralPythagorean(9*a**2 - 4*b**2 + 16*c**2 + 25*d**2 + e**2).solve(parameters=[x, y, z, t]) {(-10*t**2 + 10*x**2 + 10*y**2 + 10*z**2, 15*t**2 + 15*x**2 + 15*y**2 + 15*z**2, 15*t*x, 12*t*y, 60*t*z)} """ name = 'general_pythagorean' def matches(self): if not (self.total_degree == 2 and self.dimension >= 3): return False if not self.homogeneous_order: return False if any(k.is_Mul for k in self.coeff): return False if all(self.coeff[k] == 1 for k in self.coeff if k != 1): return False if not all(is_square(abs(self.coeff[k])) for k in self.coeff): return False # all but one has the same sign # e.g. 4*x**2 + y**2 - 4*z**2 return abs(sum(sign(self.coeff[k]) for k in self.coeff)) == self.dimension - 2 @property def n_parameters(self): return self.dimension - 1 def solve(self, parameters=None, limit=1): self.pre_solve(parameters) coeff = self.coeff var = self.free_symbols n = self.dimension if sign(coeff[var[0] ** 2]) + sign(coeff[var[1] ** 2]) + sign(coeff[var[2] ** 2]) < 0: for key in coeff.keys(): coeff[key] = -coeff[key] result = DiophantineSolutionSet(var, parameters=self.parameters) index = 0 for i, v in enumerate(var): if sign(coeff[v ** 2]) == -1: index = i m = result.parameters ith = sum(m_i ** 2 for m_i in m) L = [ith - 2 * m[n - 2] ** 2] L.extend([2 * m[i] * m[n - 2] for i in range(n - 2)]) sol = L[:index] + [ith] + L[index:] lcm = 1 for i, v in enumerate(var): if i == index or (index > 0 and i == 0) or (index == 0 and i == 1): lcm = ilcm(lcm, sqrt(abs(coeff[v ** 2]))) else: s = sqrt(coeff[v ** 2]) lcm = ilcm(lcm, s if _odd(s) else s // 2) for i, v in enumerate(var): sol[i] = (lcm * sol[i]) / sqrt(abs(coeff[v ** 2])) result.add(sol) return result class CubicThue(DiophantineEquationType): """ Representation of a cubic Thue diophantine equation. A cubic Thue diophantine equation is a polynomial of the form `f(x, y) = r` of degree 3, where `x` and `y` are integers and `r` is a rational number. No solver is currently implemented for this equation type. Examples ======== >>> from sympy.abc import x, y >>> from sympy.solvers.diophantine.diophantine import CubicThue >>> c1 = CubicThue(x**3 + y**2 + 1) >>> c1.matches() True """ name = 'cubic_thue' def matches(self): return self.total_degree == 3 and self.dimension == 2 class GeneralSumOfEvenPowers(DiophantineEquationType): """ Representation of the diophantine equation `x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0` where `e` is an even, integer power. Examples ======== >>> from sympy.solvers.diophantine.diophantine import GeneralSumOfEvenPowers >>> from sympy.abc import a, b >>> GeneralSumOfEvenPowers(a**4 + b**4 - (2**4 + 3**4)).solve() {(2, 3)} """ name = 'general_sum_of_even_powers' def matches(self): if not self.total_degree > 3: return False if self.total_degree % 2 != 0: return False if not all(k.is_Pow and k.exp == self.total_degree for k in self.coeff if k != 1): return False return all(self.coeff[k] == 1 for k in self.coeff if k != 1) def solve(self, parameters=None, limit=1): self.pre_solve(parameters) var = self.free_symbols coeff = self.coeff p = None for q in coeff.keys(): if q.is_Pow and coeff[q]: p = q.exp k = len(var) n = -coeff[1] result = DiophantineSolutionSet(var, parameters=self.parameters) if n < 0 or limit < 1: return result sign = [-1 if x.is_nonpositive else 1 for x in var] negs = sign.count(-1) != 0 took = 0 for t in power_representation(n, p, k): if negs: result.add([sign[i]*j for i, j in enumerate(t)]) else: result.add(t) took += 1 if took == limit: break return result # these types are known (but not necessarily handled) # note that order is important here (in the current solver state) all_diop_classes = [ Linear, Univariate, BinaryQuadratic, InhomogeneousTernaryQuadratic, HomogeneousTernaryQuadraticNormal, HomogeneousTernaryQuadratic, InhomogeneousGeneralQuadratic, HomogeneousGeneralQuadratic, GeneralSumOfSquares, GeneralPythagorean, CubicThue, GeneralSumOfEvenPowers, ] diop_known = {diop_class.name for diop_class in all_diop_classes} def _is_int(i): try: as_int(i) return True except ValueError: pass def _sorted_tuple(*i): return tuple(sorted(i)) def _remove_gcd(*x): try: g = igcd(*x) except ValueError: fx = list(filter(None, x)) if len(fx) < 2: return x g = igcd(*[i.as_content_primitive()[0] for i in fx]) except TypeError: raise TypeError('_remove_gcd(a,b,c) or _remove_gcd(*container)') if g == 1: return x return tuple([i//g for i in x]) def _rational_pq(a, b): # return `(numer, denom)` for a/b; sign in numer and gcd removed return _remove_gcd(sign(b)*a, abs(b)) def _nint_or_floor(p, q): # return nearest int to p/q; in case of tie return floor(p/q) w, r = divmod(p, q) if abs(r) <= abs(q)//2: return w return w + 1 def _odd(i): return i % 2 != 0 def _even(i): return i % 2 == 0 def diophantine(eq, param=symbols("t", integer=True), syms=None, permute=False): """ Simplify the solution procedure of diophantine equation ``eq`` by converting it into a product of terms which should equal zero. Explanation =========== For example, when solving, `x^2 - y^2 = 0` this is treated as `(x + y)(x - y) = 0` and `x + y = 0` and `x - y = 0` are solved independently and combined. Each term is solved by calling ``diop_solve()``. (Although it is possible to call ``diop_solve()`` directly, one must be careful to pass an equation in the correct form and to interpret the output correctly; ``diophantine()`` is the public-facing function to use in general.) Output of ``diophantine()`` is a set of tuples. The elements of the tuple are the solutions for each variable in the equation and are arranged according to the alphabetic ordering of the variables. e.g. For an equation with two variables, `a` and `b`, the first element of the tuple is the solution for `a` and the second for `b`. Usage ===== ``diophantine(eq, t, syms)``: Solve the diophantine equation ``eq``. ``t`` is the optional parameter to be used by ``diop_solve()``. ``syms`` is an optional list of symbols which determines the order of the elements in the returned tuple. By default, only the base solution is returned. If ``permute`` is set to True then permutations of the base solution and/or permutations of the signs of the values will be returned when applicable. Examples ======== >>> from sympy.solvers.diophantine import diophantine >>> from sympy.abc import a, b >>> eq = a**4 + b**4 - (2**4 + 3**4) >>> diophantine(eq) {(2, 3)} >>> diophantine(eq, permute=True) {(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)} Details ======= ``eq`` should be an expression which is assumed to be zero. ``t`` is the parameter to be used in the solution. Examples ======== >>> from sympy.abc import x, y, z >>> diophantine(x**2 - y**2) {(t_0, -t_0), (t_0, t_0)} >>> diophantine(x*(2*x + 3*y - z)) {(0, n1, n2), (t_0, t_1, 2*t_0 + 3*t_1)} >>> diophantine(x**2 + 3*x*y + 4*x) {(0, n1), (3*t_0 - 4, -t_0)} See Also ======== diop_solve() sympy.utilities.iterables.permute_signs sympy.utilities.iterables.signed_permutations """ from sympy.utilities.iterables import ( subsets, permute_signs, signed_permutations) eq = _sympify(eq) if isinstance(eq, Eq): eq = eq.lhs - eq.rhs try: var = list(eq.expand(force=True).free_symbols) var.sort(key=default_sort_key) if syms: if not is_sequence(syms): raise TypeError( 'syms should be given as a sequence, e.g. a list') syms = [i for i in syms if i in var] if syms != var: dict_sym_index = dict(zip(syms, range(len(syms)))) return {tuple([t[dict_sym_index[i]] for i in var]) for t in diophantine(eq, param, permute=permute)} n, d = eq.as_numer_denom() if n.is_number: return set() if not d.is_number: dsol = diophantine(d) good = diophantine(n) - dsol return {s for s in good if _mexpand(d.subs(zip(var, s)))} else: eq = n eq = factor_terms(eq) assert not eq.is_number eq = eq.as_independent(*var, as_Add=False)[1] p = Poly(eq) assert not any(g.is_number for g in p.gens) eq = p.as_expr() assert eq.is_polynomial() except (GeneratorsNeeded, AssertionError): raise TypeError(filldedent(''' Equation should be a polynomial with Rational coefficients.''')) # permute only sign do_permute_signs = False # permute sign and values do_permute_signs_var = False # permute few signs permute_few_signs = False try: # if we know that factoring should not be attempted, skip # the factoring step v, c, t = classify_diop(eq) # check for permute sign if permute: len_var = len(v) permute_signs_for = [ GeneralSumOfSquares.name, GeneralSumOfEvenPowers.name] permute_signs_check = [ HomogeneousTernaryQuadratic.name, HomogeneousTernaryQuadraticNormal.name, BinaryQuadratic.name] if t in permute_signs_for: do_permute_signs_var = True elif t in permute_signs_check: # if all the variables in eq have even powers # then do_permute_sign = True if len_var == 3: var_mul = list(subsets(v, 2)) # here var_mul is like [(x, y), (x, z), (y, z)] xy_coeff = True x_coeff = True var1_mul_var2 = map(lambda a: a[0]*a[1], var_mul) # if coeff(y*z), coeff(y*x), coeff(x*z) is not 0 then # `xy_coeff` => True and do_permute_sign => False. # Means no permuted solution. for v1_mul_v2 in var1_mul_var2: try: coeff = c[v1_mul_v2] except KeyError: coeff = 0 xy_coeff = bool(xy_coeff) and bool(coeff) var_mul = list(subsets(v, 1)) # here var_mul is like [(x,), (y, )] for v1 in var_mul: try: coeff = c[v1[0]] except KeyError: coeff = 0 x_coeff = bool(x_coeff) and bool(coeff) if not any([xy_coeff, x_coeff]): # means only x**2, y**2, z**2, const is present do_permute_signs = True elif not x_coeff: permute_few_signs = True elif len_var == 2: var_mul = list(subsets(v, 2)) # here var_mul is like [(x, y)] xy_coeff = True x_coeff = True var1_mul_var2 = map(lambda x: x[0]*x[1], var_mul) for v1_mul_v2 in var1_mul_var2: try: coeff = c[v1_mul_v2] except KeyError: coeff = 0 xy_coeff = bool(xy_coeff) and bool(coeff) var_mul = list(subsets(v, 1)) # here var_mul is like [(x,), (y, )] for v1 in var_mul: try: coeff = c[v1[0]] except KeyError: coeff = 0 x_coeff = bool(x_coeff) and bool(coeff) if not any([xy_coeff, x_coeff]): # means only x**2, y**2 and const is present # so we can get more soln by permuting this soln. do_permute_signs = True elif not x_coeff: # when coeff(x), coeff(y) is not present then signs of # x, y can be permuted such that their sign are same # as sign of x*y. # e.g 1. (x_val,y_val)=> (x_val,y_val), (-x_val,-y_val) # 2. (-x_vall, y_val)=> (-x_val,y_val), (x_val,-y_val) permute_few_signs = True if t == 'general_sum_of_squares': # trying to factor such expressions will sometimes hang terms = [(eq, 1)] else: raise TypeError except (TypeError, NotImplementedError): fl = factor_list(eq) if fl[0].is_Rational and fl[0] != 1: return diophantine(eq/fl[0], param=param, syms=syms, permute=permute) terms = fl[1] sols = set() for term in terms: base, _ = term var_t, _, eq_type = classify_diop(base, _dict=False) _, base = signsimp(base, evaluate=False).as_coeff_Mul() solution = diop_solve(base, param) if eq_type in [ Linear.name, HomogeneousTernaryQuadratic.name, HomogeneousTernaryQuadraticNormal.name, GeneralPythagorean.name]: sols.add(merge_solution(var, var_t, solution)) elif eq_type in [ BinaryQuadratic.name, GeneralSumOfSquares.name, GeneralSumOfEvenPowers.name, Univariate.name]: for sol in solution: sols.add(merge_solution(var, var_t, sol)) else: raise NotImplementedError('unhandled type: %s' % eq_type) # remove null merge results if () in sols: sols.remove(()) null = tuple([0]*len(var)) # if there is no solution, return trivial solution if not sols and eq.subs(zip(var, null)).is_zero: sols.add(null) final_soln = set() for sol in sols: if all(_is_int(s) for s in sol): if do_permute_signs: permuted_sign = set(permute_signs(sol)) final_soln.update(permuted_sign) elif permute_few_signs: lst = list(permute_signs(sol)) lst = list(filter(lambda x: x[0]*x[1] == sol[1]*sol[0], lst)) permuted_sign = set(lst) final_soln.update(permuted_sign) elif do_permute_signs_var: permuted_sign_var = set(signed_permutations(sol)) final_soln.update(permuted_sign_var) else: final_soln.add(sol) else: final_soln.add(sol) return final_soln def merge_solution(var, var_t, solution): """ This is used to construct the full solution from the solutions of sub equations. Explanation =========== For example when solving the equation `(x - y)(x^2 + y^2 - z^2) = 0`, solutions for each of the equations `x - y = 0` and `x^2 + y^2 - z^2` are found independently. Solutions for `x - y = 0` are `(x, y) = (t, t)`. But we should introduce a value for z when we output the solution for the original equation. This function converts `(t, t)` into `(t, t, n_{1})` where `n_{1}` is an integer parameter. """ sol = [] if None in solution: return () solution = iter(solution) params = numbered_symbols("n", integer=True, start=1) for v in var: if v in var_t: sol.append(next(solution)) else: sol.append(next(params)) for val, symb in zip(sol, var): if check_assumptions(val, **symb.assumptions0) is False: return tuple() return tuple(sol) def _diop_solve(eq, params=None): for diop_type in all_diop_classes: if diop_type(eq).matches(): return diop_type(eq).solve(parameters=params) def diop_solve(eq, param=symbols("t", integer=True)): """ Solves the diophantine equation ``eq``. Explanation =========== Unlike ``diophantine()``, factoring of ``eq`` is not attempted. Uses ``classify_diop()`` to determine the type of the equation and calls the appropriate solver function. Use of ``diophantine()`` is recommended over other helper functions. ``diop_solve()`` can return either a set or a tuple depending on the nature of the equation. Usage ===== ``diop_solve(eq, t)``: Solve diophantine equation, ``eq`` using ``t`` as a parameter if needed. Details ======= ``eq`` should be an expression which is assumed to be zero. ``t`` is a parameter to be used in the solution. Examples ======== >>> from sympy.solvers.diophantine import diop_solve >>> from sympy.abc import x, y, z, w >>> diop_solve(2*x + 3*y - 5) (3*t_0 - 5, 5 - 2*t_0) >>> diop_solve(4*x + 3*y - 4*z + 5) (t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5) >>> diop_solve(x + 3*y - 4*z + w - 6) (t_0, t_0 + t_1, 6*t_0 + 5*t_1 + 4*t_2 - 6, 5*t_0 + 4*t_1 + 3*t_2 - 6) >>> diop_solve(x**2 + y**2 - 5) {(-2, -1), (-2, 1), (-1, -2), (-1, 2), (1, -2), (1, 2), (2, -1), (2, 1)} See Also ======== diophantine() """ var, coeff, eq_type = classify_diop(eq, _dict=False) if eq_type == Linear.name: return diop_linear(eq, param) elif eq_type == BinaryQuadratic.name: return diop_quadratic(eq, param) elif eq_type == HomogeneousTernaryQuadratic.name: return diop_ternary_quadratic(eq, parameterize=True) elif eq_type == HomogeneousTernaryQuadraticNormal.name: return diop_ternary_quadratic_normal(eq, parameterize=True) elif eq_type == GeneralPythagorean.name: return diop_general_pythagorean(eq, param) elif eq_type == Univariate.name: return diop_univariate(eq) elif eq_type == GeneralSumOfSquares.name: return diop_general_sum_of_squares(eq, limit=S.Infinity) elif eq_type == GeneralSumOfEvenPowers.name: return diop_general_sum_of_even_powers(eq, limit=S.Infinity) if eq_type is not None and eq_type not in diop_known: raise ValueError(filldedent(''' Alhough this type of equation was identified, it is not yet handled. It should, however, be listed in `diop_known` at the top of this file. Developers should see comments at the end of `classify_diop`. ''')) # pragma: no cover else: raise NotImplementedError( 'No solver has been written for %s.' % eq_type) def classify_diop(eq, _dict=True): # docstring supplied externally matched = False diop_type = None for diop_class in all_diop_classes: diop_type = diop_class(eq) if diop_type.matches(): matched = True break if matched: return diop_type.free_symbols, dict(diop_type.coeff) if _dict else diop_type.coeff, diop_type.name # new diop type instructions # -------------------------- # if this error raises and the equation *can* be classified, # * it should be identified in the if-block above # * the type should be added to the diop_known # if a solver can be written for it, # * a dedicated handler should be written (e.g. diop_linear) # * it should be passed to that handler in diop_solve raise NotImplementedError(filldedent(''' This equation is not yet recognized or else has not been simplified sufficiently to put it in a form recognized by diop_classify().''')) classify_diop.func_doc = ( # type: ignore ''' Helper routine used by diop_solve() to find information about ``eq``. Explanation =========== Returns a tuple containing the type of the diophantine equation along with the variables (free symbols) and their coefficients. Variables are returned as a list and coefficients are returned as a dict with the key being the respective term and the constant term is keyed to 1. The type is one of the following: * %s Usage ===== ``classify_diop(eq)``: Return variables, coefficients and type of the ``eq``. Details ======= ``eq`` should be an expression which is assumed to be zero. ``_dict`` is for internal use: when True (default) a dict is returned, otherwise a defaultdict which supplies 0 for missing keys is returned. Examples ======== >>> from sympy.solvers.diophantine import classify_diop >>> from sympy.abc import x, y, z, w, t >>> classify_diop(4*x + 6*y - 4) ([x, y], {1: -4, x: 4, y: 6}, 'linear') >>> classify_diop(x + 3*y -4*z + 5) ([x, y, z], {1: 5, x: 1, y: 3, z: -4}, 'linear') >>> classify_diop(x**2 + y**2 - x*y + x + 5) ([x, y], {1: 5, x: 1, x**2: 1, y**2: 1, x*y: -1}, 'binary_quadratic') ''' % ('\n * '.join(sorted(diop_known)))) def diop_linear(eq, param=symbols("t", integer=True)): """ Solves linear diophantine equations. A linear diophantine equation is an equation of the form `a_{1}x_{1} + a_{2}x_{2} + .. + a_{n}x_{n} = 0` where `a_{1}, a_{2}, ..a_{n}` are integer constants and `x_{1}, x_{2}, ..x_{n}` are integer variables. Usage ===== ``diop_linear(eq)``: Returns a tuple containing solutions to the diophantine equation ``eq``. Values in the tuple is arranged in the same order as the sorted variables. Details ======= ``eq`` is a linear diophantine equation which is assumed to be zero. ``param`` is the parameter to be used in the solution. Examples ======== >>> from sympy.solvers.diophantine.diophantine import diop_linear >>> from sympy.abc import x, y, z >>> diop_linear(2*x - 3*y - 5) # solves equation 2*x - 3*y - 5 == 0 (3*t_0 - 5, 2*t_0 - 5) Here x = -3*t_0 - 5 and y = -2*t_0 - 5 >>> diop_linear(2*x - 3*y - 4*z -3) (t_0, 2*t_0 + 4*t_1 + 3, -t_0 - 3*t_1 - 3) See Also ======== diop_quadratic(), diop_ternary_quadratic(), diop_general_pythagorean(), diop_general_sum_of_squares() """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == Linear.name: parameters = None if param is not None: parameters = symbols('%s_0:%i' % (param, len(var)), integer=True) result = Linear(eq).solve(parameters=parameters) if param is None: result = result(*[0]*len(result.parameters)) if len(result) > 0: return list(result)[0] else: return tuple([None]*len(result.parameters)) def base_solution_linear(c, a, b, t=None): """ Return the base solution for the linear equation, `ax + by = c`. Explanation =========== Used by ``diop_linear()`` to find the base solution of a linear Diophantine equation. If ``t`` is given then the parametrized solution is returned. Usage ===== ``base_solution_linear(c, a, b, t)``: ``a``, ``b``, ``c`` are coefficients in `ax + by = c` and ``t`` is the parameter to be used in the solution. Examples ======== >>> from sympy.solvers.diophantine.diophantine import base_solution_linear >>> from sympy.abc import t >>> base_solution_linear(5, 2, 3) # equation 2*x + 3*y = 5 (-5, 5) >>> base_solution_linear(0, 5, 7) # equation 5*x + 7*y = 0 (0, 0) >>> base_solution_linear(5, 2, 3, t) # equation 2*x + 3*y = 5 (3*t - 5, 5 - 2*t) >>> base_solution_linear(0, 5, 7, t) # equation 5*x + 7*y = 0 (7*t, -5*t) """ a, b, c = _remove_gcd(a, b, c) if c == 0: if t is not None: if b < 0: t = -t return (b*t , -a*t) else: return (0, 0) else: x0, y0, d = igcdex(abs(a), abs(b)) x0 *= sign(a) y0 *= sign(b) if divisible(c, d): if t is not None: if b < 0: t = -t return (c*x0 + b*t, c*y0 - a*t) else: return (c*x0, c*y0) else: return (None, None) def diop_univariate(eq): """ Solves a univariate diophantine equations. Explanation =========== A univariate diophantine equation is an equation of the form `a_{0} + a_{1}x + a_{2}x^2 + .. + a_{n}x^n = 0` where `a_{1}, a_{2}, ..a_{n}` are integer constants and `x` is an integer variable. Usage ===== ``diop_univariate(eq)``: Returns a set containing solutions to the diophantine equation ``eq``. Details ======= ``eq`` is a univariate diophantine equation which is assumed to be zero. Examples ======== >>> from sympy.solvers.diophantine.diophantine import diop_univariate >>> from sympy.abc import x >>> diop_univariate((x - 2)*(x - 3)**2) # solves equation (x - 2)*(x - 3)**2 == 0 {(2,), (3,)} """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == Univariate.name: return {(int(i),) for i in solveset_real( eq, var[0]).intersect(S.Integers)} def divisible(a, b): """ Returns `True` if ``a`` is divisible by ``b`` and `False` otherwise. """ return not a % b def diop_quadratic(eq, param=symbols("t", integer=True)): """ Solves quadratic diophantine equations. i.e. equations of the form `Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0`. Returns a set containing the tuples `(x, y)` which contains the solutions. If there are no solutions then `(None, None)` is returned. Usage ===== ``diop_quadratic(eq, param)``: ``eq`` is a quadratic binary diophantine equation. ``param`` is used to indicate the parameter to be used in the solution. Details ======= ``eq`` should be an expression which is assumed to be zero. ``param`` is a parameter to be used in the solution. Examples ======== >>> from sympy.abc import x, y, t >>> from sympy.solvers.diophantine.diophantine import diop_quadratic >>> diop_quadratic(x**2 + y**2 + 2*x + 2*y + 2, t) {(-1, -1)} References ========== .. [1] Methods to solve Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, [online], Available: http://www.alpertron.com.ar/METHODS.HTM .. [2] Solving the equation ax^2+ bxy + cy^2 + dx + ey + f= 0, [online], Available: http://www.jpr2718.org/ax2p.pdf See Also ======== diop_linear(), diop_ternary_quadratic(), diop_general_sum_of_squares(), diop_general_pythagorean() """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == BinaryQuadratic.name: if param is not None: parameters = [param, Symbol("u", integer=True)] else: parameters = None return set(BinaryQuadratic(eq).solve(parameters=parameters)) def is_solution_quad(var, coeff, u, v): """ Check whether `(u, v)` is solution to the quadratic binary diophantine equation with the variable list ``var`` and coefficient dictionary ``coeff``. Not intended for use by normal users. """ reps = dict(zip(var, (u, v))) eq = Add(*[j*i.xreplace(reps) for i, j in coeff.items()]) return _mexpand(eq) == 0 def diop_DN(D, N, t=symbols("t", integer=True)): """ Solves the equation `x^2 - Dy^2 = N`. Explanation =========== Mainly concerned with the case `D > 0, D` is not a perfect square, which is the same as the generalized Pell equation. The LMM algorithm [1]_ is used to solve this equation. Returns one solution tuple, (`x, y)` for each class of the solutions. Other solutions of the class can be constructed according to the values of ``D`` and ``N``. Usage ===== ``diop_DN(D, N, t)``: D and N are integers as in `x^2 - Dy^2 = N` and ``t`` is the parameter to be used in the solutions. Details ======= ``D`` and ``N`` correspond to D and N in the equation. ``t`` is the parameter to be used in the solutions. Examples ======== >>> from sympy.solvers.diophantine.diophantine import diop_DN >>> diop_DN(13, -4) # Solves equation x**2 - 13*y**2 = -4 [(3, 1), (393, 109), (36, 10)] The output can be interpreted as follows: There are three fundamental solutions to the equation `x^2 - 13y^2 = -4` given by (3, 1), (393, 109) and (36, 10). Each tuple is in the form (x, y), i.e. solution (3, 1) means that `x = 3` and `y = 1`. >>> diop_DN(986, 1) # Solves equation x**2 - 986*y**2 = 1 [(49299, 1570)] See Also ======== find_DN(), diop_bf_DN() References ========== .. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004, Pages 16 - 17. [online], Available: http://www.jpr2718.org/pell.pdf """ if D < 0: if N == 0: return [(0, 0)] elif N < 0: return [] elif N > 0: sol = [] for d in divisors(square_factor(N)): sols = cornacchia(1, -D, N // d**2) if sols: for x, y in sols: sol.append((d*x, d*y)) if D == -1: sol.append((d*y, d*x)) return sol elif D == 0: if N < 0: return [] if N == 0: return [(0, t)] sN, _exact = integer_nthroot(N, 2) if _exact: return [(sN, t)] else: return [] else: # D > 0 sD, _exact = integer_nthroot(D, 2) if _exact: if N == 0: return [(sD*t, t)] else: sol = [] for y in range(floor(sign(N)*(N - 1)/(2*sD)) + 1): try: sq, _exact = integer_nthroot(D*y**2 + N, 2) except ValueError: _exact = False if _exact: sol.append((sq, y)) return sol elif 1 < N**2 < D: # It is much faster to call `_special_diop_DN`. return _special_diop_DN(D, N) else: if N == 0: return [(0, 0)] elif abs(N) == 1: pqa = PQa(0, 1, D) j = 0 G = [] B = [] for i in pqa: a = i[2] G.append(i[5]) B.append(i[4]) if j != 0 and a == 2*sD: break j = j + 1 if _odd(j): if N == -1: x = G[j - 1] y = B[j - 1] else: count = j while count < 2*j - 1: i = next(pqa) G.append(i[5]) B.append(i[4]) count += 1 x = G[count] y = B[count] else: if N == 1: x = G[j - 1] y = B[j - 1] else: return [] return [(x, y)] else: fs = [] sol = [] div = divisors(N) for d in div: if divisible(N, d**2): fs.append(d) for f in fs: m = N // f**2 zs = sqrt_mod(D, abs(m), all_roots=True) zs = [i for i in zs if i <= abs(m) // 2 ] if abs(m) != 2: zs = zs + [-i for i in zs if i] # omit dupl 0 for z in zs: pqa = PQa(z, abs(m), D) j = 0 G = [] B = [] for i in pqa: G.append(i[5]) B.append(i[4]) if j != 0 and abs(i[1]) == 1: r = G[j-1] s = B[j-1] if r**2 - D*s**2 == m: sol.append((f*r, f*s)) elif diop_DN(D, -1) != []: a = diop_DN(D, -1) sol.append((f*(r*a[0][0] + a[0][1]*s*D), f*(r*a[0][1] + s*a[0][0]))) break j = j + 1 if j == length(z, abs(m), D): break return sol def _special_diop_DN(D, N): """ Solves the equation `x^2 - Dy^2 = N` for the special case where `1 < N**2 < D` and `D` is not a perfect square. It is better to call `diop_DN` rather than this function, as the former checks the condition `1 < N**2 < D`, and calls the latter only if appropriate. Usage ===== WARNING: Internal method. Do not call directly! ``_special_diop_DN(D, N)``: D and N are integers as in `x^2 - Dy^2 = N`. Details ======= ``D`` and ``N`` correspond to D and N in the equation. Examples ======== >>> from sympy.solvers.diophantine.diophantine import _special_diop_DN >>> _special_diop_DN(13, -3) # Solves equation x**2 - 13*y**2 = -3 [(7, 2), (137, 38)] The output can be interpreted as follows: There are two fundamental solutions to the equation `x^2 - 13y^2 = -3` given by (7, 2) and (137, 38). Each tuple is in the form (x, y), i.e. solution (7, 2) means that `x = 7` and `y = 2`. >>> _special_diop_DN(2445, -20) # Solves equation x**2 - 2445*y**2 = -20 [(445, 9), (17625560, 356454), (698095554475, 14118073569)] See Also ======== diop_DN() References ========== .. [1] Section 4.4.4 of the following book: Quadratic Diophantine Equations, T. Andreescu and D. Andrica, Springer, 2015. """ # The following assertion was removed for efficiency, with the understanding # that this method is not called directly. The parent method, `diop_DN` # is responsible for performing the appropriate checks. # # assert (1 < N**2 < D) and (not integer_nthroot(D, 2)[1]) sqrt_D = sqrt(D) F = [(N, 1)] f = 2 while True: f2 = f**2 if f2 > abs(N): break n, r = divmod(N, f2) if r == 0: F.append((n, f)) f += 1 P = 0 Q = 1 G0, G1 = 0, 1 B0, B1 = 1, 0 solutions = [] i = 0 while True: a = floor((P + sqrt_D) / Q) P = a*Q - P Q = (D - P**2) // Q G2 = a*G1 + G0 B2 = a*B1 + B0 for n, f in F: if G2**2 - D*B2**2 == n: solutions.append((f*G2, f*B2)) i += 1 if Q == 1 and i % 2 == 0: break G0, G1 = G1, G2 B0, B1 = B1, B2 return solutions def cornacchia(a, b, m): r""" Solves `ax^2 + by^2 = m` where `\gcd(a, b) = 1 = gcd(a, m)` and `a, b > 0`. Explanation =========== Uses the algorithm due to Cornacchia. The method only finds primitive solutions, i.e. ones with `\gcd(x, y) = 1`. So this method can't be used to find the solutions of `x^2 + y^2 = 20` since the only solution to former is `(x, y) = (4, 2)` and it is not primitive. When `a = b`, only the solutions with `x \leq y` are found. For more details, see the References. Examples ======== >>> from sympy.solvers.diophantine.diophantine import cornacchia >>> cornacchia(2, 3, 35) # equation 2x**2 + 3y**2 = 35 {(2, 3), (4, 1)} >>> cornacchia(1, 1, 25) # equation x**2 + y**2 = 25 {(4, 3)} References =========== .. [1] A. Nitaj, "L'algorithme de Cornacchia" .. [2] Solving the diophantine equation ax**2 + by**2 = m by Cornacchia's method, [online], Available: http://www.numbertheory.org/php/cornacchia.html See Also ======== sympy.utilities.iterables.signed_permutations """ sols = set() a1 = igcdex(a, m)[0] v = sqrt_mod(-b*a1, m, all_roots=True) if not v: return None for t in v: if t < m // 2: continue u, r = t, m while True: u, r = r, u % r if a*r**2 < m: break m1 = m - a*r**2 if m1 % b == 0: m1 = m1 // b s, _exact = integer_nthroot(m1, 2) if _exact: if a == b and r < s: r, s = s, r sols.add((int(r), int(s))) return sols def PQa(P_0, Q_0, D): r""" Returns useful information needed to solve the Pell equation. Explanation =========== There are six sequences of integers defined related to the continued fraction representation of `\\frac{P + \sqrt{D}}{Q}`, namely {`P_{i}`}, {`Q_{i}`}, {`a_{i}`},{`A_{i}`}, {`B_{i}`}, {`G_{i}`}. ``PQa()`` Returns these values as a 6-tuple in the same order as mentioned above. Refer [1]_ for more detailed information. Usage ===== ``PQa(P_0, Q_0, D)``: ``P_0``, ``Q_0`` and ``D`` are integers corresponding to `P_{0}`, `Q_{0}` and `D` in the continued fraction `\\frac{P_{0} + \sqrt{D}}{Q_{0}}`. Also it's assumed that `P_{0}^2 == D mod(|Q_{0}|)` and `D` is square free. Examples ======== >>> from sympy.solvers.diophantine.diophantine import PQa >>> pqa = PQa(13, 4, 5) # (13 + sqrt(5))/4 >>> next(pqa) # (P_0, Q_0, a_0, A_0, B_0, G_0) (13, 4, 3, 3, 1, -1) >>> next(pqa) # (P_1, Q_1, a_1, A_1, B_1, G_1) (-1, 1, 1, 4, 1, 3) References ========== .. [1] Solving the generalized Pell equation x^2 - Dy^2 = N, John P. Robertson, July 31, 2004, Pages 4 - 8. http://www.jpr2718.org/pell.pdf """ A_i_2 = B_i_1 = 0 A_i_1 = B_i_2 = 1 G_i_2 = -P_0 G_i_1 = Q_0 P_i = P_0 Q_i = Q_0 while True: a_i = floor((P_i + sqrt(D))/Q_i) A_i = a_i*A_i_1 + A_i_2 B_i = a_i*B_i_1 + B_i_2 G_i = a_i*G_i_1 + G_i_2 yield P_i, Q_i, a_i, A_i, B_i, G_i A_i_1, A_i_2 = A_i, A_i_1 B_i_1, B_i_2 = B_i, B_i_1 G_i_1, G_i_2 = G_i, G_i_1 P_i = a_i*Q_i - P_i Q_i = (D - P_i**2)/Q_i def diop_bf_DN(D, N, t=symbols("t", integer=True)): r""" Uses brute force to solve the equation, `x^2 - Dy^2 = N`. Explanation =========== Mainly concerned with the generalized Pell equation which is the case when `D > 0, D` is not a perfect square. For more information on the case refer [1]_. Let `(t, u)` be the minimal positive solution of the equation `x^2 - Dy^2 = 1`. Then this method requires `\sqrt{\\frac{\mid N \mid (t \pm 1)}{2D}}` to be small. Usage ===== ``diop_bf_DN(D, N, t)``: ``D`` and ``N`` are coefficients in `x^2 - Dy^2 = N` and ``t`` is the parameter to be used in the solutions. Details ======= ``D`` and ``N`` correspond to D and N in the equation. ``t`` is the parameter to be used in the solutions. Examples ======== >>> from sympy.solvers.diophantine.diophantine import diop_bf_DN >>> diop_bf_DN(13, -4) [(3, 1), (-3, 1), (36, 10)] >>> diop_bf_DN(986, 1) [(49299, 1570)] See Also ======== diop_DN() References ========== .. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004, Page 15. http://www.jpr2718.org/pell.pdf """ D = as_int(D) N = as_int(N) sol = [] a = diop_DN(D, 1) u = a[0][0] if abs(N) == 1: return diop_DN(D, N) elif N > 1: L1 = 0 L2 = integer_nthroot(int(N*(u - 1)/(2*D)), 2)[0] + 1 elif N < -1: L1, _exact = integer_nthroot(-int(N/D), 2) if not _exact: L1 += 1 L2 = integer_nthroot(-int(N*(u + 1)/(2*D)), 2)[0] + 1 else: # N = 0 if D < 0: return [(0, 0)] elif D == 0: return [(0, t)] else: sD, _exact = integer_nthroot(D, 2) if _exact: return [(sD*t, t), (-sD*t, t)] else: return [(0, 0)] for y in range(L1, L2): try: x, _exact = integer_nthroot(N + D*y**2, 2) except ValueError: _exact = False if _exact: sol.append((x, y)) if not equivalent(x, y, -x, y, D, N): sol.append((-x, y)) return sol def equivalent(u, v, r, s, D, N): """ Returns True if two solutions `(u, v)` and `(r, s)` of `x^2 - Dy^2 = N` belongs to the same equivalence class and False otherwise. Explanation =========== Two solutions `(u, v)` and `(r, s)` to the above equation fall to the same equivalence class iff both `(ur - Dvs)` and `(us - vr)` are divisible by `N`. See reference [1]_. No test is performed to test whether `(u, v)` and `(r, s)` are actually solutions to the equation. User should take care of this. Usage ===== ``equivalent(u, v, r, s, D, N)``: `(u, v)` and `(r, s)` are two solutions of the equation `x^2 - Dy^2 = N` and all parameters involved are integers. Examples ======== >>> from sympy.solvers.diophantine.diophantine import equivalent >>> equivalent(18, 5, -18, -5, 13, -1) True >>> equivalent(3, 1, -18, 393, 109, -4) False References ========== .. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004, Page 12. http://www.jpr2718.org/pell.pdf """ return divisible(u*r - D*v*s, N) and divisible(u*s - v*r, N) def length(P, Q, D): r""" Returns the (length of aperiodic part + length of periodic part) of continued fraction representation of `\\frac{P + \sqrt{D}}{Q}`. It is important to remember that this does NOT return the length of the periodic part but the sum of the lengths of the two parts as mentioned above. Usage ===== ``length(P, Q, D)``: ``P``, ``Q`` and ``D`` are integers corresponding to the continued fraction `\\frac{P + \sqrt{D}}{Q}`. Details ======= ``P``, ``D`` and ``Q`` corresponds to P, D and Q in the continued fraction, `\\frac{P + \sqrt{D}}{Q}`. Examples ======== >>> from sympy.solvers.diophantine.diophantine import length >>> length(-2 , 4, 5) # (-2 + sqrt(5))/4 3 >>> length(-5, 4, 17) # (-5 + sqrt(17))/4 4 See Also ======== sympy.ntheory.continued_fraction.continued_fraction_periodic """ from sympy.ntheory.continued_fraction import continued_fraction_periodic v = continued_fraction_periodic(P, Q, D) if type(v[-1]) is list: rpt = len(v[-1]) nonrpt = len(v) - 1 else: rpt = 0 nonrpt = len(v) return rpt + nonrpt def transformation_to_DN(eq): """ This function transforms general quadratic, `ax^2 + bxy + cy^2 + dx + ey + f = 0` to more easy to deal with `X^2 - DY^2 = N` form. Explanation =========== This is used to solve the general quadratic equation by transforming it to the latter form. Refer [1]_ for more detailed information on the transformation. This function returns a tuple (A, B) where A is a 2 X 2 matrix and B is a 2 X 1 matrix such that, Transpose([x y]) = A * Transpose([X Y]) + B Usage ===== ``transformation_to_DN(eq)``: where ``eq`` is the quadratic to be transformed. Examples ======== >>> from sympy.abc import x, y >>> from sympy.solvers.diophantine.diophantine import transformation_to_DN >>> A, B = transformation_to_DN(x**2 - 3*x*y - y**2 - 2*y + 1) >>> A Matrix([ [1/26, 3/26], [ 0, 1/13]]) >>> B Matrix([ [-6/13], [-4/13]]) A, B returned are such that Transpose((x y)) = A * Transpose((X Y)) + B. Substituting these values for `x` and `y` and a bit of simplifying work will give an equation of the form `x^2 - Dy^2 = N`. >>> from sympy.abc import X, Y >>> from sympy import Matrix, simplify >>> u = (A*Matrix([X, Y]) + B)[0] # Transformation for x >>> u X/26 + 3*Y/26 - 6/13 >>> v = (A*Matrix([X, Y]) + B)[1] # Transformation for y >>> v Y/13 - 4/13 Next we will substitute these formulas for `x` and `y` and do ``simplify()``. >>> eq = simplify((x**2 - 3*x*y - y**2 - 2*y + 1).subs(zip((x, y), (u, v)))) >>> eq X**2/676 - Y**2/52 + 17/13 By multiplying the denominator appropriately, we can get a Pell equation in the standard form. >>> eq * 676 X**2 - 13*Y**2 + 884 If only the final equation is needed, ``find_DN()`` can be used. See Also ======== find_DN() References ========== .. [1] Solving the equation ax^2 + bxy + cy^2 + dx + ey + f = 0, John P.Robertson, May 8, 2003, Page 7 - 11. http://www.jpr2718.org/ax2p.pdf """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == BinaryQuadratic.name: return _transformation_to_DN(var, coeff) def _transformation_to_DN(var, coeff): x, y = var a = coeff[x**2] b = coeff[x*y] c = coeff[y**2] d = coeff[x] e = coeff[y] f = coeff[1] a, b, c, d, e, f = [as_int(i) for i in _remove_gcd(a, b, c, d, e, f)] X, Y = symbols("X, Y", integer=True) if b: B, C = _rational_pq(2*a, b) A, T = _rational_pq(a, B**2) # eq_1 = A*B*X**2 + B*(c*T - A*C**2)*Y**2 + d*T*X + (B*e*T - d*T*C)*Y + f*T*B coeff = {X**2: A*B, X*Y: 0, Y**2: B*(c*T - A*C**2), X: d*T, Y: B*e*T - d*T*C, 1: f*T*B} A_0, B_0 = _transformation_to_DN([X, Y], coeff) return Matrix(2, 2, [S.One/B, -S(C)/B, 0, 1])*A_0, Matrix(2, 2, [S.One/B, -S(C)/B, 0, 1])*B_0 else: if d: B, C = _rational_pq(2*a, d) A, T = _rational_pq(a, B**2) # eq_2 = A*X**2 + c*T*Y**2 + e*T*Y + f*T - A*C**2 coeff = {X**2: A, X*Y: 0, Y**2: c*T, X: 0, Y: e*T, 1: f*T - A*C**2} A_0, B_0 = _transformation_to_DN([X, Y], coeff) return Matrix(2, 2, [S.One/B, 0, 0, 1])*A_0, Matrix(2, 2, [S.One/B, 0, 0, 1])*B_0 + Matrix([-S(C)/B, 0]) else: if e: B, C = _rational_pq(2*c, e) A, T = _rational_pq(c, B**2) # eq_3 = a*T*X**2 + A*Y**2 + f*T - A*C**2 coeff = {X**2: a*T, X*Y: 0, Y**2: A, X: 0, Y: 0, 1: f*T - A*C**2} A_0, B_0 = _transformation_to_DN([X, Y], coeff) return Matrix(2, 2, [1, 0, 0, S.One/B])*A_0, Matrix(2, 2, [1, 0, 0, S.One/B])*B_0 + Matrix([0, -S(C)/B]) else: # TODO: pre-simplification: Not necessary but may simplify # the equation. return Matrix(2, 2, [S.One/a, 0, 0, 1]), Matrix([0, 0]) def find_DN(eq): """ This function returns a tuple, `(D, N)` of the simplified form, `x^2 - Dy^2 = N`, corresponding to the general quadratic, `ax^2 + bxy + cy^2 + dx + ey + f = 0`. Solving the general quadratic is then equivalent to solving the equation `X^2 - DY^2 = N` and transforming the solutions by using the transformation matrices returned by ``transformation_to_DN()``. Usage ===== ``find_DN(eq)``: where ``eq`` is the quadratic to be transformed. Examples ======== >>> from sympy.abc import x, y >>> from sympy.solvers.diophantine.diophantine import find_DN >>> find_DN(x**2 - 3*x*y - y**2 - 2*y + 1) (13, -884) Interpretation of the output is that we get `X^2 -13Y^2 = -884` after transforming `x^2 - 3xy - y^2 - 2y + 1` using the transformation returned by ``transformation_to_DN()``. See Also ======== transformation_to_DN() References ========== .. [1] Solving the equation ax^2 + bxy + cy^2 + dx + ey + f = 0, John P.Robertson, May 8, 2003, Page 7 - 11. http://www.jpr2718.org/ax2p.pdf """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == BinaryQuadratic.name: return _find_DN(var, coeff) def _find_DN(var, coeff): x, y = var X, Y = symbols("X, Y", integer=True) A, B = _transformation_to_DN(var, coeff) u = (A*Matrix([X, Y]) + B)[0] v = (A*Matrix([X, Y]) + B)[1] eq = x**2*coeff[x**2] + x*y*coeff[x*y] + y**2*coeff[y**2] + x*coeff[x] + y*coeff[y] + coeff[1] simplified = _mexpand(eq.subs(zip((x, y), (u, v)))) coeff = simplified.as_coefficients_dict() return -coeff[Y**2]/coeff[X**2], -coeff[1]/coeff[X**2] def check_param(x, y, a, params): """ If there is a number modulo ``a`` such that ``x`` and ``y`` are both integers, then return a parametric representation for ``x`` and ``y`` else return (None, None). Here ``x`` and ``y`` are functions of ``t``. """ from sympy.simplify.simplify import clear_coefficients if x.is_number and not x.is_Integer: return DiophantineSolutionSet([x, y], parameters=params) if y.is_number and not y.is_Integer: return DiophantineSolutionSet([x, y], parameters=params) m, n = symbols("m, n", integer=True) c, p = (m*x + n*y).as_content_primitive() if a % c.q: return DiophantineSolutionSet([x, y], parameters=params) # clear_coefficients(mx + b, R)[1] -> (R - b)/m eq = clear_coefficients(x, m)[1] - clear_coefficients(y, n)[1] junk, eq = eq.as_content_primitive() return _diop_solve(eq, params=params) def diop_ternary_quadratic(eq, parameterize=False): """ Solves the general quadratic ternary form, `ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0`. Returns a tuple `(x, y, z)` which is a base solution for the above equation. If there are no solutions, `(None, None, None)` is returned. Usage ===== ``diop_ternary_quadratic(eq)``: Return a tuple containing a basic solution to ``eq``. Details ======= ``eq`` should be an homogeneous expression of degree two in three variables and it is assumed to be zero. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy.solvers.diophantine.diophantine import diop_ternary_quadratic >>> diop_ternary_quadratic(x**2 + 3*y**2 - z**2) (1, 0, 1) >>> diop_ternary_quadratic(4*x**2 + 5*y**2 - z**2) (1, 0, 2) >>> diop_ternary_quadratic(45*x**2 - 7*y**2 - 8*x*y - z**2) (28, 45, 105) >>> diop_ternary_quadratic(x**2 - 49*y**2 - z**2 + 13*z*y -8*x*y) (9, 1, 5) """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type in ( HomogeneousTernaryQuadratic.name, HomogeneousTernaryQuadraticNormal.name): sol = _diop_ternary_quadratic(var, coeff) if len(sol) > 0: x_0, y_0, z_0 = list(sol)[0] else: x_0, y_0, z_0 = None, None, None if parameterize: return _parametrize_ternary_quadratic( (x_0, y_0, z_0), var, coeff) return x_0, y_0, z_0 def _diop_ternary_quadratic(_var, coeff): eq = sum([i*coeff[i] for i in coeff]) if HomogeneousTernaryQuadratic(eq).matches(): return HomogeneousTernaryQuadratic(eq, free_symbols=_var).solve() elif HomogeneousTernaryQuadraticNormal(eq).matches(): return HomogeneousTernaryQuadraticNormal(eq, free_symbols=_var).solve() def transformation_to_normal(eq): """ Returns the transformation Matrix that converts a general ternary quadratic equation ``eq`` (`ax^2 + by^2 + cz^2 + dxy + eyz + fxz`) to a form without cross terms: `ax^2 + by^2 + cz^2 = 0`. This is not used in solving ternary quadratics; it is only implemented for the sake of completeness. """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type in ( "homogeneous_ternary_quadratic", "homogeneous_ternary_quadratic_normal"): return _transformation_to_normal(var, coeff) def _transformation_to_normal(var, coeff): _var = list(var) # copy x, y, z = var if not any(coeff[i**2] for i in var): # https://math.stackexchange.com/questions/448051/transform-quadratic-ternary-form-to-normal-form/448065#448065 a = coeff[x*y] b = coeff[y*z] c = coeff[x*z] swap = False if not a: # b can't be 0 or else there aren't 3 vars swap = True a, b = b, a T = Matrix(((1, 1, -b/a), (1, -1, -c/a), (0, 0, 1))) if swap: T.row_swap(0, 1) T.col_swap(0, 1) return T if coeff[x**2] == 0: # If the coefficient of x is zero change the variables if coeff[y**2] == 0: _var[0], _var[2] = var[2], var[0] T = _transformation_to_normal(_var, coeff) T.row_swap(0, 2) T.col_swap(0, 2) return T else: _var[0], _var[1] = var[1], var[0] T = _transformation_to_normal(_var, coeff) T.row_swap(0, 1) T.col_swap(0, 1) return T # Apply the transformation x --> X - (B*Y + C*Z)/(2*A) if coeff[x*y] != 0 or coeff[x*z] != 0: A = coeff[x**2] B = coeff[x*y] C = coeff[x*z] D = coeff[y**2] E = coeff[y*z] F = coeff[z**2] _coeff = dict() _coeff[x**2] = 4*A**2 _coeff[y**2] = 4*A*D - B**2 _coeff[z**2] = 4*A*F - C**2 _coeff[y*z] = 4*A*E - 2*B*C _coeff[x*y] = 0 _coeff[x*z] = 0 T_0 = _transformation_to_normal(_var, _coeff) return Matrix(3, 3, [1, S(-B)/(2*A), S(-C)/(2*A), 0, 1, 0, 0, 0, 1])*T_0 elif coeff[y*z] != 0: if coeff[y**2] == 0: if coeff[z**2] == 0: # Equations of the form A*x**2 + E*yz = 0. # Apply transformation y -> Y + Z ans z -> Y - Z return Matrix(3, 3, [1, 0, 0, 0, 1, 1, 0, 1, -1]) else: # Ax**2 + E*y*z + F*z**2 = 0 _var[0], _var[2] = var[2], var[0] T = _transformation_to_normal(_var, coeff) T.row_swap(0, 2) T.col_swap(0, 2) return T else: # A*x**2 + D*y**2 + E*y*z + F*z**2 = 0, F may be zero _var[0], _var[1] = var[1], var[0] T = _transformation_to_normal(_var, coeff) T.row_swap(0, 1) T.col_swap(0, 1) return T else: return Matrix.eye(3) def parametrize_ternary_quadratic(eq): """ Returns the parametrized general solution for the ternary quadratic equation ``eq`` which has the form `ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0`. Examples ======== >>> from sympy import Tuple, ordered >>> from sympy.abc import x, y, z >>> from sympy.solvers.diophantine.diophantine import parametrize_ternary_quadratic The parametrized solution may be returned with three parameters: >>> parametrize_ternary_quadratic(2*x**2 + y**2 - 2*z**2) (p**2 - 2*q**2, -2*p**2 + 4*p*q - 4*p*r - 4*q**2, p**2 - 4*p*q + 2*q**2 - 4*q*r) There might also be only two parameters: >>> parametrize_ternary_quadratic(4*x**2 + 2*y**2 - 3*z**2) (2*p**2 - 3*q**2, -4*p**2 + 12*p*q - 6*q**2, 4*p**2 - 8*p*q + 6*q**2) Notes ===== Consider ``p`` and ``q`` in the previous 2-parameter solution and observe that more than one solution can be represented by a given pair of parameters. If `p` and ``q`` are not coprime, this is trivially true since the common factor will also be a common factor of the solution values. But it may also be true even when ``p`` and ``q`` are coprime: >>> sol = Tuple(*_) >>> p, q = ordered(sol.free_symbols) >>> sol.subs([(p, 3), (q, 2)]) (6, 12, 12) >>> sol.subs([(q, 1), (p, 1)]) (-1, 2, 2) >>> sol.subs([(q, 0), (p, 1)]) (2, -4, 4) >>> sol.subs([(q, 1), (p, 0)]) (-3, -6, 6) Except for sign and a common factor, these are equivalent to the solution of (1, 2, 2). References ========== .. [1] The algorithmic resolution of Diophantine equations, Nigel P. Smart, London Mathematical Society Student Texts 41, Cambridge University Press, Cambridge, 1998. """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type in ( "homogeneous_ternary_quadratic", "homogeneous_ternary_quadratic_normal"): x_0, y_0, z_0 = list(_diop_ternary_quadratic(var, coeff))[0] return _parametrize_ternary_quadratic( (x_0, y_0, z_0), var, coeff) def _parametrize_ternary_quadratic(solution, _var, coeff): # called for a*x**2 + b*y**2 + c*z**2 + d*x*y + e*y*z + f*x*z = 0 assert 1 not in coeff x_0, y_0, z_0 = solution v = list(_var) # copy if x_0 is None: return (None, None, None) if solution.count(0) >= 2: # if there are 2 zeros the equation reduces # to k*X**2 == 0 where X is x, y, or z so X must # be zero, too. So there is only the trivial # solution. return (None, None, None) if x_0 == 0: v[0], v[1] = v[1], v[0] y_p, x_p, z_p = _parametrize_ternary_quadratic( (y_0, x_0, z_0), v, coeff) return x_p, y_p, z_p x, y, z = v r, p, q = symbols("r, p, q", integer=True) eq = sum(k*v for k, v in coeff.items()) eq_1 = _mexpand(eq.subs(zip( (x, y, z), (r*x_0, r*y_0 + p, r*z_0 + q)))) A, B = eq_1.as_independent(r, as_Add=True) x = A*x_0 y = (A*y_0 - _mexpand(B/r*p)) z = (A*z_0 - _mexpand(B/r*q)) return _remove_gcd(x, y, z) def diop_ternary_quadratic_normal(eq, parameterize=False): """ Solves the quadratic ternary diophantine equation, `ax^2 + by^2 + cz^2 = 0`. Explanation =========== Here the coefficients `a`, `b`, and `c` should be non zero. Otherwise the equation will be a quadratic binary or univariate equation. If solvable, returns a tuple `(x, y, z)` that satisfies the given equation. If the equation does not have integer solutions, `(None, None, None)` is returned. Usage ===== ``diop_ternary_quadratic_normal(eq)``: where ``eq`` is an equation of the form `ax^2 + by^2 + cz^2 = 0`. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy.solvers.diophantine.diophantine import diop_ternary_quadratic_normal >>> diop_ternary_quadratic_normal(x**2 + 3*y**2 - z**2) (1, 0, 1) >>> diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2) (1, 0, 2) >>> diop_ternary_quadratic_normal(34*x**2 - 3*y**2 - 301*z**2) (4, 9, 1) """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == HomogeneousTernaryQuadraticNormal.name: sol = _diop_ternary_quadratic_normal(var, coeff) if len(sol) > 0: x_0, y_0, z_0 = list(sol)[0] else: x_0, y_0, z_0 = None, None, None if parameterize: return _parametrize_ternary_quadratic( (x_0, y_0, z_0), var, coeff) return x_0, y_0, z_0 def _diop_ternary_quadratic_normal(var, coeff): eq = sum([i * coeff[i] for i in coeff]) return HomogeneousTernaryQuadraticNormal(eq, free_symbols=var).solve() def sqf_normal(a, b, c, steps=False): """ Return `a', b', c'`, the coefficients of the square-free normal form of `ax^2 + by^2 + cz^2 = 0`, where `a', b', c'` are pairwise prime. If `steps` is True then also return three tuples: `sq`, `sqf`, and `(a', b', c')` where `sq` contains the square factors of `a`, `b` and `c` after removing the `gcd(a, b, c)`; `sqf` contains the values of `a`, `b` and `c` after removing both the `gcd(a, b, c)` and the square factors. The solutions for `ax^2 + by^2 + cz^2 = 0` can be recovered from the solutions of `a'x^2 + b'y^2 + c'z^2 = 0`. Examples ======== >>> from sympy.solvers.diophantine.diophantine import sqf_normal >>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11) (11, 1, 5) >>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11, True) ((3, 1, 7), (5, 55, 11), (11, 1, 5)) References ========== .. [1] Legendre's Theorem, Legrange's Descent, http://public.csusm.edu/aitken_html/notes/legendre.pdf See Also ======== reconstruct() """ ABC = _remove_gcd(a, b, c) sq = tuple(square_factor(i) for i in ABC) sqf = A, B, C = tuple([i//j**2 for i,j in zip(ABC, sq)]) pc = igcd(A, B) A /= pc B /= pc pa = igcd(B, C) B /= pa C /= pa pb = igcd(A, C) A /= pb B /= pb A *= pa B *= pb C *= pc if steps: return (sq, sqf, (A, B, C)) else: return A, B, C def square_factor(a): r""" Returns an integer `c` s.t. `a = c^2k, \ c,k \in Z`. Here `k` is square free. `a` can be given as an integer or a dictionary of factors. Examples ======== >>> from sympy.solvers.diophantine.diophantine import square_factor >>> square_factor(24) 2 >>> square_factor(-36*3) 6 >>> square_factor(1) 1 >>> square_factor({3: 2, 2: 1, -1: 1}) # -18 3 See Also ======== sympy.ntheory.factor_.core """ f = a if isinstance(a, dict) else factorint(a) return Mul(*[p**(e//2) for p, e in f.items()]) def reconstruct(A, B, z): """ Reconstruct the `z` value of an equivalent solution of `ax^2 + by^2 + cz^2` from the `z` value of a solution of the square-free normal form of the equation, `a'*x^2 + b'*y^2 + c'*z^2`, where `a'`, `b'` and `c'` are square free and `gcd(a', b', c') == 1`. """ f = factorint(igcd(A, B)) for p, e in f.items(): if e != 1: raise ValueError('a and b should be square-free') z *= p return z def ldescent(A, B): """ Return a non-trivial solution to `w^2 = Ax^2 + By^2` using Lagrange's method; return None if there is no such solution. . Here, `A \\neq 0` and `B \\neq 0` and `A` and `B` are square free. Output a tuple `(w_0, x_0, y_0)` which is a solution to the above equation. Examples ======== >>> from sympy.solvers.diophantine.diophantine import ldescent >>> ldescent(1, 1) # w^2 = x^2 + y^2 (1, 1, 0) >>> ldescent(4, -7) # w^2 = 4x^2 - 7y^2 (2, -1, 0) This means that `x = -1, y = 0` and `w = 2` is a solution to the equation `w^2 = 4x^2 - 7y^2` >>> ldescent(5, -1) # w^2 = 5x^2 - y^2 (2, 1, -1) References ========== .. [1] The algorithmic resolution of Diophantine equations, Nigel P. Smart, London Mathematical Society Student Texts 41, Cambridge University Press, Cambridge, 1998. .. [2] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, [online], Available: http://eprints.nottingham.ac.uk/60/1/kvxefz87.pdf """ if abs(A) > abs(B): w, y, x = ldescent(B, A) return w, x, y if A == 1: return (1, 1, 0) if B == 1: return (1, 0, 1) if B == -1: # and A == -1 return r = sqrt_mod(A, B) Q = (r**2 - A) // B if Q == 0: B_0 = 1 d = 0 else: div = divisors(Q) B_0 = None for i in div: sQ, _exact = integer_nthroot(abs(Q) // i, 2) if _exact: B_0, d = sign(Q)*i, sQ break if B_0 is not None: W, X, Y = ldescent(A, B_0) return _remove_gcd((-A*X + r*W), (r*X - W), Y*(B_0*d)) def descent(A, B): """ Returns a non-trivial solution, (x, y, z), to `x^2 = Ay^2 + Bz^2` using Lagrange's descent method with lattice-reduction. `A` and `B` are assumed to be valid for such a solution to exist. This is faster than the normal Lagrange's descent algorithm because the Gaussian reduction is used. Examples ======== >>> from sympy.solvers.diophantine.diophantine import descent >>> descent(3, 1) # x**2 = 3*y**2 + z**2 (1, 0, 1) `(x, y, z) = (1, 0, 1)` is a solution to the above equation. >>> descent(41, -113) (-16, -3, 1) References ========== .. [1] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, Mathematics of Computation, Volume 00, Number 0. """ if abs(A) > abs(B): x, y, z = descent(B, A) return x, z, y if B == 1: return (1, 0, 1) if A == 1: return (1, 1, 0) if B == -A: return (0, 1, 1) if B == A: x, z, y = descent(-1, A) return (A*y, z, x) w = sqrt_mod(A, B) x_0, z_0 = gaussian_reduce(w, A, B) t = (x_0**2 - A*z_0**2) // B t_2 = square_factor(t) t_1 = t // t_2**2 x_1, z_1, y_1 = descent(A, t_1) return _remove_gcd(x_0*x_1 + A*z_0*z_1, z_0*x_1 + x_0*z_1, t_1*t_2*y_1) def gaussian_reduce(w, a, b): r""" Returns a reduced solution `(x, z)` to the congruence `X^2 - aZ^2 \equiv 0 \ (mod \ b)` so that `x^2 + |a|z^2` is minimal. Details ======= Here ``w`` is a solution of the congruence `x^2 \equiv a \ (mod \ b)` References ========== .. [1] Gaussian lattice Reduction [online]. Available: http://home.ie.cuhk.edu.hk/~wkshum/wordpress/?p=404 .. [2] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, Mathematics of Computation, Volume 00, Number 0. """ u = (0, 1) v = (1, 0) if dot(u, v, w, a, b) < 0: v = (-v[0], -v[1]) if norm(u, w, a, b) < norm(v, w, a, b): u, v = v, u while norm(u, w, a, b) > norm(v, w, a, b): k = dot(u, v, w, a, b) // dot(v, v, w, a, b) u, v = v, (u[0]- k*v[0], u[1]- k*v[1]) u, v = v, u if dot(u, v, w, a, b) < dot(v, v, w, a, b)/2 or norm((u[0]-v[0], u[1]-v[1]), w, a, b) > norm(v, w, a, b): c = v else: c = (u[0] - v[0], u[1] - v[1]) return c[0]*w + b*c[1], c[0] def dot(u, v, w, a, b): r""" Returns a special dot product of the vectors `u = (u_{1}, u_{2})` and `v = (v_{1}, v_{2})` which is defined in order to reduce solution of the congruence equation `X^2 - aZ^2 \equiv 0 \ (mod \ b)`. """ u_1, u_2 = u v_1, v_2 = v return (w*u_1 + b*u_2)*(w*v_1 + b*v_2) + abs(a)*u_1*v_1 def norm(u, w, a, b): r""" Returns the norm of the vector `u = (u_{1}, u_{2})` under the dot product defined by `u \cdot v = (wu_{1} + bu_{2})(w*v_{1} + bv_{2}) + |a|*u_{1}*v_{1}` where `u = (u_{1}, u_{2})` and `v = (v_{1}, v_{2})`. """ u_1, u_2 = u return sqrt(dot((u_1, u_2), (u_1, u_2), w, a, b)) def holzer(x, y, z, a, b, c): r""" Simplify the solution `(x, y, z)` of the equation `ax^2 + by^2 = cz^2` with `a, b, c > 0` and `z^2 \geq \mid ab \mid` to a new reduced solution `(x', y', z')` such that `z'^2 \leq \mid ab \mid`. The algorithm is an interpretation of Mordell's reduction as described on page 8 of Cremona and Rusin's paper [1]_ and the work of Mordell in reference [2]_. References ========== .. [1] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, Mathematics of Computation, Volume 00, Number 0. .. [2] Diophantine Equations, L. J. Mordell, page 48. """ if _odd(c): k = 2*c else: k = c//2 small = a*b*c step = 0 while True: t1, t2, t3 = a*x**2, b*y**2, c*z**2 # check that it's a solution if t1 + t2 != t3: if step == 0: raise ValueError('bad starting solution') break x_0, y_0, z_0 = x, y, z if max(t1, t2, t3) <= small: # Holzer condition break uv = u, v = base_solution_linear(k, y_0, -x_0) if None in uv: break p, q = -(a*u*x_0 + b*v*y_0), c*z_0 r = Rational(p, q) if _even(c): w = _nint_or_floor(p, q) assert abs(w - r) <= S.Half else: w = p//q # floor if _odd(a*u + b*v + c*w): w += 1 assert abs(w - r) <= S.One A = (a*u**2 + b*v**2 + c*w**2) B = (a*u*x_0 + b*v*y_0 + c*w*z_0) x = Rational(x_0*A - 2*u*B, k) y = Rational(y_0*A - 2*v*B, k) z = Rational(z_0*A - 2*w*B, k) assert all(i.is_Integer for i in (x, y, z)) step += 1 return tuple([int(i) for i in (x_0, y_0, z_0)]) def diop_general_pythagorean(eq, param=symbols("m", integer=True)): """ Solves the general pythagorean equation, `a_{1}^2x_{1}^2 + a_{2}^2x_{2}^2 + . . . + a_{n}^2x_{n}^2 - a_{n + 1}^2x_{n + 1}^2 = 0`. Returns a tuple which contains a parametrized solution to the equation, sorted in the same order as the input variables. Usage ===== ``diop_general_pythagorean(eq, param)``: where ``eq`` is a general pythagorean equation which is assumed to be zero and ``param`` is the base parameter used to construct other parameters by subscripting. Examples ======== >>> from sympy.solvers.diophantine.diophantine import diop_general_pythagorean >>> from sympy.abc import a, b, c, d, e >>> diop_general_pythagorean(a**2 + b**2 + c**2 - d**2) (m1**2 + m2**2 - m3**2, 2*m1*m3, 2*m2*m3, m1**2 + m2**2 + m3**2) >>> diop_general_pythagorean(9*a**2 - 4*b**2 + 16*c**2 + 25*d**2 + e**2) (10*m1**2 + 10*m2**2 + 10*m3**2 - 10*m4**2, 15*m1**2 + 15*m2**2 + 15*m3**2 + 15*m4**2, 15*m1*m4, 12*m2*m4, 60*m3*m4) """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == GeneralPythagorean.name: if param is None: params = None else: params = symbols('%s1:%i' % (param, len(var)), integer=True) return list(GeneralPythagorean(eq).solve(parameters=params))[0] def diop_general_sum_of_squares(eq, limit=1): r""" Solves the equation `x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`. Returns at most ``limit`` number of solutions. Usage ===== ``general_sum_of_squares(eq, limit)`` : Here ``eq`` is an expression which is assumed to be zero. Also, ``eq`` should be in the form, `x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`. Details ======= When `n = 3` if `k = 4^a(8m + 7)` for some `a, m \in Z` then there will be no solutions. Refer [1]_ for more details. Examples ======== >>> from sympy.solvers.diophantine.diophantine import diop_general_sum_of_squares >>> from sympy.abc import a, b, c, d, e >>> diop_general_sum_of_squares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345) {(15, 22, 22, 24, 24)} Reference ========= .. [1] Representing an integer as a sum of three squares, [online], Available: http://www.proofwiki.org/wiki/Integer_as_Sum_of_Three_Squares """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == GeneralSumOfSquares.name: return set(GeneralSumOfSquares(eq).solve(limit=limit)) def diop_general_sum_of_even_powers(eq, limit=1): """ Solves the equation `x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0` where `e` is an even, integer power. Returns at most ``limit`` number of solutions. Usage ===== ``general_sum_of_even_powers(eq, limit)`` : Here ``eq`` is an expression which is assumed to be zero. Also, ``eq`` should be in the form, `x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0`. Examples ======== >>> from sympy.solvers.diophantine.diophantine import diop_general_sum_of_even_powers >>> from sympy.abc import a, b >>> diop_general_sum_of_even_powers(a**4 + b**4 - (2**4 + 3**4)) {(2, 3)} See Also ======== power_representation """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == GeneralSumOfEvenPowers.name: return set(GeneralSumOfEvenPowers(eq).solve(limit=limit)) ## Functions below this comment can be more suitably grouped under ## an Additive number theory module rather than the Diophantine ## equation module. def partition(n, k=None, zeros=False): """ Returns a generator that can be used to generate partitions of an integer `n`. Explanation =========== A partition of `n` is a set of positive integers which add up to `n`. For example, partitions of 3 are 3, 1 + 2, 1 + 1 + 1. A partition is returned as a tuple. If ``k`` equals None, then all possible partitions are returned irrespective of their size, otherwise only the partitions of size ``k`` are returned. If the ``zero`` parameter is set to True then a suitable number of zeros are added at the end of every partition of size less than ``k``. ``zero`` parameter is considered only if ``k`` is not None. When the partitions are over, the last `next()` call throws the ``StopIteration`` exception, so this function should always be used inside a try - except block. Details ======= ``partition(n, k)``: Here ``n`` is a positive integer and ``k`` is the size of the partition which is also positive integer. Examples ======== >>> from sympy.solvers.diophantine.diophantine import partition >>> f = partition(5) >>> next(f) (1, 1, 1, 1, 1) >>> next(f) (1, 1, 1, 2) >>> g = partition(5, 3) >>> next(g) (1, 1, 3) >>> next(g) (1, 2, 2) >>> g = partition(5, 3, zeros=True) >>> next(g) (0, 0, 5) """ from sympy.utilities.iterables import ordered_partitions if not zeros or k is None: for i in ordered_partitions(n, k): yield tuple(i) else: for m in range(1, k + 1): for i in ordered_partitions(n, m): i = tuple(i) yield (0,)*(k - len(i)) + i def prime_as_sum_of_two_squares(p): """ Represent a prime `p` as a unique sum of two squares; this can only be done if the prime is congruent to 1 mod 4. Examples ======== >>> from sympy.solvers.diophantine.diophantine import prime_as_sum_of_two_squares >>> prime_as_sum_of_two_squares(7) # can't be done >>> prime_as_sum_of_two_squares(5) (1, 2) Reference ========= .. [1] Representing a number as a sum of four squares, [online], Available: http://schorn.ch/lagrange.html See Also ======== sum_of_squares() """ if not p % 4 == 1: return if p % 8 == 5: b = 2 else: b = 3 while pow(b, (p - 1) // 2, p) == 1: b = nextprime(b) b = pow(b, (p - 1) // 4, p) a = p while b**2 > p: a, b = b, a % b return (int(a % b), int(b)) # convert from long def sum_of_three_squares(n): r""" Returns a 3-tuple `(a, b, c)` such that `a^2 + b^2 + c^2 = n` and `a, b, c \geq 0`. Returns None if `n = 4^a(8m + 7)` for some `a, m \in Z`. See [1]_ for more details. Usage ===== ``sum_of_three_squares(n)``: Here ``n`` is a non-negative integer. Examples ======== >>> from sympy.solvers.diophantine.diophantine import sum_of_three_squares >>> sum_of_three_squares(44542) (18, 37, 207) References ========== .. [1] Representing a number as a sum of three squares, [online], Available: http://schorn.ch/lagrange.html See Also ======== sum_of_squares() """ special = {1:(1, 0, 0), 2:(1, 1, 0), 3:(1, 1, 1), 10: (1, 3, 0), 34: (3, 3, 4), 58:(3, 7, 0), 85:(6, 7, 0), 130:(3, 11, 0), 214:(3, 6, 13), 226:(8, 9, 9), 370:(8, 9, 15), 526:(6, 7, 21), 706:(15, 15, 16), 730:(1, 27, 0), 1414:(6, 17, 33), 1906:(13, 21, 36), 2986: (21, 32, 39), 9634: (56, 57, 57)} v = 0 if n == 0: return (0, 0, 0) v = multiplicity(4, n) n //= 4**v if n % 8 == 7: return if n in special.keys(): x, y, z = special[n] return _sorted_tuple(2**v*x, 2**v*y, 2**v*z) s, _exact = integer_nthroot(n, 2) if _exact: return (2**v*s, 0, 0) x = None if n % 8 == 3: s = s if _odd(s) else s - 1 for x in range(s, -1, -2): N = (n - x**2) // 2 if isprime(N): y, z = prime_as_sum_of_two_squares(N) return _sorted_tuple(2**v*x, 2**v*(y + z), 2**v*abs(y - z)) return if n % 8 == 2 or n % 8 == 6: s = s if _odd(s) else s - 1 else: s = s - 1 if _odd(s) else s for x in range(s, -1, -2): N = n - x**2 if isprime(N): y, z = prime_as_sum_of_two_squares(N) return _sorted_tuple(2**v*x, 2**v*y, 2**v*z) def sum_of_four_squares(n): r""" Returns a 4-tuple `(a, b, c, d)` such that `a^2 + b^2 + c^2 + d^2 = n`. Here `a, b, c, d \geq 0`. Usage ===== ``sum_of_four_squares(n)``: Here ``n`` is a non-negative integer. Examples ======== >>> from sympy.solvers.diophantine.diophantine import sum_of_four_squares >>> sum_of_four_squares(3456) (8, 8, 32, 48) >>> sum_of_four_squares(1294585930293) (0, 1234, 2161, 1137796) References ========== .. [1] Representing a number as a sum of four squares, [online], Available: http://schorn.ch/lagrange.html See Also ======== sum_of_squares() """ if n == 0: return (0, 0, 0, 0) v = multiplicity(4, n) n //= 4**v if n % 8 == 7: d = 2 n = n - 4 elif n % 8 == 6 or n % 8 == 2: d = 1 n = n - 1 else: d = 0 x, y, z = sum_of_three_squares(n) return _sorted_tuple(2**v*d, 2**v*x, 2**v*y, 2**v*z) def power_representation(n, p, k, zeros=False): r""" Returns a generator for finding k-tuples of integers, `(n_{1}, n_{2}, . . . n_{k})`, such that `n = n_{1}^p + n_{2}^p + . . . n_{k}^p`. Usage ===== ``power_representation(n, p, k, zeros)``: Represent non-negative number ``n`` as a sum of ``k`` ``p``\ th powers. If ``zeros`` is true, then the solutions is allowed to contain zeros. Examples ======== >>> from sympy.solvers.diophantine.diophantine import power_representation Represent 1729 as a sum of two cubes: >>> f = power_representation(1729, 3, 2) >>> next(f) (9, 10) >>> next(f) (1, 12) If the flag `zeros` is True, the solution may contain tuples with zeros; any such solutions will be generated after the solutions without zeros: >>> list(power_representation(125, 2, 3, zeros=True)) [(5, 6, 8), (3, 4, 10), (0, 5, 10), (0, 2, 11)] For even `p` the `permute_sign` function can be used to get all signed values: >>> from sympy.utilities.iterables import permute_signs >>> list(permute_signs((1, 12))) [(1, 12), (-1, 12), (1, -12), (-1, -12)] All possible signed permutations can also be obtained: >>> from sympy.utilities.iterables import signed_permutations >>> list(signed_permutations((1, 12))) [(1, 12), (-1, 12), (1, -12), (-1, -12), (12, 1), (-12, 1), (12, -1), (-12, -1)] """ n, p, k = [as_int(i) for i in (n, p, k)] if n < 0: if p % 2: for t in power_representation(-n, p, k, zeros): yield tuple(-i for i in t) return if p < 1 or k < 1: raise ValueError(filldedent(''' Expecting positive integers for `(p, k)`, but got `(%s, %s)`''' % (p, k))) if n == 0: if zeros: yield (0,)*k return if k == 1: if p == 1: yield (n,) else: be = perfect_power(n) if be: b, e = be d, r = divmod(e, p) if not r: yield (b**d,) return if p == 1: for t in partition(n, k, zeros=zeros): yield t return if p == 2: feasible = _can_do_sum_of_squares(n, k) if not feasible: return if not zeros and n > 33 and k >= 5 and k <= n and n - k in ( 13, 10, 7, 5, 4, 2, 1): '''Todd G. Will, "When Is n^2 a Sum of k Squares?", [online]. Available: https://www.maa.org/sites/default/files/Will-MMz-201037918.pdf''' return if feasible is not True: # it's prime and k == 2 yield prime_as_sum_of_two_squares(n) return if k == 2 and p > 2: be = perfect_power(n) if be and be[1] % p == 0: return # Fermat: a**n + b**n = c**n has no solution for n > 2 if n >= k: a = integer_nthroot(n - (k - 1), p)[0] for t in pow_rep_recursive(a, k, n, [], p): yield tuple(reversed(t)) if zeros: a = integer_nthroot(n, p)[0] for i in range(1, k): for t in pow_rep_recursive(a, i, n, [], p): yield tuple(reversed(t + (0,)*(k - i))) sum_of_powers = power_representation def pow_rep_recursive(n_i, k, n_remaining, terms, p): if k == 0 and n_remaining == 0: yield tuple(terms) else: if n_i >= 1 and k > 0: yield from pow_rep_recursive(n_i - 1, k, n_remaining, terms, p) residual = n_remaining - pow(n_i, p) if residual >= 0: yield from pow_rep_recursive(n_i, k - 1, residual, terms + [n_i], p) def sum_of_squares(n, k, zeros=False): """Return a generator that yields the k-tuples of nonnegative values, the squares of which sum to n. If zeros is False (default) then the solution will not contain zeros. The nonnegative elements of a tuple are sorted. * If k == 1 and n is square, (n,) is returned. * If k == 2 then n can only be written as a sum of squares if every prime in the factorization of n that has the form 4*k + 3 has an even multiplicity. If n is prime then it can only be written as a sum of two squares if it is in the form 4*k + 1. * if k == 3 then n can be written as a sum of squares if it does not have the form 4**m*(8*k + 7). * all integers can be written as the sum of 4 squares. * if k > 4 then n can be partitioned and each partition can be written as a sum of 4 squares; if n is not evenly divisible by 4 then n can be written as a sum of squares only if the an additional partition can be written as sum of squares. For example, if k = 6 then n is partitioned into two parts, the first being written as a sum of 4 squares and the second being written as a sum of 2 squares -- which can only be done if the condition above for k = 2 can be met, so this will automatically reject certain partitions of n. Examples ======== >>> from sympy.solvers.diophantine.diophantine import sum_of_squares >>> list(sum_of_squares(25, 2)) [(3, 4)] >>> list(sum_of_squares(25, 2, True)) [(3, 4), (0, 5)] >>> list(sum_of_squares(25, 4)) [(1, 2, 2, 4)] See Also ======== sympy.utilities.iterables.signed_permutations """ yield from power_representation(n, 2, k, zeros) def _can_do_sum_of_squares(n, k): """Return True if n can be written as the sum of k squares, False if it can't, or 1 if ``k == 2`` and ``n`` is prime (in which case it *can* be written as a sum of two squares). A False is returned only if it can't be written as ``k``-squares, even if 0s are allowed. """ if k < 1: return False if n < 0: return False if n == 0: return True if k == 1: return is_square(n) if k == 2: if n in (1, 2): return True if isprime(n): if n % 4 == 1: return 1 # signal that it was prime return False else: f = factorint(n) for p, m in f.items(): # we can proceed iff no prime factor in the form 4*k + 3 # has an odd multiplicity if (p % 4 == 3) and m % 2: return False return True if k == 3: if (n//4**multiplicity(4, n)) % 8 == 7: return False # every number can be written as a sum of 4 squares; for k > 4 partitions # can be 0 return True
2788f3fb79631dd7df079d46bbd5808cd4f1589a5a7572db97083918263f8e17
r""" This module contains :py:meth:`~sympy.solvers.ode.dsolve` and different helper functions that it uses. :py:meth:`~sympy.solvers.ode.dsolve` solves ordinary differential equations. See the docstring on the various functions for their uses. Note that partial differential equations support is in ``pde.py``. Note that hint functions have docstrings describing their various methods, but they are intended for internal use. Use ``dsolve(ode, func, hint=hint)`` to solve an ODE using a specific hint. See also the docstring on :py:meth:`~sympy.solvers.ode.dsolve`. **Functions in this module** These are the user functions in this module: - :py:meth:`~sympy.solvers.ode.dsolve` - Solves ODEs. - :py:meth:`~sympy.solvers.ode.classify_ode` - Classifies ODEs into possible hints for :py:meth:`~sympy.solvers.ode.dsolve`. - :py:meth:`~sympy.solvers.ode.checkodesol` - Checks if an equation is the solution to an ODE. - :py:meth:`~sympy.solvers.ode.homogeneous_order` - Returns the homogeneous order of an expression. - :py:meth:`~sympy.solvers.ode.infinitesimals` - Returns the infinitesimals of the Lie group of point transformations of an ODE, such that it is invariant. - :py:meth:`~sympy.solvers.ode.checkinfsol` - Checks if the given infinitesimals are the actual infinitesimals of a first order ODE. These are the non-solver helper functions that are for internal use. The user should use the various options to :py:meth:`~sympy.solvers.ode.dsolve` to obtain the functionality provided by these functions: - :py:meth:`~sympy.solvers.ode.ode.odesimp` - Does all forms of ODE simplification. - :py:meth:`~sympy.solvers.ode.ode.ode_sol_simplicity` - A key function for comparing solutions by simplicity. - :py:meth:`~sympy.solvers.ode.constantsimp` - Simplifies arbitrary constants. - :py:meth:`~sympy.solvers.ode.ode.constant_renumber` - Renumber arbitrary constants. - :py:meth:`~sympy.solvers.ode.ode._handle_Integral` - Evaluate unevaluated Integrals. See also the docstrings of these functions. **Currently implemented solver methods** The following methods are implemented for solving ordinary differential equations. See the docstrings of the various hint functions for more information on each (run ``help(ode)``): - 1st order separable differential equations. - 1st order differential equations whose coefficients or `dx` and `dy` are functions homogeneous of the same order. - 1st order exact differential equations. - 1st order linear differential equations. - 1st order Bernoulli differential equations. - Power series solutions for first order differential equations. - Lie Group method of solving first order differential equations. - 2nd order Liouville differential equations. - Power series solutions for second order differential equations at ordinary and regular singular points. - `n`\th order differential equation that can be solved with algebraic rearrangement and integration. - `n`\th order linear homogeneous differential equation with constant coefficients. - `n`\th order linear inhomogeneous differential equation with constant coefficients using the method of undetermined coefficients. - `n`\th order linear inhomogeneous differential equation with constant coefficients using the method of variation of parameters. **Philosophy behind this module** This module is designed to make it easy to add new ODE solving methods without having to mess with the solving code for other methods. The idea is that there is a :py:meth:`~sympy.solvers.ode.classify_ode` function, which takes in an ODE and tells you what hints, if any, will solve the ODE. It does this without attempting to solve the ODE, so it is fast. Each solving method is a hint, and it has its own function, named ``ode_<hint>``. That function takes in the ODE and any match expression gathered by :py:meth:`~sympy.solvers.ode.classify_ode` and returns a solved result. If this result has any integrals in it, the hint function will return an unevaluated :py:class:`~sympy.integrals.integrals.Integral` class. :py:meth:`~sympy.solvers.ode.dsolve`, which is the user wrapper function around all of this, will then call :py:meth:`~sympy.solvers.ode.ode.odesimp` on the result, which, among other things, will attempt to solve the equation for the dependent variable (the function we are solving for), simplify the arbitrary constants in the expression, and evaluate any integrals, if the hint allows it. **How to add new solution methods** If you have an ODE that you want :py:meth:`~sympy.solvers.ode.dsolve` to be able to solve, try to avoid adding special case code here. Instead, try finding a general method that will solve your ODE, as well as others. This way, the :py:mod:`~sympy.solvers.ode` module will become more robust, and unhindered by special case hacks. WolphramAlpha and Maple's DETools[odeadvisor] function are two resources you can use to classify a specific ODE. It is also better for a method to work with an `n`\th order ODE instead of only with specific orders, if possible. To add a new method, there are a few things that you need to do. First, you need a hint name for your method. Try to name your hint so that it is unambiguous with all other methods, including ones that may not be implemented yet. If your method uses integrals, also include a ``hint_Integral`` hint. If there is more than one way to solve ODEs with your method, include a hint for each one, as well as a ``<hint>_best`` hint. Your ``ode_<hint>_best()`` function should choose the best using min with ``ode_sol_simplicity`` as the key argument. See :py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_best`, for example. The function that uses your method will be called ``ode_<hint>()``, so the hint must only use characters that are allowed in a Python function name (alphanumeric characters and the underscore '``_``' character). Include a function for every hint, except for ``_Integral`` hints (:py:meth:`~sympy.solvers.ode.dsolve` takes care of those automatically). Hint names should be all lowercase, unless a word is commonly capitalized (such as Integral or Bernoulli). If you have a hint that you do not want to run with ``all_Integral`` that doesn't have an ``_Integral`` counterpart (such as a best hint that would defeat the purpose of ``all_Integral``), you will need to remove it manually in the :py:meth:`~sympy.solvers.ode.dsolve` code. See also the :py:meth:`~sympy.solvers.ode.classify_ode` docstring for guidelines on writing a hint name. Determine *in general* how the solutions returned by your method compare with other methods that can potentially solve the same ODEs. Then, put your hints in the :py:data:`~sympy.solvers.ode.allhints` tuple in the order that they should be called. The ordering of this tuple determines which hints are default. Note that exceptions are ok, because it is easy for the user to choose individual hints with :py:meth:`~sympy.solvers.ode.dsolve`. In general, ``_Integral`` variants should go at the end of the list, and ``_best`` variants should go before the various hints they apply to. For example, the ``undetermined_coefficients`` hint comes before the ``variation_of_parameters`` hint because, even though variation of parameters is more general than undetermined coefficients, undetermined coefficients generally returns cleaner results for the ODEs that it can solve than variation of parameters does, and it does not require integration, so it is much faster. Next, you need to have a match expression or a function that matches the type of the ODE, which you should put in :py:meth:`~sympy.solvers.ode.classify_ode` (if the match function is more than just a few lines, like :py:meth:`~sympy.solvers.ode.ode._undetermined_coefficients_match`, it should go outside of :py:meth:`~sympy.solvers.ode.classify_ode`). It should match the ODE without solving for it as much as possible, so that :py:meth:`~sympy.solvers.ode.classify_ode` remains fast and is not hindered by bugs in solving code. Be sure to consider corner cases. For example, if your solution method involves dividing by something, make sure you exclude the case where that division will be 0. In most cases, the matching of the ODE will also give you the various parts that you need to solve it. You should put that in a dictionary (``.match()`` will do this for you), and add that as ``matching_hints['hint'] = matchdict`` in the relevant part of :py:meth:`~sympy.solvers.ode.classify_ode`. :py:meth:`~sympy.solvers.ode.classify_ode` will then send this to :py:meth:`~sympy.solvers.ode.dsolve`, which will send it to your function as the ``match`` argument. Your function should be named ``ode_<hint>(eq, func, order, match)`. If you need to send more information, put it in the ``match`` dictionary. For example, if you had to substitute in a dummy variable in :py:meth:`~sympy.solvers.ode.classify_ode` to match the ODE, you will need to pass it to your function using the `match` dict to access it. You can access the independent variable using ``func.args[0]``, and the dependent variable (the function you are trying to solve for) as ``func.func``. If, while trying to solve the ODE, you find that you cannot, raise ``NotImplementedError``. :py:meth:`~sympy.solvers.ode.dsolve` will catch this error with the ``all`` meta-hint, rather than causing the whole routine to fail. Add a docstring to your function that describes the method employed. Like with anything else in SymPy, you will need to add a doctest to the docstring, in addition to real tests in ``test_ode.py``. Try to maintain consistency with the other hint functions' docstrings. Add your method to the list at the top of this docstring. Also, add your method to ``ode.rst`` in the ``docs/src`` directory, so that the Sphinx docs will pull its docstring into the main SymPy documentation. Be sure to make the Sphinx documentation by running ``make html`` from within the doc directory to verify that the docstring formats correctly. If your solution method involves integrating, use :py:obj:`~.Integral` instead of :py:meth:`~sympy.core.expr.Expr.integrate`. This allows the user to bypass hard/slow integration by using the ``_Integral`` variant of your hint. In most cases, calling :py:meth:`sympy.core.basic.Basic.doit` will integrate your solution. If this is not the case, you will need to write special code in :py:meth:`~sympy.solvers.ode.ode._handle_Integral`. Arbitrary constants should be symbols named ``C1``, ``C2``, and so on. All solution methods should return an equality instance. If you need an arbitrary number of arbitrary constants, you can use ``constants = numbered_symbols(prefix='C', cls=Symbol, start=1)``. If it is possible to solve for the dependent function in a general way, do so. Otherwise, do as best as you can, but do not call solve in your ``ode_<hint>()`` function. :py:meth:`~sympy.solvers.ode.ode.odesimp` will attempt to solve the solution for you, so you do not need to do that. Lastly, if your ODE has a common simplification that can be applied to your solutions, you can add a special case in :py:meth:`~sympy.solvers.ode.ode.odesimp` for it. For example, solutions returned from the ``1st_homogeneous_coeff`` hints often have many :obj:`~sympy.functions.elementary.exponential.log` terms, so :py:meth:`~sympy.solvers.ode.ode.odesimp` calls :py:meth:`~sympy.simplify.simplify.logcombine` on them (it also helps to write the arbitrary constant as ``log(C1)`` instead of ``C1`` in this case). Also consider common ways that you can rearrange your solution to have :py:meth:`~sympy.solvers.ode.constantsimp` take better advantage of it. It is better to put simplification in :py:meth:`~sympy.solvers.ode.ode.odesimp` than in your method, because it can then be turned off with the simplify flag in :py:meth:`~sympy.solvers.ode.dsolve`. If you have any extraneous simplification in your function, be sure to only run it using ``if match.get('simplify', True):``, especially if it can be slow or if it can reduce the domain of the solution. Finally, as with every contribution to SymPy, your method will need to be tested. Add a test for each method in ``test_ode.py``. Follow the conventions there, i.e., test the solver using ``dsolve(eq, f(x), hint=your_hint)``, and also test the solution using :py:meth:`~sympy.solvers.ode.checkodesol` (you can put these in a separate tests and skip/XFAIL if it runs too slow/doesn't work). Be sure to call your hint specifically in :py:meth:`~sympy.solvers.ode.dsolve`, that way the test won't be broken simply by the introduction of another matching hint. If your method works for higher order (>1) ODEs, you will need to run ``sol = constant_renumber(sol, 'C', 1, order)`` for each solution, where ``order`` is the order of the ODE. This is because ``constant_renumber`` renumbers the arbitrary constants by printing order, which is platform dependent. Try to test every corner case of your solver, including a range of orders if it is a `n`\th order solver, but if your solver is slow, such as if it involves hard integration, try to keep the test run time down. Feel free to refactor existing hints to avoid duplicating code or creating inconsistencies. If you can show that your method exactly duplicates an existing method, including in the simplicity and speed of obtaining the solutions, then you can remove the old, less general method. The existing code is tested extensively in ``test_ode.py``, so if anything is broken, one of those tests will surely fail. """ from collections import defaultdict from itertools import islice from sympy.functions import hyper from sympy.core import Add, S, Mul, Pow, oo, Rational from sympy.core.compatibility import ordered, iterable from sympy.core.containers import Tuple from sympy.core.exprtools import factor_terms from sympy.core.expr import AtomicExpr, Expr from sympy.core.function import (Function, Derivative, AppliedUndef, diff, expand, expand_mul, Subs, _mexpand) from sympy.core.multidimensional import vectorize from sympy.core.numbers import NaN, zoo, Number from sympy.core.relational import Equality, Eq from sympy.core.symbol import Symbol, Wild, Dummy, symbols from sympy.core.sympify import sympify from sympy.logic.boolalg import (BooleanAtom, BooleanTrue, BooleanFalse) from sympy.functions import cos, cosh, exp, im, log, re, sin, sinh, sqrt, \ atan2, conjugate, cbrt, besselj, bessely, airyai, airybi from sympy.functions.combinatorial.factorials import factorial from sympy.integrals.integrals import Integral, integrate from sympy.matrices import wronskian from sympy.polys import (Poly, RootOf, rootof, terms_gcd, PolynomialError, lcm, roots, gcd) from sympy.polys.polytools import cancel, degree, div from sympy.series import Order from sympy.series.series import series from sympy.simplify import (collect, logcombine, powsimp, # type: ignore separatevars, simplify, trigsimp, posify, cse) from sympy.simplify.powsimp import powdenest from sympy.simplify.radsimp import collect_const from sympy.solvers import checksol, solve from sympy.solvers.pde import pdsolve from sympy.utilities import numbered_symbols, default_sort_key, sift from sympy.utilities.iterables import uniq from sympy.solvers.deutils import _preprocess, ode_order, _desolve from .subscheck import sub_func_doit #: This is a list of hints in the order that they should be preferred by #: :py:meth:`~sympy.solvers.ode.classify_ode`. In general, hints earlier in the #: list should produce simpler solutions than those later in the list (for #: ODEs that fit both). For now, the order of this list is based on empirical #: observations by the developers of SymPy. #: #: The hint used by :py:meth:`~sympy.solvers.ode.dsolve` for a specific ODE #: can be overridden (see the docstring). #: #: In general, ``_Integral`` hints are grouped at the end of the list, unless #: there is a method that returns an unevaluable integral most of the time #: (which go near the end of the list anyway). ``default``, ``all``, #: ``best``, and ``all_Integral`` meta-hints should not be included in this #: list, but ``_best`` and ``_Integral`` hints should be included. allhints = ( "factorable", "nth_algebraic", "separable", "1st_exact", "1st_linear", "Bernoulli", "Riccati_special_minus2", "1st_homogeneous_coeff_best", "1st_homogeneous_coeff_subs_indep_div_dep", "1st_homogeneous_coeff_subs_dep_div_indep", "almost_linear", "linear_coefficients", "separable_reduced", "1st_power_series", "lie_group", "nth_linear_constant_coeff_homogeneous", "nth_linear_euler_eq_homogeneous", "nth_linear_constant_coeff_undetermined_coefficients", "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients", "nth_linear_constant_coeff_variation_of_parameters", "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters", "Liouville", "2nd_linear_airy", "2nd_linear_bessel", "2nd_hypergeometric", "2nd_hypergeometric_Integral", "nth_order_reducible", "2nd_power_series_ordinary", "2nd_power_series_regular", "nth_algebraic_Integral", "separable_Integral", "1st_exact_Integral", "1st_linear_Integral", "Bernoulli_Integral", "1st_homogeneous_coeff_subs_indep_div_dep_Integral", "1st_homogeneous_coeff_subs_dep_div_indep_Integral", "almost_linear_Integral", "linear_coefficients_Integral", "separable_reduced_Integral", "nth_linear_constant_coeff_variation_of_parameters_Integral", "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral", "Liouville_Integral", "2nd_nonlinear_autonomous_conserved", "2nd_nonlinear_autonomous_conserved_Integral", ) lie_heuristics = ( "abaco1_simple", "abaco1_product", "abaco2_similar", "abaco2_unique_unknown", "abaco2_unique_general", "linear", "function_sum", "bivariate", "chi" ) def get_numbered_constants(eq, num=1, start=1, prefix='C'): """ Returns a list of constants that do not occur in eq already. """ ncs = iter_numbered_constants(eq, start, prefix) Cs = [next(ncs) for i in range(num)] return (Cs[0] if num == 1 else tuple(Cs)) def iter_numbered_constants(eq, start=1, prefix='C'): """ Returns an iterator of constants that do not occur in eq already. """ if isinstance(eq, (Expr, Eq)): eq = [eq] elif not iterable(eq): raise ValueError("Expected Expr or iterable but got %s" % eq) atom_set = set().union(*[i.free_symbols for i in eq]) func_set = set().union(*[i.atoms(Function) for i in eq]) if func_set: atom_set |= {Symbol(str(f.func)) for f in func_set} return numbered_symbols(start=start, prefix=prefix, exclude=atom_set) def dsolve(eq, func=None, hint="default", simplify=True, ics= None, xi=None, eta=None, x0=0, n=6, **kwargs): r""" Solves any (supported) kind of ordinary differential equation and system of ordinary differential equations. For single ordinary differential equation ========================================= It is classified under this when number of equation in ``eq`` is one. **Usage** ``dsolve(eq, f(x), hint)`` -> Solve ordinary differential equation ``eq`` for function ``f(x)``, using method ``hint``. **Details** ``eq`` can be any supported ordinary differential equation (see the :py:mod:`~sympy.solvers.ode` docstring for supported methods). This can either be an :py:class:`~sympy.core.relational.Equality`, or an expression, which is assumed to be equal to ``0``. ``f(x)`` is a function of one variable whose derivatives in that variable make up the ordinary differential equation ``eq``. In many cases it is not necessary to provide this; it will be autodetected (and an error raised if it couldn't be detected). ``hint`` is the solving method that you want dsolve to use. Use ``classify_ode(eq, f(x))`` to get all of the possible hints for an ODE. The default hint, ``default``, will use whatever hint is returned first by :py:meth:`~sympy.solvers.ode.classify_ode`. See Hints below for more options that you can use for hint. ``simplify`` enables simplification by :py:meth:`~sympy.solvers.ode.ode.odesimp`. See its docstring for more information. Turn this off, for example, to disable solving of solutions for ``func`` or simplification of arbitrary constants. It will still integrate with this hint. Note that the solution may contain more arbitrary constants than the order of the ODE with this option enabled. ``xi`` and ``eta`` are the infinitesimal functions of an ordinary differential equation. They are the infinitesimals of the Lie group of point transformations for which the differential equation is invariant. The user can specify values for the infinitesimals. If nothing is specified, ``xi`` and ``eta`` are calculated using :py:meth:`~sympy.solvers.ode.infinitesimals` with the help of various heuristics. ``ics`` is the set of initial/boundary conditions for the differential equation. It should be given in the form of ``{f(x0): x1, f(x).diff(x).subs(x, x2): x3}`` and so on. For power series solutions, if no initial conditions are specified ``f(0)`` is assumed to be ``C0`` and the power series solution is calculated about 0. ``x0`` is the point about which the power series solution of a differential equation is to be evaluated. ``n`` gives the exponent of the dependent variable up to which the power series solution of a differential equation is to be evaluated. **Hints** Aside from the various solving methods, there are also some meta-hints that you can pass to :py:meth:`~sympy.solvers.ode.dsolve`: ``default``: This uses whatever hint is returned first by :py:meth:`~sympy.solvers.ode.classify_ode`. This is the default argument to :py:meth:`~sympy.solvers.ode.dsolve`. ``all``: To make :py:meth:`~sympy.solvers.ode.dsolve` apply all relevant classification hints, use ``dsolve(ODE, func, hint="all")``. This will return a dictionary of ``hint:solution`` terms. If a hint causes dsolve to raise the ``NotImplementedError``, value of that hint's key will be the exception object raised. The dictionary will also include some special keys: - ``order``: The order of the ODE. See also :py:meth:`~sympy.solvers.deutils.ode_order` in ``deutils.py``. - ``best``: The simplest hint; what would be returned by ``best`` below. - ``best_hint``: The hint that would produce the solution given by ``best``. If more than one hint produces the best solution, the first one in the tuple returned by :py:meth:`~sympy.solvers.ode.classify_ode` is chosen. - ``default``: The solution that would be returned by default. This is the one produced by the hint that appears first in the tuple returned by :py:meth:`~sympy.solvers.ode.classify_ode`. ``all_Integral``: This is the same as ``all``, except if a hint also has a corresponding ``_Integral`` hint, it only returns the ``_Integral`` hint. This is useful if ``all`` causes :py:meth:`~sympy.solvers.ode.dsolve` to hang because of a difficult or impossible integral. This meta-hint will also be much faster than ``all``, because :py:meth:`~sympy.core.expr.Expr.integrate` is an expensive routine. ``best``: To have :py:meth:`~sympy.solvers.ode.dsolve` try all methods and return the simplest one. This takes into account whether the solution is solvable in the function, whether it contains any Integral classes (i.e. unevaluatable integrals), and which one is the shortest in size. See also the :py:meth:`~sympy.solvers.ode.classify_ode` docstring for more info on hints, and the :py:mod:`~sympy.solvers.ode` docstring for a list of all supported hints. **Tips** - You can declare the derivative of an unknown function this way: >>> from sympy import Function, Derivative >>> from sympy.abc import x # x is the independent variable >>> f = Function("f")(x) # f is a function of x >>> # f_ will be the derivative of f with respect to x >>> f_ = Derivative(f, x) - See ``test_ode.py`` for many tests, which serves also as a set of examples for how to use :py:meth:`~sympy.solvers.ode.dsolve`. - :py:meth:`~sympy.solvers.ode.dsolve` always returns an :py:class:`~sympy.core.relational.Equality` class (except for the case when the hint is ``all`` or ``all_Integral``). If possible, it solves the solution explicitly for the function being solved for. Otherwise, it returns an implicit solution. - Arbitrary constants are symbols named ``C1``, ``C2``, and so on. - Because all solutions should be mathematically equivalent, some hints may return the exact same result for an ODE. Often, though, two different hints will return the same solution formatted differently. The two should be equivalent. Also note that sometimes the values of the arbitrary constants in two different solutions may not be the same, because one constant may have "absorbed" other constants into it. - Do ``help(ode.ode_<hintname>)`` to get help more information on a specific hint, where ``<hintname>`` is the name of a hint without ``_Integral``. For system of ordinary differential equations ============================================= **Usage** ``dsolve(eq, func)`` -> Solve a system of ordinary differential equations ``eq`` for ``func`` being list of functions including `x(t)`, `y(t)`, `z(t)` where number of functions in the list depends upon the number of equations provided in ``eq``. **Details** ``eq`` can be any supported system of ordinary differential equations This can either be an :py:class:`~sympy.core.relational.Equality`, or an expression, which is assumed to be equal to ``0``. ``func`` holds ``x(t)`` and ``y(t)`` being functions of one variable which together with some of their derivatives make up the system of ordinary differential equation ``eq``. It is not necessary to provide this; it will be autodetected (and an error raised if it couldn't be detected). **Hints** The hints are formed by parameters returned by classify_sysode, combining them give hints name used later for forming method name. Examples ======== >>> from sympy import Function, dsolve, Eq, Derivative, sin, cos, symbols >>> from sympy.abc import x >>> f = Function('f') >>> dsolve(Derivative(f(x), x, x) + 9*f(x), f(x)) Eq(f(x), C1*sin(3*x) + C2*cos(3*x)) >>> eq = sin(x)*cos(f(x)) + cos(x)*sin(f(x))*f(x).diff(x) >>> dsolve(eq, hint='1st_exact') [Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))] >>> dsolve(eq, hint='almost_linear') [Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))] >>> t = symbols('t') >>> x, y = symbols('x, y', cls=Function) >>> eq = (Eq(Derivative(x(t),t), 12*t*x(t) + 8*y(t)), Eq(Derivative(y(t),t), 21*x(t) + 7*t*y(t))) >>> dsolve(eq) [Eq(x(t), C1*x0(t) + C2*x0(t)*Integral(8*exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)**2, t)), Eq(y(t), C1*y0(t) + C2*(y0(t)*Integral(8*exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)**2, t) + exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)))] >>> eq = (Eq(Derivative(x(t),t),x(t)*y(t)*sin(t)), Eq(Derivative(y(t),t),y(t)**2*sin(t))) >>> dsolve(eq) {Eq(x(t), -exp(C1)/(C2*exp(C1) - cos(t))), Eq(y(t), -1/(C1 - cos(t)))} """ if iterable(eq): from sympy.solvers.ode.systems import dsolve_system # This may have to be changed in future # when we have weakly and strongly # connected components. This have to # changed to show the systems that haven't # been solved. try: sol = dsolve_system(eq, funcs=func, ics=ics, doit=True) return sol[0] if len(sol) == 1 else sol except NotImplementedError: pass match = classify_sysode(eq, func) eq = match['eq'] order = match['order'] func = match['func'] t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] # keep highest order term coefficient positive for i in range(len(eq)): for func_ in func: if isinstance(func_, list): pass else: if eq[i].coeff(diff(func[i],t,ode_order(eq[i], func[i]))).is_negative: eq[i] = -eq[i] match['eq'] = eq if len(set(order.values()))!=1: raise ValueError("It solves only those systems of equations whose orders are equal") match['order'] = list(order.values())[0] def recur_len(l): return sum(recur_len(item) if isinstance(item,list) else 1 for item in l) if recur_len(func) != len(eq): raise ValueError("dsolve() and classify_sysode() work with " "number of functions being equal to number of equations") if match['type_of_equation'] is None: raise NotImplementedError else: if match['is_linear'] == True: solvefunc = globals()['sysode_linear_%(no_of_equation)seq_order%(order)s' % match] else: solvefunc = globals()['sysode_nonlinear_%(no_of_equation)seq_order%(order)s' % match] sols = solvefunc(match) if ics: constants = Tuple(*sols).free_symbols - Tuple(*eq).free_symbols solved_constants = solve_ics(sols, func, constants, ics) return [sol.subs(solved_constants) for sol in sols] return sols else: given_hint = hint # hint given by the user # See the docstring of _desolve for more details. hints = _desolve(eq, func=func, hint=hint, simplify=True, xi=xi, eta=eta, type='ode', ics=ics, x0=x0, n=n, **kwargs) eq = hints.pop('eq', eq) all_ = hints.pop('all', False) if all_: retdict = {} failed_hints = {} gethints = classify_ode(eq, dict=True) orderedhints = gethints['ordered_hints'] for hint in hints: try: rv = _helper_simplify(eq, hint, hints[hint], simplify) except NotImplementedError as detail: failed_hints[hint] = detail else: retdict[hint] = rv func = hints[hint]['func'] retdict['best'] = min(list(retdict.values()), key=lambda x: ode_sol_simplicity(x, func, trysolving=not simplify)) if given_hint == 'best': return retdict['best'] for i in orderedhints: if retdict['best'] == retdict.get(i, None): retdict['best_hint'] = i break retdict['default'] = gethints['default'] retdict['order'] = gethints['order'] retdict.update(failed_hints) return retdict else: # The key 'hint' stores the hint needed to be solved for. hint = hints['hint'] return _helper_simplify(eq, hint, hints, simplify, ics=ics) def _helper_simplify(eq, hint, match, simplify=True, ics=None, **kwargs): r""" Helper function of dsolve that calls the respective :py:mod:`~sympy.solvers.ode` functions to solve for the ordinary differential equations. This minimizes the computation in calling :py:meth:`~sympy.solvers.deutils._desolve` multiple times. """ r = match func = r['func'] order = r['order'] match = r[hint] if isinstance(match, SingleODESolver): solvefunc = match elif hint.endswith('_Integral'): solvefunc = globals()['ode_' + hint[:-len('_Integral')]] else: solvefunc = globals()['ode_' + hint] free = eq.free_symbols cons = lambda s: s.free_symbols.difference(free) if simplify: # odesimp() will attempt to integrate, if necessary, apply constantsimp(), # attempt to solve for func, and apply any other hint specific # simplifications if isinstance(solvefunc, SingleODESolver): sols = solvefunc.get_general_solution() else: sols = solvefunc(eq, func, order, match) if iterable(sols): rv = [odesimp(eq, s, func, hint) for s in sols] else: rv = odesimp(eq, sols, func, hint) else: # We still want to integrate (you can disable it separately with the hint) if isinstance(solvefunc, SingleODESolver): exprs = solvefunc.get_general_solution(simplify=False) else: match['simplify'] = False # Some hints can take advantage of this option exprs = solvefunc(eq, func, order, match) if isinstance(exprs, list): rv = [_handle_Integral(expr, func, hint) for expr in exprs] else: rv = _handle_Integral(exprs, func, hint) if isinstance(rv, list): if simplify: rv = _remove_redundant_solutions(eq, rv, order, func.args[0]) if len(rv) == 1: rv = rv[0] if ics and not 'power_series' in hint: if isinstance(rv, (Expr, Eq)): solved_constants = solve_ics([rv], [r['func']], cons(rv), ics) rv = rv.subs(solved_constants) else: rv1 = [] for s in rv: try: solved_constants = solve_ics([s], [r['func']], cons(s), ics) except ValueError: continue rv1.append(s.subs(solved_constants)) if len(rv1) == 1: return rv1[0] rv = rv1 return rv def solve_ics(sols, funcs, constants, ics): """ Solve for the constants given initial conditions ``sols`` is a list of solutions. ``funcs`` is a list of functions. ``constants`` is a list of constants. ``ics`` is the set of initial/boundary conditions for the differential equation. It should be given in the form of ``{f(x0): x1, f(x).diff(x).subs(x, x2): x3}`` and so on. Returns a dictionary mapping constants to values. ``solution.subs(constants)`` will replace the constants in ``solution``. Example ======= >>> # From dsolve(f(x).diff(x) - f(x), f(x)) >>> from sympy import symbols, Eq, exp, Function >>> from sympy.solvers.ode.ode import solve_ics >>> f = Function('f') >>> x, C1 = symbols('x C1') >>> sols = [Eq(f(x), C1*exp(x))] >>> funcs = [f(x)] >>> constants = [C1] >>> ics = {f(0): 2} >>> solved_constants = solve_ics(sols, funcs, constants, ics) >>> solved_constants {C1: 2} >>> sols[0].subs(solved_constants) Eq(f(x), 2*exp(x)) """ # Assume ics are of the form f(x0): value or Subs(diff(f(x), x, n), (x, # x0)): value (currently checked by classify_ode). To solve, replace x # with x0, f(x0) with value, then solve for constants. For f^(n)(x0), # differentiate the solution n times, so that f^(n)(x) appears. x = funcs[0].args[0] diff_sols = [] subs_sols = [] diff_variables = set() for funcarg, value in ics.items(): if isinstance(funcarg, AppliedUndef): x0 = funcarg.args[0] matching_func = [f for f in funcs if f.func == funcarg.func][0] S = sols elif isinstance(funcarg, (Subs, Derivative)): if isinstance(funcarg, Subs): # Make sure it stays a subs. Otherwise subs below will produce # a different looking term. funcarg = funcarg.doit() if isinstance(funcarg, Subs): deriv = funcarg.expr x0 = funcarg.point[0] variables = funcarg.expr.variables matching_func = deriv elif isinstance(funcarg, Derivative): deriv = funcarg x0 = funcarg.variables[0] variables = (x,)*len(funcarg.variables) matching_func = deriv.subs(x0, x) if variables not in diff_variables: for sol in sols: if sol.has(deriv.expr.func): diff_sols.append(Eq(sol.lhs.diff(*variables), sol.rhs.diff(*variables))) diff_variables.add(variables) S = diff_sols else: raise NotImplementedError("Unrecognized initial condition") for sol in S: if sol.has(matching_func): sol2 = sol sol2 = sol2.subs(x, x0) sol2 = sol2.subs(funcarg, value) # This check is necessary because of issue #15724 if not isinstance(sol2, BooleanAtom) or not subs_sols: subs_sols = [s for s in subs_sols if not isinstance(s, BooleanAtom)] subs_sols.append(sol2) # TODO: Use solveset here try: solved_constants = solve(subs_sols, constants, dict=True) except NotImplementedError: solved_constants = [] # XXX: We can't differentiate between the solution not existing because of # invalid initial conditions, and not existing because solve is not smart # enough. If we could use solveset, this might be improvable, but for now, # we use NotImplementedError in this case. if not solved_constants: raise ValueError("Couldn't solve for initial conditions") if solved_constants == True: raise ValueError("Initial conditions did not produce any solutions for constants. Perhaps they are degenerate.") if len(solved_constants) > 1: raise NotImplementedError("Initial conditions produced too many solutions for constants") return solved_constants[0] def classify_ode(eq, func=None, dict=False, ics=None, *, prep=True, xi=None, eta=None, n=None, **kwargs): r""" Returns a tuple of possible :py:meth:`~sympy.solvers.ode.dsolve` classifications for an ODE. The tuple is ordered so that first item is the classification that :py:meth:`~sympy.solvers.ode.dsolve` uses to solve the ODE by default. In general, classifications at the near the beginning of the list will produce better solutions faster than those near the end, thought there are always exceptions. To make :py:meth:`~sympy.solvers.ode.dsolve` use a different classification, use ``dsolve(ODE, func, hint=<classification>)``. See also the :py:meth:`~sympy.solvers.ode.dsolve` docstring for different meta-hints you can use. If ``dict`` is true, :py:meth:`~sympy.solvers.ode.classify_ode` will return a dictionary of ``hint:match`` expression terms. This is intended for internal use by :py:meth:`~sympy.solvers.ode.dsolve`. Note that because dictionaries are ordered arbitrarily, this will most likely not be in the same order as the tuple. You can get help on different hints by executing ``help(ode.ode_hintname)``, where ``hintname`` is the name of the hint without ``_Integral``. See :py:data:`~sympy.solvers.ode.allhints` or the :py:mod:`~sympy.solvers.ode` docstring for a list of all supported hints that can be returned from :py:meth:`~sympy.solvers.ode.classify_ode`. Notes ===== These are remarks on hint names. ``_Integral`` If a classification has ``_Integral`` at the end, it will return the expression with an unevaluated :py:class:`~.Integral` class in it. Note that a hint may do this anyway if :py:meth:`~sympy.core.expr.Expr.integrate` cannot do the integral, though just using an ``_Integral`` will do so much faster. Indeed, an ``_Integral`` hint will always be faster than its corresponding hint without ``_Integral`` because :py:meth:`~sympy.core.expr.Expr.integrate` is an expensive routine. If :py:meth:`~sympy.solvers.ode.dsolve` hangs, it is probably because :py:meth:`~sympy.core.expr.Expr.integrate` is hanging on a tough or impossible integral. Try using an ``_Integral`` hint or ``all_Integral`` to get it return something. Note that some hints do not have ``_Integral`` counterparts. This is because :py:func:`~sympy.integrals.integrals.integrate` is not used in solving the ODE for those method. For example, `n`\th order linear homogeneous ODEs with constant coefficients do not require integration to solve, so there is no ``nth_linear_homogeneous_constant_coeff_Integrate`` hint. You can easily evaluate any unevaluated :py:class:`~sympy.integrals.integrals.Integral`\s in an expression by doing ``expr.doit()``. Ordinals Some hints contain an ordinal such as ``1st_linear``. This is to help differentiate them from other hints, as well as from other methods that may not be implemented yet. If a hint has ``nth`` in it, such as the ``nth_linear`` hints, this means that the method used to applies to ODEs of any order. ``indep`` and ``dep`` Some hints contain the words ``indep`` or ``dep``. These reference the independent variable and the dependent function, respectively. For example, if an ODE is in terms of `f(x)`, then ``indep`` will refer to `x` and ``dep`` will refer to `f`. ``subs`` If a hints has the word ``subs`` in it, it means the the ODE is solved by substituting the expression given after the word ``subs`` for a single dummy variable. This is usually in terms of ``indep`` and ``dep`` as above. The substituted expression will be written only in characters allowed for names of Python objects, meaning operators will be spelled out. For example, ``indep``/``dep`` will be written as ``indep_div_dep``. ``coeff`` The word ``coeff`` in a hint refers to the coefficients of something in the ODE, usually of the derivative terms. See the docstring for the individual methods for more info (``help(ode)``). This is contrast to ``coefficients``, as in ``undetermined_coefficients``, which refers to the common name of a method. ``_best`` Methods that have more than one fundamental way to solve will have a hint for each sub-method and a ``_best`` meta-classification. This will evaluate all hints and return the best, using the same considerations as the normal ``best`` meta-hint. Examples ======== >>> from sympy import Function, classify_ode, Eq >>> from sympy.abc import x >>> f = Function('f') >>> classify_ode(Eq(f(x).diff(x), 0), f(x)) ('nth_algebraic', 'separable', '1st_linear', 'Bernoulli', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_homogeneous', 'nth_linear_euler_eq_homogeneous', 'nth_algebraic_Integral', 'separable_Integral', '1st_linear_Integral', 'Bernoulli_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral') >>> classify_ode(f(x).diff(x, 2) + 3*f(x).diff(x) + 2*f(x) - 4) ('nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', 'nth_linear_constant_coeff_variation_of_parameters_Integral') """ ics = sympify(ics) if func and len(func.args) != 1: raise ValueError("dsolve() and classify_ode() only " "work with functions of one variable, not %s" % func) if isinstance(eq, Equality): eq = eq.lhs - eq.rhs # Some methods want the unprocessed equation eq_orig = eq if prep or func is None: eq, func_ = _preprocess(eq, func) if func is None: func = func_ x = func.args[0] f = func.func y = Dummy('y') terms = n order = ode_order(eq, f(x)) # hint:matchdict or hint:(tuple of matchdicts) # Also will contain "default":<default hint> and "order":order items. matching_hints = {"order": order} df = f(x).diff(x) a = Wild('a', exclude=[f(x)]) d = Wild('d', exclude=[df, f(x).diff(x, 2)]) e = Wild('e', exclude=[df]) k = Wild('k', exclude=[df]) n = Wild('n', exclude=[x, f(x), df]) c1 = Wild('c1', exclude=[x]) a3 = Wild('a3', exclude=[f(x), df, f(x).diff(x, 2)]) b3 = Wild('b3', exclude=[f(x), df, f(x).diff(x, 2)]) c3 = Wild('c3', exclude=[f(x), df, f(x).diff(x, 2)]) r3 = {'xi': xi, 'eta': eta} # Used for the lie_group hint boundary = {} # Used to extract initial conditions C1 = Symbol("C1") # Preprocessing to get the initial conditions out if ics is not None: for funcarg in ics: # Separating derivatives if isinstance(funcarg, (Subs, Derivative)): # f(x).diff(x).subs(x, 0) is a Subs, but f(x).diff(x).subs(x, # y) is a Derivative if isinstance(funcarg, Subs): deriv = funcarg.expr old = funcarg.variables[0] new = funcarg.point[0] elif isinstance(funcarg, Derivative): deriv = funcarg # No information on this. Just assume it was x old = x new = funcarg.variables[0] if (isinstance(deriv, Derivative) and isinstance(deriv.args[0], AppliedUndef) and deriv.args[0].func == f and len(deriv.args[0].args) == 1 and old == x and not new.has(x) and all(i == deriv.variables[0] for i in deriv.variables) and not ics[funcarg].has(f)): dorder = ode_order(deriv, x) temp = 'f' + str(dorder) boundary.update({temp: new, temp + 'val': ics[funcarg]}) else: raise ValueError("Enter valid boundary conditions for Derivatives") # Separating functions elif isinstance(funcarg, AppliedUndef): if (funcarg.func == f and len(funcarg.args) == 1 and not funcarg.args[0].has(x) and not ics[funcarg].has(f)): boundary.update({'f0': funcarg.args[0], 'f0val': ics[funcarg]}) else: raise ValueError("Enter valid boundary conditions for Function") else: raise ValueError("Enter boundary conditions of the form ics={f(point}: value, f(x).diff(x, order).subs(x, point): value}") # Any ODE that can be solved with a combination of algebra and # integrals e.g.: # d^3/dx^3(x y) = F(x) ode = SingleODEProblem(eq_orig, func, x, prep=prep) solvers = { NthAlgebraic: ('nth_algebraic',), FirstLinear: ('1st_linear',), AlmostLinear: ('almost_linear',), Bernoulli: ('Bernoulli',), Factorable: ('factorable',), RiccatiSpecial: ('Riccati_special_minus2',), SecondNonlinearAutonomousConserved: ('2nd_nonlinear_autonomous_conserved',), } for solvercls in solvers: solver = solvercls(ode) if solver.matches(): for hints in solvers[solvercls]: matching_hints[hints] = solver if solvercls.has_integral: matching_hints[hints + "_Integral"] = solver eq = expand(eq) # Precondition to try remove f(x) from highest order derivative reduced_eq = None if eq.is_Add: deriv_coef = eq.coeff(f(x).diff(x, order)) if deriv_coef not in (1, 0): r = deriv_coef.match(a*f(x)**c1) if r and r[c1]: den = f(x)**r[c1] reduced_eq = Add(*[arg/den for arg in eq.args]) if not reduced_eq: reduced_eq = eq if order == 1: # NON-REDUCED FORM OF EQUATION matches r = collect(eq, df, exact=True).match(d + e * df) if r: r['d'] = d r['e'] = e r['y'] = y r[d] = r[d].subs(f(x), y) r[e] = r[e].subs(f(x), y) # FIRST ORDER POWER SERIES WHICH NEEDS INITIAL CONDITIONS # TODO: Hint first order series should match only if d/e is analytic. # For now, only d/e and (d/e).diff(arg) is checked for existence at # at a given point. # This is currently done internally in ode_1st_power_series. point = boundary.get('f0', 0) value = boundary.get('f0val', C1) check = cancel(r[d]/r[e]) check1 = check.subs({x: point, y: value}) if not check1.has(oo) and not check1.has(zoo) and \ not check1.has(NaN) and not check1.has(-oo): check2 = (check1.diff(x)).subs({x: point, y: value}) if not check2.has(oo) and not check2.has(zoo) and \ not check2.has(NaN) and not check2.has(-oo): rseries = r.copy() rseries.update({'terms': terms, 'f0': point, 'f0val': value}) matching_hints["1st_power_series"] = rseries r3.update(r) ## Exact Differential Equation: P(x, y) + Q(x, y)*y' = 0 where # dP/dy == dQ/dx try: if r[d] != 0: numerator = simplify(r[d].diff(y) - r[e].diff(x)) # The following few conditions try to convert a non-exact # differential equation into an exact one. # References : Differential equations with applications # and historical notes - George E. Simmons if numerator: # If (dP/dy - dQ/dx) / Q = f(x) # then exp(integral(f(x))*equation becomes exact factor = simplify(numerator/r[e]) variables = factor.free_symbols if len(variables) == 1 and x == variables.pop(): factor = exp(Integral(factor).doit()) r[d] *= factor r[e] *= factor matching_hints["1st_exact"] = r matching_hints["1st_exact_Integral"] = r else: # If (dP/dy - dQ/dx) / -P = f(y) # then exp(integral(f(y))*equation becomes exact factor = simplify(-numerator/r[d]) variables = factor.free_symbols if len(variables) == 1 and y == variables.pop(): factor = exp(Integral(factor).doit()) r[d] *= factor r[e] *= factor matching_hints["1st_exact"] = r matching_hints["1st_exact_Integral"] = r else: matching_hints["1st_exact"] = r matching_hints["1st_exact_Integral"] = r except NotImplementedError: # Differentiating the coefficients might fail because of things # like f(2*x).diff(x). See issue 4624 and issue 4719. pass # Any first order ODE can be ideally solved by the Lie Group # method matching_hints["lie_group"] = r3 # This match is used for several cases below; we now collect on # f(x) so the matching works. r = collect(reduced_eq, df, exact=True).match(d + e*df) if r: # Using r[d] and r[e] without any modification for hints # linear-coefficients and separable-reduced. num, den = r[d], r[e] # ODE = d/e + df r['d'] = d r['e'] = e r['y'] = y r[d] = num.subs(f(x), y) r[e] = den.subs(f(x), y) ## Separable Case: y' == P(y)*Q(x) r[d] = separatevars(r[d]) r[e] = separatevars(r[e]) # m1[coeff]*m1[x]*m1[y] + m2[coeff]*m2[x]*m2[y]*y' m1 = separatevars(r[d], dict=True, symbols=(x, y)) m2 = separatevars(r[e], dict=True, symbols=(x, y)) if m1 and m2: r1 = {'m1': m1, 'm2': m2, 'y': y} matching_hints["separable"] = r1 matching_hints["separable_Integral"] = r1 ## First order equation with homogeneous coefficients: # dy/dx == F(y/x) or dy/dx == F(x/y) ordera = homogeneous_order(r[d], x, y) if ordera is not None: orderb = homogeneous_order(r[e], x, y) if ordera == orderb: # u1=y/x and u2=x/y u1 = Dummy('u1') u2 = Dummy('u2') s = "1st_homogeneous_coeff_subs" s1 = s + "_dep_div_indep" s2 = s + "_indep_div_dep" if simplify((r[d] + u1*r[e]).subs({x: 1, y: u1})) != 0: matching_hints[s1] = r matching_hints[s1 + "_Integral"] = r if simplify((r[e] + u2*r[d]).subs({x: u2, y: 1})) != 0: matching_hints[s2] = r matching_hints[s2 + "_Integral"] = r if s1 in matching_hints and s2 in matching_hints: matching_hints["1st_homogeneous_coeff_best"] = r ## Linear coefficients of the form # y'+ F((a*x + b*y + c)/(a'*x + b'y + c')) = 0 # that can be reduced to homogeneous form. F = num/den params = _linear_coeff_match(F, func) if params: xarg, yarg = params u = Dummy('u') t = Dummy('t') # Dummy substitution for df and f(x). dummy_eq = reduced_eq.subs(((df, t), (f(x), u))) reps = ((x, x + xarg), (u, u + yarg), (t, df), (u, f(x))) dummy_eq = simplify(dummy_eq.subs(reps)) # get the re-cast values for e and d r2 = collect(expand(dummy_eq), [df, f(x)]).match(e*df + d) if r2: orderd = homogeneous_order(r2[d], x, f(x)) if orderd is not None: ordere = homogeneous_order(r2[e], x, f(x)) if orderd == ordere: # Match arguments are passed in such a way that it # is coherent with the already existing homogeneous # functions. r2[d] = r2[d].subs(f(x), y) r2[e] = r2[e].subs(f(x), y) r2.update({'xarg': xarg, 'yarg': yarg, 'd': d, 'e': e, 'y': y}) matching_hints["linear_coefficients"] = r2 matching_hints["linear_coefficients_Integral"] = r2 ## Equation of the form y' + (y/x)*H(x^n*y) = 0 # that can be reduced to separable form factor = simplify(x/f(x)*num/den) # Try representing factor in terms of x^n*y # where n is lowest power of x in factor; # first remove terms like sqrt(2)*3 from factor.atoms(Mul) num, dem = factor.as_numer_denom() num = expand(num) dem = expand(dem) def _degree(expr, x): # Made this function to calculate the degree of # x in an expression. If expr will be of form # x**p*y, (wheare p can be variables/rationals) then it # will return p. for val in expr: if val.has(x): if isinstance(val, Pow) and val.as_base_exp()[0] == x: return (val.as_base_exp()[1]) elif val == x: return (val.as_base_exp()[1]) else: return _degree(val.args, x) return 0 def _powers(expr): # this function will return all the different relative power of x w.r.t f(x). # expr = x**p * f(x)**q then it will return {p/q}. pows = set() if isinstance(expr, Add): exprs = expr.atoms(Add) elif isinstance(expr, Mul): exprs = expr.atoms(Mul) elif isinstance(expr, Pow): exprs = expr.atoms(Pow) else: exprs = {expr} for arg in exprs: if arg.has(x): _, u = arg.as_independent(x, f(x)) pow = _degree((u.subs(f(x), y), ), x)/_degree((u.subs(f(x), y), ), y) pows.add(pow) return pows pows = _powers(num) pows.update(_powers(dem)) pows = list(pows) if(len(pows)==1) and pows[0]!=zoo: t = Dummy('t') r2 = {'t': t} num = num.subs(x**pows[0]*f(x), t) dem = dem.subs(x**pows[0]*f(x), t) test = num/dem free = test.free_symbols if len(free) == 1 and free.pop() == t: r2.update({'power' : pows[0], 'u' : test}) matching_hints['separable_reduced'] = r2 matching_hints["separable_reduced_Integral"] = r2 elif order == 2: # Liouville ODE in the form # f(x).diff(x, 2) + g(f(x))*(f(x).diff(x))**2 + h(x)*f(x).diff(x) # See Goldstein and Braun, "Advanced Methods for the Solution of # Differential Equations", pg. 98 s = d*f(x).diff(x, 2) + e*df**2 + k*df r = reduced_eq.match(s) if r and r[d] != 0: y = Dummy('y') g = simplify(r[e]/r[d]).subs(f(x), y) h = simplify(r[k]/r[d]).subs(f(x), y) if y in h.free_symbols or x in g.free_symbols: pass else: r = {'g': g, 'h': h, 'y': y} matching_hints["Liouville"] = r matching_hints["Liouville_Integral"] = r # Homogeneous second order differential equation of the form # a3*f(x).diff(x, 2) + b3*f(x).diff(x) + c3 # It has a definite power series solution at point x0 if, b3/a3 and c3/a3 # are analytic at x0. deq = a3*(f(x).diff(x, 2)) + b3*df + c3*f(x) r = collect(reduced_eq, [f(x).diff(x, 2), f(x).diff(x), f(x)]).match(deq) ordinary = False if r: if not all([r[key].is_polynomial() for key in r]): n, d = reduced_eq.as_numer_denom() reduced_eq = expand(n) r = collect(reduced_eq, [f(x).diff(x, 2), f(x).diff(x), f(x)]).match(deq) if r and r[a3] != 0: p = cancel(r[b3]/r[a3]) # Used below q = cancel(r[c3]/r[a3]) # Used below point = kwargs.get('x0', 0) check = p.subs(x, point) if not check.has(oo, NaN, zoo, -oo): check = q.subs(x, point) if not check.has(oo, NaN, zoo, -oo): ordinary = True r.update({'a3': a3, 'b3': b3, 'c3': c3, 'x0': point, 'terms': terms}) matching_hints["2nd_power_series_ordinary"] = r # Checking if the differential equation has a regular singular point # at x0. It has a regular singular point at x0, if (b3/a3)*(x - x0) # and (c3/a3)*((x - x0)**2) are analytic at x0. if not ordinary: p = cancel((x - point)*p) check = p.subs(x, point) if not check.has(oo, NaN, zoo, -oo): q = cancel(((x - point)**2)*q) check = q.subs(x, point) if not check.has(oo, NaN, zoo, -oo): coeff_dict = {'p': p, 'q': q, 'x0': point, 'terms': terms} matching_hints["2nd_power_series_regular"] = coeff_dict # For Hypergeometric solutions. _r = {} _r.update(r) rn = match_2nd_hypergeometric(_r, func) if rn: matching_hints["2nd_hypergeometric"] = rn matching_hints["2nd_hypergeometric_Integral"] = rn # If the ODE has regular singular point at x0 and is of the form # Eq((x)**2*Derivative(y(x), x, x) + x*Derivative(y(x), x) + # (a4**2*x**(2*p)-n**2)*y(x) thus Bessel's equation rn = match_2nd_linear_bessel(r, f(x)) if rn: matching_hints["2nd_linear_bessel"] = rn # If the ODE is ordinary and is of the form of Airy's Equation # Eq(x**2*Derivative(y(x),x,x)-(ax+b)*y(x)) if p.is_zero: a4 = Wild('a4', exclude=[x,f(x),df]) b4 = Wild('b4', exclude=[x,f(x),df]) rn = q.match(a4+b4*x) if rn and rn[b4] != 0: rn = {'b':rn[a4],'m':rn[b4]} matching_hints["2nd_linear_airy"] = rn if order > 0: # Any ODE that can be solved with a substitution and # repeated integration e.g.: # `d^2/dx^2(y) + x*d/dx(y) = constant #f'(x) must be finite for this to work r = _nth_order_reducible_match(reduced_eq, func) if r: matching_hints['nth_order_reducible'] = r # nth order linear ODE # a_n(x)y^(n) + ... + a_1(x)y' + a_0(x)y = F(x) = b r = _nth_linear_match(reduced_eq, func, order) # Constant coefficient case (a_i is constant for all i) if r and not any(r[i].has(x) for i in r if i >= 0): # Inhomogeneous case: F(x) is not identically 0 if r[-1]: eq_homogeneous = Add(eq,-r[-1]) undetcoeff = _undetermined_coefficients_match(r[-1], x, func, eq_homogeneous) s = "nth_linear_constant_coeff_variation_of_parameters" matching_hints[s] = r matching_hints[s + "_Integral"] = r if undetcoeff['test']: r['trialset'] = undetcoeff['trialset'] matching_hints[ "nth_linear_constant_coeff_undetermined_coefficients" ] = r # Homogeneous case: F(x) is identically 0 else: matching_hints["nth_linear_constant_coeff_homogeneous"] = r # nth order Euler equation a_n*x**n*y^(n) + ... + a_1*x*y' + a_0*y = F(x) #In case of Homogeneous euler equation F(x) = 0 def _test_term(coeff, order): r""" Linear Euler ODEs have the form K*x**order*diff(y(x),x,order) = F(x), where K is independent of x and y(x), order>= 0. So we need to check that for each term, coeff == K*x**order from some K. We have a few cases, since coeff may have several different types. """ if order < 0: raise ValueError("order should be greater than 0") if coeff == 0: return True if order == 0: if x in coeff.free_symbols: return False return True if coeff.is_Mul: if coeff.has(f(x)): return False return x**order in coeff.args elif coeff.is_Pow: return coeff.as_base_exp() == (x, order) elif order == 1: return x == coeff return False # Find coefficient for highest derivative, multiply coefficients to # bring the equation into Euler form if possible r_rescaled = None if r is not None: coeff = r[order] factor = x**order / coeff r_rescaled = {i: factor*r[i] for i in r if i != 'trialset'} # XXX: Mixing up the trialset with the coefficients is error-prone. # These should be separated as something like r['coeffs'] and # r['trialset'] if r_rescaled and not any(not _test_term(r_rescaled[i], i) for i in r_rescaled if i != 'trialset' and i >= 0): if not r_rescaled[-1]: matching_hints["nth_linear_euler_eq_homogeneous"] = r_rescaled else: matching_hints["nth_linear_euler_eq_nonhomogeneous_variation_of_parameters"] = r_rescaled matching_hints["nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral"] = r_rescaled e, re = posify(r_rescaled[-1].subs(x, exp(x))) undetcoeff = _undetermined_coefficients_match(e.subs(re), x) if undetcoeff['test']: r_rescaled['trialset'] = undetcoeff['trialset'] matching_hints["nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients"] = r_rescaled # Order keys based on allhints. retlist = [i for i in allhints if i in matching_hints] if dict: # Dictionaries are ordered arbitrarily, so make note of which # hint would come first for dsolve(). Use an ordered dict in Py 3. matching_hints["default"] = retlist[0] if retlist else None matching_hints["ordered_hints"] = tuple(retlist) return matching_hints else: return tuple(retlist) def equivalence(max_num_pow, dem_pow): # this function is made for checking the equivalence with 2F1 type of equation. # max_num_pow is the value of maximum power of x in numerator # and dem_pow is list of powers of different factor of form (a*x b). # reference from table 1 in paper - "Non-Liouvillian solutions for second order # linear ODEs" by L. Chan, E.S. Cheb-Terrab. # We can extend it for 1F1 and 0F1 type also. if max_num_pow == 2: if dem_pow in [[2, 2], [2, 2, 2]]: return "2F1" elif max_num_pow == 1: if dem_pow in [[1, 2, 2], [2, 2, 2], [1, 2], [2, 2]]: return "2F1" elif max_num_pow == 0: if dem_pow in [[1, 1, 2], [2, 2], [1 ,2, 2], [1, 1], [2], [1, 2], [2, 2]]: return "2F1" return None def equivalence_hypergeometric(A, B, func): from sympy import factor # This method for finding the equivalence is only for 2F1 type. # We can extend it for 1F1 and 0F1 type also. x = func.args[0] # making given equation in normal form I1 = factor(cancel(A.diff(x)/2 + A**2/4 - B)) # computing shifted invariant(J1) of the equation J1 = factor(cancel(x**2*I1 + S(1)/4)) num, dem = J1.as_numer_denom() num = powdenest(expand(num)) dem = powdenest(expand(dem)) pow_num = set() pow_dem = set() # this function will compute the different powers of variable(x) in J1. # then it will help in finding value of k. k is power of x such that we can express # J1 = x**k * J0(x**k) then all the powers in J0 become integers. def _power_counting(num): _pow = {0} for val in num: if val.has(x): if isinstance(val, Pow) and val.as_base_exp()[0] == x: _pow.add(val.as_base_exp()[1]) elif val == x: _pow.add(val.as_base_exp()[1]) else: _pow.update(_power_counting(val.args)) return _pow pow_num = _power_counting((num, )) pow_dem = _power_counting((dem, )) pow_dem.update(pow_num) _pow = pow_dem k = gcd(_pow) # computing I0 of the given equation I0 = powdenest(simplify(factor(((J1/k**2) - S(1)/4)/((x**k)**2))), force=True) I0 = factor(cancel(powdenest(I0.subs(x, x**(S(1)/k)), force=True))) num, dem = I0.as_numer_denom() max_num_pow = max(_power_counting((num, ))) dem_args = dem.args sing_point = [] dem_pow = [] # calculating singular point of I0. for arg in dem_args: if arg.has(x): if isinstance(arg, Pow): # (x-a)**n dem_pow.append(arg.as_base_exp()[1]) sing_point.append(list(roots(arg.as_base_exp()[0], x).keys())[0]) else: # (x-a) type dem_pow.append(arg.as_base_exp()[1]) sing_point.append(list(roots(arg, x).keys())[0]) dem_pow.sort() # checking if equivalence is exists or not. if equivalence(max_num_pow, dem_pow) == "2F1": return {'I0':I0, 'k':k, 'sing_point':sing_point, 'type':"2F1"} else: return None def ode_2nd_hypergeometric(eq, func, order, match): from sympy.simplify.hyperexpand import hyperexpand from sympy import factor x = func.args[0] C0, C1 = get_numbered_constants(eq, num=2) a = match['a'] b = match['b'] c = match['c'] A = match['A'] # B = match['B'] sol = None if match['type'] == "2F1": if c.is_integer == False: sol = C0*hyper([a, b], [c], x) + C1*hyper([a-c+1, b-c+1], [2-c], x)*x**(1-c) elif c == 1: y2 = Integral(exp(Integral((-(a+b+1)*x + c)/(x**2-x), x))/(hyperexpand(hyper([a, b], [c], x))**2), x)*hyper([a, b], [c], x) sol = C0*hyper([a, b], [c], x) + C1*y2 elif (c-a-b).is_integer == False: sol = C0*hyper([a, b], [1+a+b-c], 1-x) + C1*hyper([c-a, c-b], [1+c-a-b], 1-x)*(1-x)**(c-a-b) if sol is None: raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by" + " the hypergeometric method") # applying transformation in the solution subs = match['mobius'] dtdx = simplify(1/(subs.diff(x))) _B = ((a + b + 1)*x - c).subs(x, subs)*dtdx _B = factor(_B + ((x**2 -x).subs(x, subs))*(dtdx.diff(x)*dtdx)) _A = factor((x**2 - x).subs(x, subs)*(dtdx**2)) e = exp(logcombine(Integral(cancel(_B/(2*_A)), x), force=True)) sol = sol.subs(x, match['mobius']) sol = sol.subs(x, x**match['k']) e = e.subs(x, x**match['k']) if not A.is_zero: e1 = Integral(A/2, x) e1 = exp(logcombine(e1, force=True)) sol = cancel((e/e1)*x**((-match['k']+1)/2))*sol sol = Eq(func, sol) return sol sol = cancel((e)*x**((-match['k']+1)/2))*sol sol = Eq(func, sol) return sol def match_2nd_2F1_hypergeometric(I, k, sing_point, func): from sympy import factor x = func.args[0] a = Wild("a") b = Wild("b") c = Wild("c") t = Wild("t") s = Wild("s") r = Wild("r") alpha = Wild("alpha") beta = Wild("beta") gamma = Wild("gamma") delta = Wild("delta") rn = {'type':None} # I0 of the standerd 2F1 equation. I0 = ((a-b+1)*(a-b-1)*x**2 + 2*((1-a-b)*c + 2*a*b)*x + c*(c-2))/(4*x**2*(x-1)**2) if sing_point != [0, 1]: # If singular point is [0, 1] then we have standerd equation. eqs = [] sing_eqs = [-beta/alpha, -delta/gamma, (delta-beta)/(alpha-gamma)] # making equations for the finding the mobius transformation for i in range(3): if i<len(sing_point): eqs.append(Eq(sing_eqs[i], sing_point[i])) else: eqs.append(Eq(1/sing_eqs[i], 0)) # solving above equations for the mobius transformation _beta = -alpha*sing_point[0] _delta = -gamma*sing_point[1] _gamma = alpha if len(sing_point) == 3: _gamma = (_beta + sing_point[2]*alpha)/(sing_point[2] - sing_point[1]) mob = (alpha*x + beta)/(gamma*x + delta) mob = mob.subs(beta, _beta) mob = mob.subs(delta, _delta) mob = mob.subs(gamma, _gamma) mob = cancel(mob) t = (beta - delta*x)/(gamma*x - alpha) t = cancel(((t.subs(beta, _beta)).subs(delta, _delta)).subs(gamma, _gamma)) else: mob = x t = x # applying mobius transformation in I to make it into I0. I = I.subs(x, t) I = I*(t.diff(x))**2 I = factor(I) dict_I = {x**2:0, x:0, 1:0} I0_num, I0_dem = I0.as_numer_denom() # collecting coeff of (x**2, x), of the standerd equation. # substituting (a-b) = s, (a+b) = r dict_I0 = {x**2:s**2 - 1, x:(2*(1-r)*c + (r+s)*(r-s)), 1:c*(c-2)} # collecting coeff of (x**2, x) from I0 of the given equation. dict_I.update(collect(expand(cancel(I*I0_dem)), [x**2, x], evaluate=False)) eqs = [] # We are comparing the coeff of powers of different x, for finding the values of # parameters of standerd equation. for key in [x**2, x, 1]: eqs.append(Eq(dict_I[key], dict_I0[key])) # We can have many possible roots for the equation. # I am selecting the root on the basis that when we have # standard equation eq = x*(x-1)*f(x).diff(x, 2) + ((a+b+1)*x-c)*f(x).diff(x) + a*b*f(x) # then root should be a, b, c. _c = 1 - factor(sqrt(1+eqs[2].lhs)) if not _c.has(Symbol): _c = min(list(roots(eqs[2], c))) _s = factor(sqrt(eqs[0].lhs + 1)) _r = _c - factor(sqrt(_c**2 + _s**2 + eqs[1].lhs - 2*_c)) _a = (_r + _s)/2 _b = (_r - _s)/2 rn = {'a':simplify(_a), 'b':simplify(_b), 'c':simplify(_c), 'k':k, 'mobius':mob, 'type':"2F1"} return rn def match_2nd_hypergeometric(r, func): x = func.args[0] a3 = Wild('a3', exclude=[func, func.diff(x), func.diff(x, 2)]) b3 = Wild('b3', exclude=[func, func.diff(x), func.diff(x, 2)]) c3 = Wild('c3', exclude=[func, func.diff(x), func.diff(x, 2)]) A = cancel(r[b3]/r[a3]) B = cancel(r[c3]/r[a3]) d = equivalence_hypergeometric(A, B, func) rn = None if d: if d['type'] == "2F1": rn = match_2nd_2F1_hypergeometric(d['I0'], d['k'], d['sing_point'], func) if rn is not None: rn.update({'A':A, 'B':B}) # We can extend it for 1F1 and 0F1 type also. return rn def match_2nd_linear_bessel(r, func): from sympy.polys.polytools import factor # eq = a3*f(x).diff(x, 2) + b3*f(x).diff(x) + c3*f(x) f = func x = func.args[0] df = f.diff(x) a = Wild('a', exclude=[f,df]) b = Wild('b', exclude=[x, f,df]) a4 = Wild('a4', exclude=[x,f,df]) b4 = Wild('b4', exclude=[x,f,df]) c4 = Wild('c4', exclude=[x,f,df]) d4 = Wild('d4', exclude=[x,f,df]) a3 = Wild('a3', exclude=[f, df, f.diff(x, 2)]) b3 = Wild('b3', exclude=[f, df, f.diff(x, 2)]) c3 = Wild('c3', exclude=[f, df, f.diff(x, 2)]) # leading coeff of f(x).diff(x, 2) coeff = factor(r[a3]).match(a4*(x-b)**b4) if coeff: # if coeff[b4] = 0 means constant coefficient if coeff[b4] == 0: return None point = coeff[b] else: return None if point: r[a3] = simplify(r[a3].subs(x, x+point)) r[b3] = simplify(r[b3].subs(x, x+point)) r[c3] = simplify(r[c3].subs(x, x+point)) # making a3 in the form of x**2 r[a3] = cancel(r[a3]/(coeff[a4]*(x)**(-2+coeff[b4]))) r[b3] = cancel(r[b3]/(coeff[a4]*(x)**(-2+coeff[b4]))) r[c3] = cancel(r[c3]/(coeff[a4]*(x)**(-2+coeff[b4]))) # checking if b3 is of form c*(x-b) coeff1 = factor(r[b3]).match(a4*(x)) if coeff1 is None: return None # c3 maybe of very complex form so I am simply checking (a - b) form # if yes later I will match with the standerd form of bessel in a and b # a, b are wild variable defined above. _coeff2 = r[c3].match(a - b) if _coeff2 is None: return None # matching with standerd form for c3 coeff2 = factor(_coeff2[a]).match(c4**2*(x)**(2*a4)) if coeff2 is None: return None if _coeff2[b] == 0: coeff2[d4] = 0 else: coeff2[d4] = factor(_coeff2[b]).match(d4**2)[d4] rn = {'n':coeff2[d4], 'a4':coeff2[c4], 'd4':coeff2[a4]} rn['c4'] = coeff1[a4] rn['b4'] = point return rn def classify_sysode(eq, funcs=None, **kwargs): r""" Returns a dictionary of parameter names and values that define the system of ordinary differential equations in ``eq``. The parameters are further used in :py:meth:`~sympy.solvers.ode.dsolve` for solving that system. Some parameter names and values are: 'is_linear' (boolean), which tells whether the given system is linear. Note that "linear" here refers to the operator: terms such as ``x*diff(x,t)`` are nonlinear, whereas terms like ``sin(t)*diff(x,t)`` are still linear operators. 'func' (list) contains the :py:class:`~sympy.core.function.Function`s that appear with a derivative in the ODE, i.e. those that we are trying to solve the ODE for. 'order' (dict) with the maximum derivative for each element of the 'func' parameter. 'func_coeff' (dict or Matrix) with the coefficient for each triple ``(equation number, function, order)```. The coefficients are those subexpressions that do not appear in 'func', and hence can be considered constant for purposes of ODE solving. The value of this parameter can also be a Matrix if the system of ODEs are linear first order of the form X' = AX where X is the vector of dependent variables. Here, this function returns the coefficient matrix A. 'eq' (list) with the equations from ``eq``, sympified and transformed into expressions (we are solving for these expressions to be zero). 'no_of_equations' (int) is the number of equations (same as ``len(eq)``). 'type_of_equation' (string) is an internal classification of the type of ODE. 'is_constant' (boolean), which tells if the system of ODEs is constant coefficient or not. This key is temporary addition for now and is in the match dict only when the system of ODEs is linear first order constant coefficient homogeneous. So, this key's value is True for now if it is available else it doesn't exist. 'is_homogeneous' (boolean), which tells if the system of ODEs is homogeneous. Like the key 'is_constant', this key is a temporary addition and it is True since this key value is available only when the system is linear first order constant coefficient homogeneous. References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode-toc1.htm -A. D. Polyanin and A. V. Manzhirov, Handbook of Mathematics for Engineers and Scientists Examples ======== >>> from sympy import Function, Eq, symbols, diff >>> from sympy.solvers.ode.ode import classify_sysode >>> from sympy.abc import t >>> f, x, y = symbols('f, x, y', cls=Function) >>> k, l, m, n = symbols('k, l, m, n', Integer=True) >>> x1 = diff(x(t), t) ; y1 = diff(y(t), t) >>> x2 = diff(x(t), t, t) ; y2 = diff(y(t), t, t) >>> eq = (Eq(x1, 12*x(t) - 6*y(t)), Eq(y1, 11*x(t) + 3*y(t))) >>> classify_sysode(eq) {'eq': [-12*x(t) + 6*y(t) + Derivative(x(t), t), -11*x(t) - 3*y(t) + Derivative(y(t), t)], 'func': [x(t), y(t)], 'func_coeff': {(0, x(t), 0): -12, (0, x(t), 1): 1, (0, y(t), 0): 6, (0, y(t), 1): 0, (1, x(t), 0): -11, (1, x(t), 1): 0, (1, y(t), 0): -3, (1, y(t), 1): 1}, 'is_linear': True, 'no_of_equation': 2, 'order': {x(t): 1, y(t): 1}, 'type_of_equation': None} >>> eq = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t) + 2), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t))) >>> classify_sysode(eq) {'eq': [-t**2*y(t) - 5*t*x(t) + Derivative(x(t), t) - 2, t**2*x(t) - 5*t*y(t) + Derivative(y(t), t)], 'func': [x(t), y(t)], 'func_coeff': {(0, x(t), 0): -5*t, (0, x(t), 1): 1, (0, y(t), 0): -t**2, (0, y(t), 1): 0, (1, x(t), 0): t**2, (1, x(t), 1): 0, (1, y(t), 0): -5*t, (1, y(t), 1): 1}, 'is_linear': True, 'no_of_equation': 2, 'order': {x(t): 1, y(t): 1}, 'type_of_equation': None} """ # Sympify equations and convert iterables of equations into # a list of equations def _sympify(eq): return list(map(sympify, eq if iterable(eq) else [eq])) eq, funcs = (_sympify(w) for w in [eq, funcs]) for i, fi in enumerate(eq): if isinstance(fi, Equality): eq[i] = fi.lhs - fi.rhs t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] matching_hints = {"no_of_equation":i+1} matching_hints['eq'] = eq if i==0: raise ValueError("classify_sysode() works for systems of ODEs. " "For scalar ODEs, classify_ode should be used") # find all the functions if not given order = dict() if funcs==[None]: funcs = _extract_funcs(eq) funcs = list(set(funcs)) if len(funcs) != len(eq): raise ValueError("Number of functions given is not equal to the number of equations %s" % funcs) # This logic of list of lists in funcs to # be replaced later. func_dict = dict() for func in funcs: if not order.get(func, False): max_order = 0 for i, eqs_ in enumerate(eq): order_ = ode_order(eqs_,func) if max_order < order_: max_order = order_ eq_no = i if eq_no in func_dict: func_dict[eq_no] = [func_dict[eq_no], func] else: func_dict[eq_no] = func order[func] = max_order funcs = [func_dict[i] for i in range(len(func_dict))] matching_hints['func'] = funcs for func in funcs: if isinstance(func, list): for func_elem in func: if len(func_elem.args) != 1: raise ValueError("dsolve() and classify_sysode() work with " "functions of one variable only, not %s" % func) else: if func and len(func.args) != 1: raise ValueError("dsolve() and classify_sysode() work with " "functions of one variable only, not %s" % func) # find the order of all equation in system of odes matching_hints["order"] = order # find coefficients of terms f(t), diff(f(t),t) and higher derivatives # and similarly for other functions g(t), diff(g(t),t) in all equations. # Here j denotes the equation number, funcs[l] denotes the function about # which we are talking about and k denotes the order of function funcs[l] # whose coefficient we are calculating. def linearity_check(eqs, j, func, is_linear_): for k in range(order[func] + 1): func_coef[j, func, k] = collect(eqs.expand(), [diff(func, t, k)]).coeff(diff(func, t, k)) if is_linear_ == True: if func_coef[j, func, k] == 0: if k == 0: coef = eqs.as_independent(func, as_Add=True)[1] for xr in range(1, ode_order(eqs,func) + 1): coef -= eqs.as_independent(diff(func, t, xr), as_Add=True)[1] if coef != 0: is_linear_ = False else: if eqs.as_independent(diff(func, t, k), as_Add=True)[1]: is_linear_ = False else: for func_ in funcs: if isinstance(func_, list): for elem_func_ in func_: dep = func_coef[j, func, k].as_independent(elem_func_, as_Add=True)[1] if dep != 0: is_linear_ = False else: dep = func_coef[j, func, k].as_independent(func_, as_Add=True)[1] if dep != 0: is_linear_ = False return is_linear_ func_coef = {} is_linear = True for j, eqs in enumerate(eq): for func in funcs: if isinstance(func, list): for func_elem in func: is_linear = linearity_check(eqs, j, func_elem, is_linear) else: is_linear = linearity_check(eqs, j, func, is_linear) matching_hints['func_coeff'] = func_coef matching_hints['is_linear'] = is_linear if len(set(order.values())) == 1: order_eq = list(matching_hints['order'].values())[0] if matching_hints['is_linear'] == True: if matching_hints['no_of_equation'] == 2: if order_eq == 1: type_of_equation = check_linear_2eq_order1(eq, funcs, func_coef) else: type_of_equation = None # If the equation doesn't match up with any of the # general case solvers in systems.py and the number # of equations is greater than 2, then NotImplementedError # should be raised. else: type_of_equation = None else: if matching_hints['no_of_equation'] == 2: if order_eq == 1: type_of_equation = check_nonlinear_2eq_order1(eq, funcs, func_coef) else: type_of_equation = None elif matching_hints['no_of_equation'] == 3: if order_eq == 1: type_of_equation = check_nonlinear_3eq_order1(eq, funcs, func_coef) else: type_of_equation = None else: type_of_equation = None else: type_of_equation = None matching_hints['type_of_equation'] = type_of_equation return matching_hints def check_linear_2eq_order1(eq, func, func_coef): x = func[0].func y = func[1].func fc = func_coef t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] r = dict() # for equations Eq(a1*diff(x(t),t), b1*x(t) + c1*y(t) + d1) # and Eq(a2*diff(y(t),t), b2*x(t) + c2*y(t) + d2) r['a1'] = fc[0,x(t),1] ; r['a2'] = fc[1,y(t),1] r['b1'] = -fc[0,x(t),0]/fc[0,x(t),1] ; r['b2'] = -fc[1,x(t),0]/fc[1,y(t),1] r['c1'] = -fc[0,y(t),0]/fc[0,x(t),1] ; r['c2'] = -fc[1,y(t),0]/fc[1,y(t),1] forcing = [S.Zero,S.Zero] for i in range(2): for j in Add.make_args(eq[i]): if not j.has(x(t), y(t)): forcing[i] += j if not (forcing[0].has(t) or forcing[1].has(t)): # We can handle homogeneous case and simple constant forcings r['d1'] = forcing[0] r['d2'] = forcing[1] else: # Issue #9244: nonhomogeneous linear systems are not supported return None # Conditions to check for type 6 whose equations are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and # Eq(diff(y(t),t), a*[f(t) + a*h(t)]x(t) + a*[g(t) - h(t)]*y(t)) p = 0 q = 0 p1 = cancel(r['b2']/(cancel(r['b2']/r['c2']).as_numer_denom()[0])) p2 = cancel(r['b1']/(cancel(r['b1']/r['c1']).as_numer_denom()[0])) for n, i in enumerate([p1, p2]): for j in Mul.make_args(collect_const(i)): if not j.has(t): q = j if q and n==0: if ((r['b2']/j - r['b1'])/(r['c1'] - r['c2']/j)) == j: p = 1 elif q and n==1: if ((r['b1']/j - r['b2'])/(r['c2'] - r['c1']/j)) == j: p = 2 # End of condition for type 6 if r['d1']!=0 or r['d2']!=0: return None else: if all(not r[k].has(t) for k in 'a1 a2 b1 b2 c1 c2'.split()): return None else: r['b1'] = r['b1']/r['a1'] ; r['b2'] = r['b2']/r['a2'] r['c1'] = r['c1']/r['a1'] ; r['c2'] = r['c2']/r['a2'] if p: return "type6" else: # Equations for type 7 are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and Eq(diff(y(t),t), h(t)*x(t) + p(t)*y(t)) return "type7" def check_nonlinear_2eq_order1(eq, func, func_coef): t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] f = Wild('f') g = Wild('g') u, v = symbols('u, v', cls=Dummy) def check_type(x, y): r1 = eq[0].match(t*diff(x(t),t) - x(t) + f) r2 = eq[1].match(t*diff(y(t),t) - y(t) + g) if not (r1 and r2): r1 = eq[0].match(diff(x(t),t) - x(t)/t + f/t) r2 = eq[1].match(diff(y(t),t) - y(t)/t + g/t) if not (r1 and r2): r1 = (-eq[0]).match(t*diff(x(t),t) - x(t) + f) r2 = (-eq[1]).match(t*diff(y(t),t) - y(t) + g) if not (r1 and r2): r1 = (-eq[0]).match(diff(x(t),t) - x(t)/t + f/t) r2 = (-eq[1]).match(diff(y(t),t) - y(t)/t + g/t) if r1 and r2 and not (r1[f].subs(diff(x(t),t),u).subs(diff(y(t),t),v).has(t) \ or r2[g].subs(diff(x(t),t),u).subs(diff(y(t),t),v).has(t)): return 'type5' else: return None for func_ in func: if isinstance(func_, list): x = func[0][0].func y = func[0][1].func eq_type = check_type(x, y) if not eq_type: eq_type = check_type(y, x) return eq_type x = func[0].func y = func[1].func fc = func_coef n = Wild('n', exclude=[x(t),y(t)]) f1 = Wild('f1', exclude=[v,t]) f2 = Wild('f2', exclude=[v,t]) g1 = Wild('g1', exclude=[u,t]) g2 = Wild('g2', exclude=[u,t]) for i in range(2): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs r = eq[0].match(diff(x(t),t) - x(t)**n*f) if r: g = (diff(y(t),t) - eq[1])/r[f] if r and not (g.has(x(t)) or g.subs(y(t),v).has(t) or r[f].subs(x(t),u).subs(y(t),v).has(t)): return 'type1' r = eq[0].match(diff(x(t),t) - exp(n*x(t))*f) if r: g = (diff(y(t),t) - eq[1])/r[f] if r and not (g.has(x(t)) or g.subs(y(t),v).has(t) or r[f].subs(x(t),u).subs(y(t),v).has(t)): return 'type2' g = Wild('g') r1 = eq[0].match(diff(x(t),t) - f) r2 = eq[1].match(diff(y(t),t) - g) if r1 and r2 and not (r1[f].subs(x(t),u).subs(y(t),v).has(t) or \ r2[g].subs(x(t),u).subs(y(t),v).has(t)): return 'type3' r1 = eq[0].match(diff(x(t),t) - f) r2 = eq[1].match(diff(y(t),t) - g) num, den = ( (r1[f].subs(x(t),u).subs(y(t),v))/ (r2[g].subs(x(t),u).subs(y(t),v))).as_numer_denom() R1 = num.match(f1*g1) R2 = den.match(f2*g2) # phi = (r1[f].subs(x(t),u).subs(y(t),v))/num if R1 and R2: return 'type4' return None def check_nonlinear_2eq_order2(eq, func, func_coef): return None def check_nonlinear_3eq_order1(eq, func, func_coef): x = func[0].func y = func[1].func z = func[2].func fc = func_coef t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] u, v, w = symbols('u, v, w', cls=Dummy) a = Wild('a', exclude=[x(t), y(t), z(t), t]) b = Wild('b', exclude=[x(t), y(t), z(t), t]) c = Wild('c', exclude=[x(t), y(t), z(t), t]) f = Wild('f') F1 = Wild('F1') F2 = Wild('F2') F3 = Wild('F3') for i in range(3): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs r1 = eq[0].match(diff(x(t),t) - a*y(t)*z(t)) r2 = eq[1].match(diff(y(t),t) - b*z(t)*x(t)) r3 = eq[2].match(diff(z(t),t) - c*x(t)*y(t)) if r1 and r2 and r3: num1, den1 = r1[a].as_numer_denom() num2, den2 = r2[b].as_numer_denom() num3, den3 = r3[c].as_numer_denom() if solve([num1*u-den1*(v-w), num2*v-den2*(w-u), num3*w-den3*(u-v)],[u, v]): return 'type1' r = eq[0].match(diff(x(t),t) - y(t)*z(t)*f) if r: r1 = collect_const(r[f]).match(a*f) r2 = ((diff(y(t),t) - eq[1])/r1[f]).match(b*z(t)*x(t)) r3 = ((diff(z(t),t) - eq[2])/r1[f]).match(c*x(t)*y(t)) if r1 and r2 and r3: num1, den1 = r1[a].as_numer_denom() num2, den2 = r2[b].as_numer_denom() num3, den3 = r3[c].as_numer_denom() if solve([num1*u-den1*(v-w), num2*v-den2*(w-u), num3*w-den3*(u-v)],[u, v]): return 'type2' r = eq[0].match(diff(x(t),t) - (F2-F3)) if r: r1 = collect_const(r[F2]).match(c*F2) r1.update(collect_const(r[F3]).match(b*F3)) if r1: if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]): r1[F2], r1[F3] = r1[F3], r1[F2] r1[c], r1[b] = -r1[b], -r1[c] r2 = eq[1].match(diff(y(t),t) - a*r1[F3] + r1[c]*F1) if r2: r3 = (eq[2] == diff(z(t),t) - r1[b]*r2[F1] + r2[a]*r1[F2]) if r1 and r2 and r3: return 'type3' r = eq[0].match(diff(x(t),t) - z(t)*F2 + y(t)*F3) if r: r1 = collect_const(r[F2]).match(c*F2) r1.update(collect_const(r[F3]).match(b*F3)) if r1: if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]): r1[F2], r1[F3] = r1[F3], r1[F2] r1[c], r1[b] = -r1[b], -r1[c] r2 = (diff(y(t),t) - eq[1]).match(a*x(t)*r1[F3] - r1[c]*z(t)*F1) if r2: r3 = (diff(z(t),t) - eq[2] == r1[b]*y(t)*r2[F1] - r2[a]*x(t)*r1[F2]) if r1 and r2 and r3: return 'type4' r = (diff(x(t),t) - eq[0]).match(x(t)*(F2 - F3)) if r: r1 = collect_const(r[F2]).match(c*F2) r1.update(collect_const(r[F3]).match(b*F3)) if r1: if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]): r1[F2], r1[F3] = r1[F3], r1[F2] r1[c], r1[b] = -r1[b], -r1[c] r2 = (diff(y(t),t) - eq[1]).match(y(t)*(a*r1[F3] - r1[c]*F1)) if r2: r3 = (diff(z(t),t) - eq[2] == z(t)*(r1[b]*r2[F1] - r2[a]*r1[F2])) if r1 and r2 and r3: return 'type5' return None def check_nonlinear_3eq_order2(eq, func, func_coef): return None @vectorize(0) def odesimp(ode, eq, func, hint): r""" Simplifies solutions of ODEs, including trying to solve for ``func`` and running :py:meth:`~sympy.solvers.ode.constantsimp`. It may use knowledge of the type of solution that the hint returns to apply additional simplifications. It also attempts to integrate any :py:class:`~sympy.integrals.integrals.Integral`\s in the expression, if the hint is not an ``_Integral`` hint. This function should have no effect on expressions returned by :py:meth:`~sympy.solvers.ode.dsolve`, as :py:meth:`~sympy.solvers.ode.dsolve` already calls :py:meth:`~sympy.solvers.ode.ode.odesimp`, but the individual hint functions do not call :py:meth:`~sympy.solvers.ode.ode.odesimp` (because the :py:meth:`~sympy.solvers.ode.dsolve` wrapper does). Therefore, this function is designed for mainly internal use. Examples ======== >>> from sympy import sin, symbols, dsolve, pprint, Function >>> from sympy.solvers.ode.ode import odesimp >>> x , u2, C1= symbols('x,u2,C1') >>> f = Function('f') >>> eq = dsolve(x*f(x).diff(x) - f(x) - x*sin(f(x)/x), f(x), ... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral', ... simplify=False) >>> pprint(eq, wrap_line=False) x ---- f(x) / | | / 1 \ | -|u2 + -------| | | /1 \| | | sin|--|| | \ \u2// log(f(x)) = log(C1) + | ---------------- d(u2) | 2 | u2 | / >>> pprint(odesimp(eq, f(x), 1, {C1}, ... hint='1st_homogeneous_coeff_subs_indep_div_dep' ... )) #doctest: +SKIP x --------- = C1 /f(x)\ tan|----| \2*x / """ x = func.args[0] f = func.func C1 = get_numbered_constants(eq, num=1) constants = eq.free_symbols - ode.free_symbols # First, integrate if the hint allows it. eq = _handle_Integral(eq, func, hint) if hint.startswith("nth_linear_euler_eq_nonhomogeneous"): eq = simplify(eq) if not isinstance(eq, Equality): raise TypeError("eq should be an instance of Equality") # Second, clean up the arbitrary constants. # Right now, nth linear hints can put as many as 2*order constants in an # expression. If that number grows with another hint, the third argument # here should be raised accordingly, or constantsimp() rewritten to handle # an arbitrary number of constants. eq = constantsimp(eq, constants) # Lastly, now that we have cleaned up the expression, try solving for func. # When CRootOf is implemented in solve(), we will want to return a CRootOf # every time instead of an Equality. # Get the f(x) on the left if possible. if eq.rhs == func and not eq.lhs.has(func): eq = [Eq(eq.rhs, eq.lhs)] # make sure we are working with lists of solutions in simplified form. if eq.lhs == func and not eq.rhs.has(func): # The solution is already solved eq = [eq] # special simplification of the rhs if hint.startswith("nth_linear_constant_coeff"): # Collect terms to make the solution look nice. # This is also necessary for constantsimp to remove unnecessary # terms from the particular solution from variation of parameters # # Collect is not behaving reliably here. The results for # some linear constant-coefficient equations with repeated # roots do not properly simplify all constants sometimes. # 'collectterms' gives different orders sometimes, and results # differ in collect based on that order. The # sort-reverse trick fixes things, but may fail in the # future. In addition, collect is splitting exponentials with # rational powers for no reason. We have to do a match # to fix this using Wilds. # # XXX: This global collectterms hack should be removed. global collectterms collectterms.sort(key=default_sort_key) collectterms.reverse() assert len(eq) == 1 and eq[0].lhs == f(x) sol = eq[0].rhs sol = expand_mul(sol) for i, reroot, imroot in collectterms: sol = collect(sol, x**i*exp(reroot*x)*sin(abs(imroot)*x)) sol = collect(sol, x**i*exp(reroot*x)*cos(imroot*x)) for i, reroot, imroot in collectterms: sol = collect(sol, x**i*exp(reroot*x)) del collectterms # Collect is splitting exponentials with rational powers for # no reason. We call powsimp to fix. sol = powsimp(sol) eq[0] = Eq(f(x), sol) else: # The solution is not solved, so try to solve it try: floats = any(i.is_Float for i in eq.atoms(Number)) eqsol = solve(eq, func, force=True, rational=False if floats else None) if not eqsol: raise NotImplementedError except (NotImplementedError, PolynomialError): eq = [eq] else: def _expand(expr): numer, denom = expr.as_numer_denom() if denom.is_Add: return expr else: return powsimp(expr.expand(), combine='exp', deep=True) # XXX: the rest of odesimp() expects each ``t`` to be in a # specific normal form: rational expression with numerator # expanded, but with combined exponential functions (at # least in this setup all tests pass). eq = [Eq(f(x), _expand(t)) for t in eqsol] # special simplification of the lhs. if hint.startswith("1st_homogeneous_coeff"): for j, eqi in enumerate(eq): newi = logcombine(eqi, force=True) if isinstance(newi.lhs, log) and newi.rhs == 0: newi = Eq(newi.lhs.args[0]/C1, C1) eq[j] = newi # We cleaned up the constants before solving to help the solve engine with # a simpler expression, but the solved expression could have introduced # things like -C1, so rerun constantsimp() one last time before returning. for i, eqi in enumerate(eq): eq[i] = constantsimp(eqi, constants) eq[i] = constant_renumber(eq[i], ode.free_symbols) # If there is only 1 solution, return it; # otherwise return the list of solutions. if len(eq) == 1: eq = eq[0] return eq def ode_sol_simplicity(sol, func, trysolving=True): r""" Returns an extended integer representing how simple a solution to an ODE is. The following things are considered, in order from most simple to least: - ``sol`` is solved for ``func``. - ``sol`` is not solved for ``func``, but can be if passed to solve (e.g., a solution returned by ``dsolve(ode, func, simplify=False``). - If ``sol`` is not solved for ``func``, then base the result on the length of ``sol``, as computed by ``len(str(sol))``. - If ``sol`` has any unevaluated :py:class:`~sympy.integrals.integrals.Integral`\s, this will automatically be considered less simple than any of the above. This function returns an integer such that if solution A is simpler than solution B by above metric, then ``ode_sol_simplicity(sola, func) < ode_sol_simplicity(solb, func)``. Currently, the following are the numbers returned, but if the heuristic is ever improved, this may change. Only the ordering is guaranteed. +----------------------------------------------+-------------------+ | Simplicity | Return | +==============================================+===================+ | ``sol`` solved for ``func`` | ``-2`` | +----------------------------------------------+-------------------+ | ``sol`` not solved for ``func`` but can be | ``-1`` | +----------------------------------------------+-------------------+ | ``sol`` is not solved nor solvable for | ``len(str(sol))`` | | ``func`` | | +----------------------------------------------+-------------------+ | ``sol`` contains an | ``oo`` | | :obj:`~sympy.integrals.integrals.Integral` | | +----------------------------------------------+-------------------+ ``oo`` here means the SymPy infinity, which should compare greater than any integer. If you already know :py:meth:`~sympy.solvers.solvers.solve` cannot solve ``sol``, you can use ``trysolving=False`` to skip that step, which is the only potentially slow step. For example, :py:meth:`~sympy.solvers.ode.dsolve` with the ``simplify=False`` flag should do this. If ``sol`` is a list of solutions, if the worst solution in the list returns ``oo`` it returns that, otherwise it returns ``len(str(sol))``, that is, the length of the string representation of the whole list. Examples ======== This function is designed to be passed to ``min`` as the key argument, such as ``min(listofsolutions, key=lambda i: ode_sol_simplicity(i, f(x)))``. >>> from sympy import symbols, Function, Eq, tan, Integral >>> from sympy.solvers.ode.ode import ode_sol_simplicity >>> x, C1, C2 = symbols('x, C1, C2') >>> f = Function('f') >>> ode_sol_simplicity(Eq(f(x), C1*x**2), f(x)) -2 >>> ode_sol_simplicity(Eq(x**2 + f(x), C1), f(x)) -1 >>> ode_sol_simplicity(Eq(f(x), C1*Integral(2*x, x)), f(x)) oo >>> eq1 = Eq(f(x)/tan(f(x)/(2*x)), C1) >>> eq2 = Eq(f(x)/tan(f(x)/(2*x) + f(x)), C2) >>> [ode_sol_simplicity(eq, f(x)) for eq in [eq1, eq2]] [28, 35] >>> min([eq1, eq2], key=lambda i: ode_sol_simplicity(i, f(x))) Eq(f(x)/tan(f(x)/(2*x)), C1) """ # TODO: if two solutions are solved for f(x), we still want to be # able to get the simpler of the two # See the docstring for the coercion rules. We check easier (faster) # things here first, to save time. if iterable(sol): # See if there are Integrals for i in sol: if ode_sol_simplicity(i, func, trysolving=trysolving) == oo: return oo return len(str(sol)) if sol.has(Integral): return oo # Next, try to solve for func. This code will change slightly when CRootOf # is implemented in solve(). Probably a CRootOf solution should fall # somewhere between a normal solution and an unsolvable expression. # First, see if they are already solved if sol.lhs == func and not sol.rhs.has(func) or \ sol.rhs == func and not sol.lhs.has(func): return -2 # We are not so lucky, try solving manually if trysolving: try: sols = solve(sol, func) if not sols: raise NotImplementedError except NotImplementedError: pass else: return -1 # Finally, a naive computation based on the length of the string version # of the expression. This may favor combined fractions because they # will not have duplicate denominators, and may slightly favor expressions # with fewer additions and subtractions, as those are separated by spaces # by the printer. # Additional ideas for simplicity heuristics are welcome, like maybe # checking if a equation has a larger domain, or if constantsimp has # introduced arbitrary constants numbered higher than the order of a # given ODE that sol is a solution of. return len(str(sol)) def _extract_funcs(eqs): from sympy.core.basic import preorder_traversal funcs = [] for eq in eqs: derivs = [node for node in preorder_traversal(eq) if isinstance(node, Derivative)] func = [] for d in derivs: func += list(d.atoms(AppliedUndef)) for func_ in func: funcs.append(func_) funcs = list(uniq(funcs)) return funcs def _get_constant_subexpressions(expr, Cs): Cs = set(Cs) Ces = [] def _recursive_walk(expr): expr_syms = expr.free_symbols if expr_syms and expr_syms.issubset(Cs): Ces.append(expr) else: if expr.func == exp: expr = expr.expand(mul=True) if expr.func in (Add, Mul): d = sift(expr.args, lambda i : i.free_symbols.issubset(Cs)) if len(d[True]) > 1: x = expr.func(*d[True]) if not x.is_number: Ces.append(x) elif isinstance(expr, Integral): if expr.free_symbols.issubset(Cs) and \ all(len(x) == 3 for x in expr.limits): Ces.append(expr) for i in expr.args: _recursive_walk(i) return _recursive_walk(expr) return Ces def __remove_linear_redundancies(expr, Cs): cnts = {i: expr.count(i) for i in Cs} Cs = [i for i in Cs if cnts[i] > 0] def _linear(expr): if isinstance(expr, Add): xs = [i for i in Cs if expr.count(i)==cnts[i] \ and 0 == expr.diff(i, 2)] d = {} for x in xs: y = expr.diff(x) if y not in d: d[y]=[] d[y].append(x) for y in d: if len(d[y]) > 1: d[y].sort(key=str) for x in d[y][1:]: expr = expr.subs(x, 0) return expr def _recursive_walk(expr): if len(expr.args) != 0: expr = expr.func(*[_recursive_walk(i) for i in expr.args]) expr = _linear(expr) return expr if isinstance(expr, Equality): lhs, rhs = [_recursive_walk(i) for i in expr.args] f = lambda i: isinstance(i, Number) or i in Cs if isinstance(lhs, Symbol) and lhs in Cs: rhs, lhs = lhs, rhs if lhs.func in (Add, Symbol) and rhs.func in (Add, Symbol): dlhs = sift([lhs] if isinstance(lhs, AtomicExpr) else lhs.args, f) drhs = sift([rhs] if isinstance(rhs, AtomicExpr) else rhs.args, f) for i in [True, False]: for hs in [dlhs, drhs]: if i not in hs: hs[i] = [0] # this calculation can be simplified lhs = Add(*dlhs[False]) - Add(*drhs[False]) rhs = Add(*drhs[True]) - Add(*dlhs[True]) elif lhs.func in (Mul, Symbol) and rhs.func in (Mul, Symbol): dlhs = sift([lhs] if isinstance(lhs, AtomicExpr) else lhs.args, f) if True in dlhs: if False not in dlhs: dlhs[False] = [1] lhs = Mul(*dlhs[False]) rhs = rhs/Mul(*dlhs[True]) return Eq(lhs, rhs) else: return _recursive_walk(expr) @vectorize(0) def constantsimp(expr, constants): r""" Simplifies an expression with arbitrary constants in it. This function is written specifically to work with :py:meth:`~sympy.solvers.ode.dsolve`, and is not intended for general use. Simplification is done by "absorbing" the arbitrary constants into other arbitrary constants, numbers, and symbols that they are not independent of. The symbols must all have the same name with numbers after it, for example, ``C1``, ``C2``, ``C3``. The ``symbolname`` here would be '``C``', the ``startnumber`` would be 1, and the ``endnumber`` would be 3. If the arbitrary constants are independent of the variable ``x``, then the independent symbol would be ``x``. There is no need to specify the dependent function, such as ``f(x)``, because it already has the independent symbol, ``x``, in it. Because terms are "absorbed" into arbitrary constants and because constants are renumbered after simplifying, the arbitrary constants in expr are not necessarily equal to the ones of the same name in the returned result. If two or more arbitrary constants are added, multiplied, or raised to the power of each other, they are first absorbed together into a single arbitrary constant. Then the new constant is combined into other terms if necessary. Absorption of constants is done with limited assistance: 1. terms of :py:class:`~sympy.core.add.Add`\s are collected to try join constants so `e^x (C_1 \cos(x) + C_2 \cos(x))` will simplify to `e^x C_1 \cos(x)`; 2. powers with exponents that are :py:class:`~sympy.core.add.Add`\s are expanded so `e^{C_1 + x}` will be simplified to `C_1 e^x`. Use :py:meth:`~sympy.solvers.ode.ode.constant_renumber` to renumber constants after simplification or else arbitrary numbers on constants may appear, e.g. `C_1 + C_3 x`. In rare cases, a single constant can be "simplified" into two constants. Every differential equation solution should have as many arbitrary constants as the order of the differential equation. The result here will be technically correct, but it may, for example, have `C_1` and `C_2` in an expression, when `C_1` is actually equal to `C_2`. Use your discretion in such situations, and also take advantage of the ability to use hints in :py:meth:`~sympy.solvers.ode.dsolve`. Examples ======== >>> from sympy import symbols >>> from sympy.solvers.ode.ode import constantsimp >>> C1, C2, C3, x, y = symbols('C1, C2, C3, x, y') >>> constantsimp(2*C1*x, {C1, C2, C3}) C1*x >>> constantsimp(C1 + 2 + x, {C1, C2, C3}) C1 + x >>> constantsimp(C1*C2 + 2 + C2 + C3*x, {C1, C2, C3}) C1 + C3*x """ # This function works recursively. The idea is that, for Mul, # Add, Pow, and Function, if the class has a constant in it, then # we can simplify it, which we do by recursing down and # simplifying up. Otherwise, we can skip that part of the # expression. Cs = constants orig_expr = expr constant_subexprs = _get_constant_subexpressions(expr, Cs) for xe in constant_subexprs: xes = list(xe.free_symbols) if not xes: continue if all([expr.count(c) == xe.count(c) for c in xes]): xes.sort(key=str) expr = expr.subs(xe, xes[0]) # try to perform common sub-expression elimination of constant terms try: commons, rexpr = cse(expr) commons.reverse() rexpr = rexpr[0] for s in commons: cs = list(s[1].atoms(Symbol)) if len(cs) == 1 and cs[0] in Cs and \ cs[0] not in rexpr.atoms(Symbol) and \ not any(cs[0] in ex for ex in commons if ex != s): rexpr = rexpr.subs(s[0], cs[0]) else: rexpr = rexpr.subs(*s) expr = rexpr except IndexError: pass expr = __remove_linear_redundancies(expr, Cs) def _conditional_term_factoring(expr): new_expr = terms_gcd(expr, clear=False, deep=True, expand=False) # we do not want to factor exponentials, so handle this separately if new_expr.is_Mul: infac = False asfac = False for m in new_expr.args: if isinstance(m, exp): asfac = True elif m.is_Add: infac = any(isinstance(fi, exp) for t in m.args for fi in Mul.make_args(t)) if asfac and infac: new_expr = expr break return new_expr expr = _conditional_term_factoring(expr) # call recursively if more simplification is possible if orig_expr != expr: return constantsimp(expr, Cs) return expr def constant_renumber(expr, variables=None, newconstants=None): r""" Renumber arbitrary constants in ``expr`` to use the symbol names as given in ``newconstants``. In the process, this reorders expression terms in a standard way. If ``newconstants`` is not provided then the new constant names will be ``C1``, ``C2`` etc. Otherwise ``newconstants`` should be an iterable giving the new symbols to use for the constants in order. The ``variables`` argument is a list of non-constant symbols. All other free symbols found in ``expr`` are assumed to be constants and will be renumbered. If ``variables`` is not given then any numbered symbol beginning with ``C`` (e.g. ``C1``) is assumed to be a constant. Symbols are renumbered based on ``.sort_key()``, so they should be numbered roughly in the order that they appear in the final, printed expression. Note that this ordering is based in part on hashes, so it can produce different results on different machines. The structure of this function is very similar to that of :py:meth:`~sympy.solvers.ode.constantsimp`. Examples ======== >>> from sympy import symbols >>> from sympy.solvers.ode.ode import constant_renumber >>> x, C1, C2, C3 = symbols('x,C1:4') >>> expr = C3 + C2*x + C1*x**2 >>> expr C1*x**2 + C2*x + C3 >>> constant_renumber(expr) C1 + C2*x + C3*x**2 The ``variables`` argument specifies which are constants so that the other symbols will not be renumbered: >>> constant_renumber(expr, [C1, x]) C1*x**2 + C2 + C3*x The ``newconstants`` argument is used to specify what symbols to use when replacing the constants: >>> constant_renumber(expr, [x], newconstants=symbols('E1:4')) E1 + E2*x + E3*x**2 """ # System of expressions if isinstance(expr, (set, list, tuple)): return type(expr)(constant_renumber(Tuple(*expr), variables=variables, newconstants=newconstants)) # Symbols in solution but not ODE are constants if variables is not None: variables = set(variables) free_symbols = expr.free_symbols constantsymbols = list(free_symbols - variables) # Any Cn is a constant... else: variables = set() isconstant = lambda s: s.startswith('C') and s[1:].isdigit() constantsymbols = [sym for sym in expr.free_symbols if isconstant(sym.name)] # Find new constants checking that they aren't already in the ODE if newconstants is None: iter_constants = numbered_symbols(start=1, prefix='C', exclude=variables) else: iter_constants = (sym for sym in newconstants if sym not in variables) constants_found = [] # make a mapping to send all constantsymbols to S.One and use # that to make sure that term ordering is not dependent on # the indexed value of C C_1 = [(ci, S.One) for ci in constantsymbols] sort_key=lambda arg: default_sort_key(arg.subs(C_1)) def _constant_renumber(expr): r""" We need to have an internal recursive function """ # For system of expressions if isinstance(expr, Tuple): renumbered = [_constant_renumber(e) for e in expr] return Tuple(*renumbered) if isinstance(expr, Equality): return Eq( _constant_renumber(expr.lhs), _constant_renumber(expr.rhs)) if type(expr) not in (Mul, Add, Pow) and not expr.is_Function and \ not expr.has(*constantsymbols): # Base case, as above. Hope there aren't constants inside # of some other class, because they won't be renumbered. return expr elif expr.is_Piecewise: return expr elif expr in constantsymbols: if expr not in constants_found: constants_found.append(expr) return expr elif expr.is_Function or expr.is_Pow: return expr.func( *[_constant_renumber(x) for x in expr.args]) else: sortedargs = list(expr.args) sortedargs.sort(key=sort_key) return expr.func(*[_constant_renumber(x) for x in sortedargs]) expr = _constant_renumber(expr) # Don't renumber symbols present in the ODE. constants_found = [c for c in constants_found if c not in variables] # Renumbering happens here subs_dict = {var: cons for var, cons in zip(constants_found, iter_constants)} expr = expr.subs(subs_dict, simultaneous=True) return expr def _handle_Integral(expr, func, hint): r""" Converts a solution with Integrals in it into an actual solution. For most hints, this simply runs ``expr.doit()``. """ # XXX: This global y hack should be removed global y x = func.args[0] f = func.func if hint == "1st_exact": sol = (expr.doit()).subs(y, f(x)) del y elif hint == "1st_exact_Integral": sol = Eq(Subs(expr.lhs, y, f(x)), expr.rhs) del y elif hint == "nth_linear_constant_coeff_homogeneous": sol = expr elif not hint.endswith("_Integral"): sol = expr.doit() else: sol = expr return sol # FIXME: replace the general solution in the docstring with # dsolve(equation, hint='1st_exact_Integral'). You will need to be able # to have assumptions on P and Q that dP/dy = dQ/dx. def ode_1st_exact(eq, func, order, match): r""" Solves 1st order exact ordinary differential equations. A 1st order differential equation is called exact if it is the total differential of a function. That is, the differential equation .. math:: P(x, y) \,\partial{}x + Q(x, y) \,\partial{}y = 0 is exact if there is some function `F(x, y)` such that `P(x, y) = \partial{}F/\partial{}x` and `Q(x, y) = \partial{}F/\partial{}y`. It can be shown that a necessary and sufficient condition for a first order ODE to be exact is that `\partial{}P/\partial{}y = \partial{}Q/\partial{}x`. Then, the solution will be as given below:: >>> from sympy import Function, Eq, Integral, symbols, pprint >>> x, y, t, x0, y0, C1= symbols('x,y,t,x0,y0,C1') >>> P, Q, F= map(Function, ['P', 'Q', 'F']) >>> pprint(Eq(Eq(F(x, y), Integral(P(t, y), (t, x0, x)) + ... Integral(Q(x0, t), (t, y0, y))), C1)) x y / / | | F(x, y) = | P(t, y) dt + | Q(x0, t) dt = C1 | | / / x0 y0 Where the first partials of `P` and `Q` exist and are continuous in a simply connected region. A note: SymPy currently has no way to represent inert substitution on an expression, so the hint ``1st_exact_Integral`` will return an integral with `dy`. This is supposed to represent the function that you are solving for. Examples ======== >>> from sympy import Function, dsolve, cos, sin >>> from sympy.abc import x >>> f = Function('f') >>> dsolve(cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x), ... f(x), hint='1st_exact') Eq(x*cos(f(x)) + f(x)**3/3, C1) References ========== - https://en.wikipedia.org/wiki/Exact_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 73 # indirect doctest """ x = func.args[0] r = match # d+e*diff(f(x),x) e = r[r['e']] d = r[r['d']] # XXX: This global y hack should be removed global y # This is the only way to pass dummy y to _handle_Integral y = r['y'] C1 = get_numbered_constants(eq, num=1) # Refer Joel Moses, "Symbolic Integration - The Stormy Decade", # Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558 # which gives the method to solve an exact differential equation. sol = Integral(d, x) + Integral((e - (Integral(d, x).diff(y))), y) return Eq(sol, C1) def ode_1st_homogeneous_coeff_best(eq, func, order, match): r""" Returns the best solution to an ODE from the two hints ``1st_homogeneous_coeff_subs_dep_div_indep`` and ``1st_homogeneous_coeff_subs_indep_div_dep``. This is as determined by :py:meth:`~sympy.solvers.ode.ode.ode_sol_simplicity`. See the :py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep` and :py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep` docstrings for more information on these hints. Note that there is no ``ode_1st_homogeneous_coeff_best_Integral`` hint. Examples ======== >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), ... hint='1st_homogeneous_coeff_best', simplify=False)) / 2 \ | 3*x | log|----- + 1| | 2 | \f (x) / log(f(x)) = log(C1) - -------------- 3 References ========== - https://en.wikipedia.org/wiki/Homogeneous_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 59 # indirect doctest """ # There are two substitutions that solve the equation, u1=y/x and u2=x/y # They produce different integrals, so try them both and see which # one is easier. sol1 = ode_1st_homogeneous_coeff_subs_indep_div_dep(eq, func, order, match) sol2 = ode_1st_homogeneous_coeff_subs_dep_div_indep(eq, func, order, match) simplify = match.get('simplify', True) if simplify: # why is odesimp called here? Should it be at the usual spot? sol1 = odesimp(eq, sol1, func, "1st_homogeneous_coeff_subs_indep_div_dep") sol2 = odesimp(eq, sol2, func, "1st_homogeneous_coeff_subs_dep_div_indep") return min([sol1, sol2], key=lambda x: ode_sol_simplicity(x, func, trysolving=not simplify)) def ode_1st_homogeneous_coeff_subs_dep_div_indep(eq, func, order, match): r""" Solves a 1st order differential equation with homogeneous coefficients using the substitution `u_1 = \frac{\text{<dependent variable>}}{\text{<independent variable>}}`. This is a differential equation .. math:: P(x, y) + Q(x, y) dy/dx = 0 such that `P` and `Q` are homogeneous and of the same order. A function `F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`. Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`. If the coefficients `P` and `Q` in the differential equation above are homogeneous functions of the same order, then it can be shown that the substitution `y = u_1 x` (i.e. `u_1 = y/x`) will turn the differential equation into an equation separable in the variables `x` and `u`. If `h(u_1)` is the function that results from making the substitution `u_1 = f(x)/x` on `P(x, f(x))` and `g(u_2)` is the function that results from the substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) + Q(x, f(x)) f'(x) = 0`, then the general solution is:: >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f, g, h = map(Function, ['f', 'g', 'h']) >>> genform = g(f(x)/x) + h(f(x)/x)*f(x).diff(x) >>> pprint(genform) /f(x)\ /f(x)\ d g|----| + h|----|*--(f(x)) \ x / \ x / dx >>> pprint(dsolve(genform, f(x), ... hint='1st_homogeneous_coeff_subs_dep_div_indep_Integral')) f(x) ---- x / | | -h(u1) log(x) = C1 + | ---------------- d(u1) | u1*h(u1) + g(u1) | / Where `u_1 h(u_1) + g(u_1) \ne 0` and `x \ne 0`. See also the docstrings of :py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_best` and :py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep`. Examples ======== >>> from sympy import Function, dsolve >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), ... hint='1st_homogeneous_coeff_subs_dep_div_indep', simplify=False)) / 3 \ |3*f(x) f (x)| log|------ + -----| | x 3 | \ x / log(x) = log(C1) - ------------------- 3 References ========== - https://en.wikipedia.org/wiki/Homogeneous_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 59 # indirect doctest """ x = func.args[0] f = func.func u = Dummy('u') u1 = Dummy('u1') # u1 == f(x)/x r = match # d+e*diff(f(x),x) C1 = get_numbered_constants(eq, num=1) xarg = match.get('xarg', 0) yarg = match.get('yarg', 0) int = Integral( (-r[r['e']]/(r[r['d']] + u1*r[r['e']])).subs({x: 1, r['y']: u1}), (u1, None, f(x)/x)) sol = logcombine(Eq(log(x), int + log(C1)), force=True) sol = sol.subs(f(x), u).subs(((u, u - yarg), (x, x - xarg), (u, f(x)))) return sol def ode_1st_homogeneous_coeff_subs_indep_div_dep(eq, func, order, match): r""" Solves a 1st order differential equation with homogeneous coefficients using the substitution `u_2 = \frac{\text{<independent variable>}}{\text{<dependent variable>}}`. This is a differential equation .. math:: P(x, y) + Q(x, y) dy/dx = 0 such that `P` and `Q` are homogeneous and of the same order. A function `F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`. Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`. If the coefficients `P` and `Q` in the differential equation above are homogeneous functions of the same order, then it can be shown that the substitution `x = u_2 y` (i.e. `u_2 = x/y`) will turn the differential equation into an equation separable in the variables `y` and `u_2`. If `h(u_2)` is the function that results from making the substitution `u_2 = x/f(x)` on `P(x, f(x))` and `g(u_2)` is the function that results from the substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) + Q(x, f(x)) f'(x) = 0`, then the general solution is: >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f, g, h = map(Function, ['f', 'g', 'h']) >>> genform = g(x/f(x)) + h(x/f(x))*f(x).diff(x) >>> pprint(genform) / x \ / x \ d g|----| + h|----|*--(f(x)) \f(x)/ \f(x)/ dx >>> pprint(dsolve(genform, f(x), ... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral')) x ---- f(x) / | | -g(u2) | ---------------- d(u2) | u2*g(u2) + h(u2) | / <BLANKLINE> f(x) = C1*e Where `u_2 g(u_2) + h(u_2) \ne 0` and `f(x) \ne 0`. See also the docstrings of :py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_best` and :py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep`. Examples ======== >>> from sympy import Function, pprint, dsolve >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), ... hint='1st_homogeneous_coeff_subs_indep_div_dep', ... simplify=False)) / 2 \ | 3*x | log|----- + 1| | 2 | \f (x) / log(f(x)) = log(C1) - -------------- 3 References ========== - https://en.wikipedia.org/wiki/Homogeneous_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 59 # indirect doctest """ x = func.args[0] f = func.func u = Dummy('u') u2 = Dummy('u2') # u2 == x/f(x) r = match # d+e*diff(f(x),x) C1 = get_numbered_constants(eq, num=1) xarg = match.get('xarg', 0) # If xarg present take xarg, else zero yarg = match.get('yarg', 0) # If yarg present take yarg, else zero int = Integral( simplify( (-r[r['d']]/(r[r['e']] + u2*r[r['d']])).subs({x: u2, r['y']: 1})), (u2, None, x/f(x))) sol = logcombine(Eq(log(f(x)), int + log(C1)), force=True) sol = sol.subs(f(x), u).subs(((u, u - yarg), (x, x - xarg), (u, f(x)))) return sol # XXX: Should this function maybe go somewhere else? def homogeneous_order(eq, *symbols): r""" Returns the order `n` if `g` is homogeneous and ``None`` if it is not homogeneous. Determines if a function is homogeneous and if so of what order. A function `f(x, y, \cdots)` is homogeneous of order `n` if `f(t x, t y, \cdots) = t^n f(x, y, \cdots)`. If the function is of two variables, `F(x, y)`, then `f` being homogeneous of any order is equivalent to being able to rewrite `F(x, y)` as `G(x/y)` or `H(y/x)`. This fact is used to solve 1st order ordinary differential equations whose coefficients are homogeneous of the same order (see the docstrings of :py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep` and :py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep`). Symbols can be functions, but every argument of the function must be a symbol, and the arguments of the function that appear in the expression must match those given in the list of symbols. If a declared function appears with different arguments than given in the list of symbols, ``None`` is returned. Examples ======== >>> from sympy import Function, homogeneous_order, sqrt >>> from sympy.abc import x, y >>> f = Function('f') >>> homogeneous_order(f(x), f(x)) is None True >>> homogeneous_order(f(x,y), f(y, x), x, y) is None True >>> homogeneous_order(f(x), f(x), x) 1 >>> homogeneous_order(x**2*f(x)/sqrt(x**2+f(x)**2), x, f(x)) 2 >>> homogeneous_order(x**2+f(x), x, f(x)) is None True """ if not symbols: raise ValueError("homogeneous_order: no symbols were given.") symset = set(symbols) eq = sympify(eq) # The following are not supported if eq.has(Order, Derivative): return None # These are all constants if (eq.is_Number or eq.is_NumberSymbol or eq.is_number ): return S.Zero # Replace all functions with dummy variables dum = numbered_symbols(prefix='d', cls=Dummy) newsyms = set() for i in [j for j in symset if getattr(j, 'is_Function')]: iargs = set(i.args) if iargs.difference(symset): return None else: dummyvar = next(dum) eq = eq.subs(i, dummyvar) symset.remove(i) newsyms.add(dummyvar) symset.update(newsyms) if not eq.free_symbols & symset: return None # assuming order of a nested function can only be equal to zero if isinstance(eq, Function): return None if homogeneous_order( eq.args[0], *tuple(symset)) != 0 else S.Zero # make the replacement of x with x*t and see if t can be factored out t = Dummy('t', positive=True) # It is sufficient that t > 0 eqs = separatevars(eq.subs([(i, t*i) for i in symset]), [t], dict=True)[t] if eqs is S.One: return S.Zero # there was no term with only t i, d = eqs.as_independent(t, as_Add=False) b, e = d.as_base_exp() if b == t: return e def ode_Liouville(eq, func, order, match): r""" Solves 2nd order Liouville differential equations. The general form of a Liouville ODE is .. math:: \frac{d^2 y}{dx^2} + g(y) \left(\! \frac{dy}{dx}\!\right)^2 + h(x) \frac{dy}{dx}\text{.} The general solution is: >>> from sympy import Function, dsolve, Eq, pprint, diff >>> from sympy.abc import x >>> f, g, h = map(Function, ['f', 'g', 'h']) >>> genform = Eq(diff(f(x),x,x) + g(f(x))*diff(f(x),x)**2 + ... h(x)*diff(f(x),x), 0) >>> pprint(genform) 2 2 /d \ d d g(f(x))*|--(f(x))| + h(x)*--(f(x)) + ---(f(x)) = 0 \dx / dx 2 dx >>> pprint(dsolve(genform, f(x), hint='Liouville_Integral')) f(x) / / | | | / | / | | | | | - | h(x) dx | | g(y) dy | | | | | / | / C1 + C2* | e dx + | e dy = 0 | | / / Examples ======== >>> from sympy import Function, dsolve, Eq, pprint >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(diff(f(x), x, x) + diff(f(x), x)**2/f(x) + ... diff(f(x), x)/x, f(x), hint='Liouville')) ________________ ________________ [f(x) = -\/ C1 + C2*log(x) , f(x) = \/ C1 + C2*log(x) ] References ========== - Goldstein and Braun, "Advanced Methods for the Solution of Differential Equations", pp. 98 - http://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Liouville # indirect doctest """ # Liouville ODE: # f(x).diff(x, 2) + g(f(x))*(f(x).diff(x, 2))**2 + h(x)*f(x).diff(x) # See Goldstein and Braun, "Advanced Methods for the Solution of # Differential Equations", pg. 98, as well as # http://www.maplesoft.com/support/help/view.aspx?path=odeadvisor/Liouville x = func.args[0] f = func.func r = match # f(x).diff(x, 2) + g*f(x).diff(x)**2 + h*f(x).diff(x) y = r['y'] C1, C2 = get_numbered_constants(eq, num=2) int = Integral(exp(Integral(r['g'], y)), (y, None, f(x))) sol = Eq(int + C1*Integral(exp(-Integral(r['h'], x)), x) + C2, 0) return sol def ode_2nd_power_series_ordinary(eq, func, order, match): r""" Gives a power series solution to a second order homogeneous differential equation with polynomial coefficients at an ordinary point. A homogeneous differential equation is of the form .. math :: P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x) = 0 For simplicity it is assumed that `P(x)`, `Q(x)` and `R(x)` are polynomials, it is sufficient that `\frac{Q(x)}{P(x)}` and `\frac{R(x)}{P(x)}` exists at `x_{0}`. A recurrence relation is obtained by substituting `y` as `\sum_{n=0}^\infty a_{n}x^{n}`, in the differential equation, and equating the nth term. Using this relation various terms can be generated. Examples ======== >>> from sympy import dsolve, Function, pprint >>> from sympy.abc import x >>> f = Function("f") >>> eq = f(x).diff(x, 2) + f(x) >>> pprint(dsolve(eq, hint='2nd_power_series_ordinary')) / 4 2 \ / 2\ |x x | | x | / 6\ f(x) = C2*|-- - -- + 1| + C1*x*|1 - --| + O\x / \24 2 / \ 6 / References ========== - http://tutorial.math.lamar.edu/Classes/DE/SeriesSolutions.aspx - George E. Simmons, "Differential Equations with Applications and Historical Notes", p.p 176 - 184 """ x = func.args[0] f = func.func C0, C1 = get_numbered_constants(eq, num=2) n = Dummy("n", integer=True) s = Wild("s") k = Wild("k", exclude=[x]) x0 = match.get('x0') terms = match.get('terms', 5) p = match[match['a3']] q = match[match['b3']] r = match[match['c3']] seriesdict = {} recurr = Function("r") # Generating the recurrence relation which works this way: # for the second order term the summation begins at n = 2. The coefficients # p is multiplied with an*(n - 1)*(n - 2)*x**n-2 and a substitution is made such that # the exponent of x becomes n. # For example, if p is x, then the second degree recurrence term is # an*(n - 1)*(n - 2)*x**n-1, substituting (n - 1) as n, it transforms to # an+1*n*(n - 1)*x**n. # A similar process is done with the first order and zeroth order term. coefflist = [(recurr(n), r), (n*recurr(n), q), (n*(n - 1)*recurr(n), p)] for index, coeff in enumerate(coefflist): if coeff[1]: f2 = powsimp(expand((coeff[1]*(x - x0)**(n - index)).subs(x, x + x0))) if f2.is_Add: addargs = f2.args else: addargs = [f2] for arg in addargs: powm = arg.match(s*x**k) term = coeff[0]*powm[s] if not powm[k].is_Symbol: term = term.subs(n, n - powm[k].as_independent(n)[0]) startind = powm[k].subs(n, index) # Seeing if the startterm can be reduced further. # If it vanishes for n lesser than startind, it is # equal to summation from n. if startind: for i in reversed(range(startind)): if not term.subs(n, i): seriesdict[term] = i else: seriesdict[term] = i + 1 break else: seriesdict[term] = S.Zero # Stripping of terms so that the sum starts with the same number. teq = S.Zero suminit = seriesdict.values() rkeys = seriesdict.keys() req = Add(*rkeys) if any(suminit): maxval = max(suminit) for term in seriesdict: val = seriesdict[term] if val != maxval: for i in range(val, maxval): teq += term.subs(n, val) finaldict = {} if teq: fargs = teq.atoms(AppliedUndef) if len(fargs) == 1: finaldict[fargs.pop()] = 0 else: maxf = max(fargs, key = lambda x: x.args[0]) sol = solve(teq, maxf) if isinstance(sol, list): sol = sol[0] finaldict[maxf] = sol # Finding the recurrence relation in terms of the largest term. fargs = req.atoms(AppliedUndef) maxf = max(fargs, key = lambda x: x.args[0]) minf = min(fargs, key = lambda x: x.args[0]) if minf.args[0].is_Symbol: startiter = 0 else: startiter = -minf.args[0].as_independent(n)[0] lhs = maxf rhs = solve(req, maxf) if isinstance(rhs, list): rhs = rhs[0] # Checking how many values are already present tcounter = len([t for t in finaldict.values() if t]) for _ in range(tcounter, terms - 3): # Assuming c0 and c1 to be arbitrary check = rhs.subs(n, startiter) nlhs = lhs.subs(n, startiter) nrhs = check.subs(finaldict) finaldict[nlhs] = nrhs startiter += 1 # Post processing series = C0 + C1*(x - x0) for term in finaldict: if finaldict[term]: fact = term.args[0] series += (finaldict[term].subs([(recurr(0), C0), (recurr(1), C1)])*( x - x0)**fact) series = collect(expand_mul(series), [C0, C1]) + Order(x**terms) return Eq(f(x), series) def ode_2nd_linear_airy(eq, func, order, match): r""" Gives solution of the Airy differential equation .. math :: \frac{d^2y}{dx^2} + (a + b x) y(x) = 0 in terms of Airy special functions airyai and airybi. Examples ======== >>> from sympy import dsolve, Function >>> from sympy.abc import x >>> f = Function("f") >>> eq = f(x).diff(x, 2) - x*f(x) >>> dsolve(eq) Eq(f(x), C1*airyai(x) + C2*airybi(x)) """ x = func.args[0] f = func.func C0, C1 = get_numbered_constants(eq, num=2) b = match['b'] m = match['m'] if m.is_positive: arg = - b/cbrt(m)**2 - cbrt(m)*x elif m.is_negative: arg = - b/cbrt(-m)**2 + cbrt(-m)*x else: arg = - b/cbrt(-m)**2 + cbrt(-m)*x return Eq(f(x), C0*airyai(arg) + C1*airybi(arg)) def ode_2nd_power_series_regular(eq, func, order, match): r""" Gives a power series solution to a second order homogeneous differential equation with polynomial coefficients at a regular point. A second order homogeneous differential equation is of the form .. math :: P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x) = 0 A point is said to regular singular at `x0` if `x - x0\frac{Q(x)}{P(x)}` and `(x - x0)^{2}\frac{R(x)}{P(x)}` are analytic at `x0`. For simplicity `P(x)`, `Q(x)` and `R(x)` are assumed to be polynomials. The algorithm for finding the power series solutions is: 1. Try expressing `(x - x0)P(x)` and `((x - x0)^{2})Q(x)` as power series solutions about x0. Find `p0` and `q0` which are the constants of the power series expansions. 2. Solve the indicial equation `f(m) = m(m - 1) + m*p0 + q0`, to obtain the roots `m1` and `m2` of the indicial equation. 3. If `m1 - m2` is a non integer there exists two series solutions. If `m1 = m2`, there exists only one solution. If `m1 - m2` is an integer, then the existence of one solution is confirmed. The other solution may or may not exist. The power series solution is of the form `x^{m}\sum_{n=0}^\infty a_{n}x^{n}`. The coefficients are determined by the following recurrence relation. `a_{n} = -\frac{\sum_{k=0}^{n-1} q_{n-k} + (m + k)p_{n-k}}{f(m + n)}`. For the case in which `m1 - m2` is an integer, it can be seen from the recurrence relation that for the lower root `m`, when `n` equals the difference of both the roots, the denominator becomes zero. So if the numerator is not equal to zero, a second series solution exists. Examples ======== >>> from sympy import dsolve, Function, pprint >>> from sympy.abc import x >>> f = Function("f") >>> eq = x*(f(x).diff(x, 2)) + 2*(f(x).diff(x)) + x*f(x) >>> pprint(dsolve(eq, hint='2nd_power_series_regular')) / 6 4 2 \ | x x x | / 4 2 \ C1*|- --- + -- - -- + 1| | x x | \ 720 24 2 / / 6\ f(x) = C2*|--- - -- + 1| + ------------------------ + O\x / \120 6 / x References ========== - George E. Simmons, "Differential Equations with Applications and Historical Notes", p.p 176 - 184 """ x = func.args[0] f = func.func C0, C1 = get_numbered_constants(eq, num=2) m = Dummy("m") # for solving the indicial equation x0 = match.get('x0') terms = match.get('terms', 5) p = match['p'] q = match['q'] # Generating the indicial equation indicial = [] for term in [p, q]: if not term.has(x): indicial.append(term) else: term = series(term, n=1, x0=x0) if isinstance(term, Order): indicial.append(S.Zero) else: for arg in term.args: if not arg.has(x): indicial.append(arg) break p0, q0 = indicial sollist = solve(m*(m - 1) + m*p0 + q0, m) if sollist and isinstance(sollist, list) and all( [sol.is_real for sol in sollist]): serdict1 = {} serdict2 = {} if len(sollist) == 1: # Only one series solution exists in this case. m1 = m2 = sollist.pop() if terms-m1-1 <= 0: return Eq(f(x), Order(terms)) serdict1 = _frobenius(terms-m1-1, m1, p0, q0, p, q, x0, x, C0) else: m1 = sollist[0] m2 = sollist[1] if m1 < m2: m1, m2 = m2, m1 # Irrespective of whether m1 - m2 is an integer or not, one # Frobenius series solution exists. serdict1 = _frobenius(terms-m1-1, m1, p0, q0, p, q, x0, x, C0) if not (m1 - m2).is_integer: # Second frobenius series solution exists. serdict2 = _frobenius(terms-m2-1, m2, p0, q0, p, q, x0, x, C1) else: # Check if second frobenius series solution exists. serdict2 = _frobenius(terms-m2-1, m2, p0, q0, p, q, x0, x, C1, check=m1) if serdict1: finalseries1 = C0 for key in serdict1: power = int(key.name[1:]) finalseries1 += serdict1[key]*(x - x0)**power finalseries1 = (x - x0)**m1*finalseries1 finalseries2 = S.Zero if serdict2: for key in serdict2: power = int(key.name[1:]) finalseries2 += serdict2[key]*(x - x0)**power finalseries2 += C1 finalseries2 = (x - x0)**m2*finalseries2 return Eq(f(x), collect(finalseries1 + finalseries2, [C0, C1]) + Order(x**terms)) def ode_2nd_linear_bessel(eq, func, order, match): r""" Gives solution of the Bessel differential equation .. math :: x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} y(x) + (x^2-n^2) y(x) if n is integer then the solution is of the form Eq(f(x), C0 besselj(n,x) + C1 bessely(n,x)) as both the solutions are linearly independent else if n is a fraction then the solution is of the form Eq(f(x), C0 besselj(n,x) + C1 besselj(-n,x)) which can also transform into Eq(f(x), C0 besselj(n,x) + C1 bessely(n,x)). Examples ======== >>> from sympy.abc import x >>> from sympy import Symbol >>> v = Symbol('v', positive=True) >>> from sympy.solvers.ode import dsolve >>> from sympy import Function >>> f = Function('f') >>> y = f(x) >>> genform = x**2*y.diff(x, 2) + x*y.diff(x) + (x**2 - v**2)*y >>> dsolve(genform) Eq(f(x), C1*besselj(v, x) + C2*bessely(v, x)) References ========== https://www.math24.net/bessel-differential-equation/ """ x = func.args[0] f = func.func C0, C1 = get_numbered_constants(eq, num=2) n = match['n'] a4 = match['a4'] c4 = match['c4'] d4 = match['d4'] b4 = match['b4'] n = sqrt(n**2 + Rational(1, 4)*(c4 - 1)**2) return Eq(f(x), ((x**(Rational(1-c4,2)))*(C0*besselj(n/d4,a4*x**d4/d4) + C1*bessely(n/d4,a4*x**d4/d4))).subs(x, x-b4)) def _frobenius(n, m, p0, q0, p, q, x0, x, c, check=None): r""" Returns a dict with keys as coefficients and values as their values in terms of C0 """ n = int(n) # In cases where m1 - m2 is not an integer m2 = check d = Dummy("d") numsyms = numbered_symbols("C", start=0) numsyms = [next(numsyms) for i in range(n + 1)] serlist = [] for ser in [p, q]: # Order term not present if ser.is_polynomial(x) and Poly(ser, x).degree() <= n: if x0: ser = ser.subs(x, x + x0) dict_ = Poly(ser, x).as_dict() # Order term present else: tseries = series(ser, x=x0, n=n+1) # Removing order dict_ = Poly(list(ordered(tseries.args))[: -1], x).as_dict() # Fill in with zeros, if coefficients are zero. for i in range(n + 1): if (i,) not in dict_: dict_[(i,)] = S.Zero serlist.append(dict_) pseries = serlist[0] qseries = serlist[1] indicial = d*(d - 1) + d*p0 + q0 frobdict = {} for i in range(1, n + 1): num = c*(m*pseries[(i,)] + qseries[(i,)]) for j in range(1, i): sym = Symbol("C" + str(j)) num += frobdict[sym]*((m + j)*pseries[(i - j,)] + qseries[(i - j,)]) # Checking for cases when m1 - m2 is an integer. If num equals zero # then a second Frobenius series solution cannot be found. If num is not zero # then set constant as zero and proceed. if m2 is not None and i == m2 - m: if num: return False else: frobdict[numsyms[i]] = S.Zero else: frobdict[numsyms[i]] = -num/(indicial.subs(d, m+i)) return frobdict def _nth_order_reducible_match(eq, func): r""" Matches any differential equation that can be rewritten with a smaller order. Only derivatives of ``func`` alone, wrt a single variable, are considered, and only in them should ``func`` appear. """ # ODE only handles functions of 1 variable so this affirms that state assert len(func.args) == 1 x = func.args[0] vc = [d.variable_count[0] for d in eq.atoms(Derivative) if d.expr == func and len(d.variable_count) == 1] ords = [c for v, c in vc if v == x] if len(ords) < 2: return smallest = min(ords) # make sure func does not appear outside of derivatives D = Dummy() if eq.subs(func.diff(x, smallest), D).has(func): return return {'n': smallest} def ode_nth_order_reducible(eq, func, order, match): r""" Solves ODEs that only involve derivatives of the dependent variable using a substitution of the form `f^n(x) = g(x)`. For example any second order ODE of the form `f''(x) = h(f'(x), x)` can be transformed into a pair of 1st order ODEs `g'(x) = h(g(x), x)` and `f'(x) = g(x)`. Usually the 1st order ODE for `g` is easier to solve. If that gives an explicit solution for `g` then `f` is found simply by integration. Examples ======== >>> from sympy import Function, dsolve, Eq >>> from sympy.abc import x >>> f = Function('f') >>> eq = Eq(x*f(x).diff(x)**2 + f(x).diff(x, 2), 0) >>> dsolve(eq, f(x), hint='nth_order_reducible') ... # doctest: +NORMALIZE_WHITESPACE Eq(f(x), C1 - sqrt(-1/C2)*log(-C2*sqrt(-1/C2) + x) + sqrt(-1/C2)*log(C2*sqrt(-1/C2) + x)) """ x = func.args[0] f = func.func n = match['n'] # get a unique function name for g names = [a.name for a in eq.atoms(AppliedUndef)] while True: name = Dummy().name if name not in names: g = Function(name) break w = f(x).diff(x, n) geq = eq.subs(w, g(x)) gsol = dsolve(geq, g(x)) if not isinstance(gsol, list): gsol = [gsol] # Might be multiple solutions to the reduced ODE: fsol = [] for gsoli in gsol: fsoli = dsolve(gsoli.subs(g(x), w), f(x)) # or do integration n times fsol.append(fsoli) if len(fsol) == 1: fsol = fsol[0] return fsol def _remove_redundant_solutions(eq, solns, order, var): r""" Remove redundant solutions from the set of solutions. This function is needed because otherwise dsolve can return redundant solutions. As an example consider: eq = Eq((f(x).diff(x, 2))*f(x).diff(x), 0) There are two ways to find solutions to eq. The first is to solve f(x).diff(x, 2) = 0 leading to solution f(x)=C1 + C2*x. The second is to solve the equation f(x).diff(x) = 0 leading to the solution f(x) = C1. In this particular case we then see that the second solution is a special case of the first and we don't want to return it. This does not always happen. If we have eq = Eq((f(x)**2-4)*(f(x).diff(x)-4), 0) then we get the algebraic solution f(x) = [-2, 2] and the integral solution f(x) = x + C1 and in this case the two solutions are not equivalent wrt initial conditions so both should be returned. """ def is_special_case_of(soln1, soln2): return _is_special_case_of(soln1, soln2, eq, order, var) unique_solns = [] for soln1 in solns: for soln2 in unique_solns[:]: if is_special_case_of(soln1, soln2): break elif is_special_case_of(soln2, soln1): unique_solns.remove(soln2) else: unique_solns.append(soln1) return unique_solns def _is_special_case_of(soln1, soln2, eq, order, var): r""" True if soln1 is found to be a special case of soln2 wrt some value of the constants that appear in soln2. False otherwise. """ # The solutions returned by dsolve may be given explicitly or implicitly. # We will equate the sol1=(soln1.rhs - soln1.lhs), sol2=(soln2.rhs - soln2.lhs) # of the two solutions. # # Since this is supposed to hold for all x it also holds for derivatives. # For an order n ode we should be able to differentiate # each solution n times to get n+1 equations. # # We then try to solve those n+1 equations for the integrations constants # in sol2. If we can find a solution that doesn't depend on x then it # means that some value of the constants in sol1 is a special case of # sol2 corresponding to a particular choice of the integration constants. # In case the solution is in implicit form we subtract the sides soln1 = soln1.rhs - soln1.lhs soln2 = soln2.rhs - soln2.lhs # Work for the series solution if soln1.has(Order) and soln2.has(Order): if soln1.getO() == soln2.getO(): soln1 = soln1.removeO() soln2 = soln2.removeO() else: return False elif soln1.has(Order) or soln2.has(Order): return False constants1 = soln1.free_symbols.difference(eq.free_symbols) constants2 = soln2.free_symbols.difference(eq.free_symbols) constants1_new = get_numbered_constants(Tuple(soln1, soln2), len(constants1)) if len(constants1) == 1: constants1_new = {constants1_new} for c_old, c_new in zip(constants1, constants1_new): soln1 = soln1.subs(c_old, c_new) # n equations for sol1 = sol2, sol1'=sol2', ... lhs = soln1 rhs = soln2 eqns = [Eq(lhs, rhs)] for n in range(1, order): lhs = lhs.diff(var) rhs = rhs.diff(var) eq = Eq(lhs, rhs) eqns.append(eq) # BooleanTrue/False awkwardly show up for trivial equations if any(isinstance(eq, BooleanFalse) for eq in eqns): return False eqns = [eq for eq in eqns if not isinstance(eq, BooleanTrue)] try: constant_solns = solve(eqns, constants2) except NotImplementedError: return False # Sometimes returns a dict and sometimes a list of dicts if isinstance(constant_solns, dict): constant_solns = [constant_solns] # after solving the issue 17418, maybe we don't need the following checksol code. for constant_soln in constant_solns: for eq in eqns: eq=eq.rhs-eq.lhs if checksol(eq, constant_soln) is not True: return False # If any solution gives all constants as expressions that don't depend on # x then there exists constants for soln2 that give soln1 for constant_soln in constant_solns: if not any(c.has(var) for c in constant_soln.values()): return True return False def _nth_linear_match(eq, func, order): r""" Matches a differential equation to the linear form: .. math:: a_n(x) y^{(n)} + \cdots + a_1(x)y' + a_0(x) y + B(x) = 0 Returns a dict of order:coeff terms, where order is the order of the derivative on each term, and coeff is the coefficient of that derivative. The key ``-1`` holds the function `B(x)`. Returns ``None`` if the ODE is not linear. This function assumes that ``func`` has already been checked to be good. Examples ======== >>> from sympy import Function, cos, sin >>> from sympy.abc import x >>> from sympy.solvers.ode.ode import _nth_linear_match >>> f = Function('f') >>> _nth_linear_match(f(x).diff(x, 3) + 2*f(x).diff(x) + ... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) - ... sin(x), f(x), 3) {-1: x - sin(x), 0: -1, 1: cos(x) + 2, 2: x, 3: 1} >>> _nth_linear_match(f(x).diff(x, 3) + 2*f(x).diff(x) + ... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) - ... sin(f(x)), f(x), 3) == None True """ x = func.args[0] one_x = {x} terms = {i: S.Zero for i in range(-1, order + 1)} for i in Add.make_args(eq): if not i.has(func): terms[-1] += i else: c, f = i.as_independent(func) if (isinstance(f, Derivative) and set(f.variables) == one_x and f.args[0] == func): terms[f.derivative_count] += c elif f == func: terms[len(f.args[1:])] += c else: return None return terms def ode_nth_linear_euler_eq_homogeneous(eq, func, order, match, returns='sol'): r""" Solves an `n`\th order linear homogeneous variable-coefficient Cauchy-Euler equidimensional ordinary differential equation. This is an equation with form `0 = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) \cdots`. These equations can be solved in a general manner, by substituting solutions of the form `f(x) = x^r`, and deriving a characteristic equation for `r`. When there are repeated roots, we include extra terms of the form `C_{r k} \ln^k(x) x^r`, where `C_{r k}` is an arbitrary integration constant, `r` is a root of the characteristic equation, and `k` ranges over the multiplicity of `r`. In the cases where the roots are complex, solutions of the form `C_1 x^a \sin(b \log(x)) + C_2 x^a \cos(b \log(x))` are returned, based on expansions with Euler's formula. The general solution is the sum of the terms found. If SymPy cannot find exact roots to the characteristic equation, a :py:obj:`~.ComplexRootOf` instance will be returned instead. >>> from sympy import Function, dsolve >>> from sympy.abc import x >>> f = Function('f') >>> dsolve(4*x**2*f(x).diff(x, 2) + f(x), f(x), ... hint='nth_linear_euler_eq_homogeneous') ... # doctest: +NORMALIZE_WHITESPACE Eq(f(x), sqrt(x)*(C1 + C2*log(x))) Note that because this method does not involve integration, there is no ``nth_linear_euler_eq_homogeneous_Integral`` hint. The following is for internal use: - ``returns = 'sol'`` returns the solution to the ODE. - ``returns = 'list'`` returns a list of linearly independent solutions, corresponding to the fundamental solution set, for use with non homogeneous solution methods like variation of parameters and undetermined coefficients. Note that, though the solutions should be linearly independent, this function does not explicitly check that. You can do ``assert simplify(wronskian(sollist)) != 0`` to check for linear independence. Also, ``assert len(sollist) == order`` will need to pass. - ``returns = 'both'``, return a dictionary ``{'sol': <solution to ODE>, 'list': <list of linearly independent solutions>}``. Examples ======== >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f = Function('f') >>> eq = f(x).diff(x, 2)*x**2 - 4*f(x).diff(x)*x + 6*f(x) >>> pprint(dsolve(eq, f(x), ... hint='nth_linear_euler_eq_homogeneous')) 2 f(x) = x *(C1 + C2*x) References ========== - https://en.wikipedia.org/wiki/Cauchy%E2%80%93Euler_equation - C. Bender & S. Orszag, "Advanced Mathematical Methods for Scientists and Engineers", Springer 1999, pp. 12 # indirect doctest """ # XXX: This global collectterms hack should be removed. global collectterms collectterms = [] x = func.args[0] f = func.func r = match # First, set up characteristic equation. chareq, symbol = S.Zero, Dummy('x') for i in r.keys(): if not isinstance(i, str) and i >= 0: chareq += (r[i]*diff(x**symbol, x, i)*x**-symbol).expand() chareq = Poly(chareq, symbol) chareqroots = [rootof(chareq, k) for k in range(chareq.degree())] # A generator of constants constants = list(get_numbered_constants(eq, num=chareq.degree()*2)) constants.reverse() # Create a dict root: multiplicity or charroots charroots = defaultdict(int) for root in chareqroots: charroots[root] += 1 gsol = S.Zero # We need keep track of terms so we can run collect() at the end. # This is necessary for constantsimp to work properly. ln = log for root, multiplicity in charroots.items(): for i in range(multiplicity): if isinstance(root, RootOf): gsol += (x**root) * constants.pop() if multiplicity != 1: raise ValueError("Value should be 1") collectterms = [(0, root, 0)] + collectterms elif root.is_real: gsol += ln(x)**i*(x**root) * constants.pop() collectterms = [(i, root, 0)] + collectterms else: reroot = re(root) imroot = im(root) gsol += ln(x)**i * (x**reroot) * ( constants.pop() * sin(abs(imroot)*ln(x)) + constants.pop() * cos(imroot*ln(x))) # Preserve ordering (multiplicity, real part, imaginary part) # It will be assumed implicitly when constructing # fundamental solution sets. collectterms = [(i, reroot, imroot)] + collectterms if returns == 'sol': return Eq(f(x), gsol) elif returns in ('list' 'both'): # HOW TO TEST THIS CODE? (dsolve does not pass 'returns' through) # Create a list of (hopefully) linearly independent solutions gensols = [] # Keep track of when to use sin or cos for nonzero imroot for i, reroot, imroot in collectterms: if imroot == 0: gensols.append(ln(x)**i*x**reroot) else: sin_form = ln(x)**i*x**reroot*sin(abs(imroot)*ln(x)) if sin_form in gensols: cos_form = ln(x)**i*x**reroot*cos(imroot*ln(x)) gensols.append(cos_form) else: gensols.append(sin_form) if returns == 'list': return gensols else: return {'sol': Eq(f(x), gsol), 'list': gensols} else: raise ValueError('Unknown value for key "returns".') def ode_nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients(eq, func, order, match, returns='sol'): r""" Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional ordinary differential equation using undetermined coefficients. This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) \cdots`. These equations can be solved in a general manner, by substituting solutions of the form `x = exp(t)`, and deriving a characteristic equation of form `g(exp(t)) = b_0 f(t) + b_1 f'(t) + b_2 f''(t) \cdots` which can be then solved by nth_linear_constant_coeff_undetermined_coefficients if g(exp(t)) has finite number of linearly independent derivatives. Functions that fit this requirement are finite sums functions of the form `a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i` is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`, and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have a finite number of derivatives, because they can be expanded into `\sin(a x)` and `\cos(b x)` terms. However, SymPy currently cannot do that expansion, so you will need to manually rewrite the expression in terms of the above to use this method. So, for example, you will need to manually convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method of undetermined coefficients on it. After replacement of x by exp(t), this method works by creating a trial function from the expression and all of its linear independent derivatives and substituting them into the original ODE. The coefficients for each term will be a system of linear equations, which are be solved for and substituted, giving the solution. If any of the trial functions are linearly dependent on the solution to the homogeneous equation, they are multiplied by sufficient `x` to make them linearly independent. Examples ======== >>> from sympy import dsolve, Function, Derivative, log >>> from sympy.abc import x >>> f = Function('f') >>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - log(x) >>> dsolve(eq, f(x), ... hint='nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients').expand() Eq(f(x), C1*x + C2*x**2 + log(x)/2 + 3/4) """ x = func.args[0] f = func.func r = match chareq, eq, symbol = S.Zero, S.Zero, Dummy('x') for i in r.keys(): if not isinstance(i, str) and i >= 0: chareq += (r[i]*diff(x**symbol, x, i)*x**-symbol).expand() for i in range(1,degree(Poly(chareq, symbol))+1): eq += chareq.coeff(symbol**i)*diff(f(x), x, i) if chareq.as_coeff_add(symbol)[0]: eq += chareq.as_coeff_add(symbol)[0]*f(x) e, re = posify(r[-1].subs(x, exp(x))) eq += e.subs(re) match = _nth_linear_match(eq, f(x), ode_order(eq, f(x))) eq_homogeneous = Add(eq,-match[-1]) match['trialset'] = _undetermined_coefficients_match(match[-1], x, func, eq_homogeneous)['trialset'] return ode_nth_linear_constant_coeff_undetermined_coefficients(eq, func, order, match).subs(x, log(x)).subs(f(log(x)), f(x)).expand() def ode_nth_linear_euler_eq_nonhomogeneous_variation_of_parameters(eq, func, order, match, returns='sol'): r""" Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional ordinary differential equation using variation of parameters. This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) \cdots`. This method works by assuming that the particular solution takes the form .. math:: \sum_{x=1}^{n} c_i(x) y_i(x) {a_n} {x^n} \text{,} where `y_i` is the `i`\th solution to the homogeneous equation. The solution is then solved using Wronskian's and Cramer's Rule. The particular solution is given by multiplying eq given below with `a_n x^{n}` .. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \,dx \right) y_i(x) \text{,} where `W(x)` is the Wronskian of the fundamental system (the system of `n` linearly independent solutions to the homogeneous equation), and `W_i(x)` is the Wronskian of the fundamental system with the `i`\th column replaced with `[0, 0, \cdots, 0, \frac{x^{- n}}{a_n} g{\left(x \right)}]`. This method is general enough to solve any `n`\th order inhomogeneous linear differential equation, but sometimes SymPy cannot simplify the Wronskian well enough to integrate it. If this method hangs, try using the ``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and simplifying the integrals manually. Also, prefer using ``nth_linear_constant_coeff_undetermined_coefficients`` when it applies, because it doesn't use integration, making it faster and more reliable. Warning, using simplify=False with 'nth_linear_constant_coeff_variation_of_parameters' in :py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will not attempt to simplify the Wronskian before integrating. It is recommended that you only use simplify=False with 'nth_linear_constant_coeff_variation_of_parameters_Integral' for this method, especially if the solution to the homogeneous equation has trigonometric functions in it. Examples ======== >>> from sympy import Function, dsolve, Derivative >>> from sympy.abc import x >>> f = Function('f') >>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - x**4 >>> dsolve(eq, f(x), ... hint='nth_linear_euler_eq_nonhomogeneous_variation_of_parameters').expand() Eq(f(x), C1*x + C2*x**2 + x**4/6) """ x = func.args[0] f = func.func r = match gensol = ode_nth_linear_euler_eq_homogeneous(eq, func, order, match, returns='both') match.update(gensol) r[-1] = r[-1]/r[ode_order(eq, f(x))] sol = _solve_variation_of_parameters(eq, func, order, match) return Eq(f(x), r['sol'].rhs + (sol.rhs - r['sol'].rhs)*r[ode_order(eq, f(x))]) def _linear_coeff_match(expr, func): r""" Helper function to match hint ``linear_coefficients``. Matches the expression to the form `(a_1 x + b_1 f(x) + c_1)/(a_2 x + b_2 f(x) + c_2)` where the following conditions hold: 1. `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are Rationals; 2. `c_1` or `c_2` are not equal to zero; 3. `a_2 b_1 - a_1 b_2` is not equal to zero. Return ``xarg``, ``yarg`` where 1. ``xarg`` = `(b_2 c_1 - b_1 c_2)/(a_2 b_1 - a_1 b_2)` 2. ``yarg`` = `(a_1 c_2 - a_2 c_1)/(a_2 b_1 - a_1 b_2)` Examples ======== >>> from sympy import Function >>> from sympy.abc import x >>> from sympy.solvers.ode.ode import _linear_coeff_match >>> from sympy.functions.elementary.trigonometric import sin >>> f = Function('f') >>> _linear_coeff_match(( ... (-25*f(x) - 8*x + 62)/(4*f(x) + 11*x - 11)), f(x)) (1/9, 22/9) >>> _linear_coeff_match( ... sin((-5*f(x) - 8*x + 6)/(4*f(x) + x - 1)), f(x)) (19/27, 2/27) >>> _linear_coeff_match(sin(f(x)/x), f(x)) """ f = func.func x = func.args[0] def abc(eq): r''' Internal function of _linear_coeff_match that returns Rationals a, b, c if eq is a*x + b*f(x) + c, else None. ''' eq = _mexpand(eq) c = eq.as_independent(x, f(x), as_Add=True)[0] if not c.is_Rational: return a = eq.coeff(x) if not a.is_Rational: return b = eq.coeff(f(x)) if not b.is_Rational: return if eq == a*x + b*f(x) + c: return a, b, c def match(arg): r''' Internal function of _linear_coeff_match that returns Rationals a1, b1, c1, a2, b2, c2 and a2*b1 - a1*b2 of the expression (a1*x + b1*f(x) + c1)/(a2*x + b2*f(x) + c2) if one of c1 or c2 and a2*b1 - a1*b2 is non-zero, else None. ''' n, d = arg.together().as_numer_denom() m = abc(n) if m is not None: a1, b1, c1 = m m = abc(d) if m is not None: a2, b2, c2 = m d = a2*b1 - a1*b2 if (c1 or c2) and d: return a1, b1, c1, a2, b2, c2, d m = [fi.args[0] for fi in expr.atoms(Function) if fi.func != f and len(fi.args) == 1 and not fi.args[0].is_Function] or {expr} m1 = match(m.pop()) if m1 and all(match(mi) == m1 for mi in m): a1, b1, c1, a2, b2, c2, denom = m1 return (b2*c1 - b1*c2)/denom, (a1*c2 - a2*c1)/denom def ode_linear_coefficients(eq, func, order, match): r""" Solves a differential equation with linear coefficients. The general form of a differential equation with linear coefficients is .. math:: y' + F\left(\!\frac{a_1 x + b_1 y + c_1}{a_2 x + b_2 y + c_2}\!\right) = 0\text{,} where `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are constants and `a_1 b_2 - a_2 b_1 \ne 0`. This can be solved by substituting: .. math:: x = x' + \frac{b_2 c_1 - b_1 c_2}{a_2 b_1 - a_1 b_2} y = y' + \frac{a_1 c_2 - a_2 c_1}{a_2 b_1 - a_1 b_2}\text{.} This substitution reduces the equation to a homogeneous differential equation. See Also ======== :meth:`sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_best` :meth:`sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep` :meth:`sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep` Examples ======== >>> from sympy import Function, pprint >>> from sympy.solvers.ode.ode import dsolve >>> from sympy.abc import x >>> f = Function('f') >>> df = f(x).diff(x) >>> eq = (x + f(x) + 1)*df + (f(x) - 6*x + 1) >>> dsolve(eq, hint='linear_coefficients') [Eq(f(x), -x - sqrt(C1 + 7*x**2) - 1), Eq(f(x), -x + sqrt(C1 + 7*x**2) - 1)] >>> pprint(dsolve(eq, hint='linear_coefficients')) ___________ ___________ / 2 / 2 [f(x) = -x - \/ C1 + 7*x - 1, f(x) = -x + \/ C1 + 7*x - 1] References ========== - Joel Moses, "Symbolic Integration - The Stormy Decade", Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558 """ return ode_1st_homogeneous_coeff_best(eq, func, order, match) def ode_separable_reduced(eq, func, order, match): r""" Solves a differential equation that can be reduced to the separable form. The general form of this equation is .. math:: y' + (y/x) H(x^n y) = 0\text{}. This can be solved by substituting `u(y) = x^n y`. The equation then reduces to the separable form `\frac{u'}{u (\mathrm{power} - H(u))} - \frac{1}{x} = 0`. The general solution is: >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x, n >>> f, g = map(Function, ['f', 'g']) >>> genform = f(x).diff(x) + (f(x)/x)*g(x**n*f(x)) >>> pprint(genform) / n \ d f(x)*g\x *f(x)/ --(f(x)) + --------------- dx x >>> pprint(dsolve(genform, hint='separable_reduced')) n x *f(x) / | | 1 | ------------ dy = C1 + log(x) | y*(n - g(y)) | / See Also ======== :meth:`sympy.solvers.ode.ode.ode_separable` Examples ======== >>> from sympy import Function, pprint >>> from sympy.solvers.ode.ode import dsolve >>> from sympy.abc import x >>> f = Function('f') >>> d = f(x).diff(x) >>> eq = (x - x**2*f(x))*d - f(x) >>> dsolve(eq, hint='separable_reduced') [Eq(f(x), (1 - sqrt(C1*x**2 + 1))/x), Eq(f(x), (sqrt(C1*x**2 + 1) + 1)/x)] >>> pprint(dsolve(eq, hint='separable_reduced')) ___________ ___________ / 2 / 2 1 - \/ C1*x + 1 \/ C1*x + 1 + 1 [f(x) = ------------------, f(x) = ------------------] x x References ========== - Joel Moses, "Symbolic Integration - The Stormy Decade", Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558 """ # Arguments are passed in a way so that they are coherent with the # ode_separable function x = func.args[0] f = func.func y = Dummy('y') u = match['u'].subs(match['t'], y) ycoeff = 1/(y*(match['power'] - u)) m1 = {y: 1, x: -1/x, 'coeff': 1} m2 = {y: ycoeff, x: 1, 'coeff': 1} r = {'m1': m1, 'm2': m2, 'y': y, 'hint': x**match['power']*f(x)} return ode_separable(eq, func, order, r) def ode_1st_power_series(eq, func, order, match): r""" The power series solution is a method which gives the Taylor series expansion to the solution of a differential equation. For a first order differential equation `\frac{dy}{dx} = h(x, y)`, a power series solution exists at a point `x = x_{0}` if `h(x, y)` is analytic at `x_{0}`. The solution is given by .. math:: y(x) = y(x_{0}) + \sum_{n = 1}^{\infty} \frac{F_{n}(x_{0},b)(x - x_{0})^n}{n!}, where `y(x_{0}) = b` is the value of y at the initial value of `x_{0}`. To compute the values of the `F_{n}(x_{0},b)` the following algorithm is followed, until the required number of terms are generated. 1. `F_1 = h(x_{0}, b)` 2. `F_{n+1} = \frac{\partial F_{n}}{\partial x} + \frac{\partial F_{n}}{\partial y}F_{1}` Examples ======== >>> from sympy import Function, pprint, exp >>> from sympy.solvers.ode.ode import dsolve >>> from sympy.abc import x >>> f = Function('f') >>> eq = exp(x)*(f(x).diff(x)) - f(x) >>> pprint(dsolve(eq, hint='1st_power_series')) 3 4 5 C1*x C1*x C1*x / 6\ f(x) = C1 + C1*x - ----- + ----- + ----- + O\x / 6 24 60 References ========== - Travis W. Walker, Analytic power series technique for solving first-order differential equations, p.p 17, 18 """ x = func.args[0] y = match['y'] f = func.func h = -match[match['d']]/match[match['e']] point = match.get('f0') value = match.get('f0val') terms = match.get('terms') # First term F = h if not h: return Eq(f(x), value) # Initialization series = value if terms > 1: hc = h.subs({x: point, y: value}) if hc.has(oo) or hc.has(NaN) or hc.has(zoo): # Derivative does not exist, not analytic return Eq(f(x), oo) elif hc: series += hc*(x - point) for factcount in range(2, terms): Fnew = F.diff(x) + F.diff(y)*h Fnewc = Fnew.subs({x: point, y: value}) # Same logic as above if Fnewc.has(oo) or Fnewc.has(NaN) or Fnewc.has(-oo) or Fnewc.has(zoo): return Eq(f(x), oo) series += Fnewc*((x - point)**factcount)/factorial(factcount) F = Fnew series += Order(x**terms) return Eq(f(x), series) def ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match, returns='sol'): r""" Solves an `n`\th order linear homogeneous differential equation with constant coefficients. This is an equation of the form .. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0 f(x) = 0\text{.} These equations can be solved in a general manner, by taking the roots of the characteristic equation `a_n m^n + a_{n-1} m^{n-1} + \cdots + a_1 m + a_0 = 0`. The solution will then be the sum of `C_n x^i e^{r x}` terms, for each where `C_n` is an arbitrary constant, `r` is a root of the characteristic equation and `i` is one of each from 0 to the multiplicity of the root - 1 (for example, a root 3 of multiplicity 2 would create the terms `C_1 e^{3 x} + C_2 x e^{3 x}`). The exponential is usually expanded for complex roots using Euler's equation `e^{I x} = \cos(x) + I \sin(x)`. Complex roots always come in conjugate pairs in polynomials with real coefficients, so the two roots will be represented (after simplifying the constants) as `e^{a x} \left(C_1 \cos(b x) + C_2 \sin(b x)\right)`. If SymPy cannot find exact roots to the characteristic equation, a :py:class:`~sympy.polys.rootoftools.ComplexRootOf` instance will be return instead. >>> from sympy import Function, dsolve >>> from sympy.abc import x >>> f = Function('f') >>> dsolve(f(x).diff(x, 5) + 10*f(x).diff(x) - 2*f(x), f(x), ... hint='nth_linear_constant_coeff_homogeneous') ... # doctest: +NORMALIZE_WHITESPACE Eq(f(x), C5*exp(x*CRootOf(_x**5 + 10*_x - 2, 0)) + (C1*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 1))) + C2*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 1))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 1))) + (C3*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 3))) + C4*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 3))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 3)))) Note that because this method does not involve integration, there is no ``nth_linear_constant_coeff_homogeneous_Integral`` hint. The following is for internal use: - ``returns = 'sol'`` returns the solution to the ODE. - ``returns = 'list'`` returns a list of linearly independent solutions, for use with non homogeneous solution methods like variation of parameters and undetermined coefficients. Note that, though the solutions should be linearly independent, this function does not explicitly check that. You can do ``assert simplify(wronskian(sollist)) != 0`` to check for linear independence. Also, ``assert len(sollist) == order`` will need to pass. - ``returns = 'both'``, return a dictionary ``{'sol': <solution to ODE>, 'list': <list of linearly independent solutions>}``. Examples ======== >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(f(x).diff(x, 4) + 2*f(x).diff(x, 3) - ... 2*f(x).diff(x, 2) - 6*f(x).diff(x) + 5*f(x), f(x), ... hint='nth_linear_constant_coeff_homogeneous')) x -2*x f(x) = (C1 + C2*x)*e + (C3*sin(x) + C4*cos(x))*e References ========== - https://en.wikipedia.org/wiki/Linear_differential_equation section: Nonhomogeneous_equation_with_constant_coefficients - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 211 # indirect doctest """ x = func.args[0] f = func.func r = match # First, set up characteristic equation. chareq, symbol = S.Zero, Dummy('x') for i in r.keys(): if type(i) == str or i < 0: pass else: chareq += r[i]*symbol**i chareq = Poly(chareq, symbol) # Can't just call roots because it doesn't return rootof for unsolveable # polynomials. chareqroots = roots(chareq, multiple=True) if len(chareqroots) != order: chareqroots = [rootof(chareq, k) for k in range(chareq.degree())] chareq_is_complex = not all([i.is_real for i in chareq.all_coeffs()]) # A generator of constants constants = list(get_numbered_constants(eq, num=chareq.degree()*2)) # Create a dict root: multiplicity or charroots charroots = defaultdict(int) for root in chareqroots: charroots[root] += 1 # We need to keep track of terms so we can run collect() at the end. # This is necessary for constantsimp to work properly. # # XXX: This global collectterms hack should be removed. global collectterms collectterms = [] gensols = [] conjugate_roots = [] # used to prevent double-use of conjugate roots # Loop over roots in theorder provided by roots/rootof... for root in chareqroots: # but don't repoeat multiple roots. if root not in charroots: continue multiplicity = charroots.pop(root) for i in range(multiplicity): if chareq_is_complex: gensols.append(x**i*exp(root*x)) collectterms = [(i, root, 0)] + collectterms continue reroot = re(root) imroot = im(root) if imroot.has(atan2) and reroot.has(atan2): # Remove this condition when re and im stop returning # circular atan2 usages. gensols.append(x**i*exp(root*x)) collectterms = [(i, root, 0)] + collectterms else: if root in conjugate_roots: collectterms = [(i, reroot, imroot)] + collectterms continue if imroot == 0: gensols.append(x**i*exp(reroot*x)) collectterms = [(i, reroot, 0)] + collectterms continue conjugate_roots.append(conjugate(root)) gensols.append(x**i*exp(reroot*x) * sin(abs(imroot) * x)) gensols.append(x**i*exp(reroot*x) * cos( imroot * x)) # This ordering is important collectterms = [(i, reroot, imroot)] + collectterms if returns == 'list': return gensols elif returns in ('sol' 'both'): gsol = Add(*[i*j for (i, j) in zip(constants, gensols)]) if returns == 'sol': return Eq(f(x), gsol) else: return {'sol': Eq(f(x), gsol), 'list': gensols} else: raise ValueError('Unknown value for key "returns".') def ode_nth_linear_constant_coeff_undetermined_coefficients(eq, func, order, match): r""" Solves an `n`\th order linear differential equation with constant coefficients using the method of undetermined coefficients. This method works on differential equations of the form .. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0 f(x) = P(x)\text{,} where `P(x)` is a function that has a finite number of linearly independent derivatives. Functions that fit this requirement are finite sums functions of the form `a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i` is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`, and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have a finite number of derivatives, because they can be expanded into `\sin(a x)` and `\cos(b x)` terms. However, SymPy currently cannot do that expansion, so you will need to manually rewrite the expression in terms of the above to use this method. So, for example, you will need to manually convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method of undetermined coefficients on it. This method works by creating a trial function from the expression and all of its linear independent derivatives and substituting them into the original ODE. The coefficients for each term will be a system of linear equations, which are be solved for and substituted, giving the solution. If any of the trial functions are linearly dependent on the solution to the homogeneous equation, they are multiplied by sufficient `x` to make them linearly independent. Examples ======== >>> from sympy import Function, dsolve, pprint, exp, cos >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(f(x).diff(x, 2) + 2*f(x).diff(x) + f(x) - ... 4*exp(-x)*x**2 + cos(2*x), f(x), ... hint='nth_linear_constant_coeff_undetermined_coefficients')) / / 3\\ | | x || -x 4*sin(2*x) 3*cos(2*x) f(x) = |C1 + x*|C2 + --||*e - ---------- + ---------- \ \ 3 // 25 25 References ========== - https://en.wikipedia.org/wiki/Method_of_undetermined_coefficients - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 221 # indirect doctest """ gensol = ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match, returns='both') match.update(gensol) return _solve_undetermined_coefficients(eq, func, order, match) def _solve_undetermined_coefficients(eq, func, order, match): r""" Helper function for the method of undetermined coefficients. See the :py:meth:`~sympy.solvers.ode.ode.ode_nth_linear_constant_coeff_undetermined_coefficients` docstring for more information on this method. The parameter ``match`` should be a dictionary that has the following keys: ``list`` A list of solutions to the homogeneous equation, such as the list returned by ``ode_nth_linear_constant_coeff_homogeneous(returns='list')``. ``sol`` The general solution, such as the solution returned by ``ode_nth_linear_constant_coeff_homogeneous(returns='sol')``. ``trialset`` The set of trial functions as returned by ``_undetermined_coefficients_match()['trialset']``. """ x = func.args[0] f = func.func r = match coeffs = numbered_symbols('a', cls=Dummy) coefflist = [] gensols = r['list'] gsol = r['sol'] trialset = r['trialset'] if len(gensols) != order: raise NotImplementedError("Cannot find " + str(order) + " solutions to the homogeneous equation necessary to apply" + " undetermined coefficients to " + str(eq) + " (number of terms != order)") trialfunc = 0 for i in trialset: c = next(coeffs) coefflist.append(c) trialfunc += c*i eqs = sub_func_doit(eq, f(x), trialfunc) coeffsdict = dict(list(zip(trialset, [0]*(len(trialset) + 1)))) eqs = _mexpand(eqs) for i in Add.make_args(eqs): s = separatevars(i, dict=True, symbols=[x]) if coeffsdict.get(s[x]): coeffsdict[s[x]] += s['coeff'] else: coeffsdict[s[x]] = s['coeff'] coeffvals = solve(list(coeffsdict.values()), coefflist) if not coeffvals: raise NotImplementedError( "Could not solve `%s` using the " "method of undetermined coefficients " "(unable to solve for coefficients)." % eq) psol = trialfunc.subs(coeffvals) return Eq(f(x), gsol.rhs + psol) def _undetermined_coefficients_match(expr, x, func=None, eq_homogeneous=S.Zero): r""" Returns a trial function match if undetermined coefficients can be applied to ``expr``, and ``None`` otherwise. A trial expression can be found for an expression for use with the method of undetermined coefficients if the expression is an additive/multiplicative combination of constants, polynomials in `x` (the independent variable of expr), `\sin(a x + b)`, `\cos(a x + b)`, and `e^{a x}` terms (in other words, it has a finite number of linearly independent derivatives). Note that you may still need to multiply each term returned here by sufficient `x` to make it linearly independent with the solutions to the homogeneous equation. This is intended for internal use by ``undetermined_coefficients`` hints. SymPy currently has no way to convert `\sin^n(x) \cos^m(y)` into a sum of only `\sin(a x)` and `\cos(b x)` terms, so these are not implemented. So, for example, you will need to manually convert `\sin^2(x)` into `[1 + \cos(2 x)]/2` to properly apply the method of undetermined coefficients on it. Examples ======== >>> from sympy import log, exp >>> from sympy.solvers.ode.ode import _undetermined_coefficients_match >>> from sympy.abc import x >>> _undetermined_coefficients_match(9*x*exp(x) + exp(-x), x) {'test': True, 'trialset': {x*exp(x), exp(-x), exp(x)}} >>> _undetermined_coefficients_match(log(x), x) {'test': False} """ a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) expr = powsimp(expr, combine='exp') # exp(x)*exp(2*x + 1) => exp(3*x + 1) retdict = {} def _test_term(expr, x): r""" Test if ``expr`` fits the proper form for undetermined coefficients. """ if not expr.has(x): return True elif expr.is_Add: return all(_test_term(i, x) for i in expr.args) elif expr.is_Mul: if expr.has(sin, cos): foundtrig = False # Make sure that there is only one trig function in the args. # See the docstring. for i in expr.args: if i.has(sin, cos): if foundtrig: return False else: foundtrig = True return all(_test_term(i, x) for i in expr.args) elif expr.is_Function: if expr.func in (sin, cos, exp, sinh, cosh): if expr.args[0].match(a*x + b): return True else: return False else: return False elif expr.is_Pow and expr.base.is_Symbol and expr.exp.is_Integer and \ expr.exp >= 0: return True elif expr.is_Pow and expr.base.is_number: if expr.exp.match(a*x + b): return True else: return False elif expr.is_Symbol or expr.is_number: return True else: return False def _get_trial_set(expr, x, exprs=set()): r""" Returns a set of trial terms for undetermined coefficients. The idea behind undetermined coefficients is that the terms expression repeat themselves after a finite number of derivatives, except for the coefficients (they are linearly dependent). So if we collect these, we should have the terms of our trial function. """ def _remove_coefficient(expr, x): r""" Returns the expression without a coefficient. Similar to expr.as_independent(x)[1], except it only works multiplicatively. """ term = S.One if expr.is_Mul: for i in expr.args: if i.has(x): term *= i elif expr.has(x): term = expr return term expr = expand_mul(expr) if expr.is_Add: for term in expr.args: if _remove_coefficient(term, x) in exprs: pass else: exprs.add(_remove_coefficient(term, x)) exprs = exprs.union(_get_trial_set(term, x, exprs)) else: term = _remove_coefficient(expr, x) tmpset = exprs.union({term}) oldset = set() while tmpset != oldset: # If you get stuck in this loop, then _test_term is probably # broken oldset = tmpset.copy() expr = expr.diff(x) term = _remove_coefficient(expr, x) if term.is_Add: tmpset = tmpset.union(_get_trial_set(term, x, tmpset)) else: tmpset.add(term) exprs = tmpset return exprs def is_homogeneous_solution(term): r""" This function checks whether the given trialset contains any root of homogenous equation""" return expand(sub_func_doit(eq_homogeneous, func, term)).is_zero retdict['test'] = _test_term(expr, x) if retdict['test']: # Try to generate a list of trial solutions that will have the # undetermined coefficients. Note that if any of these are not linearly # independent with any of the solutions to the homogeneous equation, # then they will need to be multiplied by sufficient x to make them so. # This function DOES NOT do that (it doesn't even look at the # homogeneous equation). temp_set = set() for i in Add.make_args(expr): act = _get_trial_set(i,x) if eq_homogeneous is not S.Zero: while any(is_homogeneous_solution(ts) for ts in act): act = {x*ts for ts in act} temp_set = temp_set.union(act) retdict['trialset'] = temp_set return retdict def ode_nth_linear_constant_coeff_variation_of_parameters(eq, func, order, match): r""" Solves an `n`\th order linear differential equation with constant coefficients using the method of variation of parameters. This method works on any differential equations of the form .. math:: f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0 f(x) = P(x)\text{.} This method works by assuming that the particular solution takes the form .. math:: \sum_{x=1}^{n} c_i(x) y_i(x)\text{,} where `y_i` is the `i`\th solution to the homogeneous equation. The solution is then solved using Wronskian's and Cramer's Rule. The particular solution is given by .. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \,dx \right) y_i(x) \text{,} where `W(x)` is the Wronskian of the fundamental system (the system of `n` linearly independent solutions to the homogeneous equation), and `W_i(x)` is the Wronskian of the fundamental system with the `i`\th column replaced with `[0, 0, \cdots, 0, P(x)]`. This method is general enough to solve any `n`\th order inhomogeneous linear differential equation with constant coefficients, but sometimes SymPy cannot simplify the Wronskian well enough to integrate it. If this method hangs, try using the ``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and simplifying the integrals manually. Also, prefer using ``nth_linear_constant_coeff_undetermined_coefficients`` when it applies, because it doesn't use integration, making it faster and more reliable. Warning, using simplify=False with 'nth_linear_constant_coeff_variation_of_parameters' in :py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will not attempt to simplify the Wronskian before integrating. It is recommended that you only use simplify=False with 'nth_linear_constant_coeff_variation_of_parameters_Integral' for this method, especially if the solution to the homogeneous equation has trigonometric functions in it. Examples ======== >>> from sympy import Function, dsolve, pprint, exp, log >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(f(x).diff(x, 3) - 3*f(x).diff(x, 2) + ... 3*f(x).diff(x) - f(x) - exp(x)*log(x), f(x), ... hint='nth_linear_constant_coeff_variation_of_parameters')) / / / x*log(x) 11*x\\\ x f(x) = |C1 + x*|C2 + x*|C3 + -------- - ----|||*e \ \ \ 6 36 /// References ========== - https://en.wikipedia.org/wiki/Variation_of_parameters - http://planetmath.org/VariationOfParameters - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 233 # indirect doctest """ gensol = ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match, returns='both') match.update(gensol) return _solve_variation_of_parameters(eq, func, order, match) def _solve_variation_of_parameters(eq, func, order, match): r""" Helper function for the method of variation of parameters and nonhomogeneous euler eq. See the :py:meth:`~sympy.solvers.ode.ode.ode_nth_linear_constant_coeff_variation_of_parameters` docstring for more information on this method. The parameter ``match`` should be a dictionary that has the following keys: ``list`` A list of solutions to the homogeneous equation, such as the list returned by ``ode_nth_linear_constant_coeff_homogeneous(returns='list')``. ``sol`` The general solution, such as the solution returned by ``ode_nth_linear_constant_coeff_homogeneous(returns='sol')``. """ x = func.args[0] f = func.func r = match psol = 0 gensols = r['list'] gsol = r['sol'] wr = wronskian(gensols, x) if r.get('simplify', True): wr = simplify(wr) # We need much better simplification for # some ODEs. See issue 4662, for example. # To reduce commonly occurring sin(x)**2 + cos(x)**2 to 1 wr = trigsimp(wr, deep=True, recursive=True) if not wr: # The wronskian will be 0 iff the solutions are not linearly # independent. raise NotImplementedError("Cannot find " + str(order) + " solutions to the homogeneous equation necessary to apply " + "variation of parameters to " + str(eq) + " (Wronskian == 0)") if len(gensols) != order: raise NotImplementedError("Cannot find " + str(order) + " solutions to the homogeneous equation necessary to apply " + "variation of parameters to " + str(eq) + " (number of terms != order)") negoneterm = (-1)**(order) for i in gensols: psol += negoneterm*Integral(wronskian([sol for sol in gensols if sol != i], x)*r[-1]/wr, x)*i/r[order] negoneterm *= -1 if r.get('simplify', True): psol = simplify(psol) psol = trigsimp(psol, deep=True) return Eq(f(x), gsol.rhs + psol) def ode_separable(eq, func, order, match): r""" Solves separable 1st order differential equations. This is any differential equation that can be written as `P(y) \tfrac{dy}{dx} = Q(x)`. The solution can then just be found by rearranging terms and integrating: `\int P(y) \,dy = \int Q(x) \,dx`. This hint uses :py:meth:`sympy.simplify.simplify.separatevars` as its back end, so if a separable equation is not caught by this solver, it is most likely the fault of that function. :py:meth:`~sympy.simplify.simplify.separatevars` is smart enough to do most expansion and factoring necessary to convert a separable equation `F(x, y)` into the proper form `P(x)\cdot{}Q(y)`. The general solution is:: >>> from sympy import Function, dsolve, Eq, pprint >>> from sympy.abc import x >>> a, b, c, d, f = map(Function, ['a', 'b', 'c', 'd', 'f']) >>> genform = Eq(a(x)*b(f(x))*f(x).diff(x), c(x)*d(f(x))) >>> pprint(genform) d a(x)*b(f(x))*--(f(x)) = c(x)*d(f(x)) dx >>> pprint(dsolve(genform, f(x), hint='separable_Integral')) f(x) / / | | | b(y) | c(x) | ---- dy = C1 + | ---- dx | d(y) | a(x) | | / / Examples ======== >>> from sympy import Function, dsolve, Eq >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(Eq(f(x)*f(x).diff(x) + x, 3*x*f(x)**2), f(x), ... hint='separable', simplify=False)) / 2 \ 2 log\3*f (x) - 1/ x ---------------- = C1 + -- 6 2 References ========== - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 52 # indirect doctest """ x = func.args[0] f = func.func C1 = get_numbered_constants(eq, num=1) r = match # {'m1':m1, 'm2':m2, 'y':y} u = r.get('hint', f(x)) # get u from separable_reduced else get f(x) return Eq(Integral(r['m2']['coeff']*r['m2'][r['y']]/r['m1'][r['y']], (r['y'], None, u)), Integral(-r['m1']['coeff']*r['m1'][x]/ r['m2'][x], x) + C1) def checkinfsol(eq, infinitesimals, func=None, order=None): r""" This function is used to check if the given infinitesimals are the actual infinitesimals of the given first order differential equation. This method is specific to the Lie Group Solver of ODEs. As of now, it simply checks, by substituting the infinitesimals in the partial differential equation. .. math:: \frac{\partial \eta}{\partial x} + \left(\frac{\partial \eta}{\partial y} - \frac{\partial \xi}{\partial x}\right)*h - \frac{\partial \xi}{\partial y}*h^{2} - \xi\frac{\partial h}{\partial x} - \eta\frac{\partial h}{\partial y} = 0 where `\eta`, and `\xi` are the infinitesimals and `h(x,y) = \frac{dy}{dx}` The infinitesimals should be given in the form of a list of dicts ``[{xi(x, y): inf, eta(x, y): inf}]``, corresponding to the output of the function infinitesimals. It returns a list of values of the form ``[(True/False, sol)]`` where ``sol`` is the value obtained after substituting the infinitesimals in the PDE. If it is ``True``, then ``sol`` would be 0. """ if isinstance(eq, Equality): eq = eq.lhs - eq.rhs if not func: eq, func = _preprocess(eq) variables = func.args if len(variables) != 1: raise ValueError("ODE's have only one independent variable") else: x = variables[0] if not order: order = ode_order(eq, func) if order != 1: raise NotImplementedError("Lie groups solver has been implemented " "only for first order differential equations") else: df = func.diff(x) a = Wild('a', exclude = [df]) b = Wild('b', exclude = [df]) match = collect(expand(eq), df).match(a*df + b) if match: h = -simplify(match[b]/match[a]) else: try: sol = solve(eq, df) except NotImplementedError: raise NotImplementedError("Infinitesimals for the " "first order ODE could not be found") else: h = sol[0] # Find infinitesimals for one solution y = Dummy('y') h = h.subs(func, y) xi = Function('xi')(x, y) eta = Function('eta')(x, y) dxi = Function('xi')(x, func) deta = Function('eta')(x, func) pde = (eta.diff(x) + (eta.diff(y) - xi.diff(x))*h - (xi.diff(y))*h**2 - xi*(h.diff(x)) - eta*(h.diff(y))) soltup = [] for sol in infinitesimals: tsol = {xi: S(sol[dxi]).subs(func, y), eta: S(sol[deta]).subs(func, y)} sol = simplify(pde.subs(tsol).doit()) if sol: soltup.append((False, sol.subs(y, func))) else: soltup.append((True, 0)) return soltup def _ode_lie_group_try_heuristic(eq, heuristic, func, match, inf): xi = Function("xi") eta = Function("eta") f = func.func x = func.args[0] y = match['y'] h = match['h'] tempsol = [] if not inf: try: inf = infinitesimals(eq, hint=heuristic, func=func, order=1, match=match) except ValueError: return None for infsim in inf: xiinf = (infsim[xi(x, func)]).subs(func, y) etainf = (infsim[eta(x, func)]).subs(func, y) # This condition creates recursion while using pdsolve. # Since the first step while solving a PDE of form # a*(f(x, y).diff(x)) + b*(f(x, y).diff(y)) + c = 0 # is to solve the ODE dy/dx = b/a if simplify(etainf/xiinf) == h: continue rpde = f(x, y).diff(x)*xiinf + f(x, y).diff(y)*etainf r = pdsolve(rpde, func=f(x, y)).rhs s = pdsolve(rpde - 1, func=f(x, y)).rhs newcoord = [_lie_group_remove(coord) for coord in [r, s]] r = Dummy("r") s = Dummy("s") C1 = Symbol("C1") rcoord = newcoord[0] scoord = newcoord[-1] try: sol = solve([r - rcoord, s - scoord], x, y, dict=True) if sol == []: continue except NotImplementedError: continue else: sol = sol[0] xsub = sol[x] ysub = sol[y] num = simplify(scoord.diff(x) + scoord.diff(y)*h) denom = simplify(rcoord.diff(x) + rcoord.diff(y)*h) if num and denom: diffeq = simplify((num/denom).subs([(x, xsub), (y, ysub)])) sep = separatevars(diffeq, symbols=[r, s], dict=True) if sep: # Trying to separate, r and s coordinates deq = integrate((1/sep[s]), s) + C1 - integrate(sep['coeff']*sep[r], r) # Substituting and reverting back to original coordinates deq = deq.subs([(r, rcoord), (s, scoord)]) try: sdeq = solve(deq, y) except NotImplementedError: tempsol.append(deq) else: return [Eq(f(x), sol) for sol in sdeq] elif denom: # (ds/dr) is zero which means s is constant return [Eq(f(x), solve(scoord - C1, y)[0])] elif num: # (dr/ds) is zero which means r is constant return [Eq(f(x), solve(rcoord - C1, y)[0])] # If nothing works, return solution as it is, without solving for y if tempsol: return [Eq(sol.subs(y, f(x)), 0) for sol in tempsol] return None def _ode_lie_group( s, func, order, match): heuristics = lie_heuristics inf = {} f = func.func x = func.args[0] df = func.diff(x) xi = Function("xi") eta = Function("eta") xis = match['xi'] etas = match['eta'] y = match.pop('y', None) if y: h = -simplify(match[match['d']]/match[match['e']]) y = y else: y = Dummy("y") h = s.subs(func, y) if xis is not None and etas is not None: inf = [{xi(x, f(x)): S(xis), eta(x, f(x)): S(etas)}] if checkinfsol(Eq(df, s), inf, func=f(x), order=1)[0][0]: heuristics = ["user_defined"] + list(heuristics) match = {'h': h, 'y': y} # This is done so that if any heuristic raises a ValueError # another heuristic can be used. sol = None for heuristic in heuristics: sol = _ode_lie_group_try_heuristic(Eq(df, s), heuristic, func, match, inf) if sol: return sol return sol def ode_lie_group(eq, func, order, match): r""" This hint implements the Lie group method of solving first order differential equations. The aim is to convert the given differential equation from the given coordinate system into another coordinate system where it becomes invariant under the one-parameter Lie group of translations. The converted ODE can be easily solved by quadrature. It makes use of the :py:meth:`sympy.solvers.ode.infinitesimals` function which returns the infinitesimals of the transformation. The coordinates `r` and `s` can be found by solving the following Partial Differential Equations. .. math :: \xi\frac{\partial r}{\partial x} + \eta\frac{\partial r}{\partial y} = 0 .. math :: \xi\frac{\partial s}{\partial x} + \eta\frac{\partial s}{\partial y} = 1 The differential equation becomes separable in the new coordinate system .. math :: \frac{ds}{dr} = \frac{\frac{\partial s}{\partial x} + h(x, y)\frac{\partial s}{\partial y}}{ \frac{\partial r}{\partial x} + h(x, y)\frac{\partial r}{\partial y}} After finding the solution by integration, it is then converted back to the original coordinate system by substituting `r` and `s` in terms of `x` and `y` again. Examples ======== >>> from sympy import Function, dsolve, exp, pprint >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(f(x).diff(x) + 2*x*f(x) - x*exp(-x**2), f(x), ... hint='lie_group')) / 2\ 2 | x | -x f(x) = |C1 + --|*e \ 2 / References ========== - Solving differential equations by Symmetry Groups, John Starrett, pp. 1 - pp. 14 """ x = func.args[0] df = func.diff(x) try: eqsol = solve(eq, df) except NotImplementedError: eqsol = [] desols = [] for s in eqsol: sol = _ode_lie_group(s, func, order, match=match) if sol: desols.extend(sol) if desols == []: raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by" + " the lie group method") return desols def _lie_group_remove(coords): r""" This function is strictly meant for internal use by the Lie group ODE solving method. It replaces arbitrary functions returned by pdsolve as follows: 1] If coords is an arbitrary function, then its argument is returned. 2] An arbitrary function in an Add object is replaced by zero. 3] An arbitrary function in a Mul object is replaced by one. 4] If there is no arbitrary function coords is returned unchanged. Examples ======== >>> from sympy.solvers.ode.ode import _lie_group_remove >>> from sympy import Function >>> from sympy.abc import x, y >>> F = Function("F") >>> eq = x**2*y >>> _lie_group_remove(eq) x**2*y >>> eq = F(x**2*y) >>> _lie_group_remove(eq) x**2*y >>> eq = x*y**2 + F(x**3) >>> _lie_group_remove(eq) x*y**2 >>> eq = (F(x**3) + y)*x**4 >>> _lie_group_remove(eq) x**4*y """ if isinstance(coords, AppliedUndef): return coords.args[0] elif coords.is_Add: subfunc = coords.atoms(AppliedUndef) if subfunc: for func in subfunc: coords = coords.subs(func, 0) return coords elif coords.is_Pow: base, expr = coords.as_base_exp() base = _lie_group_remove(base) expr = _lie_group_remove(expr) return base**expr elif coords.is_Mul: mulargs = [] coordargs = coords.args for arg in coordargs: if not isinstance(coords, AppliedUndef): mulargs.append(_lie_group_remove(arg)) return Mul(*mulargs) return coords def infinitesimals(eq, func=None, order=None, hint='default', match=None): r""" The infinitesimal functions of an ordinary differential equation, `\xi(x,y)` and `\eta(x,y)`, are the infinitesimals of the Lie group of point transformations for which the differential equation is invariant. So, the ODE `y'=f(x,y)` would admit a Lie group `x^*=X(x,y;\varepsilon)=x+\varepsilon\xi(x,y)`, `y^*=Y(x,y;\varepsilon)=y+\varepsilon\eta(x,y)` such that `(y^*)'=f(x^*, y^*)`. A change of coordinates, to `r(x,y)` and `s(x,y)`, can be performed so this Lie group becomes the translation group, `r^*=r` and `s^*=s+\varepsilon`. They are tangents to the coordinate curves of the new system. Consider the transformation `(x, y) \to (X, Y)` such that the differential equation remains invariant. `\xi` and `\eta` are the tangents to the transformed coordinates `X` and `Y`, at `\varepsilon=0`. .. math:: \left(\frac{\partial X(x,y;\varepsilon)}{\partial\varepsilon }\right)|_{\varepsilon=0} = \xi, \left(\frac{\partial Y(x,y;\varepsilon)}{\partial\varepsilon }\right)|_{\varepsilon=0} = \eta, The infinitesimals can be found by solving the following PDE: >>> from sympy import Function, Eq, pprint >>> from sympy.abc import x, y >>> xi, eta, h = map(Function, ['xi', 'eta', 'h']) >>> h = h(x, y) # dy/dx = h >>> eta = eta(x, y) >>> xi = xi(x, y) >>> genform = Eq(eta.diff(x) + (eta.diff(y) - xi.diff(x))*h ... - (xi.diff(y))*h**2 - xi*(h.diff(x)) - eta*(h.diff(y)), 0) >>> pprint(genform) /d d \ d 2 d |--(eta(x, y)) - --(xi(x, y))|*h(x, y) - eta(x, y)*--(h(x, y)) - h (x, y)*--(x \dy dx / dy dy <BLANKLINE> d d i(x, y)) - xi(x, y)*--(h(x, y)) + --(eta(x, y)) = 0 dx dx Solving the above mentioned PDE is not trivial, and can be solved only by making intelligent assumptions for `\xi` and `\eta` (heuristics). Once an infinitesimal is found, the attempt to find more heuristics stops. This is done to optimise the speed of solving the differential equation. If a list of all the infinitesimals is needed, ``hint`` should be flagged as ``all``, which gives the complete list of infinitesimals. If the infinitesimals for a particular heuristic needs to be found, it can be passed as a flag to ``hint``. Examples ======== >>> from sympy import Function >>> from sympy.solvers.ode.ode import infinitesimals >>> from sympy.abc import x >>> f = Function('f') >>> eq = f(x).diff(x) - x**2*f(x) >>> infinitesimals(eq) [{eta(x, f(x)): exp(x**3/3), xi(x, f(x)): 0}] References ========== - Solving differential equations by Symmetry Groups, John Starrett, pp. 1 - pp. 14 """ if isinstance(eq, Equality): eq = eq.lhs - eq.rhs if not func: eq, func = _preprocess(eq) variables = func.args if len(variables) != 1: raise ValueError("ODE's have only one independent variable") else: x = variables[0] if not order: order = ode_order(eq, func) if order != 1: raise NotImplementedError("Infinitesimals for only " "first order ODE's have been implemented") else: df = func.diff(x) # Matching differential equation of the form a*df + b a = Wild('a', exclude = [df]) b = Wild('b', exclude = [df]) if match: # Used by lie_group hint h = match['h'] y = match['y'] else: match = collect(expand(eq), df).match(a*df + b) if match: h = -simplify(match[b]/match[a]) else: try: sol = solve(eq, df) except NotImplementedError: raise NotImplementedError("Infinitesimals for the " "first order ODE could not be found") else: h = sol[0] # Find infinitesimals for one solution y = Dummy("y") h = h.subs(func, y) u = Dummy("u") hx = h.diff(x) hy = h.diff(y) hinv = ((1/h).subs([(x, u), (y, x)])).subs(u, y) # Inverse ODE match = {'h': h, 'func': func, 'hx': hx, 'hy': hy, 'y': y, 'hinv': hinv} if hint == 'all': xieta = [] for heuristic in lie_heuristics: function = globals()['lie_heuristic_' + heuristic] inflist = function(match, comp=True) if inflist: xieta.extend([inf for inf in inflist if inf not in xieta]) if xieta: return xieta else: raise NotImplementedError("Infinitesimals could not be found for " "the given ODE") elif hint == 'default': for heuristic in lie_heuristics: function = globals()['lie_heuristic_' + heuristic] xieta = function(match, comp=False) if xieta: return xieta raise NotImplementedError("Infinitesimals could not be found for" " the given ODE") elif hint not in lie_heuristics: raise ValueError("Heuristic not recognized: " + hint) else: function = globals()['lie_heuristic_' + hint] xieta = function(match, comp=True) if xieta: return xieta else: raise ValueError("Infinitesimals could not be found using the" " given heuristic") def lie_heuristic_abaco1_simple(match, comp=False): r""" The first heuristic uses the following four sets of assumptions on `\xi` and `\eta` .. math:: \xi = 0, \eta = f(x) .. math:: \xi = 0, \eta = f(y) .. math:: \xi = f(x), \eta = 0 .. math:: \xi = f(y), \eta = 0 The success of this heuristic is determined by algebraic factorisation. For the first assumption `\xi = 0` and `\eta` to be a function of `x`, the PDE .. math:: \frac{\partial \eta}{\partial x} + (\frac{\partial \eta}{\partial y} - \frac{\partial \xi}{\partial x})*h - \frac{\partial \xi}{\partial y}*h^{2} - \xi*\frac{\partial h}{\partial x} - \eta*\frac{\partial h}{\partial y} = 0 reduces to `f'(x) - f\frac{\partial h}{\partial y} = 0` If `\frac{\partial h}{\partial y}` is a function of `x`, then this can usually be integrated easily. A similar idea is applied to the other 3 assumptions as well. References ========== - E.S Cheb-Terrab, L.G.S Duarte and L.A,C.P da Mota, Computer Algebra Solving of First Order ODEs Using Symmetry Methods, pp. 8 """ xieta = [] y = match['y'] h = match['h'] func = match['func'] x = func.args[0] hx = match['hx'] hy = match['hy'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) hysym = hy.free_symbols if y not in hysym: try: fx = exp(integrate(hy, x)) except NotImplementedError: pass else: inf = {xi: S.Zero, eta: fx} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) factor = hy/h facsym = factor.free_symbols if x not in facsym: try: fy = exp(integrate(factor, y)) except NotImplementedError: pass else: inf = {xi: S.Zero, eta: fy.subs(y, func)} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) factor = -hx/h facsym = factor.free_symbols if y not in facsym: try: fx = exp(integrate(factor, x)) except NotImplementedError: pass else: inf = {xi: fx, eta: S.Zero} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) factor = -hx/(h**2) facsym = factor.free_symbols if x not in facsym: try: fy = exp(integrate(factor, y)) except NotImplementedError: pass else: inf = {xi: fy.subs(y, func), eta: S.Zero} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) if xieta: return xieta def lie_heuristic_abaco1_product(match, comp=False): r""" The second heuristic uses the following two assumptions on `\xi` and `\eta` .. math:: \eta = 0, \xi = f(x)*g(y) .. math:: \eta = f(x)*g(y), \xi = 0 The first assumption of this heuristic holds good if `\frac{1}{h^{2}}\frac{\partial^2}{\partial x \partial y}\log(h)` is separable in `x` and `y`, then the separated factors containing `x` is `f(x)`, and `g(y)` is obtained by .. math:: e^{\int f\frac{\partial}{\partial x}\left(\frac{1}{f*h}\right)\,dy} provided `f\frac{\partial}{\partial x}\left(\frac{1}{f*h}\right)` is a function of `y` only. The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as `\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first assumption satisfies. After obtaining `f(x)` and `g(y)`, the coordinates are again interchanged, to get `\eta` as `f(x)*g(y)` References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 7 - pp. 8 """ xieta = [] y = match['y'] h = match['h'] hinv = match['hinv'] func = match['func'] x = func.args[0] xi = Function('xi')(x, func) eta = Function('eta')(x, func) inf = separatevars(((log(h).diff(y)).diff(x))/h**2, dict=True, symbols=[x, y]) if inf and inf['coeff']: fx = inf[x] gy = simplify(fx*((1/(fx*h)).diff(x))) gysyms = gy.free_symbols if x not in gysyms: gy = exp(integrate(gy, y)) inf = {eta: S.Zero, xi: (fx*gy).subs(y, func)} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) u1 = Dummy("u1") inf = separatevars(((log(hinv).diff(y)).diff(x))/hinv**2, dict=True, symbols=[x, y]) if inf and inf['coeff']: fx = inf[x] gy = simplify(fx*((1/(fx*hinv)).diff(x))) gysyms = gy.free_symbols if x not in gysyms: gy = exp(integrate(gy, y)) etaval = fx*gy etaval = (etaval.subs([(x, u1), (y, x)])).subs(u1, y) inf = {eta: etaval.subs(y, func), xi: S.Zero} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) if xieta: return xieta def lie_heuristic_bivariate(match, comp=False): r""" The third heuristic assumes the infinitesimals `\xi` and `\eta` to be bi-variate polynomials in `x` and `y`. The assumption made here for the logic below is that `h` is a rational function in `x` and `y` though that may not be necessary for the infinitesimals to be bivariate polynomials. The coefficients of the infinitesimals are found out by substituting them in the PDE and grouping similar terms that are polynomials and since they form a linear system, solve and check for non trivial solutions. The degree of the assumed bivariates are increased till a certain maximum value. References ========== - Lie Groups and Differential Equations pp. 327 - pp. 329 """ h = match['h'] hx = match['hx'] hy = match['hy'] func = match['func'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) if h.is_rational_function(): # The maximum degree that the infinitesimals can take is # calculated by this technique. etax, etay, etad, xix, xiy, xid = symbols("etax etay etad xix xiy xid") ipde = etax + (etay - xix)*h - xiy*h**2 - xid*hx - etad*hy num, denom = cancel(ipde).as_numer_denom() deg = Poly(num, x, y).total_degree() deta = Function('deta')(x, y) dxi = Function('dxi')(x, y) ipde = (deta.diff(x) + (deta.diff(y) - dxi.diff(x))*h - (dxi.diff(y))*h**2 - dxi*hx - deta*hy) xieq = Symbol("xi0") etaeq = Symbol("eta0") for i in range(deg + 1): if i: xieq += Add(*[ Symbol("xi_" + str(power) + "_" + str(i - power))*x**power*y**(i - power) for power in range(i + 1)]) etaeq += Add(*[ Symbol("eta_" + str(power) + "_" + str(i - power))*x**power*y**(i - power) for power in range(i + 1)]) pden, denom = (ipde.subs({dxi: xieq, deta: etaeq}).doit()).as_numer_denom() pden = expand(pden) # If the individual terms are monomials, the coefficients # are grouped if pden.is_polynomial(x, y) and pden.is_Add: polyy = Poly(pden, x, y).as_dict() if polyy: symset = xieq.free_symbols.union(etaeq.free_symbols) - {x, y} soldict = solve(polyy.values(), *symset) if isinstance(soldict, list): soldict = soldict[0] if any(soldict.values()): xired = xieq.subs(soldict) etared = etaeq.subs(soldict) # Scaling is done by substituting one for the parameters # This can be any number except zero. dict_ = {sym: 1 for sym in symset} inf = {eta: etared.subs(dict_).subs(y, func), xi: xired.subs(dict_).subs(y, func)} return [inf] def lie_heuristic_chi(match, comp=False): r""" The aim of the fourth heuristic is to find the function `\chi(x, y)` that satisfies the PDE `\frac{d\chi}{dx} + h\frac{d\chi}{dx} - \frac{\partial h}{\partial y}\chi = 0`. This assumes `\chi` to be a bivariate polynomial in `x` and `y`. By intuition, `h` should be a rational function in `x` and `y`. The method used here is to substitute a general binomial for `\chi` up to a certain maximum degree is reached. The coefficients of the polynomials, are calculated by by collecting terms of the same order in `x` and `y`. After finding `\chi`, the next step is to use `\eta = \xi*h + \chi`, to determine `\xi` and `\eta`. This can be done by dividing `\chi` by `h` which would give `-\xi` as the quotient and `\eta` as the remainder. References ========== - E.S Cheb-Terrab, L.G.S Duarte and L.A,C.P da Mota, Computer Algebra Solving of First Order ODEs Using Symmetry Methods, pp. 8 """ h = match['h'] hy = match['hy'] func = match['func'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) if h.is_rational_function(): schi, schix, schiy = symbols("schi, schix, schiy") cpde = schix + h*schiy - hy*schi num, denom = cancel(cpde).as_numer_denom() deg = Poly(num, x, y).total_degree() chi = Function('chi')(x, y) chix = chi.diff(x) chiy = chi.diff(y) cpde = chix + h*chiy - hy*chi chieq = Symbol("chi") for i in range(1, deg + 1): chieq += Add(*[ Symbol("chi_" + str(power) + "_" + str(i - power))*x**power*y**(i - power) for power in range(i + 1)]) cnum, cden = cancel(cpde.subs({chi : chieq}).doit()).as_numer_denom() cnum = expand(cnum) if cnum.is_polynomial(x, y) and cnum.is_Add: cpoly = Poly(cnum, x, y).as_dict() if cpoly: solsyms = chieq.free_symbols - {x, y} soldict = solve(cpoly.values(), *solsyms) if isinstance(soldict, list): soldict = soldict[0] if any(soldict.values()): chieq = chieq.subs(soldict) dict_ = {sym: 1 for sym in solsyms} chieq = chieq.subs(dict_) # After finding chi, the main aim is to find out # eta, xi by the equation eta = xi*h + chi # One method to set xi, would be rearranging it to # (eta/h) - xi = (chi/h). This would mean dividing # chi by h would give -xi as the quotient and eta # as the remainder. Thanks to Sean Vig for suggesting # this method. xic, etac = div(chieq, h) inf = {eta: etac.subs(y, func), xi: -xic.subs(y, func)} return [inf] def lie_heuristic_function_sum(match, comp=False): r""" This heuristic uses the following two assumptions on `\xi` and `\eta` .. math:: \eta = 0, \xi = f(x) + g(y) .. math:: \eta = f(x) + g(y), \xi = 0 The first assumption of this heuristic holds good if .. math:: \frac{\partial}{\partial y}[(h\frac{\partial^{2}}{ \partial x^{2}}(h^{-1}))^{-1}] is separable in `x` and `y`, 1. The separated factors containing `y` is `\frac{\partial g}{\partial y}`. From this `g(y)` can be determined. 2. The separated factors containing `x` is `f''(x)`. 3. `h\frac{\partial^{2}}{\partial x^{2}}(h^{-1})` equals `\frac{f''(x)}{f(x) + g(y)}`. From this `f(x)` can be determined. The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as `\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first assumption satisfies. After obtaining `f(x)` and `g(y)`, the coordinates are again interchanged, to get `\eta` as `f(x) + g(y)`. For both assumptions, the constant factors are separated among `g(y)` and `f''(x)`, such that `f''(x)` obtained from 3] is the same as that obtained from 2]. If not possible, then this heuristic fails. References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 7 - pp. 8 """ xieta = [] h = match['h'] func = match['func'] hinv = match['hinv'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) for odefac in [h, hinv]: factor = odefac*((1/odefac).diff(x, 2)) sep = separatevars((1/factor).diff(y), dict=True, symbols=[x, y]) if sep and sep['coeff'] and sep[x].has(x) and sep[y].has(y): k = Dummy("k") try: gy = k*integrate(sep[y], y) except NotImplementedError: pass else: fdd = 1/(k*sep[x]*sep['coeff']) fx = simplify(fdd/factor - gy) check = simplify(fx.diff(x, 2) - fdd) if fx: if not check: fx = fx.subs(k, 1) gy = (gy/k) else: sol = solve(check, k) if sol: sol = sol[0] fx = fx.subs(k, sol) gy = (gy/k)*sol else: continue if odefac == hinv: # Inverse ODE fx = fx.subs(x, y) gy = gy.subs(y, x) etaval = factor_terms(fx + gy) if etaval.is_Mul: etaval = Mul(*[arg for arg in etaval.args if arg.has(x, y)]) if odefac == hinv: # Inverse ODE inf = {eta: etaval.subs(y, func), xi : S.Zero} else: inf = {xi: etaval.subs(y, func), eta : S.Zero} if not comp: return [inf] else: xieta.append(inf) if xieta: return xieta def lie_heuristic_abaco2_similar(match, comp=False): r""" This heuristic uses the following two assumptions on `\xi` and `\eta` .. math:: \eta = g(x), \xi = f(x) .. math:: \eta = f(y), \xi = g(y) For the first assumption, 1. First `\frac{\frac{\partial h}{\partial y}}{\frac{\partial^{2} h}{ \partial yy}}` is calculated. Let us say this value is A 2. If this is constant, then `h` is matched to the form `A(x) + B(x)e^{ \frac{y}{C}}` then, `\frac{e^{\int \frac{A(x)}{C} \,dx}}{B(x)}` gives `f(x)` and `A(x)*f(x)` gives `g(x)` 3. Otherwise `\frac{\frac{\partial A}{\partial X}}{\frac{\partial A}{ \partial Y}} = \gamma` is calculated. If a] `\gamma` is a function of `x` alone b] `\frac{\gamma\frac{\partial h}{\partial y} - \gamma'(x) - \frac{ \partial h}{\partial x}}{h + \gamma} = G` is a function of `x` alone. then, `e^{\int G \,dx}` gives `f(x)` and `-\gamma*f(x)` gives `g(x)` The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as `\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first assumption satisfies. After obtaining `f(x)` and `g(x)`, the coordinates are again interchanged, to get `\xi` as `f(x^*)` and `\eta` as `g(y^*)` References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 - pp. 12 """ h = match['h'] hx = match['hx'] hy = match['hy'] func = match['func'] hinv = match['hinv'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) factor = cancel(h.diff(y)/h.diff(y, 2)) factorx = factor.diff(x) factory = factor.diff(y) if not factor.has(x) and not factor.has(y): A = Wild('A', exclude=[y]) B = Wild('B', exclude=[y]) C = Wild('C', exclude=[x, y]) match = h.match(A + B*exp(y/C)) try: tau = exp(-integrate(match[A]/match[C]), x)/match[B] except NotImplementedError: pass else: gx = match[A]*tau return [{xi: tau, eta: gx}] else: gamma = cancel(factorx/factory) if not gamma.has(y): tauint = cancel((gamma*hy - gamma.diff(x) - hx)/(h + gamma)) if not tauint.has(y): try: tau = exp(integrate(tauint, x)) except NotImplementedError: pass else: gx = -tau*gamma return [{xi: tau, eta: gx}] factor = cancel(hinv.diff(y)/hinv.diff(y, 2)) factorx = factor.diff(x) factory = factor.diff(y) if not factor.has(x) and not factor.has(y): A = Wild('A', exclude=[y]) B = Wild('B', exclude=[y]) C = Wild('C', exclude=[x, y]) match = h.match(A + B*exp(y/C)) try: tau = exp(-integrate(match[A]/match[C]), x)/match[B] except NotImplementedError: pass else: gx = match[A]*tau return [{eta: tau.subs(x, func), xi: gx.subs(x, func)}] else: gamma = cancel(factorx/factory) if not gamma.has(y): tauint = cancel((gamma*hinv.diff(y) - gamma.diff(x) - hinv.diff(x))/( hinv + gamma)) if not tauint.has(y): try: tau = exp(integrate(tauint, x)) except NotImplementedError: pass else: gx = -tau*gamma return [{eta: tau.subs(x, func), xi: gx.subs(x, func)}] def lie_heuristic_abaco2_unique_unknown(match, comp=False): r""" This heuristic assumes the presence of unknown functions or known functions with non-integer powers. 1. A list of all functions and non-integer powers containing x and y 2. Loop over each element `f` in the list, find `\frac{\frac{\partial f}{\partial x}}{ \frac{\partial f}{\partial x}} = R` If it is separable in `x` and `y`, let `X` be the factors containing `x`. Then a] Check if `\xi = X` and `\eta = -\frac{X}{R}` satisfy the PDE. If yes, then return `\xi` and `\eta` b] Check if `\xi = \frac{-R}{X}` and `\eta = -\frac{1}{X}` satisfy the PDE. If yes, then return `\xi` and `\eta` If not, then check if a] :math:`\xi = -R,\eta = 1` b] :math:`\xi = 1, \eta = -\frac{1}{R}` are solutions. References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 - pp. 12 """ h = match['h'] hx = match['hx'] hy = match['hy'] func = match['func'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) funclist = [] for atom in h.atoms(Pow): base, exp = atom.as_base_exp() if base.has(x) and base.has(y): if not exp.is_Integer: funclist.append(atom) for function in h.atoms(AppliedUndef): syms = function.free_symbols if x in syms and y in syms: funclist.append(function) for f in funclist: frac = cancel(f.diff(y)/f.diff(x)) sep = separatevars(frac, dict=True, symbols=[x, y]) if sep and sep['coeff']: xitry1 = sep[x] etatry1 = -1/(sep[y]*sep['coeff']) pde1 = etatry1.diff(y)*h - xitry1.diff(x)*h - xitry1*hx - etatry1*hy if not simplify(pde1): return [{xi: xitry1, eta: etatry1.subs(y, func)}] xitry2 = 1/etatry1 etatry2 = 1/xitry1 pde2 = etatry2.diff(x) - (xitry2.diff(y))*h**2 - xitry2*hx - etatry2*hy if not simplify(expand(pde2)): return [{xi: xitry2.subs(y, func), eta: etatry2}] else: etatry = -1/frac pde = etatry.diff(x) + etatry.diff(y)*h - hx - etatry*hy if not simplify(pde): return [{xi: S.One, eta: etatry.subs(y, func)}] xitry = -frac pde = -xitry.diff(x)*h -xitry.diff(y)*h**2 - xitry*hx -hy if not simplify(expand(pde)): return [{xi: xitry.subs(y, func), eta: S.One}] def lie_heuristic_abaco2_unique_general(match, comp=False): r""" This heuristic finds if infinitesimals of the form `\eta = f(x)`, `\xi = g(y)` without making any assumptions on `h`. The complete sequence of steps is given in the paper mentioned below. References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 - pp. 12 """ hx = match['hx'] hy = match['hy'] func = match['func'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) A = hx.diff(y) B = hy.diff(y) + hy**2 C = hx.diff(x) - hx**2 if not (A and B and C): return Ax = A.diff(x) Ay = A.diff(y) Axy = Ax.diff(y) Axx = Ax.diff(x) Ayy = Ay.diff(y) D = simplify(2*Axy + hx*Ay - Ax*hy + (hx*hy + 2*A)*A)*A - 3*Ax*Ay if not D: E1 = simplify(3*Ax**2 + ((hx**2 + 2*C)*A - 2*Axx)*A) if E1: E2 = simplify((2*Ayy + (2*B - hy**2)*A)*A - 3*Ay**2) if not E2: E3 = simplify( E1*((28*Ax + 4*hx*A)*A**3 - E1*(hy*A + Ay)) - E1.diff(x)*8*A**4) if not E3: etaval = cancel((4*A**3*(Ax - hx*A) + E1*(hy*A - Ay))/(S(2)*A*E1)) if x not in etaval: try: etaval = exp(integrate(etaval, y)) except NotImplementedError: pass else: xival = -4*A**3*etaval/E1 if y not in xival: return [{xi: xival, eta: etaval.subs(y, func)}] else: E1 = simplify((2*Ayy + (2*B - hy**2)*A)*A - 3*Ay**2) if E1: E2 = simplify( 4*A**3*D - D**2 + E1*((2*Axx - (hx**2 + 2*C)*A)*A - 3*Ax**2)) if not E2: E3 = simplify( -(A*D)*E1.diff(y) + ((E1.diff(x) - hy*D)*A + 3*Ay*D + (A*hx - 3*Ax)*E1)*E1) if not E3: etaval = cancel(((A*hx - Ax)*E1 - (Ay + A*hy)*D)/(S(2)*A*D)) if x not in etaval: try: etaval = exp(integrate(etaval, y)) except NotImplementedError: pass else: xival = -E1*etaval/D if y not in xival: return [{xi: xival, eta: etaval.subs(y, func)}] def lie_heuristic_linear(match, comp=False): r""" This heuristic assumes 1. `\xi = ax + by + c` and 2. `\eta = fx + gy + h` After substituting the following assumptions in the determining PDE, it reduces to .. math:: f + (g - a)h - bh^{2} - (ax + by + c)\frac{\partial h}{\partial x} - (fx + gy + c)\frac{\partial h}{\partial y} Solving the reduced PDE obtained, using the method of characteristics, becomes impractical. The method followed is grouping similar terms and solving the system of linear equations obtained. The difference between the bivariate heuristic is that `h` need not be a rational function in this case. References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 - pp. 12 """ h = match['h'] hx = match['hx'] hy = match['hy'] func = match['func'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) coeffdict = {} symbols = numbered_symbols("c", cls=Dummy) symlist = [next(symbols) for _ in islice(symbols, 6)] C0, C1, C2, C3, C4, C5 = symlist pde = C3 + (C4 - C0)*h - (C0*x + C1*y + C2)*hx - (C3*x + C4*y + C5)*hy - C1*h**2 pde, denom = pde.as_numer_denom() pde = powsimp(expand(pde)) if pde.is_Add: terms = pde.args for term in terms: if term.is_Mul: rem = Mul(*[m for m in term.args if not m.has(x, y)]) xypart = term/rem if xypart not in coeffdict: coeffdict[xypart] = rem else: coeffdict[xypart] += rem else: if term not in coeffdict: coeffdict[term] = S.One else: coeffdict[term] += S.One sollist = coeffdict.values() soldict = solve(sollist, symlist) if soldict: if isinstance(soldict, list): soldict = soldict[0] subval = soldict.values() if any(t for t in subval): onedict = dict(zip(symlist, [1]*6)) xival = C0*x + C1*func + C2 etaval = C3*x + C4*func + C5 xival = xival.subs(soldict) etaval = etaval.subs(soldict) xival = xival.subs(onedict) etaval = etaval.subs(onedict) return [{xi: xival, eta: etaval}] def sysode_linear_2eq_order1(match_): x = match_['func'][0].func y = match_['func'][1].func func = match_['func'] fc = match_['func_coeff'] eq = match_['eq'] r = dict() t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] for i in range(2): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs # for equations Eq(a1*diff(x(t),t), a*x(t) + b*y(t) + k1) # and Eq(a2*diff(x(t),t), c*x(t) + d*y(t) + k2) r['a'] = -fc[0,x(t),0]/fc[0,x(t),1] r['c'] = -fc[1,x(t),0]/fc[1,y(t),1] r['b'] = -fc[0,y(t),0]/fc[0,x(t),1] r['d'] = -fc[1,y(t),0]/fc[1,y(t),1] forcing = [S.Zero,S.Zero] for i in range(2): for j in Add.make_args(eq[i]): if not j.has(x(t), y(t)): forcing[i] += j if not (forcing[0].has(t) or forcing[1].has(t)): r['k1'] = forcing[0] r['k2'] = forcing[1] else: raise NotImplementedError("Only homogeneous problems are supported" + " (and constant inhomogeneity)") if match_['type_of_equation'] == 'type6': sol = _linear_2eq_order1_type6(x, y, t, r, eq) if match_['type_of_equation'] == 'type7': sol = _linear_2eq_order1_type7(x, y, t, r, eq) return sol def _linear_2eq_order1_type6(x, y, t, r, eq): r""" The equations of this type of ode are . .. math:: x' = f(t) x + g(t) y .. math:: y' = a [f(t) + a h(t)] x + a [g(t) - h(t)] y This is solved by first multiplying the first equation by `-a` and adding it to the second equation to obtain .. math:: y' - a x' = -a h(t) (y - a x) Setting `U = y - ax` and integrating the equation we arrive at .. math:: y - ax = C_1 e^{-a \int h(t) \,dt} and on substituting the value of y in first equation give rise to first order ODEs. After solving for `x`, we can obtain `y` by substituting the value of `x` in second equation. """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) p = 0 q = 0 p1 = cancel(r['c']/cancel(r['c']/r['d']).as_numer_denom()[0]) p2 = cancel(r['a']/cancel(r['a']/r['b']).as_numer_denom()[0]) for n, i in enumerate([p1, p2]): for j in Mul.make_args(collect_const(i)): if not j.has(t): q = j if q!=0 and n==0: if ((r['c']/j - r['a'])/(r['b'] - r['d']/j)) == j: p = 1 s = j break if q!=0 and n==1: if ((r['a']/j - r['c'])/(r['d'] - r['b']/j)) == j: p = 2 s = j break if p == 1: equ = diff(x(t),t) - r['a']*x(t) - r['b']*(s*x(t) + C1*exp(-s*Integral(r['b'] - r['d']/s, t))) hint1 = classify_ode(equ)[1] sol1 = dsolve(equ, hint=hint1+'_Integral').rhs sol2 = s*sol1 + C1*exp(-s*Integral(r['b'] - r['d']/s, t)) elif p ==2: equ = diff(y(t),t) - r['c']*y(t) - r['d']*s*y(t) + C1*exp(-s*Integral(r['d'] - r['b']/s, t)) hint1 = classify_ode(equ)[1] sol2 = dsolve(equ, hint=hint1+'_Integral').rhs sol1 = s*sol2 + C1*exp(-s*Integral(r['d'] - r['b']/s, t)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order1_type7(x, y, t, r, eq): r""" The equations of this type of ode are . .. math:: x' = f(t) x + g(t) y .. math:: y' = h(t) x + p(t) y Differentiating the first equation and substituting the value of `y` from second equation will give a second-order linear equation .. math:: g x'' - (fg + gp + g') x' + (fgp - g^{2} h + f g' - f' g) x = 0 This above equation can be easily integrated if following conditions are satisfied. 1. `fgp - g^{2} h + f g' - f' g = 0` 2. `fgp - g^{2} h + f g' - f' g = ag, fg + gp + g' = bg` If first condition is satisfied then it is solved by current dsolve solver and in second case it becomes a constant coefficient differential equation which is also solved by current solver. Otherwise if the above condition fails then, a particular solution is assumed as `x = x_0(t)` and `y = y_0(t)` Then the general solution is expressed as .. math:: x = C_1 x_0(t) + C_2 x_0(t) \int \frac{g(t) F(t) P(t)}{x_0^{2}(t)} \,dt .. math:: y = C_1 y_0(t) + C_2 [\frac{F(t) P(t)}{x_0(t)} + y_0(t) \int \frac{g(t) F(t) P(t)}{x_0^{2}(t)} \,dt] where C1 and C2 are arbitrary constants and .. math:: F(t) = e^{\int f(t) \,dt} , P(t) = e^{\int p(t) \,dt} """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) e1 = r['a']*r['b']*r['c'] - r['b']**2*r['c'] + r['a']*diff(r['b'],t) - diff(r['a'],t)*r['b'] e2 = r['a']*r['c']*r['d'] - r['b']*r['c']**2 + diff(r['c'],t)*r['d'] - r['c']*diff(r['d'],t) m1 = r['a']*r['b'] + r['b']*r['d'] + diff(r['b'],t) m2 = r['a']*r['c'] + r['c']*r['d'] + diff(r['c'],t) if e1 == 0: sol1 = dsolve(r['b']*diff(x(t),t,t) - m1*diff(x(t),t)).rhs sol2 = dsolve(diff(y(t),t) - r['c']*sol1 - r['d']*y(t)).rhs elif e2 == 0: sol2 = dsolve(r['c']*diff(y(t),t,t) - m2*diff(y(t),t)).rhs sol1 = dsolve(diff(x(t),t) - r['a']*x(t) - r['b']*sol2).rhs elif not (e1/r['b']).has(t) and not (m1/r['b']).has(t): sol1 = dsolve(diff(x(t),t,t) - (m1/r['b'])*diff(x(t),t) - (e1/r['b'])*x(t)).rhs sol2 = dsolve(diff(y(t),t) - r['c']*sol1 - r['d']*y(t)).rhs elif not (e2/r['c']).has(t) and not (m2/r['c']).has(t): sol2 = dsolve(diff(y(t),t,t) - (m2/r['c'])*diff(y(t),t) - (e2/r['c'])*y(t)).rhs sol1 = dsolve(diff(x(t),t) - r['a']*x(t) - r['b']*sol2).rhs else: x0 = Function('x0')(t) # x0 and y0 being particular solutions y0 = Function('y0')(t) F = exp(Integral(r['a'],t)) P = exp(Integral(r['d'],t)) sol1 = C1*x0 + C2*x0*Integral(r['b']*F*P/x0**2, t) sol2 = C1*y0 + C2*(F*P/x0 + y0*Integral(r['b']*F*P/x0**2, t)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def sysode_nonlinear_2eq_order1(match_): func = match_['func'] eq = match_['eq'] fc = match_['func_coeff'] t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] if match_['type_of_equation'] == 'type5': sol = _nonlinear_2eq_order1_type5(func, t, eq) return sol x = func[0].func y = func[1].func for i in range(2): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs if match_['type_of_equation'] == 'type1': sol = _nonlinear_2eq_order1_type1(x, y, t, eq) elif match_['type_of_equation'] == 'type2': sol = _nonlinear_2eq_order1_type2(x, y, t, eq) elif match_['type_of_equation'] == 'type3': sol = _nonlinear_2eq_order1_type3(x, y, t, eq) elif match_['type_of_equation'] == 'type4': sol = _nonlinear_2eq_order1_type4(x, y, t, eq) return sol def _nonlinear_2eq_order1_type1(x, y, t, eq): r""" Equations: .. math:: x' = x^n F(x,y) .. math:: y' = g(y) F(x,y) Solution: .. math:: x = \varphi(y), \int \frac{1}{g(y) F(\varphi(y),y)} \,dy = t + C_2 where if `n \neq 1` .. math:: \varphi = [C_1 + (1-n) \int \frac{1}{g(y)} \,dy]^{\frac{1}{1-n}} if `n = 1` .. math:: \varphi = C_1 e^{\int \frac{1}{g(y)} \,dy} where `C_1` and `C_2` are arbitrary constants. """ C1, C2 = get_numbered_constants(eq, num=2) n = Wild('n', exclude=[x(t),y(t)]) f = Wild('f') u, v = symbols('u, v') r = eq[0].match(diff(x(t),t) - x(t)**n*f) g = ((diff(y(t),t) - eq[1])/r[f]).subs(y(t),v) F = r[f].subs(x(t),u).subs(y(t),v) n = r[n] if n!=1: phi = (C1 + (1-n)*Integral(1/g, v))**(1/(1-n)) else: phi = C1*exp(Integral(1/g, v)) phi = phi.doit() sol2 = solve(Integral(1/(g*F.subs(u,phi)), v).doit() - t - C2, v) sol = [] for sols in sol2: sol.append(Eq(x(t),phi.subs(v, sols))) sol.append(Eq(y(t), sols)) return sol def _nonlinear_2eq_order1_type2(x, y, t, eq): r""" Equations: .. math:: x' = e^{\lambda x} F(x,y) .. math:: y' = g(y) F(x,y) Solution: .. math:: x = \varphi(y), \int \frac{1}{g(y) F(\varphi(y),y)} \,dy = t + C_2 where if `\lambda \neq 0` .. math:: \varphi = -\frac{1}{\lambda} log(C_1 - \lambda \int \frac{1}{g(y)} \,dy) if `\lambda = 0` .. math:: \varphi = C_1 + \int \frac{1}{g(y)} \,dy where `C_1` and `C_2` are arbitrary constants. """ C1, C2 = get_numbered_constants(eq, num=2) n = Wild('n', exclude=[x(t),y(t)]) f = Wild('f') u, v = symbols('u, v') r = eq[0].match(diff(x(t),t) - exp(n*x(t))*f) g = ((diff(y(t),t) - eq[1])/r[f]).subs(y(t),v) F = r[f].subs(x(t),u).subs(y(t),v) n = r[n] if n: phi = -1/n*log(C1 - n*Integral(1/g, v)) else: phi = C1 + Integral(1/g, v) phi = phi.doit() sol2 = solve(Integral(1/(g*F.subs(u,phi)), v).doit() - t - C2, v) sol = [] for sols in sol2: sol.append(Eq(x(t),phi.subs(v, sols))) sol.append(Eq(y(t), sols)) return sol def _nonlinear_2eq_order1_type3(x, y, t, eq): r""" Autonomous system of general form .. math:: x' = F(x,y) .. math:: y' = G(x,y) Assuming `y = y(x, C_1)` where `C_1` is an arbitrary constant is the general solution of the first-order equation .. math:: F(x,y) y'_x = G(x,y) Then the general solution of the original system of equations has the form .. math:: \int \frac{1}{F(x,y(x,C_1))} \,dx = t + C_1 """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) v = Function('v') u = Symbol('u') f = Wild('f') g = Wild('g') r1 = eq[0].match(diff(x(t),t) - f) r2 = eq[1].match(diff(y(t),t) - g) F = r1[f].subs(x(t), u).subs(y(t), v(u)) G = r2[g].subs(x(t), u).subs(y(t), v(u)) sol2r = dsolve(Eq(diff(v(u), u), G/F)) if isinstance(sol2r, Equality): sol2r = [sol2r] for sol2s in sol2r: sol1 = solve(Integral(1/F.subs(v(u), sol2s.rhs), u).doit() - t - C2, u) sol = [] for sols in sol1: sol.append(Eq(x(t), sols)) sol.append(Eq(y(t), (sol2s.rhs).subs(u, sols))) return sol def _nonlinear_2eq_order1_type4(x, y, t, eq): r""" Equation: .. math:: x' = f_1(x) g_1(y) \phi(x,y,t) .. math:: y' = f_2(x) g_2(y) \phi(x,y,t) First integral: .. math:: \int \frac{f_2(x)}{f_1(x)} \,dx - \int \frac{g_1(y)}{g_2(y)} \,dy = C where `C` is an arbitrary constant. On solving the first integral for `x` (resp., `y` ) and on substituting the resulting expression into either equation of the original solution, one arrives at a first-order equation for determining `y` (resp., `x` ). """ C1, C2 = get_numbered_constants(eq, num=2) u, v = symbols('u, v') U, V = symbols('U, V', cls=Function) f = Wild('f') g = Wild('g') f1 = Wild('f1', exclude=[v,t]) f2 = Wild('f2', exclude=[v,t]) g1 = Wild('g1', exclude=[u,t]) g2 = Wild('g2', exclude=[u,t]) r1 = eq[0].match(diff(x(t),t) - f) r2 = eq[1].match(diff(y(t),t) - g) num, den = ( (r1[f].subs(x(t),u).subs(y(t),v))/ (r2[g].subs(x(t),u).subs(y(t),v))).as_numer_denom() R1 = num.match(f1*g1) R2 = den.match(f2*g2) phi = (r1[f].subs(x(t),u).subs(y(t),v))/num F1 = R1[f1]; F2 = R2[f2] G1 = R1[g1]; G2 = R2[g2] sol1r = solve(Integral(F2/F1, u).doit() - Integral(G1/G2,v).doit() - C1, u) sol2r = solve(Integral(F2/F1, u).doit() - Integral(G1/G2,v).doit() - C1, v) sol = [] for sols in sol1r: sol.append(Eq(y(t), dsolve(diff(V(t),t) - F2.subs(u,sols).subs(v,V(t))*G2.subs(v,V(t))*phi.subs(u,sols).subs(v,V(t))).rhs)) for sols in sol2r: sol.append(Eq(x(t), dsolve(diff(U(t),t) - F1.subs(u,U(t))*G1.subs(v,sols).subs(u,U(t))*phi.subs(v,sols).subs(u,U(t))).rhs)) return set(sol) def _nonlinear_2eq_order1_type5(func, t, eq): r""" Clairaut system of ODEs .. math:: x = t x' + F(x',y') .. math:: y = t y' + G(x',y') The following are solutions of the system `(i)` straight lines: .. math:: x = C_1 t + F(C_1, C_2), y = C_2 t + G(C_1, C_2) where `C_1` and `C_2` are arbitrary constants; `(ii)` envelopes of the above lines; `(iii)` continuously differentiable lines made up from segments of the lines `(i)` and `(ii)`. """ C1, C2 = get_numbered_constants(eq, num=2) f = Wild('f') g = Wild('g') def check_type(x, y): r1 = eq[0].match(t*diff(x(t),t) - x(t) + f) r2 = eq[1].match(t*diff(y(t),t) - y(t) + g) if not (r1 and r2): r1 = eq[0].match(diff(x(t),t) - x(t)/t + f/t) r2 = eq[1].match(diff(y(t),t) - y(t)/t + g/t) if not (r1 and r2): r1 = (-eq[0]).match(t*diff(x(t),t) - x(t) + f) r2 = (-eq[1]).match(t*diff(y(t),t) - y(t) + g) if not (r1 and r2): r1 = (-eq[0]).match(diff(x(t),t) - x(t)/t + f/t) r2 = (-eq[1]).match(diff(y(t),t) - y(t)/t + g/t) return [r1, r2] for func_ in func: if isinstance(func_, list): x = func[0][0].func y = func[0][1].func [r1, r2] = check_type(x, y) if not (r1 and r2): [r1, r2] = check_type(y, x) x, y = y, x x1 = diff(x(t),t); y1 = diff(y(t),t) return {Eq(x(t), C1*t + r1[f].subs(x1,C1).subs(y1,C2)), Eq(y(t), C2*t + r2[g].subs(x1,C1).subs(y1,C2))} def sysode_nonlinear_3eq_order1(match_): x = match_['func'][0].func y = match_['func'][1].func z = match_['func'][2].func eq = match_['eq'] t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] if match_['type_of_equation'] == 'type1': sol = _nonlinear_3eq_order1_type1(x, y, z, t, eq) if match_['type_of_equation'] == 'type2': sol = _nonlinear_3eq_order1_type2(x, y, z, t, eq) if match_['type_of_equation'] == 'type3': sol = _nonlinear_3eq_order1_type3(x, y, z, t, eq) if match_['type_of_equation'] == 'type4': sol = _nonlinear_3eq_order1_type4(x, y, z, t, eq) if match_['type_of_equation'] == 'type5': sol = _nonlinear_3eq_order1_type5(x, y, z, t, eq) return sol def _nonlinear_3eq_order1_type1(x, y, z, t, eq): r""" Equations: .. math:: a x' = (b - c) y z, \enspace b y' = (c - a) z x, \enspace c z' = (a - b) x y First Integrals: .. math:: a x^{2} + b y^{2} + c z^{2} = C_1 .. math:: a^{2} x^{2} + b^{2} y^{2} + c^{2} z^{2} = C_2 where `C_1` and `C_2` are arbitrary constants. On solving the integrals for `y` and `z` and on substituting the resulting expressions into the first equation of the system, we arrives at a separable first-order equation on `x`. Similarly doing that for other two equations, we will arrive at first order equation on `y` and `z` too. References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0401.pdf """ C1, C2 = get_numbered_constants(eq, num=2) u, v, w = symbols('u, v, w') p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) r = (diff(x(t),t) - eq[0]).match(p*y(t)*z(t)) r.update((diff(y(t),t) - eq[1]).match(q*z(t)*x(t))) r.update((diff(z(t),t) - eq[2]).match(s*x(t)*y(t))) n1, d1 = r[p].as_numer_denom() n2, d2 = r[q].as_numer_denom() n3, d3 = r[s].as_numer_denom() val = solve([n1*u-d1*v+d1*w, d2*u+n2*v-d2*w, d3*u-d3*v-n3*w],[u,v]) vals = [val[v], val[u]] c = lcm(vals[0].as_numer_denom()[1], vals[1].as_numer_denom()[1]) b = vals[0].subs(w, c) a = vals[1].subs(w, c) y_x = sqrt(((c*C1-C2) - a*(c-a)*x(t)**2)/(b*(c-b))) z_x = sqrt(((b*C1-C2) - a*(b-a)*x(t)**2)/(c*(b-c))) z_y = sqrt(((a*C1-C2) - b*(a-b)*y(t)**2)/(c*(a-c))) x_y = sqrt(((c*C1-C2) - b*(c-b)*y(t)**2)/(a*(c-a))) x_z = sqrt(((b*C1-C2) - c*(b-c)*z(t)**2)/(a*(b-a))) y_z = sqrt(((a*C1-C2) - c*(a-c)*z(t)**2)/(b*(a-b))) sol1 = dsolve(a*diff(x(t),t) - (b-c)*y_x*z_x) sol2 = dsolve(b*diff(y(t),t) - (c-a)*z_y*x_y) sol3 = dsolve(c*diff(z(t),t) - (a-b)*x_z*y_z) return [sol1, sol2, sol3] def _nonlinear_3eq_order1_type2(x, y, z, t, eq): r""" Equations: .. math:: a x' = (b - c) y z f(x, y, z, t) .. math:: b y' = (c - a) z x f(x, y, z, t) .. math:: c z' = (a - b) x y f(x, y, z, t) First Integrals: .. math:: a x^{2} + b y^{2} + c z^{2} = C_1 .. math:: a^{2} x^{2} + b^{2} y^{2} + c^{2} z^{2} = C_2 where `C_1` and `C_2` are arbitrary constants. On solving the integrals for `y` and `z` and on substituting the resulting expressions into the first equation of the system, we arrives at a first-order differential equations on `x`. Similarly doing that for other two equations we will arrive at first order equation on `y` and `z`. References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0402.pdf """ C1, C2 = get_numbered_constants(eq, num=2) u, v, w = symbols('u, v, w') p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) f = Wild('f') r1 = (diff(x(t),t) - eq[0]).match(y(t)*z(t)*f) r = collect_const(r1[f]).match(p*f) r.update(((diff(y(t),t) - eq[1])/r[f]).match(q*z(t)*x(t))) r.update(((diff(z(t),t) - eq[2])/r[f]).match(s*x(t)*y(t))) n1, d1 = r[p].as_numer_denom() n2, d2 = r[q].as_numer_denom() n3, d3 = r[s].as_numer_denom() val = solve([n1*u-d1*v+d1*w, d2*u+n2*v-d2*w, -d3*u+d3*v+n3*w],[u,v]) vals = [val[v], val[u]] c = lcm(vals[0].as_numer_denom()[1], vals[1].as_numer_denom()[1]) a = vals[0].subs(w, c) b = vals[1].subs(w, c) y_x = sqrt(((c*C1-C2) - a*(c-a)*x(t)**2)/(b*(c-b))) z_x = sqrt(((b*C1-C2) - a*(b-a)*x(t)**2)/(c*(b-c))) z_y = sqrt(((a*C1-C2) - b*(a-b)*y(t)**2)/(c*(a-c))) x_y = sqrt(((c*C1-C2) - b*(c-b)*y(t)**2)/(a*(c-a))) x_z = sqrt(((b*C1-C2) - c*(b-c)*z(t)**2)/(a*(b-a))) y_z = sqrt(((a*C1-C2) - c*(a-c)*z(t)**2)/(b*(a-b))) sol1 = dsolve(a*diff(x(t),t) - (b-c)*y_x*z_x*r[f]) sol2 = dsolve(b*diff(y(t),t) - (c-a)*z_y*x_y*r[f]) sol3 = dsolve(c*diff(z(t),t) - (a-b)*x_z*y_z*r[f]) return [sol1, sol2, sol3] def _nonlinear_3eq_order1_type3(x, y, z, t, eq): r""" Equations: .. math:: x' = c F_2 - b F_3, \enspace y' = a F_3 - c F_1, \enspace z' = b F_1 - a F_2 where `F_n = F_n(x, y, z, t)`. 1. First Integral: .. math:: a x + b y + c z = C_1, where C is an arbitrary constant. 2. If we assume function `F_n` to be independent of `t`,i.e, `F_n` = `F_n (x, y, z)` Then, on eliminating `t` and `z` from the first two equation of the system, one arrives at the first-order equation .. math:: \frac{dy}{dx} = \frac{a F_3 (x, y, z) - c F_1 (x, y, z)}{c F_2 (x, y, z) - b F_3 (x, y, z)} where `z = \frac{1}{c} (C_1 - a x - b y)` References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0404.pdf """ C1 = get_numbered_constants(eq, num=1) u, v, w = symbols('u, v, w') fu, fv, fw = symbols('u, v, w', cls=Function) p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) F1, F2, F3 = symbols('F1, F2, F3', cls=Wild) r1 = (diff(x(t), t) - eq[0]).match(F2-F3) r = collect_const(r1[F2]).match(s*F2) r.update(collect_const(r1[F3]).match(q*F3)) if eq[1].has(r[F2]) and not eq[1].has(r[F3]): r[F2], r[F3] = r[F3], r[F2] r[s], r[q] = -r[q], -r[s] r.update((diff(y(t), t) - eq[1]).match(p*r[F3] - r[s]*F1)) a = r[p]; b = r[q]; c = r[s] F1 = r[F1].subs(x(t), u).subs(y(t),v).subs(z(t), w) F2 = r[F2].subs(x(t), u).subs(y(t),v).subs(z(t), w) F3 = r[F3].subs(x(t), u).subs(y(t),v).subs(z(t), w) z_xy = (C1-a*u-b*v)/c y_zx = (C1-a*u-c*w)/b x_yz = (C1-b*v-c*w)/a y_x = dsolve(diff(fv(u),u) - ((a*F3-c*F1)/(c*F2-b*F3)).subs(w,z_xy).subs(v,fv(u))).rhs z_x = dsolve(diff(fw(u),u) - ((b*F1-a*F2)/(c*F2-b*F3)).subs(v,y_zx).subs(w,fw(u))).rhs z_y = dsolve(diff(fw(v),v) - ((b*F1-a*F2)/(a*F3-c*F1)).subs(u,x_yz).subs(w,fw(v))).rhs x_y = dsolve(diff(fu(v),v) - ((c*F2-b*F3)/(a*F3-c*F1)).subs(w,z_xy).subs(u,fu(v))).rhs y_z = dsolve(diff(fv(w),w) - ((a*F3-c*F1)/(b*F1-a*F2)).subs(u,x_yz).subs(v,fv(w))).rhs x_z = dsolve(diff(fu(w),w) - ((c*F2-b*F3)/(b*F1-a*F2)).subs(v,y_zx).subs(u,fu(w))).rhs sol1 = dsolve(diff(fu(t),t) - (c*F2 - b*F3).subs(v,y_x).subs(w,z_x).subs(u,fu(t))).rhs sol2 = dsolve(diff(fv(t),t) - (a*F3 - c*F1).subs(u,x_y).subs(w,z_y).subs(v,fv(t))).rhs sol3 = dsolve(diff(fw(t),t) - (b*F1 - a*F2).subs(u,x_z).subs(v,y_z).subs(w,fw(t))).rhs return [sol1, sol2, sol3] def _nonlinear_3eq_order1_type4(x, y, z, t, eq): r""" Equations: .. math:: x' = c z F_2 - b y F_3, \enspace y' = a x F_3 - c z F_1, \enspace z' = b y F_1 - a x F_2 where `F_n = F_n (x, y, z, t)` 1. First integral: .. math:: a x^{2} + b y^{2} + c z^{2} = C_1 where `C` is an arbitrary constant. 2. Assuming the function `F_n` is independent of `t`: `F_n = F_n (x, y, z)`. Then on eliminating `t` and `z` from the first two equations of the system, one arrives at the first-order equation .. math:: \frac{dy}{dx} = \frac{a x F_3 (x, y, z) - c z F_1 (x, y, z)} {c z F_2 (x, y, z) - b y F_3 (x, y, z)} where `z = \pm \sqrt{\frac{1}{c} (C_1 - a x^{2} - b y^{2})}` References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0405.pdf """ C1 = get_numbered_constants(eq, num=1) u, v, w = symbols('u, v, w') p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) F1, F2, F3 = symbols('F1, F2, F3', cls=Wild) r1 = eq[0].match(diff(x(t),t) - z(t)*F2 + y(t)*F3) r = collect_const(r1[F2]).match(s*F2) r.update(collect_const(r1[F3]).match(q*F3)) if eq[1].has(r[F2]) and not eq[1].has(r[F3]): r[F2], r[F3] = r[F3], r[F2] r[s], r[q] = -r[q], -r[s] r.update((diff(y(t),t) - eq[1]).match(p*x(t)*r[F3] - r[s]*z(t)*F1)) a = r[p]; b = r[q]; c = r[s] F1 = r[F1].subs(x(t),u).subs(y(t),v).subs(z(t),w) F2 = r[F2].subs(x(t),u).subs(y(t),v).subs(z(t),w) F3 = r[F3].subs(x(t),u).subs(y(t),v).subs(z(t),w) x_yz = sqrt((C1 - b*v**2 - c*w**2)/a) y_zx = sqrt((C1 - c*w**2 - a*u**2)/b) z_xy = sqrt((C1 - a*u**2 - b*v**2)/c) y_x = dsolve(diff(v(u),u) - ((a*u*F3-c*w*F1)/(c*w*F2-b*v*F3)).subs(w,z_xy).subs(v,v(u))).rhs z_x = dsolve(diff(w(u),u) - ((b*v*F1-a*u*F2)/(c*w*F2-b*v*F3)).subs(v,y_zx).subs(w,w(u))).rhs z_y = dsolve(diff(w(v),v) - ((b*v*F1-a*u*F2)/(a*u*F3-c*w*F1)).subs(u,x_yz).subs(w,w(v))).rhs x_y = dsolve(diff(u(v),v) - ((c*w*F2-b*v*F3)/(a*u*F3-c*w*F1)).subs(w,z_xy).subs(u,u(v))).rhs y_z = dsolve(diff(v(w),w) - ((a*u*F3-c*w*F1)/(b*v*F1-a*u*F2)).subs(u,x_yz).subs(v,v(w))).rhs x_z = dsolve(diff(u(w),w) - ((c*w*F2-b*v*F3)/(b*v*F1-a*u*F2)).subs(v,y_zx).subs(u,u(w))).rhs sol1 = dsolve(diff(u(t),t) - (c*w*F2 - b*v*F3).subs(v,y_x).subs(w,z_x).subs(u,u(t))).rhs sol2 = dsolve(diff(v(t),t) - (a*u*F3 - c*w*F1).subs(u,x_y).subs(w,z_y).subs(v,v(t))).rhs sol3 = dsolve(diff(w(t),t) - (b*v*F1 - a*u*F2).subs(u,x_z).subs(v,y_z).subs(w,w(t))).rhs return [sol1, sol2, sol3] def _nonlinear_3eq_order1_type5(x, y, z, t, eq): r""" .. math:: x' = x (c F_2 - b F_3), \enspace y' = y (a F_3 - c F_1), \enspace z' = z (b F_1 - a F_2) where `F_n = F_n (x, y, z, t)` and are arbitrary functions. First Integral: .. math:: \left|x\right|^{a} \left|y\right|^{b} \left|z\right|^{c} = C_1 where `C` is an arbitrary constant. If the function `F_n` is independent of `t`, then, by eliminating `t` and `z` from the first two equations of the system, one arrives at a first-order equation. References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0406.pdf """ C1 = get_numbered_constants(eq, num=1) u, v, w = symbols('u, v, w') fu, fv, fw = symbols('u, v, w', cls=Function) p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) F1, F2, F3 = symbols('F1, F2, F3', cls=Wild) r1 = eq[0].match(diff(x(t), t) - x(t)*F2 + x(t)*F3) r = collect_const(r1[F2]).match(s*F2) r.update(collect_const(r1[F3]).match(q*F3)) if eq[1].has(r[F2]) and not eq[1].has(r[F3]): r[F2], r[F3] = r[F3], r[F2] r[s], r[q] = -r[q], -r[s] r.update((diff(y(t), t) - eq[1]).match(y(t)*(p*r[F3] - r[s]*F1))) a = r[p]; b = r[q]; c = r[s] F1 = r[F1].subs(x(t), u).subs(y(t), v).subs(z(t), w) F2 = r[F2].subs(x(t), u).subs(y(t), v).subs(z(t), w) F3 = r[F3].subs(x(t), u).subs(y(t), v).subs(z(t), w) x_yz = (C1*v**-b*w**-c)**-a y_zx = (C1*w**-c*u**-a)**-b z_xy = (C1*u**-a*v**-b)**-c y_x = dsolve(diff(fv(u), u) - ((v*(a*F3 - c*F1))/(u*(c*F2 - b*F3))).subs(w, z_xy).subs(v, fv(u))).rhs z_x = dsolve(diff(fw(u), u) - ((w*(b*F1 - a*F2))/(u*(c*F2 - b*F3))).subs(v, y_zx).subs(w, fw(u))).rhs z_y = dsolve(diff(fw(v), v) - ((w*(b*F1 - a*F2))/(v*(a*F3 - c*F1))).subs(u, x_yz).subs(w, fw(v))).rhs x_y = dsolve(diff(fu(v), v) - ((u*(c*F2 - b*F3))/(v*(a*F3 - c*F1))).subs(w, z_xy).subs(u, fu(v))).rhs y_z = dsolve(diff(fv(w), w) - ((v*(a*F3 - c*F1))/(w*(b*F1 - a*F2))).subs(u, x_yz).subs(v, fv(w))).rhs x_z = dsolve(diff(fu(w), w) - ((u*(c*F2 - b*F3))/(w*(b*F1 - a*F2))).subs(v, y_zx).subs(u, fu(w))).rhs sol1 = dsolve(diff(fu(t), t) - (u*(c*F2 - b*F3)).subs(v, y_x).subs(w, z_x).subs(u, fu(t))).rhs sol2 = dsolve(diff(fv(t), t) - (v*(a*F3 - c*F1)).subs(u, x_y).subs(w, z_y).subs(v, fv(t))).rhs sol3 = dsolve(diff(fw(t), t) - (w*(b*F1 - a*F2)).subs(u, x_z).subs(v, y_z).subs(w, fw(t))).rhs return [sol1, sol2, sol3] #This import is written at the bottom to avoid circular imports. from .single import (NthAlgebraic, Factorable, FirstLinear, AlmostLinear, Bernoulli, SingleODEProblem, SingleODESolver, RiccatiSpecial, SecondNonlinearAutonomousConserved)
d05bce0e7d54c662a941f4a53bc4fe63e2dadb765e85046bdcdbdc9061bc651e
# # This is the module for ODE solver classes for single ODEs. # import typing if typing.TYPE_CHECKING: from typing import ClassVar from typing import Dict, Type from typing import Iterator, List, Optional from sympy.core import S from sympy.core.exprtools import factor_terms from sympy.core.expr import Expr from sympy.core.function import AppliedUndef, Derivative, Function, expand from sympy.core.numbers import Float from sympy.core.relational import Equality, Eq from sympy.core.symbol import Symbol, Dummy, Wild from sympy.core.mul import Mul from sympy.functions import exp, sqrt, tan, log from sympy.integrals import Integral from sympy.polys.polytools import cancel, factor from sympy.simplify.simplify import simplify from sympy.simplify.radsimp import fraction from sympy.utilities import numbered_symbols from sympy.solvers.solvers import solve from sympy.solvers.deutils import ode_order, _preprocess class ODEMatchError(NotImplementedError): """Raised if a SingleODESolver is asked to solve an ODE it does not match""" pass def cached_property(func): '''Decorator to cache property method''' attrname = '_' + func.__name__ def propfunc(self): val = getattr(self, attrname, None) if val is None: val = func(self) setattr(self, attrname, val) return val return property(propfunc) class SingleODEProblem: """Represents an ordinary differential equation (ODE) This class is used internally in the by dsolve and related functions/classes so that properties of an ODE can be computed efficiently. Examples ======== This class is used internally by dsolve. To instantiate an instance directly first define an ODE problem: >>> from sympy import Function, Symbol >>> x = Symbol('x') >>> f = Function('f') >>> eq = f(x).diff(x, 2) Now you can create a SingleODEProblem instance and query its properties: >>> from sympy.solvers.ode.single import SingleODEProblem >>> problem = SingleODEProblem(f(x).diff(x), f(x), x) >>> problem.eq Derivative(f(x), x) >>> problem.func f(x) >>> problem.sym x """ # Instance attributes: eq = None # type: Expr func = None # type: AppliedUndef sym = None # type: Symbol _order = None # type: int _eq_expanded = None # type: Expr _eq_preprocessed = None # type: Expr def __init__(self, eq, func, sym, prep=True): assert isinstance(eq, Expr) assert isinstance(func, AppliedUndef) assert isinstance(sym, Symbol) assert isinstance(prep, bool) self.eq = eq self.func = func self.sym = sym self.prep = prep @cached_property def order(self) -> int: return ode_order(self.eq, self.func) @cached_property def eq_preprocessed(self) -> Expr: return self._get_eq_preprocessed() @cached_property def eq_expanded(self) -> Expr: return expand(self.eq_preprocessed) def _get_eq_preprocessed(self) -> Expr: if self.prep: process_eq, process_func = _preprocess(self.eq, self.func) if process_func != self.func: raise ValueError else: process_eq = self.eq return process_eq def get_numbered_constants(self, num=1, start=1, prefix='C') -> List[Symbol]: """ Returns a list of constants that do not occur in eq already. """ ncs = self.iter_numbered_constants(start, prefix) Cs = [next(ncs) for i in range(num)] return Cs def iter_numbered_constants(self, start=1, prefix='C') -> Iterator[Symbol]: """ Returns an iterator of constants that do not occur in eq already. """ atom_set = self.eq.free_symbols func_set = self.eq.atoms(Function) if func_set: atom_set |= {Symbol(str(f.func)) for f in func_set} return numbered_symbols(start=start, prefix=prefix, exclude=atom_set) @cached_property def is_autonomous(self): u = Dummy('u') x = self.sym syms = self.eq.subs(self.func, u).free_symbols return x not in syms # TODO: Add methods that can be used by many ODE solvers: # order # is_linear() # get_linear_coefficients() # eq_prepared (the ODE in prepared form) class SingleODESolver: """ Base class for Single ODE solvers. Subclasses should implement the _matches and _get_general_solution methods. This class is not intended to be instantiated directly but its subclasses are as part of dsolve. Examples ======== You can use a subclass of SingleODEProblem to solve a particular type of ODE. We first define a particular ODE problem: >>> from sympy import Function, Symbol >>> x = Symbol('x') >>> f = Function('f') >>> eq = f(x).diff(x, 2) Now we solve this problem using the NthAlgebraic solver which is a subclass of SingleODESolver: >>> from sympy.solvers.ode.single import NthAlgebraic, SingleODEProblem >>> problem = SingleODEProblem(eq, f(x), x) >>> solver = NthAlgebraic(problem) >>> solver.get_general_solution() [Eq(f(x), _C*x + _C)] The normal way to solve an ODE is to use dsolve (which would use NthAlgebraic and other solvers internally). When using dsolve a number of other things are done such as evaluating integrals, simplifying the solution and renumbering the constants: >>> from sympy import dsolve >>> dsolve(eq, hint='nth_algebraic') Eq(f(x), C1 + C2*x) """ # Subclasses should store the hint name (the argument to dsolve) in this # attribute hint = None # type: ClassVar[str] # Subclasses should define this to indicate if they support an _Integral # hint. has_integral = None # type: ClassVar[bool] # The ODE to be solved ode_problem = None # type: SingleODEProblem # Cache whether or not the equation has matched the method _matched = None # type: Optional[bool] # Subclasses should store in this attribute the list of order(s) of ODE # that subclass can solve or leave it to None if not specific to any order order = None # type: Optional[list] def __init__(self, ode_problem): self.ode_problem = ode_problem def matches(self) -> bool: if self.order is not None and self.ode_problem.order not in self.order: self._matched = False return self._matched if self._matched is None: self._matched = self._matches() return self._matched def get_general_solution(self, *, simplify: bool = True) -> List[Equality]: if not self.matches(): msg = "%s solver can not solve:\n%s" raise ODEMatchError(msg % (self.hint, self.ode_problem.eq)) return self._get_general_solution() def _matches(self) -> bool: msg = "Subclasses of SingleODESolver should implement matches." raise NotImplementedError(msg) def _get_general_solution(self, *, simplify: bool = True) -> List[Equality]: msg = "Subclasses of SingleODESolver should implement get_general_solution." raise NotImplementedError(msg) class SinglePatternODESolver(SingleODESolver): '''Superclass for ODE solvers based on pattern matching''' def wilds(self): prob = self.ode_problem f = prob.func.func x = prob.sym order = prob.order return self._wilds(f, x, order) def wilds_match(self): match = self._wilds_match return [match.get(w, S.Zero) for w in self.wilds()] def _matches(self): eq = self.ode_problem.eq_expanded f = self.ode_problem.func.func x = self.ode_problem.sym order = self.ode_problem.order df = f(x).diff(x, order) if order not in [1, 2]: return False pattern = self._equation(f(x), x, order) if not pattern.coeff(df).has(Wild): eq = expand(eq / eq.coeff(df)) eq = eq.collect(f(x), func = cancel) self._wilds_match = match = eq.match(pattern) if match is not None: return self._verify(f(x)) return False def _verify(self, fx) -> bool: return True def _wilds(self, f, x, order): msg = "Subclasses of SingleODESolver should implement _wilds" raise NotImplementedError(msg) def _equation(self, fx, x, order): msg = "Subclasses of SingleODESolver should implement _equation" raise NotImplementedError(msg) class NthAlgebraic(SingleODESolver): r""" Solves an `n`\th order ordinary differential equation using algebra and integrals. There is no general form for the kind of equation that this can solve. The the equation is solved algebraically treating differentiation as an invertible algebraic function. Examples ======== >>> from sympy import Function, dsolve, Eq >>> from sympy.abc import x >>> f = Function('f') >>> eq = Eq(f(x) * (f(x).diff(x)**2 - 1), 0) >>> dsolve(eq, f(x), hint='nth_algebraic') [Eq(f(x), 0), Eq(f(x), C1 - x), Eq(f(x), C1 + x)] Note that this solver can return algebraic solutions that do not have any integration constants (f(x) = 0 in the above example). """ hint = 'nth_algebraic' has_integral = True # nth_algebraic_Integral hint def _matches(self): r""" Matches any differential equation that nth_algebraic can solve. Uses `sympy.solve` but teaches it how to integrate derivatives. This involves calling `sympy.solve` and does most of the work of finding a solution (apart from evaluating the integrals). """ eq = self.ode_problem.eq func = self.ode_problem.func var = self.ode_problem.sym # Derivative that solve can handle: diffx = self._get_diffx(var) # Replace derivatives wrt the independent variable with diffx def replace(eq, var): def expand_diffx(*args): differand, diffs = args[0], args[1:] toreplace = differand for v, n in diffs: for _ in range(n): if v == var: toreplace = diffx(toreplace) else: toreplace = Derivative(toreplace, v) return toreplace return eq.replace(Derivative, expand_diffx) # Restore derivatives in solution afterwards def unreplace(eq, var): return eq.replace(diffx, lambda e: Derivative(e, var)) subs_eqn = replace(eq, var) try: # turn off simplification to protect Integrals that have # _t instead of fx in them and would otherwise factor # as t_*Integral(1, x) solns = solve(subs_eqn, func, simplify=False) except NotImplementedError: solns = [] solns = [simplify(unreplace(soln, var)) for soln in solns] solns = [Equality(func, soln) for soln in solns] self.solutions = solns return len(solns) != 0 def _get_general_solution(self, *, simplify: bool = True): return self.solutions # This needs to produce an invertible function but the inverse depends # which variable we are integrating with respect to. Since the class can # be stored in cached results we need to ensure that we always get the # same class back for each particular integration variable so we store these # classes in a global dict: _diffx_stored = {} # type: Dict[Symbol, Type[Function]] @staticmethod def _get_diffx(var): diffcls = NthAlgebraic._diffx_stored.get(var, None) if diffcls is None: # A class that behaves like Derivative wrt var but is "invertible". class diffx(Function): def inverse(self): # don't use integrate here because fx has been replaced by _t # in the equation; integrals will not be correct while solve # is at work. return lambda expr: Integral(expr, var) + Dummy('C') diffcls = NthAlgebraic._diffx_stored.setdefault(var, diffx) return diffcls class FirstLinear(SinglePatternODESolver): r""" Solves 1st order linear differential equations. These are differential equations of the form .. math:: dy/dx + P(x) y = Q(x)\text{.} These kinds of differential equations can be solved in a general way. The integrating factor `e^{\int P(x) \,dx}` will turn the equation into a separable equation. The general solution is:: >>> from sympy import Function, dsolve, Eq, pprint, diff, sin >>> from sympy.abc import x >>> f, P, Q = map(Function, ['f', 'P', 'Q']) >>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x)) >>> pprint(genform) d P(x)*f(x) + --(f(x)) = Q(x) dx >>> pprint(dsolve(genform, f(x), hint='1st_linear_Integral')) / / \ | | | | | / | / | | | | | | | | P(x) dx | - | P(x) dx | | | | | | | / | / f(x) = |C1 + | Q(x)*e dx|*e | | | \ / / Examples ======== >>> f = Function('f') >>> pprint(dsolve(Eq(x*diff(f(x), x) - f(x), x**2*sin(x)), ... f(x), '1st_linear')) f(x) = x*(C1 - cos(x)) References ========== - https://en.wikipedia.org/wiki/Linear_differential_equation#First_order_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 92 # indirect doctest """ hint = '1st_linear' has_integral = True order = [1] def _wilds(self, f, x, order): P = Wild('P', exclude=[f(x)]) Q = Wild('Q', exclude=[f(x), f(x).diff(x)]) return P, Q def _equation(self, fx, x, order): P, Q = self.wilds() return fx.diff(x) + P*fx - Q def _get_general_solution(self, *, simplify: bool = True): P, Q = self.wilds_match() fx = self.ode_problem.func x = self.ode_problem.sym (C1,) = self.ode_problem.get_numbered_constants(num=1) gensol = Eq(fx, ((C1 + Integral(Q*exp(Integral(P, x)),x)) * exp(-Integral(P, x)))) return [gensol] class AlmostLinear(SinglePatternODESolver): r""" Solves an almost-linear differential equation. The general form of an almost linear differential equation is .. math:: a(x) g'(f(x)) f'(x) + b(x) g(f(x)) + c(x) Here `f(x)` is the function to be solved for (the dependent variable). The substitution `g(f(x)) = u(x)` leads to a linear differential equation for `u(x)` of the form `a(x) u' + b(x) u + c(x) = 0`. This can be solved for `u(x)` by the `first_linear` hint and then `f(x)` is found by solving `g(f(x)) = u(x)`. See Also ======== :meth:`sympy.solvers.ode.single.FirstLinear` Examples ======== >>> from sympy import Function, pprint, sin, cos >>> from sympy.solvers.ode import dsolve >>> from sympy.abc import x >>> f = Function('f') >>> d = f(x).diff(x) >>> eq = x*d + x*f(x) + 1 >>> dsolve(eq, f(x), hint='almost_linear') Eq(f(x), (C1 - Ei(x))*exp(-x)) >>> pprint(dsolve(eq, f(x), hint='almost_linear')) -x f(x) = (C1 - Ei(x))*e >>> example = cos(f(x))*f(x).diff(x) + sin(f(x)) + 1 >>> pprint(example) d sin(f(x)) + cos(f(x))*--(f(x)) + 1 dx >>> pprint(dsolve(example, f(x), hint='almost_linear')) / -x \ / -x \ [f(x) = pi - asin\C1*e - 1/, f(x) = asin\C1*e - 1/] References ========== - Joel Moses, "Symbolic Integration - The Stormy Decade", Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558 """ hint = "almost_linear" has_integral = True order = [1] def _wilds(self, f, x, order): P = Wild('P', exclude=[f(x).diff(x)]) Q = Wild('Q', exclude=[f(x).diff(x)]) return P, Q def _equation(self, fx, x, order): P, Q = self.wilds() return P*fx.diff(x) + Q def _verify(self, fx): a, b = self.wilds_match() c, b = b.as_independent(fx) if b.is_Add else (S.Zero, b) # a, b and c are the function a(x), b(x) and c(x) respectively. # c(x) is obtained by separating out b as terms with and without fx i.e, l(y) # The following conditions checks if the given equation is an almost-linear differential equation using the fact that # a(x)*(l(y))' / l(y)' is independent of l(y) if b.diff(fx) != 0 and not simplify(b.diff(fx)/a).has(fx): self.ly = factor_terms(b).as_independent(fx, as_Add=False)[1] # Gives the term containing fx i.e., l(y) self.ax = a / self.ly.diff(fx) self.cx = -c # cx is taken as -c(x) to simplify expression in the solution integral self.bx = factor_terms(b) / self.ly return True return False def _get_general_solution(self, *, simplify: bool = True): x = self.ode_problem.sym (C1,) = self.ode_problem.get_numbered_constants(num=1) gensol = Eq(self.ly, ((C1 + Integral((self.cx/self.ax)*exp(Integral(self.bx/self.ax, x)),x)) * exp(-Integral(self.bx/self.ax, x)))) return [gensol] class Bernoulli(SinglePatternODESolver): r""" Solves Bernoulli differential equations. These are equations of the form .. math:: dy/dx + P(x) y = Q(x) y^n\text{, }n \ne 1`\text{.} The substitution `w = 1/y^{1-n}` will transform an equation of this form into one that is linear (see the docstring of :py:meth:`~sympy.solvers.ode.single.FirstLinear`). The general solution is:: >>> from sympy import Function, dsolve, Eq, pprint >>> from sympy.abc import x, n >>> f, P, Q = map(Function, ['f', 'P', 'Q']) >>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)**n) >>> pprint(genform) d n P(x)*f(x) + --(f(x)) = Q(x)*f (x) dx >>> pprint(dsolve(genform, f(x), hint='Bernoulli_Integral'), num_columns=110) -1 ----- n - 1 // / / \ \ || | | | | || | / | / | / | || | | | | | | | || | (1 - n)* | P(x) dx | (1 - n)* | P(x) dx | (n - 1)* | P(x) dx| || | | | | | | | || | / | / | / | f(x) = ||C1 - n* | Q(x)*e dx + | Q(x)*e dx|*e | || | | | | \\ / / / / Note that the equation is separable when `n = 1` (see the docstring of :py:meth:`~sympy.solvers.ode.ode.ode_separable`). >>> pprint(dsolve(Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)), f(x), ... hint='separable_Integral')) f(x) / | / | 1 | | - dy = C1 + | (-P(x) + Q(x)) dx | y | | / / Examples ======== >>> from sympy import Function, dsolve, Eq, pprint, log >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(Eq(x*f(x).diff(x) + f(x), log(x)*f(x)**2), ... f(x), hint='Bernoulli')) 1 f(x) = ----------------- C1*x + log(x) + 1 References ========== - https://en.wikipedia.org/wiki/Bernoulli_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 95 # indirect doctest """ hint = "Bernoulli" has_integral = True order = [1] def _wilds(self, f, x, order): P = Wild('P', exclude=[f(x)]) Q = Wild('Q', exclude=[f(x)]) n = Wild('n', exclude=[x, f(x), f(x).diff(x)]) return P, Q, n def _equation(self, fx, x, order): P, Q, n = self.wilds() return fx.diff(x) + P*fx - Q*fx**n def _get_general_solution(self, *, simplify: bool = True): P, Q, n = self.wilds_match() fx = self.ode_problem.func x = self.ode_problem.sym (C1,) = self.ode_problem.get_numbered_constants(num=1) if n==1: gensol = Eq(log(fx), ( C1 + Integral((-P + Q),x) )) else: gensol = Eq(fx**(1-n), ( (C1 - (n - 1) * Integral(Q*exp(-n*Integral(P, x)) * exp(Integral(P, x)), x) ) * exp(-(1 - n)*Integral(P, x))) ) return [gensol] class Factorable(SingleODESolver): r""" Solves equations having a solvable factor. This function is used to solve the equation having factors. Factors may be of type algebraic or ode. It will try to solve each factor independently. Factors will be solved by calling dsolve. We will return the list of solutions. Examples ======== >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f = Function('f') >>> eq = (f(x)**2-4)*(f(x).diff(x)+f(x)) >>> pprint(dsolve(eq, f(x))) -x [f(x) = 2, f(x) = -2, f(x) = C1*e ] """ hint = "factorable" has_integral = False def _matches(self): eq = self.ode_problem.eq f = self.ode_problem.func.func x = self.ode_problem.sym order =self.ode_problem.order df = f(x).diff(x) self.eqs = [] eq = eq.collect(f(x), func = cancel) eq = fraction(factor(eq))[0] factors = Mul.make_args(factor(eq)) roots = [fac.as_base_exp() for fac in factors if len(fac.args)!=0] if len(roots)>1 or roots[0][1]>1: for base,expo in roots: if base.has(f(x)): self.eqs.append(base) if len(self.eqs)>0: return True roots = solve(eq, df) if len(roots)>0: self.eqs = [(df - root) for root in roots] if len(self.eqs)==1: if order>1: return False if self.eqs[0].has(Float): return False return fraction(factor(self.eqs[0]))[0]-eq!=0 return True return False def _get_general_solution(self, *, simplify: bool = True): func = self.ode_problem.func.func x = self.ode_problem.sym eqns = self.eqs sols = [] for eq in eqns: try: sol = dsolve(eq, func(x)) except NotImplementedError: continue else: if isinstance(sol, list): sols.extend(sol) else: sols.append(sol) if sols == []: raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by" + " the factorable group method") return sols class RiccatiSpecial(SinglePatternODESolver): r""" The general Riccati equation has the form .. math:: dy/dx = f(x) y^2 + g(x) y + h(x)\text{.} While it does not have a general solution [1], the "special" form, `dy/dx = a y^2 - b x^c`, does have solutions in many cases [2]. This routine returns a solution for `a(dy/dx) = b y^2 + c y/x + d/x^2` that is obtained by using a suitable change of variables to reduce it to the special form and is valid when neither `a` nor `b` are zero and either `c` or `d` is zero. >>> from sympy.abc import x, a, b, c, d >>> from sympy.solvers.ode import dsolve, checkodesol >>> from sympy import pprint, Function >>> f = Function('f') >>> y = f(x) >>> genform = a*y.diff(x) - (b*y**2 + c*y/x + d/x**2) >>> sol = dsolve(genform, y) >>> pprint(sol, wrap_line=False) / / __________________ \\ | __________________ | / 2 || | / 2 | \/ 4*b*d - (a + c) *log(x)|| -|a + c - \/ 4*b*d - (a + c) *tan|C1 + ----------------------------|| \ \ 2*a // f(x) = ------------------------------------------------------------------------ 2*b*x >>> checkodesol(genform, sol, order=1)[0] True References ========== 1. http://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Riccati 2. http://eqworld.ipmnet.ru/en/solutions/ode/ode0106.pdf - http://eqworld.ipmnet.ru/en/solutions/ode/ode0123.pdf """ hint = "Riccati_special_minus2" has_integral = False order = [1] def _wilds(self, f, x, order): a = Wild('a', exclude=[x, f(x), f(x).diff(x), 0]) b = Wild('b', exclude=[x, f(x), f(x).diff(x), 0]) c = Wild('c', exclude=[x, f(x), f(x).diff(x)]) d = Wild('d', exclude=[x, f(x), f(x).diff(x)]) return a, b, c, d def _equation(self, fx, x, order): a, b, c, d = self.wilds() return a*fx.diff(x) + b*fx**2 + c*fx/x + d/x**2 def _get_general_solution(self, *, simplify: bool = True): a, b, c, d = self.wilds_match() fx = self.ode_problem.func x = self.ode_problem.sym (C1,) = self.ode_problem.get_numbered_constants(num=1) mu = sqrt(4*d*b - (a - c)**2) gensol = Eq(fx, (a - c - mu*tan(mu/(2*a)*log(x) + C1))/(2*b*x)) return [gensol] class SecondNonlinearAutonomousConserved(SinglePatternODESolver): r""" Gives solution for the autonomous second order nonlinear differential equation of the form .. math :: f''(x) = g(f(x)) The solution for this differential equation can be computed by multiplying by `f'(x)` and integrating on both sides, converting it into a first order differential equation. Examples ======== >>> from sympy import Function, symbols, dsolve >>> f, g = symbols('f g', cls=Function) >>> x = symbols('x') >>> eq = f(x).diff(x, 2) - g(f(x)) >>> dsolve(eq, simplify=False) [Eq(Integral(1/sqrt(C1 + 2*Integral(g(_u), _u)), (_u, f(x))), C2 + x), Eq(Integral(1/sqrt(C1 + 2*Integral(g(_u), _u)), (_u, f(x))), C2 - x)] >>> from sympy import exp, log >>> eq = f(x).diff(x, 2) - exp(f(x)) + log(f(x)) >>> dsolve(eq, simplify=False) [Eq(Integral(1/sqrt(-2*_u*log(_u) + 2*_u + C1 + 2*exp(_u)), (_u, f(x))), C2 + x), Eq(Integral(1/sqrt(-2*_u*log(_u) + 2*_u + C1 + 2*exp(_u)), (_u, f(x))), C2 - x)] References ========== http://eqworld.ipmnet.ru/en/solutions/ode/ode0301.pdf """ hint = "2nd_nonlinear_autonomous_conserved" has_integral = True order = [2] def _wilds(self, f, x, order): fy = Wild('fy', exclude=[0, f(x).diff(x), f(x).diff(x, 2)]) return (fy,) def _equation(self, fx, x, order): fy = self.wilds()[0] return fx.diff(x, 2) + fy def _verify(self, fx): return self.ode_problem.is_autonomous def _get_general_solution(self, *, simplify: bool = True): g = self.wilds_match()[0] fx = self.ode_problem.func x = self.ode_problem.sym u = Dummy('u') g = g.subs(fx, u) C1, C2 = self.ode_problem.get_numbered_constants(num=2) inside = -2*Integral(g, u) + C1 lhs = Integral(1/sqrt(inside), (u, fx)) return [Eq(lhs, C2 + x), Eq(lhs, C2 - x)] # Avoid circular import: from .ode import dsolve
e24f752e2fa919f9d88d108ec4560ed5781a39c4e484639d46334954d41f0f42
from sympy.core.containers import Tuple from sympy.core.function import (Function, Lambda, nfloat, diff) from sympy.core.mod import Mod from sympy.core.numbers import (E, I, Rational, oo, pi) from sympy.core.relational import (Eq, Gt, Ne) from sympy.core.singleton import S from sympy.core.symbol import (Dummy, Symbol, symbols) from sympy.functions.elementary.complexes import (Abs, arg, im, re, sign) from sympy.functions.elementary.exponential import (LambertW, exp, log) from sympy.functions.elementary.hyperbolic import (HyperbolicFunction, sinh, tanh, cosh, sech, coth) from sympy.functions.elementary.miscellaneous import sqrt, Min, Max from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import ( TrigonometricFunction, acos, acot, acsc, asec, asin, atan, atan2, cos, cot, csc, sec, sin, tan) from sympy.functions.special.error_functions import (erf, erfc, erfcinv, erfinv) from sympy.logic.boolalg import And from sympy.matrices.dense import MutableDenseMatrix as Matrix from sympy.matrices.immutable import ImmutableDenseMatrix from sympy.polys.polytools import Poly from sympy.polys.rootoftools import CRootOf from sympy.sets.contains import Contains from sympy.sets.conditionset import ConditionSet from sympy.sets.fancysets import ImageSet from sympy.sets.sets import (Complement, EmptySet, FiniteSet, Intersection, Interval, Union, imageset, ProductSet) from sympy.simplify import simplify from sympy.tensor.indexed import Indexed from sympy.utilities.iterables import numbered_symbols from sympy.testing.pytest import (XFAIL, raises, skip, slow, SKIP) from sympy.testing.randtest import verify_numerically as tn from sympy.physics.units import cm from sympy.solvers.solveset import ( solveset_real, domain_check, solveset_complex, linear_eq_to_matrix, linsolve, _is_function_class_equation, invert_real, invert_complex, solveset, solve_decomposition, substitution, nonlinsolve, solvify, _is_finite_with_finite_vars, _transolve, _is_exponential, _solve_exponential, _is_logarithmic, _solve_logarithm, _term_factors, _is_modular, NonlinearError) from sympy.abc import (a, b, c, d, e, f, g, h, i, j, k, l, m, n, q, r, t, w, x, y, z) def dumeq(i, j): if type(i) in (list, tuple): return all(dumeq(i, j) for i, j in zip(i, j)) return i == j or i.dummy_eq(j) def test_invert_real(): x = Symbol('x', real=True) def ireal(x, s=S.Reals): return Intersection(s, x) # issue 14223 assert invert_real(x, 0, x, Interval(1, 2)) == (x, S.EmptySet) assert invert_real(exp(x), z, x) == (x, ireal(FiniteSet(log(z)))) y = Symbol('y', positive=True) n = Symbol('n', real=True) assert invert_real(x + 3, y, x) == (x, FiniteSet(y - 3)) assert invert_real(x*3, y, x) == (x, FiniteSet(y / 3)) assert invert_real(exp(x), y, x) == (x, FiniteSet(log(y))) assert invert_real(exp(3*x), y, x) == (x, FiniteSet(log(y) / 3)) assert invert_real(exp(x + 3), y, x) == (x, FiniteSet(log(y) - 3)) assert invert_real(exp(x) + 3, y, x) == (x, ireal(FiniteSet(log(y - 3)))) assert invert_real(exp(x)*3, y, x) == (x, FiniteSet(log(y / 3))) assert invert_real(log(x), y, x) == (x, FiniteSet(exp(y))) assert invert_real(log(3*x), y, x) == (x, FiniteSet(exp(y) / 3)) assert invert_real(log(x + 3), y, x) == (x, FiniteSet(exp(y) - 3)) assert invert_real(Abs(x), y, x) == (x, FiniteSet(y, -y)) assert invert_real(2**x, y, x) == (x, FiniteSet(log(y)/log(2))) assert invert_real(2**exp(x), y, x) == (x, ireal(FiniteSet(log(log(y)/log(2))))) assert invert_real(x**2, y, x) == (x, FiniteSet(sqrt(y), -sqrt(y))) assert invert_real(x**S.Half, y, x) == (x, FiniteSet(y**2)) raises(ValueError, lambda: invert_real(x, x, x)) raises(ValueError, lambda: invert_real(x**pi, y, x)) raises(ValueError, lambda: invert_real(S.One, y, x)) assert invert_real(x**31 + x, y, x) == (x**31 + x, FiniteSet(y)) lhs = x**31 + x base_values = FiniteSet(y - 1, -y - 1) assert invert_real(Abs(x**31 + x + 1), y, x) == (lhs, base_values) assert dumeq(invert_real(sin(x), y, x), (x, imageset(Lambda(n, n*pi + (-1)**n*asin(y)), S.Integers))) assert dumeq(invert_real(sin(exp(x)), y, x), (x, imageset(Lambda(n, log((-1)**n*asin(y) + n*pi)), S.Integers))) assert dumeq(invert_real(csc(x), y, x), (x, imageset(Lambda(n, n*pi + (-1)**n*acsc(y)), S.Integers))) assert dumeq(invert_real(csc(exp(x)), y, x), (x, imageset(Lambda(n, log((-1)**n*acsc(y) + n*pi)), S.Integers))) assert dumeq(invert_real(cos(x), y, x), (x, Union(imageset(Lambda(n, 2*n*pi + acos(y)), S.Integers), \ imageset(Lambda(n, 2*n*pi - acos(y)), S.Integers)))) assert dumeq(invert_real(cos(exp(x)), y, x), (x, Union(imageset(Lambda(n, log(2*n*pi + acos(y))), S.Integers), \ imageset(Lambda(n, log(2*n*pi - acos(y))), S.Integers)))) assert dumeq(invert_real(sec(x), y, x), (x, Union(imageset(Lambda(n, 2*n*pi + asec(y)), S.Integers), \ imageset(Lambda(n, 2*n*pi - asec(y)), S.Integers)))) assert dumeq(invert_real(sec(exp(x)), y, x), (x, Union(imageset(Lambda(n, log(2*n*pi + asec(y))), S.Integers), \ imageset(Lambda(n, log(2*n*pi - asec(y))), S.Integers)))) assert dumeq(invert_real(tan(x), y, x), (x, imageset(Lambda(n, n*pi + atan(y)), S.Integers))) assert dumeq(invert_real(tan(exp(x)), y, x), (x, imageset(Lambda(n, log(n*pi + atan(y))), S.Integers))) assert dumeq(invert_real(cot(x), y, x), (x, imageset(Lambda(n, n*pi + acot(y)), S.Integers))) assert dumeq(invert_real(cot(exp(x)), y, x), (x, imageset(Lambda(n, log(n*pi + acot(y))), S.Integers))) assert dumeq(invert_real(tan(tan(x)), y, x), (tan(x), imageset(Lambda(n, n*pi + atan(y)), S.Integers))) x = Symbol('x', positive=True) assert invert_real(x**pi, y, x) == (x, FiniteSet(y**(1/pi))) def test_invert_complex(): assert invert_complex(x + 3, y, x) == (x, FiniteSet(y - 3)) assert invert_complex(x*3, y, x) == (x, FiniteSet(y / 3)) assert dumeq(invert_complex(exp(x), y, x), (x, imageset(Lambda(n, I*(2*pi*n + arg(y)) + log(Abs(y))), S.Integers))) assert invert_complex(log(x), y, x) == (x, FiniteSet(exp(y))) raises(ValueError, lambda: invert_real(1, y, x)) raises(ValueError, lambda: invert_complex(x, x, x)) raises(ValueError, lambda: invert_complex(x, x, 1)) # https://github.com/skirpichev/omg/issues/16 assert invert_complex(sinh(x), 0, x) != (x, FiniteSet(0)) def test_domain_check(): assert domain_check(1/(1 + (1/(x+1))**2), x, -1) is False assert domain_check(x**2, x, 0) is True assert domain_check(x, x, oo) is False assert domain_check(0, x, oo) is False def test_issue_11536(): assert solveset(0**x - 100, x, S.Reals) == S.EmptySet assert solveset(0**x - 1, x, S.Reals) == FiniteSet(0) def test_issue_17479(): from sympy.solvers.solveset import nonlinsolve f = (x**2 + y**2)**2 + (x**2 + z**2)**2 - 2*(2*x**2 + y**2 + z**2) fx = f.diff(x) fy = f.diff(y) fz = f.diff(z) sol = nonlinsolve([fx, fy, fz], [x, y, z]) assert len(sol) >= 4 and len(sol) <= 20 # nonlinsolve has been giving a varying number of solutions # (originally 18, then 20, now 19) due to various internal changes. # Unfortunately not all the solutions are actually valid and some are # redundant. Since the original issue was that an exception was raised, # this first test only checks that nonlinsolve returns a "plausible" # solution set. The next test checks the result for correctness. @XFAIL def test_issue_18449(): x, y, z = symbols("x, y, z") f = (x**2 + y**2)**2 + (x**2 + z**2)**2 - 2*(2*x**2 + y**2 + z**2) fx = diff(f, x) fy = diff(f, y) fz = diff(f, z) sol = nonlinsolve([fx, fy, fz], [x, y, z]) for (xs, ys, zs) in sol: d = {x: xs, y: ys, z: zs} assert tuple(_.subs(d).simplify() for _ in (fx, fy, fz)) == (0, 0, 0) # After simplification and removal of duplicate elements, there should # only be 4 parametric solutions left: # simplifiedsolutions = FiniteSet((sqrt(1 - z**2), z, z), # (-sqrt(1 - z**2), z, z), # (sqrt(1 - z**2), -z, z), # (-sqrt(1 - z**2), -z, z)) # TODO: Is the above solution set definitely complete? def test_is_function_class_equation(): from sympy.abc import x, a assert _is_function_class_equation(TrigonometricFunction, tan(x), x) is True assert _is_function_class_equation(TrigonometricFunction, tan(x) - 1, x) is True assert _is_function_class_equation(TrigonometricFunction, tan(x) + sin(x), x) is True assert _is_function_class_equation(TrigonometricFunction, tan(x) + sin(x) - a, x) is True assert _is_function_class_equation(TrigonometricFunction, sin(x)*tan(x) + sin(x), x) is True assert _is_function_class_equation(TrigonometricFunction, sin(x)*tan(x + a) + sin(x), x) is True assert _is_function_class_equation(TrigonometricFunction, sin(x)*tan(x*a) + sin(x), x) is True assert _is_function_class_equation(TrigonometricFunction, a*tan(x) - 1, x) is True assert _is_function_class_equation(TrigonometricFunction, tan(x)**2 + sin(x) - 1, x) is True assert _is_function_class_equation(TrigonometricFunction, tan(x) + x, x) is False assert _is_function_class_equation(TrigonometricFunction, tan(x**2), x) is False assert _is_function_class_equation(TrigonometricFunction, tan(x**2) + sin(x), x) is False assert _is_function_class_equation(TrigonometricFunction, tan(x)**sin(x), x) is False assert _is_function_class_equation(TrigonometricFunction, tan(sin(x)) + sin(x), x) is False assert _is_function_class_equation(HyperbolicFunction, tanh(x), x) is True assert _is_function_class_equation(HyperbolicFunction, tanh(x) - 1, x) is True assert _is_function_class_equation(HyperbolicFunction, tanh(x) + sinh(x), x) is True assert _is_function_class_equation(HyperbolicFunction, tanh(x) + sinh(x) - a, x) is True assert _is_function_class_equation(HyperbolicFunction, sinh(x)*tanh(x) + sinh(x), x) is True assert _is_function_class_equation(HyperbolicFunction, sinh(x)*tanh(x + a) + sinh(x), x) is True assert _is_function_class_equation(HyperbolicFunction, sinh(x)*tanh(x*a) + sinh(x), x) is True assert _is_function_class_equation(HyperbolicFunction, a*tanh(x) - 1, x) is True assert _is_function_class_equation(HyperbolicFunction, tanh(x)**2 + sinh(x) - 1, x) is True assert _is_function_class_equation(HyperbolicFunction, tanh(x) + x, x) is False assert _is_function_class_equation(HyperbolicFunction, tanh(x**2), x) is False assert _is_function_class_equation(HyperbolicFunction, tanh(x**2) + sinh(x), x) is False assert _is_function_class_equation(HyperbolicFunction, tanh(x)**sinh(x), x) is False assert _is_function_class_equation(HyperbolicFunction, tanh(sinh(x)) + sinh(x), x) is False def test_garbage_input(): raises(ValueError, lambda: solveset_real([y], y)) x = Symbol('x', real=True) assert solveset_real(x, 1) == S.EmptySet assert solveset_real(x - 1, 1) == FiniteSet(x) assert solveset_real(x, pi) == S.EmptySet assert solveset_real(x, x**2) == S.EmptySet raises(ValueError, lambda: solveset_complex([x], x)) assert solveset_complex(x, pi) == S.EmptySet raises(ValueError, lambda: solveset((x, y), x)) raises(ValueError, lambda: solveset(x + 1, S.Reals)) raises(ValueError, lambda: solveset(x + 1, x, 2)) def test_solve_mul(): assert solveset_real((a*x + b)*(exp(x) - 3), x) == \ Union({log(3)}, Intersection({-b/a}, S.Reals)) anz = Symbol('anz', nonzero=True) bb = Symbol('bb', real=True) assert solveset_real((anz*x + bb)*(exp(x) - 3), x) == \ FiniteSet(-bb/anz, log(3)) assert solveset_real((2*x + 8)*(8 + exp(x)), x) == FiniteSet(S(-4)) assert solveset_real(x/log(x), x) == EmptySet() def test_solve_invert(): assert solveset_real(exp(x) - 3, x) == FiniteSet(log(3)) assert solveset_real(log(x) - 3, x) == FiniteSet(exp(3)) assert solveset_real(3**(x + 2), x) == FiniteSet() assert solveset_real(3**(2 - x), x) == FiniteSet() assert solveset_real(y - b*exp(a/x), x) == Intersection( S.Reals, FiniteSet(a/log(y/b))) # issue 4504 assert solveset_real(2**x - 10, x) == FiniteSet(1 + log(5)/log(2)) def test_errorinverses(): assert solveset_real(erf(x) - S.Half, x) == \ FiniteSet(erfinv(S.Half)) assert solveset_real(erfinv(x) - 2, x) == \ FiniteSet(erf(2)) assert solveset_real(erfc(x) - S.One, x) == \ FiniteSet(erfcinv(S.One)) assert solveset_real(erfcinv(x) - 2, x) == FiniteSet(erfc(2)) def test_solve_polynomial(): x = Symbol('x', real=True) y = Symbol('y', real=True) assert solveset_real(3*x - 2, x) == FiniteSet(Rational(2, 3)) assert solveset_real(x**2 - 1, x) == FiniteSet(-S.One, S.One) assert solveset_real(x - y**3, x) == FiniteSet(y ** 3) a11, a12, a21, a22, b1, b2 = symbols('a11, a12, a21, a22, b1, b2') assert solveset_real(x**3 - 15*x - 4, x) == FiniteSet( -2 + 3 ** S.Half, S(4), -2 - 3 ** S.Half) assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1) assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4) assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16) assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27) assert len(solveset_real(x**5 + x**3 + 1, x)) == 1 assert len(solveset_real(-2*x**3 + 4*x**2 - 2*x + 6, x)) > 0 assert solveset_real(x**6 + x**4 + I, x) is S.EmptySet def test_return_root_of(): f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20 s = list(solveset_complex(f, x)) for root in s: assert root.func == CRootOf # if one uses solve to get the roots of a polynomial that has a CRootOf # solution, make sure that the use of nfloat during the solve process # doesn't fail. Note: if you want numerical solutions to a polynomial # it is *much* faster to use nroots to get them than to solve the # equation only to get CRootOf solutions which are then numerically # evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather # than [i.n() for i in solve(eq)] to get the numerical roots of eq. assert nfloat(list(solveset_complex(x**5 + 3*x**3 + 7, x))[0], exponent=False) == CRootOf(x**5 + 3*x**3 + 7, 0).n() sol = list(solveset_complex(x**6 - 2*x + 2, x)) assert all(isinstance(i, CRootOf) for i in sol) and len(sol) == 6 f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20 s = list(solveset_complex(f, x)) for root in s: assert root.func == CRootOf s = x**5 + 4*x**3 + 3*x**2 + Rational(7, 4) assert solveset_complex(s, x) == \ FiniteSet(*Poly(s*4, domain='ZZ').all_roots()) # Refer issue #7876 eq = x*(x - 1)**2*(x + 1)*(x**6 - x + 1) assert solveset_complex(eq, x) == \ FiniteSet(-1, 0, 1, CRootOf(x**6 - x + 1, 0), CRootOf(x**6 - x + 1, 1), CRootOf(x**6 - x + 1, 2), CRootOf(x**6 - x + 1, 3), CRootOf(x**6 - x + 1, 4), CRootOf(x**6 - x + 1, 5)) def test__has_rational_power(): from sympy.solvers.solveset import _has_rational_power assert _has_rational_power(sqrt(2), x)[0] is False assert _has_rational_power(x*sqrt(2), x)[0] is False assert _has_rational_power(x**2*sqrt(x), x) == (True, 2) assert _has_rational_power(sqrt(2)*x**Rational(1, 3), x) == (True, 3) assert _has_rational_power(sqrt(x)*x**Rational(1, 3), x) == (True, 6) def test_solveset_sqrt_1(): assert solveset_real(sqrt(5*x + 6) - 2 - x, x) == \ FiniteSet(-S.One, S(2)) assert solveset_real(sqrt(x - 1) - x + 7, x) == FiniteSet(10) assert solveset_real(sqrt(x - 2) - 5, x) == FiniteSet(27) assert solveset_real(sqrt(x) - 2 - 5, x) == FiniteSet(49) assert solveset_real(sqrt(x**3), x) == FiniteSet(0) assert solveset_real(sqrt(x - 1), x) == FiniteSet(1) def test_solveset_sqrt_2(): x = Symbol('x', real=True) y = Symbol('y', real=True) # http://tutorial.math.lamar.edu/Classes/Alg/SolveRadicalEqns.aspx#Solve_Rad_Ex2_a assert solveset_real(sqrt(2*x - 1) - sqrt(x - 4) - 2, x) == \ FiniteSet(S(5), S(13)) assert solveset_real(sqrt(x + 7) + 2 - sqrt(3 - x), x) == \ FiniteSet(-6) # http://www.purplemath.com/modules/solverad.htm assert solveset_real(sqrt(17*x - sqrt(x**2 - 5)) - 7, x) == \ FiniteSet(3) eq = x + 1 - (x**4 + 4*x**3 - x)**Rational(1, 4) assert solveset_real(eq, x) == FiniteSet(Rational(-1, 2), Rational(-1, 3)) eq = sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4) assert solveset_real(eq, x) == FiniteSet(0) eq = sqrt(x + 4) + sqrt(2*x - 1) - 3*sqrt(x - 1) assert solveset_real(eq, x) == FiniteSet(5) eq = sqrt(x)*sqrt(x - 7) - 12 assert solveset_real(eq, x) == FiniteSet(16) eq = sqrt(x - 3) + sqrt(x) - 3 assert solveset_real(eq, x) == FiniteSet(4) eq = sqrt(2*x**2 - 7) - (3 - x) assert solveset_real(eq, x) == FiniteSet(-S(8), S(2)) # others eq = sqrt(9*x**2 + 4) - (3*x + 2) assert solveset_real(eq, x) == FiniteSet(0) assert solveset_real(sqrt(x - 3) - sqrt(x) - 3, x) == FiniteSet() eq = (2*x - 5)**Rational(1, 3) - 3 assert solveset_real(eq, x) == FiniteSet(16) assert solveset_real(sqrt(x) + sqrt(sqrt(x)) - 4, x) == \ FiniteSet((Rational(-1, 2) + sqrt(17)/2)**4) eq = sqrt(x) - sqrt(x - 1) + sqrt(sqrt(x)) assert solveset_real(eq, x) == FiniteSet() eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5) ans = solveset_real(eq, x) ra = S('''-1484/375 - 4*(-1/2 + sqrt(3)*I/2)*(-12459439/52734375 + 114*sqrt(12657)/78125)**(1/3) - 172564/(140625*(-1/2 + sqrt(3)*I/2)*(-12459439/52734375 + 114*sqrt(12657)/78125)**(1/3))''') rb = Rational(4, 5) assert all(abs(eq.subs(x, i).n()) < 1e-10 for i in (ra, rb)) and \ len(ans) == 2 and \ {i.n(chop=True) for i in ans} == \ {i.n(chop=True) for i in (ra, rb)} assert solveset_real(sqrt(x) + x**Rational(1, 3) + x**Rational(1, 4), x) == FiniteSet(0) assert solveset_real(x/sqrt(x**2 + 1), x) == FiniteSet(0) eq = (x - y**3)/((y**2)*sqrt(1 - y**2)) assert solveset_real(eq, x) == FiniteSet(y**3) # issue 4497 assert solveset_real(1/(5 + x)**Rational(1, 5) - 9, x) == \ FiniteSet(Rational(-295244, 59049)) @XFAIL def test_solve_sqrt_fail(): # this only works if we check real_root(eq.subs(x, Rational(1, 3))) # but checksol doesn't work like that eq = (x**3 - 3*x**2)**Rational(1, 3) + 1 - x assert solveset_real(eq, x) == FiniteSet(Rational(1, 3)) @slow def test_solve_sqrt_3(): R = Symbol('R') eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1) sol = solveset_complex(eq, R) fset = [Rational(5, 3) + 4*sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3, -sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3 + 40*re(1/((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 + sqrt(30)*sin(atan(3*sqrt(111)/251)/3)/3 + Rational(5, 3) + I*(-sqrt(30)*cos(atan(3*sqrt(111)/251)/3)/3 - sqrt(10)*sin(atan(3*sqrt(111)/251)/3)/3 + 40*im(1/((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9)] cset = [40*re(1/((Rational(-1, 2) + sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 - sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3 - sqrt(30)*sin(atan(3*sqrt(111)/251)/3)/3 + Rational(5, 3) + I*(40*im(1/((Rational(-1, 2) + sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 - sqrt(10)*sin(atan(3*sqrt(111)/251)/3)/3 + sqrt(30)*cos(atan(3*sqrt(111)/251)/3)/3)] assert sol._args[0] == FiniteSet(*fset) assert sol._args[1] == ConditionSet( R, Eq(sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1), 0), FiniteSet(*cset)) # the number of real roots will depend on the value of m: for m=1 there are 4 # and for m=-1 there are none. eq = -sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) + sqrt((-m**2/2 - sqrt( 4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m - sqrt( 4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2) unsolved_object = ConditionSet(q, Eq(sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) - sqrt((-m**2/2 - sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m - sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2), 0), S.Reals) assert solveset_real(eq, q) == unsolved_object def test_solve_polynomial_symbolic_param(): assert solveset_complex((x**2 - 1)**2 - a, x) == \ FiniteSet(sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)), sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a))) # issue 4507 assert solveset_complex(y - b/(1 + a*x), x) == \ FiniteSet((b/y - 1)/a) - FiniteSet(-1/a) # issue 4508 assert solveset_complex(y - b*x/(a + x), x) == \ FiniteSet(-a*y/(y - b)) - FiniteSet(-a) def test_solve_rational(): assert solveset_real(1/x + 1, x) == FiniteSet(-S.One) assert solveset_real(1/exp(x) - 1, x) == FiniteSet(0) assert solveset_real(x*(1 - 5/x), x) == FiniteSet(5) assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2) assert solveset_real((x**2/(7 - x)).diff(x), x) == \ FiniteSet(S.Zero, S(14)) def test_solveset_real_gen_is_pow(): assert solveset_real(sqrt(1) + 1, x) == EmptySet() def test_no_sol(): assert solveset(1 - oo*x) == EmptySet() assert solveset(oo*x, x) == EmptySet() assert solveset(oo*x - oo, x) == EmptySet() assert solveset_real(4, x) == EmptySet() assert solveset_real(exp(x), x) == EmptySet() assert solveset_real(x**2 + 1, x) == EmptySet() assert solveset_real(-3*a/sqrt(x), x) == EmptySet() assert solveset_real(1/x, x) == EmptySet() assert solveset_real(-(1 + x)/(2 + x)**2 + 1/(2 + x), x) == \ EmptySet() def test_sol_zero_real(): assert solveset_real(0, x) == S.Reals assert solveset(0, x, Interval(1, 2)) == Interval(1, 2) assert solveset_real(-x**2 - 2*x + (x + 1)**2 - 1, x) == S.Reals def test_no_sol_rational_extragenous(): assert solveset_real((x/(x + 1) + 3)**(-2), x) == EmptySet() assert solveset_real((x - 1)/(1 + 1/(x - 1)), x) == EmptySet() def test_solve_polynomial_cv_1a(): """ Test for solving on equations that can be converted to a polynomial equation using the change of variable y -> x**Rational(p, q) """ assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1) assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4) assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16) assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27) assert solveset_real(x*(x**(S.One / 3) - 3), x) == \ FiniteSet(S.Zero, S(27)) def test_solveset_real_rational(): """Test solveset_real for rational functions""" x = Symbol('x', real=True) y = Symbol('y', real=True) assert solveset_real((x - y**3) / ((y**2)*sqrt(1 - y**2)), x) \ == FiniteSet(y**3) # issue 4486 assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2) def test_solveset_real_log(): assert solveset_real(log((x-1)*(x+1)), x) == \ FiniteSet(sqrt(2), -sqrt(2)) def test_poly_gens(): assert solveset_real(4**(2*(x**2) + 2*x) - 8, x) == \ FiniteSet(Rational(-3, 2), S.Half) def test_solve_abs(): n = Dummy('n') raises(ValueError, lambda: solveset(Abs(x) - 1, x)) assert solveset(Abs(x) - n, x, S.Reals).dummy_eq( ConditionSet(x, Contains(n, Interval(0, oo)), {-n, n})) assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2) assert solveset_real(Abs(x) + 2, x) is S.EmptySet assert solveset_real(Abs(x + 3) - 2*Abs(x - 3), x) == \ FiniteSet(1, 9) assert solveset_real(2*Abs(x) - Abs(x - 1), x) == \ FiniteSet(-1, Rational(1, 3)) sol = ConditionSet( x, And( Contains(b, Interval(0, oo)), Contains(a + b, Interval(0, oo)), Contains(a - b, Interval(0, oo))), FiniteSet(-a - b - 3, -a + b - 3, a - b - 3, a + b - 3)) eq = Abs(Abs(x + 3) - a) - b assert invert_real(eq, 0, x)[1] == sol reps = {a: 3, b: 1} eqab = eq.subs(reps) for si in sol.subs(reps): assert not eqab.subs(x, si) assert dumeq(solveset(Eq(sin(Abs(x)), 1), x, domain=S.Reals), Union( Intersection(Interval(0, oo), ImageSet(Lambda(n, (-1)**n*pi/2 + n*pi), S.Integers)), Intersection(Interval(-oo, 0), ImageSet(Lambda(n, n*pi - (-1)**(-n)*pi/2), S.Integers)))) def test_issue_9824(): assert dumeq(solveset(sin(x)**2 - 2*sin(x) + 1, x), ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers)) assert dumeq(solveset(cos(x)**2 - 2*cos(x) + 1, x), ImageSet(Lambda(n, 2*n*pi), S.Integers)) def test_issue_9565(): assert solveset_real(Abs((x - 1)/(x - 5)) <= Rational(1, 3), x) == Interval(-1, 2) def test_issue_10069(): eq = abs(1/(x - 1)) - 1 > 0 assert solveset_real(eq, x) == Union( Interval.open(0, 1), Interval.open(1, 2)) def test_real_imag_splitting(): a, b = symbols('a b', real=True) assert solveset_real(sqrt(a**2 - b**2) - 3, a) == \ FiniteSet(-sqrt(b**2 + 9), sqrt(b**2 + 9)) assert solveset_real(sqrt(a**2 + b**2) - 3, a) != \ S.EmptySet def test_units(): assert solveset_real(1/x - 1/(2*cm), x) == FiniteSet(2*cm) def test_solve_only_exp_1(): y = Symbol('y', positive=True) assert solveset_real(exp(x) - y, x) == FiniteSet(log(y)) assert solveset_real(exp(x) + exp(-x) - 4, x) == \ FiniteSet(log(-sqrt(3) + 2), log(sqrt(3) + 2)) assert solveset_real(exp(x) + exp(-x) - y, x) != S.EmptySet def test_atan2(): # The .inverse() method on atan2 works only if x.is_real is True and the # second argument is a real constant assert solveset_real(atan2(x, 2) - pi/3, x) == FiniteSet(2*sqrt(3)) def test_piecewise_solveset(): eq = Piecewise((x - 2, Gt(x, 2)), (2 - x, True)) - 3 assert set(solveset_real(eq, x)) == set(FiniteSet(-1, 5)) absxm3 = Piecewise( (x - 3, 0 <= x - 3), (3 - x, 0 > x - 3)) y = Symbol('y', positive=True) assert solveset_real(absxm3 - y, x) == FiniteSet(-y + 3, y + 3) f = Piecewise(((x - 2)**2, x >= 0), (0, True)) assert solveset(f, x, domain=S.Reals) == Union(FiniteSet(2), Interval(-oo, 0, True, True)) assert solveset( Piecewise((x + 1, x > 0), (I, True)) - I, x, S.Reals ) == Interval(-oo, 0) assert solveset(Piecewise((x - 1, Ne(x, I)), (x, True)), x) == FiniteSet(1) # issue 19718 g = Piecewise((1, x > 10), (0, True)) assert solveset(g > 0, x, S.Reals) == Interval.open(10, oo) from sympy.logic.boolalg import BooleanTrue f = BooleanTrue() assert solveset(f, x, domain=Interval(-3, 10)) == Interval(-3, 10) # issue 20552 f = Piecewise((0, Eq(x, 0)), (x**2/Abs(x), True)) g = Piecewise((0, Eq(x, pi)), ((x - pi)/sin(x), True)) assert solveset(f, x, domain=S.Reals) == FiniteSet(0) assert solveset(g) == FiniteSet(pi) def test_solveset_complex_polynomial(): assert solveset_complex(a*x**2 + b*x + c, x) == \ FiniteSet(-b/(2*a) - sqrt(-4*a*c + b**2)/(2*a), -b/(2*a) + sqrt(-4*a*c + b**2)/(2*a)) assert solveset_complex(x - y**3, y) == FiniteSet( (-x**Rational(1, 3))/2 + I*sqrt(3)*x**Rational(1, 3)/2, x**Rational(1, 3), (-x**Rational(1, 3))/2 - I*sqrt(3)*x**Rational(1, 3)/2) assert solveset_complex(x + 1/x - 1, x) == \ FiniteSet(S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2) def test_sol_zero_complex(): assert solveset_complex(0, x) == S.Complexes def test_solveset_complex_rational(): assert solveset_complex((x - 1)*(x - I)/(x - 3), x) == \ FiniteSet(1, I) assert solveset_complex((x - y**3)/((y**2)*sqrt(1 - y**2)), x) == \ FiniteSet(y**3) assert solveset_complex(-x**2 - I, x) == \ FiniteSet(-sqrt(2)/2 + sqrt(2)*I/2, sqrt(2)/2 - sqrt(2)*I/2) def test_solve_quintics(): skip("This test is too slow") f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979 s = solveset_complex(f, x) for root in s: res = f.subs(x, root.n()).n() assert tn(res, 0) f = x**5 + 15*x + 12 s = solveset_complex(f, x) for root in s: res = f.subs(x, root.n()).n() assert tn(res, 0) def test_solveset_complex_exp(): from sympy.abc import x, n assert dumeq(solveset_complex(exp(x) - 1, x), imageset(Lambda(n, I*2*n*pi), S.Integers)) assert dumeq(solveset_complex(exp(x) - I, x), imageset(Lambda(n, I*(2*n*pi + pi/2)), S.Integers)) assert solveset_complex(1/exp(x), x) == S.EmptySet assert dumeq(solveset_complex(sinh(x).rewrite(exp), x), imageset(Lambda(n, n*pi*I), S.Integers)) def test_solveset_real_exp(): from sympy.abc import x, y assert solveset(Eq((-2)**x, 4), x, S.Reals) == FiniteSet(2) assert solveset(Eq(-2**x, 4), x, S.Reals) == S.EmptySet assert solveset(Eq((-3)**x, 27), x, S.Reals) == S.EmptySet assert solveset(Eq((-5)**(x+1), 625), x, S.Reals) == FiniteSet(3) assert solveset(Eq(2**(x-3), -16), x, S.Reals) == S.EmptySet assert solveset(Eq((-3)**(x - 3), -3**39), x, S.Reals) == FiniteSet(42) assert solveset(Eq(2**x, y), x, S.Reals) == Intersection(S.Reals, FiniteSet(log(y)/log(2))) assert invert_real((-2)**(2*x) - 16, 0, x) == (x, FiniteSet(2)) def test_solve_complex_log(): assert solveset_complex(log(x), x) == FiniteSet(1) assert solveset_complex(1 - log(a + 4*x**2), x) == \ FiniteSet(-sqrt(-a + E)/2, sqrt(-a + E)/2) def test_solve_complex_sqrt(): assert solveset_complex(sqrt(5*x + 6) - 2 - x, x) == \ FiniteSet(-S.One, S(2)) assert solveset_complex(sqrt(5*x + 6) - (2 + 2*I) - x, x) == \ FiniteSet(-S(2), 3 - 4*I) assert solveset_complex(4*x*(1 - a * sqrt(x)), x) == \ FiniteSet(S.Zero, 1 / a ** 2) def test_solveset_complex_tan(): s = solveset_complex(tan(x).rewrite(exp), x) assert dumeq(s, imageset(Lambda(n, pi*n), S.Integers) - \ imageset(Lambda(n, pi*n + pi/2), S.Integers)) def test_solve_trig(): from sympy.abc import n assert dumeq(solveset_real(sin(x), x), Union(imageset(Lambda(n, 2*pi*n), S.Integers), imageset(Lambda(n, 2*pi*n + pi), S.Integers))) assert dumeq(solveset_real(sin(x) - 1, x), imageset(Lambda(n, 2*pi*n + pi/2), S.Integers)) assert dumeq(solveset_real(cos(x), x), Union(imageset(Lambda(n, 2*pi*n + pi/2), S.Integers), imageset(Lambda(n, 2*pi*n + pi*Rational(3, 2)), S.Integers))) assert dumeq(solveset_real(sin(x) + cos(x), x), Union(imageset(Lambda(n, 2*n*pi + pi*Rational(3, 4)), S.Integers), imageset(Lambda(n, 2*n*pi + pi*Rational(7, 4)), S.Integers))) assert solveset_real(sin(x)**2 + cos(x)**2, x) == S.EmptySet assert dumeq(solveset_complex(cos(x) - S.Half, x), Union(imageset(Lambda(n, 2*n*pi + pi*Rational(5, 3)), S.Integers), imageset(Lambda(n, 2*n*pi + pi/3), S.Integers))) assert dumeq(solveset(sin(y + a) - sin(y), a, domain=S.Reals), Union(ImageSet(Lambda(n, 2*n*pi), S.Integers), Intersection(ImageSet(Lambda(n, -I*(I*( 2*n*pi + arg(-exp(-2*I*y))) + 2*im(y))), S.Integers), S.Reals))) assert dumeq(solveset_real(sin(2*x)*cos(x) + cos(2*x)*sin(x)-1, x), ImageSet(Lambda(n, n*pi*Rational(2, 3) + pi/6), S.Integers)) assert dumeq(solveset_real(2*tan(x)*sin(x) + 1, x), Union( ImageSet(Lambda(n, 2*n*pi + atan(sqrt(2)*sqrt(-1 + sqrt(17))/ (1 - sqrt(17))) + pi), S.Integers), ImageSet(Lambda(n, 2*n*pi - atan(sqrt(2)*sqrt(-1 + sqrt(17))/ (1 - sqrt(17))) + pi), S.Integers))) assert dumeq(solveset_real(cos(2*x)*cos(4*x) - 1, x), ImageSet(Lambda(n, n*pi), S.Integers)) assert dumeq(solveset(sin(x/10) + Rational(3, 4)), Union( ImageSet(Lambda(n, 20*n*pi + 10*atan(3*sqrt(7)/7) + 10*pi), S.Integers), ImageSet(Lambda(n, 20*n*pi - 10*atan(3*sqrt(7)/7) + 20*pi), S.Integers))) assert dumeq(solveset(cos(x/15) + cos(x/5)), Union( ImageSet(Lambda(n, 30*n*pi + 15*pi/2), S.Integers), ImageSet(Lambda(n, 30*n*pi + 45*pi/2), S.Integers), ImageSet(Lambda(n, 30*n*pi + 75*pi/4), S.Integers), ImageSet(Lambda(n, 30*n*pi + 45*pi/4), S.Integers), ImageSet(Lambda(n, 30*n*pi + 105*pi/4), S.Integers), ImageSet(Lambda(n, 30*n*pi + 15*pi/4), S.Integers))) assert dumeq(solveset(sec(sqrt(2)*x/3) + 5), Union( ImageSet(Lambda(n, 3*sqrt(2)*(2*n*pi - pi + atan(2*sqrt(6)))/2), S.Integers), ImageSet(Lambda(n, 3*sqrt(2)*(2*n*pi - atan(2*sqrt(6)) + pi)/2), S.Integers))) assert dumeq(simplify(solveset(tan(pi*x) - cot(pi/2*x))), Union( ImageSet(Lambda(n, 4*n + 1), S.Integers), ImageSet(Lambda(n, 4*n + 3), S.Integers), ImageSet(Lambda(n, 4*n + Rational(7, 3)), S.Integers), ImageSet(Lambda(n, 4*n + Rational(5, 3)), S.Integers), ImageSet(Lambda(n, 4*n + Rational(11, 3)), S.Integers), ImageSet(Lambda(n, 4*n + Rational(1, 3)), S.Integers))) assert dumeq(solveset(cos(9*x)), Union( ImageSet(Lambda(n, 2*n*pi/9 + pi/18), S.Integers), ImageSet(Lambda(n, 2*n*pi/9 + pi/6), S.Integers))) assert dumeq(solveset(sin(8*x) + cot(12*x), x, S.Reals), Union( ImageSet(Lambda(n, n*pi/2 + pi/8), S.Integers), ImageSet(Lambda(n, n*pi/2 + 3*pi/8), S.Integers), ImageSet(Lambda(n, n*pi/2 + 5*pi/16), S.Integers), ImageSet(Lambda(n, n*pi/2 + 3*pi/16), S.Integers), ImageSet(Lambda(n, n*pi/2 + 7*pi/16), S.Integers), ImageSet(Lambda(n, n*pi/2 + pi/16), S.Integers))) # This is the only remaining solveset test that actually ends up being solved # by _solve_trig2(). All others are handled by the improved _solve_trig1. assert dumeq(solveset_real(2*cos(x)*cos(2*x) - 1, x), Union(ImageSet(Lambda(n, 2*n*pi + 2*atan(sqrt(-2*2**Rational(1, 3)*(67 + 9*sqrt(57))**Rational(2, 3) + 8*2**Rational(2, 3) + 11*(67 + 9*sqrt(57))**Rational(1, 3))/(3*(67 + 9*sqrt(57))**Rational(1, 6)))), S.Integers), ImageSet(Lambda(n, 2*n*pi - 2*atan(sqrt(-2*2**Rational(1, 3)*(67 + 9*sqrt(57))**Rational(2, 3) + 8*2**Rational(2, 3) + 11*(67 + 9*sqrt(57))**Rational(1, 3))/(3*(67 + 9*sqrt(57))**Rational(1, 6))) + 2*pi), S.Integers))) # issue #16870 assert dumeq(simplify(solveset(sin(x/180*pi) - S.Half, x, S.Reals)), Union( ImageSet(Lambda(n, 360*n + 150), S.Integers), ImageSet(Lambda(n, 360*n + 30), S.Integers))) def test_solve_hyperbolic(): # actual solver: _solve_trig1 n = Dummy('n') assert solveset(sinh(x) + cosh(x), x) == S.EmptySet assert solveset(sinh(x) + cos(x), x) == ConditionSet(x, Eq(cos(x) + sinh(x), 0), S.Complexes) assert solveset_real(sinh(x) + sech(x), x) == FiniteSet( log(sqrt(sqrt(5) - 2))) assert solveset_real(3*cosh(2*x) - 5, x) == FiniteSet( -log(3)/2, log(3)/2) assert solveset_real(sinh(x - 3) - 2, x) == FiniteSet( log((2 + sqrt(5))*exp(3))) assert solveset_real(cosh(2*x) + 2*sinh(x) - 5, x) == FiniteSet( log(-2 + sqrt(5)), log(1 + sqrt(2))) assert solveset_real((coth(x) + sinh(2*x))/cosh(x) - 3, x) == FiniteSet( log(S.Half + sqrt(5)/2), log(1 + sqrt(2))) assert solveset_real(cosh(x)*sinh(x) - 2, x) == FiniteSet( log(4 + sqrt(17))/2) assert solveset_real(sinh(x) + tanh(x) - 1, x) == FiniteSet( log(sqrt(2)/2 + sqrt(-S(1)/2 + sqrt(2)))) assert dumeq(solveset_complex(sinh(x) - I/2, x), Union( ImageSet(Lambda(n, I*(2*n*pi + 5*pi/6)), S.Integers), ImageSet(Lambda(n, I*(2*n*pi + pi/6)), S.Integers))) assert dumeq(solveset_complex(sinh(x) + sech(x), x), Union( ImageSet(Lambda(n, 2*n*I*pi + log(sqrt(-2 + sqrt(5)))), S.Integers), ImageSet(Lambda(n, I*(2*n*pi + pi/2) + log(sqrt(2 + sqrt(5)))), S.Integers), ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sqrt(-2 + sqrt(5)))), S.Integers), ImageSet(Lambda(n, I*(2*n*pi - pi/2) + log(sqrt(2 + sqrt(5)))), S.Integers))) assert dumeq(solveset(sinh(x/10) + Rational(3, 4)), Union( ImageSet(Lambda(n, 10*I*(2*n*pi + pi) + 10*log(2)), S.Integers), ImageSet(Lambda(n, 20*n*I*pi - 10*log(2)), S.Integers))) assert dumeq(solveset(cosh(x/15) + cosh(x/5)), Union( ImageSet(Lambda(n, 15*I*(2*n*pi + pi/2)), S.Integers), ImageSet(Lambda(n, 15*I*(2*n*pi - pi/2)), S.Integers), ImageSet(Lambda(n, 15*I*(2*n*pi - 3*pi/4)), S.Integers), ImageSet(Lambda(n, 15*I*(2*n*pi + 3*pi/4)), S.Integers), ImageSet(Lambda(n, 15*I*(2*n*pi - pi/4)), S.Integers), ImageSet(Lambda(n, 15*I*(2*n*pi + pi/4)), S.Integers))) assert dumeq(solveset(sech(sqrt(2)*x/3) + 5), Union( ImageSet(Lambda(n, 3*sqrt(2)*I*(2*n*pi - pi + atan(2*sqrt(6)))/2), S.Integers), ImageSet(Lambda(n, 3*sqrt(2)*I*(2*n*pi - atan(2*sqrt(6)) + pi)/2), S.Integers))) assert dumeq(solveset(tanh(pi*x) - coth(pi/2*x)), Union( ImageSet(Lambda(n, 2*I*(2*n*pi + pi/2)/pi), S.Integers), ImageSet(Lambda(n, 2*I*(2*n*pi - pi/2)/pi), S.Integers))) assert dumeq(solveset(cosh(9*x)), Union( ImageSet(Lambda(n, I*(2*n*pi + pi/2)/9), S.Integers), ImageSet(Lambda(n, I*(2*n*pi - pi/2)/9), S.Integers))) # issues #9606 / #9531: assert solveset(sinh(x), x, S.Reals) == FiniteSet(0) assert dumeq(solveset(sinh(x), x, S.Complexes), Union( ImageSet(Lambda(n, I*(2*n*pi + pi)), S.Integers), ImageSet(Lambda(n, 2*n*I*pi), S.Integers))) # issues #11218 / #18427 assert dumeq(solveset(sin(pi*x), x, S.Reals), Union( ImageSet(Lambda(n, (2*n*pi + pi)/pi), S.Integers), ImageSet(Lambda(n, 2*n), S.Integers))) assert dumeq(solveset(sin(pi*x), x), Union( ImageSet(Lambda(n, (2*n*pi + pi)/pi), S.Integers), ImageSet(Lambda(n, 2*n), S.Integers))) # issue #17543 assert dumeq(simplify(solveset(I*cot(8*x - 8*E), x)), Union( ImageSet(Lambda(n, n*pi/4 - 13*pi/16 + E), S.Integers), ImageSet(Lambda(n, n*pi/4 - 11*pi/16 + E), S.Integers))) # issues #18490 / #19489 assert solveset(cosh(x) + cosh(3*x) - cosh(5*x), x, S.Reals ).dummy_eq(ConditionSet(x, Eq(cosh(x) + cosh(3*x) - cosh(5*x), 0), S.Reals)) assert solveset(sinh(8*x) + coth(12*x)).dummy_eq( ConditionSet(x, Eq(sinh(8*x) + coth(12*x), 0), S.Complexes)) def test_solve_trig_hyp_symbolic(): # actual solver: _solve_trig1 assert dumeq(solveset(sin(a*x), x), ConditionSet(x, Ne(a, 0), Union( ImageSet(Lambda(n, (2*n*pi + pi)/a), S.Integers), ImageSet(Lambda(n, 2*n*pi/a), S.Integers)))) assert dumeq(solveset(cosh(x/a), x), ConditionSet(x, Ne(a, 0), Union( ImageSet(Lambda(n, I*a*(2*n*pi + pi/2)), S.Integers), ImageSet(Lambda(n, I*a*(2*n*pi - pi/2)), S.Integers)))) assert dumeq(solveset(sin(2*sqrt(3)/3*a**2/(b*pi)*x) + cos(4*sqrt(3)/3*a**2/(b*pi)*x), x), ConditionSet(x, Ne(b, 0) & Ne(a**2, 0), Union( ImageSet(Lambda(n, sqrt(3)*pi*b*(2*n*pi + pi/2)/(2*a**2)), S.Integers), ImageSet(Lambda(n, sqrt(3)*pi*b*(2*n*pi - 5*pi/6)/(2*a**2)), S.Integers), ImageSet(Lambda(n, sqrt(3)*pi*b*(2*n*pi - pi/6)/(2*a**2)), S.Integers)))) assert dumeq(simplify(solveset(cot((1 + I)*x) - cot((3 + 3*I)*x), x)), Union( ImageSet(Lambda(n, pi*(1 - I)*(4*n + 1)/4), S.Integers), ImageSet(Lambda(n, pi*(1 - I)*(4*n - 1)/4), S.Integers))) assert dumeq(solveset(cosh((a**2 + 1)*x) - 3, x), ConditionSet(x, Ne(a**2 + 1, 0), Union( ImageSet(Lambda(n, (2*n*I*pi + log(3 - 2*sqrt(2)))/(a**2 + 1)), S.Integers), ImageSet(Lambda(n, (2*n*I*pi + log(2*sqrt(2) + 3))/(a**2 + 1)), S.Integers)))) ar = Symbol('ar', real=True) assert solveset(cosh((ar**2 + 1)*x) - 2, x, S.Reals) == FiniteSet( log(sqrt(3) + 2)/(ar**2 + 1), log(2 - sqrt(3))/(ar**2 + 1)) def test_issue_9616(): assert dumeq(solveset(sinh(x) + tanh(x) - 1, x), Union( ImageSet(Lambda(n, 2*n*I*pi + log(sqrt(2)/2 + sqrt(-S.Half + sqrt(2)))), S.Integers), ImageSet(Lambda(n, I*(2*n*pi - atan(sqrt(2)*sqrt(S.Half + sqrt(2))) + pi) + log(sqrt(1 + sqrt(2)))), S.Integers), ImageSet(Lambda(n, I*(2*n*pi + pi) + log(-sqrt(2)/2 + sqrt(-S.Half + sqrt(2)))), S.Integers), ImageSet(Lambda(n, I*(2*n*pi - pi + atan(sqrt(2)*sqrt(S.Half + sqrt(2)))) + log(sqrt(1 + sqrt(2)))), S.Integers))) f1 = (sinh(x)).rewrite(exp) f2 = (tanh(x)).rewrite(exp) assert dumeq(solveset(f1 + f2 - 1, x), Union( Complement(ImageSet( Lambda(n, I*(2*n*pi + pi) + log(-sqrt(2)/2 + sqrt(-S.Half + sqrt(2)))), S.Integers), ImageSet(Lambda(n, I*(2*n*pi + pi)/2), S.Integers)), Complement(ImageSet(Lambda(n, I*(2*n*pi - pi + atan(sqrt(2)*sqrt(S.Half + sqrt(2)))) + log(sqrt(1 + sqrt(2)))), S.Integers), ImageSet(Lambda(n, I*(2*n*pi + pi)/2), S.Integers)), Complement(ImageSet(Lambda(n, I*(2*n*pi - atan(sqrt(2)*sqrt(S.Half + sqrt(2))) + pi) + log(sqrt(1 + sqrt(2)))), S.Integers), ImageSet(Lambda(n, I*(2*n*pi + pi)/2), S.Integers)), Complement( ImageSet(Lambda(n, 2*n*I*pi + log(sqrt(2)/2 + sqrt(-S.Half + sqrt(2)))), S.Integers), ImageSet(Lambda(n, I*(2*n*pi + pi)/2), S.Integers)))) def test_solve_invalid_sol(): assert 0 not in solveset_real(sin(x)/x, x) assert 0 not in solveset_complex((exp(x) - 1)/x, x) @XFAIL def test_solve_trig_simplified(): from sympy.abc import n assert dumeq(solveset_real(sin(x), x), imageset(Lambda(n, n*pi), S.Integers)) assert dumeq(solveset_real(cos(x), x), imageset(Lambda(n, n*pi + pi/2), S.Integers)) assert dumeq(solveset_real(cos(x) + sin(x), x), imageset(Lambda(n, n*pi - pi/4), S.Integers)) @XFAIL def test_solve_lambert(): assert solveset_real(x*exp(x) - 1, x) == FiniteSet(LambertW(1)) assert solveset_real(exp(x) + x, x) == FiniteSet(-LambertW(1)) assert solveset_real(x + 2**x, x) == \ FiniteSet(-LambertW(log(2))/log(2)) # issue 4739 ans = solveset_real(3*x + 5 + 2**(-5*x + 3), x) assert ans == FiniteSet(Rational(-5, 3) + LambertW(-10240*2**Rational(1, 3)*log(2)/3)/(5*log(2))) eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9) result = solveset_real(eq, x) ans = FiniteSet((log(2401) + 5*LambertW(-log(7**(7*3**Rational(1, 5)/5))))/(3*log(7))/-1) assert result == ans assert solveset_real(eq.expand(), x) == result assert solveset_real(5*x - 1 + 3*exp(2 - 7*x), x) == \ FiniteSet(Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7) assert solveset_real(2*x + 5 + log(3*x - 2), x) == \ FiniteSet(Rational(2, 3) + LambertW(2*exp(Rational(-19, 3))/3)/2) assert solveset_real(3*x + log(4*x), x) == \ FiniteSet(LambertW(Rational(3, 4))/3) assert solveset_real(x**x - 2) == FiniteSet(exp(LambertW(log(2)))) a = Symbol('a') assert solveset_real(-a*x + 2*x*log(x), x) == FiniteSet(exp(a/2)) a = Symbol('a', real=True) assert solveset_real(a/x + exp(x/2), x) == \ FiniteSet(2*LambertW(-a/2)) assert solveset_real((a/x + exp(x/2)).diff(x), x) == \ FiniteSet(4*LambertW(sqrt(2)*sqrt(a)/4)) # coverage test assert solveset_real(tanh(x + 3)*tanh(x - 3) - 1, x) == EmptySet() assert solveset_real((x**2 - 2*x + 1).subs(x, log(x) + 3*x), x) == \ FiniteSet(LambertW(3*S.Exp1)/3) assert solveset_real((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1), x) == \ FiniteSet(LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3) assert solveset_real((x**2 - 2*x - 2).subs(x, log(x) + 3*x), x) == \ FiniteSet(LambertW(3*exp(1 + sqrt(3)))/3, LambertW(3*exp(-sqrt(3) + 1))/3) assert solveset_real(x*log(x) + 3*x + 1, x) == \ FiniteSet(exp(-3 + LambertW(-exp(3)))) eq = (x*exp(x) - 3).subs(x, x*exp(x)) assert solveset_real(eq, x) == \ FiniteSet(LambertW(3*exp(-LambertW(3)))) assert solveset_real(3*log(a**(3*x + 5)) + a**(3*x + 5), x) == \ FiniteSet(-((log(a**5) + LambertW(Rational(1, 3)))/(3*log(a)))) p = symbols('p', positive=True) assert solveset_real(3*log(p**(3*x + 5)) + p**(3*x + 5), x) == \ FiniteSet( log((-3**Rational(1, 3) - 3**Rational(5, 6)*I)*LambertW(Rational(1, 3))**Rational(1, 3)/(2*p**Rational(5, 3)))/log(p), log((-3**Rational(1, 3) + 3**Rational(5, 6)*I)*LambertW(Rational(1, 3))**Rational(1, 3)/(2*p**Rational(5, 3)))/log(p), log((3*LambertW(Rational(1, 3))/p**5)**(1/(3*log(p)))),) # checked numerically # check collection b = Symbol('b') eq = 3*log(a**(3*x + 5)) + b*log(a**(3*x + 5)) + a**(3*x + 5) assert solveset_real(eq, x) == FiniteSet( -((log(a**5) + LambertW(1/(b + 3)))/(3*log(a)))) # issue 4271 assert solveset_real((a/x + exp(x/2)).diff(x, 2), x) == FiniteSet( 6*LambertW((-1)**Rational(1, 3)*a**Rational(1, 3)/3)) assert solveset_real(x**3 - 3**x, x) == \ FiniteSet(-3/log(3)*LambertW(-log(3)/3)) assert solveset_real(3**cos(x) - cos(x)**3) == FiniteSet( acos(-3*LambertW(-log(3)/3)/log(3))) assert solveset_real(x**2 - 2**x, x) == \ solveset_real(-x**2 + 2**x, x) assert solveset_real(3*log(x) - x*log(3)) == FiniteSet( -3*LambertW(-log(3)/3)/log(3), -3*LambertW(-log(3)/3, -1)/log(3)) assert solveset_real(LambertW(2*x) - y) == FiniteSet( y*exp(y)/2) @XFAIL def test_other_lambert(): a = Rational(6, 5) assert solveset_real(x**a - a**x, x) == FiniteSet( a, -a*LambertW(-log(a)/a)/log(a)) def test_solveset(): f = Function('f') raises(ValueError, lambda: solveset(x + y)) assert solveset(x, 1) == S.EmptySet assert solveset(f(1)**2 + y + 1, f(1) ) == FiniteSet(-sqrt(-y - 1), sqrt(-y - 1)) assert solveset(f(1)**2 - 1, f(1), S.Reals) == FiniteSet(-1, 1) assert solveset(f(1)**2 + 1, f(1)) == FiniteSet(-I, I) assert solveset(x - 1, 1) == FiniteSet(x) assert solveset(sin(x) - cos(x), sin(x)) == FiniteSet(cos(x)) assert solveset(0, domain=S.Reals) == S.Reals assert solveset(1) == S.EmptySet assert solveset(True, domain=S.Reals) == S.Reals # issue 10197 assert solveset(False, domain=S.Reals) == S.EmptySet assert solveset(exp(x) - 1, domain=S.Reals) == FiniteSet(0) assert solveset(exp(x) - 1, x, S.Reals) == FiniteSet(0) assert solveset(Eq(exp(x), 1), x, S.Reals) == FiniteSet(0) assert solveset(exp(x) - 1, exp(x), S.Reals) == FiniteSet(1) A = Indexed('A', x) assert solveset(A - 1, A, S.Reals) == FiniteSet(1) assert solveset(x - 1 >= 0, x, S.Reals) == Interval(1, oo) assert solveset(exp(x) - 1 >= 0, x, S.Reals) == Interval(0, oo) assert dumeq(solveset(exp(x) - 1, x), imageset(Lambda(n, 2*I*pi*n), S.Integers)) assert dumeq(solveset(Eq(exp(x), 1), x), imageset(Lambda(n, 2*I*pi*n), S.Integers)) # issue 13825 assert solveset(x**2 + f(0) + 1, x) == {-sqrt(-f(0) - 1), sqrt(-f(0) - 1)} # issue 19977 assert solveset(atan(log(x)) > 0, x, domain=Interval.open(0, oo)) == Interval.open(1, oo) def test__solveset_multi(): from sympy.solvers.solveset import _solveset_multi from sympy import Reals # Basic univariate case: from sympy.abc import x assert _solveset_multi([x**2-1], [x], [S.Reals]) == FiniteSet((1,), (-1,)) # Linear systems of two equations from sympy.abc import x, y assert _solveset_multi([x+y, x+1], [x, y], [Reals, Reals]) == FiniteSet((-1, 1)) assert _solveset_multi([x+y, x+1], [y, x], [Reals, Reals]) == FiniteSet((1, -1)) assert _solveset_multi([x+y, x-y-1], [x, y], [Reals, Reals]) == FiniteSet((S(1)/2, -S(1)/2)) assert _solveset_multi([x-1, y-2], [x, y], [Reals, Reals]) == FiniteSet((1, 2)) # assert dumeq(_solveset_multi([x+y], [x, y], [Reals, Reals]), ImageSet(Lambda(x, (x, -x)), Reals)) assert dumeq(_solveset_multi([x+y], [x, y], [Reals, Reals]), Union( ImageSet(Lambda(((x,),), (x, -x)), ProductSet(Reals)), ImageSet(Lambda(((y,),), (-y, y)), ProductSet(Reals)))) assert _solveset_multi([x+y, x+y+1], [x, y], [Reals, Reals]) == S.EmptySet assert _solveset_multi([x+y, x-y, x-1], [x, y], [Reals, Reals]) == S.EmptySet assert _solveset_multi([x+y, x-y, x-1], [y, x], [Reals, Reals]) == S.EmptySet # Systems of three equations: from sympy.abc import x, y, z assert _solveset_multi([x+y+z-1, x+y-z-2, x-y-z-3], [x, y, z], [Reals, Reals, Reals]) == FiniteSet((2, -S.Half, -S.Half)) # Nonlinear systems: from sympy.abc import r, theta, z, x, y assert _solveset_multi([x**2+y**2-2, x+y], [x, y], [Reals, Reals]) == FiniteSet((-1, 1), (1, -1)) assert _solveset_multi([x**2-1, y], [x, y], [Reals, Reals]) == FiniteSet((1, 0), (-1, 0)) #assert _solveset_multi([x**2-y**2], [x, y], [Reals, Reals]) == Union( # ImageSet(Lambda(x, (x, -x)), Reals), ImageSet(Lambda(x, (x, x)), Reals)) assert dumeq(_solveset_multi([x**2-y**2], [x, y], [Reals, Reals]), Union( ImageSet(Lambda(((x,),), (x, -Abs(x))), ProductSet(Reals)), ImageSet(Lambda(((x,),), (x, Abs(x))), ProductSet(Reals)), ImageSet(Lambda(((y,),), (-Abs(y), y)), ProductSet(Reals)), ImageSet(Lambda(((y,),), (Abs(y), y)), ProductSet(Reals)))) assert _solveset_multi([r*cos(theta)-1, r*sin(theta)], [theta, r], [Interval(0, pi), Interval(-1, 1)]) == FiniteSet((0, 1), (pi, -1)) assert _solveset_multi([r*cos(theta)-1, r*sin(theta)], [r, theta], [Interval(0, 1), Interval(0, pi)]) == FiniteSet((1, 0)) #assert _solveset_multi([r*cos(theta)-r, r*sin(theta)], [r, theta], # [Interval(0, 1), Interval(0, pi)]) == ? assert dumeq(_solveset_multi([r*cos(theta)-r, r*sin(theta)], [r, theta], [Interval(0, 1), Interval(0, pi)]), Union( ImageSet(Lambda(((r,),), (r, 0)), ImageSet(Lambda(r, (r,)), Interval(0, 1))), ImageSet(Lambda(((theta,),), (0, theta)), ImageSet(Lambda(theta, (theta,)), Interval(0, pi))))) def test_conditionset(): assert solveset(Eq(sin(x)**2 + cos(x)**2, 1), x, domain=S.Reals ) is S.Reals assert solveset(Eq(x**2 + x*sin(x), 1), x, domain=S.Reals ).dummy_eq(ConditionSet(x, Eq(x**2 + x*sin(x) - 1, 0), S.Reals)) assert dumeq(solveset(Eq(-I*(exp(I*x) - exp(-I*x))/2, 1), x ), imageset(Lambda(n, 2*n*pi + pi/2), S.Integers)) assert solveset(x + sin(x) > 1, x, domain=S.Reals ).dummy_eq(ConditionSet(x, x + sin(x) > 1, S.Reals)) assert solveset(Eq(sin(Abs(x)), x), x, domain=S.Reals ).dummy_eq(ConditionSet(x, Eq(-x + sin(Abs(x)), 0), S.Reals)) assert solveset(y**x-z, x, S.Reals ).dummy_eq(ConditionSet(x, Eq(y**x - z, 0), S.Reals)) @XFAIL def test_conditionset_equality(): ''' Checking equality of different representations of ConditionSet''' assert solveset(Eq(tan(x), y), x) == ConditionSet(x, Eq(tan(x), y), S.Complexes) def test_solveset_domain(): assert solveset(x**2 - x - 6, x, Interval(0, oo)) == FiniteSet(3) assert solveset(x**2 - 1, x, Interval(0, oo)) == FiniteSet(1) assert solveset(x**4 - 16, x, Interval(0, 10)) == FiniteSet(2) def test_improve_coverage(): from sympy.solvers.solveset import _has_rational_power solution = solveset(exp(x) + sin(x), x, S.Reals) unsolved_object = ConditionSet(x, Eq(exp(x) + sin(x), 0), S.Reals) assert solution.dummy_eq(unsolved_object) assert _has_rational_power(sin(x)*exp(x) + 1, x) == (False, S.One) assert _has_rational_power((sin(x)**2)*(exp(x) + 1)**3, x) == (False, S.One) def test_issue_9522(): expr1 = Eq(1/(x**2 - 4) + x, 1/(x**2 - 4) + 2) expr2 = Eq(1/x + x, 1/x) assert solveset(expr1, x, S.Reals) == EmptySet() assert solveset(expr2, x, S.Reals) == EmptySet() def test_solvify(): assert solvify(x**2 + 10, x, S.Reals) == [] assert solvify(x**3 + 1, x, S.Complexes) == [-1, S.Half - sqrt(3)*I/2, S.Half + sqrt(3)*I/2] assert solvify(log(x), x, S.Reals) == [1] assert solvify(cos(x), x, S.Reals) == [pi/2, pi*Rational(3, 2)] assert solvify(sin(x) + 1, x, S.Reals) == [pi*Rational(3, 2)] raises(NotImplementedError, lambda: solvify(sin(exp(x)), x, S.Complexes)) def test_abs_invert_solvify(): assert solvify(sin(Abs(x)), x, S.Reals) is None def test_linear_eq_to_matrix(): eqns1 = [2*x + y - 2*z - 3, x - y - z, x + y + 3*z - 12] eqns2 = [Eq(3*x + 2*y - z, 1), Eq(2*x - 2*y + 4*z, -2), -2*x + y - 2*z] A, B = linear_eq_to_matrix(eqns1, x, y, z) assert A == Matrix([[2, 1, -2], [1, -1, -1], [1, 1, 3]]) assert B == Matrix([[3], [0], [12]]) A, B = linear_eq_to_matrix(eqns2, x, y, z) assert A == Matrix([[3, 2, -1], [2, -2, 4], [-2, 1, -2]]) assert B == Matrix([[1], [-2], [0]]) # Pure symbolic coefficients eqns3 = [a*b*x + b*y + c*z - d, e*x + d*x + f*y + g*z - h, i*x + j*y + k*z - l] A, B = linear_eq_to_matrix(eqns3, x, y, z) assert A == Matrix([[a*b, b, c], [d + e, f, g], [i, j, k]]) assert B == Matrix([[d], [h], [l]]) # raise ValueError if # 1) no symbols are given raises(ValueError, lambda: linear_eq_to_matrix(eqns3)) # 2) there are duplicates raises(ValueError, lambda: linear_eq_to_matrix(eqns3, [x, x, y])) # 3) there are non-symbols raises(ValueError, lambda: linear_eq_to_matrix(eqns3, [x, 1/a, y])) # 4) a nonlinear term is detected in the original expression raises(NonlinearError, lambda: linear_eq_to_matrix(Eq(1/x + x, 1/x), [x])) assert linear_eq_to_matrix(1, x) == (Matrix([[0]]), Matrix([[-1]])) # issue 15195 assert linear_eq_to_matrix(x + y*(z*(3*x + 2) + 3), x) == ( Matrix([[3*y*z + 1]]), Matrix([[-y*(2*z + 3)]])) assert linear_eq_to_matrix(Matrix( [[a*x + b*y - 7], [5*x + 6*y - c]]), x, y) == ( Matrix([[a, b], [5, 6]]), Matrix([[7], [c]])) # issue 15312 assert linear_eq_to_matrix(Eq(x + 2, 1), x) == ( Matrix([[1]]), Matrix([[-1]])) def test_issue_16577(): assert linear_eq_to_matrix(Eq(a*(2*x + 3*y) + 4*y, 5), x, y) == ( Matrix([[2*a, 3*a + 4]]), Matrix([[5]])) def test_linsolve(): x1, x2, x3, x4 = symbols('x1, x2, x3, x4') # Test for different input forms M = Matrix([[1, 2, 1, 1, 7], [1, 2, 2, -1, 12], [2, 4, 0, 6, 4]]) system1 = A, B = M[:, :-1], M[:, -1] Eqns = [x1 + 2*x2 + x3 + x4 - 7, x1 + 2*x2 + 2*x3 - x4 - 12, 2*x1 + 4*x2 + 6*x4 - 4] sol = FiniteSet((-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4)) assert linsolve(Eqns, (x1, x2, x3, x4)) == sol assert linsolve(Eqns, *(x1, x2, x3, x4)) == sol assert linsolve(system1, (x1, x2, x3, x4)) == sol assert linsolve(system1, *(x1, x2, x3, x4)) == sol # issue 9667 - symbols can be Dummy symbols x1, x2, x3, x4 = symbols('x:4', cls=Dummy) assert linsolve(system1, x1, x2, x3, x4) == FiniteSet( (-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4)) # raise ValueError for garbage value raises(ValueError, lambda: linsolve(Eqns)) raises(ValueError, lambda: linsolve(x1)) raises(ValueError, lambda: linsolve(x1, x2)) raises(ValueError, lambda: linsolve((A,), x1, x2)) raises(ValueError, lambda: linsolve(A, B, x1, x2)) #raise ValueError if equations are non-linear in given variables raises(NonlinearError, lambda: linsolve([x + y - 1, x ** 2 + y - 3], [x, y])) raises(NonlinearError, lambda: linsolve([cos(x) + y, x + y], [x, y])) assert linsolve([x + z - 1, x ** 2 + y - 3], [z, y]) == {(-x + 1, -x**2 + 3)} # Fully symbolic test A = Matrix([[a, b], [c, d]]) B = Matrix([[e], [g]]) system2 = (A, B) sol = FiniteSet(((-b*g + d*e)/(a*d - b*c), (a*g - c*e)/(a*d - b*c))) assert linsolve(system2, [x, y]) == sol # No solution A = Matrix([[1, 2, 3], [2, 4, 6], [3, 6, 9]]) B = Matrix([0, 0, 1]) assert linsolve((A, B), (x, y, z)) == EmptySet() # Issue #10056 A, B, J1, J2 = symbols('A B J1 J2') Augmatrix = Matrix([ [2*I*J1, 2*I*J2, -2/J1], [-2*I*J2, -2*I*J1, 2/J2], [0, 2, 2*I/(J1*J2)], [2, 0, 0], ]) assert linsolve(Augmatrix, A, B) == FiniteSet((0, I/(J1*J2))) # Issue #10121 - Assignment of free variables Augmatrix = Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]]) assert linsolve(Augmatrix, a, b, c, d, e) == FiniteSet((a, 0, c, 0, e)) #raises(IndexError, lambda: linsolve(Augmatrix, a, b, c)) x0, x1, x2, _x0 = symbols('tau0 tau1 tau2 _tau0') assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]]) ) == FiniteSet((x0, 0, x1, _x0, x2)) x0, x1, x2, _x0 = symbols('tau00 tau01 tau02 tau0') assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]]) ) == FiniteSet((x0, 0, x1, _x0, x2)) x0, x1, x2, _x0 = symbols('tau00 tau01 tau02 tau1') assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]]) ) == FiniteSet((x0, 0, x1, _x0, x2)) # symbols can be given as generators x0, x2, x4 = symbols('x0, x2, x4') assert linsolve(Augmatrix, numbered_symbols('x') ) == FiniteSet((x0, 0, x2, 0, x4)) Augmatrix[-1, -1] = x0 # use Dummy to avoid clash; the names may clash but the symbols # will not Augmatrix[-1, -1] = symbols('_x0') assert len(linsolve( Augmatrix, numbered_symbols('x', cls=Dummy)).free_symbols) == 4 # Issue #12604 f = Function('f') assert linsolve([f(x) - 5], f(x)) == FiniteSet((5,)) # Issue #14860 from sympy.physics.units import meter, newton, kilo kN = kilo*newton Eqns = [8*kN + x + y, 28*kN*meter + 3*x*meter] assert linsolve(Eqns, x, y) == { (kilo*newton*Rational(-28, 3), kN*Rational(4, 3))} # linsolve fully expands expressions, so removable singularities # and other nonlinearity does not raise an error assert linsolve([Eq(x, x + y)], [x, y]) == {(x, 0)} assert linsolve([Eq(1/x, 1/x + y)], [x, y]) == {(x, 0)} assert linsolve([Eq(y/x, y/x + y)], [x, y]) == {(x, 0)} assert linsolve([Eq(x*(x + 1), x**2 + y)], [x, y]) == {(y, y)} def test_linsolve_large_sparse(): # # This is mainly a performance test # def _mk_eqs_sol(n): xs = symbols('x:{}'.format(n)) ys = symbols('y:{}'.format(n)) syms = xs + ys eqs = [] sol = (-S.Half,) * n + (S.Half,) * n for xi, yi in zip(xs, ys): eqs.extend([xi + yi, xi - yi + 1]) return eqs, syms, FiniteSet(sol) n = 500 eqs, syms, sol = _mk_eqs_sol(n) assert linsolve(eqs, syms) == sol def test_linsolve_immutable(): A = ImmutableDenseMatrix([[1, 1, 2], [0, 1, 2], [0, 0, 1]]) B = ImmutableDenseMatrix([2, 1, -1]) assert linsolve([A, B], (x, y, z)) == FiniteSet((1, 3, -1)) A = ImmutableDenseMatrix([[1, 1, 7], [1, -1, 3]]) assert linsolve(A) == FiniteSet((5, 2)) def test_solve_decomposition(): n = Dummy('n') f1 = exp(3*x) - 6*exp(2*x) + 11*exp(x) - 6 f2 = sin(x)**2 - 2*sin(x) + 1 f3 = sin(x)**2 - sin(x) f4 = sin(x + 1) f5 = exp(x + 2) - 1 f6 = 1/log(x) f7 = 1/x s1 = ImageSet(Lambda(n, 2*n*pi), S.Integers) s2 = ImageSet(Lambda(n, 2*n*pi + pi), S.Integers) s3 = ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers) s4 = ImageSet(Lambda(n, 2*n*pi - 1), S.Integers) s5 = ImageSet(Lambda(n, 2*n*pi - 1 + pi), S.Integers) assert solve_decomposition(f1, x, S.Reals) == FiniteSet(0, log(2), log(3)) assert dumeq(solve_decomposition(f2, x, S.Reals), s3) assert dumeq(solve_decomposition(f3, x, S.Reals), Union(s1, s2, s3)) assert dumeq(solve_decomposition(f4, x, S.Reals), Union(s4, s5)) assert solve_decomposition(f5, x, S.Reals) == FiniteSet(-2) assert solve_decomposition(f6, x, S.Reals) == S.EmptySet assert solve_decomposition(f7, x, S.Reals) == S.EmptySet assert solve_decomposition(x, x, Interval(1, 2)) == S.EmptySet # nonlinsolve testcases def test_nonlinsolve_basic(): assert nonlinsolve([],[]) == S.EmptySet assert nonlinsolve([],[x, y]) == S.EmptySet system = [x, y - x - 5] assert nonlinsolve([x],[x, y]) == FiniteSet((0, y)) assert nonlinsolve(system, [y]) == FiniteSet((x + 5,)) soln = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),) assert dumeq(nonlinsolve([sin(x) - 1], [x]), FiniteSet(tuple(soln))) assert nonlinsolve([x**2 - 1], [x]) == FiniteSet((-1,), (1,)) soln = FiniteSet((y, y)) assert nonlinsolve([x - y, 0], x, y) == soln assert nonlinsolve([0, x - y], x, y) == soln assert nonlinsolve([x - y, x - y], x, y) == soln assert nonlinsolve([x, 0], x, y) == FiniteSet((0, y)) f = Function('f') assert nonlinsolve([f(x), 0], f(x), y) == FiniteSet((0, y)) assert nonlinsolve([f(x), 0], f(x), f(y)) == FiniteSet((0, f(y))) A = Indexed('A', x) assert nonlinsolve([A, 0], A, y) == FiniteSet((0, y)) assert nonlinsolve([x**2 -1], [sin(x)]) == FiniteSet((S.EmptySet,)) assert nonlinsolve([x**2 -1], sin(x)) == FiniteSet((S.EmptySet,)) assert nonlinsolve([x**2 -1], 1) == FiniteSet((x**2,)) assert nonlinsolve([x**2 -1], x + y) == FiniteSet((S.EmptySet,)) def test_nonlinsolve_abs(): soln = FiniteSet((x, Abs(x))) assert nonlinsolve([Abs(x) - y], x, y) == soln def test_raise_exception_nonlinsolve(): raises(IndexError, lambda: nonlinsolve([x**2 -1], [])) raises(ValueError, lambda: nonlinsolve([x**2 -1])) raises(NotImplementedError, lambda: nonlinsolve([(x+y)**2 - 9, x**2 - y**2 - 0.75], (x, y))) def test_trig_system(): # TODO: add more simple testcases when solveset returns # simplified soln for Trig eq assert nonlinsolve([sin(x) - 1, cos(x) -1 ], x) == S.EmptySet soln1 = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),) soln = FiniteSet(soln1) assert dumeq(nonlinsolve([sin(x) - 1, cos(x)], x), soln) @XFAIL def test_trig_system_fail(): # fails because solveset trig solver is not much smart. sys = [x + y - pi/2, sin(x) + sin(y) - 1] # solveset returns conditionset for sin(x) + sin(y) - 1 soln_1 = (ImageSet(Lambda(n, n*pi + pi/2), S.Integers), ImageSet(Lambda(n, n*pi)), S.Integers) soln_1 = FiniteSet(soln_1) soln_2 = (ImageSet(Lambda(n, n*pi), S.Integers), ImageSet(Lambda(n, n*pi+ pi/2), S.Integers)) soln_2 = FiniteSet(soln_2) soln = soln_1 + soln_2 assert dumeq(nonlinsolve(sys, [x, y]), soln) # Add more cases from here # http://www.vitutor.com/geometry/trigonometry/equations_systems.html#uno sys = [sin(x) + sin(y) - (sqrt(3)+1)/2, sin(x) - sin(y) - (sqrt(3) - 1)/2] soln_x = Union(ImageSet(Lambda(n, 2*n*pi + pi/3), S.Integers), ImageSet(Lambda(n, 2*n*pi + pi*Rational(2, 3)), S.Integers)) soln_y = Union(ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers), ImageSet(Lambda(n, 2*n*pi + pi*Rational(5, 6)), S.Integers)) assert dumeq(nonlinsolve(sys, [x, y]), FiniteSet((soln_x, soln_y))) def test_nonlinsolve_positive_dimensional(): x, y, z, a, b, c, d = symbols('x, y, z, a, b, c, d', extended_real=True) assert nonlinsolve([x*y, x*y - x], [x, y]) == FiniteSet((0, y)) system = [a**2 + a*c, a - b] assert nonlinsolve(system, [a, b]) == FiniteSet((0, 0), (-c, -c)) # here (a= 0, b = 0) is independent soln so both is printed. # if symbols = [a, b, c] then only {a : -c ,b : -c} eq1 = a + b + c + d eq2 = a*b + b*c + c*d + d*a eq3 = a*b*c + b*c*d + c*d*a + d*a*b eq4 = a*b*c*d - 1 system = [eq1, eq2, eq3, eq4] sol1 = (-1/d, -d, 1/d, FiniteSet(d) - FiniteSet(0)) sol2 = (1/d, -d, -1/d, FiniteSet(d) - FiniteSet(0)) soln = FiniteSet(sol1, sol2) assert nonlinsolve(system, [a, b, c, d]) == soln def test_nonlinsolve_polysys(): x, y, z = symbols('x, y, z', real=True) assert nonlinsolve([x**2 + y - 2, x**2 + y], [x, y]) == S.EmptySet s = (-y + 2, y) assert nonlinsolve([(x + y)**2 - 4, x + y - 2], [x, y]) == FiniteSet(s) system = [x**2 - y**2] soln_real = FiniteSet((-y, y), (y, y)) soln_complex = FiniteSet((-Abs(y), y), (Abs(y), y)) soln =soln_real + soln_complex assert nonlinsolve(system, [x, y]) == soln system = [x**2 - y**2] soln_real= FiniteSet((y, -y), (y, y)) soln_complex = FiniteSet((y, -Abs(y)), (y, Abs(y))) soln = soln_real + soln_complex assert nonlinsolve(system, [y, x]) == soln system = [x**2 + y - 3, x - y - 4] assert nonlinsolve(system, (x, y)) != nonlinsolve(system, (y, x)) def test_nonlinsolve_using_substitution(): x, y, z, n = symbols('x, y, z, n', real = True) system = [(x + y)*n - y**2 + 2] s_x = (n*y - y**2 + 2)/n soln = (-s_x, y) assert nonlinsolve(system, [x, y]) == FiniteSet(soln) system = [z**2*x**2 - z**2*y**2/exp(x)] soln_real_1 = (y, x, 0) soln_real_2 = (-exp(x/2)*Abs(x), x, z) soln_real_3 = (exp(x/2)*Abs(x), x, z) soln_complex_1 = (-x*exp(x/2), x, z) soln_complex_2 = (x*exp(x/2), x, z) syms = [y, x, z] soln = FiniteSet(soln_real_1, soln_complex_1, soln_complex_2,\ soln_real_2, soln_real_3) assert nonlinsolve(system,syms) == soln def test_nonlinsolve_complex(): n = Dummy('n') assert dumeq(nonlinsolve([exp(x) - sin(y), 1/y - 3], [x, y]), { (ImageSet(Lambda(n, 2*n*I*pi + log(sin(Rational(1, 3)))), S.Integers), Rational(1, 3))}) system = [exp(x) - sin(y), 1/exp(y) - 3] assert dumeq(nonlinsolve(system, [x, y]), { (ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sin(log(3)))), S.Integers), -log(3)), (ImageSet(Lambda(n, I*(2*n*pi + arg(sin(2*n*I*pi - log(3)))) + log(Abs(sin(2*n*I*pi - log(3))))), S.Integers), ImageSet(Lambda(n, 2*n*I*pi - log(3)), S.Integers))}) system = [exp(x) - sin(y), y**2 - 4] assert dumeq(nonlinsolve(system, [x, y]), { (ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sin(2))), S.Integers), -2), (ImageSet(Lambda(n, 2*n*I*pi + log(sin(2))), S.Integers), 2)}) @XFAIL def test_solve_nonlinear_trans(): # After the transcendental equation solver these will work x, y, z = symbols('x, y, z', real=True) soln1 = FiniteSet((2*LambertW(y/2), y)) soln2 = FiniteSet((-x*sqrt(exp(x)), y), (x*sqrt(exp(x)), y)) soln3 = FiniteSet((x*exp(x/2), x)) soln4 = FiniteSet(2*LambertW(y/2), y) assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln1 assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln2 assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln3 assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln4 def test_issue_5132_1(): system = [sqrt(x**2 + y**2) - sqrt(10), x + y - 4] assert nonlinsolve(system, [x, y]) == FiniteSet((1, 3), (3, 1)) n = Dummy('n') eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3] s_real_y = -log(3) s_real_z = sqrt(-exp(2*x) - sin(log(3))) soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z)) lam = Lambda(n, 2*n*I*pi + -log(3)) s_complex_y = ImageSet(lam, S.Integers) lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3)))) s_complex_z_1 = ImageSet(lam, S.Integers) lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3)))) s_complex_z_2 = ImageSet(lam, S.Integers) soln_complex = FiniteSet( (s_complex_y, s_complex_z_1), (s_complex_y, s_complex_z_2) ) soln = soln_real + soln_complex assert dumeq(nonlinsolve(eqs, [y, z]), soln) def test_issue_5132_2(): x, y = symbols('x, y', real=True) eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3] n = Dummy('n') soln_real = (log(-z**2 + sin(y))/2, z) lam = Lambda( n, I*(2*n*pi + arg(-z**2 + sin(y)))/2 + log(Abs(z**2 - sin(y)))/2) img = ImageSet(lam, S.Integers) # not sure about the complex soln. But it looks correct. soln_complex = (img, z) soln = FiniteSet(soln_real, soln_complex) assert dumeq(nonlinsolve(eqs, [x, z]), soln) system = [r - x**2 - y**2, tan(t) - y/x] s_x = sqrt(r/(tan(t)**2 + 1)) s_y = sqrt(r/(tan(t)**2 + 1))*tan(t) soln = FiniteSet((s_x, s_y), (-s_x, -s_y)) assert nonlinsolve(system, [x, y]) == soln def test_issue_6752(): a,b,c,d = symbols('a, b, c, d', real=True) assert nonlinsolve([a**2 + a, a - b], [a, b]) == {(-1, -1), (0, 0)} @SKIP("slow") def test_issue_5114_solveset(): # slow testcase from sympy.abc import d, e, f, g, h, i, j, k, l, o, p, q, r # there is no 'a' in the equation set but this is how the # problem was originally posed syms = [a, b, c, f, h, k, n] eqs = [b + r/d - c/d, c*(1/d + 1/e + 1/g) - f/g - r/d, f*(1/g + 1/i + 1/j) - c/g - h/i, h*(1/i + 1/l + 1/m) - f/i - k/m, k*(1/m + 1/o + 1/p) - h/m - n/p, n*(1/p + 1/q) - k/p] assert len(nonlinsolve(eqs, syms)) == 1 @SKIP("Hangs") def _test_issue_5335(): # Not able to check zero dimensional system. # is_zero_dimensional Hangs lam, a0, conc = symbols('lam a0 conc') eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x, a0*(1 - x/2)*x - 1*y - 0.743436700916726*y, x + y - conc] sym = [x, y, a0] # there are 4 solutions but only two are valid assert len(nonlinsolve(eqs, sym)) == 2 # float eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x, a0*(1 - x/2)*x - 1*y - 0.743436700916726*y, x + y - conc] sym = [x, y, a0] assert len(nonlinsolve(eqs, sym)) == 2 def test_issue_2777(): # the equations represent two circles x, y = symbols('x y', real=True) e1, e2 = sqrt(x**2 + y**2) - 10, sqrt(y**2 + (-x + 10)**2) - 3 a, b = Rational(191, 20), 3*sqrt(391)/20 ans = {(a, -b), (a, b)} assert nonlinsolve((e1, e2), (x, y)) == ans assert nonlinsolve((e1, e2/(x - a)), (x, y)) == S.EmptySet # make the 2nd circle's radius be -3 e2 += 6 assert nonlinsolve((e1, e2), (x, y)) == S.EmptySet def test_issue_8828(): x1 = 0 y1 = -620 r1 = 920 x2 = 126 y2 = 276 x3 = 51 y3 = 205 r3 = 104 v = [x, y, z] f1 = (x - x1)**2 + (y - y1)**2 - (r1 - z)**2 f2 = (x2 - x)**2 + (y2 - y)**2 - z**2 f3 = (x - x3)**2 + (y - y3)**2 - (r3 - z)**2 F = [f1, f2, f3] g1 = sqrt((x - x1)**2 + (y - y1)**2) + z - r1 g2 = f2 g3 = sqrt((x - x3)**2 + (y - y3)**2) + z - r3 G = [g1, g2, g3] # both soln same A = nonlinsolve(F, v) B = nonlinsolve(G, v) assert A == B def test_nonlinsolve_conditionset(): # when solveset failed to solve all the eq # return conditionset f = Function('f') f1 = f(x) - pi/2 f2 = f(y) - pi*Rational(3, 2) intermediate_system = Eq(2*f(x) - pi, 0) & Eq(2*f(y) - 3*pi, 0) symbols = Tuple(x, y) soln = ConditionSet( symbols, intermediate_system, S.Complexes**2) assert nonlinsolve([f1, f2], [x, y]) == soln def test_substitution_basic(): assert substitution([], [x, y]) == S.EmptySet assert substitution([], []) == S.EmptySet system = [2*x**2 + 3*y**2 - 30, 3*x**2 - 2*y**2 - 19] soln = FiniteSet((-3, -2), (-3, 2), (3, -2), (3, 2)) assert substitution(system, [x, y]) == soln soln = FiniteSet((-1, 1)) assert substitution([x + y], [x], [{y: 1}], [y], set(), [x, y]) == soln assert substitution( [x + y], [x], [{y: 1}], [y], {x + 1}, [y, x]) == S.EmptySet def test_issue_5132_substitution(): x, y, z, r, t = symbols('x, y, z, r, t', real=True) system = [r - x**2 - y**2, tan(t) - y/x] s_x_1 = Complement(FiniteSet(-sqrt(r/(tan(t)**2 + 1))), FiniteSet(0)) s_x_2 = Complement(FiniteSet(sqrt(r/(tan(t)**2 + 1))), FiniteSet(0)) s_y = sqrt(r/(tan(t)**2 + 1))*tan(t) soln = FiniteSet((s_x_2, s_y)) + FiniteSet((s_x_1, -s_y)) assert substitution(system, [x, y]) == soln n = Dummy('n') eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3] s_real_y = -log(3) s_real_z = sqrt(-exp(2*x) - sin(log(3))) soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z)) lam = Lambda(n, 2*n*I*pi + -log(3)) s_complex_y = ImageSet(lam, S.Integers) lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3)))) s_complex_z_1 = ImageSet(lam, S.Integers) lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3)))) s_complex_z_2 = ImageSet(lam, S.Integers) soln_complex = FiniteSet( (s_complex_y, s_complex_z_1), (s_complex_y, s_complex_z_2)) soln = soln_real + soln_complex assert dumeq(substitution(eqs, [y, z]), soln) def test_raises_substitution(): raises(ValueError, lambda: substitution([x**2 -1], [])) raises(TypeError, lambda: substitution([x**2 -1])) raises(ValueError, lambda: substitution([x**2 -1], [sin(x)])) raises(TypeError, lambda: substitution([x**2 -1], x)) raises(TypeError, lambda: substitution([x**2 -1], 1)) # end of tests for nonlinsolve def test_issue_9556(): b = Symbol('b', positive=True) assert solveset(Abs(x) + 1, x, S.Reals) == EmptySet() assert solveset(Abs(x) + b, x, S.Reals) == EmptySet() assert solveset(Eq(b, -1), b, S.Reals) == EmptySet() def test_issue_9611(): assert solveset(Eq(x - x + a, a), x, S.Reals) == S.Reals assert solveset(Eq(y - y + a, a), y) == S.Complexes def test_issue_9557(): assert solveset(x**2 + a, x, S.Reals) == Intersection(S.Reals, FiniteSet(-sqrt(-a), sqrt(-a))) def test_issue_9778(): x = Symbol('x', real=True) y = Symbol('y', real=True) assert solveset(x**3 + 1, x, S.Reals) == FiniteSet(-1) assert solveset(x**Rational(3, 5) + 1, x, S.Reals) == S.EmptySet assert solveset(x**3 + y, x, S.Reals) == \ FiniteSet(-Abs(y)**Rational(1, 3)*sign(y)) def test_issue_10214(): assert solveset(x**Rational(3, 2) + 4, x, S.Reals) == S.EmptySet assert solveset(x**(Rational(-3, 2)) + 4, x, S.Reals) == S.EmptySet ans = FiniteSet(-2**Rational(2, 3)) assert solveset(x**(S(3)) + 4, x, S.Reals) == ans assert (x**(S(3)) + 4).subs(x,list(ans)[0]) == 0 # substituting ans and verifying the result. assert (x**(S(3)) + 4).subs(x,-(-2)**Rational(2, 3)) == 0 def test_issue_9849(): assert solveset(Abs(sin(x)) + 1, x, S.Reals) == S.EmptySet def test_issue_9953(): assert linsolve([ ], x) == S.EmptySet def test_issue_9913(): assert solveset(2*x + 1/(x - 10)**2, x, S.Reals) == \ FiniteSet(-(3*sqrt(24081)/4 + Rational(4027, 4))**Rational(1, 3)/3 - 100/ (3*(3*sqrt(24081)/4 + Rational(4027, 4))**Rational(1, 3)) + Rational(20, 3)) def test_issue_10397(): assert solveset(sqrt(x), x, S.Complexes) == FiniteSet(0) def test_issue_14987(): raises(ValueError, lambda: linear_eq_to_matrix( [x**2], x)) raises(ValueError, lambda: linear_eq_to_matrix( [x*(-3/x + 1) + 2*y - a], [x, y])) raises(ValueError, lambda: linear_eq_to_matrix( [(x**2 - 3*x)/(x - 3) - 3], x)) raises(ValueError, lambda: linear_eq_to_matrix( [(x + 1)**3 - x**3 - 3*x**2 + 7], x)) raises(ValueError, lambda: linear_eq_to_matrix( [x*(1/x + 1) + y], [x, y])) raises(ValueError, lambda: linear_eq_to_matrix( [(x + 1)*y], [x, y])) raises(ValueError, lambda: linear_eq_to_matrix( [Eq(1/x, 1/x + y)], [x, y])) raises(ValueError, lambda: linear_eq_to_matrix( [Eq(y/x, y/x + y)], [x, y])) raises(ValueError, lambda: linear_eq_to_matrix( [Eq(x*(x + 1), x**2 + y)], [x, y])) def test_simplification(): eq = x + (a - b)/(-2*a + 2*b) assert solveset(eq, x) == FiniteSet(S.Half) assert solveset(eq, x, S.Reals) == Intersection({-((a - b)/(-2*a + 2*b))}, S.Reals) # So that ap - bn is not zero: ap = Symbol('ap', positive=True) bn = Symbol('bn', negative=True) eq = x + (ap - bn)/(-2*ap + 2*bn) assert solveset(eq, x) == FiniteSet(S.Half) assert solveset(eq, x, S.Reals) == FiniteSet(S.Half) def test_issue_10555(): f = Function('f') g = Function('g') assert solveset(f(x) - pi/2, x, S.Reals).dummy_eq( ConditionSet(x, Eq(f(x) - pi/2, 0), S.Reals)) assert solveset(f(g(x)) - pi/2, g(x), S.Reals).dummy_eq( ConditionSet(g(x), Eq(f(g(x)) - pi/2, 0), S.Reals)) def test_issue_8715(): eq = x + 1/x > -2 + 1/x assert solveset(eq, x, S.Reals) == \ (Interval.open(-2, oo) - FiniteSet(0)) assert solveset(eq.subs(x,log(x)), x, S.Reals) == \ Interval.open(exp(-2), oo) - FiniteSet(1) def test_issue_11174(): eq = z**2 + exp(2*x) - sin(y) soln = Intersection(S.Reals, FiniteSet(log(-z**2 + sin(y))/2)) assert solveset(eq, x, S.Reals) == soln eq = sqrt(r)*Abs(tan(t))/sqrt(tan(t)**2 + 1) + x*tan(t) s = -sqrt(r)*Abs(tan(t))/(sqrt(tan(t)**2 + 1)*tan(t)) soln = Intersection(S.Reals, FiniteSet(s)) assert solveset(eq, x, S.Reals) == soln def test_issue_11534(): # eq and eq2 should give the same solution as a Complement x = Symbol('x', real=True) y = Symbol('y', real=True) eq = -y + x/sqrt(-x**2 + 1) eq2 = -y**2 + x**2/(-x**2 + 1) soln = Complement(FiniteSet(-y/sqrt(y**2 + 1), y/sqrt(y**2 + 1)), FiniteSet(-1, 1)) assert solveset(eq, x, S.Reals) == soln assert solveset(eq2, x, S.Reals) == soln def test_issue_10477(): assert solveset((x**2 + 4*x - 3)/x < 2, x, S.Reals) == \ Union(Interval.open(-oo, -3), Interval.open(0, 1)) def test_issue_10671(): assert solveset(sin(y), y, Interval(0, pi)) == FiniteSet(0, pi) i = Interval(1, 10) assert solveset((1/x).diff(x) < 0, x, i) == i def test_issue_11064(): eq = x + sqrt(x**2 - 5) assert solveset(eq > 0, x, S.Reals) == \ Interval(sqrt(5), oo) assert solveset(eq < 0, x, S.Reals) == \ Interval(-oo, -sqrt(5)) assert solveset(eq > sqrt(5), x, S.Reals) == \ Interval.Lopen(sqrt(5), oo) def test_issue_12478(): eq = sqrt(x - 2) + 2 soln = solveset_real(eq, x) assert soln is S.EmptySet assert solveset(eq < 0, x, S.Reals) is S.EmptySet assert solveset(eq > 0, x, S.Reals) == Interval(2, oo) def test_issue_12429(): eq = solveset(log(x)/x <= 0, x, S.Reals) sol = Interval.Lopen(0, 1) assert eq == sol def test_solveset_arg(): assert solveset(arg(x), x, S.Reals) == Interval.open(0, oo) assert solveset(arg(4*x -3), x) == Interval.open(Rational(3, 4), oo) def test__is_finite_with_finite_vars(): f = _is_finite_with_finite_vars # issue 12482 assert all(f(1/x) is None for x in ( Dummy(), Dummy(real=True), Dummy(complex=True))) assert f(1/Dummy(real=False)) is True # b/c it's finite but not 0 def test_issue_13550(): assert solveset(x**2 - 2*x - 15, symbol = x, domain = Interval(-oo, 0)) == FiniteSet(-3) def test_issue_13849(): assert nonlinsolve((t*(sqrt(5) + sqrt(2)) - sqrt(2), t), t) == EmptySet() def test_issue_14223(): assert solveset((Abs(x + Min(x, 2)) - 2).rewrite(Piecewise), x, S.Reals) == FiniteSet(-1, 1) assert solveset((Abs(x + Min(x, 2)) - 2).rewrite(Piecewise), x, Interval(0, 2)) == FiniteSet(1) def test_issue_10158(): dom = S.Reals assert solveset(x*Max(x, 15) - 10, x, dom) == FiniteSet(Rational(2, 3)) assert solveset(x*Min(x, 15) - 10, x, dom) == FiniteSet(-sqrt(10), sqrt(10)) assert solveset(Max(Abs(x - 3) - 1, x + 2) - 3, x, dom) == FiniteSet(-1, 1) assert solveset(Abs(x - 1) - Abs(y), x, dom) == FiniteSet(-Abs(y) + 1, Abs(y) + 1) assert solveset(Abs(x + 4*Abs(x + 1)), x, dom) == FiniteSet(Rational(-4, 3), Rational(-4, 5)) assert solveset(2*Abs(x + Abs(x + Max(3, x))) - 2, x, S.Reals) == FiniteSet(-1, -2) dom = S.Complexes raises(ValueError, lambda: solveset(x*Max(x, 15) - 10, x, dom)) raises(ValueError, lambda: solveset(x*Min(x, 15) - 10, x, dom)) raises(ValueError, lambda: solveset(Max(Abs(x - 3) - 1, x + 2) - 3, x, dom)) raises(ValueError, lambda: solveset(Abs(x - 1) - Abs(y), x, dom)) raises(ValueError, lambda: solveset(Abs(x + 4*Abs(x + 1)), x, dom)) def test_issue_14300(): f = 1 - exp(-18000000*x) - y a1 = FiniteSet(-log(-y + 1)/18000000) assert solveset(f, x, S.Reals) == \ Intersection(S.Reals, a1) assert dumeq(solveset(f, x), ImageSet(Lambda(n, -I*(2*n*pi + arg(-y + 1))/18000000 - log(Abs(y - 1))/18000000), S.Integers)) def test_issue_14454(): number = CRootOf(x**4 + x - 1, 2) raises(ValueError, lambda: invert_real(number, 0, x, S.Reals)) assert invert_real(x**2, number, x, S.Reals) # no error def test_issue_17882(): assert solveset(-8*x**2/(9*(x**2 - 1)**(S(4)/3)) + 4/(3*(x**2 - 1)**(S(1)/3)), x, S.Complexes) == \ FiniteSet(sqrt(3), -sqrt(3)) def test_term_factors(): assert list(_term_factors(3**x - 2)) == [-2, 3**x] expr = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3) assert set(_term_factors(expr)) == { 3**(x + 2), 4**(x + 2), 3**(x + 3), 4**(x - 1), -1, 4**(x + 1)} #################### tests for transolve and its helpers ############### def test_transolve(): assert _transolve(3**x, x, S.Reals) == S.EmptySet assert _transolve(3**x - 9**(x + 5), x, S.Reals) == FiniteSet(-10) # exponential tests def test_exponential_real(): from sympy.abc import x, y, z e1 = 3**(2*x) - 2**(x + 3) e2 = 4**(5 - 9*x) - 8**(2 - x) e3 = 2**x + 4**x e4 = exp(log(5)*x) - 2**x e5 = exp(x/y)*exp(-z/y) - 2 e6 = 5**(x/2) - 2**(x/3) e7 = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3) e8 = -9*exp(-2*x + 5) + 4*exp(3*x + 1) e9 = 2**x + 4**x + 8**x - 84 assert solveset(e1, x, S.Reals) == FiniteSet( -3*log(2)/(-2*log(3) + log(2))) assert solveset(e2, x, S.Reals) == FiniteSet(Rational(4, 15)) assert solveset(e3, x, S.Reals) == S.EmptySet assert solveset(e4, x, S.Reals) == FiniteSet(0) assert solveset(e5, x, S.Reals) == Intersection( S.Reals, FiniteSet(y*log(2*exp(z/y)))) assert solveset(e6, x, S.Reals) == FiniteSet(0) assert solveset(e7, x, S.Reals) == FiniteSet(2) assert solveset(e8, x, S.Reals) == FiniteSet(-2*log(2)/5 + 2*log(3)/5 + Rational(4, 5)) assert solveset(e9, x, S.Reals) == FiniteSet(2) assert solveset_real(-9*exp(-2*x + 5) + 2**(x + 1), x) == FiniteSet( -((-5 - 2*log(3) + log(2))/(log(2) + 2))) assert solveset_real(4**(x/2) - 2**(x/3), x) == FiniteSet(0) b = sqrt(6)*sqrt(log(2))/sqrt(log(5)) assert solveset_real(5**(x/2) - 2**(3/x), x) == FiniteSet(-b, b) # coverage test C1, C2 = symbols('C1 C2') f = Function('f') assert solveset_real(C1 + C2/x**2 - exp(-f(x)), f(x)) == Intersection( S.Reals, FiniteSet(-log(C1 + C2/x**2))) y = symbols('y', positive=True) assert solveset_real(x**2 - y**2/exp(x), y) == Intersection( S.Reals, FiniteSet(-sqrt(x**2*exp(x)), sqrt(x**2*exp(x)))) p = Symbol('p', positive=True) assert solveset_real((1/p + 1)**(p + 1), p).dummy_eq( ConditionSet(x, Eq((1 + 1/x)**(x + 1), 0), S.Reals)) @XFAIL def test_exponential_complex(): from sympy.abc import x from sympy import Dummy n = Dummy('n') assert dumeq(solveset_complex(2**x + 4**x, x),imageset( Lambda(n, I*(2*n*pi + pi)/log(2)), S.Integers)) assert solveset_complex(x**z*y**z - 2, z) == FiniteSet( log(2)/(log(x) + log(y))) assert dumeq(solveset_complex(4**(x/2) - 2**(x/3), x), imageset( Lambda(n, 3*n*I*pi/log(2)), S.Integers)) assert dumeq(solveset(2**x + 32, x), imageset( Lambda(n, (I*(2*n*pi + pi) + 5*log(2))/log(2)), S.Integers)) eq = (2**exp(y**2/x) + 2)/(x**2 + 15) a = sqrt(x)*sqrt(-log(log(2)) + log(log(2) + 2*n*I*pi)) assert solveset_complex(eq, y) == FiniteSet(-a, a) union1 = imageset(Lambda(n, I*(2*n*pi - pi*Rational(2, 3))/log(2)), S.Integers) union2 = imageset(Lambda(n, I*(2*n*pi + pi*Rational(2, 3))/log(2)), S.Integers) assert dumeq(solveset(2**x + 4**x + 8**x, x), Union(union1, union2)) eq = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3) res = solveset(eq, x) num = 2*n*I*pi - 4*log(2) + 2*log(3) den = -2*log(2) + log(3) ans = imageset(Lambda(n, num/den), S.Integers) assert dumeq(res, ans) def test_expo_conditionset(): f1 = (exp(x) + 1)**x - 2 f2 = (x + 2)**y*x - 3 f3 = 2**x - exp(x) - 3 f4 = log(x) - exp(x) f5 = 2**x + 3**x - 5**x assert solveset(f1, x, S.Reals).dummy_eq(ConditionSet( x, Eq((exp(x) + 1)**x - 2, 0), S.Reals)) assert solveset(f2, x, S.Reals).dummy_eq(ConditionSet( x, Eq(x*(x + 2)**y - 3, 0), S.Reals)) assert solveset(f3, x, S.Reals).dummy_eq(ConditionSet( x, Eq(2**x - exp(x) - 3, 0), S.Reals)) assert solveset(f4, x, S.Reals).dummy_eq(ConditionSet( x, Eq(-exp(x) + log(x), 0), S.Reals)) assert solveset(f5, x, S.Reals).dummy_eq(ConditionSet( x, Eq(2**x + 3**x - 5**x, 0), S.Reals)) def test_exponential_symbols(): x, y, z = symbols('x y z', positive=True) assert solveset(z**x - y, x, S.Reals) == Intersection( S.Reals, FiniteSet(log(y)/log(z))) f1 = 2*x**w - 4*y**w f2 = (x/y)**w - 2 sol1 = Intersection({log(2)/(log(x) - log(y))}, S.Reals) sol2 = Intersection({log(2)/log(x/y)}, S.Reals) assert solveset(f1, w, S.Reals) == sol1, solveset(f1, w, S.Reals) assert solveset(f2, w, S.Reals) == sol2, solveset(f2, w, S.Reals) assert solveset(x**x, x, Interval.Lopen(0,oo)).dummy_eq( ConditionSet(w, Eq(w**w, 0), Interval.open(0, oo))) assert solveset(x**y - 1, y, S.Reals) == FiniteSet(0) assert solveset(exp(x/y)*exp(-z/y) - 2, y, S.Reals) == FiniteSet( (x - z)/log(2)) - FiniteSet(0) assert solveset(a**x - b**x, x).dummy_eq(ConditionSet( w, Ne(a, 0) & Ne(b, 0), FiniteSet(0))) def test_ignore_assumptions(): # make sure assumptions are ignored xpos = symbols('x', positive=True) x = symbols('x') assert solveset_complex(xpos**2 - 4, xpos ) == solveset_complex(x**2 - 4, x) @XFAIL def test_issue_10864(): assert solveset(x**(y*z) - x, x, S.Reals) == FiniteSet(1) @XFAIL def test_solve_only_exp_2(): assert solveset_real(sqrt(exp(x)) + sqrt(exp(-x)) - 4, x) == \ FiniteSet(2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2)) def test_is_exponential(): assert _is_exponential(y, x) is False assert _is_exponential(3**x - 2, x) is True assert _is_exponential(5**x - 7**(2 - x), x) is True assert _is_exponential(sin(2**x) - 4*x, x) is False assert _is_exponential(x**y - z, y) is True assert _is_exponential(x**y - z, x) is False assert _is_exponential(2**x + 4**x - 1, x) is True assert _is_exponential(x**(y*z) - x, x) is False assert _is_exponential(x**(2*x) - 3**x, x) is False assert _is_exponential(x**y - y*z, y) is False assert _is_exponential(x**y - x*z, y) is True def test_solve_exponential(): assert _solve_exponential(3**(2*x) - 2**(x + 3), 0, x, S.Reals) == \ FiniteSet(-3*log(2)/(-2*log(3) + log(2))) assert _solve_exponential(2**y + 4**y, 1, y, S.Reals) == \ FiniteSet(log(Rational(-1, 2) + sqrt(5)/2)/log(2)) assert _solve_exponential(2**y + 4**y, 0, y, S.Reals) == \ S.EmptySet assert _solve_exponential(2**x + 3**x - 5**x, 0, x, S.Reals) == \ ConditionSet(x, Eq(2**x + 3**x - 5**x, 0), S.Reals) # end of exponential tests # logarithmic tests def test_logarithmic(): assert solveset_real(log(x - 3) + log(x + 3), x) == FiniteSet( -sqrt(10), sqrt(10)) assert solveset_real(log(x + 1) - log(2*x - 1), x) == FiniteSet(2) assert solveset_real(log(x + 3) + log(1 + 3/x) - 3, x) == FiniteSet( -3 + sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 + exp(3)/2, -sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 - 3 + exp(3)/2) eq = z - log(x) + log(y/(x*(-1 + y**2/x**2))) assert solveset_real(eq, x) == \ Intersection(S.Reals, FiniteSet(-sqrt(y**2 - y*exp(z)), sqrt(y**2 - y*exp(z)))) - \ Intersection(S.Reals, FiniteSet(-sqrt(y**2), sqrt(y**2))) assert solveset_real( log(3*x) - log(-x + 1) - log(4*x + 1), x) == FiniteSet(Rational(-1, 2), S.Half) assert solveset(log(x**y) - y*log(x), x, S.Reals) == S.Reals @XFAIL def test_uselogcombine_2(): eq = log(exp(2*x) + 1) + log(-tanh(x) + 1) - log(2) assert solveset_real(eq, x) == EmptySet() eq = log(8*x) - log(sqrt(x) + 1) - 2 assert solveset_real(eq, x) == EmptySet() def test_is_logarithmic(): assert _is_logarithmic(y, x) is False assert _is_logarithmic(log(x), x) is True assert _is_logarithmic(log(x) - 3, x) is True assert _is_logarithmic(log(x)*log(y), x) is True assert _is_logarithmic(log(x)**2, x) is False assert _is_logarithmic(log(x - 3) + log(x + 3), x) is True assert _is_logarithmic(log(x**y) - y*log(x), x) is True assert _is_logarithmic(sin(log(x)), x) is False assert _is_logarithmic(x + y, x) is False assert _is_logarithmic(log(3*x) - log(1 - x) + 4, x) is True assert _is_logarithmic(log(x) + log(y) + x, x) is False assert _is_logarithmic(log(log(x - 3)) + log(x - 3), x) is True assert _is_logarithmic(log(log(3) + x) + log(x), x) is True assert _is_logarithmic(log(x)*(y + 3) + log(x), y) is False def test_solve_logarithm(): y = Symbol('y') assert _solve_logarithm(log(x**y) - y*log(x), 0, x, S.Reals) == S.Reals y = Symbol('y', positive=True) assert _solve_logarithm(log(x)*log(y), 0, x, S.Reals) == FiniteSet(1) # end of logarithmic tests def test_linear_coeffs(): from sympy.solvers.solveset import linear_coeffs assert linear_coeffs(0, x) == [0, 0] assert all(i is S.Zero for i in linear_coeffs(0, x)) assert linear_coeffs(x + 2*y + 3, x, y) == [1, 2, 3] assert linear_coeffs(x + 2*y + 3, y, x) == [2, 1, 3] assert linear_coeffs(x + 2*x**2 + 3, x, x**2) == [1, 2, 3] raises(ValueError, lambda: linear_coeffs(x + 2*x**2 + x**3, x, x**2)) raises(ValueError, lambda: linear_coeffs(1/x*(x - 1) + 1/x, x)) assert linear_coeffs(a*(x + y), x, y) == [a, a, 0] assert linear_coeffs(1.0, x, y) == [0, 0, 1.0] # modular tests def test_is_modular(): assert _is_modular(y, x) is False assert _is_modular(Mod(x, 3) - 1, x) is True assert _is_modular(Mod(x**3 - 3*x**2 - x + 1, 3) - 1, x) is True assert _is_modular(Mod(exp(x + y), 3) - 2, x) is True assert _is_modular(Mod(exp(x + y), 3) - log(x), x) is True assert _is_modular(Mod(x, 3) - 1, y) is False assert _is_modular(Mod(x, 3)**2 - 5, x) is False assert _is_modular(Mod(x, 3)**2 - y, x) is False assert _is_modular(exp(Mod(x, 3)) - 1, x) is False assert _is_modular(Mod(3, y) - 1, y) is False def test_invert_modular(): n = Dummy('n', integer=True) from sympy.solvers.solveset import _invert_modular as invert_modular # non invertible cases assert invert_modular(Mod(sin(x), 7), S(5), n, x) == (Mod(sin(x), 7), 5) assert invert_modular(Mod(exp(x), 7), S(5), n, x) == (Mod(exp(x), 7), 5) assert invert_modular(Mod(log(x), 7), S(5), n, x) == (Mod(log(x), 7), 5) # a is symbol assert dumeq(invert_modular(Mod(x, 7), S(5), n, x), (x, ImageSet(Lambda(n, 7*n + 5), S.Integers))) # a.is_Add assert dumeq(invert_modular(Mod(x + 8, 7), S(5), n, x), (x, ImageSet(Lambda(n, 7*n + 4), S.Integers))) assert invert_modular(Mod(x**2 + x, 7), S(5), n, x) == \ (Mod(x**2 + x, 7), 5) # a.is_Mul assert dumeq(invert_modular(Mod(3*x, 7), S(5), n, x), (x, ImageSet(Lambda(n, 7*n + 4), S.Integers))) assert invert_modular(Mod((x + 1)*(x + 2), 7), S(5), n, x) == \ (Mod((x + 1)*(x + 2), 7), 5) # a.is_Pow assert invert_modular(Mod(x**4, 7), S(5), n, x) == \ (x, EmptySet()) assert dumeq(invert_modular(Mod(3**x, 4), S(3), n, x), (x, ImageSet(Lambda(n, 2*n + 1), S.Naturals0))) assert dumeq(invert_modular(Mod(2**(x**2 + x + 1), 7), S(2), n, x), (x**2 + x + 1, ImageSet(Lambda(n, 3*n + 1), S.Naturals0))) assert invert_modular(Mod(sin(x)**4, 7), S(5), n, x) == (x, EmptySet()) def test_solve_modular(): n = Dummy('n', integer=True) # if rhs has symbol (need to be implemented in future). assert solveset(Mod(x, 4) - x, x, S.Integers ).dummy_eq( ConditionSet(x, Eq(-x + Mod(x, 4), 0), S.Integers)) # when _invert_modular fails to invert assert solveset(3 - Mod(sin(x), 7), x, S.Integers ).dummy_eq( ConditionSet(x, Eq(Mod(sin(x), 7) - 3, 0), S.Integers)) assert solveset(3 - Mod(log(x), 7), x, S.Integers ).dummy_eq( ConditionSet(x, Eq(Mod(log(x), 7) - 3, 0), S.Integers)) assert solveset(3 - Mod(exp(x), 7), x, S.Integers ).dummy_eq(ConditionSet(x, Eq(Mod(exp(x), 7) - 3, 0), S.Integers)) # EmptySet solution definitely assert solveset(7 - Mod(x, 5), x, S.Integers) == EmptySet() assert solveset(5 - Mod(x, 5), x, S.Integers) == EmptySet() # Negative m assert dumeq(solveset(2 + Mod(x, -3), x, S.Integers), ImageSet(Lambda(n, -3*n - 2), S.Integers)) assert solveset(4 + Mod(x, -3), x, S.Integers) == EmptySet() # linear expression in Mod assert dumeq(solveset(3 - Mod(x, 5), x, S.Integers), ImageSet(Lambda(n, 5*n + 3), S.Integers)) assert dumeq(solveset(3 - Mod(5*x - 8, 7), x, S.Integers), ImageSet(Lambda(n, 7*n + 5), S.Integers)) assert dumeq(solveset(3 - Mod(5*x, 7), x, S.Integers), ImageSet(Lambda(n, 7*n + 2), S.Integers)) # higher degree expression in Mod assert dumeq(solveset(Mod(x**2, 160) - 9, x, S.Integers), Union(ImageSet(Lambda(n, 160*n + 3), S.Integers), ImageSet(Lambda(n, 160*n + 13), S.Integers), ImageSet(Lambda(n, 160*n + 67), S.Integers), ImageSet(Lambda(n, 160*n + 77), S.Integers), ImageSet(Lambda(n, 160*n + 83), S.Integers), ImageSet(Lambda(n, 160*n + 93), S.Integers), ImageSet(Lambda(n, 160*n + 147), S.Integers), ImageSet(Lambda(n, 160*n + 157), S.Integers))) assert solveset(3 - Mod(x**4, 7), x, S.Integers) == EmptySet() assert dumeq(solveset(Mod(x**4, 17) - 13, x, S.Integers), Union(ImageSet(Lambda(n, 17*n + 3), S.Integers), ImageSet(Lambda(n, 17*n + 5), S.Integers), ImageSet(Lambda(n, 17*n + 12), S.Integers), ImageSet(Lambda(n, 17*n + 14), S.Integers))) # a.is_Pow tests assert dumeq(solveset(Mod(7**x, 41) - 15, x, S.Integers), ImageSet(Lambda(n, 40*n + 3), S.Naturals0)) assert dumeq(solveset(Mod(12**x, 21) - 18, x, S.Integers), ImageSet(Lambda(n, 6*n + 2), S.Naturals0)) assert dumeq(solveset(Mod(3**x, 4) - 3, x, S.Integers), ImageSet(Lambda(n, 2*n + 1), S.Naturals0)) assert dumeq(solveset(Mod(2**x, 7) - 2 , x, S.Integers), ImageSet(Lambda(n, 3*n + 1), S.Naturals0)) assert dumeq(solveset(Mod(3**(3**x), 4) - 3, x, S.Integers), Intersection(ImageSet(Lambda(n, Intersection({log(2*n + 1)/log(3)}, S.Integers)), S.Naturals0), S.Integers)) # Implemented for m without primitive root assert solveset(Mod(x**3, 7) - 2, x, S.Integers) == EmptySet() assert dumeq(solveset(Mod(x**3, 8) - 1, x, S.Integers), ImageSet(Lambda(n, 8*n + 1), S.Integers)) assert dumeq(solveset(Mod(x**4, 9) - 4, x, S.Integers), Union(ImageSet(Lambda(n, 9*n + 4), S.Integers), ImageSet(Lambda(n, 9*n + 5), S.Integers))) # domain intersection assert dumeq(solveset(3 - Mod(5*x - 8, 7), x, S.Naturals0), Intersection(ImageSet(Lambda(n, 7*n + 5), S.Integers), S.Naturals0)) # Complex args assert solveset(Mod(x, 3) - I, x, S.Integers) == \ EmptySet() assert solveset(Mod(I*x, 3) - 2, x, S.Integers ).dummy_eq( ConditionSet(x, Eq(Mod(I*x, 3) - 2, 0), S.Integers)) assert solveset(Mod(I + x, 3) - 2, x, S.Integers ).dummy_eq( ConditionSet(x, Eq(Mod(x + I, 3) - 2, 0), S.Integers)) # issue 17373 (https://github.com/sympy/sympy/issues/17373) assert dumeq(solveset(Mod(x**4, 14) - 11, x, S.Integers), Union(ImageSet(Lambda(n, 14*n + 3), S.Integers), ImageSet(Lambda(n, 14*n + 11), S.Integers))) assert dumeq(solveset(Mod(x**31, 74) - 43, x, S.Integers), ImageSet(Lambda(n, 74*n + 31), S.Integers)) # issue 13178 n = symbols('n', integer=True) a = 742938285 b = 1898888478 m = 2**31 - 1 c = 20170816 assert dumeq(solveset(c - Mod(a**n*b, m), n, S.Integers), ImageSet(Lambda(n, 2147483646*n + 100), S.Naturals0)) assert dumeq(solveset(c - Mod(a**n*b, m), n, S.Naturals0), Intersection(ImageSet(Lambda(n, 2147483646*n + 100), S.Naturals0), S.Naturals0)) assert dumeq(solveset(c - Mod(a**(2*n)*b, m), n, S.Integers), Intersection(ImageSet(Lambda(n, 1073741823*n + 50), S.Naturals0), S.Integers)) assert solveset(c - Mod(a**(2*n + 7)*b, m), n, S.Integers) == EmptySet() assert dumeq(solveset(c - Mod(a**(n - 4)*b, m), n, S.Integers), Intersection(ImageSet(Lambda(n, 2147483646*n + 104), S.Naturals0), S.Integers)) # end of modular tests def test_issue_17276(): assert nonlinsolve([Eq(x, 5**(S(1)/5)), Eq(x*y, 25*sqrt(5))], x, y) == \ FiniteSet((5**(S(1)/5), 25*5**(S(3)/10))) def test_issue_10426(): x=Dummy('x') a=Symbol('a') n=Dummy('n') assert (solveset(sin(x + a) - sin(x), a)).dummy_eq(Dummy('x')) == (Union( ImageSet(Lambda(n, 2*n*pi), S.Integers), Intersection(S.Complexes, ImageSet(Lambda(n, -I*(I*(2*n*pi + arg(-exp(-2*I*x))) + 2*im(x))), S.Integers)))).dummy_eq(Dummy('x,n')) @XFAIL def test_substitution_with_infeasible_solution(): a00, a01, a10, a11, l0, l1, l2, l3, m0, m1, m2, m3, m4, m5, m6, m7, c00, c01, c10, c11, p00, p01, p10, p11 = symbols( 'a00, a01, a10, a11, l0, l1, l2, l3, m0, m1, m2, m3, m4, m5, m6, m7, c00, c01, c10, c11, p00, p01, p10, p11' ) solvefor = [p00, p01, p10, p11, c00, c01, c10, c11, m0, m1, m3, l0, l1, l2, l3] system = [ -l0 * c00 - l1 * c01 + m0 + c00 + c01, -l0 * c10 - l1 * c11 + m1, -l2 * c00 - l3 * c01 + c00 + c01, -l2 * c10 - l3 * c11 + m3, -l0 * p00 - l2 * p10 + p00 + p10, -l1 * p00 - l3 * p10 + p00 + p10, -l0 * p01 - l2 * p11, -l1 * p01 - l3 * p11, -a00 + c00 * p00 + c10 * p01, -a01 + c01 * p00 + c11 * p01, -a10 + c00 * p10 + c10 * p11, -a11 + c01 * p10 + c11 * p11, -m0 * p00, -m1 * p01, -m2 * p10, -m3 * p11, -m4 * c00, -m5 * c01, -m6 * c10, -m7 * c11, m2, m4, m5, m6, m7 ] sol = FiniteSet( (0, Complement(FiniteSet(p01), FiniteSet(0)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, l2, l3), (p00, Complement(FiniteSet(p01), FiniteSet(0)), 0, p11, 0, 0, 0, 0, 0, 0, 0, 1, 1, -p01/p11, -p01/p11), (0, Complement(FiniteSet(p01), FiniteSet(0)), 0, p11, 0, 0, 0, 0, 0, 0, 0, 1, -l3*p11/p01, -p01/p11, l3), (0, Complement(FiniteSet(p01), FiniteSet(0)), 0, p11, 0, 0, 0, 0, 0, 0, 0, -l2*p11/p01, -l3*p11/p01, l2, l3), ) assert sol != nonlinsolve(system, solvefor)
7e8b6a0a51ff543fc229c080feded47d635bf7ab2df70ab3fd9d3f356fae6d51
from sympy import (Add, Matrix, Mul, S, symbols, Eq, pi, factorint, oo, powsimp, Rational) from sympy.core.function import _mexpand from sympy.core.compatibility import ordered from sympy.functions.elementary.trigonometric import sin from sympy.solvers.diophantine import diophantine from sympy.solvers.diophantine.diophantine import (diop_DN, diop_solve, diop_ternary_quadratic_normal, diop_general_pythagorean, diop_ternary_quadratic, diop_linear, diop_quadratic, diop_general_sum_of_squares, diop_general_sum_of_even_powers, descent, diop_bf_DN, divisible, equivalent, find_DN, ldescent, length, reconstruct, partition, power_representation, prime_as_sum_of_two_squares, square_factor, sum_of_four_squares, sum_of_three_squares, transformation_to_DN, transformation_to_normal, classify_diop, base_solution_linear, cornacchia, sqf_normal, gaussian_reduce, holzer, check_param, parametrize_ternary_quadratic, sum_of_powers, sum_of_squares, _diop_ternary_quadratic_normal, _nint_or_floor, _odd, _even, _remove_gcd, _can_do_sum_of_squares, DiophantineSolutionSet, GeneralPythagorean, BinaryQuadratic) from sympy.utilities import default_sort_key from sympy.testing.pytest import slow, raises, XFAIL from sympy.utilities.iterables import ( signed_permutations) a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z = symbols( "a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z", integer=True) t_0, t_1, t_2, t_3, t_4, t_5, t_6 = symbols("t_:7", integer=True) m1, m2, m3 = symbols('m1:4', integer=True) n1 = symbols('n1', integer=True) def diop_simplify(eq): return _mexpand(powsimp(_mexpand(eq))) def test_input_format(): raises(TypeError, lambda: diophantine(sin(x))) raises(TypeError, lambda: diophantine(x/pi - 3)) def test_nosols(): # diophantine should sympify eq so that these are equivalent assert diophantine(3) == set() assert diophantine(S(3)) == set() def test_univariate(): assert diop_solve((x - 1)*(x - 2)**2) == {(1,), (2,)} assert diop_solve((x - 1)*(x - 2)) == {(1,), (2,)} def test_classify_diop(): raises(TypeError, lambda: classify_diop(x**2/3 - 1)) raises(ValueError, lambda: classify_diop(1)) raises(NotImplementedError, lambda: classify_diop(w*x*y*z - 1)) raises(NotImplementedError, lambda: classify_diop(x**3 + y**3 + z**4 - 90)) assert classify_diop(14*x**2 + 15*x - 42) == ( [x], {1: -42, x: 15, x**2: 14}, 'univariate') assert classify_diop(x*y + z) == ( [x, y, z], {x*y: 1, z: 1}, 'inhomogeneous_ternary_quadratic') assert classify_diop(x*y + z + w + x**2) == ( [w, x, y, z], {x*y: 1, w: 1, x**2: 1, z: 1}, 'inhomogeneous_general_quadratic') assert classify_diop(x*y + x*z + x**2 + 1) == ( [x, y, z], {x*y: 1, x*z: 1, x**2: 1, 1: 1}, 'inhomogeneous_general_quadratic') assert classify_diop(x*y + z + w + 42) == ( [w, x, y, z], {x*y: 1, w: 1, 1: 42, z: 1}, 'inhomogeneous_general_quadratic') assert classify_diop(x*y + z*w) == ( [w, x, y, z], {x*y: 1, w*z: 1}, 'homogeneous_general_quadratic') assert classify_diop(x*y**2 + 1) == ( [x, y], {x*y**2: 1, 1: 1}, 'cubic_thue') assert classify_diop(x**4 + y**4 + z**4 - (1 + 16 + 81)) == ( [x, y, z], {1: -98, x**4: 1, z**4: 1, y**4: 1}, 'general_sum_of_even_powers') assert classify_diop(x**2 + y**2 + z**2) == ( [x, y, z], {x**2: 1, y**2: 1, z**2: 1}, 'homogeneous_ternary_quadratic_normal') def test_linear(): assert diop_solve(x) == (0,) assert diop_solve(1*x) == (0,) assert diop_solve(3*x) == (0,) assert diop_solve(x + 1) == (-1,) assert diop_solve(2*x + 1) == (None,) assert diop_solve(2*x + 4) == (-2,) assert diop_solve(y + x) == (t_0, -t_0) assert diop_solve(y + x + 0) == (t_0, -t_0) assert diop_solve(y + x - 0) == (t_0, -t_0) assert diop_solve(0*x - y - 5) == (-5,) assert diop_solve(3*y + 2*x - 5) == (3*t_0 - 5, -2*t_0 + 5) assert diop_solve(2*x - 3*y - 5) == (3*t_0 - 5, 2*t_0 - 5) assert diop_solve(-2*x - 3*y - 5) == (3*t_0 + 5, -2*t_0 - 5) assert diop_solve(7*x + 5*y) == (5*t_0, -7*t_0) assert diop_solve(2*x + 4*y) == (2*t_0, -t_0) assert diop_solve(4*x + 6*y - 4) == (3*t_0 - 2, -2*t_0 + 2) assert diop_solve(4*x + 6*y - 3) == (None, None) assert diop_solve(0*x + 3*y - 4*z + 5) == (4*t_0 + 5, 3*t_0 + 5) assert diop_solve(4*x + 3*y - 4*z + 5) == (t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5) assert diop_solve(4*x + 3*y - 4*z + 5, None) == (0, 5, 5) assert diop_solve(4*x + 2*y + 8*z - 5) == (None, None, None) assert diop_solve(5*x + 7*y - 2*z - 6) == (t_0, -3*t_0 + 2*t_1 + 6, -8*t_0 + 7*t_1 + 18) assert diop_solve(3*x - 6*y + 12*z - 9) == (2*t_0 + 3, t_0 + 2*t_1, t_1) assert diop_solve(6*w + 9*x + 20*y - z) == (t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 20*t_2) # to ignore constant factors, use diophantine raises(TypeError, lambda: diop_solve(x/2)) def test_quadratic_simple_hyperbolic_case(): # Simple Hyperbolic case: A = C = 0 and B != 0 assert diop_solve(3*x*y + 34*x - 12*y + 1) == \ {(-133, -11), (5, -57)} assert diop_solve(6*x*y + 2*x + 3*y + 1) == set() assert diop_solve(-13*x*y + 2*x - 4*y - 54) == {(27, 0)} assert diop_solve(-27*x*y - 30*x - 12*y - 54) == {(-14, -1)} assert diop_solve(2*x*y + 5*x + 56*y + 7) == {(-161, -3), (-47, -6), (-35, -12), (-29, -69), (-27, 64), (-21, 7), (-9, 1), (105, -2)} assert diop_solve(6*x*y + 9*x + 2*y + 3) == set() assert diop_solve(x*y + x + y + 1) == {(-1, t), (t, -1)} assert diophantine(48*x*y) def test_quadratic_elliptical_case(): # Elliptical case: B**2 - 4AC < 0 assert diop_solve(42*x**2 + 8*x*y + 15*y**2 + 23*x + 17*y - 4915) == {(-11, -1)} assert diop_solve(4*x**2 + 3*y**2 + 5*x - 11*y + 12) == set() assert diop_solve(x**2 + y**2 + 2*x + 2*y + 2) == {(-1, -1)} assert diop_solve(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950) == {(-15, 6)} assert diop_solve(10*x**2 + 12*x*y + 12*y**2 - 34) == \ {(-1, -1), (-1, 2), (1, -2), (1, 1)} def test_quadratic_parabolic_case(): # Parabolic case: B**2 - 4AC = 0 assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 5*x + 7*y + 16) assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 6*x + 12*y - 6) assert check_solutions(8*x**2 + 24*x*y + 18*y**2 + 4*x + 6*y - 7) assert check_solutions(-4*x**2 + 4*x*y - y**2 + 2*x - 3) assert check_solutions(x**2 + 2*x*y + y**2 + 2*x + 2*y + 1) assert check_solutions(x**2 - 2*x*y + y**2 + 2*x + 2*y + 1) assert check_solutions(y**2 - 41*x + 40) def test_quadratic_perfect_square(): # B**2 - 4*A*C > 0 # B**2 - 4*A*C is a perfect square assert check_solutions(48*x*y) assert check_solutions(4*x**2 - 5*x*y + y**2 + 2) assert check_solutions(-2*x**2 - 3*x*y + 2*y**2 -2*x - 17*y + 25) assert check_solutions(12*x**2 + 13*x*y + 3*y**2 - 2*x + 3*y - 12) assert check_solutions(8*x**2 + 10*x*y + 2*y**2 - 32*x - 13*y - 23) assert check_solutions(4*x**2 - 4*x*y - 3*y- 8*x - 3) assert check_solutions(- 4*x*y - 4*y**2 - 3*y- 5*x - 10) assert check_solutions(x**2 - y**2 - 2*x - 2*y) assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y) assert check_solutions(4*x**2 - 9*y**2 - 4*x - 12*y - 3) def test_quadratic_non_perfect_square(): # B**2 - 4*A*C is not a perfect square # Used check_solutions() since the solutions are complex expressions involving # square roots and exponents assert check_solutions(x**2 - 2*x - 5*y**2) assert check_solutions(3*x**2 - 2*y**2 - 2*x - 2*y) assert check_solutions(x**2 - x*y - y**2 - 3*y) assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y) assert BinaryQuadratic(x**2 + y**2 + 2*x + 2*y + 2).solve() == {(-1, -1)} def test_issue_9106(): eq = -48 - 2*x*(3*x - 1) + y*(3*y - 1) v = (x, y) for sol in diophantine(eq): assert not diop_simplify(eq.xreplace(dict(zip(v, sol)))) def test_issue_18138(): eq = x**2 - x - y**2 v = (x, y) for sol in diophantine(eq): assert not diop_simplify(eq.xreplace(dict(zip(v, sol)))) @slow def test_quadratic_non_perfect_slow(): assert check_solutions(8*x**2 + 10*x*y - 2*y**2 - 32*x - 13*y - 23) # This leads to very large numbers. # assert check_solutions(5*x**2 - 13*x*y + y**2 - 4*x - 4*y - 15) assert check_solutions(-3*x**2 - 2*x*y + 7*y**2 - 5*x - 7) assert check_solutions(-4 - x + 4*x**2 - y - 3*x*y - 4*y**2) assert check_solutions(1 + 2*x + 2*x**2 + 2*y + x*y - 2*y**2) def test_DN(): # Most of the test cases were adapted from, # Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004. # http://www.jpr2718.org/pell.pdf # others are verified using Wolfram Alpha. # Covers cases where D <= 0 or D > 0 and D is a square or N = 0 # Solutions are straightforward in these cases. assert diop_DN(3, 0) == [(0, 0)] assert diop_DN(-17, -5) == [] assert diop_DN(-19, 23) == [(2, 1)] assert diop_DN(-13, 17) == [(2, 1)] assert diop_DN(-15, 13) == [] assert diop_DN(0, 5) == [] assert diop_DN(0, 9) == [(3, t)] assert diop_DN(9, 0) == [(3*t, t)] assert diop_DN(16, 24) == [] assert diop_DN(9, 180) == [(18, 4)] assert diop_DN(9, -180) == [(12, 6)] assert diop_DN(7, 0) == [(0, 0)] # When equation is x**2 + y**2 = N # Solutions are interchangeable assert diop_DN(-1, 5) == [(2, 1), (1, 2)] assert diop_DN(-1, 169) == [(12, 5), (5, 12), (13, 0), (0, 13)] # D > 0 and D is not a square # N = 1 assert diop_DN(13, 1) == [(649, 180)] assert diop_DN(980, 1) == [(51841, 1656)] assert diop_DN(981, 1) == [(158070671986249, 5046808151700)] assert diop_DN(986, 1) == [(49299, 1570)] assert diop_DN(991, 1) == [(379516400906811930638014896080, 12055735790331359447442538767)] assert diop_DN(17, 1) == [(33, 8)] assert diop_DN(19, 1) == [(170, 39)] # N = -1 assert diop_DN(13, -1) == [(18, 5)] assert diop_DN(991, -1) == [] assert diop_DN(41, -1) == [(32, 5)] assert diop_DN(290, -1) == [(17, 1)] assert diop_DN(21257, -1) == [(13913102721304, 95427381109)] assert diop_DN(32, -1) == [] # |N| > 1 # Some tests were created using calculator at # http://www.numbertheory.org/php/patz.html assert diop_DN(13, -4) == [(3, 1), (393, 109), (36, 10)] # Source I referred returned (3, 1), (393, 109) and (-3, 1) as fundamental solutions # So (-3, 1) and (393, 109) should be in the same equivalent class assert equivalent(-3, 1, 393, 109, 13, -4) == True assert diop_DN(13, 27) == [(220, 61), (40, 11), (768, 213), (12, 3)] assert set(diop_DN(157, 12)) == {(13, 1), (10663, 851), (579160, 46222), (483790960, 38610722), (26277068347, 2097138361), (21950079635497, 1751807067011)} assert diop_DN(13, 25) == [(3245, 900)] assert diop_DN(192, 18) == [] assert diop_DN(23, 13) == [(-6, 1), (6, 1)] assert diop_DN(167, 2) == [(13, 1)] assert diop_DN(167, -2) == [] assert diop_DN(123, -2) == [(11, 1)] # One calculator returned [(11, 1), (-11, 1)] but both of these are in # the same equivalence class assert equivalent(11, 1, -11, 1, 123, -2) assert diop_DN(123, -23) == [(-10, 1), (10, 1)] assert diop_DN(0, 0, t) == [(0, t)] assert diop_DN(0, -1, t) == [] def test_bf_pell(): assert diop_bf_DN(13, -4) == [(3, 1), (-3, 1), (36, 10)] assert diop_bf_DN(13, 27) == [(12, 3), (-12, 3), (40, 11), (-40, 11)] assert diop_bf_DN(167, -2) == [] assert diop_bf_DN(1729, 1) == [(44611924489705, 1072885712316)] assert diop_bf_DN(89, -8) == [(9, 1), (-9, 1)] assert diop_bf_DN(21257, -1) == [(13913102721304, 95427381109)] assert diop_bf_DN(340, -4) == [(756, 41)] assert diop_bf_DN(-1, 0, t) == [(0, 0)] assert diop_bf_DN(0, 0, t) == [(0, t)] assert diop_bf_DN(4, 0, t) == [(2*t, t), (-2*t, t)] assert diop_bf_DN(3, 0, t) == [(0, 0)] assert diop_bf_DN(1, -2, t) == [] def test_length(): assert length(2, 1, 0) == 1 assert length(-2, 4, 5) == 3 assert length(-5, 4, 17) == 4 assert length(0, 4, 13) == 6 assert length(7, 13, 11) == 23 assert length(1, 6, 4) == 2 def is_pell_transformation_ok(eq): """ Test whether X*Y, X, or Y terms are present in the equation after transforming the equation using the transformation returned by transformation_to_pell(). If they are not present we are good. Moreover, coefficient of X**2 should be a divisor of coefficient of Y**2 and the constant term. """ A, B = transformation_to_DN(eq) u = (A*Matrix([X, Y]) + B)[0] v = (A*Matrix([X, Y]) + B)[1] simplified = diop_simplify(eq.subs(zip((x, y), (u, v)))) coeff = dict([reversed(t.as_independent(*[X, Y])) for t in simplified.args]) for term in [X*Y, X, Y]: if term in coeff.keys(): return False for term in [X**2, Y**2, 1]: if term not in coeff.keys(): coeff[term] = 0 if coeff[X**2] != 0: return divisible(coeff[Y**2], coeff[X**2]) and \ divisible(coeff[1], coeff[X**2]) return True def test_transformation_to_pell(): assert is_pell_transformation_ok(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y - 14) assert is_pell_transformation_ok(-17*x**2 + 19*x*y - 7*y**2 - 5*x - 13*y - 23) assert is_pell_transformation_ok(x**2 - y**2 + 17) assert is_pell_transformation_ok(-x**2 + 7*y**2 - 23) assert is_pell_transformation_ok(25*x**2 - 45*x*y + 5*y**2 - 5*x - 10*y + 5) assert is_pell_transformation_ok(190*x**2 + 30*x*y + y**2 - 3*y - 170*x - 130) assert is_pell_transformation_ok(x**2 - 2*x*y -190*y**2 - 7*y - 23*x - 89) assert is_pell_transformation_ok(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950) def test_find_DN(): assert find_DN(x**2 - 2*x - y**2) == (1, 1) assert find_DN(x**2 - 3*y**2 - 5) == (3, 5) assert find_DN(x**2 - 2*x*y - 4*y**2 - 7) == (5, 7) assert find_DN(4*x**2 - 8*x*y - y**2 - 9) == (20, 36) assert find_DN(7*x**2 - 2*x*y - y**2 - 12) == (8, 84) assert find_DN(-3*x**2 + 4*x*y -y**2) == (1, 0) assert find_DN(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y -14) == (101, -7825480) def test_ldescent(): # Equations which have solutions u = ([(13, 23), (3, -11), (41, -113), (4, -7), (-7, 4), (91, -3), (1, 1), (1, -1), (4, 32), (17, 13), (123689, 1), (19, -570)]) for a, b in u: w, x, y = ldescent(a, b) assert a*x**2 + b*y**2 == w**2 assert ldescent(-1, -1) is None def test_diop_ternary_quadratic_normal(): assert check_solutions(234*x**2 - 65601*y**2 - z**2) assert check_solutions(23*x**2 + 616*y**2 - z**2) assert check_solutions(5*x**2 + 4*y**2 - z**2) assert check_solutions(3*x**2 + 6*y**2 - 3*z**2) assert check_solutions(x**2 + 3*y**2 - z**2) assert check_solutions(4*x**2 + 5*y**2 - z**2) assert check_solutions(x**2 + y**2 - z**2) assert check_solutions(16*x**2 + y**2 - 25*z**2) assert check_solutions(6*x**2 - y**2 + 10*z**2) assert check_solutions(213*x**2 + 12*y**2 - 9*z**2) assert check_solutions(34*x**2 - 3*y**2 - 301*z**2) assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2) def is_normal_transformation_ok(eq): A = transformation_to_normal(eq) X, Y, Z = A*Matrix([x, y, z]) simplified = diop_simplify(eq.subs(zip((x, y, z), (X, Y, Z)))) coeff = dict([reversed(t.as_independent(*[X, Y, Z])) for t in simplified.args]) for term in [X*Y, Y*Z, X*Z]: if term in coeff.keys(): return False return True def test_transformation_to_normal(): assert is_normal_transformation_ok(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z) assert is_normal_transformation_ok(x**2 + 3*y**2 - 100*z**2) assert is_normal_transformation_ok(x**2 + 23*y*z) assert is_normal_transformation_ok(3*y**2 - 100*z**2 - 12*x*y) assert is_normal_transformation_ok(x**2 + 23*x*y - 34*y*z + 12*x*z) assert is_normal_transformation_ok(z**2 + 34*x*y - 23*y*z + x*z) assert is_normal_transformation_ok(x**2 + y**2 + z**2 - x*y - y*z - x*z) assert is_normal_transformation_ok(x**2 + 2*y*z + 3*z**2) assert is_normal_transformation_ok(x*y + 2*x*z + 3*y*z) assert is_normal_transformation_ok(2*x*z + 3*y*z) def test_diop_ternary_quadratic(): assert check_solutions(2*x**2 + z**2 + y**2 - 4*x*y) assert check_solutions(x**2 - y**2 - z**2 - x*y - y*z) assert check_solutions(3*x**2 - x*y - y*z - x*z) assert check_solutions(x**2 - y*z - x*z) assert check_solutions(5*x**2 - 3*x*y - x*z) assert check_solutions(4*x**2 - 5*y**2 - x*z) assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z) assert check_solutions(8*x**2 - 12*y*z) assert check_solutions(45*x**2 - 7*y**2 - 8*x*y - z**2) assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y -8*x*y) assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z) assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 17*y*z) assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 16*y*z + 12*x*z) assert check_solutions(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z) assert check_solutions(x*y - 7*y*z + 13*x*z) assert diop_ternary_quadratic_normal(x**2 + y**2 + z**2) == (None, None, None) assert diop_ternary_quadratic_normal(x**2 + y**2) is None raises(ValueError, lambda: _diop_ternary_quadratic_normal((x, y, z), {x*y: 1, x**2: 2, y**2: 3, z**2: 0})) eq = -2*x*y - 6*x*z + 7*y**2 - 3*y*z + 4*z**2 assert diop_ternary_quadratic(eq) == (7, 2, 0) assert diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2) == \ (1, 0, 2) assert diop_ternary_quadratic(x*y + 2*y*z) == \ (-2, 0, n1) eq = -5*x*y - 8*x*z - 3*y*z + 8*z**2 assert parametrize_ternary_quadratic(eq) == \ (8*p**2 - 3*p*q, -8*p*q + 8*q**2, 5*p*q) # this cannot be tested with diophantine because it will # factor into a product assert diop_solve(x*y + 2*y*z) == (-2*p*q, -n1*p**2 + p**2, p*q) def test_square_factor(): assert square_factor(1) == square_factor(-1) == 1 assert square_factor(0) == 1 assert square_factor(5) == square_factor(-5) == 1 assert square_factor(4) == square_factor(-4) == 2 assert square_factor(12) == square_factor(-12) == 2 assert square_factor(6) == 1 assert square_factor(18) == 3 assert square_factor(52) == 2 assert square_factor(49) == 7 assert square_factor(392) == 14 assert square_factor(factorint(-12)) == 2 def test_parametrize_ternary_quadratic(): assert check_solutions(x**2 + y**2 - z**2) assert check_solutions(x**2 + 2*x*y + z**2) assert check_solutions(234*x**2 - 65601*y**2 - z**2) assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z) assert check_solutions(x**2 - y**2 - z**2) assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y - 8*x*y) assert check_solutions(8*x*y + z**2) assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2) assert check_solutions(236*x**2 - 225*y**2 - 11*x*y - 13*y*z - 17*x*z) assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z) assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2) def test_no_square_ternary_quadratic(): assert check_solutions(2*x*y + y*z - 3*x*z) assert check_solutions(189*x*y - 345*y*z - 12*x*z) assert check_solutions(23*x*y + 34*y*z) assert check_solutions(x*y + y*z + z*x) assert check_solutions(23*x*y + 23*y*z + 23*x*z) def test_descent(): u = ([(13, 23), (3, -11), (41, -113), (91, -3), (1, 1), (1, -1), (17, 13), (123689, 1), (19, -570)]) for a, b in u: w, x, y = descent(a, b) assert a*x**2 + b*y**2 == w**2 # the docstring warns against bad input, so these are expected results # - can't both be negative raises(TypeError, lambda: descent(-1, -3)) # A can't be zero unless B != 1 raises(ZeroDivisionError, lambda: descent(0, 3)) # supposed to be square-free raises(TypeError, lambda: descent(4, 3)) def test_diophantine(): assert check_solutions((x - y)*(y - z)*(z - x)) assert check_solutions((x - y)*(x**2 + y**2 - z**2)) assert check_solutions((x - 3*y + 7*z)*(x**2 + y**2 - z**2)) assert check_solutions(x**2 - 3*y**2 - 1) assert check_solutions(y**2 + 7*x*y) assert check_solutions(x**2 - 3*x*y + y**2) assert check_solutions(z*(x**2 - y**2 - 15)) assert check_solutions(x*(2*y - 2*z + 5)) assert check_solutions((x**2 - 3*y**2 - 1)*(x**2 - y**2 - 15)) assert check_solutions((x**2 - 3*y**2 - 1)*(y - 7*z)) assert check_solutions((x**2 + y**2 - z**2)*(x - 7*y - 3*z + 4*w)) # Following test case caused problems in parametric representation # But this can be solved by factoring out y. # No need to use methods for ternary quadratic equations. assert check_solutions(y**2 - 7*x*y + 4*y*z) assert check_solutions(x**2 - 2*x + 1) assert diophantine(x - y) == diophantine(Eq(x, y)) # 18196 eq = x**4 + y**4 - 97 assert diophantine(eq, permute=True) == diophantine(-eq, permute=True) assert diophantine(3*x*pi - 2*y*pi) == {(2*t_0, 3*t_0)} eq = x**2 + y**2 + z**2 - 14 base_sol = {(1, 2, 3)} assert diophantine(eq) == base_sol complete_soln = set(signed_permutations(base_sol.pop())) assert diophantine(eq, permute=True) == complete_soln assert diophantine(x**2 + x*Rational(15, 14) - 3) == set() # test issue 11049 eq = 92*x**2 - 99*y**2 - z**2 coeff = eq.as_coefficients_dict() assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \ {(9, 7, 51)} assert diophantine(eq) == {( 891*p**2 + 9*q**2, -693*p**2 - 102*p*q + 7*q**2, 5049*p**2 - 1386*p*q - 51*q**2)} eq = 2*x**2 + 2*y**2 - z**2 coeff = eq.as_coefficients_dict() assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \ {(1, 1, 2)} assert diophantine(eq) == {( 2*p**2 - q**2, -2*p**2 + 4*p*q - q**2, 4*p**2 - 4*p*q + 2*q**2)} eq = 411*x**2+57*y**2-221*z**2 coeff = eq.as_coefficients_dict() assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \ {(2021, 2645, 3066)} assert diophantine(eq) == \ {(115197*p**2 - 446641*q**2, -150765*p**2 + 1355172*p*q - 584545*q**2, 174762*p**2 - 301530*p*q + 677586*q**2)} eq = 573*x**2+267*y**2-984*z**2 coeff = eq.as_coefficients_dict() assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \ {(49, 233, 127)} assert diophantine(eq) == \ {(4361*p**2 - 16072*q**2, -20737*p**2 + 83312*p*q - 76424*q**2, 11303*p**2 - 41474*p*q + 41656*q**2)} # this produces factors during reconstruction eq = x**2 + 3*y**2 - 12*z**2 coeff = eq.as_coefficients_dict() assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \ {(0, 2, 1)} assert diophantine(eq) == \ {(24*p*q, 2*p**2 - 24*q**2, p**2 + 12*q**2)} # solvers have not been written for every type raises(NotImplementedError, lambda: diophantine(x*y**2 + 1)) # rational expressions assert diophantine(1/x) == set() assert diophantine(1/x + 1/y - S.Half) == {(6, 3), (-2, 1), (4, 4), (1, -2), (3, 6)} assert diophantine(x**2 + y**2 +3*x- 5, permute=True) == \ {(-1, 1), (-4, -1), (1, -1), (1, 1), (-4, 1), (-1, -1), (4, 1), (4, -1)} #test issue 18186 assert diophantine(y**4 + x**4 - 2**4 - 3**4, syms=(x, y), permute=True) == \ {(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)} assert diophantine(y**4 + x**4 - 2**4 - 3**4, syms=(y, x), permute=True) == \ {(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)} # issue 18122 assert check_solutions(x**2-y) assert check_solutions(y**2-x) assert diophantine((x**2-y), t) == {(t, t**2)} assert diophantine((y**2-x), t) == {(t**2, -t)} def test_general_pythagorean(): from sympy.abc import a, b, c, d, e assert check_solutions(a**2 + b**2 + c**2 - d**2) assert check_solutions(a**2 + 4*b**2 + 4*c**2 - d**2) assert check_solutions(9*a**2 + 4*b**2 + 4*c**2 - d**2) assert check_solutions(9*a**2 + 4*b**2 - 25*d**2 + 4*c**2 ) assert check_solutions(9*a**2 - 16*d**2 + 4*b**2 + 4*c**2) assert check_solutions(-e**2 + 9*a**2 + 4*b**2 + 4*c**2 + 25*d**2) assert check_solutions(16*a**2 - b**2 + 9*c**2 + d**2 + 25*e**2) assert GeneralPythagorean(a**2 + b**2 + c**2 - d**2).solve(parameters=[x, y, z]) == \ {(x**2 + y**2 - z**2, 2*x*z, 2*y*z, x**2 + y**2 + z**2)} def test_diop_general_sum_of_squares_quick(): for i in range(3, 10): assert check_solutions(sum(i**2 for i in symbols(':%i' % i)) - i) assert diop_general_sum_of_squares(x**2 + y**2 - 2) is None assert diop_general_sum_of_squares(x**2 + y**2 + z**2 + 2) == set() eq = x**2 + y**2 + z**2 - (1 + 4 + 9) assert diop_general_sum_of_squares(eq) == \ {(1, 2, 3)} eq = u**2 + v**2 + x**2 + y**2 + z**2 - 1313 assert len(diop_general_sum_of_squares(eq, 3)) == 3 # issue 11016 var = symbols(':5') + (symbols('6', negative=True),) eq = Add(*[i**2 for i in var]) - 112 base_soln = {(0, 1, 1, 5, 6, -7), (1, 1, 1, 3, 6, -8), (2, 3, 3, 4, 5, -7), (0, 1, 1, 1, 3, -10), (0, 0, 4, 4, 4, -8), (1, 2, 3, 3, 5, -8), (0, 1, 2, 3, 7, -7), (2, 2, 4, 4, 6, -6), (1, 1, 3, 4, 6, -7), (0, 2, 3, 3, 3, -9), (0, 0, 2, 2, 2, -10), (1, 1, 2, 3, 4, -9), (0, 1, 1, 2, 5, -9), (0, 0, 2, 6, 6, -6), (1, 3, 4, 5, 5, -6), (0, 2, 2, 2, 6, -8), (0, 3, 3, 3, 6, -7), (0, 2, 3, 5, 5, -7), (0, 1, 5, 5, 5, -6)} assert diophantine(eq) == base_soln assert len(diophantine(eq, permute=True)) == 196800 # handle negated squares with signsimp assert diophantine(12 - x**2 - y**2 - z**2) == {(2, 2, 2)} # diophantine handles simplification, so classify_diop should # not have to look for additional patterns that are removed # by diophantine eq = a**2 + b**2 + c**2 + d**2 - 4 raises(NotImplementedError, lambda: classify_diop(-eq)) def test_diop_partition(): for n in [8, 10]: for k in range(1, 8): for p in partition(n, k): assert len(p) == k assert [p for p in partition(3, 5)] == [] assert [list(p) for p in partition(3, 5, 1)] == [ [0, 0, 0, 0, 3], [0, 0, 0, 1, 2], [0, 0, 1, 1, 1]] assert list(partition(0)) == [()] assert list(partition(1, 0)) == [()] assert [list(i) for i in partition(3)] == [[1, 1, 1], [1, 2], [3]] def test_prime_as_sum_of_two_squares(): for i in [5, 13, 17, 29, 37, 41, 2341, 3557, 34841, 64601]: a, b = prime_as_sum_of_two_squares(i) assert a**2 + b**2 == i assert prime_as_sum_of_two_squares(7) is None ans = prime_as_sum_of_two_squares(800029) assert ans == (450, 773) and type(ans[0]) is int def test_sum_of_three_squares(): for i in [0, 1, 2, 34, 123, 34304595905, 34304595905394941, 343045959052344, 800, 801, 802, 803, 804, 805, 806]: a, b, c = sum_of_three_squares(i) assert a**2 + b**2 + c**2 == i assert sum_of_three_squares(7) is None assert sum_of_three_squares((4**5)*15) is None assert sum_of_three_squares(25) == (5, 0, 0) assert sum_of_three_squares(4) == (0, 0, 2) def test_sum_of_four_squares(): from random import randint # this should never fail n = randint(1, 100000000000000) assert sum(i**2 for i in sum_of_four_squares(n)) == n assert sum_of_four_squares(0) == (0, 0, 0, 0) assert sum_of_four_squares(14) == (0, 1, 2, 3) assert sum_of_four_squares(15) == (1, 1, 2, 3) assert sum_of_four_squares(18) == (1, 2, 2, 3) assert sum_of_four_squares(19) == (0, 1, 3, 3) assert sum_of_four_squares(48) == (0, 4, 4, 4) def test_power_representation(): tests = [(1729, 3, 2), (234, 2, 4), (2, 1, 2), (3, 1, 3), (5, 2, 2), (12352, 2, 4), (32760, 2, 3)] for test in tests: n, p, k = test f = power_representation(n, p, k) while True: try: l = next(f) assert len(l) == k chk_sum = 0 for l_i in l: chk_sum = chk_sum + l_i**p assert chk_sum == n except StopIteration: break assert list(power_representation(20, 2, 4, True)) == \ [(1, 1, 3, 3), (0, 0, 2, 4)] raises(ValueError, lambda: list(power_representation(1.2, 2, 2))) raises(ValueError, lambda: list(power_representation(2, 0, 2))) raises(ValueError, lambda: list(power_representation(2, 2, 0))) assert list(power_representation(-1, 2, 2)) == [] assert list(power_representation(1, 1, 1)) == [(1,)] assert list(power_representation(3, 2, 1)) == [] assert list(power_representation(4, 2, 1)) == [(2,)] assert list(power_representation(3**4, 4, 6, zeros=True)) == \ [(1, 2, 2, 2, 2, 2), (0, 0, 0, 0, 0, 3)] assert list(power_representation(3**4, 4, 5, zeros=False)) == [] assert list(power_representation(-2, 3, 2)) == [(-1, -1)] assert list(power_representation(-2, 4, 2)) == [] assert list(power_representation(0, 3, 2, True)) == [(0, 0)] assert list(power_representation(0, 3, 2, False)) == [] # when we are dealing with squares, do feasibility checks assert len(list(power_representation(4**10*(8*10 + 7), 2, 3))) == 0 # there will be a recursion error if these aren't recognized big = 2**30 for i in [13, 10, 7, 5, 4, 2, 1]: assert list(sum_of_powers(big, 2, big - i)) == [] def test_assumptions(): """ Test whether diophantine respects the assumptions. """ #Test case taken from the below so question regarding assumptions in diophantine module #https://stackoverflow.com/questions/23301941/how-can-i-declare-natural-symbols-with-sympy m, n = symbols('m n', integer=True, positive=True) diof = diophantine(n**2 + m*n - 500) assert diof == {(5, 20), (40, 10), (95, 5), (121, 4), (248, 2), (499, 1)} a, b = symbols('a b', integer=True, positive=False) diof = diophantine(a*b + 2*a + 3*b - 6) assert diof == {(-15, -3), (-9, -4), (-7, -5), (-6, -6), (-5, -8), (-4, -14)} def check_solutions(eq): """ Determines whether solutions returned by diophantine() satisfy the original equation. Hope to generalize this so we can remove functions like check_ternay_quadratic, check_solutions_normal, check_solutions() """ s = diophantine(eq) factors = Mul.make_args(eq) var = list(eq.free_symbols) var.sort(key=default_sort_key) while s: solution = s.pop() for f in factors: if diop_simplify(f.subs(zip(var, solution))) == 0: break else: return False return True def test_diopcoverage(): eq = (2*x + y + 1)**2 assert diop_solve(eq) == {(t_0, -2*t_0 - 1)} eq = 2*x**2 + 6*x*y + 12*x + 4*y**2 + 18*y + 18 assert diop_solve(eq) == {(t, -t - 3), (2*t - 3, -t)} assert diop_quadratic(x + y**2 - 3) == {(-t**2 + 3, -t)} assert diop_linear(x + y - 3) == (t_0, 3 - t_0) assert base_solution_linear(0, 1, 2, t=None) == (0, 0) ans = (3*t - 1, -2*t + 1) assert base_solution_linear(4, 8, 12, t) == ans assert base_solution_linear(4, 8, 12, t=None) == tuple(_.subs(t, 0) for _ in ans) assert cornacchia(1, 1, 20) is None assert cornacchia(1, 1, 5) == {(2, 1)} assert cornacchia(1, 2, 17) == {(3, 2)} raises(ValueError, lambda: reconstruct(4, 20, 1)) assert gaussian_reduce(4, 1, 3) == (1, 1) eq = -w**2 - x**2 - y**2 + z**2 assert diop_general_pythagorean(eq) == \ diop_general_pythagorean(-eq) == \ (m1**2 + m2**2 - m3**2, 2*m1*m3, 2*m2*m3, m1**2 + m2**2 + m3**2) assert len(check_param(S(3) + x/3, S(4) + x/2, S(2), [x])) == 0 assert len(check_param(Rational(3, 2), S(4) + x, S(2), [x])) == 0 assert len(check_param(S(4) + x, Rational(3, 2), S(2), [x])) == 0 assert _nint_or_floor(16, 10) == 2 assert _odd(1) == (not _even(1)) == True assert _odd(0) == (not _even(0)) == False assert _remove_gcd(2, 4, 6) == (1, 2, 3) raises(TypeError, lambda: _remove_gcd((2, 4, 6))) assert sqf_normal(2*3**2*5, 2*5*11, 2*7**2*11) == \ (11, 1, 5) # it's ok if these pass some day when the solvers are implemented raises(NotImplementedError, lambda: diophantine(x**2 + y**2 + x*y + 2*y*z - 12)) raises(NotImplementedError, lambda: diophantine(x**3 + y**2)) assert diop_quadratic(x**2 + y**2 - 1**2 - 3**4) == \ {(-9, -1), (-9, 1), (-1, -9), (-1, 9), (1, -9), (1, 9), (9, -1), (9, 1)} def test_holzer(): # if the input is good, don't let it diverge in holzer() # (but see test_fail_holzer below) assert holzer(2, 7, 13, 4, 79, 23) == (2, 7, 13) # None in uv condition met; solution is not Holzer reduced # so this will hopefully change but is here for coverage assert holzer(2, 6, 2, 1, 1, 10) == (2, 6, 2) raises(ValueError, lambda: holzer(2, 7, 14, 4, 79, 23)) @XFAIL def test_fail_holzer(): eq = lambda x, y, z: a*x**2 + b*y**2 - c*z**2 a, b, c = 4, 79, 23 x, y, z = xyz = 26, 1, 11 X, Y, Z = ans = 2, 7, 13 assert eq(*xyz) == 0 assert eq(*ans) == 0 assert max(a*x**2, b*y**2, c*z**2) <= a*b*c assert max(a*X**2, b*Y**2, c*Z**2) <= a*b*c h = holzer(x, y, z, a, b, c) assert h == ans # it would be nice to get the smaller soln def test_issue_9539(): assert diophantine(6*w + 9*y + 20*x - z) == \ {(t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 9*t_2)} def test_issue_8943(): assert diophantine( 3*(x**2 + y**2 + z**2) - 14*(x*y + y*z + z*x)) == \ {(0, 0, 0)} def test_diop_sum_of_even_powers(): eq = x**4 + y**4 + z**4 - 2673 assert diop_solve(eq) == {(3, 6, 6), (2, 4, 7)} assert diop_general_sum_of_even_powers(eq, 2) == {(3, 6, 6), (2, 4, 7)} raises(NotImplementedError, lambda: diop_general_sum_of_even_powers(-eq, 2)) neg = symbols('neg', negative=True) eq = x**4 + y**4 + neg**4 - 2673 assert diop_general_sum_of_even_powers(eq) == {(-3, 6, 6)} assert diophantine(x**4 + y**4 + 2) == set() assert diop_general_sum_of_even_powers(x**4 + y**4 - 2, limit=0) == set() def test_sum_of_squares_powers(): tru = {(0, 0, 1, 1, 11), (0, 0, 5, 7, 7), (0, 1, 3, 7, 8), (0, 1, 4, 5, 9), (0, 3, 4, 7, 7), (0, 3, 5, 5, 8), (1, 1, 2, 6, 9), (1, 1, 6, 6, 7), (1, 2, 3, 3, 10), (1, 3, 4, 4, 9), (1, 5, 5, 6, 6), (2, 2, 3, 5, 9), (2, 3, 5, 6, 7), (3, 3, 4, 5, 8)} eq = u**2 + v**2 + x**2 + y**2 + z**2 - 123 ans = diop_general_sum_of_squares(eq, oo) # allow oo to be used assert len(ans) == 14 assert ans == tru raises(ValueError, lambda: list(sum_of_squares(10, -1))) assert list(sum_of_squares(-10, 2)) == [] assert list(sum_of_squares(2, 3)) == [] assert list(sum_of_squares(0, 3, True)) == [(0, 0, 0)] assert list(sum_of_squares(0, 3)) == [] assert list(sum_of_squares(4, 1)) == [(2,)] assert list(sum_of_squares(5, 1)) == [] assert list(sum_of_squares(50, 2)) == [(5, 5), (1, 7)] assert list(sum_of_squares(11, 5, True)) == [ (1, 1, 1, 2, 2), (0, 0, 1, 1, 3)] assert list(sum_of_squares(8, 8)) == [(1, 1, 1, 1, 1, 1, 1, 1)] assert [len(list(sum_of_squares(i, 5, True))) for i in range(30)] == [ 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 3, 2, 1, 3, 3, 3, 3, 4, 3, 3, 2, 2, 4, 4, 4, 4, 5] assert [len(list(sum_of_squares(i, 5))) for i in range(30)] == [ 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3] for i in range(30): s1 = set(sum_of_squares(i, 5, True)) assert not s1 or all(sum(j**2 for j in t) == i for t in s1) s2 = set(sum_of_squares(i, 5)) assert all(sum(j**2 for j in t) == i for t in s2) raises(ValueError, lambda: list(sum_of_powers(2, -1, 1))) raises(ValueError, lambda: list(sum_of_powers(2, 1, -1))) assert list(sum_of_powers(-2, 3, 2)) == [(-1, -1)] assert list(sum_of_powers(-2, 4, 2)) == [] assert list(sum_of_powers(2, 1, 1)) == [(2,)] assert list(sum_of_powers(2, 1, 3, True)) == [(0, 0, 2), (0, 1, 1)] assert list(sum_of_powers(5, 1, 2, True)) == [(0, 5), (1, 4), (2, 3)] assert list(sum_of_powers(6, 2, 2)) == [] assert list(sum_of_powers(3**5, 3, 1)) == [] assert list(sum_of_powers(3**6, 3, 1)) == [(9,)] and (9**3 == 3**6) assert list(sum_of_powers(2**1000, 5, 2)) == [] def test__can_do_sum_of_squares(): assert _can_do_sum_of_squares(3, -1) is False assert _can_do_sum_of_squares(-3, 1) is False assert _can_do_sum_of_squares(0, 1) assert _can_do_sum_of_squares(4, 1) assert _can_do_sum_of_squares(1, 2) assert _can_do_sum_of_squares(2, 2) assert _can_do_sum_of_squares(3, 2) is False def test_diophantine_permute_sign(): from sympy.abc import a, b, c, d, e eq = a**4 + b**4 - (2**4 + 3**4) base_sol = {(2, 3)} assert diophantine(eq) == base_sol complete_soln = set(signed_permutations(base_sol.pop())) assert diophantine(eq, permute=True) == complete_soln eq = a**2 + b**2 + c**2 + d**2 + e**2 - 234 assert len(diophantine(eq)) == 35 assert len(diophantine(eq, permute=True)) == 62000 soln = {(-1, -1), (-1, 2), (1, -2), (1, 1)} assert diophantine(10*x**2 + 12*x*y + 12*y**2 - 34, permute=True) == soln @XFAIL def test_not_implemented(): eq = x**2 + y**4 - 1**2 - 3**4 assert diophantine(eq, syms=[x, y]) == {(9, 1), (1, 3)} def test_issue_9538(): eq = x - 3*y + 2 assert diophantine(eq, syms=[y,x]) == {(t_0, 3*t_0 - 2)} raises(TypeError, lambda: diophantine(eq, syms={y, x})) def test_ternary_quadratic(): # solution with 3 parameters s = diophantine(2*x**2 + y**2 - 2*z**2) p, q, r = ordered(S(s).free_symbols) assert s == {( p**2 - 2*q**2, -2*p**2 + 4*p*q - 4*p*r - 4*q**2, p**2 - 4*p*q + 2*q**2 - 4*q*r)} # solution with Mul in solution s = diophantine(x**2 + 2*y**2 - 2*z**2) assert s == {(4*p*q, p**2 - 2*q**2, p**2 + 2*q**2)} # solution with no Mul in solution s = diophantine(2*x**2 + 2*y**2 - z**2) assert s == {(2*p**2 - q**2, -2*p**2 + 4*p*q - q**2, 4*p**2 - 4*p*q + 2*q**2)} # reduced form when parametrized s = diophantine(3*x**2 + 72*y**2 - 27*z**2) assert s == {(24*p**2 - 9*q**2, 6*p*q, 8*p**2 + 3*q**2)} assert parametrize_ternary_quadratic( 3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z) == ( 2*p**2 - 2*p*q - q**2, 2*p**2 + 2*p*q - q**2, 2*p**2 - 2*p*q + 3*q**2) assert parametrize_ternary_quadratic( 124*x**2 - 30*y**2 - 7729*z**2) == ( -1410*p**2 - 363263*q**2, 2700*p**2 + 30916*p*q - 695610*q**2, -60*p**2 + 5400*p*q + 15458*q**2) def test_diophantine_solution_set(): s1 = DiophantineSolutionSet([], []) assert set(s1) == set() assert s1.symbols == () assert s1.parameters == () raises(ValueError, lambda: s1.add((x,))) assert list(s1.dict_iterator()) == [] s2 = DiophantineSolutionSet([x, y], [t, u]) assert s2.symbols == (x, y) assert s2.parameters == (t, u) raises(ValueError, lambda: s2.add((1,))) s2.add((3, 4)) assert set(s2) == {(3, 4)} s2.update((3, 4), (-1, u)) assert set(s2) == {(3, 4), (-1, u)} raises(ValueError, lambda: s1.update(s2)) assert list(s2.dict_iterator()) == [{x: -1, y: u}, {x: 3, y: 4}] s3 = DiophantineSolutionSet([x, y, z], [t, u]) assert len(s3.parameters) == 2 s3.add((t**2 + u, t - u, 1)) assert set(s3) == {(t**2 + u, t - u, 1)} assert s3.subs(t, 2) == {(u + 4, 2 - u, 1)} assert s3(2) == {(u + 4, 2 - u, 1)} assert s3.subs({t: 7, u: 8}) == {(57, -1, 1)} assert s3(7, 8) == {(57, -1, 1)} assert s3.subs({t: 5}) == {(u + 25, 5 - u, 1)} assert s3(5) == {(u + 25, 5 - u, 1)} assert s3.subs(u, -3) == {(t**2 - 3, t + 3, 1)} assert s3(None, -3) == {(t**2 - 3, t + 3, 1)} assert s3.subs({t: 2, u: 8}) == {(12, -6, 1)} assert s3(2, 8) == {(12, -6, 1)} assert s3.subs({t: 5, u: -3}) == {(22, 8, 1)} assert s3(5, -3) == {(22, 8, 1)} raises(ValueError, lambda: s3.subs(x=1)) raises(ValueError, lambda: s3.subs(1, 2, 3)) raises(ValueError, lambda: s3.add(())) raises(ValueError, lambda: s3.add((1, 2, 3, 4))) raises(ValueError, lambda: s3.add((1, 2))) raises(ValueError, lambda: s3(1, 2, 3)) raises(TypeError, lambda: s3(t=1)) s4 = DiophantineSolutionSet([x, y], [t, u]) s4.add((t, 11*t)) s4.add((-t, 22*t)) assert s4(0, 0) == {(0, 0)} def test_quadratic_parameter_passing(): eq = -33*x*y + 3*y**2 solution = BinaryQuadratic(eq).solve(parameters=[t, u]) # test that parameters are passed all the way to the final solution assert solution == {(t, 11*t), (-t, 22*t)} assert solution(0, 0) == {(0, 0)}
0f9a17cd02a043747378bddb656867e0e99cbde137d2fbe5f6ebc0e28ee2574d
from sympy import (acos, acosh, atan, cos, Derivative, diff, Dummy, Eq, Ne, exp, Function, I, Integral, LambertW, log, O, pi, Rational, rootof, S, sin, sqrt, Subs, Symbol, tan, asin, sinh, Piecewise, symbols, Poly, sec, re, im, atan2, collect) from sympy.solvers.ode import (classify_ode, homogeneous_order, infinitesimals, checkinfsol, dsolve) from sympy.solvers.ode.subscheck import checkodesol, checksysodesol from sympy.solvers.ode.ode import (_linear_coeff_match, _undetermined_coefficients_match, classify_sysode, constant_renumber, constantsimp, get_numbered_constants, solve_ics) from sympy.solvers.deutils import ode_order from sympy.testing.pytest import XFAIL, skip, raises, slow, ON_TRAVIS C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 = symbols('C0:11') u, x, y, z = symbols('u,x:z', real=True) f = Function('f') g = Function('g') h = Function('h') # Note: the tests below may fail (but still be correct) if ODE solver, # the integral engine, solve(), or even simplify() changes. Also, in # differently formatted solutions, the arbitrary constants might not be # equal. Using specific hints in tests can help to avoid this. # Tests of order higher than 1 should run the solutions through # constant_renumber because it will normalize it (constant_renumber causes # dsolve() to return different results on different machines) def test_get_numbered_constants(): with raises(ValueError): get_numbered_constants(None) def test_dsolve_all_hint(): eq = f(x).diff(x) output = dsolve(eq, hint='all') # Match the Dummy variables: sol1 = output['separable_Integral'] _y = sol1.lhs.args[1][0] sol1 = output['1st_homogeneous_coeff_subs_dep_div_indep_Integral'] _u1 = sol1.rhs.args[1].args[1][0] expected = {'Bernoulli_Integral': Eq(f(x), C1 + Integral(0, x)), '1st_homogeneous_coeff_best': Eq(f(x), C1), 'Bernoulli': Eq(f(x), C1), 'nth_algebraic': Eq(f(x), C1), 'nth_linear_euler_eq_homogeneous': Eq(f(x), C1), 'nth_linear_constant_coeff_homogeneous': Eq(f(x), C1), 'separable': Eq(f(x), C1), '1st_homogeneous_coeff_subs_indep_div_dep': Eq(f(x), C1), 'nth_algebraic_Integral': Eq(f(x), C1), '1st_linear': Eq(f(x), C1), '1st_linear_Integral': Eq(f(x), C1 + Integral(0, x)), 'lie_group': Eq(f(x), C1), '1st_homogeneous_coeff_subs_dep_div_indep': Eq(f(x), C1), '1st_homogeneous_coeff_subs_dep_div_indep_Integral': Eq(log(x), C1 + Integral(-1/_u1, (_u1, f(x)/x))), '1st_power_series': Eq(f(x), C1), 'separable_Integral': Eq(Integral(1, (_y, f(x))), C1 + Integral(0, x)), '1st_homogeneous_coeff_subs_indep_div_dep_Integral': Eq(f(x), C1), 'best': Eq(f(x), C1), 'best_hint': 'nth_algebraic', 'default': 'nth_algebraic', 'order': 1} assert output == expected assert dsolve(eq, hint='best') == Eq(f(x), C1) def test_dsolve_ics(): # Maybe this should just use one of the solutions instead of raising... with raises(NotImplementedError): dsolve(f(x).diff(x) - sqrt(f(x)), ics={f(1):1}) @slow @XFAIL def test_nonlinear_3eq_order1_type1(): if ON_TRAVIS: skip("Too slow for travis.") a, b, c = symbols('a b c') eqs = [ a * f(x).diff(x) - (b - c) * g(x) * h(x), b * g(x).diff(x) - (c - a) * h(x) * f(x), c * h(x).diff(x) - (a - b) * f(x) * g(x), ] assert dsolve(eqs) # NotImplementedError def test_dsolve_euler_rootof(): eq = x**6 * f(x).diff(x, 6) - x*f(x).diff(x) + f(x) sol = Eq(f(x), C1*x + C2*x**rootof(x**5 - 14*x**4 + 71*x**3 - 154*x**2 + 120*x - 1, 0) + C3*x**rootof(x**5 - 14*x**4 + 71*x**3 - 154*x**2 + 120*x - 1, 1) + C4*x**rootof(x**5 - 14*x**4 + 71*x**3 - 154*x**2 + 120*x - 1, 2) + C5*x**rootof(x**5 - 14*x**4 + 71*x**3 - 154*x**2 + 120*x - 1, 3) + C6*x**rootof(x**5 - 14*x**4 + 71*x**3 - 154*x**2 + 120*x - 1, 4) ) assert dsolve(eq) == sol def test_nth_euler_imroot(): eq = x**2 * f(x).diff(x, 2) + x * f(x).diff(x) + 4 * f(x) - 1/x sol = Eq(f(x), C1*sin(2*log(x)) + C2*cos(2*log(x)) + 1/(5*x)) dsolve_sol = dsolve(eq, hint='nth_linear_euler_eq_nonhomogeneous_variation_of_parameters') assert dsolve_sol == sol assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] def test_constant_coeff_circular_atan2(): eq = f(x).diff(x, x) + y*f(x) sol = Eq(f(x), C1*exp(-x*sqrt(-y)) + C2*exp(x*sqrt(-y))) assert dsolve(eq) == sol assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] @XFAIL def test_nonlinear_3eq_order1_type4(): eqs = [ Eq(f(x).diff(x), (2*h(x)*g(x) - 3*g(x)*h(x))), Eq(g(x).diff(x), (4*f(x)*h(x) - 2*h(x)*f(x))), Eq(h(x).diff(x), (3*g(x)*f(x) - 4*f(x)*g(x))), ] dsolve(eqs) # KeyError when matching # sol = ? # assert dsolve_sol == sol # assert checksysodesol(eqs, dsolve_sol) == (True, [0, 0, 0]) @slow @XFAIL def test_nonlinear_3eq_order1_type3(): if ON_TRAVIS: skip("Too slow for travis.") eqs = [ Eq(f(x).diff(x), (2*f(x)**2 - 3 )), Eq(g(x).diff(x), (4 - 2*h(x) )), Eq(h(x).diff(x), (3*h(x) - 4*f(x)**2)), ] dsolve(eqs) # Not sure if this finishes... # sol = ? # assert dsolve_sol == sol # assert checksysodesol(eqs, dsolve_sol) == (True, [0, 0, 0]) @XFAIL def test_nonlinear_3eq_order1_type5(): eqs = [ Eq(f(x).diff(x), f(x)*(2*f(x) - 3*g(x))), Eq(g(x).diff(x), g(x)*(4*g(x) - 2*h(x))), Eq(h(x).diff(x), h(x)*(3*h(x) - 4*f(x))), ] dsolve(eqs) # KeyError # sol = ? # assert dsolve_sol == sol # assert checksysodesol(eqs, dsolve_sol) == (True, [0, 0, 0]) def test_linear_2eq_order1(): x, y, z = symbols('x, y, z', cls=Function) k, l, m, n = symbols('k, l, m, n', Integer=True) t = Symbol('t') x0, y0 = symbols('x0, y0', cls=Function) eq1 = (Eq(diff(x(t),t), x(t) + y(t) + 9), Eq(diff(y(t),t), 2*x(t) + 5*y(t) + 23)) sol1 = [Eq(x(t), C1*exp(t*(sqrt(6) + 3)) + C2*exp(t*(-sqrt(6) + 3)) - Rational(22, 3)), \ Eq(y(t), C1*(2 + sqrt(6))*exp(t*(sqrt(6) + 3)) + C2*(-sqrt(6) + 2)*exp(t*(-sqrt(6) + 3)) - Rational(5, 3))] assert checksysodesol(eq1, sol1) == (True, [0, 0]) eq2 = (Eq(diff(x(t),t), x(t) + y(t) + 81), Eq(diff(y(t),t), -2*x(t) + y(t) + 23)) sol2 = [Eq(x(t), (C1*cos(sqrt(2)*t) + C2*sin(sqrt(2)*t))*exp(t) - Rational(58, 3)), \ Eq(y(t), (-sqrt(2)*C1*sin(sqrt(2)*t) + sqrt(2)*C2*cos(sqrt(2)*t))*exp(t) - Rational(185, 3))] assert checksysodesol(eq2, sol2) == (True, [0, 0]) eq3 = (Eq(diff(x(t),t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t),t), 2*x(t) + 5*t*y(t))) sol3 = [Eq(x(t), (C1*exp(2*t) + C2*exp(-2*t))*exp(Rational(5, 2)*t**2)), \ Eq(y(t), (C1*exp(2*t) - C2*exp(-2*t))*exp(Rational(5, 2)*t**2))] assert checksysodesol(eq3, sol3) == (True, [0, 0]) eq4 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t))) sol4 = [Eq(x(t), (C1*cos((t**3)/3) + C2*sin((t**3)/3))*exp(Rational(5, 2)*t**2)), \ Eq(y(t), (-C1*sin((t**3)/3) + C2*cos((t**3)/3))*exp(Rational(5, 2)*t**2))] assert checksysodesol(eq4, sol4) == (True, [0, 0]) eq5 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + (5*t+9*t**2)*y(t))) sol5 = [Eq(x(t), (C1*exp((sqrt(77)/2 + Rational(9, 2))*(t**3)/3) + \ C2*exp((-sqrt(77)/2 + Rational(9, 2))*(t**3)/3))*exp(Rational(5, 2)*t**2)), \ Eq(y(t), (C1*(sqrt(77)/2 + Rational(9, 2))*exp((sqrt(77)/2 + Rational(9, 2))*(t**3)/3) + \ C2*(-sqrt(77)/2 + Rational(9, 2))*exp((-sqrt(77)/2 + Rational(9, 2))*(t**3)/3))*exp(Rational(5, 2)*t**2))] assert checksysodesol(eq5, sol5) == (True, [0, 0]) eq6 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), (1-t**2)*x(t) + (5*t+9*t**2)*y(t))) sol6 = [Eq(x(t), C1*x0(t) + C2*x0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t)), \ Eq(y(t), C1*y0(t) + C2*(y0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t) + \ exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)))] s = dsolve(eq6) assert s == sol6 # too complicated to test with subs and simplify # assert checksysodesol(eq10, sol10) == (True, [0, 0]) # this one fails def test_nonlinear_2eq_order1(): x, y, z = symbols('x, y, z', cls=Function) t = Symbol('t') eq1 = (Eq(diff(x(t),t),x(t)*y(t)**3), Eq(diff(y(t),t),y(t)**5)) sol1 = [ Eq(x(t), C1*exp((-1/(4*C2 + 4*t))**(Rational(-1, 4)))), Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), C1*exp(-1/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), C1*exp(-I/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), C1*exp(I/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))] assert dsolve(eq1) == sol1 assert checksysodesol(eq1, sol1) == (True, [0, 0]) eq2 = (Eq(diff(x(t),t), exp(3*x(t))*y(t)**3),Eq(diff(y(t),t), y(t)**5)) sol2 = [ Eq(x(t), -log(C1 - 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), -log(C1 + 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), -log(C1 + 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), -log(C1 - 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))] assert dsolve(eq2) == sol2 assert checksysodesol(eq2, sol2) == (True, [0, 0]) eq3 = (Eq(diff(x(t),t), y(t)*x(t)), Eq(diff(y(t),t), x(t)**3)) tt = Rational(2, 3) sol3 = [ Eq(x(t), 6**tt/(6*(-sinh(sqrt(C1)*(C2 + t)/2)/sqrt(C1))**tt)), Eq(y(t), sqrt(C1 + C1/sinh(sqrt(C1)*(C2 + t)/2)**2)/3)] assert dsolve(eq3) == sol3 # FIXME: assert checksysodesol(eq3, sol3) == (True, [0, 0]) eq4 = (Eq(diff(x(t),t),x(t)*y(t)*sin(t)**2), Eq(diff(y(t),t),y(t)**2*sin(t)**2)) sol4 = {Eq(x(t), -2*exp(C1)/(C2*exp(C1) + t - sin(2*t)/2)), Eq(y(t), -2/(C1 + t - sin(2*t)/2))} assert dsolve(eq4) == sol4 # FIXME: assert checksysodesol(eq4, sol4) == (True, [0, 0]) eq5 = (Eq(x(t),t*diff(x(t),t)+diff(x(t),t)*diff(y(t),t)), Eq(y(t),t*diff(y(t),t)+diff(y(t),t)**2)) sol5 = {Eq(x(t), C1*C2 + C1*t), Eq(y(t), C2**2 + C2*t)} assert dsolve(eq5) == sol5 assert checksysodesol(eq5, sol5) == (True, [0, 0]) eq6 = (Eq(diff(x(t),t),x(t)**2*y(t)**3), Eq(diff(y(t),t),y(t)**5)) sol6 = [ Eq(x(t), 1/(C1 - 1/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), 1/(C1 + (-1/(4*C2 + 4*t))**(Rational(-1, 4)))), Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), 1/(C1 + I/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), 1/(C1 - I/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))] assert dsolve(eq6) == sol6 assert checksysodesol(eq6, sol6) == (True, [0, 0]) @slow def test_nonlinear_3eq_order1(): x, y, z = symbols('x, y, z', cls=Function) t, u = symbols('t u') eq1 = (4*diff(x(t),t) + 2*y(t)*z(t), 3*diff(y(t),t) - z(t)*x(t), 5*diff(z(t),t) - x(t)*y(t)) sol1 = [Eq(4*Integral(1/(sqrt(-4*u**2 - 3*C1 + C2)*sqrt(-4*u**2 + 5*C1 - C2)), (u, x(t))), C3 - sqrt(15)*t/15), Eq(3*Integral(1/(sqrt(-6*u**2 - C1 + 5*C2)*sqrt(3*u**2 + C1 - 4*C2)), (u, y(t))), C3 + sqrt(5)*t/10), Eq(5*Integral(1/(sqrt(-10*u**2 - 3*C1 + C2)* sqrt(5*u**2 + 4*C1 - C2)), (u, z(t))), C3 + sqrt(3)*t/6)] assert [i.dummy_eq(j) for i, j in zip(dsolve(eq1), sol1)] # FIXME: assert checksysodesol(eq1, sol1) == (True, [0, 0, 0]) eq2 = (4*diff(x(t),t) + 2*y(t)*z(t)*sin(t), 3*diff(y(t),t) - z(t)*x(t)*sin(t), 5*diff(z(t),t) - x(t)*y(t)*sin(t)) sol2 = [Eq(3*Integral(1/(sqrt(-6*u**2 - C1 + 5*C2)*sqrt(3*u**2 + C1 - 4*C2)), (u, x(t))), C3 + sqrt(5)*cos(t)/10), Eq(4*Integral(1/(sqrt(-4*u**2 - 3*C1 + C2)*sqrt(-4*u**2 + 5*C1 - C2)), (u, y(t))), C3 - sqrt(15)*cos(t)/15), Eq(5*Integral(1/(sqrt(-10*u**2 - 3*C1 + C2)* sqrt(5*u**2 + 4*C1 - C2)), (u, z(t))), C3 + sqrt(3)*cos(t)/6)] assert [i.dummy_eq(j) for i, j in zip(dsolve(eq2), sol2)] # FIXME: assert checksysodesol(eq2, sol2) == (True, [0, 0, 0]) @slow def test_dsolve_options(): eq = x*f(x).diff(x) + f(x) a = dsolve(eq, hint='all') b = dsolve(eq, hint='all', simplify=False) c = dsolve(eq, hint='all_Integral') keys = ['1st_exact', '1st_exact_Integral', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_homogeneous_coeff_subs_dep_div_indep_Integral', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_linear', '1st_linear_Integral', 'Bernoulli', 'Bernoulli_Integral', 'almost_linear', 'almost_linear_Integral', 'best', 'best_hint', 'default', 'lie_group', 'nth_linear_euler_eq_homogeneous', 'order', 'separable', 'separable_Integral'] Integral_keys = ['1st_exact_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_linear_Integral', 'Bernoulli_Integral', 'almost_linear_Integral', 'best', 'best_hint', 'default', 'nth_linear_euler_eq_homogeneous', 'order', 'separable_Integral'] assert sorted(a.keys()) == keys assert a['order'] == ode_order(eq, f(x)) assert a['best'] == Eq(f(x), C1/x) assert dsolve(eq, hint='best') == Eq(f(x), C1/x) assert a['default'] == 'separable' assert a['best_hint'] == 'separable' assert not a['1st_exact'].has(Integral) assert not a['separable'].has(Integral) assert not a['1st_homogeneous_coeff_best'].has(Integral) assert not a['1st_homogeneous_coeff_subs_dep_div_indep'].has(Integral) assert not a['1st_homogeneous_coeff_subs_indep_div_dep'].has(Integral) assert not a['1st_linear'].has(Integral) assert a['1st_linear_Integral'].has(Integral) assert a['1st_exact_Integral'].has(Integral) assert a['1st_homogeneous_coeff_subs_dep_div_indep_Integral'].has(Integral) assert a['1st_homogeneous_coeff_subs_indep_div_dep_Integral'].has(Integral) assert a['separable_Integral'].has(Integral) assert sorted(b.keys()) == keys assert b['order'] == ode_order(eq, f(x)) assert b['best'] == Eq(f(x), C1/x) assert dsolve(eq, hint='best', simplify=False) == Eq(f(x), C1/x) assert b['default'] == 'separable' assert b['best_hint'] == '1st_linear' assert a['separable'] != b['separable'] assert a['1st_homogeneous_coeff_subs_dep_div_indep'] != \ b['1st_homogeneous_coeff_subs_dep_div_indep'] assert a['1st_homogeneous_coeff_subs_indep_div_dep'] != \ b['1st_homogeneous_coeff_subs_indep_div_dep'] assert not b['1st_exact'].has(Integral) assert not b['separable'].has(Integral) assert not b['1st_homogeneous_coeff_best'].has(Integral) assert not b['1st_homogeneous_coeff_subs_dep_div_indep'].has(Integral) assert not b['1st_homogeneous_coeff_subs_indep_div_dep'].has(Integral) assert not b['1st_linear'].has(Integral) assert b['1st_linear_Integral'].has(Integral) assert b['1st_exact_Integral'].has(Integral) assert b['1st_homogeneous_coeff_subs_dep_div_indep_Integral'].has(Integral) assert b['1st_homogeneous_coeff_subs_indep_div_dep_Integral'].has(Integral) assert b['separable_Integral'].has(Integral) assert sorted(c.keys()) == Integral_keys raises(ValueError, lambda: dsolve(eq, hint='notarealhint')) raises(ValueError, lambda: dsolve(eq, hint='Liouville')) assert dsolve(f(x).diff(x) - 1/f(x)**2, hint='all')['best'] == \ dsolve(f(x).diff(x) - 1/f(x)**2, hint='best') assert dsolve(f(x) + f(x).diff(x) + sin(x).diff(x) + 1, f(x), hint="1st_linear_Integral") == \ Eq(f(x), (C1 + Integral((-sin(x).diff(x) - 1)* exp(Integral(1, x)), x))*exp(-Integral(1, x))) def test_classify_ode(): assert classify_ode(f(x).diff(x, 2), f(x)) == \ ( 'nth_algebraic', 'nth_linear_constant_coeff_homogeneous', 'nth_linear_euler_eq_homogeneous', 'Liouville', '2nd_power_series_ordinary', 'nth_algebraic_Integral', 'Liouville_Integral', ) assert classify_ode(f(x), f(x)) == ('nth_algebraic', 'nth_algebraic_Integral') assert classify_ode(Eq(f(x).diff(x), 0), f(x)) == ( 'nth_algebraic', 'separable', '1st_linear', 'Bernoulli', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_homogeneous', 'nth_linear_euler_eq_homogeneous', 'nth_algebraic_Integral', 'separable_Integral', '1st_linear_Integral', 'Bernoulli_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral') assert classify_ode(f(x).diff(x)**2, f(x)) == ('factorable', 'nth_algebraic', 'separable', '1st_linear', 'Bernoulli', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_homogeneous', 'nth_linear_euler_eq_homogeneous', 'nth_algebraic_Integral', 'separable_Integral', '1st_linear_Integral', 'Bernoulli_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral') # issue 4749: f(x) should be cleared from highest derivative before classifying a = classify_ode(Eq(f(x).diff(x) + f(x), x), f(x)) b = classify_ode(f(x).diff(x)*f(x) + f(x)*f(x) - x*f(x), f(x)) c = classify_ode(f(x).diff(x)/f(x) + f(x)/f(x) - x/f(x), f(x)) assert a == ('1st_linear', 'Bernoulli', 'almost_linear', '1st_power_series', "lie_group", 'nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', '1st_linear_Integral', 'Bernoulli_Integral', 'almost_linear_Integral', 'nth_linear_constant_coeff_variation_of_parameters_Integral') assert b == ('factorable', '1st_linear', 'Bernoulli', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', '1st_linear_Integral', 'Bernoulli_Integral', 'nth_linear_constant_coeff_variation_of_parameters_Integral') assert c == ('1st_linear', 'Bernoulli', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', '1st_linear_Integral', 'Bernoulli_Integral', 'nth_linear_constant_coeff_variation_of_parameters_Integral') assert classify_ode( 2*x*f(x)*f(x).diff(x) + (1 + x)*f(x)**2 - exp(x), f(x) ) == ('Bernoulli', 'almost_linear', 'lie_group', 'Bernoulli_Integral', 'almost_linear_Integral') assert 'Riccati_special_minus2' in \ classify_ode(2*f(x).diff(x) + f(x)**2 - f(x)/x + 3*x**(-2), f(x)) raises(ValueError, lambda: classify_ode(x + f(x, y).diff(x).diff( y), f(x, y))) # issue 5176 k = Symbol('k') assert classify_ode(f(x).diff(x)/(k*f(x) + k*x*f(x)) + 2*f(x)/(k*f(x) + k*x*f(x)) + x*f(x).diff(x)/(k*f(x) + k*x*f(x)) + z, f(x)) == \ ('separable', '1st_exact', '1st_linear', 'Bernoulli', '1st_power_series', 'lie_group', 'separable_Integral', '1st_exact_Integral', '1st_linear_Integral', 'Bernoulli_Integral') # preprocessing ans = ('nth_algebraic', 'separable', '1st_exact', '1st_linear', 'Bernoulli', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', 'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters', 'nth_algebraic_Integral', 'separable_Integral', '1st_exact_Integral', '1st_linear_Integral', 'Bernoulli_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral', 'nth_linear_constant_coeff_variation_of_parameters_Integral', 'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral') # w/o f(x) given assert classify_ode(diff(f(x) + x, x) + diff(f(x), x)) == ans # w/ f(x) and prep=True assert classify_ode(diff(f(x) + x, x) + diff(f(x), x), f(x), prep=True) == ans assert classify_ode(Eq(2*x**3*f(x).diff(x), 0), f(x)) == \ ('factorable', 'nth_algebraic', 'separable', '1st_linear', 'Bernoulli', '1st_power_series', 'lie_group', 'nth_linear_euler_eq_homogeneous', 'nth_algebraic_Integral', 'separable_Integral', '1st_linear_Integral', 'Bernoulli_Integral') assert classify_ode(Eq(2*f(x)**3*f(x).diff(x), 0), f(x)) == \ ('factorable', 'nth_algebraic', 'separable', '1st_linear', 'Bernoulli', '1st_power_series', 'lie_group', 'nth_algebraic_Integral', 'separable_Integral', '1st_linear_Integral', 'Bernoulli_Integral') # test issue 13864 assert classify_ode(Eq(diff(f(x), x) - f(x)**x, 0), f(x)) == \ ('1st_power_series', 'lie_group') assert isinstance(classify_ode(Eq(f(x), 5), f(x), dict=True), dict) def test_classify_ode_ics(): # Dummy eq = f(x).diff(x, x) - f(x) # Not f(0) or f'(0) ics = {x: 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) ############################ # f(0) type (AppliedUndef) # ############################ # Wrong function ics = {g(0): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Contains x ics = {f(x): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Too many args ics = {f(0, 0): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # point contains f # XXX: Should be NotImplementedError ics = {f(0): f(1)} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Does not raise ics = {f(0): 1} classify_ode(eq, f(x), ics=ics) ##################### # f'(0) type (Subs) # ##################### # Wrong function ics = {g(x).diff(x).subs(x, 0): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Contains x ics = {f(y).diff(y).subs(y, x): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Wrong variable ics = {f(y).diff(y).subs(y, 0): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Too many args ics = {f(x, y).diff(x).subs(x, 0): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Derivative wrt wrong vars ics = {Derivative(f(x), x, y).subs(x, 0): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # point contains f # XXX: Should be NotImplementedError ics = {f(x).diff(x).subs(x, 0): f(0)} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Does not raise ics = {f(x).diff(x).subs(x, 0): 1} classify_ode(eq, f(x), ics=ics) ########################### # f'(y) type (Derivative) # ########################### # Wrong function ics = {g(x).diff(x).subs(x, y): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Contains x ics = {f(y).diff(y).subs(y, x): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Too many args ics = {f(x, y).diff(x).subs(x, y): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Derivative wrt wrong vars ics = {Derivative(f(x), x, z).subs(x, y): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # point contains f # XXX: Should be NotImplementedError ics = {f(x).diff(x).subs(x, y): f(0)} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Does not raise ics = {f(x).diff(x).subs(x, y): 1} classify_ode(eq, f(x), ics=ics) def test_classify_sysode(): # Here x is assumed to be x(t) and y as y(t) for simplicity. # Similarly diff(x,t) and diff(y,y) is assumed to be x1 and y1 respectively. k, l, m, n = symbols('k, l, m, n', Integer=True) k1, k2, k3, l1, l2, l3, m1, m2, m3 = symbols('k1, k2, k3, l1, l2, l3, m1, m2, m3', Integer=True) P, Q, R, p, q, r = symbols('P, Q, R, p, q, r', cls=Function) P1, P2, P3, Q1, Q2, R1, R2 = symbols('P1, P2, P3, Q1, Q2, R1, R2', cls=Function) x, y, z = symbols('x, y, z', cls=Function) t = symbols('t') x1 = diff(x(t),t) ; y1 = diff(y(t),t) ; eq6 = (Eq(x1, exp(k*x(t))*P(x(t),y(t))), Eq(y1,r(y(t))*P(x(t),y(t)))) sol6 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): 0, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): 0, \ (1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): 0, (1, y(t), 1): 1}, 'type_of_equation': 'type2', 'func': \ [x(t), y(t)], 'is_linear': False, 'eq': [-P(x(t), y(t))*exp(k*x(t)) + Derivative(x(t), t), -P(x(t), \ y(t))*r(y(t)) + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}} assert classify_sysode(eq6) == sol6 eq7 = (Eq(x1, x(t)**2+y(t)/x(t)), Eq(y1, x(t)/y(t))) sol7 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): 0, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): 0, \ (1, x(t), 0): -1/y(t), (0, y(t), 1): 0, (0, y(t), 0): -1/x(t), (1, y(t), 1): 1}, 'type_of_equation': 'type3', \ 'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)**2 + Derivative(x(t), t) - y(t)/x(t), -x(t)/y(t) + \ Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}} assert classify_sysode(eq7) == sol7 eq8 = (Eq(x1, P1(x(t))*Q1(y(t))*R(x(t),y(t),t)), Eq(y1, P1(x(t))*Q1(y(t))*R(x(t),y(t),t))) sol8 = {'func': [x(t), y(t)], 'is_linear': False, 'type_of_equation': 'type4', 'eq': \ [-P1(x(t))*Q1(y(t))*R(x(t), y(t), t) + Derivative(x(t), t), -P1(x(t))*Q1(y(t))*R(x(t), y(t), t) + \ Derivative(y(t), t)], 'func_coeff': {(0, y(t), 1): 0, (1, y(t), 1): 1, (1, x(t), 1): 0, (0, y(t), 0): 0, \ (1, x(t), 0): 0, (0, x(t), 0): 0, (1, y(t), 0): 0, (0, x(t), 1): 1}, 'order': {y(t): 1, x(t): 1}, 'no_of_equation': 2} assert classify_sysode(eq8) == sol8 eq11 = (Eq(x1,x(t)*y(t)**3), Eq(y1,y(t)**5)) sol11 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -y(t)**3, (1, x(t), 1): 0, (0, x(t), 1): 1, \ (1, y(t), 0): 0, (1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): 0, (1, y(t), 1): 1}, 'type_of_equation': \ 'type1', 'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)*y(t)**3 + Derivative(x(t), t), \ -y(t)**5 + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}} assert classify_sysode(eq11) == sol11 eq13 = (Eq(x1,x(t)*y(t)*sin(t)**2), Eq(y1,y(t)**2*sin(t)**2)) sol13 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -y(t)*sin(t)**2, (1, x(t), 1): 0, (0, x(t), 1): 1, \ (1, y(t), 0): 0, (1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): -x(t)*sin(t)**2, (1, y(t), 1): 1}, \ 'type_of_equation': 'type4', 'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)*y(t)*sin(t)**2 + \ Derivative(x(t), t), -y(t)**2*sin(t)**2 + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}} assert classify_sysode(eq13) == sol13 def test_solve_ics(): # Basic tests that things work from dsolve. assert dsolve(f(x).diff(x) - 1/f(x), f(x), ics={f(1): 2}) == \ Eq(f(x), sqrt(2 * x + 2)) assert dsolve(f(x).diff(x) - f(x), f(x), ics={f(0): 1}) == Eq(f(x), exp(x)) assert dsolve(f(x).diff(x) - f(x), f(x), ics={f(x).diff(x).subs(x, 0): 1}) == Eq(f(x), exp(x)) assert dsolve(f(x).diff(x, x) + f(x), f(x), ics={f(0): 1, f(x).diff(x).subs(x, 0): 1}) == Eq(f(x), sin(x) + cos(x)) assert dsolve([f(x).diff(x) - f(x) + g(x), g(x).diff(x) - g(x) - f(x)], [f(x), g(x)], ics={f(0): 1, g(0): 0}) == [Eq(f(x), exp(x)*cos(x)), Eq(g(x), exp(x)*sin(x))] # Test cases where dsolve returns two solutions. eq = (x**2*f(x)**2 - x).diff(x) assert dsolve(eq, f(x), ics={f(1): 0}) == [Eq(f(x), -sqrt(x - 1)/x), Eq(f(x), sqrt(x - 1)/x)] assert dsolve(eq, f(x), ics={f(x).diff(x).subs(x, 1): 0}) == [Eq(f(x), -sqrt(x - S.Half)/x), Eq(f(x), sqrt(x - S.Half)/x)] eq = cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x) assert dsolve(eq, f(x), ics={f(0):1}, hint='1st_exact', simplify=False) == Eq(x*cos(f(x)) + f(x)**3/3, Rational(1, 3)) assert dsolve(eq, f(x), ics={f(0):1}, hint='1st_exact', simplify=True) == Eq(x*cos(f(x)) + f(x)**3/3, Rational(1, 3)) assert solve_ics([Eq(f(x), C1*exp(x))], [f(x)], [C1], {f(0): 1}) == {C1: 1} assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1, f(pi/2): 1}) == {C1: 1, C2: 1} assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1, f(x).diff(x).subs(x, 0): 1}) == {C1: 1, C2: 1} assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1}) == \ {C2: 1} # Some more complicated tests Refer to PR #16098 assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(0):0, f(x).diff(x).subs(x, 1):0})) == \ {Eq(f(x), 0), Eq(f(x), x ** 3 / 6 - x / 2)} assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(0):0})) == \ {Eq(f(x), 0), Eq(f(x), C2*x + x**3/6)} K, r, f0 = symbols('K r f0') sol = Eq(f(x), K*f0*exp(r*x)/((-K + f0)*(f0*exp(r*x)/(-K + f0) - 1))) assert (dsolve(Eq(f(x).diff(x), r * f(x) * (1 - f(x) / K)), f(x), ics={f(0): f0})) == sol #Order dependent issues Refer to PR #16098 assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(x).diff(x).subs(x,0):0, f(0):0})) == \ {Eq(f(x), 0), Eq(f(x), x ** 3 / 6)} assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(0):0, f(x).diff(x).subs(x,0):0})) == \ {Eq(f(x), 0), Eq(f(x), x ** 3 / 6)} # XXX: Ought to be ValueError raises(ValueError, lambda: solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1, f(pi): 1})) # Degenerate case. f'(0) is identically 0. raises(ValueError, lambda: solve_ics([Eq(f(x), sqrt(C1 - x**2))], [f(x)], [C1], {f(x).diff(x).subs(x, 0): 0})) EI, q, L = symbols('EI q L') # eq = Eq(EI*diff(f(x), x, 4), q) sols = [Eq(f(x), C1 + C2*x + C3*x**2 + C4*x**3 + q*x**4/(24*EI))] funcs = [f(x)] constants = [C1, C2, C3, C4] # Test both cases, Derivative (the default from f(x).diff(x).subs(x, L)), # and Subs ics1 = {f(0): 0, f(x).diff(x).subs(x, 0): 0, f(L).diff(L, 2): 0, f(L).diff(L, 3): 0} ics2 = {f(0): 0, f(x).diff(x).subs(x, 0): 0, Subs(f(x).diff(x, 2), x, L): 0, Subs(f(x).diff(x, 3), x, L): 0} solved_constants1 = solve_ics(sols, funcs, constants, ics1) solved_constants2 = solve_ics(sols, funcs, constants, ics2) assert solved_constants1 == solved_constants2 == { C1: 0, C2: 0, C3: L**2*q/(4*EI), C4: -L*q/(6*EI)} def test_ode_order(): f = Function('f') g = Function('g') x = Symbol('x') assert ode_order(3*x*exp(f(x)), f(x)) == 0 assert ode_order(x*diff(f(x), x) + 3*x*f(x) - sin(x)/x, f(x)) == 1 assert ode_order(x**2*f(x).diff(x, x) + x*diff(f(x), x) - f(x), f(x)) == 2 assert ode_order(diff(x*exp(f(x)), x, x), f(x)) == 2 assert ode_order(diff(x*diff(x*exp(f(x)), x, x), x), f(x)) == 3 assert ode_order(diff(f(x), x, x), g(x)) == 0 assert ode_order(diff(f(x), x, x)*diff(g(x), x), f(x)) == 2 assert ode_order(diff(f(x), x, x)*diff(g(x), x), g(x)) == 1 assert ode_order(diff(x*diff(x*exp(f(x)), x, x), x), g(x)) == 0 # issue 5835: ode_order has to also work for unevaluated derivatives # (ie, without using doit()). assert ode_order(Derivative(x*f(x), x), f(x)) == 1 assert ode_order(x*sin(Derivative(x*f(x)**2, x, x)), f(x)) == 2 assert ode_order(Derivative(x*Derivative(x*exp(f(x)), x, x), x), g(x)) == 0 assert ode_order(Derivative(f(x), x, x), g(x)) == 0 assert ode_order(Derivative(x*exp(f(x)), x, x), f(x)) == 2 assert ode_order(Derivative(f(x), x, x)*Derivative(g(x), x), g(x)) == 1 assert ode_order(Derivative(x*Derivative(f(x), x, x), x), f(x)) == 3 assert ode_order( x*sin(Derivative(x*Derivative(f(x), x)**2, x, x)), f(x)) == 3 # In all tests below, checkodesol has the order option set to prevent # superfluous calls to ode_order(), and the solve_for_func flag set to False # because dsolve() already tries to solve for the function, unless the # simplify=False option is set. def test_old_ode_tests(): # These are simple tests from the old ode module eq1 = Eq(f(x).diff(x), 0) eq2 = Eq(3*f(x).diff(x) - 5, 0) eq3 = Eq(3*f(x).diff(x), 5) eq4 = Eq(9*f(x).diff(x, x) + f(x), 0) eq5 = Eq(9*f(x).diff(x, x), f(x)) # Type: a(x)f'(x)+b(x)*f(x)+c(x)=0 eq6 = Eq(x**2*f(x).diff(x) + 3*x*f(x) - sin(x)/x, 0) eq7 = Eq(f(x).diff(x, x) - 3*diff(f(x), x) + 2*f(x), 0) # Type: 2nd order, constant coefficients (two real different roots) eq8 = Eq(f(x).diff(x, x) - 4*diff(f(x), x) + 4*f(x), 0) # Type: 2nd order, constant coefficients (two real equal roots) eq9 = Eq(f(x).diff(x, x) + 2*diff(f(x), x) + 3*f(x), 0) # Type: 2nd order, constant coefficients (two complex roots) eq10 = Eq(3*f(x).diff(x) - 1, 0) eq11 = Eq(x*f(x).diff(x) - 1, 0) sol1 = Eq(f(x), C1) sol2 = Eq(f(x), C1 + x*Rational(5, 3)) sol3 = Eq(f(x), C1 + x*Rational(5, 3)) sol4 = Eq(f(x), C1*sin(x/3) + C2*cos(x/3)) sol5 = Eq(f(x), C1*exp(-x/3) + C2*exp(x/3)) sol6 = Eq(f(x), (C1 - cos(x))/x**3) sol7 = Eq(f(x), (C1 + C2*exp(x))*exp(x)) sol8 = Eq(f(x), (C1 + C2*x)*exp(2*x)) sol9 = Eq(f(x), (C1*sin(x*sqrt(2)) + C2*cos(x*sqrt(2)))*exp(-x)) sol10 = Eq(f(x), C1 + x/3) sol11 = Eq(f(x), C1 + log(x)) assert dsolve(eq1) == sol1 assert dsolve(eq1.lhs) == sol1 assert dsolve(eq2) == sol2 assert dsolve(eq3) == sol3 assert dsolve(eq4) == sol4 assert dsolve(eq5) == sol5 assert dsolve(eq6) == sol6 assert dsolve(eq7) == sol7 assert dsolve(eq8) == sol8 assert dsolve(eq9) == sol9 assert dsolve(eq10) == sol10 assert dsolve(eq11) == sol11 assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0] assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0] assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0] assert checkodesol(eq4, sol4, order=2, solve_for_func=False)[0] assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0] assert checkodesol(eq6, sol6, order=1, solve_for_func=False)[0] assert checkodesol(eq7, sol7, order=2, solve_for_func=False)[0] assert checkodesol(eq8, sol8, order=2, solve_for_func=False)[0] assert checkodesol(eq9, sol9, order=2, solve_for_func=False)[0] assert checkodesol(eq10, sol10, order=1, solve_for_func=False)[0] assert checkodesol(eq11, sol11, order=1, solve_for_func=False)[0] def test_homogeneous_order(): assert homogeneous_order(exp(y/x) + tan(y/x), x, y) == 0 assert homogeneous_order(x**2 + sin(x)*cos(y), x, y) is None assert homogeneous_order(x - y - x*sin(y/x), x, y) == 1 assert homogeneous_order((x*y + sqrt(x**4 + y**4) + x**2*(log(x) - log(y)))/ (pi*x**Rational(2, 3)*sqrt(y)**3), x, y) == Rational(-1, 6) assert homogeneous_order(y/x*cos(y/x) - x/y*sin(y/x) + cos(y/x), x, y) == 0 assert homogeneous_order(f(x), x, f(x)) == 1 assert homogeneous_order(f(x)**2, x, f(x)) == 2 assert homogeneous_order(x*y*z, x, y) == 2 assert homogeneous_order(x*y*z, x, y, z) == 3 assert homogeneous_order(x**2*f(x)/sqrt(x**2 + f(x)**2), f(x)) is None assert homogeneous_order(f(x, y)**2, x, f(x, y), y) == 2 assert homogeneous_order(f(x, y)**2, x, f(x), y) is None assert homogeneous_order(f(x, y)**2, x, f(x, y)) is None assert homogeneous_order(f(y, x)**2, x, y, f(x, y)) is None assert homogeneous_order(f(y), f(x), x) is None assert homogeneous_order(-f(x)/x + 1/sin(f(x)/ x), f(x), x) == 0 assert homogeneous_order(log(1/y) + log(x**2), x, y) is None assert homogeneous_order(log(1/y) + log(x), x, y) == 0 assert homogeneous_order(log(x/y), x, y) == 0 assert homogeneous_order(2*log(1/y) + 2*log(x), x, y) == 0 a = Symbol('a') assert homogeneous_order(a*log(1/y) + a*log(x), x, y) == 0 assert homogeneous_order(f(x).diff(x), x, y) is None assert homogeneous_order(-f(x).diff(x) + x, x, y) is None assert homogeneous_order(O(x), x, y) is None assert homogeneous_order(x + O(x**2), x, y) is None assert homogeneous_order(x**pi, x) == pi assert homogeneous_order(x**x, x) is None raises(ValueError, lambda: homogeneous_order(x*y)) @slow def test_1st_homogeneous_coeff_ode(): # Type: First order homogeneous, y'=f(y/x) eq1 = f(x)/x*cos(f(x)/x) - (x/f(x)*sin(f(x)/x) + cos(f(x)/x))*f(x).diff(x) eq2 = x*f(x).diff(x) - f(x) - x*sin(f(x)/x) eq3 = f(x) + (x*log(f(x)/x) - 2*x)*diff(f(x), x) eq4 = 2*f(x)*exp(x/f(x)) + f(x)*f(x).diff(x) - 2*x*exp(x/f(x))*f(x).diff(x) eq5 = 2*x**2*f(x) + f(x)**3 + (x*f(x)**2 - 2*x**3)*f(x).diff(x) eq6 = x*exp(f(x)/x) - f(x)*sin(f(x)/x) + x*sin(f(x)/x)*f(x).diff(x) eq7 = (x + sqrt(f(x)**2 - x*f(x)))*f(x).diff(x) - f(x) eq8 = x + f(x) - (x - f(x))*f(x).diff(x) sol1 = Eq(log(x), C1 - log(f(x)*sin(f(x)/x)/x)) sol2 = Eq(log(x), log(C1) + log(cos(f(x)/x) - 1)/2 - log(cos(f(x)/x) + 1)/2) sol3 = Eq(f(x), -exp(C1)*LambertW(-x*exp(-C1 + 1))) sol4 = Eq(log(f(x)), C1 - 2*exp(x/f(x))) sol5 = Eq(f(x), exp(2*C1 + LambertW(-2*x**4*exp(-4*C1))/2)/x) sol6 = Eq(log(x), C1 + exp(-f(x)/x)*sin(f(x)/x)/2 + exp(-f(x)/x)*cos(f(x)/x)/2) sol7 = Eq(log(f(x)), C1 - 2*sqrt(-x/f(x) + 1)) sol8 = Eq(log(x), C1 - log(sqrt(1 + f(x)**2/x**2)) + atan(f(x)/x)) # indep_div_dep actually has a simpler solution for eq2, # but it runs too slow assert dsolve(eq1, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol1 assert dsolve(eq2, hint='1st_homogeneous_coeff_subs_dep_div_indep', simplify=False) == sol2 assert dsolve(eq3, hint='1st_homogeneous_coeff_best') == sol3 assert dsolve(eq4, hint='1st_homogeneous_coeff_best') == sol4 assert dsolve(eq5, hint='1st_homogeneous_coeff_best') == sol5 assert dsolve(eq6, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol6 assert dsolve(eq7, hint='1st_homogeneous_coeff_best') == sol7 assert dsolve(eq8, hint='1st_homogeneous_coeff_best') == sol8 # FIXME: sol3 and sol5 don't work with checkodesol (because of LambertW?) # previous code was testing with these other solutions: sol3b = Eq(-f(x)/(1 + log(x/f(x))), C1) sol5b = Eq(log(C1*x*sqrt(1/x)*sqrt(f(x))) + x**2/(2*f(x)**2), 0) assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0] assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0] assert checkodesol(eq3, sol3b, order=1, solve_for_func=False)[0] assert checkodesol(eq4, sol4, order=1, solve_for_func=False)[0] assert checkodesol(eq5, sol5b, order=1, solve_for_func=False)[0] assert checkodesol(eq6, sol6, order=1, solve_for_func=False)[0] assert checkodesol(eq8, sol8, order=1, solve_for_func=False)[0] def test_1st_homogeneous_coeff_ode_check2(): eq2 = x*f(x).diff(x) - f(x) - x*sin(f(x)/x) sol2 = Eq(x/tan(f(x)/(2*x)), C1) assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0] def test_1st_homogeneous_coeff_ode_check3(): eq3 = f(x) + (x*log(f(x)/x) - 2*x)*diff(f(x), x) # This solution is correct: sol3 = Eq(f(x), -exp(C1)*LambertW(-x*exp(1 - C1))) assert dsolve(eq3) == sol3 # FIXME: Checked in test_1st_homogeneous_coeff_ode_check3_check below # Alternate form: sol3a = Eq(f(x), x*exp(1 - LambertW(C1*x))) assert checkodesol(eq3, sol3a, solve_for_func=True)[0] @XFAIL def test_1st_homogeneous_coeff_ode_check3_check(): # See test_1st_homogeneous_coeff_ode_check3 above eq3 = f(x) + (x*log(f(x)/x) - 2*x)*diff(f(x), x) sol3 = Eq(f(x), -exp(C1)*LambertW(-x*exp(1 - C1))) assert checkodesol(eq3, sol3) == (True, 0) # XFAIL def test_1st_homogeneous_coeff_ode_check7(): eq7 = (x + sqrt(f(x)**2 - x*f(x)))*f(x).diff(x) - f(x) sol7 = Eq(log(f(x)), C1 - 2*sqrt(-x/f(x) + 1)) assert dsolve(eq7) == sol7 assert checkodesol(eq7, sol7, order=1, solve_for_func=False) == (True, 0) def test_1st_homogeneous_coeff_ode2(): eq1 = f(x).diff(x) - f(x)/x + 1/sin(f(x)/x) eq2 = x**2 + f(x)**2 - 2*x*f(x)*f(x).diff(x) eq3 = x*exp(f(x)/x) + f(x) - x*f(x).diff(x) sol1 = [Eq(f(x), x*(-acos(C1 + log(x)) + 2*pi)), Eq(f(x), x*acos(C1 + log(x)))] sol2 = Eq(log(f(x)), log(C1) + log(x/f(x)) - log(x**2/f(x)**2 - 1)) sol3 = Eq(f(x), log((1/(C1 - log(x)))**x)) # specific hints are applied for speed reasons assert dsolve(eq1, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol1 assert dsolve(eq2, hint='1st_homogeneous_coeff_best', simplify=False) == sol2 assert dsolve(eq3, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol3 # FIXME: sol3 doesn't work with checkodesol (because of **x?) # previous code was testing with this other solution: sol3b = Eq(f(x), log(log(C1/x)**(-x))) assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0] assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0] assert checkodesol(eq3, sol3b, order=1, solve_for_func=False)[0] def test_1st_homogeneous_coeff_ode_check9(): _u2 = Dummy('u2') __a = Dummy('a') eq9 = f(x)**2 + (x*sqrt(f(x)**2 - x**2) - x*f(x))*f(x).diff(x) sol9 = Eq(-Integral(-1/(-(1 - sqrt(1 - _u2**2))*_u2 + _u2), (_u2, __a, x/f(x))) + log(C1*f(x)), 0) assert checkodesol(eq9, sol9, order=1, solve_for_func=False)[0] def test_1st_homogeneous_coeff_ode3(): # The standard integration engine cannot handle one of the integrals # involved (see issue 4551). meijerg code comes up with an answer, but in # unconventional form. # checkodesol fails for this equation, so its test is in # test_1st_homogeneous_coeff_ode_check9 above. It has to compare string # expressions because u2 is a dummy variable. eq = f(x)**2 + (x*sqrt(f(x)**2 - x**2) - x*f(x))*f(x).diff(x) sol = Eq(log(f(x)), C1 + Piecewise( (acosh(f(x)/x), abs(f(x)**2)/x**2 > 1), (-I*asin(f(x)/x), True))) assert dsolve(eq, hint='1st_homogeneous_coeff_subs_indep_div_dep') == sol def test_1st_homogeneous_coeff_corner_case(): eq1 = f(x).diff(x) - f(x)/x c1 = classify_ode(eq1, f(x)) eq2 = x*f(x).diff(x) - f(x) c2 = classify_ode(eq2, f(x)) sdi = "1st_homogeneous_coeff_subs_dep_div_indep" sid = "1st_homogeneous_coeff_subs_indep_div_dep" assert sid not in c1 and sdi not in c1 assert sid not in c2 and sdi not in c2 def test_nth_linear_constant_coeff_homogeneous(): # Issue #15237 eqn = Derivative(x*f(x), x, x, x) hint = 'nth_linear_constant_coeff_homogeneous' raises(ValueError, lambda: dsolve(eqn, f(x), hint, prep=True)) raises(ValueError, lambda: dsolve(eqn, f(x), hint, prep=False)) @XFAIL @slow def test_nth_linear_constant_coeff_homogeneous_rootof_sol(): # See https://github.com/sympy/sympy/issues/15753 if ON_TRAVIS: skip("Too slow for travis.") eq = f(x).diff(x, 5) + 11*f(x).diff(x) - 2*f(x) sol = Eq(f(x), C1*exp(x*rootof(x**5 + 11*x - 2, 0)) + C2*exp(x*rootof(x**5 + 11*x - 2, 1)) + C3*exp(x*rootof(x**5 + 11*x - 2, 2)) + C4*exp(x*rootof(x**5 + 11*x - 2, 3)) + C5*exp(x*rootof(x**5 + 11*x - 2, 4))) assert checkodesol(eq, sol, order=5, solve_for_func=False)[0] @XFAIL def test_noncircularized_real_imaginary_parts(): # If this passes, lines numbered 3878-3882 (at the time of this commit) # of sympy/solvers/ode.py for nth_linear_constant_coeff_homogeneous # should be removed. y = sqrt(1+x) i, r = im(y), re(y) assert not (i.has(atan2) and r.has(atan2)) def test_collect_respecting_exponentials(): # If this test passes, lines 1306-1311 (at the time of this commit) # of sympy/solvers/ode.py should be removed. sol = 1 + exp(x/2) assert sol == collect( sol, exp(x/3)) def test_undetermined_coefficients_match(): assert _undetermined_coefficients_match(g(x), x) == {'test': False} assert _undetermined_coefficients_match(sin(2*x + sqrt(5)), x) == \ {'test': True, 'trialset': {cos(2*x + sqrt(5)), sin(2*x + sqrt(5))}} assert _undetermined_coefficients_match(sin(x)*cos(x), x) == \ {'test': False} s = {cos(x), x*cos(x), x**2*cos(x), x**2*sin(x), x*sin(x), sin(x)} assert _undetermined_coefficients_match(sin(x)*(x**2 + x + 1), x) == \ {'test': True, 'trialset': s} assert _undetermined_coefficients_match( sin(x)*x**2 + sin(x)*x + sin(x), x) == {'test': True, 'trialset': s} assert _undetermined_coefficients_match( exp(2*x)*sin(x)*(x**2 + x + 1), x ) == { 'test': True, 'trialset': {exp(2*x)*sin(x), x**2*exp(2*x)*sin(x), cos(x)*exp(2*x), x**2*cos(x)*exp(2*x), x*cos(x)*exp(2*x), x*exp(2*x)*sin(x)}} assert _undetermined_coefficients_match(1/sin(x), x) == {'test': False} assert _undetermined_coefficients_match(log(x), x) == {'test': False} assert _undetermined_coefficients_match(2**(x)*(x**2 + x + 1), x) == \ {'test': True, 'trialset': {2**x, x*2**x, x**2*2**x}} assert _undetermined_coefficients_match(x**y, x) == {'test': False} assert _undetermined_coefficients_match(exp(x)*exp(2*x + 1), x) == \ {'test': True, 'trialset': {exp(1 + 3*x)}} assert _undetermined_coefficients_match(sin(x)*(x**2 + x + 1), x) == \ {'test': True, 'trialset': {x*cos(x), x*sin(x), x**2*cos(x), x**2*sin(x), cos(x), sin(x)}} assert _undetermined_coefficients_match(sin(x)*(x + sin(x)), x) == \ {'test': False} assert _undetermined_coefficients_match(sin(x)*(x + sin(2*x)), x) == \ {'test': False} assert _undetermined_coefficients_match(sin(x)*tan(x), x) == \ {'test': False} assert _undetermined_coefficients_match( x**2*sin(x)*exp(x) + x*sin(x) + x, x ) == { 'test': True, 'trialset': {x**2*cos(x)*exp(x), x, cos(x), S.One, exp(x)*sin(x), sin(x), x*exp(x)*sin(x), x*cos(x), x*cos(x)*exp(x), x*sin(x), cos(x)*exp(x), x**2*exp(x)*sin(x)}} assert _undetermined_coefficients_match(4*x*sin(x - 2), x) == { 'trialset': {x*cos(x - 2), x*sin(x - 2), cos(x - 2), sin(x - 2)}, 'test': True, } assert _undetermined_coefficients_match(2**x*x, x) == \ {'test': True, 'trialset': {2**x, x*2**x}} assert _undetermined_coefficients_match(2**x*exp(2*x), x) == \ {'test': True, 'trialset': {2**x*exp(2*x)}} assert _undetermined_coefficients_match(exp(-x)/x, x) == \ {'test': False} # Below are from Ordinary Differential Equations, # Tenenbaum and Pollard, pg. 231 assert _undetermined_coefficients_match(S(4), x) == \ {'test': True, 'trialset': {S.One}} assert _undetermined_coefficients_match(12*exp(x), x) == \ {'test': True, 'trialset': {exp(x)}} assert _undetermined_coefficients_match(exp(I*x), x) == \ {'test': True, 'trialset': {exp(I*x)}} assert _undetermined_coefficients_match(sin(x), x) == \ {'test': True, 'trialset': {cos(x), sin(x)}} assert _undetermined_coefficients_match(cos(x), x) == \ {'test': True, 'trialset': {cos(x), sin(x)}} assert _undetermined_coefficients_match(8 + 6*exp(x) + 2*sin(x), x) == \ {'test': True, 'trialset': {S.One, cos(x), sin(x), exp(x)}} assert _undetermined_coefficients_match(x**2, x) == \ {'test': True, 'trialset': {S.One, x, x**2}} assert _undetermined_coefficients_match(9*x*exp(x) + exp(-x), x) == \ {'test': True, 'trialset': {x*exp(x), exp(x), exp(-x)}} assert _undetermined_coefficients_match(2*exp(2*x)*sin(x), x) == \ {'test': True, 'trialset': {exp(2*x)*sin(x), cos(x)*exp(2*x)}} assert _undetermined_coefficients_match(x - sin(x), x) == \ {'test': True, 'trialset': {S.One, x, cos(x), sin(x)}} assert _undetermined_coefficients_match(x**2 + 2*x, x) == \ {'test': True, 'trialset': {S.One, x, x**2}} assert _undetermined_coefficients_match(4*x*sin(x), x) == \ {'test': True, 'trialset': {x*cos(x), x*sin(x), cos(x), sin(x)}} assert _undetermined_coefficients_match(x*sin(2*x), x) == \ {'test': True, 'trialset': {x*cos(2*x), x*sin(2*x), cos(2*x), sin(2*x)}} assert _undetermined_coefficients_match(x**2*exp(-x), x) == \ {'test': True, 'trialset': {x*exp(-x), x**2*exp(-x), exp(-x)}} assert _undetermined_coefficients_match(2*exp(-x) - x**2*exp(-x), x) == \ {'test': True, 'trialset': {x*exp(-x), x**2*exp(-x), exp(-x)}} assert _undetermined_coefficients_match(exp(-2*x) + x**2, x) == \ {'test': True, 'trialset': {S.One, x, x**2, exp(-2*x)}} assert _undetermined_coefficients_match(x*exp(-x), x) == \ {'test': True, 'trialset': {x*exp(-x), exp(-x)}} assert _undetermined_coefficients_match(x + exp(2*x), x) == \ {'test': True, 'trialset': {S.One, x, exp(2*x)}} assert _undetermined_coefficients_match(sin(x) + exp(-x), x) == \ {'test': True, 'trialset': {cos(x), sin(x), exp(-x)}} assert _undetermined_coefficients_match(exp(x), x) == \ {'test': True, 'trialset': {exp(x)}} # converted from sin(x)**2 assert _undetermined_coefficients_match(S.Half - cos(2*x)/2, x) == \ {'test': True, 'trialset': {S.One, cos(2*x), sin(2*x)}} # converted from exp(2*x)*sin(x)**2 assert _undetermined_coefficients_match( exp(2*x)*(S.Half + cos(2*x)/2), x ) == { 'test': True, 'trialset': {exp(2*x)*sin(2*x), cos(2*x)*exp(2*x), exp(2*x)}} assert _undetermined_coefficients_match(2*x + sin(x) + cos(x), x) == \ {'test': True, 'trialset': {S.One, x, cos(x), sin(x)}} # converted from sin(2*x)*sin(x) assert _undetermined_coefficients_match(cos(x)/2 - cos(3*x)/2, x) == \ {'test': True, 'trialset': {cos(x), cos(3*x), sin(x), sin(3*x)}} assert _undetermined_coefficients_match(cos(x**2), x) == {'test': False} assert _undetermined_coefficients_match(2**(x**2), x) == {'test': False} def test_issue_12623(): t = symbols("t") u = symbols("u",cls=Function) R, L, C, E_0, alpha = symbols("R L C E_0 alpha",positive=True) omega = Symbol('omega') eqRLC_1 = Eq( u(t).diff(t,t) + R /L*u(t).diff(t) + 1/(L*C)*u(t), alpha) sol_1 = Eq(u(t), C*L*alpha + C1*exp(t*(-R - sqrt(C*R**2 - 4*L)/sqrt(C))/(2*L)) + C2*exp(t*(-R + sqrt(C*R**2 - 4*L)/sqrt(C))/(2*L))) assert dsolve(eqRLC_1) == sol_1 assert checkodesol(eqRLC_1, sol_1) == (True, 0) eqRLC_2 = Eq( L*C*u(t).diff(t,t) + R*C*u(t).diff(t) + u(t), E_0*exp(I*omega*t) ) sol_2 = Eq(u(t), C1*exp(t*(-R - sqrt(C*R**2 - 4*L)/sqrt(C))/(2*L)) + C2*exp(t*(-R + sqrt(C*R**2 - 4*L)/sqrt(C))/(2*L)) + E_0*exp(I*omega*t)/(-C*L*omega**2 + I*C*R*omega + 1)) assert dsolve(eqRLC_2) == sol_2 assert checkodesol(eqRLC_2, sol_2) == (True, 0) #issue-https://github.com/sympy/sympy/issues/12623 def test_unexpanded_Liouville_ODE(): # This is the same as eq1 from test_Liouville_ODE() above. eq1 = diff(f(x), x)/x + diff(f(x), x, x)/2 - diff(f(x), x)**2/2 eq2 = eq1*exp(-f(x))/exp(f(x)) sol2 = Eq(f(x), C1 + log(x) - log(C2 + x)) sol2s = constant_renumber(sol2) assert dsolve(eq2) in (sol2, sol2s) assert checkodesol(eq2, sol2, order=2, solve_for_func=False)[0] def test_issue_4785(): from sympy.abc import A eq = x + A*(x + diff(f(x), x) + f(x)) + diff(f(x), x) + f(x) + 2 assert classify_ode(eq, f(x)) == ('1st_linear', 'almost_linear', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', '1st_linear_Integral', 'almost_linear_Integral', 'nth_linear_constant_coeff_variation_of_parameters_Integral') # issue 4864 eq = (x**2 + f(x)**2)*f(x).diff(x) - 2*x*f(x) assert classify_ode(eq, f(x)) == ('1st_exact', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_power_series', 'lie_group', '1st_exact_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral') def test_issue_4825(): raises(ValueError, lambda: dsolve(f(x, y).diff(x) - y*f(x, y), f(x))) assert classify_ode(f(x, y).diff(x) - y*f(x, y), f(x), dict=True) == \ {'order': 0, 'default': None, 'ordered_hints': ()} # See also issue 3793, test Z13. raises(ValueError, lambda: dsolve(f(x).diff(x), f(y))) assert classify_ode(f(x).diff(x), f(y), dict=True) == \ {'order': 0, 'default': None, 'ordered_hints': ()} def test_constant_renumber_order_issue_5308(): from sympy.utilities.iterables import variations assert constant_renumber(C1*x + C2*y) == \ constant_renumber(C1*y + C2*x) == \ C1*x + C2*y e = C1*(C2 + x)*(C3 + y) for a, b, c in variations([C1, C2, C3], 3): assert constant_renumber(a*(b + x)*(c + y)) == e def test_constant_renumber(): e1, e2, x, y = symbols("e1:3 x y") exprs = [e2*x, e1*x + e2*y] assert constant_renumber(exprs[0]) == e2*x assert constant_renumber(exprs[0], variables=[x]) == C1*x assert constant_renumber(exprs[0], variables=[x], newconstants=[C2]) == C2*x assert constant_renumber(exprs, variables=[x, y]) == [C1*x, C1*y + C2*x] assert constant_renumber(exprs, variables=[x, y], newconstants=symbols("C3:5")) == [C3*x, C3*y + C4*x] def test_issue_5770(): k = Symbol("k", real=True) t = Symbol('t') w = Function('w') sol = dsolve(w(t).diff(t, 6) - k**6*w(t), w(t)) assert len([s for s in sol.free_symbols if s.name.startswith('C')]) == 6 assert constantsimp((C1*cos(x) + C2*cos(x))*exp(x), {C1, C2}) == \ C1*cos(x)*exp(x) assert constantsimp(C1*cos(x) + C2*cos(x) + C3*sin(x), {C1, C2, C3}) == \ C1*cos(x) + C3*sin(x) assert constantsimp(exp(C1 + x), {C1}) == C1*exp(x) assert constantsimp(x + C1 + y, {C1, y}) == C1 + x assert constantsimp(x + C1 + Integral(x, (x, 1, 2)), {C1}) == C1 + x def test_issue_5112_5430(): assert homogeneous_order(-log(x) + acosh(x), x) is None assert homogeneous_order(y - log(x), x, y) is None def test_issue_5095(): f = Function('f') raises(ValueError, lambda: dsolve(f(x).diff(x)**2, f(x), 'fdsjf')) def test_exact_enhancement(): f = Function('f')(x) df = Derivative(f, x) eq = f/x**2 + ((f*x - 1)/x)*df sol = [Eq(f, (i*sqrt(C1*x**2 + 1) + 1)/x) for i in (-1, 1)] assert set(dsolve(eq, f)) == set(sol) assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0), (True, 0)] eq = (x*f - 1) + df*(x**2 - x*f) sol = [Eq(f, x - sqrt(C1 + x**2 - 2*log(x))), Eq(f, x + sqrt(C1 + x**2 - 2*log(x)))] assert set(dsolve(eq, f)) == set(sol) assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0), (True, 0)] eq = (x + 2)*sin(f) + df*x*cos(f) sol = [Eq(f, -asin(C1*exp(-x)/x**2) + pi), Eq(f, asin(C1*exp(-x)/x**2))] assert set(dsolve(eq, f)) == set(sol) assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0), (True, 0)] def test_homogeneous_function(): f = Function('f') eq1 = tan(x + f(x)) eq2 = sin((3*x)/(4*f(x))) eq3 = cos(x*f(x)*Rational(3, 4)) eq4 = log((3*x + 4*f(x))/(5*f(x) + 7*x)) eq5 = exp((2*x**2)/(3*f(x)**2)) eq6 = log((3*x + 4*f(x))/(5*f(x) + 7*x) + exp((2*x**2)/(3*f(x)**2))) eq7 = sin((3*x)/(5*f(x) + x**2)) assert homogeneous_order(eq1, x, f(x)) == None assert homogeneous_order(eq2, x, f(x)) == 0 assert homogeneous_order(eq3, x, f(x)) == None assert homogeneous_order(eq4, x, f(x)) == 0 assert homogeneous_order(eq5, x, f(x)) == 0 assert homogeneous_order(eq6, x, f(x)) == 0 assert homogeneous_order(eq7, x, f(x)) == None def test_linear_coeff_match(): n, d = z*(2*x + 3*f(x) + 5), z*(7*x + 9*f(x) + 11) rat = n/d eq1 = sin(rat) + cos(rat.expand()) eq2 = rat eq3 = log(sin(rat)) ans = (4, Rational(-13, 3)) assert _linear_coeff_match(eq1, f(x)) == ans assert _linear_coeff_match(eq2, f(x)) == ans assert _linear_coeff_match(eq3, f(x)) == ans # no c eq4 = (3*x)/f(x) # not x and f(x) eq5 = (3*x + 2)/x # denom will be zero eq6 = (3*x + 2*f(x) + 1)/(3*x + 2*f(x) + 5) # not rational coefficient eq7 = (3*x + 2*f(x) + sqrt(2))/(3*x + 2*f(x) + 5) assert _linear_coeff_match(eq4, f(x)) is None assert _linear_coeff_match(eq5, f(x)) is None assert _linear_coeff_match(eq6, f(x)) is None assert _linear_coeff_match(eq7, f(x)) is None def test_linear_coefficients(): f = Function('f') sol = Eq(f(x), C1/(x**2 + 6*x + 9) - Rational(3, 2)) eq = f(x).diff(x) + (3 + 2*f(x))/(x + 3) assert dsolve(eq, hint='linear_coefficients') == sol assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] def test_constantsimp_take_problem(): c = exp(C1) + 2 assert len(Poly(constantsimp(exp(C1) + c + c*x, [C1])).gens) == 2 def test_issue_6879(): f = Function('f') eq = Eq(Derivative(f(x), x, 2) - 2*Derivative(f(x), x) + f(x), sin(x)) sol = (C1 + C2*x)*exp(x) + cos(x)/2 assert dsolve(eq).rhs == sol assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] def test_issue_6989(): f = Function('f') k = Symbol('k') eq = f(x).diff(x) - x*exp(-k*x) csol = Eq(f(x), C1 + Piecewise( ((-k*x - 1)*exp(-k*x)/k**2, Ne(k**2, 0)), (x**2/2, True) )) sol = dsolve(eq, f(x)) assert sol == csol assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] eq = -f(x).diff(x) + x*exp(-k*x) csol = Eq(f(x), C1 + Piecewise( ((-k*x - 1)*exp(-k*x)/k**2, Ne(k**2, 0)), (x**2/2, True) )) sol = dsolve(eq, f(x)) assert sol == csol assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] def test_heuristic1(): y, a, b, c, a4, a3, a2, a1, a0 = symbols("y a b c a4 a3 a2 a1 a0") f = Function('f') xi = Function('xi') eta = Function('eta') df = f(x).diff(x) eq = Eq(df, x**2*f(x)) eq1 = f(x).diff(x) + a*f(x) - c*exp(b*x) eq2 = f(x).diff(x) + 2*x*f(x) - x*exp(-x**2) eq3 = (1 + 2*x)*df + 2 - 4*exp(-f(x)) eq4 = f(x).diff(x) - (a4*x**4 + a3*x**3 + a2*x**2 + a1*x + a0)**Rational(-1, 2) eq5 = x**2*df - f(x) + x**2*exp(x - (1/x)) eqlist = [eq, eq1, eq2, eq3, eq4, eq5] i = infinitesimals(eq, hint='abaco1_simple') assert i == [{eta(x, f(x)): exp(x**3/3), xi(x, f(x)): 0}, {eta(x, f(x)): f(x), xi(x, f(x)): 0}, {eta(x, f(x)): 0, xi(x, f(x)): x**(-2)}] i1 = infinitesimals(eq1, hint='abaco1_simple') assert i1 == [{eta(x, f(x)): exp(-a*x), xi(x, f(x)): 0}] i2 = infinitesimals(eq2, hint='abaco1_simple') assert i2 == [{eta(x, f(x)): exp(-x**2), xi(x, f(x)): 0}] i3 = infinitesimals(eq3, hint='abaco1_simple') assert i3 == [{eta(x, f(x)): 0, xi(x, f(x)): 2*x + 1}, {eta(x, f(x)): 0, xi(x, f(x)): 1/(exp(f(x)) - 2)}] i4 = infinitesimals(eq4, hint='abaco1_simple') assert i4 == [{eta(x, f(x)): 1, xi(x, f(x)): 0}, {eta(x, f(x)): 0, xi(x, f(x)): sqrt(a0 + a1*x + a2*x**2 + a3*x**3 + a4*x**4)}] i5 = infinitesimals(eq5, hint='abaco1_simple') assert i5 == [{xi(x, f(x)): 0, eta(x, f(x)): exp(-1/x)}] ilist = [i, i1, i2, i3, i4, i5] for eq, i in (zip(eqlist, ilist)): check = checkinfsol(eq, i) assert check[0] def test_issue_6247(): eq = f(x).diff(x, x) + 4*f(x) sol = Eq(f(x), C1*sin(2*x) + C2*cos(2*x)) assert dsolve(eq) == sol assert checkodesol(eq, sol, order=1)[0] def test_heuristic2(): xi = Function('xi') eta = Function('eta') df = f(x).diff(x) # This ODE can be solved by the Lie Group method, when there are # better assumptions eq = df - (f(x)/x)*(x*log(x**2/f(x)) + 2) i = infinitesimals(eq, hint='abaco1_product') assert i == [{eta(x, f(x)): f(x)*exp(-x), xi(x, f(x)): 0}] assert checkinfsol(eq, i)[0] @slow def test_heuristic3(): xi = Function('xi') eta = Function('eta') a, b = symbols("a b") df = f(x).diff(x) eq = x**2*df + x*f(x) + f(x)**2 + x**2 i = infinitesimals(eq, hint='bivariate') assert i == [{eta(x, f(x)): f(x), xi(x, f(x)): x}] assert checkinfsol(eq, i)[0] eq = x**2*(-f(x)**2 + df)- a*x**2*f(x) + 2 - a*x i = infinitesimals(eq, hint='bivariate') assert checkinfsol(eq, i)[0] def test_heuristic_4(): y, a = symbols("y a") eq = x*(f(x).diff(x)) + 1 - f(x)**2 i = infinitesimals(eq, hint='chi') assert checkinfsol(eq, i)[0] def test_heuristic_function_sum(): xi = Function('xi') eta = Function('eta') eq = f(x).diff(x) - (3*(1 + x**2/f(x)**2)*atan(f(x)/x) + (1 - 2*f(x))/x + (1 - 3*f(x))*(x/f(x)**2)) i = infinitesimals(eq, hint='function_sum') assert i == [{eta(x, f(x)): f(x)**(-2) + x**(-2), xi(x, f(x)): 0}] assert checkinfsol(eq, i)[0] def test_heuristic_abaco2_similar(): xi = Function('xi') eta = Function('eta') F = Function('F') a, b = symbols("a b") eq = f(x).diff(x) - F(a*x + b*f(x)) i = infinitesimals(eq, hint='abaco2_similar') assert i == [{eta(x, f(x)): -a/b, xi(x, f(x)): 1}] assert checkinfsol(eq, i)[0] eq = f(x).diff(x) - (f(x)**2 / (sin(f(x) - x) - x**2 + 2*x*f(x))) i = infinitesimals(eq, hint='abaco2_similar') assert i == [{eta(x, f(x)): f(x)**2, xi(x, f(x)): f(x)**2}] assert checkinfsol(eq, i)[0] def test_heuristic_abaco2_unique_unknown(): xi = Function('xi') eta = Function('eta') F = Function('F') a, b = symbols("a b") x = Symbol("x", positive=True) eq = f(x).diff(x) - x**(a - 1)*(f(x)**(1 - b))*F(x**a/a + f(x)**b/b) i = infinitesimals(eq, hint='abaco2_unique_unknown') assert i == [{eta(x, f(x)): -f(x)*f(x)**(-b), xi(x, f(x)): x*x**(-a)}] assert checkinfsol(eq, i)[0] eq = f(x).diff(x) + tan(F(x**2 + f(x)**2) + atan(x/f(x))) i = infinitesimals(eq, hint='abaco2_unique_unknown') assert i == [{eta(x, f(x)): x, xi(x, f(x)): -f(x)}] assert checkinfsol(eq, i)[0] eq = (x*f(x).diff(x) + f(x) + 2*x)**2 -4*x*f(x) -4*x**2 -4*a i = infinitesimals(eq, hint='abaco2_unique_unknown') assert checkinfsol(eq, i)[0] def test_heuristic_linear(): a, b, m, n = symbols("a b m n") eq = x**(n*(m + 1) - m)*(f(x).diff(x)) - a*f(x)**n -b*x**(n*(m + 1)) i = infinitesimals(eq, hint='linear') assert checkinfsol(eq, i)[0] @XFAIL def test_kamke(): a, b, alpha, c = symbols("a b alpha c") eq = x**2*(a*f(x)**2+(f(x).diff(x))) + b*x**alpha + c i = infinitesimals(eq, hint='sum_function') # XFAIL assert checkinfsol(eq, i)[0] def test_series(): C1 = Symbol("C1") eq = f(x).diff(x) - f(x) sol = Eq(f(x), C1 + C1*x + C1*x**2/2 + C1*x**3/6 + C1*x**4/24 + C1*x**5/120 + O(x**6)) assert dsolve(eq, hint='1st_power_series') == sol assert checkodesol(eq, sol, order=1)[0] eq = f(x).diff(x) - x*f(x) sol = Eq(f(x), C1*x**4/8 + C1*x**2/2 + C1 + O(x**6)) assert dsolve(eq, hint='1st_power_series') == sol assert checkodesol(eq, sol, order=1)[0] eq = f(x).diff(x) - sin(x*f(x)) sol = Eq(f(x), (x - 2)**2*(1+ sin(4))*cos(4) + (x - 2)*sin(4) + 2 + O(x**3)) assert dsolve(eq, hint='1st_power_series', ics={f(2): 2}, n=3) == sol # FIXME: The solution here should be O((x-2)**3) so is incorrect #assert checkodesol(eq, sol, order=1)[0] @XFAIL def test_lie_group_issue15219(): eqn = exp(f(x).diff(x)-f(x)) assert 'lie_group' not in classify_ode(eqn, f(x)) def test_user_infinitesimals(): x = Symbol("x") # assuming x is real generates an error eq = x*(f(x).diff(x)) + 1 - f(x)**2 sol = Eq(f(x), (C1 + x**2)/(C1 - x**2)) infinitesimals = {'xi':sqrt(f(x) - 1)/sqrt(f(x) + 1), 'eta':0} assert dsolve(eq, hint='lie_group', **infinitesimals) == sol assert checkodesol(eq, sol) == (True, 0) def test_issue_7081(): eq = x*(f(x).diff(x)) + 1 - f(x)**2 s = Eq(f(x), -1/(-C1 + x**2)*(C1 + x**2)) assert dsolve(eq) == s assert checkodesol(eq, s) == (True, 0) @slow def test_2nd_power_series_ordinary(): C1, C2 = symbols("C1 C2") eq = f(x).diff(x, 2) - x*f(x) assert classify_ode(eq) == ('2nd_linear_airy', '2nd_power_series_ordinary') sol = Eq(f(x), C2*(x**3/6 + 1) + C1*x*(x**3/12 + 1) + O(x**6)) assert dsolve(eq, hint='2nd_power_series_ordinary') == sol assert checkodesol(eq, sol) == (True, 0) sol = Eq(f(x), C2*((x + 2)**4/6 + (x + 2)**3/6 - (x + 2)**2 + 1) + C1*(x + (x + 2)**4/12 - (x + 2)**3/3 + S(2)) + O(x**6)) assert dsolve(eq, hint='2nd_power_series_ordinary', x0=-2) == sol # FIXME: Solution should be O((x+2)**6) # assert checkodesol(eq, sol) == (True, 0) sol = Eq(f(x), C2*x + C1 + O(x**2)) assert dsolve(eq, hint='2nd_power_series_ordinary', n=2) == sol assert checkodesol(eq, sol) == (True, 0) eq = (1 + x**2)*(f(x).diff(x, 2)) + 2*x*(f(x).diff(x)) -2*f(x) assert classify_ode(eq) == ('2nd_power_series_ordinary',) sol = Eq(f(x), C2*(-x**4/3 + x**2 + 1) + C1*x + O(x**6)) assert dsolve(eq) == sol assert checkodesol(eq, sol) == (True, 0) eq = f(x).diff(x, 2) + x*(f(x).diff(x)) + f(x) assert classify_ode(eq) == ('2nd_power_series_ordinary',) sol = Eq(f(x), C2*(x**4/8 - x**2/2 + 1) + C1*x*(-x**2/3 + 1) + O(x**6)) assert dsolve(eq) == sol # FIXME: checkodesol fails for this solution... # assert checkodesol(eq, sol) == (True, 0) eq = f(x).diff(x, 2) + f(x).diff(x) - x*f(x) assert classify_ode(eq) == ('2nd_power_series_ordinary',) sol = Eq(f(x), C2*(-x**4/24 + x**3/6 + 1) + C1*x*(x**3/24 + x**2/6 - x/2 + 1) + O(x**6)) assert dsolve(eq) == sol # FIXME: checkodesol fails for this solution... # assert checkodesol(eq, sol) == (True, 0) eq = f(x).diff(x, 2) + x*f(x) assert classify_ode(eq) == ('2nd_linear_airy', '2nd_power_series_ordinary') sol = Eq(f(x), C2*(x**6/180 - x**3/6 + 1) + C1*x*(-x**3/12 + 1) + O(x**7)) assert dsolve(eq, hint='2nd_power_series_ordinary', n=7) == sol assert checkodesol(eq, sol) == (True, 0) def test_2nd_power_series_regular(): C1, C2 = symbols("C1 C2") eq = x**2*(f(x).diff(x, 2)) - 3*x*(f(x).diff(x)) + (4*x + 4)*f(x) sol = Eq(f(x), C1*x**2*(-16*x**3/9 + 4*x**2 - 4*x + 1) + O(x**6)) assert dsolve(eq, hint='2nd_power_series_regular') == sol assert checkodesol(eq, sol) == (True, 0) eq = 4*x**2*(f(x).diff(x, 2)) -8*x**2*(f(x).diff(x)) + (4*x**2 + 1)*f(x) sol = Eq(f(x), C1*sqrt(x)*(x**4/24 + x**3/6 + x**2/2 + x + 1) + O(x**6)) assert dsolve(eq, hint='2nd_power_series_regular') == sol assert checkodesol(eq, sol) == (True, 0) eq = x**2*(f(x).diff(x, 2)) - x**2*(f(x).diff(x)) + ( x**2 - 2)*f(x) sol = Eq(f(x), C1*(-x**6/720 - 3*x**5/80 - x**4/8 + x**2/2 + x/2 + 1)/x + C2*x**2*(-x**3/60 + x**2/20 + x/2 + 1) + O(x**6)) assert dsolve(eq) == sol assert checkodesol(eq, sol) == (True, 0) eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 - Rational(1, 4))*f(x) sol = Eq(f(x), C1*(x**4/24 - x**2/2 + 1)/sqrt(x) + C2*sqrt(x)*(x**4/120 - x**2/6 + 1) + O(x**6)) assert dsolve(eq, hint='2nd_power_series_regular') == sol assert checkodesol(eq, sol) == (True, 0) def test_issue_7093(): x = Symbol("x") # assuming x is real leads to an error sol = [Eq(f(x), C1 - 2*x*sqrt(x**3)/5), Eq(f(x), C1 + 2*x*sqrt(x**3)/5)] eq = Derivative(f(x), x)**2 - x**3 assert set(dsolve(eq)) == set(sol) assert checkodesol(eq, sol) == [(True, 0)] * 2 def test_dsolve_linsystem_symbol(): eps = Symbol('epsilon', positive=True) eq1 = (Eq(diff(f(x), x), -eps*g(x)), Eq(diff(g(x), x), eps*f(x))) sol1 = [Eq(f(x), -C1*eps*cos(eps*x) - C2*eps*sin(eps*x)), Eq(g(x), -C1*eps*sin(eps*x) + C2*eps*cos(eps*x))] assert checksysodesol(eq1, sol1) == (True, [0, 0]) def test_C1_function_9239(): t = Symbol('t') C1 = Function('C1') C2 = Function('C2') C3 = Symbol('C3') C4 = Symbol('C4') eq = (Eq(diff(C1(t), t), 9*C2(t)), Eq(diff(C2(t), t), 12*C1(t))) sol = [Eq(C1(t), 9*C3*exp(6*sqrt(3)*t) + 9*C4*exp(-6*sqrt(3)*t)), Eq(C2(t), 6*sqrt(3)*C3*exp(6*sqrt(3)*t) - 6*sqrt(3)*C4*exp(-6*sqrt(3)*t))] assert checksysodesol(eq, sol) == (True, [0, 0]) def test_issue_15056(): t = Symbol('t') C3 = Symbol('C3') assert get_numbered_constants(Symbol('C1') * Function('C2')(t)) == C3 def test_issue_10379(): t,y = symbols('t,y') eq = f(t).diff(t)-(1-51.05*y*f(t)) sol = Eq(f(t), (0.019588638589618*exp(y*(C1 - 51.05*t)) + 0.019588638589618)/y) dsolve_sol = dsolve(eq, rational=False) assert str(dsolve_sol) == str(sol) assert checkodesol(eq, dsolve_sol)[0] def test_issue_10867(): x = Symbol('x') eq = Eq(g(x).diff(x).diff(x), (x-2)**2 + (x-3)**3) sol = Eq(g(x), C1 + C2*x + x**5/20 - 2*x**4/3 + 23*x**3/6 - 23*x**2/2) assert dsolve(eq, g(x)) == sol assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) def test_issue_4838(): # Issue #15999 eq = f(x).diff(x) - C1*f(x) sol = Eq(f(x), C2*exp(C1*x)) assert dsolve(eq, f(x)) == sol assert checkodesol(eq, sol, order=1, solve_for_func=False) == (True, 0) # Issue #13691 eq = f(x).diff(x) - C1*g(x).diff(x) sol = Eq(f(x), C2 + C1*g(x)) assert dsolve(eq, f(x)) == sol assert checkodesol(eq, sol, f(x), order=1, solve_for_func=False) == (True, 0) # Issue #4838 eq = f(x).diff(x) - 3*C1 - 3*x**2 sol = Eq(f(x), C2 + 3*C1*x + x**3) assert dsolve(eq, f(x)) == sol assert checkodesol(eq, sol, order=1, solve_for_func=False) == (True, 0) @slow def test_issue_14395(): eq = Derivative(f(x), x, x) + 9*f(x) - sec(x) sol = Eq(f(x), (C1 - x/3 + sin(2*x)/3)*sin(3*x) + (C2 + log(cos(x)) - 2*log(cos(x)**2)/3 + 2*cos(x)**2/3)*cos(3*x)) assert dsolve(eq, f(x)) == sol # FIXME: assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) # Needs to be a way to know how to combine derivatives in the expression def test_factoring_ode(): from sympy import Mul eqn = Derivative(x*f(x), x, x, x) + Derivative(f(x), x, x, x) # 2-arg Mul! soln = Eq(f(x), C1 + C2*x + C3/Mul(2, (x + 1), evaluate=False)) assert checkodesol(eqn, soln, order=2, solve_for_func=False)[0] assert soln == dsolve(eqn, f(x)) def test_issue_11542(): m = 96 g = 9.8 k = .2 f1 = g * m t = Symbol('t') v = Function('v') v_equation = dsolve(f1 - k * (v(t) ** 2) - m * Derivative(v(t)), 0) assert str(v_equation) == \ 'Eq(v(t), -68.585712797929/tanh(C1 - 0.142886901662352*t))' def test_issue_15913(): eq = -C1/x - 2*x*f(x) - f(x) + Derivative(f(x), x) sol = C2*exp(x**2 + x) + exp(x**2 + x)*Integral(C1*exp(-x**2 - x)/x, x) assert checkodesol(eq, sol) == (True, 0) sol = C1 + C2*exp(-x*y) eq = Derivative(y*f(x), x) + f(x).diff(x, 2) assert checkodesol(eq, sol, f(x)) == (True, 0) def test_issue_16146(): raises(ValueError, lambda: dsolve([f(x).diff(x), g(x).diff(x)], [f(x), g(x), h(x)])) raises(ValueError, lambda: dsolve([f(x).diff(x), g(x).diff(x)], [f(x)])) def test_dsolve_remove_redundant_solutions(): eq = (f(x)-2)*f(x).diff(x) sol = Eq(f(x), C1) assert dsolve(eq) == sol eq = (f(x)-sin(x))*(f(x).diff(x, 2)) sol = {Eq(f(x), C1 + C2*x), Eq(f(x), sin(x))} assert set(dsolve(eq)) == sol eq = (f(x)**2-2*f(x)+1)*f(x).diff(x, 3) sol = Eq(f(x), C1 + C2*x + C3*x**2) assert dsolve(eq) == sol def test_issue_13060(): A, B = symbols("A B", cls=Function) t = Symbol("t") eq = [Eq(Derivative(A(t), t), A(t)*B(t)), Eq(Derivative(B(t), t), A(t)*B(t))] sol = dsolve(eq) assert checkodesol(eq, sol) == (True, [0, 0])
d6b808c0404fc2102136dafbb7bceaef9c1f31ad53d464fc3ef8f86c7c427c14
# # The main tests for the code in single.py are currently located in # sympy/solvers/tests/test_ode.py # r""" This File contains test functions for the individual hints used for solving ODEs. Examples of each solver will be returned by _get_examples_ode_sol_name_of_solver. Examples should have a key 'XFAIL' which stores the list of hints if they are expected to fail for that hint. Functions that are for internal use: 1) _ode_solver_test(ode_examples) - It takes a dictionary of examples returned by _get_examples method and tests them with their respective hints. 2) _test_particular_example(our_hint, example_name) - It tests the ODE example corresponding to the hint provided. 3) _test_all_hints(runxfail=False) - It is used to test all the examples with all the hints currently implemented. It calls _test_all_examples_for_one_hint() which outputs whether the given hint functions properly if it classifies the ODE example. If runxfail flag is set to True then it will only test the examples which are expected to fail. Everytime the ODE of a particular solver is added, _test_all_hints() is to be executed to find the possible failures of different solver hints. 4) _test_all_examples_for_one_hint(our_hint, all_examples) - It takes hint as argument and checks this hint against all the ODE examples and gives output as the number of ODEs matched, number of ODEs which were solved correctly, list of ODEs which gives incorrect solution and list of ODEs which raises exception. """ from sympy import (acos, asin, asinh, atan, cos, Derivative, Dummy, diff, cbrt, E, Eq, exp, hyper, I, im, Integral, integrate, LambertW, log, Ne, pi, Piecewise, Rational, re, rootof, S, sin, sinh, cosh, tan, sqrt, symbols, Ei, erfi) from sympy.core import Function, Symbol from sympy.functions import airyai, airybi, besselj, bessely from sympy.integrals.risch import NonElementaryIntegral from sympy.solvers.ode import classify_ode, dsolve from sympy.solvers.ode.ode import allhints, _remove_redundant_solutions from sympy.solvers.ode.single import (FirstLinear, ODEMatchError, SingleODEProblem, SingleODESolver) from sympy.solvers.ode.subscheck import checkodesol from sympy.testing.pytest import raises, slow, ON_TRAVIS import traceback x = Symbol('x') u = Symbol('u') _u = Dummy('u') y = Symbol('y') f = Function('f') g = Function('g') C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 = symbols('C1:11') hint_message = """\ Hint did not match the example {example}. The ODE is: {eq}. The expected hint was {our_hint}\ """ expected_sol_message = """\ Different solution found from dsolve for example {example}. The ODE is: {eq} The expected solution was {sol} What dsolve returned is: {dsolve_sol}\ """ checkodesol_msg = """\ solution found is not correct for example {example}. The ODE is: {eq}\ """ dsol_incorrect_msg = """\ solution returned by dsolve is incorrect when using {hint}. The ODE is: {eq} The expected solution was {sol} what dsolve returned is: {dsolve_sol} You can test this with: eq = {eq} sol = dsolve(eq, hint='{hint}') print(sol) print(checkodesol(eq, sol)) """ exception_msg = """\ dsolve raised exception : {e} when using {hint} for the example {example} You can test this with: from sympy.solvers.ode.tests.test_single import _test_an_example _test_an_example('{hint}', example_name = '{example}') The ODE is: {eq} \ """ check_hint_msg = """\ Tested hint was : {hint} Total of {matched} examples matched with this hint. Out of which {solve} gave correct results. Examples which gave incorrect results are {unsolve}. Examples which raised exceptions are {exceptions} \ """ def _add_example_keys(func): def inner(): solver=func() examples=[] for example in solver['examples']: temp={ 'eq': solver['examples'][example]['eq'], 'sol': solver['examples'][example]['sol'], 'XFAIL': solver['examples'][example].get('XFAIL', []), 'func': solver['examples'][example].get('func',solver['func']), 'example_name': example, 'slow': solver['examples'][example].get('slow', False), 'simplify_flag':solver['examples'][example].get('simplify_flag',True), 'checkodesol_XFAIL': solver['examples'][example].get('checkodesol_XFAIL', False), 'dsolve_too_slow':solver['examples'][example].get('dsolve_too_slow',False), 'checkodesol_too_slow':solver['examples'][example].get('checkodesol_too_slow',False), 'hint': solver['hint'] } examples.append(temp) return examples return inner() def _ode_solver_test(ode_examples, run_slow_test=False): for example in ode_examples: if ((not run_slow_test) and example['slow']) or (run_slow_test and (not example['slow'])): continue result = _test_particular_example(example['hint'], example, solver_flag=True) if result['xpass_msg'] != "": print(result['xpass_msg']) def _test_all_hints(runxfail=False): all_hints = list(allhints)+["default"] all_examples = _get_all_examples() for our_hint in all_hints: if our_hint.endswith('_Integral') or 'series' in our_hint: continue _test_all_examples_for_one_hint(our_hint, all_examples, runxfail) def _test_dummy_sol(expected_sol,dsolve_sol): if type(dsolve_sol)==list: return any(expected_sol.dummy_eq(sub_dsol) for sub_dsol in dsolve_sol) else: return expected_sol.dummy_eq(dsolve_sol) def _test_an_example(our_hint, example_name): all_examples = _get_all_examples() for example in all_examples: if example['example_name'] == example_name: _test_particular_example(our_hint, example) def _test_particular_example(our_hint, ode_example, solver_flag=False): eq = ode_example['eq'] expected_sol = ode_example['sol'] example = ode_example['example_name'] xfail = our_hint in ode_example['XFAIL'] func = ode_example['func'] result = {'msg': '', 'xpass_msg': ''} simplify_flag=ode_example['simplify_flag'] checkodesol_XFAIL = ode_example['checkodesol_XFAIL'] dsolve_too_slow = ode_example['dsolve_too_slow'] checkodesol_too_slow = ode_example['checkodesol_too_slow'] xpass = True if solver_flag: if our_hint not in classify_ode(eq, func): message = hint_message.format(example=example, eq=eq, our_hint=our_hint) raise AssertionError(message) if our_hint in classify_ode(eq, func): result['match_list'] = example try: if not (dsolve_too_slow): dsolve_sol = dsolve(eq, func, simplify=simplify_flag,hint=our_hint) else: if len(expected_sol)==1: dsolve_sol = expected_sol[0] else: dsolve_sol = expected_sol except Exception as e: dsolve_sol = [] result['exception_list'] = example if not solver_flag: traceback.print_exc() result['msg'] = exception_msg.format(e=str(e), hint=our_hint, example=example, eq=eq) if solver_flag and not xfail: print(result['msg']) raise xpass = False if solver_flag and dsolve_sol!=[]: expect_sol_check = False if type(dsolve_sol)==list: for sub_sol in expected_sol: if sub_sol.has(Dummy): expect_sol_check = not _test_dummy_sol(sub_sol, dsolve_sol) else: expect_sol_check = sub_sol not in dsolve_sol if expect_sol_check: break else: expect_sol_check = dsolve_sol not in expected_sol for sub_sol in expected_sol: if sub_sol.has(Dummy): expect_sol_check = not _test_dummy_sol(sub_sol, dsolve_sol) if expect_sol_check: message = expected_sol_message.format(example=example, eq=eq, sol=expected_sol, dsolve_sol=dsolve_sol) raise AssertionError(message) expected_checkodesol = [(True, 0) for i in range(len(expected_sol))] if len(expected_sol) == 1: expected_checkodesol = (True, 0) if not (checkodesol_too_slow and ON_TRAVIS): if not checkodesol_XFAIL: if checkodesol(eq, dsolve_sol, solve_for_func=False) != expected_checkodesol: result['unsolve_list'] = example xpass = False message = dsol_incorrect_msg.format(hint=our_hint, eq=eq, sol=expected_sol,dsolve_sol=dsolve_sol) if solver_flag: message = checkodesol_msg.format(example=example, eq=eq) raise AssertionError(message) else: result['msg'] = 'AssertionError: ' + message if xpass and xfail: result['xpass_msg'] = example + "is now passing for the hint" + our_hint return result def _test_all_examples_for_one_hint(our_hint, all_examples=[], runxfail=None): if all_examples == []: all_examples = _get_all_examples() match_list, unsolve_list, exception_list = [], [], [] for ode_example in all_examples: xfail = our_hint in ode_example['XFAIL'] if runxfail and not xfail: continue if xfail: continue result = _test_particular_example(our_hint, ode_example) match_list += result.get('match_list',[]) unsolve_list += result.get('unsolve_list',[]) exception_list += result.get('exception_list',[]) if runxfail is not None: msg = result['msg'] if msg!='': print(result['msg']) # print(result.get('xpass_msg','')) if runxfail is None: match_count = len(match_list) solved = len(match_list)-len(unsolve_list)-len(exception_list) msg = check_hint_msg.format(hint=our_hint, matched=match_count, solve=solved, unsolve=unsolve_list, exceptions=exception_list) print(msg) def test_SingleODESolver(): # Test that not implemented methods give NotImplementedError # Subclasses should override these methods. problem = SingleODEProblem(f(x).diff(x), f(x), x) solver = SingleODESolver(problem) raises(NotImplementedError, lambda: solver.matches()) raises(NotImplementedError, lambda: solver.get_general_solution()) raises(NotImplementedError, lambda: solver._matches()) raises(NotImplementedError, lambda: solver._get_general_solution()) # This ODE can not be solved by the FirstLinear solver. Here we test that # it does not match and the asking for a general solution gives # ODEMatchError problem = SingleODEProblem(f(x).diff(x) + f(x)*f(x), f(x), x) solver = FirstLinear(problem) raises(ODEMatchError, lambda: solver.get_general_solution()) solver = FirstLinear(problem) assert solver.matches() is False #These are just test for order of ODE problem = SingleODEProblem(f(x).diff(x) + f(x), f(x), x) assert problem.order == 1 problem = SingleODEProblem(f(x).diff(x,4) + f(x).diff(x,2) - f(x).diff(x,3), f(x), x) assert problem.order == 4 problem = SingleODEProblem(f(x).diff(x, 3) + f(x).diff(x, 2) - f(x)**2, f(x), x) assert problem.is_autonomous == True problem = SingleODEProblem(f(x).diff(x, 3) + x*f(x).diff(x, 2) - f(x)**2, f(x), x) assert problem.is_autonomous == False def test_nth_linear_constant_coeff_homogeneous(): _ode_solver_test(_get_examples_ode_sol_nth_linear_constant_coeff_homogeneous) @slow def test_slow_examples_nth_linear_constant_coeff_homogeneous(): _ode_solver_test(_get_examples_ode_sol_nth_linear_constant_coeff_homogeneous, run_slow_test=True) def test_Airy_equation(): _ode_solver_test(_get_examples_ode_sol_2nd_linear_airy) def test_lie_group(): _ode_solver_test(_get_examples_ode_sol_lie_group) def test_separable_reduced(): df = f(x).diff(x) eq = (x / f(x))*df + tan(x**2*f(x) / (x**2*f(x) - 1)) assert classify_ode(eq) == ('separable_reduced', 'lie_group', 'separable_reduced_Integral') _ode_solver_test(_get_examples_ode_sol_separable_reduced) @slow def test_slow_examples_separable_reduced(): _ode_solver_test(_get_examples_ode_sol_separable_reduced, run_slow_test=True) def test_2nd_2F1_hypergeometric(): _ode_solver_test(_get_examples_ode_sol_2nd_2F1_hypergeometric) def test_2nd_2F1_hypergeometric_integral(): eq = x*(x-1)*f(x).diff(x, 2) + (-1+ S(7)/2*x)*f(x).diff(x) + f(x) sol = Eq(f(x), (C1 + C2*Integral(exp(Integral((1 - x/2)/(x*(x - 1)), x))/(1 - x/2)**2, x))*exp(Integral(1/(x - 1), x)/4)*exp(-Integral(7/(x - 1), x)/4)*hyper((S(1)/2, -1), (1,), x)) assert sol == dsolve(eq, hint='2nd_hypergeometric_Integral') assert checkodesol(eq, sol) == (True, 0) def test_2nd_nonlinear_autonomous_conserved(): _ode_solver_test(_get_examples_ode_sol_2nd_nonlinear_autonomous_conserved) def test_2nd_nonlinear_autonomous_conserved_integral(): eq = f(x).diff(x, 2) + asin(f(x)) actual = [Eq(Integral(1/sqrt(C1 - 2*Integral(asin(_u), _u)), (_u, f(x))), C2 + x), Eq(Integral(1/sqrt(C1 - 2*Integral(asin(_u), _u)), (_u, f(x))), C2 - x)] solved = dsolve(eq, hint='2nd_nonlinear_autonomous_conserved_Integral', simplify=False) for a,s in zip(actual, solved): assert a.dummy_eq(s) # checkodesol unable to simplify solutions with f(x) in an integral equation assert checkodesol(eq, [s.doit() for s in solved]) == [(True, 0), (True, 0)] def test_2nd_linear_bessel_equation(): _ode_solver_test(_get_examples_ode_sol_2nd_linear_bessel) def test_nth_algebraic(): eqn = f(x) + f(x)*f(x).diff(x) solns = [Eq(f(x), exp(x)), Eq(f(x), C1*exp(C2*x))] solns_final = _remove_redundant_solutions(eqn, solns, 2, x) assert solns_final == [Eq(f(x), C1*exp(C2*x))] _ode_solver_test(_get_examples_ode_sol_nth_algebraic) @slow def test_slow_examples_nth_linear_constant_coeff_var_of_parameters(): _ode_solver_test(_get_examples_ode_sol_nth_linear_var_of_parameters, run_slow_test=True) def test_nth_linear_constant_coeff_var_of_parameters(): _ode_solver_test(_get_examples_ode_sol_nth_linear_var_of_parameters) @slow def test_nth_linear_constant_coeff_variation_of_parameters__integral(): # solve_variation_of_parameters shouldn't attempt to simplify the # Wronskian if simplify=False. If wronskian() ever gets good enough # to simplify the result itself, this test might fail. our_hint = 'nth_linear_constant_coeff_variation_of_parameters_Integral' eq = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - exp(I*x) sol_simp = dsolve(eq, f(x), hint=our_hint, simplify=True) sol_nsimp = dsolve(eq, f(x), hint=our_hint, simplify=False) assert sol_simp != sol_nsimp assert checkodesol(eq, sol_simp, order=5, solve_for_func=False) == (True, 0) assert checkodesol(eq, sol_simp, order=5, solve_for_func=False) == (True, 0) @slow def test_slow_examples_1st_exact(): _ode_solver_test(_get_examples_ode_sol_1st_exact, run_slow_test=True) def test_1st_exact(): _ode_solver_test(_get_examples_ode_sol_1st_exact) def test_1st_exact_integral(): eq = cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x) sol_1 = dsolve(eq, f(x), simplify=False, hint='1st_exact_Integral') assert checkodesol(eq, sol_1, order=1, solve_for_func=False) @slow def test_slow_examples_nth_order_reducible(): _ode_solver_test(_get_examples_ode_sol_nth_order_reducible, run_slow_test=True) @slow def test_slow_examples_nth_linear_constant_coeff_undetermined_coefficients(): _ode_solver_test(_get_examples_ode_sol_nth_linear_undetermined_coefficients, run_slow_test=True) @slow def test_slow_examples_separable(): _ode_solver_test(_get_examples_ode_sol_separable, run_slow_test=True) def test_nth_linear_constant_coeff_undetermined_coefficients(): #issue-https://github.com/sympy/sympy/issues/5787 # This test case is to show the classification of imaginary constants under # nth_linear_constant_coeff_undetermined_coefficients eq = Eq(diff(f(x), x), I*f(x) + S.Half - I) our_hint = 'nth_linear_constant_coeff_undetermined_coefficients' assert our_hint in classify_ode(eq) _ode_solver_test(_get_examples_ode_sol_nth_linear_undetermined_coefficients) def test_nth_order_reducible(): from sympy.solvers.ode.ode import _nth_order_reducible_match F = lambda eq: _nth_order_reducible_match(eq, f(x)) D = Derivative assert F(D(y*f(x), x, y) + D(f(x), x)) is None assert F(D(y*f(y), y, y) + D(f(y), y)) is None assert F(f(x)*D(f(x), x) + D(f(x), x, 2)) is None assert F(D(x*f(y), y, 2) + D(u*y*f(x), x, 3)) is None # no simplification by design assert F(D(f(y), y, 2) + D(f(y), y, 3) + D(f(x), x, 4)) is None assert F(D(f(x), x, 2) + D(f(x), x, 3)) == dict(n=2) _ode_solver_test(_get_examples_ode_sol_nth_order_reducible) def test_separable(): _ode_solver_test(_get_examples_ode_sol_separable) def test_factorable(): assert integrate(-asin(f(2*x)+pi), x) == -Integral(asin(pi + f(2*x)), x) _ode_solver_test(_get_examples_ode_sol_factorable) def test_Riccati_special_minus2(): _ode_solver_test(_get_examples_ode_sol_riccati) def test_Bernoulli(): _ode_solver_test(_get_examples_ode_sol_bernoulli) def test_1st_linear(): _ode_solver_test(_get_examples_ode_sol_1st_linear) def test_almost_linear(): _ode_solver_test(_get_examples_ode_sol_almost_linear) def test_Liouville_ODE(): hint = 'Liouville' not_Liouville1 = classify_ode(diff(f(x), x)/x + f(x)*diff(f(x), x, x)/2 - diff(f(x), x)**2/2, f(x)) not_Liouville2 = classify_ode(diff(f(x), x)/x + diff(f(x), x, x)/2 - x*diff(f(x), x)**2/2, f(x)) assert hint not in not_Liouville1 assert hint not in not_Liouville2 assert hint + '_Integral' not in not_Liouville1 assert hint + '_Integral' not in not_Liouville2 _ode_solver_test(_get_examples_ode_sol_liouville) def test_nth_order_linear_euler_eq_homogeneous(): x, t, a, b, c = symbols('x t a b c') y = Function('y') our_hint = "nth_linear_euler_eq_homogeneous" eq = diff(f(t), t, 4)*t**4 - 13*diff(f(t), t, 2)*t**2 + 36*f(t) assert our_hint in classify_ode(eq) eq = a*y(t) + b*t*diff(y(t), t) + c*t**2*diff(y(t), t, 2) assert our_hint in classify_ode(eq) _ode_solver_test(_get_examples_ode_sol_euler_homogeneous) def test_nth_order_linear_euler_eq_nonhomogeneous_undetermined_coefficients(): x, t = symbols('x t') a, b, c, d = symbols('a b c d', integer=True) our_hint = "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients" eq = x**4*diff(f(x), x, 4) - 13*x**2*diff(f(x), x, 2) + 36*f(x) + x assert our_hint in classify_ode(eq, f(x)) eq = a*x**2*diff(f(x), x, 2) + b*x*diff(f(x), x) + c*f(x) + d*log(x) assert our_hint in classify_ode(eq, f(x)) _ode_solver_test(_get_examples_ode_sol_euler_undetermined_coeff) def test_nth_order_linear_euler_eq_nonhomogeneous_variation_of_parameters(): x, t = symbols('x, t') a, b, c, d = symbols('a, b, c, d', integer=True) our_hint = "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters" eq = Eq(x**2*diff(f(x),x,2) - 8*x*diff(f(x),x) + 12*f(x), x**2) assert our_hint in classify_ode(eq, f(x)) eq = Eq(a*x**3*diff(f(x),x,3) + b*x**2*diff(f(x),x,2) + c*x*diff(f(x),x) + d*f(x), x*log(x)) assert our_hint in classify_ode(eq, f(x)) _ode_solver_test(_get_examples_ode_sol_euler_var_para) @_add_example_keys def _get_examples_ode_sol_euler_homogeneous(): return { 'hint': "nth_linear_euler_eq_homogeneous", 'func': f(x), 'examples':{ 'euler_hom_01': { 'eq': Eq(-3*diff(f(x), x)*x + 2*x**2*diff(f(x), x, x), 0), 'sol': [Eq(f(x), C1 + C2*x**Rational(5, 2))], }, 'euler_hom_02': { 'eq': Eq(3*f(x) - 5*diff(f(x), x)*x + 2*x**2*diff(f(x), x, x), 0), 'sol': [Eq(f(x), C1*sqrt(x) + C2*x**3)] }, 'euler_hom_03': { 'eq': Eq(4*f(x) + 5*diff(f(x), x)*x + x**2*diff(f(x), x, x), 0), 'sol': [Eq(f(x), (C1 + C2*log(x))/x**2)] }, 'euler_hom_04': { 'eq': Eq(6*f(x) - 6*diff(f(x), x)*x + 1*x**2*diff(f(x), x, x) + x**3*diff(f(x), x, x, x), 0), 'sol': [Eq(f(x), C1/x**2 + C2*x + C3*x**3)] }, 'euler_hom_05': { 'eq': Eq(-125*f(x) + 61*diff(f(x), x)*x - 12*x**2*diff(f(x), x, x) + x**3*diff(f(x), x, x, x), 0), 'sol': [Eq(f(x), x**5*(C1 + C2*log(x) + C3*log(x)**2))] }, 'euler_hom_06': { 'eq': x**2*diff(f(x), x, 2) + x*diff(f(x), x) - 9*f(x), 'sol': [Eq(f(x), C1*x**-3 + C2*x**3)] }, 'euler_hom_07': { 'eq': sin(x)*x**2*f(x).diff(x, 2) + sin(x)*x*f(x).diff(x) + sin(x)*f(x), 'sol': [Eq(f(x), C1*sin(log(x)) + C2*cos(log(x)))], 'XFAIL': ['2nd_power_series_regular','nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients'] }, } } @_add_example_keys def _get_examples_ode_sol_euler_undetermined_coeff(): return { 'hint': "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients", 'func': f(x), 'examples':{ 'euler_undet_01': { 'eq': Eq(x**2*diff(f(x), x, x) + x*diff(f(x), x), 1), 'sol': [Eq(f(x), C1 + C2*log(x) + log(x)**2/2)] }, 'euler_undet_02': { 'eq': Eq(x**2*diff(f(x), x, x) - 2*x*diff(f(x), x) + 2*f(x), x**3), 'sol': [Eq(f(x), x*(C1 + C2*x + Rational(1, 2)*x**2))] }, 'euler_undet_03': { 'eq': Eq(x**2*diff(f(x), x, x) - x*diff(f(x), x) - 3*f(x), log(x)/x), 'sol': [Eq(f(x), (C1 + C2*x**4 - log(x)**2/8 - log(x)/16)/x)] }, 'euler_undet_04': { 'eq': Eq(x**2*diff(f(x), x, x) + 3*x*diff(f(x), x) - 8*f(x), log(x)**3 - log(x)), 'sol': [Eq(f(x), C1/x**4 + C2*x**2 - Rational(1,8)*log(x)**3 - Rational(3,32)*log(x)**2 - Rational(1,64)*log(x) - Rational(7, 256))] }, 'euler_undet_05': { 'eq': Eq(x**3*diff(f(x), x, x, x) - 3*x**2*diff(f(x), x, x) + 6*x*diff(f(x), x) - 6*f(x), log(x)), 'sol': [Eq(f(x), C1*x + C2*x**2 + C3*x**3 - Rational(1, 6)*log(x) - Rational(11, 36))] }, #Below examples were added for the issue: https://github.com/sympy/sympy/issues/5096 'euler_undet_06': { 'eq': 2*x**2*f(x).diff(x, 2) + f(x) + sqrt(2*x)*sin(log(2*x)/2), 'sol': [Eq(f(x), sqrt(x)*(C1*sin(log(x)/2) + C2*cos(log(x)/2) + sqrt(2)*log(x)*cos(log(2*x)/2)/2))] }, 'euler_undet_07': { 'eq': 2*x**2*f(x).diff(x, 2) + f(x) + sin(log(2*x)/2), 'sol': [Eq(f(x), C1*sqrt(x)*sin(log(x)/2) + C2*sqrt(x)*cos(log(x)/2) - 2*sin(log(2*x)/2)/5 - 4*cos(log(2*x)/2)/5)] }, } } @_add_example_keys def _get_examples_ode_sol_euler_var_para(): return { 'hint': "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters", 'func': f(x), 'examples':{ 'euler_var_01': { 'eq': Eq(x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x), x**4), 'sol': [Eq(f(x), x*(C1 + C2*x + x**3/6))] }, 'euler_var_02': { 'eq': Eq(3*x**2*diff(f(x), x, x) + 6*x*diff(f(x), x) - 6*f(x), x**3*exp(x)), 'sol': [Eq(f(x), C1/x**2 + C2*x + x*exp(x)/3 - 4*exp(x)/3 + 8*exp(x)/(3*x) - 8*exp(x)/(3*x**2))] }, 'euler_var_03': { 'eq': Eq(x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x), x**4*exp(x)), 'sol': [Eq(f(x), x*(C1 + C2*x + x*exp(x) - 2*exp(x)))] }, 'euler_var_04': { 'eq': x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - log(x), 'sol': [Eq(f(x), C1*x + C2*x**2 + log(x)/2 + Rational(3, 4))] }, 'euler_var_05': { 'eq': -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x, 'sol': [Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))] }, } } @_add_example_keys def _get_examples_ode_sol_bernoulli(): # Type: Bernoulli, f'(x) + p(x)*f(x) == q(x)*f(x)**n return { 'hint': "Bernoulli", 'func': f(x), 'examples':{ 'bernoulli_01': { 'eq': Eq(x*f(x).diff(x) + f(x) - f(x)**2, 0), 'sol': [Eq(f(x), 1/(C1*x + 1))], 'XFAIL': ['separable_reduced'] }, 'bernoulli_02': { 'eq': f(x).diff(x) - y*f(x), 'sol': [Eq(f(x), C1*exp(x*y))] }, 'bernoulli_03': { 'eq': f(x)*f(x).diff(x) - 1, 'sol': [Eq(f(x), -sqrt(C1 + 2*x)), Eq(f(x), sqrt(C1 + 2*x))] }, } } @_add_example_keys def _get_examples_ode_sol_riccati(): # Type: Riccati special alpha = -2, a*dy/dx + b*y**2 + c*y/x +d/x**2 return { 'hint': "Riccati_special_minus2", 'func': f(x), 'examples':{ 'riccati_01': { 'eq': 2*f(x).diff(x) + f(x)**2 - f(x)/x + 3*x**(-2), 'sol': [Eq(f(x), (-sqrt(3)*tan(C1 + sqrt(3)*log(x)/4) + 3)/(2*x))], }, }, } @_add_example_keys def _get_examples_ode_sol_1st_linear(): # Type: first order linear form f'(x)+p(x)f(x)=q(x) return { 'hint': "1st_linear", 'func': f(x), 'examples':{ 'linear_01': { 'eq': Eq(f(x).diff(x) + x*f(x), x**2), 'sol': [Eq(f(x), (C1 + x*exp(x**2/2)- sqrt(2)*sqrt(pi)*erfi(sqrt(2)*x/2)/2)*exp(-x**2/2))], }, }, } @_add_example_keys def _get_examples_ode_sol_factorable(): """ some hints are marked as xfail for examples because they missed additional algebraic solution which could be found by Factorable hint. Fact_01 raise exception for nth_linear_constant_coeff_undetermined_coefficients""" y = Dummy('y') a0,a1,a2,a3,a4 = symbols('a0, a1, a2, a3, a4') return { 'hint': "factorable", 'func': f(x), 'examples':{ 'fact_01': { 'eq': f(x) + f(x)*f(x).diff(x), 'sol': [Eq(f(x), 0), Eq(f(x), C1 - x)], 'XFAIL': ['separable', '1st_exact', '1st_linear', 'Bernoulli', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', 'lie_group', 'nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', 'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters', 'nth_linear_constant_coeff_undetermined_coefficients'] }, 'fact_02': { 'eq': f(x)*(f(x).diff(x)+f(x)*x+2), 'sol': [Eq(f(x), (C1 - sqrt(2)*sqrt(pi)*erfi(sqrt(2)*x/2))*exp(-x**2/2)), Eq(f(x), 0)], 'XFAIL': ['Bernoulli', '1st_linear', 'lie_group'] }, 'fact_03': { 'eq': (f(x).diff(x)+f(x)*x**2)*(f(x).diff(x, 2) + x*f(x)), 'sol': [Eq(f(x), C1*airyai(-x) + C2*airybi(-x)),Eq(f(x), C1*exp(-x**3/3))] }, 'fact_04': { 'eq': (f(x).diff(x)+f(x)*x**2)*(f(x).diff(x, 2) + f(x)), 'sol': [Eq(f(x), C1*exp(-x**3/3)), Eq(f(x), C1*sin(x) + C2*cos(x))] }, 'fact_05': { 'eq': (f(x).diff(x)**2-1)*(f(x).diff(x)**2-4), 'sol': [Eq(f(x), C1 - x), Eq(f(x), C1 + x), Eq(f(x), C1 + 2*x), Eq(f(x), C1 - 2*x)] }, 'fact_06': { 'eq': (f(x).diff(x, 2)-exp(f(x)))*f(x).diff(x), 'sol': [ Eq(f(x), log(C1/(cos(C1*sqrt(-1/C1)*(C2 + x)) - 1))), Eq(f(x), log(C1/(cos(C1*sqrt(-1/C1)*(C2 - x)) - 1))), Eq(f(x), C1) ] }, 'fact_07': { 'eq': (f(x).diff(x)**2-1)*(f(x)*f(x).diff(x)-1), 'sol': [Eq(f(x), C1 - x), Eq(f(x), -sqrt(C1 + 2*x)),Eq(f(x), sqrt(C1 + 2*x)), Eq(f(x), C1 + x)] }, 'fact_08': { 'eq': Derivative(f(x), x)**4 - 2*Derivative(f(x), x)**2 + 1, 'sol': [Eq(f(x), C1 - x), Eq(f(x), C1 + x)] }, 'fact_09': { 'eq': f(x)**2*Derivative(f(x), x)**6 - 2*f(x)**2*Derivative(f(x), x)**4 + f(x)**2*Derivative(f(x), x)**2 - 2*f(x)*Derivative(f(x), x)**5 + 4*f(x)*Derivative(f(x), x)**3 - 2*f(x)*Derivative(f(x), x) + Derivative(f(x), x)**4 - 2*Derivative(f(x), x)**2 + 1, 'sol': [ Eq(f(x), C1 - x), Eq(f(x), -sqrt(C1 + 2*x)), Eq(f(x), sqrt(C1 + 2*x)), Eq(f(x), C1 + x) ] }, 'fact_10': { 'eq': x**4*f(x)**2 + 2*x**4*f(x)*Derivative(f(x), (x, 2)) + x**4*Derivative(f(x), (x, 2))**2 + 2*x**3*f(x)*Derivative(f(x), x) + 2*x**3*Derivative(f(x), x)*Derivative(f(x), (x, 2)) - 7*x**2*f(x)**2 - 7*x**2*f(x)*Derivative(f(x), (x, 2)) + x**2*Derivative(f(x), x)**2 - 7*x*f(x)*Derivative(f(x), x) + 12*f(x)**2, 'sol': [ Eq(f(x), C1*besselj(2, x) + C2*bessely(2, x)), Eq(f(x), C1*besselj(sqrt(3), x) + C2*bessely(sqrt(3), x)) ] }, 'fact_11': { 'eq': (f(x).diff(x, 2)-exp(f(x)))*(f(x).diff(x, 2)+exp(f(x))), 'sol': [ Eq(f(x), log(C1/(cos(C1*sqrt(-1/C1)*(C2 + x)) - 1))), Eq(f(x), log(C1/(cos(C1*sqrt(-1/C1)*(C2 - x)) - 1))), Eq(f(x), log(C1/(1 - cos(C1*sqrt(-1/C1)*(C2 + x))))), Eq(f(x), log(C1/(1 - cos(C1*sqrt(-1/C1)*(C2 - x))))) ], 'dsolve_too_slow': True, }, #Below examples were added for the issue: https://github.com/sympy/sympy/issues/15889 'fact_12': { 'eq': exp(f(x).diff(x))-f(x)**2, 'sol': [Eq(NonElementaryIntegral(1/log(y**2), (y, f(x))), C1 + x)], 'XFAIL': ['lie_group'] #It shows not implemented error for lie_group. }, 'fact_13': { 'eq': f(x).diff(x)**2 - f(x)**3, 'sol': [Eq(f(x), 4/(C1**2 - 2*C1*x + x**2))], 'XFAIL': ['lie_group'] #It shows not implemented error for lie_group. }, 'fact_14': { 'eq': f(x).diff(x)**2 - f(x), 'sol': [Eq(f(x), C1**2/4 - C1*x/2 + x**2/4)] }, 'fact_15': { 'eq': f(x).diff(x)**2 - f(x)**2, 'sol': [Eq(f(x), C1*exp(x)), Eq(f(x), C1*exp(-x))] }, 'fact_16': { 'eq': f(x).diff(x)**2 - f(x)**3, 'sol': [Eq(f(x), 4/(C1**2 - 2*C1*x + x**2))] }, # kamke ode 1.1 'fact_17': { 'eq': f(x).diff(x)-(a4*x**4 + a3*x**3 + a2*x**2 + a1*x + a0)**(-1/2), 'sol': [Eq(f(x), C1 + Integral(1/sqrt(a0 + a1*x + a2*x**2 + a3*x**3 + a4*x**4), x))] }, # This is from issue: https://github.com/sympy/sympy/issues/9446 'fact_18':{ 'eq': Eq(f(2 * x), sin(Derivative(f(x)))), 'sol': [Eq(f(x), C1 + pi*x - Integral(asin(f(2*x)), x)), Eq(f(x), C1 + Integral(asin(f(2*x)), x))], 'checkodesol_XFAIL':True }, } } @_add_example_keys def _get_examples_ode_sol_almost_linear(): from sympy import Ei A = Symbol('A', positive=True) f = Function('f') d = f(x).diff(x) return { 'hint': "almost_linear", 'func': f(x), 'examples':{ 'almost_lin_01': { 'eq': x**2*f(x)**2*d + f(x)**3 + 1, 'sol': [Eq(f(x), (C1*exp(3/x) - 1)**Rational(1, 3)), Eq(f(x), (-1 - sqrt(3)*I)*(C1*exp(3/x) - 1)**Rational(1, 3)/2), Eq(f(x), (-1 + sqrt(3)*I)*(C1*exp(3/x) - 1)**Rational(1, 3)/2)], }, 'almost_lin_02': { 'eq': x*f(x)*d + 2*x*f(x)**2 + 1, 'sol': [Eq(f(x), -sqrt((C1 - 2*Ei(4*x))*exp(-4*x))), Eq(f(x), sqrt((C1 - 2*Ei(4*x))*exp(-4*x)))] }, 'almost_lin_03': { 'eq': x*d + x*f(x) + 1, 'sol': [Eq(f(x), (C1 - Ei(x))*exp(-x))] }, 'almost_lin_04': { 'eq': x*exp(f(x))*d + exp(f(x)) + 3*x, 'sol': [Eq(f(x), log(C1/x - x*Rational(3, 2)))], }, 'almost_lin_05': { 'eq': x + A*(x + diff(f(x), x) + f(x)) + diff(f(x), x) + f(x) + 2, 'sol': [Eq(f(x), (C1 + Piecewise( (x, Eq(A + 1, 0)), ((-A*x + A - x - 1)*exp(x)/(A + 1), True)))*exp(-x))], }, } } @_add_example_keys def _get_examples_ode_sol_liouville(): return { 'hint': "Liouville", 'func': f(x), 'examples':{ 'liouville_01': { 'eq': diff(f(x), x)/x + diff(f(x), x, x)/2 - diff(f(x), x)**2/2, 'sol': [Eq(f(x), log(x/(C1 + C2*x)))], }, 'liouville_02': { 'eq': diff(x*exp(-f(x)), x, x), 'sol': [Eq(f(x), log(x/(C1 + C2*x)))] }, 'liouville_03': { 'eq': ((diff(f(x), x)/x + diff(f(x), x, x)/2 - diff(f(x), x)**2/2)*exp(-f(x))/exp(f(x))).expand(), 'sol': [Eq(f(x), log(x/(C1 + C2*x)))] }, 'liouville_04': { 'eq': diff(f(x), x, x) + 1/f(x)*(diff(f(x), x))**2 + 1/x*diff(f(x), x), 'sol': [Eq(f(x), -sqrt(C1 + C2*log(x))), Eq(f(x), sqrt(C1 + C2*log(x)))], }, 'liouville_05': { 'eq': x*diff(f(x), x, x) + x/f(x)*diff(f(x), x)**2 + x*diff(f(x), x), 'sol': [Eq(f(x), -sqrt(C1 + C2*exp(-x))), Eq(f(x), sqrt(C1 + C2*exp(-x)))], }, 'liouville_06': { 'eq': Eq((x*exp(f(x))).diff(x, x), 0), 'sol': [Eq(f(x), log(C1 + C2/x))], }, } } @_add_example_keys def _get_examples_ode_sol_nth_algebraic(): M, m, r, t = symbols('M m r t') phi = Function('phi') # This one needs a substitution f' = g. # 'algeb_12': { # 'eq': -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x, # 'sol': [Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))], # }, return { 'hint': "nth_algebraic", 'func': f(x), 'examples':{ 'algeb_01': { 'eq': f(x) * f(x).diff(x) * f(x).diff(x, x) * (f(x) - 1) * (f(x).diff(x) - x), 'sol': [Eq(f(x), C1 + x**2/2), Eq(f(x), C1 + C2*x)] }, 'algeb_02': { 'eq': f(x) * f(x).diff(x) * f(x).diff(x, x) * (f(x) - 1), 'sol': [Eq(f(x), C1 + C2*x)] }, 'algeb_03': { 'eq': f(x) * f(x).diff(x) * f(x).diff(x, x), 'sol': [Eq(f(x), C1 + C2*x)] }, 'algeb_04': { 'eq': Eq(-M * phi(t).diff(t), Rational(3, 2) * m * r**2 * phi(t).diff(t) * phi(t).diff(t,t)), 'sol': [Eq(phi(t), C1), Eq(phi(t), C1 + C2*t - M*t**2/(3*m*r**2))], 'func': phi(t) }, 'algeb_05': { 'eq': (1 - sin(f(x))) * f(x).diff(x), 'sol': [Eq(f(x), C1)], 'XFAIL': ['separable'] #It raised exception. }, 'algeb_06': { 'eq': (diff(f(x)) - x)*(diff(f(x)) + x), 'sol': [Eq(f(x), C1 - x**2/2), Eq(f(x), C1 + x**2/2)] }, 'algeb_07': { 'eq': Eq(Derivative(f(x), x), Derivative(g(x), x)), 'sol': [Eq(f(x), C1 + g(x))], }, 'algeb_08': { 'eq': f(x).diff(x) - C1, #this example is from issue 15999 'sol': [Eq(f(x), C1*x + C2)], }, 'algeb_09': { 'eq': f(x)*f(x).diff(x), 'sol': [Eq(f(x), C1)], }, 'algeb_10': { 'eq': (diff(f(x)) - x)*(diff(f(x)) + x), 'sol': [Eq(f(x), C1 - x**2/2), Eq(f(x), C1 + x**2/2)], }, 'algeb_11': { 'eq': f(x) + f(x)*f(x).diff(x), 'sol': [Eq(f(x), 0), Eq(f(x), C1 - x)], 'XFAIL': ['separable', '1st_exact', '1st_linear', 'Bernoulli', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', 'lie_group', 'nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', 'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters'] #nth_linear_constant_coeff_undetermined_coefficients raises exception rest all of them misses a solution. }, 'algeb_12': { 'eq': Derivative(x*f(x), x, x, x), 'sol': [Eq(f(x), (C1 + C2*x + C3*x**2) / x)], 'XFAIL': ['nth_algebraic'] # It passes only when prep=False is set in dsolve. }, 'algeb_13': { 'eq': Eq(Derivative(x*Derivative(f(x), x), x)/x, exp(x)), 'sol': [Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))], 'XFAIL': ['nth_algebraic'] # It passes only when prep=False is set in dsolve. }, } } @_add_example_keys def _get_examples_ode_sol_nth_order_reducible(): return { 'hint': "nth_order_reducible", 'func': f(x), 'examples':{ 'reducible_01': { 'eq': Eq(x*Derivative(f(x), x)**2 + Derivative(f(x), x, 2), 0), 'sol': [Eq(f(x),C1 - sqrt(-1/C2)*log(-C2*sqrt(-1/C2) + x) + sqrt(-1/C2)*log(C2*sqrt(-1/C2) + x))], 'slow': True, }, 'reducible_02': { 'eq': -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x, 'sol': [Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))], 'slow': True, }, 'reducible_03': { 'eq': Eq(sqrt(2) * f(x).diff(x,x,x) + f(x).diff(x), 0), 'sol': [Eq(f(x), C1 + C2*sin(2**Rational(3, 4)*x/2) + C3*cos(2**Rational(3, 4)*x/2))], 'slow': True, }, 'reducible_04': { 'eq': f(x).diff(x, 2) + 2*f(x).diff(x), 'sol': [Eq(f(x), C1 + C2*exp(-2*x))], }, 'reducible_05': { 'eq': f(x).diff(x, 3) + f(x).diff(x, 2) - 6*f(x).diff(x), 'sol': [Eq(f(x), C1 + C2*exp(-3*x) + C3*exp(2*x))], 'slow': True, }, 'reducible_06': { 'eq': f(x).diff(x, 4) - f(x).diff(x, 3) - 4*f(x).diff(x, 2) + \ 4*f(x).diff(x), 'sol': [Eq(f(x), C1 + C2*exp(-2*x) + C3*exp(x) + C4*exp(2*x))], 'slow': True, }, 'reducible_07': { 'eq': f(x).diff(x, 4) + 3*f(x).diff(x, 3), 'sol': [Eq(f(x), C1 + C2*x + C3*x**2 + C4*exp(-3*x))], 'slow': True, }, 'reducible_08': { 'eq': f(x).diff(x, 4) - 2*f(x).diff(x, 2), 'sol': [Eq(f(x), C1 + C2*x + C3*exp(-sqrt(2)*x) + C4*exp(sqrt(2)*x))], 'slow': True, }, 'reducible_09': { 'eq': f(x).diff(x, 4) + 4*f(x).diff(x, 2), 'sol': [Eq(f(x), C1 + C2*x + C3*sin(2*x) + C4*cos(2*x))], 'slow': True, }, 'reducible_10': { 'eq': f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x), 'sol': [Eq(f(x), C1 + C2*(x*sin(x) + cos(x)) + C3*(-x*cos(x) + sin(x)) + C4*sin(x) + C5*cos(x))], 'slow': True, }, 'reducible_11': { 'eq': f(x).diff(x, 2) - f(x).diff(x)**3, 'sol': [Eq(f(x), C1 - sqrt(2)*(I*C2 + I*x)*sqrt(1/(C2 + x))), Eq(f(x), C1 + sqrt(2)*(I*C2 + I*x)*sqrt(1/(C2 + x)))], 'slow': True, }, } } @_add_example_keys def _get_examples_ode_sol_nth_linear_undetermined_coefficients(): # examples 3-27 below are from Ordinary Differential Equations, # Tenenbaum and Pollard, pg. 231 g = exp(-x) f2 = f(x).diff(x, 2) c = 3*f(x).diff(x, 3) + 5*f2 + f(x).diff(x) - f(x) - x return { 'hint': "nth_linear_constant_coeff_undetermined_coefficients", 'func': f(x), 'examples':{ 'undet_01': { 'eq': c - x*g, 'sol': [Eq(f(x), C3*exp(x/3) - x + (C1 + x*(C2 - x**2/24 - 3*x/32))*exp(-x) - 1)], 'slow': True, }, 'undet_02': { 'eq': c - g, 'sol': [Eq(f(x), C3*exp(x/3) - x + (C1 + x*(C2 - x/8))*exp(-x) - 1)], 'slow': True, }, 'undet_03': { 'eq': f2 + 3*f(x).diff(x) + 2*f(x) - 4, 'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + 2)], 'slow': True, }, 'undet_04': { 'eq': f2 + 3*f(x).diff(x) + 2*f(x) - 12*exp(x), 'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + 2*exp(x))], 'slow': True, }, 'undet_05': { 'eq': f2 + 3*f(x).diff(x) + 2*f(x) - exp(I*x), 'sol': [Eq(f(x), (S(3)/10 + I/10)*(C1*exp(-2*x) + C2*exp(-x) - I*exp(I*x)))], 'slow': True, }, 'undet_06': { 'eq': f2 + 3*f(x).diff(x) + 2*f(x) - sin(x), 'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + sin(x)/10 - 3*cos(x)/10)], 'slow': True, }, 'undet_07': { 'eq': f2 + 3*f(x).diff(x) + 2*f(x) - cos(x), 'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + 3*sin(x)/10 + cos(x)/10)], 'slow': True, }, 'undet_08': { 'eq': f2 + 3*f(x).diff(x) + 2*f(x) - (8 + 6*exp(x) + 2*sin(x)), 'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + exp(x) + sin(x)/5 - 3*cos(x)/5 + 4)], 'slow': True, }, 'undet_09': { 'eq': f2 + f(x).diff(x) + f(x) - x**2, 'sol': [Eq(f(x), -2*x + x**2 + (C1*sin(x*sqrt(3)/2) + C2*cos(x*sqrt(3)/2))*exp(-x/2))], 'slow': True, }, 'undet_10': { 'eq': f2 - 2*f(x).diff(x) - 8*f(x) - 9*x*exp(x) - 10*exp(-x), 'sol': [Eq(f(x), -x*exp(x) - 2*exp(-x) + C1*exp(-2*x) + C2*exp(4*x))], 'slow': True, }, 'undet_11': { 'eq': f2 - 3*f(x).diff(x) - 2*exp(2*x)*sin(x), 'sol': [Eq(f(x), C1 + C2*exp(3*x) - 3*exp(2*x)*sin(x)/5 - exp(2*x)*cos(x)/5)], 'slow': True, }, 'undet_12': { 'eq': f(x).diff(x, 4) - 2*f2 + f(x) - x + sin(x), 'sol': [Eq(f(x), x - sin(x)/4 + (C1 + C2*x)*exp(-x) + (C3 + C4*x)*exp(x))], 'slow': True, }, 'undet_13': { 'eq': f2 + f(x).diff(x) - x**2 - 2*x, 'sol': [Eq(f(x), C1 + x**3/3 + C2*exp(-x))], 'slow': True, }, 'undet_14': { 'eq': f2 + f(x).diff(x) - x - sin(2*x), 'sol': [Eq(f(x), C1 - x - sin(2*x)/5 - cos(2*x)/10 + x**2/2 + C2*exp(-x))], 'slow': True, }, 'undet_15': { 'eq': f2 + f(x) - 4*x*sin(x), 'sol': [Eq(f(x), (C1 - x**2)*cos(x) + (C2 + x)*sin(x))], 'slow': True, }, 'undet_16': { 'eq': f2 + 4*f(x) - x*sin(2*x), 'sol': [Eq(f(x), (C1 - x**2/8)*cos(2*x) + (C2 + x/16)*sin(2*x))], 'slow': True, }, 'undet_17': { 'eq': f2 + 2*f(x).diff(x) + f(x) - x**2*exp(-x), 'sol': [Eq(f(x), (C1 + x*(C2 + x**3/12))*exp(-x))], 'slow': True, }, 'undet_18': { 'eq': f(x).diff(x, 3) + 3*f2 + 3*f(x).diff(x) + f(x) - 2*exp(-x) + \ x**2*exp(-x), 'sol': [Eq(f(x), (C1 + x*(C2 + x*(C3 - x**3/60 + x/3)))*exp(-x))], 'slow': True, }, 'undet_19': { 'eq': f2 + 3*f(x).diff(x) + 2*f(x) - exp(-2*x) - x**2, 'sol': [Eq(f(x), C2*exp(-x) + x**2/2 - x*Rational(3,2) + (C1 - x)*exp(-2*x) + Rational(7,4))], 'slow': True, }, 'undet_20': { 'eq': f2 - 3*f(x).diff(x) + 2*f(x) - x*exp(-x), 'sol': [Eq(f(x), C1*exp(x) + C2*exp(2*x) + (6*x + 5)*exp(-x)/36)], 'slow': True, }, 'undet_21': { 'eq': f2 + f(x).diff(x) - 6*f(x) - x - exp(2*x), 'sol': [Eq(f(x), Rational(-1, 36) - x/6 + C2*exp(-3*x) + (C1 + x/5)*exp(2*x))], 'slow': True, }, 'undet_22': { 'eq': f2 + f(x) - sin(x) - exp(-x), 'sol': [Eq(f(x), C2*sin(x) + (C1 - x/2)*cos(x) + exp(-x)/2)], 'slow': True, }, 'undet_23': { 'eq': f(x).diff(x, 3) - 3*f2 + 3*f(x).diff(x) - f(x) - exp(x), 'sol': [Eq(f(x), (C1 + x*(C2 + x*(C3 + x/6)))*exp(x))], 'slow': True, }, 'undet_24': { 'eq': f2 + f(x) - S.Half - cos(2*x)/2, 'sol': [Eq(f(x), S.Half - cos(2*x)/6 + C1*sin(x) + C2*cos(x))], 'slow': True, }, 'undet_25': { 'eq': f(x).diff(x, 3) - f(x).diff(x) - exp(2*x)*(S.Half - cos(2*x)/2), 'sol': [Eq(f(x), C1 + C2*exp(-x) + C3*exp(x) + (-21*sin(2*x) + 27*cos(2*x) + 130)*exp(2*x)/1560)], 'slow': True, }, #Note: 'undet_26' is referred in 'undet_37' 'undet_26': { 'eq': (f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - sin(x) - cos(x)), 'sol': [Eq(f(x), C1 + x**2 + (C2 + x*(C3 - x/8))*sin(x) + (C4 + x*(C5 + x/8))*cos(x))], 'slow': True, }, 'undet_27': { 'eq': f2 + f(x) - cos(x)/2 + cos(3*x)/2, 'sol': [Eq(f(x), cos(3*x)/16 + C2*cos(x) + (C1 + x/4)*sin(x))], 'slow': True, }, 'undet_28': { 'eq': f(x).diff(x) - 1, 'sol': [Eq(f(x), C1 + x)], 'slow': True, }, # https://github.com/sympy/sympy/issues/19358 'undet_29': { 'eq': f2 + f(x).diff(x) + exp(x-C1), 'sol': [Eq(f(x), C2 + C3*exp(-x) - exp(-C1 + x)/2)], 'slow': True, }, # https://github.com/sympy/sympy/issues/18408 'undet_30': { 'eq': f(x).diff(x, 3) - f(x).diff(x) - sinh(x), 'sol': [Eq(f(x), C1 + C2*exp(-x) + C3*exp(x) + x*sinh(x)/2)], }, 'undet_31': { 'eq': f(x).diff(x, 2) - 49*f(x) - sinh(3*x), 'sol': [Eq(f(x), C1*exp(-7*x) + C2*exp(7*x) - sinh(3*x)/40)], }, 'undet_32': { 'eq': f(x).diff(x, 3) - f(x).diff(x) - sinh(x) - exp(x), 'sol': [Eq(f(x), C1 + C3*exp(-x) + x*sinh(x)/2 + (C2 + x/2)*exp(x))], }, # https://github.com/sympy/sympy/issues/5096 'undet_33': { 'eq': f(x).diff(x, x) + f(x) - x*sin(x - 2), 'sol': [Eq(f(x), C1*sin(x) + C2*cos(x) - x**2*cos(x - 2)/4 + x*sin(x - 2)/4)], }, 'undet_34': { 'eq': f(x).diff(x, 2) + f(x) - x**4*sin(x-1), 'sol': [ Eq(f(x), C1*sin(x) + C2*cos(x) - x**5*cos(x - 1)/10 + x**4*sin(x - 1)/4 + x**3*cos(x - 1)/2 - 3*x**2*sin(x - 1)/4 - 3*x*cos(x - 1)/4)], }, 'undet_35': { 'eq': f(x).diff(x, 2) - f(x) - exp(x - 1), 'sol': [Eq(f(x), C2*exp(-x) + (C1 + x*exp(-1)/2)*exp(x))], }, 'undet_36': { 'eq': f(x).diff(x, 2)+f(x)-(sin(x-2)+1), 'sol': [Eq(f(x), C1*sin(x) + C2*cos(x) - x*cos(x - 2)/2 + 1)], }, # Equivalent to example_name 'undet_26'. # This previously failed because the algorithm for undetermined coefficients # didn't know to multiply exp(I*x) by sufficient x because it is linearly # dependent on sin(x) and cos(x). 'undet_37': { 'eq': f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - exp(I*x), 'sol': [Eq(f(x), C1 + x**2*(I*exp(I*x)/8 + 1) + (C2 + C3*x)*sin(x) + (C4 + C5*x)*cos(x))], }, } } @_add_example_keys def _get_examples_ode_sol_separable(): # test_separable1-5 are from Ordinary Differential Equations, Tenenbaum and # Pollard, pg. 55 a = Symbol('a') return { 'hint': "separable", 'func': f(x), 'examples':{ 'separable_01': { 'eq': f(x).diff(x) - f(x), 'sol': [Eq(f(x), C1*exp(x))], }, 'separable_02': { 'eq': x*f(x).diff(x) - f(x), 'sol': [Eq(f(x), C1*x)], }, 'separable_03': { 'eq': f(x).diff(x) + sin(x), 'sol': [Eq(f(x), C1 + cos(x))], }, 'separable_04': { 'eq': f(x)**2 + 1 - (x**2 + 1)*f(x).diff(x), 'sol': [Eq(f(x), tan(C1 + atan(x)))], }, 'separable_05': { 'eq': f(x).diff(x)/tan(x) - f(x) - 2, 'sol': [Eq(f(x), C1/cos(x) - 2)], }, 'separable_06': { 'eq': f(x).diff(x) * (1 - sin(f(x))) - 1, 'sol': [Eq(-x + f(x) + cos(f(x)), C1)], }, 'separable_07': { 'eq': f(x)*x**2*f(x).diff(x) - f(x)**3 - 2*x**2*f(x).diff(x), 'sol': [ Eq(f(x), (-x + sqrt(x*(4*C1*x + x - 4)))/(C1*x - 1)/2), Eq(f(x), -((x + sqrt(x*(4*C1*x + x - 4)))/(C1*x - 1))/2) ], 'slow': True, }, 'separable_08': { 'eq': f(x)**2 - 1 - (2*f(x) + x*f(x))*f(x).diff(x), 'sol': [Eq(f(x), -sqrt(C1*x**2 + 4*C1*x + 4*C1 + 1)), Eq(f(x), sqrt(C1*x**2 + 4*C1*x + 4*C1 + 1))], 'slow': True, }, 'separable_09': { 'eq': x*log(x)*f(x).diff(x) + sqrt(1 + f(x)**2), 'sol': [Eq(f(x), sinh(C1 - log(log(x))))], #One more solution is f(x)=I 'slow': True, 'checkodesol_XFAIL': True, }, 'separable_10': { 'eq': exp(x + 1)*tan(f(x)) + cos(f(x))*f(x).diff(x), 'sol': [Eq(E*exp(x) + log(cos(f(x)) - 1)/2 - log(cos(f(x)) + 1)/2 + cos(f(x)), C1)], 'slow': True, }, 'separable_11': { 'eq': (x*cos(f(x)) + x**2*sin(f(x))*f(x).diff(x) - a**2*sin(f(x))*f(x).diff(x)), 'sol': [ Eq(f(x), -acos(C1*sqrt(-a**2 + x**2)) + 2*pi), Eq(f(x), acos(C1*sqrt(-a**2 + x**2))) ], 'slow': True, }, 'separable_12': { 'eq': f(x).diff(x) - f(x)*tan(x), 'sol': [Eq(f(x), C1/cos(x))], }, 'separable_13': { 'eq': (x - 1)*cos(f(x))*f(x).diff(x) - 2*x*sin(f(x)), 'sol': [ Eq(f(x), pi - asin(C1*(x**2 - 2*x + 1)*exp(2*x))), Eq(f(x), asin(C1*(x**2 - 2*x + 1)*exp(2*x))) ], }, 'separable_14': { 'eq': f(x).diff(x) - f(x)*log(f(x))/tan(x), 'sol': [Eq(f(x), exp(C1*sin(x)))], }, 'separable_15': { 'eq': x*f(x).diff(x) + (1 + f(x)**2)*atan(f(x)), 'sol': [Eq(f(x), tan(C1/x))], #Two more solutions are f(x)=0 and f(x)=I 'slow': True, 'checkodesol_XFAIL': True, }, 'separable_16': { 'eq': f(x).diff(x) + x*(f(x) + 1), 'sol': [Eq(f(x), -1 + C1*exp(-x**2/2))], }, 'separable_17': { 'eq': exp(f(x)**2)*(x**2 + 2*x + 1) + (x*f(x) + f(x))*f(x).diff(x), 'sol': [ Eq(f(x), -sqrt(log(1/(C1 + x**2 + 2*x)))), Eq(f(x), sqrt(log(1/(C1 + x**2 + 2*x)))) ], }, 'separable_18': { 'eq': f(x).diff(x) + f(x), 'sol': [Eq(f(x), C1*exp(-x))], }, 'separable_19': { 'eq': sin(x)*cos(2*f(x)) + cos(x)*sin(2*f(x))*f(x).diff(x), 'sol': [Eq(f(x), pi - acos(C1/cos(x)**2)/2), Eq(f(x), acos(C1/cos(x)**2)/2)], }, 'separable_20': { 'eq': (1 - x)*f(x).diff(x) - x*(f(x) + 1), 'sol': [Eq(f(x), (C1*exp(-x) - x + 1)/(x - 1))], }, 'separable_21': { 'eq': f(x)*diff(f(x), x) + x - 3*x*f(x)**2, 'sol': [ Eq(f(x), -sqrt(3)*sqrt(C1*exp(3*x**2) + 1)/3), Eq(f(x), sqrt(3)*sqrt(C1*exp(3*x**2) + 1)/3) ], }, 'separable_22': { 'eq': f(x).diff(x) - exp(x + f(x)), 'sol': [Eq(f(x), log(-1/(C1 + exp(x))))], 'XFAIL': ['lie_group'] #It shows 'NoneType' object is not subscriptable for lie_group. }, } } @_add_example_keys def _get_examples_ode_sol_1st_exact(): # Type: Exact differential equation, p(x,f) + q(x,f)*f' == 0, # where dp/df == dq/dx ''' Example 7 is an exact equation that fails under the exact engine. It is caught by first order homogeneous albeit with a much contorted solution. The exact engine fails because of a poorly simplified integral of q(0,y)dy, where q is the function multiplying f'. The solutions should be Eq(sqrt(x**2+f(x)**2)**3+y**3, C1). The equation below is equivalent, but it is so complex that checkodesol fails, and takes a long time to do so. ''' return { 'hint': "1st_exact", 'func': f(x), 'examples':{ '1st_exact_01': { 'eq': sin(x)*cos(f(x)) + cos(x)*sin(f(x))*f(x).diff(x), 'sol': [Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))], 'slow': True, }, '1st_exact_02': { 'eq': (2*x*f(x) + 1)/f(x) + (f(x) - x)/f(x)**2*f(x).diff(x), 'sol': [Eq(f(x), exp(C1 - x**2 + LambertW(-x*exp(-C1 + x**2))))], 'XFAIL': ['lie_group'], #It shows dsolve raises an exception: List index out of range for lie_group 'slow': True, 'checkodesol_XFAIL':True }, '1st_exact_03': { 'eq': 2*x + f(x)*cos(x) + (2*f(x) + sin(x) - sin(f(x)))*f(x).diff(x), 'sol': [Eq(f(x)*sin(x) + cos(f(x)) + x**2 + f(x)**2, C1)], 'XFAIL': ['lie_group'], #It goes into infinite loop for lie_group. 'slow': True, }, '1st_exact_04': { 'eq': cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x), 'sol': [Eq(x*cos(f(x)) + f(x)**3/3, C1)], 'slow': True, }, '1st_exact_05': { 'eq': 2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), 'sol': [Eq(x**2*f(x) + f(x)**3/3, C1)], 'slow': True, 'simplify_flag':False }, # This was from issue: https://github.com/sympy/sympy/issues/11290 '1st_exact_06': { 'eq': cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x), 'sol': [Eq(x*cos(f(x)) + f(x)**3/3, C1)], 'simplify_flag':False }, '1st_exact_07': { 'eq': x*sqrt(x**2 + f(x)**2) - (x**2*f(x)/(f(x) - sqrt(x**2 + f(x)**2)))*f(x).diff(x), 'sol': [Eq(log(x), C1 - 9*sqrt(1 + f(x)**2/x**2)*asinh(f(x)/x)/(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2)) - 9*sqrt(1 + f(x)**2/x**2)* log(1 - sqrt(1 + f(x)**2/x**2)*f(x)/x + 2*f(x)**2/x**2)/ (-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2)) + 9*asinh(f(x)/x)*f(x)/(x*(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2))) + 9*f(x)*log(1 - sqrt(1 + f(x)**2/x**2)*f(x)/x + 2*f(x)**2/x**2)/ (x*(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2))))], 'slow': True, 'dsolve_too_slow':True }, } } @_add_example_keys def _get_examples_ode_sol_nth_linear_var_of_parameters(): g = exp(-x) f2 = f(x).diff(x, 2) c = 3*f(x).diff(x, 3) + 5*f2 + f(x).diff(x) - f(x) - x return { 'hint': "nth_linear_constant_coeff_variation_of_parameters", 'func': f(x), 'examples':{ 'var_of_parameters_01': { 'eq': c - x*g, 'sol': [Eq(f(x), C3*exp(x/3) - x + (C1 + x*(C2 - x**2/24 - 3*x/32))*exp(-x) - 1)], 'slow': True, }, 'var_of_parameters_02': { 'eq': c - g, 'sol': [Eq(f(x), C3*exp(x/3) - x + (C1 + x*(C2 - x/8))*exp(-x) - 1)], 'slow': True, }, 'var_of_parameters_03': { 'eq': f(x).diff(x) - 1, 'sol': [Eq(f(x), C1 + x)], 'slow': True, }, 'var_of_parameters_04': { 'eq': f2 + 3*f(x).diff(x) + 2*f(x) - 4, 'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + 2)], 'slow': True, }, 'var_of_parameters_05': { 'eq': f2 + 3*f(x).diff(x) + 2*f(x) - 12*exp(x), 'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + 2*exp(x))], 'slow': True, }, 'var_of_parameters_06': { 'eq': f2 - 2*f(x).diff(x) - 8*f(x) - 9*x*exp(x) - 10*exp(-x), 'sol': [Eq(f(x), -x*exp(x) - 2*exp(-x) + C1*exp(-2*x) + C2*exp(4*x))], 'slow': True, }, 'var_of_parameters_07': { 'eq': f2 + 2*f(x).diff(x) + f(x) - x**2*exp(-x), 'sol': [Eq(f(x), (C1 + x*(C2 + x**3/12))*exp(-x))], 'slow': True, }, 'var_of_parameters_08': { 'eq': f2 - 3*f(x).diff(x) + 2*f(x) - x*exp(-x), 'sol': [Eq(f(x), C1*exp(x) + C2*exp(2*x) + (6*x + 5)*exp(-x)/36)], 'slow': True, }, 'var_of_parameters_09': { 'eq': f(x).diff(x, 3) - 3*f2 + 3*f(x).diff(x) - f(x) - exp(x), 'sol': [Eq(f(x), (C1 + x*(C2 + x*(C3 + x/6)))*exp(x))], 'slow': True, }, 'var_of_parameters_10': { 'eq': f2 + 2*f(x).diff(x) + f(x) - exp(-x)/x, 'sol': [Eq(f(x), (C1 + x*(C2 + log(x)))*exp(-x))], 'slow': True, }, 'var_of_parameters_11': { 'eq': f2 + f(x) - 1/sin(x)*1/cos(x), 'sol': [Eq(f(x), (C1 + log(sin(x) - 1)/2 - log(sin(x) + 1)/2 )*cos(x) + (C2 + log(cos(x) - 1)/2 - log(cos(x) + 1)/2)*sin(x))], 'slow': True, }, 'var_of_parameters_12': { 'eq': f(x).diff(x, 4) - 1/x, 'sol': [Eq(f(x), C1 + C2*x + C3*x**2 + x**3*(C4 + log(x)/6))], 'slow': True, }, # These were from issue: https://github.com/sympy/sympy/issues/15996 'var_of_parameters_13': { 'eq': f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - exp(I*x), 'sol': [Eq(f(x), C1 + x**2 + (C2 + x*(C3 - x/8 + 3*exp(I*x)/2 + 3*exp(-I*x)/2) + 5*exp(2*I*x)/16 + 2*I*exp(I*x) - 2*I*exp(-I*x))*sin(x) + (C4 + x*(C5 + I*x/8 + 3*I*exp(I*x)/2 - 3*I*exp(-I*x)/2) + 5*I*exp(2*I*x)/16 - 2*exp(I*x) - 2*exp(-I*x))*cos(x) - I*exp(I*x))], }, 'var_of_parameters_14': { 'eq': f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - exp(I*x), 'sol': [Eq(f(x), C1 + (C2 + x*(C3 - x/8) + 5*exp(2*I*x)/16)*sin(x) + (C4 + x*(C5 + I*x/8) + 5*I*exp(2*I*x)/16)*cos(x) - I*exp(I*x))], }, } } @_add_example_keys def _get_examples_ode_sol_2nd_linear_bessel(): return { 'hint': "2nd_linear_bessel", 'func': f(x), 'examples':{ '2nd_lin_bessel_01': { 'eq': x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 - 4)*f(x), 'sol': [Eq(f(x), C1*besselj(2, x) + C2*bessely(2, x))], }, '2nd_lin_bessel_02': { 'eq': x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 +25)*f(x), 'sol': [Eq(f(x), C1*besselj(5*I, x) + C2*bessely(5*I, x))], }, '2nd_lin_bessel_03': { 'eq': x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2)*f(x), 'sol': [Eq(f(x), C1*besselj(0, x) + C2*bessely(0, x))], }, '2nd_lin_bessel_04': { 'eq': x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (81*x**2 -S(1)/9)*f(x), 'sol': [Eq(f(x), C1*besselj(S(1)/3, 9*x) + C2*bessely(S(1)/3, 9*x))], }, '2nd_lin_bessel_05': { 'eq': x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**4 - 4)*f(x), 'sol': [Eq(f(x), C1*besselj(1, x**2/2) + C2*bessely(1, x**2/2))], }, '2nd_lin_bessel_06': { 'eq': x**2*(f(x).diff(x, 2)) + 2*x*(f(x).diff(x)) + (x**4 - 4)*f(x), 'sol': [Eq(f(x), (C1*besselj(sqrt(17)/4, x**2/2) + C2*bessely(sqrt(17)/4, x**2/2))/sqrt(x))], }, '2nd_lin_bessel_07': { 'eq': x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 - S(1)/4)*f(x), 'sol': [Eq(f(x), C1*besselj(S(1)/2, x) + C2*bessely(S(1)/2, x))], }, '2nd_lin_bessel_08': { 'eq': x**2*(f(x).diff(x, 2)) - 3*x*(f(x).diff(x)) + (4*x + 4)*f(x), 'sol': [Eq(f(x), x**2*(C1*besselj(0, 4*sqrt(x)) + C2*bessely(0, 4*sqrt(x))))], }, '2nd_lin_bessel_09': { 'eq': x*(f(x).diff(x, 2)) - f(x).diff(x) + 4*x**3*f(x), 'sol': [Eq(f(x), x*(C1*besselj(S(1)/2, x**2) + C2*bessely(S(1)/2, x**2)))], }, '2nd_lin_bessel_10': { 'eq': (x-2)**2*(f(x).diff(x, 2)) - (x-2)*f(x).diff(x) + 4*(x-2)**2*f(x), 'sol': [Eq(f(x), (x - 2)*(C1*besselj(1, 2*x - 4) + C2*bessely(1, 2*x - 4)))], }, # https://github.com/sympy/sympy/issues/4414 '2nd_lin_bessel_11': { 'eq': f(x).diff(x, x) + 2/x*f(x).diff(x) + f(x), 'sol': [Eq(f(x), (C1*besselj(S(1)/2, x) + C2*bessely(S(1)/2, x))/sqrt(x))], }, } } @_add_example_keys def _get_examples_ode_sol_2nd_2F1_hypergeometric(): return { 'hint': "2nd_hypergeometric", 'func': f(x), 'examples':{ '2nd_2F1_hyper_01': { 'eq': x*(x-1)*f(x).diff(x, 2) + (S(3)/2 -2*x)*f(x).diff(x) + 2*f(x), 'sol': [Eq(f(x), C1*x**(S(5)/2)*hyper((S(3)/2, S(1)/2), (S(7)/2,), x) + C2*hyper((-1, -2), (-S(3)/2,), x))], }, '2nd_2F1_hyper_02': { 'eq': x*(x-1)*f(x).diff(x, 2) + (S(7)/2*x)*f(x).diff(x) + f(x), 'sol': [Eq(f(x), (C1*(1 - x)**(S(5)/2)*hyper((S(1)/2, 2), (S(7)/2,), 1 - x) + C2*hyper((-S(1)/2, -2), (-S(3)/2,), 1 - x))/(x - 1)**(S(5)/2))], }, '2nd_2F1_hyper_03': { 'eq': x*(x-1)*f(x).diff(x, 2) + (S(3)+ S(7)/2*x)*f(x).diff(x) + f(x), 'sol': [Eq(f(x), (C1*(1 - x)**(S(11)/2)*hyper((S(1)/2, 2), (S(13)/2,), 1 - x) + C2*hyper((-S(7)/2, -5), (-S(9)/2,), 1 - x))/(x - 1)**(S(11)/2))], }, '2nd_2F1_hyper_04': { 'eq': -x**(S(5)/7)*(-416*x**(S(9)/7)/9 - 2385*x**(S(5)/7)/49 + S(298)*x/3)*f(x)/(196*(-x**(S(6)/7) + x)**2*(x**(S(6)/7) + x)**2) + Derivative(f(x), (x, 2)), 'sol': [Eq(f(x), x**(S(45)/98)*(C1*x**(S(4)/49)*hyper((S(1)/3, -S(1)/2), (S(9)/7,), x**(S(2)/7)) + C2*hyper((S(1)/21, -S(11)/14), (S(5)/7,), x**(S(2)/7)))/(x**(S(2)/7) - 1)**(S(19)/84))], 'checkodesol_XFAIL':True, }, } } @_add_example_keys def _get_examples_ode_sol_2nd_nonlinear_autonomous_conserved(): return { 'hint': "2nd_nonlinear_autonomous_conserved", 'func': f(x), 'examples': { '2nd_nonlinear_autonomous_conserved_01': { 'eq': f(x).diff(x, 2) + exp(f(x)) + log(f(x)), 'sol': [ Eq(Integral(1/sqrt(C1 - 2*_u*log(_u) + 2*_u - 2*exp(_u)), (_u, f(x))), C2 + x), Eq(Integral(1/sqrt(C1 - 2*_u*log(_u) + 2*_u - 2*exp(_u)), (_u, f(x))), C2 - x) ], 'simplify_flag': False, }, '2nd_nonlinear_autonomous_conserved_02': { 'eq': f(x).diff(x, 2) + cbrt(f(x)) + 1/f(x), 'sol': [ Eq(sqrt(2)*Integral(1/sqrt(2*C1 - 3*_u**Rational(4, 3) - 4*log(_u)), (_u, f(x))), C2 + x), Eq(sqrt(2)*Integral(1/sqrt(2*C1 - 3*_u**Rational(4, 3) - 4*log(_u)), (_u, f(x))), C2 - x) ], 'simplify_flag': False, }, '2nd_nonlinear_autonomous_conserved_03': { 'eq': f(x).diff(x, 2) + sin(f(x)), 'sol': [ Eq(Integral(1/sqrt(C1 + 2*cos(_u)), (_u, f(x))), C2 + x), Eq(Integral(1/sqrt(C1 + 2*cos(_u)), (_u, f(x))), C2 - x) ], 'simplify_flag': False, }, '2nd_nonlinear_autonomous_conserved_04': { 'eq': f(x).diff(x, 2) + cosh(f(x)), 'sol': [ Eq(Integral(1/sqrt(C1 - 2*sinh(_u)), (_u, f(x))), C2 + x), Eq(Integral(1/sqrt(C1 - 2*sinh(_u)), (_u, f(x))), C2 - x) ], 'simplify_flag': False, }, '2nd_nonlinear_autonomous_conserved_05': { 'eq': f(x).diff(x, 2) + asin(f(x)), 'sol': [ Eq(Integral(1/sqrt(C1 - 2*_u*asin(_u) - 2*sqrt(1 - _u**2)), (_u, f(x))), C2 + x), Eq(Integral(1/sqrt(C1 - 2*_u*asin(_u) - 2*sqrt(1 - _u**2)), (_u, f(x))), C2 - x) ], 'simplify_flag': False, 'XFAIL': ['2nd_nonlinear_autonomous_conserved_Integral'] } } } @_add_example_keys def _get_examples_ode_sol_separable_reduced(): df = f(x).diff(x) return { 'hint': "separable_reduced", 'func': f(x), 'examples':{ 'separable_reduced_01': { 'eq': x* df + f(x)* (1 / (x**2*f(x) - 1)), 'sol': [Eq(log(x**2*f(x))/3 + log(x**2*f(x) - Rational(3, 2))/6, C1 + log(x))], 'simplify_flag': False, 'XFAIL': ['lie_group'], #It hangs. }, #Note: 'separable_reduced_02' is referred in 'separable_reduced_11' 'separable_reduced_02': { 'eq': f(x).diff(x) + (f(x) / (x**4*f(x) - x)), 'sol': [Eq(log(x**3*f(x))/4 + log(x**3*f(x) - Rational(4,3))/12, C1 + log(x))], 'simplify_flag': False, 'checkodesol_XFAIL':True, #It hangs for this. }, 'separable_reduced_03': { 'eq': x*df + f(x)*(x**2*f(x)), 'sol': [Eq(log(x**2*f(x))/2 - log(x**2*f(x) - 2)/2, C1 + log(x))], 'simplify_flag': False, }, 'separable_reduced_04': { 'eq': Eq(f(x).diff(x) + f(x)/x * (1 + (x**(S(2)/3)*f(x))**2), 0), 'sol': [Eq(-3*log(x**(S(2)/3)*f(x)) + 3*log(3*x**(S(4)/3)*f(x)**2 + 1)/2, C1 + log(x))], 'simplify_flag': False, }, 'separable_reduced_05': { 'eq': Eq(f(x).diff(x) + f(x)/x * (1 + (x*f(x))**2), 0), 'sol': [Eq(f(x), -sqrt(2)*sqrt(1/(C1 + log(x)))/(2*x)),\ Eq(f(x), sqrt(2)*sqrt(1/(C1 + log(x)))/(2*x))], }, 'separable_reduced_06': { 'eq': Eq(f(x).diff(x) + (x**4*f(x)**2 + x**2*f(x))*f(x)/(x*(x**6*f(x)**3 + x**4*f(x)**2)), 0), 'sol': [Eq(f(x), C1 + 1/(2*x**2))], }, 'separable_reduced_07': { 'eq': Eq(f(x).diff(x) + (f(x)**2)*f(x)/(x), 0), 'sol': [ Eq(f(x), -sqrt(2)*sqrt(1/(C1 + log(x)))/2), Eq(f(x), sqrt(2)*sqrt(1/(C1 + log(x)))/2) ], }, 'separable_reduced_08': { 'eq': Eq(f(x).diff(x) + (f(x)+3)*f(x)/(x*(f(x)+2)), 0), 'sol': [Eq(-log(f(x) + 3)/3 - 2*log(f(x))/3, C1 + log(x))], 'simplify_flag': False, 'XFAIL': ['lie_group'], #It hangs. }, 'separable_reduced_09': { 'eq': Eq(f(x).diff(x) + (f(x)+3)*f(x)/x, 0), 'sol': [Eq(f(x), 3/(C1*x**3 - 1))], }, 'separable_reduced_10': { 'eq': Eq(f(x).diff(x) + (f(x)**2+f(x))*f(x)/(x), 0), 'sol': [Eq(- log(x) - log(f(x) + 1) + log(f(x)) + 1/f(x), C1)], 'XFAIL': ['lie_group'],#No algorithms are implemented to solve equation -C1 + x*(_y + 1)*exp(-1/_y)/_y }, # Equivalent to example_name 'separable_reduced_02'. Only difference is testing with simplify=True 'separable_reduced_11': { 'eq': f(x).diff(x) + (f(x) / (x**4*f(x) - x)), 'sol': [Eq(f(x), -sqrt(2)*sqrt(3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) - 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 2/x**6)/6 - sqrt(2)*sqrt(-3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 4/x**6 - 4*sqrt(2)/(x**9*sqrt(3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) - 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 2/x**6)))/6 + 1/(3*x**3)), Eq(f(x), -sqrt(2)*sqrt(3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) - 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 2/x**6)/6 + sqrt(2)*sqrt(-3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 4/x**6 - 4*sqrt(2)/(x**9*sqrt(3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) - 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 2/x**6)))/6 + 1/(3*x**3)), Eq(f(x), sqrt(2)*sqrt(3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) - 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 2/x**6)/6 - sqrt(2)*sqrt(-3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 4/x**6 + 4*sqrt(2)/(x**9*sqrt(3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) - 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 2/x**6)))/6 + 1/(3*x**3)), Eq(f(x), sqrt(2)*sqrt(3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) - 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 2/x**6)/6 + sqrt(2)*sqrt(-3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 4/x**6 + 4*sqrt(2)/(x**9*sqrt(3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) - 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 2/x**6)))/6 + 1/(3*x**3))], 'checkodesol_XFAIL':True, #It hangs for this. 'slow': True, }, #These were from issue: https://github.com/sympy/sympy/issues/6247 'separable_reduced_12': { 'eq': x**2*f(x)**2 + x*Derivative(f(x), x), 'sol': [Eq(f(x), 2*C1/(C1*x**2 - 1))], }, } } @_add_example_keys def _get_examples_ode_sol_lie_group(): a, b, c = symbols("a b c") return { 'hint': "lie_group", 'func': f(x), 'examples':{ #Example 1-4 and 19-20 were from issue: https://github.com/sympy/sympy/issues/17322 'lie_group_01': { 'eq': x*f(x).diff(x)*(f(x)+4) + (f(x)**2) -2*f(x)-2*x, 'sol': [], 'dsolve_too_slow': True, 'checkodesol_too_slow': True, }, 'lie_group_02': { 'eq': x*f(x).diff(x)*(f(x)+4) + (f(x)**2) -2*f(x)-2*x, 'sol': [], 'dsolve_too_slow': True, }, 'lie_group_03': { 'eq': Eq(x**7*Derivative(f(x), x) + 5*x**3*f(x)**2 - (2*x**2 + 2)*f(x)**3, 0), 'sol': [], 'dsolve_too_slow': True, }, 'lie_group_04': { 'eq': f(x).diff(x) - (f(x) - x*log(x))**2/x**2 + log(x), 'sol': [], 'XFAIL': ['lie_group'], }, 'lie_group_05': { 'eq': f(x).diff(x)**2, 'sol': [Eq(f(x), C1)], 'XFAIL': ['factorable'], #It raises Not Implemented error }, 'lie_group_06': { 'eq': Eq(f(x).diff(x), x**2*f(x)), 'sol': [Eq(f(x), C1*exp(x**3)**Rational(1, 3))], }, 'lie_group_07': { 'eq': f(x).diff(x) + a*f(x) - c*exp(b*x), 'sol': [Eq(f(x), Piecewise(((-C1*(a + b) + c*exp(x*(a + b)))*exp(-a*x)/(a + b),\ Ne(a, -b)), ((-C1 + c*x)*exp(-a*x), True)))], }, 'lie_group_08': { 'eq': f(x).diff(x) + 2*x*f(x) - x*exp(-x**2), 'sol': [Eq(f(x), (C1 + x**2/2)*exp(-x**2))], }, 'lie_group_09': { 'eq': (1 + 2*x)*(f(x).diff(x)) + 2 - 4*exp(-f(x)), 'sol': [Eq(f(x), log(C1/(2*x + 1) + 2))], }, 'lie_group_10': { 'eq': x**2*(f(x).diff(x)) - f(x) + x**2*exp(x - (1/x)), 'sol': [Eq(f(x), -((C1 + exp(x))*exp(-1/x)))], 'XFAIL': ['factorable'], #It raises Recursion Error (maixmum depth exceeded) }, 'lie_group_11': { 'eq': x**2*f(x)**2 + x*Derivative(f(x), x), 'sol': [Eq(f(x), 2/(C1 + x**2))], }, 'lie_group_12': { 'eq': diff(f(x),x) + 2*x*f(x) - x*exp(-x**2), 'sol': [Eq(f(x), exp(-x**2)*(C1 + x**2/2))], }, 'lie_group_13': { 'eq': diff(f(x),x) + f(x)*cos(x) - exp(2*x), 'sol': [Eq(f(x), exp(-sin(x))*(C1 + Integral(exp(2*x)*exp(sin(x)), x)))], }, 'lie_group_14': { 'eq': diff(f(x),x) + f(x)*cos(x) - sin(2*x)/2, 'sol': [Eq(f(x), C1*exp(-sin(x)) + sin(x) - 1)], }, 'lie_group_15': { 'eq': x*diff(f(x),x) + f(x) - x*sin(x), 'sol': [Eq(f(x), (C1 - x*cos(x) + sin(x))/x)], }, 'lie_group_16': { 'eq': x*diff(f(x),x) - f(x) - x/log(x), 'sol': [Eq(f(x), x*(C1 + log(log(x))))], }, 'lie_group_17': { 'eq': (f(x).diff(x)-f(x)) * (f(x).diff(x)+f(x)), 'sol': [Eq(f(x), C1*exp(x)), Eq(f(x), C1*exp(-x))], }, 'lie_group_18': { 'eq': f(x).diff(x) * (f(x).diff(x) - f(x)), 'sol': [Eq(f(x), C1*exp(x)), Eq(f(x), C1)], }, 'lie_group_19': { 'eq': (f(x).diff(x)-f(x)) * (f(x).diff(x)+f(x)), 'sol': [Eq(f(x), C1*exp(-x)), Eq(f(x), C1*exp(x))], }, 'lie_group_20': { 'eq': f(x).diff(x)*(f(x).diff(x)+f(x)), 'sol': [Eq(f(x), C1), Eq(f(x), C1*exp(-x))], }, } } @_add_example_keys def _get_examples_ode_sol_2nd_linear_airy(): return { 'hint': "2nd_linear_airy", 'func': f(x), 'examples':{ '2nd_lin_airy_01': { 'eq': f(x).diff(x, 2) - x*f(x), 'sol': [Eq(f(x), C1*airyai(x) + C2*airybi(x))], }, '2nd_lin_airy_02': { 'eq': f(x).diff(x, 2) + 2*x*f(x), 'sol': [Eq(f(x), C1*airyai(-2**(S(1)/3)*x) + C2*airybi(-2**(S(1)/3)*x))], }, } } @_add_example_keys def _get_examples_ode_sol_nth_linear_constant_coeff_homogeneous(): # From Exercise 20, in Ordinary Differential Equations, # Tenenbaum and Pollard, pg. 220 a = Symbol('a', positive=True) k = Symbol('k', real=True) r1, r2, r3, r4, r5 = [rootof(x**5 + 11*x - 2, n) for n in range(5)] r6, r7, r8, r9, r10 = [rootof(x**5 - 3*x + 1, n) for n in range(5)] r11, r12, r13, r14, r15 = [rootof(x**5 - 100*x**3 + 1000*x + 1, n) for n in range(5)] r16, r17, r18, r19, r20 = [rootof(x**5 - x**4 + 10, n) for n in range(5)] r21, r22, r23, r24, r25 = [rootof(x**5 - x + 1, n) for n in range(5)] E = exp(1) return { 'hint': "nth_linear_constant_coeff_homogeneous", 'func': f(x), 'examples':{ 'lin_const_coeff_hom_01': { 'eq': f(x).diff(x, 2) + 2*f(x).diff(x), 'sol': [Eq(f(x), C1 + C2*exp(-2*x))], }, 'lin_const_coeff_hom_02': { 'eq': f(x).diff(x, 2) - 3*f(x).diff(x) + 2*f(x), 'sol': [Eq(f(x), (C1 + C2*exp(x))*exp(x))], }, 'lin_const_coeff_hom_03': { 'eq': f(x).diff(x, 2) - f(x), 'sol': [Eq(f(x), C1*exp(-x) + C2*exp(x))], }, 'lin_const_coeff_hom_04': { 'eq': f(x).diff(x, 3) + f(x).diff(x, 2) - 6*f(x).diff(x), 'sol': [Eq(f(x), C1 + C2*exp(-3*x) + C3*exp(2*x))], 'slow': True, }, 'lin_const_coeff_hom_05': { 'eq': 6*f(x).diff(x, 2) - 11*f(x).diff(x) + 4*f(x), 'sol': [Eq(f(x), C1*exp(x/2) + C2*exp(x*Rational(4, 3)))], 'slow': True, }, 'lin_const_coeff_hom_06': { 'eq': Eq(f(x).diff(x, 2) + 2*f(x).diff(x) - f(x), 0), 'sol': [Eq(f(x), C1*exp(x*(-1 + sqrt(2))) + C2*exp(x*(-sqrt(2) - 1)))], 'slow': True, }, 'lin_const_coeff_hom_07': { 'eq': diff(f(x), x, 3) + diff(f(x), x, 2) - 10*diff(f(x), x) - 6*f(x), 'sol': [Eq(f(x), C1*exp(3*x) + C2*exp(x*(-2 - sqrt(2))) + C3*exp(x*(-2 + sqrt(2))))], 'slow': True, }, 'lin_const_coeff_hom_08': { 'eq': f(x).diff(x, 4) - f(x).diff(x, 3) - 4*f(x).diff(x, 2) + \ 4*f(x).diff(x), 'sol': [Eq(f(x), C1 + C2*exp(-2*x) + C3*exp(x) + C4*exp(2*x))], 'slow': True, }, 'lin_const_coeff_hom_09': { 'eq': f(x).diff(x, 4) + 4*f(x).diff(x, 3) + f(x).diff(x, 2) - \ 4*f(x).diff(x) - 2*f(x), 'sol': [Eq(f(x), C3*exp(-x) + C4*exp(x) + (C1*exp(-sqrt(2)*x) + C2*exp(sqrt(2)*x))*exp(-2*x))], 'slow': True, }, 'lin_const_coeff_hom_10': { 'eq': f(x).diff(x, 4) - a**2*f(x), 'sol': [Eq(f(x), C1*exp(-sqrt(a)*x) + C2*exp(sqrt(a)*x) + C3*sin(sqrt(a)*x) + C4*cos(sqrt(a)*x))], 'slow': True, }, 'lin_const_coeff_hom_11': { 'eq': f(x).diff(x, 2) - 2*k*f(x).diff(x) - 2*f(x), 'sol': [Eq(f(x), C1*exp(x*(k - sqrt(k**2 + 2))) + C2*exp(x*(k + sqrt(k**2 + 2))))], 'slow': True, }, 'lin_const_coeff_hom_12': { 'eq': f(x).diff(x, 2) + 4*k*f(x).diff(x) - 12*k**2*f(x), 'sol': [Eq(f(x), C1*exp(-6*k*x) + C2*exp(2*k*x))], 'slow': True, }, 'lin_const_coeff_hom_13': { 'eq': f(x).diff(x, 4), 'sol': [Eq(f(x), C1 + C2*x + C3*x**2 + C4*x**3)], 'slow': True, }, 'lin_const_coeff_hom_14': { 'eq': f(x).diff(x, 2) + 4*f(x).diff(x) + 4*f(x), 'sol': [Eq(f(x), (C1 + C2*x)*exp(-2*x))], 'slow': True, }, 'lin_const_coeff_hom_15': { 'eq': 3*f(x).diff(x, 3) + 5*f(x).diff(x, 2) + f(x).diff(x) - f(x), 'sol': [Eq(f(x), (C1 + C2*x)*exp(-x) + C3*exp(x/3))], 'slow': True, }, 'lin_const_coeff_hom_16': { 'eq': f(x).diff(x, 3) - 6*f(x).diff(x, 2) + 12*f(x).diff(x) - 8*f(x), 'sol': [Eq(f(x), (C1 + x*(C2 + C3*x))*exp(2*x))], 'slow': True, }, 'lin_const_coeff_hom_17': { 'eq': f(x).diff(x, 2) - 2*a*f(x).diff(x) + a**2*f(x), 'sol': [Eq(f(x), (C1 + C2*x)*exp(a*x))], 'slow': True, }, 'lin_const_coeff_hom_18': { 'eq': f(x).diff(x, 4) + 3*f(x).diff(x, 3), 'sol': [Eq(f(x), C1 + C2*x + C3*x**2 + C4*exp(-3*x))], 'slow': True, }, 'lin_const_coeff_hom_19': { 'eq': f(x).diff(x, 4) - 2*f(x).diff(x, 2), 'sol': [Eq(f(x), C1 + C2*x + C3*exp(-sqrt(2)*x) + C4*exp(sqrt(2)*x))], 'slow': True, }, 'lin_const_coeff_hom_20': { 'eq': f(x).diff(x, 4) + 2*f(x).diff(x, 3) - 11*f(x).diff(x, 2) - \ 12*f(x).diff(x) + 36*f(x), 'sol': [Eq(f(x), (C1 + C2*x)*exp(-3*x) + (C3 + C4*x)*exp(2*x))], 'slow': True, }, 'lin_const_coeff_hom_21': { 'eq': 36*f(x).diff(x, 4) - 37*f(x).diff(x, 2) + 4*f(x).diff(x) + 5*f(x), 'sol': [Eq(f(x), C1*exp(-x) + C2*exp(-x/3) + C3*exp(x/2) + C4*exp(x*Rational(5, 6)))], 'slow': True, }, 'lin_const_coeff_hom_22': { 'eq': f(x).diff(x, 4) - 8*f(x).diff(x, 2) + 16*f(x), 'sol': [Eq(f(x), (C1 + C2*x)*exp(-2*x) + (C3 + C4*x)*exp(2*x))], 'slow': True, }, 'lin_const_coeff_hom_23': { 'eq': f(x).diff(x, 2) - 2*f(x).diff(x) + 5*f(x), 'sol': [Eq(f(x), (C1*sin(2*x) + C2*cos(2*x))*exp(x))], 'slow': True, }, 'lin_const_coeff_hom_24': { 'eq': f(x).diff(x, 2) - f(x).diff(x) + f(x), 'sol': [Eq(f(x), (C1*sin(x*sqrt(3)/2) + C2*cos(x*sqrt(3)/2))*exp(x/2))], 'slow': True, }, 'lin_const_coeff_hom_25': { 'eq': f(x).diff(x, 4) + 5*f(x).diff(x, 2) + 6*f(x), 'sol': [Eq(f(x), C1*sin(sqrt(2)*x) + C2*sin(sqrt(3)*x) + C3*cos(sqrt(2)*x) + C4*cos(sqrt(3)*x))], 'slow': True, }, 'lin_const_coeff_hom_26': { 'eq': f(x).diff(x, 2) - 4*f(x).diff(x) + 20*f(x), 'sol': [Eq(f(x), (C1*sin(4*x) + C2*cos(4*x))*exp(2*x))], 'slow': True, }, 'lin_const_coeff_hom_27': { 'eq': f(x).diff(x, 4) + 4*f(x).diff(x, 2) + 4*f(x), 'sol': [Eq(f(x), (C1 + C2*x)*sin(x*sqrt(2)) + (C3 + C4*x)*cos(x*sqrt(2)))], 'slow': True, }, 'lin_const_coeff_hom_28': { 'eq': f(x).diff(x, 3) + 8*f(x), 'sol': [Eq(f(x), (C1*sin(x*sqrt(3)) + C2*cos(x*sqrt(3)))*exp(x) + C3*exp(-2*x))], 'slow': True, }, 'lin_const_coeff_hom_29': { 'eq': f(x).diff(x, 4) + 4*f(x).diff(x, 2), 'sol': [Eq(f(x), C1 + C2*x + C3*sin(2*x) + C4*cos(2*x))], 'slow': True, }, 'lin_const_coeff_hom_30': { 'eq': f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x), 'sol': [Eq(f(x), C1 + (C2 + C3*x)*sin(x) + (C4 + C5*x)*cos(x))], 'slow': True, }, 'lin_const_coeff_hom_31': { 'eq': f(x).diff(x, 4) + f(x).diff(x, 2) + f(x), 'sol': [Eq(f(x), (C1*sin(sqrt(3)*x/2) + C2*cos(sqrt(3)*x/2))*exp(-x/2) + (C3*sin(sqrt(3)*x/2) + C4*cos(sqrt(3)*x/2))*exp(x/2))], 'slow': True, }, 'lin_const_coeff_hom_32': { 'eq': f(x).diff(x, 4) + 4*f(x).diff(x, 2) + f(x), 'sol': [Eq(f(x), C1*sin(x*sqrt(-sqrt(3) + 2)) + C2*sin(x*sqrt(sqrt(3) + 2)) + C3*cos(x*sqrt(-sqrt(3) + 2)) + C4*cos(x*sqrt(sqrt(3) + 2)))], 'slow': True, }, # One real root, two complex conjugate pairs 'lin_const_coeff_hom_33': { 'eq': f(x).diff(x, 5) + 11*f(x).diff(x) - 2*f(x), 'sol': [Eq(f(x), C5*exp(r1*x) + exp(re(r2)*x) * (C1*sin(im(r2)*x) + C2*cos(im(r2)*x)) + exp(re(r4)*x) * (C3*sin(im(r4)*x) + C4*cos(im(r4)*x)))], 'checkodesol_XFAIL':True, #It Hangs }, # Three real roots, one complex conjugate pair 'lin_const_coeff_hom_34': { 'eq': f(x).diff(x,5) - 3*f(x).diff(x) + f(x), 'sol': [Eq(f(x), C3*exp(r6*x) + C4*exp(r7*x) + C5*exp(r8*x) + exp(re(r9)*x) * (C1*sin(im(r9)*x) + C2*cos(im(r9)*x)))], 'checkodesol_XFAIL':True, #It Hangs }, # Five distinct real roots 'lin_const_coeff_hom_35': { 'eq': f(x).diff(x,5) - 100*f(x).diff(x,3) + 1000*f(x).diff(x) + f(x), 'sol': [Eq(f(x), C1*exp(r11*x) + C2*exp(r12*x) + C3*exp(r13*x) + C4*exp(r14*x) + C5*exp(r15*x))], 'checkodesol_XFAIL':True, #It Hangs }, # Rational root and unsolvable quintic 'lin_const_coeff_hom_36': { 'eq': f(x).diff(x, 6) - 6*f(x).diff(x, 5) + 5*f(x).diff(x, 4) + 10*f(x).diff(x) - 50 * f(x), 'sol': [Eq(f(x), C5*exp(5*x) + C6*exp(x*r16) + exp(re(r17)*x) * (C1*sin(im(r17)*x) + C2*cos(im(r17)*x)) + exp(re(r19)*x) * (C3*sin(im(r19)*x) + C4*cos(im(r19)*x)))], 'checkodesol_XFAIL':True, #It Hangs }, # Five double roots (this is (x**5 - x + 1)**2) 'lin_const_coeff_hom_37': { 'eq': f(x).diff(x, 10) - 2*f(x).diff(x, 6) + 2*f(x).diff(x, 5) + f(x).diff(x, 2) - 2*f(x).diff(x, 1) + f(x), 'sol': [Eq(f(x), (C1 + C2*x)*exp(x*r21) + (C10*sin(x*im(r24)) + C7*x*sin(x*im(r24)) + ( C8 + C9*x)*cos(x*im(r24)))*exp(x*re(r24)) + (C3*x*sin(x*im(r22)) + C6*sin(x*im(r22) ) + (C4 + C5*x)*cos(x*im(r22)))*exp(x*re(r22)))], 'checkodesol_XFAIL':True, #It Hangs }, 'lin_const_coeff_hom_38': { 'eq': Eq(sqrt(2) * f(x).diff(x,x,x) + f(x).diff(x), 0), 'sol': [Eq(f(x), C1 + C2*sin(2**Rational(3, 4)*x/2) + C3*cos(2**Rational(3, 4)*x/2))], }, 'lin_const_coeff_hom_39': { 'eq': Eq(E * f(x).diff(x,x,x) + f(x).diff(x), 0), 'sol': [Eq(f(x), C1 + C2*sin(x/sqrt(E)) + C3*cos(x/sqrt(E)))], }, 'lin_const_coeff_hom_40': { 'eq': Eq(pi * f(x).diff(x,x,x) + f(x).diff(x), 0), 'sol': [Eq(f(x), C1 + C2*sin(x/sqrt(pi)) + C3*cos(x/sqrt(pi)))], }, 'lin_const_coeff_hom_41': { 'eq': Eq(I * f(x).diff(x,x,x) + f(x).diff(x), 0), 'sol': [Eq(f(x), C1 + C2*exp(-sqrt(I)*x) + C3*exp(sqrt(I)*x))], }, } } def _get_all_examples(): all_examples = _get_examples_ode_sol_euler_homogeneous + \ _get_examples_ode_sol_euler_undetermined_coeff + \ _get_examples_ode_sol_euler_var_para + \ _get_examples_ode_sol_factorable + \ _get_examples_ode_sol_bernoulli + \ _get_examples_ode_sol_nth_algebraic + \ _get_examples_ode_sol_riccati + \ _get_examples_ode_sol_1st_linear + \ _get_examples_ode_sol_1st_exact + \ _get_examples_ode_sol_almost_linear + \ _get_examples_ode_sol_nth_order_reducible + \ _get_examples_ode_sol_nth_linear_undetermined_coefficients + \ _get_examples_ode_sol_liouville + \ _get_examples_ode_sol_separable + \ _get_examples_ode_sol_nth_linear_var_of_parameters + \ _get_examples_ode_sol_2nd_linear_bessel + \ _get_examples_ode_sol_2nd_2F1_hypergeometric + \ _get_examples_ode_sol_2nd_nonlinear_autonomous_conserved + \ _get_examples_ode_sol_separable_reduced + \ _get_examples_ode_sol_lie_group + \ _get_examples_ode_sol_2nd_linear_airy + \ _get_examples_ode_sol_nth_linear_constant_coeff_homogeneous return all_examples
88725fe12cf51ba913acccdce8d27f1dc07fbc5e2288a89b78577b5e2b51912c
from sympy import (symbols, Symbol, diff, Function, Derivative, Matrix, Rational, S, I, Eq, sqrt, Mul, pi) from sympy.core.containers import Tuple from sympy.functions import exp, cos, sin, log, tan, Ci, Si, erf, erfi from sympy.matrices import dotprodsimp, NonSquareMatrixError from sympy.solvers.ode import dsolve from sympy.solvers.ode.ode import constant_renumber from sympy.solvers.ode.subscheck import checksysodesol from sympy.solvers.ode.systems import (_classify_linear_system, linear_ode_to_matrix, ODEOrderError, ODENonlinearError, _simpsol, _is_commutative_anti_derivative, linodesolve, canonical_odes, dsolve_system, _component_division, _eqs2dict, _dict2graph) from sympy.functions import airyai, airybi from sympy.integrals.integrals import Integral from sympy.simplify.ratsimp import ratsimp from sympy.testing.pytest import ON_TRAVIS, raises, slow, skip, XFAIL C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 = symbols('C0:11') def test_linear_ode_to_matrix(): f, g, h = symbols("f, g, h", cls=Function) t = Symbol("t") funcs = [f(t), g(t), h(t)] f1 = f(t).diff(t) g1 = g(t).diff(t) h1 = h(t).diff(t) f2 = f(t).diff(t, 2) g2 = g(t).diff(t, 2) h2 = h(t).diff(t, 2) eqs_1 = [Eq(f1, g(t)), Eq(g1, f(t))] sol_1 = ([Matrix([[1, 0], [0, 1]]), Matrix([[ 0, 1], [1, 0]])], Matrix([[0],[0]])) assert linear_ode_to_matrix(eqs_1, funcs[:-1], t, 1) == sol_1 eqs_2 = [Eq(f1, f(t) + 2*g(t)), Eq(g1, h(t)), Eq(h1, g(t) + h(t) + f(t))] sol_2 = ([Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]]), Matrix([[1, 2, 0], [ 0, 0, 1], [1, 1, 1]])], Matrix([[0], [0], [0]])) assert linear_ode_to_matrix(eqs_2, funcs, t, 1) == sol_2 eqs_3 = [Eq(2*f1 + 3*h1, f(t) + g(t)), Eq(4*h1 + 5*g1, f(t) + h(t)), Eq(5*f1 + 4*g1, g(t) + h(t))] sol_3 = ([Matrix([[2, 0, 3], [0, 5, 4], [5, 4, 0]]), Matrix([[1, 1, 0], [1, 0, 1], [0, 1, 1]])], Matrix([[0], [0], [0]])) assert linear_ode_to_matrix(eqs_3, funcs, t, 1) == sol_3 eqs_4 = [Eq(f2 + h(t), f1 + g(t)), Eq(2*h2 + g2 + g1 + g(t), 0), Eq(3*h1, 4)] sol_4 = ([Matrix([[1, 0, 0], [0, 1, 2], [0, 0, 0]]), Matrix([[1, 0, 0], [0, -1, 0], [0, 0, -3]]), Matrix([[0, 1, -1], [0, -1, 0], [0, 0, 0]])], Matrix([[0], [0], [4]])) assert linear_ode_to_matrix(eqs_4, funcs, t, 2) == sol_4 eqs_5 = [Eq(f2, g(t)), Eq(f1 + g1, f(t))] raises(ODEOrderError, lambda: linear_ode_to_matrix(eqs_5, funcs[:-1], t, 1)) eqs_6 = [Eq(f1, f(t)**2), Eq(g1, f(t) + g(t))] raises(ODENonlinearError, lambda: linear_ode_to_matrix(eqs_6, funcs[:-1], t, 1)) def test__classify_linear_system(): x, y, z, w = symbols('x, y, z, w', cls=Function) t, k, l = symbols('t k l') x1 = diff(x(t), t) y1 = diff(y(t), t) z1 = diff(z(t), t) w1 = diff(w(t), t) x2 = diff(x(t), t, t) y2 = diff(y(t), t, t) funcs = [x(t), y(t)] funcs_2 = funcs + [z(t), w(t)] eqs_1 = (5 * x1 + 12 * x(t) - 6 * (y(t)), (2 * y1 - 11 * t * x(t) + 3 * y(t) + t)) assert _classify_linear_system(eqs_1, funcs, t) is None eqs_2 = (5 * (x1**2) + 12 * x(t) - 6 * (y(t)), (2 * y1 - 11 * t * x(t) + 3 * y(t) + t)) sol2 = {'is_implicit': True, 'canon_eqs': [[Eq(Derivative(x(t), t), -sqrt(-12*x(t)/5 + 6*y(t)/5)), Eq(Derivative(y(t), t), 11*t*x(t)/2 - t/2 - 3*y(t)/2)], [Eq(Derivative(x(t), t), sqrt(-12*x(t)/5 + 6*y(t)/5)), Eq(Derivative(y(t), t), 11*t*x(t)/2 - t/2 - 3*y(t)/2)]]} assert _classify_linear_system(eqs_2, funcs, t) == sol2 eqs_2_1 = [Eq(Derivative(x(t), t), -sqrt(-12*x(t)/5 + 6*y(t)/5)), Eq(Derivative(y(t), t), 11*t*x(t)/2 - t/2 - 3*y(t)/2)] assert _classify_linear_system(eqs_2_1, funcs, t) is None eqs_2_2 = [Eq(Derivative(x(t), t), sqrt(-12*x(t)/5 + 6*y(t)/5)), Eq(Derivative(y(t), t), 11*t*x(t)/2 - t/2 - 3*y(t)/2)] assert _classify_linear_system(eqs_2_2, funcs, t) is None eqs_3 = (5 * x1 + 12 * x(t) - 6 * (y(t)), (2 * y1 - 11 * x(t) + 3 * y(t)), (5 * w1 + z(t)), (z1 + w(t))) answer_3 = {'no_of_equation': 4, 'eq': (12*x(t) - 6*y(t) + 5*Derivative(x(t), t), -11*x(t) + 3*y(t) + 2*Derivative(y(t), t), z(t) + 5*Derivative(w(t), t), w(t) + Derivative(z(t), t)), 'func': [x(t), y(t), z(t), w(t)], 'order': {x(t): 1, y(t): 1, z(t): 1, w(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True, 'func_coeff': -Matrix([ [Rational(12, 5), Rational(-6, 5), 0, 0], [Rational(-11, 2), Rational(3, 2), 0, 0], [0, 0, 0, 1], [0, 0, Rational(1, 5), 0]]), 'type_of_equation': 'type1', 'is_general': True} assert _classify_linear_system(eqs_3, funcs_2, t) == answer_3 eqs_4 = (5 * x1 + 12 * x(t) - 6 * (y(t)), (2 * y1 - 11 * x(t) + 3 * y(t)), (z1 - w(t)), (w1 - z(t))) answer_4 = {'no_of_equation': 4, 'eq': (12 * x(t) - 6 * y(t) + 5 * Derivative(x(t), t), -11 * x(t) + 3 * y(t) + 2 * Derivative(y(t), t), -w(t) + Derivative(z(t), t), -z(t) + Derivative(w(t), t)), 'func': [x(t), y(t), z(t), w(t)], 'order': {x(t): 1, y(t): 1, z(t): 1, w(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True, 'func_coeff': -Matrix([ [Rational(12, 5), Rational(-6, 5), 0, 0], [Rational(-11, 2), Rational(3, 2), 0, 0], [0, 0, 0, -1], [0, 0, -1, 0]]), 'type_of_equation': 'type1', 'is_general': True} assert _classify_linear_system(eqs_4, funcs_2, t) == answer_4 eqs_5 = (5*x1 + 12*x(t) - 6*(y(t)) + x2, (2*y1 - 11*x(t) + 3*y(t)), (z1 - w(t)), (w1 - z(t))) answer_5 = {'no_of_equation': 4, 'eq': (12*x(t) - 6*y(t) + 5*Derivative(x(t), t) + Derivative(x(t), (t, 2)), -11*x(t) + 3*y(t) + 2*Derivative(y(t), t), -w(t) + Derivative(z(t), t), -z(t) + Derivative(w(t), t)), 'func': [x(t), y(t), z(t), w(t)], 'order': {x(t): 2, y(t): 1, z(t): 1, w(t): 1}, 'is_linear': True, 'is_homogeneous': True, 'is_general': True, 'type_of_equation': 'type0', 'is_higher_order': True} assert _classify_linear_system(eqs_5, funcs_2, t) == answer_5 eqs_6 = (Eq(x1, 3*y(t) - 11*z(t)), Eq(y1, 7*z(t) - 3*x(t)), Eq(z1, 11*x(t) - 7*y(t))) answer_6 = {'no_of_equation': 3, 'eq': (Eq(Derivative(x(t), t), 3*y(t) - 11*z(t)), Eq(Derivative(y(t), t), -3*x(t) + 7*z(t)), Eq(Derivative(z(t), t), 11*x(t) - 7*y(t))), 'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True, 'func_coeff': -Matrix([ [ 0, -3, 11], [ 3, 0, -7], [-11, 7, 0]]), 'type_of_equation': 'type1', 'is_general': True} assert _classify_linear_system(eqs_6, funcs_2[:-1], t) == answer_6 eqs_7 = (Eq(x1, y(t)), Eq(y1, x(t))) answer_7 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), t), y(t)), Eq(Derivative(y(t), t), x(t))), 'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True, 'func_coeff': -Matrix([ [ 0, -1], [-1, 0]]), 'type_of_equation': 'type1', 'is_general': True} assert _classify_linear_system(eqs_7, funcs, t) == answer_7 eqs_8 = (Eq(x1, 21*x(t)), Eq(y1, 17*x(t) + 3*y(t)), Eq(z1, 5*x(t) + 7*y(t) + 9*z(t))) answer_8 = {'no_of_equation': 3, 'eq': (Eq(Derivative(x(t), t), 21*x(t)), Eq(Derivative(y(t), t), 17*x(t) + 3*y(t)), Eq(Derivative(z(t), t), 5*x(t) + 7*y(t) + 9*z(t))), 'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True, 'func_coeff': -Matrix([ [-21, 0, 0], [-17, -3, 0], [ -5, -7, -9]]), 'type_of_equation': 'type1', 'is_general': True} assert _classify_linear_system(eqs_8, funcs_2[:-1], t) == answer_8 eqs_9 = (Eq(x1, 4*x(t) + 5*y(t) + 2*z(t)), Eq(y1, x(t) + 13*y(t) + 9*z(t)), Eq(z1, 32*x(t) + 41*y(t) + 11*z(t))) answer_9 = {'no_of_equation': 3, 'eq': (Eq(Derivative(x(t), t), 4*x(t) + 5*y(t) + 2*z(t)), Eq(Derivative(y(t), t), x(t) + 13*y(t) + 9*z(t)), Eq(Derivative(z(t), t), 32*x(t) + 41*y(t) + 11*z(t))), 'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True, 'func_coeff': -Matrix([ [ -4, -5, -2], [ -1, -13, -9], [-32, -41, -11]]), 'type_of_equation': 'type1', 'is_general': True} assert _classify_linear_system(eqs_9, funcs_2[:-1], t) == answer_9 eqs_10 = (Eq(3*x1, 4*5*(y(t) - z(t))), Eq(4*y1, 3*5*(z(t) - x(t))), Eq(5*z1, 3*4*(x(t) - y(t)))) answer_10 = {'no_of_equation': 3, 'eq': (Eq(3*Derivative(x(t), t), 20*y(t) - 20*z(t)), Eq(4*Derivative(y(t), t), -15*x(t) + 15*z(t)), Eq(5*Derivative(z(t), t), 12*x(t) - 12*y(t))), 'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True, 'func_coeff': -Matrix([ [ 0, Rational(-20, 3), Rational(20, 3)], [Rational(15, 4), 0, Rational(-15, 4)], [Rational(-12, 5), Rational(12, 5), 0]]), 'type_of_equation': 'type1', 'is_general': True} assert _classify_linear_system(eqs_10, funcs_2[:-1], t) == answer_10 eq11 = (Eq(x1, 3*y(t) - 11*z(t)), Eq(y1, 7*z(t) - 3*x(t)), Eq(z1, 11*x(t) - 7*y(t))) sol11 = {'no_of_equation': 3, 'eq': (Eq(Derivative(x(t), t), 3*y(t) - 11*z(t)), Eq(Derivative(y(t), t), -3*x(t) + 7*z(t)), Eq(Derivative(z(t), t), 11*x(t) - 7*y(t))), 'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True, 'func_coeff': -Matrix([ [ 0, -3, 11], [ 3, 0, -7], [-11, 7, 0]]), 'type_of_equation': 'type1', 'is_general': True} assert _classify_linear_system(eq11, funcs_2[:-1], t) == sol11 eq12 = (Eq(Derivative(x(t), t), y(t)), Eq(Derivative(y(t), t), x(t))) sol12 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), t), y(t)), Eq(Derivative(y(t), t), x(t))), 'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True, 'func_coeff': -Matrix([ [0, -1], [-1, 0]]), 'type_of_equation': 'type1', 'is_general': True} assert _classify_linear_system(eq12, [x(t), y(t)], t) == sol12 eq13 = (Eq(Derivative(x(t), t), 21*x(t)), Eq(Derivative(y(t), t), 17*x(t) + 3*y(t)), Eq(Derivative(z(t), t), 5*x(t) + 7*y(t) + 9*z(t))) sol13 = {'no_of_equation': 3, 'eq': ( Eq(Derivative(x(t), t), 21 * x(t)), Eq(Derivative(y(t), t), 17 * x(t) + 3 * y(t)), Eq(Derivative(z(t), t), 5 * x(t) + 7 * y(t) + 9 * z(t))), 'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True, 'func_coeff': -Matrix([ [-21, 0, 0], [-17, -3, 0], [-5, -7, -9]]), 'type_of_equation': 'type1', 'is_general': True} assert _classify_linear_system(eq13, [x(t), y(t), z(t)], t) == sol13 eq14 = ( Eq(Derivative(x(t), t), 4*x(t) + 5*y(t) + 2*z(t)), Eq(Derivative(y(t), t), x(t) + 13*y(t) + 9*z(t)), Eq(Derivative(z(t), t), 32*x(t) + 41*y(t) + 11*z(t))) sol14 = {'no_of_equation': 3, 'eq': ( Eq(Derivative(x(t), t), 4 * x(t) + 5 * y(t) + 2 * z(t)), Eq(Derivative(y(t), t), x(t) + 13 * y(t) + 9 * z(t)), Eq(Derivative(z(t), t), 32 * x(t) + 41 * y(t) + 11 * z(t))), 'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True, 'func_coeff': -Matrix([ [-4, -5, -2], [-1, -13, -9], [-32, -41, -11]]), 'type_of_equation': 'type1', 'is_general': True} assert _classify_linear_system(eq14, [x(t), y(t), z(t)], t) == sol14 eq15 = (Eq(3*Derivative(x(t), t), 20*y(t) - 20*z(t)), Eq(4*Derivative(y(t), t), -15*x(t) + 15*z(t)), Eq(5*Derivative(z(t), t), 12*x(t) - 12*y(t))) sol15 = {'no_of_equation': 3, 'eq': ( Eq(3 * Derivative(x(t), t), 20 * y(t) - 20 * z(t)), Eq(4 * Derivative(y(t), t), -15 * x(t) + 15 * z(t)), Eq(5 * Derivative(z(t), t), 12 * x(t) - 12 * y(t))), 'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True, 'func_coeff': -Matrix([ [0, Rational(-20, 3), Rational(20, 3)], [Rational(15, 4), 0, Rational(-15, 4)], [Rational(-12, 5), Rational(12, 5), 0]]), 'type_of_equation': 'type1', 'is_general': True} assert _classify_linear_system(eq15, [x(t), y(t), z(t)], t) == sol15 # Constant coefficient homogeneous ODEs eq1 = (Eq(diff(x(t), t), x(t) + y(t) + 9), Eq(diff(y(t), t), 2*x(t) + 5*y(t) + 23)) sol1 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), t), x(t) + y(t) + 9), Eq(Derivative(y(t), t), 2*x(t) + 5*y(t) + 23)), 'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': False, 'is_general': True, 'func_coeff': -Matrix([[-1, -1], [-2, -5]]), 'rhs': Matrix([[ 9], [23]]), 'type_of_equation': 'type2'} assert _classify_linear_system(eq1, funcs, t) == sol1 # Non constant coefficient homogeneous ODEs eq1 = (Eq(diff(x(t), t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t), t), 2*x(t) + 5*t*y(t))) sol1 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), t), 5*t*x(t) + 2*y(t)), Eq(Derivative(y(t), t), 5*t*y(t) + 2*x(t))), 'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_constant': False, 'is_homogeneous': True, 'func_coeff': -Matrix([ [-5*t, -2], [ -2, -5*t]]), 'commutative_antiderivative': Matrix([ [5*t**2/2, 2*t], [ 2*t, 5*t**2/2]]), 'type_of_equation': 'type3', 'is_general': True} assert _classify_linear_system(eq1, funcs, t) == sol1 # Non constant coefficient non-homogeneous ODEs eq1 = [Eq(x1, x(t) + t*y(t) + t), Eq(y1, t*x(t) + y(t))] sol1 = {'no_of_equation': 2, 'eq': [Eq(Derivative(x(t), t), t*y(t) + t + x(t)), Eq(Derivative(y(t), t), t*x(t) + y(t))], 'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_constant': False, 'is_homogeneous': False, 'is_general': True, 'func_coeff': -Matrix([ [-1, -t], [-t, -1]]), 'commutative_antiderivative': Matrix([ [ t, t**2/2], [t**2/2, t]]), 'rhs': Matrix([ [t], [0]]), 'type_of_equation': 'type4'} assert _classify_linear_system(eq1, funcs, t) == sol1 eq2 = [Eq(x1, t*x(t) + t*y(t) + t), Eq(y1, t*x(t) + t*y(t) + cos(t))] sol2 = {'no_of_equation': 2, 'eq': [Eq(Derivative(x(t), t), t*x(t) + t*y(t) + t), Eq(Derivative(y(t), t), t*x(t) + t*y(t) + cos(t))], 'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_homogeneous': False, 'is_general': True, 'rhs': Matrix([ [ t], [cos(t)]]), 'func_coeff': Matrix([ [t, t], [t, t]]), 'is_constant': False, 'type_of_equation': 'type4', 'commutative_antiderivative': Matrix([ [t**2/2, t**2/2], [t**2/2, t**2/2]])} assert _classify_linear_system(eq2, funcs, t) == sol2 eq3 = [Eq(x1, t*(x(t) + y(t) + z(t) + 1)), Eq(y1, t*(x(t) + y(t) + z(t))), Eq(z1, t*(x(t) + y(t) + z(t)))] sol3 = {'no_of_equation': 3, 'eq': [Eq(Derivative(x(t), t), t*(x(t) + y(t) + z(t) + 1)), Eq(Derivative(y(t), t), t*(x(t) + y(t) + z(t))), Eq(Derivative(z(t), t), t*(x(t) + y(t) + z(t)))], 'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': False, 'is_homogeneous': False, 'is_general': True, 'func_coeff': -Matrix([ [-t, -t, -t], [-t, -t, -t], [-t, -t, -t]]), 'commutative_antiderivative': Matrix([ [t**2/2, t**2/2, t**2/2], [t**2/2, t**2/2, t**2/2], [t**2/2, t**2/2, t**2/2]]), 'rhs': Matrix([ [t], [0], [0]]), 'type_of_equation': 'type4'} assert _classify_linear_system(eq3, funcs_2[:-1], t) == sol3 eq4 = [Eq(x1, x(t) + y(t) + t*z(t) + 1), Eq(y1, x(t) + t*y(t) + z(t) + 10), Eq(z1, t*x(t) + y(t) + z(t) + t)] sol4 = {'no_of_equation': 3, 'eq': [Eq(Derivative(x(t), t), t*z(t) + x(t) + y(t) + 1), Eq(Derivative(y(t), t), t*y(t) + x(t) + z(t) + 10), Eq(Derivative(z(t), t), t*x(t) + t + y(t) + z(t))], 'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': False, 'is_homogeneous': False, 'is_general': True, 'func_coeff': -Matrix([ [-1, -1, -t], [-1, -t, -1], [-t, -1, -1]]), 'commutative_antiderivative': Matrix([ [ t, t, t**2/2], [ t, t**2/2, t], [t**2/2, t, t]]), 'rhs': Matrix([ [ 1], [10], [ t]]), 'type_of_equation': 'type4'} assert _classify_linear_system(eq4, funcs_2[:-1], t) == sol4 sum_terms = t*(x(t) + y(t) + z(t) + w(t)) eq5 = [Eq(x1, sum_terms), Eq(y1, sum_terms), Eq(z1, sum_terms + 1), Eq(w1, sum_terms)] sol5 = {'no_of_equation': 4, 'eq': [Eq(Derivative(x(t), t), t*(w(t) + x(t) + y(t) + z(t))), Eq(Derivative(y(t), t), t*(w(t) + x(t) + y(t) + z(t))), Eq(Derivative(z(t), t), t*(w(t) + x(t) + y(t) + z(t)) + 1), Eq(Derivative(w(t), t), t*(w(t) + x(t) + y(t) + z(t)))], 'func': [x(t), y(t), z(t), w(t)], 'order': {x(t): 1, y(t): 1, z(t): 1, w(t): 1}, 'is_linear': True, 'is_constant': False, 'is_homogeneous': False, 'is_general': True, 'func_coeff': -Matrix([ [-t, -t, -t, -t], [-t, -t, -t, -t], [-t, -t, -t, -t], [-t, -t, -t, -t]]), 'commutative_antiderivative': Matrix([ [t**2/2, t**2/2, t**2/2, t**2/2], [t**2/2, t**2/2, t**2/2, t**2/2], [t**2/2, t**2/2, t**2/2, t**2/2], [t**2/2, t**2/2, t**2/2, t**2/2]]), 'rhs': Matrix([ [0], [0], [1], [0]]), 'type_of_equation': 'type4'} assert _classify_linear_system(eq5, funcs_2, t) == sol5 # Second Order t_ = symbols("t_") eq1 = (Eq(9*x(t) + 7*y(t) + 4*Derivative(x(t), t) + Derivative(x(t), (t, 2)) + 3*Derivative(y(t), t), 11*exp(I*t)), Eq(3*x(t) + 12*y(t) + 5*Derivative(x(t), t) + 8*Derivative(y(t), t) + Derivative(y(t), (t, 2)), 2*exp(I*t))) sol1 = {'no_of_equation': 2, 'eq': (Eq(9*x(t) + 7*y(t) + 4*Derivative(x(t), t) + Derivative(x(t), (t, 2)) + 3*Derivative(y(t), t), 11*exp(I*t)), Eq(3*x(t) + 12*y(t) + 5*Derivative(x(t), t) + 8*Derivative(y(t), t) + Derivative(y(t), (t, 2)), 2*exp(I*t))), 'func': [x(t), y(t)], 'order': {x(t): 2, y(t): 2}, 'is_linear': True, 'is_homogeneous': False, 'is_general': True, 'rhs': Matrix([ [11*exp(I*t)], [ 2*exp(I*t)]]), 'type_of_equation': 'type0', 'is_second_order': True, 'is_higher_order': True} assert _classify_linear_system(eq1, funcs, t) == sol1 eq2 = (Eq((4*t**2 + 7*t + 1)**2*Derivative(x(t), (t, 2)), 5*x(t) + 35*y(t)), Eq((4*t**2 + 7*t + 1)**2*Derivative(y(t), (t, 2)), x(t) + 9*y(t))) sol2 = {'no_of_equation': 2, 'eq': (Eq((4*t**2 + 7*t + 1)**2*Derivative(x(t), (t, 2)), 5*x(t) + 35*y(t)), Eq((4*t**2 + 7*t + 1)**2*Derivative(y(t), (t, 2)), x(t) + 9*y(t))), 'func': [x(t), y(t)], 'order': {x(t): 2, y(t): 2}, 'is_linear': True, 'is_homogeneous': True, 'is_general': True, 'type_of_equation': 'type2', 'A0': Matrix([ [Rational(53, 4), 35], [ 1, Rational(69, 4)]]), 'g(t)': sqrt(4*t**2 + 7*t + 1), 'tau': sqrt(33)*log(t - sqrt(33)/8 + Rational(7, 8))/33 - sqrt(33)*log(t + sqrt(33)/8 + Rational(7, 8))/33, 'is_transformed': True, 't_': t_, 'is_second_order': True, 'is_higher_order': True} assert _classify_linear_system(eq2, funcs, t) == sol2 eq3 = ((t*Derivative(x(t), t) - x(t))*log(t) + (t*Derivative(y(t), t) - y(t))*exp(t) + Derivative(x(t), (t, 2)), t**2*(t*Derivative(x(t), t) - x(t)) + t*(t*Derivative(y(t), t) - y(t)) + Derivative(y(t), (t, 2))) sol3 = {'no_of_equation': 2, 'eq': ((t*Derivative(x(t), t) - x(t))*log(t) + (t*Derivative(y(t), t) - y(t))*exp(t) + Derivative(x(t), (t, 2)), t**2*(t*Derivative(x(t), t) - x(t)) + t*(t*Derivative(y(t), t) - y(t)) + Derivative(y(t), (t, 2))), 'func': [x(t), y(t)], 'order': {x(t): 2, y(t): 2}, 'is_linear': True, 'is_homogeneous': True, 'is_general': True, 'type_of_equation': 'type1', 'A1': Matrix([ [-t*log(t), -t*exp(t)], [ -t**3, -t**2]]), 'is_second_order': True, 'is_higher_order': True} assert _classify_linear_system(eq3, funcs, t) == sol3 eq4 = (Eq(x2, k*x(t) - l*y1), Eq(y2, l*x1 + k*y(t))) sol4 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), (t, 2)), k*x(t) - l*Derivative(y(t), t)), Eq(Derivative(y(t), (t, 2)), k*y(t) + l*Derivative(x(t), t))), 'func': [x(t), y(t)], 'order': {x(t): 2, y(t): 2}, 'is_linear': True, 'is_homogeneous': True, 'is_general': True, 'type_of_equation': 'type0', 'is_second_order': True, 'is_higher_order': True} assert _classify_linear_system(eq4, funcs, t) == sol4 # Multiple matchs f, g = symbols("f g", cls=Function) y, t_ = symbols("y t_") funcs = [f(t), g(t)] eq1 = [Eq(Derivative(f(t), t)**2 - 2*Derivative(f(t), t) + 1, 4), Eq(-y*f(t) + Derivative(g(t), t), 0)] sol1 = {'is_implicit': True, 'canon_eqs': [[Eq(Derivative(f(t), t), -1), Eq(Derivative(g(t), t), y*f(t))], [Eq(Derivative(f(t), t), 3), Eq(Derivative(g(t), t), y*f(t))]]} assert _classify_linear_system(eq1, funcs, t) == sol1 raises(ValueError, lambda: _classify_linear_system(eq1, funcs[:1], t)) eq2 = [Eq(Derivative(f(t), t), (2*f(t) + g(t) + 1)/t), Eq(Derivative(g(t), t), (f(t) + 2*g(t))/t)] sol2 = {'no_of_equation': 2, 'eq': [Eq(Derivative(f(t), t), (2*f(t) + g(t) + 1)/t), Eq(Derivative(g(t), t), (f(t) + 2*g(t))/t)], 'func': [f(t), g(t)], 'order': {f(t): 1, g(t): 1}, 'is_linear': True, 'is_homogeneous': False, 'is_general': True, 'rhs': Matrix([ [1], [0]]), 'func_coeff': Matrix([ [2, 1], [1, 2]]), 'is_constant': False, 'type_of_equation': 'type6', 't_': t_, 'tau': log(t), 'commutative_antiderivative': Matrix([ [2*log(t), log(t)], [ log(t), 2*log(t)]])} assert _classify_linear_system(eq2, funcs, t) == sol2 eq3 = [Eq(Derivative(f(t), t), (2*f(t) + g(t))/t), Eq(Derivative(g(t), t), (f(t) + 2*g(t))/t)] sol3 = {'no_of_equation': 2, 'eq': [Eq(Derivative(f(t), t), (2*f(t) + g(t))/t), Eq(Derivative(g(t), t), (f(t) + 2*g(t))/t)], 'func': [f(t), g(t)], 'order': {f(t): 1, g(t): 1}, 'is_linear': True, 'is_homogeneous': True, 'is_general': True, 'func_coeff': Matrix([ [2, 1], [1, 2]]), 'is_constant': False, 'type_of_equation': 'type5', 't_': t_, 'rhs': Matrix([ [0], [0]]), 'tau': log(t), 'commutative_antiderivative': Matrix([ [2*log(t), log(t)], [ log(t), 2*log(t)]])} assert _classify_linear_system(eq3, funcs, t) == sol3 def test_matrix_exp(): from sympy.matrices.dense import Matrix, eye, zeros from sympy.solvers.ode.systems import matrix_exp t = Symbol('t') for n in range(1, 6+1): assert matrix_exp(zeros(n), t) == eye(n) for n in range(1, 6+1): A = eye(n) expAt = exp(t) * eye(n) assert matrix_exp(A, t) == expAt for n in range(1, 6+1): A = Matrix(n, n, lambda i,j: i+1 if i==j else 0) expAt = Matrix(n, n, lambda i,j: exp((i+1)*t) if i==j else 0) assert matrix_exp(A, t) == expAt A = Matrix([[0, 1], [-1, 0]]) expAt = Matrix([[cos(t), sin(t)], [-sin(t), cos(t)]]) assert matrix_exp(A, t) == expAt A = Matrix([[2, -5], [2, -4]]) expAt = Matrix([ [3*exp(-t)*sin(t) + exp(-t)*cos(t), -5*exp(-t)*sin(t)], [2*exp(-t)*sin(t), -3*exp(-t)*sin(t) + exp(-t)*cos(t)] ]) assert matrix_exp(A, t) == expAt A = Matrix([[21, 17, 6], [-5, -1, -6], [4, 4, 16]]) # TO update this. # expAt = Matrix([ # [(8*t*exp(12*t) + 5*exp(12*t) - 1)*exp(4*t)/4, # (8*t*exp(12*t) + 5*exp(12*t) - 5)*exp(4*t)/4, # (exp(12*t) - 1)*exp(4*t)/2], # [(-8*t*exp(12*t) - exp(12*t) + 1)*exp(4*t)/4, # (-8*t*exp(12*t) - exp(12*t) + 5)*exp(4*t)/4, # (-exp(12*t) + 1)*exp(4*t)/2], # [4*t*exp(16*t), 4*t*exp(16*t), exp(16*t)]]) expAt = Matrix([ [2*t*exp(16*t) + 5*exp(16*t)/4 - exp(4*t)/4, 2*t*exp(16*t) + 5*exp(16*t)/4 - 5*exp(4*t)/4, exp(16*t)/2 - exp(4*t)/2], [ -2*t*exp(16*t) - exp(16*t)/4 + exp(4*t)/4, -2*t*exp(16*t) - exp(16*t)/4 + 5*exp(4*t)/4, -exp(16*t)/2 + exp(4*t)/2], [ 4*t*exp(16*t), 4*t*exp(16*t), exp(16*t)] ]) assert matrix_exp(A, t) == expAt A = Matrix([[1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, -S(1)/8], [0, 0, S(1)/2, S(1)/2]]) expAt = Matrix([ [exp(t), t*exp(t), 4*t*exp(3*t/4) + 8*t*exp(t) + 48*exp(3*t/4) - 48*exp(t), -2*t*exp(3*t/4) - 2*t*exp(t) - 16*exp(3*t/4) + 16*exp(t)], [0, exp(t), -t*exp(3*t/4) - 8*exp(3*t/4) + 8*exp(t), t*exp(3*t/4)/2 + 2*exp(3*t/4) - 2*exp(t)], [0, 0, t*exp(3*t/4)/4 + exp(3*t/4), -t*exp(3*t/4)/8], [0, 0, t*exp(3*t/4)/2, -t*exp(3*t/4)/4 + exp(3*t/4)] ]) assert matrix_exp(A, t) == expAt A = Matrix([ [ 0, 1, 0, 0], [-1, 0, 0, 0], [ 0, 0, 0, 1], [ 0, 0, -1, 0]]) expAt = Matrix([ [ cos(t), sin(t), 0, 0], [-sin(t), cos(t), 0, 0], [ 0, 0, cos(t), sin(t)], [ 0, 0, -sin(t), cos(t)]]) assert matrix_exp(A, t) == expAt A = Matrix([ [ 0, 1, 1, 0], [-1, 0, 0, 1], [ 0, 0, 0, 1], [ 0, 0, -1, 0]]) expAt = Matrix([ [ cos(t), sin(t), t*cos(t), t*sin(t)], [-sin(t), cos(t), -t*sin(t), t*cos(t)], [ 0, 0, cos(t), sin(t)], [ 0, 0, -sin(t), cos(t)]]) assert matrix_exp(A, t) == expAt # This case is unacceptably slow right now but should be solvable... #a, b, c, d, e, f = symbols('a b c d e f') #A = Matrix([ #[-a, b, c, d], #[ a, -b, e, 0], #[ 0, 0, -c - e - f, 0], #[ 0, 0, f, -d]]) A = Matrix([[0, I], [I, 0]]) expAt = Matrix([ [exp(I*t)/2 + exp(-I*t)/2, exp(I*t)/2 - exp(-I*t)/2], [exp(I*t)/2 - exp(-I*t)/2, exp(I*t)/2 + exp(-I*t)/2]]) assert matrix_exp(A, t) == expAt # Testing Errors M = Matrix([[1, 2, 3], [4, 5, 6], [7, 7, 7]]) M1 = Matrix([[t, 1], [1, 1]]) raises(ValueError, lambda: matrix_exp(M[:, :2], t)) raises(ValueError, lambda: matrix_exp(M[:2, :], t)) raises(ValueError, lambda: matrix_exp(M1, t)) raises(ValueError, lambda: matrix_exp(M1[:1, :1], t)) def test_canonical_odes(): f, g, h = symbols('f g h', cls=Function) x = symbols('x') funcs = [f(x), g(x), h(x)] eqs1 = [Eq(f(x).diff(x, x), f(x) + 2*g(x)), Eq(g(x) + 1, g(x).diff(x) + f(x))] sol1 = [[Eq(Derivative(f(x), (x, 2)), f(x) + 2*g(x)), Eq(Derivative(g(x), x), -f(x) + g(x) + 1)]] assert canonical_odes(eqs1, funcs[:2], x) == sol1 eqs2 = [Eq(f(x).diff(x), h(x).diff(x) + f(x)), Eq(g(x).diff(x)**2, f(x) + h(x)), Eq(h(x).diff(x), f(x))] sol2 = [[Eq(Derivative(f(x), x), 2*f(x)), Eq(Derivative(g(x), x), -sqrt(f(x) + h(x))), Eq(Derivative(h(x), x), f(x))], [Eq(Derivative(f(x), x), 2*f(x)), Eq(Derivative(g(x), x), sqrt(f(x) + h(x))), Eq(Derivative(h(x), x), f(x))]] assert canonical_odes(eqs2, funcs, x) == sol2 def test_sysode_linear_neq_order1_type1(): f, g, x, y, h = symbols('f g x y h', cls=Function) a, b, c, t = symbols('a b c t') eqs1 = [Eq(Derivative(x(t), t), x(t)), Eq(Derivative(y(t), t), y(t))] sol1 = [Eq(x(t), C1*exp(t)), Eq(y(t), C2*exp(t))] assert dsolve(eqs1) == sol1 assert checksysodesol(eqs1, sol1) == (True, [0, 0]) eqs2 = [Eq(Derivative(x(t), t), 2*x(t)), Eq(Derivative(y(t), t), 3*y(t))] sol2 = [Eq(x(t), C1*exp(2*t)), Eq(y(t), C2*exp(3*t))] assert dsolve(eqs2) == sol2 assert checksysodesol(eqs2, sol2) == (True, [0, 0]) eqs3 = [Eq(Derivative(x(t), t), a*x(t)), Eq(Derivative(y(t), t), a*y(t))] sol3 = [Eq(x(t), C1*exp(a*t)), Eq(y(t), C2*exp(a*t))] assert dsolve(eqs3) == sol3 assert checksysodesol(eqs3, sol3) == (True, [0, 0]) # Regression test case for issue #15474 # https://github.com/sympy/sympy/issues/15474 eqs4 = [Eq(Derivative(x(t), t), a*x(t)), Eq(Derivative(y(t), t), b*y(t))] sol4 = [Eq(x(t), C1*exp(a*t)), Eq(y(t), C2*exp(b*t))] assert dsolve(eqs4) == sol4 assert checksysodesol(eqs4, sol4) == (True, [0, 0]) eqs5 = [Eq(Derivative(x(t), t), -y(t)), Eq(Derivative(y(t), t), x(t))] sol5 = [Eq(x(t), -C1*sin(t) - C2*cos(t)), Eq(y(t), C1*cos(t) - C2*sin(t))] assert dsolve(eqs5) == sol5 assert checksysodesol(eqs5, sol5) == (True, [0, 0]) eqs6 = [Eq(Derivative(x(t), t), -2*y(t)), Eq(Derivative(y(t), t), 2*x(t))] sol6 = [Eq(x(t), -C1*sin(2*t) - C2*cos(2*t)), Eq(y(t), C1*cos(2*t) - C2*sin(2*t))] assert dsolve(eqs6) == sol6 assert checksysodesol(eqs6, sol6) == (True, [0, 0]) eqs7 = [Eq(Derivative(x(t), t), I*y(t)), Eq(Derivative(y(t), t), I*x(t))] sol7 = [Eq(x(t), -C1*exp(-I*t) + C2*exp(I*t)), Eq(y(t), C1*exp(-I*t) + C2*exp(I*t))] assert dsolve(eqs7) == sol7 assert checksysodesol(eqs7, sol7) == (True, [0, 0]) eqs8 = [Eq(Derivative(x(t), t), -a*y(t)), Eq(Derivative(y(t), t), a*x(t))] sol8 = [Eq(x(t), -I*C1*exp(-I*a*t) + I*C2*exp(I*a*t)), Eq(y(t), C1*exp(-I*a*t) + C2*exp(I*a*t))] assert dsolve(eqs8) == sol8 assert checksysodesol(eqs8, sol8) == (True, [0, 0]) eqs9 = [Eq(Derivative(x(t), t), x(t) + y(t)), Eq(Derivative(y(t), t), x(t) - y(t))] sol9 = [Eq(x(t), C1*(1 - sqrt(2))*exp(-sqrt(2)*t) + C2*(1 + sqrt(2))*exp(sqrt(2)*t)), Eq(y(t), C1*exp(-sqrt(2)*t) + C2*exp(sqrt(2)*t))] assert dsolve(eqs9) == sol9 assert checksysodesol(eqs9, sol9) == (True, [0, 0]) eqs10 = [Eq(Derivative(x(t), t), x(t) + y(t)), Eq(Derivative(y(t), t), x(t) + y(t))] sol10 = [Eq(x(t), -C1 + C2*exp(2*t)), Eq(y(t), C1 + C2*exp(2*t))] assert dsolve(eqs10) == sol10 assert checksysodesol(eqs10, sol10) == (True, [0, 0]) eqs11 = [Eq(Derivative(x(t), t), 2*x(t) + y(t)), Eq(Derivative(y(t), t), -x(t) + 2*y(t))] sol11 = [Eq(x(t), C1*exp(2*t)*sin(t) + C2*exp(2*t)*cos(t)), Eq(y(t), C1*exp(2*t)*cos(t) - C2*exp(2*t)*sin(t))] assert dsolve(eqs11) == sol11 assert checksysodesol(eqs11, sol11) == (True, [0, 0]) eqs12 = [Eq(Derivative(x(t), t), x(t) + 2*y(t)), Eq(Derivative(y(t), t), 2*x(t) + y(t))] sol12 = [Eq(x(t), -C1*exp(-t) + C2*exp(3*t)), Eq(y(t), C1*exp(-t) + C2*exp(3*t))] assert dsolve(eqs12) == sol12 assert checksysodesol(eqs12, sol12) == (True, [0, 0]) eqs13 = [Eq(Derivative(x(t), t), 4*x(t) + y(t)), Eq(Derivative(y(t), t), -x(t) + 2*y(t))] sol13 = [Eq(x(t), C2*t*exp(3*t) + (C1 + C2)*exp(3*t)), Eq(y(t), -C1*exp(3*t) - C2*t*exp(3*t))] assert dsolve(eqs13) == sol13 assert checksysodesol(eqs13, sol13) == (True, [0, 0]) eqs14 = [Eq(Derivative(x(t), t), a*y(t)), Eq(Derivative(y(t), t), a*x(t))] sol14 = [Eq(x(t), -C1*exp(-a*t) + C2*exp(a*t)), Eq(y(t), C1*exp(-a*t) + C2*exp(a*t))] assert dsolve(eqs14) == sol14 assert checksysodesol(eqs14, sol14) == (True, [0, 0]) eqs15 = [Eq(Derivative(x(t), t), a*y(t)), Eq(Derivative(y(t), t), b*x(t))] sol15 = [Eq(x(t), -C1*a*exp(-t*sqrt(a*b))/sqrt(a*b) + C2*a*exp(t*sqrt(a*b))/sqrt(a*b)), Eq(y(t), C1*exp(-t*sqrt(a*b)) + C2*exp(t*sqrt(a*b)))] assert dsolve(eqs15) == sol15 assert checksysodesol(eqs15, sol15) == (True, [0, 0]) eqs16 = [Eq(Derivative(x(t), t), a*x(t) + b*y(t)), Eq(Derivative(y(t), t), c*x(t))] sol16 = [Eq(x(t), -2*C1*b*exp(t*(a + sqrt(a**2 + 4*b*c))/2)/(a - sqrt(a**2 + 4*b*c)) - 2*C2*b*exp(t*(a - sqrt(a**2 + 4*b*c))/2)/(a + sqrt(a**2 + 4*b*c))), Eq(y(t), C1*exp(t*(a + sqrt(a**2 + 4*b*c))/2) + C2*exp(t*(a - sqrt(a**2 + 4*b*c))/2))] assert dsolve(eqs16) == sol16 assert checksysodesol(eqs16, sol16) == (True, [0, 0]) # Regression test case for issue #18562 # https://github.com/sympy/sympy/issues/18562 eqs17 = [Eq(Derivative(x(t), t), a*y(t) + x(t)), Eq(Derivative(y(t), t), a*x(t) - y(t))] sol17 = [Eq(x(t), C1*a*exp(t*sqrt(a**2 + 1))/(sqrt(a**2 + 1) - 1) - C2*a*exp(-t*sqrt(a**2 + 1))/(sqrt(a**2 + 1) + 1)), Eq(y(t), C1*exp(t*sqrt(a**2 + 1)) + C2*exp(-t*sqrt(a**2 + 1)))] assert dsolve(eqs17) == sol17 assert checksysodesol(eqs17, sol17) == (True, [0, 0]) eqs18 = [Eq(Derivative(x(t), t), 0), Eq(Derivative(y(t), t), 0)] sol18 = [Eq(x(t), C1), Eq(y(t), C2)] assert dsolve(eqs18) == sol18 assert checksysodesol(eqs18, sol18) == (True, [0, 0]) eqs19 = [Eq(Derivative(x(t), t), 2*x(t) - y(t)), Eq(Derivative(y(t), t), x(t))] sol19 = [Eq(x(t), C2*t*exp(t) + (C1 + C2)*exp(t)), Eq(y(t), C1*exp(t) + C2*t*exp(t))] assert dsolve(eqs19) == sol19 assert checksysodesol(eqs19, sol19) == (True, [0, 0]) eqs20 = [Eq(Derivative(x(t), t), x(t)), Eq(Derivative(y(t), t), x(t) + y(t))] sol20 = [Eq(x(t), C1*exp(t)), Eq(y(t), C1*t*exp(t) + C2*exp(t))] assert dsolve(eqs20) == sol20 assert checksysodesol(eqs20, sol20) == (True, [0, 0]) eqs21 = [Eq(Derivative(x(t), t), 3*x(t)), Eq(Derivative(y(t), t), x(t) + y(t))] sol21 = [Eq(x(t), 2*C1*exp(3*t)), Eq(y(t), C1*exp(3*t) + C2*exp(t))] assert dsolve(eqs21) == sol21 assert checksysodesol(eqs21, sol21) == (True, [0, 0]) eqs22 = [Eq(Derivative(x(t), t), 3*x(t)), Eq(Derivative(y(t), t), y(t))] sol22 = [Eq(x(t), C1*exp(3*t)), Eq(y(t), C2*exp(t))] assert dsolve(eqs22) == sol22 assert checksysodesol(eqs22, sol22) == (True, [0, 0]) @slow def test_sysode_linear_neq_order1_type1_slow(): t = Symbol('t') Z0 = Function('Z0') Z1 = Function('Z1') Z2 = Function('Z2') Z3 = Function('Z3') k01, k10, k20, k21, k23, k30 = symbols('k01 k10 k20 k21 k23 k30') eqs1 = [Eq(Derivative(Z0(t), t), -k01*Z0(t) + k10*Z1(t) + k20*Z2(t) + k30*Z3(t)), Eq(Derivative(Z1(t), t), k01*Z0(t) - k10*Z1(t) + k21*Z2(t)), Eq(Derivative(Z2(t), t), (-k20 - k21 - k23)*Z2(t)), Eq(Derivative(Z3(t), t), k23*Z2(t) - k30*Z3(t))] sol1 = [Eq(Z0(t), C1*k10/k01 - C2*(k10 - k30)*exp(-k30*t)/(k01 + k10 - k30) - C3*(k10*(k20 + k21 - k30) - k20**2 - k20*(k21 + k23 - k30) + k23*k30)*exp(-t*(k20 + k21 + k23))/(k23*(-k01 - k10 + k20 + k21 + k23)) - C4*exp(-t*(k01 + k10))), Eq(Z1(t), C1 - C2*k01*exp(-k30*t)/(k01 + k10 - k30) + C3*(-k01*(k20 + k21 - k30) + k20*k21 + k21**2 + k21*(k23 - k30))*exp(-t*(k20 + k21 + k23))/(k23*(-k01 - k10 + k20 + k21 + k23)) + C4*exp(-t*(k01 + k10))), Eq(Z2(t), -C3*(k20 + k21 + k23 - k30)*exp(-t*(k20 + k21 + k23))/k23), Eq(Z3(t), C2*exp(-k30*t) + C3*exp(-t*(k20 + k21 + k23)))] assert dsolve(eqs1) == sol1 assert checksysodesol(eqs1, sol1) == (True, [0, 0, 0, 0]) x, y, z, u, v, w = symbols('x y z u v w', cls=Function) k2, k3 = symbols('k2 k3') a_b, a_c = symbols('a_b a_c', real=True) eqs2 = [Eq(Derivative(z(t), t), k2*y(t)), Eq(Derivative(x(t), t), k3*y(t)), Eq(Derivative(y(t), t), (-k2 - k3)*y(t))] sol2 = [Eq(z(t), C1 - C2*k2*exp(-t*(k2 + k3))/(k2 + k3)), Eq(x(t), -C2*k3*exp(-t*(k2 + k3))/(k2 + k3) + C3), Eq(y(t), C2*exp(-t*(k2 + k3)))] assert dsolve(eqs2) == sol2 assert checksysodesol(eqs2, sol2) == (True, [0, 0, 0]) eqs3 = [4*u(t) - v(t) - 2*w(t) + Derivative(u(t), t), 2*u(t) + v(t) - 2*w(t) + Derivative(v(t), t), 5*u(t) + v(t) - 3*w(t) + Derivative(w(t), t)] sol3 = [Eq(u(t), C3*exp(-2*t) + (C1/2 + sqrt(3)*C2/6)*cos(sqrt(3)*t) + sin(sqrt(3)*t)*(sqrt(3)*C1/6 + C2*Rational(-1, 2))), Eq(v(t), (C1/2 + sqrt(3)*C2/6)*cos(sqrt(3)*t) + sin(sqrt(3)*t)*(sqrt(3)*C1/6 + C2*Rational(-1, 2))), Eq(w(t), C1*cos(sqrt(3)*t) - C2*sin(sqrt(3)*t) + C3*exp(-2*t))] assert dsolve(eqs3) == sol3 assert checksysodesol(eqs3, sol3) == (True, [0, 0, 0]) eqs4 = [Eq(Derivative(x(t), t), w(t)*Rational(-2, 9) + 2*x(t) + y(t) + z(t)*Rational(-8, 9)), Eq(Derivative(y(t), t), w(t)*Rational(4, 9) + 2*y(t) + z(t)*Rational(16, 9)), Eq(Derivative(z(t), t), w(t)*Rational(-2, 9) + z(t)*Rational(37, 9)), Eq(Derivative(w(t), t), w(t)*Rational(44, 9) + z(t)*Rational(-4, 9))] sol4 = [Eq(x(t), C1*exp(2*t) + C2*t*exp(2*t)), Eq(y(t), C2*exp(2*t) + 2*C3*exp(4*t)), Eq(z(t), 2*C3*exp(4*t) + C4*exp(5*t)*Rational(-1, 4)), Eq(w(t), C3*exp(4*t) + C4*exp(5*t))] assert dsolve(eqs4) == sol4 assert checksysodesol(eqs4, sol4) == (True, [0, 0, 0, 0]) # Regression test case for issue #15574 # https://github.com/sympy/sympy/issues/15574 eq5 = [Eq(x(t).diff(t), x(t)), Eq(y(t).diff(t), y(t)), Eq(z(t).diff(t), z(t)), Eq(w(t).diff(t), w(t))] sol5 = [Eq(x(t), C1*exp(t)), Eq(y(t), C2*exp(t)), Eq(z(t), C3*exp(t)), Eq(w(t), C4*exp(t))] assert dsolve(eq5) == sol5 assert checksysodesol(eq5, sol5) == (True, [0, 0, 0, 0]) eqs6 = [Eq(Derivative(x(t), t), x(t) + y(t)), Eq(Derivative(y(t), t), y(t) + z(t)), Eq(Derivative(z(t), t), w(t)*Rational(-1, 8) + z(t)), Eq(Derivative(w(t), t), w(t)/2 + z(t)/2)] sol6 = [Eq(x(t), C1*exp(t) + C2*t*exp(t) + 4*C4*t*exp(t*Rational(3, 4)) + (4*C3 + 48*C4)*exp(t*Rational(3, 4))), Eq(y(t), C2*exp(t) - C4*t*exp(t*Rational(3, 4)) - (C3 + 8*C4)*exp(t*Rational(3, 4))), Eq(z(t), C4*t*exp(t*Rational(3, 4))/4 + (C3/4 + C4)*exp(t*Rational(3, 4))), Eq(w(t), C3*exp(t*Rational(3, 4))/2 + C4*t*exp(t*Rational(3, 4))/2)] assert dsolve(eqs6) == sol6 assert checksysodesol(eqs6, sol6) == (True, [0, 0, 0, 0]) # Regression test case for issue #15574 # https://github.com/sympy/sympy/issues/15574 eq7 = [Eq(Derivative(x(t), t), x(t)), Eq(Derivative(y(t), t), y(t)), Eq(Derivative(z(t), t), z(t)), Eq(Derivative(w(t), t), w(t)), Eq(Derivative(u(t), t), u(t))] sol7 = [Eq(x(t), C1*exp(t)), Eq(y(t), C2*exp(t)), Eq(z(t), C3*exp(t)), Eq(w(t), C4*exp(t)), Eq(u(t), C5*exp(t))] assert dsolve(eq7) == sol7 assert checksysodesol(eq7, sol7) == (True, [0, 0, 0, 0, 0]) eqs8 = [Eq(Derivative(x(t), t), 2*x(t) + y(t)), Eq(Derivative(y(t), t), 2*y(t)), Eq(Derivative(z(t), t), 4*z(t)), Eq(Derivative(w(t), t), u(t) + 5*w(t)), Eq(Derivative(u(t), t), 5*u(t))] sol8 = [Eq(x(t), C1*exp(2*t) + C2*t*exp(2*t)), Eq(y(t), C2*exp(2*t)), Eq(z(t), C3*exp(4*t)), Eq(w(t), C4*exp(5*t) + C5*t*exp(5*t)), Eq(u(t), C5*exp(5*t))] assert dsolve(eqs8) == sol8 assert checksysodesol(eqs8, sol8) == (True, [0, 0, 0, 0, 0]) # Regression test case for issue #15574 # https://github.com/sympy/sympy/issues/15574 eq9 = [Eq(Derivative(x(t), t), x(t)), Eq(Derivative(y(t), t), y(t)), Eq(Derivative(z(t), t), z(t))] sol9 = [Eq(x(t), C1*exp(t)), Eq(y(t), C2*exp(t)), Eq(z(t), C3*exp(t))] assert dsolve(eq9) == sol9 assert checksysodesol(eq9, sol9) == (True, [0, 0, 0]) # Regression test case for issue #15407 # https://github.com/sympy/sympy/issues/15407 eqs10 = [Eq(Derivative(x(t), t), (-a_b - a_c)*x(t)), Eq(Derivative(y(t), t), a_b*y(t)), Eq(Derivative(z(t), t), a_c*x(t))] sol10 = [Eq(x(t), -C1*(a_b + a_c)*exp(-t*(a_b + a_c))/a_c), Eq(y(t), C2*exp(a_b*t)), Eq(z(t), C1*exp(-t*(a_b + a_c)) + C3)] assert dsolve(eqs10) == sol10 assert checksysodesol(eqs10, sol10) == (True, [0, 0, 0]) # Regression test case for issue #14312 # https://github.com/sympy/sympy/issues/14312 eqs11 = [Eq(Derivative(x(t), t), k3*y(t)), Eq(Derivative(y(t), t), (-k2 - k3)*y(t)), Eq(Derivative(z(t), t), k2*y(t))] sol11 = [Eq(x(t), C1 + C2*k3*exp(-t*(k2 + k3))/k2), Eq(y(t), -C2*(k2 + k3)*exp(-t*(k2 + k3))/k2), Eq(z(t), C2*exp(-t*(k2 + k3)) + C3)] assert dsolve(eqs11) == sol11 assert checksysodesol(eqs11, sol11) == (True, [0, 0, 0]) # Regression test case for issue #14312 # https://github.com/sympy/sympy/issues/14312 eqs12 = [Eq(Derivative(z(t), t), k2*y(t)), Eq(Derivative(x(t), t), k3*y(t)), Eq(Derivative(y(t), t), (-k2 - k3)*y(t))] sol12 = [Eq(z(t), C1 - C2*k2*exp(-t*(k2 + k3))/(k2 + k3)), Eq(x(t), -C2*k3*exp(-t*(k2 + k3))/(k2 + k3) + C3), Eq(y(t), C2*exp(-t*(k2 + k3)))] assert dsolve(eqs12) == sol12 assert checksysodesol(eqs12, sol12) == (True, [0, 0, 0]) f, g, h = symbols('f, g, h', cls=Function) a, b, c = symbols('a, b, c') # Regression test case for issue #15474 # https://github.com/sympy/sympy/issues/15474 eqs13 = [Eq(Derivative(f(t), t), 2*f(t) + g(t)), Eq(Derivative(g(t), t), a*f(t))] sol13 = [Eq(f(t), C1*exp(t*(sqrt(a + 1) + 1))/(sqrt(a + 1) - 1) - C2*exp(-t*(sqrt(a + 1) - 1))/(sqrt(a + 1) + 1)), Eq(g(t), C1*exp(t*(sqrt(a + 1) + 1)) + C2*exp(-t*(sqrt(a + 1) - 1)))] assert dsolve(eqs13) == sol13 assert checksysodesol(eqs13, sol13) == (True, [0, 0]) eqs14 = [Eq(Derivative(f(t), t), 2*g(t) - 3*h(t)), Eq(Derivative(g(t), t), -2*f(t) + 4*h(t)), Eq(Derivative(h(t), t), 3*f(t) - 4*g(t))] sol14 = [Eq(f(t), 2*C1 - sin(sqrt(29)*t)*(sqrt(29)*C2*Rational(3, 25) + C3*Rational(-8, 25)) - cos(sqrt(29)*t)*(C2*Rational(8, 25) + sqrt(29)*C3*Rational(3, 25))), Eq(g(t), C1*Rational(3, 2) + sin(sqrt(29)*t)*(sqrt(29)*C2*Rational(4, 25) + C3*Rational(6, 25)) - cos(sqrt(29)*t)*(C2*Rational(6, 25) + sqrt(29)*C3*Rational(-4, 25))), Eq(h(t), C1 + C2*cos(sqrt(29)*t) - C3*sin(sqrt(29)*t))] assert dsolve(eqs14) == sol14 assert checksysodesol(eqs14, sol14) == (True, [0, 0, 0]) eqs15 = [Eq(2*Derivative(f(t), t), 12*g(t) - 12*h(t)), Eq(3*Derivative(g(t), t), -8*f(t) + 8*h(t)), Eq(4*Derivative(h(t), t), 6*f(t) - 6*g(t))] sol15 = [Eq(f(t), C1 - sin(sqrt(29)*t)*(sqrt(29)*C2*Rational(6, 13) + C3*Rational(-16, 13)) - cos(sqrt(29)*t)*(C2*Rational(16, 13) + sqrt(29)*C3*Rational(6, 13))), Eq(g(t), C1 + sin(sqrt(29)*t)*(sqrt(29)*C2*Rational(8, 39) + C3*Rational(16, 13)) - cos(sqrt(29)*t)*(C2*Rational(16, 13) + sqrt(29)*C3*Rational(-8, 39))), Eq(h(t), C1 + C2*cos(sqrt(29)*t) - C3*sin(sqrt(29)*t))] assert dsolve(eqs15) == sol15 assert checksysodesol(eqs15, sol15) == (True, [0, 0, 0]) eq16 = (Eq(diff(x(t), t), 21*x(t)), Eq(diff(y(t), t), 17*x(t) + 3*y(t)), Eq(diff(z(t), t), 5*x(t) + 7*y(t) + 9*z(t))) sol16 = [Eq(x(t), 216*C1*exp(21*t)/209), Eq(y(t), 204*C1*exp(21*t)/209 - 6*C2*exp(3*t)/7), Eq(z(t), C1*exp(21*t) + C2*exp(3*t) + C3*exp(9*t))] assert dsolve(eq16) == sol16 assert checksysodesol(eq16, sol16) == (True, [0, 0, 0]) eqs17 = [Eq(Derivative(x(t), t), 3*y(t) - 11*z(t)), Eq(Derivative(y(t), t), -3*x(t) + 7*z(t)), Eq(Derivative(z(t), t), 11*x(t) - 7*y(t))] sol17 = [Eq(x(t), C1*Rational(7, 3) - sin(sqrt(179)*t)*(sqrt(179)*C2*Rational(11, 170) + C3*Rational(-21, 170)) - cos(sqrt(179)*t)*(C2*Rational(21, 170) + sqrt(179)*C3*Rational(11, 170))), Eq(y(t), C1*Rational(11, 3) + sin(sqrt(179)*t)*(sqrt(179)*C2*Rational(7, 170) + C3*Rational(33, 170)) - cos(sqrt(179)*t)*(C2*Rational(33, 170) + sqrt(179)*C3*Rational(-7, 170))), Eq(z(t), C1 + C2*cos(sqrt(179)*t) - C3*sin(sqrt(179)*t))] assert dsolve(eqs17) == sol17 assert checksysodesol(eqs17, sol17) == (True, [0, 0, 0]) eqs18 = [Eq(3*Derivative(x(t), t), 20*y(t) - 20*z(t)), Eq(4*Derivative(y(t), t), -15*x(t) + 15*z(t)), Eq(5*Derivative(z(t), t), 12*x(t) - 12*y(t))] sol18 = [Eq(x(t), C1 - sin(5*sqrt(2)*t)*(sqrt(2)*C2*Rational(4, 3) - C3) - cos(5*sqrt(2)*t)*(C2 + sqrt(2)*C3*Rational(4, 3))), Eq(y(t), C1 + sin(5*sqrt(2)*t)*(sqrt(2)*C2*Rational(3, 4) + C3) - cos(5*sqrt(2)*t)*(C2 + sqrt(2)*C3*Rational(-3, 4))), Eq(z(t), C1 + C2*cos(5*sqrt(2)*t) - C3*sin(5*sqrt(2)*t))] assert dsolve(eqs18) == sol18 assert checksysodesol(eqs18, sol18) == (True, [0, 0, 0]) eqs19 = [Eq(Derivative(x(t), t), 4*x(t) - z(t)), Eq(Derivative(y(t), t), 2*x(t) + 2*y(t) - z(t)), Eq(Derivative(z(t), t), 3*x(t) + y(t))] sol19 = [Eq(x(t), C2*t**2*exp(2*t)/2 + t*(2*C2 + C3)*exp(2*t) + (C1 + C2 + 2*C3)*exp(2*t)), Eq(y(t), C2*t**2*exp(2*t)/2 + t*(2*C2 + C3)*exp(2*t) + (C1 + 2*C3)*exp(2*t)), Eq(z(t), C2*t**2*exp(2*t) + t*(3*C2 + 2*C3)*exp(2*t) + (2*C1 + 3*C3)*exp(2*t))] assert dsolve(eqs19) == sol19 assert checksysodesol(eqs19, sol19) == (True, [0, 0, 0]) eqs20 = [Eq(Derivative(x(t), t), 4*x(t) - y(t) - 2*z(t)), Eq(Derivative(y(t), t), 2*x(t) + y(t) - 2*z(t)), Eq(Derivative(z(t), t), 5*x(t) - 3*z(t))] sol20 = [Eq(x(t), C1*exp(2*t) - sin(t)*(C2*Rational(3, 5) + C3/5) - cos(t)*(C2/5 + C3*Rational(-3, 5))), Eq(y(t), -sin(t)*(C2*Rational(3, 5) + C3/5) - cos(t)*(C2/5 + C3*Rational(-3, 5))), Eq(z(t), C1*exp(2*t) - C2*sin(t) + C3*cos(t))] assert dsolve(eqs20) == sol20 assert checksysodesol(eqs20, sol20) == (True, [0, 0, 0]) eq21 = (Eq(diff(x(t), t), 9*y(t)), Eq(diff(y(t), t), 12*x(t))) sol21 = [Eq(x(t), -sqrt(3)*C1*exp(-6*sqrt(3)*t)/2 + sqrt(3)*C2*exp(6*sqrt(3)*t)/2), Eq(y(t), C1*exp(-6*sqrt(3)*t) + C2*exp(6*sqrt(3)*t))] assert dsolve(eq21) == sol21 assert checksysodesol(eq21, sol21) == (True, [0, 0]) eqs22 = [Eq(Derivative(x(t), t), 2*x(t) + 4*y(t)), Eq(Derivative(y(t), t), 12*x(t) + 41*y(t))] sol22 = [Eq(x(t), C1*(39 - sqrt(1713))*exp(t*(sqrt(1713) + 43)/2)*Rational(-1, 24) + C2*(39 + sqrt(1713))*exp(t*(43 - sqrt(1713))/2)*Rational(-1, 24)), Eq(y(t), C1*exp(t*(sqrt(1713) + 43)/2) + C2*exp(t*(43 - sqrt(1713))/2))] assert dsolve(eqs22) == sol22 assert checksysodesol(eqs22, sol22) == (True, [0, 0]) eqs23 = [Eq(Derivative(x(t), t), x(t) + y(t)), Eq(Derivative(y(t), t), -2*x(t) + 2*y(t))] sol23 = [Eq(x(t), (C1/4 + sqrt(7)*C2/4)*cos(sqrt(7)*t/2)*exp(t*Rational(3, 2)) + sin(sqrt(7)*t/2)*(sqrt(7)*C1/4 + C2*Rational(-1, 4))*exp(t*Rational(3, 2))), Eq(y(t), C1*cos(sqrt(7)*t/2)*exp(t*Rational(3, 2)) - C2*sin(sqrt(7)*t/2)*exp(t*Rational(3, 2)))] assert dsolve(eqs23) == sol23 assert checksysodesol(eqs23, sol23) == (True, [0, 0]) # Regression test case for issue #15474 # https://github.com/sympy/sympy/issues/15474 a = Symbol("a", real=True) eq24 = [x(t).diff(t) - a*y(t), y(t).diff(t) + a*x(t)] sol24 = [Eq(x(t), C1*sin(a*t) + C2*cos(a*t)), Eq(y(t), C1*cos(a*t) - C2*sin(a*t))] assert dsolve(eq24) == sol24 assert checksysodesol(eq24, sol24) == (True, [0, 0]) # Regression test case for issue #19150 # https://github.com/sympy/sympy/issues/19150 eqs25 = [Eq(Derivative(f(t), t), 0), Eq(Derivative(g(t), t), (f(t) - 2*g(t) + x(t))/(b*c)), Eq(Derivative(x(t), t), (g(t) - 2*x(t) + y(t))/(b*c)), Eq(Derivative(y(t), t), (h(t) + x(t) - 2*y(t))/(b*c)), Eq(Derivative(h(t), t), 0)] sol25 = [Eq(f(t), -3*C1 + 4*C2), Eq(g(t), -2*C1 + 3*C2 - C3*exp(-2*t/(b*c)) + C4*exp(-t*(sqrt(2) + 2)/(b*c)) + C5*exp(-t*(2 - sqrt(2))/(b*c))), Eq(x(t), -C1 + 2*C2 - sqrt(2)*C4*exp(-t*(sqrt(2) + 2)/(b*c)) + sqrt(2)*C5*exp(-t*(2 - sqrt(2))/(b*c))), Eq(y(t), C2 + C3*exp(-2*t/(b*c)) + C4*exp(-t*(sqrt(2) + 2)/(b*c)) + C5*exp(-t*(2 - sqrt(2))/(b*c))), Eq(h(t), C1)] assert dsolve(eqs25) == sol25 assert checksysodesol(eqs25, sol25) == (True, [0, 0, 0, 0, 0]) eq26 = [Eq(Derivative(f(t), t), 2*f(t)), Eq(Derivative(g(t), t), 3*f(t) + 7*g(t))] sol26 = [Eq(f(t), -5*C1*exp(2*t)/3), Eq(g(t), C1*exp(2*t) + C2*exp(7*t))] assert dsolve(eq26) == sol26 assert checksysodesol(eq26, sol26) == (True, [0, 0]) eq27 = [Eq(Derivative(f(t), t), -9*I*f(t) - 4*g(t)), Eq(Derivative(g(t), t), -4*I*g(t))] sol27 = [Eq(f(t), 4*I*C1*exp(-4*I*t)/5 + C2*exp(-9*I*t)), Eq(g(t), C1*exp(-4*I*t))] assert dsolve(eq27) == sol27 assert checksysodesol(eq27, sol27) == (True, [0, 0]) eq28 = [Eq(Derivative(f(t), t), -9*I*f(t)), Eq(Derivative(g(t), t), -4*I*g(t))] sol28 = [Eq(f(t), C1*exp(-9*I*t)), Eq(g(t), C2*exp(-4*I*t))] assert dsolve(eq28) == sol28 assert checksysodesol(eq28, sol28) == (True, [0, 0]) eq29 = [Eq(Derivative(f(t), t), 0), Eq(Derivative(g(t), t), 0)] sol29 = [Eq(f(t), C1), Eq(g(t), C2)] assert dsolve(eq29) == sol29 assert checksysodesol(eq29, sol29) == (True, [0, 0]) eq30 = [Eq(Derivative(f(t), t), f(t)), Eq(Derivative(g(t), t), 0)] sol30 = [Eq(f(t), C1*exp(t)), Eq(g(t), C2)] assert dsolve(eq30) == sol30 assert checksysodesol(eq30, sol30) == (True, [0, 0]) eq31 = [Eq(Derivative(f(t), t), g(t)), Eq(Derivative(g(t), t), 0)] sol31 = [Eq(f(t), C1 + C2*t), Eq(g(t), C2)] assert dsolve(eq31) == sol31 assert checksysodesol(eq31, sol31) == (True, [0, 0]) eq32 = [Eq(Derivative(f(t), t), 0), Eq(Derivative(g(t), t), f(t))] sol32 = [Eq(f(t), C1), Eq(g(t), C1*t + C2)] assert dsolve(eq32) == sol32 assert checksysodesol(eq32, sol32) == (True, [0, 0]) eq33 = [Eq(Derivative(f(t), t), 0), Eq(Derivative(g(t), t), g(t))] sol33 = [Eq(f(t), C1), Eq(g(t), C2*exp(t))] assert dsolve(eq33) == sol33 assert checksysodesol(eq33, sol33) == (True, [0, 0]) eq34 = [Eq(Derivative(f(t), t), f(t)), Eq(Derivative(g(t), t), I*g(t))] sol34 = [Eq(f(t), C1*exp(t)), Eq(g(t), C2*exp(I*t))] assert dsolve(eq34) == sol34 assert checksysodesol(eq34, sol34) == (True, [0, 0]) eq35 = [Eq(Derivative(f(t), t), I*f(t)), Eq(Derivative(g(t), t), -I*g(t))] sol35 = [Eq(f(t), C1*exp(I*t)), Eq(g(t), C2*exp(-I*t))] assert dsolve(eq35) == sol35 assert checksysodesol(eq35, sol35) == (True, [0, 0]) eq36 = [Eq(Derivative(f(t), t), I*g(t)), Eq(Derivative(g(t), t), 0)] sol36 = [Eq(f(t), I*C1 + I*C2*t), Eq(g(t), C2)] assert dsolve(eq36) == sol36 assert checksysodesol(eq36, sol36) == (True, [0, 0]) eq37 = [Eq(Derivative(f(t), t), I*g(t)), Eq(Derivative(g(t), t), I*f(t))] sol37 = [Eq(f(t), -C1*exp(-I*t) + C2*exp(I*t)), Eq(g(t), C1*exp(-I*t) + C2*exp(I*t))] assert dsolve(eq37) == sol37 assert checksysodesol(eq37, sol37) == (True, [0, 0]) # Multiple systems eq1 = [Eq(Derivative(f(t), t)**2, g(t)**2), Eq(-f(t) + Derivative(g(t), t), 0)] sol1 = [[Eq(f(t), -C1*sin(t) - C2*cos(t)), Eq(g(t), C1*cos(t) - C2*sin(t))], [Eq(f(t), -C1*exp(-t) + C2*exp(t)), Eq(g(t), C1*exp(-t) + C2*exp(t))]] assert dsolve(eq1) == sol1 for sol in sol1: assert checksysodesol(eq1, sol) == (True, [0, 0]) def test_sysode_linear_neq_order1_type2(): f, g, h, k = symbols('f g h k', cls=Function) x, t, a, b, c, d, y = symbols('x t a b c d y') k1, k2 = symbols('k1 k2') eqs1 = [Eq(Derivative(f(x), x), f(x) + g(x) + 5), Eq(Derivative(g(x), x), -f(x) - g(x) + 7)] sol1 = [Eq(f(x), C1 + C2 + 6*x**2 + x*(C2 + 5)), Eq(g(x), -C1 - 6*x**2 - x*(C2 - 7))] assert dsolve(eqs1) == sol1 assert checksysodesol(eqs1, sol1) == (True, [0, 0]) eqs2 = [Eq(Derivative(f(x), x), f(x) + g(x) + 5), Eq(Derivative(g(x), x), f(x) + g(x) + 7)] sol2 = [Eq(f(x), -C1 + C2*exp(2*x) - x - 3), Eq(g(x), C1 + C2*exp(2*x) + x - 3)] assert dsolve(eqs2) == sol2 assert checksysodesol(eqs2, sol2) == (True, [0, 0]) eqs3 = [Eq(Derivative(f(x), x), f(x) + 5), Eq(Derivative(g(x), x), f(x) + 7)] sol3 = [Eq(f(x), C1*exp(x) - 5), Eq(g(x), C1*exp(x) + C2 + 2*x - 5)] assert dsolve(eqs3) == sol3 assert checksysodesol(eqs3, sol3) == (True, [0, 0]) eqs4 = [Eq(Derivative(f(x), x), f(x) + exp(x)), Eq(Derivative(g(x), x), x*exp(x) + f(x) + g(x))] sol4 = [Eq(f(x), C1*exp(x) + x*exp(x)), Eq(g(x), C1*x*exp(x) + C2*exp(x) + x**2*exp(x))] assert dsolve(eqs4) == sol4 assert checksysodesol(eqs4, sol4) == (True, [0, 0]) eqs5 = [Eq(Derivative(f(x), x), 5*x + f(x) + g(x)), Eq(Derivative(g(x), x), f(x) - g(x))] sol5 = [Eq(f(x), C1*(1 + sqrt(2))*exp(sqrt(2)*x) + C2*(1 - sqrt(2))*exp(-sqrt(2)*x) + x*Rational(-5, 2) + Rational(-5, 2)), Eq(g(x), C1*exp(sqrt(2)*x) + C2*exp(-sqrt(2)*x) + x*Rational(-5, 2))] assert dsolve(eqs5) == sol5 assert checksysodesol(eqs5, sol5) == (True, [0, 0]) eqs6 = [Eq(Derivative(f(x), x), -9*f(x) - 4*g(x)), Eq(Derivative(g(x), x), -4*g(x)), Eq(Derivative(h(x), x), h(x) + exp(x))] sol6 = [Eq(f(x), C1*exp(-4*x)*Rational(-4, 5) + C2*exp(-9*x)), Eq(g(x), C1*exp(-4*x)), Eq(h(x), C3*exp(x) + x*exp(x))] assert dsolve(eqs6) == sol6 assert checksysodesol(eqs6, sol6) == (True, [0, 0, 0]) # Regression test case for issue #8859 # https://github.com/sympy/sympy/issues/8859 eqs7 = [Eq(Derivative(f(t), t), 3*t + f(t)), Eq(Derivative(g(t), t), g(t))] sol7 = [Eq(f(t), C1*exp(t) - 3*t - 3), Eq(g(t), C2*exp(t))] assert dsolve(eqs7) == sol7 assert checksysodesol(eqs7, sol7) == (True, [0, 0]) # Regression test case for issue #8567 # https://github.com/sympy/sympy/issues/8567 eqs8 = [Eq(Derivative(f(t), t), f(t) + 2*g(t)), Eq(Derivative(g(t), t), -2*f(t) + g(t) + 2*exp(t))] sol8 = [Eq(f(t), C1*exp(t)*sin(2*t) + C2*exp(t)*cos(2*t) + exp(t)*cos(2*t)**2 + 2*exp(t)*sin(2*t)*tan(t)/(tan(t)**2 + 1)), Eq(g(t), C1*exp(t)*cos(2*t) - C2*exp(t)*sin(2*t) - exp(t)*sin(2*t)*cos(2*t) + 2*exp(t)*cos(2*t)*tan(t)/(tan(t)**2 + 1))] assert dsolve(eqs8) == sol8 assert checksysodesol(eqs8, sol8) == (True, [0, 0]) # Regression test case for issue #19150 # https://github.com/sympy/sympy/issues/19150 eqs9 = [Eq(Derivative(f(t), t), (c - 2*f(t) + g(t))/(a*b)), Eq(Derivative(g(t), t), (f(t) - 2*g(t) + h(t))/(a*b)), Eq(Derivative(h(t), t), (d + g(t) - 2*h(t))/(a*b))] sol9 = [Eq(f(t), -C1*exp(-2*t/(a*b)) + C2*exp(-t*(sqrt(2) + 2)/(a*b)) + C3*exp(-t*(2 - sqrt(2))/(a*b)) + Mul(Rational(1, 4), 3*c + d, evaluate=False)), Eq(g(t), -sqrt(2)*C2*exp(-t*(sqrt(2) + 2)/(a*b)) + sqrt(2)*C3*exp(-t*(2 - sqrt(2))/(a*b)) + Mul(Rational(1, 2), c + d, evaluate=False)), Eq(h(t), C1*exp(-2*t/(a*b)) + C2*exp(-t*(sqrt(2) + 2)/(a*b)) + C3*exp(-t*(2 - sqrt(2))/(a*b)) + Mul(Rational(1, 4), c + 3*d, evaluate=False))] assert dsolve(eqs9) == sol9 assert checksysodesol(eqs9, sol9) == (True, [0, 0, 0]) # Regression test case for issue #16635 # https://github.com/sympy/sympy/issues/16635 eqs10 = [Eq(Derivative(f(t), t), 15*t + f(t) - g(t) - 10), Eq(Derivative(g(t), t), -15*t + f(t) - g(t) - 5)] sol10 = [Eq(f(t), C1 + C2 + 5*t**3 + 5*t**2 + t*(C2 - 10)), Eq(g(t), C1 + 5*t**3 - 10*t**2 + t*(C2 - 5))] assert dsolve(eqs10) == sol10 assert checksysodesol(eqs10, sol10) == (True, [0, 0]) # Multiple solutions eqs11 = [Eq(Derivative(f(t), t)**2 - 2*Derivative(f(t), t) + 1, 4), Eq(-y*f(t) + Derivative(g(t), t), 0)] sol11 = [[Eq(f(t), C1 - t), Eq(g(t), C1*t*y + C2*y + t**2*y*Rational(-1, 2))], [Eq(f(t), C1 + 3*t), Eq(g(t), C1*t*y + C2*y + t**2*y*Rational(3, 2))]] assert dsolve(eqs11) == sol11 for s11 in sol11: assert checksysodesol(eqs11, s11) == (True, [0, 0]) # test case for issue #19831 # https://github.com/sympy/sympy/issues/19831 n = symbols('n', positive=True) x0 = symbols('x_0') t0 = symbols('t_0') x_0 = symbols('x_0') t_0 = symbols('t_0') t = symbols('t') x = Function('x') y = Function('y') T = symbols('T') eqs12 = [Eq(Derivative(y(t), t), x(t)), Eq(Derivative(x(t), t), n*(y(t) + 1))] sol12 = [Eq(y(t), C1*exp(sqrt(n)*t)*n**Rational(-1, 2) - C2*exp(-sqrt(n)*t)*n**Rational(-1, 2) - 1), Eq(x(t), C1*exp(sqrt(n)*t) + C2*exp(-sqrt(n)*t))] assert dsolve(eqs12) == sol12 assert checksysodesol(eqs12, sol12) == (True, [0, 0]) sol12b = [ Eq(y(t), (T*exp(-sqrt(n)*t_0)/2 + exp(-sqrt(n)*t_0)/2 + x_0*exp(-sqrt(n)*t_0)/(2*sqrt(n)))*exp(sqrt(n)*t) + (T*exp(sqrt(n)*t_0)/2 + exp(sqrt(n)*t_0)/2 - x_0*exp(sqrt(n)*t_0)/(2*sqrt(n)))*exp(-sqrt(n)*t) - 1), Eq(x(t), (T*sqrt(n)*exp(-sqrt(n)*t_0)/2 + sqrt(n)*exp(-sqrt(n)*t_0)/2 + x_0*exp(-sqrt(n)*t_0)/2)*exp(sqrt(n)*t) - (T*sqrt(n)*exp(sqrt(n)*t_0)/2 + sqrt(n)*exp(sqrt(n)*t_0)/2 - x_0*exp(sqrt(n)*t_0)/2)*exp(-sqrt(n)*t)) ] assert dsolve(eqs12, ics={y(t0): T, x(t0): x0}) == sol12b assert checksysodesol(eqs12, sol12b) == (True, [0, 0]) #Test cases added for the issue 19763 #https://github.com/sympy/sympy/issues/19763 eq13 = [Eq(Derivative(f(t), t), f(t) + g(t) + 9), Eq(Derivative(g(t), t), 2*f(t) + 5*g(t) + 23)] sol13 = [Eq(f(t), -C1*(2 + sqrt(6))*exp(t*(3 - sqrt(6)))/2 - C2*(2 - sqrt(6))*exp(t*(sqrt(6) + 3))/2 - Rational(22,3)), Eq(g(t), C1*exp(t*(3 - sqrt(6))) + C2*exp(t*(sqrt(6) + 3)) - Rational(5,3))] assert dsolve(eq13) == sol13 assert checksysodesol(eq13, sol13) == (True, [0, 0]) eq14 = [Eq(Derivative(f(t), t), f(t) + g(t) + 81), Eq(Derivative(g(t), t), -2*f(t) + g(t) + 23)] sol14 = [Eq(f(t), sqrt(2)*C1*exp(t)*sin(sqrt(2)*t)/2 + sqrt(2)*C2*exp(t)*cos(sqrt(2)*t)/2 + sqrt(2)*exp(t)*sin(sqrt(2)*t)*Integral(-23*exp(-t)*sin(sqrt(2)*t)**2/cos(sqrt(2)*t) + 81*sqrt(2)*exp(-t)*sin(sqrt(2)*t) + 23*exp(-t)/cos(sqrt(2)*t), t)/2 + 185*sqrt(2)*sin(sqrt(2)*t)*cos(sqrt(2)*t)/6 - 58*cos(sqrt(2)*t)**2/3), Eq(g(t), C1*exp(t)*cos(sqrt(2)*t) - C2*exp(t)*sin(sqrt(2)*t) + exp(t)*cos(sqrt(2)*t)*Integral(-23*exp(-t)*sin(sqrt(2)*t)**2/cos(sqrt(2)*t) + 81*sqrt(2)*exp(-t)*sin(sqrt(2)*t) + 23*exp(-t)/cos(sqrt(2)*t), t) - 185*sin(sqrt(2)*t)**2/3 + 58*sqrt(2)*sin(sqrt(2)*t)*cos(sqrt(2)*t)/3)] assert dsolve(eq14) == sol14 assert checksysodesol(eq14 , sol14) == (True , [0,0]) eq15 = [Eq(Derivative(f(t), t), f(t) + 2*g(t) + k1), Eq(Derivative(g(t), t), 3*f(t) + 4*g(t) + k2)] sol15 = [Eq(f(t), -C1*(3 - sqrt(33))*exp(t*(5 + sqrt(33))/2)/6 - C2*(3 + sqrt(33))*exp(t*(5 - sqrt(33))/2)/6 + 2*k1 - k2), Eq(g(t), C1*exp(t*(5 + sqrt(33))/2) + C2*exp(t*(5 - sqrt(33))/2) - Mul(Rational(1,2) , 3*k1 - k2 , evaluate = False))] assert dsolve(eq15) == sol15 assert checksysodesol(eq15 , sol15) == (True , [0,0]) eq16 = [Eq(Derivative(f(t), t), k1), Eq(Derivative(g(t), t), k2)] sol16 = [Eq(f(t), C1 + k1*t), Eq(g(t), C2 + k2*t)] assert dsolve(eq16) == sol16 assert checksysodesol(eq16 , sol16) == (True , [0,0]) eq17 = [Eq(Derivative(f(t), t), 0), Eq(Derivative(g(t), t), c*f(t) + k2)] sol17 = [Eq(f(t), C1), Eq(g(t), C2*c + t*(C1*c + k2))] assert dsolve(eq17) == sol17 assert checksysodesol(eq17 , sol17) == (True , [0,0]) eq18 = [Eq(Derivative(f(t), t), k1), Eq(Derivative(g(t), t), f(t) + k2)] sol18 = [Eq(f(t), C1 + k1*t), Eq(g(t), C2 + k1*t**2/2 + t*(C1 + k2))] assert dsolve(eq18) == sol18 assert checksysodesol(eq18 , sol18) == (True , [0,0]) eq19 = [Eq(Derivative(f(t), t), k1), Eq(Derivative(g(t), t), f(t) + 2*g(t) + k2)] sol19 = [Eq(f(t), -2*C1 + k1*t), Eq(g(t), C1 + C2*exp(2*t) - k1*t/2 - Mul(Rational(1,4), k1 + 2*k2 , evaluate = False))] assert dsolve(eq19) == sol19 assert checksysodesol(eq19 , sol19) == (True , [0,0]) eq20 = [Eq(diff(f(t), t), f(t) + k1), Eq(diff(g(t), t), k2)] sol20 = [Eq(f(t), C1*exp(t) - k1), Eq(g(t), C2 + k2*t)] assert dsolve(eq20) == sol20 assert checksysodesol(eq20 , sol20) == (True , [0,0]) eq21 = [Eq(diff(f(t), t), g(t) + k1), Eq(diff(g(t), t), 0)] sol21 = [Eq(f(t), C1 + t*(C2 + k1)), Eq(g(t), C2)] assert dsolve(eq21) == sol21 assert checksysodesol(eq21 , sol21) == (True , [0,0]) eq22 = [Eq(Derivative(f(t), t), f(t) + 2*g(t) + k1), Eq(Derivative(g(t), t), k2)] sol22 = [Eq(f(t), -2*C1 + C2*exp(t) - k1 - 2*k2*t - 2*k2), Eq(g(t), C1 + k2*t)] assert dsolve(eq22) == sol22 assert checksysodesol(eq22 , sol22) == (True , [0,0]) eq23 = [Eq(Derivative(f(t), t), g(t) + k1), Eq(Derivative(g(t), t), 2*g(t) + k2)] sol23 = [Eq(f(t), C1 + C2*exp(2*t)/2 - k2/4 + t*(2*k1 - k2)/2), Eq(g(t), C2*exp(2*t) - k2/2)] assert dsolve(eq23) == sol23 assert checksysodesol(eq23 , sol23) == (True , [0,0]) eq24 = [Eq(Derivative(f(t), t), f(t) + k1), Eq(Derivative(g(t), t), 2*f(t) + k2)] sol24 = [Eq(f(t), C1*exp(t)/2 - k1), Eq(g(t), C1*exp(t) + C2 - 2*k1 - t*(2*k1 - k2))] assert dsolve(eq24) == sol24 assert checksysodesol(eq24 , sol24) == (True , [0,0]) eq25 = [Eq(Derivative(f(t), t), f(t) + 2*g(t) + k1), Eq(Derivative(g(t), t), 3*f(t) + 6*g(t) + k2)] sol25 = [Eq(f(t), -2*C1 + C2*exp(7*t)/3 + 2*t*(3*k1 - k2)/7 - Mul(Rational(1,49), k1 + 2*k2 , evaluate = False)), Eq(g(t), C1 + C2*exp(7*t) - t*(3*k1 - k2)/7 - Mul(Rational(3,49), k1 + 2*k2 , evaluate = False))] assert dsolve(eq25) == sol25 assert checksysodesol(eq25 , sol25) == (True , [0,0]) eq26 = [Eq(Derivative(f(t), t), 2*f(t) - g(t) + k1), Eq(Derivative(g(t), t), 4*f(t) - 2*g(t) + 2*k1)] sol26 = [Eq(f(t), C1 + 2*C2 + t*(2*C1 + k1)), Eq(g(t), 4*C2 + t*(4*C1 + 2*k1))] assert dsolve(eq26) == sol26 assert checksysodesol(eq26 , sol26) == (True , [0,0]) def test_sysode_linear_neq_order1_type3(): f, g, h, k, x0 , y0 = symbols('f g h k x0 y0', cls=Function) x, t, a = symbols('x t a') r = symbols('r', real=True) eqs1 = [Eq(Derivative(f(r), r), r*g(r) + f(r)), Eq(Derivative(g(r), r), -r*f(r) + g(r))] sol1 = [Eq(f(r), C1*exp(r)*sin(r**2/2) + C2*exp(r)*cos(r**2/2)), Eq(g(r), C1*exp(r)*cos(r**2/2) - C2*exp(r)*sin(r**2/2))] assert dsolve(eqs1) == sol1 assert checksysodesol(eqs1, sol1) == (True, [0, 0]) eqs2 = [Eq(Derivative(f(x), x), x**2*g(x) + x*f(x)), Eq(Derivative(g(x), x), 2*x**2*f(x) + (3*x**2 + x)*g(x))] sol2 = [Eq(f(x), (sqrt(17)*C1/17 + C2*(17 - 3*sqrt(17))/34)*exp(x**3*(3 + sqrt(17))/6 + x**2/2) - exp(x**3*(3 - sqrt(17))/6 + x**2/2)*(sqrt(17)*C1/17 + C2*(3*sqrt(17) + 17)*Rational(-1, 34))), Eq(g(x), exp(x**3*(3 - sqrt(17))/6 + x**2/2)*(C1*(17 - 3*sqrt(17))/34 + sqrt(17)*C2*Rational(-2, 17)) + exp(x**3*(3 + sqrt(17))/6 + x**2/2)*(C1*(3*sqrt(17) + 17)/34 + sqrt(17)*C2*Rational(2, 17)))] assert dsolve(eqs2) == sol2 assert checksysodesol(eqs2, sol2) == (True, [0, 0]) eqs3 = [Eq(f(x).diff(x), x*f(x) + g(x)), Eq(g(x).diff(x), -f(x) + x*g(x))] sol3 = [Eq(f(x), (C1/2 + I*C2/2)*exp(x**2/2 - I*x) + exp(x**2/2 + I*x)*(C1/2 + I*C2*Rational(-1, 2))), Eq(g(x), (I*C1/2 + C2/2)*exp(x**2/2 + I*x) - exp(x**2/2 - I*x)*(I*C1/2 + C2*Rational(-1, 2)))] assert dsolve(eqs3) == sol3 assert checksysodesol(eqs3, sol3) == (True, [0, 0]) eqs4 = [Eq(f(x).diff(x), x*(f(x) + g(x) + h(x))), Eq(g(x).diff(x), x*(f(x) + g(x) + h(x))), Eq(h(x).diff(x), x*(f(x) + g(x) + h(x)))] sol4 = [Eq(f(x), -C1/3 - C2/3 + 2*C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2)), Eq(g(x), 2*C1/3 - C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2)), Eq(h(x), -C1/3 + 2*C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2))] assert dsolve(eqs4) == sol4 assert checksysodesol(eqs4, sol4) == (True, [0, 0, 0]) eqs5 = [Eq(f(x).diff(x), x**2*(f(x) + g(x) + h(x))), Eq(g(x).diff(x), x**2*(f(x) + g(x) + h(x))), Eq(h(x).diff(x), x**2*(f(x) + g(x) + h(x)))] sol5 = [Eq(f(x), -C1/3 - C2/3 + 2*C3/3 + (C1/3 + C2/3 + C3/3)*exp(x**3)), Eq(g(x), 2*C1/3 - C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(x**3)), Eq(h(x), -C1/3 + 2*C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(x**3))] assert dsolve(eqs5) == sol5 assert checksysodesol(eqs5, sol5) == (True, [0, 0, 0]) eqs6 = [Eq(Derivative(f(x), x), x*(f(x) + g(x) + h(x) + k(x))), Eq(Derivative(g(x), x), x*(f(x) + g(x) + h(x) + k(x))), Eq(Derivative(h(x), x), x*(f(x) + g(x) + h(x) + k(x))), Eq(Derivative(k(x), x), x*(f(x) + g(x) + h(x) + k(x)))] sol6 = [Eq(f(x), -C1/4 - C2/4 - C3/4 + 3*C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2)), Eq(g(x), 3*C1/4 - C2/4 - C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2)), Eq(h(x), -C1/4 + 3*C2/4 - C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2)), Eq(k(x), -C1/4 - C2/4 + 3*C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2))] assert dsolve(eqs6) == sol6 assert checksysodesol(eqs6, sol6) == (True, [0, 0, 0, 0]) y = symbols("y", real=True) eqs7 = [Eq(Derivative(f(y), y), y*f(y) + g(y)), Eq(Derivative(g(y), y), y*g(y) - f(y))] sol7 = [Eq(f(y), C1*exp(y**2/2)*sin(y) + C2*exp(y**2/2)*cos(y)), Eq(g(y), C1*exp(y**2/2)*cos(y) - C2*exp(y**2/2)*sin(y))] assert dsolve(eqs7) == sol7 assert checksysodesol(eqs7, sol7) == (True, [0, 0]) #Test cases added for the issue 19763 #https://github.com/sympy/sympy/issues/19763 eqs8 = [Eq(Derivative(f(t), t), 5*t*f(t) + 2*h(t)), Eq(Derivative(h(t), t), 2*f(t) + 5*t*h(t))] sol8 = [Eq(f(t), Mul(-1, (C1/2 - C2/2), evaluate = False)*exp(5*t**2/2 - 2*t) + (C1/2 + C2/2)*exp(5*t**2/2 + 2*t)), Eq(h(t), (C1/2 - C2/2)*exp(5*t**2/2 - 2*t) + (C1/2 + C2/2)*exp(5*t**2/2 + 2*t))] assert dsolve(eqs8) == sol8 assert checksysodesol(eqs8, sol8) == (True, [0, 0]) eqs9 = [Eq(diff(f(t), t), 5*t*f(t) + t**2*g(t)), Eq(diff(g(t), t), -t**2*f(t) + 5*t*g(t))] sol9 = [Eq(f(t), (C1/2 - I*C2/2)*exp(I*t**3/3 + 5*t**2/2) + (C1/2 + I*C2/2)*exp(-I*t**3/3 + 5*t**2/2)), Eq(g(t), Mul(-1, (I*C1/2 - C2/2) , evaluate = False)*exp(-I*t**3/3 + 5*t**2/2) + (I*C1/2 + C2/2)*exp(I*t**3/3 + 5*t**2/2))] assert dsolve(eqs9) == sol9 assert checksysodesol(eqs9 , sol9) == (True , [0,0]) eqs10 = [Eq(diff(f(t), t), t**2*g(t) + 5*t*f(t)), Eq(diff(g(t), t), -t**2*f(t) + (9*t**2 + 5*t)*g(t))] sol10 = [Eq(f(t), (C1*(77 - 9*sqrt(77))/154 + sqrt(77)*C2/77)*exp(t**3*(sqrt(77) + 9)/6 + 5*t**2/2) + (C1*(77 + 9*sqrt(77))/154 - sqrt(77)*C2/77)*exp(t**3*(9 - sqrt(77))/6 + 5*t**2/2)), Eq(g(t), (sqrt(77)*C1/77 + C2*(77 - 9*sqrt(77))/154)*exp(t**3*(9 - sqrt(77))/6 + 5*t**2/2) - (sqrt(77)*C1/77 - C2*(77 + 9*sqrt(77))/154)*exp(t**3*(sqrt(77) + 9)/6 + 5*t**2/2))] assert dsolve(eqs10) == sol10 assert checksysodesol(eqs10 , sol10) == (True , [0,0]) eqs11 = [Eq(diff(f(t), t), 5*t*f(t) + t**2*g(t)), Eq(diff(g(t), t), (1-t**2)*f(t) + (5*t + 9*t**2)*g(t))] sol11 = [Eq(f(t), C1*x0(t) + C2*x0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t)), Eq(g(t), C1*y0(t) + C2*(y0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t) + exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)))] assert dsolve(eqs11) == sol11 @slow def test_sysode_linear_neq_order1_type4(): f, g, h, k = symbols('f g h k', cls=Function) x, t, a = symbols('x t a') r = symbols('r', real=True) eqs1 = [Eq(diff(f(r), r), f(r) + r*g(r) + r**2), Eq(diff(g(r), r), -r*f(r) + g(r) + r)] sol1 = [Eq(f(r), C1*exp(r)*sin(r**2/2) + C2*exp(r)*cos(r**2/2) + exp(r)*sin(r**2/2)*Integral(r**2*exp(-r)*sin(r**2/2) + r*exp(-r)*cos(r**2/2), r) + exp(r)*cos(r**2/2)*Integral(r**2*exp(-r)*cos(r**2/2) - r*exp(-r)*sin(r**2/2), r)), Eq(g(r), C1*exp(r)*cos(r**2/2) - C2*exp(r)*sin(r**2/2) - exp(r)*sin(r**2/2)*Integral(r**2*exp(-r)*cos(r**2/2) - r*exp(-r)*sin(r**2/2), r) + exp(r)*cos(r**2/2)*Integral(r**2*exp(-r)*sin(r**2/2) + r*exp(-r)*cos(r**2/2), r))] assert dsolve(eqs1) == sol1 assert checksysodesol(eqs1, sol1) == (True, [0, 0]) eqs2 = [Eq(diff(f(r), r), f(r) + r*g(r) + r), Eq(diff(g(r), r), -r*f(r) + g(r) + log(r))] sol2 = [Eq(f(r), C1*exp(r)*sin(r**2/2) + C2*exp(r)*cos(r**2/2) + exp(r)*sin(r**2/2)*Integral(r*exp(-r)*sin(r**2/2) + exp(-r)*log(r)*cos(r**2/2), r) + exp(r)*cos(r**2/2)*Integral(r*exp(-r)*cos(r**2/2) - exp(-r)*log(r)*sin( r**2/2), r)), Eq(g(r), C1*exp(r)*cos(r**2/2) - C2*exp(r)*sin(r**2/2) - exp(r)*sin(r**2/2)*Integral(r*exp(-r)*cos(r**2/2) - exp(-r)*log(r)*sin(r**2/2), r) + exp(r)*cos(r**2/2)*Integral(r*exp(-r)*sin(r**2/2) + exp(-r)*log(r)*cos( r**2/2), r))] # XXX: dsolve hangs for this in integration assert dsolve_system(eqs2, simplify=False, doit=False) == [sol2] assert checksysodesol(eqs2, sol2) == (True, [0, 0]) eqs3 = [Eq(Derivative(f(x), x), x*(f(x) + g(x) + h(x)) + x), Eq(Derivative(g(x), x), x*(f(x) + g(x) + h(x)) + x), Eq(Derivative(h(x), x), x*(f(x) + g(x) + h(x)) + 1)] sol3 = [Eq(f(x), C1*Rational(-1, 3) + C2*Rational(-1, 3) + C3*Rational(2, 3) + x**2/6 + x*Rational(-1, 3) + (C1/3 + C2/3 + C3/3)*exp(x**2*Rational(3, 2)) + sqrt(6)*sqrt(pi)*erf(sqrt(6)*x/2)*exp(x**2*Rational(3, 2))/18 + Rational(-2, 9)), Eq(g(x), C1*Rational(2, 3) + C2*Rational(-1, 3) + C3*Rational(-1, 3) + x**2/6 + x*Rational(-1, 3) + (C1/3 + C2/3 + C3/3)*exp(x**2*Rational(3, 2)) + sqrt(6)*sqrt(pi)*erf(sqrt(6)*x/2)*exp(x**2*Rational(3, 2))/18 + Rational(-2, 9)), Eq(h(x), C1*Rational(-1, 3) + C2*Rational(2, 3) + C3*Rational(-1, 3) + x**2*Rational(-1, 3) + x*Rational(2, 3) + (C1/3 + C2/3 + C3/3)*exp(x**2*Rational(3, 2)) + sqrt(6)*sqrt(pi)*erf(sqrt(6)*x/2)*exp(x**2*Rational(3, 2))/18 + Rational(-2, 9))] assert dsolve(eqs3) == sol3 assert checksysodesol(eqs3, sol3) == (True, [0, 0, 0]) eqs4 = [Eq(Derivative(f(x), x), x*(f(x) + g(x) + h(x)) + sin(x)), Eq(Derivative(g(x), x), x*(f(x) + g(x) + h(x)) + sin(x)), Eq(Derivative(h(x), x), x*(f(x) + g(x) + h(x)) + sin(x))] sol4 = [Eq(f(x), C1*Rational(-1, 3) + C2*Rational(-1, 3) + C3*Rational(2, 3) + (C1/3 + C2/3 + C3/3)*exp(x**2*Rational(3, 2)) + Integral(sin(x)*exp(x**2*Rational(-3, 2)), x)*exp(x**2*Rational(3, 2))), Eq(g(x), C1*Rational(2, 3) + C2*Rational(-1, 3) + C3*Rational(-1, 3) + (C1/3 + C2/3 + C3/3)*exp(x**2*Rational(3, 2)) + Integral(sin(x)*exp(x**2*Rational(-3, 2)), x)*exp(x**2*Rational(3, 2))), Eq(h(x), C1*Rational(-1, 3) + C2*Rational(2, 3) + C3*Rational(-1, 3) + (C1/3 + C2/3 + C3/3)*exp(x**2*Rational(3, 2)) + Integral(sin(x)*exp(x**2*Rational(-3, 2)), x)*exp(x**2*Rational(3, 2)))] assert dsolve(eqs4) == sol4 assert checksysodesol(eqs4, sol4) == (True, [0, 0, 0]) eqs5 = [Eq(Derivative(f(x), x), x*(f(x) + g(x) + h(x) + k(x) + 1)), Eq(Derivative(g(x), x), x*(f(x) + g(x) + h(x) + k(x) + 1)), Eq(Derivative(h(x), x), x*(f(x) + g(x) + h(x) + k(x) + 1)), Eq(Derivative(k(x), x), x*(f(x) + g(x) + h(x) + k(x) + 1))] sol5 = [Eq(f(x), C1*Rational(-1, 4) + C2*Rational(-1, 4) + C3*Rational(-1, 4) + C4*Rational(3, 4) + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2) + Rational(-1, 4)), Eq(g(x), C1*Rational(3, 4) + C2*Rational(-1, 4) + C3*Rational(-1, 4) + C4*Rational(-1, 4) + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2) + Rational(-1, 4)), Eq(h(x), C1*Rational(-1, 4) + C2*Rational(3, 4) + C3*Rational(-1, 4) + C4*Rational(-1, 4) + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2) + Rational(-1, 4)), Eq(k(x), C1*Rational(-1, 4) + C2*Rational(-1, 4) + C3*Rational(3, 4) + C4*Rational(-1, 4) + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2) + Rational(-1, 4))] assert dsolve(eqs5) == sol5 assert checksysodesol(eqs5, sol5) == (True, [0, 0, 0, 0]) eqs6 = [Eq(Derivative(f(x), x), x**2*(f(x) + g(x) + h(x) + k(x) + 1)), Eq(Derivative(g(x), x), x**2*(f(x) + g(x) + h(x) + k(x) + 1)), Eq(Derivative(h(x), x), x**2*(f(x) + g(x) + h(x) + k(x) + 1)), Eq(Derivative(k(x), x), x**2*(f(x) + g(x) + h(x) + k(x) + 1))] sol6 = [Eq(f(x), C1*Rational(-1, 4) + C2*Rational(-1, 4) + C3*Rational(-1, 4) + C4*Rational(3, 4) + (C1/4 + C2/4 + C3/4 + C4/4)*exp(x**3*Rational(4, 3)) + Rational(-1, 4)), Eq(g(x), C1*Rational(3, 4) + C2*Rational(-1, 4) + C3*Rational(-1, 4) + C4*Rational(-1, 4) + (C1/4 + C2/4 + C3/4 + C4/4)*exp(x**3*Rational(4, 3)) + Rational(-1, 4)), Eq(h(x), C1*Rational(-1, 4) + C2*Rational(3, 4) + C3*Rational(-1, 4) + C4*Rational(-1, 4) + (C1/4 + C2/4 + C3/4 + C4/4)*exp(x**3*Rational(4, 3)) + Rational(-1, 4)), Eq(k(x), C1*Rational(-1, 4) + C2*Rational(-1, 4) + C3*Rational(3, 4) + C4*Rational(-1, 4) + (C1/4 + C2/4 + C3/4 + C4/4)*exp(x**3*Rational(4, 3)) + Rational(-1, 4))] assert dsolve(eqs6) == sol6 assert checksysodesol(eqs6, sol6) == (True, [0, 0, 0, 0]) eqs7 = [Eq(Derivative(f(x), x), (f(x) + g(x) + h(x))*log(x) + sin(x)), Eq(Derivative(g(x), x), (f(x) + g(x) + h(x))*log(x) + sin(x)), Eq(Derivative(h(x), x), (f(x) + g(x) + h(x))*log(x) + sin(x))] sol7 = [Eq(f(x), -C1/3 - C2/3 + 2*C3/3 + (C1/3 + C2/3 + C3/3)*exp(x*(3*log(x) - 3)) + exp(x*(3*log(x) - 3))*Integral(exp(3*x)*exp(-3*x*log(x))*sin(x), x)), Eq(g(x), 2*C1/3 - C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(x*(3*log(x) - 3)) + exp(x*(3*log(x) - 3))*Integral(exp(3*x)*exp(-3*x*log(x))*sin(x), x)), Eq(h(x), -C1/3 + 2*C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(x*(3*log(x) - 3)) + exp(x*(3*log(x) - 3))*Integral(exp(3*x)*exp(-3*x*log(x))*sin(x), x))] with dotprodsimp(True): assert dsolve(eqs7, simplify=False, doit=False) == sol7 assert checksysodesol(eqs7, sol7) == (True, [0, 0, 0]) eqs8 = [Eq(Derivative(f(x), x), (f(x) + g(x) + h(x) + k(x))*log(x) + sin(x)), Eq(Derivative(g(x), x), (f(x) + g(x) + h(x) + k(x))*log(x) + sin(x)), Eq(Derivative(h(x), x), (f(x) + g(x) + h(x) + k(x))*log(x) + sin(x)), Eq(Derivative(k(x), x), (f(x) + g(x) + h(x) + k(x))*log(x) + sin(x))] sol8 = [Eq(f(x), -C1/4 - C2/4 - C3/4 + 3*C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(x*(4*log(x) - 4)) + exp(x*(4*log(x) - 4))*Integral(exp(4*x)*exp(-4*x*log(x))*sin(x), x)), Eq(g(x), 3*C1/4 - C2/4 - C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(x*(4*log(x) - 4)) + exp(x*(4*log(x) - 4))*Integral(exp(4*x)*exp(-4*x*log(x))*sin(x), x)), Eq(h(x), -C1/4 + 3*C2/4 - C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(x*(4*log(x) - 4)) + exp(x*(4*log(x) - 4))*Integral(exp(4*x)*exp(-4*x*log(x))*sin(x), x)), Eq(k(x), -C1/4 - C2/4 + 3*C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(x*(4*log(x) - 4)) + exp(x*(4*log(x) - 4))*Integral(exp(4*x)*exp(-4*x*log(x))*sin(x), x))] with dotprodsimp(True): assert dsolve(eqs8) == sol8 assert checksysodesol(eqs8, sol8) == (True, [0, 0, 0, 0]) def test_sysode_linear_neq_order1_type5_type6(): f, g = symbols("f g", cls=Function) x, x_ = symbols("x x_") # Type 5 eqs1 = [Eq(Derivative(f(x), x), (2*f(x) + g(x))/x), Eq(Derivative(g(x), x), (f(x) + 2*g(x))/x)] sol1 = [Eq(f(x), -C1*x + C2*x**3), Eq(g(x), C1*x + C2*x**3)] assert dsolve(eqs1) == sol1 assert checksysodesol(eqs1, sol1) == (True, [0, 0]) # Type 6 eqs2 = [Eq(Derivative(f(x), x), (2*f(x) + g(x) + 1)/x), Eq(Derivative(g(x), x), (x + f(x) + 2*g(x))/x)] sol2 = [Eq(f(x), C2*x**3 - x*(C1 + Rational(1, 4)) + x*log(x)*Rational(-1, 2) + Rational(-2, 3)), Eq(g(x), C2*x**3 + x*log(x)/2 + x*(C1 + Rational(-1, 4)) + Rational(1, 3))] assert dsolve(eqs2) == sol2 assert checksysodesol(eqs2, sol2) == (True, [0, 0]) def test_higher_order_to_first_order(): f, g = symbols('f g', cls=Function) x = symbols('x') eqs1 = [Eq(Derivative(f(x), (x, 2)), 2*f(x) + g(x)), Eq(Derivative(g(x), (x, 2)), -f(x))] sol1 = [Eq(f(x), -C2*x*exp(-x) + C3*x*exp(x) - (C1 - C2)*exp(-x) + (C3 + C4)*exp(x)), Eq(g(x), C2*x*exp(-x) - C3*x*exp(x) + (C1 + C2)*exp(-x) + (C3 - C4)*exp(x))] assert dsolve(eqs1) == sol1 assert checksysodesol(eqs1, sol1) == (True, [0, 0]) eqs2 = [Eq(f(x).diff(x, 2), 0), Eq(g(x).diff(x, 2), f(x))] sol2 = [Eq(f(x), C1 + C2*x), Eq(g(x), C1*x**2/2 + C2*x**3/6 + C3 + C4*x)] assert dsolve(eqs2) == sol2 assert checksysodesol(eqs2, sol2) == (True, [0, 0]) eqs3 = [Eq(Derivative(f(x), (x, 2)), 2*f(x)), Eq(Derivative(g(x), (x, 2)), -f(x) + 2*g(x))] sol3 = [Eq(f(x), 4*C1*exp(-sqrt(2)*x) + 4*C2*exp(sqrt(2)*x)), Eq(g(x), sqrt(2)*C1*x*exp(-sqrt(2)*x) - sqrt(2)*C2*x*exp(sqrt(2)*x) + (C1 + sqrt(2)*C4)*exp(-sqrt(2)*x) + (C2 - sqrt(2)*C3)*exp(sqrt(2)*x))] assert dsolve(eqs3) == sol3 assert checksysodesol(eqs3, sol3) == (True, [0, 0]) eqs4 = [Eq(Derivative(f(x), (x, 2)), 2*f(x) + g(x)), Eq(Derivative(g(x), (x, 2)), 2*g(x))] sol4 = [Eq(f(x), C1*x*exp(sqrt(2)*x)/4 + C3*x*exp(-sqrt(2)*x)/4 + (C2/4 + sqrt(2)*C3/8)*exp(-sqrt(2)*x) - exp(sqrt(2)*x)*(sqrt(2)*C1/8 + C4*Rational(-1, 4))), Eq(g(x), sqrt(2)*C1*exp(sqrt(2)*x)/2 + sqrt(2)*C3*exp(-sqrt(2)*x)*Rational(-1, 2))] assert dsolve(eqs4) == sol4 assert checksysodesol(eqs4, sol4) == (True, [0, 0]) eqs5 = [Eq(f(x).diff(x, 2), f(x)), Eq(g(x).diff(x, 2), f(x))] sol5 = [Eq(f(x), -C1*exp(-x) + C2*exp(x)), Eq(g(x), -C1*exp(-x) + C2*exp(x) + C3 + C4*x)] assert dsolve(eqs5) == sol5 assert checksysodesol(eqs5, sol5) == (True, [0, 0]) eqs6 = [Eq(Derivative(f(x), (x, 2)), f(x) + g(x)), Eq(Derivative(g(x), (x, 2)), -f(x) - g(x))] sol6 = [Eq(f(x), C1 + C2*x**2/2 + C2 + C4*x**3/6 + x*(C3 + C4)), Eq(g(x), -C1 + C2*x**2*Rational(-1, 2) - C3*x + C4*x**3*Rational(-1, 6))] assert dsolve(eqs6) == sol6 assert checksysodesol(eqs6, sol6) == (True, [0, 0]) eqs7 = [Eq(Derivative(f(x), (x, 2)), f(x) + g(x) + 1), Eq(Derivative(g(x), (x, 2)), f(x) + g(x) + 1)] sol7 = [Eq(f(x), -C1 - C2*x + sqrt(2)*C3*exp(sqrt(2)*x)/2 + sqrt(2)*C4*exp(-sqrt(2)*x)*Rational(-1, 2) + Rational(-1, 2)), Eq(g(x), C1 + C2*x + sqrt(2)*C3*exp(sqrt(2)*x)/2 + sqrt(2)*C4*exp(-sqrt(2)*x)*Rational(-1, 2) + Rational(-1, 2))] assert dsolve(eqs7) == sol7 assert checksysodesol(eqs7, sol7) == (True, [0, 0]) eqs8 = [Eq(Derivative(f(x), (x, 2)), f(x) + g(x) + 1), Eq(Derivative(g(x), (x, 2)), -f(x) - g(x) + 1)] sol8 = [Eq(f(x), C1 + C2 + C4*x**3/6 + x**4/12 + x**2*(C2/2 + Rational(1, 2)) + x*(C3 + C4)), Eq(g(x), -C1 - C3*x + C4*x**3*Rational(-1, 6) + x**4*Rational(-1, 12) - x**2*(C2/2 + Rational(-1, 2)))] assert dsolve(eqs8) == sol8 assert checksysodesol(eqs8, sol8) == (True, [0, 0]) x, y = symbols('x, y', cls=Function) t, l = symbols('t, l') eqs10 = [Eq(Derivative(x(t), (t, 2)), 5*x(t) + 43*y(t)), Eq(Derivative(y(t), (t, 2)), x(t) + 9*y(t))] sol10 = [Eq(x(t), C1*(61 - 9*sqrt(47))*sqrt(sqrt(47) + 7)*exp(-t*sqrt(sqrt(47) + 7))/2 + C2*sqrt(7 - sqrt(47))*(61 + 9*sqrt(47))*exp(-t*sqrt(7 - sqrt(47)))/2 + C3*(61 - 9*sqrt(47))*sqrt(sqrt(47) + 7)*exp(t*sqrt(sqrt(47) + 7))*Rational(-1, 2) + C4*sqrt(7 - sqrt(47))*(61 + 9*sqrt(47))*exp(t*sqrt(7 - sqrt(47)))*Rational(-1, 2)), Eq(y(t), C1*(7 - sqrt(47))*sqrt(sqrt(47) + 7)*exp(-t*sqrt(sqrt(47) + 7))*Rational(-1, 2) + C2*sqrt(7 - sqrt(47))*(sqrt(47) + 7)*exp(-t*sqrt(7 - sqrt(47)))*Rational(-1, 2) + C3*(7 - sqrt(47))*sqrt(sqrt(47) + 7)*exp(t*sqrt(sqrt(47) + 7))/2 + C4*sqrt(7 - sqrt(47))*(sqrt(47) + 7)*exp(t*sqrt(7 - sqrt(47)))/2)] assert dsolve(eqs10) == sol10 assert checksysodesol(eqs10, sol10) == (True, [0, 0]) eqs11 = [Eq(7*x(t) + Derivative(x(t), (t, 2)) - 9*Derivative(y(t), t), 0), Eq(7*y(t) + 9*Derivative(x(t), t) + Derivative(y(t), (t, 2)), 0)] sol11 = [Eq(y(t), C1*(9 - sqrt(109))*sin(sqrt(2)*t*sqrt(9*sqrt(109) + 95)/2)/14 + C2*(9 - sqrt(109))*cos(sqrt(2)*t*sqrt(9*sqrt(109) + 95)/2)*Rational(-1, 14) + C3*(9 + sqrt(109))*sin(sqrt(2)*t*sqrt(95 - 9*sqrt(109))/2)/14 + C4*(9 + sqrt(109))*cos(sqrt(2)*t*sqrt(95 - 9*sqrt(109))/2)*Rational(-1, 14)), Eq(x(t), C1*(9 - sqrt(109))*cos(sqrt(2)*t*sqrt(9*sqrt(109) + 95)/2)*Rational(-1, 14) + C2*(9 - sqrt(109))*sin(sqrt(2)*t*sqrt(9*sqrt(109) + 95)/2)*Rational(-1, 14) + C3*(9 + sqrt(109))*cos(sqrt(2)*t*sqrt(95 - 9*sqrt(109))/2)/14 + C4*(9 + sqrt(109))*sin(sqrt(2)*t*sqrt(95 - 9*sqrt(109))/2)/14)] assert dsolve(eqs11) == sol11 assert checksysodesol(eqs11, sol11) == (True, [0, 0]) # Euler Systems # Note: To add examples of euler systems solver with non-homogeneous term. eqs13 = [Eq(Derivative(f(t), (t, 2)), Derivative(f(t), t)/t + f(t)/t**2 + g(t)/t**2), Eq(Derivative(g(t), (t, 2)), g(t)/t**2)] sol13 = [Eq(f(t), C1*(sqrt(5) + 3)*Rational(-1, 2)*t**(Rational(1, 2) + sqrt(5)*Rational(-1, 2)) + C2*t**(Rational(1, 2) + sqrt(5)/2)*(3 - sqrt(5))*Rational(-1, 2) - C3*t**(1 - sqrt(2))*(1 + sqrt(2)) - C4*t**(1 + sqrt(2))*(1 - sqrt(2))), Eq(g(t), C1*(1 + sqrt(5))*Rational(-1, 2)*t**(Rational(1, 2) + sqrt(5)*Rational(-1, 2)) + C2*t**(Rational(1, 2) + sqrt(5)/2)*(1 - sqrt(5))*Rational(-1, 2))] assert dsolve(eqs13) == sol13 assert checksysodesol(eqs13, sol13) == (True, [0, 0]) # Solving systems using dsolve separately eqs14 = [Eq(Derivative(f(t), (t, 2)), t*f(t)), Eq(Derivative(g(t), (t, 2)), t*g(t))] sol14 = [Eq(f(t), C1*airyai(t) + C2*airybi(t)), Eq(g(t), C3*airyai(t) + C4*airybi(t))] assert dsolve(eqs14) == sol14 assert checksysodesol(eqs14, sol14) == (True, [0, 0]) eqs15 = [Eq(Derivative(x(t), (t, 2)), t*(4*Derivative(x(t), t) + 8*Derivative(y(t), t))), Eq(Derivative(y(t), (t, 2)), t*(12*Derivative(x(t), t) - 6*Derivative(y(t), t)))] sol15 = [Eq(x(t), C1 - erf(sqrt(6)*t)*(sqrt(6)*sqrt(pi)*C2/33 + sqrt(6)*sqrt(pi)*C3*Rational(-1, 44)) + erfi(sqrt(5)*t)*(sqrt(5)*sqrt(pi)*C2*Rational(2, 55) + sqrt(5)*sqrt(pi)*C3*Rational(4, 55))), Eq(y(t), C4 + erf(sqrt(6)*t)*(sqrt(6)*sqrt(pi)*C2*Rational(2, 33) + sqrt(6)*sqrt(pi)*C3*Rational(-1, 22)) + erfi(sqrt(5)*t)*(sqrt(5)*sqrt(pi)*C2*Rational(3, 110) + sqrt(5)*sqrt(pi)*C3*Rational(3, 55)))] assert dsolve(eqs15) == sol15 assert checksysodesol(eqs15, sol15) == (True, [0, 0]) @slow def test_higher_order_to_first_order_9(): f, g = symbols('f g', cls=Function) x = symbols('x') eqs9 = [f(x) + g(x) - 2*exp(I*x) + 2*Derivative(f(x), x) + Derivative(f(x), (x, 2)), f(x) + g(x) - 2*exp(I*x) + 2*Derivative(g(x), x) + Derivative(g(x), (x, 2))] sol9 = [Eq(f(x), -C1 + C2*exp(-2*x)/2 + (C3/2 + C4/2)*exp(-x)*sin(x) + (2 + I)*exp(I*x)*sin(x)**2*Rational(-1, 5) + (1 - 2*I)*exp(I*x)*sin(x)*cos(x)*Rational(2, 5) + (4 - 3*I)*exp(I*x)*cos(x)**2/5 + exp(-x)*sin(x)*Integral(-exp(x)*exp(I*x)*sin(x)**2/cos(x) + exp(x)*exp(I*x)*sin(x) + exp(x)*exp(I*x)/cos(x), x) - exp(-x)*cos(x)*Integral(-exp(x)*exp(I*x)*sin(x)**2/cos(x) + exp(x)*exp(I*x)*sin(x) + exp(x)*exp(I*x)/cos(x), x) - exp(-x)*cos(x)*(C3/2 + C4*Rational(-1, 2))), Eq(g(x), C1 + C2*exp(-2*x)*Rational(-1, 2) + (C3/2 + C4/2)*exp(-x)*sin(x) + (2 + I)*exp(I*x)*sin(x)**2*Rational(-1, 5) + (1 - 2*I)*exp(I*x)*sin(x)*cos(x)*Rational(2, 5) + (4 - 3*I)*exp(I*x)*cos(x)**2/5 + exp(-x)*sin(x)*Integral(-exp(x)*exp(I*x)*sin(x)**2/cos(x) + exp(x)*exp(I*x)*sin(x) + exp(x)*exp(I*x)/cos(x), x) - exp(-x)*cos(x)*Integral(-exp(x)*exp(I*x)*sin(x)**2/cos(x) + exp(x)*exp(I*x)*sin(x) + exp(x)*exp(I*x)/cos(x), x) - exp(-x)*cos(x)*(C3/2 + C4*Rational(-1, 2)))] assert dsolve(eqs9) == sol9 assert checksysodesol(eqs9, sol9) == (True, [0, 0]) @slow def test_higher_order_to_first_order_12(): f, g = symbols('f g', cls=Function) x = symbols('x') x, y = symbols('x, y', cls=Function) t, l = symbols('t, l') eqs12 = [Eq(4*x(t) + Derivative(x(t), (t, 2)) + 8*Derivative(y(t), t), 0), Eq(4*y(t) - 8*Derivative(x(t), t) + Derivative(y(t), (t, 2)), 0)] sol12 = [Eq(y(t), C1*(2 - sqrt(5))*sin(2*t*sqrt(4*sqrt(5) + 9))*Rational(-1, 2) + C2*(2 - sqrt(5))*cos(2*t*sqrt(4*sqrt(5) + 9))/2 + C3*(2 + sqrt(5))*sin(2*t*sqrt(9 - 4*sqrt(5)))*Rational(-1, 2) + C4*(2 + sqrt(5))*cos(2*t*sqrt(9 - 4*sqrt(5)))/2), Eq(x(t), C1*(2 - sqrt(5))*cos(2*t*sqrt(4*sqrt(5) + 9))*Rational(-1, 2) + C2*(2 - sqrt(5))*sin(2*t*sqrt(4*sqrt(5) + 9))*Rational(-1, 2) + C3*(2 + sqrt(5))*cos(2*t*sqrt(9 - 4*sqrt(5)))/2 + C4*(2 + sqrt(5))*sin(2*t*sqrt(9 - 4*sqrt(5)))/2)] assert dsolve(eqs12) == sol12 assert checksysodesol(eqs12, sol12) == (True, [0, 0]) def test_second_order_to_first_order_2(): f, g = symbols("f g", cls=Function) x, t, x_, t_, d, a, m = symbols("x t x_ t_ d a m") eqs2 = [Eq(f(x).diff(x, 2), 2*(x*g(x).diff(x) - g(x))), Eq(g(x).diff(x, 2),-2*(x*f(x).diff(x) - f(x)))] sol2 = [Eq(f(x), C1*x + x*Integral(C2*exp(-x_)*exp(I*exp(2*x_))/2 + C2*exp(-x_)*exp(-I*exp(2*x_))/2 - I*C3*exp(-x_)*exp(I*exp(2*x_))/2 + I*C3*exp(-x_)*exp(-I*exp(2*x_))/2, (x_, log(x)))), Eq(g(x), C4*x + x*Integral(I*C2*exp(-x_)*exp(I*exp(2*x_))/2 - I*C2*exp(-x_)*exp(-I*exp(2*x_))/2 + C3*exp(-x_)*exp(I*exp(2*x_))/2 + C3*exp(-x_)*exp(-I*exp(2*x_))/2, (x_, log(x))))] # XXX: dsolve hangs for this in integration assert dsolve_system(eqs2, simplify=False, doit=False) == [sol2] assert checksysodesol(eqs2, sol2) == (True, [0, 0]) eqs3 = (Eq(diff(f(t),t,t), 9*t*diff(g(t),t)-9*g(t)), Eq(diff(g(t),t,t),7*t*diff(f(t),t)-7*f(t))) sol3 = [Eq(f(t), C1*t + t*Integral(C2*exp(-t_)*exp(3*sqrt(7)*exp(2*t_)/2)/2 + C2*exp(-t_)* exp(-3*sqrt(7)*exp(2*t_)/2)/2 + 3*sqrt(7)*C3*exp(-t_)*exp(3*sqrt(7)*exp(2*t_)/2)/14 - 3*sqrt(7)*C3*exp(-t_)*exp(-3*sqrt(7)*exp(2*t_)/2)/14, (t_, log(t)))), Eq(g(t), C4*t + t*Integral(sqrt(7)*C2*exp(-t_)*exp(3*sqrt(7)*exp(2*t_)/2)/6 - sqrt(7)*C2*exp(-t_)* exp(-3*sqrt(7)*exp(2*t_)/2)/6 + C3*exp(-t_)*exp(3*sqrt(7)*exp(2*t_)/2)/2 + C3*exp(-t_)*exp(-3*sqrt(7)* exp(2*t_)/2)/2, (t_, log(t))))] # XXX: dsolve hangs for this in integration assert dsolve_system(eqs3, simplify=False, doit=False) == [sol3] assert checksysodesol(eqs3, sol3) == (True, [0, 0]) # Regression Test case for sympy#19238 # https://github.com/sympy/sympy/issues/19238 # Note: When the doit method is removed, these particular types of systems # can be divided first so that we have lesser number of big matrices. eqs5 = [Eq(Derivative(g(t), (t, 2)), a*m), Eq(Derivative(f(t), (t, 2)), 0)] sol5 = [Eq(g(t), C1 + C2*t + a*m*t**2/2), Eq(f(t), C3 + C4*t)] assert dsolve(eqs5) == sol5 assert checksysodesol(eqs5, sol5) == (True, [0, 0]) # Type 2 eqs6 = [Eq(Derivative(f(t), (t, 2)), f(t)/t**4), Eq(Derivative(g(t), (t, 2)), d*g(t)/t**4)] sol6 = [Eq(f(t), C1*sqrt(t**2)*exp(-1/t) - C2*sqrt(t**2)*exp(1/t)), Eq(g(t), C3*sqrt(t**2)*exp(-sqrt(d)/t)*d**Rational(-1, 2) - C4*sqrt(t**2)*exp(sqrt(d)/t)*d**Rational(-1, 2))] assert dsolve(eqs6) == sol6 assert checksysodesol(eqs6, sol6) == (True, [0, 0]) @slow def test_second_order_to_first_order_slow1(): f, g = symbols("f g", cls=Function) x, t, x_, t_, d, a, m = symbols("x t x_ t_ d a m") # Type 1 eqs1 = [Eq(f(x).diff(x, 2), 2/x *(x*g(x).diff(x) - g(x))), Eq(g(x).diff(x, 2),-2/x *(x*f(x).diff(x) - f(x)))] sol1 = [Eq(f(x), C1*x + 2*C2*x*Ci(2*x) - C2*sin(2*x) - 2*C3*x*Si(2*x) - C3*cos(2*x)), Eq(g(x), -2*C2*x*Si(2*x) - C2*cos(2*x) - 2*C3*x*Ci(2*x) + C3*sin(2*x) + C4*x)] assert dsolve(eqs1) == sol1 assert checksysodesol(eqs1, sol1) == (True, [0, 0]) @slow def test_second_order_to_first_order_slow4(): f, g = symbols("f g", cls=Function) x, t, x_, t_, d, a, m = symbols("x t x_ t_ d a m") eqs4 = [Eq(Derivative(f(t), (t, 2)), t*sin(t)*Derivative(g(t), t) - g(t)*sin(t)), Eq(Derivative(g(t), (t, 2)), t*sin(t)*Derivative(f(t), t) - f(t)*sin(t))] sol4 = [Eq(f(t), C1*t + t*Integral(C2*exp(-t_)*exp(exp(t_)*cos(exp(t_)))*exp(-sin(exp(t_)))/2 + C2*exp(-t_)*exp(-exp(t_)*cos(exp(t_)))*exp(sin(exp(t_)))/2 - C3*exp(-t_)*exp(exp(t_)*cos(exp(t_)))* exp(-sin(exp(t_)))/2 + C3*exp(-t_)*exp(-exp(t_)*cos(exp(t_)))*exp(sin(exp(t_)))/2, (t_, log(t)))), Eq(g(t), C4*t + t*Integral(-C2*exp(-t_)*exp(exp(t_)*cos(exp(t_)))*exp(-sin(exp(t_)))/2 + C2*exp(-t_)*exp(-exp(t_)*cos(exp(t_)))*exp(sin(exp(t_)))/2 + C3*exp(-t_)*exp(exp(t_)*cos(exp(t_)))* exp(-sin(exp(t_)))/2 + C3*exp(-t_)*exp(-exp(t_)*cos(exp(t_)))*exp(sin(exp(t_)))/2, (t_, log(t))))] # XXX: dsolve hangs for this in integration assert dsolve_system(eqs4, simplify=False, doit=False) == [sol4] assert checksysodesol(eqs4, sol4) == (True, [0, 0]) def test_component_division(): f, g, h, k = symbols('f g h k', cls=Function) x = symbols("x") funcs = [f(x), g(x), h(x), k(x)] eqs1 = [Eq(Derivative(f(x), x), 2*f(x)), Eq(Derivative(g(x), x), f(x)), Eq(Derivative(h(x), x), h(x)), Eq(Derivative(k(x), x), h(x)**4 + k(x))] sol1 = [Eq(f(x), 2*C1*exp(2*x)), Eq(g(x), C1*exp(2*x) + C2), Eq(h(x), C3*exp(x)), Eq(k(x), C3**4*exp(4*x)/3 + C4*exp(x))] assert dsolve(eqs1) == sol1 assert checksysodesol(eqs1, sol1) == (True, [0, 0, 0, 0]) components1 = {((Eq(Derivative(f(x), x), 2*f(x)),), (Eq(Derivative(g(x), x), f(x)),)), ((Eq(Derivative(h(x), x), h(x)),), (Eq(Derivative(k(x), x), h(x)**4 + k(x)),))} eqsdict1 = ({f(x): set(), g(x): {f(x)}, h(x): set(), k(x): {h(x)}}, {f(x): Eq(Derivative(f(x), x), 2*f(x)), g(x): Eq(Derivative(g(x), x), f(x)), h(x): Eq(Derivative(h(x), x), h(x)), k(x): Eq(Derivative(k(x), x), h(x)**4 + k(x))}) graph1 = [{f(x), g(x), h(x), k(x)}, {(g(x), f(x)), (k(x), h(x))}] assert {tuple(tuple(scc) for scc in wcc) for wcc in _component_division(eqs1, funcs, x)} == components1 assert _eqs2dict(eqs1, funcs) == eqsdict1 assert [set(element) for element in _dict2graph(eqsdict1[0])] == graph1 eqs2 = [Eq(Derivative(f(x), x), 2*f(x)), Eq(Derivative(g(x), x), f(x)), Eq(Derivative(h(x), x), h(x)), Eq(Derivative(k(x), x), f(x)**4 + k(x))] sol2 = [Eq(f(x), C1*exp(2*x)), Eq(g(x), C1*exp(2*x)/2 + C2), Eq(h(x), C3*exp(x)), Eq(k(x), C1**4*exp(8*x)/7 + C4*exp(x))] assert dsolve(eqs2) == sol2 assert checksysodesol(eqs2, sol2) == (True, [0, 0, 0, 0]) components2 = {frozenset([(Eq(Derivative(f(x), x), 2*f(x)),), (Eq(Derivative(g(x), x), f(x)),), (Eq(Derivative(k(x), x), f(x)**4 + k(x)),)]), frozenset([(Eq(Derivative(h(x), x), h(x)),)])} eqsdict2 = ({f(x): set(), g(x): {f(x)}, h(x): set(), k(x): {f(x)}}, {f(x): Eq(Derivative(f(x), x), 2*f(x)), g(x): Eq(Derivative(g(x), x), f(x)), h(x): Eq(Derivative(h(x), x), h(x)), k(x): Eq(Derivative(k(x), x), f(x)**4 + k(x))}) graph2 = [{f(x), g(x), h(x), k(x)}, {(g(x), f(x)), (k(x), f(x))}] assert {frozenset(tuple(scc) for scc in wcc) for wcc in _component_division(eqs2, funcs, x)} == components2 assert _eqs2dict(eqs2, funcs) == eqsdict2 assert [set(element) for element in _dict2graph(eqsdict2[0])] == graph2 eqs3 = [Eq(Derivative(f(x), x), 2*f(x)), Eq(Derivative(g(x), x), x + f(x)), Eq(Derivative(h(x), x), h(x)), Eq(Derivative(k(x), x), f(x)**4 + k(x))] sol3 = [Eq(f(x), C1*exp(2*x)), Eq(g(x), C1*exp(2*x)/2 + C2 + x**2/2), Eq(h(x), C3*exp(x)), Eq(k(x), C1**4*exp(8*x)/7 + C4*exp(x))] assert dsolve(eqs3) == sol3 assert checksysodesol(eqs3, sol3) == (True, [0, 0, 0, 0]) components3 = {frozenset([(Eq(Derivative(f(x), x), 2*f(x)),), (Eq(Derivative(g(x), x), x + f(x)),), (Eq(Derivative(k(x), x), f(x)**4 + k(x)),)]), frozenset([(Eq(Derivative(h(x), x), h(x)),),])} eqsdict3 = ({f(x): set(), g(x): {f(x)}, h(x): set(), k(x): {f(x)}}, {f(x): Eq(Derivative(f(x), x), 2*f(x)), g(x): Eq(Derivative(g(x), x), x + f(x)), h(x): Eq(Derivative(h(x), x), h(x)), k(x): Eq(Derivative(k(x), x), f(x)**4 + k(x))}) graph3 = [{f(x), g(x), h(x), k(x)}, {(g(x), f(x)), (k(x), f(x))}] assert {frozenset(tuple(scc) for scc in wcc) for wcc in _component_division(eqs3, funcs, x)} == components3 assert _eqs2dict(eqs3, funcs) == eqsdict3 assert [set(l) for l in _dict2graph(eqsdict3[0])] == graph3 # Note: To be uncommented when the default option to call dsolve first for # single ODE system can be rearranged. This can be done after the doit # option in dsolve is made False by default. eqs4 = [Eq(Derivative(f(x), x), x*f(x) + 2*g(x)), Eq(Derivative(g(x), x), f(x) + x*g(x) + x), Eq(Derivative(h(x), x), h(x)), Eq(Derivative(k(x), x), f(x)**4 + k(x))] sol4 = [Eq(f(x), (C1/2 - sqrt(2)*C2/2 - sqrt(2)*Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 +\ sqrt(2)*x)/2, x)/2 + Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 - sqrt(2)*x*exp(-x**2/2 +\ sqrt(2)*x)/2, x)/2)*exp(x**2/2 - sqrt(2)*x) + (C1/2 + sqrt(2)*C2/2 + sqrt(2)*Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 + Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 - sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2)*exp(x**2/2 + sqrt(2)*x)), Eq(g(x), (-sqrt(2)*C1/4 + C2/2 + Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 -\ sqrt(2)*Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 - sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2, x)/4)*exp(x**2/2 - sqrt(2)*x) + (sqrt(2)*C1/4 + C2/2 + Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 + sqrt(2)*Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 - sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2, x)/4)*exp(x**2/2 + sqrt(2)*x)), Eq(h(x), C3*exp(x)), Eq(k(x), C4*exp(x) + exp(x)*Integral((C1*exp(x**2/2 - sqrt(2)*x)/2 + C1*exp(x**2/2 + sqrt(2)*x)/2 - sqrt(2)*C2*exp(x**2/2 - sqrt(2)*x)/2 + sqrt(2)*C2*exp(x**2/2 + sqrt(2)*x)/2 - sqrt(2)*exp(x**2/2 - sqrt(2)*x)*Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 + exp(x**2/2 - sqrt(2)*x)*Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 - sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 + sqrt(2)*exp(x**2/2 + sqrt(2)*x)*Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 + exp(x**2/2 + sqrt(2)*x)*Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 - sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2)**4*exp(-x), x))] components4 = {(frozenset([Eq(Derivative(f(x), x), x*f(x) + 2*g(x)), Eq(Derivative(g(x), x), x*g(x) + x + f(x))]), frozenset([Eq(Derivative(k(x), x), f(x)**4 + k(x)),])), (frozenset([Eq(Derivative(h(x), x), h(x)),]),)} eqsdict4 = ({f(x): {g(x)}, g(x): {f(x)}, h(x): set(), k(x): {f(x)}}, {f(x): Eq(Derivative(f(x), x), x*f(x) + 2*g(x)), g(x): Eq(Derivative(g(x), x), x*g(x) + x + f(x)), h(x): Eq(Derivative(h(x), x), h(x)), k(x): Eq(Derivative(k(x), x), f(x)**4 + k(x))}) graph4 = [{f(x), g(x), h(x), k(x)}, {(f(x), g(x)), (g(x), f(x)), (k(x), f(x))}] assert {tuple(frozenset(scc) for scc in wcc) for wcc in _component_division(eqs4, funcs, x)} == components4 assert _eqs2dict(eqs4, funcs) == eqsdict4 assert [set(element) for element in _dict2graph(eqsdict4[0])] == graph4 # XXX: dsolve hangs in integration here: assert dsolve_system(eqs4, simplify=False, doit=False) == [sol4] assert checksysodesol(eqs4, sol4) == (True, [0, 0, 0, 0]) eqs5 = [Eq(Derivative(f(x), x), x*f(x) + 2*g(x)), Eq(Derivative(g(x), x), x*g(x) + f(x)), Eq(Derivative(h(x), x), h(x)), Eq(Derivative(k(x), x), f(x)**4 + k(x))] sol5 = [Eq(f(x), (C1/2 - sqrt(2)*C2/2)*exp(x**2/2 - sqrt(2)*x) + (C1/2 + sqrt(2)*C2/2)*exp(x**2/2 + sqrt(2)*x)), Eq(g(x), (-sqrt(2)*C1/4 + C2/2)*exp(x**2/2 - sqrt(2)*x) + (sqrt(2)*C1/4 + C2/2)*exp(x**2/2 + sqrt(2)*x)), Eq(h(x), C3*exp(x)), Eq(k(x), C4*exp(x) + exp(x)*Integral((C1*exp(x**2/2 - sqrt(2)*x)/2 + C1*exp(x**2/2 + sqrt(2)*x)/2 - sqrt(2)*C2*exp(x**2/2 - sqrt(2)*x)/2 + sqrt(2)*C2*exp(x**2/2 + sqrt(2)*x)/2)**4*exp(-x), x))] components5 = {(frozenset([Eq(Derivative(f(x), x), x*f(x) + 2*g(x)), Eq(Derivative(g(x), x), x*g(x) + f(x))]), frozenset([Eq(Derivative(k(x), x), f(x)**4 + k(x)),])), (frozenset([Eq(Derivative(h(x), x), h(x)),]),)} eqsdict5 = ({f(x): {g(x)}, g(x): {f(x)}, h(x): set(), k(x): {f(x)}}, {f(x): Eq(Derivative(f(x), x), x*f(x) + 2*g(x)), g(x): Eq(Derivative(g(x), x), x*g(x) + f(x)), h(x): Eq(Derivative(h(x), x), h(x)), k(x): Eq(Derivative(k(x), x), f(x)**4 + k(x))}) graph5 = [{f(x), g(x), h(x), k(x)}, {(f(x), g(x)), (g(x), f(x)), (k(x), f(x))}] assert {tuple(frozenset(scc) for scc in wcc) for wcc in _component_division(eqs5, funcs, x)} == components5 assert _eqs2dict(eqs5, funcs) == eqsdict5 assert [set(element) for element in _dict2graph(eqsdict5[0])] == graph5 # XXX: dsolve hangs in integration here: assert dsolve_system(eqs5, simplify=False, doit=False) == [sol5] assert checksysodesol(eqs5, sol5) == (True, [0, 0, 0, 0]) def test_linodesolve(): t, x, a = symbols("t x a") f, g, h = symbols("f g h", cls=Function) # Testing the Errors raises(ValueError, lambda: linodesolve(1, t)) raises(ValueError, lambda: linodesolve(a, t)) A1 = Matrix([[1, 2], [2, 4], [4, 6]]) raises(NonSquareMatrixError, lambda: linodesolve(A1, t)) A2 = Matrix([[1, 2, 1], [3, 1, 2]]) raises(NonSquareMatrixError, lambda: linodesolve(A2, t)) # Testing auto functionality func = [f(t), g(t)] eq = [Eq(f(t).diff(t) + g(t).diff(t), g(t)), Eq(g(t).diff(t), f(t))] ceq = canonical_odes(eq, func, t) (A1, A0), b = linear_ode_to_matrix(ceq[0], func, t, 1) A = A0 sol = [C1*(-Rational(1, 2) + sqrt(5)/2)*exp(t*(-Rational(1, 2) + sqrt(5)/2)) + C2*(-sqrt(5)/2 - Rational(1, 2))* exp(t*(-sqrt(5)/2 - Rational(1, 2))), C1*exp(t*(-Rational(1, 2) + sqrt(5)/2)) + C2*exp(t*(-sqrt(5)/2 - Rational(1, 2)))] assert constant_renumber(linodesolve(A, t), variables=Tuple(*eq).free_symbols) == sol # Testing the Errors raises(ValueError, lambda: linodesolve(1, t, b=Matrix([t+1]))) raises(ValueError, lambda: linodesolve(a, t, b=Matrix([log(t) + sin(t)]))) raises(ValueError, lambda: linodesolve(Matrix([7]), t, b=t**2)) raises(ValueError, lambda: linodesolve(Matrix([a+10]), t, b=log(t)*cos(t))) raises(ValueError, lambda: linodesolve(7, t, b=t**2)) raises(ValueError, lambda: linodesolve(a, t, b=log(t) + sin(t))) A1 = Matrix([[1, 2], [2, 4], [4, 6]]) b1 = Matrix([t, 1, t**2]) raises(NonSquareMatrixError, lambda: linodesolve(A1, t, b=b1)) A2 = Matrix([[1, 2, 1], [3, 1, 2]]) b2 = Matrix([t, t**2]) raises(NonSquareMatrixError, lambda: linodesolve(A2, t, b=b2)) raises(ValueError, lambda: linodesolve(A1[:2, :], t, b=b1)) raises(ValueError, lambda: linodesolve(A1[:2, :], t, b=b1[:1])) # DOIT check A1 = Matrix([[1, -1], [1, -1]]) b1 = Matrix([15*t - 10, -15*t - 5]) sol1 = [C1 + C2*t + C2 - 10*t**3 + 10*t**2 + t*(15*t**2 - 5*t) - 10*t, C1 + C2*t - 10*t**3 - 5*t**2 + t*(15*t**2 - 5*t) - 5*t] assert constant_renumber(linodesolve(A1, t, b=b1, type="type2", doit=True), variables=[t]) == sol1 # Testing auto functionality func = [f(t), g(t)] eq = [Eq(f(t).diff(t) + g(t).diff(t), g(t) + t), Eq(g(t).diff(t), f(t))] ceq = canonical_odes(eq, func, t) (A1, A0), b = linear_ode_to_matrix(ceq[0], func, t, 1) A = A0 sol = [-C1*exp(-t/2 + sqrt(5)*t/2)/2 + sqrt(5)*C1*exp(-t/2 + sqrt(5)*t/2)/2 - sqrt(5)*C2*exp(-sqrt(5)*t/2 - t/2)/2 - C2*exp(-sqrt(5)*t/2 - t/2)/2 - exp(-t/2 + sqrt(5)*t/2)*Integral(t*exp(-sqrt(5)*t/2 + t/2)/(-5 + sqrt(5)) - sqrt(5)*t*exp(-sqrt(5)*t/2 + t/2)/(-5 + sqrt(5)), t)/2 + sqrt(5)*exp(-t/2 + sqrt(5)*t/2)*Integral(t*exp(-sqrt(5)*t/2 + t/2)/(-5 + sqrt(5)) - sqrt(5)*t*exp(-sqrt(5)*t/2 + t/2)/(-5 + sqrt(5)), t)/2 - sqrt(5)*exp(-sqrt(5)*t/2 - t/2)*Integral(-sqrt(5)*t*exp(t/2 + sqrt(5)*t/2)/5, t)/2 - exp(-sqrt(5)*t/2 - t/2)*Integral(-sqrt(5)*t*exp(t/2 + sqrt(5)*t/2)/5, t)/2, C1*exp(-t/2 + sqrt(5)*t/2) + C2*exp(-sqrt(5)*t/2 - t/2) + exp(-t/2 + sqrt(5)*t/2)*Integral(t*exp(-sqrt(5)*t/2 + t/2)/(-5 + sqrt(5)) - sqrt(5)*t*exp(-sqrt(5)*t/2 + t/2)/(-5 + sqrt(5)), t) + exp(-sqrt(5)*t/2 - t/2)*Integral(-sqrt(5)*t*exp(t/2 + sqrt(5)*t/2)/5, t)] assert constant_renumber(linodesolve(A, t, b=b), variables=[t]) == sol # non-homogeneous term assumed to be 0 sol1 = [-C1*exp(-t/2 + sqrt(5)*t/2)/2 + sqrt(5)*C1*exp(-t/2 + sqrt(5)*t/2)/2 - sqrt(5)*C2*exp(-sqrt(5)*t/2 - t/2)/2 - C2*exp(-sqrt(5)*t/2 - t/2)/2 - exp(-t/2 + sqrt(5)*t/2)*Integral(0, t)/2 + sqrt(5)*exp(-t/2 + sqrt(5)*t/2)*Integral(0, t)/2 - sqrt(5)*exp(-sqrt(5)*t/2 - t/2)*Integral(0, t)/2 - exp(-sqrt(5)*t/2 - t/2)*Integral(0, t)/2, C1*exp(-t/2 + sqrt(5)*t/2) + C2*exp(-sqrt(5)*t/2 - t/2) + exp(-t/2 + sqrt(5)*t/2)*Integral(0, t) + exp(-sqrt(5)*t/2 - t/2)*Integral(0, t)] assert constant_renumber(linodesolve(A, t, type="type2"), variables=[t]) == sol1 # Testing the Errors raises(ValueError, lambda: linodesolve(t+10, t)) raises(ValueError, lambda: linodesolve(a*t, t)) A1 = Matrix([[1, t], [-t, 1]]) B1, _ = _is_commutative_anti_derivative(A1, t) raises(NonSquareMatrixError, lambda: linodesolve(A1[:, :1], t, B=B1)) raises(ValueError, lambda: linodesolve(A1, t, B=1)) A2 = Matrix([[t, t, t], [t, t, t], [t, t, t]]) B2, _ = _is_commutative_anti_derivative(A2, t) raises(NonSquareMatrixError, lambda: linodesolve(A2, t, B=B2[:2, :])) raises(ValueError, lambda: linodesolve(A2, t, B=2)) raises(ValueError, lambda: linodesolve(A2, t, B=B2, type="type31")) raises(ValueError, lambda: linodesolve(A1, t, B=B2)) raises(ValueError, lambda: linodesolve(A2, t, B=B1)) # Testing auto functionality func = [f(t), g(t)] eq = [Eq(f(t).diff(t), f(t) + t*g(t)), Eq(g(t).diff(t), -t*f(t) + g(t))] ceq = canonical_odes(eq, func, t) (A1, A0), b = linear_ode_to_matrix(ceq[0], func, t, 1) A = A0 sol = [(C1/2 - I*C2/2)*exp(I*t**2/2 + t) + (C1/2 + I*C2/2)*exp(-I*t**2/2 + t), (-I*C1/2 + C2/2)*exp(-I*t**2/2 + t) + (I*C1/2 + C2/2)*exp(I*t**2/2 + t)] assert constant_renumber(linodesolve(A, t), variables=Tuple(*eq).free_symbols) == sol assert constant_renumber(linodesolve(A, t, type="type3"), variables=Tuple(*eq).free_symbols) == sol A1 = Matrix([[t, 1], [t, -1]]) raises(NotImplementedError, lambda: linodesolve(A1, t)) # Testing the Errors raises(ValueError, lambda: linodesolve(t+10, t, b=Matrix([t+1]))) raises(ValueError, lambda: linodesolve(a*t, t, b=Matrix([log(t) + sin(t)]))) raises(ValueError, lambda: linodesolve(Matrix([7*t]), t, b=t**2)) raises(ValueError, lambda: linodesolve(Matrix([a + 10*log(t)]), t, b=log(t)*cos(t))) raises(ValueError, lambda: linodesolve(7*t, t, b=t**2)) raises(ValueError, lambda: linodesolve(a*t**2, t, b=log(t) + sin(t))) A1 = Matrix([[1, t], [-t, 1]]) b1 = Matrix([t, t ** 2]) B1, _ = _is_commutative_anti_derivative(A1, t) raises(NonSquareMatrixError, lambda: linodesolve(A1[:, :1], t, b=b1)) A2 = Matrix([[t, t, t], [t, t, t], [t, t, t]]) b2 = Matrix([t, 1, t**2]) B2, _ = _is_commutative_anti_derivative(A2, t) raises(NonSquareMatrixError, lambda: linodesolve(A2[:2, :], t, b=b2)) raises(ValueError, lambda: linodesolve(A1, t, b=b2)) raises(ValueError, lambda: linodesolve(A2, t, b=b1)) raises(ValueError, lambda: linodesolve(A1, t, b=b1, B=B2)) raises(ValueError, lambda: linodesolve(A2, t, b=b2, B=B1)) # Testing auto functionality func = [f(x), g(x), h(x)] eq = [Eq(f(x).diff(x), x*(f(x) + g(x) + h(x)) + x), Eq(g(x).diff(x), x*(f(x) + g(x) + h(x)) + x), Eq(h(x).diff(x), x*(f(x) + g(x) + h(x)) + 1)] ceq = canonical_odes(eq, func, x) (A1, A0), b = linear_ode_to_matrix(ceq[0], func, x, 1) A = A0 _x1 = exp(-3*x**2/2) _x2 = exp(3*x**2/2) _x3 = Integral(2*_x1*x/3 + _x1/3 + x/3 - Rational(1, 3), x) _x4 = 2*_x2*_x3/3 _x5 = Integral(2*_x1*x/3 + _x1/3 - 2*x/3 + Rational(2, 3), x) sol = [ C1*_x2/3 - C1/3 + C2*_x2/3 - C2/3 + C3*_x2/3 + 2*C3/3 + _x2*_x5/3 + _x3/3 + _x4 - _x5/3, C1*_x2/3 + 2*C1/3 + C2*_x2/3 - C2/3 + C3*_x2/3 - C3/3 + _x2*_x5/3 + _x3/3 + _x4 - _x5/3, C1*_x2/3 - C1/3 + C2*_x2/3 + 2*C2/3 + C3*_x2/3 - C3/3 + _x2*_x5/3 - 2*_x3/3 + _x4 + 2*_x5/3, ] assert constant_renumber(linodesolve(A, x, b=b), variables=Tuple(*eq).free_symbols) == sol assert constant_renumber(linodesolve(A, x, b=b, type="type4"), variables=Tuple(*eq).free_symbols) == sol A1 = Matrix([[t, 1], [t, -1]]) raises(NotImplementedError, lambda: linodesolve(A1, t, b=b1)) # non-homogeneous term not passed sol1 = [-C1/3 - C2/3 + 2*C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2), 2*C1/3 - C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2), -C1/3 + 2*C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2)] assert constant_renumber(linodesolve(A, x, type="type4", doit=True), variables=Tuple(*eq).free_symbols) == sol1 @slow def test_linear_3eq_order1_type4_slow(): x, y, z = symbols('x, y, z', cls=Function) t = Symbol('t') f = t ** 3 + log(t) g = t ** 2 + sin(t) eq1 = (Eq(diff(x(t), t), (4 * f + g) * x(t) - f * y(t) - 2 * f * z(t)), Eq(diff(y(t), t), 2 * f * x(t) + (f + g) * y(t) - 2 * f * z(t)), Eq(diff(z(t), t), 5 * f * x(t) + f * y( t) + (-3 * f + g) * z(t))) with dotprodsimp(True): dsolve(eq1) @slow def test_linear_neq_order1_type2_slow1(): i, r1, c1, r2, c2, t = symbols('i, r1, c1, r2, c2, t') x1 = Function('x1') x2 = Function('x2') eq1 = r1*c1*Derivative(x1(t), t) + x1(t) - x2(t) - r1*i eq2 = r2*c1*Derivative(x1(t), t) + r2*c2*Derivative(x2(t), t) + x2(t) - r2*i eq = [eq1, eq2] # XXX: Solution is too complicated [sol] = dsolve_system(eq, simplify=False, doit=False) assert checksysodesol(eq, sol) == (True, [0, 0]) # Regression test case for issue #9204 # https://github.com/sympy/sympy/issues/9204 @slow def test_linear_new_order1_type2_de_lorentz_slow_check(): if ON_TRAVIS: skip("Too slow for travis.") m = Symbol("m", real=True) q = Symbol("q", real=True) t = Symbol("t", real=True) e1, e2, e3 = symbols("e1:4", real=True) b1, b2, b3 = symbols("b1:4", real=True) v1, v2, v3 = symbols("v1:4", cls=Function, real=True) eqs = [ -e1*q + m*Derivative(v1(t), t) - q*(-b2*v3(t) + b3*v2(t)), -e2*q + m*Derivative(v2(t), t) - q*(b1*v3(t) - b3*v1(t)), -e3*q + m*Derivative(v3(t), t) - q*(-b1*v2(t) + b2*v1(t)) ] sol = dsolve(eqs) assert checksysodesol(eqs, sol) == (True, [0, 0, 0]) # Regression test case for issue #14001 # https://github.com/sympy/sympy/issues/14001 @slow def test_linear_neq_order1_type2_slow_check(): RC, t, C, Vs, L, R1, V0, I0 = symbols("RC t C Vs L R1 V0 I0") V = Function("V") I = Function("I") system = [Eq(V(t).diff(t), -1/RC*V(t) + I(t)/C), Eq(I(t).diff(t), -R1/L*I(t) - 1/L*V(t) + Vs/L)] [sol] = dsolve_system(system, simplify=False, doit=False) assert checksysodesol(system, sol) == (True, [0, 0]) def _linear_3eq_order1_type4_long(): x, y, z = symbols('x, y, z', cls=Function) t = Symbol('t') f = t ** 3 + log(t) g = t ** 2 + sin(t) eq1 = (Eq(diff(x(t), t), (4*f + g)*x(t) - f*y(t) - 2*f*z(t)), Eq(diff(y(t), t), 2*f*x(t) + (f + g)*y(t) - 2*f*z(t)), Eq(diff(z(t), t), 5*f*x(t) + f*y( t) + (-3*f + g)*z(t))) dsolve_sol = dsolve(eq1) dsolve_sol1 = [_simpsol(sol) for sol in dsolve_sol] x_1 = sqrt(-t**6 - 8*t**3*log(t) + 8*t**3 - 16*log(t)**2 + 32*log(t) - 16) x_2 = sqrt(3) x_3 = 8324372644*C1*x_1*x_2 + 4162186322*C2*x_1*x_2 - 8324372644*C3*x_1*x_2 x_4 = 1 / (1903457163*t**3 + 3825881643*x_1*x_2 + 7613828652*log(t) - 7613828652) x_5 = exp(t**3/3 + t*x_1*x_2/4 - cos(t)) x_6 = exp(t**3/3 - t*x_1*x_2/4 - cos(t)) x_7 = exp(t**4/2 + t**3/3 + 2*t*log(t) - 2*t - cos(t)) x_8 = 91238*C1*x_1*x_2 + 91238*C2*x_1*x_2 - 91238*C3*x_1*x_2 x_9 = 1 / (66049*t**3 - 50629*x_1*x_2 + 264196*log(t) - 264196) x_10 = 50629 * C1 / 25189 + 37909*C2/25189 - 50629*C3/25189 - x_3*x_4 x_11 = -50629*C1/25189 - 12720*C2/25189 + 50629*C3/25189 + x_3*x_4 sol = [Eq(x(t), x_10*x_5 + x_11*x_6 + x_7*(C1 - C2)), Eq(y(t), x_10*x_5 + x_11*x_6), Eq(z(t), x_5*( -424*C1/257 - 167*C2/257 + 424*C3/257 - x_8*x_9) + x_6*(167*C1/257 + 424*C2/257 - 167*C3/257 + x_8*x_9) + x_7*(C1 - C2))] assert dsolve_sol1 == sol assert checksysodesol(eq1, dsolve_sol1) == (True, [0, 0, 0]) @slow def test_neq_order1_type4_slow_check1(): f, g = symbols("f g", cls=Function) x = symbols("x") eqs = [Eq(diff(f(x), x), x*f(x) + x**2*g(x) + x), Eq(diff(g(x), x), 2*x**2*f(x) + (x + 3*x**2)*g(x) + 1)] sol = dsolve(eqs) assert checksysodesol(eqs, sol) == (True, [0, 0]) @slow def test_neq_order1_type4_slow_check2(): f, g, h = symbols("f, g, h", cls=Function) x = Symbol("x") eqs = [ Eq(Derivative(f(x), x), x*h(x) + f(x) + g(x) + 1), Eq(Derivative(g(x), x), x*g(x) + f(x) + h(x) + 10), Eq(Derivative(h(x), x), x*f(x) + x + g(x) + h(x)) ] with dotprodsimp(True): sol = dsolve(eqs) assert checksysodesol(eqs, sol) == (True, [0, 0, 0]) def _neq_order1_type4_slow3(): f, g = symbols("f g", cls=Function) x = symbols("x") eqs = [ Eq(Derivative(f(x), x), x*f(x) + g(x) + sin(x)), Eq(Derivative(g(x), x), x**2 + x*g(x) - f(x)) ] sol = [ Eq(f(x), (C1/2 - I*C2/2 - I*Integral(x**2*exp(-x**2/2 - I*x)/2 + x**2*exp(-x**2/2 + I*x)/2 + I*exp(-x**2/2 - I*x)*sin(x)/2 - I*exp(-x**2/2 + I*x)*sin(x)/2, x)/2 + Integral(-I*x**2*exp(-x**2/2 - I*x)/2 + I*x**2*exp(-x**2/2 + I*x)/2 + exp(-x**2/2 - I*x)*sin(x)/2 + exp(-x**2/2 + I*x)*sin(x)/2, x)/2)*exp(x**2/2 + I*x) + (C1/2 + I*C2/2 + I*Integral(x**2*exp(-x**2/2 - I*x)/2 + x**2*exp(-x**2/2 + I*x)/2 + I*exp(-x**2/2 - I*x)*sin(x)/2 - I*exp(-x**2/2 + I*x)*sin(x)/2, x)/2 + Integral(-I*x**2*exp(-x**2/2 - I*x)/2 + I*x**2*exp(-x**2/2 + I*x)/2 + exp(-x**2/2 - I*x)*sin(x)/2 + exp(-x**2/2 + I*x)*sin(x)/2, x)/2)*exp(x**2/2 - I*x)), Eq(g(x), (-I*C1/2 + C2/2 + Integral(x**2*exp(-x**2/2 - I*x)/2 + x**2*exp(-x**2/2 + I*x)/2 + I*exp(-x**2/2 - I*x)*sin(x)/2 - I*exp(-x**2/2 + I*x)*sin(x)/2, x)/2 - I*Integral(-I*x**2*exp(-x**2/2 - I*x)/2 + I*x**2*exp(-x**2/2 + I*x)/2 + exp(-x**2/2 - I*x)*sin(x)/2 + exp(-x**2/2 + I*x)*sin(x)/2, x)/2)*exp(x**2/2 - I*x) + (I*C1/2 + C2/2 + Integral(x**2*exp(-x**2/2 - I*x)/2 + x**2*exp(-x**2/2 + I*x)/2 + I*exp(-x**2/2 - I*x)*sin(x)/2 - I*exp(-x**2/2 + I*x)*sin(x)/2, x)/2 + I*Integral(-I*x**2*exp(-x**2/2 - I*x)/2 + I*x**2*exp(-x**2/2 + I*x)/2 + exp(-x**2/2 - I*x)*sin(x)/2 + exp(-x**2/2 + I*x)*sin(x)/2, x)/2)*exp(x**2/2 + I*x)) ] return eqs, sol def test_neq_order1_type4_slow3(): eqs, sol = _neq_order1_type4_slow3() assert dsolve_system(eqs, simplify=False, doit=False) == [sol] # XXX: dsolve gives an error in integration: # assert dsolve(eqs) == sol # https://github.com/sympy/sympy/issues/20155 @slow def test_neq_order1_type4_slow_check3(): eqs, sol = _neq_order1_type4_slow3() assert checksysodesol(eqs, sol) == (True, [0, 0]) @XFAIL @slow def test_linear_3eq_order1_type4_long_dsolve_slow_xfail(): if ON_TRAVIS: skip("Too slow for travis.") eq, sol = _linear_3eq_order1_type4_long() dsolve_sol = dsolve(eq) dsolve_sol1 = [_simpsol(sol) for sol in dsolve_sol] assert dsolve_sol1 == sol @slow def test_linear_3eq_order1_type4_long_dsolve_dotprodsimp(): if ON_TRAVIS: skip("Too slow for travis.") eq, sol = _linear_3eq_order1_type4_long() # XXX: Only works with dotprodsimp see # test_linear_3eq_order1_type4_long_dsolve_slow_xfail which is too slow with dotprodsimp(True): dsolve_sol = dsolve(eq) dsolve_sol1 = [_simpsol(sol) for sol in dsolve_sol] assert dsolve_sol1 == sol @slow def test_linear_3eq_order1_type4_long_check(): if ON_TRAVIS: skip("Too slow for travis.") eq, sol = _linear_3eq_order1_type4_long() assert checksysodesol(eq, sol) == (True, [0, 0, 0]) def test_dsolve_system(): f, g = symbols("f g", cls=Function) x = symbols("x") eqs = [Eq(f(x).diff(x), f(x) + g(x)), Eq(g(x).diff(x), f(x) + g(x))] funcs = [f(x), g(x)] sol = [[Eq(f(x), -C1 + C2*exp(2*x)), Eq(g(x), C1 + C2*exp(2*x))]] assert dsolve_system(eqs, funcs=funcs, t=x, doit=True) == sol raises(ValueError, lambda: dsolve_system(1)) raises(ValueError, lambda: dsolve_system(eqs, 1)) raises(ValueError, lambda: dsolve_system(eqs, funcs, 1)) raises(ValueError, lambda: dsolve_system(eqs, funcs[:1], x)) eq = (Eq(f(x).diff(x), 12 * f(x) - 6 * g(x)), Eq(g(x).diff(x) ** 2, 11 * f(x) + 3 * g(x))) raises(NotImplementedError, lambda: dsolve_system(eq) == ([], [])) raises(NotImplementedError, lambda: dsolve_system(eq, funcs=[f(x), g(x)]) == ([], [])) raises(NotImplementedError, lambda: dsolve_system(eq, funcs=[f(x), g(x)], t=x) == ([], [])) raises(NotImplementedError, lambda: dsolve_system(eq, funcs=[f(x), g(x)], t=x, ics={f(0): 1, g(0): 1}) == ([], [])) raises(NotImplementedError, lambda: dsolve_system(eq, t=x, ics={f(0): 1, g(0): 1}) == ([], [])) raises(NotImplementedError, lambda: dsolve_system(eq, ics={f(0): 1, g(0): 1}) == ([], [])) raises(NotImplementedError, lambda: dsolve_system(eq, funcs=[f(x), g(x)], ics={f(0): 1, g(0): 1}) == ([], [])) def test_dsolve(): f, g = symbols('f g', cls=Function) x, y = symbols('x y') eqs = [f(x).diff(x) - x, f(x).diff(x) + x] with raises(ValueError): dsolve(eqs) eqs = [f(x, y).diff(x)] with raises(ValueError): dsolve(eqs) eqs = [f(x, y).diff(x)+g(x).diff(x), g(x).diff(x)] with raises(ValueError): dsolve(eqs) @slow def test_higher_order1_slow1(): x, y = symbols("x y", cls=Function) t = symbols("t") eq = [ Eq(diff(x(t),t,t), (log(t)+t**2)*diff(x(t),t)+(log(t)+t**2)*3*diff(y(t),t)), Eq(diff(y(t),t,t), (log(t)+t**2)*2*diff(x(t),t)+(log(t)+t**2)*9*diff(y(t),t)) ] sol, = dsolve_system(eq, simplify=False, doit=False) # The solution is too long to write out explicitly and checkodesol is too # slow so we test for particular values of t: for e in eq: res = (e.lhs - e.rhs).subs({sol[0].lhs:sol[0].rhs, sol[1].lhs:sol[1].rhs}) res = res.subs({d: d.doit(deep=False) for d in res.atoms(Derivative)}) assert ratsimp(res.subs(t, 1)) == 0 @slow def test_second_order_type2_slow1(): x, y, z = symbols('x, y, z', cls=Function) t, l = symbols('t, l') eqs1 = [Eq(Derivative(x(t), (t, 2)), t*(2*x(t) + y(t))), Eq(Derivative(y(t), (t, 2)), t*(-x(t) + 2*y(t)))] sol1 = [Eq(x(t), I*C1*airyai(t*(2 - I)**(S(1)/3)) + I*C2*airybi(t*(2 - I)**(S(1)/3)) - I*C3*airyai(t*(2 + I)**(S(1)/3)) - I*C4*airybi(t*(2 + I)**(S(1)/3))), Eq(y(t), C1*airyai(t*(2 - I)**(S(1)/3)) + C2*airybi(t*(2 - I)**(S(1)/3)) + C3*airyai(t*(2 + I)**(S(1)/3)) + C4*airybi(t*(2 + I)**(S(1)/3)))] assert dsolve(eqs1) == sol1 assert checksysodesol(eqs1, sol1) == (True, [0, 0])
fe96dbd0bf57327d98aee37cba96f9bef2712bd60f32ae28bccea0ee4bb2d368
from sympy import symbols, cos, sin, S, Eq, Equality, sqrt, Ne from sympy.external import import_module from sympy.testing.pytest import skip from sympy.utilities.matchpy_connector import WildDot, WildPlus, WildStar, Replacer matchpy = import_module("matchpy") x, y, z = symbols("x y z") def _get_first_match(expr, pattern): from matchpy import ManyToOneMatcher, Pattern matcher = ManyToOneMatcher() matcher.add(Pattern(pattern)) return next(iter(matcher.match(expr))) def test_matchpy_connector(): if matchpy is None: skip("matchpy not installed") from multiset import Multiset from matchpy import Pattern, Substitution w_ = WildDot("w_") w__ = WildPlus("w__") w___ = WildStar("w___") expr = x + y pattern = x + w_ p, subst = _get_first_match(expr, pattern) assert p == Pattern(pattern) assert subst == Substitution({'w_': y}) expr = x + y + z pattern = x + w__ p, subst = _get_first_match(expr, pattern) assert p == Pattern(pattern) assert subst == Substitution({'w__': Multiset([y, z])}) expr = x + y + z pattern = x + y + z + w___ p, subst = _get_first_match(expr, pattern) assert p == Pattern(pattern) assert subst == Substitution({'w___': Multiset()}) def test_matchpy_optional(): if matchpy is None: skip("matchpy not installed") from matchpy import Pattern, Substitution from matchpy import ManyToOneReplacer, ReplacementRule p = WildDot("p", optional=1) q = WildDot("q", optional=0) pattern = p*x + q expr1 = 2*x pa, subst = _get_first_match(expr1, pattern) assert pa == Pattern(pattern) assert subst == Substitution({'p': 2, 'q': 0}) expr2 = x + 3 pa, subst = _get_first_match(expr2, pattern) assert pa == Pattern(pattern) assert subst == Substitution({'p': 1, 'q': 3}) expr3 = x pa, subst = _get_first_match(expr3, pattern) assert pa == Pattern(pattern) assert subst == Substitution({'p': 1, 'q': 0}) expr4 = x*y + z pa, subst = _get_first_match(expr4, pattern) assert pa == Pattern(pattern) assert subst == Substitution({'p': y, 'q': z}) replacer = ManyToOneReplacer() replacer.add(ReplacementRule(Pattern(pattern), lambda p, q: sin(p)*cos(q))) assert replacer.replace(expr1) == sin(2)*cos(0) assert replacer.replace(expr2) == sin(1)*cos(3) assert replacer.replace(expr3) == sin(1)*cos(0) assert replacer.replace(expr4) == sin(y)*cos(z) def test_replacer(): if matchpy is None: skip("matchpy not installed") x1_ = WildDot("x1_") x2_ = WildDot("x2_") a_ = WildDot("a_", optional=S.One) b_ = WildDot("b_", optional=S.One) c_ = WildDot("c_", optional=S.Zero) replacer = Replacer(common_constraints=[ matchpy.CustomConstraint(lambda a_: not a_.has(x)), matchpy.CustomConstraint(lambda b_: not b_.has(x)), matchpy.CustomConstraint(lambda c_: not c_.has(x)), ]) # Rewrite the equation into implicit form, unless it's already solved: replacer.add(Eq(x1_, x2_), Eq(x1_ - x2_, 0), conditions_nonfalse=[Ne(x2_, 0), Ne(x1_, 0), Ne(x1_, x), Ne(x2_, x)]) # Simple equation solver for real numbers: replacer.add(Equality(a_*x + b_, 0), Equality(x, -b_/a_)) disc = b_**2 - 4*a_*c_ replacer.add( Equality(a_*x**2 + b_*x + c_, 0), Eq(x, (-b_ - sqrt(disc))/(2*a_)) | Eq(x, (-b_ + sqrt(disc))/(2*a_)), conditions_nonfalse=[disc >= 0] ) replacer.add( Equality(a_*x**2 + c_, 0), Eq(x, sqrt(-c_/a_)) | Eq(x, -sqrt(-c_/a_)), conditions_nonfalse=[-c_*a_ > 0] ) assert replacer.replace(Eq(3*x, y)) == Eq(x, y/3) assert replacer.replace(Eq(x**2 + 1, 0)) == Eq(x**2 + 1, 0) assert replacer.replace(Eq(x**2, 4)) == (Eq(x, 2) | Eq(x, -2)) assert replacer.replace(Eq(x**2 + 4*y*x + 4*y**2, 0)) == Eq(x, -2*y)
b02442e81092868d5ef67e1c9647b74171f1e1adea60baeef9b75d4bfb049850
"""Tests for simple tools for timing functions' execution. """ from sympy.utilities.timeutils import timed def test_timed(): result = timed(lambda: 1 + 1, limit=100000) assert result[0] == 100000 and result[3] == "ns", str(result) result = timed("1 + 1", limit=100000) assert result[0] == 100000 and result[3] == "ns"
cd1b6c908113b0d85a6de58e373cc47e41fff22c1cf94687ca29384e03cbae6c
import itertools from sympy.core import S from sympy.core.containers import Tuple from sympy.core.function import _coeff_isneg from sympy.core.mul import Mul from sympy.core.numbers import Number, Rational from sympy.core.power import Pow from sympy.core.symbol import Symbol from sympy.core.sympify import SympifyError from sympy.printing.conventions import requires_partial from sympy.printing.precedence import PRECEDENCE, precedence, precedence_traditional from sympy.printing.printer import Printer, print_function from sympy.printing.str import sstr from sympy.utilities import default_sort_key from sympy.utilities.iterables import has_variety from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.printing.pretty.stringpict import prettyForm, stringPict from sympy.printing.pretty.pretty_symbology import hobj, vobj, xobj, \ xsym, pretty_symbol, pretty_atom, pretty_use_unicode, greek_unicode, U, \ pretty_try_use_unicode, annotated # rename for usage from outside pprint_use_unicode = pretty_use_unicode pprint_try_use_unicode = pretty_try_use_unicode class PrettyPrinter(Printer): """Printer, which converts an expression into 2D ASCII-art figure.""" printmethod = "_pretty" _default_settings = { "order": None, "full_prec": "auto", "use_unicode": None, "wrap_line": True, "num_columns": None, "use_unicode_sqrt_char": True, "root_notation": True, "mat_symbol_style": "plain", "imaginary_unit": "i", "perm_cyclic": True } def __init__(self, settings=None): Printer.__init__(self, settings) if not isinstance(self._settings['imaginary_unit'], str): raise TypeError("'imaginary_unit' must a string, not {}".format(self._settings['imaginary_unit'])) elif self._settings['imaginary_unit'] not in ["i", "j"]: raise ValueError("'imaginary_unit' must be either 'i' or 'j', not '{}'".format(self._settings['imaginary_unit'])) def emptyPrinter(self, expr): return prettyForm(str(expr)) @property def _use_unicode(self): if self._settings['use_unicode']: return True else: return pretty_use_unicode() def doprint(self, expr): return self._print(expr).render(**self._settings) # empty op so _print(stringPict) returns the same def _print_stringPict(self, e): return e def _print_basestring(self, e): return prettyForm(e) def _print_atan2(self, e): pform = prettyForm(*self._print_seq(e.args).parens()) pform = prettyForm(*pform.left('atan2')) return pform def _print_Symbol(self, e, bold_name=False): symb = pretty_symbol(e.name, bold_name) return prettyForm(symb) _print_RandomSymbol = _print_Symbol def _print_MatrixSymbol(self, e): return self._print_Symbol(e, self._settings['mat_symbol_style'] == "bold") def _print_Float(self, e): # we will use StrPrinter's Float printer, but we need to handle the # full_prec ourselves, according to the self._print_level full_prec = self._settings["full_prec"] if full_prec == "auto": full_prec = self._print_level == 1 return prettyForm(sstr(e, full_prec=full_prec)) def _print_Cross(self, e): vec1 = e._expr1 vec2 = e._expr2 pform = self._print(vec2) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN')))) pform = prettyForm(*pform.left(')')) pform = prettyForm(*pform.left(self._print(vec1))) pform = prettyForm(*pform.left('(')) return pform def _print_Curl(self, e): vec = e._expr pform = self._print(vec) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN')))) pform = prettyForm(*pform.left(self._print(U('NABLA')))) return pform def _print_Divergence(self, e): vec = e._expr pform = self._print(vec) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR')))) pform = prettyForm(*pform.left(self._print(U('NABLA')))) return pform def _print_Dot(self, e): vec1 = e._expr1 vec2 = e._expr2 pform = self._print(vec2) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR')))) pform = prettyForm(*pform.left(')')) pform = prettyForm(*pform.left(self._print(vec1))) pform = prettyForm(*pform.left('(')) return pform def _print_Gradient(self, e): func = e._expr pform = self._print(func) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('NABLA')))) return pform def _print_Laplacian(self, e): func = e._expr pform = self._print(func) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('INCREMENT')))) return pform def _print_Atom(self, e): try: # print atoms like Exp1 or Pi return prettyForm(pretty_atom(e.__class__.__name__, printer=self)) except KeyError: return self.emptyPrinter(e) # Infinity inherits from Number, so we have to override _print_XXX order _print_Infinity = _print_Atom _print_NegativeInfinity = _print_Atom _print_EmptySet = _print_Atom _print_Naturals = _print_Atom _print_Naturals0 = _print_Atom _print_Integers = _print_Atom _print_Rationals = _print_Atom _print_Complexes = _print_Atom _print_EmptySequence = _print_Atom def _print_Reals(self, e): if self._use_unicode: return self._print_Atom(e) else: inf_list = ['-oo', 'oo'] return self._print_seq(inf_list, '(', ')') def _print_subfactorial(self, e): x = e.args[0] pform = self._print(x) # Add parentheses if needed if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol): pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left('!')) return pform def _print_factorial(self, e): x = e.args[0] pform = self._print(x) # Add parentheses if needed if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol): pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.right('!')) return pform def _print_factorial2(self, e): x = e.args[0] pform = self._print(x) # Add parentheses if needed if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol): pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.right('!!')) return pform def _print_binomial(self, e): n, k = e.args n_pform = self._print(n) k_pform = self._print(k) bar = ' '*max(n_pform.width(), k_pform.width()) pform = prettyForm(*k_pform.above(bar)) pform = prettyForm(*pform.above(n_pform)) pform = prettyForm(*pform.parens('(', ')')) pform.baseline = (pform.baseline + 1)//2 return pform def _print_Relational(self, e): op = prettyForm(' ' + xsym(e.rel_op) + ' ') l = self._print(e.lhs) r = self._print(e.rhs) pform = prettyForm(*stringPict.next(l, op, r)) return pform def _print_Not(self, e): from sympy import Equivalent, Implies if self._use_unicode: arg = e.args[0] pform = self._print(arg) if isinstance(arg, Equivalent): return self._print_Equivalent(arg, altchar="\N{LEFT RIGHT DOUBLE ARROW WITH STROKE}") if isinstance(arg, Implies): return self._print_Implies(arg, altchar="\N{RIGHTWARDS ARROW WITH STROKE}") if arg.is_Boolean and not arg.is_Not: pform = prettyForm(*pform.parens()) return prettyForm(*pform.left("\N{NOT SIGN}")) else: return self._print_Function(e) def __print_Boolean(self, e, char, sort=True): args = e.args if sort: args = sorted(e.args, key=default_sort_key) arg = args[0] pform = self._print(arg) if arg.is_Boolean and not arg.is_Not: pform = prettyForm(*pform.parens()) for arg in args[1:]: pform_arg = self._print(arg) if arg.is_Boolean and not arg.is_Not: pform_arg = prettyForm(*pform_arg.parens()) pform = prettyForm(*pform.right(' %s ' % char)) pform = prettyForm(*pform.right(pform_arg)) return pform def _print_And(self, e): if self._use_unicode: return self.__print_Boolean(e, "\N{LOGICAL AND}") else: return self._print_Function(e, sort=True) def _print_Or(self, e): if self._use_unicode: return self.__print_Boolean(e, "\N{LOGICAL OR}") else: return self._print_Function(e, sort=True) def _print_Xor(self, e): if self._use_unicode: return self.__print_Boolean(e, "\N{XOR}") else: return self._print_Function(e, sort=True) def _print_Nand(self, e): if self._use_unicode: return self.__print_Boolean(e, "\N{NAND}") else: return self._print_Function(e, sort=True) def _print_Nor(self, e): if self._use_unicode: return self.__print_Boolean(e, "\N{NOR}") else: return self._print_Function(e, sort=True) def _print_Implies(self, e, altchar=None): if self._use_unicode: return self.__print_Boolean(e, altchar or "\N{RIGHTWARDS ARROW}", sort=False) else: return self._print_Function(e) def _print_Equivalent(self, e, altchar=None): if self._use_unicode: return self.__print_Boolean(e, altchar or "\N{LEFT RIGHT DOUBLE ARROW}") else: return self._print_Function(e, sort=True) def _print_conjugate(self, e): pform = self._print(e.args[0]) return prettyForm( *pform.above( hobj('_', pform.width())) ) def _print_Abs(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.parens('|', '|')) return pform _print_Determinant = _print_Abs def _print_floor(self, e): if self._use_unicode: pform = self._print(e.args[0]) pform = prettyForm(*pform.parens('lfloor', 'rfloor')) return pform else: return self._print_Function(e) def _print_ceiling(self, e): if self._use_unicode: pform = self._print(e.args[0]) pform = prettyForm(*pform.parens('lceil', 'rceil')) return pform else: return self._print_Function(e) def _print_Derivative(self, deriv): if requires_partial(deriv.expr) and self._use_unicode: deriv_symbol = U('PARTIAL DIFFERENTIAL') else: deriv_symbol = r'd' x = None count_total_deriv = 0 for sym, num in reversed(deriv.variable_count): s = self._print(sym) ds = prettyForm(*s.left(deriv_symbol)) count_total_deriv += num if (not num.is_Integer) or (num > 1): ds = ds**prettyForm(str(num)) if x is None: x = ds else: x = prettyForm(*x.right(' ')) x = prettyForm(*x.right(ds)) f = prettyForm( binding=prettyForm.FUNC, *self._print(deriv.expr).parens()) pform = prettyForm(deriv_symbol) if (count_total_deriv > 1) != False: pform = pform**prettyForm(str(count_total_deriv)) pform = prettyForm(*pform.below(stringPict.LINE, x)) pform.baseline = pform.baseline + 1 pform = prettyForm(*stringPict.next(pform, f)) pform.binding = prettyForm.MUL return pform def _print_Cycle(self, dc): from sympy.combinatorics.permutations import Permutation, Cycle # for Empty Cycle if dc == Cycle(): cyc = stringPict('') return prettyForm(*cyc.parens()) dc_list = Permutation(dc.list()).cyclic_form # for Identity Cycle if dc_list == []: cyc = self._print(dc.size - 1) return prettyForm(*cyc.parens()) cyc = stringPict('') for i in dc_list: l = self._print(str(tuple(i)).replace(',', '')) cyc = prettyForm(*cyc.right(l)) return cyc def _print_Permutation(self, expr): from sympy.combinatorics.permutations import Permutation, Cycle perm_cyclic = Permutation.print_cyclic if perm_cyclic is not None: SymPyDeprecationWarning( feature="Permutation.print_cyclic = {}".format(perm_cyclic), useinstead="init_printing(perm_cyclic={})" .format(perm_cyclic), issue=15201, deprecated_since_version="1.6").warn() else: perm_cyclic = self._settings.get("perm_cyclic", True) if perm_cyclic: return self._print_Cycle(Cycle(expr)) lower = expr.array_form upper = list(range(len(lower))) result = stringPict('') first = True for u, l in zip(upper, lower): s1 = self._print(u) s2 = self._print(l) col = prettyForm(*s1.below(s2)) if first: first = False else: col = prettyForm(*col.left(" ")) result = prettyForm(*result.right(col)) return prettyForm(*result.parens()) def _print_Integral(self, integral): f = integral.function # Add parentheses if arg involves addition of terms and # create a pretty form for the argument prettyF = self._print(f) # XXX generalize parens if f.is_Add: prettyF = prettyForm(*prettyF.parens()) # dx dy dz ... arg = prettyF for x in integral.limits: prettyArg = self._print(x[0]) # XXX qparens (parens if needs-parens) if prettyArg.width() > 1: prettyArg = prettyForm(*prettyArg.parens()) arg = prettyForm(*arg.right(' d', prettyArg)) # \int \int \int ... firstterm = True s = None for lim in integral.limits: x = lim[0] # Create bar based on the height of the argument h = arg.height() H = h + 2 # XXX hack! ascii_mode = not self._use_unicode if ascii_mode: H += 2 vint = vobj('int', H) # Construct the pretty form with the integral sign and the argument pform = prettyForm(vint) pform.baseline = arg.baseline + ( H - h)//2 # covering the whole argument if len(lim) > 1: # Create pretty forms for endpoints, if definite integral. # Do not print empty endpoints. if len(lim) == 2: prettyA = prettyForm("") prettyB = self._print(lim[1]) if len(lim) == 3: prettyA = self._print(lim[1]) prettyB = self._print(lim[2]) if ascii_mode: # XXX hack # Add spacing so that endpoint can more easily be # identified with the correct integral sign spc = max(1, 3 - prettyB.width()) prettyB = prettyForm(*prettyB.left(' ' * spc)) spc = max(1, 4 - prettyA.width()) prettyA = prettyForm(*prettyA.right(' ' * spc)) pform = prettyForm(*pform.above(prettyB)) pform = prettyForm(*pform.below(prettyA)) if not ascii_mode: # XXX hack pform = prettyForm(*pform.right(' ')) if firstterm: s = pform # first term firstterm = False else: s = prettyForm(*s.left(pform)) pform = prettyForm(*arg.left(s)) pform.binding = prettyForm.MUL return pform def _print_Product(self, expr): func = expr.term pretty_func = self._print(func) horizontal_chr = xobj('_', 1) corner_chr = xobj('_', 1) vertical_chr = xobj('|', 1) if self._use_unicode: # use unicode corners horizontal_chr = xobj('-', 1) corner_chr = '\N{BOX DRAWINGS LIGHT DOWN AND HORIZONTAL}' func_height = pretty_func.height() first = True max_upper = 0 sign_height = 0 for lim in expr.limits: pretty_lower, pretty_upper = self.__print_SumProduct_Limits(lim) width = (func_height + 2) * 5 // 3 - 2 sign_lines = [horizontal_chr + corner_chr + (horizontal_chr * (width-2)) + corner_chr + horizontal_chr] for _ in range(func_height + 1): sign_lines.append(' ' + vertical_chr + (' ' * (width-2)) + vertical_chr + ' ') pretty_sign = stringPict('') pretty_sign = prettyForm(*pretty_sign.stack(*sign_lines)) max_upper = max(max_upper, pretty_upper.height()) if first: sign_height = pretty_sign.height() pretty_sign = prettyForm(*pretty_sign.above(pretty_upper)) pretty_sign = prettyForm(*pretty_sign.below(pretty_lower)) if first: pretty_func.baseline = 0 first = False height = pretty_sign.height() padding = stringPict('') padding = prettyForm(*padding.stack(*[' ']*(height - 1))) pretty_sign = prettyForm(*pretty_sign.right(padding)) pretty_func = prettyForm(*pretty_sign.right(pretty_func)) pretty_func.baseline = max_upper + sign_height//2 pretty_func.binding = prettyForm.MUL return pretty_func def __print_SumProduct_Limits(self, lim): def print_start(lhs, rhs): op = prettyForm(' ' + xsym("==") + ' ') l = self._print(lhs) r = self._print(rhs) pform = prettyForm(*stringPict.next(l, op, r)) return pform prettyUpper = self._print(lim[2]) prettyLower = print_start(lim[0], lim[1]) return prettyLower, prettyUpper def _print_Sum(self, expr): ascii_mode = not self._use_unicode def asum(hrequired, lower, upper, use_ascii): def adjust(s, wid=None, how='<^>'): if not wid or len(s) > wid: return s need = wid - len(s) if how == '<^>' or how == "<" or how not in list('<^>'): return s + ' '*need half = need//2 lead = ' '*half if how == ">": return " "*need + s return lead + s + ' '*(need - len(lead)) h = max(hrequired, 2) d = h//2 w = d + 1 more = hrequired % 2 lines = [] if use_ascii: lines.append("_"*(w) + ' ') lines.append(r"\%s`" % (' '*(w - 1))) for i in range(1, d): lines.append('%s\\%s' % (' '*i, ' '*(w - i))) if more: lines.append('%s)%s' % (' '*(d), ' '*(w - d))) for i in reversed(range(1, d)): lines.append('%s/%s' % (' '*i, ' '*(w - i))) lines.append("/" + "_"*(w - 1) + ',') return d, h + more, lines, more else: w = w + more d = d + more vsum = vobj('sum', 4) lines.append("_"*(w)) for i in range(0, d): lines.append('%s%s%s' % (' '*i, vsum[2], ' '*(w - i - 1))) for i in reversed(range(0, d)): lines.append('%s%s%s' % (' '*i, vsum[4], ' '*(w - i - 1))) lines.append(vsum[8]*(w)) return d, h + 2*more, lines, more f = expr.function prettyF = self._print(f) if f.is_Add: # add parens prettyF = prettyForm(*prettyF.parens()) H = prettyF.height() + 2 # \sum \sum \sum ... first = True max_upper = 0 sign_height = 0 for lim in expr.limits: prettyLower, prettyUpper = self.__print_SumProduct_Limits(lim) max_upper = max(max_upper, prettyUpper.height()) # Create sum sign based on the height of the argument d, h, slines, adjustment = asum( H, prettyLower.width(), prettyUpper.width(), ascii_mode) prettySign = stringPict('') prettySign = prettyForm(*prettySign.stack(*slines)) if first: sign_height = prettySign.height() prettySign = prettyForm(*prettySign.above(prettyUpper)) prettySign = prettyForm(*prettySign.below(prettyLower)) if first: # change F baseline so it centers on the sign prettyF.baseline -= d - (prettyF.height()//2 - prettyF.baseline) first = False # put padding to the right pad = stringPict('') pad = prettyForm(*pad.stack(*[' ']*h)) prettySign = prettyForm(*prettySign.right(pad)) # put the present prettyF to the right prettyF = prettyForm(*prettySign.right(prettyF)) # adjust baseline of ascii mode sigma with an odd height so that it is # exactly through the center ascii_adjustment = ascii_mode if not adjustment else 0 prettyF.baseline = max_upper + sign_height//2 + ascii_adjustment prettyF.binding = prettyForm.MUL return prettyF def _print_Limit(self, l): e, z, z0, dir = l.args E = self._print(e) if precedence(e) <= PRECEDENCE["Mul"]: E = prettyForm(*E.parens('(', ')')) Lim = prettyForm('lim') LimArg = self._print(z) if self._use_unicode: LimArg = prettyForm(*LimArg.right('\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{RIGHTWARDS ARROW}')) else: LimArg = prettyForm(*LimArg.right('->')) LimArg = prettyForm(*LimArg.right(self._print(z0))) if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity): dir = "" else: if self._use_unicode: dir = '\N{SUPERSCRIPT PLUS SIGN}' if str(dir) == "+" else '\N{SUPERSCRIPT MINUS}' LimArg = prettyForm(*LimArg.right(self._print(dir))) Lim = prettyForm(*Lim.below(LimArg)) Lim = prettyForm(*Lim.right(E), binding=prettyForm.MUL) return Lim def _print_matrix_contents(self, e): """ This method factors out what is essentially grid printing. """ M = e # matrix Ms = {} # i,j -> pretty(M[i,j]) for i in range(M.rows): for j in range(M.cols): Ms[i, j] = self._print(M[i, j]) # h- and v- spacers hsep = 2 vsep = 1 # max width for columns maxw = [-1] * M.cols for j in range(M.cols): maxw[j] = max([Ms[i, j].width() for i in range(M.rows)] or [0]) # drawing result D = None for i in range(M.rows): D_row = None for j in range(M.cols): s = Ms[i, j] # reshape s to maxw # XXX this should be generalized, and go to stringPict.reshape ? assert s.width() <= maxw[j] # hcenter it, +0.5 to the right 2 # ( it's better to align formula starts for say 0 and r ) # XXX this is not good in all cases -- maybe introduce vbaseline? wdelta = maxw[j] - s.width() wleft = wdelta // 2 wright = wdelta - wleft s = prettyForm(*s.right(' '*wright)) s = prettyForm(*s.left(' '*wleft)) # we don't need vcenter cells -- this is automatically done in # a pretty way because when their baselines are taking into # account in .right() if D_row is None: D_row = s # first box in a row continue D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer D_row = prettyForm(*D_row.right(s)) if D is None: D = D_row # first row in a picture continue # v-spacer for _ in range(vsep): D = prettyForm(*D.below(' ')) D = prettyForm(*D.below(D_row)) if D is None: D = prettyForm('') # Empty Matrix return D def _print_MatrixBase(self, e): D = self._print_matrix_contents(e) D.baseline = D.height()//2 D = prettyForm(*D.parens('[', ']')) return D def _print_TensorProduct(self, expr): # This should somehow share the code with _print_WedgeProduct: circled_times = "\u2297" return self._print_seq(expr.args, None, None, circled_times, parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"]) def _print_WedgeProduct(self, expr): # This should somehow share the code with _print_TensorProduct: wedge_symbol = "\u2227" return self._print_seq(expr.args, None, None, wedge_symbol, parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"]) def _print_Trace(self, e): D = self._print(e.arg) D = prettyForm(*D.parens('(',')')) D.baseline = D.height()//2 D = prettyForm(*D.left('\n'*(0) + 'tr')) return D def _print_MatrixElement(self, expr): from sympy.matrices import MatrixSymbol from sympy import Symbol if (isinstance(expr.parent, MatrixSymbol) and expr.i.is_number and expr.j.is_number): return self._print( Symbol(expr.parent.name + '_%d%d' % (expr.i, expr.j))) else: prettyFunc = self._print(expr.parent) prettyFunc = prettyForm(*prettyFunc.parens()) prettyIndices = self._print_seq((expr.i, expr.j), delimiter=', ' ).parens(left='[', right=']')[0] pform = prettyForm(binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyIndices)) # store pform parts so it can be reassembled e.g. when powered pform.prettyFunc = prettyFunc pform.prettyArgs = prettyIndices return pform def _print_MatrixSlice(self, m): # XXX works only for applied functions from sympy.matrices import MatrixSymbol prettyFunc = self._print(m.parent) if not isinstance(m.parent, MatrixSymbol): prettyFunc = prettyForm(*prettyFunc.parens()) def ppslice(x, dim): x = list(x) if x[2] == 1: del x[2] if x[0] == 0: x[0] = '' if x[1] == dim: x[1] = '' return prettyForm(*self._print_seq(x, delimiter=':')) prettyArgs = self._print_seq((ppslice(m.rowslice, m.parent.rows), ppslice(m.colslice, m.parent.cols)), delimiter=', ').parens(left='[', right=']')[0] pform = prettyForm( binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) # store pform parts so it can be reassembled e.g. when powered pform.prettyFunc = prettyFunc pform.prettyArgs = prettyArgs return pform def _print_Transpose(self, expr): pform = self._print(expr.arg) from sympy.matrices import MatrixSymbol if not isinstance(expr.arg, MatrixSymbol): pform = prettyForm(*pform.parens()) pform = pform**(prettyForm('T')) return pform def _print_Adjoint(self, expr): pform = self._print(expr.arg) if self._use_unicode: dag = prettyForm('\N{DAGGER}') else: dag = prettyForm('+') from sympy.matrices import MatrixSymbol if not isinstance(expr.arg, MatrixSymbol): pform = prettyForm(*pform.parens()) pform = pform**dag return pform def _print_BlockMatrix(self, B): if B.blocks.shape == (1, 1): return self._print(B.blocks[0, 0]) return self._print(B.blocks) def _print_MatAdd(self, expr): s = None for item in expr.args: pform = self._print(item) if s is None: s = pform # First element else: coeff = item.as_coeff_mmul()[0] if _coeff_isneg(S(coeff)): s = prettyForm(*stringPict.next(s, ' ')) pform = self._print(item) else: s = prettyForm(*stringPict.next(s, ' + ')) s = prettyForm(*stringPict.next(s, pform)) return s def _print_MatMul(self, expr): args = list(expr.args) from sympy import Add, MatAdd, HadamardProduct, KroneckerProduct for i, a in enumerate(args): if (isinstance(a, (Add, MatAdd, HadamardProduct, KroneckerProduct)) and len(expr.args) > 1): args[i] = prettyForm(*self._print(a).parens()) else: args[i] = self._print(a) return prettyForm.__mul__(*args) def _print_Identity(self, expr): if self._use_unicode: return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL I}') else: return prettyForm('I') def _print_ZeroMatrix(self, expr): if self._use_unicode: return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ZERO}') else: return prettyForm('0') def _print_OneMatrix(self, expr): if self._use_unicode: return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ONE}') else: return prettyForm('1') def _print_DotProduct(self, expr): args = list(expr.args) for i, a in enumerate(args): args[i] = self._print(a) return prettyForm.__mul__(*args) def _print_MatPow(self, expr): pform = self._print(expr.base) from sympy.matrices import MatrixSymbol if not isinstance(expr.base, MatrixSymbol): pform = prettyForm(*pform.parens()) pform = pform**(self._print(expr.exp)) return pform def _print_HadamardProduct(self, expr): from sympy import MatAdd, MatMul, HadamardProduct if self._use_unicode: delim = pretty_atom('Ring') else: delim = '.*' return self._print_seq(expr.args, None, None, delim, parenthesize=lambda x: isinstance(x, (MatAdd, MatMul, HadamardProduct))) def _print_HadamardPower(self, expr): # from sympy import MatAdd, MatMul if self._use_unicode: circ = pretty_atom('Ring') else: circ = self._print('.') pretty_base = self._print(expr.base) pretty_exp = self._print(expr.exp) if precedence(expr.exp) < PRECEDENCE["Mul"]: pretty_exp = prettyForm(*pretty_exp.parens()) pretty_circ_exp = prettyForm( binding=prettyForm.LINE, *stringPict.next(circ, pretty_exp) ) return pretty_base**pretty_circ_exp def _print_KroneckerProduct(self, expr): from sympy import MatAdd, MatMul if self._use_unicode: delim = ' \N{N-ARY CIRCLED TIMES OPERATOR} ' else: delim = ' x ' return self._print_seq(expr.args, None, None, delim, parenthesize=lambda x: isinstance(x, (MatAdd, MatMul))) def _print_FunctionMatrix(self, X): D = self._print(X.lamda.expr) D = prettyForm(*D.parens('[', ']')) return D def _print_TransferFunction(self, expr): if not expr.num == 1: num, den = expr.num, expr.den res = Mul(num, Pow(den, -1, evaluate=False), evaluate=False) return self._print_Mul(res) else: return self._print(1)/self._print(expr.den) def _print_Series(self, expr): args = list(expr.args) for i, a in enumerate(expr.args): args[i] = prettyForm(*self._print(a).parens()) return prettyForm.__mul__(*args) def _print_Parallel(self, expr): s = None for item in expr.args: pform = self._print(item) if s is None: s = pform # First element else: s = prettyForm(*stringPict.next(s, ' + ')) s = prettyForm(*stringPict.next(s, pform)) return s def _print_Feedback(self, expr): from sympy.physics.control import TransferFunction, Parallel, Series num, tf = expr.num, TransferFunction(1, 1, expr.num.var) num_arg_list = list(num.args) if isinstance(num, Series) else [num] den_arg_list = list(expr.den.args) if isinstance(expr.den, Series) else [expr.den] if isinstance(num, Series) and isinstance(expr.den, Series): den = Parallel(tf, Series(*num_arg_list, *den_arg_list)) elif isinstance(num, Series) and isinstance(expr.den, TransferFunction): if expr.den == tf: den = Parallel(tf, Series(*num_arg_list)) else: den = Parallel(tf, Series(*num_arg_list, expr.den)) elif isinstance(num, TransferFunction) and isinstance(expr.den, Series): if num == tf: den = Parallel(tf, Series(*den_arg_list)) else: den = Parallel(tf, Series(num, *den_arg_list)) else: if num == tf: den = Parallel(tf, *den_arg_list) elif expr.den == tf: den = Parallel(tf, *num_arg_list) else: den = Parallel(tf, Series(*num_arg_list, *den_arg_list)) return self._print(num)/self._print(den) def _print_BasisDependent(self, expr): from sympy.vector import Vector if not self._use_unicode: raise NotImplementedError("ASCII pretty printing of BasisDependent is not implemented") if expr == expr.zero: return prettyForm(expr.zero._pretty_form) o1 = [] vectstrs = [] if isinstance(expr, Vector): items = expr.separate().items() else: items = [(0, expr)] for system, vect in items: inneritems = list(vect.components.items()) inneritems.sort(key = lambda x: x[0].__str__()) for k, v in inneritems: #if the coef of the basis vector is 1 #we skip the 1 if v == 1: o1.append("" + k._pretty_form) #Same for -1 elif v == -1: o1.append("(-1) " + k._pretty_form) #For a general expr else: #We always wrap the measure numbers in #parentheses arg_str = self._print( v).parens()[0] o1.append(arg_str + ' ' + k._pretty_form) vectstrs.append(k._pretty_form) #outstr = u("").join(o1) if o1[0].startswith(" + "): o1[0] = o1[0][3:] elif o1[0].startswith(" "): o1[0] = o1[0][1:] #Fixing the newlines lengths = [] strs = [''] flag = [] for i, partstr in enumerate(o1): flag.append(0) # XXX: What is this hack? if '\n' in partstr: tempstr = partstr tempstr = tempstr.replace(vectstrs[i], '') if '\N{right parenthesis extension}' in tempstr: # If scalar is a fraction for paren in range(len(tempstr)): flag[i] = 1 if tempstr[paren] == '\N{right parenthesis extension}': tempstr = tempstr[:paren] + '\N{right parenthesis extension}'\ + ' ' + vectstrs[i] + tempstr[paren + 1:] break elif '\N{RIGHT PARENTHESIS LOWER HOOK}' in tempstr: flag[i] = 1 tempstr = tempstr.replace('\N{RIGHT PARENTHESIS LOWER HOOK}', '\N{RIGHT PARENTHESIS LOWER HOOK}' + ' ' + vectstrs[i]) else: tempstr = tempstr.replace('\N{RIGHT PARENTHESIS UPPER HOOK}', '\N{RIGHT PARENTHESIS UPPER HOOK}' + ' ' + vectstrs[i]) o1[i] = tempstr o1 = [x.split('\n') for x in o1] n_newlines = max([len(x) for x in o1]) # Width of part in its pretty form if 1 in flag: # If there was a fractional scalar for i, parts in enumerate(o1): if len(parts) == 1: # If part has no newline parts.insert(0, ' ' * (len(parts[0]))) flag[i] = 1 for i, parts in enumerate(o1): lengths.append(len(parts[flag[i]])) for j in range(n_newlines): if j+1 <= len(parts): if j >= len(strs): strs.append(' ' * (sum(lengths[:-1]) + 3*(len(lengths)-1))) if j == flag[i]: strs[flag[i]] += parts[flag[i]] + ' + ' else: strs[j] += parts[j] + ' '*(lengths[-1] - len(parts[j])+ 3) else: if j >= len(strs): strs.append(' ' * (sum(lengths[:-1]) + 3*(len(lengths)-1))) strs[j] += ' '*(lengths[-1]+3) return prettyForm('\n'.join([s[:-3] for s in strs])) def _print_NDimArray(self, expr): from sympy import ImmutableMatrix if expr.rank() == 0: return self._print(expr[()]) level_str = [[]] + [[] for i in range(expr.rank())] shape_ranges = [list(range(i)) for i in expr.shape] # leave eventual matrix elements unflattened mat = lambda x: ImmutableMatrix(x, evaluate=False) for outer_i in itertools.product(*shape_ranges): level_str[-1].append(expr[outer_i]) even = True for back_outer_i in range(expr.rank()-1, -1, -1): if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]: break if even: level_str[back_outer_i].append(level_str[back_outer_i+1]) else: level_str[back_outer_i].append(mat( level_str[back_outer_i+1])) if len(level_str[back_outer_i + 1]) == 1: level_str[back_outer_i][-1] = mat( [[level_str[back_outer_i][-1]]]) even = not even level_str[back_outer_i+1] = [] out_expr = level_str[0][0] if expr.rank() % 2 == 1: out_expr = mat([out_expr]) return self._print(out_expr) def _printer_tensor_indices(self, name, indices, index_map={}): center = stringPict(name) top = stringPict(" "*center.width()) bot = stringPict(" "*center.width()) last_valence = None prev_map = None for i, index in enumerate(indices): indpic = self._print(index.args[0]) if ((index in index_map) or prev_map) and last_valence == index.is_up: if index.is_up: top = prettyForm(*stringPict.next(top, ",")) else: bot = prettyForm(*stringPict.next(bot, ",")) if index in index_map: indpic = prettyForm(*stringPict.next(indpic, "=")) indpic = prettyForm(*stringPict.next(indpic, self._print(index_map[index]))) prev_map = True else: prev_map = False if index.is_up: top = stringPict(*top.right(indpic)) center = stringPict(*center.right(" "*indpic.width())) bot = stringPict(*bot.right(" "*indpic.width())) else: bot = stringPict(*bot.right(indpic)) center = stringPict(*center.right(" "*indpic.width())) top = stringPict(*top.right(" "*indpic.width())) last_valence = index.is_up pict = prettyForm(*center.above(top)) pict = prettyForm(*pict.below(bot)) return pict def _print_Tensor(self, expr): name = expr.args[0].name indices = expr.get_indices() return self._printer_tensor_indices(name, indices) def _print_TensorElement(self, expr): name = expr.expr.args[0].name indices = expr.expr.get_indices() index_map = expr.index_map return self._printer_tensor_indices(name, indices, index_map) def _print_TensMul(self, expr): sign, args = expr._get_args_for_traditional_printer() args = [ prettyForm(*self._print(i).parens()) if precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i) for i in args ] pform = prettyForm.__mul__(*args) if sign: return prettyForm(*pform.left(sign)) else: return pform def _print_TensAdd(self, expr): args = [ prettyForm(*self._print(i).parens()) if precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i) for i in expr.args ] return prettyForm.__add__(*args) def _print_TensorIndex(self, expr): sym = expr.args[0] if not expr.is_up: sym = -sym return self._print(sym) def _print_PartialDerivative(self, deriv): if self._use_unicode: deriv_symbol = U('PARTIAL DIFFERENTIAL') else: deriv_symbol = r'd' x = None for variable in reversed(deriv.variables): s = self._print(variable) ds = prettyForm(*s.left(deriv_symbol)) if x is None: x = ds else: x = prettyForm(*x.right(' ')) x = prettyForm(*x.right(ds)) f = prettyForm( binding=prettyForm.FUNC, *self._print(deriv.expr).parens()) pform = prettyForm(deriv_symbol) if len(deriv.variables) > 1: pform = pform**self._print(len(deriv.variables)) pform = prettyForm(*pform.below(stringPict.LINE, x)) pform.baseline = pform.baseline + 1 pform = prettyForm(*stringPict.next(pform, f)) pform.binding = prettyForm.MUL return pform def _print_Piecewise(self, pexpr): P = {} for n, ec in enumerate(pexpr.args): P[n, 0] = self._print(ec.expr) if ec.cond == True: P[n, 1] = prettyForm('otherwise') else: P[n, 1] = prettyForm( *prettyForm('for ').right(self._print(ec.cond))) hsep = 2 vsep = 1 len_args = len(pexpr.args) # max widths maxw = [max([P[i, j].width() for i in range(len_args)]) for j in range(2)] # FIXME: Refactor this code and matrix into some tabular environment. # drawing result D = None for i in range(len_args): D_row = None for j in range(2): p = P[i, j] assert p.width() <= maxw[j] wdelta = maxw[j] - p.width() wleft = wdelta // 2 wright = wdelta - wleft p = prettyForm(*p.right(' '*wright)) p = prettyForm(*p.left(' '*wleft)) if D_row is None: D_row = p continue D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer D_row = prettyForm(*D_row.right(p)) if D is None: D = D_row # first row in a picture continue # v-spacer for _ in range(vsep): D = prettyForm(*D.below(' ')) D = prettyForm(*D.below(D_row)) D = prettyForm(*D.parens('{', '')) D.baseline = D.height()//2 D.binding = prettyForm.OPEN return D def _print_ITE(self, ite): from sympy.functions.elementary.piecewise import Piecewise return self._print(ite.rewrite(Piecewise)) def _hprint_vec(self, v): D = None for a in v: p = a if D is None: D = p else: D = prettyForm(*D.right(', ')) D = prettyForm(*D.right(p)) if D is None: D = stringPict(' ') return D def _hprint_vseparator(self, p1, p2): tmp = prettyForm(*p1.right(p2)) sep = stringPict(vobj('|', tmp.height()), baseline=tmp.baseline) return prettyForm(*p1.right(sep, p2)) def _print_hyper(self, e): # FIXME refactor Matrix, Piecewise, and this into a tabular environment ap = [self._print(a) for a in e.ap] bq = [self._print(b) for b in e.bq] P = self._print(e.argument) P.baseline = P.height()//2 # Drawing result - first create the ap, bq vectors D = None for v in [ap, bq]: D_row = self._hprint_vec(v) if D is None: D = D_row # first row in a picture else: D = prettyForm(*D.below(' ')) D = prettyForm(*D.below(D_row)) # make sure that the argument `z' is centred vertically D.baseline = D.height()//2 # insert horizontal separator P = prettyForm(*P.left(' ')) D = prettyForm(*D.right(' ')) # insert separating `|` D = self._hprint_vseparator(D, P) # add parens D = prettyForm(*D.parens('(', ')')) # create the F symbol above = D.height()//2 - 1 below = D.height() - above - 1 sz, t, b, add, img = annotated('F') F = prettyForm('\n' * (above - t) + img + '\n' * (below - b), baseline=above + sz) add = (sz + 1)//2 F = prettyForm(*F.left(self._print(len(e.ap)))) F = prettyForm(*F.right(self._print(len(e.bq)))) F.baseline = above + add D = prettyForm(*F.right(' ', D)) return D def _print_meijerg(self, e): # FIXME refactor Matrix, Piecewise, and this into a tabular environment v = {} v[(0, 0)] = [self._print(a) for a in e.an] v[(0, 1)] = [self._print(a) for a in e.aother] v[(1, 0)] = [self._print(b) for b in e.bm] v[(1, 1)] = [self._print(b) for b in e.bother] P = self._print(e.argument) P.baseline = P.height()//2 vp = {} for idx in v: vp[idx] = self._hprint_vec(v[idx]) for i in range(2): maxw = max(vp[(0, i)].width(), vp[(1, i)].width()) for j in range(2): s = vp[(j, i)] left = (maxw - s.width()) // 2 right = maxw - left - s.width() s = prettyForm(*s.left(' ' * left)) s = prettyForm(*s.right(' ' * right)) vp[(j, i)] = s D1 = prettyForm(*vp[(0, 0)].right(' ', vp[(0, 1)])) D1 = prettyForm(*D1.below(' ')) D2 = prettyForm(*vp[(1, 0)].right(' ', vp[(1, 1)])) D = prettyForm(*D1.below(D2)) # make sure that the argument `z' is centred vertically D.baseline = D.height()//2 # insert horizontal separator P = prettyForm(*P.left(' ')) D = prettyForm(*D.right(' ')) # insert separating `|` D = self._hprint_vseparator(D, P) # add parens D = prettyForm(*D.parens('(', ')')) # create the G symbol above = D.height()//2 - 1 below = D.height() - above - 1 sz, t, b, add, img = annotated('G') F = prettyForm('\n' * (above - t) + img + '\n' * (below - b), baseline=above + sz) pp = self._print(len(e.ap)) pq = self._print(len(e.bq)) pm = self._print(len(e.bm)) pn = self._print(len(e.an)) def adjust(p1, p2): diff = p1.width() - p2.width() if diff == 0: return p1, p2 elif diff > 0: return p1, prettyForm(*p2.left(' '*diff)) else: return prettyForm(*p1.left(' '*-diff)), p2 pp, pm = adjust(pp, pm) pq, pn = adjust(pq, pn) pu = prettyForm(*pm.right(', ', pn)) pl = prettyForm(*pp.right(', ', pq)) ht = F.baseline - above - 2 if ht > 0: pu = prettyForm(*pu.below('\n'*ht)) p = prettyForm(*pu.below(pl)) F.baseline = above F = prettyForm(*F.right(p)) F.baseline = above + add D = prettyForm(*F.right(' ', D)) return D def _print_ExpBase(self, e): # TODO should exp_polar be printed differently? # what about exp_polar(0), exp_polar(1)? base = prettyForm(pretty_atom('Exp1', 'e')) return base ** self._print(e.args[0]) def _print_Function(self, e, sort=False, func_name=None): # optional argument func_name for supplying custom names # XXX works only for applied functions return self._helper_print_function(e.func, e.args, sort=sort, func_name=func_name) def _print_mathieuc(self, e): return self._print_Function(e, func_name='C') def _print_mathieus(self, e): return self._print_Function(e, func_name='S') def _print_mathieucprime(self, e): return self._print_Function(e, func_name="C'") def _print_mathieusprime(self, e): return self._print_Function(e, func_name="S'") def _helper_print_function(self, func, args, sort=False, func_name=None, delimiter=', ', elementwise=False): if sort: args = sorted(args, key=default_sort_key) if not func_name and hasattr(func, "__name__"): func_name = func.__name__ if func_name: prettyFunc = self._print(Symbol(func_name)) else: prettyFunc = prettyForm(*self._print(func).parens()) if elementwise: if self._use_unicode: circ = pretty_atom('Modifier Letter Low Ring') else: circ = '.' circ = self._print(circ) prettyFunc = prettyForm( binding=prettyForm.LINE, *stringPict.next(prettyFunc, circ) ) prettyArgs = prettyForm(*self._print_seq(args, delimiter=delimiter).parens()) pform = prettyForm( binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) # store pform parts so it can be reassembled e.g. when powered pform.prettyFunc = prettyFunc pform.prettyArgs = prettyArgs return pform def _print_ElementwiseApplyFunction(self, e): func = e.function arg = e.expr args = [arg] return self._helper_print_function(func, args, delimiter="", elementwise=True) @property def _special_function_classes(self): from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.functions.special.gamma_functions import gamma, lowergamma from sympy.functions.special.zeta_functions import lerchphi from sympy.functions.special.beta_functions import beta from sympy.functions.special.delta_functions import DiracDelta from sympy.functions.special.error_functions import Chi return {KroneckerDelta: [greek_unicode['delta'], 'delta'], gamma: [greek_unicode['Gamma'], 'Gamma'], lerchphi: [greek_unicode['Phi'], 'lerchphi'], lowergamma: [greek_unicode['gamma'], 'gamma'], beta: [greek_unicode['Beta'], 'B'], DiracDelta: [greek_unicode['delta'], 'delta'], Chi: ['Chi', 'Chi']} def _print_FunctionClass(self, expr): for cls in self._special_function_classes: if issubclass(expr, cls) and expr.__name__ == cls.__name__: if self._use_unicode: return prettyForm(self._special_function_classes[cls][0]) else: return prettyForm(self._special_function_classes[cls][1]) func_name = expr.__name__ return prettyForm(pretty_symbol(func_name)) def _print_GeometryEntity(self, expr): # GeometryEntity is based on Tuple but should not print like a Tuple return self.emptyPrinter(expr) def _print_lerchphi(self, e): func_name = greek_unicode['Phi'] if self._use_unicode else 'lerchphi' return self._print_Function(e, func_name=func_name) def _print_dirichlet_eta(self, e): func_name = greek_unicode['eta'] if self._use_unicode else 'dirichlet_eta' return self._print_Function(e, func_name=func_name) def _print_Heaviside(self, e): func_name = greek_unicode['theta'] if self._use_unicode else 'Heaviside' return self._print_Function(e, func_name=func_name) def _print_fresnels(self, e): return self._print_Function(e, func_name="S") def _print_fresnelc(self, e): return self._print_Function(e, func_name="C") def _print_airyai(self, e): return self._print_Function(e, func_name="Ai") def _print_airybi(self, e): return self._print_Function(e, func_name="Bi") def _print_airyaiprime(self, e): return self._print_Function(e, func_name="Ai'") def _print_airybiprime(self, e): return self._print_Function(e, func_name="Bi'") def _print_LambertW(self, e): return self._print_Function(e, func_name="W") def _print_Lambda(self, e): expr = e.expr sig = e.signature if self._use_unicode: arrow = " \N{RIGHTWARDS ARROW FROM BAR} " else: arrow = " -> " if len(sig) == 1 and sig[0].is_symbol: sig = sig[0] var_form = self._print(sig) return prettyForm(*stringPict.next(var_form, arrow, self._print(expr)), binding=8) def _print_Order(self, expr): pform = self._print(expr.expr) if (expr.point and any(p != S.Zero for p in expr.point)) or \ len(expr.variables) > 1: pform = prettyForm(*pform.right("; ")) if len(expr.variables) > 1: pform = prettyForm(*pform.right(self._print(expr.variables))) elif len(expr.variables): pform = prettyForm(*pform.right(self._print(expr.variables[0]))) if self._use_unicode: pform = prettyForm(*pform.right(" \N{RIGHTWARDS ARROW} ")) else: pform = prettyForm(*pform.right(" -> ")) if len(expr.point) > 1: pform = prettyForm(*pform.right(self._print(expr.point))) else: pform = prettyForm(*pform.right(self._print(expr.point[0]))) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left("O")) return pform def _print_SingularityFunction(self, e): if self._use_unicode: shift = self._print(e.args[0]-e.args[1]) n = self._print(e.args[2]) base = prettyForm("<") base = prettyForm(*base.right(shift)) base = prettyForm(*base.right(">")) pform = base**n return pform else: n = self._print(e.args[2]) shift = self._print(e.args[0]-e.args[1]) base = self._print_seq(shift, "<", ">", ' ') return base**n def _print_beta(self, e): func_name = greek_unicode['Beta'] if self._use_unicode else 'B' return self._print_Function(e, func_name=func_name) def _print_gamma(self, e): func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma' return self._print_Function(e, func_name=func_name) def _print_uppergamma(self, e): func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma' return self._print_Function(e, func_name=func_name) def _print_lowergamma(self, e): func_name = greek_unicode['gamma'] if self._use_unicode else 'lowergamma' return self._print_Function(e, func_name=func_name) def _print_DiracDelta(self, e): if self._use_unicode: if len(e.args) == 2: a = prettyForm(greek_unicode['delta']) b = self._print(e.args[1]) b = prettyForm(*b.parens()) c = self._print(e.args[0]) c = prettyForm(*c.parens()) pform = a**b pform = prettyForm(*pform.right(' ')) pform = prettyForm(*pform.right(c)) return pform pform = self._print(e.args[0]) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left(greek_unicode['delta'])) return pform else: return self._print_Function(e) def _print_expint(self, e): from sympy import Function if e.args[0].is_Integer and self._use_unicode: return self._print_Function(Function('E_%s' % e.args[0])(e.args[1])) return self._print_Function(e) def _print_Chi(self, e): # This needs a special case since otherwise it comes out as greek # letter chi... prettyFunc = prettyForm("Chi") prettyArgs = prettyForm(*self._print_seq(e.args).parens()) pform = prettyForm( binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) # store pform parts so it can be reassembled e.g. when powered pform.prettyFunc = prettyFunc pform.prettyArgs = prettyArgs return pform def _print_elliptic_e(self, e): pforma0 = self._print(e.args[0]) if len(e.args) == 1: pform = pforma0 else: pforma1 = self._print(e.args[1]) pform = self._hprint_vseparator(pforma0, pforma1) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left('E')) return pform def _print_elliptic_k(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left('K')) return pform def _print_elliptic_f(self, e): pforma0 = self._print(e.args[0]) pforma1 = self._print(e.args[1]) pform = self._hprint_vseparator(pforma0, pforma1) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left('F')) return pform def _print_elliptic_pi(self, e): name = greek_unicode['Pi'] if self._use_unicode else 'Pi' pforma0 = self._print(e.args[0]) pforma1 = self._print(e.args[1]) if len(e.args) == 2: pform = self._hprint_vseparator(pforma0, pforma1) else: pforma2 = self._print(e.args[2]) pforma = self._hprint_vseparator(pforma1, pforma2) pforma = prettyForm(*pforma.left('; ')) pform = prettyForm(*pforma.left(pforma0)) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left(name)) return pform def _print_GoldenRatio(self, expr): if self._use_unicode: return prettyForm(pretty_symbol('phi')) return self._print(Symbol("GoldenRatio")) def _print_EulerGamma(self, expr): if self._use_unicode: return prettyForm(pretty_symbol('gamma')) return self._print(Symbol("EulerGamma")) def _print_Mod(self, expr): pform = self._print(expr.args[0]) if pform.binding > prettyForm.MUL: pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.right(' mod ')) pform = prettyForm(*pform.right(self._print(expr.args[1]))) pform.binding = prettyForm.OPEN return pform def _print_Add(self, expr, order=None): terms = self._as_ordered_terms(expr, order=order) pforms, indices = [], [] def pretty_negative(pform, index): """Prepend a minus sign to a pretty form. """ #TODO: Move this code to prettyForm if index == 0: if pform.height() > 1: pform_neg = '- ' else: pform_neg = '-' else: pform_neg = ' - ' if (pform.binding > prettyForm.NEG or pform.binding == prettyForm.ADD): p = stringPict(*pform.parens()) else: p = pform p = stringPict.next(pform_neg, p) # Lower the binding to NEG, even if it was higher. Otherwise, it # will print as a + ( - (b)), instead of a - (b). return prettyForm(binding=prettyForm.NEG, *p) for i, term in enumerate(terms): if term.is_Mul and _coeff_isneg(term): coeff, other = term.as_coeff_mul(rational=False) if coeff == -1: negterm = Mul(*other, evaluate=False) else: negterm = Mul(-coeff, *other, evaluate=False) pform = self._print(negterm) pforms.append(pretty_negative(pform, i)) elif term.is_Rational and term.q > 1: pforms.append(None) indices.append(i) elif term.is_Number and term < 0: pform = self._print(-term) pforms.append(pretty_negative(pform, i)) elif term.is_Relational: pforms.append(prettyForm(*self._print(term).parens())) else: pforms.append(self._print(term)) if indices: large = True for pform in pforms: if pform is not None and pform.height() > 1: break else: large = False for i in indices: term, negative = terms[i], False if term < 0: term, negative = -term, True if large: pform = prettyForm(str(term.p))/prettyForm(str(term.q)) else: pform = self._print(term) if negative: pform = pretty_negative(pform, i) pforms[i] = pform return prettyForm.__add__(*pforms) def _print_Mul(self, product): from sympy.physics.units import Quantity # Check for unevaluated Mul. In this case we need to make sure the # identities are visible, multiple Rational factors are not combined # etc so we display in a straight-forward form that fully preserves all # args and their order. args = product.args if args[0] is S.One or any(isinstance(arg, Number) for arg in args[1:]): strargs = list(map(self._print, args)) # XXX: This is a hack to work around the fact that # prettyForm.__mul__ absorbs a leading -1 in the args. Probably it # would be better to fix this in prettyForm.__mul__ instead. negone = strargs[0] == '-1' if negone: strargs[0] = prettyForm('1', 0, 0) obj = prettyForm.__mul__(*strargs) if negone: obj = prettyForm('-' + obj.s, obj.baseline, obj.binding) return obj a = [] # items in the numerator b = [] # items that are in the denominator (if any) if self.order not in ('old', 'none'): args = product.as_ordered_factors() else: args = list(product.args) # If quantities are present append them at the back args = sorted(args, key=lambda x: isinstance(x, Quantity) or (isinstance(x, Pow) and isinstance(x.base, Quantity))) # Gather terms for numerator/denominator for item in args: if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative: if item.exp != -1: b.append(Pow(item.base, -item.exp, evaluate=False)) else: b.append(Pow(item.base, -item.exp)) elif item.is_Rational and item is not S.Infinity: if item.p != 1: a.append( Rational(item.p) ) if item.q != 1: b.append( Rational(item.q) ) else: a.append(item) from sympy import Integral, Piecewise, Product, Sum # Convert to pretty forms. Add parens to Add instances if there # is more than one term in the numer/denom for i in range(0, len(a)): if (a[i].is_Add and len(a) > 1) or (i != len(a) - 1 and isinstance(a[i], (Integral, Piecewise, Product, Sum))): a[i] = prettyForm(*self._print(a[i]).parens()) elif a[i].is_Relational: a[i] = prettyForm(*self._print(a[i]).parens()) else: a[i] = self._print(a[i]) for i in range(0, len(b)): if (b[i].is_Add and len(b) > 1) or (i != len(b) - 1 and isinstance(b[i], (Integral, Piecewise, Product, Sum))): b[i] = prettyForm(*self._print(b[i]).parens()) else: b[i] = self._print(b[i]) # Construct a pretty form if len(b) == 0: return prettyForm.__mul__(*a) else: if len(a) == 0: a.append( self._print(S.One) ) return prettyForm.__mul__(*a)/prettyForm.__mul__(*b) # A helper function for _print_Pow to print x**(1/n) def _print_nth_root(self, base, root): bpretty = self._print(base) # In very simple cases, use a single-char root sign if (self._settings['use_unicode_sqrt_char'] and self._use_unicode and root == 2 and bpretty.height() == 1 and (bpretty.width() == 1 or (base.is_Integer and base.is_nonnegative))): return prettyForm(*bpretty.left('\N{SQUARE ROOT}')) # Construct root sign, start with the \/ shape _zZ = xobj('/', 1) rootsign = xobj('\\', 1) + _zZ # Constructing the number to put on root rpretty = self._print(root) # roots look bad if they are not a single line if rpretty.height() != 1: return self._print(base)**self._print(1/root) # If power is half, no number should appear on top of root sign exp = '' if root == 2 else str(rpretty).ljust(2) if len(exp) > 2: rootsign = ' '*(len(exp) - 2) + rootsign # Stack the exponent rootsign = stringPict(exp + '\n' + rootsign) rootsign.baseline = 0 # Diagonal: length is one less than height of base linelength = bpretty.height() - 1 diagonal = stringPict('\n'.join( ' '*(linelength - i - 1) + _zZ + ' '*i for i in range(linelength) )) # Put baseline just below lowest line: next to exp diagonal.baseline = linelength - 1 # Make the root symbol rootsign = prettyForm(*rootsign.right(diagonal)) # Det the baseline to match contents to fix the height # but if the height of bpretty is one, the rootsign must be one higher rootsign.baseline = max(1, bpretty.baseline) #build result s = prettyForm(hobj('_', 2 + bpretty.width())) s = prettyForm(*bpretty.above(s)) s = prettyForm(*s.left(rootsign)) return s def _print_Pow(self, power): from sympy.simplify.simplify import fraction b, e = power.as_base_exp() if power.is_commutative: if e is S.NegativeOne: return prettyForm("1")/self._print(b) n, d = fraction(e) if n is S.One and d.is_Atom and not e.is_Integer and (e.is_Rational or d.is_Symbol) \ and self._settings['root_notation']: return self._print_nth_root(b, d) if e.is_Rational and e < 0: return prettyForm("1")/self._print(Pow(b, -e, evaluate=False)) if b.is_Relational: return prettyForm(*self._print(b).parens()).__pow__(self._print(e)) return self._print(b)**self._print(e) def _print_UnevaluatedExpr(self, expr): return self._print(expr.args[0]) def __print_numer_denom(self, p, q): if q == 1: if p < 0: return prettyForm(str(p), binding=prettyForm.NEG) else: return prettyForm(str(p)) elif abs(p) >= 10 and abs(q) >= 10: # If more than one digit in numer and denom, print larger fraction if p < 0: return prettyForm(str(p), binding=prettyForm.NEG)/prettyForm(str(q)) # Old printing method: #pform = prettyForm(str(-p))/prettyForm(str(q)) #return prettyForm(binding=prettyForm.NEG, *pform.left('- ')) else: return prettyForm(str(p))/prettyForm(str(q)) else: return None def _print_Rational(self, expr): result = self.__print_numer_denom(expr.p, expr.q) if result is not None: return result else: return self.emptyPrinter(expr) def _print_Fraction(self, expr): result = self.__print_numer_denom(expr.numerator, expr.denominator) if result is not None: return result else: return self.emptyPrinter(expr) def _print_ProductSet(self, p): if len(p.sets) >= 1 and not has_variety(p.sets): return self._print(p.sets[0]) ** self._print(len(p.sets)) else: prod_char = "\N{MULTIPLICATION SIGN}" if self._use_unicode else 'x' return self._print_seq(p.sets, None, None, ' %s ' % prod_char, parenthesize=lambda set: set.is_Union or set.is_Intersection or set.is_ProductSet) def _print_FiniteSet(self, s): items = sorted(s.args, key=default_sort_key) return self._print_seq(items, '{', '}', ', ' ) def _print_Range(self, s): if self._use_unicode: dots = "\N{HORIZONTAL ELLIPSIS}" else: dots = '...' if s.start.is_infinite and s.stop.is_infinite: if s.step.is_positive: printset = dots, -1, 0, 1, dots else: printset = dots, 1, 0, -1, dots elif s.start.is_infinite: printset = dots, s[-1] - s.step, s[-1] elif s.stop.is_infinite: it = iter(s) printset = next(it), next(it), dots elif len(s) > 4: it = iter(s) printset = next(it), next(it), dots, s[-1] else: printset = tuple(s) return self._print_seq(printset, '{', '}', ', ' ) def _print_Interval(self, i): if i.start == i.end: return self._print_seq(i.args[:1], '{', '}') else: if i.left_open: left = '(' else: left = '[' if i.right_open: right = ')' else: right = ']' return self._print_seq(i.args[:2], left, right) def _print_AccumulationBounds(self, i): left = '<' right = '>' return self._print_seq(i.args[:2], left, right) def _print_Intersection(self, u): delimiter = ' %s ' % pretty_atom('Intersection', 'n') return self._print_seq(u.args, None, None, delimiter, parenthesize=lambda set: set.is_ProductSet or set.is_Union or set.is_Complement) def _print_Union(self, u): union_delimiter = ' %s ' % pretty_atom('Union', 'U') return self._print_seq(u.args, None, None, union_delimiter, parenthesize=lambda set: set.is_ProductSet or set.is_Intersection or set.is_Complement) def _print_SymmetricDifference(self, u): if not self._use_unicode: raise NotImplementedError("ASCII pretty printing of SymmetricDifference is not implemented") sym_delimeter = ' %s ' % pretty_atom('SymmetricDifference') return self._print_seq(u.args, None, None, sym_delimeter) def _print_Complement(self, u): delimiter = r' \ ' return self._print_seq(u.args, None, None, delimiter, parenthesize=lambda set: set.is_ProductSet or set.is_Intersection or set.is_Union) def _print_ImageSet(self, ts): if self._use_unicode: inn = "\N{SMALL ELEMENT OF}" else: inn = 'in' fun = ts.lamda sets = ts.base_sets signature = fun.signature expr = self._print(fun.expr) bar = self._print("|") if len(signature) == 1: return self._print_seq((expr, bar, signature[0], inn, sets[0]), "{", "}", ' ') else: pargs = tuple(j for var, setv in zip(signature, sets) for j in (var, inn, setv, ",")) return self._print_seq((expr, bar) + pargs[:-1], "{", "}", ' ') def _print_ConditionSet(self, ts): if self._use_unicode: inn = "\N{SMALL ELEMENT OF}" # using _and because and is a keyword and it is bad practice to # overwrite them _and = "\N{LOGICAL AND}" else: inn = 'in' _and = 'and' variables = self._print_seq(Tuple(ts.sym)) as_expr = getattr(ts.condition, 'as_expr', None) if as_expr is not None: cond = self._print(ts.condition.as_expr()) else: cond = self._print(ts.condition) if self._use_unicode: cond = self._print(cond) cond = prettyForm(*cond.parens()) bar = self._print("|") if ts.base_set is S.UniversalSet: return self._print_seq((variables, bar, cond), "{", "}", ' ') base = self._print(ts.base_set) return self._print_seq((variables, bar, variables, inn, base, _and, cond), "{", "}", ' ') def _print_ComplexRegion(self, ts): if self._use_unicode: inn = "\N{SMALL ELEMENT OF}" else: inn = 'in' variables = self._print_seq(ts.variables) expr = self._print(ts.expr) bar = self._print("|") prodsets = self._print(ts.sets) return self._print_seq((expr, bar, variables, inn, prodsets), "{", "}", ' ') def _print_Contains(self, e): var, set = e.args if self._use_unicode: el = " \N{ELEMENT OF} " return prettyForm(*stringPict.next(self._print(var), el, self._print(set)), binding=8) else: return prettyForm(sstr(e)) def _print_FourierSeries(self, s): if self._use_unicode: dots = "\N{HORIZONTAL ELLIPSIS}" else: dots = '...' return self._print_Add(s.truncate()) + self._print(dots) def _print_FormalPowerSeries(self, s): return self._print_Add(s.infinite) def _print_SetExpr(self, se): pretty_set = prettyForm(*self._print(se.set).parens()) pretty_name = self._print(Symbol("SetExpr")) return prettyForm(*pretty_name.right(pretty_set)) def _print_SeqFormula(self, s): if self._use_unicode: dots = "\N{HORIZONTAL ELLIPSIS}" else: dots = '...' if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0: raise NotImplementedError("Pretty printing of sequences with symbolic bound not implemented") if s.start is S.NegativeInfinity: stop = s.stop printset = (dots, s.coeff(stop - 3), s.coeff(stop - 2), s.coeff(stop - 1), s.coeff(stop)) elif s.stop is S.Infinity or s.length > 4: printset = s[:4] printset.append(dots) printset = tuple(printset) else: printset = tuple(s) return self._print_list(printset) _print_SeqPer = _print_SeqFormula _print_SeqAdd = _print_SeqFormula _print_SeqMul = _print_SeqFormula def _print_seq(self, seq, left=None, right=None, delimiter=', ', parenthesize=lambda x: False): s = None try: for item in seq: pform = self._print(item) if parenthesize(item): pform = prettyForm(*pform.parens()) if s is None: # first element s = pform else: # XXX: Under the tests from #15686 this raises: # AttributeError: 'Fake' object has no attribute 'baseline' # This is caught below but that is not the right way to # fix it. s = prettyForm(*stringPict.next(s, delimiter)) s = prettyForm(*stringPict.next(s, pform)) if s is None: s = stringPict('') except AttributeError: s = None for item in seq: pform = self.doprint(item) if parenthesize(item): pform = prettyForm(*pform.parens()) if s is None: # first element s = pform else : s = prettyForm(*stringPict.next(s, delimiter)) s = prettyForm(*stringPict.next(s, pform)) if s is None: s = stringPict('') s = prettyForm(*s.parens(left, right, ifascii_nougly=True)) return s def join(self, delimiter, args): pform = None for arg in args: if pform is None: pform = arg else: pform = prettyForm(*pform.right(delimiter)) pform = prettyForm(*pform.right(arg)) if pform is None: return prettyForm("") else: return pform def _print_list(self, l): return self._print_seq(l, '[', ']') def _print_tuple(self, t): if len(t) == 1: ptuple = prettyForm(*stringPict.next(self._print(t[0]), ',')) return prettyForm(*ptuple.parens('(', ')', ifascii_nougly=True)) else: return self._print_seq(t, '(', ')') def _print_Tuple(self, expr): return self._print_tuple(expr) def _print_dict(self, d): keys = sorted(d.keys(), key=default_sort_key) items = [] for k in keys: K = self._print(k) V = self._print(d[k]) s = prettyForm(*stringPict.next(K, ': ', V)) items.append(s) return self._print_seq(items, '{', '}') def _print_Dict(self, d): return self._print_dict(d) def _print_set(self, s): if not s: return prettyForm('set()') items = sorted(s, key=default_sort_key) pretty = self._print_seq(items) pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True)) return pretty def _print_frozenset(self, s): if not s: return prettyForm('frozenset()') items = sorted(s, key=default_sort_key) pretty = self._print_seq(items) pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True)) pretty = prettyForm(*pretty.parens('(', ')', ifascii_nougly=True)) pretty = prettyForm(*stringPict.next(type(s).__name__, pretty)) return pretty def _print_UniversalSet(self, s): if self._use_unicode: return prettyForm("\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL U}") else: return prettyForm('UniversalSet') def _print_PolyRing(self, ring): return prettyForm(sstr(ring)) def _print_FracField(self, field): return prettyForm(sstr(field)) def _print_FreeGroupElement(self, elm): return prettyForm(str(elm)) def _print_PolyElement(self, poly): return prettyForm(sstr(poly)) def _print_FracElement(self, frac): return prettyForm(sstr(frac)) def _print_AlgebraicNumber(self, expr): if expr.is_aliased: return self._print(expr.as_poly().as_expr()) else: return self._print(expr.as_expr()) def _print_ComplexRootOf(self, expr): args = [self._print_Add(expr.expr, order='lex'), expr.index] pform = prettyForm(*self._print_seq(args).parens()) pform = prettyForm(*pform.left('CRootOf')) return pform def _print_RootSum(self, expr): args = [self._print_Add(expr.expr, order='lex')] if expr.fun is not S.IdentityFunction: args.append(self._print(expr.fun)) pform = prettyForm(*self._print_seq(args).parens()) pform = prettyForm(*pform.left('RootSum')) return pform def _print_FiniteField(self, expr): if self._use_unicode: form = '\N{DOUBLE-STRUCK CAPITAL Z}_%d' else: form = 'GF(%d)' return prettyForm(pretty_symbol(form % expr.mod)) def _print_IntegerRing(self, expr): if self._use_unicode: return prettyForm('\N{DOUBLE-STRUCK CAPITAL Z}') else: return prettyForm('ZZ') def _print_RationalField(self, expr): if self._use_unicode: return prettyForm('\N{DOUBLE-STRUCK CAPITAL Q}') else: return prettyForm('QQ') def _print_RealField(self, domain): if self._use_unicode: prefix = '\N{DOUBLE-STRUCK CAPITAL R}' else: prefix = 'RR' if domain.has_default_precision: return prettyForm(prefix) else: return self._print(pretty_symbol(prefix + "_" + str(domain.precision))) def _print_ComplexField(self, domain): if self._use_unicode: prefix = '\N{DOUBLE-STRUCK CAPITAL C}' else: prefix = 'CC' if domain.has_default_precision: return prettyForm(prefix) else: return self._print(pretty_symbol(prefix + "_" + str(domain.precision))) def _print_PolynomialRing(self, expr): args = list(expr.symbols) if not expr.order.is_default: order = prettyForm(*prettyForm("order=").right(self._print(expr.order))) args.append(order) pform = self._print_seq(args, '[', ']') pform = prettyForm(*pform.left(self._print(expr.domain))) return pform def _print_FractionField(self, expr): args = list(expr.symbols) if not expr.order.is_default: order = prettyForm(*prettyForm("order=").right(self._print(expr.order))) args.append(order) pform = self._print_seq(args, '(', ')') pform = prettyForm(*pform.left(self._print(expr.domain))) return pform def _print_PolynomialRingBase(self, expr): g = expr.symbols if str(expr.order) != str(expr.default_order): g = g + ("order=" + str(expr.order),) pform = self._print_seq(g, '[', ']') pform = prettyForm(*pform.left(self._print(expr.domain))) return pform def _print_GroebnerBasis(self, basis): exprs = [ self._print_Add(arg, order=basis.order) for arg in basis.exprs ] exprs = prettyForm(*self.join(", ", exprs).parens(left="[", right="]")) gens = [ self._print(gen) for gen in basis.gens ] domain = prettyForm( *prettyForm("domain=").right(self._print(basis.domain))) order = prettyForm( *prettyForm("order=").right(self._print(basis.order))) pform = self.join(", ", [exprs] + gens + [domain, order]) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left(basis.__class__.__name__)) return pform def _print_Subs(self, e): pform = self._print(e.expr) pform = prettyForm(*pform.parens()) h = pform.height() if pform.height() > 1 else 2 rvert = stringPict(vobj('|', h), baseline=pform.baseline) pform = prettyForm(*pform.right(rvert)) b = pform.baseline pform.baseline = pform.height() - 1 pform = prettyForm(*pform.right(self._print_seq([ self._print_seq((self._print(v[0]), xsym('=='), self._print(v[1])), delimiter='') for v in zip(e.variables, e.point) ]))) pform.baseline = b return pform def _print_number_function(self, e, name): # Print name_arg[0] for one argument or name_arg[0](arg[1]) # for more than one argument pform = prettyForm(name) arg = self._print(e.args[0]) pform_arg = prettyForm(" "*arg.width()) pform_arg = prettyForm(*pform_arg.below(arg)) pform = prettyForm(*pform.right(pform_arg)) if len(e.args) == 1: return pform m, x = e.args # TODO: copy-pasted from _print_Function: can we do better? prettyFunc = pform prettyArgs = prettyForm(*self._print_seq([x]).parens()) pform = prettyForm( binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) pform.prettyFunc = prettyFunc pform.prettyArgs = prettyArgs return pform def _print_euler(self, e): return self._print_number_function(e, "E") def _print_catalan(self, e): return self._print_number_function(e, "C") def _print_bernoulli(self, e): return self._print_number_function(e, "B") _print_bell = _print_bernoulli def _print_lucas(self, e): return self._print_number_function(e, "L") def _print_fibonacci(self, e): return self._print_number_function(e, "F") def _print_tribonacci(self, e): return self._print_number_function(e, "T") def _print_stieltjes(self, e): if self._use_unicode: return self._print_number_function(e, '\N{GREEK SMALL LETTER GAMMA}') else: return self._print_number_function(e, "stieltjes") def _print_KroneckerDelta(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.right(prettyForm(','))) pform = prettyForm(*pform.right(self._print(e.args[1]))) if self._use_unicode: a = stringPict(pretty_symbol('delta')) else: a = stringPict('d') b = pform top = stringPict(*b.left(' '*a.width())) bot = stringPict(*a.right(' '*b.width())) return prettyForm(binding=prettyForm.POW, *bot.below(top)) def _print_RandomDomain(self, d): if hasattr(d, 'as_boolean'): pform = self._print('Domain: ') pform = prettyForm(*pform.right(self._print(d.as_boolean()))) return pform elif hasattr(d, 'set'): pform = self._print('Domain: ') pform = prettyForm(*pform.right(self._print(d.symbols))) pform = prettyForm(*pform.right(self._print(' in '))) pform = prettyForm(*pform.right(self._print(d.set))) return pform elif hasattr(d, 'symbols'): pform = self._print('Domain on ') pform = prettyForm(*pform.right(self._print(d.symbols))) return pform else: return self._print(None) def _print_DMP(self, p): try: if p.ring is not None: # TODO incorporate order return self._print(p.ring.to_sympy(p)) except SympifyError: pass return self._print(repr(p)) def _print_DMF(self, p): return self._print_DMP(p) def _print_Object(self, object): return self._print(pretty_symbol(object.name)) def _print_Morphism(self, morphism): arrow = xsym("-->") domain = self._print(morphism.domain) codomain = self._print(morphism.codomain) tail = domain.right(arrow, codomain)[0] return prettyForm(tail) def _print_NamedMorphism(self, morphism): pretty_name = self._print(pretty_symbol(morphism.name)) pretty_morphism = self._print_Morphism(morphism) return prettyForm(pretty_name.right(":", pretty_morphism)[0]) def _print_IdentityMorphism(self, morphism): from sympy.categories import NamedMorphism return self._print_NamedMorphism( NamedMorphism(morphism.domain, morphism.codomain, "id")) def _print_CompositeMorphism(self, morphism): circle = xsym(".") # All components of the morphism have names and it is thus # possible to build the name of the composite. component_names_list = [pretty_symbol(component.name) for component in morphism.components] component_names_list.reverse() component_names = circle.join(component_names_list) + ":" pretty_name = self._print(component_names) pretty_morphism = self._print_Morphism(morphism) return prettyForm(pretty_name.right(pretty_morphism)[0]) def _print_Category(self, category): return self._print(pretty_symbol(category.name)) def _print_Diagram(self, diagram): if not diagram.premises: # This is an empty diagram. return self._print(S.EmptySet) pretty_result = self._print(diagram.premises) if diagram.conclusions: results_arrow = " %s " % xsym("==>") pretty_conclusions = self._print(diagram.conclusions)[0] pretty_result = pretty_result.right( results_arrow, pretty_conclusions) return prettyForm(pretty_result[0]) def _print_DiagramGrid(self, grid): from sympy.matrices import Matrix from sympy import Symbol matrix = Matrix([[grid[i, j] if grid[i, j] else Symbol(" ") for j in range(grid.width)] for i in range(grid.height)]) return self._print_matrix_contents(matrix) def _print_FreeModuleElement(self, m): # Print as row vector for convenience, for now. return self._print_seq(m, '[', ']') def _print_SubModule(self, M): return self._print_seq(M.gens, '<', '>') def _print_FreeModule(self, M): return self._print(M.ring)**self._print(M.rank) def _print_ModuleImplementedIdeal(self, M): return self._print_seq([x for [x] in M._module.gens], '<', '>') def _print_QuotientRing(self, R): return self._print(R.ring) / self._print(R.base_ideal) def _print_QuotientRingElement(self, R): return self._print(R.data) + self._print(R.ring.base_ideal) def _print_QuotientModuleElement(self, m): return self._print(m.data) + self._print(m.module.killed_module) def _print_QuotientModule(self, M): return self._print(M.base) / self._print(M.killed_module) def _print_MatrixHomomorphism(self, h): matrix = self._print(h._sympy_matrix()) matrix.baseline = matrix.height() // 2 pform = prettyForm(*matrix.right(' : ', self._print(h.domain), ' %s> ' % hobj('-', 2), self._print(h.codomain))) return pform def _print_Manifold(self, manifold): return self._print(manifold.name) def _print_Patch(self, patch): return self._print(patch.name) def _print_CoordSystem(self, coords): return self._print(coords.name) def _print_BaseScalarField(self, field): string = field._coord_sys.symbols[field._index].name return self._print(pretty_symbol(string)) def _print_BaseVectorField(self, field): s = U('PARTIAL DIFFERENTIAL') + '_' + field._coord_sys.symbols[field._index].name return self._print(pretty_symbol(s)) def _print_Differential(self, diff): field = diff._form_field if hasattr(field, '_coord_sys'): string = field._coord_sys.symbols[field._index].name return self._print('\N{DOUBLE-STRUCK ITALIC SMALL D} ' + pretty_symbol(string)) else: pform = self._print(field) pform = prettyForm(*pform.parens()) return prettyForm(*pform.left("\N{DOUBLE-STRUCK ITALIC SMALL D}")) def _print_Tr(self, p): #TODO: Handle indices pform = self._print(p.args[0]) pform = prettyForm(*pform.left('%s(' % (p.__class__.__name__))) pform = prettyForm(*pform.right(')')) return pform def _print_primenu(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.parens()) if self._use_unicode: pform = prettyForm(*pform.left(greek_unicode['nu'])) else: pform = prettyForm(*pform.left('nu')) return pform def _print_primeomega(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.parens()) if self._use_unicode: pform = prettyForm(*pform.left(greek_unicode['Omega'])) else: pform = prettyForm(*pform.left('Omega')) return pform def _print_Quantity(self, e): if e.name.name == 'degree': pform = self._print("\N{DEGREE SIGN}") return pform else: return self.emptyPrinter(e) def _print_AssignmentBase(self, e): op = prettyForm(' ' + xsym(e.op) + ' ') l = self._print(e.lhs) r = self._print(e.rhs) pform = prettyForm(*stringPict.next(l, op, r)) return pform def _print_Str(self, s): return self._print(s.name) @print_function(PrettyPrinter) def pretty(expr, **settings): """Returns a string containing the prettified form of expr. For information on keyword arguments see pretty_print function. """ pp = PrettyPrinter(settings) # XXX: this is an ugly hack, but at least it works use_unicode = pp._settings['use_unicode'] uflag = pretty_use_unicode(use_unicode) try: return pp.doprint(expr) finally: pretty_use_unicode(uflag) def pretty_print(expr, **kwargs): """Prints expr in pretty form. pprint is just a shortcut for this function. Parameters ========== expr : expression The expression to print. wrap_line : bool, optional (default=True) Line wrapping enabled/disabled. num_columns : int or None, optional (default=None) Number of columns before line breaking (default to None which reads the terminal width), useful when using SymPy without terminal. use_unicode : bool or None, optional (default=None) Use unicode characters, such as the Greek letter pi instead of the string pi. full_prec : bool or string, optional (default="auto") Use full precision. order : bool or string, optional (default=None) Set to 'none' for long expressions if slow; default is None. use_unicode_sqrt_char : bool, optional (default=True) Use compact single-character square root symbol (when unambiguous). root_notation : bool, optional (default=True) Set to 'False' for printing exponents of the form 1/n in fractional form. By default exponent is printed in root form. mat_symbol_style : string, optional (default="plain") Set to "bold" for printing MatrixSymbols using a bold mathematical symbol face. By default the standard face is used. imaginary_unit : string, optional (default="i") Letter to use for imaginary unit when use_unicode is True. Can be "i" (default) or "j". """ print(pretty(expr, **kwargs)) pprint = pretty_print def pager_print(expr, **settings): """Prints expr using the pager, in pretty form. This invokes a pager command using pydoc. Lines are not wrapped automatically. This routine is meant to be used with a pager that allows sideways scrolling, like ``less -S``. Parameters are the same as for ``pretty_print``. If you wish to wrap lines, pass ``num_columns=None`` to auto-detect the width of the terminal. """ from pydoc import pager from locale import getpreferredencoding if 'num_columns' not in settings: settings['num_columns'] = 500000 # disable line wrap pager(pretty(expr, **settings).encode(getpreferredencoding()))
2550a841dc6896225e5778b9045a5f976ee462b59d64a7f91858e9d5e95ab837
from typing import Any, Dict from sympy.testing.pytest import raises from sympy import (symbols, sympify, Function, Integer, Matrix, Abs, Rational, Float, S, WildFunction, ImmutableDenseMatrix, sin, true, false, ones, sqrt, root, AlgebraicNumber, Symbol, Dummy, Wild, MatrixSymbol, Q) from sympy.combinatorics import Cycle, Permutation from sympy.core.symbol import Str from sympy.geometry import Point, Ellipse from sympy.printing import srepr from sympy.polys import ring, field, ZZ, QQ, lex, grlex, Poly from sympy.polys.polyclasses import DMP from sympy.polys.agca.extensions import FiniteExtension x, y = symbols('x,y') # eval(srepr(expr)) == expr has to succeed in the right environment. The right # environment is the scope of "from sympy import *" for most cases. ENV = {"Str": Str} # type: Dict[str, Any] exec("from sympy import *", ENV) def sT(expr, string, import_stmt=None): """ sT := sreprTest Tests that srepr delivers the expected string and that the condition eval(srepr(expr))==expr holds. """ if import_stmt is None: ENV2 = ENV else: ENV2 = ENV.copy() exec(import_stmt, ENV2) assert srepr(expr) == string assert eval(string, ENV2) == expr def test_printmethod(): class R(Abs): def _sympyrepr(self, printer): return "foo(%s)" % printer._print(self.args[0]) assert srepr(R(x)) == "foo(Symbol('x'))" def test_Add(): sT(x + y, "Add(Symbol('x'), Symbol('y'))") assert srepr(x**2 + 1, order='lex') == "Add(Pow(Symbol('x'), Integer(2)), Integer(1))" assert srepr(x**2 + 1, order='old') == "Add(Integer(1), Pow(Symbol('x'), Integer(2)))" assert srepr(sympify('x + 3 - 2', evaluate=False), order='none') == "Add(Symbol('x'), Integer(3), Mul(Integer(-1), Integer(2)))" def test_more_than_255_args_issue_10259(): from sympy import Add, Mul for op in (Add, Mul): expr = op(*symbols('x:256')) assert eval(srepr(expr)) == expr def test_Function(): sT(Function("f")(x), "Function('f')(Symbol('x'))") # test unapplied Function sT(Function('f'), "Function('f')") sT(sin(x), "sin(Symbol('x'))") sT(sin, "sin") def test_Geometry(): sT(Point(0, 0), "Point2D(Integer(0), Integer(0))") sT(Ellipse(Point(0, 0), 5, 1), "Ellipse(Point2D(Integer(0), Integer(0)), Integer(5), Integer(1))") # TODO more tests def test_Singletons(): sT(S.Catalan, 'Catalan') sT(S.ComplexInfinity, 'zoo') sT(S.EulerGamma, 'EulerGamma') sT(S.Exp1, 'E') sT(S.GoldenRatio, 'GoldenRatio') sT(S.TribonacciConstant, 'TribonacciConstant') sT(S.Half, 'Rational(1, 2)') sT(S.ImaginaryUnit, 'I') sT(S.Infinity, 'oo') sT(S.NaN, 'nan') sT(S.NegativeInfinity, '-oo') sT(S.NegativeOne, 'Integer(-1)') sT(S.One, 'Integer(1)') sT(S.Pi, 'pi') sT(S.Zero, 'Integer(0)') def test_Integer(): sT(Integer(4), "Integer(4)") def test_list(): sT([x, Integer(4)], "[Symbol('x'), Integer(4)]") def test_Matrix(): for cls, name in [(Matrix, "MutableDenseMatrix"), (ImmutableDenseMatrix, "ImmutableDenseMatrix")]: sT(cls([[x**+1, 1], [y, x + y]]), "%s([[Symbol('x'), Integer(1)], [Symbol('y'), Add(Symbol('x'), Symbol('y'))]])" % name) sT(cls(), "%s([])" % name) sT(cls([[x**+1, 1], [y, x + y]]), "%s([[Symbol('x'), Integer(1)], [Symbol('y'), Add(Symbol('x'), Symbol('y'))]])" % name) def test_empty_Matrix(): sT(ones(0, 3), "MutableDenseMatrix(0, 3, [])") sT(ones(4, 0), "MutableDenseMatrix(4, 0, [])") sT(ones(0, 0), "MutableDenseMatrix([])") def test_Rational(): sT(Rational(1, 3), "Rational(1, 3)") sT(Rational(-1, 3), "Rational(-1, 3)") def test_Float(): sT(Float('1.23', dps=3), "Float('1.22998', precision=13)") sT(Float('1.23456789', dps=9), "Float('1.23456788994', precision=33)") sT(Float('1.234567890123456789', dps=19), "Float('1.234567890123456789013', precision=66)") sT(Float('0.60038617995049726', dps=15), "Float('0.60038617995049726', precision=53)") sT(Float('1.23', precision=13), "Float('1.22998', precision=13)") sT(Float('1.23456789', precision=33), "Float('1.23456788994', precision=33)") sT(Float('1.234567890123456789', precision=66), "Float('1.234567890123456789013', precision=66)") sT(Float('0.60038617995049726', precision=53), "Float('0.60038617995049726', precision=53)") sT(Float('0.60038617995049726', 15), "Float('0.60038617995049726', precision=53)") def test_Symbol(): sT(x, "Symbol('x')") sT(y, "Symbol('y')") sT(Symbol('x', negative=True), "Symbol('x', negative=True)") def test_Symbol_two_assumptions(): x = Symbol('x', negative=0, integer=1) # order could vary s1 = "Symbol('x', integer=True, negative=False)" s2 = "Symbol('x', negative=False, integer=True)" assert srepr(x) in (s1, s2) assert eval(srepr(x), ENV) == x def test_Symbol_no_special_commutative_treatment(): sT(Symbol('x'), "Symbol('x')") sT(Symbol('x', commutative=False), "Symbol('x', commutative=False)") sT(Symbol('x', commutative=0), "Symbol('x', commutative=False)") sT(Symbol('x', commutative=True), "Symbol('x', commutative=True)") sT(Symbol('x', commutative=1), "Symbol('x', commutative=True)") def test_Wild(): sT(Wild('x', even=True), "Wild('x', even=True)") def test_Dummy(): d = Dummy('d') sT(d, "Dummy('d', dummy_index=%s)" % str(d.dummy_index)) def test_Dummy_assumption(): d = Dummy('d', nonzero=True) assert d == eval(srepr(d)) s1 = "Dummy('d', dummy_index=%s, nonzero=True)" % str(d.dummy_index) s2 = "Dummy('d', nonzero=True, dummy_index=%s)" % str(d.dummy_index) assert srepr(d) in (s1, s2) def test_Dummy_from_Symbol(): # should not get the full dictionary of assumptions n = Symbol('n', integer=True) d = n.as_dummy() assert srepr(d ) == "Dummy('n', dummy_index=%s)" % str(d.dummy_index) def test_tuple(): sT((x,), "(Symbol('x'),)") sT((x, y), "(Symbol('x'), Symbol('y'))") def test_WildFunction(): sT(WildFunction('w'), "WildFunction('w')") def test_settins(): raises(TypeError, lambda: srepr(x, method="garbage")) def test_Mul(): sT(3*x**3*y, "Mul(Integer(3), Pow(Symbol('x'), Integer(3)), Symbol('y'))") assert srepr(3*x**3*y, order='old') == "Mul(Integer(3), Symbol('y'), Pow(Symbol('x'), Integer(3)))" assert srepr(sympify('(x+4)*2*x*7', evaluate=False), order='none') == "Mul(Add(Symbol('x'), Integer(4)), Integer(2), Symbol('x'), Integer(7))" def test_AlgebraicNumber(): a = AlgebraicNumber(sqrt(2)) sT(a, "AlgebraicNumber(Pow(Integer(2), Rational(1, 2)), [Integer(1), Integer(0)])") a = AlgebraicNumber(root(-2, 3)) sT(a, "AlgebraicNumber(Pow(Integer(-2), Rational(1, 3)), [Integer(1), Integer(0)])") def test_PolyRing(): assert srepr(ring("x", ZZ, lex)[0]) == "PolyRing((Symbol('x'),), ZZ, lex)" assert srepr(ring("x,y", QQ, grlex)[0]) == "PolyRing((Symbol('x'), Symbol('y')), QQ, grlex)" assert srepr(ring("x,y,z", ZZ["t"], lex)[0]) == "PolyRing((Symbol('x'), Symbol('y'), Symbol('z')), ZZ[t], lex)" def test_FracField(): assert srepr(field("x", ZZ, lex)[0]) == "FracField((Symbol('x'),), ZZ, lex)" assert srepr(field("x,y", QQ, grlex)[0]) == "FracField((Symbol('x'), Symbol('y')), QQ, grlex)" assert srepr(field("x,y,z", ZZ["t"], lex)[0]) == "FracField((Symbol('x'), Symbol('y'), Symbol('z')), ZZ[t], lex)" def test_PolyElement(): R, x, y = ring("x,y", ZZ) assert srepr(3*x**2*y + 1) == "PolyElement(PolyRing((Symbol('x'), Symbol('y')), ZZ, lex), [((2, 1), 3), ((0, 0), 1)])" def test_FracElement(): F, x, y = field("x,y", ZZ) assert srepr((3*x**2*y + 1)/(x - y**2)) == "FracElement(FracField((Symbol('x'), Symbol('y')), ZZ, lex), [((2, 1), 3), ((0, 0), 1)], [((1, 0), 1), ((0, 2), -1)])" def test_FractionField(): assert srepr(QQ.frac_field(x)) == \ "FractionField(FracField((Symbol('x'),), QQ, lex))" assert srepr(QQ.frac_field(x, y, order=grlex)) == \ "FractionField(FracField((Symbol('x'), Symbol('y')), QQ, grlex))" def test_PolynomialRingBase(): assert srepr(ZZ.old_poly_ring(x)) == \ "GlobalPolynomialRing(ZZ, Symbol('x'))" assert srepr(ZZ[x].old_poly_ring(y)) == \ "GlobalPolynomialRing(ZZ[x], Symbol('y'))" assert srepr(QQ.frac_field(x).old_poly_ring(y)) == \ "GlobalPolynomialRing(FractionField(FracField((Symbol('x'),), QQ, lex)), Symbol('y'))" def test_DMP(): assert srepr(DMP([1, 2], ZZ)) == 'DMP([1, 2], ZZ)' assert srepr(ZZ.old_poly_ring(x)([1, 2])) == \ "DMP([1, 2], ZZ, ring=GlobalPolynomialRing(ZZ, Symbol('x')))" def test_FiniteExtension(): assert srepr(FiniteExtension(Poly(x**2 + 1, x))) == \ "FiniteExtension(Poly(x**2 + 1, x, domain='ZZ'))" def test_ExtensionElement(): A = FiniteExtension(Poly(x**2 + 1, x)) assert srepr(A.generator) == \ "ExtElem(DMP([1, 0], ZZ, ring=GlobalPolynomialRing(ZZ, Symbol('x'))), FiniteExtension(Poly(x**2 + 1, x, domain='ZZ')))" def test_BooleanAtom(): assert srepr(true) == "true" assert srepr(false) == "false" def test_Integers(): sT(S.Integers, "Integers") def test_Naturals(): sT(S.Naturals, "Naturals") def test_Naturals0(): sT(S.Naturals0, "Naturals0") def test_Reals(): sT(S.Reals, "Reals") def test_matrix_expressions(): n = symbols('n', integer=True) A = MatrixSymbol("A", n, n) B = MatrixSymbol("B", n, n) sT(A, "MatrixSymbol(Str('A'), Symbol('n', integer=True), Symbol('n', integer=True))") sT(A*B, "MatMul(MatrixSymbol(Str('A'), Symbol('n', integer=True), Symbol('n', integer=True)), MatrixSymbol(Str('B'), Symbol('n', integer=True), Symbol('n', integer=True)))") sT(A + B, "MatAdd(MatrixSymbol(Str('A'), Symbol('n', integer=True), Symbol('n', integer=True)), MatrixSymbol(Str('B'), Symbol('n', integer=True), Symbol('n', integer=True)))") def test_Cycle(): # FIXME: sT fails because Cycle is not immutable and calling srepr(Cycle(1, 2)) # adds keys to the Cycle dict (GH-17661) #import_stmt = "from sympy.combinatorics import Cycle" #sT(Cycle(1, 2), "Cycle(1, 2)", import_stmt) assert srepr(Cycle(1, 2)) == "Cycle(1, 2)" def test_Permutation(): import_stmt = "from sympy.combinatorics import Permutation" sT(Permutation(1, 2), "Permutation(1, 2)", import_stmt) def test_dict(): from sympy import srepr from sympy.abc import x, y, z d = {} assert srepr(d) == "{}" d = {x: y} assert srepr(d) == "{Symbol('x'): Symbol('y')}" d = {x: y, y: z} assert srepr(d) in ( "{Symbol('x'): Symbol('y'), Symbol('y'): Symbol('z')}", "{Symbol('y'): Symbol('z'), Symbol('x'): Symbol('y')}", ) d = {x: {y: z}} assert srepr(d) == "{Symbol('x'): {Symbol('y'): Symbol('z')}}" def test_set(): from sympy import srepr from sympy.abc import x, y s = set() assert srepr(s) == "set()" s = {x, y} assert srepr(s) in ("{Symbol('x'), Symbol('y')}", "{Symbol('y'), Symbol('x')}") def test_Predicate(): sT(Q.even, "Q.even") def test_AppliedPredicate(): sT(Q.even(Symbol('z')), "AppliedPredicate(Q.even, Symbol('z'))")
acf3409dde5bcd02d9dfbcb111af0517dd9469a7b373dcb521c1013a9026a2c6
from sympy import (Add, Abs, Catalan, cos, Derivative, E, EulerGamma, exp, factorial, factorial2, Function, GoldenRatio, TribonacciConstant, I, Integer, Integral, Interval, Lambda, Limit, Matrix, nan, O, oo, pi, Pow, Rational, Float, Rel, S, sin, SparseMatrix, sqrt, summation, Sum, Symbol, symbols, Wild, WildFunction, zeta, zoo, Dummy, Dict, Tuple, FiniteSet, factor, subfactorial, true, false, Equivalent, Xor, Complement, SymmetricDifference, AccumBounds, UnevaluatedExpr, Eq, Ne, Quaternion, Subs, MatrixSymbol, MatrixSlice, Q) from sympy.core import Expr, Mul from sympy.external import import_module from sympy.physics.control.lti import TransferFunction, Series, Parallel, Feedback from sympy.physics.units import second, joule from sympy.polys import (Poly, rootof, RootSum, groebner, ring, field, ZZ, QQ, ZZ_I, QQ_I, lex, grlex) from sympy.geometry import Point, Circle, Polygon, Ellipse, Triangle from sympy.tensor import NDimArray from sympy.testing.pytest import raises from sympy.printing import sstr, sstrrepr, StrPrinter from sympy.core.trace import Tr x, y, z, w, t = symbols('x,y,z,w,t') d = Dummy('d') def test_printmethod(): class R(Abs): def _sympystr(self, printer): return "foo(%s)" % printer._print(self.args[0]) assert sstr(R(x)) == "foo(x)" class R(Abs): def _sympystr(self, printer): return "foo" assert sstr(R(x)) == "foo" def test_Abs(): assert str(Abs(x)) == "Abs(x)" assert str(Abs(Rational(1, 6))) == "1/6" assert str(Abs(Rational(-1, 6))) == "1/6" def test_Add(): assert str(x + y) == "x + y" assert str(x + 1) == "x + 1" assert str(x + x**2) == "x**2 + x" assert str(Add(0, 1, evaluate=False)) == "0 + 1" assert str(Add(0, 0, 1, evaluate=False)) == "0 + 0 + 1" assert str(1.0*x) == "1.0*x" assert str(5 + x + y + x*y + x**2 + y**2) == "x**2 + x*y + x + y**2 + y + 5" assert str(1 + x + x**2/2 + x**3/3) == "x**3/3 + x**2/2 + x + 1" assert str(2*x - 7*x**2 + 2 + 3*y) == "-7*x**2 + 2*x + 3*y + 2" assert str(x - y) == "x - y" assert str(2 - x) == "2 - x" assert str(x - 2) == "x - 2" assert str(x - y - z - w) == "-w + x - y - z" assert str(x - z*y**2*z*w) == "-w*y**2*z**2 + x" assert str(x - 1*y*x*y) == "-x*y**2 + x" assert str(sin(x).series(x, 0, 15)) == "x - x**3/6 + x**5/120 - x**7/5040 + x**9/362880 - x**11/39916800 + x**13/6227020800 + O(x**15)" def test_Catalan(): assert str(Catalan) == "Catalan" def test_ComplexInfinity(): assert str(zoo) == "zoo" def test_Derivative(): assert str(Derivative(x, y)) == "Derivative(x, y)" assert str(Derivative(x**2, x, evaluate=False)) == "Derivative(x**2, x)" assert str(Derivative( x**2/y, x, y, evaluate=False)) == "Derivative(x**2/y, x, y)" def test_dict(): assert str({1: 1 + x}) == sstr({1: 1 + x}) == "{1: x + 1}" assert str({1: x**2, 2: y*x}) in ("{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}") assert sstr({1: x**2, 2: y*x}) == "{1: x**2, 2: x*y}" def test_Dict(): assert str(Dict({1: 1 + x})) == sstr({1: 1 + x}) == "{1: x + 1}" assert str(Dict({1: x**2, 2: y*x})) in ( "{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}") assert sstr(Dict({1: x**2, 2: y*x})) == "{1: x**2, 2: x*y}" def test_Dummy(): assert str(d) == "_d" assert str(d + x) == "_d + x" def test_EulerGamma(): assert str(EulerGamma) == "EulerGamma" def test_Exp(): assert str(E) == "E" def test_factorial(): n = Symbol('n', integer=True) assert str(factorial(-2)) == "zoo" assert str(factorial(0)) == "1" assert str(factorial(7)) == "5040" assert str(factorial(n)) == "factorial(n)" assert str(factorial(2*n)) == "factorial(2*n)" assert str(factorial(factorial(n))) == 'factorial(factorial(n))' assert str(factorial(factorial2(n))) == 'factorial(factorial2(n))' assert str(factorial2(factorial(n))) == 'factorial2(factorial(n))' assert str(factorial2(factorial2(n))) == 'factorial2(factorial2(n))' assert str(subfactorial(3)) == "2" assert str(subfactorial(n)) == "subfactorial(n)" assert str(subfactorial(2*n)) == "subfactorial(2*n)" def test_Function(): f = Function('f') fx = f(x) w = WildFunction('w') assert str(f) == "f" assert str(fx) == "f(x)" assert str(w) == "w_" def test_Geometry(): assert sstr(Point(0, 0)) == 'Point2D(0, 0)' assert sstr(Circle(Point(0, 0), 3)) == 'Circle(Point2D(0, 0), 3)' assert sstr(Ellipse(Point(1, 2), 3, 4)) == 'Ellipse(Point2D(1, 2), 3, 4)' assert sstr(Triangle(Point(1, 1), Point(7, 8), Point(0, -1))) == \ 'Triangle(Point2D(1, 1), Point2D(7, 8), Point2D(0, -1))' assert sstr(Polygon(Point(5, 6), Point(-2, -3), Point(0, 0), Point(4, 7))) == \ 'Polygon(Point2D(5, 6), Point2D(-2, -3), Point2D(0, 0), Point2D(4, 7))' assert sstr(Triangle(Point(0, 0), Point(1, 0), Point(0, 1)), sympy_integers=True) == \ 'Triangle(Point2D(S(0), S(0)), Point2D(S(1), S(0)), Point2D(S(0), S(1)))' assert sstr(Ellipse(Point(1, 2), 3, 4), sympy_integers=True) == \ 'Ellipse(Point2D(S(1), S(2)), S(3), S(4))' def test_GoldenRatio(): assert str(GoldenRatio) == "GoldenRatio" def test_TribonacciConstant(): assert str(TribonacciConstant) == "TribonacciConstant" def test_ImaginaryUnit(): assert str(I) == "I" def test_Infinity(): assert str(oo) == "oo" assert str(oo*I) == "oo*I" def test_Integer(): assert str(Integer(-1)) == "-1" assert str(Integer(1)) == "1" assert str(Integer(-3)) == "-3" assert str(Integer(0)) == "0" assert str(Integer(25)) == "25" def test_Integral(): assert str(Integral(sin(x), y)) == "Integral(sin(x), y)" assert str(Integral(sin(x), (y, 0, 1))) == "Integral(sin(x), (y, 0, 1))" def test_Interval(): n = (S.NegativeInfinity, 1, 2, S.Infinity) for i in range(len(n)): for j in range(i + 1, len(n)): for l in (True, False): for r in (True, False): ival = Interval(n[i], n[j], l, r) assert S(str(ival)) == ival def test_AccumBounds(): a = Symbol('a', real=True) assert str(AccumBounds(0, a)) == "AccumBounds(0, a)" assert str(AccumBounds(0, 1)) == "AccumBounds(0, 1)" def test_Lambda(): assert str(Lambda(d, d**2)) == "Lambda(_d, _d**2)" # issue 2908 assert str(Lambda((), 1)) == "Lambda((), 1)" assert str(Lambda((), x)) == "Lambda((), x)" assert str(Lambda((x, y), x+y)) == "Lambda((x, y), x + y)" assert str(Lambda(((x, y),), x+y)) == "Lambda(((x, y),), x + y)" def test_Limit(): assert str(Limit(sin(x)/x, x, y)) == "Limit(sin(x)/x, x, y)" assert str(Limit(1/x, x, 0)) == "Limit(1/x, x, 0)" assert str( Limit(sin(x)/x, x, y, dir="-")) == "Limit(sin(x)/x, x, y, dir='-')" def test_list(): assert str([x]) == sstr([x]) == "[x]" assert str([x**2, x*y + 1]) == sstr([x**2, x*y + 1]) == "[x**2, x*y + 1]" assert str([x**2, [y + x]]) == sstr([x**2, [y + x]]) == "[x**2, [x + y]]" def test_Matrix_str(): M = Matrix([[x**+1, 1], [y, x + y]]) assert str(M) == "Matrix([[x, 1], [y, x + y]])" assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])" M = Matrix([[1]]) assert str(M) == sstr(M) == "Matrix([[1]])" M = Matrix([[1, 2]]) assert str(M) == sstr(M) == "Matrix([[1, 2]])" M = Matrix() assert str(M) == sstr(M) == "Matrix(0, 0, [])" M = Matrix(0, 1, lambda i, j: 0) assert str(M) == sstr(M) == "Matrix(0, 1, [])" def test_Mul(): assert str(x/y) == "x/y" assert str(y/x) == "y/x" assert str(x/y/z) == "x/(y*z)" assert str((x + 1)/(y + 2)) == "(x + 1)/(y + 2)" assert str(2*x/3) == '2*x/3' assert str(-2*x/3) == '-2*x/3' assert str(-1.0*x) == '-1.0*x' assert str(1.0*x) == '1.0*x' assert str(Mul(0, 1, evaluate=False)) == '0*1' assert str(Mul(1, 0, evaluate=False)) == '1*0' assert str(Mul(1, 1, evaluate=False)) == '1*1' assert str(Mul(1, 1, 1, evaluate=False)) == '1*1*1' assert str(Mul(1, 2, evaluate=False)) == '1*2' assert str(Mul(1, S.Half, evaluate=False)) == '1*(1/2)' assert str(Mul(1, 1, S.Half, evaluate=False)) == '1*1*(1/2)' assert str(Mul(1, 1, 2, 3, x, evaluate=False)) == '1*1*2*3*x' assert str(Mul(1, -1, evaluate=False)) == '1*(-1)' assert str(Mul(-1, 1, evaluate=False)) == '(-1)*1' assert str(Mul(4, 3, 2, 1, 0, y, x, evaluate=False)) == '4*3*2*1*0*y*x' assert str(Mul(4, 3, 2, 1+z, 0, y, x, evaluate=False)) == '4*3*2*(z + 1)*0*y*x' assert str(Mul(Rational(2, 3), Rational(5, 7), evaluate=False)) == '(2/3)*(5/7)' # For issue 14160 assert str(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False), evaluate=False)) == '-2*x/(y*y)' class CustomClass1(Expr): is_commutative = True class CustomClass2(Expr): is_commutative = True cc1 = CustomClass1() cc2 = CustomClass2() assert str(Rational(2)*cc1) == '2*CustomClass1()' assert str(cc1*Rational(2)) == '2*CustomClass1()' assert str(cc1*Float("1.5")) == '1.5*CustomClass1()' assert str(cc2*Rational(2)) == '2*CustomClass2()' assert str(cc2*Rational(2)*cc1) == '2*CustomClass1()*CustomClass2()' assert str(cc1*Rational(2)*cc2) == '2*CustomClass1()*CustomClass2()' def test_NaN(): assert str(nan) == "nan" def test_NegativeInfinity(): assert str(-oo) == "-oo" def test_Order(): assert str(O(x)) == "O(x)" assert str(O(x**2)) == "O(x**2)" assert str(O(x*y)) == "O(x*y, x, y)" assert str(O(x, x)) == "O(x)" assert str(O(x, (x, 0))) == "O(x)" assert str(O(x, (x, oo))) == "O(x, (x, oo))" assert str(O(x, x, y)) == "O(x, x, y)" assert str(O(x, x, y)) == "O(x, x, y)" assert str(O(x, (x, oo), (y, oo))) == "O(x, (x, oo), (y, oo))" def test_Permutation_Cycle(): from sympy.combinatorics import Permutation, Cycle # general principle: economically, canonically show all moved elements # and the size of the permutation. for p, s in [ (Cycle(), '()'), (Cycle(2), '(2)'), (Cycle(2, 1), '(1 2)'), (Cycle(1, 2)(5)(6, 7)(10), '(1 2)(6 7)(10)'), (Cycle(3, 4)(1, 2)(3, 4), '(1 2)(4)'), ]: assert sstr(p) == s for p, s in [ (Permutation([]), 'Permutation([])'), (Permutation([], size=1), 'Permutation([0])'), (Permutation([], size=2), 'Permutation([0, 1])'), (Permutation([], size=10), 'Permutation([], size=10)'), (Permutation([1, 0, 2]), 'Permutation([1, 0, 2])'), (Permutation([1, 0, 2, 3, 4, 5]), 'Permutation([1, 0], size=6)'), (Permutation([1, 0, 2, 3, 4, 5], size=10), 'Permutation([1, 0], size=10)'), ]: assert sstr(p, perm_cyclic=False) == s for p, s in [ (Permutation([]), '()'), (Permutation([], size=1), '(0)'), (Permutation([], size=2), '(1)'), (Permutation([], size=10), '(9)'), (Permutation([1, 0, 2]), '(2)(0 1)'), (Permutation([1, 0, 2, 3, 4, 5]), '(5)(0 1)'), (Permutation([1, 0, 2, 3, 4, 5], size=10), '(9)(0 1)'), (Permutation([0, 1, 3, 2, 4, 5], size=10), '(9)(2 3)'), ]: assert sstr(p) == s def test_Pi(): assert str(pi) == "pi" def test_Poly(): assert str(Poly(0, x)) == "Poly(0, x, domain='ZZ')" assert str(Poly(1, x)) == "Poly(1, x, domain='ZZ')" assert str(Poly(x, x)) == "Poly(x, x, domain='ZZ')" assert str(Poly(2*x + 1, x)) == "Poly(2*x + 1, x, domain='ZZ')" assert str(Poly(2*x - 1, x)) == "Poly(2*x - 1, x, domain='ZZ')" assert str(Poly(-1, x)) == "Poly(-1, x, domain='ZZ')" assert str(Poly(-x, x)) == "Poly(-x, x, domain='ZZ')" assert str(Poly(-2*x + 1, x)) == "Poly(-2*x + 1, x, domain='ZZ')" assert str(Poly(-2*x - 1, x)) == "Poly(-2*x - 1, x, domain='ZZ')" assert str(Poly(x - 1, x)) == "Poly(x - 1, x, domain='ZZ')" assert str(Poly(2*x + x**5, x)) == "Poly(x**5 + 2*x, x, domain='ZZ')" assert str(Poly(3**(2*x), 3**x)) == "Poly((3**x)**2, 3**x, domain='ZZ')" assert str(Poly((x**2)**x)) == "Poly(((x**2)**x), (x**2)**x, domain='ZZ')" assert str(Poly((x + y)**3, (x + y), expand=False) ) == "Poly((x + y)**3, x + y, domain='ZZ')" assert str(Poly((x - 1)**2, (x - 1), expand=False) ) == "Poly((x - 1)**2, x - 1, domain='ZZ')" assert str( Poly(x**2 + 1 + y, x)) == "Poly(x**2 + y + 1, x, domain='ZZ[y]')" assert str( Poly(x**2 - 1 + y, x)) == "Poly(x**2 + y - 1, x, domain='ZZ[y]')" assert str(Poly(x**2 + I*x, x)) == "Poly(x**2 + I*x, x, domain='ZZ_I')" assert str(Poly(x**2 - I*x, x)) == "Poly(x**2 - I*x, x, domain='ZZ_I')" assert str(Poly(-x*y*z + x*y - 1, x, y, z) ) == "Poly(-x*y*z + x*y - 1, x, y, z, domain='ZZ')" assert str(Poly(-w*x**21*y**7*z + (1 + w)*z**3 - 2*x*z + 1, x, y, z)) == \ "Poly(-w*x**21*y**7*z - 2*x*z + (w + 1)*z**3 + 1, x, y, z, domain='ZZ[w]')" assert str(Poly(x**2 + 1, x, modulus=2)) == "Poly(x**2 + 1, x, modulus=2)" assert str(Poly(2*x**2 + 3*x + 4, x, modulus=17)) == "Poly(2*x**2 + 3*x + 4, x, modulus=17)" def test_PolyRing(): assert str(ring("x", ZZ, lex)[0]) == "Polynomial ring in x over ZZ with lex order" assert str(ring("x,y", QQ, grlex)[0]) == "Polynomial ring in x, y over QQ with grlex order" assert str(ring("x,y,z", ZZ["t"], lex)[0]) == "Polynomial ring in x, y, z over ZZ[t] with lex order" def test_FracField(): assert str(field("x", ZZ, lex)[0]) == "Rational function field in x over ZZ with lex order" assert str(field("x,y", QQ, grlex)[0]) == "Rational function field in x, y over QQ with grlex order" assert str(field("x,y,z", ZZ["t"], lex)[0]) == "Rational function field in x, y, z over ZZ[t] with lex order" def test_PolyElement(): Ruv, u,v = ring("u,v", ZZ) Rxyz, x,y,z = ring("x,y,z", Ruv) Rx_zzi, xz = ring("x", ZZ_I) assert str(x - x) == "0" assert str(x - 1) == "x - 1" assert str(x + 1) == "x + 1" assert str(x**2) == "x**2" assert str(x**(-2)) == "x**(-2)" assert str(x**QQ(1, 2)) == "x**(1/2)" assert str((u**2 + 3*u*v + 1)*x**2*y + u + 1) == "(u**2 + 3*u*v + 1)*x**2*y + u + 1" assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x" assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1" assert str((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == "-(u**2 - 3*u*v + 1)*x**2*y - (u + 1)*x - 1" assert str(-(v**2 + v + 1)*x + 3*u*v + 1) == "-(v**2 + v + 1)*x + 3*u*v + 1" assert str(-(v**2 + v + 1)*x - 3*u*v + 1) == "-(v**2 + v + 1)*x - 3*u*v + 1" assert str((1+I)*xz + 2) == "(1 + 1*I)*x + (2 + 0*I)" def test_FracElement(): Fuv, u,v = field("u,v", ZZ) Fxyzt, x,y,z,t = field("x,y,z,t", Fuv) Rx_zzi, xz = field("x", QQ_I) i = QQ_I(0, 1) assert str(x - x) == "0" assert str(x - 1) == "x - 1" assert str(x + 1) == "x + 1" assert str(x/3) == "x/3" assert str(x/z) == "x/z" assert str(x*y/z) == "x*y/z" assert str(x/(z*t)) == "x/(z*t)" assert str(x*y/(z*t)) == "x*y/(z*t)" assert str((x - 1)/y) == "(x - 1)/y" assert str((x + 1)/y) == "(x + 1)/y" assert str((-x - 1)/y) == "(-x - 1)/y" assert str((x + 1)/(y*z)) == "(x + 1)/(y*z)" assert str(-y/(x + 1)) == "-y/(x + 1)" assert str(y*z/(x + 1)) == "y*z/(x + 1)" assert str(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - 1)" assert str(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - u*v*t - 1)" assert str((1+i)/xz) == "(1 + 1*I)/x" assert str(((1+i)*xz - i)/xz) == "((1 + 1*I)*x + (0 + -1*I))/x" def test_GaussianInteger(): assert str(ZZ_I(1, 0)) == "1" assert str(ZZ_I(-1, 0)) == "-1" assert str(ZZ_I(0, 1)) == "I" assert str(ZZ_I(0, -1)) == "-I" assert str(ZZ_I(0, 2)) == "2*I" assert str(ZZ_I(0, -2)) == "-2*I" assert str(ZZ_I(1, 1)) == "1 + I" assert str(ZZ_I(-1, -1)) == "-1 - I" assert str(ZZ_I(-1, -2)) == "-1 - 2*I" def test_GaussianRational(): assert str(QQ_I(1, 0)) == "1" assert str(QQ_I(QQ(2, 3), 0)) == "2/3" assert str(QQ_I(0, QQ(2, 3))) == "2*I/3" assert str(QQ_I(QQ(1, 2), QQ(-2, 3))) == "1/2 - 2*I/3" def test_Pow(): assert str(x**-1) == "1/x" assert str(x**-2) == "x**(-2)" assert str(x**2) == "x**2" assert str((x + y)**-1) == "1/(x + y)" assert str((x + y)**-2) == "(x + y)**(-2)" assert str((x + y)**2) == "(x + y)**2" assert str((x + y)**(1 + x)) == "(x + y)**(x + 1)" assert str(x**Rational(1, 3)) == "x**(1/3)" assert str(1/x**Rational(1, 3)) == "x**(-1/3)" assert str(sqrt(sqrt(x))) == "x**(1/4)" # not the same as x**-1 assert str(x**-1.0) == 'x**(-1.0)' # see issue #2860 assert str(Pow(S(2), -1.0, evaluate=False)) == '2**(-1.0)' def test_sqrt(): assert str(sqrt(x)) == "sqrt(x)" assert str(sqrt(x**2)) == "sqrt(x**2)" assert str(1/sqrt(x)) == "1/sqrt(x)" assert str(1/sqrt(x**2)) == "1/sqrt(x**2)" assert str(y/sqrt(x)) == "y/sqrt(x)" assert str(x**0.5) == "x**0.5" assert str(1/x**0.5) == "x**(-0.5)" def test_Rational(): n1 = Rational(1, 4) n2 = Rational(1, 3) n3 = Rational(2, 4) n4 = Rational(2, -4) n5 = Rational(0) n7 = Rational(3) n8 = Rational(-3) assert str(n1*n2) == "1/12" assert str(n1*n2) == "1/12" assert str(n3) == "1/2" assert str(n1*n3) == "1/8" assert str(n1 + n3) == "3/4" assert str(n1 + n2) == "7/12" assert str(n1 + n4) == "-1/4" assert str(n4*n4) == "1/4" assert str(n4 + n2) == "-1/6" assert str(n4 + n5) == "-1/2" assert str(n4*n5) == "0" assert str(n3 + n4) == "0" assert str(n1**n7) == "1/64" assert str(n2**n7) == "1/27" assert str(n2**n8) == "27" assert str(n7**n8) == "1/27" assert str(Rational("-25")) == "-25" assert str(Rational("1.25")) == "5/4" assert str(Rational("-2.6e-2")) == "-13/500" assert str(S("25/7")) == "25/7" assert str(S("-123/569")) == "-123/569" assert str(S("0.1[23]", rational=1)) == "61/495" assert str(S("5.1[666]", rational=1)) == "31/6" assert str(S("-5.1[666]", rational=1)) == "-31/6" assert str(S("0.[9]", rational=1)) == "1" assert str(S("-0.[9]", rational=1)) == "-1" assert str(sqrt(Rational(1, 4))) == "1/2" assert str(sqrt(Rational(1, 36))) == "1/6" assert str((123**25) ** Rational(1, 25)) == "123" assert str((123**25 + 1)**Rational(1, 25)) != "123" assert str((123**25 - 1)**Rational(1, 25)) != "123" assert str((123**25 - 1)**Rational(1, 25)) != "122" assert str(sqrt(Rational(81, 36))**3) == "27/8" assert str(1/sqrt(Rational(81, 36))**3) == "8/27" assert str(sqrt(-4)) == str(2*I) assert str(2**Rational(1, 10**10)) == "2**(1/10000000000)" assert sstr(Rational(2, 3), sympy_integers=True) == "S(2)/3" x = Symbol("x") assert sstr(x**Rational(2, 3), sympy_integers=True) == "x**(S(2)/3)" assert sstr(Eq(x, Rational(2, 3)), sympy_integers=True) == "Eq(x, S(2)/3)" assert sstr(Limit(x, x, Rational(7, 2)), sympy_integers=True) == \ "Limit(x, x, S(7)/2)" def test_Float(): # NOTE dps is the whole number of decimal digits assert str(Float('1.23', dps=1 + 2)) == '1.23' assert str(Float('1.23456789', dps=1 + 8)) == '1.23456789' assert str( Float('1.234567890123456789', dps=1 + 18)) == '1.234567890123456789' assert str(pi.evalf(1 + 2)) == '3.14' assert str(pi.evalf(1 + 14)) == '3.14159265358979' assert str(pi.evalf(1 + 64)) == ('3.141592653589793238462643383279' '5028841971693993751058209749445923') assert str(pi.round(-1)) == '0.0' assert str((pi**400 - (pi**400).round(1)).n(2)) == '-0.e+88' assert sstr(Float("100"), full_prec=False, min=-2, max=2) == '1.0e+2' assert sstr(Float("100"), full_prec=False, min=-2, max=3) == '100.0' assert sstr(Float("0.1"), full_prec=False, min=-2, max=3) == '0.1' assert sstr(Float("0.099"), min=-2, max=3) == '9.90000000000000e-2' def test_Relational(): assert str(Rel(x, y, "<")) == "x < y" assert str(Rel(x + y, y, "==")) == "Eq(x + y, y)" assert str(Rel(x, y, "!=")) == "Ne(x, y)" assert str(Eq(x, 1) | Eq(x, 2)) == "Eq(x, 1) | Eq(x, 2)" assert str(Ne(x, 1) & Ne(x, 2)) == "Ne(x, 1) & Ne(x, 2)" def test_CRootOf(): assert str(rootof(x**5 + 2*x - 1, 0)) == "CRootOf(x**5 + 2*x - 1, 0)" def test_RootSum(): f = x**5 + 2*x - 1 assert str( RootSum(f, Lambda(z, z), auto=False)) == "RootSum(x**5 + 2*x - 1)" assert str(RootSum(f, Lambda( z, z**2), auto=False)) == "RootSum(x**5 + 2*x - 1, Lambda(z, z**2))" def test_GroebnerBasis(): assert str(groebner( [], x, y)) == "GroebnerBasis([], x, y, domain='ZZ', order='lex')" F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1] assert str(groebner(F, order='grlex')) == \ "GroebnerBasis([x**2 - x - 3*y + 1, y**2 - 2*x + y - 1], x, y, domain='ZZ', order='grlex')" assert str(groebner(F, order='lex')) == \ "GroebnerBasis([2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7], x, y, domain='ZZ', order='lex')" def test_set(): assert sstr(set()) == 'set()' assert sstr(frozenset()) == 'frozenset()' assert sstr({1}) == '{1}' assert sstr(frozenset([1])) == 'frozenset({1})' assert sstr({1, 2, 3}) == '{1, 2, 3}' assert sstr(frozenset([1, 2, 3])) == 'frozenset({1, 2, 3})' assert sstr( {1, x, x**2, x**3, x**4}) == '{1, x, x**2, x**3, x**4}' assert sstr( frozenset([1, x, x**2, x**3, x**4])) == 'frozenset({1, x, x**2, x**3, x**4})' def test_SparseMatrix(): M = SparseMatrix([[x**+1, 1], [y, x + y]]) assert str(M) == "Matrix([[x, 1], [y, x + y]])" assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])" def test_Sum(): assert str(summation(cos(3*z), (z, x, y))) == "Sum(cos(3*z), (z, x, y))" assert str(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \ "Sum(x*y**2, (x, -2, 2), (y, -5, 5))" def test_Symbol(): assert str(y) == "y" assert str(x) == "x" e = x assert str(e) == "x" def test_tuple(): assert str((x,)) == sstr((x,)) == "(x,)" assert str((x + y, 1 + x)) == sstr((x + y, 1 + x)) == "(x + y, x + 1)" assert str((x + y, ( 1 + x, x**2))) == sstr((x + y, (1 + x, x**2))) == "(x + y, (x + 1, x**2))" def test_Series_str(): tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y) tf2 = TransferFunction(x - y, x + y, y) tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y) assert str(Series(tf1, tf2)) == \ "Series(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y))" assert str(Series(tf1, tf2, tf3)) == \ "Series(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y), TransferFunction(t*x**2 - t**w*x + w, t - y, y))" assert str(Series(-tf2, tf1)) == \ "Series(TransferFunction(-x + y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y))" def test_TransferFunction_str(): tf1 = TransferFunction(x - 1, x + 1, x) assert str(tf1) == "TransferFunction(x - 1, x + 1, x)" tf2 = TransferFunction(x + 1, 2 - y, x) assert str(tf2) == "TransferFunction(x + 1, 2 - y, x)" tf3 = TransferFunction(y, y**2 + 2*y + 3, y) assert str(tf3) == "TransferFunction(y, y**2 + 2*y + 3, y)" def test_Parallel_str(): tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y) tf2 = TransferFunction(x - y, x + y, y) tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y) assert str(Parallel(tf1, tf2)) == \ "Parallel(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y))" assert str(Parallel(tf1, tf2, tf3)) == \ "Parallel(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y), TransferFunction(t*x**2 - t**w*x + w, t - y, y))" assert str(Parallel(-tf2, tf1)) == \ "Parallel(TransferFunction(-x + y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y))" def test_Feedback_str(): tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y) tf2 = TransferFunction(x - y, x + y, y) tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y) assert str(Feedback(tf1*tf2, tf3)) == \ "Feedback(Series(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)), TransferFunction(t*x**2 - t**w*x + w, t - y, y))" assert str(Feedback(tf1, TransferFunction(1, 1, y))) == \ "Feedback(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(1, 1, y))" def test_Quaternion_str_printer(): q = Quaternion(x, y, z, t) assert str(q) == "x + y*i + z*j + t*k" q = Quaternion(x,y,z,x*t) assert str(q) == "x + y*i + z*j + t*x*k" q = Quaternion(x,y,z,x+t) assert str(q) == "x + y*i + z*j + (t + x)*k" def test_Quantity_str(): assert sstr(second, abbrev=True) == "s" assert sstr(joule, abbrev=True) == "J" assert str(second) == "second" assert str(joule) == "joule" def test_wild_str(): # Check expressions containing Wild not causing infinite recursion w = Wild('x') assert str(w + 1) == 'x_ + 1' assert str(exp(2**w) + 5) == 'exp(2**x_) + 5' assert str(3*w + 1) == '3*x_ + 1' assert str(1/w + 1) == '1 + 1/x_' assert str(w**2 + 1) == 'x_**2 + 1' assert str(1/(1 - w)) == '1/(1 - x_)' def test_wild_matchpy(): from sympy.utilities.matchpy_connector import WildDot, WildPlus, WildStar matchpy = import_module("matchpy") if matchpy is None: return wd = WildDot('w_') wp = WildPlus('w__') ws = WildStar('w___') assert str(wd) == 'w_' assert str(wp) == 'w__' assert str(ws) == 'w___' assert str(wp/ws + 2**wd) == '2**w_ + w__/w___' assert str(sin(wd)*cos(wp)*sqrt(ws)) == 'sqrt(w___)*sin(w_)*cos(w__)' def test_zeta(): assert str(zeta(3)) == "zeta(3)" def test_issue_3101(): e = x - y a = str(e) b = str(e) assert a == b def test_issue_3103(): e = -2*sqrt(x) - y/sqrt(x)/2 assert str(e) not in ["(-2)*x**1/2(-1/2)*x**(-1/2)*y", "-2*x**1/2(-1/2)*x**(-1/2)*y", "-2*x**1/2-1/2*x**-1/2*w"] assert str(e) == "-2*sqrt(x) - y/(2*sqrt(x))" def test_issue_4021(): e = Integral(x, x) + 1 assert str(e) == 'Integral(x, x) + 1' def test_sstrrepr(): assert sstr('abc') == 'abc' assert sstrrepr('abc') == "'abc'" e = ['a', 'b', 'c', x] assert sstr(e) == "[a, b, c, x]" assert sstrrepr(e) == "['a', 'b', 'c', x]" def test_infinity(): assert sstr(oo*I) == "oo*I" def test_full_prec(): assert sstr(S("0.3"), full_prec=True) == "0.300000000000000" assert sstr(S("0.3"), full_prec="auto") == "0.300000000000000" assert sstr(S("0.3"), full_prec=False) == "0.3" assert sstr(S("0.3")*x, full_prec=True) in [ "0.300000000000000*x", "x*0.300000000000000" ] assert sstr(S("0.3")*x, full_prec="auto") in [ "0.3*x", "x*0.3" ] assert sstr(S("0.3")*x, full_prec=False) in [ "0.3*x", "x*0.3" ] def test_noncommutative(): A, B, C = symbols('A,B,C', commutative=False) assert sstr(A*B*C**-1) == "A*B*C**(-1)" assert sstr(C**-1*A*B) == "C**(-1)*A*B" assert sstr(A*C**-1*B) == "A*C**(-1)*B" assert sstr(sqrt(A)) == "sqrt(A)" assert sstr(1/sqrt(A)) == "A**(-1/2)" def test_empty_printer(): str_printer = StrPrinter() assert str_printer.emptyPrinter("foo") == "foo" assert str_printer.emptyPrinter(x*y) == "x*y" assert str_printer.emptyPrinter(32) == "32" def test_settings(): raises(TypeError, lambda: sstr(S(4), method="garbage")) def test_RandomDomain(): from sympy.stats import Normal, Die, Exponential, pspace, where X = Normal('x1', 0, 1) assert str(where(X > 0)) == "Domain: (0 < x1) & (x1 < oo)" D = Die('d1', 6) assert str(where(D > 4)) == "Domain: Eq(d1, 5) | Eq(d1, 6)" A = Exponential('a', 1) B = Exponential('b', 1) assert str(pspace(Tuple(A, B)).domain) == "Domain: (0 <= a) & (0 <= b) & (a < oo) & (b < oo)" def test_FiniteSet(): assert str(FiniteSet(*range(1, 51))) == ( 'FiniteSet(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,' ' 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,' ' 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50)' ) assert str(FiniteSet(*range(1, 6))) == 'FiniteSet(1, 2, 3, 4, 5)' def test_UniversalSet(): assert str(S.UniversalSet) == 'UniversalSet' def test_PrettyPoly(): from sympy.polys.domains import QQ F = QQ.frac_field(x, y) R = QQ[x, y] assert sstr(F.convert(x/(x + y))) == sstr(x/(x + y)) assert sstr(R.convert(x + y)) == sstr(x + y) def test_categories(): from sympy.categories import (Object, NamedMorphism, IdentityMorphism, Category) A = Object("A") B = Object("B") f = NamedMorphism(A, B, "f") id_A = IdentityMorphism(A) K = Category("K") assert str(A) == 'Object("A")' assert str(f) == 'NamedMorphism(Object("A"), Object("B"), "f")' assert str(id_A) == 'IdentityMorphism(Object("A"))' assert str(K) == 'Category("K")' def test_Tr(): A, B = symbols('A B', commutative=False) t = Tr(A*B) assert str(t) == 'Tr(A*B)' def test_issue_6387(): assert str(factor(-3.0*z + 3)) == '-3.0*(1.0*z - 1.0)' def test_MatMul_MatAdd(): from sympy import MatrixSymbol X, Y = MatrixSymbol("X", 2, 2), MatrixSymbol("Y", 2, 2) assert str(2*(X + Y)) == "2*(X + Y)" assert str(I*X) == "I*X" assert str(-I*X) == "-I*X" assert str((1 + I)*X) == '(1 + I)*X' assert str(-(1 + I)*X) == '(-1 - I)*X' def test_MatrixSlice(): n = Symbol('n', integer=True) X = MatrixSymbol('X', n, n) Y = MatrixSymbol('Y', 10, 10) Z = MatrixSymbol('Z', 10, 10) assert str(MatrixSlice(X, (None, None, None), (None, None, None))) == 'X[:, :]' assert str(X[x:x + 1, y:y + 1]) == 'X[x:x + 1, y:y + 1]' assert str(X[x:x + 1:2, y:y + 1:2]) == 'X[x:x + 1:2, y:y + 1:2]' assert str(X[:x, y:]) == 'X[:x, y:]' assert str(X[:x, y:]) == 'X[:x, y:]' assert str(X[x:, :y]) == 'X[x:, :y]' assert str(X[x:y, z:w]) == 'X[x:y, z:w]' assert str(X[x:y:t, w:t:x]) == 'X[x:y:t, w:t:x]' assert str(X[x::y, t::w]) == 'X[x::y, t::w]' assert str(X[:x:y, :t:w]) == 'X[:x:y, :t:w]' assert str(X[::x, ::y]) == 'X[::x, ::y]' assert str(MatrixSlice(X, (0, None, None), (0, None, None))) == 'X[:, :]' assert str(MatrixSlice(X, (None, n, None), (None, n, None))) == 'X[:, :]' assert str(MatrixSlice(X, (0, n, None), (0, n, None))) == 'X[:, :]' assert str(MatrixSlice(X, (0, n, 2), (0, n, 2))) == 'X[::2, ::2]' assert str(X[1:2:3, 4:5:6]) == 'X[1:2:3, 4:5:6]' assert str(X[1:3:5, 4:6:8]) == 'X[1:3:5, 4:6:8]' assert str(X[1:10:2]) == 'X[1:10:2, :]' assert str(Y[:5, 1:9:2]) == 'Y[:5, 1:9:2]' assert str(Y[:5, 1:10:2]) == 'Y[:5, 1::2]' assert str(Y[5, :5:2]) == 'Y[5:6, :5:2]' assert str(X[0:1, 0:1]) == 'X[:1, :1]' assert str(X[0:1:2, 0:1:2]) == 'X[:1:2, :1:2]' assert str((Y + Z)[2:, 2:]) == '(Y + Z)[2:, 2:]' def test_true_false(): assert str(true) == repr(true) == sstr(true) == "True" assert str(false) == repr(false) == sstr(false) == "False" def test_Equivalent(): assert str(Equivalent(y, x)) == "Equivalent(x, y)" def test_Xor(): assert str(Xor(y, x, evaluate=False)) == "x ^ y" def test_Complement(): assert str(Complement(S.Reals, S.Naturals)) == 'Complement(Reals, Naturals)' def test_SymmetricDifference(): assert str(SymmetricDifference(Interval(2, 3), Interval(3, 4),evaluate=False)) == \ 'SymmetricDifference(Interval(2, 3), Interval(3, 4))' def test_UnevaluatedExpr(): a, b = symbols("a b") expr1 = 2*UnevaluatedExpr(a+b) assert str(expr1) == "2*(a + b)" def test_MatrixElement_printing(): # test cases for issue #11821 A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) assert(str(A[0, 0]) == "A[0, 0]") assert(str(3 * A[0, 0]) == "3*A[0, 0]") F = C[0, 0].subs(C, A - B) assert str(F) == "(A - B)[0, 0]" def test_MatrixSymbol_printing(): A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) assert str(A - A*B - B) == "A - A*B - B" assert str(A*B - (A+B)) == "-(A + B) + A*B" assert str(A**(-1)) == "A**(-1)" assert str(A**3) == "A**3" def test_MatrixExpressions(): n = Symbol('n', integer=True) X = MatrixSymbol('X', n, n) assert str(X) == "X" # Apply function elementwise (`ElementwiseApplyFunc`): expr = (X.T*X).applyfunc(sin) assert str(expr) == 'Lambda(_d, sin(_d)).(X.T*X)' lamda = Lambda(x, 1/x) expr = (n*X).applyfunc(lamda) assert str(expr) == 'Lambda(x, 1/x).(n*X)' def test_Subs_printing(): assert str(Subs(x, (x,), (1,))) == 'Subs(x, x, 1)' assert str(Subs(x + y, (x, y), (1, 2))) == 'Subs(x + y, (x, y), (1, 2))' def test_issue_15716(): e = Integral(factorial(x), (x, -oo, oo)) assert e.as_terms() == ([(e, ((1.0, 0.0), (1,), ()))], [e]) def test_str_special_matrices(): from sympy.matrices import Identity, ZeroMatrix, OneMatrix assert str(Identity(4)) == 'I' assert str(ZeroMatrix(2, 2)) == '0' assert str(OneMatrix(2, 2)) == '1' def test_issue_14567(): assert factorial(Sum(-1, (x, 0, 0))) + y # doesn't raise an error def test_Str(): from sympy.core.symbol import Str assert str(Str('x')) == 'x' assert sstrrepr(Str('x')) == "Str('x')" def test_diffgeom(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField x,y = symbols('x y', real=True) m = Manifold('M', 2) assert str(m) == "M" p = Patch('P', m) assert str(p) == "P" rect = CoordSystem('rect', p, [x, y]) assert str(rect) == "rect" b = BaseScalarField(rect, 0) assert str(b) == "x" def test_NDimArray(): assert sstr(NDimArray(1.0), full_prec=True) == '1.00000000000000' assert sstr(NDimArray(1.0), full_prec=False) == '1.0' assert sstr(NDimArray([1.0, 2.0]), full_prec=True) == '[1.00000000000000, 2.00000000000000]' assert sstr(NDimArray([1.0, 2.0]), full_prec=False) == '[1.0, 2.0]' def test_Predicate(): assert sstr(Q.even) == 'Q.even' def test_AppliedPredicate(): assert sstr(Q.even(x)) == 'Q.even(x)'
d2685abf555cc0973844dea15518303a5e8767e6a7a9d2ddaf21ba952d71e046
from sympy import diff, Integral, Limit, sin, Symbol, Integer, Rational, cos, \ tan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh, E, I, oo, \ pi, GoldenRatio, EulerGamma, Sum, Eq, Ne, Ge, Lt, Float, Matrix, Basic, \ S, MatrixSymbol, Function, Derivative, log, true, false, Range, Min, Max, \ Lambda, IndexedBase, symbols, zoo, elliptic_f, elliptic_e, elliptic_pi, Ei, \ expint, jacobi, gegenbauer, chebyshevt, chebyshevu, legendre, assoc_legendre, \ laguerre, assoc_laguerre, hermite, euler, stieltjes, mathieuc, mathieus, \ mathieucprime, mathieusprime, TribonacciConstant, Contains, LambertW, \ cot, coth, acot, acoth, csc, acsc, csch, acsch, sec, asec, sech, asech from sympy import elliptic_k, totient, reduced_totient, primenu, primeomega, \ fresnelc, fresnels, Heaviside from sympy.calculus.util import AccumBounds from sympy.core.containers import Tuple from sympy.functions.combinatorial.factorials import factorial, factorial2, \ binomial from sympy.functions.combinatorial.numbers import bernoulli, bell, lucas, \ fibonacci, tribonacci, catalan from sympy.functions.elementary.complexes import re, im, Abs, conjugate from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.integers import floor, ceiling from sympy.functions.special.gamma_functions import gamma, lowergamma, uppergamma from sympy.functions.special.singularity_functions import SingularityFunction from sympy.functions.special.zeta_functions import polylog, lerchphi, zeta, dirichlet_eta from sympy.logic.boolalg import And, Or, Implies, Equivalent, Xor, Not from sympy.matrices.expressions.determinant import Determinant from sympy.physics.quantum import ComplexSpace, HilbertSpace, FockSpace, hbar, Dagger from sympy.printing.mathml import mathml, MathMLContentPrinter, \ MathMLPresentationPrinter, MathMLPrinter from sympy.sets.sets import FiniteSet, Union, Intersection, Complement, \ SymmetricDifference, Interval, EmptySet, ProductSet from sympy.stats.rv import RandomSymbol from sympy.testing.pytest import raises from sympy.vector import CoordSys3D, Cross, Curl, Dot, Divergence, Gradient, Laplacian from sympy import sympify x, y, z, a, b, c, d, e, n = symbols('x:z a:e n') mp = MathMLContentPrinter() mpp = MathMLPresentationPrinter() def test_mathml_printer(): m = MathMLPrinter() assert m.doprint(1+x) == mp.doprint(1+x) def test_content_printmethod(): assert mp.doprint(1 + x) == '<apply><plus/><ci>x</ci><cn>1</cn></apply>' def test_content_mathml_core(): mml_1 = mp._print(1 + x) assert mml_1.nodeName == 'apply' nodes = mml_1.childNodes assert len(nodes) == 3 assert nodes[0].nodeName == 'plus' assert nodes[0].hasChildNodes() is False assert nodes[0].nodeValue is None assert nodes[1].nodeName in ['cn', 'ci'] if nodes[1].nodeName == 'cn': assert nodes[1].childNodes[0].nodeValue == '1' assert nodes[2].childNodes[0].nodeValue == 'x' else: assert nodes[1].childNodes[0].nodeValue == 'x' assert nodes[2].childNodes[0].nodeValue == '1' mml_2 = mp._print(x**2) assert mml_2.nodeName == 'apply' nodes = mml_2.childNodes assert nodes[1].childNodes[0].nodeValue == 'x' assert nodes[2].childNodes[0].nodeValue == '2' mml_3 = mp._print(2*x) assert mml_3.nodeName == 'apply' nodes = mml_3.childNodes assert nodes[0].nodeName == 'times' assert nodes[1].childNodes[0].nodeValue == '2' assert nodes[2].childNodes[0].nodeValue == 'x' mml = mp._print(Float(1.0, 2)*x) assert mml.nodeName == 'apply' nodes = mml.childNodes assert nodes[0].nodeName == 'times' assert nodes[1].childNodes[0].nodeValue == '1.0' assert nodes[2].childNodes[0].nodeValue == 'x' def test_content_mathml_functions(): mml_1 = mp._print(sin(x)) assert mml_1.nodeName == 'apply' assert mml_1.childNodes[0].nodeName == 'sin' assert mml_1.childNodes[1].nodeName == 'ci' mml_2 = mp._print(diff(sin(x), x, evaluate=False)) assert mml_2.nodeName == 'apply' assert mml_2.childNodes[0].nodeName == 'diff' assert mml_2.childNodes[1].nodeName == 'bvar' assert mml_2.childNodes[1].childNodes[ 0].nodeName == 'ci' # below bvar there's <ci>x/ci> mml_3 = mp._print(diff(cos(x*y), x, evaluate=False)) assert mml_3.nodeName == 'apply' assert mml_3.childNodes[0].nodeName == 'partialdiff' assert mml_3.childNodes[1].nodeName == 'bvar' assert mml_3.childNodes[1].childNodes[ 0].nodeName == 'ci' # below bvar there's <ci>x/ci> def test_content_mathml_limits(): # XXX No unevaluated limits lim_fun = sin(x)/x mml_1 = mp._print(Limit(lim_fun, x, 0)) assert mml_1.childNodes[0].nodeName == 'limit' assert mml_1.childNodes[1].nodeName == 'bvar' assert mml_1.childNodes[2].nodeName == 'lowlimit' assert mml_1.childNodes[3].toxml() == mp._print(lim_fun).toxml() def test_content_mathml_integrals(): integrand = x mml_1 = mp._print(Integral(integrand, (x, 0, 1))) assert mml_1.childNodes[0].nodeName == 'int' assert mml_1.childNodes[1].nodeName == 'bvar' assert mml_1.childNodes[2].nodeName == 'lowlimit' assert mml_1.childNodes[3].nodeName == 'uplimit' assert mml_1.childNodes[4].toxml() == mp._print(integrand).toxml() def test_content_mathml_matrices(): A = Matrix([1, 2, 3]) B = Matrix([[0, 5, 4], [2, 3, 1], [9, 7, 9]]) mll_1 = mp._print(A) assert mll_1.childNodes[0].nodeName == 'matrixrow' assert mll_1.childNodes[0].childNodes[0].nodeName == 'cn' assert mll_1.childNodes[0].childNodes[0].childNodes[0].nodeValue == '1' assert mll_1.childNodes[1].nodeName == 'matrixrow' assert mll_1.childNodes[1].childNodes[0].nodeName == 'cn' assert mll_1.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2' assert mll_1.childNodes[2].nodeName == 'matrixrow' assert mll_1.childNodes[2].childNodes[0].nodeName == 'cn' assert mll_1.childNodes[2].childNodes[0].childNodes[0].nodeValue == '3' mll_2 = mp._print(B) assert mll_2.childNodes[0].nodeName == 'matrixrow' assert mll_2.childNodes[0].childNodes[0].nodeName == 'cn' assert mll_2.childNodes[0].childNodes[0].childNodes[0].nodeValue == '0' assert mll_2.childNodes[0].childNodes[1].nodeName == 'cn' assert mll_2.childNodes[0].childNodes[1].childNodes[0].nodeValue == '5' assert mll_2.childNodes[0].childNodes[2].nodeName == 'cn' assert mll_2.childNodes[0].childNodes[2].childNodes[0].nodeValue == '4' assert mll_2.childNodes[1].nodeName == 'matrixrow' assert mll_2.childNodes[1].childNodes[0].nodeName == 'cn' assert mll_2.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2' assert mll_2.childNodes[1].childNodes[1].nodeName == 'cn' assert mll_2.childNodes[1].childNodes[1].childNodes[0].nodeValue == '3' assert mll_2.childNodes[1].childNodes[2].nodeName == 'cn' assert mll_2.childNodes[1].childNodes[2].childNodes[0].nodeValue == '1' assert mll_2.childNodes[2].nodeName == 'matrixrow' assert mll_2.childNodes[2].childNodes[0].nodeName == 'cn' assert mll_2.childNodes[2].childNodes[0].childNodes[0].nodeValue == '9' assert mll_2.childNodes[2].childNodes[1].nodeName == 'cn' assert mll_2.childNodes[2].childNodes[1].childNodes[0].nodeValue == '7' assert mll_2.childNodes[2].childNodes[2].nodeName == 'cn' assert mll_2.childNodes[2].childNodes[2].childNodes[0].nodeValue == '9' def test_content_mathml_sums(): summand = x mml_1 = mp._print(Sum(summand, (x, 1, 10))) assert mml_1.childNodes[0].nodeName == 'sum' assert mml_1.childNodes[1].nodeName == 'bvar' assert mml_1.childNodes[2].nodeName == 'lowlimit' assert mml_1.childNodes[3].nodeName == 'uplimit' assert mml_1.childNodes[4].toxml() == mp._print(summand).toxml() def test_content_mathml_tuples(): mml_1 = mp._print([2]) assert mml_1.nodeName == 'list' assert mml_1.childNodes[0].nodeName == 'cn' assert len(mml_1.childNodes) == 1 mml_2 = mp._print([2, Integer(1)]) assert mml_2.nodeName == 'list' assert mml_2.childNodes[0].nodeName == 'cn' assert mml_2.childNodes[1].nodeName == 'cn' assert len(mml_2.childNodes) == 2 def test_content_mathml_add(): mml = mp._print(x**5 - x**4 + x) assert mml.childNodes[0].nodeName == 'plus' assert mml.childNodes[1].childNodes[0].nodeName == 'minus' assert mml.childNodes[1].childNodes[1].nodeName == 'apply' def test_content_mathml_Rational(): mml_1 = mp._print(Rational(1, 1)) """should just return a number""" assert mml_1.nodeName == 'cn' mml_2 = mp._print(Rational(2, 5)) assert mml_2.childNodes[0].nodeName == 'divide' def test_content_mathml_constants(): mml = mp._print(I) assert mml.nodeName == 'imaginaryi' mml = mp._print(E) assert mml.nodeName == 'exponentiale' mml = mp._print(oo) assert mml.nodeName == 'infinity' mml = mp._print(pi) assert mml.nodeName == 'pi' assert mathml(GoldenRatio) == '<cn>&#966;</cn>' mml = mathml(EulerGamma) assert mml == '<eulergamma/>' mml = mathml(EmptySet()) assert mml == '<emptyset/>' mml = mathml(S.true) assert mml == '<true/>' mml = mathml(S.false) assert mml == '<false/>' mml = mathml(S.NaN) assert mml == '<notanumber/>' def test_content_mathml_trig(): mml = mp._print(sin(x)) assert mml.childNodes[0].nodeName == 'sin' mml = mp._print(cos(x)) assert mml.childNodes[0].nodeName == 'cos' mml = mp._print(tan(x)) assert mml.childNodes[0].nodeName == 'tan' mml = mp._print(cot(x)) assert mml.childNodes[0].nodeName == 'cot' mml = mp._print(csc(x)) assert mml.childNodes[0].nodeName == 'csc' mml = mp._print(sec(x)) assert mml.childNodes[0].nodeName == 'sec' mml = mp._print(asin(x)) assert mml.childNodes[0].nodeName == 'arcsin' mml = mp._print(acos(x)) assert mml.childNodes[0].nodeName == 'arccos' mml = mp._print(atan(x)) assert mml.childNodes[0].nodeName == 'arctan' mml = mp._print(acot(x)) assert mml.childNodes[0].nodeName == 'arccot' mml = mp._print(acsc(x)) assert mml.childNodes[0].nodeName == 'arccsc' mml = mp._print(asec(x)) assert mml.childNodes[0].nodeName == 'arcsec' mml = mp._print(sinh(x)) assert mml.childNodes[0].nodeName == 'sinh' mml = mp._print(cosh(x)) assert mml.childNodes[0].nodeName == 'cosh' mml = mp._print(tanh(x)) assert mml.childNodes[0].nodeName == 'tanh' mml = mp._print(coth(x)) assert mml.childNodes[0].nodeName == 'coth' mml = mp._print(csch(x)) assert mml.childNodes[0].nodeName == 'csch' mml = mp._print(sech(x)) assert mml.childNodes[0].nodeName == 'sech' mml = mp._print(asinh(x)) assert mml.childNodes[0].nodeName == 'arcsinh' mml = mp._print(atanh(x)) assert mml.childNodes[0].nodeName == 'arctanh' mml = mp._print(acosh(x)) assert mml.childNodes[0].nodeName == 'arccosh' mml = mp._print(acoth(x)) assert mml.childNodes[0].nodeName == 'arccoth' mml = mp._print(acsch(x)) assert mml.childNodes[0].nodeName == 'arccsch' mml = mp._print(asech(x)) assert mml.childNodes[0].nodeName == 'arcsech' def test_content_mathml_relational(): mml_1 = mp._print(Eq(x, 1)) assert mml_1.nodeName == 'apply' assert mml_1.childNodes[0].nodeName == 'eq' assert mml_1.childNodes[1].nodeName == 'ci' assert mml_1.childNodes[1].childNodes[0].nodeValue == 'x' assert mml_1.childNodes[2].nodeName == 'cn' assert mml_1.childNodes[2].childNodes[0].nodeValue == '1' mml_2 = mp._print(Ne(1, x)) assert mml_2.nodeName == 'apply' assert mml_2.childNodes[0].nodeName == 'neq' assert mml_2.childNodes[1].nodeName == 'cn' assert mml_2.childNodes[1].childNodes[0].nodeValue == '1' assert mml_2.childNodes[2].nodeName == 'ci' assert mml_2.childNodes[2].childNodes[0].nodeValue == 'x' mml_3 = mp._print(Ge(1, x)) assert mml_3.nodeName == 'apply' assert mml_3.childNodes[0].nodeName == 'geq' assert mml_3.childNodes[1].nodeName == 'cn' assert mml_3.childNodes[1].childNodes[0].nodeValue == '1' assert mml_3.childNodes[2].nodeName == 'ci' assert mml_3.childNodes[2].childNodes[0].nodeValue == 'x' mml_4 = mp._print(Lt(1, x)) assert mml_4.nodeName == 'apply' assert mml_4.childNodes[0].nodeName == 'lt' assert mml_4.childNodes[1].nodeName == 'cn' assert mml_4.childNodes[1].childNodes[0].nodeValue == '1' assert mml_4.childNodes[2].nodeName == 'ci' assert mml_4.childNodes[2].childNodes[0].nodeValue == 'x' def test_content_symbol(): mml = mp._print(x) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeValue == 'x' del mml mml = mp._print(Symbol("x^2")) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeName == 'mml:msup' assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2' del mml mml = mp._print(Symbol("x__2")) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeName == 'mml:msup' assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2' del mml mml = mp._print(Symbol("x_2")) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeName == 'mml:msub' assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2' del mml mml = mp._print(Symbol("x^3_2")) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeName == 'mml:msubsup' assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2' assert mml.childNodes[0].childNodes[2].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[2].childNodes[0].nodeValue == '3' del mml mml = mp._print(Symbol("x__3_2")) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeName == 'mml:msubsup' assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2' assert mml.childNodes[0].childNodes[2].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[2].childNodes[0].nodeValue == '3' del mml mml = mp._print(Symbol("x_2_a")) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeName == 'mml:msub' assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[ 0].nodeValue == '2' assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo' assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[ 0].nodeValue == ' ' assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[ 0].nodeValue == 'a' del mml mml = mp._print(Symbol("x^2^a")) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeName == 'mml:msup' assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[ 0].nodeValue == '2' assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo' assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[ 0].nodeValue == ' ' assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[ 0].nodeValue == 'a' del mml mml = mp._print(Symbol("x__2__a")) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeName == 'mml:msup' assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[ 0].nodeValue == '2' assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo' assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[ 0].nodeValue == ' ' assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[ 0].nodeValue == 'a' del mml def test_content_mathml_greek(): mml = mp._print(Symbol('alpha')) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeValue == '\N{GREEK SMALL LETTER ALPHA}' assert mp.doprint(Symbol('alpha')) == '<ci>&#945;</ci>' assert mp.doprint(Symbol('beta')) == '<ci>&#946;</ci>' assert mp.doprint(Symbol('gamma')) == '<ci>&#947;</ci>' assert mp.doprint(Symbol('delta')) == '<ci>&#948;</ci>' assert mp.doprint(Symbol('epsilon')) == '<ci>&#949;</ci>' assert mp.doprint(Symbol('zeta')) == '<ci>&#950;</ci>' assert mp.doprint(Symbol('eta')) == '<ci>&#951;</ci>' assert mp.doprint(Symbol('theta')) == '<ci>&#952;</ci>' assert mp.doprint(Symbol('iota')) == '<ci>&#953;</ci>' assert mp.doprint(Symbol('kappa')) == '<ci>&#954;</ci>' assert mp.doprint(Symbol('lambda')) == '<ci>&#955;</ci>' assert mp.doprint(Symbol('mu')) == '<ci>&#956;</ci>' assert mp.doprint(Symbol('nu')) == '<ci>&#957;</ci>' assert mp.doprint(Symbol('xi')) == '<ci>&#958;</ci>' assert mp.doprint(Symbol('omicron')) == '<ci>&#959;</ci>' assert mp.doprint(Symbol('pi')) == '<ci>&#960;</ci>' assert mp.doprint(Symbol('rho')) == '<ci>&#961;</ci>' assert mp.doprint(Symbol('varsigma')) == '<ci>&#962;</ci>' assert mp.doprint(Symbol('sigma')) == '<ci>&#963;</ci>' assert mp.doprint(Symbol('tau')) == '<ci>&#964;</ci>' assert mp.doprint(Symbol('upsilon')) == '<ci>&#965;</ci>' assert mp.doprint(Symbol('phi')) == '<ci>&#966;</ci>' assert mp.doprint(Symbol('chi')) == '<ci>&#967;</ci>' assert mp.doprint(Symbol('psi')) == '<ci>&#968;</ci>' assert mp.doprint(Symbol('omega')) == '<ci>&#969;</ci>' assert mp.doprint(Symbol('Alpha')) == '<ci>&#913;</ci>' assert mp.doprint(Symbol('Beta')) == '<ci>&#914;</ci>' assert mp.doprint(Symbol('Gamma')) == '<ci>&#915;</ci>' assert mp.doprint(Symbol('Delta')) == '<ci>&#916;</ci>' assert mp.doprint(Symbol('Epsilon')) == '<ci>&#917;</ci>' assert mp.doprint(Symbol('Zeta')) == '<ci>&#918;</ci>' assert mp.doprint(Symbol('Eta')) == '<ci>&#919;</ci>' assert mp.doprint(Symbol('Theta')) == '<ci>&#920;</ci>' assert mp.doprint(Symbol('Iota')) == '<ci>&#921;</ci>' assert mp.doprint(Symbol('Kappa')) == '<ci>&#922;</ci>' assert mp.doprint(Symbol('Lambda')) == '<ci>&#923;</ci>' assert mp.doprint(Symbol('Mu')) == '<ci>&#924;</ci>' assert mp.doprint(Symbol('Nu')) == '<ci>&#925;</ci>' assert mp.doprint(Symbol('Xi')) == '<ci>&#926;</ci>' assert mp.doprint(Symbol('Omicron')) == '<ci>&#927;</ci>' assert mp.doprint(Symbol('Pi')) == '<ci>&#928;</ci>' assert mp.doprint(Symbol('Rho')) == '<ci>&#929;</ci>' assert mp.doprint(Symbol('Sigma')) == '<ci>&#931;</ci>' assert mp.doprint(Symbol('Tau')) == '<ci>&#932;</ci>' assert mp.doprint(Symbol('Upsilon')) == '<ci>&#933;</ci>' assert mp.doprint(Symbol('Phi')) == '<ci>&#934;</ci>' assert mp.doprint(Symbol('Chi')) == '<ci>&#935;</ci>' assert mp.doprint(Symbol('Psi')) == '<ci>&#936;</ci>' assert mp.doprint(Symbol('Omega')) == '<ci>&#937;</ci>' def test_content_mathml_order(): expr = x**3 + x**2*y + 3*x*y**3 + y**4 mp = MathMLContentPrinter({'order': 'lex'}) mml = mp._print(expr) assert mml.childNodes[1].childNodes[0].nodeName == 'power' assert mml.childNodes[1].childNodes[1].childNodes[0].data == 'x' assert mml.childNodes[1].childNodes[2].childNodes[0].data == '3' assert mml.childNodes[4].childNodes[0].nodeName == 'power' assert mml.childNodes[4].childNodes[1].childNodes[0].data == 'y' assert mml.childNodes[4].childNodes[2].childNodes[0].data == '4' mp = MathMLContentPrinter({'order': 'rev-lex'}) mml = mp._print(expr) assert mml.childNodes[1].childNodes[0].nodeName == 'power' assert mml.childNodes[1].childNodes[1].childNodes[0].data == 'y' assert mml.childNodes[1].childNodes[2].childNodes[0].data == '4' assert mml.childNodes[4].childNodes[0].nodeName == 'power' assert mml.childNodes[4].childNodes[1].childNodes[0].data == 'x' assert mml.childNodes[4].childNodes[2].childNodes[0].data == '3' def test_content_settings(): raises(TypeError, lambda: mathml(x, method="garbage")) def test_content_mathml_logic(): assert mathml(And(x, y)) == '<apply><and/><ci>x</ci><ci>y</ci></apply>' assert mathml(Or(x, y)) == '<apply><or/><ci>x</ci><ci>y</ci></apply>' assert mathml(Xor(x, y)) == '<apply><xor/><ci>x</ci><ci>y</ci></apply>' assert mathml(Implies(x, y)) == '<apply><implies/><ci>x</ci><ci>y</ci></apply>' assert mathml(Not(x)) == '<apply><not/><ci>x</ci></apply>' def test_content_finite_sets(): assert mathml(FiniteSet(a)) == '<set><ci>a</ci></set>' assert mathml(FiniteSet(a, b)) == '<set><ci>a</ci><ci>b</ci></set>' assert mathml(FiniteSet(FiniteSet(a, b), c)) == \ '<set><ci>c</ci><set><ci>a</ci><ci>b</ci></set></set>' A = FiniteSet(a) B = FiniteSet(b) C = FiniteSet(c) D = FiniteSet(d) U1 = Union(A, B, evaluate=False) U2 = Union(C, D, evaluate=False) I1 = Intersection(A, B, evaluate=False) I2 = Intersection(C, D, evaluate=False) C1 = Complement(A, B, evaluate=False) C2 = Complement(C, D, evaluate=False) # XXX ProductSet does not support evaluate keyword P1 = ProductSet(A, B) P2 = ProductSet(C, D) assert mathml(U1) == \ '<apply><union/><set><ci>a</ci></set><set><ci>b</ci></set></apply>' assert mathml(I1) == \ '<apply><intersect/><set><ci>a</ci></set><set><ci>b</ci></set>' \ '</apply>' assert mathml(C1) == \ '<apply><setdiff/><set><ci>a</ci></set><set><ci>b</ci></set></apply>' assert mathml(P1) == \ '<apply><cartesianproduct/><set><ci>a</ci></set><set><ci>b</ci>' \ '</set></apply>' assert mathml(Intersection(A, U2, evaluate=False)) == \ '<apply><intersect/><set><ci>a</ci></set><apply><union/><set>' \ '<ci>c</ci></set><set><ci>d</ci></set></apply></apply>' assert mathml(Intersection(U1, U2, evaluate=False)) == \ '<apply><intersect/><apply><union/><set><ci>a</ci></set><set>' \ '<ci>b</ci></set></apply><apply><union/><set><ci>c</ci></set>' \ '<set><ci>d</ci></set></apply></apply>' # XXX Does the parenthesis appear correctly for these examples in mathjax? assert mathml(Intersection(C1, C2, evaluate=False)) == \ '<apply><intersect/><apply><setdiff/><set><ci>a</ci></set><set>' \ '<ci>b</ci></set></apply><apply><setdiff/><set><ci>c</ci></set>' \ '<set><ci>d</ci></set></apply></apply>' assert mathml(Intersection(P1, P2, evaluate=False)) == \ '<apply><intersect/><apply><cartesianproduct/><set><ci>a</ci></set>' \ '<set><ci>b</ci></set></apply><apply><cartesianproduct/><set>' \ '<ci>c</ci></set><set><ci>d</ci></set></apply></apply>' assert mathml(Union(A, I2, evaluate=False)) == \ '<apply><union/><set><ci>a</ci></set><apply><intersect/><set>' \ '<ci>c</ci></set><set><ci>d</ci></set></apply></apply>' assert mathml(Union(I1, I2, evaluate=False)) == \ '<apply><union/><apply><intersect/><set><ci>a</ci></set><set>' \ '<ci>b</ci></set></apply><apply><intersect/><set><ci>c</ci></set>' \ '<set><ci>d</ci></set></apply></apply>' assert mathml(Union(C1, C2, evaluate=False)) == \ '<apply><union/><apply><setdiff/><set><ci>a</ci></set><set>' \ '<ci>b</ci></set></apply><apply><setdiff/><set><ci>c</ci></set>' \ '<set><ci>d</ci></set></apply></apply>' assert mathml(Union(P1, P2, evaluate=False)) == \ '<apply><union/><apply><cartesianproduct/><set><ci>a</ci></set>' \ '<set><ci>b</ci></set></apply><apply><cartesianproduct/><set>' \ '<ci>c</ci></set><set><ci>d</ci></set></apply></apply>' assert mathml(Complement(A, C2, evaluate=False)) == \ '<apply><setdiff/><set><ci>a</ci></set><apply><setdiff/><set>' \ '<ci>c</ci></set><set><ci>d</ci></set></apply></apply>' assert mathml(Complement(U1, U2, evaluate=False)) == \ '<apply><setdiff/><apply><union/><set><ci>a</ci></set><set>' \ '<ci>b</ci></set></apply><apply><union/><set><ci>c</ci></set>' \ '<set><ci>d</ci></set></apply></apply>' assert mathml(Complement(I1, I2, evaluate=False)) == \ '<apply><setdiff/><apply><intersect/><set><ci>a</ci></set><set>' \ '<ci>b</ci></set></apply><apply><intersect/><set><ci>c</ci></set>' \ '<set><ci>d</ci></set></apply></apply>' assert mathml(Complement(P1, P2, evaluate=False)) == \ '<apply><setdiff/><apply><cartesianproduct/><set><ci>a</ci></set>' \ '<set><ci>b</ci></set></apply><apply><cartesianproduct/><set>' \ '<ci>c</ci></set><set><ci>d</ci></set></apply></apply>' assert mathml(ProductSet(A, P2)) == \ '<apply><cartesianproduct/><set><ci>a</ci></set>' \ '<apply><cartesianproduct/><set><ci>c</ci></set>' \ '<set><ci>d</ci></set></apply></apply>' assert mathml(ProductSet(U1, U2)) == \ '<apply><cartesianproduct/><apply><union/><set><ci>a</ci></set>' \ '<set><ci>b</ci></set></apply><apply><union/><set><ci>c</ci></set>' \ '<set><ci>d</ci></set></apply></apply>' assert mathml(ProductSet(I1, I2)) == \ '<apply><cartesianproduct/><apply><intersect/><set><ci>a</ci></set>' \ '<set><ci>b</ci></set></apply><apply><intersect/><set>' \ '<ci>c</ci></set><set><ci>d</ci></set></apply></apply>' assert mathml(ProductSet(C1, C2)) == \ '<apply><cartesianproduct/><apply><setdiff/><set><ci>a</ci></set>' \ '<set><ci>b</ci></set></apply><apply><setdiff/><set>' \ '<ci>c</ci></set><set><ci>d</ci></set></apply></apply>' def test_presentation_printmethod(): assert mpp.doprint(1 + x) == '<mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow>' assert mpp.doprint(x**2) == '<msup><mi>x</mi><mn>2</mn></msup>' assert mpp.doprint(x**-1) == '<mfrac><mn>1</mn><mi>x</mi></mfrac>' assert mpp.doprint(x**-2) == \ '<mfrac><mn>1</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac>' assert mpp.doprint(2*x) == \ '<mrow><mn>2</mn><mo>&InvisibleTimes;</mo><mi>x</mi></mrow>' def test_presentation_mathml_core(): mml_1 = mpp._print(1 + x) assert mml_1.nodeName == 'mrow' nodes = mml_1.childNodes assert len(nodes) == 3 assert nodes[0].nodeName in ['mi', 'mn'] assert nodes[1].nodeName == 'mo' if nodes[0].nodeName == 'mn': assert nodes[0].childNodes[0].nodeValue == '1' assert nodes[2].childNodes[0].nodeValue == 'x' else: assert nodes[0].childNodes[0].nodeValue == 'x' assert nodes[2].childNodes[0].nodeValue == '1' mml_2 = mpp._print(x**2) assert mml_2.nodeName == 'msup' nodes = mml_2.childNodes assert nodes[0].childNodes[0].nodeValue == 'x' assert nodes[1].childNodes[0].nodeValue == '2' mml_3 = mpp._print(2*x) assert mml_3.nodeName == 'mrow' nodes = mml_3.childNodes assert nodes[0].childNodes[0].nodeValue == '2' assert nodes[1].childNodes[0].nodeValue == '&InvisibleTimes;' assert nodes[2].childNodes[0].nodeValue == 'x' mml = mpp._print(Float(1.0, 2)*x) assert mml.nodeName == 'mrow' nodes = mml.childNodes assert nodes[0].childNodes[0].nodeValue == '1.0' assert nodes[1].childNodes[0].nodeValue == '&InvisibleTimes;' assert nodes[2].childNodes[0].nodeValue == 'x' def test_presentation_mathml_functions(): mml_1 = mpp._print(sin(x)) assert mml_1.childNodes[0].childNodes[0 ].nodeValue == 'sin' assert mml_1.childNodes[1].childNodes[0 ].childNodes[0].nodeValue == 'x' mml_2 = mpp._print(diff(sin(x), x, evaluate=False)) assert mml_2.nodeName == 'mrow' assert mml_2.childNodes[0].childNodes[0 ].childNodes[0].childNodes[0].nodeValue == '&dd;' assert mml_2.childNodes[1].childNodes[1 ].nodeName == 'mfenced' assert mml_2.childNodes[0].childNodes[1 ].childNodes[0].childNodes[0].nodeValue == '&dd;' mml_3 = mpp._print(diff(cos(x*y), x, evaluate=False)) assert mml_3.childNodes[0].nodeName == 'mfrac' assert mml_3.childNodes[0].childNodes[0 ].childNodes[0].childNodes[0].nodeValue == '&#x2202;' assert mml_3.childNodes[1].childNodes[0 ].childNodes[0].nodeValue == 'cos' def test_print_derivative(): f = Function('f') d = Derivative(f(x, y, z), x, z, x, z, z, y) assert mathml(d) == \ '<apply><partialdiff/><bvar><ci>y</ci><ci>z</ci><degree><cn>2</cn></degree><ci>x</ci><ci>z</ci><ci>x</ci></bvar><apply><f/><ci>x</ci><ci>y</ci><ci>z</ci></apply></apply>' assert mathml(d, printer='presentation') == \ '<mrow><mfrac><mrow><msup><mo>&#x2202;</mo><mn>6</mn></msup></mrow><mrow><mo>&#x2202;</mo><mi>y</mi><msup><mo>&#x2202;</mo><mn>2</mn></msup><mi>z</mi><mo>&#x2202;</mo><mi>x</mi><mo>&#x2202;</mo><mi>z</mi><mo>&#x2202;</mo><mi>x</mi></mrow></mfrac><mrow><mi>f</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow></mrow>' def test_presentation_mathml_limits(): lim_fun = sin(x)/x mml_1 = mpp._print(Limit(lim_fun, x, 0)) assert mml_1.childNodes[0].nodeName == 'munder' assert mml_1.childNodes[0].childNodes[0 ].childNodes[0].nodeValue == 'lim' assert mml_1.childNodes[0].childNodes[1 ].childNodes[0].childNodes[0 ].nodeValue == 'x' assert mml_1.childNodes[0].childNodes[1 ].childNodes[1].childNodes[0 ].nodeValue == '&#x2192;' assert mml_1.childNodes[0].childNodes[1 ].childNodes[2].childNodes[0 ].nodeValue == '0' def test_presentation_mathml_integrals(): assert mpp.doprint(Integral(x, (x, 0, 1))) == \ '<mrow><msubsup><mo>&#x222B;</mo><mn>0</mn><mn>1</mn></msubsup>'\ '<mi>x</mi><mo>&dd;</mo><mi>x</mi></mrow>' assert mpp.doprint(Integral(log(x), x)) == \ '<mrow><mo>&#x222B;</mo><mrow><mi>log</mi><mfenced><mi>x</mi>'\ '</mfenced></mrow><mo>&dd;</mo><mi>x</mi></mrow>' assert mpp.doprint(Integral(x*y, x, y)) == \ '<mrow><mo>&#x222C;</mo><mrow><mi>x</mi><mo>&InvisibleTimes;</mo>'\ '<mi>y</mi></mrow><mo>&dd;</mo><mi>y</mi><mo>&dd;</mo><mi>x</mi></mrow>' z, w = symbols('z w') assert mpp.doprint(Integral(x*y*z, x, y, z)) == \ '<mrow><mo>&#x222D;</mo><mrow><mi>x</mi><mo>&InvisibleTimes;</mo>'\ '<mi>y</mi><mo>&InvisibleTimes;</mo><mi>z</mi></mrow><mo>&dd;</mo>'\ '<mi>z</mi><mo>&dd;</mo><mi>y</mi><mo>&dd;</mo><mi>x</mi></mrow>' assert mpp.doprint(Integral(x*y*z*w, x, y, z, w)) == \ '<mrow><mo>&#x222B;</mo><mo>&#x222B;</mo><mo>&#x222B;</mo>'\ '<mo>&#x222B;</mo><mrow><mi>w</mi><mo>&InvisibleTimes;</mo>'\ '<mi>x</mi><mo>&InvisibleTimes;</mo><mi>y</mi>'\ '<mo>&InvisibleTimes;</mo><mi>z</mi></mrow><mo>&dd;</mo><mi>w</mi>'\ '<mo>&dd;</mo><mi>z</mi><mo>&dd;</mo><mi>y</mi><mo>&dd;</mo><mi>x</mi></mrow>' assert mpp.doprint(Integral(x, x, y, (z, 0, 1))) == \ '<mrow><msubsup><mo>&#x222B;</mo><mn>0</mn><mn>1</mn></msubsup>'\ '<mo>&#x222B;</mo><mo>&#x222B;</mo><mi>x</mi><mo>&dd;</mo><mi>z</mi>'\ '<mo>&dd;</mo><mi>y</mi><mo>&dd;</mo><mi>x</mi></mrow>' assert mpp.doprint(Integral(x, (x, 0))) == \ '<mrow><msup><mo>&#x222B;</mo><mn>0</mn></msup><mi>x</mi><mo>&dd;</mo>'\ '<mi>x</mi></mrow>' def test_presentation_mathml_matrices(): A = Matrix([1, 2, 3]) B = Matrix([[0, 5, 4], [2, 3, 1], [9, 7, 9]]) mll_1 = mpp._print(A) assert mll_1.childNodes[0].nodeName == 'mtable' assert mll_1.childNodes[0].childNodes[0].nodeName == 'mtr' assert len(mll_1.childNodes[0].childNodes) == 3 assert mll_1.childNodes[0].childNodes[0].childNodes[0].nodeName == 'mtd' assert len(mll_1.childNodes[0].childNodes[0].childNodes) == 1 assert mll_1.childNodes[0].childNodes[0].childNodes[0 ].childNodes[0].childNodes[0].nodeValue == '1' assert mll_1.childNodes[0].childNodes[1].childNodes[0 ].childNodes[0].childNodes[0].nodeValue == '2' assert mll_1.childNodes[0].childNodes[2].childNodes[0 ].childNodes[0].childNodes[0].nodeValue == '3' mll_2 = mpp._print(B) assert mll_2.childNodes[0].nodeName == 'mtable' assert mll_2.childNodes[0].childNodes[0].nodeName == 'mtr' assert len(mll_2.childNodes[0].childNodes) == 3 assert mll_2.childNodes[0].childNodes[0].childNodes[0].nodeName == 'mtd' assert len(mll_2.childNodes[0].childNodes[0].childNodes) == 3 assert mll_2.childNodes[0].childNodes[0].childNodes[0 ].childNodes[0].childNodes[0].nodeValue == '0' assert mll_2.childNodes[0].childNodes[0].childNodes[1 ].childNodes[0].childNodes[0].nodeValue == '5' assert mll_2.childNodes[0].childNodes[0].childNodes[2 ].childNodes[0].childNodes[0].nodeValue == '4' assert mll_2.childNodes[0].childNodes[1].childNodes[0 ].childNodes[0].childNodes[0].nodeValue == '2' assert mll_2.childNodes[0].childNodes[1].childNodes[1 ].childNodes[0].childNodes[0].nodeValue == '3' assert mll_2.childNodes[0].childNodes[1].childNodes[2 ].childNodes[0].childNodes[0].nodeValue == '1' assert mll_2.childNodes[0].childNodes[2].childNodes[0 ].childNodes[0].childNodes[0].nodeValue == '9' assert mll_2.childNodes[0].childNodes[2].childNodes[1 ].childNodes[0].childNodes[0].nodeValue == '7' assert mll_2.childNodes[0].childNodes[2].childNodes[2 ].childNodes[0].childNodes[0].nodeValue == '9' def test_presentation_mathml_sums(): summand = x mml_1 = mpp._print(Sum(summand, (x, 1, 10))) assert mml_1.childNodes[0].nodeName == 'munderover' assert len(mml_1.childNodes[0].childNodes) == 3 assert mml_1.childNodes[0].childNodes[0].childNodes[0 ].nodeValue == '&#x2211;' assert len(mml_1.childNodes[0].childNodes[1].childNodes) == 3 assert mml_1.childNodes[0].childNodes[2].childNodes[0 ].nodeValue == '10' assert mml_1.childNodes[1].childNodes[0].nodeValue == 'x' def test_presentation_mathml_add(): mml = mpp._print(x**5 - x**4 + x) assert len(mml.childNodes) == 5 assert mml.childNodes[0].childNodes[0].childNodes[0 ].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].childNodes[0 ].nodeValue == '5' assert mml.childNodes[1].childNodes[0].nodeValue == '-' assert mml.childNodes[2].childNodes[0].childNodes[0 ].nodeValue == 'x' assert mml.childNodes[2].childNodes[1].childNodes[0 ].nodeValue == '4' assert mml.childNodes[3].childNodes[0].nodeValue == '+' assert mml.childNodes[4].childNodes[0].nodeValue == 'x' def test_presentation_mathml_Rational(): mml_1 = mpp._print(Rational(1, 1)) assert mml_1.nodeName == 'mn' mml_2 = mpp._print(Rational(2, 5)) assert mml_2.nodeName == 'mfrac' assert mml_2.childNodes[0].childNodes[0].nodeValue == '2' assert mml_2.childNodes[1].childNodes[0].nodeValue == '5' def test_presentation_mathml_constants(): mml = mpp._print(I) assert mml.childNodes[0].nodeValue == '&ImaginaryI;' mml = mpp._print(E) assert mml.childNodes[0].nodeValue == '&ExponentialE;' mml = mpp._print(oo) assert mml.childNodes[0].nodeValue == '&#x221E;' mml = mpp._print(pi) assert mml.childNodes[0].nodeValue == '&pi;' assert mathml(GoldenRatio, printer='presentation') == '<mi>&#x3A6;</mi>' assert mathml(zoo, printer='presentation') == \ '<mover><mo>&#x221E;</mo><mo>~</mo></mover>' assert mathml(S.NaN, printer='presentation') == '<mi>NaN</mi>' def test_presentation_mathml_trig(): mml = mpp._print(sin(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'sin' mml = mpp._print(cos(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'cos' mml = mpp._print(tan(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'tan' mml = mpp._print(asin(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'arcsin' mml = mpp._print(acos(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'arccos' mml = mpp._print(atan(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'arctan' mml = mpp._print(sinh(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'sinh' mml = mpp._print(cosh(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'cosh' mml = mpp._print(tanh(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'tanh' mml = mpp._print(asinh(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'arcsinh' mml = mpp._print(atanh(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'arctanh' mml = mpp._print(acosh(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'arccosh' def test_presentation_mathml_relational(): mml_1 = mpp._print(Eq(x, 1)) assert len(mml_1.childNodes) == 3 assert mml_1.childNodes[0].nodeName == 'mi' assert mml_1.childNodes[0].childNodes[0].nodeValue == 'x' assert mml_1.childNodes[1].nodeName == 'mo' assert mml_1.childNodes[1].childNodes[0].nodeValue == '=' assert mml_1.childNodes[2].nodeName == 'mn' assert mml_1.childNodes[2].childNodes[0].nodeValue == '1' mml_2 = mpp._print(Ne(1, x)) assert len(mml_2.childNodes) == 3 assert mml_2.childNodes[0].nodeName == 'mn' assert mml_2.childNodes[0].childNodes[0].nodeValue == '1' assert mml_2.childNodes[1].nodeName == 'mo' assert mml_2.childNodes[1].childNodes[0].nodeValue == '&#x2260;' assert mml_2.childNodes[2].nodeName == 'mi' assert mml_2.childNodes[2].childNodes[0].nodeValue == 'x' mml_3 = mpp._print(Ge(1, x)) assert len(mml_3.childNodes) == 3 assert mml_3.childNodes[0].nodeName == 'mn' assert mml_3.childNodes[0].childNodes[0].nodeValue == '1' assert mml_3.childNodes[1].nodeName == 'mo' assert mml_3.childNodes[1].childNodes[0].nodeValue == '&#x2265;' assert mml_3.childNodes[2].nodeName == 'mi' assert mml_3.childNodes[2].childNodes[0].nodeValue == 'x' mml_4 = mpp._print(Lt(1, x)) assert len(mml_4.childNodes) == 3 assert mml_4.childNodes[0].nodeName == 'mn' assert mml_4.childNodes[0].childNodes[0].nodeValue == '1' assert mml_4.childNodes[1].nodeName == 'mo' assert mml_4.childNodes[1].childNodes[0].nodeValue == '<' assert mml_4.childNodes[2].nodeName == 'mi' assert mml_4.childNodes[2].childNodes[0].nodeValue == 'x' def test_presentation_symbol(): mml = mpp._print(x) assert mml.nodeName == 'mi' assert mml.childNodes[0].nodeValue == 'x' del mml mml = mpp._print(Symbol("x^2")) assert mml.nodeName == 'msup' assert mml.childNodes[0].nodeName == 'mi' assert mml.childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[1].nodeName == 'mi' assert mml.childNodes[1].childNodes[0].nodeValue == '2' del mml mml = mpp._print(Symbol("x__2")) assert mml.nodeName == 'msup' assert mml.childNodes[0].nodeName == 'mi' assert mml.childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[1].nodeName == 'mi' assert mml.childNodes[1].childNodes[0].nodeValue == '2' del mml mml = mpp._print(Symbol("x_2")) assert mml.nodeName == 'msub' assert mml.childNodes[0].nodeName == 'mi' assert mml.childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[1].nodeName == 'mi' assert mml.childNodes[1].childNodes[0].nodeValue == '2' del mml mml = mpp._print(Symbol("x^3_2")) assert mml.nodeName == 'msubsup' assert mml.childNodes[0].nodeName == 'mi' assert mml.childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[1].nodeName == 'mi' assert mml.childNodes[1].childNodes[0].nodeValue == '2' assert mml.childNodes[2].nodeName == 'mi' assert mml.childNodes[2].childNodes[0].nodeValue == '3' del mml mml = mpp._print(Symbol("x__3_2")) assert mml.nodeName == 'msubsup' assert mml.childNodes[0].nodeName == 'mi' assert mml.childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[1].nodeName == 'mi' assert mml.childNodes[1].childNodes[0].nodeValue == '2' assert mml.childNodes[2].nodeName == 'mi' assert mml.childNodes[2].childNodes[0].nodeValue == '3' del mml mml = mpp._print(Symbol("x_2_a")) assert mml.nodeName == 'msub' assert mml.childNodes[0].nodeName == 'mi' assert mml.childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[1].nodeName == 'mrow' assert mml.childNodes[1].childNodes[0].nodeName == 'mi' assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2' assert mml.childNodes[1].childNodes[1].nodeName == 'mo' assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' ' assert mml.childNodes[1].childNodes[2].nodeName == 'mi' assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a' del mml mml = mpp._print(Symbol("x^2^a")) assert mml.nodeName == 'msup' assert mml.childNodes[0].nodeName == 'mi' assert mml.childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[1].nodeName == 'mrow' assert mml.childNodes[1].childNodes[0].nodeName == 'mi' assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2' assert mml.childNodes[1].childNodes[1].nodeName == 'mo' assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' ' assert mml.childNodes[1].childNodes[2].nodeName == 'mi' assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a' del mml mml = mpp._print(Symbol("x__2__a")) assert mml.nodeName == 'msup' assert mml.childNodes[0].nodeName == 'mi' assert mml.childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[1].nodeName == 'mrow' assert mml.childNodes[1].childNodes[0].nodeName == 'mi' assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2' assert mml.childNodes[1].childNodes[1].nodeName == 'mo' assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' ' assert mml.childNodes[1].childNodes[2].nodeName == 'mi' assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a' del mml def test_presentation_mathml_greek(): mml = mpp._print(Symbol('alpha')) assert mml.nodeName == 'mi' assert mml.childNodes[0].nodeValue == '\N{GREEK SMALL LETTER ALPHA}' assert mpp.doprint(Symbol('alpha')) == '<mi>&#945;</mi>' assert mpp.doprint(Symbol('beta')) == '<mi>&#946;</mi>' assert mpp.doprint(Symbol('gamma')) == '<mi>&#947;</mi>' assert mpp.doprint(Symbol('delta')) == '<mi>&#948;</mi>' assert mpp.doprint(Symbol('epsilon')) == '<mi>&#949;</mi>' assert mpp.doprint(Symbol('zeta')) == '<mi>&#950;</mi>' assert mpp.doprint(Symbol('eta')) == '<mi>&#951;</mi>' assert mpp.doprint(Symbol('theta')) == '<mi>&#952;</mi>' assert mpp.doprint(Symbol('iota')) == '<mi>&#953;</mi>' assert mpp.doprint(Symbol('kappa')) == '<mi>&#954;</mi>' assert mpp.doprint(Symbol('lambda')) == '<mi>&#955;</mi>' assert mpp.doprint(Symbol('mu')) == '<mi>&#956;</mi>' assert mpp.doprint(Symbol('nu')) == '<mi>&#957;</mi>' assert mpp.doprint(Symbol('xi')) == '<mi>&#958;</mi>' assert mpp.doprint(Symbol('omicron')) == '<mi>&#959;</mi>' assert mpp.doprint(Symbol('pi')) == '<mi>&#960;</mi>' assert mpp.doprint(Symbol('rho')) == '<mi>&#961;</mi>' assert mpp.doprint(Symbol('varsigma')) == '<mi>&#962;</mi>' assert mpp.doprint(Symbol('sigma')) == '<mi>&#963;</mi>' assert mpp.doprint(Symbol('tau')) == '<mi>&#964;</mi>' assert mpp.doprint(Symbol('upsilon')) == '<mi>&#965;</mi>' assert mpp.doprint(Symbol('phi')) == '<mi>&#966;</mi>' assert mpp.doprint(Symbol('chi')) == '<mi>&#967;</mi>' assert mpp.doprint(Symbol('psi')) == '<mi>&#968;</mi>' assert mpp.doprint(Symbol('omega')) == '<mi>&#969;</mi>' assert mpp.doprint(Symbol('Alpha')) == '<mi>&#913;</mi>' assert mpp.doprint(Symbol('Beta')) == '<mi>&#914;</mi>' assert mpp.doprint(Symbol('Gamma')) == '<mi>&#915;</mi>' assert mpp.doprint(Symbol('Delta')) == '<mi>&#916;</mi>' assert mpp.doprint(Symbol('Epsilon')) == '<mi>&#917;</mi>' assert mpp.doprint(Symbol('Zeta')) == '<mi>&#918;</mi>' assert mpp.doprint(Symbol('Eta')) == '<mi>&#919;</mi>' assert mpp.doprint(Symbol('Theta')) == '<mi>&#920;</mi>' assert mpp.doprint(Symbol('Iota')) == '<mi>&#921;</mi>' assert mpp.doprint(Symbol('Kappa')) == '<mi>&#922;</mi>' assert mpp.doprint(Symbol('Lambda')) == '<mi>&#923;</mi>' assert mpp.doprint(Symbol('Mu')) == '<mi>&#924;</mi>' assert mpp.doprint(Symbol('Nu')) == '<mi>&#925;</mi>' assert mpp.doprint(Symbol('Xi')) == '<mi>&#926;</mi>' assert mpp.doprint(Symbol('Omicron')) == '<mi>&#927;</mi>' assert mpp.doprint(Symbol('Pi')) == '<mi>&#928;</mi>' assert mpp.doprint(Symbol('Rho')) == '<mi>&#929;</mi>' assert mpp.doprint(Symbol('Sigma')) == '<mi>&#931;</mi>' assert mpp.doprint(Symbol('Tau')) == '<mi>&#932;</mi>' assert mpp.doprint(Symbol('Upsilon')) == '<mi>&#933;</mi>' assert mpp.doprint(Symbol('Phi')) == '<mi>&#934;</mi>' assert mpp.doprint(Symbol('Chi')) == '<mi>&#935;</mi>' assert mpp.doprint(Symbol('Psi')) == '<mi>&#936;</mi>' assert mpp.doprint(Symbol('Omega')) == '<mi>&#937;</mi>' def test_presentation_mathml_order(): expr = x**3 + x**2*y + 3*x*y**3 + y**4 mp = MathMLPresentationPrinter({'order': 'lex'}) mml = mp._print(expr) assert mml.childNodes[0].nodeName == 'msup' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '3' assert mml.childNodes[6].nodeName == 'msup' assert mml.childNodes[6].childNodes[0].childNodes[0].nodeValue == 'y' assert mml.childNodes[6].childNodes[1].childNodes[0].nodeValue == '4' mp = MathMLPresentationPrinter({'order': 'rev-lex'}) mml = mp._print(expr) assert mml.childNodes[0].nodeName == 'msup' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'y' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '4' assert mml.childNodes[6].nodeName == 'msup' assert mml.childNodes[6].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[6].childNodes[1].childNodes[0].nodeValue == '3' def test_print_intervals(): a = Symbol('a', real=True) assert mpp.doprint(Interval(0, a)) == \ '<mrow><mfenced close="]" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>' assert mpp.doprint(Interval(0, a, False, False)) == \ '<mrow><mfenced close="]" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>' assert mpp.doprint(Interval(0, a, True, False)) == \ '<mrow><mfenced close="]" open="("><mn>0</mn><mi>a</mi></mfenced></mrow>' assert mpp.doprint(Interval(0, a, False, True)) == \ '<mrow><mfenced close=")" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>' assert mpp.doprint(Interval(0, a, True, True)) == \ '<mrow><mfenced close=")" open="("><mn>0</mn><mi>a</mi></mfenced></mrow>' def test_print_tuples(): assert mpp.doprint(Tuple(0,)) == \ '<mrow><mfenced><mn>0</mn></mfenced></mrow>' assert mpp.doprint(Tuple(0, a)) == \ '<mrow><mfenced><mn>0</mn><mi>a</mi></mfenced></mrow>' assert mpp.doprint(Tuple(0, a, a)) == \ '<mrow><mfenced><mn>0</mn><mi>a</mi><mi>a</mi></mfenced></mrow>' assert mpp.doprint(Tuple(0, 1, 2, 3, 4)) == \ '<mrow><mfenced><mn>0</mn><mn>1</mn><mn>2</mn><mn>3</mn><mn>4</mn></mfenced></mrow>' assert mpp.doprint(Tuple(0, 1, Tuple(2, 3, 4))) == \ '<mrow><mfenced><mn>0</mn><mn>1</mn><mrow><mfenced><mn>2</mn><mn>3'\ '</mn><mn>4</mn></mfenced></mrow></mfenced></mrow>' def test_print_re_im(): assert mpp.doprint(re(x)) == \ '<mrow><mi mathvariant="fraktur">R</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(im(x)) == \ '<mrow><mi mathvariant="fraktur">I</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(re(x + 1)) == \ '<mrow><mrow><mi mathvariant="fraktur">R</mi><mfenced><mi>x</mi>'\ '</mfenced></mrow><mo>+</mo><mn>1</mn></mrow>' assert mpp.doprint(im(x + 1)) == \ '<mrow><mi mathvariant="fraktur">I</mi><mfenced><mi>x</mi></mfenced></mrow>' def test_print_Abs(): assert mpp.doprint(Abs(x)) == \ '<mrow><mfenced close="|" open="|"><mi>x</mi></mfenced></mrow>' assert mpp.doprint(Abs(x + 1)) == \ '<mrow><mfenced close="|" open="|"><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow>' def test_print_Determinant(): assert mpp.doprint(Determinant(Matrix([[1, 2], [3, 4]]))) == \ '<mrow><mfenced close="|" open="|"><mfenced close="]" open="["><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced></mfenced></mrow>' def test_presentation_settings(): raises(TypeError, lambda: mathml(x, printer='presentation', method="garbage")) def test_toprettyxml_hooking(): # test that the patch doesn't influence the behavior of the standard # library import xml.dom.minidom doc1 = xml.dom.minidom.parseString( "<apply><plus/><ci>x</ci><cn>1</cn></apply>") doc2 = xml.dom.minidom.parseString( "<mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow>") prettyxml_old1 = doc1.toprettyxml() prettyxml_old2 = doc2.toprettyxml() mp.apply_patch() mp.restore_patch() assert prettyxml_old1 == doc1.toprettyxml() assert prettyxml_old2 == doc2.toprettyxml() def test_print_domains(): from sympy import Complexes, Integers, Naturals, Naturals0, Reals assert mpp.doprint(Complexes) == '<mi mathvariant="normal">&#x2102;</mi>' assert mpp.doprint(Integers) == '<mi mathvariant="normal">&#x2124;</mi>' assert mpp.doprint(Naturals) == '<mi mathvariant="normal">&#x2115;</mi>' assert mpp.doprint(Naturals0) == \ '<msub><mi mathvariant="normal">&#x2115;</mi><mn>0</mn></msub>' assert mpp.doprint(Reals) == '<mi mathvariant="normal">&#x211D;</mi>' def test_print_expression_with_minus(): assert mpp.doprint(-x) == '<mrow><mo>-</mo><mi>x</mi></mrow>' assert mpp.doprint(-x/y) == \ '<mrow><mo>-</mo><mfrac><mi>x</mi><mi>y</mi></mfrac></mrow>' assert mpp.doprint(-Rational(1, 2)) == \ '<mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow>' def test_print_AssocOp(): from sympy.core.operations import AssocOp class TestAssocOp(AssocOp): identity = 0 expr = TestAssocOp(1, 2) mpp.doprint(expr) == \ '<mrow><mi>testassocop</mi><mn>2</mn><mn>1</mn></mrow>' def test_print_basic(): expr = Basic(1, 2) assert mpp.doprint(expr) == \ '<mrow><mi>basic</mi><mfenced><mn>1</mn><mn>2</mn></mfenced></mrow>' assert mp.doprint(expr) == '<basic><cn>1</cn><cn>2</cn></basic>' def test_mat_delim_print(): expr = Matrix([[1, 2], [3, 4]]) assert mathml(expr, printer='presentation', mat_delim='[') == \ '<mfenced close="]" open="["><mtable><mtr><mtd><mn>1</mn></mtd><mtd>'\ '<mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn>'\ '</mtd></mtr></mtable></mfenced>' assert mathml(expr, printer='presentation', mat_delim='(') == \ '<mfenced><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd>'\ '</mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced>' assert mathml(expr, printer='presentation', mat_delim='') == \ '<mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr>'\ '<mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable>' def test_ln_notation_print(): expr = log(x) assert mathml(expr, printer='presentation') == \ '<mrow><mi>log</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mathml(expr, printer='presentation', ln_notation=False) == \ '<mrow><mi>log</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mathml(expr, printer='presentation', ln_notation=True) == \ '<mrow><mi>ln</mi><mfenced><mi>x</mi></mfenced></mrow>' def test_mul_symbol_print(): expr = x * y assert mathml(expr, printer='presentation') == \ '<mrow><mi>x</mi><mo>&InvisibleTimes;</mo><mi>y</mi></mrow>' assert mathml(expr, printer='presentation', mul_symbol=None) == \ '<mrow><mi>x</mi><mo>&InvisibleTimes;</mo><mi>y</mi></mrow>' assert mathml(expr, printer='presentation', mul_symbol='dot') == \ '<mrow><mi>x</mi><mo>&#xB7;</mo><mi>y</mi></mrow>' assert mathml(expr, printer='presentation', mul_symbol='ldot') == \ '<mrow><mi>x</mi><mo>&#x2024;</mo><mi>y</mi></mrow>' assert mathml(expr, printer='presentation', mul_symbol='times') == \ '<mrow><mi>x</mi><mo>&#xD7;</mo><mi>y</mi></mrow>' def test_print_lerchphi(): assert mpp.doprint(lerchphi(1, 2, 3)) == \ '<mrow><mi>&#x3A6;</mi><mfenced><mn>1</mn><mn>2</mn><mn>3</mn></mfenced></mrow>' def test_print_polylog(): assert mp.doprint(polylog(x, y)) == \ '<apply><polylog/><ci>x</ci><ci>y</ci></apply>' assert mpp.doprint(polylog(x, y)) == \ '<mrow><msub><mi>Li</mi><mi>x</mi></msub><mfenced><mi>y</mi></mfenced></mrow>' def test_print_set_frozenset(): f = frozenset({1, 5, 3}) assert mpp.doprint(f) == \ '<mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mn>5</mn></mfenced>' s = set({1, 2, 3}) assert mpp.doprint(s) == \ '<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mn>3</mn></mfenced>' def test_print_FiniteSet(): f1 = FiniteSet(x, 1, 3) assert mpp.doprint(f1) == \ '<mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi></mfenced>' def test_print_LambertW(): assert mpp.doprint(LambertW(x)) == '<mrow><mi>W</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(LambertW(x, y)) == '<mrow><mi>W</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>' def test_print_EmptySet(): assert mpp.doprint(EmptySet()) == '<mo>&#x2205;</mo>' def test_print_UniversalSet(): assert mpp.doprint(S.UniversalSet) == '<mo>&#x1D54C;</mo>' def test_print_spaces(): assert mpp.doprint(HilbertSpace()) == '<mi>&#x210B;</mi>' assert mpp.doprint(ComplexSpace(2)) == '<msup>&#x1D49E;<mn>2</mn></msup>' assert mpp.doprint(FockSpace()) == '<mi>&#x2131;</mi>' def test_print_constants(): assert mpp.doprint(hbar) == '<mi>&#x210F;</mi>' assert mpp.doprint(TribonacciConstant) == '<mi>TribonacciConstant</mi>' assert mpp.doprint(EulerGamma) == '<mi>&#x3B3;</mi>' def test_print_Contains(): assert mpp.doprint(Contains(x, S.Naturals)) == \ '<mrow><mi>x</mi><mo>&#x2208;</mo><mi mathvariant="normal">&#x2115;</mi></mrow>' def test_print_Dagger(): assert mpp.doprint(Dagger(x)) == '<msup><mi>x</mi>&#x2020;</msup>' def test_print_SetOp(): f1 = FiniteSet(x, 1, 3) f2 = FiniteSet(y, 2, 4) prntr = lambda x: mathml(x, printer='presentation') assert prntr(Union(f1, f2, evaluate=False)) == \ '<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\ '</mfenced><mo>&#x222A;</mo><mfenced close="}" open="{"><mn>2</mn>'\ '<mn>4</mn><mi>y</mi></mfenced></mrow>' assert prntr(Intersection(f1, f2, evaluate=False)) == \ '<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\ '</mfenced><mo>&#x2229;</mo><mfenced close="}" open="{"><mn>2</mn>'\ '<mn>4</mn><mi>y</mi></mfenced></mrow>' assert prntr(Complement(f1, f2, evaluate=False)) == \ '<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\ '</mfenced><mo>&#x2216;</mo><mfenced close="}" open="{"><mn>2</mn>'\ '<mn>4</mn><mi>y</mi></mfenced></mrow>' assert prntr(SymmetricDifference(f1, f2, evaluate=False)) == \ '<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\ '</mfenced><mo>&#x2206;</mo><mfenced close="}" open="{"><mn>2</mn>'\ '<mn>4</mn><mi>y</mi></mfenced></mrow>' A = FiniteSet(a) C = FiniteSet(c) D = FiniteSet(d) U1 = Union(C, D, evaluate=False) I1 = Intersection(C, D, evaluate=False) C1 = Complement(C, D, evaluate=False) D1 = SymmetricDifference(C, D, evaluate=False) # XXX ProductSet does not support evaluate keyword P1 = ProductSet(C, D) assert prntr(Union(A, I1, evaluate=False)) == \ '<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \ '<mo>&#x222A;</mo><mfenced><mrow><mfenced close="}" open="{">' \ '<mi>c</mi></mfenced><mo>&#x2229;</mo><mfenced close="}" open="{">' \ '<mi>d</mi></mfenced></mrow></mfenced></mrow>' assert prntr(Intersection(A, C1, evaluate=False)) == \ '<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \ '<mo>&#x2229;</mo><mfenced><mrow><mfenced close="}" open="{">' \ '<mi>c</mi></mfenced><mo>&#x2216;</mo><mfenced close="}" open="{">' \ '<mi>d</mi></mfenced></mrow></mfenced></mrow>' assert prntr(Complement(A, D1, evaluate=False)) == \ '<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \ '<mo>&#x2216;</mo><mfenced><mrow><mfenced close="}" open="{">' \ '<mi>c</mi></mfenced><mo>&#x2206;</mo><mfenced close="}" open="{">' \ '<mi>d</mi></mfenced></mrow></mfenced></mrow>' assert prntr(SymmetricDifference(A, P1, evaluate=False)) == \ '<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \ '<mo>&#x2206;</mo><mfenced><mrow><mfenced close="}" open="{">' \ '<mi>c</mi></mfenced><mo>&#x00d7;</mo><mfenced close="}" open="{">' \ '<mi>d</mi></mfenced></mrow></mfenced></mrow>' assert prntr(ProductSet(A, U1)) == \ '<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \ '<mo>&#x00d7;</mo><mfenced><mrow><mfenced close="}" open="{">' \ '<mi>c</mi></mfenced><mo>&#x222A;</mo><mfenced close="}" open="{">' \ '<mi>d</mi></mfenced></mrow></mfenced></mrow>' def test_print_logic(): assert mpp.doprint(And(x, y)) == \ '<mrow><mi>x</mi><mo>&#x2227;</mo><mi>y</mi></mrow>' assert mpp.doprint(Or(x, y)) == \ '<mrow><mi>x</mi><mo>&#x2228;</mo><mi>y</mi></mrow>' assert mpp.doprint(Xor(x, y)) == \ '<mrow><mi>x</mi><mo>&#x22BB;</mo><mi>y</mi></mrow>' assert mpp.doprint(Implies(x, y)) == \ '<mrow><mi>x</mi><mo>&#x21D2;</mo><mi>y</mi></mrow>' assert mpp.doprint(Equivalent(x, y)) == \ '<mrow><mi>x</mi><mo>&#x21D4;</mo><mi>y</mi></mrow>' assert mpp.doprint(And(Eq(x, y), x > 4)) == \ '<mrow><mrow><mi>x</mi><mo>=</mo><mi>y</mi></mrow><mo>&#x2227;</mo>'\ '<mrow><mi>x</mi><mo>></mo><mn>4</mn></mrow></mrow>' assert mpp.doprint(And(Eq(x, 3), y < 3, x > y + 1)) == \ '<mrow><mrow><mi>x</mi><mo>=</mo><mn>3</mn></mrow><mo>&#x2227;</mo>'\ '<mrow><mi>x</mi><mo>></mo><mrow><mi>y</mi><mo>+</mo><mn>1</mn></mrow>'\ '</mrow><mo>&#x2227;</mo><mrow><mi>y</mi><mo><</mo><mn>3</mn></mrow></mrow>' assert mpp.doprint(Or(Eq(x, y), x > 4)) == \ '<mrow><mrow><mi>x</mi><mo>=</mo><mi>y</mi></mrow><mo>&#x2228;</mo>'\ '<mrow><mi>x</mi><mo>></mo><mn>4</mn></mrow></mrow>' assert mpp.doprint(And(Eq(x, 3), Or(y < 3, x > y + 1))) == \ '<mrow><mrow><mi>x</mi><mo>=</mo><mn>3</mn></mrow><mo>&#x2227;</mo>'\ '<mfenced><mrow><mrow><mi>x</mi><mo>></mo><mrow><mi>y</mi><mo>+</mo>'\ '<mn>1</mn></mrow></mrow><mo>&#x2228;</mo><mrow><mi>y</mi><mo><</mo>'\ '<mn>3</mn></mrow></mrow></mfenced></mrow>' assert mpp.doprint(Not(x)) == '<mrow><mo>&#xAC;</mo><mi>x</mi></mrow>' assert mpp.doprint(Not(And(x, y))) == \ '<mrow><mo>&#xAC;</mo><mfenced><mrow><mi>x</mi><mo>&#x2227;</mo>'\ '<mi>y</mi></mrow></mfenced></mrow>' def test_root_notation_print(): assert mathml(x**(S.One/3), printer='presentation') == \ '<mroot><mi>x</mi><mn>3</mn></mroot>' assert mathml(x**(S.One/3), printer='presentation', root_notation=False) ==\ '<msup><mi>x</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup>' assert mathml(x**(S.One/3), printer='content') == \ '<apply><root/><degree><cn>3</cn></degree><ci>x</ci></apply>' assert mathml(x**(S.One/3), printer='content', root_notation=False) == \ '<apply><power/><ci>x</ci><apply><divide/><cn>1</cn><cn>3</cn></apply></apply>' assert mathml(x**(Rational(-1, 3)), printer='presentation') == \ '<mfrac><mn>1</mn><mroot><mi>x</mi><mn>3</mn></mroot></mfrac>' assert mathml(x**(Rational(-1, 3)), printer='presentation', root_notation=False) \ == '<mfrac><mn>1</mn><msup><mi>x</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup></mfrac>' def test_fold_frac_powers_print(): expr = x ** Rational(5, 2) assert mathml(expr, printer='presentation') == \ '<msup><mi>x</mi><mfrac><mn>5</mn><mn>2</mn></mfrac></msup>' assert mathml(expr, printer='presentation', fold_frac_powers=True) == \ '<msup><mi>x</mi><mfrac bevelled="true"><mn>5</mn><mn>2</mn></mfrac></msup>' assert mathml(expr, printer='presentation', fold_frac_powers=False) == \ '<msup><mi>x</mi><mfrac><mn>5</mn><mn>2</mn></mfrac></msup>' def test_fold_short_frac_print(): expr = Rational(2, 5) assert mathml(expr, printer='presentation') == \ '<mfrac><mn>2</mn><mn>5</mn></mfrac>' assert mathml(expr, printer='presentation', fold_short_frac=True) == \ '<mfrac bevelled="true"><mn>2</mn><mn>5</mn></mfrac>' assert mathml(expr, printer='presentation', fold_short_frac=False) == \ '<mfrac><mn>2</mn><mn>5</mn></mfrac>' def test_print_factorials(): assert mpp.doprint(factorial(x)) == '<mrow><mi>x</mi><mo>!</mo></mrow>' assert mpp.doprint(factorial(x + 1)) == \ '<mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>!</mo></mrow>' assert mpp.doprint(factorial2(x)) == '<mrow><mi>x</mi><mo>!!</mo></mrow>' assert mpp.doprint(factorial2(x + 1)) == \ '<mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>!!</mo></mrow>' assert mpp.doprint(binomial(x, y)) == \ '<mfenced><mfrac linethickness="0"><mi>x</mi><mi>y</mi></mfrac></mfenced>' assert mpp.doprint(binomial(4, x + y)) == \ '<mfenced><mfrac linethickness="0"><mn>4</mn><mrow><mi>x</mi>'\ '<mo>+</mo><mi>y</mi></mrow></mfrac></mfenced>' def test_print_floor(): expr = floor(x) assert mathml(expr, printer='presentation') == \ '<mrow><mfenced close="&#8971;" open="&#8970;"><mi>x</mi></mfenced></mrow>' def test_print_ceiling(): expr = ceiling(x) assert mathml(expr, printer='presentation') == \ '<mrow><mfenced close="&#8969;" open="&#8968;"><mi>x</mi></mfenced></mrow>' def test_print_Lambda(): expr = Lambda(x, x+1) assert mathml(expr, printer='presentation') == \ '<mfenced><mrow><mi>x</mi><mo>&#x21A6;</mo><mrow><mi>x</mi><mo>+</mo>'\ '<mn>1</mn></mrow></mrow></mfenced>' expr = Lambda((x, y), x + y) assert mathml(expr, printer='presentation') == \ '<mfenced><mrow><mrow><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'\ '<mo>&#x21A6;</mo><mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mrow></mfenced>' def test_print_conjugate(): assert mpp.doprint(conjugate(x)) == \ '<menclose notation="top"><mi>x</mi></menclose>' assert mpp.doprint(conjugate(x + 1)) == \ '<mrow><menclose notation="top"><mi>x</mi></menclose><mo>+</mo><mn>1</mn></mrow>' def test_print_AccumBounds(): a = Symbol('a', real=True) assert mpp.doprint(AccumBounds(0, 1)) == '<mfenced close="&#10217;" open="&#10216;"><mn>0</mn><mn>1</mn></mfenced>' assert mpp.doprint(AccumBounds(0, a)) == '<mfenced close="&#10217;" open="&#10216;"><mn>0</mn><mi>a</mi></mfenced>' assert mpp.doprint(AccumBounds(a + 1, a + 2)) == '<mfenced close="&#10217;" open="&#10216;"><mrow><mi>a</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>a</mi><mo>+</mo><mn>2</mn></mrow></mfenced>' def test_print_Float(): assert mpp.doprint(Float(1e100)) == '<mrow><mn>1.0</mn><mo>&#xB7;</mo><msup><mn>10</mn><mn>100</mn></msup></mrow>' assert mpp.doprint(Float(1e-100)) == '<mrow><mn>1.0</mn><mo>&#xB7;</mo><msup><mn>10</mn><mn>-100</mn></msup></mrow>' assert mpp.doprint(Float(-1e100)) == '<mrow><mn>-1.0</mn><mo>&#xB7;</mo><msup><mn>10</mn><mn>100</mn></msup></mrow>' assert mpp.doprint(Float(1.0*oo)) == '<mi>&#x221E;</mi>' assert mpp.doprint(Float(-1.0*oo)) == '<mrow><mo>-</mo><mi>&#x221E;</mi></mrow>' def test_print_different_functions(): assert mpp.doprint(gamma(x)) == '<mrow><mi>&#x393;</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(lowergamma(x, y)) == '<mrow><mi>&#x3B3;</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>' assert mpp.doprint(uppergamma(x, y)) == '<mrow><mi>&#x393;</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>' assert mpp.doprint(zeta(x)) == '<mrow><mi>&#x3B6;</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(zeta(x, y)) == '<mrow><mi>&#x3B6;</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>' assert mpp.doprint(dirichlet_eta(x)) == '<mrow><mi>&#x3B7;</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(elliptic_k(x)) == '<mrow><mi>&#x39A;</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(totient(x)) == '<mrow><mi>&#x3D5;</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(reduced_totient(x)) == '<mrow><mi>&#x3BB;</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(primenu(x)) == '<mrow><mi>&#x3BD;</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(primeomega(x)) == '<mrow><mi>&#x3A9;</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(fresnels(x)) == '<mrow><mi>S</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(fresnelc(x)) == '<mrow><mi>C</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(Heaviside(x)) == '<mrow><mi>&#x398;</mi><mfenced><mi>x</mi></mfenced></mrow>' def test_mathml_builtins(): assert mpp.doprint(None) == '<mi>None</mi>' assert mpp.doprint(true) == '<mi>True</mi>' assert mpp.doprint(false) == '<mi>False</mi>' def test_mathml_Range(): assert mpp.doprint(Range(1, 51)) == \ '<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mi>&#8230;</mi><mn>50</mn></mfenced>' assert mpp.doprint(Range(1, 4)) == \ '<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mn>3</mn></mfenced>' assert mpp.doprint(Range(0, 3, 1)) == \ '<mfenced close="}" open="{"><mn>0</mn><mn>1</mn><mn>2</mn></mfenced>' assert mpp.doprint(Range(0, 30, 1)) == \ '<mfenced close="}" open="{"><mn>0</mn><mn>1</mn><mi>&#8230;</mi><mn>29</mn></mfenced>' assert mpp.doprint(Range(30, 1, -1)) == \ '<mfenced close="}" open="{"><mn>30</mn><mn>29</mn><mi>&#8230;</mi>'\ '<mn>2</mn></mfenced>' assert mpp.doprint(Range(0, oo, 2)) == \ '<mfenced close="}" open="{"><mn>0</mn><mn>2</mn><mi>&#8230;</mi></mfenced>' assert mpp.doprint(Range(oo, -2, -2)) == \ '<mfenced close="}" open="{"><mi>&#8230;</mi><mn>2</mn><mn>0</mn></mfenced>' assert mpp.doprint(Range(-2, -oo, -1)) == \ '<mfenced close="}" open="{"><mn>-2</mn><mn>-3</mn><mi>&#8230;</mi></mfenced>' def test_print_exp(): assert mpp.doprint(exp(x)) == \ '<msup><mi>&ExponentialE;</mi><mi>x</mi></msup>' assert mpp.doprint(exp(1) + exp(2)) == \ '<mrow><mi>&ExponentialE;</mi><mo>+</mo><msup><mi>&ExponentialE;</mi><mn>2</mn></msup></mrow>' def test_print_MinMax(): assert mpp.doprint(Min(x, y)) == \ '<mrow><mo>min</mo><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>' assert mpp.doprint(Min(x, 2, x**3)) == \ '<mrow><mo>min</mo><mfenced><mn>2</mn><mi>x</mi><msup><mi>x</mi>'\ '<mn>3</mn></msup></mfenced></mrow>' assert mpp.doprint(Max(x, y)) == \ '<mrow><mo>max</mo><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>' assert mpp.doprint(Max(x, 2, x**3)) == \ '<mrow><mo>max</mo><mfenced><mn>2</mn><mi>x</mi><msup><mi>x</mi>'\ '<mn>3</mn></msup></mfenced></mrow>' def test_mathml_presentation_numbers(): n = Symbol('n') assert mathml(catalan(n), printer='presentation') == \ '<msub><mi>C</mi><mi>n</mi></msub>' assert mathml(bernoulli(n), printer='presentation') == \ '<msub><mi>B</mi><mi>n</mi></msub>' assert mathml(bell(n), printer='presentation') == \ '<msub><mi>B</mi><mi>n</mi></msub>' assert mathml(euler(n), printer='presentation') == \ '<msub><mi>E</mi><mi>n</mi></msub>' assert mathml(fibonacci(n), printer='presentation') == \ '<msub><mi>F</mi><mi>n</mi></msub>' assert mathml(lucas(n), printer='presentation') == \ '<msub><mi>L</mi><mi>n</mi></msub>' assert mathml(tribonacci(n), printer='presentation') == \ '<msub><mi>T</mi><mi>n</mi></msub>' assert mathml(bernoulli(n, x), printer='presentation') == \ '<mrow><msub><mi>B</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' assert mathml(bell(n, x), printer='presentation') == \ '<mrow><msub><mi>B</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' assert mathml(euler(n, x), printer='presentation') == \ '<mrow><msub><mi>E</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' assert mathml(fibonacci(n, x), printer='presentation') == \ '<mrow><msub><mi>F</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' assert mathml(tribonacci(n, x), printer='presentation') == \ '<mrow><msub><mi>T</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' def test_mathml_presentation_mathieu(): assert mathml(mathieuc(x, y, z), printer='presentation') == \ '<mrow><mi>C</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>' assert mathml(mathieus(x, y, z), printer='presentation') == \ '<mrow><mi>S</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>' assert mathml(mathieucprime(x, y, z), printer='presentation') == \ '<mrow><mi>C&#x2032;</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>' assert mathml(mathieusprime(x, y, z), printer='presentation') == \ '<mrow><mi>S&#x2032;</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>' def test_mathml_presentation_stieltjes(): assert mathml(stieltjes(n), printer='presentation') == \ '<msub><mi>&#x03B3;</mi><mi>n</mi></msub>' assert mathml(stieltjes(n, x), printer='presentation') == \ '<mrow><msub><mi>&#x03B3;</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' def test_print_matrix_symbol(): A = MatrixSymbol('A', 1, 2) assert mpp.doprint(A) == '<mi>A</mi>' assert mp.doprint(A) == '<ci>A</ci>' assert mathml(A, printer='presentation', mat_symbol_style="bold") == \ '<mi mathvariant="bold">A</mi>' # No effect in content printer assert mathml(A, mat_symbol_style="bold") == '<ci>A</ci>' def test_print_hadamard(): from sympy.matrices.expressions import HadamardProduct from sympy.matrices.expressions import Transpose X = MatrixSymbol('X', 2, 2) Y = MatrixSymbol('Y', 2, 2) assert mathml(HadamardProduct(X, Y*Y), printer="presentation") == \ '<mrow>' \ '<mi>X</mi>' \ '<mo>&#x2218;</mo>' \ '<msup><mi>Y</mi><mn>2</mn></msup>' \ '</mrow>' assert mathml(HadamardProduct(X, Y)*Y, printer="presentation") == \ '<mrow>' \ '<mfenced>' \ '<mrow><mi>X</mi><mo>&#x2218;</mo><mi>Y</mi></mrow>' \ '</mfenced>' \ '<mo>&InvisibleTimes;</mo><mi>Y</mi>' \ '</mrow>' assert mathml(HadamardProduct(X, Y, Y), printer="presentation") == \ '<mrow>' \ '<mi>X</mi><mo>&#x2218;</mo>' \ '<mi>Y</mi><mo>&#x2218;</mo>' \ '<mi>Y</mi>' \ '</mrow>' assert mathml( Transpose(HadamardProduct(X, Y)), printer="presentation") == \ '<msup>' \ '<mfenced>' \ '<mrow><mi>X</mi><mo>&#x2218;</mo><mi>Y</mi></mrow>' \ '</mfenced>' \ '<mo>T</mo>' \ '</msup>' def test_print_random_symbol(): R = RandomSymbol(Symbol('R')) assert mpp.doprint(R) == '<mi>R</mi>' assert mp.doprint(R) == '<ci>R</ci>' def test_print_IndexedBase(): assert mathml(IndexedBase(a)[b], printer='presentation') == \ '<msub><mi>a</mi><mi>b</mi></msub>' assert mathml(IndexedBase(a)[b, c, d], printer='presentation') == \ '<msub><mi>a</mi><mfenced><mi>b</mi><mi>c</mi><mi>d</mi></mfenced></msub>' assert mathml(IndexedBase(a)[b]*IndexedBase(c)[d]*IndexedBase(e), printer='presentation') == \ '<mrow><msub><mi>a</mi><mi>b</mi></msub><mo>&InvisibleTimes;'\ '</mo><msub><mi>c</mi><mi>d</mi></msub><mo>&InvisibleTimes;</mo><mi>e</mi></mrow>' def test_print_Indexed(): assert mathml(IndexedBase(a), printer='presentation') == '<mi>a</mi>' assert mathml(IndexedBase(a/b), printer='presentation') == \ '<mrow><mfrac><mi>a</mi><mi>b</mi></mfrac></mrow>' assert mathml(IndexedBase((a, b)), printer='presentation') == \ '<mrow><mfenced><mi>a</mi><mi>b</mi></mfenced></mrow>' def test_print_MatrixElement(): i, j = symbols('i j') A = MatrixSymbol('A', i, j) assert mathml(A[0,0],printer = 'presentation') == \ '<msub><mi>A</mi><mfenced close="" open=""><mn>0</mn><mn>0</mn></mfenced></msub>' assert mathml(A[i,j], printer = 'presentation') == \ '<msub><mi>A</mi><mfenced close="" open=""><mi>i</mi><mi>j</mi></mfenced></msub>' assert mathml(A[i*j,0], printer = 'presentation') == \ '<msub><mi>A</mi><mfenced close="" open=""><mrow><mi>i</mi><mo>&InvisibleTimes;</mo><mi>j</mi></mrow><mn>0</mn></mfenced></msub>' def test_print_Vector(): ACS = CoordSys3D('A') assert mathml(Cross(ACS.i, ACS.j*ACS.x*3 + ACS.k), printer='presentation') == \ '<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>&#xD7;</mo><mfenced><mrow>'\ '<mfenced><mrow><mn>3</mn><mo>&InvisibleTimes;</mo><msub>'\ '<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\ '</mrow></mfenced><mo>&InvisibleTimes;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>+</mo><msub><mover>'\ '<mi mathvariant="bold">k</mi><mo>^</mo></mover><mi mathvariant="bold">'\ 'A</mi></msub></mrow></mfenced></mrow>' assert mathml(Cross(ACS.i, ACS.j), printer='presentation') == \ '<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>&#xD7;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow>' assert mathml(x*Cross(ACS.i, ACS.j), printer='presentation') == \ '<mrow><mi>x</mi><mo>&InvisibleTimes;</mo><mfenced><mrow><msub><mover>'\ '<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>&#xD7;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(Cross(x*ACS.i, ACS.j), printer='presentation') == \ '<mrow><mo>-</mo><mrow><msub><mover><mi mathvariant="bold">j</mi>'\ '<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub>'\ '<mo>&#xD7;</mo><mfenced><mrow><mfenced><mi>x</mi></mfenced>'\ '<mo>&InvisibleTimes;</mo><msub><mover><mi mathvariant="bold">i</mi>'\ '<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\ '</mfenced></mrow></mrow>' assert mathml(Curl(3*ACS.x*ACS.j), printer='presentation') == \ '<mrow><mo>&#x2207;</mo><mo>&#xD7;</mo><mfenced><mrow><mfenced><mrow>'\ '<mn>3</mn><mo>&InvisibleTimes;</mo><msub>'\ '<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\ '</mrow></mfenced><mo>&InvisibleTimes;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(Curl(3*x*ACS.x*ACS.j), printer='presentation') == \ '<mrow><mo>&#x2207;</mo><mo>&#xD7;</mo><mfenced><mrow><mfenced><mrow>'\ '<mn>3</mn><mo>&InvisibleTimes;</mo><msub><mi mathvariant="bold">x'\ '</mi><mi mathvariant="bold">A</mi></msub><mo>&InvisibleTimes;</mo>'\ '<mi>x</mi></mrow></mfenced><mo>&InvisibleTimes;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(x*Curl(3*ACS.x*ACS.j), printer='presentation') == \ '<mrow><mi>x</mi><mo>&InvisibleTimes;</mo><mfenced><mrow><mo>&#x2207;</mo>'\ '<mo>&#xD7;</mo><mfenced><mrow><mfenced><mrow><mn>3</mn>'\ '<mo>&InvisibleTimes;</mo><msub><mi mathvariant="bold">x</mi>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\ '<mo>&InvisibleTimes;</mo><msub><mover><mi mathvariant="bold">j</mi>'\ '<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\ '</mfenced></mrow></mfenced></mrow>' assert mathml(Curl(3*x*ACS.x*ACS.j + ACS.i), printer='presentation') == \ '<mrow><mo>&#x2207;</mo><mo>&#xD7;</mo><mfenced><mrow><msub><mover>'\ '<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>+</mo><mfenced><mrow>'\ '<mn>3</mn><mo>&InvisibleTimes;</mo><msub><mi mathvariant="bold">x'\ '</mi><mi mathvariant="bold">A</mi></msub><mo>&InvisibleTimes;</mo>'\ '<mi>x</mi></mrow></mfenced><mo>&InvisibleTimes;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(Divergence(3*ACS.x*ACS.j), printer='presentation') == \ '<mrow><mo>&#x2207;</mo><mo>&#xB7;</mo><mfenced><mrow><mfenced><mrow>'\ '<mn>3</mn><mo>&InvisibleTimes;</mo><msub><mi mathvariant="bold">x'\ '</mi><mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\ '<mo>&InvisibleTimes;</mo><msub><mover><mi mathvariant="bold">j</mi>'\ '<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(x*Divergence(3*ACS.x*ACS.j), printer='presentation') == \ '<mrow><mi>x</mi><mo>&InvisibleTimes;</mo><mfenced><mrow><mo>&#x2207;</mo>'\ '<mo>&#xB7;</mo><mfenced><mrow><mfenced><mrow><mn>3</mn>'\ '<mo>&InvisibleTimes;</mo><msub><mi mathvariant="bold">x</mi>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\ '<mo>&InvisibleTimes;</mo><msub><mover><mi mathvariant="bold">j</mi>'\ '<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\ '</mfenced></mrow></mfenced></mrow>' assert mathml(Divergence(3*x*ACS.x*ACS.j + ACS.i), printer='presentation') == \ '<mrow><mo>&#x2207;</mo><mo>&#xB7;</mo><mfenced><mrow><msub><mover>'\ '<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>+</mo><mfenced><mrow>'\ '<mn>3</mn><mo>&InvisibleTimes;</mo><msub>'\ '<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\ '<mo>&InvisibleTimes;</mo><mi>x</mi></mrow></mfenced>'\ '<mo>&InvisibleTimes;</mo><msub><mover><mi mathvariant="bold">j</mi>'\ '<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(Dot(ACS.i, ACS.j*ACS.x*3+ACS.k), printer='presentation') == \ '<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>&#xB7;</mo><mfenced><mrow>'\ '<mfenced><mrow><mn>3</mn><mo>&InvisibleTimes;</mo><msub>'\ '<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\ '</mrow></mfenced><mo>&InvisibleTimes;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>+</mo><msub><mover>'\ '<mi mathvariant="bold">k</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(Dot(ACS.i, ACS.j), printer='presentation') == \ '<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>&#xB7;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow>' assert mathml(Dot(x*ACS.i, ACS.j), printer='presentation') == \ '<mrow><msub><mover><mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>&#xB7;</mo><mfenced><mrow>'\ '<mfenced><mi>x</mi></mfenced><mo>&InvisibleTimes;</mo><msub><mover>'\ '<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(x*Dot(ACS.i, ACS.j), printer='presentation') == \ '<mrow><mi>x</mi><mo>&InvisibleTimes;</mo><mfenced><mrow><msub><mover>'\ '<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>&#xB7;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(Gradient(ACS.x), printer='presentation') == \ '<mrow><mo>&#x2207;</mo><msub><mi mathvariant="bold">x</mi>'\ '<mi mathvariant="bold">A</mi></msub></mrow>' assert mathml(Gradient(ACS.x + 3*ACS.y), printer='presentation') == \ '<mrow><mo>&#x2207;</mo><mfenced><mrow><msub><mi mathvariant="bold">'\ 'x</mi><mi mathvariant="bold">A</mi></msub><mo>+</mo><mrow><mn>3</mn>'\ '<mo>&InvisibleTimes;</mo><msub><mi mathvariant="bold">y</mi>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mrow></mfenced></mrow>' assert mathml(x*Gradient(ACS.x), printer='presentation') == \ '<mrow><mi>x</mi><mo>&InvisibleTimes;</mo><mfenced><mrow><mo>&#x2207;</mo>'\ '<msub><mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi>'\ '</msub></mrow></mfenced></mrow>' assert mathml(Gradient(x*ACS.x), printer='presentation') == \ '<mrow><mo>&#x2207;</mo><mfenced><mrow><msub><mi mathvariant="bold">'\ 'x</mi><mi mathvariant="bold">A</mi></msub><mo>&InvisibleTimes;</mo>'\ '<mi>x</mi></mrow></mfenced></mrow>' assert mathml(Cross(ACS.x, ACS.z) + Cross(ACS.z, ACS.x), printer='presentation') == \ '<mover><mi mathvariant="bold">0</mi><mo>^</mo></mover>' assert mathml(Cross(ACS.z, ACS.x), printer='presentation') == \ '<mrow><mo>-</mo><mrow><msub><mi mathvariant="bold">x</mi>'\ '<mi mathvariant="bold">A</mi></msub><mo>&#xD7;</mo><msub>'\ '<mi mathvariant="bold">z</mi><mi mathvariant="bold">A</mi></msub></mrow></mrow>' assert mathml(Laplacian(ACS.x), printer='presentation') == \ '<mrow><mo>&#x2206;</mo><msub><mi mathvariant="bold">x</mi>'\ '<mi mathvariant="bold">A</mi></msub></mrow>' assert mathml(Laplacian(ACS.x + 3*ACS.y), printer='presentation') == \ '<mrow><mo>&#x2206;</mo><mfenced><mrow><msub><mi mathvariant="bold">'\ 'x</mi><mi mathvariant="bold">A</mi></msub><mo>+</mo><mrow><mn>3</mn>'\ '<mo>&InvisibleTimes;</mo><msub><mi mathvariant="bold">y</mi>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mrow></mfenced></mrow>' assert mathml(x*Laplacian(ACS.x), printer='presentation') == \ '<mrow><mi>x</mi><mo>&InvisibleTimes;</mo><mfenced><mrow><mo>&#x2206;</mo>'\ '<msub><mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi>'\ '</msub></mrow></mfenced></mrow>' assert mathml(Laplacian(x*ACS.x), printer='presentation') == \ '<mrow><mo>&#x2206;</mo><mfenced><mrow><msub><mi mathvariant="bold">'\ 'x</mi><mi mathvariant="bold">A</mi></msub><mo>&InvisibleTimes;</mo>'\ '<mi>x</mi></mrow></mfenced></mrow>' def test_print_elliptic_f(): assert mathml(elliptic_f(x, y), printer = 'presentation') == \ '<mrow><mi>&#x1d5a5;</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>' assert mathml(elliptic_f(x/y, y), printer = 'presentation') == \ '<mrow><mi>&#x1d5a5;</mi><mfenced separators="|"><mrow><mfrac><mi>x</mi><mi>y</mi></mfrac></mrow><mi>y</mi></mfenced></mrow>' def test_print_elliptic_e(): assert mathml(elliptic_e(x), printer = 'presentation') == \ '<mrow><mi>&#x1d5a4;</mi><mfenced separators="|"><mi>x</mi></mfenced></mrow>' assert mathml(elliptic_e(x, y), printer = 'presentation') == \ '<mrow><mi>&#x1d5a4;</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>' def test_print_elliptic_pi(): assert mathml(elliptic_pi(x, y), printer = 'presentation') == \ '<mrow><mi>&#x1d6f1;</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>' assert mathml(elliptic_pi(x, y, z), printer = 'presentation') == \ '<mrow><mi>&#x1d6f1;</mi><mfenced separators=";|"><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>' def test_print_Ei(): assert mathml(Ei(x), printer = 'presentation') == \ '<mrow><mi>Ei</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mathml(Ei(x**y), printer = 'presentation') == \ '<mrow><mi>Ei</mi><mfenced><msup><mi>x</mi><mi>y</mi></msup></mfenced></mrow>' def test_print_expint(): assert mathml(expint(x, y), printer = 'presentation') == \ '<mrow><msub><mo>E</mo><mi>x</mi></msub><mfenced><mi>y</mi></mfenced></mrow>' assert mathml(expint(IndexedBase(x)[1], IndexedBase(x)[2]), printer = 'presentation') == \ '<mrow><msub><mo>E</mo><msub><mi>x</mi><mn>1</mn></msub></msub><mfenced><msub><mi>x</mi><mn>2</mn></msub></mfenced></mrow>' def test_print_jacobi(): assert mathml(jacobi(n, a, b, x), printer = 'presentation') == \ '<mrow><msubsup><mo>P</mo><mi>n</mi><mfenced><mi>a</mi><mi>b</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>' def test_print_gegenbauer(): assert mathml(gegenbauer(n, a, x), printer = 'presentation') == \ '<mrow><msubsup><mo>C</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>' def test_print_chebyshevt(): assert mathml(chebyshevt(n, x), printer = 'presentation') == \ '<mrow><msub><mo>T</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' def test_print_chebyshevu(): assert mathml(chebyshevu(n, x), printer = 'presentation') == \ '<mrow><msub><mo>U</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' def test_print_legendre(): assert mathml(legendre(n, x), printer = 'presentation') == \ '<mrow><msub><mo>P</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' def test_print_assoc_legendre(): assert mathml(assoc_legendre(n, a, x), printer = 'presentation') == \ '<mrow><msubsup><mo>P</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>' def test_print_laguerre(): assert mathml(laguerre(n, x), printer = 'presentation') == \ '<mrow><msub><mo>L</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' def test_print_assoc_laguerre(): assert mathml(assoc_laguerre(n, a, x), printer = 'presentation') == \ '<mrow><msubsup><mo>L</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>' def test_print_hermite(): assert mathml(hermite(n, x), printer = 'presentation') == \ '<mrow><msub><mo>H</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' def test_mathml_SingularityFunction(): assert mathml(SingularityFunction(x, 4, 5), printer='presentation') == \ '<msup><mfenced close="&#10217;" open="&#10216;"><mrow><mi>x</mi>' \ '<mo>-</mo><mn>4</mn></mrow></mfenced><mn>5</mn></msup>' assert mathml(SingularityFunction(x, -3, 4), printer='presentation') == \ '<msup><mfenced close="&#10217;" open="&#10216;"><mrow><mi>x</mi>' \ '<mo>+</mo><mn>3</mn></mrow></mfenced><mn>4</mn></msup>' assert mathml(SingularityFunction(x, 0, 4), printer='presentation') == \ '<msup><mfenced close="&#10217;" open="&#10216;"><mi>x</mi></mfenced>' \ '<mn>4</mn></msup>' assert mathml(SingularityFunction(x, a, n), printer='presentation') == \ '<msup><mfenced close="&#10217;" open="&#10216;"><mrow><mrow>' \ '<mo>-</mo><mi>a</mi></mrow><mo>+</mo><mi>x</mi></mrow></mfenced>' \ '<mi>n</mi></msup>' assert mathml(SingularityFunction(x, 4, -2), printer='presentation') == \ '<msup><mfenced close="&#10217;" open="&#10216;"><mrow><mi>x</mi>' \ '<mo>-</mo><mn>4</mn></mrow></mfenced><mn>-2</mn></msup>' assert mathml(SingularityFunction(x, 4, -1), printer='presentation') == \ '<msup><mfenced close="&#10217;" open="&#10216;"><mrow><mi>x</mi>' \ '<mo>-</mo><mn>4</mn></mrow></mfenced><mn>-1</mn></msup>' def test_mathml_matrix_functions(): from sympy.matrices import MatrixSymbol, Adjoint, Inverse, Transpose X = MatrixSymbol('X', 2, 2) Y = MatrixSymbol('Y', 2, 2) assert mathml(Adjoint(X), printer='presentation') == \ '<msup><mi>X</mi><mo>&#x2020;</mo></msup>' assert mathml(Adjoint(X + Y), printer='presentation') == \ '<msup><mfenced><mrow><mi>X</mi><mo>+</mo><mi>Y</mi></mrow></mfenced><mo>&#x2020;</mo></msup>' assert mathml(Adjoint(X) + Adjoint(Y), printer='presentation') == \ '<mrow><msup><mi>X</mi><mo>&#x2020;</mo></msup><mo>+</mo><msup>' \ '<mi>Y</mi><mo>&#x2020;</mo></msup></mrow>' assert mathml(Adjoint(X*Y), printer='presentation') == \ '<msup><mfenced><mrow><mi>X</mi><mo>&InvisibleTimes;</mo>' \ '<mi>Y</mi></mrow></mfenced><mo>&#x2020;</mo></msup>' assert mathml(Adjoint(Y)*Adjoint(X), printer='presentation') == \ '<mrow><msup><mi>Y</mi><mo>&#x2020;</mo></msup><mo>&InvisibleTimes;' \ '</mo><msup><mi>X</mi><mo>&#x2020;</mo></msup></mrow>' assert mathml(Adjoint(X**2), printer='presentation') == \ '<msup><mfenced><msup><mi>X</mi><mn>2</mn></msup></mfenced><mo>&#x2020;</mo></msup>' assert mathml(Adjoint(X)**2, printer='presentation') == \ '<msup><mfenced><msup><mi>X</mi><mo>&#x2020;</mo></msup></mfenced><mn>2</mn></msup>' assert mathml(Adjoint(Inverse(X)), printer='presentation') == \ '<msup><mfenced><msup><mi>X</mi><mn>-1</mn></msup></mfenced><mo>&#x2020;</mo></msup>' assert mathml(Inverse(Adjoint(X)), printer='presentation') == \ '<msup><mfenced><msup><mi>X</mi><mo>&#x2020;</mo></msup></mfenced><mn>-1</mn></msup>' assert mathml(Adjoint(Transpose(X)), printer='presentation') == \ '<msup><mfenced><msup><mi>X</mi><mo>T</mo></msup></mfenced><mo>&#x2020;</mo></msup>' assert mathml(Transpose(Adjoint(X)), printer='presentation') == \ '<msup><mfenced><msup><mi>X</mi><mo>&#x2020;</mo></msup></mfenced><mo>T</mo></msup>' assert mathml(Transpose(Adjoint(X) + Y), printer='presentation') == \ '<msup><mfenced><mrow><msup><mi>X</mi><mo>&#x2020;</mo></msup>' \ '<mo>+</mo><mi>Y</mi></mrow></mfenced><mo>T</mo></msup>' assert mathml(Transpose(X), printer='presentation') == \ '<msup><mi>X</mi><mo>T</mo></msup>' assert mathml(Transpose(X + Y), printer='presentation') == \ '<msup><mfenced><mrow><mi>X</mi><mo>+</mo><mi>Y</mi></mrow></mfenced><mo>T</mo></msup>' def test_mathml_special_matrices(): from sympy.matrices import Identity, ZeroMatrix, OneMatrix assert mathml(Identity(4), printer='presentation') == '<mi>&#x1D540;</mi>' assert mathml(ZeroMatrix(2, 2), printer='presentation') == '<mn>&#x1D7D8</mn>' assert mathml(OneMatrix(2, 2), printer='presentation') == '<mn>&#x1D7D9</mn>' def test_mathml_piecewise(): from sympy import Piecewise # Content MathML assert mathml(Piecewise((x, x <= 1), (x**2, True))) == \ '<piecewise><piece><ci>x</ci><apply><leq/><ci>x</ci><cn>1</cn></apply></piece><otherwise><apply><power/><ci>x</ci><cn>2</cn></apply></otherwise></piecewise>' raises(ValueError, lambda: mathml(Piecewise((x, x <= 1)))) def test_issue_17857(): assert mathml(Range(-oo, oo), printer='presentation') == \ '<mfenced close="}" open="{"><mi>&#8230;</mi><mn>-1</mn><mn>0</mn><mn>1</mn><mi>&#8230;</mi></mfenced>' assert mathml(Range(oo, -oo, -1), printer='presentation') == \ '<mfenced close="}" open="{"><mi>&#8230;</mi><mn>1</mn><mn>0</mn><mn>-1</mn><mi>&#8230;</mi></mfenced>' def test_float_roundtrip(): x = sympify(0.8975979010256552) y = float(mp.doprint(x).strip('</cn>')) assert x == y
a36a28e5fd19e2692d6a7cd4af697894b8db4f5d0d5c671cc556aaf328de81a4
from sympy.core import (pi, symbols, Rational, Integer, GoldenRatio, EulerGamma, Catalan, Lambda, Dummy, Eq, Ne, Le, Lt, Gt, Ge) from sympy.functions import Piecewise, sin, cos, Abs, exp, ceiling, sqrt from sympy.testing.pytest import raises from sympy.printing.glsl import GLSLPrinter from sympy.printing.str import StrPrinter from sympy.utilities.lambdify import implemented_function from sympy.tensor import IndexedBase, Idx from sympy.matrices import Matrix, MatrixSymbol from sympy.core import Tuple from sympy import glsl_code import textwrap x, y, z = symbols('x,y,z') def test_printmethod(): assert glsl_code(Abs(x)) == "abs(x)" def test_print_without_operators(): assert glsl_code(x*y,use_operators = False) == 'mul(x, y)' assert glsl_code(x**y+z,use_operators = False) == 'add(pow(x, y), z)' assert glsl_code(x*(y+z),use_operators = False) == 'mul(x, add(y, z))' assert glsl_code(x*(y+z),use_operators = False) == 'mul(x, add(y, z))' assert glsl_code(x*(y+z**y**0.5),use_operators = False) == 'mul(x, add(y, pow(z, sqrt(y))))' assert glsl_code(-x-y, use_operators=False, zero='zero()') == 'sub(zero(), add(x, y))' assert glsl_code(-x-y, use_operators=False) == 'sub(0.0, add(x, y))' def test_glsl_code_sqrt(): assert glsl_code(sqrt(x)) == "sqrt(x)" assert glsl_code(x**0.5) == "sqrt(x)" assert glsl_code(sqrt(x)) == "sqrt(x)" def test_glsl_code_Pow(): g = implemented_function('g', Lambda(x, 2*x)) assert glsl_code(x**3) == "pow(x, 3.0)" assert glsl_code(x**(y**3)) == "pow(x, pow(y, 3.0))" assert glsl_code(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \ "pow(3.5*2*x, -x + pow(y, x))/(pow(x, 2.0) + y)" assert glsl_code(x**-1.0) == '1.0/x' def test_glsl_code_Relational(): assert glsl_code(Eq(x, y)) == "x == y" assert glsl_code(Ne(x, y)) == "x != y" assert glsl_code(Le(x, y)) == "x <= y" assert glsl_code(Lt(x, y)) == "x < y" assert glsl_code(Gt(x, y)) == "x > y" assert glsl_code(Ge(x, y)) == "x >= y" def test_glsl_code_constants_mathh(): assert glsl_code(exp(1)) == "float E = 2.71828183;\nE" assert glsl_code(pi) == "float pi = 3.14159265;\npi" # assert glsl_code(oo) == "Number.POSITIVE_INFINITY" # assert glsl_code(-oo) == "Number.NEGATIVE_INFINITY" def test_glsl_code_constants_other(): assert glsl_code(2*GoldenRatio) == "float GoldenRatio = 1.61803399;\n2*GoldenRatio" assert glsl_code(2*Catalan) == "float Catalan = 0.915965594;\n2*Catalan" assert glsl_code(2*EulerGamma) == "float EulerGamma = 0.577215665;\n2*EulerGamma" def test_glsl_code_Rational(): assert glsl_code(Rational(3, 7)) == "3.0/7.0" assert glsl_code(Rational(18, 9)) == "2" assert glsl_code(Rational(3, -7)) == "-3.0/7.0" assert glsl_code(Rational(-3, -7)) == "3.0/7.0" def test_glsl_code_Integer(): assert glsl_code(Integer(67)) == "67" assert glsl_code(Integer(-1)) == "-1" def test_glsl_code_functions(): assert glsl_code(sin(x) ** cos(x)) == "pow(sin(x), cos(x))" def test_glsl_code_inline_function(): x = symbols('x') g = implemented_function('g', Lambda(x, 2*x)) assert glsl_code(g(x)) == "2*x" g = implemented_function('g', Lambda(x, 2*x/Catalan)) assert glsl_code(g(x)) == "float Catalan = 0.915965594;\n2*x/Catalan" A = IndexedBase('A') i = Idx('i', symbols('n', integer=True)) g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x))) assert glsl_code(g(A[i]), assign_to=A[i]) == ( "for (int i=0; i<n; i++){\n" " A[i] = (A[i] + 1)*(A[i] + 2)*A[i];\n" "}" ) def test_glsl_code_exceptions(): assert glsl_code(ceiling(x)) == "ceil(x)" assert glsl_code(Abs(x)) == "abs(x)" def test_glsl_code_boolean(): assert glsl_code(x & y) == "x && y" assert glsl_code(x | y) == "x || y" assert glsl_code(~x) == "!x" assert glsl_code(x & y & z) == "x && y && z" assert glsl_code(x | y | z) == "x || y || z" assert glsl_code((x & y) | z) == "z || x && y" assert glsl_code((x | y) & z) == "z && (x || y)" def test_glsl_code_Piecewise(): expr = Piecewise((x, x < 1), (x**2, True)) p = glsl_code(expr) s = \ """\ ((x < 1) ? ( x ) : ( pow(x, 2.0) ))\ """ assert p == s assert glsl_code(expr, assign_to="c") == ( "if (x < 1) {\n" " c = x;\n" "}\n" "else {\n" " c = pow(x, 2.0);\n" "}") # Check that Piecewise without a True (default) condition error expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0)) raises(ValueError, lambda: glsl_code(expr)) def test_glsl_code_Piecewise_deep(): p = glsl_code(2*Piecewise((x, x < 1), (x**2, True))) s = \ """\ 2*((x < 1) ? ( x ) : ( pow(x, 2.0) ))\ """ assert p == s def test_glsl_code_settings(): raises(TypeError, lambda: glsl_code(sin(x), method="garbage")) def test_glsl_code_Indexed(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m, o = symbols('n m o', integer=True) i, j, k = Idx('i', n), Idx('j', m), Idx('k', o) p = GLSLPrinter() p._not_c = set() x = IndexedBase('x')[j] assert p._print_Indexed(x) == 'x[j]' A = IndexedBase('A')[i, j] assert p._print_Indexed(A) == 'A[%s]' % (m*i+j) B = IndexedBase('B')[i, j, k] assert p._print_Indexed(B) == 'B[%s]' % (i*o*m+j*o+k) assert p._not_c == set() def test_glsl_code_list_tuple_Tuple(): assert glsl_code([1,2,3,4]) == 'vec4(1, 2, 3, 4)' assert glsl_code([1,2,3],glsl_types=False) == 'float[3](1, 2, 3)' assert glsl_code([1,2,3]) == glsl_code((1,2,3)) assert glsl_code([1,2,3]) == glsl_code(Tuple(1,2,3)) m = MatrixSymbol('A',3,4) assert glsl_code([m[0],m[1]]) def test_glsl_code_loops_matrix_vector(): n, m = symbols('n m', integer=True) A = IndexedBase('A') x = IndexedBase('x') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) s = ( 'for (int i=0; i<m; i++){\n' ' y[i] = 0.0;\n' '}\n' 'for (int i=0; i<m; i++){\n' ' for (int j=0; j<n; j++){\n' ' y[i] = A[n*i + j]*x[j] + y[i];\n' ' }\n' '}' ) c = glsl_code(A[i, j]*x[j], assign_to=y[i]) assert c == s def test_dummy_loops(): i, m = symbols('i m', integer=True, cls=Dummy) x = IndexedBase('x') y = IndexedBase('y') i = Idx(i, m) expected = ( 'for (int i_%(icount)i=0; i_%(icount)i<m_%(mcount)i; i_%(icount)i++){\n' ' y[i_%(icount)i] = x[i_%(icount)i];\n' '}' ) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index} code = glsl_code(x[i], assign_to=y[i]) assert code == expected def test_glsl_code_loops_add(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m = symbols('n m', integer=True) A = IndexedBase('A') x = IndexedBase('x') y = IndexedBase('y') z = IndexedBase('z') i = Idx('i', m) j = Idx('j', n) s = ( 'for (int i=0; i<m; i++){\n' ' y[i] = x[i] + z[i];\n' '}\n' 'for (int i=0; i<m; i++){\n' ' for (int j=0; j<n; j++){\n' ' y[i] = A[n*i + j]*x[j] + y[i];\n' ' }\n' '}' ) c = glsl_code(A[i, j]*x[j] + x[i] + z[i], assign_to=y[i]) assert c == s def test_glsl_code_loops_multiple_contractions(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m, o, p = symbols('n m o p', integer=True) a = IndexedBase('a') b = IndexedBase('b') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) k = Idx('k', o) l = Idx('l', p) s = ( 'for (int i=0; i<m; i++){\n' ' y[i] = 0.0;\n' '}\n' 'for (int i=0; i<m; i++){\n' ' for (int j=0; j<n; j++){\n' ' for (int k=0; k<o; k++){\n' ' for (int l=0; l<p; l++){\n' ' y[i] = a[%s]*b[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\ ' }\n' ' }\n' ' }\n' '}' ) c = glsl_code(b[j, k, l]*a[i, j, k, l], assign_to=y[i]) assert c == s def test_glsl_code_loops_addfactor(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m, o, p = symbols('n m o p', integer=True) a = IndexedBase('a') b = IndexedBase('b') c = IndexedBase('c') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) k = Idx('k', o) l = Idx('l', p) s = ( 'for (int i=0; i<m; i++){\n' ' y[i] = 0.0;\n' '}\n' 'for (int i=0; i<m; i++){\n' ' for (int j=0; j<n; j++){\n' ' for (int k=0; k<o; k++){\n' ' for (int l=0; l<p; l++){\n' ' y[i] = (a[%s] + b[%s])*c[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\ ' }\n' ' }\n' ' }\n' '}' ) c = glsl_code((a[i, j, k, l] + b[i, j, k, l])*c[j, k, l], assign_to=y[i]) assert c == s def test_glsl_code_loops_multiple_terms(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m, o, p = symbols('n m o p', integer=True) a = IndexedBase('a') b = IndexedBase('b') c = IndexedBase('c') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) k = Idx('k', o) s0 = ( 'for (int i=0; i<m; i++){\n' ' y[i] = 0.0;\n' '}\n' ) s1 = ( 'for (int i=0; i<m; i++){\n' ' for (int j=0; j<n; j++){\n' ' for (int k=0; k<o; k++){\n' ' y[i] = b[j]*b[k]*c[%s] + y[i];\n' % (i*n*o + j*o + k) +\ ' }\n' ' }\n' '}\n' ) s2 = ( 'for (int i=0; i<m; i++){\n' ' for (int k=0; k<o; k++){\n' ' y[i] = a[%s]*b[k] + y[i];\n' % (i*o + k) +\ ' }\n' '}\n' ) s3 = ( 'for (int i=0; i<m; i++){\n' ' for (int j=0; j<n; j++){\n' ' y[i] = a[%s]*b[j] + y[i];\n' % (i*n + j) +\ ' }\n' '}\n' ) c = glsl_code( b[j]*a[i, j] + b[k]*a[i, k] + b[j]*b[k]*c[i, j, k], assign_to=y[i]) assert (c == s0 + s1 + s2 + s3[:-1] or c == s0 + s1 + s3 + s2[:-1] or c == s0 + s2 + s1 + s3[:-1] or c == s0 + s2 + s3 + s1[:-1] or c == s0 + s3 + s1 + s2[:-1] or c == s0 + s3 + s2 + s1[:-1]) def test_Matrix_printing(): # Test returning a Matrix mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)]) A = MatrixSymbol('A', 3, 1) assert glsl_code(mat, assign_to=A) == ( '''A[0][0] = x*y; if (y > 0) { A[1][0] = x + 2; } else { A[1][0] = y; } A[2][0] = sin(z);''' ) assert glsl_code(Matrix([A[0],A[1]])) # Test using MatrixElements in expressions expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0] assert glsl_code(expr) == ( '''((x > 0) ? ( 2*A[2][0] ) : ( A[2][0] )) + sin(A[1][0]) + A[0][0]''' ) # Test using MatrixElements in a Matrix q = MatrixSymbol('q', 5, 1) M = MatrixSymbol('M', 3, 3) m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])], [q[1,0] + q[2,0], q[3, 0], 5], [2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]]) assert glsl_code(m,M) == ( '''M[0][0] = sin(q[1]); M[0][1] = 0; M[0][2] = cos(q[2]); M[1][0] = q[1] + q[2]; M[1][1] = q[3]; M[1][2] = 5; M[2][0] = 2*q[4]/q[1]; M[2][1] = sqrt(q[0]) + 4; M[2][2] = 0;''' ) def test_Matrices_1x7(): gl = glsl_code A = Matrix([1,2,3,4,5,6,7]) assert gl(A) == 'float[7](1, 2, 3, 4, 5, 6, 7)' assert gl(A.transpose()) == 'float[7](1, 2, 3, 4, 5, 6, 7)' def test_Matrices_1x7_array_type_int(): gl = glsl_code A = Matrix([1,2,3,4,5,6,7]) assert gl(A, array_type='int') == 'int[7](1, 2, 3, 4, 5, 6, 7)' def test_Tuple_array_type_custom(): gl = glsl_code A = symbols('a b c') assert gl(A, array_type='AbcType', glsl_types=False) == 'AbcType[3](a, b, c)' def test_Matrices_1x7_spread_assign_to_symbols(): gl = glsl_code A = Matrix([1,2,3,4,5,6,7]) assign_to = symbols('x.a x.b x.c x.d x.e x.f x.g') assert gl(A, assign_to=assign_to) == textwrap.dedent('''\ x.a = 1; x.b = 2; x.c = 3; x.d = 4; x.e = 5; x.f = 6; x.g = 7;''' ) def test_spread_assign_to_nested_symbols(): gl = glsl_code expr = ((1,2,3), (1,2,3)) assign_to = (symbols('a b c'), symbols('x y z')) assert gl(expr, assign_to=assign_to) == textwrap.dedent('''\ a = 1; b = 2; c = 3; x = 1; y = 2; z = 3;''' ) def test_spread_assign_to_deeply_nested_symbols(): gl = glsl_code a, b, c, x, y, z = symbols('a b c x y z') expr = (((1,2),3), ((1,2),3)) assign_to = (((a, b), c), ((x, y), z)) assert gl(expr, assign_to=assign_to) == textwrap.dedent('''\ a = 1; b = 2; c = 3; x = 1; y = 2; z = 3;''' ) def test_matrix_of_tuples_spread_assign_to_symbols(): gl = glsl_code expr = Matrix([[(1,2),(3,4)],[(5,6),(7,8)]]) assign_to = (symbols('a b'), symbols('c d'), symbols('e f'), symbols('g h')) assert gl(expr, assign_to) == textwrap.dedent('''\ a = 1; b = 2; c = 3; d = 4; e = 5; f = 6; g = 7; h = 8;''' ) def test_cannot_assign_to_cause_mismatched_length(): expr = (1, 2) assign_to = symbols('x y z') raises(ValueError, lambda: glsl_code(expr, assign_to)) def test_matrix_4x4_assign(): gl = glsl_code expr = MatrixSymbol('A',4,4) * MatrixSymbol('B',4,4) + MatrixSymbol('C',4,4) assign_to = MatrixSymbol('X',4,4) assert gl(expr, assign_to=assign_to) == textwrap.dedent('''\ X[0][0] = A[0][0]*B[0][0] + A[0][1]*B[1][0] + A[0][2]*B[2][0] + A[0][3]*B[3][0] + C[0][0]; X[0][1] = A[0][0]*B[0][1] + A[0][1]*B[1][1] + A[0][2]*B[2][1] + A[0][3]*B[3][1] + C[0][1]; X[0][2] = A[0][0]*B[0][2] + A[0][1]*B[1][2] + A[0][2]*B[2][2] + A[0][3]*B[3][2] + C[0][2]; X[0][3] = A[0][0]*B[0][3] + A[0][1]*B[1][3] + A[0][2]*B[2][3] + A[0][3]*B[3][3] + C[0][3]; X[1][0] = A[1][0]*B[0][0] + A[1][1]*B[1][0] + A[1][2]*B[2][0] + A[1][3]*B[3][0] + C[1][0]; X[1][1] = A[1][0]*B[0][1] + A[1][1]*B[1][1] + A[1][2]*B[2][1] + A[1][3]*B[3][1] + C[1][1]; X[1][2] = A[1][0]*B[0][2] + A[1][1]*B[1][2] + A[1][2]*B[2][2] + A[1][3]*B[3][2] + C[1][2]; X[1][3] = A[1][0]*B[0][3] + A[1][1]*B[1][3] + A[1][2]*B[2][3] + A[1][3]*B[3][3] + C[1][3]; X[2][0] = A[2][0]*B[0][0] + A[2][1]*B[1][0] + A[2][2]*B[2][0] + A[2][3]*B[3][0] + C[2][0]; X[2][1] = A[2][0]*B[0][1] + A[2][1]*B[1][1] + A[2][2]*B[2][1] + A[2][3]*B[3][1] + C[2][1]; X[2][2] = A[2][0]*B[0][2] + A[2][1]*B[1][2] + A[2][2]*B[2][2] + A[2][3]*B[3][2] + C[2][2]; X[2][3] = A[2][0]*B[0][3] + A[2][1]*B[1][3] + A[2][2]*B[2][3] + A[2][3]*B[3][3] + C[2][3]; X[3][0] = A[3][0]*B[0][0] + A[3][1]*B[1][0] + A[3][2]*B[2][0] + A[3][3]*B[3][0] + C[3][0]; X[3][1] = A[3][0]*B[0][1] + A[3][1]*B[1][1] + A[3][2]*B[2][1] + A[3][3]*B[3][1] + C[3][1]; X[3][2] = A[3][0]*B[0][2] + A[3][1]*B[1][2] + A[3][2]*B[2][2] + A[3][3]*B[3][2] + C[3][2]; X[3][3] = A[3][0]*B[0][3] + A[3][1]*B[1][3] + A[3][2]*B[2][3] + A[3][3]*B[3][3] + C[3][3];''' ) def test_1xN_vecs(): gl = glsl_code for i in range(1,10): A = Matrix(range(i)) assert gl(A.transpose()) == gl(A) assert gl(A,mat_transpose=True) == gl(A) if i > 1: if i <= 4: assert gl(A) == 'vec%s(%s)' % (i,', '.join(str(s) for s in range(i))) else: assert gl(A) == 'float[%s](%s)' % (i,', '.join(str(s) for s in range(i))) def test_MxN_mats(): generatedAssertions='def test_misc_mats():\n' for i in range(1,6): for j in range(1,6): A = Matrix([[x + y*j for x in range(j)] for y in range(i)]) gl = glsl_code(A) glTransposed = glsl_code(A,mat_transpose=True) generatedAssertions+=' mat = '+StrPrinter()._print(A)+'\n\n' generatedAssertions+=' gl = \'\'\''+gl+'\'\'\'\n' generatedAssertions+=' glTransposed = \'\'\''+glTransposed+'\'\'\'\n\n' generatedAssertions+=' assert glsl_code(mat) == gl\n' generatedAssertions+=' assert glsl_code(mat,mat_transpose=True) == glTransposed\n' if i == 1 and j == 1: assert gl == '0' elif i <= 4 and j <= 4 and i>1 and j>1: assert gl.startswith('mat%s' % j) assert glTransposed.startswith('mat%s' % i) elif i == 1 and j <= 4: assert gl.startswith('vec') elif j == 1 and i <= 4: assert gl.startswith('vec') elif i == 1: assert gl.startswith('float[%s]('% j*i) assert glTransposed.startswith('float[%s]('% j*i) elif j == 1: assert gl.startswith('float[%s]('% i*j) assert glTransposed.startswith('float[%s]('% i*j) else: assert gl.startswith('float[%s](' % (i*j)) assert glTransposed.startswith('float[%s](' % (i*j)) glNested = glsl_code(A,mat_nested=True) glNestedTransposed = glsl_code(A,mat_transpose=True,mat_nested=True) assert glNested.startswith('float[%s][%s]' % (i,j)) assert glNestedTransposed.startswith('float[%s][%s]' % (j,i)) generatedAssertions+=' glNested = \'\'\''+glNested+'\'\'\'\n' generatedAssertions+=' glNestedTransposed = \'\'\''+glNestedTransposed+'\'\'\'\n\n' generatedAssertions+=' assert glsl_code(mat,mat_nested=True) == glNested\n' generatedAssertions+=' assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed\n\n' generateAssertions = False # set this to true to write bake these generated tests to a file if generateAssertions: gen = open('test_glsl_generated_matrices.py','w') gen.write(generatedAssertions) gen.close() # these assertions were generated from the previous function # glsl has complicated rules and this makes it easier to look over all the cases def test_misc_mats(): mat = Matrix([[0]]) gl = '''0''' glTransposed = '''0''' assert glsl_code(mat) == gl assert glsl_code(mat,mat_transpose=True) == glTransposed mat = Matrix([[0, 1]]) gl = '''vec2(0, 1)''' glTransposed = '''vec2(0, 1)''' assert glsl_code(mat) == gl assert glsl_code(mat,mat_transpose=True) == glTransposed mat = Matrix([[0, 1, 2]]) gl = '''vec3(0, 1, 2)''' glTransposed = '''vec3(0, 1, 2)''' assert glsl_code(mat) == gl assert glsl_code(mat,mat_transpose=True) == glTransposed mat = Matrix([[0, 1, 2, 3]]) gl = '''vec4(0, 1, 2, 3)''' glTransposed = '''vec4(0, 1, 2, 3)''' assert glsl_code(mat) == gl assert glsl_code(mat,mat_transpose=True) == glTransposed mat = Matrix([[0, 1, 2, 3, 4]]) gl = '''float[5](0, 1, 2, 3, 4)''' glTransposed = '''float[5](0, 1, 2, 3, 4)''' assert glsl_code(mat) == gl assert glsl_code(mat,mat_transpose=True) == glTransposed mat = Matrix([ [0], [1]]) gl = '''vec2(0, 1)''' glTransposed = '''vec2(0, 1)''' assert glsl_code(mat) == gl assert glsl_code(mat,mat_transpose=True) == glTransposed mat = Matrix([ [0, 1], [2, 3]]) gl = '''mat2(0, 1, 2, 3)''' glTransposed = '''mat2(0, 2, 1, 3)''' assert glsl_code(mat) == gl assert glsl_code(mat,mat_transpose=True) == glTransposed mat = Matrix([ [0, 1, 2], [3, 4, 5]]) gl = '''mat3x2(0, 1, 2, 3, 4, 5)''' glTransposed = '''mat2x3(0, 3, 1, 4, 2, 5)''' assert glsl_code(mat) == gl assert glsl_code(mat,mat_transpose=True) == glTransposed mat = Matrix([ [0, 1, 2, 3], [4, 5, 6, 7]]) gl = '''mat4x2(0, 1, 2, 3, 4, 5, 6, 7)''' glTransposed = '''mat2x4(0, 4, 1, 5, 2, 6, 3, 7)''' assert glsl_code(mat) == gl assert glsl_code(mat,mat_transpose=True) == glTransposed mat = Matrix([ [0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) gl = '''float[10]( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ) /* a 2x5 matrix */''' glTransposed = '''float[10]( 0, 5, 1, 6, 2, 7, 3, 8, 4, 9 ) /* a 5x2 matrix */''' assert glsl_code(mat) == gl assert glsl_code(mat,mat_transpose=True) == glTransposed glNested = '''float[2][5]( float[](0, 1, 2, 3, 4), float[](5, 6, 7, 8, 9) )''' glNestedTransposed = '''float[5][2]( float[](0, 5), float[](1, 6), float[](2, 7), float[](3, 8), float[](4, 9) )''' assert glsl_code(mat,mat_nested=True) == glNested assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed mat = Matrix([ [0], [1], [2]]) gl = '''vec3(0, 1, 2)''' glTransposed = '''vec3(0, 1, 2)''' assert glsl_code(mat) == gl assert glsl_code(mat,mat_transpose=True) == glTransposed mat = Matrix([ [0, 1], [2, 3], [4, 5]]) gl = '''mat2x3(0, 1, 2, 3, 4, 5)''' glTransposed = '''mat3x2(0, 2, 4, 1, 3, 5)''' assert glsl_code(mat) == gl assert glsl_code(mat,mat_transpose=True) == glTransposed mat = Matrix([ [0, 1, 2], [3, 4, 5], [6, 7, 8]]) gl = '''mat3(0, 1, 2, 3, 4, 5, 6, 7, 8)''' glTransposed = '''mat3(0, 3, 6, 1, 4, 7, 2, 5, 8)''' assert glsl_code(mat) == gl assert glsl_code(mat,mat_transpose=True) == glTransposed mat = Matrix([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]) gl = '''mat4x3(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)''' glTransposed = '''mat3x4(0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11)''' assert glsl_code(mat) == gl assert glsl_code(mat,mat_transpose=True) == glTransposed mat = Matrix([ [ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14]]) gl = '''float[15]( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 ) /* a 3x5 matrix */''' glTransposed = '''float[15]( 0, 5, 10, 1, 6, 11, 2, 7, 12, 3, 8, 13, 4, 9, 14 ) /* a 5x3 matrix */''' assert glsl_code(mat) == gl assert glsl_code(mat,mat_transpose=True) == glTransposed glNested = '''float[3][5]( float[]( 0, 1, 2, 3, 4), float[]( 5, 6, 7, 8, 9), float[](10, 11, 12, 13, 14) )''' glNestedTransposed = '''float[5][3]( float[](0, 5, 10), float[](1, 6, 11), float[](2, 7, 12), float[](3, 8, 13), float[](4, 9, 14) )''' assert glsl_code(mat,mat_nested=True) == glNested assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed mat = Matrix([ [0], [1], [2], [3]]) gl = '''vec4(0, 1, 2, 3)''' glTransposed = '''vec4(0, 1, 2, 3)''' assert glsl_code(mat) == gl assert glsl_code(mat,mat_transpose=True) == glTransposed mat = Matrix([ [0, 1], [2, 3], [4, 5], [6, 7]]) gl = '''mat2x4(0, 1, 2, 3, 4, 5, 6, 7)''' glTransposed = '''mat4x2(0, 2, 4, 6, 1, 3, 5, 7)''' assert glsl_code(mat) == gl assert glsl_code(mat,mat_transpose=True) == glTransposed mat = Matrix([ [0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]) gl = '''mat3x4(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)''' glTransposed = '''mat4x3(0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11)''' assert glsl_code(mat) == gl assert glsl_code(mat,mat_transpose=True) == glTransposed mat = Matrix([ [ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) gl = '''mat4( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)''' glTransposed = '''mat4(0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15)''' assert glsl_code(mat) == gl assert glsl_code(mat,mat_transpose=True) == glTransposed mat = Matrix([ [ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]]) gl = '''float[20]( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 ) /* a 4x5 matrix */''' glTransposed = '''float[20]( 0, 5, 10, 15, 1, 6, 11, 16, 2, 7, 12, 17, 3, 8, 13, 18, 4, 9, 14, 19 ) /* a 5x4 matrix */''' assert glsl_code(mat) == gl assert glsl_code(mat,mat_transpose=True) == glTransposed glNested = '''float[4][5]( float[]( 0, 1, 2, 3, 4), float[]( 5, 6, 7, 8, 9), float[](10, 11, 12, 13, 14), float[](15, 16, 17, 18, 19) )''' glNestedTransposed = '''float[5][4]( float[](0, 5, 10, 15), float[](1, 6, 11, 16), float[](2, 7, 12, 17), float[](3, 8, 13, 18), float[](4, 9, 14, 19) )''' assert glsl_code(mat,mat_nested=True) == glNested assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed mat = Matrix([ [0], [1], [2], [3], [4]]) gl = '''float[5](0, 1, 2, 3, 4)''' glTransposed = '''float[5](0, 1, 2, 3, 4)''' assert glsl_code(mat) == gl assert glsl_code(mat,mat_transpose=True) == glTransposed mat = Matrix([ [0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]) gl = '''float[10]( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ) /* a 5x2 matrix */''' glTransposed = '''float[10]( 0, 2, 4, 6, 8, 1, 3, 5, 7, 9 ) /* a 2x5 matrix */''' assert glsl_code(mat) == gl assert glsl_code(mat,mat_transpose=True) == glTransposed glNested = '''float[5][2]( float[](0, 1), float[](2, 3), float[](4, 5), float[](6, 7), float[](8, 9) )''' glNestedTransposed = '''float[2][5]( float[](0, 2, 4, 6, 8), float[](1, 3, 5, 7, 9) )''' assert glsl_code(mat,mat_nested=True) == glNested assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed mat = Matrix([ [ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11], [12, 13, 14]]) gl = '''float[15]( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 ) /* a 5x3 matrix */''' glTransposed = '''float[15]( 0, 3, 6, 9, 12, 1, 4, 7, 10, 13, 2, 5, 8, 11, 14 ) /* a 3x5 matrix */''' assert glsl_code(mat) == gl assert glsl_code(mat,mat_transpose=True) == glTransposed glNested = '''float[5][3]( float[]( 0, 1, 2), float[]( 3, 4, 5), float[]( 6, 7, 8), float[]( 9, 10, 11), float[](12, 13, 14) )''' glNestedTransposed = '''float[3][5]( float[](0, 3, 6, 9, 12), float[](1, 4, 7, 10, 13), float[](2, 5, 8, 11, 14) )''' assert glsl_code(mat,mat_nested=True) == glNested assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed mat = Matrix([ [ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15], [16, 17, 18, 19]]) gl = '''float[20]( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 ) /* a 5x4 matrix */''' glTransposed = '''float[20]( 0, 4, 8, 12, 16, 1, 5, 9, 13, 17, 2, 6, 10, 14, 18, 3, 7, 11, 15, 19 ) /* a 4x5 matrix */''' assert glsl_code(mat) == gl assert glsl_code(mat,mat_transpose=True) == glTransposed glNested = '''float[5][4]( float[]( 0, 1, 2, 3), float[]( 4, 5, 6, 7), float[]( 8, 9, 10, 11), float[](12, 13, 14, 15), float[](16, 17, 18, 19) )''' glNestedTransposed = '''float[4][5]( float[](0, 4, 8, 12, 16), float[](1, 5, 9, 13, 17), float[](2, 6, 10, 14, 18), float[](3, 7, 11, 15, 19) )''' assert glsl_code(mat,mat_nested=True) == glNested assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed mat = Matrix([ [ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]) gl = '''float[25]( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 ) /* a 5x5 matrix */''' glTransposed = '''float[25]( 0, 5, 10, 15, 20, 1, 6, 11, 16, 21, 2, 7, 12, 17, 22, 3, 8, 13, 18, 23, 4, 9, 14, 19, 24 ) /* a 5x5 matrix */''' assert glsl_code(mat) == gl assert glsl_code(mat,mat_transpose=True) == glTransposed glNested = '''float[5][5]( float[]( 0, 1, 2, 3, 4), float[]( 5, 6, 7, 8, 9), float[](10, 11, 12, 13, 14), float[](15, 16, 17, 18, 19), float[](20, 21, 22, 23, 24) )''' glNestedTransposed = '''float[5][5]( float[](0, 5, 10, 15, 20), float[](1, 6, 11, 16, 21), float[](2, 7, 12, 17, 22), float[](3, 8, 13, 18, 23), float[](4, 9, 14, 19, 24) )''' assert glsl_code(mat,mat_nested=True) == glNested assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed
72c63d87d82e942e8efee7a05e156ff74af07cc996527e8f416afa73d4fd1cca
# -*- coding: utf-8 -*- from sympy import ( Add, And, Basic, Derivative, Dict, Eq, Equivalent, FF, FiniteSet, Function, Ge, Gt, I, Implies, Integral, SingularityFunction, Lambda, Le, Limit, Lt, Matrix, Mul, Nand, Ne, Nor, Not, O, Or, Pow, Product, QQ, RR, Rational, Ray, rootof, RootSum, S, Segment, Subs, Sum, Symbol, Tuple, Trace, Xor, ZZ, conjugate, groebner, oo, pi, symbols, ilex, grlex, Range, Contains, SeqPer, SeqFormula, SeqAdd, SeqMul, fourier_series, fps, ITE, Complement, Interval, Intersection, Union, EulerGamma, GoldenRatio, LambertW, airyai, airybi, airyaiprime, airybiprime, fresnelc, fresnels, Heaviside, dirichlet_eta, diag, MatrixSlice) from sympy.codegen.ast import (Assignment, AddAugmentedAssignment, SubAugmentedAssignment, MulAugmentedAssignment, DivAugmentedAssignment, ModAugmentedAssignment) from sympy.core.expr import UnevaluatedExpr from sympy.core.trace import Tr from sympy.functions import (Abs, Chi, Ci, Ei, KroneckerDelta, Piecewise, Shi, Si, atan2, beta, binomial, catalan, ceiling, cos, euler, exp, expint, factorial, factorial2, floor, gamma, hyper, log, meijerg, sin, sqrt, subfactorial, tan, uppergamma, lerchphi, elliptic_k, elliptic_f, elliptic_e, elliptic_pi, DiracDelta, bell, bernoulli, fibonacci, tribonacci, lucas, stieltjes, mathieuc, mathieus, mathieusprime, mathieucprime) from sympy.matrices import Adjoint, Inverse, MatrixSymbol, Transpose, KroneckerProduct from sympy.matrices.expressions import hadamard_power from sympy.physics import mechanics from sympy.physics.control.lti import TransferFunction, Series, Parallel, Feedback from sympy.physics.units import joule, degree from sympy.printing.pretty import pprint, pretty as xpretty from sympy.printing.pretty.pretty_symbology import center_accent, is_combining from sympy import ConditionSet from sympy.sets import ImageSet, ProductSet from sympy.sets.setexpr import SetExpr from sympy.tensor.array import (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray, tensorproduct) from sympy.tensor.functions import TensorProduct from sympy.tensor.tensor import (TensorIndexType, tensor_indices, TensorHead, TensorElement, tensor_heads) from sympy.testing.pytest import raises from sympy.vector import CoordSys3D, Gradient, Curl, Divergence, Dot, Cross, Laplacian import sympy as sym class lowergamma(sym.lowergamma): pass # testing notation inheritance by a subclass with same name a, b, c, d, x, y, z, k, n, s, p = symbols('a,b,c,d,x,y,z,k,n,s,p') f = Function("f") th = Symbol('theta') ph = Symbol('phi') """ Expressions whose pretty-printing is tested here: (A '#' to the right of an expression indicates that its various acceptable orderings are accounted for by the tests.) BASIC EXPRESSIONS: oo (x**2) 1/x y*x**-2 x**Rational(-5,2) (-2)**x Pow(3, 1, evaluate=False) (x**2 + x + 1) # 1-x # 1-2*x # x/y -x/y (x+2)/y # (1+x)*y #3 -5*x/(x+10) # correct placement of negative sign 1 - Rational(3,2)*(x+1) -(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5) # issue 5524 ORDERING: x**2 + x + 1 1 - x 1 - 2*x 2*x**4 + y**2 - x**2 + y**3 RELATIONAL: Eq(x, y) Lt(x, y) Gt(x, y) Le(x, y) Ge(x, y) Ne(x/(y+1), y**2) # RATIONAL NUMBERS: y*x**-2 y**Rational(3,2) * x**Rational(-5,2) sin(x)**3/tan(x)**2 FUNCTIONS (ABS, CONJ, EXP, FUNCTION BRACES, FACTORIAL, FLOOR, CEILING): (2*x + exp(x)) # Abs(x) Abs(x/(x**2+1)) # Abs(1 / (y - Abs(x))) factorial(n) factorial(2*n) subfactorial(n) subfactorial(2*n) factorial(factorial(factorial(n))) factorial(n+1) # conjugate(x) conjugate(f(x+1)) # f(x) f(x, y) f(x/(y+1), y) # f(x**x**x**x**x**x) sin(x)**2 conjugate(a+b*I) conjugate(exp(a+b*I)) conjugate( f(1 + conjugate(f(x))) ) # f(x/(y+1), y) # denom of first arg floor(1 / (y - floor(x))) ceiling(1 / (y - ceiling(x))) SQRT: sqrt(2) 2**Rational(1,3) 2**Rational(1,1000) sqrt(x**2 + 1) (1 + sqrt(5))**Rational(1,3) 2**(1/x) sqrt(2+pi) (2+(1+x**2)/(2+x))**Rational(1,4)+(1+x**Rational(1,1000))/sqrt(3+x**2) DERIVATIVES: Derivative(log(x), x, evaluate=False) Derivative(log(x), x, evaluate=False) + x # Derivative(log(x) + x**2, x, y, evaluate=False) Derivative(2*x*y, y, x, evaluate=False) + x**2 # beta(alpha).diff(alpha) INTEGRALS: Integral(log(x), x) Integral(x**2, x) Integral((sin(x))**2 / (tan(x))**2) Integral(x**(2**x), x) Integral(x**2, (x,1,2)) Integral(x**2, (x,Rational(1,2),10)) Integral(x**2*y**2, x,y) Integral(x**2, (x, None, 1)) Integral(x**2, (x, 1, None)) Integral(sin(th)/cos(ph), (th,0,pi), (ph, 0, 2*pi)) MATRICES: Matrix([[x**2+1, 1], [y, x+y]]) # Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]]) PIECEWISE: Piecewise((x,x<1),(x**2,True)) ITE: ITE(x, y, z) SEQUENCES (TUPLES, LISTS, DICTIONARIES): () [] {} (1/x,) [x**2, 1/x, x, y, sin(th)**2/cos(ph)**2] (x**2, 1/x, x, y, sin(th)**2/cos(ph)**2) {x: sin(x)} {1/x: 1/y, x: sin(x)**2} # [x**2] (x**2,) {x**2: 1} LIMITS: Limit(x, x, oo) Limit(x**2, x, 0) Limit(1/x, x, 0) Limit(sin(x)/x, x, 0) UNITS: joule => kg*m**2/s SUBS: Subs(f(x), x, ph**2) Subs(f(x).diff(x), x, 0) Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2))) ORDER: O(1) O(1/x) O(x**2 + y**2) """ def pretty(expr, order=None): """ASCII pretty-printing""" return xpretty(expr, order=order, use_unicode=False, wrap_line=False) def upretty(expr, order=None): """Unicode pretty-printing""" return xpretty(expr, order=order, use_unicode=True, wrap_line=False) def test_pretty_ascii_str(): assert pretty( 'xxx' ) == 'xxx' assert pretty( "xxx" ) == 'xxx' assert pretty( 'xxx\'xxx' ) == 'xxx\'xxx' assert pretty( 'xxx"xxx' ) == 'xxx\"xxx' assert pretty( 'xxx\"xxx' ) == 'xxx\"xxx' assert pretty( "xxx'xxx" ) == 'xxx\'xxx' assert pretty( "xxx\'xxx" ) == 'xxx\'xxx' assert pretty( "xxx\"xxx" ) == 'xxx\"xxx' assert pretty( "xxx\"xxx\'xxx" ) == 'xxx"xxx\'xxx' assert pretty( "xxx\nxxx" ) == 'xxx\nxxx' def test_pretty_unicode_str(): assert pretty( 'xxx' ) == 'xxx' assert pretty( 'xxx' ) == 'xxx' assert pretty( 'xxx\'xxx' ) == 'xxx\'xxx' assert pretty( 'xxx"xxx' ) == 'xxx\"xxx' assert pretty( 'xxx\"xxx' ) == 'xxx\"xxx' assert pretty( "xxx'xxx" ) == 'xxx\'xxx' assert pretty( "xxx\'xxx" ) == 'xxx\'xxx' assert pretty( "xxx\"xxx" ) == 'xxx\"xxx' assert pretty( "xxx\"xxx\'xxx" ) == 'xxx"xxx\'xxx' assert pretty( "xxx\nxxx" ) == 'xxx\nxxx' def test_upretty_greek(): assert upretty( oo ) == '∞' assert upretty( Symbol('alpha^+_1') ) == 'α⁺₁' assert upretty( Symbol('beta') ) == 'β' assert upretty(Symbol('lambda')) == 'λ' def test_upretty_multiindex(): assert upretty( Symbol('beta12') ) == 'β₁₂' assert upretty( Symbol('Y00') ) == 'Y₀₀' assert upretty( Symbol('Y_00') ) == 'Y₀₀' assert upretty( Symbol('F^+-') ) == 'F⁺⁻' def test_upretty_sub_super(): assert upretty( Symbol('beta_1_2') ) == 'β₁ ₂' assert upretty( Symbol('beta^1^2') ) == 'β¹ ²' assert upretty( Symbol('beta_1^2') ) == 'β²₁' assert upretty( Symbol('beta_10_20') ) == 'β₁₀ ₂₀' assert upretty( Symbol('beta_ax_gamma^i') ) == 'βⁱₐₓ ᵧ' assert upretty( Symbol("F^1^2_3_4") ) == 'F¹ ²₃ ₄' assert upretty( Symbol("F_1_2^3^4") ) == 'F³ ⁴₁ ₂' assert upretty( Symbol("F_1_2_3_4") ) == 'F₁ ₂ ₃ ₄' assert upretty( Symbol("F^1^2^3^4") ) == 'F¹ ² ³ ⁴' def test_upretty_subs_missing_in_24(): assert upretty( Symbol('F_beta') ) == 'Fᵦ' assert upretty( Symbol('F_gamma') ) == 'Fᵧ' assert upretty( Symbol('F_rho') ) == 'Fᵨ' assert upretty( Symbol('F_phi') ) == 'Fᵩ' assert upretty( Symbol('F_chi') ) == 'Fᵪ' assert upretty( Symbol('F_a') ) == 'Fₐ' assert upretty( Symbol('F_e') ) == 'Fₑ' assert upretty( Symbol('F_i') ) == 'Fᵢ' assert upretty( Symbol('F_o') ) == 'Fₒ' assert upretty( Symbol('F_u') ) == 'Fᵤ' assert upretty( Symbol('F_r') ) == 'Fᵣ' assert upretty( Symbol('F_v') ) == 'Fᵥ' assert upretty( Symbol('F_x') ) == 'Fₓ' def test_missing_in_2X_issue_9047(): assert upretty( Symbol('F_h') ) == 'Fₕ' assert upretty( Symbol('F_k') ) == 'Fₖ' assert upretty( Symbol('F_l') ) == 'Fₗ' assert upretty( Symbol('F_m') ) == 'Fₘ' assert upretty( Symbol('F_n') ) == 'Fₙ' assert upretty( Symbol('F_p') ) == 'Fₚ' assert upretty( Symbol('F_s') ) == 'Fₛ' assert upretty( Symbol('F_t') ) == 'Fₜ' def test_upretty_modifiers(): # Accents assert upretty( Symbol('Fmathring') ) == 'F̊' assert upretty( Symbol('Fddddot') ) == 'F⃜' assert upretty( Symbol('Fdddot') ) == 'F⃛' assert upretty( Symbol('Fddot') ) == 'F̈' assert upretty( Symbol('Fdot') ) == 'Ḟ' assert upretty( Symbol('Fcheck') ) == 'F̌' assert upretty( Symbol('Fbreve') ) == 'F̆' assert upretty( Symbol('Facute') ) == 'F́' assert upretty( Symbol('Fgrave') ) == 'F̀' assert upretty( Symbol('Ftilde') ) == 'F̃' assert upretty( Symbol('Fhat') ) == 'F̂' assert upretty( Symbol('Fbar') ) == 'F̅' assert upretty( Symbol('Fvec') ) == 'F⃗' assert upretty( Symbol('Fprime') ) == 'F′' assert upretty( Symbol('Fprm') ) == 'F′' # No faces are actually implemented, but test to make sure the modifiers are stripped assert upretty( Symbol('Fbold') ) == 'Fbold' assert upretty( Symbol('Fbm') ) == 'Fbm' assert upretty( Symbol('Fcal') ) == 'Fcal' assert upretty( Symbol('Fscr') ) == 'Fscr' assert upretty( Symbol('Ffrak') ) == 'Ffrak' # Brackets assert upretty( Symbol('Fnorm') ) == '‖F‖' assert upretty( Symbol('Favg') ) == '⟨F⟩' assert upretty( Symbol('Fabs') ) == '|F|' assert upretty( Symbol('Fmag') ) == '|F|' # Combinations assert upretty( Symbol('xvecdot') ) == 'x⃗̇' assert upretty( Symbol('xDotVec') ) == 'ẋ⃗' assert upretty( Symbol('xHATNorm') ) == '‖x̂‖' assert upretty( Symbol('xMathring_yCheckPRM__zbreveAbs') ) == 'x̊_y̌′__|z̆|' assert upretty( Symbol('alphadothat_nVECDOT__tTildePrime') ) == 'α̇̂_n⃗̇__t̃′' assert upretty( Symbol('x_dot') ) == 'x_dot' assert upretty( Symbol('x__dot') ) == 'x__dot' def test_pretty_Cycle(): from sympy.combinatorics.permutations import Cycle assert pretty(Cycle(1, 2)) == '(1 2)' assert pretty(Cycle(2)) == '(2)' assert pretty(Cycle(1, 3)(4, 5)) == '(1 3)(4 5)' assert pretty(Cycle()) == '()' def test_pretty_Permutation(): from sympy.combinatorics.permutations import Permutation p1 = Permutation(1, 2)(3, 4) assert xpretty(p1, perm_cyclic=True, use_unicode=True) == "(1 2)(3 4)" assert xpretty(p1, perm_cyclic=True, use_unicode=False) == "(1 2)(3 4)" assert xpretty(p1, perm_cyclic=False, use_unicode=True) == \ '⎛0 1 2 3 4⎞\n'\ '⎝0 2 1 4 3⎠' assert xpretty(p1, perm_cyclic=False, use_unicode=False) == \ "/0 1 2 3 4\\\n"\ "\\0 2 1 4 3/" def test_pretty_basic(): assert pretty( -Rational(1)/2 ) == '-1/2' assert pretty( -Rational(13)/22 ) == \ """\ -13 \n\ ----\n\ 22 \ """ expr = oo ascii_str = \ """\ oo\ """ ucode_str = \ """\ ∞\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x**2) ascii_str = \ """\ 2\n\ x \ """ ucode_str = \ """\ 2\n\ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 1/x ascii_str = \ """\ 1\n\ -\n\ x\ """ ucode_str = \ """\ 1\n\ ─\n\ x\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # not the same as 1/x expr = x**-1.0 ascii_str = \ """\ -1.0\n\ x \ """ ucode_str = \ """\ -1.0\n\ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # see issue #2860 expr = Pow(S(2), -1.0, evaluate=False) ascii_str = \ """\ -1.0\n\ 2 \ """ ucode_str = \ """\ -1.0\n\ 2 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = y*x**-2 ascii_str = \ """\ y \n\ --\n\ 2\n\ x \ """ ucode_str = \ """\ y \n\ ──\n\ 2\n\ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str #see issue #14033 expr = x**Rational(1, 3) ascii_str = \ """\ 1/3\n\ x \ """ ucode_str = \ """\ 1/3\n\ x \ """ assert xpretty(expr, use_unicode=False, wrap_line=False,\ root_notation = False) == ascii_str assert xpretty(expr, use_unicode=True, wrap_line=False,\ root_notation = False) == ucode_str expr = x**Rational(-5, 2) ascii_str = \ """\ 1 \n\ ----\n\ 5/2\n\ x \ """ ucode_str = \ """\ 1 \n\ ────\n\ 5/2\n\ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (-2)**x ascii_str = \ """\ x\n\ (-2) \ """ ucode_str = \ """\ x\n\ (-2) \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # See issue 4923 expr = Pow(3, 1, evaluate=False) ascii_str = \ """\ 1\n\ 3 \ """ ucode_str = \ """\ 1\n\ 3 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x**2 + x + 1) ascii_str_1 = \ """\ 2\n\ 1 + x + x \ """ ascii_str_2 = \ """\ 2 \n\ x + x + 1\ """ ascii_str_3 = \ """\ 2 \n\ x + 1 + x\ """ ucode_str_1 = \ """\ 2\n\ 1 + x + x \ """ ucode_str_2 = \ """\ 2 \n\ x + x + 1\ """ ucode_str_3 = \ """\ 2 \n\ x + 1 + x\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3] assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3] expr = 1 - x ascii_str_1 = \ """\ 1 - x\ """ ascii_str_2 = \ """\ -x + 1\ """ ucode_str_1 = \ """\ 1 - x\ """ ucode_str_2 = \ """\ -x + 1\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = 1 - 2*x ascii_str_1 = \ """\ 1 - 2*x\ """ ascii_str_2 = \ """\ -2*x + 1\ """ ucode_str_1 = \ """\ 1 - 2⋅x\ """ ucode_str_2 = \ """\ -2⋅x + 1\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = x/y ascii_str = \ """\ x\n\ -\n\ y\ """ ucode_str = \ """\ x\n\ ─\n\ y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -x/y ascii_str = \ """\ -x \n\ ---\n\ y \ """ ucode_str = \ """\ -x \n\ ───\n\ y \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x + 2)/y ascii_str_1 = \ """\ 2 + x\n\ -----\n\ y \ """ ascii_str_2 = \ """\ x + 2\n\ -----\n\ y \ """ ucode_str_1 = \ """\ 2 + x\n\ ─────\n\ y \ """ ucode_str_2 = \ """\ x + 2\n\ ─────\n\ y \ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = (1 + x)*y ascii_str_1 = \ """\ y*(1 + x)\ """ ascii_str_2 = \ """\ (1 + x)*y\ """ ascii_str_3 = \ """\ y*(x + 1)\ """ ucode_str_1 = \ """\ y⋅(1 + x)\ """ ucode_str_2 = \ """\ (1 + x)⋅y\ """ ucode_str_3 = \ """\ y⋅(x + 1)\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3] assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3] # Test for correct placement of the negative sign expr = -5*x/(x + 10) ascii_str_1 = \ """\ -5*x \n\ ------\n\ 10 + x\ """ ascii_str_2 = \ """\ -5*x \n\ ------\n\ x + 10\ """ ucode_str_1 = \ """\ -5⋅x \n\ ──────\n\ 10 + x\ """ ucode_str_2 = \ """\ -5⋅x \n\ ──────\n\ x + 10\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = -S.Half - 3*x ascii_str = \ """\ -3*x - 1/2\ """ ucode_str = \ """\ -3⋅x - 1/2\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = S.Half - 3*x ascii_str = \ """\ 1/2 - 3*x\ """ ucode_str = \ """\ 1/2 - 3⋅x\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -S.Half - 3*x/2 ascii_str = \ """\ 3*x 1\n\ - --- - -\n\ 2 2\ """ ucode_str = \ """\ 3⋅x 1\n\ - ─── - ─\n\ 2 2\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = S.Half - 3*x/2 ascii_str = \ """\ 1 3*x\n\ - - ---\n\ 2 2 \ """ ucode_str = \ """\ 1 3⋅x\n\ ─ - ───\n\ 2 2 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_negative_fractions(): expr = -x/y ascii_str =\ """\ -x \n\ ---\n\ y \ """ ucode_str =\ """\ -x \n\ ───\n\ y \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -x*z/y ascii_str =\ """\ -x*z \n\ -----\n\ y \ """ ucode_str =\ """\ -x⋅z \n\ ─────\n\ y \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = x**2/y ascii_str =\ """\ 2\n\ x \n\ --\n\ y \ """ ucode_str =\ """\ 2\n\ x \n\ ──\n\ y \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -x**2/y ascii_str =\ """\ 2 \n\ -x \n\ ----\n\ y \ """ ucode_str =\ """\ 2 \n\ -x \n\ ────\n\ y \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -x/(y*z) ascii_str =\ """\ -x \n\ ---\n\ y*z\ """ ucode_str =\ """\ -x \n\ ───\n\ y⋅z\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -a/y**2 ascii_str =\ """\ -a \n\ ---\n\ 2\n\ y \ """ ucode_str =\ """\ -a \n\ ───\n\ 2\n\ y \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = y**(-a/b) ascii_str =\ """\ -a \n\ ---\n\ b \n\ y \ """ ucode_str =\ """\ -a \n\ ───\n\ b \n\ y \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -1/y**2 ascii_str =\ """\ -1 \n\ ---\n\ 2\n\ y \ """ ucode_str =\ """\ -1 \n\ ───\n\ 2\n\ y \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -10/b**2 ascii_str =\ """\ -10 \n\ ----\n\ 2 \n\ b \ """ ucode_str =\ """\ -10 \n\ ────\n\ 2 \n\ b \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Rational(-200, 37) ascii_str =\ """\ -200 \n\ -----\n\ 37 \ """ ucode_str =\ """\ -200 \n\ ─────\n\ 37 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Mul(0, 1, evaluate=False) assert pretty(expr) == "0*1" assert upretty(expr) == "0⋅1" expr = Mul(1, 0, evaluate=False) assert pretty(expr) == "1*0" assert upretty(expr) == "1⋅0" expr = Mul(1, 1, evaluate=False) assert pretty(expr) == "1*1" assert upretty(expr) == "1⋅1" expr = Mul(1, 1, 1, evaluate=False) assert pretty(expr) == "1*1*1" assert upretty(expr) == "1⋅1⋅1" expr = Mul(1, 2, evaluate=False) assert pretty(expr) == "1*2" assert upretty(expr) == "1⋅2" expr = Add(0, 1, evaluate=False) assert pretty(expr) == "0 + 1" assert upretty(expr) == "0 + 1" expr = Mul(1, 1, 2, evaluate=False) assert pretty(expr) == "1*1*2" assert upretty(expr) == "1⋅1⋅2" expr = Add(0, 0, 1, evaluate=False) assert pretty(expr) == "0 + 0 + 1" assert upretty(expr) == "0 + 0 + 1" expr = Mul(1, -1, evaluate=False) assert pretty(expr) == "1*(-1)" assert upretty(expr) == "1⋅(-1)" expr = Mul(1.0, x, evaluate=False) assert pretty(expr) == "1.0*x" assert upretty(expr) == "1.0⋅x" expr = Mul(1, 1, 2, 3, x, evaluate=False) assert pretty(expr) == "1*1*2*3*x" assert upretty(expr) == "1⋅1⋅2⋅3⋅x" expr = Mul(-1, 1, evaluate=False) assert pretty(expr) == "-1*1" assert upretty(expr) == "-1⋅1" expr = Mul(4, 3, 2, 1, 0, y, x, evaluate=False) assert pretty(expr) == "4*3*2*1*0*y*x" assert upretty(expr) == "4⋅3⋅2⋅1⋅0⋅y⋅x" expr = Mul(4, 3, 2, 1+z, 0, y, x, evaluate=False) assert pretty(expr) == "4*3*2*(z + 1)*0*y*x" assert upretty(expr) == "4⋅3⋅2⋅(z + 1)⋅0⋅y⋅x" expr = Mul(Rational(2, 3), Rational(5, 7), evaluate=False) assert pretty(expr) == "2/3*5/7" assert upretty(expr) == "2/3⋅5/7" def test_issue_5524(): assert pretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \ """\ 2 / ___ \\\n\ - (5 - y) + (x - 5)*\\-x - 2*\\/ 2 + 5/\ """ assert upretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \ """\ 2 \n\ - (5 - y) + (x - 5)⋅(-x - 2⋅√2 + 5)\ """ def test_pretty_ordering(): assert pretty(x**2 + x + 1, order='lex') == \ """\ 2 \n\ x + x + 1\ """ assert pretty(x**2 + x + 1, order='rev-lex') == \ """\ 2\n\ 1 + x + x \ """ assert pretty(1 - x, order='lex') == '-x + 1' assert pretty(1 - x, order='rev-lex') == '1 - x' assert pretty(1 - 2*x, order='lex') == '-2*x + 1' assert pretty(1 - 2*x, order='rev-lex') == '1 - 2*x' f = 2*x**4 + y**2 - x**2 + y**3 assert pretty(f, order=None) == \ """\ 4 2 3 2\n\ 2*x - x + y + y \ """ assert pretty(f, order='lex') == \ """\ 4 2 3 2\n\ 2*x - x + y + y \ """ assert pretty(f, order='rev-lex') == \ """\ 2 3 2 4\n\ y + y - x + 2*x \ """ expr = x - x**3/6 + x**5/120 + O(x**6) ascii_str = \ """\ 3 5 \n\ x x / 6\\\n\ x - -- + --- + O\\x /\n\ 6 120 \ """ ucode_str = \ """\ 3 5 \n\ x x ⎛ 6⎞\n\ x - ── + ─── + O⎝x ⎠\n\ 6 120 \ """ assert pretty(expr, order=None) == ascii_str assert upretty(expr, order=None) == ucode_str assert pretty(expr, order='lex') == ascii_str assert upretty(expr, order='lex') == ucode_str assert pretty(expr, order='rev-lex') == ascii_str assert upretty(expr, order='rev-lex') == ucode_str def test_EulerGamma(): assert pretty(EulerGamma) == str(EulerGamma) == "EulerGamma" assert upretty(EulerGamma) == "γ" def test_GoldenRatio(): assert pretty(GoldenRatio) == str(GoldenRatio) == "GoldenRatio" assert upretty(GoldenRatio) == "φ" def test_pretty_relational(): expr = Eq(x, y) ascii_str = \ """\ x = y\ """ ucode_str = \ """\ x = y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lt(x, y) ascii_str = \ """\ x < y\ """ ucode_str = \ """\ x < y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Gt(x, y) ascii_str = \ """\ x > y\ """ ucode_str = \ """\ x > y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Le(x, y) ascii_str = \ """\ x <= y\ """ ucode_str = \ """\ x ≤ y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Ge(x, y) ascii_str = \ """\ x >= y\ """ ucode_str = \ """\ x ≥ y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Ne(x/(y + 1), y**2) ascii_str_1 = \ """\ x 2\n\ ----- != y \n\ 1 + y \ """ ascii_str_2 = \ """\ x 2\n\ ----- != y \n\ y + 1 \ """ ucode_str_1 = \ """\ x 2\n\ ───── ≠ y \n\ 1 + y \ """ ucode_str_2 = \ """\ x 2\n\ ───── ≠ y \n\ y + 1 \ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] def test_Assignment(): expr = Assignment(x, y) ascii_str = \ """\ x := y\ """ ucode_str = \ """\ x := y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_AugmentedAssignment(): expr = AddAugmentedAssignment(x, y) ascii_str = \ """\ x += y\ """ ucode_str = \ """\ x += y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = SubAugmentedAssignment(x, y) ascii_str = \ """\ x -= y\ """ ucode_str = \ """\ x -= y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = MulAugmentedAssignment(x, y) ascii_str = \ """\ x *= y\ """ ucode_str = \ """\ x *= y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = DivAugmentedAssignment(x, y) ascii_str = \ """\ x /= y\ """ ucode_str = \ """\ x /= y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = ModAugmentedAssignment(x, y) ascii_str = \ """\ x %= y\ """ ucode_str = \ """\ x %= y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_rational(): expr = y*x**-2 ascii_str = \ """\ y \n\ --\n\ 2\n\ x \ """ ucode_str = \ """\ y \n\ ──\n\ 2\n\ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = y**Rational(3, 2) * x**Rational(-5, 2) ascii_str = \ """\ 3/2\n\ y \n\ ----\n\ 5/2\n\ x \ """ ucode_str = \ """\ 3/2\n\ y \n\ ────\n\ 5/2\n\ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = sin(x)**3/tan(x)**2 ascii_str = \ """\ 3 \n\ sin (x)\n\ -------\n\ 2 \n\ tan (x)\ """ ucode_str = \ """\ 3 \n\ sin (x)\n\ ───────\n\ 2 \n\ tan (x)\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_functions(): """Tests for Abs, conjugate, exp, function braces, and factorial.""" expr = (2*x + exp(x)) ascii_str_1 = \ """\ x\n\ 2*x + e \ """ ascii_str_2 = \ """\ x \n\ e + 2*x\ """ ucode_str_1 = \ """\ x\n\ 2⋅x + ℯ \ """ ucode_str_2 = \ """\ x \n\ ℯ + 2⋅x\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Abs(x) ascii_str = \ """\ |x|\ """ ucode_str = \ """\ │x│\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Abs(x/(x**2 + 1)) ascii_str_1 = \ """\ | x |\n\ |------|\n\ | 2|\n\ |1 + x |\ """ ascii_str_2 = \ """\ | x |\n\ |------|\n\ | 2 |\n\ |x + 1|\ """ ucode_str_1 = \ """\ │ x │\n\ │──────│\n\ │ 2│\n\ │1 + x │\ """ ucode_str_2 = \ """\ │ x │\n\ │──────│\n\ │ 2 │\n\ │x + 1│\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Abs(1 / (y - Abs(x))) ascii_str = \ """\ 1 \n\ ---------\n\ |y - |x||\ """ ucode_str = \ """\ 1 \n\ ─────────\n\ │y - │x││\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str n = Symbol('n', integer=True) expr = factorial(n) ascii_str = \ """\ n!\ """ ucode_str = \ """\ n!\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial(2*n) ascii_str = \ """\ (2*n)!\ """ ucode_str = \ """\ (2⋅n)!\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial(factorial(factorial(n))) ascii_str = \ """\ ((n!)!)!\ """ ucode_str = \ """\ ((n!)!)!\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial(n + 1) ascii_str_1 = \ """\ (1 + n)!\ """ ascii_str_2 = \ """\ (n + 1)!\ """ ucode_str_1 = \ """\ (1 + n)!\ """ ucode_str_2 = \ """\ (n + 1)!\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = subfactorial(n) ascii_str = \ """\ !n\ """ ucode_str = \ """\ !n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = subfactorial(2*n) ascii_str = \ """\ !(2*n)\ """ ucode_str = \ """\ !(2⋅n)\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str n = Symbol('n', integer=True) expr = factorial2(n) ascii_str = \ """\ n!!\ """ ucode_str = \ """\ n!!\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial2(2*n) ascii_str = \ """\ (2*n)!!\ """ ucode_str = \ """\ (2⋅n)!!\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial2(factorial2(factorial2(n))) ascii_str = \ """\ ((n!!)!!)!!\ """ ucode_str = \ """\ ((n!!)!!)!!\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial2(n + 1) ascii_str_1 = \ """\ (1 + n)!!\ """ ascii_str_2 = \ """\ (n + 1)!!\ """ ucode_str_1 = \ """\ (1 + n)!!\ """ ucode_str_2 = \ """\ (n + 1)!!\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = 2*binomial(n, k) ascii_str = \ """\ /n\\\n\ 2*| |\n\ \\k/\ """ ucode_str = \ """\ ⎛n⎞\n\ 2⋅⎜ ⎟\n\ ⎝k⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2*binomial(2*n, k) ascii_str = \ """\ /2*n\\\n\ 2*| |\n\ \\ k /\ """ ucode_str = \ """\ ⎛2⋅n⎞\n\ 2⋅⎜ ⎟\n\ ⎝ k ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2*binomial(n**2, k) ascii_str = \ """\ / 2\\\n\ |n |\n\ 2*| |\n\ \\k /\ """ ucode_str = \ """\ ⎛ 2⎞\n\ ⎜n ⎟\n\ 2⋅⎜ ⎟\n\ ⎝k ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = catalan(n) ascii_str = \ """\ C \n\ n\ """ ucode_str = \ """\ C \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = catalan(n) ascii_str = \ """\ C \n\ n\ """ ucode_str = \ """\ C \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = bell(n) ascii_str = \ """\ B \n\ n\ """ ucode_str = \ """\ B \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = bernoulli(n) ascii_str = \ """\ B \n\ n\ """ ucode_str = \ """\ B \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = bernoulli(n, x) ascii_str = \ """\ B (x)\n\ n \ """ ucode_str = \ """\ B (x)\n\ n \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = fibonacci(n) ascii_str = \ """\ F \n\ n\ """ ucode_str = \ """\ F \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = lucas(n) ascii_str = \ """\ L \n\ n\ """ ucode_str = \ """\ L \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = tribonacci(n) ascii_str = \ """\ T \n\ n\ """ ucode_str = \ """\ T \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = stieltjes(n) ascii_str = \ """\ stieltjes \n\ n\ """ ucode_str = \ """\ γ \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = stieltjes(n, x) ascii_str = \ """\ stieltjes (x)\n\ n \ """ ucode_str = \ """\ γ (x)\n\ n \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = mathieuc(x, y, z) ascii_str = 'C(x, y, z)' ucode_str = 'C(x, y, z)' assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = mathieus(x, y, z) ascii_str = 'S(x, y, z)' ucode_str = 'S(x, y, z)' assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = mathieucprime(x, y, z) ascii_str = "C'(x, y, z)" ucode_str = "C'(x, y, z)" assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = mathieusprime(x, y, z) ascii_str = "S'(x, y, z)" ucode_str = "S'(x, y, z)" assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = conjugate(x) ascii_str = \ """\ _\n\ x\ """ ucode_str = \ """\ _\n\ x\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str f = Function('f') expr = conjugate(f(x + 1)) ascii_str_1 = \ """\ ________\n\ f(1 + x)\ """ ascii_str_2 = \ """\ ________\n\ f(x + 1)\ """ ucode_str_1 = \ """\ ________\n\ f(1 + x)\ """ ucode_str_2 = \ """\ ________\n\ f(x + 1)\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = f(x) ascii_str = \ """\ f(x)\ """ ucode_str = \ """\ f(x)\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = f(x, y) ascii_str = \ """\ f(x, y)\ """ ucode_str = \ """\ f(x, y)\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = f(x/(y + 1), y) ascii_str_1 = \ """\ / x \\\n\ f|-----, y|\n\ \\1 + y /\ """ ascii_str_2 = \ """\ / x \\\n\ f|-----, y|\n\ \\y + 1 /\ """ ucode_str_1 = \ """\ ⎛ x ⎞\n\ f⎜─────, y⎟\n\ ⎝1 + y ⎠\ """ ucode_str_2 = \ """\ ⎛ x ⎞\n\ f⎜─────, y⎟\n\ ⎝y + 1 ⎠\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = f(x**x**x**x**x**x) ascii_str = \ """\ / / / / / x\\\\\\\\\\ | | | | \\x /|||| | | | \\x /||| | | \\x /|| | \\x /| f\\x /\ """ ucode_str = \ """\ ⎛ ⎛ ⎛ ⎛ ⎛ x⎞⎞⎞⎞⎞ ⎜ ⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟⎟ ⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟ ⎜ ⎜ ⎝x ⎠⎟⎟ ⎜ ⎝x ⎠⎟ f⎝x ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = sin(x)**2 ascii_str = \ """\ 2 \n\ sin (x)\ """ ucode_str = \ """\ 2 \n\ sin (x)\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = conjugate(a + b*I) ascii_str = \ """\ _ _\n\ a - I*b\ """ ucode_str = \ """\ _ _\n\ a - ⅈ⋅b\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = conjugate(exp(a + b*I)) ascii_str = \ """\ _ _\n\ a - I*b\n\ e \ """ ucode_str = \ """\ _ _\n\ a - ⅈ⋅b\n\ ℯ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = conjugate( f(1 + conjugate(f(x))) ) ascii_str_1 = \ """\ ___________\n\ / ____\\\n\ f\\1 + f(x)/\ """ ascii_str_2 = \ """\ ___________\n\ /____ \\\n\ f\\f(x) + 1/\ """ ucode_str_1 = \ """\ ___________\n\ ⎛ ____⎞\n\ f⎝1 + f(x)⎠\ """ ucode_str_2 = \ """\ ___________\n\ ⎛____ ⎞\n\ f⎝f(x) + 1⎠\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = f(x/(y + 1), y) ascii_str_1 = \ """\ / x \\\n\ f|-----, y|\n\ \\1 + y /\ """ ascii_str_2 = \ """\ / x \\\n\ f|-----, y|\n\ \\y + 1 /\ """ ucode_str_1 = \ """\ ⎛ x ⎞\n\ f⎜─────, y⎟\n\ ⎝1 + y ⎠\ """ ucode_str_2 = \ """\ ⎛ x ⎞\n\ f⎜─────, y⎟\n\ ⎝y + 1 ⎠\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = floor(1 / (y - floor(x))) ascii_str = \ """\ / 1 \\\n\ floor|------------|\n\ \\y - floor(x)/\ """ ucode_str = \ """\ ⎢ 1 ⎥\n\ ⎢───────⎥\n\ ⎣y - ⌊x⌋⎦\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = ceiling(1 / (y - ceiling(x))) ascii_str = \ """\ / 1 \\\n\ ceiling|--------------|\n\ \\y - ceiling(x)/\ """ ucode_str = \ """\ ⎡ 1 ⎤\n\ ⎢───────⎥\n\ ⎢y - ⌈x⌉⎥\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = euler(n) ascii_str = \ """\ E \n\ n\ """ ucode_str = \ """\ E \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = euler(1/(1 + 1/(1 + 1/n))) ascii_str = \ """\ E \n\ 1 \n\ ---------\n\ 1 \n\ 1 + -----\n\ 1\n\ 1 + -\n\ n\ """ ucode_str = \ """\ E \n\ 1 \n\ ─────────\n\ 1 \n\ 1 + ─────\n\ 1\n\ 1 + ─\n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = euler(n, x) ascii_str = \ """\ E (x)\n\ n \ """ ucode_str = \ """\ E (x)\n\ n \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = euler(n, x/2) ascii_str = \ """\ /x\\\n\ E |-|\n\ n\\2/\ """ ucode_str = \ """\ ⎛x⎞\n\ E ⎜─⎟\n\ n⎝2⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_sqrt(): expr = sqrt(2) ascii_str = \ """\ ___\n\ \\/ 2 \ """ ucode_str = \ "√2" assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2**Rational(1, 3) ascii_str = \ """\ 3 ___\n\ \\/ 2 \ """ ucode_str = \ """\ 3 ___\n\ ╲╱ 2 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2**Rational(1, 1000) ascii_str = \ """\ 1000___\n\ \\/ 2 \ """ ucode_str = \ """\ 1000___\n\ ╲╱ 2 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = sqrt(x**2 + 1) ascii_str = \ """\ ________\n\ / 2 \n\ \\/ x + 1 \ """ ucode_str = \ """\ ________\n\ ╱ 2 \n\ ╲╱ x + 1 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (1 + sqrt(5))**Rational(1, 3) ascii_str = \ """\ ___________\n\ 3 / ___ \n\ \\/ 1 + \\/ 5 \ """ ucode_str = \ """\ 3 ________\n\ ╲╱ 1 + √5 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2**(1/x) ascii_str = \ """\ x ___\n\ \\/ 2 \ """ ucode_str = \ """\ x ___\n\ ╲╱ 2 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = sqrt(2 + pi) ascii_str = \ """\ ________\n\ \\/ 2 + pi \ """ ucode_str = \ """\ _______\n\ ╲╱ 2 + π \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (2 + ( 1 + x**2)/(2 + x))**Rational(1, 4) + (1 + x**Rational(1, 1000))/sqrt(3 + x**2) ascii_str = \ """\ ____________ \n\ / 2 1000___ \n\ / x + 1 \\/ x + 1\n\ 4 / 2 + ------ + -----------\n\ \\/ x + 2 ________\n\ / 2 \n\ \\/ x + 3 \ """ ucode_str = \ """\ ____________ \n\ ╱ 2 1000___ \n\ ╱ x + 1 ╲╱ x + 1\n\ 4 ╱ 2 + ────── + ───────────\n\ ╲╱ x + 2 ________\n\ ╱ 2 \n\ ╲╱ x + 3 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_sqrt_char_knob(): # See PR #9234. expr = sqrt(2) ucode_str1 = \ """\ ___\n\ ╲╱ 2 \ """ ucode_str2 = \ "√2" assert xpretty(expr, use_unicode=True, use_unicode_sqrt_char=False) == ucode_str1 assert xpretty(expr, use_unicode=True, use_unicode_sqrt_char=True) == ucode_str2 def test_pretty_sqrt_longsymbol_no_sqrt_char(): # Do not use unicode sqrt char for long symbols (see PR #9234). expr = sqrt(Symbol('C1')) ucode_str = \ """\ ____\n\ ╲╱ C₁ \ """ assert upretty(expr) == ucode_str def test_pretty_KroneckerDelta(): x, y = symbols("x, y") expr = KroneckerDelta(x, y) ascii_str = \ """\ d \n\ x,y\ """ ucode_str = \ """\ δ \n\ x,y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_product(): n, m, k, l = symbols('n m k l') f = symbols('f', cls=Function) expr = Product(f((n/3)**2), (n, k**2, l)) unicode_str = \ """\ l \n\ ─┬──────┬─ \n\ │ │ ⎛ 2⎞\n\ │ │ ⎜n ⎟\n\ │ │ f⎜──⎟\n\ │ │ ⎝9 ⎠\n\ │ │ \n\ 2 \n\ n = k """ ascii_str = \ """\ l \n\ __________ \n\ | | / 2\\\n\ | | |n |\n\ | | f|--|\n\ | | \\9 /\n\ | | \n\ 2 \n\ n = k """ expr = Product(f((n/3)**2), (n, k**2, l), (l, 1, m)) unicode_str = \ """\ m l \n\ ─┬──────┬─ ─┬──────┬─ \n\ │ │ │ │ ⎛ 2⎞\n\ │ │ │ │ ⎜n ⎟\n\ │ │ │ │ f⎜──⎟\n\ │ │ │ │ ⎝9 ⎠\n\ │ │ │ │ \n\ l = 1 2 \n\ n = k """ ascii_str = \ """\ m l \n\ __________ __________ \n\ | | | | / 2\\\n\ | | | | |n |\n\ | | | | f|--|\n\ | | | | \\9 /\n\ | | | | \n\ l = 1 2 \n\ n = k """ assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str def test_pretty_Lambda(): # S.IdentityFunction is a special case expr = Lambda(y, y) assert pretty(expr) == "x -> x" assert upretty(expr) == "x ↦ x" expr = Lambda(x, x+1) assert pretty(expr) == "x -> x + 1" assert upretty(expr) == "x ↦ x + 1" expr = Lambda(x, x**2) ascii_str = \ """\ 2\n\ x -> x \ """ ucode_str = \ """\ 2\n\ x ↦ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lambda(x, x**2)**2 ascii_str = \ """\ 2 / 2\\ \n\ \\x -> x / \ """ ucode_str = \ """\ 2 ⎛ 2⎞ \n\ ⎝x ↦ x ⎠ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lambda((x, y), x) ascii_str = "(x, y) -> x" ucode_str = "(x, y) ↦ x" assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lambda((x, y), x**2) ascii_str = \ """\ 2\n\ (x, y) -> x \ """ ucode_str = \ """\ 2\n\ (x, y) ↦ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lambda(((x, y),), x**2) ascii_str = \ """\ 2\n\ ((x, y),) -> x \ """ ucode_str = \ """\ 2\n\ ((x, y),) ↦ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_TransferFunction(): tf1 = TransferFunction(s - 1, s + 1, s) assert upretty(tf1) == "s - 1\n─────\ns + 1" tf2 = TransferFunction(2*s + 1, 3 - p, s) assert upretty(tf2) == "2⋅s + 1\n───────\n 3 - p " tf3 = TransferFunction(p, p + 1, p) assert upretty(tf3) == " p \n─────\np + 1" def test_pretty_Series(): tf1 = TransferFunction(x + y, x - 2*y, y) tf2 = TransferFunction(x - y, x + y, y) tf3 = TransferFunction(x**2 + y, y - x, y) expected1 = \ """\ ⎛ 2 ⎞\n\ ⎛ x + y ⎞ ⎜x + y⎟\n\ ⎜───────⎟⋅⎜──────⎟\n\ ⎝x - 2⋅y⎠ ⎝-x + y⎠\ """ expected2 = \ """\ ⎛-x + y⎞ ⎛ -x - y⎞\n\ ⎜──────⎟⋅⎜───────⎟\n\ ⎝x + y ⎠ ⎝x - 2⋅y⎠\ """ expected3 = \ """\ ⎛ 2 ⎞ \n\ ⎜x + y⎟ ⎛ x + y ⎞ ⎛ -x - y x - y⎞\n\ ⎜──────⎟⋅⎜───────⎟⋅⎜─────── + ─────⎟\n\ ⎝-x + y⎠ ⎝x - 2⋅y⎠ ⎝x - 2⋅y x + y⎠\ """ expected4 = \ """\ ⎛ 2 ⎞\n\ ⎛ x + y x - y⎞ ⎜x - y x + y⎟\n\ ⎜─────── + ─────⎟⋅⎜───── + ──────⎟\n\ ⎝x - 2⋅y x + y⎠ ⎝x + y -x + y⎠\ """ assert upretty(Series(tf1, tf3)) == expected1 assert upretty(Series(-tf2, -tf1)) == expected2 assert upretty(Series(tf3, tf1, Parallel(-tf1, tf2))) == expected3 assert upretty(Series(Parallel(tf1, tf2), Parallel(tf2, tf3))) == expected4 def test_pretty_Parallel(): tf1 = TransferFunction(x + y, x - 2*y, y) tf2 = TransferFunction(x - y, x + y, y) tf3 = TransferFunction(x**2 + y, y - x, y) expected1 = \ """\ x + y x - y\n\ ─────── + ─────\n\ x - 2⋅y x + y\ """ expected2 = \ """\ -x + y -x - y\n\ ────── + ───────\n\ x + y x - 2⋅y\ """ expected3 = \ """\ 2 \n\ x + y x + y ⎛ -x - y⎞ ⎛x - y⎞\n\ ────── + ─────── + ⎜───────⎟⋅⎜─────⎟\n\ -x + y x - 2⋅y ⎝x - 2⋅y⎠ ⎝x + y⎠\ """ expected4 = \ """\ ⎛ 2 ⎞\n\ ⎛ x + y ⎞ ⎛x - y⎞ ⎛x - y⎞ ⎜x + y⎟\n\ ⎜───────⎟⋅⎜─────⎟ + ⎜─────⎟⋅⎜──────⎟\n\ ⎝x - 2⋅y⎠ ⎝x + y⎠ ⎝x + y⎠ ⎝-x + y⎠\ """ assert upretty(Parallel(tf1, tf2)) == expected1 assert upretty(Parallel(-tf2, -tf1)) == expected2 assert upretty(Parallel(tf3, tf1, Series(-tf1, tf2))) == expected3 assert upretty(Parallel(Series(tf1, tf2), Series(tf2, tf3))) == expected4 def test_pretty_Feedback(): tf = TransferFunction(1, 1, y) tf1 = TransferFunction(x + y, x - 2*y, y) tf2 = TransferFunction(x - y, x + y, y) tf3 = TransferFunction(y**2 - 2*y + 1, y + 5, y) tf4 = TransferFunction(x - 2*y**3, x + y, x) tf5 = TransferFunction(1 - x, x - y, y) tf6 = TransferFunction(2, 2, x) expected1 = \ """\ ⎛1⎞ \n\ ⎜─⎟ \n\ ⎝1⎠ \n\ ───────────\n\ 1 x + y \n\ ─ + ───────\n\ 1 x - 2⋅y\ """ expected2 = \ """\ ⎛1⎞ \n\ ⎜─⎟ \n\ ⎝1⎠ \n\ ────────────────────────────────────\n\ ⎛ 2 ⎞\n\ 1 ⎛x - y⎞ ⎛ x + y ⎞ ⎜y - 2⋅y + 1⎟\n\ ─ + ⎜─────⎟⋅⎜───────⎟⋅⎜────────────⎟\n\ 1 ⎝x + y⎠ ⎝x - 2⋅y⎠ ⎝ y + 5 ⎠\ """ expected3 = \ """\ ⎛ x + y ⎞ \n\ ⎜───────⎟ \n\ ⎝x - 2⋅y⎠ \n\ ────────────────────────────────────────────\n\ ⎛ 2 ⎞ \n\ 1 ⎛ x + y ⎞ ⎛x - y⎞ ⎜y - 2⋅y + 1⎟ ⎛1 - x⎞\n\ ─ + ⎜───────⎟⋅⎜─────⎟⋅⎜────────────⎟⋅⎜─────⎟\n\ 1 ⎝x - 2⋅y⎠ ⎝x + y⎠ ⎝ y + 5 ⎠ ⎝x - y⎠\ """ expected4 = \ """\ ⎛ x + y ⎞ ⎛x - y⎞ \n\ ⎜───────⎟⋅⎜─────⎟ \n\ ⎝x - 2⋅y⎠ ⎝x + y⎠ \n\ ─────────────────────\n\ 1 ⎛ x + y ⎞ ⎛x - y⎞\n\ ─ + ⎜───────⎟⋅⎜─────⎟\n\ 1 ⎝x - 2⋅y⎠ ⎝x + y⎠\ """ expected5 = \ """\ ⎛ x + y ⎞ ⎛x - y⎞ \n\ ⎜───────⎟⋅⎜─────⎟ \n\ ⎝x - 2⋅y⎠ ⎝x + y⎠ \n\ ─────────────────────────────\n\ 1 ⎛ x + y ⎞ ⎛x - y⎞ ⎛1 - x⎞\n\ ─ + ⎜───────⎟⋅⎜─────⎟⋅⎜─────⎟\n\ 1 ⎝x - 2⋅y⎠ ⎝x + y⎠ ⎝x - y⎠\ """ expected6 = \ """\ ⎛ 2 ⎞ \n\ ⎜y - 2⋅y + 1⎟ ⎛1 - x⎞ \n\ ⎜────────────⎟⋅⎜─────⎟ \n\ ⎝ y + 5 ⎠ ⎝x - y⎠ \n\ ────────────────────────────────────────────\n\ ⎛ 2 ⎞ \n\ 1 ⎜y - 2⋅y + 1⎟ ⎛1 - x⎞ ⎛x - y⎞ ⎛ x + y ⎞\n\ ─ + ⎜────────────⎟⋅⎜─────⎟⋅⎜─────⎟⋅⎜───────⎟\n\ 1 ⎝ y + 5 ⎠ ⎝x - y⎠ ⎝x + y⎠ ⎝x - 2⋅y⎠\ """ expected7 = \ """\ ⎛ 3⎞ \n\ ⎜x - 2⋅y ⎟ \n\ ⎜────────⎟ \n\ ⎝ x + y ⎠ \n\ ──────────────────\n\ ⎛ 3⎞ \n\ 1 ⎜x - 2⋅y ⎟ ⎛2⎞\n\ ─ + ⎜────────⎟⋅⎜─⎟\n\ 1 ⎝ x + y ⎠ ⎝2⎠\ """ expected8 = \ """\ ⎛1 - x⎞ \n\ ⎜─────⎟ \n\ ⎝x - y⎠ \n\ ─────────\n\ 1 1 - x\n\ ─ + ─────\n\ 1 x - y\ """ assert upretty(Feedback(tf, tf1)) == expected1 assert upretty(Feedback(tf, tf2*tf1*tf3)) == expected2 assert upretty(Feedback(tf1, tf2*tf3*tf5)) == expected3 assert upretty(Feedback(tf1*tf2, tf)) == expected4 assert upretty(Feedback(tf1*tf2, tf5)) == expected5 assert upretty(Feedback(tf3*tf5, tf2*tf1)) == expected6 assert upretty(Feedback(tf4, tf6)) == expected7 assert upretty(Feedback(tf5, tf)) == expected8 def test_pretty_order(): expr = O(1) ascii_str = \ """\ O(1)\ """ ucode_str = \ """\ O(1)\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(1/x) ascii_str = \ """\ /1\\\n\ O|-|\n\ \\x/\ """ ucode_str = \ """\ ⎛1⎞\n\ O⎜─⎟\n\ ⎝x⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(x**2 + y**2) ascii_str = \ """\ / 2 2 \\\n\ O\\x + y ; (x, y) -> (0, 0)/\ """ ucode_str = \ """\ ⎛ 2 2 ⎞\n\ O⎝x + y ; (x, y) → (0, 0)⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(1, (x, oo)) ascii_str = \ """\ O(1; x -> oo)\ """ ucode_str = \ """\ O(1; x → ∞)\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(1/x, (x, oo)) ascii_str = \ """\ /1 \\\n\ O|-; x -> oo|\n\ \\x /\ """ ucode_str = \ """\ ⎛1 ⎞\n\ O⎜─; x → ∞⎟\n\ ⎝x ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(x**2 + y**2, (x, oo), (y, oo)) ascii_str = \ """\ / 2 2 \\\n\ O\\x + y ; (x, y) -> (oo, oo)/\ """ ucode_str = \ """\ ⎛ 2 2 ⎞\n\ O⎝x + y ; (x, y) → (∞, ∞)⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_derivatives(): # Simple expr = Derivative(log(x), x, evaluate=False) ascii_str = \ """\ d \n\ --(log(x))\n\ dx \ """ ucode_str = \ """\ d \n\ ──(log(x))\n\ dx \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Derivative(log(x), x, evaluate=False) + x ascii_str_1 = \ """\ d \n\ x + --(log(x))\n\ dx \ """ ascii_str_2 = \ """\ d \n\ --(log(x)) + x\n\ dx \ """ ucode_str_1 = \ """\ d \n\ x + ──(log(x))\n\ dx \ """ ucode_str_2 = \ """\ d \n\ ──(log(x)) + x\n\ dx \ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] # basic partial derivatives expr = Derivative(log(x + y) + x, x) ascii_str_1 = \ """\ d \n\ --(log(x + y) + x)\n\ dx \ """ ascii_str_2 = \ """\ d \n\ --(x + log(x + y))\n\ dx \ """ ucode_str_1 = \ """\ ∂ \n\ ──(log(x + y) + x)\n\ ∂x \ """ ucode_str_2 = \ """\ ∂ \n\ ──(x + log(x + y))\n\ ∂x \ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2], upretty(expr) # Multiple symbols expr = Derivative(log(x) + x**2, x, y) ascii_str_1 = \ """\ 2 \n\ d / 2\\\n\ -----\\log(x) + x /\n\ dy dx \ """ ascii_str_2 = \ """\ 2 \n\ d / 2 \\\n\ -----\\x + log(x)/\n\ dy dx \ """ ucode_str_1 = \ """\ 2 \n\ d ⎛ 2⎞\n\ ─────⎝log(x) + x ⎠\n\ dy dx \ """ ucode_str_2 = \ """\ 2 \n\ d ⎛ 2 ⎞\n\ ─────⎝x + log(x)⎠\n\ dy dx \ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Derivative(2*x*y, y, x) + x**2 ascii_str_1 = \ """\ 2 \n\ d 2\n\ -----(2*x*y) + x \n\ dx dy \ """ ascii_str_2 = \ """\ 2 \n\ 2 d \n\ x + -----(2*x*y)\n\ dx dy \ """ ucode_str_1 = \ """\ 2 \n\ ∂ 2\n\ ─────(2⋅x⋅y) + x \n\ ∂x ∂y \ """ ucode_str_2 = \ """\ 2 \n\ 2 ∂ \n\ x + ─────(2⋅x⋅y)\n\ ∂x ∂y \ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Derivative(2*x*y, x, x) ascii_str = \ """\ 2 \n\ d \n\ ---(2*x*y)\n\ 2 \n\ dx \ """ ucode_str = \ """\ 2 \n\ ∂ \n\ ───(2⋅x⋅y)\n\ 2 \n\ ∂x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Derivative(2*x*y, x, 17) ascii_str = \ """\ 17 \n\ d \n\ ----(2*x*y)\n\ 17 \n\ dx \ """ ucode_str = \ """\ 17 \n\ ∂ \n\ ────(2⋅x⋅y)\n\ 17 \n\ ∂x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Derivative(2*x*y, x, x, y) ascii_str = \ """\ 3 \n\ d \n\ ------(2*x*y)\n\ 2 \n\ dy dx \ """ ucode_str = \ """\ 3 \n\ ∂ \n\ ──────(2⋅x⋅y)\n\ 2 \n\ ∂y ∂x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # Greek letters alpha = Symbol('alpha') beta = Function('beta') expr = beta(alpha).diff(alpha) ascii_str = \ """\ d \n\ ------(beta(alpha))\n\ dalpha \ """ ucode_str = \ """\ d \n\ ──(β(α))\n\ dα \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Derivative(f(x), (x, n)) ascii_str = \ """\ n \n\ d \n\ ---(f(x))\n\ n \n\ dx \ """ ucode_str = \ """\ n \n\ d \n\ ───(f(x))\n\ n \n\ dx \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_integrals(): expr = Integral(log(x), x) ascii_str = \ """\ / \n\ | \n\ | log(x) dx\n\ | \n\ / \ """ ucode_str = \ """\ ⌠ \n\ ⎮ log(x) dx\n\ ⌡ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**2, x) ascii_str = \ """\ / \n\ | \n\ | 2 \n\ | x dx\n\ | \n\ / \ """ ucode_str = \ """\ ⌠ \n\ ⎮ 2 \n\ ⎮ x dx\n\ ⌡ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral((sin(x))**2 / (tan(x))**2) ascii_str = \ """\ / \n\ | \n\ | 2 \n\ | sin (x) \n\ | ------- dx\n\ | 2 \n\ | tan (x) \n\ | \n\ / \ """ ucode_str = \ """\ ⌠ \n\ ⎮ 2 \n\ ⎮ sin (x) \n\ ⎮ ─────── dx\n\ ⎮ 2 \n\ ⎮ tan (x) \n\ ⌡ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**(2**x), x) ascii_str = \ """\ / \n\ | \n\ | / x\\ \n\ | \\2 / \n\ | x dx\n\ | \n\ / \ """ ucode_str = \ """\ ⌠ \n\ ⎮ ⎛ x⎞ \n\ ⎮ ⎝2 ⎠ \n\ ⎮ x dx\n\ ⌡ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**2, (x, 1, 2)) ascii_str = \ """\ 2 \n\ / \n\ | \n\ | 2 \n\ | x dx\n\ | \n\ / \n\ 1 \ """ ucode_str = \ """\ 2 \n\ ⌠ \n\ ⎮ 2 \n\ ⎮ x dx\n\ ⌡ \n\ 1 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**2, (x, Rational(1, 2), 10)) ascii_str = \ """\ 10 \n\ / \n\ | \n\ | 2 \n\ | x dx\n\ | \n\ / \n\ 1/2 \ """ ucode_str = \ """\ 10 \n\ ⌠ \n\ ⎮ 2 \n\ ⎮ x dx\n\ ⌡ \n\ 1/2 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**2*y**2, x, y) ascii_str = \ """\ / / \n\ | | \n\ | | 2 2 \n\ | | x *y dx dy\n\ | | \n\ / / \ """ ucode_str = \ """\ ⌠ ⌠ \n\ ⎮ ⎮ 2 2 \n\ ⎮ ⎮ x ⋅y dx dy\n\ ⌡ ⌡ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(sin(th)/cos(ph), (th, 0, pi), (ph, 0, 2*pi)) ascii_str = \ """\ 2*pi pi \n\ / / \n\ | | \n\ | | sin(theta) \n\ | | ---------- d(theta) d(phi)\n\ | | cos(phi) \n\ | | \n\ / / \n\ 0 0 \ """ ucode_str = \ """\ 2⋅π π \n\ ⌠ ⌠ \n\ ⎮ ⎮ sin(θ) \n\ ⎮ ⎮ ────── dθ dφ\n\ ⎮ ⎮ cos(φ) \n\ ⌡ ⌡ \n\ 0 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_matrix(): # Empty Matrix expr = Matrix() ascii_str = "[]" unicode_str = "[]" assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Matrix(2, 0, lambda i, j: 0) ascii_str = "[]" unicode_str = "[]" assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Matrix(0, 2, lambda i, j: 0) ascii_str = "[]" unicode_str = "[]" assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Matrix([[x**2 + 1, 1], [y, x + y]]) ascii_str_1 = \ """\ [ 2 ] [1 + x 1 ] [ ] [ y x + y]\ """ ascii_str_2 = \ """\ [ 2 ] [x + 1 1 ] [ ] [ y x + y]\ """ ucode_str_1 = \ """\ ⎡ 2 ⎤ ⎢1 + x 1 ⎥ ⎢ ⎥ ⎣ y x + y⎦\ """ ucode_str_2 = \ """\ ⎡ 2 ⎤ ⎢x + 1 1 ⎥ ⎢ ⎥ ⎣ y x + y⎦\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]]) ascii_str = \ """\ [x ] [- y theta] [y ] [ ] [ I*k*phi ] [0 e 1 ]\ """ ucode_str = \ """\ ⎡x ⎤ ⎢─ y θ⎥ ⎢y ⎥ ⎢ ⎥ ⎢ ⅈ⋅k⋅φ ⎥ ⎣0 ℯ 1⎦\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str unicode_str = \ """\ ⎡v̇_msc_00 0 0 ⎤ ⎢ ⎥ ⎢ 0 v̇_msc_01 0 ⎥ ⎢ ⎥ ⎣ 0 0 v̇_msc_02⎦\ """ expr = diag(*MatrixSymbol('vdot_msc',1,3)) assert upretty(expr) == unicode_str def test_pretty_ndim_arrays(): x, y, z, w = symbols("x y z w") for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray): # Basic: scalar array M = ArrayType(x) assert pretty(M) == "x" assert upretty(M) == "x" M = ArrayType([[1/x, y], [z, w]]) M1 = ArrayType([1/x, y, z]) M2 = tensorproduct(M1, M) M3 = tensorproduct(M, M) ascii_str = \ """\ [1 ]\n\ [- y]\n\ [x ]\n\ [ ]\n\ [z w]\ """ ucode_str = \ """\ ⎡1 ⎤\n\ ⎢─ y⎥\n\ ⎢x ⎥\n\ ⎢ ⎥\n\ ⎣z w⎦\ """ assert pretty(M) == ascii_str assert upretty(M) == ucode_str ascii_str = \ """\ [1 ]\n\ [- y z]\n\ [x ]\ """ ucode_str = \ """\ ⎡1 ⎤\n\ ⎢─ y z⎥\n\ ⎣x ⎦\ """ assert pretty(M1) == ascii_str assert upretty(M1) == ucode_str ascii_str = \ """\ [[1 y] ]\n\ [[-- -] [z ]]\n\ [[ 2 x] [ y 2 ] [- y*z]]\n\ [[x ] [ - y ] [x ]]\n\ [[ ] [ x ] [ ]]\n\ [[z w] [ ] [ 2 ]]\n\ [[- -] [y*z w*y] [z w*z]]\n\ [[x x] ]\ """ ucode_str = \ """\ ⎡⎡1 y⎤ ⎤\n\ ⎢⎢── ─⎥ ⎡z ⎤⎥\n\ ⎢⎢ 2 x⎥ ⎡ y 2 ⎤ ⎢─ y⋅z⎥⎥\n\ ⎢⎢x ⎥ ⎢ ─ y ⎥ ⎢x ⎥⎥\n\ ⎢⎢ ⎥ ⎢ x ⎥ ⎢ ⎥⎥\n\ ⎢⎢z w⎥ ⎢ ⎥ ⎢ 2 ⎥⎥\n\ ⎢⎢─ ─⎥ ⎣y⋅z w⋅y⎦ ⎣z w⋅z⎦⎥\n\ ⎣⎣x x⎦ ⎦\ """ assert pretty(M2) == ascii_str assert upretty(M2) == ucode_str ascii_str = \ """\ [ [1 y] ]\n\ [ [-- -] ]\n\ [ [ 2 x] [ y 2 ]]\n\ [ [x ] [ - y ]]\n\ [ [ ] [ x ]]\n\ [ [z w] [ ]]\n\ [ [- -] [y*z w*y]]\n\ [ [x x] ]\n\ [ ]\n\ [[z ] [ w ]]\n\ [[- y*z] [ - w*y]]\n\ [[x ] [ x ]]\n\ [[ ] [ ]]\n\ [[ 2 ] [ 2 ]]\n\ [[z w*z] [w*z w ]]\ """ ucode_str = \ """\ ⎡ ⎡1 y⎤ ⎤\n\ ⎢ ⎢── ─⎥ ⎥\n\ ⎢ ⎢ 2 x⎥ ⎡ y 2 ⎤⎥\n\ ⎢ ⎢x ⎥ ⎢ ─ y ⎥⎥\n\ ⎢ ⎢ ⎥ ⎢ x ⎥⎥\n\ ⎢ ⎢z w⎥ ⎢ ⎥⎥\n\ ⎢ ⎢─ ─⎥ ⎣y⋅z w⋅y⎦⎥\n\ ⎢ ⎣x x⎦ ⎥\n\ ⎢ ⎥\n\ ⎢⎡z ⎤ ⎡ w ⎤⎥\n\ ⎢⎢─ y⋅z⎥ ⎢ ─ w⋅y⎥⎥\n\ ⎢⎢x ⎥ ⎢ x ⎥⎥\n\ ⎢⎢ ⎥ ⎢ ⎥⎥\n\ ⎢⎢ 2 ⎥ ⎢ 2 ⎥⎥\n\ ⎣⎣z w⋅z⎦ ⎣w⋅z w ⎦⎦\ """ assert pretty(M3) == ascii_str assert upretty(M3) == ucode_str Mrow = ArrayType([[x, y, 1 / z]]) Mcolumn = ArrayType([[x], [y], [1 / z]]) Mcol2 = ArrayType([Mcolumn.tolist()]) ascii_str = \ """\ [[ 1]]\n\ [[x y -]]\n\ [[ z]]\ """ ucode_str = \ """\ ⎡⎡ 1⎤⎤\n\ ⎢⎢x y ─⎥⎥\n\ ⎣⎣ z⎦⎦\ """ assert pretty(Mrow) == ascii_str assert upretty(Mrow) == ucode_str ascii_str = \ """\ [x]\n\ [ ]\n\ [y]\n\ [ ]\n\ [1]\n\ [-]\n\ [z]\ """ ucode_str = \ """\ ⎡x⎤\n\ ⎢ ⎥\n\ ⎢y⎥\n\ ⎢ ⎥\n\ ⎢1⎥\n\ ⎢─⎥\n\ ⎣z⎦\ """ assert pretty(Mcolumn) == ascii_str assert upretty(Mcolumn) == ucode_str ascii_str = \ """\ [[x]]\n\ [[ ]]\n\ [[y]]\n\ [[ ]]\n\ [[1]]\n\ [[-]]\n\ [[z]]\ """ ucode_str = \ """\ ⎡⎡x⎤⎤\n\ ⎢⎢ ⎥⎥\n\ ⎢⎢y⎥⎥\n\ ⎢⎢ ⎥⎥\n\ ⎢⎢1⎥⎥\n\ ⎢⎢─⎥⎥\n\ ⎣⎣z⎦⎦\ """ assert pretty(Mcol2) == ascii_str assert upretty(Mcol2) == ucode_str def test_tensor_TensorProduct(): A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) assert upretty(TensorProduct(A, B)) == "A\u2297B" assert upretty(TensorProduct(A, B, A)) == "A\u2297B\u2297A" def test_diffgeom_print_WedgeProduct(): from sympy.diffgeom.rn import R2 from sympy.diffgeom import WedgeProduct wp = WedgeProduct(R2.dx, R2.dy) assert upretty(wp) == "ⅆ x∧ⅆ y" def test_Adjoint(): X = MatrixSymbol('X', 2, 2) Y = MatrixSymbol('Y', 2, 2) assert pretty(Adjoint(X)) == " +\nX " assert pretty(Adjoint(X + Y)) == " +\n(X + Y) " assert pretty(Adjoint(X) + Adjoint(Y)) == " + +\nX + Y " assert pretty(Adjoint(X*Y)) == " +\n(X*Y) " assert pretty(Adjoint(Y)*Adjoint(X)) == " + +\nY *X " assert pretty(Adjoint(X**2)) == " +\n/ 2\\ \n\\X / " assert pretty(Adjoint(X)**2) == " 2\n/ +\\ \n\\X / " assert pretty(Adjoint(Inverse(X))) == " +\n/ -1\\ \n\\X / " assert pretty(Inverse(Adjoint(X))) == " -1\n/ +\\ \n\\X / " assert pretty(Adjoint(Transpose(X))) == " +\n/ T\\ \n\\X / " assert pretty(Transpose(Adjoint(X))) == " T\n/ +\\ \n\\X / " assert upretty(Adjoint(X)) == " †\nX " assert upretty(Adjoint(X + Y)) == " †\n(X + Y) " assert upretty(Adjoint(X) + Adjoint(Y)) == " † †\nX + Y " assert upretty(Adjoint(X*Y)) == " †\n(X⋅Y) " assert upretty(Adjoint(Y)*Adjoint(X)) == " † †\nY ⋅X " assert upretty(Adjoint(X**2)) == \ " †\n⎛ 2⎞ \n⎝X ⎠ " assert upretty(Adjoint(X)**2) == \ " 2\n⎛ †⎞ \n⎝X ⎠ " assert upretty(Adjoint(Inverse(X))) == \ " †\n⎛ -1⎞ \n⎝X ⎠ " assert upretty(Inverse(Adjoint(X))) == \ " -1\n⎛ †⎞ \n⎝X ⎠ " assert upretty(Adjoint(Transpose(X))) == \ " †\n⎛ T⎞ \n⎝X ⎠ " assert upretty(Transpose(Adjoint(X))) == \ " T\n⎛ †⎞ \n⎝X ⎠ " def test_pretty_Trace_issue_9044(): X = Matrix([[1, 2], [3, 4]]) Y = Matrix([[2, 4], [6, 8]]) ascii_str_1 = \ """\ /[1 2]\\ tr|[ ]| \\[3 4]/\ """ ucode_str_1 = \ """\ ⎛⎡1 2⎤⎞ tr⎜⎢ ⎥⎟ ⎝⎣3 4⎦⎠\ """ ascii_str_2 = \ """\ /[1 2]\\ /[2 4]\\ tr|[ ]| + tr|[ ]| \\[3 4]/ \\[6 8]/\ """ ucode_str_2 = \ """\ ⎛⎡1 2⎤⎞ ⎛⎡2 4⎤⎞ tr⎜⎢ ⎥⎟ + tr⎜⎢ ⎥⎟ ⎝⎣3 4⎦⎠ ⎝⎣6 8⎦⎠\ """ assert pretty(Trace(X)) == ascii_str_1 assert upretty(Trace(X)) == ucode_str_1 assert pretty(Trace(X) + Trace(Y)) == ascii_str_2 assert upretty(Trace(X) + Trace(Y)) == ucode_str_2 def test_MatrixSlice(): n = Symbol('n', integer=True) x, y, z, w, t, = symbols('x y z w t') X = MatrixSymbol('X', n, n) Y = MatrixSymbol('Y', 10, 10) Z = MatrixSymbol('Z', 10, 10) expr = MatrixSlice(X, (None, None, None), (None, None, None)) assert pretty(expr) == upretty(expr) == 'X[:, :]' expr = X[x:x + 1, y:y + 1] assert pretty(expr) == upretty(expr) == 'X[x:x + 1, y:y + 1]' expr = X[x:x + 1:2, y:y + 1:2] assert pretty(expr) == upretty(expr) == 'X[x:x + 1:2, y:y + 1:2]' expr = X[:x, y:] assert pretty(expr) == upretty(expr) == 'X[:x, y:]' expr = X[:x, y:] assert pretty(expr) == upretty(expr) == 'X[:x, y:]' expr = X[x:, :y] assert pretty(expr) == upretty(expr) == 'X[x:, :y]' expr = X[x:y, z:w] assert pretty(expr) == upretty(expr) == 'X[x:y, z:w]' expr = X[x:y:t, w:t:x] assert pretty(expr) == upretty(expr) == 'X[x:y:t, w:t:x]' expr = X[x::y, t::w] assert pretty(expr) == upretty(expr) == 'X[x::y, t::w]' expr = X[:x:y, :t:w] assert pretty(expr) == upretty(expr) == 'X[:x:y, :t:w]' expr = X[::x, ::y] assert pretty(expr) == upretty(expr) == 'X[::x, ::y]' expr = MatrixSlice(X, (0, None, None), (0, None, None)) assert pretty(expr) == upretty(expr) == 'X[:, :]' expr = MatrixSlice(X, (None, n, None), (None, n, None)) assert pretty(expr) == upretty(expr) == 'X[:, :]' expr = MatrixSlice(X, (0, n, None), (0, n, None)) assert pretty(expr) == upretty(expr) == 'X[:, :]' expr = MatrixSlice(X, (0, n, 2), (0, n, 2)) assert pretty(expr) == upretty(expr) == 'X[::2, ::2]' expr = X[1:2:3, 4:5:6] assert pretty(expr) == upretty(expr) == 'X[1:2:3, 4:5:6]' expr = X[1:3:5, 4:6:8] assert pretty(expr) == upretty(expr) == 'X[1:3:5, 4:6:8]' expr = X[1:10:2] assert pretty(expr) == upretty(expr) == 'X[1:10:2, :]' expr = Y[:5, 1:9:2] assert pretty(expr) == upretty(expr) == 'Y[:5, 1:9:2]' expr = Y[:5, 1:10:2] assert pretty(expr) == upretty(expr) == 'Y[:5, 1::2]' expr = Y[5, :5:2] assert pretty(expr) == upretty(expr) == 'Y[5:6, :5:2]' expr = X[0:1, 0:1] assert pretty(expr) == upretty(expr) == 'X[:1, :1]' expr = X[0:1:2, 0:1:2] assert pretty(expr) == upretty(expr) == 'X[:1:2, :1:2]' expr = (Y + Z)[2:, 2:] assert pretty(expr) == upretty(expr) == '(Y + Z)[2:, 2:]' def test_MatrixExpressions(): n = Symbol('n', integer=True) X = MatrixSymbol('X', n, n) assert pretty(X) == upretty(X) == "X" # Apply function elementwise (`ElementwiseApplyFunc`): expr = (X.T*X).applyfunc(sin) ascii_str = """\ / T \\\n\ (d -> sin(d)).\\X *X/\ """ ucode_str = """\ ⎛ T ⎞\n\ (d ↦ sin(d))˳⎝X ⋅X⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str lamda = Lambda(x, 1/x) expr = (n*X).applyfunc(lamda) ascii_str = """\ / 1\\ \n\ |x -> -|.(n*X)\n\ \\ x/ \ """ ucode_str = """\ ⎛ 1⎞ \n\ ⎜x ↦ ─⎟˳(n⋅X)\n\ ⎝ x⎠ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_dotproduct(): from sympy.matrices import Matrix, MatrixSymbol from sympy.matrices.expressions.dotproduct import DotProduct n = symbols("n", integer=True) A = MatrixSymbol('A', n, 1) B = MatrixSymbol('B', n, 1) C = Matrix(1, 3, [1, 2, 3]) D = Matrix(1, 3, [1, 3, 4]) assert pretty(DotProduct(A, B)) == "A*B" assert pretty(DotProduct(C, D)) == "[1 2 3]*[1 3 4]" assert upretty(DotProduct(A, B)) == "A⋅B" assert upretty(DotProduct(C, D)) == "[1 2 3]⋅[1 3 4]" def test_pretty_piecewise(): expr = Piecewise((x, x < 1), (x**2, True)) ascii_str = \ """\ /x for x < 1\n\ | \n\ < 2 \n\ |x otherwise\n\ \\ \ """ ucode_str = \ """\ ⎧x for x < 1\n\ ⎪ \n\ ⎨ 2 \n\ ⎪x otherwise\n\ ⎩ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -Piecewise((x, x < 1), (x**2, True)) ascii_str = \ """\ //x for x < 1\\\n\ || |\n\ -|< 2 |\n\ ||x otherwise|\n\ \\\\ /\ """ ucode_str = \ """\ ⎛⎧x for x < 1⎞\n\ ⎜⎪ ⎟\n\ -⎜⎨ 2 ⎟\n\ ⎜⎪x otherwise⎟\n\ ⎝⎩ ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = x + Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2), (y**2, x > 2), (1, True)) + 1 ascii_str = \ """\ //x \\ \n\ ||- for x < 2| \n\ ||y | \n\ //x for x > 0\\ || | \n\ x + |< | + |< 2 | + 1\n\ \\\\y otherwise/ ||y for x > 2| \n\ || | \n\ ||1 otherwise| \n\ \\\\ / \ """ ucode_str = \ """\ ⎛⎧x ⎞ \n\ ⎜⎪─ for x < 2⎟ \n\ ⎜⎪y ⎟ \n\ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\ x + ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\ ⎜⎪ ⎟ \n\ ⎜⎪1 otherwise⎟ \n\ ⎝⎩ ⎠ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = x - Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2), (y**2, x > 2), (1, True)) + 1 ascii_str = \ """\ //x \\ \n\ ||- for x < 2| \n\ ||y | \n\ //x for x > 0\\ || | \n\ x - |< | + |< 2 | + 1\n\ \\\\y otherwise/ ||y for x > 2| \n\ || | \n\ ||1 otherwise| \n\ \\\\ / \ """ ucode_str = \ """\ ⎛⎧x ⎞ \n\ ⎜⎪─ for x < 2⎟ \n\ ⎜⎪y ⎟ \n\ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\ x - ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\ ⎜⎪ ⎟ \n\ ⎜⎪1 otherwise⎟ \n\ ⎝⎩ ⎠ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = x*Piecewise((x, x > 0), (y, True)) ascii_str = \ """\ //x for x > 0\\\n\ x*|< |\n\ \\\\y otherwise/\ """ ucode_str = \ """\ ⎛⎧x for x > 0⎞\n\ x⋅⎜⎨ ⎟\n\ ⎝⎩y otherwise⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x > 2), (1, True)) ascii_str = \ """\ //x \\\n\ ||- for x < 2|\n\ ||y |\n\ //x for x > 0\\ || |\n\ |< |*|< 2 |\n\ \\\\y otherwise/ ||y for x > 2|\n\ || |\n\ ||1 otherwise|\n\ \\\\ /\ """ ucode_str = \ """\ ⎛⎧x ⎞\n\ ⎜⎪─ for x < 2⎟\n\ ⎜⎪y ⎟\n\ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\ ⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\ ⎜⎪ ⎟\n\ ⎜⎪1 otherwise⎟\n\ ⎝⎩ ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x > 2), (1, True)) ascii_str = \ """\ //x \\\n\ ||- for x < 2|\n\ ||y |\n\ //x for x > 0\\ || |\n\ -|< |*|< 2 |\n\ \\\\y otherwise/ ||y for x > 2|\n\ || |\n\ ||1 otherwise|\n\ \\\\ /\ """ ucode_str = \ """\ ⎛⎧x ⎞\n\ ⎜⎪─ for x < 2⎟\n\ ⎜⎪y ⎟\n\ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\ -⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\ ⎜⎪ ⎟\n\ ⎜⎪1 otherwise⎟\n\ ⎝⎩ ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Piecewise((0, Abs(1/y) < 1), (1, Abs(y) < 1), (y*meijerg(((2, 1), ()), ((), (1, 0)), 1/y), True)) ascii_str = \ """\ / 1 \n\ | 0 for --- < 1\n\ | |y| \n\ | \n\ < 1 for |y| < 1\n\ | \n\ | __0, 2 /2, 1 | 1\\ \n\ |y*/__ | | -| otherwise \n\ \\ \\_|2, 2 \\ 1, 0 | y/ \ """ ucode_str = \ """\ ⎧ 1 \n\ ⎪ 0 for ─── < 1\n\ ⎪ │y│ \n\ ⎪ \n\ ⎨ 1 for │y│ < 1\n\ ⎪ \n\ ⎪ ╭─╮0, 2 ⎛2, 1 │ 1⎞ \n\ ⎪y⋅│╶┐ ⎜ │ ─⎟ otherwise \n\ ⎩ ╰─╯2, 2 ⎝ 1, 0 │ y⎠ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # XXX: We have to use evaluate=False here because Piecewise._eval_power # denests the power. expr = Pow(Piecewise((x, x > 0), (y, True)), 2, evaluate=False) ascii_str = \ """\ 2\n\ //x for x > 0\\ \n\ |< | \n\ \\\\y otherwise/ \ """ ucode_str = \ """\ 2\n\ ⎛⎧x for x > 0⎞ \n\ ⎜⎨ ⎟ \n\ ⎝⎩y otherwise⎠ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_ITE(): expr = ITE(x, y, z) assert pretty(expr) == ( '/y for x \n' '< \n' '\\z otherwise' ) assert upretty(expr) == """\ ⎧y for x \n\ ⎨ \n\ ⎩z otherwise\ """ def test_pretty_seq(): expr = () ascii_str = \ """\ ()\ """ ucode_str = \ """\ ()\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = [] ascii_str = \ """\ []\ """ ucode_str = \ """\ []\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = {} expr_2 = {} ascii_str = \ """\ {}\ """ ucode_str = \ """\ {}\ """ assert pretty(expr) == ascii_str assert pretty(expr_2) == ascii_str assert upretty(expr) == ucode_str assert upretty(expr_2) == ucode_str expr = (1/x,) ascii_str = \ """\ 1 \n\ (-,)\n\ x \ """ ucode_str = \ """\ ⎛1 ⎞\n\ ⎜─,⎟\n\ ⎝x ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = [x**2, 1/x, x, y, sin(th)**2/cos(ph)**2] ascii_str = \ """\ 2 \n\ 2 1 sin (theta) \n\ [x , -, x, y, -----------]\n\ x 2 \n\ cos (phi) \ """ ucode_str = \ """\ ⎡ 2 ⎤\n\ ⎢ 2 1 sin (θ)⎥\n\ ⎢x , ─, x, y, ───────⎥\n\ ⎢ x 2 ⎥\n\ ⎣ cos (φ)⎦\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x**2, 1/x, x, y, sin(th)**2/cos(ph)**2) ascii_str = \ """\ 2 \n\ 2 1 sin (theta) \n\ (x , -, x, y, -----------)\n\ x 2 \n\ cos (phi) \ """ ucode_str = \ """\ ⎛ 2 ⎞\n\ ⎜ 2 1 sin (θ)⎟\n\ ⎜x , ─, x, y, ───────⎟\n\ ⎜ x 2 ⎟\n\ ⎝ cos (φ)⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Tuple(x**2, 1/x, x, y, sin(th)**2/cos(ph)**2) ascii_str = \ """\ 2 \n\ 2 1 sin (theta) \n\ (x , -, x, y, -----------)\n\ x 2 \n\ cos (phi) \ """ ucode_str = \ """\ ⎛ 2 ⎞\n\ ⎜ 2 1 sin (θ)⎟\n\ ⎜x , ─, x, y, ───────⎟\n\ ⎜ x 2 ⎟\n\ ⎝ cos (φ)⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = {x: sin(x)} expr_2 = Dict({x: sin(x)}) ascii_str = \ """\ {x: sin(x)}\ """ ucode_str = \ """\ {x: sin(x)}\ """ assert pretty(expr) == ascii_str assert pretty(expr_2) == ascii_str assert upretty(expr) == ucode_str assert upretty(expr_2) == ucode_str expr = {1/x: 1/y, x: sin(x)**2} expr_2 = Dict({1/x: 1/y, x: sin(x)**2}) ascii_str = \ """\ 1 1 2 \n\ {-: -, x: sin (x)}\n\ x y \ """ ucode_str = \ """\ ⎧1 1 2 ⎫\n\ ⎨─: ─, x: sin (x)⎬\n\ ⎩x y ⎭\ """ assert pretty(expr) == ascii_str assert pretty(expr_2) == ascii_str assert upretty(expr) == ucode_str assert upretty(expr_2) == ucode_str # There used to be a bug with pretty-printing sequences of even height. expr = [x**2] ascii_str = \ """\ 2 \n\ [x ]\ """ ucode_str = \ """\ ⎡ 2⎤\n\ ⎣x ⎦\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x**2,) ascii_str = \ """\ 2 \n\ (x ,)\ """ ucode_str = \ """\ ⎛ 2 ⎞\n\ ⎝x ,⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Tuple(x**2) ascii_str = \ """\ 2 \n\ (x ,)\ """ ucode_str = \ """\ ⎛ 2 ⎞\n\ ⎝x ,⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = {x**2: 1} expr_2 = Dict({x**2: 1}) ascii_str = \ """\ 2 \n\ {x : 1}\ """ ucode_str = \ """\ ⎧ 2 ⎫\n\ ⎨x : 1⎬\n\ ⎩ ⎭\ """ assert pretty(expr) == ascii_str assert pretty(expr_2) == ascii_str assert upretty(expr) == ucode_str assert upretty(expr_2) == ucode_str def test_any_object_in_sequence(): # Cf. issue 5306 b1 = Basic() b2 = Basic(Basic()) expr = [b2, b1] assert pretty(expr) == "[Basic(Basic()), Basic()]" assert upretty(expr) == "[Basic(Basic()), Basic()]" expr = {b2, b1} assert pretty(expr) == "{Basic(), Basic(Basic())}" assert upretty(expr) == "{Basic(), Basic(Basic())}" expr = {b2: b1, b1: b2} expr2 = Dict({b2: b1, b1: b2}) assert pretty(expr) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" assert pretty( expr2) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" assert upretty( expr) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" assert upretty( expr2) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" def test_print_builtin_set(): assert pretty(set()) == 'set()' assert upretty(set()) == 'set()' assert pretty(frozenset()) == 'frozenset()' assert upretty(frozenset()) == 'frozenset()' s1 = {1/x, x} s2 = frozenset(s1) assert pretty(s1) == \ """\ 1 \n\ {-, x} x \ """ assert upretty(s1) == \ """\ ⎧1 ⎫ ⎨─, x⎬ ⎩x ⎭\ """ assert pretty(s2) == \ """\ 1 \n\ frozenset({-, x}) x \ """ assert upretty(s2) == \ """\ ⎛⎧1 ⎫⎞ frozenset⎜⎨─, x⎬⎟ ⎝⎩x ⎭⎠\ """ def test_pretty_sets(): s = FiniteSet assert pretty(s(*[x*y, x**2])) == \ """\ 2 \n\ {x , x*y}\ """ assert pretty(s(*range(1, 6))) == "{1, 2, 3, 4, 5}" assert pretty(s(*range(1, 13))) == "{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}" assert pretty({x*y, x**2}) == \ """\ 2 \n\ {x , x*y}\ """ assert pretty(set(range(1, 6))) == "{1, 2, 3, 4, 5}" assert pretty(set(range(1, 13))) == \ "{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}" assert pretty(frozenset([x*y, x**2])) == \ """\ 2 \n\ frozenset({x , x*y})\ """ assert pretty(frozenset(range(1, 6))) == "frozenset({1, 2, 3, 4, 5})" assert pretty(frozenset(range(1, 13))) == \ "frozenset({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12})" assert pretty(Range(0, 3, 1)) == '{0, 1, 2}' ascii_str = '{0, 1, ..., 29}' ucode_str = '{0, 1, …, 29}' assert pretty(Range(0, 30, 1)) == ascii_str assert upretty(Range(0, 30, 1)) == ucode_str ascii_str = '{30, 29, ..., 2}' ucode_str = '{30, 29, …, 2}' assert pretty(Range(30, 1, -1)) == ascii_str assert upretty(Range(30, 1, -1)) == ucode_str ascii_str = '{0, 2, ...}' ucode_str = '{0, 2, …}' assert pretty(Range(0, oo, 2)) == ascii_str assert upretty(Range(0, oo, 2)) == ucode_str ascii_str = '{..., 2, 0}' ucode_str = '{…, 2, 0}' assert pretty(Range(oo, -2, -2)) == ascii_str assert upretty(Range(oo, -2, -2)) == ucode_str ascii_str = '{-2, -3, ...}' ucode_str = '{-2, -3, …}' assert pretty(Range(-2, -oo, -1)) == ascii_str assert upretty(Range(-2, -oo, -1)) == ucode_str def test_pretty_SetExpr(): iv = Interval(1, 3) se = SetExpr(iv) ascii_str = "SetExpr([1, 3])" ucode_str = "SetExpr([1, 3])" assert pretty(se) == ascii_str assert upretty(se) == ucode_str def test_pretty_ImageSet(): imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4}) ascii_str = '{x + y | x in {1, 2, 3} , y in {3, 4}}' ucode_str = '{x + y | x ∊ {1, 2, 3} , y ∊ {3, 4}}' assert pretty(imgset) == ascii_str assert upretty(imgset) == ucode_str imgset = ImageSet(Lambda(((x, y),), x + y), ProductSet({1, 2, 3}, {3, 4})) ascii_str = '{x + y | (x, y) in {1, 2, 3} x {3, 4}}' ucode_str = '{x + y | (x, y) ∊ {1, 2, 3} × {3, 4}}' assert pretty(imgset) == ascii_str assert upretty(imgset) == ucode_str imgset = ImageSet(Lambda(x, x**2), S.Naturals) ascii_str = \ ' 2 \n'\ '{x | x in Naturals}' ucode_str = '''\ ⎧ 2 ⎫\n\ ⎨x | x ∊ ℕ⎬\n\ ⎩ ⎭''' assert pretty(imgset) == ascii_str assert upretty(imgset) == ucode_str def test_pretty_ConditionSet(): from sympy import ConditionSet ascii_str = '{x | x in (-oo, oo) and sin(x) = 0}' ucode_str = '{x | x ∊ ℝ ∧ (sin(x) = 0)}' assert pretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ascii_str assert upretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ucode_str assert pretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == '{1}' assert upretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == '{1}' assert pretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == "EmptySet" assert upretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == "∅" assert pretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == '{2}' assert upretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == '{2}' def test_pretty_ComplexRegion(): from sympy import ComplexRegion ucode_str = '{x + y⋅ⅈ | x, y ∊ [3, 5] × [4, 6]}' assert upretty(ComplexRegion(Interval(3, 5)*Interval(4, 6))) == ucode_str ucode_str = '{r⋅(ⅈ⋅sin(θ) + cos(θ)) | r, θ ∊ [0, 1] × [0, 2⋅π)}' assert upretty(ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)) == ucode_str def test_pretty_Union_issue_10414(): a, b = Interval(2, 3), Interval(4, 7) ucode_str = '[2, 3] ∪ [4, 7]' ascii_str = '[2, 3] U [4, 7]' assert upretty(Union(a, b)) == ucode_str assert pretty(Union(a, b)) == ascii_str def test_pretty_Intersection_issue_10414(): x, y, z, w = symbols('x, y, z, w') a, b = Interval(x, y), Interval(z, w) ucode_str = '[x, y] ∩ [z, w]' ascii_str = '[x, y] n [z, w]' assert upretty(Intersection(a, b)) == ucode_str assert pretty(Intersection(a, b)) == ascii_str def test_ProductSet_exponent(): ucode_str = ' 1\n[0, 1] ' assert upretty(Interval(0, 1)**1) == ucode_str ucode_str = ' 2\n[0, 1] ' assert upretty(Interval(0, 1)**2) == ucode_str def test_ProductSet_parenthesis(): ucode_str = '([4, 7] × {1, 2}) ∪ ([2, 3] × [4, 7])' a, b = Interval(2, 3), Interval(4, 7) assert upretty(Union(a*b, b*FiniteSet(1, 2))) == ucode_str def test_ProductSet_prod_char_issue_10413(): ascii_str = '[2, 3] x [4, 7]' ucode_str = '[2, 3] × [4, 7]' a, b = Interval(2, 3), Interval(4, 7) assert pretty(a*b) == ascii_str assert upretty(a*b) == ucode_str def test_pretty_sequences(): s1 = SeqFormula(a**2, (0, oo)) s2 = SeqPer((1, 2)) ascii_str = '[0, 1, 4, 9, ...]' ucode_str = '[0, 1, 4, 9, …]' assert pretty(s1) == ascii_str assert upretty(s1) == ucode_str ascii_str = '[1, 2, 1, 2, ...]' ucode_str = '[1, 2, 1, 2, …]' assert pretty(s2) == ascii_str assert upretty(s2) == ucode_str s3 = SeqFormula(a**2, (0, 2)) s4 = SeqPer((1, 2), (0, 2)) ascii_str = '[0, 1, 4]' ucode_str = '[0, 1, 4]' assert pretty(s3) == ascii_str assert upretty(s3) == ucode_str ascii_str = '[1, 2, 1]' ucode_str = '[1, 2, 1]' assert pretty(s4) == ascii_str assert upretty(s4) == ucode_str s5 = SeqFormula(a**2, (-oo, 0)) s6 = SeqPer((1, 2), (-oo, 0)) ascii_str = '[..., 9, 4, 1, 0]' ucode_str = '[…, 9, 4, 1, 0]' assert pretty(s5) == ascii_str assert upretty(s5) == ucode_str ascii_str = '[..., 2, 1, 2, 1]' ucode_str = '[…, 2, 1, 2, 1]' assert pretty(s6) == ascii_str assert upretty(s6) == ucode_str ascii_str = '[1, 3, 5, 11, ...]' ucode_str = '[1, 3, 5, 11, …]' assert pretty(SeqAdd(s1, s2)) == ascii_str assert upretty(SeqAdd(s1, s2)) == ucode_str ascii_str = '[1, 3, 5]' ucode_str = '[1, 3, 5]' assert pretty(SeqAdd(s3, s4)) == ascii_str assert upretty(SeqAdd(s3, s4)) == ucode_str ascii_str = '[..., 11, 5, 3, 1]' ucode_str = '[…, 11, 5, 3, 1]' assert pretty(SeqAdd(s5, s6)) == ascii_str assert upretty(SeqAdd(s5, s6)) == ucode_str ascii_str = '[0, 2, 4, 18, ...]' ucode_str = '[0, 2, 4, 18, …]' assert pretty(SeqMul(s1, s2)) == ascii_str assert upretty(SeqMul(s1, s2)) == ucode_str ascii_str = '[0, 2, 4]' ucode_str = '[0, 2, 4]' assert pretty(SeqMul(s3, s4)) == ascii_str assert upretty(SeqMul(s3, s4)) == ucode_str ascii_str = '[..., 18, 4, 2, 0]' ucode_str = '[…, 18, 4, 2, 0]' assert pretty(SeqMul(s5, s6)) == ascii_str assert upretty(SeqMul(s5, s6)) == ucode_str # Sequences with symbolic limits, issue 12629 s7 = SeqFormula(a**2, (a, 0, x)) raises(NotImplementedError, lambda: pretty(s7)) raises(NotImplementedError, lambda: upretty(s7)) b = Symbol('b') s8 = SeqFormula(b*a**2, (a, 0, 2)) ascii_str = '[0, b, 4*b]' ucode_str = '[0, b, 4⋅b]' assert pretty(s8) == ascii_str assert upretty(s8) == ucode_str def test_pretty_FourierSeries(): f = fourier_series(x, (x, -pi, pi)) ascii_str = \ """\ 2*sin(3*x) \n\ 2*sin(x) - sin(2*x) + ---------- + ...\n\ 3 \ """ ucode_str = \ """\ 2⋅sin(3⋅x) \n\ 2⋅sin(x) - sin(2⋅x) + ────────── + …\n\ 3 \ """ assert pretty(f) == ascii_str assert upretty(f) == ucode_str def test_pretty_FormalPowerSeries(): f = fps(log(1 + x)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ -k k \n\ \\ -(-1) *x \n\ / -----------\n\ / k \n\ /___, \n\ k = 1 \ """ ucode_str = \ """\ ∞ \n\ ____ \n\ ╲ \n\ ╲ -k k \n\ ╲ -(-1) ⋅x \n\ ╱ ───────────\n\ ╱ k \n\ ╱ \n\ ‾‾‾‾ \n\ k = 1 \ """ assert pretty(f) == ascii_str assert upretty(f) == ucode_str def test_pretty_limits(): expr = Limit(x, x, oo) ascii_str = \ """\ lim x\n\ x->oo \ """ ucode_str = \ """\ lim x\n\ x─→∞ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(x**2, x, 0) ascii_str = \ """\ 2\n\ lim x \n\ x->0+ \ """ ucode_str = \ """\ 2\n\ lim x \n\ x─→0⁺ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(1/x, x, 0) ascii_str = \ """\ 1\n\ lim -\n\ x->0+x\ """ ucode_str = \ """\ 1\n\ lim ─\n\ x─→0⁺x\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(sin(x)/x, x, 0) ascii_str = \ """\ /sin(x)\\\n\ lim |------|\n\ x->0+\\ x /\ """ ucode_str = \ """\ ⎛sin(x)⎞\n\ lim ⎜──────⎟\n\ x─→0⁺⎝ x ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(sin(x)/x, x, 0, "-") ascii_str = \ """\ /sin(x)\\\n\ lim |------|\n\ x->0-\\ x /\ """ ucode_str = \ """\ ⎛sin(x)⎞\n\ lim ⎜──────⎟\n\ x─→0⁻⎝ x ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(x + sin(x), x, 0) ascii_str = \ """\ lim (x + sin(x))\n\ x->0+ \ """ ucode_str = \ """\ lim (x + sin(x))\n\ x─→0⁺ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(x, x, 0)**2 ascii_str = \ """\ 2\n\ / lim x\\ \n\ \\x->0+ / \ """ ucode_str = \ """\ 2\n\ ⎛ lim x⎞ \n\ ⎝x─→0⁺ ⎠ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(x*Limit(y/2,y,0), x, 0) ascii_str = \ """\ / /y\\\\\n\ lim |x* lim |-||\n\ x->0+\\ y->0+\\2//\ """ ucode_str = \ """\ ⎛ ⎛y⎞⎞\n\ lim ⎜x⋅ lim ⎜─⎟⎟\n\ x─→0⁺⎝ y─→0⁺⎝2⎠⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2*Limit(x*Limit(y/2,y,0), x, 0) ascii_str = \ """\ / /y\\\\\n\ 2* lim |x* lim |-||\n\ x->0+\\ y->0+\\2//\ """ ucode_str = \ """\ ⎛ ⎛y⎞⎞\n\ 2⋅ lim ⎜x⋅ lim ⎜─⎟⎟\n\ x─→0⁺⎝ y─→0⁺⎝2⎠⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(sin(x), x, 0, dir='+-') ascii_str = \ """\ lim sin(x)\n\ x->0 \ """ ucode_str = \ """\ lim sin(x)\n\ x─→0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_ComplexRootOf(): expr = rootof(x**5 + 11*x - 2, 0) ascii_str = \ """\ / 5 \\\n\ CRootOf\\x + 11*x - 2, 0/\ """ ucode_str = \ """\ ⎛ 5 ⎞\n\ CRootOf⎝x + 11⋅x - 2, 0⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_RootSum(): expr = RootSum(x**5 + 11*x - 2, auto=False) ascii_str = \ """\ / 5 \\\n\ RootSum\\x + 11*x - 2/\ """ ucode_str = \ """\ ⎛ 5 ⎞\n\ RootSum⎝x + 11⋅x - 2⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = RootSum(x**5 + 11*x - 2, Lambda(z, exp(z))) ascii_str = \ """\ / 5 z\\\n\ RootSum\\x + 11*x - 2, z -> e /\ """ ucode_str = \ """\ ⎛ 5 z⎞\n\ RootSum⎝x + 11⋅x - 2, z ↦ ℯ ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_GroebnerBasis(): expr = groebner([], x, y) ascii_str = \ """\ GroebnerBasis([], x, y, domain=ZZ, order=lex)\ """ ucode_str = \ """\ GroebnerBasis([], x, y, domain=ℤ, order=lex)\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1] expr = groebner(F, x, y, order='grlex') ascii_str = \ """\ /[ 2 2 ] \\\n\ GroebnerBasis\\[x - x - 3*y + 1, y - 2*x + y - 1], x, y, domain=ZZ, order=grlex/\ """ ucode_str = \ """\ ⎛⎡ 2 2 ⎤ ⎞\n\ GroebnerBasis⎝⎣x - x - 3⋅y + 1, y - 2⋅x + y - 1⎦, x, y, domain=ℤ, order=grlex⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = expr.fglm('lex') ascii_str = \ """\ /[ 2 4 3 2 ] \\\n\ GroebnerBasis\\[2*x - y - y + 1, y + 2*y - 3*y - 16*y + 7], x, y, domain=ZZ, order=lex/\ """ ucode_str = \ """\ ⎛⎡ 2 4 3 2 ⎤ ⎞\n\ GroebnerBasis⎝⎣2⋅x - y - y + 1, y + 2⋅y - 3⋅y - 16⋅y + 7⎦, x, y, domain=ℤ, order=lex⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_UniversalSet(): assert pretty(S.UniversalSet) == "UniversalSet" assert upretty(S.UniversalSet) == '𝕌' def test_pretty_Boolean(): expr = Not(x, evaluate=False) assert pretty(expr) == "Not(x)" assert upretty(expr) == "¬x" expr = And(x, y) assert pretty(expr) == "And(x, y)" assert upretty(expr) == "x ∧ y" expr = Or(x, y) assert pretty(expr) == "Or(x, y)" assert upretty(expr) == "x ∨ y" syms = symbols('a:f') expr = And(*syms) assert pretty(expr) == "And(a, b, c, d, e, f)" assert upretty(expr) == "a ∧ b ∧ c ∧ d ∧ e ∧ f" expr = Or(*syms) assert pretty(expr) == "Or(a, b, c, d, e, f)" assert upretty(expr) == "a ∨ b ∨ c ∨ d ∨ e ∨ f" expr = Xor(x, y, evaluate=False) assert pretty(expr) == "Xor(x, y)" assert upretty(expr) == "x ⊻ y" expr = Nand(x, y, evaluate=False) assert pretty(expr) == "Nand(x, y)" assert upretty(expr) == "x ⊼ y" expr = Nor(x, y, evaluate=False) assert pretty(expr) == "Nor(x, y)" assert upretty(expr) == "x ⊽ y" expr = Implies(x, y, evaluate=False) assert pretty(expr) == "Implies(x, y)" assert upretty(expr) == "x → y" # don't sort args expr = Implies(y, x, evaluate=False) assert pretty(expr) == "Implies(y, x)" assert upretty(expr) == "y → x" expr = Equivalent(x, y, evaluate=False) assert pretty(expr) == "Equivalent(x, y)" assert upretty(expr) == "x ⇔ y" expr = Equivalent(y, x, evaluate=False) assert pretty(expr) == "Equivalent(x, y)" assert upretty(expr) == "x ⇔ y" def test_pretty_Domain(): expr = FF(23) assert pretty(expr) == "GF(23)" assert upretty(expr) == "ℤ₂₃" expr = ZZ assert pretty(expr) == "ZZ" assert upretty(expr) == "ℤ" expr = QQ assert pretty(expr) == "QQ" assert upretty(expr) == "ℚ" expr = RR assert pretty(expr) == "RR" assert upretty(expr) == "ℝ" expr = QQ[x] assert pretty(expr) == "QQ[x]" assert upretty(expr) == "ℚ[x]" expr = QQ[x, y] assert pretty(expr) == "QQ[x, y]" assert upretty(expr) == "ℚ[x, y]" expr = ZZ.frac_field(x) assert pretty(expr) == "ZZ(x)" assert upretty(expr) == "ℤ(x)" expr = ZZ.frac_field(x, y) assert pretty(expr) == "ZZ(x, y)" assert upretty(expr) == "ℤ(x, y)" expr = QQ.poly_ring(x, y, order=grlex) assert pretty(expr) == "QQ[x, y, order=grlex]" assert upretty(expr) == "ℚ[x, y, order=grlex]" expr = QQ.poly_ring(x, y, order=ilex) assert pretty(expr) == "QQ[x, y, order=ilex]" assert upretty(expr) == "ℚ[x, y, order=ilex]" def test_pretty_prec(): assert xpretty(S("0.3"), full_prec=True, wrap_line=False) == "0.300000000000000" assert xpretty(S("0.3"), full_prec="auto", wrap_line=False) == "0.300000000000000" assert xpretty(S("0.3"), full_prec=False, wrap_line=False) == "0.3" assert xpretty(S("0.3")*x, full_prec=True, use_unicode=False, wrap_line=False) in [ "0.300000000000000*x", "x*0.300000000000000" ] assert xpretty(S("0.3")*x, full_prec="auto", use_unicode=False, wrap_line=False) in [ "0.3*x", "x*0.3" ] assert xpretty(S("0.3")*x, full_prec=False, use_unicode=False, wrap_line=False) in [ "0.3*x", "x*0.3" ] def test_pprint(): import sys from io import StringIO fd = StringIO() sso = sys.stdout sys.stdout = fd try: pprint(pi, use_unicode=False, wrap_line=False) finally: sys.stdout = sso assert fd.getvalue() == 'pi\n' def test_pretty_class(): """Test that the printer dispatcher correctly handles classes.""" class C: pass # C has no .__class__ and this was causing problems class D: pass assert pretty( C ) == str( C ) assert pretty( D ) == str( D ) def test_pretty_no_wrap_line(): huge_expr = 0 for i in range(20): huge_expr += i*sin(i + x) assert xpretty(huge_expr ).find('\n') != -1 assert xpretty(huge_expr, wrap_line=False).find('\n') == -1 def test_settings(): raises(TypeError, lambda: pretty(S(4), method="garbage")) def test_pretty_sum(): from sympy.abc import x, a, b, k, m, n expr = Sum(k**k, (k, 0, n)) ascii_str = \ """\ n \n\ ___ \n\ \\ ` \n\ \\ k\n\ / k \n\ /__, \n\ k = 0 \ """ ucode_str = \ """\ n \n\ ___ \n\ ╲ \n\ ╲ k\n\ ╱ k \n\ ╱ \n\ ‾‾‾ \n\ k = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**k, (k, oo, n)) ascii_str = \ """\ n \n\ ___ \n\ \\ ` \n\ \\ k\n\ / k \n\ /__, \n\ k = oo \ """ ucode_str = \ """\ n \n\ ___ \n\ ╲ \n\ ╲ k\n\ ╱ k \n\ ╱ \n\ ‾‾‾ \n\ k = ∞ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**(Integral(x**n, (x, -oo, oo))), (k, 0, n**n)) ascii_str = \ """\ n \n\ n \n\ ______ \n\ \\ ` \n\ \\ oo \n\ \\ / \n\ \\ | \n\ \\ | n \n\ ) | x dx\n\ / | \n\ / / \n\ / -oo \n\ / k \n\ /_____, \n\ k = 0 \ """ ucode_str = \ """\ n \n\ n \n\ ______ \n\ ╲ \n\ ╲ \n\ ╲ ∞ \n\ ╲ ⌠ \n\ ╲ ⎮ n \n\ ╱ ⎮ x dx\n\ ╱ ⌡ \n\ ╱ -∞ \n\ ╱ k \n\ ╱ \n\ ‾‾‾‾‾‾ \n\ k = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**( Integral(x**n, (x, -oo, oo))), (k, 0, Integral(x**x, (x, -oo, oo)))) ascii_str = \ """\ oo \n\ / \n\ | \n\ | x \n\ | x dx \n\ | \n\ / \n\ -oo \n\ ______ \n\ \\ ` \n\ \\ oo \n\ \\ / \n\ \\ | \n\ \\ | n \n\ ) | x dx\n\ / | \n\ / / \n\ / -oo \n\ / k \n\ /_____, \n\ k = 0 \ """ ucode_str = \ """\ ∞ \n\ ⌠ \n\ ⎮ x \n\ ⎮ x dx \n\ ⌡ \n\ -∞ \n\ ______ \n\ ╲ \n\ ╲ \n\ ╲ ∞ \n\ ╲ ⌠ \n\ ╲ ⎮ n \n\ ╱ ⎮ x dx\n\ ╱ ⌡ \n\ ╱ -∞ \n\ ╱ k \n\ ╱ \n\ ‾‾‾‾‾‾ \n\ k = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**(Integral(x**n, (x, -oo, oo))), ( k, x + n + x**2 + n**2 + (x/n) + (1/x), Integral(x**x, (x, -oo, oo)))) ascii_str = \ """\ oo \n\ / \n\ | \n\ | x \n\ | x dx \n\ | \n\ / \n\ -oo \n\ ______ \n\ \\ ` \n\ \\ oo \n\ \\ / \n\ \\ | \n\ \\ | n \n\ ) | x dx\n\ / | \n\ / / \n\ / -oo \n\ / k \n\ /_____, \n\ 2 2 1 x \n\ k = n + n + x + x + - + - \n\ x n \ """ ucode_str = \ """\ ∞ \n\ ⌠ \n\ ⎮ x \n\ ⎮ x dx \n\ ⌡ \n\ -∞ \n\ ______ \n\ ╲ \n\ ╲ \n\ ╲ ∞ \n\ ╲ ⌠ \n\ ╲ ⎮ n \n\ ╱ ⎮ x dx\n\ ╱ ⌡ \n\ ╱ -∞ \n\ ╱ k \n\ ╱ \n\ ‾‾‾‾‾‾ \n\ 2 2 1 x \n\ k = n + n + x + x + ─ + ─ \n\ x n \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**( Integral(x**n, (x, -oo, oo))), (k, 0, x + n + x**2 + n**2 + (x/n) + (1/x))) ascii_str = \ """\ 2 2 1 x \n\ n + n + x + x + - + - \n\ x n \n\ ______ \n\ \\ ` \n\ \\ oo \n\ \\ / \n\ \\ | \n\ \\ | n \n\ ) | x dx\n\ / | \n\ / / \n\ / -oo \n\ / k \n\ /_____, \n\ k = 0 \ """ ucode_str = \ """\ 2 2 1 x \n\ n + n + x + x + ─ + ─ \n\ x n \n\ ______ \n\ ╲ \n\ ╲ \n\ ╲ ∞ \n\ ╲ ⌠ \n\ ╲ ⎮ n \n\ ╱ ⎮ x dx\n\ ╱ ⌡ \n\ ╱ -∞ \n\ ╱ k \n\ ╱ \n\ ‾‾‾‾‾‾ \n\ k = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(x, (x, 0, oo)) ascii_str = \ """\ oo \n\ __ \n\ \\ ` \n\ ) x\n\ /_, \n\ x = 0 \ """ ucode_str = \ """\ ∞ \n\ ___ \n\ ╲ \n\ ╲ \n\ ╱ x\n\ ╱ \n\ ‾‾‾ \n\ x = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(x**2, (x, 0, oo)) ascii_str = \ """\ oo \n\ ___ \n\ \\ ` \n\ \\ 2\n\ / x \n\ /__, \n\ x = 0 \ """ ucode_str = \ """\ ∞ \n\ ___ \n\ ╲ \n\ ╲ 2\n\ ╱ x \n\ ╱ \n\ ‾‾‾ \n\ x = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(x/2, (x, 0, oo)) ascii_str = \ """\ oo \n\ ___ \n\ \\ ` \n\ \\ x\n\ ) -\n\ / 2\n\ /__, \n\ x = 0 \ """ ucode_str = \ """\ ∞ \n\ ____ \n\ ╲ \n\ ╲ \n\ ╲ x\n\ ╱ ─\n\ ╱ 2\n\ ╱ \n\ ‾‾‾‾ \n\ x = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(x**3/2, (x, 0, oo)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ 3\n\ \\ x \n\ / --\n\ / 2 \n\ /___, \n\ x = 0 \ """ ucode_str = \ """\ ∞ \n\ ____ \n\ ╲ \n\ ╲ 3\n\ ╲ x \n\ ╱ ──\n\ ╱ 2 \n\ ╱ \n\ ‾‾‾‾ \n\ x = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum((x**3*y**(x/2))**n, (x, 0, oo)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ n\n\ \\ / x\\ \n\ ) | -| \n\ / | 3 2| \n\ / \\x *y / \n\ /___, \n\ x = 0 \ """ ucode_str = \ """\ ∞ \n\ _____ \n\ ╲ \n\ ╲ \n\ ╲ n\n\ ╲ ⎛ x⎞ \n\ ╱ ⎜ ─⎟ \n\ ╱ ⎜ 3 2⎟ \n\ ╱ ⎝x ⋅y ⎠ \n\ ╱ \n\ ‾‾‾‾‾ \n\ x = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(1/x**2, (x, 0, oo)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ 1 \n\ \\ --\n\ / 2\n\ / x \n\ /___, \n\ x = 0 \ """ ucode_str = \ """\ ∞ \n\ ____ \n\ ╲ \n\ ╲ 1 \n\ ╲ ──\n\ ╱ 2\n\ ╱ x \n\ ╱ \n\ ‾‾‾‾ \n\ x = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(1/y**(a/b), (x, 0, oo)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ -a \n\ \\ ---\n\ / b \n\ / y \n\ /___, \n\ x = 0 \ """ ucode_str = \ """\ ∞ \n\ ____ \n\ ╲ \n\ ╲ -a \n\ ╲ ───\n\ ╱ b \n\ ╱ y \n\ ╱ \n\ ‾‾‾‾ \n\ x = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(1/y**(a/b), (x, 0, oo), (y, 1, 2)) ascii_str = \ """\ 2 oo \n\ ____ ____ \n\ \\ ` \\ ` \n\ \\ \\ -a\n\ \\ \\ --\n\ / / b \n\ / / y \n\ /___, /___, \n\ y = 1 x = 0 \ """ ucode_str = \ """\ 2 ∞ \n\ ____ ____ \n\ ╲ ╲ \n\ ╲ ╲ -a\n\ ╲ ╲ ──\n\ ╱ ╱ b \n\ ╱ ╱ y \n\ ╱ ╱ \n\ ‾‾‾‾ ‾‾‾‾ \n\ y = 1 x = 0 \ """ expr = Sum(1/(1 + 1/( 1 + 1/k)) + 1, (k, 111, 1 + 1/n), (k, 1/(1 + m), oo)) + 1/(1 + 1/k) ascii_str = \ """\ 1 \n\ 1 + - \n\ oo n \n\ _____ _____ \n\ \\ ` \\ ` \n\ \\ \\ / 1 \\ \n\ \\ \\ |1 + ---------| \n\ \\ \\ | 1 | 1 \n\ ) ) | 1 + -----| + -----\n\ / / | 1| 1\n\ / / | 1 + -| 1 + -\n\ / / \\ k/ k\n\ /____, /____, \n\ 1 k = 111 \n\ k = ----- \n\ m + 1 \ """ ucode_str = \ """\ 1 \n\ 1 + ─ \n\ ∞ n \n\ ______ ______ \n\ ╲ ╲ \n\ ╲ ╲ \n\ ╲ ╲ ⎛ 1 ⎞ \n\ ╲ ╲ ⎜1 + ─────────⎟ \n\ ╲ ╲ ⎜ 1 ⎟ 1 \n\ ╱ ╱ ⎜ 1 + ─────⎟ + ─────\n\ ╱ ╱ ⎜ 1⎟ 1\n\ ╱ ╱ ⎜ 1 + ─⎟ 1 + ─\n\ ╱ ╱ ⎝ k⎠ k\n\ ╱ ╱ \n\ ‾‾‾‾‾‾ ‾‾‾‾‾‾ \n\ 1 k = 111 \n\ k = ───── \n\ m + 1 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_units(): expr = joule ascii_str1 = \ """\ 2\n\ kilogram*meter \n\ ---------------\n\ 2 \n\ second \ """ unicode_str1 = \ """\ 2\n\ kilogram⋅meter \n\ ───────────────\n\ 2 \n\ second \ """ ascii_str2 = \ """\ 2\n\ 3*x*y*kilogram*meter \n\ ---------------------\n\ 2 \n\ second \ """ unicode_str2 = \ """\ 2\n\ 3⋅x⋅y⋅kilogram⋅meter \n\ ─────────────────────\n\ 2 \n\ second \ """ from sympy.physics.units import kg, m, s assert upretty(expr) == "joule" assert pretty(expr) == "joule" assert upretty(expr.convert_to(kg*m**2/s**2)) == unicode_str1 assert pretty(expr.convert_to(kg*m**2/s**2)) == ascii_str1 assert upretty(3*kg*x*m**2*y/s**2) == unicode_str2 assert pretty(3*kg*x*m**2*y/s**2) == ascii_str2 def test_pretty_Subs(): f = Function('f') expr = Subs(f(x), x, ph**2) ascii_str = \ """\ (f(x))| 2\n\ |x=phi \ """ unicode_str = \ """\ (f(x))│ 2\n\ │x=φ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Subs(f(x).diff(x), x, 0) ascii_str = \ """\ /d \\| \n\ |--(f(x))|| \n\ \\dx /|x=0\ """ unicode_str = \ """\ ⎛d ⎞│ \n\ ⎜──(f(x))⎟│ \n\ ⎝dx ⎠│x=0\ """ assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2))) ascii_str = \ """\ /d \\| \n\ |--(f(x))|| \n\ |dx || \n\ |--------|| \n\ \\ y /|x=0, y=1/2\ """ unicode_str = \ """\ ⎛d ⎞│ \n\ ⎜──(f(x))⎟│ \n\ ⎜dx ⎟│ \n\ ⎜────────⎟│ \n\ ⎝ y ⎠│x=0, y=1/2\ """ assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str def test_gammas(): assert upretty(lowergamma(x, y)) == "γ(x, y)" assert upretty(uppergamma(x, y)) == "Γ(x, y)" assert xpretty(gamma(x), use_unicode=True) == 'Γ(x)' assert xpretty(gamma, use_unicode=True) == 'Γ' assert xpretty(symbols('gamma', cls=Function)(x), use_unicode=True) == 'γ(x)' assert xpretty(symbols('gamma', cls=Function), use_unicode=True) == 'γ' def test_beta(): assert xpretty(beta(x,y), use_unicode=True) == 'Β(x, y)' assert xpretty(beta(x,y), use_unicode=False) == 'B(x, y)' assert xpretty(beta, use_unicode=True) == 'Β' assert xpretty(beta, use_unicode=False) == 'B' mybeta = Function('beta') assert xpretty(mybeta(x), use_unicode=True) == 'β(x)' assert xpretty(mybeta(x, y, z), use_unicode=False) == 'beta(x, y, z)' assert xpretty(mybeta, use_unicode=True) == 'β' # test that notation passes to subclasses of the same name only def test_function_subclass_different_name(): class mygamma(gamma): pass assert xpretty(mygamma, use_unicode=True) == r"mygamma" assert xpretty(mygamma(x), use_unicode=True) == r"mygamma(x)" def test_SingularityFunction(): assert xpretty(SingularityFunction(x, 0, n), use_unicode=True) == ( """\ n\n\ <x> \ """) assert xpretty(SingularityFunction(x, 1, n), use_unicode=True) == ( """\ n\n\ <x - 1> \ """) assert xpretty(SingularityFunction(x, -1, n), use_unicode=True) == ( """\ n\n\ <x + 1> \ """) assert xpretty(SingularityFunction(x, a, n), use_unicode=True) == ( """\ n\n\ <-a + x> \ """) assert xpretty(SingularityFunction(x, y, n), use_unicode=True) == ( """\ n\n\ <x - y> \ """) assert xpretty(SingularityFunction(x, 0, n), use_unicode=False) == ( """\ n\n\ <x> \ """) assert xpretty(SingularityFunction(x, 1, n), use_unicode=False) == ( """\ n\n\ <x - 1> \ """) assert xpretty(SingularityFunction(x, -1, n), use_unicode=False) == ( """\ n\n\ <x + 1> \ """) assert xpretty(SingularityFunction(x, a, n), use_unicode=False) == ( """\ n\n\ <-a + x> \ """) assert xpretty(SingularityFunction(x, y, n), use_unicode=False) == ( """\ n\n\ <x - y> \ """) def test_deltas(): assert xpretty(DiracDelta(x), use_unicode=True) == 'δ(x)' assert xpretty(DiracDelta(x, 1), use_unicode=True) == \ """\ (1) \n\ δ (x)\ """ assert xpretty(x*DiracDelta(x, 1), use_unicode=True) == \ """\ (1) \n\ x⋅δ (x)\ """ def test_hyper(): expr = hyper((), (), z) ucode_str = \ """\ ┌─ ⎛ │ ⎞\n\ ├─ ⎜ │ z⎟\n\ 0╵ 0 ⎝ │ ⎠\ """ ascii_str = \ """\ _ \n\ |_ / | \\\n\ | | | z|\n\ 0 0 \\ | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper((), (1,), x) ucode_str = \ """\ ┌─ ⎛ │ ⎞\n\ ├─ ⎜ │ x⎟\n\ 0╵ 1 ⎝1 │ ⎠\ """ ascii_str = \ """\ _ \n\ |_ / | \\\n\ | | | x|\n\ 0 1 \\1 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper([2], [1], x) ucode_str = \ """\ ┌─ ⎛2 │ ⎞\n\ ├─ ⎜ │ x⎟\n\ 1╵ 1 ⎝1 │ ⎠\ """ ascii_str = \ """\ _ \n\ |_ /2 | \\\n\ | | | x|\n\ 1 1 \\1 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper((pi/3, -2*k), (3, 4, 5, -3), x) ucode_str = \ """\ ⎛ π │ ⎞\n\ ┌─ ⎜ ─, -2⋅k │ ⎟\n\ ├─ ⎜ 3 │ x⎟\n\ 2╵ 4 ⎜ │ ⎟\n\ ⎝3, 4, 5, -3 │ ⎠\ """ ascii_str = \ """\ \n\ _ / pi | \\\n\ |_ | --, -2*k | |\n\ | | 3 | x|\n\ 2 4 | | |\n\ \\3, 4, 5, -3 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper((pi, S('2/3'), -2*k), (3, 4, 5, -3), x**2) ucode_str = \ """\ ┌─ ⎛π, 2/3, -2⋅k │ 2⎞\n\ ├─ ⎜ │ x ⎟\n\ 3╵ 4 ⎝3, 4, 5, -3 │ ⎠\ """ ascii_str = \ """\ _ \n\ |_ /pi, 2/3, -2*k | 2\\\n\ | | | x |\n\ 3 4 \\ 3, 4, 5, -3 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper([1, 2], [3, 4], 1/(1/(1/(1/x + 1) + 1) + 1)) ucode_str = \ """\ ⎛ │ 1 ⎞\n\ ⎜ │ ─────────────⎟\n\ ⎜ │ 1 ⎟\n\ ┌─ ⎜1, 2 │ 1 + ─────────⎟\n\ ├─ ⎜ │ 1 ⎟\n\ 2╵ 2 ⎜3, 4 │ 1 + ─────⎟\n\ ⎜ │ 1⎟\n\ ⎜ │ 1 + ─⎟\n\ ⎝ │ x⎠\ """ ascii_str = \ """\ \n\ / | 1 \\\n\ | | -------------|\n\ _ | | 1 |\n\ |_ |1, 2 | 1 + ---------|\n\ | | | 1 |\n\ 2 2 |3, 4 | 1 + -----|\n\ | | 1|\n\ | | 1 + -|\n\ \\ | x/\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_meijerg(): expr = meijerg([pi, pi, x], [1], [0, 1], [1, 2, 3], z) ucode_str = \ """\ ╭─╮2, 3 ⎛π, π, x 1 │ ⎞\n\ │╶┐ ⎜ │ z⎟\n\ ╰─╯4, 5 ⎝ 0, 1 1, 2, 3 │ ⎠\ """ ascii_str = \ """\ __2, 3 /pi, pi, x 1 | \\\n\ /__ | | z|\n\ \\_|4, 5 \\ 0, 1 1, 2, 3 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = meijerg([1, pi/7], [2, pi, 5], [], [], z**2) ucode_str = \ """\ ⎛ π │ ⎞\n\ ╭─╮0, 2 ⎜1, ─ 2, π, 5 │ 2⎟\n\ │╶┐ ⎜ 7 │ z ⎟\n\ ╰─╯5, 0 ⎜ │ ⎟\n\ ⎝ │ ⎠\ """ ascii_str = \ """\ / pi | \\\n\ __0, 2 |1, -- 2, pi, 5 | 2|\n\ /__ | 7 | z |\n\ \\_|5, 0 | | |\n\ \\ | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ucode_str = \ """\ ╭─╮ 1, 10 ⎛1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 │ ⎞\n\ │╶┐ ⎜ │ z⎟\n\ ╰─╯11, 2 ⎝ 1 1 │ ⎠\ """ ascii_str = \ """\ __ 1, 10 /1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 | \\\n\ /__ | | z|\n\ \\_|11, 2 \\ 1 1 | /\ """ expr = meijerg([1]*10, [1], [1], [1], z) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = meijerg([1, 2, ], [4, 3], [3], [4, 5], 1/(1/(1/(1/x + 1) + 1) + 1)) ucode_str = \ """\ ⎛ │ 1 ⎞\n\ ⎜ │ ─────────────⎟\n\ ⎜ │ 1 ⎟\n\ ╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟\n\ │╶┐ ⎜ │ 1 ⎟\n\ ╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟\n\ ⎜ │ 1⎟\n\ ⎜ │ 1 + ─⎟\n\ ⎝ │ x⎠\ """ ascii_str = \ """\ / | 1 \\\n\ | | -------------|\n\ | | 1 |\n\ __1, 2 |1, 2 4, 3 | 1 + ---------|\n\ /__ | | 1 |\n\ \\_|4, 3 | 3 4, 5 | 1 + -----|\n\ | | 1|\n\ | | 1 + -|\n\ \\ | x/\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(expr, x) ucode_str = \ """\ ⌠ \n\ ⎮ ⎛ │ 1 ⎞ \n\ ⎮ ⎜ │ ─────────────⎟ \n\ ⎮ ⎜ │ 1 ⎟ \n\ ⎮ ╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟ \n\ ⎮ │╶┐ ⎜ │ 1 ⎟ dx\n\ ⎮ ╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟ \n\ ⎮ ⎜ │ 1⎟ \n\ ⎮ ⎜ │ 1 + ─⎟ \n\ ⎮ ⎝ │ x⎠ \n\ ⌡ \ """ ascii_str = \ """\ / \n\ | \n\ | / | 1 \\ \n\ | | | -------------| \n\ | | | 1 | \n\ | __1, 2 |1, 2 4, 3 | 1 + ---------| \n\ | /__ | | 1 | dx\n\ | \\_|4, 3 | 3 4, 5 | 1 + -----| \n\ | | | 1| \n\ | | | 1 + -| \n\ | \\ | x/ \n\ | \n\ / \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_noncommutative(): A, B, C = symbols('A,B,C', commutative=False) expr = A*B*C**-1 ascii_str = \ """\ -1\n\ A*B*C \ """ ucode_str = \ """\ -1\n\ A⋅B⋅C \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = C**-1*A*B ascii_str = \ """\ -1 \n\ C *A*B\ """ ucode_str = \ """\ -1 \n\ C ⋅A⋅B\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A*C**-1*B ascii_str = \ """\ -1 \n\ A*C *B\ """ ucode_str = \ """\ -1 \n\ A⋅C ⋅B\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A*C**-1*B/x ascii_str = \ """\ -1 \n\ A*C *B\n\ -------\n\ x \ """ ucode_str = \ """\ -1 \n\ A⋅C ⋅B\n\ ───────\n\ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_special_functions(): x, y = symbols("x y") # atan2 expr = atan2(y/sqrt(200), sqrt(x)) ascii_str = \ """\ / ___ \\\n\ |\\/ 2 *y ___|\n\ atan2|-------, \\/ x |\n\ \\ 20 /\ """ ucode_str = \ """\ ⎛√2⋅y ⎞\n\ atan2⎜────, √x⎟\n\ ⎝ 20 ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_geometry(): e = Segment((0, 1), (0, 2)) assert pretty(e) == 'Segment2D(Point2D(0, 1), Point2D(0, 2))' e = Ray((1, 1), angle=4.02*pi) assert pretty(e) == 'Ray2D(Point2D(1, 1), Point2D(2, tan(pi/50) + 1))' def test_expint(): expr = Ei(x) string = 'Ei(x)' assert pretty(expr) == string assert upretty(expr) == string expr = expint(1, z) ucode_str = "E₁(z)" ascii_str = "expint(1, z)" assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str assert pretty(Shi(x)) == 'Shi(x)' assert pretty(Si(x)) == 'Si(x)' assert pretty(Ci(x)) == 'Ci(x)' assert pretty(Chi(x)) == 'Chi(x)' assert upretty(Shi(x)) == 'Shi(x)' assert upretty(Si(x)) == 'Si(x)' assert upretty(Ci(x)) == 'Ci(x)' assert upretty(Chi(x)) == 'Chi(x)' def test_elliptic_functions(): ascii_str = \ """\ / 1 \\\n\ K|-----|\n\ \\z + 1/\ """ ucode_str = \ """\ ⎛ 1 ⎞\n\ K⎜─────⎟\n\ ⎝z + 1⎠\ """ expr = elliptic_k(1/(z + 1)) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / | 1 \\\n\ F|1|-----|\n\ \\ |z + 1/\ """ ucode_str = \ """\ ⎛ │ 1 ⎞\n\ F⎜1│─────⎟\n\ ⎝ │z + 1⎠\ """ expr = elliptic_f(1, 1/(1 + z)) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / 1 \\\n\ E|-----|\n\ \\z + 1/\ """ ucode_str = \ """\ ⎛ 1 ⎞\n\ E⎜─────⎟\n\ ⎝z + 1⎠\ """ expr = elliptic_e(1/(z + 1)) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / | 1 \\\n\ E|1|-----|\n\ \\ |z + 1/\ """ ucode_str = \ """\ ⎛ │ 1 ⎞\n\ E⎜1│─────⎟\n\ ⎝ │z + 1⎠\ """ expr = elliptic_e(1, 1/(1 + z)) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / |4\\\n\ Pi|3|-|\n\ \\ |x/\ """ ucode_str = \ """\ ⎛ │4⎞\n\ Π⎜3│─⎟\n\ ⎝ │x⎠\ """ expr = elliptic_pi(3, 4/x) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / 4| \\\n\ Pi|3; -|6|\n\ \\ x| /\ """ ucode_str = \ """\ ⎛ 4│ ⎞\n\ Π⎜3; ─│6⎟\n\ ⎝ x│ ⎠\ """ expr = elliptic_pi(3, 4/x, 6) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_RandomDomain(): from sympy.stats import Normal, Die, Exponential, pspace, where X = Normal('x1', 0, 1) assert upretty(where(X > 0)) == "Domain: 0 < x₁ ∧ x₁ < ∞" D = Die('d1', 6) assert upretty(where(D > 4)) == 'Domain: d₁ = 5 ∨ d₁ = 6' A = Exponential('a', 1) B = Exponential('b', 1) assert upretty(pspace(Tuple(A, B)).domain) == \ 'Domain: 0 ≤ a ∧ 0 ≤ b ∧ a < ∞ ∧ b < ∞' def test_PrettyPoly(): F = QQ.frac_field(x, y) R = QQ.poly_ring(x, y) expr = F.convert(x/(x + y)) assert pretty(expr) == "x/(x + y)" assert upretty(expr) == "x/(x + y)" expr = R.convert(x + y) assert pretty(expr) == "x + y" assert upretty(expr) == "x + y" def test_issue_6285(): assert pretty(Pow(2, -5, evaluate=False)) == '1 \n--\n 5\n2 ' assert pretty(Pow(x, (1/pi))) == \ ' 1 \n'\ ' --\n'\ ' pi\n'\ 'x ' def test_issue_6359(): assert pretty(Integral(x**2, x)**2) == \ """\ 2 / / \\ \n\ | | | \n\ | | 2 | \n\ | | x dx| \n\ | | | \n\ \\/ / \ """ assert upretty(Integral(x**2, x)**2) == \ """\ 2 ⎛⌠ ⎞ \n\ ⎜⎮ 2 ⎟ \n\ ⎜⎮ x dx⎟ \n\ ⎝⌡ ⎠ \ """ assert pretty(Sum(x**2, (x, 0, 1))**2) == \ """\ 2 / 1 \\ \n\ | ___ | \n\ | \\ ` | \n\ | \\ 2| \n\ | / x | \n\ | /__, | \n\ \\x = 0 / \ """ assert upretty(Sum(x**2, (x, 0, 1))**2) == \ """\ 2 ⎛ 1 ⎞ \n\ ⎜ ___ ⎟ \n\ ⎜ ╲ ⎟ \n\ ⎜ ╲ 2⎟ \n\ ⎜ ╱ x ⎟ \n\ ⎜ ╱ ⎟ \n\ ⎜ ‾‾‾ ⎟ \n\ ⎝x = 0 ⎠ \ """ assert pretty(Product(x**2, (x, 1, 2))**2) == \ """\ 2 / 2 \\ \n\ |______ | \n\ | | | 2| \n\ | | | x | \n\ | | | | \n\ \\x = 1 / \ """ assert upretty(Product(x**2, (x, 1, 2))**2) == \ """\ 2 ⎛ 2 ⎞ \n\ ⎜─┬──┬─ ⎟ \n\ ⎜ │ │ 2⎟ \n\ ⎜ │ │ x ⎟ \n\ ⎜ │ │ ⎟ \n\ ⎝x = 1 ⎠ \ """ f = Function('f') assert pretty(Derivative(f(x), x)**2) == \ """\ 2 /d \\ \n\ |--(f(x))| \n\ \\dx / \ """ assert upretty(Derivative(f(x), x)**2) == \ """\ 2 ⎛d ⎞ \n\ ⎜──(f(x))⎟ \n\ ⎝dx ⎠ \ """ def test_issue_6739(): ascii_str = \ """\ 1 \n\ -----\n\ ___\n\ \\/ x \ """ ucode_str = \ """\ 1 \n\ ──\n\ √x\ """ assert pretty(1/sqrt(x)) == ascii_str assert upretty(1/sqrt(x)) == ucode_str def test_complicated_symbol_unchanged(): for symb_name in ["dexpr2_d1tau", "dexpr2^d1tau"]: assert pretty(Symbol(symb_name)) == symb_name def test_categories(): from sympy.categories import (Object, IdentityMorphism, NamedMorphism, Category, Diagram, DiagramGrid) A1 = Object("A1") A2 = Object("A2") A3 = Object("A3") f1 = NamedMorphism(A1, A2, "f1") f2 = NamedMorphism(A2, A3, "f2") id_A1 = IdentityMorphism(A1) K1 = Category("K1") assert pretty(A1) == "A1" assert upretty(A1) == "A₁" assert pretty(f1) == "f1:A1-->A2" assert upretty(f1) == "f₁:A₁——▶A₂" assert pretty(id_A1) == "id:A1-->A1" assert upretty(id_A1) == "id:A₁——▶A₁" assert pretty(f2*f1) == "f2*f1:A1-->A3" assert upretty(f2*f1) == "f₂∘f₁:A₁——▶A₃" assert pretty(K1) == "K1" assert upretty(K1) == "K₁" # Test how diagrams are printed. d = Diagram() assert pretty(d) == "EmptySet" assert upretty(d) == "∅" d = Diagram({f1: "unique", f2: S.EmptySet}) assert pretty(d) == "{f2*f1:A1-->A3: EmptySet, id:A1-->A1: " \ "EmptySet, id:A2-->A2: EmptySet, id:A3-->A3: " \ "EmptySet, f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet}" assert upretty(d) == "{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, " \ "id:A₂——▶A₂: ∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}" d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"}) assert pretty(d) == "{f2*f1:A1-->A3: EmptySet, id:A1-->A1: " \ "EmptySet, id:A2-->A2: EmptySet, id:A3-->A3: " \ "EmptySet, f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet}" \ " ==> {f2*f1:A1-->A3: {unique}}" assert upretty(d) == "{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, id:A₂——▶A₂: " \ "∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}" \ " ══▶ {f₂∘f₁:A₁——▶A₃: {unique}}" grid = DiagramGrid(d) assert pretty(grid) == "A1 A2\n \nA3 " assert upretty(grid) == "A₁ A₂\n \nA₃ " def test_PrettyModules(): R = QQ.old_poly_ring(x, y) F = R.free_module(2) M = F.submodule([x, y], [1, x**2]) ucode_str = \ """\ 2\n\ ℚ[x, y] \ """ ascii_str = \ """\ 2\n\ QQ[x, y] \ """ assert upretty(F) == ucode_str assert pretty(F) == ascii_str ucode_str = \ """\ ╱ ⎡ 2⎤╲\n\ ╲[x, y], ⎣1, x ⎦╱\ """ ascii_str = \ """\ 2 \n\ <[x, y], [1, x ]>\ """ assert upretty(M) == ucode_str assert pretty(M) == ascii_str I = R.ideal(x**2, y) ucode_str = \ """\ ╱ 2 ╲\n\ ╲x , y╱\ """ ascii_str = \ """\ 2 \n\ <x , y>\ """ assert upretty(I) == ucode_str assert pretty(I) == ascii_str Q = F / M ucode_str = \ """\ 2 \n\ ℚ[x, y] \n\ ─────────────────\n\ ╱ ⎡ 2⎤╲\n\ ╲[x, y], ⎣1, x ⎦╱\ """ ascii_str = \ """\ 2 \n\ QQ[x, y] \n\ -----------------\n\ 2 \n\ <[x, y], [1, x ]>\ """ assert upretty(Q) == ucode_str assert pretty(Q) == ascii_str ucode_str = \ """\ ╱⎡ 3⎤ ╲\n\ │⎢ x ⎥ ╱ ⎡ 2⎤╲ ╱ ⎡ 2⎤╲│\n\ │⎢1, ──⎥ + ╲[x, y], ⎣1, x ⎦╱, [2, y] + ╲[x, y], ⎣1, x ⎦╱│\n\ ╲⎣ 2 ⎦ ╱\ """ ascii_str = \ """\ 3 \n\ x 2 2 \n\ <[1, --] + <[x, y], [1, x ]>, [2, y] + <[x, y], [1, x ]>>\n\ 2 \ """ def test_QuotientRing(): R = QQ.old_poly_ring(x)/[x**2 + 1] ucode_str = \ """\ ℚ[x] \n\ ────────\n\ ╱ 2 ╲\n\ ╲x + 1╱\ """ ascii_str = \ """\ QQ[x] \n\ --------\n\ 2 \n\ <x + 1>\ """ assert upretty(R) == ucode_str assert pretty(R) == ascii_str ucode_str = \ """\ ╱ 2 ╲\n\ 1 + ╲x + 1╱\ """ ascii_str = \ """\ 2 \n\ 1 + <x + 1>\ """ assert upretty(R.one) == ucode_str assert pretty(R.one) == ascii_str def test_Homomorphism(): from sympy.polys.agca import homomorphism R = QQ.old_poly_ring(x) expr = homomorphism(R.free_module(1), R.free_module(1), [0]) ucode_str = \ """\ 1 1\n\ [0] : ℚ[x] ──> ℚ[x] \ """ ascii_str = \ """\ 1 1\n\ [0] : QQ[x] --> QQ[x] \ """ assert upretty(expr) == ucode_str assert pretty(expr) == ascii_str expr = homomorphism(R.free_module(2), R.free_module(2), [0, 0]) ucode_str = \ """\ ⎡0 0⎤ 2 2\n\ ⎢ ⎥ : ℚ[x] ──> ℚ[x] \n\ ⎣0 0⎦ \ """ ascii_str = \ """\ [0 0] 2 2\n\ [ ] : QQ[x] --> QQ[x] \n\ [0 0] \ """ assert upretty(expr) == ucode_str assert pretty(expr) == ascii_str expr = homomorphism(R.free_module(1), R.free_module(1) / [[x]], [0]) ucode_str = \ """\ 1\n\ 1 ℚ[x] \n\ [0] : ℚ[x] ──> ─────\n\ <[x]>\ """ ascii_str = \ """\ 1\n\ 1 QQ[x] \n\ [0] : QQ[x] --> ------\n\ <[x]> \ """ assert upretty(expr) == ucode_str assert pretty(expr) == ascii_str def test_Tr(): A, B = symbols('A B', commutative=False) t = Tr(A*B) assert pretty(t) == r'Tr(A*B)' assert upretty(t) == 'Tr(A⋅B)' def test_pretty_Add(): eq = Mul(-2, x - 2, evaluate=False) + 5 assert pretty(eq) == '5 - 2*(x - 2)' def test_issue_7179(): assert upretty(Not(Equivalent(x, y))) == 'x ⇎ y' assert upretty(Not(Implies(x, y))) == 'x ↛ y' def test_issue_7180(): assert upretty(Equivalent(x, y)) == 'x ⇔ y' def test_pretty_Complement(): assert pretty(S.Reals - S.Naturals) == '(-oo, oo) \\ Naturals' assert upretty(S.Reals - S.Naturals) == 'ℝ \\ ℕ' assert pretty(S.Reals - S.Naturals0) == '(-oo, oo) \\ Naturals0' assert upretty(S.Reals - S.Naturals0) == 'ℝ \\ ℕ₀' def test_pretty_SymmetricDifference(): from sympy import SymmetricDifference, Interval from sympy.testing.pytest import raises assert upretty(SymmetricDifference(Interval(2,3), Interval(3,5), \ evaluate = False)) == '[2, 3] ∆ [3, 5]' with raises(NotImplementedError): pretty(SymmetricDifference(Interval(2,3), Interval(3,5), evaluate = False)) def test_pretty_Contains(): assert pretty(Contains(x, S.Integers)) == 'Contains(x, Integers)' assert upretty(Contains(x, S.Integers)) == 'x ∈ ℤ' def test_issue_8292(): from sympy.core import sympify e = sympify('((x+x**4)/(x-1))-(2*(x-1)**4/(x-1)**4)', evaluate=False) ucode_str = \ """\ 4 4 \n\ 2⋅(x - 1) x + x\n\ - ────────── + ──────\n\ 4 x - 1 \n\ (x - 1) \ """ ascii_str = \ """\ 4 4 \n\ 2*(x - 1) x + x\n\ - ---------- + ------\n\ 4 x - 1 \n\ (x - 1) \ """ assert pretty(e) == ascii_str assert upretty(e) == ucode_str def test_issue_4335(): y = Function('y') expr = -y(x).diff(x) ucode_str = \ """\ d \n\ -──(y(x))\n\ dx \ """ ascii_str = \ """\ d \n\ - --(y(x))\n\ dx \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_issue_8344(): from sympy.core import sympify e = sympify('2*x*y**2/1**2 + 1', evaluate=False) ucode_str = \ """\ 2 \n\ 2⋅x⋅y \n\ ────── + 1\n\ 2 \n\ 1 \ """ assert upretty(e) == ucode_str def test_issue_6324(): x = Pow(2, 3, evaluate=False) y = Pow(10, -2, evaluate=False) e = Mul(x, y, evaluate=False) ucode_str = \ """\ 3\n\ 2 \n\ ───\n\ 2\n\ 10 \ """ assert upretty(e) == ucode_str def test_issue_7927(): e = sin(x/2)**cos(x/2) ucode_str = \ """\ ⎛x⎞\n\ cos⎜─⎟\n\ ⎝2⎠\n\ ⎛ ⎛x⎞⎞ \n\ ⎜sin⎜─⎟⎟ \n\ ⎝ ⎝2⎠⎠ \ """ assert upretty(e) == ucode_str e = sin(x)**(S(11)/13) ucode_str = \ """\ 11\n\ ──\n\ 13\n\ (sin(x)) \ """ assert upretty(e) == ucode_str def test_issue_6134(): from sympy.abc import lamda, t phi = Function('phi') e = lamda*x*Integral(phi(t)*pi*sin(pi*t), (t, 0, 1)) + lamda*x**2*Integral(phi(t)*2*pi*sin(2*pi*t), (t, 0, 1)) ucode_str = \ """\ 1 1 \n\ 2 ⌠ ⌠ \n\ λ⋅x ⋅⎮ 2⋅π⋅φ(t)⋅sin(2⋅π⋅t) dt + λ⋅x⋅⎮ π⋅φ(t)⋅sin(π⋅t) dt\n\ ⌡ ⌡ \n\ 0 0 \ """ assert upretty(e) == ucode_str def test_issue_9877(): ucode_str1 = '(2, 3) ∪ ([1, 2] \\ {x})' a, b, c = Interval(2, 3, True, True), Interval(1, 2), FiniteSet(x) assert upretty(Union(a, Complement(b, c))) == ucode_str1 ucode_str2 = '{x} ∩ {y} ∩ ({z} \\ [1, 2])' d, e, f, g = FiniteSet(x), FiniteSet(y), FiniteSet(z), Interval(1, 2) assert upretty(Intersection(d, e, Complement(f, g))) == ucode_str2 def test_issue_13651(): expr1 = c + Mul(-1, a + b, evaluate=False) assert pretty(expr1) == 'c - (a + b)' expr2 = c + Mul(-1, a - b + d, evaluate=False) assert pretty(expr2) == 'c - (a - b + d)' def test_pretty_primenu(): from sympy.ntheory.factor_ import primenu ascii_str1 = "nu(n)" ucode_str1 = "ν(n)" n = symbols('n', integer=True) assert pretty(primenu(n)) == ascii_str1 assert upretty(primenu(n)) == ucode_str1 def test_pretty_primeomega(): from sympy.ntheory.factor_ import primeomega ascii_str1 = "Omega(n)" ucode_str1 = "Ω(n)" n = symbols('n', integer=True) assert pretty(primeomega(n)) == ascii_str1 assert upretty(primeomega(n)) == ucode_str1 def test_pretty_Mod(): from sympy.core import Mod ascii_str1 = "x mod 7" ucode_str1 = "x mod 7" ascii_str2 = "(x + 1) mod 7" ucode_str2 = "(x + 1) mod 7" ascii_str3 = "2*x mod 7" ucode_str3 = "2⋅x mod 7" ascii_str4 = "(x mod 7) + 1" ucode_str4 = "(x mod 7) + 1" ascii_str5 = "2*(x mod 7)" ucode_str5 = "2⋅(x mod 7)" x = symbols('x', integer=True) assert pretty(Mod(x, 7)) == ascii_str1 assert upretty(Mod(x, 7)) == ucode_str1 assert pretty(Mod(x + 1, 7)) == ascii_str2 assert upretty(Mod(x + 1, 7)) == ucode_str2 assert pretty(Mod(2 * x, 7)) == ascii_str3 assert upretty(Mod(2 * x, 7)) == ucode_str3 assert pretty(Mod(x, 7) + 1) == ascii_str4 assert upretty(Mod(x, 7) + 1) == ucode_str4 assert pretty(2 * Mod(x, 7)) == ascii_str5 assert upretty(2 * Mod(x, 7)) == ucode_str5 def test_issue_11801(): assert pretty(Symbol("")) == "" assert upretty(Symbol("")) == "" def test_pretty_UnevaluatedExpr(): x = symbols('x') he = UnevaluatedExpr(1/x) ucode_str = \ """\ 1\n\ ─\n\ x\ """ assert upretty(he) == ucode_str ucode_str = \ """\ 2\n\ ⎛1⎞ \n\ ⎜─⎟ \n\ ⎝x⎠ \ """ assert upretty(he**2) == ucode_str ucode_str = \ """\ 1\n\ 1 + ─\n\ x\ """ assert upretty(he + 1) == ucode_str ucode_str = \ ('''\ 1\n\ x⋅─\n\ x\ ''') assert upretty(x*he) == ucode_str def test_issue_10472(): M = (Matrix([[0, 0], [0, 0]]), Matrix([0, 0])) ucode_str = \ """\ ⎛⎡0 0⎤ ⎡0⎤⎞ ⎜⎢ ⎥, ⎢ ⎥⎟ ⎝⎣0 0⎦ ⎣0⎦⎠\ """ assert upretty(M) == ucode_str def test_MatrixElement_printing(): # test cases for issue #11821 A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) ascii_str1 = "A_00" ucode_str1 = "A₀₀" assert pretty(A[0, 0]) == ascii_str1 assert upretty(A[0, 0]) == ucode_str1 ascii_str1 = "3*A_00" ucode_str1 = "3⋅A₀₀" assert pretty(3*A[0, 0]) == ascii_str1 assert upretty(3*A[0, 0]) == ucode_str1 ascii_str1 = "(-B + A)[0, 0]" ucode_str1 = "(-B + A)[0, 0]" F = C[0, 0].subs(C, A - B) assert pretty(F) == ascii_str1 assert upretty(F) == ucode_str1 def test_issue_12675(): from sympy.vector import CoordSys3D x, y, t, j = symbols('x y t j') e = CoordSys3D('e') ucode_str = \ """\ ⎛ t⎞ \n\ ⎜⎛x⎞ ⎟ j_e\n\ ⎜⎜─⎟ ⎟ \n\ ⎝⎝y⎠ ⎠ \ """ assert upretty((x/y)**t*e.j) == ucode_str ucode_str = \ """\ ⎛1⎞ \n\ ⎜─⎟ j_e\n\ ⎝y⎠ \ """ assert upretty((1/y)*e.j) == ucode_str def test_MatrixSymbol_printing(): # test cases for issue #14237 A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) C = MatrixSymbol("C", 3, 3) assert pretty(-A*B*C) == "-A*B*C" assert pretty(A - B) == "-B + A" assert pretty(A*B*C - A*B - B*C) == "-A*B -B*C + A*B*C" # issue #14814 x = MatrixSymbol('x', n, n) y = MatrixSymbol('y*', n, n) assert pretty(x + y) == "x + y*" ascii_str = \ """\ 2 \n\ -2*y* -a*x\ """ assert pretty(-a*x + -2*y*y) == ascii_str def test_degree_printing(): expr1 = 90*degree assert pretty(expr1) == '90°' expr2 = x*degree assert pretty(expr2) == 'x°' expr3 = cos(x*degree + 90*degree) assert pretty(expr3) == 'cos(x° + 90°)' def test_vector_expr_pretty_printing(): A = CoordSys3D('A') assert upretty(Cross(A.i, A.x*A.i+3*A.y*A.j)) == "(i_A)×((x_A) i_A + (3⋅y_A) j_A)" assert upretty(x*Cross(A.i, A.j)) == 'x⋅(i_A)×(j_A)' assert upretty(Curl(A.x*A.i + 3*A.y*A.j)) == "∇×((x_A) i_A + (3⋅y_A) j_A)" assert upretty(Divergence(A.x*A.i + 3*A.y*A.j)) == "∇⋅((x_A) i_A + (3⋅y_A) j_A)" assert upretty(Dot(A.i, A.x*A.i+3*A.y*A.j)) == "(i_A)⋅((x_A) i_A + (3⋅y_A) j_A)" assert upretty(Gradient(A.x+3*A.y)) == "∇(x_A + 3⋅y_A)" assert upretty(Laplacian(A.x+3*A.y)) == "∆(x_A + 3⋅y_A)" # TODO: add support for ASCII pretty. def test_pretty_print_tensor_expr(): L = TensorIndexType("L") i, j, k = tensor_indices("i j k", L) i0 = tensor_indices("i_0", L) A, B, C, D = tensor_heads("A B C D", [L]) H = TensorHead("H", [L, L]) expr = -i ascii_str = \ """\ -i\ """ ucode_str = \ """\ -i\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i) ascii_str = \ """\ i\n\ A \n\ \ """ ucode_str = \ """\ i\n\ A \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i0) ascii_str = \ """\ i_0\n\ A \n\ \ """ ucode_str = \ """\ i₀\n\ A \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(-i) ascii_str = \ """\ \n\ A \n\ i\ """ ucode_str = \ """\ \n\ A \n\ i\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -3*A(-i) ascii_str = \ """\ \n\ -3*A \n\ i\ """ ucode_str = \ """\ \n\ -3⋅A \n\ i\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = H(i, -j) ascii_str = \ """\ i \n\ H \n\ j\ """ ucode_str = \ """\ i \n\ H \n\ j\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = H(i, -i) ascii_str = \ """\ L_0 \n\ H \n\ L_0\ """ ucode_str = \ """\ L₀ \n\ H \n\ L₀\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = H(i, -j)*A(j)*B(k) ascii_str = \ """\ i L_0 k\n\ H *A *B \n\ L_0 \ """ ucode_str = \ """\ i L₀ k\n\ H ⋅A ⋅B \n\ L₀ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (1+x)*A(i) ascii_str = \ """\ i\n\ (x + 1)*A \n\ \ """ ucode_str = \ """\ i\n\ (x + 1)⋅A \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i) + 3*B(i) ascii_str = \ """\ i i\n\ 3*B + A \n\ \ """ ucode_str = \ """\ i i\n\ 3⋅B + A \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_print_tensor_partial_deriv(): from sympy.tensor.toperators import PartialDerivative from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, tensor_heads L = TensorIndexType("L") i, j, k = tensor_indices("i j k", L) A, B, C, D = tensor_heads("A B C D", [L]) H = TensorHead("H", [L, L]) expr = PartialDerivative(A(i), A(j)) ascii_str = \ """\ d / i\\\n\ ---|A |\n\ j\\ /\n\ dA \n\ \ """ ucode_str = \ """\ ∂ ⎛ i⎞\n\ ───⎜A ⎟\n\ j⎝ ⎠\n\ ∂A \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i)*PartialDerivative(H(k, -i), A(j)) ascii_str = \ """\ L_0 d / k \\\n\ A *---|H |\n\ j\\ L_0/\n\ dA \n\ \ """ ucode_str = \ """\ L₀ ∂ ⎛ k ⎞\n\ A ⋅───⎜H ⎟\n\ j⎝ L₀⎠\n\ ∂A \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i)*PartialDerivative(B(k)*C(-i) + 3*H(k, -i), A(j)) ascii_str = \ """\ L_0 d / k k \\\n\ A *---|3*H + B *C |\n\ j\\ L_0 L_0/\n\ dA \n\ \ """ ucode_str = \ """\ L₀ ∂ ⎛ k k ⎞\n\ A ⋅───⎜3⋅H + B ⋅C ⎟\n\ j⎝ L₀ L₀⎠\n\ ∂A \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (A(i) + B(i))*PartialDerivative(C(j), D(j)) ascii_str = \ """\ / i i\\ d / L_0\\\n\ |A + B |*-----|C |\n\ \\ / L_0\\ /\n\ dD \n\ \ """ ucode_str = \ """\ ⎛ i i⎞ ∂ ⎛ L₀⎞\n\ ⎜A + B ⎟⋅────⎜C ⎟\n\ ⎝ ⎠ L₀⎝ ⎠\n\ ∂D \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (A(i) + B(i))*PartialDerivative(C(-i), D(j)) ascii_str = \ """\ / L_0 L_0\\ d / \\\n\ |A + B |*---|C |\n\ \\ / j\\ L_0/\n\ dD \n\ \ """ ucode_str = \ """\ ⎛ L₀ L₀⎞ ∂ ⎛ ⎞\n\ ⎜A + B ⎟⋅───⎜C ⎟\n\ ⎝ ⎠ j⎝ L₀⎠\n\ ∂D \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = PartialDerivative(B(-i) + A(-i), A(-j), A(-n)) ucode_str = """\ 2 \n\ ∂ ⎛ ⎞\n\ ───────⎜A + B ⎟\n\ ⎝ i i⎠\n\ ∂A ∂A \n\ n j \ """ assert upretty(expr) == ucode_str expr = PartialDerivative(3*A(-i), A(-j), A(-n)) ucode_str = """\ 2 \n\ ∂ ⎛ ⎞\n\ ───────⎜3⋅A ⎟\n\ ⎝ i⎠\n\ ∂A ∂A \n\ n j \ """ assert upretty(expr) == ucode_str expr = TensorElement(H(i, j), {i:1}) ascii_str = \ """\ i=1,j\n\ H \n\ \ """ ucode_str = ascii_str assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = TensorElement(H(i, j), {i: 1, j: 1}) ascii_str = \ """\ i=1,j=1\n\ H \n\ \ """ ucode_str = ascii_str assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = TensorElement(H(i, j), {j: 1}) ascii_str = \ """\ i,j=1\n\ H \n\ \ """ ucode_str = ascii_str expr = TensorElement(H(-i, j), {-i: 1}) ascii_str = \ """\ j\n\ H \n\ i=1 \ """ ucode_str = ascii_str assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_issue_15560(): a = MatrixSymbol('a', 1, 1) e = pretty(a*(KroneckerProduct(a, a))) result = 'a*(a x a)' assert e == result def test_print_lerchphi(): # Part of issue 6013 a = Symbol('a') pretty(lerchphi(a, 1, 2)) uresult = 'Φ(a, 1, 2)' aresult = 'lerchphi(a, 1, 2)' assert pretty(lerchphi(a, 1, 2)) == aresult assert upretty(lerchphi(a, 1, 2)) == uresult def test_issue_15583(): N = mechanics.ReferenceFrame('N') result = '(n_x, n_y, n_z)' e = pretty((N.x, N.y, N.z)) assert e == result def test_matrixSymbolBold(): # Issue 15871 def boldpretty(expr): return xpretty(expr, use_unicode=True, wrap_line=False, mat_symbol_style="bold") from sympy import trace A = MatrixSymbol("A", 2, 2) assert boldpretty(trace(A)) == 'tr(𝐀)' A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) C = MatrixSymbol("C", 3, 3) assert boldpretty(-A) == '-𝐀' assert boldpretty(A - A*B - B) == '-𝐁 -𝐀⋅𝐁 + 𝐀' assert boldpretty(-A*B - A*B*C - B) == '-𝐁 -𝐀⋅𝐁 -𝐀⋅𝐁⋅𝐂' A = MatrixSymbol("Addot", 3, 3) assert boldpretty(A) == '𝐀̈' omega = MatrixSymbol("omega", 3, 3) assert boldpretty(omega) == 'ω' omega = MatrixSymbol("omeganorm", 3, 3) assert boldpretty(omega) == '‖ω‖' a = Symbol('alpha') b = Symbol('b') c = MatrixSymbol("c", 3, 1) d = MatrixSymbol("d", 3, 1) assert boldpretty(a*B*c+b*d) == 'b⋅𝐝 + α⋅𝐁⋅𝐜' d = MatrixSymbol("delta", 3, 1) B = MatrixSymbol("Beta", 3, 3) assert boldpretty(a*B*c+b*d) == 'b⋅δ + α⋅Β⋅𝐜' A = MatrixSymbol("A_2", 3, 3) assert boldpretty(A) == '𝐀₂' def test_center_accent(): assert center_accent('a', '\N{COMBINING TILDE}') == 'ã' assert center_accent('aa', '\N{COMBINING TILDE}') == 'aã' assert center_accent('aaa', '\N{COMBINING TILDE}') == 'aãa' assert center_accent('aaaa', '\N{COMBINING TILDE}') == 'aaãa' assert center_accent('aaaaa', '\N{COMBINING TILDE}') == 'aaãaa' assert center_accent('abcdefg', '\N{COMBINING FOUR DOTS ABOVE}') == 'abcd⃜efg' def test_imaginary_unit(): from sympy import pretty # As it is redefined above assert pretty(1 + I, use_unicode=False) == '1 + I' assert pretty(1 + I, use_unicode=True) == '1 + ⅈ' assert pretty(1 + I, use_unicode=False, imaginary_unit='j') == '1 + I' assert pretty(1 + I, use_unicode=True, imaginary_unit='j') == '1 + ⅉ' raises(TypeError, lambda: pretty(I, imaginary_unit=I)) raises(ValueError, lambda: pretty(I, imaginary_unit="kkk")) def test_str_special_matrices(): from sympy.matrices import Identity, ZeroMatrix, OneMatrix assert pretty(Identity(4)) == 'I' assert upretty(Identity(4)) == '𝕀' assert pretty(ZeroMatrix(2, 2)) == '0' assert upretty(ZeroMatrix(2, 2)) == '𝟘' assert pretty(OneMatrix(2, 2)) == '1' assert upretty(OneMatrix(2, 2)) == '𝟙' def test_pretty_misc_functions(): assert pretty(LambertW(x)) == 'W(x)' assert upretty(LambertW(x)) == 'W(x)' assert pretty(LambertW(x, y)) == 'W(x, y)' assert upretty(LambertW(x, y)) == 'W(x, y)' assert pretty(airyai(x)) == 'Ai(x)' assert upretty(airyai(x)) == 'Ai(x)' assert pretty(airybi(x)) == 'Bi(x)' assert upretty(airybi(x)) == 'Bi(x)' assert pretty(airyaiprime(x)) == "Ai'(x)" assert upretty(airyaiprime(x)) == "Ai'(x)" assert pretty(airybiprime(x)) == "Bi'(x)" assert upretty(airybiprime(x)) == "Bi'(x)" assert pretty(fresnelc(x)) == 'C(x)' assert upretty(fresnelc(x)) == 'C(x)' assert pretty(fresnels(x)) == 'S(x)' assert upretty(fresnels(x)) == 'S(x)' assert pretty(Heaviside(x)) == 'Heaviside(x)' assert upretty(Heaviside(x)) == 'θ(x)' assert pretty(Heaviside(x, y)) == 'Heaviside(x, y)' assert upretty(Heaviside(x, y)) == 'θ(x, y)' assert pretty(dirichlet_eta(x)) == 'dirichlet_eta(x)' assert upretty(dirichlet_eta(x)) == 'η(x)' def test_hadamard_power(): m, n, p = symbols('m, n, p', integer=True) A = MatrixSymbol('A', m, n) B = MatrixSymbol('B', m, n) # Testing printer: expr = hadamard_power(A, n) ascii_str = \ """\ .n\n\ A \ """ ucode_str = \ """\ ∘n\n\ A \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hadamard_power(A, 1+n) ascii_str = \ """\ .(n + 1)\n\ A \ """ ucode_str = \ """\ ∘(n + 1)\n\ A \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hadamard_power(A*B.T, 1+n) ascii_str = \ """\ .(n + 1)\n\ / T\\ \n\ \\A*B / \ """ ucode_str = \ """\ ∘(n + 1)\n\ ⎛ T⎞ \n\ ⎝A⋅B ⎠ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_issue_17258(): n = Symbol('n', integer=True) assert pretty(Sum(n, (n, -oo, 1))) == \ ' 1 \n'\ ' __ \n'\ ' \\ ` \n'\ ' ) n\n'\ ' /_, \n'\ 'n = -oo ' assert upretty(Sum(n, (n, -oo, 1))) == \ """\ 1 \n\ ___ \n\ ╲ \n\ ╲ \n\ ╱ n\n\ ╱ \n\ ‾‾‾ \n\ n = -∞ \ """ def test_is_combining(): line = "v̇_m" assert [is_combining(sym) for sym in line] == \ [False, True, False, False] def test_issue_17616(): assert pretty(pi**(1/exp(1))) == \ ' / -1\\\n'\ ' \\e /\n'\ 'pi ' assert upretty(pi**(1/exp(1))) == \ ' ⎛ -1⎞\n'\ ' ⎝ℯ ⎠\n'\ 'π ' assert pretty(pi**(1/pi)) == \ ' 1 \n'\ ' --\n'\ ' pi\n'\ 'pi ' assert upretty(pi**(1/pi)) == \ ' 1\n'\ ' ─\n'\ ' π\n'\ 'π ' assert pretty(pi**(1/EulerGamma)) == \ ' 1 \n'\ ' ----------\n'\ ' EulerGamma\n'\ 'pi ' assert upretty(pi**(1/EulerGamma)) == \ ' 1\n'\ ' ─\n'\ ' γ\n'\ 'π ' z = Symbol("x_17") assert upretty(7**(1/z)) == \ 'x₁₇___\n'\ ' ╲╱ 7 ' assert pretty(7**(1/z)) == \ 'x_17___\n'\ ' \\/ 7 ' def test_issue_17857(): assert pretty(Range(-oo, oo)) == '{..., -1, 0, 1, ...}' assert pretty(Range(oo, -oo, -1)) == '{..., 1, 0, -1, ...}' def test_issue_18272(): x = Symbol('x') n = Symbol('n') assert upretty(ConditionSet(x, Eq(-x + exp(x), 0), S.Complexes)) == \ '⎧ ⎛ x ⎞⎫\n'\ '⎨x | x ∊ ℂ ∧ ⎝-x + ℯ = 0⎠⎬\n'\ '⎩ ⎭' assert upretty(ConditionSet(x, Contains(n/2, Interval(0, oo)), FiniteSet(-n/2, n/2))) == \ '⎧ ⎧-n n⎫ ⎛n ⎞⎫\n'\ '⎨x | x ∊ ⎨───, ─⎬ ∧ ⎜─ ∈ [0, ∞)⎟⎬\n'\ '⎩ ⎩ 2 2⎭ ⎝2 ⎠⎭' assert upretty(ConditionSet(x, Eq(Piecewise((1, x >= 3), (x/2 - 1/2, x >= 2), (1/2, x >= 1), (x/2, True)) - 1/2, 0), Interval(0, 3))) == \ '⎧ ⎛⎛⎧ 1 for x ≥ 3⎞ ⎞⎫\n'\ '⎪ ⎜⎜⎪ ⎟ ⎟⎪\n'\ '⎪ ⎜⎜⎪x ⎟ ⎟⎪\n'\ '⎪ ⎜⎜⎪─ - 0.5 for x ≥ 2⎟ ⎟⎪\n'\ '⎪ ⎜⎜⎪2 ⎟ ⎟⎪\n'\ '⎨x | x ∊ [0, 3] ∧ ⎜⎜⎨ ⎟ - 0.5 = 0⎟⎬\n'\ '⎪ ⎜⎜⎪ 0.5 for x ≥ 1⎟ ⎟⎪\n'\ '⎪ ⎜⎜⎪ ⎟ ⎟⎪\n'\ '⎪ ⎜⎜⎪ x ⎟ ⎟⎪\n'\ '⎪ ⎜⎜⎪ ─ otherwise⎟ ⎟⎪\n'\ '⎩ ⎝⎝⎩ 2 ⎠ ⎠⎭' def test_Str(): from sympy.core.symbol import Str assert pretty(Str('x')) == 'x' def test_diffgeom(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField x,y = symbols('x y', real=True) m = Manifold('M', 2) assert pretty(m) == 'M' p = Patch('P', m) assert pretty(p) == "P" rect = CoordSystem('rect', p, [x, y]) assert pretty(rect) == "rect" b = BaseScalarField(rect, 0) assert pretty(b) == "x"
05ebd6d444310eb5ab4a921a04521bffbbcb7ed6b86975e8d2ec8bdb188419df
"""Test whether all elements of cls.args are instances of Basic. """ # NOTE: keep tests sorted by (module, class name) key. If a class can't # be instantiated, add it here anyway with @SKIP("abstract class) (see # e.g. Function). import os import re from sympy import (Basic, S, symbols, sqrt, sin, oo, Interval, exp, Lambda, pi, Eq, log, Function, Rational) from sympy.testing.pytest import XFAIL, SKIP a, b, c, x, y, z = symbols('a,b,c,x,y,z') whitelist = [ "sympy.assumptions.predicates", # tested by test_predicates() ] def test_all_classes_are_tested(): this = os.path.split(__file__)[0] path = os.path.join(this, os.pardir, os.pardir) sympy_path = os.path.abspath(path) prefix = os.path.split(sympy_path)[0] + os.sep re_cls = re.compile(r"^class ([A-Za-z][A-Za-z0-9_]*)\s*\(", re.MULTILINE) modules = {} for root, dirs, files in os.walk(sympy_path): module = root.replace(prefix, "").replace(os.sep, ".") if module in whitelist: continue for file in files: if file.startswith(("_", "test_", "bench_")): continue if not file.endswith(".py"): continue with open(os.path.join(root, file), encoding='utf-8') as f: text = f.read() submodule = module + '.' + file[:-3] names = re_cls.findall(text) if not names: continue try: mod = __import__(submodule, fromlist=names) except ImportError: continue def is_Basic(name): cls = getattr(mod, name) if hasattr(cls, '_sympy_deprecated_func'): cls = cls._sympy_deprecated_func if not isinstance(cls, type): # check instance of singleton class with same name cls = type(cls) return issubclass(cls, Basic) names = list(filter(is_Basic, names)) if names: modules[submodule] = names ns = globals() failed = [] for module, names in modules.items(): mod = module.replace('.', '__') for name in names: test = 'test_' + mod + '__' + name if test not in ns: failed.append(module + '.' + name) assert not failed, "Missing classes: %s. Please add tests for these to sympy/core/tests/test_args.py." % ", ".join(failed) def _test_args(obj): all_basic = all(isinstance(arg, Basic) for arg in obj.args) # Ideally obj.func(*obj.args) would always recreate the object, but for # now, we only require it for objects with non-empty .args recreatable = not obj.args or obj.func(*obj.args) == obj return all_basic and recreatable def test_sympy__assumptions__assume__AppliedPredicate(): from sympy.assumptions.assume import AppliedPredicate, Predicate from sympy import Q assert _test_args(AppliedPredicate(Predicate("test"), 2)) assert _test_args(Q.is_true(True)) @SKIP("abstract class") def test_sympy__assumptions__assume__Predicate(): pass def test_predicates(): from sympy.assumptions.ask import get_known_facts_keys predicates = get_known_facts_keys() for p in predicates: assert _test_args(p) def test_sympy__assumptions__assume__UndefinedPredicate(): from sympy.assumptions.assume import Predicate assert _test_args(Predicate("test")) def test_sympy__assumptions__sathandlers__UnevaluatedOnFree(): from sympy.assumptions.sathandlers import UnevaluatedOnFree from sympy import Q assert _test_args(UnevaluatedOnFree(Q.positive)) def test_sympy__assumptions__sathandlers__AllArgs(): from sympy.assumptions.sathandlers import AllArgs from sympy import Q assert _test_args(AllArgs(Q.positive)) def test_sympy__assumptions__sathandlers__AnyArgs(): from sympy.assumptions.sathandlers import AnyArgs from sympy import Q assert _test_args(AnyArgs(Q.positive)) def test_sympy__assumptions__sathandlers__ExactlyOneArg(): from sympy.assumptions.sathandlers import ExactlyOneArg from sympy import Q assert _test_args(ExactlyOneArg(Q.positive)) def test_sympy__assumptions__sathandlers__CheckOldAssump(): from sympy.assumptions.sathandlers import CheckOldAssump from sympy import Q assert _test_args(CheckOldAssump(Q.positive)) def test_sympy__assumptions__sathandlers__CheckIsPrime(): from sympy.assumptions.sathandlers import CheckIsPrime from sympy import Q # Input must be a number assert _test_args(CheckIsPrime(Q.positive)) @SKIP("abstract Class") def test_sympy__codegen__ast__AssignmentBase(): from sympy.codegen.ast import AssignmentBase assert _test_args(AssignmentBase(x, 1)) @SKIP("abstract Class") def test_sympy__codegen__ast__AugmentedAssignment(): from sympy.codegen.ast import AugmentedAssignment assert _test_args(AugmentedAssignment(x, 1)) def test_sympy__codegen__ast__AddAugmentedAssignment(): from sympy.codegen.ast import AddAugmentedAssignment assert _test_args(AddAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__SubAugmentedAssignment(): from sympy.codegen.ast import SubAugmentedAssignment assert _test_args(SubAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__MulAugmentedAssignment(): from sympy.codegen.ast import MulAugmentedAssignment assert _test_args(MulAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__DivAugmentedAssignment(): from sympy.codegen.ast import DivAugmentedAssignment assert _test_args(DivAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__ModAugmentedAssignment(): from sympy.codegen.ast import ModAugmentedAssignment assert _test_args(ModAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__CodeBlock(): from sympy.codegen.ast import CodeBlock, Assignment assert _test_args(CodeBlock(Assignment(x, 1), Assignment(y, 2))) def test_sympy__codegen__ast__For(): from sympy.codegen.ast import For, CodeBlock, AddAugmentedAssignment from sympy import Range assert _test_args(For(x, Range(10), CodeBlock(AddAugmentedAssignment(y, 1)))) def test_sympy__codegen__ast__Token(): from sympy.codegen.ast import Token assert _test_args(Token()) def test_sympy__codegen__ast__ContinueToken(): from sympy.codegen.ast import ContinueToken assert _test_args(ContinueToken()) def test_sympy__codegen__ast__BreakToken(): from sympy.codegen.ast import BreakToken assert _test_args(BreakToken()) def test_sympy__codegen__ast__NoneToken(): from sympy.codegen.ast import NoneToken assert _test_args(NoneToken()) def test_sympy__codegen__ast__String(): from sympy.codegen.ast import String assert _test_args(String('foobar')) def test_sympy__codegen__ast__QuotedString(): from sympy.codegen.ast import QuotedString assert _test_args(QuotedString('foobar')) def test_sympy__codegen__ast__Comment(): from sympy.codegen.ast import Comment assert _test_args(Comment('this is a comment')) def test_sympy__codegen__ast__Node(): from sympy.codegen.ast import Node assert _test_args(Node()) assert _test_args(Node(attrs={1, 2, 3})) def test_sympy__codegen__ast__Type(): from sympy.codegen.ast import Type assert _test_args(Type('float128')) def test_sympy__codegen__ast__IntBaseType(): from sympy.codegen.ast import IntBaseType assert _test_args(IntBaseType('bigint')) def test_sympy__codegen__ast___SizedIntType(): from sympy.codegen.ast import _SizedIntType assert _test_args(_SizedIntType('int128', 128)) def test_sympy__codegen__ast__SignedIntType(): from sympy.codegen.ast import SignedIntType assert _test_args(SignedIntType('int128_with_sign', 128)) def test_sympy__codegen__ast__UnsignedIntType(): from sympy.codegen.ast import UnsignedIntType assert _test_args(UnsignedIntType('unt128', 128)) def test_sympy__codegen__ast__FloatBaseType(): from sympy.codegen.ast import FloatBaseType assert _test_args(FloatBaseType('positive_real')) def test_sympy__codegen__ast__FloatType(): from sympy.codegen.ast import FloatType assert _test_args(FloatType('float242', 242, nmant=142, nexp=99)) def test_sympy__codegen__ast__ComplexBaseType(): from sympy.codegen.ast import ComplexBaseType assert _test_args(ComplexBaseType('positive_cmplx')) def test_sympy__codegen__ast__ComplexType(): from sympy.codegen.ast import ComplexType assert _test_args(ComplexType('complex42', 42, nmant=15, nexp=5)) def test_sympy__codegen__ast__Attribute(): from sympy.codegen.ast import Attribute assert _test_args(Attribute('noexcept')) def test_sympy__codegen__ast__Variable(): from sympy.codegen.ast import Variable, Type, value_const assert _test_args(Variable(x)) assert _test_args(Variable(y, Type('float32'), {value_const})) assert _test_args(Variable(z, type=Type('float64'))) def test_sympy__codegen__ast__Pointer(): from sympy.codegen.ast import Pointer, Type, pointer_const assert _test_args(Pointer(x)) assert _test_args(Pointer(y, type=Type('float32'))) assert _test_args(Pointer(z, Type('float64'), {pointer_const})) def test_sympy__codegen__ast__Declaration(): from sympy.codegen.ast import Declaration, Variable, Type vx = Variable(x, type=Type('float')) assert _test_args(Declaration(vx)) def test_sympy__codegen__ast__While(): from sympy.codegen.ast import While, AddAugmentedAssignment assert _test_args(While(abs(x) < 1, [AddAugmentedAssignment(x, -1)])) def test_sympy__codegen__ast__Scope(): from sympy.codegen.ast import Scope, AddAugmentedAssignment assert _test_args(Scope([AddAugmentedAssignment(x, -1)])) def test_sympy__codegen__ast__Stream(): from sympy.codegen.ast import Stream assert _test_args(Stream('stdin')) def test_sympy__codegen__ast__Print(): from sympy.codegen.ast import Print assert _test_args(Print([x, y])) assert _test_args(Print([x, y], "%d %d")) def test_sympy__codegen__ast__FunctionPrototype(): from sympy.codegen.ast import FunctionPrototype, real, Declaration, Variable inp_x = Declaration(Variable(x, type=real)) assert _test_args(FunctionPrototype(real, 'pwer', [inp_x])) def test_sympy__codegen__ast__FunctionDefinition(): from sympy.codegen.ast import FunctionDefinition, real, Declaration, Variable, Assignment inp_x = Declaration(Variable(x, type=real)) assert _test_args(FunctionDefinition(real, 'pwer', [inp_x], [Assignment(x, x**2)])) def test_sympy__codegen__ast__Return(): from sympy.codegen.ast import Return assert _test_args(Return(x)) def test_sympy__codegen__ast__FunctionCall(): from sympy.codegen.ast import FunctionCall assert _test_args(FunctionCall('pwer', [x])) def test_sympy__codegen__ast__Element(): from sympy.codegen.ast import Element assert _test_args(Element('x', range(3))) def test_sympy__codegen__cnodes__CommaOperator(): from sympy.codegen.cnodes import CommaOperator assert _test_args(CommaOperator(1, 2)) def test_sympy__codegen__cnodes__goto(): from sympy.codegen.cnodes import goto assert _test_args(goto('early_exit')) def test_sympy__codegen__cnodes__Label(): from sympy.codegen.cnodes import Label assert _test_args(Label('early_exit')) def test_sympy__codegen__cnodes__PreDecrement(): from sympy.codegen.cnodes import PreDecrement assert _test_args(PreDecrement(x)) def test_sympy__codegen__cnodes__PostDecrement(): from sympy.codegen.cnodes import PostDecrement assert _test_args(PostDecrement(x)) def test_sympy__codegen__cnodes__PreIncrement(): from sympy.codegen.cnodes import PreIncrement assert _test_args(PreIncrement(x)) def test_sympy__codegen__cnodes__PostIncrement(): from sympy.codegen.cnodes import PostIncrement assert _test_args(PostIncrement(x)) def test_sympy__codegen__cnodes__struct(): from sympy.codegen.ast import real, Variable from sympy.codegen.cnodes import struct assert _test_args(struct(declarations=[ Variable(x, type=real), Variable(y, type=real) ])) def test_sympy__codegen__cnodes__union(): from sympy.codegen.ast import float32, int32, Variable from sympy.codegen.cnodes import union assert _test_args(union(declarations=[ Variable(x, type=float32), Variable(y, type=int32) ])) def test_sympy__codegen__cxxnodes__using(): from sympy.codegen.cxxnodes import using assert _test_args(using('std::vector')) assert _test_args(using('std::vector', 'vec')) def test_sympy__codegen__fnodes__Program(): from sympy.codegen.fnodes import Program assert _test_args(Program('foobar', [])) def test_sympy__codegen__fnodes__Module(): from sympy.codegen.fnodes import Module assert _test_args(Module('foobar', [], [])) def test_sympy__codegen__fnodes__Subroutine(): from sympy.codegen.fnodes import Subroutine x = symbols('x', real=True) assert _test_args(Subroutine('foo', [x], [])) def test_sympy__codegen__fnodes__GoTo(): from sympy.codegen.fnodes import GoTo assert _test_args(GoTo([10])) assert _test_args(GoTo([10, 20], x > 1)) def test_sympy__codegen__fnodes__FortranReturn(): from sympy.codegen.fnodes import FortranReturn assert _test_args(FortranReturn(10)) def test_sympy__codegen__fnodes__Extent(): from sympy.codegen.fnodes import Extent assert _test_args(Extent()) assert _test_args(Extent(None)) assert _test_args(Extent(':')) assert _test_args(Extent(-3, 4)) assert _test_args(Extent(x, y)) def test_sympy__codegen__fnodes__use_rename(): from sympy.codegen.fnodes import use_rename assert _test_args(use_rename('loc', 'glob')) def test_sympy__codegen__fnodes__use(): from sympy.codegen.fnodes import use assert _test_args(use('modfoo', only='bar')) def test_sympy__codegen__fnodes__SubroutineCall(): from sympy.codegen.fnodes import SubroutineCall assert _test_args(SubroutineCall('foo', ['bar', 'baz'])) def test_sympy__codegen__fnodes__Do(): from sympy.codegen.fnodes import Do assert _test_args(Do([], 'i', 1, 42)) def test_sympy__codegen__fnodes__ImpliedDoLoop(): from sympy.codegen.fnodes import ImpliedDoLoop assert _test_args(ImpliedDoLoop('i', 'i', 1, 42)) def test_sympy__codegen__fnodes__ArrayConstructor(): from sympy.codegen.fnodes import ArrayConstructor assert _test_args(ArrayConstructor([1, 2, 3])) from sympy.codegen.fnodes import ImpliedDoLoop idl = ImpliedDoLoop('i', 'i', 1, 42) assert _test_args(ArrayConstructor([1, idl, 3])) def test_sympy__codegen__fnodes__sum_(): from sympy.codegen.fnodes import sum_ assert _test_args(sum_('arr')) def test_sympy__codegen__fnodes__product_(): from sympy.codegen.fnodes import product_ assert _test_args(product_('arr')) def test_sympy__codegen__numpy_nodes__logaddexp(): from sympy.codegen.numpy_nodes import logaddexp assert _test_args(logaddexp(x, y)) def test_sympy__codegen__numpy_nodes__logaddexp2(): from sympy.codegen.numpy_nodes import logaddexp2 assert _test_args(logaddexp2(x, y)) def test_sympy__codegen__scipy_nodes__cosm1(): from sympy.codegen.scipy_nodes import cosm1 assert _test_args(cosm1(x)) @XFAIL def test_sympy__combinatorics__graycode__GrayCode(): from sympy.combinatorics.graycode import GrayCode # an integer is given and returned from GrayCode as the arg assert _test_args(GrayCode(3, start='100')) assert _test_args(GrayCode(3, rank=1)) def test_sympy__combinatorics__subsets__Subset(): from sympy.combinatorics.subsets import Subset assert _test_args(Subset([0, 1], [0, 1, 2, 3])) assert _test_args(Subset(['c', 'd'], ['a', 'b', 'c', 'd'])) def test_sympy__combinatorics__permutations__Permutation(): from sympy.combinatorics.permutations import Permutation assert _test_args(Permutation([0, 1, 2, 3])) def test_sympy__combinatorics__permutations__AppliedPermutation(): from sympy.combinatorics.permutations import Permutation from sympy.combinatorics.permutations import AppliedPermutation p = Permutation([0, 1, 2, 3]) assert _test_args(AppliedPermutation(p, 1)) def test_sympy__combinatorics__perm_groups__PermutationGroup(): from sympy.combinatorics.permutations import Permutation from sympy.combinatorics.perm_groups import PermutationGroup assert _test_args(PermutationGroup([Permutation([0, 1])])) def test_sympy__combinatorics__polyhedron__Polyhedron(): from sympy.combinatorics.permutations import Permutation from sympy.combinatorics.polyhedron import Polyhedron from sympy.abc import w, x, y, z pgroup = [Permutation([[0, 1, 2], [3]]), Permutation([[0, 1, 3], [2]]), Permutation([[0, 2, 3], [1]]), Permutation([[1, 2, 3], [0]]), Permutation([[0, 1], [2, 3]]), Permutation([[0, 2], [1, 3]]), Permutation([[0, 3], [1, 2]]), Permutation([[0, 1, 2, 3]])] corners = [w, x, y, z] faces = [(w, x, y), (w, y, z), (w, z, x), (x, y, z)] assert _test_args(Polyhedron(corners, faces, pgroup)) @XFAIL def test_sympy__combinatorics__prufer__Prufer(): from sympy.combinatorics.prufer import Prufer assert _test_args(Prufer([[0, 1], [0, 2], [0, 3]], 4)) def test_sympy__combinatorics__partitions__Partition(): from sympy.combinatorics.partitions import Partition assert _test_args(Partition([1])) @XFAIL def test_sympy__combinatorics__partitions__IntegerPartition(): from sympy.combinatorics.partitions import IntegerPartition assert _test_args(IntegerPartition([1])) def test_sympy__concrete__products__Product(): from sympy.concrete.products import Product assert _test_args(Product(x, (x, 0, 10))) assert _test_args(Product(x, (x, 0, y), (y, 0, 10))) @SKIP("abstract Class") def test_sympy__concrete__expr_with_limits__ExprWithLimits(): from sympy.concrete.expr_with_limits import ExprWithLimits assert _test_args(ExprWithLimits(x, (x, 0, 10))) assert _test_args(ExprWithLimits(x*y, (x, 0, 10.),(y,1.,3))) @SKIP("abstract Class") def test_sympy__concrete__expr_with_limits__AddWithLimits(): from sympy.concrete.expr_with_limits import AddWithLimits assert _test_args(AddWithLimits(x, (x, 0, 10))) assert _test_args(AddWithLimits(x*y, (x, 0, 10),(y,1,3))) @SKIP("abstract Class") def test_sympy__concrete__expr_with_intlimits__ExprWithIntLimits(): from sympy.concrete.expr_with_intlimits import ExprWithIntLimits assert _test_args(ExprWithIntLimits(x, (x, 0, 10))) assert _test_args(ExprWithIntLimits(x*y, (x, 0, 10),(y,1,3))) def test_sympy__concrete__summations__Sum(): from sympy.concrete.summations import Sum assert _test_args(Sum(x, (x, 0, 10))) assert _test_args(Sum(x, (x, 0, y), (y, 0, 10))) def test_sympy__core__add__Add(): from sympy.core.add import Add assert _test_args(Add(x, y, z, 2)) def test_sympy__core__basic__Atom(): from sympy.core.basic import Atom assert _test_args(Atom()) def test_sympy__core__basic__Basic(): from sympy.core.basic import Basic assert _test_args(Basic()) def test_sympy__core__containers__Dict(): from sympy.core.containers import Dict assert _test_args(Dict({x: y, y: z})) def test_sympy__core__containers__Tuple(): from sympy.core.containers import Tuple assert _test_args(Tuple(x, y, z, 2)) def test_sympy__core__expr__AtomicExpr(): from sympy.core.expr import AtomicExpr assert _test_args(AtomicExpr()) def test_sympy__core__expr__Expr(): from sympy.core.expr import Expr assert _test_args(Expr()) def test_sympy__core__expr__UnevaluatedExpr(): from sympy.core.expr import UnevaluatedExpr from sympy.abc import x assert _test_args(UnevaluatedExpr(x)) def test_sympy__core__function__Application(): from sympy.core.function import Application assert _test_args(Application(1, 2, 3)) def test_sympy__core__function__AppliedUndef(): from sympy.core.function import AppliedUndef assert _test_args(AppliedUndef(1, 2, 3)) def test_sympy__core__function__Derivative(): from sympy.core.function import Derivative assert _test_args(Derivative(2, x, y, 3)) @SKIP("abstract class") def test_sympy__core__function__Function(): pass def test_sympy__core__function__Lambda(): assert _test_args(Lambda((x, y), x + y + z)) def test_sympy__core__function__Subs(): from sympy.core.function import Subs assert _test_args(Subs(x + y, x, 2)) def test_sympy__core__function__WildFunction(): from sympy.core.function import WildFunction assert _test_args(WildFunction('f')) def test_sympy__core__mod__Mod(): from sympy.core.mod import Mod assert _test_args(Mod(x, 2)) def test_sympy__core__mul__Mul(): from sympy.core.mul import Mul assert _test_args(Mul(2, x, y, z)) def test_sympy__core__numbers__Catalan(): from sympy.core.numbers import Catalan assert _test_args(Catalan()) def test_sympy__core__numbers__ComplexInfinity(): from sympy.core.numbers import ComplexInfinity assert _test_args(ComplexInfinity()) def test_sympy__core__numbers__EulerGamma(): from sympy.core.numbers import EulerGamma assert _test_args(EulerGamma()) def test_sympy__core__numbers__Exp1(): from sympy.core.numbers import Exp1 assert _test_args(Exp1()) def test_sympy__core__numbers__Float(): from sympy.core.numbers import Float assert _test_args(Float(1.23)) def test_sympy__core__numbers__GoldenRatio(): from sympy.core.numbers import GoldenRatio assert _test_args(GoldenRatio()) def test_sympy__core__numbers__TribonacciConstant(): from sympy.core.numbers import TribonacciConstant assert _test_args(TribonacciConstant()) def test_sympy__core__numbers__Half(): from sympy.core.numbers import Half assert _test_args(Half()) def test_sympy__core__numbers__ImaginaryUnit(): from sympy.core.numbers import ImaginaryUnit assert _test_args(ImaginaryUnit()) def test_sympy__core__numbers__Infinity(): from sympy.core.numbers import Infinity assert _test_args(Infinity()) def test_sympy__core__numbers__Integer(): from sympy.core.numbers import Integer assert _test_args(Integer(7)) @SKIP("abstract class") def test_sympy__core__numbers__IntegerConstant(): pass def test_sympy__core__numbers__NaN(): from sympy.core.numbers import NaN assert _test_args(NaN()) def test_sympy__core__numbers__NegativeInfinity(): from sympy.core.numbers import NegativeInfinity assert _test_args(NegativeInfinity()) def test_sympy__core__numbers__NegativeOne(): from sympy.core.numbers import NegativeOne assert _test_args(NegativeOne()) def test_sympy__core__numbers__Number(): from sympy.core.numbers import Number assert _test_args(Number(1, 7)) def test_sympy__core__numbers__NumberSymbol(): from sympy.core.numbers import NumberSymbol assert _test_args(NumberSymbol()) def test_sympy__core__numbers__One(): from sympy.core.numbers import One assert _test_args(One()) def test_sympy__core__numbers__Pi(): from sympy.core.numbers import Pi assert _test_args(Pi()) def test_sympy__core__numbers__Rational(): from sympy.core.numbers import Rational assert _test_args(Rational(1, 7)) @SKIP("abstract class") def test_sympy__core__numbers__RationalConstant(): pass def test_sympy__core__numbers__Zero(): from sympy.core.numbers import Zero assert _test_args(Zero()) @SKIP("abstract class") def test_sympy__core__operations__AssocOp(): pass @SKIP("abstract class") def test_sympy__core__operations__LatticeOp(): pass def test_sympy__core__power__Pow(): from sympy.core.power import Pow assert _test_args(Pow(x, 2)) def test_sympy__algebras__quaternion__Quaternion(): from sympy.algebras.quaternion import Quaternion assert _test_args(Quaternion(x, 1, 2, 3)) def test_sympy__core__relational__Equality(): from sympy.core.relational import Equality assert _test_args(Equality(x, 2)) def test_sympy__core__relational__GreaterThan(): from sympy.core.relational import GreaterThan assert _test_args(GreaterThan(x, 2)) def test_sympy__core__relational__LessThan(): from sympy.core.relational import LessThan assert _test_args(LessThan(x, 2)) @SKIP("abstract class") def test_sympy__core__relational__Relational(): pass def test_sympy__core__relational__StrictGreaterThan(): from sympy.core.relational import StrictGreaterThan assert _test_args(StrictGreaterThan(x, 2)) def test_sympy__core__relational__StrictLessThan(): from sympy.core.relational import StrictLessThan assert _test_args(StrictLessThan(x, 2)) def test_sympy__core__relational__Unequality(): from sympy.core.relational import Unequality assert _test_args(Unequality(x, 2)) def test_sympy__sandbox__indexed_integrals__IndexedIntegral(): from sympy.tensor import IndexedBase, Idx from sympy.sandbox.indexed_integrals import IndexedIntegral A = IndexedBase('A') i, j = symbols('i j', integer=True) a1, a2 = symbols('a1:3', cls=Idx) assert _test_args(IndexedIntegral(A[a1], A[a2])) assert _test_args(IndexedIntegral(A[i], A[j])) def test_sympy__calculus__util__AccumulationBounds(): from sympy.calculus.util import AccumulationBounds assert _test_args(AccumulationBounds(0, 1)) def test_sympy__sets__ordinals__OmegaPower(): from sympy.sets.ordinals import OmegaPower assert _test_args(OmegaPower(1, 1)) def test_sympy__sets__ordinals__Ordinal(): from sympy.sets.ordinals import Ordinal, OmegaPower assert _test_args(Ordinal(OmegaPower(2, 1))) def test_sympy__sets__ordinals__OrdinalOmega(): from sympy.sets.ordinals import OrdinalOmega assert _test_args(OrdinalOmega()) def test_sympy__sets__ordinals__OrdinalZero(): from sympy.sets.ordinals import OrdinalZero assert _test_args(OrdinalZero()) def test_sympy__sets__powerset__PowerSet(): from sympy.sets.powerset import PowerSet from sympy.core.singleton import S assert _test_args(PowerSet(S.EmptySet)) def test_sympy__sets__sets__EmptySet(): from sympy.sets.sets import EmptySet assert _test_args(EmptySet()) def test_sympy__sets__sets__UniversalSet(): from sympy.sets.sets import UniversalSet assert _test_args(UniversalSet()) def test_sympy__sets__sets__FiniteSet(): from sympy.sets.sets import FiniteSet assert _test_args(FiniteSet(x, y, z)) def test_sympy__sets__sets__Interval(): from sympy.sets.sets import Interval assert _test_args(Interval(0, 1)) def test_sympy__sets__sets__ProductSet(): from sympy.sets.sets import ProductSet, Interval assert _test_args(ProductSet(Interval(0, 1), Interval(0, 1))) @SKIP("does it make sense to test this?") def test_sympy__sets__sets__Set(): from sympy.sets.sets import Set assert _test_args(Set()) def test_sympy__sets__sets__Intersection(): from sympy.sets.sets import Intersection, Interval from sympy.core.symbol import Symbol x = Symbol('x') y = Symbol('y') S = Intersection(Interval(0, x), Interval(y, 1)) assert isinstance(S, Intersection) assert _test_args(S) def test_sympy__sets__sets__Union(): from sympy.sets.sets import Union, Interval assert _test_args(Union(Interval(0, 1), Interval(2, 3))) def test_sympy__sets__sets__Complement(): from sympy.sets.sets import Complement assert _test_args(Complement(Interval(0, 2), Interval(0, 1))) def test_sympy__sets__sets__SymmetricDifference(): from sympy.sets.sets import FiniteSet, SymmetricDifference assert _test_args(SymmetricDifference(FiniteSet(1, 2, 3), \ FiniteSet(2, 3, 4))) def test_sympy__sets__sets__DisjointUnion(): from sympy.sets.sets import FiniteSet, DisjointUnion assert _test_args(DisjointUnion(FiniteSet(1, 2, 3), \ FiniteSet(2, 3, 4))) def test_sympy__core__trace__Tr(): from sympy.core.trace import Tr a, b = symbols('a b') assert _test_args(Tr(a + b)) def test_sympy__sets__setexpr__SetExpr(): from sympy.sets.setexpr import SetExpr assert _test_args(SetExpr(Interval(0, 1))) def test_sympy__sets__fancysets__Rationals(): from sympy.sets.fancysets import Rationals assert _test_args(Rationals()) def test_sympy__sets__fancysets__Naturals(): from sympy.sets.fancysets import Naturals assert _test_args(Naturals()) def test_sympy__sets__fancysets__Naturals0(): from sympy.sets.fancysets import Naturals0 assert _test_args(Naturals0()) def test_sympy__sets__fancysets__Integers(): from sympy.sets.fancysets import Integers assert _test_args(Integers()) def test_sympy__sets__fancysets__Reals(): from sympy.sets.fancysets import Reals assert _test_args(Reals()) def test_sympy__sets__fancysets__Complexes(): from sympy.sets.fancysets import Complexes assert _test_args(Complexes()) def test_sympy__sets__fancysets__ComplexRegion(): from sympy.sets.fancysets import ComplexRegion from sympy import S from sympy.sets import Interval a = Interval(0, 1) b = Interval(2, 3) theta = Interval(0, 2*S.Pi) assert _test_args(ComplexRegion(a*b)) assert _test_args(ComplexRegion(a*theta, polar=True)) def test_sympy__sets__fancysets__CartesianComplexRegion(): from sympy.sets.fancysets import CartesianComplexRegion from sympy.sets import Interval a = Interval(0, 1) b = Interval(2, 3) assert _test_args(CartesianComplexRegion(a*b)) def test_sympy__sets__fancysets__PolarComplexRegion(): from sympy.sets.fancysets import PolarComplexRegion from sympy import S from sympy.sets import Interval a = Interval(0, 1) theta = Interval(0, 2*S.Pi) assert _test_args(PolarComplexRegion(a*theta)) def test_sympy__sets__fancysets__ImageSet(): from sympy.sets.fancysets import ImageSet from sympy import S, Symbol x = Symbol('x') assert _test_args(ImageSet(Lambda(x, x**2), S.Naturals)) def test_sympy__sets__fancysets__Range(): from sympy.sets.fancysets import Range assert _test_args(Range(1, 5, 1)) def test_sympy__sets__conditionset__ConditionSet(): from sympy.sets.conditionset import ConditionSet from sympy import S, Symbol x = Symbol('x') assert _test_args(ConditionSet(x, Eq(x**2, 1), S.Reals)) def test_sympy__sets__contains__Contains(): from sympy.sets.fancysets import Range from sympy.sets.contains import Contains assert _test_args(Contains(x, Range(0, 10, 2))) # STATS from sympy.stats.crv_types import NormalDistribution nd = NormalDistribution(0, 1) from sympy.stats.frv_types import DieDistribution die = DieDistribution(6) def test_sympy__stats__crv__ContinuousDomain(): from sympy.stats.crv import ContinuousDomain assert _test_args(ContinuousDomain({x}, Interval(-oo, oo))) def test_sympy__stats__crv__SingleContinuousDomain(): from sympy.stats.crv import SingleContinuousDomain assert _test_args(SingleContinuousDomain(x, Interval(-oo, oo))) def test_sympy__stats__crv__ProductContinuousDomain(): from sympy.stats.crv import SingleContinuousDomain, ProductContinuousDomain D = SingleContinuousDomain(x, Interval(-oo, oo)) E = SingleContinuousDomain(y, Interval(0, oo)) assert _test_args(ProductContinuousDomain(D, E)) def test_sympy__stats__crv__ConditionalContinuousDomain(): from sympy.stats.crv import (SingleContinuousDomain, ConditionalContinuousDomain) D = SingleContinuousDomain(x, Interval(-oo, oo)) assert _test_args(ConditionalContinuousDomain(D, x > 0)) def test_sympy__stats__crv__ContinuousPSpace(): from sympy.stats.crv import ContinuousPSpace, SingleContinuousDomain D = SingleContinuousDomain(x, Interval(-oo, oo)) assert _test_args(ContinuousPSpace(D, nd)) def test_sympy__stats__crv__SingleContinuousPSpace(): from sympy.stats.crv import SingleContinuousPSpace assert _test_args(SingleContinuousPSpace(x, nd)) @SKIP("abstract class") def test_sympy__stats__rv__Distribution(): pass @SKIP("abstract class") def test_sympy__stats__crv__SingleContinuousDistribution(): pass def test_sympy__stats__drv__SingleDiscreteDomain(): from sympy.stats.drv import SingleDiscreteDomain assert _test_args(SingleDiscreteDomain(x, S.Naturals)) def test_sympy__stats__drv__ProductDiscreteDomain(): from sympy.stats.drv import SingleDiscreteDomain, ProductDiscreteDomain X = SingleDiscreteDomain(x, S.Naturals) Y = SingleDiscreteDomain(y, S.Integers) assert _test_args(ProductDiscreteDomain(X, Y)) def test_sympy__stats__drv__SingleDiscretePSpace(): from sympy.stats.drv import SingleDiscretePSpace from sympy.stats.drv_types import PoissonDistribution assert _test_args(SingleDiscretePSpace(x, PoissonDistribution(1))) def test_sympy__stats__drv__DiscretePSpace(): from sympy.stats.drv import DiscretePSpace, SingleDiscreteDomain density = Lambda(x, 2**(-x)) domain = SingleDiscreteDomain(x, S.Naturals) assert _test_args(DiscretePSpace(domain, density)) def test_sympy__stats__drv__ConditionalDiscreteDomain(): from sympy.stats.drv import ConditionalDiscreteDomain, SingleDiscreteDomain X = SingleDiscreteDomain(x, S.Naturals0) assert _test_args(ConditionalDiscreteDomain(X, x > 2)) def test_sympy__stats__joint_rv__JointPSpace(): from sympy.stats.joint_rv import JointPSpace, JointDistribution assert _test_args(JointPSpace('X', JointDistribution(1))) def test_sympy__stats__joint_rv__JointRandomSymbol(): from sympy.stats.joint_rv import JointRandomSymbol assert _test_args(JointRandomSymbol(x)) def test_sympy__stats__joint_rv_types__JointDistributionHandmade(): from sympy import Indexed from sympy.stats.joint_rv_types import JointDistributionHandmade x1, x2 = (Indexed('x', i) for i in (1, 2)) assert _test_args(JointDistributionHandmade(x1 + x2, S.Reals**2)) def test_sympy__stats__joint_rv__MarginalDistribution(): from sympy.stats.rv import RandomSymbol from sympy.stats.joint_rv import MarginalDistribution r = RandomSymbol(S('r')) assert _test_args(MarginalDistribution(r, (r,))) def test_sympy__stats__compound_rv__CompoundDistribution(): from sympy.stats.compound_rv import CompoundDistribution from sympy.stats.drv_types import PoissonDistribution, Poisson r = Poisson('r', 10) assert _test_args(CompoundDistribution(PoissonDistribution(r))) def test_sympy__stats__compound_rv__CompoundPSpace(): from sympy.stats.compound_rv import CompoundPSpace, CompoundDistribution from sympy.stats.drv_types import PoissonDistribution, Poisson r = Poisson('r', 5) C = CompoundDistribution(PoissonDistribution(r)) assert _test_args(CompoundPSpace('C', C)) @SKIP("abstract class") def test_sympy__stats__drv__SingleDiscreteDistribution(): pass @SKIP("abstract class") def test_sympy__stats__drv__DiscreteDistribution(): pass @SKIP("abstract class") def test_sympy__stats__drv__DiscreteDomain(): pass def test_sympy__stats__rv__RandomDomain(): from sympy.stats.rv import RandomDomain from sympy.sets.sets import FiniteSet assert _test_args(RandomDomain(FiniteSet(x), FiniteSet(1, 2, 3))) def test_sympy__stats__rv__SingleDomain(): from sympy.stats.rv import SingleDomain from sympy.sets.sets import FiniteSet assert _test_args(SingleDomain(x, FiniteSet(1, 2, 3))) def test_sympy__stats__rv__ConditionalDomain(): from sympy.stats.rv import ConditionalDomain, RandomDomain from sympy.sets.sets import FiniteSet D = RandomDomain(FiniteSet(x), FiniteSet(1, 2)) assert _test_args(ConditionalDomain(D, x > 1)) def test_sympy__stats__rv__MatrixDomain(): from sympy.stats.rv import MatrixDomain from sympy.matrices import MatrixSet from sympy import S assert _test_args(MatrixDomain(x, MatrixSet(2, 2, S.Reals))) def test_sympy__stats__rv__PSpace(): from sympy.stats.rv import PSpace, RandomDomain from sympy import FiniteSet D = RandomDomain(FiniteSet(x), FiniteSet(1, 2, 3, 4, 5, 6)) assert _test_args(PSpace(D, die)) @SKIP("abstract Class") def test_sympy__stats__rv__SinglePSpace(): pass def test_sympy__stats__rv__RandomSymbol(): from sympy.stats.rv import RandomSymbol from sympy.stats.crv import SingleContinuousPSpace A = SingleContinuousPSpace(x, nd) assert _test_args(RandomSymbol(x, A)) @SKIP("abstract Class") def test_sympy__stats__rv__ProductPSpace(): pass def test_sympy__stats__rv__IndependentProductPSpace(): from sympy.stats.rv import IndependentProductPSpace from sympy.stats.crv import SingleContinuousPSpace A = SingleContinuousPSpace(x, nd) B = SingleContinuousPSpace(y, nd) assert _test_args(IndependentProductPSpace(A, B)) def test_sympy__stats__rv__ProductDomain(): from sympy.stats.rv import ProductDomain, SingleDomain D = SingleDomain(x, Interval(-oo, oo)) E = SingleDomain(y, Interval(0, oo)) assert _test_args(ProductDomain(D, E)) def test_sympy__stats__symbolic_probability__Probability(): from sympy.stats.symbolic_probability import Probability from sympy.stats import Normal X = Normal('X', 0, 1) assert _test_args(Probability(X > 0)) def test_sympy__stats__symbolic_probability__Expectation(): from sympy.stats.symbolic_probability import Expectation from sympy.stats import Normal X = Normal('X', 0, 1) assert _test_args(Expectation(X > 0)) def test_sympy__stats__symbolic_probability__Covariance(): from sympy.stats.symbolic_probability import Covariance from sympy.stats import Normal X = Normal('X', 0, 1) Y = Normal('Y', 0, 3) assert _test_args(Covariance(X, Y)) def test_sympy__stats__symbolic_probability__Variance(): from sympy.stats.symbolic_probability import Variance from sympy.stats import Normal X = Normal('X', 0, 1) assert _test_args(Variance(X)) def test_sympy__stats__symbolic_probability__Moment(): from sympy.stats.symbolic_probability import Moment from sympy.stats import Normal X = Normal('X', 0, 1) assert _test_args(Moment(X, 3, 2, X > 3)) def test_sympy__stats__symbolic_probability__CentralMoment(): from sympy.stats.symbolic_probability import CentralMoment from sympy.stats import Normal X = Normal('X', 0, 1) assert _test_args(CentralMoment(X, 2, X > 1)) def test_sympy__stats__frv_types__DiscreteUniformDistribution(): from sympy.stats.frv_types import DiscreteUniformDistribution from sympy.core.containers import Tuple assert _test_args(DiscreteUniformDistribution(Tuple(*list(range(6))))) def test_sympy__stats__frv_types__DieDistribution(): assert _test_args(die) def test_sympy__stats__frv_types__BernoulliDistribution(): from sympy.stats.frv_types import BernoulliDistribution assert _test_args(BernoulliDistribution(S.Half, 0, 1)) def test_sympy__stats__frv_types__BinomialDistribution(): from sympy.stats.frv_types import BinomialDistribution assert _test_args(BinomialDistribution(5, S.Half, 1, 0)) def test_sympy__stats__frv_types__BetaBinomialDistribution(): from sympy.stats.frv_types import BetaBinomialDistribution assert _test_args(BetaBinomialDistribution(5, 1, 1)) def test_sympy__stats__frv_types__HypergeometricDistribution(): from sympy.stats.frv_types import HypergeometricDistribution assert _test_args(HypergeometricDistribution(10, 5, 3)) def test_sympy__stats__frv_types__RademacherDistribution(): from sympy.stats.frv_types import RademacherDistribution assert _test_args(RademacherDistribution()) def test_sympy__stats__frv_types__IdealSolitonDistribution(): from sympy.stats.frv_types import IdealSolitonDistribution assert _test_args(IdealSolitonDistribution(10)) def test_sympy__stats__frv_types__RobustSolitonDistribution(): from sympy.stats.frv_types import RobustSolitonDistribution assert _test_args(RobustSolitonDistribution(1000, 0.5, 0.1)) def test_sympy__stats__frv__FiniteDomain(): from sympy.stats.frv import FiniteDomain assert _test_args(FiniteDomain({(x, 1), (x, 2)})) # x can be 1 or 2 def test_sympy__stats__frv__SingleFiniteDomain(): from sympy.stats.frv import SingleFiniteDomain assert _test_args(SingleFiniteDomain(x, {1, 2})) # x can be 1 or 2 def test_sympy__stats__frv__ProductFiniteDomain(): from sympy.stats.frv import SingleFiniteDomain, ProductFiniteDomain xd = SingleFiniteDomain(x, {1, 2}) yd = SingleFiniteDomain(y, {1, 2}) assert _test_args(ProductFiniteDomain(xd, yd)) def test_sympy__stats__frv__ConditionalFiniteDomain(): from sympy.stats.frv import SingleFiniteDomain, ConditionalFiniteDomain xd = SingleFiniteDomain(x, {1, 2}) assert _test_args(ConditionalFiniteDomain(xd, x > 1)) def test_sympy__stats__frv__FinitePSpace(): from sympy.stats.frv import FinitePSpace, SingleFiniteDomain xd = SingleFiniteDomain(x, {1, 2, 3, 4, 5, 6}) assert _test_args(FinitePSpace(xd, {(x, 1): S.Half, (x, 2): S.Half})) xd = SingleFiniteDomain(x, {1, 2}) assert _test_args(FinitePSpace(xd, {(x, 1): S.Half, (x, 2): S.Half})) def test_sympy__stats__frv__SingleFinitePSpace(): from sympy.stats.frv import SingleFinitePSpace from sympy import Symbol assert _test_args(SingleFinitePSpace(Symbol('x'), die)) def test_sympy__stats__frv__ProductFinitePSpace(): from sympy.stats.frv import SingleFinitePSpace, ProductFinitePSpace from sympy import Symbol xp = SingleFinitePSpace(Symbol('x'), die) yp = SingleFinitePSpace(Symbol('y'), die) assert _test_args(ProductFinitePSpace(xp, yp)) @SKIP("abstract class") def test_sympy__stats__frv__SingleFiniteDistribution(): pass @SKIP("abstract class") def test_sympy__stats__crv__ContinuousDistribution(): pass def test_sympy__stats__frv_types__FiniteDistributionHandmade(): from sympy.stats.frv_types import FiniteDistributionHandmade from sympy import Dict assert _test_args(FiniteDistributionHandmade(Dict({1: 1}))) def test_sympy__stats__crv_types__ContinuousDistributionHandmade(): from sympy.stats.crv_types import ContinuousDistributionHandmade from sympy import Interval, Lambda from sympy.abc import x assert _test_args(ContinuousDistributionHandmade(Lambda(x, 2*x), Interval(0, 1))) def test_sympy__stats__drv_types__DiscreteDistributionHandmade(): from sympy.stats.drv_types import DiscreteDistributionHandmade from sympy import Lambda, FiniteSet from sympy.abc import x assert _test_args(DiscreteDistributionHandmade(Lambda(x, Rational(1, 10)), FiniteSet(*range(10)))) def test_sympy__stats__rv__Density(): from sympy.stats.rv import Density from sympy.stats.crv_types import Normal assert _test_args(Density(Normal('x', 0, 1))) def test_sympy__stats__crv_types__ArcsinDistribution(): from sympy.stats.crv_types import ArcsinDistribution assert _test_args(ArcsinDistribution(0, 1)) def test_sympy__stats__crv_types__BeniniDistribution(): from sympy.stats.crv_types import BeniniDistribution assert _test_args(BeniniDistribution(1, 1, 1)) def test_sympy__stats__crv_types__BetaDistribution(): from sympy.stats.crv_types import BetaDistribution assert _test_args(BetaDistribution(1, 1)) def test_sympy__stats__crv_types__BetaNoncentralDistribution(): from sympy.stats.crv_types import BetaNoncentralDistribution assert _test_args(BetaNoncentralDistribution(1, 1, 1)) def test_sympy__stats__crv_types__BetaPrimeDistribution(): from sympy.stats.crv_types import BetaPrimeDistribution assert _test_args(BetaPrimeDistribution(1, 1)) def test_sympy__stats__crv_types__BoundedParetoDistribution(): from sympy.stats.crv_types import BoundedParetoDistribution assert _test_args(BoundedParetoDistribution(1, 1, 2)) def test_sympy__stats__crv_types__CauchyDistribution(): from sympy.stats.crv_types import CauchyDistribution assert _test_args(CauchyDistribution(0, 1)) def test_sympy__stats__crv_types__ChiDistribution(): from sympy.stats.crv_types import ChiDistribution assert _test_args(ChiDistribution(1)) def test_sympy__stats__crv_types__ChiNoncentralDistribution(): from sympy.stats.crv_types import ChiNoncentralDistribution assert _test_args(ChiNoncentralDistribution(1,1)) def test_sympy__stats__crv_types__ChiSquaredDistribution(): from sympy.stats.crv_types import ChiSquaredDistribution assert _test_args(ChiSquaredDistribution(1)) def test_sympy__stats__crv_types__DagumDistribution(): from sympy.stats.crv_types import DagumDistribution assert _test_args(DagumDistribution(1, 1, 1)) def test_sympy__stats__crv_types__ExGaussianDistribution(): from sympy.stats.crv_types import ExGaussianDistribution assert _test_args(ExGaussianDistribution(1, 1, 1)) def test_sympy__stats__crv_types__ExponentialDistribution(): from sympy.stats.crv_types import ExponentialDistribution assert _test_args(ExponentialDistribution(1)) def test_sympy__stats__crv_types__ExponentialPowerDistribution(): from sympy.stats.crv_types import ExponentialPowerDistribution assert _test_args(ExponentialPowerDistribution(0, 1, 1)) def test_sympy__stats__crv_types__FDistributionDistribution(): from sympy.stats.crv_types import FDistributionDistribution assert _test_args(FDistributionDistribution(1, 1)) def test_sympy__stats__crv_types__FisherZDistribution(): from sympy.stats.crv_types import FisherZDistribution assert _test_args(FisherZDistribution(1, 1)) def test_sympy__stats__crv_types__FrechetDistribution(): from sympy.stats.crv_types import FrechetDistribution assert _test_args(FrechetDistribution(1, 1, 1)) def test_sympy__stats__crv_types__GammaInverseDistribution(): from sympy.stats.crv_types import GammaInverseDistribution assert _test_args(GammaInverseDistribution(1, 1)) def test_sympy__stats__crv_types__GammaDistribution(): from sympy.stats.crv_types import GammaDistribution assert _test_args(GammaDistribution(1, 1)) def test_sympy__stats__crv_types__GumbelDistribution(): from sympy.stats.crv_types import GumbelDistribution assert _test_args(GumbelDistribution(1, 1, False)) def test_sympy__stats__crv_types__GompertzDistribution(): from sympy.stats.crv_types import GompertzDistribution assert _test_args(GompertzDistribution(1, 1)) def test_sympy__stats__crv_types__KumaraswamyDistribution(): from sympy.stats.crv_types import KumaraswamyDistribution assert _test_args(KumaraswamyDistribution(1, 1)) def test_sympy__stats__crv_types__LaplaceDistribution(): from sympy.stats.crv_types import LaplaceDistribution assert _test_args(LaplaceDistribution(0, 1)) def test_sympy__stats__crv_types__LevyDistribution(): from sympy.stats.crv_types import LevyDistribution assert _test_args(LevyDistribution(0, 1)) def test_sympy__stats__crv_types__LogCauchyDistribution(): from sympy.stats.crv_types import LogCauchyDistribution assert _test_args(LogCauchyDistribution(0, 1)) def test_sympy__stats__crv_types__LogisticDistribution(): from sympy.stats.crv_types import LogisticDistribution assert _test_args(LogisticDistribution(0, 1)) def test_sympy__stats__crv_types__LogLogisticDistribution(): from sympy.stats.crv_types import LogLogisticDistribution assert _test_args(LogLogisticDistribution(1, 1)) def test_sympy__stats__crv_types__LogitNormalDistribution(): from sympy.stats.crv_types import LogitNormalDistribution assert _test_args(LogitNormalDistribution(0, 1)) def test_sympy__stats__crv_types__LogNormalDistribution(): from sympy.stats.crv_types import LogNormalDistribution assert _test_args(LogNormalDistribution(0, 1)) def test_sympy__stats__crv_types__LomaxDistribution(): from sympy.stats.crv_types import LomaxDistribution assert _test_args(LomaxDistribution(1, 2)) def test_sympy__stats__crv_types__MaxwellDistribution(): from sympy.stats.crv_types import MaxwellDistribution assert _test_args(MaxwellDistribution(1)) def test_sympy__stats__crv_types__MoyalDistribution(): from sympy.stats.crv_types import MoyalDistribution assert _test_args(MoyalDistribution(1,2)) def test_sympy__stats__crv_types__NakagamiDistribution(): from sympy.stats.crv_types import NakagamiDistribution assert _test_args(NakagamiDistribution(1, 1)) def test_sympy__stats__crv_types__NormalDistribution(): from sympy.stats.crv_types import NormalDistribution assert _test_args(NormalDistribution(0, 1)) def test_sympy__stats__crv_types__GaussianInverseDistribution(): from sympy.stats.crv_types import GaussianInverseDistribution assert _test_args(GaussianInverseDistribution(1, 1)) def test_sympy__stats__crv_types__ParetoDistribution(): from sympy.stats.crv_types import ParetoDistribution assert _test_args(ParetoDistribution(1, 1)) def test_sympy__stats__crv_types__PowerFunctionDistribution(): from sympy.stats.crv_types import PowerFunctionDistribution assert _test_args(PowerFunctionDistribution(2,0,1)) def test_sympy__stats__crv_types__QuadraticUDistribution(): from sympy.stats.crv_types import QuadraticUDistribution assert _test_args(QuadraticUDistribution(1, 2)) def test_sympy__stats__crv_types__RaisedCosineDistribution(): from sympy.stats.crv_types import RaisedCosineDistribution assert _test_args(RaisedCosineDistribution(1, 1)) def test_sympy__stats__crv_types__RayleighDistribution(): from sympy.stats.crv_types import RayleighDistribution assert _test_args(RayleighDistribution(1)) def test_sympy__stats__crv_types__ReciprocalDistribution(): from sympy.stats.crv_types import ReciprocalDistribution assert _test_args(ReciprocalDistribution(5, 30)) def test_sympy__stats__crv_types__ShiftedGompertzDistribution(): from sympy.stats.crv_types import ShiftedGompertzDistribution assert _test_args(ShiftedGompertzDistribution(1, 1)) def test_sympy__stats__crv_types__StudentTDistribution(): from sympy.stats.crv_types import StudentTDistribution assert _test_args(StudentTDistribution(1)) def test_sympy__stats__crv_types__TrapezoidalDistribution(): from sympy.stats.crv_types import TrapezoidalDistribution assert _test_args(TrapezoidalDistribution(1, 2, 3, 4)) def test_sympy__stats__crv_types__TriangularDistribution(): from sympy.stats.crv_types import TriangularDistribution assert _test_args(TriangularDistribution(-1, 0, 1)) def test_sympy__stats__crv_types__UniformDistribution(): from sympy.stats.crv_types import UniformDistribution assert _test_args(UniformDistribution(0, 1)) def test_sympy__stats__crv_types__UniformSumDistribution(): from sympy.stats.crv_types import UniformSumDistribution assert _test_args(UniformSumDistribution(1)) def test_sympy__stats__crv_types__VonMisesDistribution(): from sympy.stats.crv_types import VonMisesDistribution assert _test_args(VonMisesDistribution(1, 1)) def test_sympy__stats__crv_types__WeibullDistribution(): from sympy.stats.crv_types import WeibullDistribution assert _test_args(WeibullDistribution(1, 1)) def test_sympy__stats__crv_types__WignerSemicircleDistribution(): from sympy.stats.crv_types import WignerSemicircleDistribution assert _test_args(WignerSemicircleDistribution(1)) def test_sympy__stats__drv_types__GeometricDistribution(): from sympy.stats.drv_types import GeometricDistribution assert _test_args(GeometricDistribution(.5)) def test_sympy__stats__drv_types__HermiteDistribution(): from sympy.stats.drv_types import HermiteDistribution assert _test_args(HermiteDistribution(1, 2)) def test_sympy__stats__drv_types__LogarithmicDistribution(): from sympy.stats.drv_types import LogarithmicDistribution assert _test_args(LogarithmicDistribution(.5)) def test_sympy__stats__drv_types__NegativeBinomialDistribution(): from sympy.stats.drv_types import NegativeBinomialDistribution assert _test_args(NegativeBinomialDistribution(.5, .5)) def test_sympy__stats__drv_types__FlorySchulzDistribution(): from sympy.stats.drv_types import FlorySchulzDistribution assert _test_args(FlorySchulzDistribution(.5)) def test_sympy__stats__drv_types__PoissonDistribution(): from sympy.stats.drv_types import PoissonDistribution assert _test_args(PoissonDistribution(1)) def test_sympy__stats__drv_types__SkellamDistribution(): from sympy.stats.drv_types import SkellamDistribution assert _test_args(SkellamDistribution(1, 1)) def test_sympy__stats__drv_types__YuleSimonDistribution(): from sympy.stats.drv_types import YuleSimonDistribution assert _test_args(YuleSimonDistribution(.5)) def test_sympy__stats__drv_types__ZetaDistribution(): from sympy.stats.drv_types import ZetaDistribution assert _test_args(ZetaDistribution(1.5)) def test_sympy__stats__joint_rv__JointDistribution(): from sympy.stats.joint_rv import JointDistribution assert _test_args(JointDistribution(1, 2, 3, 4)) def test_sympy__stats__joint_rv_types__MultivariateNormalDistribution(): from sympy.stats.joint_rv_types import MultivariateNormalDistribution assert _test_args( MultivariateNormalDistribution([0, 1], [[1, 0],[0, 1]])) def test_sympy__stats__joint_rv_types__MultivariateLaplaceDistribution(): from sympy.stats.joint_rv_types import MultivariateLaplaceDistribution assert _test_args(MultivariateLaplaceDistribution([0, 1], [[1, 0],[0, 1]])) def test_sympy__stats__joint_rv_types__MultivariateTDistribution(): from sympy.stats.joint_rv_types import MultivariateTDistribution assert _test_args(MultivariateTDistribution([0, 1], [[1, 0],[0, 1]], 1)) def test_sympy__stats__joint_rv_types__NormalGammaDistribution(): from sympy.stats.joint_rv_types import NormalGammaDistribution assert _test_args(NormalGammaDistribution(1, 2, 3, 4)) def test_sympy__stats__joint_rv_types__GeneralizedMultivariateLogGammaDistribution(): from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGammaDistribution v, l, mu = (4, [1, 2, 3, 4], [1, 2, 3, 4]) assert _test_args(GeneralizedMultivariateLogGammaDistribution(S.Half, v, l, mu)) def test_sympy__stats__joint_rv_types__MultivariateBetaDistribution(): from sympy.stats.joint_rv_types import MultivariateBetaDistribution assert _test_args(MultivariateBetaDistribution([1, 2, 3])) def test_sympy__stats__joint_rv_types__MultivariateEwensDistribution(): from sympy.stats.joint_rv_types import MultivariateEwensDistribution assert _test_args(MultivariateEwensDistribution(5, 1)) def test_sympy__stats__joint_rv_types__MultinomialDistribution(): from sympy.stats.joint_rv_types import MultinomialDistribution assert _test_args(MultinomialDistribution(5, [0.5, 0.1, 0.3])) def test_sympy__stats__joint_rv_types__NegativeMultinomialDistribution(): from sympy.stats.joint_rv_types import NegativeMultinomialDistribution assert _test_args(NegativeMultinomialDistribution(5, [0.5, 0.1, 0.3])) def test_sympy__stats__rv__RandomIndexedSymbol(): from sympy.stats.rv import RandomIndexedSymbol, pspace from sympy.stats.stochastic_process_types import DiscreteMarkovChain X = DiscreteMarkovChain("X") assert _test_args(RandomIndexedSymbol(X[0].symbol, pspace(X[0]))) def test_sympy__stats__rv__RandomMatrixSymbol(): from sympy.stats.rv import RandomMatrixSymbol from sympy.stats.random_matrix import RandomMatrixPSpace pspace = RandomMatrixPSpace('P') assert _test_args(RandomMatrixSymbol('M', 3, 3, pspace)) def test_sympy__stats__stochastic_process__StochasticPSpace(): from sympy.stats.stochastic_process import StochasticPSpace from sympy.stats.stochastic_process_types import StochasticProcess from sympy.stats.frv_types import BernoulliDistribution assert _test_args(StochasticPSpace("Y", StochasticProcess("Y", [1, 2, 3]), BernoulliDistribution(S.Half, 1, 0))) def test_sympy__stats__stochastic_process_types__StochasticProcess(): from sympy.stats.stochastic_process_types import StochasticProcess assert _test_args(StochasticProcess("Y", [1, 2, 3])) def test_sympy__stats__stochastic_process_types__MarkovProcess(): from sympy.stats.stochastic_process_types import MarkovProcess assert _test_args(MarkovProcess("Y", [1, 2, 3])) def test_sympy__stats__stochastic_process_types__DiscreteTimeStochasticProcess(): from sympy.stats.stochastic_process_types import DiscreteTimeStochasticProcess assert _test_args(DiscreteTimeStochasticProcess("Y", [1, 2, 3])) def test_sympy__stats__stochastic_process_types__ContinuousTimeStochasticProcess(): from sympy.stats.stochastic_process_types import ContinuousTimeStochasticProcess assert _test_args(ContinuousTimeStochasticProcess("Y", [1, 2, 3])) def test_sympy__stats__stochastic_process_types__TransitionMatrixOf(): from sympy.stats.stochastic_process_types import TransitionMatrixOf, DiscreteMarkovChain from sympy import MatrixSymbol DMC = DiscreteMarkovChain("Y") assert _test_args(TransitionMatrixOf(DMC, MatrixSymbol('T', 3, 3))) def test_sympy__stats__stochastic_process_types__GeneratorMatrixOf(): from sympy.stats.stochastic_process_types import GeneratorMatrixOf, ContinuousMarkovChain from sympy import MatrixSymbol DMC = ContinuousMarkovChain("Y") assert _test_args(GeneratorMatrixOf(DMC, MatrixSymbol('T', 3, 3))) def test_sympy__stats__stochastic_process_types__StochasticStateSpaceOf(): from sympy.stats.stochastic_process_types import StochasticStateSpaceOf, DiscreteMarkovChain DMC = DiscreteMarkovChain("Y") assert _test_args(StochasticStateSpaceOf(DMC, [0, 1, 2])) def test_sympy__stats__stochastic_process_types__DiscreteMarkovChain(): from sympy.stats.stochastic_process_types import DiscreteMarkovChain from sympy import MatrixSymbol assert _test_args(DiscreteMarkovChain("Y", [0, 1, 2], MatrixSymbol('T', 3, 3))) def test_sympy__stats__stochastic_process_types__ContinuousMarkovChain(): from sympy.stats.stochastic_process_types import ContinuousMarkovChain from sympy import MatrixSymbol assert _test_args(ContinuousMarkovChain("Y", [0, 1, 2], MatrixSymbol('T', 3, 3))) def test_sympy__stats__stochastic_process_types__BernoulliProcess(): from sympy.stats.stochastic_process_types import BernoulliProcess assert _test_args(BernoulliProcess("B", 0.5, 1, 0)) def test_sympy__stats__stochastic_process_types__CountingProcess(): from sympy.stats.stochastic_process_types import CountingProcess assert _test_args(CountingProcess("C")) def test_sympy__stats__stochastic_process_types__PoissonProcess(): from sympy.stats.stochastic_process_types import PoissonProcess assert _test_args(PoissonProcess("X", 2)) def test_sympy__stats__stochastic_process_types__WienerProcess(): from sympy.stats.stochastic_process_types import WienerProcess assert _test_args(WienerProcess("X")) def test_sympy__stats__stochastic_process_types__GammaProcess(): from sympy.stats.stochastic_process_types import GammaProcess assert _test_args(GammaProcess("X", 1, 2)) def test_sympy__stats__random_matrix__RandomMatrixPSpace(): from sympy.stats.random_matrix import RandomMatrixPSpace from sympy.stats.random_matrix_models import RandomMatrixEnsembleModel model = RandomMatrixEnsembleModel('R', 3) assert _test_args(RandomMatrixPSpace('P', model=model)) def test_sympy__stats__random_matrix_models__RandomMatrixEnsembleModel(): from sympy.stats.random_matrix_models import RandomMatrixEnsembleModel assert _test_args(RandomMatrixEnsembleModel('R', 3)) def test_sympy__stats__random_matrix_models__GaussianEnsembleModel(): from sympy.stats.random_matrix_models import GaussianEnsembleModel assert _test_args(GaussianEnsembleModel('G', 3)) def test_sympy__stats__random_matrix_models__GaussianUnitaryEnsembleModel(): from sympy.stats.random_matrix_models import GaussianUnitaryEnsembleModel assert _test_args(GaussianUnitaryEnsembleModel('U', 3)) def test_sympy__stats__random_matrix_models__GaussianOrthogonalEnsembleModel(): from sympy.stats.random_matrix_models import GaussianOrthogonalEnsembleModel assert _test_args(GaussianOrthogonalEnsembleModel('U', 3)) def test_sympy__stats__random_matrix_models__GaussianSymplecticEnsembleModel(): from sympy.stats.random_matrix_models import GaussianSymplecticEnsembleModel assert _test_args(GaussianSymplecticEnsembleModel('U', 3)) def test_sympy__stats__random_matrix_models__CircularEnsembleModel(): from sympy.stats.random_matrix_models import CircularEnsembleModel assert _test_args(CircularEnsembleModel('C', 3)) def test_sympy__stats__random_matrix_models__CircularUnitaryEnsembleModel(): from sympy.stats.random_matrix_models import CircularUnitaryEnsembleModel assert _test_args(CircularUnitaryEnsembleModel('U', 3)) def test_sympy__stats__random_matrix_models__CircularOrthogonalEnsembleModel(): from sympy.stats.random_matrix_models import CircularOrthogonalEnsembleModel assert _test_args(CircularOrthogonalEnsembleModel('O', 3)) def test_sympy__stats__random_matrix_models__CircularSymplecticEnsembleModel(): from sympy.stats.random_matrix_models import CircularSymplecticEnsembleModel assert _test_args(CircularSymplecticEnsembleModel('S', 3)) def test_sympy__stats__symbolic_multivariate_probability__ExpectationMatrix(): from sympy.stats import ExpectationMatrix from sympy.stats.rv import RandomMatrixSymbol assert _test_args(ExpectationMatrix(RandomMatrixSymbol('R', 2, 1))) def test_sympy__stats__symbolic_multivariate_probability__VarianceMatrix(): from sympy.stats import VarianceMatrix from sympy.stats.rv import RandomMatrixSymbol assert _test_args(VarianceMatrix(RandomMatrixSymbol('R', 3, 1))) def test_sympy__stats__symbolic_multivariate_probability__CrossCovarianceMatrix(): from sympy.stats import CrossCovarianceMatrix from sympy.stats.rv import RandomMatrixSymbol assert _test_args(CrossCovarianceMatrix(RandomMatrixSymbol('R', 3, 1), RandomMatrixSymbol('X', 3, 1))) def test_sympy__stats__matrix_distributions__MatrixPSpace(): from sympy.stats.matrix_distributions import MatrixDistribution, MatrixPSpace from sympy import Matrix M = MatrixDistribution(1, Matrix([[1, 0], [0, 1]])) assert _test_args(MatrixPSpace('M', M, 2, 2)) def test_sympy__stats__matrix_distributions__MatrixDistribution(): from sympy.stats.matrix_distributions import MatrixDistribution from sympy import Matrix assert _test_args(MatrixDistribution(1, Matrix([[1, 0], [0, 1]]))) def test_sympy__stats__matrix_distributions__MatrixGammaDistribution(): from sympy.stats.matrix_distributions import MatrixGammaDistribution from sympy import Matrix assert _test_args(MatrixGammaDistribution(3, 4, Matrix([[1, 0], [0, 1]]))) def test_sympy__stats__matrix_distributions__WishartDistribution(): from sympy.stats.matrix_distributions import WishartDistribution from sympy import Matrix assert _test_args(WishartDistribution(3, Matrix([[1, 0], [0, 1]]))) def test_sympy__stats__matrix_distributions__MatrixNormalDistribution(): from sympy.stats.matrix_distributions import MatrixNormalDistribution from sympy import MatrixSymbol L = MatrixSymbol('L', 1, 2) S1 = MatrixSymbol('S1', 1, 1) S2 = MatrixSymbol('S2', 2, 2) assert _test_args(MatrixNormalDistribution(L, S1, S2)) def test_sympy__stats__matrix_distributions__MatrixStudentTDistribution(): from sympy.stats.matrix_distributions import MatrixStudentTDistribution from sympy import MatrixSymbol v = symbols('v', positive=True) Omega = MatrixSymbol('Omega', 3, 3) Sigma = MatrixSymbol('Sigma', 1, 1) Location = MatrixSymbol('Location', 1, 3) assert _test_args(MatrixStudentTDistribution(v, Location, Omega, Sigma)) def test_sympy__utilities__matchpy_connector__WildDot(): from sympy.utilities.matchpy_connector import WildDot assert _test_args(WildDot("w_")) def test_sympy__utilities__matchpy_connector__WildPlus(): from sympy.utilities.matchpy_connector import WildPlus assert _test_args(WildPlus("w__")) def test_sympy__utilities__matchpy_connector__WildStar(): from sympy.utilities.matchpy_connector import WildStar assert _test_args(WildStar("w___")) def test_sympy__core__symbol__Str(): from sympy.core.symbol import Str assert _test_args(Str('t')) def test_sympy__core__symbol__Dummy(): from sympy.core.symbol import Dummy assert _test_args(Dummy('t')) def test_sympy__core__symbol__Symbol(): from sympy.core.symbol import Symbol assert _test_args(Symbol('t')) def test_sympy__core__symbol__Wild(): from sympy.core.symbol import Wild assert _test_args(Wild('x', exclude=[x])) @SKIP("abstract class") def test_sympy__functions__combinatorial__factorials__CombinatorialFunction(): pass def test_sympy__functions__combinatorial__factorials__FallingFactorial(): from sympy.functions.combinatorial.factorials import FallingFactorial assert _test_args(FallingFactorial(2, x)) def test_sympy__functions__combinatorial__factorials__MultiFactorial(): from sympy.functions.combinatorial.factorials import MultiFactorial assert _test_args(MultiFactorial(x)) def test_sympy__functions__combinatorial__factorials__RisingFactorial(): from sympy.functions.combinatorial.factorials import RisingFactorial assert _test_args(RisingFactorial(2, x)) def test_sympy__functions__combinatorial__factorials__binomial(): from sympy.functions.combinatorial.factorials import binomial assert _test_args(binomial(2, x)) def test_sympy__functions__combinatorial__factorials__subfactorial(): from sympy.functions.combinatorial.factorials import subfactorial assert _test_args(subfactorial(1)) def test_sympy__functions__combinatorial__factorials__factorial(): from sympy.functions.combinatorial.factorials import factorial assert _test_args(factorial(x)) def test_sympy__functions__combinatorial__factorials__factorial2(): from sympy.functions.combinatorial.factorials import factorial2 assert _test_args(factorial2(x)) def test_sympy__functions__combinatorial__numbers__bell(): from sympy.functions.combinatorial.numbers import bell assert _test_args(bell(x, y)) def test_sympy__functions__combinatorial__numbers__bernoulli(): from sympy.functions.combinatorial.numbers import bernoulli assert _test_args(bernoulli(x)) def test_sympy__functions__combinatorial__numbers__catalan(): from sympy.functions.combinatorial.numbers import catalan assert _test_args(catalan(x)) def test_sympy__functions__combinatorial__numbers__genocchi(): from sympy.functions.combinatorial.numbers import genocchi assert _test_args(genocchi(x)) def test_sympy__functions__combinatorial__numbers__euler(): from sympy.functions.combinatorial.numbers import euler assert _test_args(euler(x)) def test_sympy__functions__combinatorial__numbers__carmichael(): from sympy.functions.combinatorial.numbers import carmichael assert _test_args(carmichael(x)) def test_sympy__functions__combinatorial__numbers__fibonacci(): from sympy.functions.combinatorial.numbers import fibonacci assert _test_args(fibonacci(x)) def test_sympy__functions__combinatorial__numbers__tribonacci(): from sympy.functions.combinatorial.numbers import tribonacci assert _test_args(tribonacci(x)) def test_sympy__functions__combinatorial__numbers__harmonic(): from sympy.functions.combinatorial.numbers import harmonic assert _test_args(harmonic(x, 2)) def test_sympy__functions__combinatorial__numbers__lucas(): from sympy.functions.combinatorial.numbers import lucas assert _test_args(lucas(x)) def test_sympy__functions__combinatorial__numbers__partition(): from sympy.core.symbol import Symbol from sympy.functions.combinatorial.numbers import partition assert _test_args(partition(Symbol('a', integer=True))) def test_sympy__functions__elementary__complexes__Abs(): from sympy.functions.elementary.complexes import Abs assert _test_args(Abs(x)) def test_sympy__functions__elementary__complexes__adjoint(): from sympy.functions.elementary.complexes import adjoint assert _test_args(adjoint(x)) def test_sympy__functions__elementary__complexes__arg(): from sympy.functions.elementary.complexes import arg assert _test_args(arg(x)) def test_sympy__functions__elementary__complexes__conjugate(): from sympy.functions.elementary.complexes import conjugate assert _test_args(conjugate(x)) def test_sympy__functions__elementary__complexes__im(): from sympy.functions.elementary.complexes import im assert _test_args(im(x)) def test_sympy__functions__elementary__complexes__re(): from sympy.functions.elementary.complexes import re assert _test_args(re(x)) def test_sympy__functions__elementary__complexes__sign(): from sympy.functions.elementary.complexes import sign assert _test_args(sign(x)) def test_sympy__functions__elementary__complexes__polar_lift(): from sympy.functions.elementary.complexes import polar_lift assert _test_args(polar_lift(x)) def test_sympy__functions__elementary__complexes__periodic_argument(): from sympy.functions.elementary.complexes import periodic_argument assert _test_args(periodic_argument(x, y)) def test_sympy__functions__elementary__complexes__principal_branch(): from sympy.functions.elementary.complexes import principal_branch assert _test_args(principal_branch(x, y)) def test_sympy__functions__elementary__complexes__transpose(): from sympy.functions.elementary.complexes import transpose assert _test_args(transpose(x)) def test_sympy__functions__elementary__exponential__LambertW(): from sympy.functions.elementary.exponential import LambertW assert _test_args(LambertW(2)) @SKIP("abstract class") def test_sympy__functions__elementary__exponential__ExpBase(): pass def test_sympy__functions__elementary__exponential__exp(): from sympy.functions.elementary.exponential import exp assert _test_args(exp(2)) def test_sympy__functions__elementary__exponential__exp_polar(): from sympy.functions.elementary.exponential import exp_polar assert _test_args(exp_polar(2)) def test_sympy__functions__elementary__exponential__log(): from sympy.functions.elementary.exponential import log assert _test_args(log(2)) @SKIP("abstract class") def test_sympy__functions__elementary__hyperbolic__HyperbolicFunction(): pass @SKIP("abstract class") def test_sympy__functions__elementary__hyperbolic__ReciprocalHyperbolicFunction(): pass @SKIP("abstract class") def test_sympy__functions__elementary__hyperbolic__InverseHyperbolicFunction(): pass def test_sympy__functions__elementary__hyperbolic__acosh(): from sympy.functions.elementary.hyperbolic import acosh assert _test_args(acosh(2)) def test_sympy__functions__elementary__hyperbolic__acoth(): from sympy.functions.elementary.hyperbolic import acoth assert _test_args(acoth(2)) def test_sympy__functions__elementary__hyperbolic__asinh(): from sympy.functions.elementary.hyperbolic import asinh assert _test_args(asinh(2)) def test_sympy__functions__elementary__hyperbolic__atanh(): from sympy.functions.elementary.hyperbolic import atanh assert _test_args(atanh(2)) def test_sympy__functions__elementary__hyperbolic__asech(): from sympy.functions.elementary.hyperbolic import asech assert _test_args(asech(2)) def test_sympy__functions__elementary__hyperbolic__acsch(): from sympy.functions.elementary.hyperbolic import acsch assert _test_args(acsch(2)) def test_sympy__functions__elementary__hyperbolic__cosh(): from sympy.functions.elementary.hyperbolic import cosh assert _test_args(cosh(2)) def test_sympy__functions__elementary__hyperbolic__coth(): from sympy.functions.elementary.hyperbolic import coth assert _test_args(coth(2)) def test_sympy__functions__elementary__hyperbolic__csch(): from sympy.functions.elementary.hyperbolic import csch assert _test_args(csch(2)) def test_sympy__functions__elementary__hyperbolic__sech(): from sympy.functions.elementary.hyperbolic import sech assert _test_args(sech(2)) def test_sympy__functions__elementary__hyperbolic__sinh(): from sympy.functions.elementary.hyperbolic import sinh assert _test_args(sinh(2)) def test_sympy__functions__elementary__hyperbolic__tanh(): from sympy.functions.elementary.hyperbolic import tanh assert _test_args(tanh(2)) @SKIP("does this work at all?") def test_sympy__functions__elementary__integers__RoundFunction(): from sympy.functions.elementary.integers import RoundFunction assert _test_args(RoundFunction()) def test_sympy__functions__elementary__integers__ceiling(): from sympy.functions.elementary.integers import ceiling assert _test_args(ceiling(x)) def test_sympy__functions__elementary__integers__floor(): from sympy.functions.elementary.integers import floor assert _test_args(floor(x)) def test_sympy__functions__elementary__integers__frac(): from sympy.functions.elementary.integers import frac assert _test_args(frac(x)) def test_sympy__functions__elementary__miscellaneous__IdentityFunction(): from sympy.functions.elementary.miscellaneous import IdentityFunction assert _test_args(IdentityFunction()) def test_sympy__functions__elementary__miscellaneous__Max(): from sympy.functions.elementary.miscellaneous import Max assert _test_args(Max(x, 2)) def test_sympy__functions__elementary__miscellaneous__Min(): from sympy.functions.elementary.miscellaneous import Min assert _test_args(Min(x, 2)) @SKIP("abstract class") def test_sympy__functions__elementary__miscellaneous__MinMaxBase(): pass def test_sympy__functions__elementary__piecewise__ExprCondPair(): from sympy.functions.elementary.piecewise import ExprCondPair assert _test_args(ExprCondPair(1, True)) def test_sympy__functions__elementary__piecewise__Piecewise(): from sympy.functions.elementary.piecewise import Piecewise assert _test_args(Piecewise((1, x >= 0), (0, True))) @SKIP("abstract class") def test_sympy__functions__elementary__trigonometric__TrigonometricFunction(): pass @SKIP("abstract class") def test_sympy__functions__elementary__trigonometric__ReciprocalTrigonometricFunction(): pass @SKIP("abstract class") def test_sympy__functions__elementary__trigonometric__InverseTrigonometricFunction(): pass def test_sympy__functions__elementary__trigonometric__acos(): from sympy.functions.elementary.trigonometric import acos assert _test_args(acos(2)) def test_sympy__functions__elementary__trigonometric__acot(): from sympy.functions.elementary.trigonometric import acot assert _test_args(acot(2)) def test_sympy__functions__elementary__trigonometric__asin(): from sympy.functions.elementary.trigonometric import asin assert _test_args(asin(2)) def test_sympy__functions__elementary__trigonometric__asec(): from sympy.functions.elementary.trigonometric import asec assert _test_args(asec(2)) def test_sympy__functions__elementary__trigonometric__acsc(): from sympy.functions.elementary.trigonometric import acsc assert _test_args(acsc(2)) def test_sympy__functions__elementary__trigonometric__atan(): from sympy.functions.elementary.trigonometric import atan assert _test_args(atan(2)) def test_sympy__functions__elementary__trigonometric__atan2(): from sympy.functions.elementary.trigonometric import atan2 assert _test_args(atan2(2, 3)) def test_sympy__functions__elementary__trigonometric__cos(): from sympy.functions.elementary.trigonometric import cos assert _test_args(cos(2)) def test_sympy__functions__elementary__trigonometric__csc(): from sympy.functions.elementary.trigonometric import csc assert _test_args(csc(2)) def test_sympy__functions__elementary__trigonometric__cot(): from sympy.functions.elementary.trigonometric import cot assert _test_args(cot(2)) def test_sympy__functions__elementary__trigonometric__sin(): assert _test_args(sin(2)) def test_sympy__functions__elementary__trigonometric__sinc(): from sympy.functions.elementary.trigonometric import sinc assert _test_args(sinc(2)) def test_sympy__functions__elementary__trigonometric__sec(): from sympy.functions.elementary.trigonometric import sec assert _test_args(sec(2)) def test_sympy__functions__elementary__trigonometric__tan(): from sympy.functions.elementary.trigonometric import tan assert _test_args(tan(2)) @SKIP("abstract class") def test_sympy__functions__special__bessel__BesselBase(): pass @SKIP("abstract class") def test_sympy__functions__special__bessel__SphericalBesselBase(): pass @SKIP("abstract class") def test_sympy__functions__special__bessel__SphericalHankelBase(): pass def test_sympy__functions__special__bessel__besseli(): from sympy.functions.special.bessel import besseli assert _test_args(besseli(x, 1)) def test_sympy__functions__special__bessel__besselj(): from sympy.functions.special.bessel import besselj assert _test_args(besselj(x, 1)) def test_sympy__functions__special__bessel__besselk(): from sympy.functions.special.bessel import besselk assert _test_args(besselk(x, 1)) def test_sympy__functions__special__bessel__bessely(): from sympy.functions.special.bessel import bessely assert _test_args(bessely(x, 1)) def test_sympy__functions__special__bessel__hankel1(): from sympy.functions.special.bessel import hankel1 assert _test_args(hankel1(x, 1)) def test_sympy__functions__special__bessel__hankel2(): from sympy.functions.special.bessel import hankel2 assert _test_args(hankel2(x, 1)) def test_sympy__functions__special__bessel__jn(): from sympy.functions.special.bessel import jn assert _test_args(jn(0, x)) def test_sympy__functions__special__bessel__yn(): from sympy.functions.special.bessel import yn assert _test_args(yn(0, x)) def test_sympy__functions__special__bessel__hn1(): from sympy.functions.special.bessel import hn1 assert _test_args(hn1(0, x)) def test_sympy__functions__special__bessel__hn2(): from sympy.functions.special.bessel import hn2 assert _test_args(hn2(0, x)) def test_sympy__functions__special__bessel__AiryBase(): pass def test_sympy__functions__special__bessel__airyai(): from sympy.functions.special.bessel import airyai assert _test_args(airyai(2)) def test_sympy__functions__special__bessel__airybi(): from sympy.functions.special.bessel import airybi assert _test_args(airybi(2)) def test_sympy__functions__special__bessel__airyaiprime(): from sympy.functions.special.bessel import airyaiprime assert _test_args(airyaiprime(2)) def test_sympy__functions__special__bessel__airybiprime(): from sympy.functions.special.bessel import airybiprime assert _test_args(airybiprime(2)) def test_sympy__functions__special__bessel__marcumq(): from sympy.functions.special.bessel import marcumq assert _test_args(marcumq(x, y, z)) def test_sympy__functions__special__elliptic_integrals__elliptic_k(): from sympy.functions.special.elliptic_integrals import elliptic_k as K assert _test_args(K(x)) def test_sympy__functions__special__elliptic_integrals__elliptic_f(): from sympy.functions.special.elliptic_integrals import elliptic_f as F assert _test_args(F(x, y)) def test_sympy__functions__special__elliptic_integrals__elliptic_e(): from sympy.functions.special.elliptic_integrals import elliptic_e as E assert _test_args(E(x)) assert _test_args(E(x, y)) def test_sympy__functions__special__elliptic_integrals__elliptic_pi(): from sympy.functions.special.elliptic_integrals import elliptic_pi as P assert _test_args(P(x, y)) assert _test_args(P(x, y, z)) def test_sympy__functions__special__delta_functions__DiracDelta(): from sympy.functions.special.delta_functions import DiracDelta assert _test_args(DiracDelta(x, 1)) def test_sympy__functions__special__singularity_functions__SingularityFunction(): from sympy.functions.special.singularity_functions import SingularityFunction assert _test_args(SingularityFunction(x, y, z)) def test_sympy__functions__special__delta_functions__Heaviside(): from sympy.functions.special.delta_functions import Heaviside assert _test_args(Heaviside(x)) def test_sympy__functions__special__error_functions__erf(): from sympy.functions.special.error_functions import erf assert _test_args(erf(2)) def test_sympy__functions__special__error_functions__erfc(): from sympy.functions.special.error_functions import erfc assert _test_args(erfc(2)) def test_sympy__functions__special__error_functions__erfi(): from sympy.functions.special.error_functions import erfi assert _test_args(erfi(2)) def test_sympy__functions__special__error_functions__erf2(): from sympy.functions.special.error_functions import erf2 assert _test_args(erf2(2, 3)) def test_sympy__functions__special__error_functions__erfinv(): from sympy.functions.special.error_functions import erfinv assert _test_args(erfinv(2)) def test_sympy__functions__special__error_functions__erfcinv(): from sympy.functions.special.error_functions import erfcinv assert _test_args(erfcinv(2)) def test_sympy__functions__special__error_functions__erf2inv(): from sympy.functions.special.error_functions import erf2inv assert _test_args(erf2inv(2, 3)) @SKIP("abstract class") def test_sympy__functions__special__error_functions__FresnelIntegral(): pass def test_sympy__functions__special__error_functions__fresnels(): from sympy.functions.special.error_functions import fresnels assert _test_args(fresnels(2)) def test_sympy__functions__special__error_functions__fresnelc(): from sympy.functions.special.error_functions import fresnelc assert _test_args(fresnelc(2)) def test_sympy__functions__special__error_functions__erfs(): from sympy.functions.special.error_functions import _erfs assert _test_args(_erfs(2)) def test_sympy__functions__special__error_functions__Ei(): from sympy.functions.special.error_functions import Ei assert _test_args(Ei(2)) def test_sympy__functions__special__error_functions__li(): from sympy.functions.special.error_functions import li assert _test_args(li(2)) def test_sympy__functions__special__error_functions__Li(): from sympy.functions.special.error_functions import Li assert _test_args(Li(2)) @SKIP("abstract class") def test_sympy__functions__special__error_functions__TrigonometricIntegral(): pass def test_sympy__functions__special__error_functions__Si(): from sympy.functions.special.error_functions import Si assert _test_args(Si(2)) def test_sympy__functions__special__error_functions__Ci(): from sympy.functions.special.error_functions import Ci assert _test_args(Ci(2)) def test_sympy__functions__special__error_functions__Shi(): from sympy.functions.special.error_functions import Shi assert _test_args(Shi(2)) def test_sympy__functions__special__error_functions__Chi(): from sympy.functions.special.error_functions import Chi assert _test_args(Chi(2)) def test_sympy__functions__special__error_functions__expint(): from sympy.functions.special.error_functions import expint assert _test_args(expint(y, x)) def test_sympy__functions__special__gamma_functions__gamma(): from sympy.functions.special.gamma_functions import gamma assert _test_args(gamma(x)) def test_sympy__functions__special__gamma_functions__loggamma(): from sympy.functions.special.gamma_functions import loggamma assert _test_args(loggamma(2)) def test_sympy__functions__special__gamma_functions__lowergamma(): from sympy.functions.special.gamma_functions import lowergamma assert _test_args(lowergamma(x, 2)) def test_sympy__functions__special__gamma_functions__polygamma(): from sympy.functions.special.gamma_functions import polygamma assert _test_args(polygamma(x, 2)) def test_sympy__functions__special__gamma_functions__digamma(): from sympy.functions.special.gamma_functions import digamma assert _test_args(digamma(x)) def test_sympy__functions__special__gamma_functions__trigamma(): from sympy.functions.special.gamma_functions import trigamma assert _test_args(trigamma(x)) def test_sympy__functions__special__gamma_functions__uppergamma(): from sympy.functions.special.gamma_functions import uppergamma assert _test_args(uppergamma(x, 2)) def test_sympy__functions__special__gamma_functions__multigamma(): from sympy.functions.special.gamma_functions import multigamma assert _test_args(multigamma(x, 1)) def test_sympy__functions__special__beta_functions__beta(): from sympy.functions.special.beta_functions import beta assert _test_args(beta(x, x)) def test_sympy__functions__special__mathieu_functions__MathieuBase(): pass def test_sympy__functions__special__mathieu_functions__mathieus(): from sympy.functions.special.mathieu_functions import mathieus assert _test_args(mathieus(1, 1, 1)) def test_sympy__functions__special__mathieu_functions__mathieuc(): from sympy.functions.special.mathieu_functions import mathieuc assert _test_args(mathieuc(1, 1, 1)) def test_sympy__functions__special__mathieu_functions__mathieusprime(): from sympy.functions.special.mathieu_functions import mathieusprime assert _test_args(mathieusprime(1, 1, 1)) def test_sympy__functions__special__mathieu_functions__mathieucprime(): from sympy.functions.special.mathieu_functions import mathieucprime assert _test_args(mathieucprime(1, 1, 1)) @SKIP("abstract class") def test_sympy__functions__special__hyper__TupleParametersBase(): pass @SKIP("abstract class") def test_sympy__functions__special__hyper__TupleArg(): pass def test_sympy__functions__special__hyper__hyper(): from sympy.functions.special.hyper import hyper assert _test_args(hyper([1, 2, 3], [4, 5], x)) def test_sympy__functions__special__hyper__meijerg(): from sympy.functions.special.hyper import meijerg assert _test_args(meijerg([1, 2, 3], [4, 5], [6], [], x)) @SKIP("abstract class") def test_sympy__functions__special__hyper__HyperRep(): pass def test_sympy__functions__special__hyper__HyperRep_power1(): from sympy.functions.special.hyper import HyperRep_power1 assert _test_args(HyperRep_power1(x, y)) def test_sympy__functions__special__hyper__HyperRep_power2(): from sympy.functions.special.hyper import HyperRep_power2 assert _test_args(HyperRep_power2(x, y)) def test_sympy__functions__special__hyper__HyperRep_log1(): from sympy.functions.special.hyper import HyperRep_log1 assert _test_args(HyperRep_log1(x)) def test_sympy__functions__special__hyper__HyperRep_atanh(): from sympy.functions.special.hyper import HyperRep_atanh assert _test_args(HyperRep_atanh(x)) def test_sympy__functions__special__hyper__HyperRep_asin1(): from sympy.functions.special.hyper import HyperRep_asin1 assert _test_args(HyperRep_asin1(x)) def test_sympy__functions__special__hyper__HyperRep_asin2(): from sympy.functions.special.hyper import HyperRep_asin2 assert _test_args(HyperRep_asin2(x)) def test_sympy__functions__special__hyper__HyperRep_sqrts1(): from sympy.functions.special.hyper import HyperRep_sqrts1 assert _test_args(HyperRep_sqrts1(x, y)) def test_sympy__functions__special__hyper__HyperRep_sqrts2(): from sympy.functions.special.hyper import HyperRep_sqrts2 assert _test_args(HyperRep_sqrts2(x, y)) def test_sympy__functions__special__hyper__HyperRep_log2(): from sympy.functions.special.hyper import HyperRep_log2 assert _test_args(HyperRep_log2(x)) def test_sympy__functions__special__hyper__HyperRep_cosasin(): from sympy.functions.special.hyper import HyperRep_cosasin assert _test_args(HyperRep_cosasin(x, y)) def test_sympy__functions__special__hyper__HyperRep_sinasin(): from sympy.functions.special.hyper import HyperRep_sinasin assert _test_args(HyperRep_sinasin(x, y)) def test_sympy__functions__special__hyper__appellf1(): from sympy.functions.special.hyper import appellf1 a, b1, b2, c, x, y = symbols('a b1 b2 c x y') assert _test_args(appellf1(a, b1, b2, c, x, y)) @SKIP("abstract class") def test_sympy__functions__special__polynomials__OrthogonalPolynomial(): pass def test_sympy__functions__special__polynomials__jacobi(): from sympy.functions.special.polynomials import jacobi assert _test_args(jacobi(x, 2, 2, 2)) def test_sympy__functions__special__polynomials__gegenbauer(): from sympy.functions.special.polynomials import gegenbauer assert _test_args(gegenbauer(x, 2, 2)) def test_sympy__functions__special__polynomials__chebyshevt(): from sympy.functions.special.polynomials import chebyshevt assert _test_args(chebyshevt(x, 2)) def test_sympy__functions__special__polynomials__chebyshevt_root(): from sympy.functions.special.polynomials import chebyshevt_root assert _test_args(chebyshevt_root(3, 2)) def test_sympy__functions__special__polynomials__chebyshevu(): from sympy.functions.special.polynomials import chebyshevu assert _test_args(chebyshevu(x, 2)) def test_sympy__functions__special__polynomials__chebyshevu_root(): from sympy.functions.special.polynomials import chebyshevu_root assert _test_args(chebyshevu_root(3, 2)) def test_sympy__functions__special__polynomials__hermite(): from sympy.functions.special.polynomials import hermite assert _test_args(hermite(x, 2)) def test_sympy__functions__special__polynomials__legendre(): from sympy.functions.special.polynomials import legendre assert _test_args(legendre(x, 2)) def test_sympy__functions__special__polynomials__assoc_legendre(): from sympy.functions.special.polynomials import assoc_legendre assert _test_args(assoc_legendre(x, 0, y)) def test_sympy__functions__special__polynomials__laguerre(): from sympy.functions.special.polynomials import laguerre assert _test_args(laguerre(x, 2)) def test_sympy__functions__special__polynomials__assoc_laguerre(): from sympy.functions.special.polynomials import assoc_laguerre assert _test_args(assoc_laguerre(x, 0, y)) def test_sympy__functions__special__spherical_harmonics__Ynm(): from sympy.functions.special.spherical_harmonics import Ynm assert _test_args(Ynm(1, 1, x, y)) def test_sympy__functions__special__spherical_harmonics__Znm(): from sympy.functions.special.spherical_harmonics import Znm assert _test_args(Znm(1, 1, x, y)) def test_sympy__functions__special__tensor_functions__LeviCivita(): from sympy.functions.special.tensor_functions import LeviCivita assert _test_args(LeviCivita(x, y, 2)) def test_sympy__functions__special__tensor_functions__KroneckerDelta(): from sympy.functions.special.tensor_functions import KroneckerDelta assert _test_args(KroneckerDelta(x, y)) def test_sympy__functions__special__zeta_functions__dirichlet_eta(): from sympy.functions.special.zeta_functions import dirichlet_eta assert _test_args(dirichlet_eta(x)) def test_sympy__functions__special__zeta_functions__zeta(): from sympy.functions.special.zeta_functions import zeta assert _test_args(zeta(101)) def test_sympy__functions__special__zeta_functions__lerchphi(): from sympy.functions.special.zeta_functions import lerchphi assert _test_args(lerchphi(x, y, z)) def test_sympy__functions__special__zeta_functions__polylog(): from sympy.functions.special.zeta_functions import polylog assert _test_args(polylog(x, y)) def test_sympy__functions__special__zeta_functions__stieltjes(): from sympy.functions.special.zeta_functions import stieltjes assert _test_args(stieltjes(x, y)) def test_sympy__integrals__integrals__Integral(): from sympy.integrals.integrals import Integral assert _test_args(Integral(2, (x, 0, 1))) def test_sympy__integrals__risch__NonElementaryIntegral(): from sympy.integrals.risch import NonElementaryIntegral assert _test_args(NonElementaryIntegral(exp(-x**2), x)) @SKIP("abstract class") def test_sympy__integrals__transforms__IntegralTransform(): pass def test_sympy__integrals__transforms__MellinTransform(): from sympy.integrals.transforms import MellinTransform assert _test_args(MellinTransform(2, x, y)) def test_sympy__integrals__transforms__InverseMellinTransform(): from sympy.integrals.transforms import InverseMellinTransform assert _test_args(InverseMellinTransform(2, x, y, 0, 1)) def test_sympy__integrals__transforms__LaplaceTransform(): from sympy.integrals.transforms import LaplaceTransform assert _test_args(LaplaceTransform(2, x, y)) def test_sympy__integrals__transforms__InverseLaplaceTransform(): from sympy.integrals.transforms import InverseLaplaceTransform assert _test_args(InverseLaplaceTransform(2, x, y, 0)) @SKIP("abstract class") def test_sympy__integrals__transforms__FourierTypeTransform(): pass def test_sympy__integrals__transforms__InverseFourierTransform(): from sympy.integrals.transforms import InverseFourierTransform assert _test_args(InverseFourierTransform(2, x, y)) def test_sympy__integrals__transforms__FourierTransform(): from sympy.integrals.transforms import FourierTransform assert _test_args(FourierTransform(2, x, y)) @SKIP("abstract class") def test_sympy__integrals__transforms__SineCosineTypeTransform(): pass def test_sympy__integrals__transforms__InverseSineTransform(): from sympy.integrals.transforms import InverseSineTransform assert _test_args(InverseSineTransform(2, x, y)) def test_sympy__integrals__transforms__SineTransform(): from sympy.integrals.transforms import SineTransform assert _test_args(SineTransform(2, x, y)) def test_sympy__integrals__transforms__InverseCosineTransform(): from sympy.integrals.transforms import InverseCosineTransform assert _test_args(InverseCosineTransform(2, x, y)) def test_sympy__integrals__transforms__CosineTransform(): from sympy.integrals.transforms import CosineTransform assert _test_args(CosineTransform(2, x, y)) @SKIP("abstract class") def test_sympy__integrals__transforms__HankelTypeTransform(): pass def test_sympy__integrals__transforms__InverseHankelTransform(): from sympy.integrals.transforms import InverseHankelTransform assert _test_args(InverseHankelTransform(2, x, y, 0)) def test_sympy__integrals__transforms__HankelTransform(): from sympy.integrals.transforms import HankelTransform assert _test_args(HankelTransform(2, x, y, 0)) @XFAIL def test_sympy__liealgebras__cartan_type__CartanType_generator(): from sympy.liealgebras.cartan_type import CartanType_generator assert _test_args(CartanType_generator("A2")) @XFAIL def test_sympy__liealgebras__cartan_type__Standard_Cartan(): from sympy.liealgebras.cartan_type import Standard_Cartan assert _test_args(Standard_Cartan("A", 2)) @XFAIL def test_sympy__liealgebras__weyl_group__WeylGroup(): from sympy.liealgebras.weyl_group import WeylGroup assert _test_args(WeylGroup("B4")) @XFAIL def test_sympy__liealgebras__root_system__RootSystem(): from sympy.liealgebras.root_system import RootSystem assert _test_args(RootSystem("A2")) @XFAIL def test_sympy__liealgebras__type_a__TypeA(): from sympy.liealgebras.type_a import TypeA assert _test_args(TypeA(2)) @XFAIL def test_sympy__liealgebras__type_b__TypeB(): from sympy.liealgebras.type_b import TypeB assert _test_args(TypeB(4)) @XFAIL def test_sympy__liealgebras__type_c__TypeC(): from sympy.liealgebras.type_c import TypeC assert _test_args(TypeC(4)) @XFAIL def test_sympy__liealgebras__type_d__TypeD(): from sympy.liealgebras.type_d import TypeD assert _test_args(TypeD(4)) @XFAIL def test_sympy__liealgebras__type_e__TypeE(): from sympy.liealgebras.type_e import TypeE assert _test_args(TypeE(6)) @XFAIL def test_sympy__liealgebras__type_f__TypeF(): from sympy.liealgebras.type_f import TypeF assert _test_args(TypeF(4)) @XFAIL def test_sympy__liealgebras__type_g__TypeG(): from sympy.liealgebras.type_g import TypeG assert _test_args(TypeG(2)) def test_sympy__logic__boolalg__And(): from sympy.logic.boolalg import And assert _test_args(And(x, y, 1)) @SKIP("abstract class") def test_sympy__logic__boolalg__Boolean(): pass def test_sympy__logic__boolalg__BooleanFunction(): from sympy.logic.boolalg import BooleanFunction assert _test_args(BooleanFunction(1, 2, 3)) @SKIP("abstract class") def test_sympy__logic__boolalg__BooleanAtom(): pass def test_sympy__logic__boolalg__BooleanTrue(): from sympy.logic.boolalg import true assert _test_args(true) def test_sympy__logic__boolalg__BooleanFalse(): from sympy.logic.boolalg import false assert _test_args(false) def test_sympy__logic__boolalg__Equivalent(): from sympy.logic.boolalg import Equivalent assert _test_args(Equivalent(x, 2)) def test_sympy__logic__boolalg__ITE(): from sympy.logic.boolalg import ITE assert _test_args(ITE(x, y, 1)) def test_sympy__logic__boolalg__Implies(): from sympy.logic.boolalg import Implies assert _test_args(Implies(x, y)) def test_sympy__logic__boolalg__Nand(): from sympy.logic.boolalg import Nand assert _test_args(Nand(x, y, 1)) def test_sympy__logic__boolalg__Nor(): from sympy.logic.boolalg import Nor assert _test_args(Nor(x, y)) def test_sympy__logic__boolalg__Not(): from sympy.logic.boolalg import Not assert _test_args(Not(x)) def test_sympy__logic__boolalg__Or(): from sympy.logic.boolalg import Or assert _test_args(Or(x, y)) def test_sympy__logic__boolalg__Xor(): from sympy.logic.boolalg import Xor assert _test_args(Xor(x, y, 2)) def test_sympy__logic__boolalg__Xnor(): from sympy.logic.boolalg import Xnor assert _test_args(Xnor(x, y, 2)) def test_sympy__matrices__matrices__DeferredVector(): from sympy.matrices.matrices import DeferredVector assert _test_args(DeferredVector("X")) @SKIP("abstract class") def test_sympy__matrices__expressions__matexpr__MatrixBase(): pass def test_sympy__matrices__immutable__ImmutableDenseMatrix(): from sympy.matrices.immutable import ImmutableDenseMatrix m = ImmutableDenseMatrix([[1, 2], [3, 4]]) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableDenseMatrix(1, 1, [1]) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableDenseMatrix(2, 2, lambda i, j: 1) assert m[0, 0] is S.One m = ImmutableDenseMatrix(2, 2, lambda i, j: 1/(1 + i) + 1/(1 + j)) assert m[1, 1] is S.One # true div. will give 1.0 if i,j not sympified assert _test_args(m) assert _test_args(Basic(*list(m))) def test_sympy__matrices__immutable__ImmutableSparseMatrix(): from sympy.matrices.immutable import ImmutableSparseMatrix m = ImmutableSparseMatrix([[1, 2], [3, 4]]) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableSparseMatrix(1, 1, {(0, 0): 1}) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableSparseMatrix(1, 1, [1]) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableSparseMatrix(2, 2, lambda i, j: 1) assert m[0, 0] is S.One m = ImmutableSparseMatrix(2, 2, lambda i, j: 1/(1 + i) + 1/(1 + j)) assert m[1, 1] is S.One # true div. will give 1.0 if i,j not sympified assert _test_args(m) assert _test_args(Basic(*list(m))) def test_sympy__matrices__expressions__slice__MatrixSlice(): from sympy.matrices.expressions.slice import MatrixSlice from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', 4, 4) assert _test_args(MatrixSlice(X, (0, 2), (0, 2))) def test_sympy__matrices__expressions__applyfunc__ElementwiseApplyFunction(): from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol("X", x, x) func = Lambda(x, x**2) assert _test_args(ElementwiseApplyFunction(func, X)) def test_sympy__matrices__expressions__blockmatrix__BlockDiagMatrix(): from sympy.matrices.expressions.blockmatrix import BlockDiagMatrix from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, x) Y = MatrixSymbol('Y', y, y) assert _test_args(BlockDiagMatrix(X, Y)) def test_sympy__matrices__expressions__blockmatrix__BlockMatrix(): from sympy.matrices.expressions.blockmatrix import BlockMatrix from sympy.matrices.expressions import MatrixSymbol, ZeroMatrix X = MatrixSymbol('X', x, x) Y = MatrixSymbol('Y', y, y) Z = MatrixSymbol('Z', x, y) O = ZeroMatrix(y, x) assert _test_args(BlockMatrix([[X, Z], [O, Y]])) def test_sympy__matrices__expressions__inverse__Inverse(): from sympy.matrices.expressions.inverse import Inverse from sympy.matrices.expressions import MatrixSymbol assert _test_args(Inverse(MatrixSymbol('A', 3, 3))) def test_sympy__matrices__expressions__matadd__MatAdd(): from sympy.matrices.expressions.matadd import MatAdd from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, y) Y = MatrixSymbol('Y', x, y) assert _test_args(MatAdd(X, Y)) @SKIP("abstract class") def test_sympy__matrices__expressions__matexpr__MatrixExpr(): pass def test_sympy__matrices__expressions__matexpr__MatrixElement(): from sympy.matrices.expressions.matexpr import MatrixSymbol, MatrixElement from sympy import S assert _test_args(MatrixElement(MatrixSymbol('A', 3, 5), S(2), S(3))) def test_sympy__matrices__expressions__matexpr__MatrixSymbol(): from sympy.matrices.expressions.matexpr import MatrixSymbol assert _test_args(MatrixSymbol('A', 3, 5)) def test_sympy__matrices__expressions__special__OneMatrix(): from sympy.matrices.expressions.special import OneMatrix assert _test_args(OneMatrix(3, 5)) def test_sympy__matrices__expressions__special__ZeroMatrix(): from sympy.matrices.expressions.special import ZeroMatrix assert _test_args(ZeroMatrix(3, 5)) def test_sympy__matrices__expressions__special__GenericZeroMatrix(): from sympy.matrices.expressions.special import GenericZeroMatrix assert _test_args(GenericZeroMatrix()) def test_sympy__matrices__expressions__special__Identity(): from sympy.matrices.expressions.special import Identity assert _test_args(Identity(3)) def test_sympy__matrices__expressions__special__GenericIdentity(): from sympy.matrices.expressions.special import GenericIdentity assert _test_args(GenericIdentity()) def test_sympy__matrices__expressions__sets__MatrixSet(): from sympy.matrices.expressions.sets import MatrixSet from sympy import S assert _test_args(MatrixSet(2, 2, S.Reals)) def test_sympy__matrices__expressions__matmul__MatMul(): from sympy.matrices.expressions.matmul import MatMul from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, y) Y = MatrixSymbol('Y', y, x) assert _test_args(MatMul(X, Y)) def test_sympy__matrices__expressions__dotproduct__DotProduct(): from sympy.matrices.expressions.dotproduct import DotProduct from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, 1) Y = MatrixSymbol('Y', x, 1) assert _test_args(DotProduct(X, Y)) def test_sympy__matrices__expressions__diagonal__DiagonalMatrix(): from sympy.matrices.expressions.diagonal import DiagonalMatrix from sympy.matrices.expressions import MatrixSymbol x = MatrixSymbol('x', 10, 1) assert _test_args(DiagonalMatrix(x)) def test_sympy__matrices__expressions__diagonal__DiagonalOf(): from sympy.matrices.expressions.diagonal import DiagonalOf from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('x', 10, 10) assert _test_args(DiagonalOf(X)) def test_sympy__matrices__expressions__diagonal__DiagMatrix(): from sympy.matrices.expressions.diagonal import DiagMatrix from sympy.matrices.expressions import MatrixSymbol x = MatrixSymbol('x', 10, 1) assert _test_args(DiagMatrix(x)) def test_sympy__matrices__expressions__hadamard__HadamardProduct(): from sympy.matrices.expressions.hadamard import HadamardProduct from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, y) Y = MatrixSymbol('Y', x, y) assert _test_args(HadamardProduct(X, Y)) def test_sympy__matrices__expressions__hadamard__HadamardPower(): from sympy.matrices.expressions.hadamard import HadamardPower from sympy.matrices.expressions import MatrixSymbol from sympy import Symbol X = MatrixSymbol('X', x, y) n = Symbol("n") assert _test_args(HadamardPower(X, n)) def test_sympy__matrices__expressions__kronecker__KroneckerProduct(): from sympy.matrices.expressions.kronecker import KroneckerProduct from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, y) Y = MatrixSymbol('Y', x, y) assert _test_args(KroneckerProduct(X, Y)) def test_sympy__matrices__expressions__matpow__MatPow(): from sympy.matrices.expressions.matpow import MatPow from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, x) assert _test_args(MatPow(X, 2)) def test_sympy__matrices__expressions__transpose__Transpose(): from sympy.matrices.expressions.transpose import Transpose from sympy.matrices.expressions import MatrixSymbol assert _test_args(Transpose(MatrixSymbol('A', 3, 5))) def test_sympy__matrices__expressions__adjoint__Adjoint(): from sympy.matrices.expressions.adjoint import Adjoint from sympy.matrices.expressions import MatrixSymbol assert _test_args(Adjoint(MatrixSymbol('A', 3, 5))) def test_sympy__matrices__expressions__trace__Trace(): from sympy.matrices.expressions.trace import Trace from sympy.matrices.expressions import MatrixSymbol assert _test_args(Trace(MatrixSymbol('A', 3, 3))) def test_sympy__matrices__expressions__determinant__Determinant(): from sympy.matrices.expressions.determinant import Determinant from sympy.matrices.expressions import MatrixSymbol assert _test_args(Determinant(MatrixSymbol('A', 3, 3))) def test_sympy__matrices__expressions__determinant__Permanent(): from sympy.matrices.expressions.determinant import Permanent from sympy.matrices.expressions import MatrixSymbol assert _test_args(Permanent(MatrixSymbol('A', 3, 4))) def test_sympy__matrices__expressions__funcmatrix__FunctionMatrix(): from sympy.matrices.expressions.funcmatrix import FunctionMatrix from sympy import symbols i, j = symbols('i,j') assert _test_args(FunctionMatrix(3, 3, Lambda((i, j), i - j) )) def test_sympy__matrices__expressions__fourier__DFT(): from sympy.matrices.expressions.fourier import DFT from sympy import S assert _test_args(DFT(S(2))) def test_sympy__matrices__expressions__fourier__IDFT(): from sympy.matrices.expressions.fourier import IDFT from sympy import S assert _test_args(IDFT(S(2))) from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', 10, 10) def test_sympy__matrices__expressions__factorizations__LofLU(): from sympy.matrices.expressions.factorizations import LofLU assert _test_args(LofLU(X)) def test_sympy__matrices__expressions__factorizations__UofLU(): from sympy.matrices.expressions.factorizations import UofLU assert _test_args(UofLU(X)) def test_sympy__matrices__expressions__factorizations__QofQR(): from sympy.matrices.expressions.factorizations import QofQR assert _test_args(QofQR(X)) def test_sympy__matrices__expressions__factorizations__RofQR(): from sympy.matrices.expressions.factorizations import RofQR assert _test_args(RofQR(X)) def test_sympy__matrices__expressions__factorizations__LofCholesky(): from sympy.matrices.expressions.factorizations import LofCholesky assert _test_args(LofCholesky(X)) def test_sympy__matrices__expressions__factorizations__UofCholesky(): from sympy.matrices.expressions.factorizations import UofCholesky assert _test_args(UofCholesky(X)) def test_sympy__matrices__expressions__factorizations__EigenVectors(): from sympy.matrices.expressions.factorizations import EigenVectors assert _test_args(EigenVectors(X)) def test_sympy__matrices__expressions__factorizations__EigenValues(): from sympy.matrices.expressions.factorizations import EigenValues assert _test_args(EigenValues(X)) def test_sympy__matrices__expressions__factorizations__UofSVD(): from sympy.matrices.expressions.factorizations import UofSVD assert _test_args(UofSVD(X)) def test_sympy__matrices__expressions__factorizations__VofSVD(): from sympy.matrices.expressions.factorizations import VofSVD assert _test_args(VofSVD(X)) def test_sympy__matrices__expressions__factorizations__SofSVD(): from sympy.matrices.expressions.factorizations import SofSVD assert _test_args(SofSVD(X)) @SKIP("abstract class") def test_sympy__matrices__expressions__factorizations__Factorization(): pass def test_sympy__matrices__expressions__permutation__PermutationMatrix(): from sympy.combinatorics import Permutation from sympy.matrices.expressions.permutation import PermutationMatrix assert _test_args(PermutationMatrix(Permutation([2, 0, 1]))) def test_sympy__matrices__expressions__permutation__MatrixPermute(): from sympy.combinatorics import Permutation from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.matrices.expressions.permutation import MatrixPermute A = MatrixSymbol('A', 3, 3) assert _test_args(MatrixPermute(A, Permutation([2, 0, 1]))) def test_sympy__matrices__expressions__companion__CompanionMatrix(): from sympy.core.symbol import Symbol from sympy.matrices.expressions.companion import CompanionMatrix from sympy.polys.polytools import Poly x = Symbol('x') p = Poly([1, 2, 3], x) assert _test_args(CompanionMatrix(p)) def test_sympy__physics__vector__frame__CoordinateSym(): from sympy.physics.vector import CoordinateSym from sympy.physics.vector import ReferenceFrame assert _test_args(CoordinateSym('R_x', ReferenceFrame('R'), 0)) def test_sympy__physics__paulialgebra__Pauli(): from sympy.physics.paulialgebra import Pauli assert _test_args(Pauli(1)) def test_sympy__physics__quantum__anticommutator__AntiCommutator(): from sympy.physics.quantum.anticommutator import AntiCommutator assert _test_args(AntiCommutator(x, y)) def test_sympy__physics__quantum__cartesian__PositionBra3D(): from sympy.physics.quantum.cartesian import PositionBra3D assert _test_args(PositionBra3D(x, y, z)) def test_sympy__physics__quantum__cartesian__PositionKet3D(): from sympy.physics.quantum.cartesian import PositionKet3D assert _test_args(PositionKet3D(x, y, z)) def test_sympy__physics__quantum__cartesian__PositionState3D(): from sympy.physics.quantum.cartesian import PositionState3D assert _test_args(PositionState3D(x, y, z)) def test_sympy__physics__quantum__cartesian__PxBra(): from sympy.physics.quantum.cartesian import PxBra assert _test_args(PxBra(x, y, z)) def test_sympy__physics__quantum__cartesian__PxKet(): from sympy.physics.quantum.cartesian import PxKet assert _test_args(PxKet(x, y, z)) def test_sympy__physics__quantum__cartesian__PxOp(): from sympy.physics.quantum.cartesian import PxOp assert _test_args(PxOp(x, y, z)) def test_sympy__physics__quantum__cartesian__XBra(): from sympy.physics.quantum.cartesian import XBra assert _test_args(XBra(x)) def test_sympy__physics__quantum__cartesian__XKet(): from sympy.physics.quantum.cartesian import XKet assert _test_args(XKet(x)) def test_sympy__physics__quantum__cartesian__XOp(): from sympy.physics.quantum.cartesian import XOp assert _test_args(XOp(x)) def test_sympy__physics__quantum__cartesian__YOp(): from sympy.physics.quantum.cartesian import YOp assert _test_args(YOp(x)) def test_sympy__physics__quantum__cartesian__ZOp(): from sympy.physics.quantum.cartesian import ZOp assert _test_args(ZOp(x)) def test_sympy__physics__quantum__cg__CG(): from sympy.physics.quantum.cg import CG from sympy import S assert _test_args(CG(Rational(3, 2), Rational(3, 2), S.Half, Rational(-1, 2), 1, 1)) def test_sympy__physics__quantum__cg__Wigner3j(): from sympy.physics.quantum.cg import Wigner3j assert _test_args(Wigner3j(6, 0, 4, 0, 2, 0)) def test_sympy__physics__quantum__cg__Wigner6j(): from sympy.physics.quantum.cg import Wigner6j assert _test_args(Wigner6j(1, 2, 3, 2, 1, 2)) def test_sympy__physics__quantum__cg__Wigner9j(): from sympy.physics.quantum.cg import Wigner9j assert _test_args(Wigner9j(2, 1, 1, Rational(3, 2), S.Half, 1, S.Half, S.Half, 0)) def test_sympy__physics__quantum__circuitplot__Mz(): from sympy.physics.quantum.circuitplot import Mz assert _test_args(Mz(0)) def test_sympy__physics__quantum__circuitplot__Mx(): from sympy.physics.quantum.circuitplot import Mx assert _test_args(Mx(0)) def test_sympy__physics__quantum__commutator__Commutator(): from sympy.physics.quantum.commutator import Commutator A, B = symbols('A,B', commutative=False) assert _test_args(Commutator(A, B)) def test_sympy__physics__quantum__constants__HBar(): from sympy.physics.quantum.constants import HBar assert _test_args(HBar()) def test_sympy__physics__quantum__dagger__Dagger(): from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.state import Ket assert _test_args(Dagger(Dagger(Ket('psi')))) def test_sympy__physics__quantum__gate__CGate(): from sympy.physics.quantum.gate import CGate, Gate assert _test_args(CGate((0, 1), Gate(2))) def test_sympy__physics__quantum__gate__CGateS(): from sympy.physics.quantum.gate import CGateS, Gate assert _test_args(CGateS((0, 1), Gate(2))) def test_sympy__physics__quantum__gate__CNotGate(): from sympy.physics.quantum.gate import CNotGate assert _test_args(CNotGate(0, 1)) def test_sympy__physics__quantum__gate__Gate(): from sympy.physics.quantum.gate import Gate assert _test_args(Gate(0)) def test_sympy__physics__quantum__gate__HadamardGate(): from sympy.physics.quantum.gate import HadamardGate assert _test_args(HadamardGate(0)) def test_sympy__physics__quantum__gate__IdentityGate(): from sympy.physics.quantum.gate import IdentityGate assert _test_args(IdentityGate(0)) def test_sympy__physics__quantum__gate__OneQubitGate(): from sympy.physics.quantum.gate import OneQubitGate assert _test_args(OneQubitGate(0)) def test_sympy__physics__quantum__gate__PhaseGate(): from sympy.physics.quantum.gate import PhaseGate assert _test_args(PhaseGate(0)) def test_sympy__physics__quantum__gate__SwapGate(): from sympy.physics.quantum.gate import SwapGate assert _test_args(SwapGate(0, 1)) def test_sympy__physics__quantum__gate__TGate(): from sympy.physics.quantum.gate import TGate assert _test_args(TGate(0)) def test_sympy__physics__quantum__gate__TwoQubitGate(): from sympy.physics.quantum.gate import TwoQubitGate assert _test_args(TwoQubitGate(0)) def test_sympy__physics__quantum__gate__UGate(): from sympy.physics.quantum.gate import UGate from sympy.matrices.immutable import ImmutableDenseMatrix from sympy import Integer, Tuple assert _test_args( UGate(Tuple(Integer(1)), ImmutableDenseMatrix([[1, 0], [0, 2]]))) def test_sympy__physics__quantum__gate__XGate(): from sympy.physics.quantum.gate import XGate assert _test_args(XGate(0)) def test_sympy__physics__quantum__gate__YGate(): from sympy.physics.quantum.gate import YGate assert _test_args(YGate(0)) def test_sympy__physics__quantum__gate__ZGate(): from sympy.physics.quantum.gate import ZGate assert _test_args(ZGate(0)) @SKIP("TODO: sympy.physics") def test_sympy__physics__quantum__grover__OracleGate(): from sympy.physics.quantum.grover import OracleGate assert _test_args(OracleGate()) def test_sympy__physics__quantum__grover__WGate(): from sympy.physics.quantum.grover import WGate assert _test_args(WGate(1)) def test_sympy__physics__quantum__hilbert__ComplexSpace(): from sympy.physics.quantum.hilbert import ComplexSpace assert _test_args(ComplexSpace(x)) def test_sympy__physics__quantum__hilbert__DirectSumHilbertSpace(): from sympy.physics.quantum.hilbert import DirectSumHilbertSpace, ComplexSpace, FockSpace c = ComplexSpace(2) f = FockSpace() assert _test_args(DirectSumHilbertSpace(c, f)) def test_sympy__physics__quantum__hilbert__FockSpace(): from sympy.physics.quantum.hilbert import FockSpace assert _test_args(FockSpace()) def test_sympy__physics__quantum__hilbert__HilbertSpace(): from sympy.physics.quantum.hilbert import HilbertSpace assert _test_args(HilbertSpace()) def test_sympy__physics__quantum__hilbert__L2(): from sympy.physics.quantum.hilbert import L2 from sympy import oo, Interval assert _test_args(L2(Interval(0, oo))) def test_sympy__physics__quantum__hilbert__TensorPowerHilbertSpace(): from sympy.physics.quantum.hilbert import TensorPowerHilbertSpace, FockSpace f = FockSpace() assert _test_args(TensorPowerHilbertSpace(f, 2)) def test_sympy__physics__quantum__hilbert__TensorProductHilbertSpace(): from sympy.physics.quantum.hilbert import TensorProductHilbertSpace, FockSpace, ComplexSpace c = ComplexSpace(2) f = FockSpace() assert _test_args(TensorProductHilbertSpace(f, c)) def test_sympy__physics__quantum__innerproduct__InnerProduct(): from sympy.physics.quantum import Bra, Ket, InnerProduct b = Bra('b') k = Ket('k') assert _test_args(InnerProduct(b, k)) def test_sympy__physics__quantum__operator__DifferentialOperator(): from sympy.physics.quantum.operator import DifferentialOperator from sympy import Derivative, Function f = Function('f') assert _test_args(DifferentialOperator(1/x*Derivative(f(x), x), f(x))) def test_sympy__physics__quantum__operator__HermitianOperator(): from sympy.physics.quantum.operator import HermitianOperator assert _test_args(HermitianOperator('H')) def test_sympy__physics__quantum__operator__IdentityOperator(): from sympy.physics.quantum.operator import IdentityOperator assert _test_args(IdentityOperator(5)) def test_sympy__physics__quantum__operator__Operator(): from sympy.physics.quantum.operator import Operator assert _test_args(Operator('A')) def test_sympy__physics__quantum__operator__OuterProduct(): from sympy.physics.quantum.operator import OuterProduct from sympy.physics.quantum import Ket, Bra b = Bra('b') k = Ket('k') assert _test_args(OuterProduct(k, b)) def test_sympy__physics__quantum__operator__UnitaryOperator(): from sympy.physics.quantum.operator import UnitaryOperator assert _test_args(UnitaryOperator('U')) def test_sympy__physics__quantum__piab__PIABBra(): from sympy.physics.quantum.piab import PIABBra assert _test_args(PIABBra('B')) def test_sympy__physics__quantum__boson__BosonOp(): from sympy.physics.quantum.boson import BosonOp assert _test_args(BosonOp('a')) assert _test_args(BosonOp('a', False)) def test_sympy__physics__quantum__boson__BosonFockKet(): from sympy.physics.quantum.boson import BosonFockKet assert _test_args(BosonFockKet(1)) def test_sympy__physics__quantum__boson__BosonFockBra(): from sympy.physics.quantum.boson import BosonFockBra assert _test_args(BosonFockBra(1)) def test_sympy__physics__quantum__boson__BosonCoherentKet(): from sympy.physics.quantum.boson import BosonCoherentKet assert _test_args(BosonCoherentKet(1)) def test_sympy__physics__quantum__boson__BosonCoherentBra(): from sympy.physics.quantum.boson import BosonCoherentBra assert _test_args(BosonCoherentBra(1)) def test_sympy__physics__quantum__fermion__FermionOp(): from sympy.physics.quantum.fermion import FermionOp assert _test_args(FermionOp('c')) assert _test_args(FermionOp('c', False)) def test_sympy__physics__quantum__fermion__FermionFockKet(): from sympy.physics.quantum.fermion import FermionFockKet assert _test_args(FermionFockKet(1)) def test_sympy__physics__quantum__fermion__FermionFockBra(): from sympy.physics.quantum.fermion import FermionFockBra assert _test_args(FermionFockBra(1)) def test_sympy__physics__quantum__pauli__SigmaOpBase(): from sympy.physics.quantum.pauli import SigmaOpBase assert _test_args(SigmaOpBase()) def test_sympy__physics__quantum__pauli__SigmaX(): from sympy.physics.quantum.pauli import SigmaX assert _test_args(SigmaX()) def test_sympy__physics__quantum__pauli__SigmaY(): from sympy.physics.quantum.pauli import SigmaY assert _test_args(SigmaY()) def test_sympy__physics__quantum__pauli__SigmaZ(): from sympy.physics.quantum.pauli import SigmaZ assert _test_args(SigmaZ()) def test_sympy__physics__quantum__pauli__SigmaMinus(): from sympy.physics.quantum.pauli import SigmaMinus assert _test_args(SigmaMinus()) def test_sympy__physics__quantum__pauli__SigmaPlus(): from sympy.physics.quantum.pauli import SigmaPlus assert _test_args(SigmaPlus()) def test_sympy__physics__quantum__pauli__SigmaZKet(): from sympy.physics.quantum.pauli import SigmaZKet assert _test_args(SigmaZKet(0)) def test_sympy__physics__quantum__pauli__SigmaZBra(): from sympy.physics.quantum.pauli import SigmaZBra assert _test_args(SigmaZBra(0)) def test_sympy__physics__quantum__piab__PIABHamiltonian(): from sympy.physics.quantum.piab import PIABHamiltonian assert _test_args(PIABHamiltonian('P')) def test_sympy__physics__quantum__piab__PIABKet(): from sympy.physics.quantum.piab import PIABKet assert _test_args(PIABKet('K')) def test_sympy__physics__quantum__qexpr__QExpr(): from sympy.physics.quantum.qexpr import QExpr assert _test_args(QExpr(0)) def test_sympy__physics__quantum__qft__Fourier(): from sympy.physics.quantum.qft import Fourier assert _test_args(Fourier(0, 1)) def test_sympy__physics__quantum__qft__IQFT(): from sympy.physics.quantum.qft import IQFT assert _test_args(IQFT(0, 1)) def test_sympy__physics__quantum__qft__QFT(): from sympy.physics.quantum.qft import QFT assert _test_args(QFT(0, 1)) def test_sympy__physics__quantum__qft__RkGate(): from sympy.physics.quantum.qft import RkGate assert _test_args(RkGate(0, 1)) def test_sympy__physics__quantum__qubit__IntQubit(): from sympy.physics.quantum.qubit import IntQubit assert _test_args(IntQubit(0)) def test_sympy__physics__quantum__qubit__IntQubitBra(): from sympy.physics.quantum.qubit import IntQubitBra assert _test_args(IntQubitBra(0)) def test_sympy__physics__quantum__qubit__IntQubitState(): from sympy.physics.quantum.qubit import IntQubitState, QubitState assert _test_args(IntQubitState(QubitState(0, 1))) def test_sympy__physics__quantum__qubit__Qubit(): from sympy.physics.quantum.qubit import Qubit assert _test_args(Qubit(0, 0, 0)) def test_sympy__physics__quantum__qubit__QubitBra(): from sympy.physics.quantum.qubit import QubitBra assert _test_args(QubitBra('1', 0)) def test_sympy__physics__quantum__qubit__QubitState(): from sympy.physics.quantum.qubit import QubitState assert _test_args(QubitState(0, 1)) def test_sympy__physics__quantum__density__Density(): from sympy.physics.quantum.density import Density from sympy.physics.quantum.state import Ket assert _test_args(Density([Ket(0), 0.5], [Ket(1), 0.5])) @SKIP("TODO: sympy.physics.quantum.shor: Cmod Not Implemented") def test_sympy__physics__quantum__shor__CMod(): from sympy.physics.quantum.shor import CMod assert _test_args(CMod()) def test_sympy__physics__quantum__spin__CoupledSpinState(): from sympy.physics.quantum.spin import CoupledSpinState assert _test_args(CoupledSpinState(1, 0, (1, 1))) assert _test_args(CoupledSpinState(1, 0, (1, S.Half, S.Half))) assert _test_args(CoupledSpinState( 1, 0, (1, S.Half, S.Half), ((2, 3, S.Half), (1, 2, 1)) )) j, m, j1, j2, j3, j12, x = symbols('j m j1:4 j12 x') assert CoupledSpinState( j, m, (j1, j2, j3)).subs(j2, x) == CoupledSpinState(j, m, (j1, x, j3)) assert CoupledSpinState(j, m, (j1, j2, j3), ((1, 3, j12), (1, 2, j)) ).subs(j12, x) == \ CoupledSpinState(j, m, (j1, j2, j3), ((1, 3, x), (1, 2, j)) ) def test_sympy__physics__quantum__spin__J2Op(): from sympy.physics.quantum.spin import J2Op assert _test_args(J2Op('J')) def test_sympy__physics__quantum__spin__JminusOp(): from sympy.physics.quantum.spin import JminusOp assert _test_args(JminusOp('J')) def test_sympy__physics__quantum__spin__JplusOp(): from sympy.physics.quantum.spin import JplusOp assert _test_args(JplusOp('J')) def test_sympy__physics__quantum__spin__JxBra(): from sympy.physics.quantum.spin import JxBra assert _test_args(JxBra(1, 0)) def test_sympy__physics__quantum__spin__JxBraCoupled(): from sympy.physics.quantum.spin import JxBraCoupled assert _test_args(JxBraCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JxKet(): from sympy.physics.quantum.spin import JxKet assert _test_args(JxKet(1, 0)) def test_sympy__physics__quantum__spin__JxKetCoupled(): from sympy.physics.quantum.spin import JxKetCoupled assert _test_args(JxKetCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JxOp(): from sympy.physics.quantum.spin import JxOp assert _test_args(JxOp('J')) def test_sympy__physics__quantum__spin__JyBra(): from sympy.physics.quantum.spin import JyBra assert _test_args(JyBra(1, 0)) def test_sympy__physics__quantum__spin__JyBraCoupled(): from sympy.physics.quantum.spin import JyBraCoupled assert _test_args(JyBraCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JyKet(): from sympy.physics.quantum.spin import JyKet assert _test_args(JyKet(1, 0)) def test_sympy__physics__quantum__spin__JyKetCoupled(): from sympy.physics.quantum.spin import JyKetCoupled assert _test_args(JyKetCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JyOp(): from sympy.physics.quantum.spin import JyOp assert _test_args(JyOp('J')) def test_sympy__physics__quantum__spin__JzBra(): from sympy.physics.quantum.spin import JzBra assert _test_args(JzBra(1, 0)) def test_sympy__physics__quantum__spin__JzBraCoupled(): from sympy.physics.quantum.spin import JzBraCoupled assert _test_args(JzBraCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JzKet(): from sympy.physics.quantum.spin import JzKet assert _test_args(JzKet(1, 0)) def test_sympy__physics__quantum__spin__JzKetCoupled(): from sympy.physics.quantum.spin import JzKetCoupled assert _test_args(JzKetCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JzOp(): from sympy.physics.quantum.spin import JzOp assert _test_args(JzOp('J')) def test_sympy__physics__quantum__spin__Rotation(): from sympy.physics.quantum.spin import Rotation assert _test_args(Rotation(pi, 0, pi/2)) def test_sympy__physics__quantum__spin__SpinState(): from sympy.physics.quantum.spin import SpinState assert _test_args(SpinState(1, 0)) def test_sympy__physics__quantum__spin__WignerD(): from sympy.physics.quantum.spin import WignerD assert _test_args(WignerD(0, 1, 2, 3, 4, 5)) def test_sympy__physics__quantum__state__Bra(): from sympy.physics.quantum.state import Bra assert _test_args(Bra(0)) def test_sympy__physics__quantum__state__BraBase(): from sympy.physics.quantum.state import BraBase assert _test_args(BraBase(0)) def test_sympy__physics__quantum__state__Ket(): from sympy.physics.quantum.state import Ket assert _test_args(Ket(0)) def test_sympy__physics__quantum__state__KetBase(): from sympy.physics.quantum.state import KetBase assert _test_args(KetBase(0)) def test_sympy__physics__quantum__state__State(): from sympy.physics.quantum.state import State assert _test_args(State(0)) def test_sympy__physics__quantum__state__StateBase(): from sympy.physics.quantum.state import StateBase assert _test_args(StateBase(0)) def test_sympy__physics__quantum__state__OrthogonalBra(): from sympy.physics.quantum.state import OrthogonalBra assert _test_args(OrthogonalBra(0)) def test_sympy__physics__quantum__state__OrthogonalKet(): from sympy.physics.quantum.state import OrthogonalKet assert _test_args(OrthogonalKet(0)) def test_sympy__physics__quantum__state__OrthogonalState(): from sympy.physics.quantum.state import OrthogonalState assert _test_args(OrthogonalState(0)) def test_sympy__physics__quantum__state__TimeDepBra(): from sympy.physics.quantum.state import TimeDepBra assert _test_args(TimeDepBra('psi', 't')) def test_sympy__physics__quantum__state__TimeDepKet(): from sympy.physics.quantum.state import TimeDepKet assert _test_args(TimeDepKet('psi', 't')) def test_sympy__physics__quantum__state__TimeDepState(): from sympy.physics.quantum.state import TimeDepState assert _test_args(TimeDepState('psi', 't')) def test_sympy__physics__quantum__state__Wavefunction(): from sympy.physics.quantum.state import Wavefunction from sympy.functions import sin from sympy import Piecewise n = 1 L = 1 g = Piecewise((0, x < 0), (0, x > L), (sqrt(2//L)*sin(n*pi*x/L), True)) assert _test_args(Wavefunction(g, x)) def test_sympy__physics__quantum__tensorproduct__TensorProduct(): from sympy.physics.quantum.tensorproduct import TensorProduct assert _test_args(TensorProduct(x, y)) def test_sympy__physics__quantum__identitysearch__GateIdentity(): from sympy.physics.quantum.gate import X from sympy.physics.quantum.identitysearch import GateIdentity assert _test_args(GateIdentity(X(0), X(0))) def test_sympy__physics__quantum__sho1d__SHOOp(): from sympy.physics.quantum.sho1d import SHOOp assert _test_args(SHOOp('a')) def test_sympy__physics__quantum__sho1d__RaisingOp(): from sympy.physics.quantum.sho1d import RaisingOp assert _test_args(RaisingOp('a')) def test_sympy__physics__quantum__sho1d__LoweringOp(): from sympy.physics.quantum.sho1d import LoweringOp assert _test_args(LoweringOp('a')) def test_sympy__physics__quantum__sho1d__NumberOp(): from sympy.physics.quantum.sho1d import NumberOp assert _test_args(NumberOp('N')) def test_sympy__physics__quantum__sho1d__Hamiltonian(): from sympy.physics.quantum.sho1d import Hamiltonian assert _test_args(Hamiltonian('H')) def test_sympy__physics__quantum__sho1d__SHOState(): from sympy.physics.quantum.sho1d import SHOState assert _test_args(SHOState(0)) def test_sympy__physics__quantum__sho1d__SHOKet(): from sympy.physics.quantum.sho1d import SHOKet assert _test_args(SHOKet(0)) def test_sympy__physics__quantum__sho1d__SHOBra(): from sympy.physics.quantum.sho1d import SHOBra assert _test_args(SHOBra(0)) def test_sympy__physics__secondquant__AnnihilateBoson(): from sympy.physics.secondquant import AnnihilateBoson assert _test_args(AnnihilateBoson(0)) def test_sympy__physics__secondquant__AnnihilateFermion(): from sympy.physics.secondquant import AnnihilateFermion assert _test_args(AnnihilateFermion(0)) @SKIP("abstract class") def test_sympy__physics__secondquant__Annihilator(): pass def test_sympy__physics__secondquant__AntiSymmetricTensor(): from sympy.physics.secondquant import AntiSymmetricTensor i, j = symbols('i j', below_fermi=True) a, b = symbols('a b', above_fermi=True) assert _test_args(AntiSymmetricTensor('v', (a, i), (b, j))) def test_sympy__physics__secondquant__BosonState(): from sympy.physics.secondquant import BosonState assert _test_args(BosonState((0, 1))) @SKIP("abstract class") def test_sympy__physics__secondquant__BosonicOperator(): pass def test_sympy__physics__secondquant__Commutator(): from sympy.physics.secondquant import Commutator assert _test_args(Commutator(x, y)) def test_sympy__physics__secondquant__CreateBoson(): from sympy.physics.secondquant import CreateBoson assert _test_args(CreateBoson(0)) def test_sympy__physics__secondquant__CreateFermion(): from sympy.physics.secondquant import CreateFermion assert _test_args(CreateFermion(0)) @SKIP("abstract class") def test_sympy__physics__secondquant__Creator(): pass def test_sympy__physics__secondquant__Dagger(): from sympy.physics.secondquant import Dagger from sympy import I assert _test_args(Dagger(2*I)) def test_sympy__physics__secondquant__FermionState(): from sympy.physics.secondquant import FermionState assert _test_args(FermionState((0, 1))) def test_sympy__physics__secondquant__FermionicOperator(): from sympy.physics.secondquant import FermionicOperator assert _test_args(FermionicOperator(0)) def test_sympy__physics__secondquant__FockState(): from sympy.physics.secondquant import FockState assert _test_args(FockState((0, 1))) def test_sympy__physics__secondquant__FockStateBosonBra(): from sympy.physics.secondquant import FockStateBosonBra assert _test_args(FockStateBosonBra((0, 1))) def test_sympy__physics__secondquant__FockStateBosonKet(): from sympy.physics.secondquant import FockStateBosonKet assert _test_args(FockStateBosonKet((0, 1))) def test_sympy__physics__secondquant__FockStateBra(): from sympy.physics.secondquant import FockStateBra assert _test_args(FockStateBra((0, 1))) def test_sympy__physics__secondquant__FockStateFermionBra(): from sympy.physics.secondquant import FockStateFermionBra assert _test_args(FockStateFermionBra((0, 1))) def test_sympy__physics__secondquant__FockStateFermionKet(): from sympy.physics.secondquant import FockStateFermionKet assert _test_args(FockStateFermionKet((0, 1))) def test_sympy__physics__secondquant__FockStateKet(): from sympy.physics.secondquant import FockStateKet assert _test_args(FockStateKet((0, 1))) def test_sympy__physics__secondquant__InnerProduct(): from sympy.physics.secondquant import InnerProduct from sympy.physics.secondquant import FockStateKet, FockStateBra assert _test_args(InnerProduct(FockStateBra((0, 1)), FockStateKet((0, 1)))) def test_sympy__physics__secondquant__NO(): from sympy.physics.secondquant import NO, F, Fd assert _test_args(NO(Fd(x)*F(y))) def test_sympy__physics__secondquant__PermutationOperator(): from sympy.physics.secondquant import PermutationOperator assert _test_args(PermutationOperator(0, 1)) def test_sympy__physics__secondquant__SqOperator(): from sympy.physics.secondquant import SqOperator assert _test_args(SqOperator(0)) def test_sympy__physics__secondquant__TensorSymbol(): from sympy.physics.secondquant import TensorSymbol assert _test_args(TensorSymbol(x)) def test_sympy__physics__control__lti__TransferFunction(): from sympy.physics.control.lti import TransferFunction assert _test_args(TransferFunction(2, 3, x)) def test_sympy__physics__control__lti__Series(): from sympy.physics.control import Series, TransferFunction tf1 = TransferFunction(x**2 - y**3, y - z, x) tf2 = TransferFunction(y - x, z + y, x) assert _test_args(Series(tf1, tf2)) def test_sympy__physics__control__lti__Parallel(): from sympy.physics.control import Parallel, TransferFunction tf1 = TransferFunction(x**2 - y**3, y - z, x) tf2 = TransferFunction(y - x, z + y, x) assert _test_args(Parallel(tf1, tf2)) def test_sympy__physics__control__lti__Feedback(): from sympy.physics.control import TransferFunction, Feedback tf1 = TransferFunction(x**2 - y**3, y - z, x) tf2 = TransferFunction(y - x, z + y, x) assert _test_args(Feedback(tf1, tf2)) def test_sympy__physics__units__dimensions__Dimension(): from sympy.physics.units.dimensions import Dimension assert _test_args(Dimension("length", "L")) def test_sympy__physics__units__dimensions__DimensionSystem(): from sympy.physics.units.dimensions import DimensionSystem from sympy.physics.units.definitions.dimension_definitions import length, time, velocity assert _test_args(DimensionSystem((length, time), (velocity,))) def test_sympy__physics__units__quantities__Quantity(): from sympy.physics.units.quantities import Quantity assert _test_args(Quantity("dam")) def test_sympy__physics__units__prefixes__Prefix(): from sympy.physics.units.prefixes import Prefix assert _test_args(Prefix('kilo', 'k', 3)) def test_sympy__core__numbers__AlgebraicNumber(): from sympy.core.numbers import AlgebraicNumber assert _test_args(AlgebraicNumber(sqrt(2), [1, 2, 3])) def test_sympy__polys__polytools__GroebnerBasis(): from sympy.polys.polytools import GroebnerBasis assert _test_args(GroebnerBasis([x, y, z], x, y, z)) def test_sympy__polys__polytools__Poly(): from sympy.polys.polytools import Poly assert _test_args(Poly(2, x, y)) def test_sympy__polys__polytools__PurePoly(): from sympy.polys.polytools import PurePoly assert _test_args(PurePoly(2, x, y)) @SKIP('abstract class') def test_sympy__polys__rootoftools__RootOf(): pass def test_sympy__polys__rootoftools__ComplexRootOf(): from sympy.polys.rootoftools import ComplexRootOf assert _test_args(ComplexRootOf(x**3 + x + 1, 0)) def test_sympy__polys__rootoftools__RootSum(): from sympy.polys.rootoftools import RootSum assert _test_args(RootSum(x**3 + x + 1, sin)) def test_sympy__series__limits__Limit(): from sympy.series.limits import Limit assert _test_args(Limit(x, x, 0, dir='-')) def test_sympy__series__order__Order(): from sympy.series.order import Order assert _test_args(Order(1, x, y)) @SKIP('Abstract Class') def test_sympy__series__sequences__SeqBase(): pass def test_sympy__series__sequences__EmptySequence(): # Need to imort the instance from series not the class from # series.sequence from sympy.series import EmptySequence assert _test_args(EmptySequence) @SKIP('Abstract Class') def test_sympy__series__sequences__SeqExpr(): pass def test_sympy__series__sequences__SeqPer(): from sympy.series.sequences import SeqPer assert _test_args(SeqPer((1, 2, 3), (0, 10))) def test_sympy__series__sequences__SeqFormula(): from sympy.series.sequences import SeqFormula assert _test_args(SeqFormula(x**2, (0, 10))) def test_sympy__series__sequences__RecursiveSeq(): from sympy.series.sequences import RecursiveSeq y = Function("y") n = symbols("n") assert _test_args(RecursiveSeq(y(n - 1) + y(n - 2), y(n), n, (0, 1))) assert _test_args(RecursiveSeq(y(n - 1) + y(n - 2), y(n), n)) def test_sympy__series__sequences__SeqExprOp(): from sympy.series.sequences import SeqExprOp, sequence s1 = sequence((1, 2, 3)) s2 = sequence(x**2) assert _test_args(SeqExprOp(s1, s2)) def test_sympy__series__sequences__SeqAdd(): from sympy.series.sequences import SeqAdd, sequence s1 = sequence((1, 2, 3)) s2 = sequence(x**2) assert _test_args(SeqAdd(s1, s2)) def test_sympy__series__sequences__SeqMul(): from sympy.series.sequences import SeqMul, sequence s1 = sequence((1, 2, 3)) s2 = sequence(x**2) assert _test_args(SeqMul(s1, s2)) @SKIP('Abstract Class') def test_sympy__series__series_class__SeriesBase(): pass def test_sympy__series__fourier__FourierSeries(): from sympy.series.fourier import fourier_series assert _test_args(fourier_series(x, (x, -pi, pi))) def test_sympy__series__fourier__FiniteFourierSeries(): from sympy.series.fourier import fourier_series assert _test_args(fourier_series(sin(pi*x), (x, -1, 1))) def test_sympy__series__formal__FormalPowerSeries(): from sympy.series.formal import fps assert _test_args(fps(log(1 + x), x)) def test_sympy__series__formal__Coeff(): from sympy.series.formal import fps assert _test_args(fps(x**2 + x + 1, x)) @SKIP('Abstract Class') def test_sympy__series__formal__FiniteFormalPowerSeries(): pass def test_sympy__series__formal__FormalPowerSeriesProduct(): from sympy.series.formal import fps f1, f2 = fps(sin(x)), fps(exp(x)) assert _test_args(f1.product(f2, x)) def test_sympy__series__formal__FormalPowerSeriesCompose(): from sympy.series.formal import fps f1, f2 = fps(exp(x)), fps(sin(x)) assert _test_args(f1.compose(f2, x)) def test_sympy__series__formal__FormalPowerSeriesInverse(): from sympy.series.formal import fps f1 = fps(exp(x)) assert _test_args(f1.inverse(x)) def test_sympy__simplify__hyperexpand__Hyper_Function(): from sympy.simplify.hyperexpand import Hyper_Function assert _test_args(Hyper_Function([2], [1])) def test_sympy__simplify__hyperexpand__G_Function(): from sympy.simplify.hyperexpand import G_Function assert _test_args(G_Function([2], [1], [], [])) @SKIP("abstract class") def test_sympy__tensor__array__ndim_array__ImmutableNDimArray(): pass def test_sympy__tensor__array__dense_ndim_array__ImmutableDenseNDimArray(): from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray densarr = ImmutableDenseNDimArray(range(10, 34), (2, 3, 4)) assert _test_args(densarr) def test_sympy__tensor__array__sparse_ndim_array__ImmutableSparseNDimArray(): from sympy.tensor.array.sparse_ndim_array import ImmutableSparseNDimArray sparr = ImmutableSparseNDimArray(range(10, 34), (2, 3, 4)) assert _test_args(sparr) def test_sympy__tensor__array__array_comprehension__ArrayComprehension(): from sympy.tensor.array.array_comprehension import ArrayComprehension arrcom = ArrayComprehension(x, (x, 1, 5)) assert _test_args(arrcom) def test_sympy__tensor__array__array_comprehension__ArrayComprehensionMap(): from sympy.tensor.array.array_comprehension import ArrayComprehensionMap arrcomma = ArrayComprehensionMap(lambda: 0, (x, 1, 5)) assert _test_args(arrcomma) def test_sympy__tensor__array__arrayop__Flatten(): from sympy.tensor.array.arrayop import Flatten from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray fla = Flatten(ImmutableDenseNDimArray(range(24)).reshape(2, 3, 4)) assert _test_args(fla) def test_sympy__tensor__array__array_derivatives__ArrayDerivative(): from sympy.tensor.array.array_derivatives import ArrayDerivative A = MatrixSymbol("A", 2, 2) arrder = ArrayDerivative(A, A, evaluate=False) assert _test_args(arrder) def test_sympy__tensor__functions__TensorProduct(): from sympy.tensor.functions import TensorProduct A = MatrixSymbol('A', 3, 3) B = MatrixSymbol('B', 3, 3) tp = TensorProduct(A, B) assert _test_args(tp) def test_sympy__tensor__indexed__Idx(): from sympy.tensor.indexed import Idx assert _test_args(Idx('test')) assert _test_args(Idx(1, (0, 10))) def test_sympy__tensor__indexed__Indexed(): from sympy.tensor.indexed import Indexed, Idx assert _test_args(Indexed('A', Idx('i'), Idx('j'))) def test_sympy__tensor__indexed__IndexedBase(): from sympy.tensor.indexed import IndexedBase assert _test_args(IndexedBase('A', shape=(x, y))) assert _test_args(IndexedBase('A', 1)) assert _test_args(IndexedBase('A')[0, 1]) def test_sympy__tensor__tensor__TensorIndexType(): from sympy.tensor.tensor import TensorIndexType assert _test_args(TensorIndexType('Lorentz')) @SKIP("deprecated class") def test_sympy__tensor__tensor__TensorType(): pass def test_sympy__tensor__tensor__TensorSymmetry(): from sympy.tensor.tensor import TensorSymmetry, get_symmetric_group_sgs assert _test_args(TensorSymmetry(get_symmetric_group_sgs(2))) def test_sympy__tensor__tensor__TensorHead(): from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, TensorHead Lorentz = TensorIndexType('Lorentz', dummy_name='L') sym = TensorSymmetry(get_symmetric_group_sgs(1)) assert _test_args(TensorHead('p', [Lorentz], sym, 0)) def test_sympy__tensor__tensor__TensorIndex(): from sympy.tensor.tensor import TensorIndexType, TensorIndex Lorentz = TensorIndexType('Lorentz', dummy_name='L') assert _test_args(TensorIndex('i', Lorentz)) @SKIP("abstract class") def test_sympy__tensor__tensor__TensExpr(): pass def test_sympy__tensor__tensor__TensAdd(): from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, tensor_indices, TensAdd, tensor_heads Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b = tensor_indices('a,b', Lorentz) sym = TensorSymmetry(get_symmetric_group_sgs(1)) p, q = tensor_heads('p,q', [Lorentz], sym) t1 = p(a) t2 = q(a) assert _test_args(TensAdd(t1, t2)) def test_sympy__tensor__tensor__Tensor(): from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, tensor_indices, TensorHead Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b = tensor_indices('a,b', Lorentz) sym = TensorSymmetry(get_symmetric_group_sgs(1)) p = TensorHead('p', [Lorentz], sym) assert _test_args(p(a)) def test_sympy__tensor__tensor__TensMul(): from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, tensor_indices, tensor_heads Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b = tensor_indices('a,b', Lorentz) sym = TensorSymmetry(get_symmetric_group_sgs(1)) p, q = tensor_heads('p, q', [Lorentz], sym) assert _test_args(3*p(a)*q(b)) def test_sympy__tensor__tensor__TensorElement(): from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorElement L = TensorIndexType("L") A = TensorHead("A", [L, L]) telem = TensorElement(A(x, y), {x: 1}) assert _test_args(telem) def test_sympy__tensor__toperators__PartialDerivative(): from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead from sympy.tensor.toperators import PartialDerivative Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b = tensor_indices('a,b', Lorentz) A = TensorHead("A", [Lorentz]) assert _test_args(PartialDerivative(A(a), A(b))) def test_as_coeff_add(): assert (7, (3*x, 4*x**2)) == (7 + 3*x + 4*x**2).as_coeff_add() def test_sympy__geometry__curve__Curve(): from sympy.geometry.curve import Curve assert _test_args(Curve((x, 1), (x, 0, 1))) def test_sympy__geometry__point__Point(): from sympy.geometry.point import Point assert _test_args(Point(0, 1)) def test_sympy__geometry__point__Point2D(): from sympy.geometry.point import Point2D assert _test_args(Point2D(0, 1)) def test_sympy__geometry__point__Point3D(): from sympy.geometry.point import Point3D assert _test_args(Point3D(0, 1, 2)) def test_sympy__geometry__ellipse__Ellipse(): from sympy.geometry.ellipse import Ellipse assert _test_args(Ellipse((0, 1), 2, 3)) def test_sympy__geometry__ellipse__Circle(): from sympy.geometry.ellipse import Circle assert _test_args(Circle((0, 1), 2)) def test_sympy__geometry__parabola__Parabola(): from sympy.geometry.parabola import Parabola from sympy.geometry.line import Line assert _test_args(Parabola((0, 0), Line((2, 3), (4, 3)))) @SKIP("abstract class") def test_sympy__geometry__line__LinearEntity(): pass def test_sympy__geometry__line__Line(): from sympy.geometry.line import Line assert _test_args(Line((0, 1), (2, 3))) def test_sympy__geometry__line__Ray(): from sympy.geometry.line import Ray assert _test_args(Ray((0, 1), (2, 3))) def test_sympy__geometry__line__Segment(): from sympy.geometry.line import Segment assert _test_args(Segment((0, 1), (2, 3))) @SKIP("abstract class") def test_sympy__geometry__line__LinearEntity2D(): pass def test_sympy__geometry__line__Line2D(): from sympy.geometry.line import Line2D assert _test_args(Line2D((0, 1), (2, 3))) def test_sympy__geometry__line__Ray2D(): from sympy.geometry.line import Ray2D assert _test_args(Ray2D((0, 1), (2, 3))) def test_sympy__geometry__line__Segment2D(): from sympy.geometry.line import Segment2D assert _test_args(Segment2D((0, 1), (2, 3))) @SKIP("abstract class") def test_sympy__geometry__line__LinearEntity3D(): pass def test_sympy__geometry__line__Line3D(): from sympy.geometry.line import Line3D assert _test_args(Line3D((0, 1, 1), (2, 3, 4))) def test_sympy__geometry__line__Segment3D(): from sympy.geometry.line import Segment3D assert _test_args(Segment3D((0, 1, 1), (2, 3, 4))) def test_sympy__geometry__line__Ray3D(): from sympy.geometry.line import Ray3D assert _test_args(Ray3D((0, 1, 1), (2, 3, 4))) def test_sympy__geometry__plane__Plane(): from sympy.geometry.plane import Plane assert _test_args(Plane((1, 1, 1), (-3, 4, -2), (1, 2, 3))) def test_sympy__geometry__polygon__Polygon(): from sympy.geometry.polygon import Polygon assert _test_args(Polygon((0, 1), (2, 3), (4, 5), (6, 7))) def test_sympy__geometry__polygon__RegularPolygon(): from sympy.geometry.polygon import RegularPolygon assert _test_args(RegularPolygon((0, 1), 2, 3, 4)) def test_sympy__geometry__polygon__Triangle(): from sympy.geometry.polygon import Triangle assert _test_args(Triangle((0, 1), (2, 3), (4, 5))) def test_sympy__geometry__entity__GeometryEntity(): from sympy.geometry.entity import GeometryEntity from sympy.geometry.point import Point assert _test_args(GeometryEntity(Point(1, 0), 1, [1, 2])) @SKIP("abstract class") def test_sympy__geometry__entity__GeometrySet(): pass def test_sympy__diffgeom__diffgeom__Manifold(): from sympy.diffgeom import Manifold assert _test_args(Manifold('name', 3)) def test_sympy__diffgeom__diffgeom__Patch(): from sympy.diffgeom import Manifold, Patch assert _test_args(Patch('name', Manifold('name', 3))) def test_sympy__diffgeom__diffgeom__CoordSystem(): from sympy.diffgeom import Manifold, Patch, CoordSystem assert _test_args(CoordSystem('name', Patch('name', Manifold('name', 3)))) assert _test_args(CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])) def test_sympy__diffgeom__diffgeom__CoordinateSymbol(): from sympy.diffgeom import Manifold, Patch, CoordSystem, CoordinateSymbol assert _test_args(CoordinateSymbol(CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]), 0)) def test_sympy__diffgeom__diffgeom__Point(): from sympy.diffgeom import Manifold, Patch, CoordSystem, Point assert _test_args(Point( CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]), [x, y])) def test_sympy__diffgeom__diffgeom__BaseScalarField(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) assert _test_args(BaseScalarField(cs, 0)) def test_sympy__diffgeom__diffgeom__BaseVectorField(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) assert _test_args(BaseVectorField(cs, 0)) def test_sympy__diffgeom__diffgeom__Differential(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) assert _test_args(Differential(BaseScalarField(cs, 0))) def test_sympy__diffgeom__diffgeom__Commutator(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField, Commutator cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) cs1 = CoordSystem('name1', Patch('name', Manifold('name', 3)), [a, b, c]) v = BaseVectorField(cs, 0) v1 = BaseVectorField(cs1, 0) assert _test_args(Commutator(v, v1)) def test_sympy__diffgeom__diffgeom__TensorProduct(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, TensorProduct cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) d = Differential(BaseScalarField(cs, 0)) assert _test_args(TensorProduct(d, d)) def test_sympy__diffgeom__diffgeom__WedgeProduct(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, WedgeProduct cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) d = Differential(BaseScalarField(cs, 0)) d1 = Differential(BaseScalarField(cs, 1)) assert _test_args(WedgeProduct(d, d1)) def test_sympy__diffgeom__diffgeom__LieDerivative(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, BaseVectorField, LieDerivative cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) d = Differential(BaseScalarField(cs, 0)) v = BaseVectorField(cs, 0) assert _test_args(LieDerivative(v, d)) @XFAIL def test_sympy__diffgeom__diffgeom__BaseCovarDerivativeOp(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseCovarDerivativeOp cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) assert _test_args(BaseCovarDerivativeOp(cs, 0, [[[0, ]*3, ]*3, ]*3)) def test_sympy__diffgeom__diffgeom__CovarDerivativeOp(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField, CovarDerivativeOp cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) v = BaseVectorField(cs, 0) _test_args(CovarDerivativeOp(v, [[[0, ]*3, ]*3, ]*3)) def test_sympy__categories__baseclasses__Class(): from sympy.categories.baseclasses import Class assert _test_args(Class()) def test_sympy__categories__baseclasses__Object(): from sympy.categories import Object assert _test_args(Object("A")) @XFAIL def test_sympy__categories__baseclasses__Morphism(): from sympy.categories import Object, Morphism assert _test_args(Morphism(Object("A"), Object("B"))) def test_sympy__categories__baseclasses__IdentityMorphism(): from sympy.categories import Object, IdentityMorphism assert _test_args(IdentityMorphism(Object("A"))) def test_sympy__categories__baseclasses__NamedMorphism(): from sympy.categories import Object, NamedMorphism assert _test_args(NamedMorphism(Object("A"), Object("B"), "f")) def test_sympy__categories__baseclasses__CompositeMorphism(): from sympy.categories import Object, NamedMorphism, CompositeMorphism A = Object("A") B = Object("B") C = Object("C") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") assert _test_args(CompositeMorphism(f, g)) def test_sympy__categories__baseclasses__Diagram(): from sympy.categories import Object, NamedMorphism, Diagram A = Object("A") B = Object("B") f = NamedMorphism(A, B, "f") d = Diagram([f]) assert _test_args(d) def test_sympy__categories__baseclasses__Category(): from sympy.categories import Object, NamedMorphism, Diagram, Category A = Object("A") B = Object("B") C = Object("C") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") d1 = Diagram([f, g]) d2 = Diagram([f]) K = Category("K", commutative_diagrams=[d1, d2]) assert _test_args(K) def test_sympy__ntheory__factor___totient(): from sympy.ntheory.factor_ import totient k = symbols('k', integer=True) t = totient(k) assert _test_args(t) def test_sympy__ntheory__factor___reduced_totient(): from sympy.ntheory.factor_ import reduced_totient k = symbols('k', integer=True) t = reduced_totient(k) assert _test_args(t) def test_sympy__ntheory__factor___divisor_sigma(): from sympy.ntheory.factor_ import divisor_sigma k = symbols('k', integer=True) n = symbols('n', integer=True) t = divisor_sigma(n, k) assert _test_args(t) def test_sympy__ntheory__factor___udivisor_sigma(): from sympy.ntheory.factor_ import udivisor_sigma k = symbols('k', integer=True) n = symbols('n', integer=True) t = udivisor_sigma(n, k) assert _test_args(t) def test_sympy__ntheory__factor___primenu(): from sympy.ntheory.factor_ import primenu n = symbols('n', integer=True) t = primenu(n) assert _test_args(t) def test_sympy__ntheory__factor___primeomega(): from sympy.ntheory.factor_ import primeomega n = symbols('n', integer=True) t = primeomega(n) assert _test_args(t) def test_sympy__ntheory__residue_ntheory__mobius(): from sympy.ntheory import mobius assert _test_args(mobius(2)) def test_sympy__ntheory__generate__primepi(): from sympy.ntheory import primepi n = symbols('n') t = primepi(n) assert _test_args(t) def test_sympy__physics__optics__waves__TWave(): from sympy.physics.optics import TWave A, f, phi = symbols('A, f, phi') assert _test_args(TWave(A, f, phi)) def test_sympy__physics__optics__gaussopt__BeamParameter(): from sympy.physics.optics import BeamParameter assert _test_args(BeamParameter(530e-9, 1, w=1e-3)) def test_sympy__physics__optics__medium__Medium(): from sympy.physics.optics import Medium assert _test_args(Medium('m')) def test_sympy__codegen__array_utils__CodegenArrayContraction(): from sympy.codegen.array_utils import CodegenArrayContraction from sympy import IndexedBase A = symbols("A", cls=IndexedBase) assert _test_args(CodegenArrayContraction(A, (0, 1))) def test_sympy__codegen__array_utils__CodegenArrayDiagonal(): from sympy.codegen.array_utils import CodegenArrayDiagonal from sympy import IndexedBase A = symbols("A", cls=IndexedBase) assert _test_args(CodegenArrayDiagonal(A, (0, 1))) def test_sympy__codegen__array_utils__CodegenArrayTensorProduct(): from sympy.codegen.array_utils import CodegenArrayTensorProduct from sympy import IndexedBase A, B = symbols("A B", cls=IndexedBase) assert _test_args(CodegenArrayTensorProduct(A, B)) def test_sympy__codegen__array_utils__CodegenArrayElementwiseAdd(): from sympy.codegen.array_utils import CodegenArrayElementwiseAdd from sympy import IndexedBase A, B = symbols("A B", cls=IndexedBase) assert _test_args(CodegenArrayElementwiseAdd(A, B)) def test_sympy__codegen__array_utils__CodegenArrayPermuteDims(): from sympy.codegen.array_utils import CodegenArrayPermuteDims from sympy import IndexedBase A = symbols("A", cls=IndexedBase) assert _test_args(CodegenArrayPermuteDims(A, (1, 0))) def test_sympy__codegen__ast__Assignment(): from sympy.codegen.ast import Assignment assert _test_args(Assignment(x, y)) def test_sympy__codegen__cfunctions__expm1(): from sympy.codegen.cfunctions import expm1 assert _test_args(expm1(x)) def test_sympy__codegen__cfunctions__log1p(): from sympy.codegen.cfunctions import log1p assert _test_args(log1p(x)) def test_sympy__codegen__cfunctions__exp2(): from sympy.codegen.cfunctions import exp2 assert _test_args(exp2(x)) def test_sympy__codegen__cfunctions__log2(): from sympy.codegen.cfunctions import log2 assert _test_args(log2(x)) def test_sympy__codegen__cfunctions__fma(): from sympy.codegen.cfunctions import fma assert _test_args(fma(x, y, z)) def test_sympy__codegen__cfunctions__log10(): from sympy.codegen.cfunctions import log10 assert _test_args(log10(x)) def test_sympy__codegen__cfunctions__Sqrt(): from sympy.codegen.cfunctions import Sqrt assert _test_args(Sqrt(x)) def test_sympy__codegen__cfunctions__Cbrt(): from sympy.codegen.cfunctions import Cbrt assert _test_args(Cbrt(x)) def test_sympy__codegen__cfunctions__hypot(): from sympy.codegen.cfunctions import hypot assert _test_args(hypot(x, y)) def test_sympy__codegen__fnodes__FFunction(): from sympy.codegen.fnodes import FFunction assert _test_args(FFunction('f')) def test_sympy__codegen__fnodes__F95Function(): from sympy.codegen.fnodes import F95Function assert _test_args(F95Function('f')) def test_sympy__codegen__fnodes__isign(): from sympy.codegen.fnodes import isign assert _test_args(isign(1, x)) def test_sympy__codegen__fnodes__dsign(): from sympy.codegen.fnodes import dsign assert _test_args(dsign(1, x)) def test_sympy__codegen__fnodes__cmplx(): from sympy.codegen.fnodes import cmplx assert _test_args(cmplx(x, y)) def test_sympy__codegen__fnodes__kind(): from sympy.codegen.fnodes import kind assert _test_args(kind(x)) def test_sympy__codegen__fnodes__merge(): from sympy.codegen.fnodes import merge assert _test_args(merge(1, 2, Eq(x, 0))) def test_sympy__codegen__fnodes___literal(): from sympy.codegen.fnodes import _literal assert _test_args(_literal(1)) def test_sympy__codegen__fnodes__literal_sp(): from sympy.codegen.fnodes import literal_sp assert _test_args(literal_sp(1)) def test_sympy__codegen__fnodes__literal_dp(): from sympy.codegen.fnodes import literal_dp assert _test_args(literal_dp(1)) def test_sympy__codegen__matrix_nodes__MatrixSolve(): from sympy.matrices import MatrixSymbol from sympy.codegen.matrix_nodes import MatrixSolve A = MatrixSymbol('A', 3, 3) v = MatrixSymbol('x', 3, 1) assert _test_args(MatrixSolve(A, v)) def test_sympy__vector__coordsysrect__CoordSys3D(): from sympy.vector.coordsysrect import CoordSys3D assert _test_args(CoordSys3D('C')) def test_sympy__vector__point__Point(): from sympy.vector.point import Point assert _test_args(Point('P')) def test_sympy__vector__basisdependent__BasisDependent(): #from sympy.vector.basisdependent import BasisDependent #These classes have been created to maintain an OOP hierarchy #for Vectors and Dyadics. Are NOT meant to be initialized pass def test_sympy__vector__basisdependent__BasisDependentMul(): #from sympy.vector.basisdependent import BasisDependentMul #These classes have been created to maintain an OOP hierarchy #for Vectors and Dyadics. Are NOT meant to be initialized pass def test_sympy__vector__basisdependent__BasisDependentAdd(): #from sympy.vector.basisdependent import BasisDependentAdd #These classes have been created to maintain an OOP hierarchy #for Vectors and Dyadics. Are NOT meant to be initialized pass def test_sympy__vector__basisdependent__BasisDependentZero(): #from sympy.vector.basisdependent import BasisDependentZero #These classes have been created to maintain an OOP hierarchy #for Vectors and Dyadics. Are NOT meant to be initialized pass def test_sympy__vector__vector__BaseVector(): from sympy.vector.vector import BaseVector from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(BaseVector(0, C, ' ', ' ')) def test_sympy__vector__vector__VectorAdd(): from sympy.vector.vector import VectorAdd, VectorMul from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') from sympy.abc import a, b, c, x, y, z v1 = a*C.i + b*C.j + c*C.k v2 = x*C.i + y*C.j + z*C.k assert _test_args(VectorAdd(v1, v2)) assert _test_args(VectorMul(x, v1)) def test_sympy__vector__vector__VectorMul(): from sympy.vector.vector import VectorMul from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') from sympy.abc import a assert _test_args(VectorMul(a, C.i)) def test_sympy__vector__vector__VectorZero(): from sympy.vector.vector import VectorZero assert _test_args(VectorZero()) def test_sympy__vector__vector__Vector(): #from sympy.vector.vector import Vector #Vector is never to be initialized using args pass def test_sympy__vector__vector__Cross(): from sympy.vector.vector import Cross from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') _test_args(Cross(C.i, C.j)) def test_sympy__vector__vector__Dot(): from sympy.vector.vector import Dot from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') _test_args(Dot(C.i, C.j)) def test_sympy__vector__dyadic__Dyadic(): #from sympy.vector.dyadic import Dyadic #Dyadic is never to be initialized using args pass def test_sympy__vector__dyadic__BaseDyadic(): from sympy.vector.dyadic import BaseDyadic from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(BaseDyadic(C.i, C.j)) def test_sympy__vector__dyadic__DyadicMul(): from sympy.vector.dyadic import BaseDyadic, DyadicMul from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(DyadicMul(3, BaseDyadic(C.i, C.j))) def test_sympy__vector__dyadic__DyadicAdd(): from sympy.vector.dyadic import BaseDyadic, DyadicAdd from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(2 * DyadicAdd(BaseDyadic(C.i, C.i), BaseDyadic(C.i, C.j))) def test_sympy__vector__dyadic__DyadicZero(): from sympy.vector.dyadic import DyadicZero assert _test_args(DyadicZero()) def test_sympy__vector__deloperator__Del(): from sympy.vector.deloperator import Del assert _test_args(Del()) def test_sympy__vector__implicitregion__ImplicitRegion(): from sympy.vector.implicitregion import ImplicitRegion from sympy.abc import x, y assert _test_args(ImplicitRegion((x, y), y**3 - 4*x)) def test_sympy__vector__integrals__ParametricIntegral(): from sympy.vector.integrals import ParametricIntegral from sympy.vector.parametricregion import ParametricRegion from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(ParametricIntegral(C.y*C.i - 10*C.j,\ ParametricRegion((x, y), (x, 1, 3), (y, -2, 2)))) def test_sympy__vector__operators__Curl(): from sympy.vector.operators import Curl from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(Curl(C.i)) def test_sympy__vector__operators__Laplacian(): from sympy.vector.operators import Laplacian from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(Laplacian(C.i)) def test_sympy__vector__operators__Divergence(): from sympy.vector.operators import Divergence from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(Divergence(C.i)) def test_sympy__vector__operators__Gradient(): from sympy.vector.operators import Gradient from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(Gradient(C.x)) def test_sympy__vector__orienters__Orienter(): #from sympy.vector.orienters import Orienter #Not to be initialized pass def test_sympy__vector__orienters__ThreeAngleOrienter(): #from sympy.vector.orienters import ThreeAngleOrienter #Not to be initialized pass def test_sympy__vector__orienters__AxisOrienter(): from sympy.vector.orienters import AxisOrienter from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(AxisOrienter(x, C.i)) def test_sympy__vector__orienters__BodyOrienter(): from sympy.vector.orienters import BodyOrienter assert _test_args(BodyOrienter(x, y, z, '123')) def test_sympy__vector__orienters__SpaceOrienter(): from sympy.vector.orienters import SpaceOrienter assert _test_args(SpaceOrienter(x, y, z, '123')) def test_sympy__vector__orienters__QuaternionOrienter(): from sympy.vector.orienters import QuaternionOrienter a, b, c, d = symbols('a b c d') assert _test_args(QuaternionOrienter(a, b, c, d)) def test_sympy__vector__parametricregion__ParametricRegion(): from sympy.abc import t from sympy.vector.parametricregion import ParametricRegion assert _test_args(ParametricRegion((t, t**3), (t, 0, 2))) def test_sympy__vector__scalar__BaseScalar(): from sympy.vector.scalar import BaseScalar from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(BaseScalar(0, C, ' ', ' ')) def test_sympy__physics__wigner__Wigner3j(): from sympy.physics.wigner import Wigner3j assert _test_args(Wigner3j(0, 0, 0, 0, 0, 0)) def test_sympy__integrals__rubi__symbol__matchpyWC(): from sympy.integrals.rubi.symbol import matchpyWC assert _test_args(matchpyWC(1, True, 'a')) def test_sympy__integrals__rubi__utility_function__rubi_unevaluated_expr(): from sympy.integrals.rubi.utility_function import rubi_unevaluated_expr a = symbols('a') assert _test_args(rubi_unevaluated_expr(a)) def test_sympy__integrals__rubi__utility_function__rubi_exp(): from sympy.integrals.rubi.utility_function import rubi_exp assert _test_args(rubi_exp(5)) def test_sympy__integrals__rubi__utility_function__rubi_log(): from sympy.integrals.rubi.utility_function import rubi_log assert _test_args(rubi_log(5)) def test_sympy__integrals__rubi__utility_function__Int(): from sympy.integrals.rubi.utility_function import Int assert _test_args(Int(5, x)) def test_sympy__integrals__rubi__utility_function__Util_Coefficient(): from sympy.integrals.rubi.utility_function import Util_Coefficient a, x = symbols('a x') assert _test_args(Util_Coefficient(a, x)) def test_sympy__integrals__rubi__utility_function__Gamma(): from sympy.integrals.rubi.utility_function import Gamma assert _test_args(Gamma(5)) def test_sympy__integrals__rubi__utility_function__Util_Part(): from sympy.integrals.rubi.utility_function import Util_Part a, b = symbols('a b') assert _test_args(Util_Part(a + b, 0)) def test_sympy__integrals__rubi__utility_function__PolyGamma(): from sympy.integrals.rubi.utility_function import PolyGamma assert _test_args(PolyGamma(1, 1)) def test_sympy__integrals__rubi__utility_function__ProductLog(): from sympy.integrals.rubi.utility_function import ProductLog assert _test_args(ProductLog(1)) def test_sympy__combinatorics__schur_number__SchurNumber(): from sympy.combinatorics.schur_number import SchurNumber assert _test_args(SchurNumber(1)) def test_sympy__combinatorics__perm_groups__SymmetricPermutationGroup(): from sympy.combinatorics.perm_groups import SymmetricPermutationGroup assert _test_args(SymmetricPermutationGroup(5)) def test_sympy__combinatorics__perm_groups__Coset(): from sympy.combinatorics.permutations import Permutation from sympy.combinatorics.perm_groups import PermutationGroup, Coset a = Permutation(1, 2) b = Permutation(0, 1) G = PermutationGroup([a, b]) assert _test_args(Coset(a, G))
04bb4f0833c303d09a03c7d6885951c2cc3f8a40b27bde5d40956349c8196955
from sympy import (Lambda, Symbol, Function, Derivative, Subs, sqrt, log, exp, Rational, Float, sin, cos, acos, diff, I, re, im, E, expand, pi, O, Sum, S, polygamma, loggamma, expint, Tuple, Dummy, Eq, Expr, symbols, nfloat, Piecewise, Indexed, Matrix, Basic, Dict, oo, zoo, nan, Pow) from sympy.core.basic import _aresame from sympy.core.cache import clear_cache from sympy.core.expr import unchanged from sympy.core.function import (PoleError, _mexpand, arity, BadSignatureError, BadArgumentsError) from sympy.core.sympify import sympify from sympy.matrices import MutableMatrix, ImmutableMatrix from sympy.sets.sets import FiniteSet from sympy.solvers.solveset import solveset from sympy.tensor.array import NDimArray from sympy.utilities.iterables import subsets, variations from sympy.testing.pytest import XFAIL, raises, warns_deprecated_sympy from sympy.abc import t, w, x, y, z f, g, h = symbols('f g h', cls=Function) _xi_1, _xi_2, _xi_3 = [Dummy() for i in range(3)] def test_f_expand_complex(): x = Symbol('x', real=True) assert f(x).expand(complex=True) == I*im(f(x)) + re(f(x)) assert exp(x).expand(complex=True) == exp(x) assert exp(I*x).expand(complex=True) == cos(x) + I*sin(x) assert exp(z).expand(complex=True) == cos(im(z))*exp(re(z)) + \ I*sin(im(z))*exp(re(z)) def test_bug1(): e = sqrt(-log(w)) assert e.subs(log(w), -x) == sqrt(x) e = sqrt(-5*log(w)) assert e.subs(log(w), -x) == sqrt(5*x) def test_general_function(): nu = Function('nu') e = nu(x) edx = e.diff(x) edy = e.diff(y) edxdx = e.diff(x).diff(x) edxdy = e.diff(x).diff(y) assert e == nu(x) assert edx != nu(x) assert edx == diff(nu(x), x) assert edy == 0 assert edxdx == diff(diff(nu(x), x), x) assert edxdy == 0 def test_general_function_nullary(): nu = Function('nu') e = nu() edx = e.diff(x) edxdx = e.diff(x).diff(x) assert e == nu() assert edx != nu() assert edx == 0 assert edxdx == 0 def test_derivative_subs_bug(): e = diff(g(x), x) assert e.subs(g(x), f(x)) != e assert e.subs(g(x), f(x)) == Derivative(f(x), x) assert e.subs(g(x), -f(x)) == Derivative(-f(x), x) assert e.subs(x, y) == Derivative(g(y), y) def test_derivative_subs_self_bug(): d = diff(f(x), x) assert d.subs(d, y) == y def test_derivative_linearity(): assert diff(-f(x), x) == -diff(f(x), x) assert diff(8*f(x), x) == 8*diff(f(x), x) assert diff(8*f(x), x) != 7*diff(f(x), x) assert diff(8*f(x)*x, x) == 8*f(x) + 8*x*diff(f(x), x) assert diff(8*f(x)*y*x, x).expand() == 8*y*f(x) + 8*y*x*diff(f(x), x) def test_derivative_evaluate(): assert Derivative(sin(x), x) != diff(sin(x), x) assert Derivative(sin(x), x).doit() == diff(sin(x), x) assert Derivative(Derivative(f(x), x), x) == diff(f(x), x, x) assert Derivative(sin(x), x, 0) == sin(x) assert Derivative(sin(x), (x, y), (x, -y)) == sin(x) def test_diff_symbols(): assert diff(f(x, y, z), x, y, z) == Derivative(f(x, y, z), x, y, z) assert diff(f(x, y, z), x, x, x) == Derivative(f(x, y, z), x, x, x) == Derivative(f(x, y, z), (x, 3)) assert diff(f(x, y, z), x, 3) == Derivative(f(x, y, z), x, 3) # issue 5028 assert [diff(-z + x/y, sym) for sym in (z, x, y)] == [-1, 1/y, -x/y**2] assert diff(f(x, y, z), x, y, z, 2) == Derivative(f(x, y, z), x, y, z, z) assert diff(f(x, y, z), x, y, z, 2, evaluate=False) == \ Derivative(f(x, y, z), x, y, z, z) assert Derivative(f(x, y, z), x, y, z)._eval_derivative(z) == \ Derivative(f(x, y, z), x, y, z, z) assert Derivative(Derivative(f(x, y, z), x), y)._eval_derivative(z) == \ Derivative(f(x, y, z), x, y, z) raises(TypeError, lambda: cos(x).diff((x, y)).variables) assert cos(x).diff((x, y))._wrt_variables == [x] def test_Function(): class myfunc(Function): @classmethod def eval(cls): # zero args return assert myfunc.nargs == FiniteSet(0) assert myfunc().nargs == FiniteSet(0) raises(TypeError, lambda: myfunc(x).nargs) class myfunc(Function): @classmethod def eval(cls, x): # one arg return assert myfunc.nargs == FiniteSet(1) assert myfunc(x).nargs == FiniteSet(1) raises(TypeError, lambda: myfunc(x, y).nargs) class myfunc(Function): @classmethod def eval(cls, *x): # star args return assert myfunc.nargs == S.Naturals0 assert myfunc(x).nargs == S.Naturals0 def test_nargs(): f = Function('f') assert f.nargs == S.Naturals0 assert f(1).nargs == S.Naturals0 assert Function('f', nargs=2)(1, 2).nargs == FiniteSet(2) assert sin.nargs == FiniteSet(1) assert sin(2).nargs == FiniteSet(1) assert log.nargs == FiniteSet(1, 2) assert log(2).nargs == FiniteSet(1, 2) assert Function('f', nargs=2).nargs == FiniteSet(2) assert Function('f', nargs=0).nargs == FiniteSet(0) assert Function('f', nargs=(0, 1)).nargs == FiniteSet(0, 1) assert Function('f', nargs=None).nargs == S.Naturals0 raises(ValueError, lambda: Function('f', nargs=())) def test_nargs_inheritance(): class f1(Function): nargs = 2 class f2(f1): pass class f3(f2): pass class f4(f3): nargs = 1,2 class f5(f4): pass class f6(f5): pass class f7(f6): nargs=None class f8(f7): pass class f9(f8): pass class f10(f9): nargs = 1 class f11(f10): pass assert f1.nargs == FiniteSet(2) assert f2.nargs == FiniteSet(2) assert f3.nargs == FiniteSet(2) assert f4.nargs == FiniteSet(1, 2) assert f5.nargs == FiniteSet(1, 2) assert f6.nargs == FiniteSet(1, 2) assert f7.nargs == S.Naturals0 assert f8.nargs == S.Naturals0 assert f9.nargs == S.Naturals0 assert f10.nargs == FiniteSet(1) assert f11.nargs == FiniteSet(1) def test_arity(): f = lambda x, y: 1 assert arity(f) == 2 def f(x, y, z=None): pass assert arity(f) == (2, 3) assert arity(lambda *x: x) is None assert arity(log) == (1, 2) def test_Lambda(): e = Lambda(x, x**2) assert e(4) == 16 assert e(x) == x**2 assert e(y) == y**2 assert Lambda((), 42)() == 42 assert unchanged(Lambda, (), 42) assert Lambda((), 42) != Lambda((), 43) assert Lambda((), f(x))() == f(x) assert Lambda((), 42).nargs == FiniteSet(0) assert unchanged(Lambda, (x,), x**2) assert Lambda(x, x**2) == Lambda((x,), x**2) assert Lambda(x, x**2) != Lambda(x, x**2 + 1) assert Lambda((x, y), x**y) != Lambda((y, x), y**x) assert Lambda((x, y), x**y) != Lambda((x, y), y**x) assert Lambda((x, y), x**y)(x, y) == x**y assert Lambda((x, y), x**y)(3, 3) == 3**3 assert Lambda((x, y), x**y)(x, 3) == x**3 assert Lambda((x, y), x**y)(3, y) == 3**y assert Lambda(x, f(x))(x) == f(x) assert Lambda(x, x**2)(e(x)) == x**4 assert e(e(x)) == x**4 x1, x2 = (Indexed('x', i) for i in (1, 2)) assert Lambda((x1, x2), x1 + x2)(x, y) == x + y assert Lambda((x, y), x + y).nargs == FiniteSet(2) p = x, y, z, t assert Lambda(p, t*(x + y + z))(*p) == t * (x + y + z) eq = Lambda(x, 2*x) + Lambda(y, 2*y) assert eq != 2*Lambda(x, 2*x) assert eq.as_dummy() == 2*Lambda(x, 2*x).as_dummy() assert Lambda(x, 2*x) not in [ Lambda(x, x) ] raises(BadSignatureError, lambda: Lambda(1, x)) assert Lambda(x, 1)(1) is S.One raises(BadSignatureError, lambda: Lambda((x, x), x + 2)) raises(BadSignatureError, lambda: Lambda(((x, x), y), x)) raises(BadSignatureError, lambda: Lambda(((y, x), x), x)) raises(BadSignatureError, lambda: Lambda(((y, 1), 2), x)) with warns_deprecated_sympy(): assert Lambda([x, y], x+y) == Lambda((x, y), x+y) flam = Lambda( ((x, y),) , x + y) assert flam((2, 3)) == 5 flam = Lambda( ((x, y), z) , x + y + z) assert flam((2, 3), 1) == 6 flam = Lambda( (((x,y),z),) , x+y+z) assert flam( ((2,3),1) ) == 6 raises(BadArgumentsError, lambda: flam(1, 2, 3)) flam = Lambda( (x,), (x, x)) assert flam(1,) == (1, 1) assert flam((1,)) == ((1,), (1,)) flam = Lambda( ((x,),) , (x, x)) raises(BadArgumentsError, lambda: flam(1)) assert flam((1,)) == (1, 1) # Previously TypeError was raised so this is potentially needed for # backwards compatibility. assert issubclass(BadSignatureError, TypeError) assert issubclass(BadArgumentsError, TypeError) # These are tested to see they don't raise: hash(Lambda(x, 2*x)) hash(Lambda(x, x)) # IdentityFunction subclass def test_IdentityFunction(): assert Lambda(x, x) is Lambda(y, y) is S.IdentityFunction assert Lambda(x, 2*x) is not S.IdentityFunction assert Lambda((x, y), x) is not S.IdentityFunction def test_Lambda_symbols(): assert Lambda(x, 2*x).free_symbols == set() assert Lambda(x, x*y).free_symbols == {y} assert Lambda((), 42).free_symbols == set() assert Lambda((), x*y).free_symbols == {x,y} def test_functionclas_symbols(): assert f.free_symbols == set() def test_Lambda_arguments(): raises(TypeError, lambda: Lambda(x, 2*x)(x, y)) raises(TypeError, lambda: Lambda((x, y), x + y)(x)) raises(TypeError, lambda: Lambda((), 42)(x)) def test_Lambda_equality(): assert Lambda((x, y), 2*x) == Lambda((x, y), 2*x) # these, of course, should never be equal assert Lambda(x, 2*x) != Lambda((x, y), 2*x) assert Lambda(x, 2*x) != 2*x # But it is tempting to want expressions that differ only # in bound symbols to compare the same. But this is not what # Python's `==` is intended to do; two objects that compare # as equal means that they are indistibguishable and cache to the # same value. We wouldn't want to expression that are # mathematically the same but written in different variables to be # interchanged else what is the point of allowing for different # variable names? assert Lambda(x, 2*x) != Lambda(y, 2*y) def test_Subs(): assert Subs(1, (), ()) is S.One # check null subs influence on hashing assert Subs(x, y, z) != Subs(x, y, 1) # neutral subs works assert Subs(x, x, 1).subs(x, y).has(y) # self mapping var/point assert Subs(Derivative(f(x), (x, 2)), x, x).doit() == f(x).diff(x, x) assert Subs(x, x, 0).has(x) # it's a structural answer assert not Subs(x, x, 0).free_symbols assert Subs(Subs(x + y, x, 2), y, 1) == Subs(x + y, (x, y), (2, 1)) assert Subs(x, (x,), (0,)) == Subs(x, x, 0) assert Subs(x, x, 0) == Subs(y, y, 0) assert Subs(x, x, 0).subs(x, 1) == Subs(x, x, 0) assert Subs(y, x, 0).subs(y, 1) == Subs(1, x, 0) assert Subs(f(x), x, 0).doit() == f(0) assert Subs(f(x**2), x**2, 0).doit() == f(0) assert Subs(f(x, y, z), (x, y, z), (0, 1, 1)) != \ Subs(f(x, y, z), (x, y, z), (0, 0, 1)) assert Subs(x, y, 2).subs(x, y).doit() == 2 assert Subs(f(x, y), (x, y, z), (0, 1, 1)) != \ Subs(f(x, y) + z, (x, y, z), (0, 1, 0)) assert Subs(f(x, y), (x, y), (0, 1)).doit() == f(0, 1) assert Subs(Subs(f(x, y), x, 0), y, 1).doit() == f(0, 1) raises(ValueError, lambda: Subs(f(x, y), (x, y), (0, 0, 1))) raises(ValueError, lambda: Subs(f(x, y), (x, x, y), (0, 0, 1))) assert len(Subs(f(x, y), (x, y), (0, 1)).variables) == 2 assert Subs(f(x, y), (x, y), (0, 1)).point == Tuple(0, 1) assert Subs(f(x), x, 0) == Subs(f(y), y, 0) assert Subs(f(x, y), (x, y), (0, 1)) == Subs(f(x, y), (y, x), (1, 0)) assert Subs(f(x)*y, (x, y), (0, 1)) == Subs(f(y)*x, (y, x), (0, 1)) assert Subs(f(x)*y, (x, y), (1, 1)) == Subs(f(y)*x, (x, y), (1, 1)) assert Subs(f(x), x, 0).subs(x, 1).doit() == f(0) assert Subs(f(x), x, y).subs(y, 0) == Subs(f(x), x, 0) assert Subs(y*f(x), x, y).subs(y, 2) == Subs(2*f(x), x, 2) assert (2 * Subs(f(x), x, 0)).subs(Subs(f(x), x, 0), y) == 2*y assert Subs(f(x), x, 0).free_symbols == set() assert Subs(f(x, y), x, z).free_symbols == {y, z} assert Subs(f(x).diff(x), x, 0).doit(), Subs(f(x).diff(x), x, 0) assert Subs(1 + f(x).diff(x), x, 0).doit(), 1 + Subs(f(x).diff(x), x, 0) assert Subs(y*f(x, y).diff(x), (x, y), (0, 2)).doit() == \ 2*Subs(Derivative(f(x, 2), x), x, 0) assert Subs(y**2*f(x), x, 0).diff(y) == 2*y*f(0) e = Subs(y**2*f(x), x, y) assert e.diff(y) == e.doit().diff(y) == y**2*Derivative(f(y), y) + 2*y*f(y) assert Subs(f(x), x, 0) + Subs(f(x), x, 0) == 2*Subs(f(x), x, 0) e1 = Subs(z*f(x), x, 1) e2 = Subs(z*f(y), y, 1) assert e1 + e2 == 2*e1 assert e1.__hash__() == e2.__hash__() assert Subs(z*f(x + 1), x, 1) not in [ e1, e2 ] assert Derivative(f(x), x).subs(x, g(x)) == Derivative(f(g(x)), g(x)) assert Derivative(f(x), x).subs(x, x + y) == Subs(Derivative(f(x), x), x, x + y) assert Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).n(2) == \ Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).evalf(2) == \ z + Rational('1/2').n(2)*f(0) assert f(x).diff(x).subs(x, 0).subs(x, y) == f(x).diff(x).subs(x, 0) assert (x*f(x).diff(x).subs(x, 0)).subs(x, y) == y*f(x).diff(x).subs(x, 0) assert Subs(Derivative(g(x)**2, g(x), x), g(x), exp(x) ).doit() == 2*exp(x) assert Subs(Derivative(g(x)**2, g(x), x), g(x), exp(x) ).doit(deep=False) == 2*Derivative(exp(x), x) assert Derivative(f(x, g(x)), x).doit() == Derivative( f(x, g(x)), g(x))*Derivative(g(x), x) + Subs(Derivative( f(y, g(x)), y), y, x) def test_doitdoit(): done = Derivative(f(x, g(x)), x, g(x)).doit() assert done == done.doit() @XFAIL def test_Subs2(): # this reflects a limitation of subs(), probably won't fix assert Subs(f(x), x**2, x).doit() == f(sqrt(x)) def test_expand_function(): assert expand(x + y) == x + y assert expand(x + y, complex=True) == I*im(x) + I*im(y) + re(x) + re(y) assert expand((x + y)**11, modulus=11) == x**11 + y**11 def test_function_comparable(): assert sin(x).is_comparable is False assert cos(x).is_comparable is False assert sin(Float('0.1')).is_comparable is True assert cos(Float('0.1')).is_comparable is True assert sin(E).is_comparable is True assert cos(E).is_comparable is True assert sin(Rational(1, 3)).is_comparable is True assert cos(Rational(1, 3)).is_comparable is True def test_function_comparable_infinities(): assert sin(oo).is_comparable is False assert sin(-oo).is_comparable is False assert sin(zoo).is_comparable is False assert sin(nan).is_comparable is False def test_deriv1(): # These all require derivatives evaluated at a point (issue 4719) to work. # See issue 4624 assert f(2*x).diff(x) == 2*Subs(Derivative(f(x), x), x, 2*x) assert (f(x)**3).diff(x) == 3*f(x)**2*f(x).diff(x) assert (f(2*x)**3).diff(x) == 6*f(2*x)**2*Subs( Derivative(f(x), x), x, 2*x) assert f(2 + x).diff(x) == Subs(Derivative(f(x), x), x, x + 2) assert f(2 + 3*x).diff(x) == 3*Subs( Derivative(f(x), x), x, 3*x + 2) assert f(3*sin(x)).diff(x) == 3*cos(x)*Subs( Derivative(f(x), x), x, 3*sin(x)) # See issue 8510 assert f(x, x + z).diff(x) == ( Subs(Derivative(f(y, x + z), y), y, x) + Subs(Derivative(f(x, y), y), y, x + z)) assert f(x, x**2).diff(x) == ( 2*x*Subs(Derivative(f(x, y), y), y, x**2) + Subs(Derivative(f(y, x**2), y), y, x)) # but Subs is not always necessary assert f(x, g(y)).diff(g(y)) == Derivative(f(x, g(y)), g(y)) def test_deriv2(): assert (x**3).diff(x) == 3*x**2 assert (x**3).diff(x, evaluate=False) != 3*x**2 assert (x**3).diff(x, evaluate=False) == Derivative(x**3, x) assert diff(x**3, x) == 3*x**2 assert diff(x**3, x, evaluate=False) != 3*x**2 assert diff(x**3, x, evaluate=False) == Derivative(x**3, x) def test_func_deriv(): assert f(x).diff(x) == Derivative(f(x), x) # issue 4534 assert f(x, y).diff(x, y) - f(x, y).diff(y, x) == 0 assert Derivative(f(x, y), x, y).args[1:] == ((x, 1), (y, 1)) assert Derivative(f(x, y), y, x).args[1:] == ((y, 1), (x, 1)) assert (Derivative(f(x, y), x, y) - Derivative(f(x, y), y, x)).doit() == 0 def test_suppressed_evaluation(): a = sin(0, evaluate=False) assert a != 0 assert a.func is sin assert a.args == (0,) def test_function_evalf(): def eq(a, b, eps): return abs(a - b) < eps assert eq(sin(1).evalf(15), Float("0.841470984807897"), 1e-13) assert eq( sin(2).evalf(25), Float("0.9092974268256816953960199", 25), 1e-23) assert eq(sin(1 + I).evalf( 15), Float("1.29845758141598") + Float("0.634963914784736")*I, 1e-13) assert eq(exp(1 + I).evalf(15), Float( "1.46869393991588") + Float("2.28735528717884239")*I, 1e-13) assert eq(exp(-0.5 + 1.5*I).evalf(15), Float( "0.0429042815937374") + Float("0.605011292285002")*I, 1e-13) assert eq(log(pi + sqrt(2)*I).evalf( 15), Float("1.23699044022052") + Float("0.422985442737893")*I, 1e-13) assert eq(cos(100).evalf(15), Float("0.86231887228768"), 1e-13) def test_extensibility_eval(): class MyFunc(Function): @classmethod def eval(cls, *args): return (0, 0, 0) assert MyFunc(0) == (0, 0, 0) def test_function_non_commutative(): x = Symbol('x', commutative=False) assert f(x).is_commutative is False assert sin(x).is_commutative is False assert exp(x).is_commutative is False assert log(x).is_commutative is False assert f(x).is_complex is False assert sin(x).is_complex is False assert exp(x).is_complex is False assert log(x).is_complex is False def test_function_complex(): x = Symbol('x', complex=True) xzf = Symbol('x', complex=True, zero=False) assert f(x).is_commutative is True assert sin(x).is_commutative is True assert exp(x).is_commutative is True assert log(x).is_commutative is True assert f(x).is_complex is None assert sin(x).is_complex is True assert exp(x).is_complex is True assert log(x).is_complex is None assert log(xzf).is_complex is True def test_function__eval_nseries(): n = Symbol('n') assert sin(x)._eval_nseries(x, 2, None) == x + O(x**2) assert sin(x + 1)._eval_nseries(x, 2, None) == x*cos(1) + sin(1) + O(x**2) assert sin(pi*(1 - x))._eval_nseries(x, 2, None) == pi*x + O(x**2) assert acos(1 - x**2)._eval_nseries(x, 2, None) == sqrt(2)*sqrt(x**2) + O(x**2) assert polygamma(n, x + 1)._eval_nseries(x, 2, None) == \ polygamma(n, 1) + polygamma(n + 1, 1)*x + O(x**2) raises(PoleError, lambda: sin(1/x)._eval_nseries(x, 2, None)) assert acos(1 - x)._eval_nseries(x, 2, None) == sqrt(2)*sqrt(x) + sqrt(2)*x**(S(3)/2)/12 + O(x**2) assert acos(1 + x)._eval_nseries(x, 2, None) == sqrt(2)*sqrt(-x) + sqrt(2)*(-x)**(S(3)/2)/12 + O(x**2) assert loggamma(1/x)._eval_nseries(x, 0, None) == \ log(x)/2 - log(x)/x - 1/x + O(1, x) assert loggamma(log(1/x)).nseries(x, n=1, logx=y) == loggamma(-y) # issue 6725: assert expint(Rational(3, 2), -x)._eval_nseries(x, 5, None) == \ 2 - 2*sqrt(pi)*sqrt(-x) - 2*x + x**2 + x**3/3 + x**4/12 + 4*I*x**(S(3)/2)*sqrt(-x)/3 + \ 2*I*x**(S(5)/2)*sqrt(-x)/5 + 2*I*x**(S(7)/2)*sqrt(-x)/21 + O(x**5) assert sin(sqrt(x))._eval_nseries(x, 3, None) == \ sqrt(x) - x**Rational(3, 2)/6 + x**Rational(5, 2)/120 + O(x**3) # issue 19065: s1 = f(x,y).series(y, n=2) assert {i.name for i in s1.atoms(Symbol)} == {'x', 'xi', 'y'} xi = Symbol('xi') s2 = f(xi, y).series(y, n=2) assert {i.name for i in s2.atoms(Symbol)} == {'xi', 'xi0', 'y'} def test_doit(): n = Symbol('n', integer=True) f = Sum(2 * n * x, (n, 1, 3)) d = Derivative(f, x) assert d.doit() == 12 assert d.doit(deep=False) == Sum(2*n, (n, 1, 3)) def test_evalf_default(): from sympy.functions.special.gamma_functions import polygamma assert type(sin(4.0)) == Float assert type(re(sin(I + 1.0))) == Float assert type(im(sin(I + 1.0))) == Float assert type(sin(4)) == sin assert type(polygamma(2.0, 4.0)) == Float assert type(sin(Rational(1, 4))) == sin def test_issue_5399(): args = [x, y, S(2), S.Half] def ok(a): """Return True if the input args for diff are ok""" if not a: return False if a[0].is_Symbol is False: return False s_at = [i for i in range(len(a)) if a[i].is_Symbol] n_at = [i for i in range(len(a)) if not a[i].is_Symbol] # every symbol is followed by symbol or int # every number is followed by a symbol return (all(a[i + 1].is_Symbol or a[i + 1].is_Integer for i in s_at if i + 1 < len(a)) and all(a[i + 1].is_Symbol for i in n_at if i + 1 < len(a))) eq = x**10*y**8 for a in subsets(args): for v in variations(a, len(a)): if ok(v): eq.diff(*v) # does not raise else: raises(ValueError, lambda: eq.diff(*v)) def test_derivative_numerically(): from random import random z0 = random() + I*random() assert abs(Derivative(sin(x), x).doit_numerically(z0) - cos(z0)) < 1e-15 def test_fdiff_argument_index_error(): from sympy.core.function import ArgumentIndexError class myfunc(Function): nargs = 1 # define since there is no eval routine def fdiff(self, idx): raise ArgumentIndexError mf = myfunc(x) assert mf.diff(x) == Derivative(mf, x) raises(TypeError, lambda: myfunc(x, x)) def test_deriv_wrt_function(): x = f(t) xd = diff(x, t) xdd = diff(xd, t) y = g(t) yd = diff(y, t) assert diff(x, t) == xd assert diff(2 * x + 4, t) == 2 * xd assert diff(2 * x + 4 + y, t) == 2 * xd + yd assert diff(2 * x + 4 + y * x, t) == 2 * xd + x * yd + xd * y assert diff(2 * x + 4 + y * x, x) == 2 + y assert (diff(4 * x**2 + 3 * x + x * y, t) == 3 * xd + x * yd + xd * y + 8 * x * xd) assert (diff(4 * x**2 + 3 * xd + x * y, t) == 3 * xdd + x * yd + xd * y + 8 * x * xd) assert diff(4 * x**2 + 3 * xd + x * y, xd) == 3 assert diff(4 * x**2 + 3 * xd + x * y, xdd) == 0 assert diff(sin(x), t) == xd * cos(x) assert diff(exp(x), t) == xd * exp(x) assert diff(sqrt(x), t) == xd / (2 * sqrt(x)) def test_diff_wrt_value(): assert Expr()._diff_wrt is False assert x._diff_wrt is True assert f(x)._diff_wrt is True assert Derivative(f(x), x)._diff_wrt is True assert Derivative(x**2, x)._diff_wrt is False def test_diff_wrt(): fx = f(x) dfx = diff(f(x), x) ddfx = diff(f(x), x, x) assert diff(sin(fx) + fx**2, fx) == cos(fx) + 2*fx assert diff(sin(dfx) + dfx**2, dfx) == cos(dfx) + 2*dfx assert diff(sin(ddfx) + ddfx**2, ddfx) == cos(ddfx) + 2*ddfx assert diff(fx**2, dfx) == 0 assert diff(fx**2, ddfx) == 0 assert diff(dfx**2, fx) == 0 assert diff(dfx**2, ddfx) == 0 assert diff(ddfx**2, dfx) == 0 assert diff(fx*dfx*ddfx, fx) == dfx*ddfx assert diff(fx*dfx*ddfx, dfx) == fx*ddfx assert diff(fx*dfx*ddfx, ddfx) == fx*dfx assert diff(f(x), x).diff(f(x)) == 0 assert (sin(f(x)) - cos(diff(f(x), x))).diff(f(x)) == cos(f(x)) assert diff(sin(fx), fx, x) == diff(sin(fx), x, fx) # Chain rule cases assert f(g(x)).diff(x) == \ Derivative(g(x), x)*Derivative(f(g(x)), g(x)) assert diff(f(g(x), h(y)), x) == \ Derivative(g(x), x)*Derivative(f(g(x), h(y)), g(x)) assert diff(f(g(x), h(x)), x) == ( Derivative(f(g(x), h(x)), g(x))*Derivative(g(x), x) + Derivative(f(g(x), h(x)), h(x))*Derivative(h(x), x)) assert f( sin(x)).diff(x) == cos(x)*Subs(Derivative(f(x), x), x, sin(x)) assert diff(f(g(x)), g(x)) == Derivative(f(g(x)), g(x)) def test_diff_wrt_func_subs(): assert f(g(x)).diff(x).subs(g, Lambda(x, 2*x)).doit() == f(2*x).diff(x) def test_subs_in_derivative(): expr = sin(x*exp(y)) u = Function('u') v = Function('v') assert Derivative(expr, y).subs(expr, y) == Derivative(y, y) assert Derivative(expr, y).subs(y, x).doit() == \ Derivative(expr, y).doit().subs(y, x) assert Derivative(f(x, y), y).subs(y, x) == Subs(Derivative(f(x, y), y), y, x) assert Derivative(f(x, y), y).subs(x, y) == Subs(Derivative(f(x, y), y), x, y) assert Derivative(f(x, y), y).subs(y, g(x, y)) == Subs(Derivative(f(x, y), y), y, g(x, y)).doit() assert Derivative(f(x, y), y).subs(x, g(x, y)) == Subs(Derivative(f(x, y), y), x, g(x, y)) assert Derivative(f(x, y), g(y)).subs(x, g(x, y)) == Derivative(f(g(x, y), y), g(y)) assert Derivative(f(u(x), h(y)), h(y)).subs(h(y), g(x, y)) == \ Subs(Derivative(f(u(x), h(y)), h(y)), h(y), g(x, y)).doit() assert Derivative(f(x, y), y).subs(y, z) == Derivative(f(x, z), z) assert Derivative(f(x, y), y).subs(y, g(y)) == Derivative(f(x, g(y)), g(y)) assert Derivative(f(g(x), h(y)), h(y)).subs(h(y), u(y)) == \ Derivative(f(g(x), u(y)), u(y)) assert Derivative(f(x, f(x, x)), f(x, x)).subs( f, Lambda((x, y), x + y)) == Subs( Derivative(z + x, z), z, 2*x) assert Subs(Derivative(f(f(x)), x), f, cos).doit() == sin(x)*sin(cos(x)) assert Subs(Derivative(f(f(x)), f(x)), f, cos).doit() == -sin(cos(x)) # Issue 13791. No comparison (it's a long formula) but this used to raise an exception. assert isinstance(v(x, y, u(x, y)).diff(y).diff(x).diff(y), Expr) # This is also related to issues 13791 and 13795; issue 15190 F = Lambda((x, y), exp(2*x + 3*y)) abstract = f(x, f(x, x)).diff(x, 2) concrete = F(x, F(x, x)).diff(x, 2) assert (abstract.subs(f, F).doit() - concrete).simplify() == 0 # don't introduce a new symbol if not necessary assert x in f(x).diff(x).subs(x, 0).atoms() # case (4) assert Derivative(f(x,f(x,y)), x, y).subs(x, g(y) ) == Subs(Derivative(f(x, f(x, y)), x, y), x, g(y)) assert Derivative(f(x, x), x).subs(x, 0 ) == Subs(Derivative(f(x, x), x), x, 0) # issue 15194 assert Derivative(f(y, g(x)), (x, z)).subs(z, x ) == Derivative(f(y, g(x)), (x, x)) df = f(x).diff(x) assert df.subs(df, 1) is S.One assert df.diff(df) is S.One dxy = Derivative(f(x, y), x, y) dyx = Derivative(f(x, y), y, x) assert dxy.subs(Derivative(f(x, y), y, x), 1) is S.One assert dxy.diff(dyx) is S.One assert Derivative(f(x, y), x, 2, y, 3).subs( dyx, g(x, y)) == Derivative(g(x, y), x, 1, y, 2) assert Derivative(f(x, x - y), y).subs(x, x + y) == Subs( Derivative(f(x, x - y), y), x, x + y) def test_diff_wrt_not_allowed(): # issue 7027 included for wrt in ( cos(x), re(x), x**2, x*y, 1 + x, Derivative(cos(x), x), Derivative(f(f(x)), x)): raises(ValueError, lambda: diff(f(x), wrt)) # if we don't differentiate wrt then don't raise error assert diff(exp(x*y), x*y, 0) == exp(x*y) def test_klein_gordon_lagrangian(): m = Symbol('m') phi = f(x, t) L = -(diff(phi, t)**2 - diff(phi, x)**2 - m**2*phi**2)/2 eqna = Eq( diff(L, phi) - diff(L, diff(phi, x), x) - diff(L, diff(phi, t), t), 0) eqnb = Eq(diff(phi, t, t) - diff(phi, x, x) + m**2*phi, 0) assert eqna == eqnb def test_sho_lagrangian(): m = Symbol('m') k = Symbol('k') x = f(t) L = m*diff(x, t)**2/2 - k*x**2/2 eqna = Eq(diff(L, x), diff(L, diff(x, t), t)) eqnb = Eq(-k*x, m*diff(x, t, t)) assert eqna == eqnb assert diff(L, x, t) == diff(L, t, x) assert diff(L, diff(x, t), t) == m*diff(x, t, 2) assert diff(L, t, diff(x, t)) == -k*x + m*diff(x, t, 2) def test_straight_line(): F = f(x) Fd = F.diff(x) L = sqrt(1 + Fd**2) assert diff(L, F) == 0 assert diff(L, Fd) == Fd/sqrt(1 + Fd**2) def test_sort_variable(): vsort = Derivative._sort_variable_count def vsort0(*v, reverse=False): return [i[0] for i in vsort([(i, 0) for i in ( reversed(v) if reverse else v)])] for R in range(2): assert vsort0(y, x, reverse=R) == [x, y] assert vsort0(f(x), x, reverse=R) == [x, f(x)] assert vsort0(f(y), f(x), reverse=R) == [f(x), f(y)] assert vsort0(g(x), f(y), reverse=R) == [f(y), g(x)] assert vsort0(f(x, y), f(x), reverse=R) == [f(x), f(x, y)] fx = f(x).diff(x) assert vsort0(fx, y, reverse=R) == [y, fx] fy = f(y).diff(y) assert vsort0(fy, fx, reverse=R) == [fx, fy] fxx = fx.diff(x) assert vsort0(fxx, fx, reverse=R) == [fx, fxx] assert vsort0(Basic(x), f(x), reverse=R) == [f(x), Basic(x)] assert vsort0(Basic(y), Basic(x), reverse=R) == [Basic(x), Basic(y)] assert vsort0(Basic(y, z), Basic(x), reverse=R) == [ Basic(x), Basic(y, z)] assert vsort0(fx, x, reverse=R) == [ x, fx] if R else [fx, x] assert vsort0(Basic(x), x, reverse=R) == [ x, Basic(x)] if R else [Basic(x), x] assert vsort0(Basic(f(x)), f(x), reverse=R) == [ f(x), Basic(f(x))] if R else [Basic(f(x)), f(x)] assert vsort0(Basic(x, z), Basic(x), reverse=R) == [ Basic(x), Basic(x, z)] if R else [Basic(x, z), Basic(x)] assert vsort([]) == [] assert _aresame(vsort([(x, 1)]), [Tuple(x, 1)]) assert vsort([(x, y), (x, z)]) == [(x, y + z)] assert vsort([(y, 1), (x, 1 + y)]) == [(x, 1 + y), (y, 1)] # coverage complete; legacy tests below assert vsort([(x, 3), (y, 2), (z, 1)]) == [(x, 3), (y, 2), (z, 1)] assert vsort([(h(x), 1), (g(x), 1), (f(x), 1)]) == [ (f(x), 1), (g(x), 1), (h(x), 1)] assert vsort([(z, 1), (y, 2), (x, 3), (h(x), 1), (g(x), 1), (f(x), 1)]) == [(x, 3), (y, 2), (z, 1), (f(x), 1), (g(x), 1), (h(x), 1)] assert vsort([(x, 1), (f(x), 1), (y, 1), (f(y), 1)]) == [(x, 1), (y, 1), (f(x), 1), (f(y), 1)] assert vsort([(y, 1), (x, 2), (g(x), 1), (f(x), 1), (z, 1), (h(x), 1), (y, 2), (x, 1)]) == [(x, 3), (y, 3), (z, 1), (f(x), 1), (g(x), 1), (h(x), 1)] assert vsort([(z, 1), (y, 1), (f(x), 1), (x, 1), (f(x), 1), (g(x), 1)]) == [(x, 1), (y, 1), (z, 1), (f(x), 2), (g(x), 1)] assert vsort([(z, 1), (y, 2), (f(x), 1), (x, 2), (f(x), 2), (g(x), 1), (z, 2), (z, 1), (y, 1), (x, 1)]) == [(x, 3), (y, 3), (z, 4), (f(x), 3), (g(x), 1)] assert vsort(((y, 2), (x, 1), (y, 1), (x, 1))) == [(x, 2), (y, 3)] assert isinstance(vsort([(x, 3), (y, 2), (z, 1)])[0], Tuple) assert vsort([(x, 1), (f(x), 1), (x, 1)]) == [(x, 2), (f(x), 1)] assert vsort([(y, 2), (x, 3), (z, 1)]) == [(x, 3), (y, 2), (z, 1)] assert vsort([(h(y), 1), (g(x), 1), (f(x), 1)]) == [ (f(x), 1), (g(x), 1), (h(y), 1)] assert vsort([(x, 1), (y, 1), (x, 1)]) == [(x, 2), (y, 1)] assert vsort([(f(x), 1), (f(y), 1), (f(x), 1)]) == [ (f(x), 2), (f(y), 1)] dfx = f(x).diff(x) self = [(dfx, 1), (x, 1)] assert vsort(self) == self assert vsort([ (dfx, 1), (y, 1), (f(x), 1), (x, 1), (f(y), 1), (x, 1)]) == [ (y, 1), (f(x), 1), (f(y), 1), (dfx, 1), (x, 2)] dfy = f(y).diff(y) assert vsort([(dfy, 1), (dfx, 1)]) == [(dfx, 1), (dfy, 1)] d2fx = dfx.diff(x) assert vsort([(d2fx, 1), (dfx, 1)]) == [(dfx, 1), (d2fx, 1)] def test_multiple_derivative(): # Issue #15007 assert f(x, y).diff(y, y, x, y, x ) == Derivative(f(x, y), (x, 2), (y, 3)) def test_unhandled(): class MyExpr(Expr): def _eval_derivative(self, s): if not s.name.startswith('xi'): return self else: return None eq = MyExpr(f(x), y, z) assert diff(eq, x, y, f(x), z) == Derivative(eq, f(x)) assert diff(eq, f(x), x) == Derivative(eq, f(x)) assert f(x, y).diff(x,(y, z)) == Derivative(f(x, y), x, (y, z)) assert f(x, y).diff(x,(y, 0)) == Derivative(f(x, y), x) def test_nfloat(): from sympy.core.basic import _aresame from sympy.polys.rootoftools import rootof x = Symbol("x") eq = x**Rational(4, 3) + 4*x**(S.One/3)/3 assert _aresame(nfloat(eq), x**Rational(4, 3) + (4.0/3)*x**(S.One/3)) assert _aresame(nfloat(eq, exponent=True), x**(4.0/3) + (4.0/3)*x**(1.0/3)) eq = x**Rational(4, 3) + 4*x**(x/3)/3 assert _aresame(nfloat(eq), x**Rational(4, 3) + (4.0/3)*x**(x/3)) big = 12345678901234567890 # specify precision to match value used in nfloat Float_big = Float(big, 15) assert _aresame(nfloat(big), Float_big) assert _aresame(nfloat(big*x), Float_big*x) assert _aresame(nfloat(x**big, exponent=True), x**Float_big) assert nfloat(cos(x + sqrt(2))) == cos(x + nfloat(sqrt(2))) # issue 6342 f = S('x*lamda + lamda**3*(x/2 + 1/2) + lamda**2 + 1/4') assert not any(a.free_symbols for a in solveset(f.subs(x, -0.139))) # issue 6632 assert nfloat(-100000*sqrt(2500000001) + 5000000001) == \ 9.99999999800000e-11 # issue 7122 eq = cos(3*x**4 + y)*rootof(x**5 + 3*x**3 + 1, 0) assert str(nfloat(eq, exponent=False, n=1)) == '-0.7*cos(3.0*x**4 + y)' # issue 10933 for ti in (dict, Dict): d = ti({S.Half: S.Half}) n = nfloat(d) assert isinstance(n, ti) assert _aresame(list(n.items()).pop(), (S.Half, Float(.5))) for ti in (dict, Dict): d = ti({S.Half: S.Half}) n = nfloat(d, dkeys=True) assert isinstance(n, ti) assert _aresame(list(n.items()).pop(), (Float(.5), Float(.5))) d = [S.Half] n = nfloat(d) assert type(n) is list assert _aresame(n[0], Float(.5)) assert _aresame(nfloat(Eq(x, S.Half)).rhs, Float(.5)) assert _aresame(nfloat(S(True)), S(True)) assert _aresame(nfloat(Tuple(S.Half))[0], Float(.5)) assert nfloat(Eq((3 - I)**2/2 + I, 0)) == S.false # pass along kwargs assert nfloat([{S.Half: x}], dkeys=True) == [{Float(0.5): x}] # Issue 17706 A = MutableMatrix([[1, 2], [3, 4]]) B = MutableMatrix( [[Float('1.0', precision=53), Float('2.0', precision=53)], [Float('3.0', precision=53), Float('4.0', precision=53)]]) assert _aresame(nfloat(A), B) A = ImmutableMatrix([[1, 2], [3, 4]]) B = ImmutableMatrix( [[Float('1.0', precision=53), Float('2.0', precision=53)], [Float('3.0', precision=53), Float('4.0', precision=53)]]) assert _aresame(nfloat(A), B) def test_issue_7068(): from sympy.abc import a, b f = Function('f') y1 = Dummy('y') y2 = Dummy('y') func1 = f(a + y1 * b) func2 = f(a + y2 * b) func1_y = func1.diff(y1) func2_y = func2.diff(y2) assert func1_y != func2_y z1 = Subs(f(a), a, y1) z2 = Subs(f(a), a, y2) assert z1 != z2 def test_issue_7231(): from sympy.abc import a ans1 = f(x).series(x, a) res = (f(a) + (-a + x)*Subs(Derivative(f(y), y), y, a) + (-a + x)**2*Subs(Derivative(f(y), y, y), y, a)/2 + (-a + x)**3*Subs(Derivative(f(y), y, y, y), y, a)/6 + (-a + x)**4*Subs(Derivative(f(y), y, y, y, y), y, a)/24 + (-a + x)**5*Subs(Derivative(f(y), y, y, y, y, y), y, a)/120 + O((-a + x)**6, (x, a))) assert res == ans1 ans2 = f(x).series(x, a) assert res == ans2 def test_issue_7687(): from sympy.core.function import Function from sympy.abc import x f = Function('f')(x) ff = Function('f')(x) match_with_cache = ff.matches(f) assert isinstance(f, type(ff)) clear_cache() ff = Function('f')(x) assert isinstance(f, type(ff)) assert match_with_cache == ff.matches(f) def test_issue_7688(): from sympy.core.function import Function, UndefinedFunction f = Function('f') # actually an UndefinedFunction clear_cache() class A(UndefinedFunction): pass a = A('f') assert isinstance(a, type(f)) def test_mexpand(): from sympy.abc import x assert _mexpand(None) is None assert _mexpand(1) is S.One assert _mexpand(x*(x + 1)**2) == (x*(x + 1)**2).expand() def test_issue_8469(): # This should not take forever to run N = 40 def g(w, theta): return 1/(1+exp(w-theta)) ws = symbols(['w%i'%i for i in range(N)]) import functools expr = functools.reduce(g, ws) assert isinstance(expr, Pow) def test_issue_12996(): # foo=True imitates the sort of arguments that Derivative can get # from Integral when it passes doit to the expression assert Derivative(im(x), x).doit(foo=True) == Derivative(im(x), x) def test_should_evalf(): # This should not take forever to run (see #8506) assert isinstance(sin((1.0 + 1.0*I)**10000 + 1), sin) def test_Derivative_as_finite_difference(): # Central 1st derivative at gridpoint x, h = symbols('x h', real=True) dfdx = f(x).diff(x) assert (dfdx.as_finite_difference([x-2, x-1, x, x+1, x+2]) - (S.One/12*(f(x-2)-f(x+2)) + Rational(2, 3)*(f(x+1)-f(x-1)))).simplify() == 0 # Central 1st derivative "half-way" assert (dfdx.as_finite_difference() - (f(x + S.Half)-f(x - S.Half))).simplify() == 0 assert (dfdx.as_finite_difference(h) - (f(x + h/S(2))-f(x - h/S(2)))/h).simplify() == 0 assert (dfdx.as_finite_difference([x - 3*h, x-h, x+h, x + 3*h]) - (S(9)/(8*2*h)*(f(x+h) - f(x-h)) + S.One/(24*2*h)*(f(x - 3*h) - f(x + 3*h)))).simplify() == 0 # One sided 1st derivative at gridpoint assert (dfdx.as_finite_difference([0, 1, 2], 0) - (Rational(-3, 2)*f(0) + 2*f(1) - f(2)/2)).simplify() == 0 assert (dfdx.as_finite_difference([x, x+h], x) - (f(x+h) - f(x))/h).simplify() == 0 assert (dfdx.as_finite_difference([x-h, x, x+h], x-h) - (-S(3)/(2*h)*f(x-h) + 2/h*f(x) - S.One/(2*h)*f(x+h))).simplify() == 0 # One sided 1st derivative "half-way" assert (dfdx.as_finite_difference([x-h, x+h, x + 3*h, x + 5*h, x + 7*h]) - 1/(2*h)*(-S(11)/(12)*f(x-h) + S(17)/(24)*f(x+h) + Rational(3, 8)*f(x + 3*h) - Rational(5, 24)*f(x + 5*h) + S.One/24*f(x + 7*h))).simplify() == 0 d2fdx2 = f(x).diff(x, 2) # Central 2nd derivative at gridpoint assert (d2fdx2.as_finite_difference([x-h, x, x+h]) - h**-2 * (f(x-h) + f(x+h) - 2*f(x))).simplify() == 0 assert (d2fdx2.as_finite_difference([x - 2*h, x-h, x, x+h, x + 2*h]) - h**-2 * (Rational(-1, 12)*(f(x - 2*h) + f(x + 2*h)) + Rational(4, 3)*(f(x+h) + f(x-h)) - Rational(5, 2)*f(x))).simplify() == 0 # Central 2nd derivative "half-way" assert (d2fdx2.as_finite_difference([x - 3*h, x-h, x+h, x + 3*h]) - (2*h)**-2 * (S.Half*(f(x - 3*h) + f(x + 3*h)) - S.Half*(f(x+h) + f(x-h)))).simplify() == 0 # One sided 2nd derivative at gridpoint assert (d2fdx2.as_finite_difference([x, x+h, x + 2*h, x + 3*h]) - h**-2 * (2*f(x) - 5*f(x+h) + 4*f(x+2*h) - f(x+3*h))).simplify() == 0 # One sided 2nd derivative at "half-way" assert (d2fdx2.as_finite_difference([x-h, x+h, x + 3*h, x + 5*h]) - (2*h)**-2 * (Rational(3, 2)*f(x-h) - Rational(7, 2)*f(x+h) + Rational(5, 2)*f(x + 3*h) - S.Half*f(x + 5*h))).simplify() == 0 d3fdx3 = f(x).diff(x, 3) # Central 3rd derivative at gridpoint assert (d3fdx3.as_finite_difference() - (-f(x - Rational(3, 2)) + 3*f(x - S.Half) - 3*f(x + S.Half) + f(x + Rational(3, 2)))).simplify() == 0 assert (d3fdx3.as_finite_difference( [x - 3*h, x - 2*h, x-h, x, x+h, x + 2*h, x + 3*h]) - h**-3 * (S.One/8*(f(x - 3*h) - f(x + 3*h)) - f(x - 2*h) + f(x + 2*h) + Rational(13, 8)*(f(x-h) - f(x+h)))).simplify() == 0 # Central 3rd derivative at "half-way" assert (d3fdx3.as_finite_difference([x - 3*h, x-h, x+h, x + 3*h]) - (2*h)**-3 * (f(x + 3*h)-f(x - 3*h) + 3*(f(x-h)-f(x+h)))).simplify() == 0 # One sided 3rd derivative at gridpoint assert (d3fdx3.as_finite_difference([x, x+h, x + 2*h, x + 3*h]) - h**-3 * (f(x + 3*h)-f(x) + 3*(f(x+h)-f(x + 2*h)))).simplify() == 0 # One sided 3rd derivative at "half-way" assert (d3fdx3.as_finite_difference([x-h, x+h, x + 3*h, x + 5*h]) - (2*h)**-3 * (f(x + 5*h)-f(x-h) + 3*(f(x+h)-f(x + 3*h)))).simplify() == 0 # issue 11007 y = Symbol('y', real=True) d2fdxdy = f(x, y).diff(x, y) ref0 = Derivative(f(x + S.Half, y), y) - Derivative(f(x - S.Half, y), y) assert (d2fdxdy.as_finite_difference(wrt=x) - ref0).simplify() == 0 half = S.Half xm, xp, ym, yp = x-half, x+half, y-half, y+half ref2 = f(xm, ym) + f(xp, yp) - f(xp, ym) - f(xm, yp) assert (d2fdxdy.as_finite_difference() - ref2).simplify() == 0 def test_issue_11159(): # Tests Application._eval_subs expr1 = E expr0 = expr1 * expr1 expr1 = expr0.subs(expr1,expr0) assert expr0 == expr1 def test_issue_12005(): e1 = Subs(Derivative(f(x), x), x, x) assert e1.diff(x) == Derivative(f(x), x, x) e2 = Subs(Derivative(f(x), x), x, x**2 + 1) assert e2.diff(x) == 2*x*Subs(Derivative(f(x), x, x), x, x**2 + 1) e3 = Subs(Derivative(f(x) + y**2 - y, y), y, y**2) assert e3.diff(y) == 4*y e4 = Subs(Derivative(f(x + y), y), y, (x**2)) assert e4.diff(y) is S.Zero e5 = Subs(Derivative(f(x), x), (y, z), (y, z)) assert e5.diff(x) == Derivative(f(x), x, x) assert f(g(x)).diff(g(x), g(x)) == Derivative(f(g(x)), g(x), g(x)) def test_issue_13843(): x = symbols('x') f = Function('f') m, n = symbols('m n', integer=True) assert Derivative(Derivative(f(x), (x, m)), (x, n)) == Derivative(f(x), (x, m + n)) assert Derivative(Derivative(f(x), (x, m+5)), (x, n+3)) == Derivative(f(x), (x, m + n + 8)) assert Derivative(f(x), (x, n)).doit() == Derivative(f(x), (x, n)) def test_order_could_be_zero(): x, y = symbols('x, y') n = symbols('n', integer=True, nonnegative=True) m = symbols('m', integer=True, positive=True) assert diff(y, (x, n)) == Piecewise((y, Eq(n, 0)), (0, True)) assert diff(y, (x, n + 1)) is S.Zero assert diff(y, (x, m)) is S.Zero def test_undefined_function_eq(): f = Function('f') f2 = Function('f') g = Function('g') f_real = Function('f', is_real=True) # This test may only be meaningful if the cache is turned off assert f == f2 assert hash(f) == hash(f2) assert f == f assert f != g assert f != f_real def test_function_assumptions(): x = Symbol('x') f = Function('f') f_real = Function('f', real=True) f_real1 = Function('f', real=1) f_real_inherit = Function(Symbol('f', real=True)) assert f_real == f_real1 # assumptions are sanitized assert f != f_real assert f(x) != f_real(x) assert f(x).is_real is None assert f_real(x).is_real is True assert f_real_inherit(x).is_real is True and f_real_inherit.name == 'f' # Can also do it this way, but it won't be equal to f_real because of the # way UndefinedFunction.__new__ works. Any non-recognized assumptions # are just added literally as something which is used in the hash f_real2 = Function('f', is_real=True) assert f_real2(x).is_real is True def test_undef_fcn_float_issue_6938(): f = Function('ceil') assert not f(0.3).is_number f = Function('sin') assert not f(0.3).is_number assert not f(pi).evalf().is_number x = Symbol('x') assert not f(x).evalf(subs={x:1.2}).is_number def test_undefined_function_eval(): # Issue 15170. Make sure UndefinedFunction with eval defined works # properly. The issue there was that the hash was determined before _nargs # was set, which is included in the hash, hence changing the hash. The # class is added to sympy.core.core.all_classes before the hash is # changed, meaning "temp in all_classes" would fail, causing sympify(temp(t)) # to give a new class. We will eventually remove all_classes, but make # sure this continues to work. fdiff = lambda self, argindex=1: cos(self.args[argindex - 1]) eval = classmethod(lambda cls, t: None) _imp_ = classmethod(lambda cls, t: sin(t)) temp = Function('temp', fdiff=fdiff, eval=eval, _imp_=_imp_) expr = temp(t) assert sympify(expr) == expr assert type(sympify(expr)).fdiff.__name__ == "<lambda>" assert expr.diff(t) == cos(t) def test_issue_15241(): F = f(x) Fx = F.diff(x) assert (F + x*Fx).diff(x, Fx) == 2 assert (F + x*Fx).diff(Fx, x) == 1 assert (x*F + x*Fx*F).diff(F, x) == x*Fx.diff(x) + Fx + 1 assert (x*F + x*Fx*F).diff(x, F) == x*Fx.diff(x) + Fx + 1 y = f(x) G = f(y) Gy = G.diff(y) assert (G + y*Gy).diff(y, Gy) == 2 assert (G + y*Gy).diff(Gy, y) == 1 assert (y*G + y*Gy*G).diff(G, y) == y*Gy.diff(y) + Gy + 1 assert (y*G + y*Gy*G).diff(y, G) == y*Gy.diff(y) + Gy + 1 def test_issue_15226(): assert Subs(Derivative(f(y), x, y), y, g(x)).doit() != 0 def test_issue_7027(): for wrt in (cos(x), re(x), Derivative(cos(x), x)): raises(ValueError, lambda: diff(f(x), wrt)) def test_derivative_quick_exit(): assert f(x).diff(y) == 0 assert f(x).diff(y, f(x)) == 0 assert f(x).diff(x, f(y)) == 0 assert f(f(x)).diff(x, f(x), f(y)) == 0 assert f(f(x)).diff(x, f(x), y) == 0 assert f(x).diff(g(x)) == 0 assert f(x).diff(x, f(x).diff(x)) == 1 df = f(x).diff(x) assert f(x).diff(df) == 0 dg = g(x).diff(x) assert dg.diff(df).doit() == 0 def test_issue_15084_13166(): eq = f(x, g(x)) assert eq.diff((g(x), y)) == Derivative(f(x, g(x)), (g(x), y)) # issue 13166 assert eq.diff(x, 2).doit() == ( (Derivative(f(x, g(x)), (g(x), 2))*Derivative(g(x), x) + Subs(Derivative(f(x, _xi_2), _xi_2, x), _xi_2, g(x)))*Derivative(g(x), x) + Derivative(f(x, g(x)), g(x))*Derivative(g(x), (x, 2)) + Derivative(g(x), x)*Subs(Derivative(f(_xi_1, g(x)), _xi_1, g(x)), _xi_1, x) + Subs(Derivative(f(_xi_1, g(x)), (_xi_1, 2)), _xi_1, x)) # issue 6681 assert diff(f(x, t, g(x, t)), x).doit() == ( Derivative(f(x, t, g(x, t)), g(x, t))*Derivative(g(x, t), x) + Subs(Derivative(f(_xi_1, t, g(x, t)), _xi_1), _xi_1, x)) # make sure the order doesn't matter when using diff assert eq.diff(x, g(x)) == eq.diff(g(x), x) def test_negative_counts(): # issue 13873 raises(ValueError, lambda: sin(x).diff(x, -1)) def test_Derivative__new__(): raises(TypeError, lambda: f(x).diff((x, 2), 0)) assert f(x, y).diff([(x, y), 0]) == f(x, y) assert f(x, y).diff([(x, y), 1]) == NDimArray([ Derivative(f(x, y), x), Derivative(f(x, y), y)]) assert f(x,y).diff(y, (x, z), y, x) == Derivative( f(x, y), (x, z + 1), (y, 2)) assert Matrix([x]).diff(x, 2) == Matrix([0]) # is_zero exit def test_issue_14719_10150(): class V(Expr): _diff_wrt = True is_scalar = False assert V().diff(V()) == Derivative(V(), V()) assert (2*V()).diff(V()) == 2*Derivative(V(), V()) class X(Expr): _diff_wrt = True assert X().diff(X()) == 1 assert (2*X()).diff(X()) == 2 def test_noncommutative_issue_15131(): x = Symbol('x', commutative=False) t = Symbol('t', commutative=False) fx = Function('Fx', commutative=False)(x) ft = Function('Ft', commutative=False)(t) A = Symbol('A', commutative=False) eq = fx * A * ft eqdt = eq.diff(t) assert eqdt.args[-1] == ft.diff(t) def test_Subs_Derivative(): a = Derivative(f(g(x), h(x)), g(x), h(x),x) b = Derivative(Derivative(f(g(x), h(x)), g(x), h(x)),x) c = f(g(x), h(x)).diff(g(x), h(x), x) d = f(g(x), h(x)).diff(g(x), h(x)).diff(x) e = Derivative(f(g(x), h(x)), x) eqs = (a, b, c, d, e) subs = lambda arg: arg.subs(f, Lambda((x, y), exp(x + y)) ).subs(g(x), 1/x).subs(h(x), x**3) ans = 3*x**2*exp(1/x)*exp(x**3) - exp(1/x)*exp(x**3)/x**2 assert all(subs(i).doit().expand() == ans for i in eqs) assert all(subs(i.doit()).doit().expand() == ans for i in eqs) def test_issue_15360(): f = Function('f') assert f.name == 'f' def test_issue_15947(): assert f._diff_wrt is False raises(TypeError, lambda: f(f)) raises(TypeError, lambda: f(x).diff(f)) def test_Derivative_free_symbols(): f = Function('f') n = Symbol('n', integer=True, positive=True) assert diff(f(x), (x, n)).free_symbols == {n, x} def test_issue_20683(): x = Symbol('x') y = Symbol('y') z = Symbol('z') y = Derivative(z, x).subs(x,0) assert y.doit() == 0 y = Derivative(8, x).subs(x,0) assert y.doit() == 0 def test_issue_10503(): f = exp(x**3)*cos(x**6) assert f.series(x, 0, 14) == 1 + x**3 + x**6/2 + x**9/6 - 11*x**12/24 + O(x**14)
bc247026ea4a19a44b9e74e6b75fae88c9be4bc7aafedf955c54e074d5754363
from sympy import (log, sqrt, Rational as R, Symbol, I, exp, pi, S, cos, sin, Mul, Pow, O) from sympy.simplify.radsimp import expand_numer from sympy.core.function import expand, expand_multinomial, expand_power_base from sympy.testing.pytest import raises from sympy.testing.randtest import verify_numerically from sympy.abc import x, y, z def test_expand_no_log(): assert ( (1 + log(x**4))**2).expand(log=False) == 1 + 2*log(x**4) + log(x**4)**2 assert ((1 + log(x**4))*(1 + log(x**3))).expand( log=False) == 1 + log(x**4) + log(x**3) + log(x**4)*log(x**3) def test_expand_no_multinomial(): assert ((1 + x)*(1 + (1 + x)**4)).expand(multinomial=False) == \ 1 + x + (1 + x)**4 + x*(1 + x)**4 def test_expand_negative_integer_powers(): expr = (x + y)**(-2) assert expr.expand() == 1 / (2*x*y + x**2 + y**2) assert expr.expand(multinomial=False) == (x + y)**(-2) expr = (x + y)**(-3) assert expr.expand() == 1 / (3*x*x*y + 3*x*y*y + x**3 + y**3) assert expr.expand(multinomial=False) == (x + y)**(-3) expr = (x + y)**(2) * (x + y)**(-4) assert expr.expand() == 1 / (2*x*y + x**2 + y**2) assert expr.expand(multinomial=False) == (x + y)**(-2) def test_expand_non_commutative(): A = Symbol('A', commutative=False) B = Symbol('B', commutative=False) C = Symbol('C', commutative=False) a = Symbol('a') b = Symbol('b') i = Symbol('i', integer=True) n = Symbol('n', negative=True) m = Symbol('m', negative=True) p = Symbol('p', polar=True) np = Symbol('p', polar=False) assert (C*(A + B)).expand() == C*A + C*B assert (C*(A + B)).expand() != A*C + B*C assert ((A + B)**2).expand() == A**2 + A*B + B*A + B**2 assert ((A + B)**3).expand() == (A**2*B + B**2*A + A*B**2 + B*A**2 + A**3 + B**3 + A*B*A + B*A*B) # issue 6219 assert ((a*A*B*A**-1)**2).expand() == a**2*A*B**2/A # Note that (a*A*B*A**-1)**2 is automatically converted to a**2*(A*B*A**-1)**2 assert ((a*A*B*A**-1)**2).expand(deep=False) == a**2*(A*B*A**-1)**2 assert ((a*A*B*A**-1)**2).expand() == a**2*(A*B**2*A**-1) assert ((a*A*B*A**-1)**2).expand(force=True) == a**2*A*B**2*A**(-1) assert ((a*A*B)**2).expand() == a**2*A*B*A*B assert ((a*A)**2).expand() == a**2*A**2 assert ((a*A*B)**i).expand() == a**i*(A*B)**i assert ((a*A*(B*(A*B/A)**2))**i).expand() == a**i*(A*B*A*B**2/A)**i # issue 6558 assert (A*B*(A*B)**-1).expand() == 1 assert ((a*A)**i).expand() == a**i*A**i assert ((a*A*B*A**-1)**3).expand() == a**3*A*B**3/A assert ((a*A*B*A*B/A)**3).expand() == \ a**3*A*B*(A*B**2)*(A*B**2)*A*B*A**(-1) assert ((a*A*B*A*B/A)**-2).expand() == \ A*B**-1*A**-1*B**-2*A**-1*B**-1*A**-1/a**2 assert ((a*b*A*B*A**-1)**i).expand() == a**i*b**i*(A*B/A)**i assert ((a*(a*b)**i)**i).expand() == a**i*a**(i**2)*b**(i**2) e = Pow(Mul(a, 1/a, A, B, evaluate=False), S(2), evaluate=False) assert e.expand() == A*B*A*B assert sqrt(a*(A*b)**i).expand() == sqrt(a*b**i*A**i) assert (sqrt(-a)**a).expand() == sqrt(-a)**a assert expand((-2*n)**(i/3)) == 2**(i/3)*(-n)**(i/3) assert expand((-2*n*m)**(i/a)) == (-2)**(i/a)*(-n)**(i/a)*(-m)**(i/a) assert expand((-2*a*p)**b) == 2**b*p**b*(-a)**b assert expand((-2*a*np)**b) == 2**b*(-a*np)**b assert expand(sqrt(A*B)) == sqrt(A*B) assert expand(sqrt(-2*a*b)) == sqrt(2)*sqrt(-a*b) def test_expand_radicals(): a = (x + y)**R(1, 2) assert (a**1).expand() == a assert (a**3).expand() == x*a + y*a assert (a**5).expand() == x**2*a + 2*x*y*a + y**2*a assert (1/a**1).expand() == 1/a assert (1/a**3).expand() == 1/(x*a + y*a) assert (1/a**5).expand() == 1/(x**2*a + 2*x*y*a + y**2*a) a = (x + y)**R(1, 3) assert (a**1).expand() == a assert (a**2).expand() == a**2 assert (a**4).expand() == x*a + y*a assert (a**5).expand() == x*a**2 + y*a**2 assert (a**7).expand() == x**2*a + 2*x*y*a + y**2*a def test_expand_modulus(): assert ((x + y)**11).expand(modulus=11) == x**11 + y**11 assert ((x + sqrt(2)*y)**11).expand(modulus=11) == x**11 + 10*sqrt(2)*y**11 assert (x + y/2).expand(modulus=1) == y/2 raises(ValueError, lambda: ((x + y)**11).expand(modulus=0)) raises(ValueError, lambda: ((x + y)**11).expand(modulus=x)) def test_issue_5743(): assert (x*sqrt( x + y)*(1 + sqrt(x + y))).expand() == x**2 + x*y + x*sqrt(x + y) assert (x*sqrt( x + y)*(1 + x*sqrt(x + y))).expand() == x**3 + x**2*y + x*sqrt(x + y) def test_expand_frac(): assert expand((x + y)*y/x/(x + 1), frac=True) == \ (x*y + y**2)/(x**2 + x) assert expand((x + y)*y/x/(x + 1), numer=True) == \ (x*y + y**2)/(x*(x + 1)) assert expand((x + y)*y/x/(x + 1), denom=True) == \ y*(x + y)/(x**2 + x) eq = (x + 1)**2/y assert expand_numer(eq, multinomial=False) == eq def test_issue_6121(): eq = -I*exp(-3*I*pi/4)/(4*pi**(S(3)/2)*sqrt(x)) assert eq.expand(complex=True) # does not give oo recursion eq = -I*exp(-3*I*pi/4)/(4*pi**(R(3, 2))*sqrt(x)) assert eq.expand(complex=True) # does not give oo recursion def test_expand_power_base(): assert expand_power_base((x*y*z)**4) == x**4*y**4*z**4 assert expand_power_base((x*y*z)**x).is_Pow assert expand_power_base((x*y*z)**x, force=True) == x**x*y**x*z**x assert expand_power_base((x*(y*z)**2)**3) == x**3*y**6*z**6 assert expand_power_base((sin((x*y)**2)*y)**z).is_Pow assert expand_power_base( (sin((x*y)**2)*y)**z, force=True) == sin((x*y)**2)**z*y**z assert expand_power_base( (sin((x*y)**2)*y)**z, deep=True) == (sin(x**2*y**2)*y)**z assert expand_power_base(exp(x)**2) == exp(2*x) assert expand_power_base((exp(x)*exp(y))**2) == exp(2*x)*exp(2*y) assert expand_power_base( (exp((x*y)**z)*exp(y))**2) == exp(2*(x*y)**z)*exp(2*y) assert expand_power_base((exp((x*y)**z)*exp( y))**2, deep=True, force=True) == exp(2*x**z*y**z)*exp(2*y) assert expand_power_base((exp(x)*exp(y))**z).is_Pow assert expand_power_base( (exp(x)*exp(y))**z, force=True) == exp(x)**z*exp(y)**z def test_expand_arit(): a = Symbol("a") b = Symbol("b", positive=True) c = Symbol("c") p = R(5) e = (a + b)*c assert e == c*(a + b) assert (e.expand() - a*c - b*c) == R(0) e = (a + b)*(a + b) assert e == (a + b)**2 assert e.expand() == 2*a*b + a**2 + b**2 e = (a + b)*(a + b)**R(2) assert e == (a + b)**3 assert e.expand() == 3*b*a**2 + 3*a*b**2 + a**3 + b**3 assert e.expand() == 3*b*a**2 + 3*a*b**2 + a**3 + b**3 e = (a + b)*(a + c)*(b + c) assert e == (a + c)*(a + b)*(b + c) assert e.expand() == 2*a*b*c + b*a**2 + c*a**2 + b*c**2 + a*c**2 + c*b**2 + a*b**2 e = (a + R(1))**p assert e == (1 + a)**5 assert e.expand() == 1 + 5*a + 10*a**2 + 10*a**3 + 5*a**4 + a**5 e = (a + b + c)*(a + c + p) assert e == (5 + a + c)*(a + b + c) assert e.expand() == 5*a + 5*b + 5*c + 2*a*c + b*c + a*b + a**2 + c**2 x = Symbol("x") s = exp(x*x) - 1 e = s.nseries(x, 0, 6)/x**2 assert e.expand() == 1 + x**2/2 + O(x**4) e = (x*(y + z))**(x*(y + z))*(x + y) assert e.expand(power_exp=False, power_base=False) == x*(x*y + x* z)**(x*y + x*z) + y*(x*y + x*z)**(x*y + x*z) assert e.expand(power_exp=False, power_base=False, deep=False) == x* \ (x*(y + z))**(x*(y + z)) + y*(x*(y + z))**(x*(y + z)) e = x * (x + (y + 1)**2) assert e.expand(deep=False) == x**2 + x*(y + 1)**2 e = (x*(y + z))**z assert e.expand(power_base=True, mul=True, deep=True) in [x**z*(y + z)**z, (x*y + x*z)**z] assert ((2*y)**z).expand() == 2**z*y**z p = Symbol('p', positive=True) assert sqrt(-x).expand().is_Pow assert sqrt(-x).expand(force=True) == I*sqrt(x) assert ((2*y*p)**z).expand() == 2**z*p**z*y**z assert ((2*y*p*x)**z).expand() == 2**z*p**z*(x*y)**z assert ((2*y*p*x)**z).expand(force=True) == 2**z*p**z*x**z*y**z assert ((2*y*p*-pi)**z).expand() == 2**z*pi**z*p**z*(-y)**z assert ((2*y*p*-pi*x)**z).expand() == 2**z*pi**z*p**z*(-x*y)**z n = Symbol('n', negative=True) m = Symbol('m', negative=True) assert ((-2*x*y*n)**z).expand() == 2**z*(-n)**z*(x*y)**z assert ((-2*x*y*n*m)**z).expand() == 2**z*(-m)**z*(-n)**z*(-x*y)**z # issue 5482 assert sqrt(-2*x*n) == sqrt(2)*sqrt(-n)*sqrt(x) # issue 5605 (2) assert (cos(x + y)**2).expand(trig=True) in [ (-sin(x)*sin(y) + cos(x)*cos(y))**2, sin(x)**2*sin(y)**2 - 2*sin(x)*sin(y)*cos(x)*cos(y) + cos(x)**2*cos(y)**2 ] # Check that this isn't too slow x = Symbol('x') W = 1 for i in range(1, 21): W = W * (x - i) W = W.expand() assert W.has(-1672280820*x**15) def test_expand_mul(): # part of issue 20597 e = Mul(2, 3, evaluate=False) assert e.expand() == 6 e = Mul(2, 3, 1/x, evaluate = False) assert e.expand() == 6/x e = Mul(2, R(1, 3), evaluate=False) assert e.expand() == R(2, 3) def test_power_expand(): """Test for Pow.expand()""" a = Symbol('a') b = Symbol('b') p = (a + b)**2 assert p.expand() == a**2 + b**2 + 2*a*b p = (1 + 2*(1 + a))**2 assert p.expand() == 9 + 4*(a**2) + 12*a p = 2**(a + b) assert p.expand() == 2**a*2**b A = Symbol('A', commutative=False) B = Symbol('B', commutative=False) assert (2**(A + B)).expand() == 2**(A + B) assert (A**(a + b)).expand() != A**(a + b) def test_issues_5919_6830(): # issue 5919 n = -1 + 1/x z = n/x/(-n)**2 - 1/n/x assert expand(z) == 1/(x**2 - 2*x + 1) - 1/(x - 2 + 1/x) - 1/(-x + 1) # issue 6830 p = (1 + x)**2 assert expand_multinomial((1 + x*p)**2) == ( x**2*(x**4 + 4*x**3 + 6*x**2 + 4*x + 1) + 2*x*(x**2 + 2*x + 1) + 1) assert expand_multinomial((1 + (y + x)*p)**2) == ( 2*((x + y)*(x**2 + 2*x + 1)) + (x**2 + 2*x*y + y**2)* (x**4 + 4*x**3 + 6*x**2 + 4*x + 1) + 1) A = Symbol('A', commutative=False) p = (1 + A)**2 assert expand_multinomial((1 + x*p)**2) == ( x**2*(1 + 4*A + 6*A**2 + 4*A**3 + A**4) + 2*x*(1 + 2*A + A**2) + 1) assert expand_multinomial((1 + (y + x)*p)**2) == ( (x + y)*(1 + 2*A + A**2)*2 + (x**2 + 2*x*y + y**2)* (1 + 4*A + 6*A**2 + 4*A**3 + A**4) + 1) assert expand_multinomial((1 + (y + x)*p)**3) == ( (x + y)*(1 + 2*A + A**2)*3 + (x**2 + 2*x*y + y**2)*(1 + 4*A + 6*A**2 + 4*A**3 + A**4)*3 + (x**3 + 3*x**2*y + 3*x*y**2 + y**3)*(1 + 6*A + 15*A**2 + 20*A**3 + 15*A**4 + 6*A**5 + A**6) + 1) # unevaluate powers eq = (Pow((x + 1)*((A + 1)**2), 2, evaluate=False)) # - in this case the base is not an Add so no further # expansion is done assert expand_multinomial(eq) == \ (x**2 + 2*x + 1)*(1 + 4*A + 6*A**2 + 4*A**3 + A**4) # - but here, the expanded base *is* an Add so it gets expanded eq = (Pow(((A + 1)**2), 2, evaluate=False)) assert expand_multinomial(eq) == 1 + 4*A + 6*A**2 + 4*A**3 + A**4 # coverage def ok(a, b, n): e = (a + I*b)**n return verify_numerically(e, expand_multinomial(e)) for a in [2, S.Half]: for b in [3, R(1, 3)]: for n in range(2, 6): assert ok(a, b, n) assert expand_multinomial((x + 1 + O(z))**2) == \ 1 + 2*x + x**2 + O(z) assert expand_multinomial((x + 1 + O(z))**3) == \ 1 + 3*x + 3*x**2 + x**3 + O(z) assert expand_multinomial(3**(x + y + 3)) == 27*3**(x + y) def test_expand_log(): t = Symbol('t', positive=True) # after first expansion, -2*log(2) + log(4); then 0 after second assert expand(log(t**2) - log(t**2/4) - 2*log(2)) == 0
7e92373f3f171a2721e1f513b9a129ede1769aba5c36020b76e72e98e5f40e70
from sympy.core.add import Add from sympy.core.kind import NumberKind, UndefinedKind from sympy.core.mul import Mul from sympy.core.numbers import pi, zoo, I, AlgebraicNumber from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.integrals.integrals import Integral from sympy.matrices import (Matrix, SparseMatrix, ImmutableMatrix, ImmutableSparseMatrix, MatrixSymbol, MatrixKind, MatMul) comm_x = Symbol('x') noncomm_x = Symbol('x', commutative=False) def test_NumberKind(): assert S.One.kind is NumberKind assert pi.kind is NumberKind assert S.NaN.kind is NumberKind assert zoo.kind is NumberKind assert I.kind is NumberKind assert AlgebraicNumber(1).kind is NumberKind def test_Add_kind(): assert Add(2, 3, evaluate=False).kind is NumberKind assert Add(2,comm_x).kind is NumberKind assert Add(2,noncomm_x).kind is UndefinedKind def test_mul_kind(): assert Mul(2,comm_x, evaluate=False).kind is NumberKind assert Mul(2,3, evaluate=False).kind is NumberKind assert Mul(noncomm_x,2, evaluate=False).kind is UndefinedKind assert Mul(2,noncomm_x, evaluate=False).kind is UndefinedKind def test_Symbol_kind(): assert comm_x.kind is NumberKind assert noncomm_x.kind is UndefinedKind def test_Integral_kind(): A = MatrixSymbol('A', 2,2) assert Integral(comm_x, comm_x).kind is NumberKind assert Integral(A, comm_x).kind is MatrixKind(NumberKind) def test_Matrix_kind(): classes = (Matrix, SparseMatrix, ImmutableMatrix, ImmutableSparseMatrix) for cls in classes: m = cls.zeros(3, 2) assert m.kind is MatrixKind(NumberKind) def test_MatMul_kind(): M = Matrix([[1,2],[3,4]]) assert MatMul(2, M).kind is MatrixKind(NumberKind) assert MatMul(comm_x, M).kind is MatrixKind(NumberKind)
61a0e823bd5a76f43cde7d13ca20f99b37813e00a9402b912c6c5ec93d933e0c
from sympy import (Basic, Symbol, sin, cos, atan, exp, sqrt, Rational, Float, re, pi, sympify, Add, Mul, Pow, Mod, I, log, S, Max, symbols, oo, zoo, Integer, sign, im, nan, Dummy, factorial, comp, floor, Poly, FiniteSet ) from sympy.core.parameters import distribute from sympy.core.expr import unchanged from sympy.utilities.iterables import cartes from sympy.testing.pytest import XFAIL, raises, warns_deprecated_sympy from sympy.testing.randtest import verify_numerically a, c, x, y, z = symbols('a,c,x,y,z') b = Symbol("b", positive=True) def same_and_same_prec(a, b): # stricter matching for Floats return a == b and a._prec == b._prec def test_bug1(): assert re(x) != x x.series(x, 0, 1) assert re(x) != x def test_Symbol(): e = a*b assert e == a*b assert a*b*b == a*b**2 assert a*b*b + c == c + a*b**2 assert a*b*b - c == -c + a*b**2 x = Symbol('x', complex=True, real=False) assert x.is_imaginary is None # could be I or 1 + I x = Symbol('x', complex=True, imaginary=False) assert x.is_real is None # could be 1 or 1 + I x = Symbol('x', real=True) assert x.is_complex x = Symbol('x', imaginary=True) assert x.is_complex x = Symbol('x', real=False, imaginary=False) assert x.is_complex is None # might be a non-number def test_arit0(): p = Rational(5) e = a*b assert e == a*b e = a*b + b*a assert e == 2*a*b e = a*b + b*a + a*b + p*b*a assert e == 8*a*b e = a*b + b*a + a*b + p*b*a + a assert e == a + 8*a*b e = a + a assert e == 2*a e = a + b + a assert e == b + 2*a e = a + b*b + a + b*b assert e == 2*a + 2*b**2 e = a + Rational(2) + b*b + a + b*b + p assert e == 7 + 2*a + 2*b**2 e = (a + b*b + a + b*b)*p assert e == 5*(2*a + 2*b**2) e = (a*b*c + c*b*a + b*a*c)*p assert e == 15*a*b*c e = (a*b*c + c*b*a + b*a*c)*p - Rational(15)*a*b*c assert e == Rational(0) e = Rational(50)*(a - a) assert e == Rational(0) e = b*a - b - a*b + b assert e == Rational(0) e = a*b + c**p assert e == a*b + c**5 e = a/b assert e == a*b**(-1) e = a*2*2 assert e == 4*a e = 2 + a*2/2 assert e == 2 + a e = 2 - a - 2 assert e == -a e = 2*a*2 assert e == 4*a e = 2/a/2 assert e == a**(-1) e = 2**a**2 assert e == 2**(a**2) e = -(1 + a) assert e == -1 - a e = S.Half*(1 + a) assert e == S.Half + a/2 def test_div(): e = a/b assert e == a*b**(-1) e = a/b + c/2 assert e == a*b**(-1) + Rational(1)/2*c e = (1 - b)/(b - 1) assert e == (1 + -b)*((-1) + b)**(-1) def test_pow(): n1 = Rational(1) n2 = Rational(2) n5 = Rational(5) e = a*a assert e == a**2 e = a*a*a assert e == a**3 e = a*a*a*a**Rational(6) assert e == a**9 e = a*a*a*a**Rational(6) - a**Rational(9) assert e == Rational(0) e = a**(b - b) assert e == Rational(1) e = (a + Rational(1) - a)**b assert e == Rational(1) e = (a + b + c)**n2 assert e == (a + b + c)**2 assert e.expand() == 2*b*c + 2*a*c + 2*a*b + a**2 + c**2 + b**2 e = (a + b)**n2 assert e == (a + b)**2 assert e.expand() == 2*a*b + a**2 + b**2 e = (a + b)**(n1/n2) assert e == sqrt(a + b) assert e.expand() == sqrt(a + b) n = n5**(n1/n2) assert n == sqrt(5) e = n*a*b - n*b*a assert e == Rational(0) e = n*a*b + n*b*a assert e == 2*a*b*sqrt(5) assert e.diff(a) == 2*b*sqrt(5) assert e.diff(a) == 2*b*sqrt(5) e = a/b**2 assert e == a*b**(-2) assert sqrt(2*(1 + sqrt(2))) == (2*(1 + 2**S.Half))**S.Half x = Symbol('x') y = Symbol('y') assert ((x*y)**3).expand() == y**3 * x**3 assert ((x*y)**-3).expand() == y**-3 * x**-3 assert (x**5*(3*x)**(3)).expand() == 27 * x**8 assert (x**5*(-3*x)**(3)).expand() == -27 * x**8 assert (x**5*(3*x)**(-3)).expand() == x**2 * Rational(1, 27) assert (x**5*(-3*x)**(-3)).expand() == x**2 * Rational(-1, 27) # expand_power_exp assert (x**(y**(x + exp(x + y)) + z)).expand(deep=False) == \ x**z*x**(y**(x + exp(x + y))) assert (x**(y**(x + exp(x + y)) + z)).expand() == \ x**z*x**(y**x*y**(exp(x)*exp(y))) n = Symbol('n', even=False) k = Symbol('k', even=True) o = Symbol('o', odd=True) assert unchanged(Pow, -1, x) assert unchanged(Pow, -1, n) assert (-2)**k == 2**k assert (-1)**k == 1 assert (-1)**o == -1 def test_pow2(): # x**(2*y) is always (x**y)**2 but is only (x**2)**y if # x.is_positive or y.is_integer # let x = 1 to see why the following are not true. assert (-x)**Rational(2, 3) != x**Rational(2, 3) assert (-x)**Rational(5, 7) != -x**Rational(5, 7) assert ((-x)**2)**Rational(1, 3) != ((-x)**Rational(1, 3))**2 assert sqrt(x**2) != x def test_pow3(): assert sqrt(2)**3 == 2 * sqrt(2) assert sqrt(2)**3 == sqrt(8) def test_mod_pow(): for s, t, u, v in [(4, 13, 497, 445), (4, -3, 497, 365), (3.2, 2.1, 1.9, 0.1031015682350942), (S(3)/2, 5, S(5)/6, S(3)/32)]: assert pow(S(s), t, u) == v assert pow(S(s), S(t), u) == v assert pow(S(s), t, S(u)) == v assert pow(S(s), S(t), S(u)) == v assert pow(S(2), S(10000000000), S(3)) == 1 assert pow(x, y, z) == x**y%z raises(TypeError, lambda: pow(S(4), "13", 497)) raises(TypeError, lambda: pow(S(4), 13, "497")) def test_pow_E(): assert 2**(y/log(2)) == S.Exp1**y assert 2**(y/log(2)/3) == S.Exp1**(y/3) assert 3**(1/log(-3)) != S.Exp1 assert (3 + 2*I)**(1/(log(-3 - 2*I) + I*pi)) == S.Exp1 assert (4 + 2*I)**(1/(log(-4 - 2*I) + I*pi)) == S.Exp1 assert (3 + 2*I)**(1/(log(-3 - 2*I, 3)/2 + I*pi/log(3)/2)) == 9 assert (3 + 2*I)**(1/(log(3 + 2*I, 3)/2)) == 9 # every time tests are run they will affirm with a different random # value that this identity holds while 1: b = x._random() r, i = b.as_real_imag() if i: break assert verify_numerically(b**(1/(log(-b) + sign(i)*I*pi).n()), S.Exp1) def test_pow_issue_3516(): assert 4**Rational(1, 4) == sqrt(2) def test_pow_im(): for m in (-2, -1, 2): for d in (3, 4, 5): b = m*I for i in range(1, 4*d + 1): e = Rational(i, d) assert (b**e - b.n()**e.n()).n(2, chop=1e-10) == 0 e = Rational(7, 3) assert (2*x*I)**e == 4*2**Rational(1, 3)*(I*x)**e # same as Wolfram Alpha im = symbols('im', imaginary=True) assert (2*im*I)**e == 4*2**Rational(1, 3)*(I*im)**e args = [I, I, I, I, 2] e = Rational(1, 3) ans = 2**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans args = [I, I, I, 2] e = Rational(1, 3) ans = 2**e*(-I)**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans args.append(-3) ans = (6*I)**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans args.append(-1) ans = (-6*I)**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans args = [I, I, 2] e = Rational(1, 3) ans = (-2)**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans args.append(-3) ans = (6)**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans args.append(-1) ans = (-6)**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans assert Mul(Pow(-1, Rational(3, 2), evaluate=False), I, I) == I assert Mul(I*Pow(I, S.Half, evaluate=False)) == sqrt(I)*I def test_real_mul(): assert Float(0) * pi * x == 0 assert set((Float(1) * pi * x).args) == {Float(1), pi, x} def test_ncmul(): A = Symbol("A", commutative=False) B = Symbol("B", commutative=False) C = Symbol("C", commutative=False) assert A*B != B*A assert A*B*C != C*B*A assert A*b*B*3*C == 3*b*A*B*C assert A*b*B*3*C != 3*b*B*A*C assert A*b*B*3*C == 3*A*B*C*b assert A + B == B + A assert (A + B)*C != C*(A + B) assert C*(A + B)*C != C*C*(A + B) assert A*A == A**2 assert (A + B)*(A + B) == (A + B)**2 assert A**-1 * A == 1 assert A/A == 1 assert A/(A**2) == 1/A assert A/(1 + A) == A/(1 + A) assert set((A + B + 2*(A + B)).args) == \ {A, B, 2*(A + B)} def test_mul_add_identity(): m = Mul(1, 2) assert isinstance(m, Rational) and m.p == 2 and m.q == 1 m = Mul(1, 2, evaluate=False) assert isinstance(m, Mul) and m.args == (1, 2) m = Mul(0, 1) assert m is S.Zero m = Mul(0, 1, evaluate=False) assert isinstance(m, Mul) and m.args == (0, 1) m = Add(0, 1) assert m is S.One m = Add(0, 1, evaluate=False) assert isinstance(m, Add) and m.args == (0, 1) def test_ncpow(): x = Symbol('x', commutative=False) y = Symbol('y', commutative=False) z = Symbol('z', commutative=False) a = Symbol('a') b = Symbol('b') c = Symbol('c') assert (x**2)*(y**2) != (y**2)*(x**2) assert (x**-2)*y != y*(x**2) assert 2**x*2**y != 2**(x + y) assert 2**x*2**y*2**z != 2**(x + y + z) assert 2**x*2**(2*x) == 2**(3*x) assert 2**x*2**(2*x)*2**x == 2**(4*x) assert exp(x)*exp(y) != exp(y)*exp(x) assert exp(x)*exp(y)*exp(z) != exp(y)*exp(x)*exp(z) assert exp(x)*exp(y)*exp(z) != exp(x + y + z) assert x**a*x**b != x**(a + b) assert x**a*x**b*x**c != x**(a + b + c) assert x**3*x**4 == x**7 assert x**3*x**4*x**2 == x**9 assert x**a*x**(4*a) == x**(5*a) assert x**a*x**(4*a)*x**a == x**(6*a) def test_powerbug(): x = Symbol("x") assert x**1 != (-x)**1 assert x**2 == (-x)**2 assert x**3 != (-x)**3 assert x**4 == (-x)**4 assert x**5 != (-x)**5 assert x**6 == (-x)**6 assert x**128 == (-x)**128 assert x**129 != (-x)**129 assert (2*x)**2 == (-2*x)**2 def test_Mul_doesnt_expand_exp(): x = Symbol('x') y = Symbol('y') assert unchanged(Mul, exp(x), exp(y)) assert unchanged(Mul, 2**x, 2**y) assert x**2*x**3 == x**5 assert 2**x*3**x == 6**x assert x**(y)*x**(2*y) == x**(3*y) assert sqrt(2)*sqrt(2) == 2 assert 2**x*2**(2*x) == 2**(3*x) assert sqrt(2)*2**Rational(1, 4)*5**Rational(3, 4) == 10**Rational(3, 4) assert (x**(-log(5)/log(3))*x)/(x*x**( - log(5)/log(3))) == sympify(1) def test_Mul_is_integer(): k = Symbol('k', integer=True) n = Symbol('n', integer=True) nr = Symbol('nr', rational=False) nz = Symbol('nz', integer=True, zero=False) e = Symbol('e', even=True) o = Symbol('o', odd=True) i2 = Symbol('2', prime=True, even=True) assert (k/3).is_integer is None assert (nz/3).is_integer is None assert (nr/3).is_integer is False assert (x*k*n).is_integer is None assert (e/2).is_integer is True assert (e**2/2).is_integer is True assert (2/k).is_integer is None assert (2/k**2).is_integer is None assert ((-1)**k*n).is_integer is True assert (3*k*e/2).is_integer is True assert (2*k*e/3).is_integer is None assert (e/o).is_integer is None assert (o/e).is_integer is False assert (o/i2).is_integer is False assert Mul(k, 1/k, evaluate=False).is_integer is None assert Mul(2., S.Half, evaluate=False).is_integer is None assert (2*sqrt(k)).is_integer is None assert (2*k**n).is_integer is None s = 2**2**2**Pow(2, 1000, evaluate=False) m = Mul(s, s, evaluate=False) assert m.is_integer # broken in 1.6 and before, see #20161 xq = Symbol('xq', rational=True) yq = Symbol('yq', rational=True) assert (xq*yq).is_integer is None e_20161 = Mul(-1,Mul(1,Pow(2,-1,evaluate=False),evaluate=False),evaluate=False) assert e_20161.is_integer is not True # expand(e_20161) -> -1/2, but no need to see that in the assumption without evaluation def test_Add_Mul_is_integer(): x = Symbol('x') k = Symbol('k', integer=True) n = Symbol('n', integer=True) nk = Symbol('nk', integer=False) nr = Symbol('nr', rational=False) nz = Symbol('nz', integer=True, zero=False) assert (-nk).is_integer is None assert (-nr).is_integer is False assert (2*k).is_integer is True assert (-k).is_integer is True assert (k + nk).is_integer is False assert (k + n).is_integer is True assert (k + x).is_integer is None assert (k + n*x).is_integer is None assert (k + n/3).is_integer is None assert (k + nz/3).is_integer is None assert (k + nr/3).is_integer is False assert ((1 + sqrt(3))*(-sqrt(3) + 1)).is_integer is not False assert (1 + (1 + sqrt(3))*(-sqrt(3) + 1)).is_integer is not False def test_Add_Mul_is_finite(): x = Symbol('x', extended_real=True, finite=False) assert sin(x).is_finite is True assert (x*sin(x)).is_finite is None assert (x*atan(x)).is_finite is False assert (1024*sin(x)).is_finite is True assert (sin(x)*exp(x)).is_finite is None assert (sin(x)*cos(x)).is_finite is True assert (x*sin(x)*exp(x)).is_finite is None assert (sin(x) - 67).is_finite is True assert (sin(x) + exp(x)).is_finite is not True assert (1 + x).is_finite is False assert (1 + x**2 + (1 + x)*(1 - x)).is_finite is None assert (sqrt(2)*(1 + x)).is_finite is False assert (sqrt(2)*(1 + x)*(1 - x)).is_finite is False def test_Mul_is_even_odd(): x = Symbol('x', integer=True) y = Symbol('y', integer=True) k = Symbol('k', odd=True) n = Symbol('n', odd=True) m = Symbol('m', even=True) assert (2*x).is_even is True assert (2*x).is_odd is False assert (3*x).is_even is None assert (3*x).is_odd is None assert (k/3).is_integer is None assert (k/3).is_even is None assert (k/3).is_odd is None assert (2*n).is_even is True assert (2*n).is_odd is False assert (2*m).is_even is True assert (2*m).is_odd is False assert (-n).is_even is False assert (-n).is_odd is True assert (k*n).is_even is False assert (k*n).is_odd is True assert (k*m).is_even is True assert (k*m).is_odd is False assert (k*n*m).is_even is True assert (k*n*m).is_odd is False assert (k*m*x).is_even is True assert (k*m*x).is_odd is False # issue 6791: assert (x/2).is_integer is None assert (k/2).is_integer is False assert (m/2).is_integer is True assert (x*y).is_even is None assert (x*x).is_even is None assert (x*(x + k)).is_even is True assert (x*(x + m)).is_even is None assert (x*y).is_odd is None assert (x*x).is_odd is None assert (x*(x + k)).is_odd is False assert (x*(x + m)).is_odd is None @XFAIL def test_evenness_in_ternary_integer_product_with_odd(): # Tests that oddness inference is independent of term ordering. # Term ordering at the point of testing depends on SymPy's symbol order, so # we try to force a different order by modifying symbol names. x = Symbol('x', integer=True) y = Symbol('y', integer=True) k = Symbol('k', odd=True) assert (x*y*(y + k)).is_even is True assert (y*x*(x + k)).is_even is True def test_evenness_in_ternary_integer_product_with_even(): x = Symbol('x', integer=True) y = Symbol('y', integer=True) m = Symbol('m', even=True) assert (x*y*(y + m)).is_even is None @XFAIL def test_oddness_in_ternary_integer_product_with_odd(): # Tests that oddness inference is independent of term ordering. # Term ordering at the point of testing depends on SymPy's symbol order, so # we try to force a different order by modifying symbol names. x = Symbol('x', integer=True) y = Symbol('y', integer=True) k = Symbol('k', odd=True) assert (x*y*(y + k)).is_odd is False assert (y*x*(x + k)).is_odd is False def test_oddness_in_ternary_integer_product_with_even(): x = Symbol('x', integer=True) y = Symbol('y', integer=True) m = Symbol('m', even=True) assert (x*y*(y + m)).is_odd is None def test_Mul_is_rational(): x = Symbol('x') n = Symbol('n', integer=True) m = Symbol('m', integer=True, nonzero=True) assert (n/m).is_rational is True assert (x/pi).is_rational is None assert (x/n).is_rational is None assert (m/pi).is_rational is False r = Symbol('r', rational=True) assert (pi*r).is_rational is None # issue 8008 z = Symbol('z', zero=True) i = Symbol('i', imaginary=True) assert (z*i).is_rational is True bi = Symbol('i', imaginary=True, finite=True) assert (z*bi).is_zero is True def test_Add_is_rational(): x = Symbol('x') n = Symbol('n', rational=True) m = Symbol('m', rational=True) assert (n + m).is_rational is True assert (x + pi).is_rational is None assert (x + n).is_rational is None assert (n + pi).is_rational is False def test_Add_is_even_odd(): x = Symbol('x', integer=True) k = Symbol('k', odd=True) n = Symbol('n', odd=True) m = Symbol('m', even=True) assert (k + 7).is_even is True assert (k + 7).is_odd is False assert (-k + 7).is_even is True assert (-k + 7).is_odd is False assert (k - 12).is_even is False assert (k - 12).is_odd is True assert (-k - 12).is_even is False assert (-k - 12).is_odd is True assert (k + n).is_even is True assert (k + n).is_odd is False assert (k + m).is_even is False assert (k + m).is_odd is True assert (k + n + m).is_even is True assert (k + n + m).is_odd is False assert (k + n + x + m).is_even is None assert (k + n + x + m).is_odd is None def test_Mul_is_negative_positive(): x = Symbol('x', real=True) y = Symbol('y', extended_real=False, complex=True) z = Symbol('z', zero=True) e = 2*z assert e.is_Mul and e.is_positive is False and e.is_negative is False neg = Symbol('neg', negative=True) pos = Symbol('pos', positive=True) nneg = Symbol('nneg', nonnegative=True) npos = Symbol('npos', nonpositive=True) assert neg.is_negative is True assert (-neg).is_negative is False assert (2*neg).is_negative is True assert (2*pos)._eval_is_extended_negative() is False assert (2*pos).is_negative is False assert pos.is_negative is False assert (-pos).is_negative is True assert (2*pos).is_negative is False assert (pos*neg).is_negative is True assert (2*pos*neg).is_negative is True assert (-pos*neg).is_negative is False assert (pos*neg*y).is_negative is False # y.is_real=F; !real -> !neg assert nneg.is_negative is False assert (-nneg).is_negative is None assert (2*nneg).is_negative is False assert npos.is_negative is None assert (-npos).is_negative is False assert (2*npos).is_negative is None assert (nneg*npos).is_negative is None assert (neg*nneg).is_negative is None assert (neg*npos).is_negative is False assert (pos*nneg).is_negative is False assert (pos*npos).is_negative is None assert (npos*neg*nneg).is_negative is False assert (npos*pos*nneg).is_negative is None assert (-npos*neg*nneg).is_negative is None assert (-npos*pos*nneg).is_negative is False assert (17*npos*neg*nneg).is_negative is False assert (17*npos*pos*nneg).is_negative is None assert (neg*npos*pos*nneg).is_negative is False assert (x*neg).is_negative is None assert (nneg*npos*pos*x*neg).is_negative is None assert neg.is_positive is False assert (-neg).is_positive is True assert (2*neg).is_positive is False assert pos.is_positive is True assert (-pos).is_positive is False assert (2*pos).is_positive is True assert (pos*neg).is_positive is False assert (2*pos*neg).is_positive is False assert (-pos*neg).is_positive is True assert (-pos*neg*y).is_positive is False # y.is_real=F; !real -> !neg assert nneg.is_positive is None assert (-nneg).is_positive is False assert (2*nneg).is_positive is None assert npos.is_positive is False assert (-npos).is_positive is None assert (2*npos).is_positive is False assert (nneg*npos).is_positive is False assert (neg*nneg).is_positive is False assert (neg*npos).is_positive is None assert (pos*nneg).is_positive is None assert (pos*npos).is_positive is False assert (npos*neg*nneg).is_positive is None assert (npos*pos*nneg).is_positive is False assert (-npos*neg*nneg).is_positive is False assert (-npos*pos*nneg).is_positive is None assert (17*npos*neg*nneg).is_positive is None assert (17*npos*pos*nneg).is_positive is False assert (neg*npos*pos*nneg).is_positive is None assert (x*neg).is_positive is None assert (nneg*npos*pos*x*neg).is_positive is None def test_Mul_is_negative_positive_2(): a = Symbol('a', nonnegative=True) b = Symbol('b', nonnegative=True) c = Symbol('c', nonpositive=True) d = Symbol('d', nonpositive=True) assert (a*b).is_nonnegative is True assert (a*b).is_negative is False assert (a*b).is_zero is None assert (a*b).is_positive is None assert (c*d).is_nonnegative is True assert (c*d).is_negative is False assert (c*d).is_zero is None assert (c*d).is_positive is None assert (a*c).is_nonpositive is True assert (a*c).is_positive is False assert (a*c).is_zero is None assert (a*c).is_negative is None def test_Mul_is_nonpositive_nonnegative(): x = Symbol('x', real=True) k = Symbol('k', negative=True) n = Symbol('n', positive=True) u = Symbol('u', nonnegative=True) v = Symbol('v', nonpositive=True) assert k.is_nonpositive is True assert (-k).is_nonpositive is False assert (2*k).is_nonpositive is True assert n.is_nonpositive is False assert (-n).is_nonpositive is True assert (2*n).is_nonpositive is False assert (n*k).is_nonpositive is True assert (2*n*k).is_nonpositive is True assert (-n*k).is_nonpositive is False assert u.is_nonpositive is None assert (-u).is_nonpositive is True assert (2*u).is_nonpositive is None assert v.is_nonpositive is True assert (-v).is_nonpositive is None assert (2*v).is_nonpositive is True assert (u*v).is_nonpositive is True assert (k*u).is_nonpositive is True assert (k*v).is_nonpositive is None assert (n*u).is_nonpositive is None assert (n*v).is_nonpositive is True assert (v*k*u).is_nonpositive is None assert (v*n*u).is_nonpositive is True assert (-v*k*u).is_nonpositive is True assert (-v*n*u).is_nonpositive is None assert (17*v*k*u).is_nonpositive is None assert (17*v*n*u).is_nonpositive is True assert (k*v*n*u).is_nonpositive is None assert (x*k).is_nonpositive is None assert (u*v*n*x*k).is_nonpositive is None assert k.is_nonnegative is False assert (-k).is_nonnegative is True assert (2*k).is_nonnegative is False assert n.is_nonnegative is True assert (-n).is_nonnegative is False assert (2*n).is_nonnegative is True assert (n*k).is_nonnegative is False assert (2*n*k).is_nonnegative is False assert (-n*k).is_nonnegative is True assert u.is_nonnegative is True assert (-u).is_nonnegative is None assert (2*u).is_nonnegative is True assert v.is_nonnegative is None assert (-v).is_nonnegative is True assert (2*v).is_nonnegative is None assert (u*v).is_nonnegative is None assert (k*u).is_nonnegative is None assert (k*v).is_nonnegative is True assert (n*u).is_nonnegative is True assert (n*v).is_nonnegative is None assert (v*k*u).is_nonnegative is True assert (v*n*u).is_nonnegative is None assert (-v*k*u).is_nonnegative is None assert (-v*n*u).is_nonnegative is True assert (17*v*k*u).is_nonnegative is True assert (17*v*n*u).is_nonnegative is None assert (k*v*n*u).is_nonnegative is True assert (x*k).is_nonnegative is None assert (u*v*n*x*k).is_nonnegative is None def test_Add_is_negative_positive(): x = Symbol('x', real=True) k = Symbol('k', negative=True) n = Symbol('n', positive=True) u = Symbol('u', nonnegative=True) v = Symbol('v', nonpositive=True) assert (k - 2).is_negative is True assert (k + 17).is_negative is None assert (-k - 5).is_negative is None assert (-k + 123).is_negative is False assert (k - n).is_negative is True assert (k + n).is_negative is None assert (-k - n).is_negative is None assert (-k + n).is_negative is False assert (k - n - 2).is_negative is True assert (k + n + 17).is_negative is None assert (-k - n - 5).is_negative is None assert (-k + n + 123).is_negative is False assert (-2*k + 123*n + 17).is_negative is False assert (k + u).is_negative is None assert (k + v).is_negative is True assert (n + u).is_negative is False assert (n + v).is_negative is None assert (u - v).is_negative is False assert (u + v).is_negative is None assert (-u - v).is_negative is None assert (-u + v).is_negative is None assert (u - v + n + 2).is_negative is False assert (u + v + n + 2).is_negative is None assert (-u - v + n + 2).is_negative is None assert (-u + v + n + 2).is_negative is None assert (k + x).is_negative is None assert (k + x - n).is_negative is None assert (k - 2).is_positive is False assert (k + 17).is_positive is None assert (-k - 5).is_positive is None assert (-k + 123).is_positive is True assert (k - n).is_positive is False assert (k + n).is_positive is None assert (-k - n).is_positive is None assert (-k + n).is_positive is True assert (k - n - 2).is_positive is False assert (k + n + 17).is_positive is None assert (-k - n - 5).is_positive is None assert (-k + n + 123).is_positive is True assert (-2*k + 123*n + 17).is_positive is True assert (k + u).is_positive is None assert (k + v).is_positive is False assert (n + u).is_positive is True assert (n + v).is_positive is None assert (u - v).is_positive is None assert (u + v).is_positive is None assert (-u - v).is_positive is None assert (-u + v).is_positive is False assert (u - v - n - 2).is_positive is None assert (u + v - n - 2).is_positive is None assert (-u - v - n - 2).is_positive is None assert (-u + v - n - 2).is_positive is False assert (n + x).is_positive is None assert (n + x - k).is_positive is None z = (-3 - sqrt(5) + (-sqrt(10)/2 - sqrt(2)/2)**2) assert z.is_zero z = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3)) assert z.is_zero def test_Add_is_nonpositive_nonnegative(): x = Symbol('x', real=True) k = Symbol('k', negative=True) n = Symbol('n', positive=True) u = Symbol('u', nonnegative=True) v = Symbol('v', nonpositive=True) assert (u - 2).is_nonpositive is None assert (u + 17).is_nonpositive is False assert (-u - 5).is_nonpositive is True assert (-u + 123).is_nonpositive is None assert (u - v).is_nonpositive is None assert (u + v).is_nonpositive is None assert (-u - v).is_nonpositive is None assert (-u + v).is_nonpositive is True assert (u - v - 2).is_nonpositive is None assert (u + v + 17).is_nonpositive is None assert (-u - v - 5).is_nonpositive is None assert (-u + v - 123).is_nonpositive is True assert (-2*u + 123*v - 17).is_nonpositive is True assert (k + u).is_nonpositive is None assert (k + v).is_nonpositive is True assert (n + u).is_nonpositive is False assert (n + v).is_nonpositive is None assert (k - n).is_nonpositive is True assert (k + n).is_nonpositive is None assert (-k - n).is_nonpositive is None assert (-k + n).is_nonpositive is False assert (k - n + u + 2).is_nonpositive is None assert (k + n + u + 2).is_nonpositive is None assert (-k - n + u + 2).is_nonpositive is None assert (-k + n + u + 2).is_nonpositive is False assert (u + x).is_nonpositive is None assert (v - x - n).is_nonpositive is None assert (u - 2).is_nonnegative is None assert (u + 17).is_nonnegative is True assert (-u - 5).is_nonnegative is False assert (-u + 123).is_nonnegative is None assert (u - v).is_nonnegative is True assert (u + v).is_nonnegative is None assert (-u - v).is_nonnegative is None assert (-u + v).is_nonnegative is None assert (u - v + 2).is_nonnegative is True assert (u + v + 17).is_nonnegative is None assert (-u - v - 5).is_nonnegative is None assert (-u + v - 123).is_nonnegative is False assert (2*u - 123*v + 17).is_nonnegative is True assert (k + u).is_nonnegative is None assert (k + v).is_nonnegative is False assert (n + u).is_nonnegative is True assert (n + v).is_nonnegative is None assert (k - n).is_nonnegative is False assert (k + n).is_nonnegative is None assert (-k - n).is_nonnegative is None assert (-k + n).is_nonnegative is True assert (k - n - u - 2).is_nonnegative is False assert (k + n - u - 2).is_nonnegative is None assert (-k - n - u - 2).is_nonnegative is None assert (-k + n - u - 2).is_nonnegative is None assert (u - x).is_nonnegative is None assert (v + x + n).is_nonnegative is None def test_Pow_is_integer(): x = Symbol('x') k = Symbol('k', integer=True) n = Symbol('n', integer=True, nonnegative=True) m = Symbol('m', integer=True, positive=True) assert (k**2).is_integer is True assert (k**(-2)).is_integer is None assert ((m + 1)**(-2)).is_integer is False assert (m**(-1)).is_integer is None # issue 8580 assert (2**k).is_integer is None assert (2**(-k)).is_integer is None assert (2**n).is_integer is True assert (2**(-n)).is_integer is None assert (2**m).is_integer is True assert (2**(-m)).is_integer is False assert (x**2).is_integer is None assert (2**x).is_integer is None assert (k**n).is_integer is True assert (k**(-n)).is_integer is None assert (k**x).is_integer is None assert (x**k).is_integer is None assert (k**(n*m)).is_integer is True assert (k**(-n*m)).is_integer is None assert sqrt(3).is_integer is False assert sqrt(.3).is_integer is False assert Pow(3, 2, evaluate=False).is_integer is True assert Pow(3, 0, evaluate=False).is_integer is True assert Pow(3, -2, evaluate=False).is_integer is False assert Pow(S.Half, 3, evaluate=False).is_integer is False # decided by re-evaluating assert Pow(3, S.Half, evaluate=False).is_integer is False assert Pow(3, S.Half, evaluate=False).is_integer is False assert Pow(4, S.Half, evaluate=False).is_integer is True assert Pow(S.Half, -2, evaluate=False).is_integer is True assert ((-1)**k).is_integer # issue 8641 x = Symbol('x', real=True, integer=False) assert (x**2).is_integer is None # issue 10458 x = Symbol('x', positive=True) assert (1/(x + 1)).is_integer is False assert (1/(-x - 1)).is_integer is False def test_Pow_is_real(): x = Symbol('x', real=True) y = Symbol('y', real=True, positive=True) assert (x**2).is_real is True assert (x**3).is_real is True assert (x**x).is_real is None assert (y**x).is_real is True assert (x**Rational(1, 3)).is_real is None assert (y**Rational(1, 3)).is_real is True assert sqrt(-1 - sqrt(2)).is_real is False i = Symbol('i', imaginary=True) assert (i**i).is_real is None assert (I**i).is_extended_real is True assert ((-I)**i).is_extended_real is True assert (2**i).is_real is None # (2**(pi/log(2) * I)) is real, 2**I is not assert (2**I).is_real is False assert (2**-I).is_real is False assert (i**2).is_extended_real is True assert (i**3).is_extended_real is False assert (i**x).is_real is None # could be (-I)**(2/3) e = Symbol('e', even=True) o = Symbol('o', odd=True) k = Symbol('k', integer=True) assert (i**e).is_extended_real is True assert (i**o).is_extended_real is False assert (i**k).is_real is None assert (i**(4*k)).is_extended_real is True x = Symbol("x", nonnegative=True) y = Symbol("y", nonnegative=True) assert im(x**y).expand(complex=True) is S.Zero assert (x**y).is_real is True i = Symbol('i', imaginary=True) assert (exp(i)**I).is_extended_real is True assert log(exp(i)).is_imaginary is None # i could be 2*pi*I c = Symbol('c', complex=True) assert log(c).is_real is None # c could be 0 or 2, too assert log(exp(c)).is_real is None # log(0), log(E), ... n = Symbol('n', negative=False) assert log(n).is_real is None n = Symbol('n', nonnegative=True) assert log(n).is_real is None assert sqrt(-I).is_real is False # issue 7843 i = Symbol('i', integer=True) assert (1/(i-1)).is_real is None assert (1/(i-1)).is_extended_real is None # test issue 20715 from sympy.core.parameters import evaluate x = S(-1) with evaluate(False): assert x.is_negative is True f = Pow(x, -1) with evaluate(False): assert f.is_imaginary is False def test_real_Pow(): k = Symbol('k', integer=True, nonzero=True) assert (k**(I*pi/log(k))).is_real def test_Pow_is_finite(): xe = Symbol('xe', extended_real=True) xr = Symbol('xr', real=True) p = Symbol('p', positive=True) n = Symbol('n', negative=True) i = Symbol('i', integer=True) assert (xe**2).is_finite is None # xe could be oo assert (xr**2).is_finite is True assert (xe**xe).is_finite is None assert (xr**xe).is_finite is None assert (xe**xr).is_finite is None # FIXME: The line below should be True rather than None # assert (xr**xr).is_finite is True assert (xr**xr).is_finite is None assert (p**xe).is_finite is None assert (p**xr).is_finite is True assert (n**xe).is_finite is None assert (n**xr).is_finite is True assert (sin(xe)**2).is_finite is True assert (sin(xr)**2).is_finite is True assert (sin(xe)**xe).is_finite is None # xe, xr could be -pi assert (sin(xr)**xr).is_finite is None # FIXME: Should the line below be True rather than None? assert (sin(xe)**exp(xe)).is_finite is None assert (sin(xr)**exp(xr)).is_finite is True assert (1/sin(xe)).is_finite is None # if zero, no, otherwise yes assert (1/sin(xr)).is_finite is None assert (1/exp(xe)).is_finite is None # xe could be -oo assert (1/exp(xr)).is_finite is True assert (1/S.Pi).is_finite is True assert (1/(i-1)).is_finite is None def test_Pow_is_even_odd(): x = Symbol('x') k = Symbol('k', even=True) n = Symbol('n', odd=True) m = Symbol('m', integer=True, nonnegative=True) p = Symbol('p', integer=True, positive=True) assert ((-1)**n).is_odd assert ((-1)**k).is_odd assert ((-1)**(m - p)).is_odd assert (k**2).is_even is True assert (n**2).is_even is False assert (2**k).is_even is None assert (x**2).is_even is None assert (k**m).is_even is None assert (n**m).is_even is False assert (k**p).is_even is True assert (n**p).is_even is False assert (m**k).is_even is None assert (p**k).is_even is None assert (m**n).is_even is None assert (p**n).is_even is None assert (k**x).is_even is None assert (n**x).is_even is None assert (k**2).is_odd is False assert (n**2).is_odd is True assert (3**k).is_odd is None assert (k**m).is_odd is None assert (n**m).is_odd is True assert (k**p).is_odd is False assert (n**p).is_odd is True assert (m**k).is_odd is None assert (p**k).is_odd is None assert (m**n).is_odd is None assert (p**n).is_odd is None assert (k**x).is_odd is None assert (n**x).is_odd is None def test_Pow_is_negative_positive(): r = Symbol('r', real=True) k = Symbol('k', integer=True, positive=True) n = Symbol('n', even=True) m = Symbol('m', odd=True) x = Symbol('x') assert (2**r).is_positive is True assert ((-2)**r).is_positive is None assert ((-2)**n).is_positive is True assert ((-2)**m).is_positive is False assert (k**2).is_positive is True assert (k**(-2)).is_positive is True assert (k**r).is_positive is True assert ((-k)**r).is_positive is None assert ((-k)**n).is_positive is True assert ((-k)**m).is_positive is False assert (2**r).is_negative is False assert ((-2)**r).is_negative is None assert ((-2)**n).is_negative is False assert ((-2)**m).is_negative is True assert (k**2).is_negative is False assert (k**(-2)).is_negative is False assert (k**r).is_negative is False assert ((-k)**r).is_negative is None assert ((-k)**n).is_negative is False assert ((-k)**m).is_negative is True assert (2**x).is_positive is None assert (2**x).is_negative is None def test_Pow_is_zero(): z = Symbol('z', zero=True) e = z**2 assert e.is_zero assert e.is_positive is False assert e.is_negative is False assert Pow(0, 0, evaluate=False).is_zero is False assert Pow(0, 3, evaluate=False).is_zero assert Pow(0, oo, evaluate=False).is_zero assert Pow(0, -3, evaluate=False).is_zero is False assert Pow(0, -oo, evaluate=False).is_zero is False assert Pow(2, 2, evaluate=False).is_zero is False a = Symbol('a', zero=False) assert Pow(a, 3).is_zero is False # issue 7965 assert Pow(2, oo, evaluate=False).is_zero is False assert Pow(2, -oo, evaluate=False).is_zero assert Pow(S.Half, oo, evaluate=False).is_zero assert Pow(S.Half, -oo, evaluate=False).is_zero is False # All combinations of real/complex base/exponent h = S.Half T = True F = False N = None pow_iszero = [ ['**', 0, h, 1, 2, -h, -1,-2,-2*I,-I/2,I/2,1+I,oo,-oo,zoo], [ 0, F, T, T, T, F, F, F, F, F, F, N, T, F, N], [ h, F, F, F, F, F, F, F, F, F, F, F, T, F, N], [ 1, F, F, F, F, F, F, F, F, F, F, F, F, F, N], [ 2, F, F, F, F, F, F, F, F, F, F, F, F, T, N], [ -h, F, F, F, F, F, F, F, F, F, F, F, T, F, N], [ -1, F, F, F, F, F, F, F, F, F, F, F, F, F, N], [ -2, F, F, F, F, F, F, F, F, F, F, F, F, T, N], [-2*I, F, F, F, F, F, F, F, F, F, F, F, F, T, N], [-I/2, F, F, F, F, F, F, F, F, F, F, F, T, F, N], [ I/2, F, F, F, F, F, F, F, F, F, F, F, T, F, N], [ 1+I, F, F, F, F, F, F, F, F, F, F, F, F, T, N], [ oo, F, F, F, F, T, T, T, F, F, F, F, F, T, N], [ -oo, F, F, F, F, T, T, T, F, F, F, F, F, T, N], [ zoo, F, F, F, F, T, T, T, N, N, N, N, F, T, N] ] def test_table(table): n = len(table[0]) for row in range(1, n): base = table[row][0] for col in range(1, n): exp = table[0][col] is_zero = table[row][col] # The actual test here: assert Pow(base, exp, evaluate=False).is_zero is is_zero test_table(pow_iszero) # A zero symbol... zo, zo2 = symbols('zo, zo2', zero=True) # All combinations of finite symbols zf, zf2 = symbols('zf, zf2', finite=True) wf, wf2 = symbols('wf, wf2', nonzero=True) xf, xf2 = symbols('xf, xf2', real=True) yf, yf2 = symbols('yf, yf2', nonzero=True) af, af2 = symbols('af, af2', positive=True) bf, bf2 = symbols('bf, bf2', nonnegative=True) cf, cf2 = symbols('cf, cf2', negative=True) df, df2 = symbols('df, df2', nonpositive=True) # Without finiteness: zi, zi2 = symbols('zi, zi2') wi, wi2 = symbols('wi, wi2', zero=False) xi, xi2 = symbols('xi, xi2', extended_real=True) yi, yi2 = symbols('yi, yi2', zero=False, extended_real=True) ai, ai2 = symbols('ai, ai2', extended_positive=True) bi, bi2 = symbols('bi, bi2', extended_nonnegative=True) ci, ci2 = symbols('ci, ci2', extended_negative=True) di, di2 = symbols('di, di2', extended_nonpositive=True) pow_iszero_sym = [ ['**',zo,wf,yf,af,cf,zf,xf,bf,df,zi,wi,xi,yi,ai,bi,ci,di], [ zo2, F, N, N, T, F, N, N, N, F, N, N, N, N, T, N, F, F], [ wf2, F, F, F, F, F, F, F, F, F, N, N, N, N, N, N, N, N], [ yf2, F, F, F, F, F, F, F, F, F, N, N, N, N, N, N, N, N], [ af2, F, F, F, F, F, F, F, F, F, N, N, N, N, N, N, N, N], [ cf2, F, F, F, F, F, F, F, F, F, N, N, N, N, N, N, N, N], [ zf2, N, N, N, N, F, N, N, N, N, N, N, N, N, N, N, N, N], [ xf2, N, N, N, N, F, N, N, N, N, N, N, N, N, N, N, N, N], [ bf2, N, N, N, N, F, N, N, N, N, N, N, N, N, N, N, N, N], [ df2, N, N, N, N, F, N, N, N, N, N, N, N, N, N, N, N, N], [ zi2, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N], [ wi2, F, N, N, F, N, N, N, F, N, N, N, N, N, N, N, N, N], [ xi2, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N], [ yi2, F, N, N, F, N, N, N, F, N, N, N, N, N, N, N, N, N], [ ai2, F, N, N, F, N, N, N, F, N, N, N, N, N, N, N, N, N], [ bi2, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N], [ ci2, F, N, N, F, N, N, N, F, N, N, N, N, N, N, N, N, N], [ di2, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N] ] test_table(pow_iszero_sym) # In some cases (x**x).is_zero is different from (x**y).is_zero even if y # has the same assumptions as x. assert (zo ** zo).is_zero is False assert (wf ** wf).is_zero is False assert (yf ** yf).is_zero is False assert (af ** af).is_zero is False assert (cf ** cf).is_zero is False assert (zf ** zf).is_zero is None assert (xf ** xf).is_zero is None assert (bf ** bf).is_zero is False # None in table assert (df ** df).is_zero is None assert (zi ** zi).is_zero is None assert (wi ** wi).is_zero is None assert (xi ** xi).is_zero is None assert (yi ** yi).is_zero is None assert (ai ** ai).is_zero is False # None in table assert (bi ** bi).is_zero is False # None in table assert (ci ** ci).is_zero is None assert (di ** di).is_zero is None def test_Pow_is_nonpositive_nonnegative(): x = Symbol('x', real=True) k = Symbol('k', integer=True, nonnegative=True) l = Symbol('l', integer=True, positive=True) n = Symbol('n', even=True) m = Symbol('m', odd=True) assert (x**(4*k)).is_nonnegative is True assert (2**x).is_nonnegative is True assert ((-2)**x).is_nonnegative is None assert ((-2)**n).is_nonnegative is True assert ((-2)**m).is_nonnegative is False assert (k**2).is_nonnegative is True assert (k**(-2)).is_nonnegative is None assert (k**k).is_nonnegative is True assert (k**x).is_nonnegative is None # NOTE (0**x).is_real = U assert (l**x).is_nonnegative is True assert (l**x).is_positive is True assert ((-k)**x).is_nonnegative is None assert ((-k)**m).is_nonnegative is None assert (2**x).is_nonpositive is False assert ((-2)**x).is_nonpositive is None assert ((-2)**n).is_nonpositive is False assert ((-2)**m).is_nonpositive is True assert (k**2).is_nonpositive is None assert (k**(-2)).is_nonpositive is None assert (k**x).is_nonpositive is None assert ((-k)**x).is_nonpositive is None assert ((-k)**n).is_nonpositive is None assert (x**2).is_nonnegative is True i = symbols('i', imaginary=True) assert (i**2).is_nonpositive is True assert (i**4).is_nonpositive is False assert (i**3).is_nonpositive is False assert (I**i).is_nonnegative is True assert (exp(I)**i).is_nonnegative is True assert ((-l)**n).is_nonnegative is True assert ((-l)**m).is_nonpositive is True assert ((-k)**n).is_nonnegative is None assert ((-k)**m).is_nonpositive is None def test_Mul_is_imaginary_real(): r = Symbol('r', real=True) p = Symbol('p', positive=True) i1 = Symbol('i1', imaginary=True) i2 = Symbol('i2', imaginary=True) x = Symbol('x') assert I.is_imaginary is True assert I.is_real is False assert (-I).is_imaginary is True assert (-I).is_real is False assert (3*I).is_imaginary is True assert (3*I).is_real is False assert (I*I).is_imaginary is False assert (I*I).is_real is True e = (p + p*I) j = Symbol('j', integer=True, zero=False) assert (e**j).is_real is None assert (e**(2*j)).is_real is None assert (e**j).is_imaginary is None assert (e**(2*j)).is_imaginary is None assert (e**-1).is_imaginary is False assert (e**2).is_imaginary assert (e**3).is_imaginary is False assert (e**4).is_imaginary is False assert (e**5).is_imaginary is False assert (e**-1).is_real is False assert (e**2).is_real is False assert (e**3).is_real is False assert (e**4).is_real is True assert (e**5).is_real is False assert (e**3).is_complex assert (r*i1).is_imaginary is None assert (r*i1).is_real is None assert (x*i1).is_imaginary is None assert (x*i1).is_real is None assert (i1*i2).is_imaginary is False assert (i1*i2).is_real is True assert (r*i1*i2).is_imaginary is False assert (r*i1*i2).is_real is True # Github's issue 5874: nr = Symbol('nr', real=False, complex=True) # e.g. I or 1 + I a = Symbol('a', real=True, nonzero=True) b = Symbol('b', real=True) assert (i1*nr).is_real is None assert (a*nr).is_real is False assert (b*nr).is_real is None ni = Symbol('ni', imaginary=False, complex=True) # e.g. 2 or 1 + I a = Symbol('a', real=True, nonzero=True) b = Symbol('b', real=True) assert (i1*ni).is_real is False assert (a*ni).is_real is None assert (b*ni).is_real is None def test_Mul_hermitian_antihermitian(): a = Symbol('a', hermitian=True, zero=False) b = Symbol('b', hermitian=True) c = Symbol('c', hermitian=False) d = Symbol('d', antihermitian=True) e1 = Mul(a, b, c, evaluate=False) e2 = Mul(b, a, c, evaluate=False) e3 = Mul(a, b, c, d, evaluate=False) e4 = Mul(b, a, c, d, evaluate=False) e5 = Mul(a, c, evaluate=False) e6 = Mul(a, c, d, evaluate=False) assert e1.is_hermitian is None assert e2.is_hermitian is None assert e1.is_antihermitian is None assert e2.is_antihermitian is None assert e3.is_antihermitian is None assert e4.is_antihermitian is None assert e5.is_antihermitian is None assert e6.is_antihermitian is None def test_Add_is_comparable(): assert (x + y).is_comparable is False assert (x + 1).is_comparable is False assert (Rational(1, 3) - sqrt(8)).is_comparable is True def test_Mul_is_comparable(): assert (x*y).is_comparable is False assert (x*2).is_comparable is False assert (sqrt(2)*Rational(1, 3)).is_comparable is True def test_Pow_is_comparable(): assert (x**y).is_comparable is False assert (x**2).is_comparable is False assert (sqrt(Rational(1, 3))).is_comparable is True def test_Add_is_positive_2(): e = Rational(1, 3) - sqrt(8) assert e.is_positive is False assert e.is_negative is True e = pi - 1 assert e.is_positive is True assert e.is_negative is False def test_Add_is_irrational(): i = Symbol('i', irrational=True) assert i.is_irrational is True assert i.is_rational is False assert (i + 1).is_irrational is True assert (i + 1).is_rational is False def test_Mul_is_irrational(): expr = Mul(1, 2, 3, evaluate=False) assert expr.is_irrational is False expr = Mul(1, I, I, evaluate=False) assert expr.is_rational is None # I * I = -1 but *no evaluation allowed* # sqrt(2) * I * I = -sqrt(2) is irrational but # this can't be determined without evaluating the # expression and the eval_is routines shouldn't do that expr = Mul(sqrt(2), I, I, evaluate=False) assert expr.is_irrational is None def test_issue_3531(): # https://github.com/sympy/sympy/issues/3531 # https://github.com/sympy/sympy/pull/18116 class MightyNumeric(tuple): def __rtruediv__(self, other): return "something" assert sympify(1)/MightyNumeric((1, 2)) == "something" def test_issue_3531b(): class Foo: def __init__(self): self.field = 1.0 def __mul__(self, other): self.field = self.field * other def __rmul__(self, other): self.field = other * self.field f = Foo() x = Symbol("x") assert f*x == x*f def test_bug3(): a = Symbol("a") b = Symbol("b", positive=True) e = 2*a + b f = b + 2*a assert e == f def test_suppressed_evaluation(): a = Add(0, 3, 2, evaluate=False) b = Mul(1, 3, 2, evaluate=False) c = Pow(3, 2, evaluate=False) assert a != 6 assert a.func is Add assert a.args == (0, 3, 2) assert b != 6 assert b.func is Mul assert b.args == (1, 3, 2) assert c != 9 assert c.func is Pow assert c.args == (3, 2) def test_AssocOp_doit(): a = Add(x,x, evaluate=False) b = Mul(y,y, evaluate=False) c = Add(b,b, evaluate=False) d = Mul(a,a, evaluate=False) assert c.doit(deep=False).func == Mul assert c.doit(deep=False).args == (2,y,y) assert c.doit().func == Mul assert c.doit().args == (2, Pow(y,2)) assert d.doit(deep=False).func == Pow assert d.doit(deep=False).args == (a, 2*S.One) assert d.doit().func == Mul assert d.doit().args == (4*S.One, Pow(x,2)) def test_Add_Mul_Expr_args(): nonexpr = [Basic(), Poly(x, x), FiniteSet(x)] for typ in [Add, Mul]: for obj in nonexpr: with warns_deprecated_sympy(): typ(obj, 1) def test_Add_as_coeff_mul(): # issue 5524. These should all be (1, self) assert (x + 1).as_coeff_mul() == (1, (x + 1,)) assert (x + 2).as_coeff_mul() == (1, (x + 2,)) assert (x + 3).as_coeff_mul() == (1, (x + 3,)) assert (x - 1).as_coeff_mul() == (1, (x - 1,)) assert (x - 2).as_coeff_mul() == (1, (x - 2,)) assert (x - 3).as_coeff_mul() == (1, (x - 3,)) n = Symbol('n', integer=True) assert (n + 1).as_coeff_mul() == (1, (n + 1,)) assert (n + 2).as_coeff_mul() == (1, (n + 2,)) assert (n + 3).as_coeff_mul() == (1, (n + 3,)) assert (n - 1).as_coeff_mul() == (1, (n - 1,)) assert (n - 2).as_coeff_mul() == (1, (n - 2,)) assert (n - 3).as_coeff_mul() == (1, (n - 3,)) def test_Pow_as_coeff_mul_doesnt_expand(): assert exp(x + y).as_coeff_mul() == (1, (exp(x + y),)) assert exp(x + exp(x + y)) != exp(x + exp(x)*exp(y)) def test_issue_3514_18626(): assert sqrt(S.Half) * sqrt(6) == 2 * sqrt(3)/2 assert S.Half*sqrt(6)*sqrt(2) == sqrt(3) assert sqrt(6)/2*sqrt(2) == sqrt(3) assert sqrt(6)*sqrt(2)/2 == sqrt(3) assert sqrt(8)**Rational(2, 3) == 2 def test_make_args(): assert Add.make_args(x) == (x,) assert Mul.make_args(x) == (x,) assert Add.make_args(x*y*z) == (x*y*z,) assert Mul.make_args(x*y*z) == (x*y*z).args assert Add.make_args(x + y + z) == (x + y + z).args assert Mul.make_args(x + y + z) == (x + y + z,) assert Add.make_args((x + y)**z) == ((x + y)**z,) assert Mul.make_args((x + y)**z) == ((x + y)**z,) def test_issue_5126(): assert (-2)**x*(-3)**x != 6**x i = Symbol('i', integer=1) assert (-2)**i*(-3)**i == 6**i def test_Rational_as_content_primitive(): c, p = S.One, S.Zero assert (c*p).as_content_primitive() == (c, p) c, p = S.Half, S.One assert (c*p).as_content_primitive() == (c, p) def test_Add_as_content_primitive(): assert (x + 2).as_content_primitive() == (1, x + 2) assert (3*x + 2).as_content_primitive() == (1, 3*x + 2) assert (3*x + 3).as_content_primitive() == (3, x + 1) assert (3*x + 6).as_content_primitive() == (3, x + 2) assert (3*x + 2*y).as_content_primitive() == (1, 3*x + 2*y) assert (3*x + 3*y).as_content_primitive() == (3, x + y) assert (3*x + 6*y).as_content_primitive() == (3, x + 2*y) assert (3/x + 2*x*y*z**2).as_content_primitive() == (1, 3/x + 2*x*y*z**2) assert (3/x + 3*x*y*z**2).as_content_primitive() == (3, 1/x + x*y*z**2) assert (3/x + 6*x*y*z**2).as_content_primitive() == (3, 1/x + 2*x*y*z**2) assert (2*x/3 + 4*y/9).as_content_primitive() == \ (Rational(2, 9), 3*x + 2*y) assert (2*x/3 + 2.5*y).as_content_primitive() == \ (Rational(1, 3), 2*x + 7.5*y) # the coefficient may sort to a position other than 0 p = 3 + x + y assert (2*p).expand().as_content_primitive() == (2, p) assert (2.0*p).expand().as_content_primitive() == (1, 2.*p) p *= -1 assert (2*p).expand().as_content_primitive() == (2, p) def test_Mul_as_content_primitive(): assert (2*x).as_content_primitive() == (2, x) assert (x*(2 + 2*x)).as_content_primitive() == (2, x*(1 + x)) assert (x*(2 + 2*y)*(3*x + 3)**2).as_content_primitive() == \ (18, x*(1 + y)*(x + 1)**2) assert ((2 + 2*x)**2*(3 + 6*x) + S.Half).as_content_primitive() == \ (S.Half, 24*(x + 1)**2*(2*x + 1) + 1) def test_Pow_as_content_primitive(): assert (x**y).as_content_primitive() == (1, x**y) assert ((2*x + 2)**y).as_content_primitive() == \ (1, (Mul(2, (x + 1), evaluate=False))**y) assert ((2*x + 2)**3).as_content_primitive() == (8, (x + 1)**3) def test_issue_5460(): u = Mul(2, (1 + x), evaluate=False) assert (2 + u).args == (2, u) def test_product_irrational(): from sympy import I, pi assert (I*pi).is_irrational is False # The following used to be deduced from the above bug: assert (I*pi).is_positive is False def test_issue_5919(): assert (x/(y*(1 + y))).expand() == x/(y**2 + y) def test_Mod(): assert Mod(x, 1).func is Mod assert pi % pi is S.Zero assert Mod(5, 3) == 2 assert Mod(-5, 3) == 1 assert Mod(5, -3) == -1 assert Mod(-5, -3) == -2 assert type(Mod(3.2, 2, evaluate=False)) == Mod assert 5 % x == Mod(5, x) assert x % 5 == Mod(x, 5) assert x % y == Mod(x, y) assert (x % y).subs({x: 5, y: 3}) == 2 assert Mod(nan, 1) is nan assert Mod(1, nan) is nan assert Mod(nan, nan) is nan Mod(0, x) == 0 with raises(ZeroDivisionError): Mod(x, 0) k = Symbol('k', integer=True) m = Symbol('m', integer=True, positive=True) assert (x**m % x).func is Mod assert (k**(-m) % k).func is Mod assert k**m % k == 0 assert (-2*k)**m % k == 0 # Float handling point3 = Float(3.3) % 1 assert (x - 3.3) % 1 == Mod(1.*x + 1 - point3, 1) assert Mod(-3.3, 1) == 1 - point3 assert Mod(0.7, 1) == Float(0.7) e = Mod(1.3, 1) assert comp(e, .3) and e.is_Float e = Mod(1.3, .7) assert comp(e, .6) and e.is_Float e = Mod(1.3, Rational(7, 10)) assert comp(e, .6) and e.is_Float e = Mod(Rational(13, 10), 0.7) assert comp(e, .6) and e.is_Float e = Mod(Rational(13, 10), Rational(7, 10)) assert comp(e, .6) and e.is_Rational # check that sign is right r2 = sqrt(2) r3 = sqrt(3) for i in [-r3, -r2, r2, r3]: for j in [-r3, -r2, r2, r3]: assert verify_numerically(i % j, i.n() % j.n()) for _x in range(4): for _y in range(9): reps = [(x, _x), (y, _y)] assert Mod(3*x + y, 9).subs(reps) == (3*_x + _y) % 9 # denesting t = Symbol('t', real=True) assert Mod(Mod(x, t), t) == Mod(x, t) assert Mod(-Mod(x, t), t) == Mod(-x, t) assert Mod(Mod(x, 2*t), t) == Mod(x, t) assert Mod(-Mod(x, 2*t), t) == Mod(-x, t) assert Mod(Mod(x, t), 2*t) == Mod(x, t) assert Mod(-Mod(x, t), -2*t) == -Mod(x, t) for i in [-4, -2, 2, 4]: for j in [-4, -2, 2, 4]: for k in range(4): assert Mod(Mod(x, i), j).subs({x: k}) == (k % i) % j assert Mod(-Mod(x, i), j).subs({x: k}) == -(k % i) % j # known difference assert Mod(5*sqrt(2), sqrt(5)) == 5*sqrt(2) - 3*sqrt(5) p = symbols('p', positive=True) assert Mod(2, p + 3) == 2 assert Mod(-2, p + 3) == p + 1 assert Mod(2, -p - 3) == -p - 1 assert Mod(-2, -p - 3) == -2 assert Mod(p + 5, p + 3) == 2 assert Mod(-p - 5, p + 3) == p + 1 assert Mod(p + 5, -p - 3) == -p - 1 assert Mod(-p - 5, -p - 3) == -2 assert Mod(p + 1, p - 1).func is Mod # handling sums assert (x + 3) % 1 == Mod(x, 1) assert (x + 3.0) % 1 == Mod(1.*x, 1) assert (x - S(33)/10) % 1 == Mod(x + S(7)/10, 1) a = Mod(.6*x + y, .3*y) b = Mod(0.1*y + 0.6*x, 0.3*y) # Test that a, b are equal, with 1e-14 accuracy in coefficients eps = 1e-14 assert abs((a.args[0] - b.args[0]).subs({x: 1, y: 1})) < eps assert abs((a.args[1] - b.args[1]).subs({x: 1, y: 1})) < eps assert (x + 1) % x == 1 % x assert (x + y) % x == y % x assert (x + y + 2) % x == (y + 2) % x assert (a + 3*x + 1) % (2*x) == Mod(a + x + 1, 2*x) assert (12*x + 18*y) % (3*x) == 3*Mod(6*y, x) # gcd extraction assert (-3*x) % (-2*y) == -Mod(3*x, 2*y) assert (.6*pi) % (.3*x*pi) == 0.3*pi*Mod(2, x) assert (.6*pi) % (.31*x*pi) == pi*Mod(0.6, 0.31*x) assert (6*pi) % (.3*x*pi) == 0.3*pi*Mod(20, x) assert (6*pi) % (.31*x*pi) == pi*Mod(6, 0.31*x) assert (6*pi) % (.42*x*pi) == pi*Mod(6, 0.42*x) assert (12*x) % (2*y) == 2*Mod(6*x, y) assert (12*x) % (3*5*y) == 3*Mod(4*x, 5*y) assert (12*x) % (15*x*y) == 3*x*Mod(4, 5*y) assert (-2*pi) % (3*pi) == pi assert (2*x + 2) % (x + 1) == 0 assert (x*(x + 1)) % (x + 1) == (x + 1)*Mod(x, 1) assert Mod(5.0*x, 0.1*y) == 0.1*Mod(50*x, y) i = Symbol('i', integer=True) assert (3*i*x) % (2*i*y) == i*Mod(3*x, 2*y) assert Mod(4*i, 4) == 0 # issue 8677 n = Symbol('n', integer=True, positive=True) assert factorial(n) % n == 0 assert factorial(n + 2) % n == 0 assert (factorial(n + 4) % (n + 5)).func is Mod # Wilson's theorem factorial(18042, evaluate=False) % 18043 == 18042 p = Symbol('n', prime=True) factorial(p - 1) % p == p - 1 factorial(p - 1) % -p == -1 (factorial(3, evaluate=False) % 4).doit() == 2 n = Symbol('n', composite=True, odd=True) factorial(n - 1) % n == 0 # symbolic with known parity n = Symbol('n', even=True) assert Mod(n, 2) == 0 n = Symbol('n', odd=True) assert Mod(n, 2) == 1 # issue 10963 assert (x**6000%400).args[1] == 400 #issue 13543 assert Mod(Mod(x + 1, 2) + 1 , 2) == Mod(x,2) assert Mod(Mod(x + 2, 4)*(x + 4), 4) == Mod(x*(x + 2), 4) assert Mod(Mod(x + 2, 4)*4, 4) == 0 # issue 15493 i, j = symbols('i j', integer=True, positive=True) assert Mod(3*i, 2) == Mod(i, 2) assert Mod(8*i/j, 4) == 4*Mod(2*i/j, 1) assert Mod(8*i, 4) == 0 # rewrite assert Mod(x, y).rewrite(floor) == x - y*floor(x/y) assert ((x - Mod(x, y))/y).rewrite(floor) == floor(x/y) def test_Mod_Pow(): # modular exponentiation assert isinstance(Mod(Pow(2, 2, evaluate=False), 3), Integer) assert Mod(Pow(4, 13, evaluate=False), 497) == Mod(Pow(4, 13), 497) assert Mod(Pow(2, 10000000000, evaluate=False), 3) == 1 assert Mod(Pow(32131231232, 9**10**6, evaluate=False),10**12) == \ pow(32131231232,9**10**6,10**12) assert Mod(Pow(33284959323, 123**999, evaluate=False),11**13) == \ pow(33284959323,123**999,11**13) assert Mod(Pow(78789849597, 333**555, evaluate=False),12**9) == \ pow(78789849597,333**555,12**9) # modular nested exponentiation expr = Pow(2, 2, evaluate=False) expr = Pow(2, expr, evaluate=False) assert Mod(expr, 3**10) == 16 expr = Pow(2, expr, evaluate=False) assert Mod(expr, 3**10) == 6487 expr = Pow(2, expr, evaluate=False) assert Mod(expr, 3**10) == 32191 expr = Pow(2, expr, evaluate=False) assert Mod(expr, 3**10) == 18016 expr = Pow(2, expr, evaluate=False) assert Mod(expr, 3**10) == 5137 expr = Pow(2, 2, evaluate=False) expr = Pow(expr, 2, evaluate=False) assert Mod(expr, 3**10) == 16 expr = Pow(expr, 2, evaluate=False) assert Mod(expr, 3**10) == 256 expr = Pow(expr, 2, evaluate=False) assert Mod(expr, 3**10) == 6487 expr = Pow(expr, 2, evaluate=False) assert Mod(expr, 3**10) == 38281 expr = Pow(expr, 2, evaluate=False) assert Mod(expr, 3**10) == 15928 expr = Pow(2, 2, evaluate=False) expr = Pow(expr, expr, evaluate=False) assert Mod(expr, 3**10) == 256 expr = Pow(expr, expr, evaluate=False) assert Mod(expr, 3**10) == 9229 expr = Pow(expr, expr, evaluate=False) assert Mod(expr, 3**10) == 25708 expr = Pow(expr, expr, evaluate=False) assert Mod(expr, 3**10) == 26608 expr = Pow(expr, expr, evaluate=False) # XXX This used to fail in a nondeterministic way because of overflow # error. assert Mod(expr, 3**10) == 1966 def test_Mod_is_integer(): p = Symbol('p', integer=True) q1 = Symbol('q1', integer=True) q2 = Symbol('q2', integer=True, nonzero=True) assert Mod(x, y).is_integer is None assert Mod(p, q1).is_integer is None assert Mod(x, q2).is_integer is None assert Mod(p, q2).is_integer def test_Mod_is_nonposneg(): n = Symbol('n', integer=True) k = Symbol('k', integer=True, positive=True) assert (n%3).is_nonnegative assert Mod(n, -3).is_nonpositive assert Mod(n, k).is_nonnegative assert Mod(n, -k).is_nonpositive assert Mod(k, n).is_nonnegative is None def test_issue_6001(): A = Symbol("A", commutative=False) eq = A + A**2 # it doesn't matter whether it's True or False; they should # just all be the same assert ( eq.is_commutative == (eq + 1).is_commutative == (A + 1).is_commutative) B = Symbol("B", commutative=False) # Although commutative terms could cancel we return True # meaning "there are non-commutative symbols; aftersubstitution # that definition can change, e.g. (A*B).subs(B,A**-1) -> 1 assert (sqrt(2)*A).is_commutative is False assert (sqrt(2)*A*B).is_commutative is False def test_polar(): from sympy import polar_lift p = Symbol('p', polar=True) x = Symbol('x') assert p.is_polar assert x.is_polar is None assert S.One.is_polar is None assert (p**x).is_polar is True assert (x**p).is_polar is None assert ((2*p)**x).is_polar is True assert (2*p).is_polar is True assert (-2*p).is_polar is not True assert (polar_lift(-2)*p).is_polar is True q = Symbol('q', polar=True) assert (p*q)**2 == p**2 * q**2 assert (2*q)**2 == 4 * q**2 assert ((p*q)**x).expand() == p**x * q**x def test_issue_6040(): a, b = Pow(1, 2, evaluate=False), S.One assert a != b assert b != a assert not (a == b) assert not (b == a) def test_issue_6082(): # Comparison is symmetric assert Basic.compare(Max(x, 1), Max(x, 2)) == \ - Basic.compare(Max(x, 2), Max(x, 1)) # Equal expressions compare equal assert Basic.compare(Max(x, 1), Max(x, 1)) == 0 # Basic subtypes (such as Max) compare different than standard types assert Basic.compare(Max(1, x), frozenset((1, x))) != 0 def test_issue_6077(): assert x**2.0/x == x**1.0 assert x/x**2.0 == x**-1.0 assert x*x**2.0 == x**3.0 assert x**1.5*x**2.5 == x**4.0 assert 2**(2.0*x)/2**x == 2**(1.0*x) assert 2**x/2**(2.0*x) == 2**(-1.0*x) assert 2**x*2**(2.0*x) == 2**(3.0*x) assert 2**(1.5*x)*2**(2.5*x) == 2**(4.0*x) def test_mul_flatten_oo(): p = symbols('p', positive=True) n, m = symbols('n,m', negative=True) x_im = symbols('x_im', imaginary=True) assert n*oo is -oo assert n*m*oo is oo assert p*oo is oo assert x_im*oo != I*oo # i could be +/- 3*I -> +/-oo def test_add_flatten(): # see https://github.com/sympy/sympy/issues/2633#issuecomment-29545524 a = oo + I*oo b = oo - I*oo assert a + b is nan assert a - b is nan # FIXME: This evaluates as: # >>> 1/a # 0*(oo + oo*I) # which should not simplify to 0. Should be fixed in Pow.eval #assert (1/a).simplify() == (1/b).simplify() == 0 a = Pow(2, 3, evaluate=False) assert a + a == 16 def test_issue_5160_6087_6089_6090(): # issue 6087 assert ((-2*x*y**y)**3.2).n(2) == (2**3.2*(-x*y**y)**3.2).n(2) # issue 6089 A, B, C = symbols('A,B,C', commutative=False) assert (2.*B*C)**3 == 8.0*(B*C)**3 assert (-2.*B*C)**3 == -8.0*(B*C)**3 assert (-2*B*C)**2 == 4*(B*C)**2 # issue 5160 assert sqrt(-1.0*x) == 1.0*sqrt(-x) assert sqrt(1.0*x) == 1.0*sqrt(x) # issue 6090 assert (-2*x*y*A*B)**2 == 4*x**2*y**2*(A*B)**2 def test_float_int_round(): assert int(float(sqrt(10))) == int(sqrt(10)) assert int(pi**1000) % 10 == 2 assert int(Float('1.123456789012345678901234567890e20', '')) == \ int(112345678901234567890) assert int(Float('1.123456789012345678901234567890e25', '')) == \ int(11234567890123456789012345) # decimal forces float so it's not an exact integer ending in 000000 assert int(Float('1.123456789012345678901234567890e35', '')) == \ 112345678901234567890123456789000192 assert int(Float('123456789012345678901234567890e5', '')) == \ 12345678901234567890123456789000000 assert Integer(Float('1.123456789012345678901234567890e20', '')) == \ 112345678901234567890 assert Integer(Float('1.123456789012345678901234567890e25', '')) == \ 11234567890123456789012345 # decimal forces float so it's not an exact integer ending in 000000 assert Integer(Float('1.123456789012345678901234567890e35', '')) == \ 112345678901234567890123456789000192 assert Integer(Float('123456789012345678901234567890e5', '')) == \ 12345678901234567890123456789000000 assert same_and_same_prec(Float('123000e-2',''), Float('1230.00', '')) assert same_and_same_prec(Float('123000e2',''), Float('12300000', '')) assert int(1 + Rational('.9999999999999999999999999')) == 1 assert int(pi/1e20) == 0 assert int(1 + pi/1e20) == 1 assert int(Add(1.2, -2, evaluate=False)) == int(1.2 - 2) assert int(Add(1.2, +2, evaluate=False)) == int(1.2 + 2) assert int(Add(1 + Float('.99999999999999999', ''), evaluate=False)) == 1 raises(TypeError, lambda: float(x)) raises(TypeError, lambda: float(sqrt(-1))) assert int(12345678901234567890 + cos(1)**2 + sin(1)**2) == \ 12345678901234567891 def test_issue_6611a(): assert Mul.flatten([3**Rational(1, 3), Pow(-Rational(1, 9), Rational(2, 3), evaluate=False)]) == \ ([Rational(1, 3), (-1)**Rational(2, 3)], [], None) def test_denest_add_mul(): # when working with evaluated expressions make sure they denest eq = x + 1 eq = Add(eq, 2, evaluate=False) eq = Add(eq, 2, evaluate=False) assert Add(*eq.args) == x + 5 eq = x*2 eq = Mul(eq, 2, evaluate=False) eq = Mul(eq, 2, evaluate=False) assert Mul(*eq.args) == 8*x # but don't let them denest unecessarily eq = Mul(-2, x - 2, evaluate=False) assert 2*eq == Mul(-4, x - 2, evaluate=False) assert -eq == Mul(2, x - 2, evaluate=False) def test_mul_coeff(): # It is important that all Numbers be removed from the seq; # This can be tricky when powers combine to produce those numbers p = exp(I*pi/3) assert p**2*x*p*y*p*x*p**2 == x**2*y def test_mul_zero_detection(): nz = Dummy(real=True, zero=False) r = Dummy(extended_real=True) c = Dummy(real=False, complex=True) c2 = Dummy(real=False, complex=True) i = Dummy(imaginary=True) e = nz*r*c assert e.is_imaginary is None assert e.is_extended_real is None e = nz*c assert e.is_imaginary is None assert e.is_extended_real is False e = nz*i*c assert e.is_imaginary is False assert e.is_extended_real is None # check for more than one complex; it is important to use # uniquely named Symbols to ensure that two factors appear # e.g. if the symbols have the same name they just become # a single factor, a power. e = nz*i*c*c2 assert e.is_imaginary is None assert e.is_extended_real is None # _eval_is_extended_real and _eval_is_zero both employ trapping of the # zero value so args should be tested in both directions and # TO AVOID GETTING THE CACHED RESULT, Dummy MUST BE USED # real is unknown def test(z, b, e): if z.is_zero and b.is_finite: assert e.is_extended_real and e.is_zero else: assert e.is_extended_real is None if b.is_finite: if z.is_zero: assert e.is_zero else: assert e.is_zero is None elif b.is_finite is False: if z.is_zero is None: assert e.is_zero is None else: assert e.is_zero is False for iz, ib in cartes(*[[True, False, None]]*2): z = Dummy('z', nonzero=iz) b = Dummy('f', finite=ib) e = Mul(z, b, evaluate=False) test(z, b, e) z = Dummy('nz', nonzero=iz) b = Dummy('f', finite=ib) e = Mul(b, z, evaluate=False) test(z, b, e) # real is True def test(z, b, e): if z.is_zero and not b.is_finite: assert e.is_extended_real is None else: assert e.is_extended_real is True for iz, ib in cartes(*[[True, False, None]]*2): z = Dummy('z', nonzero=iz, extended_real=True) b = Dummy('b', finite=ib, extended_real=True) e = Mul(z, b, evaluate=False) test(z, b, e) z = Dummy('z', nonzero=iz, extended_real=True) b = Dummy('b', finite=ib, extended_real=True) e = Mul(b, z, evaluate=False) test(z, b, e) def test_Mul_with_zero_infinite(): zer = Dummy(zero=True) inf = Dummy(finite=False) e = Mul(zer, inf, evaluate=False) assert e.is_extended_positive is None assert e.is_hermitian is None e = Mul(inf, zer, evaluate=False) assert e.is_extended_positive is None assert e.is_hermitian is None def test_Mul_does_not_cancel_infinities(): a, b = symbols('a b') assert ((zoo + 3*a)/(3*a + zoo)) is nan assert ((b - oo)/(b - oo)) is nan # issue 13904 expr = (1/(a+b) + 1/(a-b))/(1/(a+b) - 1/(a-b)) assert expr.subs(b, a) is nan def test_Mul_does_not_distribute_infinity(): a, b = symbols('a b') assert ((1 + I)*oo).is_Mul assert ((a + b)*(-oo)).is_Mul assert ((a + 1)*zoo).is_Mul assert ((1 + I)*oo).is_finite is False z = (1 + I)*oo assert ((1 - I)*z).expand() is oo def test_issue_8247_8354(): from sympy import tan z = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3)) assert z.is_positive is False # it's 0 z = S('''-2**(1/3)*(3*sqrt(93) + 29)**2 - 4*(3*sqrt(93) + 29)**(4/3) + 12*sqrt(93)*(3*sqrt(93) + 29)**(1/3) + 116*(3*sqrt(93) + 29)**(1/3) + 174*2**(1/3)*sqrt(93) + 1678*2**(1/3)''') assert z.is_positive is False # it's 0 z = 2*(-3*tan(19*pi/90) + sqrt(3))*cos(11*pi/90)*cos(19*pi/90) - \ sqrt(3)*(-3 + 4*cos(19*pi/90)**2) assert z.is_positive is not True # it's zero and it shouldn't hang z = S('''9*(3*sqrt(93) + 29)**(2/3)*((3*sqrt(93) + 29)**(1/3)*(-2**(2/3)*(3*sqrt(93) + 29)**(1/3) - 2) - 2*2**(1/3))**3 + 72*(3*sqrt(93) + 29)**(2/3)*(81*sqrt(93) + 783) + (162*sqrt(93) + 1566)*((3*sqrt(93) + 29)**(1/3)*(-2**(2/3)*(3*sqrt(93) + 29)**(1/3) - 2) - 2*2**(1/3))**2''') assert z.is_positive is False # it's 0 (and a single _mexpand isn't enough) def test_Add_is_zero(): x, y = symbols('x y', zero=True) assert (x + y).is_zero # Issue 15873 e = -2*I + (1 + I)**2 assert e.is_zero is None def test_issue_14392(): assert (sin(zoo)**2).as_real_imag() == (nan, nan) def test_divmod(): assert divmod(x, y) == (x//y, x % y) assert divmod(x, 3) == (x//3, x % 3) assert divmod(3, x) == (3//x, 3 % x) def test__neg__(): assert -(x*y) == -x*y assert -(-x*y) == x*y assert -(1.*x) == -1.*x assert -(-1.*x) == 1.*x assert -(2.*x) == -2.*x assert -(-2.*x) == 2.*x with distribute(False): eq = -(x + y) assert eq.is_Mul and eq.args == (-1, x + y) def test_issue_18507(): assert Mul(zoo, zoo, 0) is nan def test_issue_17130(): e = Add(b, -b, I, -I, evaluate=False) assert e.is_zero is None # ideally this would be True
c20c3fc8ac02e601d85b144711b54378738a4327059191f4671855112d00474e
"""Implementation of :class:`CompositeDomain` class. """ from sympy.polys.domains.domain import Domain from sympy.polys.polyerrors import GeneratorsError from sympy.utilities import public @public class CompositeDomain(Domain): """Base class for composite domains, e.g. ZZ[x], ZZ(X). """ is_Composite = True gens, ngens, symbols, domain = [None]*4 def inject(self, *symbols): """Inject generators into this domain. """ if not (set(self.symbols) & set(symbols)): return self.__class__(self.domain, self.symbols + symbols, self.order) else: raise GeneratorsError("common generators in %s and %s" % (self.symbols, symbols)) def drop(self, *symbols): """Drop generators from this domain. """ symset = set(symbols) newsyms = tuple(s for s in self.symbols if s not in symset) domain = self.domain.drop(*symbols) if not newsyms: return domain else: return self.__class__(domain, newsyms, self.order)
a7ae94d97e7c69c4872c7c4e4d4e9a259d1499d72ed6a8862140ed57c889083d
"""Implementation of :class:`Ring` class. """ from sympy.polys.domains.domain import Domain from sympy.polys.polyerrors import ExactQuotientFailed, NotInvertible, NotReversible from sympy.utilities import public @public class Ring(Domain): """Represents a ring domain. """ is_Ring = True def get_ring(self): """Returns a ring associated with ``self``. """ return self def exquo(self, a, b): """Exact quotient of ``a`` and ``b``, implies ``__floordiv__``. """ if a % b: raise ExactQuotientFailed(a, b, self) else: return a // b def quo(self, a, b): """Quotient of ``a`` and ``b``, implies ``__floordiv__``. """ return a // b def rem(self, a, b): """Remainder of ``a`` and ``b``, implies ``__mod__``. """ return a % b def div(self, a, b): """Division of ``a`` and ``b``, implies ``__divmod__``. """ return divmod(a, b) def invert(self, a, b): """Returns inversion of ``a mod b``. """ s, t, h = self.gcdex(a, b) if self.is_one(h): return s % b else: raise NotInvertible("zero divisor") def revert(self, a): """Returns ``a**(-1)`` if possible. """ if self.is_one(a) or self.is_one(-a): return a else: raise NotReversible('only units are reversible in a ring') def is_unit(self, a): try: self.revert(a) return True except NotReversible: return False def numer(self, a): """Returns numerator of ``a``. """ return a def denom(self, a): """Returns denominator of `a`. """ return self.one def free_module(self, rank): """ Generate a free module of rank ``rank`` over self. >>> from sympy.abc import x >>> from sympy import QQ >>> QQ.old_poly_ring(x).free_module(2) QQ[x]**2 """ raise NotImplementedError def ideal(self, *gens): """ Generate an ideal of ``self``. >>> from sympy.abc import x >>> from sympy import QQ >>> QQ.old_poly_ring(x).ideal(x**2) <x**2> """ from sympy.polys.agca.ideals import ModuleImplementedIdeal return ModuleImplementedIdeal(self, self.free_module(1).submodule( *[[x] for x in gens])) def quotient_ring(self, e): """ Form a quotient ring of ``self``. Here ``e`` can be an ideal or an iterable. >>> from sympy.abc import x >>> from sympy import QQ >>> QQ.old_poly_ring(x).quotient_ring(QQ.old_poly_ring(x).ideal(x**2)) QQ[x]/<x**2> >>> QQ.old_poly_ring(x).quotient_ring([x**2]) QQ[x]/<x**2> The division operator has been overloaded for this: >>> QQ.old_poly_ring(x)/[x**2] QQ[x]/<x**2> """ from sympy.polys.agca.ideals import Ideal from sympy.polys.domains.quotientring import QuotientRing if not isinstance(e, Ideal): e = self.ideal(*e) return QuotientRing(self, e) def __truediv__(self, e): return self.quotient_ring(e)
a0ab40cedff5fa6e05fc079ef9f067ca99aadc1dfbb22a962b0e16a086a42b55
"""Trait for implementing domain elements. """ from sympy.utilities import public @public class DomainElement: """ Represents an element of a domain. Mix in this trait into a class whose instances should be recognized as elements of a domain. Method ``parent()`` gives that domain. """ def parent(self): """Get the domain associated with ``self`` """ raise NotImplementedError("abstract method")
b723a312a00168e5d791a0442f4a8bab21b88392ad9ddefcd81ffac5309f89af
"""Implementation of :class:`Field` class. """ from sympy.polys.domains.ring import Ring from sympy.polys.polyerrors import NotReversible, DomainError from sympy.utilities import public @public class Field(Ring): """Represents a field domain. """ is_Field = True is_PID = True def get_ring(self): """Returns a ring associated with ``self``. """ raise DomainError('there is no ring associated with %s' % self) def get_field(self): """Returns a field associated with ``self``. """ return self def exquo(self, a, b): """Exact quotient of ``a`` and ``b``, implies ``__truediv__``. """ return a / b def quo(self, a, b): """Quotient of ``a`` and ``b``, implies ``__truediv__``. """ return a / b def rem(self, a, b): """Remainder of ``a`` and ``b``, implies nothing. """ return self.zero def div(self, a, b): """Division of ``a`` and ``b``, implies ``__truediv__``. """ return a / b, self.zero def gcd(self, a, b): """ Returns GCD of ``a`` and ``b``. This definition of GCD over fields allows to clear denominators in `primitive()`. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy import S, gcd, primitive >>> from sympy.abc import x >>> QQ.gcd(QQ(2, 3), QQ(4, 9)) 2/9 >>> gcd(S(2)/3, S(4)/9) 2/9 >>> primitive(2*x/3 + S(4)/9) (2/9, 3*x + 2) """ try: ring = self.get_ring() except DomainError: return self.one p = ring.gcd(self.numer(a), self.numer(b)) q = ring.lcm(self.denom(a), self.denom(b)) return self.convert(p, ring)/q def lcm(self, a, b): """ Returns LCM of ``a`` and ``b``. >>> from sympy.polys.domains import QQ >>> from sympy import S, lcm >>> QQ.lcm(QQ(2, 3), QQ(4, 9)) 4/3 >>> lcm(S(2)/3, S(4)/9) 4/3 """ try: ring = self.get_ring() except DomainError: return a*b p = ring.lcm(self.numer(a), self.numer(b)) q = ring.gcd(self.denom(a), self.denom(b)) return self.convert(p, ring)/q def revert(self, a): """Returns ``a**(-1)`` if possible. """ if a: return 1/a else: raise NotReversible('zero is not reversible') def is_unit(self, a): """Return true if ``a`` is a invertible""" return bool(a)
4d16a50f6a5c150ddb88f1b2d631bc0a846c65a82af4846fece5bdb602e040ae
"""Implementation of :class:`PolynomialRing` class. """ from sympy.core.compatibility import iterable from sympy.polys.agca.modules import FreeModulePolyRing from sympy.polys.domains.characteristiczero import CharacteristicZero from sympy.polys.domains.compositedomain import CompositeDomain from sympy.polys.domains.old_fractionfield import FractionField from sympy.polys.domains.ring import Ring from sympy.polys.orderings import monomial_key, build_product_order from sympy.polys.polyclasses import DMP, DMF from sympy.polys.polyerrors import (GeneratorsNeeded, PolynomialError, CoercionFailed, ExactQuotientFailed, NotReversible) from sympy.polys.polyutils import dict_from_basic, basic_from_dict, _dict_reorder from sympy.utilities import public # XXX why does this derive from CharacteristicZero??? @public class PolynomialRingBase(Ring, CharacteristicZero, CompositeDomain): """ Base class for generalized polynomial rings. This base class should be used for uniform access to generalized polynomial rings. Subclasses only supply information about the element storage etc. Do not instantiate. """ has_assoc_Ring = True has_assoc_Field = True default_order = "grevlex" def __init__(self, dom, *gens, **opts): if not gens: raise GeneratorsNeeded("generators not specified") lev = len(gens) - 1 self.ngens = len(gens) self.zero = self.dtype.zero(lev, dom, ring=self) self.one = self.dtype.one(lev, dom, ring=self) self.domain = self.dom = dom self.symbols = self.gens = gens # NOTE 'order' may not be set if inject was called through CompositeDomain self.order = opts.get('order', monomial_key(self.default_order)) def new(self, element): return self.dtype(element, self.dom, len(self.gens) - 1, ring=self) def __str__(self): s_order = str(self.order) orderstr = ( " order=" + s_order) if s_order != self.default_order else "" return str(self.dom) + '[' + ','.join(map(str, self.gens)) + orderstr + ']' def __hash__(self): return hash((self.__class__.__name__, self.dtype, self.dom, self.gens, self.order)) def __eq__(self, other): """Returns `True` if two domains are equivalent. """ return isinstance(other, PolynomialRingBase) and \ self.dtype == other.dtype and self.dom == other.dom and \ self.gens == other.gens and self.order == other.order def from_ZZ_python(K1, a, K0): """Convert a Python `int` object to `dtype`. """ return K1(K1.dom.convert(a, K0)) def from_QQ_python(K1, a, K0): """Convert a Python `Fraction` object to `dtype`. """ return K1(K1.dom.convert(a, K0)) def from_ZZ_gmpy(K1, a, K0): """Convert a GMPY `mpz` object to `dtype`. """ return K1(K1.dom.convert(a, K0)) def from_QQ_gmpy(K1, a, K0): """Convert a GMPY `mpq` object to `dtype`. """ return K1(K1.dom.convert(a, K0)) def from_RealField(K1, a, K0): """Convert a mpmath `mpf` object to `dtype`. """ return K1(K1.dom.convert(a, K0)) def from_AlgebraicField(K1, a, K0): """Convert a `ANP` object to `dtype`. """ if K1.dom == K0: return K1(a) def from_PolynomialRing(K1, a, K0): """Convert a `PolyElement` object to `dtype`. """ if K1.gens == K0.symbols: if K1.dom == K0.dom: return K1(dict(a)) # set the correct ring else: convert_dom = lambda c: K1.dom.convert_from(c, K0.dom) return K1({m: convert_dom(c) for m, c in a.items()}) else: monoms, coeffs = _dict_reorder(a.to_dict(), K0.symbols, K1.gens) if K1.dom != K0.dom: coeffs = [ K1.dom.convert(c, K0.dom) for c in coeffs ] return K1(dict(zip(monoms, coeffs))) def from_GlobalPolynomialRing(K1, a, K0): """Convert a `DMP` object to `dtype`. """ if K1.gens == K0.gens: if K1.dom == K0.dom: return K1(a.rep) # set the correct ring else: return K1(a.convert(K1.dom).rep) else: monoms, coeffs = _dict_reorder(a.to_dict(), K0.gens, K1.gens) if K1.dom != K0.dom: coeffs = [ K1.dom.convert(c, K0.dom) for c in coeffs ] return K1(dict(zip(monoms, coeffs))) def get_field(self): """Returns a field associated with `self`. """ return FractionField(self.dom, *self.gens) def poly_ring(self, *gens): """Returns a polynomial ring, i.e. `K[X]`. """ raise NotImplementedError('nested domains not allowed') def frac_field(self, *gens): """Returns a fraction field, i.e. `K(X)`. """ raise NotImplementedError('nested domains not allowed') def revert(self, a): try: return 1/a except (ExactQuotientFailed, ZeroDivisionError): raise NotReversible('%s is not a unit' % a) def gcdex(self, a, b): """Extended GCD of `a` and `b`. """ return a.gcdex(b) def gcd(self, a, b): """Returns GCD of `a` and `b`. """ return a.gcd(b) def lcm(self, a, b): """Returns LCM of `a` and `b`. """ return a.lcm(b) def factorial(self, a): """Returns factorial of `a`. """ return self.dtype(self.dom.factorial(a)) def _vector_to_sdm(self, v, order): """ For internal use by the modules class. Convert an iterable of elements of this ring into a sparse distributed module element. """ raise NotImplementedError def _sdm_to_dics(self, s, n): """Helper for _sdm_to_vector.""" from sympy.polys.distributedmodules import sdm_to_dict dic = sdm_to_dict(s) res = [{} for _ in range(n)] for k, v in dic.items(): res[k[0]][k[1:]] = v return res def _sdm_to_vector(self, s, n): """ For internal use by the modules class. Convert a sparse distributed module into a list of length ``n``. Examples ======== >>> from sympy import QQ, ilex >>> from sympy.abc import x, y >>> R = QQ.old_poly_ring(x, y, order=ilex) >>> L = [((1, 1, 1), QQ(1)), ((0, 1, 0), QQ(1)), ((0, 0, 1), QQ(2))] >>> R._sdm_to_vector(L, 2) [x + 2*y, x*y] """ dics = self._sdm_to_dics(s, n) # NOTE this works for global and local rings! return [self(x) for x in dics] def free_module(self, rank): """ Generate a free module of rank ``rank`` over ``self``. Examples ======== >>> from sympy.abc import x >>> from sympy import QQ >>> QQ.old_poly_ring(x).free_module(2) QQ[x]**2 """ return FreeModulePolyRing(self, rank) def _vector_to_sdm_helper(v, order): """Helper method for common code in Global and Local poly rings.""" from sympy.polys.distributedmodules import sdm_from_dict d = {} for i, e in enumerate(v): for key, value in e.to_dict().items(): d[(i,) + key] = value return sdm_from_dict(d, order) @public class GlobalPolynomialRing(PolynomialRingBase): """A true polynomial ring, with objects DMP. """ is_PolynomialRing = is_Poly = True dtype = DMP def from_FractionField(K1, a, K0): """ Convert a ``DMF`` object to ``DMP``. Examples ======== >>> from sympy.polys.polyclasses import DMP, DMF >>> from sympy.polys.domains import ZZ >>> from sympy.abc import x >>> f = DMF(([ZZ(1), ZZ(1)], [ZZ(1)]), ZZ) >>> K = ZZ.old_frac_field(x) >>> F = ZZ.old_poly_ring(x).from_FractionField(f, K) >>> F == DMP([ZZ(1), ZZ(1)], ZZ) True >>> type(F) <class 'sympy.polys.polyclasses.DMP'> """ if a.denom().is_one: return K1.from_GlobalPolynomialRing(a.numer(), K0) def to_sympy(self, a): """Convert `a` to a SymPy object. """ return basic_from_dict(a.to_sympy_dict(), *self.gens) def from_sympy(self, a): """Convert SymPy's expression to `dtype`. """ try: rep, _ = dict_from_basic(a, gens=self.gens) except PolynomialError: raise CoercionFailed("can't convert %s to type %s" % (a, self)) for k, v in rep.items(): rep[k] = self.dom.from_sympy(v) return self(rep) def is_positive(self, a): """Returns True if `LC(a)` is positive. """ return self.dom.is_positive(a.LC()) def is_negative(self, a): """Returns True if `LC(a)` is negative. """ return self.dom.is_negative(a.LC()) def is_nonpositive(self, a): """Returns True if `LC(a)` is non-positive. """ return self.dom.is_nonpositive(a.LC()) def is_nonnegative(self, a): """Returns True if `LC(a)` is non-negative. """ return self.dom.is_nonnegative(a.LC()) def _vector_to_sdm(self, v, order): """ Examples ======== >>> from sympy import lex, QQ >>> from sympy.abc import x, y >>> R = QQ.old_poly_ring(x, y) >>> f = R.convert(x + 2*y) >>> g = R.convert(x * y) >>> R._vector_to_sdm([f, g], lex) [((1, 1, 1), 1), ((0, 1, 0), 1), ((0, 0, 1), 2)] """ return _vector_to_sdm_helper(v, order) class GeneralizedPolynomialRing(PolynomialRingBase): """A generalized polynomial ring, with objects DMF. """ dtype = DMF def new(self, a): """Construct an element of `self` domain from `a`. """ res = self.dtype(a, self.dom, len(self.gens) - 1, ring=self) # make sure res is actually in our ring if res.denom().terms(order=self.order)[0][0] != (0,)*len(self.gens): from sympy.printing.str import sstr raise CoercionFailed("denominator %s not allowed in %s" % (sstr(res), self)) return res def __contains__(self, a): try: a = self.convert(a) except CoercionFailed: return False return a.denom().terms(order=self.order)[0][0] == (0,)*len(self.gens) def from_FractionField(K1, a, K0): dmf = K1.get_field().from_FractionField(a, K0) return K1((dmf.num, dmf.den)) def to_sympy(self, a): """Convert `a` to a SymPy object. """ return (basic_from_dict(a.numer().to_sympy_dict(), *self.gens) / basic_from_dict(a.denom().to_sympy_dict(), *self.gens)) def from_sympy(self, a): """Convert SymPy's expression to `dtype`. """ p, q = a.as_numer_denom() num, _ = dict_from_basic(p, gens=self.gens) den, _ = dict_from_basic(q, gens=self.gens) for k, v in num.items(): num[k] = self.dom.from_sympy(v) for k, v in den.items(): den[k] = self.dom.from_sympy(v) return self((num, den)).cancel() def _vector_to_sdm(self, v, order): """ Turn an iterable into a sparse distributed module. Note that the vector is multiplied by a unit first to make all entries polynomials. Examples ======== >>> from sympy import ilex, QQ >>> from sympy.abc import x, y >>> R = QQ.old_poly_ring(x, y, order=ilex) >>> f = R.convert((x + 2*y) / (1 + x)) >>> g = R.convert(x * y) >>> R._vector_to_sdm([f, g], ilex) [((0, 0, 1), 2), ((0, 1, 0), 1), ((1, 1, 1), 1), ((1, 2, 1), 1)] """ # NOTE this is quite inefficient... u = self.one.numer() for x in v: u *= x.denom() return _vector_to_sdm_helper([x.numer()*u/x.denom() for x in v], order) @public def PolynomialRing(dom, *gens, **opts): r""" Create a generalized multivariate polynomial ring. A generalized polynomial ring is defined by a ground field `K`, a set of generators (typically `x_1, \ldots, x_n`) and a monomial order `<`. The monomial order can be global, local or mixed. In any case it induces a total ordering on the monomials, and there exists for every (non-zero) polynomial `f \in K[x_1, \ldots, x_n]` a well-defined "leading monomial" `LM(f) = LM(f, >)`. One can then define a multiplicative subset `S = S_> = \{f \in K[x_1, \ldots, x_n] | LM(f) = 1\}`. The generalized polynomial ring corresponding to the monomial order is `R = S^{-1}K[x_1, \ldots, x_n]`. If `>` is a so-called global order, that is `1` is the smallest monomial, then we just have `S = K` and `R = K[x_1, \ldots, x_n]`. Examples ======== A few examples may make this clearer. >>> from sympy.abc import x, y >>> from sympy import QQ Our first ring uses global lexicographic order. >>> R1 = QQ.old_poly_ring(x, y, order=(("lex", x, y),)) The second ring uses local lexicographic order. Note that when using a single (non-product) order, you can just specify the name and omit the variables: >>> R2 = QQ.old_poly_ring(x, y, order="ilex") The third and fourth rings use a mixed orders: >>> o1 = (("ilex", x), ("lex", y)) >>> o2 = (("lex", x), ("ilex", y)) >>> R3 = QQ.old_poly_ring(x, y, order=o1) >>> R4 = QQ.old_poly_ring(x, y, order=o2) We will investigate what elements of `K(x, y)` are contained in the various rings. >>> L = [x, 1/x, y/(1 + x), 1/(1 + y), 1/(1 + x*y)] >>> test = lambda R: [f in R for f in L] The first ring is just `K[x, y]`: >>> test(R1) [True, False, False, False, False] The second ring is R1 localised at the maximal ideal (x, y): >>> test(R2) [True, False, True, True, True] The third ring is R1 localised at the prime ideal (x): >>> test(R3) [True, False, True, False, True] Finally the fourth ring is R1 localised at `S = K[x, y] \setminus yK[y]`: >>> test(R4) [True, False, False, True, False] """ order = opts.get("order", GeneralizedPolynomialRing.default_order) if iterable(order): order = build_product_order(order, gens) order = monomial_key(order) opts['order'] = order if order.is_global: return GlobalPolynomialRing(dom, *gens, **opts) else: return GeneralizedPolynomialRing(dom, *gens, **opts)
29730d4c3826c8a25aef76ffb0384c5f3a89d92c2f5a366561571b345a14985a
"""Implementation of :class:`PolynomialRing` class. """ from sympy.polys.domains.ring import Ring from sympy.polys.domains.compositedomain import CompositeDomain from sympy.polys.polyerrors import CoercionFailed, GeneratorsError from sympy.utilities import public @public class PolynomialRing(Ring, CompositeDomain): """A class for representing multivariate polynomial rings. """ is_PolynomialRing = is_Poly = True has_assoc_Ring = True has_assoc_Field = True def __init__(self, domain_or_ring, symbols=None, order=None): from sympy.polys.rings import PolyRing if isinstance(domain_or_ring, PolyRing) and symbols is None and order is None: ring = domain_or_ring else: ring = PolyRing(symbols, domain_or_ring, order) self.ring = ring self.dtype = ring.dtype self.gens = ring.gens self.ngens = ring.ngens self.symbols = ring.symbols self.domain = ring.domain if symbols: if ring.domain.is_Field and ring.domain.is_Exact and len(symbols)==1: self.is_PID = True # TODO: remove this self.dom = self.domain def new(self, element): return self.ring.ring_new(element) @property def zero(self): return self.ring.zero @property def one(self): return self.ring.one @property def order(self): return self.ring.order def __str__(self): return str(self.domain) + '[' + ','.join(map(str, self.symbols)) + ']' def __hash__(self): return hash((self.__class__.__name__, self.dtype.ring, self.domain, self.symbols)) def __eq__(self, other): """Returns `True` if two domains are equivalent. """ return isinstance(other, PolynomialRing) and \ (self.dtype.ring, self.domain, self.symbols) == \ (other.dtype.ring, other.domain, other.symbols) def is_unit(self, a): """Returns ``True`` if ``a`` is a unit of ``self``""" if not a.is_ground: return False K = self.domain return K.is_unit(K.convert_from(a, self)) def to_sympy(self, a): """Convert `a` to a SymPy object. """ return a.as_expr() def from_sympy(self, a): """Convert SymPy's expression to `dtype`. """ return self.ring.from_expr(a) def from_ZZ_python(K1, a, K0): """Convert a Python `int` object to `dtype`. """ return K1(K1.domain.convert(a, K0)) def from_QQ_python(K1, a, K0): """Convert a Python `Fraction` object to `dtype`. """ return K1(K1.domain.convert(a, K0)) def from_ZZ_gmpy(K1, a, K0): """Convert a GMPY `mpz` object to `dtype`. """ return K1(K1.domain.convert(a, K0)) def from_QQ_gmpy(K1, a, K0): """Convert a GMPY `mpq` object to `dtype`. """ return K1(K1.domain.convert(a, K0)) def from_GaussianIntegerRing(K1, a, K0): """Convert a `GaussianInteger` object to `dtype`. """ return K1(K1.domain.convert(a, K0)) def from_GaussianRationalField(K1, a, K0): """Convert a `GaussianRational` object to `dtype`. """ return K1(K1.domain.convert(a, K0)) def from_RealField(K1, a, K0): """Convert a mpmath `mpf` object to `dtype`. """ return K1(K1.domain.convert(a, K0)) def from_AlgebraicField(K1, a, K0): """Convert an algebraic number to ``dtype``. """ if K1.domain == K0: return K1.new(a) def from_PolynomialRing(K1, a, K0): """Convert a polynomial to ``dtype``. """ try: return a.set_ring(K1.ring) except (CoercionFailed, GeneratorsError): return None def from_FractionField(K1, a, K0): """Convert a rational function to ``dtype``. """ q, r = K0.numer(a).div(K0.denom(a)) if r.is_zero: return K1.from_PolynomialRing(q, K0.field.ring.to_domain()) else: return None def from_GlobalPolynomialRing(K1, a, K0): """Convert from old poly ring to ``dtype``. """ if K1.symbols == K0.gens: ad = a.to_dict() if K1.domain != K0.domain: ad = {m: K1.domain.convert(c) for m, c in ad.items()} return K1(ad) elif a.is_ground and K0.domain == K1: return K1.convert_from(a.to_list()[0], K0.domain) def get_field(self): """Returns a field associated with `self`. """ return self.ring.to_field().to_domain() def is_positive(self, a): """Returns True if `LC(a)` is positive. """ return self.domain.is_positive(a.LC) def is_negative(self, a): """Returns True if `LC(a)` is negative. """ return self.domain.is_negative(a.LC) def is_nonpositive(self, a): """Returns True if `LC(a)` is non-positive. """ return self.domain.is_nonpositive(a.LC) def is_nonnegative(self, a): """Returns True if `LC(a)` is non-negative. """ return self.domain.is_nonnegative(a.LC) def gcdex(self, a, b): """Extended GCD of `a` and `b`. """ return a.gcdex(b) def gcd(self, a, b): """Returns GCD of `a` and `b`. """ return a.gcd(b) def lcm(self, a, b): """Returns LCM of `a` and `b`. """ return a.lcm(b) def factorial(self, a): """Returns factorial of `a`. """ return self.dtype(self.domain.factorial(a))
51d351bbaa2076a811cf3118782ba42ad9ff9c2c85baa931efde6232642015db
"""Implementation of :class:`Domain` class. """ from typing import Any, Optional, Type from sympy.core import Basic, sympify from sympy.core.compatibility import HAS_GMPY, is_sequence, ordered from sympy.core.decorators import deprecated from sympy.polys.domains.domainelement import DomainElement from sympy.polys.orderings import lex from sympy.polys.polyerrors import UnificationFailed, CoercionFailed, DomainError from sympy.polys.polyutils import _unify_gens, _not_a_coeff from sympy.utilities import default_sort_key, public @public class Domain: """Represents an abstract domain. """ dtype = None # type: Optional[Type] zero = None # type: Optional[Any] one = None # type: Optional[Any] is_Ring = False is_Field = False has_assoc_Ring = False has_assoc_Field = False is_FiniteField = is_FF = False is_IntegerRing = is_ZZ = False is_RationalField = is_QQ = False is_GaussianRing = is_ZZ_I = False is_GaussianField = is_QQ_I = False is_RealField = is_RR = False is_ComplexField = is_CC = False is_AlgebraicField = is_Algebraic = False is_PolynomialRing = is_Poly = False is_FractionField = is_Frac = False is_SymbolicDomain = is_EX = False is_FiniteExtension = False is_Exact = True is_Numerical = False is_Simple = False is_Composite = False is_PID = False has_CharacteristicZero = False rep = None # type: Optional[str] alias = None # type: Optional[str] @property # type: ignore @deprecated(useinstead="is_Field", issue=12723, deprecated_since_version="1.1") def has_Field(self): return self.is_Field @property # type: ignore @deprecated(useinstead="is_Ring", issue=12723, deprecated_since_version="1.1") def has_Ring(self): return self.is_Ring def __init__(self): raise NotImplementedError def __str__(self): return self.rep def __repr__(self): return str(self) def __hash__(self): return hash((self.__class__.__name__, self.dtype)) def new(self, *args): return self.dtype(*args) @property def tp(self): return self.dtype def __call__(self, *args): """Construct an element of ``self`` domain from ``args``. """ return self.new(*args) def normal(self, *args): return self.dtype(*args) def convert_from(self, element, base): """Convert ``element`` to ``self.dtype`` given the base domain. """ if base.alias is not None: method = "from_" + base.alias else: method = "from_" + base.__class__.__name__ _convert = getattr(self, method) if _convert is not None: result = _convert(element, base) if result is not None: return result raise CoercionFailed("can't convert %s of type %s from %s to %s" % (element, type(element), base, self)) def convert(self, element, base=None): """Convert ``element`` to ``self.dtype``. """ if _not_a_coeff(element): raise CoercionFailed('%s is not in any domain' % element) if base is not None: return self.convert_from(element, base) if self.of_type(element): return element from sympy.polys.domains import PythonIntegerRing, GMPYIntegerRing, GMPYRationalField, RealField, ComplexField if isinstance(element, int): return self.convert_from(element, PythonIntegerRing()) if HAS_GMPY: integers = GMPYIntegerRing() if isinstance(element, integers.tp): return self.convert_from(element, integers) rationals = GMPYRationalField() if isinstance(element, rationals.tp): return self.convert_from(element, rationals) if isinstance(element, float): parent = RealField(tol=False) return self.convert_from(parent(element), parent) if isinstance(element, complex): parent = ComplexField(tol=False) return self.convert_from(parent(element), parent) if isinstance(element, DomainElement): return self.convert_from(element, element.parent()) # TODO: implement this in from_ methods if self.is_Numerical and getattr(element, 'is_ground', False): return self.convert(element.LC()) if isinstance(element, Basic): try: return self.from_sympy(element) except (TypeError, ValueError): pass else: # TODO: remove this branch if not is_sequence(element): try: element = sympify(element, strict=True) if isinstance(element, Basic): return self.from_sympy(element) except (TypeError, ValueError): pass raise CoercionFailed("can't convert %s of type %s to %s" % (element, type(element), self)) def of_type(self, element): """Check if ``a`` is of type ``dtype``. """ return isinstance(element, self.tp) # XXX: this isn't correct, e.g. PolyElement def __contains__(self, a): """Check if ``a`` belongs to this domain. """ try: if _not_a_coeff(a): raise CoercionFailed self.convert(a) # this might raise, too except CoercionFailed: return False return True def to_sympy(self, a): """Convert ``a`` to a SymPy object. """ raise NotImplementedError def from_sympy(self, a): """Convert a SymPy object to ``dtype``. """ raise NotImplementedError def from_FF_python(K1, a, K0): """Convert ``ModularInteger(int)`` to ``dtype``. """ return None def from_ZZ_python(K1, a, K0): """Convert a Python ``int`` object to ``dtype``. """ return None def from_QQ_python(K1, a, K0): """Convert a Python ``Fraction`` object to ``dtype``. """ return None def from_FF_gmpy(K1, a, K0): """Convert ``ModularInteger(mpz)`` to ``dtype``. """ return None def from_ZZ_gmpy(K1, a, K0): """Convert a GMPY ``mpz`` object to ``dtype``. """ return None def from_QQ_gmpy(K1, a, K0): """Convert a GMPY ``mpq`` object to ``dtype``. """ return None def from_RealField(K1, a, K0): """Convert a real element object to ``dtype``. """ return None def from_ComplexField(K1, a, K0): """Convert a complex element to ``dtype``. """ return None def from_AlgebraicField(K1, a, K0): """Convert an algebraic number to ``dtype``. """ return None def from_PolynomialRing(K1, a, K0): """Convert a polynomial to ``dtype``. """ if a.is_ground: return K1.convert(a.LC, K0.dom) def from_FractionField(K1, a, K0): """Convert a rational function to ``dtype``. """ return None def from_MonogenicFiniteExtension(K1, a, K0): """Convert an ``ExtensionElement`` to ``dtype``. """ return K1.convert_from(a.rep, K0.ring) def from_ExpressionDomain(K1, a, K0): """Convert a ``EX`` object to ``dtype``. """ return K1.from_sympy(a.ex) def from_GlobalPolynomialRing(K1, a, K0): """Convert a polynomial to ``dtype``. """ if a.degree() <= 0: return K1.convert(a.LC(), K0.dom) def from_GeneralizedPolynomialRing(K1, a, K0): return K1.from_FractionField(a, K0) def unify_with_symbols(K0, K1, symbols): if (K0.is_Composite and (set(K0.symbols) & set(symbols))) or (K1.is_Composite and (set(K1.symbols) & set(symbols))): raise UnificationFailed("can't unify %s with %s, given %s generators" % (K0, K1, tuple(symbols))) return K0.unify(K1) def unify(K0, K1, symbols=None): """ Construct a minimal domain that contains elements of ``K0`` and ``K1``. Known domains (from smallest to largest): - ``GF(p)`` - ``ZZ`` - ``QQ`` - ``RR(prec, tol)`` - ``CC(prec, tol)`` - ``ALG(a, b, c)`` - ``K[x, y, z]`` - ``K(x, y, z)`` - ``EX`` """ if symbols is not None: return K0.unify_with_symbols(K1, symbols) if K0 == K1: return K0 if K0.is_EX: return K0 if K1.is_EX: return K1 if K0.is_FiniteExtension or K1.is_FiniteExtension: if K1.is_FiniteExtension: K0, K1 = K1, K0 if K1.is_FiniteExtension: # Unifying two extensions. # Try to ensure that K0.unify(K1) == K1.unify(K0) if list(ordered([K0.modulus, K1.modulus]))[1] == K0.modulus: K0, K1 = K1, K0 return K1.set_domain(K0) else: # Drop the generator from other and unify with the base domain K1 = K1.drop(K0.symbol) K1 = K0.domain.unify(K1) return K0.set_domain(K1) if K0.is_Composite or K1.is_Composite: K0_ground = K0.dom if K0.is_Composite else K0 K1_ground = K1.dom if K1.is_Composite else K1 K0_symbols = K0.symbols if K0.is_Composite else () K1_symbols = K1.symbols if K1.is_Composite else () domain = K0_ground.unify(K1_ground) symbols = _unify_gens(K0_symbols, K1_symbols) order = K0.order if K0.is_Composite else K1.order if ((K0.is_FractionField and K1.is_PolynomialRing or K1.is_FractionField and K0.is_PolynomialRing) and (not K0_ground.is_Field or not K1_ground.is_Field) and domain.is_Field): domain = domain.get_ring() if K0.is_Composite and (not K1.is_Composite or K0.is_FractionField or K1.is_PolynomialRing): cls = K0.__class__ else: cls = K1.__class__ from sympy.polys.domains.old_polynomialring import GlobalPolynomialRing if cls == GlobalPolynomialRing: return cls(domain, symbols) return cls(domain, symbols, order) def mkinexact(cls, K0, K1): prec = max(K0.precision, K1.precision) tol = max(K0.tolerance, K1.tolerance) return cls(prec=prec, tol=tol) if K1.is_ComplexField: K0, K1 = K1, K0 if K0.is_ComplexField: if K1.is_ComplexField or K1.is_RealField: return mkinexact(K0.__class__, K0, K1) else: return K0 if K1.is_RealField: K0, K1 = K1, K0 if K0.is_RealField: if K1.is_RealField: return mkinexact(K0.__class__, K0, K1) elif K1.is_GaussianRing or K1.is_GaussianField: from sympy.polys.domains.complexfield import ComplexField return ComplexField(prec=K0.precision, tol=K0.tolerance) else: return K0 if K1.is_AlgebraicField: K0, K1 = K1, K0 if K0.is_AlgebraicField: if K1.is_GaussianRing: K1 = K1.get_field() if K1.is_GaussianField: K1 = K1.as_AlgebraicField() if K1.is_AlgebraicField: return K0.__class__(K0.dom.unify(K1.dom), *_unify_gens(K0.orig_ext, K1.orig_ext)) else: return K0 if K0.is_GaussianField: return K0 if K1.is_GaussianField: return K1 if K0.is_GaussianRing: if K1.is_RationalField: K0 = K0.get_field() return K0 if K1.is_GaussianRing: if K0.is_RationalField: K1 = K1.get_field() return K1 if K0.is_RationalField: return K0 if K1.is_RationalField: return K1 if K0.is_IntegerRing: return K0 if K1.is_IntegerRing: return K1 if K0.is_FiniteField and K1.is_FiniteField: return K0.__class__(max(K0.mod, K1.mod, key=default_sort_key)) from sympy.polys.domains import EX return EX def __eq__(self, other): """Returns ``True`` if two domains are equivalent. """ return isinstance(other, Domain) and self.dtype == other.dtype def __ne__(self, other): """Returns ``False`` if two domains are equivalent. """ return not self == other def map(self, seq): """Rersively apply ``self`` to all elements of ``seq``. """ result = [] for elt in seq: if isinstance(elt, list): result.append(self.map(elt)) else: result.append(self(elt)) return result def get_ring(self): """Returns a ring associated with ``self``. """ raise DomainError('there is no ring associated with %s' % self) def get_field(self): """Returns a field associated with ``self``. """ raise DomainError('there is no field associated with %s' % self) def get_exact(self): """Returns an exact domain associated with ``self``. """ return self def __getitem__(self, symbols): """The mathematical way to make a polynomial ring. """ if hasattr(symbols, '__iter__'): return self.poly_ring(*symbols) else: return self.poly_ring(symbols) def poly_ring(self, *symbols, order=lex): """Returns a polynomial ring, i.e. `K[X]`. """ from sympy.polys.domains.polynomialring import PolynomialRing return PolynomialRing(self, symbols, order) def frac_field(self, *symbols, order=lex): """Returns a fraction field, i.e. `K(X)`. """ from sympy.polys.domains.fractionfield import FractionField return FractionField(self, symbols, order) def old_poly_ring(self, *symbols, **kwargs): """Returns a polynomial ring, i.e. `K[X]`. """ from sympy.polys.domains.old_polynomialring import PolynomialRing return PolynomialRing(self, *symbols, **kwargs) def old_frac_field(self, *symbols, **kwargs): """Returns a fraction field, i.e. `K(X)`. """ from sympy.polys.domains.old_fractionfield import FractionField return FractionField(self, *symbols, **kwargs) def algebraic_field(self, *extension): r"""Returns an algebraic field, i.e. `K(\alpha, \ldots)`. """ raise DomainError("can't create algebraic field over %s" % self) def inject(self, *symbols): """Inject generators into this domain. """ raise NotImplementedError def drop(self, *symbols): """Drop generators from this domain. """ if self.is_Simple: return self raise NotImplementedError # pragma: no cover def is_zero(self, a): """Returns True if ``a`` is zero. """ return not a def is_one(self, a): """Returns True if ``a`` is one. """ return a == self.one def is_positive(self, a): """Returns True if ``a`` is positive. """ return a > 0 def is_negative(self, a): """Returns True if ``a`` is negative. """ return a < 0 def is_nonpositive(self, a): """Returns True if ``a`` is non-positive. """ return a <= 0 def is_nonnegative(self, a): """Returns True if ``a`` is non-negative. """ return a >= 0 def abs(self, a): """Absolute value of ``a``, implies ``__abs__``. """ return abs(a) def neg(self, a): """Returns ``a`` negated, implies ``__neg__``. """ return -a def pos(self, a): """Returns ``a`` positive, implies ``__pos__``. """ return +a def add(self, a, b): """Sum of ``a`` and ``b``, implies ``__add__``. """ return a + b def sub(self, a, b): """Difference of ``a`` and ``b``, implies ``__sub__``. """ return a - b def mul(self, a, b): """Product of ``a`` and ``b``, implies ``__mul__``. """ return a * b def pow(self, a, b): """Raise ``a`` to power ``b``, implies ``__pow__``. """ return a ** b def exquo(self, a, b): """Exact quotient of ``a`` and ``b``, implies something. """ raise NotImplementedError def quo(self, a, b): """Quotient of ``a`` and ``b``, implies something. """ raise NotImplementedError def rem(self, a, b): """Remainder of ``a`` and ``b``, implies ``__mod__``. """ raise NotImplementedError def div(self, a, b): """Division of ``a`` and ``b``, implies something. """ raise NotImplementedError def invert(self, a, b): """Returns inversion of ``a mod b``, implies something. """ raise NotImplementedError def revert(self, a): """Returns ``a**(-1)`` if possible. """ raise NotImplementedError def numer(self, a): """Returns numerator of ``a``. """ raise NotImplementedError def denom(self, a): """Returns denominator of ``a``. """ raise NotImplementedError def half_gcdex(self, a, b): """Half extended GCD of ``a`` and ``b``. """ s, t, h = self.gcdex(a, b) return s, h def gcdex(self, a, b): """Extended GCD of ``a`` and ``b``. """ raise NotImplementedError def cofactors(self, a, b): """Returns GCD and cofactors of ``a`` and ``b``. """ gcd = self.gcd(a, b) cfa = self.quo(a, gcd) cfb = self.quo(b, gcd) return gcd, cfa, cfb def gcd(self, a, b): """Returns GCD of ``a`` and ``b``. """ raise NotImplementedError def lcm(self, a, b): """Returns LCM of ``a`` and ``b``. """ raise NotImplementedError def log(self, a, b): """Returns b-base logarithm of ``a``. """ raise NotImplementedError def sqrt(self, a): """Returns square root of ``a``. """ raise NotImplementedError def evalf(self, a, prec=None, **options): """Returns numerical approximation of ``a``. """ return self.to_sympy(a).evalf(prec, **options) n = evalf def real(self, a): return a def imag(self, a): return self.zero def almosteq(self, a, b, tolerance=None): """Check if ``a`` and ``b`` are almost equal. """ return a == b def characteristic(self): """Return the characteristic of this domain. """ raise NotImplementedError('characteristic()') __all__ = ['Domain']
5513c85d60e4c484ed5a783c55e03c98e32b8823f89f7dd2e42067bb63b4b2bb
"""Tests for user-friendly public interface to polynomial functions. """ import pickle from sympy.polys.polytools import ( Poly, PurePoly, poly, parallel_poly_from_expr, degree, degree_list, total_degree, LC, LM, LT, pdiv, prem, pquo, pexquo, div, rem, quo, exquo, half_gcdex, gcdex, invert, subresultants, resultant, discriminant, terms_gcd, cofactors, gcd, gcd_list, lcm, lcm_list, trunc, monic, content, primitive, compose, decompose, sturm, gff_list, gff, sqf_norm, sqf_part, sqf_list, sqf, factor_list, factor, intervals, refine_root, count_roots, real_roots, nroots, ground_roots, nth_power_roots_poly, cancel, reduced, groebner, GroebnerBasis, is_zero_dimensional, _torational_factor_list, to_rational_coeffs) from sympy.polys.polyerrors import ( MultivariatePolynomialError, ExactQuotientFailed, PolificationFailed, ComputationFailed, UnificationFailed, RefinementFailed, GeneratorsNeeded, GeneratorsError, PolynomialError, CoercionFailed, DomainError, OptionError, FlagError) from sympy.polys.polyclasses import DMP from sympy.polys.fields import field from sympy.polys.domains import FF, ZZ, QQ, ZZ_I, QQ_I, RR, EX from sympy.polys.domains.realfield import RealField from sympy.polys.orderings import lex, grlex, grevlex from sympy import ( S, Integer, Rational, Float, Mul, Symbol, sqrt, Piecewise, Derivative, exp, sin, tanh, expand, oo, I, pi, re, im, rootof, Eq, Tuple, Expr, diff) from sympy.core.basic import _aresame from sympy.core.compatibility import iterable from sympy.core.mul import _keep_coeff from sympy.testing.pytest import raises, warns_deprecated_sympy from sympy.abc import a, b, c, d, p, q, t, w, x, y, z from sympy import MatrixSymbol, Matrix def _epsilon_eq(a, b): for u, v in zip(a, b): if abs(u - v) > 1e-10: return False return True def _strict_eq(a, b): if type(a) == type(b): if iterable(a): if len(a) == len(b): return all(_strict_eq(c, d) for c, d in zip(a, b)) else: return False else: return isinstance(a, Poly) and a.eq(b, strict=True) else: return False def test_Poly_mixed_operations(): p = Poly(x, x) with warns_deprecated_sympy(): p * exp(x) with warns_deprecated_sympy(): p + exp(x) with warns_deprecated_sympy(): p - exp(x) def test_Poly_from_dict(): K = FF(3) assert Poly.from_dict( {0: 1, 1: 2}, gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_dict( {0: 1, 1: 5}, gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_dict( {(0,): 1, (1,): 2}, gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_dict( {(0,): 1, (1,): 5}, gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_dict({(0, 0): 1, (1, 1): 2}, gens=( x, y), domain=K).rep == DMP([[K(2), K(0)], [K(1)]], K) assert Poly.from_dict({0: 1, 1: 2}, gens=x).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_dict( {0: 1, 1: 2}, gens=x, field=True).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_dict( {0: 1, 1: 2}, gens=x, domain=ZZ).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_dict( {0: 1, 1: 2}, gens=x, domain=QQ).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_dict( {(0,): 1, (1,): 2}, gens=x).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_dict( {(0,): 1, (1,): 2}, gens=x, field=True).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_dict( {(0,): 1, (1,): 2}, gens=x, domain=ZZ).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_dict( {(0,): 1, (1,): 2}, gens=x, domain=QQ).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_dict({(1,): sin(y)}, gens=x, composite=False) == \ Poly(sin(y)*x, x, domain='EX') assert Poly.from_dict({(1,): y}, gens=x, composite=False) == \ Poly(y*x, x, domain='EX') assert Poly.from_dict({(1, 1): 1}, gens=(x, y), composite=False) == \ Poly(x*y, x, y, domain='ZZ') assert Poly.from_dict({(1, 0): y}, gens=(x, z), composite=False) == \ Poly(y*x, x, z, domain='EX') def test_Poly_from_list(): K = FF(3) assert Poly.from_list([2, 1], gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_list([5, 1], gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_list([2, 1], gens=x).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_list([2, 1], gens=x, field=True).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_list([2, 1], gens=x, domain=ZZ).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_list([2, 1], gens=x, domain=QQ).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_list([0, 1.0], gens=x).rep == DMP([RR(1.0)], RR) assert Poly.from_list([1.0, 0], gens=x).rep == DMP([RR(1.0), RR(0.0)], RR) raises(MultivariatePolynomialError, lambda: Poly.from_list([[]], gens=(x, y))) def test_Poly_from_poly(): f = Poly(x + 7, x, domain=ZZ) g = Poly(x + 2, x, modulus=3) h = Poly(x + y, x, y, domain=ZZ) K = FF(3) assert Poly.from_poly(f) == f assert Poly.from_poly(f, domain=K).rep == DMP([K(1), K(1)], K) assert Poly.from_poly(f, domain=ZZ).rep == DMP([1, 7], ZZ) assert Poly.from_poly(f, domain=QQ).rep == DMP([1, 7], QQ) assert Poly.from_poly(f, gens=x) == f assert Poly.from_poly(f, gens=x, domain=K).rep == DMP([K(1), K(1)], K) assert Poly.from_poly(f, gens=x, domain=ZZ).rep == DMP([1, 7], ZZ) assert Poly.from_poly(f, gens=x, domain=QQ).rep == DMP([1, 7], QQ) assert Poly.from_poly(f, gens=y) == Poly(x + 7, y, domain='ZZ[x]') raises(CoercionFailed, lambda: Poly.from_poly(f, gens=y, domain=K)) raises(CoercionFailed, lambda: Poly.from_poly(f, gens=y, domain=ZZ)) raises(CoercionFailed, lambda: Poly.from_poly(f, gens=y, domain=QQ)) assert Poly.from_poly(f, gens=(x, y)) == Poly(x + 7, x, y, domain='ZZ') assert Poly.from_poly( f, gens=(x, y), domain=ZZ) == Poly(x + 7, x, y, domain='ZZ') assert Poly.from_poly( f, gens=(x, y), domain=QQ) == Poly(x + 7, x, y, domain='QQ') assert Poly.from_poly( f, gens=(x, y), modulus=3) == Poly(x + 7, x, y, domain='FF(3)') K = FF(2) assert Poly.from_poly(g) == g assert Poly.from_poly(g, domain=ZZ).rep == DMP([1, -1], ZZ) raises(CoercionFailed, lambda: Poly.from_poly(g, domain=QQ)) assert Poly.from_poly(g, domain=K).rep == DMP([K(1), K(0)], K) assert Poly.from_poly(g, gens=x) == g assert Poly.from_poly(g, gens=x, domain=ZZ).rep == DMP([1, -1], ZZ) raises(CoercionFailed, lambda: Poly.from_poly(g, gens=x, domain=QQ)) assert Poly.from_poly(g, gens=x, domain=K).rep == DMP([K(1), K(0)], K) K = FF(3) assert Poly.from_poly(h) == h assert Poly.from_poly( h, domain=ZZ).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) assert Poly.from_poly( h, domain=QQ).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ) assert Poly.from_poly(h, domain=K).rep == DMP([[K(1)], [K(1), K(0)]], K) assert Poly.from_poly(h, gens=x) == Poly(x + y, x, domain=ZZ[y]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=x, domain=ZZ)) assert Poly.from_poly( h, gens=x, domain=ZZ[y]) == Poly(x + y, x, domain=ZZ[y]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=x, domain=QQ)) assert Poly.from_poly( h, gens=x, domain=QQ[y]) == Poly(x + y, x, domain=QQ[y]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=x, modulus=3)) assert Poly.from_poly(h, gens=y) == Poly(x + y, y, domain=ZZ[x]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=y, domain=ZZ)) assert Poly.from_poly( h, gens=y, domain=ZZ[x]) == Poly(x + y, y, domain=ZZ[x]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=y, domain=QQ)) assert Poly.from_poly( h, gens=y, domain=QQ[x]) == Poly(x + y, y, domain=QQ[x]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=y, modulus=3)) assert Poly.from_poly(h, gens=(x, y)) == h assert Poly.from_poly( h, gens=(x, y), domain=ZZ).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) assert Poly.from_poly( h, gens=(x, y), domain=QQ).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ) assert Poly.from_poly( h, gens=(x, y), domain=K).rep == DMP([[K(1)], [K(1), K(0)]], K) assert Poly.from_poly( h, gens=(y, x)).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) assert Poly.from_poly( h, gens=(y, x), domain=ZZ).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) assert Poly.from_poly( h, gens=(y, x), domain=QQ).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ) assert Poly.from_poly( h, gens=(y, x), domain=K).rep == DMP([[K(1)], [K(1), K(0)]], K) assert Poly.from_poly( h, gens=(x, y), field=True).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ) assert Poly.from_poly( h, gens=(x, y), field=True).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ) def test_Poly_from_expr(): raises(GeneratorsNeeded, lambda: Poly.from_expr(S.Zero)) raises(GeneratorsNeeded, lambda: Poly.from_expr(S(7))) F3 = FF(3) assert Poly.from_expr(x + 5, domain=F3).rep == DMP([F3(1), F3(2)], F3) assert Poly.from_expr(y + 5, domain=F3).rep == DMP([F3(1), F3(2)], F3) assert Poly.from_expr(x + 5, x, domain=F3).rep == DMP([F3(1), F3(2)], F3) assert Poly.from_expr(y + 5, y, domain=F3).rep == DMP([F3(1), F3(2)], F3) assert Poly.from_expr(x + y, domain=F3).rep == DMP([[F3(1)], [F3(1), F3(0)]], F3) assert Poly.from_expr(x + y, x, y, domain=F3).rep == DMP([[F3(1)], [F3(1), F3(0)]], F3) assert Poly.from_expr(x + 5).rep == DMP([1, 5], ZZ) assert Poly.from_expr(y + 5).rep == DMP([1, 5], ZZ) assert Poly.from_expr(x + 5, x).rep == DMP([1, 5], ZZ) assert Poly.from_expr(y + 5, y).rep == DMP([1, 5], ZZ) assert Poly.from_expr(x + 5, domain=ZZ).rep == DMP([1, 5], ZZ) assert Poly.from_expr(y + 5, domain=ZZ).rep == DMP([1, 5], ZZ) assert Poly.from_expr(x + 5, x, domain=ZZ).rep == DMP([1, 5], ZZ) assert Poly.from_expr(y + 5, y, domain=ZZ).rep == DMP([1, 5], ZZ) assert Poly.from_expr(x + 5, x, y, domain=ZZ).rep == DMP([[1], [5]], ZZ) assert Poly.from_expr(y + 5, x, y, domain=ZZ).rep == DMP([[1, 5]], ZZ) def test_poly_from_domain_element(): dom = ZZ[x] assert Poly(dom(x+1), y, domain=dom).rep == DMP([dom(x+1)], dom) dom = dom.get_field() assert Poly(dom(x+1), y, domain=dom).rep == DMP([dom(x+1)], dom) dom = QQ[x] assert Poly(dom(x+1), y, domain=dom).rep == DMP([dom(x+1)], dom) dom = dom.get_field() assert Poly(dom(x+1), y, domain=dom).rep == DMP([dom(x+1)], dom) dom = ZZ.old_poly_ring(x) assert Poly(dom([1, 1]), y, domain=dom).rep == DMP([dom([1, 1])], dom) dom = dom.get_field() assert Poly(dom([1, 1]), y, domain=dom).rep == DMP([dom([1, 1])], dom) dom = QQ.old_poly_ring(x) assert Poly(dom([1, 1]), y, domain=dom).rep == DMP([dom([1, 1])], dom) dom = dom.get_field() assert Poly(dom([1, 1]), y, domain=dom).rep == DMP([dom([1, 1])], dom) dom = QQ.algebraic_field(I) assert Poly(dom([1, 1]), x, domain=dom).rep == DMP([dom([1, 1])], dom) def test_Poly__new__(): raises(GeneratorsError, lambda: Poly(x + 1, x, x)) raises(GeneratorsError, lambda: Poly(x + y, x, y, domain=ZZ[x])) raises(GeneratorsError, lambda: Poly(x + y, x, y, domain=ZZ[y])) raises(OptionError, lambda: Poly(x, x, symmetric=True)) raises(OptionError, lambda: Poly(x + 2, x, modulus=3, domain=QQ)) raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, gaussian=True)) raises(OptionError, lambda: Poly(x + 2, x, modulus=3, gaussian=True)) raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, extension=[sqrt(3)])) raises(OptionError, lambda: Poly(x + 2, x, modulus=3, extension=[sqrt(3)])) raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, extension=True)) raises(OptionError, lambda: Poly(x + 2, x, modulus=3, extension=True)) raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, greedy=True)) raises(OptionError, lambda: Poly(x + 2, x, domain=QQ, field=True)) raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, greedy=False)) raises(OptionError, lambda: Poly(x + 2, x, domain=QQ, field=False)) raises(NotImplementedError, lambda: Poly(x + 1, x, modulus=3, order='grlex')) raises(NotImplementedError, lambda: Poly(x + 1, x, order='grlex')) raises(GeneratorsNeeded, lambda: Poly({1: 2, 0: 1})) raises(GeneratorsNeeded, lambda: Poly([2, 1])) raises(GeneratorsNeeded, lambda: Poly((2, 1))) raises(GeneratorsNeeded, lambda: Poly(1)) f = a*x**2 + b*x + c assert Poly({2: a, 1: b, 0: c}, x) == f assert Poly(iter([a, b, c]), x) == f assert Poly([a, b, c], x) == f assert Poly((a, b, c), x) == f f = Poly({}, x, y, z) assert f.gens == (x, y, z) and f.as_expr() == 0 assert Poly(Poly(a*x + b*y, x, y), x) == Poly(a*x + b*y, x) assert Poly(3*x**2 + 2*x + 1, domain='ZZ').all_coeffs() == [3, 2, 1] assert Poly(3*x**2 + 2*x + 1, domain='QQ').all_coeffs() == [3, 2, 1] assert Poly(3*x**2 + 2*x + 1, domain='RR').all_coeffs() == [3.0, 2.0, 1.0] raises(CoercionFailed, lambda: Poly(3*x**2/5 + x*Rational(2, 5) + 1, domain='ZZ')) assert Poly( 3*x**2/5 + x*Rational(2, 5) + 1, domain='QQ').all_coeffs() == [Rational(3, 5), Rational(2, 5), 1] assert _epsilon_eq( Poly(3*x**2/5 + x*Rational(2, 5) + 1, domain='RR').all_coeffs(), [0.6, 0.4, 1.0]) assert Poly(3.0*x**2 + 2.0*x + 1, domain='ZZ').all_coeffs() == [3, 2, 1] assert Poly(3.0*x**2 + 2.0*x + 1, domain='QQ').all_coeffs() == [3, 2, 1] assert Poly( 3.0*x**2 + 2.0*x + 1, domain='RR').all_coeffs() == [3.0, 2.0, 1.0] raises(CoercionFailed, lambda: Poly(3.1*x**2 + 2.1*x + 1, domain='ZZ')) assert Poly(3.1*x**2 + 2.1*x + 1, domain='QQ').all_coeffs() == [Rational(31, 10), Rational(21, 10), 1] assert Poly(3.1*x**2 + 2.1*x + 1, domain='RR').all_coeffs() == [3.1, 2.1, 1.0] assert Poly({(2, 1): 1, (1, 2): 2, (1, 1): 3}, x, y) == \ Poly(x**2*y + 2*x*y**2 + 3*x*y, x, y) assert Poly(x**2 + 1, extension=I).get_domain() == QQ.algebraic_field(I) f = 3*x**5 - x**4 + x**3 - x** 2 + 65538 assert Poly(f, x, modulus=65537, symmetric=True) == \ Poly(3*x**5 - x**4 + x**3 - x** 2 + 1, x, modulus=65537, symmetric=True) assert Poly(f, x, modulus=65537, symmetric=False) == \ Poly(3*x**5 + 65536*x**4 + x**3 + 65536*x** 2 + 1, x, modulus=65537, symmetric=False) assert isinstance(Poly(x**2 + x + 1.0).get_domain(), RealField) def test_Poly__args(): assert Poly(x**2 + 1).args == (x**2 + 1, x) def test_Poly__gens(): assert Poly((x - p)*(x - q), x).gens == (x,) assert Poly((x - p)*(x - q), p).gens == (p,) assert Poly((x - p)*(x - q), q).gens == (q,) assert Poly((x - p)*(x - q), x, p).gens == (x, p) assert Poly((x - p)*(x - q), x, q).gens == (x, q) assert Poly((x - p)*(x - q), x, p, q).gens == (x, p, q) assert Poly((x - p)*(x - q), p, x, q).gens == (p, x, q) assert Poly((x - p)*(x - q), p, q, x).gens == (p, q, x) assert Poly((x - p)*(x - q)).gens == (x, p, q) assert Poly((x - p)*(x - q), sort='x > p > q').gens == (x, p, q) assert Poly((x - p)*(x - q), sort='p > x > q').gens == (p, x, q) assert Poly((x - p)*(x - q), sort='p > q > x').gens == (p, q, x) assert Poly((x - p)*(x - q), x, p, q, sort='p > q > x').gens == (x, p, q) assert Poly((x - p)*(x - q), wrt='x').gens == (x, p, q) assert Poly((x - p)*(x - q), wrt='p').gens == (p, x, q) assert Poly((x - p)*(x - q), wrt='q').gens == (q, x, p) assert Poly((x - p)*(x - q), wrt=x).gens == (x, p, q) assert Poly((x - p)*(x - q), wrt=p).gens == (p, x, q) assert Poly((x - p)*(x - q), wrt=q).gens == (q, x, p) assert Poly((x - p)*(x - q), x, p, q, wrt='p').gens == (x, p, q) assert Poly((x - p)*(x - q), wrt='p', sort='q > x').gens == (p, q, x) assert Poly((x - p)*(x - q), wrt='q', sort='p > x').gens == (q, p, x) def test_Poly_zero(): assert Poly(x).zero == Poly(0, x, domain=ZZ) assert Poly(x/2).zero == Poly(0, x, domain=QQ) def test_Poly_one(): assert Poly(x).one == Poly(1, x, domain=ZZ) assert Poly(x/2).one == Poly(1, x, domain=QQ) def test_Poly__unify(): raises(UnificationFailed, lambda: Poly(x)._unify(y)) F3 = FF(3) F5 = FF(5) assert Poly(x, x, modulus=3)._unify(Poly(y, y, modulus=3))[2:] == ( DMP([[F3(1)], []], F3), DMP([[F3(1), F3(0)]], F3)) assert Poly(x, x, modulus=3)._unify(Poly(y, y, modulus=5))[2:] == ( DMP([[F5(1)], []], F5), DMP([[F5(1), F5(0)]], F5)) assert Poly(y, x, y)._unify(Poly(x, x, modulus=3))[2:] == (DMP([[F3(1), F3(0)]], F3), DMP([[F3(1)], []], F3)) assert Poly(x, x, modulus=3)._unify(Poly(y, x, y))[2:] == (DMP([[F3(1)], []], F3), DMP([[F3(1), F3(0)]], F3)) assert Poly(x + 1, x)._unify(Poly(x + 2, x))[2:] == (DMP([1, 1], ZZ), DMP([1, 2], ZZ)) assert Poly(x + 1, x, domain='QQ')._unify(Poly(x + 2, x))[2:] == (DMP([1, 1], QQ), DMP([1, 2], QQ)) assert Poly(x + 1, x)._unify(Poly(x + 2, x, domain='QQ'))[2:] == (DMP([1, 1], QQ), DMP([1, 2], QQ)) assert Poly(x + 1, x)._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ)) assert Poly(x + 1, x, domain='QQ')._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x)._unify(Poly(x + 2, x, y, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, x))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ)) assert Poly(x + 1, x, y, domain='QQ')._unify(Poly(x + 2, x))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, x, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ)) assert Poly(x + 1, x, y, domain='QQ')._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, x, y, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x)._unify(Poly(x + 2, y, x))[2:] == (DMP([[1, 1]], ZZ), DMP([[1, 2]], ZZ)) assert Poly(x + 1, x, domain='QQ')._unify(Poly(x + 2, y, x))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x + 1, x)._unify(Poly(x + 2, y, x, domain='QQ'))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x + 1, y, x)._unify(Poly(x + 2, x))[2:] == (DMP([[1, 1]], ZZ), DMP([[1, 2]], ZZ)) assert Poly(x + 1, y, x, domain='QQ')._unify(Poly(x + 2, x))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x + 1, y, x)._unify(Poly(x + 2, x, domain='QQ'))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, y, x))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ)) assert Poly(x + 1, x, y, domain='QQ')._unify(Poly(x + 2, y, x))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, y, x, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, y, x)._unify(Poly(x + 2, x, y))[2:] == (DMP([[1, 1]], ZZ), DMP([[1, 2]], ZZ)) assert Poly(x + 1, y, x, domain='QQ')._unify(Poly(x + 2, x, y))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x + 1, y, x)._unify(Poly(x + 2, x, y, domain='QQ'))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x**2 + I, x, domain=ZZ_I).unify(Poly(x**2 + sqrt(2), x, extension=True)) == \ (Poly(x**2 + I, x, domain='QQ<sqrt(2) + I>'), Poly(x**2 + sqrt(2), x, domain='QQ<sqrt(2) + I>')) F, A, B = field("a,b", ZZ) assert Poly(a*x, x, domain='ZZ[a]')._unify(Poly(a*b*x, x, domain='ZZ(a,b)'))[2:] == \ (DMP([A, F(0)], F.to_domain()), DMP([A*B, F(0)], F.to_domain())) assert Poly(a*x, x, domain='ZZ(a)')._unify(Poly(a*b*x, x, domain='ZZ(a,b)'))[2:] == \ (DMP([A, F(0)], F.to_domain()), DMP([A*B, F(0)], F.to_domain())) raises(CoercionFailed, lambda: Poly(Poly(x**2 + x**2*z, y, field=True), domain='ZZ(x)')) f = Poly(t**2 + t/3 + x, t, domain='QQ(x)') g = Poly(t**2 + t/3 + x, t, domain='QQ[x]') assert f._unify(g)[2:] == (f.rep, f.rep) def test_Poly_free_symbols(): assert Poly(x**2 + 1).free_symbols == {x} assert Poly(x**2 + y*z).free_symbols == {x, y, z} assert Poly(x**2 + y*z, x).free_symbols == {x, y, z} assert Poly(x**2 + sin(y*z)).free_symbols == {x, y, z} assert Poly(x**2 + sin(y*z), x).free_symbols == {x, y, z} assert Poly(x**2 + sin(y*z), x, domain=EX).free_symbols == {x, y, z} assert Poly(1 + x + x**2, x, y, z).free_symbols == {x} assert Poly(x + sin(y), z).free_symbols == {x, y} def test_PurePoly_free_symbols(): assert PurePoly(x**2 + 1).free_symbols == set() assert PurePoly(x**2 + y*z).free_symbols == set() assert PurePoly(x**2 + y*z, x).free_symbols == {y, z} assert PurePoly(x**2 + sin(y*z)).free_symbols == set() assert PurePoly(x**2 + sin(y*z), x).free_symbols == {y, z} assert PurePoly(x**2 + sin(y*z), x, domain=EX).free_symbols == {y, z} def test_Poly__eq__(): assert (Poly(x, x) == Poly(x, x)) is True assert (Poly(x, x, domain=QQ) == Poly(x, x)) is False assert (Poly(x, x) == Poly(x, x, domain=QQ)) is False assert (Poly(x, x, domain=ZZ[a]) == Poly(x, x)) is False assert (Poly(x, x) == Poly(x, x, domain=ZZ[a])) is False assert (Poly(x*y, x, y) == Poly(x, x)) is False assert (Poly(x, x, y) == Poly(x, x)) is False assert (Poly(x, x) == Poly(x, x, y)) is False assert (Poly(x**2 + 1, x) == Poly(y**2 + 1, y)) is False assert (Poly(y**2 + 1, y) == Poly(x**2 + 1, x)) is False f = Poly(x, x, domain=ZZ) g = Poly(x, x, domain=QQ) assert f.eq(g) is False assert f.ne(g) is True assert f.eq(g, strict=True) is False assert f.ne(g, strict=True) is True t0 = Symbol('t0') f = Poly((t0/2 + x**2)*t**2 - x**2*t, t, domain='QQ[x,t0]') g = Poly((t0/2 + x**2)*t**2 - x**2*t, t, domain='ZZ(x,t0)') assert (f == g) is False def test_PurePoly__eq__(): assert (PurePoly(x, x) == PurePoly(x, x)) is True assert (PurePoly(x, x, domain=QQ) == PurePoly(x, x)) is True assert (PurePoly(x, x) == PurePoly(x, x, domain=QQ)) is True assert (PurePoly(x, x, domain=ZZ[a]) == PurePoly(x, x)) is True assert (PurePoly(x, x) == PurePoly(x, x, domain=ZZ[a])) is True assert (PurePoly(x*y, x, y) == PurePoly(x, x)) is False assert (PurePoly(x, x, y) == PurePoly(x, x)) is False assert (PurePoly(x, x) == PurePoly(x, x, y)) is False assert (PurePoly(x**2 + 1, x) == PurePoly(y**2 + 1, y)) is True assert (PurePoly(y**2 + 1, y) == PurePoly(x**2 + 1, x)) is True f = PurePoly(x, x, domain=ZZ) g = PurePoly(x, x, domain=QQ) assert f.eq(g) is True assert f.ne(g) is False assert f.eq(g, strict=True) is False assert f.ne(g, strict=True) is True f = PurePoly(x, x, domain=ZZ) g = PurePoly(y, y, domain=QQ) assert f.eq(g) is True assert f.ne(g) is False assert f.eq(g, strict=True) is False assert f.ne(g, strict=True) is True def test_PurePoly_Poly(): assert isinstance(PurePoly(Poly(x**2 + 1)), PurePoly) is True assert isinstance(Poly(PurePoly(x**2 + 1)), Poly) is True def test_Poly_get_domain(): assert Poly(2*x).get_domain() == ZZ assert Poly(2*x, domain='ZZ').get_domain() == ZZ assert Poly(2*x, domain='QQ').get_domain() == QQ assert Poly(x/2).get_domain() == QQ raises(CoercionFailed, lambda: Poly(x/2, domain='ZZ')) assert Poly(x/2, domain='QQ').get_domain() == QQ assert isinstance(Poly(0.2*x).get_domain(), RealField) def test_Poly_set_domain(): assert Poly(2*x + 1).set_domain(ZZ) == Poly(2*x + 1) assert Poly(2*x + 1).set_domain('ZZ') == Poly(2*x + 1) assert Poly(2*x + 1).set_domain(QQ) == Poly(2*x + 1, domain='QQ') assert Poly(2*x + 1).set_domain('QQ') == Poly(2*x + 1, domain='QQ') assert Poly(Rational(2, 10)*x + Rational(1, 10)).set_domain('RR') == Poly(0.2*x + 0.1) assert Poly(0.2*x + 0.1).set_domain('QQ') == Poly(Rational(2, 10)*x + Rational(1, 10)) raises(CoercionFailed, lambda: Poly(x/2 + 1).set_domain(ZZ)) raises(CoercionFailed, lambda: Poly(x + 1, modulus=2).set_domain(QQ)) raises(GeneratorsError, lambda: Poly(x*y, x, y).set_domain(ZZ[y])) def test_Poly_get_modulus(): assert Poly(x**2 + 1, modulus=2).get_modulus() == 2 raises(PolynomialError, lambda: Poly(x**2 + 1).get_modulus()) def test_Poly_set_modulus(): assert Poly( x**2 + 1, modulus=2).set_modulus(7) == Poly(x**2 + 1, modulus=7) assert Poly( x**2 + 5, modulus=7).set_modulus(2) == Poly(x**2 + 1, modulus=2) assert Poly(x**2 + 1).set_modulus(2) == Poly(x**2 + 1, modulus=2) raises(CoercionFailed, lambda: Poly(x/2 + 1).set_modulus(2)) def test_Poly_add_ground(): assert Poly(x + 1).add_ground(2) == Poly(x + 3) def test_Poly_sub_ground(): assert Poly(x + 1).sub_ground(2) == Poly(x - 1) def test_Poly_mul_ground(): assert Poly(x + 1).mul_ground(2) == Poly(2*x + 2) def test_Poly_quo_ground(): assert Poly(2*x + 4).quo_ground(2) == Poly(x + 2) assert Poly(2*x + 3).quo_ground(2) == Poly(x + 1) def test_Poly_exquo_ground(): assert Poly(2*x + 4).exquo_ground(2) == Poly(x + 2) raises(ExactQuotientFailed, lambda: Poly(2*x + 3).exquo_ground(2)) def test_Poly_abs(): assert Poly(-x + 1, x).abs() == abs(Poly(-x + 1, x)) == Poly(x + 1, x) def test_Poly_neg(): assert Poly(-x + 1, x).neg() == -Poly(-x + 1, x) == Poly(x - 1, x) def test_Poly_add(): assert Poly(0, x).add(Poly(0, x)) == Poly(0, x) assert Poly(0, x) + Poly(0, x) == Poly(0, x) assert Poly(1, x).add(Poly(0, x)) == Poly(1, x) assert Poly(1, x, y) + Poly(0, x) == Poly(1, x, y) assert Poly(0, x).add(Poly(1, x, y)) == Poly(1, x, y) assert Poly(0, x, y) + Poly(1, x, y) == Poly(1, x, y) assert Poly(1, x) + x == Poly(x + 1, x) with warns_deprecated_sympy(): Poly(1, x) + sin(x) assert Poly(x, x) + 1 == Poly(x + 1, x) assert 1 + Poly(x, x) == Poly(x + 1, x) def test_Poly_sub(): assert Poly(0, x).sub(Poly(0, x)) == Poly(0, x) assert Poly(0, x) - Poly(0, x) == Poly(0, x) assert Poly(1, x).sub(Poly(0, x)) == Poly(1, x) assert Poly(1, x, y) - Poly(0, x) == Poly(1, x, y) assert Poly(0, x).sub(Poly(1, x, y)) == Poly(-1, x, y) assert Poly(0, x, y) - Poly(1, x, y) == Poly(-1, x, y) assert Poly(1, x) - x == Poly(1 - x, x) with warns_deprecated_sympy(): Poly(1, x) - sin(x) assert Poly(x, x) - 1 == Poly(x - 1, x) assert 1 - Poly(x, x) == Poly(1 - x, x) def test_Poly_mul(): assert Poly(0, x).mul(Poly(0, x)) == Poly(0, x) assert Poly(0, x) * Poly(0, x) == Poly(0, x) assert Poly(2, x).mul(Poly(4, x)) == Poly(8, x) assert Poly(2, x, y) * Poly(4, x) == Poly(8, x, y) assert Poly(4, x).mul(Poly(2, x, y)) == Poly(8, x, y) assert Poly(4, x, y) * Poly(2, x, y) == Poly(8, x, y) assert Poly(1, x) * x == Poly(x, x) with warns_deprecated_sympy(): Poly(1, x) * sin(x) assert Poly(x, x) * 2 == Poly(2*x, x) assert 2 * Poly(x, x) == Poly(2*x, x) def test_issue_13079(): assert Poly(x)*x == Poly(x**2, x, domain='ZZ') assert x*Poly(x) == Poly(x**2, x, domain='ZZ') assert -2*Poly(x) == Poly(-2*x, x, domain='ZZ') assert S(-2)*Poly(x) == Poly(-2*x, x, domain='ZZ') assert Poly(x)*S(-2) == Poly(-2*x, x, domain='ZZ') def test_Poly_sqr(): assert Poly(x*y, x, y).sqr() == Poly(x**2*y**2, x, y) def test_Poly_pow(): assert Poly(x, x).pow(10) == Poly(x**10, x) assert Poly(x, x).pow(Integer(10)) == Poly(x**10, x) assert Poly(2*y, x, y).pow(4) == Poly(16*y**4, x, y) assert Poly(2*y, x, y).pow(Integer(4)) == Poly(16*y**4, x, y) assert Poly(7*x*y, x, y)**3 == Poly(343*x**3*y**3, x, y) raises(TypeError, lambda: Poly(x*y + 1, x, y)**(-1)) raises(TypeError, lambda: Poly(x*y + 1, x, y)**x) def test_Poly_divmod(): f, g = Poly(x**2), Poly(x) q, r = g, Poly(0, x) assert divmod(f, g) == (q, r) assert f // g == q assert f % g == r assert divmod(f, x) == (q, r) assert f // x == q assert f % x == r q, r = Poly(0, x), Poly(2, x) assert divmod(2, g) == (q, r) assert 2 // g == q assert 2 % g == r assert Poly(x)/Poly(x) == 1 assert Poly(x**2)/Poly(x) == x assert Poly(x)/Poly(x**2) == 1/x def test_Poly_eq_ne(): assert (Poly(x + y, x, y) == Poly(x + y, x, y)) is True assert (Poly(x + y, x) == Poly(x + y, x, y)) is False assert (Poly(x + y, x, y) == Poly(x + y, x)) is False assert (Poly(x + y, x) == Poly(x + y, x)) is True assert (Poly(x + y, y) == Poly(x + y, y)) is True assert (Poly(x + y, x, y) == x + y) is True assert (Poly(x + y, x) == x + y) is True assert (Poly(x + y, x, y) == x + y) is True assert (Poly(x + y, x) == x + y) is True assert (Poly(x + y, y) == x + y) is True assert (Poly(x + y, x, y) != Poly(x + y, x, y)) is False assert (Poly(x + y, x) != Poly(x + y, x, y)) is True assert (Poly(x + y, x, y) != Poly(x + y, x)) is True assert (Poly(x + y, x) != Poly(x + y, x)) is False assert (Poly(x + y, y) != Poly(x + y, y)) is False assert (Poly(x + y, x, y) != x + y) is False assert (Poly(x + y, x) != x + y) is False assert (Poly(x + y, x, y) != x + y) is False assert (Poly(x + y, x) != x + y) is False assert (Poly(x + y, y) != x + y) is False assert (Poly(x, x) == sin(x)) is False assert (Poly(x, x) != sin(x)) is True def test_Poly_nonzero(): assert not bool(Poly(0, x)) is True assert not bool(Poly(1, x)) is False def test_Poly_properties(): assert Poly(0, x).is_zero is True assert Poly(1, x).is_zero is False assert Poly(1, x).is_one is True assert Poly(2, x).is_one is False assert Poly(x - 1, x).is_sqf is True assert Poly((x - 1)**2, x).is_sqf is False assert Poly(x - 1, x).is_monic is True assert Poly(2*x - 1, x).is_monic is False assert Poly(3*x + 2, x).is_primitive is True assert Poly(4*x + 2, x).is_primitive is False assert Poly(1, x).is_ground is True assert Poly(x, x).is_ground is False assert Poly(x + y + z + 1).is_linear is True assert Poly(x*y*z + 1).is_linear is False assert Poly(x*y + z + 1).is_quadratic is True assert Poly(x*y*z + 1).is_quadratic is False assert Poly(x*y).is_monomial is True assert Poly(x*y + 1).is_monomial is False assert Poly(x**2 + x*y).is_homogeneous is True assert Poly(x**3 + x*y).is_homogeneous is False assert Poly(x).is_univariate is True assert Poly(x*y).is_univariate is False assert Poly(x*y).is_multivariate is True assert Poly(x).is_multivariate is False assert Poly( x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1).is_cyclotomic is False assert Poly( x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1).is_cyclotomic is True def test_Poly_is_irreducible(): assert Poly(x**2 + x + 1).is_irreducible is True assert Poly(x**2 + 2*x + 1).is_irreducible is False assert Poly(7*x + 3, modulus=11).is_irreducible is True assert Poly(7*x**2 + 3*x + 1, modulus=11).is_irreducible is False def test_Poly_subs(): assert Poly(x + 1).subs(x, 0) == 1 assert Poly(x + 1).subs(x, x) == Poly(x + 1) assert Poly(x + 1).subs(x, y) == Poly(y + 1) assert Poly(x*y, x).subs(y, x) == x**2 assert Poly(x*y, x).subs(x, y) == y**2 def test_Poly_replace(): assert Poly(x + 1).replace(x) == Poly(x + 1) assert Poly(x + 1).replace(y) == Poly(y + 1) raises(PolynomialError, lambda: Poly(x + y).replace(z)) assert Poly(x + 1).replace(x, x) == Poly(x + 1) assert Poly(x + 1).replace(x, y) == Poly(y + 1) assert Poly(x + y).replace(x, x) == Poly(x + y) assert Poly(x + y).replace(x, z) == Poly(z + y, z, y) assert Poly(x + y).replace(y, y) == Poly(x + y) assert Poly(x + y).replace(y, z) == Poly(x + z, x, z) assert Poly(x + y).replace(z, t) == Poly(x + y) raises(PolynomialError, lambda: Poly(x + y).replace(x, y)) assert Poly(x + y, x).replace(x, z) == Poly(z + y, z) assert Poly(x + y, y).replace(y, z) == Poly(x + z, z) raises(PolynomialError, lambda: Poly(x + y, x).replace(x, y)) raises(PolynomialError, lambda: Poly(x + y, y).replace(y, x)) def test_Poly_reorder(): raises(PolynomialError, lambda: Poly(x + y).reorder(x, z)) assert Poly(x + y, x, y).reorder(x, y) == Poly(x + y, x, y) assert Poly(x + y, x, y).reorder(y, x) == Poly(x + y, y, x) assert Poly(x + y, y, x).reorder(x, y) == Poly(x + y, x, y) assert Poly(x + y, y, x).reorder(y, x) == Poly(x + y, y, x) assert Poly(x + y, x, y).reorder(wrt=x) == Poly(x + y, x, y) assert Poly(x + y, x, y).reorder(wrt=y) == Poly(x + y, y, x) def test_Poly_ltrim(): f = Poly(y**2 + y*z**2, x, y, z).ltrim(y) assert f.as_expr() == y**2 + y*z**2 and f.gens == (y, z) assert Poly(x*y - x, z, x, y).ltrim(1) == Poly(x*y - x, x, y) raises(PolynomialError, lambda: Poly(x*y**2 + y**2, x, y).ltrim(y)) raises(PolynomialError, lambda: Poly(x*y - x, x, y).ltrim(-1)) def test_Poly_has_only_gens(): assert Poly(x*y + 1, x, y, z).has_only_gens(x, y) is True assert Poly(x*y + z, x, y, z).has_only_gens(x, y) is False raises(GeneratorsError, lambda: Poly(x*y**2 + y**2, x, y).has_only_gens(t)) def test_Poly_to_ring(): assert Poly(2*x + 1, domain='ZZ').to_ring() == Poly(2*x + 1, domain='ZZ') assert Poly(2*x + 1, domain='QQ').to_ring() == Poly(2*x + 1, domain='ZZ') raises(CoercionFailed, lambda: Poly(x/2 + 1).to_ring()) raises(DomainError, lambda: Poly(2*x + 1, modulus=3).to_ring()) def test_Poly_to_field(): assert Poly(2*x + 1, domain='ZZ').to_field() == Poly(2*x + 1, domain='QQ') assert Poly(2*x + 1, domain='QQ').to_field() == Poly(2*x + 1, domain='QQ') assert Poly(x/2 + 1, domain='QQ').to_field() == Poly(x/2 + 1, domain='QQ') assert Poly(2*x + 1, modulus=3).to_field() == Poly(2*x + 1, modulus=3) assert Poly(2.0*x + 1.0).to_field() == Poly(2.0*x + 1.0) def test_Poly_to_exact(): assert Poly(2*x).to_exact() == Poly(2*x) assert Poly(x/2).to_exact() == Poly(x/2) assert Poly(0.1*x).to_exact() == Poly(x/10) def test_Poly_retract(): f = Poly(x**2 + 1, x, domain=QQ[y]) assert f.retract() == Poly(x**2 + 1, x, domain='ZZ') assert f.retract(field=True) == Poly(x**2 + 1, x, domain='QQ') assert Poly(0, x, y).retract() == Poly(0, x, y) def test_Poly_slice(): f = Poly(x**3 + 2*x**2 + 3*x + 4) assert f.slice(0, 0) == Poly(0, x) assert f.slice(0, 1) == Poly(4, x) assert f.slice(0, 2) == Poly(3*x + 4, x) assert f.slice(0, 3) == Poly(2*x**2 + 3*x + 4, x) assert f.slice(0, 4) == Poly(x**3 + 2*x**2 + 3*x + 4, x) assert f.slice(x, 0, 0) == Poly(0, x) assert f.slice(x, 0, 1) == Poly(4, x) assert f.slice(x, 0, 2) == Poly(3*x + 4, x) assert f.slice(x, 0, 3) == Poly(2*x**2 + 3*x + 4, x) assert f.slice(x, 0, 4) == Poly(x**3 + 2*x**2 + 3*x + 4, x) def test_Poly_coeffs(): assert Poly(0, x).coeffs() == [0] assert Poly(1, x).coeffs() == [1] assert Poly(2*x + 1, x).coeffs() == [2, 1] assert Poly(7*x**2 + 2*x + 1, x).coeffs() == [7, 2, 1] assert Poly(7*x**4 + 2*x + 1, x).coeffs() == [7, 2, 1] assert Poly(x*y**7 + 2*x**2*y**3).coeffs('lex') == [2, 1] assert Poly(x*y**7 + 2*x**2*y**3).coeffs('grlex') == [1, 2] def test_Poly_monoms(): assert Poly(0, x).monoms() == [(0,)] assert Poly(1, x).monoms() == [(0,)] assert Poly(2*x + 1, x).monoms() == [(1,), (0,)] assert Poly(7*x**2 + 2*x + 1, x).monoms() == [(2,), (1,), (0,)] assert Poly(7*x**4 + 2*x + 1, x).monoms() == [(4,), (1,), (0,)] assert Poly(x*y**7 + 2*x**2*y**3).monoms('lex') == [(2, 3), (1, 7)] assert Poly(x*y**7 + 2*x**2*y**3).monoms('grlex') == [(1, 7), (2, 3)] def test_Poly_terms(): assert Poly(0, x).terms() == [((0,), 0)] assert Poly(1, x).terms() == [((0,), 1)] assert Poly(2*x + 1, x).terms() == [((1,), 2), ((0,), 1)] assert Poly(7*x**2 + 2*x + 1, x).terms() == [((2,), 7), ((1,), 2), ((0,), 1)] assert Poly(7*x**4 + 2*x + 1, x).terms() == [((4,), 7), ((1,), 2), ((0,), 1)] assert Poly( x*y**7 + 2*x**2*y**3).terms('lex') == [((2, 3), 2), ((1, 7), 1)] assert Poly( x*y**7 + 2*x**2*y**3).terms('grlex') == [((1, 7), 1), ((2, 3), 2)] def test_Poly_all_coeffs(): assert Poly(0, x).all_coeffs() == [0] assert Poly(1, x).all_coeffs() == [1] assert Poly(2*x + 1, x).all_coeffs() == [2, 1] assert Poly(7*x**2 + 2*x + 1, x).all_coeffs() == [7, 2, 1] assert Poly(7*x**4 + 2*x + 1, x).all_coeffs() == [7, 0, 0, 2, 1] def test_Poly_all_monoms(): assert Poly(0, x).all_monoms() == [(0,)] assert Poly(1, x).all_monoms() == [(0,)] assert Poly(2*x + 1, x).all_monoms() == [(1,), (0,)] assert Poly(7*x**2 + 2*x + 1, x).all_monoms() == [(2,), (1,), (0,)] assert Poly(7*x**4 + 2*x + 1, x).all_monoms() == [(4,), (3,), (2,), (1,), (0,)] def test_Poly_all_terms(): assert Poly(0, x).all_terms() == [((0,), 0)] assert Poly(1, x).all_terms() == [((0,), 1)] assert Poly(2*x + 1, x).all_terms() == [((1,), 2), ((0,), 1)] assert Poly(7*x**2 + 2*x + 1, x).all_terms() == \ [((2,), 7), ((1,), 2), ((0,), 1)] assert Poly(7*x**4 + 2*x + 1, x).all_terms() == \ [((4,), 7), ((3,), 0), ((2,), 0), ((1,), 2), ((0,), 1)] def test_Poly_termwise(): f = Poly(x**2 + 20*x + 400) g = Poly(x**2 + 2*x + 4) def func(monom, coeff): (k,) = monom return coeff//10**(2 - k) assert f.termwise(func) == g def func(monom, coeff): (k,) = monom return (k,), coeff//10**(2 - k) assert f.termwise(func) == g def test_Poly_length(): assert Poly(0, x).length() == 0 assert Poly(1, x).length() == 1 assert Poly(x, x).length() == 1 assert Poly(x + 1, x).length() == 2 assert Poly(x**2 + 1, x).length() == 2 assert Poly(x**2 + x + 1, x).length() == 3 def test_Poly_as_dict(): assert Poly(0, x).as_dict() == {} assert Poly(0, x, y, z).as_dict() == {} assert Poly(1, x).as_dict() == {(0,): 1} assert Poly(1, x, y, z).as_dict() == {(0, 0, 0): 1} assert Poly(x**2 + 3, x).as_dict() == {(2,): 1, (0,): 3} assert Poly(x**2 + 3, x, y, z).as_dict() == {(2, 0, 0): 1, (0, 0, 0): 3} assert Poly(3*x**2*y*z**3 + 4*x*y + 5*x*z).as_dict() == {(2, 1, 3): 3, (1, 1, 0): 4, (1, 0, 1): 5} def test_Poly_as_expr(): assert Poly(0, x).as_expr() == 0 assert Poly(0, x, y, z).as_expr() == 0 assert Poly(1, x).as_expr() == 1 assert Poly(1, x, y, z).as_expr() == 1 assert Poly(x**2 + 3, x).as_expr() == x**2 + 3 assert Poly(x**2 + 3, x, y, z).as_expr() == x**2 + 3 assert Poly( 3*x**2*y*z**3 + 4*x*y + 5*x*z).as_expr() == 3*x**2*y*z**3 + 4*x*y + 5*x*z f = Poly(x**2 + 2*x*y**2 - y, x, y) assert f.as_expr() == -y + x**2 + 2*x*y**2 assert f.as_expr({x: 5}) == 25 - y + 10*y**2 assert f.as_expr({y: 6}) == -6 + 72*x + x**2 assert f.as_expr({x: 5, y: 6}) == 379 assert f.as_expr(5, 6) == 379 raises(GeneratorsError, lambda: f.as_expr({z: 7})) def test_Poly_lift(): assert Poly(x**4 - I*x + 17*I, x, gaussian=True).lift() == \ Poly(x**16 + 2*x**10 + 578*x**8 + x**4 - 578*x**2 + 83521, x, domain='QQ') def test_Poly_deflate(): assert Poly(0, x).deflate() == ((1,), Poly(0, x)) assert Poly(1, x).deflate() == ((1,), Poly(1, x)) assert Poly(x, x).deflate() == ((1,), Poly(x, x)) assert Poly(x**2, x).deflate() == ((2,), Poly(x, x)) assert Poly(x**17, x).deflate() == ((17,), Poly(x, x)) assert Poly( x**2*y*z**11 + x**4*z**11).deflate() == ((2, 1, 11), Poly(x*y*z + x**2*z)) def test_Poly_inject(): f = Poly(x**2*y + x*y**3 + x*y + 1, x) assert f.inject() == Poly(x**2*y + x*y**3 + x*y + 1, x, y) assert f.inject(front=True) == Poly(y**3*x + y*x**2 + y*x + 1, y, x) def test_Poly_eject(): f = Poly(x**2*y + x*y**3 + x*y + 1, x, y) assert f.eject(x) == Poly(x*y**3 + (x**2 + x)*y + 1, y, domain='ZZ[x]') assert f.eject(y) == Poly(y*x**2 + (y**3 + y)*x + 1, x, domain='ZZ[y]') ex = x + y + z + t + w g = Poly(ex, x, y, z, t, w) assert g.eject(x) == Poly(ex, y, z, t, w, domain='ZZ[x]') assert g.eject(x, y) == Poly(ex, z, t, w, domain='ZZ[x, y]') assert g.eject(x, y, z) == Poly(ex, t, w, domain='ZZ[x, y, z]') assert g.eject(w) == Poly(ex, x, y, z, t, domain='ZZ[w]') assert g.eject(t, w) == Poly(ex, x, y, z, domain='ZZ[t, w]') assert g.eject(z, t, w) == Poly(ex, x, y, domain='ZZ[z, t, w]') raises(DomainError, lambda: Poly(x*y, x, y, domain=ZZ[z]).eject(y)) raises(NotImplementedError, lambda: Poly(x*y, x, y, z).eject(y)) def test_Poly_exclude(): assert Poly(x, x, y).exclude() == Poly(x, x) assert Poly(x*y, x, y).exclude() == Poly(x*y, x, y) assert Poly(1, x, y).exclude() == Poly(1, x, y) def test_Poly__gen_to_level(): assert Poly(1, x, y)._gen_to_level(-2) == 0 assert Poly(1, x, y)._gen_to_level(-1) == 1 assert Poly(1, x, y)._gen_to_level( 0) == 0 assert Poly(1, x, y)._gen_to_level( 1) == 1 raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level(-3)) raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level( 2)) assert Poly(1, x, y)._gen_to_level(x) == 0 assert Poly(1, x, y)._gen_to_level(y) == 1 assert Poly(1, x, y)._gen_to_level('x') == 0 assert Poly(1, x, y)._gen_to_level('y') == 1 raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level(z)) raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level('z')) def test_Poly_degree(): assert Poly(0, x).degree() is -oo assert Poly(1, x).degree() == 0 assert Poly(x, x).degree() == 1 assert Poly(0, x).degree(gen=0) is -oo assert Poly(1, x).degree(gen=0) == 0 assert Poly(x, x).degree(gen=0) == 1 assert Poly(0, x).degree(gen=x) is -oo assert Poly(1, x).degree(gen=x) == 0 assert Poly(x, x).degree(gen=x) == 1 assert Poly(0, x).degree(gen='x') is -oo assert Poly(1, x).degree(gen='x') == 0 assert Poly(x, x).degree(gen='x') == 1 raises(PolynomialError, lambda: Poly(1, x).degree(gen=1)) raises(PolynomialError, lambda: Poly(1, x).degree(gen=y)) raises(PolynomialError, lambda: Poly(1, x).degree(gen='y')) assert Poly(1, x, y).degree() == 0 assert Poly(2*y, x, y).degree() == 0 assert Poly(x*y, x, y).degree() == 1 assert Poly(1, x, y).degree(gen=x) == 0 assert Poly(2*y, x, y).degree(gen=x) == 0 assert Poly(x*y, x, y).degree(gen=x) == 1 assert Poly(1, x, y).degree(gen=y) == 0 assert Poly(2*y, x, y).degree(gen=y) == 1 assert Poly(x*y, x, y).degree(gen=y) == 1 assert degree(0, x) is -oo assert degree(1, x) == 0 assert degree(x, x) == 1 assert degree(x*y**2, x) == 1 assert degree(x*y**2, y) == 2 assert degree(x*y**2, z) == 0 assert degree(pi) == 1 raises(TypeError, lambda: degree(y**2 + x**3)) raises(TypeError, lambda: degree(y**2 + x**3, 1)) raises(PolynomialError, lambda: degree(x, 1.1)) raises(PolynomialError, lambda: degree(x**2/(x**3 + 1), x)) assert degree(Poly(0,x),z) is -oo assert degree(Poly(1,x),z) == 0 assert degree(Poly(x**2+y**3,y)) == 3 assert degree(Poly(y**2 + x**3, y, x), 1) == 3 assert degree(Poly(y**2 + x**3, x), z) == 0 assert degree(Poly(y**2 + x**3 + z**4, x), z) == 4 def test_Poly_degree_list(): assert Poly(0, x).degree_list() == (-oo,) assert Poly(0, x, y).degree_list() == (-oo, -oo) assert Poly(0, x, y, z).degree_list() == (-oo, -oo, -oo) assert Poly(1, x).degree_list() == (0,) assert Poly(1, x, y).degree_list() == (0, 0) assert Poly(1, x, y, z).degree_list() == (0, 0, 0) assert Poly(x**2*y + x**3*z**2 + 1).degree_list() == (3, 1, 2) assert degree_list(1, x) == (0,) assert degree_list(x, x) == (1,) assert degree_list(x*y**2) == (1, 2) raises(ComputationFailed, lambda: degree_list(1)) def test_Poly_total_degree(): assert Poly(x**2*y + x**3*z**2 + 1).total_degree() == 5 assert Poly(x**2 + z**3).total_degree() == 3 assert Poly(x*y*z + z**4).total_degree() == 4 assert Poly(x**3 + x + 1).total_degree() == 3 assert total_degree(x*y + z**3) == 3 assert total_degree(x*y + z**3, x, y) == 2 assert total_degree(1) == 0 assert total_degree(Poly(y**2 + x**3 + z**4)) == 4 assert total_degree(Poly(y**2 + x**3 + z**4, x)) == 3 assert total_degree(Poly(y**2 + x**3 + z**4, x), z) == 4 assert total_degree(Poly(x**9 + x*z*y + x**3*z**2 + z**7,x), z) == 7 def test_Poly_homogenize(): assert Poly(x**2+y).homogenize(z) == Poly(x**2+y*z) assert Poly(x+y).homogenize(z) == Poly(x+y, x, y, z) assert Poly(x+y**2).homogenize(y) == Poly(x*y+y**2) def test_Poly_homogeneous_order(): assert Poly(0, x, y).homogeneous_order() is -oo assert Poly(1, x, y).homogeneous_order() == 0 assert Poly(x, x, y).homogeneous_order() == 1 assert Poly(x*y, x, y).homogeneous_order() == 2 assert Poly(x + 1, x, y).homogeneous_order() is None assert Poly(x*y + x, x, y).homogeneous_order() is None assert Poly(x**5 + 2*x**3*y**2 + 9*x*y**4).homogeneous_order() == 5 assert Poly(x**5 + 2*x**3*y**3 + 9*x*y**4).homogeneous_order() is None def test_Poly_LC(): assert Poly(0, x).LC() == 0 assert Poly(1, x).LC() == 1 assert Poly(2*x**2 + x, x).LC() == 2 assert Poly(x*y**7 + 2*x**2*y**3).LC('lex') == 2 assert Poly(x*y**7 + 2*x**2*y**3).LC('grlex') == 1 assert LC(x*y**7 + 2*x**2*y**3, order='lex') == 2 assert LC(x*y**7 + 2*x**2*y**3, order='grlex') == 1 def test_Poly_TC(): assert Poly(0, x).TC() == 0 assert Poly(1, x).TC() == 1 assert Poly(2*x**2 + x, x).TC() == 0 def test_Poly_EC(): assert Poly(0, x).EC() == 0 assert Poly(1, x).EC() == 1 assert Poly(2*x**2 + x, x).EC() == 1 assert Poly(x*y**7 + 2*x**2*y**3).EC('lex') == 1 assert Poly(x*y**7 + 2*x**2*y**3).EC('grlex') == 2 def test_Poly_coeff(): assert Poly(0, x).coeff_monomial(1) == 0 assert Poly(0, x).coeff_monomial(x) == 0 assert Poly(1, x).coeff_monomial(1) == 1 assert Poly(1, x).coeff_monomial(x) == 0 assert Poly(x**8, x).coeff_monomial(1) == 0 assert Poly(x**8, x).coeff_monomial(x**7) == 0 assert Poly(x**8, x).coeff_monomial(x**8) == 1 assert Poly(x**8, x).coeff_monomial(x**9) == 0 assert Poly(3*x*y**2 + 1, x, y).coeff_monomial(1) == 1 assert Poly(3*x*y**2 + 1, x, y).coeff_monomial(x*y**2) == 3 p = Poly(24*x*y*exp(8) + 23*x, x, y) assert p.coeff_monomial(x) == 23 assert p.coeff_monomial(y) == 0 assert p.coeff_monomial(x*y) == 24*exp(8) assert p.as_expr().coeff(x) == 24*y*exp(8) + 23 raises(NotImplementedError, lambda: p.coeff(x)) raises(ValueError, lambda: Poly(x + 1).coeff_monomial(0)) raises(ValueError, lambda: Poly(x + 1).coeff_monomial(3*x)) raises(ValueError, lambda: Poly(x + 1).coeff_monomial(3*x*y)) def test_Poly_nth(): assert Poly(0, x).nth(0) == 0 assert Poly(0, x).nth(1) == 0 assert Poly(1, x).nth(0) == 1 assert Poly(1, x).nth(1) == 0 assert Poly(x**8, x).nth(0) == 0 assert Poly(x**8, x).nth(7) == 0 assert Poly(x**8, x).nth(8) == 1 assert Poly(x**8, x).nth(9) == 0 assert Poly(3*x*y**2 + 1, x, y).nth(0, 0) == 1 assert Poly(3*x*y**2 + 1, x, y).nth(1, 2) == 3 raises(ValueError, lambda: Poly(x*y + 1, x, y).nth(1)) def test_Poly_LM(): assert Poly(0, x).LM() == (0,) assert Poly(1, x).LM() == (0,) assert Poly(2*x**2 + x, x).LM() == (2,) assert Poly(x*y**7 + 2*x**2*y**3).LM('lex') == (2, 3) assert Poly(x*y**7 + 2*x**2*y**3).LM('grlex') == (1, 7) assert LM(x*y**7 + 2*x**2*y**3, order='lex') == x**2*y**3 assert LM(x*y**7 + 2*x**2*y**3, order='grlex') == x*y**7 def test_Poly_LM_custom_order(): f = Poly(x**2*y**3*z + x**2*y*z**3 + x*y*z + 1) rev_lex = lambda monom: tuple(reversed(monom)) assert f.LM(order='lex') == (2, 3, 1) assert f.LM(order=rev_lex) == (2, 1, 3) def test_Poly_EM(): assert Poly(0, x).EM() == (0,) assert Poly(1, x).EM() == (0,) assert Poly(2*x**2 + x, x).EM() == (1,) assert Poly(x*y**7 + 2*x**2*y**3).EM('lex') == (1, 7) assert Poly(x*y**7 + 2*x**2*y**3).EM('grlex') == (2, 3) def test_Poly_LT(): assert Poly(0, x).LT() == ((0,), 0) assert Poly(1, x).LT() == ((0,), 1) assert Poly(2*x**2 + x, x).LT() == ((2,), 2) assert Poly(x*y**7 + 2*x**2*y**3).LT('lex') == ((2, 3), 2) assert Poly(x*y**7 + 2*x**2*y**3).LT('grlex') == ((1, 7), 1) assert LT(x*y**7 + 2*x**2*y**3, order='lex') == 2*x**2*y**3 assert LT(x*y**7 + 2*x**2*y**3, order='grlex') == x*y**7 def test_Poly_ET(): assert Poly(0, x).ET() == ((0,), 0) assert Poly(1, x).ET() == ((0,), 1) assert Poly(2*x**2 + x, x).ET() == ((1,), 1) assert Poly(x*y**7 + 2*x**2*y**3).ET('lex') == ((1, 7), 1) assert Poly(x*y**7 + 2*x**2*y**3).ET('grlex') == ((2, 3), 2) def test_Poly_max_norm(): assert Poly(-1, x).max_norm() == 1 assert Poly( 0, x).max_norm() == 0 assert Poly( 1, x).max_norm() == 1 def test_Poly_l1_norm(): assert Poly(-1, x).l1_norm() == 1 assert Poly( 0, x).l1_norm() == 0 assert Poly( 1, x).l1_norm() == 1 def test_Poly_clear_denoms(): coeff, poly = Poly(x + 2, x).clear_denoms() assert coeff == 1 and poly == Poly( x + 2, x, domain='ZZ') and poly.get_domain() == ZZ coeff, poly = Poly(x/2 + 1, x).clear_denoms() assert coeff == 2 and poly == Poly( x + 2, x, domain='QQ') and poly.get_domain() == QQ coeff, poly = Poly(x/2 + 1, x).clear_denoms(convert=True) assert coeff == 2 and poly == Poly( x + 2, x, domain='ZZ') and poly.get_domain() == ZZ coeff, poly = Poly(x/y + 1, x).clear_denoms(convert=True) assert coeff == y and poly == Poly( x + y, x, domain='ZZ[y]') and poly.get_domain() == ZZ[y] coeff, poly = Poly(x/3 + sqrt(2), x, domain='EX').clear_denoms() assert coeff == 3 and poly == Poly( x + 3*sqrt(2), x, domain='EX') and poly.get_domain() == EX coeff, poly = Poly( x/3 + sqrt(2), x, domain='EX').clear_denoms(convert=True) assert coeff == 3 and poly == Poly( x + 3*sqrt(2), x, domain='EX') and poly.get_domain() == EX def test_Poly_rat_clear_denoms(): f = Poly(x**2/y + 1, x) g = Poly(x**3 + y, x) assert f.rat_clear_denoms(g) == \ (Poly(x**2 + y, x), Poly(y*x**3 + y**2, x)) f = f.set_domain(EX) g = g.set_domain(EX) assert f.rat_clear_denoms(g) == (f, g) def test_issue_20427(): f = Poly(-117968192370600*18**(S(1)/3)/(217603955769048*(24201 + 253*sqrt(9165))**(S(1)/3) + 2273005839412*sqrt(9165)*(24201 + 253*sqrt(9165))**(S(1)/3)) - 15720318185*2**(S(2)/3)*3**(S(1)/3)*(24201 + 253*sqrt(9165))**(S(2)/3)/(217603955769048*(24201 + 253*sqrt(9165))** (S(1)/3) + 2273005839412*sqrt(9165)*(24201 + 253*sqrt(9165))**(S(1)/3)) + 15720318185*12**(S(1)/3)*(24201 + 253*sqrt(9165))**(S(2)/3)/( 217603955769048*(24201 + 253*sqrt(9165))**(S(1)/3) + 2273005839412* sqrt(9165)*(24201 + 253*sqrt(9165))**(S(1)/3)) + 117968192370600*2**( S(1)/3)*3**(S(2)/3)/(217603955769048*(24201 + 253*sqrt(9165))**(S(1)/3) + 2273005839412*sqrt(9165)*(24201 + 253*sqrt(9165))**(S(1)/3)), x) assert f == Poly(0, x, domain='EX') def test_Poly_integrate(): assert Poly(x + 1).integrate() == Poly(x**2/2 + x) assert Poly(x + 1).integrate(x) == Poly(x**2/2 + x) assert Poly(x + 1).integrate((x, 1)) == Poly(x**2/2 + x) assert Poly(x*y + 1).integrate(x) == Poly(x**2*y/2 + x) assert Poly(x*y + 1).integrate(y) == Poly(x*y**2/2 + y) assert Poly(x*y + 1).integrate(x, x) == Poly(x**3*y/6 + x**2/2) assert Poly(x*y + 1).integrate(y, y) == Poly(x*y**3/6 + y**2/2) assert Poly(x*y + 1).integrate((x, 2)) == Poly(x**3*y/6 + x**2/2) assert Poly(x*y + 1).integrate((y, 2)) == Poly(x*y**3/6 + y**2/2) assert Poly(x*y + 1).integrate(x, y) == Poly(x**2*y**2/4 + x*y) assert Poly(x*y + 1).integrate(y, x) == Poly(x**2*y**2/4 + x*y) def test_Poly_diff(): assert Poly(x**2 + x).diff() == Poly(2*x + 1) assert Poly(x**2 + x).diff(x) == Poly(2*x + 1) assert Poly(x**2 + x).diff((x, 1)) == Poly(2*x + 1) assert Poly(x**2*y**2 + x*y).diff(x) == Poly(2*x*y**2 + y) assert Poly(x**2*y**2 + x*y).diff(y) == Poly(2*x**2*y + x) assert Poly(x**2*y**2 + x*y).diff(x, x) == Poly(2*y**2, x, y) assert Poly(x**2*y**2 + x*y).diff(y, y) == Poly(2*x**2, x, y) assert Poly(x**2*y**2 + x*y).diff((x, 2)) == Poly(2*y**2, x, y) assert Poly(x**2*y**2 + x*y).diff((y, 2)) == Poly(2*x**2, x, y) assert Poly(x**2*y**2 + x*y).diff(x, y) == Poly(4*x*y + 1) assert Poly(x**2*y**2 + x*y).diff(y, x) == Poly(4*x*y + 1) def test_issue_9585(): assert diff(Poly(x**2 + x)) == Poly(2*x + 1) assert diff(Poly(x**2 + x), x, evaluate=False) == \ Derivative(Poly(x**2 + x), x) assert Derivative(Poly(x**2 + x), x).doit() == Poly(2*x + 1) def test_Poly_eval(): assert Poly(0, x).eval(7) == 0 assert Poly(1, x).eval(7) == 1 assert Poly(x, x).eval(7) == 7 assert Poly(0, x).eval(0, 7) == 0 assert Poly(1, x).eval(0, 7) == 1 assert Poly(x, x).eval(0, 7) == 7 assert Poly(0, x).eval(x, 7) == 0 assert Poly(1, x).eval(x, 7) == 1 assert Poly(x, x).eval(x, 7) == 7 assert Poly(0, x).eval('x', 7) == 0 assert Poly(1, x).eval('x', 7) == 1 assert Poly(x, x).eval('x', 7) == 7 raises(PolynomialError, lambda: Poly(1, x).eval(1, 7)) raises(PolynomialError, lambda: Poly(1, x).eval(y, 7)) raises(PolynomialError, lambda: Poly(1, x).eval('y', 7)) assert Poly(123, x, y).eval(7) == Poly(123, y) assert Poly(2*y, x, y).eval(7) == Poly(2*y, y) assert Poly(x*y, x, y).eval(7) == Poly(7*y, y) assert Poly(123, x, y).eval(x, 7) == Poly(123, y) assert Poly(2*y, x, y).eval(x, 7) == Poly(2*y, y) assert Poly(x*y, x, y).eval(x, 7) == Poly(7*y, y) assert Poly(123, x, y).eval(y, 7) == Poly(123, x) assert Poly(2*y, x, y).eval(y, 7) == Poly(14, x) assert Poly(x*y, x, y).eval(y, 7) == Poly(7*x, x) assert Poly(x*y + y, x, y).eval({x: 7}) == Poly(8*y, y) assert Poly(x*y + y, x, y).eval({y: 7}) == Poly(7*x + 7, x) assert Poly(x*y + y, x, y).eval({x: 6, y: 7}) == 49 assert Poly(x*y + y, x, y).eval({x: 7, y: 6}) == 48 assert Poly(x*y + y, x, y).eval((6, 7)) == 49 assert Poly(x*y + y, x, y).eval([6, 7]) == 49 assert Poly(x + 1, domain='ZZ').eval(S.Half) == Rational(3, 2) assert Poly(x + 1, domain='ZZ').eval(sqrt(2)) == sqrt(2) + 1 raises(ValueError, lambda: Poly(x*y + y, x, y).eval((6, 7, 8))) raises(DomainError, lambda: Poly(x + 1, domain='ZZ').eval(S.Half, auto=False)) # issue 6344 alpha = Symbol('alpha') result = (2*alpha*z - 2*alpha + z**2 + 3)/(z**2 - 2*z + 1) f = Poly(x**2 + (alpha - 1)*x - alpha + 1, x, domain='ZZ[alpha]') assert f.eval((z + 1)/(z - 1)) == result g = Poly(x**2 + (alpha - 1)*x - alpha + 1, x, y, domain='ZZ[alpha]') assert g.eval((z + 1)/(z - 1)) == Poly(result, y, domain='ZZ(alpha,z)') def test_Poly___call__(): f = Poly(2*x*y + 3*x + y + 2*z) assert f(2) == Poly(5*y + 2*z + 6) assert f(2, 5) == Poly(2*z + 31) assert f(2, 5, 7) == 45 def test_parallel_poly_from_expr(): assert parallel_poly_from_expr( [x - 1, x**2 - 1], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [Poly(x - 1, x), x**2 - 1], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [x - 1, Poly(x**2 - 1, x)], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr([Poly( x - 1, x), Poly(x**2 - 1, x)], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [x - 1, x**2 - 1], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)] assert parallel_poly_from_expr([Poly( x - 1, x), x**2 - 1], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)] assert parallel_poly_from_expr([x - 1, Poly( x**2 - 1, x)], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)] assert parallel_poly_from_expr([Poly(x - 1, x), Poly( x**2 - 1, x)], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)] assert parallel_poly_from_expr( [x - 1, x**2 - 1])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [Poly(x - 1, x), x**2 - 1])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [x - 1, Poly(x**2 - 1, x)])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [Poly(x - 1, x), Poly(x**2 - 1, x)])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [1, x**2 - 1])[0] == [Poly(1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [1, x**2 - 1])[0] == [Poly(1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [1, Poly(x**2 - 1, x)])[0] == [Poly(1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [1, Poly(x**2 - 1, x)])[0] == [Poly(1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [x**2 - 1, 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)] assert parallel_poly_from_expr( [x**2 - 1, 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)] assert parallel_poly_from_expr( [Poly(x**2 - 1, x), 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)] assert parallel_poly_from_expr( [Poly(x**2 - 1, x), 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)] assert parallel_poly_from_expr([Poly(x, x, y), Poly(y, x, y)], x, y, order='lex')[0] == \ [Poly(x, x, y, domain='ZZ'), Poly(y, x, y, domain='ZZ')] raises(PolificationFailed, lambda: parallel_poly_from_expr([0, 1])) def test_pdiv(): f, g = x**2 - y**2, x - y q, r = x + y, 0 F, G, Q, R = [ Poly(h, x, y) for h in (f, g, q, r) ] assert F.pdiv(G) == (Q, R) assert F.prem(G) == R assert F.pquo(G) == Q assert F.pexquo(G) == Q assert pdiv(f, g) == (q, r) assert prem(f, g) == r assert pquo(f, g) == q assert pexquo(f, g) == q assert pdiv(f, g, x, y) == (q, r) assert prem(f, g, x, y) == r assert pquo(f, g, x, y) == q assert pexquo(f, g, x, y) == q assert pdiv(f, g, (x, y)) == (q, r) assert prem(f, g, (x, y)) == r assert pquo(f, g, (x, y)) == q assert pexquo(f, g, (x, y)) == q assert pdiv(F, G) == (Q, R) assert prem(F, G) == R assert pquo(F, G) == Q assert pexquo(F, G) == Q assert pdiv(f, g, polys=True) == (Q, R) assert prem(f, g, polys=True) == R assert pquo(f, g, polys=True) == Q assert pexquo(f, g, polys=True) == Q assert pdiv(F, G, polys=False) == (q, r) assert prem(F, G, polys=False) == r assert pquo(F, G, polys=False) == q assert pexquo(F, G, polys=False) == q raises(ComputationFailed, lambda: pdiv(4, 2)) raises(ComputationFailed, lambda: prem(4, 2)) raises(ComputationFailed, lambda: pquo(4, 2)) raises(ComputationFailed, lambda: pexquo(4, 2)) def test_div(): f, g = x**2 - y**2, x - y q, r = x + y, 0 F, G, Q, R = [ Poly(h, x, y) for h in (f, g, q, r) ] assert F.div(G) == (Q, R) assert F.rem(G) == R assert F.quo(G) == Q assert F.exquo(G) == Q assert div(f, g) == (q, r) assert rem(f, g) == r assert quo(f, g) == q assert exquo(f, g) == q assert div(f, g, x, y) == (q, r) assert rem(f, g, x, y) == r assert quo(f, g, x, y) == q assert exquo(f, g, x, y) == q assert div(f, g, (x, y)) == (q, r) assert rem(f, g, (x, y)) == r assert quo(f, g, (x, y)) == q assert exquo(f, g, (x, y)) == q assert div(F, G) == (Q, R) assert rem(F, G) == R assert quo(F, G) == Q assert exquo(F, G) == Q assert div(f, g, polys=True) == (Q, R) assert rem(f, g, polys=True) == R assert quo(f, g, polys=True) == Q assert exquo(f, g, polys=True) == Q assert div(F, G, polys=False) == (q, r) assert rem(F, G, polys=False) == r assert quo(F, G, polys=False) == q assert exquo(F, G, polys=False) == q raises(ComputationFailed, lambda: div(4, 2)) raises(ComputationFailed, lambda: rem(4, 2)) raises(ComputationFailed, lambda: quo(4, 2)) raises(ComputationFailed, lambda: exquo(4, 2)) f, g = x**2 + 1, 2*x - 4 qz, rz = 0, x**2 + 1 qq, rq = x/2 + 1, 5 assert div(f, g) == (qq, rq) assert div(f, g, auto=True) == (qq, rq) assert div(f, g, auto=False) == (qz, rz) assert div(f, g, domain=ZZ) == (qz, rz) assert div(f, g, domain=QQ) == (qq, rq) assert div(f, g, domain=ZZ, auto=True) == (qq, rq) assert div(f, g, domain=ZZ, auto=False) == (qz, rz) assert div(f, g, domain=QQ, auto=True) == (qq, rq) assert div(f, g, domain=QQ, auto=False) == (qq, rq) assert rem(f, g) == rq assert rem(f, g, auto=True) == rq assert rem(f, g, auto=False) == rz assert rem(f, g, domain=ZZ) == rz assert rem(f, g, domain=QQ) == rq assert rem(f, g, domain=ZZ, auto=True) == rq assert rem(f, g, domain=ZZ, auto=False) == rz assert rem(f, g, domain=QQ, auto=True) == rq assert rem(f, g, domain=QQ, auto=False) == rq assert quo(f, g) == qq assert quo(f, g, auto=True) == qq assert quo(f, g, auto=False) == qz assert quo(f, g, domain=ZZ) == qz assert quo(f, g, domain=QQ) == qq assert quo(f, g, domain=ZZ, auto=True) == qq assert quo(f, g, domain=ZZ, auto=False) == qz assert quo(f, g, domain=QQ, auto=True) == qq assert quo(f, g, domain=QQ, auto=False) == qq f, g, q = x**2, 2*x, x/2 assert exquo(f, g) == q assert exquo(f, g, auto=True) == q raises(ExactQuotientFailed, lambda: exquo(f, g, auto=False)) raises(ExactQuotientFailed, lambda: exquo(f, g, domain=ZZ)) assert exquo(f, g, domain=QQ) == q assert exquo(f, g, domain=ZZ, auto=True) == q raises(ExactQuotientFailed, lambda: exquo(f, g, domain=ZZ, auto=False)) assert exquo(f, g, domain=QQ, auto=True) == q assert exquo(f, g, domain=QQ, auto=False) == q f, g = Poly(x**2), Poly(x) q, r = f.div(g) assert q.get_domain().is_ZZ and r.get_domain().is_ZZ r = f.rem(g) assert r.get_domain().is_ZZ q = f.quo(g) assert q.get_domain().is_ZZ q = f.exquo(g) assert q.get_domain().is_ZZ f, g = Poly(x+y, x), Poly(2*x+y, x) q, r = f.div(g) assert q.get_domain().is_Frac and r.get_domain().is_Frac # https://github.com/sympy/sympy/issues/19579 p = Poly(2+3*I, x, domain=ZZ_I) q = Poly(1-I, x, domain=ZZ_I) assert p.div(q, auto=False) == \ (Poly(0, x, domain='ZZ_I'), Poly(2 + 3*I, x, domain='ZZ_I')) assert p.div(q, auto=True) == \ (Poly(-S(1)/2 + 5*I/2, x, domain='QQ_I'), Poly(0, x, domain='QQ_I')) def test_issue_7864(): q, r = div(a, .408248290463863*a) assert abs(q - 2.44948974278318) < 1e-14 assert r == 0 def test_gcdex(): f, g = 2*x, x**2 - 16 s, t, h = x/32, Rational(-1, 16), 1 F, G, S, T, H = [ Poly(u, x, domain='QQ') for u in (f, g, s, t, h) ] assert F.half_gcdex(G) == (S, H) assert F.gcdex(G) == (S, T, H) assert F.invert(G) == S assert half_gcdex(f, g) == (s, h) assert gcdex(f, g) == (s, t, h) assert invert(f, g) == s assert half_gcdex(f, g, x) == (s, h) assert gcdex(f, g, x) == (s, t, h) assert invert(f, g, x) == s assert half_gcdex(f, g, (x,)) == (s, h) assert gcdex(f, g, (x,)) == (s, t, h) assert invert(f, g, (x,)) == s assert half_gcdex(F, G) == (S, H) assert gcdex(F, G) == (S, T, H) assert invert(F, G) == S assert half_gcdex(f, g, polys=True) == (S, H) assert gcdex(f, g, polys=True) == (S, T, H) assert invert(f, g, polys=True) == S assert half_gcdex(F, G, polys=False) == (s, h) assert gcdex(F, G, polys=False) == (s, t, h) assert invert(F, G, polys=False) == s assert half_gcdex(100, 2004) == (-20, 4) assert gcdex(100, 2004) == (-20, 1, 4) assert invert(3, 7) == 5 raises(DomainError, lambda: half_gcdex(x + 1, 2*x + 1, auto=False)) raises(DomainError, lambda: gcdex(x + 1, 2*x + 1, auto=False)) raises(DomainError, lambda: invert(x + 1, 2*x + 1, auto=False)) def test_revert(): f = Poly(1 - x**2/2 + x**4/24 - x**6/720) g = Poly(61*x**6/720 + 5*x**4/24 + x**2/2 + 1) assert f.revert(8) == g def test_subresultants(): f, g, h = x**2 - 2*x + 1, x**2 - 1, 2*x - 2 F, G, H = Poly(f), Poly(g), Poly(h) assert F.subresultants(G) == [F, G, H] assert subresultants(f, g) == [f, g, h] assert subresultants(f, g, x) == [f, g, h] assert subresultants(f, g, (x,)) == [f, g, h] assert subresultants(F, G) == [F, G, H] assert subresultants(f, g, polys=True) == [F, G, H] assert subresultants(F, G, polys=False) == [f, g, h] raises(ComputationFailed, lambda: subresultants(4, 2)) def test_resultant(): f, g, h = x**2 - 2*x + 1, x**2 - 1, 0 F, G = Poly(f), Poly(g) assert F.resultant(G) == h assert resultant(f, g) == h assert resultant(f, g, x) == h assert resultant(f, g, (x,)) == h assert resultant(F, G) == h assert resultant(f, g, polys=True) == h assert resultant(F, G, polys=False) == h assert resultant(f, g, includePRS=True) == (h, [f, g, 2*x - 2]) f, g, h = x - a, x - b, a - b F, G, H = Poly(f), Poly(g), Poly(h) assert F.resultant(G) == H assert resultant(f, g) == h assert resultant(f, g, x) == h assert resultant(f, g, (x,)) == h assert resultant(F, G) == H assert resultant(f, g, polys=True) == H assert resultant(F, G, polys=False) == h raises(ComputationFailed, lambda: resultant(4, 2)) def test_discriminant(): f, g = x**3 + 3*x**2 + 9*x - 13, -11664 F = Poly(f) assert F.discriminant() == g assert discriminant(f) == g assert discriminant(f, x) == g assert discriminant(f, (x,)) == g assert discriminant(F) == g assert discriminant(f, polys=True) == g assert discriminant(F, polys=False) == g f, g = a*x**2 + b*x + c, b**2 - 4*a*c F, G = Poly(f), Poly(g) assert F.discriminant() == G assert discriminant(f) == g assert discriminant(f, x, a, b, c) == g assert discriminant(f, (x, a, b, c)) == g assert discriminant(F) == G assert discriminant(f, polys=True) == G assert discriminant(F, polys=False) == g raises(ComputationFailed, lambda: discriminant(4)) def test_dispersion(): # We test only the API here. For more mathematical # tests see the dedicated test file. fp = poly((x + 1)*(x + 2), x) assert sorted(fp.dispersionset()) == [0, 1] assert fp.dispersion() == 1 fp = poly(x**4 - 3*x**2 + 1, x) gp = fp.shift(-3) assert sorted(fp.dispersionset(gp)) == [2, 3, 4] assert fp.dispersion(gp) == 4 def test_gcd_list(): F = [x**3 - 1, x**2 - 1, x**2 - 3*x + 2] assert gcd_list(F) == x - 1 assert gcd_list(F, polys=True) == Poly(x - 1) assert gcd_list([]) == 0 assert gcd_list([1, 2]) == 1 assert gcd_list([4, 6, 8]) == 2 assert gcd_list([x*(y + 42) - x*y - x*42]) == 0 gcd = gcd_list([], x) assert gcd.is_Number and gcd is S.Zero gcd = gcd_list([], x, polys=True) assert gcd.is_Poly and gcd.is_zero a = sqrt(2) assert gcd_list([a, -a]) == gcd_list([-a, a]) == a raises(ComputationFailed, lambda: gcd_list([], polys=True)) def test_lcm_list(): F = [x**3 - 1, x**2 - 1, x**2 - 3*x + 2] assert lcm_list(F) == x**5 - x**4 - 2*x**3 - x**2 + x + 2 assert lcm_list(F, polys=True) == Poly(x**5 - x**4 - 2*x**3 - x**2 + x + 2) assert lcm_list([]) == 1 assert lcm_list([1, 2]) == 2 assert lcm_list([4, 6, 8]) == 24 assert lcm_list([x*(y + 42) - x*y - x*42]) == 0 lcm = lcm_list([], x) assert lcm.is_Number and lcm is S.One lcm = lcm_list([], x, polys=True) assert lcm.is_Poly and lcm.is_one raises(ComputationFailed, lambda: lcm_list([], polys=True)) def test_gcd(): f, g = x**3 - 1, x**2 - 1 s, t = x**2 + x + 1, x + 1 h, r = x - 1, x**4 + x**3 - x - 1 F, G, S, T, H, R = [ Poly(u) for u in (f, g, s, t, h, r) ] assert F.cofactors(G) == (H, S, T) assert F.gcd(G) == H assert F.lcm(G) == R assert cofactors(f, g) == (h, s, t) assert gcd(f, g) == h assert lcm(f, g) == r assert cofactors(f, g, x) == (h, s, t) assert gcd(f, g, x) == h assert lcm(f, g, x) == r assert cofactors(f, g, (x,)) == (h, s, t) assert gcd(f, g, (x,)) == h assert lcm(f, g, (x,)) == r assert cofactors(F, G) == (H, S, T) assert gcd(F, G) == H assert lcm(F, G) == R assert cofactors(f, g, polys=True) == (H, S, T) assert gcd(f, g, polys=True) == H assert lcm(f, g, polys=True) == R assert cofactors(F, G, polys=False) == (h, s, t) assert gcd(F, G, polys=False) == h assert lcm(F, G, polys=False) == r f, g = 1.0*x**2 - 1.0, 1.0*x - 1.0 h, s, t = g, 1.0*x + 1.0, 1.0 assert cofactors(f, g) == (h, s, t) assert gcd(f, g) == h assert lcm(f, g) == f f, g = 1.0*x**2 - 1.0, 1.0*x - 1.0 h, s, t = g, 1.0*x + 1.0, 1.0 assert cofactors(f, g) == (h, s, t) assert gcd(f, g) == h assert lcm(f, g) == f assert cofactors(8, 6) == (2, 4, 3) assert gcd(8, 6) == 2 assert lcm(8, 6) == 24 f, g = x**2 - 3*x - 4, x**3 - 4*x**2 + x - 4 l = x**4 - 3*x**3 - 3*x**2 - 3*x - 4 h, s, t = x - 4, x + 1, x**2 + 1 assert cofactors(f, g, modulus=11) == (h, s, t) assert gcd(f, g, modulus=11) == h assert lcm(f, g, modulus=11) == l f, g = x**2 + 8*x + 7, x**3 + 7*x**2 + x + 7 l = x**4 + 8*x**3 + 8*x**2 + 8*x + 7 h, s, t = x + 7, x + 1, x**2 + 1 assert cofactors(f, g, modulus=11, symmetric=False) == (h, s, t) assert gcd(f, g, modulus=11, symmetric=False) == h assert lcm(f, g, modulus=11, symmetric=False) == l a, b = sqrt(2), -sqrt(2) assert gcd(a, b) == gcd(b, a) == a a, b = sqrt(-2), -sqrt(-2) assert gcd(a, b) in (a, b) raises(TypeError, lambda: gcd(x)) raises(TypeError, lambda: lcm(x)) def test_gcd_numbers_vs_polys(): assert isinstance(gcd(3, 9), Integer) assert isinstance(gcd(3*x, 9), Integer) assert gcd(3, 9) == 3 assert gcd(3*x, 9) == 3 assert isinstance(gcd(Rational(3, 2), Rational(9, 4)), Rational) assert isinstance(gcd(Rational(3, 2)*x, Rational(9, 4)), Rational) assert gcd(Rational(3, 2), Rational(9, 4)) == Rational(3, 4) assert gcd(Rational(3, 2)*x, Rational(9, 4)) == 1 assert isinstance(gcd(3.0, 9.0), Float) assert isinstance(gcd(3.0*x, 9.0), Float) assert gcd(3.0, 9.0) == 1.0 assert gcd(3.0*x, 9.0) == 1.0 # partial fix of 20597 assert gcd(Mul(2, 3, evaluate=False), 2) == 2 def test_terms_gcd(): assert terms_gcd(1) == 1 assert terms_gcd(1, x) == 1 assert terms_gcd(x - 1) == x - 1 assert terms_gcd(-x - 1) == -x - 1 assert terms_gcd(2*x + 3) == 2*x + 3 assert terms_gcd(6*x + 4) == Mul(2, 3*x + 2, evaluate=False) assert terms_gcd(x**3*y + x*y**3) == x*y*(x**2 + y**2) assert terms_gcd(2*x**3*y + 2*x*y**3) == 2*x*y*(x**2 + y**2) assert terms_gcd(x**3*y/2 + x*y**3/2) == x*y/2*(x**2 + y**2) assert terms_gcd(x**3*y + 2*x*y**3) == x*y*(x**2 + 2*y**2) assert terms_gcd(2*x**3*y + 4*x*y**3) == 2*x*y*(x**2 + 2*y**2) assert terms_gcd(2*x**3*y/3 + 4*x*y**3/5) == x*y*Rational(2, 15)*(5*x**2 + 6*y**2) assert terms_gcd(2.0*x**3*y + 4.1*x*y**3) == x*y*(2.0*x**2 + 4.1*y**2) assert _aresame(terms_gcd(2.0*x + 3), 2.0*x + 3) assert terms_gcd((3 + 3*x)*(x + x*y), expand=False) == \ (3*x + 3)*(x*y + x) assert terms_gcd((3 + 3*x)*(x + x*sin(3 + 3*y)), expand=False, deep=True) == \ 3*x*(x + 1)*(sin(Mul(3, y + 1, evaluate=False)) + 1) assert terms_gcd(sin(x + x*y), deep=True) == \ sin(x*(y + 1)) eq = Eq(2*x, 2*y + 2*z*y) assert terms_gcd(eq) == Eq(2*x, 2*y*(z + 1)) assert terms_gcd(eq, deep=True) == Eq(2*x, 2*y*(z + 1)) raises(TypeError, lambda: terms_gcd(x < 2)) def test_trunc(): f, g = x**5 + 2*x**4 + 3*x**3 + 4*x**2 + 5*x + 6, x**5 - x**4 + x**2 - x F, G = Poly(f), Poly(g) assert F.trunc(3) == G assert trunc(f, 3) == g assert trunc(f, 3, x) == g assert trunc(f, 3, (x,)) == g assert trunc(F, 3) == G assert trunc(f, 3, polys=True) == G assert trunc(F, 3, polys=False) == g f, g = 6*x**5 + 5*x**4 + 4*x**3 + 3*x**2 + 2*x + 1, -x**4 + x**3 - x + 1 F, G = Poly(f), Poly(g) assert F.trunc(3) == G assert trunc(f, 3) == g assert trunc(f, 3, x) == g assert trunc(f, 3, (x,)) == g assert trunc(F, 3) == G assert trunc(f, 3, polys=True) == G assert trunc(F, 3, polys=False) == g f = Poly(x**2 + 2*x + 3, modulus=5) assert f.trunc(2) == Poly(x**2 + 1, modulus=5) def test_monic(): f, g = 2*x - 1, x - S.Half F, G = Poly(f, domain='QQ'), Poly(g) assert F.monic() == G assert monic(f) == g assert monic(f, x) == g assert monic(f, (x,)) == g assert monic(F) == G assert monic(f, polys=True) == G assert monic(F, polys=False) == g raises(ComputationFailed, lambda: monic(4)) assert monic(2*x**2 + 6*x + 4, auto=False) == x**2 + 3*x + 2 raises(ExactQuotientFailed, lambda: monic(2*x + 6*x + 1, auto=False)) assert monic(2.0*x**2 + 6.0*x + 4.0) == 1.0*x**2 + 3.0*x + 2.0 assert monic(2*x**2 + 3*x + 4, modulus=5) == x**2 - x + 2 def test_content(): f, F = 4*x + 2, Poly(4*x + 2) assert F.content() == 2 assert content(f) == 2 raises(ComputationFailed, lambda: content(4)) f = Poly(2*x, modulus=3) assert f.content() == 1 def test_primitive(): f, g = 4*x + 2, 2*x + 1 F, G = Poly(f), Poly(g) assert F.primitive() == (2, G) assert primitive(f) == (2, g) assert primitive(f, x) == (2, g) assert primitive(f, (x,)) == (2, g) assert primitive(F) == (2, G) assert primitive(f, polys=True) == (2, G) assert primitive(F, polys=False) == (2, g) raises(ComputationFailed, lambda: primitive(4)) f = Poly(2*x, modulus=3) g = Poly(2.0*x, domain=RR) assert f.primitive() == (1, f) assert g.primitive() == (1.0, g) assert primitive(S('-3*x/4 + y + 11/8')) == \ S('(1/8, -6*x + 8*y + 11)') def test_compose(): f = x**12 + 20*x**10 + 150*x**8 + 500*x**6 + 625*x**4 - 2*x**3 - 10*x + 9 g = x**4 - 2*x + 9 h = x**3 + 5*x F, G, H = map(Poly, (f, g, h)) assert G.compose(H) == F assert compose(g, h) == f assert compose(g, h, x) == f assert compose(g, h, (x,)) == f assert compose(G, H) == F assert compose(g, h, polys=True) == F assert compose(G, H, polys=False) == f assert F.decompose() == [G, H] assert decompose(f) == [g, h] assert decompose(f, x) == [g, h] assert decompose(f, (x,)) == [g, h] assert decompose(F) == [G, H] assert decompose(f, polys=True) == [G, H] assert decompose(F, polys=False) == [g, h] raises(ComputationFailed, lambda: compose(4, 2)) raises(ComputationFailed, lambda: decompose(4)) assert compose(x**2 - y**2, x - y, x, y) == x**2 - 2*x*y assert compose(x**2 - y**2, x - y, y, x) == -y**2 + 2*x*y def test_shift(): assert Poly(x**2 - 2*x + 1, x).shift(2) == Poly(x**2 + 2*x + 1, x) def test_transform(): # Also test that 3-way unification is done correctly assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1), Poly(x - 1)) == \ Poly(4, x) == \ cancel((x - 1)**2*(x**2 - 2*x + 1).subs(x, (x + 1)/(x - 1))) assert Poly(x**2 - x/2 + 1, x).transform(Poly(x + 1), Poly(x - 1)) == \ Poly(3*x**2/2 + Rational(5, 2), x) == \ cancel((x - 1)**2*(x**2 - x/2 + 1).subs(x, (x + 1)/(x - 1))) assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + S.Half), Poly(x - 1)) == \ Poly(Rational(9, 4), x) == \ cancel((x - 1)**2*(x**2 - 2*x + 1).subs(x, (x + S.Half)/(x - 1))) assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1), Poly(x - S.Half)) == \ Poly(Rational(9, 4), x) == \ cancel((x - S.Half)**2*(x**2 - 2*x + 1).subs(x, (x + 1)/(x - S.Half))) # Unify ZZ, QQ, and RR assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1.0), Poly(x - S.Half)) == \ Poly(Rational(9, 4), x, domain='RR') == \ cancel((x - S.Half)**2*(x**2 - 2*x + 1).subs(x, (x + 1.0)/(x - S.Half))) raises(ValueError, lambda: Poly(x*y).transform(Poly(x + 1), Poly(x - 1))) raises(ValueError, lambda: Poly(x).transform(Poly(y + 1), Poly(x - 1))) raises(ValueError, lambda: Poly(x).transform(Poly(x + 1), Poly(y - 1))) raises(ValueError, lambda: Poly(x).transform(Poly(x*y + 1), Poly(x - 1))) raises(ValueError, lambda: Poly(x).transform(Poly(x + 1), Poly(x*y - 1))) def test_sturm(): f, F = x, Poly(x, domain='QQ') g, G = 1, Poly(1, x, domain='QQ') assert F.sturm() == [F, G] assert sturm(f) == [f, g] assert sturm(f, x) == [f, g] assert sturm(f, (x,)) == [f, g] assert sturm(F) == [F, G] assert sturm(f, polys=True) == [F, G] assert sturm(F, polys=False) == [f, g] raises(ComputationFailed, lambda: sturm(4)) raises(DomainError, lambda: sturm(f, auto=False)) f = Poly(S(1024)/(15625*pi**8)*x**5 - S(4096)/(625*pi**8)*x**4 + S(32)/(15625*pi**4)*x**3 - S(128)/(625*pi**4)*x**2 + Rational(1, 62500)*x - Rational(1, 625), x, domain='ZZ(pi)') assert sturm(f) == \ [Poly(x**3 - 100*x**2 + pi**4/64*x - 25*pi**4/16, x, domain='ZZ(pi)'), Poly(3*x**2 - 200*x + pi**4/64, x, domain='ZZ(pi)'), Poly((Rational(20000, 9) - pi**4/96)*x + 25*pi**4/18, x, domain='ZZ(pi)'), Poly((-3686400000000*pi**4 - 11520000*pi**8 - 9*pi**12)/(26214400000000 - 245760000*pi**4 + 576*pi**8), x, domain='ZZ(pi)')] def test_gff(): f = x**5 + 2*x**4 - x**3 - 2*x**2 assert Poly(f).gff_list() == [(Poly(x), 1), (Poly(x + 2), 4)] assert gff_list(f) == [(x, 1), (x + 2, 4)] raises(NotImplementedError, lambda: gff(f)) f = x*(x - 1)**3*(x - 2)**2*(x - 4)**2*(x - 5) assert Poly(f).gff_list() == [( Poly(x**2 - 5*x + 4), 1), (Poly(x**2 - 5*x + 4), 2), (Poly(x), 3)] assert gff_list(f) == [(x**2 - 5*x + 4, 1), (x**2 - 5*x + 4, 2), (x, 3)] raises(NotImplementedError, lambda: gff(f)) def test_norm(): a, b = sqrt(2), sqrt(3) f = Poly(a*x + b*y, x, y, extension=(a, b)) assert f.norm() == Poly(4*x**4 - 12*x**2*y**2 + 9*y**4, x, y, domain='QQ') def test_sqf_norm(): assert sqf_norm(x**2 - 2, extension=sqrt(3)) == \ (1, x**2 - 2*sqrt(3)*x + 1, x**4 - 10*x**2 + 1) assert sqf_norm(x**2 - 3, extension=sqrt(2)) == \ (1, x**2 - 2*sqrt(2)*x - 1, x**4 - 10*x**2 + 1) assert Poly(x**2 - 2, extension=sqrt(3)).sqf_norm() == \ (1, Poly(x**2 - 2*sqrt(3)*x + 1, x, extension=sqrt(3)), Poly(x**4 - 10*x**2 + 1, x, domain='QQ')) assert Poly(x**2 - 3, extension=sqrt(2)).sqf_norm() == \ (1, Poly(x**2 - 2*sqrt(2)*x - 1, x, extension=sqrt(2)), Poly(x**4 - 10*x**2 + 1, x, domain='QQ')) def test_sqf(): f = x**5 - x**3 - x**2 + 1 g = x**3 + 2*x**2 + 2*x + 1 h = x - 1 p = x**4 + x**3 - x - 1 F, G, H, P = map(Poly, (f, g, h, p)) assert F.sqf_part() == P assert sqf_part(f) == p assert sqf_part(f, x) == p assert sqf_part(f, (x,)) == p assert sqf_part(F) == P assert sqf_part(f, polys=True) == P assert sqf_part(F, polys=False) == p assert F.sqf_list() == (1, [(G, 1), (H, 2)]) assert sqf_list(f) == (1, [(g, 1), (h, 2)]) assert sqf_list(f, x) == (1, [(g, 1), (h, 2)]) assert sqf_list(f, (x,)) == (1, [(g, 1), (h, 2)]) assert sqf_list(F) == (1, [(G, 1), (H, 2)]) assert sqf_list(f, polys=True) == (1, [(G, 1), (H, 2)]) assert sqf_list(F, polys=False) == (1, [(g, 1), (h, 2)]) assert F.sqf_list_include() == [(G, 1), (H, 2)] raises(ComputationFailed, lambda: sqf_part(4)) assert sqf(1) == 1 assert sqf_list(1) == (1, []) assert sqf((2*x**2 + 2)**7) == 128*(x**2 + 1)**7 assert sqf(f) == g*h**2 assert sqf(f, x) == g*h**2 assert sqf(f, (x,)) == g*h**2 d = x**2 + y**2 assert sqf(f/d) == (g*h**2)/d assert sqf(f/d, x) == (g*h**2)/d assert sqf(f/d, (x,)) == (g*h**2)/d assert sqf(x - 1) == x - 1 assert sqf(-x - 1) == -x - 1 assert sqf(x - 1) == x - 1 assert sqf(6*x - 10) == Mul(2, 3*x - 5, evaluate=False) assert sqf((6*x - 10)/(3*x - 6)) == Rational(2, 3)*((3*x - 5)/(x - 2)) assert sqf(Poly(x**2 - 2*x + 1)) == (x - 1)**2 f = 3 + x - x*(1 + x) + x**2 assert sqf(f) == 3 f = (x**2 + 2*x + 1)**20000000000 assert sqf(f) == (x + 1)**40000000000 assert sqf_list(f) == (1, [(x + 1, 40000000000)]) def test_factor(): f = x**5 - x**3 - x**2 + 1 u = x + 1 v = x - 1 w = x**2 + x + 1 F, U, V, W = map(Poly, (f, u, v, w)) assert F.factor_list() == (1, [(U, 1), (V, 2), (W, 1)]) assert factor_list(f) == (1, [(u, 1), (v, 2), (w, 1)]) assert factor_list(f, x) == (1, [(u, 1), (v, 2), (w, 1)]) assert factor_list(f, (x,)) == (1, [(u, 1), (v, 2), (w, 1)]) assert factor_list(F) == (1, [(U, 1), (V, 2), (W, 1)]) assert factor_list(f, polys=True) == (1, [(U, 1), (V, 2), (W, 1)]) assert factor_list(F, polys=False) == (1, [(u, 1), (v, 2), (w, 1)]) assert F.factor_list_include() == [(U, 1), (V, 2), (W, 1)] assert factor_list(1) == (1, []) assert factor_list(6) == (6, []) assert factor_list(sqrt(3), x) == (sqrt(3), []) assert factor_list((-1)**x, x) == (1, [(-1, x)]) assert factor_list((2*x)**y, x) == (1, [(2, y), (x, y)]) assert factor_list(sqrt(x*y), x) == (1, [(x*y, S.Half)]) assert factor(6) == 6 and factor(6).is_Integer assert factor_list(3*x) == (3, [(x, 1)]) assert factor_list(3*x**2) == (3, [(x, 2)]) assert factor(3*x) == 3*x assert factor(3*x**2) == 3*x**2 assert factor((2*x**2 + 2)**7) == 128*(x**2 + 1)**7 assert factor(f) == u*v**2*w assert factor(f, x) == u*v**2*w assert factor(f, (x,)) == u*v**2*w g, p, q, r = x**2 - y**2, x - y, x + y, x**2 + 1 assert factor(f/g) == (u*v**2*w)/(p*q) assert factor(f/g, x) == (u*v**2*w)/(p*q) assert factor(f/g, (x,)) == (u*v**2*w)/(p*q) p = Symbol('p', positive=True) i = Symbol('i', integer=True) r = Symbol('r', real=True) assert factor(sqrt(x*y)).is_Pow is True assert factor(sqrt(3*x**2 - 3)) == sqrt(3)*sqrt((x - 1)*(x + 1)) assert factor(sqrt(3*x**2 + 3)) == sqrt(3)*sqrt(x**2 + 1) assert factor((y*x**2 - y)**i) == y**i*(x - 1)**i*(x + 1)**i assert factor((y*x**2 + y)**i) == y**i*(x**2 + 1)**i assert factor((y*x**2 - y)**t) == (y*(x - 1)*(x + 1))**t assert factor((y*x**2 + y)**t) == (y*(x**2 + 1))**t f = sqrt(expand((r**2 + 1)*(p + 1)*(p - 1)*(p - 2)**3)) g = sqrt((p - 2)**3*(p - 1))*sqrt(p + 1)*sqrt(r**2 + 1) assert factor(f) == g assert factor(g) == g g = (x - 1)**5*(r**2 + 1) f = sqrt(expand(g)) assert factor(f) == sqrt(g) f = Poly(sin(1)*x + 1, x, domain=EX) assert f.factor_list() == (1, [(f, 1)]) f = x**4 + 1 assert factor(f) == f assert factor(f, extension=I) == (x**2 - I)*(x**2 + I) assert factor(f, gaussian=True) == (x**2 - I)*(x**2 + I) assert factor( f, extension=sqrt(2)) == (x**2 + sqrt(2)*x + 1)*(x**2 - sqrt(2)*x + 1) assert factor(x**2 + 4*I*x - 4) == (x + 2*I)**2 f = x**2 + 2*I*x - 4 assert factor(f) == f f = 8192*x**2 + x*(22656 + 175232*I) - 921416 + 242313*I f_zzi = I*(x*(64 - 64*I) + 773 + 596*I)**2 f_qqi = 8192*(x + S(177)/128 + 1369*I/128)**2 assert factor(f) == f_zzi assert factor(f, domain=ZZ_I) == f_zzi assert factor(f, domain=QQ_I) == f_qqi f = x**2 + 2*sqrt(2)*x + 2 assert factor(f, extension=sqrt(2)) == (x + sqrt(2))**2 assert factor(f**3, extension=sqrt(2)) == (x + sqrt(2))**6 assert factor(x**2 - 2*y**2, extension=sqrt(2)) == \ (x + sqrt(2)*y)*(x - sqrt(2)*y) assert factor(2*x**2 - 4*y**2, extension=sqrt(2)) == \ 2*((x + sqrt(2)*y)*(x - sqrt(2)*y)) assert factor(x - 1) == x - 1 assert factor(-x - 1) == -x - 1 assert factor(x - 1) == x - 1 assert factor(6*x - 10) == Mul(2, 3*x - 5, evaluate=False) assert factor(x**11 + x + 1, modulus=65537, symmetric=True) == \ (x**2 + x + 1)*(x**9 - x**8 + x**6 - x**5 + x**3 - x** 2 + 1) assert factor(x**11 + x + 1, modulus=65537, symmetric=False) == \ (x**2 + x + 1)*(x**9 + 65536*x**8 + x**6 + 65536*x**5 + x**3 + 65536*x** 2 + 1) f = x/pi + x*sin(x)/pi g = y/(pi**2 + 2*pi + 1) + y*sin(x)/(pi**2 + 2*pi + 1) assert factor(f) == x*(sin(x) + 1)/pi assert factor(g) == y*(sin(x) + 1)/(pi + 1)**2 assert factor(Eq( x**2 + 2*x + 1, x**3 + 1)) == Eq((x + 1)**2, (x + 1)*(x**2 - x + 1)) f = (x**2 - 1)/(x**2 + 4*x + 4) assert factor(f) == (x + 1)*(x - 1)/(x + 2)**2 assert factor(f, x) == (x + 1)*(x - 1)/(x + 2)**2 f = 3 + x - x*(1 + x) + x**2 assert factor(f) == 3 assert factor(f, x) == 3 assert factor(1/(x**2 + 2*x + 1/x) - 1) == -((1 - x + 2*x**2 + x**3)/(1 + 2*x**2 + x**3)) assert factor(f, expand=False) == f raises(PolynomialError, lambda: factor(f, x, expand=False)) raises(FlagError, lambda: factor(x**2 - 1, polys=True)) assert factor([x, Eq(x**2 - y**2, Tuple(x**2 - z**2, 1/x + 1/y))]) == \ [x, Eq((x - y)*(x + y), Tuple((x - z)*(x + z), (x + y)/x/y))] assert not isinstance( Poly(x**3 + x + 1).factor_list()[1][0][0], PurePoly) is True assert isinstance( PurePoly(x**3 + x + 1).factor_list()[1][0][0], PurePoly) is True assert factor(sqrt(-x)) == sqrt(-x) # issue 5917 e = (-2*x*(-x + 1)*(x - 1)*(-x*(-x + 1)*(x - 1) - x*(x - 1)**2)*(x**2*(x - 1) - x*(x - 1) - x) - (-2*x**2*(x - 1)**2 - x*(-x + 1)*(-x*(-x + 1) + x*(x - 1)))*(x**2*(x - 1)**4 - x*(-x*(-x + 1)*(x - 1) - x*(x - 1)**2))) assert factor(e) == 0 # deep option assert factor(sin(x**2 + x) + x, deep=True) == sin(x*(x + 1)) + x assert factor(sin(x**2 + x)*x, deep=True) == sin(x*(x + 1))*x assert factor(sqrt(x**2)) == sqrt(x**2) # issue 13149 assert factor(expand((0.5*x+1)*(0.5*y+1))) == Mul(1.0, 0.5*x + 1.0, 0.5*y + 1.0, evaluate = False) assert factor(expand((0.5*x+0.5)**2)) == 0.25*(1.0*x + 1.0)**2 eq = x**2*y**2 + 11*x**2*y + 30*x**2 + 7*x*y**2 + 77*x*y + 210*x + 12*y**2 + 132*y + 360 assert factor(eq, x) == (x + 3)*(x + 4)*(y**2 + 11*y + 30) assert factor(eq, x, deep=True) == (x + 3)*(x + 4)*(y**2 + 11*y + 30) assert factor(eq, y, deep=True) == (y + 5)*(y + 6)*(x**2 + 7*x + 12) # fraction option f = 5*x + 3*exp(2 - 7*x) assert factor(f, deep=True) == factor(f, deep=True, fraction=True) assert factor(f, deep=True, fraction=False) == 5*x + 3*exp(2)*exp(-7*x) def test_factor_large(): f = (x**2 + 4*x + 4)**10000000*(x**2 + 1)*(x**2 + 2*x + 1)**1234567 g = ((x**2 + 2*x + 1)**3000*y**2 + (x**2 + 2*x + 1)**3000*2*y + ( x**2 + 2*x + 1)**3000) assert factor(f) == (x + 2)**20000000*(x**2 + 1)*(x + 1)**2469134 assert factor(g) == (x + 1)**6000*(y + 1)**2 assert factor_list( f) == (1, [(x + 1, 2469134), (x + 2, 20000000), (x**2 + 1, 1)]) assert factor_list(g) == (1, [(y + 1, 2), (x + 1, 6000)]) f = (x**2 - y**2)**200000*(x**7 + 1) g = (x**2 + y**2)**200000*(x**7 + 1) assert factor(f) == \ (x + 1)*(x - y)**200000*(x + y)**200000*(x**6 - x**5 + x**4 - x**3 + x**2 - x + 1) assert factor(g, gaussian=True) == \ (x + 1)*(x - I*y)**200000*(x + I*y)**200000*(x**6 - x**5 + x**4 - x**3 + x**2 - x + 1) assert factor_list(f) == \ (1, [(x + 1, 1), (x - y, 200000), (x + y, 200000), (x**6 - x**5 + x**4 - x**3 + x**2 - x + 1, 1)]) assert factor_list(g, gaussian=True) == \ (1, [(x + 1, 1), (x - I*y, 200000), (x + I*y, 200000), ( x**6 - x**5 + x**4 - x**3 + x**2 - x + 1, 1)]) def test_factor_noeval(): assert factor(6*x - 10) == Mul(2, 3*x - 5, evaluate=False) assert factor((6*x - 10)/(3*x - 6)) == Mul(Rational(2, 3), 3*x - 5, 1/(x - 2)) def test_intervals(): assert intervals(0) == [] assert intervals(1) == [] assert intervals(x, sqf=True) == [(0, 0)] assert intervals(x) == [((0, 0), 1)] assert intervals(x**128) == [((0, 0), 128)] assert intervals([x**2, x**4]) == [((0, 0), {0: 2, 1: 4})] f = Poly((x*Rational(2, 5) - Rational(17, 3))*(4*x + Rational(1, 257))) assert f.intervals(sqf=True) == [(-1, 0), (14, 15)] assert f.intervals() == [((-1, 0), 1), ((14, 15), 1)] assert f.intervals(fast=True, sqf=True) == [(-1, 0), (14, 15)] assert f.intervals(fast=True) == [((-1, 0), 1), ((14, 15), 1)] assert f.intervals(eps=Rational(1, 10)) == f.intervals(eps=0.1) == \ [((Rational(-1, 258), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)] assert f.intervals(eps=Rational(1, 100)) == f.intervals(eps=0.01) == \ [((Rational(-1, 258), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)] assert f.intervals(eps=Rational(1, 1000)) == f.intervals(eps=0.001) == \ [((Rational(-1, 1002), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)] assert f.intervals(eps=Rational(1, 10000)) == f.intervals(eps=0.0001) == \ [((Rational(-1, 1028), Rational(-1, 1028)), 1), ((Rational(85, 6), Rational(85, 6)), 1)] f = (x*Rational(2, 5) - Rational(17, 3))*(4*x + Rational(1, 257)) assert intervals(f, sqf=True) == [(-1, 0), (14, 15)] assert intervals(f) == [((-1, 0), 1), ((14, 15), 1)] assert intervals(f, eps=Rational(1, 10)) == intervals(f, eps=0.1) == \ [((Rational(-1, 258), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)] assert intervals(f, eps=Rational(1, 100)) == intervals(f, eps=0.01) == \ [((Rational(-1, 258), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)] assert intervals(f, eps=Rational(1, 1000)) == intervals(f, eps=0.001) == \ [((Rational(-1, 1002), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)] assert intervals(f, eps=Rational(1, 10000)) == intervals(f, eps=0.0001) == \ [((Rational(-1, 1028), Rational(-1, 1028)), 1), ((Rational(85, 6), Rational(85, 6)), 1)] f = Poly((x**2 - 2)*(x**2 - 3)**7*(x + 1)*(7*x + 3)**3) assert f.intervals() == \ [((-2, Rational(-3, 2)), 7), ((Rational(-3, 2), -1), 1), ((-1, -1), 1), ((-1, 0), 3), ((1, Rational(3, 2)), 1), ((Rational(3, 2), 2), 7)] assert intervals([x**5 - 200, x**5 - 201]) == \ [((Rational(75, 26), Rational(101, 35)), {0: 1}), ((Rational(309, 107), Rational(26, 9)), {1: 1})] assert intervals([x**5 - 200, x**5 - 201], fast=True) == \ [((Rational(75, 26), Rational(101, 35)), {0: 1}), ((Rational(309, 107), Rational(26, 9)), {1: 1})] assert intervals([x**2 - 200, x**2 - 201]) == \ [((Rational(-71, 5), Rational(-85, 6)), {1: 1}), ((Rational(-85, 6), -14), {0: 1}), ((14, Rational(85, 6)), {0: 1}), ((Rational(85, 6), Rational(71, 5)), {1: 1})] assert intervals([x + 1, x + 2, x - 1, x + 1, 1, x - 1, x - 1, (x - 2)**2]) == \ [((-2, -2), {1: 1}), ((-1, -1), {0: 1, 3: 1}), ((1, 1), {2: 1, 5: 1, 6: 1}), ((2, 2), {7: 2})] f, g, h = x**2 - 2, x**4 - 4*x**2 + 4, x - 1 assert intervals(f, inf=Rational(7, 4), sqf=True) == [] assert intervals(f, inf=Rational(7, 5), sqf=True) == [(Rational(7, 5), Rational(3, 2))] assert intervals(f, sup=Rational(7, 4), sqf=True) == [(-2, -1), (1, Rational(3, 2))] assert intervals(f, sup=Rational(7, 5), sqf=True) == [(-2, -1)] assert intervals(g, inf=Rational(7, 4)) == [] assert intervals(g, inf=Rational(7, 5)) == [((Rational(7, 5), Rational(3, 2)), 2)] assert intervals(g, sup=Rational(7, 4)) == [((-2, -1), 2), ((1, Rational(3, 2)), 2)] assert intervals(g, sup=Rational(7, 5)) == [((-2, -1), 2)] assert intervals([g, h], inf=Rational(7, 4)) == [] assert intervals([g, h], inf=Rational(7, 5)) == [((Rational(7, 5), Rational(3, 2)), {0: 2})] assert intervals([g, h], sup=S( 7)/4) == [((-2, -1), {0: 2}), ((1, 1), {1: 1}), ((1, Rational(3, 2)), {0: 2})] assert intervals( [g, h], sup=Rational(7, 5)) == [((-2, -1), {0: 2}), ((1, 1), {1: 1})] assert intervals([x + 2, x**2 - 2]) == \ [((-2, -2), {0: 1}), ((-2, -1), {1: 1}), ((1, 2), {1: 1})] assert intervals([x + 2, x**2 - 2], strict=True) == \ [((-2, -2), {0: 1}), ((Rational(-3, 2), -1), {1: 1}), ((1, 2), {1: 1})] f = 7*z**4 - 19*z**3 + 20*z**2 + 17*z + 20 assert intervals(f) == [] real_part, complex_part = intervals(f, all=True, sqf=True) assert real_part == [] assert all(re(a) < re(r) < re(b) and im( a) < im(r) < im(b) for (a, b), r in zip(complex_part, nroots(f))) assert complex_part == [(Rational(-40, 7) - I*Rational(40, 7), 0), (Rational(-40, 7), I*Rational(40, 7)), (I*Rational(-40, 7), Rational(40, 7)), (0, Rational(40, 7) + I*Rational(40, 7))] real_part, complex_part = intervals(f, all=True, sqf=True, eps=Rational(1, 10)) assert real_part == [] assert all(re(a) < re(r) < re(b) and im( a) < im(r) < im(b) for (a, b), r in zip(complex_part, nroots(f))) raises(ValueError, lambda: intervals(x**2 - 2, eps=10**-100000)) raises(ValueError, lambda: Poly(x**2 - 2).intervals(eps=10**-100000)) raises( ValueError, lambda: intervals([x**2 - 2, x**2 - 3], eps=10**-100000)) def test_refine_root(): f = Poly(x**2 - 2) assert f.refine_root(1, 2, steps=0) == (1, 2) assert f.refine_root(-2, -1, steps=0) == (-2, -1) assert f.refine_root(1, 2, steps=None) == (1, Rational(3, 2)) assert f.refine_root(-2, -1, steps=None) == (Rational(-3, 2), -1) assert f.refine_root(1, 2, steps=1) == (1, Rational(3, 2)) assert f.refine_root(-2, -1, steps=1) == (Rational(-3, 2), -1) assert f.refine_root(1, 2, steps=1, fast=True) == (1, Rational(3, 2)) assert f.refine_root(-2, -1, steps=1, fast=True) == (Rational(-3, 2), -1) assert f.refine_root(1, 2, eps=Rational(1, 100)) == (Rational(24, 17), Rational(17, 12)) assert f.refine_root(1, 2, eps=1e-2) == (Rational(24, 17), Rational(17, 12)) raises(PolynomialError, lambda: (f**2).refine_root(1, 2, check_sqf=True)) raises(RefinementFailed, lambda: (f**2).refine_root(1, 2)) raises(RefinementFailed, lambda: (f**2).refine_root(2, 3)) f = x**2 - 2 assert refine_root(f, 1, 2, steps=1) == (1, Rational(3, 2)) assert refine_root(f, -2, -1, steps=1) == (Rational(-3, 2), -1) assert refine_root(f, 1, 2, steps=1, fast=True) == (1, Rational(3, 2)) assert refine_root(f, -2, -1, steps=1, fast=True) == (Rational(-3, 2), -1) assert refine_root(f, 1, 2, eps=Rational(1, 100)) == (Rational(24, 17), Rational(17, 12)) assert refine_root(f, 1, 2, eps=1e-2) == (Rational(24, 17), Rational(17, 12)) raises(PolynomialError, lambda: refine_root(1, 7, 8, eps=Rational(1, 100))) raises(ValueError, lambda: Poly(f).refine_root(1, 2, eps=10**-100000)) raises(ValueError, lambda: refine_root(f, 1, 2, eps=10**-100000)) def test_count_roots(): assert count_roots(x**2 - 2) == 2 assert count_roots(x**2 - 2, inf=-oo) == 2 assert count_roots(x**2 - 2, sup=+oo) == 2 assert count_roots(x**2 - 2, inf=-oo, sup=+oo) == 2 assert count_roots(x**2 - 2, inf=-2) == 2 assert count_roots(x**2 - 2, inf=-1) == 1 assert count_roots(x**2 - 2, sup=1) == 1 assert count_roots(x**2 - 2, sup=2) == 2 assert count_roots(x**2 - 2, inf=-1, sup=1) == 0 assert count_roots(x**2 - 2, inf=-2, sup=2) == 2 assert count_roots(x**2 - 2, inf=-1, sup=1) == 0 assert count_roots(x**2 - 2, inf=-2, sup=2) == 2 assert count_roots(x**2 + 2) == 0 assert count_roots(x**2 + 2, inf=-2*I) == 2 assert count_roots(x**2 + 2, sup=+2*I) == 2 assert count_roots(x**2 + 2, inf=-2*I, sup=+2*I) == 2 assert count_roots(x**2 + 2, inf=0) == 0 assert count_roots(x**2 + 2, sup=0) == 0 assert count_roots(x**2 + 2, inf=-I) == 1 assert count_roots(x**2 + 2, sup=+I) == 1 assert count_roots(x**2 + 2, inf=+I/2, sup=+I) == 0 assert count_roots(x**2 + 2, inf=-I, sup=-I/2) == 0 raises(PolynomialError, lambda: count_roots(1)) def test_Poly_root(): f = Poly(2*x**3 - 7*x**2 + 4*x + 4) assert f.root(0) == Rational(-1, 2) assert f.root(1) == 2 assert f.root(2) == 2 raises(IndexError, lambda: f.root(3)) assert Poly(x**5 + x + 1).root(0) == rootof(x**3 - x**2 + 1, 0) def test_real_roots(): assert real_roots(x) == [0] assert real_roots(x, multiple=False) == [(0, 1)] assert real_roots(x**3) == [0, 0, 0] assert real_roots(x**3, multiple=False) == [(0, 3)] assert real_roots(x*(x**3 + x + 3)) == [rootof(x**3 + x + 3, 0), 0] assert real_roots(x*(x**3 + x + 3), multiple=False) == [(rootof( x**3 + x + 3, 0), 1), (0, 1)] assert real_roots( x**3*(x**3 + x + 3)) == [rootof(x**3 + x + 3, 0), 0, 0, 0] assert real_roots(x**3*(x**3 + x + 3), multiple=False) == [(rootof( x**3 + x + 3, 0), 1), (0, 3)] f = 2*x**3 - 7*x**2 + 4*x + 4 g = x**3 + x + 1 assert Poly(f).real_roots() == [Rational(-1, 2), 2, 2] assert Poly(g).real_roots() == [rootof(g, 0)] def test_all_roots(): f = 2*x**3 - 7*x**2 + 4*x + 4 g = x**3 + x + 1 assert Poly(f).all_roots() == [Rational(-1, 2), 2, 2] assert Poly(g).all_roots() == [rootof(g, 0), rootof(g, 1), rootof(g, 2)] def test_nroots(): assert Poly(0, x).nroots() == [] assert Poly(1, x).nroots() == [] assert Poly(x**2 - 1, x).nroots() == [-1.0, 1.0] assert Poly(x**2 + 1, x).nroots() == [-1.0*I, 1.0*I] roots = Poly(x**2 - 1, x).nroots() assert roots == [-1.0, 1.0] roots = Poly(x**2 + 1, x).nroots() assert roots == [-1.0*I, 1.0*I] roots = Poly(x**2/3 - Rational(1, 3), x).nroots() assert roots == [-1.0, 1.0] roots = Poly(x**2/3 + Rational(1, 3), x).nroots() assert roots == [-1.0*I, 1.0*I] assert Poly(x**2 + 2*I, x).nroots() == [-1.0 + 1.0*I, 1.0 - 1.0*I] assert Poly( x**2 + 2*I, x, extension=I).nroots() == [-1.0 + 1.0*I, 1.0 - 1.0*I] assert Poly(0.2*x + 0.1).nroots() == [-0.5] roots = nroots(x**5 + x + 1, n=5) eps = Float("1e-5") assert re(roots[0]).epsilon_eq(-0.75487, eps) is S.true assert im(roots[0]) == 0.0 assert re(roots[1]) == -0.5 assert im(roots[1]).epsilon_eq(-0.86602, eps) is S.true assert re(roots[2]) == -0.5 assert im(roots[2]).epsilon_eq(+0.86602, eps) is S.true assert re(roots[3]).epsilon_eq(+0.87743, eps) is S.true assert im(roots[3]).epsilon_eq(-0.74486, eps) is S.true assert re(roots[4]).epsilon_eq(+0.87743, eps) is S.true assert im(roots[4]).epsilon_eq(+0.74486, eps) is S.true eps = Float("1e-6") assert re(roots[0]).epsilon_eq(-0.75487, eps) is S.false assert im(roots[0]) == 0.0 assert re(roots[1]) == -0.5 assert im(roots[1]).epsilon_eq(-0.86602, eps) is S.false assert re(roots[2]) == -0.5 assert im(roots[2]).epsilon_eq(+0.86602, eps) is S.false assert re(roots[3]).epsilon_eq(+0.87743, eps) is S.false assert im(roots[3]).epsilon_eq(-0.74486, eps) is S.false assert re(roots[4]).epsilon_eq(+0.87743, eps) is S.false assert im(roots[4]).epsilon_eq(+0.74486, eps) is S.false raises(DomainError, lambda: Poly(x + y, x).nroots()) raises(MultivariatePolynomialError, lambda: Poly(x + y).nroots()) assert nroots(x**2 - 1) == [-1.0, 1.0] roots = nroots(x**2 - 1) assert roots == [-1.0, 1.0] assert nroots(x + I) == [-1.0*I] assert nroots(x + 2*I) == [-2.0*I] raises(PolynomialError, lambda: nroots(0)) # issue 8296 f = Poly(x**4 - 1) assert f.nroots(2) == [w.n(2) for w in f.all_roots()] assert str(Poly(x**16 + 32*x**14 + 508*x**12 + 5440*x**10 + 39510*x**8 + 204320*x**6 + 755548*x**4 + 1434496*x**2 + 877969).nroots(2)) == ('[-1.7 - 1.9*I, -1.7 + 1.9*I, -1.7 ' '- 2.5*I, -1.7 + 2.5*I, -1.0*I, 1.0*I, -1.7*I, 1.7*I, -2.8*I, ' '2.8*I, -3.4*I, 3.4*I, 1.7 - 1.9*I, 1.7 + 1.9*I, 1.7 - 2.5*I, ' '1.7 + 2.5*I]') def test_ground_roots(): f = x**6 - 4*x**4 + 4*x**3 - x**2 assert Poly(f).ground_roots() == {S.One: 2, S.Zero: 2} assert ground_roots(f) == {S.One: 2, S.Zero: 2} def test_nth_power_roots_poly(): f = x**4 - x**2 + 1 f_2 = (x**2 - x + 1)**2 f_3 = (x**2 + 1)**2 f_4 = (x**2 + x + 1)**2 f_12 = (x - 1)**4 assert nth_power_roots_poly(f, 1) == f raises(ValueError, lambda: nth_power_roots_poly(f, 0)) raises(ValueError, lambda: nth_power_roots_poly(f, x)) assert factor(nth_power_roots_poly(f, 2)) == f_2 assert factor(nth_power_roots_poly(f, 3)) == f_3 assert factor(nth_power_roots_poly(f, 4)) == f_4 assert factor(nth_power_roots_poly(f, 12)) == f_12 raises(MultivariatePolynomialError, lambda: nth_power_roots_poly( x + y, 2, x, y)) def test_torational_factor_list(): p = expand(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))})) assert _torational_factor_list(p, x) == (-2, [ (-x*(1 + sqrt(2))/2 + 1, 1), (-x*(1 + sqrt(2)) - 1, 1), (-x*(1 + sqrt(2)) + 1, 1)]) p = expand(((x**2-1)*(x-2)).subs({x:x*(1 + 2**Rational(1, 4))})) assert _torational_factor_list(p, x) is None def test_cancel(): assert cancel(0) == 0 assert cancel(7) == 7 assert cancel(x) == x assert cancel(oo) is oo assert cancel((2, 3)) == (1, 2, 3) assert cancel((1, 0), x) == (1, 1, 0) assert cancel((0, 1), x) == (1, 0, 1) f, g, p, q = 4*x**2 - 4, 2*x - 2, 2*x + 2, 1 F, G, P, Q = [ Poly(u, x) for u in (f, g, p, q) ] assert F.cancel(G) == (1, P, Q) assert cancel((f, g)) == (1, p, q) assert cancel((f, g), x) == (1, p, q) assert cancel((f, g), (x,)) == (1, p, q) assert cancel((F, G)) == (1, P, Q) assert cancel((f, g), polys=True) == (1, P, Q) assert cancel((F, G), polys=False) == (1, p, q) f = (x**2 - 2)/(x + sqrt(2)) assert cancel(f) == f assert cancel(f, greedy=False) == x - sqrt(2) f = (x**2 - 2)/(x - sqrt(2)) assert cancel(f) == f assert cancel(f, greedy=False) == x + sqrt(2) assert cancel((x**2/4 - 1, x/2 - 1)) == (1, x + 2, 2) # assert cancel((x**2/4 - 1, x/2 - 1)) == (S.Half, x + 2, 1) assert cancel((x**2 - y)/(x - y)) == 1/(x - y)*(x**2 - y) assert cancel((x**2 - y**2)/(x - y), x) == x + y assert cancel((x**2 - y**2)/(x - y), y) == x + y assert cancel((x**2 - y**2)/(x - y)) == x + y assert cancel((x**3 - 1)/(x**2 - 1)) == (x**2 + x + 1)/(x + 1) assert cancel((x**3/2 - S.Half)/(x**2 - 1)) == (x**2 + x + 1)/(2*x + 2) assert cancel((exp(2*x) + 2*exp(x) + 1)/(exp(x) + 1)) == exp(x) + 1 f = Poly(x**2 - a**2, x) g = Poly(x - a, x) F = Poly(x + a, x, domain='ZZ[a]') G = Poly(1, x, domain='ZZ[a]') assert cancel((f, g)) == (1, F, G) f = x**3 + (sqrt(2) - 2)*x**2 - (2*sqrt(2) + 3)*x - 3*sqrt(2) g = x**2 - 2 assert cancel((f, g), extension=True) == (1, x**2 - 2*x - 3, x - sqrt(2)) f = Poly(-2*x + 3, x) g = Poly(-x**9 + x**8 + x**6 - x**5 + 2*x**2 - 3*x + 1, x) assert cancel((f, g)) == (1, -f, -g) f = Poly(y, y, domain='ZZ(x)') g = Poly(1, y, domain='ZZ[x]') assert f.cancel( g) == (1, Poly(y, y, domain='ZZ(x)'), Poly(1, y, domain='ZZ(x)')) assert f.cancel(g, include=True) == ( Poly(y, y, domain='ZZ(x)'), Poly(1, y, domain='ZZ(x)')) f = Poly(5*x*y + x, y, domain='ZZ(x)') g = Poly(2*x**2*y, y, domain='ZZ(x)') assert f.cancel(g, include=True) == ( Poly(5*y + 1, y, domain='ZZ(x)'), Poly(2*x*y, y, domain='ZZ(x)')) f = -(-2*x - 4*y + 0.005*(z - y)**2)/((z - y)*(-z + y + 2)) assert cancel(f).is_Mul == True P = tanh(x - 3.0) Q = tanh(x + 3.0) f = ((-2*P**2 + 2)*(-P**2 + 1)*Q**2/2 + (-2*P**2 + 2)*(-2*Q**2 + 2)*P*Q - (-2*P**2 + 2)*P**2*Q**2 + (-2*Q**2 + 2)*(-Q**2 + 1)*P**2/2 - (-2*Q**2 + 2)*P**2*Q**2)/(2*sqrt(P**2*Q**2 + 0.0001)) \ + (-(-2*P**2 + 2)*P*Q**2/2 - (-2*Q**2 + 2)*P**2*Q/2)*((-2*P**2 + 2)*P*Q**2/2 + (-2*Q**2 + 2)*P**2*Q/2)/(2*(P**2*Q**2 + 0.0001)**Rational(3, 2)) assert cancel(f).is_Mul == True # issue 7022 A = Symbol('A', commutative=False) p1 = Piecewise((A*(x**2 - 1)/(x + 1), x > 1), ((x + 2)/(x**2 + 2*x), True)) p2 = Piecewise((A*(x - 1), x > 1), (1/x, True)) assert cancel(p1) == p2 assert cancel(2*p1) == 2*p2 assert cancel(1 + p1) == 1 + p2 assert cancel((x**2 - 1)/(x + 1)*p1) == (x - 1)*p2 assert cancel((x**2 - 1)/(x + 1) + p1) == (x - 1) + p2 p3 = Piecewise(((x**2 - 1)/(x + 1), x > 1), ((x + 2)/(x**2 + 2*x), True)) p4 = Piecewise(((x - 1), x > 1), (1/x, True)) assert cancel(p3) == p4 assert cancel(2*p3) == 2*p4 assert cancel(1 + p3) == 1 + p4 assert cancel((x**2 - 1)/(x + 1)*p3) == (x - 1)*p4 assert cancel((x**2 - 1)/(x + 1) + p3) == (x - 1) + p4 # issue 9363 M = MatrixSymbol('M', 5, 5) assert cancel(M[0,0] + 7) == M[0,0] + 7 expr = sin(M[1, 4] + M[2, 1] * 5 * M[4, 0]) - 5 * M[1, 2] / z assert cancel(expr) == (z*sin(M[1, 4] + M[2, 1] * 5 * M[4, 0]) - 5 * M[1, 2]) / z assert cancel((x**2 + 1)/(x - I)) == x + I def test_reduced(): f = 2*x**4 + y**2 - x**2 + y**3 G = [x**3 - x, y**3 - y] Q = [2*x, 1] r = x**2 + y**2 + y assert reduced(f, G) == (Q, r) assert reduced(f, G, x, y) == (Q, r) H = groebner(G) assert H.reduce(f) == (Q, r) Q = [Poly(2*x, x, y), Poly(1, x, y)] r = Poly(x**2 + y**2 + y, x, y) assert _strict_eq(reduced(f, G, polys=True), (Q, r)) assert _strict_eq(reduced(f, G, x, y, polys=True), (Q, r)) H = groebner(G, polys=True) assert _strict_eq(H.reduce(f), (Q, r)) f = 2*x**3 + y**3 + 3*y G = groebner([x**2 + y**2 - 1, x*y - 2]) Q = [x**2 - x*y**3/2 + x*y/2 + y**6/4 - y**4/2 + y**2/4, -y**5/4 + y**3/2 + y*Rational(3, 4)] r = 0 assert reduced(f, G) == (Q, r) assert G.reduce(f) == (Q, r) assert reduced(f, G, auto=False)[1] != 0 assert G.reduce(f, auto=False)[1] != 0 assert G.contains(f) is True assert G.contains(f + 1) is False assert reduced(1, [1], x) == ([1], 0) raises(ComputationFailed, lambda: reduced(1, [1])) def test_groebner(): assert groebner([], x, y, z) == [] assert groebner([x**2 + 1, y**4*x + x**3], x, y, order='lex') == [1 + x**2, -1 + y**4] assert groebner([x**2 + 1, y**4*x + x**3, x*y*z**3], x, y, z, order='grevlex') == [-1 + y**4, z**3, 1 + x**2] assert groebner([x**2 + 1, y**4*x + x**3], x, y, order='lex', polys=True) == \ [Poly(1 + x**2, x, y), Poly(-1 + y**4, x, y)] assert groebner([x**2 + 1, y**4*x + x**3, x*y*z**3], x, y, z, order='grevlex', polys=True) == \ [Poly(-1 + y**4, x, y, z), Poly(z**3, x, y, z), Poly(1 + x**2, x, y, z)] assert groebner([x**3 - 1, x**2 - 1]) == [x - 1] assert groebner([Eq(x**3, 1), Eq(x**2, 1)]) == [x - 1] F = [3*x**2 + y*z - 5*x - 1, 2*x + 3*x*y + y**2, x - 3*y + x*z - 2*z**2] f = z**9 - x**2*y**3 - 3*x*y**2*z + 11*y*z**2 + x**2*z**2 - 5 G = groebner(F, x, y, z, modulus=7, symmetric=False) assert G == [1 + x + y + 3*z + 2*z**2 + 2*z**3 + 6*z**4 + z**5, 1 + 3*y + y**2 + 6*z**2 + 3*z**3 + 3*z**4 + 3*z**5 + 4*z**6, 1 + 4*y + 4*z + y*z + 4*z**3 + z**4 + z**6, 6 + 6*z + z**2 + 4*z**3 + 3*z**4 + 6*z**5 + 3*z**6 + z**7] Q, r = reduced(f, G, x, y, z, modulus=7, symmetric=False, polys=True) assert sum([ q*g for q, g in zip(Q, G.polys)], r) == Poly(f, modulus=7) F = [x*y - 2*y, 2*y**2 - x**2] assert groebner(F, x, y, order='grevlex') == \ [y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y] assert groebner(F, y, x, order='grevlex') == \ [x**3 - 2*x**2, -x**2 + 2*y**2, x*y - 2*y] assert groebner(F, order='grevlex', field=True) == \ [y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y] assert groebner([1], x) == [1] assert groebner([x**2 + 2.0*y], x, y) == [1.0*x**2 + 2.0*y] raises(ComputationFailed, lambda: groebner([1])) assert groebner([x**2 - 1, x**3 + 1], method='buchberger') == [x + 1] assert groebner([x**2 - 1, x**3 + 1], method='f5b') == [x + 1] raises(ValueError, lambda: groebner([x, y], method='unknown')) def test_fglm(): F = [a + b + c + d, a*b + a*d + b*c + b*d, a*b*c + a*b*d + a*c*d + b*c*d, a*b*c*d - 1] G = groebner(F, a, b, c, d, order=grlex) B = [ 4*a + 3*d**9 - 4*d**5 - 3*d, 4*b + 4*c - 3*d**9 + 4*d**5 + 7*d, 4*c**2 + 3*d**10 - 4*d**6 - 3*d**2, 4*c*d**4 + 4*c - d**9 + 4*d**5 + 5*d, d**12 - d**8 - d**4 + 1, ] assert groebner(F, a, b, c, d, order=lex) == B assert G.fglm(lex) == B F = [9*x**8 + 36*x**7 - 32*x**6 - 252*x**5 - 78*x**4 + 468*x**3 + 288*x**2 - 108*x + 9, -72*t*x**7 - 252*t*x**6 + 192*t*x**5 + 1260*t*x**4 + 312*t*x**3 - 404*t*x**2 - 576*t*x + \ 108*t - 72*x**7 - 256*x**6 + 192*x**5 + 1280*x**4 + 312*x**3 - 576*x + 96] G = groebner(F, t, x, order=grlex) B = [ 203577793572507451707*t + 627982239411707112*x**7 - 666924143779443762*x**6 - \ 10874593056632447619*x**5 + 5119998792707079562*x**4 + 72917161949456066376*x**3 + \ 20362663855832380362*x**2 - 142079311455258371571*x + 183756699868981873194, 9*x**8 + 36*x**7 - 32*x**6 - 252*x**5 - 78*x**4 + 468*x**3 + 288*x**2 - 108*x + 9, ] assert groebner(F, t, x, order=lex) == B assert G.fglm(lex) == B F = [x**2 - x - 3*y + 1, -2*x + y**2 + y - 1] G = groebner(F, x, y, order=lex) B = [ x**2 - x - 3*y + 1, y**2 - 2*x + y - 1, ] assert groebner(F, x, y, order=grlex) == B assert G.fglm(grlex) == B def test_is_zero_dimensional(): assert is_zero_dimensional([x, y], x, y) is True assert is_zero_dimensional([x**3 + y**2], x, y) is False assert is_zero_dimensional([x, y, z], x, y, z) is True assert is_zero_dimensional([x, y, z], x, y, z, t) is False F = [x*y - z, y*z - x, x*y - y] assert is_zero_dimensional(F, x, y, z) is True F = [x**2 - 2*x*z + 5, x*y**2 + y*z**3, 3*y**2 - 8*z**2] assert is_zero_dimensional(F, x, y, z) is True def test_GroebnerBasis(): F = [x*y - 2*y, 2*y**2 - x**2] G = groebner(F, x, y, order='grevlex') H = [y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y] P = [ Poly(h, x, y) for h in H ] assert groebner(F + [0], x, y, order='grevlex') == G assert isinstance(G, GroebnerBasis) is True assert len(G) == 3 assert G[0] == H[0] and not G[0].is_Poly assert G[1] == H[1] and not G[1].is_Poly assert G[2] == H[2] and not G[2].is_Poly assert G[1:] == H[1:] and not any(g.is_Poly for g in G[1:]) assert G[:2] == H[:2] and not any(g.is_Poly for g in G[1:]) assert G.exprs == H assert G.polys == P assert G.gens == (x, y) assert G.domain == ZZ assert G.order == grevlex assert G == H assert G == tuple(H) assert G == P assert G == tuple(P) assert G != [] G = groebner(F, x, y, order='grevlex', polys=True) assert G[0] == P[0] and G[0].is_Poly assert G[1] == P[1] and G[1].is_Poly assert G[2] == P[2] and G[2].is_Poly assert G[1:] == P[1:] and all(g.is_Poly for g in G[1:]) assert G[:2] == P[:2] and all(g.is_Poly for g in G[1:]) def test_poly(): assert poly(x) == Poly(x, x) assert poly(y) == Poly(y, y) assert poly(x + y) == Poly(x + y, x, y) assert poly(x + sin(x)) == Poly(x + sin(x), x, sin(x)) assert poly(x + y, wrt=y) == Poly(x + y, y, x) assert poly(x + sin(x), wrt=sin(x)) == Poly(x + sin(x), sin(x), x) assert poly(x*y + 2*x*z**2 + 17) == Poly(x*y + 2*x*z**2 + 17, x, y, z) assert poly(2*(y + z)**2 - 1) == Poly(2*y**2 + 4*y*z + 2*z**2 - 1, y, z) assert poly( x*(y + z)**2 - 1) == Poly(x*y**2 + 2*x*y*z + x*z**2 - 1, x, y, z) assert poly(2*x*( y + z)**2 - 1) == Poly(2*x*y**2 + 4*x*y*z + 2*x*z**2 - 1, x, y, z) assert poly(2*( y + z)**2 - x - 1) == Poly(2*y**2 + 4*y*z + 2*z**2 - x - 1, x, y, z) assert poly(x*( y + z)**2 - x - 1) == Poly(x*y**2 + 2*x*y*z + x*z**2 - x - 1, x, y, z) assert poly(2*x*(y + z)**2 - x - 1) == Poly(2*x*y**2 + 4*x*y*z + 2* x*z**2 - x - 1, x, y, z) assert poly(x*y + (x + y)**2 + (x + z)**2) == \ Poly(2*x*z + 3*x*y + y**2 + z**2 + 2*x**2, x, y, z) assert poly(x*y*(x + y)*(x + z)**2) == \ Poly(x**3*y**2 + x*y**2*z**2 + y*x**2*z**2 + 2*z*x**2* y**2 + 2*y*z*x**3 + y*x**4, x, y, z) assert poly(Poly(x + y + z, y, x, z)) == Poly(x + y + z, y, x, z) assert poly((x + y)**2, x) == Poly(x**2 + 2*x*y + y**2, x, domain=ZZ[y]) assert poly((x + y)**2, y) == Poly(x**2 + 2*x*y + y**2, y, domain=ZZ[x]) assert poly(1, x) == Poly(1, x) raises(GeneratorsNeeded, lambda: poly(1)) # issue 6184 assert poly(x + y, x, y) == Poly(x + y, x, y) assert poly(x + y, y, x) == Poly(x + y, y, x) def test_keep_coeff(): u = Mul(2, x + 1, evaluate=False) assert _keep_coeff(S.One, x) == x assert _keep_coeff(S.NegativeOne, x) == -x assert _keep_coeff(S(1.0), x) == 1.0*x assert _keep_coeff(S(-1.0), x) == -1.0*x assert _keep_coeff(S.One, 2*x) == 2*x assert _keep_coeff(S(2), x/2) == x assert _keep_coeff(S(2), sin(x)) == 2*sin(x) assert _keep_coeff(S(2), x + 1) == u assert _keep_coeff(x, 1/x) == 1 assert _keep_coeff(x + 1, S(2)) == u def test_poly_matching_consistency(): # Test for this issue: # https://github.com/sympy/sympy/issues/5514 assert I * Poly(x, x) == Poly(I*x, x) assert Poly(x, x) * I == Poly(I*x, x) def test_issue_5786(): assert expand(factor(expand( (x - I*y)*(z - I*t)), extension=[I])) == -I*t*x - t*y + x*z - I*y*z def test_noncommutative(): class foo(Expr): is_commutative=False e = x/(x + x*y) c = 1/( 1 + y) assert cancel(foo(e)) == foo(c) assert cancel(e + foo(e)) == c + foo(c) assert cancel(e*foo(c)) == c*foo(c) def test_to_rational_coeffs(): assert to_rational_coeffs( Poly(x**3 + y*x**2 + sqrt(y), x, domain='EX')) is None def test_factor_terms(): # issue 7067 assert factor_list(x*(x + y)) == (1, [(x, 1), (x + y, 1)]) assert sqf_list(x*(x + y)) == (1, [(x**2 + x*y, 1)]) def test_as_list(): # issue 14496 assert Poly(x**3 + 2, x, domain='ZZ').as_list() == [1, 0, 0, 2] assert Poly(x**2 + y + 1, x, y, domain='ZZ').as_list() == [[1], [], [1, 1]] assert Poly(x**2 + y + 1, x, y, z, domain='ZZ').as_list() == \ [[[1]], [[]], [[1], [1]]] def test_issue_11198(): assert factor_list(sqrt(2)*x) == (sqrt(2), [(x, 1)]) assert factor_list(sqrt(2)*sin(x), sin(x)) == (sqrt(2), [(sin(x), 1)]) def test_Poly_precision(): # Make sure Poly doesn't lose precision p = Poly(pi.evalf(100)*x) assert p.as_expr() == pi.evalf(100)*x def test_issue_12400(): # Correction of check for negative exponents assert poly(1/(1+sqrt(2)), x) == \ Poly(1/(1+sqrt(2)), x , domain='EX') def test_issue_14364(): assert gcd(S(6)*(1 + sqrt(3))/5, S(3)*(1 + sqrt(3))/10) == Rational(3, 10) * (1 + sqrt(3)) assert gcd(sqrt(5)*Rational(4, 7), sqrt(5)*Rational(2, 3)) == sqrt(5)*Rational(2, 21) assert lcm(Rational(2, 3)*sqrt(3), Rational(5, 6)*sqrt(3)) == S(10)*sqrt(3)/3 assert lcm(3*sqrt(3), 4/sqrt(3)) == 12*sqrt(3) assert lcm(S(5)*(1 + 2**Rational(1, 3))/6, S(3)*(1 + 2**Rational(1, 3))/8) == Rational(15, 2) * (1 + 2**Rational(1, 3)) assert gcd(Rational(2, 3)*sqrt(3), Rational(5, 6)/sqrt(3)) == sqrt(3)/18 assert gcd(S(4)*sqrt(13)/7, S(3)*sqrt(13)/14) == sqrt(13)/14 # gcd_list and lcm_list assert gcd([S(2)*sqrt(47)/7, S(6)*sqrt(47)/5, S(8)*sqrt(47)/5]) == sqrt(47)*Rational(2, 35) assert gcd([S(6)*(1 + sqrt(7))/5, S(2)*(1 + sqrt(7))/7, S(4)*(1 + sqrt(7))/13]) == (1 + sqrt(7))*Rational(2, 455) assert lcm((Rational(7, 2)/sqrt(15), Rational(5, 6)/sqrt(15), Rational(5, 8)/sqrt(15))) == Rational(35, 2)/sqrt(15) assert lcm([S(5)*(2 + 2**Rational(5, 7))/6, S(7)*(2 + 2**Rational(5, 7))/2, S(13)*(2 + 2**Rational(5, 7))/4]) == Rational(455, 2) * (2 + 2**Rational(5, 7)) def test_issue_15669(): x = Symbol("x", positive=True) expr = (16*x**3/(-x**2 + sqrt(8*x**2 + (x**2 - 2)**2) + 2)**2 - 2*2**Rational(4, 5)*x*(-x**2 + sqrt(8*x**2 + (x**2 - 2)**2) + 2)**Rational(3, 5) + 10*x) assert factor(expr, deep=True) == x*(x**2 + 2) def test_issue_17988(): x = Symbol('x') p = poly(x - 1) M = Matrix([[poly(x + 1), poly(x + 1)]]) assert p * M == M * p == Matrix([[poly(x**2 - 1), poly(x**2 - 1)]]) def test_issue_18205(): assert cancel((2 + I)*(3 - I)) == 7 + I assert cancel((2 + I)*(2 - I)) == 5 def test_issue_8695(): p = (x**2 + 1) * (x - 1)**2 * (x - 2)**3 * (x - 3)**3 result = (1, [(x**2 + 1, 1), (x - 1, 2), (x**2 - 5*x + 6, 3)]) assert sqf_list(p) == result def test_issue_19113(): eq = sin(x)**3 - sin(x) + 1 raises(PolynomialError, lambda: refine_root(eq, 1, 2, 1e-2)) raises(PolynomialError, lambda: count_roots(eq, -1, 1)) raises(PolynomialError, lambda: real_roots(eq)) raises(PolynomialError, lambda: nroots(eq)) raises(PolynomialError, lambda: ground_roots(eq)) raises(PolynomialError, lambda: nth_power_roots_poly(eq, 2)) def test_issue_19360(): f = 2*x**2 - 2*sqrt(2)*x*y + y**2 assert factor(f, extension=sqrt(2)) == 2*(x - (sqrt(2)*y/2))**2 f = -I*t*x - t*y + x*z - I*y*z assert factor(f, extension=I) == (x - I*y)*(-I*t + z) def test_poly_copy_equals_original(): poly = Poly(x + y, x, y, z) copy = poly.copy() assert poly == copy, ( "Copied polynomial not equal to original.") assert poly.gens == copy.gens, ( "Copied polynomial has different generators than original.") def test_deserialized_poly_equals_original(): poly = Poly(x + y, x, y, z) deserialized = pickle.loads(pickle.dumps(poly)) assert poly == deserialized, ( "Deserialized polynomial not equal to original.") assert poly.gens == deserialized.gens, ( "Deserialized polynomial has different generators than original.") def test_issue_20389(): result = degree(x * (x + 1) - x ** 2 - x, x) assert result == -oo
8eec704896f7350f1be66ad3663e82f5a099a5f1c5472c2151e232e1a6180f26
"""Finite extensions of ring domains.""" from sympy.polys.domains.domain import Domain from sympy.polys.domains.domainelement import DomainElement from sympy.polys.polyerrors import (CoercionFailed, NotInvertible, GeneratorsError) from sympy.polys.polytools import Poly from sympy.printing.defaults import DefaultPrinting class ExtensionElement(DomainElement, DefaultPrinting): """ Element of a finite extension. A class of univariate polynomials modulo the ``modulus`` of the extension ``ext``. It is represented by the unique polynomial ``rep`` of lowest degree. Both ``rep`` and the representation ``mod`` of ``modulus`` are of class DMP. """ __slots__ = ('rep', 'ext') def __init__(self, rep, ext): self.rep = rep self.ext = ext def parent(f): return f.ext def __bool__(f): return bool(f.rep) def __neg__(f): return ExtElem(-f.rep, f.ext) def _get_rep(f, g): if isinstance(g, ExtElem): if g.ext == f.ext: return g.rep else: return None else: try: g = f.ext.convert(g) return g.rep except CoercionFailed: return None def __add__(f, g): rep = f._get_rep(g) if rep is not None: return ExtElem(f.rep + rep, f.ext) else: return NotImplemented __radd__ = __add__ def __sub__(f, g): rep = f._get_rep(g) if rep is not None: return ExtElem(f.rep - rep, f.ext) else: return NotImplemented def __rsub__(f, g): rep = f._get_rep(g) if rep is not None: return ExtElem(rep - f.rep, f.ext) else: return NotImplemented def __mul__(f, g): rep = f._get_rep(g) if rep is not None: return ExtElem((f.rep * rep) % f.ext.mod, f.ext) else: return NotImplemented __rmul__ = __mul__ def _divcheck(f): """Raise if division is not implemented for this divisor""" if not f: raise NotInvertible('Zero divisor') elif f.ext.is_Field: return True elif f.rep.is_ground and f.ext.domain.is_unit(f.rep.rep[0]): return True else: # Some cases like (2*x + 2)/2 over ZZ will fail here. It is # unclear how to implement division in general if the ground # domain is not a field so for now it was decided to restrict the # implementation to division by invertible constants. msg = (f"Can not invert {f} in {f.ext}. " "Only division by invertible constants is implemented.") raise NotImplementedError(msg) def inverse(f): """Multiplicative inverse. Raises ====== NotInvertible If the element is a zero divisor. """ f._divcheck() if f.ext.is_Field: invrep = f.rep.invert(f.ext.mod) else: R = f.ext.ring invrep = R.exquo(R.one, f.rep) return ExtElem(invrep, f.ext) def __truediv__(f, g): rep = f._get_rep(g) if rep is None: return NotImplemented g = ExtElem(rep, f.ext) try: ginv = g.inverse() except NotInvertible: raise ZeroDivisionError(f"{f} / {g}") return f * ginv __floordiv__ = __truediv__ def __rtruediv__(f, g): try: g = f.ext.convert(g) except CoercionFailed: return NotImplemented return g / f __rfloordiv__ = __rtruediv__ def __mod__(f, g): rep = f._get_rep(g) if rep is None: return NotImplemented g = ExtElem(rep, f.ext) try: g._divcheck() except NotInvertible: raise ZeroDivisionError(f"{f} % {g}") # Division where defined is always exact so there is no remainder return f.ext.zero def __rmod__(f, g): try: g = f.ext.convert(g) except CoercionFailed: return NotImplemented return g % f def __pow__(f, n): if not isinstance(n, int): raise TypeError("exponent of type 'int' expected") if n < 0: try: f, n = f.inverse(), -n except NotImplementedError: raise ValueError("negative powers are not defined") b = f.rep m = f.ext.mod r = f.ext.one.rep while n > 0: if n % 2: r = (r*b) % m b = (b*b) % m n //= 2 return ExtElem(r, f.ext) def __eq__(f, g): if isinstance(g, ExtElem): return f.rep == g.rep and f.ext == g.ext else: return NotImplemented def __ne__(f, g): return not f == g def __hash__(f): return hash((f.rep, f.ext)) def __str__(f): from sympy.printing.str import sstr return sstr(f.rep) __repr__ = __str__ @property def is_ground(f): return f.rep.is_ground def to_ground(f): [c] = f.rep.to_list() return c ExtElem = ExtensionElement class MonogenicFiniteExtension(Domain): r""" Finite extension generated by an integral element. The generator is defined by a monic univariate polynomial derived from the argument ``mod``. A shorter alias is ``FiniteExtension``. Examples ======== Quadratic integer ring $\mathbb{Z}[\sqrt2]$: >>> from sympy import Symbol, Poly >>> from sympy.polys.agca.extensions import FiniteExtension >>> x = Symbol('x') >>> R = FiniteExtension(Poly(x**2 - 2)); R ZZ[x]/(x**2 - 2) >>> R.rank 2 >>> R(1 + x)*(3 - 2*x) x - 1 Finite field $GF(5^3)$ defined by the primitive polynomial $x^3 + x^2 + 2$ (over $\mathbb{Z}_5$). >>> F = FiniteExtension(Poly(x**3 + x**2 + 2, modulus=5)); F GF(5)[x]/(x**3 + x**2 + 2) >>> F.basis (1, x, x**2) >>> F(x + 3)/(x**2 + 2) -2*x**2 + x + 2 Function field of an elliptic curve: >>> t = Symbol('t') >>> FiniteExtension(Poly(t**2 - x**3 - x + 1, t, field=True)) ZZ(x)[t]/(t**2 - x**3 - x + 1) """ is_FiniteExtension = True dtype = ExtensionElement def __init__(self, mod): if not (isinstance(mod, Poly) and mod.is_univariate): raise TypeError("modulus must be a univariate Poly") # Using auto=True (default) potentially changes the ground domain to a # field whereas auto=False raises if division is not exact. We'll let # the caller decide whether or not they want to put the ground domain # over a field. In most uses mod is already monic. mod = mod.monic(auto=False) self.rank = mod.degree() self.modulus = mod self.mod = mod.rep # DMP representation self.domain = dom = mod.domain self.ring = mod.rep.ring or dom.old_poly_ring(*mod.gens) self.zero = self.convert(self.ring.zero) self.one = self.convert(self.ring.one) gen = self.ring.gens[0] self.symbol = self.ring.symbols[0] self.generator = self.convert(gen) self.basis = tuple(self.convert(gen**i) for i in range(self.rank)) # XXX: It might be necessary to check mod.is_irreducible here self.is_Field = self.domain.is_Field def new(self, arg): rep = self.ring.convert(arg) return ExtElem(rep % self.mod, self) def __eq__(self, other): if not isinstance(other, FiniteExtension): return False return self.modulus == other.modulus def __hash__(self): return hash((self.__class__.__name__, self.modulus)) def __str__(self): return "%s/(%s)" % (self.ring, self.modulus.as_expr()) __repr__ = __str__ def convert(self, f, base=None): rep = self.ring.convert(f, base) return ExtElem(rep % self.mod, self) def convert_from(self, f, base): rep = self.ring.convert(f, base) return ExtElem(rep % self.mod, self) def to_sympy(self, f): return self.ring.to_sympy(f.rep) def from_sympy(self, f): return self.convert(f) def set_domain(self, K): mod = self.modulus.set_domain(K) return self.__class__(mod) def drop(self, *symbols): if self.symbol in symbols: raise GeneratorsError('Can not drop generator from FiniteExtension') K = self.domain.drop(*symbols) return self.set_domain(K) def quo(self, f, g): return self.exquo(f, g) def exquo(self, f, g): rep = self.ring.exquo(f.rep, g.rep) return ExtElem(rep % self.mod, self) def is_negative(self, a): return False def is_unit(self, a): if self.is_Field: return bool(a) elif a.is_ground: return self.domain.is_unit(a.to_ground()) FiniteExtension = MonogenicFiniteExtension
d9f5cfb543905043dc7abee9cfd4ec0ce99b16596d622734fd1f1653062b4732
""" sympy.polys.matrices package. The main export from this package is the DomainMatrix class which is a lower-level implementation of matrices based on the polys Domains. This implementation is typically a lot faster than sympy's standard Matrix class but is a work in progress and is still experimental. """ from .domainmatrix import DomainMatrix __all__ = [ 'DomainMatrix', ]
113edcca179aed9cfe5796ac6ac77896e7915f3d8c5dbd265da5e8f582edfd3f
""" Module for the DomainMatrix class. A DomainMatrix represents a matrix with elements that are in a particular Domain. Each DomainMatrix internally wraps a DDM which is used for the lower-level operations. The idea is that the DomainMatrix class provides the convenience routines for converting between Expr and the poly domains as well as unifying matrices with different domains. """ from sympy.core.sympify import _sympify from ..constructor import construct_domain from .exceptions import NonSquareMatrixError, ShapeError from .ddm import DDM class DomainMatrix: def __init__(self, rows, shape, domain): self.rep = DDM(rows, shape, domain) self.shape = shape self.domain = domain @classmethod def from_ddm(cls, ddm): return cls(ddm, ddm.shape, ddm.domain) @classmethod def from_list_sympy(cls, nrows, ncols, rows, **kwargs): assert len(rows) == nrows assert all(len(row) == ncols for row in rows) items_sympy = [_sympify(item) for row in rows for item in row] domain, items_domain = cls.get_domain(items_sympy, **kwargs) domain_rows = [[items_domain[ncols*r + c] for c in range(ncols)] for r in range(nrows)] return DomainMatrix(domain_rows, (nrows, ncols), domain) @classmethod def from_Matrix(cls, M, **kwargs): return cls.from_list_sympy(*M.shape, M.tolist(), **kwargs) @classmethod def get_domain(cls, items_sympy, **kwargs): K, items_K = construct_domain(items_sympy, **kwargs) return K, items_K def convert_to(self, K): Kold = self.domain if K == Kold: return self.from_ddm(self.rep.copy()) new_rows = [[K.convert_from(e, Kold) for e in row] for row in self.rep] return DomainMatrix(new_rows, self.shape, K) def to_field(self): K = self.domain.get_field() return self.convert_to(K) def unify(self, other): K1 = self.domain K2 = other.domain if K1 == K2: return self, other K = K1.unify(K2) if K1 != K: self = self.convert_to(K) if K2 != K: other = other.convert_to(K) return self, other def to_Matrix(self): from sympy.matrices.dense import MutableDenseMatrix rows_sympy = [[self.domain.to_sympy(e) for e in row] for row in self.rep] return MutableDenseMatrix(rows_sympy) def __repr__(self): rows_str = ['[%s]' % (', '.join(map(str, row))) for row in self.rep] rowstr = '[%s]' % ', '.join(rows_str) return 'DomainMatrix(%s, %r, %r)' % (rowstr, self.shape, self.domain) def __add__(A, B): if not isinstance(B, DomainMatrix): return NotImplemented return A.add(B) def __sub__(A, B): if not isinstance(B, DomainMatrix): return NotImplemented return A.sub(B) def __neg__(A): return A.neg() def __mul__(A, B): """A * B""" if isinstance(B, DomainMatrix): return A.matmul(B) elif B in A.domain: return A.from_ddm(A.rep * B) else: return NotImplemented def __rmul__(A, B): if B in A.domain: return A.from_ddm(A.rep * B) else: return NotImplemented def __pow__(A, n): """A ** n""" if not isinstance(n, int): return NotImplemented return A.pow(n) def add(A, B): if A.shape != B.shape: raise ShapeError("shape") if A.domain != B.domain: raise ValueError("domain") return A.from_ddm(A.rep.add(B.rep)) def sub(A, B): if A.shape != B.shape: raise ShapeError("shape") if A.domain != B.domain: raise ValueError("domain") return A.from_ddm(A.rep.sub(B.rep)) def neg(A): return A.from_ddm(A.rep.neg()) def mul(A, b): return A.from_ddm(A.rep.mul(b)) def matmul(A, B): return A.from_ddm(A.rep.matmul(B.rep)) def pow(A, n): if n < 0: raise NotImplementedError('Negative powers') elif n == 0: m, n = A.shape rows = [[A.domain.zero] * m for _ in range(m)] for i in range(m): rows[i][i] = A.domain.one return type(A)(rows, A.shape, A.domain) elif n == 1: return A elif n % 2 == 1: return A * A**(n - 1) else: sqrtAn = A ** (n // 2) return sqrtAn * sqrtAn def rref(self): if not self.domain.is_Field: raise ValueError('Not a field') rref_ddm, pivots = self.rep.rref() return self.from_ddm(rref_ddm), tuple(pivots) def nullspace(self): return self.from_ddm(self.rep.nullspace()) def inv(self): if not self.domain.is_Field: raise ValueError('Not a field') m, n = self.shape if m != n: raise NonSquareMatrixError inv = self.rep.inv() return self.from_ddm(inv) def det(self): m, n = self.shape if m != n: raise NonSquareMatrixError return self.rep.det() def lu(self): if not self.domain.is_Field: raise ValueError('Not a field') L, U, swaps = self.rep.lu() return self.from_ddm(L), self.from_ddm(U), swaps def lu_solve(self, rhs): if self.shape[0] != rhs.shape[0]: raise ShapeError("Shape") if not self.domain.is_Field: raise ValueError('Not a field') sol = self.rep.lu_solve(rhs.rep) return self.from_ddm(sol) def charpoly(self): m, n = self.shape if m != n: raise NonSquareMatrixError("not square") return self.rep.charpoly() @classmethod def eye(cls, n, domain): return cls.from_ddm(DDM.eye(n, domain)) def __eq__(A, B): """A == B""" if not isinstance(B, DomainMatrix): return NotImplemented return A.rep == B.rep
aad701d51b58e7421e3d1bd92c1177fdf36918ad72741fdeb3cc37a841ce55f6
""" Module to define exceptions to be used in sympy.polys.matrices modules and classes. Ideally all exceptions raised in these modules would be defined and documented here and not e.g. imported from matrices. Also ideally generic exceptions like ValueError/TypeError would not be raised anywhere. """ from sympy.matrices.common import (NonInvertibleMatrixError, NonSquareMatrixError, ShapeError) class DDMError(Exception): """Base class for errors raised by DDM""" pass class DDMBadInputError(DDMError): """list of lists is inconsistent with shape""" pass class DDMDomainError(DDMError): """domains do not match""" pass class DDMShapeError(DDMError): """shapes are inconsistent""" pass __all__ = [ 'DDMError', 'DDMShapeError', 'DDMDomainError', 'NonSquareMatrixError', 'NonInvertibleMatrixError', 'ShapeError', ]
60c127a946fffca8d249ee82ee6e0005c710ba4c4fd0e5f831ed920169efc4a7
""" Module for the ddm_* routines for operating on a matrix in list of lists matrix representation. These routines are used internally by the DDM class which also provides a friendlier interface for them. The idea here is to implement core matrix routines in a way that can be applied to any simple list representation without the need to use any particular matrix class. For example we can compute the RREF of a matrix like: >>> from sympy.polys.matrices.dense import ddm_irref >>> M = [[1, 2, 3], [4, 5, 6]] >>> pivots = ddm_irref(M) >>> M [[1.0, 0.0, -1.0], [0, 1.0, 2.0]] These are lower-level routines that work mostly in place.The routines at this level should not need to know what the domain of the elements is but should ideally document what operations they will use and what functions they need to be provided with. The next-level up is the DDM class which uses these routines but wraps them up with an interface that handles copying etc and keeps track of the Domain of the elements of the matrix: >>> from sympy.polys.domains import QQ >>> from sympy.polys.matrices.ddm import DDM >>> M = DDM([[QQ(1), QQ(2), QQ(3)], [QQ(4), QQ(5), QQ(6)]], (2, 3), QQ) >>> M [[1, 2, 3], [4, 5, 6]] >>> Mrref, pivots = M.rref() >>> Mrref [[1, 0, -1], [0, 1, 2]] """ from operator import mul from .exceptions import ( DDMShapeError, NonInvertibleMatrixError, NonSquareMatrixError, ) def ddm_iadd(a, b): """a += b""" for ai, bi in zip(a, b): for j, bij in enumerate(bi): ai[j] += bij def ddm_isub(a, b): """a -= b""" for ai, bi in zip(a, b): for j, bij in enumerate(bi): ai[j] -= bij def ddm_ineg(a): """a <-- -a""" for ai in a: for j, aij in enumerate(ai): ai[j] = -aij def ddm_imul(a, b): for ai in a: for j, aij in enumerate(ai): ai[j] = b * aij def ddm_imatmul(a, b, c): """a += b @ c""" cT = list(zip(*c)) for bi, ai in zip(b, a): for j, cTj in enumerate(cT): ai[j] = sum(map(mul, bi, cTj), ai[j]) def ddm_irref(a): """a <-- rref(a)""" # a is (m x n) m = len(a) if not m: return [] n = len(a[0]) i = 0 pivots = [] for j in range(n): # pivot aij = a[i][j] # zero-pivot if not aij: for ip in range(i+1, m): aij = a[ip][j] # row-swap if aij: a[i], a[ip] = a[ip], a[i] break else: # next column continue # normalise row ai = a[i] aijinv = aij**-1 for l in range(j, n): ai[l] *= aijinv # ai[j] = one # eliminate above and below to the right for k, ak in enumerate(a): if k == i or not ak[j]: continue akj = ak[j] ak[j] -= akj # ak[j] = zero for l in range(j+1, n): ak[l] -= akj * ai[l] # next row pivots.append(j) i += 1 # no more rows? if i >= m: break return pivots def ddm_idet(a, K): """a <-- echelon(a); return det""" # Fraction-free Gaussian elimination # https://www.math.usm.edu/perry/Research/Thesis_DRL.pdf # a is (m x n) m = len(a) if not m: return K.one n = len(a[0]) is_field = K.is_Field # uf keeps track of the effect of row swaps and multiplies uf = K.one for j in range(n-1): # if zero on the diagonal need to swap if not a[j][j]: for l in range(j+1, n): if a[l][j]: a[j], a[l] = a[l], a[j] uf = -uf break else: # unable to swap: det = 0 return K.zero for i in range(j+1, n): if a[i][j]: if not is_field: d = K.gcd(a[j][j], a[i][j]) b = a[j][j] // d c = a[i][j] // d else: b = a[j][j] c = a[i][j] # account for multiplying row i by b uf = b * uf for k in range(j+1, n): a[i][k] = b*a[i][k] - c*a[j][k] # triangular det is product of diagonal prod = K.one for i in range(n): prod = prod * a[i][i] # incorporate swaps and multiplies if not is_field: D = prod // uf else: D = prod / uf return D def ddm_iinv(ainv, a, K): if not K.is_Field: raise ValueError('Not a field') # a is (m x n) m = len(a) if not m: return n = len(a[0]) if m != n: raise NonSquareMatrixError eye = [[K.one if i==j else K.zero for j in range(n)] for i in range(n)] Aaug = [row + eyerow for row, eyerow in zip(a, eye)] pivots = ddm_irref(Aaug) if pivots != list(range(n)): raise NonInvertibleMatrixError('Matrix det == 0; not invertible.') ainv[:] = [row[n:] for row in Aaug] def ddm_ilu_split(L, U, K): """L, U <-- LU(U)""" m = len(U) if not m: return [] n = len(U[0]) swaps = ddm_ilu(U) zeros = [K.zero] * min(m, n) for i in range(1, m): j = min(i, n) L[i][:j] = U[i][:j] U[i][:j] = zeros[:j] return swaps def ddm_ilu(a): """a <-- LU(a)""" m = len(a) if not m: return [] n = len(a[0]) swaps = [] for i in range(min(m, n)): if not a[i][i]: for ip in range(i+1, m): if a[ip][i]: swaps.append((i, ip)) a[i], a[ip] = a[ip], a[i] break else: # M = Matrix([[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 1], [0, 0, 1, 2]]) continue for j in range(i+1, m): l_ji = a[j][i] / a[i][i] a[j][i] = l_ji for k in range(i+1, n): a[j][k] -= l_ji * a[i][k] return swaps def ddm_ilu_solve(x, L, U, swaps, b): """x <-- solve(L*U*x = swaps(b))""" m = len(U) if not m: return n = len(U[0]) m2 = len(b) if not m2: raise DDMShapeError("Shape mismtch") o = len(b[0]) if m != m2: raise DDMShapeError("Shape mismtch") if m < n: raise NotImplementedError("Underdetermined") if swaps: b = [row[:] for row in b] for i1, i2 in swaps: b[i1], b[i2] = b[i2], b[i1] # solve Ly = b y = [[None] * o for _ in range(m)] for k in range(o): for i in range(m): rhs = b[i][k] for j in range(i): rhs -= L[i][j] * y[j][k] y[i][k] = rhs if m > n: for i in range(n, m): for j in range(o): if y[i][j]: raise NonInvertibleMatrixError # Solve Ux = y for k in range(o): for i in reversed(range(n)): if not U[i][i]: raise NonInvertibleMatrixError rhs = y[i][k] for j in range(i+1, n): rhs -= U[i][j] * x[j][k] x[i][k] = rhs / U[i][i] def ddm_berk(M, K): m = len(M) if not m: return [[K.one]] n = len(M[0]) if m != n: raise DDMShapeError("Not square") if n == 1: return [[K.one], [-M[0][0]]] a = M[0][0] R = [M[0][1:]] C = [[row[0]] for row in M[1:]] A = [row[1:] for row in M[1:]] q = ddm_berk(A, K) T = [[K.zero] * n for _ in range(n+1)] for i in range(n): T[i][i] = K.one T[i+1][i] = -a for i in range(2, n+1): if i == 2: AnC = C else: C = AnC AnC = [[K.zero] for row in C] ddm_imatmul(AnC, A, C) RAnC = [[K.zero]] ddm_imatmul(RAnC, R, AnC) for j in range(0, n+1-i): T[i+j][j] = -RAnC[0][0] qout = [[K.zero] for _ in range(n+1)] ddm_imatmul(qout, T, q) return qout
e263b75c4f04df9a0c6e9278da9747b37ea1f220350d92975c0b44df30b709b4
""" Routines for computing eigenvectors with DomainMatrix. """ from sympy.core.symbol import Dummy from ..agca.extensions import FiniteExtension from ..factortools import dup_factor_list from ..polyroots import roots from ..polytools import Poly from ..rootoftools import CRootOf from .domainmatrix import DomainMatrix def dom_eigenvects(A, l=Dummy('lambda')): charpoly = A.charpoly() rows, cols = A.shape domain = A.domain _, factors = dup_factor_list(charpoly, domain) rational_eigenvects = [] algebraic_eigenvects = [] for base, exp in factors: if len(base) == 2: field = domain eigenval = -base[1] / base[0] EE_items = [ [eigenval if i == j else field.zero for j in range(cols)] for i in range(rows)] EE = DomainMatrix(EE_items, (rows, cols), field) basis = (A - EE).nullspace() rational_eigenvects.append((field, eigenval, exp, basis)) else: minpoly = Poly.from_list(base, l, domain=domain) field = FiniteExtension(minpoly) eigenval = field(l) AA_items = [ [Poly.from_list([item], l, domain=domain).rep for item in row] for row in A.rep] AA_items = [[field(item) for item in row] for row in AA_items] AA = DomainMatrix(AA_items, (rows, cols), field) EE_items = [ [eigenval if i == j else field.zero for j in range(cols)] for i in range(rows)] EE = DomainMatrix(EE_items, (rows, cols), field) basis = (AA - EE).nullspace() algebraic_eigenvects.append((field, minpoly, exp, basis)) return rational_eigenvects, algebraic_eigenvects def dom_eigenvects_to_sympy( rational_eigenvects, algebraic_eigenvects, Matrix, **kwargs ): result = [] for field, eigenvalue, multiplicity, eigenvects in rational_eigenvects: eigenvects = eigenvects.rep eigenvalue = field.to_sympy(eigenvalue) new_eigenvects = [ Matrix([field.to_sympy(x) for x in vect]) for vect in eigenvects] result.append((eigenvalue, multiplicity, new_eigenvects)) for field, minpoly, multiplicity, eigenvects in algebraic_eigenvects: eigenvects = eigenvects.rep l = minpoly.gens[0] eigenvects = [[field.to_sympy(x) for x in vect] for vect in eigenvects] degree = minpoly.degree() minpoly = minpoly.as_expr() eigenvals = roots(minpoly, l, **kwargs) if len(eigenvals) != degree: eigenvals = [CRootOf(minpoly, l, idx) for idx in range(degree)] for eigenvalue in eigenvals: new_eigenvects = [ Matrix([x.subs(l, eigenvalue) for x in vect]) for vect in eigenvects] result.append((eigenvalue, multiplicity, new_eigenvects)) return result
1ebae9a3ad80aa8a8b82a088386cfaf54296aeab2208695c4d9277f261a1bdcf
""" Module for the DDM class. The DDM class is an internal representation used by DomainMatrix. The letters DDM stand for Dense Domain Matrix. A DDM instance represents a matrix using elements from a polynomial Domain (e.g. ZZ, QQ, ...) in a dense-matrix representation. Basic usage: >>> from sympy import ZZ, QQ >>> from sympy.polys.matrices.ddm import DDM >>> A = DDM([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ) >>> A.shape (2, 2) >>> A [[0, 1], [-1, 0]] >>> type(A) <class 'sympy.polys.matrices.ddm.DDM'> >>> A @ A [[-1, 0], [0, -1]] The ddm_* functions are designed to operate on DDM as well as on an ordinary list of lists: >>> from sympy.polys.matrices.dense import ddm_idet >>> ddm_idet(A, QQ) 1 >>> ddm_idet([[0, 1], [-1, 0]], QQ) 1 >>> A [[-1, 0], [0, 1]] Note that ddm_idet modifies the input matrix in-place. It is recommended to use the DDM.det method as a friendlier interface to this instead which takes care of copying the matrix: >>> B = DDM([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ) >>> B.det() 1 Normally DDM would not be used directly and is just part of the internal representation of DomainMatrix which adds further functionality including e.g. unifying domains. The dense format used by DDM is a list of lists of elements e.g. the 2x2 identity matrix is like [[1, 0], [0, 1]]. The DDM class itself is a subclass of list and its list items are plain lists. Elements are accessed as e.g. ddm[i][j] where ddm[i] gives the ith row and ddm[i][j] gets the element in the jth column of that row. Subclassing list makes e.g. iteration and indexing very efficient. We do not override __getitem__ because it would lose that benefit. The core routines are implemented by the ddm_* functions defined in dense.py. Those functions are intended to be able to operate on a raw list-of-lists representation of matrices with most functions operating in-place. The DDM class takes care of copying etc and also stores a Domain object associated with its elements. This makes it possible to implement things like A + B with domain checking and also shape checking so that the list of lists representation is friendlier. """ from .exceptions import DDMBadInputError, DDMShapeError, DDMDomainError from .dense import ( ddm_iadd, ddm_isub, ddm_ineg, ddm_imul, ddm_imatmul, ddm_irref, ddm_idet, ddm_iinv, ddm_ilu_split, ddm_ilu_solve, ddm_berk, ) class DDM(list): """Dense matrix based on polys domain elements This is a list subclass and is a wrapper for a list of lists that supports basic matrix arithmetic +, -, *, **. """ def __init__(self, rowslist, shape, domain): super().__init__(rowslist) self.shape = self.rows, self.cols = m, n = shape self.domain = domain if not (len(self) == m and all(len(row) == n for row in self)): raise DDMBadInputError("Inconsistent row-list/shape") def __str__(self): cls = type(self).__name__ rows = list.__str__(self) return '%s(%s, %s, %s)' % (cls, rows, self.shape, self.domain) def __eq__(self, other): if not isinstance(other, DDM): return False return (super().__eq__(other) and self.domain == other.domain) def __ne__(self, other): return not self.__eq__(other) @classmethod def zeros(cls, shape, domain): z = domain.zero m, n = shape rowslist = ([z] * n for _ in range(m)) return DDM(rowslist, shape, domain) @classmethod def eye(cls, size, domain): one = domain.one ddm = cls.zeros((size, size), domain) for i in range(size): ddm[i][i] = one return ddm def copy(self): copyrows = (row[:] for row in self) return DDM(copyrows, self.shape, self.domain) def __add__(a, b): if not isinstance(b, DDM): return NotImplemented return a.add(b) def __sub__(a, b): if not isinstance(b, DDM): return NotImplemented return a.sub(b) def __neg__(a): return a.neg() def __mul__(a, b): if b in a.domain: return a.mul(b) else: return NotImplemented def __matmul__(a, b): if isinstance(b, DDM): return a.matmul(b) else: return NotImplemented @classmethod def _check(cls, a, op, b, ashape, bshape): if a.domain != b.domain: msg = "Domain mismatch: %s %s %s" % (a.domain, op, b.domain) raise DDMDomainError(msg) if ashape != bshape: msg = "Shape mismatch: %s %s %s" % (a.shape, op, b.shape) raise DDMShapeError(msg) def add(a, b): """a + b""" a._check(a, '+', b, a.shape, b.shape) c = a.copy() ddm_iadd(c, b) return c def sub(a, b): """a - b""" a._check(a, '-', b, a.shape, b.shape) c = a.copy() ddm_isub(c, b) return c def neg(a): """-a""" b = a.copy() ddm_ineg(b) return b def mul(a, b): c = a.copy() ddm_imul(c, b) return c def matmul(a, b): """a @ b (matrix product)""" m, o = a.shape o2, n = b.shape a._check(a, '*', b, o, o2) c = a.zeros((m, n), a.domain) ddm_imatmul(c, a, b) return c def rref(a): """Reduced-row echelon form of a and list of pivots""" b = a.copy() pivots = ddm_irref(b) return b, pivots def nullspace(a): rref, pivots = a.rref() rows, cols = a.shape domain = a.domain basis = [] for i in range(cols): if i in pivots: continue vec = [domain.one if i == j else domain.zero for j in range(cols)] for ii, jj in enumerate(pivots): vec[jj] -= rref[ii][i] basis.append(vec) return DDM(basis, (len(basis), cols), domain) def det(a): """Determinant of a""" m, n = a.shape if m != n: raise DDMShapeError("Determinant of non-square matrix") b = a.copy() K = b.domain deta = ddm_idet(b, K) return deta def inv(a): """Inverse of a""" m, n = a.shape if m != n: raise DDMShapeError("Determinant of non-square matrix") ainv = a.copy() K = a.domain ddm_iinv(ainv, a, K) return ainv def lu(a): """L, U decomposition of a""" m, n = a.shape K = a.domain U = a.copy() L = a.eye(m, K) swaps = ddm_ilu_split(L, U, K) return L, U, swaps def lu_solve(a, b): """x where a*x = b""" m, n = a.shape m2, o = b.shape a._check(a, 'lu_solve', b, m, m2) L, U, swaps = a.lu() x = a.zeros((n, o), a.domain) ddm_ilu_solve(x, L, U, swaps, b) return x def charpoly(a): """Coefficients of characteristic polynomial of a""" K = a.domain m, n = a.shape if m != n: raise DDMShapeError("Charpoly of non-square matrix") vec = ddm_berk(a, K) coeffs = [vec[i][0] for i in range(n+1)] return coeffs
35b0dcb62ed4cfaa6b7bdfcd09a3bfb3ff58b455f46072d94d49a6a8108fc2d9
"""Tests for classes defining properties of ground domains, e.g. ZZ, QQ, ZZ[x] ... """ from sympy import I, S, sqrt, sin, oo, Poly, Float, Rational, pi from sympy.abc import x, y, z from sympy.core.compatibility import HAS_GMPY from sympy.polys.domains import (ZZ, QQ, RR, CC, FF, GF, EX, ZZ_gmpy, ZZ_python, QQ_gmpy, QQ_python) from sympy.polys.domains.algebraicfield import AlgebraicField from sympy.polys.domains.gaussiandomains import ZZ_I, QQ_I from sympy.polys.domains.polynomialring import PolynomialRing from sympy.polys.domains.realfield import RealField from sympy.polys.rings import ring from sympy.polys.fields import field from sympy.polys.agca.extensions import FiniteExtension from sympy.polys.polyerrors import ( UnificationFailed, GeneratorsError, CoercionFailed, NotInvertible, DomainError) from sympy.polys.polyutils import illegal from sympy.testing.pytest import raises ALG = QQ.algebraic_field(sqrt(2), sqrt(3)) def unify(K0, K1): return K0.unify(K1) def test_Domain_unify(): F3 = GF(3) assert unify(F3, F3) == F3 assert unify(F3, ZZ) == ZZ assert unify(F3, QQ) == QQ assert unify(F3, ALG) == ALG assert unify(F3, RR) == RR assert unify(F3, CC) == CC assert unify(F3, ZZ[x]) == ZZ[x] assert unify(F3, ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(F3, EX) == EX assert unify(ZZ, F3) == ZZ assert unify(ZZ, ZZ) == ZZ assert unify(ZZ, QQ) == QQ assert unify(ZZ, ALG) == ALG assert unify(ZZ, RR) == RR assert unify(ZZ, CC) == CC assert unify(ZZ, ZZ[x]) == ZZ[x] assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ, EX) == EX assert unify(QQ, F3) == QQ assert unify(QQ, ZZ) == QQ assert unify(QQ, QQ) == QQ assert unify(QQ, ALG) == ALG assert unify(QQ, RR) == RR assert unify(QQ, CC) == CC assert unify(QQ, ZZ[x]) == QQ[x] assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x) assert unify(QQ, EX) == EX assert unify(ZZ_I, F3) == ZZ_I assert unify(ZZ_I, ZZ) == ZZ_I assert unify(ZZ_I, ZZ_I) == ZZ_I assert unify(ZZ_I, QQ) == QQ_I assert unify(ZZ_I, ALG) == QQ.algebraic_field(I, sqrt(2), sqrt(3)) assert unify(ZZ_I, RR) == CC assert unify(ZZ_I, CC) == CC assert unify(ZZ_I, ZZ[x]) == ZZ_I[x] assert unify(ZZ_I, ZZ_I[x]) == ZZ_I[x] assert unify(ZZ_I, ZZ.frac_field(x)) == ZZ_I.frac_field(x) assert unify(ZZ_I, ZZ_I.frac_field(x)) == ZZ_I.frac_field(x) assert unify(ZZ_I, EX) == EX assert unify(QQ_I, F3) == QQ_I assert unify(QQ_I, ZZ) == QQ_I assert unify(QQ_I, ZZ_I) == QQ_I assert unify(QQ_I, QQ) == QQ_I assert unify(QQ_I, ALG) == QQ.algebraic_field(I, sqrt(2), sqrt(3)) assert unify(QQ_I, RR) == CC assert unify(QQ_I, CC) == CC assert unify(QQ_I, ZZ[x]) == QQ_I[x] assert unify(QQ_I, ZZ_I[x]) == QQ_I[x] assert unify(QQ_I, QQ[x]) == QQ_I[x] assert unify(QQ_I, QQ_I[x]) == QQ_I[x] assert unify(QQ_I, ZZ.frac_field(x)) == QQ_I.frac_field(x) assert unify(QQ_I, ZZ_I.frac_field(x)) == QQ_I.frac_field(x) assert unify(QQ_I, QQ.frac_field(x)) == QQ_I.frac_field(x) assert unify(QQ_I, QQ_I.frac_field(x)) == QQ_I.frac_field(x) assert unify(QQ_I, EX) == EX assert unify(RR, F3) == RR assert unify(RR, ZZ) == RR assert unify(RR, QQ) == RR assert unify(RR, ALG) == RR assert unify(RR, RR) == RR assert unify(RR, CC) == CC assert unify(RR, ZZ[x]) == RR[x] assert unify(RR, ZZ.frac_field(x)) == RR.frac_field(x) assert unify(RR, EX) == EX assert RR[x].unify(ZZ.frac_field(y)) == RR.frac_field(x, y) assert unify(CC, F3) == CC assert unify(CC, ZZ) == CC assert unify(CC, QQ) == CC assert unify(CC, ALG) == CC assert unify(CC, RR) == CC assert unify(CC, CC) == CC assert unify(CC, ZZ[x]) == CC[x] assert unify(CC, ZZ.frac_field(x)) == CC.frac_field(x) assert unify(CC, EX) == EX assert unify(ZZ[x], F3) == ZZ[x] assert unify(ZZ[x], ZZ) == ZZ[x] assert unify(ZZ[x], QQ) == QQ[x] assert unify(ZZ[x], ALG) == ALG[x] assert unify(ZZ[x], RR) == RR[x] assert unify(ZZ[x], CC) == CC[x] assert unify(ZZ[x], ZZ[x]) == ZZ[x] assert unify(ZZ[x], ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ[x], EX) == EX assert unify(ZZ.frac_field(x), F3) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x) assert unify(ZZ.frac_field(x), ALG) == ALG.frac_field(x) assert unify(ZZ.frac_field(x), RR) == RR.frac_field(x) assert unify(ZZ.frac_field(x), CC) == CC.frac_field(x) assert unify(ZZ.frac_field(x), ZZ[x]) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), EX) == EX assert unify(EX, F3) == EX assert unify(EX, ZZ) == EX assert unify(EX, QQ) == EX assert unify(EX, ALG) == EX assert unify(EX, RR) == EX assert unify(EX, CC) == EX assert unify(EX, ZZ[x]) == EX assert unify(EX, ZZ.frac_field(x)) == EX assert unify(EX, EX) == EX def test_Domain_unify_composite(): assert unify(ZZ.poly_ring(x), ZZ) == ZZ.poly_ring(x) assert unify(ZZ.poly_ring(x), QQ) == QQ.poly_ring(x) assert unify(QQ.poly_ring(x), ZZ) == QQ.poly_ring(x) assert unify(QQ.poly_ring(x), QQ) == QQ.poly_ring(x) assert unify(ZZ, ZZ.poly_ring(x)) == ZZ.poly_ring(x) assert unify(QQ, ZZ.poly_ring(x)) == QQ.poly_ring(x) assert unify(ZZ, QQ.poly_ring(x)) == QQ.poly_ring(x) assert unify(QQ, QQ.poly_ring(x)) == QQ.poly_ring(x) assert unify(ZZ.poly_ring(x, y), ZZ) == ZZ.poly_ring(x, y) assert unify(ZZ.poly_ring(x, y), QQ) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x, y), ZZ) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x, y), QQ) == QQ.poly_ring(x, y) assert unify(ZZ, ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y) assert unify(QQ, ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(ZZ, QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(QQ, QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x) assert unify(QQ.frac_field(x), ZZ) == QQ.frac_field(x) assert unify(QQ.frac_field(x), QQ) == QQ.frac_field(x) assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x) assert unify(ZZ, QQ.frac_field(x)) == QQ.frac_field(x) assert unify(QQ, QQ.frac_field(x)) == QQ.frac_field(x) assert unify(ZZ.frac_field(x, y), ZZ) == ZZ.frac_field(x, y) assert unify(ZZ.frac_field(x, y), QQ) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x, y), ZZ) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x, y), QQ) == QQ.frac_field(x, y) assert unify(ZZ, ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert unify(QQ, ZZ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(ZZ, QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(QQ, QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(ZZ.poly_ring(x), ZZ.poly_ring(x)) == ZZ.poly_ring(x) assert unify(ZZ.poly_ring(x), QQ.poly_ring(x)) == QQ.poly_ring(x) assert unify(QQ.poly_ring(x), ZZ.poly_ring(x)) == QQ.poly_ring(x) assert unify(QQ.poly_ring(x), QQ.poly_ring(x)) == QQ.poly_ring(x) assert unify(ZZ.poly_ring(x, y), ZZ.poly_ring(x)) == ZZ.poly_ring(x, y) assert unify(ZZ.poly_ring(x, y), QQ.poly_ring(x)) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x, y), ZZ.poly_ring(x)) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x, y), QQ.poly_ring(x)) == QQ.poly_ring(x, y) assert unify(ZZ.poly_ring(x), ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y) assert unify(ZZ.poly_ring(x), QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x), ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x), QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(ZZ.poly_ring(x, y), ZZ.poly_ring(x, z)) == ZZ.poly_ring(x, y, z) assert unify(ZZ.poly_ring(x, y), QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z) assert unify(QQ.poly_ring(x, y), ZZ.poly_ring(x, z)) == QQ.poly_ring(x, y, z) assert unify(QQ.poly_ring(x, y), QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z) assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), QQ.frac_field(x)) == QQ.frac_field(x) assert unify(QQ.frac_field(x), ZZ.frac_field(x)) == QQ.frac_field(x) assert unify(QQ.frac_field(x), QQ.frac_field(x)) == QQ.frac_field(x) assert unify(ZZ.frac_field(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y) assert unify(ZZ.frac_field(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x, y), ZZ.frac_field(x)) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y) assert unify(ZZ.frac_field(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert unify(ZZ.frac_field(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x), ZZ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(ZZ.frac_field(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z) assert unify(ZZ.frac_field(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert unify(QQ.frac_field(x, y), ZZ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert unify(QQ.frac_field(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert unify(ZZ.poly_ring(x), ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ.poly_ring(x), QQ.frac_field(x)) == ZZ.frac_field(x) assert unify(QQ.poly_ring(x), ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(QQ.poly_ring(x), QQ.frac_field(x)) == QQ.frac_field(x) assert unify(ZZ.poly_ring(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y) assert unify(ZZ.poly_ring(x, y), QQ.frac_field(x)) == ZZ.frac_field(x, y) assert unify(QQ.poly_ring(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y) assert unify(QQ.poly_ring(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y) assert unify(ZZ.poly_ring(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert unify(ZZ.poly_ring(x), QQ.frac_field(x, y)) == ZZ.frac_field(x, y) assert unify(QQ.poly_ring(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert unify(QQ.poly_ring(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(ZZ.poly_ring(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z) assert unify(ZZ.poly_ring(x, y), QQ.frac_field(x, z)) == ZZ.frac_field(x, y, z) assert unify(QQ.poly_ring(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z) assert unify(QQ.poly_ring(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert unify(ZZ.frac_field(x), ZZ.poly_ring(x)) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), QQ.poly_ring(x)) == ZZ.frac_field(x) assert unify(QQ.frac_field(x), ZZ.poly_ring(x)) == ZZ.frac_field(x) assert unify(QQ.frac_field(x), QQ.poly_ring(x)) == QQ.frac_field(x) assert unify(ZZ.frac_field(x, y), ZZ.poly_ring(x)) == ZZ.frac_field(x, y) assert unify(ZZ.frac_field(x, y), QQ.poly_ring(x)) == ZZ.frac_field(x, y) assert unify(QQ.frac_field(x, y), ZZ.poly_ring(x)) == ZZ.frac_field(x, y) assert unify(QQ.frac_field(x, y), QQ.poly_ring(x)) == QQ.frac_field(x, y) assert unify(ZZ.frac_field(x), ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y) assert unify(ZZ.frac_field(x), QQ.poly_ring(x, y)) == ZZ.frac_field(x, y) assert unify(QQ.frac_field(x), ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y) assert unify(QQ.frac_field(x), QQ.poly_ring(x, y)) == QQ.frac_field(x, y) assert unify(ZZ.frac_field(x, y), ZZ.poly_ring(x, z)) == ZZ.frac_field(x, y, z) assert unify(ZZ.frac_field(x, y), QQ.poly_ring(x, z)) == ZZ.frac_field(x, y, z) assert unify(QQ.frac_field(x, y), ZZ.poly_ring(x, z)) == ZZ.frac_field(x, y, z) assert unify(QQ.frac_field(x, y), QQ.poly_ring(x, z)) == QQ.frac_field(x, y, z) def test_Domain_unify_algebraic(): sqrt5 = QQ.algebraic_field(sqrt(5)) sqrt7 = QQ.algebraic_field(sqrt(7)) sqrt57 = QQ.algebraic_field(sqrt(5), sqrt(7)) assert sqrt5.unify(sqrt7) == sqrt57 assert sqrt5.unify(sqrt5[x, y]) == sqrt5[x, y] assert sqrt5[x, y].unify(sqrt5) == sqrt5[x, y] assert sqrt5.unify(sqrt5.frac_field(x, y)) == sqrt5.frac_field(x, y) assert sqrt5.frac_field(x, y).unify(sqrt5) == sqrt5.frac_field(x, y) assert sqrt5.unify(sqrt7[x, y]) == sqrt57[x, y] assert sqrt5[x, y].unify(sqrt7) == sqrt57[x, y] assert sqrt5.unify(sqrt7.frac_field(x, y)) == sqrt57.frac_field(x, y) assert sqrt5.frac_field(x, y).unify(sqrt7) == sqrt57.frac_field(x, y) def test_Domain_unify_FiniteExtension(): KxZZ = FiniteExtension(Poly(x**2 - 2, x, domain=ZZ)) KxQQ = FiniteExtension(Poly(x**2 - 2, x, domain=QQ)) KxZZy = FiniteExtension(Poly(x**2 - 2, x, domain=ZZ[y])) KxQQy = FiniteExtension(Poly(x**2 - 2, x, domain=QQ[y])) assert KxZZ.unify(KxZZ) == KxZZ assert KxQQ.unify(KxQQ) == KxQQ assert KxZZy.unify(KxZZy) == KxZZy assert KxQQy.unify(KxQQy) == KxQQy assert KxZZ.unify(ZZ) == KxZZ assert KxZZ.unify(QQ) == KxQQ assert KxQQ.unify(ZZ) == KxQQ assert KxQQ.unify(QQ) == KxQQ assert KxZZ.unify(ZZ[y]) == KxZZy assert KxZZ.unify(QQ[y]) == KxQQy assert KxQQ.unify(ZZ[y]) == KxQQy assert KxQQ.unify(QQ[y]) == KxQQy assert KxZZy.unify(ZZ) == KxZZy assert KxZZy.unify(QQ) == KxQQy assert KxQQy.unify(ZZ) == KxQQy assert KxQQy.unify(QQ) == KxQQy assert KxZZy.unify(ZZ[y]) == KxZZy assert KxZZy.unify(QQ[y]) == KxQQy assert KxQQy.unify(ZZ[y]) == KxQQy assert KxQQy.unify(QQ[y]) == KxQQy K = FiniteExtension(Poly(x**2 - 2, x, domain=ZZ[y])) assert K.unify(ZZ) == K assert K.unify(ZZ[x]) == K assert K.unify(ZZ[y]) == K assert K.unify(ZZ[x, y]) == K Kz = FiniteExtension(Poly(x**2 - 2, x, domain=ZZ[y, z])) assert K.unify(ZZ[z]) == Kz assert K.unify(ZZ[x, z]) == Kz assert K.unify(ZZ[y, z]) == Kz assert K.unify(ZZ[x, y, z]) == Kz Kx = FiniteExtension(Poly(x**2 - 2, x, domain=ZZ)) Ky = FiniteExtension(Poly(y**2 - 2, y, domain=ZZ)) Kxy = FiniteExtension(Poly(y**2 - 2, y, domain=Kx)) assert Kx.unify(Kx) == Kx assert Ky.unify(Ky) == Ky assert Kx.unify(Ky) == Kxy assert Ky.unify(Kx) == Kxy def test_Domain_unify_with_symbols(): raises(UnificationFailed, lambda: ZZ[x, y].unify_with_symbols(ZZ, (y, z))) raises(UnificationFailed, lambda: ZZ.unify_with_symbols(ZZ[x, y], (y, z))) def test_Domain__contains__(): assert (0 in EX) is True assert (0 in ZZ) is True assert (0 in QQ) is True assert (0 in RR) is True assert (0 in CC) is True assert (0 in ALG) is True assert (0 in ZZ[x, y]) is True assert (0 in QQ[x, y]) is True assert (0 in RR[x, y]) is True assert (-7 in EX) is True assert (-7 in ZZ) is True assert (-7 in QQ) is True assert (-7 in RR) is True assert (-7 in CC) is True assert (-7 in ALG) is True assert (-7 in ZZ[x, y]) is True assert (-7 in QQ[x, y]) is True assert (-7 in RR[x, y]) is True assert (17 in EX) is True assert (17 in ZZ) is True assert (17 in QQ) is True assert (17 in RR) is True assert (17 in CC) is True assert (17 in ALG) is True assert (17 in ZZ[x, y]) is True assert (17 in QQ[x, y]) is True assert (17 in RR[x, y]) is True assert (Rational(-1, 7) in EX) is True assert (Rational(-1, 7) in ZZ) is False assert (Rational(-1, 7) in QQ) is True assert (Rational(-1, 7) in RR) is True assert (Rational(-1, 7) in CC) is True assert (Rational(-1, 7) in ALG) is True assert (Rational(-1, 7) in ZZ[x, y]) is False assert (Rational(-1, 7) in QQ[x, y]) is True assert (Rational(-1, 7) in RR[x, y]) is True assert (Rational(3, 5) in EX) is True assert (Rational(3, 5) in ZZ) is False assert (Rational(3, 5) in QQ) is True assert (Rational(3, 5) in RR) is True assert (Rational(3, 5) in CC) is True assert (Rational(3, 5) in ALG) is True assert (Rational(3, 5) in ZZ[x, y]) is False assert (Rational(3, 5) in QQ[x, y]) is True assert (Rational(3, 5) in RR[x, y]) is True assert (3.0 in EX) is True assert (3.0 in ZZ) is True assert (3.0 in QQ) is True assert (3.0 in RR) is True assert (3.0 in CC) is True assert (3.0 in ALG) is True assert (3.0 in ZZ[x, y]) is True assert (3.0 in QQ[x, y]) is True assert (3.0 in RR[x, y]) is True assert (3.14 in EX) is True assert (3.14 in ZZ) is False assert (3.14 in QQ) is True assert (3.14 in RR) is True assert (3.14 in CC) is True assert (3.14 in ALG) is True assert (3.14 in ZZ[x, y]) is False assert (3.14 in QQ[x, y]) is True assert (3.14 in RR[x, y]) is True assert (oo in ALG) is False assert (oo in ZZ[x, y]) is False assert (oo in QQ[x, y]) is False assert (-oo in ZZ) is False assert (-oo in QQ) is False assert (-oo in ALG) is False assert (-oo in ZZ[x, y]) is False assert (-oo in QQ[x, y]) is False assert (sqrt(7) in EX) is True assert (sqrt(7) in ZZ) is False assert (sqrt(7) in QQ) is False assert (sqrt(7) in RR) is True assert (sqrt(7) in CC) is True assert (sqrt(7) in ALG) is False assert (sqrt(7) in ZZ[x, y]) is False assert (sqrt(7) in QQ[x, y]) is False assert (sqrt(7) in RR[x, y]) is True assert (2*sqrt(3) + 1 in EX) is True assert (2*sqrt(3) + 1 in ZZ) is False assert (2*sqrt(3) + 1 in QQ) is False assert (2*sqrt(3) + 1 in RR) is True assert (2*sqrt(3) + 1 in CC) is True assert (2*sqrt(3) + 1 in ALG) is True assert (2*sqrt(3) + 1 in ZZ[x, y]) is False assert (2*sqrt(3) + 1 in QQ[x, y]) is False assert (2*sqrt(3) + 1 in RR[x, y]) is True assert (sin(1) in EX) is True assert (sin(1) in ZZ) is False assert (sin(1) in QQ) is False assert (sin(1) in RR) is True assert (sin(1) in CC) is True assert (sin(1) in ALG) is False assert (sin(1) in ZZ[x, y]) is False assert (sin(1) in QQ[x, y]) is False assert (sin(1) in RR[x, y]) is True assert (x**2 + 1 in EX) is True assert (x**2 + 1 in ZZ) is False assert (x**2 + 1 in QQ) is False assert (x**2 + 1 in RR) is False assert (x**2 + 1 in CC) is False assert (x**2 + 1 in ALG) is False assert (x**2 + 1 in ZZ[x]) is True assert (x**2 + 1 in QQ[x]) is True assert (x**2 + 1 in RR[x]) is True assert (x**2 + 1 in ZZ[x, y]) is True assert (x**2 + 1 in QQ[x, y]) is True assert (x**2 + 1 in RR[x, y]) is True assert (x**2 + y**2 in EX) is True assert (x**2 + y**2 in ZZ) is False assert (x**2 + y**2 in QQ) is False assert (x**2 + y**2 in RR) is False assert (x**2 + y**2 in CC) is False assert (x**2 + y**2 in ALG) is False assert (x**2 + y**2 in ZZ[x]) is False assert (x**2 + y**2 in QQ[x]) is False assert (x**2 + y**2 in RR[x]) is False assert (x**2 + y**2 in ZZ[x, y]) is True assert (x**2 + y**2 in QQ[x, y]) is True assert (x**2 + y**2 in RR[x, y]) is True assert (Rational(3, 2)*x/(y + 1) - z in QQ[x, y, z]) is False def test_Domain_get_ring(): assert ZZ.has_assoc_Ring is True assert QQ.has_assoc_Ring is True assert ZZ[x].has_assoc_Ring is True assert QQ[x].has_assoc_Ring is True assert ZZ[x, y].has_assoc_Ring is True assert QQ[x, y].has_assoc_Ring is True assert ZZ.frac_field(x).has_assoc_Ring is True assert QQ.frac_field(x).has_assoc_Ring is True assert ZZ.frac_field(x, y).has_assoc_Ring is True assert QQ.frac_field(x, y).has_assoc_Ring is True assert EX.has_assoc_Ring is False assert RR.has_assoc_Ring is False assert ALG.has_assoc_Ring is False assert ZZ.get_ring() == ZZ assert QQ.get_ring() == ZZ assert ZZ[x].get_ring() == ZZ[x] assert QQ[x].get_ring() == QQ[x] assert ZZ[x, y].get_ring() == ZZ[x, y] assert QQ[x, y].get_ring() == QQ[x, y] assert ZZ.frac_field(x).get_ring() == ZZ[x] assert QQ.frac_field(x).get_ring() == QQ[x] assert ZZ.frac_field(x, y).get_ring() == ZZ[x, y] assert QQ.frac_field(x, y).get_ring() == QQ[x, y] assert EX.get_ring() == EX assert RR.get_ring() == RR # XXX: This should also be like RR raises(DomainError, lambda: ALG.get_ring()) def test_Domain_get_field(): assert EX.has_assoc_Field is True assert ZZ.has_assoc_Field is True assert QQ.has_assoc_Field is True assert RR.has_assoc_Field is True assert ALG.has_assoc_Field is True assert ZZ[x].has_assoc_Field is True assert QQ[x].has_assoc_Field is True assert ZZ[x, y].has_assoc_Field is True assert QQ[x, y].has_assoc_Field is True assert EX.get_field() == EX assert ZZ.get_field() == QQ assert QQ.get_field() == QQ assert RR.get_field() == RR assert ALG.get_field() == ALG assert ZZ[x].get_field() == ZZ.frac_field(x) assert QQ[x].get_field() == QQ.frac_field(x) assert ZZ[x, y].get_field() == ZZ.frac_field(x, y) assert QQ[x, y].get_field() == QQ.frac_field(x, y) def test_Domain_get_exact(): assert EX.get_exact() == EX assert ZZ.get_exact() == ZZ assert QQ.get_exact() == QQ assert RR.get_exact() == QQ assert ALG.get_exact() == ALG assert ZZ[x].get_exact() == ZZ[x] assert QQ[x].get_exact() == QQ[x] assert ZZ[x, y].get_exact() == ZZ[x, y] assert QQ[x, y].get_exact() == QQ[x, y] assert ZZ.frac_field(x).get_exact() == ZZ.frac_field(x) assert QQ.frac_field(x).get_exact() == QQ.frac_field(x) assert ZZ.frac_field(x, y).get_exact() == ZZ.frac_field(x, y) assert QQ.frac_field(x, y).get_exact() == QQ.frac_field(x, y) def test_Domain_is_unit(): nums = [-2, -1, 0, 1, 2] invring = [False, True, False, True, False] invfield = [True, True, False, True, True] ZZx, QQx, QQxf = ZZ[x], QQ[x], QQ.frac_field(x) assert [ZZ.is_unit(ZZ(n)) for n in nums] == invring assert [QQ.is_unit(QQ(n)) for n in nums] == invfield assert [ZZx.is_unit(ZZx(n)) for n in nums] == invring assert [QQx.is_unit(QQx(n)) for n in nums] == invfield assert [QQxf.is_unit(QQxf(n)) for n in nums] == invfield assert ZZx.is_unit(ZZx(x)) is False assert QQx.is_unit(QQx(x)) is False assert QQxf.is_unit(QQxf(x)) is True def test_Domain_convert(): assert QQ.convert(10e-52) == QQ(1684996666696915, 1684996666696914987166688442938726917102321526408785780068975640576) R, x = ring("x", ZZ) assert ZZ.convert(x - x) == 0 assert ZZ.convert(x - x, R.to_domain()) == 0 def test_GlobalPolynomialRing_convert(): K1 = QQ.old_poly_ring(x) K2 = QQ[x] assert K1.convert(x) == K1.convert(K2.convert(x), K2) assert K2.convert(x) == K2.convert(K1.convert(x), K1) K1 = QQ.old_poly_ring(x, y) K2 = QQ[x] assert K1.convert(x) == K1.convert(K2.convert(x), K2) #assert K2.convert(x) == K2.convert(K1.convert(x), K1) K1 = ZZ.old_poly_ring(x, y) K2 = QQ[x] assert K1.convert(x) == K1.convert(K2.convert(x), K2) #assert K2.convert(x) == K2.convert(K1.convert(x), K1) def test_PolynomialRing__init(): R, = ring("", ZZ) assert ZZ.poly_ring() == R.to_domain() def test_FractionField__init(): F, = field("", ZZ) assert ZZ.frac_field() == F.to_domain() def test_inject(): assert ZZ.inject(x, y, z) == ZZ[x, y, z] assert ZZ[x].inject(y, z) == ZZ[x, y, z] assert ZZ.frac_field(x).inject(y, z) == ZZ.frac_field(x, y, z) raises(GeneratorsError, lambda: ZZ[x].inject(x)) def test_drop(): assert ZZ.drop(x) == ZZ assert ZZ[x].drop(x) == ZZ assert ZZ[x, y].drop(x) == ZZ[y] assert ZZ.frac_field(x).drop(x) == ZZ assert ZZ.frac_field(x, y).drop(x) == ZZ.frac_field(y) assert ZZ[x][y].drop(y) == ZZ[x] assert ZZ[x][y].drop(x) == ZZ[y] assert ZZ.frac_field(x)[y].drop(x) == ZZ[y] assert ZZ.frac_field(x)[y].drop(y) == ZZ.frac_field(x) Ky = FiniteExtension(Poly(x**2-1, x, domain=ZZ[y])) K = FiniteExtension(Poly(x**2-1, x, domain=ZZ)) assert Ky.drop(y) == K raises(GeneratorsError, lambda: Ky.drop(x)) def test_Domain_map(): seq = ZZ.map([1, 2, 3, 4]) assert all(ZZ.of_type(elt) for elt in seq) seq = ZZ.map([[1, 2, 3, 4]]) assert all(ZZ.of_type(elt) for elt in seq[0]) and len(seq) == 1 def test_Domain___eq__(): assert (ZZ[x, y] == ZZ[x, y]) is True assert (QQ[x, y] == QQ[x, y]) is True assert (ZZ[x, y] == QQ[x, y]) is False assert (QQ[x, y] == ZZ[x, y]) is False assert (ZZ.frac_field(x, y) == ZZ.frac_field(x, y)) is True assert (QQ.frac_field(x, y) == QQ.frac_field(x, y)) is True assert (ZZ.frac_field(x, y) == QQ.frac_field(x, y)) is False assert (QQ.frac_field(x, y) == ZZ.frac_field(x, y)) is False assert RealField()[x] == RR[x] def test_Domain__algebraic_field(): alg = ZZ.algebraic_field(sqrt(2)) assert alg.ext.minpoly == Poly(x**2 - 2) assert alg.dom == QQ alg = QQ.algebraic_field(sqrt(2)) assert alg.ext.minpoly == Poly(x**2 - 2) assert alg.dom == QQ alg = alg.algebraic_field(sqrt(3)) assert alg.ext.minpoly == Poly(x**4 - 10*x**2 + 1) assert alg.dom == QQ def test_PolynomialRing_from_FractionField(): F, x,y = field("x,y", ZZ) R, X,Y = ring("x,y", ZZ) f = (x**2 + y**2)/(x + 1) g = (x**2 + y**2)/4 h = x**2 + y**2 assert R.to_domain().from_FractionField(f, F.to_domain()) is None assert R.to_domain().from_FractionField(g, F.to_domain()) == X**2/4 + Y**2/4 assert R.to_domain().from_FractionField(h, F.to_domain()) == X**2 + Y**2 F, x,y = field("x,y", QQ) R, X,Y = ring("x,y", QQ) f = (x**2 + y**2)/(x + 1) g = (x**2 + y**2)/4 h = x**2 + y**2 assert R.to_domain().from_FractionField(f, F.to_domain()) is None assert R.to_domain().from_FractionField(g, F.to_domain()) == X**2/4 + Y**2/4 assert R.to_domain().from_FractionField(h, F.to_domain()) == X**2 + Y**2 def test_FractionField_from_PolynomialRing(): R, x,y = ring("x,y", QQ) F, X,Y = field("x,y", ZZ) f = 3*x**2 + 5*y**2 g = x**2/3 + y**2/5 assert F.to_domain().from_PolynomialRing(f, R.to_domain()) == 3*X**2 + 5*Y**2 assert F.to_domain().from_PolynomialRing(g, R.to_domain()) == (5*X**2 + 3*Y**2)/15 def test_FF_of_type(): assert FF(3).of_type(FF(3)(1)) is True assert FF(5).of_type(FF(5)(3)) is True assert FF(5).of_type(FF(7)(3)) is False def test___eq__(): assert not QQ[x] == ZZ[x] assert not QQ.frac_field(x) == ZZ.frac_field(x) def test_RealField_from_sympy(): assert RR.convert(S.Zero) == RR.dtype(0) assert RR.convert(S(0.0)) == RR.dtype(0.0) assert RR.convert(S.One) == RR.dtype(1) assert RR.convert(S(1.0)) == RR.dtype(1.0) assert RR.convert(sin(1)) == RR.dtype(sin(1).evalf()) def test_not_in_any_domain(): check = illegal + [x] + [ float(i) for i in illegal if i != S.ComplexInfinity] for dom in (ZZ, QQ, RR, CC, EX): for i in check: if i == x and dom == EX: continue assert i not in dom, (i, dom) raises(CoercionFailed, lambda: dom.convert(i)) def test_ModularInteger(): F3 = FF(3) a = F3(0) assert isinstance(a, F3.dtype) and a == 0 a = F3(1) assert isinstance(a, F3.dtype) and a == 1 a = F3(2) assert isinstance(a, F3.dtype) and a == 2 a = F3(3) assert isinstance(a, F3.dtype) and a == 0 a = F3(4) assert isinstance(a, F3.dtype) and a == 1 a = F3(F3(0)) assert isinstance(a, F3.dtype) and a == 0 a = F3(F3(1)) assert isinstance(a, F3.dtype) and a == 1 a = F3(F3(2)) assert isinstance(a, F3.dtype) and a == 2 a = F3(F3(3)) assert isinstance(a, F3.dtype) and a == 0 a = F3(F3(4)) assert isinstance(a, F3.dtype) and a == 1 a = -F3(1) assert isinstance(a, F3.dtype) and a == 2 a = -F3(2) assert isinstance(a, F3.dtype) and a == 1 a = 2 + F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2) + 2 assert isinstance(a, F3.dtype) and a == 1 a = F3(2) + F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2) + F3(2) assert isinstance(a, F3.dtype) and a == 1 a = 3 - F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(3) - 2 assert isinstance(a, F3.dtype) and a == 1 a = F3(3) - F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(3) - F3(2) assert isinstance(a, F3.dtype) and a == 1 a = 2*F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2)*2 assert isinstance(a, F3.dtype) and a == 1 a = F3(2)*F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2)*F3(2) assert isinstance(a, F3.dtype) and a == 1 a = 2/F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2)/2 assert isinstance(a, F3.dtype) and a == 1 a = F3(2)/F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2)/F3(2) assert isinstance(a, F3.dtype) and a == 1 a = 1 % F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(1) % 2 assert isinstance(a, F3.dtype) and a == 1 a = F3(1) % F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(1) % F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2)**0 assert isinstance(a, F3.dtype) and a == 1 a = F3(2)**1 assert isinstance(a, F3.dtype) and a == 2 a = F3(2)**2 assert isinstance(a, F3.dtype) and a == 1 F7 = FF(7) a = F7(3)**100000000000 assert isinstance(a, F7.dtype) and a == 4 a = F7(3)**-100000000000 assert isinstance(a, F7.dtype) and a == 2 a = F7(3)**S(2) assert isinstance(a, F7.dtype) and a == 2 assert bool(F3(3)) is False assert bool(F3(4)) is True F5 = FF(5) a = F5(1)**(-1) assert isinstance(a, F5.dtype) and a == 1 a = F5(2)**(-1) assert isinstance(a, F5.dtype) and a == 3 a = F5(3)**(-1) assert isinstance(a, F5.dtype) and a == 2 a = F5(4)**(-1) assert isinstance(a, F5.dtype) and a == 4 assert (F5(1) < F5(2)) is True assert (F5(1) <= F5(2)) is True assert (F5(1) > F5(2)) is False assert (F5(1) >= F5(2)) is False assert (F5(3) < F5(2)) is False assert (F5(3) <= F5(2)) is False assert (F5(3) > F5(2)) is True assert (F5(3) >= F5(2)) is True assert (F5(1) < F5(7)) is True assert (F5(1) <= F5(7)) is True assert (F5(1) > F5(7)) is False assert (F5(1) >= F5(7)) is False assert (F5(3) < F5(7)) is False assert (F5(3) <= F5(7)) is False assert (F5(3) > F5(7)) is True assert (F5(3) >= F5(7)) is True assert (F5(1) < 2) is True assert (F5(1) <= 2) is True assert (F5(1) > 2) is False assert (F5(1) >= 2) is False assert (F5(3) < 2) is False assert (F5(3) <= 2) is False assert (F5(3) > 2) is True assert (F5(3) >= 2) is True assert (F5(1) < 7) is True assert (F5(1) <= 7) is True assert (F5(1) > 7) is False assert (F5(1) >= 7) is False assert (F5(3) < 7) is False assert (F5(3) <= 7) is False assert (F5(3) > 7) is True assert (F5(3) >= 7) is True raises(NotInvertible, lambda: F5(0)**(-1)) raises(NotInvertible, lambda: F5(5)**(-1)) raises(ValueError, lambda: FF(0)) raises(ValueError, lambda: FF(2.1)) def test_QQ_int(): assert int(QQ(2**2000, 3**1250)) == 455431 assert int(QQ(2**100, 3)) == 422550200076076467165567735125 def test_RR_double(): assert RR(3.14) > 1e-50 assert RR(1e-13) > 1e-50 assert RR(1e-14) > 1e-50 assert RR(1e-15) > 1e-50 assert RR(1e-20) > 1e-50 assert RR(1e-40) > 1e-50 def test_RR_Float(): f1 = Float("1.01") f2 = Float("1.0000000000000000000001") assert f1._prec == 53 assert f2._prec == 80 assert RR(f1)-1 > 1e-50 assert RR(f2)-1 < 1e-50 # RR's precision is lower than f2's RR2 = RealField(prec=f2._prec) assert RR2(f1)-1 > 1e-50 assert RR2(f2)-1 > 1e-50 # RR's precision is equal to f2's def test_CC_double(): assert CC(3.14).real > 1e-50 assert CC(1e-13).real > 1e-50 assert CC(1e-14).real > 1e-50 assert CC(1e-15).real > 1e-50 assert CC(1e-20).real > 1e-50 assert CC(1e-40).real > 1e-50 assert CC(3.14j).imag > 1e-50 assert CC(1e-13j).imag > 1e-50 assert CC(1e-14j).imag > 1e-50 assert CC(1e-15j).imag > 1e-50 assert CC(1e-20j).imag > 1e-50 assert CC(1e-40j).imag > 1e-50 def test_gaussian_domains(): I = S.ImaginaryUnit a, b, c, d = [ZZ_I.convert(x) for x in (5, 2 + I, 3 - I, 5 - 5)] ZZ_I.gcd(a, b) == b ZZ_I.gcd(a, c) == b ZZ_I.lcm(a, b) == a ZZ_I.lcm(a, c) == d assert ZZ_I(3, 4) != QQ_I(3, 4) # XXX is this right or should QQ->ZZ if possible? assert ZZ_I(3, 0) != 3 # and should this go to Integer? assert QQ_I(S(3)/4, 0) != S(3)/4 # and this to Rational? assert ZZ_I(0, 0).quadrant() == 0 assert ZZ_I(-1, 0).quadrant() == 2 for G in (QQ_I, ZZ_I): q = G(3, 4) assert str(q) == '3 + 4*I' assert q.parent() == G assert q._get_xy(pi) == (None, None) assert q._get_xy(2) == (2, 0) assert q._get_xy(2*I) == (0, 2) assert hash(q) == hash((3, 4)) assert G(1, 2) == G(1, 2) assert G(1, 2) != G(1, 3) assert G(3, 0) == G(3) assert q + q == G(6, 8) assert q - q == G(0, 0) assert 3 - q == -q + 3 == G(0, -4) assert 3 + q == q + 3 == G(6, 4) assert q * q == G(-7, 24) assert 3 * q == q * 3 == G(9, 12) assert q ** 0 == G(1, 0) assert q ** 1 == q assert q ** 2 == q * q == G(-7, 24) assert q ** 3 == q * q * q == G(-117, 44) assert 1 / q == q ** -1 == QQ_I(S(3)/25, - S(4)/25) assert q / 1 == QQ_I(3, 4) assert q / 2 == QQ_I(S(3)/2, 2) assert q/3 == QQ_I(1, S(4)/3) assert 3/q == QQ_I(S(9)/25, -S(12)/25) i, r = divmod(q, 2) assert 2*i + r == q i, r = divmod(2, q) assert q*i + r == G(2, 0) raises(ZeroDivisionError, lambda: q % 0) raises(ZeroDivisionError, lambda: q / 0) raises(ZeroDivisionError, lambda: q // 0) raises(ZeroDivisionError, lambda: divmod(q, 0)) raises(ZeroDivisionError, lambda: divmod(q, 0)) raises(TypeError, lambda: q + x) raises(TypeError, lambda: q - x) raises(TypeError, lambda: x + q) raises(TypeError, lambda: x - q) raises(TypeError, lambda: q * x) raises(TypeError, lambda: x * q) raises(TypeError, lambda: q / x) raises(TypeError, lambda: x / q) raises(TypeError, lambda: q // x) raises(TypeError, lambda: x // q) assert G.from_sympy(S(2)) == G(2, 0) assert G.to_sympy(G(2, 0)) == S(2) raises(CoercionFailed, lambda: G.from_sympy(pi)) PR = G.inject(x) assert isinstance(PR, PolynomialRing) assert PR.domain == G assert len(PR.gens) == 1 and PR.gens[0].as_expr() == x if G is QQ_I: AF = G.as_AlgebraicField() assert isinstance(AF, AlgebraicField) assert AF.domain == QQ assert AF.ext.args[0] == I for qi in [G(-1, 0), G(1, 0), G(0, -1), G(0, 1)]: assert G.is_negative(qi) is False assert G.is_positive(qi) is False assert G.is_nonnegative(qi) is False assert G.is_nonpositive(qi) is False domains = [ZZ_python(), QQ_python(), AlgebraicField(QQ, I)] if HAS_GMPY: domains += [ZZ_gmpy(), QQ_gmpy()] for K in domains: assert G.convert(K(2)) == G(2, 0) assert G.convert(K(2), K) == G(2, 0) for K in ZZ_I, QQ_I: assert G.convert(K(1, 1)) == G(1, 1) assert G.convert(K(1, 1), K) == G(1, 1) if G == ZZ_I: assert repr(q) == 'ZZ_I(3, 4)' assert q//3 == G(1, 1) assert 12//q == G(1, -2) assert 12 % q == G(1, 2) assert q % 2 == G(-1, 0) assert i == G(0, 0) assert r == G(2, 0) assert G.get_ring() == G assert G.get_field() == QQ_I else: assert repr(q) == 'QQ_I(3, 4)' assert G.get_ring() == ZZ_I assert G.get_field() == G assert q//3 == G(1, S(4)/3) assert 12//q == G(S(36)/25, -S(48)/25) assert 12 % q == G(0, 0) assert q % 2 == G(0, 0) assert i == G(S(6)/25, -S(8)/25), (G,i) assert r == G(0, 0) q2 = G(S(3)/2, S(5)/3) assert G.numer(q2) == ZZ_I(9, 10) assert G.denom(q2) == ZZ_I(6) def test_issue_18278(): assert str(RR(2).parent()) == 'RR' assert str(CC(2).parent()) == 'CC'
56f4d761f7326aa59d6ffec89a1db26b672214cedd9aecb6d49765498132aa83
from sympy import symbols, sin, cos from sympy.polys import QQ, ZZ from sympy.polys.polytools import Poly from sympy.polys.polyerrors import NotInvertible from sympy.polys.agca.extensions import FiniteExtension from sympy.polys.domainmatrix import DomainMatrix from sympy.testing.pytest import raises from sympy.abc import x, y, t def test_FiniteExtension(): # Gaussian integers A = FiniteExtension(Poly(x**2 + 1, x)) assert A.rank == 2 assert str(A) == 'ZZ[x]/(x**2 + 1)' i = A.generator assert i.parent() is A assert i*i == A(-1) raises(TypeError, lambda: i*()) assert A.basis == (A.one, i) assert A(1) == A.one assert i**2 == A(-1) assert i**2 != -1 # no coercion assert (2 + i)*(1 - i) == 3 - i assert (1 + i)**8 == A(16) assert A(1).inverse() == A(1) raises(NotImplementedError, lambda: A(2).inverse()) # Finite field of order 27 F = FiniteExtension(Poly(x**3 - x + 1, x, modulus=3)) assert F.rank == 3 a = F.generator # also generates the cyclic group F - {0} assert F.basis == (F(1), a, a**2) assert a**27 == a assert a**26 == F(1) assert a**13 == F(-1) assert a**9 == a + 1 assert a**3 == a - 1 assert a**6 == a**2 + a + 1 assert F(x**2 + x).inverse() == 1 - a assert F(x + 2)**(-1) == F(x + 2).inverse() assert a**19 * a**(-19) == F(1) assert (a - 1) / (2*a**2 - 1) == a**2 + 1 assert (a - 1) // (2*a**2 - 1) == a**2 + 1 assert 2/(a**2 + 1) == a**2 - a + 1 assert (a**2 + 1)/2 == -a**2 - 1 raises(NotInvertible, lambda: F(0).inverse()) # Function field of an elliptic curve K = FiniteExtension(Poly(t**2 - x**3 - x + 1, t, field=True)) assert K.rank == 2 assert str(K) == 'ZZ(x)[t]/(t**2 - x**3 - x + 1)' y = K.generator c = 1/(x**3 - x**2 + x - 1) assert ((y + x)*(y - x)).inverse() == K(c) assert (y + x)*(y - x)*c == K(1) # explicit inverse of y + x def test_FiniteExtension_eq_hash(): # Test eq and hash p1 = Poly(x**2 - 2, x, domain=ZZ) p2 = Poly(x**2 - 2, x, domain=QQ) K1 = FiniteExtension(p1) K2 = FiniteExtension(p2) assert K1 == FiniteExtension(Poly(x**2 - 2)) assert K2 != FiniteExtension(Poly(x**2 - 2)) assert len({K1, K2, FiniteExtension(p1)}) == 2 def test_FiniteExtension_mod(): # Test mod K = FiniteExtension(Poly(x**3 + 1, x, domain=QQ)) xf = K(x) assert (xf**2 - 1) % 1 == K.zero assert 1 % (xf**2 - 1) == K.zero assert (xf**2 - 1) / (xf - 1) == xf + 1 assert (xf**2 - 1) // (xf - 1) == xf + 1 assert (xf**2 - 1) % (xf - 1) == K.zero raises(ZeroDivisionError, lambda: (xf**2 - 1) % 0) raises(TypeError, lambda: xf % []) raises(TypeError, lambda: [] % xf) # Test mod over ring K = FiniteExtension(Poly(x**3 + 1, x, domain=ZZ)) xf = K(x) assert (xf**2 - 1) % 1 == K.zero raises(NotImplementedError, lambda: (xf**2 - 1) % (xf - 1)) def test_FiniteExtension_from_sympy(): # Test to_sympy/from_sympy K = FiniteExtension(Poly(x**3 + 1, x, domain=ZZ)) xf = K(x) assert K.from_sympy(x) == xf assert K.to_sympy(xf) == x def test_FiniteExtension_set_domain(): KZ = FiniteExtension(Poly(x**2 + 1, x, domain='ZZ')) KQ = FiniteExtension(Poly(x**2 + 1, x, domain='QQ')) assert KZ.set_domain(QQ) == KQ def test_FiniteExtension_exquo(): # Test exquo K = FiniteExtension(Poly(x**4 + 1)) xf = K(x) assert K.exquo(xf**2 - 1, xf - 1) == xf + 1 def test_FiniteExtension_convert(): # Test from_MonogenicFiniteExtension K1 = FiniteExtension(Poly(x**2 + 1)) K2 = QQ[x] x1, x2 = K1(x), K2(x) assert K1.convert(x2) == x1 assert K2.convert(x1) == x2 K = FiniteExtension(Poly(x**2 - 1, domain=QQ)) assert K.convert_from(QQ(1, 2), QQ) == K.one/2 def test_FiniteExtension_division_ring(): # Test division in FiniteExtension over a ring KQ = FiniteExtension(Poly(x**2 - 1, x, domain=QQ)) KZ = FiniteExtension(Poly(x**2 - 1, x, domain=ZZ)) KQt = FiniteExtension(Poly(x**2 - 1, x, domain=QQ[t])) KQtf = FiniteExtension(Poly(x**2 - 1, x, domain=QQ.frac_field(t))) assert KQ.is_Field is True assert KZ.is_Field is False assert KQt.is_Field is False assert KQtf.is_Field is True for K in KQ, KZ, KQt, KQtf: xK = K.convert(x) assert xK / K.one == xK assert xK // K.one == xK assert xK % K.one == K.zero raises(ZeroDivisionError, lambda: xK / K.zero) raises(ZeroDivisionError, lambda: xK // K.zero) raises(ZeroDivisionError, lambda: xK % K.zero) if K.is_Field: assert xK / xK == K.one assert xK // xK == K.one assert xK % xK == K.zero else: raises(NotImplementedError, lambda: xK / xK) raises(NotImplementedError, lambda: xK // xK) raises(NotImplementedError, lambda: xK % xK) def test_FiniteExtension_Poly(): K = FiniteExtension(Poly(x**2 - 2)) p = Poly(x, y, domain=K) assert p.domain == K assert p.as_expr() == x assert (p**2).as_expr() == 2 K = FiniteExtension(Poly(x**2 - 2, x, domain=QQ)) K2 = FiniteExtension(Poly(t**2 - 2, t, domain=K)) assert str(K2) == 'QQ[x]/(x**2 - 2)[t]/(t**2 - 2)' eK = K2.convert(x + t) assert K2.to_sympy(eK) == x + t assert K2.to_sympy(eK ** 2) == 4 + 2*x*t p = Poly(x + t, y, domain=K2) assert p**2 == Poly(4 + 2*x*t, y, domain=K2) def test_FiniteExtension_sincos_jacobian(): # Use FiniteExtensino to compute the Jacobian of a matrix involving sin # and cos of different symbols. r, p, t = symbols('rho, phi, theta') elements = [ [sin(p)*cos(t), r*cos(p)*cos(t), -r*sin(p)*sin(t)], [sin(p)*sin(t), r*cos(p)*sin(t), r*sin(p)*cos(t)], [ cos(p), -r*sin(p), 0], ] def make_extension(K): K = FiniteExtension(Poly(sin(p)**2+cos(p)**2-1, sin(p), domain=K[cos(p)])) K = FiniteExtension(Poly(sin(t)**2+cos(t)**2-1, sin(t), domain=K[cos(t)])) return K Ksc1 = make_extension(ZZ[r]) Ksc2 = make_extension(ZZ)[r] for K in [Ksc1, Ksc2]: elements_K = [[K.convert(e) for e in row] for row in elements] J = DomainMatrix(elements_K, (3, 3), K) det = J.charpoly()[-1] * (-K.one)**3 assert det == K.convert(r**2*sin(p))
1f5a71177a47fd9b1fdd1f7b9e4780b9b7f0fb3523219b853b685543a11b8cfe
from sympy.testing.pytest import raises from sympy.core.compatibility import HAS_GMPY from sympy.polys import ZZ, QQ from sympy.polys.matrices.ddm import DDM from sympy.polys.matrices.exceptions import ( DDMShapeError, NonInvertibleMatrixError, DDMDomainError, DDMBadInputError) def test_DDM_init(): items = [[ZZ(0), ZZ(1), ZZ(2)], [ZZ(3), ZZ(4), ZZ(5)]] shape = (2, 3) ddm = DDM(items, shape, ZZ) assert ddm.shape == shape assert ddm.rows == 2 assert ddm.cols == 3 assert ddm.domain == ZZ raises(DDMBadInputError, lambda: DDM([[ZZ(2), ZZ(3)]], (2, 2), ZZ)) raises(DDMBadInputError, lambda: DDM([[ZZ(1)], [ZZ(2), ZZ(3)]], (2, 2), ZZ)) def test_DDM_getsetitem(): ddm = DDM([[ZZ(2), ZZ(3)], [ZZ(4), ZZ(5)]], (2, 2), ZZ) assert ddm[0][0] == ZZ(2) assert ddm[0][1] == ZZ(3) assert ddm[1][0] == ZZ(4) assert ddm[1][1] == ZZ(5) raises(IndexError, lambda: ddm[2][0]) raises(IndexError, lambda: ddm[0][2]) ddm[0][0] = ZZ(-1) assert ddm[0][0] == ZZ(-1) def test_DDM_str(): ddm = DDM([[ZZ(0), ZZ(1)], [ZZ(2), ZZ(3)]], (2, 2), ZZ) if HAS_GMPY: assert str(ddm) == 'DDM([[mpz(0), mpz(1)], [mpz(2), mpz(3)]], (2, 2), ZZ)' else: assert str(ddm) == 'DDM([[0, 1], [2, 3]], (2, 2), ZZ)' def test_DDM_eq(): items = [[ZZ(0), ZZ(1)], [ZZ(2), ZZ(3)]] ddm1 = DDM(items, (2, 2), ZZ) ddm2 = DDM(items, (2, 2), ZZ) assert (ddm1 == ddm1) is True assert (ddm1 == items) is False assert (items == ddm1) is False assert (ddm1 == ddm2) is True assert (ddm2 == ddm1) is True assert (ddm1 != ddm1) is False assert (ddm1 != items) is True assert (items != ddm1) is True assert (ddm1 != ddm2) is False assert (ddm2 != ddm1) is False ddm3 = DDM([[ZZ(0), ZZ(1)], [ZZ(3), ZZ(3)]], (2, 2), ZZ) ddm3 = DDM(items, (2, 2), QQ) assert (ddm1 == ddm3) is False assert (ddm3 == ddm1) is False assert (ddm1 != ddm3) is True assert (ddm3 != ddm1) is True def test_DDM_zeros(): ddmz = DDM.zeros((3, 4), QQ) assert list(ddmz) == [[QQ(0)] * 4] * 3 assert ddmz.shape == (3, 4) assert ddmz.domain == QQ def test_DDM_eye(): ddmz = DDM.eye(3, QQ) f = lambda i, j: QQ(1) if i == j else QQ(0) assert list(ddmz) == [[f(i, j) for i in range(3)] for j in range(3)] assert ddmz.shape == (3, 3) assert ddmz.domain == QQ def test_DDM_copy(): ddm1 = DDM([[QQ(1)], [QQ(2)]], (2, 1), QQ) ddm2 = ddm1.copy() assert (ddm1 == ddm2) is True ddm1[0][0] = QQ(-1) assert (ddm1 == ddm2) is False ddm2[0][0] = QQ(-1) assert (ddm1 == ddm2) is True def test_DDM_add(): A = DDM([[ZZ(1)], [ZZ(2)]], (2, 1), ZZ) B = DDM([[ZZ(3)], [ZZ(4)]], (2, 1), ZZ) C = DDM([[ZZ(4)], [ZZ(6)]], (2, 1), ZZ) AQ = DDM([[QQ(1)], [QQ(2)]], (2, 1), QQ) assert A + B == A.add(B) == C raises(DDMShapeError, lambda: A + DDM([[ZZ(5)]], (1, 1), ZZ)) raises(TypeError, lambda: A + ZZ(1)) raises(TypeError, lambda: ZZ(1) + A) raises(DDMDomainError, lambda: A + AQ) raises(DDMDomainError, lambda: AQ + A) def test_DDM_sub(): A = DDM([[ZZ(1)], [ZZ(2)]], (2, 1), ZZ) B = DDM([[ZZ(3)], [ZZ(4)]], (2, 1), ZZ) C = DDM([[ZZ(-2)], [ZZ(-2)]], (2, 1), ZZ) AQ = DDM([[QQ(1)], [QQ(2)]], (2, 1), QQ) D = DDM([[ZZ(5)]], (1, 1), ZZ) assert A - B == A.sub(B) == C raises(TypeError, lambda: A - ZZ(1)) raises(TypeError, lambda: ZZ(1) - A) raises(DDMShapeError, lambda: A - D) raises(DDMShapeError, lambda: D - A) raises(DDMShapeError, lambda: A.sub(D)) raises(DDMShapeError, lambda: D.sub(A)) raises(DDMDomainError, lambda: A - AQ) raises(DDMDomainError, lambda: AQ - A) raises(DDMDomainError, lambda: A.sub(AQ)) raises(DDMDomainError, lambda: AQ.sub(A)) def test_DDM_neg(): A = DDM([[ZZ(1)], [ZZ(2)]], (2, 1), ZZ) An = DDM([[ZZ(-1)], [ZZ(-2)]], (2, 1), ZZ) assert -A == A.neg() == An assert -An == An.neg() == A def test_DDM_mul(): A = DDM([[ZZ(1)]], (1, 1), ZZ) raises(TypeError, lambda: [[1]] * A) raises(TypeError, lambda: A * [[1]]) def test_DDM_matmul(): A = DDM([[ZZ(1)], [ZZ(2)]], (2, 1), ZZ) B = DDM([[ZZ(3), ZZ(4)]], (1, 2), ZZ) AB = DDM([[ZZ(3), ZZ(4)], [ZZ(6), ZZ(8)]], (2, 2), ZZ) BA = DDM([[ZZ(11)]], (1, 1), ZZ) assert A @ B == A.matmul(B) == AB assert B @ A == B.matmul(A) == BA raises(TypeError, lambda: A @ 1) raises(TypeError, lambda: A @ [[3, 4]]) Bq = DDM([[QQ(3), QQ(4)]], (1, 2), QQ) raises(DDMDomainError, lambda: A @ Bq) raises(DDMDomainError, lambda: Bq @ A) C = DDM([[ZZ(1)]], (1, 1), ZZ) assert A @ C == A.matmul(C) == A raises(DDMShapeError, lambda: C @ A) raises(DDMShapeError, lambda: C.matmul(A)) Z04 = DDM([], (0, 4), ZZ) Z40 = DDM([[]]*4, (4, 0), ZZ) Z50 = DDM([[]]*5, (5, 0), ZZ) Z05 = DDM([], (0, 5), ZZ) Z45 = DDM([[0] * 5] * 4, (4, 5), ZZ) Z54 = DDM([[0] * 4] * 5, (5, 4), ZZ) Z00 = DDM([], (0, 0), ZZ) assert Z04 @ Z45 == Z04.matmul(Z45) == Z05 assert Z45 @ Z50 == Z45.matmul(Z50) == Z40 assert Z00 @ Z04 == Z00.matmul(Z04) == Z04 assert Z50 @ Z00 == Z50.matmul(Z00) == Z50 assert Z00 @ Z00 == Z00.matmul(Z00) == Z00 assert Z50 @ Z04 == Z50.matmul(Z04) == Z54 raises(DDMShapeError, lambda: Z05 @ Z40) raises(DDMShapeError, lambda: Z05.matmul(Z40)) def test_DDM_rref(): A = DDM([], (0, 4), QQ) assert A.rref() == (A, []) A = DDM([[QQ(0), QQ(1)], [QQ(1), QQ(1)]], (2, 2), QQ) Ar = DDM([[QQ(1), QQ(0)], [QQ(0), QQ(1)]], (2, 2), QQ) pivots = [0, 1] assert A.rref() == (Ar, pivots) A = DDM([[QQ(1), QQ(2), QQ(1)], [QQ(3), QQ(4), QQ(1)]], (2, 3), QQ) Ar = DDM([[QQ(1), QQ(0), QQ(-1)], [QQ(0), QQ(1), QQ(1)]], (2, 3), QQ) pivots = [0, 1] assert A.rref() == (Ar, pivots) A = DDM([[QQ(3), QQ(4), QQ(1)], [QQ(1), QQ(2), QQ(1)]], (2, 3), QQ) Ar = DDM([[QQ(1), QQ(0), QQ(-1)], [QQ(0), QQ(1), QQ(1)]], (2, 3), QQ) pivots = [0, 1] assert A.rref() == (Ar, pivots) A = DDM([[QQ(1), QQ(0)], [QQ(1), QQ(3)], [QQ(0), QQ(1)]], (3, 2), QQ) Ar = DDM([[QQ(1), QQ(0)], [QQ(0), QQ(1)], [QQ(0), QQ(0)]], (3, 2), QQ) pivots = [0, 1] assert A.rref() == (Ar, pivots) A = DDM([[QQ(1), QQ(0), QQ(1)], [QQ(3), QQ(0), QQ(1)]], (2, 3), QQ) Ar = DDM([[QQ(1), QQ(0), QQ(0)], [QQ(0), QQ(0), QQ(1)]], (2, 3), QQ) pivots = [0, 2] assert A.rref() == (Ar, pivots) def test_DDM_det(): # 0x0 case A = DDM([], (0, 0), ZZ) assert A.det() == ZZ(1) # 1x1 case A = DDM([[ZZ(2)]], (1, 1), ZZ) assert A.det() == ZZ(2) # 2x2 case A = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert A.det() == ZZ(-2) # 3x3 with swap A = DDM([[ZZ(1), ZZ(2), ZZ(3)], [ZZ(1), ZZ(2), ZZ(4)], [ZZ(1), ZZ(2), ZZ(5)]], (3, 3), ZZ) assert A.det() == ZZ(0) # 2x2 QQ case A = DDM([[QQ(1, 2), QQ(1, 2)], [QQ(1, 3), QQ(1, 4)]], (2, 2), QQ) assert A.det() == QQ(-1, 24) # Nonsquare error A = DDM([[ZZ(1)], [ZZ(2)]], (2, 1), ZZ) raises(DDMShapeError, lambda: A.det()) # Nonsquare error with empty matrix A = DDM([], (0, 1), ZZ) raises(DDMShapeError, lambda: A.det()) def test_DDM_inv(): A = DDM([[QQ(1, 1), QQ(2, 1)], [QQ(3, 1), QQ(4, 1)]], (2, 2), QQ) Ainv = DDM([[QQ(-2, 1), QQ(1, 1)], [QQ(3, 2), QQ(-1, 2)]], (2, 2), QQ) assert A.inv() == Ainv A = DDM([[QQ(1), QQ(2)]], (1, 2), QQ) raises(DDMShapeError, lambda: A.inv()) A = DDM([[ZZ(2)]], (1, 1), ZZ) raises(ValueError, lambda: A.inv()) A = DDM([], (0, 0), QQ) assert A.inv() == A A = DDM([[QQ(1), QQ(2)], [QQ(2), QQ(4)]], (2, 2), QQ) raises(NonInvertibleMatrixError, lambda: A.inv()) def test_DDM_lu(): A = DDM([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) L, U, swaps = A.lu() assert L == DDM([[QQ(1), QQ(0)], [QQ(3), QQ(1)]], (2, 2), QQ) assert U == DDM([[QQ(1), QQ(2)], [QQ(0), QQ(-2)]], (2, 2), QQ) assert swaps == [] A = [[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 1], [0, 0, 1, 2]] Lexp = [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 1]] Uexp = [[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 1], [0, 0, 0, 1]] to_dom = lambda rows, dom: [[dom(e) for e in row] for row in rows] A = DDM(to_dom(A, QQ), (4, 4), QQ) Lexp = DDM(to_dom(Lexp, QQ), (4, 4), QQ) Uexp = DDM(to_dom(Uexp, QQ), (4, 4), QQ) L, U, swaps = A.lu() assert L == Lexp assert U == Uexp assert swaps == [] def test_DDM_lu_solve(): # Basic example A = DDM([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) b = DDM([[QQ(1)], [QQ(2)]], (2, 1), QQ) x = DDM([[QQ(0)], [QQ(1, 2)]], (2, 1), QQ) assert A.lu_solve(b) == x # Example with swaps A = DDM([[QQ(0), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) assert A.lu_solve(b) == x # Overdetermined, consistent A = DDM([[QQ(1), QQ(2)], [QQ(3), QQ(4)], [QQ(5), QQ(6)]], (3, 2), QQ) b = DDM([[QQ(1)], [QQ(2)], [QQ(3)]], (3, 1), QQ) assert A.lu_solve(b) == x # Overdetermined, inconsistent b = DDM([[QQ(1)], [QQ(2)], [QQ(4)]], (3, 1), QQ) raises(NonInvertibleMatrixError, lambda: A.lu_solve(b)) # Square, noninvertible A = DDM([[QQ(1), QQ(2)], [QQ(1), QQ(2)]], (2, 2), QQ) b = DDM([[QQ(1)], [QQ(2)]], (2, 1), QQ) raises(NonInvertibleMatrixError, lambda: A.lu_solve(b)) # Underdetermined A = DDM([[QQ(1), QQ(2)]], (1, 2), QQ) b = DDM([[QQ(3)]], (1, 1), QQ) raises(NotImplementedError, lambda: A.lu_solve(b)) # Domain mismatch bz = DDM([[ZZ(1)], [ZZ(2)]], (2, 1), ZZ) raises(DDMDomainError, lambda: A.lu_solve(bz)) # Shape mismatch b3 = DDM([[QQ(1)], [QQ(2)], [QQ(3)]], (3, 1), QQ) raises(DDMShapeError, lambda: A.lu_solve(b3)) def test_DDM_charpoly(): A = DDM([], (0, 0), ZZ) assert A.charpoly() == [ZZ(1)] A = DDM([ [ZZ(1), ZZ(2), ZZ(3)], [ZZ(4), ZZ(5), ZZ(6)], [ZZ(7), ZZ(8), ZZ(9)]], (3, 3), ZZ) Avec = [ZZ(1), ZZ(-15), ZZ(-18), ZZ(0)] assert A.charpoly() == Avec A = DDM([[ZZ(1), ZZ(2)]], (1, 2), ZZ) raises(DDMShapeError, lambda: A.charpoly())
1d74278c054ca7f48a107a1b08ed0249e974229271879dde0da9c5d3b2cf1ff9
from sympy.testing.pytest import raises from sympy.core.numbers import Rational from sympy.functions import sqrt from sympy.matrices.common import (NonInvertibleMatrixError, NonSquareMatrixError, ShapeError) from sympy.matrices.dense import Matrix from sympy.polys import ZZ, QQ from sympy.polys.matrices.domainmatrix import DomainMatrix from sympy.polys.matrices.exceptions import DDMBadInputError, DDMDomainError from sympy.polys.matrices.ddm import DDM def test_DomainMatrix_init(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert A.rep == DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert A.shape == (2, 2) assert A.domain == ZZ raises(DDMBadInputError, lambda: DomainMatrix([[ZZ(1), ZZ(2)]], (2, 2), ZZ)) def test_DomainMatrix_from_ddm(): ddm = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) A = DomainMatrix.from_ddm(ddm) assert A.rep == ddm assert A.shape == (2, 2) assert A.domain == ZZ def test_DomainMatrix_from_list_sympy(): ddm = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) A = DomainMatrix.from_list_sympy(2, 2, [[1, 2], [3, 4]]) assert A.rep == ddm assert A.shape == (2, 2) assert A.domain == ZZ K = QQ.algebraic_field(sqrt(2)) ddm = DDM( [[K.convert(1 + sqrt(2)), K.convert(2 + sqrt(2))], [K.convert(3 + sqrt(2)), K.convert(4 + sqrt(2))]], (2, 2), K ) A = DomainMatrix.from_list_sympy( 2, 2, [[1 + sqrt(2), 2 + sqrt(2)], [3 + sqrt(2), 4 + sqrt(2)]], extension=True) assert A.rep == ddm assert A.shape == (2, 2) assert A.domain == K def test_DomainMatrix_from_Matrix(): ddm = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) A = DomainMatrix.from_Matrix(Matrix([[1, 2], [3, 4]])) assert A.rep == ddm assert A.shape == (2, 2) assert A.domain == ZZ K = QQ.algebraic_field(sqrt(2)) ddm = DDM( [[K.convert(1 + sqrt(2)), K.convert(2 + sqrt(2))], [K.convert(3 + sqrt(2)), K.convert(4 + sqrt(2))]], (2, 2), K ) A = DomainMatrix.from_Matrix( Matrix([[1 + sqrt(2), 2 + sqrt(2)], [3 + sqrt(2), 4 + sqrt(2)]]), extension=True) assert A.rep == ddm assert A.shape == (2, 2) assert A.domain == K def test_DomainMatrix_eq(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert A == A B = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(1)]], (2, 2), ZZ) assert A != B C = [[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]] assert A != C def test_DomainMatrix_get_domain(): K, items = DomainMatrix.get_domain([1, 2, 3, 4]) assert items == [ZZ(1), ZZ(2), ZZ(3), ZZ(4)] assert K == ZZ K, items = DomainMatrix.get_domain([1, 2, 3, Rational(1, 2)]) assert items == [QQ(1), QQ(2), QQ(3), QQ(1, 2)] assert K == QQ def test_DomainMatrix_convert_to(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Aq = A.convert_to(QQ) assert Aq == DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) def test_DomainMatrix_to_field(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Aq = A.to_field() assert Aq == DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) def test_DomainMatrix_unify(): Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Aq = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) assert Az.unify(Az) == (Az, Az) assert Az.unify(Aq) == (Aq, Aq) assert Aq.unify(Az) == (Aq, Aq) assert Aq.unify(Aq) == (Aq, Aq) def test_DomainMatrix_to_Matrix(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert A.to_Matrix() == Matrix([[1, 2], [3, 4]]) def test_DomainMatrix_repr(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert repr(A) == 'DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)' def test_DomainMatrix_add(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) B = DomainMatrix([[ZZ(2), ZZ(4)], [ZZ(6), ZZ(8)]], (2, 2), ZZ) assert A + A == A.add(A) == B A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) L = [[2, 3], [3, 4]] raises(TypeError, lambda: A + L) raises(TypeError, lambda: L + A) A1 = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) A2 = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ) raises(ShapeError, lambda: A1 + A2) raises(ShapeError, lambda: A2 + A1) raises(ShapeError, lambda: A1.add(A2)) raises(ShapeError, lambda: A2.add(A1)) Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Aq = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) raises(ValueError, lambda: Az + Aq) raises(ValueError, lambda: Aq + Az) raises(ValueError, lambda: Az.add(Aq)) raises(ValueError, lambda: Aq.add(Az)) def test_DomainMatrix_sub(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) B = DomainMatrix([[ZZ(0), ZZ(0)], [ZZ(0), ZZ(0)]], (2, 2), ZZ) assert A - A == A.sub(A) == B A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) L = [[2, 3], [3, 4]] raises(TypeError, lambda: A - L) raises(TypeError, lambda: L - A) A1 = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) A2 = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ) raises(ShapeError, lambda: A1 - A2) raises(ShapeError, lambda: A2 - A1) raises(ShapeError, lambda: A1.sub(A2)) raises(ShapeError, lambda: A2.sub(A1)) Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Aq = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) raises(ValueError, lambda: Az - Aq) raises(ValueError, lambda: Aq - Az) raises(ValueError, lambda: Az.sub(Aq)) raises(ValueError, lambda: Aq.sub(Az)) def test_DomainMatrix_neg(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Aneg = DomainMatrix([[ZZ(-1), ZZ(-2)], [ZZ(-3), ZZ(-4)]], (2, 2), ZZ) assert -A == A.neg() == Aneg def test_DomainMatrix_mul(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) A2 = DomainMatrix([[ZZ(7), ZZ(10)], [ZZ(15), ZZ(22)]], (2, 2), ZZ) assert A*A == A.matmul(A) == A2 A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) L = [[1, 2], [3, 4]] raises(TypeError, lambda: A * L) raises(TypeError, lambda: L * A) Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Aq = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) raises(DDMDomainError, lambda: Az * Aq) raises(DDMDomainError, lambda: Aq * Az) raises(DDMDomainError, lambda: Az.matmul(Aq)) raises(DDMDomainError, lambda: Aq.matmul(Az)) A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) AA = DomainMatrix([[ZZ(2), ZZ(4)], [ZZ(6), ZZ(8)]], (2, 2), ZZ) x = ZZ(2) assert A * x == x * A == A.mul(x) == AA A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) AA = DomainMatrix([[ZZ(0), ZZ(0)], [ZZ(0), ZZ(0)]], (2, 2), ZZ) x = ZZ(0) assert A * x == x * A == A.mul(x) == AA def test_DomainMatrix_pow(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) A2 = DomainMatrix([[ZZ(7), ZZ(10)], [ZZ(15), ZZ(22)]], (2, 2), ZZ) A3 = DomainMatrix([[ZZ(37), ZZ(54)], [ZZ(81), ZZ(118)]], (2, 2), ZZ) eye = DomainMatrix([[ZZ(1), ZZ(0)], [ZZ(0), ZZ(1)]], (2, 2), ZZ) assert A**0 == A.pow(0) == eye assert A**1 == A.pow(1) == A assert A**2 == A.pow(2) == A2 assert A**3 == A.pow(3) == A3 raises(TypeError, lambda: A ** Rational(1, 2)) raises(NotImplementedError, lambda: A ** -1) raises(NotImplementedError, lambda: A.pow(-1)) def test_DomainMatrix_rref(): A = DomainMatrix([], (0, 1), QQ) assert A.rref() == (A, ()) A = DomainMatrix([[QQ(1)]], (1, 1), QQ) assert A.rref() == (A, (0,)) A = DomainMatrix([[QQ(0)]], (1, 1), QQ) assert A.rref() == (A, ()) A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) Ar, pivots = A.rref() assert Ar == DomainMatrix([[QQ(1), QQ(0)], [QQ(0), QQ(1)]], (2, 2), QQ) assert pivots == (0, 1) A = DomainMatrix([[QQ(0), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) Ar, pivots = A.rref() assert Ar == DomainMatrix([[QQ(1), QQ(0)], [QQ(0), QQ(1)]], (2, 2), QQ) assert pivots == (0, 1) A = DomainMatrix([[QQ(0), QQ(2)], [QQ(0), QQ(4)]], (2, 2), QQ) Ar, pivots = A.rref() assert Ar == DomainMatrix([[QQ(0), QQ(1)], [QQ(0), QQ(0)]], (2, 2), QQ) assert pivots == (1,) Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) raises(ValueError, lambda: Az.rref()) def test_DomainMatrix_inv(): A = DomainMatrix([], (0, 0), QQ) assert A.inv() == A A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) Ainv = DomainMatrix([[QQ(-2), QQ(1)], [QQ(3, 2), QQ(-1, 2)]], (2, 2), QQ) assert A.inv() == Ainv Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) raises(ValueError, lambda: Az.inv()) Ans = DomainMatrix([[QQ(1), QQ(2)]], (1, 2), QQ) raises(NonSquareMatrixError, lambda: Ans.inv()) Aninv = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(6)]], (2, 2), QQ) raises(NonInvertibleMatrixError, lambda: Aninv.inv()) def test_DomainMatrix_det(): A = DomainMatrix([], (0, 0), ZZ) assert A.det() == 1 A = DomainMatrix([[1]], (1, 1), ZZ) assert A.det() == 1 A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert A.det() == ZZ(-2) A = DomainMatrix([[ZZ(1), ZZ(2), ZZ(3)], [ZZ(1), ZZ(2), ZZ(4)], [ZZ(1), ZZ(3), ZZ(5)]], (3, 3), ZZ) assert A.det() == ZZ(-1) A = DomainMatrix([[ZZ(1), ZZ(2), ZZ(3)], [ZZ(1), ZZ(2), ZZ(4)], [ZZ(1), ZZ(2), ZZ(5)]], (3, 3), ZZ) assert A.det() == ZZ(0) Ans = DomainMatrix([[QQ(1), QQ(2)]], (1, 2), QQ) raises(NonSquareMatrixError, lambda: Ans.det()) A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) assert A.det() == QQ(-2) def test_DomainMatrix_lu(): A = DomainMatrix([], (0, 0), QQ) assert A.lu() == (A, A, []) A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) L = DomainMatrix([[QQ(1), QQ(0)], [QQ(3), QQ(1)]], (2, 2), QQ) U = DomainMatrix([[QQ(1), QQ(2)], [QQ(0), QQ(-2)]], (2, 2), QQ) swaps = [] assert A.lu() == (L, U, swaps) A = DomainMatrix([[QQ(0), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) L = DomainMatrix([[QQ(1), QQ(0)], [QQ(0), QQ(1)]], (2, 2), QQ) U = DomainMatrix([[QQ(3), QQ(4)], [QQ(0), QQ(2)]], (2, 2), QQ) swaps = [(0, 1)] assert A.lu() == (L, U, swaps) A = DomainMatrix([[QQ(1), QQ(2)], [QQ(2), QQ(4)]], (2, 2), QQ) L = DomainMatrix([[QQ(1), QQ(0)], [QQ(2), QQ(1)]], (2, 2), QQ) U = DomainMatrix([[QQ(1), QQ(2)], [QQ(0), QQ(0)]], (2, 2), QQ) swaps = [] assert A.lu() == (L, U, swaps) A = DomainMatrix([[QQ(0), QQ(2)], [QQ(0), QQ(4)]], (2, 2), QQ) L = DomainMatrix([[QQ(1), QQ(0)], [QQ(0), QQ(1)]], (2, 2), QQ) U = DomainMatrix([[QQ(0), QQ(2)], [QQ(0), QQ(4)]], (2, 2), QQ) swaps = [] assert A.lu() == (L, U, swaps) A = DomainMatrix([[QQ(1), QQ(2), QQ(3)], [QQ(4), QQ(5), QQ(6)]], (2, 3), QQ) L = DomainMatrix([[QQ(1), QQ(0)], [QQ(4), QQ(1)]], (2, 2), QQ) U = DomainMatrix([[QQ(1), QQ(2), QQ(3)], [QQ(0), QQ(-3), QQ(-6)]], (2, 3), QQ) swaps = [] assert A.lu() == (L, U, swaps) A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)], [QQ(5), QQ(6)]], (3, 2), QQ) L = DomainMatrix([ [QQ(1), QQ(0), QQ(0)], [QQ(3), QQ(1), QQ(0)], [QQ(5), QQ(2), QQ(1)]], (3, 3), QQ) U = DomainMatrix([[QQ(1), QQ(2)], [QQ(0), QQ(-2)], [QQ(0), QQ(0)]], (3, 2), QQ) swaps = [] assert A.lu() == (L, U, swaps) A = [[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 1], [0, 0, 1, 2]] L = [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 1]] U = [[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 1], [0, 0, 0, 1]] to_dom = lambda rows, dom: [[dom(e) for e in row] for row in rows] A = DomainMatrix(to_dom(A, QQ), (4, 4), QQ) L = DomainMatrix(to_dom(L, QQ), (4, 4), QQ) U = DomainMatrix(to_dom(U, QQ), (4, 4), QQ) assert A.lu() == (L, U, []) A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) raises(ValueError, lambda: A.lu()) def test_DomainMatrix_lu_solve(): # Base case A = b = x = DomainMatrix([], (0, 0), QQ) assert A.lu_solve(b) == x # Basic example A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) b = DomainMatrix([[QQ(1)], [QQ(2)]], (2, 1), QQ) x = DomainMatrix([[QQ(0)], [QQ(1, 2)]], (2, 1), QQ) assert A.lu_solve(b) == x # Example with swaps A = DomainMatrix([[QQ(0), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) b = DomainMatrix([[QQ(1)], [QQ(2)]], (2, 1), QQ) x = DomainMatrix([[QQ(0)], [QQ(1, 2)]], (2, 1), QQ) assert A.lu_solve(b) == x # Non-invertible A = DomainMatrix([[QQ(1), QQ(2)], [QQ(2), QQ(4)]], (2, 2), QQ) b = DomainMatrix([[QQ(1)], [QQ(2)]], (2, 1), QQ) raises(NonInvertibleMatrixError, lambda: A.lu_solve(b)) # Overdetermined, consistent A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)], [QQ(5), QQ(6)]], (3, 2), QQ) b = DomainMatrix([[QQ(1)], [QQ(2)], [QQ(3)]], (3, 1), QQ) x = DomainMatrix([[QQ(0)], [QQ(1, 2)]], (2, 1), QQ) assert A.lu_solve(b) == x # Overdetermined, inconsistent A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)], [QQ(5), QQ(6)]], (3, 2), QQ) b = DomainMatrix([[QQ(1)], [QQ(2)], [QQ(4)]], (3, 1), QQ) raises(NonInvertibleMatrixError, lambda: A.lu_solve(b)) # Underdetermined A = DomainMatrix([[QQ(1), QQ(2)]], (1, 2), QQ) b = DomainMatrix([[QQ(1)]], (1, 1), QQ) raises(NotImplementedError, lambda: A.lu_solve(b)) # Non-field A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) b = DomainMatrix([[ZZ(1)], [ZZ(2)]], (2, 1), ZZ) raises(ValueError, lambda: A.lu_solve(b)) # Shape mismatch A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) b = DomainMatrix([[QQ(1), QQ(2)]], (1, 2), QQ) raises(ShapeError, lambda: A.lu_solve(b)) def test_DomainMatrix_charpoly(): A = DomainMatrix([], (0, 0), ZZ) assert A.charpoly() == [ZZ(1)] A = DomainMatrix([[1]], (1, 1), ZZ) assert A.charpoly() == [ZZ(1), ZZ(-1)] A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert A.charpoly() == [ZZ(1), ZZ(-5), ZZ(-2)] A = DomainMatrix([[ZZ(1), ZZ(2), ZZ(3)], [ZZ(4), ZZ(5), ZZ(6)], [ZZ(7), ZZ(8), ZZ(9)]], (3, 3), ZZ) assert A.charpoly() == [ZZ(1), ZZ(-15), ZZ(-18), ZZ(0)] Ans = DomainMatrix([[QQ(1), QQ(2)]], (1, 2), QQ) raises(NonSquareMatrixError, lambda: Ans.charpoly()) def test_DomainMatrix_eye(): A = DomainMatrix.eye(3, QQ) assert A.rep == DDM.eye(3, QQ) assert A.shape == (3, 3) assert A.domain == QQ
e03c1f81ebcab653ad5424fad951e7981e0a8629fa4d26de91058e868fcaa3df
from sympy.testing.pytest import raises from sympy.polys import ZZ, QQ from sympy.polys.matrices.ddm import DDM from sympy.polys.matrices.dense import ( ddm_iadd, ddm_isub, ddm_ineg, ddm_imatmul, ddm_imul, ddm_irref, ddm_idet, ddm_iinv, ddm_ilu, ddm_ilu_split, ddm_ilu_solve, ddm_berk) from sympy.polys.matrices.exceptions import ( DDMShapeError, NonInvertibleMatrixError, NonSquareMatrixError) def test_ddm_iadd(): a = [[1, 2], [3, 4]] b = [[5, 6], [7, 8]] ddm_iadd(a, b) assert a == [[6, 8], [10, 12]] def test_ddm_isub(): a = [[1, 2], [3, 4]] b = [[5, 6], [7, 8]] ddm_isub(a, b) assert a == [[-4, -4], [-4, -4]] def test_ddm_ineg(): a = [[1, 2], [3, 4]] ddm_ineg(a) assert a == [[-1, -2], [-3, -4]] def test_ddm_matmul(): a = [[1, 2], [3, 4]] ddm_imul(a, 2) assert a == [[2, 4], [6, 8]] a = [[1, 2], [3, 4]] ddm_imul(a, 0) assert a == [[0, 0], [0, 0]] def test_ddm_imatmul(): a = [[1, 2, 3], [4, 5, 6]] b = [[1, 2], [3, 4], [5, 6]] c1 = [[0, 0], [0, 0]] ddm_imatmul(c1, a, b) assert c1 == [[22, 28], [49, 64]] c2 = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] ddm_imatmul(c2, b, a) assert c2 == [[9, 12, 15], [19, 26, 33], [29, 40, 51]] b3 = [[1], [2], [3]] c3 = [[0], [0]] ddm_imatmul(c3, a, b3) assert c3 == [[14], [32]] def test_ddm_irref(): # Empty matrix A = [] Ar = [] pivots = [] assert ddm_irref(A) == pivots assert A == Ar # Standard square case A = [[QQ(0), QQ(1)], [QQ(1), QQ(1)]] Ar = [[QQ(1), QQ(0)], [QQ(0), QQ(1)]] pivots = [0, 1] assert ddm_irref(A) == pivots assert A == Ar # m < n case A = [[QQ(1), QQ(2), QQ(1)], [QQ(3), QQ(4), QQ(1)]] Ar = [[QQ(1), QQ(0), QQ(-1)], [QQ(0), QQ(1), QQ(1)]] pivots = [0, 1] assert ddm_irref(A) == pivots assert A == Ar # same m < n but reversed A = [[QQ(3), QQ(4), QQ(1)], [QQ(1), QQ(2), QQ(1)]] Ar = [[QQ(1), QQ(0), QQ(-1)], [QQ(0), QQ(1), QQ(1)]] pivots = [0, 1] assert ddm_irref(A) == pivots assert A == Ar # m > n case A = [[QQ(1), QQ(0)], [QQ(1), QQ(3)], [QQ(0), QQ(1)]] Ar = [[QQ(1), QQ(0)], [QQ(0), QQ(1)], [QQ(0), QQ(0)]] pivots = [0, 1] assert ddm_irref(A) == pivots assert A == Ar # Example with missing pivot A = [[QQ(1), QQ(0), QQ(1)], [QQ(3), QQ(0), QQ(1)]] Ar = [[QQ(1), QQ(0), QQ(0)], [QQ(0), QQ(0), QQ(1)]] pivots = [0, 2] assert ddm_irref(A) == pivots assert A == Ar # Example with missing pivot and no replacement A = [[QQ(0), QQ(1)], [QQ(0), QQ(2)], [QQ(1), QQ(0)]] Ar = [[QQ(1), QQ(0)], [QQ(0), QQ(1)], [QQ(0), QQ(0)]] pivots = [0, 1] assert ddm_irref(A) == pivots assert A == Ar def test_ddm_idet(): A = [] assert ddm_idet(A, ZZ) == ZZ(1) A = [[ZZ(2)]] assert ddm_idet(A, ZZ) == ZZ(2) A = [[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]] assert ddm_idet(A, ZZ) == ZZ(-2) A = [[ZZ(1), ZZ(2), ZZ(3)], [ZZ(1), ZZ(2), ZZ(4)], [ZZ(1), ZZ(3), ZZ(5)]] assert ddm_idet(A, ZZ) == ZZ(-1) A = [[ZZ(1), ZZ(2), ZZ(3)], [ZZ(1), ZZ(2), ZZ(4)], [ZZ(1), ZZ(2), ZZ(5)]] assert ddm_idet(A, ZZ) == ZZ(0) A = [[QQ(1, 2), QQ(1, 2)], [QQ(1, 3), QQ(1, 4)]] assert ddm_idet(A, QQ) == QQ(-1, 24) def test_ddm_inv(): A = [] Ainv = [] ddm_iinv(Ainv, A, QQ) assert Ainv == A A = [] Ainv = [] raises(ValueError, lambda: ddm_iinv(Ainv, A, ZZ)) A = [[QQ(1), QQ(2)]] Ainv = [[QQ(0), QQ(0)]] raises(NonSquareMatrixError, lambda: ddm_iinv(Ainv, A, QQ)) A = [[QQ(1, 1), QQ(2, 1)], [QQ(3, 1), QQ(4, 1)]] Ainv = [[QQ(0), QQ(0)], [QQ(0), QQ(0)]] Ainv_expected = [[QQ(-2, 1), QQ(1, 1)], [QQ(3, 2), QQ(-1, 2)]] ddm_iinv(Ainv, A, QQ) assert Ainv == Ainv_expected A = [[QQ(1, 1), QQ(2, 1)], [QQ(2, 1), QQ(4, 1)]] Ainv = [[QQ(0), QQ(0)], [QQ(0), QQ(0)]] raises(NonInvertibleMatrixError, lambda: ddm_iinv(Ainv, A, QQ)) def test_ddm_ilu(): A = [] Alu = [] swaps = ddm_ilu(A) assert A == Alu assert swaps == [] A = [[]] Alu = [[]] swaps = ddm_ilu(A) assert A == Alu assert swaps == [] A = [[QQ(1), QQ(2)], [QQ(3), QQ(4)]] Alu = [[QQ(1), QQ(2)], [QQ(3), QQ(-2)]] swaps = ddm_ilu(A) assert A == Alu assert swaps == [] A = [[QQ(0), QQ(2)], [QQ(3), QQ(4)]] Alu = [[QQ(3), QQ(4)], [QQ(0), QQ(2)]] swaps = ddm_ilu(A) assert A == Alu assert swaps == [(0, 1)] A = [[QQ(1), QQ(2), QQ(3)], [QQ(4), QQ(5), QQ(6)], [QQ(7), QQ(8), QQ(9)]] Alu = [[QQ(1), QQ(2), QQ(3)], [QQ(4), QQ(-3), QQ(-6)], [QQ(7), QQ(2), QQ(0)]] swaps = ddm_ilu(A) assert A == Alu assert swaps == [] A = [[QQ(0), QQ(1), QQ(2)], [QQ(0), QQ(1), QQ(3)], [QQ(1), QQ(1), QQ(2)]] Alu = [[QQ(1), QQ(1), QQ(2)], [QQ(0), QQ(1), QQ(3)], [QQ(0), QQ(1), QQ(-1)]] swaps = ddm_ilu(A) assert A == Alu assert swaps == [(0, 2)] A = [[QQ(1), QQ(2), QQ(3)], [QQ(4), QQ(5), QQ(6)]] Alu = [[QQ(1), QQ(2), QQ(3)], [QQ(4), QQ(-3), QQ(-6)]] swaps = ddm_ilu(A) assert A == Alu assert swaps == [] A = [[QQ(1), QQ(2)], [QQ(3), QQ(4)], [QQ(5), QQ(6)]] Alu = [[QQ(1), QQ(2)], [QQ(3), QQ(-2)], [QQ(5), QQ(2)]] swaps = ddm_ilu(A) assert A == Alu assert swaps == [] def test_ddm_ilu_split(): U = [] L = [] Uexp = [] Lexp = [] swaps = ddm_ilu_split(L, U, QQ) assert U == Uexp assert L == Lexp assert swaps == [] U = [[]] L = [[QQ(1)]] Uexp = [[]] Lexp = [[QQ(1)]] swaps = ddm_ilu_split(L, U, QQ) assert U == Uexp assert L == Lexp assert swaps == [] U = [[QQ(1), QQ(2)], [QQ(3), QQ(4)]] L = [[QQ(1), QQ(0)], [QQ(0), QQ(1)]] Uexp = [[QQ(1), QQ(2)], [QQ(0), QQ(-2)]] Lexp = [[QQ(1), QQ(0)], [QQ(3), QQ(1)]] swaps = ddm_ilu_split(L, U, QQ) assert U == Uexp assert L == Lexp assert swaps == [] U = [[QQ(1), QQ(2), QQ(3)], [QQ(4), QQ(5), QQ(6)]] L = [[QQ(1), QQ(0)], [QQ(0), QQ(1)]] Uexp = [[QQ(1), QQ(2), QQ(3)], [QQ(0), QQ(-3), QQ(-6)]] Lexp = [[QQ(1), QQ(0)], [QQ(4), QQ(1)]] swaps = ddm_ilu_split(L, U, QQ) assert U == Uexp assert L == Lexp assert swaps == [] U = [[QQ(1), QQ(2)], [QQ(3), QQ(4)], [QQ(5), QQ(6)]] L = [[QQ(1), QQ(0), QQ(0)], [QQ(0), QQ(1), QQ(0)], [QQ(0), QQ(0), QQ(1)]] Uexp = [[QQ(1), QQ(2)], [QQ(0), QQ(-2)], [QQ(0), QQ(0)]] Lexp = [[QQ(1), QQ(0), QQ(0)], [QQ(3), QQ(1), QQ(0)], [QQ(5), QQ(2), QQ(1)]] swaps = ddm_ilu_split(L, U, QQ) assert U == Uexp assert L == Lexp assert swaps == [] def test_ddm_ilu_solve(): # Basic example # A = [[QQ(1), QQ(2)], [QQ(3), QQ(4)]] U = [[QQ(1), QQ(2)], [QQ(0), QQ(-2)]] L = [[QQ(1), QQ(0)], [QQ(3), QQ(1)]] swaps = [] b = DDM([[QQ(1)], [QQ(2)]], (2, 1), QQ) x = DDM([[QQ(0)], [QQ(0)]], (2, 1), QQ) xexp = DDM([[QQ(0)], [QQ(1, 2)]], (2, 1), QQ) ddm_ilu_solve(x, L, U, swaps, b) assert x == xexp # Example with swaps # A = [[QQ(0), QQ(2)], [QQ(3), QQ(4)]] U = [[QQ(3), QQ(4)], [QQ(0), QQ(2)]] L = [[QQ(1), QQ(0)], [QQ(0), QQ(1)]] swaps = [(0, 1)] b = DDM([[QQ(1)], [QQ(2)]], (2, 1), QQ) x = DDM([[QQ(0)], [QQ(0)]], (2, 1), QQ) xexp = DDM([[QQ(0)], [QQ(1, 2)]], (2, 1), QQ) ddm_ilu_solve(x, L, U, swaps, b) assert x == xexp # Overdetermined, consistent # A = DDM([[QQ(1), QQ(2)], [QQ(3), QQ(4)], [QQ(5), QQ(6)]], (3, 2), QQ) U = [[QQ(1), QQ(2)], [QQ(0), QQ(-2)], [QQ(0), QQ(0)]] L = [[QQ(1), QQ(0), QQ(0)], [QQ(3), QQ(1), QQ(0)], [QQ(5), QQ(2), QQ(1)]] swaps = [] b = DDM([[QQ(1)], [QQ(2)], [QQ(3)]], (3, 1), QQ) x = DDM([[QQ(0)], [QQ(0)]], (2, 1), QQ) xexp = DDM([[QQ(0)], [QQ(1, 2)]], (2, 1), QQ) ddm_ilu_solve(x, L, U, swaps, b) assert x == xexp # Overdetermined, inconsistent b = DDM([[QQ(1)], [QQ(2)], [QQ(4)]], (3, 1), QQ) raises(NonInvertibleMatrixError, lambda: ddm_ilu_solve(x, L, U, swaps, b)) # Square, noninvertible # A = DDM([[QQ(1), QQ(2)], [QQ(1), QQ(2)]], (2, 2), QQ) U = [[QQ(1), QQ(2)], [QQ(0), QQ(0)]] L = [[QQ(1), QQ(0)], [QQ(1), QQ(1)]] swaps = [] b = DDM([[QQ(1)], [QQ(2)]], (2, 1), QQ) raises(NonInvertibleMatrixError, lambda: ddm_ilu_solve(x, L, U, swaps, b)) # Underdetermined # A = DDM([[QQ(1), QQ(2)]], (1, 2), QQ) U = [[QQ(1), QQ(2)]] L = [[QQ(1)]] swaps = [] b = DDM([[QQ(3)]], (1, 1), QQ) raises(NotImplementedError, lambda: ddm_ilu_solve(x, L, U, swaps, b)) # Shape mismatch b3 = DDM([[QQ(1)], [QQ(2)], [QQ(3)]], (3, 1), QQ) raises(DDMShapeError, lambda: ddm_ilu_solve(x, L, U, swaps, b3)) # Empty shape mismatch U = [[QQ(1)]] L = [[QQ(1)]] swaps = [] x = [[QQ(1)]] b = [] raises(DDMShapeError, lambda: ddm_ilu_solve(x, L, U, swaps, b)) # Empty system U = [] L = [] swaps = [] b = [] x = [] ddm_ilu_solve(x, L, U, swaps, b) assert x == [] def test_ddm_charpoly(): A = [] assert ddm_berk(A, ZZ) == [[ZZ(1)]] A = [[ZZ(1), ZZ(2), ZZ(3)], [ZZ(4), ZZ(5), ZZ(6)], [ZZ(7), ZZ(8), ZZ(9)]] Avec = [[ZZ(1)], [ZZ(-15)], [ZZ(-18)], [ZZ(0)]] assert ddm_berk(A, ZZ) == Avec A = DDM([[ZZ(1), ZZ(2)]], (1, 2), ZZ) raises(DDMShapeError, lambda: ddm_berk(A, ZZ))
cd2ae46a351a34abf6df460d8786417ac4fc1692288c8fa9334064ab27cdfb21
from sympy.core.backend import (S, sympify, expand, sqrt, Add, zeros, ImmutableMatrix as Matrix) from sympy import trigsimp from sympy.printing.defaults import Printable from sympy.utilities.misc import filldedent from sympy.core.evalf import EvalfMixin, prec_to_dps __all__ = ['Vector'] class Vector(Printable, EvalfMixin): """The class used to define vectors. It along with ReferenceFrame are the building blocks of describing a classical mechanics system in PyDy and sympy.physics.vector. Attributes ========== simp : Boolean Let certain methods use trigsimp on their outputs """ simp = False is_number = False def __init__(self, inlist): """This is the constructor for the Vector class. You shouldn't be calling this, it should only be used by other functions. You should be treating Vectors like you would with if you were doing the math by hand, and getting the first 3 from the standard basis vectors from a ReferenceFrame. The only exception is to create a zero vector: zv = Vector(0) """ self.args = [] if inlist == 0: inlist = [] if isinstance(inlist, dict): d = inlist else: d = {} for inp in inlist: if inp[1] in d: d[inp[1]] += inp[0] else: d[inp[1]] = inp[0] for k, v in d.items(): if v != Matrix([0, 0, 0]): self.args.append((v, k)) @property def func(self): """Returns the class Vector. """ return Vector def __hash__(self): return hash(tuple(self.args)) def __add__(self, other): """The add operator for Vector. """ if other == 0: return self other = _check_vector(other) return Vector(self.args + other.args) def __and__(self, other): """Dot product of two vectors. Returns a scalar, the dot product of the two Vectors Parameters ========== other : Vector The Vector which we are dotting with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, dot >>> from sympy import symbols >>> q1 = symbols('q1') >>> N = ReferenceFrame('N') >>> dot(N.x, N.x) 1 >>> dot(N.x, N.y) 0 >>> A = N.orientnew('A', 'Axis', [q1, N.x]) >>> dot(N.y, A.y) cos(q1) """ from sympy.physics.vector.dyadic import Dyadic if isinstance(other, Dyadic): return NotImplemented other = _check_vector(other) out = S.Zero for i, v1 in enumerate(self.args): for j, v2 in enumerate(other.args): out += ((v2[0].T) * (v2[1].dcm(v1[1])) * (v1[0]))[0] if Vector.simp: return trigsimp(sympify(out), recursive=True) else: return sympify(out) def __truediv__(self, other): """This uses mul and inputs self and 1 divided by other. """ return self.__mul__(sympify(1) / other) def __eq__(self, other): """Tests for equality. It is very import to note that this is only as good as the SymPy equality test; False does not always mean they are not equivalent Vectors. If other is 0, and self is empty, returns True. If other is 0 and self is not empty, returns False. If none of the above, only accepts other as a Vector. """ if other == 0: other = Vector(0) try: other = _check_vector(other) except TypeError: return False if (self.args == []) and (other.args == []): return True elif (self.args == []) or (other.args == []): return False frame = self.args[0][1] for v in frame: if expand((self - other) & v) != 0: return False return True def __mul__(self, other): """Multiplies the Vector by a sympifyable expression. Parameters ========== other : Sympifyable The scalar to multiply this Vector with Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> from sympy import Symbol >>> N = ReferenceFrame('N') >>> b = Symbol('b') >>> V = 10 * b * N.x >>> print(V) 10*b*N.x """ newlist = [v for v in self.args] for i, v in enumerate(newlist): newlist[i] = (sympify(other) * newlist[i][0], newlist[i][1]) return Vector(newlist) def __ne__(self, other): return not self == other def __neg__(self): return self * -1 def __or__(self, other): """Outer product between two Vectors. A rank increasing operation, which returns a Dyadic from two Vectors Parameters ========== other : Vector The Vector to take the outer product with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer >>> N = ReferenceFrame('N') >>> outer(N.x, N.x) (N.x|N.x) """ from sympy.physics.vector.dyadic import Dyadic other = _check_vector(other) ol = Dyadic(0) for i, v in enumerate(self.args): for i2, v2 in enumerate(other.args): # it looks this way because if we are in the same frame and # use the enumerate function on the same frame in a nested # fashion, then bad things happen ol += Dyadic([(v[0][0] * v2[0][0], v[1].x, v2[1].x)]) ol += Dyadic([(v[0][0] * v2[0][1], v[1].x, v2[1].y)]) ol += Dyadic([(v[0][0] * v2[0][2], v[1].x, v2[1].z)]) ol += Dyadic([(v[0][1] * v2[0][0], v[1].y, v2[1].x)]) ol += Dyadic([(v[0][1] * v2[0][1], v[1].y, v2[1].y)]) ol += Dyadic([(v[0][1] * v2[0][2], v[1].y, v2[1].z)]) ol += Dyadic([(v[0][2] * v2[0][0], v[1].z, v2[1].x)]) ol += Dyadic([(v[0][2] * v2[0][1], v[1].z, v2[1].y)]) ol += Dyadic([(v[0][2] * v2[0][2], v[1].z, v2[1].z)]) return ol def _latex(self, printer): """Latex Printing method. """ ar = self.args # just to shorten things if len(ar) == 0: return str(0) ol = [] # output list, to be concatenated to a string for i, v in enumerate(ar): for j in 0, 1, 2: # if the coef of the basis vector is 1, we skip the 1 if ar[i][0][j] == 1: ol.append(' + ' + ar[i][1].latex_vecs[j]) # if the coef of the basis vector is -1, we skip the 1 elif ar[i][0][j] == -1: ol.append(' - ' + ar[i][1].latex_vecs[j]) elif ar[i][0][j] != 0: # If the coefficient of the basis vector is not 1 or -1; # also, we might wrap it in parentheses, for readability. arg_str = printer._print(ar[i][0][j]) if isinstance(ar[i][0][j], Add): arg_str = "(%s)" % arg_str if arg_str[0] == '-': arg_str = arg_str[1:] str_start = ' - ' else: str_start = ' + ' ol.append(str_start + arg_str + ar[i][1].latex_vecs[j]) outstr = ''.join(ol) if outstr.startswith(' + '): outstr = outstr[3:] elif outstr.startswith(' '): outstr = outstr[1:] return outstr def _pretty(self, printer): """Pretty Printing method. """ from sympy.printing.pretty.stringpict import prettyForm e = self class Fake: def render(self, *args, **kwargs): ar = e.args # just to shorten things if len(ar) == 0: return str(0) pforms = [] # output list, to be concatenated to a string for i, v in enumerate(ar): for j in 0, 1, 2: # if the coef of the basis vector is 1, we skip the 1 if ar[i][0][j] == 1: pform = printer._print(ar[i][1].pretty_vecs[j]) # if the coef of the basis vector is -1, we skip the 1 elif ar[i][0][j] == -1: pform = printer._print(ar[i][1].pretty_vecs[j]) pform = prettyForm(*pform.left(" - ")) bin = prettyForm.NEG pform = prettyForm(binding=bin, *pform) elif ar[i][0][j] != 0: # If the basis vector coeff is not 1 or -1, # we might wrap it in parentheses, for readability. pform = printer._print(ar[i][0][j]) if isinstance(ar[i][0][j], Add): tmp = pform.parens() pform = prettyForm(tmp[0], tmp[1]) pform = prettyForm(*pform.right(" ", ar[i][1].pretty_vecs[j])) else: continue pforms.append(pform) pform = prettyForm.__add__(*pforms) kwargs["wrap_line"] = kwargs.get("wrap_line") kwargs["num_columns"] = kwargs.get("num_columns") out_str = pform.render(*args, **kwargs) mlines = [line.rstrip() for line in out_str.split("\n")] return "\n".join(mlines) return Fake() def __ror__(self, other): """Outer product between two Vectors. A rank increasing operation, which returns a Dyadic from two Vectors Parameters ========== other : Vector The Vector to take the outer product with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer >>> N = ReferenceFrame('N') >>> outer(N.x, N.x) (N.x|N.x) """ from sympy.physics.vector.dyadic import Dyadic other = _check_vector(other) ol = Dyadic(0) for i, v in enumerate(other.args): for i2, v2 in enumerate(self.args): # it looks this way because if we are in the same frame and # use the enumerate function on the same frame in a nested # fashion, then bad things happen ol += Dyadic([(v[0][0] * v2[0][0], v[1].x, v2[1].x)]) ol += Dyadic([(v[0][0] * v2[0][1], v[1].x, v2[1].y)]) ol += Dyadic([(v[0][0] * v2[0][2], v[1].x, v2[1].z)]) ol += Dyadic([(v[0][1] * v2[0][0], v[1].y, v2[1].x)]) ol += Dyadic([(v[0][1] * v2[0][1], v[1].y, v2[1].y)]) ol += Dyadic([(v[0][1] * v2[0][2], v[1].y, v2[1].z)]) ol += Dyadic([(v[0][2] * v2[0][0], v[1].z, v2[1].x)]) ol += Dyadic([(v[0][2] * v2[0][1], v[1].z, v2[1].y)]) ol += Dyadic([(v[0][2] * v2[0][2], v[1].z, v2[1].z)]) return ol def __rsub__(self, other): return (-1 * self) + other def _sympystr(self, printer, order=True): """Printing method. """ if not order or len(self.args) == 1: ar = list(self.args) elif len(self.args) == 0: return printer._print(0) else: d = {v[1]: v[0] for v in self.args} keys = sorted(d.keys(), key=lambda x: x.index) ar = [] for key in keys: ar.append((d[key], key)) ol = [] # output list, to be concatenated to a string for i, v in enumerate(ar): for j in 0, 1, 2: # if the coef of the basis vector is 1, we skip the 1 if ar[i][0][j] == 1: ol.append(' + ' + ar[i][1].str_vecs[j]) # if the coef of the basis vector is -1, we skip the 1 elif ar[i][0][j] == -1: ol.append(' - ' + ar[i][1].str_vecs[j]) elif ar[i][0][j] != 0: # If the coefficient of the basis vector is not 1 or -1; # also, we might wrap it in parentheses, for readability. arg_str = printer._print(ar[i][0][j]) if isinstance(ar[i][0][j], Add): arg_str = "(%s)" % arg_str if arg_str[0] == '-': arg_str = arg_str[1:] str_start = ' - ' else: str_start = ' + ' ol.append(str_start + arg_str + '*' + ar[i][1].str_vecs[j]) outstr = ''.join(ol) if outstr.startswith(' + '): outstr = outstr[3:] elif outstr.startswith(' '): outstr = outstr[1:] return outstr def __sub__(self, other): """The subtraction operator. """ return self.__add__(other * -1) def __xor__(self, other): """The cross product operator for two Vectors. Returns a Vector, expressed in the same ReferenceFrames as self. Parameters ========== other : Vector The Vector which we are crossing with Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> from sympy import symbols >>> q1 = symbols('q1') >>> N = ReferenceFrame('N') >>> N.x ^ N.y N.z >>> A = N.orientnew('A', 'Axis', [q1, N.x]) >>> A.x ^ N.y N.z >>> N.y ^ A.x - sin(q1)*A.y - cos(q1)*A.z """ from sympy.physics.vector.dyadic import Dyadic if isinstance(other, Dyadic): return NotImplemented other = _check_vector(other) if other.args == []: return Vector(0) def _det(mat): """This is needed as a little method for to find the determinant of a list in python; needs to work for a 3x3 list. SymPy's Matrix won't take in Vector, so need a custom function. You shouldn't be calling this. """ return (mat[0][0] * (mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1]) + mat[0][1] * (mat[1][2] * mat[2][0] - mat[1][0] * mat[2][2]) + mat[0][2] * (mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0])) outlist = [] ar = other.args # For brevity for i, v in enumerate(ar): tempx = v[1].x tempy = v[1].y tempz = v[1].z tempm = ([[tempx, tempy, tempz], [self & tempx, self & tempy, self & tempz], [Vector([ar[i]]) & tempx, Vector([ar[i]]) & tempy, Vector([ar[i]]) & tempz]]) outlist += _det(tempm).args return Vector(outlist) __radd__ = __add__ __rand__ = __and__ __rmul__ = __mul__ def separate(self): """ The constituents of this vector in different reference frames, as per its definition. Returns a dict mapping each ReferenceFrame to the corresponding constituent Vector. Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> R1 = ReferenceFrame('R1') >>> R2 = ReferenceFrame('R2') >>> v = R1.x + R2.x >>> v.separate() == {R1: R1.x, R2: R2.x} True """ components = {} for x in self.args: components[x[1]] = Vector([x]) return components def dot(self, other): return self & other dot.__doc__ = __and__.__doc__ def cross(self, other): return self ^ other cross.__doc__ = __xor__.__doc__ def outer(self, other): return self | other outer.__doc__ = __or__.__doc__ def diff(self, var, frame, var_in_dcm=True): """Returns the partial derivative of the vector with respect to a variable in the provided reference frame. Parameters ========== var : Symbol What the partial derivative is taken with respect to. frame : ReferenceFrame The reference frame that the partial derivative is taken in. var_in_dcm : boolean If true, the differentiation algorithm assumes that the variable may be present in any of the direction cosine matrices that relate the frame to the frames of any component of the vector. But if it is known that the variable is not present in the direction cosine matrices, false can be set to skip full reexpression in the desired frame. Examples ======== >>> from sympy import Symbol >>> from sympy.physics.vector import dynamicsymbols, ReferenceFrame >>> from sympy.physics.vector import Vector >>> from sympy.physics.vector import init_vprinting >>> init_vprinting(pretty_print=False) >>> Vector.simp = True >>> t = Symbol('t') >>> q1 = dynamicsymbols('q1') >>> N = ReferenceFrame('N') >>> A = N.orientnew('A', 'Axis', [q1, N.y]) >>> A.x.diff(t, N) - q1'*A.z >>> B = ReferenceFrame('B') >>> u1, u2 = dynamicsymbols('u1, u2') >>> v = u1 * A.x + u2 * B.y >>> v.diff(u2, N, var_in_dcm=False) B.y """ from sympy.physics.vector.frame import _check_frame var = sympify(var) _check_frame(frame) inlist = [] for vector_component in self.args: measure_number = vector_component[0] component_frame = vector_component[1] if component_frame == frame: inlist += [(measure_number.diff(var), frame)] else: # If the direction cosine matrix relating the component frame # with the derivative frame does not contain the variable. if not var_in_dcm or (frame.dcm(component_frame).diff(var) == zeros(3, 3)): inlist += [(measure_number.diff(var), component_frame)] else: # else express in the frame reexp_vec_comp = Vector([vector_component]).express(frame) deriv = reexp_vec_comp.args[0][0].diff(var) inlist += Vector([(deriv, frame)]).express(component_frame).args return Vector(inlist) def express(self, otherframe, variables=False): """ Returns a Vector equivalent to this one, expressed in otherframe. Uses the global express method. Parameters ========== otherframe : ReferenceFrame The frame for this Vector to be described in variables : boolean If True, the coordinate symbols(if present) in this Vector are re-expressed in terms otherframe Examples ======== >>> from sympy.physics.vector import ReferenceFrame, dynamicsymbols >>> from sympy.physics.vector import init_vprinting >>> init_vprinting(pretty_print=False) >>> q1 = dynamicsymbols('q1') >>> N = ReferenceFrame('N') >>> A = N.orientnew('A', 'Axis', [q1, N.y]) >>> A.x.express(N) cos(q1)*N.x - sin(q1)*N.z """ from sympy.physics.vector import express return express(self, otherframe, variables=variables) def to_matrix(self, reference_frame): """Returns the matrix form of the vector with respect to the given frame. Parameters ---------- reference_frame : ReferenceFrame The reference frame that the rows of the matrix correspond to. Returns ------- matrix : ImmutableMatrix, shape(3,1) The matrix that gives the 1D vector. Examples ======== >>> from sympy import symbols >>> from sympy.physics.vector import ReferenceFrame >>> a, b, c = symbols('a, b, c') >>> N = ReferenceFrame('N') >>> vector = a * N.x + b * N.y + c * N.z >>> vector.to_matrix(N) Matrix([ [a], [b], [c]]) >>> beta = symbols('beta') >>> A = N.orientnew('A', 'Axis', (beta, N.x)) >>> vector.to_matrix(A) Matrix([ [ a], [ b*cos(beta) + c*sin(beta)], [-b*sin(beta) + c*cos(beta)]]) """ return Matrix([self.dot(unit_vec) for unit_vec in reference_frame]).reshape(3, 1) def doit(self, **hints): """Calls .doit() on each term in the Vector""" d = {} for v in self.args: d[v[1]] = v[0].applyfunc(lambda x: x.doit(**hints)) return Vector(d) def dt(self, otherframe): """ Returns a Vector which is the time derivative of the self Vector, taken in frame otherframe. Calls the global time_derivative method Parameters ========== otherframe : ReferenceFrame The frame to calculate the time derivative in """ from sympy.physics.vector import time_derivative return time_derivative(self, otherframe) def simplify(self): """Returns a simplified Vector.""" d = {} for v in self.args: d[v[1]] = v[0].simplify() return Vector(d) def subs(self, *args, **kwargs): """Substitution on the Vector. Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> from sympy import Symbol >>> N = ReferenceFrame('N') >>> s = Symbol('s') >>> a = N.x * s >>> a.subs({s: 2}) 2*N.x """ d = {} for v in self.args: d[v[1]] = v[0].subs(*args, **kwargs) return Vector(d) def magnitude(self): """Returns the magnitude (Euclidean norm) of self.""" return sqrt(self & self) def normalize(self): """Returns a Vector of magnitude 1, codirectional with self.""" return Vector(self.args + []) / self.magnitude() def applyfunc(self, f): """Apply a function to each component of a vector.""" if not callable(f): raise TypeError("`f` must be callable.") d = {} for v in self.args: d[v[1]] = v[0].applyfunc(f) return Vector(d) def free_symbols(self, reference_frame): """ Returns the free symbols in the measure numbers of the vector expressed in the given reference frame. Parameter ========= reference_frame : ReferenceFrame The frame with respect to which the free symbols of the given vector is to be determined. """ return self.to_matrix(reference_frame).free_symbols def _eval_evalf(self, prec): if not self.args: return self new_args = [] for mat, frame in self.args: new_args.append([mat.evalf(n=prec_to_dps(prec)), frame]) return Vector(new_args) def xreplace(self, rule): """ Replace occurrences of objects within the measure numbers of the vector. Parameters ========== rule : dict-like Expresses a replacement rule. Returns ======= Vector Result of the replacement. Examples ======== >>> from sympy import symbols, pi >>> from sympy.physics.vector import ReferenceFrame >>> A = ReferenceFrame('A') >>> x, y, z = symbols('x y z') >>> ((1 + x*y) * A.x).xreplace({x: pi}) (pi*y + 1)*A.x >>> ((1 + x*y) * A.x).xreplace({x: pi, y: 2}) (1 + 2*pi)*A.x Replacements occur only if an entire node in the expression tree is matched: >>> ((x*y + z) * A.x).xreplace({x*y: pi}) (z + pi)*A.x >>> ((x*y*z) * A.x).xreplace({x*y: pi}) x*y*z*A.x """ new_args = [] for mat, frame in self.args: mat = mat.xreplace(rule) new_args.append([mat, frame]) return Vector(new_args) class VectorTypeError(TypeError): def __init__(self, other, want): msg = filldedent("Expected an instance of %s, but received object " "'%s' of %s." % (type(want), other, type(other))) super().__init__(msg) def _check_vector(other): if not isinstance(other, Vector): raise TypeError('A Vector must be supplied') return other
dfe2fbe4608a7bf3c33fee60ca767716694b7f6db5fb4b9a4b6aaab6613c358d
from sympy.core.backend import sympify, Add, ImmutableMatrix as Matrix from sympy.core.evalf import EvalfMixin, prec_to_dps from sympy.printing.defaults import Printable __all__ = ['Dyadic'] class Dyadic(Printable, EvalfMixin): """A Dyadic object. See: https://en.wikipedia.org/wiki/Dyadic_tensor Kane, T., Levinson, D. Dynamics Theory and Applications. 1985 McGraw-Hill A more powerful way to represent a rigid body's inertia. While it is more complex, by choosing Dyadic components to be in body fixed basis vectors, the resulting matrix is equivalent to the inertia tensor. """ is_number = False def __init__(self, inlist): """ Just like Vector's init, you shouldn't call this unless creating a zero dyadic. zd = Dyadic(0) Stores a Dyadic as a list of lists; the inner list has the measure number and the two unit vectors; the outerlist holds each unique unit vector pair. """ self.args = [] if inlist == 0: inlist = [] while len(inlist) != 0: added = 0 for i, v in enumerate(self.args): if ((str(inlist[0][1]) == str(self.args[i][1])) and (str(inlist[0][2]) == str(self.args[i][2]))): self.args[i] = (self.args[i][0] + inlist[0][0], inlist[0][1], inlist[0][2]) inlist.remove(inlist[0]) added = 1 break if added != 1: self.args.append(inlist[0]) inlist.remove(inlist[0]) i = 0 # This code is to remove empty parts from the list while i < len(self.args): if ((self.args[i][0] == 0) | (self.args[i][1] == 0) | (self.args[i][2] == 0)): self.args.remove(self.args[i]) i -= 1 i += 1 @property def func(self): """Returns the class Dyadic. """ return Dyadic def __add__(self, other): """The add operator for Dyadic. """ other = _check_dyadic(other) return Dyadic(self.args + other.args) def __and__(self, other): """The inner product operator for a Dyadic and a Dyadic or Vector. Parameters ========== other : Dyadic or Vector The other Dyadic or Vector to take the inner product with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer >>> N = ReferenceFrame('N') >>> D1 = outer(N.x, N.y) >>> D2 = outer(N.y, N.y) >>> D1.dot(D2) (N.x|N.y) >>> D1.dot(N.y) N.x """ from sympy.physics.vector.vector import Vector, _check_vector if isinstance(other, Dyadic): other = _check_dyadic(other) ol = Dyadic(0) for i, v in enumerate(self.args): for i2, v2 in enumerate(other.args): ol += v[0] * v2[0] * (v[2] & v2[1]) * (v[1] | v2[2]) else: other = _check_vector(other) ol = Vector(0) for i, v in enumerate(self.args): ol += v[0] * v[1] * (v[2] & other) return ol def __truediv__(self, other): """Divides the Dyadic by a sympifyable expression. """ return self.__mul__(1 / other) def __eq__(self, other): """Tests for equality. Is currently weak; needs stronger comparison testing """ if other == 0: other = Dyadic(0) other = _check_dyadic(other) if (self.args == []) and (other.args == []): return True elif (self.args == []) or (other.args == []): return False return set(self.args) == set(other.args) def __mul__(self, other): """Multiplies the Dyadic by a sympifyable expression. Parameters ========== other : Sympafiable The scalar to multiply this Dyadic with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer >>> N = ReferenceFrame('N') >>> d = outer(N.x, N.x) >>> 5 * d 5*(N.x|N.x) """ newlist = [v for v in self.args] for i, v in enumerate(newlist): newlist[i] = (sympify(other) * newlist[i][0], newlist[i][1], newlist[i][2]) return Dyadic(newlist) def __ne__(self, other): return not self == other def __neg__(self): return self * -1 def _latex(self, printer): ar = self.args # just to shorten things if len(ar) == 0: return str(0) ol = [] # output list, to be concatenated to a string for i, v in enumerate(ar): # if the coef of the dyadic is 1, we skip the 1 if ar[i][0] == 1: ol.append(' + ' + printer._print(ar[i][1]) + r"\otimes " + printer._print(ar[i][2])) # if the coef of the dyadic is -1, we skip the 1 elif ar[i][0] == -1: ol.append(' - ' + printer._print(ar[i][1]) + r"\otimes " + printer._print(ar[i][2])) # If the coefficient of the dyadic is not 1 or -1, # we might wrap it in parentheses, for readability. elif ar[i][0] != 0: arg_str = printer._print(ar[i][0]) if isinstance(ar[i][0], Add): arg_str = '(%s)' % arg_str if arg_str.startswith('-'): arg_str = arg_str[1:] str_start = ' - ' else: str_start = ' + ' ol.append(str_start + arg_str + printer._print(ar[i][1]) + r"\otimes " + printer._print(ar[i][2])) outstr = ''.join(ol) if outstr.startswith(' + '): outstr = outstr[3:] elif outstr.startswith(' '): outstr = outstr[1:] return outstr def _pretty(self, printer): e = self class Fake: baseline = 0 def render(self, *args, **kwargs): ar = e.args # just to shorten things mpp = printer if len(ar) == 0: return str(0) bar = "\N{CIRCLED TIMES}" if printer._use_unicode else "|" ol = [] # output list, to be concatenated to a string for i, v in enumerate(ar): # if the coef of the dyadic is 1, we skip the 1 if ar[i][0] == 1: ol.extend([" + ", mpp.doprint(ar[i][1]), bar, mpp.doprint(ar[i][2])]) # if the coef of the dyadic is -1, we skip the 1 elif ar[i][0] == -1: ol.extend([" - ", mpp.doprint(ar[i][1]), bar, mpp.doprint(ar[i][2])]) # If the coefficient of the dyadic is not 1 or -1, # we might wrap it in parentheses, for readability. elif ar[i][0] != 0: if isinstance(ar[i][0], Add): arg_str = mpp._print( ar[i][0]).parens()[0] else: arg_str = mpp.doprint(ar[i][0]) if arg_str.startswith("-"): arg_str = arg_str[1:] str_start = " - " else: str_start = " + " ol.extend([str_start, arg_str, " ", mpp.doprint(ar[i][1]), bar, mpp.doprint(ar[i][2])]) outstr = "".join(ol) if outstr.startswith(" + "): outstr = outstr[3:] elif outstr.startswith(" "): outstr = outstr[1:] return outstr return Fake() def __rand__(self, other): """The inner product operator for a Vector or Dyadic, and a Dyadic This is for: Vector dot Dyadic Parameters ========== other : Vector The vector we are dotting with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, dot, outer >>> N = ReferenceFrame('N') >>> d = outer(N.x, N.x) >>> dot(N.x, d) N.x """ from sympy.physics.vector.vector import Vector, _check_vector other = _check_vector(other) ol = Vector(0) for i, v in enumerate(self.args): ol += v[0] * v[2] * (v[1] & other) return ol def __rsub__(self, other): return (-1 * self) + other def __rxor__(self, other): """For a cross product in the form: Vector x Dyadic Parameters ========== other : Vector The Vector that we are crossing this Dyadic with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer, cross >>> N = ReferenceFrame('N') >>> d = outer(N.x, N.x) >>> cross(N.y, d) - (N.z|N.x) """ from sympy.physics.vector.vector import _check_vector other = _check_vector(other) ol = Dyadic(0) for i, v in enumerate(self.args): ol += v[0] * ((other ^ v[1]) | v[2]) return ol def _sympystr(self, printer): """Printing method. """ ar = self.args # just to shorten things if len(ar) == 0: return printer._print(0) ol = [] # output list, to be concatenated to a string for i, v in enumerate(ar): # if the coef of the dyadic is 1, we skip the 1 if ar[i][0] == 1: ol.append(' + (' + printer._print(ar[i][1]) + '|' + printer._print(ar[i][2]) + ')') # if the coef of the dyadic is -1, we skip the 1 elif ar[i][0] == -1: ol.append(' - (' + printer._print(ar[i][1]) + '|' + printer._print(ar[i][2]) + ')') # If the coefficient of the dyadic is not 1 or -1, # we might wrap it in parentheses, for readability. elif ar[i][0] != 0: arg_str = printer._print(ar[i][0]) if isinstance(ar[i][0], Add): arg_str = "(%s)" % arg_str if arg_str[0] == '-': arg_str = arg_str[1:] str_start = ' - ' else: str_start = ' + ' ol.append(str_start + arg_str + '*(' + printer._print(ar[i][1]) + '|' + printer._print(ar[i][2]) + ')') outstr = ''.join(ol) if outstr.startswith(' + '): outstr = outstr[3:] elif outstr.startswith(' '): outstr = outstr[1:] return outstr def __sub__(self, other): """The subtraction operator. """ return self.__add__(other * -1) def __xor__(self, other): """For a cross product in the form: Dyadic x Vector. Parameters ========== other : Vector The Vector that we are crossing this Dyadic with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer, cross >>> N = ReferenceFrame('N') >>> d = outer(N.x, N.x) >>> cross(d, N.y) (N.x|N.z) """ from sympy.physics.vector.vector import _check_vector other = _check_vector(other) ol = Dyadic(0) for i, v in enumerate(self.args): ol += v[0] * (v[1] | (v[2] ^ other)) return ol __radd__ = __add__ __rmul__ = __mul__ def express(self, frame1, frame2=None): """Expresses this Dyadic in alternate frame(s) The first frame is the list side expression, the second frame is the right side; if Dyadic is in form A.x|B.y, you can express it in two different frames. If no second frame is given, the Dyadic is expressed in only one frame. Calls the global express function Parameters ========== frame1 : ReferenceFrame The frame to express the left side of the Dyadic in frame2 : ReferenceFrame If provided, the frame to express the right side of the Dyadic in Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer, dynamicsymbols >>> from sympy.physics.vector import init_vprinting >>> init_vprinting(pretty_print=False) >>> N = ReferenceFrame('N') >>> q = dynamicsymbols('q') >>> B = N.orientnew('B', 'Axis', [q, N.z]) >>> d = outer(N.x, N.x) >>> d.express(B, N) cos(q)*(B.x|N.x) - sin(q)*(B.y|N.x) """ from sympy.physics.vector.functions import express return express(self, frame1, frame2) def to_matrix(self, reference_frame, second_reference_frame=None): """Returns the matrix form of the dyadic with respect to one or two reference frames. Parameters ---------- reference_frame : ReferenceFrame The reference frame that the rows and columns of the matrix correspond to. If a second reference frame is provided, this only corresponds to the rows of the matrix. second_reference_frame : ReferenceFrame, optional, default=None The reference frame that the columns of the matrix correspond to. Returns ------- matrix : ImmutableMatrix, shape(3,3) The matrix that gives the 2D tensor form. Examples ======== >>> from sympy import symbols >>> from sympy.physics.vector import ReferenceFrame, Vector >>> Vector.simp = True >>> from sympy.physics.mechanics import inertia >>> Ixx, Iyy, Izz, Ixy, Iyz, Ixz = symbols('Ixx, Iyy, Izz, Ixy, Iyz, Ixz') >>> N = ReferenceFrame('N') >>> inertia_dyadic = inertia(N, Ixx, Iyy, Izz, Ixy, Iyz, Ixz) >>> inertia_dyadic.to_matrix(N) Matrix([ [Ixx, Ixy, Ixz], [Ixy, Iyy, Iyz], [Ixz, Iyz, Izz]]) >>> beta = symbols('beta') >>> A = N.orientnew('A', 'Axis', (beta, N.x)) >>> inertia_dyadic.to_matrix(A) Matrix([ [ Ixx, Ixy*cos(beta) + Ixz*sin(beta), -Ixy*sin(beta) + Ixz*cos(beta)], [ Ixy*cos(beta) + Ixz*sin(beta), Iyy*cos(2*beta)/2 + Iyy/2 + Iyz*sin(2*beta) - Izz*cos(2*beta)/2 + Izz/2, -Iyy*sin(2*beta)/2 + Iyz*cos(2*beta) + Izz*sin(2*beta)/2], [-Ixy*sin(beta) + Ixz*cos(beta), -Iyy*sin(2*beta)/2 + Iyz*cos(2*beta) + Izz*sin(2*beta)/2, -Iyy*cos(2*beta)/2 + Iyy/2 - Iyz*sin(2*beta) + Izz*cos(2*beta)/2 + Izz/2]]) """ if second_reference_frame is None: second_reference_frame = reference_frame return Matrix([i.dot(self).dot(j) for i in reference_frame for j in second_reference_frame]).reshape(3, 3) def doit(self, **hints): """Calls .doit() on each term in the Dyadic""" return sum([Dyadic([(v[0].doit(**hints), v[1], v[2])]) for v in self.args], Dyadic(0)) def dt(self, frame): """Take the time derivative of this Dyadic in a frame. This function calls the global time_derivative method Parameters ========== frame : ReferenceFrame The frame to take the time derivative in Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer, dynamicsymbols >>> from sympy.physics.vector import init_vprinting >>> init_vprinting(pretty_print=False) >>> N = ReferenceFrame('N') >>> q = dynamicsymbols('q') >>> B = N.orientnew('B', 'Axis', [q, N.z]) >>> d = outer(N.x, N.x) >>> d.dt(B) - q'*(N.y|N.x) - q'*(N.x|N.y) """ from sympy.physics.vector.functions import time_derivative return time_derivative(self, frame) def simplify(self): """Returns a simplified Dyadic.""" out = Dyadic(0) for v in self.args: out += Dyadic([(v[0].simplify(), v[1], v[2])]) return out def subs(self, *args, **kwargs): """Substitution on the Dyadic. Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> from sympy import Symbol >>> N = ReferenceFrame('N') >>> s = Symbol('s') >>> a = s*(N.x|N.x) >>> a.subs({s: 2}) 2*(N.x|N.x) """ return sum([Dyadic([(v[0].subs(*args, **kwargs), v[1], v[2])]) for v in self.args], Dyadic(0)) def applyfunc(self, f): """Apply a function to each component of a Dyadic.""" if not callable(f): raise TypeError("`f` must be callable.") out = Dyadic(0) for a, b, c in self.args: out += f(a) * (b|c) return out dot = __and__ cross = __xor__ def _eval_evalf(self, prec): if not self.args: return self new_args = [] for inlist in self.args: new_inlist = list(inlist) new_inlist[0] = inlist[0].evalf(n=prec_to_dps(prec)) new_args.append(tuple(new_inlist)) return Dyadic(new_args) def xreplace(self, rule): """ Replace occurrences of objects within the measure numbers of the Dyadic. Parameters ========== rule : dict-like Expresses a replacement rule. Returns ======= Dyadic Result of the replacement. Examples ======== >>> from sympy import symbols, pi >>> from sympy.physics.vector import ReferenceFrame, outer >>> N = ReferenceFrame('N') >>> D = outer(N.x, N.x) >>> x, y, z = symbols('x y z') >>> ((1 + x*y) * D).xreplace({x: pi}) (pi*y + 1)*(N.x|N.x) >>> ((1 + x*y) * D).xreplace({x: pi, y: 2}) (1 + 2*pi)*(N.x|N.x) Replacements occur only if an entire node in the expression tree is matched: >>> ((x*y + z) * D).xreplace({x*y: pi}) (z + pi)*(N.x|N.x) >>> ((x*y*z) * D).xreplace({x*y: pi}) x*y*z*(N.x|N.x) """ new_args = [] for inlist in self.args: new_inlist = list(inlist) new_inlist[0] = new_inlist[0].xreplace(rule) new_args.append(tuple(new_inlist)) return Dyadic(new_args) def _check_dyadic(other): if not isinstance(other, Dyadic): raise TypeError('A Dyadic must be supplied') return other
bad6f960bcb1a72fbef40272666db071f5bbf3dca549020efaa86f9b9cde3d0c
""" This module can be used to solve 2D beam bending problems with singularity functions in mechanics. """ from sympy.core import S, Symbol, diff, symbols from sympy.solvers import linsolve from sympy.printing import sstr from sympy.functions import SingularityFunction, Piecewise, factorial from sympy.core import sympify from sympy.integrals import integrate from sympy.series import limit from sympy.plotting import plot, PlotGrid from sympy.geometry.entity import GeometryEntity from sympy.external import import_module from sympy import lambdify, Add from sympy.core.compatibility import iterable from sympy.utilities.decorator import doctest_depends_on numpy = import_module('numpy', import_kwargs={'fromlist':['arange']}) class Beam: """ A Beam is a structural element that is capable of withstanding load primarily by resisting against bending. Beams are characterized by their cross sectional profile(Second moment of area), their length and their material. .. note:: While solving a beam bending problem, a user should choose its own sign convention and should stick to it. The results will automatically follow the chosen sign convention. However, the chosen sign convention must respect the rule that, on the positive side of beam's axis (in respect to current section), a loading force giving positive shear yields a negative moment, as below (the curved arrow shows the positive moment and rotation): .. image:: allowed-sign-conventions.png Examples ======== There is a beam of length 4 meters. A constant distributed load of 6 N/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. The deflection of the beam at the end is restricted. Using the sign convention of downwards forces being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols, Piecewise >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b = Beam(4, E, I) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(6, 2, 0) >>> b.apply_load(R2, 4, -1) >>> b.bc_deflection = [(0, 0), (4, 0)] >>> b.boundary_conditions {'deflection': [(0, 0), (4, 0)], 'slope': []} >>> b.load R1*SingularityFunction(x, 0, -1) + R2*SingularityFunction(x, 4, -1) + 6*SingularityFunction(x, 2, 0) >>> b.solve_for_reaction_loads(R1, R2) >>> b.load -3*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 2, 0) - 9*SingularityFunction(x, 4, -1) >>> b.shear_force() 3*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 2, 1) + 9*SingularityFunction(x, 4, 0) >>> b.bending_moment() 3*SingularityFunction(x, 0, 1) - 3*SingularityFunction(x, 2, 2) + 9*SingularityFunction(x, 4, 1) >>> b.slope() (-3*SingularityFunction(x, 0, 2)/2 + SingularityFunction(x, 2, 3) - 9*SingularityFunction(x, 4, 2)/2 + 7)/(E*I) >>> b.deflection() (7*x - SingularityFunction(x, 0, 3)/2 + SingularityFunction(x, 2, 4)/4 - 3*SingularityFunction(x, 4, 3)/2)/(E*I) >>> b.deflection().rewrite(Piecewise) (7*x - Piecewise((x**3, x > 0), (0, True))/2 - 3*Piecewise(((x - 4)**3, x - 4 > 0), (0, True))/2 + Piecewise(((x - 2)**4, x - 2 > 0), (0, True))/4)/(E*I) """ def __init__(self, length, elastic_modulus, second_moment, area=Symbol('A'), variable=Symbol('x'), base_char='C'): """Initializes the class. Parameters ========== length : Sympifyable A Symbol or value representing the Beam's length. elastic_modulus : Sympifyable A SymPy expression representing the Beam's Modulus of Elasticity. It is a measure of the stiffness of the Beam material. It can also be a continuous function of position along the beam. second_moment : Sympifyable or Geometry object Describes the cross-section of the beam via a SymPy expression representing the Beam's second moment of area. It is a geometrical property of an area which reflects how its points are distributed with respect to its neutral axis. It can also be a continuous function of position along the beam. Alternatively ``second_moment`` can be a shape object such as a ``Polygon`` from the geometry module representing the shape of the cross-section of the beam. In such cases, it is assumed that the x-axis of the shape object is aligned with the bending axis of the beam. The second moment of area will be computed from the shape object internally. area : Symbol/float Represents the cross-section area of beam variable : Symbol, optional A Symbol object that will be used as the variable along the beam while representing the load, shear, moment, slope and deflection curve. By default, it is set to ``Symbol('x')``. base_char : String, optional A String that will be used as base character to generate sequential symbols for integration constants in cases where boundary conditions are not sufficient to solve them. """ self.length = length self.elastic_modulus = elastic_modulus if isinstance(second_moment, GeometryEntity): self.cross_section = second_moment else: self.cross_section = None self.second_moment = second_moment self.variable = variable self._base_char = base_char self._boundary_conditions = {'deflection': [], 'slope': []} self._load = 0 self._area = area self._applied_supports = [] self._support_as_loads = [] self._applied_loads = [] self._reaction_loads = {} self._composite_type = None self._hinge_position = None def __str__(self): shape_description = self._cross_section if self._cross_section else self._second_moment str_sol = 'Beam({}, {}, {})'.format(sstr(self._length), sstr(self._elastic_modulus), sstr(shape_description)) return str_sol @property def reaction_loads(self): """ Returns the reaction forces in a dictionary.""" return self._reaction_loads @property def length(self): """Length of the Beam.""" return self._length @length.setter def length(self, l): self._length = sympify(l) @property def area(self): """Cross-sectional area of the Beam. """ return self._area @area.setter def area(self, a): self._area = sympify(a) @property def variable(self): """ A symbol that can be used as a variable along the length of the beam while representing load distribution, shear force curve, bending moment, slope curve and the deflection curve. By default, it is set to ``Symbol('x')``, but this property is mutable. Examples ======== >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I, A = symbols('E, I, A') >>> x, y, z = symbols('x, y, z') >>> b = Beam(4, E, I) >>> b.variable x >>> b.variable = y >>> b.variable y >>> b = Beam(4, E, I, A, z) >>> b.variable z """ return self._variable @variable.setter def variable(self, v): if isinstance(v, Symbol): self._variable = v else: raise TypeError("""The variable should be a Symbol object.""") @property def elastic_modulus(self): """Young's Modulus of the Beam. """ return self._elastic_modulus @elastic_modulus.setter def elastic_modulus(self, e): self._elastic_modulus = sympify(e) @property def second_moment(self): """Second moment of area of the Beam. """ return self._second_moment @second_moment.setter def second_moment(self, i): self._cross_section = None if isinstance(i, GeometryEntity): raise ValueError("To update cross-section geometry use `cross_section` attribute") else: self._second_moment = sympify(i) @property def cross_section(self): """Cross-section of the beam""" return self._cross_section @cross_section.setter def cross_section(self, s): if s: self._second_moment = s.second_moment_of_area()[0] self._cross_section = s @property def boundary_conditions(self): """ Returns a dictionary of boundary conditions applied on the beam. The dictionary has three keywords namely moment, slope and deflection. The value of each keyword is a list of tuple, where each tuple contains location and value of a boundary condition in the format (location, value). Examples ======== There is a beam of length 4 meters. The bending moment at 0 should be 4 and at 4 it should be 0. The slope of the beam should be 1 at 0. The deflection should be 2 at 0. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(4, E, I) >>> b.bc_deflection = [(0, 2)] >>> b.bc_slope = [(0, 1)] >>> b.boundary_conditions {'deflection': [(0, 2)], 'slope': [(0, 1)]} Here the deflection of the beam should be ``2`` at ``0``. Similarly, the slope of the beam should be ``1`` at ``0``. """ return self._boundary_conditions @property def bc_slope(self): return self._boundary_conditions['slope'] @bc_slope.setter def bc_slope(self, s_bcs): self._boundary_conditions['slope'] = s_bcs @property def bc_deflection(self): return self._boundary_conditions['deflection'] @bc_deflection.setter def bc_deflection(self, d_bcs): self._boundary_conditions['deflection'] = d_bcs def join(self, beam, via="fixed"): """ This method joins two beams to make a new composite beam system. Passed Beam class instance is attached to the right end of calling object. This method can be used to form beams having Discontinuous values of Elastic modulus or Second moment. Parameters ========== beam : Beam class object The Beam object which would be connected to the right of calling object. via : String States the way two Beam object would get connected - For axially fixed Beams, via="fixed" - For Beams connected via hinge, via="hinge" Examples ======== There is a cantilever beam of length 4 meters. For first 2 meters its moment of inertia is `1.5*I` and `I` for the other end. A pointload of magnitude 4 N is applied from the top at its free end. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b1 = Beam(2, E, 1.5*I) >>> b2 = Beam(2, E, I) >>> b = b1.join(b2, "fixed") >>> b.apply_load(20, 4, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 0, -2) >>> b.bc_slope = [(0, 0)] >>> b.bc_deflection = [(0, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.load 80*SingularityFunction(x, 0, -2) - 20*SingularityFunction(x, 0, -1) + 20*SingularityFunction(x, 4, -1) >>> b.slope() (-((-80*SingularityFunction(x, 0, 1) + 10*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 4, 2))/I + 120/I)/E + 80.0/(E*I))*SingularityFunction(x, 2, 0) - 0.666666666666667*(-80*SingularityFunction(x, 0, 1) + 10*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 4, 2))*SingularityFunction(x, 0, 0)/(E*I) + 0.666666666666667*(-80*SingularityFunction(x, 0, 1) + 10*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 4, 2))*SingularityFunction(x, 2, 0)/(E*I) """ x = self.variable E = self.elastic_modulus new_length = self.length + beam.length if self.second_moment != beam.second_moment: new_second_moment = Piecewise((self.second_moment, x<=self.length), (beam.second_moment, x<=new_length)) else: new_second_moment = self.second_moment if via == "fixed": new_beam = Beam(new_length, E, new_second_moment, x) new_beam._composite_type = "fixed" return new_beam if via == "hinge": new_beam = Beam(new_length, E, new_second_moment, x) new_beam._composite_type = "hinge" new_beam._hinge_position = self.length return new_beam def apply_support(self, loc, type="fixed"): """ This method applies support to a particular beam object. Parameters ========== loc : Sympifyable Location of point at which support is applied. type : String Determines type of Beam support applied. To apply support structure with - zero degree of freedom, type = "fixed" - one degree of freedom, type = "pin" - two degrees of freedom, type = "roller" Examples ======== There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(30, E, I) >>> b.apply_support(10, 'roller') >>> b.apply_support(30, 'roller') >>> b.apply_load(-8, 0, -1) >>> b.apply_load(120, 30, -2) >>> R_10, R_30 = symbols('R_10, R_30') >>> b.solve_for_reaction_loads(R_10, R_30) >>> b.load -8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1) + 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1) >>> b.slope() (-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I) """ loc = sympify(loc) self._applied_supports.append((loc, type)) if type == "pin" or type == "roller": reaction_load = Symbol('R_'+str(loc)) self.apply_load(reaction_load, loc, -1) self.bc_deflection.append((loc, 0)) else: reaction_load = Symbol('R_'+str(loc)) reaction_moment = Symbol('M_'+str(loc)) self.apply_load(reaction_load, loc, -1) self.apply_load(reaction_moment, loc, -2) self.bc_deflection.append((loc, 0)) self.bc_slope.append((loc, 0)) self._support_as_loads.append((reaction_moment, loc, -2, None)) self._support_as_loads.append((reaction_load, loc, -1, None)) def apply_load(self, value, start, order, end=None): """ This method adds up the loads given to a particular beam object. Parameters ========== value : Sympifyable The value inserted should have the units [Force/(Distance**(n+1)] where n is the order of applied load. Units for applied loads: - For moments, unit = kN*m - For point loads, unit = kN - For constant distributed load, unit = kN/m - For ramp loads, unit = kN/m/m - For parabolic ramp loads, unit = kN/m/m/m - ... so on. start : Sympifyable The starting point of the applied load. For point moments and point forces this is the location of application. order : Integer The order of the applied load. - For moments, order = -2 - For point loads, order =-1 - For constant distributed load, order = 0 - For ramp loads, order = 1 - For parabolic ramp loads, order = 2 - ... so on. end : Sympifyable, optional An optional argument that can be used if the load has an end point within the length of the beam. Examples ======== There is a beam of length 4 meters. A moment of magnitude 3 Nm is applied in the clockwise direction at the starting point of the beam. A point load of magnitude 4 N is applied from the top of the beam at 2 meters from the starting point and a parabolic ramp load of magnitude 2 N/m is applied below the beam starting from 2 meters to 3 meters away from the starting point of the beam. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(4, E, I) >>> b.apply_load(-3, 0, -2) >>> b.apply_load(4, 2, -1) >>> b.apply_load(-2, 2, 2, end=3) >>> b.load -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2) """ x = self.variable value = sympify(value) start = sympify(start) order = sympify(order) self._applied_loads.append((value, start, order, end)) self._load += value*SingularityFunction(x, start, order) if end: if order.is_negative: msg = ("If 'end' is provided the 'order' of the load cannot " "be negative, i.e. 'end' is only valid for distributed " "loads.") raise ValueError(msg) # NOTE : A Taylor series can be used to define the summation of # singularity functions that subtract from the load past the end # point such that it evaluates to zero past 'end'. f = value*x**order for i in range(0, order + 1): self._load -= (f.diff(x, i).subs(x, end - start) * SingularityFunction(x, end, i)/factorial(i)) def remove_load(self, value, start, order, end=None): """ This method removes a particular load present on the beam object. Returns a ValueError if the load passed as an argument is not present on the beam. Parameters ========== value : Sympifyable The magnitude of an applied load. start : Sympifyable The starting point of the applied load. For point moments and point forces this is the location of application. order : Integer The order of the applied load. - For moments, order= -2 - For point loads, order=-1 - For constant distributed load, order=0 - For ramp loads, order=1 - For parabolic ramp loads, order=2 - ... so on. end : Sympifyable, optional An optional argument that can be used if the load has an end point within the length of the beam. Examples ======== There is a beam of length 4 meters. A moment of magnitude 3 Nm is applied in the clockwise direction at the starting point of the beam. A pointload of magnitude 4 N is applied from the top of the beam at 2 meters from the starting point and a parabolic ramp load of magnitude 2 N/m is applied below the beam starting from 2 meters to 3 meters away from the starting point of the beam. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(4, E, I) >>> b.apply_load(-3, 0, -2) >>> b.apply_load(4, 2, -1) >>> b.apply_load(-2, 2, 2, end=3) >>> b.load -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2) >>> b.remove_load(-2, 2, 2, end = 3) >>> b.load -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) """ x = self.variable value = sympify(value) start = sympify(start) order = sympify(order) if (value, start, order, end) in self._applied_loads: self._load -= value*SingularityFunction(x, start, order) self._applied_loads.remove((value, start, order, end)) else: msg = "No such load distribution exists on the beam object." raise ValueError(msg) if end: # TODO : This is essentially duplicate code wrt to apply_load, # would be better to move it to one location and both methods use # it. if order.is_negative: msg = ("If 'end' is provided the 'order' of the load cannot " "be negative, i.e. 'end' is only valid for distributed " "loads.") raise ValueError(msg) # NOTE : A Taylor series can be used to define the summation of # singularity functions that subtract from the load past the end # point such that it evaluates to zero past 'end'. f = value*x**order for i in range(0, order + 1): self._load += (f.diff(x, i).subs(x, end - start) * SingularityFunction(x, end, i)/factorial(i)) @property def load(self): """ Returns a Singularity Function expression which represents the load distribution curve of the Beam object. Examples ======== There is a beam of length 4 meters. A moment of magnitude 3 Nm is applied in the clockwise direction at the starting point of the beam. A point load of magnitude 4 N is applied from the top of the beam at 2 meters from the starting point and a parabolic ramp load of magnitude 2 N/m is applied below the beam starting from 3 meters away from the starting point of the beam. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(4, E, I) >>> b.apply_load(-3, 0, -2) >>> b.apply_load(4, 2, -1) >>> b.apply_load(-2, 3, 2) >>> b.load -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 3, 2) """ return self._load @property def applied_loads(self): """ Returns a list of all loads applied on the beam object. Each load in the list is a tuple of form (value, start, order, end). Examples ======== There is a beam of length 4 meters. A moment of magnitude 3 Nm is applied in the clockwise direction at the starting point of the beam. A pointload of magnitude 4 N is applied from the top of the beam at 2 meters from the starting point. Another pointload of magnitude 5 N is applied at same position. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(4, E, I) >>> b.apply_load(-3, 0, -2) >>> b.apply_load(4, 2, -1) >>> b.apply_load(5, 2, -1) >>> b.load -3*SingularityFunction(x, 0, -2) + 9*SingularityFunction(x, 2, -1) >>> b.applied_loads [(-3, 0, -2, None), (4, 2, -1, None), (5, 2, -1, None)] """ return self._applied_loads def _solve_hinge_beams(self, *reactions): """Method to find integration constants and reactional variables in a composite beam connected via hinge. This method resolves the composite Beam into its sub-beams and then equations of shear force, bending moment, slope and deflection are evaluated for both of them separately. These equations are then solved for unknown reactions and integration constants using the boundary conditions applied on the Beam. Equal deflection of both sub-beams at the hinge joint gives us another equation to solve the system. Examples ======== A combined beam, with constant fkexural rigidity E*I, is formed by joining a Beam of length 2*l to the right of another Beam of length l. The whole beam is fixed at both of its both end. A point load of magnitude P is also applied from the top at a distance of 2*l from starting point. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> l=symbols('l', positive=True) >>> b1=Beam(l ,E,I) >>> b2=Beam(2*l ,E,I) >>> b=b1.join(b2,"hinge") >>> M1, A1, M2, A2, P = symbols('M1 A1 M2 A2 P') >>> b.apply_load(A1,0,-1) >>> b.apply_load(M1,0,-2) >>> b.apply_load(P,2*l,-1) >>> b.apply_load(A2,3*l,-1) >>> b.apply_load(M2,3*l,-2) >>> b.bc_slope=[(0,0), (3*l, 0)] >>> b.bc_deflection=[(0,0), (3*l, 0)] >>> b.solve_for_reaction_loads(M1, A1, M2, A2) >>> b.reaction_loads {A1: -5*P/18, A2: -13*P/18, M1: 5*P*l/18, M2: -4*P*l/9} >>> b.slope() (5*P*l*SingularityFunction(x, 0, 1)/18 - 5*P*SingularityFunction(x, 0, 2)/36 + 5*P*SingularityFunction(x, l, 2)/36)*SingularityFunction(x, 0, 0)/(E*I) - (5*P*l*SingularityFunction(x, 0, 1)/18 - 5*P*SingularityFunction(x, 0, 2)/36 + 5*P*SingularityFunction(x, l, 2)/36)*SingularityFunction(x, l, 0)/(E*I) + (P*l**2/18 - 4*P*l*SingularityFunction(-l + x, 2*l, 1)/9 - 5*P*SingularityFunction(-l + x, 0, 2)/36 + P*SingularityFunction(-l + x, l, 2)/2 - 13*P*SingularityFunction(-l + x, 2*l, 2)/36)*SingularityFunction(x, l, 0)/(E*I) >>> b.deflection() (5*P*l*SingularityFunction(x, 0, 2)/36 - 5*P*SingularityFunction(x, 0, 3)/108 + 5*P*SingularityFunction(x, l, 3)/108)*SingularityFunction(x, 0, 0)/(E*I) - (5*P*l*SingularityFunction(x, 0, 2)/36 - 5*P*SingularityFunction(x, 0, 3)/108 + 5*P*SingularityFunction(x, l, 3)/108)*SingularityFunction(x, l, 0)/(E*I) + (5*P*l**3/54 + P*l**2*(-l + x)/18 - 2*P*l*SingularityFunction(-l + x, 2*l, 2)/9 - 5*P*SingularityFunction(-l + x, 0, 3)/108 + P*SingularityFunction(-l + x, l, 3)/6 - 13*P*SingularityFunction(-l + x, 2*l, 3)/108)*SingularityFunction(x, l, 0)/(E*I) """ x = self.variable l = self._hinge_position E = self._elastic_modulus I = self._second_moment if isinstance(I, Piecewise): I1 = I.args[0][0] I2 = I.args[1][0] else: I1 = I2 = I load_1 = 0 # Load equation on first segment of composite beam load_2 = 0 # Load equation on second segment of composite beam # Distributing load on both segments for load in self.applied_loads: if load[1] < l: load_1 += load[0]*SingularityFunction(x, load[1], load[2]) if load[2] == 0: load_1 -= load[0]*SingularityFunction(x, load[3], load[2]) elif load[2] > 0: load_1 -= load[0]*SingularityFunction(x, load[3], load[2]) + load[0]*SingularityFunction(x, load[3], 0) elif load[1] == l: load_1 += load[0]*SingularityFunction(x, load[1], load[2]) load_2 += load[0]*SingularityFunction(x, load[1] - l, load[2]) elif load[1] > l: load_2 += load[0]*SingularityFunction(x, load[1] - l, load[2]) if load[2] == 0: load_2 -= load[0]*SingularityFunction(x, load[3] - l, load[2]) elif load[2] > 0: load_2 -= load[0]*SingularityFunction(x, load[3] - l, load[2]) + load[0]*SingularityFunction(x, load[3] - l, 0) h = Symbol('h') # Force due to hinge load_1 += h*SingularityFunction(x, l, -1) load_2 -= h*SingularityFunction(x, 0, -1) eq = [] shear_1 = integrate(load_1, x) shear_curve_1 = limit(shear_1, x, l) eq.append(shear_curve_1) bending_1 = integrate(shear_1, x) moment_curve_1 = limit(bending_1, x, l) eq.append(moment_curve_1) shear_2 = integrate(load_2, x) shear_curve_2 = limit(shear_2, x, self.length - l) eq.append(shear_curve_2) bending_2 = integrate(shear_2, x) moment_curve_2 = limit(bending_2, x, self.length - l) eq.append(moment_curve_2) C1 = Symbol('C1') C2 = Symbol('C2') C3 = Symbol('C3') C4 = Symbol('C4') slope_1 = S.One/(E*I1)*(integrate(bending_1, x) + C1) def_1 = S.One/(E*I1)*(integrate((E*I)*slope_1, x) + C1*x + C2) slope_2 = S.One/(E*I2)*(integrate(integrate(integrate(load_2, x), x), x) + C3) def_2 = S.One/(E*I2)*(integrate((E*I)*slope_2, x) + C4) for position, value in self.bc_slope: if position<l: eq.append(slope_1.subs(x, position) - value) else: eq.append(slope_2.subs(x, position - l) - value) for position, value in self.bc_deflection: if position<l: eq.append(def_1.subs(x, position) - value) else: eq.append(def_2.subs(x, position - l) - value) eq.append(def_1.subs(x, l) - def_2.subs(x, 0)) # Deflection of both the segments at hinge would be equal constants = list(linsolve(eq, C1, C2, C3, C4, h, *reactions)) reaction_values = list(constants[0])[5:] self._reaction_loads = dict(zip(reactions, reaction_values)) self._load = self._load.subs(self._reaction_loads) # Substituting constants and reactional load and moments with their corresponding values slope_1 = slope_1.subs({C1: constants[0][0], h:constants[0][4]}).subs(self._reaction_loads) def_1 = def_1.subs({C1: constants[0][0], C2: constants[0][1], h:constants[0][4]}).subs(self._reaction_loads) slope_2 = slope_2.subs({x: x-l, C3: constants[0][2], h:constants[0][4]}).subs(self._reaction_loads) def_2 = def_2.subs({x: x-l,C3: constants[0][2], C4: constants[0][3], h:constants[0][4]}).subs(self._reaction_loads) self._hinge_beam_slope = slope_1*SingularityFunction(x, 0, 0) - slope_1*SingularityFunction(x, l, 0) + slope_2*SingularityFunction(x, l, 0) self._hinge_beam_deflection = def_1*SingularityFunction(x, 0, 0) - def_1*SingularityFunction(x, l, 0) + def_2*SingularityFunction(x, l, 0) def solve_for_reaction_loads(self, *reactions): """ Solves for the reaction forces. Examples ======== There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b = Beam(30, E, I) >>> b.apply_load(-8, 0, -1) >>> b.apply_load(R1, 10, -1) # Reaction force at x = 10 >>> b.apply_load(R2, 30, -1) # Reaction force at x = 30 >>> b.apply_load(120, 30, -2) >>> b.bc_deflection = [(10, 0), (30, 0)] >>> b.load R1*SingularityFunction(x, 10, -1) + R2*SingularityFunction(x, 30, -1) - 8*SingularityFunction(x, 0, -1) + 120*SingularityFunction(x, 30, -2) >>> b.solve_for_reaction_loads(R1, R2) >>> b.reaction_loads {R1: 6, R2: 2} >>> b.load -8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1) + 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1) """ if self._composite_type == "hinge": return self._solve_hinge_beams(*reactions) x = self.variable l = self.length C3 = Symbol('C3') C4 = Symbol('C4') shear_curve = limit(self.shear_force(), x, l) moment_curve = limit(self.bending_moment(), x, l) slope_eqs = [] deflection_eqs = [] slope_curve = integrate(self.bending_moment(), x) + C3 for position, value in self._boundary_conditions['slope']: eqs = slope_curve.subs(x, position) - value slope_eqs.append(eqs) deflection_curve = integrate(slope_curve, x) + C4 for position, value in self._boundary_conditions['deflection']: eqs = deflection_curve.subs(x, position) - value deflection_eqs.append(eqs) solution = list((linsolve([shear_curve, moment_curve] + slope_eqs + deflection_eqs, (C3, C4) + reactions).args)[0]) solution = solution[2:] self._reaction_loads = dict(zip(reactions, solution)) self._load = self._load.subs(self._reaction_loads) def shear_force(self): """ Returns a Singularity Function expression which represents the shear force curve of the Beam object. Examples ======== There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b = Beam(30, E, I) >>> b.apply_load(-8, 0, -1) >>> b.apply_load(R1, 10, -1) >>> b.apply_load(R2, 30, -1) >>> b.apply_load(120, 30, -2) >>> b.bc_deflection = [(10, 0), (30, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.shear_force() 8*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 10, 0) - 120*SingularityFunction(x, 30, -1) - 2*SingularityFunction(x, 30, 0) """ x = self.variable return -integrate(self.load, x) def max_shear_force(self): """Returns maximum Shear force and its coordinate in the Beam object.""" from sympy import solve, Mul, Interval shear_curve = self.shear_force() x = self.variable terms = shear_curve.args singularity = [] # Points at which shear function changes for term in terms: if isinstance(term, Mul): term = term.args[-1] # SingularityFunction in the term singularity.append(term.args[1]) singularity.sort() singularity = list(set(singularity)) intervals = [] # List of Intervals with discrete value of shear force shear_values = [] # List of values of shear force in each interval for i, s in enumerate(singularity): if s == 0: continue try: shear_slope = Piecewise((float("nan"), x<=singularity[i-1]),(self._load.rewrite(Piecewise), x<s), (float("nan"), True)) points = solve(shear_slope, x) val = [] for point in points: val.append(shear_curve.subs(x, point)) points.extend([singularity[i-1], s]) val.extend([limit(shear_curve, x, singularity[i-1], '+'), limit(shear_curve, x, s, '-')]) val = list(map(abs, val)) max_shear = max(val) shear_values.append(max_shear) intervals.append(points[val.index(max_shear)]) # If shear force in a particular Interval has zero or constant # slope, then above block gives NotImplementedError as # solve can't represent Interval solutions. except NotImplementedError: initial_shear = limit(shear_curve, x, singularity[i-1], '+') final_shear = limit(shear_curve, x, s, '-') # If shear_curve has a constant slope(it is a line). if shear_curve.subs(x, (singularity[i-1] + s)/2) == (initial_shear + final_shear)/2 and initial_shear != final_shear: shear_values.extend([initial_shear, final_shear]) intervals.extend([singularity[i-1], s]) else: # shear_curve has same value in whole Interval shear_values.append(final_shear) intervals.append(Interval(singularity[i-1], s)) shear_values = list(map(abs, shear_values)) maximum_shear = max(shear_values) point = intervals[shear_values.index(maximum_shear)] return (point, maximum_shear) def bending_moment(self): """ Returns a Singularity Function expression which represents the bending moment curve of the Beam object. Examples ======== There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b = Beam(30, E, I) >>> b.apply_load(-8, 0, -1) >>> b.apply_load(R1, 10, -1) >>> b.apply_load(R2, 30, -1) >>> b.apply_load(120, 30, -2) >>> b.bc_deflection = [(10, 0), (30, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.bending_moment() 8*SingularityFunction(x, 0, 1) - 6*SingularityFunction(x, 10, 1) - 120*SingularityFunction(x, 30, 0) - 2*SingularityFunction(x, 30, 1) """ x = self.variable return integrate(self.shear_force(), x) def max_bmoment(self): """Returns maximum Shear force and its coordinate in the Beam object.""" from sympy import solve, Mul, Interval bending_curve = self.bending_moment() x = self.variable terms = bending_curve.args singularity = [] # Points at which bending moment changes for term in terms: if isinstance(term, Mul): term = term.args[-1] # SingularityFunction in the term singularity.append(term.args[1]) singularity.sort() singularity = list(set(singularity)) intervals = [] # List of Intervals with discrete value of bending moment moment_values = [] # List of values of bending moment in each interval for i, s in enumerate(singularity): if s == 0: continue try: moment_slope = Piecewise((float("nan"), x<=singularity[i-1]),(self.shear_force().rewrite(Piecewise), x<s), (float("nan"), True)) points = solve(moment_slope, x) val = [] for point in points: val.append(bending_curve.subs(x, point)) points.extend([singularity[i-1], s]) val.extend([limit(bending_curve, x, singularity[i-1], '+'), limit(bending_curve, x, s, '-')]) val = list(map(abs, val)) max_moment = max(val) moment_values.append(max_moment) intervals.append(points[val.index(max_moment)]) # If bending moment in a particular Interval has zero or constant # slope, then above block gives NotImplementedError as solve # can't represent Interval solutions. except NotImplementedError: initial_moment = limit(bending_curve, x, singularity[i-1], '+') final_moment = limit(bending_curve, x, s, '-') # If bending_curve has a constant slope(it is a line). if bending_curve.subs(x, (singularity[i-1] + s)/2) == (initial_moment + final_moment)/2 and initial_moment != final_moment: moment_values.extend([initial_moment, final_moment]) intervals.extend([singularity[i-1], s]) else: # bending_curve has same value in whole Interval moment_values.append(final_moment) intervals.append(Interval(singularity[i-1], s)) moment_values = list(map(abs, moment_values)) maximum_moment = max(moment_values) point = intervals[moment_values.index(maximum_moment)] return (point, maximum_moment) def point_cflexure(self): """ Returns a Set of point(s) with zero bending moment and where bending moment curve of the beam object changes its sign from negative to positive or vice versa. Examples ======== There is is 10 meter long overhanging beam. There are two simple supports below the beam. One at the start and another one at a distance of 6 meters from the start. Point loads of magnitude 10KN and 20KN are applied at 2 meters and 4 meters from start respectively. A Uniformly distribute load of magnitude of magnitude 3KN/m is also applied on top starting from 6 meters away from starting point till end. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(10, E, I) >>> b.apply_load(-4, 0, -1) >>> b.apply_load(-46, 6, -1) >>> b.apply_load(10, 2, -1) >>> b.apply_load(20, 4, -1) >>> b.apply_load(3, 6, 0) >>> b.point_cflexure() [10/3] """ from sympy import solve, Piecewise # To restrict the range within length of the Beam moment_curve = Piecewise((float("nan"), self.variable<=0), (self.bending_moment(), self.variable<self.length), (float("nan"), True)) points = solve(moment_curve.rewrite(Piecewise), self.variable, domain=S.Reals) return points def slope(self): """ Returns a Singularity Function expression which represents the slope the elastic curve of the Beam object. Examples ======== There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b = Beam(30, E, I) >>> b.apply_load(-8, 0, -1) >>> b.apply_load(R1, 10, -1) >>> b.apply_load(R2, 30, -1) >>> b.apply_load(120, 30, -2) >>> b.bc_deflection = [(10, 0), (30, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.slope() (-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I) """ x = self.variable E = self.elastic_modulus I = self.second_moment if self._composite_type == "hinge": return self._hinge_beam_slope if not self._boundary_conditions['slope']: return diff(self.deflection(), x) if isinstance(I, Piecewise) and self._composite_type == "fixed": args = I.args slope = 0 prev_slope = 0 prev_end = 0 for i in range(len(args)): if i != 0: prev_end = args[i-1][1].args[1] slope_value = -S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x)) if i != len(args) - 1: slope += (prev_slope + slope_value)*SingularityFunction(x, prev_end, 0) - \ (prev_slope + slope_value)*SingularityFunction(x, args[i][1].args[1], 0) else: slope += (prev_slope + slope_value)*SingularityFunction(x, prev_end, 0) prev_slope = slope_value.subs(x, args[i][1].args[1]) return slope C3 = Symbol('C3') slope_curve = -integrate(S.One/(E*I)*self.bending_moment(), x) + C3 bc_eqs = [] for position, value in self._boundary_conditions['slope']: eqs = slope_curve.subs(x, position) - value bc_eqs.append(eqs) constants = list(linsolve(bc_eqs, C3)) slope_curve = slope_curve.subs({C3: constants[0][0]}) return slope_curve def deflection(self): """ Returns a Singularity Function expression which represents the elastic curve or deflection of the Beam object. Examples ======== There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b = Beam(30, E, I) >>> b.apply_load(-8, 0, -1) >>> b.apply_load(R1, 10, -1) >>> b.apply_load(R2, 30, -1) >>> b.apply_load(120, 30, -2) >>> b.bc_deflection = [(10, 0), (30, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.deflection() (4000*x/3 - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3) + 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I) """ x = self.variable E = self.elastic_modulus I = self.second_moment if self._composite_type == "hinge": return self._hinge_beam_deflection if not self._boundary_conditions['deflection'] and not self._boundary_conditions['slope']: if isinstance(I, Piecewise) and self._composite_type == "fixed": args = I.args prev_slope = 0 prev_def = 0 prev_end = 0 deflection = 0 for i in range(len(args)): if i != 0: prev_end = args[i-1][1].args[1] slope_value = -S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x)) recent_segment_slope = prev_slope + slope_value deflection_value = integrate(recent_segment_slope, (x, prev_end, x)) if i != len(args) - 1: deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \ - (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0) else: deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) prev_slope = slope_value.subs(x, args[i][1].args[1]) prev_def = deflection_value.subs(x, args[i][1].args[1]) return deflection base_char = self._base_char constants = symbols(base_char + '3:5') return S.One/(E*I)*integrate(-integrate(self.bending_moment(), x), x) + constants[0]*x + constants[1] elif not self._boundary_conditions['deflection']: base_char = self._base_char constant = symbols(base_char + '4') return integrate(self.slope(), x) + constant elif not self._boundary_conditions['slope'] and self._boundary_conditions['deflection']: if isinstance(I, Piecewise) and self._composite_type == "fixed": args = I.args prev_slope = 0 prev_def = 0 prev_end = 0 deflection = 0 for i in range(len(args)): if i != 0: prev_end = args[i-1][1].args[1] slope_value = -S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x)) recent_segment_slope = prev_slope + slope_value deflection_value = integrate(recent_segment_slope, (x, prev_end, x)) if i != len(args) - 1: deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \ - (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0) else: deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) prev_slope = slope_value.subs(x, args[i][1].args[1]) prev_def = deflection_value.subs(x, args[i][1].args[1]) return deflection base_char = self._base_char C3, C4 = symbols(base_char + '3:5') # Integration constants slope_curve = -integrate(self.bending_moment(), x) + C3 deflection_curve = integrate(slope_curve, x) + C4 bc_eqs = [] for position, value in self._boundary_conditions['deflection']: eqs = deflection_curve.subs(x, position) - value bc_eqs.append(eqs) constants = list(linsolve(bc_eqs, (C3, C4))) deflection_curve = deflection_curve.subs({C3: constants[0][0], C4: constants[0][1]}) return S.One/(E*I)*deflection_curve if isinstance(I, Piecewise) and self._composite_type == "fixed": args = I.args prev_slope = 0 prev_def = 0 prev_end = 0 deflection = 0 for i in range(len(args)): if i != 0: prev_end = args[i-1][1].args[1] slope_value = S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x)) recent_segment_slope = prev_slope + slope_value deflection_value = integrate(recent_segment_slope, (x, prev_end, x)) if i != len(args) - 1: deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \ - (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0) else: deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) prev_slope = slope_value.subs(x, args[i][1].args[1]) prev_def = deflection_value.subs(x, args[i][1].args[1]) return deflection C4 = Symbol('C4') deflection_curve = integrate(self.slope(), x) + C4 bc_eqs = [] for position, value in self._boundary_conditions['deflection']: eqs = deflection_curve.subs(x, position) - value bc_eqs.append(eqs) constants = list(linsolve(bc_eqs, C4)) deflection_curve = deflection_curve.subs({C4: constants[0][0]}) return deflection_curve def max_deflection(self): """ Returns point of max deflection and its corresponding deflection value in a Beam object. """ from sympy import solve, Piecewise # To restrict the range within length of the Beam slope_curve = Piecewise((float("nan"), self.variable<=0), (self.slope(), self.variable<self.length), (float("nan"), True)) points = solve(slope_curve.rewrite(Piecewise), self.variable, domain=S.Reals) deflection_curve = self.deflection() deflections = [deflection_curve.subs(self.variable, x) for x in points] deflections = list(map(abs, deflections)) if len(deflections) != 0: max_def = max(deflections) return (points[deflections.index(max_def)], max_def) else: return None def shear_stress(self): """ Returns an expression representing the Shear Stress curve of the Beam object. """ return self.shear_force()/self._area def plot_shear_force(self, subs=None): """ Returns a plot for Shear force present in the Beam object. Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 8 meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A pointload of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take E = 200 GPa and I = 400*(10**-6) meter**4. Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> R1, R2 = symbols('R1, R2') >>> b = Beam(8, 200*(10**9), 400*(10**-6)) >>> b.apply_load(5000, 2, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 8, -1) >>> b.apply_load(10000, 4, 0, end=8) >>> b.bc_deflection = [(0, 0), (8, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.plot_shear_force() Plot object containing: [0]: cartesian line: 13750*SingularityFunction(x, 0, 0) - 5000*SingularityFunction(x, 2, 0) - 10000*SingularityFunction(x, 4, 1) + 31250*SingularityFunction(x, 8, 0) + 10000*SingularityFunction(x, 8, 1) for x over (0.0, 8.0) """ shear_force = self.shear_force() if subs is None: subs = {} for sym in shear_force.atoms(Symbol): if sym == self.variable: continue if sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(shear_force.subs(subs), (self.variable, 0, length), title='Shear Force', xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{V}$', line_color='g') def plot_bending_moment(self, subs=None): """ Returns a plot for Bending moment present in the Beam object. Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 8 meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A pointload of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take E = 200 GPa and I = 400*(10**-6) meter**4. Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> R1, R2 = symbols('R1, R2') >>> b = Beam(8, 200*(10**9), 400*(10**-6)) >>> b.apply_load(5000, 2, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 8, -1) >>> b.apply_load(10000, 4, 0, end=8) >>> b.bc_deflection = [(0, 0), (8, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.plot_bending_moment() Plot object containing: [0]: cartesian line: 13750*SingularityFunction(x, 0, 1) - 5000*SingularityFunction(x, 2, 1) - 5000*SingularityFunction(x, 4, 2) + 31250*SingularityFunction(x, 8, 1) + 5000*SingularityFunction(x, 8, 2) for x over (0.0, 8.0) """ bending_moment = self.bending_moment() if subs is None: subs = {} for sym in bending_moment.atoms(Symbol): if sym == self.variable: continue if sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(bending_moment.subs(subs), (self.variable, 0, length), title='Bending Moment', xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{M}$', line_color='b') def plot_slope(self, subs=None): """ Returns a plot for slope of deflection curve of the Beam object. Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 8 meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A pointload of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take E = 200 GPa and I = 400*(10**-6) meter**4. Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> R1, R2 = symbols('R1, R2') >>> b = Beam(8, 200*(10**9), 400*(10**-6)) >>> b.apply_load(5000, 2, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 8, -1) >>> b.apply_load(10000, 4, 0, end=8) >>> b.bc_deflection = [(0, 0), (8, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.plot_slope() Plot object containing: [0]: cartesian line: -8.59375e-5*SingularityFunction(x, 0, 2) + 3.125e-5*SingularityFunction(x, 2, 2) + 2.08333333333333e-5*SingularityFunction(x, 4, 3) - 0.0001953125*SingularityFunction(x, 8, 2) - 2.08333333333333e-5*SingularityFunction(x, 8, 3) + 0.00138541666666667 for x over (0.0, 8.0) """ slope = self.slope() if subs is None: subs = {} for sym in slope.atoms(Symbol): if sym == self.variable: continue if sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(slope.subs(subs), (self.variable, 0, length), title='Slope', xlabel=r'$\mathrm{x}$', ylabel=r'$\theta$', line_color='m') def plot_deflection(self, subs=None): """ Returns a plot for deflection curve of the Beam object. Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 8 meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A pointload of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take E = 200 GPa and I = 400*(10**-6) meter**4. Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> R1, R2 = symbols('R1, R2') >>> b = Beam(8, 200*(10**9), 400*(10**-6)) >>> b.apply_load(5000, 2, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 8, -1) >>> b.apply_load(10000, 4, 0, end=8) >>> b.bc_deflection = [(0, 0), (8, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.plot_deflection() Plot object containing: [0]: cartesian line: 0.00138541666666667*x - 2.86458333333333e-5*SingularityFunction(x, 0, 3) + 1.04166666666667e-5*SingularityFunction(x, 2, 3) + 5.20833333333333e-6*SingularityFunction(x, 4, 4) - 6.51041666666667e-5*SingularityFunction(x, 8, 3) - 5.20833333333333e-6*SingularityFunction(x, 8, 4) for x over (0.0, 8.0) """ deflection = self.deflection() if subs is None: subs = {} for sym in deflection.atoms(Symbol): if sym == self.variable: continue if sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(deflection.subs(subs), (self.variable, 0, length), title='Deflection', xlabel=r'$\mathrm{x}$', ylabel=r'$\delta$', line_color='r') def plot_loading_results(self, subs=None): """ Returns a subplot of Shear Force, Bending Moment, Slope and Deflection of the Beam object. Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 8 meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A pointload of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take E = 200 GPa and I = 400*(10**-6) meter**4. Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> R1, R2 = symbols('R1, R2') >>> b = Beam(8, 200*(10**9), 400*(10**-6)) >>> b.apply_load(5000, 2, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 8, -1) >>> b.apply_load(10000, 4, 0, end=8) >>> b.bc_deflection = [(0, 0), (8, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> axes = b.plot_loading_results() """ length = self.length variable = self.variable if subs is None: subs = {} for sym in self.deflection().atoms(Symbol): if sym == self.variable: continue if sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length ax1 = plot(self.shear_force().subs(subs), (variable, 0, length), title="Shear Force", xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{V}$', line_color='g', show=False) ax2 = plot(self.bending_moment().subs(subs), (variable, 0, length), title="Bending Moment", xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{M}$', line_color='b', show=False) ax3 = plot(self.slope().subs(subs), (variable, 0, length), title="Slope", xlabel=r'$\mathrm{x}$', ylabel=r'$\theta$', line_color='m', show=False) ax4 = plot(self.deflection().subs(subs), (variable, 0, length), title="Deflection", xlabel=r'$\mathrm{x}$', ylabel=r'$\delta$', line_color='r', show=False) return PlotGrid(4, 1, ax1, ax2, ax3, ax4) @doctest_depends_on(modules=('numpy',)) def draw(self, pictorial=True): """ Returns a plot object representing the beam diagram of the beam. .. note:: The user must be careful while entering load values. The draw function assumes a sign convention which is used for plotting loads. Given a right handed coordinate system with XYZ coordinates, the beam's length is assumed to be along the positive X axis. The draw function recognizes positve loads(with n>-2) as loads acting along negative Y direction and positve moments acting along positive Z direction. Parameters ========== pictorial: Boolean (default=True) Setting ``pictorial=True`` would simply create a pictorial (scaled) view of the beam diagram not with the exact dimensions. Although setting ``pictorial=False`` would create a beam diagram with the exact dimensions on the plot Examples ======== .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> R1, R2 = symbols('R1, R2') >>> E, I = symbols('E, I') >>> b = Beam(50, 20, 30) >>> b.apply_load(10, 2, -1) >>> b.apply_load(R1, 10, -1) >>> b.apply_load(R2, 30, -1) >>> b.apply_load(90, 5, 0, 23) >>> b.apply_load(10, 30, 1, 50) >>> b.apply_support(50, "pin") >>> b.apply_support(0, "fixed") >>> b.apply_support(20, "roller") >>> p = b.draw() >>> p Plot object containing: [0]: cartesian line: 25*SingularityFunction(x, 5, 0) - 25*SingularityFunction(x, 23, 0) + SingularityFunction(x, 30, 1) - 20*SingularityFunction(x, 50, 0) - SingularityFunction(x, 50, 1) + 5 for x over (0.0, 50.0) [1]: cartesian line: 5 for x over (0.0, 50.0) >>> p.show() """ if not numpy: raise ImportError("To use this function numpy module is required") x = self.variable # checking whether length is an expression in terms of any Symbol. from sympy import Expr if isinstance(self.length, Expr): l = list(self.length.atoms(Symbol)) # assigning every Symbol a default value of 10 l = {i:10 for i in l} length = self.length.subs(l) else: l = {} length = self.length height = length/10 rectangles = [] rectangles.append({'xy':(0, 0), 'width':length, 'height': height, 'facecolor':"brown"}) annotations, markers, load_eq,load_eq1, fill = self._draw_load(pictorial, length, l) support_markers, support_rectangles = self._draw_supports(length, l) rectangles += support_rectangles markers += support_markers sing_plot = plot(height + load_eq, height + load_eq1, (x, 0, length), xlim=(-height, length + height), ylim=(-length, 1.25*length), annotations=annotations, markers=markers, rectangles=rectangles, line_color='brown', fill=fill, axis=False, show=False) return sing_plot def _draw_load(self, pictorial, length, l): loads = list(set(self.applied_loads) - set(self._support_as_loads)) height = length/10 x = self.variable annotations = [] markers = [] load_args = [] scaled_load = 0 load_args1 = [] scaled_load1 = 0 load_eq = 0 # For positive valued higher order loads load_eq1 = 0 # For negative valued higher order loads fill = None plus = 0 # For positive valued higher order loads minus = 0 # For negative valued higher order loads for load in loads: # check if the position of load is in terms of the beam length. if l: pos = load[1].subs(l) else: pos = load[1] # point loads if load[2] == -1: if isinstance(load[0], Symbol) or load[0].is_negative: annotations.append({'s':'', 'xy':(pos, 0), 'xytext':(pos, height - 4*height), 'arrowprops':dict(width= 1.5, headlength=5, headwidth=5, facecolor='black')}) else: annotations.append({'s':'', 'xy':(pos, height), 'xytext':(pos, height*4), 'arrowprops':dict(width= 1.5, headlength=4, headwidth=4, facecolor='black')}) # moment loads elif load[2] == -2: if load[0].is_negative: markers.append({'args':[[pos], [height/2]], 'marker': r'$\circlearrowright$', 'markersize':15}) else: markers.append({'args':[[pos], [height/2]], 'marker': r'$\circlearrowleft$', 'markersize':15}) # higher order loads elif load[2] >= 0: # `fill` will be assigned only when higher order loads are present value, start, order, end = load # Positive loads have their seperate equations if(value>0): plus = 1 # if pictorial is True we remake the load equation again with # some constant magnitude values. if pictorial: value = 10**(1-order) if order > 0 else length/2 scaled_load += value*SingularityFunction(x, start, order) if end: f2 = 10**(1-order)*x**order if order > 0 else length/2*x**order for i in range(0, order + 1): scaled_load -= (f2.diff(x, i).subs(x, end - start)* SingularityFunction(x, end, i)/factorial(i)) if pictorial: if isinstance(scaled_load, Add): load_args = scaled_load.args else: # when the load equation consists of only a single term load_args = (scaled_load,) load_eq = [i.subs(l) for i in load_args] else: if isinstance(self.load, Add): load_args = self.load.args else: load_args = (self.load,) load_eq = [i.subs(l) for i in load_args if list(i.atoms(SingularityFunction))[0].args[2] >= 0] load_eq = Add(*load_eq) # filling higher order loads with colour expr = height + load_eq.rewrite(Piecewise) y1 = lambdify(x, expr, 'numpy') # For loads with negative value else: minus = 1 # if pictorial is True we remake the load equation again with # some constant magnitude values. if pictorial: value = 10**(1-order) if order > 0 else length/2 scaled_load1 += value*SingularityFunction(x, start, order) if end: f2 = 10**(1-order)*x**order if order > 0 else length/2*x**order for i in range(0, order + 1): scaled_load1 -= (f2.diff(x, i).subs(x, end - start)* SingularityFunction(x, end, i)/factorial(i)) if pictorial: if isinstance(scaled_load1, Add): load_args1 = scaled_load1.args else: # when the load equation consists of only a single term load_args1 = (scaled_load1,) load_eq1 = [i.subs(l) for i in load_args1] else: if isinstance(self.load, Add): load_args1 = self.load.args1 else: load_args1 = (self.load,) load_eq1 = [i.subs(l) for i in load_args if list(i.atoms(SingularityFunction))[0].args[2] >= 0] load_eq1 = -Add(*load_eq1)-height # filling higher order loads with colour expr = height + load_eq1.rewrite(Piecewise) y1_ = lambdify(x, expr, 'numpy') y = numpy.arange(0, float(length), 0.001) y2 = float(height) if(plus == 1 and minus == 1): fill = {'x': y, 'y1': y1(y), 'y2': y1_(y), 'color':'darkkhaki'} elif(plus == 1): fill = {'x': y, 'y1': y1(y), 'y2': y2, 'color':'darkkhaki'} else: fill = {'x': y, 'y1': y1_(y), 'y2': y2 , 'color':'darkkhaki'} return annotations, markers, load_eq, load_eq1, fill def _draw_supports(self, length, l): height = float(length/10) support_markers = [] support_rectangles = [] for support in self._applied_supports: if l: pos = support[0].subs(l) else: pos = support[0] if support[1] == "pin": support_markers.append({'args':[pos, [0]], 'marker':6, 'markersize':13, 'color':"black"}) elif support[1] == "roller": support_markers.append({'args':[pos, [-height/2.5]], 'marker':'o', 'markersize':11, 'color':"black"}) elif support[1] == "fixed": if pos == 0: support_rectangles.append({'xy':(0, -3*height), 'width':-length/20, 'height':6*height + height, 'fill':False, 'hatch':'/////'}) else: support_rectangles.append({'xy':(length, -3*height), 'width':length/20, 'height': 6*height + height, 'fill':False, 'hatch':'/////'}) return support_markers, support_rectangles class Beam3D(Beam): """ This class handles loads applied in any direction of a 3D space along with unequal values of Second moment along different axes. .. note:: While solving a beam bending problem, a user should choose its own sign convention and should stick to it. The results will automatically follow the chosen sign convention. This class assumes that any kind of distributed load/moment is applied through out the span of a beam. Examples ======== There is a beam of l meters long. A constant distributed load of magnitude q is applied along y-axis from start till the end of beam. A constant distributed moment of magnitude m is also applied along z-axis from start till the end of beam. Beam is fixed at both of its end. So, deflection of the beam at the both ends is restricted. >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols, simplify, collect, factor >>> l, E, G, I, A = symbols('l, E, G, I, A') >>> b = Beam3D(l, E, G, I, A) >>> x, q, m = symbols('x, q, m') >>> b.apply_load(q, 0, 0, dir="y") >>> b.apply_moment_load(m, 0, -1, dir="z") >>> b.shear_force() [0, -q*x, 0] >>> b.bending_moment() [0, 0, -m*x + q*x**2/2] >>> b.bc_slope = [(0, [0, 0, 0]), (l, [0, 0, 0])] >>> b.bc_deflection = [(0, [0, 0, 0]), (l, [0, 0, 0])] >>> b.solve_slope_deflection() >>> factor(b.slope()) [0, 0, x*(-l + x)*(-A*G*l**3*q + 2*A*G*l**2*q*x - 12*E*I*l*q - 72*E*I*m + 24*E*I*q*x)/(12*E*I*(A*G*l**2 + 12*E*I))] >>> dx, dy, dz = b.deflection() >>> dy = collect(simplify(dy), x) >>> dx == dz == 0 True >>> dy == (x*(12*A*E*G*I*l**3*q - 24*A*E*G*I*l**2*m + 144*E**2*I**2*l*q + ... x**3*(A**2*G**2*l**2*q + 12*A*E*G*I*q) + ... x**2*(-2*A**2*G**2*l**3*q - 24*A*E*G*I*l*q - 48*A*E*G*I*m) + ... x*(A**2*G**2*l**4*q + 72*A*E*G*I*l*m - 144*E**2*I**2*q) ... )/(24*A*E*G*I*(A*G*l**2 + 12*E*I))) True References ========== .. [1] http://homes.civil.aau.dk/jc/FemteSemester/Beams3D.pdf """ def __init__(self, length, elastic_modulus, shear_modulus , second_moment, area, variable=Symbol('x')): """Initializes the class. Parameters ========== length : Sympifyable A Symbol or value representing the Beam's length. elastic_modulus : Sympifyable A SymPy expression representing the Beam's Modulus of Elasticity. It is a measure of the stiffness of the Beam material. shear_modulus : Sympifyable A SymPy expression representing the Beam's Modulus of rigidity. It is a measure of rigidity of the Beam material. second_moment : Sympifyable or list A list of two elements having SymPy expression representing the Beam's Second moment of area. First value represent Second moment across y-axis and second across z-axis. Single SymPy expression can be passed if both values are same area : Sympifyable A SymPy expression representing the Beam's cross-sectional area in a plane prependicular to length of the Beam. variable : Symbol, optional A Symbol object that will be used as the variable along the beam while representing the load, shear, moment, slope and deflection curve. By default, it is set to ``Symbol('x')``. """ super().__init__(length, elastic_modulus, second_moment, variable) self.shear_modulus = shear_modulus self._area = area self._load_vector = [0, 0, 0] self._moment_load_vector = [0, 0, 0] self._load_Singularity = [0, 0, 0] self._slope = [0, 0, 0] self._deflection = [0, 0, 0] @property def shear_modulus(self): """Young's Modulus of the Beam. """ return self._shear_modulus @shear_modulus.setter def shear_modulus(self, e): self._shear_modulus = sympify(e) @property def second_moment(self): """Second moment of area of the Beam. """ return self._second_moment @second_moment.setter def second_moment(self, i): if isinstance(i, list): i = [sympify(x) for x in i] self._second_moment = i else: self._second_moment = sympify(i) @property def area(self): """Cross-sectional area of the Beam. """ return self._area @area.setter def area(self, a): self._area = sympify(a) @property def load_vector(self): """ Returns a three element list representing the load vector. """ return self._load_vector @property def moment_load_vector(self): """ Returns a three element list representing moment loads on Beam. """ return self._moment_load_vector @property def boundary_conditions(self): """ Returns a dictionary of boundary conditions applied on the beam. The dictionary has two keywords namely slope and deflection. The value of each keyword is a list of tuple, where each tuple contains location and value of a boundary condition in the format (location, value). Further each value is a list corresponding to slope or deflection(s) values along three axes at that location. Examples ======== There is a beam of length 4 meters. The slope at 0 should be 4 along the x-axis and 0 along others. At the other end of beam, deflection along all the three axes should be zero. >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(30, E, G, I, A, x) >>> b.bc_slope = [(0, (4, 0, 0))] >>> b.bc_deflection = [(4, [0, 0, 0])] >>> b.boundary_conditions {'deflection': [(4, [0, 0, 0])], 'slope': [(0, (4, 0, 0))]} Here the deflection of the beam should be ``0`` along all the three axes at ``4``. Similarly, the slope of the beam should be ``4`` along x-axis and ``0`` along y and z axis at ``0``. """ return self._boundary_conditions def polar_moment(self): """ Returns the polar moment of area of the beam about the X axis with respect to the centroid. Examples ======== >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A = symbols('l, E, G, I, A') >>> b = Beam3D(l, E, G, I, A) >>> b.polar_moment() 2*I >>> I1 = [9, 15] >>> b = Beam3D(l, E, G, I1, A) >>> b.polar_moment() 24 """ if not iterable(self.second_moment): return 2*self.second_moment return sum(self.second_moment) def apply_load(self, value, start, order, dir="y"): """ This method adds up the force load to a particular beam object. Parameters ========== value : Sympifyable The magnitude of an applied load. dir : String Axis along which load is applied. order : Integer The order of the applied load. - For point loads, order=-1 - For constant distributed load, order=0 - For ramp loads, order=1 - For parabolic ramp loads, order=2 - ... so on. """ x = self.variable value = sympify(value) start = sympify(start) order = sympify(order) if dir == "x": if not order == -1: self._load_vector[0] += value self._load_Singularity[0] += value*SingularityFunction(x, start, order) elif dir == "y": if not order == -1: self._load_vector[1] += value self._load_Singularity[1] += value*SingularityFunction(x, start, order) else: if not order == -1: self._load_vector[2] += value self._load_Singularity[2] += value*SingularityFunction(x, start, order) def apply_moment_load(self, value, start, order, dir="y"): """ This method adds up the moment loads to a particular beam object. Parameters ========== value : Sympifyable The magnitude of an applied moment. dir : String Axis along which moment is applied. order : Integer The order of the applied load. - For point moments, order=-2 - For constant distributed moment, order=-1 - For ramp moments, order=0 - For parabolic ramp moments, order=1 - ... so on. """ x = self.variable value = sympify(value) start = sympify(start) order = sympify(order) if dir == "x": if not order == -2: self._moment_load_vector[0] += value self._load_Singularity[0] += value*SingularityFunction(x, start, order) elif dir == "y": if not order == -2: self._moment_load_vector[1] += value self._load_Singularity[0] += value*SingularityFunction(x, start, order) else: if not order == -2: self._moment_load_vector[2] += value self._load_Singularity[0] += value*SingularityFunction(x, start, order) def apply_support(self, loc, type="fixed"): if type == "pin" or type == "roller": reaction_load = Symbol('R_'+str(loc)) self._reaction_loads[reaction_load] = reaction_load self.bc_deflection.append((loc, [0, 0, 0])) else: reaction_load = Symbol('R_'+str(loc)) reaction_moment = Symbol('M_'+str(loc)) self._reaction_loads[reaction_load] = [reaction_load, reaction_moment] self.bc_deflection.append((loc, [0, 0, 0])) self.bc_slope.append((loc, [0, 0, 0])) def solve_for_reaction_loads(self, *reaction): """ Solves for the reaction forces. Examples ======== There is a beam of length 30 meters. It it supported by rollers at of its end. A constant distributed load of magnitude 8 N is applied from start till its end along y-axis. Another linear load having slope equal to 9 is applied along z-axis. >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(30, E, G, I, A, x) >>> b.apply_load(8, start=0, order=0, dir="y") >>> b.apply_load(9*x, start=0, order=0, dir="z") >>> b.bc_deflection = [(0, [0, 0, 0]), (30, [0, 0, 0])] >>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4') >>> b.apply_load(R1, start=0, order=-1, dir="y") >>> b.apply_load(R2, start=30, order=-1, dir="y") >>> b.apply_load(R3, start=0, order=-1, dir="z") >>> b.apply_load(R4, start=30, order=-1, dir="z") >>> b.solve_for_reaction_loads(R1, R2, R3, R4) >>> b.reaction_loads {R1: -120, R2: -120, R3: -1350, R4: -2700} """ x = self.variable l = self.length q = self._load_Singularity shear_curves = [integrate(load, x) for load in q] moment_curves = [integrate(shear, x) for shear in shear_curves] for i in range(3): react = [r for r in reaction if (shear_curves[i].has(r) or moment_curves[i].has(r))] if len(react) == 0: continue shear_curve = limit(shear_curves[i], x, l) moment_curve = limit(moment_curves[i], x, l) sol = list((linsolve([shear_curve, moment_curve], react).args)[0]) sol_dict = dict(zip(react, sol)) reaction_loads = self._reaction_loads # Check if any of the evaluated rection exists in another direction # and if it exists then it should have same value. for key in sol_dict: if key in reaction_loads and sol_dict[key] != reaction_loads[key]: raise ValueError("Ambiguous solution for %s in different directions." % key) self._reaction_loads.update(sol_dict) def shear_force(self): """ Returns a list of three expressions which represents the shear force curve of the Beam object along all three axes. """ x = self.variable q = self._load_vector return [integrate(-q[0], x), integrate(-q[1], x), integrate(-q[2], x)] def axial_force(self): """ Returns expression of Axial shear force present inside the Beam object. """ return self.shear_force()[0] def shear_stress(self): """ Returns a list of three expressions which represents the shear stress curve of the Beam object along all three axes. """ return [self.shear_force()[0]/self._area, self.shear_force()[1]/self._area, self.shear_force()[2]/self._area] def axial_stress(self): """ Returns expression of Axial stress present inside the Beam object. """ return self.axial_force()/self._area def bending_moment(self): """ Returns a list of three expressions which represents the bending moment curve of the Beam object along all three axes. """ x = self.variable m = self._moment_load_vector shear = self.shear_force() return [integrate(-m[0], x), integrate(-m[1] + shear[2], x), integrate(-m[2] - shear[1], x) ] def torsional_moment(self): """ Returns expression of Torsional moment present inside the Beam object. """ return self.bending_moment()[0] def solve_slope_deflection(self): from sympy import dsolve, Function, Derivative, Eq x = self.variable l = self.length E = self.elastic_modulus G = self.shear_modulus I = self.second_moment if isinstance(I, list): I_y, I_z = I[0], I[1] else: I_y = I_z = I A = self._area load = self._load_vector moment = self._moment_load_vector defl = Function('defl') theta = Function('theta') # Finding deflection along x-axis(and corresponding slope value by differentiating it) # Equation used: Derivative(E*A*Derivative(def_x(x), x), x) + load_x = 0 eq = Derivative(E*A*Derivative(defl(x), x), x) + load[0] def_x = dsolve(Eq(eq, 0), defl(x)).args[1] # Solving constants originated from dsolve C1 = Symbol('C1') C2 = Symbol('C2') constants = list((linsolve([def_x.subs(x, 0), def_x.subs(x, l)], C1, C2).args)[0]) def_x = def_x.subs({C1:constants[0], C2:constants[1]}) slope_x = def_x.diff(x) self._deflection[0] = def_x self._slope[0] = slope_x # Finding deflection along y-axis and slope across z-axis. System of equation involved: # 1: Derivative(E*I_z*Derivative(theta_z(x), x), x) + G*A*(Derivative(defl_y(x), x) - theta_z(x)) + moment_z = 0 # 2: Derivative(G*A*(Derivative(defl_y(x), x) - theta_z(x)), x) + load_y = 0 C_i = Symbol('C_i') # Substitute value of `G*A*(Derivative(defl_y(x), x) - theta_z(x))` from (2) in (1) eq1 = Derivative(E*I_z*Derivative(theta(x), x), x) + (integrate(-load[1], x) + C_i) + moment[2] slope_z = dsolve(Eq(eq1, 0)).args[1] # Solve for constants originated from using dsolve on eq1 constants = list((linsolve([slope_z.subs(x, 0), slope_z.subs(x, l)], C1, C2).args)[0]) slope_z = slope_z.subs({C1:constants[0], C2:constants[1]}) # Put value of slope obtained back in (2) to solve for `C_i` and find deflection across y-axis eq2 = G*A*(Derivative(defl(x), x)) + load[1]*x - C_i - G*A*slope_z def_y = dsolve(Eq(eq2, 0), defl(x)).args[1] # Solve for constants originated from using dsolve on eq2 constants = list((linsolve([def_y.subs(x, 0), def_y.subs(x, l)], C1, C_i).args)[0]) self._deflection[1] = def_y.subs({C1:constants[0], C_i:constants[1]}) self._slope[2] = slope_z.subs(C_i, constants[1]) # Finding deflection along z-axis and slope across y-axis. System of equation involved: # 1: Derivative(E*I_y*Derivative(theta_y(x), x), x) - G*A*(Derivative(defl_z(x), x) + theta_y(x)) + moment_y = 0 # 2: Derivative(G*A*(Derivative(defl_z(x), x) + theta_y(x)), x) + load_z = 0 # Substitute value of `G*A*(Derivative(defl_y(x), x) + theta_z(x))` from (2) in (1) eq1 = Derivative(E*I_y*Derivative(theta(x), x), x) + (integrate(load[2], x) - C_i) + moment[1] slope_y = dsolve(Eq(eq1, 0)).args[1] # Solve for constants originated from using dsolve on eq1 constants = list((linsolve([slope_y.subs(x, 0), slope_y.subs(x, l)], C1, C2).args)[0]) slope_y = slope_y.subs({C1:constants[0], C2:constants[1]}) # Put value of slope obtained back in (2) to solve for `C_i` and find deflection across z-axis eq2 = G*A*(Derivative(defl(x), x)) + load[2]*x - C_i + G*A*slope_y def_z = dsolve(Eq(eq2,0)).args[1] # Solve for constants originated from using dsolve on eq2 constants = list((linsolve([def_z.subs(x, 0), def_z.subs(x, l)], C1, C_i).args)[0]) self._deflection[2] = def_z.subs({C1:constants[0], C_i:constants[1]}) self._slope[1] = slope_y.subs(C_i, constants[1]) def slope(self): """ Returns a three element list representing slope of deflection curve along all the three axes. """ return self._slope def deflection(self): """ Returns a three element list representing deflection curve along all the three axes. """ return self._deflection def _plot_shear_force(self, dir, subs=None): shear_force = self.shear_force() if dir == 'x': dir_num = 0 color = 'r' elif dir == 'y': dir_num = 1 color = 'g' elif dir == 'z': dir_num = 2 color = 'b' if subs is None: subs = {} for sym in shear_force[dir_num].atoms(Symbol): if sym == self.variable: continue if sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(shear_force[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Shear Force along %c direction'%dir, xlabel=r'$\mathrm{%c}$'%dir, ylabel=r'$\mathrm{V[%c]}$'%dir, line_color=color) def plot_shear_force(self, dir="all", subs=None): """ Returns a plot for Shear force along all three directions present in the Beam object. Parameters ========== dir : string (default : "all") Direction along which shear force plot is required. If no direction is specified, all plots are displayed. subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 20 meters. It it supported by rollers at of its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(20, E, G, I, A, x) >>> b.apply_load(15, start=0, order=0, dir="z") >>> b.apply_load(12*x, start=0, order=0, dir="y") >>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])] >>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4') >>> b.apply_load(R1, start=0, order=-1, dir="z") >>> b.apply_load(R2, start=20, order=-1, dir="z") >>> b.apply_load(R3, start=0, order=-1, dir="y") >>> b.apply_load(R4, start=20, order=-1, dir="y") >>> b.solve_for_reaction_loads(R1, R2, R3, R4) >>> b.plot_shear_force() PlotGrid object containing: Plot[0]:Plot object containing: [0]: cartesian line: 0 for x over (0.0, 20.0) Plot[1]:Plot object containing: [0]: cartesian line: -6*x**2 for x over (0.0, 20.0) Plot[2]:Plot object containing: [0]: cartesian line: -15*x for x over (0.0, 20.0) """ Px = self._plot_shear_force('x') Py = self._plot_shear_force('y') Pz = self._plot_shear_force('z') # For shear force along x direction if dir == "x": return Px.show() # For shear force along y direction elif dir == "y": return Py.show() # For shear force along z direction elif dir == "z": return Pz.show() # For shear force along all direction else: return PlotGrid(3, 1, Px, Py, Pz)
0f4ce3290dd0054a44d7af0b1cc9ce7c5c20147a708c48dc06beb31f17e7c0c1
from sympy import symbols, pi, sin, cos, Float, ImmutableMatrix as Matrix from sympy.physics.vector import ReferenceFrame, Vector, dynamicsymbols, dot from sympy.abc import x, y, z from sympy.testing.pytest import raises Vector.simp = True A = ReferenceFrame('A') def test_Vector(): assert A.x != A.y assert A.y != A.z assert A.z != A.x assert A.x + 0 == A.x v1 = x*A.x + y*A.y + z*A.z v2 = x**2*A.x + y**2*A.y + z**2*A.z v3 = v1 + v2 v4 = v1 - v2 assert isinstance(v1, Vector) assert dot(v1, A.x) == x assert dot(v1, A.y) == y assert dot(v1, A.z) == z assert isinstance(v2, Vector) assert dot(v2, A.x) == x**2 assert dot(v2, A.y) == y**2 assert dot(v2, A.z) == z**2 assert isinstance(v3, Vector) # We probably shouldn't be using simplify in dot... assert dot(v3, A.x) == x**2 + x assert dot(v3, A.y) == y**2 + y assert dot(v3, A.z) == z**2 + z assert isinstance(v4, Vector) # We probably shouldn't be using simplify in dot... assert dot(v4, A.x) == x - x**2 assert dot(v4, A.y) == y - y**2 assert dot(v4, A.z) == z - z**2 assert v1.to_matrix(A) == Matrix([[x], [y], [z]]) q = symbols('q') B = A.orientnew('B', 'Axis', (q, A.x)) assert v1.to_matrix(B) == Matrix([[x], [ y * cos(q) + z * sin(q)], [-y * sin(q) + z * cos(q)]]) #Test the separate method B = ReferenceFrame('B') v5 = x*A.x + y*A.y + z*B.z assert Vector(0).separate() == {} assert v1.separate() == {A: v1} assert v5.separate() == {A: x*A.x + y*A.y, B: z*B.z} #Test the free_symbols property v6 = x*A.x + y*A.y + z*A.z assert v6.free_symbols(A) == {x,y,z} raises(TypeError, lambda: v3.applyfunc(v1)) def test_Vector_diffs(): q1, q2, q3, q4 = dynamicsymbols('q1 q2 q3 q4') q1d, q2d, q3d, q4d = dynamicsymbols('q1 q2 q3 q4', 1) q1dd, q2dd, q3dd, q4dd = dynamicsymbols('q1 q2 q3 q4', 2) N = ReferenceFrame('N') A = N.orientnew('A', 'Axis', [q3, N.z]) B = A.orientnew('B', 'Axis', [q2, A.x]) v1 = q2 * A.x + q3 * N.y v2 = q3 * B.x + v1 v3 = v1.dt(B) v4 = v2.dt(B) v5 = q1*A.x + q2*A.y + q3*A.z assert v1.dt(N) == q2d * A.x + q2 * q3d * A.y + q3d * N.y assert v1.dt(A) == q2d * A.x + q3 * q3d * N.x + q3d * N.y assert v1.dt(B) == (q2d * A.x + q3 * q3d * N.x + q3d *\ N.y - q3 * cos(q3) * q2d * N.z) assert v2.dt(N) == (q2d * A.x + (q2 + q3) * q3d * A.y + q3d * B.x + q3d * N.y) assert v2.dt(A) == q2d * A.x + q3d * B.x + q3 * q3d * N.x + q3d * N.y assert v2.dt(B) == (q2d * A.x + q3d * B.x + q3 * q3d * N.x + q3d * N.y - q3 * cos(q3) * q2d * N.z) assert v3.dt(N) == (q2dd * A.x + q2d * q3d * A.y + (q3d**2 + q3 * q3dd) * N.x + q3dd * N.y + (q3 * sin(q3) * q2d * q3d - cos(q3) * q2d * q3d - q3 * cos(q3) * q2dd) * N.z) assert v3.dt(A) == (q2dd * A.x + (2 * q3d**2 + q3 * q3dd) * N.x + (q3dd - q3 * q3d**2) * N.y + (q3 * sin(q3) * q2d * q3d - cos(q3) * q2d * q3d - q3 * cos(q3) * q2dd) * N.z) assert v3.dt(B) == (q2dd * A.x - q3 * cos(q3) * q2d**2 * A.y + (2 * q3d**2 + q3 * q3dd) * N.x + (q3dd - q3 * q3d**2) * N.y + (2 * q3 * sin(q3) * q2d * q3d - 2 * cos(q3) * q2d * q3d - q3 * cos(q3) * q2dd) * N.z) assert v4.dt(N) == (q2dd * A.x + q3d * (q2d + q3d) * A.y + q3dd * B.x + (q3d**2 + q3 * q3dd) * N.x + q3dd * N.y + (q3 * sin(q3) * q2d * q3d - cos(q3) * q2d * q3d - q3 * cos(q3) * q2dd) * N.z) assert v4.dt(A) == (q2dd * A.x + q3dd * B.x + (2 * q3d**2 + q3 * q3dd) * N.x + (q3dd - q3 * q3d**2) * N.y + (q3 * sin(q3) * q2d * q3d - cos(q3) * q2d * q3d - q3 * cos(q3) * q2dd) * N.z) assert v4.dt(B) == (q2dd * A.x - q3 * cos(q3) * q2d**2 * A.y + q3dd * B.x + (2 * q3d**2 + q3 * q3dd) * N.x + (q3dd - q3 * q3d**2) * N.y + (2 * q3 * sin(q3) * q2d * q3d - 2 * cos(q3) * q2d * q3d - q3 * cos(q3) * q2dd) * N.z) assert v5.dt(B) == q1d*A.x + (q3*q2d + q2d)*A.y + (-q2*q2d + q3d)*A.z assert v5.dt(A) == q1d*A.x + q2d*A.y + q3d*A.z assert v5.dt(N) == (-q2*q3d + q1d)*A.x + (q1*q3d + q2d)*A.y + q3d*A.z assert v3.diff(q1d, N) == 0 assert v3.diff(q2d, N) == A.x - q3 * cos(q3) * N.z assert v3.diff(q3d, N) == q3 * N.x + N.y assert v3.diff(q1d, A) == 0 assert v3.diff(q2d, A) == A.x - q3 * cos(q3) * N.z assert v3.diff(q3d, A) == q3 * N.x + N.y assert v3.diff(q1d, B) == 0 assert v3.diff(q2d, B) == A.x - q3 * cos(q3) * N.z assert v3.diff(q3d, B) == q3 * N.x + N.y assert v4.diff(q1d, N) == 0 assert v4.diff(q2d, N) == A.x - q3 * cos(q3) * N.z assert v4.diff(q3d, N) == B.x + q3 * N.x + N.y assert v4.diff(q1d, A) == 0 assert v4.diff(q2d, A) == A.x - q3 * cos(q3) * N.z assert v4.diff(q3d, A) == B.x + q3 * N.x + N.y assert v4.diff(q1d, B) == 0 assert v4.diff(q2d, B) == A.x - q3 * cos(q3) * N.z assert v4.diff(q3d, B) == B.x + q3 * N.x + N.y def test_vector_var_in_dcm(): N = ReferenceFrame('N') A = ReferenceFrame('A') B = ReferenceFrame('B') u1, u2, u3, u4 = dynamicsymbols('u1 u2 u3 u4') v = u1 * u2 * A.x + u3 * N.y + u4**2 * N.z assert v.diff(u1, N, var_in_dcm=False) == u2 * A.x assert v.diff(u1, A, var_in_dcm=False) == u2 * A.x assert v.diff(u3, N, var_in_dcm=False) == N.y assert v.diff(u3, A, var_in_dcm=False) == N.y assert v.diff(u3, B, var_in_dcm=False) == N.y assert v.diff(u4, N, var_in_dcm=False) == 2 * u4 * N.z raises(ValueError, lambda: v.diff(u1, N)) def test_vector_simplify(): x, y, z, k, n, m, w, f, s, A = symbols('x, y, z, k, n, m, w, f, s, A') N = ReferenceFrame('N') test1 = (1 / x + 1 / y) * N.x assert (test1 & N.x) != (x + y) / (x * y) test1 = test1.simplify() assert (test1 & N.x) == (x + y) / (x * y) test2 = (A**2 * s**4 / (4 * pi * k * m**3)) * N.x test2 = test2.simplify() assert (test2 & N.x) == (A**2 * s**4 / (4 * pi * k * m**3)) test3 = ((4 + 4 * x - 2 * (2 + 2 * x)) / (2 + 2 * x)) * N.x test3 = test3.simplify() assert (test3 & N.x) == 0 test4 = ((-4 * x * y**2 - 2 * y**3 - 2 * x**2 * y) / (x + y)**2) * N.x test4 = test4.simplify() assert (test4 & N.x) == -2 * y def test_vector_evalf(): a, b = symbols('a b') v = pi * A.x assert v.evalf(2) == Float('3.1416', 2) * A.x v = pi * A.x + 5 * a * A.y - b * A.z assert v.evalf(3) == Float('3.1416', 3) * A.x + Float('5', 3) * a * A.y - b * A.z def test_vector_xreplace(): x, y, z = symbols('x y z') v = x**2 * A.x + x*y * A.y + x*y*z * A.z assert v.xreplace({x : cos(x)}) == cos(x)**2 * A.x + y*cos(x) * A.y + y*z*cos(x) * A.z assert v.xreplace({x*y : pi}) == x**2 * A.x + pi * A.y + x*y*z * A.z assert v.xreplace({x*y*z : 1}) == x**2*A.x + x*y*A.y + A.z assert v.xreplace({x:1, z:0}) == A.x + y * A.y raises(TypeError, lambda: v.xreplace()) raises(TypeError, lambda: v.xreplace([x, y]))
f24ac10375f92c22f161c525c37d282282f710069cbacaab0b84e1f6256a9504
from sympy import sin, cos, symbols, pi, Float, ImmutableMatrix as Matrix from sympy.physics.vector import ReferenceFrame, Vector, dynamicsymbols, outer from sympy.physics.vector.dyadic import _check_dyadic from sympy.testing.pytest import raises Vector.simp = True A = ReferenceFrame('A') def test_dyadic(): d1 = A.x | A.x d2 = A.y | A.y d3 = A.x | A.y assert d1 * 0 == 0 assert d1 != 0 assert d1 * 2 == 2 * A.x | A.x assert d1 / 2. == 0.5 * d1 assert d1 & (0 * d1) == 0 assert d1 & d2 == 0 assert d1 & A.x == A.x assert d1 ^ A.x == 0 assert d1 ^ A.y == A.x | A.z assert d1 ^ A.z == - A.x | A.y assert d2 ^ A.x == - A.y | A.z assert A.x ^ d1 == 0 assert A.y ^ d1 == - A.z | A.x assert A.z ^ d1 == A.y | A.x assert A.x & d1 == A.x assert A.y & d1 == 0 assert A.y & d2 == A.y assert d1 & d3 == A.x | A.y assert d3 & d1 == 0 assert d1.dt(A) == 0 q = dynamicsymbols('q') qd = dynamicsymbols('q', 1) B = A.orientnew('B', 'Axis', [q, A.z]) assert d1.express(B) == d1.express(B, B) assert d1.express(B) == ((cos(q)**2) * (B.x | B.x) + (-sin(q) * cos(q)) * (B.x | B.y) + (-sin(q) * cos(q)) * (B.y | B.x) + (sin(q)**2) * (B.y | B.y)) assert d1.express(B, A) == (cos(q)) * (B.x | A.x) + (-sin(q)) * (B.y | A.x) assert d1.express(A, B) == (cos(q)) * (A.x | B.x) + (-sin(q)) * (A.x | B.y) assert d1.dt(B) == (-qd) * (A.y | A.x) + (-qd) * (A.x | A.y) assert d1.to_matrix(A) == Matrix([[1, 0, 0], [0, 0, 0], [0, 0, 0]]) assert d1.to_matrix(A, B) == Matrix([[cos(q), -sin(q), 0], [0, 0, 0], [0, 0, 0]]) assert d3.to_matrix(A) == Matrix([[0, 1, 0], [0, 0, 0], [0, 0, 0]]) a, b, c, d, e, f = symbols('a, b, c, d, e, f') v1 = a * A.x + b * A.y + c * A.z v2 = d * A.x + e * A.y + f * A.z d4 = v1.outer(v2) assert d4.to_matrix(A) == Matrix([[a * d, a * e, a * f], [b * d, b * e, b * f], [c * d, c * e, c * f]]) d5 = v1.outer(v1) C = A.orientnew('C', 'Axis', [q, A.x]) for expected, actual in zip(C.dcm(A) * d5.to_matrix(A) * C.dcm(A).T, d5.to_matrix(C)): assert (expected - actual).simplify() == 0 raises(TypeError, lambda: d1.applyfunc(0)) def test_dyadic_simplify(): x, y, z, k, n, m, w, f, s, A = symbols('x, y, z, k, n, m, w, f, s, A') N = ReferenceFrame('N') dy = N.x | N.x test1 = (1 / x + 1 / y) * dy assert (N.x & test1 & N.x) != (x + y) / (x * y) test1 = test1.simplify() assert (N.x & test1 & N.x) == (x + y) / (x * y) test2 = (A**2 * s**4 / (4 * pi * k * m**3)) * dy test2 = test2.simplify() assert (N.x & test2 & N.x) == (A**2 * s**4 / (4 * pi * k * m**3)) test3 = ((4 + 4 * x - 2 * (2 + 2 * x)) / (2 + 2 * x)) * dy test3 = test3.simplify() assert (N.x & test3 & N.x) == 0 test4 = ((-4 * x * y**2 - 2 * y**3 - 2 * x**2 * y) / (x + y)**2) * dy test4 = test4.simplify() assert (N.x & test4 & N.x) == -2 * y def test_dyadic_subs(): N = ReferenceFrame('N') s = symbols('s') a = s*(N.x | N.x) assert a.subs({s: 2}) == 2*(N.x | N.x) def test_check_dyadic(): raises(TypeError, lambda: _check_dyadic(0)) def test_dyadic_evalf(): N = ReferenceFrame('N') a = pi * (N.x | N.x) assert a.evalf(3) == Float('3.1416', 3) * (N.x | N.x) s = symbols('s') a = 5 * s * pi* (N.x | N.x) assert a.evalf(2) == Float('5', 2) * Float('3.1416', 2) * s * (N.x | N.x) def test_dyadic_xreplace(): x, y, z = symbols('x y z') N = ReferenceFrame('N') D = outer(N.x, N.x) v = x*y * D assert v.xreplace({x : cos(x)}) == cos(x)*y * D assert v.xreplace({x*y : pi}) == pi * D v = (x*y)**z * D assert v.xreplace({(x*y)**z : 1}) == D assert v.xreplace({x:1, z:0}) == D raises(TypeError, lambda: v.xreplace()) raises(TypeError, lambda: v.xreplace([x, y]))
e48722bbc5b1af81dd6f64d3d7c3991e1b33ee8ac09106d775e83db1a2f32c90
from sympy import expand, Symbol, symbols, S, Interval, pi, Rational, simplify from sympy.physics.continuum_mechanics.beam import Beam from sympy.functions import SingularityFunction, Piecewise, meijerg, Abs, log from sympy.testing.pytest import raises from sympy.physics.units import meter, newton, kilo, giga, milli from sympy.physics.continuum_mechanics.beam import Beam3D from sympy.geometry import Circle, Polygon, Point2D, Triangle x = Symbol('x') y = Symbol('y') R1, R2 = symbols('R1, R2') def test_Beam(): E = Symbol('E') E_1 = Symbol('E_1') I = Symbol('I') I_1 = Symbol('I_1') A = Symbol('A') b = Beam(1, E, I) assert b.length == 1 assert b.elastic_modulus == E assert b.second_moment == I assert b.variable == x # Test the length setter b.length = 4 assert b.length == 4 # Test the E setter b.elastic_modulus = E_1 assert b.elastic_modulus == E_1 # Test the I setter b.second_moment = I_1 assert b.second_moment is I_1 # Test the variable setter b.variable = y assert b.variable is y # Test for all boundary conditions. b.bc_deflection = [(0, 2)] b.bc_slope = [(0, 1)] assert b.boundary_conditions == {'deflection': [(0, 2)], 'slope': [(0, 1)]} # Test for slope boundary condition method b.bc_slope.extend([(4, 3), (5, 0)]) s_bcs = b.bc_slope assert s_bcs == [(0, 1), (4, 3), (5, 0)] # Test for deflection boundary condition method b.bc_deflection.extend([(4, 3), (5, 0)]) d_bcs = b.bc_deflection assert d_bcs == [(0, 2), (4, 3), (5, 0)] # Test for updated boundary conditions bcs_new = b.boundary_conditions assert bcs_new == { 'deflection': [(0, 2), (4, 3), (5, 0)], 'slope': [(0, 1), (4, 3), (5, 0)]} b1 = Beam(30, E, I) b1.apply_load(-8, 0, -1) b1.apply_load(R1, 10, -1) b1.apply_load(R2, 30, -1) b1.apply_load(120, 30, -2) b1.bc_deflection = [(10, 0), (30, 0)] b1.solve_for_reaction_loads(R1, R2) # Test for finding reaction forces p = b1.reaction_loads q = {R1: 6, R2: 2} assert p == q # Test for load distribution function. p = b1.load q = -8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1) \ + 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1) assert p == q # Test for shear force distribution function p = b1.shear_force() q = 8*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 10, 0) \ - 120*SingularityFunction(x, 30, -1) - 2*SingularityFunction(x, 30, 0) assert p == q # Test for shear stress distribution function p = b1.shear_stress() q = (8*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 10, 0) \ - 120*SingularityFunction(x, 30, -1) \ - 2*SingularityFunction(x, 30, 0))/A assert p==q # Test for bending moment distribution function p = b1.bending_moment() q = 8*SingularityFunction(x, 0, 1) - 6*SingularityFunction(x, 10, 1) \ - 120*SingularityFunction(x, 30, 0) - 2*SingularityFunction(x, 30, 1) assert p == q # Test for slope distribution function p = b1.slope() q = -4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) \ + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) \ + Rational(4000, 3) assert p == q/(E*I) # Test for deflection distribution function p = b1.deflection() q = x*Rational(4000, 3) - 4*SingularityFunction(x, 0, 3)/3 \ + SingularityFunction(x, 10, 3) + 60*SingularityFunction(x, 30, 2) \ + SingularityFunction(x, 30, 3)/3 - 12000 assert p == q/(E*I) # Test using symbols l = Symbol('l') w0 = Symbol('w0') w2 = Symbol('w2') a1 = Symbol('a1') c = Symbol('c') c1 = Symbol('c1') d = Symbol('d') e = Symbol('e') f = Symbol('f') b2 = Beam(l, E, I) b2.apply_load(w0, a1, 1) b2.apply_load(w2, c1, -1) b2.bc_deflection = [(c, d)] b2.bc_slope = [(e, f)] # Test for load distribution function. p = b2.load q = w0*SingularityFunction(x, a1, 1) + w2*SingularityFunction(x, c1, -1) assert p == q # Test for shear force distribution function p = b2.shear_force() q = -w0*SingularityFunction(x, a1, 2)/2 \ - w2*SingularityFunction(x, c1, 0) assert p == q # Test for shear stress distribution function p = b2.shear_stress() q = (-w0*SingularityFunction(x, a1, 2)/2 \ - w2*SingularityFunction(x, c1, 0))/A assert p == q # Test for bending moment distribution function p = b2.bending_moment() q = -w0*SingularityFunction(x, a1, 3)/6 - w2*SingularityFunction(x, c1, 1) assert p == q # Test for slope distribution function p = b2.slope() q = (w0*SingularityFunction(x, a1, 4)/24 + w2*SingularityFunction(x, c1, 2)/2)/(E*I) + (E*I*f - w0*SingularityFunction(e, a1, 4)/24 - w2*SingularityFunction(e, c1, 2)/2)/(E*I) assert expand(p) == expand(q) # Test for deflection distribution function p = b2.deflection() q = x*(E*I*f - w0*SingularityFunction(e, a1, 4)/24 \ - w2*SingularityFunction(e, c1, 2)/2)/(E*I) \ + (w0*SingularityFunction(x, a1, 5)/120 \ + w2*SingularityFunction(x, c1, 3)/6)/(E*I) \ + (E*I*(-c*f + d) + c*w0*SingularityFunction(e, a1, 4)/24 \ + c*w2*SingularityFunction(e, c1, 2)/2 \ - w0*SingularityFunction(c, a1, 5)/120 \ - w2*SingularityFunction(c, c1, 3)/6)/(E*I) assert simplify(p - q) == 0 b3 = Beam(9, E, I, 2) b3.apply_load(value=-2, start=2, order=2, end=3) b3.bc_slope.append((0, 2)) C3 = symbols('C3') C4 = symbols('C4') p = b3.load q = -2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) \ + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2) assert p == q p = b3.shear_force() q = 2*SingularityFunction(x, 2, 3)/3 - 2*SingularityFunction(x, 3, 1) \ - 2*SingularityFunction(x, 3, 2) - 2*SingularityFunction(x, 3, 3)/3 assert p == q p = b3.shear_stress() q = SingularityFunction(x, 2, 3)/3 - 1*SingularityFunction(x, 3, 1) \ - 1*SingularityFunction(x, 3, 2) - 1*SingularityFunction(x, 3, 3)/3 assert p == q p = b3.slope() q = 2 - (SingularityFunction(x, 2, 5)/30 - SingularityFunction(x, 3, 3)/3 \ - SingularityFunction(x, 3, 4)/6 - SingularityFunction(x, 3, 5)/30)/(E*I) assert p == q p = b3.deflection() q = 2*x - (SingularityFunction(x, 2, 6)/180 \ - SingularityFunction(x, 3, 4)/12 - SingularityFunction(x, 3, 5)/30 \ - SingularityFunction(x, 3, 6)/180)/(E*I) assert p == q + C4 b4 = Beam(4, E, I, 3) b4.apply_load(-3, 0, 0, end=3) p = b4.load q = -3*SingularityFunction(x, 0, 0) + 3*SingularityFunction(x, 3, 0) assert p == q p = b4.shear_force() q = 3*SingularityFunction(x, 0, 1) \ - 3*SingularityFunction(x, 3, 1) assert p == q p = b4.shear_stress() q = SingularityFunction(x, 0, 1) - SingularityFunction(x, 3, 1) assert p == q p = b4.slope() q = -3*SingularityFunction(x, 0, 3)/6 + 3*SingularityFunction(x, 3, 3)/6 assert p == q/(E*I) + C3 p = b4.deflection() q = -3*SingularityFunction(x, 0, 4)/24 + 3*SingularityFunction(x, 3, 4)/24 assert p == q/(E*I) + C3*x + C4 # can't use end with point loads raises(ValueError, lambda: b4.apply_load(-3, 0, -1, end=3)) with raises(TypeError): b4.variable = 1 def test_insufficient_bconditions(): # Test cases when required number of boundary conditions # are not provided to solve the integration constants. L = symbols('L', positive=True) E, I, P, a3, a4 = symbols('E I P a3 a4') b = Beam(L, E, I, base_char='a') b.apply_load(R2, L, -1) b.apply_load(R1, 0, -1) b.apply_load(-P, L/2, -1) b.solve_for_reaction_loads(R1, R2) p = b.slope() q = P*SingularityFunction(x, 0, 2)/4 - P*SingularityFunction(x, L/2, 2)/2 + P*SingularityFunction(x, L, 2)/4 assert p == q/(E*I) + a3 p = b.deflection() q = P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12 assert p == q/(E*I) + a3*x + a4 b.bc_deflection = [(0, 0)] p = b.deflection() q = a3*x + P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12 assert p == q/(E*I) b.bc_deflection = [(0, 0), (L, 0)] p = b.deflection() q = -L**2*P*x/16 + P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12 assert p == q/(E*I) def test_statically_indeterminate(): E = Symbol('E') I = Symbol('I') M1, M2 = symbols('M1, M2') F = Symbol('F') l = Symbol('l', positive=True) b5 = Beam(l, E, I) b5.bc_deflection = [(0, 0),(l, 0)] b5.bc_slope = [(0, 0),(l, 0)] b5.apply_load(R1, 0, -1) b5.apply_load(M1, 0, -2) b5.apply_load(R2, l, -1) b5.apply_load(M2, l, -2) b5.apply_load(-F, l/2, -1) b5.solve_for_reaction_loads(R1, R2, M1, M2) p = b5.reaction_loads q = {R1: F/2, R2: F/2, M1: -F*l/8, M2: F*l/8} assert p == q def test_beam_units(): E = Symbol('E') I = Symbol('I') R1, R2 = symbols('R1, R2') kN = kilo*newton gN = giga*newton b = Beam(8*meter, 200*gN/meter**2, 400*1000000*(milli*meter)**4) b.apply_load(5*kN, 2*meter, -1) b.apply_load(R1, 0*meter, -1) b.apply_load(R2, 8*meter, -1) b.apply_load(10*kN/meter, 4*meter, 0, end=8*meter) b.bc_deflection = [(0*meter, 0*meter), (8*meter, 0*meter)] b.solve_for_reaction_loads(R1, R2) assert b.reaction_loads == {R1: -13750*newton, R2: -31250*newton} b = Beam(3*meter, E*newton/meter**2, I*meter**4) b.apply_load(8*kN, 1*meter, -1) b.apply_load(R1, 0*meter, -1) b.apply_load(R2, 3*meter, -1) b.apply_load(12*kN*meter, 2*meter, -2) b.bc_deflection = [(0*meter, 0*meter), (3*meter, 0*meter)] b.solve_for_reaction_loads(R1, R2) assert b.reaction_loads == {R1: newton*Rational(-28000, 3), R2: newton*Rational(4000, 3)} assert b.deflection().subs(x, 1*meter) == 62000*meter/(9*E*I) def test_variable_moment(): E = Symbol('E') I = Symbol('I') b = Beam(4, E, 2*(4 - x)) b.apply_load(20, 4, -1) R, M = symbols('R, M') b.apply_load(R, 0, -1) b.apply_load(M, 0, -2) b.bc_deflection = [(0, 0)] b.bc_slope = [(0, 0)] b.solve_for_reaction_loads(R, M) assert b.slope().expand() == ((10*x*SingularityFunction(x, 0, 0) - 10*(x - 4)*SingularityFunction(x, 4, 0))/E).expand() assert b.deflection().expand() == ((5*x**2*SingularityFunction(x, 0, 0) - 10*Piecewise((0, Abs(x)/4 < 1), (16*meijerg(((3, 1), ()), ((), (2, 0)), x/4), True)) + 40*SingularityFunction(x, 4, 1))/E).expand() b = Beam(4, E - x, I) b.apply_load(20, 4, -1) R, M = symbols('R, M') b.apply_load(R, 0, -1) b.apply_load(M, 0, -2) b.bc_deflection = [(0, 0)] b.bc_slope = [(0, 0)] b.solve_for_reaction_loads(R, M) assert b.slope().expand() == ((-80*(-log(-E) + log(-E + x))*SingularityFunction(x, 0, 0) + 80*(-log(-E + 4) + log(-E + x))*SingularityFunction(x, 4, 0) + 20*(-E*log(-E) + E*log(-E + x) + x)*SingularityFunction(x, 0, 0) - 20*(-E*log(-E + 4) + E*log(-E + x) + x - 4)*SingularityFunction(x, 4, 0))/I).expand() def test_composite_beam(): E = Symbol('E') I = Symbol('I') b1 = Beam(2, E, 1.5*I) b2 = Beam(2, E, I) b = b1.join(b2, "fixed") b.apply_load(-20, 0, -1) b.apply_load(80, 0, -2) b.apply_load(20, 4, -1) b.bc_slope = [(0, 0)] b.bc_deflection = [(0, 0)] assert b.length == 4 assert b.second_moment == Piecewise((1.5*I, x <= 2), (I, x <= 4)) assert b.slope().subs(x, 4) == 120.0/(E*I) assert b.slope().subs(x, 2) == 80.0/(E*I) assert int(b.deflection().subs(x, 4).args[0]) == -302 # Coefficient of 1/(E*I) l = symbols('l', positive=True) R1, M1, R2, R3, P = symbols('R1 M1 R2 R3 P') b1 = Beam(2*l, E, I) b2 = Beam(2*l, E, I) b = b1.join(b2,"hinge") b.apply_load(M1, 0, -2) b.apply_load(R1, 0, -1) b.apply_load(R2, l, -1) b.apply_load(R3, 4*l, -1) b.apply_load(P, 3*l, -1) b.bc_slope = [(0, 0)] b.bc_deflection = [(0, 0), (l, 0), (4*l, 0)] b.solve_for_reaction_loads(M1, R1, R2, R3) assert b.reaction_loads == {R3: -P/2, R2: P*Rational(-5, 4), M1: -P*l/4, R1: P*Rational(3, 4)} assert b.slope().subs(x, 3*l) == -7*P*l**2/(48*E*I) assert b.deflection().subs(x, 2*l) == 7*P*l**3/(24*E*I) assert b.deflection().subs(x, 3*l) == 5*P*l**3/(16*E*I) # When beams having same second moment are joined. b1 = Beam(2, 500, 10) b2 = Beam(2, 500, 10) b = b1.join(b2, "fixed") b.apply_load(M1, 0, -2) b.apply_load(R1, 0, -1) b.apply_load(R2, 1, -1) b.apply_load(R3, 4, -1) b.apply_load(10, 3, -1) b.bc_slope = [(0, 0)] b.bc_deflection = [(0, 0), (1, 0), (4, 0)] b.solve_for_reaction_loads(M1, R1, R2, R3) assert b.slope() == -2*SingularityFunction(x, 0, 1)/5625 + SingularityFunction(x, 0, 2)/1875\ - 133*SingularityFunction(x, 1, 2)/135000 + SingularityFunction(x, 3, 2)/1000\ - 37*SingularityFunction(x, 4, 2)/67500 assert b.deflection() == -SingularityFunction(x, 0, 2)/5625 + SingularityFunction(x, 0, 3)/5625\ - 133*SingularityFunction(x, 1, 3)/405000 + SingularityFunction(x, 3, 3)/3000\ - 37*SingularityFunction(x, 4, 3)/202500 def test_point_cflexure(): E = Symbol('E') I = Symbol('I') b = Beam(10, E, I) b.apply_load(-4, 0, -1) b.apply_load(-46, 6, -1) b.apply_load(10, 2, -1) b.apply_load(20, 4, -1) b.apply_load(3, 6, 0) assert b.point_cflexure() == [Rational(10, 3)] def test_remove_load(): E = Symbol('E') I = Symbol('I') b = Beam(4, E, I) try: b.remove_load(2, 1, -1) # As no load is applied on beam, ValueError should be returned. except ValueError: assert True else: assert False b.apply_load(-3, 0, -2) b.apply_load(4, 2, -1) b.apply_load(-2, 2, 2, end = 3) b.remove_load(-2, 2, 2, end = 3) assert b.load == -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) assert b.applied_loads == [(-3, 0, -2, None), (4, 2, -1, None)] try: b.remove_load(1, 2, -1) # As load of this magnitude was never applied at # this position, method should return a ValueError. except ValueError: assert True else: assert False b.remove_load(-3, 0, -2) b.remove_load(4, 2, -1) assert b.load == 0 assert b.applied_loads == [] def test_apply_support(): E = Symbol('E') I = Symbol('I') b = Beam(4, E, I) b.apply_support(0, "cantilever") b.apply_load(20, 4, -1) M_0, R_0 = symbols('M_0, R_0') b.solve_for_reaction_loads(R_0, M_0) assert simplify(b.slope()) == simplify((80*SingularityFunction(x, 0, 1) - 10*SingularityFunction(x, 0, 2) + 10*SingularityFunction(x, 4, 2))/(E*I)) assert simplify(b.deflection()) == simplify((40*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 0, 3)/3 + 10*SingularityFunction(x, 4, 3)/3)/(E*I)) b = Beam(30, E, I) b.apply_support(10, "pin") b.apply_support(30, "roller") b.apply_load(-8, 0, -1) b.apply_load(120, 30, -2) R_10, R_30 = symbols('R_10, R_30') b.solve_for_reaction_loads(R_10, R_30) assert b.slope() == (-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + Rational(4000, 3))/(E*I) assert b.deflection() == (x*Rational(4000, 3) - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3) + 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I) P = Symbol('P', positive=True) L = Symbol('L', positive=True) b = Beam(L, E, I) b.apply_support(0, type='fixed') b.apply_support(L, type='fixed') b.apply_load(-P, L/2, -1) R_0, R_L, M_0, M_L = symbols('R_0, R_L, M_0, M_L') b.solve_for_reaction_loads(R_0, R_L, M_0, M_L) assert b.reaction_loads == {R_0: P/2, R_L: P/2, M_0: -L*P/8, M_L: L*P/8} def test_max_shear_force(): E = Symbol('E') I = Symbol('I') b = Beam(3, E, I) R, M = symbols('R, M') b.apply_load(R, 0, -1) b.apply_load(M, 0, -2) b.apply_load(2, 3, -1) b.apply_load(4, 2, -1) b.apply_load(2, 2, 0, end=3) b.solve_for_reaction_loads(R, M) assert b.max_shear_force() == (Interval(0, 2), 8) l = symbols('l', positive=True) P = Symbol('P') b = Beam(l, E, I) R1, R2 = symbols('R1, R2') b.apply_load(R1, 0, -1) b.apply_load(R2, l, -1) b.apply_load(P, 0, 0, end=l) b.solve_for_reaction_loads(R1, R2) assert b.max_shear_force() == (0, l*Abs(P)/2) def test_max_bmoment(): E = Symbol('E') I = Symbol('I') l, P = symbols('l, P', positive=True) b = Beam(l, E, I) R1, R2 = symbols('R1, R2') b.apply_load(R1, 0, -1) b.apply_load(R2, l, -1) b.apply_load(P, l/2, -1) b.solve_for_reaction_loads(R1, R2) b.reaction_loads assert b.max_bmoment() == (l/2, P*l/4) b = Beam(l, E, I) R1, R2 = symbols('R1, R2') b.apply_load(R1, 0, -1) b.apply_load(R2, l, -1) b.apply_load(P, 0, 0, end=l) b.solve_for_reaction_loads(R1, R2) assert b.max_bmoment() == (l/2, P*l**2/8) def test_max_deflection(): E, I, l, F = symbols('E, I, l, F', positive=True) b = Beam(l, E, I) b.bc_deflection = [(0, 0),(l, 0)] b.bc_slope = [(0, 0),(l, 0)] b.apply_load(F/2, 0, -1) b.apply_load(-F*l/8, 0, -2) b.apply_load(F/2, l, -1) b.apply_load(F*l/8, l, -2) b.apply_load(-F, l/2, -1) assert b.max_deflection() == (l/2, F*l**3/(192*E*I)) def test_Beam3D(): l, E, G, I, A = symbols('l, E, G, I, A') R1, R2, R3, R4 = symbols('R1, R2, R3, R4') b = Beam3D(l, E, G, I, A) m, q = symbols('m, q') b.apply_load(q, 0, 0, dir="y") b.apply_moment_load(m, 0, 0, dir="z") b.bc_slope = [(0, [0, 0, 0]), (l, [0, 0, 0])] b.bc_deflection = [(0, [0, 0, 0]), (l, [0, 0, 0])] b.solve_slope_deflection() assert b.polar_moment() == 2*I assert b.shear_force() == [0, -q*x, 0] assert b.shear_stress() == [0, -q*x/A, 0] assert b.axial_stress() == 0 assert b.bending_moment() == [0, 0, -m*x + q*x**2/2] expected_deflection = (x*(A*G*q*x**3/4 + A*G*x**2*(-l*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(A*G*l**2 + 12*E*I)/2 - m) + 3*E*I*l*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(A*G*l**2 + 12*E*I) + x*(-A*G*l**2*q/2 + 3*A*G*l**2*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(A*G*l**2 + 12*E*I)/4 + A*G*l*m*Rational(3, 2) - 3*E*I*q))/(6*A*E*G*I)) dx, dy, dz = b.deflection() assert dx == dz == 0 assert simplify(dy - expected_deflection) == 0 b2 = Beam3D(30, E, G, I, A, x) b2.apply_load(50, start=0, order=0, dir="y") b2.bc_deflection = [(0, [0, 0, 0]), (30, [0, 0, 0])] b2.apply_load(R1, start=0, order=-1, dir="y") b2.apply_load(R2, start=30, order=-1, dir="y") b2.solve_for_reaction_loads(R1, R2) assert b2.reaction_loads == {R1: -750, R2: -750} b2.solve_slope_deflection() assert b2.slope() == [0, 0, x**2*(50*x - 2250)/(6*E*I) + 3750*x/(E*I)] expected_deflection = (x*(25*A*G*x**3/2 - 750*A*G*x**2 + 4500*E*I + 15*x*(750*A*G - 10*E*I))/(6*A*E*G*I)) dx, dy, dz = b2.deflection() assert dx == dz == 0 assert dy == expected_deflection # Test for solve_for_reaction_loads b3 = Beam3D(30, E, G, I, A, x) b3.apply_load(8, start=0, order=0, dir="y") b3.apply_load(9*x, start=0, order=0, dir="z") b3.apply_load(R1, start=0, order=-1, dir="y") b3.apply_load(R2, start=30, order=-1, dir="y") b3.apply_load(R3, start=0, order=-1, dir="z") b3.apply_load(R4, start=30, order=-1, dir="z") b3.solve_for_reaction_loads(R1, R2, R3, R4) assert b3.reaction_loads == {R1: -120, R2: -120, R3: -1350, R4: -2700} def test_polar_moment_Beam3D(): l, E, G, A, I1, I2 = symbols('l, E, G, A, I1, I2') I = [I1, I2] b = Beam3D(l, E, G, I, A) assert b.polar_moment() == I1 + I2 def test_parabolic_loads(): E, I, L = symbols('E, I, L', positive=True, real=True) R, M, P = symbols('R, M, P', real=True) # cantilever beam fixed at x=0 and parabolic distributed loading across # length of beam beam = Beam(L, E, I) beam.bc_deflection.append((0, 0)) beam.bc_slope.append((0, 0)) beam.apply_load(R, 0, -1) beam.apply_load(M, 0, -2) # parabolic load beam.apply_load(1, 0, 2) beam.solve_for_reaction_loads(R, M) assert beam.reaction_loads[R] == -L**3/3 # cantilever beam fixed at x=0 and parabolic distributed loading across # first half of beam beam = Beam(2*L, E, I) beam.bc_deflection.append((0, 0)) beam.bc_slope.append((0, 0)) beam.apply_load(R, 0, -1) beam.apply_load(M, 0, -2) # parabolic load from x=0 to x=L beam.apply_load(1, 0, 2, end=L) beam.solve_for_reaction_loads(R, M) # result should be the same as the prior example assert beam.reaction_loads[R] == -L**3/3 # check constant load beam = Beam(2*L, E, I) beam.apply_load(P, 0, 0, end=L) loading = beam.load.xreplace({L: 10, E: 20, I: 30, P: 40}) assert loading.xreplace({x: 5}) == 40 assert loading.xreplace({x: 15}) == 0 # check ramp load beam = Beam(2*L, E, I) beam.apply_load(P, 0, 1, end=L) assert beam.load == (P*SingularityFunction(x, 0, 1) - P*SingularityFunction(x, L, 1) - P*L*SingularityFunction(x, L, 0)) # check higher order load: x**8 load from x=0 to x=L beam = Beam(2*L, E, I) beam.apply_load(P, 0, 8, end=L) loading = beam.load.xreplace({L: 10, E: 20, I: 30, P: 40}) assert loading.xreplace({x: 5}) == 40*5**8 assert loading.xreplace({x: 15}) == 0 def test_cross_section(): I = Symbol('I') l = Symbol('l') E = Symbol('E') C3, C4 = symbols('C3, C4') a, c, g, h, r, n = symbols('a, c, g, h, r, n') # test for second_moment and cross_section setter b0 = Beam(l, E, I) assert b0.second_moment == I assert b0.cross_section == None b0.cross_section = Circle((0, 0), 5) assert b0.second_moment == pi*Rational(625, 4) assert b0.cross_section == Circle((0, 0), 5) b0.second_moment = 2*n - 6 assert b0.second_moment == 2*n-6 assert b0.cross_section == None with raises(ValueError): b0.second_moment = Circle((0, 0), 5) # beam with a circular cross-section b1 = Beam(50, E, Circle((0, 0), r)) assert b1.cross_section == Circle((0, 0), r) assert b1.second_moment == pi*r*Abs(r)**3/4 b1.apply_load(-10, 0, -1) b1.apply_load(R1, 5, -1) b1.apply_load(R2, 50, -1) b1.apply_load(90, 45, -2) b1.solve_for_reaction_loads(R1, R2) assert b1.load == (-10*SingularityFunction(x, 0, -1) + 82*SingularityFunction(x, 5, -1)/S(9) + 90*SingularityFunction(x, 45, -2) + 8*SingularityFunction(x, 50, -1)/9) assert b1.bending_moment() == (10*SingularityFunction(x, 0, 1) - 82*SingularityFunction(x, 5, 1)/9 - 90*SingularityFunction(x, 45, 0) - 8*SingularityFunction(x, 50, 1)/9) q = (-5*SingularityFunction(x, 0, 2) + 41*SingularityFunction(x, 5, 2)/S(9) + 90*SingularityFunction(x, 45, 1) + 4*SingularityFunction(x, 50, 2)/S(9))/(pi*E*r*Abs(r)**3) assert b1.slope() == C3 + 4*q q = (-5*SingularityFunction(x, 0, 3)/3 + 41*SingularityFunction(x, 5, 3)/27 + 45*SingularityFunction(x, 45, 2) + 4*SingularityFunction(x, 50, 3)/27)/(pi*E*r*Abs(r)**3) assert b1.deflection() == C3*x + C4 + 4*q # beam with a recatangular cross-section b2 = Beam(20, E, Polygon((0, 0), (a, 0), (a, c), (0, c))) assert b2.cross_section == Polygon((0, 0), (a, 0), (a, c), (0, c)) assert b2.second_moment == a*c**3/12 # beam with a triangular cross-section b3 = Beam(15, E, Triangle((0, 0), (g, 0), (g/2, h))) assert b3.cross_section == Triangle(Point2D(0, 0), Point2D(g, 0), Point2D(g/2, h)) assert b3.second_moment == g*h**3/36 # composite beam b = b2.join(b3, "fixed") b.apply_load(-30, 0, -1) b.apply_load(65, 0, -2) b.apply_load(40, 0, -1) b.bc_slope = [(0, 0)] b.bc_deflection = [(0, 0)] assert b.second_moment == Piecewise((a*c**3/12, x <= 20), (g*h**3/36, x <= 35)) assert b.cross_section == None assert b.length == 35 assert b.slope().subs(x, 7) == 8400/(E*a*c**3) assert b.slope().subs(x, 25) == 52200/(E*g*h**3) + 39600/(E*a*c**3) assert b.deflection().subs(x, 30) == -537000/(E*g*h**3) - 712000/(E*a*c**3)
cd0c663ff6069daf4b8516fee129d7bc7ed2749808dd2735b1fc22a71109ed87
import functools, itertools from sympy.core.sympify import sympify from sympy.core.expr import Expr from sympy.core import Basic from sympy.tensor.array import ImmutableDenseNDimArray from sympy import Symbol from sympy.core.numbers import Integer class ArrayComprehension(Basic): """ Generate a list comprehension. Explanation =========== If there is a symbolic dimension, for example, say [i for i in range(1, N)] where N is a Symbol, then the expression will not be expanded to an array. Otherwise, calling the doit() function will launch the expansion. Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j, k = symbols('i j k') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.doit() [[11, 12, 13], [21, 22, 23], [31, 32, 33], [41, 42, 43]] >>> b = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k)) >>> b.doit() ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k)) """ def __new__(cls, function, *symbols, **assumptions): if any(len(l) != 3 or None for l in symbols): raise ValueError('ArrayComprehension requires values lower and upper bound' ' for the expression') arglist = [sympify(function)] arglist.extend(cls._check_limits_validity(function, symbols)) obj = Basic.__new__(cls, *arglist, **assumptions) obj._limits = obj._args[1:] obj._shape = cls._calculate_shape_from_limits(obj._limits) obj._rank = len(obj._shape) obj._loop_size = cls._calculate_loop_size(obj._shape) return obj @property def function(self): """The function applied across limits. Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j = symbols('i j') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.function 10*i + j """ return self._args[0] @property def limits(self): """ The list of limits that will be applied while expanding the array. Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j = symbols('i j') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.limits ((i, 1, 4), (j, 1, 3)) """ return self._limits @property def free_symbols(self): """ The set of the free_symbols in the array. Variables appeared in the bounds are supposed to be excluded from the free symbol set. Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j, k = symbols('i j k') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.free_symbols set() >>> b = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k+3)) >>> b.free_symbols {k} """ expr_free_sym = self.function.free_symbols for var, inf, sup in self._limits: expr_free_sym.discard(var) curr_free_syms = inf.free_symbols.union(sup.free_symbols) expr_free_sym = expr_free_sym.union(curr_free_syms) return expr_free_sym @property def variables(self): """The tuples of the variables in the limits. Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j, k = symbols('i j k') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.variables [i, j] """ return [l[0] for l in self._limits] @property def bound_symbols(self): """The list of dummy variables. Note ==== Note that all variables are dummy variables since a limit without lower bound or upper bound is not accepted. """ return [l[0] for l in self._limits if len(l) != 1] @property def shape(self): """ The shape of the expanded array, which may have symbols. Note ==== Both the lower and the upper bounds are included while calculating the shape. Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j, k = symbols('i j k') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.shape (4, 3) >>> b = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k+3)) >>> b.shape (4, k + 3) """ return self._shape @property def is_shape_numeric(self): """ Test if the array is shape-numeric which means there is no symbolic dimension. Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j, k = symbols('i j k') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.is_shape_numeric True >>> b = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k+3)) >>> b.is_shape_numeric False """ for _, inf, sup in self._limits: if Basic(inf, sup).atoms(Symbol): return False return True def rank(self): """The rank of the expanded array. Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j, k = symbols('i j k') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.rank() 2 """ return self._rank def __len__(self): """ The length of the expanded array which means the number of elements in the array. Raises ====== ValueError : When the length of the array is symbolic Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j = symbols('i j') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> len(a) 12 """ if self._loop_size.free_symbols: raise ValueError('Symbolic length is not supported') return self._loop_size @classmethod def _check_limits_validity(cls, function, limits): limits = sympify(limits) for var, inf, sup in limits: if any((not isinstance(i, Expr)) or i.atoms(Symbol, Integer) != i.atoms() for i in [inf, sup]): raise TypeError('Bounds should be an Expression(combination of Integer and Symbol)') if (inf > sup) == True: raise ValueError('Lower bound should be inferior to upper bound') if var in inf.free_symbols or var in sup.free_symbols: raise ValueError('Variable should not be part of its bounds') return limits @classmethod def _calculate_shape_from_limits(cls, limits): return tuple([sup - inf + 1 for _, inf, sup in limits]) @classmethod def _calculate_loop_size(cls, shape): if not shape: return 0 loop_size = 1 for l in shape: loop_size = loop_size * l return loop_size def doit(self): if not self.is_shape_numeric: return self return self._expand_array() def _expand_array(self): res = [] for values in itertools.product(*[range(inf, sup+1) for var, inf, sup in self._limits]): res.append(self._get_element(values)) return ImmutableDenseNDimArray(res, self.shape) def _get_element(self, values): temp = self.function for var, val in zip(self.variables, values): temp = temp.subs(var, val) return temp def tolist(self): """Transform the expanded array to a list. Raises ====== ValueError : When there is a symbolic dimension Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j = symbols('i j') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.tolist() [[11, 12, 13], [21, 22, 23], [31, 32, 33], [41, 42, 43]] """ if self.is_shape_numeric: return self._expand_array().tolist() raise ValueError("A symbolic array cannot be expanded to a list") def tomatrix(self): """Transform the expanded array to a matrix. Raises ====== ValueError : When there is a symbolic dimension ValueError : When the rank of the expanded array is not equal to 2 Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j = symbols('i j') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.tomatrix() Matrix([ [11, 12, 13], [21, 22, 23], [31, 32, 33], [41, 42, 43]]) """ from sympy.matrices import Matrix if not self.is_shape_numeric: raise ValueError("A symbolic array cannot be expanded to a matrix") if self._rank != 2: raise ValueError('Dimensions must be of size of 2') return Matrix(self._expand_array().tomatrix()) def isLambda(v): LAMBDA = lambda: 0 return isinstance(v, type(LAMBDA)) and v.__name__ == LAMBDA.__name__ class ArrayComprehensionMap(ArrayComprehension): ''' A subclass of ArrayComprehension dedicated to map external function lambda. Notes ===== Only the lambda function is considered. At most one argument in lambda function is accepted in order to avoid ambiguity in value assignment. Examples ======== >>> from sympy.tensor.array import ArrayComprehensionMap >>> from sympy import symbols >>> i, j, k = symbols('i j k') >>> a = ArrayComprehensionMap(lambda: 1, (i, 1, 4)) >>> a.doit() [1, 1, 1, 1] >>> b = ArrayComprehensionMap(lambda a: a+1, (j, 1, 4)) >>> b.doit() [2, 3, 4, 5] ''' def __new__(cls, function, *symbols, **assumptions): if any(len(l) != 3 or None for l in symbols): raise ValueError('ArrayComprehension requires values lower and upper bound' ' for the expression') if not isLambda(function): raise ValueError('Data type not supported') arglist = cls._check_limits_validity(function, symbols) obj = Basic.__new__(cls, *arglist, **assumptions) obj._limits = obj._args obj._shape = cls._calculate_shape_from_limits(obj._limits) obj._rank = len(obj._shape) obj._loop_size = cls._calculate_loop_size(obj._shape) obj._lambda = function return obj @property def func(self): class _(ArrayComprehensionMap): def __new__(cls, *args, **kwargs): return ArrayComprehensionMap(self._lambda, *args, **kwargs) return _ def _get_element(self, values): temp = self._lambda if self._lambda.__code__.co_argcount == 0: temp = temp() elif self._lambda.__code__.co_argcount == 1: temp = temp(functools.reduce(lambda a, b: a*b, values)) return temp
20587f4da68ad2c95fe50a1cea26aa0fcdfa5abfdfe1a7388566506dbca5da6d
r""" N-dim array module for SymPy. Four classes are provided to handle N-dim arrays, given by the combinations dense/sparse (i.e. whether to store all elements or only the non-zero ones in memory) and mutable/immutable (immutable classes are SymPy objects, but cannot change after they have been created). Examples ======== The following examples show the usage of ``Array``. This is an abbreviation for ``ImmutableDenseNDimArray``, that is an immutable and dense N-dim array, the other classes are analogous. For mutable classes it is also possible to change element values after the object has been constructed. Array construction can detect the shape of nested lists and tuples: >>> from sympy import Array >>> a1 = Array([[1, 2], [3, 4], [5, 6]]) >>> a1 [[1, 2], [3, 4], [5, 6]] >>> a1.shape (3, 2) >>> a1.rank() 2 >>> from sympy.abc import x, y, z >>> a2 = Array([[[x, y], [z, x*z]], [[1, x*y], [1/x, x/y]]]) >>> a2 [[[x, y], [z, x*z]], [[1, x*y], [1/x, x/y]]] >>> a2.shape (2, 2, 2) >>> a2.rank() 3 Otherwise one could pass a 1-dim array followed by a shape tuple: >>> m1 = Array(range(12), (3, 4)) >>> m1 [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]] >>> m2 = Array(range(12), (3, 2, 2)) >>> m2 [[[0, 1], [2, 3]], [[4, 5], [6, 7]], [[8, 9], [10, 11]]] >>> m2[1,1,1] 7 >>> m2.reshape(4, 3) [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]] Slice support: >>> m2[:, 1, 1] [3, 7, 11] Elementwise derivative: >>> from sympy.abc import x, y, z >>> m3 = Array([x**3, x*y, z]) >>> m3.diff(x) [3*x**2, y, 0] >>> m3.diff(z) [0, 0, 1] Multiplication with other SymPy expressions is applied elementwisely: >>> (1+x)*m3 [x**3*(x + 1), x*y*(x + 1), z*(x + 1)] To apply a function to each element of the N-dim array, use ``applyfunc``: >>> m3.applyfunc(lambda x: x/2) [x**3/2, x*y/2, z/2] N-dim arrays can be converted to nested lists by the ``tolist()`` method: >>> m2.tolist() [[[0, 1], [2, 3]], [[4, 5], [6, 7]], [[8, 9], [10, 11]]] >>> isinstance(m2.tolist(), list) True If the rank is 2, it is possible to convert them to matrices with ``tomatrix()``: >>> m1.tomatrix() Matrix([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]) Products and contractions ------------------------- Tensor product between arrays `A_{i_1,\ldots,i_n}` and `B_{j_1,\ldots,j_m}` creates the combined array `P = A \otimes B` defined as `P_{i_1,\ldots,i_n,j_1,\ldots,j_m} := A_{i_1,\ldots,i_n}\cdot B_{j_1,\ldots,j_m}.` It is available through ``tensorproduct(...)``: >>> from sympy import Array, tensorproduct >>> from sympy.abc import x,y,z,t >>> A = Array([x, y, z, t]) >>> B = Array([1, 2, 3, 4]) >>> tensorproduct(A, B) [[x, 2*x, 3*x, 4*x], [y, 2*y, 3*y, 4*y], [z, 2*z, 3*z, 4*z], [t, 2*t, 3*t, 4*t]] Tensor product between a rank-1 array and a matrix creates a rank-3 array: >>> from sympy import eye >>> p1 = tensorproduct(A, eye(4)) >>> p1 [[[x, 0, 0, 0], [0, x, 0, 0], [0, 0, x, 0], [0, 0, 0, x]], [[y, 0, 0, 0], [0, y, 0, 0], [0, 0, y, 0], [0, 0, 0, y]], [[z, 0, 0, 0], [0, z, 0, 0], [0, 0, z, 0], [0, 0, 0, z]], [[t, 0, 0, 0], [0, t, 0, 0], [0, 0, t, 0], [0, 0, 0, t]]] Now, to get back `A_0 \otimes \mathbf{1}` one can access `p_{0,m,n}` by slicing: >>> p1[0,:,:] [[x, 0, 0, 0], [0, x, 0, 0], [0, 0, x, 0], [0, 0, 0, x]] Tensor contraction sums over the specified axes, for example contracting positions `a` and `b` means `A_{i_1,\ldots,i_a,\ldots,i_b,\ldots,i_n} \implies \sum_k A_{i_1,\ldots,k,\ldots,k,\ldots,i_n}` Remember that Python indexing is zero starting, to contract the a-th and b-th axes it is therefore necessary to specify `a-1` and `b-1` >>> from sympy import tensorcontraction >>> C = Array([[x, y], [z, t]]) The matrix trace is equivalent to the contraction of a rank-2 array: `A_{m,n} \implies \sum_k A_{k,k}` >>> tensorcontraction(C, (0, 1)) t + x Matrix product is equivalent to a tensor product of two rank-2 arrays, followed by a contraction of the 2nd and 3rd axes (in Python indexing axes number 1, 2). `A_{m,n}\cdot B_{i,j} \implies \sum_k A_{m, k}\cdot B_{k, j}` >>> D = Array([[2, 1], [0, -1]]) >>> tensorcontraction(tensorproduct(C, D), (1, 2)) [[2*x, x - y], [2*z, -t + z]] One may verify that the matrix product is equivalent: >>> from sympy import Matrix >>> Matrix([[x, y], [z, t]])*Matrix([[2, 1], [0, -1]]) Matrix([ [2*x, x - y], [2*z, -t + z]]) or equivalently >>> C.tomatrix()*D.tomatrix() Matrix([ [2*x, x - y], [2*z, -t + z]]) Diagonal operator ----------------- The ``tensordiagonal`` function acts in a similar manner as ``tensorcontraction``, but the joined indices are not summed over, for example diagonalizing positions `a` and `b` means `A_{i_1,\ldots,i_a,\ldots,i_b,\ldots,i_n} \implies A_{i_1,\ldots,k,\ldots,k,\ldots,i_n} \implies \tilde{A}_{i_1,\ldots,i_{a-1},i_{a+1},\ldots,i_{b-1},i_{b+1},\ldots,i_n,k}` where `\tilde{A}` is the array equivalent to the diagonal of `A` at positions `a` and `b` moved to the last index slot. Compare the difference between contraction and diagonal operators: >>> from sympy import tensordiagonal >>> from sympy.abc import a, b, c, d >>> m = Matrix([[a, b], [c, d]]) >>> tensorcontraction(m, [0, 1]) a + d >>> tensordiagonal(m, [0, 1]) [a, d] In short, no summation occurs with ``tensordiagonal``. Derivatives by array -------------------- The usual derivative operation may be extended to support derivation with respect to arrays, provided that all elements in the that array are symbols or expressions suitable for derivations. The definition of a derivative by an array is as follows: given the array `A_{i_1, \ldots, i_N}` and the array `X_{j_1, \ldots, j_M}` the derivative of arrays will return a new array `B` defined by `B_{j_1,\ldots,j_M,i_1,\ldots,i_N} := \frac{\partial A_{i_1,\ldots,i_N}}{\partial X_{j_1,\ldots,j_M}}` The function ``derive_by_array`` performs such an operation: >>> from sympy import derive_by_array >>> from sympy.abc import x, y, z, t >>> from sympy import sin, exp With scalars, it behaves exactly as the ordinary derivative: >>> derive_by_array(sin(x*y), x) y*cos(x*y) Scalar derived by an array basis: >>> derive_by_array(sin(x*y), [x, y, z]) [y*cos(x*y), x*cos(x*y), 0] Deriving array by an array basis: `B^{nm} := \frac{\partial A^m}{\partial x^n}` >>> basis = [x, y, z] >>> ax = derive_by_array([exp(x), sin(y*z), t], basis) >>> ax [[exp(x), 0, 0], [0, z*cos(y*z), 0], [0, y*cos(y*z), 0]] Contraction of the resulting array: `\sum_m \frac{\partial A^m}{\partial x^m}` >>> tensorcontraction(ax, (0, 1)) z*cos(y*z) + exp(x) """ from .dense_ndim_array import MutableDenseNDimArray, ImmutableDenseNDimArray, DenseNDimArray from .sparse_ndim_array import MutableSparseNDimArray, ImmutableSparseNDimArray, SparseNDimArray from .ndim_array import NDimArray, ArrayKind from .arrayop import tensorproduct, tensorcontraction, tensordiagonal, derive_by_array, permutedims from .array_comprehension import ArrayComprehension, ArrayComprehensionMap Array = ImmutableDenseNDimArray __all__ = [ 'MutableDenseNDimArray', 'ImmutableDenseNDimArray', 'DenseNDimArray', 'MutableSparseNDimArray', 'ImmutableSparseNDimArray', 'SparseNDimArray', 'NDimArray', 'ArrayKind', 'tensorproduct', 'tensorcontraction', 'tensordiagonal', 'derive_by_array', 'permutedims', 'ArrayComprehension', 'ArrayComprehensionMap', 'Array', ]